

1476 ROUTE 50 - P.O. BOX 2167 BALLSTON SPA, NY 12020 Phone: (518) 884-8545 - Fax: (518) 884-9710

August 14, 2007

Mr. Keith Goertz, PE NYSDEC Region 4 Spill Unit 1130 North Westcott Rd. Schenectady, New York 12306

RE: FAIRVIEW PLAZA HUDSON, NY SITE (SPILL CASE # 0204750)

Dear Keith:

This status report has been prepared to update the NYS Department of Environmental Conservation (DEC) of the additional soil and groundwater quality assessment measures completed at the subject Fairview Plaza located at 160 Fairview Ave. Hudson, NY (see **Figure 1**). The additional subsurface investigation (SI) work has been performed to address the issues deemed necessary by the DEC for a documented release of the dry cleaning chemical Tetrachloroethene (PERC) and its daughter compounds. As directed, the services completed during this SI have been performed in (5) areas east of the Wash Rite and Hall Mark tenant spaces (see **Figure 2**). This report is intended to supplement previous site information presented to the DEC in a May 29, 2007 status report. A complete accounting of the soil boring, monitoring well installation, and sampling methods are included in **Attachment A**. The following is a more detailed accounting of the results obtained during the SI.

FINDINGS

HYDROGEOLOGIC CONDITIONS

As directed, (5) soil borings / monitoring wells were advanced at the site during the period from May 9 - 14 , 2007. The results obtained from the soil boring program identify unconsolidated deposits as, in descending order, a cultural fill layer composed of brown medium to fine sand, silt, and clay overlaying a dense glaciolacustrine varved clay in each of the (5) soil borings. No visual or olfactory indication of chemical contamination were noted during the soil borings services. Groundwater was encountered in each soil boring at depths ranging from \pm 4.0 - 12.0 feet.

With the exception of GP-3-07, the head space soil gas concentrations at each soil boring location, using a properly photoionization detector (Mini Rae), identified low volatile organic compound (VOC) concentrations that ranged from 0.0 - 3.3 ppm. The greatest concentrations and frequencies of VOCs were identified at soil borings GP-4-07

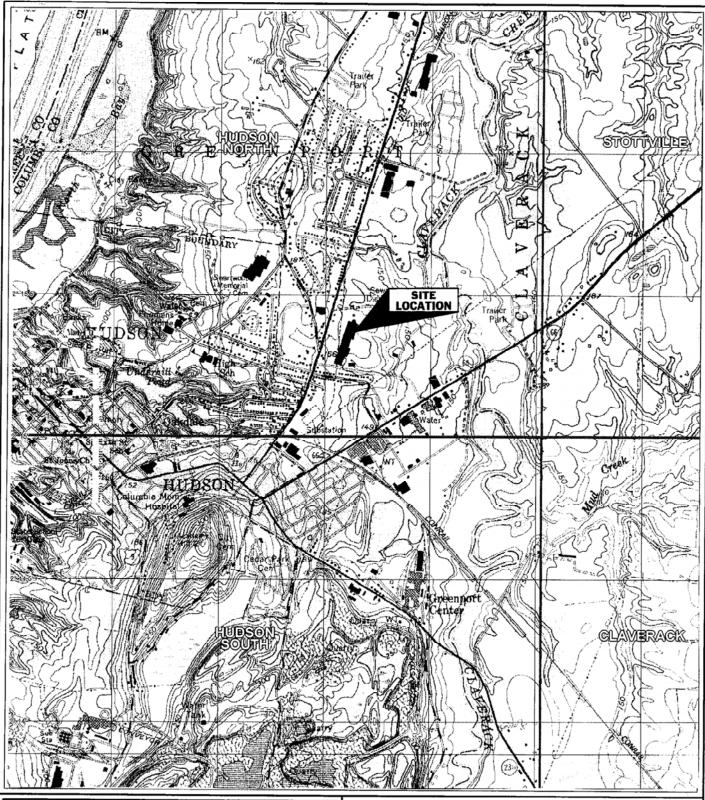
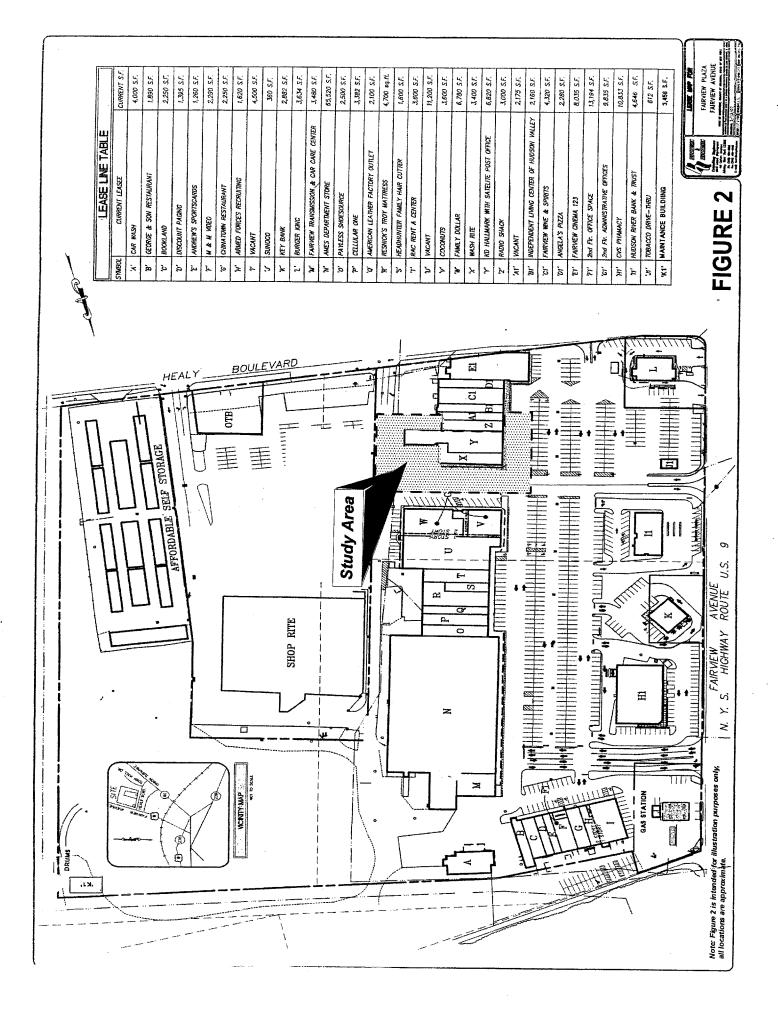


FIGURE 1: Location Map PROJECT: Fairview Plaza

160 Fairview Avenue Hudson, New York

Project # 02.05244


SCALE 1"= 2000'

Date: 05/24/02

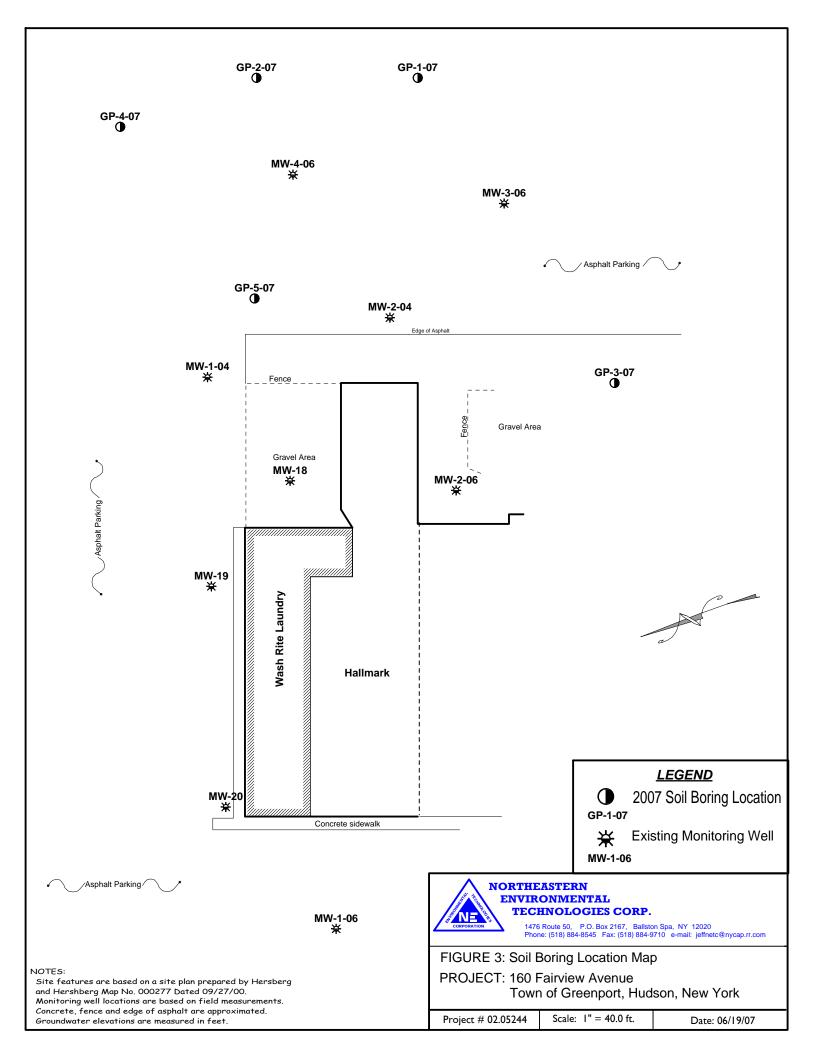
1476 Route 50 - P.O. Box 2167, Ballston Spa, NY 12020 Phone: (518) 884-8545 Fax: (518) 884-9710 e-mail: jeffnetc@nycap.rr.com

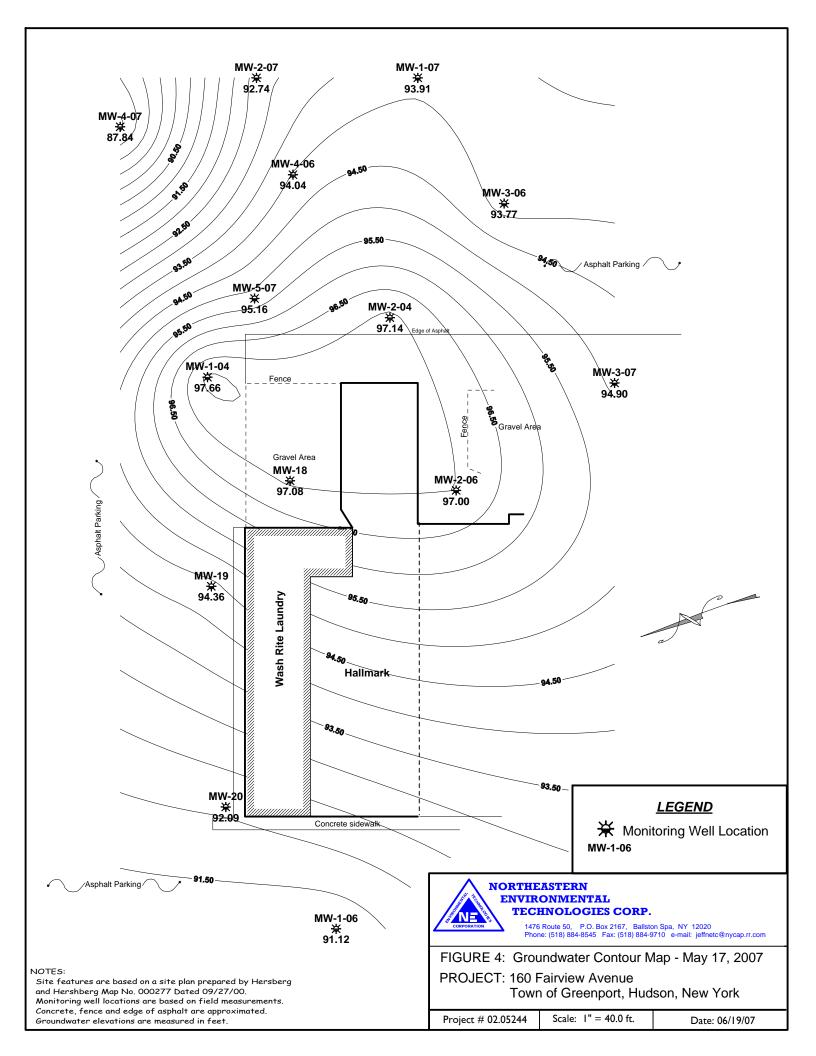
GEO-ENVIRONMENTAL CONSULTING & PROPERTY MANAGEMENT SERVICES *
SITE ASSESSMENTS * GEOTECHNICAL DRILLING & DPT PROBE SERVICES *
TANK CLOSURES * EXCAVATION SERVICES * SOIL & GROUNDWATER
REMEDIATION * EXPERT TESTIMONY * OSHA FIELD CERTIFIED

and GP-5-07. Conversely, simultaneous headspace soil gas measurements, using a PhotoVac 2020 PID, exhibited background VOCs at each soil boring location. The results of the PID soil gas analysis are included on the individual soil boring logs included in **Attachment B**.

Head space soil gas screening services performed using the PhotoVac 10S70 field gas chromatograph (GC), identify the majority of the soil samples as unaffected by the target chlorinated VOCs. Unidentified VOC peaks were present in the initial field GC soil data logs for each of the soil samples. The dry cleaning chemical PERC was identified at a low concentration (11.91ppb) in one soil sample collected from soil boring GP-5 at a depth of 16 to 20 ft. (i.e., S-5). The individual field GC data sheets are included in **Attachment C**.

Based on the overall favorable VOC soil gas measurements, (5) soil samples (i.e., GP-1-07[S-2], GP-2-07[S-2A], GP-3-07[S-2], GP-4-07[S-2B] and GP-5-07[S-5]) were short listed and later submitted to Northeast Analytical (NEA) for VOC chemical analysis via EPA Method 8260.


The soil boring data generated at each soil boring generally corresponds with previous soil and groundwater data assimilated from the site. **Figure 3** illustrates the locations of the individual soil borings installed at the site. Copies of the monitoring well completion logs are included in **Attachment D**.

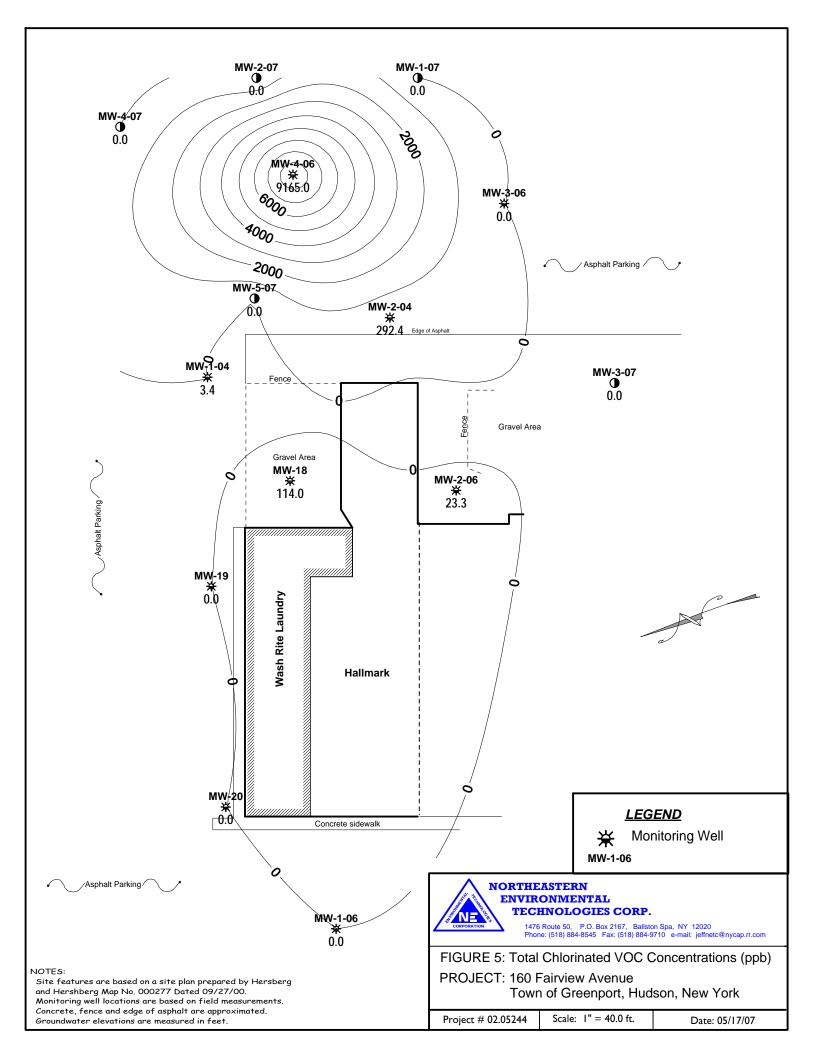

Groundwater levels documented in the network of monitoring wells on May 17, 2007 identify the depth to groundwater to range from 0.91 - 10.08 feet below grade. No measurable NAPL contamination was documented in the network of monitoring wells. A groundwater divide / mound persist east of the Wash Rite and Hall Mark tenant spaces (see **Figure 4**). It is expected that the combination of unimproved gravel surfaces, buried cultural fill and utility trenches and active roof drains east of the Fair View Plaza contribute to the observed groundwater condition. A historical accounting of the groundwater elevation data generated to date is included in **Attachment E**.

LABORATORY RESULTS

Each of the (5) soil samples submitted to NEA for VOC chemical analysis were found to be unaffected by chemical parameters inherent to EPA Method 8260. A copy of the NEA soil quality report has been included in **Attachment F**.

Groundwater samples collected at MW-19, MW-20, MW-3-06, MW-1-07, MW-2-07, MW-3-07, MW-4-07 and MW-5-07 were reported by NEA as unaffected by the chlorinated VOC chemical compounds of concern inherent to EPA Method 8260. Low concentrations (i.e., below the DEC's 6NYCRR Part 703 water quality standards) of cis-1,2-Dichloroethene, Vinyl Chloride, MTBE, and Trichloroethene (TCE) were identified in MW-1-04, MW-2-04, MW-1-06, and MW-2-06, respectively. Vinyl Chloride reported in MW-18 and MW-4-06; Trichloroethene (TCE) reported in MW-18, MW-2-04,

MW-4-06; Tetrachloroethene (PERC) reported in MW-18, MW-2-04, MW-2-06, MW-4-06 and cis-1,2,-Dichloroethene reported in MW-18, MW-2-04, MW-2-06, and MW-4-06 were identified at concentrations above the DEC's 6NYCRR Part 703 water quality standards. **Figure 5** illustrates the total chlorinated VOCs identified during the May 17, 2007 sampling event. A copy of the NEA groundwater quality report has been included in **Attachment G**.


CONCLUSION

Chlorinated VOC groundwater impacts persist down gradient (east and south) of the Wash Rite and Hallmark tenant spaces. Conversely, the site's groundwater quality north and west of the Wash Rite tenant space (i.e., monitoring wells MW-19, MW-20 and MW-1-06) remain unaffected by the dry cleaning chemical release. The down gradient extent of the chlorinated VOC groundwater impacts appears to be defined by the existing network of monitoring wells and localized to portions of the Fairview Plaza parking lot. The most significant groundwater impacts exist at monitoring well MW-4-06. Groundwater impacts down gradient of the source removal zone (i.e., MW-1-04, MW-2-04, and MW-2-06) have generally remained unchanged since May 24, 2006. Reductions in the concentration of the chlorinated VOC groundwater impacts at monitoring well MW-18 are in part attributed to natural attenuation following the source removal measures previously completed at the site.

DISCUSSION / RECOMMENDATIONS

The overall result of the May 17, 2007 groundwater sampling event has documented the apparent areal extent to which chlorinated VOC groundwater impacts (i.e., above the DEC's 6NYCRR Part 703 water quality standards) exist east of the Wash Rite and Hallmark tenant spaces. The existing data suggest an aged release of the dry cleaning chemical PERC. Groundwater quality trends observed following a focussed source removal program suggest both natural attenuation and down gradient migration of dissolved phase chlorinated VOCs into improved areas of the site presently used for parking and access road purposes. The combination of unimproved gravel surfaces, buried cultural fill, active roof drains and buried utilities east of the Fair View Plaza are expected to influence the down gradient migration of the chlorinated VOC plume.

It is our opinion that groundwater treatment measures east of the Wash Rite and Hallmark tenant spaces are appropriate to supplement the existing vapor mitigation measures recently completed at the site. Based on the subsurface conditions, the groundwater remedial measures should include the area occupied by monitoring wells MW-4-06, MW-2-04 and MW-18. A pilot pumping test is advocated at this time to evaluate the viability to recover impacted groundwater using existing monitoring wells MW-4-06, MW-2-04 and MW-18 using liquid ring pump equipment.

It is also our opinion that a quarterly sampling program be re established at this site using the existing network of monitoring wells (excluding MW-20 and MW-1-06). The next groundwater quality sampling event would occur during August 2007.

The findings and opinions offered are based on the existing data; no warranties are offered or implied. NETC opinions regarding the significance of the site soil and groundwater impacts are based on historical regulatory directives and similar opinions previously issued by the DEC for situations of a similar nature. As with any investigation of a limited scope, should additional information become available modification to this report may be appropriate. Please contact me should you wish to discuss the information contained herein. The NETC organization and I remain available to assist you and the DEC with this important matter.

Prepared By:	
Todd Scott, Project Geologist	Date
REVIEWED BY:	
JEFFREY T. WINK, PRESIDENT	Date
C.c. Mr. Anthony Fabiano	

ATTACHMENT A

FIELD METHODOLOGIES

FIELD METHODS

Soil Boring Program

Five soil borings (i.e., GP-1-07, GP-2-07, GP-3-07, GP-4-07 and GP-5-07) were installed at the site on May 9, 2007. The soil borings were installed to depths \pm 20.0 feet to facilitate the acquisition of near surface soil and groundwater samples. The soil borings were advanced at the site to further qualify the down gradient extent of a release of the dry cleaning chemical PERC, pursuant to the October 18, 2006 directives of the DEC. Each soil boring was completed in a manner to provide a geological log of the subsurface conditions and provide necessary data on the site's soil and / or groundwater condition. The soil borings were installed utilizing NETC's truck mounted Geoprobe 540U sampling system following standard direct push methods / techniques (DP). Copies of the individual soil boring logs are included as **Attachment B**, respectively.

SOIL GAS ANALYSIS

Head space VOC soil gas measurements were initially recorded on each soil sample using (2) properly calibrated photo ionization detectors (PID - PhotoVac Model 2020 and Mini Rae). In addition, a Photo Vac 10S70 gas chromatograph (GC) equipped with a photo ionization detector (PID) and an on board computer was used to quantify chlorinated VOC concentrations. The field GC analyzed a 250 micro liter aliquot of head space gas collected from a half filled 40 ml sample vial. Four chemical parameters were evaluated during the field GC testing services.

The target chemicals of concern include PERC, cis-1,2-Dichloroethene (DCE), Trichlorethene (TCE), and Vinyl Chloride (VC). Minimum detection limits (MDL) were established for PERC, TCE and DCE to assist in the review and interpretation of the soil quality data. Each soil sample was prepared for analysis by taking 20 grams of soil in a 40 ml vial and adding 20 ml of distilled water. The sample was shaken and allowed to come to equilibrium. Prior to analyzing the first soil sample a "clean" soil sample was "spiked" with a 20 ppm stock standard solution for calibration purposes. The results of the testing work were used to determine the vertical extent of VOC chemical contamination (see **Attachment C**). The field PID & GC soil quality data was used to short list a minimum of (1) soil sample from each soil boring for confirmatory laboratory analysis. Each of the short listed samples was submitted to Northeast Analytical (NEA) for chemical analysis via EPA Method 8260.

MONITORING WELL INSTALLATIONS

Soil borings GP-1-07, GP-2-07, GP-3-07, GP-4-07 and GP-5-07 were each over drilled using NETC's truck mounted Mobil B-53 hollow stem auger (HSA) drilling and completed with a 2-inch PVC monitoring well. All cuttings generated during the drilling services have been staged on site in 55 gallon 17H salvage drums. Soil borings completed as monitoring wells have been given the designation of "MW". The monitoring wells are each composed of two basic components; a PVC well screen and riser or blank.

The well screen is the intake portion of the well. The basic purpose of the riser is to provide storage and a connection to the surface from the well screen. Each of the monitoring wells have been constructed with 10 feet of well screen set from 10.0 to 20.0 feet below grade.

The annular space around the well screen and two feet above has been filled with sand pack (0.010 grade). A bentonite seal has been installed above the sand pack, and the remainder of the borehole filled with cement. NETC personnel has performed all aspects of the drilling and monitoring well installation program, and have been responsible for detailed logging of all samples. The general construction details for the wells installed during this work are listed below for consideration:

Boring No.	Depth (ft.)	Well No.	Screen Interval (ft.)
GP-1-07	± 20.0	MW-1-07	± 10.0' - 20.0'
GP-2-07	± 20.0	MW-2-07	± 10.0' - 20.0'
GP-3-07	± 20.0	MW-3-07	± 10.0' - 20.0'
GP-4-07	± 20.0	MW-4-07	± 10.0' - 20.0'
GP-5-07	± 20.0	MW-5-07	± 10.0' - 20.0'

Copies of the well completion logs are included in **Attachment D.** NETC personnel have performed all aspects of the drilling, sampling and monitoring well installation program.

WELL DEVELOPMENT

Each monitoring well was initially developed on May 14, 2007. Well development is considered necessary for the following reasons:

- To remove residual mud and formational silt and clay, thereby preventing turbidity during sampling that could potentially interfere with chemical analysis; and,
- To increase the hydraulic conductivity immediately around the well, which in turn reduces the potential of the well yielding an insufficient volume of water during the sampling procedure.

Dedicated PVC bailers were used as a surge-block device for loosening the fine-grained material from the well annulus, and as a mechanism to remove the water and sediment from the well. The surging was assisted by rapidly raising and lowering the bailer within the screen section. The bailing activities were continued until the water sufficiently cleared or five well volumes of water had been removed. All development water generated as a result of this work was containerized and staged on site in (1) 17H salvage drum.

GROUNDWATER SAMPLING PROCEDURES

On May 17, 2007 groundwater samples were collected from a network of monitoring wells surrounding the Wash Rite Facility (MW-18, MW-19, MW-20, MW-1-04, MW-2-04, and MW-1-07, MW-2-07, MW-3-07, MW-4-07, and MW-5-07). Prior to any water sample collection, static water levels and non aqueous phase liquid contamination (NAPL) levels were measured to the nearest one-hundredth of a foot in each monitoring well.

Groundwater sampling occurred when a sufficient volume of water had recovered (i.e., \geq 90%). Sampling was performed by new unused bottom filled, check valve PVC bailers using monofilament to lower and raise the bailer. All sample containers and preservatives were provided by Northeast Analytical (NEA). The samples were maintained at a temperature of 4°C by commercially available (pre-frozen) "ice-packs" and appropriate holding and transportation times were followed.

All samples were collected in such a manner as to minimize agitation and other disturbing conditions that may cause physio-chemical changes and bring about losses due to volatilization, adsorption, redox changes or degradation. All non-dedicated sampling equipment was cleaned according to the following protocol: warm detergent wash, tap water rinse & distilled water rinse. Each of the groundwater samples were analyzed for the chlorinated chemical compounds of concern via EPA Method 8260 testing criteria. Formal chain of custody documentation was maintained throughout the shipment of samples to the laboratory. Observations were also made and recorded regarding weather and surrounding air/water/soil conditions, non-aqueous components of well water (e.g. "floaters," surface sheen's) and any other pertinent field conditions.

ATTACHMENT B

SOIL BORING LOGS

PRESENTATION OF IDENTIFICATIONS

BASED ON THE

BURMISTER SYSTEM

Fully Written Descriptions

Start the description with the color, first letter of first color capitalized (e.g. Brown, Yellow brown, Yellow and brown). The color should be the same as field description, since with oxidation the color sometimes changes between the time the sample is recovered and when it is viewed in the laboratory.

Determine the primary component (e.g. sand, gravel, or silt) and whether the component represents 50% (by weight) or more of the sample.

- · 1. If more than 50% sand, the word sand gets fully capitalized.

 Preceding the word sand, are the terms coarse, medium and/or fine as follows:
 - a. If there are approximately equal amounts of coarse, medium and fine sand, the description reads "coarse to fine SAND". If there is more coarse sand, the description reads "coarse (+) to fine SAND". The same holds true for the fine sand predomination. If medium sand predominates, the description reads "coarse medium (+) to fine SAND". In order for a term coarse, medium or fine to be included in a description, it must represent at least 10% of the sand fraction. For example, if a sample contains 70% sand, the sample must contain at least 7% of coarse sand for the word coarse to be included in the description. The above usage of coarse, medium and fine applies to gravel as well as

Unless advised to the contrary on a specific job, the differentiation between coarse and fine silt shall not be made.

b. A comma always appears immediately after the word sand. Next comes the adjective giving the approximate percentage of soil by weight passing the #200 sieve as follows:

and: 35-50% some: 20-35%

little: 10-20% trace: 1-10%

with a (+) sign indicating the upper third of percentage, a (-) sign indicating the lower third of percentage, and no sign indicating the middle third of percentage. Next comes a description of the soil passing the #200 sieve, based exclusively on plasticity as follows:

PI	Description	Organic
0 - 18	Silt	(non-plastic)
1 - 5%	Clayey Silt	(Slight P.I.)
5 - 10%	Silt & Clay	(Low P.I.)
10 - 20%	Clay & Silt	(Medium P.I.)
20 - 40%	Silty Clay	(High P.I.)
40% and more	Clay	(Very High P.I.)

If the soil is organic, the term Organic Silt is used instead of the terms listed under "Description" and the terms listed under "Organic" are used at the very end of the full description (in parentheses).

- c. A comma is placed immediately after the term describing the soil passing the #200 sieve (e.g. Silt & Clay). Next the usage of and, some, little or trace (with a (+) or (-) if needed) is used to indicate the percent of gravel, followed by the use of coarse, medium and/or fine to describe the gravel gradation, with the word gravel always using a capital "G".
- d. An illustration of description of a soil having more than 50% sand is as follows:

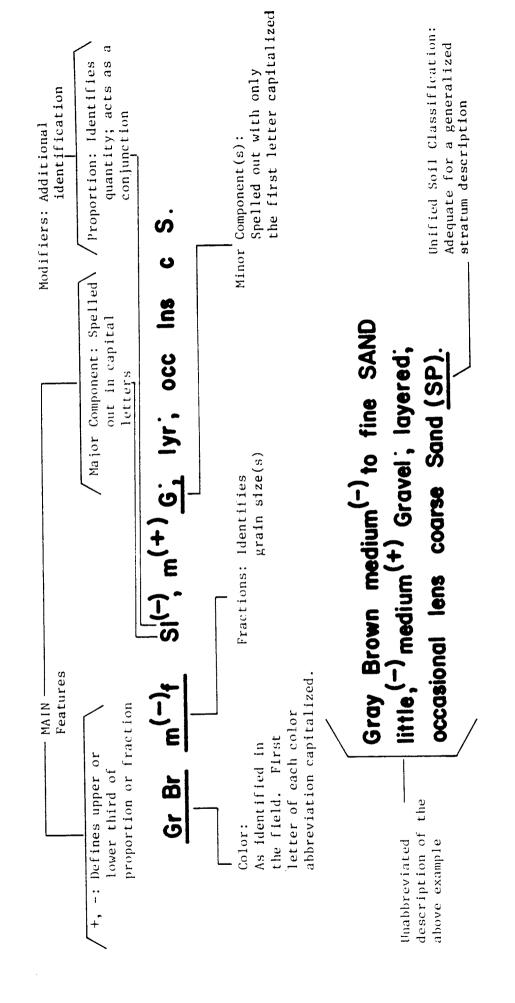
Brown coarse to fine SAND, little Clayey Silt, some (-) medium to fine (+) Gravel.

- 2. If the major component is less than 50% of the total sample, the description is written exactly as for Item 1 above (with sand coming first), except that in the word sand, only the S is capitalized rather than the full word.
- 3. If there is more than 50% gravel, the description once more starts with the color, followed by the applicable terms of coarse, medium and fine, followed by the word GRAVEL in all capitals.
 - a. The adjective giving the percentage of all the soil except gravel is placed after the word gravel, and then a comma (e.g. if there is 62% gravel, a partial description would be "Brown medium to fine (+) GRAVEL and (-),..."). The sand is then described by coarse, medium and/or fine without its own percent adjective (with only the S in sand being capitalized). A comma is placed immediately after the word Sand, after which the soil passing the #200 sieve is indicated with the adjective for percentage as given in Item 1b above.
 - b. An example is: Gray medium to fine (+) GRAVEL and (-), coarse to fine Sand, trace Silt.

4. If there is more than 50% passing the #200 sieve, the description once more starts with the color, followed by the #200 description based exclusively on plasticity as follows:

PI	Description	Organic
0 - 1%	SILT	(non-plastic)
1 - 5%	Clayey SILT	(Slight P.I.)
5 - 10%	SILT & CLAY	(Low P.I.)
10 - 20%	CLAY & SILT	(Medium P.I.)
20 - 40%	Silty CLAY	(High P.I.)
40% or more	CLAY	(Very High P.I.)

If the soil is organic, the term Organic SILT is used instead of the terms listed under "Description", and the terms listed under "Organic" are used at the very end of the full description (in parentheses).


- a. The description is written as discussed in Section 3, with sand preceding gravel.
 - b. An example is: Brown Clayey SILT some (+), coarse to fine Sand, trace fine Gravel.
 - c. In the foregoing example, if the fines are organic the identification would be:

Brown Organic SILT some (+), coarse to fine Sand, trace fine Gravel (Slight P.I.).

- 5. If pockets, layers, etc., of other soil are present in the sample, include it at the end of the previously written description with a comma at the end of the previously written description.
- 6. If closely layered (partings, seams, or layers) soils, such as varved clays, are involved, each layer must be completely identified along with a sketch in the remarks column showing layer thicknesses.
- 7. Organic soils are identified as Organic Silt (as previously described) or as Peat.
 - a. Characteristics of Organic Silt are:
 - (1) Usually light gray to very dark gray (or black) color
 - (2) Odor caused by decomposition of plant or animal life imparting $\rm H_2S$, $\rm CO_2$ and other organic gases
 - (3) Plastic properties, usually very compressible

- (4) May contain shells and fragments of partly decayed vegetable matter
- b. Characteristics of Peat are:
 - (1) Fibrous aggregate of undecayed or partially decayed vegetable matter, found in swamps
 - (2) Frequently contains organic silt
 - (3) Usually light brown to black in color
 - (4) Distinctive odor, as for organic silt

MODIFIED BURMISTER SYSTEM

VISUAL IDENTIFICATION OF SAMPLES

The samples were identified in accordance with the American Society for Engineering Education System of Definition.

1. Definition of Soil Components and Fractions

Material	Sym bol	Fraction	Sieve Size	Definition
Boulders	Bldr	_	9" +	Material retained on 9" sieve.
Cobbies	Cbi	_	3" to 9"	Material passing the 9" sieve and retained on the 3" sieve.
Gravel	G	coarse (c) medium (m) fine (f)	1" to 3" ½" to 1" No. 10 to ½"	Material passing the 3" sieve and retained on the No. 10 sieve.
Sand	S	coarse (c) medium (m) fine (f)	No. 30 to No. 10 No. 60 to No. 30 No. 200 to No. 60	Material passing the No. 10 sieve and retained on the No. 200 sieve.
Silt	\$		Passing No. 200 (0.074 mm)	Material passing the No. 200 sieve that is non- plastic in character and exhibits little or no strength when air dried.

Organic Silt (0\$)

Material passing the No. 200 sieve which exhibits plastic properties within a certain range of moisture content, and exhibits fine granular and organic characteristics.

		Plasticity	Plasticity Index	<u>.</u>
Clayey SILT	Cy\$	Slight (SI)	1 to 5	Clay-Soil
SILT & CLAY	\$ &C	Low (L)	5 to 10	Material passing the No. 200 sieve which can be
CLAY & SILT	C&\$	Medium (M)	10 to 20	made to exhibit plasticity and clay qualities within
Silty CLAY	\$yC	High (H)	20 to 40	a certain range of moisture content, and which
CLAY	С	Very High (VH)	40 plus	exhibits considerable strength when air-dried.

11. **Definition of Component Proportions**

Component	Written	Proportions	Symbol	Percentage Range by Weight *
Principal Principal	CAPITALS	_		50 or more
Minor	Lower Case	and	a.	35 to 50
		some	S.	20 to 35
		little	1.	10 to 20
		trace	t.	1 to 10

^{*} Minus sign (—) lower limit, plus sign (+) upper limit, no sign middle range.

III. Glossary of Modifying Abbreviations

Cat	egory	Symbol	Term	Symbol	Term	Symbol	Term
A.	Borings	U/D	Undisturbed	В	Exploratory	A .	Auger
В.	Samples	С	Casing	Ĺ	Lost	IJ	Undisturbed
D.	Samples	Ď	Denison	S	Spoon	W	Wash
		0.E.	Open End		•		
^	Colors	bk	black	gn	green	wh	white
C.	Colors	bi	blue	or	orange	у₩	yellow
		br	brown	rd	red	dk	dark
		gr	gray	tn	tan	lt .	light
_	0 -:-		danayad	0	organic	veg	vegetation
D.	Organic Soils	dec dec'g	decayed decaying	rts	roo ts	pt	peat
	30113	lig	lignite	ts	topsoil		
_		-	Limestone	rk	rock	Shst	Schist
E	Rocks	LS		SS	San dstone	Sh	Shale
•		Gns	Gneiss	33			
F.	Fill and	bldr (s)	boulder (s)	cbi (s)	cobble(s)	gls	glass
••	Miscellaneous	brk (s)	brick (s)	wd	boow	misc	miscellaneous
	Materials	cndr (s)	cinder (s)	dbr	debris	rbl	rubble
G.	Miscellaneous	do	ditto	рр	pocket	ref	refusal
u.	Terms	el, El	elevation	• •	penetrometer	sm	small
	rei ma	fgmt (s)	fragment(s)	P. I.	Plasticity	W. L.	water level
		frqt	frequent		Index	W. H.	weight of hammer
		Irg	large	P	p ushed	W. R.	weight of rods
		mtld	mottled		pressed		
		no rec	no recovery	pc (s)	piece (s)		
		pen	penetration	rec or R	recovered		
H.	. Stratified	alt	alternating				
, .	Soils	thk	thick				
	00110	thn	thin				
		w	with				
		prt	parting	— 0 to 1/16"			
		seam	seam	— 1/16 to ½			
		lyr	layer	— ⅓ to 12" t	hickness		
		stra	stratum	— greater that	n 12" thickness	() l .l	
		vvd c	varved Clay	— alternating	seams or layers of sand	i, siit and clay	
		pkt	pocket		ic deposit, usually less	tnan 1 foot	
		Ins	lens	lenticular d			
		occ	occasional		per foot of thickness		
		freq	frequent	— more than	one per foot of thicknes	iS.	

Laboratory Classification Criteria		Not meeting all gradation requiremen	ction sm ction sm re classif W, SP cases re cases re	Atterberg limits above requiring to the solution of the soluti	def of Σ and Σ an	Not meeting all gradation requireme	remine: urve: pending: 00 sieve Less () More Nore 2 % to	Alterberg limits below requiring "A" line with PI dual symbo		Comparing soils at equal liquid limit	or of the state of	Mastici	10 CI-MI WILL OF MI	0 10 20 30 40 50 60 70 80 90 100	Plasticity chart	for laboratory classification of fine grained soils	
Information Required for Describing Solis	Give typical name; indicate approximate percentages of sand	and gravel; maximum size; angularity, surface condition, and hardness of the coarse grains; local or geologic name	and other pertinent descriptive information; and symbols in parentheses	For undisturbed soils add information on stratification, degree of compactness, comentation, and	characteristics (, gravelly; about ;	I-in maximum size; rounded and subangular sand grains coarse to fine, about 15 % non-	plastic fines with low dry strength; well compacted and moist in place; alluvial sand;	(MO)			Give typical name; indicate degree and character of plasticity, amount and maximum size of coarse grains; colour in wet	condition, odour if any, local or geologic name, and other pertinent descriptive information, and symbol in parentheses	For undisturbed soils add infor- mation on structure, stratifica-	tion, consistency in undisturbed and remoulded states, moisture and drainage conditions	Example: Clayev silt, brown; slightly	plastic; small percentage of fine sand; numerous vertical	root holes; firm and dry in place; loess; (ML)
Typical Names	Well graded gravels, gravel- sand mixtures, little or no fines	Poorly graded gravels, gravel- sand mixtures, little or no fines	Silty gravels, poorly graded gravel-gand-silt mixtures	Clayey gravels, poorly graded gravel-sand-clay mixtures	Well graded sands, gravelly sands, little or no fines	Poorly graded sands, gravelly sands, little or no fines	Silty sands, poorly graded sand- silt mixtures	Clayey sands, poorly graded sand-clay mixtures			Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with slight plasticity	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	T	Inorganic silts, micaccous or diatomaccous fine sandy or silty soils, clastic silts	Inorganic clays of high plas- ticity, fat clays	Organic clays of medium to night	Peat and other highly organic
Group	***	d'S	CM	29	SHV	SP	SM	sc			ML	CT	ОТ	МН	СН	НО	Ä
	grain size and substantial	range of sizes	fication pro-	procedures,	d substantial	a range of sizes e sizes missing	fication pro-	n procedures,	40 Sieve Size	Toughness (consistency near plastic limit)	None	Medium	Stight	Slight to medlum	High	Slight to medium	colour, odour,
res asing fraction	grain size and substantial all intermediate particle	edominantly one size or a range of sizes with some intermediate sizes missing	es (for identi ML below)	or identification w)		Wide range in grain sizes and substantial amounts of all intermediate particle sizes sizes Predominantly one size or a range of sizes with some intermediate sizes missing Nonplastic fines (for Identification procedures, see ML below) Plastic fines (for Identification procedures, see CL below)			Fraction Smaller than No. 40 Sieve Size	Dilatancy (reaction to shaking)	Quick to	None to	Slow	Slow to none	None	None to	وَمُ
Field Identification Procedures letes larger than 3 in, and basin serimaned weights)	Wide range in amounts of	Predominantly one size or a range of sizes with some intermediate sizes missing	Nonplastic fines (for identification pro- cedures see ML below)	Plastic fines (for identification procedures, see CL below)	Wide range in amounts of sizes	Predominantly one size or with some intermediate	Nonplastic fines (for identification cedures, see ML below)	Plastic fines (for	Fraction Smi	Dry Strength (crushing character- istics)	None to	Medium to high	Slight to medium	Slight to medium	High to very high	Medium to high	Readily identified
Field Identification Procedures (Excluding particles larger than 3 in, and basing fractions	SETEC TEST	alf of co arger th ileve siz be used Clean Clean	Grave than ha tion is li No. 4 s ze may with with with is below to size)	More fract	oarse nadi	ands alf of c maller eve size il classi equival Cless (little	Sinnis in the control of the control	oroM osni	Identification Procedures on		OS nadi	assli2		limi	bas i it biup oc	Di I	Hothir Oceanic Soile
			d Sziz	inateni lo seve i	car se-gra in than half o than No. 2 tisible to m	More 1981al	rijezt ba	tpe eur	Inoc		al is smal	200 sieve	lied	nadi m	™ом		

From Wagner, 1957.

* Boundary classifications. Soils possessing characteristics of two groups are designated by combinations of group symbols. For example GW-GC, well graded gravel-sand mixture with clay binder.

* All sieve sizes on this chart are U.S. standard.

Field Identification Procedure Soils or Fractions in Fracture for Fine Grained Soils or Fractions

These procedures are to be performed on the minus No. 40 sleve size particles, approximately 1/4, in. For field classification purposes, screening is not intended, simply remove by hand the coarse particles that interfere with the tests.

Dilatoncy (Reaction to shaking):

After removing particles larger than No. 40 sieve size, prepare a pat of After removing particles larger than No. 40 sieve size, prepare a pat of After removing particles larger than solvent and stake horizontally and particles on the soil soft but not sitely.

Place the pat in the open palm of one hand and shake horizontally, striking viacously against the other hand several times. A positive reaction vigorously against the other hand several times. A positive reaction consists of the appearance of water on the surface, of the pat which is queezed between the fingers, the water and glossy. When the sample is squeezed between the fingers, the water and glossy. When the sample is squeezed between the fingers, the water and glossy. When the rapidity of appearance of water during shaking and of its disappearance during squeezing assist in identifying the character of the fines in a soil.

Very fine team sands give the quickest and most distinct reaction whereas a plantic cisy has no reaction. Inorganic sitis, such as a typical rock flour, show a moderately quick reaction.

Toughests (Consistency near plastic limit):

Toughests (Consistency near plastic limit):

After removing particles larger than the No. 40 steve size, a specimen of soil about one-half inch cube in size, is moulded to the consistency of soil about one-half inch cube in size, is moulded and it sticky, the specimen putty. If too dry, water must be added and it sticky, the specimen should be special out in a thin layer and allowed to lose some moisture by evaporation. Then the specimen is rolled out by hand on a smooth surface or between the palms into a thread about one-tight inch in diameter. The thread is then folded and re-rolled repeatedly. During this manipulation the moisture content is gradually reduced and the specimen stiffent, shall just the please should be lumped together and a sight kneading action continued until the lump crumbles.

The tougher the thread near the plastic limit and the stiffer the lump when it finally crumbles, the more potent is the collodal city fraction in the soil. Weakness of the thread at the plastic limit and quick to lose soil coherence of the thread at the plastic limit indicate either inorganic city of low plasticity, or materials such as kaolin-type clays and organic city of low plasticity. Dry Strength (Crushing characteristics):

After removing particles larger than No. 40 slove size, mould a pat of soil After removing particles larger than No. 40 slove size, mould a pat of soil to the consistency of putty, adding water if necessary. Allow the pat to dry completely by oven, ann or air drying, and then test its strength by dreaking and crumbling between the fugers. This strength is a measure of the character and quantity of the colloidal fraction contained in the soil. The dry strength increases with increasing plasticity.

High dry strength is characteristic for clays of the CH group. A typical inorganic sitt possesses only very slight dry strength. Silty fine sands and sligh and eabout the samed sight dry strength, but can be distinguished by the feel when powdering the dried specimen. Fine sand feels gritty whereas a typical sit has the smooth feel of flour.

Soil Characteristics Pertinent to Roads and Airfields

							Potential	Compressibility	Drainage	Compaction Equipment	Unit Dry	Typical De	Typical Design Values
Major Divisions	isions	1,etter	Name	Value as Subgrade When	Subbace When	Base When	Froet	and and	Characteristics		Weight 1b. per		Subgrade Modulus k
		ε		Not Subject to Frost Action	Not Subject to Frost Action	Not Subject to Frost Action	Action	Expansion.			ca. 7.	(2)	lb. per cu. In
		ĊΜ	Well: graded gravels or gravel-sand mixtures, little or no fines	Excellent	Excellent	Good	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller, steel-wheeled roller	125-140	40.80	300-500
•		db.	Poorly graded gravels or gravel sand mixtures little or no fines	Good to excellent	Good	Fair to good	None to very slight	Almost none	Excellent	Crawler type tractor, rubber-tired roller, steel-wheeled roller	110-140	30.60	300.500
	ORAVEL AND	70	Silty gravels, gravel sand-silt	Good to excellent	Good	Fair to good	Slight to medium	Very clight	Fair to poor	Rubber-tired roller, sheepsfroot roller; close control of moisture	125-145	40:60	300-500
	SOILS	n BW	S TANKER CO	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	115-135	20.30	200-500
-		8	Clayey gravels, gravel-sand-clay mixtures	Good	Fair	Poor to not suitable	Slight to medium	Slight	Poor to practically impervious	Rubber tired roller, sheepsfoot roller	130-145	20-40	200 500
COARSE. GRAINED	<u>.</u>	SW	Well: graded cands or gravelly sands, little or no fines	Good	Fair to good	Poor	Nome to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	110-130	20.40	200:400
Sign	i de la companya de l	dS	Proorly graded sands or gravelly	Fair to good	Fair	Poor to not suitable	None to very slight	Almost none	Excellent	Crawler-type tractor, rubber-tired roller	105-135	10.40	150.400
	SAND	τ	Sitty cands, sand-silt mixtures	Fair to good	Fair to good	Proor	Stight to high	Very slight	Fair to poor	Rubber tired roller, sheepsfoot roller; close control of moisture	120-135	15-40	150.400
	SOUS	NS a		Fair	Poor to fair	Not suitable	Slight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot roller	100-130	10.20	100-300
		SC	Clayey sands, sand-clay mixtures	Poor to fair	Poor	Not suitable	Stight to high	Slight to medium	Poor to practically impervious	Rubber-tired roller, sheepsfoot refler	100:135	5-20	100-300
	SILTS	ž	Increase silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	Poor to fair	Not suitable	Not suitable	Medium to very high	Slight to medium	Fair to poor	Rubber tired roller, sheepsfood roller; close control of moisture	90 130	15 or less	100 200
	AND CLAYS LL	טר	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silv clays, lean clays	Poor to fair	Not suitable	Not suitable	Medium to high	Medium	Practically impervious	Rubber tired roller, sheepsfoot roller	90.130	15 or less	50 150
FINE.	THAN SO	or	Organic sitts and organic silt clays of low plasticity	Poor	Not suitable	Not suitable	Medium to high	Medium to high	Poor	Rubber-tired roller, sheepsfood roller	90:105	5 or less	90-100
SOILS	SHTS	E .	Inorganic silts, micaceous or distornaceous fine sandy or silty soils, elastic silts	Poor	Not suitable	Not suitable	Medium to very high	High	Fair to poor	Sheepstoot roller, rubber-tired roller	80.105	10 or less	30.100
	AND CLAYS	Ð	Inorganic clays of medium to high plasticity, organic silts	Poor to fair	Not suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot raller, rubber-tired raller	90.115	15 or less	90:150
	GREATER THAN 50	HO	Organic clays of high plasticity, fat	Poor to very poor	Not suitable	Not suitable	Medium	High	Practically impervious	Sheepsfoot roller, rubber-tired roller	80.110	5 or less	25-100
HOHLY ORGANIC SOILS	INIC SOILS	E	Pest and other highly organic soils	Not suitable	Not suitable	Not suitable	Slight	Very high	Fair to poor	Compaction not practical	i	-	1

Note:

(1) Unit Dry Weights are for compacted soil at optimum moisture content for modified A ASINO compaction effort. Division of GM and SM groups into subdivision of and u are for roads and airfields only. Subdivision is basis of Atterborg limits; suffix d (e.g., GMd) will be used when the liquid limit (LL) is 25 or less and the plasticity index is 6 or less; the suffix u will be used otherwise.

(2) The maximum value that can be used in design of airfields is, in some cases, limited by gradation and plasticity requirements.

DIRECT PUSH METHOD

			TEST	BORIN	NG LOG)		Boring No.	GP-1-07			
PROJE	CT: Fai	rview Plaza	- 160 Fair	view Avenu	e Greenport,	New York		SHEET NO.	1 of 1			
CLIENT	Γ: An	thony Fabiar	10					JOB NO.	02.05244			
DRILLI	NG CONT	RACTOR:	Northeas	tern Enviror	nmental Tech	nologies Co	orporation	M.P. ELEV.				
PURPO	SE: Su	bsurface Inv	estigation					GR. ELEV.				
DRILLI	NG METH	OD: Direc	t Push		Soil Sample	GW Sample	Sample Method	DATUM				
DRILL	RIG: Ge	oprobe 540l	J	TYPE	Macro			DATE START	05/09/2007			
GROUN	ND WATE	R LEVEL:	NM	DIAM.	2.0"			DATE FINISH	05/09/2007			
	SURING PT.: Ground Sample Yes No No DRILLER E: N/A Screen INSPECTOR											
DATE:	N/A	T		Screen	Screen INSPECTOR							
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLOGIC DESCRIPTION							
1.0				Asphalt-Gr	avel				R=1.0'			
2.0	S-1	0.9/bkg*	sc	Mtld Br Gn	Itld Br Gn Bk fS, a\$yC, t fG							
3.0				Mottled Bro	lottled Brown Green Black fine SAND, and Silty Clay, trace							
4.0				iiio Gravo								
5.0			+	Gr Gn fS, a	r Gn fS, a \$yC; ly asphalt							
6.0	S-2	0.5/bkg	SC	Gray Gree	Gray Green fine SAND, and Silty Clay; layer asphalt							
7.0				Gr Gn Bk f	Gr Gn Bk fS, a\$ - seam Gr angular gravel							
8.0				Gray Gree	Gray Green fine SAND and Silty- seam Gray angular gravel							
9.0				Gr fS, a \$ I Bk wd	Gr fS, a \$ L C; seam gr angular gravel seams (+/- 8.0')							
10.0	S-3A	0.5/bkg	sc		SAND, and Sims Black org		y seam Gr	ay angular	Wet to Moist			
11.0	S-3B	0.8/bkg	SM	Dk Gr fS,a	\$			(+/- 10.0')	No Odor			
12.0				Dark Gray	fine SAND a	nd Silt						
13.0			T	Gr fS, a\$ to	C			(+/- 12.0')	R=4.0'			
14.0	S-4A	0.8/bkg	sc	Gray fine S	SAND and Sil	t, Trace Cla	У		Top Moist Soft			
15.0	S-4B	0.7/bkg	CL	Br vvd C				(+/- 14.0')	Bott Dry Hard			
16.0				Brown vary	ved Clay				No Odor			
17.0				Same as a	bove				R=4.0'			
18.0	S-5	0.4/bkg	CL						Dry			
19.0									No Odor			
20.0				Note: * = N	lini Rae / Pho	otoVac						
			(Groundwa	ter Sample	not collec	cted					
				Soil Boring	Complete	d @ 20.0	feet					

Shipping Address: 1476 Route 50 Ballston Spa, NY 12020 (518) 884-8545 - Phone Mailing Address: P.O. Box 2167 Ballston Spa, NY 12020 (518) 884-9710 - Fax

		ı	TEST	BORIN	NG LOG	;		Boring No.	GP-2-07		
PROJE	CT: Fair	view Plaza	- 160 Fair\	/iew Avenu	e Greenport,	New York		SHEET NO.	1 of 1		
CLIEN	T: Anth	ony Fabiar	10					JOB NO.	02.05244		
DRILLI	NG CONTR	ACTOR:	Northeas	tern Enviro	nmental Tech	nologies Co	rporation	M.P. ELEV.			
PURPO	OSE: Sub	surface Inv	estigation					GR. ELEV.			
DRILLI	NG METHO	D: Direct	t Push		Soil Sample	GW Sample	Sample Method	DATUM			
DRILL		probe 540L		TYPE	Macro				05/09/2007		
									05/09/2007		
									R. Earl T. Scott		
DATE:	N/A	Daak		Screen	Screen INSPECTOR						
Depth (feet)	Sample	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLC	GIC DES	CRIPTIO	N	REMARKS		
1.0				Asphalt - B	sr fS, a \$yC				R=2.1'		
2.0	S-1	3.3/bkg*	sc	Brown fine	SAND, and	Silty CLAY			Dry		
3.0				Gr Gn fS, a	Gn fS, a \$yC						
4.0				Gray Gree	ay Green fine SAND, and Silty CLAY						
5.0					Gn mtld fS, a \$yC; seams Gr fS, a \$						
6.0	S-2	1.5/bkg	SC		ray Green mottled fine SAND, and Silty CLAY; seams Gray ne SAND, and Silt						
7.0		1.2/bkg	SC	Br mtld Gr	r mtld Gr fS, a \$yC (+/- 5.5')						
8.0				Brown mot	rown mottled Gray fine SAND, and Silty CLAY						
9.0				Br vvd C				(+/- 8.0')	R=4.0'		
10.0	S-3	0.6/bkg	CL	Brown vary	ved CLAY				Macro Wet		
11.0									Soil Dry		
12.0									No Odor		
13.0				Same as a	bove				R=1.5'		
14.0	S-4	0.6/bkg	CL						Macro Wet		
15.0									Soil Dry		
16.0									No Odor		
17.0				Same as a	bove				R=4.0'		
18.0	S-5	0.4/bkg	CL						Damp		
19.0									No Odor		
20.0	,			Note: * = N	lini Rae / Pho	otoVac					
				Groundwa	ter Sample	not collec	ted				
			S	Soil Boring	Complete	d @ 20.0	feet				
											

 Shipping Address:
 1476 Route 50 Ballston Spa, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167 Ballston Spa, NY 12020
 (518) 884-9710 - Fax

			TEST	BORIN	NG LOG	ì		Boring No.	GP-3-07	
PROJE	CT: Fair	view Plaza	- 160 Fairv	iew Avenu	e Greenport,	New York		SHEET NO.	1 of 1	
CLIEN	CLIENT: Anthony Fabiano JOB NO.									
DRILLI	DRILLING CONTRACTOR: Northeastern Environmental Technologies Corporation M.P. ELEV.									
PURPO	PURPOSE: Subsurface Investigation GR. ELEV.									
DRILLI	DRILLING METHOD: Direct Push Soil Sample GW Sample Method DATUM									
DRILL	RIG: Geo	probe 540l	J	TYPE	Macro			DATE START	05/09/2007	
GROU	ND WATER	LEVEL:	NM	DIAM.	2.0"			DATE FINISH	05/09/2007	
	JRING PT.:	Grou	nd	Sample	Yes	No	No	DRILLER	R. Earl	
DATE:	N/A			Screen				INSPECTOR	T. Scott	
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLC	GIC DES	CRIPTIO	N	REMARKS	
1.0				Gravel					R=2.3'	
2.0	S-1	0.0/bkg*	sc		-fS, s \$yC, I f				Dry	
3.0				Dark Gray fine Grave		e to fine SA	ND, some	Silty CLAY, little	No Odor	
4.0					•					
5.0				Dk Gr fS, a	\$yC			(+/- 4.0')	R=4.0'	
6.0	S-2	0.0/bkg	sc	Dark Gray	fine SAND, a	and Silty Cla	У		Damp to Dry	
7.0									No Odor	
8.0										
9.0				Same as a	bove				R=4.0'	
10.0	S-3	0.0/bkg	CL						Moist	
11.0									No odor	
12.0										
13.0				Br mtld Gr	vvdC			(+/- 12.0')	R=3.8'	
14.0	S-4	0.0/bkg	CL	Brown mot	tled Gray var	ved CLAY			Dry / No Odor	
15.0	S-5	0.0/bkg	CL	Br vvd				(+/- 14.0')	R=4.0'	
16.0				Brown vary	ved CLAY				Dry / No Odor	
17.0				Same as a	bove				R=4.0'	
18.0	S-6	0.0/bkg	CL						Dry	
19.0									No Odor	
20.0				Note: * = N	lini Rae / Pho	otoVac				
			C	Groundwa	ter Sample	not collec	cted			
			S	Soil Boring	Complete	d @ 20.0	feet			

 Shipping Address:
 1476 Route 50 Ballston Spa, NY 12020
 (518) 884-8545 - Phone

 Mailing Address:
 P.O. Box 2167 Ballston Spa, NY 12020
 (518) 884-9710 - Fax

			TEST	BORIN	NG LOG	;		Boring No.	GP-4-07		
PROJE	CT: Fair	view Plaza	- 160 Fair	view Avenu	e Greenport,	New York		SHEET NO.	1 of 1		
CLIEN	T: Anth	ony Fabiar	10					JOB NO.	02.05244		
DRILLI	DRILLING CONTRACTOR: Northeastern Environmental Technologies Corporation M.P. ELEV.										
PURPO	PURPOSE: Subsurface Investigation GR. ELEV.										
DRILLI	DRILLING METHOD: Direct Push Soil Sample GW Sample Method DATUM										
DRILL	RIG: Geo	probe 540l	J	TYPE	Macro			DATE START			
	ND WATER		NM	DIAM.	2.0"			DATE FINISH			
	JRING PT.:	Grou	nd	Sample	Yes	No	No	DRILLER	R. Earl		
DATE:	N/A		11	Screen				INSPECTOR	T. Scott		
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLC	GIC DES	CRIPTIO	N	REMARKS		
1.0				Asphalt - G	Gravel				R=2.3'		
2.0	S-1	2.0/bkg*	sc	Br Gr mtld	fS, a \$yC				Dry		
3.0				Brown Gra	y mottled fine	e SAND, and	d Silty CLA	<u>Y</u>	No Odor		
4.0											
5.0				Gr Gn mtlc	l fS, a \$yC			(+/- 4.0')	R=4.0'		
6.0	S-2A	1.6/bkg	SC	Gray Gree	n mottled fine	SAND, and	d Silty Clay		Dry to Damp		
7.0	S-2B	1.9/bkg	SC	Gr Bk fS, a	\$yC; wd or	seams		(+/- 6.0')	No Odor		
8.0				Gray Black	fine SAND,	and Silty CL	.AY; wood	organic seams			
9.0				Same as a	bove				R=4.0'		
10.0	S-3	1.9/bkg	CL	Br vvd C				(+/- 7.0')	WET to Dry		
11.0				Brown var	ed CLAY				No odor		
12.0			-								
13.0				Same as a	bove				R=4.0'		
14.0	S-4	2.1/bkg	CL						Dry		
15.0									No Odor		
16.0											
17.0				Same as a	bove				R=4.0'		
18.0	S-6	1.5/bkg	CL								
19.0					No Odor						
20.0				Note: * = N	lini Rae / Pho	otoVac					
			(Groundwa	ter Sample	not collec	cted				
			5	Soil Boring	Complete	d @ 20.0	feet				

Shipping Address: 1476 Route 50 Ballston Spa, NY 12020 (518) 884-8545 - Phone Mailing Address: P.O. Box 2167 Ballston Spa, NY 12020 (518) 884-9710 - Fax

			TEST	BORIN	NG LOG)		Boring No.	GP-5-07		
PROJE	CT: Fair	view Plaza	- 160 Fair	view Avenu	e Greenport,	New York		SHEET NO.	1 of 1		
CLIEN	T: Anth	nony Fabiar	10					JOB NO.	02.05244		
DRILLI	DRILLING CONTRACTOR: Northeastern Environmental Technologies Corporation M.P. ELEV.										
PURPO	PURPOSE: Subsurface Investigation GR. ELEV.										
DRILLI	DRILLING METHOD: Direct Push Soil Sample GW Sample Method DATUM										
DRILL	RIG: Geo	probe 540l	J	TYPE	Macro			DATE START	05/09/2007		
GROUI	ND WATER	LEVEL:	NM	DIAM.	2.0"			DATE FINISH	05/09/2007		
	JRING PT.:	Grou	nd	Sample	Yes	No	No	DRILLER	R. Earl		
DATE:	N/A			Screen				INSPECTOR	T. Scott		
Depth (feet)	Sample ID	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLC	GIC DES	CRIPTIO	N	REMARKS		
1.0				Asphalt - G	Gravel				R=2.1'		
2.0	S-1	2.7/bkg*	SC	Gr fS, a \$y	С				Dry		
3.0				Gray fine S	SAND, and S	ilty CLAY			No Odor		
4.0											
5.0				Gr Gn fS, a	a \$yC			(+/- 4.0')	R=4.0'		
6.0	S-2	2.9/bkg	sc	Gray Gree	n fine SAND,	and Silty C	LAY		Dry to Damp		
7.0			SC	Gr Br fS, a	\$, I C; trace	rts		(+/- 6.0')	No Odor		
8.0				Gray Brow	n fine SAND.	and Silt, litt	<u>le Clay; tra</u>	ce roots			
9.0				Same as a	bove				R=3.0'		
10.0	S-3	2.8/bkg	sc						Damp		
11.0									No odor		
12.0											
13.0			T	Gr Gn fS, a	a \$yC			(+/- 12.0')	R=4.0'		
14.0	S-4A	3.3/bkg	sc	Gray Gree	n fine SAND,	and Silty C	<u>LAY</u>		Wet to Dry		
15.0	S-4B	1.8/bkg	sc	Dk Br Gr m	ntld Br fS, a \$	yC		(+/- 14.0')	No Odor		
16.0				Dark Brow	n Gray mottle	ed Brown fin	e SAND, a	nd Silty CLAY			
17.0			T	Br vvd C				(+/- 16.0')	R=4.0'		
18.0	S-6	2.6/bkg	CL	Brown vary	ved CLAY				Wet to Dry		
19.0									No Odor		
20.0	La taring (Distance)										
			. (Groundwa	ter Sample	not collec	cted				
			5	Soil Boring	Complete	d @ 20.0	feet				
L	Soil Boring Completed @ 20.0 feet										

Shipping Address: 1476 Route 50 Ballston Spa, NY 12020 (518) 884-8545 - Phone Mailing Address: P.O. Box 2167 Ballston Spa, NY 12020 (518) 884-9710 - Fax

HOLLOW STEM AUGER METHOD

		TEST	BORII	NG LC)G		_	Boring No.	B-1-07
PROJE	CT: 160	Fairview Avenue -	- Fairview	Plaza				SHEET NO.	1 of 1
CLIENT		JOB NO.	02.05244						
DRILLII	NG CONTR	M.P. ELEV.	96.03 ft.						
PURPO	SE: Mor	GR. ELEV.	96.25 ft.						
DRILLII	NG METHO	DD: H.S.A.			SAMPLE	CORE	CASING	DATUM	MW-4-06
DRILL I	RIG: Mob	oil B-53		TYPE	N/A	N/A	H.S.A.	DATE START	05/10/2007
GROUN	ND WATER	LEVEL: 2.14 f	t.	DIAM.			4.25"	DATE FINISH	05/10/2007
MEASU	JRING PT.:	Top of PVC		WT.				DRILLER	R. Earl
DATE:	May 14, 20			FALL				INSPECTOR	T. Scott
Depth (feet)								SCRIPTION	REMARKS
0.0									
2.0									
3.0							Augered to 2	0.0 feet to installed we	II.
4.0							Presampled	with DPT techniques.	
5.0									
6.0									
7.0									
8.0									
9.0									
10.0									
11.0									
12.0									
13.0									
14.0									
15.0									
16.0									
17.0									
18.0									
19.0						\downarrow			
20.0									
			Soil B	oring Co	mpleted a	at 20.0	feet		,

Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

Ballston Spa, NY 12020 Ballston Spa, NY 12020

		TEST I	BORII	NG LC)G			Boring No.	B-2-07			
PROJE	PROJECT: 160 Fairview Avenue - Fairview Plaza SHEET N											
CLIEN	T : Anth	JOB NO.	02.05244									
DRILLI	DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp. M.P. ELI											
PURPO	DSE: Mor	GR. ELEV.	96.04 ft.									
DRILLI	NG METHO	DD: H.S.A.			SAMPLE	CORE	CASING	DATUM	MW-4-06			
DRILL	RIG: Mob	oil B-53		TYPE	N/A	N/A	H.S.A.	DATE START	05/10/2007			
GROUI	ND WATER	LEVEL: 2.02 f	t.	DIAM.			4.25"	DATE FINISH	05/10/2007			
MEASU	JRING PT.:	Top of PVC		WT.				DRILLER	R. Earl			
DATE:	May 14, 20			FALL				INSPECTOR	T. Scott			
Depth (feet)	Blows on Peak Unified							SCRIPTION	REMARKS			
0.0												
2.0												
3.0							Augered to 2	0.0 feet to installed we	II.			
4.0							Presampled	with DPT techniques.				
5.0												
6.0												
7.0												
8.0	-											
9.0												
10.0												
11.0												
12.0												
13.0												
14.0												
15.0												
16.0												
17.0												
18.0												
19.0						lack						
20.0												
	:		Soil B	oring Co	mpleted a	at 20.0	feet					

Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

Ballston Spa, NY 12020 Ballston Spa, NY 12020

TEST BORI	NG LC	OG			Boring No.	B-3-07
PROJECT: 160 Fairview Avenue - Fairview	SHEET NO.	1 of 1				
CLIENT: Anthony Fabiano	JOB NO.	02.05244				
DRILLING CONTRACTOR: Northeastern E	M.P. ELEV.	97.00 ft.				
PURPOSE: Monitoring Well Installation					GR. ELEV.	97.63 ft.
DRILLING METHOD: H.S.A.		SAMPLE	CORE	CASING	DATUM	MW-4-06
DRILL RIG: Mobil B-53	TYPE	N/A	N/A	H.S.A.	DATE START	05/10/2007
GROUND WATER LEVEL: 9.88 ft.	DIAM.			4.25"	DATE FINISH	05/10/2007
MEASURING PT.: Top of PVC	WT.				DRILLER	R. Earl
DATE : May 14, 2007	FALL				INSPECTOR	T. Scott
Depth Sample Sample Spoon PlD (feet) ID per 6-inch (ppm) interval bkg=0.0	Unified Soil Class. System	(GEOLC	OGIC DES	SCRIPTION	REMARKS
0.0						
2.0						
3.0				Augered to 2	0.0 feet to installed we	II.
4.0				Presampled	with DPT techniques.	
5.0						
6.0						
7.0						
8.0						
9.0						
10.0						
11.0						
12.0						
13.0						
14.0						
15.0						
16.0						
17.0						
18.0						
19.0			\downarrow			
			•			
20.0		mpleted a				

Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

Ballston Spa, NY 12020 Ballston Spa, NY 12020

		TEST I	BORII	NG LC)G			Boring No.	B-4-07
PROJE	CT: 160	SHEET NO.	1 of 1						
CLIEN	JOB NO.	02.05244							
DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp. M.P. El									96.51 ft.
PURPO	OSE: Mon	nitoring Well Install	ation					GR. ELEV.	96.76 ft.
DRILLI	NG METHO	DD: H.S.A.		ı	SAMPLE	CORE	CASING	DATUM	MW-4-06
DRILL	RIG: Mob	oil B-53		TYPE	N/A	N/A	H.S.A.	DATE START	05/11/2007
GROU	ND WATER	LEVEL: 12.08	ft.	DIAM.			4.25"	DATE FINISH	05/11/2007
MEASU	JRING PT.:	Top of PVC		WT.				DRILLER	R. Earl
DATE:	May 14, 20			FALL				INSPECTOR	T. Scott
Depth (feet)	Sample ID	Blows on Sample Spoon per 6-inch interval	Peak PID (ppm) bkg=0.0	Unified Soil Class. System	(GEOLC	GIC DES	CRIPTION	REMARKS
0.0									
2.0									
3.0							Augered to 2	0.0 feet to installed wel	I.
4.0							Presampled	with DPT techniques.	
5.0									
6.0									
7.0									
8.0									
9.0									
10.0									
11.0									
12.0									
13.0									
14.0									
15.0									
16.0									
17.0									
18.0									
19.0						lack			
20.0									
			Soil B	oring Co	mpleted a	at 20.0	feet		

Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

Ballston Spa, NY 12020 Ballston Spa, NY 12020

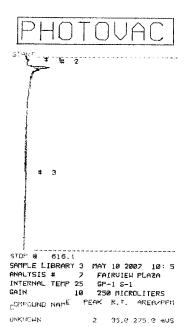
		TEST I	30RII	NG LC)G			Boring No.	B-5-07
PROJE	CT: 160	SHEET NO.	1 of 1						
CLIEN	JOB NO.	02.05244							
DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp. M.P.									96.80 ft.
PURPO	OSE: Mon	nitoring Well Install	ation					GR. ELEV.	97.36 ft.
DRILLI	NG METHO	DD: H.S.A.			SAMPLE	CORE	CASING	DATUM	MW-4-06
DRILL	RIG: Mob	oil B-53		TYPE	N/A	N/A	H.S.A.	DATE START	05/11/2007
GROU	ND WATER	LEVEL: 5.04 ft	t.	DIAM.			4.25"	DATE FINISH	05/11/2007
MEASU	JRING PT.:	Top of PVC		WT.				DRILLER	R. Earl
DATE:	May 14, 20			FALL				INSPECTOR	T. Scott
Depth (feet)	Sample ID	Blows on Sample Spoon per 6-inch interval	Peak PID (ppm) bkg=0.0	Unified Soil Class. System		GEOLC	GIC DES	CRIPTION	REMARKS
0.0									
2.0									
3.0							Augered to 2	0.0 feet to installed wel	l.
4.0							Presampled	with DPT techniques.	
5.0									
6.0									
7.0									
8.0									
9.0									
10.0									
11.0									
12.0									
13.0									
14.0									
15.0									
16.0									
17.0									
18.0									
19.0						lack			
20.0									
			Soil B	oring Co	mpleted a	at 20.0	feet		

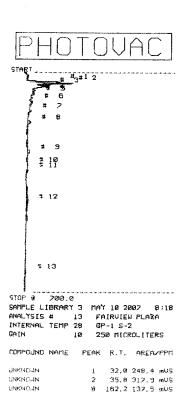
Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

Ballston Spa, NY 12020 Ballston Spa, NY 12020

ATTACHMENT C

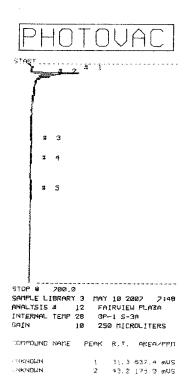
FIELD GC RECORDS




GC SOIL DATA RESULTS

RAW DATA SHEET

Date: 5/10/07



9 257.3 142.5 mUS 12 416.7 416.3 mUS

UNKNOWN

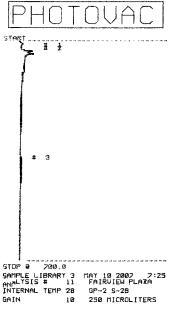

UNKHOUN

Page: 1 of 5

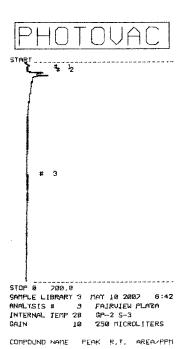
STOP @ 700.0 SAMPLE LIBRARY 3 MAY 10 2007 1:11 ANALYSIS # FAIRUIEW PLAZA GP-1 S-4A INTERNAL TEMP 26

250 MICROLITERS COMPOUND NAME PEAK R.T. AREA/PPM UNKNOUN 2 34.2 549.5 mUS Wash Rite Laundry - Fairview Plaza Town of Greenport, N.Y.

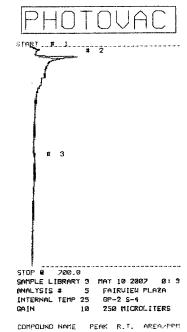
RAW DATA SHEET

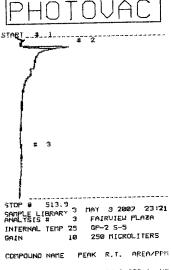

Date: 5/9-5/10/07

1 STOP @ 617.7 SAMPLE LIBRARY 3 MAY 10 2007 9:54 ANALYSIS # 6 INTERNAL TEMP 25 FAIRVIEW PLAZA GP-2 S-1 250 MICROLITERS


COMPOUND NAME PEAK R.T. AREA/PPM

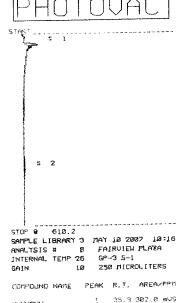
Page: 2 of 5


COMPOUND NAME FEAK R.T. AREAZPPM

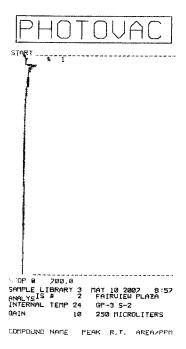

43.4 155 3 mUS

UNKNOWN

Wash Rite Laundry - Fairview Plaza Town of Greenport, N.Y.

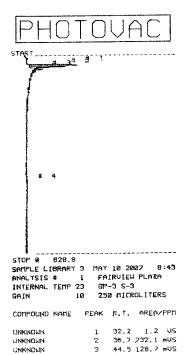


UNKNOWN 34.2 202.8 mUS

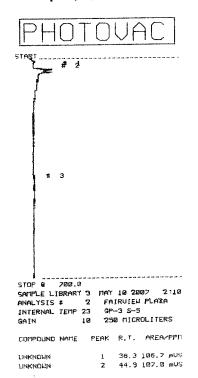


35.2 822.1 mUS HINKNEWN

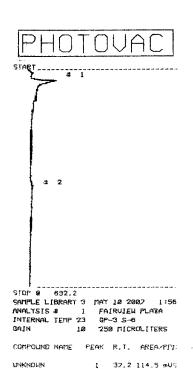
Date: 5/10/07



HINKNOWN



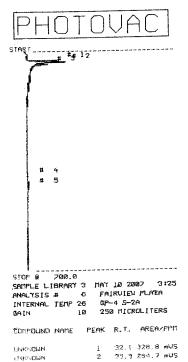
RAW DATA SHEET


Page: 3 of 5

Wash Rite Laundry - Fairview Plaza Town of Greenport, N.Y.

STOP @ 200.0 SAMPLE LIBRARY 3 MAY 10 2007 2:23 ANALYSIS # 3 FAIRUIEW PLAZA INTERNAL TEMP 25 GP-3 5-4 250 MICROLITERS COMPOUND NAME PEAK R.T. AREAZPPM

1 36.1 102,4 mUS

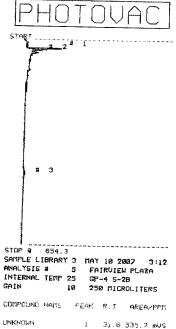

1476 Route 50, P.O. Box 2167, Baliston Spa, N.Y. 12020 Phone:(518) 884-8545 Fax (518) 884-9710 e-mail: jeffNETC@nycap.rr.com

Date: 5/9-5/10/07

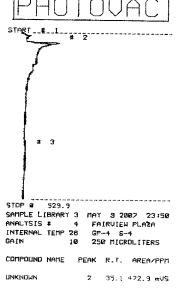
3 STOP 8 70 8.0 SAMPLE LIBRARY 3 MAY 10 2007 9:43 ANALYSIS # 5 INTERNAL TEMP 25 FAIRVIEW PLAZA GP-4 S-1

250 MICROLITERS

COMPOUND NAME PEAK BUT, AREAZPPO

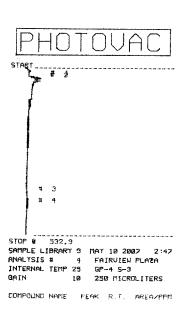


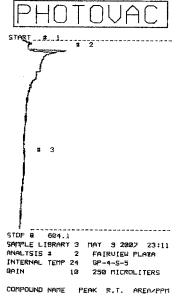
44,2 192,8 mUS


DISPONDIEN UNKHOUN

RAW DATA SHEET

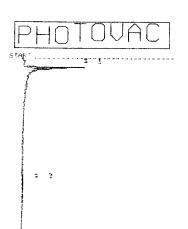
Page: 4 of 5



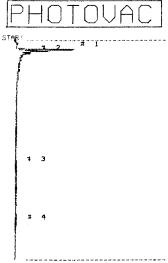

START _#_1_

Wash Rite Laundry - Fairview Plaza

Town of Greenport, N.Y.



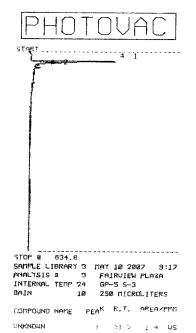
RAW DATA SHEET

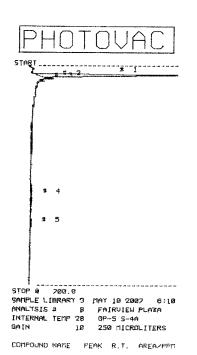

Date: 5/10/07

STOP @ 700.0 SAMPLE LIBRARY 3 MAY 10 2007 10:29 ANALYSIS # 9 FAIRVIEW PLASA INTERNAL TEMP 26 GP-5 S-1 26 GP-5 S-1 10 250 MICROLITERS

COMPOUND NAME PEAK R.T. AREAZPPM

UNKNEUN 1 3Ø.3 258.2 mUS




SAMPLE LIBRARY 3 MAY 10 2007 9:30 ANALYSIS # FAIRUIEN PLAZA INTERNAL TEMP 26 GP-5 S-2 250 MICROLITERS

COMPOUND NAME FEAK R.T. AREA/PPM

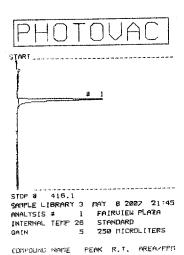
1 31.2 910.7 mUS 43,8 100,2 mUS Page: 5 of 5

Wash Rite Laundry - Fairview Plaza Town of Greenport, N.Y.

UNKNOWN

UNKNOWN

1 31.0 7.4 US 2 43.2 146.0 mUS


4 419.6 114.3 mUS

GC STANDARDS

RAW DATA SHEET

Date: 5/8-5/9/07

PHOTOVAC

ETHTLBENZENE

1 134.0 11.52 PPM

STOP 8 332.4

SAMPLE LIBRARY 3 MAY 8 2007 21:52
ANALYSIS # 2 FAIRVIEW PLATA
INTERNAL IEMP 27 STANDARD
GAIN 10 250 MICROLITERS

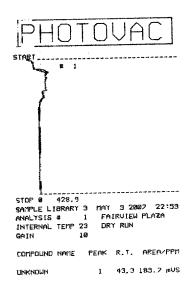
COMPOUND NAME PEAK R.T. AREA/PPM
ETHILBENZENE 2 131.6 13.78 PPM

CALIBRATED PEAK 2, TCE

SANPLE LIBRARY 3 MAY 8 2007 21:53 ANALYSIS # 2 FAIRVIEW PLATA INTERNAL TEMP 26 STANDARD GAIN 10 250 MICROLITERS

COMPOUND NAME PEAK R.T. AREA/PPM

TCE 2 131.6 100.0 PPB


Page: ____ of ___

STOP @ 700.0
STOP @ 700.0
SAMPLE LIBRARY 3 MAY 8 2007 18:45

SAMPLE LIBRARY 3 MAY 8 2007 18:4! ANALYSIS # 10 FAIRULEU PLAZA INTERNAL TEMP 25 SIANDARD GAIN 10 250 MICROLITERS

COMPOUND NAME PEAK R.T. AREA/PPM

UNKNOUN 1 35.4 103.5 mUS TCE 2 128.5 180.7 PPB Wash Rite Laundry - Fairview Plaza Town of Greenport, N.Y.

PHOTOVAC

CALIBRATED PEAK 1, TCE

SAMPLE LIBRARY 3 MAY 8 2007 19:43 ANALYSIS # 10 FAIRUIEU PLAZA INTERNAL TEMP 24 STANDARD GAIN 10 250 MICROLITERS

COMPOUND NAME PEAK R.T. AREA/PPM

TCE 1 35.4 120.0 PPB ETHYLBENZENE 2 128.5 22.24 PPM PHOTOVAC

COMPOUND # QI R.T. LIMIT 130.9 0.000 PPS TRANS-DCE 64.0 0.000 PPB ETHYLBENZENE 485.0 0.000 PPB 524.7 0.000 PPB M-P XYLENE D-XYLENE 824.7 9.000 PPB BENZENE TOLUENE PERC 196.3 2.000 PPB 224.1 0.000 PPB 316.0 0.000 PPB CIS-DCE 72.8 0.000 PPB

PHOTOVAC

3 COMPOUND IO # R.T. LIMIT TCE TRANS-DCE 17.3 0.000 PPB M-P XYLENE 3 131.2 0.000 PPB 141.9 0.000 PPB D-XYLENE 168,9 0.000 PPB BENSENE 28.7 0.000 PPB 60.6 0.000 PPB TOLUENE PERC 85.5 0.000 PPB 19.7 0.000 PPB CIS-DCE

ATTACHMENT D

WELL COMPLETION LOGS

MONITORING WELL COMPLETION LOG

WELL NO. **MW-1-07**

PROJECT: 160 Fairview Avenue - Fairview Plaza DATE DRILLED: May 10, 2007

CLIENT: Anthony Fabiano **DATE DEVELOPED:** May 14, 2007

PROJECT NO. 02.05244

Road Box

Gr EL. 96.25ft

PVC EL. 96.03ft

CEMENT /

CUTTINGS \

BENTONITE

FILTER PACK

SCREEN _

BENTONITE

SEAL

SEAL

0.0'

0.5'

+-/3.0'

+/-7.0'

+/-8.5'

+/-18.5'

+/-20.0'

 $\textbf{DRILLING CONTRACTOR:} \quad \text{Northeastern Environmental Technologies Corp.}$

TYPE OF WELL: Monitoring Well

STATIC WATER LEVEL 2.14 ft. DATE: May 14, 2007

MEASURING POINT: Top of PVC

TOTAL DEPTH OF WELL: +/-20.0 feet

TOTAL DEPTH OF BORING: +/-20.0 feet

DRILLING METHOD:

TYPE: H.S.A. DIAMETER: 4.25"

CASING: Auger

SAMPLING METHOD:

TYPE: Pre-drilled with Geoprobe **DIAMETER:** 2.0"

WEIGHT: NA FALL: NA

INTERVAL: Continous

RISER PIPE LEFT IN PLACE:

MATERIAL Sch 40PVC DIAMETER: 2.0"

LENGTH: 10.0' JOINT TYPE Flush Thread

SCREEN:

MATERIAL Sch 40PVC DIAMETER: 2.0"

SLOT SIZE: Slot 10 (0.010) **INTERVAL:** +/-10.0'-20.0'

STRATEGIC UNIT SCREENED: Sand, Silt and Clay

FILTER PACK:

TYPE: Sand GRADE: #1

AMOUNT: 400 lbs **INTERVAL**: +/-7.0'-20.0'

SEAL (S):

 TYPE:
 Bentonite
 INTERVAL:
 +/-3.0'-7.0'

 TYPE:
 Clean Cuttings
 INTERVAL:
 0.5'-1.0'

 TYPE:
 Concrete
 INTERVAL:
 0.0'-0.5'

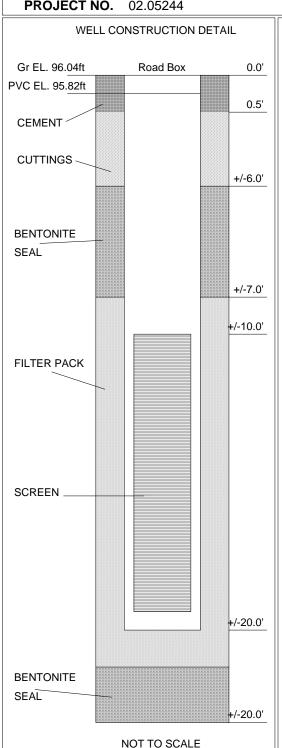
NOTES:

Road Box Installed

Shipping Address: 1476 Route 50 Ballston
Mailing Address: P.O. Box 2167 Ballston

NOT TO SCALE

Ballston Spa, New York 12020 Phone: (518) 884-8545
Ballston Spa, New York 12020 Phone: (518) 884-9710


MONITORING WELL COMPLETION LOG

WELL NO. MW-2-07

PROJECT: 160 Fairview Avenue - Fairview Plaza DATE DRILLED: May 10, 2007

CLIENT: Anthony Fabiano **DATE DEVELOPED:** May 14, 2007

PROJECT NO. 02.05244

INSPECTOR: T. Scott

DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp.

TYPE OF WELL: Monitoring Well

STATIC WATER LEVEL 2.02 ft. **DATE:** May 14, 2007

MEASURING POINT: Top of PVC TOTAL DEPTH OF WELL: +/-20.0 feet TOTAL DEPTH OF BORING: +/-20.0 feet

DRILLING METHOD:

TYPE: H.S.A. **DIAMETER: 4.25**"

CASING: Auger

SAMPLING METHOD:

DIAMETER: 2.0" TYPE: Pre-drilled with Geoprobe

FALL: NA WEIGHT: NA

INTERVAL: Continous

RISER PIPE LEFT IN PLACE:

MATERIAL Sch 40PVC DIAMETER: 2.0"

LENGTH: 10.0' JOINT TYPE Flush Thread

SCREEN:

MATERIAL Sch 40PVC DIAMETER: 2.0"

SLOT SIZE: Slot 10 (0.010) **INTERVAL:** +/-10.0'-20.0'

STRATEGIC UNIT SCREENED: Sand, Silt and Clay

FILTER PACK:

TYPE: Sand GRADE: #1

AMOUNT: 350 lbs INTERVAL: +/-7.0'-20.0'

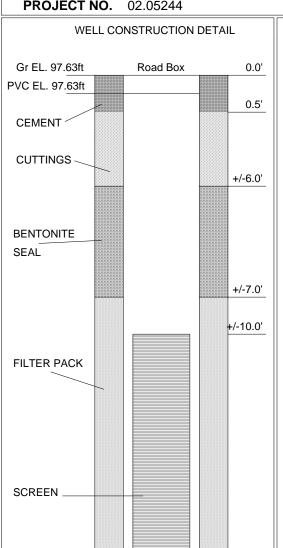
SEAL (S):

INTERVAL: +/-6.0'-7.0' TYPE: Bentonite INTERVAL: 0.5'-1.0' TYPE: Clean Cuttings INTERVAL: 0.0'-0.5' TYPE: Concrete

NOTES:

Road Box Installed

Shipping Address: 1476 Route 50 Ballston Spa, New York 12020 Phone: (518) 884-8545 Mailing Address: P.O. Box 2167 Ballston Spa, New York 12020 Phone: (518) 884-9710


MONITORING WELL COMPLETION LOG

WELL NO. MW-3-07

PROJECT: 160 Fairview Avenue - Fairview Plaza DATE DRILLED: May 10, 2007

CLIENT: Anthony Fabiano **DATE DEVELOPED:** May 14, 2007

PROJECT NO. 02.05244

BENTONITE

SEAL

INSPECTOR: T. Scott

DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp.

TYPE OF WELL: Monitoring Well

STATIC WATER LEVEL 9.88 ft. **DATE:** May 14, 2007

MEASURING POINT: Top of PVC TOTAL DEPTH OF WELL: +/-20.0 feet TOTAL DEPTH OF BORING: +/-20.0 feet

DRILLING METHOD:

TYPE: H.S.A. **DIAMETER: 4.25**"

CASING: Auger

SAMPLING METHOD:

DIAMETER: 2.0" TYPE: Pre-drilled with Geoprobe

FALL: NA WEIGHT: NA

INTERVAL: Continous

RISER PIPE LEFT IN PLACE:

MATERIAL Sch 40PVC DIAMETER: 2.0"

LENGTH: 10.0' JOINT TYPE Flush Thread

SCREEN:

MATERIAL Sch 40PVC DIAMETER: 2.0"

SLOT SIZE: Slot 10 (0.010) **INTERVAL:** +/-10.0'-20.0'

STRATEGIC UNIT SCREENED: Sand, Silt and Clay

FILTER PACK:

TYPE: Sand GRADE: #1

AMOUNT: 300 lbs INTERVAL: +/-7.0'-20.0'

SEAL (S):

+/-20.0'

+/-20.0'

NOT TO SCALE

INTERVAL: +/-6.0'-7.0' TYPE: Bentonite INTERVAL: 0.5'-1.0' TYPE: Clean Cuttings INTERVAL: 0.0'-0.5' TYPE: Concrete

NOTES:

Road Box Installed

Shipping Address: 1476 Route 50 Ballston Spa, New York 12020 Phone: (518) 884-8545 Mailing Address: P.O. Box 2167 Ballston Spa, New York 12020 Phone: (518) 884-9710

MONITORING WELL COMPLETION LOG

0.0'

0.5'

+/-6.0'

+/-7.0'

+/-10.0'

+/-20.0'

+/-20.0'

WELL NO. **MW-4-07**

PROJECT: 160 Fairview Avenue - Fairview Plaza DATE DRILLED: May 10, 2007

CLIENT: Anthony Fabiano **DATE DEVELOPED:** May 14, 2007

PROJECT NO. 02.05244

Gr EL. 96.76ft

PVC EL. 96.51ft

CEMENT /

CUTTINGS \

BENTONITE

FILTER PACK

SCREEN _

BENTONITE

SEAL

SEAL

WELL CONSTRUCTION DETAIL

Road Box

DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp.

TYPE OF WELL: Monitoring Well

STATIC WATER LEVEL 12.08 ft. DATE: May 14, 2007

MEASURING POINT: Top of PVC

TOTAL DEPTH OF WELL: +/-20.0 feet

TOTAL DEPTH OF BORING: +/-20.0 feet

DRILLING METHOD:

TYPE: H.S.A. DIAMETER: 4.25"

CASING: Auger

SAMPLING METHOD:

TYPE: Pre-drilled with Geoprobe **DIAMETER:** 2.0"

WEIGHT: NA FALL: NA

INTERVAL: Continous

RISER PIPE LEFT IN PLACE:

MATERIAL Sch 40PVC DIAMETER: 2.0"

LENGTH: 10.0' JOINT TYPE Flush Thread

SCREEN:

MATERIAL Sch 40PVC DIAMETER: 2.0"

SLOT SIZE: Slot 10 (0.010) **INTERVAL:** +/-10.0'-20.0'

STRATEGIC UNIT SCREENED: Sand, Silt and Clay

FILTER PACK:

TYPE: Sand GRADE: #1

AMOUNT: 300 lbs **INTERVAL:** +/-7.0'-20.0'

SEAL (S):

 TYPE:
 Bentonite
 INTERVAL:
 +/-6.0'-7.0'

 TYPE:
 Clean Cuttings
 INTERVAL:
 0.5'-1.0'

 TYPE:
 Concrete
 INTERVAL:
 0.0'-0.5'

NOTES:

Road Box Installed

Shipping Address: 1476 Route 50 Mailing Address: P.O. Box 2167

NOT TO SCALE

Ballston Spa, New York 12020 Ballston Spa, New York 12020 Phone: (518) 884-8545 Phone: (518) 884-9710

MONITORING WELL COMPLETION LOG

0.0'

0.5'

+/-5.0'

+/-7.0'

+/-10.0'

+/-20.0'

+/-20.0'

WELL NO. **MW-5-07**

PROJECT: 160 Fairview Avenue - Fairview Plaza DATE DRILLED: May 10, 2007

CLIENT: Anthony Fabiano **DATE DEVELOPED:** May 14, 2007

PROJECT NO. 02.05244

Gr EL. 97.36ft

PVC EL. 96.80ft

CEMENT /

CUTTINGS \

BENTONITE

FILTER PACK

SCREEN _

BENTONITE

SEAL

SEAL

WELL CONSTRUCTION DETAIL

Road Box

DRILLING CONTRACTOR: Northeastern Environmental Technologies Corp.

TYPE OF WELL: Monitoring Well

STATIC WATER LEVEL 5.04 ft. DATE: May 14, 2007

MEASURING POINT: Top of PVC

TOTAL DEPTH OF WELL: +/-20.0 feet

TOTAL DEPTH OF BORING: +/-20.0 feet

DRILLING METHOD:

TYPE: H.S.A. DIAMETER: 4.25"

CASING: Auger

SAMPLING METHOD:

TYPE: Pre-drilled with Geoprobe **DIAMETER:** 2.0"

WEIGHT: NA FALL: NA

INTERVAL: Continous

RISER PIPE LEFT IN PLACE:

MATERIAL Sch 40PVC DIAMETER: 2.0"

LENGTH: 10.0' JOINT TYPE Flush Thread

SCREEN:

MATERIAL Sch 40PVC DIAMETER: 2.0"

SLOT SIZE: Slot 10 (0.010) **INTERVAL:** +/-10.0'-20.0'

STRATEGIC UNIT SCREENED: Sand, Silt and Clay

FILTER PACK:

TYPE: Sand GRADE: #1

AMOUNT: 300 lbs **INTERVAL:** +/-7.0'-20.0'

SEAL (S):

 TYPE:
 Bentonite
 INTERVAL:
 +/-5.0'-7.0'

 TYPE:
 Clean Cuttings
 INTERVAL:
 0.5'-1.0'

 TYPE:
 Concrete
 INTERVAL:
 0.0'-0.5'

NOTES:

Road Box Installed

Shipping Address: 1476 Route 50
Mailing Address: P.O. Box 2167

NOT TO SCALE

Ballston Spa, New York 12020 Ballston Spa, New York 12020 Phone: (518) 884-8545 Phone: (518) 884-9710

ATTACHMENT E

HISTORICAL GROUNDWATER ELEVATION DATA

160 Fairview Avenue - Fairview Plaza

Historical Groundwater Elevations

DATE	WW WTG	MW-18 W GW ele	₩ WTO	W-19 GW ele	M WT0	MW-20 DTW GW ele	MW-1-04	-1-04	WILL	MW-2-04
04/18/2006	1.59	98.96	3.82	96.92	9.82	91.71	6.54	92.43	1.01	96.54
05/24/2006	3.01	97.54	3.52	97.22	9.05	92.48	1.25	97.72	0.41E	97.14
05/14/2007	3.49	97.06	5.67	95.07	8.56	92.97	1.37	97.60	0.80	98.14
05/17/2007	3.47	3.47 97.08	6.38	94.36	9.44	92.09	1.31	97 66	0.91	00 17

DATE	W MTG			MW-2-06 / GWele	MONITORIN MW DTW	MONITORING LOCATION MW-3-06 DTW GW ele	WW	MW-4-06 W GW ele	MM MLQ	MW-1-07
04/18/2006	10.68	90.64	3.06	98.80	2.78	100.00	3.89	96.48	Z	Z
05/24/2006	10.27	91.05	2.55	99.31	2.40	100.38	2.20	98.17	Z	Z
05/14/2007	11.42	89.90	3.02	98.84	2.38	100.40	2.49	97.88	2.14	93.89
05/17/2007	10.08	10.08 91.24	3.03	98.83	2.25	100 53	2.20	08 17		

DATE	MM	AW. 2.07	T. T. SANA	MONITORING LOCATION	G LOCATION		1 1 1	
	WTO.	GW ele	WLQ	mw->-∪/ GW ele	MW DTW	ww.4-07 │ GW efe	WW VYTO	//W-5-07 GW ele
04/18/2006	Z	Z	Z	Z	Z	Z	Z	Z
05/24/2006	Z	Z	Z	Z	Z	Z	Z	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
05/14/2007	2.02	93.80	9.88	87.12	12.08	84.43	5.04	91.76
05/17/2007	3.08	92.74	2.10	94.90	8.67	87 84	1 64	05 16

Notes:

NI = Not installed E = Estimated

160 Fairview Avenue - Fairview Plaza

May 17, 2007

Well Id	Ground Elevation (Feet)	PVC Elevation (Feet)	Depth to Water (Feet)	Groundwater Elevation (Feet)
MW-18	NM	100.55	3.47	97.08
MW-19	101.17	100.74	6.38	94.36
MW-20	101.61	101.53	9.44	92.09
MW-1-04	99.19	98.97	1.31	97.66
MW-2-04	97.6	97.55	0.91	97.14
MW-1-06	101.57	101.2	10.08	91.12
MW-2-06	100.24	100.03	3.03	97
MW-3-06	96.48	96.02	2.25	93.77
MVV-4-06	96.53	96.24	2.2	94.04
MW-1-07	96.25	96.03	2.12	93.91
MW-2-07	96.04	95.82	3.08	92.74
MW-3-07	97.63	97	2.1	94.9
MW-4-07	96.76	96.51	8.67	87.84
MW-5-07	97.36	96.8	1.64	95.16

E = Estimate

ATTACHMENT F

SOIL QUALITY REPORT

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-1-07/S-2

SOIL

DATE RECEIVED: 05/14/2007 TIME: 11:30

SAMPLED BY:

MATRIX:

T. SCOTT

CUSTOMER PO:

N/A

NEA ID: AK03795

NEA LRF: 07050069-01

DATE SAMPLED: 05/09/2007

TIME: 09:45

PROJECT: 02.05244

LOCATION: HUDSON, NY

			DIED DEITH	11070	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	**************************************				
1,1,1,2-Tetrachloroethane	ND	4.96	ug/kg	05/14/2007	U
1,1,1-Trichloroethane	ND	4.96	ug/kg	05/14/2007	Ü
1,1,2,2-Tetrachloroethane	ND	4.96	ug/kg	05/14/2007	Ū
1,1,2-Trichloroethane	ND	4.96	ug/kg	05/14/2007	U
1,1-Dichloroethane	ND	4.96	ug/kg	05/14/2007	U
1,1-Dichloroethene	ND	4.96	ug/kg	05/14/2007	U
1,1-Dichloropropene	ND	4.96	ug/kg	05/14/2007	U
1,2,3-Trichlorobenzene	ND	4.96	ug/kg	05/14/2007	U
1,2,3-Trichloropropane	ND	4.96	ug/kg	05/14/2007	U
1,2,4-Trichlorobenzene	ND	4.96	ug/kg	05/14/2007	U
1,2,4-Trimethylbenzene	ND	4.96	ug/kg	05/14/2007	U
1,2-Dibromo-3-chloropropane	ND	4.96	ug/kg	05/14/2007	U
1,2-Dibromoethane	ND	4.96	ug/kg	05/14/2007	U
1,2-Dichlorobenzene	ND	4.96	ug/kg	05/14/2007	U
1,2-Dichloroethane	ND	4.96	ug/kg	05/14/2007	U
1,2-Dichloropropane	ND	4.96	ug/kg	05/14/2007	U
1,3,5-Trimethylbenzene	ND	4.96	ug/kg	05/14/2007	U
1,3-Dichlorobenzene	ND	4.96	ug/kg	05/14/2007	U
1,3-Dichloropropane	ND	4.96	ug/kg	05/14/2007	U
1,4-Dichlorobenzene	ND	4.96	ug/kg	05/14/2007	U
2,2-Dichloropropane	ND	4.96	ug/kg	05/14/2007	U
2-Butanone	ND	4.96	ug/kg	05/14/2007	U
2-Chloroethylvinylether	ND	4.96	ug/kg	05/14/2007	U
2-Chlorotoluene	ND	4.96	ug/kg	05/14/2007	U
2-Hexanone	ND	4.96	ug/kg	05/14/2007	U
4-Chlorotoluene	ND	4.96	ug/kg	05/14/2007	U
4-Isopropyltoluene	ND	4.96	ug/kg	05/14/2007	U
4-Methyl-2-pentanone	ND	4.96	ug/kg	05/14/2007	U
Acetone	ND	24.8	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50 BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID:

GP-1-07/S-2

NEA ID: AK03795

NEA LRF: 07050069-01

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

TIME: 09:45

DATE RECEIVE

DATE RECEIVED: 05/14/2007 **TIME:** 11:30

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

DATE

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	DOI.	UNITS	DATE	FLAGS
	RESULIS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	4.96	ug/kg	05/14/2007	U
Bromobenzene	ND	4.96	ug/kg	05/14/2007	U
Bromochloromethane	ND	4.96	ug/kg	05/14/2007	U
Bromodichloromethane	ND	4.96	ug/kg	05/14/2007	U
Bromoform	ND	4.96	ug/kg	05/14/2007	U
Bromomethane	ND	4.96	ug/kg	05/14/2007	U
Carbon Disulfide	ND	4.96	ug/kg	05/14/2007	U
Carbon Tetrachloride	ND	4.96	ug/kg	05/14/2007	U
Chlorobenzene	ND	4.96	ug/kg	05/14/2007	U
Chloroethane	ND	4.96	ug/kg	05/14/2007	U
Chloroform	ND	4.96	ug/kg	05/14/2007	U
Chloromethane	ND	4.96	ug/kg	05/14/2007	U
cis-1,2-Dichloroethene	ND	4.96	ug/kg	05/14/2007	U
cis-1,3-Dichloropropene	ND	4.96	ug/kg	05/14/2007	U
Dibromochloromethane	ND	4.96	ug/kg	05/14/2007	U
Dibromomethane	ND	4.96	ug/kg	05/14/2007	U
Dichlorodifluoromethane	ND	4.96	ug/kg	05/14/2007	U
Ethylbenzene	ND	4.96	ug/kg	05/14/2007	U
Hexachlorobutadiene	ND	4.96	ug/kg	05/14/2007	U
Isopropylbenzene	ND	4.96	ug/kg	05/14/2007	U
m&p-Xylene	ND	4.96	ug/kg	05/14/2007	U
Methyl-tert-butyl-ether (MTBE)	ND	4.96	ug/kg	05/14/2007	U
Methylene Chloride	ND	24.8	ug/kg	05/14/2007	U
n-Butylbenzene	ND	4.96	ug/kg	05/14/2007	U
n-Propylbenzene	ND	4.96	ug/kg	05/14/2007	Ü
Naphthalene	ND	4.96	ug/kg	05/14/2007	Ū
o-Xylene	ND	4.96	ug/kg	05/14/2007	Ü
sec-Butylbenzene	ND	4.96	ug/kg	05/14/2007	Ü
Styrene	ND	4.96	ug/kg	05/14/2007	Ü

DATE RECEIVED: 05/14/2007

CERTIFICATE OF ANALYSIS 05/15/2007

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

GP-1-07/S-2

NEA ID: AK03795

NEA LRF: 07050069-01

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

PROJECT: 02.05244

TIME: 09:45

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

DADAMETER REDECRATER	D.F.C.L.L. FIG.	201		DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	4.96	ug/kg	05/14/2007	U
Tetrachloroethene	ND	4.96	ug/kg	05/14/2007	U
Toluene	ND	4.96	ug/kg	05/14/2007	U
trans-1,2-Dichloroethene	ND	4.96	ug/kg	05/14/2007	U
trans-1,3-Dichloropropene	ND	4.96	ug/kg	05/14/2007	U
Trichloroethene	ND	4.96	ug/kg	05/14/2007	U
Trichlorofluoromethane	ND	4.96	ug/kg	05/14/2007	U
Vinyl Acetate	ND	4.96	ug/kg	05/14/2007	U
Vinyl Chloride	ND	4.96	ug/kg	05/14/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 11:30

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer

Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-2-07/S-2A

NEA ID: AK03796

NEA LRF: 07050069-02

TIME: 11:15

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007

05/14/2007 **TIME:** 11:30

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	6.19	ug/kg	05/14/2007	U
1,1,1-Trichloroethane	ND	6.19	ug/kg	05/14/2007	U
1,1,2,2-Tetrachloroethane	ND	6.19	ug/kg	05/14/2007	U
1,1,2-Trichloroethane	ND	6.19	ug/kg	05/14/2007	U
1,1-Dichloroethane	ND	6.19	ug/kg	05/14/2007	U
1,1-Dichloroethene	ND	6.19	ug/kg	05/14/2007	U
1,1-Dichloropropene	ND	6.19	ug/kg	05/14/2007	U
1,2,3-Trichlorobenzene	ND	6.19	ug/kg	05/14/2007	U
1,2,3-Trichloropropane	ND	6.19	ug/kg	05/14/2007	U
1,2,4-Trichlorobenzene	ND	6.19	ug/kg	05/14/2007	U
1,2,4-Trimethylbenzene	ND	6.19	ug/kg	05/14/2007	U
1,2-Dibromo-3-chloropropane	ND	6.19	ug/kg	05/14/2007	U
1,2-Dibromoethane	ND	6.19	ug/kg	05/14/2007	U
1,2-Dichlorobenzene	ND	6.19	ug/kg	05/14/2007	U
1,2-Dichloroethane	ND	6.19	ug/kg	05/14/2007	U
1,2-Dichloropropane	ND	6.19	ug/kg	05/14/2007	U
1,3,5-Trimethylbenzene	ND	6.19	ug/kg	05/14/2007	U
1,3-Dichlorobenzene	ND	6.19	ug/kg	05/14/2007	U
1,3-Dichloropropane	ND	6.19	ug/kg	05/14/2007	U
1,4-Dichlorobenzene	ND	6.19	ug/kg	05/14/2007	U
2,2-Dichloropropane	ND	6.19	ug/kg	05/14/2007	U
2-Butanone	ND	6.19	ug/kg	05/14/2007	U
2-Chloroethylvinylether	ND	6.19	ug/kg	05/14/2007	U
2-Chlorotoluene	ND	6.19	ug/kg	05/14/2007	U
2-Hexanone	ND	6.19	ug/kg	05/14/2007	U
4-Chlorotoluene	ND	6.19	ug/kg	05/14/2007	U
4-Isopropyltoluene	ND	6.19	ug/kg	05/14/2007	U
4-Methyl-2-pentanone	ND	6.19	ug/kg	05/14/2007	U
Acetone	ND	30.9	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-2-07/S-2A

NEA ID: AK03796

NEA LRF: 07050069-02

TIME: 11:15

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007 **TIME:** 11:30

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	6.19	ug/kg	05/14/2007	U
Bromobenzene	ND	6.19	ug/kg	05/14/2007	U
Bromochloromethane	ND	6.19	ug/kg	05/14/2007	U
Bromodichloromethane	ND	6.19	ug/kg	05/14/2007	U
Bromoform	ND	6.19	ug/kg	05/14/2007	U
Bromomethane	ND	6.19	ug/kg	05/14/2007	U
Carbon Disulfide	ND	6.19	ug/kg	05/14/2007	U
Carbon Tetrachloride	ND	6.19	ug/kg	05/14/2007	U
Chlorobenzene	ND	6.19	ug/kg	05/14/2007	U
Chloroethane	ND	6.19	ug/kg	05/14/2007	U
Chloroform	ND	6.19	ug/kg	05/14/2007	U
Chloromethane	ND	6.19	ug/kg	05/14/2007	U
cis-1,2-Dichloroethene	ND	6.19	ug/kg	05/14/2007	U
cis-1,3-Dichloropropene	ND	6.19	ug/kg	05/14/2007	U
Dibromochloromethane	ND	6.19	ug/kg	05/14/2007	U
Dibromomethane	ND	6.19	ug/kg	05/14/2007	U
Dichlorodifluoromethane	ND	6.19	ug/kg	05/14/2007	U
Ethylbenzene	ND	6.19	ug/kg	05/14/2007	U
Hexachlorobutadiene	ND	6.19	ug/kg	05/14/2007	U
Isopropylbenzene	ND	6.19	ug/kg	05/14/2007	U
m&p-Xylene	ND	6.19	ug/kg	05/14/2007	U
Methyl-tert-butyl-ether (MTBE)	ND	6.19	ug/kg	05/14/2007	U
Methylene Chloride	ND	30.9	ug/kg	05/14/2007	U
n-Butylbenzene	ND	6.19	ug/kg	05/14/2007	U
n-Propylbenzene	ND	6.19	ug/kg	05/14/2007	U
Naphthalene	ND	6.19	ug/kg	05/14/2007	U
o-Xylene	ND	6.19	ug/kg	05/14/2007	U
sec-Butylbenzene	ND	6.19	ug/kg	05/14/2007	U
Styrene	ND	6.19	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-2-07/S-2A

NEA ID: AK03796

NEA LRF: 07050069-02

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

TIME: 11:15

DATE RECEIVED: 05/14/2007 TIME: 11:30

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					nice dimensional manifestation of the property of
tert-Butylbenzene	ND	6.19	ug/kg	05/14/2007	U
Tetrachloroethene	ND	6.19	ug/kg	05/14/2007	U
Toluene	ND	6.19	ug/kg	05/14/2007	U
trans-1,2-Dichloroethene	ND	6.19	ug/kg	05/14/2007	U
trans-1,3-Dichloropropene	ND	6.19	ug/kg	05/14/2007	U
Trichloroethene	ND	6.19	ug/kg	05/14/2007	U
Trichlorofluoromethane	ND	6.19	ug/kg	05/14/2007	U
Vinyl Acetate	ND	6.19	ug/kg	05/14/2007	U
Vinyl Chloride	ND	6.19	ug/kg	05/14/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer

Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID: GP-3

GP-3-07/S-2

NEA ID: AK03797

NEA LRF: 07050069-03

TIME: 12:26

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007

05/14/2007 **TIME:** 11:30

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

NI/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	4.30	ug/kg	05/14/2007	U
1,1,1-Trichloroethane	ND	4.30	ug/kg	05/14/2007	Ü
1,1,2,2-Tetrachloroethane	ND	4.30	ug/kg	05/14/2007	Ü
1,1,2-Trichloroethane	ND	4.30	ug/kg	05/14/2007	U
1,1-Dichloroethane	ND	4.30	ug/kg	05/14/2007	U
1,1-Dichloroethene	ND	4.30	ug/kg	05/14/2007	U
1,1-Dichloropropene	ND	4.30	ug/kg	05/14/2007	U
1,2,3-Trichlorobenzene	ND	4.30	ug/kg	05/14/2007	U
1,2,3-Trichloropropane	ND	4.30	ug/kg	05/14/2007	U
1,2,4-Trichlorobenzene	ND	4.30	ug/kg	05/14/2007	U
1,2,4-Trimethylbenzene	ND	4.30	ug/kg	05/14/2007	U
1,2-Dibromo-3-chloropropane	ND	4.30	ug/kg	05/14/2007	U
1,2-Dibromoethane	ND	4.30	ug/kg	05/14/2007	U
1,2-Dichlorobenzene	ND	4.30	ug/kg	05/14/2007	U
1,2-Dichloroethane	ND	4.30	ug/kg	05/14/2007	U
1,2-Dichloropropane	ND	4.30	ug/kg	05/14/2007	U
1,3,5-Trimethylbenzene	ND	4.30	ug/kg	05/14/2007	U
1,3-Dichlorobenzene	ND	4.30	ug/kg	05/14/2007	U
1,3-Dichloropropane	ND	4.30	ug/kg	05/14/2007	U
1,4-Dichlorobenzene	ND	4.30	ug/kg	05/14/2007	U
2,2-Dichloropropane	ND	4.30	ug/kg	05/14/2007	U
2-Butanone	ND	4.30	ug/kg	05/14/2007	U
2-Chloroethylvinylether	ND	4.30	ug/kg	05/14/2007	U
2-Chlorotoluene	ND	4.30	ug/kg	05/14/2007	U
2-Hexanone	ND	4.30	ug/kg	05/14/2007	U
4-Chlorotoluene	ND	4.30	ug/kg	05/14/2007	U
4-Isopropyltoluene	ND	4.30	ug/kg	05/14/2007	U
4-Methyl-2-pentanone	ND	4.30	ug/kg	05/14/2007	U
Acetone	ND	21.5	ug/kg	05/14/2007	U

DATE RECEIVED: 05/14/2007

CERTIFICATE OF ANALYSIS 05/15/2007

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50 BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID:

GP-3-07/S-2

TIME: 11:30

NEA ID: AK03797

NEA LRF: 07050069-03

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

PROJECT: 02.05244

TIME: 12:26

SAMPLED BY:

T. SCOTT

1100EC1. 02.032

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	4.30	ug/kg	05/14/2007	U
Bromobenzene	ND	4.30	ug/kg	05/14/2007	U
Bromochloromethane	ND	4.30	ug/kg	05/14/2007	U
Bromodichloromethane	ND	4.30	ug/kg	05/14/2007	U
Bromoform	ND	4.30	ug/kg	05/14/2007	U
Bromomethane	ND	4.30	ug/kg	05/14/2007	U
Carbon Disulfide	ND	4.30	ug/kg	05/14/2007	U
Carbon Tetrachloride	ND	4.30	ug/kg	05/14/2007	U
Chlorobenzene	ND	4.30	ug/kg	05/14/2007	U
Chloroethane	ND	4.30	ug/kg	05/14/2007	U
Chloroform	ND	4.30	ug/kg	05/14/2007	U
Chloromethane	ND	4.30	ug/kg	05/14/2007	U
cis-1,2-Dichloroethene	ND	4.30	ug/kg	05/14/2007	U
cis-1,3-Dichloropropene	ND	4.30	ug/kg	05/14/2007	U
Dibromochloromethane	ND	4.30	ug/kg	05/14/2007	U
Dibromomethane	ND	4.30	ug/kg	05/14/2007	U
Dichlorodifluoromethane	ND	4.30	ug/kg	05/14/2007	U
Ethylbenzene	ND	4.30	ug/kg	05/14/2007	U
Hexachlorobutadiene	ND	4.30	ug/kg	05/14/2007	U
Isopropylbenzene	ND	4.30	ug/kg	05/14/2007	U
m&p-Xylene	ND	4.30	ug/kg	05/14/2007	U
Methyl-tert-butyl-ether (MTBE)	ND	4.30	ug/kg	05/14/2007	U
Methylene Chloride	ND	21.5	ug/kg	05/14/2007	U
n-Butylbenzene	ND	4.30	ug/kg	05/14/2007	U
n-Propylbenzene	ND	4.30	ug/kg	05/14/2007	U
Naphthalene	ND	4.30	ug/kg	05/14/2007	U
o-Xylene	ND	4.30	ug/kg	05/14/2007	U
sec-Butylbenzene	ND	4.30	ug/kg	05/14/2007	U
Styrene	ND	4.30	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-3-07/S-2

NEA ID: AK03797

NEA LRF: 07050069-03

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

TIME: 12:26

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	4.30	ug/kg	05/14/2007	U
Tetrachloroethene	ND	4.30	ug/kg	05/14/2007	U
Toluene	ND	4.30	ug/kg	05/14/2007	U
trans-1,2-Dichloroethene	ND	4.30	ug/kg	05/14/2007	U
trans-1,3-Dichloropropene	ND	4.30	ug/kg	05/14/2007	U
Trichloroethene	ND	4.30	ug/kg	05/14/2007	U
Trichlorofluoromethane	ND	4.30	ug/kg	05/14/2007	U
Vinyl Acetate	ND	4.30	ug/kg	05/14/2007	U
Vinyl Chloride	ND	4.30	ug/kg	05/14/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 11:30

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer Robert E. Wagner Laboratory Director

This report may not be reproduced except in full, without the written approval of Northeast Analytical, Inc.

DATE RECEIVED: 05/14/2007

CERTIFICATE OF ANALYSIS 05/15/2007

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-4-07/S-2B

TIME: 11:30

NEA ID: AK03798

NEA LRF: 07050069-04

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

PROJECT: 02.05244

TIME: 14:10

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	The second secon				
1,1,1,2-Tetrachloroethane	ND	3.89	ug/kg	05/14/2007	U
1,1,1-Trichloroethane	ND	3.89	ug/kg	05/14/2007	Ŭ
1,1,2,2-Tetrachloroethane	ND	3.89	ug/kg	05/14/2007	Ü
1,1,2-Trichloroethane	ND	3.89	ug/kg	05/14/2007	U
1,1-Dichloroethane	ND	3.89	ug/kg	05/14/2007	U
1,1-Dichloroethene	ND	3.89	ug/kg	05/14/2007	Ü
1,1-Dichloropropene	ND	3.89	ug/kg	05/14/2007	U
1,2,3-Trichlorobenzene	ND	3.89	ug/kg	05/14/2007	U
1,2,3-Trichloropropane	ND	3.89	ug/kg	05/14/2007	U
1,2,4-Trichlorobenzene	ND	3.89	ug/kg	05/14/2007	U
1,2,4-Trimethylbenzene	ND	3.89	ug/kg	05/14/2007	U
1,2-Dibromo-3-chloropropane	ND	3.89	ug/kg	05/14/2007	U
1,2-Dibromoethane	ND	3.89	ug/kg	05/14/2007	U
1,2-Dichlorobenzene	ND	3.89	ug/kg	05/14/2007	U
1,2-Dichloroethane	ND	3.89	ug/kg	05/14/2007	U
1,2-Dichloropropane	ND	3.89	ug/kg	05/14/2007	U
1,3,5-Trimethylbenzene	ND	3.89	ug/kg	05/14/2007	U
1,3-Dichlorobenzene	ND	3.89	ug/kg	05/14/2007	U
1,3-Dichloropropane	ND	3.89	ug/kg	05/14/2007	U
1,4-Dichlorobenzene	ND	3.89	ug/kg	05/14/2007	U
2,2-Dichloropropane	ND	3.89	ug/kg	05/14/2007	U
2-Butanone	ND	3.89	ug/kg	05/14/2007	U
2-Chloroethylvinylether	ND	3.89	ug/kg	05/14/2007	U
2-Chlorotoluene	ND	3.89	ug/kg	05/14/2007	U
2-Hexanone	ND	3.89	ug/kg	05/14/2007	U
4-Chlorotoluene	ND	3.89	ug/kg	05/14/2007	U
4-Isopropyltoluene	ND	3.89	ug/kg	05/14/2007	U
4-Methyl-2-pentanone	ND	3.89	ug/kg	05/14/2007	U
Acetone	ND	19.5	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-4-07/S-2B

NEA ID: AK03798

NEA LRF: 07050069-04

TIME: 14:10

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

TIME: 11:30

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B			A	The second secon	
Benzene	ND	3.89	ug/kg	05/14/2007	U
Bromobenzene	ND	3.89	ug/kg	05/14/2007	U
Bromochloromethane	ND	3.89	ug/kg	05/14/2007	U
Bromodichloromethane	ND	3.89	ug/kg	05/14/2007	U
Bromoform	ND	3.89	ug/kg	05/14/2007	U
Bromomethane	ND	3.89	ug/kg	05/14/2007	U
Carbon Disulfide	ND	3.89	ug/kg	05/14/2007	U
Carbon Tetrachloride	ND	3.89	ug/kg	05/14/2007	U
Chlorobenzene	ND	3.89	ug/kg	05/14/2007	U
Chloroethane	ND	3.89	ug/kg	05/14/2007	U
Chloroform	ND	3.89	ug/kg	05/14/2007	U
Chloromethane	ND	3.89	ug/kg	05/14/2007	U
cis-1,2-Dichloroethene	ND	3.89	ug/kg	05/14/2007	U
cis-1,3-Dichloropropene	ND	3.89	ug/kg	05/14/2007	U
Dibromochloromethane	ND	3.89	ug/kg	05/14/2007	U
Dibromomethane	ND	3.89	ug/kg	05/14/2007	U
Dichlorodifluoromethane	ND	3.89	ug/kg	05/14/2007	U
Ethylbenzene	ND	3.89	ug/kg	05/14/2007	U
Hexachlorobutadiene	ND	3.89	ug/kg	05/14/2007	U
Isopropylbenzene	ND	3.89	ug/kg	05/14/2007	U
m&p-Xylene	ND	3.89	ug/kg	05/14/2007	U
Methyl-tert-butyl-ether (MTBE)	ND	3.89	ug/kg	05/14/2007	U
Methylene Chloride	ND	19.5	ug/kg	05/14/2007	U
n-Butylbenzene	ND	3.89	ug/kg	05/14/2007	U
n-Propylbenzene	ND	3.89	ug/kg	05/14/2007	U
Naphthalene	ND	3.89	ug/kg	05/14/2007	U
o-Xylene	ND	3.89	ug/kg	05/14/2007	U
sec-Butylbenzene	ND	3.89	ug/kg	05/14/2007	U
Styrene	ND	3.89	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

GP-4-07/S-2B

NEA ID: AK03798

NEA LRF: 07050069-04

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

TIME: 14:10

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	DOL	LIMITEC	DATE	FLACC
TARAMETER FERFORMED	RESULIS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	3.89	ug/kg	05/14/2007	U
Tetrachloroethene	ND	3.89	ug/kg	05/14/2007	U
Toluene	ND	3.89	ug/kg	05/14/2007	U
trans-1,2-Dichloroethene	ND	3.89	ug/kg	05/14/2007	U
trans-1,3-Dichloropropene	ND	3.89	ug/kg	05/14/2007	U
Trichloroethene	ND	3.89	ug/kg	05/14/2007	U
Trichlorofluoromethane	ND	3.89	ug/kg	05/14/2007	U
Vinyl Acetate	ND	3.89	ug/kg	05/14/2007	U
Vinyl Chloride	ND	3.89	ug/kg	05/14/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 11:30

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer

Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-5-07/S-5

TIME: 11:30

NEA ID: AK03799

NEA LRF: 07050069-05

TIME: 15:15

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B				A CONTRACTOR OF THE STATE OF TH	
1,1,1,2-Tetrachloroethane	ND	6.02	ug/kg	05/14/2007	U
1,1,1-Trichloroethane	ND	6.02	ug/kg	05/14/2007	Ü
1,1,2,2-Tetrachloroethane	ND	6.02	ug/kg	05/14/2007	Ŭ
1,1,2-Trichloroethane	ND	6.02	ug/kg	05/14/2007	U
1,1-Dichloroethane	ND	6.02	ug/kg	05/14/2007	U
1,1-Dichloroethene	ND	6.02	ug/kg	05/14/2007	U
1,1-Dichloropropene	ND	6.02	ug/kg	05/14/2007	U
1,2,3-Trichlorobenzene	ND	6.02	ug/kg	05/14/2007	U
1,2,3-Trichloropropane	ND	6.02	ug/kg	05/14/2007	U
1,2,4-Trichlorobenzene	ND	6.02	ug/kg	05/14/2007	U
1,2,4-Trimethylbenzene	ND	6.02	ug/kg	05/14/2007	U
1,2-Dibromo-3-chloropropane	ND	6.02	ug/kg	05/14/2007	U
1,2-Dibromoethane	ND	6.02	ug/kg	05/14/2007	U
1,2-Dichlorobenzene	ND	6.02	ug/kg	05/14/2007	U
1,2-Dichloroethane	ND	6.02	ug/kg	05/14/2007	U
1,2-Dichloropropane	ND	6.02	ug/kg	05/14/2007	U
1,3,5-Trimethylbenzene	ND	6.02	ug/kg	05/14/2007	U
1,3-Dichlorobenzene	ND	6.02	ug/kg	05/14/2007	U
1,3-Dichloropropane	ND	6.02	ug/kg	05/14/2007	U
1,4-Dichlorobenzene	ND	6.02	ug/kg	05/14/2007	U
2,2-Dichloropropane	ND	6.02	ug/kg	05/14/2007	U
2-Butanone	ND	6.02	ug/kg	05/14/2007	U
2-Chloroethylvinylether	ND	6.02	ug/kg	05/14/2007	U
2-Chlorotoluene	ND	6.02	ug/kg	05/14/2007	U
2-Hexanone	ND	6.02	ug/kg	05/14/2007	U
4-Chlorotoluene	ND	6.02	ug/kg	05/14/2007	U
4-Isopropyltoluene	ND	6.02	ug/kg	05/14/2007	U
4-Methyl-2-pentanone	ND	6.02	ug/kg	05/14/2007	U
Acetone	ND	30.1	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

GP-5-07/S-5

TIME: 11:30

NEA ID: AK03799

NEA LRF: 07050069-05

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

TIME: 15:15

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	6.02	ug/kg	05/14/2007	U
Bromobenzene	ND	6.02	ug/kg	05/14/2007	U
Bromochloromethane	ND	6.02	ug/kg	05/14/2007	U
Bromodichloromethane	ND	6.02	ug/kg	05/14/2007	U
Bromoform	ND	6.02	ug/kg	05/14/2007	U
Bromomethane	ND	6.02	ug/kg	05/14/2007	U
Carbon Disulfide	ND	6.02	ug/kg	05/14/2007	U
Carbon Tetrachloride	ND	6.02	ug/kg	05/14/2007	U
Chlorobenzene	ND	6.02	ug/kg	05/14/2007	U
Chloroethane	ND	6.02	ug/kg	05/14/2007	U
Chloroform	ND	6.02	ug/kg	05/14/2007	U
Chloromethane	ND	6.02	ug/kg	05/14/2007	U
cis-1,2-Dichloroethene	ND	6.02	ug/kg	05/14/2007	U
cis-1,3-Dichloropropene	ND	6.02	ug/kg	05/14/2007	U
Dibromochloromethane	ND	6.02	ug/kg	05/14/2007	U
Dibromomethane	ND	6.02	ug/kg	05/14/2007	U
Dichlorodifluoromethane	ND	6.02	ug/kg	05/14/2007	U
Ethylbenzene	ND	6.02	ug/kg	05/14/2007	U
Hexachlorobutadiene	ND	6.02	ug/kg	05/14/2007	U
Isopropylbenzene	ND	6.02	ug/kg	05/14/2007	U
m&p-Xylene	ND	6.02	ug/kg	05/14/2007	U
Methyl-tert-butyl-ether (MTBE)	ND	6.02	ug/kg	05/14/2007	U
Methylene Chloride	ND	30.1	ug/kg	05/14/2007	U
n-Butylbenzene	ND	6.02	ug/kg	05/14/2007	U
n-Propylbenzene	ND	6.02	ug/kg	05/14/2007	U
Naphthalene	ND	6.02	ug/kg	05/14/2007	U
o-Xylene	ND	6.02	ug/kg	05/14/2007	U
sec-Butylbenzene	ND	6.02	ug/kg	05/14/2007	U
Styrene	ND	6.02	ug/kg	05/14/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

GP-5-07/S-5

NEA ID: AK03799

NEA LRF: 07050069-05

MATRIX:

SOIL

DATE SAMPLED: 05/09/2007

TIME: 15:15

DATE RECEIVED: 05/14/2007

PROJECT: 02.05244

SAMPLED BY:

T. SCOTT

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	DOI	LIMITE	DATE	FLACE
TARAMETER FERFORMED	KESUL13	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	6.02	ug/kg	05/14/2007	U
Tetrachloroethene	ND	6.02	ug/kg	05/14/2007	U
Toluene	ND	6.02	ug/kg	05/14/2007	U
trans-1,2-Dichloroethene	ND	6.02	ug/kg	05/14/2007	U
trans-1,3-Dichloropropene	ND	6.02	ug/kg	05/14/2007	U
Trichloroethene	ND	6.02	ug/kg	05/14/2007	U
Trichlorofluoromethane	ND	6.02	ug/kg	05/14/2007	U
Vinyl Acetate	ND	6.02	ug/kg	05/14/2007	U
Vinyl Chloride	ND	6.02	ug/kg	05/14/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 11:30

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer Robert E. Wagner Laboratory Director

PRESERVATIVE KEY Additional charges incurred for disposal (if hazardous) or archival. Call for details. 5 - Zn. Acetate 7 - NaHSO4 3 - H2SO4 6 - MeOH O-NONE 2 - HN03 4 - NaOH 1-HCL 8 - Other DISPOSAL REQUIREMENTS: (To be filled in by Client) REMARKS: RECEIVED BY DISPOSAL BY NORTHEAST ANALYTICAL ARCHIVAL BY NORTHEAST ANALYTICAL ENTER ANALYSIS AND METHOD NUMBER REQUESTED RINTED NAME SIGNATURE COMPANY DATE/TIME RETURN TO CLIENT **DTHER NOTES** RELINQUISHED BY PRINTED NAME SIGNATURE DATECTIME OMPANY 100 100 PRESERVATIVE CODE 2011 RECVD WII HOLDING TIMES. BOTTLE TYPE: PROPERLY PRESERVED. BOTTLE SIZE: SIGNATURE

WELL

PRINTED NAME DATE/TIME 5/14/6? P. Charl × × × COMPANY <07050069> NUMBER OF CONTAINERS OF. THEN OF CREENDORY MY ☐ Certificates Only (NEA USE ONLY) 11/2/11/2011 507) SAMPLE ID A 1603799 AKUSTAC A160 3798 A KG3797 AKU3 796 RELINQUISHED BY FLENCES PLALA PAGE LRF# DATE/TIME 5/14/67 LOCATION (CITY/STATE) ADDRESS: PROJECT NAME: REQUIRED TURN AROUND TIME: NOIZINAL OF COURIER (IF USED): Data Package: | Full COMP CRAND GRAB/ information @nealab.com Fax (518) 381-6055 2190 Technology Drive, Schenectady, NY 12308 COC DISCREPANCIES: NORTHEAST ANALYTICAL, INC. THY **CHAIN OF CUSTODY RECORD** 30 MATRIX N BU COC TAPE: collen 14/4/11/11 13.00 P 11.156 3170 12:36pm TIME E-MAIL ADDRESS: j Telephone (518) 346-4592 5/9/07 DATE FAX #: TEMP: 994-9545 CLIENT (REPORTS TO BE SENT TO): RECEIVED BROKEN OR LEAKING. /୍ଟ-ଅନ୍ 5-39 www.nealab.com RESULTS TO BE E-MAILED (g - 5) (ල-හි RESULTS TO BE FAXED 3-5/CO 3-0 RELINQUISHED BY SAMPLE ID AMPLED BY: (Please Print PROJECT MANAGER: MBIENT OR CHILLED: C TI C (CO-4-05) SP-3-07/ CP-8-05 50-1-07 AMPLING FIRM

MUMITACOCTOPIC XLG TONING USE 1.201

ATTACHMENT G

GROUNDWATER QUALITY REPORT

GROUNDWATER QUALITY SUMMARY (EPA METHOD 8260) FAIRVIEW PLAZA 190 Fairkew Avenac Husson, New York September 20, 2004 - May 17, 2007

													17. 200												
PARAMETER			T. W. W. W.		T T	i. I		9		- [- [WATER S.		CRIPTION	Γ	1	1 1								1000000
A STATE OF THE STA	09/20/2004	01/07/2005		05/24/2006	505/17/2007	09/20/2004	0420202004 01/07/2005	05/20/2005	G574/2008	05/17/2007	09/20/2004	MW-20 09/20/2004 01/07/2005 06/20/2005	08/20/2005	06/24/2006	06/17/2007	09/20/2004	010272008	MW-1-04 05/20/2005	05/24/2008 06	06/17/2007	08/20/2004	X	from	` وا ا	
Acetone	g	9	Q.	₽	Q	Q	Ð	Q	10.9	Q	Q	QN.	9	QV	QN	Q	9	g	4.68	-	77	18.0	-		1
Benzene	Q.	Ð	QV	S.	QN	Š	Q	Ð	Q	Q.	Q	QN	Q	Q	Q	Q	9	9	9	9	9		2 9	2 9	2 9
cls-1,2-Dichloroethene	5	434.0	1400.0	76.8	2	Q	Ð	Ð	Q	ON	Q	Q	9	QN	Q	4.13	1.16	2.36	9	3.42	112.0		+-		1
MTBE	Q.	9	9	£	QN	Q	Q	Q	Q	QN	Q	Q	Q	S	Q	QV	QV QV	Q	ĝ	9	£	<u> </u>	\vdash		<u> </u>
Tetrachloroethene (PERC)	245.0	2,100	14,400	8	2.5	Q	ð	Q	Q	Q.	Š	Q	Q	Ð	Ş	Ñ	g	195	S	S	ä	-		-	+-
trans-1_2-Dichloroethene	Š	6	ğ	g	QV	9	Q	QV	QN	QN	₽	QN	Q	QV	Q	2	9	Ç	9	2	9	-	97		_
Trichloraethene (TCE)	24.0	281.0	1350,0	8	19.6	Q	S	Q.	Ş	Q	9	Ð	Ą	Q	9	Q.	9	65.7	Q.	9	1	-		+	i
Vinyl Chloride	5	200	399.0	13.8	975	ç	Q	Q	ð	Q.	QV	Ð	QN	Q.	ð	QN	ě	- 2	Q	9	-	<u> </u>	-	CN CN	
Non-Target Peaks	Negalive	Negative	Negative	NA	NA	Negative	Negative	Negative	V.	¥	Negative	Negative	Negative	Ą	Ą	Negative	Negative	Negative	NA	AN A	Negative	á	2		1
Total VOCs	328.4	2,908.7	17,549.0	17.78	114.0	00	0.0	0.0	109	0.0	0.0	0.0	0.0	0.0	00	4.13	1.16	5.72	897		H	-	-		1

										FI	STATE OF THE PARTY OF					700 Com 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Company of the Company		100 m www.n						
												WATER S	AMPLE DE	WATER SAMPLE DESCRIPTION												
PARAMETER		b	MW-1-06	MW-1-06]] -	1	900,000	1	i I	I L	i I	1	1	J	1	1	.]	1							
	09/20/2004		SOCOCOC	OSCIACIONE	OKUNDO DEDADOR	1	The second second			1	i I	1 1	MW-3-08	1				-					MW-1-07		r Pis	DEC
The second secon				200	TO THE PERSON	1007m7150	O NOW COME	CONTACTO	03/24/2006	05/17/2007	09/20/2004	01/07/2005	05/20/2005	05/24/2006	05/17/2007	09/20/2004	200	05/20/2005	05/24/2006	06/17/2607	09/20/2004	01/07/2006	05/20/2005	05/24/2005 05	06/17/2007	
Acetone	SZ	SN	SN	9	ð	SN	SN	SN	Q	ND	sv	NS	SN	9	g	S.	u z	97	9					1		-
Вепzеле	SS	SZ	S	Ð	9	Š	SN	SN	Ð	QV	ş	SN	y.	9	9	9		2 :	2	2	2	S	SN	S	Q.	8
cis-1,2-Dichloroethene	NS	NS	SN	Q	QV.	SK	SX	SA	2	140	2	2	9	9		2	ę	2	2	Q.	S	SN.	SN	NS	Q	2.0
MTBE	×	SN	ğ	ar 4	ş	-						2	2	9	Q.	S	SN	SE	0.689	4,120.0	SN	NS	SN	S.	Q	\$
			!		Re i	2	2	2	2	Đ.	SS	SN	SN	QV	9	SS	SK	SS	9	2	s	SN	SN	SN.	Q	=
en activationer le l'ERC)	NS	SE.	NS	S	Q	SN	SN	SN	47.9	5,65	SN	SN	SN	Ð	QN	SN	SK	NS	1,030.6	2.200.0	S.	SIN	ų į	9	-	
trans-1, 2-Dichloroethene	SN	SN	SN	Ð	Q.	SN	NS	SN	Q	Ð	SN	SN	SN	Ş	ş	SZ	S	SX		1	1			9	2	
Trichloroethene (TCE)	SS	NS	S.	Q.	Q	NS	SN	SZ	13.1	3.6	ş	S	82	5	Ş	9	1			2	2	2	SS	SN	g	40
Vinyl Chloride	SS	NS	SN	Q	QN	SN	SS	SN	9	Q	SS	SZ	S	91	9	2 4	2 1	2 !	266.0	2,130.0	SN	SN	S.	SN	Q	**
Non-Target Peaks	NS	NS	SN	Ν	3	SZ	SN	NS	¥N	ž	52	Z.	2	9	9	2	2	ĝ	0.822	745.0	SI	SS	SZ.	SN	Ð	2
Total VOCs	SN	SN	NS	5.28	5.39	SN	SN	ž	75.2	233	2	ğ	2 9	:	€ 3	2	S.	Z.	ON.	A.	NS NS	SN	SN	SN.	Q.	

									WA:	WATER SAMPLE DESCRIPTION	E DESCRIP	NOIL									
PARAMETER		/	MW-2-07		1			WW.3-07	1		Ш	1	MW 4.07	L		i.	i I	MWS.07	i i		DFG.
COLUMN TO SERVICE STATE OF THE SERVICE STATE STATE OF THE SERVICE STATE	09/20/2004	01/07/2006	05/20/2005	5/24/200	06/17/2007	09/20/2004	01/07/2005	05/20/2005	05/24/2006	7005771200	000702000	81/07/2005 05/20/2005	05/20/2005	G5/24/2008	2502772027	DSPORTOR	DISIDAGOS		1000		
Acetone	S	2	SN	88	Q.	SN	Ş	SN	SX	QN	Sk	SS	SN	Š	Q.			1	2	1007/1100	
Benzene	SN	SS	Š	SN	Q	SS	SN	SN	SN	Q	SS	SN SN	S	S	S	2	1	2 9	Ç.	2	8
cis-1,2-Dichloroethene	SN	SN	S	SN	QN.	SN	S	S	SN	Q	SZ	S	SZ	¥	9	2 9	2 4	2	ž.	Ş	6
MTBE	SZ	Š	SN	NS	Ŋ.	SN	Š	SN	SK	Q	SZ	SS	SZ	2	Ş	2 2	2 9	ž į	2	2	••
Tetrachioroethene (PERC)	SN	SN	SN	Š	Q	SN	SN	SN	SN	ð	ş	ş	2	2	9	1	2 1	2	2	2	2
trans-1,2-Dichloroethene	SN	SN	SN	NS	QN	SX	SN	ş	S	S	ď.	ğ	2 9	2	2	2	2	ω Z	SS	Q	10
Trichloroethene (TCE)	SN	SN	NS	SN	QN	SN	SN	SN	SS	Q	S	S S	2 9	2 2	⊋ 9	2 9	S :	SI	SN	Q	-
Vinyl Chloride	SN	SZ	S.	NS	õ	SN	SN	Ş	ş	9	SN	S	g g	2 2	ş	SE 5	2 1	2 5	o z	Q	20
Non-Target Peaks	SN	SN	SN	SN	NA	NS	SN	NS	SN	ş	g	SS	ž	22	€ ≨	2 2	2 2	2 9	SN 9	2 :	~
Total VOCs	SN	S	SS	S	00	Š	u Z	9	:										2	ž	à

Note: All concentratines are in upf or path genera billion)

DRC 5 renderaderare quality mendedus 4 adulations (NATCOR Per 1703)

* Principal argunic companies abroaded for groundwater is 3 path
NA= NOT ANALYZEO. NO = NOT DETECTEO NS = NOT SANPLED
GP-1-05 & GP-2-05 Samples obtained on March 72, 2006

GROUNDWATER ANALYTICAL DATA (EPA Method 8260) Page 1 of 2

WASH RITE LAUNDRY - FAIRVIEW PLAZA Fairview Avenue Town of Greenport, New York Sampled on May 17, 2007

PARAMETER						GROUNDV	VATER SAI	GROUNDWATER SAMPLE DESCRIPTION	RIPTION						
	MW-18	MW-19	MW-20	MW-1-04	MW-2-04	MW-1-06	MW-2-06	MW-3-06	MW-4-06	MW-1-07	MW-1-07 MW-2-07	MW-3-07	MM4-07	MM/5.07	DEC
1,1,1,2-Tetrachloroethane	QN	Q.	QN	Q	S	QV	2	QN	CN	S	Ç	C Z	2		
1,1,1-Trichloroethane	Q	Q.	Q	Q	2	2	2	2 2	2 5	2 2	2 2	2 4	2 :	2	10
1,1,2,2-Tetrachloroethane	2	Q	Q	Q	Q	2	Q	2	2	2 2	2 2	2 2	2 5	2 5	40
1,1,2-Trichloroethane	2	Q	Q	2	Q	Q	2	2	2	2 2	2 2	2 9	2 5	2	150
1,1-Dichloroethane	Q	QN	2	QN	2	2	2	9	2	2 2	2 2	2 2	2 9	2	-
1,1-Dichloroethene	2	Q	Q	Q	2	2	2	2	S	2 2	2 5	2 4	2 9	2 !	20
1,1-Dichloropropene	2	Q	Q	Ð	2	9	9	9	2 5	2 2	2 2	2 2	2 !	2	2
1,2,3-Trichlorobenzene	2	Q	Ð	Q	2	9	2	2	2 2	2 2	2 2	2 2	2 9	2 !	å
1,2,3-Trichloropropane	2	Q	9	Ð	Q	Q	Ð	Q	2	2	2 2	2 2	2 2		1 6
1,2,4-Trichlorobenzene	2	2	Q	Q	9	Q	Q	Q	Ð	2	Q	2	2 2	2 5	\$0.0 1
1,2,4-Trimethylbenzene	2	Q	2	Q	9	QN	QN	QN	Q	9	Q	2	9	2 2	0 4
1, Z-Uibromo-3-Chloropropane	9	2	Q	Q	9	QN	Q	Q	2	Ð	9	2	2	E	300
1,z-Dibromoethane	2	2	Q	2	9	Q	2	Q	Q	Q	2	2	9	2 2	t t
1,2-Dichlorobenzene	2	2	Q	2	Q	2	Ð	Q	QN	Q	Đ.	2	2	2 2	9 6
1, z-Dichloroethane	2	2	2	QV	Q	Q	Q	8	Q	2	S	2	2	S	, ,
1,2-Uichioropropane	2	2	2	Q	2	9	2	Q	QN	S	Q	9	£	2 5	
1,3,5-I rimethylbenzene	2	2	2	S	2	Q	Q	Q	Q	Q	S	2	2 2	2 5	- 4
1,3-Dichlorogram	2 !	2	2	S	2	9	Q	2	Q	QN	2	S	2	2) «
1.3-Dichlosoporare	2 !	Q !	2	2	2	2	Q	Q	9	Q	2	Ð	2	2	
2 2-Dichloropopage	2 9	2	2	2	Q	9	Q	Q	Q	Q	N O	Q	Q	2	, m
2 Bitonono	2 :	2	9	2	2	2	Q	Q	Q	9	Q	9	2	S	·
2-Chlomathykinylathar	2 9	2 !	2	2	9	Q	Q	Q	ON.	9	Q	2	2	2	9
2-Chlorotoluana	2 2	2 2	2 :	2	2	Q	2	8	Q	Ð	Q	Ð	9	9	in
2-Hexanone	2 2	2 9	₽ !	2	Q	2	2	Q	2	Q	Q	S	S	Q	10
4-Chlorofoli iono	2 2	2 :	2	2	2	9	Q	Q.	Q	Q	QN	Q	Q	9	to
4-Isonrow/tolinene	3 5	2 9	2 !	2	2	Q	Q	Q	S	9	Q.	Q	S	Q	10
4-Methyl 2 postages		2 :	2	Q	2	2	9	9	9	Q	Q	2	Q	2	LG
Acatone	2 5	2 !	2	9	2	Q	2	Q	Q	Q.	Q	S	Q	Ð	05
Beston	2 5	⊋ !	2	S	2	2	2	9	Q	QN	Ð	Q	2	2	020
Bromohome	2 !	2	2	2	2	Q	9	₽	9	Q	Q	Ð	2	2	0.7
Bromochloromethene	2 2	2 9	2	2	ON I	Q	2	Q	Q	ON.	Q	Q	2	S	io
Bromodichloromothoso	2 9	₹ !	⊋	2	2	2	Q	Q	Q	2	Q	Q	Q	Q	LO.
	2	2	2	2	2	Q.	Q	N	Q	ON	9	2	2	5	ű

Notes: All concentrations are in ug/kg or ppb (parts per billion)
DEC = Groundwater quality standards & guidelines (6NVCRR Part 703) and NVSDEC - TAGM - Determination
of Soil Cleanup Objectives and Cleanup Levels, 1994.
* Principal organic compound standard for groundwater is 5 ppb
(B)= Compound Found in Blank

GROUNDWATER ANALYTICAL DATA (EPA Method 8260) Page 2 of 2 WASH RITE LAUNDRY - FAIRVIEW PLAZA Fairview Avenue Town of Greenport, New York Sampled on May 17, 2007

PARAMETER				1. 1.16		GROUND	GROUNDWATER SAMPLE DESCRIPTION	APLE DESC	RIPTION						DEC
	MW-18	MW-19	MW-20	MW-1-04	MW-2-04	MW-1-06	MW-2-06	MW-3-06	MW-4-06	MW-1-07	MW-2-07	MW-3-07	MW-4-07	MW-5-07	1
Bromoform	9	QN	Q	Q	Q	QV	QN	2	Q	9	S	S	CN	Ç	t
Bromomethane	Q	QN	Q	Q	Ð	Q	S	2	Ð	2	E	2	2 2	2 9	0 4
Carbon Disulfide	Q	S	Q	QN	S	Q	QN	9	2	Q	QN	2	2 2	2 2	o 5
Carbon Tetrachloride	Q	Q	Ð	Q	QN	Q	QN	9	2	Q.	Q	2	2	2 2	8 4
Chlorobenzene	S	2	Q	Q	QN	ON	ON	QN	Q	2	S	S	2	9	
Chloroethane	Q	9	Q	Q	Q	S	Q	QN	Q	Q	2	2	S	2	o
Chloroform	S	Q	S	2	Ð	Q	Q	2	9	S	2	Q	2	2	
Chloromethane	Q	9	Q	Ð	QN	QN	Ð	Q	Q	Q.	9	2	2	Ę	- t
cis-1,2-Dichloroethene	14.1	Q	Q	3.42	9.66	Ð	14.0	S	4120.0	Ð	2	S	Ę	S	
cis-1,3-Dichloropropene	2	Q	Q	Ð	Q	Q	Q	Ð	Ð	Q	2	2	2	2 2	0.4**
Dibromochloromethane	Q	2	Q	Ð	Ð	Q	Q	Ð	Q	2	9	S	5	2	
Dibromomethane	2	2	Q	9	Q	Ð	9	2	2	2	2	9	2 5	2 2	0 1
Dichlorodifluoromethane	9	Q	Q	Q	Ð	2	Q	2	S	9	9	2	2 2	2 2	o 2
Ethylbenzene	2	QN	9	9	Q	Q	Q	2	2	S	2	2 5	2 2	2 9	n 1
Hexachlorobutadiene	2	9	2	9	Q	Ð	9	2	S	2	2	2	2 2	2 5	0
Isopropylbenzene	9	9	₽	Q	Q	Q	Q	9	2	9	Q	9	2 2	2 5	P. L
m&p-Xylene	2	Q	Q	S	Q	QN	Q	2	Ð	2	S	2	2 5	2 5	
Methylene Chloride	9	QN	9	Q	Q	Ð	Q	9	9	2	2	2	2 5	2 2	0 4
MTBE	2	Q	Q	Q	2	5.39	Q	9	Ð	S	2	2	2 5	2 5	P 5
n-Butylbenzene	g	2	Q	Q	Q	QN	Q	Q	Q	9	S	2	2	2 9	2 4
n-Propylbenzene	9	Q	9	Q	S	Q	S	QN	2	S	Q.	9	2	2 2) u
Napthalene	2	9	S	9	Q	Q	Q	2	Q	2	2	S	2	2	2
o-Xylene	Q	2	g	Q	Q	Q	S	QN	2	Q	QN	2	2	2	2 6
sec-butylbenzene	2	2	2	2	9	Q	9	S	Ð	Q	QN	S	2	2	10
otyrene	Q :	9	2	2	Q	<u>N</u>	Q	Q	9	QN	2	QN	9	Ð	å
Totroohloogika (70.00)		2	S	2	Q.	Q	S	QN	Q	Ð	Q	QN	Q	g	20
Tetracilloremene (Perc)	8.8	2	2	Si	105.0	2	5.65	2	2,200.0	Q	2	QN	QV	QN	ю
loughte	2 5	2	2	2	2	2	2	Q	Q	Q	2	QN	QV	S	6
trans-1,z-Dichloroethene	2	9	2	2	2	2	2	Q	æ	Q	9	QN	S	Ð	S
Itans-1, 3-Dichloropropene	2	2	2	2	2	2	9	9	S	Q	2	2	S	Q	0.4
Trichloroethene (TCE)	19.6	2	2	9	9.98	2	3.6	9	2130.0	Q	Q	2	Ð	Ð	ıc.
Inchlorofluoromethane	2	2	2	Q	Q	S	9	Q	Q	9	Q	£	2	Q	
Vinyl Chloride	3.46	2	Q	Q	1.17	Q	Q	2	715.0	Q	Q	Q	Q	QN	7
Total VOCs	113.96	0.00	0.00	3.42	292.37	5.39	23.25	0.00	9,165.00	0.00	00.0	000	9		
		!						1		3	20.50	J.V.	U.U	0.00	

Notes: All concentrations are in ug/kg or ppb (parts per billion)

DEC = Groundwater quality standards & guidelines (6NVCRR Part 703) and NVSDEC - TAGM - Determination of Soil Cleanup Objectives and Cleanup Levels, 1994.

* Principal organic compound standard for groundwater is 5 ppb
(B)= Compound Found in Blank

DATE RECEIVED: 05/18/2007

CERTIFICATE OF ANALYSIS 05/21/2007

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-18

TIME: 09:25

NEA ID: AK03919

NEA LRF: 07050093-12

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

PROJECT: 02.05244

TIME: 12:50

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	RESCEIS	TQL	UNITS	ANALIZED	FLAGS
1,1,1,2-Tetrachloroethane	ND	1.00	.~		
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L ug/L	05/18/2007	
4-Chlorotoluene	ND	1.00	_	05/18/2007	U
4-Isopropyltoluene	ND ND	1.00	ug/L		U
4-Methyl-2-pentanone	ND ND		ug/L	05/18/2007	U
Acetone	ND ND	1.00	ug/L	05/18/2007	U
	מא	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-18

NEA ID: AK03919

NEA LRF: 07050093-12

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 12:50

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

-				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ü
Bromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromoform	ND	1.00	ug/L	05/18/2007	Ü
Bromomethane	ND	1.00	ug/L	05/18/2007	Ü
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	Ü
Chlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
Chloroethane	ND	1.00	ug/L	05/18/2007	Ü
Chloroform	ND	1.00	ug/L	05/18/2007	Ü
Chloromethane	ND	1.00	ug/L	05/18/2007	Ü
cis-1,2-Dichloroethene	14.1	1.00	ug/L	05/18/2007	-
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	Ü
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	Ü
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	Ū
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ū
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	Ü
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Styrene	ND	1.00	ug/L	05/18/2007	U
			·· Ø —		-

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-18

NEA ID: AK03919

NEA LRF: 07050093-12

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 12:50

DATE RECEIVED: 05/18/2007 TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	76.8	10.0	ug/L	05/18/2007	
Toluene	ND	1.00	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Trichloroethene	19.6	1.00	ug/L	05/18/2007	
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	U
Vinyl Chloride	3.46	1.00	ug/L	05/18/2007	

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL, PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-19

NEA ID: AK03920

NEA LRF: 07050093-13

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:35

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

TIME: 09:25

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

DADALKEED WEEK				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-19

NEA ID: AK03920

NEA LRF: 07050093-13

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:35

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

TIME:09:25 R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ü
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromoform	ND	1.00	ug/L	05/18/2007	Ü
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	Ü
Chloromethane	ND	1.00	ug/L	05/18/2007	Ü
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Dibromomethane	ND	1.00	ug/L	05/18/2007	Ü
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	Ü
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	Ü
m&p-Xylene	ND	1.00	ug/L	05/18/2007	Ü
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	U
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	U
			J		-

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-19

NEA ID: AK03920

NEA LRF: 07050093-13

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:35

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Trichloroethene	ND	1.00	ug/L	05/18/2007	U
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ū

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-20

NEA ID: AK03921

NEA LRF: 07050093-14

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:30

MATKIA.

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	1.44				121102
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	Ū
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ū
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ŭ
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
2-Butanone	ND	1.00	ug/L	05/18/2007	Ü
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	Ü
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ü
2-Hexanone	ND	1.00	ug/L	05/18/2007	Ü
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ü
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	Ü
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	Ü
Acetone	ND	5.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-20

NEA ID: AK03921

NEA LRF: 07050093-14

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:30

DATE RECEIVED: 05/18/2007

05/18/2007 **TIME:** 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	DECLU TO	201		DATE	
	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					· · · · · · · · · · · · · · · · · · ·
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	U
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L	05/18/2007	Ü
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	Ū
Chlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
Chloroethane	ND	1.00	ug/L	05/18/2007	Ū
Chloroform	ND	1.00	ug/L	05/18/2007	Ū
Chloromethane	ND	1.00	ug/L	05/18/2007	Ū
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	Ū
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	Ü
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	Ü
m&p-Xylene	ND	1.00	ug/L	05/18/2007	Ü
Methylene Chloride	ND	1.00	ug/L	05/18/2007	Ü
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ū
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	U
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-20

NEA ID: AK03921

NEA LRF: 07050093-14

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:30

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	U
Toluene	ND	1.00	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Trichloroethene	ND	1.00	ug/L	05/18/2007	U
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	U
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-04

NEA ID: AK03908

NEA LRF: 07050093-01

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:42

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

				DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B				· · · · · · · · · · · · · · · · · · ·	
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-04

NEA ID: AK03908

NEA LRF: 07050093-01

MATRIX:

WATER

TIME: 09:25

DATE SAMPLED: 05/17/2007

TIME: 13:42

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

DATE PARAMETER PERFORMED RESULTS **PQL** UNITS **ANALYZED FLAGS** EPA Method 8260B Benzene ND 1.00 ug/L U 05/18/2007 Bromobenzene ND 1.00 ug/L 05/18/2007 U Bromochloromethane ND 1.00 ug/L 05/18/2007 U Bromodichloromethane ND 1.00 ug/L 05/18/2007 U Bromoform ND 1.00 ug/L 05/18/2007 U Bromomethane ND 1.00 ug/L 05/18/2007 U Carbon Disulfide ND 1.00 ug/L 05/18/2007 U Carbon Tetrachloride ND 1.00 ug/L 05/18/2007 U Chlorobenzene ND 1.00 ug/L 05/18/2007 U Chloroethane ND 1.00 ug/L 05/18/2007 U Chloroform ND 1.00 ug/L 05/18/2007 U Chloromethane ND 1.00 ug/L 05/18/2007 U cis-1,2-Dichloroethene 3.42 1.00 ug/L 05/18/2007 cis-1,3-Dichloropropene ND 1.00 ug/L U 05/18/2007 Dibromochloromethane ND 1.00 ug/L 05/18/2007 Ū Dibromomethane ND 05/18/2007 1.00 ug/L U Dichlorodifluoromethane ND 1.00 ug/L 05/18/2007 U Ethylbenzene ND 1.00 ug/L 05/18/2007 U Hexachlorobutadiene ND 1.00 ug/L U 05/18/2007 Isopropylbenzene ND 1.00 ug/L 05/18/2007 U m&p-Xylene ND 1.00 ug/L 05/18/2007 U Methylene Chloride ND 1.00 ug/L 05/18/2007 U **MTBE** ND 1.00 ug/L 05/18/2007 U n-Butylbenzene ND 1.00 05/18/2007 ug/L U n-Propylbenzene ND 1.00 ug/L 05/18/2007 U Naphthalene ND 1.00 ug/L Ū 05/18/2007 o-Xvlene ND 1.00 ug/L 05/18/2007 U sec-Butylbenzene ND 1.00 ug/L 05/18/2007 U Styrene ND 1.00 U ug/L 05/18/2007

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-04

NEA ID: AK03908

NEA LRF: 07050093-01

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:42

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ū
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	ND	1.00	ug/L	05/18/2007	U
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

William A. Kotas Quality Assurance Officer Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID: MW-2-04

NEA ID: AK03909 **NEA LRF:** 07050093-02

MATRIX: WATER

DATE SAMPLED: 05/17/2007 **TIME:** 13:00

DATE RECEIVED: 05/18/2007 **TIME:** 09:25

PROJECT: 02.05244

SAMPLED BY: R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

DADAMETER PERCONATR	D			DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-04

NEA ID: AK03909

NEA LRF: 07050093-02

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:00

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ŭ
Bromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	Ŭ
Bromoform	ND	1.00	ug/L	05/18/2007	Ü
Bromomethane	ND	1.00	ug/L	05/18/2007	Ü
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	Ü
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	Ü
Chlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
Chloroethane	ND	1.00	ug/L	05/18/2007	Ü
Chloroform	ND	1.00	ug/L	05/18/2007	Ü
Chloromethane	ND	1.00	ug/L	05/18/2007	Ü
cis-1,2-Dichloroethene	99.6	1.00	ug/L	05/18/2007	· ·
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	Ū
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	Ü
m&p-Xylene	ND	1.00	ug/L	05/18/2007	Ü
Methylene Chloride	ND	1.00	ug/L	05/18/2007	Ü
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ŭ
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	Ü
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Styrene	ND	1.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-04

NEA ID: AK03909

NEA LRF: 07050093-02

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:00

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B			-		. 2.10
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	105	5.00	ug/L	05/18/2007	O
Toluene	ND	1.00	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	86.6	1.00	ug/L	05/18/2007	-
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	1.17	1.00	ug/L	05/18/2007	_

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

Robert E. Wagner Laboratory Director

This report may not be reproduced except in full, without the written approval of Northeast Analytical, Inc.

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-06

NEA ID: AK03910

NEA LRF: 07050093-03

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:28

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

TIME: 09:25

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	RESOLIS	1 QL	ONTIS	ANALIZED	FLAGS
1,1,1,2-Tetrachloroethane	ND	1.00	110/J	05/18/2007	U
1,1,1-Trichloroethane	ND ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L		
1,1,2-Trichloroethane	ND ND		ug/L	05/18/2007	U
1,1-Dichloroethane	ND ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene		1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	Ü
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ü
2-Hexanone	ND	1.00	ug/L	05/18/2007	Ü
4-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L ug/L	05/18/2007	Ū
Acetone	ND	5.00	ug/L ug/L	05/18/2007	U
			-		

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-06

NEA ID: AK03910

NEA LRF: 07050093-03

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:28

DATE RECEIVED: 05/18/2007 **SAMPLED BY:**

CUSTOMER PO:

R. GRAY

N/A

LOCATION: HUDSON, NY

PROJECT: 02.05244

TIME: 09:25

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ü
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND	1.00	ug/L	05/18/2007	Ū
Chloroform	ND	1.00	ug/L	05/18/2007	U
Chloromethane	ND	1.00	ug/L	05/18/2007	Ü
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	5.39	1.00	ug/L	05/18/2007	
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	U
Naphthalene	ND	1.00	ug/L	05/18/2007	U
o-Xylene	ND	1.00	ug/L	05/18/2007	Ü
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ū
Styrene	ND	1.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-06

NEA ID: AK03910

NEA LRF: 07050093-03

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:28

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Trichloroethene	ND	1.00	ug/L	05/18/2007	Ū
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ū
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ü

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-06

NEA ID: AK03911

NEA LRF: 07050093-04

MATRIX: WATER

DATE SAMPLED: 05/17/2007

TIME: 13:03

DATE RECEIVED: 05/18/2007

05/18/2007 TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

DADAMETER REDEORMER	Prom mo	~~~		DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	Ū
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ū
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	Ü
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ü
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-06

TIME: 09:25

NEA ID: AK03911

NEA LRF: 07050093-04

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:03

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	113.0215	TQL	CINTS	ANALIZED	FLAGS
Benzene	ND	1.00	ug/L	05/18/2007	T T
Bromobenzene	ND	1.00	ug/L ug/L	05/18/2007	U
Bromochloromethane	ND	1.00	ug/L ug/L	05/18/2007	U U
Bromodichloromethane	ND	1.00	ug/L ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L ug/L	05/18/2007	
Carbon Disulfide	ND	1.00	ug/L ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	-		U
Chlorobenzene	ND ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND ND	1.00	ug/L	05/18/2007	U
Chloroform	ND ND		ug/L	05/18/2007	U
Chloromethane	ND ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	14.0	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	• •
Dibromochloromethane	ND ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND ND	1.00	ug/L	05/18/2007	U
Ethylbenzene		1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	U
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	U
Naphthalene	ND	1.00	ug/L	05/18/2007	U
o-Xylene	ND	1.00	ug/L	05/18/2007	U
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-06

NEA ID: AK03911

NEA LRF: 07050093-04

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:03

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	5.65	1.00	ug/L	05/18/2007	O
Toluene	ND	1.00	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	3.60	1.00	ug/L	05/18/2007	C
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	U
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ü

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

CERTIFICATE OF ANALYSIS

05/21/2007

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-3-06

WATER

NEA ID: AK03912

NEA LRF: 07050093-05

MATRIX: WATE

DATE SAMPLED: 05/17/2007

TIME: 13:10

DATE RECEIVED: 05/18/2007

05/18/2007 **TIME:** 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

DADAMENT NEDECTA		DATE						
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS			
EPA Method 8260B								
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U			
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü			
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	Ü			
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü			
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	Ü			
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U			
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U			
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U			
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U			
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U			
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ü			
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	Ū			
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ū			
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ū			
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U			
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U			
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U			
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U			
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U			
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U			
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U			
2-Butanone	ND	1.00	ug/L	05/18/2007	U			
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U			
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U			
2-Hexanone	ND	1.00	ug/L	05/18/2007	U			
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U			
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	U			
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	U			
Acetone	ND	5.00	ug/L	05/18/2007	Ü			
			-					

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-3-06

NEA ID: AK03912

NEA LRF: 07050093-05

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:10

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

TIME:09:25 R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	11320213	1,45	ONTS	ANALIZED	FLAGS
Benzene	ND	1.00	ug/L	05/18/2007	ĬΤ
Bromobenzene	ND	1.00	ug/L ug/L	05/18/2007	U U
Bromochloromethane	ND	1.00	ug/L ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L ug/L		
Bromoform	ND	1.00	ug/L ug/L	05/18/2007 05/18/2007	U
Bromomethane	ND	1.00	ug/L ug/L		U
Carbon Disulfide	ND	1.00	_	05/18/2007	U
Carbon Tetrachloride	ND ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND ND		ug/L	05/18/2007	U
Chloroethane	ND ND	1.00	ug/L	05/18/2007	U
Chloroform		1.00	ug/L	05/18/2007	U
Chloromethane	ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
	ND	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	U
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	U
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	Ü
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID: MW-3-06 **NEA ID:** AK03912 NEA LRF: 07050093-05 **MATRIX:** WATER **DATE SAMPLED:** 05/17/2007 **TIME: 13:10**

DATE RECEIVED: 05/18/2007 **TIME:** 09:25 **PROJECT:** 02.05244

SAMPLED BY: R. GRAY LOCATION: HUDSON, NY

CUSTOMER PO: N/A LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	ND	1.00	ug/L	05/18/2007	U
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ü

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50 BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID: MW-4-06

NEA ID: AK03913 **NEA LRF:** 07050093-06

MATRIX: WATER

DATE SAMPLED: 05/17/2007 **TIME:** 13:17

DATE RECEIVED: 05/18/2007 **TIME:** 09:25

PROJECT: 02.05244

SAMPLED BY: R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B		1 42	OMIS	ANALIZED	FLAGS
1,1,1,2-Tetrachloroethane	ND	20.0	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	20.0	ug/L ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	20.0	ug/L ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	20.0	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	20.0	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	20.0	ug/L ug/L	05/18/2007	U
1,1-Dichloropropene	ND	20.0	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	20.0	ug/L ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	20.0	ug/L ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	20.0	ug/L ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	20.0	ug/L ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	20.0	ug/L ug/L	05/18/2007	U
1,2-Dibromoethane	ND	20.0	ug/L ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	20.0	ug/L ug/L	05/18/2007	U
1,2-Dichloroethane	ND	20.0	ug/L ug/L	05/18/2007	U
1,2-Dichloropropane	ND	20.0	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	20.0	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	20.0	ug/L ug/L	05/18/2007	U
1,3-Dichloropropane	ND	20.0	ug/L ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	20.0	ug/L ug/L	05/18/2007	U
2,2-Dichloropropane	ND	20.0	ug/L	05/18/2007	U
2-Butanone	ND	20.0	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	20.0	ug/L ug/L	05/18/2007	U
2-Chlorotoluene	ND	20.0	ug/L ug/L	05/18/2007	U
2-Hexanone	ND	20.0	ug/L ug/L	05/18/2007	U
4-Chlorotoluene	ND	20.0	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND ND	20.0	ug/L ug/L	05/18/2007	U U
4-Methyl-2-pentanone	ND	20.0	_	05/18/2007	
Acetone	ND	100	ug/L ug/L	05/18/2007	U U
	. 1.0	100	ug/L	03/10/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-4-06

NEA ID: AK03913

NEA LRF: 07050093-06

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:17

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	20.0	ug/L	05/18/2007	U
Bromobenzene	ND	20.0	ug/L	05/18/2007	U
Bromochloromethane	ND	20.0	ug/L	05/18/2007	Ü
Bromodichloromethane	ND	20.0	ug/L	05/18/2007	Ü
Bromoform	ND	20.0	ug/L	05/18/2007	U
Bromomethane	ND	20.0	ug/L	05/18/2007	Ŭ
Carbon Disulfide	ND	20.0	ug/L	05/18/2007	Ü
Carbon Tetrachloride	ND	20.0	ug/L	05/18/2007	Ü
Chlorobenzene	ND	20.0	ug/L	05/18/2007	Ü
Chloroethane	ND	20.0	ug/L	05/18/2007	Ü
Chloroform	ND	20.0	ug/L	05/18/2007	Ü
Chloromethane	ND	20.0	ug/L	05/18/2007	Ü
cis-1,2-Dichloroethene	4120	100	ug/L	05/18/2007	•
cis-1,3-Dichloropropene	ND	20.0	ug/L	05/18/2007	U
Dibromochloromethane	ND	20.0	ug/L	05/18/2007	Ü
Dibromomethane	ND	20.0	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	20.0	ug/L	05/18/2007	Ŭ
Ethylbenzene	ND	20.0	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	20.0	ug/L	05/18/2007	Ü
Isopropylbenzene	ND	20.0	ug/L	05/18/2007	U
m&p-Xylene	ND	20.0	ug/L	05/18/2007	U
Methylene Chloride	ND	20.0	ug/L	05/18/2007	U
MTBE	ND	20.0	ug/L	05/18/2007	U
n-Butylbenzene	ND	20.0	ug/L	05/18/2007	U
n-Propylbenzene	ND	20.0	ug/L	05/18/2007	Ü
Naphthalene	ND	20.0	ug/L	05/18/2007	U
o-Xylene	ND	20.0	ug/L	05/18/2007	U
sec-Butylbenzene	ND	20.0	ug/L	05/18/2007	Ü
Styrene	ND	20.0	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-4-06

NEA ID: AK03913

NEA LRF: 07050093-06

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:17

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	20.0	ug/L	05/18/2007	U
Tetrachloroethene	2200	100	ug/L	05/18/2007	_
Toluene	ND	20.0	ug/L	05/18/2007	U
trans-1,2-Dichloroethene	ND	20.0	ug/L	05/18/2007	U
trans-1,3-Dichloropropene	ND	20.0	ug/L	05/18/2007	U
Trichloroethene	2130	100	ug/L	05/18/2007	
Trichlorofluoromethane	ND	20.0	ug/L	05/18/2007	U
Vinyl acetate	ND	20.0	ug/L	05/18/2007	U
Vinyl Chloride	715	20.0	ug/L	05/18/2007	

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-07

NEA ID: AK03914

NEA LRF: 07050093-07

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:12

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	Directive me	~~~		DATE	
	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					-
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ü
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L	05/18/2007	Ŭ
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	Ü
4-Methyl-2-pentanone	ND	1.00	ug/L	05/18/2007	Ü
Acetone	ND	5.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-1-07

NEA ID: AK03914

NEA LRF: 07050093-07

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:12

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

TIME: 09:25

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

DADAMETED DEDECORATE	7			DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	U
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	U
Chloromethane	ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	Ü
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	U
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	U
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	U
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Styrene	ND	1.00	ug/L	05/18/2007	U

SAMPLED BY:

CUSTOMER PO:

CERTIFICATE OF ANALYSIS 05/21/2007

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID: MW-1-07 **MATRIX: WATER**

NEA ID: AK03914 NEA LRF: 07050093-07

DATE SAMPLED: 05/17/2007

TIME: 13:12

DATE RECEIVED: 05/18/2007 TIME: 09:25

N/A

R. GRAY

PROJECT: 02.05244

LOCATION: HUDSON, NY

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS	
EPA Method 8260B						
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U	
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	U	
Toluene	ND	1.00	ug/L	05/18/2007	U	
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U	
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U	
Trichloroethene	ND	1.00	ug/L	05/18/2007	U	
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U	
Vinyl acetate	ND	1.00	ug/L	05/18/2007	U	
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	U	
			_			

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

CUSTOMER ID: MW-2-07

MATRIX: WATER

NEA ID: AK03915

DATE SAMPLED: 05/1

NEA LRF: 07050093-08

DATE SAMPLED: 05/17/2007

TIME: 13:15

DATE RECEIVED: 05/18/2007 **TIME:** 09:25 **PROJE**

PROJECT: 02.05244

SAMPLED BY: R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO: N/A

PARAMETER PERFORMED	RESULTS	DΩI	LINUTEG	DATE	T
	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ū
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ŭ
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
2-Butanone	ND	1.00	ug/L	05/18/2007	U
2-Chloroethylvinylether	ND	1.00	ug/L ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L ug/L	05/18/2007	
Acetone	ND	5.00	ug/L ug/L	05/18/2007	U U
	- 12	5.00	ug/L	03/10/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-07

NEA ID: AK03915

NEA LRF: 07050093-08

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:15

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

DADAMETED DEDEODMED	DECIH ma			DATE	
PARAMETER PERFORMED	RESULTS	PQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	U
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND.	1.00	ug/L	05/18/2007	Ü
Chlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	Ü
Chloromethane	ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ū
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	Ü
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	Ü
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Naphthalene	ND	1.00	ug/L	05/18/2007	U
o-Xylene	ND	1.00	ug/L ug/L	05/18/2007	U
sec-Butylbenzene	ND	1.00	ug/L ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L ug/L	05/18/2007	U
		1.00	~& L	03/10/2007	O

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-2-07

NEA ID: AK03915

NEA LRF: 07050093-08

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

LOCATION: HUDSON, NY

TIME: 13:15

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

CUSTOMER PO:

R. GRAY

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	· · · · · · · · · · · · · · · · · · ·				
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	ND	1.00	ug/L	05/18/2007	Ü
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME:09:25

AUTHORIZED SIGNATURE:

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-3-07

NEA ID: AK03916

NEA LRF: 07050093-09

TIME: 13:07

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

TIME: 09:25

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	LIMITO	DATE	TOT A COC
EPA Method 8260B	RESOLIS	FQL	UNITS	ANALYZED	FLAGS
-	3.10				
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	\mathbf{U}
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L ug/L	05/18/2007	
2-Chloroethylvinylether	ND	1.00	-	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
2-Hexanone	ND ND	1.00	ug/L		U
4-Chlorotoluene	ND ND	1.00	ug/L	05/18/2007	U
4-Isopropyltoluene	ND ND		ug/L	05/18/2007	U
4-Methyl-2-pentanone		1.00	ug/L	05/18/2007	U
Acetone	ND ND	1.00	ug/L	05/18/2007	U
rectone	ND	5.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-3-07

TIME: 09:25

NEA ID: AK03916

NEA LRF: 07050093-09

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:07

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY: R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ü
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromoform	ND	1.00	ug/L	05/18/2007	Ü
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	Ü
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	Ū
Chloromethane	ND	1.00	ug/L	05/18/2007	Ū
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	Ü
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	U
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	Ŭ
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ū
Styrene	ND	1.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-3-07

NEA ID: AK03916

NEA LRF: 07050093-09

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:07

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	Ü
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	ND	1.00	ug/L	05/18/2007	Ü
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	U
Vinyl acetate	ND	1.00	ug/L	05/18/2007	U
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	U

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

Robert E. Wagner Laboratory Director

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50 **BALLSTON SPA, NY 12020**

CONTACT: TODD SCOTT

CUSTOMER ID:

MW-4-07

NEA ID: AK03917

NEA LRF: 07050093-10

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:20

DATE RECEIVED: 05/18/2007

TIME: 09:25

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	RESOLIS	1 (1)	UNIIS	ANALIZED	rlags
1,1,1,2-Tetrachloroethane	ND	1.00		0.5/1.0/0.005	**
1,1,1-Trichloroethane	ND ND		ug/L	05/18/2007	U
1,1,2,2-Tetrachloroethane	ND ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethane		1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,4-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	Ü
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	Ü
2-Chlorotoluene	ND	1.00	ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L ug/L	05/18/2007	U
		2.00	ug/L	03/10/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-4-07

NEA ID: AK03917

NEA LRF: 07050093-10

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:20

DATE RECEIVED: 05/18/2007

_ ____

TIME: 09:25

PROJECT: 02.05244

ROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					TANOS
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	Ü
Bromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	Ŭ
Bromoform	ND	1.00	ug/L	05/18/2007	Ü
Bromomethane	ND	1.00	ug/L	05/18/2007	Ü
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	Ü
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	U
Chloromethane	ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	Ü
Dibromomethane	ND	1.00	ug/L	05/18/2007	Ü
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Ethylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	Ü
m&p-Xylene	ND	1.00	ug/L	05/18/2007	Ü
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	Ü
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	Ü
Naphthalene	ND	1.00	ug/L	05/18/2007	Ü
o-Xylene	ND	1.00	ug/L	05/18/2007	Ŭ
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-4-07

NEA ID: AK03917

NEA LRF: 07050093-10

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

TIME: 13:20

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B					
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	U
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	Ü
Trichloroethene	ND	1.00	ug/L	05/18/2007	Ü
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ü

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME:09:25

AUTHORIZED SIGNATURE:

Robert E. Wagner Laboratory Director

This report may not be reproduced except in full, without the written approval of Northeast Analytical, Inc.

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID:

MW-5-07

NEA ID: AK03918

NEA LRF: 07050093-11

TIME: 12:55

MATRIX:

WATER

DATE SAMPLED: 05/17/2007

DATE RECEIVED: 05/18/2007

PROJECT: 02.05244

SAMPLED BY:

R. GRAY

TIME: 09:25

LOCATION: HUDSON, NY

CUSTOMER PO:

N/A

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B			T		7 2.100
1,1,1,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,1-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1,2,2-Tetrachloroethane	ND	1.00	ug/L	05/18/2007	U
1,1,2-Trichloroethane	ND	1.00	ug/L	05/18/2007	Ü
1,1-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
1,1-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,3-Trichloropropane	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trichlorobenzene	ND	1.00	ug/L	05/18/2007	U
1,2,4-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromo-3-chloropropane	ND	1.00	ug/L	05/18/2007	U
1,2-Dibromoethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,2-Dichloroethane	ND	1.00	ug/L	05/18/2007	U
1,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
1,3,5-Trimethylbenzene	ND	1.00	ug/L	05/18/2007	U
1,3-Dichlorobenzene	ND	1.00	ug/L	05/18/2007	Ü
1,3-Dichloropropane	ND	1.00	ug/L	05/18/2007	Ü
1,4-Dichlorobenzene	ND	1.00	ug/L ug/L	05/18/2007	U
2,2-Dichloropropane	ND	1.00	ug/L	05/18/2007	U
2-Butanone	ND	1.00	ug/L	05/18/2007	Ü
2-Chloroethylvinylether	ND	1.00	ug/L	05/18/2007	U
2-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
2-Hexanone	ND	1.00	ug/L	05/18/2007	U
4-Chlorotoluene	ND	1.00	ug/L ug/L	05/18/2007	U
4-Isopropyltoluene	ND	1.00	ug/L	05/18/2007	U
4-Methyl-2-pentanone	ND	1.00	ug/L ug/L	05/18/2007	U
Acetone	ND	5.00	ug/L ug/L	05/18/2007	U

NORTHEASTERN ENVIRONMENTAL TECH

1476 ROUTE 50

BALLSTON SPA, NY 12020

CONTACT: TODD SCOTT

 CUSTOMER ID:
 MW-5-07
 NEA ID: AK03918
 NEA LRF: 07050093-11

 MATRIX:
 WATER
 DATE SAMPLED: 05/17/2007
 TIME: 12:55

DATE RECEIVED: 05/18/2007 TIME:09:25 **PROJECT:** 02.05244

SAMPLED BY: R. GRAY LOCATION: HUDSON, NY

CUSTOMER PO: N/A LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE	FLACE
	RESULTS	rQL	UNITS	ANALYZED	FLAGS
EPA Method 8260B					
Benzene	ND	1.00	ug/L	05/18/2007	U
Bromobenzene	ND	1.00	ug/L	05/18/2007	U
Bromochloromethane	ND	1.00	ug/L	05/18/2007	U
Bromodichloromethane	ND	1.00	ug/L	05/18/2007	U
Bromoform	ND	1.00	ug/L	05/18/2007	U
Bromomethane	ND	1.00	ug/L	05/18/2007	U
Carbon Disulfide	ND	1.00	ug/L	05/18/2007	U
Carbon Tetrachloride	ND	1.00	ug/L	05/18/2007	U
Chlorobenzene	ND	1.00	ug/L	05/18/2007	U
Chloroethane	ND	1.00	ug/L	05/18/2007	U
Chloroform	ND	1.00	ug/L	05/18/2007	U
Chloromethane	ND	1.00	ug/L	05/18/2007	U
cis-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	U
cis-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Dibromochloromethane	ND	1.00	ug/L	05/18/2007	U
Dibromomethane	ND	1.00	ug/L	05/18/2007	U
Dichlorodifluoromethane	ND	1.00	ug/L	05/18/2007	U
Ethylbenzene	ND	1.00	ug/L	05/18/2007	U
Hexachlorobutadiene	ND	1.00	ug/L	05/18/2007	U
Isopropylbenzene	ND	1.00	ug/L	05/18/2007	U
m&p-Xylene	ND	1.00	ug/L	05/18/2007	U
Methylene Chloride	ND	1.00	ug/L	05/18/2007	U
MTBE	ND	1.00	ug/L	05/18/2007	Ü
n-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
n-Propylbenzene	ND	1.00	ug/L	05/18/2007	U
Naphthalene	ND	1.00	ug/L	05/18/2007	U
o-Xylene	ND	1.00	ug/L	05/18/2007	Ū
sec-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Styrene	ND	1.00	ug/L	05/18/2007	Ü

NORTHEASTERN ENVIRONMENTAL TECH 1476 ROUTE 50

BALLSTON SPA, NY 12020 CONTACT: TODD SCOTT

CUSTOMER ID: MW-5-07

NEA ID: AK03918 NEA LRF: 07050093-11

TIME: 12:55

MATRIX: WATER

DATE SAMPLED: 05/17/2007

DATE RECEIVED: 05/18/2007 **SAMPLED BY:**

CUSTOMER PO:

PROJECT: 02.05244

R. GRAY N/A

LOCATION: HUDSON, NY

LAB ELAP#: 11078

PARAMETER PERFORMED	RESULTS	PQL	UNITS	DATE ANALYZED	FLAGS
EPA Method 8260B	· · · · · · · · · · · · · · · · · · ·				
tert-Butylbenzene	ND	1.00	ug/L	05/18/2007	U
Tetrachloroethene	ND	1.00	ug/L	05/18/2007	U
Toluene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,2-Dichloroethene	ND	1.00	ug/L	05/18/2007	Ü
trans-1,3-Dichloropropene	ND	1.00	ug/L	05/18/2007	U
Trichloroethene	ND	1.00	ug/L	05/18/2007	Ü
Trichlorofluoromethane	ND	1.00	ug/L	05/18/2007	Ü
Vinyl acetate	ND	1.00	ug/L	05/18/2007	Ü
Vinyl Chloride	ND	1.00	ug/L	05/18/2007	Ü

Notes: ND (Not Detected). Denotes analyte not detected at a concentration greater than the PQL. PQL (Practical Quantitation Limit). Denotes lowest analyte concentration reportable for the sample.

TIME: 09:25

AUTHORIZED SIGNATURE:

Robert E. Wagner Laboratory Director

PRESERVATIVE KEY 5 - Zn. Acetate Additional charges incurred for disposal (if hazardous) or archival. Call for detalls. 7 - NaHS04 3 - H2SO4 6 - MeOH 2 - HN03 4 - NaOH 0 - NONE 8 - Other 1 - HCL DISPOSAL REQUIREMENTS: (To be filled in by Client) REMARKS: RECEIVED BY ARCHIVAL BY NORTHEAST ANALYTICAL DISPOSAL BY NORTHEAST ANALYTICAL ENTER ANALYSIS AND METHOD NUMBER REQUESTED RINTED NAME SIGNATURE DATE/TIME OMPANY RETURN TO CLIENT 2 Q Q رک 0 THER NOTES: Q RELINQUISHED BY DATE/TIME Z 33 500 0 Ö 5 % PRESERVATIVE CODE RECVD W/I HOLDING TIMES: BOTTLE TYPE: RECEIVED BY PROPERLY PRESERVED: BOTTLE SIZE: 5/18/07 NEA DATE(TIME COMPANY X X PRINTED NAME <07050093> 6 NUMBER OF CONTAINERS 6 4 d (ત 4 Certificates Only (NEA USE ONLY) () (% SAMPLE ID AKOSGUS 5112 5071 E 4163914 A 1003918 A1603416 Alwant 1 the Court Callo we AK03917 AKUSCHIA AKUZUIO Alluzan S \mathcal{OA} , \mathcal{OSAH} RELINQUISHED BY LRF# PAGE 13/81 Fairview Plaza REQUIRED TURN AROUND TIME: Data Report: CLP* NAME OF COURIER (IF USED): PROJECT#/PROJECT NAME: 2 GRAB/ COMP DATE/TIME ₹350 information @nealab.com OMPANY Fax (518) 381-6055 COC DISCREPANCIES. 2190 Technology Drive, Schenectady, NY 12308 Telephone (518) 346-4592 Fax (518) 381-605 NER Nove Tall netice ny col. 19, com NORTHEAST ANALYTICAL, INC. CHAIN OF CUSTODY RECORD MATRIX COC TAPE: シャジ 3 arter 13:30 (3:03 13:42 RECEIVED BY 13:38 13.10 13:07 18/01 13.12 TIME 13:80 13.17 13:15 E-MAIL ADDRESS 5-17-57 2) DATE FAX#: TEMP: 7:35 um > 1-28-1-854 ELECTRONIC RESULTS FORMAT: CLIENT (REPORTS TO BE SENT TO): ECEIVED BROKEN OR LEAKING: www.nealab.com イド ひいん MPLED BY: (Please Print) SAMPLE ID R. C. C. MW-4-67 MW-2-06 MW- 1-06 MW-3-07 MBIENT OR CHILLED: からか-ひい MW-2-04 MW-3-04 ROJECT MANAGER: MU-1-04 OMPANY COMP MW-1-07 MW-2-07 J. J. AXED RESULTS NET

S:\FORMS\Login\COC FORM 01.xls, rev. 00, 7/1/05, LOGIN

PRESERVATIVE KEY Additional charges incurred for disposal (if hazardous) or archival. Call for detalls. 5 - Zn. Acetate 7 - NaHSO4 3 - H2SO4 0 - NONE 2 - HN03 4 - NaOH 6 - MeOH 8 - Other 1-HCL DISPOSAL REQUIREMENTS: (To be filled in by Client) REMARKS: RECEIVED BY DISPOSAL BY NORTHEAST ANALYTICAL ARCHIVAL BY NORTHEAST ANALYTICAL ENTER ANALYSIS AND METHOD NUMBER REQUESTED PINTED NAME GNATURE DATE/TIME OMPANY RETURN TO CLIENT OTHER NOTES RELINQUISHED BY PRINTED NAME SIGNATURE OMPANY ATE/TIME z 503 3 0 B PRESERVATIVE CODE RECVD W/I HOLDING TIMES: HIGHATURE (22) 91 BOTTLE TYPE: PROPERLY PRESERVED: RECEIVED BY Š BOTTLE SIZE: COMPANY COMPANY 5/18/67 X NEA DATE/TIME RINTED NAME <07050093> 4 NUMBER OF CONTAINERS 5 d Certificates Only (NEA USE ONLY) 2 7 6 Brank State affecter SAMPLE ID 4150392V Alwagho 4 A (c03918 AKUZGIG PROJECT LOCATION (CITY/STATE) ADDRESS: RELINQUISHED BY Fairview Plaza PAGE LRF# 18/67 Ò 77.05744 REQUIRED TURN AROUND TIME: NAME OF COURIER (IF USED): $\mathcal{N}C \not \mapsto$ Data Report: CLP* J. P. J. PROJECT#/PROJECT NAME: 8 COMP NYCOS (Tr. COM) GRAB/ DATE/TIME information @nealab.com Fax (518) 381-6055 COC DISCREPANCIES: 2190 Technology Drive, Schenectady, NY 12308 Telephone (518) 346-4592 Fax (518) 381-605 2018 Z NORTHEAST ANALYTICAL, INC. CHAIN OF CUSTODY RECORD MATRIX ONL COC TAPE: 3 sund, (a-1) and RECEIVED BY 12.50 SATETIME S/18/07 ELECTRONIC RESULTS FORMAT: FEMALL ADDRESS: 12.55 13:35 () () TIME 5-17-5 Đ DATE TEMP: 7. Kin CLIENT (REPORTS TO BE SENT TO): ECEIVED BROKEN OR LEAKING www.nealab.com SIS- SSY-DASF WING SAMPLE ID 5-18-07 107 600 NETC PROJECT MANAGER: MM-20 MBIENT OR CHILLED: NET/C AXED RESULTS P) - MM 6.6 AMPLING FIRM: プラナハ mw-5. 2E, ILT ED NAME

* CLP LIKE DATA PACKAGE ADDITIONAL COST

ATTACHMENT H

STATEMENT OF SERVICES

Northeastern Environmental Technologies Corporation (NETC)

"Site assessment through remediationNETC has the tools for your environmental and geotechnical project work"

Environmental, Test Drilling, DPT Probe Services & Remediation

For More Information Regarding NETC Services call (518) 884-8545 or E-mail jeffnetc@nycap.rr.com

1476 Route 50 (Shipping) - P.O. Box 2167 (Mail) Ballston Spa, NY 12020

Statement of Services

Northeastern Environmental Technologies Corporation (NETC) recognizes both environmental and business issues critical to corporate America. Guided by regulatory agencies, NETC's innovative problem solving approach preserved the delicate balance between our countries finite natural resources and the goals of business and industry. NETC's cost conscious alternatives are designed to ensure it's clients maximum flexibility when identifying and resolving regulatory and / or environmental issues. The following is an abbreviated list of NETC's Services.

ENVIRONMENTAL SITE ASSESSMENTS

- Site Assessments & Auditing
- Property Acquisition Divestiture Certification
- ▶ Phase 2 and 3 Site Assessments
- Mobile Laboratory Services

CONTAMINANT HYDROLOGY & HAZARDOUS MATERIAL MANAGEMENT

- Storage Tank Management, Testing & Closures
- State and Federal Regulatory compliance
- Remedial Investigation Feasibility Studies
- Remedial Alternative Technology Studies; QA/QC Design

GROUNDWATER RESOURCE MANAGEMENT

- Permitting
- Management & Source Development
- Well Head Protection
- Numerical and Analytical Modeling

GEOTECHNICAL EVALUATIONS

- Dewatering & Artificial Recharge
- Deposit Exploration
- ➤ Geophysics EM & GPR
- Ground Improvement Studies
- SPCC Compliance

SITE REMEDIATION AND MONITORING SERVICES

- UST/AST Closures
- Integrity Testing
- Waste Brokerage
- SPEDS Permitting & Compliance
- Excavation Services
- Soil Gas & Groundwater Recovery Systems

TEST DRILLING / DIRECT PUSH SAMPLING PROGRAMS

- Core Drilling Services
- Direct Push Soil & Groundwater Survey
- Standard Penetration Tests
- Shelby Tube Samples

ENVIRONMENTAL IMPACT STATEMENTS * EXPERT TESTIMONY * OSHA FIELD CERTIFIED