

1476 ROUTE 50 - P.O. BOX 2167 BALLSTON SPA, NY 12020 Phone: (518) 884-8545 - Fax: (518) 884-9710

April 5, 2019

NYS Department of Environmental Conservation Division of Environmental Remediation, Region 4 Attn.: Mr. Drew Hoffert Engineer Trainee 1130 N. Westcott Rd. Schenectady, NY 12306-2014

EMAIL: drew.hoffert@dec.ny.gov

RE: NYSDEC SPILL No. 01-04315 HAVILL AUTO BODY CENTER ALBANY COUNTY

Dear Drew,

This letter summarizes the supplemental site investigation (SI) work completed at the Havill's Automotive Collision Repair facility (hereinafter termed the Property) in response to regulatory directives issued by they NYS Department of Environmental Conservation (Department) on November 6, 2018 and March 28, 2019 for Spill No. 01-04315. The SI work has been completed in accordance with methods approved by the Department as outlined in Northeastern Environmental Technologies Corp. (NETC) work plan dated March 19, 2019 (Revised March 29, 2019). A more detailed accounting of the services proposed are listed below for your review and consideration.

COMPLETED SERVICES

SOIL BORING PROGRAM

On March 27 and 28, 2008 NETC completed a total of (5) soil borings at the Property (see **Figure 1**). The soil borings were advanced to a depth ranging from \pm 20.0 to 30.0 feet below grade. Each soil boring was completed with a 1.0" Schedule 40 PVC monitoring well. Each soil boring was completed in a manner to provide a geological log of the subsurface conditions and provide data on the site's soil and groundwater condition. All soil samples collected were examined and described using the Burmister and Unified Soil Classification Systems. Copies of the individual soil boring logs and monitoring well completion diagrams are included as **Attachments A** and **B**, respectively.

Field headspace soil gas screening was performed on each soil sample collected at the Property. A properly calibrated photo ionization detector (PID - Rae Model 3000) was used for the field screening work. Soil gas headsapce measurements were recorded on a \pm 2.5 - 5.0 ft. interval. The field soil gas screening work was used to document VOC concentrations in each sample, as well as a means to short list samples for laboratory analysis. One soil sample from each soil boring was prepared for laboratory analysis. Each of the soil samples were shipped to Phoenix Environmental Laboratories (PEL) on March 29, 2019; soil sample HA-1/S-5A was submitted for the volatile target compound list (TCL) chemical analysis via EPA Method 8260.

SOIL VAPOR INTRUSION SAMPLING PROGRAM

On March 27, 2019 sub-slab vapor and indoor air samples were collected simultaneously from the automotive repair garage and an outdoor air (OA) was collected from the northeast corner of the Property. The sub-slab vapor sample was obtained from a stainless steel [vapor pin] implant installed in the floor of the structure. All samples were collected using a negatively pressurized 6L "Summa" canister equipped with a 24 hour sample regulator. The outdoor air sample was collected at an upwind location (free of obstructions) adjacent

NOTES: All site features are approximate.

This site plan is intended for illustration purpose

associated with a proposed site investigation work plan

to be performed on behalf of Havill's Automotive Collision Repair, exclusively.

LEGEND

▽ Sub Slab & Indoor Air TO-15 Sample

▼ Outdoor Air TO-15 Sample

1476 Route 50, P.O. Box 2167, Ballston Spa, NY 12020 Phone: (518) 884-8545 Fax: (518) 884-9710 e-mail: jeffnetc@nycap.rr.com

Site Investigation Areas - Spill No. 01-04315

PROJECT: Havill's Automotive Collision Repair 694 Delaware Ave. Albany, New York

Project # 19.0102014

Scale: Not to Scale

Date: 04/05/19

NYS Department of Environmental Conservation Division of Environmental Remediation, Region 4 Attn.: Mr. Drew Hoffert Engineer Trainee April 5, 2019 Page 3 of 3

to the structure. The indoor and outdoor air samples were obtained from a 3 foot elevated platform. Each of the Summa canisters samples were shipped to PEL on March 29, 2019.

GROUNDWATER SAMPLING PROGRAM

Groundwater samples were collected from each monitoring well on April 2, 2019 using low flow sampling techniques. Prior to sampling groundwater levels were recorded; a Nephelometric Turbidity Units (NTU) values as well as similar physiochemical observations (i.e., non-aqueous components of well water, floaters," surface sheens) were documented during the low flow sampling work. Copies of the field sampling data sheet are included at **Attachment** C. All groundwater samples were shipped to Phoenix Environmental Laboratories (PEL) on April 3, 2019; groundwater sample HA-1 was submitted for the volatile TCL chemical analysis via EPA Method 8260.

FINDINGS

The unconsolidated deposits encountered during the soil boring installation work include in descending order a cultural fill horizon composed of a heterogeneous mixture of sand, gravel, brick and concrete and a low permeable glaciolacustrine varved clay and silt deposit. Groundwater levels recorded in the network of wells on April 2, 2019 ranged from \pm 3 - 18 feet below grade.

With the exception of a localized horizon at soil boring location HA-3, no visual or olfactory indications of a chemical release was documented at the (5) soil boring sites; soil gas conditions documented in the field were also indicative of background VOC concentrations (i.e., 0.0-0.5 ppm) in each of the sample. A slight petrochemical odor was documented between 10 - 15 feet below grade at soil boring HA-3; VOC soil gas concentrations of 45 - 98 ppm were also documented in a buried lens of low permeable clay and silt deposits which attenuated to background conditions at \pm 17 feet below grade.

The laboratory sample results from the cell tower area of concern demonstrate soil conditions at soil boring HA-1 are unaffected by the VOC chemical parameters inherent to TCL EPA Method 8260. Groundwater sample HA-1 was reported to contain the 1,1,1-Trichloroethane (95 ug/L), 1,1-Dichloroethane (28 ug/L), 1,1-Dichloroethane (12 ug/L), Acetone (9.9 ug/L), Chloroethane (1.9 ug/L) and Methyl t-butyl ether (56 ug/L). Copies of the PEL laboratory reports are included as **Attachment D & E**.

Data developed during this SI appears to demonstrates the presence of localized low concentration VOCs poses a low exposure risk. NETCs position on this matter is based on the current and foreseeable commercial use of the Property, the apparent absence of down gradient sensitive receptors, and the use of municipal water on site and in the surrounding area. Should the Department require other supplemental information from the Property to programmatically close the regulatory notices issued on November 6, 2018 and March 28, 2019, please notify our office on or before April 10, 2019*.

Sincerely,

NORTHEASTERN, ENVIRONMENTAL TECHNOLOGIES CORPORATION

Jeffrey T. Wink President

*Note: Laboratory holding times for soil (i.e., HA-2/S-5, HA-3/S-3A, HA-4/S-3 & HA-5/S-3) and groundwater (i.e., HA-2, HA-3, HA-4 and HA-5) samples collected during the SI expire on April 10 & 16, 2019, respectively.

ATTACHMENT A

SOIL BORING LOGS

PRESENTATION OF IDENTIFICATIONS

BASED ON THE

BURMISTER SYSTEM

Fully Written Descriptions

Start the description with the color, first letter of first color capitalized (e.g. Brown, Yellow brown, Yellow and brown). The color should be the same as field description, since with oxidation the color sometimes changes between the time the sample is recovered and when it is viewed in the laboratory.

Determine the primary component (e.g. sand, gravel, or silt) and whether the component represents 50% (by weight) or more of the sample.

- 1. If more than 50% sand, the word sand gets fully capitalized.

 Preceding the word sand, are the terms coarse, medium and/or fine as follows:
 - a. If there are approximately equal amounts of coarse, medium and fine sand, the description reads "coarse to fine SAND". If there is more coarse sand, the description reads "coarse (+) to fine SAND". The same holds true for the fine sand predomination. If medium sand predominates, the description reads "coarse medium (+) to fine SAND". In order for a term coarse, medium or fine to be included in a description, it must represent at least 10% of the sand fraction. For example, if a sample contains 70% sand, the sample must contain at least 7% of coarse sand for the word coarse to be included in the description. The above usage of coarse, medium and fine applies to gravel as well as sand.

Unless advised to the contrary on a specific job, the differentiation between coarse and fine silt shall not be made.

b. A comma always appears immediately after the word sand. Next comes the adjective giving the approximate percentage of soil by weight passing the #200 sieve as follows:

and: 35-50% some: 20-35%

little: 10-20% trace: 1-10%

with a (+) sign indicating the upper third of percentage, a (-) sign indicating the lower third of percentage, and no sign indicating the middle third of percentage. Next comes a description of the soil passing the #200 sieve, based exclusively on plasticity as follows:

PI	Description	Organic
0 - 1%	Silt	(non-plastic)
1 - 5%	Clayey Silt	(Slight P.I.)
5 - 10%	Silt & Clay	(Low P.I.)
10 - 20%	Clay & Silt	(Medium P.I.)
20 - 40%	Silty Clay	(High P.I.)
40% and more	Clay	(Very High P.I.)

If the soil is organic, the term Organic Silt is used instead of the terms listed under "Description" and the terms listed under "Organic" are used at the very end of the full description (in parentheses).

- c. A comma is placed immediately after the term describing the soil passing the #200 sieve (e.g. Silt & Clay). Next the usage of and, some, little or trace (with a (+) or (-) if needed) is used to indicate the percent of gravel, followed by the use of coarse, medium and/or fine to describe the gravel gradation, with the word gravel always using a capital "G".
- d. An illustration of description of a soil having more than 50% sand is as follows:

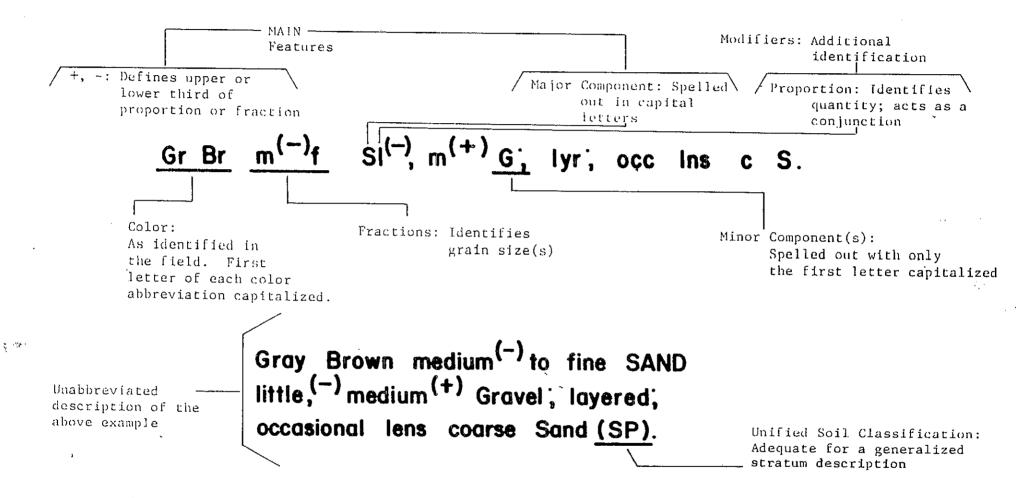
Brown coarse to fine SAND, little Clayey Silt, some (-) medium to fine (+) Gravel.

- 2. If the major component is less than 50% of the total sample, the description is written exactly as for Item 1 above (with sand coming first), except that in the word sand, only the S is capitalized rather than the full word.
- 3. If there is more than 50% gravel, the description once more starts with the color, followed by the applicable terms of coarse, medium and fine, followed by the word GRAVEL in all capitals.
 - a. The adjective giving the percentage of all the soil except gravel is placed after the word gravel, and then a comma (e.g. if there is 62% gravel, a partial description would be "Brown medium to fine (+) GRAVEL and (-),..."). The sand is then described by coarse, medium and/or fine without its own percent adjective (with only the S in sand being capitalized). A comma is placed immediately after the word Sand, after which the soil passing the #200 sieve is indicated with the adjective for percentage as given in Item 1b above.
 - b. An example is: Gray medium to fine (+) GRAVEL and (-), coarse to fine Sand, trace Silt.

4. If there is more than 50% passing the #200 sieve, the description once more starts with the color, followed by the #200 description based exclusively on plasticity as follows:

PI	Description	<u>Organic</u>
0 - 1%	SILT	(non-plastic)
1 - 5%	Clayey SILT	(Slight P.I.)
5 - 10%	SILT & CLAY	(Low P.I.)
10 - 20%	CLAY & SILT	(Medium P.I.)
20 - 40%	Silty CLAY	(High P.I.)
40% or more	CLAY	(Very High P.I.)

If the soil is organic, the term Organic SILT is used instead of the terms listed under "Description", and the terms listed under "Organic" are used at the very end of the full description (in parentheses).


- a. The description is written as discussed in Section 3, with sand preceding gravel.
- b. An example is: Brown Clayey SILT some (+), coarse to fine Sand, trace fine Gravel.
- c. In the foregoing example, if the fines are organic the identification would be:

Brown Organic SILT some (+), coarse to fine Sand, trace fine Gravel (Slight P.I.).

- 5. If pockets, layers, etc., of other soil are present in the sample, include it at the end of the previously written description with a comma at the end of the previously written description.
- 6. If closely layered (partings, seams, or layers) soils, such as varved clays, are involved, each layer must be completely identified along with a sketch in the remarks column showing layer thicknesses.
- 7. Organic soils are identified as Organic Silt (as previously described) or as Peat.
 - a. Characteristics of Organic Silt are:
 - (1) Usually light gray to very dark gray (or black) color
 - (2) Odor caused by decomposition of plant or animal life imparting $\rm H_2S$, $\rm CO_2$ and other organic gases
 - (3) Plastic properties, usually very compressible

- (4) May contain shells and fragments of partly decayed vegetable matter
- b. Characteristics of Peat are:
 - (1) Fibrous aggregate of undecayed or partially decayed vegetable matter, found in swamps
 - (2) Frequently contains organic silt
 - (3) Usually light brown to black in color
 - (4) Distinctive odor, as for organic silt

MODIFIED BURMISTER SYSTEM

VISUAL IDENTIFICATION OF SAMPLES

The samples were identified in accordance with the American Society for Engineering Education System of Definition.

Definition of Soil Components and Fractions

Material	Symbol	Fraction	Sieve Size	Definition
Boulders	Bldr		9" +	Material retained on 9" sieve.
Cobbles	Cbl		3" to 9"	Material passing the 9" sieve and retained on the 3" sieve.
Gravel	G	coarse (c) medium (m) fine (f)	I* to 3" ⅓** to 1" No. 10 to ⅓*"	Material passing the 37 sieve and retained on the No. 10 sieve.
Sand	S	coarse (c) medium (m) fine (f)	No. 30 to No. 10 No. 60 to No. 30 No. 200 to No. 60	Material passing the No. 10 sieve and retained on the No. 200 sieve.
Silt	\$	-	Passing No. 200 (0.074 mm)	Material passing the No. 200 sieve that is non plastic in character and exhibits little or no strengt: when air dried.

Organic Silt (0\$)

Material passing the No. 200 sieve which exhibits plastic properties within a certain range of moisture content, and exhibits fine granular and organic characteristics.

		Plasticity	Plasticity Index	<u> </u>
Clayey SILT	Cy \$	Slight (SI)	I to 5	Clay-Soil
SILT & CLAY	\$&C	Low (L)	5 to 10	Material passing the No. 200 sieve which can be
CLAY & SILT	C&\$	Medium (M)	10 to 20	made to exhibit plasticity and clay qualities within
Silty CLAY	\$yC	High (H)	20 to 40	a certain range of moisture content, and which
CLAY	C	Very High (VH)	40 plus	exhibits considerable strength when air-dried.

II. Definition of Component Proportions

Component	Written	Proportions	Symbol	Percentage Range by Weight *
Principal · Minor	CAPITALS Lower Case	and some little trace	a. s. !. t.	50 or more 35 to 50 20 to 35 10 to 20 1 to 10

^{*} Minus sign (—) lower limit, plus sign (+) upper limit, no sign middle range.

III. Glossary of Modifying Abbreviations

Ca	tegory	Symbol	Term	Symbol	Term	Symbol	Term
A.	Borings	U/D	Undisturbed	B	Exploratory	Ā,	Auger
В.	Samples	C D O.E.	Casing Denison Open End	L S	Lost Spoon	U ₩	Undisturbed Wash
C.	Colors	bk '- bi br gr	black blue brown gray	gn or rd tn	green orange red tan	wh yw dk It	white yellow dark light
D.	Organic Soils	dec dec'g lig	decayed decaying lignite	o rts ts	organic roots topsoil	veg pt	veg etation peat
E.	Rocks	LS Gns	Limestona Gneiss	rk SS	rock San dston e	Shst Sh	Schi st Shale
F.	Fill and Miscellaneous Materials	bidr (s) brk (s) cndr (s)	boulder (s) brick (s) cinder (s)	cbi (s) wd dbr	cobble(s) yood debris	gls misc rbl	glass miscellaneous rubble
G.	Miscellaneous Terms	do el, El fgmt (s) frqt Irg mtld no rec pen	ditto elevation fragment(s) frequent large mottled no recovery penetration	pp P. I. P pc (s) rec or R	pocket penetrometer Plasticity Index pushed pressed piece (s) recovered	ref sm W. L W. H. W. R.	refusal small water level weight of hammer weight of rods
Н.	Stratified Soils	alt thk thn w prt seam lyr stra yvd c pkt lns occ freq	alternating thick thin with parting seam layer stratum varved Clay pocket lens occasional frequent	small, erratio lenticular de one or less p	thickness ickness 12" thickness eams or layers of sand, a deposit, usually less th		

Table 3.5 Unified Soil Classification

 	(Excluding part	icles larger	fication Procedu than 3 in, and b sted weights)	ures basing fraction	s on	Group Symbols	Typical Names	Information Required for Describing Soils			Laboratory Classification Criteria	
	f coarse than size sed as	를 g	Wide range in grain size and substantial amounts of all intermediate particle sizes			G₩	Well graded gravels, gravel- sand mixtures, little or no fines	Give typical name; indicate ap- proximate percentages of sand and gravel; maximum size;		ies of gravel and sand from grain suc- lage of thes (fraction smaller than No. ce grained soils are classified as follows: GW, GP, SW, SP GM, GC, SW, SC Borderline cases requiring use of dual symbols	$C_{\rm U} = \frac{D_{00}}{D_{10}}$ Greater that $C_{\rm C} = \frac{(D_{20})^2}{D_{10} \times D_{40}}$ Bet	n 4 ween 1 and 3
	ils alf of co arger thi ileve size be used	Clean grav Clittle or :	Predominanti with some	Predominantly one size or a range of sizes with some intermediate sizes missing			Poorly graded gravels, gravel- sand mixtures, little or no fines	and graver; maximum arce, angularity, surface condition, and hardness of the coarse grains; local or geologic name		ironi grain maller than iified as follo equiring us	Not meeting all gradation	requirements for GW
ize b	\$4~ >0	with is ble	Nonplastic fines (for identification procedures see ML below)			GM	Silty gravels, poorly graded gravel-sand-silt mixtures	and other pertinent descriptive information; and symbols in parentheses	9	ction sm ction sm reclassiff W, SP M, SC cases rec	Atterberg limits below "A" line, or PI less than 4	Above "A" line with PI between 4 and 7 are borderline cases
ed soils (materii 10 sieve ked eye)	More that fraction No. 4 in. size 1	Gravels with fines (appreciable amount of fines)	Plastic fines (fo	or identificationw)	n procedures,	GC	Clayey gravels, poorly graded gravel-sand-clay mixtures	For undisturbed soils add informa- tion on stratification, degree of compactness, cementation,	identificati	avel and fines (frac id soils are ', GP, SH f, GC, SA derifice of	Atterberg limits above "A" line, with PI greater than 7	requiring use of dual symbols
Coarse-grained solls More than half of material is larger than No. 200 sieve sizeb particle visible to naked eye)	arse		Wide range in amounts or sizes	grain sizes an f all intermed	ed substantial	SPV	Well graded sands, gravelly sands, little or no fines	moisture conditions and drainage characteristics Example: Silty sand, gravelly; about 20 % hard, angular gravel particles	9 1	centage of fines sarse grained so GW, GI SA, GA, GG Borderii dual	$C_{\overline{U}} = \frac{D_{80}}{D_{10}}$ Greater that $C_{\overline{C}} = \frac{(D_{30})^2}{D_{10} \times D_{80}}$ Between	n 6 veen 1 and 3
More larger t	Sands half of co s smaller th sieve size ual classific	Green	Predominanti with some	y one size or a intermediate	range of sizes sizes missing	SP	Poorly graded sands, gravelly sands, little or no fines	in maximum size; rounded and subangular sand grains coarse to fine, about 15 % non-	given une	peroco (on per (size) co han 5% (han 12%	Not meeting all gradation	T
smallest pa	24 4 4	Sands with fines (appreciable amount of fines)		Nonplastic fines (for identification procedures, see ML below)		SM	Silty sands, poorly graded sand- silt mixtures	plastic fines with low dry strength; well compacted and moist in place; alluvial sand; (SM)	ons as gi	Determine percentages of our curve. Depending on percentage. Leas than 5%. More than 12%. 5% to 12%.	Atterberg limits below "A" line or PI less than 5	Above "A" line with PI between 4 and 7 are borderline cases
t the sm			see CL belo			sc	Clayey sands, poorly graded sand-clay mixtures	(5/11)	5	Ď Ď ``	Atterberg limits below requiring dual symb	
- Ā	Identification I	Procedures (n Fraction Sm	aller than No.	40 Sieve Size				g the			
er c size is a			Dry Strength (crushing character- istics)	Dilatancy (reaction to shaking)	Toughness (consistency near plastic limit)				identifying	60 Comparis	ng soils at equal liquid limit	
Fine-grained soils than half of material is smaller than No. 200 sieve size (The No. 200 sieve size	Silts and clays liquid limit		None to slight	Quick to	None	ML	Inorganic sitts and very fine sands, rock flour, sitty or clayey fine sands with slight plasticity	Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	curve in	.⊆ with incr	ss and dry strength increase easing plasticity index CH	
rained so of materi 200 sieve (The No	Silts liqu	<u>a</u>	Medium to high	None to very slow	Medium	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	condition, odour if any, local or geologic name, and other pertinent descriptive information, and symbol in parentheses	grain size	Plastic	CL	OH
Ser S			Slight to medium	Slow	Stight	OL	Organic silts and organic silt- clays of low plasticity	For undisturbed soils add infor- mation on structure, stratifica-	S	10 CL-ML	Ol or	
E than than than	I clays limit than		Slight to medium	Slow to none	Slight to medium	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, clastic silts	tion, consistency in undisturbed and remoulded states, moisture and drainage conditions		0 10	20 30 40 50 60 7 Liquid limit	0 80 90 100
More	and in	8	High to very high	None	High	СН	Inorganic clays of high plas- ticity, fat clays	Example:			Plasticity chart	
	Silts and liquid li	ı	Medium to	None to very slow	Slight to medium	ОН	Organic clays of medium to high plasticity	Clayey silt, brown; slightly plastic; small percentage of fine sand; numerous vertical		for labor	atory classification of fi	ne grained soils
н	ighly Organic S		Readily iden	ntified by co and frequent	lour, odour, ly by fibrous	Pi	Peat and other highly organic soils	root holes; firm and dry in place; loess; (ML)				

a Boundary classifications. Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder.

All sieve sizes on this chart are U.S. standard.

Field Identification Procedure for Fine Grained Soils or Fractions These procedures are to be performed on the minus No. 40 sieve size particles, approximately 1/4 in. For field classification purposes, screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dilatancy (Reaction to shaking):

After removing particles larger than No. 40 sieve size, prepare a pat of moist soil with a volume of about one-half cubic inch. Add enough

water if necessary to make the soil soft but not sticky.

Place the pat in the open palm of one hand and shake horizontally, striking vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface of the pat which changes to a livery consistency and becomes glossy. When the sample is squeezed between the fingers, the water and gloss disappear from the surface, the pat stiffens and finally it cracks or crumbles. The rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil.

Very fine clean sands give the quickest and most distinct reaction whereas a plastic clay has no reaction. Inorganic slits, such as a typical rock flour, show a moderately quick reaction. Dry Strength (Crushing characteristics): After removing particles larger than No. 40 sleve size, mould a pat of soil Atter removing particles larger than No. 40 sleve size, mould a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven, sun or air drying, and then test its strength by breaking and crumbling between the fingers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic silt possesses only very silest dry strength. Silty fine sends

inorganic silt possesses only very slight dry strength. Silty fine sands and silts have about the same slight dry strength, but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical silt has the smooth feel of flour. Toughness (Consistency near plastic limit):

After removing particles larger than the No. 40 sieve size, a specimen of soil about one-half inch cube in size, is moulded to the consistency of putty. If too dry, water must be added and if sticky, the specimen should be spread out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about one-eight inch in diameter. The thread is then folded and re-rolled repeatedly. During this manipulation the moisture content is gradually reduced and the specimen stiffens, finally loses its plasticity, and crumbles when the plastic limit is reached.

After the thread crumbles, the pieces should be lumped together and a slight kneading action continued until the lump crumbles.

The tougher the thread near the plastic limit and the stiffer the lump when ne tougner the inread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the colloidal clay fraction in the soil. Weakness of the thread at the plastic limit and quick loss of coherence of the lump below the plastic limit indicate either inorganic clay of low plasticity, or materials such as kaolin-type clays and organic clays which eccur below the Aline. clays which occur below the A-line.

Soil Characteristics Pertinent to Roads and Airfields

A4 1 . W. I-I			I		T	· · · · · · · · · · · · · · · · ·	Potential	Compressibility	Drainage	Compaction Equipment	Unit Dry	Typical D	esign Values							
Major Di	visions	Letter (1)	Name	Value as Subgrade When Not Subject to Frost Action	Value as Subbase When Not Subject to Frost Action	Value as Base When Not Subject to Frost Action	Frost Action	and Expansion	Characteristics		Weight lb. per cu. ft.	(2)	Subgrade Modulus Ib. per cu.							
		GW	Well-graded gravels or gravel-sand mixtures, little or no fines	Excellent	Excellent	Good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	125-140	40-80	300-500							
		GP	Poorly graded gravels or gravel-sand mixtures, little or no fines	Good to excellent	Good	Fair to good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	110-140	30-60	300-500							
GRAVEL AND GRAVELLY SOILS COARSE- GRAINED SOILS	d	Silty gravels, gravel-sand-silt	Good to excellent	Good	Fair to good	Slight to medium	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	125-145	40-60	300-500								
	GM u	inatures	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	115-135	20-30	200-500								
	·	oc	Clayey gravels, gravel-sand-clay mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	130-145	20-40	200 500							
		sw	Well-graded sands or gravelly sands,	Good	Fair to good	Poor	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	110-130	20-40	200-400							
	SAND	SP	Poorly graded sands or gravelly sands, little or no fines	Fair to good	Fair	Poor to not suitable	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	105-135	10-40	150-400							
	AND SANDY	ď	Silty sands, sand-silt mixtures	Fair to good	Fair to good	Poor	Stight to high	Very slight	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	120-135	15-40	150-400							
	SOILS	SM u		Fair	Poor to fair	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfool roller	100-130	10-20	100-300							
		SC	Clayey sands, sand-clay mixtures	Poor to fair	Poor	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-135	5-20	100-300							
	5	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Poor to fair	Not suitable	Not suitable	Medium to very high	Slight to medium	Fair to poor	Rubber-tired roller, sheepsfoot roller; close control of moisture	90 130	15 or less	100-200							
	and Clays LL	AND CLAYS LL	AND CLAYS LL	AND CLAYS LL	AND CLAYS LL	AND CLAYS LL	AND CLAYS 1.L	CLAYS L.L.	CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays,	Poor to fair	Not suitable	Not suitable	Medium to high	Medium	Practically impervious	Rubber tired roller, sheepsfoot roller	90-130	15 or less	50-150
FINE- Grained	IS LESS THAN 50	OL	silty clays, lean clays Organic silts and organic silt-clays of low plasticity	Poor	Not suitable	Not suitable	Medium to high	Medium to high	Poor	Rubber-tired roller, sheepsfoot roller	90-105	5 or less	50-100							
Soils	SILTS	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Poor	Not suitable	Not suitable	Medium to very high	High	Fair to poor	Sheepsfoot roller, rubber-tired roller	80-105	10 or less	50-100							
SILTS AND CLAYS LL 15	СН	Inorganic clays of medium to high plasticity, organic silts	Poor to fair	Not suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	90-115	15 or less	50-150								
	GREATER THAN 50	он	Organic clays of high plasticity, fat clays	Poor to very poor	Not suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	80-110	5 or less	25-100							
HIGHLY ORG	ANIC SOILS	Pt	Peat and other highly organic soils	Not suitable	Not suitable	Not suitable	Slight	Very high	Fair to poor	Compaction not practical										

Note:

(1) Unit Dry Weights are for compacted soil at optimum moisture content for modified AASHO compaction effort. Division of GM and SM groups into subdivision of d and u are for roads and airfields only. Subdivision is basis of Atterberg limits; suffix d (e.g., GMd) will be used when the liquid limit (LL) is 25 or less and the plasticity index is 6. or less; the suffix u will be used otherwise.

⁽²⁾ The maximum value that can be used in design of airfields is, in some cases, limited by gradation and plasticity requirements.

				TEST BO	RING L	OG			Boring No.	HA-1		
PROJEC	T: 694 De	elaware A	venue, A	lbany, NY					SHEET NO.:			
						tive Collision	Repari, LLC		JOB NO.: 19.	0102014		
DRILLIN	G CONTE	RACTOR:	Northeas	stern Envi	ronmental	Technologies	S Corporation		M.P. ELEV.: -			
PURPOS	E: Subsu	ırface İnve	estigation						GR. ELEV.:			
DRILLIN	G METHO	D: Direc	t Push			Soil Sample	GW Sample	Sample Method	DATUM:			
DRILL R	I G : Geop	robe 6620	DT		TYPE	Macro		Sch 40 PVC	DATE START	: 3/27/19		
GROUNI	WATER	LEVEL:			DIAM.	2.0"		1.0"	DATE FINISH	: 3/27/19		
	RING PT.:				Sample	Yes	No		DRILLER: M.			
DATE:		Peak	Unified	I	Screen			15.0'	INSPECTOR:	R. Gray		
Depth (feet)	Sample ID	PID (ppm) bkg=0.0	Soil Class.			GEOLOG	GIC DESCRIP	TION		REMARKS		
1				Br c-f S,	I mf G, t \$					R= 3.0'		
2				Brown co	arse to fir	ne SAND, little	medium fine	Gravel, trace		Dry		
3	S-1	0.0		Br mf S a	Cly\$				(± 2.0')	No Odor		
4				Brown m	rown medium fine SAND and Clayey Silt (± 4.5'							
5						/ \			(= 4.5)			
6				Br c-f S,	t\$; frqt fgn	nts conc a brk				R= 2.0'		
7				Brown coa	arse to fine	SAND, trace S	Silt; frequetn fra	gments concre	te and brick	Dry		
8	S-2	0.0			/.€	- A	7.8			No Odor		
9				/				/				
10				/ 4	S. "		BA 'c	/ (
11			,	/ 20				6/		R= 2.75		
12			/.	Same as	above			6.		Dry		
13	S-3	0.0	/ 3	- 4				W 10	1	No Odor		
14			Q	_	OPI	DAD/	ATIO	igments concre	. /			
15					Uni		4110	1.4				
16				Same as	above					R= 4.25'		
17	S-4A	0.0							(± 17.5')	Dry		
18				Br Gr vvo	Br Gr vvd Cly							
19	S-4B	0.0		Brown G	Brown Gray varved CLAY							
20												

				EST BORING LOG	Boring No.	HA-1
PROJEC	T: 694 De	elaware A			SHEET NO.: 2	
				-	OB NO.: 19.0	
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class.	GEOLOGIC DESCRIPTION		REMARKS
21				Br Gr vvd C		R= 4.75'
22	S-5A	0.5		Brown Gray varved CLAY		No Odor
23				<u> </u>		Moist / WET
24	S-5B	0.0				
25	•					
26				End of Soil Boring @ 25.0 feet		
27						
28				1 2 x		
29				4 4		
30				1 20 SA		
31				THE SET OF		
32			.)			
33			/.			
34			15	NE		
35		-/	47	Constant of the second	1	
36		/_		CORPORATION	1	
37						
38						
39						
40						
				Soil Boring Completed @ 25.0 feet		

				TEST BO	DRING L	.OG			Boring No.	HA-2	
PROJEC	T: 694 De	elaware A	venue, A	lbany, NY					SHEET NO.:		
				-		tive Collision	Repari, LLC		JOB NO.: 19.	0102014	
DRILLIN	G CONTE	RACTOR:	Northeas	stern Envi	ronmental	l Technologies	Corporation		M.P. ELEV.: -		
PURPOS	E: Subsu	rface Inve	estigation						GR. ELEV.:		
DRILLIN	G METHO	D: Direct	Push			Soil Sample	GW Sample	Sample Method	DATUM:		
DRILL R	I G : Geopi	obe 6620	DT		TYPE	Macro		Sch 40 PVC	DATE START	: 3/27/19	
GROUNI	WATER	LEVEL:			DIAM.	2.0"		1.0"	DATE FINISH	1: 3/27/19	
	RING PT.:				Sample	Yes	No	1	DRILLER: M.		
DATE:		Peak	Unified	1	Screen			15.0'	INSPECTOR:	R. Gray	
Depth (feet)	Sample ID	PID (ppm) bkg=0.0	Soil Class. System		GEOLOGIC DESCRIPTION						
1				Br c-f S,	s \$, I f Gr;	fgmts brk cor	С			R= 3.0'	
2				Brown coa	rse to fine S	SAND, some Silt,	little fine Gravel;	fragments brick,	concrete (± 1.5')	Dry	
3	S-1	0.0		Br mfS a	Silt, t f Gr	r			(± 1.5°)	No Odor	
4				Brown m	Brown medium fine SAND and Silt, trace fine Gravel						
5				Gr ⁺ c-f S	a f Gr				(= 4.5)		
6				Gray ⁺ co	arse to fin	e SAND and f	ine Gravel		(± 6.5')	R= 3.5'	
7				Br c-fS, t	(= 0.5)	Dry					
8	S-2	0.0		Brown co	oarse to fir	ne SAND, trac	e Silt, fragme	nts coal and br	ick	No Odor	
9											
10											
11 12									(± 11.5')	R= 3.0'	
13	6.0	0.0		Drk Br c-	fS, t\$; fgm	nts brk conc ci	nder			Dry	
14	S-3	0.0		Dark Brow	n coarse to	fine SAND, trace	Silt; fragments b	orick, concrete and	d cinders	No Odor	
15											
16				Or 60	Ф. <i>Е</i>	d or:			(± 15.0')	D 0.75"	
17						wd organics	onte wood en	Lorganica		R= 2.75"	
18	S-4	0.0		Gray me		SAND; fragme	ans wood and	i organiics	(± 17.5')	Dry No Odor	
19						e SAND and f	ine Gravel			Moist / WET	
20				Br vvd C		Brown varved			(± 19.5')		
										1	

			1	TEST BORING LOG	Boring No.	HA-2
PROJEC	T: 694 De	elaware A		bany, NY	SHEET NO.: 2	
		avill & Cra	aig Horn d	ba Havill's Automotive Collision Repari, LLC	JOB NO.: 19.0	0102014
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class. System	GEOLOGIC DESCRIPTION		REMARKS
21				Br Gr vvd C		R= 4.75'
22				Brown Gray varved CLAY		No Odor
23	S-5	0.0				Moist / WET
24						
25						
26						R= 5.0'
27				Gr vvd C	(± 26.0')	No Odor
28	S-6	0.0		Gray varved CLAY		Moist / WET
29						
30						
31				End of Soil Boring @ 30.0 feet		
32						
33						
34						
35						
36						
37						
38						
39						
40						
				Soil Boring Completed @ 30 feet		

Shipping Address: 1476 Route 50 Ballston Spa, NY 12020 (518) 884-8545 - Phone Mailing Address: P.O. Box 2167 Ballston Spa, NY 12020 (518) 884-9710 - Fax

	N	UKIH					NIALI	ECHNO				
				TEST BO	DRING L	.OG			Boring No.	HA-3		
PROJEC	T: 694 De	elaware A	venue, A	lbany, NY					SHEET NO.: 1	l of 1		
CLIENT:	Robert H	avill & Cra	aig Horn d	dba Havill	s Automo	tive Collision	Repari, LLC		JOB NO.: 19.0	0102014		
					ronmental	l Technologies	Corporation		M.P. ELEV.: -			
	E: Subsu								GR. ELEV.:			
	G METHO					Soil Sample	GW Sample	Sample Method	DATUM:			
	I G : Geopi				TYPE	Macro			DATE START			
	WATER				DIAM.	2.0"		1.0"	DATE FINISH			
	RING PT.:				Sample	Yes	No	45.01	DRILLER: M.			
DATE:		Peak	Unified	1	Screen			15.0'	INSPECTOR:	R. Glay		
Depth (feet)	epth Sample PID Soil GEOLOGIC DESCRIPTION bkg=0.0 System											
1	Gr C-15 a mr Gr, 1 \$											
Gray coarse to fine SAND, and medium fine Gravel, trace Silt												
3												
4	Brown varved CLAY											
5	5											
6										R= 5.0'		
7										No Odor		
8	S-2	49.5		Same as	above					Moist / WET		
9												
10				<u> </u> 								
11 12	S-3A	98								R= 5.0		
13	3-3A	90								Slight Odor		
14	S-3B	82		Same as	above					Moist / WET		
15		- -										
16				Same as	above					R= 5.0'		
17	S-4A	3.2		Janio as	20010					No Odor		
18										Moist / WET		
19	S-4B	0.0		Gr vvd C					(± 17.5')			
20				Grav var	ved CLAY	,						
				,								
					Soil Boring	g Completed @	20.0 feet					

	N	UKIH				RONME	NIALI	ECHNO			
				TEST BO	ORING L	.OG			Boring No.	HA-4	
PROJEC	T: 694 De	elaware A	venue, A	lbany, NY					SHEET NO.: 1	l of 1	
CLIENT:	Robert H	avill & Cra	aig Horn (dba Havill	's Automo	tive Collision I	Repari, LLC		JOB NO.: 19.0	0102014	
					ronmenta	l Technologies	Corporation		M.P. ELEV.:		
PURPOS									GR. ELEV.:		
DRILLIN						Soil Sample	GW Sample	Sample Method	DATUM:		
DRILL R	•				TYPE	Macro			DATE START		
		LEVEL:			DIAM.	2.0"		1.0"	DATE FINISH		
MEASUF					Sample	Yes	No	45.01	DRILLER: M.		
DATE:		Peak	Unified	<u> </u>	Screen			15.0'	INSPECTOR:	R. Gray	
Depth (feet)	Sample ID	PID (ppm) bkg=0.0	Soil Class.		GIC DESCRIP	TION		REMARKS			
1	Brmi5, s Cly\$										
2	Brown medium line Sand, some Clayey Silt										
	3 S-1 0.0 Br vvd C										
-	4 Brown varved CLAY										
6											
7										R= 5.0' No Odor	
8	S-2	0.0		Same as	ahove					Dry	
9				Carrio ao	abovo					D.y	
10										Moist	
11										R= 5.0	
12										No Odor	
13	S-3	0.0		Same as	above					Moist / WET	
14 15											
16										D 5.61	
17				Same as	above					R= 5.0' No Odor	
18	S-4	0.0								Moist / WET	
19				Gr vvd C					(± 17.5')		
20				Grav var	ved CLAY	,					
			<u> </u>	Jiay vai	-54 51/11						
					Soil Boring	g Completed @	20.0 feet				

	N	ORIF	IEAS	IERN	ENVI	RONME	NIALI	ECHNO	LOGIES			
				TEST BO	ORING L	.OG			Boring No.	HA-5		
PROJEC	T: 694 De	elaware A	venue, A	bany, NY					SHEET NO.: 1	l of 1		
CLIENT:	Robert H	avill & Cra	aig Horn (dba Havill	s Automo	tive Collision I	Repari, LLC		JOB NO.: 19.0	0102014		
					ronmental	Technologies	Corporation		M.P. ELEV.:			
PURPOS	E: Subsu	rface Inve	estigation						GR. ELEV.:			
DRILLIN						Soil Sample	GW Sample	Sample Method	DATUM:			
DRILL R	•				TYPE	Macro			DATE START			
GROUNI					DIAM.	2.0"		1.0"	DATE FINISH			
MEASUF					Sample	Yes	No	40.0	DRILLER: M.			
DATE:		Peak	Unified	1	Screen			10.0'	INSPECTOR:	R. Gray		
Depth (feet)	epth eet) Sample ID Soil GEOLOGIC DESCRIPTION Class. bkg=0.0 System											
1	Gr c-15, s mr Gr; tgmts brk											
	Gray coarse to line SAND, some medium line Graver, fragments brick (± 2.0°)											
	3 S-1 0.0 Br vvd C											
	4 Brown varved CLAY 5											
6												
7	S-2A	0.0								R= 5.0' No Odor		
8				Same as	above					Dry		
9	S-2B	0.0										
10												
11										R= 5.0		
12	6.0	0.0								No Odor		
13 14	S-3	0.0		Same as	above					Moist / WET		
15												
16				Gr vvd C					(± 15.0')	R= 5.0'		
17					ved CLAY					No Odor		
18	S-4	0.0								Moist / WET		
19												
20												
				5	Soil Boring	Completed @	20.0 feet					

ATTACHMENT B

WELL COMPLETION LOGS

MONITORING WELL COMPLETION LOG HA-1 WELL NO. PROJECT: 694 Delaware Avenue, Albany, New York DATE DRILLEI March 27, 2019 Robert Havill & Craig Horn dba Havill's Automotive **CLIENT:** Collision Repari, LLC DATE DEVELOPED: April 2, 2019 **PROJECT NO.** 19.0102014 WELL CONSTRUCTION DETAIL INSPECTOR: Rob Gray DRILLING CONTRACTOF Northeastern Environmental Technologies Corp. 0.0' TYPE OF WELI Monitoring Well STATIC WATER LEVEL: 16.97 ft. **DATE**: April 2, 2019 **MEASURING POINT Top of PVC CUTTINGS** TOTAL DEPTH OF WELL 25.0 ft. TOTAL DEPTH OF BORING: 25.0 ft. 1.0 **BENTONITE DRILLING METHOD:** SEAL TYPE: DPT **DIAMETER** 2.0" 2.0 CASING: N/A **SAMPLING METHOD:** TYPE: MACRO **DIAMETER** 2.0" WEIGHT: N/A FALL: 10.5 INTERVAL: Continuous **RISER PIPE LEFT IN PLACE:** FILTER PACK MATERIA Sch40PVC **DIAMETER** 1.0" **LENGTH:** +/-10.0' JOINT TYP Flush Thread **SCREEN:** MATERIA Sch40PVC **DIAMETER** 1.0" **SLOT SIZE**: Slot 10 (0.01") **INTERVAL:** 10.5' - 24.5' SCREEN_ STRATEGIC UNIT SCREENE Varved Clay & Fill **FILTER PACK:** TYPE: SAND GRADE: #1 **AMOUNT** 50 lbs INTERVAL: 2.0' - 24.5' SEAL (S): **INTERVAL:** 1.0' - 2.0' TYPE: Bentonite INTERVAL: 0.00' - 1.0' **TYPE:** Cuttings TYPE: INTERVAL: 24.5' 25.0' **NOTES:**

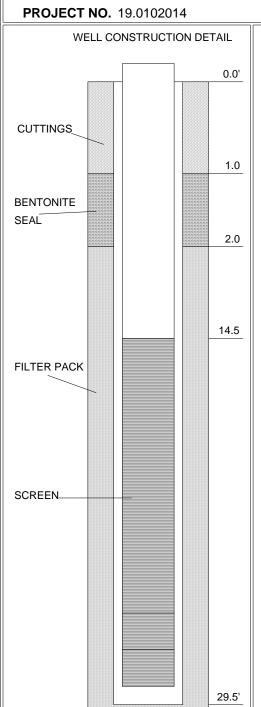
 Shipping Address:
 1476 Route 50
 Malta, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167
 Malta, NY 12020
 (518) 884-9710 - Fax

No road box installed. PVC Cap

NOT TO SCALE

MONITORING WELL COMPLETION LOG | WE


WELL NO. HA-2

PROJECT: 694 Delaware Avenue, Albany, New York

DATE DRILLEI March 27, 2019

CLIENT: Robert Havill & Craig Horn dba Havill's Automotive

Collision Repari, LLC DATE DEVELOPED: April 2, 2019

INSPECTOR: Rob Gray

DRILLING CONTRACTOF Northeastern Environmental Technologies Corp.

TYPE OF WELI Monitoring Well

STATIC WATER LEVEL: 18.83 ft. DATE: April 2, 2019

MEASURING POINT Top of PVC
TOTAL DEPTH OF WELL 30.0 ft.
TOTAL DEPTH OF BORING: 30.0 ft.

DRILLING METHOD:

TYPE: DPT DIAMETER 2.0"

CASING: N/A

SAMPLING METHOD:

TYPE: MACRO DIAMETER 2.0"

WEIGHT: N/A FALL:

INTERVAL: Continuous

RISER PIPE LEFT IN PLACE:

MATERIA Sch40PVC DIAMETER 1.0"

LENGTH: +/-15.0' JOINT TYP Flush Thread

SCREEN:

 MATERIA Sch40PVC
 DIAMETER 1.0"

 SLOT SIZE:
 Slot 10 (0.01")
 INTERVAL: 14.5' - 29.5'

STRATEGIC UNIT SCREENE Varved Clay & Fill

FILTER PACK:

TYPE: SAND GRADE: #1

AMOUNT 50 lbs **INTERVAL:** 2.0' - 29.5'

SEAL (S):

TYPE: Bentonite INTERVAL: 1.0' - 2.0'

TYPE: Cuttings INTERVAL: 0.00' - 1.0'

TYPE: INTERVAL:

NOTES:

30.0'

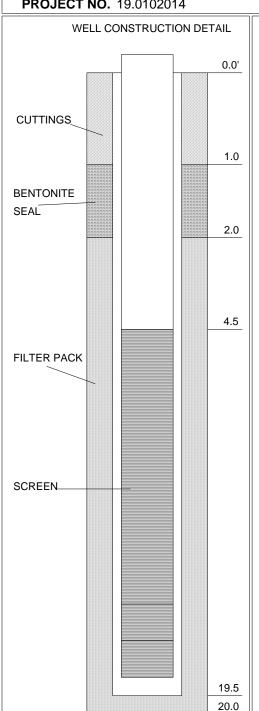
NOT TO SCALE

No road box installed. PVC Cap

 Shipping Address:
 1476 Route 50
 Malta, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167
 Malta, NY 12020
 (518) 884-9710 - Fax

MONITORING WELL COMPLETION LOG


HA-3 WELL NO.

PROJECT: 694 Delaware Avenue, Albany, New York DATE DRILLEI March 28, 2019

Robert Havill & Craig Horn dba Havill's Automotive **CLIENT:**

Collision Repari, LLC DATE DEVELOPED: April 2, 2019

PROJECT NO. 19.0102014

NOT TO SCALE

INSPECTOR: Rob Gray

DRILLING CONTRACTOF Northeastern Environmental Technologies Corp.

TYPE OF WEL! Monitoring Well

STATIC WATER LEVEL: 9.59 ft. **DATE**: April 2, 2019

MEASURING POINT Top of PVC TOTAL DEPTH OF WELL 20.0 ft. TOTAL DEPTH OF BORING: 20.0 ft.

DRILLING METHOD:

TYPE: DPT **DIAMETER** 2.0"

CASING: N/A

SAMPLING METHOD:

TYPE: MACRO **DIAMETER** 2.0"

WEIGHT: N/A FALL:

INTERVAL: Continuous

RISER PIPE LEFT IN PLACE:

MATERIA Sch40PVC **DIAMETER** 1.0"

LENGTH: +/-5.0' JOINT TYP Flush Thread

SCREEN:

MATERIA Sch40PVC **DIAMETER** 1.0" **SLOT SIZE:** Slot 10 (0.01") **INTERVAL:** 4.5' - 19.5'

STRATEGIC UNIT SCREENE Varved Clay

FILTER PACK:

TYPE: SAND GRADE: #1

AMOUNT 50 lbs INTERVAL: 2.0' - 19.5'

SEAL (S):

INTERVAL: 1.0' - 2.0' TYPE: Bentonite INTERVAL: 0.00' - 1.0' **TYPE:** Cuttings

TYPE: INTERVAL:

NOTES:

No road box installed. PVC Cap

Malta, NY 12020 (518) 884-8545 - Phone Shipping Address: 1476 Route 50 Mailing Address: P.O. Box 2167 Malta, NY 12020 (518) 884-9710 - Fax


MONITORING WELL COMPLETION LOG

WELL NO. HA-4

PROJECT: 694 Delaware Avenue, Albany, New York DATE DRILLEI March 28, 2019

CLIENT: Robert Havill & Craig Horn dba Havill's Automotive

Collision Repari, LLC DATE DEVELOPED: April 2, 2019

NOT TO SCALE

INSPECTOR: Rob Gray

DRILLING CONTRACTOF Northeastern Environmental Technologies Corp.

TYPE OF WELI Monitoring Well

STATIC WATER LEVEL: 8.02 ft. DATE: April 2, 2019

MEASURING POINT Top of PVC
TOTAL DEPTH OF WELL 20.0 ft.
TOTAL DEPTH OF BORING: 20.0 ft.

DRILLING METHOD:

TYPE: DPT DIAMETER 2.0"

CASING: N/A

SAMPLING METHOD:

TYPE: MACRO DIAMETER 2.0"

WEIGHT: N/A FALL:

INTERVAL: Continuous

RISER PIPE LEFT IN PLACE:

MATERIA Sch40PVC DIAMETER 1.0"

LENGTH: +/-5.0' **JOINT TYP**| Flush Thread

SCREEN:

 MATERIA Sch40PVC
 DIAMETER 1.0"

 SLOT SIZE:
 Slot 10 (0.01")
 INTERVAL: 4.5' - 19.5'

STRATEGIC UNIT SCREENE Varved Clay

FILTER PACK:

TYPE: SAND
GRADE: #1

AMOUNT 50 lbs **INTERVAL:** 2.0' - 19.5'

SEAL (S):

TYPE: Bentonite INTERVAL: 1.0' - 2.0'

TYPE: Cuttings INTERVAL: 0.00' - 1.0'

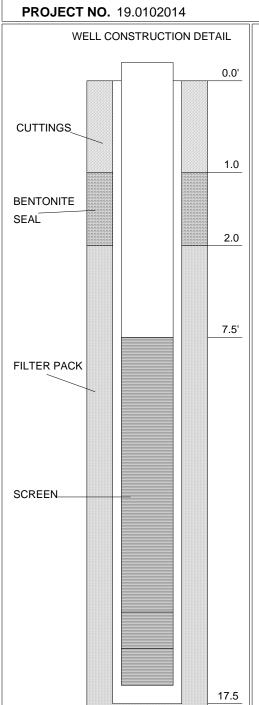
TYPE: INTERVAL:

NOTES:

No road box installed. PVC Cap

 Shipping Address:
 1476 Route 50
 Malta, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167
 Malta, NY 12020
 (518) 884-9710 - Fax


MONITORING WELL COMPLETION LOG

WELL NO. HA-4

PROJECT: 694 Delaware Avenue, Albany, New York DATE DRILLEI March 28, 2019

CLIENT: Robert Havill & Craig Horn dba Havill's Automotive

Collision Repari, LLC DATE DEVELOPED: April 2, 2019

INSPECTOR: Rob Gray

DRILLING CONTRACTOF Northeastern Environmental Technologies Corp.

TYPE OF WELI Monitoring Well

STATIC WATER LEVEL: 3.35 ft. DATE: April 2, 2019

MEASURING POINT Top of PVC
TOTAL DEPTH OF WELL 18.0 ft.
TOTAL DEPTH OF BORING: 20.0 ft.

DRILLING METHOD:

TYPE: DPT DIAMETER 2.0"

CASING: N/A

SAMPLING METHOD:

TYPE: MACRO DIAMETER 2.0"

WEIGHT: N/A FALL:

INTERVAL: Continuous

RISER PIPE LEFT IN PLACE:

MATERIA Sch40PVC DIAMETER 1.0"

LENGTH: +/- 8.0' JOINT TYP Flush Thread

SCREEN:

 MATERIA Sch40PVC
 DIAMETER 1.0"

 SLOT SIZE:
 Slot 10 (0.01")
 INTERVAL: 7.5' - 17.5'

STRATEGIC UNIT SCREENE Varved Clay

FILTER PACK:

TYPE: SAND
GRADE: #1

AMOUNT 50 lbs **INTERVAL:** 2.0' - 17.5'

SEAL (S):

TYPE: Bentonite INTERVAL: 1.0' - 2.0'

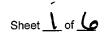
TYPE: Cuttings INTERVAL: 0.00' - 1.0'

TYPE: INTERVAL:

NOTES:

20.0

NOT TO SCALE


No road box installed. PVC Cap

 Shipping Address:
 1476 Route 50
 Malta, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167
 Malta, NY 12020
 (518) 884-9710 - Fax

ATTACHMENT C

FIELD SAMPLING DATA SHEETS

CLIENT: Robert Havill & Craig Horn

WEATHER / TEMP: Sunny 25°F
MEASURING DEVICE: Interface probe

DATE: 4/2/19
TIME OF ARRIVAL: 8:30 am
TIME OF DEPARTURE: 4:00 fm

Well Id	Depth to Product	Depth to Water	рН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity	Turbidity	Dissolved Oxygen	TDS	Salinity	Spec.Gravity Seawater	Recovery Time	Sample Time	Sampling Depth*
, '							:	MS/CM	NTU	MG/L	G/L	PPT	ОТ			
Ha-I	-	16:79										-			8:45am	
HA-Z	-	18.83														
HA-2		9,59												_		
140-4	7	8.02														
HA-3 HA-4 HA-5	1	3,35													*	
											_					
			_													
			-													
	_															

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

PROJECT: 694 Debusar Ave CLIENT: HAVIN & HOLD WEATHER / TEMP: SUNNY

TIME OF ARRIVAL:_

SAMPLER:_ R

MEASURING DEVICE: Into Page Probe

8:90 am TIME OF DEPARTURE: 4/80 Pm

Well Id	Depth to Product	Depth to Water	pН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity	Turbidity	Dissolved Oxygen	TDS	Salinity	Spec.Gravity Seawater	Recovery Time	Sample Time	Sampling Depth*
								dMS /CM	NTU	MG/L	G/L	PPT	ОТ			
HA-I		1656													9:37	21.01
		20,96	6.94	1/2 L	TAICL	2.3	-45	1063	645	2.34					9:48	21
		21.26	6.61	12	Tala	7.2	١٠٤	1054	376	5.26					9:55	22
		23.05	6.72	122	Take	7.6	6,9	1035	309	7.84					10:15	24
Sample			6.73	21	TA/CL	7.8	7.1	1027	533	5,38					10:24	24
																
				•												
																,, <u>.</u>
								. 1								
				_												
	-															
																

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

PROJECT: 694 Delawaie

CLIENT: Havin & Horn

WEATHER/TEMP: Sony

DATE: 4/2/19
TIME OF ARRIVAL: 8:30

MEASURING DEVICE: Interface Place / YSI

TIME OF DEPARTURE: 400

Well ld	Depth to Product	Denti to	рН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity	Turbidity	Dissolved Oxygen MG/L	TDS G/L	Salinity	Spec.Gravity Seawater OT	Recovery Time	Sample Time	Sampling Depth*
HA-Z	19.68														1:36	24
	22.35		7.49	,25L		11.5	155	719	49.2	3.34					1:40	24
	24.81		7.43	1.51		11.3	104	730	468	4.06					1:55	26
Sanfle	26.28		7.33	2 L		11.1	80	791	148	1.09					2/25	28
	-					,										
	:															
				 												
						<u> </u>										

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

Sheet H of 6

PROJECT: 694 Delawate Ave

WEATHER / TEMP: SONY
MEASURING DEVICE: Into Face / YSI

SAMPLER: Rob Gray
DATE: 4/2/19

TIME OF ARRIVAL: 8:30
TIME OF DEPARTURE: 4.60

Well Id	Depth to Product	Depth to Water	рН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity VS VS/CM	Turbidity NTU	Dissolved Oxygen MG/L	TDS G/L	Salinity	Spec.Gravity Seawater OT	Recovery Time	Sample Time	Sampling Depth*
HA-3		9.45													12:15	18
		11.99	7.0	.25L	Tr/CL	10.6	110	1059	8.09	5.19					12726	18
		12.55		,65L		10.4	102	1061	104	4.20					12:24	18
		15.20			Talu	10.7	92.4	1064	290	6.81					15:31	18
Simple		17.88	697	2.h	INKI	10.8	90.3		388	6.29					12:45	18
											_					
											_					
																-
							•									
				-			-			-						
			_													

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

PROJECT: 694 Deleusele

CLIENT: Havill & Horn
WEATHER/TEMP: Song / Windy

MEASURING DEVICE: The Sie / YST

SAMPLER: Rob Gray

TIME OF ARRIVAL: 8.30 to

TIME OF DEPARTURE: 400 10

Well Id	Depth to Product	Depth to Water	рН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity US MS/CM	Turbidity NTU	Dissolved Oxygen MG/L	TDS G/L	Salinity PPT	Spec.Gravity Seawater OT	Recovery Time	Sample Time	Sampling Depth*
HA-4		7.89													250	151
		8.71	7.11_	-25	CILTA	ال	53	1348	6.77	6.46					255	151
		12.19	6.78	75L	CI/In	11.0	-47	1534	J6.35	4.00					305	16
		14.33	6.79		Ci /m	11.2	^ 53	1637	43.0	3.36					3/15	16
Sample		16.28	6.81	2.0L	ci/m	11.3	-54	1612	48.0	2,82					3:25	16
											=-					
· 																
													_			
· · · · · · · · · · · · · · · · · · ·																
				_										-		
																
					-								1			
<u> </u>																
								<u> </u>								

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

PROJECT: 694 Delaware Ave

CLIENT: Havive & Horn

WEATHER / TEMP: 5000Y
MEASURING DEVICE: 2000 YS

SAMPLER: Rob Gray

TIME OF ARRIVAL: 20 4m
TIME OF DEPARTURE: 4.00 fm

Well ld	Depth to Product	Depth to Water	pН	Volume Bailed	Color/ Odor	Temp C	ORP	Conductivity	Turbidity NTU	Dissolved Oxygen MG/L	TDS G/L	Salinity PPT	Spec.Gravity Seawater OT	Recovery Time	Sample Time	Sampling Depth*
Ha-5		2.89												J	11:12	10,
		6.15	7.37	ગુકદ	C1.	7.3	62.4	533	6.46	6.11			·		11:17	10'
		7.60	7.20	١٢	CI	6.9	13.2	531	9.52	5.52					11124	10'
		9,32	7.18	1.74	Cı	7.3	10.7	535	2366	5.55				9 ,	11:32	10,
Sample		10.05	7.15	2.25L	C	7.8	8.4	568	48.2	8.2					11:38	10'
					_											
· 																

^{*} Groundwater samples should be allowed to recover to original elevation prior to sampling

ATTACHMENT D

PEL SOIL QUALITY REPORT

Monday, April 01, 2019

Attn: Mr. Rob Gray

NETC

PO Box 2167

Ballston Spa, NY 12020

Project ID: 694 DELAWARE AVENUE, ALBANY NEW YORK

SDG ID: GCC77924 Sample ID#s: CC77924

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

PROJECT NARRATIVE

Client: NETC

Project: 694 DELAWARE AVENUE, ALBANY NEW YORK

Laboratory Project: GCC77924

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Project Narrative

April 01, 2019 SDG I.D.: GCC77924

NETC 694 DELAWARE AVENUE, ALBANY NEW YORK

Methodology Summary

Volatile Organic Compounds:

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods 3rd Ed.Update III, Method 8260C and Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983 (Methods 624) as printed in 40CFR part 136.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Project Narrative

April 01, 2019 SDG I.D.: GCC77924

NETC 694 DELAWARE AVENUE, ALBANY NEW YORK

Laboratory Chronicle

The samples in this delivery group were received at 1.3°C.

		Collection	Prep	Analysis		Hold Time
Sample	Analysis	Date	Date	Date	Analyst	Met
CC77924	1,4-dioxane	03/27/19	03/29/19	03/29/19	JLI	Υ
CC77924	Percent Solid	03/27/19	03/29/19	03/29/19	DA	Υ
CC77924	Volatiles (TCL)	03/27/19	03/29/19	03/29/19	JLI	Y
CC77925	On Hold	03/27/19	03/29/19	03/29/19		Y
CC77926	On Hold	03/27/19	03/29/19	03/29/19		Y
CC77927	On Hold	03/27/19	03/29/19	03/29/19		Y
CC77928	On Hold	03/27/19	03/29/19	03/29/19		Υ

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

April 01, 2019

SDG I.D.: GCC77924

Project ID: 694 DELAWARE AVENUE, ALBANY NEW YORK

Client Id	Lab Id	Matrix
HA-1/ S-5A	CC77924	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 01, 2019

FOR: Attn: Mr. Rob Gray

NETC

PO Box 2167

Ballston Spa, NY 12020

Sample InformationCustody InformationDateTimeMatrix:SOILCollected by:03/27/1911:45Location Code:NETCReceived by:CP03/29/1916:24

Rush Request: 24 Hour Analyzed by: see "By" below

RL/

P.O.#: 19.0102014

Laboratory Data SDG ID: GCC77924

Phoenix ID: CC77924

Project ID: 694 DELAWARE AVENUE, ALBANY NEW YORK

Client ID: HA-1/ S-5A

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	79		%		03/29/19	DA	SW846-%Solid
Volatiles (TCL)							
1,1,1-Trichloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,1,2-Trichloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,1-Dichloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,1-Dichloroethene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2-Dibromoethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2-Dichlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2-Dichloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,2-Dichloropropane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,3-Dichlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
1,4-Dichlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
2-Hexanone	ND	29	ug/kg	1	03/29/19	JLI	SW8260C
4-Methyl-2-pentanone	ND	29	ug/kg	1	03/29/19	JLI	SW8260C
Acetone	ND	59	ug/kg	1	03/29/19	JLI	SW8260C
Benzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Bromochloromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Bromodichloromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Bromoform	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Bromomethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Carbon Disulfide	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Carbon tetrachloride	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Chlorobenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C

Project ID: 694 DELAWARE AVENUE, ALBANY NEW YORK

Client ID: HA-1/ S-5A

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chloroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Chloroform	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Chloromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
cis-1,2-Dichloroethene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
cis-1,3-Dichloropropene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Cyclohexane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Dibromochloromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Dichlorodifluoromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Ethylbenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Isopropylbenzene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
m&p-Xylene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Methyl ethyl ketone	ND	35	ug/kg	1	03/29/19	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	12	ug/kg	1	03/29/19	JLI	SW8260C
Methylacetate	ND	4.7	ug/kg	1	03/29/19	JLI	SW8260C
Methylcyclohexane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Methylene chloride	ND	29	ug/kg	1	03/29/19	JLI	SW8260C
o-Xylene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Styrene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Tetrachloroethene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Toluene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Total Xylenes	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
trans-1,2-Dichloroethene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
trans-1,3-Dichloropropene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Trichloroethene	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Trichlorofluoromethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Trichlorotrifluoroethane	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
Vinyl chloride	ND	5.9	ug/kg	1	03/29/19	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	105		%	1	03/29/19	JLI	70 - 130 %
% Bromofluorobenzene	88		%	1	03/29/19	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	03/29/19	JLI	70 - 130 %
% Toluene-d8	94		%	1	03/29/19	JLI	70 - 130 %
4.4 diament							
<u>1,4-dioxane</u>							
1,4-dioxane	ND	88	ug/kg	1	03/29/19	JLI	SW8260C
Non Target Volatile Compounds	Absent			1	04/01/19	JLI	

Phoenix I.D.: CC77924

Project ID: 694 DELAWARE AVENUE, ALBANY NEW YORK Phoenix I.D.: CC77924

Client ID: HA-1/ S-5A

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 01, 2019

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

April 01, 2019		QA/QC	QA/QC Data				SDG I	.D.: 0	GCC77	924	
Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 472663 (ug/kg),	QC Samp	ole No: CC77442 (CC77924)									
Volatiles - Soil	•	,									
1,1,1-Trichloroethane	ND	5.0	78	79	1.3	78	79	1.3	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	78	79	1.3	83	83	0.0	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	74	76	2.7	70	70	0.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	77	77	0.0	81	92	12.7	70 - 130	30	
1,1-Dichloroethene	ND	5.0	82	85	3.6	84	85	1.2	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	77	77	0.0	77	81	5.1	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	77	76	1.3	81	83	2.4	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	69	68	1.5	66	69	4.4	70 - 130	30	I,m
1,2-Dibromoethane	ND	5.0	76	77	1.3	70	71	1.4	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	78	78	0.0	86	86	0.0	70 - 130	30	
1,2-Dichloroethane	ND	5.0	74	75	1.3	72	73	1.4	70 - 130	30	
1,2-Dichloropropane	ND	5.0	80	81	1.2	77	78	1.3	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	78	78	0.0	86	85	1.2	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	77	77	0.0	85	85	0.0	70 - 130	30	
1,4-dioxane	ND	100	92	85	7.9	84	88	4.7	70 - 130	30	
2-Hexanone	ND	25	79	81	2.5	68	68	0.0	70 - 130	30	m
4-Methyl-2-pentanone	ND	25	81	83	2.4	71	71	0.0	70 - 130	30	
Acetone	ND	10	77	80	3.8	72	69	4.3	70 - 130	30	m
Benzene	ND	1.0	79	81	2.5	78	79	1.3	70 - 130	30	
Bromochloromethane	ND	5.0	82	81	1.2	77	80	3.8	70 - 130	30	
Bromodichloromethane	ND	5.0	73	75	2.7	71	72	1.4	70 - 130	30	
Bromoform	ND	5.0	68	69	1.5	60	62	3.3	70 - 130	30	I,m
Bromomethane	ND	5.0	103	103	0.0	111	110	0.9	70 - 130	30	
Carbon Disulfide	ND	5.0	97	99	2.0	97	97	0.0	70 - 130	30	
Carbon tetrachloride	ND	5.0	71	74	4.1	72	84	15.4	70 - 130	30	
Chlorobenzene	ND	5.0	80	81	1.2	76	77	1.3	70 - 130	30	
Chloroethane	ND	5.0	96	91	5.3	106	109	2.8	70 - 130	30	
Chloroform	ND	5.0	80	80	0.0	79	80	1.3	70 - 130	30	
Chloromethane	ND	5.0	106	108	1.9	103	106	2.9	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	81	83	2.4	80	80	0.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	73	75	2.7	69	71	2.9	70 - 130	30	m
Cyclohexane	ND	5.0	85	88	3.5	86	86	0.0	70 - 130	30	
Dibromochloromethane	ND	3.0	76	76	0.0	70	72	2.8	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	130	134	3.0	131	129	1.5	70 - 130	30	l,m
Ethylbenzene	ND	1.0	79	81	2.5	76	76	0.0	70 - 130	30	
Isopropylbenzene	ND	1.0	80	82	2.5	88	87	1.1	70 - 130	30	
m&p-Xylene	ND	2.0	80	81	1.2	75 70	77	2.6	70 - 130	30	
Methyl ethyl ketone	ND	5.0	89	86	3.4	73	73	0.0	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	78	80	2.5	75	76	1.3	70 - 130	30	
Methylacetate	ND	5.0	92	94	2.2	87	87	0.0	70 - 130	30	
Methylcyclohexane	ND	5.0	88	92	4.4	86	86	0.0	70 - 130	30	

QA/QC Data

Parameter	Blank	Blk RL		.CS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Methylene chloride	ND	5.0		68	69	1.5	68	69	1.5	70 - 130	30	l,m
o-Xylene	ND	2.0		79	80	1.3	75	75	0.0	70 - 130	30	
Styrene	ND	5.0		76	77	1.3	71	73	2.8	70 - 130	30	
Tetrachloroethene	ND	5.0		78	80	2.5	74	74	0.0	70 - 130	30	
Toluene	ND	1.0		78	80	2.5	76	77	1.3	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	:	80	82	2.5	79	80	1.3	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0		69	71	2.9	63	65	3.1	70 - 130	30	I,m
Trichloroethene	ND	5.0	:	81	83	2.4	79	80	1.3	70 - 130	30	
Trichlorofluoromethane	ND	5.0		98	100	2.0	105	107	1.9	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0		95	97	2.1	95	95	0.0	70 - 130	30	
Vinyl chloride	ND	5.0	1	106	107	0.9	108	107	0.9	70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%		99	99	0.0	98	98	0.0	70 - 130	30	
% Bromofluorobenzene	95	%		97	98	1.0	97	97	0.0	70 - 130	30	
% Dibromofluoromethane	93	%	•	96	95	1.0	94	94	0.0	70 - 130	30	
% Toluene-d8 Comment:	95	%	,	97	97	0.0	97	97	0.0	70 - 130	30	
33												

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 40-160%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCC77924

April 01, 2019

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Monday, April 01, 2019 Criteria: NY: CP51S **Sample Criteria Exceedances Report** GCC77924 - NETC

State: NY

RLAnalysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Project Narrative

April 01, 2019 SDG I.D.: GCC77924

VOA Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

CHEM03 03/29/19-2

Jane Li, Chemist 03/29/19

CC77924

Initial Calibration Evaluation (CHEM03/VT-L032019):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Chloroethane 32% (20%), Methylene chloride 22% (20%)

The following compounds did not meet recommended response factors: Acetone 0.084 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM03/0329L32-VT-L032019):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 472663 (CC77442)

CC77924

All LCS recoveries were within 70 - 130 with the following exceptions: 1,2-Dibromo-3-chloropropane(69%), Bromoform(68%), Methylene chloride(68%), trans-1,3-Dichloropropene(69%)

All LCSD recoveries were within 70 - 130 with the following exceptions: 1,2-Dibromo-3-chloropropane(68%), Bromoform(69%), Dichlorodifluoromethane(134%), Methylene chloride(69%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples in this delivery group were received at 1.3°C.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY # 11301

NY Temperature Narration

April 01, 2019

SDG I.D.: GCC77924

The samples in this delivery group were received at 1.3° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

Coolant: IPK FF ICE No Templ 3°C Pg / of /	Contact Options:	ect P.O.: 19.0102014 This section MUST be	completed with Bottle Quantities.	Tuga i sait	1 + 1 + 1 1 1 1 1 1 1 1	TONIS TO NO STATE OF THE PROPERTY OF THE PROPE						Data Format Data Format Excel Excel ClS/Key ClS/Key Ny Ez EDD Other Data Package Ny Enhanced (ASP B) Other Other Other
Cool	Fax: Phone: Email: robn	Proje				**************************************		3 1	3 1	3 1		INY Criteria TOGS GW Criteria 375SCO GW Soil Unrestricted Soil GW 375SCO GW Residential Soil Residential Restricted Soil A75SCO Residential Restricted Soil A75SCO Restricted Soil A75SCO Restricted Soil A75SCO Commercial Soil Industrial Soil
NY/NJ CHAIN OF CUSTODY RECORD	East Middle Turnpike, P.O. Box 370, Manchester, CT 05040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: 694 Delaware Avenue, Albany, New York Report to: Rob Gray	່່ ອີ່					Please Hold This Sample	Time: Turnaround; NJ Res. Criteria 1 Day: 2 Days Da			
CHAII	ddle Turnp info@pho Client S	Project: Report	Invoice to QUOTE#	Analysis Request	COCK DOWNER		×	×	×	×	×	
NYN	587 East M Email:			5/132	•	Time Sampled	\rightarrow	2:15	10:50	1:00	3:15	3724/13
	v,			on Date:	ww ≈Waste W 1 W≕Wipe	Date Sampled S	3/27/2019	3/27/2019	3/28/2019	3/28/2019	3/28/2019	67 67
	Inc.			tdentiffcation	rface Water oil SD=Solio	Sample Matrix	S	Ø	v	Ø	Ø	
	PHOENIX SE Environmental Laboratories,	NETC PO Box 2167	Ballston Spa, New York	Glent Sample Information	Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste Water RW=Raw Water SE=Sediment SL=Sludge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Identification	HA-1 / S-5A	HA-2 / S-5	HA-3 / S-3A	HA-4 / S-3	HA-5 / S-3	Religiuished by: Accented by: Comments, Special Requirements of Regulations:
	PHO.	Customer: N Address: P		Sampler's Sanature	Matrix Code: DW=Drinking Water RW=Raw Water SE=: OIL=Oil B=Bulk L=L	PHOENIX USE ONLY SAMPLE#	77924	22bLL	92626	77927	22666	Religiuished by:

ATTACHMENT E

PEL GROUNDWATER QUALITY REPORT

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

April 04, 2019

FOR: Attn: Mr. Rob Gray

NETC

PO Box 2167

Ballston Spa, NY 12020

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:04/02/1910:24Location Code:NETCReceived by:B04/03/1917:00

Rush Request: 24 Hour Analyzed by: see "By" below

P.O.#: 19.0102014

<u>aboratory Data</u> SDG ID: GCC81351
Phoenix ID: CC81351

694 DELAWARE AVE ALBANY NY

Client ID: HA-1

Project ID:

RL/

Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles (TCL)							
1,1,1-Trichloroethane	95	5.0	ug/L	5	04/03/19	МН	SW8260C
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,1,2-Trichloroethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,1-Dichloroethane	28	1.0	ug/L	1	04/03/19	MH	SW8260C
1,1-Dichloroethene	12	1.0	ug/L	1	04/03/19	MH	SW8260C
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,2-Dibromo-3-chloropropane	ND	0.50	ug/L	1	04/03/19	MH	SW8260C
1,2-Dibromoethane	ND	0.25	ug/L	1	04/03/19	MH	SW8260C
1,2-Dichlorobenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,2-Dichloroethane	ND	0.60	ug/L	1	04/03/19	MH	SW8260C
1,2-Dichloropropane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,3-Dichlorobenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
1,4-Dichlorobenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
2-Hexanone	ND	2.5	ug/L	1	04/03/19	MH	SW8260C
4-Methyl-2-pentanone	ND	2.5	ug/L	1	04/03/19	MH	SW8260C
Acetone	9.9	S 2.5	ug/L	1	04/03/19	MH	SW8260C
Benzene	ND	0.70	ug/L	1	04/03/19	MH	SW8260C
Bromochloromethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Bromodichloromethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Bromomethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Carbon Disulfide	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Chloroethane	1.9	1.0	ug/L	1	04/03/19	MH	SW8260C
5.115.155triai16			~ <i>9</i> , –	•	2 ., 55, . 5		21.3200

Ver 1 Page 1 of 3

Project ID: 694 DELAWARE AVE ALBANY NY

Client ID: HA-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chloroform	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	04/03/19	MH	SW8260C
Cyclohexane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Dibromochloromethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Methyl ethyl ketone	ND	2.5	ug/L	1	04/03/19	MH	SW8260C
Methyl t-butyl ether (MTBE)	56	5.0	ug/L	5	04/03/19	MH	SW8260C
Methylacetate	ND	5.0	ug/L	1	04/03/19	MH	SW8260C
Methylcyclohexane	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Methylene chloride	ND	3.0	ug/L	1	04/03/19	MH	SW8260C
o-Xylene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Styrene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Tetrachloroethene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
Toluene	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Total Xylenes	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	04/03/19	MH	SW8260C
Trichloroethene	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	04/03/19	МН	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	04/03/19	MH	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	96		%	1	04/03/19	MH	70 - 130 %
% Bromofluorobenzene	100		%	1	04/03/19	MH	70 - 130 %
% Dibromofluoromethane	102		%	1	04/03/19	MH	70 - 130 %
% Toluene-d8	99		%	1	04/03/19	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (5x)	95		%	5	04/03/19	MH	70 - 130 %
% Bromofluorobenzene (5x)	101		%	5	04/03/19	MH	70 - 130 %
% Dibromofluoromethane (5x)	110		%	5	04/03/19	MH	70 - 130 %
% Toluene-d8 (5x)	95		%	5	04/03/19	МН	70 - 130 %
1,4-dioxane							
1,4-dioxane							
1,4-dioxarie	ND	100	ug/l	1	04/03/19	МН	SW8260C
Non Target Volatile Compounds	ND Absent	100	ug/l	1	04/03/19	MH MH	SW8260C

Phoenix I.D.: CC81351

Ver 1 Page 2 of 3

Project ID: 694 DELAWARE AVE ALBANY NY

Client ID: HA-1

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

Phoenix I.D.: CC81351

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

To achieve client's objectives, where the lowest calibration standard or LOD justifies lowering the RL/PQL, the RL/PQL of some compounds have been lowered to meet criteria.

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

April 04, 2019

Official Report Release To Follow

Ver 1 Page 3 of 3

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT	ID
HA-1	

Lab Name: Phoenix En	vironmental I	Labs	_ Client:	NETC	-	
Lab Code: Phoenix	Case No.:		SAS No.:		SDG No.:	GCC8135
Matrix:(soil/water)	WATER			Lab Sample ID:	CC81351	
Sample wt/vol:	25	(g/mL)	<u>mL</u>	Lab File ID:	0403_15.D	
Level: (low/med)				Date Received:	04/03/19	
% Moisture: not dec.	100	_		Date Analyzed:	04/03/19	
GC Column:	rtx-vms	ID:	0.18 (mm)	Dilution Factor:	_	1
Purge Volume	25000	(uL)		Soil Aliquot Vol (ul	_):	n.a.
Number TICs found:	0		CONCENTRATION UNITS: (ug/L or ug/KG)	ug/L	-	
CAS NUMBER	C	OMPOUND NA	ME	RT	EST. CONC.	Q
						1
						1
					-	
						
						+
					<u>†</u>	

Thursday, April 04, 2019 Criteria: NY: GW

Sample Criteria Exceedances Report GCC81351 - NETC

State: NY

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
CC81351	\$8260_TCLR	1,1-Dichloroethene	NY / TAGM - Volatile Organics / Groundwater Standards	12	1.0	5	5	ug/L
CC81351	\$8260_TCLR	1,1-Dichloroethane	NY / TAGM - Volatile Organics / Groundwater Standards	28	1.0	5	5	ug/L
CC81351	\$8260_TCLR	1,1,1-Trichloroethane	NY / TAGM - Volatile Organics / Groundwater Standards	95	5.0	5	5	ug/L
CC81351	\$8260_TCLR	1,2-Dibromoethane	NY / TOGS - Water Quality / GA Criteria	ND	0.25	0.0006	0.0006	ug/L
CC81351	\$8260_TCLR	1,2-Dibromo-3-chloropropane	NY / TOGS - Water Quality / GA Criteria	ND	0.50	0.04	0.04	ug/L
CC81351	\$8260_TCLR	1,1-Dichloroethene	NY / TOGS - Water Quality / GA Criteria	12	1.0	5	5	ug/L
CC81351	\$8260_TCLR	1,1-Dichloroethane	NY / TOGS - Water Quality / GA Criteria	28	1.0	5	5	ug/L
CC81351	\$8260 TCLR	1,1,1-Trichloroethane	NY / TOGS - Water Quality / GA Criteria	95	5.0	5	5	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

Coolant: IPK T ICE No	Temp \ Pe Pg of	Contact Options:	Phone: robnetc@nycap.rr.com	Project P.O: 19.0102014	₹	completed with	Bottle Quantities.		37 × 3 × 100	07 14 03 1460 1450 16	8	6	3	8	3				TOGS GW Phoenix Std Report	375SCO		Residential Soil Nu Hazsite EDD 375SCO CONTRACT NO EZ EDD (ASP)	Restricted Soil Other 375SCO	Commercial Soil <u>Data Package</u> ☐ 375SCO ☐ NJ Reduced Deliv. ◆	Industrial Soil NY Enhanced (ASP B) *
	NY/NJ CHAIN OF CUSTODY RECORD	37(Criman: Into@proentxtabs.com	Project: 694 Delaware Avenue, Albany, New York	<u>e</u>		QUOTE#:		Co'co dought			X Please Hold This Sample			Turnaround: NJ	19 930 10 Day* Res. Criteria			Other Impact to GW soll Screen		What State were samples collected?	New York			
	(N/AN	587 East Mic						6//2/	je je	Time	$\overline{}$	2:05	\vdash	3:25	11:38			Date	43	25	21/12				
								tion tion	or WW=Waste	Date Sampled	4/2/2019	4/2/2019	4/2/2019	4/2/2019	4/2/2019					\sim	\$ 15	>			
			; Inc.			_		- Identifica	Surface Wate	Sample Matrix	GW	GW	αM	МВ	ВW		1	γ. γ.	X)			
		#YIN/HOF	Environmental Laboratories,	NETC	PO Box 2167	Ballston Spa, New York		Client Sample - Information - Identification	Matrix Code: DW=Dirinking Water GW=Ground Water SW=Surface Water WW=Waste Wal RW=Raw Water SE=Sediment SL=Studge S=Soil SD=Solid W=Wipe OIL=Oil B=Bulk L=Liquid	Customer Sample Identification	HA-1	HA-2	HA-3	HA-4	HA-5			Accepted by	100			confurements of Regulative			
	ŀ		Environmen	Customer: N	•	(w)		Sampler's Signature	Matrix Code: DW=Drinking Water RW=Raw Water SE= OIL=Oil B=Bulk L=1	PHOENIX USE ONLY SAMPLE #	81351	81352	81353	81354	81365			Relingershed Art?				Comments, special R			