2009 THIRD QUARTER REPORT

Old Bethpage Solid Waste Disposal Complex Groundwater Treatment Facility

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS SYOSSET, NEW YORK 11791

April 2012

LOCKWOOD KESSLER & BARTLETT, INC. SYOSSET, NEW YORK 11791

TABLE OF CONTENTS

Section	on Numbe	er and Title	<u>Page No.</u>
SECT	ION 1.0 I	NTRODUCTION	1
SECT	ION 2.0 S	STATUS OF GROUND-WATER REMEDIATION	
	2.1	Ground Water-Treatment Facility Operation	1
	2.2	Ground Water-Treatment Facility Monitoring	1
	2.3	Ground Water-Quality Monitoring	3
SEC	TION 3.0	RESULTS OF AMBIENT-AIR AND SOIL-GAS MON	ITORING
	3.1	Ambient Air-Monitoring Results	5
	3.2	Soil-Gas Quality Monitoring Results	6
	3.3	Soil-Gas Pressure Monitoring Results	6
SEC ⁻	TION 4.0	CONCLUSIONS AND RECOMMENDATIONS	7
		LIST OF TABLES	
Table	Number	and Title	Follows Page No.
1.		v of Ground Water-Treatment Facility Operation, arter 2009	1
2.		son of Average Stack Concentrations to Stack e Requirements	2
		LIST OF APPENDICES	

- A. Daily Operations Reports, July through September, 2009
- B. Facility Monitoring Results, July through September, 2009
- C. Recovery Well Monitoring Results, July through September, 2009
- D. "Quarterly Monitoring Report, Third Quarter 2009 Results, July through September 2009, Old Bethpage Landfill, Old Bethpage, New York", Gannett Fleming, December 2009
- E. Town of Oyster Bay, Old Bethpage Solid Waste Disposal Complex Ambient Air Quality Survey and Soil Gas Quality Survey, <u>2009 Third Quarter Report</u>", RTP Environmental Associates, Inc., December 2009

1.0 INTRODUCTION

This document is the Old Bethpage Landfill (Landfill) Remedial Action Plan (RAP) Report for the third calendar quarter of 2009. This RAP Report was prepared on behalf of the Town of Oyster Bay (Town) by Lockwood, Kessler & Bartlett, Inc. (LKB). It is submitted to the New York State Department of Environmental Conservation (NYSDEC) pursuant to Consent Decree 83 Civ. 5357, Appendix A (OBSWDC Remedial Action Plan), Section D (Reporting), Subsection b (Operating Period), which requires the Town to submit the following information:

- Pumpage records
- Treatment system air and water discharge data
- Treatment system performance records
- Data analysis (trends, position of plume, etc.)
- Modifications to system, including method and dates of approval
- Ground water-quality monitoring data
- Water-level data
- Potentiometric surface maps, as revised
- Records of all system downtime

This information is summarized and evaluated in the Sections 2.0 and 3.0 below. Copies of the actual data and records, as well as the monitoring subconsultants' reports, are provided in Appendices A through E. Conclusions and recommendations based on this quarter's findings are provided in Section 4.0.

2.0 STATUS OF GROUND-WATER REMEDIATION

2.1 Ground Water-Treatment Facility Operation

The ground water-treatment facility was fully operational this quarter, except for four hours on September 29th when RW-2 was off-line for maintenance. The average facility flow this quarter was 1,175 gallons per minute (GPM), which equates to 1.69 million gallons per day (MGD). Table 1 provides a summary of facility operation based on the pumpage records maintained by the Town. A copy of those records is provided in Appendix A.

2.2 Ground Water-Treatment Facility Monitoring

Samples of the facility influent and effluent were collected approximately three times per week and analyzed for volatile organic compounds (VOCs) at the on-site laboratory. The facility influent and effluent were also tested weekly for pH, iron, manganese, dissolved oxygen, ammonia and chloride at the on-site laboratory. Samples of influent and effluent were also sent to an outside laboratory for VOC (influent and effluent) and inorganic/leachate parameter (effluent only) analyses on a monthly basis.

Table 1Summary of Ground Water-Treatment Facility Operation, Third Quarter 2009

Date(s)	Q _{gpm}	Remarks
7/1 - 9/28	1,175	GTF on-line
9/29	1,065	Recovery Well RW-2 off-line 4 hours for maintenance
9/30	1,271	GTF on-line
Average Flow:	1,175	

The results of this monitoring are provided in Appendix B and the key findings are summarized below:

- Influent total VOC concentration ranged from 114 to 247 ug/L and averaged 151 ug/L
- Effluent total VOC concentration ranged from 0.2 to 36.6 ug/L, and averaged 14.0 ug/L
- Treatment efficiency ranged from 77.7 to 99.8 %, and averaged 90.8 %
- Except for period minor exceedances for trichloroethene (TCE) effluent individual VOC concentrations were less than applicable limits this quarter
- Effluent inorganic/leachate indicator parameter concentrations were also less than applicable limits except for manganese, which exceeded the 0.6-mg/L limit on three occasions this quarter. The limit for manganese is aesthetics-based. Therefore, these minor exceedances are not a concern with respect to public health or the environment

Samples from the recovery wells were collected on an approximately weekly basis and analyzed for VOCs. These results are provided in Appendix C and the key findings are summarized below:

- Total VOC concentrations in RW-1 ranged from 1.2 to 8.9 ug/L and averaged 4.1 ug/L
- Total VOC concentrations in RW-2 ranged from 0.8 to 12.3 ug/L and averaged 6.0 ug/L
- Total VOC concentrations in RW-3 ranged from 61.7 to 79 ug/L and averaged 73.0 ug/L
- Total VOC concentrations in RW-4 ranged from 187 to 510 ug/L and averaged 366 ug/L
- Total VOC concentrations in RW-5 ranged from 201 to 336 ug/L and averaged 273 ug/L

The VOC detected at highest concentration in RW-3, RW-4 and RW-5 was trichloroethene (TCE), followed by tetrachloroethene (PCE) and cis-1,2-dichloroethene (cis-1,2-DCE), and the concentrations of these three VOCs were higher than their 5-ug/L limit in all three wells. The concentrations 1,1-dichloroethene (1,1-DCE) and 1,1,1-trichloroethane (1,1,1-TCA) in RW-5, and on a few occasions in RW-4 were also higher than the limits for these VOC. Individual VOC concentrations were less than their respective limits in RW-1 and RW-2, however it should be noted that a portion of the ground water collected by each recovery well enters from its downgradient side. Total VOC concentrations were relatively constant in RW-1, RW-2 and RW-3, and exhibited fluctuating but generally increasing trends in RW-4 and RW-5 this quarter.

To assess emissions from the air stripper stack, the average stack emission concentration of each VOC detected on a regular basis in the facility influent was calculated utilizing the data from the on-site laboratory and the pumpage data maintained by the Town. The results are compared to the stack emissions limits from Table 1 in Appendix A of the Consent Decree in Table 2. As shown in Table 2, except for TCE and vinyl chloride, VOC concentrations were well below the stack discharge limits this quarter.

TABLE 2 COMPARISON OF AVERAGE STACK CONCENTRATIONS TO STACK DISCHARGE REQUIREMENTS

Parameter	Average Stack Concentration*	Stack Discharge Requirements**
	(ug/m ³)	(ug/m ³)
Benzene	0.8	100
Bromodichloromethane	ND	0.03
Bromoform	ND	16.7
Carbon Tetrachloride	ND	100
Chlorobenzene	ND	1,170
Chloroethane	ND	52,000
Chloroform	ND	167
Dibromochloromethane	ND	0.03
1,2-Dichlorobenzene (o)	ND	1,000
1,3-Dichlorobenzene (m)	ND	0.03
1,4-Dichlorobenzene (p)	ND	1,500
1,1-Dichloroethane	4.5	2,700
1,2-Dichloroethane	3.9	20
1,1-Dichloroethene	61.3	66.7
1,2-Dichloroethene	208	2,630***
1,2-Dichloropropane	ND	1,170
Ethylbenzene	ND	1,450
Methylene Chloride	ND	1,170
Tetrachloroethene	302	1,120
Toluene	ND	7,500
1,1,1-Trichloroethane	80.4	38,000
Trichloroethene	1,836	900
Vinyl Chloride	3.2	0.4
Xylenes (Total)	ND	1,450

FOOTNOTES:

- * mass-balance calculation, based on average influent/effluent concentrations and flow rates.
- ** per Table 1 of Consent Decree.
- *** total for cis- and trans- isomers.

ND = not detectable.

 $ug/m^3 = micrograms$ per cubic meter.

Shaded values are higher than their respective stack discharge limit.

2.3 Ground Water-Quality Monitoring

Samples were collected from 15 the 16 monitoring wells required to be monitored, and Well MW-9D, and analyzed for VOCs. Well 7B was not sampled this quarter because its casing is believed to be compromised. The monitoring subconsultant's report is provided in Appendix D. The VOC results are summarized by well and parameter group in the table below:

Well Number	Total VOCs	Total VHOs*	Total Aromatics	PCE / TCE
LF-1	ND	ND	ND	ND / ND
M-30B-R	ND	ND	ND	ND / ND
MW-5B	ND	ND	ND	ND / ND
MW-6A	1.5	ND	1.5	ND / ND
MW-6B	10.2	ND	10.2	ND / ND
MW-6C	3.6	3.4	ND	ND / 0.2
MW-6E	2.1	ND	1.3	0.2 / 0.6
MW-6F	ND	ND	ND	ND / ND
MW-8A	9.7	ND	ND	9.0 / 0.7
MW-8B	0.8	ND	ND	0.6 / 0.2
MW-9B	0.8	ND	ND	ND / 0.8
MW-9C	ND	ND	ND	ND / ND
MW-9D	56.2	13.1	40.8	1.3 / 1.0
MW-11A	2.2	0.9	ND	0.6 / 0.7
MW-11B	ND	ND	ND	ND / ND
OBS-1	6.5	1.4	4.6	0.3 / 0.2

Notes: Results are in micrograms per Liter (ug/L).

VHO = Volatile Halogenated Organics.

*Excluding PCE and TCE.

** Suspect low result (see below).

PCE / TCE = Tetrachloroethene / Trichloroethene.

ND = Not Detected.

Review of the above table indicates that VOCs are currently at non-detectable or very low levels (i.e., < 5 ug/L) in 12 of the 15 quarterly monitoring wells, and that total VOC concentrations in the three other quarterly monitoring wells (MW-6B, MW-8A and OBS-1) are in the 5- to 10-ug/L range. The total VOC concentration in Well MW-9D was highest (56.2 ug/L) this quarter.

Based on the laboratory reports in Appendix D, an exceedance of the Class GA standards for individual VOCs occurred this quarter for PCE in Well MW-8A. A variety of VOCs was detected in Well MW-9D, but none exceeded their respective Class GA standard. The benzene concentration in Well MW-6B this quarter was lower than the Class GA standard.

In addition to the required monitoring, the Town analyzed split-samples from 12 wells sampled during the quarterly monitoring effort for the Claremont Site for VOCs.

These results are summarized below by well and parameter group:

Well Number	Total VOCs	Total VHOs*	Total Aromatics	PCE / TCE
EW-1A	28.6	1.3	ND	26.2 / 1.1
EW-1B	1.9	ND	ND	1.7 / 0.2
EW-1C	ND	ND	ND	ND / ND
EW-2A	0.9	ND	ND	0.5 / 0.4
EW-2B	19.9	8.0	ND	1.4 / 10.5
EW-2C	ND	ND	ND	ND / ND
EW-3A	ND	ND	ND	ND / ND
EW-3B	0.8	ND	0.8	ND / ND
EW-3C	2.1	ND	ND	0.2 / 1.9
MW-10B	3.9	0.5	1.2	1.1 / 1.1
MW-10C	11.3	0.5	ND	3.0 / 7.8
MW-10D	38.0	6.7	ND	5.6 / 25.7

Notes: Results are in micrograms per Liter (ug/L).

VHO = Volatile Halogenated Organics.

*Excluding PCE and TCE.

PCE / TCE = tetrachloroethene / trichloroethene.

ND = Not Detected.

Review of the above table indicates that total VOC concentrations in eight of these 12 wells are also relatively low (i.e., generally < 5 ug/L) or non-detectable. Total VOC concentrations in the four other wells are in the 10- to 40-ug/L range. The highest total VOC concentrations occurred at the water table near the Claremont Site (Well EW-1A) and at depth at Well Cluster MW-10 (Well MW-10D) and are primarily due to cis-1,2-DCE, PCE and/or TCE.

Review of the leachate indicator and inorganic parameter results included in Appendix D indicates that most of these parameters were not detected, or only detected sporadically at low concentrations, below their respective Class GA standard or guidance value. The highest concentration(s) of each detected parameter and the majority of the exceedances occurred in wells located directly downgradient of the landfill and within the capture zone of the Town's recovery wellfield. The specific exceedances this quarter are listed below:

- Well LF-1 Ammonia
- Well M-30B-R Sodium
- Well MW-5B Manganese and sodium
- Well MW-6A Iron
- Well MW-6B Ammonia, iron, sodium and total dissolved solids (TDS)
- Well MW-6C Ammonia, iron, sodium and TDS
- Well MW-6E Ammonia, iron, manganese (slight) and sodium
- Well MW-6F Sodium and TDS
- Well MW-8A Iron
- Well MW-8B Manganese and sodium
- Well MW-9B Sodium
- Well MW-9C Ammonia and sodium
- Well MW-9D Chloride, iron, mercury and sodium
- Well OBS-1 Ammonia, sodium and manganese

No exceedances of the Class GA inorganic/leachate indicator parameter standards occurred in Wells MW-11A and MW-11B, which are located downgradient of the capture zone of the Town's recovery wellfield. As noted above, Well MW-7B was not sampled this quarter. The mercury exceedance in Well MW-9D is believed to be naturally-occurring.

Figures 1 through 6 in Appendix D depict the ground water-flow patterns and plume boundaries within each of the three aquifer zones, based on the third quarter 2009 monitoring results. Review of these figures indicates the following key findings:

- Ground water-flow directions in the shallow (water-table) zone of the aquifer continue to be generally from northwest to southeast, consistent with the regional ground water-flow direction reported by the U.S. Geological Survey in Scientific Investigations Map 3066 (Water-Table and Potentiometric-Surface Altitudes of the Upper Glacial, Magothy, and Lloyd Aquifers beneath Long Island, New York, March-April 2006, Water-Table – SHEET 1 of 4).
- 2. Ground water-flow directions in the intermediate and deep potentiometric zones of the aquifer also continue to be generally from northwest to southeast, except in the vicinity of the capture zone of the Town's recovery wellfield.
- 3. The distribution of total VOCs in the shallow (water-table) zone of the aquifer is limited to the area immediately downgradient of the Landfill and the Claremont Site (e.g., Wells MW-6A, MW-8A, EW-1A and EW-2A).
- 4. The distribution of total VOCs in the intermediate and deep zones of the aquifer includes the areas downgradient of the Landfill and the Claremont Site, and within the capture zone of the Town's recovery wellfield. As noted in previous RAP reports, based on available data a portion of the VOC plume from the Claremont Site is too far to the north to be captured by the Town's recovery wellfield. Moreover, it should be noted that although Figures 2, 3, 4 and 6 in Appendix D show the plume boundary extending downgradient to Well Cluster MW-11, VOC concentrations in Wells MW-11A and MW-11B are in fact very low (2.2 ug/L and not detectable, respectively) and are not attributed to the Landfill.

3.0 RESULTS OF AMBIENT-AIR AND SOIL-GAS MONITORING

3.1 Ambient Air-Monitoring Results

The scope of this monitoring entailed sorbent-tube sampling for VOCs at one upwind and two downwind locations over a 24-hour period during a low/falling barometer, laboratory analysis of the samples, and comparison of the results to the NYSDEC DAR-1 short-term (8-hour) and long-term (annual) guideline concentrations (SGCs and AGCs, respectively). Sample locations were pre-selected based on National Weather Service forecast. Meteorological conditions were monitored during sampling for comparison to forecasted conditions. A copy of the monitoring subconsultant's report is provided in Appendix E.

The third quarter 2009 monitoring round was performed on September 21st and 22nd. The forecast wind direction was from the south. Therefore, the upwind sample was collected on the golf course south of the Landfill, and the downwind samples were collected along the north boundary of the Landfill. Based on on-site meteorological monitoring during the test, the downwind samplers were downwind of the Landfill for only approximately one-half of the test period due to a period of calm winds and a thermal inversion. The barometer was relatively steady and ultimately rose slightly by 0.03 inches of mercury during the test.

A relatively small number of VOCs were detected at similar, low concentrations in both the upwind and downwind samples. All VOC detections were much lower than the DAR-1 SGCs. The detections of seven target VOCs (benzene, carbon tetrachloride, chloroform, 1,4-dichlorobenzene, 2/4-ethyltoluene, trichloroethene and tetrachloroethene) exceeded their DAR-1 AGCs, but were detected at similar concentrations in the upwind and downwind samples, and any downwind increases were minor in magnitude.

Based on the results, VOC detections in ambient air this quarter are similar to background ambient air quality, and the Landfill did not have a significant influence on ambient air quality.

3.2 Soil-Gas Quality Monitoring Results

The scope of this monitoring entailed sorbent-tube grab-sampling for VOCs at 15 perimeter gas monitoring well locations, including multiple-depth sampling at one location (Well M9), and comparison of the results to the NYSDEC DAR-1 SGCs and AGCs (<u>Note</u>: This comparison is made for informational purposes only, there are no New York State standards for VOCs in soil gas.) The results of this monitoring are included in Appendix E.

The third quarter 2009 monitoring round was performed on September 22nd. All wells were sampled, except Well M21, which was not accessible. A relatively small number of VOCs were detected at generally low concentrations, in certain soil-gas samples. All VOC detections were much lower than the DAR-1 SGCs. Four VOCs were detected at concentrations higher than their DAR-1 AGCs. Most of these "exceedances" were sporadic and relatively low in magnitude. PCE concentrations increased with depth, which is attributed to the influence of the shallow plume(s) from the Claremont Site and/or the FTC Site.

Based on the results, overall, VOC concentrations in soil gas are low and consistent with an old MSW landfill with a perimeter gas collection system, and are not a concern for typical construction-related excavation should it be required. Accordingly, the only recommendation is for the Town to attempt to restore access to Well M21.

3.3 Soil-Gas Pressure Monitoring Results

The scope of this monitoring entailed field measurement of pressure (vacuum) in 12 gas monitoring wells at three locations around the Landfill utilizing an inclined manometer to verify zero or negative pressure readings in the vicinity of the perimeter landfill gas collection system. The third quarter 2009 monitoring round was performed on September 22nd. The results of this monitoring are included in Appendix E.

Readings of zero to slightly negative pressure were measured in all 12 gas wells at the three monitoring locations along the perimeter of the collection system (PW-1 and PW-2) and on the FTC Site (PW-3). These findings are consistent with successful operation of the perimeter gas collection system.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this RAP Report, based on the above information, are:

- 1. The facility was operated on a full-time basis this quarter, with only one recovery well off-line briefly for maintenance.
- 2. The average total VOC concentration of the facility influent continues to exceed the 50-ug/L total VOC limit for ground water listed in Appendix A, Table 2 of the Consent Decree; and the concentrations of individual VOCs in at least one monitoring well exceeded their respective Class GA standards. Therefore, continued operation of the facility is warranted. It is recognized, however, that the majority of the VOC loading to the facility is associated with the Claremont Site, and possibly other nearby sources of ground-water contamination that are not related to the Landfill.
- 3. The average total VOC concentration of the facility effluent continues to be well below the 100-ug/L total VOC limit for discharge listed in Appendix A, Table 2 of the Consent Decree, and except for low-magnitude exceedances for TCE the concentrations of individual VOCs in the influent were less than their respective limits this quarter.
- 4. Except for TCE and vinyl chloride, VOC levels in the air stripper stack exhaust this quarter were lower than the limits in Appendix A, Table 1 of the Consent Decree. This determination is consistent with this quarter's ambient air monitoring results, which did not detect significantly elevated levels of any Site-related VOCs in ambient air.
- 5. Elevated VOC concentrations continue to be present in Recovery Wells RW-3, RW-4 and RW-5. VOC concentrations in Recovery Wells RW-1 and RW-2 were lower than Consent Decree and Class GA standards. However, a portion of the ground water collected by each recovery well is from its downgradient side. Therefore, continued operation of all five wells is warranted.
- 6. The results of the ambient-air and soil-qas monitoring performed this quarter continue to indicate that the Landfill is not a significant source of VOCs in ambient air.

Accordingly, this RAP Report recommends the following for the upcoming calendar quarter:

- 1. Continue to operate and monitor the facility in accordance with the RAP in Appendix A of the Consent Decree, and subsequent related protocols.
- 2. Continue to analyze split-samples from selected Claremont Site monitoring wells for VOCs to provide current ground-water VOC data for these locations.

APPENDIX A

DAILY OPERATIONS REPORTS July through September, 2009

GROUF DWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAIL Y OPERATIONS WORKSHEET DAY SHIFT

S.
J
Cembi

60.1-1

*	S.		(428) Back Decis				Rathana						
	Conso				uch // Com	.,				والمتعاومة والمتعادية والمراجعة والمراجع والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية		UND	AL FLOW
	1420	61	133	108.	270.	S/T	NNN NNN	470.				PPER FLOW / UST BE EQU/	REB THE TOT
	270	4			*			>		¥		- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHN	OX. 3. EEFI IRNI R.OW NEASINES THE TOTAL FLOW
	N20							À		¥	NOTES	1- THE SYSTE PRESSURE FI	JOX. 2. EFEI (NENT
	0201	97.2	B3.	984	972-	905	996	SRT.		X			
	139	620	621	1122	5511	1162	1163	1161		ž			
	1381	1441	D.Yel	1282	12.79	1933	1250	1390.		Ň		Besin	
	184	125	PY	1/52	181	183	112	181		M			
	0 182	25/ 1	C81 6	1 181	CH N	7 132	3 100	181	5	NN (12 690	
	01/1		1/50	$\tilde{\mathcal{X}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	31			NA NA			610
	225	764	25	204	794	100	StC	341		X			Ś
2											REMARKS		
											-	·	

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE REGNANING OF EACH BHIFT.

....

:

Į

• **、**γ

GROUMDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

Censule

7.2.05

DAMA Y OPERATIONS WORKSHEET DAY SHIFT

	ý.	*****			-							
	Guby											Ģ
	1825	A F	153.	192.	252	ZOR.	365	PST.				I- THE SYSTEM FLOW, STREPER FLOW AND
	111-	<u></u>			* * *		(\rightarrow		ž		ER FLOW, STR
	0,00	~~~~	į							ž	NOTES	1- THE SYST
	CLC/	994 4	5 YS	186	546	6000	125	186		ž		r
	1911	1190	11/83	111	623	632	7011	1162		ž		
	over	1262	1973	lle/	1279	1251	UPE/	1291	W.	X		
Ź	181	181	183	1.80	170	13	1.8%	182		¥		
	0 <i>8</i> 1	150	1.51	je jej	157	121	100	181		ž		
	a(/	671	151	122	169	1 <u>5</u> 9	157	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		X		
	ر ہے] ر ہے]									X		
	72.4	SER	ったた	702		うか	N.	202		ž		

5

cited by a the

PREMAURE PLATER FLOW MUST BE EQUAL, WITHIN

ź

.

. •

2- EFFLUENT FLOW MEANINES THE TOTAL FLOW THEROUGH THE FACELITY. OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEGANNING OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

7.3.09

1	Ý												
	Cora					9.12/15.5 16	5.564.4	os gos				WITHN	LL NNNG
the second secon	1427	5	1.5	179	CZ.	310	96T					1- THE SYSTEM FLOW, STRAFPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHN	ex. 2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THEROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGMINING OF EACH SHIFT.
	6 7 9	~~~			*			>		M		en Flow, stra R.Ter Flow M	FLOW MEASUF HE FACKLITY. O LAUCIE TO ZERR FT.
	くどの						,	$\hat{}$		¥	NOTES	1- THE SYSTE PRESSURE F	9%. 2. EFFLUENT FL THROUGH THE F RESET THE GAU OF EACH SHIFT.
	963	Earo	26 J	22	975	87	000 3	LSS		¥			
	1155	1181-	12/3	1163	1162	- 1160	1100	1160		ž			
	1279	1273	1221	P84	CSCI.	1250	LAC/	OPCI	4	Ŵ	-		
	XY 182	3178	128	181 -	0811		1/10	18/ 6		NA		Besi	
	X/ 04	010	61 53	CS 120	17U 18	17 179	1162	10 11		NA NA		Rey B	•
		\vdash								N		1 L 470.	
		1975 27	766	JLC III	んたた	225	924	ろれる		N	æ		7
1											DENARYS		

••• : TOV/N OF OYSTER BAY DEPLATMENT OF PUBLIC WORKS GROUV/OWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

7.7.09 Constand

No. No. No. No. Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence Providence <th>) </th> <th>Y A STATE VERY</th> <th>****</th> <th>Sec Sector</th> <th>-</th> <th></th> <th>én Valance</th> <th>-</th> <th></th> <th></th> <th></th> <th></th>) 	Y A STATE VERY	****	Sec Sector	-		én Valance	-				
227 av 1, 120 121 1228 11/2 997 1 227 av 1, 120 121 1228 11/2 997 1 227 123 172 1239 997 0 228 1/2 1/2 121 1229 997 0 228 1/2 1/2 1/2 121 1205 000 1 228 1/2 1/2 1/2 121 1205 000 1 228 1/2 1/2 1/2 121 1205 000 1 228 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Ceris											L FLOW WITHIN WITHIN
227 av 100 120 120 120 200 100 100 120 120 200 100 1	1490	5	15	17.7	ら べく	296	552	KOD				PPER FLOW AN UST BE EQUAL RES THE TOTA PERATOR SHA
227 av 100 120 120 120 200 100 100 120 120 200 100 1	41-					*******		\rightarrow		VN		EN FLOW, STRI ALTER FLOW M FLOW MEABU HE FACKLITY, O
227 av 100 120 181 1272 1204 337 148 129 181 1272 1204 338 148 178 1217 1204 338 148 178 1277 1205 338 149 129 1275 1205 338 149 129 1275 1205 338 149 129 1275 1205 338 149 129 1275 1205 338 14 18 18 181 1272 1205 338 14 18 18 1201 18 1	410	,					//	\rightarrow		¥	NOTES	1- THE SYST PRESOURE F 8%. 2- EFFLUEN 7-HROUGH T
227 av 100 120 120 120 120 120 120 120 120 120	64B	961	900	971	1 000	000	970	908		X		
22-7 ON 120 120 120 120 120 120 120 120 120 120	1164	1206	1204	a2/1	181	1705	207	1265		M		
227 CV 100 120 120 237 7 120 120 237 7 120 120 237 100 120 120 237 100 120 237 100 120 237 100 120 237 100 120 237 100 120 232 100 120 200 100 200 100 100 200 100 100 200 100 100 200 100 100 200 10000000000	1285	PLC1	1279	1275	273	SI CI	2/6	(12)		N		
22-7 00 1/2 23-7 4 23-7 4 24-7	181	180	181		501	180	1 KI			ž		3.50
22-7 00 1/2 23-7 4 23-7 4 24-7	081	8	031	181	180	181	180	109		M		ß
REMARKS REMARKS	e?	142	621	143	561	5.1	121	148	1 2 2	NA		hy
REMARKS REMARKS	S S									X		R
	224	78	200	SEC	332	295	234	2 2 2 2 2	(1)	¥		1
											DEWARYR	

REBET THE GAUGE TO ZERO AT THE RECOMMING

OF EACH SHIFT.

GROUK#/WATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPORTMENT OF PUBLIC WORKS

DAIL Y OPERATIONS WORKSHEET DAY SHIFT

Cempre N.5.49

•

-		n feisenne		uninarijui	unsuage	-	ND N ASK	santer of						
		COMBI											L WITHIN	AL FLOW
		1431	75	20	174:	282	303	255	403				1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN	2. EFFLUENT FLOW MEASURES THE TOTAL FLOW
		و بلار				*					¥		EN FLOW, STR	FLOW NEASU
		0,05	,						À		¥	NOTES	1- THE SYST	PX. 2- EFFLUEN
		RT3	69 S	1000	520	965	1000	273	505		ž			
		1203	1182	1181	1180	1150	16911	Sacl	1306		¥			
		0821	1284	1250	122-	1292	1250	1778	1275		N			*
		1.81	181	180	181	NP 0	180	18.0	861		¥			winz
		0 / 142	151	182	120	182	181	5	RCI		M			Cor D
		149	150	e/	149	149	201	142	ってか		NA			~~~
1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		20									NA			5× 4 20
		224)Q	1994	203	ング	99-X	292	1-4C		M			うろう
	1											DENADYE		
				° 300				ś 3990	÷ 5503	÷ 900	ž mađ] 0	c [

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMMING OF EACH SHIFT.

Y

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAILY OPERATIONS WORKSHEET DAY SHIFT

0 >/6/

	250.60			I	T	ľ				
MM						1				
							\sum			
- 2 2	4 -		6	0	27 R	Ď	5			
7. 8	10 1 1	8		্ব ব্	68	M	,E			
				* *					¥	
-derice Biographic						1	\geq		Z	
					ţ	/			¥	ť
9							\mathbf{A}		Z	NOTES
odentitiiti 6	9 & L	50	l y	ØÒ	040	6 3	06		¥	
	ς Υ	<i>SO</i> 3	994	el I	0	1	化物学		Z	
بالا	4	j^	3	20	0	\mathbb{V}	N.			
	19	193	659	8.611	9	110	\mathcal{V}		ž	
	5 X	Å	2	60	Ð		c X			
100 100 100 100	9.6	2 4	24	<u>ک</u> ې کې	1281	1260	12 C	50	ž	
17 17 17 17 17		ð>	Q		0	Q	M		¥	
	20	2)	- 10	<i>يل</i> ا 	20	5	15		*	
	18-1	623		12	201		16		ž	
5 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2	20	10	0	0		$\langle \gamma \rangle$			NA	
		R	2							
0				<u> </u>		<u> </u>	P		N	
с Ж			6	M	303	107	3		M	
	? 	22			< 26	~	<u>र</u> ्ज्द			
					1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	400000	11.02 11.02 11.1 11.1 11.1 11.1 11.1 11.		3. 00000 3. 00000	
							1000 1000		82¥ XXXXXXX	

REMARKS

12 for humb to read Casin -900 1240 au site - changed encyme barrel . 8 pm 129 B 288 0742

ワルニンピ

Pressure fr.ter flow must be equal within 1- THE SYSTEM FLOW, STRIPPER FLOW AND ć

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW REBET THE GAUGE TO ZERO AT THE BEGANNING THROUGH THE FACILITY. OPERATOR SHALL OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAIL Y OPERATIONS WORKSHEET DAIL Y OPERATIONS WORKSHEET DAY SHIET 7/N/O

J M D						~				[
161 C	540			, 8, 5, 1	303	5.7	ALY!		a fan de se an	
$\varphi = l_{*}$	- V		~	\ + *	,) . 35	0		Ň	NOTES
Ø						1	~		¥	NOTES
1096	Q\$11		1202	5201	000 8	6 ª 3	1769		ž	
	120%	1 8 ×	163	्र २ २ २ २ २	1206	1145	6911		ž	
	20 F 1		2 3	100	11211	11269	1280.		¥	
231 231	HU HL	(* 2 1 8 9 1 8 9	SUI Q	9 1 2	C 1 1 61	131 12			AN N	
	149 (2 - - - - - - - - - - - - - - - 	149 183	14011	11 2 21	151 181	150 181	5	NA	
			4	2	4				A NA	
							42	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	NA STORE	DENADICE
							5750 5750	nadiri Manu		

3 RIN LEPPINENT TH CAPBOSIN 5:30 & MEPPINENT & BOSIN 33 9 RW RTE ON SITE 7:30 EVENTY ON 25 TE 10:30 MINTE OF 200 SITE 7:30 EVENTY ON 25 TE

1- THE SYSTEM FLOW, STRIPPER FLOW AND Pressure filter flow must be equal within 8%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACALITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BECONNING OF EACH SHIFT.

-

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEF/INTRENT OF PUBLIC WORKS

DAIL Y OPERATIONS WORKSHEET DAY SHIFT 10

٠.

00

Cherry Co

 V	\cap		6-18-18-18-18-18-18-18-18-18-18-18-18-18-		Between the	6×18×1	1919-2010			
QMAD							\searrow			L WITTHIN
1,345		06	0 7 7 0	184	1348	205	.371			1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FL, TER FLOW MUST BE EQUAL WITHIN
0				* * /			Ð	¥	-	R FLOW, STF R FLOW, STF
Ŷ						// .	\sum	¥	NOTES	1- THE SYSTI PRESSURE F
500J	1014	90%	19 4	165	1601	\mathcal{F}	1601	¥		
646	0.6 11	173	1203	654	$h \leq 1$	PMY	169	¥		
いひか	1307	1265	354	120	379	1200	1355	Ŵ		
<i>[K </i>	184	Q & !	Q.2 [6 6 7	(C 3)	1 A R	179	 A		1 3.3
0~) /	181	1134		CV .	7	000	401	\$		30402
	5-1-	2	148	377	140	14 6	149	M		2 2 2
		er.	ન્દર્સ	 		1	2	A NA		\sim
アビル シュリ	N.Y.	55				「「「」、「」、		National States NA	BENARKS	LOVI X M Bach

2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BECANNING OF EACH SHIFT.

:

ć

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUP DWATER TREATMENT FACILITY

DAIL Y OPERATIONS WORKSHEET DAY SHIFT

C.	z
	Q
N	202
3. 0	g
0	

۰.

		1.0000000				10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2.1.2.2.4.0	*****				
	Certo											L WITHIN L WITHIN AL FLOW
	1425.	6	126.	145	247.	30.	373.	41%				PPER FLOW A UST BE EQUA RES THE TOT
			~		* *					¥		1- THE SYSTEM FLOW, STREPER FLOW AND Pressure fr. Ter flow must be equal within by. 2- free uport flow measures the total flow
	04	5						\mathbb{A}		¥	NOTES	1- THE SYSTE PRESSURE F 5%. 2. EDE LEVI
	902	1262-	1201	P63	P72	ST 2	116	1991		M		
		1169	637	1134	657	$\mathcal{L}\mathcal{L}\mathcal{H}$	13.511	1 acl		X		
		1260	1266	1251	5761	1263	1258	2001	-	Ň		
		181	182-1	140	121		10.9	041		M		M
	13	asi "	181	201	128	130	128	179	~	ð		ELL TO PASSA
		148	91	81	140	1221	1/2/2/	5		N		A
	2									Ň		
	し し し	34	2 Ch	166	かたい	Cille	202	120		¥		G
<u> </u>											DEWADYE	

Contraction of the local division of the loc

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

> ---

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

(0 ~ 3 × 9

Williams County	ĴТ	an a	i I	w	Ī		1000000							
	CE 115/2											T WITTEN	IL FLOW	ALL
	1×51	20	12B.	192	SSF.	321	500	435.				PPER FLOW A UST BE EQUA	REG THE TOT	PERATOR SH O AT THE BEC
	<	ç			* *	,	Ň			M		1- THE SYSTEM FLOW, STREPER FLOW AND PRESOURE FLITER FLOW MUST BE EQUAL WITHIN	8%. 2- Effluent flow Measures the total flow	Through the facility. Operator shall reset the gauge to zero at the regimming
	220						· /\	Δ		¥	NOTES	1- THE SYSTE PRESOURE FI	8%. 2- EFFLUENT	THROUGH TH RESET THE Q
	135	1763	¢ W	1257	907	783	J62-	864		¥				
	650	620	620	6. N	1140	14/1	929	629		¥				
	1225	1258	1253	1201	1254	1 4C	1266	1967		Ą				
	181	181	182	181	21	1221	200	181		M				•
· · · · · · · · · · · · · · · · · · ·	173	081	1.81	100	1 75	5	108	179		X		0 V	∧ ∧ ↓	
	1 60	149	150	145	2	67/	14	(2)		M			N R	
	20							Þ		N		~	Q Q	
	888	202	13 V	34	005	205	168	200		NA			- CAMIRAND a MS	
											DEWARKR		Ś	
<i></i>	2,127	9 493 49 0	, 201 0	n 919147	9 797H	<i></i>	~	** *****	~ * /#***	* *****		" h		*****

OF EACH SHIFT.

,

: '

GROUPS WATER TREATMENT FACILITY TOW/N OF OYSTER BAY DEFAILRTMENT OF PUBLIC WORKS

DAIL & OPERATIONS WORKSHEET DAY SHIFT

7-11-09 Censor

1	1								 		
	Censi										UND THINK
	1453	6.1	134	ja.	255	209 209	274	1495 1			RPER FLOW A NGT BE EQUA
	20				*		2		¥		1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN
	C. Ren			~				V V	≸	NOTES	1- THE SYST PRESSURE F
	124	1187	11 75	1350	P78	1248	(000)	1248	ž		r
	624	6 45	100	11555	1195	γ_{XU}	14/1	0611	ž		
	1303	1250	6681	12 95	5.801.	Pfe!	here!	Call!	ž		
	イチン	231	141	1,60	041	0 <i>3</i> /	11	26[ž	1	
	181	1 100	1,30	121	Q	601	361	1/1	¥		
	1820	1151	6 h. 1	148	521	150	65/1	667	M		
	Ŝ	~~~							M		
	7.CE	37	200	00	120	かん	33	やもん	Ň		
										DENADYS	

OLT TO Resin 33

:

č

2- EFFLIENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMMING OF EACH SHIFT. TOV/N OF OYSTER BAY DEF ATMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAIL Y OPERATIONS WORKSHEET DAY SHIFT

COMP 7-12-09

•

S.												
Carro						Rundein					WD	L FLOW
1825	62	124	121	Fill	310	372-	440.				1- THE SYSTEM FLOW, STRRPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHN	2. EFFLUENT FLOW MEABURES THE TOTAL FLOW
abadaris chake				*			÷		Ą		I FLOW, STRE	
	1						M		¥	NOTES	1- THE SYSTE PRESSURE FI	2- EFFLUENT
F63	SCE/	0 R	2011	177	1949	195	1000		¥			
1/22-	1184	1180	1186	1142	1000	QJ/1	11.96		ž			
ste/	1243	ISF 1	946	PAC 1	2801	alt	1961		NA		Ň	
1840	150 1	131	1 64	120	- 621	12	P/J		M		[V ∠	
178 178	281 St	081 6	171 U	181 65	0×1a	191,5	0/10	1	NA NA		5ASSIN	
λ/ ~?ο		5/1	24/			2/ 			NA N			
22/	CCE.	100	2 <i>9</i> 0	166	990	166	Ŝ		A			T
										DENADIYO		

THEROUGH THE FACELTY, OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGANNING

OF EACH BHIFT.

•

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAILY OPERATIONS WORKSHEET

No. No. No. No. No. No. No. No. No. No. No. No. <th></th> <th>HE a f</th> <th>and the second second</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		HE a f	and the second second									
ING IS IS IS IS IS 146 187 187 183 1147 133 636 147 181 183 133 636 6043 5 5 147 181 183 134 1147 1334 1 6 147 181 183 1314 1147 1334 1 1 147 181 183 1346 1184 8 1 1 148 179 180 187 1184 8 1 1 148 178 180 187 1345 1 1 148 178 187 1184 1 1 148 178 187 1 1 1 148 178 186 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1 148 178	C.525. L	HARARA HARARA	sisterial talegas arrowserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserverserv	Stringthe Date of the Stringthe								
146 181 183 314 147 1333 636 604 2 0 1501 8 149 181 183 314 1147 1334 1 1 059 148 181 183 1346 1184 8 1 1 1 148 181 183 1346 1184 8 1 1 1 148 178 1346 1184 8 1 1 1 1 148 178 1310 155 379 1 1 36 148 178 1310 155 379 1 1 36 148 178 181 185 1 1 36 148 178 181 185 1 1 148 178 136 1 1 36 148 178 138 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1 148 178 1 1 1 1							90 90 93 - 16 93 93 93 93 93 93 93 93 93 93 93 93 93					
149 181 183 1314 1147 1334 148 180 180 1301 1193 1334 148 130 180 187 1193 148 130 187 1193 1193 148 130 187 1184 863 148 130 187 1303 148 130 155 979 148 178 1310 1155 148 178 1319 1155 148 178 1319 1155 148 178 1319 1155 148 178 1374 1155 148 178 1374 1155 148 178 1374 1155 148 178 1374 1155 148 178 1374 1155						(, 7 & 2 (, 7 & 2	61.36	6003	A	0	1051	K M V
148 180 <td></td> <td></td> <td>N 9</td> <td>181</td> <td>1</td> <td>714</td> <td>1010</td> <td>12319</td> <td>·</td> <td></td> <td>059</td> <td>)</td>			N 9	181	1	714	1010	12319	·		059)
148 139 180 1396 1184 883 1 148 180 180 1397 670 1034 1 148 178 180 1394 1185 9999 1 148 178 189 1394 1185 1336 1 148 178 187 650 663 1 148 178 138 1387 650 663 1						106	I Y X				į į	
148 180 160 1307 670 1034 1.1. 149 180 181 1310 1155 979 1.1. 148 178 186 1394 1182 1336 1.1 1183 1356 1.1 118 138 138 1350 662 7.1 118 1.1 118 138 138 1350 662 7.1 118 118 118 118 118 118 118 118 118 1	1.	1		00		2021	1 84	6833				
149 180 181 1310 1155 979 1 148 178 186 1294 1188 1336 1 148 178 178 187 652 1188 1336 1 148 M M M M M M M M M M M			5	0.0	160	LDE!	670	4501		* *	243	
148 178 180 1294 1182 1236 1 U 3 148 178 178 1287 650 662 1/ U 3 M M M M M M M M M M M M	- -		14 3	(Q-X) /	1	1310	1155	979			130 5	
148178178181287.25086271 U			271	1 2 8 2 8	0.81	12941	1182	1236			362	~
NA NA NA NA NA NA NA NA			5 S	178	178 1	(287.	650	603	$ \mathcal{N} $	\supset		$\langle \rangle$
NA NA NA NA NA NA NA												
		X	N	Ž	M	ŇÅ	¥	X	¥	¥		والمحافظ
								r				

EFFLUENT +2 Basin 33

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

:

GROUP NWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEVARTMENT OF PUBLIC WORKS

1,4109 DAM OPERATIONS WORKSHEET

۰.

- 4 8 7 - 4 8 7 6.50

		******	-		an a	*****		an a	413,167		13	
		\neg					~				1	
		N						\searrow			- and	
		MM	~~~~···			···			>			
		\subseteq			1							
		I	\sim					\sim	1			
		\bigtriangledown		«کرنیم»م	2	3	9	12	5			
		$\tilde{\mathscr{O}}$	5.5	90	e-2	N2	5	20	M			
		and the second		\sim	125	1 <u>8</u> 6	1249	121	(~] i			
]				7					
	### # #											
10000						*					¥	
		Ô									Z	
11:00000												
												m
** 72.000		0									≸	NOTES
17:200		^o		And the second sec				\geq				- 5
Yes of							ļ	L				Z
					<u>م</u>		Qd555	\sim	1			
		883	8-5 B	093	05 	6.6 63	Sr.	6000	655		<	
		30	$\langle \mathcal{V} \rangle$	2	5- Ba	1	Q	\mathcal{O}	$\langle \mathcal{N} \rangle$		٤	
10.000) M	\$\$	Cri)	5	5	$ \oslash \rangle$	\bigcirc	\sim			
					┣;	╂	╂	╂			<u> </u>	ł
	en - 100 - 1		1	N	6		\rightarrow	\mathbf{k}_{∞}	\mathbf{D}			
<i></i>		99	195-	633	50 192	(16 B	1204	6 ú	\gtrsim		Ž	
		\sum	No.	.0	1. No. 1.	\mathbb{Z}	1		12			
		~>	- winter		<u> </u>				1			
			_				1,	T				
		5	2	300	302	C (S	15	1	OC.			
		290	20	3	m	0	0	Q,	O		N.	
		<u></u>	1280		[] 	1303	1285	e-5	M			ļ
			Í	<u>i</u>	1	1		İ		199		ĺ
		бh	\land	~~~	50 E	180	0		Ar			
		<i>৫</i> ৫ ৬০	0	2	ىگا	90	Q.	R.	183		X	
			·	· · · · · ·					-			
0			~	10			1	$\Box \wedge$	5			i i
·	e - e - M	6) }	K		Se	D	T_ro	82	\sim		Ž	
				-	, ~`) []			~			
		с х		†		1	1					l I
1. <u>#</u>		\sim	\mathbb{D}	مدرّ	2	0 5	\mathbb{N}	401	\mathbb{N}		¥	Į į
		S	2	5	12		2	5	12		~	
				_								
л <u>ж</u>	¥ = #		1					1				
) ()		~	~			6		Z	l
		ž										
			-		50	1~	10		17			ł
] } }	<.1	1-5		5	62	6			Z	ł
		8 C S	DX	zak	S CON	5	[.r.	137	(»<		<u> </u>	J
		8 XXXX			# ###	X					2.1.3	6
		8 8 7	ç ili ili ili ili ili ili ili ili ili il			XĚ		2 2 2 2	ž,		<u>م</u> يني (
			38.	3 8	Å.		5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		¢	, 19 19 19 19 19 19 19 19 19 19 19 19 19 1		13
2			4 3 04		6 6 .						Ser.	
		ii iii			w 🗰	\$\$	## ####	# ###	ð 400	ž Mesis	i Ximui	3 (

EPPINENT do Bazin 37 REMARKS

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 1- THE SYSTEM FLOW, STREPER FLOW AND

Ľ

2- EFFLIENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACHLITY. OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEGINNING OF EACH WHFT. TOWN OF OVSTER BAY WEPARTMENT OF PUBLIC WORKS CIPOUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

2/15/09

۰.

			Lana		energi success	19. 30 March 19		2.2.15	1	_		
	<u>باللار</u>		T	Ī	Ī							
	• 覆.		5									
		***	14		- 1				\sim			
		8 I)	2	-						\sum		
		See.	$\langle \rangle$									
			_	~~~~					\cap	0.72		
	0000	¥	5	064	ର ଜ	5	ç	5	3 12 0	5		
		12 Tech	1	\sim	িই	Š	5	\mathcal{D}	~ ~	<0		
	1		~	\mathcal{O}^{g}			s.C	\sim		\$ 3, E		
	an	ca:z	\sim		¢.		<i>,</i> ,	1,309	د ست		,	
							*					
		E is	-17			-	Ĩ					2
		1997								\geq		
										4		
		200 PD 200 00										
	<i>1</i> 2	17										
		1.00	\sim							-		٤
										· ·		
		o seeles in	-11-		C	5	ল্ব	-	8	<u>ۍ</u>		
		1	19		2.	20	~ ~ .	R R	3	200		٤
		5	94	••••••	Ł	bb	5	C.		Koj		z
			0	·····		ľ.	~~~	3	Į ļ	2		
1. 1		- Sector										
		- 77	- the as	ちゅう	S	~~~~	55	\ll	638	T		
			しょせ	</td <td>e</td> <td>570</td> <td>N Ø</td> <td>and a</td> <td>M</td> <td>95</td> <td></td> <td>ž</td>	e	570	N Ø	and a	M	95		ž
		\sim	.9	0	<i>\</i>	1	Ś	10	S.			
(\cdot, \cdot)		- 33	~		********			2				
er en				5			 			1		
			5	\leq	ଚ~	S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ś	Ċ,o	30		
			2-	\odot	୶୰	021	\mathcal{O}	${\mathcal S}$	35~	S.		X
			<u>~</u> {	30 M	~5	280	$\mathcal{O}_{\mathcal{O}}$	2	395	12.84		
51 ->00 1 ->00			ha wanta				~		~			
- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199	200			1 and	1	Ì		1		Č	a	
		. William	() ()	En l	\bigcirc	$\langle \rangle$	$\bigcirc \checkmark$	3		14) 140		S I
	800		2	~	50	130	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			30		
)) 				1		 	 	Į			
		1	2-	~~ \\\\	\odot	3	Č,		ð,	\mathcal{Q}^{\dagger}		
			2.7		$\langle \mathbf{v} \rangle$	5-	\sim)xj	\sim	5		2
		44				~			-	2		
à.			8	0	4	D.		\square	من	-		
4			Š	100	$\sum_{i=1}^{\infty}$	12		50	5	-		12
	90 1	1000	e contra	·	2	<u> </u>	ر. 	. <u>2</u>		· ~~ j		
		ratalia Galicia	4				+	+				
		300				1	1		Į.	\sim		
		- 2023	\odot	, .	+	1						۶.
		4.752	2 2		L			_	_			
		10.000	15	77	er	6	N	<u>}</u>	$\langle \rangle$	1		
			n serv			ৎস্ব	64	$\mathcal{F}_{\mathcal{A}}^{\mathbf{A}}$	63	55 V		2
			$\sum_{i=1}^{n}$	5-6	1 🔾	7 C.F	' ৬খ	σł.	, r.4	2		
		- 440 ministrini - 1621 pittopo - 1621 pittopo	1 1 74600	1	: :	; Łiź		i inter		n <u>di</u> ger:		ç
2000 2010		¥. č.		<u>, 197</u>		1 (Salar) 1 (Salar)	- 0 : :::	i serie i serie				
		in the second							38			\$1. B
	5			/ (00)) // //////	h inin	5 H	127				15 45	1. A.
12.24	8	20.25		- 1 89	÷							1007 J

· Et Plyent to Basili 33 E:45 & TP on site - changed and we REMARKS

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PREMIME FLITER FLOW MUST BE BOUAL WITHIN 5%. 2- EFFLUENT FLOW MEABURES THE TOTAL FLOW

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACLITY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE BEGIMMING OF EACH SHIT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUWDWATER TREATMENT FACILITY

DAM, Y OPERATIONS WORKSHEET DAY SHIFT

	~ <
	Y.
v	N N
3	ž
Ś	9
· ~ · · · · · · · · · · · · · · · · · ·	\bigcirc
5	

۰.

www.wetr rearrantements				sweening I	ľ					ž.	
	2 MBro										
	Š.										
	\bigcirc			ļ							
				_				-			
	\mathbb{Q}	<u>م :</u>		9	Same to	2	M	R		Î	
	170	0	\sim	0	K	\tilde{Q}		X			
	X	\vee	Ľ.	14	Ř	\approx	37	n			
								B			
					*						
	۱,				*		\sim			Ž	
	01						and a constant	\mathcal{P}			
	U							,			
	J.							. 1			
	-110 0	~~~~~	******		*****			.		٤	- 8
	3							Γ I		-	
					.,						
					7		Ŋ٧,	$\overline{\mathbf{N}}$			
	$\overline{\rho}$	131	SC.		1	\sim	نىڭ	そう		ž	
	3	2	2	16	C_{i}	\sim	2	R		z	
مرد تبغیر کی در پیر است از ا ارتبار است از	50	Na	2		Ś						
	162-										
	162-	2	5		2	, firm	$\langle \rangle$	163			
	16	\mathbf{X}	\mathbb{R}	5	C'	No.	\mathbb{K}	\mathbb{Z}		ž	
	1			\sim	Ň	\sim	ŧ	۴N			
	ž i					N					
	'3 v J	1300	255	Z.	1	J.K	\mathcal{A}	\Box			
	\mathbb{N}	M	Ň		ĺ	L	Δ	X		2	
and the second second			1	·	ł		1	N	. 44		
	÷.				Í.		1	┢╼╸			
		Z	Jan Strang	R		\sim	\geq	\mathbb{C}		ž	
		10						\mathbb{Z}			
	55 56		╂			6		0			
	c^2	A	2	ñ	} {	12	7	10		5	
] -	Ľ) 	•			
	8 88		╉──	0							
	5	-P	8	Ϋ́	ΞŽ	3Ç		S		ž	ļ
	\mathbb{Z}		12] ~			~			-	ł
and a second	22. 22.	┢	┨	╈	1-	1-	1			_	
	ΞÎ 🤉									S	
100	Ĩ	5 -	-	-			- L	<u>}</u>		-	
		5			L e	~	T	1		_	1
1938 1938	ر لہ ا	Jă	12	ť5Ľ	$\langle \hat{c} \rangle$	1		10		12	1
	i c	476	1	SI A	n Z	5	50	$\langle P 0 \rangle$			
	" ##	- 7 ,000	÷ 772								1
			3. 98% 美丽	1 2. 1 2.		344	32.3	10			5
		i im	1 4 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A			en ∰er Li g		<u> </u>	- <u>6</u> -		4 1 1 1 1
											22.20
· Saidioini. White Hall	87. YK	₩ 144	77. 7 <i>14</i> .	(): ¥((20 - XP	******	~ ^~~	

REMARKS

EXTO BASIN 33

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE BOUAL WITHIN 8%.

2- EFFLUENT FLOW MEABURES THE TOTAL FLOW THROUGH THE FACULITY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEGAMMING OF EACH BHFT.

GROUNDWATER TREATMENT FACILITY **WOWN OF OYSTER BAY** DEPARTMENT OF PUBLIC WORKS

DAMLY OPERATIONS WORKSHEET DAY SHIFT

Central 7-17-09

۰,

2	et.									
	COMB									
	1475.	62,	190	IP]	389	- 705-	SGF	432		
	0/64				* * *			÷	¥	
	-4-V". 3					4	\leq		¥	NOTES
	1235	1255	17251	525	JJ7	86T	6002	165	¥	
	11.25	2011	138	1211	168	- 646	1000	12021	ž	
	1289	1953	1211	1361	1055	1744	1261	1275.	ž	
	100	101	nd/	180	181	1801	1.4.	150	ž	
	5-1	180	181	130	180	(1)	S.	180	ž	
	$\tilde{\mathcal{T}}$	5	22	148	571		14	140	M	
	09 -))	6	1		-			M	
	第 2 5				721	て	20/	CC .		
						ddeast each lite	10.2012.0012			

REMARKS

Pressure fr.ter flow must be boual. Within NU ES 1- THE SYSTEM FLOW, STREPER FLOW AND

É

2- EFFLIENT FLOW MEANINES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE REGMANNO OF EACH WHIT.

GROU DWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

1

D//// OPERATIONS WORKSHEET DAY SHIFT

7-18-09 Centrole

•

	******		¥4	······	Ť				-					
			ЪI	1										
			520											
			\leq											
			\mathbb{N}											
<u></u>			М											2
			$\overline{\mathcal{A}}$	T	,			×	-	()				
		<u>.</u>	W	n		\backslash	Ŝ	101	Õ	\sum				ā
	. E.	÷,	\mathcal{Y}_{1}	0	\sim	$\left \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \right\rangle$	\mathcal{N}	n.	N	M			1	۵
6017-1) TENT		ರ್ಥಾ ಕ್ಷ ನಾಯಕ	~	1	Ĩ	12	0 K V	\mathcal{D}	$^{\wedge}$	Ž				l
		an st				<u> </u>			Ľ.					ä
							+							
		~					*					≤		2
`	6	аў 4	Ì		*****			***		2		٤		6
			ي د											5
	197 C 1997 - C	dorrh course												1
			_											
		3	ビビア									₹	NOTES	٥ ١
		in de la como	N.									~	E	
			V									l	ž	Ļ
							┝───	 						
			.)	10	-	0		\circ	X	\mathbb{C}				
		ne den La den	SN	\mathcal{D}	Q	M.	101	S.	6	\mathbb{N}		ž		
		8. S	958	11	000	9 15	1	2	\mathcal{O}	2				
		,, ,							ŀ.	1				
				\sim		†							ſ	
		10.00	\sim	20	Q	~	C		6	\mathcal{O}				
			1 mg	\cap	A	∞	らく	I &	2	2		£		
14			1	\sim		\sum			1 > 1	\sim				
			~						1					
	7 . #		~				T	5	ŔΛ	2				
2			11	~	2	20		20	5					
			X	5	20	30	V_O	1è	3	2		Ş		Ì
Heren			· \.	$\widetilde{\mathbb{M}}$		12	\mathbb{R}	\mathbb{R}	$[\]$					í
				Ì	ļ	Т 	ŗ	Lange	1	د همجنو			1	
(1875)-A	6		\wedge			0		18	12	10			Ì	ĺ
	en filos El text		08	in the second	0	L.	de la		1	Č,		Z		
		2007		-				1 >	\sim					
		1.57.1		5	5	1	10		0					
د. کنین می د			9	1	20	~ 1	1	\mathbf{a}	1	4		5		
		2.2	and a second	-						\sim				
		-772 10110	ļ	ļ	ļ		N.	M	┫	-	1			
2 °		1974	60	P.	50	5	\circ	$\mathbb{J}_{\mathbb{D}}$	S	$\langle \rangle$				
			\sim	\sim	2	- 2-	ĕ,	J F	12	a here		2		Į
						~	\sim	1	\leq	$\downarrow \geq$				
				1	T	Т	Τ	T		·				
			\supset	~					- Charles			2		
		9.009 	$\mathcal{S}_{\mathcal{S}}$					1.			ale a free a			ļ
,		Weiger.				+	+-	1 7	5.	\mathbf{n}	1			1
			5	-1	12		3	h H	18	\mathcal{A}^{\dagger}		S		ļ
			A			2 6	$\delta \mathcal{E}$	βq	ĥИ	ζĘ,	X	Z		I
Sec. 12	9 o co.			J. (11/2	<u>) / (</u>	<u>'</u> _`					Į	
					i ya				- 57	820			8	
1. A.		19. 19. 19.		1 5040° 1 507	1. 990m 1. 597	- 23	33-		122					1
264			i ing	12.00			9	- X-	363		- <u>5</u>		\$	1
	u (* . 1. (* .	йс 2					- <u>6</u> .					8	REMARKS	I
1	J		ž 🛱	<i></i>	ia #4	57 5 70	<u>.</u>	# }/ #	o. 1952	si G ri	11 S.W.	: Ximi		•(

elt to BASIN 33

1- The statem flow, stripter flow and pressure filter flow rust be gould. Within

ć

.

2- EFFLIGHT FLOW MEASURES THE TOTAL FLOW RESETTHE GAUGE TO ZERO AT THE BEOMANING THROUGH THE FACILITY, OPERATOR BHALL OF EACH MHIT.

Ŵ,

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAM Y OPERATIONS WORKSHEET DAY SHIFT

	·.	
		Ľ
		Y
		S
S		Š
ġ		9
المسبب ا		
Ć		

.

٠,

L'E						and the second secon			
Co 1 8									GR
1449.	EN.	19-1-	BF:	802	310	375	×34.		
~ ~ ~ ~				* *			$\langle V \rangle$	ž	
1012	/		****					¥	NOTE8
871	905 -	0000	\$′ە(7)	1777	000/	1765	355	¥	
118	149	-699.	090	140	1138	2000	1/00	¥	
1433	1432	1/2/	1241	1441	1440	1441	1845	ž	
121	(8)	180	181	1 150 .	081	12%	180	¥	
180	50 190	EN 18	150 1 75	50 180	521 63	all a	181 81	 NA NA	
								i vi	
第155 2 2 4 4	BE	156	nee	3	all	18	26	M N N	-
			Sin to we have					Service of the servic	REMARKS

EXPTUDASIN 33

Pressure filiter flow must be goual. Within 2- EFFLUENT FLOW MEANINES THE TOTAL FLOW 1- THE SYSTEM FLOW, STREPER FLOW AND

É

THROUGH THE FACILITY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE REGIMINIO OF EACH WHIT.

:

WOWN OF OVSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACELITY DALY OPERATIONS WORKSHEET

0
7/40
DAY SHIFT

•

4404444	r					le anna			·····				
		W.	3							1			
			Ž.						· · · · · ·	-			
			3							シ			
	2.00												
			\geq	M				L.	5~	R			
	ille il		3	Ś	5	64	16	°,	Ś	63 X			
			10-1	063	129	1	24	\mathbb{N}	ŗn	1.			
C	600							`	<u>`</u> -				
Trees.		18.31					*					$\mathbf{<}$	
	38 	andara Digiti	U			****************				\geq		Z	
		a da da da											
		1999	0-									Z	
											:		
		2 2 2	\triangleleft	005	UDD A	لغنا	459		\sum	74		\leq	
		1991 (J	λ	00	101	191	24	64	$\dot{\infty}$	5		ž	
, , , , , , , , , , , , , , , , , , ,							~						
			$\langle \mathcal{A} \rangle$	5-				5	-6				
) y (105	664	9 9 9	4	20		2-	ŝ		ž	
			<u>`</u>	9	-0	\sim	-						
افتید کرد. بندین در م الاید الاس	· · · 7 · · ·				 				╂──				
			0	2	R.O		5	-	2.0	5			
and the second sec	191			7	5	104	2	2	12	7		Ň	
			87		<u> </u>]					
			$\hat{\Sigma}^{-}$	\mathbb{C}	0	T	O	\bigcirc	þ.	∞			
			5	5	5	۲.)	$\frac{2}{2}$					z	
			-0			<u> </u>			240	0			
				\sim		~~~	P.	10		\sim		Z	
				<u>`</u> -	<u> </u>	· · · ·	·						
		2000 B	\sim	Ċŕ	≥ ≤54	دىدې	5	- 650		\sim			
			こ	ン	2	D:	5	T	3	5	1	Z	
		e anna Realtea		┨───	+	+		1-			* *		
			\sim		1-				Ĺ	\square		Z	
				Ĺ		_		_					
			Q			5~~	13	-	╂──				
			, A A	100	50	13		z X	50	R.			
i nanatý. Na stalo	ya sakeo 1 <u>5</u> 1	44944974 	a Yeens	: 2,117/							1		
1997 - 1997 1997 - 1997 1997 - 1997												مىر	
1999 1997							- 9 24. 2				5.5		
a an in Section												,	X.
-													

EFFINIENT TO BOX, NJS REMARKS

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND Presente Filter Flow Must be Ecual Within Pr.

2- EFFLIENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE REGAMINING OF EACH SHIFT.

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	151 UMU U	00	013		Z		306 11/	,365- V		R FLOW AND BE ROUAL WITHIN THE TOTAL FLOW ATOR SHALL THE BECOMMING
		Ĺ,	7		ý • • •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			X X	NOTES - THE SYSTEM FLOW, STREPER FLOW AND PREMOUNE FLITER FLOW MUST BE EQUAL WITHIN SY. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BECAMARKS OF EACH SHIFT.
F OYSTER BAY NT OF PUBLIC WORKS FRITINENT FACILITY RATTONS WORKSHEET DAY SHIFT 7 2 7			80	5 974 1	2 899 L	/ rpap /	2 1785	1 636 1	X	NOTES THE S THE S
TC/4VN OF OYSTER BAY DE/ARTMENT OF PUBLIC WORKS OROC/NUWATER TREATMENT FACILITY DAV SHIET 7/ 2 7/ 2 7/ 2	1011 QEM1	14 26 1183	1422 1192	11419 1205	1418 120	1421 594	CHII LIMFO	11431 112	X	
	148 176 179	221661 341	3(191124)	46176176	17617	AULLI Sh	031 031 64	061 161 6h	M M M	Basin 33
				230	200	\$10 P	1/1/2	A.2.9	M	sert to
. I									anenannananan	EFF Laer

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

Ì

DAILY OPERATIONS WORKSHEET DAY SHIFT

0 200 \overline{c} DAY SHET

۰.

					An and an and							
			W.						~			
			3									
	alation		~ ~ ~	90.	"I I B	- V - 4	R N O	30 -	360	HI M		
		and proposition			-6.	• 3	-3 + + +				₹	
		99100-000 B	9							ڳ ۔	Z 	
			C						, ,	2	¥	
		C. C	0001	1 GY	In Li &	895	939	1222	4561	d 4 O	X	
بە ر بۇر ئۆرى دىر د		in the second second	6639	1000	141	1193	2517	117 By	4611	1193	ž	
			1426	1450	1455	9450	6741	144 8	$\left(\frac{d}{d}\right)$	143 m.	ž	
	6		1761	20		361	103	ふ に	176	176	M	
			FC.1	bhi	178	841	しし	NY 8°	6.67	うしょ	ž	
			(n)	6,h1	- 0	10	5 A M		371	148	ž	
		¢.	Ų-								ž	
		5.55	960	5 M				200		220	ž	
											an francis	and a second s
44.59 	20. 20. 										: 7,007	

EPElvend dd Gasin 33 - changed eu ziythe berrel

: .

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND Pressure fr. Ter Flow Must be Boual Within By.

2. EFFLUENT RLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE RECOMMING OF EACH SHIFT. TOWN OF OVSTER BAY DEPARTMENT OF PUBLIC WORKS OPOUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

7.23.09 Centore

1		-									
	Compert										
	1443	62.	130	188	249.	312.	372	1 4.35			
	0,~~	×			* * *		\mathbb{V}			M	
	SEF	4					/	2		Ň	
	1000	1082	89/1	1881	08 80	1775	FIL	Nel		×.	
	665	8411	1154	110	1/32	170	1 N	SHN.		¥	
	SCV1	7453	, 183	1451	とかし	(アン)	一次とう	52 21	-7	Ŵ	
	6179	561 80	501	120	821	(< /)	81:1 2	179		Ŵ	
	79 176	34/ 25	8 1 08	36 / 30	SU 53	50 181	45 11	N 1/20		W W	
			<u>, , , , , , , , , , , , , , , , , , , </u>			7				i M	
	0.7.7		, L L	S C	27	146	120	931		ž	
							1012-012-012-012-012-012-012-012-012-012				20120-100-100-100-100-100-100-100-100-10

THE MAKES STATES S

NOTES

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%. 2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THOMAN THE EACH ITY CONDATION SHALL

2- EFFLIENT FLOW MEABINES THE TOTAL FLOW THROUGH THE FACKLITY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BECMANNUC OF EACH SHIFT.

GROUMDWATCH TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

,

DAMLY OPERATIONS WORKSHEET DAY SHIFT

Le MBrele

N-24.09

ť,									
E CON)								
1441	6/	12.)	$\mathcal{N}\mathcal{O}$	245	960	362	12 8		
50	J			* * *	/	∇		¥	
0/4							9	ž	NOTEB
1222	1338	1336	1000	2101	1757	1754	12-29	ž	
6.511	9711	1196	11,70	2911,1	1177	1150	1139	¥	
1405	145	1433	1439	2351	1427	7525	187	X	
81 6	180	0/1/0	1811	R.	6 155	71.76	8C1 7	W	
08/ 105/	\sim	11 10	1 51	0 1/20	11/1	49 17	27 61	 N N	
								W	
576 H	268	から		KXX	50	188	CEE	ž	
	にいての強調								

ľ,

8 An Sw. Fre CAPTO 355W # 33. REMARKS

PRESSURE FLITER FLOW MUST BE EQUAL WITH - THE SYSTEM FLOW, STRIPPER FLOW AND Ľ

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THEOUGH THE FACULTY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE BEOMMING OF EACH PHIFT.

GROUNDWATER TREATMENT FACILITY WOWN OF OYSTER BAY MEPARTMENT OF PUBLIC WORKS

DAILY OPERATIONS WORKSHEET DAY SHIFT

P.25.09 Cempul

22					Ī	Ī			r
4×0 (2~			(N	ρ	, O		7.1		
125	62	120	179	27	. 1	23	14		
- 0/0-				- *			Y	 ٤	
~~~~V		 		$\sum$	)	) (		₹	NOTES
BUT	1 oze 2	P.99	1373	c 123	120	E100 -	- 11 F	ž	ſ
1 1161	6 000,	1157	- 1163	79/1	1168	699 .	1109	£	
	7 143	1431	1451	05/-10	1821	h8R 1 .	1860	 ž	
7 178	171	081 20	56130	08 1 PC	121 20	er a	181 5	¥	
トット	14811	11 651	1481	100 11	150 11	1 63 1	181	 M	
								X	
22	12 C	CC 1		50			CH.	No.	SYG5
					AG. A SWARD				REMARKS

ELL TO ROP TERSIN :

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN + THE SYSTEM FLOW, STRIPPER FLOW AND

ź

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE BEOMMING OF EACH PHET. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUWDWATER TREATMENT FACELITY

DAME Y OPERATIONS WORKSHEET DAY SHIFT

J. 26-03 Central

1011010101 Januardamataria	<del></del>		T	awanang T		o a constant	in the second				
	ON BIZA										
	ž									ľ	
	6										
				J				1			
	G	62	$\mathbb{C}$	~	5	Q	0	5			
	14	2	N	10	2	M	$\mathbb{R}$	Y			
					×	ν	H				
	0,00				*						
	01	-1, - 1.07 (0, 10 ¹ /10)				~~~~~~				٤	
								$\geq$			
	j										
	246	~*					,	$\mathbf{\hat{r}}$		٤	NOTER
	3						~				2
	£		5		N		~	$\sim$			
	Ň	5	5		$\mathbb{N}$	J.	18	213		٤	
	/	af			14	Ľ	$\langle$	$\sim$			
	<i>(</i> )			<		$\sim$	à	N		-1	
	129	0 6/	1	Z,	R	D'	Ľ	60		£	
1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 19		Ø				2		1	:		
		1					Ũ	6			
	$\sum_{i=1}^{n}$	5	18			Ð,	$\square$	460		ž	
		$\overline{\}$			34	K		2		×	
		<b>İ</b>	~			<b>[</b>			10		t
		20	$\frac{1}{2}$	N	$\left\{ \right\}$		R	B		X	
		È		<u> `</u>	<u> </u>	<u> </u>					
		2	20	Ą.	S		ļÇ	2		ž	
		乀	$1\Sigma$		12	2	Q				
		96		S	(A	0	$\int$	5			
	調いて	J.	રીક		1	<u>1</u> 2	۶Ľ	2		ž	
550000 1000000 1000000	3 3	-	╺╂──	╉─	╉╴	1-		1-1	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		
		) ~~								2	
		1			+-	+-		1-	er finne		
65		218	37	28	à	-22		La la	1	ž	
		МÇ	90	N U	29	źŽ	50	) [/]			
		Ĭ						ँ <u>ई</u> री '' (		ς. 	
			2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				13:19:5 19:72	141.000	សម្ពុំនេះ ក្នុន		Ale Her
										Ś. Ywn	1000
	utio un	<i></i>									

Wr 70 Cop BASIN REMARKS

## NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE BOUAL WITHIN 5%.

2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

GROUNDWATER TREATMENT FACILITY **VOWN OF OYSTER BAY** DEPARTMENT OF PUBLIC WORKS

DAILY OPERATIONS WORKSHEET DAY SHIFT フレネク 00 9

	-	n an	Laucheeige.							
	$ \neg$					Ì				
	21	ł		1			$\sim$			
	Z							$\rightarrow$		
	~						ł			
	$\sim$			1			- 1			
	$\bigcirc$	and and			~					
	$\circ$	,059	Ø	{	$\langle \gamma \rangle$	$\mathcal{E}$	~	2		
		3/	78	٥o	$\mathbf{N}$	<b>N</b>	প্থ	$\mathcal{X}$		
	~~	$\tilde{\mathcal{O}}$		-	5	$\mathcal{M}$	(ŋ	$\mathbb{N}$		
		<u> </u>	-	<u>`</u>	Ĩ		۲			
					1					
	Ś				ŕ		$ \ge $			₹
					-					
	$\circ$		******					$\geq$		Σ
		8-	124 O	ठ ९ ८	0	10 94	796	0		
	58	869	2	<u>ө</u>	853	7.5	5	$\sum_{i=1}^{n}$		2
18 1 		50	æ	$\sim$	$\widetilde{\mathbf{v}}$	$\circ$	$\langle \rangle$	37		_
	Ĩ		~~~			1		~~		
				Ϊ) I						
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0	$\bigcirc$		095	ľ.		$\mathbb{S}$	T.		
	000	999	000	9-	7	Ż	$\tilde{S}$	3		٤I
*	, D	$\sim$	0	0		~~~~		~		
			Ń	0	~~~>	~		~		
		<u>ار</u>								
	393	5	50	(	m	~	A			
	ന	Vo	$\sim$	$\overline{\mathcal{O}}$	-	8	õ	S		ž
	$\mathbb{L}^{n}$	N,		5	5	0	1-	3		
	°	·	2	·	~	77	~			
Allower Descention	š	h -		Q			. λ			
	5-	hu	Q.	$\sim$	٠Q	$\sim$		-9	Ì	
	<u> </u>	5	$C^{-}$	Ć	$\sim$		0	5		Z
	[	-	2	0	-0		. 9	-0		
1 11/07	$\sim$	Ś	$\cap$	$\sim$		~	$\sim$	$\sim$		<b>Zi</b>
	ر. منسر		Ĩ~~	·	1	·	ر. هنه-	· · ·		
5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	r -	<b> </b>	-			<u> </u>			
	$\mathcal{P}_{\mathcal{O}}$	$\sim$	5-	12	. 4	5-	2	13		
	1	12	5	2	5	K	T	]⊃~		Z
	·		-		هنيب ا	- 				
		Τ		T	Γ					
										5
	$\odot$		<b>—</b>	1		1	1	ſ	-	
		<b></b>	<b> </b>		<b></b>		-	╋━		
	3	9	5	ĸ.	35-		$\langle \chi \rangle$	3		
	$\sim$		17	:  Ľ	2					Z
	5 5 - S	104	100	×~	- 6	15	56	05		
	? vitter	1 2000	: <del>7</del> 75	s Herto				) 97		çi i ğ
		2000				. <u>.</u>		÷		
	3	12					-38			
		1970	l ann	2 (C ) #: .		÷ :				÷5
Section 2. Access	<u>َ</u> ﷺ	: <b>:</b>	474				. 89	2	50 5	in A
and the second state	ite Alffia	** *****	n tiiki	er verte						

ZAPILVENT VU PARP Basin 33 18:15 EPPElorent to Basin 33 changed enzy Mic DONNE REMARKS

## **KOTES**

2- EFFLIENT FLOW MEASURES THE TOTAL FLOW Presente filter flow must be goual with CINE SYSTEM FLOW, STREPER FLOW AND

ź

THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE REOMANNO OF EACH WHET.

2 2 2 2 2 2 2 2 2	John WAR		6 1.45% UMD	12 10 5 R		*** . 174	2	1 + 292 - 1	7 1337 V	X		1- THE SYSTEM FLOW, STRIPPER PLOW AND Pressure fillter flow must be boual within by.	2- EFFLUENT FLOW MEABURIES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINAMING OF EACH SHIFT.	
STER BAY JBLIC WORKS THENT FACILITY	WORKSHEET / 4/28/09 67	1-00 + +		<u> </u>	68 1215	3 1/69 1	୍	80 1766 11	85 1191 4 V	X X X	NOTES	1- THE SYSTEM FL PREMOUNE FL.TE BY.	2- EFFLUENT FLO THROUGH THE FA RESET THE GAUG OF EACH SHETT.	
TOVN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUP DWATER TREATMENT FACILITY	DMLY OPERATIONS WORKSHEET DAY SHIFT 7/28	•	13 12 6 360 11	5 / 11 6   - 1		111 /981 141 96	75 1941345 117	311 8281 AC1 EC	73 1.73 1.769. 118	M M M		Basin 33		
			2140 0 145			1 9h1 3/8	316 ) 145	LM 11 914	2/6 V 145	M M M	REMARKS	Etheward to		

**GROUNDWATER TREATMENT FACILITY** TOWN OF OYSTER BAY WEPARTMENT OF PUBLIC WORKS

0 DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET DAY SHIFT  $\mathcal{T} \mid \hat{\mathcal{I}} \mid \hat{\mathcal{I}} \mid \hat{\mathcal{I}} \mid \hat{\mathcal{I}}$ 

		1	<u> </u>	T		Ī					
	In										
	Q Y				$\neg$	$\neg$	$\neg$	$\geq$			
	2	$\mathcal{O}$	$\sim$	5		Q.	5	$\sum$			
	Μ	,06(	18		$\sim$	\$ \$ 75	N N	X			
	$\langle  $		ز 	4	3			2			
					ż			$\Box$		₹	
	0									Z	
	9							$\geq$		₹	8
											NOTES
		м			2-	į,					
	643	びなび	966	760	3	NNE	8-23	17		₹	
	ර්යා	2	5	61	_	13	Ľ,	96.			I
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	5	10	0								
		53	9	26	2	185	65	5		£	
		11		[]		11	Ś	] ]			
	M	5	5	-0	G			. Q			
	5	$\sum_{N}$	2	5 3	36	2 2	$\leq$	26		ž	
		,		, 			12				
	S	Ľ	6	3	M	5	-5	1	en en en en en en en en en en en en en e	ž	
	<u>`</u>	$\sim$		<u> </u>	[]	$\leq$	$\subseteq$	<u> </u>			
	5	5	GĘ	M	ক্ত	12/	$\mathfrak{Q}$	$\sim$		5	
		$\sum_{i=1}^{n}$	$\subseteq$		$\subseteq$	7-2-	<u> </u>	<u>`-</u>			
	5	S.	$\geq$	1	I	7	T	3		ž	
	$h^{\gamma}$	2	~~	2	Z	7		Т. 			
	A. 19					<b> </b>	Ľ			X	
	1	1									
	).	- 20	1	2	.0	2	5	0.		5	
	4	5 2	- ~	60	00	5	0	μĘ			
	1										
			12000	100		1977 - 19 1977 - 19 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 19	1.2.13 1.2.13 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.1 1.1.			2010) 2010	
										\$	

PRESENTE FLITT FLOW MOST BE BOUAL WITHIN 1- THE SYSTEM FLOW, STRIPPER FLOW AND

É

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REDET THE GAUGE TO ZEHO AT THE REGIMENCE OF EACH SHIFT.

:

Efflorn & do Barlin 33 **TEMATICS** 

GROUMDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAWLY OPERATIONS WORKSHEET DAY SHIFT

N. Jo. 07 Corsel

۰.

MOLE MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MARKA MAR	Manual Constants	<u>, , , , , , , , , , , , , , , , , , , </u>										
2/1     2/1     1/2     1/2     1/2       2/1     2/1     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/2     1/2     1/2     1/2 <td></td> <td>ñ</td> <td></td>		ñ										
2/1     2/1     1/2     1/2     1/2       2/1     2/1     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/2     1/2     1/2     1/2 <td></td> <td>N</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>r</td>		N										r
2/1     2/1     1/2     1/2     1/2       2/1     2/1     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/1     1/2     1/2     1/2     1/2     1/2       2/2     1/2     1/2     1/2 <td></td> <td>6</td> <td></td>		6										
M     M     M       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       316     175     135     1127       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     565       317     175     355     175       316     175     175     565       316     175     175     565       316     175     175     565       317     175     355     175       318     175     175     355       317     175     355     175       318     175     175     355       317     175     355     175       318     175     355     175		$\mathbb{V}$										c
M     M     M       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       316     175     135     1127       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     565       317     175     355     175       316     175     175     565       316     175     175     565       316     175     175     565       317     175     355     175       318     175     175     355       317     175     355     175       318     175     175     355       317     175     355     175       318     175     355     175		$\overline{\mathbf{A}}$										
M     M     M       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       316     175     135     1127       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     565       317     175     355     175       316     175     175     565       316     175     175     565       316     175     175     565       317     175     355     175       318     175     175     355       317     175     355     175       318     175     175     355       317     175     355     175       318     175     355     175		51		$\sim$	$\mathbf{x}$	$\sim$	. (Y	$\sim$	Ĺ		v.	3
M     M     M       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       317     02     175     127       316     175     135     1127       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     665       316     175     175     565       317     175     355     175       316     175     175     565       316     175     175     565       316     175     175     565       317     175     355     175       318     175     175     355       317     175     355     175       318     175     175     355       317     175     355     175       318     175     355     175		N	$\mathcal{A}$	1	5	5	2	R	$\sim$			ò
MIN M M M M M M M M M M M M M M M M M M		$\leq$	~	$\mathcal{O}$	and a		$\sim$	5	X			
11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11				$\geq$	$\geq$	<u> </u>	¥	$\cup$				
11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11     11     11     11     11     11     11       11     11		Ċ				+						
MA M M M M M M M M M M M M M M M M M M		4				*		~			5	
MA M M M M M M M M M M M M M M M M M M		20 0		~~~~~			No de la Constantina de la constante de la constante de la constante de la constante de la constante de la const		<u>~</u>			
31     31     31     31     31     31       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1 <td></td> <td>Ň</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td>2</td>		Ň						~				2
31     31     31     31     31     31       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>/</td> <td></td> <td></td> <td></td> <td></td>								/				
31     31     31     31     31     31       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1       31     1     1     1     1     1     1 <td></td> <td>Ľ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ا≥</td> <td>8</td>		Ľ									ا≥	8
3/1     02     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/1/27     1/1/27       2/1     02     1/25     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25		0									Z	E
3/1     02     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/1/27     1/1/27       2/1     02     1/25     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/25     1/1/27       2/1     02     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/25     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25       2/1     1/25     1/35     1/25     1/25     1/25												ž.
217 OS 178 138 138 138 138 138 138 138 138 138 13		N		$\wedge$	$\overline{\}$		$\overline{\ }$	2	$\overline{\mathcal{N}}$			
217 OS 178 138 138 138 138 138 138 138 138 138 13		5	80	$\sim$			6	1	5			
21X 02 1X7 13 175 15 127 125 21X 02 1X7 13 175 15 127 125 21X 12 172 173 1357 125 21X 12 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 172 173 1357 112 21X 13 177 1357 112 21X 13 177 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 172 1357 112 21X 13 177 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 1357 112 21X 13 177 125 137 125 112 21X 13 177 125 137 125 112 21X 13 177 115 117 117 1177 1177 1177 1177	ຳ ບໍ່ກາ 	11	5	N	22	$\sum_{i=1}^{n}$	$\widetilde{\sim}$	Š.	Ñ		Z	
317     327     327     327       327     327     327     327       327     327     327     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     355       376     747     775     355       376     747     775     355       376     747     775     355       377     752     355     355       376     778     773     357       377     775     355     355		N	in a		$\tilde{\mathcal{O}}$	Cre	<u>`</u> `					
317     327     327     327       327     327     327     327       327     327     327     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     355       376     747     775     355       376     747     775     355       376     747     775     355       377     752     355     355       376     778     773     357       377     775     355     355		$\overline{\wedge}$	0		1				$\sim$		_	Г
317     327     327     327       327     327     327     327       327     327     327     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     355       376     747     775     355       376     747     775     355       376     747     775     355       377     752     355     355       376     778     773     357       377     775     355     355	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and a	0	d	Ŋ	5	$\mathbb{N}$	X			
317     327     327     327       327     327     327     327       327     327     327     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     325       376     747     775     355       376     747     775     355       376     747     775     355       376     747     775     355       377     752     355     355       376     778     773     357       377     775     355     355	i i je ugado	Ň	2	4	N	0	$\mathbb{C}$	12			2	1
21/ 02 1/2 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 22/ 02 1/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2				1	N.	1						
21/ 02 1/2 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 22/ 02 1/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2	and and a state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	÷			<u> </u>	-0						
21/ 02 1/2 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 22/ 02 1/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2		2	N	N.	2	$\mathbb{N}$		5	6			
21/ 02 1/2 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 21/ 02 1/2 22/ 02 1/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2/ 0/2 2		W,	M	6	5	2	2	$\Im$	2		<b>S</b>	
21/1 CV 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2					$\mathbb{N}$	~	$\mathbb{C}$	$\mathbb{Z}$	$\mathbb{C}$	74 also 1 a c.a.		
27/ 00 1/20 1/20 1/20 1/20 1/20 1/20 1/20		-			$\sim$	ļ	} 	<b>!</b>				
21/1 Cov 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2			0	n	$\sim$	$\mathfrak{O}$	$\mathcal{A}$	$\odot$	N		<	·
M W W M M M M M M M M M M M M M M M M M		1	$\sum_{i=1}^{n}$	N	$\sim$	5	Ś	12	$\mathbb{N}$		Z	
M W W M M M M M M M M M M M M M M M M M					1.2							
277 277 277 277 277 277 277 277 277 277		$\sim$	5	M	N	2	€-	$\mathbb{N}$	れ		$\leq$	
277 277 277 277 277 277 277 277 277 277		$\mathcal{D}$	500	Ň	1		Ĵ	$\sim$	$\sim$		×	
277 277 277 277 277 277 277 277 277 277		,	1	$\sim$		<u> </u>	ļ		1	ł		
277 277 277 277 277 277 277 277 277 277		5	2	57	free	Ľ,	5	- 2	R		S	
R 22/22/22 R		$\sim$	~	$\left  \right\rangle$	2	2	5	$\sim$			•	
R 22/22/22 R	and and a second second second second second second second second second second second second second second se		<b> </b>		$\vdash$		-	1		9		
R 22/22/22 R	202.5	2				<u> </u>		and a			5	
E SSSSS						ł		-	X			
E SSSSS					+							
		$\geq$		$\geq$			<u></u>	1	~		5	
		$\widehat{}$	d,	()	$\sim$	<u>,</u> c/	$\sim$	X	n)			
	and a support	2. 7. XXXXXXX	· · · · ·	4 - 7757							ç	
				2005 2000			12				1000	
		i Ý Thu				÷		3064 7 1	44 S.		1	
an an an an an an an an an an an an an a		ĩ. 1460				<u> </u>						
	Section Sector	÷ 94	: http://	i 42	05 <b>5</b> 770	5. É.V.	S. 1997	. <u><u>.</u></u>	a 55 at	. 100.000	7,000.3	

on the kg BASIN

PRESENTE FLITT FLOW MUST BE EQUAL WITHIN 2- EFFLIENT R.OW MEANINES THE TOTAL FLOW 1- THE SYSTEM FLOW, STREPER FLOW AND ć

REGET THE GAUGE TO ZERO AT THE PEOMMING THROUGH THE FACILITY. OPERATOR SHALL OF EACH WHIT.

Ý

CREMENTINENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY

DAILY OPERATIONS WORKSHEET DAY SHIFT

CEMPACE. 7-31-09

۰,

X.,	Managara da Santa da	-					-			
Carlo										
1 463	Ś	Br.	L. 81	249.	Sio.	36 L	1 430			
ep~	4			* * *			<i>}</i>		ž	
470	į					/ //			¥	o HOM
696	618	17577	823	0,3/1	807	11-01	586		ž	
SC/1	000/	SUN	23/1	185	168	M/W	160		ž	
6981	137	/335	1357	1345	1362	1369	1371	- "	ž	
7175	ろくじ	ha	123	172	1173	カビー	173		M	
	101	1773	1 22	101 -	19	· 127	201-		X	
	44	541	12/1			13/	14		M N	
			-			10	15		92 15	
						$\mathcal{T}$				
							2		i Xon	

out no Rof BASIN. REMARKS

Presentia frame from Must be Boual Withon NOTES - THE STREET FLOW, STREPER FLOW AND

É

2. EFFLUENT FLOW MEANURES THE TOTAL FLOW THEOUGH THE FACILITY, OPENATOR SHALL REGET THE GAUGE TO ZERO AT THE REGMANNO OF EACH WHET.

DEPARTMENT OF PUBLIC WORKS GROUWDWATER TREATMENT FACILITY TOWN OF OYSTER BAY

DAM Y OPERATIONS WORKSHEET DAY SHIFT

P. 1. 09 Centrale

•.

		Ń								 	
		Certs.				n. 14 milet					
		181	L Q	125	127	1200	3/0	372-	142 8.		
	ระ 1915 - 2 เป็นได้เป็นได้เรื่องเหตุ เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็น เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้เป็นได้	-10	4			* * *			$\mathbf{x}$	¥	
								/	$\geq$	¥	NOTER
		960	216	829	1000	r.l.s	0611	9711	830	ž	
<b>140</b>		1142	1143	2011	1160	1162	1155	Willsof.	1153	¥	
		1385	1353	1.585	1356	1391	1381	1572	1395	Ň	
		103	- 173	201	264	170	101	12:21	173	M	
		6 174	とし	6174	-1 173	1104	5/11 (	F 172	4 123	X	
a ta a constante Altigate da constante Altigate da constante			14	2/	14.4	101	12/	3/ /	14	W W	
	- A (2)	20160	216	1		1	2/0	117	V VIC	ž	

REMARKS

~.***** pet to Ray BASIN.

Pressource fructing flow must be goual within 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW NOIES 1-THE SYSTEM FLOW, STREPER FLOW AND É

THROUGH THE FACELITY. OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE REGMANNO OF EACH MHFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OPPOUNDWATER TREATMENT FACILITY

D## Y OPERATIONS WORKSHEET DAY SHIFT

a nall S. 2-07

2	litrin, n.c.ds		(7. JA) = 24							
Cans										
1921	62	127	(19	o R	320	380	439			
C RO	~	******		* * *		$\langle \rangle \rangle$	Å		¥	
- V2/2	V					$\geq$			¥	
12-05	1297	1807	000/	1016	838	801	528		ž	
165	1187	1186	1/60	( er ca /	1144	1140	レヤク		¥	
1381	1382	1325	1350	140%	1621	1382	Cost!		Ň	
1221	121	170	121	170	174	1.91	ノフビ		ž	
761	.73	125-	174	173	173	1261	1252		ž	
144	イイン	124	1941	18-	140	146	144	-1 <b>- 1</b>	<b>N</b> A	
بود موجدین ک ۱ نُ						. / ]/	>		X	
717	316	Ar	216	315	216	215	BBB		W	

out the Ray Bats in REMARKS

## NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE BOUAL WITHIN 5%.

2- EFFLUENT FLOW MEABURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE REGMANING OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS CIPOLINDWATER TREATMENT FACILITY

)

DMS Y OPERATIONS WORKSHEET DMS Y OPERATIONS WORKSHEET DMS PAY SHIFT DMS DMS PAFET

8/2/2

	I	-		-				-			
	NMD										
	1				$\neg$		~				
	$\mathbb{Z}$							2			
Honor Turking			1							i i	
				ļ	1	0	802	998			
			i	Į	NO	140	0	E			
				1	6 2	$\sim$	2	00			
					~~~~~~						
· - 121.11. 221.11.201.201.201.									Î		
	i i		Ī		9**						
					in			\sim		Z	
			- 1		U U		~				
								e e			
			1		0			1		٤	
		P/9 ON 9									
		<u> </u>			0001	1000	(920			
1923		\leq		1	Ň	2	2	ি		ž	
		\mathcal{O}			0	え	000	5			
						\vdash	_			<u> </u>	
		$\sum_{i=1}^{n}$			ha						
<i></i>		\geq			20	ביו	6	6 63		£	
		$ \phi $			103	:S~	(2) (,)	$\sum_{i=1}^{n}$		Z	
		\bigtriangledown			~	22	()	1			
and an and a second		- D-D	~ 								
					T.	N		\cap			
	1				Ň	5	·~	Č.		ž	
The second second second second second second second second second second second second second second second s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		\sim	N	IM	3			
antenne finsterie		1			<i>د</i> ا		~	[
The second		7									
Service Contraction			Ĺ		55	Q	\leq	5		ž	
	ž.	\leq			2	\sim	\Box				
	ő	 									
	5	1			6	~	~~	5			
	ž.		_		5	2	<u>~</u>			2	
		đ	6			\sim					
					I	~					ł
					5	12	12	1		2	
					2		Ľ	مست			
States		†	†	 	†	1	1	1			
X								-		\leq	
	80		l		\bigcirc	-					
	í	_	┫		↓		-	-	2		
					2.		5	-			
	01 20			1		;[~		÷.		2	I
	22 23				01	¢	200	180	3		
	" Ж	: 'www		ya.e.							
(C.V)	- <u>19</u> 27 	470	2 9887 2 87		122			14			
	÷.				: <u>@</u> %:	3	38	222		<i>₩</i> \$	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									بر میں میں	s c
a anna an anna anna anna anna anna ann	a 🛱		4. Will.	s suit:				. <u>5</u> .	r. Sii.	. Sign 3	

11 Am what went to add as a main as a main as a main a chang a hain a chang a hain a chan a c REMARKS

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PREMOUNE FILTER FLOW MUST BE BOUAL WITHIN 5%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEOMMING OF EACH BHFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAIL Y OPERATIONS WORKSHEET DAY SHIFT $\mathcal{E}/q/\mathfrak{O}$

		T			a			i an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an tao an t					
		\exists										:	
		Ĵ	-+					-	\sim				
													GN
		2.89.8	0	2		Ş	~	\bigcirc	\Diamond				MO
		085 085		50	0	\geq	30	360	120				Ì L L
		\propto	\leq	2	7	ିଟ୍		1.2	-)_				Wd da
						*							BTH
		9					_]	\geq	A		₹		ğ
													1- THE SYSTEM FLOW, STRIPPER FLOW AND
								<	_			Ø	8751
11:0000		6			-1)' '	\geq		۶	NOTES	Ĩ
					-							Ž	Ŀ
		\triangleleft	5	883	10 5	1	(&)		34		<		
		VV \$	5	30	10	$q V_{I}$	}] [108°	1234		ž		
					\sim				į į				r
		2.2	153	155	12H	56	9	7	0		≸		
			.	1	115	115	115	101	9		Z		
							5				_		
		3817	98	83	\ S	\sim	52	5			¥		ľ
		M	3	3	200	2 2		m	19		Z,		5
								ļ				-	$\left \right $
		アイ	5	73	50	5	(\sim)	یم میں	13		ž		
				 	Ľ.	<u> </u>		-					V
		5	M C	3	2	よく	70	56	$\sum_{i=1}^{n}$		ž		
Rise in		\sim				<u> </u>		È					í.
		14 G	NG	(HA	:45	<i>i</i> 4 5	146	カトリ	5		Ň		7
		~	2	2	•	5	Ĩ		=				ſ
and the second s		9	ļ			-		\mathbf{E}	Þ		ž		4
	view)	 	Į	 	 	 	 	 	 				
		9/	2	2	ف	<u>.</u> _	9		٩		¥		
control of		Lo I	-6	æ	i ~	-	् या	6	26		4472.0.4		
							о 1 1 1 1					ŝ	
										5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		DENADYe	
									in 69 56072		88 1000		
							_	-					

Eterland total for PlatelS FARINEWS TO BOARIN 20

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

2- EFFLIENT FLOW MEABURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OPDUNDWATER TREATMENT FACELITY DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET DAY SHIFT $\sqrt[V]{5^{1}}/3^{1}$

annun pansion		ernanole I	at hornel the politic			Ī	in the second second second second second second second second second second second second second second second			
	D M									
	1							<u>ا</u>		
annon a the										
Martine 1 Furthing	600 E									
	610 610									
	## <u>2</u>	m	~ 2		0	5	~P-	5		
	ΪľΩ	N.	0	9	$ \mathcal{U} $	$\overset{\circ}{\sim}$	-) ->	\bigcirc		
		059	•	1	3		Ċ	62		
		\circ			57	\mathcal{M}	$\langle \uparrow \uparrow \rangle$	Y		
					Ň			γ		
case - Cassestation	: : ::::::::::::::::::::::::::::::::::									
	<i>4</i>				* *					
	ğ				*					٤
	4 V			-	-					-
	- 5-	+ ·						\sim		
	et							· · · · · ·		
			[
	1	1		1						
) C	 		ļ				\sim		Z
	1. A C	1		I.						
		I	ļ	I	I.					
127 gy gy	22	1	K	1		1				
	# *	5	10	1	000 8,		~	5		
	60 R	5.7	জ জ	9 C &		000	000	0000		ž
24 A	ЧŲ.	2	un	Ø	-	0	\odot	3		*
				ð	Ă	Ð	\circ	Õ		
					<u> </u>		 			, i
्र स्थान् सुर्वते	1.3			1	k	L		1		
2000 - 20000 - 2000 - 2000 - 20000 - 2000 - 2000 - 2000 - 2000 -	D.				1205	Σ^{\sim}	2 >	\backslash_{\sim}		
	100	0		Ð	ତ	0	299	Ľ,		£
34		· ^ ·	1	104	3	5	-0	Nõ		
ာ ကို ကြောင့်	1996	-			~	-	1			
trinder of some		1	1		<u>†</u>	1	t		1	
	\mathbb{Z}^{\times}	79	<u>رد</u> .	, s∼{		~	<u></u>	\sim		
		2	5	5	5-	5-	<u>h</u> _	Ь, "		۶.
	×.	s (^^	N m		20	F _	5	M		X
Contra Desire			1'	1	y leo	(C.)	NC:	$\mathbb{N}^{\mathbb{N}}$		
Sec. 2 - Sec.						·			1	
986 in 1986			1X]	-	c		
	······	5-		Ky0		L C		0		Σ
	1	≫ (. -~-:	, ⁶ 7	3	K.	2	\mathbb{C}	6		
		1_						1		
	#	. 26	100	í L	ନ୍ୟ	-	6	-5		
		·				51	·	Ľ		١ ٤
			- ~	ξ	<u>`</u>	. L.	1	· `		
	1979) 			1	· 		ă	1-		
				24		~~~				
Faites Array of a star		27	1	12	3	12	12	. 5		
	-	42	-P	12		[]-2	12	èr.		
	10000		_	-	-	-	+			
29		I	I	1	ł	1	ļ	1		
	*						_ ^	\mathbf{k}		12
		1	ł					T/		
25 					-		-	1	7	
		rP	U N	\sum_{n}	s M		- 57	53		
		~ ~~	-1-	1_	· Ľ	<u>/</u> _	· •	r	a de la cale	2
2		X ~	6 🖸	600	∢	50	4-	শ্ৰন্থ	and the second	
an an an an an an an an an an an an an a	ardisida idilgadi yad	erer Mitt		ere Res			1	-		
and the state of	÷.,	÷				÷. ***				1
	timi ä	\$ FE	1	12-		£.	100		1.	5 m 4
		- ⁶ 67	ល ភ្ញុំ ស្ព័រន	a i de	- 5.3	177 2 47	7 . 2	- <u>-</u>	- 5	
		ò. 4							10 Y	
Sant Sheet Sheet Part	inina Š	Ű.	Sia 94	en di	ii. Èi		× 100	z: \$7.9	17. SZ/	i. Yourd
·										

EFFLUERD 12 Basin 33 - Changed enzyme ball alg

NOTES

1- The system flow, stripper flow And Pressure filter flow must be found within sy.

2- EFFLUENT FLOW MEABURES THE TOTAL FLOW THROUGH THE FACELITY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE RECAMPRIC OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OF OUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

COMBRE B. 6-09

						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
	No.	20.000 20.0000 20.00000 20.00000000					and the second sec	and the second of the second second second second second second second second second second second second second	ะไปเกษณะเหลือ เป็นเป็นจะเรื่องเรื่อง เป็นเป็นจะเรื่องเรื่อง			(
	2	144	64	173	1350	0811	SUL -	011	e f l'	1440	CO I O	Ś
573		14	172	1721	1881	7811	1285		Ļ	61-		
		KAL	172	170	1334	6511	958			120		
		145	1201	10	1386	3511	Q 61			186		
		146	1721	1721	1391	1185	1784		* * *	しんで、		
LA LA		156	C	12	1.595	59/1	1220			Jes		n estatut
9/+/		147	170	141	1.399	1176	6961			370		(An and Law of
	1	126	50		1837	1175	1260	\square	}	430		
	W	M	¥	M	ž	¥	×.	¥	ž			
								NOTES				

EXF TO BASIN 33

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%.

.

••••

2- EFFLIENT FLOW MEABURES THE TOTAL FLOW THROUGH THE FACULTY, OPENATOR SHALL REGET THE GAUGE TO ZERO AT THE RECOMMING OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OPOUNDWATER TREATMENT FACILITY

DAM Y OPERATIONS WORKSHEET DAY SHIFT

8.7.09

<u>v</u>	tinik katik	Carlothinadad	an an an an an an an an an an an an an a							
(andra										
1830	62.	120	XD	2/4-	300	370	422.			
021				*					₹	
eth 1-	÷						À		ž	
1123	613	1235	1018	112	900	1060	7161		ž	
1200	hh II	1133	1166	1143	1137	1000	7.611		¥	-
1385	1399	1250	1399	141	1414	1.1.51	765.		Ň	
201	102	IU,	101	177	1.73	173	170	1 . E	Ŵ	97
101	6104	172	172	175	5211	2/2	174		ž	
グオー	141	247	14	14	5411		14	- 24	X	
20)		7	(7		2	
25	う へ 、 、 、 、 、 、 、 、 、 、 、 、 、	212	216	110	えた	211			ž	
						116305050505			State or use is	

@ give in +133 ł ß white REMARKS

NOTES

1- THE SYSTEM FLOW, STREPTER FLOW AND PRESSURE FILTER FLOW MOUT BE BOUAL WITHIN 8%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REDET THE DAUGE TO ZERO AT THE REGIMMING OF EACH BHET.

GROUP DWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEFARTMENT OF PUBLIC WORKS

DEAL Y OPERATIONS WORKSHEET DAY SHIFT

GHARE S-P.09

•

 ्र मन्		unan an I			T	No. Second			
Certsa									
1940	6 3	12-0.	1CT	247	Nor.	270	430		
c fer				* *			*	¥	
015							9	ž	NOTES
1961	1250	P5 7	911	995	15 %.	416	-4201	ž	
16bll	125	146	1/58	1160	NUS !!	1188	0511	ž	
1213	1287	1000	1287	1 7 86	R1976	OSC/	1961	ž	
161	173	173	103	1201	1771	1.73	101	Ŵ	
e 173	4 <i>C1</i> *	7114	51156	10×			512	X	
~ _ / f(9N	71	12	3/		2/1/		AN NA	
10 - C- T	19/2	1010	215		に て 面		L VA	t W	
									REMARKS

EXTO BASIN 33

;

PRESENTE FLITCH FLOW MUCH BE BOUAL WITHIN 1- THE SYSTEM FLOW, STREPER FLOW AND

É

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEOMANNO OF EACH MIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

F-9.09 Central

	j J										
	Certif	ан (сыстана) 									
	1450	62	125	182.	250	3/0	1270	431			
	2/2/0	~-			* * *					ž	
	1711	/					P /	\mathbb{N}		¥	
	1100	006	973	50//	1335	1023	L66	f do		X	
	101	1185	1181	1180	ehll	1182	69/1	1100		ž	
	1994	1000	1.2.95	1281	0601	12-51	the.	IPPI.	1	Ň	
r - 1	1201	178	173	1751	9.61	1261	901	50		X	
	127	6 174	11	173	10		00	ECI -		ž	
	771			Ť	Ì					M	
				16		1/2	1			2 5	
										and the second	
		》 描述					- <u>1</u>	5		, xion	i.

PH to BALINESS.

NOTES

1- THE SYSTEM FLOW, STRFPER FLOW AND PRESSURE FLITTER FLOW MUST BE EQUAL WITHIN 5%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

2- EFFLIENT FLOW MEMORIES THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEGIMMING OF EACH SHET,

BAY	
STER	T OF PUBLIC WOLKS
V0 40	IEAT OF F
TOWN OF OYSTER BAY	DEPARTMENT OF PUBLIC WOLKS GROUPDWATER TREATMENT FACAL

DAMLY OPERATIONS WORKSHILET DAY SHIFT

2 jet	J.

	FG DWD		63	<u>ک</u>	8 E			1 2 V			
		1.37	0 63	14	Ø / 1 • • ↓ _	2.25	2 1 1 3			YN V	
	7 892 0		1 629 /		24	╂──	1 441 1	Y 873 V	Sec. 1	W N	
		124'3 1194	1 1 2 60 1) 4	1236 669	1242 698	54 000	1267	61258.1148		W W	
	741941341	CU NU ON	26177196	101 901 90		2 1 2 2 3 8 2 1	and ist	101 SC1 SM		VN VN VN	
20. 1977 2017 					2,1					X	
				and we want			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		:	ر <i>ن</i> تړ .	

CRAIN and to Barsin 33 • .* REMARKS

NO I ES - THE SYSTEM FLOW, STRUPPER FLOW AND PRESENCE FL.TER FLOW MUST BE BOUAL WITHM É

* EFFLUENT PLOW MEASURES THE TOTAL FLOW THROUGH THE FACE.ITY. OPERATOR SHALL REGET THE GAUCE TO ZERO AT THE BEQUARMA OF EACH SHIFT.

GROUPDWATTER TREATMENT FACK JTY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

with the

1.010

DAR Y OPE

	\sim
	\mathcal{O}
w.m.c.	Charlow and a state
Ę	w
	ÀVO
II 5	

316 148 176 134 144 316 148 176 134 144 316 148 134 144 316 147 174 133 316 147 134 145 316 147 135 662 632 317 148 133 662 145 316 147 133 662 145 317 148 135 662 145 317 148 135 662 145 317 148 135 662 145 318 148 135 662 145 318 148 135 662 145 319 148 135 662 145 319 148 135 145 455 318 148 135 145 455 318 148 135 148 457 318 148 148 148 457 318 148 135 148 457 318 148 148 148 457		
216 148 176 176 1240 189 86 216 148 176 176 1240 189 86 216 148 176 176 1247 1156 216 148 176 174 125 216 148 176 174 125 219 148 126 174 86 219 148 126 124 86 219 148 126 125 86 219 148 126 125 86 219 148 126 125 86 219 148 176 125 86		
XIL 2 148 176 176 1347 1187 8 AID 148 176 174 1347 1156 1147 AID 147 174 174 133 662 135 AID 147 174 133 662 135 AID 148 174 133 662 135 AID 148 174 133 662 135 AID 148 174 135 662 135 AID 148 174 135 662 135 AID 148 176 135 1146 135 AID 148 176 135 1146 135		
MIM -148 176 1747 1156 114 AI6 147 174 174 136 80 AI6 147 174 174 137 668 048 AI6 147 174 137 668 048 AI9 176 174 133 663 145 AI7 148 176 1348 048 048 AI7 148 176 1353 663 145 AI7 148 176 1354 048 048 AI7 148 176 1354 048 048 AI7 148 176 1354 048 048	176 176 1240 1847 84	9 9 11572 WR17
816 147 174 1331 831 816 147 174 1331 666 645 816 147 176 1371 666 645 816 147 176 1333 663 145 817 176 176 1333 663 145 817 176 126 1353 663 145 817 176 1355 1146 167 817 11 149 176 1353 653 1435 817 11 149 176 1353 1146 1337 817 11 149 176 1353 1146 1337	1. 9511 LAX1 0L1	090
216 14 17 13 66 64 216 14 17 12 174 13 66 13 210 14 176 174 13 66 13 210 14 176 12 174 12 217 14 176 12 14 13 217 14 12 12 14 13 217 14 14 14 13	4 174 122 133	, , ,
1 145 176 174 1233 662 145 1 148 176 1246 0431 119 1 149 176 1254 1146 123 1 146 126 1253 1146 123 1 146 125 125 1253 1146 123	161141231 666	83/1
11 148 176 176 1248 0431 1 11 149 176 126 1254 1146 1 11 148 176 176 1253 1146 1	741741233 662 115	··· 249
9 176 19.6 1254 1148 1 6 176 1253 1148 1	6 11 124 6 0031 119	1 1310
E 176 176 1853 1146	1961261254 1148	1/1 1/2/2/ 1/1/
ž	1761761253 1146	V V V V 33
2		-
	×	X
		NOTES

. I PP Inwent to BasiN 33. 2 panged with Me & altel

•

F THE STOLES FLOW, STRFFER FLOW MAN É

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL PREAF THE GAUGE TO ZERO AT THE BEGAMMING OF EACH CHIFT.

CHOUNDWATCH TREATMENT FACHLITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

Acres

S N DANLY OPERATIONS WORKSHEET

۰.

	8
	C
~~~	
	and the second second

	QMQ	~~~				terent konsen		2				CH CH	L FLOW
	1-155	, O 5, 8	1 1 2 1 2 1 2	181	· 249	202	1364	425				1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITTER FLOW MUST BE BOUAL WITHIN	PK. Leftunnet flow measures the total flow innough the facility, operator shall resert the gauge to zero at the beginning
	Ø				***		/ ]	L V		ž		H MOTH WILL TH	T FLOW MEANU ME FACULTY, ( GAUGE TO ZEF
	Ċ,						>	V		¥	NOTES	Truesday	PK. 2- EFFLUENT THROUGH T REPERT THE
		1296	393	QQP	0022	1 L. M.	1291	873		W.		,	
	189-		5	<u> </u>	658	1000	0//38	147		X			
	1 2 2 2 2 2 2 2 2	2 2 2	[3]	225	02 61	13 40	1205	10 48.		ž		N A	banned
	5 7 7 7 7 7 7	MM Z	5-144	(   N 3	1 193		1 1 1 V	110		M. V		23 /N	L and K
					14 60 101			196 1		M M		to a as	ensym
1. 1. 1.	U U U U			-				; 		ž			to all
		9 \ 1 6 3				6	2 ~ 6 ~			2		PF Luen	a hany er
			L CARA	100 100 100 100 100 100 100 100 100 100		- 12. - - 			;	برینی د			~1

REGET THE GAUGE TO ZENO AT THE BEOMMING

OF EACH SHIFT.

. -

DEPARTMENT OF PUBLIC WORKS GROUPDWATER TREATMENT FACKLITY TOWN OF OYSTER BAS

~~~~

DAMLY OPERATIONS WORKBHEET DAY SHIFT

| | \mathcal{A} |
|---|---------------|
| | ý |
| | Ć |
| 5 | Z |
| Ó | (n |
| Ś | 9 |
| | |
| 4 | |

| | | | ۵۵.
نوبی
۱ | | | | | | | | | |
|----------------|----|-----|------------------|--------------|-------|--------|-------|-------|-------|-------|------|---|
| | 23 | | | 12.3 | 1030 | hier | V | 244 | er 12 | コジネイ | Cers | J |
| 510 | 1 | クカト | 175- | 91.1 | 1239 | 1122 | 0661 | ~ | | 63. | | |
| 217 | | ×/ | 176 | 1710 | 12121 | 1140 | 10 20 | | | 126 . | | |
| した | | 147 | 174 | 173 | 2601 | 5001. | 1000 | | | 181 | | |
|
21 C | | 148 | (U) | KC1 | 133F | 20 CV | 1149 | | * * * | 200, | | |
| 1/10 | | 240 | 176 | ()
[() | Ise! | 18 | 592 | | | 30 | | |
| 10 | | 14/ | CUXA | 227 | 1224 | 0.2001 | 111 | | | 360 | | |
| 11/2 | | 9A1 | | 24 | 1230. | 1199 | 123 | | Į. | 413 | | |
| and the former | | | | | | | | | | | | |
| ž | X | M | X | M | ¥ | ž | WA - | ž | ž | | | |
| | | | | | | | | NOTES | | | | |

せんる Barrin 22 くそう

. . • :

1- THE SYSTEM FLOW, STREPER FLOW AND PRESENCE FLITTER FLOW MUST BE GOUAL WITH

É

- EFFLUENT FLOW REAGUNDS THE TOTAL FLOW THROUGH THE FACILITY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE BEGAMMING OF EACH SHIFT.

GROUNDWATTER TREATMENT FAURLITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DARLY OPERATIONS WORKCHREET DAY SHIFT

CENDER

••

F.14.08

| | | | | | | |)t | | | | | | |
|---|---------|-------------|----------|--------|------|------|--------|---------------------------------------|----------|----------------|------|-------|--------|
| : | | | | | | | | | | | | | |
| | | | | | | | | i i i i i i i i i i i i i i i i i i i | | A WARNER SWALL | | | |
| | 510 | ф
С
К | 5.61 | 173 | 175- | 1235 | イトリ | 200 | ベイシ | c / | 1860 | June) | ×
× |
| | 31/0 | | 5171. | 174 | 1751 | 1236 | 192 | R | <u> </u> | 5 ma | 63. | | |
| | | | <u> </u> | 22 | | 1280 | | (Yo/ + | | | 125. | | |
| | 17 C AC | - | 1× | 27 | 24 | 5 | 100 | d' | | | 181 | | |
| | | | 571 | 1/10/1 | 11/ | 128 | 119.5 | 666 | | * | 36 | | |
| | 910 | ~~~ | 1221 | 104 | 1 | | | | | | 53 | | |
| | | | 14.8 | K | 2 | ったつ | C.C.IJ | 852 | | \ | 355 | £ | |
| | | | | R | 54 | 1230 | 1150 | 1240 | | 2 | | | |
| | | | | | | | | | | ~ . * | | | |
| | ž | ž | X | X | ž | ž | ž | 5 | ž | ž | | | |
| | | | | | | | | · . | NOTES | | | | |

EKT DAIN 433

HEAR PLATER FLOW HERE THE BOUAL WITH - THE SYSTEM FLOW, STREPER FLOW AND ź

- EFFLUENT FLOW MEASURED THE TOTAL FLOW REALTINE GAURIE TO ZERO AT THE BECINAMING THROUGH THE FACILITY. OPERATOR SHALL OF BACH SHIFT.

.•

1

REMARKS

TOWN OF OVSTER BAY DEPARTMENT OF PUBLIC WORKS CROUNDWATTER TREATMENT FACHUTY

1.110 M

DAM, Y OPERATIONS WORKBHEET DAY SHIFT

Ce March

8-15-09

| | 223 | | | | | | | | | | |
|---|---------------|----------------|----------------------|-------|-------|-------|---------------|----------|------|-----------|-------|
| | NAN 1 | 0 N
N | 12.5 | 187 | 241 | 380 | 359 | 420 | | | |
| | c fe y | | | | * * | | | 4 | | ž | |
| | 0 24 | | ~ | | | | | 5 | | ¥ | NOTES |
| | 1057 | EPS | 1101 | ろオら | 5.4.6 | Year | 56. 20 | | 24 E | NA . | |
| т.
Н | 163 | 000 | 09C/ | 1155 | 1202 | 693 | 1 000 | 1/60 | | ¥ | |
| | みかぞく | 1240 | 1233 | 12.51 | 1732 | 1230 | 17,31 | 1230 | | ž | |
| | 401 | NCI | 201 | Ŗ | 201 | 172-1 | / C 1 | 170 | | ¥ | |
| | 176 | 175 | 103 | 177 | 100 | 172 | , <u>1</u> ,2 | 102 | | ž | |
| ર મુખ્ય કે ગુરૂ કે ગુજરાત
તે કે સામે જે કુક્ત
તે કે સામે જે કુક્ત | <i>Q</i> , 1 | \mathcal{G}' | 147 | | 140 | 140 | 147 | 146 | | X | |
| | NO | | | | | | | | | ž | |
| | ALC | 215 | 216 | 5/10 | 510 | 2.2 | DIR | 1/1
5 | | 2 | |
| | Sugar - A and | | | | | | | | | · · · · · | |
| 2007
1997
1997 | 4
1974 | | 2. 7. 4.
2. 7. 4. | | ficia | | | | | , | |

erk to Brint #33 **PERARG**

I- THE SYNTEM FLOW, GTHEPER FLOW AND PREMEME PR.TEN FLOW MUST BE BOUAL WITHIN PS.

PK. 2- EFFLUENT PLOW MEANUNES THE TOTAL FLOW THROUGH THE FACELITY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEGRAMMG OF EACH SHIFT.

Proventing the

. -

CHOUPDWATER TREATMENT FAMILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

Centrale

8.16.03

۰,

The

·····

DAMLY OPERATIONS WORKSHEET DAY SHIFT

| 316 C 177 176 177 176 200 200
316 C 177 176 177 200 200 200
316 C 177 176 177 200
316 C 177 176 177 200
316 C 177 176 175 200
316 C 177 176 175 200
316 C 177 176 175 200
316 C 177 176 175 200
316 C 177 176 175 200
317 176 177 176 175 200
316 C 177 176 175 200
317 176 177 176 175 200
316 C 177 176 175 200
317 176 177 176 175 200
316 C 177 176 175 200
317 176 177 176 175 200
316 C 177 176 175 200
317 176 177 176 175 200
318 M M M M M M M M M M M M | | 4 | 63 | 125 | 187 | *. 250 | 30P | Zes | 1435 | | - THE SYSTEM FLOW, STREPER FLOW AND
PREMEMBER FLOW MUST BE ROUAL WITHIN |
|---|--------|-------|----------|------------|-----------|----------|----------|-------------|-----------|---|--|
| 174 128 128 128 128 128 128 128 128 128 128 | | 227 | N | | 0 | | | | | | - THE STRING FLOOR |
| # 12577
22877
| м
м | 2000 | Del ChII | 11.18 1181 | 11.50 38. | 52 2 | 115 801 | 660 13- | 11/1 1/01 | E | |
| | | | 176 125 | SPE/ 1/1,1 | 126/201 | 172 1240 | N1241210 | 56 21 711 0 | 111 1239 | | 本しし |
| | | (c | | (61 651 | 100 105 | 121 225 | C/ 27/ | 1 1 4 7 1 1 | 4 148 176 | | 0.74 V |

2- EFFLUENCE PLOW MEASURES THE TOTAL FLOW REALTINE GAUGE TO ZERO AT THE BEOMMING THROUGH THE FACILITY. OPERATOR SHALL OF RACH SHIFT.

> .-;

| BAY | ORKS
ACELTY |
|-------------------|---|
| OVSTER BAY | ATHENT & |
| OF OY | ALLEN OF I |
| TOWN OF | DEPARTMENT OF PUBLIC WORKS
GROUNDWATER TREATMENT FACELTY |

and setting

DAM Y O

| | Ú, |
|-----------|----|
| DAY SHIFT | |

| | | | | | | | | 1 | | | | | |
|---------|----------------------|---|------------------|-------------|--------|------|--------|---------|-------|--|--------|------|----|
| | | | | | | | | | | | | | A. |
| | | | | | | | | | | Land and the second second second second second second second second second second second second second second s | | | * |
| | $\nabla \mid \nabla$ | | (م <i>ا</i> م | л
Г
М | 1221 | 226 | 5051 | d 0 0 1 | \$ | 0 | 1443 | O WU | 2 |
| | . I | T | | 20 | | 1220 | 66.5 | 0 111 | | | 1063 | | |
| | - 80
- 80
- 80 | T | 5 | | | | Q OQU | 0 | | | 120 | | |
| | ~ | 1 | <u>、
つ</u> 淡 | |)
2 | | 139 | 1 5 K | •••• | | 188 | | - |
| | ~~ | Ţ | | ې
د
۲ | 12 | | 541 | RAND | | * | ه کر ا | | |
| | 1 ()
1 () | | 1100 | | | 1149 | 1/45 | 670 | | | -312 | | |
| | X-1 E | | 1400 | L.W. | | 3181 | X 3.11 | 10.66 | 11 | <u>}</u> } | 373 | | T |
| | ₹7/ F | · | | 91.1 | | 1240 | 1142 |)// 0 | D | D | 434 | | |
| | | | | | | | | | | | | | |
| . د
 | ž | ž | ž | ž | M | ž | X | KN - | ¥ | ¥ | | | |
| | | | | | | | | • | NOTES | | | | |

Internet to Basin 23 **HEMARICS**

- THE STRITCH FLOW, STREPER FLOW AND PRODUKE FLUW, RUST DE BOUAL WITH

 EFFLIENT PLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY, OPERATOR SHALL RENET THE GAUGE TO ZERO AT THE BECANNING OF BACH SHIFT. É

.

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FAMALITY

-

Sector.

DARLY OPERATIONS WORKSHEET

8/18/09

| 2 -9-9-9- | : ;~~ ;;; | | | | | | | | | | | | |
|-----------------------|--------------------|---|-----------------------------|--|--------------------|---------|-----------------------------|------------|---|------------------|---|----------|----------------|
| | farestics rectaria | transfiller
Lenner | DWD | N.Com | 101911-101911 F.F. | ***** | | | / 1 | \triangleright | | | |
| | | | 6 | <u>(</u> | | | *~ | | 7 | ත් | | | |
| | | L martifield | 1469 | 0550 | (1) | 117 8 | 239 | 20 5 | 367 | うまん | | | |
| | | er forske stationer i
Stationer for de la stationer i | \bigcirc | | | | • | | | | | ž | |
| | | | Ø | | | | | | (1) | ,
, | | ž | |
| - 3 | The second | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | トウムノ | 1823
1 | 12957 | A. 4 2 | 960 | 8 A V | 6 5 3 | 1637 | | V | |
| | | | $\mathcal{D}_{\mathcal{M}}$ | | 1169 | 198 | ╂╍╍ | 6 | (| | | X | |
| | 2 | | 6451 | С
М
М
М
М
М
М
М
М
М
М
М
М
М
М
М
М
М
М
М | 245 | 12 2.04 | . n | | 1 | 1239. | 5 | ¥ | |
| 197
- 197
- 197 | | | Σ | 172 | | X 4 | | | | 10 CV | | ž | |
| | | | | N.
D | 7.5 | |) cz | | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 1010 | Z | ž | |
| ·- | | | | | | 22 | $\sum_{i=1}^{n}$ | | ⇒ Z (?)/ | | | ž | |
| - | | | 9 |) | | | | | | | X | 2 | |
| | | | | 1 1 m | | 24 | | ×
 | >11-6 | 2 C C C | 2 | | |
| | | | | | | | مين ، مر
در : | | 3327
 | | | | and the second |
| | | 33.
1974 | | | ()
2014 - 202 | 2
2 | | :
A., J | | | | وتقرر ر |)
} |

REMARKS

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PRESENTE FL.TER FLOW HOST BE BOUAL WITHIN PX.

A EFFLUENT FLOW MEANUME THE TOTAL FLOW THROUGH THE FACULTY, OFERATOR SHALL REDET THE GAUGE TO ZERO AT THE BECOMMING OF EACH SHETL.

EPPINEWN +0 Bas, 2 BB

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS OROUNDWATTER TREATMENT FACELITY

1

DARLY OPERATIONS WORKSHEET

| -3 | |
|-----------|--|
| N | |
| DAY SHIFT | |

| | NWN C | \square | | | | C | / | | | |
|---|---------------|-------------------|------------------------|---|---------------------------------------|---------------------|---|---|--------------------------|-------------|
| | 2 | | | | | ****** | | \geq | | |
| | | | | | | | | | | |
| | ~ | | | ~ | 6 | · ···· | 30~~ | 5 | | |
| | 463 | | $\sum_{i=1}^{n}$ | \sim | 18 | <u> </u> | Nn | | | |
| | 5 | 00 | 2.
2.
2. | įδ | 2 | ে
<'র
১ | 1.13
1.1 | the 2 | | |
| | | | | | <u> </u> | | | | | |
| an an an an an an an an an an an an an a | | | | | | | | | | |
| | া | ····· | | | · · · · · · · · · · · · · · · · · · · | | | | | ۶ |
| | 1 | Í | | | | | | | | |
| | | | | | | | Ī | | | |
| 1.1.
6 | \mathcal{Q} | | | | | | | | | ٤ |
| eð. | \sim | | | | | _ | | \mathbb{P} | | |
| | | | 0 | | | | ┼── | | | |
| | ~~~ | e
e | $\hat{\boldsymbol{y}}$ | R | E C 6 | <u>ട്</u> | M | 5 | | |
| San Salt and Salt | | 0 | | 1
1
1
1
1 | | 1. 4 P. 1 | | NS. | (1949) :
7 | ع
ا |
| | 9 | 23 | 200 | \mathcal{O} | | λ <u>Σ</u> | , TÎ | ```` | | |
| | | | | | 5 | 1 | 1- | 1 | | |
| | 14 | 0000 | . | 2 | V. | ¥~~~ | . e- | 1×2 | | 5 |
| u | | 200 | 2 | | 19/ | Å. | 3 | | | × |
| | | 5 | ~~~ | `` | | - 1 | | | | |
| | \mathcal{M} | Merry. | | <u> </u> | | | <u>з</u>]с | Se S | | |
| e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l
La companya de la comp | ŝ | 5 | 5 | | | $\overline{\gamma}$ | М | \sim |) | ž |
| ್ಷದ್ದು: ೧೯೯೯ ಕನ್ನಡ
ಕನ್ನಡ ಕನ್ನಡ
ಕನ್ನಡ ಕನ್ನಡ ಕನ್ನಡ | 1 | =G | | 5 | (~~
 | 41.7m
14.7m | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | |
| | 0 | | | | | - | | | | |
| | 2 | 25 | | 2 | | 2 | | | | Σ |
| 2010
2010 | | | - | - | - | , <sup>C</sup> | -1 | <u>~</u> ال | | |
| | $(\gamma$ | | 25 | 2.6 | 7 | × . | g er | s n | | |
| | $\tilde{}$ | $\widehat{\zeta}$ | <u>م</u> | , î | 2 ~ | 3 | 5 | | | |
| ی
میں اور اور اور اور اور اور اور اور اور اور | | | \vdash | - | | + | | 0~ | | |
| | | P | Ka a | $\sum_{i=1}^{n}$ | 1 | 5- | 20 | | | I ≨I |
| | د محمد ب | 301 | | F | | 2 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | |
| | | Γ | Τ | Τ | Т | Τ | Γ | ł | | |
| | 0 | | | | | | | | | |
| | | ┨ | _ | | | | 2 | 2 | | |
| | 5 | | 4 | 9 Z | 14. | | <u> </u> | 1 | Ŋ | 5 |
| | 50 | 5 | | 3 « | Ŝ, | Z c | Ś~ | 5 | Å | |
| | | 900)
900) | | ,,, ,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | - الله
- | * * <i>:</i> : | | |
| : | | | | , 1 a.R. | | | | | | ···· 4
 |
| a. | 1.
. 54 | - î., | с.: | | | | | | | . Ś |
| | 10
1 1944 | | in 14 | | | :
2 7. | i7 | | ÷., | |
| | | | | | | | | | | |

- Chinenk to Basin 33 - Changed eney me barel REMARKS

NOTES

I- THE SYSTEM FLOW, STREPER FLOW AND Presence PLITER FLOW RUST SE ROUAL WITHIN PX.

PK. - EFFLUENT FLOW MEANUNUS THE TOTAL FLOW THROUGH THE FACLITY, OFERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEOMMING OF EACH SHET. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKES GROUPDWATER TREATMENT FACAULTY

1000

 $\hat{\mathscr{Y}}^{(i)}$

" Course

DAMLY OPERATIONS WORKSHEET DAY SHIFT

Cempred

۰.

P.20.02

| | | | | | | | La | | | | |
|-----|-----------|------|--------|------|-------|--------|----------|---------------------|--|------|-----------|
| | | | | | | | | | and a second second second second second second second second second second second second second second second s | | |
| ケート | ر
ماره | 142 | 1961 | 041 | 53 61 | 1167 | Lor | インド | | 1221 | (Q.12) (Z |
| | | Chr | 176 11 | 751 | 13-38 | 1180 | 1251 | 7 | | 65. | |
| | | 141 | 1261 | 76 | 1234 | 1811 | 1280 | | | 128 | |
| | | 1/2/ | 1261 | 54 | 1. 2 | 11 416 | 1963. | ****** | | 190 | |
| | | SAL. | 120 | 13 | | 100 l) | 86 X | | * * * | 2.50 | |
| | | (2) | 10.01 | 11/1 | 1001 | 145 | Sel | | | 310 | |
| | | 142 | 100 | 107 | 1213 | 1166 | 44.01 | $\langle 0 \rangle$ | $\langle N \rangle$ | 373 | |
| | | 145 | Á() | 12 | 9/01 | 1137 | 16051 | | | X32 | |
| | | | | | | | | | -* | | |
| | ž | X | X | ž | ¥ | W | X | ¥ | ž | | |
| | | | | | | | | NOTES | | | |

CH 70 BEIN #33

1- THE SYSTEM FLOW, STREPEN FLOW AND PRESENTE PLATER FLOW RUST BE ROUAL WITHIN SY.

A EFFLIANT FLOW MEANINGS THE TOTAL FLOW THROUGH THE FACULTY, OPERATOR SHALL REVET THE GAUGE TO ZERO AT THE BECAMMING OF EACH SHIFT.

GROUPDWATER TREATMENT FACKUTY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

wegen.

DAMLY OPERATIONS WORKSHEET DAY SHIFT

Compred

8.21.09

| | ₩¥ | | 7-77 | T | T | | | | | | |
|----|----------------|------------|----------------------------|---------------------|---------|------------|------------------|--------|-------|--|--|
| | 45/V0 | | | | | | | | ſ | Ĩ | MO |
| | 9 | | - | | C | | ~ | | | | TALFU |
| | 202 | Gr |)
A
Q | 240 | 0 | 6J | 120 | | | | 11 E T 0 |
| | | | | ()
• | Υ
ψ | 2 | 4 | | | LINCIN A | |
| | 1 100 miles | ary man | | ÷ | | \searrow | | ž | | F-THE STIETER FLOW, STREPER FLOW AND
PRESSURE FLITTER FLOW REST BE BOUAL WITHIN | 3. EFFLUENT FLOW MEANINES THE TOTAL FLOW |
| | | | | | | ,
, | | ¥ | * | | |
| | 2/1/2
2/1/2 | | | | | | \mathbb{P} | Z | NOTES | | |
| | シスト | 55 | J.C | 17 |)
Co | 1272 | CA: | · ¥ | | | |
| | | Ň, | | | 00 | 2 | 115 | | | r | |
| | 19 | 100, | 100 | 194 | 17 | Ś | 18 | ž | | | |
| 33 | 1/ | | | | | | $\sum_{i=1}^{n}$ | | | | • |
| | 22 | 53 | 30 | 3 | 202 | 231 | 11 | ž | | 437 | • |
| | | Q | | | | 12 | 5 | | | Ŧ | J |
| | | 12 | 10 | 12 | 2 | | 1 | N | | [| |
| | ち 11 | 122 | 2 P C C | 17, | 10/01 | 16 | 21 | ž | | P. 451 M | - |
| | | 53. | 22 | j. | | , X | XC | ž | | Ś | 9 |
| | | | $\stackrel{}{\rightarrow}$ | + | - × | | | | | C | |
| | | | | | | | \mathbf{E} | | | 1 | 4 |
| | e) t | 216 | 55 | p la | | | 212 | ž | | | ビヤル トレ |
| | | | | <u>V</u> | | | | 1.4 | | 2 | ${\cal D}$ |
| | | | | | | | | | | 61 | |
| | naide An | the second | 714 S. | 9 - <sup>1</sup> 12 | a 143 | 17 | : | , 227, | | • L | |

...

- EFFLUENT FLOW MEANINES THE TOTAL FLOW REALTINE GAUGE TO ZENO AT THE BECOMMING THROUGH THE FACELITY, OPERATOR SHALL OF EACH SHET.

GROUNDWATER TREATMENT FACALITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

45120

Sec. 1

DAM.Y OPERATIONS WORKBHEET DAY SHIFT

8.22-58 Censor

| | <u>,)</u> | | - | | | | | | | | | | |
|---|------------------|------|-------|----------|--------|------|-------------------|-----------|--------|----|-------|--|-----------------------------------|
| | | | | | | | | | | | | | N FLOW |
| | 1 KSD | 2 | 707 | 181 | SH'S | 308 | 370 | 432. | | | | PPEN FLOW A | TOT IN SIN SIN |
| | a water a second | | | | * * * | | $\langle \rangle$ | | | ¥ | | - The everal flow, straped flow and
pressence fletter flow must be boual within
 | UBIT FLOW REAGUNES THE TOTAL FLOW |
| | 120 | , | | | | | | 5 | | ž | NOTES | - THE SYSTE | |
| | 1243 | 1252 | アッシュ | 146 | 902- | 2112 | J 57 | 1954 | | \$ | | - | |
| | 11/034 | 1203 | 11 21 | 1122 | 5611 | 9911 | 1170 | 1158 | | ž | | | |
| | 2021 | 12/2 | 1218 | 1HCI | 7161 | 10 | いたろう | 13.50 | | ¥ | | | |
| | 17d | 175 | 174 | 123 | 100 | | | 12 | | X | | ₩
93
33 | |
| | 2PC/ | 361 | 601 | 176 | 107 | 101 | 101 | | | ž | | 1 | |
| | <i> </i> | 6×1. | 621 | N H | 140 | Joy | 5/1/ | (β) | - | M | | Ring | 120 |
| | | 2 - | | | | | | | | ž | | | |
| | e) [C | | 216 | 575 | 6 | 2110 | 110
10 | | Cut do | ž | | | ifr th |
| | | | | | · · ·, | | | | | | | | Ċ. |
| 2 | | | | ્રાજ્યના | 4 | 5 | | | | | | !
 | |

.-

A EFFLUENT PLOW MEASURES THE TOTAL FLOW THROUGH THE FACELTY, OPERATOR SHALL REGET THE GAUGE TO ZERO AT THE BECAMMING OF EACH SHEFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACULTY

de la construcción de la constru

and the second

DARLY OPERATIONS WORKSHEET DAY SHIFT

B. 23.09 - Center R.

| 216 or 149 | | | | | | | | |
|---|------------------|--------|-------|-------|------|-----|-------|--------|
| 144 | | | | | | | | |
| <u>}</u> | | してく | 11.12 | 02 61 | -140 | 500 | 1445 | COMBIN |
| 12/2/ | 118 110 | ╈ | | 1447 | < | , | 63 | |
| | \sim $1 < 1/2$ | | | | | | 2 63 | |
| 216 146 | De 110 | 1221 | 1/0/1 | 1011 | | | 1961 | |
| | XCI CCI | 220 | 1165 | 1251 | | | 184 | |
| | | 13.26 | 11.1 | 1754 | | *** | 242 | |
| ATT ATT | | 1001 | 11410 | 1257 | | | 202 | |
| 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | 3/2/2 | 1000 | | | 376 | |
| 216 1. 14° | | 1-10 1 | 101 | 1 41 | | | | |
| KAL AL ARC | all all | (2)) | 155 | 633 |) |) | L'AQL | |
| K. S. | | | | | | | | |
| | | 2 | ž | ž | ž | ¥ | | |

MARKS

CHAD BASIN # 33 :

.•

.

1- THE SYSTEM FLOW, STREFTER PLOW AND PRESENTE FLOW MUST BE BOUAL WITHIN PK.

- EFFLUENT FLOW MEADURES THE TOTAL FLOW THROMMH THE FACULTY, OPERATOR SHALL REDET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

GROUNDWATER TREATMENT FACKLITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

.04040.

in the second

DAMLY OPERATIONS WORKSHEET

| • | 0 |
|---|-----------|
| | 8/24/ |
| | DAY SHIFT |
| 5 | |

| | | | 20 | | | | | | | | |
|---|----------------------|--|-----------|-------|---|------------------|--------|---------|----------------|---------|--------------------------|
| | | | 2
9 | Ó | <i>CG</i> | | / | د
بر | ch . | 6 L V | |
| | | erd E | 1,466 | 0,0 , | 15 | 1 B / . | · . 24 | 206. | 1364 | 1 2 | |
| | · · · | and the second sec | Ð | | | | ** | | 1 | D | ž |
| | | | 6 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | $/^{)}$ | 7 | ž |
| | | | 2 L D | 860 | 803 | 1234 | 693 | 17% | 136 | 139 | ¥. |
| ж | | | 669 | 0000 | 0001 | P611 | 07/1 | 1153 | 1 9-19 | 1169 | ž |
| | 1997
1997
1997 | | 0161 | 1314 | e Å | | 220 | 1231 | | | ž |
| | | | 503 | 201 | 1.50 | 1 | 196 | 1761 | 0 | 5 | ž |
| | | | 175 | 761 | 176 | 1 76 | 661 | 201 | | 116 | £ |
| • | | | (, þ. | 877 | 148 | $\langle z''$ | 1.4 K | 148 | 1.
1.
1. | | X |
| | | | 0
5 | - 9 | | 2 ~ (| | | 2 | 2
32 | |
| | | | 15- Mace- | | | | | | | | |
| | * | | | | | े हुन्
. अक्र | 1.1 | | | : | אין
11 - 12
לענערן |

REMARKS

Effluent to Basin 33 - changed anzy are bank

.\*

PRESENTE PLACE PLOW MUST BE BOUAL WITHIN - THE SYSTEM FLOW, STREPER FLOW AND É

2- EFFLUENT PLOW MEANINES THE TOTAL FLOW THROUGH THE FACELITY, OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEOMAING OF RACH SHIFT. TO VN OF OYSTER BAY DEFARTMENT OF PUBLIC WORKS GROWT DWATTEN TREATMENT FACILITY D//:: Y OPERATIONS WORKSHEET

۰.

V

| R R R R R R R R R R R R R R R R R R R | |
|--|----------|
| 220000000000000000000000000000000000000 | |
| 115-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | Ξž |
| | |
| | |
| | |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | |
| 264 | 2 |
| 126002
2657
2657
2657
2657
2657
2657
2657
265 | |
| | |
| 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | |
| 1129 | ž |
| 113 | |
| | |
| | |
| していのです。 | |
| A LU LA CALLA | 2 |
| म म म म म म म म | |
| | |
| Mr Wedda Frid | |
| いていていたい | |
| | |
| Merralat | |
| してはルルパパー業 | 2 |
| | |
| 100 - 20 - 20 AN | |
| | |
| | |
| | |
| | 5 |
| | |
| | |
| COLD-J-L-J-W NY | |
| · · · · · · · · · · · · · · · · · · · | |
| | ŝ |
| | |
| | |
| | |
| | |
| and and a star a start of the s | |

Ethu and to Basin 32 RTP an 5/th

NOTES

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN BY. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

2- EFFLIENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY, OPENATOR SHALL REBET THE GAUGE TO ZERO AT THE FECOMMING OF EACH SHET.

GROUPDWATER TREATMENT FAULTY TOWN OF OYSTER WAY DEPARTMENT OF PUBLIC WOUNDS

j.

100,000

Z DAMLY OPERATIONS WORKSHEET D

6

| | D M O | s., | | | | | | | | | |
|--|---------|---------|-------|----------|-------|----------------|--------------------------|---------|--|--------|---------|
| | 1,3.6.1 | .000 | 121 | 181 | 1 240 | 398 | 359 | -422 | | | |
| | ¢ | | | - | +++ | | C [] | | · ·. | ž | |
| | Ş | | | | | | | 2 | | ž | NOTER |
| | 386 | 010 | 9692 | 1046 | 202 | 1775 | 418 | 1901 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ¥. | |
| N | Q | 1911 | 1 69 | | 1100 | 189 | 1/20/1 | 1200 | | × | |
| | 1244 | 1 2 4 8 | 0201 | | 5 5 5 | - C
- A
 | - 2
- 2
- 2
- 2 | 02 6 1 | | ž | |
| | 1 174 | 507 | 11/14 | C ()) | | 111 | à. | ζ | | ž | |
| | | - 2 | | | | | | 5 | | ž | |
| 1 (1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) | | | | 2 | 100 | 147 | <u>р</u> с 1/ | | | N N | |
| | 11 2 | | | 0 7 4 | | 77 | | | | | |
| | | | _ | | ° 67 | | | | | | y y y y |
| 0
 | | | | 2
2 | | ;
2 3.4 | | | | גינט (| 10.40 |

- Efthent to Basin 33 - changed en zyme barry RTPANSITE REMARKS

BUNG FLITCH FLOW MUST BE BOUAL WITH - THE SYSTEM FLOW, STRPPER PLOW AND

- EFFLUENT PLOW MEANINGS THE TOTAL FLOW REALTING GAUGE TO ZERO AT THE BECAMMING INOUGH THE FACILITY, OPERATOR SMALL OF EACH SHIFT.

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET

| | | | NOTES | | | | | | | | | |
|--|--|--------|----------|--|------------------------------|---|-------|------------------------------------|---------------------|--------|---------------|----------|
| | | ž | ¥ | NA | ¥ | AN | M | NA | NA | NA | NA | |
| | | | | | | | | • g | | | | |
| | . 7 . 7 | | > | 1474 | (155) | 1 2, 38 | 194 | - 75 | く
く
く | \geq | シーム | 2 PM |
| > | | 6 | 14 | 1 602 V | | | | ्)
-
- | | | | |
| /{ | 361 | (
) | (~~_
 | 80
2
2 | 1 (5 2 | 1563 | フレバ |)
() | 27- | 7 | ر
د د
د | |
| | 1. J. C. | | | 1 804 | 14 | 1242 | 1361 | $\overline{\langle \cdot \rangle}$ | 271 | | 8 (b | |
| | | | | 6400 | 666 | 1 2 1 2 | (73) | (72 | 140 | ······ | N
V | |
| 1. 1 | | | | いかなし | - 1 5 8 | シンド | 0,;} | (2) (2) | 197 | | 5 | P |
| | . Ľ | | | | 000 | 1206 | - / 7 | 9 | 2
 | | 216 | 9 AM |
| | 112 | | | 1 23 | 2 X X |)

 | | | | | 5 | Î. |
| ~ | () O & O | | | 9 7 C | 662 | 1226 | 5 | <u>N</u>
10- | 2.12 | , | | 8 V 8 |
| LIW/L | 1 2 6 4 | 7 | 0 | 0008 | (y 6 7 | (22) | 72 | 5 | 2 | Ô | | 11 A. 1 |
| $\bigcirc \forall \forall \forall \forall 1$ | | ę. | | upupupusa arangan arangan arangan arangan arangan arangan arangan arangan arangan arangan arangan arangan arang
Arangan arangan a | BBBBbeethelBBB | | | | | | | |
| | | | | | | l ð | ĮŽ | 1 <u>1</u> | RON FLOW | | į | R |
| | | | | | | | | | | | | |
| | NR STRIPPER SPERATING PARALS EST | | | | | | | NOLLY | WELLETELD OPERATION | MEDE | | |
| | A Landara | | | | ADDA TO THE ADDA TO THE ADDA | A CONTRACTOR OF | | | | | | |

-EFP/Went to Bapin 33 - eersyme barel changed REWARKS

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 1. THE SYSTEM FLOW, STRIPPER FLOW AND

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW RESET THE GAUGE TO ZERO AT THE BEGINNING THROUGH THE FACILITY. OPERATOR SHALL OF EACH SHIFT. 5%.

•

13525244 735261 147-4900 × 1447

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAILY OPERATIONS WORKSHEET DAY SHIFT

ð V

| | | | | | T | | | l | | | | |
|--|-----------------------|--------------|-----------------|--------------------|--------------------|----------------------|-------------------------------|--------------|---------------|----------|--------|--------------|
| | \bigcirc | | | | | | | | | | | |
| | Mr. | | | | | | | | \rightarrow | | | |
| | | | - | ļ | 6 | + | - | - | - | | | |
| ARSTRIPPER OPERATIVE PARAMETERS
Permit I I OWER AND I I I I I I I I I I I I I I I I I I I | ら
つ | | 0 | 5 | 9160 | | | ġ | 5 | | | |
| | 1140 | 00 | $2 \mathcal{E}$ | 2 | C° | Š / | 5 | 30 a | <u>ن</u> ح کئ | | | |
| | | | | ┼── | ╈ | -†- | Ť | | | | | |
| | ~ | | | | | | | | ~ | | ¥ | |
| | -77 | | | | | | | , | | :
; . | | |
| | | | ┢─ | \uparrow | \dagger | | | | | | | |
| | ⁄ଫ | ···· | | - | | | ~~~~ | | | | ¥ | |
| | | | | | | | | | | | | |
| | | | _ | | | | Constant of | 5 | m | 2 | | |
| | | 2 | 525 | ζ
2
Σ | K
 | R.L. | 112 2 | 69 <u>61</u> | 65
65 | | M | |
| | | ļ | , « | | ~ | | | | | | | |
| | ষ্ণ
হূর্ | | 2
2
2 | | ייר
ד | 2 | <i>z</i> .4 | Q | | | | |
| | 11 C 2 | 0 2 7
7 |) {
7 | | 7 | ~
~ | 51 | | | | A | |
| | ** | | ╇ | _ | | \sim | ~ | | - | | | |
| 23 | 2
2
2
2
2 |)
M | | | n | 5 4 | 60 | 3 h | | ~ | NA | |
| SYSTEN
STOW | | (| | 4
7- 7
1- 1- | γ | ~~ | ~\7 | ঁহ | 5 | 3 | Z | |
| | | -Σ | | | | \sim | ~ | | | | | |
| | *
* | Σ. | | | (2)
(22) | \$
7 | $\langle \mathcal{S} \rangle$ | E | | | ¥ | |
| |
1111
113 | | | | | $\overline{\Lambda}$ | | L | | - | | 1 |
| | 132
132
132 | 1 | 0 0
- (| | 8 | | 3 | N
N | | | AN N | I |
| | | <u>а к</u> | | | | - | | Ż | | | | - |
| | | -17 | | 4
7 | 12 | 5 | Se | 2j | 515 | | A | |
| How the minimum | | - | | | <u>در.</u>
منبع | | | 1 | - | | | \mathbf{I} |
| | |) (| 9 | | | | | 1 | | 7 | M | |
| | | | | | | ~~~ | <u> </u> | | <u>.</u> | 5 | | ┨ |
| | ~ |) _
) _ | С)
 | | 0
~5 | | | | | J. | MA | |
| | | X < | -{
 | - 4
 | -4 | | | | | | # # 11 | |
| <u> </u> | | | MM | 3 | NY OI | | | | | | | |
| | | | 4 | NY 6 | 2 | | | | | | | and a second |
| | | ob sére taka | | | 511 min | UM | 61.43
61.43 | | | | | 5 |

REMARKS

NOTES 5%°

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW 1- THE SYSTEM FLOW, STRIPPER FLOW AND

reset the gauge to zero at the beginning THROUGH THE FACILITY. OPERATOR SHALL OF EACH SHIFT.

ight to READ BLASIN ONLY changed enzy we harred Bur Etaruan the Flow to Both Bash 23 & ak Basin - Ett la ent to Bas IN >> X12.00 PM AILERA

GROUNDWATER TREATMENT FACILITY **TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS**

DAILY OPERATIONS WORKSHEET DAY SHIFT

Or Moral -\$ 52 0

| | e L | | | | | | | | | | |
|--|----------|----------|------|------------|-------|-------|------|-------|---|----|--|
| | Cert | | | | | | | | | | R |
| | -725C | EU: | 123 | 185 | 72 | | 202 | 1421 | | | NOTES
1. THE SYSTEM FLOW, STRIPPER FLOW AND |
| AIR STRIPPER OPERATING PARAMETERS
Present a number and a structure
Prove Air Air and a structure and a structu | 2 July 2 | | **** | | | | | 2 | | ¥ | EN FLOW. STR |
| | Xr
V | | | | | | | | | ¥ | NOTES |
| ALL STATE | 2 2 2 C | 544 | RLS | 1234 | 100 | 970 | 835 | 1991 | | Ă | |
| | J-1-1-1 | 18 | 1186 | 1187 | W. A. | 1201 | 1000 | 1121 | | ¥ | |
| Alleys | | 1250 | 1248 | 1249 | Cher | 1241 | Yici | bit 1 | | AN | |
| | 1
0 | | 178 | 708 | 177 | 175 | 177 | 128 | | AN | |
| AND AND AND AND AND AND AND AND AND AND | | 200 | 641 | 178 | 802 | 177 | (17) | 122 | | NA | |
| VIELGEREDOPERATION
GALLONS PER MUNIT
WELLS WELLS WELL | | 25 | 147 | 149 | 6.21 | 146 | 141 | 971 | | NA | |
| NEUS
NALUS | | 2- | | acture was | | | - | | | NA | |
| | | NO
NO | 216 | 20 | J R | 96 | 26 | 216 | | NA | |
| | ····· | | 9 AN | 10 AM | NY I | 12 21 | nd I | 2 PM | Z | | REMARKS |

がいの

WE TO BASIN

.

I- THE SYSTEM FLOW, STRIFTER FLOW AUGT BE EQUAL WITHIN 5%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT. THROUGH THE FACILITY. OPERATOR SHALL

DAILY OPERATIONS WORKSHEET DAY SHIFT

8.30.09

| e tank offention | 1460. | 53
1 | 125 | 165 | 243 | 3¢/ | 363 | U31 | |
|--|-------------------|----------|----------|---------|---------|---------|--------|---------|-------|
| PERETE LIGNER MA LEFAUET
PLOW MERCINE MA LEFAUET
PLOW MERCINE MARKENE FLOW | | | **** | ****** | | | 11 | | NA |
| | | 1932 | (130 | DUCI | Fe/ | 552 | (00) | 1/ 20 1 | Å |
| | 21172 | | 0 1150 | 1147 | 81118 | 601 6 | 8011 | 3111 | AN |
| VIEL & STSTEM | 78 193. | 180 1343 | 181 1240 | 1 P 124 | 501. 61 | 100 103 | 1 2 13 | 1113 | NA NA |
| | 0 221 6 | 0/10 | 31198 | 1 m | 100 0 | 201 | 100 | R | N |
| ALED LUCEDANNIE
GALONS PER MNUTE
WELZ VELLA VELLA | <i>5h/₽</i> <10 | 05/11/ | 31 | 7.27 | 771 | 10 | 14/ | | NA NA |
| L ITEN | 916 | 217 | イイ | 2/6 | 0 | | 1/10 | 210 | GE NA |
| ą | 7 AM | 8 AW | 9 AM | 20 | | | | | |

WELTO RASIN \$33

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW

THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET

109 N

| No. | Olas | | | | | | | | | | |
|---|-------|---------|----------|------------------|------------|--------------|---------------------|--|-------------|--------|--|
| Antipetite manual parameters | | 062
 | | 901 | j~ € | 30% | 1264 | | | | |
| AR STRIPPER OPERATIVE PARANETERS
PERMIN BOWER AND PROJECTS
PERMIN BOWER AND PROJECTS
PROVE AND PROVEN AND PROJECTS | | √.
 | | | <u>ک</u> ۲ | *) / | | | 54 ≜ | ¥N. | |
| | | | | | | | | | | ¥ | |
| ACTING STREET | 920 | 000/ | 1-5 kili | 141 | 848
8 | 249 | 1769 | 1252 | | NA | |
| | | 660 | 11 39 | 147 | 1198 | 1168 | 5311 | EP 1 | | ¥ | |
| SYSTEM
FLOW | 30X7 | 1249 | 1200 | 1961 | 1259 | 1251 | 1351 | 1245 | | AN | |
| Wells | 212 | 201 | 23 | 178 | 62 | 178 | 44 | 961 | | ¥ | |
| NO.14 | | 1 4 1 | KO. | | Q.J. | 1991 | $\langle V \rangle$ | Lihr? | | ¥ | |
| WELLFIELD OPERATION
CALLONS FER MINUTE
MELL 2 VIEL 2 VIEL 4
RLOW FLOW FLOW | | | 14.0 | (5 0 | 150 | 149 | 153 | (<sup>1</sup> <sup>1</sup> <sup>1</sup> | n : | Ā | |
| MELLE
CALLO
MELLO |)
 | | | | | | | | | A | |
| NEL. | | | | 5-6 | · | 2 2 | 9/6 | D
73 | | NA | |
| E | | | | 10,48 | | | | | | | |
| | | | | | | 6-16160a3 | | | | idan ä | |

REMARKS EFRLYNNT tO BAFIN 33 EPRLYNNT AS RAN BASIN 8-130/039 M Changeb en by me ban (c)

NOTES

PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 1- THE SYSTEM FLOW, STRIPPER FLOW AND 5%.

2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACHLITY. OPERATOR SHALL reset the gauge to zero at the beginning OF EACH SHIFT.

down live to web beterred pri of public action of a

DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET DAY SHIFT α_{l}/l

0

| | | S | | | Ī | | ľ | | | | | | | | |
|-------------------------------------|------------------|--|--|------------------|-------------------|----------|-------------------|-------------|-------|---------------------------------|----|---------|--|---|---------------|
| | | DWD | ~ | | | | | | | | | | AL WITHIN | ral Flow
Hall
Ginning | |
| | | 1460 | 040 | $\sum_{i=1}^{n}$ | | 5.00 | 50
55 | ,
n
N | 412 | | | | PPER FLOW | RES THE TO
PERATOR SI
D AT THE BE | |
| ANT BITNED EFT OPERATING PARAMETERS | | Ś | | | | | | | 2 | | Å | | 1. THE SYSTEM FLOW, STRIPPER FLOW AND
PRESSURE FLITER FLOW MUST BE EQUAL WITHIN | 6%.
2- EFFLUENT FLOW MEASURES THE TOTAL FLOW
THROUGH THE FACELITY. OPERATOR SHALL
RESET THE GAUGE TO ZERO AT THE BEGINNING | H. |
| | | Ø | - | 1100.699.m | | | | | 0 | | AA | NOTES | 1- THE SYSTI
PRESSURE F | 6%.
2- EFFLUENT
THROUGH TH
RESET THE (| OF EACH SHIFT |
| | Norta
Norta | 600) | $\partial \langle \nabla P \rangle_{ij}$ | 1241 | <u>।</u>
दि दे | 9/9 | 1920 | 404 | 0009 | | AN | | | | |
| | | 650 | 136 | 143 | 1351 | 11671 | 6611 | 1193 | 12051 | | NA | | | ,
Z | |
| | erstew
Frow | しょうろ | 798 | 1260 | (2) 5 W | (2 5 K) | 1 2 9 V | シャイ | 1245 | | AN | | - | DWDX150 | - |
| | | ч
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | QX
X | 102 | 200 | 667 | 176 | 36 | 061 | | M | | \sim | | ••• |
| RAILON | WELLZ WELLS FLOW | | | 08 - | | $Q \gg $ | - 1
(S)
(C) | 901 | 22 | a da ante ante ante arte a | AN | | KY C | tion | 44 y 189 |
| WELLFIELD OPERATION | | 5
1
1 | | 1.5 | 25 | 12 | 6 51 | 2 | 5 | | M | | O UD | 12 CONDENDA | |
| WEILE | MELL2
PLON | ^ | 5 | | | | | | | a and a subserve and a subserve | NA | | 4 | CON! | 5 |
| | NELL
PLOW | | ~ | | | 212 | 210 | | | | NA | | Mar | 2 |) |
| | ¥ | 17 A | | 20 | | | NC St | | | | | REMARKS | K & Flixent to MAP Bas | 7 AM I UN CONDENSATION ON | |

wayme Rancel changed

DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET DAY SHIFT $Q \left| \frac{1}{2} \right|^{<}$

S S

| | | OMD | | | | | | | | | | 2422 | AND Free Contraction of the Cont | AL FLOW | | Skil | |
|---|-----------|---------------|---|-------------------|---------|------|---------------------------------|-------|----------|---|------------|-----------------|--|---|---------------|--------------|------|
| | | 1455 | 026 | 110 | | 7 | 2
2
2
2
2
2
3 | ON RO | 414 | - | | Y S S S S | IPPER FLOW / | JRES THE TOT
OPERATOR SI
RO AT THE BE | | 5,6+14:5 | |
| AR STRIPPER OPERATING PARAMELENS | | Ø | - | na a successi a s | | | | 1 | \geq | | A | Jou R. (54 364) | 1. THE SYSTEM FLOW, STRIPPER FLOW AND
PRESSURE FILTER FLOW MUST BE EQUAL WITHIN | 5%.
2- EFFLUENT FLOW MEASURES THE TOTAL FLOW
THROUGH THE FACKLITY. OPERATOR SHALL
RESET THE GAUGE TO ZERO AT THE BEGINNING | Ľ | and | R A |
| | | 6- | | | | | | 1/2 | <u> </u> | | NA | NOTES | PRESSURE | 5%.
2- EFFLUEN
THROUGH T
RESET THE | OF EACH SHIFT | atto 1 | 2/12 |
| | | \$ <u> </u> Q | 1 4 K | 96.2 | , EY 3. | 1200 | 1771 | 573 | 000 | | AN | 600 | K | | \sim | 1 de la | |
| | | 000 V | (138) | やたり | 154 | ゆうの | 3611 | X 6 M | 698 | | A | | 2 4 2 | j. | 488-0 | The Ton | |
| | No. | | 2021 | | 1298 | 1251 | 18 54 | 152 | 3731 | | NA | | S. | ~ 1 ~ ~ | よん | E. TUNIA-115 | |
| | NG13 | | 1.921 | | 261 | 2 61 | ЭÇ
Д | -76 | | | A N | | KN Oas. | 0 | | Y | |
| WELLFRELD OPERATION
CALLONS PER MINUTE | MOTH MOTH | 文介ニシア | • 2</td <td>-</td> <td></td> <td>Ŭ.</td> <td><u>ک</u>
۱۷۸۹</td> <td>+</td> <td></td> <td></td> <td>NA NA</td> <td>-</td> <td>AN T</td> <td>e ban</td> <td></td> <td></td> <td></td> | - | | Ŭ. | <u>ک</u>
۱۷۸۹ | + | | | NA NA | - | AN T | e ban | | | |
| WELLFIELD | MOLT WOLA | | - | | | | | | | | NA | | 1 42 1 | changes enzy me barren | | | |
| | | | | | | | | | 1- | | NA | | ly and | anger | | | |
| | ł | | | ž š | | | | | | | | | HEMAHKS | | | | |

S

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY **TOWN OF OYSTER BAY**

DAILY OPERATIONS WORKSHEET DAY SHIFT

9.3.08

CENBRL

| | | W. | - | | | | unanyon | | | | | |
|---------------------------------|-------------------|--------|-------|--------|--------|------|---------|-------------|-------------------------------------|------|----|-------|
| | | CEMBRE | | | | | | | a an a that a start a start and the | | | |
| | | 14.71 | 62 . | 121 | 10 | 250 | 510, | 2
2
2 | 121. | | | |
| | | 0 پر ب | * | | | | | | X | | ≸ | |
| AR STREPER OPERATING PARAMETERS | | イズッ | _ | | | | | | | | ¥ | NOTES |
| | | レンク | 10.05 | 1000 | por | F6) | 1078 | 6000 | 951 | | ¥ | |
| | | 1153 | 1163 | lole T | lac! | 1195 | 1199 | gael | 1201 | | Ą | |
| | | 1260 | 1961 | NY | 1207 | 1200 | 135- | 100 - | 1250 | | NA | |
| | Near 6 | 178 | 561 | 106 | 177 | 176 | 201 | 111 | 961 | | NA | |
| NOUN | Monita
P Trank | 73 | 561 | 176 | 175 | all | 175 | 176 | 176 | | NA | |
| WELLEHELD OPERATION | WELL3
FLOW | | 150 | 18 | 149 | 148 | 521 | ß | 147 | | NA | |
| NET I | MELL 2
FLOW | 20 | | | | | | | | | NA | |
| | | 20 | 319 | 316 | 316 | 616 | D
D | 200 | 11/
MIC | | Å | |
| | Z | ZAW | 8 AM | 9 AN | E ICAN | X | 10 CF | nd 1 | 2 PM | Na c | | |

REMARKS

20102

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FL.TER FLOW MUST BE EQUAL WITHIN

5%

EFF TO ROT DRIN

2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACHLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH BHIFT.

DAILY OPERATIONS WORKSHEET DAY SHIFT

QUNKRL 9 4 05

| | 7 | V | | | | | | | | | | |
|---|----------------------------|--------|------|-------|-------|------|-------|------|--------|--|----|--------|
| | | Comp | | | | | | | | | | |
| | | 1 242 | 19 | 120 | 14.9 | 241 | 300- | 367 | 435. | | | |
| | | 0161- | ~ | | | | | ~ | \geq | | ¥ | |
| <u>AR STRIPTER OPERATING PARAMETERS</u> | | 221 | | | | | | | > | | ¥ | AIOTER |
| | | 2.98 | 1091 | Ess | 108 | 1321 | 1337 | 6003 | 1961 | | NA | |
| | | 1184 | 1190 | 620 | 660 | 26- | 1186 | Lell | 1198 | | NA | |
| | North
North | 1273 | 12C1 | 12.00 | 19.17 | ゆる | 1268 | 1053 | 1950 | | NA | |
| | | 125 | 126 | 1201 | 175 | 174 | 661 | 175 | 179 | | NA | |
| ATION | NELLA WEL | 179 | 176 | C21 | 176 | 121 | 180 | 176 | 120 | | NA | |
| WELLFIELD OPERATION | MELL 2 WELL 3
FLOW FLOW | 748 | 641 | 871 | 149 | 149 | 14 | 143 | 149 | a starting a start from the | NA | |
| WELLE | Met 2 | 20 | | | | | | | Þ | Sector Sector Sector | NA | |
| | | 2
7 | 216 | 91E | 11 | 9/6 | 10 | 310 | 202 | - the second sec | NA | |
| | ¥. | NA T | 8 AM | MA 8 | 10 AN | | 12 76 | nd 1 | ndz | | | |

REWARKS

-10 Ray BAIN

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN NOTES 1- THE SYSTEM FLOW, STRIPPER FLOW AND 5%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

DAILY OPERATIONS WORKSHEET DAY SHIFT

9.5.09 CEMBIE

| | 0 | | | | | | | | | | | |
|---------------------------------|--------|---------|-------|-------|-------|---|-------|------------|----------------------------|--|----|-------|
| | | CEDID | | | | Constant of the second s | | | A survey the second second | | | ſ |
| | | 1821 | 62 | 127 | 187 | 299 | 310 | 369 | KSF | | | |
| | | 246 | | | | | - | - <u> </u> | | | ¥ | |
| AR STRPPER OPERATING PARAMETERS | | 2440 | | | | | | |) | | ¥ | NOTES |
| | | 1 azə | R 7 | 1853 | 17.01 | 1431 | 12 55 | 1351 | 152 | | ¥ | |
| | | 681 | 1000 | 71521 | 1100 | しょう | 1201 | 149 | 1143 | | N | |
| | 201 | 1253 | 1963- | 960 | 366 | 1362 | 266 | 09-01 | PST 1 | | NA | |
| | ₹
2 | 125 | 179 | XL1 | 100 | 1 601 | 14 | 1.261 | 125 1 | | NA | |
| RAHON | ğ | 176 | SC! | 126 | 101 | 0 | 12 | | 201 | | NA | |
| WELLFIELD OPERATION | è
i | 1 89 | 041 | 100 | est. | 601 | 100 | 18 | 12 | a to the first the first to the | NA | |
| | Ì | | | - | | | | | | | A | |
| | ş. | <i></i> | Diel | 00 | 140 | 11 | 217 | 015 | 316 | | NA | |
| | ¥ | A V | A No | | | | | | | | | |

REMARKS

ext to key BASIN.

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHIN

2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT. 5%.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY

DAILY OPERATIONS WORKSHEET DAY SHIFT

7.6.09 role

| NOTES
1- THE SYSTEM FLOW, STREPER FLOW AND | EN FLOW, STR | NOTES
1- THE SYSTI | | | | | | | | | REMARKS |
|---|--------------|-----------------------|--------------------|----------------------|--------|---|----------|----------------------|--------|------------------|---------|
| | ž | ¥ | ¥ | ¥ | Ă | NA | N | M | X | Z | |
| | | | | | | | | | | | |
| | | | 168 4 | $\frac{1}{2}$ | 170 C | 1718 | 140 | 179 | , | 778 | |
| 737 | | | 10 (1) | | 1010 | 1/2
1 | 10/ | ,
_/ | | | |
| 2/
T | | $\mathbf{)}$ | 5371 | 1162 | 1.101 | 20, 1 | 0.2 | 11 | | | |
| 2/2 | | / | 1710 | 1134 | 1260 | 6 | OAL | () | | 111 | |
| 210 | - | | 7.5 6 | 11 22 | 1265 | 128 | (() | 20 | | | |
| 1. CN. | | |) (
)
)
) | 000 | J J C | 11 | 170 | 1/42 | | NN D | a za |
| 1 % 1. | | | 125 | | | | | 12 | | 10 | WHA |
| | | | 1961 | 1.99 | 55 | 50 | 100 | | | 2
2
7
7 | |
| | | | 1771 | 113 × | 4
T | $\left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right)$ | 100 | 511 | | 2
7 | |
| (10) | | ,
 | Т | 11/2 | 1.636 | 9/1 | 111 | 2 | с
Ĵ | $\mathcal{I}(b)$ | Z AM |
| 1×41 Cera85 | 2100 | シブド | | 1888 Souther Barries | | ,
,
, | { | | | | |
| | | | | | | | | | | | ł |
| | | | | | | | | | | | |
| | | | | | | | RATION | VIELES IN CONCERNION | | | |

NISA BURYA

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEQINNENG OF EACH SHIFT. 5%.

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAILY OPERATIONS WORKSHEET DAILY OPERATIONS WORKSHEET DAY SHIFT $\gamma/\gamma/\sigma$

| ······································ | | T | T | | a a canada a | Γ | T | Ī | | | | |
|---|--------------|----------------------|-----------|-----------|--------------|----------------------|----------------|--|---------------------|------|---------|-------|
| | / - | | | | | | | | 2
2 | | | |
| | 2 | | | | | | | 7 | | | | |
| | 5 | $\frac{1}{\sqrt{2}}$ | + | | 57 | 5 | | Lix | | | | |
| | | , 060
, 0 | 50 | S | 4 |) | ŢŢ
KX | | | | | |
| | R | 2 | ~ | | | | | <u>}</u> / | | | | |
| | O | | | | | | | | | | | |
| | | | | ****** | - | - | | | \geq | | 1 | |
| | | | | - | ╀ | ╋ | ╺╌╂╸ | ╋ | - | | - | |
| | Ô | | | | | | • | | | | ٤ | CHTC: |
| | | | | | | | | | | | | |
| | ₹¥, | 3 | 54 | M | SS | 20 | 5 |)
9 e | ~~ | | | |
| | E & A | 12 | 5.
D | 。 | `* c
1 | 5 E
5 E | | | 93 | | ۶ | |
| | 1 | | - | + | Ĩ | | | | | | - | |
| | 10257 | 10 5 3 | 2 | -
 | 9 r
5 r | N
S | | | 1026 | | ≸ | |
| | 11 | δ | C. | > < | | 2 | 97 | С | 10 | | | |
| | 3 | \mathbf{V} | J | (Q | 5 | 3 | Q | 3 | 7 | | | |
| | つかり | 7 | | | | 7 | 1-1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7 | | ₹ | |
| | | | | |] | | | | | | | |
| | $\sim \sim$ | 60 | Ň | | б
Ю | | (\$ 3
 \$ | <
√
√
√ | 53 | | ₹ | |
| | | | 01 | 3, | 2 | <u>r</u> | 2 | R | $\overline{\wedge}$ | | 亅 | |
| | 2 | - 20
/ | | ° (< | 6
% | 18 | 18- | 634 | | | ž | |
| VELLER DOPERATION
OLLONS PER MINITE
ELLE VELLE VELLE
LOW FLOW FLOW | *
*** | Ŝ | 5 | दु | न्द्र | 53 | رگی
ا | | 6-£ | | ¥ | |
| | | 2
-
- | للہ ز
 | | S
 | 5 | ~ | | 5 | | | |
| | | | _ | | | | | | | | ¥ | |
| | | | _ | | | | ļ | ļ | | | | |
| | | 33 | ۵
- د |)
14/1 | | XC | $2 4\Delta$ | | 3 | 1000 | Ą | |
| | | <
∞∰ | ና -
 | 5 | -~6
 | ~5
5-5 | | <i>کی</i> | . ∽≾
 | | | |
| 1 | | | 3 | NY 6 | 10 | | | | | | | |
| | | | a an | 6 | 2 | | | | | | | |
| | iter inn | ÷Ю, | | | L. | - 10.72)
- 10.72) | | | | | | |

KAR WOWE to RAP BASIN Chewred ensy we barnel Basin 33 8130 RW 12 PL LUEND TO BASIN 33

NOTES 1- THE SYSTEM FLOW, STREPPER FLOW AND

PRESSURE FLIER FLOW MUST BE EQUAL WITHIN 6%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINWING

OF EACH BHFT.

DAILY OPERATIONS WORKSHEET G DAY SHIFT

でん

\$ 0 \*

- Etthewk to Barel N 33 REWARKS

1- THE SYSTEM FLOW, STRIPPER FLOW AND

PRESSURE FLITER FLOW MUST BE EQUAL WITHIN ž

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THEOUGH THE FACELITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEQUINING OF EACH WHIT.

Ser . - From 12132 - 12140, Problemb with all

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT のないない。ここに、こことの

? 10.09 Centsma

| CINE CINE | NOTES
I-THE SYSTEM FLOW, STREPER FLOW AND
I-THE SYSTEM FLOW, STREPER FLOW AND | NOTES
I- THE SYSTEM FLC | ∑ | × | ¥ | | ¥ | N | | ¥ |
|-----------|---|----------------------------|------------|--------|-------|---------------|---------|----------------|----------------|--------------------|
| | NA | AN
AN | A M | VA I | | | | | | |
| | KON | | 517 | 1142 | 1220 | | 1201 | 111 120 | 1001 111 CHI | 1 14 14 11 120 V |
| | | | 1211 | +2+150 | 12.61 | | 121 | 12/1-01 | 14/102 12/1 | - 11/1/ 19/ 12/ 1 |
| | 1010 | | 22 | 1187 | XXC | | 1 ICI | 1/11/11/1 | 1 ICI | 1 ICI |
| | 1000 | | 1921 | 121 | 230 | \mathcal{L} | 173-115 | 170 173-113 | 14 120 12- 16 | 61-60 201 AL |
| | | | 000/ | 09// | 27 | 12 | 124 12 | 17211712 | 15 17211212 | \sum_{i} |
| | (- 2) | | 273 | 163 | 200 | 12 | 115/2 | 11/11/12/12 | 2/ 5/ 10/ 12/ | 2/5//14/63/ |
| | | | 1200 | 1107 | 1220 | 0 | 171 12 | 121112 | 145 172 171 12 | 1/2 1/1 / |
| | | /)
- /)/a | 1211 | CX7 | 0 | 0 | e/ 501 | 173 | 146 12 123 13 | 173 |
| Con Ba | 122 | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | RATON
Marte | ELG OPERATION | WELFIELD OPENATION |

ut to log BAIN

1- THE SYSTEM FLOW, STRETTER FLOW, STRETTER FLOW, STRETTER FLOW MUST BE EQUAL WITHIN 5%.

8%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNUNG OF EACH SHIFT.

DAILY OPERATIONS WORKSHEET DAY SHIFT

| J | | | | | اطبنويسيد | | | | | | |
|--|-----------|-------|--------|------|-----------|------|----------|------|----------------|----|-------|
| | | | | | | | | | | | |
| | 24. | 17 6 | 150 | | | 0 1 | 510 | 431 | | | |
| | | | | | | | 3 | , | | ٤ | |
| | 1 × × 0 × | | - | | | | <u>\</u> | > | | ¥ | NOTES |
| | 200 | 20% | 1221 | 862 | 1351 | 1204 | RD | 121 | | ¥ | |
| | 811 | 1211 | 12021 | 1130 | 1141 | 120% | 000 | 1190 | | ¥ | |
| | 1217 | 12.30 | 1216 | 1232 | 1235 | 1536 | 1740 | 12/3 | | ¥ | |
| | 173 | 124 | 1001 | 101 | 122 | 113 | 1/2/ | 1120 | | ¥¥ | |
| VELTRIDOREMICA
GLIDNE PER MAUTE | 241 | 173 | 164 | 122 | 27 | 52 | | | | × | |
| VIEL FREID OPERATION
CALLONS PER MAUTE
ELLE VEL 2 VIEL
ELLE VEL 2 VIEL
LOW FLAN FLAN | りがし | 14.55 | トネレ | メイ | K | | 15 | | - <u>1 - 1</u> | NA | |
| | 3 | | | | | | | | | N | |
| | 210 | 12 | 2
0 | | | | | 28 | | N | |
| 1 | WV | N V S | 0 A M | | | | | | | | |

REMARKS

OF TO Ray Stern.

F. THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 5%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNMUG OF EACH BHET.

9.11.0%

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT

9. 12 °9

| J. | - | 1-1 | | | | | - | | |
|------------|--------|----------|------|---------------------------------------|-------|-------------|---------|----------|--------------------|
| | i cera | | | | | | - | | W AND |
| | 1470. | 71 | 1221 | びん | 310- | 56 | 1 4 24 | | TREPER FLO |
| | 520 | | | | | | | ž | NOTES |
| | CK R | | | | | | 9 | M | NOTES |
| | 333 | | | 18/2 | 92-C1 | 695 | Par | N | |
| | | 124 | ~ | 1001 | 1000 | 1/52 | 1163 | M | |
| | 19.37 | 1230 | 1221 | Per l | 1926 | 1238 | 1240 | VN | £ |
| <u>j</u> ż | 1170 | <u> </u> | 170 | | | | 161 | | 2 |
| | 101 21 | 44 120 | 2012 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 11 21 | | 76 1120 | | AN
AN |
| | | ·/_ | | | 13 | | | | ž |
| 13 | 25 C | 208 | 077 | 8 | 270 | 28
9 0 0 | 210 | | × |
| 1 | 1 KM | 8 AM | 9 AM | | | | | | AVERAGE
BEWARKS |

REMARKS

OVE TO REPEND.

1- THE SYSTEM FLOW, STRIPPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%.

5%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMWING OF EACH SHIFT.

.

DAILY OPERATIONS WORKSHEET DAY SHIFT

9.13.09 Coursel

| | .) т | | T | | a de contra | T | - T | T | | | | | |
|---|-----------------|----------|--------|------------------------------|------------------|------|------|-------------------|------------|------|------|---|-------|
| | Cerer | | | | | | | | | | | | |
| | 1485 | ירי
פ | 12.T. | 100 | したら | | 0 | 367 | 14251 | | | | |
| | 2400 | | | | | | | $\langle \rangle$ |)
)
 | | M | | |
| | CXD | , | | | | | | | | | V7 | | NOTES |
| | | 1206 | | $\langle \dot{\phi} \rangle$ | 2
2
2
2 | 1551 | 1215 | 0%0 | 2267 | | | 5 | |
| | | 1195 | 1 40 4 | | 154 | 1157 | 1120 | 1 | | | | ž | |
| | 1274 | 1260 | 101201 | 1500 | 10101 | 1940 | 1356 | 1261 | | | | ≸ | |
| | 20
20
20 | 120 | 28 | | 171 | 165 | 000 | | Ĵ | 11/0 | | ≸ | |
| | 1.9 | 10/ | 121 | 1/1 | 0// | VU | | | SK
- | | | ₹ | |
| MELLINELDIOPERITION
MULTINELLIOPERITION
MULTINELLIOPERITION
MULTINELLIOPERITION
1000 TOWN | | | | 141 | [~] | 261 | 148 | | | 142 | | ¥ | |
| MCTERICO OFFICIAL | | 2, | | | | | | | | | | A | |
| | | | 2 | 112 | 2 | DVC | 010 | 220 | 5 | S C | 4944 | M | |
| | | | Nas | NX6 | 3 | | | | | | | | |

REMARKS

SN St TO BAN

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN ž

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT. TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

DAILY OPERATIONS WORKSHEET DAY SHIFT Q///

| | That A | | | | Ň | | LAND
TAL FLOW
BHALL
ECONNENG |
|---|---------|---------------|----------|---------------------------------------|---------------------|----------|--|
| | ~ | | 226 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 012.
18. V. | | INUPPER FLOW
MUST BE EQUALS
SURES THE TC
OPERATOR C |
| | ,
Q- | | | | | ž | NOTES
- THE SYSTEM FLOW, STREPPER FLOW AND
PRESSURE FLITER FLOW MUST BE EQUAL WITHIN
5%.
2. EFFLUENT FLOW MEASURES THE TOTAL FLOW
THEOUGH THE FACKLITY. OPERATOR SHALL
THEOUGH THE FACKLITY. OPERATOR SHALL
DEEKT THE GAUGE TO ZERO AT THE BEGMANNA
OF EACH SHIFT. |
| | | | | | | X | NOTES
- THE SYSTEM
THE SYSTEM
EFFLUENT FL
EFFLUENT FL
THROUGH THE
RESET THE ON |
| | 8 C (0 | 1000 | 2 N C | 0003 | 2113
242
2842 | X | to the second |
| | 000 | 66 K
000 > | 1 9 7 | 605 | C1011 | NA | count |
| | 1703 | 1263 | 1275 | $\sqrt{2}$ | 1291 | | Feliys count |
| | 291 | 163 | 62 | | 931 5 | S) () () | |
| WELFREIDOPERATION
CALLONS PER LEWITE
WELLS WELLS WELLS
MELLS WELLS WELLS | 12 16 8 | 3911 E | NYA I LO | 1 67 | ्
जन्द < | | REWARKS
REWARKS
EXPERIMENT TO 10 9211 |
| | | | | 55 | | | M H H |
| | 222 | 20 k
20 k | | 205
206 | | ~ | K Cochert |
| | 7 AM | NK S | NY OI | | | | REWARKS
REVARKS |

DAILY OPERATIONS WORKSHEET DAY SHIFT

00 8 / 1×

| | | | - | | | 0 | | | | | |
|--|------------------|-----------------------|--------------|-----------|-------------|--------|---------------------------------------|------|------------|---|-------|
| | | - | 1.79 | | 200 F # | 12.20 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | |
| | 2 | | | | | | | > | N. | | |
| | 5 | | | | | | | 7 | M | | NOTES |
| | ≤ 9
~ | ΣΩ | | 1000 | ۲
۲
۲ | - 1 (D | | 000 | V N | 2 | |
| | | 1 2 2 | | 1157 | 670 | LE11 | 0000 | 066 | | ž | |
| | $\sum_{i=1}^{n}$ | ~ ~ ~ ~ | 5 7 5 | 1430 | 1205 | 1231 | 212 | 1200 | | ž | |
| | | 59. | 121 | 20 Q
1 | 164 | イウリ | 164 | 162 | | ≸ | |
| WELL FIELD OPERATION
OLLIDISEE MINITE
WELL WELLS WELLS
FLOW FLOW FLOW | 1 164 |) 16 Y | 1000 | 101 | 165 | 164 | 691 | 10°C | | ž | |
| ALL THE DOPENTION
OLL DAYS PER MAUTE
MELL AVEL 2
4.0W | 971 | ンドー | Q | Qh1 | GY) | 2 4 3 | 0 | 1178 | | ≸ | |
| | \odot | ~ | | | | 2 | | | | ₹ | |
| | 704 | $\gamma \sim \lambda$ | 104 | 204 | 304 | 10.5 | 200 | 202 | | Z | |
| Ĩ | 7 AM | 8 AM | NA Q | AK OF | | | | | | | |

REWARKS

EXPLUENT 40 Basin 33 changed ENEYME BONNE 35 of 12 NOD をた

PRESSURE FILTER FLOW MUST BE EQUAL WITHN 1. THE SYSTEM FLOW, STREPPER FLOW AND

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW reset the gauge to zero at the beginning THROUGH THE FACILITY. OPERATOR SHALL OF EACH BHET. 5

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

DAILY OPERATIONS WORKSHEET DAY SHIFT

0 1: (S) ¢\_\_\_

| | | NOTES | | | | | | | | | \$php due de hister |
|----------|---|---|-------------|-------------|---|--------------------------------------|--------------|-------------------|------|----------------------------|---|
| | ž | ≱ | ¥ | Ă | N | M | M | AN | MA | NA | |
| | | | | | | | | | | | |
| | | | | <u></u> | もひとく | 100 | 164 | 131 | Ð | 20
7 | • |
| | > | $^{>}$ | 12/22 | | P | | | | | 50% | |
| | 6 | (l / l) | 6 | | ی
مح
مح | 1
1
1
1
1
1
1
1 | | N
N
N | | | |
| | | ~ | | | 2-8- | 53 | ନ୍ଦ୍ର
ମ | 2000 | * | 2
2
2
2
2
2 | e
N |
| 1. Q 7 9 | | | 12 85 | 1 1 1 1 | 2 ~ | | | | | ζ
Ω
Υ | |
| · × 47 | | | 000 | 420 | 2 | | | ~ {
> {
> { | ~ | | |
| | | | 00 2 | 5
6
6 | 12 12 | 141 | 16 2 | NN I | | | |
| | | | / / / / | 0000 | く
く
く | う
い
い | 64 | 0
M | | 200 | |
| | | | >
-
- | | S. 1 | | 12) | 1 0.1 | ** * | KON | s Al |
| 076 | | ~~~~. | Lik | MOND | N©
V | | - | | 5 | 505 | |
| | ~ | T | 1211 | 0 ~ 1 | ()
()
()
()
()
()
()
()
()
()
()
()
()
(| 17*71 | 164 | オイ | Ø | 8 AU | |
| UMO YARY | | 2005000-00-00-00-00-00-00-00-00-00-00-00- | | | | | | | | | |
| | | | | | 3 | | | | | | ł |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | SK6512 VERBE | | | | and the party of the second second second second second second second second second second second second second |

EXPLORED TO RAN Bach N. 2:15 allow yes with the balling. REWARKS

PRESSURE FILTER FLOW MUST BE EQUAL WITHIN A EFFLUENT FLOW MEASURES THE TOTAL FLOW 1- THE SYSTEM FLOW, STREPPER FLOW AND 5%.

THROUGH THE FACILITY. OPERATOR SHALL REBET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

6-6 87/2

DAILY OPERATIONS WORKSHEET DAY SHIFT

9-17-09 Censel

| 1 | | | | T | T | | T | | | | |
|--------|------|-------------|-------|----------|--------|-------|-------|--------|---|----|---|
| 25/20) | | | | | | | | | | | |
| 1370 | 45 | 1.25 | i del | 100 | | × × × | 1,000 | 1741 | | | NOTES |
| A P | | e | | | | | | | | 2 | |
| 1 L.L | Т | | | | | | | \geq | | ¥ | NOTES |
| | 10/1 | | 0101 | | 10/201 | 5.5.1 | 1000 | 1351 | | ¥ | |
| Ń | 500 |)
a
a | 121 | 101 | 1175 | 1198 | 1197 | 1198 | | ≸ | |
| | 1600 | 077 | 1234 | 19461 | 1249 | 1938 | No-or | 1930 | | A | |
| | 16.7 | 10.5 | 162- | 191 | 160 | 1/100 | 161 | 163 | | ¥. | |
| | 163 | (62 | 163 | 164 | 97 | 677 | 191 | 160 | | NA | |
| | 121 | 50 | 021 | 138 | 581. | 13 | 13 | 10 | | M | |
| | 3 | | | | | | | | | M | |
| | 2% | 20% | Peg | 705 | 281 | 100 | 2.0 | 205 | Charles and and and and and and and and and and | Ą | |
| 7 | ZAW | 8 AN | 9 AM | | | | | | | | 323233333333333333333333333333333333333 |

HERANNO

1. THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN

ţ

:

ENR TO ROP BAIN

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEQUNENG OF EACH PERT. 5%

DAILY OPERATIONS WORKSHEET DAY SHIFT

7.18.09 Demburk

| | | Ņ | M | N | ž | MA | MA | MM | M | VIN | | |
|--------|--------------|-------------|-----|------|--|-------|-----|-----|-------|---------------|-----|------|
| | | | | 1601 | 11/61 | 1227. | 59 | 165 | 138 | | 2 c | |
| | N 1 | | | 144 | 118 | REF | 101 | 164 | 52 | ð | 204 | |
| | 092- | | | | 7 1 7 53 | | 101 | 201 | 21 | | 101 | |
| | ر گن گر
ر | 643.41-4130 | | 5.0 | | 10 40 | | | 1 1 1 | | | |
| | 12/2 | | | 1000 | 141 | 1730 | 162 | 191 | 139 | | 200 | |
| | | | | 1012 | 1164 | 1334 | 1 | 60 | 120 | aniari a | 202 | |
| | | | | 1011 | | 12 20 | 164 | 163 | 141 | مارور المراجع | とい | 9 AM |
| | 17/ | | | | 660 | 12/8 | 10/ | Z | 140 | | 103 | ۹Ų. |
| | | | 20. | 100 | | 1935 | 162 | 164 | 133 | مي ه | 202 | 7 AM |
| Center | 1241 | <u> </u> | | | and a second of the second second second second second second second second second second second second second | | | | | | | |
| | | | | | | | | | | | | ž |
| | | | | | | | | 1 | | | | |

REWARKS

1- THE SYSTEM FLOW, STREPPER FLOW AND PRESSURE FLITER FLOW MUST BE EQUAL WITHIN

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNENG OF EACH REFT. 2

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

100

DAILY OPERATIONS WORKSHEET DAY SHIFT

CENSPOR 9-19.09

| | T | T | 1 | T T | Т | T | | | | | | |
|--|---------|-----------|---------------------------|------|------|--------------------------------------|------|-------|---|----|-------|--------------------------------------|
| | | | | | | | | | | | | |
| | 13.12 | 121 | 12.5 | | | 2
2
2
2
2
2
2
2 | | 1721 | | | | 1- THE SYSTEM FLOW, STREPER FLOW AND |
| | 6 1 - 1 | 4- 2200 M | | 4745 | | | | 5 | | 2 | | EN FLOW, STI |
| | 0×1 | | | | | | |) | | ٤ | NOTES | 1- THE SYST |
| | 1 30 | 1011 | 10110 | 1040 | 11/1 | 121 | 1021 | 500 / | | ¥ | | , . |
| | 662 | 693 | 120 | 1163 | 201 | 1157 | 1141 | 1143 | | ≸ | | |
| | 1224 | 1235 | 1330 | 1227 | 4221 | 1230 | 1231 | 1230 | | ¥ | | |
| | 160 | 160 | 161 | LYS- | 164 | 163 | 163 | 161 | | ¥ | | |
| | 163 | 163 | 123 | 161 | 164 | 163 | 160 | 160 | | AN | | |
| NUT NATO NATO NATO NATO NATO NATO NATO NAT | 137 | 1 34 | 62 | 13% | 120 | 133 | (8) | 137 | | AN | | |
| | 1
Ö | | 5-1 <sup>-3</sup> 1-1-1-1 | | | | | 5 | a na sa | Ň | | |
| <u>gi</u> | 2°5 | 100 | 200 | 500 | NUK | 2014 | 6 | S.R | and the first state | Ą | | |
| Ľ | Z AM | 8 AM | 9 AM | | | | | | | | | REWARKS |

exe n log Brain.

•

1- THE SYSTEM FLOW, STRIPPEH FLOW MUST PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 5%.

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMMUNG OF EACH SHIET.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY

DAILY OPERATIONS WORKSHEET DAY SHIFT

ans el.

?. 20- ol

|
 | <u> </u> | | T | r | | | [| | | | | |
|-------------|---------------|--------|------|----------|---------|-------|----------|-------|------------|---------------------------|---|---|
| | - china | | | | | | | | | G | NT MILHIN | AL FLOW
ALL
CONNUNG |
| | 1376 | 200 | 100 | | 282 | 12 | 103 | | | | F. THE SYSTEM FLOW, STREPTCH FLOW MITHIN
PRESSURE FLITER FLOW MUST BE EQUAL WITHIN | 5%.
2- EFFLUENT FLOW MEASURES THE TOTAL FLOW
THROUGH THE FACKLITY. OPERATOR SHALL
DEGET THE GAUGE TO ZERO AT THE BEGINNING |
| | 0 16 | | | | | | | | ž | | EN FLOW, STR
FLITER FLOW A | T FLOW MEASU
HE FACKLITY. 4
GALIGE TO ZEI |
| | 1710 | | | | | | | | ¥ | NOTES | I- THE SYST
PRESSURE I | 5%.
2- EFFLUEN
THROUGH T |
| | 1080 | 956 | 1010 | 10.0 | 101 | 11860 | 1077 | 1231 | N | | | |
| | 1000 | 154 11 | 15/ | 1160 | 11 15 | 1/00 | 155 | 0011 | M | | | |
| | 12.00 | 1521 | 1225 | CEI, | 12:38 | 152 | 12.50 | 1231 | A N | | | |
| | メン | 1 1 | 161 | 164 | 8 | 181 | 160 | 160 | M | | | , |
| | 8
163 | | | 163 | | 7 63 | 9 162 | 1/0/ | X | | 5
6
2 | MAIO |
| WELLS WELLS | с <u>1</u> 33 | + | 138 | 12 | 150 | 5 | 5 | 11137 | NA NA | | | L |
| | | + | 207 | 9ª Y | J-03 | 20% | 576 | 203 | ŇÅ | | | ward day a zhi |
| <u> </u> | | | | | | | | | | นี้สะนรสิ่งหนังสะกลรั
 | REMANNS | Ú |
| | | | | | | | | | | už. | α(| , 1944, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1 |

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZEPO AT THE BEOMMENG OF EACH SHIFT. 5%

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAILY OPERATIONS WORKSHEET

BBR-I-F-I-I-I.A.S-A.A

| | | NOTES | | | - | | | | | | Rechteredationer |
|-----------------|-------|---------|----------------------------|-----------------------|--|-------------|---|---|--------------------------------|---------------------|------------------|
| | ₹ | ₹ | - NA | M | M | M | NA | N A | N Å | VN | |
| | | | | | | | | | A William and the state of the | - | |
| | | | | 642 | $\gamma \langle \chi \rangle$ | 166 | इन्हें
ब | 6 M | | 202 | |
| | | | 6
[
(| and the second | | | | 4 | | めつて | |
| | | 2 | 1 4 6 | ~
0
0
0
0 | 5 4 4
7 4 4
7 | 100 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 1 | | 1101 8 | |
| 2 | | | 1 1 1 1 | ų
V | | | | 3
1
 | | | |
| | | | 000 | ی
د د | े
जन
दाई | 160 | 2.9 | シケー | | $j \in \mathcal{I}$ | |
| 9 a K | | | | | | 0 | <pre>65</pre> | 2 | | | 2 |
| 2.2
10
10 | | | 517 B | ð
^ | | | 2
2
2 | | | K O T | |
| | | | 5
0
: 5 | | して | | 1 2 | 2 61 | | 1440 | |
| 2
2
2 | | | | | | N 20 | 1 1 1 | 100 | | 5
~
~ | A.M. |
| .120 | | + | 2
2
2 | | 5 M C ~ | 18
2
 | · / / · | <u>کر</u>
۲ | | | |
| | | | 611,5 | 11 10 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ۶-۲
 | 4 | ی
۲
۲ | istra | $\supset \bigcirc$ | |
| 5760 | | | | | | 2
V (| ∧
>
~ | 161 | 0 | 20% | 7 AM |
| 4 | N/ N | T | てから | | 5
1
2 | 2-71 | 5 6 7 | 1.24 | ,
, | | |
| VM N ZSCI | r Ano | | ssesteration of the second | Lifellan luuliosito | | | | | | | |
| | | | | | | | | | ē. | ġ | |
| | | | | | | | | | | | |
| | | 間にいいたに用 | | 1961 | | | | age constant and the second second second second second second second second second second second second second | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |

REMARKS Et 8 lumb to 10 to Basin 33 8 15 am et 10 wob to Basin 33 8 15 am et 10 wob to Basin 33 a PM RTP ON SITE

NO I ES 1- THE SYSTEM FLOW, STREPPER FLOW AND

PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMMANG

GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

1.0-

DAILY OPERATIONS WORKSHEET

09 14 14 14

| | | | | T | T | -1 | | | r | | | | |
|--------------------|----|---------|---------------------|---------------------------------|------|------------------------------|-----------------------|---------------|-------------------|--------|----|---|-------|
| | | QUUT . | | | | | | | | | | | |
| | | 4.3.72Y | 02.2 | | 170 | 2 2 2
2 2 | 2,10 | 100 | n
T | 2
X | | | |
| | | Ð | , | | | | | | | | ¥2 | | |
| | | S. | | | | | | | | 7 | M | 5 | NOTES |
| | | 8 X 3 | 851 | \$
}
\$
} | 0002 | $ \langle \rangle \times$ | | | 2 Q
7 Q
7 Q | 1113 | | 3 | |
| | | (1) マント | 946 | \Box | - | 0 |)
)
)
]
] | | | 0000 | | ž | |
| | | | 1001 | s n | | 1 | 1 20 + V | 5
75
75 | 1220 | 0234 | | ₹ | |
| | | | 1001 | | 10 | | ට :
 | Q
9
 | 181 | 0 | | ¥ | |
| NCIT | | | | | n r | | -4
9
 | 163 | 664 | ð, | | ¥ | |
| VIEILERID OPENNION | |)
1 | 72.
0 N
~ ~ ~ | 7
2
2
2
1
2
1 | | | 2 <u>2</u> | 136 | L≥Y | Ŕ | , | ¥ | |
| | | (
, | 7 | | | _ | | | / . | 5 | | ¥ | |
| | | (| かっく
く
く | | F07 | 800L | 203 | १०४ | 2.54 | 0 | | Ň | |
| | ×. | | | 8 AM | NV 6 | | | | 3 | | | | |

REMARKS

10

Pluent Plow to Dasin 32

PRESSURE FLITER FLOW MUST BE EQUAL WITHN 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW 1. THE SYSTEM FLOW, STREPPER FLOW AND 2

reset the gauge to zero at the beginning THROUGH THE FACELITY. OPERATOR SHALL OF EACH SHIFT.

-7:15 GTP ON SITE WON'E - CHENNEL ON WE WON'E SIJON

S. No 13

DAILY OPERATIONS WORKSHEET DAY SHIFT

\$ \$ \$ \$ 5 9

| | | | WELLFELD OPERATION | | | | | | | | | |
|--------------------|----------------|-------------|--------------------|------|-----------------------|---|-------|-------------|-------|---|------------------|-----|
| 2 | | | NOTE ACT | | | | | | | | | |
| | | | | Σ | | で イ パー | | 125 C | 0 | 0 | 1247 | DWD |
| | えいよ | ୍ର
୨ | ナ
<u> ナ</u> | | | | | 1_ | | | | |
| 8 AM | 0 | | -\$
5- | (73) | -
-
-
-
- | 0
5
 | 1000 | | | | | |
| | 13 N N | | 14/ | 166 | 166 | 8 X 8 | 1061 | 0 20 B | | | ~~ | |
| | 5 N (2 | | 051 | 168 | 165 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 666 | 001/ | ~~~; | | | |
| | 2 / 2
2 / 2 | | | | | 1 2 4 1 | CYCC. | 602 | | | . 234 | |
| | 208 | | <u>5</u>
V | | | | | | | | 5
5
6
7 | |
| | 205 | *********** | 5
2
2 | 64 | 168 | | 0000 | | | ~ | 2 51 5 | |
| | L.PS | | いす | 1991 | 991 | | 1193 | 5
0
5 | | | 0 0 0 · | Ð |
| | 2 4 E | | 14 | 68 | (19) | 9 br 1 | (2 J | 000 | Ř | > | 602 | |
| | | - Appendix | | | | | | | | | | |
| | ŇÅ | X | M | ¥ | Ā | NA | NA | ¥ | ¥ | X | | |
| Bisbdesedertureeft | | 1 | | | | | | 1 | NOTES | | | |

WRYIN ent & Nue to BabIN 83 REWARKS

1- THE SYSTEM FLOW, STREPER FLOW AND PRESSURE FLITER FLOW MUGT BE EQUAL WITHIN

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEOMWANG OF EACH BHFT. ž

DAILY OPERATIONS WORKSHEET DAY SHIFT Centrale. 7.27.05

| |)
[] | | | | | | | | | | | |
|------------------|-------------|---------|----------|--------|--------|-------|-----------|---------|----|--------|--|---|
| |) | | | | | | | 1 | | | GW | AL WITHN |
| | 1021 | 75. | 121 | 121. | 201 | 250 | 100.
1 | 1 - 11 | | | | UGT BE EQUI |
| | 660- | | | | | | | | ž | | | I FLOW, SIN |
| | 6 16 0- | | | | | | | | AN | | NOTES | 1- THE SYSTEM FLOW, STRATCH THO WITHIN
PRESSURE FLITER FLOW MUGT BE EQUAL WITHIN |
| | 1024 | 512 | <u> </u> | 22 | 10 1 | 11 | | 1001 | MA | | ~ | <u>- 0.</u> |
| | 121 | 22 | | 6/ | | 2 2.5 | | 60 7 | | ÷
٤ | | |
| | 1 2001 | 48 11 c | | 200 | 25) // | 2.5 | | 30 11 | | _
× | | |
| | 66 2 | 0 | | 0 | 67 1/2 | | 6 Y 12 | J 12 | | ¥ | | |
| | 12511 | 165 16 | 162 166 | 168 16 | 165 16 | 168 1 | 169 116 | 165 116 | | M | | |
| ALLON DATA NAMIT | 139 | 141 | 5 | 141 | 140 | 141 | 140 | 171 | | ¥ | | |
| | 1
)
) | | | | | | | > | | ¥ | | |
| ją. | De X | dal | Pox! | 1208 | 306 | 100 | 208 | 200 | | N | i. | |
| 1 | 7 AM | 8 AM | MA. B | NY OL | | | | | | | and the second second second second second second second second second second second second second second second | REMAHKS |

. <u>М</u> М

ORT TO ROW.

8%. 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT.

DAILY OPERATIONS WORKSHEET DAY SHIFT

9.25.03 COMSELE

| Ž | | | | | | | | - | | • | | |
|--|--------|------|------|-------|----------------------|-------|-----|------|-------|---|-----------|---|
| | | | | | | | | | | | QN | NTTHIN L |
| | 6 C | 117. | 181 | 237 | 20
20
20
20 | 241 | | 22 | | | PPER FLOW | WOI BE EOM |
| |) | | | | | | | | M | | NOTES | PRESSURE FILTER FLOW MUST BE EQUAL WITHIN |
| | 30 · | | | | | | | | VIN . | ž | NOTES | PRESSURE F |
| | 1000 | 2021 | 9 ° | 12 61 | 0001 | 000 | 170 | 9911 | 414 | ž | | |
| | 661 | 1/20 | 100 | | 667 | 1201 | 180 | 1157 | | ¥ | | |
| | 1233 | 12K0 | 1226 | | 1521 | 12.00 | 050 | 1950 | | ₹ | | A |
| | 164 | 62 | 10-2 | 160 | 16.2 | 166 | 166 | 162 | | ¥ | | 一
上
上 |
| | 168 | 120 | 60 | 167 | 63 | 166 | 167 | 166 | | ¥ | | ۵. |
| WEITFIELG OPERATION
CALLING FEIR MILLI
ELLOW
FORMUTE
COW | の大1 | 1.5% | 120 | 121 | 121 | 120 | 141 | いふり | | ¥ | | Q |
| WEITFELDIOPERATION
CALIFORD PER MENTE
CALIFORD PER MENTE
MELLIN
FLOW FLAN
FLOW FLAN | с
С | | | | | | | ð | | ş | | |
| | 200 | 207 | 706 | 905 | 206 | 206 | 20S | 906 | | ¥ | | |
| Z | ZAN | AM S | 9 AM | | | | | | | | REWARKS | |

EXF to BAS, N F 33

•••

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACELITY. OPERATOR SHALL reset the gauge to zero at the beginning OF EACH RHFT. 2

DAILY OPERATIONS WORKSHEET DAY SHIFT

Cemp Fl 9.26.09

R a 51 RAF EXF TU to

PRESSURE FILTER FLOW MUST BE EQUAL WITHN

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL. RESET THE GAUGE TO ZERO AT THE BEGINNING OF EACH SHIFT. ×.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY TOWN OF OYSTER BAY

DAILY OPERATIONS WORKSHEET DAY SHIFT

Censrel 827.08

| www. | <u></u> | | | T | Т | -1 | | T | T | | | | |
|-------|--------------|-----------|-----|-------|--------|---------|------|-------------|-------|------|----|----|-------|
| | | | | | | | | | | | | | |
| | | 10/2/ | | 127 | 157 | , 7, r | 510 | 2
-) (- | 2022 | | | | |
| | | () | | | | | | | | | NA | | |
| | | ž | | | | | | | 3 | | | ٤ | NOTES |
| | | 676 | 967 | PSZ | 1003 | 6.277 | 1100 | 111 | 1231 | 1311 | | ¥ | |
| | | 1 1 1 12/ | 150 | 167 | Cr 316 | 1 1 1 1 | 101 | 11:33 | 11.17 | 1191 | | ¥ | |
| | | 1185 | 100 | 19-10 | Sec/ | | | 1199 | 1190 | 1208 | | ¥ | |
| | | 16.8 | 1 ~ | 169 | 0 11 | | 167 | 168 | 16 % | 169 | | ¥ | |
| CIN I | | 169 | 168 | 11 | 101 | 16/ | 160 | 169 | 691, | 168 | | M | |
| | NOTE AND AND | 2み/ | 143 | (4) | 112 | | 175 | $C\lambda/$ | 143 | 141 | | N | |
| | | 3 | | | | | | | | | | NA | |
| | | 7 u K | 210 | 240 | 100 | 0/2 | 200 | 209 | 20 | 2 X | | Ň | |
| | 2 | | | | 57.7 | | 2 | | | | | | |

REMARKS

Back RAP exp to 13/14

1- THE BYSTEM FLOW, STRIPPER FLOW AND

PRESSURE FLITER FLOW MUST BE EQUAL WITHIN 5%

2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACILITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BEQUINENG OF EACH PHET.

DAILY OPERATIONS WORKSHEET DAY SHIFT

128/09 6....

(Casil E. F.F. Luwerk 40 Kan REMARKS

1- THE SYSTEM FLOW, STREPPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 2- EFFLUENT FLOW MEASURES THE TOTAL FLOW THEROUGH THE FACILITY. OPERATOR SHALL 20

RESET THE GAUGE TO ZENO AT THE BEGINNENG OF EACH REFT.

A U.Z. K.M 101

DAILY OPERATIONS WORKSHEET

| | C M | 37 | - * - * * * * * * * * * * * | | | | | | | GNA | NHLIN TY | TAL FLOW |
|--|---------------------------------|------|-----------------------------|---|----------|-------|---------------------------------------|---------|-----------|--------------|---|-------------------------|
| | | 1004 | 1.24 | | | * 187 | 10,44 | | | NOTES | Pressure futter flow Must be Equal Within | 15%. |
| | G | | ****** | 0 | | / | Ŵ | | ₹ | TEM FLOW, 81 | FLTER FLOW | |
| | Ŷ | ~~~~ | | ľ. | | (
 | S | | ž | NOTES | PRESSURE | 5%. |
| | | 9461 | 0001 | ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, | | 050 | BNG | | Ă | | | |
| | | 8211 | | 000 | N N L | | 1) CO | | A | | 4 | to l |
| | 、
い
つ
の
い
し
、 | 1205 | 10 | 0 2 2 0 | 000 | 1219 | | | M | ¢ | 2 | シーシーション |
| | 391 | 168 | | 0000 | | 164 | | · 1 · * | VN | V | 5 | 000 |
| | | 2 | | 202 | 26 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | NA | 7
2
2 | 154 1 | W. 11 11 |
| VILLARIOPENION
Olicine per unur
werth welly welly
user nices here | | 24 | 0 | | <u>2</u> | | | 7 | AN NA | | 2 | t. |
| | | | Ð | 0 | N. C. | | 2 2 2
2 2 2
2 2 2 | K OF | NA | | To PP he en B | C. A. C. A. A. W. A. S. |
| | | | | IC AN | | | | | | Posta A C KS | | y
Ø |

11:45 All WENS BACK IN OPERATION

2- EFFLUENT FLOW MEASURES FRE TOTAL F THROUGH THE FACILITY, OPERATOR SHALL

Waintenance and contract found by which to made the factor. OFFIND SHULL 8:50 Well & 55 of found by which to mail to mail the source to ZERO AT THE BECANNING 7:10 Mil well of but to win

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY DAILY OPERATIONS WORKSHEET DAY SHIFT $\Im = 20$

<u>1</u>

| | | ~ | | | | | | | | | |
|-------------|---------|---------|------------------|-------|----------------|-------------------|----------------------------------|---|-----------------------|------|----------|
| | | | | | | | 27 | 00 | 8 7 8 | | |
| | | | | | ~ ~ ~ | 2 2
2 2
2 2 | | ~ | ×Ĵ | VA | |
| | | 3 | | | | | | | \wedge | ž | |
| | | 6 1. 2- | N N | 1:50 | 000 | 1053 | 950 | ¢ بر | 23 | AN | - |
| | | _ | -
SR | 270 | LE N. De | 0000 10 | 58 2 | 11 05 | | NA . | 5 |
| | | A | ~~
\$
\$ | 89 | 1260 1 | 2 69 | 175
195 | 5 | 5-
M | | 5 |
| | | 64 12 | n
n
n
n | 64 12 | <u>६</u> १ ७ | 6113 | ()
()
()
()
()
() | | 61 13 | | M |
| | | | | 657 | - 67- | 16"2 / | 2 | + | [64 l | | Š |
| - CV. 742 I | | 501 | 14 | | | 14.2 | | | , <u>7</u> , <u>7</u> | | ¥ |
| | | वर्त व | X | ~ | 7 | | | 214 | | | |
| | ja
M | 10 × 01 | \geq | 2 | | | | - 1
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2
- 2 | | | |
| | Z | N L | 8 AM | 9 AM | | | | | | | |

ELARKS EFFLUENT de RATUBASI - changes en zyme bannel

NOTES

1- THE SYSTEM FLOW, STRAPPER FLOW AND PRESSURE FILTER FLOW MUST BE EQUAL WITHIN 5%.

8%. 2. EFFLUENT FLOW MEASURES THE TOTAL FLOW THROUGH THE FACKLITY. OPERATOR SHALL RESET THE GAUGE TO ZERO AT THE BECANNENG OF EACH SHIFT.

APPENDIX B

FACILITY MONITORING RESULTS July through September, 2009

Town of Oyster Bay Old Bethpage Landfill Remedial Action Plan Organic Self-Monitoring Results - Third Quarter 2009

Influent and Effleunt Results, in micrograms per Liter

| DATE | Total VOC | | Summary of | of VOCs De | tected Most | t Frequently | y and/or at H | Highest Cor | centrations | 3 | Effluent TVOC |
|-----------|---------------|---------|------------|------------|-------------|--------------|---------------|-------------|-------------|---------|---------------|
| DATE | Concentration | BENZENE | VCM | PCE | 1,1-DCA | TCE | 1,2-DCE | 1,1-DCE | 1,2-DCA | 111-TCA | Concentration |
| 7/1/2009 | 147 | 0.1 | ND | 25.5 | ND | 98.2 | 13.5 | 4 | 0.1 | 5.6 | 18.1 |
| 7/6/2009 | 150 | 0.1 | ND | 20.9 | ND | 106 | 15.6 | 3.1 | ND | 4.4 | 20.0 |
| 7/8/2009 | 146 | 0.1 | ND | 20.5 | ND | 105 | 11.7 | 3.2 | ND | 4.9 | 1.1 |
| 7/10/2009 | 145 | 0.2 | ND | 27.3 | ND | 97.2 | 12.3 | 3.0 | ND | 5.1 | 19.4 |
| 7/13/2009 | 164 | ND | 0.9 | 25.6 | ND | 110 | 18.9 | 3.8 | 0.2 | 4.9 | 36.6 |
| 7/15/2009 | 154 | ND | 0.7 | 25.1 | ND | 104 | 14.7 | 3.4 | 0.1 | 5.3 | 1.8 |
| 7/17/2009 | 164 | 0.6 | 0.7 | 26.3 | 0.1 | 114 | 13.2 | 3.2 | 0.1 | 5.6 | 24.7 |
| 7/20/2009 | 158 | ND | 1.9 | 22.1 | ND | 113 | 13.4 | 3.4 | ND | 4.2 | NA |
| 8/10/2009 | 228 | ND | ND | 20.8 | 0.7 | 171 | 17.5 | 8.8 | 1.1 | 7.6 | NA |
| 8/12/2009 | 247 | ND | ND | 23.1 | 0.7 | 186 | 18.4 | 9.2 | 0.2 | 8.9 | 21.1 |
| 8/14/2009 | 243 | ND | ND | 21.3 | ND | 189 | 17.2 | 7.5 | 0.2 | 8.1 | 21.4 |
| 8/17/2009 | 132 | ND | ND | 12.8 | 0.4 | 101 | 10.0 | 3.0 | 0.5 | 4.1 | 11.6 |
| 8/19/2009 | 136 | ND | ND | 13.1 | 0.5 | 104 | 10.8 | 3.0 | 0.3 | 4.1 | 10.3 |
| 8/21/2009 | 114 | ND | ND | 11.5 | 0.4 | 88.4 | 8.2 | 2.3 | ND | 2.9 | 7.6 |
| 8/24/2009 | 122 | ND | ND | 12.5 | 0.4 | 91.4 | 10.3 | 3.1 | 0.4 | 4.1 | 11.2 |
| 8/26/2009 | 137 | ND | ND | 13.5 | 0.4 | 105 | 10.7 | 3.2 | ND | 4.0 | 25.6 |
| 8/28/2009 | 122 | ND | ND | 13.1 | 0.5 | 90.5 | 10.1 | 2.8 | 0.5 | 4.2 | 0.2 |
| 8/31/2009 | 118 | ND | ND | 11.3 | 0.3 | 94.4 | 6.9 | 1.9 | ND | 3.3 | 9.5 |
| 9/2/2009 | 123 | ND | ND | 14.1 | 0.4 | 91.2 | 10.1 | 3.0 | ND | 4.1 | 10.1 |
| 9/4/2009 | 136 | ND | ND | 12.5 | 0.5 | 106 | 9.9 | 2.9 | 0.6 | 4.0 | 3.1 |
| 9/9/2009 | 135 | ND | ND | 14.5 | 0.4 | 101 | 11.4 | 3.2 | 0.3 | 4.4 | NA |
| 9/11/2009 | 129 | ND | ND | 16.7 | 0.5 | 90.7 | 12.9 | 2.5 | 0.7 | 4.5 | NA |
| 9/16/2009 | 133 | ND | 0.1 | 15.4 | 0.0 | 100 | 11.4 | 1.9 | 0.1 | 3.7 | NA |
| Averages: | 151 | 0.2 | 0.1 | 18.2 | 0.2 | 111.2 | 12.6 | 3.7 | 0.2 | 4.9 | 14.1 |

Notes:

Bolded values are higher than Consent Decree limit of 50 ug/L total VOCs for ground water.

Effluent concentrations are lower than Consent Decree limit of 100 ug/L total VOCs.

NA = Not Available.

ND = Not Detected.

Town of Oyster Bay Old Bethpage Landfill Remedial Action Plan Inorganic Self-Monitoring Results, July-September 2009

Effleunt Results, in milligrams per Liter

| Parameter | Limit | Avg. Conc. | 7/8/2009 | 7/15/2009 | 7/22/2009 | 7/29/2009 | 8/5/2009 | 8/12/2009 | 8/19/2009 | 8/26/2009 | 9/2/2009 | 9/9/2009 | 9/16/2009 | 9/23/2009 | 9/30/2009 |
|--------------------|-----------|------------|----------|-----------|-----------|-----------|----------|-----------|-----------|-----------|----------|----------|-----------|-----------|-----------|
| pН | 6.5 - 8.5 | 7.2 | 7.1 | 7.1 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.0 | 7.1 | 7.0 | 9.0 | 7.0 |
| Iron | 0.6 | 0.01 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.01 | 0.02 | 0.02 | 0.00 | 0.05 | 0.00 | 0.00 | 0.00 |
| Manganese | 0.6 | 0.5 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.7 | 0.2 | 0.5 | 0.4 | 1.8 | 1.3 | 0.1 |
| Iron and Manganese | 1.0 | 0.5 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.7 | 0.2 | 0.5 | 0.5 | 1.8 | 1.3 | 0.1 |
| Dissolved Oxygen | No Std. | 14.0 | 12.4 | 12.8 | 16.6 | 12.4 | 18.8 | 11.2 | 12.0 | 12.9 | 18.4 | 11.5 | 18.5 | 11.7 | 12.3 |
| Ammonia | No Std. | 5.6 | 6.1 | 5.7 | 5.0 | 5.5 | 6.0 | 5.7 | 5.5 | 5.8 | 5.3 | 5.6 | 5.8 | 5.5 | 5.7 |
| Chloride | 500 | 131 | 140 | 145 | 133 | 140 | 131 | 108 | 135 | 126 | 114 | 144 | 114 | 136 | 139 |

<u>Notes</u>: Limits are ground water discharge limits in NYSDEC TOGS 1.1.1. Bold results exceed limits.

Town of Oyster Bay Old Bethpage Landfill Remedial Action Plan Organic Self-Monitoring Results - Third Quarter 2009

Recovery Well RW-4 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|-----------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(GV) | 5 | 5 | 50(G∨) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 314 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 3.2 | <0.8 | 0.8 | 0.3 |
| 7/9/2009 | 187 | 0.1 | <0.3 | 0.2 | <0.1 | 0.1 | <0.6 | <0.2 | <0.1 | 1.6 | <0.2 | <0.3 |
| 8/7/2009 | 510 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 4.3 | <0.8 | 1.2 | 0.5 |
| 8/14/2009 | 339 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <0.8 | <0.2 | <0.3 |
| 8/21/2009 | 390 | <0.1 | <0.3 | <0.2 | <0.1 | 0.4 | <0.6 | <0.2 | <0.1 | 11.4 | <0.2 | <0.3 |
| 9/25/2009 | 459 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 1.9 | <0.8 | 0.5 | 0.3 |
| Averages: | 366 | 0.0 | ND | 0.0 | ND | 0.1 | ND | ND | 1.6 | 2.2 | 0.4 | 0.2 |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | 6.4 | 29.4 | <0.1 | <0.1 | <0.2 | 24.0 | <0.1 | 6.6 | 243 | 0.5 | <1.8 | |
| 7/9/2009 | 0.7 | 13.4 | <0.1 | <0.1 | <0.2 | 18.2 | 0.1 | 1.4 | 146 | 1.8 | 3.2 | |
| 8/7/2009 | 11.8 | 31.6 | <0.1 | <0.1 | <0.2 | 127 | <0.1 | 11.3 | 322 | <0.2 | <1.8 | |
| 8/14/2009 | 2.6 | 35.3 | <0.1 | <0.1 | 0.3 | 24.3 | <0.1 | <0.1 | 276 | <0.2 | <1.8 | |
| 8/21/2009 | 2.9 | 37.7 | <0.1 | <0.1 | <0.2 | 37.2 | 0.3 | 2.5 | 288 | 0.8 | 9 | |
| 9/25/2009 | 2.8 | 44.0 | <0.1 | <0.1 | <0.2 | 38.7 | <0.1 | 4.4 | 366 | <0.2 | <1.8 | |
| Averages: | 4.5 | 31.9 | ND | ND | 0.1 | 44.9 | 0.1 | 4.4 | 273 | 0.5 | 2.0 | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

\*\* Standard per isomer.

APPENDIX C

RECOVERY WELL MONITORING RESULTS July through September, 2009

Recovery Well RW-1 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|-----------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(GV) | 5 | 5 | 50(GV) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 2.7 | 0.1 | <0.3 | <0.2 | <0.1 | 0.6 | <0.6 | <0.2 | <0.1 | 1.2 | <0.2 | <0.3 |
| 7/9/2009 | 2.6 | 0.1 | <0.3 | <0.2 | <0.1 | 0.4 | <0.6 | <0.2 | <0.1 | 1.0 | 0.2 | <0.3 |
| 8/7/2009 | 3.0 | 0.2 | <0.3 | <0.2 | <0.1 | 0.5 | <0.6 | <0.2 | <0.1 | 1.2 | <0.2 | <0.3 |
| 8/14/2009 | 6.4 | 0.2 | <0.3 | <0.2 | <0.1 | 0.8 | <0.6 | <0.2 | <0.1 | 1.8 | <0.2 | <0.3 |
| 8/21/2009 | 8.9 | 0.2 | <0.3 | <0.2 | <0.1 | <0.5 | <0.6 | <0.2 | <0.1 | 3.5 | <0.2 | <0.3 |
| 9/25/2009 | 1.2 | <0.1 | <0.3 | <0.2 | <0.1 | 0.2 | <0.6 | <0.2 | <0.1 | 0.7 | <0.2 | <0.3 |
| Averages: | 4.1 | 0.1 | ND | ND | ND | 0.4 | ND | ND | ND | 1.6 | 0.03 | ND |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | <0.3 | 0.5 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | <0.2 | 0.3 | <1.8 | |
| 7/9/2009 | <0.3 | 0.5 | <0.1 | <0.1 | <0.2 | <0.1 | <0.1 | <0.1 | 0.2 | 0.2 | <1.8 | |
| 8/7/2009 | <0.3 | <0.5 | <0.1 | <0.1 | <0.2 | 0.2 | <0.1 | <0.1 | 0.3 | <0.2 | <1.8 | |
| 8/14/2009 | <0.3 | 0.6 | <0.1 | <0.1 | 0.2 | 0.2 | <0.1 | <0.1 | 0.3 | <0.2 | 2.1 | |
| 8/21/2009 | <0.3 | <0.5 | <0.1 | <0.1 | <0.2 | 0.1 | 0.1 | <0.1 | <0.2 | 0.2 | 4.1 | |
| 9/25/2009 | <0.3 | <0.5 | <0.1 | ND | <0.2 | <0.1 | <0.1 | <0.1 | <0.2 | <0.2 | <1.8 | |
| Averages: | ND | 0.2 | ND | 0.0 | 0.03 | 0.1 | 0.02 | ND | 0.1 | 0.1 | 1.0 | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

Recovery Well RW-2 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|-----------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(GV) | 5 | 5 | 50(GV) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 12.3 | 0.4 | 0.3 | 0.2 | <0.1 | 0.8 | <0.6 | <0.2 | 0.6 | 3.9 | 0.3 | 0.3 |
| 7/9/2009 | 1.5 | 0.1 | <0.3 | <0.2 | <0.1 | 0.3 | <0.6 | <0.2 | <0.1 | <0.8 | 0.2 | <0.3 |
| 8/7/2009 | 3.6 | 0.2 | <0.3 | <0.2 | <0.1 | 0.4 | <0.6 | <0.2 | <0.1 | 0.8 | <0.2 | <0.3 |
| 8/14/2009 | 7.0 | 0.2 | <0.3 | <0.2 | <0.1 | 0.4 | <0.6 | <0.2 | <0.1 | 1.4 | <0.2 | <0.3 |
| 8/21/2009 | 10.5 | 0.2 | <0.3 | <0.2 | <0.1 | 0.6 | <0.6 | <0.2 | <0.1 | 2.8 | <0.2 | <0.3 |
| 9/25/2009 | 0.8 | 0.1 | <0.3 | <0.2 | <0.1 | 0.2 | <0.6 | <0.2 | <0.1 | 0.5 | <0.2 | <0.3 |
| Averages: | 6.0 | 0.2 | 0.1 | 0.0 | ND | 0.5 | ND | ND | 0.1 | 1.9 | 0.1 | 0.1 |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | <0.3 | 0.7 | 0.4 | 0.2 | 0.6 | 0.4 | 0.2 | <0.1 | 0.2 | 0.2 | 2.6 | |
| 7/9/2009 | <0.3 | <0.5 | <0.1 | <0.1 | <0.2 | 0.2 | <0.1 | <0.1 | 0.4 | 0.3 | <1.8 | |
| 8/7/2009 | <0.3 | 0.7 | <0.1 | <0.1 | <0.2 | 0.3 | <0.1 | <0.1 | 1 | 0.2 | <1.8 | |
| 8/14/2009 | <0.3 | 0.5 | <0.1 | <0.1 | <0.2 | 0.2 | <0.1 | <0.1 | 0.5 | 0.3 | 3.5 | |
| 8/21/2009 | <0.3 | 0.5 | <0.1 | <0.1 | <0.2 | 0.3 | 0.1 | <0.1 | 0.3 | <0.2 | 5.7 | |
| 9/25/2009 | <0.3 | <0.5 | <0.1 | <0.1 | <0.2 | <0.2 | <0.1 | <0.1 | <0.2 | <0.2 | <1.8 | |
| Averages: | ND | 0.4 | 0.1 | 0.03 | 0.1 | 0.2 | 0.5 | ND | 0.4 | 0.2 | 2.0 | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

Recovery Well RW-3 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|----------------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(G∨) | 5 | 5 | 50(G∨) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 77.0 | 6.1 | <0.3 | <0.2 | <0.1 | 0.6 | <0.6 | <0.2 | 1.2 | 1 | 0.5 | <0.3 |
| 7/9/2009 | 64.5 | 0.2 | <0.3 | <0.2 | <0.1 | 0.5 | <0.6 | <0.2 | 0.8 | <0.8 | 0.4 | <0.3 |
| 8/7/2009 | 83.3 | <0.1 | <0.3 | <0.2 | <0.1 | 1 | <0.6 | <0.2 | 0.6 | 1.7 | 1.1 | <0.3 |
| 8/14/2009 | 78.3 | 0.5 | <0.3 | <0.2 | <0.1 | 0.8 | <0.6 | <0.2 | <0.1 | 1.7 | <0.2 | 0.4 |
| 8/21/2009 | 140 | 1.3 | 2.9 | 0.3 | <0.1 | 6.0 | 4.4 | <0.2 | 2.1 | 31.3 | 0.4 | 3.1 |
| 9/25/2009 | 70.1 | 0.2 | <0.3 | <0.2 | <0.1 | 0.6 | <0.6 | <0.2 | 0.7 | 0.7 | 0.3 | <0.3 |
| Averages: | 85.5 | 1.4 | 0.5 | 0.1 | ND | 1.6 | 0.7 | ND | 0.9 | 6.1 | 0.5 | 0.6 |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | 0.9 | 10.1 | <0.1 | <0.1 | <0.2 | 12.5 | <0.1 | 1.5 | 42.6 | <0.2 | <1.8 | |
| 7/9/2009 | 1.1 | 12.8 | <0.1 | <0.1 | <0.2 | 18.3 | <0.1 | 1.7 | 28.7 | <0.2 | <1.8 | |
| 8/7/2009 | 2.3 | 18.3 | <0.1 | <0.1 | <0.2 | 25.3 | <0.1 | 3.4 | 29.6 | <0.2 | <1.8 | |
| 8/14/2009 | 0.8 | 9.7 | <0.1 | <0.1 | <0.2 | 14.8 | <0.1 | 2.6 | 47.0 | <0.2 | <1.8 | |
| 8/21/2009 | 1.0 | 11.1 | 5.2 | <0.1 | 1.5 | 19.4 | 1.3 | 1.1 | 47.4 | <0.2 | <1.8 | |
| 9/25/2009 | 0.5 | 9.2 | <0.1 | <0.1 | <0.2 | 16.5 | <0.1 | 1.4 | 40.0 | <0.2 | <1.8 | |
| Averages: | 1.1 | 11.9 | 0.9 | ND | 0.3 | 17.8 | 0.2 | 2.0 | 39.2 | ND | ND | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

Recovery Well RW-4 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|-----------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(GV) | 5 | 5 | 50(GV) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 314 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 3.2 | <0.8 | 0.8 | 0.3 |
| 7/9/2009 | 187 | 0.1 | <0.3 | 0.2 | <0.1 | 0.1 | <0.6 | <0.2 | <0.1 | 1.6 | <0.2 | <0.3 |
| 8/7/2009 | 510 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 4.3 | <0.8 | 1.2 | 0.5 |
| 8/14/2009 | 339 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <0.8 | <0.2 | <0.3 |
| 8/21/2009 | 390 | <0.1 | <0.3 | <0.2 | <0.1 | 0.4 | <0.6 | <0.2 | <0.1 | 11.4 | <0.2 | <0.3 |
| 9/25/2009 | 459 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 1.9 | <0.8 | 0.5 | 0.3 |
| Averages: | 366 | 0.0 | ND | 0.0 | ND | 0.1 | ND | ND | 1.6 | 2.2 | 0.4 | 0.2 |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | 6.4 | 29.4 | <0.1 | <0.1 | <0.2 | 24.0 | <0.1 | 6.6 | 243 | 0.5 | <1.8 | |
| 7/9/2009 | 0.7 | 13.4 | <0.1 | <0.1 | <0.2 | 18.2 | 0.1 | 1.4 | 146 | 1.8 | 3.2 | |
| 8/7/2009 | 11.8 | 31.6 | <0.1 | <0.1 | <0.2 | 127 | <0.1 | 11.3 | 322 | <0.2 | <1.8 | |
| 8/14/2009 | 2.6 | 35.3 | <0.1 | <0.1 | 0.3 | 24.3 | <0.1 | <0.1 | 276 | <0.2 | <1.8 | |
| 8/21/2009 | 2.9 | 37.7 | <0.1 | <0.1 | <0.2 | 37.2 | 0.3 | 2.5 | 288 | 0.8 | 9 | |
| 9/25/2009 | 2.8 | 44.0 | <0.1 | <0.1 | <0.2 | 38.7 | <0.1 | 4.4 | 366 | <0.2 | <1.8 | |
| Averages: | 4.5 | 31.9 | ND | ND | 0.1 | 44.9 | 0.1 | 4.4 | 273 | 0.5 | 2.0 | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

Recovery Well RW-5 Results, in micrograms per Liter

| | Total | Benzene | Bromodichloro- | Bromoform | Carbon | Chloro- | Chlorodibromo- | Chloroethane | Chloroform | Dichloro- | 1,1-DCA | 1,2-DCA |
|-----------|---------|---------|----------------|-----------|---------------|---------|----------------|--------------|------------|-----------|---------|---------|
| Date | VOCs | | methane | | Tetrachloride | benzene | methane | | | benzenes | | |
| | 100* | 1 | 50(GV) | 50(GV) | 5 | 5 | 50(GV) | 5 | 7 | 3** | 5 | 0.6 |
| 7/3/2009 | 201 | 8.9 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 1.3 | <0.8 | 1.7 | <0.3 |
| 7/9/2009 | 242 | 0.1 | <0.3 | 0.2 | <0.1 | 0.1 | <0.6 | <0.2 | 0.7 | 1.4 | 1.2 | 1.0 |
| 8/7/2009 | 300 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 1.6 | <0.8 | 3 | <0.3 |
| 8/14/2009 | 289 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | 1.5 | <0.8 | 3.3 | 2.3 |
| 8/21/2009 | 267 | 0.4 | <0.3 | 0.2 | <0.1 | 0.7 | <0.6 | <0.2 | 1.3 | 5.6 | 1.0 | 0.7 |
| 9/25/2009 | 336 | <0.1 | <0.3 | <0.2 | <0.1 | <0.1 | <0.6 | <0.2 | <0.1 | <0.8 | 1.7 | 1.0 |
| Averages: | 273 | 2 | ND | 0.07 | ND | 0.1 | ND | ND | 1.1 | 1.2 | 2.0 | 0.8 |
| | 1,1-DCE | 1,2-DCE | 1,2 dichloro- | Ethyl- | Methylene | PCE | Toluene | 1,1,1-TCA | TCE | Vinyl | Xylenes | |
| Date | | (Total) | propane | benzene | Chloride | | | | | Chloride | (Total) | |
| | 5 | 5** | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 2 | 5** | |
| 7/3/2009 | 25.2 | 17.3 | <0.1 | <0.1 | <0.2 | 24.3 | <0.1 | 17.1 | 105 | 0.5 | <1.8 | |
| 7/9/2009 | 27.0 | 16.2 | <0.1 | <0.1 | <0.2 | 59.1 | 0.1 | 21.8 | 112 | 1.4 | <1.8 | |
| 8/7/2009 | 26.7 | 22.8 | <0.1 | <0.1 | <0.2 | 82.4 | <0.1 | 22.3 | 141 | <0.2 | <1.8 | |
| 8/14/2009 | 23.7 | 13.8 | <0.1 | <0.1 | 0.6 | 69.5 | <0.1 | 21.6 | 153 | <0.2 | <1.8 | |
| 8/21/2009 | 15.9 | 14.7 | <0.1 | <0.1 | 0.4 | 43.2 | 0.5 | 14.5 | 160 | 0.3 | 7.6 | |
| 9/25/2009 | 17.4 | 16.2 | <0.1 | <0.1 | <0.2 | 37.9 | <0.1 | 19.7 | 242 | <0.2 | <1.8 | |
| Averages: | 22.7 | 16.8 | ND | ND | 0.2 | 52.7 | 0.1 | 19.5 | 152 | 0.4 | 1.3 | |

Notes:

Bolded results are higher than the New York State Department of Conservation Class GA standard or guidance value (GV) shown at top of column.

\* Consent Decree limit.

APPENDIX D

"Quarterly Monitoring Report Third Quarter 2009 Results Old Bethpage Landfill Old Bethpage, New York"

Gannett Fleming, December 2009

TOWN OF OYSTER BAY

Prepared By GANNETT FLEMING 480 Forest Avenue Locust Valley, NY 11560 Office: 516-671-8440 Fax: 516-671-3349 www.gannettfleming.com

> Office Contacts Vincent Frisina, P.E. Jessica Ferngren Michael Nahmias

> > GF Project No. 49725

QUARTERLY MONITORING REPORT

THIRD QUARTER 2009 RESULTS OLD BETHPAGE LANDFILL OLD BETHPAGE, NEW YORK

December 2009

TABLE OF CONTENTS

Section

Title

Page

| 1.0 | INTRO | ODUCT | ION | . 1 |
|-----|-------|---------|---|-----|
| 2.0 | WATE | ER-LEV | EL MEASUREMENTS AND MAPPING | . 2 |
| 3.0 | GROU | INDWA | TER SAMPLING AND CONTAMINANT DISTRIBUTION | . 3 |
| | 3.1 | Volatil | e Organic Compound (VOC) Plume | . 3 |
| | | 3.1.1 | Volatile Halogenated Organics (VHO) Group | . 4 |
| | | 3.1.2 | Aromatic Hydrocarbons | . 5 |
| | | 3.1.3 | Tetrachloroethene | . 6 |
| | 3.2 | Inorga | nic Analyte Plume | . 6 |
| | 3.3 | Quality | y Assurance/Quality Control | . 6 |
| 4.0 | FINDI | NGS | | . 8 |
| 5.0 | RECO | MMEN | DATIONS | . 9 |
| 2.0 | 1.200 | | | ••• |

TABLES

No. Description

- Water Level Measurements Third Quarter 2009, Old Bethpage Landfill, Old Bethpage, New York
- 2 Groundwater Remediation System Pumpage Records, Third Quarter 2009, Old Bethpage Landfill, Old Bethpage, New York
- 3 Groundwater Analytical Results Third Quarter 2009; Volatile Halogenated Organics
- 4 Groundwater Analytical Results Third Quarter 2009; Aromatic Hydrocarbons
- 5 Groundwater Analytical Results Third Quarter 2009; Tetrachloroethene
- 6 Recovery Well Sampling Results Third Quarter 2009; Volatile Halogenated Organics and Aromatic Hydrocarbons
- 7 Groundwater Analytical Results Third Quarter 2009; Total (Unfiltered) Metals and Leachate Indicators
- 8 Groundwater Analytical Results Third Quarter 2009; Dissolved (Filtered) Metals

FIGURES

- No. Description
- 1 Water Table Elevation Map Third Quarter 2009
- 2 Shallow Potentiometric Elevation Map Third Quarter 2009
- 3 Deep Potentiometric Elevation Map Third Quarter 2009
- 4 Approximate Extent and Distribution of Total Volatile Halogenated Organics Third Quarter 2009
- 5 Approximate Extent and Distribution of Total Aromatic Hydrocarbons Third Quarter 2009
- 6 Approximate Extent and Distribution of Tetrachloroethene Third Quarter 2009

APPENDICES

APPENDIX A — LABORATORY DATA REPORTS

APPENDIX B — THIRD QUARTER GROUNDWATER SAMPLING LOGS

APPENDIX C — GROUNDWATER SAMPLING PROTOCOLS

1.0 INTRODUCTION

This report was prepared at the request of the Town of Oyster Bay to summarize and evaluate the data collected in accordance with the requirements of the Remedial Action Plan (RAP), Appendix I of the 1988 Record of Decision (New York State Department of Environmental Conservation [NYSDEC] and the United States Environmental Protection Agency [USEPA]). The purpose of the quarterly groundwater-monitoring program is to assess the progress of the groundwater cleanup and to determine whether the termination criteria set forth in the RAP have been met.

The groundwater remediation system at the Old Bethpage Landfill commenced operation on April 1, 1992. Geraghty & Miller initiated monthly hydraulic monitoring approximately 30 days after system start-up and monthly groundwater quality monitoring three months after system start-up. The frequency of hydraulic monitoring was reduced to quarterly beginning with the October 1993 sampling round.

2.0 WATER-LEVEL MEASUREMENTS AND MAPPING

A synoptic round of water-level measurements was taken in monitoring and recovery wells by Gannett Fleming (GF) on August 25, 2009. The depth to water and water-level elevation data are summarized in Table 1. The data was used to create the water table, shallow potentiometric, and deep potentiometric zone groundwater flow maps shown on Figures 1, 2 and 3, respectively. Each map shows the water-level elevation contours, limiting flow lines, and the approximate extent of the volatile organic compound (VOC) plume.

Water-level elevations were measured in recovery wells RW-01, RW-02, RW-03, RW-04, and RW-05. Water-level elevations in the recovery well RW-01 decreased 0.10 feet; RW-02 decreased 1.02 feet; RW-03 decreased 0.18 feet; RW-04 decreased 0.15 feet; and the water level elevation did not change in RW-05 from the second quarter 2009 reporting period.

Water-level elevations in the monitoring wells decreased an average of 0.56 feet from the first quarter reporting period. The greatest change in water-level elevations occurred at monitoring well MW-07B, decreasing by 4.75 feet.

The average system pumpage for the third quarter was approximately 1,215 gallons per minute (gpm). The system flow was sufficient to control the VOC plume. The third quarter pumpage data and recovery well downtime are summarized in Table 2.

3.0 GROUNDWATER SAMPLING AND CONTAMINANT DISTRIBUTION

Gannett Fleming sampled monitoring wells LF-1, M-30B-R, MW-05B, MW-06A, MW-06B, MW-06C, MW-06E, MW-06F, MW-08A, MW-08B, MW-09B, MW-09C, MW-09D, MW-11A, MW-11B and OBS-1 between August 26 to 28, 2009 in accordance with the *Protocols for Sampling Groundwater under the Old Bethpage Solid Waste Disposal Complex Remedial Action Plan* prepared by Geraghty & Miller. MW-07B was not sampled during the third quarter sampling round. Quality assurance/quality control (QA/QC) samples were analyzed, including two field blanks, one field duplicate, and two trip blanks. Samples collected for metals and wet chemistry were analyzed by H2M Laboratories of Melville, New York. Samples for VOCs were analyzed by the Town of Oyster Bay Environmental Laboratory. The analytical results are summarized in Tables 3 through 8 and the laboratory data reports are provided in Appendix A.

A dedicated submersible pump, a Grundfos<sup>®</sup> Redi-Flo II pump, or disposable bailer were used to purge and sample each monitoring well. All non-dedicated down-well equipment were decontaminated before use and after sampling each well by washing with a laboratory grade detergent solution and rinsing with potable water to minimize the possibility of cross contamination.

Field measurements of pH, temperature, conductivity, and turbidity were collected following the purge of each of three well volumes. Field observations and measurements are documented on the well sampling logs provided in Appendix B.

The analytical data was used to create the VOC plume maps shown on Figures 4, 5, and 6. The third quarter analytical data are summarized below and compared to the second quarter sampling results.

The depth to bottom of monitoring well MW-07B was measured at greater than 200 feet below the top of the casing. MW-07B was not sampled due to pump malfunction caused by sand infiltration in the well.

3.1 Volatile Organic Compound (VOC) Plume

The extent and distribution of VOCs detected during the third quarter is consistent with previous sampling rounds. Total VOC concentrations detected during the third quarter sampling round ranged from less than the laboratory detection limit to 56.2 micrograms per liter (μ g/L), with the highest concentration found in the sample from MW-09D. The sample from MW-06B had the next highest total VOC concentration followed in decreasing order by MW-08A, OBS-1, MW-11A, MW-06E, MW-06A, MW-08B and MW-09B. VOC concentrations were at less than the laboratory-detection limit at wells M-30B-R, LF-1, MW-05B, MW-06C, MW-06F, MW-09C, and MW-11B.

3.1.1 Volatile Halogenated Organics (VHO) Group

Thirteen VHO compounds were detected during the third quarter 2009 sampling round: chloroethane, chloroform, dichlorodifluoromethane, 1,1-dichloroethane, 1,1-dichloroethene, 1,2-dichloroethane, trans-1,2dichloroethene, cis-1,2-dichloroethene, methylene chloride, tetrachloroethene, 1,1,1-trichloroethane, trichloroethylene, and vinyl chloride. Trichloroethylene was found at the greatest frequency, in 8 of 16 samples. Distribution of VHOs during GF's third quarter sampling rounds is consistent with previous sampling rounds. The following table presents concentrations of total VHOs found during GF's second quarter and third quarter sampling rounds.

| Well | 2 <sup>nd</sup> Quarter 2009
(µg/L) | 3 <sup>rd</sup> Quarter 2009
(µg/L) |
|--------|--|--|
| MW-06B | 1.0 | Non-Detect |
| MW-06C | 0.2 | 3.6 |
| MW-06E | 0.8 | 0.8 |
| MW-08A | 13.6 | 9.7 |
| MW-08B | 0.8 | 0.8 |
| MW-09B | Non-Detect | 0.8 |
| MW-11A | Non-Detect | 2.2 |
| OBS-1 | 3.1 | 1.9 |

VHO concentrations remained unchanged at less than the laboratory-detection limit at monitoring wells M-30B-R, LF-1, MW-05B, MW-06A, MW-06F, MW-09C, and MW-11B.

VHO concentrations in MW-09D decreased from 18.0 μ g/L to 15.4 μ g/L from the 2008 third quarter sampling round to the 2009 third quarter sampling round. MW-07B was not sampled in the third quarter 2009 sampling round.

Figure 4 illustrates the approximate extent and distribution of total VHOs in groundwater during the third quarter 2009 sampling event.

3.1.2 Aromatic Hydrocarbons

Compared to previous monitoring rounds, the extent and distribution of aromatic hydrocarbons during the third quarter 2009 round is consistent. The following aromatic hydrocarbons were detected: benzene, n-butylbenzene, tert-butylbenzene, chlorobenzene, dichlorobenzene-o,m&p, ethylbenzene, isopropylbenzene, toluene and xylenes (o,m&p). The following table shows concentrations of total aromatic hydrocarbons found during GF's second and third quarter sampling rounds.

| Well | 2 <sup>nd</sup> Quarter 2009
(µg/L) | 3 <sup>rd</sup> Quarter 2009
(µg/L) |
|--------|--|--|
| LF-1 | 2.6 | Non-Detect |
| MW-06A | 1.1 | 1.5 |
| MW-06B | 9.5 | 10.2 |
| MW-06C | 2.6 | Non-Detect |
| MW-06E | 1.3 | 1.3 |
| MW-08A | 2.0 | Non-Detect |
| OBS-1 | 3.5 | 4.6 |

VHO concentrations remained unchanged at less than the laboratory-detection limit at wells M-30B-R, MW-05B, MW-06F, MW-08B, MW-09B, MW-09C, MW-11A, and MW-11B. Aromatic hydrocarbon total concentrations in MW-09D increased from 7.4 μ g/L to 40.8 μ g/L from the 2008 third quarter sampling round to the 2009 third quarter sampling round. MW-07B was not sampled in the third quarter 2009 sampling round.

Figure 5 illustrates the approximate extent and distribution of aromatic hydrocarbons during the third quarter 2009 sampling event.

3.1.3 Tetrachloroethene

Tetrachloroethene was detected in the samples from monitoring wells MW-06E, MW-08A, MW-08B, MW-09D, MW-11A and OBS-1. The following table shows changes in total tetrachloroethene from the second to third quarter.

| Well | 2 <sup>nd</sup> Quarter 2009
(µg/L) | 3 <sup>rd</sup> Quarter 2009
(µg/L) |
|--------|--|--|
| MW-06E | 0.2 | 0.2 |
| MW-08A | 13.6 | 9.0 |
| MW-08B | 0.8 | 0.6 |
| MW-11A | 2.2 | 0.6 |
| OBS-1 | 3.1 | 0.3 |

Tetrachloroethene concentrations remained unchanged at less than the laboratory-detection limit at wells LF-1, M-30B-R, MW-05B, MW-06A, MW-06B, MW-06C, MW-06F, MW-09B, MW-09C, and MW-11B. MW-07B was not sampled in the third quarter 2009 sampling round

Figure 6 illustrates the approximate extent and distribution of tetrachloroethene during the third quarter sampling event.

3.2 Inorganic Analyte Plume

The third quarter sampling data reported little change in the extent and concentration of leachate parameters from previous sampling rounds. The leachate parameters were reported (in order of lowest to highest concentrations) in samples from monitoring wells MW-11B, MW-11A, MW-06A, MW-08A, MW-09B, MW-08B, MW-09C, M-30B-R, MW-05B, MW-06E, OBS-1, MW-09D, MW-06F, LF-1, MW-06C, and MW-06B.

3.3 Quality Assurance/Quality Control

One duplicate, two field blank and two trip blank samples were analyzed for QA/QC purposes. The duplicate sample collected from well MW-08B. There was good agreement between the

sample and duplicate data. The trip blank sample collected on August 28, 2009 reported several aromatic hydrocarbon compounds including benzene, dichlorobenzene (o,m&p), cis-1,2-dichloroethene, ethylbenzene, toluene, and o-xylene. These concentrations were detected below guidance values and these compounds were not detected in any of the samples collected on August 28, with the exception of well OBS-1. The compounds and concentrations reported from OBS-1 are consistent with previous sampling rounds. VOCs were not detected in the August 26, 2009 trip blank sample.

The analytical results for the field blank sample collected on August 26 reported several compounds including benzene, chlorobenzene, chloroform, dichlorobenzene (o,m&p), cis-1,2-dichloroethene, ethylbenzene, toluene, o-xylene, isopropylbenzene, n-butylbenzene, and tert-butylbenzene. These concentrations were detected below guidance values. The samples associated with this field blank do not show elevated levels of these compounds and therefore the data collected for the associated samples is valid.

4.0 FINDINGS

- 1. The average estimated system flow of 1,215 gallons per minute was sufficient to control the VOC plume.
- 2. There was localized water table mounding beneath Recharge Basin #1 resulting from the treatment facility discharge.
- 3. The extent and distribution of VHOs, aromatic hydrocarbons, tetrachloroethene and leachate parameters detected during the third quarter 2009 sampling round are consistent with previous sampling rounds.
- The leachate parameters were reported (in order of lowest to highest concentrations) in samples from monitoring wells MW-11B, MW-11A, MW-06A, MW-08A, MW-09B, MW-08B, MW-09C, M-30B-R, MW-05B, MW-06E, OBS-1, MW-09D, MW-06F, LF-1, MW-06C, and MW-06B.
- 5. Groundwater samples were not collected from well MW-07B due to the groundwater pump becoming inundated with sand. MW-07B is damaged.

5.0 RECOMMENDATIONS

- 1. Continue to evaluate water-level trends and assess the operation and maintenance of the monitoring well network in response to local and regional water-level elevations.
- 2. Continue the quarterly hydraulic monitoring and water-quality sampling to track the effectiveness of the remediation system.
- 3. Reinstall monitoring well MW-07B for plume delineation purposes.
- 4. Reinstall monitoring well OBS-2 for the purpose of evaluating groundwater elevation trends.

WATER LEVEL MEASUREMENTS - THIRD QUARTER 2009

| | | MP | DEPTH | DELTA | WATER |
|--------|-----------|-----------|----------|--------------|-----------|
| SITE | DATE | ELEVATION | TO WATER | WATER | ELEVATION |
| | | (feet) | (feet) | ELEV. (feet) | (feet) |
| EW-02A | 6/29/2009 | 157.14 | 91.11 | | 66.03 |
| EW-02A | 8/25/2009 | 157.14 | 91.43 | -0.32 | 65.71 |
| EW-02B | 6/29/2009 | 157.61 | 91.28 | | 66.33 |
| EW-02B | 8/25/2009 | 157.61 | 91.65 | -0.37 | 65.96 |
| EW-02C | 6/29/2009 | 157.54 | 91.18 | | 66.36 |
| EW-02C | 8/25/2009 | 157.54 | 91.59 | -0.41 | 65.95 |
| EW-03A | 6/29/2009 | 157.28 | 94.90 | | 62.38 |
| EW-03A | 8/25/2009 | 157.28 | 95.10 | -0.20 | 62.18 |
| EW-03B | 6/29/2009 | 157.32 | 95.01 | | 62.31 |
| EW-03B | 8/25/2009 | 157.32 | 95.28 | -0.27 | 62.04 |
| EW-03C | 6/29/2009 | 157.16 | 94.91 | | 62.25 |
| EW-03C | 8/25/2009 | 157.16 | 95.20 | -0.29 | 61.96 |
| LF-1 | 6/29/2009 | 111.40 | 44.29 | | 67.11 |
| LF-1 | 8/25/2009 | 111.40 | 44.58 | -0.29 | 66.82 |
| LF-2 | 6/29/2009 | 118.70 | 51.65 | | 67.05 |
| LF-2 | 8/25/2009 | 118.70 | 51.94 | -0.29 | 66.76 |
| LF-3 | 6/29/2009 | 126.50 | NM | N/A | N/A |
| LF-3 | 8/25/2009 | 126.50 | NM | N/A | N/A |
| LF-4 | 6/29/2009 | 149.93 | NM | N/A | N/A |
| LF-4 | 8/25/2009 | 149.93 | NM | N/A | N/A |

MP - Measuring Point (Typically Top of Casing)

MSL - Mean Sea Level

NM - Not Measured

WATER LEVEL MEASUREMENTS - THIRD QUARTER 2009

| | | MP | DEPTH | DELTA | WATER |
|---------|-----------|-----------|----------|--------------|-----------|
| SITE | DATE | ELEVATION | TO WATER | WATER | ELEVATION |
| | | (feet) | (feet) | ELEV. (feet) | (feet) |
| M-29A-R | 6/29/2009 | 157.50 | 89.62 | | 67.88 |
| M-29A-R | 8/25/2009 | 157.50 | 90.00 | -0.38 | 67.50 |
| M-29B | 6/29/2009 | 157.41 | 84.94 | | 72.47 |
| M-29B | 8/25/2009 | 157.41 | 81.31 | 3.63 | 76.10 |
| MW-30A | 6/29/2009 | 151.20 | NM | N/A | N/A |
| MW-30A | 8/25/2009 | 151.20 | NM | N/A | N/A |
| M-30B-R | 6/29/2009 | 154.51 | 81.07 | | 73.44 |
| M-30B-R | 8/25/2009 | 154.51 | 85.37 | -4.30 | 69.14 |
| MW-05A | 6/29/2009 | 137.13 | 71.44 | | 65.69 |
| MW-05A | 8/25/2009 | 137.13 | 71.71 | -0.27 | 65.42 |
| MW-05B | 6/29/2009 | 138.43 | 72.70 | | 65.73 |
| MW-05B | 8/25/2009 | 138.43 | 72.94 | -0.24 | 65.49 |
| MW-06A | 6/29/2009 | 160.24 | 94.80 | | 65.44 |
| MW-06A | 8/25/2009 | 160.24 | 95.02 | -0.22 | 65.22 |
| MW-06B | 6/29/2009 | 160.39 | 95.12 | | 65.27 |
| MW-06B | 8/25/2009 | 160.39 | 95.27 | -0.15 | 65.12 |
| MW-06C | 6/29/2009 | 159.99 | 94.57 | | 65.42 |
| MW-06C | 8/25/2009 | 159.99 | 94.71 | -0.14 | 65.28 |
| MW-06D | 6/29/2009 | 160.39 | 94.92 | | 65.47 |
| MW-06D | 8/25/2009 | 160.39 | 94.17 | 0.75 | 66.22 |

MP - Measuring Point (Typically Top of Casing)

MSL - Mean Sea Level

NM - Not Measured

WATER LEVEL MEASUREMENTS - THIRD QUARTER 2009

| | | MP | DEPTH | DELTA | WATER |
|--------|-----------|-----------|----------|--------------|-----------|
| SITE | DATE | ELEVATION | TO WATER | WATER | ELEVATION |
| | | (feet) | (feet) | ELEV. (feet) | (feet) |
| MW-06E | 6/29/2009 | 160.88 | 95.70 | | 65.18 |
| MW-06E | 8/25/2009 | 160.88 | 95.93 | -0.23 | 64.95 |
| MW-06F | 6/29/2009 | 159.88 | 94.75 | | 65.13 |
| MW-06F | 8/25/2009 | 159.88 | 95.28 | -0.53 | 64.60 |
| MW-07A | 6/29/2009 | 148.44 | 86.40 | | 62.04 |
| MW-07A | 8/25/2009 | 148.44 | 86.51 | -0.11 | 61.93 |
| MW-07B | 6/29/2009 | 147.94 | 81.25 | | 66.69 |
| MW-07B | 8/25/2009 | 147.94 | 86.00 | -4.75 | 61.94 |
| MW-08A | 6/29/2009 | 134.94 | 68.75 | | 66.19 |
| MW-08A | 8/25/2009 | 134.94 | 68.97 | -0.22 | 65.97 |
| MW-08B | 6/29/2009 | 134.24 | 68.38 | | 65.86 |
| MW-08B | 8/25/2009 | 134.24 | 68.29 | 0.09 | 65.95 |
| MW-08C | 6/29/2009 | 135.72 | 69.08 | | 66.64 |
| MW-08C | 8/25/2009 | 135.72 | 69.67 | -0.59 | 66.05 |
| MW-09A | 6/29/2009 | 153.35 | 90.13 | | 63.22 |
| MW-09A | 8/25/2009 | 153.35 | 90.00 | 0.13 | 63.35 |
| MW-09B | 6/29/2009 | 153.28 | 91.26 | | 62.02 |
| MW-09B | 8/25/2009 | 153.28 | 91.43 | -0.17 | 61.85 |
| MW-09C | 6/29/2009 | 153.53 | 90.24 | | 63.29 |
| MW-09C | 6/29/2009 | 153.53 | 92.58 | -2.34 | 60.95 |

MP - Measuring Point (Typically Top of Casing)

MSL - Mean Sea Level

NM - Not Measured

WATER LEVEL MEASUREMENTS - THIRD QUARTER 2009

| | | MP | DEPTH | DELTA | WATER |
|------------------|-----------|-----------|-----------------|--------------|------------|
| SITE | DATE | ELEVATION | TO WATER | WATER | ELEVATION |
| | | (feet) | (feet) | ELEV. (feet) | (feet) |
| MW-09D | 6/29/2009 | 152.95 | 91.07 | | 61.88 |
| MW-09D | 8/25/2009 | 152.95 | 91.53 | -0.46 | 61.42 |
| MW-10A | 6/29/2009 | 161.28 | 95.75 | | 65.53 |
| MW-10A
MW-10A | 8/25/2009 | 161.28 | 95.99 | -0.24 | 65.29 |
| NUV 10D | (120/2000 | 1(1.12 | 05.00 | | (5.12 |
| MW-10B | 6/29/2009 | 161.12 | 95.99 | 0.00 | 65.13 |
| MW-10B | 8/25/2009 | 161.12 | 96.29 | -0.30 | 64.83 |
| MW-10C | 6/29/2009 | 160.27 | 94.10 | | 66.17 |
| MW-10C | 8/25/2009 | 160.27 | 95.49 | -1.39 | 64.78 |
| MW-10D | 6/29/2009 | 161.17 | 95.85 | | 65.32 |
| MW-10D | 8/25/2009 | 161.17 | 96.60 | -0.75 | 64.57 |
| MW-11A | 6/29/2009 | 80.19 | 21.85 | | 58.34 |
| MW-11A
MW-11A | 8/25/2009 | 80.19 | 22.57 | -0.72 | 57.62 |
| MW 11D | 6/20/2000 | 79.91 | 21.70 | | 58.21 |
| MW-11B | 6/29/2009 | | | 0.05 | |
| MW-11B | 8/25/2009 | 79.91 | 22.65 | -0.95 | 57.26 |
| N-9980 | 6/29/2009 | 80.46 | 20.48 | | 59.98 |
| N-9980 | 8/25/2009 | 80.46 | 23.47 | -2.99 | 56.99 |
| OBS-1 | 6/29/2009 | 110.61 | 48.48 | | 62.13 |
| OBS-1 | 8/25/2009 | 110.61 | 49.12 | -0.64 | 61.49 |
| OBS-2 | 6/29/2009 | 105.26 | NM | N/A | N/A |
| OBS-2
OBS-2 | 8/25/2009 | 105.26 | NM | N/A
N/A | N/A
N/A |
| 005-2 | 012512009 | 103.20 | TATAT | 11/71 | 11/71 |

MP - Measuring Point (Typically Top of Casing)

MSL - Mean Sea Level

NM - Not Measured

WATER LEVEL MEASUREMENTS - THIRD QUARTER 2009

| | | MP | DEPTH | DELTA | WATER |
|----------------|-----------|-----------|-----------------|--------------|----------------|
| SITE | DATE | ELEVATION | TO WATER | WATER | ELEVATION |
| | | (feet) | (feet) | ELEV. (feet) | (feet) |
| RW-01 | 6/29/2009 | 110.94 | 55.30 | | 55.64 |
| RW-01 | 8/25/2009 | 110.94 | 55.40 | -0.10 | 55.54 |
| | | | | | |
| RW-02 | 6/29/2009 | 145.31 | 94.50 | | 50.81 |
| RW-02 | 8/25/2009 | 145.31 | 95.52 | -1.02 | 49.79 |
| | | | | | |
| RW-03 | 6/29/2009 | 120.92 | 67.72 | | 53.20 |
| RW-03 | 8/25/2009 | 120.92 | 67.90 | -0.18 | 53.02 |
| RW-04 | 6/29/2009 | 144.82 | 87.27 | | 57.55 |
| RW-04
RW-04 | 8/25/2009 | 144.82 | 87.42 | -0.15 | 57.33
57.40 |
| K W -04 | 8/23/2009 | 144.82 | 87.42 | -0.13 | 37.40 |
| RW-05 | 6/29/2009 | 149.74 | 93.70 | | 56.04 |
| RW-05 | 8/25/2009 | 149.74 | 93.70 | 0.00 | 56.04 |
| | | | | | |
| TW-1 | 6/29/2009 | 121.12 | NM | N/A | N/A |
| TW-1 | 8/25/2009 | 121.12 | 51.52 | N/A | 69.60 |
| | | | | | |
| TW-2 | 6/29/2009 | 117.52 | 50.00 | | 67.52 |
| TW-2 | 8/25/2009 | 117.52 | 50.47 | -0.47 | 67.05 |
| | | 122.02 | | | ((00 |
| TW-3-R | 6/29/2009 | 133.93 | 66.94 | 0.45 | 66.99 |
| TW-3-R | 8/25/2009 | 133.93 | 67.39 | -0.45 | 66.54 |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

MP - Measuring Point (Typically Top of Casing)

MSL - Mean Sea Level

NM - Not Measured

TABLE 2 TOWN OF OYSTER BAY OLD BETHPAGE LANDFILL GROUNDWATER REMEDIATION SYSTEM PUMPAGE RECORDS JULY THROUGH SEPTEMBER 2009

| | Date | System Flow (gpm) | Remarks |
|---|------------------|-------------------|--|
| ĺ | 7/1/09 - 9/28/09 | 1,281 | GTF on-line. |
| | 9/29 | 1,065 | Recovery Well RW-2 off-line 4 hours for maintenance. |
| | 9/30 | 1,271 | GTF on-line. |
| | Average: | 1,215 | |

1

PERIOD: From 7/1/2009 to 9/30/2009 - Inclusive

| | M-30B-R | MW-05B | MW-06A | MW-06B | MW-06C |
|--------------------------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | 8/28/2009 | 8/26/2009 | 8/27/2009 | 8/27/2009 | 8/28/2009 |
| Bromodichloromethane | 0.3 U |
| Bromoform | 0.2 U |
| Carbon tetrachloride | 0.1 U |
| Chlorodibromomethane | 0.6 U |
| Chloroethane | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.3 |
| Chloroform | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.3 |
| Dichlorodifluoromethane | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.2 |
| 1,1-Dichloroethane | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.5 |
| 1,1-Dichloroethene | 0.3 U |
| 1,2-Dichloroethane | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.6 |
| trans-1,2-Dichloroethene | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.4 |
| cis-1,2-Dichloroethene | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.5 |
| 1,2-Dichloropropane | 0.1 U |
| Methylene chloride | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.6 |
| Tetrachloroethene | 0.2 U |
| 1,1,1-Trichloroethane | 0.1 U |
| Trichloroethylene | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 |
| Vinyl chloride | 0.2 U |
| Sum of Constituents | ND | ND | ND | ND | 3.6 |

Notes:

All concentrations in micrograms per liter $(\mu g/L)$ or parts per billion (ppb)

U - Analyzed for but not detected

J - Estimated Value

ND - Not Detected

| | MW-06E | MW-06F | MW-08A | MW-08B | MW-08B DUP |
|--------------------------|-----------|-----------|-----------|-----------|------------|
| CONSTITUENT | 8/27/2009 | 8/27/2009 | 8/26/2009 | 8/26/2009 | 8/26/2009 |
| Bromodichloromethane | 0.3 U |
| Bromoform | 0.2 U |
| Carbon tetrachloride | 0.1 U |
| Chlorodibromomethane | 0.6 U |
| Chloroethane | 0.2 U |
| Chloroform | 0.1 U |
| Dichlorodifluoromethane | 0.1 U |
| 1,1-Dichloroethane | 0.2 U |
| 1,1-Dichloroethene | 0.3 U |
| 1,2-Dichloroethane | 0.3 U |
| trans-1,2-Dichloroethene | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| cis-1,2-Dichloroethene | 0.2 U |
| 1,2-Dichloropropane | 0.1 U |
| Methylene chloride | 0.2 U |
| Tetrachloroethene | 0.2 | 0.2 U | 9.0 | 0.6 | 0.5 |
| 1,1,1-Trichloroethane | 0.1 U |
| Trichloroethylene | 0.6 | 0.2 U | 0.7 | 0.2 | 0.2 U |
| Vinyl chloride | 0.2 U |
| Sum of Constituents | 0.8 | ND | 9.7 | 0.8 | 0.5 |

Notes:

All concentrations in micrograms per liter $(\mu g/L)$ or parts per billion (ppb)

U - Analyzed for but not detected

J - Estimated Value

ND - Not Detected

| | MW-07B | MW-09B | MW-09C | MW-09D | MW-11A | MW-11B |
|--------------------------|-------------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | Not Sampled | 8/26/2009 | 8/26/2009 | 8/26/2009 | 8/28/2009 | 8/26/2009 |
| Bromodichloromethane | | 0.3 U |
| Bromoform | | 0.2 U |
| Carbon tetrachloride | | 0.1 U |
| Chlorodibromomethane | | 0.6 U |
| Chloroethane | | 0.2 U | 0.2 U | 2.0 | 0.2 U | 0.2 U |
| Chloroform | | 0.1 U | 0.1 U | 0.5 | 0.1 | 0.1 U |
| Dichlorodifluoromethane | | 0.1 U | 0.1 U | 1.5 | 0.1 U | 0.1 U |
| 1,1-Dichloroethane | | 0.2 U | 0.2 U | 3.1 | 0.2 U | 0.2 U |
| 1,1-Dichloroethene | | 0.3 U | 0.3 U | 0.3 | 0.3 U | 0.3 U |
| 1,2-Dichloroethane | | 0.3 U | 0.3 U | 0.5 | 0.3 U | 0.3 U |
| trans-1,2-Dichloroethene | | 0.3 U | 0.3 U | 0.3 | 0.3 U | 0.3 U |
| cis-1,2-Dichloroethene | | 0.2 U | 0.2 U | 2.9 | 0.8 | 0.2 U |
| 1,2-Dichloropropane | | 0.1 U |
| Methylene chloride | | 0.2 U | 0.2 U | 0.7 | 0.2 U | 0.2 U |
| Tetrachloroethene | | 0.2 U | 0.2 U | 1.3 | 0.6 | 0.2 U |
| 1,1,1-Trichloroethane | | 0.1 U | 0.1 U | 0.2 | 0.1 U | 0.1 U |
| Trichloroethylene | | 0.8 | 0.2 U | 1.0 | 0.7 | 0.2 U |
| Vinyl chloride | | 0.2 U | 0.2 U | 1.1 | 0.2 U | 0.2 U |
| Sum of Constituents | | 0.8 | ND | 15.4 | 2.2 | ND |

Notes:

All concentrations in micrograms per liter ($\mu g/L$) or parts per billion (ppb)

U - Analyzed for but not detected

J - Estimated Value

ND - Not Detected

| | LF-1 | OBS-1 | Field Blank | Field Blank | Trip Blank | Trip Blank |
|--------------------------|-----------|-----------|-------------|-------------|------------|------------|
| CONSTITUENT | 8/28/2009 | 8/28/2009 | 8/26/2009 | 8/28/2009 | 8/28/2009 | 8/28/2009 |
| Bromodichloromethane | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| Bromoform | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Carbon tetrachloride | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U |
| Chlorodibromomethane | 0.6 U | 0.6 U | 0.6 U | 0.6 U | 0.6 U | 0.6 U |
| Chloroethane | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Chloroform | 0.1 U | 0.1 U | 0.2 | 0.1 U | 0.1 U | 0.1 U |
| Dichlorodifluoromethane | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U |
| 1,1-Dichloroethane | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| 1,1-Dichloroethene | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| 1,2-Dichloroethane | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| trans-1,2-Dichloroethene | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| cis-1,2-Dichloroethene | 0.2 U | 1.1 | 0.2 | 0.2 U | 0.2 U | 0.2 U |
| 1,2-Dichloropropane | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U |
| Methylene chloride | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Tetrachloroethene | 0.2 U | 0.3 | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| 1,1,1-Trichloroethane | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 U |
| Trichloroethylene | 0.2 U | 0.2 | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Vinyl chloride | 0.2 U | 0.3 | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Sum of Constituents | ND | 1.9 | 0.4 | ND | ND | ND |

Notes:

All concentrations in micrograms per liter ($\mu g/L$) or parts per billion (ppb)

U - Analyzed for but not detected

J - Estimated Value

ND - Not Detected

| | LF-1 | M-30B-R | MW-05B | MW-06A | MW-06B |
|------------------------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | 8/28/2009 | 8/28/2009 | 8/26/2009 | 8/27/2009 | 8/27/2009 |
| Benzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.6 |
| n-Butylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.5 |
| tert-Butylbenzene | 0.1 U |
| Chlorobenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 2.9 |
| Dichlorobenzene, o&p | 0.3 U | 0.3 U | 0.3 U | 0.7 U | 3.8 |
| Dichlorobenzene, o,m&p | 0.4 U | 0.4 U | 0.4 U | 1.5 | 5.1 |
| Ethylbenzene | 0.1 U |
| Isopropylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 1.0 |
| Toluene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.1 |
| m/p-Xylene | 0.2 U |
| o-Xylene | 1.6 U |
| Sum of Constituents | ND | ND | ND | 1.5 | 10.2 |

Notes:

ND - Not Detected

U - Analyzed for but not detected

J - Estimated Value

All concentrations in micrograms per liter $(\mu g/L)$ or parts per billion (ppb)

| | MW-06C | MW-06E | MW-06F | MW-07B | MW-08A |
|------------------------|-----------|-----------|-----------|-------------|-----------|
| CONSTITUENT | 8/28/2009 | 8/27/2009 | 8/27/2009 | Not Sampled | 8/26/2009 |
| Benzene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| n-Butylbenzene | 0.1 U | 0.1 | 0.1 U | | 0.1 U |
| tert-Butylbenzene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| Chlorobenzene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| Dichlorobenzene, o&p | 0.3 U | 0.9 | 0.3 U | | 0.3 U |
| Dichlorobenzene, o,m&p | 0.4 U | 1.2 | 0.4 U | | 0.4 U |
| Ethylbenzene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| Isopropylbenzene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| Toluene | 0.1 U | 0.1 U | 0.1 U | | 0.1 U |
| m/p-Xylene | 0.2 U | 0.2 U | 0.2 U | | 0.2 U |
| o-Xylene | 1.6 U | 1.6 U | 1.6 U | | 1.6 U |
| Sum of Constituents | ND | 1.3 | ND | | ND |

Notes:

ND - Not Detected

U - Analyzed for but not detected

J - Estimated Value

All concentrations in micrograms per liter (μ g/L) or parts per billion (ppb)

| | MW-08B | MW-08B DUP | MW-09B | MW-09C | MW-09D |
|------------------------|-----------|------------|-----------|-----------|-----------|
| CONSTITUENT | 8/26/2009 | 8/26/09 | 8/26/2009 | 8/26/2009 | 8/26/2009 |
| Benzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 2.5 |
| n-Butylbenzene | 0.1 U | 0.2 | 0.1 U | 0.1 U | 0.9 |
| tert-Butylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.9 |
| Chlorobenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 2.3 |
| Dichlorobenzene, o&p | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 15.4 |
| Dichlorobenzene, o,m&p | 0.4 U | 0.4 U | 0.4 U | 0.4 U | 15.4 |
| Ethylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.7 |
| Isopropylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 2.3 |
| Toluene | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.6 |
| m/p-Xylene | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.5 |
| o-Xylene | 1.6 U | 1.6 U | 1.6 U | 1.6 U | 14.7 |
| Sum of Constituents | ND | 0.2 | ND | ND | 40.8 |

Notes:

ND - Not Detected

U - Analyzed for but not detected

J - Estimated Value

All concentrations in micrograms per liter $(\mu g/L)$ or parts per billion (ppb)

| | OBS-1 | MW-11A | MW-11B | Field Blank | Field Blank |
|------------------------|-----------|-----------|-----------|-------------|-------------|
| CONSTITUENT | 8/28/2009 | 8/28/2009 | 8/26/2009 | 8/26/2009 | 8/28/2009 |
| Benzene | 0.3 | 0.1 U | 0.1 U | 0.1 | 0.1 U |
| n-Butylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.3 | 0.1 U |
| tert-Butylbenzene | 0.3 | 0.1 U | 0.1 U | 0.2 | 0.1 U |
| Chlorobenzene | 1.0 | 0.1 U | 0.1 U | 0.5 | 0.1 U |
| Dichlorobenzene, o&p | 2.8 | 0.3 U | 0.3 U | 1.5 | 0.3 U |
| Dichlorobenzene, o,m&p | 3.0 | 0.4 U | 0.4 U | 3.8 | 0.4 U |
| Ethylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.2 | 0.1 U |
| Isopropylbenzene | 0.1 U | 0.1 U | 0.1 U | 0.1 | 0.1 U |
| Toluene | 0.1 U | 0.1 U | 0.1 U | 0.3 | 0.1 U |
| m/p-Xylene | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| o-Xylene | 1.6 U | 1.6 U | 1.6 U | 1.6 U | 1.6 U |
| Sum of Constituents | 4.6 | ND | ND | 5.5 | ND |

Notes:

ND - Not Detected

U - Analyzed for but not detected

J - Estimated Value

All concentrations in micrograms per liter $(\mu g/L)$ or parts per billion (ppb)

| | Trip Blank | Trip Blank |
|------------------------|------------|------------|
| CONSTITUENT | 8/26/2009 | 8/28/2009 |
| Benzene | 0.1 U | 0.2 |
| n-Butylbenzene | 0.1 U | 0.1 U |
| tert-Butylbenzene | 0.1 U | 0.1 U |
| Chlorobenzene | 0.1 U | 0.1 U |
| Dichlorobenzene, o&p | 0.3 U | 1.1 |
| Dichlorobenzene, o,m&p | 0.4 U | 1.1 |
| Ethylbenzene | 0.1 U | 0.1 |
| Isopropylbenzene | 0.1 U | 0.1 U |
| Toluene | 0.1 U | 0.8 |
| m/p-Xylene | 0.2 U | 0.2 U |
| o-Xylene | 1.6 U | 2.7 |
| Sum of Constituents | ND | 4.9 |

Notes:

ND - Not Detected

U - Analyzed for but not detected

J - Estimated Value

All concentrations in micrograms per liter (μ g/L) or parts per billion (ppb) Results appearing bold indicate concentrations greater than the action level

TABLE 5 TOWN OF OYSTER BAY OLD BETHPAGE LANDFILL GROUNDWATER ANALYTICAL RESULTS - THIRD QUARTER 2009 TETRACHLOROETHENE

| CONSTITUENT | SAMPLE ID | LF-1 | M-30B-R | MW-05B | MW-06A | MW-06B | MW-06C | MW-06E | MW-06F |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| | DATE | 8/28/2009 | 8/28/2009 | 8/26/2009 | 8/27/2009 | 8/27/2009 | 8/28/2009 | 8/27/2009 | 8/27/09 |
| Tetrachloroethene | | 0.2 U | 0.2 | 0.2 U |

| CONSTITUENT | SAMPLE ID | MW-07B | MW-08A | MW-08B | MW-08B DUP | MW-09B | MW-09C | MW-09D | OBS-1 |
|-------------------|-----------|-------------|---------|---------|------------|---------|---------|---------|---------|
| | DATE | Not Sampled | 8/26/09 | 8/26/09 | 8/26/09 | 8/26/09 | 8/26/09 | 8/26/09 | 8/28/09 |
| Tetrachloroethene | | 1 | 9.0 | 0.6 | 0.5 | 0.2 U | 0.2 U | 1.3 | 0.3 |

| CONSTITUENT | SAMPLE ID | MW-11A | MW-11B | FIELD BLANK | FIELD BLANK | TRIP BLANK | TRIP BLANK |
|-------------------|-----------|---------|---------|-------------|-------------|------------|------------|
| | DATE | 8/28/09 | 8/26/09 | 8/26/09 | 8/28/09 | 8/26/09 | 8/28/09 |
| Tetrachloroethene | | 0.6 | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.2 U |

Notes:

All concentrations in micrograms per liter ($\mu g/L$) or parts per billion (ppb)

ND - Not Detected

J - Estimated Value

U - Analyzed for but not detected

Bold indicates concentration exceeds NYSDEC TOGS 1.1.1 Ambient Water Quality Standards

TABLE 6 TOWN OF OYSTER BAY OLD BETHPAGE LANDFILL RECOVERY WELL SAMPLING RESULTS - THIRD QUARTER 2009 VOLATILE HALOGENATED ORGANIC COMPOUNDS

| | RW-01 | RW-02 | RW-03 | RW-04 | RW-05 |
|--------------------------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | 8/21/2009 | 8/21/2009 | 8/21/2009 | 8/21/2009 | 8/21/2009 |
| Bromodichloromethane | 0.3 U |
| Bromoform | 0.2 U |
| Carbon tetrachloride | 0.1 U | 0.1 U | 0.1 U | 0.1 U | 0.4 |
| Chlorodibromomethane | 0.6 U |
| Chloroethane | 0.2 U |
| Chloroform | 0.1 U | 0.1 U | 0.4 | 0.8 | 0.6 |
| Dichlorodifluoromethane | 0.1 U |
| 1,1-Dichloroethane | 0.2 U | 0.2 U | 0.2 | 0.2 U | 1.3 |
| 1,1-Dichloroethene | 0.3 U | 0.3 U | 0.9 | 2.5 | 14.9 |
| 1,2-Dichloroethane | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.9 |
| trans-1,2-Dichloroethene | 0.3 U | 0.3 U | 0.3 U | 0.3 U | 0.3 U |
| cis-1,2-Dichloroethene | 0.7 | 0.5 | 8.0 | 33.3 | 12.4 |
| 1,2-Dichloropropane | 0.1 U | 0.1 | 0.1 U | 0.1 U | 0.1 U |
| Methylene chloride | 0.2 U |
| Tetrachloroethene | 0.2 U | 0.3 | 15.7 | 27.1 | 31.8 |
| 1,1,1-Trichloroethane | 0.1 U | 0.1 U | 0.8 | 3.3 | 15.3 |
| Trichloroethylene | 0.2 U | 0.3 | 47.4 | 288 | 160 |
| Vinyl chloride | 0.2 U |
| Sum of Constituents | 0.7 | 1.2 | 73.4 | 355.0 | 237.6 |

Notes:

All units are micrograms per liter (μ g/L) or parts per billion (ppb)

ND - Not Detected

J - Estimated Value

U - Analyzed for but not detected

TABLE 6 TOWN OF OYSTER BAY OLD BETHPAGE LANDFILL RECOVERY WELL SAMPLING RESULTS - THIRD QUARTER 2009 AROMATIC HYDROCARBONS

| | RW-01 | RW-02 | RW-03 | RW-04 | RW-05 |
|------------------------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | 8/21/2009 | 8/21/2009 | 8/21/2009 | 8/21/2009 | 8/21/2009 |
| Benzene | 0.2 | 0.2 | 0.3 | 0.1 U | 0.1 U |
| n-Butylbenzene | 0.1 U |
| tert-Butylbenzene | 0.1 U |
| Chlorobenzene | 0.1 | 0.6 | 1 | 0.1 U | 0.1 U |
| Dichlorobenzene, o&p | 1.1 | 1.3 | 1.6 | 0.3 U | 0.3 U |
| Dichlorobenzene, o,m&p | 0.7 | 2.8 | 4 | 0.4 U | 0.4 U |
| Ethylbenzene | 0.1 U |
| Isopropylbenzene | 0.1 U |
| Toluene | 0.1 U |
| m/p-Xylene | 0.2 U |
| o-Xylene | 1.6 U |
| Sum of Constituents | 2.1 | 4.9 | 6.9 | ND | ND |

Notes:

All units are micrograms per liter (μ g/L) or parts per billion (ppb)

ND - Not Detected

J - Estimated Value

U - Analyzed for but not detected

Results appearing bold indicate concentrations greater than the action level

| | | LF-1 | M-30B-R | MW-05B | MW-06A | MW-06B |
|---|--------|----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | UNITS | 9/9/2009 | 8/28/2009 | 8/26/2009 | 8/27/2009 | 8/27/2009 |
| Alkalinity, Total (As CaCO <sub>3</sub>) | (mg/l) | 170 | 4.7 | 51.5 | 5.15 | 551 |
| Aluminum | (mg/l) | NA | 0.2 U | 0.2 U | 1.63 | 0.2 U |
| Barium | (mg/l) | NA | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Bicarbonate | (mg/l) | 170 | 4.7 | 51.5 | 5.1 | 551 |
| Calcium | (mg/l) | NA | 12.5 | 16 | 0.7 | 9.24 |
| Carbonate | (mg/l) | 1 U | 1 U | 2 U | 1 U | 1 U |
| Chloride | (mg/l) | 230 | 92 | 82.7 | 7.38 | 229 |
| Chromium | (mg/l) | NA | 0.01 U | 0.01 U | 0.01 U | 0.01 U |
| Chromium, Hexavalent | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Cyanide | (mg/l) | 10 U | 10 U | 10 U | 10 U | 10 U |
| Hardness (As CaCO <sub>3</sub>) | (mg/l) | 110 | 50 | 80 | 11 | 54 |
| Iron | (mg/l) | NA | 0.08 | 0.02 U | 4.52 | 3.87 |
| Lead | (mg/l) | NA | 5 U | 5 U | 5 U | 5 U |
| Magnesium | (mg/l) | NA | 5.11 | 7.81 | 0.96 | 6.95 |
| Manganese | (mg/l) | NA | 0.02 U | 4.81 | 0.04 | 0.03 |
| Mercury | (mg/l) | NA | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Nickel | (mg/l) | NA | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Nitrate as N | (mg/l) | 0.1 U | 2.05 | 4.07 | 0.51 | 0.1 U |
| Nitrite as N | (mg/l) | 0.1 U | 0.1 U | 0.33 | 0.1 U | 0.1 U |
| Nitrogen, Ammonia (As N) | (mg/l) | 14.2 | 0.1 U | 0.1 U | 0.1 U | 63 |
| Nitrogen, Kjeldahl, Total | (mg/l) | 27.5 | 0.1 U | 0.24 | 0.1 U | 96.5 |
| Phenolics, Total Recoverable | (mg/l) | 5 U | 5 U | 5 U | 5 U | 5 U |
| Potassium | (mg/l) | NA | 3.65 | 9.02 | 1.43 | 80.9 |
| Sodium | (mg/l) | NA | 44.8 | 49.5 | 8.5 | 226 |
| Sulfate | (mg/l) | 23.8 | 18.9 | 22.5 | 5.01 | 11.3 |
| Total Dissolved Solids | (mg/l) | 482 | 217 | 243 | 66 | 750 |
| Zinc | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |

Notes:

NA - Not Analyzed

U - Analyzed for but not detected

mg/l - micrograms per liter or parts per billion (ppb)

| | | MW-06C | MW-06E | MW-06F | MW-07B | MW-08A |
|---|--------|-----------|-----------|-----------|-------------|-----------|
| CONSTITUENT | UNITS | 8/28/2009 | 8/27/2009 | 8/27/2009 | Not Sampled | 8/26/2009 |
| Alkalinity, Total (As CaCO <sub>3</sub>) | (mg/l) | 415 | 50.8 | 1 U | | 1.85 |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.26 | | 1.32 |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.22 | | 0.2 U |
| Bicarbonate | (mg/l) | 415 | 50.8 | 1 U | | 1.8 |
| Calcium | (mg/l) | 25.8 | 22.5 | 38 | | 3 |
| Carbonate | (mg/l) | 1 U | 1 U | 1 U | | 1 U |
| Chloride | (mg/l) | 249 | 165 | 226 | | 15.5 |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | | 0.01 U |
| Chromium, Hexavalent | (mg/l) | 0.02 U | 0.02 U | 0.02 U | | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | | 0.02 U |
| Cyanide | (mg/l) | 10 U | 10 U | 10 U | | 10 U |
| Hardness (As CaCO <sub>3</sub>) | (mg/l) | 105 | 95 | 156 | | 19 |
| Iron | (mg/l) | 4.61 | 1.84 | 0.19 | | 2.78 |
| Lead | (mg/l) | 5 U | 5 U | 5 U | | 14.3 |
| Magnesium | (mg/l) | 10.3 | 9.07 | 14.7 | | 2.03 |
| Manganese | (mg/l) | 0.06 | 0.41 | 0.1 | | 0.03 |
| Mercury | (mg/l) | 0.2 U | 0.2 U | 0.32 | | 0.2 U |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | | 0.04 U |
| Nitrate as N | (mg/l) | 0.1 U | 0.1 U | 2.73 | | 2.31 |
| Nitrite as N | (mg/l) | 0.1 U | 0.1 U | 0.1 | | 0.1 U |
| Nitrogen, Ammonia (As N) | (mg/l) | 25.3 | 6.51 | 0.41 | | 0.1 U |
| Nitrogen, Kjeldahl, Total | (mg/l) | 42.7 | 11.3 | 0.34 | | 0.47 |
| Phenolics, Total Recoverable | (mg/l) | 5 U | 5 U | 5 U | | 5 U |
| Potassium | (mg/l) | 52.8 | 19.6 | 5.68 | | 3.34 |
| Sodium | (mg/l) | 261 | 77.1 | 73.2 | | 5.88 |
| Sulfate | (mg/l) | 42.8 | 30.1 | 5 U | | 5 U |
| Total Dissolved Solids | (mg/l) | 803 | 386 | 614 | | 62 |
| Zinc | (mg/l) | 0.02 U | 0.05 | 0.04 | | 0.02 U |

Notes:

NA - Not Analyzed

U - Analyzed for but not detected

mg/l - micrograms per liter or parts per billion (ppb)

| | | MW-08B | MW-8B DUP | MW-09B | MW-09C | MW-09D |
|---|--------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | UNITS | 8/26/2009 | 8/26/2009 | 8/26/2009 | 8/26/2009 | 8/26/2009 |
| Alkalinity, Total (As CaCO <sub>3</sub>) | (mg/l) | 3.8 | 2.9 | 9.6 | 48.1 | 1 U |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.56 |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.27 |
| Bicarbonate | (mg/l) | 3.8 | 2.9 | 9.6 | 48.1 | 1 U |
| Calcium | (mg/l) | 13.3 | 12.5 | 11.4 | 3.11 | 18.5 |
| Carbonate | (mg/l) | 1 U | 1 U | 1 U | 1 U | 1 U |
| Chloride | (mg/l) | 74 | 77.1 | 48.6 | 88.4 | 275 |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | 0.01 U | 0.01 U |
| Chromium, Hexavalent | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Cyanide | (mg/l) | 10 U | 10 U | 10 U | 10 U | 10 U |
| Hardness (As CaCO <sub>3</sub>) | (mg/l) | 51 | 49 | 47 | 28 | 106 |
| Iron | (mg/l) | 0.03 | 0.02 U | 0.02 U | 0.14 | 1.04 |
| Lead | (mg/l) | 8.12 | 6.37 | 5 U | 5 U | 11.3 |
| Magnesium | (mg/l) | 3.97 | 3.77 | 4.41 | 5.12 | 13.7 |
| Manganese | (mg/l) | 0.56 | 0.55 | 0.12 | 0.07 | 0.18 |
| Mercury | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 1.9 |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Nitrate as N | (mg/l) | 2.18 | 2.19 | 4.5 | 0.22 | 0.1 U |
| Nitrite as N | (mg/l) | 0.1 U | 0.1 U | 0.1 U | 0.1 | 0.1 U |
| Nitrogen, Ammonia (As N) | (mg/l) | 0.1 U | 0.1 U | 0.1 U | 5.31 | 1.4 |
| Nitrogen, Kjeldahl, Total | (mg/l) | 0.74 | 2.09 | 0.1 U | 9.9 | 3.4 |
| Phenolics, Total Recoverable | (mg/l) | 5 U | 5 U | 5 U | 5 U | 5 U |
| Potassium | (mg/l) | 10.8 | 10.4 | 5.28 | 16.7 | 4.5 |
| Sodium | (mg/l) | 29.6 | 28.8 | 26.6 | 49 | 101 |
| Sulfate | (mg/l) | 21.4 | 21.1 | 21.1 | 16.3 | 5 U |
| Total Dissolved Solids | (mg/l) | 208 | 224 | 169 | 184 | 569 |
| Zinc | (mg/l) | 0.04 | 0.04 | 0.02 U | 0.02 U | 0.07 |

Notes:

NA - Not Analyzed

U - Analyzed for but not detected

mg/l - micrograms per liter or parts per billion (ppb)

| | | MW-11A | MW-11B | OBS-1 | Field Blank |
|---|--------|-----------|-----------|-----------|-------------|
| CONSTITUENT | UNITS | 8/28/2009 | 8/28/2009 | 8/28/2009 | 8/26/2009 |
| Alkalinity, Total (As CaCO <sub>3</sub>) | (mg/l) | 1 U | 1 U | 75.3 | 1 U |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Bicarbonate | (mg/l) | 1 U | 1 U | 75.3 | 1 U |
| Calcium | (mg/l) | 3.52 | 2.14 | 20.4 | 0.2 U |
| Carbonate | (mg/l) | 1 U | 1 U | 1 U | 1 U |
| Chloride | (mg/l) | 9.98 | 11.4 | 142 | 2 U |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | 0.01 U |
| Chromium, Hexavalent | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Cyanide | (mg/l) | 10 U | 10 U | 10 U | 10 U |
| Hardness (As CaCO <sub>3</sub>) | (mg/l) | 15 | 9 | 115 | 5 U |
| Iron | (mg/l) | 0.02 | 0.07 | 0.09 | 0.02 U |
| Lead | (mg/l) | 5 U | 5 U | 5 U | 5 U |
| Magnesium | (mg/l) | 1.84 | 1.03 | 14.8 | 0.2 U |
| Manganese | (mg/l) | 0.02 U | 0.02 U | 1.58 | 0.02 U |
| Mercury | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Nitrate as N | (mg/l) | 3.82 | 1.03 | 0.1 U | 0.1 U |
| Nitrite as N | (mg/l) | 0.1 U | 0.1 U | 0.1 U | 0.1 U |
| Nitrogen, Ammonia (As N) | (mg/l) | 0.1 U | 0.1 U | 4.48 | 0.1 U |
| Nitrogen, Kjeldahl, Total | (mg/l) | 0.1 U | 0.1 U | 9.81 | 0.1 U |
| Phenolics, Total Recoverable | (mg/l) | 5 U | 5 U | 5 U | 5 U |
| Potassium | (mg/l) | 1.2 | 1.02 | 10 | 0.23 |
| Sodium | (mg/l) | 4.63 | 5.2 | 81.5 | 0.2 U |
| Sulfate | (mg/l) | 5 U | 5 U | 59.9 | 5 U |
| Total Dissolved Solids | (mg/l) | 51 | 31 | 357 | 10 U |
| Zinc | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U |

Notes:

NA - Not Analyzed

U - Analyzed for but not detected

mg/l - micrograms per liter or parts per billion (ppb)

| | | LF-1 | M-30B-R | MW-05B | MW-06A | MW-06B |
|------------------------------|--------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT | UNITS | 8/28/2009 | 8/28/2009 | 8/26/2009 | 8/27/2009 | 8/27/2009 |
| Aluminum | (mg/l) | NA | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Barium | (mg/l) | NA | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Calcium | (mg/l) | NA | 12.4 | 15.8 | 0.47 | 9.06 |
| Chromium | (mg/l) | NA | 0.01 U | 0.01 | 0.01 U | 0.01 U |
| Chromium, Hexavalent (Diss.) | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Iron | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.07 |
| Lead | (µg/l) | NA | 5 U | 5 U | 5 U | 5 U |
| Magnesium | (mg/l) | NA | 5.19 | 7.65 | 0.65 | 6.84 |
| Manganese | (mg/l) | NA | 0.02 U | 4.67 | 0.02 U | 0.03 |
| Mercury | (µg/l) | NA | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Nickel | (mg/l) | NA | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Potassium | (mg/l) | NA | 3.59 | 9.4 | 1.19 | 78.6 |
| Sodium | (mg/l) | NA | 45.3 | 48.5 | 8.22 | 218 |
| Zinc | (mg/l) | NA | 0.02 U | 0.02 U | 0.02 U | 0.02 U |

Notes:

 μ g/l - micrograms per liter or parts per billion (ppb)

mg/l - milligrams per liter or parts per million (ppm)

NA - Not Analyzed

| | | MW-06C | MW-06E | MW-06F | MW-07B | MW-08A |
|------------------------------|--------|-----------|-----------|-----------|-------------|-----------|
| CONSTITUENT | UNITS | 8/28/2009 | 8/27/2009 | 8/27/2009 | Not Sampled | 8/26/2009 |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.25 | | 0.2 U |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.22 | | 0.2 U |
| Calcium | (mg/l) | 25.6 | 21.5 | 37.1 | | 3.17 |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | | 0.01 U |
| Chromium, Hexavalent (Diss.) | (mg/l) | 0.02 U | 0.02 U | 0.02 U | | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | | 0.02 U |
| Iron | (mg/l) | 0.17 | 1.66 | 0.19 | | 0.04 |
| Lead | (µg/l) | 5 U | 5 U | 5 U | | 5 U |
| Magnesium | (mg/l) | 10.3 | 8.7 | 14.6 | | 2.09 |
| Manganese | (mg/l) | 0.06 | 0.39 | 0.1 | | 0.03 |
| Mercury | (µg/l) | 0.2 U | 0.2 U | 0.28 | | 0.2 U |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | | 0.04 U |
| Potassium | (mg/l) | 52.1 | 18.1 | 5.46 | | 3.94 |
| Sodium | (mg/l) | 258 | 71.8 | 71.7 | | 6.66 |
| Zinc | (mg/l) | 0.02 U | 0.06 | 0.03 | | 0.02 U |

Notes:

 μ g/l - micrograms per liter or parts per billion (ppb)

mg/l - milligrams per liter or parts per million (ppm)

NA - Not Analyzed

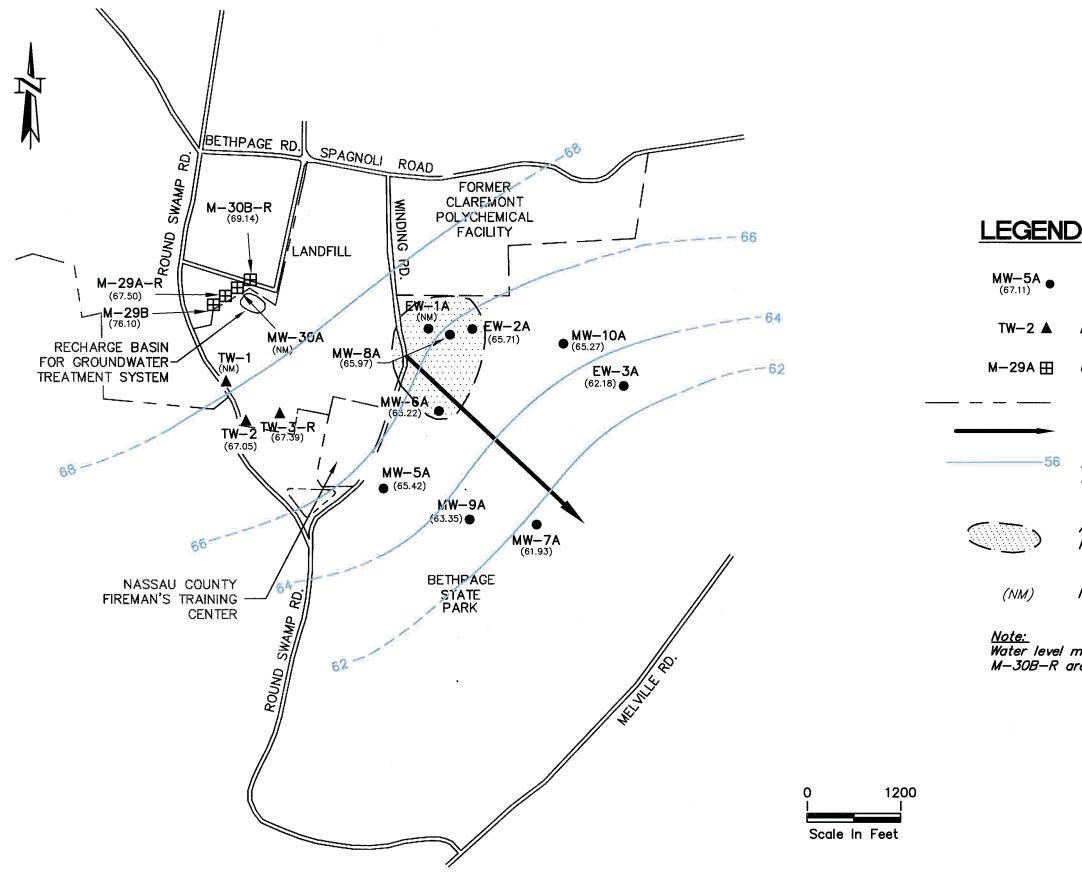
| | | MW-08B | MW-08B DUP | MW-09B | MW-09C | MW-09D |
|------------------------------|-------------|-----------|------------|-----------|-----------|-----------|
| CONSTITUENT | UNITS | 8/26/2009 | 8/26/2009 | 8/26/2009 | 8/26/2009 | 8/26/2009 |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.66 |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 0.27 |
| Calcium | (mg/l) | 13.5 | 13.7 | 12.7 | 3.32 | 18.9 |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | 0.01 U | 0.01 U |
| Chromium, Hexavalent (Diss.) | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Iron | (mg/l) | 0.03 | 0.04 | 0.02 U | 0.09 | 1.06 |
| Lead | (µg/l) | 5 U | 5 U | 5 U | 5 U | 5 U |
| Magnesium | (mg/l) | 4.09 | 4.04 | 4.87 | 5.37 | 13.8 |
| Manganese | (mg/l) | 0.57 | 0.56 | 0.12 | 0.08 | 0.18 |
| Mercury | $(\mu g/l)$ | 0.2 U | 0.2 U | 0.2 U | 0.2 U | 1.7 |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Potassium | (mg/l) | 11.9 | 11.6 | 5.99 | 18.6 | 4.81 |
| Sodium | (mg/l) | 32.1 | 32.1 | 30.1 | 52.8 | 104 |
| Zinc | (mg/l) | 0.05 | 0.05 | 0.02 U | 0.02 U | 0.08 |

Notes:

 μ g/l - micrograms per liter or parts per billion (ppb)

mg/l - milligrams per liter or parts per million (ppm)

NA - Not Analyzed


| | | MW-11A | MW-11B | OBS-1 | Field Blank |
|------------------------------|--------|-----------|-----------|-----------|-------------|
| CONSTITUENT | UNITS | 8/28/2009 | 8/28/2009 | 8/28/2009 | 8/26/2009 |
| Aluminum | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Barium | (mg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Calcium | (mg/l) | 3.5 | 2.09 | 20.2 | 0.2 U |
| Chromium | (mg/l) | 0.01 U | 0.01 U | 0.01 U | 0.01 U |
| Chromium, Hexavalent (Diss.) | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Copper | (mg/l) | 0.02 U | 0.02 U | 0.02 U | 0.02 U |
| Iron | (mg/l) | 0.02 U | 0.04 | 0.09 | 0.02 U |
| Lead | (µg/l) | 5 U | 5 U | 5 U | 5 U |
| Magnesium | (mg/l) | 1.83 | 1.01 | 14.7 | 0.2 U |
| Manganese | (mg/l) | 0.02 U | 0.02 U | 1.56 | 0.02 U |
| Mercury | (µg/l) | 0.2 U | 0.2 U | 0.2 U | 0.2 U |
| Nickel | (mg/l) | 0.04 U | 0.04 U | 0.04 U | 0.04 U |
| Potassium | (mg/l) | 1.16 | 0.96 | 9.9 | 0.2 U |
| Sodium | (mg/l) | 4.51 | 4.99 | 80.1 | 0.2 U |
| Zinc | (mg/l) | 0.02 U | 0.02 U | 0.02 | 0.02 U |

Notes:

 μ g/l - micrograms per liter or parts per billion (ppb)

mg/l - milligrams per liter or parts per million (ppm)

NA - Not Analyzed

Gannett Fleming

FIGURE 1

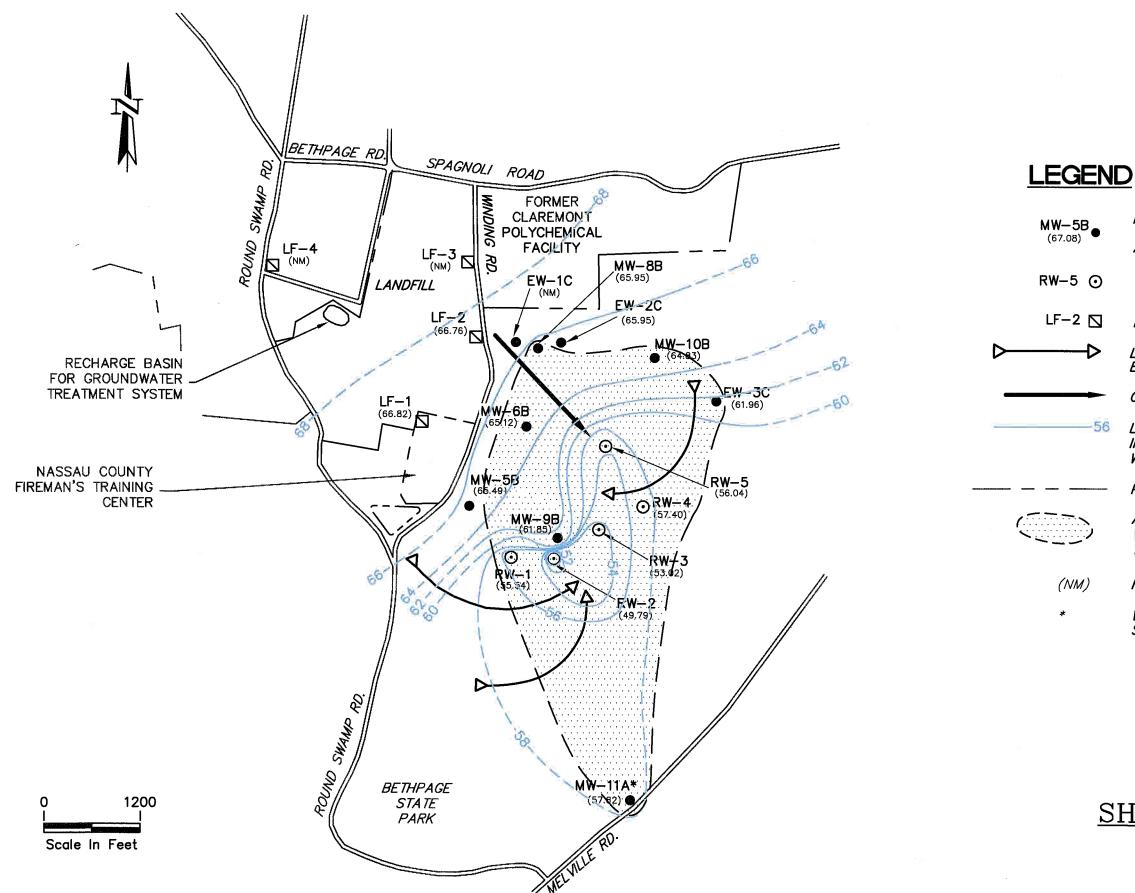
Monitoring Well Location And Designation Water Level Elevation In Feet Above Mean Sea Level

Phase II Extension Well

Upgradient Well

Property Boundary

Groundwater Flow Direction


Line Of Equal Elevation Of The Water Table In Feet Above Mean Sea Level (Dashed Where Inferred)

Approximate Extent Of The VOC Plume In Water Table Wells - Third Quarter 2009

Not Measured

Water level measurements from M-29A-R, M-29B and M-30B-R are not included in the water level contours.

WATER TABLE FLOW MAP AUGUST 25, 2009 OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

Gannett Fleming

FIGURE 2

Monitoring Well Location And Designation Water Level Elevation In Feet Above Mean Sea Level

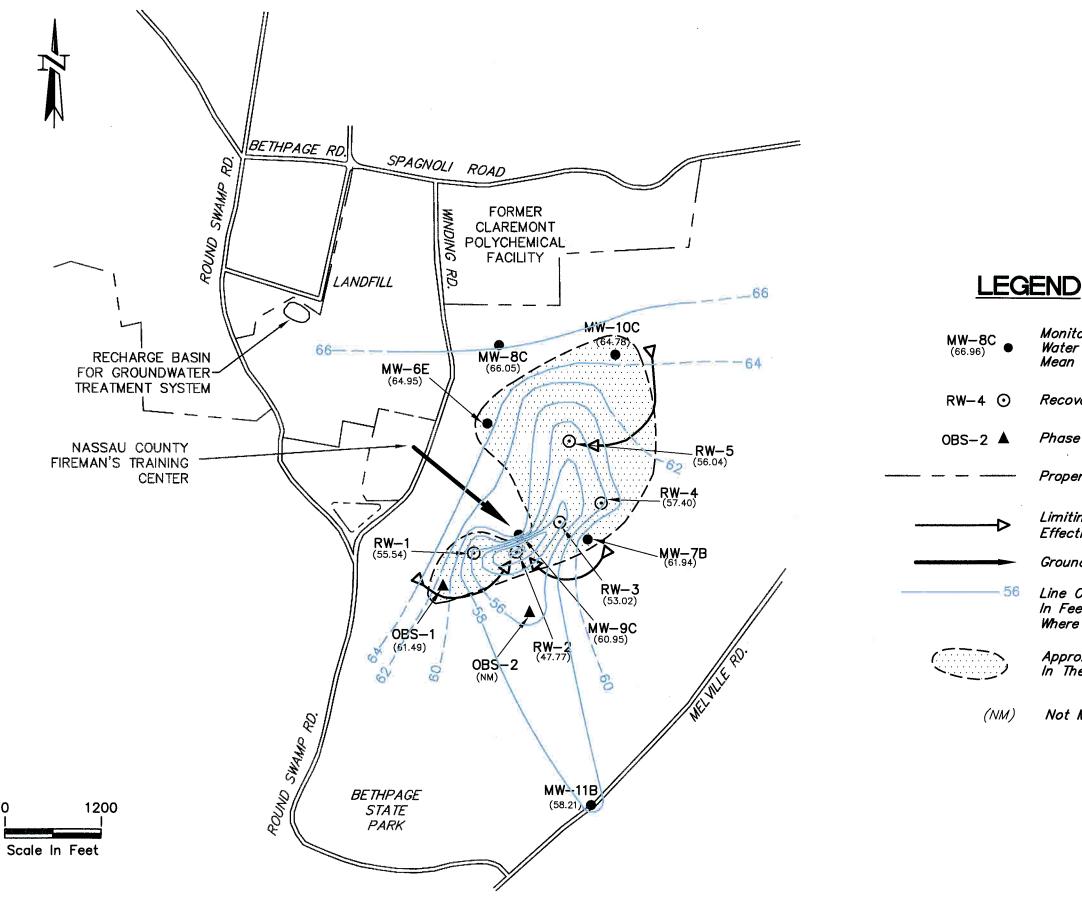
Recovery Well

Phase III Well

Limiting Flow Lines Depicting Estimated Effective Capture Zones

Groundwater Flow Direction

Line Of Equal Elevation Of The Water Table In Feet Above Mean Sea Level (Dashed Where Inferred)


Property Boundary

Approximate Extent Of The VOC Plume In Shallow Potentiometric Zone Third Quarter 2009.

Not Measured

Well MW-11A is screened just below the Shallow Potentiometric Zone.

SHALLOW POTENTIOMETRIC FLOW MAP AUGUST 25, 2009 OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

Gannett Fleming FIGURE 3

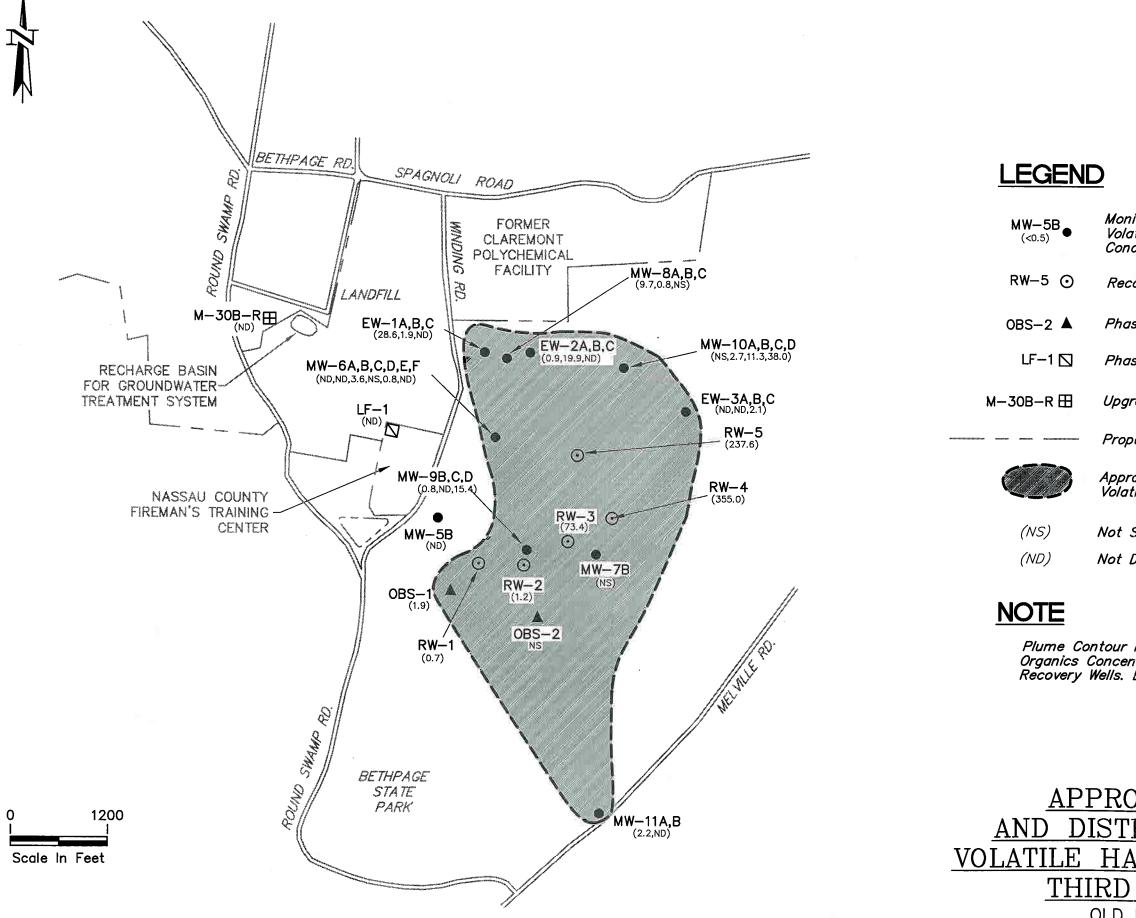
Monitoring Well Location And Designation Water Level Elevation In Feet Above Mean Sea Level

Recovery Well

Phase II Extension Well

Property Boundary

Limiting Flow Lines Depicting Estimated Effective Capture Zone


Groundwater Flow Direction

Line Of Equal Elevation Of The Water Table In Feet Above Mean Sea Level (Dashed Where Inferred)

Approximate Extent Of The VOC Plume In The Deep Potentiometric Zone — Third Quarter 2009

Not Measured

DEEP POTENTIOMETRIC <u>FLOW MAP</u> <u>AUGUST 25, 2009</u> OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

Monitoring Well Location And Total Volatile Halogenated Organics Concentration, ppb

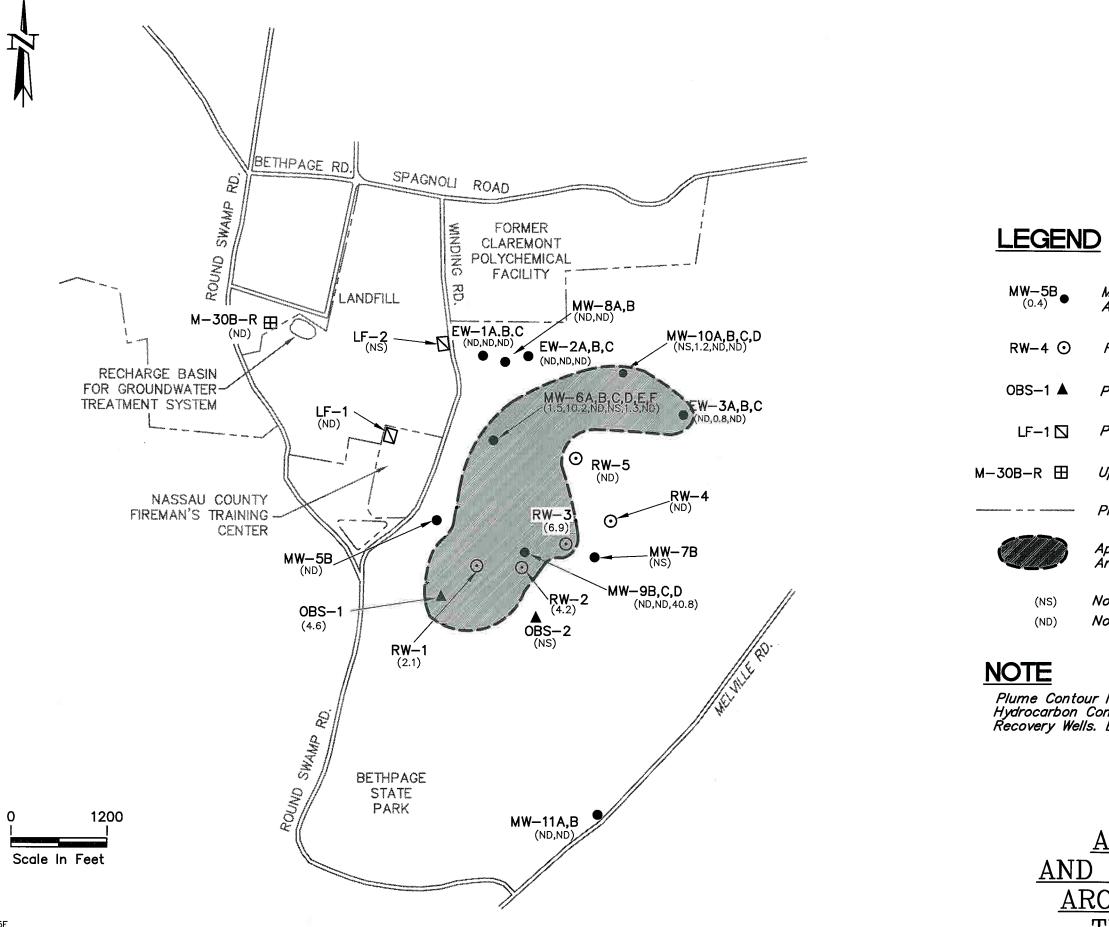
Recovery Well

Phase II Extension Well

Phase III Well

Upgradient Well

Property Boundary


Approximate Extent Of The Volatile Halogenated Organic Plume

Not Sampled

Not Detected

Plume Contour Is Based On Total Volatile Halogenated Organics Concentrations In The Monitoring And Recovery Wells. Estimated values not shown.

APPROXIMATE EXTENT DISTRIBUTION OF TOTAL LE HALOGENATED ORGANICS THIRD QUARTER 2009 OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

Gannett Fleming FIGURE 5

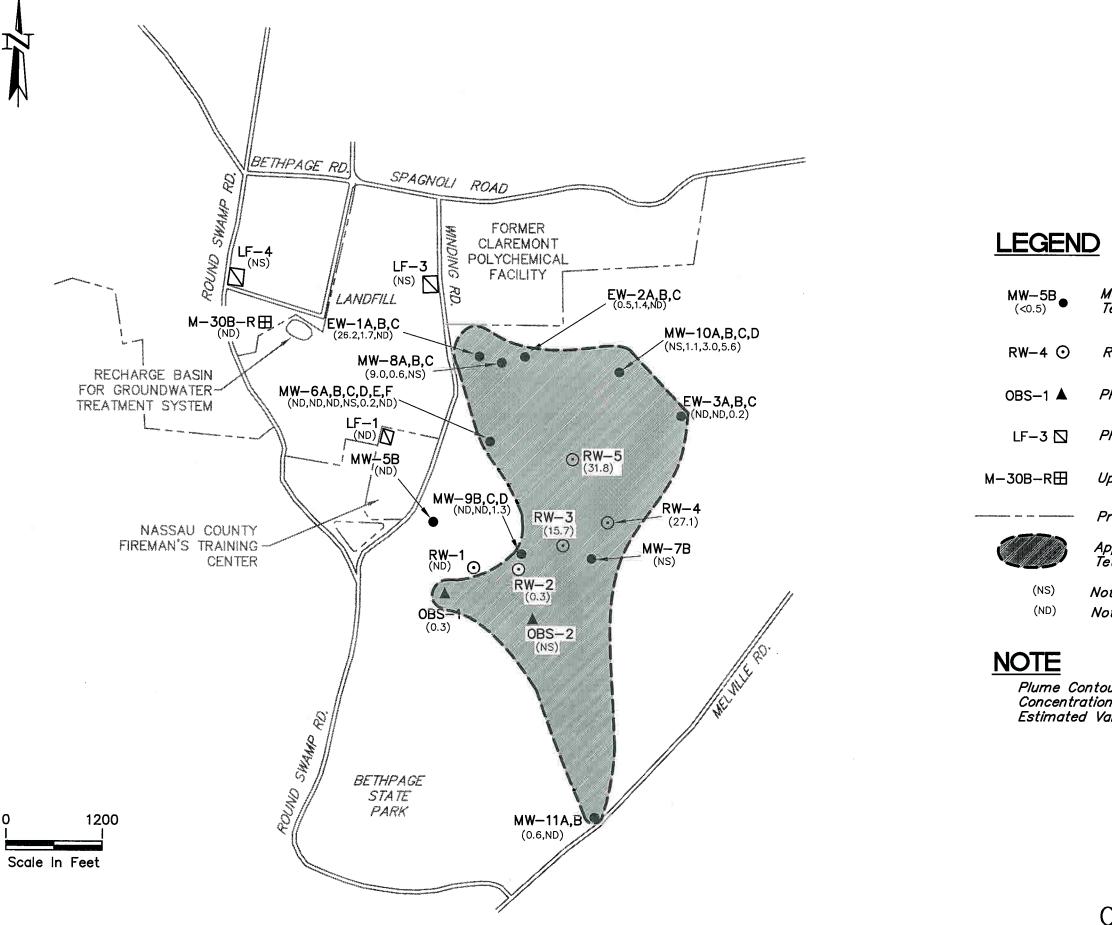
Monitoring Well Location And Total Aromatic Hydrocarbon Concentration, ppb

Recovery Well

Phase II Extension Well

Phase III Well

Upgradient Well


Property Boundary

Approximate Extent Of The Aromatic Hydrocarbon Plume

Not Sampled Not Detected

Plume Contour Is Based On Total Aromatic Hydrocarbon Concentrations In The Monitoring And Recovery Wells. Estimated Values Not Shown.

APPROXIMATE EXTENT ND DISTRIBUTION OF TOTAL AROMATIC HYDROCARBONS THIRD QUARTER 2009 OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

SN49725F 12022009

Gannett Flemina FIGURE 6

Monitoring Well Location And Tetrachloroethene Concentration, ppb

Recovery Well

Phase II Extension Well

Phase III Well

Upgradient Well

Property Boundary

Approximate Extent Of The Tetrachloroethene Plume

Not Sampled

Not Detected

Plume Contour Is Based On Tetrachloroethene Concentrations In The Monitoring And Recovery Wells. Estimated Values Not Shown.

APPROXIMATE EXTENT AND DISTRIBUTION **TETRACHLOROETHENE** OF THIRD QUARTER 2009 OLD BETHPAGE LANDFILL TOWN OF OYSTER BAY

APPENDIX A

LABORATORY DATA REPORTS

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well LF-1 (August 28, 2009)

| Chemical | Concentration | | |
|--------------------------|---------------|-------------|--|
| Constituent | Allowed * | Measured ** | |
| | (ug/L) | (ug/L) | |
| | | | |
| Total VOCs | 100 | ND | |
| Benzene | 1*** | <0.1 | |
| Bromodichloromethane | 50 | <0.3 | |
| Bromoform | 50 | <0.2 | |
| Carbon Tetrachloride | 5 | <0.1 | |
| Chlorobenzene | 5 | <0.1 | |
| Chlorodibromomethane | 50 | <0.6 | |
| Chloroethane | 5 | <0.2 | |
| Chloroform | 7*** | <0.1 | |
| Dichlorobenzene, o&p | 6*** | <0.3 | |
| Dichlorobenzene, o,m&p | 9*** | <0.4 | |
| 1,1 Dichloroethane | 5 | <0.2 | |
| 1,2 Dichloroethane | 0.6*** | <0.3 | |
| 1,1 Dichloroethene | 5*** | <0.3 | |
| cis-1,2 Dichloroethene | 5 | <0.2 | |
| trans-1,2 Dichloroethene | 5 | <0.3 | |
| 1,2 Dichloropropane | 1*** | <0.1 | |
| Ethylbenzene | 5 | <0.1 | |
| Methylene Chloride | 5 | <0.2 | |
| Tetrachloroethene | 5*** | <0.2 | |
| Toluene | 5 | <0.1 | |
| 1,1,1 Trichloroethane | 5 | <0.1 | |
| Trichloroethylene | 5 | <0.2 | |
| Vinyl Chloride | 2 | <0.2 | |
| Xylene, o | 5 | <1.6 | |
| Xylene, m&p | 10*** | <0.2 | |
| Xylene, o,m&p | 15*** | <1.8 | |
| Dichlorodifluoromethane | 5 | <0.1 | |
| Isopropylbenzene | 5 | <0.1 | |
| n-Butylbenzene | 5 | <0.1 | |
| tert-Butylbenzene | 5 | <0.1 | |
| | | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well M-30B-R (August 28, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-11A (August 28, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 2.2 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | 0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | 0.8 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 0.6 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.7 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-11B (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-5B (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-6A (August 27, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 1.5 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | 0.7 |
| Dichlorobenzene, o,m&p | 9*** | 1.5 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-6B (August 27, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 10.2 |
| Benzene | 1*** | 0.6 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | 2.9 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | 3.8 |
| Dichlorobenzene, o,m&p | 9*** | 5.1 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | 0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | 1.0 |
| n-Butylbenzene | 5 | 0.5 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-6C (August 28, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | 0.3 |
| Chloroform | 7*** | 0.3 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | 0.5 |
| 1,2 Dichloroethane | 0.6*** | 0.6 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | 0.5 |
| trans-1,2 Dichloroethene | 5 | 0.4 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | 0.6 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | 0.2 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-6E (August 27, 2009)

| | llowed *
(ug/L)
100
1***
50
50
5
5
5
50
5
50 | Measured **
(ug/L)
2.1
<0.1
<0.3
<0.2
<0.2
<0.1
<0.1 |
|---|---|--|
| Total VOCs Benzene Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Dichlorobenzene, o&p | 100
1***
50
50
5
5
5
50
50 | 2.1
<0.1
<0.3
<0.2
<0.1 |
| Total VOCs Benzene Bromodichloromethane Bromoform Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Chlorodibromomethane Dichlorobenzene, o&p | 100
1***
50
50
5
5
5
50
50 | 2.1
<0.1
<0.3
<0.2
<0.1 |
| BenzeneBromodichloromethaneBromoformCarbon TetrachlorideChlorobenzeneChlorodibromomethaneChloroethaneChloroformDichlorobenzene, o&p | 1***
50
50
5
5
5
5
50 | <0.1
<0.3
<0.2
<0.1 |
| Bromodichloromethane
Bromoform
Carbon Tetrachloride
Chlorobenzene
Chlorodibromomethane
Chloroethane
Chloroform
Dichlorobenzene, o&p | 50
50
5
5
5
50 | <0.3
<0.2
<0.1 |
| Bromoform
Carbon Tetrachloride
Chlorobenzene
Chlorodibromomethane
Chloroethane
Chloroform
Dichlorobenzene, o&p | 50
5
5
50
50 | <0.2
<0.1 |
| Carbon Tetrachloride
Chlorobenzene
Chlorodibromomethane
Chloroethane
Chloroform
Dichlorobenzene, o&p | 5
5
50 | <0.1 |
| Chlorobenzene
Chlorodibromomethane
Chloroethane
Chloroform
Dichlorobenzene, o&p | 5
50 | |
| Chlorodibromomethane
Chloroethane
Chloroform
Dichlorobenzene, o&p | 50 | -0 1 |
| Chloroethane
Chloroform
Dichlorobenzene, o&p | | \U.1 |
| Chloroform
Dichlorobenzene, o&p | | <0.6 |
| Dichlorobenzene, o&p | 5 | <0.2 |
| | 7*** | <0.1 |
| Dichlorobenzene, o,m&p | 6*** | 0.9 |
| | 9*** | 1.2 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.6 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | 0.1 |
| tert-Butylbenzene | 5 | ····· |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-6F (August 27, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-8A (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 9.7 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 9.0 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.7 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-8B (August 26, 2009)

| Chemical | Concentration | |
|--------------------------|---------------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 0.8 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 0.6 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-9B (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 0.8 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.8 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-9C (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well MW-9D (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 56.2 |
| Benzene | 1*** | 2.5 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | 2.3 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | 2.0 |
| Chloroform | 7*** | 0.5 |
| Dichlorobenzene, o&p | 6*** | 15.4 |
| Dichlorobenzene, o,m&p | 9*** | 15.4 |
| 1,1 Dichloroethane | 5 | 3.1 |
| 1,2 Dichloroethane | 0.6*** | 0.5 |
| 1,1 Dichloroethene | 5*** | 0.3 |
| cis-1,2 Dichloroethene | 5 | 2.9 |
| trans-1,2 Dichloroethene | 5 | 0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | 0.7 |
| Methylene Chloride | 5 | 0.7 |
| Tetrachloroethene | 5*** | 1.3 |
| Toluene | 5 | 0.6 |
| 1,1,1 Trichloroethane | 5 | 0.2 |
| Trichloroethylene | 5 | 1.0 |
| Vinyl Chloride | 2 | 1.1 |
| Xylene, o | 5 | 14.7 |
| Xylene, m&p | 10*** | 0.5 |
| Xylene, o,m&p | 15*** | 15.2 |
| Dichlorodifluoromethane | 5 | 1.5 |
| Isopropylbenzene | 5 | 2.3 |
| n-Butylbenzene | 5 | 0.9 |
| tert-Butylbenzene | 5 | 0.9 |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Well OBS-1 (August 28, 2009)

| Chemical | Concentration | |
|--------------------------|---------------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 6.5 |
| Benzene | 1*** | 0.3 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | 1.0 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | 2.8 |
| Dichlorobenzene, o,m&p | 9*** | 3.0 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | 1.1 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 0.3 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | 0.2 |
| Vinyl Chloride | 2 | 0.3 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | 0.3 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Duplicate (August 26, 2009)

| Chemical | Concentration | |
|--------------------------|---------------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | (3 / |
| Total VOCs | 100 | 0.7 |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | 0.5 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | 0.2 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Trip Blank #1 (August 26, 2009)

| Chemical | Conce | entration |
|--------------------------|-----------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | ND |
| Benzene | 1*** | <0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | <0.1 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | <0.1 |
| Dichlorobenzene, o&p | 6*** | <0.3 |
| Dichlorobenzene, o,m&p | 9*** | <0.4 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | <0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | <0.1 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | <0.1 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | <1.6 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | <0.1 |
| n-Butylbenzene | 5 | <0.1 |
| tert-Butylbenzene | 5 | <0.1 |
| | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Trip Blank #2 (August 28, 2009)

| Chemical | Conce | ncentration | |
|--------------------------|-----------|-------------|--|
| Constituent | Allowed * | Measured ** | |
| | (ug/L) | (ug/L) | |
| | (*3*7 | (*3*7 | |
| Total VOCs | 100 | 4.9 | |
| Benzene | 1*** | 0.2 | |
| Bromodichloromethane | 50 | <0.3 | |
| Bromoform | 50 | <0.2 | |
| Carbon Tetrachloride | 5 | <0.1 | |
| Chlorobenzene | 5 | <0.1 | |
| Chlorodibromomethane | 50 | <0.6 | |
| Chloroethane | 5 | <0.2 | |
| Chloroform | 7*** | <0.1 | |
| Dichlorobenzene, o&p | 6*** | 1.1 | |
| Dichlorobenzene, o,m&p | 9*** | 1.1 | |
| 1,1 Dichloroethane | 5 | <0.2 | |
| 1,2 Dichloroethane | 0.6*** | <0.3 | |
| 1,1 Dichloroethene | 5*** | <0.3 | |
| cis-1,2 Dichloroethene | 5 | <0.2 | |
| trans-1,2 Dichloroethene | 5 | <0.3 | |
| 1,2 Dichloropropane | 1*** | <0.1 | |
| Ethylbenzene | 5 | 0.1 | |
| Methylene Chloride | 5 | <0.2 | |
| Tetrachloroethene | 5*** | <0.2 | |
| Toluene | 5 | 0.8 | |
| 1,1,1 Trichloroethane | 5 | <0.1 | |
| Trichloroethylene | 5 | <0.2 | |
| Vinyl Chloride | 2 | <0.2 | |
| Xylene, o | 5 | 2.7 | |
| Xylene, m&p | 10*** | <0.2 | |
| Xylene, o,m&p | 15*** | 2.7 | |
| Dichlorodifluoromethane | 5 | <0.1 | |
| Isopropylbenzene | 5 | <0.1 | |
| n-Butylbenzene | 5 | <0.1 | |
| tert-Butylbenzene | 5 | <0.1 | |
| | <u> </u> | | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Field Blank (August 26, 2009)

| Chemical | Concentration | |
|--------------------------|---------------|-------------|
| Constituent | Allowed * | Measured ** |
| | (ug/L) | (ug/L) |
| | | |
| Total VOCs | 100 | 5.9 |
| Benzene | 1*** | 0.1 |
| Bromodichloromethane | 50 | <0.3 |
| Bromoform | 50 | <0.2 |
| Carbon Tetrachloride | 5 | <0.1 |
| Chlorobenzene | 5 | 0.5 |
| Chlorodibromomethane | 50 | <0.6 |
| Chloroethane | 5 | <0.2 |
| Chloroform | 7*** | 0.2 |
| Dichlorobenzene, o&p | 6*** | 1.5 |
| Dichlorobenzene, o,m&p | 9*** | 3.8 |
| 1,1 Dichloroethane | 5 | <0.2 |
| 1,2 Dichloroethane | 0.6*** | <0.3 |
| 1,1 Dichloroethene | 5*** | <0.3 |
| cis-1,2 Dichloroethene | 5 | 0.2 |
| trans-1,2 Dichloroethene | 5 | <0.3 |
| 1,2 Dichloropropane | 1*** | <0.1 |
| Ethylbenzene | 5 | 0.2 |
| Methylene Chloride | 5 | <0.2 |
| Tetrachloroethene | 5*** | <0.2 |
| Toluene | 5 | 0.3 |
| 1,1,1 Trichloroethane | 5 | <0.1 |
| Trichloroethylene | 5 | <0.2 |
| Vinyl Chloride | 2 | <0.2 |
| Xylene, o | 5 | 8.3 |
| Xylene, m&p | 10*** | <0.2 |
| Xylene, o,m&p | 15*** | <1.8 |
| Dichlorodifluoromethane | 5 | <0.1 |
| Isopropylbenzene | 5 | 0.1 |
| n-Butylbenzene | 5 | 0.3 |
| tert-Butylbenzene | 5 | 0.2 |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

TOWN OF OYSTER BAY

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Field Blank (August 28, 2009)

| Chemical | Concentration | | |
|--------------------------|---------------|-------------|--|
| Constituent | Allowed * | Measured ** | |
| | (ug/L) | (ug/L) | |
| | | | |
| Total VOCs | 100 | ND | |
| Benzene | 1*** | <0.1 | |
| Bromodichloromethane | 50 | <0.3 | |
| Bromoform | 50 | <0.2 | |
| Carbon Tetrachloride | 5 | <0.1 | |
| Chlorobenzene | 5 | <0.1 | |
| Chlorodibromomethane | 50 | <0.6 | |
| Chloroethane | 5 | <0.2 | |
| Chloroform | 7*** | <0.1 | |
| Dichlorobenzene, o&p | 6*** | <0.3 | |
| Dichlorobenzene, o,m&p | 9*** | <0.4 | |
| 1,1 Dichloroethane | 5 | <0.2 | |
| 1,2 Dichloroethane | 0.6*** | <0.3 | |
| 1,1 Dichloroethene | 5*** | <0.3 | |
| cis-1,2 Dichloroethene | 5 | <0.2 | |
| trans-1,2 Dichloroethene | 5 | <0.3 | |
| 1,2 Dichloropropane | 1*** | <0.1 | |
| Ethylbenzene | 5 | <0.1 | |
| Methylene Chloride | 5 | <0.2 | |
| Tetrachloroethene | 5*** | <0.2 | |
| Toluene | 5 | <0.1 | |
| 1,1,1 Trichloroethane | 5 | <0.1 | |
| Trichloroethylene | 5 | <0.2 | |
| Vinyl Chloride | 2 | <0.2 | |
| Xylene, o | 5 | <1.6 | |
| Xylene, m&p | 10*** | <0.2 | |
| Xylene, o,m&p | 15*** | <1.8 | |
| Dichlorodifluoromethane | 5 | <0.1 | |
| Isopropylbenzene | 5 | <0.1 | |
| n-Butylbenzene | 5 | <0.1 | |
| tert-Butylbenzene | 5 | <0.1 | |

\* Regulatory effluent discharge standards as specified in the Consent Decree and modified by 11/10/88 letter to the Town.

\*\* Compounds exceeding allowable EFFLUENT concentrations are highlighted.

\*\*\* Revised values effective in January,1998.

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected : 8/26/2009 8:00:00 AM

Received : 8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

For the submitted sample

Lab No. : 0909493-001A

Client Sample ID. DUPLICATE

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | <u>Qualifier</u> D | .F. <u>Units</u> | Method Number | Analyzed |
|------------------------------|---------|--------------------|------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Calcium | 12.5 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Iron | < 0.02 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Lead | 6.37 | 1 | ug/L | E200.7 | 09/01/2009 7:01 PM |
| Magnesium | 3.77 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Manganese | 0.55 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Potassium | 10.4 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Sodium | 28.8 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Zinc | 0.04 | 1 | mg/L | E200.7 | 09/01/2009 7:01 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 | 09/04/2009 12:20 PM |
| Alkalinity, Total (As CaCO3) | 2.90 | 1 | mg/L | SM2320B | 08/28/2009 12:35 PM |
| Chloride | 77.1 | 5 | mg/L | E300.0 | 09/04/2009 9:18 PM |
| Sulfate | 21.1 | 1 | mg/L | E300.0 | 09/04/2009 9:05 PM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E | 08/27/2009 5:12 PM |
| Carbonate | < 1.0 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:30 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D | 08/27/2009 6:02 AM |
| Hardness (As CaCO3) | 49.0 | 1 | mg/L | SM2340C | 09/08/2009 3:36 PM |
| Bicarbonate | 2.9 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:30 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 | mg/L | SM4500-NH3 H | 09/14/2009 3:01 PM |
| Nitrite as N | < 0.10 | 1 | mg/L | E353.2 | 08/27/2009 7:05 AM |
| Nitrate as N | 2.19 | 5 | mg/L | E353.2 | 09/09/2009 12:16 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 | 09/08/2009 10:49 AM |
| Total Dissolved Solids | 224 | 1 | mg/L | SM2540C | 08/27/2009 4:39 PM |
| Nitrogen, Kjeldahl, Total | 2.09 | 10 | mg/L | E351.2 | 09/10/2009 2:13 PM |
| | | | | | |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-001B

Client Sample ID. DUPLICATE

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/26/2009 8:00:00 AM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Calcium | 13.7 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Iron | 0.04 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 10:27 PM |
| Magnesium | 4.04 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Manganese | 0.56 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Potassium | 11.6 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Sodium | 32.1 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Zinc | 0.05 | 1 mg/L | E200.7 | 09/02/2009 10:27 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:12 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:14 AM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

D.F. = Dilution Factor

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE** SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/26/2009 12:00:00 PM

Received :8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

For the submitted sample

Lab No. : 0909493-002A

Client Sample ID. FIELD BLANK

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Calcium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/01/2009 7:06 PM |
| Magnesium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Potassium | 0.23 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Sodium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:06 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:28 PM |
| Alkalinity, Total (As CaCO3) | < 1.00 | 1 mg/L | SM2320B | 08/28/2009 12:39 PM |
| Chloride | < 2.00 | 1 mg/L | E300.0 | 09/04/2009 9:32 PM |
| Sulfate | < 5.00 | 1 mg/L | E300.0 | 09/04/2009 9:32 PM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E | 08/27/2009 5:13 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:31 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:05 AM |
| Hardness (As CaCO3) | < 5.00 | 1 mg/L | SM2340C | 09/08/2009 3:39 PM |
| Bicarbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:31 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:02 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/27/2009 7:09 AM |
| Nitrate as N | < 0.10 | 1 mg/L | E353.2 | 09/09/2009 12:17 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 µg/L | E420.1 | 09/08/2009 10:50 AM |
| Total Dissolved Solids | < 10 | 1 mg/L | SM2540C | 08/27/2009 4:42 PM |
| Nitrogen, Kjeldahl, Total | < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:14 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

 $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-002B

Client Sample ID. FIELD BLANK

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/26/2009 12:00:00 PM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | <u>Results</u> | <u>Qualifier</u> <u>D.F.</u> <u>Units</u> | Method Number | Analyzed |
|------------------------------|----------------|---|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Calcium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 10:50 PM |
| Magnesium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Potassium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Sodium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:50 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:24 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:15 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE** SYOSSET, NY 11791

Attn To : JAMES BYRNE, P.E.

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-003A

Client Sample ID. MW - 5B

Sample Information...

Type : Groundwater

Origin:

Collected :8/26/2009 10:07:00 AM :8/26/2009 2:50:00 PM

Received Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | <u>Results</u> | Qualifier D.F | <u> Units</u> | Method Number | Analyzed |
|------------------------------|----------------|---------------|---------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Calcium | 16.0 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Iron | < 0.02 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Lead | < 5.00 | 1 | ug/L | E200.7 | 09/01/2009 7:12 PM |
| Magnesium | 7.81 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Manganese | 4.81 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Potassium | 9.02 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Sodium | 49.5 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Zinc | < 0.02 | 1 | mg/L | E200.7 | 09/01/2009 7:12 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 | 09/04/2009 12:30 PM |
| Alkalinity, Total (As CaCO3) | 51.5 | 2 | mg/L | SM2320B | 08/28/2009 12:44 PM |
| Chloride | 82.7 | 5 | mg/L | E300.0 | 09/04/2009 9:59 PM |
| Sulfate | 22.5 | 1 | mg/L | E300.0 | 09/04/2009 9:45 PM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E | 08/27/2009 5:14 PM |
| Carbonate | < 2.0 | 2 | mg/L | M4500-CO2D | 09/04/2009 11:47 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D | 08/27/2009 6:06 AM |
| Hardness (As CaCO3) | 80.0 | 2 | mg/L | SM2340C | 09/08/2009 3:42 PM |
| Bicarbonate | 51.5 | 2 | mg/L | M4500-CO2D | 09/04/2009 11:47 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 | mg/L | SM4500-NH3 H | 09/14/2009 3:03 PM |
| Nitrite as N | 0.33 | 1 | mg/L | E353.2 | 08/27/2009 7:10 AM |
| Nitrate as N | 4.07 | 10 | mg/L | E353.2 | 09/09/2009 12:18 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 | 09/08/2009 10:51 AM |
| Total Dissolved Solids | 243 | 1 | mg/L | SM2540C | 08/27/2009 4:45 PM |
| Nitrogen, Kjeldahl, Total | 0.24 | 1 | mg/L | E351.2 | 09/10/2009 2:15 PM |
| | | | | | |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

 $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-003B

Client Sample ID. MW - 5B

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/26/2009 10:07:00 AM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy: Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Calcium | 15.8 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 10:56 PM |
| Magnesium | 7.65 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Manganese | 4.67 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Potassium | 9.40 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Sodium | 48.5 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 10:56 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:26 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:16 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor
- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/26/2009 9:15:00 AM Received :8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909493-004A

Client Sample ID. MW - 8A

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | <u>Results</u> | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | 1.32 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Calcium | 3.00 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Iron | 2.78 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Lead | 14.3 | 1 ug/L | E200.7 | 09/01/2009 7:35 PM |
| Magnesium | 2.03 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Manganese | 0.03 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Potassium | 3.34 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Sodium | 5.88 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:35 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:32 PM |
| Alkalinity, Total (As CaCO3) | 1.85 | 1 mg/L | SM2320B | 08/28/2009 12:52 PM |
| Chloride | 15.5 | 1 mg/L | E300.0 | 09/04/2009 10:12 PM |
| Sulfate | < 5.00 | 1 mg/L | E300.0 | 09/04/2009 10:12 PM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E | 08/27/2009 5:15 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:32 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:07 AM |
| Hardness (As CaCO3) | 19.0 | 1 mg/L | SM2340C | 09/08/2009 3:45 PM |
| Bicarbonate | 1.8 | 1 mg/L | M4500-CO2D | 09/04/2009 11:32 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:04 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/27/2009 7:11 AM |
| Nitrate as N | 2.31 | 5 mg/L | E353.2 | 09/09/2009 12:19 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 | 09/08/2009 10:52 AM |
| Total Dissolved Solids | 62 | 1 mg/L | SM2540C | 08/27/2009 4:48 PM |
| Nitrogen, Kjeldahl, Total | 0.47 | 1 mg/L | E351.2 | 09/10/2009 2:15 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-004B

Client Sample ID. MW - 8A

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected : 8/26/2009 9:15:00 AM Received : 8/26/2009 2:50:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Calcium | 3.17 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Iron | 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:02 PM |
| Magnesium | 2.09 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Manganese | 0.03 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Potassium | 3.94 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Sodium | 6.66 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:02 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:27 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:17 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE**

SYOSSET, NY 11791

Attn To : JAMES BYRNE, P.E.

Collected :8/26/2009 9:10:00 AM Received :8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-005A

Client Sample ID. MW - 8B

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D | . <u>F.</u> <u>Units</u> | Method Number Analyzed |
|------------------------------|---------|-------------|--------------------------|---------------------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Calcium | 13.3 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Iron | 0.03 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Lead | 8.12 | 1 | ug/L | E200.7 09/01/2009 7:41 PM |
| Magnesium | 3.97 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Manganese | 0.56 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Potassium | 10.8 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Sodium | 29.6 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Zinc | 0.04 | 1 | mg/L | E200.7 09/01/2009 7:41 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 09/04/2009 12:34 PM |
| Alkalinity, Total (As CaCO3) | 3.80 | 1 | mg/L | SM2320B 08/28/2009 12:57 PM |
| Chloride | 74.0 | 10 | mg/L | E300.0 09/04/2009 11:06 PM |
| Sulfate | 21.4 | 1 | mg/L | E300.0 09/04/2009 10:53 PM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E 08/27/2009 5:16 PM |
| Carbonate | < 1.0 | 1 | mg/L | M4500-CO2D 09/04/2009 11:33 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D 08/27/2009 6:08 AM |
| Hardness (As CaCO3) | 51.0 | 1 | mg/L | SM2340C 09/08/2009 3:48 PM |
| Bicarbonate | 3.8 | 1 | mg/L | M4500-CO2D 09/04/2009 11:33 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 | mg/L | SM4500-NH3 H 09/14/2009 3:06 PM |
| Nitrite as N | < 0.10 | 1 | mg/L | E353.2 08/27/2009 7:12 AM |
| Nitrate as N | 2.18 | 5 | mg/L | E353.2 09/09/2009 12:21 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 09/08/2009 10:53 AM |
| Total Dissolved Solids | 208 | 1 | mg/L | SM2540C 08/27/2009 4:51 PM |
| Nitrogen, Kjeldahl, Total | 0.74 | 1 | mg/L | E351.2 09/10/2009 2:16 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

 $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-005B

Client Sample ID. MW - 8B

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

0.00 AM

DISSOLVED

Collected :8/26/2009 9:10:00 AM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | <u>Results</u> | <u>Qualifier</u> <u>D.F.</u> <u>Units</u> | Method Number | Analyzed |
|------------------------------|----------------|---|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Calcium | 13.5 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Iron | 0.03 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:08 PM |
| Magnesium | 4.09 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Manganese | 0.57 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Potassium | 11.9 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Sodium | 32.1 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Zinc | 0.05 | 1 mg/L | E200.7 | 09/02/2009 11:08 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:29 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:18 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To : JAMES BYRNE, P.E.

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-006A

Client Sample ID. MW - 9B

Sample Information...

Type : Groundwater

Origin:

Collected :8/26/2009 12:33:00 PM Received :8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Calcium | 11.4 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/01/2009 7:47 PM |
| Magnesium | 4.41 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Manganese | 0.12 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Potassium | 5.28 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Sodium | 26.6 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:47 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:36 PM |
| Alkalinity, Total (As CaCO3) | 9.60 | 1 mg/L | SM2320B | 08/28/2009 1:01 PM |
| Chloride | 48.6 | 5 mg/L | E300.0 | 09/04/2009 11:33 PM |
| Sulfate | 21.1 | 1 mg/L | E300.0 | 09/04/2009 11:20 PM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E | 08/27/2009 5:19 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:34 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:09 AM |
| Hardness (As CaCO3) | 47.0 | 1 mg/L | SM2340C | 09/08/2009 3:51 PM |
| Bicarbonate | 9.6 | 1 mg/L | M4500-CO2D | 09/04/2009 11:34 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:07 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/27/2009 7:14 AM |
| Nitrate as N | 4.50 | 10 mg/L | E353.2 | 09/09/2009 12:22 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 | 09/08/2009 10:54 AM |
| Total Dissolved Solids | 169 | 1 mg/L | SM2540C | 08/27/2009 4:54 PM |
| Nitrogen, Kjeldahl, Total | < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:17 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-006B

Client Sample ID. MW - 9B

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/26/2009 12:33:00 PM Received :8/26/2009 2:50:00 PM Collected By : G&F

Collected By . Gar

Copy: Mike Wagner

СС

| Parameter(s) | Results | <u>Qualifier D.F. Units</u> | Method Number | Analyzed |
|------------------------------|---------|-----------------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Calcium | 12.7 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:31 PM |
| Magnesium | 4.87 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Manganese | 0.12 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Potassium | 5.99 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Sodium | 30.1 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:31 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:31 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:19 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/26/2009 1:17:00 PM Received :8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909493-007A

Client Sample ID. MW - 9C

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | <u>Qualifier D.F. Units</u> | Method Number | Analyzed |
|------------------------------|---------|-----------------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Calcium | 3.11 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Iron | 0.14 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/01/2009 7:53 PM |
| Magnesium | 5.12 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Manganese | 0.07 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Potassium | 16.7 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Sodium | 49.0 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:53 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:38 PM |
| Alkalinity, Total (As CaCO3) | 48.1 | 2 mg/L | SM2320B | 08/28/2009 1:08 PM |
| Chloride | 88.4 | 5 mg/L | E300.0 | 09/05/2009 12:00 AM |
| Sulfate | 16.3 | 1 mg/L | E300.0 | 09/04/2009 11:47 PM |
| Cyanide | < 10.0 | 1 µg/L | SM4500-CN E | 08/27/2009 5:20 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:35 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:10 AM |
| Hardness (As CaCO3) | 28.0 | 1 mg/L | SM2340C | 09/08/2009 3:54 PM |
| Bicarbonate | 48.1 | 1 mg/L | M4500-CO2D | 09/04/2009 11:35 AM |
| Nitrogen, Ammonia (As N) | 5.31 | 10 mg/L | SM4500-NH3 H | 09/14/2009 3:08 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/27/2009 7:17 AM |
| Nitrate as N | 0.22 | 1 mg/L | E353.2 | 09/09/2009 12:23 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 µg/L | E420.1 | 09/08/2009 10:55 AM |
| Total Dissolved Solids | 184 | 1 mg/L | SM2540C | 08/27/2009 4:57 PM |
| Nitrogen, Kjeldahl, Total | 9.90 | 5 mg/L | E351.2 | 09/10/2009 2:20 PM |
| | | | | |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-007B

Client Sample ID. MW - 9C

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

d :8/26/2009 1:17:00 PM

DISSOLVED

Collected :8/26/2009 1:17:00 PM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy: Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 |
1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Calcium | 3.32 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Iron | 0.09 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:37 PM |
| Magnesium | 5.37 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Manganese | 0.08 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Potassium | 18.6 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Sodium | 52.8 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:37 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:33 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:20 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected : 8/26/2009 11:52:00 AM Received : 8/26/2009 2:50:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909493-008A

Client Sample ID. MW - 9D

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | 0.56 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Barium | 0.27 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Calcium | 18.5 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Iron | 1.04 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Lead | 11.3 | 1 ug/L | E200.7 | 09/01/2009 7:58 PM |
| Magnesium | 13.7 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Manganese | 0.18 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Potassium | 4.50 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Sodium | 101 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Zinc | 0.07 | 1 mg/L | E200.7 | 09/01/2009 7:58 PM |
| Mercury | 1.9 | 1 ug/L | E245.1 | 09/04/2009 12:39 PM |
| Alkalinity, Total (As CaCO3) | < 1.00 | 1 mg/L | SM2320B | 08/28/2009 1:32 PM |
| Fluoride | < 0.10 | 1 mg/L | E300.0 | 09/05/2009 12:14 AM |
| Chloride | 275 | 10 mg/L | E300.0 | 09/08/2009 8:36 PM |
| Sulfate | < 5.00 | 1 mg/L | E300.0 | 09/05/2009 12:14 AM |
| Bromide | 2.19 | 1 mg/L | E300.0 | 09/05/2009 12:14 AM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E | 08/27/2009 5:21 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:36 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:11 AM |
| Hardness (As CaCO3) | 106 | 2 mg/L | SM2340C | 09/08/2009 3:57 PM |
| Bicarbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:36 AM |
| Nitrogen, Ammonia (As N) | 1.40 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:09 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/27/2009 7:18 AM |
| Nitrate as N | < 0.10 | 1 mg/L | E353.2 | 09/09/2009 12:24 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 | 09/08/2009 10:56 AM |
| Total Dissolved Solids | 569 | 1 mg/L | SM2540C | 08/27/2009 5:00 PM |
| Nitrogen, Kjeldahl, Total | 3.40 | 1 mg/L | E351.2 | 09/10/2009 2:21 PM |
| | | | | |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor
- H = Sample received/analyzed outside of analytical holding time
- $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909493-008B

Client Sample ID. MW - 9D

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/26/2009 11:52:00 AM Received :8/26/2009 2:50:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | 0.66 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Barium | 0.27 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Calcium | 18.9 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Iron | 1.06 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:43 PM |
| Magnesium | 13.8 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Manganese | 0.18 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Potassium | 4.81 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Sodium | 104 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Zinc | 0.08 | 1 mg/L | E200.7 | 09/02/2009 11:43 PM |
| Mercury | 1.7 | 1 ug/L | E245.1 | 09/04/2009 11:34 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/27/2009 6:21 AM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

D.F. = Dilution Factor

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/27/2009 10:23:00 AM Received :8/27/2009 12:30:00 PM

Collected By : G&F

Copy : Mike Wagner

сс

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909514-001A

Client Sample ID. MW - 6A

Sample Information...

Type : Groundwater

Origin:

| Results | Qualifier D.F. Units | Method Number | Analyzed |
|---------|--|---|-----------------------|
| 1.63 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.20 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| 0.70 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.01 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.02 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| 4.52 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 5.00 | 1 ug/L | E200.7 | 09/02/2009 7:56 PM |
| 0.96 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| 0.04 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.04 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| 1.43 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| 8.50 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.02 | 1 mg/L | E200.7 | 09/02/2009 7:56 PM |
| < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:41 PM |
| 5.15 | 1 mg/L | SM2320B | 08/28/2009 1:36 PM |
| 7.38 | 1 mg/L | E300.0 | 09/05/2009 12:54 AM |
| 5.01 | 1 mg/L | E300.0 | 09/05/2009 12:54 AM |
| < 10.0 | 1 μg/L | SM4500-CN E | 08/31/2009 6:14 PM |
| < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:37 AM |
| < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 5:32 AM |
| 11.0 | 1 mg/L | SM2340C | 09/08/2009 4:00 PM |
| 5.1 | 1 mg/L | M4500-CO2D | 09/04/2009 11:37 AM |
| < 0.10 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:10 PM |
| < 0.10 | 1 mg/L | E353.2 | 08/28/2009 6:38 AM |
| 0.51 | 1 mg/L | E353.2 | 09/09/2009 12:28 PM |
| < 5.0 | 1 µg/L | E420.1 | 09/13/2009 10:16 AM |
| 66 | 2 mg/L | SM2540C | 08/31/2009 3:09 PM |
| < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:22 PM |
| | $\begin{array}{c} 1.63 \\ < 0.20 \\ 0.70 \\ < 0.01 \\ < 0.02 \\ 4.52 \\ < 5.00 \\ 0.96 \\ 0.04 \\ < 0.04 \\ < 0.04 \\ 1.43 \\ 8.50 \\ < 0.02 \\ < 0.20 \\ 5.15 \\ 7.38 \\ 5.01 \\ < 10.0 \\ < 1.0 \\ < 1.0 \\ < 0.02 \\ 11.0 \\ < 1.10 \\ < 0.10 \\ < 0.10 \\ < 5.1 \\ < 5.0 \\ < 5.0 \\ < 66 \end{array}$ | 1.63 1 mg/L < 0.20 1 mg/L 0.70 1 mg/L < 0.01 1 mg/L < 0.02 1 mg/L < 0.02 1 mg/L < 0.02 1 mg/L < 5.00 1 ug/L 0.96 1 mg/L 0.04 1 mg/L < 0.04 1 mg/L < 0.04 1 mg/L < 0.02 1 mg/L < 0.02 1 mg/L < 0.20 1 ug/L < 5.15 1 mg/L < 0.20 1 ug/L < 5.01 1 mg/L < 10.0 1 mg/L < 10.0 1 mg/L < 1.0 1 mg/L < 1.0 1 mg/L < 0.10 1 mg/L < 0.10 1 mg/L < 0.10 1 mg/L < 0.10 1< | 1.631mg/LE200.7< 0.20 |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909514-001B

Type : Groundwater

Client Sample ID. MW - 6A

Origin:

Sample Information...

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/27/2009 10:23:00 AM Received :8/27/2009 12:30:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | <u>Qualifier D.F.</u> <u>Units</u> | Method Number | Analyzed |
|------------------------------|---------|------------------------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Calcium | 0.47 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:49 PM |
| Magnesium | 0.65 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Potassium | 1.19 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Sodium | 8.22 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:49 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:37 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 5:39 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE**

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/27/2009 10:42:00 AM Received :8/27/2009 12:30:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909514-002A

Client Sample ID. MW - 6B

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D. | <u>F. Units</u> | Method Number | Analyzed |
|------------------------------|---------|--------------|-----------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Calcium | 9.24 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Iron | 3.87 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Lead | < 5.00 | 1 | ug/L | E200.7 | 09/02/2009 8:02 PM |
| Magnesium | 6.95 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Manganese | 0.03 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Potassium | 80.9 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Sodium | 226 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Zinc | < 0.02 | 1 | mg/L | E200.7 | 09/02/2009 8:02 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 | 09/04/2009 12:48 PM |
| Alkalinity, Total (As CaCO3) | 551 | 20 | mg/L | SM2320B | 08/28/2009 1:41 PM |
| Chloride | 229 | 5 | mg/L | E300.0 | 09/05/2009 1:48 AM |
| Sulfate | 11.3 | 1 | mg/L | E300.0 | 09/05/2009 1:35 AM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E | 08/31/2009 6:15 PM |
| Carbonate | < 1.0 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:38 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D | 08/28/2009 5:33 AM |
| Hardness (As CaCO3) | 54.0 | 2 | mg/L | SM2340C | 09/08/2009 4:03 PM |
| Bicarbonate | 551 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:38 AM |
| Nitrogen, Ammonia (As N) | 63.0 | 50 | mg/L | SM4500-NH3 H | 09/14/2009 3:12 PM |
| Nitrite as N | < 0.10 | 1 | mg/L | E353.2 | 08/28/2009 6:40 AM |
| Nitrate as N | < 0.10 | 1 | mg/L | E353.2 | 09/09/2009 12:31 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 | 09/13/2009 10:17 AM |
| Total Dissolved Solids | 750 | 1 | mg/L | SM2540C | 08/31/2009 3:12 PM |
| Nitrogen, Kjeldahl, Total | 96.5 | 100 | mg/L | E351.2 | 09/10/2009 2:44 PM |
| | | | | | |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor
 - H = Sample received/analyzed outside of analytical holding time
 - $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909514-002B

Client Sample ID. MW - 6B

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/27/2009 10:42:00 AM Received :8/27/2009 12:30:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Calcium | 9.06 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Iron | 0.07 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 11:54 PM |
| Magnesium | 6.84 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Manganese | 0.03 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Potassium | 78.6 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Sodium | 218 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 11:54 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:38 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 5:40 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor
- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE**

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/27/2009 10:11:00 AM Received :8/27/2009 12:30:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909514-003A

Client Sample ID. MW - 6E

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D. | .F. <u>Units</u> | Method Number | Analyzed |
|------------------------------|---------|--------------|------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Calcium | 22.5 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Iron | 1.84 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Lead | < 5.00 | 1 | ug/L | E200.7 | 09/02/2009 8:08 PM |
| Magnesium | 9.07 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Manganese | 0.41 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Potassium | 19.6 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Sodium | 77.1 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Zinc | 0.05 | 1 | mg/L | E200.7 | 09/02/2009 8:08 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 | 09/04/2009 12:50 PM |
| Alkalinity, Total (As CaCO3) | 50.8 | 2 | mg/L | SM2320B | 08/28/2009 1:49 PM |
| Chloride | 165 | 10 | mg/L | E300.0 | 09/05/2009 2:15 AM |
| Sulfate | 30.1 | 1 | mg/L | E300.0 | 09/05/2009 2:02 AM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E | 08/31/2009 6:16 PM |
| Carbonate | < 1.0 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:39 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D | 08/28/2009 5:34 AM |
| Hardness (As CaCO3) | 95.0 | 5 | mg/L | SM2340C | 09/08/2009 4:06 PM |
| Bicarbonate | 50.8 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:39 AM |
| Nitrogen, Ammonia (As N) | 6.51 | 10 | mg/L | SM4500-NH3 H | 09/14/2009 3:18 PM |
| Nitrite as N | < 0.10 | 1 | mg/L | E353.2 | 08/28/2009 6:41 AM |
| Nitrate as N | < 0.10 | 1 | mg/L | E353.2 | 09/09/2009 12:33 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 | 09/13/2009 10:18 AM |
| Total Dissolved Solids | 386 | 1 | mg/L | SM2540C | 08/31/2009 3:15 PM |
| Nitrogen, Kjeldahl, Total | 11.3 | 10 | mg/L | E351.2 | 09/10/2009 2:24 PM |
| | | | | | |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

 $\ensuremath{\texttt{\#}}=\ensuremath{\texttt{ELAP}}$ / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909514-003B

Client Sample ID. MW - 6E

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To : JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/27/2009 10:11:00 AM Received :8/27/2009 12:30:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| | | | | |
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Calcium | 21.5 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Iron | 1.66 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:00 AM |
| Magnesium | 8.70 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Manganese | 0.39 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Potassium | 18.1 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Sodium | 71.8 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Zinc | 0.06 | 1 mg/L | E200.7 | 09/03/2009 12:00 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:40 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 5:41 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected : 8/27/2009 10:53:00 AM Received : 8/27/2009 12:30:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

|--|

For the submitted sample

Lab No. : 0909514-004A

Client Sample ID. MW - 6F

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D.F. | <u>Units</u> | Method Number | Analyzed |
|------------------------------|---------|----------------|--------------|---------------|---------------------|
| Aluminum | 0.26 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Barium | 0.22 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Calcium | 38.0 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Chromium | < 0.01 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Copper | < 0.02 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Iron | 0.19 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Lead | < 5.00 | 1 ι | ug/L | E200.7 | 09/02/2009 8:14 PM |
| Magnesium | 14.7 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Manganese | 0.10 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Nickel | < 0.04 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Potassium | 5.68 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Sodium | 73.2 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Zinc | 0.04 | 1 r | ng/L | E200.7 | 09/02/2009 8:14 PM |
| Mercury | 0.32 | 1 ι | ug/L | E245.1 | 09/04/2009 12:52 PM |
| Alkalinity, Total (As CaCO3) | < 1.00 | 1 r | mg/L | SM2320B | 08/28/2009 1:56 PM |
| Chloride | 226 | 5 r | mg/L | E300.0 | 09/05/2009 2:42 AM |
| Sulfate | < 5.00 | 1 r | ng/L | E300.0 | 09/05/2009 2:29 AM |
| Cyanide | < 10.0 | 1 μ | ug/L | SM4500-CN E | 08/31/2009 6:17 PM |
| Carbonate | < 1.0 | 1 r | mg/L | M4500-CO2D | 09/04/2009 11:40 AM |
| Chromium, Hexavalent | < 0.02 | 1 r | mg/L | M3500-Cr D | 08/28/2009 5:35 AM |
| Hardness (As CaCO3) | 156 | 1 r | ng/L | SM2340C | 09/08/2009 4:09 PM |
| Bicarbonate | < 1.0 | 1 r | ng/L | M4500-CO2D | 09/04/2009 11:40 AM |
| Nitrogen, Ammonia (As N) | 0.41 | 1 r | ng/L | SM4500-NH3 H | 09/14/2009 3:19 PM |
| Nitrite as N | < 0.10 | 1 r | ng/L | E353.2 | 08/28/2009 6:42 AM |
| Nitrate as N | 2.73 | 5 r | ng/L | E353.2 | 09/09/2009 12:34 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 k | ug/L | E420.1 | 09/13/2009 10:19 AM |
| Total Dissolved Solids | 614 | 1 r | ng/L | SM2540C | 08/31/2009 3:18 PM |
| Nitrogen, Kjeldahl, Total | 0.34 | 1 r | ng/L | E351.2 | 09/10/2009 2:25 PM |
| | | | | | |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909514-004B

Client Sample ID. MW - 6F

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/27/2009 10:53:00 AM Received :8/27/2009 12:30:00 PM Collected By : G&F

Copy : Mike Wagner

сс

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | 0.25 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Barium | 0.22 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Calcium | 37.1 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Iron | 0.19 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:06 AM |
| Magnesium | 14.6 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Manganese | 0.10 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Potassium | 5.46 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Sodium | 71.7 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Zinc | 0.03 | 1 mg/L | E200.7 | 09/03/2009 12:06 AM |
| Mercury | 0.28 | 1 ug/L | E245.1 | 09/04/2009 11:46 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 5:42 AM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor
- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/28/2009 7:40:00 AM Received :8/28/2009 1:58:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-002A

Client Sample ID. MW30 B-R

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | <u>Results</u> | <u>Qualifier</u> <u>D.F.</u> <u>Unit</u> | s <u>Method Number</u> | Analyzed |
|------------------------------|----------------|--|------------------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Calcium | 12.5 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Iron | 0.08 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 8:20 PM |
| Magnesium | 5.11 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Potassium | 3.65 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Sodium | 44.8 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:20 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:55 PM |
| Alkalinity, Total (As CaCO3) | 4.70 | 1 mg/L | SM2320B | 09/01/2009 1:43 PM |
| Chloride | 92.0 | 5 mg/L | E300.0 | 09/11/2009 4:57 PM |
| Sulfate | 18.9 | 1 mg/L | E300.0 | 09/11/2009 4:43 PM |
| Cyanide | < 10.0 | 1 µg/L | SM4500-CN E | 08/31/2009 6:19 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:41 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:47 PM |
| Hardness (As CaCO3) | 50.0 | 1 mg/L | SM2340C | 09/08/2009 4:24 PM |
| Bicarbonate | 4.7 | 1 mg/L | M4500-CO2D | 09/04/2009 11:41 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 mg/L | SM4500-NH3 H | 09/14/2009 3:20 PM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/29/2009 7:04 AM |
| Nitrate as N | 2.05 | 5 mg/L | E353.2 | 09/10/2009 12:19 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 | 09/13/2009 10:20 AM |
| Total Dissolved Solids | 217 | 1 mg/L | SM2540C | 08/31/2009 3:24 PM |
| Nitrogen, Kjeldahl, Total | < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:27 PM |
| | | | | |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-002B

Client Sample ID. MW30 B-R

Sample Information... Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/28/2009 7:40:00 AM Received :8/28/2009 1:58:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Calcium | 12.4 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:12 AM |
| Magnesium | 5.19 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Potassium | 3.59 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Sodium | 45.3 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:12 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:54 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:55 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To : JAMES BYRNE, P.E.

Collected : 8/28/2009 9:25:00 AM

Received : 8/28/2009 1:58:00 PM

Collected By : G&F

Copy: Mike Wagner

СС

For the submitted sample

Lab No. : 0909561-003A

Client Sample ID. MW-6C

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D.F | <u> Units</u> | Method Number | Analyzed |
|------------------------------|---------|---------------|---------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Barium | < 0.20 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Calcium | 25.8 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Chromium | < 0.01 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Copper | < 0.02 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Iron | 4.61 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Lead | < 5.00 | 1 | ug/L | E200.7 | 09/02/2009 8:25 PM |
| Magnesium | 10.3 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Manganese | 0.06 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Nickel | < 0.04 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Potassium | 52.8 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Sodium | 261 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Zinc | < 0.02 | 1 | mg/L | E200.7 | 09/02/2009 8:25 PM |
| Mercury | < 0.20 | 1 | ug/L | E245.1 | 09/04/2009 12:56 PM |
| Alkalinity, Total (As CaCO3) | 415 | 20 | mg/L | SM2320B | 09/01/2009 2:00 PM |
| Chloride | 249 | 5 | mg/L | E300.0 | 09/08/2009 9:17 PM |
| Sulfate | 42.8 | 1 | mg/L | E300.0 | 09/08/2009 9:03 PM |
| Cyanide | < 10.0 | 1 | µg/L | SM4500-CN E | 08/31/2009 6:22 PM |
| Carbonate | < 1.0 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:42 AM |
| Chromium, Hexavalent | < 0.02 | 1 | mg/L | M3500-Cr D | 08/28/2009 3:50 PM |
| Hardness (As CaCO3) | 105 | 5 | mg/L | SM2340C | 09/08/2009 4:27 PM |
| Bicarbonate | 415 | 1 | mg/L | M4500-CO2D | 09/04/2009 11:42 AM |
| Nitrogen, Ammonia (As N) | 25.3 | 10 | mg/L | SM4500-NH3 H | 09/14/2009 3:28 PM |
| Nitrite as N | < 0.10 | 1 | mg/L | E353.2 | 08/29/2009 7:05 AM |
| Nitrate as N | < 0.10 | 1 | mg/L | E353.2 | 09/10/2009 12:20 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 | µg/L | E420.1 | 09/13/2009 10:21 AM |
| Total Dissolved Solids | 803 | 1 | mg/L | SM2540C | 08/31/2009 3:27 PM |
| Nitrogen, Kjeldahl, Total | 42.7 | 100 | mg/L | E351.2 | 09/10/2009 2:27 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor
 - H = Sample received/analyzed outside of analytical holding time
 - # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-003B

DISSOLVED

Client Sample ID. MW-6C

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

Collected : 8/28/2009 9:25:00 AM Received : 8/28/2009 1:58:00 PM

Collected By : G&F

Copy: Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Calcium | 25.6 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Iron | 0.17 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:18 AM |
| Magnesium | 10.3 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Manganese | 0.06 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Potassium | 52.1 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Sodium | 258 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:18 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 11:58 AM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:56 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor
- H = Sample received/analyzed outside of analytical holding time
- # = ELAP / NELAP does not offer certification for this analyte

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/28/2009 8:47:00 AM Received :8/28/2009 1:58:00 PM

Collected By : G&F

Copy: Mike Wagner

СС

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-004A

Client Sample ID. MW-11A

Sample Information...

Type : Groundwater

Origin:

| Results | Qualifier D.F. Units | Method Number | Analyzed |
|---------|---|---|--|
| < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| 3.52 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.01 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 5.00 | 1 ug/L | E200.7 | 09/02/2009 8:31 PM |
| 1.84 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.04 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| 1.20 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| 4.63 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:31 PM |
| < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:58 PM |
| < 1.00 | 1 mg/L | SM2320B | 09/01/2009 2:08 PM |
| 9.98 | 1 mg/L | E300.0 | 09/08/2009 9:30 PM |
| < 5.00 | 1 mg/L | E300.0 | 09/08/2009 9:30 PM |
| < 10.0 | 1 µg/L | SM4500-CN E | 08/31/2009 6:23 PM |
| < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:43 AM |
| < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:51 PM |
| 15.0 | 1 mg/L | SM2340C | 09/08/2009 4:30 PM |
| < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:43 AM |
| < 0.10 | 1 mg/L | SM4500-NH3 H | 09/16/2009 10:21 AM |
| < 0.10 | 1 mg/L | E353.2 | 08/29/2009 7:06 AM |
| 3.82 | 5 mg/L | E353.2 | 09/10/2009 12:21 PM |
| < 5.0 | 1 μg/L | E420.1 | 09/13/2009 10:22 AM |
| 51 | 1 mg/L | SM2540C | 08/31/2009 3:30 PM |
| < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:30 PM |
| | < 0.20
< 0.20
3.52
< 0.01
< 0.02
0.02
< 5.00
1.84
< 0.02
< 0.04
1.20
4.63
< 0.02
< 0.04
1.20
4.63
< 0.02
< 1.00
9.98
< 5.00
< 10.0
< 1.0
< 0.02
15.0
< 1.0
< 0.02
15.0
< 1.0
< 0.10
< 0.10
3.82
< 5.0
< 5.0
< 10 | < 0.20 1 mg/L < 0.20 1 mg/L 3.52 1 mg/L < 0.01 1 mg/L < 0.02 1 mg/L < 0.04 1 mg/L < 0.02 1 mg/L < 0.02 1 mg/L < 0.20 1 ug/L < 1.00 1 mg/L < 1.00 1 mg/L < 1.0 1 mg/L < 0.10 1 mg/L < 0.10 < | < 0.20 1mg/LE200.7< 0.20 1mg/LE200.7 3.52 1mg/LE200.7< 0.01 1mg/LE200.7< 0.02 1mg/LE200.7< 0.04 1mg/LE200.7< 0.02 1mg/LE300.0< 1.00 1mg/LE300.0< 1.00 1mg/LSM4500-CN E< 1.0 1mg/LM4500-CO2D< 0.02 1mg/LSM2340C< 1.0 1mg/LE353.2< 3.82 5mg/LE353.2< 3.82 5mg/LE353.2< 5.0 1µg/LE420.11mg/LSM2540C |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-004B

Client Sample ID. MW-11A

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/28/2009 8:47:00 AM Received :8/28/2009 1:58:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | <u>Qualifier D.F. Units</u> | Method Number | Analyzed |
|------------------------------|---------|-----------------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Calcium | 3.50 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Iron | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:24 AM |
| Magnesium | 1.83 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Potassium | 1.16 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Sodium | 4.51 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:24 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:00 PM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:57 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE

SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected :8/28/2009 8:48:00 AM Received :8/28/2009 1:58:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-005A

Client Sample ID. MW-11B

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | <u>Analyzed</u> |
|------------------------------|----------------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Calcium | 2.14 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Iron | 0.07 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/02/2009 8:37 PM |
| Magnesium | 1.03 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Potassium | 1.02 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Sodium | 5.20 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/02/2009 8:37 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 1:00 PM |
| Alkalinity, Total (As CaCO3) | < 1.00 | 1 mg/L | SM2320B | 09/01/2009 2:12 PM |
| Chloride | 11.4 | 1 mg/L | E300.0 | 09/08/2009 10:11 PM |
| Sulfate | < 5.00 | 1 mg/L | E300.0 | 09/08/2009 10:11 PM |
| Cyanide | < 10.0 | 1 µg/L | SM4500-CN E | 08/31/2009 6:24 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:44 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:52 PM |
| Hardness (As CaCO3) | 9.00 | 1 mg/L | SM2340C | 09/08/2009 4:33 PM |
| Bicarbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/04/2009 11:44 AM |
| Nitrogen, Ammonia (As N) | < 0.10 | 1 mg/L | SM4500-NH3 H | 09/16/2009 10:22 AM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 08/29/2009 7:08 AM |
| Nitrate as N | 1.03 | 1 mg/L | E353.2 | 09/10/2009 12:22 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 µg/L | E420.1 | 09/13/2009 10:23 AM |
| Total Dissolved Solids | 31 | 1 mg/L | SM2540C | 08/31/2009 3:33 PM |
| Nitrogen, Kjeldahl, Total | < 0.10 | 1 mg/L | E351.2 | 09/10/2009 2:31 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909561-005B

Client Sample ID. MW-11B

Sample Information...

Type : Groundwater

Origin:

SYOSSET, NY 11791 Attn To: JAMES BYRNE, P.E.

TOWN OF OYSTER BAY

150 MILLER PLACE

DISSOLVED

Collected :8/28/2009 8:48:00 AM Received :8/28/2009 1:58:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | Qualifier D.F. Units | Method Number | Analyzed |
|------------------------------|---------|----------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Calcium | 2.09 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Iron | 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:47 AM |
| Magnesium | 1.01 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Manganese | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Potassium | 0.96 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Sodium | 4.99 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Zinc | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:47 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:07 PM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:58 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
- D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY **150 MILLER PLACE** SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

Collected : 8/28/2009 10:45:00 AM Received :8/28/2009 1:58:00 PM

Collected By : G&F

Copy : Mike Wagner

СС

| LABORATORY RESULTS |
|--------------------|
|--------------------|

For the submitted sample

Lab No. : 0909561-006A

Client Sample ID. OBS-1

Sample Information...

Type : Groundwater

Origin:

| Parameter(s) | Results | <u>Qualifier</u> <u>D.F.</u> <u>Units</u> | Method Number Analyzed |
|------------------------------|---------|---|----------------------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Barium | < 0.20 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Calcium | 20.4 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Chromium | < 0.01 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Copper | < 0.02 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Iron | 0.09 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Lead | < 5.00 | 1 ug/L | E200.7 09/02/2009 9:00 PM |
| Magnesium | 14.8 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Manganese | 1.58 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Nickel | < 0.04 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Potassium | 10.0 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Sodium | 81.5 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Zinc | < 0.02 | 1 mg/L | E200.7 09/02/2009 9:00 PM |
| Mercury | < 0.20 | 1 ug/L | E245.1 09/04/2009 1:03 PM |
| Alkalinity, Total (As CaCO3) | 75.3 | 2 mg/L | SM2320B 09/01/2009 2:17 PM |
| Chloride | 142 | 5 mg/L | E300.0 09/08/2009 10:24 PM |
| Sulfate | 59.9 | 5 mg/L | E300.0 09/08/2009 10:24 PM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E 08/31/2009 6:25 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D 09/04/2009 11:45 AM |
| Chromium, Hexavalent | < 0.02 | 1 mg/L | M3500-Cr D 08/28/2009 3:53 PM |
| Hardness (As CaCO3) | 115 | 5 mg/L | SM2340C 09/08/2009 4:36 PM |
| Bicarbonate | 75.3 | 1 mg/L | M4500-CO2D 09/04/2009 11:45 AM |
| Nitrogen, Ammonia (As N) | 4.48 | 5 mg/L | SM4500-NH3 H 09/16/2009 10:23 AM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 08/29/2009 7:09 AM |
| Nitrate as N | < 0.10 | 1 mg/L | E353.2 09/10/2009 12:24 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 09/13/2009 10:24 AM |
| Total Dissolved Solids | 357 | 1 mg/L | SM2540C 08/31/2009 3:42 PM |
| Nitrogen, Kjeldahl, Total | 9.81 | 5 mg/L | E351.2 09/10/2009 2:32 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

LABORATORY RESULTS

For the submitted sample

Sample Information... Type : Groundwater

Origin:

Lab No. : 0909561-006B

Client Sample ID. OBS-1

)po : 0.00

SYOSSET, NY 11791

TOWN OF OYSTER BAY

150 MILLER PLACE

Attn To: JAMES BYRNE, P.E.

DISSOLVED

Collected :8/28/2009 10:45:00 AM Received :8/28/2009 1:58:00 PM Collected By : G&F

Copy : Mike Wagner

СС

| Parameter(s) | Results | <u>Qualifier D.F. Units</u> | Method Number | Analyzed |
|------------------------------|---------|-----------------------------|---------------|---------------------|
| Aluminum | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Barium | < 0.20 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Calcium | 20.2 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Chromium | < 0.01 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Copper | < 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Iron | 0.09 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Lead | < 5.00 | 1 ug/L | E200.7 | 09/03/2009 12:53 AM |
| Magnesium | 14.7 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Manganese | 1.56 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Nickel | < 0.04 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Potassium | 9.90 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Sodium | 80.1 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Zinc | 0.02 | 1 mg/L | E200.7 | 09/03/2009 12:53 AM |
| Mercury | < 0.20 | 1 ug/L | E245.1 | 09/04/2009 12:09 PM |
| Chromium, Hexavalent (Diss.) | < 0.02 | 1 mg/L | M3500-Cr D | 08/28/2009 3:59 PM |

Qualifiers: E - Value above quantitation range

- D Results for Dilution
 - D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

575 Broad Hollow Road, Melville NY 11747 (631) 694-3040. FAX: (631) 420-8436 NYSDOH ID#10478

TOWN OF OYSTER BAY 150 MILLER PLACE SYOSSET, NY 11791

Attn To: JAMES BYRNE, P.E.

 Collected
 9/9/2009 2:30:00 PM

 Received
 9/9/2009 2:45:00 PM

 Collected By :
 JF99

Copy : Mike Nahmias

СС

LABORATORY RESULTS

For the submitted sample

Lab No. : 0909886-001A

Client Sample ID. LF-1

Sample Information...

Type : Leachate

Origin:

| Parameter(s) | Results | <u>Qualifier</u> D.F. <u>Units</u> | Method Number | <u>Analyzed</u> |
|------------------------------|----------------|------------------------------------|---------------|---------------------|
| Alkalinity, Total (As CaCO3) | 170 | 5 mg/L | SM2320B | 09/10/2009 4:03 PM |
| Chloride | 230 | 5 mg/L | E300.0 | 09/11/2009 5:24 PM |
| Sulfate | 23.8 | 1 mg/L | E300.0 | 09/11/2009 5:10 PM |
| Cyanide | < 10.0 | 1 μg/L | SM4500-CN E | 09/14/2009 12:49 PM |
| Carbonate | < 1.0 | 1 mg/L | M4500-CO2D | 09/15/2009 12:45 PM |
| Hardness (As CaCO3) | 110 | 5 mg/L | SM2340C | 09/15/2009 11:18 AM |
| Bicarbonate | 170 | 1 mg/L | M4500-CO2D | 09/15/2009 12:45 PM |
| Nitrogen, Ammonia (As N) | 14.2 | 5 mg/L | SM4500-NH3 H | 09/16/2009 10:20 AM |
| Nitrite as N | < 0.10 | 1 mg/L | E353.2 | 09/10/2009 7:39 AM |
| Nitrate as N | < 0.10 | 1 mg/L | E353.2 | 09/17/2009 12:58 PM |
| Phenolics, Total Recoverable | < 5.0 | 1 μg/L | E420.1 | 09/13/2009 10:25 AM |
| Total Dissolved Solids | 482 | 1 mg/L | SM2540C | 09/14/2009 10:54 AM |
| Nitrogen, Kjeldahl, Total | 27.5 | 10 mg/L | E351.2 | 09/10/2009 2:45 PM |

Qualifiers: E - Value above quantitation range

D - Results for Dilution

D.F. = Dilution Factor

H = Sample received/analyzed outside of analytical holding time

Joann M. Slavin

Laboratory Manager

APPENDIX B

THIRD QUARTER 2009 GROUNDWATER SAMPLING LOGS

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|---------|-----------------------|-------|--|--|
| WELL NO./ OWNER | | LF-1 | l/ Town of Oyster Bay | | | |
| SAMPLING POINT | | Μ | onitoring Well LF-1 | | | |
| SAMPLE I.D. NO. | LF-1 | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/28/09 | | TIME | 1130 | | |
| WELL USE | | Groundw | ater Monitoring | | | |
| STATIC WATER ELEV. | 44.58 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 6.0 | INCHES | 3 | | | |
| TOTAL WELL DEPTH | 102 | FT. | BELOW MEASURING POINT | TOC | | |

| SAMPLING INFORMATION | | | | | | | | | |
|--|-------------|-------------------|------------------------|---------------|------------|-----|--|--|--|
| PURGING METHOD Dedicated 4" Submersible Pump | | | | | | | | | |
| PURGING RATE | 12 | GAL/ MIN | PURGIN | G TIME | 22 | MIN | | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 256 |) | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | | |
| ODORS OBSERVED | | | None | | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 1167 | pH | 7.59 | DO (mg/l |) | - | | | |
| TEMPERATURE (°C) | 19.8 | TURBIDITY (NTU) | 2.81 | ORP (mV) | . <u> </u> | -97 | | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Lab | s, Inc. and TOB | DPW Lab - 8/2 | 28/09 | | | | |
| COMMENTS, LOCATION SE | KETCH, WEL | L-HEAD SKETCH, ET | <u>°C.</u> | | | | | | |
| | $1^{st} VC$ | DLUME | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | ME | | | |
| РН | 7 | .58 | 7.59 | | 7.59 | | | | |
| CONDUCTIVITY (µS/cm) | 1 | 139 | 1164 | | 1167 | | | | |
| TEMPERATURE (°C) | 2 | 0.6 | 20.0 | | 19.8 | | | | |
| DO (mg/l) | | - | - | | - | | | | |
| TURBIDITY (NTU) | 7 | .55 | 2.71 | | 2.81 | | | | |
| ORP (mV) | | - | - | | -97 | | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|-------------------------------|---|--|--|--|
| WELL NO./ OWNER | | M-30B-R/ Town of Oyster Bay | | | | |
| SAMPLING POINT | | Monitoring Well M-30B-R | | | | |
| SAMPLE I.D. NO. | M-30B-R | SAMPLED BY MN/ME | } | | | |
| DATE SAMPLED | 8/28/09 | TIME0740 | | | | |
| WELL USE | | Groundwater Monitoring | | | | |
| STATIC WATER ELEV. | 85.37 | FT. BELOW MEASURING POINT TOO | 2 | | | |
| WELL DIAMETER | 2.0 | INCHES | | | | |
| TOTAL WELL DEPTH | 123 | FT. BELOW MEASURING POINT TOO | 2 | | | |

| SAMPLING INFORMATION | | | | | | | | | |
|------------------------------------|-------------|--------------------|------------------------|-------------|----------|-----|--|--|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | | | |
| PURGING RATE | 3 | GAL/ MIN | PURGIN | G TIME | 7 | MIN | | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 19 | | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | | |
| ODORS OBSERVED | | | None | | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 402 | pH | 6.00 | DO (mg/ | l) | - | | | |
| TEMPERATURE (°C) | 15 | TURBIDITY (NTU) | 12.20 | ORP (mV |) | 186 | | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs | s, Inc. and TOB | DPW Lab - 8 | /28/09 | | | | |
| COMMENTS, LOCATION SE | KETCH, WEI | LL-HEAD SKETCH, ET | <u>'C.</u> | | | | | | |
| | 1^{st} VC | <u>DLUME</u> | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | ME | | | |
| РН | 6 | .76 | 6.13 | | 6.00 | | | | |
| CONDUCTIVITY (µS/cm) | 3 | 395 | 417 | | 402 | | | | |
| TEMPERATURE (°C) | 1 | 6.7 | 14.9 | | 15.0 | | | | |
| DO (mg/l) | - | | - | | - | | | | |
| TURBIDITY (NTU) | 1 | 03 | 14.81 | 14.81 | | | | | |
| ORP (mV) | | - | - | | 186 | | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|---------|-------------------------|-------|--|--|
| WELL NO./ OWNER | | MW-0 | 05B/ Town of Oyster Bay | | | |
| SAMPLING POINT | | Mo | nitoring Well MW-05B | | | |
| SAMPLE I.D. NO. | MW-05B | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/26/09 | | TIME | 1007 | | |
| WELL USE | | Groundy | water Monitoring | | | |
| STATIC WATER ELEV. | 72.94 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 4.0 | INCHE | S | | | |
| TOTAL WELL DEPTH | 117 | FT. | BELOW MEASURING POINT | TOC | | |

| | | SAMPLING INFOR | MATIO | <u>N</u> | | | | | |
|--|-------------------|-------------------|------------|-------------|--------------|----------|-----|--|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | | | |
| PURGING RATE | 10 | GAL/ MIN | | PURGING | G TIME | 9 | MIN | | |
| NO. CASING VOLUMES RE | MOVED | 3 | | GAI | LLONS | 86 | | | |
| WELL DRAWDOWN/ RECO | VERY | | | Good | | | | | |
| SAMPLE APPEARANCE | | | (| Clear | | | | | |
| ODORS OBSERVED | | | 1 | None | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 522 | p | н | 7.15 | DO (mg/l) |) | - | | |
| TEMPERATURE (°C) | 15.9 | TURBIDITY (NTU | J) | 1.40 | ORP (mV) | | 275 | | |
| SAMPLES ANALYZED FOR | | | See | Chain of Cu | ustody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M La | ubs, Inc. | and TOB D | PW Lab - 8/2 | 26/09 | | | |
| COMMENTS, LOCATION SE | <u>KETCH, WEI</u> | LL-HEAD SKETCH, I | ETC. | | | | | | |
| | 1^{st} VC | DLUME | $2^{nd} V$ | OLUME | | 3rd VOLU | JME | | |
| РН | 6 | 5.37 | (| 6.82 | | 7.15 | | | |
| CONDUCTIVITY (µS/cm) | 2 | 473 | | 508 | | 522 | | | |
| TEMPERATURE (°C) | 1 | 8.4 | | 16.7 | | 15.9 | | | |
| DO (mg/l) | - | | | - | | - | | | |
| TURBIDITY (NTU) | 10.61 | | | 6.93 | | 1.40 | | | |
| ORP (mV) | | - | | - | | 275 | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|--------|-------------------------|-------|--|--|
| WELL NO./ OWNER | | MW- | 06A/ Town of Oyster Bay | | | |
| SAMPLING POINT | | Мо | onitoring Well MW-06A | | | |
| SAMPLE I.D. NO. | MW-06A | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/27/09 | | TIME | 1023 | | |
| WELL USE | | Ground | water Monitoring | | | |
| STATIC WATER ELEV. | 95.02 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 4.0 | INCHE | | | | |
| TOTAL WELL DEPTH | 107 | FT. | BELOW MEASURING POINT | TOC | | |

| SAMPLING INFORMATION | | | | | | | | | |
|--|-------------|------------------|------------------------|---------------|-------------------|--|--|--|--|
| PURGING METHOD 1000 mL Disposible Bailer | | | | | | | | | |
| PURGING RATE | - | GAL/ MIN | PURGIN | IG TIME | - MIN | | | | |
| NO. CASING VOLUMES REI | MOVED | 3 | G | ALLONS | 25 | | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | | |
| ODORS OBSERVED | | | Sulfur Odor | | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 88 | p] | H 6.00 | DO (mg/l) |) | | | | |
| TEMPERATURE (°C) | 16.7 | TURBIDITY (NTU | 91 | ORP (mV) | 160 | | | | |
| SAMPLES ANALYZED FOR | | | See Chain of | Custody | | | | | |
| LABORATORY/ DATE SHIP | PED | H2M La | bs, Inc. and TOB | DPW Lab - 8/2 | 27/09 | | | | |
| COMMENTS, LOCATION SE | KETCH, WEL | L-HEAD SKETCH, H | ETC. | | | | | | |
| | $1^{st} VC$ | DLUME | 2 <sup>nd</sup> VOLUME | | <u>3rd VOLUME</u> | | | | |
| РН | 7 | .67 | 7.17 | | 6.00 | | | | |
| CONDUCTIVITY (µS/cm) | : | 80 | 77 | | 88 | | | | |
| TEMPERATURE (°C) | 1 | 7.0 | 16.8 | | 16.7 | | | | |
| DO (mg/l) | - | | - | | - | | | | |
| TURBIDITY (NTU) | : | 53 | 75 | | 91 | | | | |
| ORP (mV) | | - | - | | 160 | | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|--------|-------------------------|-------|--|--|
| WELL NO./ OWNER | | MW- | 06B/ Town of Oyster Bay | | | |
| SAMPLING POINT | | Мо | onitoring Well MW-06B | | | |
| SAMPLE I.D. NO. | MW-06B | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/27/09 | | TIME | 1042 | | |
| WELL USE | | Ground | water Monitoring | | | |
| STATIC WATER ELEV. | 95.27 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 4.0 | INCHE | ES | | | |
| TOTAL WELL DEPTH | 135 | FT. | BELOW MEASURING POINT | TOC | | |

| SAMPLING INFORMATION | | | | | | | | | |
|--|----------------------------|-------------------|------------------------|---------------|----------------------|-----|--|--|--|
| PURGING METHOD Dedicated 4" Submersible Pump | | | | | | | | | |
| PURGING RATE | 8 GAL/ MIN PURGING TIME 10 | | | | | MIN | | | |
| NO. CASING VOLUMES RE | MOVED | 3 | G | ALLONS | 79 | | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | | |
| ODORS OBSERVED | | | Sulfur Odor | | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 2000 | pł | I 7.96 | DO (mg/l) |) | - | | | |
| TEMPERATURE (°C) | 18.9 | TURBIDITY (NTU |) 2.96 | ORP (mV) | | 82 | | | |
| SAMPLES ANALYZED FOR | <u> </u> | | See Chain of | Custody | | | | | |
| LABORATORY/ DATE SHIF | PPED | H2M Lal | os, Inc. and TOB | DPW Lab – 8/2 | 27/09 | | | | |
| COMMENTS, LOCATION S | KETCH, WEL | LL-HEAD SKETCH, E | TC. | | | | | | |
| | 1^{st} VC | <u>DLUME</u> | 2 <sup>nd</sup> VOLUME | | 3 <sup>rd</sup> VOLU | ME | | | |
| РН | 7 | .67 | 7.94 | | 7.96 | | | | |
| CONDUCTIVITY (µS/cm) | 20 | 000 | 2000 | | 2000 | | | | |
| TEMPERATURE (°C) | 1 | 8.2 | 18.6 | | 18.9 | | | | |
| DO (mg/l) | - | | - | | - | | | | |
| TURBIDITY (NTU) | 6 | .40 | 1.38 | | 2.96 | | | | |
| ORP (mV) | | - | - | | -82 | | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | | |
|---------------------|----------------------------|--------|-------------------------|-------|--|--|
| WELL NO./ OWNER | | MW- | 06C/ Town of Oyster Bay | | | |
| SAMPLING POINT | | Мо | onitoring Well MW-06C | | | |
| SAMPLE I.D. NO. | MW-06C | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/28/09 | | TIME | 0925 | | |
| WELL USE | | Ground | water Monitoring | | | |
| STATIC WATER ELEV. | 94.71 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 4.0 | INCHE | -
ES | | | |
| TOTAL WELL DEPTH | 161 | FT. | BELOW MEASURING POINT | TOC | | |

| SAMPLING INFORMATION | | | | | | | | | |
|------------------------------------|-------------|------------------|----------------------|-----------------|----------|------|--|--|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | | | |
| PURGING RATE | 7 | GAL/ MIN | PUI | RGING TIME | 19 | MIN | | | |
| NO. CASING VOLUMES RE | MOVED | 3 | | GALLONS | 131 | | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | 1 | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | | |
| ODORS OBSERVED | | | Sulfur O | dor | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 1902 | p | H 7.9 | L DO (mg/ | l) | - | | | |
| TEMPERATURE (°C) | 19.6 | TURBIDITY (NTU | .12 | ORP (mV |) | -805 | | | |
| SAMPLES ANALYZED FOR | | | See Chai | n of Custody | | | | | |
| LABORATORY/ DATE SHIP | PED | H2M La | bs, Inc. and | TOB DPW Lab - 8 | /28/09 | | | | |
| COMMENTS, LOCATION SI | KETCH, WEL | L-HEAD SKETCH, I | ETC. | | | | | | |
| | 1^{st} VO | LUME | 2 <sup>nd</sup> VOLU | <u>ME</u> | 3rd VOLU | ME | | | |
| РН | 7. | .34 | 7.90 | | 7.91 | | | | |
| CONDUCTIVITY (µS/cm) | 16 | 580 | 1892 | | 1902 | | | | |
| TEMPERATURE (°C) | 20 | 0.4 | 19.4 | | 19.6 | | | | |
| DO (mg/l) | | - | - | | - | | | | |
| TURBIDITY (NTU) | 5. | .30 | 4.39 | | 2.12 | | | | |
| ORP (mV) | | | - | | -805 | | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | | Тс | own of Oyster Bay / 49725 | | |
|---------------------|---------|--------|---------------------------|-------|--|
| WELL NO./ OWNER | | MW | -06E/ Town of Oyster Bay | | |
| SAMPLING POINT | | Mo | onitoring Well MW-06E | | |
| SAMPLE I.D. NO. | MW-06E | | SAMPLED BY | MN/MW | |
| DATE SAMPLED | 8/27/09 | | TIME | 1011 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 95.93 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHE | | | |
| TOTAL WELL DEPTH | 251 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | | |
|--|-------------------|-------------------|------------------------|---------------|----------|-----|--|--|
| PURGING METHOD Dedicated 4" Submersible Pump | | | | | | | | |
| PURGING RATE | 6 | GAL/ MIN | PURGIN | G TIME | 51 | MIN | | |
| NO. CASING VOLUMES REI | MOVED | 3 | GA | LLONS | 305 | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | |
| ODORS OBSERVED | | | Sulfur Odor | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 808 | pH | 8.47 | DO (mg/l) |) | - | | |
| TEMPERATURE (°C) | 18.0 | TURBIDITY (NTU) | 4.82 | ORP (mV) | 1 | 38 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs | , Inc. and TOB I | DPW Lab - 8/2 | 27/09 | | | |
| COMMENTS, LOCATION SE | <u>KETCH, WEL</u> | L-HEAD SKETCH, ET | <u>C.</u> | | | | | |
| | $1^{st} VC$ | DLUME | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | ME | | |
| РН | 7 | .54 | 6.61 | | 8.47 | | | |
| CONDUCTIVITY (µS/cm) | 1 | 002 | 810 | | 808 | | | |
| TEMPERATURE (°C) | 1 | 9.0 | 18.1 | | 18.0 | | | |
| DO (mg/l) | | - | - | | - | | | |
| TURBIDITY (NTU) | 4 | .01 | 1.41 | | 4.82 | | | |
| ORP (mV) | | | - | | 138 | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | | Te | own of Oyster Bay / 49725 | | |
|---------------------|---------|--------|---------------------------|-------|--|
| WELL NO./ OWNER | | MW | -06F/ Town of Oyster Bay | | |
| SAMPLING POINT | | M | onitoring Well MW-06F | | |
| SAMPLE I.D. NO. | MW-06F | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/27/09 | | TIME | 1053 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 95.28 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHI | =S | | |
| TOTAL WELL DEPTH | 350 | FT. | BELOW MEASURING POINT | TOC | |

| | | SAMPLING INFOR | RMATI | <u>ION</u> | | | | |
|--|-------------|----------------|----------|---------------|-------------|------------|--------------|----|
| PURGING METHOD 2" Submersible Pump | | | | | | | | |
| PURGING RATE | 6 | GAL/ MIN | | PURGIN | G TIME | 91 | M | IN |
| NO. CASING VOLUMES RE | MOVED | 3 | | GA | LLONS | | 500 | |
| WELL DRAWDOWN/ RECO | VERY | | | Good | | | | |
| SAMPLE APPEARANCE | | | | Clear | | | | |
| ODORS OBSERVED | | | Si | ulfur Odor | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 880 | <u> </u> | н | 5.31 | DO (mg/ | /1) | - | |
| TEMPERATURE (°C) | 17.3 | TURBIDITY (NT | U) | 1.91 | ORP (mV |) | 192 | |
| SAMPLES ANALYZED FOR | | | Se | ee Chain of C | Custody | | | |
| LABORATORY/ DATE SHIP | PED | H2M L | abs, In | c. and TOB I | OPW Lab - 8 | /27/09 | | |
| COMMENTS, LOCATION SI | KETCH, WEL | L-HEAD SKETCH, | ETC. | | | | | |
| | $1^{st} VC$ | DLUME | 2^{nd} | VOLUME | | $3^{rd} V$ | <u>OLUME</u> | |
| РН | 5 | .46 | | 4.82 | | 4 | 5.31 | |
| CONDUCTIVITY (µS/cm) | 8 | 803 | | 862 | | : | 880 | |
| TEMPERATURE (°C) | 1 | 9.1 | | 17.7 | | 1 | 17.3 | |
| DO (mg/l) | | - | | - | | | - | |
| TURBIDITY (NTU) | 2 | .53 | | 2.82 | | 1 | 1.91 | |
| ORP (mV) | | - | | - | | | 192 | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725.001 | | | | | | | |
|------------------------------|---------------------------------------|---------------|------------------------|-------------------|------------------------|--|--|--|
| WELL NO./ OWNER | MW-07B/ Town of Oyster Bay | | | | | | | |
| SAMPLING POINT | | Мо | nitoring Well MW | -07B | | | | |
| SAMPLE I.D. NO. | MW-07I | B | SA | MPLED BY | MN/HP | | | |
| DATE SAMPLED | 8/28/09 | 1 | | TIME | Not Sampled | | | |
| WELL USE | | Groundy | water Monitoring | | | | | |
| STATIC WATER ELEV. | 86.00 |) FT. | BELOW MEAS | URING POINT | TOC | | | |
| WELL DIAMETER | 4.0 | INCHE | S | | | | | |
| TOTAL WELL DEPTH | 236 | FT. | BELOW MEAS | URING POINT | TOC | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | SAMPLING INFO | <u>RMATION</u> | | | | | |
| PURGING METHOD | | 2 | " Submersible Pur | np | | | | |
| PURGING RATE | NA | GAL/ MIN | PURGI | NG TIME | NA MIN | | | |
| NO. CASING VOLUMES R | EMOVED | NA | G | ALLONS | NA | | | |
| WELL DRAWDOWN/ REC | OVERY | Poor, groun | ndwater became int | undated with sand | d | | | |
| SAMPLE APPEARANCE | | | No sample collec | cted | | | | |
| ODORS OBSERVED | | | NA | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | - | | pH | DO (mg/l) | - | | | |
| TEMPERATURE (°C) | - | TURBIDITY (NT | - U) - | ORP (mV) | - | | | |
| SAMPLES ANALYZED FO | · · · · · · · · · · · · · · · · · · · | | | | | | | |
| LABORATORY/ DATE SH | IPPED | | Not Sam | pled | | | | |
| COMMENTS, LOCATION | SKETCH, WEL | L-HEAD SKETCH | , ETC. | - | | | | |
| | 1 <sup>st</sup> VO | DLUME | 2 <sup>nd</sup> VOLUME | 4 | 3 <sup>rd</sup> VOLUME | | | |
| PH | | _ | - | | _ | | | |

| PH | - | - | - |
|----------------------|---|---|---|
| CONDUCTIVITY (µS/cm) | - | - | - |
| TEMPERATURE (°C) | - | - | - |
| DO (mg/l) | - | - | - |
| TURBIDITY (NTU) | - | - | - |
| ORP (mV) | - | - | - |

480 Forest Avenue

| CLIENT/ PROJECT NO. | | Town of Oyster Bay / 49725 | | | | |
|---------------------|---------|----------------------------|--------------------------|-------|--|--|
| WELL NO./ OWNER | | MW | -08A/ Town of Oyster Bay | | | |
| SAMPLING POINT | | M | onitoring Well MW-08A | | | |
| SAMPLE I.D. NO. | MW-08A | | SAMPLED BY | MN/MB | | |
| DATE SAMPLED | 8/26/09 | | TIME | 00915 | | |
| WELL USE | | Ground | lwater Monitoring | | | |
| STATIC WATER ELEV. | 68.97 | FT. | BELOW MEASURING POINT | TOC | | |
| WELL DIAMETER | 4.0 |
INCHI | ES | | | |
| TOTAL WELL DEPTH | 81 | FT. | BELOW MEASURING POINT | TOC | | |

| SAMPLING INFORMATION | | | | | | | |
|----------------------------------|-------------|--------------------|------------------------|---------------|------------------------------|--|--|
| PURGING METHOD Disposable Bailer | | | | | | | |
| PURGING RATE | - | GAL/ MIN | PURGIN | G TIME | - MIN | | |
| NO. CASING VOLUMES REL | MOVED | 3 | GA | LLONS | 25 | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | |
| ODORS OBSERVED | | | None | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 123 | pH | 4.20 | DO (mg/l) | - | | |
| TEMPERATURE (°C) | 14.8 | TURBIDITY (NTU) | 105 | ORP (mV) | 284.00 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs | s, Inc. and TOB I | DPW Lab – 8/2 | 6/09 | | |
| COMMENTS, LOCATION SE | KETCH, WEI | LL-HEAD SKETCH, ET | <u>°C.</u> | | | | |
| | 1^{st} VC | DLUME | 2 <sup>nd</sup> VOLUME | | <u>3<sup>rd</sup> VOLUME</u> | | |
| РН | 9 | 0.29 | 5.88 | | 4.20 | | |
| CONDUCTIVITY (µS/cm) | 1 | 105 | 105 | | 123 | | |
| TEMPERATURE (°C) | 1 | 7.0 | 15.5 | | 14.8 | | |
| DO (mg/l) | | - | - | | - | | |
| TURBIDITY (NTU) | 1 | 1.96 | 108 | | 105 | | |
| ORP (mV) | | - | - | | 284 | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | | Тс | own of Oyster Bay / 49725 | | |
|---------------------|---------|--------|---------------------------|-------|--|
| WELL NO./ OWNER | | MW- | 08B/ Town of Oyster Bay | | |
| SAMPLING POINT | | Мо | onitoring Well MW-08B | | |
| SAMPLE I.D. NO. | MW-08B | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/26/09 | | TIME | 0910 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 68.29 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHE | -
ES | | |
| TOTAL WELL DEPTH | 161 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | |
|------------------------------------|-------------|-------------------|------------------------|-------------|---------|-----|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | |
| PURGING RATE | 6 | GAL/ MIN | PURGIN | G TIME | 31 | MIN | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 18 | 1 | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | |
| ODORS OBSERVED | | | None | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 391 | pH | 4.82 | DO (mg/ | (1) | - | |
| TEMPERATURE (°C) | 16.9 | TURBIDITY (NTU) | 2.05 | ORP (mV |) | 272 | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | |
| LABORATORY/ DATE SHIP | PPED | H2M Lab | s, Inc. and TOB | DPW Lab - 8 | /26/09 | | |
| COMMENTS, LOCATION SI | KETCH, WEL | L-HEAD SKETCH, ET | <u>°C.</u> | | | | |
| | $1^{st} VC$ | DLUME | 2 <sup>nd</sup> VOLUME | | 3rd VOL | UME | |
| РН | 6 | .93 | 4.69 | | 4.82 | 2 | |
| CONDUCTIVITY (µS/cm) | 4 | -22 | 395 | | 391 | | |
| TEMPERATURE (°C) | 1 | 6.3 | 15.07 | | 16.9 |) | |
| DO (mg/l) | | - | - | | - | | |
| TURBIDITY (NTU) | 1 | .92 | 2.03 | | 2.05 | 5 | |
| ORP (mV) | | - | - | | 272 | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|--------------------------|-------|--|
| WELL NO./ OWNER | | MW | -09B/ Town of Oyster Bay | | |
| SAMPLING POINT | | Mo | onitoring Well MW-09B | | |
| SAMPLE I.D. NO. | MW-09B | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/26/09 | | TIME | 1233 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 91.43 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHE | -
ES | | |
| TOTAL WELL DEPTH | 169 | FT. | BELOW MEASURING POINT | TOC | |

| | | SAMPLING INFORM | ATION | | | | | |
|--|--------------------------------|--------------------|------------------------|--------------|----------|-----|--|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | | |
| PURGING RATE | 6 GAL/ MIN PURGING TIME 26 MIN | | | | | | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 153 | 3 | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | |
| ODORS OBSERVED | | | None | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 324 | pH | 6.11 | DO (mg/l |) | - | | |
| TEMPERATURE (°C) | 15.8 | TURBIDITY (NTU) | 7.24 | ORP (mV) | | 281 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs | , Inc. and TOB | DPW Lab - 8/ | 26/09 | | | |
| COMMENTS, LOCATION SE | KETCH, WE | LL-HEAD SKETCH, ET | <u>C.</u> | | | | | |
| | 1^{st} V | OLUME | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | JME | | |
| РН | 4 | 5.60 | 6.00 | | 6.11 | | | |
| CONDUCTIVITY (µS/cm) | | 300 | 335 | | 324 | | | |
| TEMPERATURE (°C) | 1 | 17.8 | 15.8 | | 15.8 | | | |
| DO (mg/l) | | - | - | | - | | | |
| TURBIDITY (NTU) | 8 | 3.45 | 6.79 | | 7.24 | | | |
| ORP (mV) | | - | - | | 281 | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|-----------------------|-------|--|
| WELL NO./ OWNER | MW-09C/ Town of Oyster Bay | | | | |
| SAMPLING POINT | Monitoring Well MW-09C | | | | |
| SAMPLE I.D. NO. | MW-09C | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/26/09 | | 1317 | | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 92.58 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHI | -
ES | | |
| TOTAL WELL DEPTH | 227 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | |
|------------------------------------|-------------------|--------------------|------------------------|--------------|----------|-----|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | |
| PURGING RATE | 7 | GAL/ MIN | PURGIN | G TIME | 38 | MIN | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 265 | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | |
| ODORS OBSERVED | | | None | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 533 | pH | 7.26 | DO (mg/l |) | - | |
| TEMPERATURE (°C) | 17.2 | TURBIDITY (NTU) | 4.88 | ORP (mV) | 1 | 88 | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs, | Inc. and TOB D | PW Lab - 8/2 | 6/2009 | | |
| COMMENTS, LOCATION SE | <u>KETCH, WEI</u> | LL-HEAD SKETCH, ET | <u>C.</u> | | | | |
| | 1^{st} VC | OLUME | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | ME | |
| РН | e | 5.66 | 7.19 | | 7.26 | | |
| CONDUCTIVITY (µS/cm) | 2 | 454 | 511 | | 533 | | |
| TEMPERATURE (°C) | 1 | 18.5 | 16.7 | 16.7 | | | |
| DO (mg/l) | | - | - | | - | | |
| TURBIDITY (NTU) | 5 | 5.39 | 10.13 | | 4.88 | | |
| ORP (mV) | | - | - | | 188 | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|-----------------------|-------|--|
| WELL NO./ OWNER | MW-09D/ Town of Oyster Bay | | | | |
| SAMPLING POINT | Monitoring Well MW-09D | | | | |
| SAMPLE I.D. NO. | MW-09D | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/26/09 | | TIME | 1152 | |
| WELL USE | | Ground | lwater Monitoring | | |
| STATIC WATER ELEV. | 91.53 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHI | ES | | |
| TOTAL WELL DEPTH | 316 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | |
|------------------------------------|-------------|---------------------|------------------------|--------------|----------------------|-----|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | |
| PURGING RATE | 10 | GAL/ MIN | PURGIN | G TIME | 42 | MIN | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 425 | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | |
| ODORS OBSERVED | | | None | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 878 | pH | 4.32 | DO (mg/ |) | - | |
| TEMPERATURE (°C) | 18.5 | TURBIDITY (NTU) | 3.54 | ORP (mV) | 2 | 85 | |
| SAMPLES ANALYZED FOR | L | | See Chain of C | Custody | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs, 1 | Inc. and TOB D | PW Lab - 8/2 | 6/2009 | | |
| COMMENTS, LOCATION S | KETCH, WEI | LL-HEAD SKETCH, ET(| <u>C.:</u> | | | | |
| | 1^{st} VC | OLUME | 2 <sup>nd</sup> VOLUME | | 3 <sup>rd</sup> VOLU | ME | |
| РН | 2 | 4.95 | 4.52 | | 4.32 | | |
| CONDUCTIVITY (µS/cm) | 8 | 815 | 863 | | 878 | | |
| TEMPERATURE (°C) | 2 | 22.1 | 18.5 | | 18.5 | | |
| DO (mg/l) | | - | - | | - | | |
| TURBIDITY (NTU) | (| 0.00 | 5.45 | | 3.54 | | |
| ORP (mV) | | - | - | | 285 | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|-----------------------|-------|--|
| WELL NO./ OWNER | MW-11A/ Town of Oyster Bay | | | | |
| SAMPLING POINT | Monitoring Well MW-11A | | | | |
| SAMPLE I.D. NO. | MW-11A | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/28/09 | | TIME | 0847 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 22.57 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHE | -
ES | | |
| TOTAL WELL DEPTH | 141 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | | |
|------------------------------------|-------------|---------------------|------------------------|--------------|----------|-----|--|--|
| PURGING METHOD 2" Submersible Pump | | | | | | | | |
| PURGING RATE | 6 | GAL/ MIN | PURGIN | G TIME | 39 | MIN | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 233 | 3 | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | |
| ODORS OBSERVED | | | None | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 94 | pH | 4.53 | DO (mg/l |) | - | | |
| TEMPERATURE (°C) | 12.2 | TURBIDITY (NTU) | 12.09 | ORP (mV) | | 338 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs, | Inc. and TOB | DPW Lab – 8/ | 28/09 | | | |
| COMMENTS, LOCATION SI | KETCH, WEI | LL-HEAD SKETCH, ETC | <u>.</u> | | | | | |
| | 1^{st} VC | <u>DLUME</u> | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | JME | | |
| РН | 4 | 1.72 | 4.44 | | 4.53 | | | |
| CONDUCTIVITY (µS/cm) | | 82 | 90 | | 94 | | | |
| TEMPERATURE (°C) | 1 | 4.3 | 12.3 | | 12.2 | | | |
| DO (mg/l) | | - | - | | - | | | |
| TURBIDITY (NTU) | 1 | 2.68 | 7.05 | | 2.09 | | | |
| ORP (mV) | | - | - | | 338 | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|-----------------------|-------|--|
| WELL NO./ OWNER | MW-11B/ Town of Oyster Bay | | | | |
| SAMPLING POINT | Monitoring Well MW-11B | | | | |
| SAMPLE I.D. NO. | MW-11B | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/28/09 | | 0848 | | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 22.65 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCHE | S | | |
| TOTAL WELL DEPTH | 241 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | | |
|--|-------------|---------------------|------------------------|--------------|----------|-----|--|--|
| PURGING METHOD Dedicated 4" Submersible Pump | | | | | | | | |
| PURGING RATE | 10 | GAL/ MIN | PURGIN | G TIME | 43 | MIN | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 428 | | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | |
| ODORS OBSERVED | | | None | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 74 | pH | 4.43 | DO (mg/ |) | - | | |
| TEMPERATURE (°C) | 11.7 | TURBIDITY (NTU) | 0.12 | ORP (mV) |) | 331 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs, | Inc. and TOB I | OPW Lab - 8/ | /28/09 | | | |
| COMMENTS, LOCATION SI | KETCH, WEI | LL-HEAD SKETCH, ETC | <u>.</u> | | | | | |
| | 1^{st} VC | <u>DLUME</u> | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | ME | | |
| РН | 4 | 4.50 | 4.40 | | 4.43 | | | |
| CONDUCTIVITY (µS/cm) | | 68 | 70 | | 74 | | | |
| TEMPERATURE (°C) | 1 | 2.4 | 11.6 | | 11.7 | | | |
| DO (mg/l) | | - | - | | - | | | |
| TURBIDITY (NTU) | 2 | 2.22 | 1.45 | | 0.12 | | | |
| ORP (mV) | | - | - | | 331 | | | |

480 Forest Avenue

| CLIENT/ PROJECT NO. | Town of Oyster Bay / 49725 | | | | |
|---------------------|----------------------------|--------|-----------------------|-------|--|
| WELL NO./ OWNER | OBS-1/ Town of Oyster Bay | | | | |
| SAMPLING POINT | Monitoring Well OBS-1 | | | | |
| SAMPLE I.D. NO. | OBS-1/DUP | | SAMPLED BY | MN/MB | |
| DATE SAMPLED | 8/28/09 | | TIME | 1045 | |
| WELL USE | | Ground | water Monitoring | | |
| STATIC WATER ELEV. | 49.12 | FT. | BELOW MEASURING POINT | TOC | |
| WELL DIAMETER | 4.0 | INCH | ES | | |
| TOTAL WELL DEPTH | 195 | FT. | BELOW MEASURING POINT | TOC | |

| SAMPLING INFORMATION | | | | | | | | |
|--|-------------------|--------------------|------------------------|--------------|----------|-----|--|--|
| PURGING METHOD Dedicated 4" Submersible Pump | | | | | | | | |
| PURGING RATE | 10 | GAL/ MIN | PURGIN | G TIME | 29 | MIN | | |
| NO. CASING VOLUMES RE | MOVED | 3 | GA | LLONS | 290 |) | | |
| WELL DRAWDOWN/ RECO | VERY | | Good | | | | | |
| SAMPLE APPEARANCE | | | Clear | | | | | |
| ODORS OBSERVED | | | None | | | | | |
| CONDUCTIVITY (µ <u>S/cm)</u> | 805 | pH | 6.70 | DO (mg/l |) | - | | |
| TEMPERATURE (°C) | 15.8 | TURBIDITY (NTU) | 1.99 | ORP (mV) | | 176 | | |
| SAMPLES ANALYZED FOR | | | See Chain of C | Custody | | | | |
| LABORATORY/ DATE SHIP | PED | H2M Labs | , Inc. and TOB | DPW Lab - 8/ | 28/09 | | | |
| COMMENTS, LOCATION SE | <u>KETCH, WEI</u> | LL-HEAD SKETCH, ET | <u>C.</u> | | | | | |
| | 1^{st} VC | <u>DLUME</u> | 2 <sup>nd</sup> VOLUME | | 3rd VOLU | JME | | |
| РН | 7 | .27 | 6.85 | | 6.70 | | | |
| CONDUCTIVITY (µS/cm) | 7 | 780 | 796 | 796 | | | | |
| TEMPERATURE (°C) | 1 | 6.8 | 16.5 | | 15.8 | | | |
| DO (mg/l) | | - | - | | - | | | |
| TURBIDITY (NTU) | 6 | 5.43 | 4.73 | | 1.99 | | | |
| ORP (mV) | | - | - | | 176 | | | |

APPENDIX C

GROUNDWATER SAMPLING PROTOCOLS

PROTOCOLS FOR SAMPLING GROUNDWATER UNDER THE OLD BETHPAGE SOLID WATER DISPOSAL COMPLEX REMEDIAL ACTION PLAN

Equipment

| Generator | Distilled Water |
|--------------------------------|---|
| Extension Cord | Polyethylene Tubing |
| Water Level Meter (M-Scope) or | Rags |
| Steel Tape and Chalk | MICRO <sup>™</sup> Laboratory Cleaner |
| Sample/Discharge Fitting | Sample Containers |
| Beakers | (Including duplicate |
| Graduated Bucker | field and trip blanks) |
| Gloves (Latex Nitrile or | Plastic Sheeting |
| equivalent) | Flow-through Cell |
| Nylon or Polypropylene Cord | Conductivity Meter |
| Cooler with Ice | Thermometer |
| Teflon Tape | Scrub Brush |
| PVC Bailer | Grundfos <sup>®</sup> Stainless Steel Submersible |
| | Pump |

<u>Procedure</u>: Wells equipped with permanent submersible pumps.

- Unlock the well and measure the depth to water to the hundredth of a foot with a water level meter (m-scope) or steel tape and chalk. Record this measurement on the Water Sampling Log and calculate the amount of water standing in the well.
- Lay plastic sheeting down around well. Clean the sample/discharge fitting and the flowthrough cell in 2% MICRO<sup>™</sup> solution and rinse with distilled water.

- 3. Connect the sample/discharge fitting to the flow-through cell. Connect this assemblage to the riser pipe. Use Teflon tape where needed. Start generator and plug extension cord in: connect extension cord to the pump power cable. Record the time pumping began on the Water Sampling Log.
- 4. Close the valve on the fitting to the flow-through cell. Using the other valve, adjust the pumping rate so that it does not continuously draw down to the pump intake (consult sampling logs from previous sampling rounds for pumping rates). Periodically measure the flow rate using a graduated bucket. Record pumping rate on the Water Sampling Log.
- 5. Pump three times the amount of standing water from the well. If necessary, evacuate Well No 8B by pumping dry three times allowing time for recovery between each pumping. Water pumped from Well No. 6B is to be discharged away from the well to prevent possible contamination of the less contaminated water table zone tapped by Well No. 6A. A minimum of 100 feet of polyethylene tubing will be used to direct discharge away from the well cluster. Note: the flow through cell is not used to sample Well No. 6B. Label and tape the sample containers.
- 6. When the wells is nearly ready for sampling, put on protective gloves and open the valve to the flow-through cell. Insert thermometer, pH 4 and 7 buffers, and the conductivity electrode into the flow-through cell and allow a few minutes for thermal equilibration. Read and record temperature; set pH and conductivity meters with buffers. Remove vials containing buffers and insert pH electrode into the flow-through cell. Record pH, temperature, and conductivity on Water Sampling Log.
- Adjust valve so that flow from the sample discharge (polyethylene tubing) is a trickle.
 Fill VOC vials making sure that there are no trapped air bubbles, and place in a cooler with ice.
- 8. Fill remaining containers and place in a cooler with ice. Note: do not rinse bottles with sample water before filling, as some bottles contain preservative.

- 9. Complete Water Sampling Log and Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler.
- 10. Remove sample/discharge fitting and flow-through cell, replace all plugs, and lock the well. Discard plastic sheeting and gloves. Deliver samples to laboratory as soon as possible. Obtain signature from receiver at laboratory on Chain-of-Custody Form.

Procedure: Wells not equipped with a permanent submersible pump.

- 1. Wells that are not equipped with permanent submersible pumps will be evacuated with a submersible pump or PVC bailer, and sampled with PVC bailer.
- 2. Open the Well and clean off any surficial dirt from protective casing. Remove well cap.
- 3. Measure the depth to water to the hundredth of a foot with a water level recorder (mscope) or steel tape and chalk. Record this measurement on the Water Sampling Log, and calculate the amount of water standing in the well.
- 4. Lay plastic sheeting down around well. Label and tape the sample containers.
- 5. Disassemble the bailer, if appropriate, and immerse the bailer and/or submersible pump in a 2% solution of MICRO<sup>™</sup>, or pour the solution in and over the bailer/pump. Scrub the bailer/pump with a brush to remove surficial contaminants. Rinse the bailer/pump with copious amounts of distilled water. Wear clean gloves when handling a clean bailer/pump.
- 6. Reassemble the bailer and place on the plastic sheeting. Attach an appropriate length of nylon or polypropylene cord to the bailer using a secure knot. Tie loose end of cord to well casing. Attach the appropriate lengths of nylon or polypropylene cord and polyethylene tubing to the submersible pump. New cord and tubing will be used at each well.

- 7. If a bailer is being used to evacuate the well, lower the bailer into the well and into the water column gradually, to minimize turbulence. Allow the bailer to sink and become fully submerged. Recover the bailer from the well and empty into the graduated bucket. If the submersible pump is being used to evacuate the well, lower the pump below the water table, secure the safety line, and plug into generator.
- 8. Bail/pump three times the amount of standing water from the well or bail/pump well dry and allow to recover. Bailer cord can be held in hand or laid on plastic sheeting while bailing. Following evacuation, pull pump out of well slowly while pump is still operating. This will ensure that any water remaining above the pump has been evacuated from the well.
- 9. All samples for wells without dedicated pumps will be collected with a PVC bailer. Slowly lower clean bailer into well to minimize turbulence. Fill the 40-mi vials for VOCs analysis insuring that there are no air bubbles. Place vials in cooler with ice.
- 10. Fill remaining sample containers and place in cooler with ice. Note: do not rinse containers with sample, as some containers contain preservatives.
- 11. Lock well. Discard cord, tubing, gloves, and sheeting.
- 12. Fill out remaining data on Water Sampling Log and complete Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler. Deliver samples to the lab as soon as possible and obtain receiver's signature on Chain-of-Custody Form.

<u>Procedure</u>: (Field Blank and Trip Blank)

1. Label and tape one of the 40-mi vials filled with lab water as "Trip Blank", and store unopened in a cooler on ice. One trip blank will accompany each day's samples.

- 2. Label and tape one of the empty 40-mi vials as "Field Blank" and store it and the remaining two 40-mi vials filled with lab water, unopened with the other empty sample containers.
- 3. On the last day of sampling, two Field Blanks will be collected by running the two vials of lab water through (1) the sample/discharge fitting and (2) the bailer used in the sampling round (the fitting and bailer will be decontaminated prior to sample collection following the identical procedure used between sampling different wells). Make sure that there is no trapped air bubbles in the sample vial Place blank in cooler with ice.
 - 4. Complete Water Sampling Log and Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler.
 - 5. Deliver samples to laboratory as soon as possible. Obtain signature from receiver at laboratory on Chain-of-Custody Form.

APPENDIX E

"Town of Oyster Bay, Old Bethpage Solid Waste Disposal Complex Ambient Air Quality Survey and Soil Gas Quality Survey 2009 Third Quarter Report"

> RTP Environmental Associates, Inc. December 2009

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX AMBIENT AIR QUALITY SURVEY AND SOIL GAS QUALITY SURVEY

2009 Third Quarter Report

Prepared for:

Town of Oyster Bay Department of Public Works Syosset, New York

Prepared by:

RTP Environmental Associates, Inc. 400 Post Avenue Westbury, New York

December 2009

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX AMBIENT AIR QUALITY SURVEY AND SOIL GAS QUALITY SURVEY

2009 Third Quarter Report

TABLE OF CONTENTS

| Desci | ription | | Page No. | | | |
|-------|---------|------------------------------------|----------|--|--|--|
| 1.0 | INTF | RODUCTION | 1 | | | |
| 2.0 | MET | METHODOLOGY AND PROTOCOLS | | | | |
| | 2.1 | Program Definition | 2 | | | |
| | 2.2 | Ambient Air and Soil Gas Sampling | 2 | | | |
| | | 2.2.1 General Scope | 2 | | | |
| | | 2.2.2 Modified VOST Sampler | 7 | | | |
| | | 2.2.3 VOST Sample Volume Selection | 10 | | | |
| | | 2.2.4 Other Sampling Equipment | 12 | | | |
| | 2.3 | Meteorological Data | 13 | | | |
| 3.0 | SAM | IPLING AND ANALYSIS | 14 | | | |
| | 3.1 | Background | 14 | | | |
| | 3.2 | Ambient Air Sampling | 15 | | | |
| | 3.3 | Soil Gas Sampling | 18 | | | |
| | 3.4 | Analytical Laboratory Procedures | 21 | | | |
| 4.0 | DISC | DISCUSSION OF RESULTS | | | | |
| | 4.1 | Ambient Air Concentrations | 21 | | | |
| | 4.2 | Soil Gas Concentrations | 25 | | | |
| 5.0 | SOIL | L GAS PRESSURE READINGS | 28 | | | |
| 6.0 | SUM | IMARY AND CONCLUSIONS | 28 | | | |
| | APPI | ENDICES: | | | | |

- A Meteorological Monitoring Data
- B Chronology Ambient Air, Soil Gas and Well Pressure Sampling Events
- C Analytical Results
- D Field Data Forms
- E Equipment Calibrations

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX AMBIENT AIR QUALITY SURVEY AND SOIL GAS QUALITY SURVEY

2009 Third Quarter Report

LIST OF TABLES

| Descrip | <u>vtion</u> | <u>Page No.</u> |
|---------|---|-----------------|
| 2.1 | Program Target Compound List and NYSDEC Ambient Air Guideline Concentra | tions 6/6A |
| 2.2 | General Relationship Between Photo-Ionization Detector (PID) Readings and Sar | nple Volume 11 |
| 3.1 | Summary of Ambient Air and Subsurface Soil Gas Sampling | 16 |
| 4.1 | Ambient Air VOST Sample Results | 23/23A |
| 4.2 | Soil Gas VOST Sample Results | 26/26A/26B/26C |
| 5.1 | Summary of Soil Gas Pressure Tests | 29 |

LIST OF FIGURES

| 2.1 | Third Quarter 2009 Ambient Air and Soil Gas Monitoring Locations | 3 |
|-----|--|---|
| 2.2 | Schematic of EPA Referenced Volatile Organic Sampling Train (VOST) | 8 |
| 2.3 | Modified VOST Sampler | 9 |

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX AMBIENT AIR QUALITY SURVEY AND SOIL GAS QUALITY SURVEY

2009 Third Quarter Report

1.0 INTRODUCTION

RTP Environmental Associates, Inc. (RTP) was contracted by the Town of Oyster Bay (Town) to perform the sampling and analysis of ambient air, soil gas and soil gas pressure in areas at and surrounding the Old Bethpage Landfill at the Old Bethpage Solid Waste Disposal Complex (OBSWDC). The general scope of the program was defined in the Remedial Action Plan (RAP) Attachment 2 of the Final Consent Decree. Since the Consent Decree was not explicit as to the specific methodology and testing protocols to be followed, RTP, in conjunction with the Town, Lockwood, Kessler & Bartlett (LKB), the New York State Department of Environmental Conservation (NYSDEC) and analytical laboratories, developed a complete protocol and analysis strategy for meeting the general requirements stipulated by the Consent Decree.

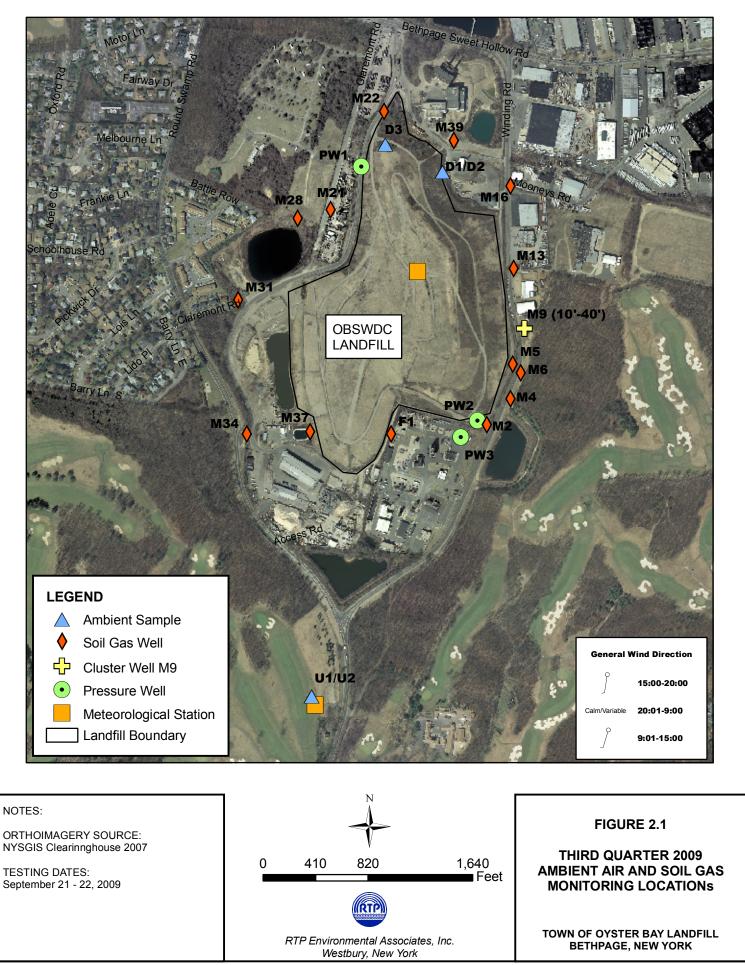
As stipulated in the Consent Decree, the ambient air quality, soil gas quality and soil gas pressure were to be monitored at several positions around the landfill. The ambient air and soil gas samples were to be analyzed for volatile organic compounds (VOCs) according to the protocol and the results were to be tabulated. Four sampling events were conducted during each of the previous years of the program and four (4) monitoring events are scheduled for 2009.

This report contains the results obtained during the third quarter sampling event of the 2009 monitoring program. The sampling occurred on September 21 and 22, 2009 when the forecasted meteorology was expected to be within protocol requirements. Section 2.0 of this report contain the sampling protocol and investigation methodology for air and soil gas. Section 3.0 includes sample collection, sample handling and analytical procedures applied for this program. Section 4.0 provides a discussion of results. Section 5.0 contains the soil gas pressure sampling procedures and test results. Section 6.0 contains a summary and conclusions for this sampling effort. Appendices containing supporting data and analyses are attached.

2.0 METHODOLOGY AND PROTOCOLS

2.1 Program Definition

In conformance with the Remedial Action Plan (RAP) Attachment 2 of the Consent Decree (83 CIV 5357), the Town of Oyster Bay initiated an investigation of the ambient air quality and soil gas quality in the vicinity of the Old Bethpage Landfill. This report provides data and analyses for four of the components listed in the RAP: (1) ambient air sampling; (2) 30-inch deep subsurface gas sampling; (3) subsurface gas sampling at various depths; and (4) soil gas pressure readings. The ambient air, soil gas and well pressure sampling procedures used during the field event, in general, follow those developed during the second year of sampling.


The primary objective of the sampling program is to examine the ambient air concentrations of trace volatile organic compounds (VOCs) in the vicinity of the Old Bethpage Landfill. During the 2009 third quarter sampling event, five ambient air Volatile Organic Sampling Train (VOST) samples were collected over a 24-hour period at three locations; two collocated samplers located at one upwind location, two collocated samplers located at one downwind location and another sampler located at an additional location downwind of the Old Bethpage Landfill. Short-term (approximately ten minute) subsurface soil gas samples were collected at 14 of the 15 locations specified in the Consent Decree. A sample was not collected at soil gas well M21 due to the construction of a concrete wall, making the well location no longer accessible. Soil gas well M21 has not been sampled since the third quarter 2003 sampling event. Soil gas pressure readings were taken at three locations. All of these locations are provided in Figure 2.1.

The program also involves the collection of meteorological data from two locations, one atop the landfill and another at the upwind sampling location. This data is used to specifically define the meteorological conditions existing during ambient air and subsurface soil gas sampling events and during the soil gas pressure measurement period. Information regarding meteorological data is provided as Section 2.3 of this report.

2.2 Ambient Air and Soil Gas Sampling

2.2.1 General Scope

Three (3) of the four (4) components of the RAP relate to air quality and soil gas quality. The first RAP

component states ambient air samples are to be collected over a 24-hour period at three (3) locations around the landfill. Additionally, the RAP states that samples should be collected quarterly during the initial year of the program and be analyzed for VOCs. Sampling is to continue on a quarterly basis, unless the monitoring program is modified by a change to the Consent Decree. The sample collection program has been modified as discussed in the previous quarterly reports. Changes were made to the ambient air sampling scope stated in the RAP to account for site geometry. The selected ambient air sampling locations for this quarter (U1/2, D1/2 and D3) are shown in Figure 2.1. All ambient air samplers were set to run concurrently for a 24-hour period. Samplers U1 and U2 (U1/2) were collocated upwind of the landfill and set to operate at 0.25 liters per minute (Lpm). Samplers D1 and D2 (D1/2) were collocated downwind of the landfill and was set to operate at 0.25 Lpm. Additionally, sampler D3 was located downwind of the landfill and was set to operate at 0.25 Lpm. All samplers were set to sample at a volumetric rate of 0.25 Lpm to minimize problems related to potential breakthrough and mass loading limits on the sorbent cartridges. This sampling rate also provides an acceptable analytical sensitivity for the target compounds relative to the ambient air guideline values.

The second RAP component requires the collection and analysis of subsurface gas samples from fourteen (14) 30-inch deep wells at individual locations surrounding the landfill on a quarterly basis. The 2009 monitoring program includes the quarterly collection of these soil gas samples. All 30-inch wells listed in the Consent Decree were sampled during this 2009 third quarter sampling event, except soil gas well M21. These included well locations M2, M4, M5, M6, M13, M16, M22, M28, M31, M34, M37, M39 and F1 as identified in Figure 2.1. Soil gas well M21 was inaccessible due to a wall along Claremont Road that precluded access during the time of sampling. The sampling methodology used in the previous sampling events was utilized for this effort.

The third RAP component requires subsurface gas samples to be collected from 10, 20, 30 and 40-foot depths at the M9 cluster well as shown in Figure 2.1. Sampling has been required on a quarterly basis since the initial year of the program from the four depths at the cluster well and all subsequent sampling efforts. The 2009 monitoring program includes the quarterly sampling from all four depths at cluster well M9.

As in the initial year of sampling, a modified VOST method had been applied as the sampling procedure. The modified VOST approach was elected for several reasons:

• Due to the volatility of many organic compounds, standard absorbent cartridges for ambient air sampling may miss several compounds at ambient temperatures. By cooling the absorbent cartridges to less than 68°F, the modified method would likely allow the cartridges to capture compounds that

might normally go undetected.

- Using a VOST cartridge series would provide data directly compatible within the Supplemental Gas Monitoring Program being performed as part of the Consent Decree.
- A methodology for the collection of large volumes was developed to identify low VOC concentrations in ambient air.
- Large volumes of ambient air are necessary because of the analytical limitations posed by standard gas chromatograph-mass spectrographic (GC/MS) methods.
- Evacuated canister methods were reviewed in the initial year and deemed unacceptable because of low total volume capacity, potential leaks and contamination.
- The potential problems associated with whole-air sample bags and glass bulb methods were deemed unacceptable, and therefore, were avoided.
- The VOST series cartridges are applicable for both ambient air and soil gas monitoring.

The VOCs that can be evaluated using the modified VOST methodology are presented in Table 2.1 along with their corresponding New York State Department of Environmental Conservation (NYSDEC) ambient short-term and annual (SGC and AGC) air guideline concentrations. The target compound list (TCL) for the 2009 monitoring program is consistent with the VOC constituents being evaluated in the thermal oxidizer testing portion of the Consent Decree. Decane was added as a targeted tentatively identified compound (TIC) during the 2003 monitoring program. In September 2007, the NYSDEC air guideline concentrations were revised. There are still no SGCs for 1,1,2,2-tetrachloroethane or decane.

Four (4) TCL compounds currently do not have assigned AGC values, and as such, an Interim AGC value was assigned to these compounds using NYSDEC DAR-1 policy guidance. The compounds benzaldehyde, chloroethyl vinyl ether, dibromochloromethane and 2/4 ethyltoluene (total) have been assigned an Interim AGC value of $0.1 \,\mu g/m^3$, which represents the DAR-1 Moderate Toxicity "de minimis" limit. The most up-to-date AGC/SGC guidelines are applied in this report.

TABLE 2.1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

PROGRAM TARGET COMPOUND LIST AND NYSDEC AMBIENT AIR GUIDELINE CONCENTRATIONS

THIRD QUARTER 2009

| | CAS | AIRS | SGC
ug/m3 | W
(SGC) | AGC
ug/m3 | W
(AGC) | Т | CODES | | | | | | | | | | | | |
|---|-------------------|------|--------------|------------|--------------|------------|---|-------|---|---|---|---|-----|---|-----|-----|--------|------|----|----|
| CHEMICAL NAME | NUMBER | CODE | | | | | | 1 | 2 | 3 | 4 | 5 | 6 7 | 8 | 9 1 | 0 1 | 1 12 | 2 13 | 14 | 15 |
| Acetone | 00067-64-1 | 4 | 180,000 | Z | 28,000 | Т | L | | | | Ι | | | | | | | | | |
| Benzaldehyde | 00100-52-7 | 4 | | | 0.10 | d | | | | | | | | | | | | | | |
| Benzene | 00071-43-2 | 4 | 1,300 | D | 0.13 | Е | Н | U | | Н | Α | | | | | | | | | |
| Bromodichloromethane | 00075-27-4 | 4 | | | 0.02 | D | Н | U | | | | | | | | | | | | |
| Bromoform | 00075-25-2 | 4 | | | 0.91 | Е | М | U | | Н | Ι | | | | | | | | | |
| Bromomethane | 00074-83-9 | 4 | 3,900 | D | 5.0 | Е | М | | | Н | Ι | | | | | | | | | |
| 2-Butanone | 00078-93-3 | 4 | 13,000 | D | 5,000 | Е | М | | | Н | | | | | | | | | | |
| Carbon Disulfide | 00075-15-0 | 6 | 6,200 | D | 700 | Е | М | | | Н | Ι | | | | | | | | | |
| Carbon Tetrachloride | 00056-23-5 | 4 | 1,900 | D | 0.067 | Е | Н | U | | Н | В | | | | | | | | | |
| Chlorobenzene | 00108-90-7 | 4 | | | 110 | Т | М | | | Н | Ι | | | | | | | | | |
| Chloroethane | 00075-00-3 | 4 | | | 10,000 | Е | L | | | Н | Ι | | | | | | | | | |
| Chloroethyl Vinyl Ether | 00110-75-8 | | | | 0.10 | d | | | | | | | | | | | | | | |
| Chloroform | 00067-66-3 | 4 | 150 | D | 0.043 | Е | М | U | | Н | Ι | | | | | | | | | |
| Chloromethane | 00074-87-3 | 4 | 22,000 | D | 90 | Е | М | | | Н | Ι | | | | | | | | | |
| Decane | 00124-18-5 | 4 | | | 700 | А | М | | | | | | | | F | 2 | | | | |
| Dibromochloromethane | 00124-48-1 | 4 | | | 0.10 | d | М | | | | | | | | | | | | | |
| 1,2-Dichlorobenzene (o) | 00095-50-1 | 4 | 30,000 | Z | 360 | Т | М | | | | Ι | | | | | | | | | |
| 1,3-Dichlorobenzene (m) | 00541-73-1 | 4 | 30,000 | А | 360 | А | М | | | | | | | | F | R F | 2 | | | |
| 1,4-Dichlorobenzene (p) | 00106-46-7 | 4 | | | 0.09 | D | М | U | | Н | Ι | | | | | | | | | |
| 1.1-Dichloroethane | 00075-34-3 | 4 | | | 0.63 | D | L | U | | Н | I | | | | | | | | | |
| 1.2-Dichloroethane | 00107-06-2 | 4 | | | 0.038 | Е | М | U | | Н | I | | | | | | | | | |
| 1,1-Dichloroethene | 00075-35-4 | 4 | | | 70 | D | M | - | | Н | | | | | | | | | | |
| cis-1,2-Dichloroethene | 00156-59-2 | 4 | | | 63 | D | M | | | | - | | | | | | | | | |
| trans-1,2-Dichloroethene | 00156-60-5 | 4 | | | 63 | D | M | | | | | | | | | | | | | |
| 1,2-Dichloropropane | 00078-87-5 | 4 | | | 4.0 | E | M | | | Н | | | | | | | | | | |
| 1,3-Dichloropropene,cis & trans isomers | 00542-75-6 | 4 | | | 0.25 | E | | U | | Н | Ι | | | | | | | | | |
| Ethylbenzene | 00100-41-4 | 4 | 54,000 | Z | 1,000 | E | М | | | н | I | | | | | | | | | - |
| 2/4 Ethyltoluene (total) | 611-14-3/622-96-8 | | | | 0.10 | d | | | | | - | | | | | | | | | |
| Freon 13 | 00075-72-9 | 4 | 68,000 | А | 1,000 | A | L | | | | | | | | F | R F | 2 | | | |
| 2-Hexanone | 00591-78-6 | 4 | 4,000 | Z | 48 | Т | | | | | | | | | | - | - | | | |
| Methylene Chloride | 00075-09-2 | 6 | 14,000 | D | 2.1 | Е | М | U | | Н | Ι | | | | | | | | | |
| 4-Methyl-2-Pentanone | 00108-10-1 | 4 | 31,000 | Z | 3,000 | Е | М | - | | Н | | | | | | | | | | |
| Styrene | 00100-42-5 | 4 | 17,000 | Z | 1,000 | Е | М | | | Н | Ι | | | | | | | | | |
| 1,1,2,2-Tetrachloroethane | 00079-34-5 | 4 | | | 16 | Т | М | | | Н | Ι | | | | | | | | | |
| Tetrachloroethene | 00127-18-4 | 4 | 1,000 | Н | 1.0 | Н | М | U | | Н | I | | | | | | | | | |
| Toluene | 00108-88-3 | 4 | 37,000 | D | 5,000 | Е | L | | | Н | Ι | | | | | | | | | |
| 1,1,1-Trichloroethane | 00071-55-6 | 6 | 68,000 | D | 1,000 | D | L | | | Н | | | | | | | \top | | | 1 |
| 1,1,2-Trichloroethane | 00079-00-5 | 4 | | | 1.40 | D | М | | | Н | I | | | | | | 1 | | 1 | |
| Trichloroethene | 00079-01-6 | 4 | 14,000 | Z | 0.50 | D | M | U | | Н | | | | | | | 1 | | 1 | |
| Trichlorofluoromethane | 00075-69-4 | 6 | 68,000 | A | 1,000 | A | L | - | | - | | | | R | R | | + | | - | 1 |
| Vinyl Chloride | 00075-01-4 | 4 | 180,000 | D | 0.11 | E | Н | U | H | Н | А | | | | | | + | | | 1 |
| Xylenes (Total) | 01330-20-7 | 4 | 4,300 | D | 100 | E | M | | | Н | | | | | | | + | - | + | |

TABLE 2.1 (Continued)

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

PROGRAM TARGET COMPOUND LIST AND NYSDEC AMBIENT AIR GUIDELINE CONCENTRATIONS

THIRD QUARTER 2009

NOTES: \* AGC/SGC Values updated September 2007 and still current as of December 2009.

| TOXICITY (T): | |
|-------------------------|---|
| | (H) HIGH Toxicity Contaminant. |
| (| (M) MODERATE Toxicity Contaminant. |
| (| (L) LOW Toxicity Contaminant. |
| WHO (W), Source of A | AGC/SGC Assignment: |
| | (A) AGC/SGC based upon NYSDEC "Analogy". |
| (| (D) NYSDEC derived AGC/SGC. |
| | (E) AGC based upon EPA IRIS data (RFC or Unit Risk). |
| (| (H) NYSDOH derived AGC/SGC. |
| | (T) AGC based upon AGCIH TLV. |
| (| (Z) SGC is based on AGCIH STEL. |
| | (d) No AGC is available, and therefore, the DAR-1 |
| | Moderate Toxicity "de minimis" limit was assigned. |
| | () There is no SGC for this compound. |
| codes | |
| | 11111 |
| 1234567890 |)12345: |
| codes, (Position 1): | |
| | (U) AGC equivalent to "one in a million risk". |
| codes, (Position 3): | |
| | (H) FEDERAL HAP identified by 1990 CAAA. |
| codes, (Positions 4 & 5 | |
| | (A) AGCIH Human Carcinogen. |
| | (B) AGCIH Suspected Human Carcinogen. |
| | (C) AGCIH Ceiling Limit. |
| | (G) AGCIH Simple Asphyxiant. |
| | (I) Refer to AGCIH Handbook. |
| | (K) Multiple TLVs assigned in AGCIH Handbook. |
| codes, (Position 8): | |
| | (Q) REFERENCED AGC adjusted for elemental assignment. |
| codes, (Position 9): | |
| | (Q) REFERENCED SGC adjusted for elemental assignment. |
| codes, (Position 10): | |
| | (R) AGC ASSIGNED TO REFERENCED COMPOUND. |
| codes, (Position 11): | |
| | (R) SGC ASSIGNED TO REFERENCED COMPOUND. |
| codes, (Position 12): | |
| | (Q) AGC ASSIGNED AS DIFFERENT ELEMENT(s) & ADJUSTED. |
| codes, (Position 13): | |
| | (Q) SGC ASSIGNED AS DIFFERENT ELEMENT(s) & ADJUSTED. |
| codes, (Position 14): | AN DEPENDED AND A PLANT A LEAR MOLECUL AD WELCHES |
| | (M) REFERENCED AGC adjusted for MOLECULAR WEIGHTS. |
| codes, (Position 15): | MO DEFEDENCED SCC addingted for MOI FOULAD WEICHTE |
| | (M) REFERENCED SGC adjusted for MOLECULAR WEIGHTS. |

2.2.2 Modified VOST Sampler

The VOST is one of three EPA methods identified to collect VOCs from point sources. A schematic diagram of the principal components of the standard VOST is shown in Figure 2.2. The VOST consists of a quartz or glass lined probe with a glass wool particulate plug, an isolation valve, an ice water cooled gas coiled condenser with a thermocouple placed at the outlet to monitor gas stream temperature, a pre-conditioned primary sorbent cartridge containing Tenax, an empty impinger for potential condensate collection, a fourth ice water cooled glass straight condenser, a pre-conditioned secondary sorbent cartridge containing Tenax and Anasorb<sup>®</sup> 747, a synthetic based carbon (3:1 by volume; approximately 1 gram of each), a silica gel drying tube, a calibrated rotameter, a sampling pump, a dry gas meter and a water circulation pump. Petroleum-based charcoal was utilized in the secondary sorbent cartridge in previous sampling events; however, during the last few years and for this quarterly event, Anasorb<sup>®</sup> 747, a synthetic based carbon, was used rather than the petroleum-based charcoal. This change in sorbent material was based on USEPA recommendations after conducting a study testing various specifications of VOST test method charcoal.

The standard VOST is not designed for field portable ambient air monitoring. It is designed to extract and concentrate volatile organic compounds with boiling points less than or equal to one-hundred degrees Centigrade (100°C) from stack gas effluents. The major difficulties with using a standard VOST in the field for ambient air quality work are the power requirements, setup and assembly problems and the potential breakage of glassware. As such, RTP modified the EPA standard VOST unit to make it portable and to account for air flow volumes necessary to achieve the analytical sensitivity required in both ambient air and subsurface soil gas sampling programs that are required by the Consent Decree. These VOST modifications include the use of a Teflon lined sampling cane, a pre-conditioned primary sorbent Tenax cartridge, an empty glass impinger for potential condensate collection, a pre-conditioned secondary sorbent Tenax and synthetic-based carbon (Tenax/Anasorb®) cartridge, a sealed T-connection port for monitoring backpressure across the sorbent cartridges, an in-line calibrated rotameter, a flow splitter, a personal sampling pump, a gel cell power supply, an insulated container, an ice pack and a high-low thermometer to measure the temperature extremes. Figure 2.3 illustrates the RTP modified VOST. An SKC sampling pump, portable battery backup and rotameter were used instead of the standard VOST flow controlled sampling pump and dry gas meter. Packed ice and a condensate impinger were used instead of the circulating ice water through two condensers in the EPA reference method.

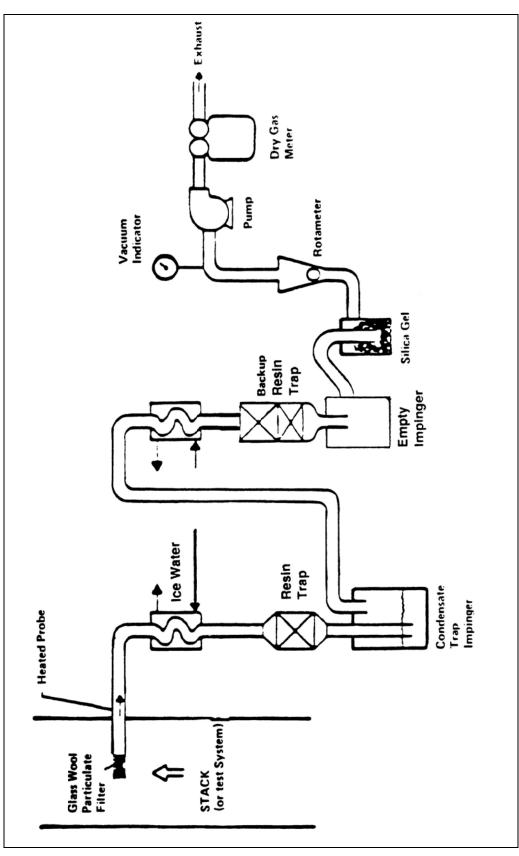

During the 2009 third quarter field event, a pre-conditioned Tenax cartridge and Tenax/Anasorb<sup>®</sup> cartridge in series were used for the ambient air samplers and were set to run at a flow rate of 0.25 Lpm.

FIGURE 2.2

TOWN OF OYSTER BAY SOLID WASTE DISPOSAL FACILITY

SCHEMATIC OF EPA REFERENCED VOLATILE ORGANIC SAMPLING TRAIN (VOST)

THIRD QUARTER 2009

Source: http://www.epa.gov/epaoswer/hazwaste/test/pdfs/0030.pdf

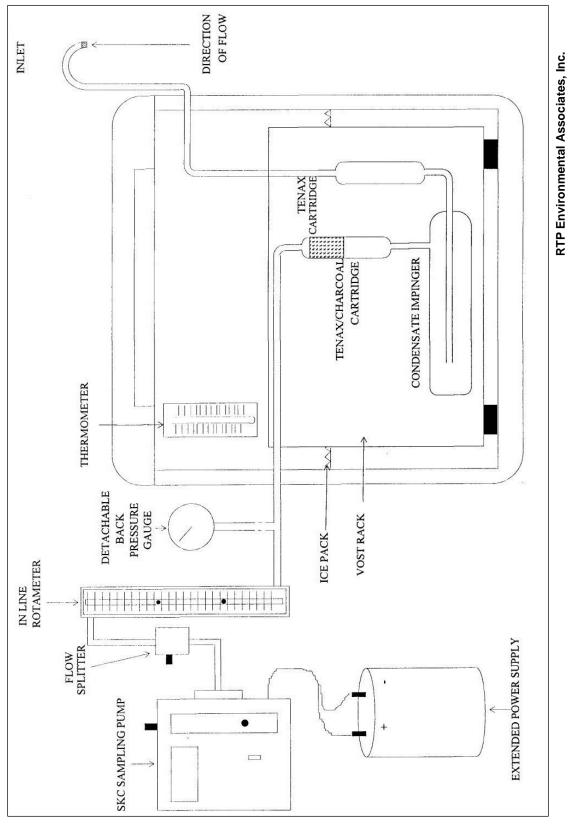

RTP Environmental Associates, Inc.

FIGURE 2.3

TOWN OF OYSTER BAY SOLID WASTE DISPOSAL FACILITY

MODIFIED PORTABLE VOST SAMPLER

The VOST Tenax and Tenax/Anasorb<sup>®</sup> sorbent cartridges used in the modified sampling train are similar to those used in the VOST EPA Reference Method 0030. In December 2003, RTP had elected to use a double Tenax/Anasorb<sup>®</sup> configuration to determine if compound breakthrough was occurring. Since this alteration and culminating in 2007, inconsistencies were noted in compound concentrations between collocated samples using the different sampling methods. Subsequently, RTP returned to the original Tenax and Tenax/Anasorb<sup>®</sup> design.

2.2.3 <u>VOST Sample Volume Selection</u>

The selection of sample volumes for the ambient air and soil gas samples for this study was investigated. In general, the sample volume or sample size is limited by the analytical instrumentation being applied at the host laboratory and the period of sampling required in the Consent Decree. Since sample quantitation is based on nanogram concentrations of constituents, appropriate sample volumes were necessary to provide the desired analytical sensitivity.

In general, analytical instruments can detect between a few nanograms to thousands of nanograms of individual constituents in a sample. The analytical instrument's lower quantitation limit was set at 5 nanograms for the majority of the TCL constituents in the ambient VOST samples and soil gas VOST samples. Five TCL constituents (acetone, bromoform, 2-butanone, 2-hexanone and 4-methyl-2-pentanone) in the ambient VOST samples and soil gas VOST samples were analyzed at an 8 nanogram lower quantitation limit due to the poor responses generally given by these constituents during laboratory analysis. Additional tentatively identified compounds (TICs); chlorotrifluoromethane (Freon 13), chloroethyl vinyl ether and decane were analyzed at levels equivalent to or greater than 25 nanograms, except for benzaldehyde, which has a minimum detection limit of 50 nanograms for all of the soil gas wells samples and 250 nanograms for all ambient samples. The upper quantitation limit (calibration limit) for a splitless analysis was nominally set at 1,000 nanograms for both ambient and soil gas VOST samples for TCL and TIC constituents. Therefore, in order to provide the correct mass loading of constituents on the sample substrate, sample volumes were approximated based on the history of compound constituent identifications and corresponding concentrations detected at these locations and on Photoionization Detector (PID) values as presented in Table 2.2. Since the PID has a lower limit of detection of 0.1 parts per million (ppm), it was not always possible to specify the exact sample volume required to consistently achieve the proper mass Therefore, to minimize constituent non-detection because of loading on each sampling cartridge. insufficient sample volume for ambient air samples, a moderate sample volume (approximately 360 liters) was selected.

It has been estimated that a maximum 10 liter sample volume (based on the approximate volume contained

TABLE 2.2

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

GENERAL RELATIONSHIP BETWEEN PHOTOIONIZATION DETECTOR (PID) READINGS AND SAMPLE VOLUME

THIRD QUARTER 2009

| PID READINGS (ppm) | SAMPLE VOLUME (liters) |
|--------------------|------------------------|
| <0.1 to 0.5 | 1,000 to 10 |
| 0.5 to 2 | 10 to 1 |
| 2 to 5 | 1 |
| 5 to 10 | 0.5 |
| 10 to 15 | 0.1 |
| 15 to 20 | 0.05 |
| >20 | 0.01 |

Notes:

- ppm: parts per million

- Actual sample volumes collected may not correspond to their respective PID readings listed above when a history of constituent concentrations at the sampling site has been established.

within a 30-inch soil gas well) would be appropriate for sampling shallow soil gas wells. Removing more than a 10 liter sample potentially would introduce ambient air from the surface into the well being sampled. Further, 10 liter sample volumes have been selected for the 10, 20, 30 and 40-foot deep subsurface wells at the M9 sampling location for comparison.

2.2.4 Other Sampling Equipment

The SKC sampling pumps used in this study are Model 224-PCXR7/8 universal exhaust pumps. These automatically shut down for low battery voltage and excessive back pressure. The accuracy of the sampling pumps is about +/- 5% of the set nominal flow rate.

SKC sampling pumps can be programmed to operate continuously and intermittently. They can be used to collect different total sample volumes at different flow rates. The pumps can be programmed to continuously draw samples at a desired flow rate over a preassigned time period. This capability is particularly important in the ambient air sampling event. It is possible to collect ambient air samples over a 24-hour total elapsed time period to give an integrated 24-hour average VOC concentration as specified in the Consent Decree. The only factor that limits the overall sampling time is the pump battery capacity. This capacity has been expanded by attaching a 6-volt gel cell battery to the pump battery, thus providing a longer lasting power source.

A Bios DryCal<sup>®</sup> DC Lite digital flow calibrator (Model DCL-MH) was used before and after this sampling event to calibrate eight (8) Supelco rotameters in conjunction with the SKC sampling pumps to a desired nominal flow rate. This was performed to establish a relationship between actual pump volume flow rates and their corresponding rotameter readings. Inconsistencies between pre-test and post-test rotameter calibrations could reveal a leak in a rotameter. The calibration data together with the Supelco rotameter readings recorded during sampling are then used to establish the precise sample volumes collected during each test. The Bios flow calibrator is a digital air flow meter consisting of a piston and a precision encoder system (two finely collimated infrared light beams). The piston rises at the rate of evacuation (or pressurization) and once the piston travels past the two infrared light beams a flow reading is calculated. The Bios flow calibrator has been checked against a NIST traceable standard and was last calibrated on February 6, 2009. The flow calibration sheets and the calibration certificate for the Bios unit are located in Appendix E. The combined accuracy of this calibrator and the Supelco rotameters used for the 2009 third quarter event is +/- 1%.

A calibrated PID is generally used during the monitoring program before and after each sampling event to measure the total ambient and soil gas VOC concentration. It is a hand held instantaneously reading

analyzer that measures the total concentration of all ionizable compounds in ppm. The PID can be used to verify and adjust the appropriate sample volumes according to the general relationship between PID readings and sample volumes shown on Table 2.2, at sampling sites where the compound constituent identifications and corresponding concentrations are unknown. However, the actual ambient air and soil gas well sample volumes collected during this sampling event may not correspond to their respective PID readings listed on Table 2.2 because a history of compound constituent identifications and corresponding concentrations at the Town of Oyster Bay Old Bethpage Solid Waste Disposal Complex. During the third quarter sampling event, PID measurements were taken at all of the 17 soil gas wells sampled and at the three (3) ambient air sampling locations.

2.3 Meteorological Data

Meteorological data was set up to be collected at two (2) separate locations during the ambient air quality, soil gas and pressure well tests. Meteorological instruments provide localized information on ambient weather conditions occurring during a test. The meteorological parameters of interest in this program include: wind speed, wind direction, temperature, relative humidity, turbulence, barometric pressure and precipitation. The main meteorological station, located atop the landfill, consist of a Climatronics All-in-One (A10) compact weather unit, which includes a sonic anemometer and Sonimometer<sup>™</sup> for wind speed and direction measurement, a multi-element temperature sensor, capacitive relative humidity sensor, barometric pressure sensor and an internal flux-gate compass. In addition to the A10, a tipping bucket rain gauge and vertical wind sensor (propeller type) are also part of the weather station. All data is recorded using a Campbell Scientific CR850 datalogger. The CR850 data logger is enclosed inside a portable instrument case while the remainder of the equipment is mounted on a 12-foot tripod.

The same meteorological parameters were set to be collected at an upwind station that was collocated with the upwind ambient air samplers. The upwind meteorological station consisted of the same data logging hardware as the other station. The data loggers from both stations calculate horizontal and vertical turbulence based on wind measurements. The stations were positioned atop and upwind of the landfill and operated for the entire 24-hour test. The data collected at both meteorological stations correlate well with other local observations, except as noted below.

Weather conditions for the September 21 to 22, 2009 third quarter sampling event were forecasted by the National Weather Service to include southerly winds becoming westerly at light speeds with falling barometric pressure. The actual wind conditions recorded onsite during the 24-hour test were variable. Recorded onsite conditions included winds ranging mostly from the southerly direction early during the test (1600 to 2000 hours), but then winds became light and variable. Recorded directions during the overnight

hours were southeasterly to northeasterly. The wind speed then picked back up at about 9AM and changed to a southerly and south southwesterly direction for the duration of the testing period. Wind speeds were light during the sampling period, with a majority of calm winds (speeds < 1.5 mph) recorded overnight at the upwind station and three calm hours at the atop station. The wind speeds were higher during daytime hours and decreased during the evening hours, and recorded wind speeds at the main station were higher than the upwind station. The barometric pressure was mostly steady during the testing period but ultimately ended up 0.03 inches of Hg below the starting pressure based on the upwind station.

The test period was likely influenced by the light to calm wind periods starting around 8:00 PM (2000 hours) on September 21<sup>st</sup> and continuing until around 9:00 AM (0900 hours) on September 22<sup>nd</sup>. Winds during this period at the top of the landfill were recorded at low speeds from varied easterly directions. Winds at the upwind site were consistently below 1 mph and the directions recorded varied greatly from hour to hour. Upwind wind speeds diminished from 4.2 mph down to 0.8 mph by 8:00 PM (2000 hours) and back to 4.8 mph by 1000 hours. The horizontal distance between the two stations was approximately 3,500 feet. Under such conditions, there is potential very good probability that landfill emissions were caught in drainage flows and impacted the upwind station.

Based on the wind direction observations recorded during the sampling period, the downwind samplers D1/D2 and D3 were under the influence of landfill sources for a only 12 hours of the 24-hour test period. Some observed wind directions, particularly at the beginning of the test and during the light wind speed period overnight, suggest a good potential for an influence on the downwind samples from offsite sources may have been present in the downwind samplers during periods of easterly and northerly winds. Also, it may have been possibly that the upwind samplers were influenced by the landfill during the periods of varying calm winds overnight, as well as sources to the north and east of the landfill. The above conditions are typical of a strong temperature inversion, which began at roughly 10:00 PM (2200 hours) on September 21<sup>st</sup> and lasted until 9:00 AM (0900 hours) the following morning. A summary of the meteorological monitoring data for the sampling period is provided in Appendix A.

3.0 SAMPLING AND ANALYSIS

3.1 Background

The program's scope of work for sampling and analysis of ambient VOC levels in the vicinity of the Old Bethpage Landfill is principally guided by the Consent Decree. As mentioned in Section 2.0, the EPA reference sampling method was modified to account for site conditions and monitoring requirements. The sampling locations specified in the Consent Decree were adjusted slightly to account for expected meteorological conditions during the 24-hour sampling period.

Analytical laboratory services provided mass loading levels on specific substrates within the sampling cartridges from which concentrations were derived. Thus, it is important to determine the pollutant mass contained in each sample from both soil gas wells and ambient air locations. Traditionally, a portable ambient air and soil gas VOC detection monitor (PID), having a detection range down to 0.1 ppm, is used in this case to assist in estimating sample loadings. Historical data was used to generally define what specific ambient VOC levels were to be expected at the soil gas and ambient downwind sampling locations.

3.2 Ambient Air Sampling

The 2009 third quarter ambient air sampling event was conducted on September 21 through September 22, 2009. Three (3) locations at the Old Bethpage Landfill were selected as illustrated on Figure 2.1, based on weather forecast data that indicated persistent winds from the southerly to westerly direction and site accessibility. All ambient air samples were collected using the modified VOST sampler at a calibrated flow rate of approximately 0.25 Lpm. The critical sampling parameters for the ambient VOST samplers and subsurface soil gas samplers are summarized in Table 3.1.

The ambient sampling trains were partially assembled at the RTP Westbury office according to protocol prior to taking the five ambient air VOST samplers to their respective field locations. The Supelco rotameters were calibrated; the SKC sampling pumps and gel cell battery packs were charged. Both the pumps and battery packs were positioned and connected, aluminum cartridge holders were positioned, sampling canes were mounted onto coolers and the sampling train inlets and exhausts were sealed. The VOST cartridges were removed from their protective cases and then the end caps and fittings were removed. The sample cartridges were installed and the samplers were then taken to their respective positions as shown in Figure 2.1. Leak checks were performed prior to sample initiation and these data were recorded on individual field data sheets located in Appendix D. The sampler design for the tests has been described in Section 2.2. The samplers for location U1/2 were collocated on the 15<sup>th</sup> hole fairway of the Bethpage State Black Golf Course approximately 200 feet west of Round Swamp Road. Samplers for location D1/2 were collocated approximately 75 feet southwest of the southwestern corner of the RAP building. Sampler D3 was located on a landfill haul road approximately 400 feet east of Claremont Road. Sampler locations for sites U1, U2, D1, D2 and D3 are shown in Figure 2.1.

TABLE 3.1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SUMMARY OF AMBIENT AIR AND SUBSURFACE SOIL GAS SAMPLING

THIRD QUARTER 2009

| SITE ID <sup>1</sup> | SAMPLE ID | TESTING
DATE | DURATION
(minutes) | SAMPLING
HEIGHT
(inches) | NOMINAL
FLOWRATE
(l/min) | DESIRED
QUANTITY
(liter) | SAMPLE
VOLUME <sup>2</sup>
(liter <sub>STD</sub>) |
|----------------------|------------|-----------------|-----------------------|--------------------------------|--------------------------------|--------------------------------|--|
| U1 | OBL09-3:U1 | 9/21/09-9/22/09 | 1,037 | 40 | 0.25 | 360 | 225 |
| U2 | OBL09-3:U2 | 9/21/09-9/22/09 | 1,440 | 40 | 0.25 | 360 | 270 |
| D1 | OBL09-3:D1 | 9/21/09-9/22/09 | 1,440 | 40 | 0.25 | 360 | 347 |
| D2 | OBL09-3:D2 | 9/21/09-9/22/09 | 1,224 | 40 | 0.25 | 360 | 266 |
| D3 | OBL09-3:D3 | 9/21/09-9/22/09 | 1,440 | 40 | 0.25 | 360 | 361 |

SUMMARY OF SUBSURFACE SOIL GAS SAMPLING

| | | TESTING | DURATION | WELL
DEPTH | NOMINAL
FLOWRATE | DESIRED
OUANTITY | SAMPLE
VOLUME <sup>2</sup> |
|------------|----------------|-----------|---------------|-----------------|---------------------|---------------------|-------------------------------|
| SITE ID(1) | SAMPLE ID | DATE | (minutes) | (inches) | (l/min) | (liter) | (liter <sub>STD</sub>) |
| F1 | OBL09-3:F1 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.19 |
| M2 | OBL09-3:M2 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.03 |
| M4 | OBL09-3:M4 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.04 |
| M5 | OBL09-3:M5 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.34 |
| M6 | OBL09-3:M6 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.04 |
| M9 (10') | OBL09-3:M9(10) | 9/22/2009 | 10 | 120 | 1.0 | 10 | 10.07 |
| M9 (20') | OBL09-3:M9(20) | 9/22/2009 | 10 | 240 | 1.0 | 10 | 10.79 |
| M9 (30') | OBL09-3:M9(30) | 9/22/2009 | 10 | 360 | 1.0 | 10 | 10.83 |
| M9 (40') | OBL09-3:M9(40) | 9/22/2009 | 10 | 480 | 1.0 | 10 | 10.11 |
| M13 | OBL09-3:M13 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.93 |
| M16 | OBL09-3:M16 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.16 |
| M21 | OBL09-3:M21 | WELL | NOT SAMPLED D | UE TO INACCESSI | BILITY CAUSED B | Y CONCRETE W | ALL |
| M22 | OBL09-3:M22 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.16 |
| M28 | OBL09-3:M28 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.16 |
| M31 | OBL09-3:M31 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.20 |
| M34 | OBL09-3:M34 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.24 |
| M37 | OBL09-3:M37 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.08 |
| M39 | OBL09-3:M39 | 9/22/2009 | 10 | 30 | 1.0 | 10 | 10.08 |

NOTES:

<sup>1</sup> See Figure 2.1 for ambient air and soil gas sampling locations.

U1/U2: Ambient upwind samplers collocated on the 15th hole Fairway of the Bethpage State Black Golf Course

approximately 200 feet west of Round Swamp Road.

D1/D2: Ambient downwind samplers collocated approximately 75 feet southwest of the southwestern corner of the RAP building.

D3: Ambient downwind sampler was located on a landfill haul road approximately 400 feet east of Claremont Road.

 $^2$ Corrected to standard conditions; 25 $^{\rm o}$ C and 29.92 in. Hg.

The ambient air samplers were set to continuously collect at a 0.25 Lpm nominal flow rate over a 24-hour period. The rotameter were set at 0.25 Lpm in order to allow the collection of a total air volume of approximately 360 liters over the 24-hour period. To achieve this low flow, an in-line sampling manifold was constructed and installed with two (2) SKC single stage universal constant-flow controllers in parallel.

RTP has replaced each of the multi-port flow splitters used in earlier programs with two (2) connected single port flow splitters to allow for more stable sampling at lower flow rates. A Supelco low flow rotameter was also installed in-line, downstream of the sorbent cartridges, prior to the flow controller and SKC pump inlet. The constant flow controller was positioned in-line, upstream of the SKC pump and downstream of the Supelco rotameter, with the port open to the atmosphere. The adjustment pod to the constant-flow controller port was adjusted to register the desired 0.25 Lpm flow rate on the in-line rotameter. The remaining constant-flow controller port was adjusted to maintain the total flow to the SKC sampling pump within the pump operating range. This would allow for the continuous collection of an integrated nominal 360 liter sample over the 24-hour sampling period. Sample volumes are presented in Table 3.1.

It is worth noting that flows for this third quarter sampling effort dropped below the desired flow rate, particularly sampler D2, and fluctuated similar, but not as severely as during the second quarter tests although samplers U1 and D2 were plagued with flow fault issues. It is hypothesized that dirt, moisture and/or small foreign objects, such as pebbles, could have been sucked into the flow splitter and obstructed the ambient air flow. RTP has outfitted the samplers with particulate filters in order to filter air going into the splitter so that particulates such as large dirt particles and small foreign objects cannot obstruct the flow of ambient air into the samples during future quarterly efforts. Back pressures across the media were slightly elevated during this sampling period; however, the filters may not necessarily be the cause. RTP has since had several sampling pumps repaired/recalibrated and will continue to monitor the samplers for any potential flow issues.

Total ambient VOC concentrations were monitored at the start and finish of the sampling period at each ambient site using a PID. Total ambient VOC concentrations were measured at 0.0 ppm, 1.5 ppm and 1.4 ppm at the initiation of sampling at U1/2, D1/2 and D3, respectively; therefore, flow rates were initially set at 0.25 Lpm for all ambient samplers. These flow rates would achieve the desired range in sample volumes necessary for analytical sensitivity requirements over the 24-hour period. The sampling volumes recorded during the third quarter 2009 were mostly within the acceptable range with the exception of upwind sample U1, which fell below the 75% collection scope due to pump faults and low flow volumes. Likewise, the

decrease in the flows recorded during the sampling period caused U2 and D2 samplers to be significantly below the desired volume captured.

Periodic checks were made at all ambient air sampling locations. Pump operations were monitored and VOST train integrity and station flow rates at the samplers were also checked. In all, each sampler was checked approximately every 1 to 6 hours during the sampling period. Rotameter readings during these site checks were either within established ranges or adjusted to be within the operating window for all ambient samplers. During these periodic checks, smoke from activities at the Nassau County Fire Service Academy were noted roughly around 10:40 AM (1040 hours) at the upwind station and at around 10:45 AM (1045 hours) at the collocated downwind sampler location (D1/2). Samplers U2, D1 and D3 ran continuously for the total 24-hour sampling period, but samplers U1 and D2 were unable to run for the full sampling period due to equipment failures at both locations. Pump elapsed run time readings were recorded throughout the sampling period for all sites. A chronology of the ambient air sampling event is presented in Appendix B.

Upon completion of sampling, leak checks were performed and the VOST cartridges were removed, sealed and placed in their respective labeled shipping tubes. All sorbent cartridges were inventoried, packed and shipped to the analytical laboratory as per established protocol. No collectable condensate was present, and therefore, no condensate samples were collected or reported.

The analytical laboratory for this event was H2M Labs, Inc (H2M). The laboratory received all ambient sorbent cartridges in good condition. The analytical results along with the data observed during the sampling event will be discussed in Section 4.0. The H2M analytical report is provided in Appendix C. Field data forms and equipment calibrations are provided in Appendix D and E, respectively.

3.3 Soil Gas Sampling

The soil gas sampling elements of the Consent Decree require soil gas samples to be extracted from several 30-inch deep subsurface gas wells and from 10, 20, 30 and 40-foot deep subsurface gas wells at one location (M9). The Decree does not specify the sample volume, constituents to be analyzed, time period for collection, conditions for collection, analytical instrumentation, minimum level of detection or other parameters necessary to specifically define the nature of the tests and the applicability of test results. Based on the elements of the work scope in the Consent Decree, RAP Attachment 2, RTP developed the protocols and procedures outlined in Section 2.2 of this report which were based on protocols approved by the NYSDEC.

The first step in the soil gas test was to assemble the sampling trains onsite. The sampler design used for the

soil gas samples is similar to that used for the ambient air samples. However, the design differs slightly because flow splitters are not used in parallel with the rotameter and back pressure readings are not taken. This design is used to achieve a nominal flow rate of 1 Lpm. Furthermore, the sample probe was modified to include a 36-inch long, <sup>1</sup>/<sub>4</sub>-inch diameter, stainless steel probe that was attached to a Teflon sampler inlet line in place of the sampling cane. Prior to use, the stainless steel sample probes were heated to +500°F to decontaminate the probes. They were then individually wrapped in aluminum foil and sealed to prevent inadvertent exposure to trace VOCs. The rotameters, in conjunction with the sampling pumps, were calibrated for specific flow rates at each soil gas sampling point based on data obtained from previous quarterly tests. Total well VOC concentrations were measured using a PID before and after the soil gas test at all of the 17 soil gas wells sampled during the third quarter testing period. Results of the PID readings are reported in the chronology in Appendix B.

Soil gas samples were collected at F1, M2, M4, M5, M6, M13, M16, M22, M28, M31, M34, M37, M39 and M9 (10, 20, 30 and 40-foot depths) as shown on Figure 2.1 and summarized in Table 3.1. As previously stated, soil gas well M21 was not sampled during this third quarter sampling period due to the construction of a wall along Claremont Road back in 2003 making the well location inaccessible. Future consultation between the Town and the NYSDEC may determine if soil gas well M21 will be relocated and sampling resumed. All 30-inch soil gas wells were temporarily sealed with Teflon tape and a Tygon tubing/metal plug at least 24-hours prior to the collection of the soil gas samples. M9 wells have individual shut-off valves which were all closed prior to the sampling event. Due to some sampling inconsistencies and insect intrusion during the previous quarterly tests, soil gas wells M13, M34 and M37 were reset for this third quarter test of 2009.

RTP has developed a general procedure for collecting a soil gas sample. First, the soil gas well seal is removed from the well and the well is purged of stagnant gases. This is accomplished by using a pump, operated at 1 Lpm for 30 seconds to extract the stagnant well gases in the 30-inch well. A sampling pump is also used to extract stagnant gases from the M9 wells for longer intervals. The duration of pump operation at the M9 cluster well depends on the depth of each soil gas well. After extracting the stagnant well gas, a well concentration reading was taken with the PID just prior to sampling (ambient VOC concentrations are also typically measured using the PID at this time). The stainless steel sampling probe is attached to the inlet of the VOST train. A leak check is performed. The probe is then inserted into the well to a depth of approximately 24-inches and sealed from the atmosphere using a Teflon screw-on nut and ferrule. Sampling commences when the sampling pump attached to the outlet of the VOST sampling train is activated. Two (2) VOST sampling trains were used during this effort to sample a total of 17 soil gas wells.

The sampling pumps during soil gas sample collection were nominally set at a rate of 1.0 Lpm and run for 10 minutes at each well site. This procedure resulted in approximately 10 liters of soil gas being drawn through the VOST cartridges at each well. At the end of the sampling period at each well, a leak check was performed. As stated earlier, initial and final VOC measurements were recorded from all of the 17 wells, both in the ambient air and inside the well. Ambient VOCs and well VOCs were measured at 0.0 ppm at some locations, although some locations measured small levels of VOCs. These readings could also be caused by moisture in the wells which was possible since rain had occurred within days prior to the test.

A few atypical conditions were present during this third quarter sampling effort. Additionally, smoke was noted near soil gas well M5 related to FSA activities at roughly 9:00 AM (0900 hours) and at the upwind sampling location around 10:40 AM (1040 hours). Also, a sticky, gel-like substance was discovered on the end of the probe after being pulled up from sampling soil gas wells M16 and M39. In addition, soil gas well M13 needed to be pulled up and reset. The well was repaired and capped by Town staff with electrical tape. RTP also noted the tape was odorous. A site specific description of the events which occurred at these respective wells is provided in the chronology (Appendix B).

During the second quarter test of 2009, RTP noted that the PID may have been experiencing slight drift rather than recording actual detected concentrations. It was suspected that there may have been a loose connection. During this third quarter test, the PID may have indeed been drifting slightly; however, the abnormally high readings recorded, particularly at soil gas wells M16, M22, M28, M31, M34, M37 and M39, do not appear to be the result of drift. In previous tests, the PID monitor appeared to be reacting to the level of humidity present in the soil gas well, and this may again be the case during the third quarter since high VOC levels were not reported in the laboratory data from these sites. RTP will continue to monitor these PID readings in the future for suspected inaccuracies. Despite this minor inconsistency, the rest of the results seem fairly typical when compared to previous efforts in 2008 and 2009. As previously stated, the results are reported in Appendix B.

Following the sampling of a well, the VOST cartridges were removed from the train, labeled and packed for shipment to the analytical laboratory. The laboratory received all soil gas sorbent cartridges in good condition and samples were recovered normally.

A chronology of the soil gas sampling is presented in Appendix B. The H2M analytical summary report is provided in Appendix C. Field data forms and equipment calibrations are provided in Appendices D and E, respectively.

3.4 Analytical Laboratory Procedures

H2M provided the gas chromatograph-mass spectrographic (GC/MS) analytical services to identify and quantify all constituents listed on the TCL and plus additional TICs. H2M applied EPA SW846 Method 5041 in conjunction with EPA SW846 Method 8260 for analyzing the collected samples. Method 5041 provides the methodology for determining volatile organic compounds collected on Tenax and Tenax/Charcoal (Anasorb®) sorbent cartridges. Method 8260 is used to quantify volatile organic compounds with boiling points below 200 degrees Centigrade and is based on purge-and-trap GC/MS procedures. Further details of the analyses are provided in the analytical results in Appendix C.

New desorbed VOST cartridges were supplied by Air Toxics Ltd. (Air Toxics) for use in this study. As previously stated, RTP has been using Tenax/Anasorb<sup>®</sup> back half VOST cartridges in lieu of Tenax/Charcoal back half VOST cartridges over the past several years and for this third quarter sampling effort. This decision was based on recommendations from an USEPA publication, which studied different VOST trap charcoal specifications. Anasorb<sup>®</sup>, known for its organic vapor adsorbent properties and spherical shape was chosen over powdered charcoal, which has been used in the past. The use of Anasorb<sup>®</sup> began during the 2005 third quarter test. The cartridges are conditioned by Air Toxics and were shipped with a verification certificate. Upon receipt at RTP, the sampling cartridges were examined for breakage and kept in cool storage until their use in the field program.

H2M was forwarded a target compound list of VOCs for this monitoring program. RTP's laboratory letter suggested sample splitting and breakthrough results for a limited set of VOST cartridge pairs be reported prior to analyzing the remaining samples. RTP requested that splitless analyses be performed on field blank samples FB1, FB2 and FB3 prior to any other sample analyses for the presence of any unforeseen contamination. RTP monitors blank cartridge concentrations for contamination and QA/QC purposes. In addition, RTP recommended a separate front and back cartridge analysis of ambient samples U2, D2 and D3 and soil gas wells M9(30) and M39 were performed to determine breakthrough and mass loading. Based on the initial results, it was recommended that H2M perform a non-dilution (splitless) combined front and back sample analysis for all remaining ambient air and soil gas samples.

4.0 DISCUSSION OF RESULTS

4.1 Ambient Air Concentrations

For the 2009 third quarter sampling event at the Old Bethpage Landfill, the ambient air concentrations at selected sites were monitored for 24 consecutive hours on September 21 and 22, 2009. The sites have been

identified and the monitoring and analytical methods were discussed in preceding sections of this report. Laboratory analytical results provided as mass are combined with other field data and translated into ambient air concentrations in this section.

Table 4.1 contains a summary of the air sample analytical results. These values are in micrograms per standard cubic meter (μ g/std-m<sup>3</sup>) and have been adjusted for flow volumes (as calibrated from the digital flow meter), temperature and barometric pressure. Table 4.1 also includes the lower quantitation limit (LQL) for each sample and the current AGCs and SGCs (current as of December 2009).

A total of seven (7) TCL constituents exceeded the level of their assigned AGC values as shown in Table 4.1. Compounds include: benzene, carbon tetrachloride, chloroform, 1,4-dichlorobenzene (p) and 2/4ethyltoluene, tetrachloroethene and trichloroethene. Benzene, carbon tetrachloride, chloroform and 2/4ethyltoluene exceeded their respective AGC guideline values in all five (5) ambient samples. 1,4dichlorobenzene (p) and trichloroethene exceeded their assigned respective AGC standards at all ambient samples except U1. Tetrachloroethene exceeded its assigned AGC standard at samples D1 and D2. The Interim AGC value of 0.1 μ g/m<sup>3</sup> for 2/4-ethyltoluene were assigned based on the Moderate Toxicity de minimis concentration, as per NYSDEC DAR-1 policy. One (1) TIC, C3 substituted benzene, was detected in excess of its respective AGC guideline value at upwind sample U2. The sample constituent concentrations appear reasonably representative of the areas tested based on preceding quarterly tests.

It is important to note that a single 24-hour average value greater than an AGC should not be interpreted as exceedance of the stated annual ambient air guideline. Further, concentrations of many compounds detected in the upwind samples were similar, if not greater, when compared to the downwind samples. Shaded values in Table 4.1 indicate an exceedance of the level of the assigned AGC. The analytical results are presented in Appendix C.

The short-term guideline concentrations (SGCs) are also provided in Table 4.1 for all TCL constituents and additional TICs (where available). In order to compare the observed 24-hour concentrations to the SGC values, the 24-hour values would need to be divided by a 0.4 adjustment factor. No calculated short-term values exceed the SGC guidelines when the observed values are adjusted to represent worst case 1-hour concentrations.

One (1) target compound, methylene chloride, was detected in a minor amount in the ambient field blank sample. Methylene chloride (as well as acetone) is a known laboratory contaminant that is almost always detected in all ambient samples (as well as soil gas samples), including field blank samples during quarterly

TABLE 4.1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

AMBIENT AIR VOST SAMPLE RESULTS

THIRD QUARTER 2009

| | | 24-HI | R AMBIENT AI | R SAMPLE | | BLA | ANK | CURRENT | 24-HOUR |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|------|---------------|---------------|
| SAMPLE IDENTIFICATION <sup>1</sup> | U1 | U2 | D1 | D2 | D3 | FB3 | TB1 | AGC | SGC^4 |
| LOWER QUANTITATION LIMIT (LQL) | 0.0222 | 0.0370 | 0.0144 | 0.0376 | 0.0277 | 5 | 5 | | |
| PRACTICAL QUANTITATION LIMIT (PQL) | 0.0356 | 0.0593 | 0.0231 | 0.0602 | 0.0443 | 8 | 8 | | |
| TARGETED TIC LQL | 0.1111 | 0.1852 | 0.0720 | 0.1880 | 0.139 | 25 | 25 | | |
| VOC COMPOUND NAME | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (ng) | (ng) | $(\mu g/m^3)$ | $(\mu g/m^3)$ |
| Acetone <sup>2</sup> | 0.28 | 0.30 | 0.35 | 0.45 | 0.33 | | | 28,000 | 180,000 |
| Benzaldehyde <sup>3</sup> | | | | | | | | 0.10 | |
| Benzene | 0.38 | < 0.57 | 0.43 | < 0.58 | < 0.46 | | | 0.13 | 1,300 |
| Bromodichloromethane | | | | | | | | 0.02 | |
| Bromoform <sup>2</sup> | | | | | | | | 0.91 | |
| Bromomethane | | | | | | | | 5.00 | 3,900 |
| 2-Butanone <sup>2</sup> | 0.20 | < 0.23 | 0.58 | 0.57 | 0.37 | | | 5,000 | 13,000 |
| Carbon Disulfide | | | | | | | | 700 | 6,200 |
| Carbon Tetrachloride | 0.71 | 0.49 | 0.58 | 0.53 | 0.39 | | | 0.067 | 1,900 |
| Chlorobenzene | | | | | | | | 110 | |
| Chloroethane | | | | | | | | 10,000 | |
| Chloroethyl Vinyl Ether <sup>3</sup> | | | | | | | | 0.10 | |
| Chloroform | 0.12 | 0.15 | 0.11 | 0.14 | 0.10 | | | 0.043 | 150 |
| Chloromethane | 0.05 | < 0.06 | 0.03 | < 0.06 | < 0.04 | | | 90 | 22,000 |
| Dibromochloromethane | | | | | | | | 0.10 | |
| 1,2-Dichlorobenzene (o) | | | | | | | | 360 | 30,000 |
| 1,3-Dichlorobenzene (m) | | | | | | | | 360 | 30,000 |
| 1,4-Dichlorobenzene (p) | 0.07 | < 0.11 | 0.12 | < 0.15 | 0.15 | | | 0.09 | |
| 1,1-Dichloroethane | | | 0.02 | | | | | 0.63 | |
| 1,2-Dichloroethane | | | | | | | | 0.038 | |
| 1,1-Dichloroethene | | | 0.06 | < 0.11 | < 0.06 | | | 70 | |
| cis-1,2-Dichloroethene | | | 0.21 | 0.34 | 0.20 | | | 63 | |
| trans-1,2-Dichloroethene | | | | | | | | 63 | |
| 1,2-Dichloropropane | | | | | | | | 4.0 | |
| 1,3-Dichloropropene, cis & trans isomers | | | | | | | | 0.25 | |
| Ethylbenzene | 0.20 | < 0.36 | 0.29 | < 0.38 | < 0.35 | | | 1,000 | 54,000 |
| 2/4-Ethyltoluene (total) | 0.62 | < 0.98 | 0.84 | < 1.00 | < 0.96 | | | 0.10 | |
| Freon 13 <sup>3</sup> | | | | | | | | 1,000 | 68,000 |
| 2-Hexanone <sup>2</sup> | | | | | | | | 48 | 4,000 |
| Methylene Chloride | 0.19 | 0.46 | 0.22 | 0.45 | 0.32 | 43 | | 2.10 | 14,000 |
| 4-Methyl-2-Pentanone <sup>2</sup> | | | 0.07 | < 0.09 | < 0.09 | | | 3,000 | 31,000 |
| Styrene | | | | | | | | 1,000 | 17,000 |
| 1,1,2,2-Tetrachloroethane | | | | | | | | 16 | |
| Tetrachloroethene | 0.24 | < 0.54 | 1.10 | < 1.33 | < 0.84 | | | 1.00 | 1,000 |
| Toluene | 1.07 | < 1.98 | 1.47 | < 2.09 | < 1.81 | | | 5,000 | 37,000 |
| 1,1,1-Trichloroethane | | | 0.20 | < 0.17 | < 0.11 | | | 1,000 | 68,000 |
| 1,1,2-Trichloroethane | | | | | | | | 1.40 | |
| Trichloroethene | 0.15 | < 0.76 | 4.32 | 4.97 | < 3.89 | | | 0.50 | 14,000 |
| Trichlorofluoromethane | 0.93 | 0.90 | 0.84 | 0.98 | 0.80 | | | 1,000 | 68,000 |
| Vinyl Chloride | | | | | | | | 0.11 | 180,000 |
| Xylenes (Total) | 0.93 | < 1.61 | 1.30 | < 1.67 | < 1.51 | | | 100 | 4,300 |
| Decane <sup>3</sup> | 0.17 | < 0.37 | 0.24 | < 0.36 | < 0.37 | | | 700 | |

TABLE 4.1 Continued

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

AMBIENT AIR VOST SAMPLE RESULTS

THIRD QUARTER 2009

| SAMPLE TYPE | | | 24-HR | AMBIENT AII | R SA | MPLE | | | BLA | NK | CURRENT | 24-HOUR |
|---------------------------------------|--------------------------|-----|------------------------|--------------------------|------|-------------------------|-----|------------------------|------|------|---------------|---------------|
| SAMPLE IDENTIFICATION (1) | U1 | | U2 | D1 | | D2 | | D3 | FB3 | TB1 | AGC | SGC^4 |
| ADDITIONAL TIC LQL | 0.111 | | 0.185 | 0.072 | | 0.188 | | 0.139 | 25 | 25 | | |
| VOC COMPOUND NAME | (µg/std-m <sup>3</sup>) | (µg | g/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (L | ug/std-m <sup>3</sup>) | (με | g/std-m <sup>3</sup>) | (ng) | (ng) | $(\mu g/m^3)$ | $(\mu g/m^3)$ |
| 2-Methyl-pentane | 1.51 | | 3.19 | 2.36 | | 2.78 | | 2.63 | | | 4,200 | 350,000 |
| Branched Alkane (DEL) | 1.29 | | 3.89 | | | 2.29 | < | 0.68 | | | | |
| C3 subst. Benzene | | | | | < | 0.77 | < | 0.73 | | | 0.13 | 1,300 |
| 2-Methyl-butane | 1.20 | | 2.30 | 1.99 | < | 1.56 | < | 1.04 | | | 42,000 | |
| Hexane | 1.33 | < | 3.57 | 2.45 | < | 3.40 | < | 3.67 | | | 700 | |
| alpha-Pinene isomer (RT: 11.85-12.08) | | | | 1.44 | < | 1.48 | < | 0.96 | | | 270 | |
| Isobutane | | < | 0.94 | | < | 0.73 | | | | | 57,000 | |
| Dichlorodifluoromethane | 1.11 | < | 1.43 | | < | 0.92 | < | 0.82 | 31.0 | | 12,000 | |
| 1,1-Dichloro-1-fluoroethane | | | | | | | < | 0.82 | | | | |
| Unknown (RT: 3.31-15.49) | 1.38 | | 1.89 | 1.59 | | 1.50 | < | 0.68 | | | | |
| 2-Methyl-Hexane | 0.84 | < | 2.35 | 1.44 | < | 2.09 | < | 2.26 | | | | |
| Butane | | | | 0.98 | < | 0.96 | < | 0.68 | | | 57,000 | |
| Ethane, 1-chloro-1, 1-difluoro- | | | | | | | < | 0.87 | | | | |

NOTES:

<sup>1</sup>See Figure 2.1 for ambient air sampling locations.

<sup>2</sup> An 8 (splitless) nanogram practical quantitation limit has been assigned to these compounds due to their poor responses during laboratory analysis.

<sup>3</sup> Targeted Tentatively Identified Compound (TIC). As reported by the laboratory, Targeted TICs have a Lower Quantitation Limit that is

five (5) times the targeted compound Lower Quantitation Limit.

<sup>4</sup> This 24-hour guideline concentration was calculated by multiplying the current SGC value (last revised September 2007 and still current as of

December 2009) by 0.4 (EPA averaging time adjustment factor).

U1/U2: Ambient upwind samplers collocated on the 15th hole Fairway of the Bethpage State Black Golf Course

approximately 200 feet west of Round Swamp Road.

D1/D2: Ambient downwind samplers collocated approximately 75 feet southwest of the southwestern corner of the RAP building.

D3: Ambient downwind sampler was located on a landfill haul road approximately 400 feet east of Claremont Road.

- All values are reported in micrograms per standard cubic meter (µg/std-m<sup>3</sup>) except for the field blank and trip blank mass loading results which are reported in nanograms (ng).

- Blank values:

Targeted Compounds and Targeted TICs- All blank values are below the Lower Quantitation Limit, Practical Quantitation Limit (applies to Acetone, Bromoform, 2-Butanone, 4-Methyl-2-Pentanone and 2-Hexanone), or the Targeted TIC Lower Quantitation Limit (applies to Chloroethyl vinyl ether, Freon 13 and Decane). Benzaldehyde has a LQL 2 times the targeted TIC LQL.

Additional Tentatively Identified Compounds- All blank values are either below the Targeted TIC Lower Quantitation Limit where less than six (6) additional TICs are reported for a particular sample or below the lowest reported additional TIC value, where six (6) or more additional TICs are reported for a particular sample.

- Values in shaded areas are at or exceed the level of the current (last revised September 2007 and still current as of December 2009) and/or previous ambient air Annual Guideline Concentration (AGC) values.

- Less than values (<) are used where the Lower Quantitation Limit, the Target TIC Lower Quantitation Limit, or the Practical Quantitation Limit is averaged with the reported values.

- Freon 13 is listed as Chlorotrifluoromethane in the analytical results, Appendix C.

- $(\mu g/std-m^3)$: micrograms per standard cubic meter

- (ng): nanograms

monitoring events. The concentration of dichlorodifluoromethane detected in the ambient field blank is relatively small., although it signals a very minor degree of contamination may have been present. It is unknown if the contamination was present on the media prior to sampling commenced, was caused by handling during the test, or was the result of laboratory contamination. The field blank concentrations are reported in Appendix C. These concentrations were not subtracted from the reported ambient air or soil gas concentrations so that conservative concentrations would be reported. It is difficult to quantify the difference between the concentrations detected on the blank samples that may be caused by laboratory contamination and the concentrations that may be associated with OBSWDC or other industrial activities, but in this case the net effect is expected to be minimal due to the low values in the blank samples.

No collectable condensate was present in the ambient air sample impingers. If small quantities were present, they were placed on the front trap to avoid influencing the sample minimum detection limit (MDL).

From the ambient data collected during the 2009 third quarter sampling event, background TCL constituent concentrations (upwind samples averaged TCL constituent concentrations) were subtracted from the average TCL constituent concentrations recorded at locations downwind of the landfill in order to provide an estimate of the net impacts that the landfill, and all other OBSWDC activities taken together, have on local VOC levels. This analysis is done only for the constituents that exceeded their respective guideline values. The net impact showed that only two (2) of the compounds sampled, 2/4 ethyltoluene and trichloroethene, exceeded their current AGC values after subtracting the upwind concentrations from the downwind concentrations. For compounds that were detected in some ambient samples but not all, the net VOC impact analysis included the LQL to calculate the average value rather than using "non-detection" or zero (0).

In a more detailed comparison of the two different downwind locations (again only for TCLs that exceeded their respective AGC value or assigned Interim AGC value), the net concentrations of 2/4 ethyltoluene and trichloroethene continued to demonstrate an exceedance when comparing the concentrations of downwind sample D3 and D1/2 individually to the average concentrations of upwind samples U1/2. Once again, it is worth noting that many of the concentrations detected in the upwind samples, particularly U2, are the same, if not slightly higher, than the concentrations detected in the collocated downwind samples D1/2 and the downwind sample D3. Therefore, the bulk of these concentrations are not necessarily attributed to the landfill, but considered to be the impact from background sources since winds during the evening would have caused sources north and east of the landfill to affect the upwind site significantly.

The results indicated few inconsistencies between concentrations of certain compounds when comparing the results between collocated samples (comparing U1 to U2 and comparing D1 to D2). Due to flow faults, the

run time between U1 and U2 and D1 and D2 was different, and therefore, could be attributed to the differences in compound concentration detected in the collocated samples, particularly with the upwind samples. The presence and concentration of various TICs were slightly varied from D1 to D2, as well as from U1 to U2. In addition to the run time inconsistency, this could most likely be attributed to the split sample in U2 and D2 reporting up to 12 separate TICs rather than the un-split U1 and D1 reporting a maximum of roughly 6 TICs. U1 also recorded lower levels than U2 because of a flow fault that caused more than 6 hours of lost data during the evening hours. D2 was also off due to a flow fault for 3 hours during the same period. Most notably, samples D2 and D3 detected the TIC C3 substituted benzene in excess of its assigned AGC standard, but the compound was not detected in sample D1. RTP continues to monitor the difference in compounds detected and their concentrations between collocated samples to determine if inconsistencies exist or not, and if so, what may be causing the inconsistencies.

In general, VOC concentrations in the ambient air for the third quarter test were lower than the 2009 first and second quarter test. The difference between concentrations detected in the previous sampling effort versus the current test results may be due to a combination of the variation in run time and the period of light winds overnight. Even though the perimeter system and thermal oxidizer were not completely operational, there were no major differences in concentrations reported in the third quarter test that would appear to be the result of perimeter gas wells effects.

4.2 Soil Gas Concentrations

Soil gas concentrations were monitored on September 22, 2009 at all soil gas well sites identified in the Consent Decree except for well M21, which was not tested due to the continued inaccessibility to the well location. Table 4.2 provides a summary of soil gas well VOC concentrations. These concentration values are reported in µg/std-m<sup>3</sup> of soil gas. Table 4.2 also includes the lower quantification limit for each sample. All soil gas well cartridge sets were sent to H2M laboratories for analytical analysis. There is currently no State or Federal guidelines for permissible soil gas concentrations of VOCs; however, New York State is presently considering vadose zone limits. Nassau County does not have guidelines or standards at this time. For a relative comparison, Table 4.2 provides the AGCs and SGCs for ambient air quality. The shaded values indicate soil gas concentrations that exceed the respective level of the current NYSDEC AGC for ambient air. A value in excess of the level of the AGC or SGC should not be interpreted as an exceedance of the ambient air guideline since the measured values are soil gas concentrations, not ambient air concentrations.

As shown on Table 4.2, four (4) target VOCs (chloroform, methylene chloride, tetrachloroethane and trichloroethene) were measured in excess of the level of their respective ambient air AGC value at one or

TABLE 4.2

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SOIL GAS VOST SAMPLE RESULTS THIRD QUARTER 2009

| SOIL GAS WELL ID | F1 | M2 | M4 | M5 | M6 | M9(10) | M9(20) | M9(30) | M9(40) | FB1 | Current | Current |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|----------------------|---------------|
| LOWER QUANTITATION LIMIT (LQL) | 0.491 | 0.499 | 0.498 | 0.484 | 0.498 | 0.497 | 0.463 | 0.923 | 0.495 | 5 | AGC | SGC |
| PRACTICAL QUANTITATION LIMIT (PQL) | 0.785 | 0.798 | 0.797 | 0.774 | 0.797 | 0.794 | 0.741 | 1.477 | 0.79 | % | 1 | - |
| TARGETED TIC LQL | 2.45 | 2.49 | 2.49 | 2.42 | 2.49 | 2.48 | 2.32 | 4.62 | 2.47 | 25 | | |
| VOC COMPOUND NAME | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (μg/std-m <sup>3</sup>) | (μg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (μg/std-m <sup>3</sup>) | (μg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (ng) | (μg/m <sup>3</sup>) | $(\mu g/m^3)$ |
| Acetone* | 1.57 | | 1.69 | 1.16 | 1.29 | 0.99 | 2.97 | 2.59 | 1.38 | | 28,000 | 180,000 |
| Benzaldehyde** | | | | | | | | | | | 0.10 | |
| Benzene | | | | | | | | | | | 0.13 | 1300 |
| Bromodichloromethane | | | | | | | | | | | 0.02 | - |
| Bromoform* | | | | | | | | | | | 0.91 | - |
| Bromomethane | | | | | | | | | | | 5.00 | 3900 |
| 2-Butanone* | | | | | | | 1.67 | < 1.48 | | | 5000 | 13,000 |
| Carbon Disulfide | | | | | | | | | | | 700 | 6200 |
| Carbon Tetrachloride | | | | | | | | | | | 0.067 | 1,900 |
| Chlorobenzene | | | | | | | | | | | 110 | - |
| Chloroethane | | | | | | | | | | | 10,000 | - |
| Chloroethyl Vinyl Ether** | | | | | | | | | | | 0.10 | |
| Chloroform | | | | 0.68 | | 66.0 | 0.83 | < 1.11 | 0.59 | | 0.043 | 150 |
| Chloromethane | | | | | | | | | | | 90.0 | 22,000 |
| Dibromochloromethane | | | | | | | | | | | 0.10 | - |
| 1,2-Dichlorobenzene (o) | | | | | | | | | | | 360 | 30,000 |
| 1,3-Dichlorobenzene (m) | | | | | | | | | | | 360 | 30,000 |
| 1,4-Dichlorobenzene (p) | | | | | | | | | | | 0.09 | |
| 1,1-Dichloroethane | | | | | | | | | | | 0.63 | - |
| 1.2-Dichloroethane | | | | | | | | | | | 0.038 | - |
| 1,1-Dichloroethene | | | | | | | | | | | 70.00 | 1 |
| cis-1,2-Dichloroethene | | | | | | | | | | | 63 | - |
| trans-1,2-Dichloroethene | | | | | | | | | | | 63 | |
| 1,2-Dichloropropane | | | | | | | | | | | 4.00 | |
| 1,3-Dichloropropene, cis & trans isomers | | | | | | | | | | | 0.25 | - |
| Ethylbenzene | | | | | | | | | | | 1,000 | 54,000 |
| 2/4-Ethyltoluene (total) | | | | | | | | | | | 0.10 | |
| Freon 13** | | | | | | | | | | | 1000 | 68,000 |
| 2-Hexanone* | | | | | | | | | | | 48.0 | 4000 |
| Methylene Chloride | 1.37 | 1.50 | 1.49 | 1.26 | 0.80 | 66.0 | 1.11 | 5.08 | 1.29 | 44 | 2.10 | 14,000 |
| 4-Methyl-2-Pentanone* | | | | | | | | | | | 3,000 | 31,000 |
| Styrene | | | | | | | | | | | 1,000 | 17,000 |
| 1,1,2,2-Tetrachloroethane | | | | | | | | | | | 16 | - |
| Tetrachloroethene | 4.81 | 0.70 | 1.20 | 5.61 | 1.39 | 11.92 | 12.05 | < 18.93 | 69.24 | | 1.00 | 1,000 |
| Toluene | | | | | | | | | | | 5,000 | 37,000 |
| 1,1,1-Trichloroethane | | | | | | | 0.65 | | 0.89 | | 1,000 | 68,000 |
| 1,1,2-Trichloroethane | | | | | | | | | | | 1.40 | |
| Trichloroethene | 0.59 | 1.30 | | | | | 0.65 | < 2.31 | 2.27 | | 0.50 | 14,000 |
| Trichlorofluoromethane | 1.57 | 1.30 | 1.29 | 1.45 | 1.39 | 3.38 | 3.34 | 2.77 | 3.36 | | 1,000 | 68,000 |
| Vinyl Chloride | | | | | | | | | | | 0.11 | 180,000 |
| Xylenes (Total) | | | | | | | | | | | 100 | 4,300 |
| Decane** | | | | | | | | | | | 700 | |

TABLE 4.2 (Continued)

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SOIL GAS VOST SAMPLE RESULTS ADDITIONAL TENTATIVELY IDENTIFIED COMPOUNDS THIRD QUARTER 2009

| SOIL GAS WELL IL | F1 | M2 | M4 | M5 | M6 | M9(10) | M9(20) | M9(30) | M9(40) | FB1 | Current | Current |
|---------------------------------------|--------------------------|------------|------------|-------------|------------|------------------|--------------------------|------------|------------|------|----------|----------|
| ADDITIONAL TIC LQL | 2.45 | 2.49 | 2.49 | 2.42 | 2.49 | 2.48 | 2.32 | 4.62 | 2.47 | 25 | AGC | SGC |
| VOC COMPOUND NAME | (µg/std-m <sup>*</sup>) | (µg/std-m) | (µg/std-m) | ('m-pts/gh) | (µg/std-m) | ('m-ptg/std-m'') | (µg/std-m <sup>*</sup>) | (µg/std-m) | (µg/std-m) | (ng) | (ˈmˈgn/) | ('m/gµ') |
| 2-Methyl-butane | | | | | | | | | | | 42,000 | |
| Ethane, 1,1-difluoro- | | | | | | | | | | | 40,000 | - |
| Unknown siloxane (RT: 13.96-13.98) | 3.14 | | | | | | | | | | 1 | - |
| alpha-Pinene isomer (RT: 11.85-12.08) | | | | | | | | | | | 270 | - |
| Isobutane | | | | | | | | _ | | | 57,000 | - |
| Dichlorodifluoromethane | 2.65 | | | | | 3.77 | 5.00 | < 10.43 | 10.88 | | 12,000 | |
| 1,1-Dichloro-1-fluoroethane | | | | | | | | | | | | |
| _betaPinene isomer (RT:12.91-13.02) | | | | | | | | | | | 95 | 6,000 |
| Undecane | | | | | | | | - | | | | |
| Unknown (RT: 3.31-15.49) | | | | | | | | | | | | |
| Dichlorotetrafluoroethane | | | | | | | | < 6.65 | 13.85 | | 17,000 | |
| Ethane, 1,1,2-trichloro-1,2,2-triflu | | | | | | | | | 5.34 | | 180,000 | 960,000 |
| Butane | | | | | | | | | | | 57,000 | |
| Dimethyl sulfide | | | | | | | | | | | | |
| Limonene Isomer | | | | | | | | | | | 3,400 | - |
| Octenal, dimethyl-isomer | 7.56 | | | | | | | | | | 3,000 | |

TABLE 4.2 (Continued)

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SOIL GAS VOST SAMPLE RESULTS THIRD QUARTER 2009

| SOIL GAS WELL IL | M13 | M16 | M21 | M22 | M28 | M31 | M34 | M37 | M39 | FB2 | Current | Current |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|----------------------|----------------------|
| LOWER QUANTITATION LIMIT (LQL | 0.457 | 0.492 | 1 | 0.492 | 0.492 | 0.490 | 0.488 | 0.496 | 0.992 | 5 | AGC | SGC |
| PRACTICAL QUANTITATION LIMIT (PQL | 0.732 | 0.787 | - | 0.787 | 0.787 | 0.78 | 0.781 | 0.794 | 1.587 | 8 | | |
| TARGETED TIC LQL | 2.29 | 2.46 | I | 2.46 | 2.46 | 2.45 | 2.44 | 2.48 | 4.96 | 25 | | |
| VOC COMPOUND NAME | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (µg/std-m <sup>3</sup>) | (ng) | (mg/m <sup>3</sup>) | (μg/m <sup>3</sup>) |
| Acetone* | | 0.89 | | 0.89 | 1.08 | 1.27 | 1.07 | 47.62 | < 1.69 | | 28,000 | 180,000 |
| Benzaldehyde** | | | | | | | | | | | 0.10 | |
| Benzene | | | | | | | | | | | 0.13 | 1300 |
| Bromodichloromethane | | | | | | | | | | | 0.02 | |
| Bromoform* | | | | | | | | | | | 0.91 | - |
| Bromomethane | | | | | | | | | | | 5.00 | 3900 |
| 2-Butanone* | | | | | | | | 2.38 | | | 5000 | 13,000 |
| Carbon Disulfide | | | | | | | | | | | 700 | 6200 |
| Carbon Tetrachloride | | | | | | | | | | | 0.067 | 1,900 |
| Chlorobenzene | | | | | | | | | | | 110 | |
| Chloroethane | | | | | | | | | | | 10,000 | |
| Chloroethyl Vinyl Ether** | | | | | | | | | | | 0.10 | |
| Chloroform | 2.56 | 4.43 | | | 0.59 | | | 9.33 | < 2.28 | | 0.043 | 150 |
| Chloromethane | | | | | | | | | | | 90.06 | 22,000 |
| Dibromochloromethane | | | | | | | | | | | 0.10 | |
| 1,2-Dichlorobenzene (o) | | | | | | | | | | | 360 | 30,000 |
| 1,3-Dichlorobenzene (m) | | | | | | | | | | | 360 | 30,000 |
| 1,4-Dichlorobenzene (p) | | | | | | | | | | | 0.09 | |
| 1,1-Dichloroethane | | | | | | | | | | | 0.63 | |
| 1,2-Dichloroethane | | | | | | | | | | | 0.038 | - |
| 1,1-Dichloroethene | | | | | | | | | | | 70.00 | - |
| cis-1,2-Dichloroethene | | | | | | | | | | | 63 | I |
| trans-1,2-Dichloroethene | | | | | | | | | | | 63 | |
| 1,2-Dichloropropane | | | | | | | | | | | 4.00 | |
| 1,3-Dichloropropene, cis & trans isomers | | | | | | | | | | | 0.25 | |
| Ethylbenzene | | | | | | | | | | | 1,000 | 54,000 |
| 2/4-Ethyltoluene (total) | | | | | | | | | | | 0.10 | |
| Freon 13** | | | | | | | | | | | 1000 | 68,000 |
| 2-Hexanone* | | | | | | | | | | | 48.0 | 4000 |
| Methylene Chloride | 1.01 | 0.98 | | 0.98 | 2.07 | 0.98 | 0.88 | 1.19 | 4.66 | 46 | 2.10 | 14,000 |
| 4-Methyl-2-Pentanone* | | | | | | | | | | | 3,000 | 31,000 |
| Styrene | | | | | | | | | | | 1,000 | 17,000 |
| 1,1,2,2-Tetrachloroethane | | | | | | | | | | | 16 | |
| Tetrachloroethene | 10.06 | 15.75 | | 0.89 | 0.59 | 0.69 | 1.07 | 1.79 | < 30.26 | | 1.00 | 1,000 |
| Toluene | | | | | | | | | | | 5000 | 37,000 |
| 1,1,1-Trichloroethane | 0.82 | 0.69 | | | | | | | | | 1,000 | 68,000 |
| 1,1,2-Trichloroethane | | | | | | | | | | | 1.40 | - |
| Trichloroethene | 0.73 | | | | | | | | | | 0.50 | 14,000 |
| Trichlorofluoromethane | 1.56 | 2.66 | | 1.08 | 1.08 | 1.27 | 1.46 | 1.39 | 1.98 | | 1000 | 68,000 |
| Vinyl Chloride | | | | | | | | | | | 0.11 | 180,000 |
| Xylenes (Total) | | | | | | | | | | | 100 | 4,300 |
| Decane** | | | | | | | | | | | 700 | |

TABLE 4.2 (Concluded)

TOWN OF OYSTER BAY

OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX SOIL GAS VOST SAMPLE RESULTS

ADDITIONAL TENTATIVELY IDENTIFIED COMPOUNDS THIRD QUARTER 2009

| SOIL GAS WELL IE | M13 | M16 | M21 | M22 | M28 | M31 | M34 | M37 | M39 | FB2 | Current (| Current |
|---------------------------------------|------------|--------------------------|--------------------------|------------|-----|--------------------------|------------|--------------------------|--------------------------|------|-----------|----------------------|
| ADDITIONAL TIC LQL | 2.29 | 2.46 | | | | 2.45 | 2.44 | 2.48 | 4.96 | | AGC | SGC |
| VOC COMPOUND NAME | (µg/std-m) | (µg/std-m <sup>*</sup>) | (µg/std-m <sup>7</sup>) | (µg/std-m) | | (µg/std-m <sup>7</sup>) | (µg/std-m) | (µg/std-m <sup>7</sup>) | (µg/std-m <sup>*</sup>) | (ng) | ('mg/m'') | (μg/m <sup>7</sup>) |
| 2-Methyl-butane | | | | | | | | 2.88 | | | 42,000 | |
| Ethane, 1,1-difluoro- | | | | | | 15.69 | | 11.90 | | | 40,000 | ł |
| Unknown siloxane (RT: 13.96-13.98) | | | | | | | | 4.17 | < 5.06 | | 1 | - |
| alpha-Pinene isomer (RT: 11.85-12.08) | 72.64 | | | | | | | | | | 270 | |
| Isobutane | | | | | | | | 10.01 | | | 57,000 | |
| Dichlorodifluoromethane | | | | | | | | | < 5.56 | | 12,000 | |
| 1,1-Dichloro-1-fluoroethane | | | | | | | | 3.37 | | | - | - |
| _betaPinene isomer (RT:12.91-13.02) | 93.32 | | | | | | | | | | 95 | 6,000 |
| Undecane | 10.98 | | | | | | | | | | | |
| Unknown (RT: 3.31-15.49) | 164.68 | 3.54 | | | | | | | | | | |
| Dichlorotetrafluoroethane | | | | | | | | | | | 17,000 | - |
| Ethane, 1,1,2-trichloro-1,2,2-triflu | | | | | | | | | | | 180,000 | 960,000 |
| Butane | | | | | | | | 6.55 | | | 57,000 | |
| Dimethyl sulfide | | | | | | | | 3.87 | | | | |
| Limonene Isomer | 14.64 | | | | | | | | | | 3,400 | |
| Octenal, dimethyl-isomer | | | | | | | | | | | 3,000 | |
| Notes: | | | | | | | | | | | | |

\* An 8 nanogram practical quantitation limit has been assigned to these compounds due to their poor responses during laboratory analysis.

\*\* Targeted Tentatively Identified Compound (TIC). As reported by the laboratory, Targeted TICs have a Lower Quantitation Limit that is

five (5) times the targeted compound Lower Quantitation Limit.

- All values are reported in micrograms per standard cubic meter ($\mu g/std-m^3$).

- Blank values:

Bromoform, 2-Butanone, 4-Methyl-2-Pentanone and 2-Hexanone), or the Targeted TIC Lower Quantitation Limit (applies to Chloroethyl vinyl ether, Freon 13 and Decame). Benzaldehyde has a LQL 2 times the targeted TIC LQL. Targeted Compounds and Targeted TICs- All blank values are below the Lower Quantitation Limit, Practical Quantitation Limit (applies to Acetone,

Additional Tentatively Identified Compounds- All blank values are either below the Targeted TIC Lower Quantitation Limit where less than six (6) additional TICs are reported for a particular sample or below the lowest reported additional TIC value, where six (6) or more additional TICs are reported for a particular sample.

- Values in shaded areas are at or exceed the level of the current (last revised September 2007 and still current as of December 2009) and/or previous ambient air Annual Guideline Concentration (AGC) values

Less than values (<) are used where the Lower Quantitation Limit, the Target TIC Lower Quantitation Limit, or the Practical Quantitation Limit is averaged with the reported values.

Freon 13 is listed as Chlorotrifluoromethane in the Analytical Results, Appendix C.

- $(\mu g/std-m^3)$: micrograms per standard cubic meter - (ng): nanograms

more soil gas well locations. Chloroform was measured in excess of its respective ambient air AGC value at all soil gas wells except F1, M2, M4, M6, M22, M31 and M34. Methylene chloride was measured in excess of its current AGC standard at soil gas wells M9(30), and M39. Tetrachloroethane was measured in excess of its respective ambient air AGC value at all soil gas wells except M2, M22, M28 and M31; and finally, trichloroethene exceeded its respective ambient air AGC standard at F1, M2, M9(20), M9(30), M9(40) and M13. No TICs were detected in excess of their respective AGC guideline values, and no compounds (both TCL and TICs) were found in excess of their SGC guideline values. The detections of methylene chloride and acetone are likely, for the most part, associated with laboratory contamination and may not necessarily be associated with the soil gas since the mass loading of blank samples are in the range of mass loading in most of the soil gas samples.

The soil gas sample results for concentrations recorded at cluster well M9, including wells M9(10), M9(20), M9(30) and M9(40), historically show an increase in certain constituent concentrations as well depth increases, which may be attributed to groundwater conditions at this location. Tetrachloroethane, trichloroethene and the TIC dichlorodifluoromethane, consistently increased in concentration with an increase in well depth. When comparing the results of various compounds at M9(40) from this third quarterly test of 2009 with the first quarter test, concentrations are relatively similar with some compounds increasing and some decreasing. It appears that tetrachloroethane has been increasing from the values detected in 2008 over the past several efforts; however, when comparing historical data, it appears that the concentrations are less than previously noted. RTP will continue to monitor this trend for any increases in future quarterly efforts.

Some LQLs exceeded the value of respective AGC levels; therefore, in addition to those noted above, other well concentrations may have exceeded the level of the ambient air AGC for compounds with an AGC value lower than the highest LQL ($0.992 \mu g/std-m^3$) or PQL ($1.587 \mu g/std-m^3$). The collection of a soil gas sample volume significantly greater than 10 liters would be required to reduce the LQL; however, a significantly larger sample volume greater than 10 liters is not recommended due to well volume restrictions.

The soil gas wells TCL that exceeded the level of their respective ambient air AGCs during the 2009 third quarter were similar to those of previous quarterly tests. RTP continued to note a decrease in the variety of TICs were noted from the soil gas results. Many of the soil gas samples did not even detect TICs. RTP will continue to monitor the TIC variety detected between soil gas well locations for any abnormalities.

As shown in Table 4.2, no targeted compounds were measured in excess of their respective current SGC

value. One should note that such comparisons are extremely conservative since soil gas concentrations are being compared to ambient air guideline values, and as such, no true exceedance in soil gas samples can truthfully be documented. As stated, soil gas concentrations from most wells sampled were slightly less as compared to the first and second quarter test in 2009.

5.0 SOIL GAS PRESSURE READINGS

As required by the Consent Decree, pressure readings are to be taken on a quarterly basis at the following three locations around the perimeter of the gas collection system: (1) northwest of landfill between LGV16 and LGV17, (2) southeast of the landfill between TGV-1 and LGV-9 and (3) south of the landfill on the Nassau County Fire Service Academy at either F-6 or F-9. Figure 2.1 illustrates the locations of the three soil gas pressure wells PW1, PW2 and PW3.

A 10-inch inclined manometer, manufactured by Dwyer Instruments, Inc. was used to monitor soil gas pressures at each well. The 0-1-inch inclined portion is divided into 0.0-inch increments with the remaining portion (1 to 10 -inches) marked in 0.1-inch increments. The inclined manometer is zeroed prior to taking measurements at each of the three (3) wells. There are two soil gas pressure probes at different depths (10-foot and 20-foot) at each location.

Pressure readings were taken from each of the six (6) probes. Table 5.1 provides a summary of the soil gas pressure tests. All pressure wells were tested on September 22, 2009 from 7:38 AM (0738 hours) to 8:27 AM (0827 hours). Zero pressure levels were recorded for all pressure wells at 10-foot depths. Negative pressure readings were recorded for all 20-foot depths during this third quarter test of 2009. These results are consistent with the operation of the perimeter system.

6.0 SUMMARY AND CONCLUSIONS

The 2009 third quarter ambient air, soil gas and soil gas pressure monitoring event was performed by RTP on September 21 and 22, 2009. The ambient air quality for VOCs and meteorology were monitored during the 24-hour sampling period. In accordance with the Consent Decree, ambient air VOC samples were collected at locations both upwind and downwind of the landfill. The ambient air quality test results indicate that seven (7) constituents on the program TCL exceeded the level of their respective ambient air AGCs or assigned Interim AGC values at the upwind and downwind locations. These compounds included: benzene, carbon tetrachloride, chloroform, 1,4-dichlorobenzene (p), 2/4-ethyltoluene (total), tetrachloroethene and trichloroethene. Only one (1) TIC, C3 substituted benzene, exceeded the level of its

TABLE 5.1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SUMMARY OF SOIL GAS PRESSURE TESTS

THIRD QUARTER 2009

| | DATE | TIME | WELL | WELL | WELL DEPTH | READINGS |
|-----------|------------|---------|------|---|------------|--------------|
| SAMPLE ID | (mm/dd/yy) | (EDT) | ID | LOCATION | (feet) | (INCHES H2O) |
| P1 | 09/22/09 | 7:45 AM | PW1 | NW corner of the landfill on Haul Road | 10 | 0.00 |
| P2 | 09/22/09 | 7:45 AM | PW1 | NW corner of the landfill on Haul Road | 20 | -0.02 |
| Р3 | 09/22/09 | 7:46 AM | PW1 | NW corner of the landfill on Haul Road | 10 | 0.00 |
| P4 | 09/22/09 | 7:46 AM | PW1 | NW corner of the landfill on Haul Road | 20 | -0.03 |
| P5 | 09/22/09 | 7:38 AM | PW2 | SE corner of the landfill NW of Well M2 | 10 | 0.00 |
| P6 | 09/22/09 | 7:38 AM | PW2 | SE corner of the landfill NW of Well M2 | 20 | -0.07 |
| P7 | 09/22/09 | 7:40 AM | PW2 | SE corner of the landfill NW of Well M2 | 10 | 0.00 |
| P8 | 09/22/09 | 7:40 AM | PW2 | SE corner of the landfill NW of Well M2 | 20 | -0.07 |
| Р9 | 09/22/09 | 8:26 AM | PW3 | Nassau County Fire Service Academy | 10 | 0.00 |
| P10 | 09/22/09 | 8:26 AM | PW3 | Nassau County Fire Service Academy | 20 | -0.06 |
| P11 | 09/22/09 | 8:27 AM | PW3 | Nassau County Fire Service Academy | 10 | 0.00 |
| P12 | 09/22/09 | 8:27 AM | PW3 | Nassau County Fire Service Academy | 20 | -0.06 |

NOTES:

- Measurements taken using a ten inch Dwyer inclined manometer.

- Leak checks were performed on manometer before testing each well.

respective ambient air AGCs.

These results are based on 24-hour samples, and therefore, an exceedance of an AGC does not necessarily indicate an exceedance of a respective annual guideline value. No measured values exceeded their respective SGC values. Looking at the net impact values (averaged downwind concentrations minus averaged upwind concentrations) for the third quarter test, it appears the landfill had very little or no impact on the constituents that exceeded AGC values. In general, VOC concentrations in the ambient air for the third quarter test were slightly lower when compared to the second quarter test of 2009.

On-site meteorological data from atop of the landfill and upwind of the landfill were recorded for use in this analysis. The meteorological station upwind of the landfill collected some data that was inconsistent with other on-site data due to a drainage wind flow pattern and a period of light to calm winds. The data collected from atop the landfill was considered representative of the overall site. The sampling period was characterized by a strong temperature inversion that occurred between 2100 on September 21<sup>st</sup> and lasted until 0900 hours the following morning.

Based on the observed concentrations for the third quarter 2009, off-site sources are likely the primary sources of most of the compound concentrations detected at both the upwind and downwind locations. Again, the exceedances of target or tentatively identified compound concentrations relative to the state guidelines are based on comparisons of 24-hour sample results to annual guidelines. It should also be noted that no measured target or tentatively identified compound concentrations exceeded their short term guidance value.

Soil gas well concentrations were monitored at specific locations surrounding the landfill. All soil gas well samples were collected and analyzed successfully. Soil gas sample results show several target compounds were present in the soil gas surrounding the landfill. Although no applicable guidelines are currently available for soil gas concentration readings, New York State is currently considering introducing vadose zone limits. The soil gas well target compound constituents that exceeded the level of their respective ambient air AGCs during the 2009 third quarter have decreased slightly when compared to the second quarter test of 2009.

Additionally, TIC detections for this quarter also seem to have varied less from well to well than in the past several efforts conducted in 2008. No target or tentatively identified compound in the soil gas exceeded the level of their respective ambient air SGC guideline values. RTP will continue to monitor the results from the quarterly efforts of 2009 to see if any trends are noted. Generally, soil gas concentrations from all wells sampled were slightly less as compared to the first and second quarter test of 2009.

During this third quarter test, there were several occurrences that could have contributed additional pollutants to the samples. Activity at the Nassau County Fire Service Academy was noted during testing at soil gas wells and at the upwind sampler location. Abnormally high PID concentrations were also detected at several soil gas wells during this third quarter test. Although only minor observances of abnormally high target compound and TIC concentrations were noted, particularly unknown compounds and beta-Pinene isomer concentrations in M13, other recorded concentrations were fairly typical compared to past sampling efforts. This suggests the PID readings were likely caused by high humidity levels in many of the wells tested.

The methylene chloride and acetone observed in soil gas samples are at least partially attributed to laboratory contamination. Ambient field blank samples also detected methylene chloride slightly above the MDL. It is unknown what caused the presence of this compound. Methylene chloride (and acetone) is a known laboratory contaminant often found in all ambient and soil gas samples, including field blanks, during quarterly monitoring events. It is difficult to determine the quantity of methylene chloride and/or acetone associated with landfill activities since they are used in laboratories and may also be associated with OBSWDC activities. RTP will continue to monitor field blanks for their presence in the future.

Finally, soil gas pressures were measured at three (3) pressure well locations surrounding the landfill. Pressure wells were tested on September 22, 2009 from 7:38 AM (0738 hours) to 8:27 AM (0827 hours). Zero pressure levels were recorded for all pressure wells at 10-foot depths. Negative pressure readings were recorded for all 20-foot depths during this third quarter test of 2009. These results are consistent with the operation of the perimeter system.

A summary of the 2009 third quarter ambient, soil gas and pressure well quarterly monitoring results will be provided in the annual report at the conclusion of the 2009 monitoring program.

APPENDIX A

METEOROLOGICAL MONITORING DATA

Table A-1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SUMMARY OF ATOP METEOROLOGICAL DATA

| DST | MWS | MWD | SDWD | TEMP | RH | PRESS | PRECIP |
|---------|-------|-----------|-----------|---------|------|----------|--------|
| (HH:MM) | (MPH) | (Degrees) | (Degrees) | (Deg F) | (%) | (in. Hg) | (in.) |
| 16:00 | 8.2 | 189.1 | 18.0 | 70.1 | 67.9 | 30.00 | 0.0 |
| 17:00 | 7.9 | 186.3 | 17.0 | 69.2 | 70.8 | 30.00 | 0.0 |
| 18:00 | 6.9 | 182.2 | 14.5 | 67.8 | 74.6 | 29.97 | 0.0 |
| 19:00 | 3.6 | 175.0 | 15.3 | 66.5 | 79.1 | 30.00 | 0.0 |
| 20:00 | 3.2 | 159.3 | 12.6 | 64.9 | 84.6 | 30.03 | 0.0 |
| 21:00 | 2.9 | 135.6 | 8.4 | 64.2 | 87.9 | 30.00 | 0.0 |
| 22:00 | 2.7 | 135.1 | 12.8 | 63.9 | 89.1 | 30.03 | 0.0 |
| 23:00 | 2.2 | 100.2 | 27.1 | 63.2 | 89.9 | 30.03 | 0.0 |
| 0:00 | 2.2 | 89.0 | 16.4 | 62.9 | 90.6 | 30.03 | 0.0 |
| 1:00 | 2.0 | 112.3 | 22.1 | 63.6 | 89.7 | 30.00 | 0.0 |
| 2:00 | 2.5 | 59.1 | 26.3 | 62.6 | 91.2 | 30.00 | 0.0 |
| 3:00 | 2.1 | 47.1 | 16.4 | 63.0 | 92.0 | 30.00 | 0.0 |
| 4:00 | 1.4 | 55.1 | 36.4 | 64.2 | 91.2 | 30.00 | 0.0 |
| 5:00 | 1.1 | 142.7 | 70.3 | 64.9 | 90.1 | 30.00 | 0.0 |
| 6:00 | 1.2 | 92.7 | 84.0 | 64.2 | 91.1 | 30.03 | 0.0 |
| 7:00 | 1.7 | 62.4 | 41.1 | 64.3 | 91.3 | 30.03 | 0.0 |
| 8:00 | 2.2 | 53.5 | 13.9 | 64.8 | 91.0 | 30.03 | 0.0 |
| 9:00 | 3.0 | 161.7 | 39.7 | 68.1 | 86.8 | 30.03 | 0.0 |
| 10:00 | 5.2 | 206.2 | 15.3 | 69.7 | 81.8 | 30.03 | 0.0 |
| 11:00 | 5.7 | 204.9 | 18.6 | 71.1 | 78.4 | 30.03 | 0.0 |
| 12:00 | 6.6 | 188.1 | 21.1 | 72.0 | 72.2 | 30.03 | 0.0 |
| 13:00 | 6.5 | 183.3 | 21.9 | 72.5 | 70.9 | 30.03 | 0.0 |
| 14:00 | 6.3 | 194.5 | 19.0 | 72.8 | 67.3 | 30.00 | 0.0 |
| 15:00 | 6.0 | 186.9 | 18.9 | 72.3 | 65.9 | 30.00 | 0.0 |

THIRD QUARTER 2009 (September 21 and 22, 2009)

Notes:

| EST: | Eastern Standard Time. |
|--------|--|
| MWS: | Mean Wind Speed, miles per hour. |
| MWD: | Mean Wind Direction, corrected for wind direction reference. |
| | - 360 degrees is due North (Grid North). |
| SDWD: | Standard Deviation of Wind Direction. |
| TEMP: | Ambient Temperature, degrees Fahrenheit. |
| RH: | Relative Humidity, percent. |
| PRESS: | Atmospheric Pressure, inches of mercury. |

PRECIP: Precipitation, inches of water column.

Table A-1

TOWN OF OYSTER BAY OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX

SUMMARY OF UPWIND METEOROLOGICAL DATA

| DST | MWS | MWD | SDWD | TEMP | RH | PRESS | PRECIP |
|---------|-------|-----------|-----------|---------|------|----------|--------|
| (HH:MM) | (MPH) | (Degrees) | (Degrees) | (Deg F) | (%) | (in. Hg) | (in.) |
| 16:00 | 5.9 | 193.4 | 33.0 | 71.5 | 62.6 | 30.22 | 0.0 |
| 17:00 | 5.2 | 187.9 | 38.1 | 70.8 | 65.5 | 30.22 | 0.0 |
| 18:00 | 4.2 | 183.5 | 40.0 | 69.0 | 70.6 | 30.22 | 0.0 |
| 19:00 | 2.2 | 160.5 | 45.0 | 66.7 | 77.1 | 30.22 | 0.0 |
| 20:00 | 0.8 | 233.6 | 101.8 | 62.5 | 88.7 | 30.23 | 0.0 |
| 21:00 | 0.6 | 88.5 | 82.2 | 60.1 | 94.9 | 30.23 | 0.0 |
| 22:00 | 0.5 | MD | 53.7 | 58.9 | 96.8 | 30.24 | 0.0 |
| 23:00 | 0.5 | 117.1 | 59.7 | 58.1 | 97.4 | 30.24 | 0.0 |
| 0:00 | 0.7 | 22.8 | 34.3 | 59.2 | 97.8 | 30.23 | 0.0 |
| 1:00 | 0.6 | 309.0 | 81.0 | 59.6 | 97.7 | 30.23 | 0.0 |
| 2:00 | 0.9 | 52.7 | 81.4 | 59.4 | 97.6 | 30.22 | 0.0 |
| 3:00 | 0.8 | 348.4 | 24.7 | 59.4 | 97.8 | 30.22 | 0.0 |
| 4:00 | 0.7 | 348.8 | 12.0 | 60.8 | 97.6 | 30.22 | 0.0 |
| 5:00 | 0.8 | 43.7 | 88.0 | 61.3 | 97.4 | 30.22 | 0.0 |
| 6:00 | 1.0 | 185.9 | 66.4 | 61.2 | 97.4 | 30.23 | 0.0 |
| 7:00 | 0.8 | 26.0 | 71.6 | 61.9 | 97.4 | 30.23 | 0.0 |
| 8:00 | 0.7 | 327.6 | 68.8 | 62.4 | 97.3 | 30.23 | 0.0 |
| 9:00 | 2.2 | 209.3 | 30.8 | 67.3 | 90.2 | 30.23 | 0.0 |
| 10:00 | 4.8 | 197.3 | 21.2 | 69.8 | 79.4 | 30.24 | 0.0 |
| 11:00 | 4.9 | 198.8 | 23.3 | 71.3 | 75.2 | 30.24 | 0.0 |
| 12:00 | 4.2 | 190.5 | 38.2 | 73.1 | 68.4 | 30.23 | 0.0 |
| 13:00 | 4.2 | 186.0 | 35.0 | 73.8 | 66.2 | 30.22 | 0.0 |
| 14:00 | 4.6 | 191.4 | 29.0 | 73.8 | 62.4 | 30.21 | 0.0 |
| 15:00 | 4.0 | 189.2 | 30.6 | 73.1 | 62.1 | 30.19 | 0.0 |

THIRD QUARTER 2009 (September 21 and 22, 2009)

Notes:

| EST: | Eastern Standard Time. | | | |
|---------|--|--|--|--|
| MWS: | Mean Wind Speed, miles per hour. | | | |
| MWD: | Mean Wind Direction, corrected for wind direction reference. | | | |
| | - 360 degrees is due North (Grid North). | | | |
| SDWD: | Standard Deviation of Wind Direction. | | | |
| TEMP: | Ambient Temperature, degrees Fahrenheit. | | | |
| RH: | Relative Humidity, percent. | | | |
| PRESS: | Atmospheric Pressure, inches of mercury. | | | |
| PRECIP: | Precipitation, inches of water column. | | | |
| MD: | Missing Data | | | |

APPENDIX B

CHRONOLOGY

AMBIENT AIR, SOIL GAS AND WELL PRESSURE SAMPLING EVENTS

CHRONOLOGY FOR AMBIENT AIR, SOIL GAS AND WELL PRESSURE SAMPLING EVENTS

Ambient Air Monitoring

A total of five ambient air monitoring stations were used to collect ambient air quality samples for VOCs during the 2009 third quarter test effort. The following discussion provides a chronology of events during this quarterly test event.

The samplers for location U1/2 were collocated on the 15th hole Fairway of the Bethpage State Black Golf Course approximately 150 feet west of Round Swamp Road. Both units were assembled at the RTP Westbury office, transported to the monitoring sites and U1/2 were started at 3:07 PM (1507 hours) and 3:03 PM (1503 hours), respectively, on September 21, 2009. Upwind samplers U2 ran until 1503 hours and on September 22, 2009 for a total of 1,440 minutes (100% of the 24-hour sampling period), respectively. Upwind sampler U1 ran for 537 minutes before failing at around 0009 hours on September 22<sup>nd</sup>. It was restarted at 0110 hours and ran for an additional 3 minutes before failing again. The pump was replaced with Pump R6 at 0648 hours and the sampler was restarted and ran continuously for the remainder of the sampling period (496 minutes). Sampler U1 ran for a total of 1037 minutes (72% of the sampling period). Six (6) site inspections were performed for sampler U1 and sampler U2 over the sampling period where several adjustments were made to the flow meters to maintain the optimum flow rate for the collection of samples. Samples U1/2 were recovered normally and the samples were forwarded to the laboratory as per protocol. Condensate in quantities available for collection was not present from either sampler.

Samplers for location D1/2 were collocated approximately 75 feet southwest of the southwestern corner of the RAP building. Samplers D1/2 were assembled as above and were started at 2:55 PM (1455 hours) and 2:56 PM (1456 hours), respectively, on September 21, 2009. Downwind sampler D1 ran until 1455 hours on September 22, 2009 for a total of 1440 minutes (100% of the sampling period). Downwind sampler D2 ran for 743 minutes before an equipment failure caused it to shut down at 0323 hours. The sampler was restarted and ran for an additional 10 minutes before shutting down again. The pump was then replaced at 0704 hours with Pump R7and ran continuously until the conclusion of the sampling period for a total of 1221 minutes (85% of the sampling period). Seven (7) site inspections took place for samplers D1/2 over the sampling period where several adjustments were necessary to the flow meters for downwind samplers D1 and D2 in order to maintain an optimum flow rate for the collection of samples throughout the duration of the sampling effort. Both samples were recovered normally and forwarded to the laboratory as per protocol. Again, condensate in quantities available for collection was not present from either sampler.

Sampler D3 was located on a landfill haul road approximately 400 feet east of Claremont Road. This sampler was assembled as noted above and started at 3:06 PM (1506 hours) on September 21, 2009. The

sampler ran for 1,440 minutes (100% of the 24-hour sampling period). Six (6) site inspections took place for sampler D3 over the sampling period where no adjustments were necessary in order to maintain an optimum flow rate for the collection of the sample throughout the duration of the sampling effort. The sample was recovered normally and was forwarded to the laboratory as per protocol. Once again, condensate in quantities available for collection was not present.

Field blanks for the program were collected according to the protocol. Ambient field blank sample TOBOBL09-3:FB3.f&b was collected inside the RTP Westbury office where the ambient sampling trains were assembled prior to the commencement of the testing effort. All samples were forwarded to the laboratory as per protocol.

Soil Gas Monitoring

Two field samplers were deployed for the soil gas monitoring portion of the program. Soil gas samples were collected according to the soil gas sampling protocol, except for soil gas well M21 due to well inaccessibility. All other soil gas wells for the third quarter 2009 test were collected and forwarded to the laboratory according to the protocol. Soil gas sampling was initiated at 9:05 AM (0905 hours) on September 22, 2009 and the last sample was collected at 12:00 noon (1200 hours) on that same day. The sampling procedures required 10 liter samples to be collected since no very high initial well readings were detected. Soil gas field blank TOBOBL09-3:FB1.f&b was collected at soil gas cluster well M9 and TOBOBL09-3: FB2.f&b was collected at soil gas well M39. All samples were recovered normally and forwarded to the laboratory as per protocol.

Soil Gas Pressure Readings

Soil gas pressure readings were taken at the three (3) primary pressure wells surrounding the landfill. Sampling was performed on September 22, 2009 from 0738 hours until 0827 hours. Four readings were taken at each well (two per 10-foot depth and two per 20-foot depth) using a Dwyer 10-inch inclined manometer. The inclined manometer was zeroed and leak checked prior to collecting samples at a well. Sampling followed the established protocol.

Photo-Ionization Detector (PID) Readings

Total ambient VOC concentrations were monitored at the start and finish of the sampling period at each ambient site using a PID. Total ambient VOC concentrations were measured at 0.0 ppm at the initiation of sampling for all locations; therefore, flow rates were initially set at 0.25 Lpm for all ambient samplers.

Total well VOC concentrations were measured using a PID before and after the soil gas test at all of the 17 soil gas wells sampled during the third quarter testing period. Ambient VOCs and well VOCs were measured at 0.0 ppm at most locations, although some locations measured small levels of VOCs. Soil gas well M4 measured 0.6 ppm in both the initial and final VOC well readings. Soil gas well M5 measured 0.9 ppm in both the initial and final VOC well readings. M6 measured 0.3 ppm in the initial VOC well reading and 0.2 ppm in the final VOC well reading. Soil gas well M16 measured 23.7 ppm in the initial well VOC reading, but did not register a VOC reading at the conclusion of the soil gas test at this location. Soil gas well M22 measured 13.9 ppm in the initial and 7.0 ppm in the final VOC well reading. Soil gas well M28 measured 16.5 ppm in the initial well VOC reading and 9.3 ppm for the final well VOC reading at this location. M31 measured 8.6 ppm in the initial well VOC reading and 8.5 in the final well VOC reading. M34 measured 0.0 ppm in the initial VOC reading and 5.7 ppm in the final VOC well reading. M37 measured 589.0 ppm in the initial VOC well and 420.0 ppm in the final VOC well reading. M37 also detected a 5.0 ppm ambient VOC reading at the start of the sampling at this location and 2.0 ppm at the conclusion of the sampling in the ambient air at this location. Finally, M39 measured 30.0 ppm in the initial well VOC reading and 28.7 ppm for the final VOC well reading. VOCs were not detected at any other soil gas wells.

APPENDIX C

ANALYTICAL RESULTS

Analytical Data Package For

RTP ENVIRONMENTAL ASSOCIATES, INC. 3<sup>rd</sup> QUARTER AMBIENT AIR SDG NO: TOY125

Air Samples Received: 9/22/09

SAMPLE DATA SUMMARY PACKAGE SEPTEMBER 2009

H2M LABS, INC. SAMPLE DATA SUMMARY PACKAGE

TABLE OF CONTENTS

RTP ENVIRONMENTAL ASSOCIATES, INC 3<sup>rd</sup> QUARTER AMBIENT AIR AIR SAMPLES PROJECT NO.: TOBOBL09-3 SAMPLES RECEIVED: 9/22/09 SDG NO.: TOY125

- 1. NYS DEC SUMMARY FORMS
- 2. CHAIN OF CUSTODY DOCUMENTATION
- 3. SDG NARRATIVES

- 4. SAMPLE REPORTS 4.1 VOLATILES
- 5. SURROGATE SPIKE ANALYSIS RESULTS 5.1 VOLATILES
- 6. BLANK SUMMARY DATA AND RESULTS 6.1 VOLATILES

TOY125 S1

7. INTERNAL STANDARD AREA DATA 7.1 VOLATILES

1. NYS DEC SUMMARY FORMS

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

| Customer
Sample
Code | Laboratory
Sample
Code | MSVOA | | |
|----------------------------|------------------------------|-------|--|--|
| 00000 | 0910546-001 | X | | |
| D2.B | 0910546-002 | X | | |
| D2.F | 0910546-003 | X | | |
| D3.B | 0910546-004 | X | | |
| D3.F | 0910546-005 | x | | |
| F1.F+B | 0910546-006 | X | | |
| FB1.F+B | 0910546-007 | X | | |
| FB2.F+B | 0910546-008 | X | | |
| FB3.F+B | 0910546-009 | X | | |
| M2.F+B | 0910546-010 | X | | |
| M4.F+B | 0910546-011 | X | | |
| M5.F+B | 0910546-012 | X | | |
| M6.F+B | 0910546-013 | X | | |
| M9(10).F+B | 0910546-014 | X | | |
| M9(20).F+B | 0910546-015 | X | | |
| M9(30).B | 0910546-016 | X | | |
| M9(30).F | 0910546-017 | X | | |
| M9(40).F+B | 0910546-018 | X | | |
| M13:F+B | 0910546-019 | X | | |
| M16.F+B | 0910546-020 | X | | |
| M22.F+B | 0910546-021 | X | | |
| M28.F+B | 0910546-022 | X | | |
| M31.F+B | 0910546-023 | X | | |
| M34.F+B | 0910546-024 | Х | | |
| M37.F+B | 0910546-025 | Х | | |
| M39.B | 0910546-026 | Х | | |
| M39.F | 0910546-027 | Х | | |
| <u>J1.F+B</u> | 0910546-028 | Х | | |
| J2.B | 0910546-029 | X | | |
| J2.F | 0910546-030 | X | | |
| | | | | |

Analytical Requirements

TOY125 S3

CLP Non-CLP (Please indicate year of NNS DEC ASP B 10/95 protocol) 7173 10.23.09 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

SAMPLE PREPARATION AND ANALYSIS SUMMARY VOLATILE (VOA)

SDG: TOY125

| 'SES | |
|-------|--|
| ANALY | |

| | | | | 2 | | | | | | | |
|-----------------------|------------------|--------|------------------------|-------------------|--------------------|--------------------|------------------|------------|----|-------|-------------|
| Laboratory
Samp ID | Client Sample ID | Matrix | Analytical
Protocol | Date
Collected | DateRecd
at Lab | Extracted Analyzed | Date
Analyzed | Extraction | Ъг | Level | Aux Cleanup |
| 0910546-001A | D1.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 07-Oct-09 | | 1 | TOW | |
| 0910546-002A | D2.B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 01-Oct-09 | | | LOW | |
| 0910546-003A | D2.F | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 01-Oct-09 | | 1 | MOT | |
| 0910546-004A | D3.B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | 1 | LOW | |
| 0910546-005A | D3.F | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | 1 | LOW | |
| 0910546-006A | F1.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | 1 | LOW | |
| 0910546-007A | FB1.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 01-Oct-09 | | 1 | TOW | |
| 0910546-008A | FB2.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 01-Oct-09 | | 1 | LOW | |
| 0910546-009A | FB3.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 01-Oct-09 | | 1 | LOW | |
| 0910546-010A | M2.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | 1 | LOW | |
| 0910546-011A | M4.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | 1 | LOW | |
| 0910546-012A | M5.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | 1 | LOW | |
| 0910546-013A | M6.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05Oct-09 | | 1 | LOW | |
| 0910546-014A | M9(10).F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | - | LOW | |
| 0910546-015A | M9(20).F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 07-Oct-09 | | 1 | LOW | |
| 0910546-016A | M9(30).B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | 1 | LOW | |
| 0910546-017A | M9(30).F | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | | LOW | |
| 0910546-018A | M9(40).F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 07-Oct-09 | | - | LOW | |
| 0910546-019A | M13.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | 1 | LOW | |
| 0910546-020A | M16.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | | LOW | |
| 0910546-021A | M22.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 05-Oct-09 | | - | LOW | |
| 0910546-022A | M28.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 60-12O-90 | | 1 | LOW | |
| 0910546-023A | M31.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 00-100-90 | | 1 | LOW | |
| 0910546-024A | M34.F+B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 06-Oct-09 | | 1 | LOW | |
| 0910546-025A | M37.F+B | Air | 5041 | 22-Sep-09 \ | 22-Sep-09 | | 07-Oct-09 | | | LOW | |
| 0910546-026A | M39.B | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | | ΓOΜ | |
| 0910546-027A | M39.F | Air | 5041 | 22-Sep-09 | 22-Sep-09 | | 02-Oct-09 | | | LOW | |
| 0910546-028A | UI.F+B | Aìr | 5041 | 22-Sep-09 | 22-Sep-09 | | 07-Oct-09 | | - | LOW | |
| | | | | | | | | | | | |

TOY125 S4

Ż

| Aux Cleanup | | | |
|---------------------------------|-----------|--------------|--|
| Level | TOW | ROW | |
| ЪF | 1 | | |
| Extraction
Method | | | |
| | 02-Oct-09 | 02-Oct-09 | |
| Date Date
Extracted Analyzed | | | |
| DateRecd
at Lab | 22-Sep-09 | 22-Sep-09 | |
| Date
Collected | | 22-Sep-09 | |
| Analytical
Protocol | | 5041 | |
| Matrix | Air | Air | |
| Client Sample ID | U2.B | U2.F | |
| Laboratory
Samp ID | | 0910546-030A | |

TOY125 S5

2. CHAIN OF CUSTODY DOCUMENTATION

10:05 Toy izs õ \$20--ပဒ္ဒဂ္ဂ 4N0-8 ŝ 8-8 8 - 004 8 000 3 \geq 10-€ ⇒ 3 Page. Requested 6:00 Analysis No 091054160 Yes Date/Time: *G/72/09* Detivery Method: Drop-of Custody Seals Intact: Containers Number of ۳ CHAIN OF CUSTODY RECORD Duration Q.W Sample 34-be Br: (Signature) Received By: (Signature) 2 Q . Vos t Nethod Sample Red 15:00 **Tine** Project Location: TOB Landfill 2 Project name: TOBOBL09-3 ∍ Project ID: TOBOBL09-3 111:03 104 Samplers: (Signature) Date 9/221 Pate/Time: Laboratory: H2M Date/Time: Matrix (A, L, S) < じっき士 5 • • Sample ID كر الم 5 5,20 イロア 11.5 Mit d by: (Signature) by (Signature) . Jember 400 Post Avenue, Suite 105 $\tilde{\mathcal{L}}$ 2 Ę 6 0 1 THE ROW **TOY125 S7** Westbury, NY 11590 Fax: (516) 333-4571 Ph: (516) 333-4526 TOBOBL09-3 -Test ID TANKING I elinduj Relind

| .^ | | | | | | <u></u> | <u> </u> | · | <u> </u> | <u> </u> | | 7 | | ~ 1 | - 7 | <u> </u> | | | <u> </u> | | | | | 1 |
|------------------------|--|---|--------------------------|-------------|---|---------|----------|--------|----------|----------|-------|---------------|----------|----------|----------------|----------|----------------------------|-------|--------------|------------------|--------------------------|---------------------------|-----------------------|----------------------------------|
| Sz1 hol | 2 | | | | | | | | | | | | | | | | | | | 16:08 | ۲
کر | | | |
| | - Page | | Analysis
Requested | 0910546-012 | 1 | -013 | 7 | 219- | <u>م</u> | -015 | ~ | - 10- | -016 | -018 | Ą | 610- | <u>э</u> | -020- | > | n
N | 109 16:05 | | S No | t |
| | | | | 09/024 | ļ | | | | | | | | | | | | | | \mathbb{A} | Date | Date/Time:
9/22/09 | d: Drop-off | Intact:
Yes | |
| | | | Number of
Containers | - | * | | - | - | +- | | | - | v | - | • | | - | - | + | | XX | Delivery Method: Drop-off | Custody Seals Intact: | |
| RECORD | | | Sample | 10-010 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ,). | | | | | | | | | _ | | | | \geq | (Signature) | (Signature) | | | |
| HAIN OF CUSTODY RECORD | | | Sample
Method | 1/65 t | | | | | | | | | | _ | | | _ | | 1 _ | Received By: (| Received By: (Signature) | þ | | |
| N OF CU | 3L09-3
L09-3
B Landfill | RY I | Ē | | | | | | | | | | / | / | / | | | | P | | 16:01 | | | |
| CHAIN | Project name: TOBOBL09-3
Project ID: TOBOBL09-3
Project Location: TOB Landfill | Laboratory: H2M
Samplers: (Signature) | Matrix
(A, L, S) Date | A 19/24/01 | | | | | | / / | | / | | | | | | 1 1 | | Date/Time: | Date/Time. 9 | | | |
| | 4 | Sa | Sample ID | | 2 | | | (c).f | (o), A | t (مر) ع | d.(oc | 4 | ا ا ا | 1 . | 5. (Oh) | | 5.0 | ć. f | 2 | | | | | CON CONTRACTOR |
| | 400 Post Avenue, Suite 105
Westbury, NY 11590 | 33-4526
333-4571 | | 2
M | MS | MC. | MG | (0)/LW | 1 M9(1 | ()bh | 79C | M9(3 | ן ≍ | (on/1/1/ | M9(| 11/3 | $\mathcal{C}[\mathcal{W}]$ | MIN | N16 | eby: (Signature) | ed by: (Signature) | | TOY125 S8 | <u>an Coid Data Abaan MGAb</u> a |
| | 400 Post Avenue, Su
Westbury, NY 11590 | Ph: (516) 333-4526
Fax: (516) 333-4571 | TestiD | TOBOBL09-3 | | | | | | | | | | | | | | | 3 | Relinguish | Leikou | Hemarks. | ТОҮ | |

SZILAZ 10:01 Page 6:05 -026 -007 -027 800 220--023 520-120--024 7 ⇒ -> ⇒ ⇒ ⇒ Requested Analysis ر برکا Date/Time; Al22/09 02000 OGVOSY Yes Delivery Method: Drop-off Custody Seals Intact: Containers Number of CHAIN OF CUSTODY RECORD Sample Duration いしの 3%: (Signature) Received By: (Signature) h ٩ ١ Sample Method 1037 Redeiv 16:05 0 **J** Project Location: TOB Landfill Project name: TOBOBL09-3 Project ID: TOBOBL09-3 Samplers: (Signature) g/w/of Date Date/Time/ 9/12 / (c:0) 0.27:10-0 Laboratory: H2M (A L, S) Matrix < Sample ID 134 T 7, [1] 215 4246 417.5 NV8.5 272 3.6 1-8-1 FB1.5 LUL L 227 717 FB).5 Fbl.F doy: (Signature) elinquished by: (Signature) 400 Post Avenue, Suite 105 77 7 TOY125 S9 Westbury, NY 11590 Fax: (516) 333-4571 Ph: (516) 333-4526 TOBOBL09-3 Test ID **Temarks:** дe

. . . .

:

| Page 4 4 | Analysis
Requested | 09/0546 -009 | | -031 | | > | | | | | | | | | | | | G. 22, 9, 16.06 | Date/Time:
7/22/05 16:05 | d: Drop-off | Intact: Yes No | |
|--|-------------------------|--------------|--------|----------|----------|---|---|---|---|---|----|---|---|----|---|---|---|-----------------------------|------------------------------|--------------------------|-----------------------|---|
| | Number of
Containers | - | - | + | 1 | 1 | + | 1 | 1 | 1 | +- | 1 | - | *- | - | - | | | | Detwery Method: Drop-off | Custody Seals Intact: | |
| | Duration | ~ | L | ۱ |) | | | | | | | | | | | | | (Signature) | (Signature) | | | |
| | Sample | 11/055 | | | <i>\</i> | | | | | | | | | | | | | Received | Redeived By: (Signature) | þ | | |
| : TOBOBL09-3
TOBOBL09-3
Ion: TOB Landfill
SM | emit | 6 | | | Þ | | | | | | | | | | | | | ~ | 16:05 | | | |
| Project name: TOBOBL09-3
Project ID: TOBOBL09-3
Project Location: TOB Landfill
Laboratory: H2M
Samplers: (Signature) | Matrix
(A.L.S) Date | 6 | | | | | | | | | | | | | | | | Date/Time | P. C. M. G. | | | |
| 400 Post Avenue, Suite 105
Westbury, NY 11590
Ph: (516) 333-4526
Fax: (516) 333-4571 | Test ID Sample ID | -3 77 | < K3.5 |) ITB(.f | U 1791.5 | | | | | | | | | | | | 4 | Relinduished by/(Signature) | Relingershed by: (Signature) | Remarks | TOY125 S10 | PUTTITINAN Samatificial Dam CharacteritoPhana CAR |

SZIMOL

CHAIN OF CUSTODY RECORD

H2M LABS, INC.

Sample Receipt Checklist

TOY 125

| HZIWI LADO, INC. | | | | | |
|--|--------------------------|-------------|----------------------|--------------------------|--|
| | Sample | Receipt C | hecklist | | |
| Client Name TOY
Work Order Number 0910546 | | | Date and
Received | Time Received:
by dmc | 9/22/2009 4:05:00 PM |
| Checklist completed by | | 3/00 | Reviewed | by SA | 9 2 8/09
Dete |
| Matrix: | Carrier name | Hand Delive | ared | | |
| Shipping container/cooler in good condition? | | Yes 🗹 | No 🗋 | Not Applicable 🗌 | |
| Custody seals intact on shippping container/co | oler? | Yes 🗌 | No 🗖 | Not Applicable 🗹 | |
| Custody seals intact on sample bottles? | | Yes 🗌 | No 🗆 | Not Applicable 🗹 | |
| Chain of custody present? | | Yes 🗹 | No 🛄 👘 | | • |
| Chain of custody signed when relinquished and | I received? | Yes 🗹 | No 🗔 | • | •
• • |
| Chain of custody agrees with sample labels? | | Yes 🗹 | No 🗔 | | |
| Samples in proper container/bottle? | | Yes 🗹 | No 🗌 | | |
| Sample containers intact? | | Yes 🗹 | No 🗔 | | •. |
| Sufficient sample volume for indicated test? | | Yes 🗹 | No 🗌 | | · · |
| All samples received within holding time? | | Yes 🗹 | No 🗔 | | e f |
| Container/Temp Blank temperature in complian | ice? | Yes 🗹 | No [] | | |
| Water - VOA vials have zero headspace? | No VOA vials sub | mitted 🗹 | Yes | 🗆 No 🖸 | |
| Water - pH acceptable upon receipt? | | Yes 🗹 | No 🗌 | | |
| | Adjusted? | | Checked by | | |
| t t sens | | - | | | ., |
| Any No and/or NA (not applicable) response m | ust be detailed in the o | comments se | ction below. | | :
. · |
| | | , | | | |
| Client contacted | Date contacted: | | F | Person contacted | |
| Contacted by: | Regarding | | | | ······································ |
| Comments: | | <u> </u> | · | | · |
| | | | | | |
| Corrective Action | | | | | |
| | | | | | TOY125 |
| | | | ······ | | [|

- ----

IJ

| EMARKS: | | | | | pH CHECK Y or 1 |
|--------------------|--------------|-----------|------------|---|---|
| SCEIVED BY: $i)NV$ | | IGNATURE: | Zill, | рате | 9/25/09 TIME: 16:00
IMPLES RECEIVED 9/22 |
| | H2M LAB | DATE | BOTTLE | | TESTS |
| CLIENT ID | 11M LAD | COLLECTED | | BOTTLES | REQUESTED |
| DI.F+B | 0910546-0014 | | VOST | { | TOY-AIR |
| DZ B | -0024 | 1 | L | | |
| , DZ.F | -0034 | | | | - ~ |
| . D3.B | -0044 | | | | · |
| , D3.F | - 0051 | | | | |
| · FI.F+B | -006 A | | <u> </u> = | | · · · · · |
| , FBI. F+B | -007A | | | ļ | |
| · FBZ F+B | -0034 | ·
· | | ┇ | , |
| · FB3·F+B | -004.4 | | ╞━┝╸ | <u> </u> | |
| · MZ-F+B | -0104 | | ┨ | <u> </u> | |
| . M4.F+B | -011 A | | ┟┊╶┟╺╌╸ | <u></u> | |
| " M5.F+B | -012, | 1 | ┨╼╍┨╼╍╸ | ╶┠╌╌┠╼╍ | |
| " M6.F+B | -013/ | 4 | ┋ | | |
| • M9(10). F+B | -0141 | A | ╏╍┨╼╸ | | |
| ·· (20) V | -015, | | ╶┨╌╌┨╼╍ | +-+ | |
| . (30).B | -016- | | ╺╁╌┞─╴ | | |
| | -017, | | - | _┨╂ | |
| | - 018 | | ╪╌╄╌ | | + |
| " MI3.F+B | -019 | | | <u></u> | _ _ |
| * M16.F+B | ₩ -020 | A V | N. | V | |

VÖLATILE

.

P 0199

TOY125 S12

PAGE 10FZ

| | CLIEN | r:70 | <u>рү</u> | | | | |
|----------|-----------------|---------------------------------------|------------------------------|-----------------------|----------------|------------------------------------|----------|
| | SDG # | : <u> </u> | Y 125 | | , | | |
| ļ | | | INTE | RNAL CHAIN C | F CUS | STODY | • |
| | D | TIMB | SAMPLE
RELINQUISHED
BY | SAMPLE
RECEIVED BY | BOTTLE
TYPE | PURPOSE OF
CHANGE OF
CUSTODY | INIT |
| | DATE
9/23/09 | 17:00 | STORE AND A | STON HI ralling | VOST | ANALYSIS | |
| | | 11.00 | pide M C | Parce Hore | | - | |
| | | · | sicu | \$10¥ | | | |
| | | | 1000 ······ | stor | | | |
| ų | | | 91czł | 310H | | | |
| ń 🍽 | | | \$10M | 9109 | | | |
| L | | ,,,, | 5](23 | 3108 | | - 2 | |
| 2 | | | 8303 | SICH | | | |
| | | | \$10¥ | NOIE | | | |
| ÷(C) | · | | aicos | SICH | | | |
| | | | BION | SICN | | | |
| ų | ļ | | sion | SICH | | | |
| n e | | · ····· | 3100 | SICH | | | |
| L. | | · | SICH | SIGN | | | |
| | | | NOIG | aich | | | |
| | | | SION | SICH | | | |
| | <u>.</u> | | 5100 | BION | ŀ | | · |
| | | | SICH | \$10N | | : | |
| 4 | | · | aion | SICN | | | · |
| | | | 4016 | SION | ÷ ····· | | |
| l. | | | SION | SION | | | ļ |
| | | · · · · · · · · · · · · · · · · · · · | 2109 | SION | | | ļ |
| | | | 910N | 31CH | _ | | <u> </u> |
| | | | 310M | SICH | | | |
| | } | | SION | SICH | 1 : | | |
| 3 | | <u> </u> | 510H | SIGN | + | · · · · | <u> </u> |
| | | L | 1 | | _1 | | |

VOLATILE

. \* P 0200

TOY125 S13

H2M LABS, INC.

| 99 j. | | , | | | | | | | | | | DALE | |
|--------------|------------------|--------|------------|-------|--------|------------|-----|-----------|--------------------------|---------------------------|------------|------|-------|
| | | ĪN | TERŇA | AL C | HAIN | OF | CUS | STODY | | | | VHGE | 2007 |
| CL | ENT: 104 | _DE | LIVERAE | BLES: | 35-70 | D | TUR | N AROUN | D TIME: | 21 2445 | | | |
| SD | G#: JOY125 | CA | ASE #: | | 1 | MATR | ax: | Aia | pH CH | ECK Y or 🚯 | • | | |
| RE | MARKS: | | | | | | | | | | | | |
| REC | EIVED BY: | | s | IGNAT | URE: | <u>z</u> { | Ê | | E: 9/23/09 T
AMOLES R | IME: 16:00
ECRIVES 1/2 | 09 16:05 | | |
| | | н | 2M LAB | D | АТЕ | вот | TLE | #OF | | TESTS | | | |
| | CLIENT ID | | Ħ | COLI | LECTED | тұ | PE | BOTTLES | RE | QUESTED | | • | |
| • | MEZ.F+B | onic | H6 · 021A | 9/: | 11/09 | VC | 95T | <u> </u> | 704 | -AIR | | | |
| ŀ | MC8·F+B | | -otes | · . | | | | | - | [| | | |
| • | M31 · F+B | | -0734 | | | | | | <u> </u> | | | | |
| ŀ | M34 - F+B | | -07.44 | | | | | | | | I . | | - |
| , | M 3 37. F+B (MC) | | ·ozsą | | | | | | ļ | | | | |
| ŀ | M39.B | | 0264 | | | | | | <u> </u> | ,
 | | | |
| • | V.F | | -0274 | | | | | | | | | | • •. |
| Ŀ | UI.F+B | | -078/ | | · · | | • | | | | 1 : | | ·. |
| Ŀ | UZ.B | •• | r024A | | | | | | | | · · | | |
| - | V .F | | -030A | | | ŀ | | | | | _ | | • |
| n | TBI.F+B | \vee | -0314 | | ¥ | V. | | V | <u> </u> | <u>,</u> | 4 | | |
| | | | | | | | | | | | - | | · •• |
| ., | | | | | | | | | | | 1 | | •••• |
| | | | \searrow | | | | | | | • | 4. | | 、 · |
| N | · | | | | | | | | · · | - <u></u> | 1 | | • • |
| | | | | | | | _ | | à | MC | · | · | |
| " | | | | | | • | _ | \square | · . | 923 09 | | | |
| <u> </u> | | | | | | | | | | <u> </u> | | • | |
| | | | | | | | | | | | | | • |
| | | | | | | | | | | · | | | 5 S14 |
| | | | | | | | | | | | | | |

VOLATILE

P 0202

| | • | | | | |
|-----|-------|--------------|------------------------------|-----------------------|----|
| | H2 | M. II | ABS, INC. | •. | |
| | | т: <u>[(</u> | | | |
| | SDG 🖁 | 10 | 1125 | | |
| | | | INTE | RNAL CHAIN | OF |
| J | DATE | TIMB | SAMPLE
RELINQUISHED
BY | SAMPLE
RECRIVED BY | В |
| - 6 | | | 8104 _ / / 3/ | SIGH n. / | |

CHANGE OF OTTLE CUSTODY INIT TYPE ANALYSI 3 JOST 9 25 91 17:00 Flagul <u>US</u> 8164 STON 910¥ 8102 ų BION SION sion SICH . . JION 5108 Û SION SIGN . - 2 BION SICH Ŋ **510N** SIGN 3109 SICN BION SICN SION SICH . 310H SIGN 1 SION SIGN . SION SIGN I SION SIGN 910M JION SION Į SIGH •• SION SICN 310H SION I **.**.... 3101 SION SICH 910N 310X SICH 31 OM SICH . SION SICH : SION SIGN

VOLATILE

P 0203

CUSTODY

PURPOSE OF

TOY125 S15

PAGE ZorZ

3. SDG NARRATIVES

SDG NARRATIVE FOR VOST ANALYSIS PROJECT: 2009 AMBIENT AIR AND SOIL GAS SAMPLES RECEIVED: 922/09 SDG #: TOY125

Page 1 of 2

| For Samples: | | | | |
|--------------|---------|------------|------------|---------|
| | D1.F+B | FB3.F+B | M9(30).F | M34.F+B |
| | D2.B | M2.F+B | M9(40).F+B | M37.F+B |
| | D2.F | M4.F+B | M13.F+B | M39.B |
| | D3.B | M5.F+B | M16.F+B | M39.F |
| | D3.F | M6.F+B | M22.F+B | U1.F+B |
| | F1.F+B | M9(10).F+B | M28.F+B | U2.B |
| | FB1.F+B | M9(20).F+B | M31.F+B | U2.F |
| | FB2.F+B | M9(30).B | | |

The second quarter ambient air and soil gas VOST samples were analyzed according to EPA Method 5041. The reporting format follows the requirements of the NYSDEC Analytical Service Protocol (ASP), Rev. 10/95.

QC DATA

The surrogate recovery for 4-bromofluorobenzene in sample M13.F+B exceeded the Q. C. limit.

Acetone and methylene chloride were present in the method blanks. Positives for these analytes in the associated samples were flagged with the qualifier "B".

TUNING / CALIBRATION

Tuning and calibration were performed according to EPA method 5041.

Multi-point calibration at three concentration levels from 5 to 1000 ng was performed with internal standard calibration. The low level calibrations for methylene chloride and acetone were excluded from the average response computation due to interference by contamination.

Chlorotrifluoromethane, 2-chloroethylvinyl ether and decane are reported to a quantification limit (PQL) of 25 ng and benzaldehyde to 50 ng based on the low responses for these analytes.

For the samples comprising the front tubes of the downwind or upwind samples, benzaldehyde is reported with elevated PQLs of 250 ng. due to interference by trimethylbenzene.

The QC criteria of method 5041 for SPCC compounds and CCC compounds were met for the initial and continuous calibrations (CCV). No response was obtained in the CCVs for chlorotrifluoromethane due to a bad standard mix. Any positives for that analyte are regarded estimated.

SDG NARRATIVE FOR VOST ANALYSIS PROJECT: 2009 AMBIENT AIR AND SOIL GAS SAMPLES RECEIVED: 922/09 SDG #: TOY125

Page 2 of 2

SAMPLE ANALYSIS

TIC compounds, identified as siloxanes or silanes, that are suspected to be column bleed introduced by the analytical system, were flagged with the qualifier "X".

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or his designee, as verified by the following signature.

Date Reported: October 21, 2009

Ursula Middel Technical Manager

4. SAMPLE REPORTS 4.1 VOLATILES 1A NANIC ANALA

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

H2M LABS INC.

Sample No. D1 F&B

.

MATRIX : AIR

Sample ID.: 0911546-001A Lab File ID: W2290.D Date/Time Analyzed: 7 Instument ID:

7 Oct 20 9 13:37

Split Factor :1:1Quant Range :5to1000

| COMPOUND NAME: | Result : | ng | ٦ |
|---------------------------|--|------------|-----|
| Chloromethane | | 10 | _ |
| Vinyl Chloride | | 5 U | Л |
| Bromomethane | ······ | 5υ | 7 |
| Chloroethane | | 5υ | ᅴ |
| 1,1-Dichloroethene | | 21 | 7 |
| Trichlorofluoromethane | | 290 | ٦ |
| Acetone | | 120 | в |
| Carbon Disulfide | | 5 U | ヿ |
| Methylene Chloride | · · · · · · · · · · · · · · · · · · · | 78 | в |
| 2-Butanone | | 200 | |
| trans-1,2-Dichloroethene | | 5 U | , |
| cis-1,2-Dichloroethene | | 74 | ٦ |
| 1,1-Dichloroethane | | 6 | |
| Chloroform | | 38 | |
| 1.2-Dichloroethane | | 5U | 5 |
| 1,1,1-Trichloroethane | | 70 | |
| Carbon Tetrachloride | | 200 | |
| Trichloroethene | | 1,500 в | |
| Benzene | | 150 | |
| 1,2-Dichloropropane | | 5 u | ה |
| Bromodichloromethane | | 5 u | |
| cis-1,3-Dichloropropene | | 5 u | |
| trans-1,3-Dichloropropene | | 5 u | |
| 1,1,2-Trichloroethane | | 5 u | , |
| 4-Methyl-2-Pentanone | | 26 | |
| 2-Hexanone | | 8 u | , |
| Toluene | | 510 | |
| Tetrachloroethene | <u></u> | 380 | |
| Dibromochloromethane | | 5 u | |
| Chlorobenzene | | 5 u | , |
| Ethylbenzene | | 99 | |
| Xylene (total) | | 450 | _ |
| Styrene | | 5 L | |
| Bromoform | | 8 L | , |
| 1,1,2,2-Tetrachloroethane | | 5 u |) |
| 2/4-Ethyltoluene (total) | · ······ | 290 | |
| 1,3-Dichlorobenzene | | 5 0 | J |
| 1,4-Dichlorobenzene | | 42 | |
| 1,2-Dichlorobenzene | | 5 L | U T |
| Chlorotrifluoromethane | ······································ | 25 u | J |
| Chloroethylvinylether | | 25 เ | U |
| Benzaldehyde | | 250 u | IJ |
| Decane | | 84 | |

| | 1F | | | |
|----------|----------|----------|------|-------|
| VOLATILE | ORGANICS | ANALYSIS | DATA | SHEET |

TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

D1.F+B

| Lab Name: | H2M LABS, | INC | <u>.</u> | | | Contract | | | | | |
|-------------------------|-------------|-----|----------------|--------------|---|------------|------------|------------|---------------|----------|------|
| Lab Code: | 10478 | | Case No. | : <u>TOY</u> | | SAS No.: _ | | SDG No | .: <u>TOY</u> | L25 | |
| Matrix: (soi | l/water) | | AIR | | | | Lab Sample | ∋ ID: | 0910546- | -001A | |
| Sample wt/vo | 1: <u>5</u> | | | (g/mL) | G | | Lab File 3 | tD: | 09\w229(|).D | |
| Level: (lo | w/med) | LOW | | | | | Date Rece | ived: | 09/22/09 | <u>.</u> | |
| <pre>% Moisture: </pre> | not dec. | | | | | | Date Analy | yzed: | 10/07/09 | 2 | |
| GC Column: | R-502.2 | | ID: <u>.53</u> | (mm) | | | Dilution | Factor: | 1.00 | | |
| Soil Extract | Volume: | | | (µl) | | | Soil Aliq | lot Volume | : | <u>0</u> | (րւ) |
| | | | 2 B | al
Juglog | | | ATION UNI | rs: | | | |
| Number TICs : | found: | | 7 19 | л . - | | (µg/L 01 | : µg/Kg) | | ng | | |
| | | | | | | | | | | ~ | 1 |

| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
|----------------|---------------------|-------|-----------|----|
| 1. 000106-97-8 | Butane | 1.92 | 340 | JN |
| 2.000078-78-4 | Butane, 2-methyl- | 2.69 | 690 | JN |
| 3, | unknown | 3.33 | 550 | J |
| 4. 000107-83-5 | Pentane, 2-methyl- | 3.86 | 820 | JN |
| 5. 000110-54-3 | Hexane | 4.31 | 850 | JN |
| 6. 000591-76-4 | Hexane, 2-methyl- | 5.41 | 500 | JN |
| 7. | _alphaPinene isomer | 12.03 | 500 | J |

TOY125 S21

ł

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M LABS INC. | | | Sample No. D2.B |
|----------------|-----------|---|------------------|
| MATRIX : AIR | | Sample ID. : 0910546-0
Lab File ID : W2253.D | |
| | | Date/Time Analyzed:
Instument ID: | 1 Oct 20 9 23:03 |
| Split Factor : | 1:1 | | |
| Quant Range : | 5 to 1000 | | |

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|--------------|
| Chloromethane | | 10 |
| Vinyl Chloride | | 5 0 |
| Bromomethane | · · · · · · · · · · · · · · · · · · · | 5 u |
| Chloroethane | | 5 0 |
| 1,1-Dichloroethene | | 23 |
| Trichlorofluoromethane | | 230 |
| Acetone | · · · · · · · · · · · · · · · · · · · | 77 |
| Carbon Disulfide | | 5 0 |
| Methylene Chloride | | 93 |
| 2-Butanone | | 11 |
| trans-1,2-Dichloroethene | · · · · · · · · · · · · · · · · · · · | 5 u |
| cis-1,2-Dichloroethene | | 32 |
| 1,1-Dichloroethane | · · · · · · · · · · · · · · · · · · · | 5 u |
| Chloroform | | 9 |
| 1,2-Dichloroethane | | 5 0 |
| 1,1,1-Trichloroethane | | 5 u |
| Carbon Tetrachloride | | 31 |
| Trichloroethene | ······································ | 21 |
| Benzene | | 5 u |
| 1,2-Dichloropropane | • • • • • • • • • | - 5 U |
| Bromodichloromethane | | 5 0 |
| cis-1,3-Dichloropropene | | 5 0 |
| trans-1,3-Dichloropropene | | 5 u |
| 1,1,2-Trichloroethane | | 5 บ |
| 4-Methyl-2-Pentanone | | 8 u |
| 2-Hexanone | | 8 U |
| Toluene | ······································ | 5 U |
| Tetrachioroethene | | 5 U |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 Ju |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | ······································ | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | .5 U |
| 2/4-Ethyltoluene (total) | | 5 ป |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 0 |
| Decane | | 25 U |

TOY125 S22

1

1F EPA S. VOLATILE ORGANICS ANALYSIS DATA SHEET D2.B TENTATIVELY IDENTIFIED COMPOUNDS D2.B

| EPA | SAMPLE | NO. |
|-------------|--------|-----|
| | | |
| DO T | | |

.

| Lab Name: <u>H2M LABS, II</u> | NC. Contra | et: | |
|-------------------------------|-------------------------|-----------------------------|-------------------|
| Lab Code: <u>10478</u> | Case No.: TOY SAS No.: | SDG N | o.: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-002A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2253.D |
| Level: (low/med) LO | M | Date Received: | 09/22/09 |
| f Moisture: not dec. | | Date Analyzed: | 10/01/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | <u>1.00</u> |
| Soil Extract Volume: | (µl) | Soil Aliquot Volume | »: <u>0</u> (μL) |
| Number TICs found: | - 7 Pistiquet | TRATION UNITS:
or µg/Kg) | ng |
| CAS NUMBER | COMPOUND NAME | RT EST.C | DNC. Q |
| 1 000075-71-8 | Dichlorodifluoromethane | 1 26 | 220 10 |

| 1.000075-71-8 | Dichlorodifluoromethane | 1.36 | 220 | JN |
|---------------|-------------------------|------|-----|----|
| 2.000075-28-5 | Isobutane | 1.61 | 170 | JN |
| 3.000106-97-8 | Butane | 1.89 | 230 | JN |
| 4.000078-78-4 | Butane, 2-methyl- | 2.67 | 390 | JN |
| 5. | unknown | 3.31 | 230 | J |
| 6.000107-83-5 | Pentane, 2-methyl- | 3.83 | 140 | JN |
| 7. | branched alkane | 5.82 | 220 | J |

TOY125 S23

1A

- <u>1</u> 1

VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

| | | Sample No. |
|---------------------------|---|------------------|
| 2M LABS INC. | | D2.F |
| | | |
| | Sample ID. : 0910546-003 | |
| MATRIX: AIR | Sample ID. : 0910546-003
Lab File ID : W2254.D | DA |
| | Date/Time Analyzed: | 1 Oct 20 9 23:40 |
| | Instument ID: | 1 Oct 20 9 23:40 |
| Split Factor : 1 : 1 | motament io: | |
| Quant Range : 5 to 1000 | | |
| | | |
| COMPOUND NAME: | Result : | ng |
| Chloromethane | | 5 U |
| Vinyl Chloride | · · · · · · · · · · · · · · · · · · · | 5 u |
| Bromomethane | | 5 0 |
| Chloroethane | | 5 0 |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 30 |
| Acetone | - | 42 B |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 28 B |
| 2-Butanone | · · · · · · · · · · · · · · · · · · · | 140 |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 59 |
| 1,1-Dichloroethane | | 5 0 |
| Chloroform | | 27 |
| 1,2-Dichloroethane | ······································ | 5 U |
| 1,1,1-Trichloroethane | ······································ | 41 |
| Carbon Tetrachloride | | 110 |
| Trichloroethene | · · · · · · · · · · · · · · · · · · · | 1,300 E |
| Benzene | | 150 |
| 1,2-Dichloropropane | | 5 U |
| Bromodichloromethane | | 5 U |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | - | 16 |
| 2-Hexanone | | 8 U |
| Toluene | | 550 |
| Tetrachloroethene | | 350 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | <u>5</u> ບ |
| Ethylbenzene | | 96 |
| Xylene (total) | | 440 |
| Styrene | | 5 บ |
| Bromoform | | <u>8</u> ບ |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 260 |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | 34 |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 250 U |
| Decane | | 70 |

TOY125 S24

-

| | 1F | | EPA SAMPLE NO. | _ |
|---------------------------|--|--|-------------------------|------|
| | VOLATILE ORGANICS ANALYS
TENTATIVELY IDENTIFIEN | | D2.F | |
| Lab Name: H2M LABS, IN | <u>c.</u> | Contract: | _ | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: | SDG No.: TOY125 | |
| Matrix: (soil/water) | AIR | Lab Sample 3 | ID: <u>0910546-003A</u> | |
| Sample wt/vol: <u>5</u> | (g/mL) <u>G</u> | Lab File ID | : <u>09\W2254.D</u> | |
| Level: (low/med) LOW | ! | Date Receiv | ed: <u>09/22/09</u> | |
| % Moisture: not dec. | | Date Analyz | ed: <u>10/01/09</u> | |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Fa | stor: <u>1.00</u> | |
| Soil Extract Volume: | (µl) | Soil Aliquo | t Volume: 0 | (µԼ) |
| Number TICs found: | 73 Projuloy | CONCENTRATION UNITS
(µg/L or µg/Kg) | :
<u>ng</u> | |
| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. Q | |

| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | ¥ |
|----------------|---------------------|-------|-----------|----|
| 1. | นทหกอพก้ | 3.32 | 170 | J |
| 2.000107-83-5 | Pentane, 2-methyl- | 3.85 | 600 | JN |
| 3, | branched alkane | 4.07 | 390 | J |
| 4.000110-54-3 | Hexane | 4.31 | 880 | JŅ |
| 5. 000591-76-4 | Hexane, 2-methyl- | 5.41 | 530 | JN |
| 6, | _alphaPinene isomer | 12.04 | 370 | J |
| 7. | c3-subs_benzene | 13.36 | 180 | J |

TOY125 S25

~

370

· 1A

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M | LA | BS | INC. |
|-----|----|----|------|
|-----|----|----|------|

| Sample | e No. |
|--------|-------|
| D3.B | |

MATRIX : AIR

Sample ID. : 0910546-004A Lab File ID : W2255.D Date/Time Analyzed: 2 Oct 2 Instument ID:

2 Oct 20 9 0:15

Split Factor: 1 : 1 Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|------|
| Chloromethane | | 9 |
| Vinyi Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 16 |
| Trichlorofluoromethane | | 260 |
| Acetone | ······································ | 60 в |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 84 в |
| 2-Butanone | · · · · · · · · · · · · · · · · · · · | 14 |
| trans-1,2-Dichloroethene | | 5 |
| cis-1,2-Dichloroethene | | 29 |
| 1,1-Dichloroethane | | 5 U |
| Chloroform | | 10 |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichloroethane | | 5 U |
| Carbon Tetrachloride | | 31 |
| Trichloroethene | | 5 U |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5 U |
| Bromodichloromethane | | 5 0 |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | U 8 |
| 2-Hexanone | | 8 U |
| Toluene | | 5 U |
| Tetrachloroethene | | 5 U |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 ข |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 5 ບ |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 10 |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | | 25 0 |

| 1F
VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS | | | | | | EPA SAN
D3.B | IPLE NC |).
 |
|---|---|-------------------------------|------------|------------|------------|-----------------|----------|--------|
| Lab Na | me: H2M LABS, INC | <u>.</u> | Contract | t: | | | | |
| Lab Co | de: <u>10478</u> | Case No.: <u>TOY</u> | SAS No.: _ | | SDG No | .: <u>TOY</u> | 125 | |
| Matrix | : (soil/water) | AIR | | Lab Sample | e ID: | <u>0910546</u> | 5-004A | |
| Sample | wt/vol: <u>5</u> | (g/mL) <u>G</u> | | Lab File : | ID: | 09\W225 | 5.D | |
| Level: (low/med) LOW Date Received: 09/22/09 | | | | | | | | |
| % Moist | % Moisture: not dec. Date Analyzed: <u>10/02/09</u> | | | | | | | |
| GC Colv | umn: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution | Factor: | 1.00 | | |
| Soil Er | ktract Volume: | (µl) | | Soil Aliq | uot Volume | : | <u>o</u> | (µL) |
| | | -7 3 BAYTIN 104 | CONCENTI | RATION UNI | rs: | | | |
| Number | TICs found: | 73 Miller | (µg/L о | cµg/Kg) | | ng | | |
| | CAS NUMBER | COMPOUND NAME | | RT | EST.CO | NC. | Q | |
| | 1.000075-71-8 | Dichlorodifluoromethane | | 1.39 | | 270 | JN | |
| | 2.000075-68-3 | Ethane, 1-chloro-1,1-difluoro | - | 1.65 | | 290 | JN | |
| | 3,000106-97-8 | Butane | | 1.91 | | 220 | JŅ | |
| | 4.000078-78-4 | Butane, 2-methyl- | | 2.69 | | 350 | JN | |
| | 5.001717-00-6 | 1,1-Dichloro-1-fluoroethane | | 3.30 | | 270 | JN | |

Pentane, 2-methylbranched alkane

6. 000107-83-5

7.

• •

.

·. ·

3.85 5.82 130 220 JN

J

. .

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

H2M LABS INC. D3.F MATRIX : AIR Sample ID. : 0910546-005A Lab File ID : W2256.D Date/Time Analyzed: 2 Oct 20 9 0:52 Instument ID: Split Factor : 1:1 **Quant Range :** 5 to 1000 COMPOUND NAME: **Result:** ng Chloromethane 5 U Vinyl Chloride 5 U Bromomethane 5lu Chloroethane 5 U 1.1-Dichloroethene 5 U Trichlorofluoromethane 30 Acetone 59 8 **Carbon Disulfide** 5U Methylene Chloride 32 В 2-Butanone 120 trans-1,2-Dichloroethene 5 U cis-1.2-Dichloroethene 42 1.1-Dichloroethane 5 U Chloroform 27 1,2-Dichloroethane 5 U 1,1,1-Trichloroethane 35 Carbon Tetrachloride 110 Trichloroethene 1,400 E Benzene 160 1,2-Dichloropropane 5 U Bromodichloromethane 5 U cis-1,3-Dichloropropene 5 U trans-1,3-Dichloropropene 5 U 1,1,2-Trichloroethane 5 U 4-Methyl-2-Pentanone 23 2-Hexanone 8 U Toluene 650 Tetrachloroethene 300 Dibromochloromethane 5 U Chlorobenzene 5 U Ethylbenzene 120 Xylene (total) 540 Styrene 5 U Bromoform **8**U 1,1,2,2-Tetrachloroethane 5 U 2/4-Ethyltoluene (total) 340 1,3-Dichlorobenzene 5υ 1,4-Dichlorobenzene 43 5 U 1,2-Dichlorobenzene Chlorotrifluoromethane 25 U Chloroethylvinylether 25 U Benzaldehyde 250 U Decane 110

TOY125 S28

Sample No.

15 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

10

EPA SAMPLE NO.

D3.F

| Lab Name: | H2M LABS, INC. | <u>.</u> | | Contrac | t: | |
|---------------|------------------|----------------|--------------|----------|----------------------|------------------|
| Lab Code: | 10478 | Case No. | : <u>tox</u> | SAS No.: | SDG No | .: <u>TOY125</u> |
| Matrix: (soil | /water) | AIR | | | Lab Sample ID: | 0910546-005A |
| Sample wt/vol | .: <u>5</u> | | (g/mL) | G | Lab File ID: | 09\W2256.D |
| Level: (low | /med) <u>LOW</u> | | | | Date Received: | 09/22/09 |
| % Moisture: n | ot dec. | | | | Date Analyzed: | 10/02/09 |
| GC Column: R | -502.2 | ID: <u>.53</u> | (mm) | | Dilution Factor: | 1.00 |
| Soil Extract | Volume: | | (ltl) | | Soil Aliquot Volume: | : <u>0</u> (µL) |

CONCENTRATION UNITS:

Number TICs found:

BUSIALOG

73 (µg/L or µg/Kg) ng CAS NUMBER COMPOUND NAME RT EST.CONC. Q 220 1, unknown 3.32 J 2,000107-83-5 820 JN Pentane, 2-methyl-3.84 520 JN 3. 000096-14-0 Pentane, 3-methyl-4.06 4. 000110-54-3 Hexane 4.30 1300 JN JN 5. 000591-76-4 5.41 790 Hexane, 2-methylalpha\_-Pinene isomer 12.04 320 6. J 7. c3-subs\_benzene 13.37 240 J

TOY125 S29

1A

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| ப⁄ | 28.8 | | AB | 0 | 12 | 110 | • |
|----|------|----|----|----|----|-----|----|
| п. | 5171 | ۰. | нD | σ. | | Ч٩, | ٠. |

| Sample | No. | |
|--------|-----|--|
| F1 F&B | | |
| | | |

MATRIX : AIR

Sample ID. : 0911546-006A Lab File ID : W2271.D Date/Time Analyzed: 5 Oct 20 9 19:01 Instument ID:

Split Factor :1:1Quant Range :5to1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|-------------|
| Chloromethane | | 5 U |
| Vinyl Chloride | | 5 U |
| Bromomethane | ······································ | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 16 |
| Acetone | ······································ | 16 |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 14 8 |
| 2-Butanone | | 8 U |
| trans-1,2-Dichloroethene | | 5 U |
| cls-1,2-Dichloroethene | | 5 U |
| 1,1-Dichloroethane | | 5 U |
| Chloroform | | 6 |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichloroethane | | 5 U |
| Carbon Tetrachloride | | 5 U |
| Trichloroethene | | 6 |
| Benzene | | 5 U |
| 1,2-Dichloropropane | · · · · · · · · · · · · · · · · · · · | 5 U |
| Bromodichloromethane | | 5 ບ |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | . 8Ú |
| 2-Hexanone | | 8 U |
| Toluene | | 5 U |
| Tetrachloroethene | | 49 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | ······································ | 5 U |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | ······································ | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | · · · · · · · · · · · · · · · · · · · | 25 U |

1F EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET F1.F+8 TENTATIVELY IDENTIFIED COMPOUNDS Lab Name: H2M LABS, INC. Contract: Lab Code: 10478 \_\_\_\_\_ SDG No.: Case No.: TOY **TOY125** SAS No.: Matrix: (soil/water) Lab Sample ID: AIR 0910546-006A Sample wt/vol: 5 (g/mL) G Lab File ID: 09\W2271.D Level: (low/med) TOM Date Received: 09/22/09 % Moisture: not dec. 10/05/09 Date Analyzed: GC Column: R-502.2 ID: <u>.53</u> (mm) Dilution Factor: 1.00 (µL) Soil Extract Volume: (µ1) Soil Aliquot Volume: <u>0</u>

CONCENTRATION UNITS:

| ł | CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
|---|----------------|--------------------------|-------|-----------|----|
| | 1. 000075-71-8 | Dichlorodifluoromethane | 1.40 | 27 | JN |
| | 2. | unknown siloxane | 13.98 | 32 | ΥL |
| | 3. | Octenal,dimethyl- isomer | 15.13 | 77 | J |

TOY125 S31

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

Sample No.

VOST

| LABS INC. | FB1 F&B | | |
|--|---|----|--------|
| MATRIX: AIR | Sample ID. : 0911546-007A
Lab File ID : W2250.D
Date/Time Analyzed: 1 Oct 20 9 21:
Instument ID: | 13 | |
| Split Factor : 1 : 1
Quant Range : 5 to 1000 | | | |
| COMPOUND NAME: | Result : | ng | |
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | υ |
| Chloroethane | | 5 | |
| 1,1-Dichloroethene | | 5 | |
| Trichlorofluoromethane | | 5 | |
| Acetone | | 8 | |
| Carbon Disulfide | | 5 | _ |
| Methylene Chloride | | 44 | |
| 2-Butanone | | 8 | U |
| trans-1,2-Dichloroethene | | | υ |
| cis-1,2-Dichloroethene | ······ | | U |
| 1,1-Dichloroethane | | | υ |
| Chloroform | | 5 | |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | ······································ | | U
U |
| Carbon Tetrachloride | | | U
U |
| Trichloroethene | · | | U
U |
| Benzene | · · · · · · · · · · · · · · · · · · · | 5 | |
| 1,2-Dichloropropane | | | U
U |
| Bromodichloromethane | | | U |
| cis-1,3-Dichloropropene | | | U |
| trans-1,3-Dichloropropene
1,1,2-Trichloroethane | ······································ | | U |
| 4-Methyl-2-Pentanone | | | υ |
| 2-Hexanone | · · · · · · · · · · · · · · · · · · · | | U |
| Toluene | · · · · · · · · · · · · · · · · · · · | | v |
| Tetrachloroethene | | | Ū |
| Dibromochloromethane | ······································ | | U |
| Chlorobenzene | | | U |
| Ethylbenzene | · · · · · · · · · · · · · · · · · · · | 5 | U |
| Xylene (total) | | | U |
| Styrene | | - | U |
| Bromoform | | | U |
| 1,1,2,2-Tetrachloroethane | · · · · · · · · · · · · · · · · · · · | | U |
| 2/4-Ethyltoluene (total) | · · · · · · · · · · · · · · · · · · · | | U |
| 1,3-Dichlorobenzene | | | Ü |
| 1,4-Dichlorobenzene | | | U_ |
| 1,2-Dichlorobenzene | | 5 | υ |
| Chlorotrifluoromethane | | 25 | |
| Chloroethylvinylether | | 25 | Ų |
| Benzaldehyde | | 50 | V |
| Decane | | 25 | U |

| | 1F | | EPA SAMPLE NO. |
|---------------------------|---|----------------------|------------------|
| · | VOLATILE ORGANICS ANALY
TENTATIVELY IDENTIFI | | FB1.F+B |
| Lab Name: H2M LABS, INC | <u>.</u> | Contract: | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: SDG No | .: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-007A |
| Sample wt/vol: 5 | (g/mL) G | Lab File ID: | 09\W2250.D |
| Level: (low/med) LOW | | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/01/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µl) | Soil Aliquot Volume | : <u>0</u> (µL) |
| | | CONCENTRATION UNITS: | |
| Number TICs found: | 0 | (µg/L or µg/Kg) | ng |

COMPOUND NAME

RT

EST.CONC.

Q

2 2

CAS NUMBER

ι.

.

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

Sample No. FB2 F&B

H2M LABS INC.

| MATRIX : AIR | Sample ID. : 0911546-008A
Lab File ID : W2251.D
Date/Time Analyzed: 1 Oct 20 9 21:49 |) | |
|--|--|----|----|
| Palit Fostana d. d. | Instument ID: | | |
| Split Factor: 1 : 1
Quant Range : 5 to 1000 | | | |
| COMPOUND NAME: | Result : | ng | Γ |
| Chloromethane | | 5 | U |
| Vinyl Chloride | | 5 | Ū |
| Bromomethane | | 5 | U |
| Chloroethane | | 5 | U |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 5 | U |
| Acetone | | 8 | υ |
| Carbon Disulfide | | 5 | υ |
| Methylene Chloride | | 46 | E |
| 2-Butanone | | 8 | υ |
| trans-1,2-Dichloroethene | | 5 | υ |
| cis-1,2-Dichloroethene | ····· | 5 | U |
| 1,1-Dichloroethane | | 5 | U |
| Chloroform | | 5 | U |
| 1,2-Dichloroethane | | 5 | U |
| 1,1,1-Trichloroethane | | 5 | U |
| Carbon Tetrachloride | | 5 | υ |
| Trichloroethene | | 5 | υ |
| Benzene | | 5 | U |
| 1,2-Dichloropropane | · · · · · · · · · · · · · · · · · · · | 5 | |
| Bromodichloromethane | | 5 | U |
| cis-1,3-Dichloropropene | | -5 | U |
| trans-1,3-Dichloropropene | | 5 | U |
| 1,1,2-Trichloroethane | | 5 | υ |
| 4-Methyl-2-Pentanone | | 8 | υ |
| 2-Hexanone | | 8 | V |
| Toluene | | 5 | ប |
| Tetrachloroethene | | 5 | U |
| Dibromochloromethane | ······································ | 5 | IJ |
| Chlorobenzene | ······································ | 5 | U |
| Ethylbenzene | | 5 | U |
| Xylene (total) | | 5 | U |
| Styrene | | 5 | U |
| Bromoform | | 8 | U |
| 1,1,2,2-Tetrachloroethane | | 5 | υ |
| 2/4-Ethyltoluene (total) | | | Ų |
| 1,3-Dichlorobenzene | ······································ | 5 | U |
| 1,4-Dichlorobenzene | ······ | 5 | |
| 1,2-Dichlorobenzene | | 5 | |
| Chlorotrifluoromethane | | 25 | - |
| Chloroethylvinylether | ···· | 25 | |
| Benzaldehyde | ······ | 50 | |
| Decane | · | 25 | |
| | | | - |

| 1F | | | | | | EPA SAMPLE NO. | | | |
|---|--|---------------------|----------------------|----------------|------------|-----------------|----------|------|--|
| VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS | | | | | | FB2.F+B | | | |
| Lab Nam | ab Name: <u>H2M LABS, INC.</u> Contrac | | | | | | | | |
| Lab Cod | le: <u>10478</u> | Case No.: TOY | SAS No.: _ | | SDG No. | .: <u>Toy12</u> | 5 | | |
| Matrix: | (soil/water) | AIR | | Lab Sample | e ID: | 0910546-0 | 08A | | |
| Sample wt/vol: 5 (g/mL) G | | | | Lab File ID: | | 09\W2251.D | | | |
| Level: (low/med) LOW | | | | Date Received: | | 09/22/09 | | | |
| % Moisture: not dec. | | | | Date Analyzed: | | 10/01/09 | | | |
| GC Colu | mn: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution H | actor: | 1.00 | | | |
| Soil Ex | tract Volume: | (µl) | | Soil Aliqu | ot Volume: | | <u>0</u> | (րբ) | |
| | | | CONCENTRATION UNITS: | | | | | | |
| Number | TICs found: 0 (µg/ | | | or µg/Kg) | | ng | | | |
| | CAS NUMBER | COMPOUND | NAME | RT | est.com | NC. | Q | | |

TOY125 S35

VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

| H2M LABS INC. | | Sample No.
FB3 F&B |
|---------------|---|------------------------------------|
| MATRIX: AIR | Sample ID. : | 0911546-009A |
| | Lab File ID :
Date/Time Ana
Instument ID: | W2252.D
lyzed: 1 Oct 20 9 22:25 |

Split Factor : Quant Range : 1:1 5 to 1000

·

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---------------------------------------|----|----|
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | |
| Chloroethane | | 5 | |
| 1,1-Dichloroethene | · · · · · · · · · · · · · · · · · · · | 5 | |
| Trichlorofluoromethane | | 5 | U |
| Acetone | | 8 | U. |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | · · · · · · · · · · · · · · · · · · · | 43 | B |
| 2-Butanone | | | υ |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | | 5 | |
| 1,1-Dichloroethane | | 5 | |
| Chloroform | | 5 | |
| 1,2-Dichloroethane | · · · · · · | 5 | |
| 1,1,1-Trichloroethane | | 5 | |
| Carbon Tetrachloride | | 5 | - |
| Trichloroethene | | 5 | |
| Benzene | | 5 | |
| 1,2-Dichloropropane | | 5 | |
| Bromodichloromethane | | 5 | |
| cis-1,3-Dichloropropene | | 5 | |
| trans-1,3-Dichloropropene | | 5 | |
| 1,1,2-Trichloroethane | | 5 | |
| 4-Methyl-2-Pentanone | · · · . | 8 | |
| 2-Hexanone | | 8 | |
| Toluene | | 5 | |
| Tetrachloroethene | | 5 | |
| Dibromochloromethane | | 5 | |
| Chlorobenzene | | 5 | |
| Ethylbenzene | | 5 | |
| Xylene (total) | | 5 | ປ |
| Styrene | | 5 | |
| Bromoform | | 8 | |
| 1,1,2,2-Tetrachloroethane | | 5 | |
| 2/4-Ethyltoluene (total) | | 5 | |
| 1,3-Dichlorobenzene | | 5 | |
| 1,4-Dichtorobenzene | | 5 | |
| 1,2-Dichlorobenzene | | 5 | U |
| Chlorotrifluoromethane | | 25 | |
| Chloroethylvinylether | | 25 | |
| Benzaldehyde | | 50 | |
| Decane | | 25 | U |

TOY125 S36

| | 1F | _ | EPA SAMPLE NO. |
|---------------------------|--|----------------------|------------------|
| 7 | VOLATILE ORGANICS ANALYS
TENTATIVELY IDENTIFIED | | FB3.F+B |
| Lab Name: H2M LABS, INC | <u>.</u> | Contract: | |
| Lab Code: <u>10478</u> | Case No.: TOY S | AS No.: SDG No | .: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-009A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2252.D |
| Level: (low/med) LOW | | Date Received: | 09/22/09 |
| f Moisture: not dec. | | Date Analyzed: | 10/01/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µl) | Soil Aliquot Volume | : <u>0</u> (µL) |
| | | CONCENTRATION UNITS: | |
| Number TICs found: | 1 | (µg/L or µg/Kg) | ng |

| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
|----------------|--------------------------|------|-----------|----|
| 1. 000075-45-6 | Methane, chlorodifluoro- | 1.33 | 31 | JN |

TOY125 S37

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

| | | Sample No. | |
|---------------|---------------|-------------------------|---|
| H2M LABS INC. | | M2 F&B |] |
| MATRIX : AIR | Sample ID. : | 0911546-010A | |
| | Lab File ID : | W2272.D | |
| | Date/Time Ana | lyzed: 5 Oct 20 9 19:36 | |
| | instument ID: | | |

Split Factor : Quant Range : 1:1 5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|------|
| Chloromethane | | 5 U |
| Vinyl Chloride | | 5 U |
| Bromomethane | | 5 0 |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | · · · · · · · · · · · · · · · · · · · | 13 |
| Acetone | | 8 U |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 15 |
| 2-Butanone | ······································ | 8 U |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 U |
| 1,1-Dichloroethane | | 5 U |
| Chloroform | | 5 U |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichloroethane | | 5υ |
| Carbon Tetrachtoride | · · · · · · · · · · · · · · · · · · · | 5 |
| Trichforoethene | | 13 |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5 U |
| Bromodichloromethane | | 5 U |
| cis-1,3-Dichloropropene | ······································ | 50 |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | ······································ | 8 U |
| Toluene | | 5 U |
| Tetrachloroethene | | 7 |
| Dibromochloromethane | | 5 ບ |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 บ |
| 2/4-Ethyltoluene (total) | | 5υ |
| 1,3-Dichlorobenzene | ··· ··· ··· ··· ··· ··· ··· ··· | 5 U |
| 1.4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | · · · · · · · · · · · · · · · · · · · | 25 U |

| | | | 1F | | | _ | EPA SAMPLE | NO |
|-----------|-------------------|-------------------|-----------------|-------------|-------------|-----------|------------------|-----------|
| | | VOLATILE ORG | | | | Γ | M2.F+B | |
| | | TENTATIVE | LY IDENTIFJ | ED COMPOUNE |)S | L | | |
| Lab Name: | H2M LABS, 1 | INC. | | Contrac | t: | | | |
| Lab Code: | 10478 | Case No.: | TOY | SAS No.: | | . SDG No | .: <u>Toy125</u> | |
| Matrix: (| (soil/water) | AIR | | | Lab Sample | ID: | 0910546-01 | <u>0A</u> |
| Sample wt | :/vol: <u>5</u> | | (g/mL) <u>G</u> | | Lab File I | ID: | 09\W2272.D | |
| Level: | (low/med) L | WC | | | Date Recei | ved: | 09/22/09 | |
| % Moistur | e: not dec. | | | | Date Analy | zed: | 10/05/09 | |
| GC Column | a: <u>R-502.2</u> | ID: <u>.53</u> (n | m) | | Dilution H | actor: | 1.00 | |
| Soil Extr | act Volume: | | (µl) | | Soil Aliqu | ot Volume | : <u>c</u> |) (µL) |
| | | | | CONCENT | RATION UNIT | rs : | | |
| Number Ti | Cs found: | 0 | | (µg/L o | r µg/Kg) | | ng | |
| | CAS NUMBER | c | OMPOUND NAM | Æ | RT | EST.CO | NC. Ç | 2 |

TOY125 S39

OLM04.2

VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

| H2M LABS INC | Н | 2N | ۱L | AB | SI | IN | С | , |
|--------------|---|----|----|----|----|----|---|---|
|--------------|---|----|----|----|----|----|---|---|

M4 F&B

Sample No.

MATRIX : AIR

Sample ID. : 0911546-011A Lab File ID : W2273.D Date/Time Analyzed: Instument ID:

5 Oct 20 9 20:11

TOY125 S40

Split Factor : 1:1 Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|------|
| Chloromethane | | 5 U |
| Vinyi Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | ······································ | 5 u |
| Trichlorofluoromethane | | 13 |
| Acetone | . <u></u> | 17 E |
| Carbon Disulfide | | 5 U |
| Methylene Chioride | | 15 E |
| 2-Butanone | | 8 U |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 U |
| 1,1-Dichloroethane | | 5 บ |
| Chloroform | | 5 U |
| 1,2-Dichloroethane | | 5 บ |
| 1,1,1-Trichloroethane | | 5 U |
| Carbon Tetrachloride | | 5 U |
| Trichloroethene | | 5 U |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5 บ |
| Bromodichloromethane | | 5 U |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5ี บ |
| 1,1,2-Trichloroethane | | 5 V |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | | 8 U |
| Toluene | | 5 U |
| Tetrachloroethene | | 12 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 5 U |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | | 25 U |

| | | | | 1F | | | | _ | EPA SAL | APLE NO |). <u> </u> |
|---------|---------------------|-------|----------------|---------------------------|------|-----------|-----------|------------|---------------|------------|-------------|
| | | v | | RGANICS AN
VELY IDENT: | | | | | M4.F+B | | |
| Lab Nan | ae: <u>H2M LABS</u> | , INC | <u>.</u> | | | Contract | .: | | | | |
| Lab Coo | le: <u>10478</u> | | Case No. | : <u>TOY</u> | s | AS No.: _ | | SDG No | э.: <u>то</u> | <u>125</u> | |
| Matrix | (soil/water) | | AIR | | | | Lab Sampl | .e ID: | 091054 | 6-011A | |
| Sample | wt/vol: <u>5</u> | | | (g/mL) | G | | Lab File | ID: | <u>09\w22</u> | 73.D | |
| Level: | (low/med) | LOW | | | | | Date Rece | ived: | 09/22/ | 09 | |
| % Moist | ure: not dec. | | | | | | Date Anal | .yzed: | 10/05/0 | 09 | |
| GC Colu | mn: <u>R-502.2</u> | | ID: <u>.53</u> | (mm) | | | Dilution | Factor: | <u>1.00</u> | | |
| Soil Er | tract Volume: | | | (µl) | | | Soil Aliq | uot Volume | : | <u>o</u> | (µԼ) |
| | | | | | | CONCENTR | ATION UNI | TS: | | | |
| Number | TICs found: | | 0 | | | (µg/L or | µg/Kg) | | ng | | _ |
| | CAS NUMBER | 2 | | COMPOUND | NAME | | RT | EST.C | DNC. | Q | |

.

.

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

H2M LABS INC.

· · · · · · ·

Sample No. M5 F&B

MATRIX : AIR

Sample ID. :0911546-012ALab File ID :W2274.DDate/Time Analyzed:5 Oct 20 9 20:47Instument ID:

Split Factor :1 : 1Quant Range :5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|----|-----|
| Chloromethane | | - | U |
| Vinyl Chloride | | | U |
| Bromomethane | · · · · · · · · · · · · · · · · · · · | | υ |
| Chloroethane | | | U |
| 1.1-Dichloroethene | | | V |
| Trichlorofluoromethane | | 15 | |
| Acetone | ······································ | 12 | В |
| Carbon Disulfide | | | U |
| Methylene Chloride | | 13 | |
| 2-Butanone | | | U |
| trans-1,2-Dichloroethene | | | U |
| cis-1,2-Dichloroethene | | | U |
| 1,1-Dichloroethane | | | U |
| Chloroform | | 7 | |
| 1,2-Dichloroethane | | | U |
| 1,1,1-Trichloroethane | | | U |
| Carbon Tetrachloride | | | U |
| Trichloroethene | · · | | U |
| Benzene | | | U |
| 1,2-Dichloropropane | | | υ |
| Bromodichloromethane | | | U |
| cis-1,3-Dichloropropene | | | U |
| trans-1,3-Dichloropropene | | | U |
| 1,1,2-Trichloroethane | | 5 | |
| 4-Methyl-2-Pentanone | | | U |
| 2-Hexanone | | 8 | |
| Toluene | | 5 | |
| Tetrachloroethene | | 58 | |
| Dibromochloromethane | | | U |
| Chlorobenzene | | | U |
| Ethylbenzene | · · · | 5 | i u |
| Xylene (total) | | | i U |
| Styrene | | | U |
| Bromoform | | 8 | U |
| 1,1,2,2-Tetrachloroethane | ······································ | 5 | iυ |
| 2/4-Ethyltoluene (total) | | 5 | iu |
| 1,3-Dichlorobenzene | , | 5 | i u |
| 1.4-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | | i u |
| 1,2-Dichlorobenzene | | 5 | i u |
| Chlorotrifluoromethane | ······································ | 25 | 5 0 |
| Chloroethylvinylether | | | 5 0 |
| Benzaldehyde | | 50 | JU |
| Decane | ····· | 25 | SU. |

| | | lf
Volatile organics A
Tentatively iden | | | EPA S | BAMPLE NO | |
|---------|----------------------|---|----------|------------|---------------------|-----------|------|
| Lab Nam | ne: <u>H2M LABS,</u> | INC. | Contract | :: | | | |
| Lab Cod | le: <u>10478</u> | Case No.: TOY | SAS No.: | | SDG No.: | OY125 | |
| Matrix: | (soil/water) | AIR | | Lab Sample | e ID: 0910 | 546-012A | |
| Sample | wt/vol: <u>5</u> | (g/mL) | G | Lab File | ID: <u>09\</u> W | 2274.D | |
| Level: | (low/med) L | WO | | Date Rece | ived: <u>09/2</u> | 2/09 | |
| % Moist | ure: not dec. | | | Date Anal | yzed: <u>10/0</u> | 5/09 | |
| GC Colu | umn: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution | Factor: <u>1.00</u> | | |
| Soil Ex | tract Volume: | (µl) |) | Soil Aliq | uot Volume: | <u>0</u> | (µL) |
| | | | CONCENTR | ATION UNI | TS: | | |
| Number | TICs found: | 0 | (µg/L or | μg/Kg) | ng | | |
| | CAS NUMBER | COMPOUND | NAME | RT | EST.CONC. | Q | |

i

-

VOLATILE ORGANIC ANALYSIS DATA SHEET

| Sample | No. |
|--------|-----|
| M6 F&B | |

H2M LABS INC.

MATRIX : AIR

Sample ID. :0911546-013ALab File ID :W2275.DDate/Time Analyzed:5 Oct 20 9 21:22Instument ID:

Split Factor: 1 : 1 Quant Range: 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|----|---|
| Chloromethane | | 51 | |
| Vinyl Chloride | | 51 | |
| Bromomethane | | 5 | |
| Chloroethane | | 5 | |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 14 | |
| Acetone | | 13 | В |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | | 8 | В |
| 2-Butanone | | 8 | |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | **** | 5 | |
| 1,1-Dichloroethane | | 5 | |
| Chloroform | ······································ | 5 | |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | <u> </u> | 5 | U |
| Carbon Tetrachloride | | 5 | U |
| Trichloroethene | · · · · · · · · · · · · · · · · · · · | 5 | U |
| Benzene | · · · · · · · · · · · · · · · · · · · | 5 | |
| 1,2-Dichloropropane | | 5 | U |
| Bromodichloromethane | <u> </u> | 5 | U |
| cis-1,3-Dichloropropene | | 5 | U |
| trans-1,3-Dichloropropene | | 5 | U |
| 1,1,2-Trichloroethane | | 5 | U |
| 4-Methyl-2-Pentanone | | 8 | υ |
| 2-Hexanone | | 8 | |
| Toluene | | 5 | υ |
| Tetrachloroethene | | 14 | |
| Dibromochloromethane | ······································ | 5 | υ |
| Chlorobenzene | | 5 | |
| Ethylbenzene | | 5 | U |
| Xylene (total) | | 5 | υ |
| Styrene | | 5 | υ |
| Bromoform | | 8 | υ |
| 1,1,2,2-Tetrachloroethane | | 5 | U |
| 2/4-Ethyltoluene (total) | ······································ | 5 | υ |
| 1,3-Dichlorobenzene | | 5 | |
| 1,4-Dichlorobenzene | · - · · · · · · · · · · · · · · · · · · | 5 | |
| 1,2-Dichlorobenzene | | .5 | |
| Chlorotrifluoromethane | | 25 | υ |
| Chloroethylvinylether | · · · · · | 25 | |
| Benzaldehyde | | 50 | |
| Decane | | 25 | - |

| | 1F | | EPA SAM | PLE NO. |
|---------------------------|---|-----------------|------------------------|---------------|
| | VOLATILE ORGANICS ANALY
TENTATIVELY IDENTIFI | | M6.F+B | |
| | | | | |
| Lab Name: H2M LABS, INC | 5. | Contract: | | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: | SDG No.: TOY | 125 |
| Matrix: (soil/water) | AIR | Lab Sam | ple ID: 0910546 | -013A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab Fil | ⇒ ID: <u>09\₩227</u> | 5.D |
| Level: (low/med) LOW | | Date Re | ceived: <u>09/22/0</u> | 9 |
| % Moisture: not dec. | | Date An | alyzed: <u>10/05/0</u> | 9 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilutio | n Factor: <u>1.00</u> | |
| Soil Extract Volume: | (µl) | Soil Al. | iquot Volume: | <u>0</u> (µL) |
| | | CONCENTRATION U | NITS: | |
| Number TICs found: | 0 | (µg/L or µg/Kg) | ng | |
| CAS NUMBER | COMPOUND NAM | IE RT | EST.CONC. | Q |

.

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M LABS INC. | Sample No.
M9(10) F&B | | |
|--------------------|--|------------------|--|
| MATRIX: AIR | Sample ID. : 0911546-01
Lab File ID : W2276.D | | |
| Split Factor : 1 : | Date/Time Analyzed:
Instument ID: | 5 Oct 20 9 21:57 | |

Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---|-----|-----|
| Chloromethane | · · | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | - |
| Chloroethane | | 5 | U. |
| 1,1-Dichloroethene | | 5 | υ |
| Trichlorofluoromethane | | 34 | |
| Acetone | | 10 | В |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | | 10 | В |
| 2-Butanone | | 8 | |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | ···· \ | 5 | υ |
| 1,1-Dichloroethane | ······································ | 5 | U |
| Chloroform | | | |
| 1,2-Dichloroethane | ······ | 5 | U |
| 1,1,1-Trichloroethane | . | 5 | |
| Carbon Tetrachloride | | 5 | U |
| Trichloroethene | | 5 | U |
| Benzene | | 5 | υ |
| 1,2-Dichloropropane | | 5 | U |
| Bromodichloromethane | | 5 | U |
| cis-1,3-Dichloropropene | | 5 | U |
| trans-1,3-Dichloropropene | | 5 | U |
| 1,1,2-Trichloroethane | · · · · · · · · · · · · · · · · · · · | 5 | U |
| 4-Methyl-2-Pentanone | | 8 | U |
| 2-Hexanone | | 8 | U |
| Toluene | | 5 | U |
| Tetrachloroethene | · • • • • • • • • • • • • • • • • • • • | 120 | |
| Dibromochloromethane | | 5 | U |
| Chlorobenzene | | 5 | U |
| Ethylbenzene | | 5 | U . |
| Xylene (total) | | 5 | U |
| Styrene | | 5 | U |
| Bromoform | | 8 | U |
| 1,1,2,2-Tetrachloroethane | ······································ | 5 | |
| 2/4-Ethyltoluene (total) | · · · · · · · · · · · · · · · · · · · | 5 | U |
| 1,3-Dichlorobenzene | ······································ | 5 | υ |
| 1,4-Dichlorobenzene | | | Ū |
| 1.2-Dichlorobenzene | | | Ū |
| Chlorotrifluoromethane | | 25 | - |
| Chloroethylvinylether | · · · · · · · · · · · · · · · · · · · | 25 | |
| Benzaldehyde | · · · · · · · · · · · · · · · · · · · | 50 | - |
| | | | |
| Decane | ······································ | 25 | V |

TOY125 S46

÷

| | 1F
Volatile organics analysis d
Tentatively identified com | | EPA SAMPLE NO.
M9(10).F+B |
|------------------------------|--|--------------------|------------------------------|
| Lab Name: <u>H2M LABS, 1</u> | <u>NC.</u> Co | ntract: | |
| Lab Code: <u>10478</u> | Case No.: TOY SAS 1 | No.: SD(| 3 No.: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | <u>0910546-014A</u> |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2276.D |
| Level: (low/med) LC | W | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/05/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | <u>1.00</u> |
| Soil Extract Volume: | (µ1) | Soil Aliquot Vol | .ume: <u>0</u> (µL) |
| | cc | NCENTRATION UNITS: | |
| Number TICs found: | μ) 0 | g/L or µg/Kg) | ng |
| CAS NUMBER | COMPOUND NAME | RT ES' | F.CONC. Q |

<u>.</u>

٠.

TOY125 S47

į

j,

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M | LABS | INC. |
|-----|------|------|
|-----|------|------|

MATRIX: AIR

| Sampl | | |
|--------|-----|--|
| M9(20) | F&B | |

7 Oct 20 9 14:52

Sample ID. : Lab File ID : 0911546-015A W2292.D Date/Time Analyzed: Instument ID:

Split Factor : Quant Range : 1:1 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---------------------------------------|----|-----|
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | U |
| Chloroethane | | 5 | |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 36 | |
| Acetone | | 32 | В |
| Carbon Disulfide | | 5 | υ |
| Methylene Chloride | | 12 | В |
| 2-Butanone | | 18 | |
| trans-1,2-Dichloroethene | • | | U |
| cis-1,2-Dichloroethene | | | U |
| 1,1-Dichloroethane | | | U |
| Chloroform | | 9 | |
| 1,2-Dichloroethane | | | U |
| 1,1,1-Trichloroethane | | 7 | |
| Carbon Tetrachloride | | | U |
| Trichloroethene | | 7 | |
| Benzene | | | υ |
| 1,2-Dichloropropane | | | U |
| Bromodichloromethane | | | υ |
| cis-1,3-Dichloropropene | · · · · · · · · · · · · · · · · · · · | | Ú |
| trans-1,3-Dichloropropene | | | U |
| 1,1,2-Trichloroethane | | + | - |
| 4-Methyl-2-Pentanone | • . | | U |
| 2-Hexanone | | 8 | |
| Toluene | | - | υ |
| Tetrachloroethene | | | |
| Dibromochloromethane | | | U |
| Chlorobenzene | | | U |
| Ethylbenzene | | | 1 * |
| Xylene (total) | | | U |
| Styrene | | - | |
| Bromoform | | | U |
| 1,1,2,2-Tetrachloroethane | | | U |
| 2/4-Ethyltoluene (total) | | - | U |
| 1,3-Dichlorobenzene | | | U |
| 1,4-Dichlorobenzene | | - | U |
| 1,2-Dichlorobenzene | | | U |
| Chlorotrifluoromethane | | 25 | |
| Chloroethylvinylether | | 25 | - |
| Benzaldehyde | | 50 | |
| Decane | | 25 | U |

| | 1 F | | EPA SAMPLE NO. |
|-------------------------------|--|----------------------|---------------------|
| | VOLATILE ORGANICS ANAL
TENTATIVELY IDENTIFY | | M9 (20) . F+B |
| Lab Name: <u>H2M LABS, IN</u> | <u>c.</u> | Contract: | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: SDG N | D.: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | <u>0910546-015A</u> |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2292.D |
| Level: (low/med) LOW | [| Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/07/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µl) | Soil Aliquot Volume | a: <u>0</u> (µL) |
| | | CONCENTRATION UNITS: | |
| Number TICs found: | 1 | (µg/L or µg/Kg) | ng |

(µg/L or µg/Kg)

.

|
TIOB LOUNG. | | | | | • |
|-----------------|-------------------------|------|-----------|----|---|
| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q | |
| 1.000075-71-8 | Dichlorodifluoromethane | 1.38 | 54 | JN |] |

:

į.

A REAL PROPERTY OF A REAL PROPER

.

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| 11014 | 1 8 | DC. | EAD | ~ |
|-------|-----|-----|------|----|
| H2M | LA | DQ. | 11.4 | v. |

| Sample No. | |
|------------|--|
| M9(30).B | |

MATRIX : AIR

Sample ID.: 0910546-016A Lab File ID: W2263.D Date/Time Analyzed: 2 Oct 20 9 17:38 Instument ID:

Split Factor :1 : 1Quant Range :5 to 1000

| COMPOUND NAME: | Result : | ng | _ |
|---------------------------|---------------------------------------|----|---|
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | |
| Chloroethane | | 5 | - |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 7 | |
| Acetone | | 15 | B |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | | 18 | B |
| 2-Butanone | | 8 | |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | | 5 | V |
| 1,1-Dichloroethane | | | U |
| Chloroform | | 5 | |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | | 5 | |
| Carbon Tetrachloride | | 5 | |
| Trichloroethene | | 5 | |
| Benzene | | 5 | |
| 1,2-Dichloropropane | | 5 | |
| Bromodichloromethane | | 5 | |
| cis-1,3-Dichloropropene | | 5 | |
| trans-1,3-Dichloropropene | | 5 | |
| 1,1,2-Trichloroethane | | 5 | - |
| 4-Methyl-2-Pentanone | | 8 | |
| 2-Hexanone | | 8 | - |
| Toluene | | 5 | |
| Tetrachioroethene | | 5 | |
| Dibromochloromethane | | 5 | |
| Chlorobenzene | | 5 | |
| Ethylbenzene | | 5 | |
| Xyiene (total) | | 5 | |
| Styrene | | 5 | |
| Bromoform | | 8 | |
| 1,1,2,2-Tetrachloroethane | | 5 | |
| 2/4-Ethyltoluene (total) | | 5 | |
| 1,3-Dichlorobenzene | | 5 | |
| 1,4-Dichlorobenzene | | 5 | |
| 1,2-Dichlorobenzene | | 5 | |
| Chlorotrifluoromethane | | 25 | - |
| Chloroethylvinylether | | 25 | |
| Benzaldehyde | · · · · · · · · · · · · · · · · · · · | 50 | |
| Decane | | 25 | U |

| 1F
VOLATILE ORGANICS ANAI | YSIS DATA SHEET | EPA SAMPLE NO.
M9 (30).B |
|---|---------------------|-----------------------------|
| TENTATIVELY IDENTIF | IED COMPOUNDS | M3 (30) . B |
| Lab Name: H2M LABS, INC. | Contract: | |
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG N | o.: <u>TOY125</u> |
| Matrix: (soil/water) <u>AIR</u> | Lab Sample ID: | 0910546-016A |
| Sample wt/vol: 5 (g/mL) G | Lab File ID: | 09\W2263.D |
| Level: (low/med) LOW | Date Received: | 09/22/09 |
| % Moisture: not dec. | Date Analyzed: | 10/02/09 |
| GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: (µ1) | Soil Aliquot Volume | ∋: <u>0</u> (µL)́ |

٠,.

•

CONCENTRATION UNITS:

Number TICs found:

(µg/L or µg/Kg)

:

•

| Ľ | TICs found: | 2 | (µg/L or µg/Kg) | ng | |
|---|---------------|---------------------------|-----------------|-----------|----|
| 1 | CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
| • | 1,000075-71-8 | Dichlorodifluoromethane | 1.38 | 88 | JN |
| | 2.000076-14-2 | Dichlorotetrafluoroethane | 1.59 | 47 | JN |

÷

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | | mple No. |
|---|--|----------------|
| 12M LABS INC. | M9 | (30).F |
| MATRIX : AIR
Split Factor : 1 : 1 | Sample ID. : 0910546-017A
Lab File ID : W2264.D
Date/Time Analyzed: 2 (
Instument ID: | Dct 20 9 18:14 |
| Quant Range : 5 to 1000 | | |
| | | |
| COMPOUND NAME: | Result : | ng |
| Chloromethane | | . 5 U |
| Vinyl Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 23 |
| Acetone | | 13 в |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 37 в |
| 2-Butanone | | · 8u |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 U |
| 1,1-Dichloroethane | | <u>5</u> 0 |
| Chloroform | | 7 |
| 1,2-Dichloroethane | | <u> </u> |
| 1,1,1-Trichloroethane | | 5 |
| Carbon Tetrachloride | | <u>5 u</u> |
| Trichloroethene | | 20 |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5 U
5 U |
| Bromodichloromethane | | 50 |
| cls-1,3-Dichloropropene | | |
| trans-1,3-Dichloropropene | | 50
50 |
| 1,1,2-Trichloroethane
4-Methyl-2-Pentanone | | |
| 2-Hexanone | | |
| Toluene | ······································ | 50 |
| Tetrachloroethene | | 200 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 50 |
| Xylene (total) | · · · · · · · · · · · · · · · · · · · | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 5 U |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | ····· | 25 U |
| Benzaldehyde | | 50 U |
| | | 25 U |

TOY125 S52

į

| | | lf
E organics ana
Atively identie | | | Г | EPA SAMP
M9(30).F | | - |
|-------------------------|------------------|---|------------|------------|-------------|----------------------|------------|------|
| Lab Name: <u>H2M</u> | LABS, INC. | | Contract | | | | | |
| Lab Code: <u>1047</u> | 28 Case | No.: <u>TOY</u> | SAS No.: _ | | SDG No. | .: <u>Toyi</u> | 25 | |
| Matrix: (soil/wat | er) <u>AIR</u> | | | Lab Sampl | e ID: | 0910546- | 017A | |
| Sample wt/vol: | <u>5</u> | (g/mL) <u>(</u> | 3 | Lab File : | ID: | <u>09\w2264</u> | <u>. D</u> | |
| Level: (low/med |) <u>LOW</u> | | | Date Rece | ived: | 09/22/09 | | |
| % Moisture: not d | ec. | | | Date Anal | yzed: | 10/02/09 | | |
| GC Column: <u>R-502</u> | .2 ID: <u>.5</u> | <u>3</u> (mm) | | Dilution | Factor: | 1.00 | | |
| Soil Extract Volu | me: | (µ1) | | Soil Aliq | uot Volume: | | <u>0</u> | (բե) |
| | | | CONCENTR | ATION UNI | rs: | | | |
| Number TICs found | : 0 | | (µg/L or | µg/Kg) | | ng | | |
| CAS NU | MBER | COMPOUND NA | ME | RT | EST.COM | NC. | Q | |

TOY125 S53

Sector Sector

VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

. . .

| 1.101 | | 1 A | DC | INI | \sim |
|--------------|-----|-----|----|-----|------------|
| L Z | NI. | LA | BS | IIN | し . |

MATRIX : AIR

Sample ID. : 0911546-018A Lab File ID : W2293.D Date/Time Analyzed: Instument ID:

7 Oct 20 9 15:28

Sample No. M9(40) F&B

Split Factor : 1:1 Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---------------------------------------|-----|------|
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | |
| Chloroethane | | | |
| 1,1-Dichloroethene | | 5 | υ |
| Trichlorofluoromethane | | 34 | |
| Acetone | | 14 | |
| Carbon Disulfide | | | U |
| Methylene Chloride | | • | 1- 1 |
| 2-Butanone | | | U |
| trans-1,2-Dichloroethene | | - | |
| cis-1,2-Dichloroethene | | | - |
| 1,1-Dichloroethane | | | U |
| Chloroform | | 6 | |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | | 9 | |
| Carbon Tetrachloride | | | |
| Trichloroethene | | 23 | |
| Benzene | · · · · · · · · · · · · · · · · · · · | | U |
| 1,2-Dichloropropane | | 5 | |
| Bromodichloromethane | | | U |
| cis-1,3-Dichloropropene | · · · · · · · · · · · · · · · · · · · | | U |
| trans-1,3-Dichloropropene | | | U |
| 1,1,2-Trichioroethane | | 5 | |
| 4-Methyl-2-Pentanone | | . 8 | |
| 2-Hexanone | | 8 | |
| Toluene | | | C |
| Tetrachloroethene | · · · · · · · · · · · · · · · · · · · | 700 | |
| Dibromochloromethane | | | U |
| Chlorobenzene | ···· | | U |
| Ethylbenzene | | | U |
| Xylene (total) | | 5 | |
| Styrene | | | U_ |
| Bromoform | ····· | | U |
| 1,1,2,2-Tetrachloroethane | | | U |
| 2/4-Ethyltoluene (total) | · · · · · · · · · · · · · · · · · · · | | U |
| 1,3-Dichlorobenzene | | | U |
| 1,4-Dichlorobenzene | | 5 | |
| 1,2-Dichlorobenzene | | | U |
| Chlorotrifluoromethane | | 25 | - |
| Chloroethylvinylether | | 25 | |
| Benzaldehyde | ······ | 50 | |
| Decane | | 25 | un. |

| | 1F | | EPA SAMPLE NO. |
|---------------------------------|--|----------------------|-------------------|
| v | OLATILE ORGANICS ANALYSIS DATA S
TENTATIVELY IDENTIFIED COMPOUN | | M9 (40) . F+B |
| Lab Name: <u>H2M LABS, INC.</u> | . Contrac | t: | |
| Lab Code: <u>10478</u> | Case No.: TOY SAS No.: | SDG No. | : <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-018A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | <u>09\W2293.D</u> |
| Level: (low/med) LOW | | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/07/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µl) | Soil Aliquot Volume: | <u>0</u> (µL) |

CONCENTRATION UNITS:

Number TICs found:

~

:.

•

(ug/L or ug/Kg)

| ICs found: | 3 | (µg/L or µg/kg) | ng | |
|----------------|-------------------------------------|-----------------|-----------|----|
| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
| 1.000075-71-8 | Dichlorodifluoromethane | 1.37 | 110 | JN |
| 2.000076-14-2 | Dichlorotetrafluoroethane | 1.59 | 140 | JN |
| 3. 000076-13-1 | Ethane, 1,1,2-trichloro-1,2,2-triff | 3.44 | 54 | JN |

TOY125 S55

:

ľ

.

.....

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M LABS INC. | | | Sample No.
M13 F&B |
|---------------|---------------|----------|-----------------------|
| MATRIX: AIR | Sample ID. : | 0911546- | 019A |
| | Lab File ID : | W2277.D | |
| | Date/Time Ana | lyzed: | 5 Oct 20 9 22:33 |

Instument ID:

Split Factor : Quant Range : 1:1 5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|--------------|
| Chloromethane | | 5 U |
| Vinyl Chloride | | 50 |
| Bromomethane | | 5 U |
| Chloroethane | | . 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | ········ | 17 |
| Acetone | | 8 u |
| Carbon Disulfide | · · · · · · · · · · · · · · · · · · · | 5 U |
| Methylene Chloride | | 11 |
| 2-Butanone | | 8 U |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 U |
| 1.1-Dichloroethane | | 5 U |
| Chloroform | | 28 |
| 1,2-Dichloroethane | | |
| 1,1,1-Trichloroethane | · · · · · · · · · · · · · · · · · · · | 9 |
| Carbon Tetrachloride | | 5 U |
| Trichloroethene | | 8 |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5 U |
| Bromodichloromethane | ······································ | 5 U |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | · · · · | 5 U |
| 4-Methyl-2-Pentanone | ······································ | 8 U |
| 2-Hexanone | | 8 U |
| Toluene | ···· | 5 U |
| Tetrachloroethene | | 110 |
| Dibromochloromethane | ······································ | 5 U |
| Chlorobenzene | - | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | · · · · · · · · · · · · · · · · · · · | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 5 U |
| 1,3-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | 5 U |
| 1,4-Dichlorobenzene | <u></u> | 5 0 |
| 1,2-Dichlorobenzene | | 50 |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | <u>.</u> | 25 u |
| Benzaldehyde | | <u>50 u</u> |
| Decane | · · · · · · · · · · · · · · · · · · · | 25 U |

TOY125 S56

.

| | | 1F | | - | EPA SAMPLE NO. |
|-------------------|--------------------------|-----------------|--------------|---------------------|-------------------|
| | VOLATILE | ORGANICS ANALY | SIS DATA SH | EET | M13.F+B |
| | TENTATI | VELY IDENTIFIE | ED COMPOUNDS | 3 | |
| Lab Name: H2M | LABS, INC. | | Contract | : | |
| Lab Code: 104 | Case No | .: <u>Toy</u> | SAS No.: | SDG No | D.: <u>TOY125</u> |
| Matrix: (soil/wat | er) <u>AIR</u> | | | Lab Sample ID: | 0910546-019A |
| Sample wt/vol: | <u>5</u> | (g/mL) <u>G</u> | | Lab File ID: | 09\W2277.D |
| Level: (low/med |) <u>LOW</u> | | : | Date Received: | 09/22/09 |
| % Moisture: not d | ec. | | 1 | Date Analyzed: | 10/05/09 |
| GC Column: R-502 | <u>.2</u> ID: <u>.53</u> | (mm) | : | Dilution Factor: | 1.00 |
| Soil Extract Volu | me: | (µl) | | Soil Aliquot Volume | : <u>0</u> (µL) |
| | | | CONCENTR | ATION UNITS: | |
| Number TICs found | : 7 | | (µg/L or | μg/Kg) | ng |

| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
|---------------|------------------------------|-------|-----------|----|
| 1. | alphaPinene isomer (11.85) | 11.85 | 74 | J |
| 2. | alpha -Pinene isomer (12.08) | 12.08 | 720 | J |
| 3, | beta -Pinene isomer (12.91) | 12.91 | 220 | J |
| 4. | beta -Pinene isomer (13.02) | 13.02 | 800 | J |
| 5. | Limonene isomer | 13.66 | 160 | J |
| 6,001120-21-4 | Undecane | 13.99 | 120 | JN |
| 7. | unknown | 15.49 | 1800 | J |

TOY125 S57

.

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

H2M LABS INC.

Sample No. M16 F&B

MATRIX : AIR

 Sample ID.:
 0911546-020A

 Lab File ID:
 W2278.D

 Date/Time Analyzed:
 5 Oct 20 9 23:08

 Instument ID:
 10

Split Factor : 1 : 1 Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|---------------------------------------|------------|
| Chloromethane | | 5 U |
| Vinyi Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | · · · · · · · · · · · · · · · · · · · | 5 U |
| Trichlorofluoromethane | | 27 |
| Acetone | | 9 E |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 10 e |
| 2-Butanone | ····· | 8 U |
| trans-1,2-Dichloroethene | | · 5 U |
| cis-1,2-Dichloroethene | <u></u> | 5 ป |
| 1,1-Dichloroethane | | 5 บ |
| Chloroform | | 45 |
| 1,2-Dichloroethane | | |
| 1,1,1-Trichloroethane | | 7 |
| Carbon Tetrachloride | · · | 5 U |
| Trichloroethene | | 5 U |
| Benzene | | 5 U |
| 1,2-Dichloropropane | · · · · · · · · · · · · · · · · · · · | 5 U |
| Bromodichloromethane | | 5 U |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | | 8 U |
| Toluene | | 5 ບ |
| Tetrachloroethene | · · · · · · · · · · · · · · · · · · · | 160 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | · · · · · · · · · · · · · · · · · · · | 5 U |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | · ··· · · · · · · · · · · · · · · · · | 25 U |

| | | | 1F | | | _ | EPA SAME | LE NO | | _ |
|--------------|---------------|-------------------------------|---------------|------------|------------|------------|-----------------|-----------|------|---|
| | | VOLATILE ORGAN
TENTATIVELY | | | | | M16.F+B | | | |
| Lab Name: | H2M LABS, INC | <u>2.</u> | | Contract | : | | | | | |
| Lab Code: | 10478 | Case No.: T | <u>YC</u> | SAS No.: _ | | SDG No | .: <u>toy</u> i | .25 | | |
| Matrix: (soi | l/water) | AIR | | | Lab Sample | e ID: | 0910546- | 020A | | |
| Sample wt/vc | 51: <u>5</u> | (g/ | 'mL) <u>G</u> | | Lab File | ID: | <u>09\w2278</u> | <u>.D</u> | | |
| Level: (lo | w/med) LOW | | | | Date Rece | ived: | 09/22/09 | 2 | | |
| % Moisture: | not dec. | | | | Date Anal | yzed: | 10/05/09 | 2 | | |
| GC Column: | R-502.2 | ID: <u>.53</u> (mm) | | | Dilution 3 | Factor: | 1.00 | | | |
| Soil Extract | : Volume: | | (µl) | | Soil Aliq | uot Volume | : | <u>o</u> | (µL) | |
| | | | | CONCENTR | ATION UNI | TS: | | | | |
| Number TICs | found: | 1 | | (µg/L or | µg/Kg) | | ng | | 7 | |
| | CAS NUMBER | COM | POUND NA | ME | RT | EST.CO | NC. | Q | | |

unknown

1.

TOY125 S59

36

J

13.95

VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

H2M LABS INC.

Sample No. M22 F&B

MATRIX : AIR

Sample ID. : 0911546-021A Lab File ID : W2279.D Date/Time Analyzed: Instument ID:

5 Oct 20 9 23:44

Split Factor : 1:1 Quant Range : 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|----|---------|
| Chloromethane | | • | |
| Vinyl Chloride | | 5 | |
| Bromomethane | | 5 | |
| Chloroethane | | 5 | - |
| 1,1-Dichloroethene | | | U |
| Trichlorofluoromethane | | 11 | |
| Acetone | | 9 | В |
| Carbon Disulfide | | | ម |
| Methylene Chloride | | 10 | В |
| 2-Butanone | | | |
| trans-1,2-Dichloroethene | | | U |
| cis-1,2-Dichloroethene | | - | U |
| 1,1-Dichloroethane | | • | - |
| Chloroform | | | U |
| 1,2-Dichloroethane | | | · · · · |
| 1,1,1-Trichloroethane | | | |
| Carbon Tetrachloride | | | U |
| Trichloroethene | | | |
| Benzene | | | U |
| 1,2-Dichloropropane | · | | U |
| Bromodichloromethane | · · · · · · · · · · · · · · · · · · · | | U |
| cls-1,3-Dichloropropene | | | U |
| trans-1,3-Dichloropropene | | | Ú |
| 1,1,2-Trichloroethane | · | | U |
| 4-Methyl-2-Pentanone | | | U |
| 2-Hexanone | | - | |
| Toluene | | 5 | |
| Tetrachloroethene | | 9 | |
| Dibromochloromethane | | | U |
| Chlorobenzene | - | | U |
| Ethylbenzene | | | U |
| Xylene (total) | | | U |
| Styrene | · · · · · · · · · · · · · · · · · · · | | U |
| Bromoform | | | u |
| 1,1,2,2-Tetrachioroethane | | | U |
| 2/4-Ethyltoluene (total) | · | | U |
| 1,3-Dichlorobenzene | | | U |
| 1,4-Dichlorobenzene | | | U |
| 1,2-Dichlorobenzene | | 5 | U_ |
| Chlorotrifluoromethane | | 25 | 17 |
| Chloroethylvinylether | ······································ | 25 | |
| Benzaldehyde | | 50 | 17 . |
| Decane | | 25 | U |

| | | | 1F | | | | EPA SAMPI | e no | ›. |
|---------|--------------------|------------------|-----------------|------------------------------|------------|-------------|-----------------|------------|------|
| | | | | YSIS DATA SH
IED COMPOUND | | Ļ | M22.F+B | | |
| Lab Nam | H2M LABS, | INC. | | Contract | | · | | | |
| Lab Cod | le: <u>10478</u> | Case No.: | TOY | SAS No.: | | SDG No. | .: <u>TOY12</u> | 25 | |
| Matrix: | (soil/water) | AIR | | | Lab Sample | ∋ ID: | 0910546-0 |)21A | |
| Sample | wt/vol: <u>5</u> | | (g/mL) <u>G</u> | | Lab File 1 | ID: | 09\W2279 | D | |
| Level: | (low/med) | LOW | | | Date Recei | ived: | 09/22/09 | | |
| % Moist | ure: not dec. | | | | Date Analy | yzed: | 10/05/09 | | |
| GC Colu | mn: <u>R-502.2</u> | ID: <u>.53</u> (| am) | | Dilution 1 | Factor: | 1.00 | | |
| Soil Ex | tract Volume: | | (µl) | | Soil Aliq | uot Volume: | | . <u>0</u> | (µL) |
| | | | | CONCENT | RATION UNI | rs: | | | |
| Number | TICs found: | 0 | | (µg/L or | - μg/Kg) | | ng | | _ |
| | CAS NUMBER | | COMPOUND NA | ME | RT | EST.CO | NC. | Q | |

CAS NUMBER

:

. :

ŧ

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | | Sample No. |
|---------------|--------------|--------------|
| H2M LABS INC. | | M28 F&B |
| | | |
| MATRIX : AIR | Sample ID. : | 0911546-022A |

ample ID. : Lab File ID : W2280.D Date/Time Analyzed: Instument ID: 6 Oct 20 9 0:20

Split Factor : Quant Range : 1:1 5 to 1000

| COMPOUND NAME: | Result : | ng | _ |
|---------------------------|--|------------|----|
| Chloromethane | | 5 U | |
| Vinyl Chloride | | 5 U | |
| Bromomethane | ····· | 5 U | |
| Chloroethane | | 5 U | |
| 1,1-Dichloroethene | | 5 U | |
| Trichlorofluoromethane | | 11 | |
| Acetone | | 11 | В |
| Carbon Disulfide | · · · · · · · · · · · · · · · · · · · | 5 U | |
| Methylene Chloride | | 21 | В |
| 2-Butanone | | 80 | |
| trans-1,2-Dichloroethene | | 50 | 1 |
| cis-1,2-Dichloroethene | | 5 ບ | 1 |
| 1,1-Dichloroethane | | 5 U | |
| Chloroform | | 5 0 | |
| 1,2-Dichloroethane | | 5 ป | |
| 1,1,1-Trichloroethane | | 5 บ | |
| Carbon Tetrachloride | - | 5 U | |
| Trichloroethene | | 6 | |
| Benzene | | 5 U | |
| 1,2-Dichloropropane | | 5 U | |
| Bromodichloromethane | | 5 U | ļ |
| cis-1,3-Dichloropropene | | 5 U | |
| trans-1,3-Dichloropropene | | 5 U | |
| 1,1,2-Trichloroethane | | 5 U | |
| 4-Methyl-2-Pentanone | ····· | 8 U | 1 |
| 2-Hexanone | | 8 U | ļ |
| Toluene | · · · | 5 U | , |
| Tetrachloroethene | | 6 | _ |
| Dibromochloromethane | ······ | 5 U |) |
| Chlorobenzene | | 5 U | j. |
| Ethylbenzene | | 5 U | ; |
| Xylene (total) | | 5 U | 1. |
| Styrene | | 5 U | , |
| Bromoform | | 8 U | , |
| 1,1,2,2-Tetrachloroethane | ······································ | 5 U | , |
| 2/4-Ethyltoluene (total) | | 5 U | ; |
| 1,3-Dichlorobenzene | | 5 v | , |
| 1.4-Dichlorobenzene | | 5 ป | , |
| 1,2-Dichlorobenzene | | 5 U | 1 |
| Chlorotrifluoromethane | | 25 U | |
| Chloroethylvinylether | | 25 U | , |
| Benzaldehyde | ······································ | 50 U | , |
| Decane | | 25 U | 1 |

| | | 1F
VOLATILE ORGANICS A | analysis data si | łeet | EPA 57
M28.F4 | AMPLE NO. |
|---------|--------------------|---------------------------|------------------|---------------------------------------|----------------------|---------------|
| | | TENTATIVELY IDEN | TIFIED COMPOUND | S | | |
| Lab Nam | e: H2M LABS, I | NC. | Contract | t: | | |
| Lab Cod | e: <u>10478</u> | Case No.: TOY | SAS No.: _ | · · · · · · · · · · · · · · · · · · · | SDG No.: TO | <u>9¥125</u> |
| Matrix: | (soil/water) | AIR | | Lab Sampl | e ID: <u>09105</u> 4 | 16-022A |
| Sample | wt/vol: <u>5</u> | (g/mL) | G | Lab File | ID: <u>09\W2</u> 2 | 280.D |
| Level: | (low/med) LO | W | | Date Rece | ived: <u>09/22</u> | /09 |
| € Moist | ure: not dec. | | | Date Anal | yzed: <u>10/06</u> | /09 |
| GC Colu | mn: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution | Factor: <u>1.00</u> | |
| Soil Ex | tract Volume: | (µl | > | Soil Alig | uot Volume: | <u>0</u> (µL) |
| | | | CONCENT | RATION UNI | TS : | |
| Number | TICs found: | 0 | (µg/L ол | r µg/Kg) | ng | |
| ſ | CAS NUMBER | COMPOUND | NAME | RT | EST.CONC. | Q |

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

H2M LABS INC.

Sample No. M31 F&B

MATRIX : AIR

Sample ID.: 0911546-023A Lab File ID: W2281.D Date/Time Analyzed: 6 Oct 20 9 0:56 Instument ID:

Split Factor :1 : 1Quant Range :5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|----|------------|
| Chloromethane | | | U |
| Vinyl Chloride | | | U |
| Bromomethane | · | | U |
| Chloroethane | | 5 | υ |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 13 | |
| Acetone | | 13 | В |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | · · · · · · · · · · · · · · · · · · · | 10 | |
| 2-Butanone | | | U |
| trans-1,2-Dichloroethene | | | U |
| cis-1,2-Dichloroethene | · · · · · · · · · · · · · · · · · · · | | U |
| 1,1-Dichloroethane | | 5 | U |
| Chloroform | | | |
| 1,2-Dichloroethane | | 5 | U |
| 1.1.1-Trichloroethane | · | 5 | Ū |
| Carbon Tetrachloride | | 5 | U |
| Trichloroethene | | 5 | U |
| Benzene | | 5 | U |
| 1,2-Dichloropropane | | 5 | U |
| Bromodichloromethane | ······································ | | U |
| cis-1,3-Dichloropropene | | 5 | U |
| trans-1,3-Dichloropropene | ······································ | 5 | U |
| 1,1,2-Trichloroethane | | 5 | U |
| 4-Methyl-2-Pentanone | | | U |
| 2-Hexanone | | 8 | U |
| Toluene | | 5 | υ |
| Tetrachloroethene | | 7 | |
| Dibromochloromethane | | 5 | U |
| Chlorobenzene | | 5 | U |
| Ethylbenzene | | 5 | U |
| Xylene (total) | | 5 | U |
| Styrene | | | U |
| Bromoform | | | U |
| 1,1,2,2-Tetrachloroethane | | | U |
| 2/4-Ethyltoluene (total) | | | U |
| 1,3-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | | U |
| 1,4-Dichlorobenzene | | | υ |
| 1,2-Dichlorobenzene | | | U |
| Chlorotrifluoromethane | ····· | 25 | |
| | | 25 | |
| Chloroethylvinylether | | | |
| Benzaldehyde | | 25 | 1.5 |
| Decane | | | 1 <u>~</u> |

| | | | lf | | | | | EPA SAD | IPLE NO |) | |
|---------|---------------------|------------------------|--------------------------|------|----------|-----------|------------|---------------|-------------|------|--|
| | | VOLATILE O
TENTATIV | RGANICS AN
/ELY IDENT | | | | | M31.F+E | 3 | | |
| Lab Nam | e: <u>H2M LABS,</u> | INC. | | | Contract | : | | | | | |
| Lab Cod | le: <u>10478</u> | Case No. | : <u>TOY</u> | SA | S No.: _ | | SDG No | .: <u>TOY</u> | 125 | | |
| Matrix: | (soil/water) | AIR | | | | Lab Sampl | e ID: | 0910546 | 5-023A | | |
| Sample | wt/vol: 5 | | (g/mL) | Ē | | Lab File | ID: | 09\W228 | <u>81.D</u> | | |
| Level: | (low/med) | LOW | | | | Date Rece | ived: | 09/22/0 | 9 | | |
| % Moist | ure: not dec. | | | | | Date Anal | yzed: | 10/06/0 | 9 | | |
| GC Colu | mn: <u>R-502.2</u> | ID: <u>.53</u> | (mm) | | | Dilution | Factor: | 1.00 | | | |
| Soil Ex | tract Volume: | | (µl) | | | Soil Aliq | uot Volume | : | <u>0</u> | (բլ) | |
| | | | | | CONCENTR | ATION UNI | TS: | | | | |
| Number | TICs found: | 0 | | | (µg/L or | µg/Kg) | | ng | | _ | |
| | CAS NUMBER | | COMPOUND | NAME | | RT | EST.CO | DNC. | Q | | |

2

2000 - 1920 - 1920 1920 - 1920 - 1920 1920 - 1920

.

\*\*\*\*

ł

ċ

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | Sample No. | |
|---|--|------|
| I LABS INC. | M34 F&B | |
| | | ا |
| MATRIX : AIR | Sample ID. : 0911546-024A | |
| | Lab File ID : W2282.D | |
| | Date/Time Analyzed: 6 Oct 20 9 1:31 | |
| | Instument ID: | |
| Split Factor : 1 : 1 | installent iD. | |
| Split Factor: 1 : 1
Quant Range: 5 to 1000 | | |
| Qualit Range : 5 to 1000 | | |
| COMPOUND NAME: | Result : | ng |
| Chloromethane | | 5 U |
| Vinyl Chloride | | 50 |
| Bromomethane | • ************************************ | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 15 |
| Acetone | | 11 6 |
| Carbon Disulfide | <u> </u> | 5 U |
| Methylene Chloride | ······································ | |
| 2-Butanone | ······································ | |
| trans-1,2-Dichloroethene | | 50 |
| cis-1,2-Dichloroethene | | 5 U |
| 1.1-Dichloroethane | | 50 |
| Chloroform | | 5 U |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichloroethane | | 5 U |
| Carbon Tetrachloride | | 5 U |
| Trichloroethene | ······································ | 5 U |
| Benzene | ······································ | 5 U |
| 1,2-Dichloropropane | | 5U |
| Bromodichloromethane | | 5 U |
| cis-1,3-Dichloropropene | | 5 u |
| trans-1,3-Dichloropropene | | 50 |
| 1,1,2-Trichloroethane | | 5U |
| 4-Methyl-2-Pentanone | ······ | 8 0 |
| 2-Hexanone | | 80 |
| Toluene | | 5 U |
| Tetrachloroethene | ······································ | 11 |
| Dibromochloromethane | | 5 บ |
| Chlorobenzene | ······································ | 50 |
| Ethylbenzene | | 50 |
| | · · · · · · · · · · · · · · · · · · · | 50 |
| Xylene (total)
Styrene | | 50 |
| Bromoform | ······································ | 8 0 |
| 1,1,2,2-Tetrachioroethane | | 5 U |
| 2/4-Ethyltoluene (total) | · · · · · · · · · · · · · · · · · · · | 5 U |
| 1,3-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | 5 0 |
| 1,4-Dichlorobenzene | ······································ | 50 |
| 1,2-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | 5 U |
| | <u> </u> | |
| Chlorotrifluoromethane | · | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | · · · · · · · · · · · · · · · · · · · | 25 U |

TOY125 S66

-

| | 1F
VOLATILE ORGANICS ANALYS
TENTATIVELY IDENTIFIEI | | EPA SAMPLE NO.
M34.F+B |
|-------------------------|--|----------------------|---------------------------|
| Lab Name: H2M LABS, INC | ÷ | Contract: | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: SDG N | No.: <u>TOX125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | <u>0910546-024A</u> |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2282.D |
| Level: (low/med) LOW | | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/06/09 |
| GC Column: R-502.2 | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µl) | Soil Aliquot Volum | e: <u>0</u> (µL) |
| | | CONCENTRATION UNITS: | |
| Number TICs found: | 0 | (µg/L or µg/Kg) | ng |
| CAS NUMBER | COMPOUND NAME | RT EST.(| CONC. Q |

.

TOY125 S67

÷

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M LABS INC. | | Sample No.
M37 F&B | | |
|----------------|-----------|---|----|------|
| MATRIX : AIR | | Sample ID. : 0911546-025A
Lab File ID : W2294.D
Date/Time Analyzed: 7 Oct 20 9 16:03
Instument ID: | - | |
| Split Factor : | 1:1 | | | |
| Quant Range : | 5 to 1000 | | | |
| COMPOUND | AME: | Result : | ng | |
| Chloromethane | | | | U |
| Vinyl Chloride | | | 5 | 1.0 |
| Bromomothene | | | 5 | hi l |

| | | - |
|---------------------------|-----|----------|
| Chloromethane | | U |
| Vinyl Chloride | 5 | |
| Bromomethane | | U |
| Chloroethane | | U |
| 1,1-Dichloroethene | 5 | U |
| Trichlorofluoromethane | 14 | |
| Acetone | 480 | |
| Carbon Disulfide | | U |
| Methylene Chloride | 12 | · · · · |
| 2-Butanone | 24 | |
| trans-1,2-Dichloroethene | | U |
| cis-1,2-Dichloroethene | 5 | |
| 1,1-Dichloroethane | 5 | - |
| Chloroform | 94 | |
| 1,2-Dichloroethane | | U |
| 1,1,1-Trichloroethane | 5 | 1 |
| Carbon Tetrachloride | | U |
| Trichloroethene | | |
| Benzene | - | υ |
| 1,2-Dichloropropane | | U |
| Bromodichloromethane | | U |
| cis-1,3-Dichleropropene | | u |
| trans-1,3-Dichloropropene | | U |
| 1,1,2-Trichloroethane | | U |
| 4-Methyl-2-Pentanone | | V |
| 2-Hexanone | - | U |
| Toluene | | U |
| Tetrachloroethene | 18 | |
| Dibromochloromethane | | υ |
| Chlorobenzene | | U |
| Ethylbenzene | | U |
| Xylene (total) | | U |
| Styrene | | υ |
| Bromoform | | ti
ti |
| 1,1,2,2-Tetrachloroethane | | υ |
| 2/4-Ethyltoluene (total) | | U |
| 1,3-Dichlorobenzene | | C |
| 1,4-Dichlorobenzene | | Ē |
| 1,2-Dichlorobenzene | | U |
| Chlorotrifluoromethane | | U |
| Chloroethylvinylether | 25 | Ų |
| Benzaldehyde | 50 | |
| Decane | | U |

| | 1F | | | EPA SAM | PLE NO | |
|---------------------------|----------------------------|-------------|---------------|---------------------|----------|------|
| | VOLATILE ORGANICS ANAL | YSIS DATA S | HEET | M37.F+E | L . | |
| | TENTATIVELY IDENTIFI | ED COMPOUN | 08 | | | |
| Lab Name: H2M LABS, ING | <u>.</u> | Contrac | et: | | | |
| Lab Code: <u>10478</u> | Case No.: TOY | SAS No.: | <u></u> | SDG No.: TOY | 125 | |
| Matrix: (soil/water) | AIR | | Lab Sample | ID: 0910546 | -025A | |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | | Lab File II | 09\W229 | 94.D | |
| Level: (low/med) LOW | | | Date Receiv | red: 09/22/0 | 9 | |
| % Moisture: not dec. | | | Date Analyz | zed: <u>10/07/0</u> | 9 | |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution Fa | actor: <u>1.00</u> | | |
| Soil Extract Volume: | (µl) | | Soil Alique | ot Volume: | <u>0</u> | (µL) |
| | art. | CONCENT | TRATION UNITS | 3: | | |
| Number TICs found: | 74 AM19/09 | (µg/L c | or µg/Kg) | ng | | |
| CAS NUMBER | COMPOUND NAM | ME | RT | EST.CONC. | Q | |
| 1.000075-37-6 | Ethane, 1,1-difluoro- | | 1.35 | 120 | JN | |
| 2,000075-28-5 | Isobutane | | 1.63 | 110 | JN | |
| 3. 000106-97-8 | Butane | | 1.91 | 66 | JN | |
| 4.000078-78-4 | Butane, 2-methyl- | | 2.67 | 29 | JN | |
| 5.001717-00-6 | 1,1-Dichloro-1-fluoroethan | e | 3.29 | 34 | JN | |
| 6. 000075-18-3 | Dimethyl sulfide | | 3.72 | 39 | JN | |
| 7. | unknown siloxane | | 13.96 | 42 | ٦X | |

.

Aux 10/21/09

TOY125 S69

. ..:

VOLATILE ORGANIC ANALYSIS DATA SHEET

Sample No. H2M LABS INC. M39.B MATRIX : AIR Sample ID. : 0911546-026A Lab File ID : W22 Date/Time Analyzed: W2265.D 2 Oct 20 9 18:50 Instument ID: Split Factor : 1:1 5 to 1000 Quant Range : COMPOUND NAME: Chloromethane **Result:** ng 511

| Chloromethane | | U |
|---------------------------|----|-----|
| Vinyl Chloride | | U |
| Bromomethane . | | U |
| Chloroethane | | υ |
| 1,1-Dichloroethene | | U |
| Trichlorofluoromethane | 6 | |
| Acetone | | U |
| Carbon Disulfide | 5 | U. |
| Methylene Chloride | 19 | - |
| 2-Butanone | | U |
| trans-1,2-Dichloroethene | 5 | U |
| cis-1,2-Dichloroethene | 5 | υ |
| 1,1-Dichloroethane | 5 | U |
| Chloroform | 5 | U |
| 1,2-Dichloroethane | | U |
| 1,1,1-Trichloroethane | | |
| Carbon Tetrachloride | | U |
| Trichloroethene | 5 | υ |
| Benzene | 5 | υ |
| 1,2-Dichloropropane | 5 | U |
| Bromodichloromethane | 5 | u |
| cis-1,3-Dichloropropene | 5 | U |
| trans-1,3-Dichloropropene | 5 | U |
| 1,1,2-Trichloroethane | 5 | U |
| 4-Methyl-2-Pentanone | 8 | U |
| 2-Hexanone | 8 | U |
| Toluene | 5 | U |
| Tetrachloroethene | 5 | U |
| Dibromochloromethane | 5 | υ |
| Chlorobenzene | 5 | U |
| Ethylbenzene | 5 | U |
| Xylene (total) | 5 | υ |
| Styrene | 5 | υ |
| Bromoform | 8 | υ |
| 1,1,2,2-Tetrachloroethane | 5 | υ |
| 2/4-Ethyltoluene (total) | | υ |
| 1,3-Dichlorobenzene | | U |
| 1,4-Dichlorobenzene | | U |
| 1.2-Dichlorobenzene | | U |
| Chlorotrifluoromethane | 25 | U |
| Chloroethylvinylether | 25 | U I |
| Benzaldehyde | 50 | |
| Decane | 25 | |

| | 15 | | EFA SAMPLE NO. | |
|--------------------------------|---|--------------------|--------------------|--|
| x. | OLATILE ORGANICS ANALYSIS
TENTATIVELY IDENTIFIED | | М39.В | |
| Lab Name: <u>H2M LABS, INC</u> | <u>.</u> | Contract: | | |
| Lab Code: <u>10478</u> | Case No.: TOY SA | S No.: SDG N | lo.: <u>TOY125</u> | |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-026A | |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2265.D | |
| Level: (low/med) LOW | | Date Received: | 09/22/09 | |
| % Moisture: not dec. | | Date Analyzed: | 10/02/09 | |
| GC Column: R-502.2 | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 | |
| Soil Extract Volume: | (µl) | Soil Aliquot Volum | e: <u>0</u> (µL) | |
| | CONCENTRATION UNITS: | | | |
| Number TICs found: | 1 | (µg/L or µg/Kg) | ng | |

| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | ð |
|---------------|-------------------------|------|-----------|----|
| 1.000075-71-8 | Dichlorodifluoromethane | 1.39 | 31 | JN |

3 7

A DE MARKET PROFESSION DE LA COMPANY

. .

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

. . .

| | | Sample No. | |
|---------------|--------------|--------------|--|
| H2M LABS INC. | | M39.F | |
| MATRIX : AIR | Sample ID. : | 0910546-027A | |
| | | Waace D | |

Lab File ID : W2266.D Date/Time Analyzed: Instument ID: 2 Oct 20 9 19:28

Split Factor : Quant Range : 1:1 5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|-----|---|
| Chloromethane | | 5 | - |
| Vinyi Chloride | ······ | 5 | |
| Bromomethane | | 5 | U |
| Chloroethane | | 5 | |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 14 | |
| Acetone | | 9 | B |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | | 28 | B |
| 2-Butanone | | 8 | |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | | 5 | U |
| 1,1-Dichloroethane | | 5 | U |
| Chloroform | | 18 | |
| 1,2-Dichloroethane | · · · · · · · · · · · · · · · · · · · | 5 | |
| 1,1,1-Trichloroethane | · ···· | 5 | |
| Carbon Tetrachloride | | 5 | U |
| Trichloroethene | | 5 | U |
| Benzene | | 5 | |
| 1,2-Dichloropropane | | 5 | |
| Bromodichloromethane | | 5 | |
| cis-1,3-Dichloropropene | | 5 | |
| trans-1,3-Dichloropropene | | 5 | U |
| 1,1,2-Trichloroethane | | 5 | |
| 4-Methyl-2-Pentanone | | 8 | ບ |
| 2-Hexanone | | 8 | - |
| Toluene | | 5 | U |
| Tetrachloroethene | | 300 | |
| Dibromochloromethane | | 5 | - |
| Chlorobenzene | | 5 | |
| Ethylbenzene | | 5 | |
| Xylene (total) | | 5 | |
| Styrene | ······································ | 5 | U |
| Bromoform | | 8 | υ |
| 1,1,2,2-Tetrachloroethane | <u></u> | | U |
| 2/4-Ethyltoluene (total) | | 5 | |
| 1,3-Dichlorobenzene | | 5 | |
| 1,4-Dichlorobenzene | ····· | 5 | |
| 1,2-Dichlorobenzene | | 5 | υ |
| Chlorotrifluoromethane | | 25 | U |
| Chioroethylvinylether | | 25 | U |
| Benzaldehyde | | 50 | U |
| Decane | | 25 | U |

TOY125 S72

٠.

| | 1F | _ | EPA SAMPLE NO. |
|----------------------------------|--|---------------------|-------------------|
| v | OLATILE ORGANICS ANALYSIS DATA SE
TENTATIVELY IDENTIFIED COMPOUND | 1 | M39.F |
| Lab Name: <u>H2M LABS, INC</u> . | <u>.</u> Contract | :: | |
| Lab Code: <u>10478</u> | Case No.: TOY SAS No.: | SDG No | D.: <u>TOY125</u> |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546-027A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2266.D |
| Level: (low/med) LOW | | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/02/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53 (</u> mm) | Dilution Factor: | 1.00 |
| Soil Extract Volume: | (µ1) | Soil Aliquot Volume | : <u>0</u> (µL) |
| | | | |

CONCENTRATION UNITS: (na/T. or na/Ka)

| Number | TICs found: | 1 | (µg/L or µg/Kg) | ng | |
|--------|-------------|------------------|-----------------|------------|---|
| | CAS NUMBER | COMPOUND NAME | RT | EST, CONC. | Q |
| | 1. | unknown siloxane | 13.97 | 26 | J |

1,1,1-Trichloroethane Carbon Tetrachloride

1,2-Dichloropropane

1,1,2-Trichloroethane

4-Methyl-2-Pentanone

Dibromochloromethane

1,1,2,2-Tetrachloroethane

2/4-Ethyltoluene (total)

1,3-Dichlorobenzene

1,4-Dichlorobenzene 1,2-Dichlorobenzene

Chlorotrifluoromethane

Chloroethylvinylether

Benzaldehyde

Decane

Tetrachloroethene

Chlorobenzene Ethylbenzene

Xylene (total)

Bromoform

Styrene

Bromodichloromethane cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Trichloroethene

Benzene

2-Hexanone

Toluene

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| H2M LABS INC. | | ample No.
I1 F&B |] |
|-------------------------|--|---------------------|---|
| MATRIX: AIR | Sample ID. : 0911546-028A
Lab File ID : W2291.D
Date/Time Analyzed:
Instument ID: | 7 Oct 20 9 14:13 | |
| Split Factor: 1: | 1 | | |
| Quant Range : 5 to | 1000 | | |
| COMPOUND NAME: | Result : | ng | Γ |
| Chloromethane | | 11 | Г |
| Vinyl Chloride | | | U |
| Bromomethane | | | Ú |
| Chloroethane | | | U |
| 1,1-Dichloroethene | | 5 | U |
| Trichlorofluoromethane | | 210 | |
| Acetone | | 63 | |
| Carbon Disulfide | | | U |
| Methylene Chloride | | 43 | _ |
| 2-Butanone | | 45 | |
| trans-1,2-Dichloroether | 0 | 5 | U |
| cis-1,2-Dichloroethene | | | U |
| 1,1-Dichloroethane | · · · · · · · · · · · · · · · · · · · | | U |
| Chloroform | | 27 | |
| 1.2-Dichloroethane | | 5 | U |

TOY125 S74

5 U

5 U

5 U

5 U 5 U

5U

8 U

8 u 240

5 U

5 U

5 U

8U

5 ∪ 140

5 U

5 U 25 U

25 U

250 U

38

16

53

45 210

160 33

86

EPA SAMPLE NO. 15 VOLATILE ORGANICS ANALYSIS DATA SHEET U1.F+B TENTATIVELY IDENTIFIED COMPOUNDS H2M LABS, INC. Lab Name: Contract: SDG No.: <u>TOY125</u> Lab Code: 10478 Case No.: TOY SAS No.: 0910546-028A Matrix: (soil/water) Lab Sample ID: AIR 09\W2291.D <u>5</u> Lab File ID: Sample wt/vol: (g/mL) G 09/22/09 Level: (low/med) LOW Date Received: 10/07/09 Date Analyzed: % Moisture: not dec. 1.00 GC Column: R-502.2 ID: .53 (mm) Dilution Factor: Soil Aliquot Volume: 0 (µL) (µ1) Soil Extract Volume: CONCENTRATION UNITS: - Br. Joh

. . .

| Number T | Cs found: | 72 10/19/04 | (µg/L or µg/Kg) | ng | |
|----------|----------------|-------------------------|-----------------|-----------|----|
| Γ | CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
| | 1.000075-71-8 | Dichlorodifluoromethane | 1.42 | 250 | JN |
| - | 2.000078-78-4 | Butane, 2-methyl- | 2.71 | 270 | JN |
| | 3. | unknown | 3.35 | 310 | J |
| | 4. 000107-83-5 | Pentane, 2-methyl- | 3.87 | 340 | JN |
| | 5,000110-54-3 | Hexane | 4.31 | 300 | JN |
| | 6.000591-76-4 | Hexane, 2-methyl- | 5.40 | 190 | JN |
| | 7. | branched alkane | 5.81 | 290 | J |

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | | Sample No. |
|---------------|--------------|--------------|
| H2M LABS INC. | | U2.B |
| MATRIX : AIR | Sample ID. : | 0910546-029A |

Sample ID.: 0910546-029A Lab File ID: W2258.D Date/Time Analyzed: 2 Oct 20 9 2:04 Instument ID:

Split Factor :1: 1Quant Range :5 to 1000

| COMPOUND NAME: | Result : | ng |
|---------------------------|----------|--------------|
| Chloromethane | | 10 |
| Vinyl Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1.1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 210 |
| Acetone | | 5 <u>2</u> a |
| Carbon Disulfide | | 5 ບ |
| Methylene Chloride | | 93 8 |
| 2-Butanone | | 8 U |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 U |
| 1,1-Dichloroethane | | 5 U |
| Chloroform | | 7 |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichforoethane | | 5υ |
| Carbon Tetrachloride | | 22 |
| Trichloroethene | | 5 U |
| Benzene | | 5 U |
| 1,2-Dichloropropane | | 5] U |
| Bromodichloromethane | | 5 U |
| cls-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | | 8 U |
| Toluene | | 5 U |
| Tetrachloroethene | | 5 U |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 5 U |
| Ethylbenzene | | 5 U |
| Xylene (total) | | 5 U |
| Styrene | | 5 บ |
| Bromoform | | 8 U |
| 1,1,2,2-Tetrachloroethane | | 5 ບ |
| 2/4-Ethyltoluene (total) | | 5 ບ |
| 1,3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 50 U |
| Decane | | 25 U |

| | 1F | | EPA SAMP | LE NO. |
|---|-------------------------|-------------------|------------------|-----------|
| VOLATILE ORGANICS ANALYSIS DATA SHEET
TENTATIVELY IDENTIFIED COMPOUNDS | | | | |
| Lab Name: <u>H2M LABS, INC</u> | Cont | ract: | | |
| Lab Code: <u>10478</u> | Case No.: TOY SAS No. | : SDG | No.: <u>Toy1</u> | .25 |
| Matrix: (soil/water) | AIR | Lab Sample ID: | 0910546- | -029A |
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2258 | <u>.D</u> |
| Level: (low/med) LOW | | Date Received: | 09/22/09 | 2 |
| % Moisture: not dec. | | Date Analyzed: | 10/02/09 | 2 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | 1.00 | |
| Soil Extract Volume: | (µl) | Soil Aliquot Volu | me: | 0 (µL) |
| | CONC | ENTRATION UNITS: | | |
| Number TICs found: | -72 BM 109 (49/ | L or µg/Kg) | ng | <u></u> |
| CAS NUMBER | COMPOUND NAME | RT EST. | CONC. | 0 |
| 1,000075-71-8 | Dichlorodifluoromethane | 1.40 | 360 | JN |
| 2.000075-28-5 | Isobutane | 1.66 | 230 | JN |
| 3. | branched alkane (1.92) | 1.92 | 270 | J |
| 4.000078-78-4 | Butane, 2-methyl- | 2.69 | 420 | JN |
| 5. | unknown | 3.32 | 170 | J |
| 6.000107-83-5 | Pentane, 2-methyl- | 3.83 | 110 | JN |
| 7. | branched alkane (5.8) | 5.80 | 210 | |

.

.

.

A stress of the statement of the statement of the stress of the statement of the statement of the stress of the statement of

÷

•

1A VOLATILE ORGANIC ANALYSIS DATA SHEET VOST

| H2M LABS INC. | | | Sample No.
U2.F |] | |
|----------------|-----------|---------------------------------|--------------------|------------|------|
| MATRIX : AIR | | Sample ID. : | 0910546-03 | DA | - |
| | | Lab File ID :
Date/Time Anal | W2257.D | 2 Oct 20 9 | 1:28 |
| | | Instument ID: | 192.001 | | |
| Split Factor : | 1:1 | | | | |
| Quant Range : | 5 to 1000 | | | | |

| COMPOUND NAME: | Result : | ng |
|---------------------------|--|-------|
| Chloromethane | | 5 U |
| Vinyl Chloride | | 5 U |
| Bromomethane | | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | 32 |
| Acetone | | 28 |
| Carbon Disulfide | | 5 ປ |
| Methylene Chloride | | 31 |
| 2-Butanone | | 55 |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 5 ປ |
| 1,1-Dichloroethane | ······································ | 5 U |
| Chloroform | | 34 |
| 1,2-Dichloroethane | | 5 U |
| 1,1,1-Trichloroethane | | 5 U |
| Carbon Tetrachloride | | 110 |
| Trichloroethene | | 200 |
| Benzene | | 150 |
| 1,2-Dichloropropane | | 5 U |
| Bromodichloromethane | | - 5 U |
| cis-1,3-Dichloropropene | | 5 U |
| trans-1,3-Dichloropropene | | 5 U |
| 1,1,2-Trichloroethane | | 5 U |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | ······································ | 8 U |
| Toluene | <u></u> | 530 |
| Tetrachloroethene | | 140 |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | ····· | 5 U |
| Ethylbenzene | | 92 |
| Xylene (total) | | 430 |
| Styrene | | 5 U |
| Bromoform | | 8 U |
| 1.1.2.2-Tetrachloroethane | | 5 U |
| 2/4-Ethyltoluene (total) | | 260 |
| 1.3-Dichlorobenzene | | 5 U |
| 1,4-Dichlorobenzene | | 26 |
| 1,2-Dichlorobenzene | | 5 บ |
| Chlorotrifluoromethane | | 25 U |
| Chloroethylvinylether | | 25 U |
| Benzaldehyde | | 250 U |
| Decane | | 75 |

1F VOLATILE ORGANICS ANALYSIS DATA SHEET U2.F TENTATIVELY IDENTIFIED COMPOUNDS Contract: H2M LABS, INC. Lab Name: SAS No.: \_\_\_\_\_ SDG No.: TOY125 10478 Case No.: <u>TOY</u> Lab Code: Lab Sample ID: 0910546-030A Matrix: (soil/water) AIR

| Matrix: (Soll/Water) | AIN | | |
|---------------------------|---------------------|----------------------|-------------------|
| Sample wt/vol: 5 | (g/mL) <u>G</u> | Lab File ID: | 09\W2257.D |
| Level: (low/med) | LOW | Date Received: | 09/22/09 |
| % Moisture: not dec. | | Date Analyzed: | 10/02/09 |
| GC Column: <u>R-502.2</u> | ID: <u>.53</u> (mm) | Dilution Factor: | <u>1.00</u> |
| Soil Extract Volume: | (µl) | Soil Aliquot Volum | ae: <u>0</u> (µL) |
| | -1 BPL, 109 | CONCENTRATION UNITS: | ng |

| Number TICs found: | # 1 181 4 169 (49 | /L or µg/Kg) | ng | |
|--------------------|--------------------|--------------|-----------|----|
| CAS NUMBER | COMPOUND NAME | RT | EST.CONC. | Q |
| 1,000078-78-4 | Butane, 2-methyl- | 2.68 | 200 | JN |
| 2. | unknown | 3.33 | 340 | J |
| 3. 000107-83-5 | Pentane, 2-methyl- | 3.85 | 750 | JN |
| 4.000096-14-0 | Pentane, 3-methyl- | 4.07 | 480 | JN |
| 5,000110-54-3 | Hexane V/ | 4.30 | 940 | JN |
| 6,000591-76-4 | Hexane, 2-methyl- | 5.41 | 610 | JN |
| 7 | branched alkane | 5.82 | 570 | J |

EPA SAMPLE NO.

H2M LABS, INC.

5. SURROGATE SPIKE ANALYSIS RESULTS 5.1 VOLATILES .

Lab Name: H2M LABS, INC.

Contract:

<u>.....</u>

Case No.: <u>TOY</u>

Lab Code: <u>10478</u>

SAS No.:

Level: (low/med) LOW

| ſ | EPA | 1 | 2 | 3 | OTHER | TOT |
|-------|------------|-------|-------|-------|-------|-----|
| | SAMPLE NO. | DCA # | BFB # | TOL # | | OUT |
| 01 | /BLK100109 | 75 | 82 | 96 | | 0 |
| 02 | FB1.F+B | 80 | 99 | 102 | | 0 |
| 03 | FB2.F+B | 82 | 99 | 103 | | 0 |
| 04 | FB3.F+B | 83 | 99 | 103 | | 0 |
| 05 ji | D2.B | 81 | 83 | 98 | | 0 |
| 06 | D2.F | 79 | 92 | 98 | | 0 |
| 07 | D3.B | 78 | 81 | 97 | | 0 |
| 08 | D3.F | 80 | 91 | 99 | | 0 |
| 09 | U2.F | 77 | 91 | 96 | | 0 |
| 10 | U2.B | 82 | 90 | 98 | | 0 |
| 11 | VBLK100209 | 83 | 91 | 97 | | 0 |
| 12 | M9(30).B | 85 | 89 | 97 | | 0 |
| 13 | M9(30).F | 89 | 89 | 97 | | 0 |
| 14 | M39,B | 89 | 89 | 97 | | 0 |
| 15 | M39.F | 91 | 91 | 98 | | 0 |
| 16 | VBLK100509 | 105 | 105 | 101 | | 0 |
| 17 | F1.F+B | 98 | 97 | 100 | | 0 |
| 18 | M2.F+B | 97 - | 98 | 99 | | 0 |
| 19 | M4.F+B | 99 | 98 | 95 | | 0 |
| 20 | M5.F+B | 99 | 99 | 97 | | 0 |
| 21 | M6.F+B | 97 | 99 | 97 | | 0 |
| 22 | M9(10).F+B | 100 | 102 | 95 | - | 0 |
| 23 | M13.F+B | 97 | 194 * | 96 | | 1 |
| 24 | M16.F+B | 97 | 100 | 96 | | 0 |
| 25 | M22.F+B | 100 | 102 | 98 | | 0 |
| 26 | M28.F+B | 101 | 102 | 96 | | 0 |
| 27 | M31.F+B | 100 | 98 | 96 | | 0 |
| 28 | M34.F+B | 100 | 103 | 99 | | 0 |
| 29 | VBLK100709 | 100 | 86 | 94 | | 0 |

QC Limit

| 1 | DCA | = 1,2-Dichloroethane-d4 | (70-190) |
|--------|---------|---------------------------------|----------|
| 2 | BFB | = 4-Bromofluorobenzene | (69-145) |
| . 3 | TOL | = Toluene-d8 | (81-125) |
| # Colu | mn to) | be used to flag recovery values | |

\* Values outside of contract required QC limits

page 1 of 2

FORM II

OLM04.2

Lab Name: H2M LABS, INC.

Contract:

Lab Code: <u>10478</u>

SAS No.: \_\_\_\_

Level: (low/med) LOW

| EPA | | 2 | 3 | OTHER | TOT |
|---------------|-------|-------|-------|-------|-----|
| SAMPLE NO. | DCA # | BFB # | TOL # | | OUT |
| 31 D1.F+B | 102 | 95 | 93 | | 0 |
| 32 U1.F+B | 97 | 86 | 93 | | 0 |
| 33M9(20).F+B | 98 | 85 | 93 | | 0 |
| 34 M9(40).F+B | 98 | 86 | 93 | | 0 |
| 35M37.F+B | 98 | 86 | 94 | | 0 |

Case No.: TOY

QC Limit

| 1 | DCA | = 1,2-Dichloroethane- | d4 (70-190) |
|---------|--------|-------------------------|-------------|
| 2 | BFB | = 4-Bromofluorobenzen | e (69-145) |
| 3 | TOL | = Toluene-d8 | (81-125) |
| # Colum | n to l | e used to flag recovery | values |

\* Values outside of contract required QC limits

page 2 of 2

FORM II

OLM04.2

H2M LABS, INC.

6. BLANK SUMMARY DATA AND RESULTS 6.1 VOLATILES 4A VOLATILE METHOD BLANK SUMMARY EPA SAMPLE NO.

VBLK100109

1999 - La Alexandro - La Alexandro - La Alexandro - La Alexandro - La Alexandro - La Alexandro - La Alexandro -

·

TOY125 S84

| Lab Name: H2M LABS, INC. | Contract: |
|---|---------------------------------|
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG No.: <u>TOY125</u> |
| Lab File ID: <u>09\W2249.D</u> | Lab Sample ID: VBLK100109 |
| Date Analyzed: <u>10/01/09</u> | Time Analyzed: 20:25 |
| GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm) | Heated Purge: (Y/N) <u>Y</u> |
| Instrument ID: <u>HP5996</u> | |

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

| ſ | EPA | LAB | LAB | TIME |
|------------|------------|--------------|------------|----------|
| | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED |
| 01 | FB1.F+B | 0910546-007A | 09\W2250.D | 21:13 |
|)2 | FB2.F+B | 0910546-008A | 09\W2251.D | 21:49 |
| JSI | FB3.F+B | 0910546-009A | 09\W2252.D | 22:25 |
| 54 | D2.B | 0910546-002A | 09\W2253.D | 23:03 |
|) 5 | D2.F | 0910546-003A | 09\W2254.D | 23:40 |
| 06 | D3.B | 0910546-004A | 09\W2255.D | 0:15 |
| 07 | D3.F | 0910546-005A | 09\W2256.D | 0:52 |
| 08 | U2.F | 0910546-030A | 09\W2257.D | 1:28 |
| ogl | U2.B | 0910546-029A | 09\W2258.D | 2:04 |

COMMENTS:

page $\underline{1}$ of $\underline{1}$

OLM04.2

VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | H2M | LABS | INC. |
|--|-----|------|------|
|--|-----|------|------|

Sample No. VBLK100109

MATRIX : AIR

Sample ID. : VBLK100109 Lab File ID : W2249.D Date/Time Analyzed: Instument ID:

1 Oct 20 9 20:25

Split Factor :1 : 1Quant Range :5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---------------------------------------|----|-----|
| Chloromethane | | 5 | |
| Vinyl Chloride | | 5 | |
| Bromomethane | · · · · · · · · · · · · · · · · · · · | 5 | |
| Chloroethane | | 5 | - |
| 1,1-Dichloroethene | | 5 | |
| Trichlorofluoromethane | | 5 | U |
| Acetone | | 25 | |
| Carbon Disulfide | | 5 | U |
| Methylene Chloride | | 19 | |
| 2-Butanone | | 8 | |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1,2-Dichloroethene | | 5 | |
| 1,1-Dichloroethane | | 5 | |
| Chloroform | | 5 | |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | | 5 | |
| Carbon Tetrachloride | | 5 | |
| Trichloroethene | | 5 | |
| Benzene | | 5 | |
| 1,2-Dichloropropane | | 5 | |
| Bromodichloromethane | · | 5 | U |
| cis-1,3-Dichloropropene | | 5 | |
| trans-1,3-Dichloropropene | | 5 | |
| 1,1,2-Trichloroethane | | 5 | |
| 4-Methyl-2-Pentanone | | 8 | |
| 2-Hexanone | | 8 | |
| Toluene | | 5 | |
| Tetrachloroethene | | 5 | |
| Dibromochloromethane | | 5 | |
| Chlorobenzene | | 5 | |
| Ethylbenzene | | 5 | |
| Xylene (total) | | | U |
| Styrene | ······ | 5 | |
| Bromoform | | 8 | |
| 1,1,2,2-Tetrachloroethane | | | U |
| 2/4-Ethyltoluene (total) | | 5 | |
| 1,3-Dichlorobenzene | | | U |
| 1,4-Dichlorobenzene | | | U |
| 1,2-Dichlorobenzene | | | U |
| Chlorotrifluoromethane | | 25 | |
| Chioroethylvinylether | · · · · · · · · · · · · · · · · · · · | 25 | |
| Benzaldehyde | · | 50 | · · |
| Decane | | 25 | U |

| | | OLATILE OR | | | SIS DATA SH
D COMPOUNDS | | Г | EPA SAMPI
VBLK10010 | | |
|--------------|---------------|------------------|----------|------|----------------------------|-------------|------------|------------------------|----------|------|
| Lab Name: | H2M LABS, INC | <u>.</u> | | | Contract | : | _ | | | |
| Lab Code: | 10478 | Case No.: | TOY | | SAS No.: _ | | SDG No | .: <u>Toy12</u> | 5 | |
| Matrix: (soi | il/water) | AIR | | | | Lab Sample | ID: | VBLK1001 | 9 | |
| Sample wt/vo | 51: <u>5</u> | | (g/mL) | Ē | | Lab File II |): | 09\W2249 | D | |
| Level: (lo | w/med) LOW | | | | | Date Receiv | red: | | | |
| % Moisture: | not dec. | | | | | Date Analys | zed: | 10/01/09 | | |
| GC Column: | R-502.2 | ID: <u>.53</u> (| mm) | | | Dilution Fa | actor: | 1.00 | | |
| Soil Extract | t Volume: | | (µl) | | • | Soil Alique | ot Volume: | : | <u>0</u> | (µL) |
| | | | | | CONCENTI | ATION UNIT | 5: | | | |
| Number TICs | found: | 0 | | | (µg/L 01 | : µg/Kg) | | ng | | 7 |
| | CAS NUMBER | | COMPOUND | NAME | 5 | RT | EST.CO | NC. | Q | |

.

EPA SAMPLE NO.

4A VOLATILE METHOD BLANK SUMMARY

VBLK100209

| Lab Name: <u>H2M LABS, INC.</u> | Contract: |
|---|---------------------------------|
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG No.: <u>TOY125</u> |
| Lab File ID: 09\W2262.D | Lab Sample ID: VBLK100209 |
| Date Analyzed: 10/02/09 | Time Analyzed: <u>16:55</u> |
| GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm) | Heated Purge: (Y/N) Y |
| Instrument ID: <u>HP5996</u> | |

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

| ſ | EPA | LAB | LAB | TIME |
|-----|------------|--------------|------------|----------|
| | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED |
| ٦ŧк | M9(30).B | 0910546-016A | 09\W2263.D | 17:38 |
| 2 | M9(30).F | 0910546-017A | 09\W2264.D | 18:14 |
| 03 | M39.B | 0910546-026A | 09\W2265.D | 18:50 |
| 04 | M39.F | 0910546-027A | 09\W2266.D | 19:28 |

COMMENTS:

page 1 of 1

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | Sample No. | |
|---------------------------|--|--------------|
| I LABS INC. | VBLK100209 | |
| | | |
| MATRIX : AIR | Sample ID. : VBLK100209 | |
| | Lab File ID : W2262.D | |
| | Date/Time Analyzed: 2 Oct 20 9 16:55 | |
| | Instument ID: | |
| Split Factor : 1 : 1 | instanent iD. | |
| Quant Range : 5 to 1000 | | |
| Quant Range: 5 to 1000 | | |
| COMPOUND NAME: | Result : | ng |
| Chloromethane | | 5 U |
| Vinyl Chloride | | 5 U |
| Bromomethane | · · · · · · · · · · · · · · · · · · · | 5 U |
| Chloroethane | | 5 U |
| 1,1-Dichloroethene | | 5 U |
| Trichlorofluoromethane | | <u>5</u> 0 |
| Acetone | | 27 |
| Carbon Disulfide | | 5 U |
| Methylene Chloride | | 16 |
| 2-Butanone | | 810 |
| trans-1,2-Dichloroethene | | 5 U |
| cis-1,2-Dichloroethene | | 50 |
| 1,1-Dichloroethane | | 5 U |
| Chloroform | | 50 |
| 1,2-Dichloroethane | | 50 |
| 1,1,1-Trichloroethane | | 50 |
| Carbon Tetrachloride | | 50 |
| Trichloroethene | | 50 |
| Benzene | | 5 U |
| 1,2-Dichloropropane | ······································ | 50 |
| Bromodichloromethane | | 50 |
| cis-1,3-Dichloropropene | | 5υ |
| trans-1,3-Dichloropropene | ······································ | 5 U |
| 1,1,2-Trichloroethane | | 5υ |
| 4-Methyl-2-Pentanone | | 8 U |
| 2-Hexanone | | 80 |
| Toluene | <u></u> | 50 |
| Tetrachloroethene | | 5 U |
| Dibromochloromethane | | 5 U |
| Chlorobenzene | | 50 |
| Ethylbenzene | ······································ | <u>5</u> 0 |
| Xylene (total) | | 50 |
| Styrene | ······ | <u>5</u> 0 |
| Bromoform | | 80 |
| 1,1,2,2-Tetrachloroethane | | 5 0 |
| 2/4-Ethyltoluene (total) | | 50 |
| 1.3-Dichlorobenzene | | 5 0 |
| 1,4-Dichlorobenzene | | 5 U |
| 1,2-Dichlorobenzene | | 5 U |
| | | |
| Chlorotrifluoromethane | | 25 U
25 U |
| Chloroethylvinylether | | |
| Benzaldehyde | | 50 U |
| Decane | | 25 U |

TOY125 S88

| | | | | ALYSIS DATA S
IFIED COMPOUND | | [| EPA SAMI
VBLK1002 | | · |
|----------|----------------------|----------------|--------------|---------------------------------|------------|------------|----------------------|----------|------|
| Lab Name | : <u>H2M LABS, I</u> | NC. | | Contrac | t: | | | | |
| Lab Code | : 10478 | Case No.: | : <u>TOY</u> | SAS No.: | | SDG No | о.: <u>точ</u> | 125 | |
| Matrix: | (soil/water) | AIR | | | Lab Sample | a ID: | VBLK100 | 209 | |
| Sample w | t/vol: <u>5</u> | | (g/mL) | G | Lab File 1 | ID: | 09\W226 | 2.D | |
| Level: | (low/med) L(| WC | | | Date Recei | ived: | | | |
| % Moistu | re: not dec. | | | | Date Analy | yzed: | 10/02/0 | 9 | |
| GC Colum | n: <u>R-502.2</u> | ID: <u>.53</u> | (mm) | | Dilution 1 | Factor: | 1.00 | | |
| Soil Ext | ract Volume: | | (µl) | | Soil Aliq | uot Volume | •: | <u>o</u> | (µL) |
| | | | | CONCENT | RATION UNI | TS: | | | |
| Number T | ICs found: | 0 | | (µg/L c | r µg/Kg) | | ng | | 7 |
| Γ | CAS NUMBER | | COMPOUND | NAME | RT | EST.C | ONC. | Q | |

| | 4A | | |
|----------|--------|-------|---------|
| VOLATILE | METHOD | BLANK | SUMMARY |

EPA SAMPLE NO.

VBLK100509

| Lab Name: H2M LABS, INC. | Contract: |
|---|----------------------------------|
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG No.: <u>TOY125</u> |
| Lab File ID: 09\W2270.D | Lab Sample ID: <u>VBLK100509</u> |
| Date Analyzed: <u>10/05/09</u> | Time Analyzed: 18:21 |
| GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm) | Heated Purge: (Y/N) Y |
| Instrument ID: <u>HP5996</u> | |

- 11 <sup>-</sup>

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

| Г | EPA | LAB | LAB | TIME |
|-----|------------|--------------|------------|----------|
| | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED |
| 01 | F1.F+B | 0910546-006A | 09\W2271.D | 19:01 |
| 02 | M2.F+B | 0910546-010A | 09\W2272.D | 19:36 |
| 03ľ | M4.F+B | 0910546-011A | 09\W2273.D | 20:11 |
| 04ľ | M5.F+B | 0910546-012A | 09\W2274.D | 20:47 |
| 05 | M6.F+B | 0910546-013A | 09\W2275.D | 21:22 |
| 06 | M9(10).F+B | 0910546-014A | 09\W2276.D | 21:57 |
| 07ľ | M13.F+B | 0910546-019A | 09\W2277.D | 22:33 |
| 08 | M16.F+B | 0910546-020A | 09\W2278.D | 23:08 |
| 09 | M22.F+B | 0910546-021A | 09\W2279.D | 23:44 |
| 10 | M28.F+B | 0910546-022A | 09\W2280.D | 0:20 |
| 11 | M31.F+B | 0910546-023A | 09\W2281.D | 0:56 |
| 12 | M34.F+B | 0910546-024A | 09\W2282.D | 1:31 |

COMMENTS: page $\underline{1}$ of $\underline{1}$

FORM IV VOA

OLM04.2

1A VOLATILE ORGANIC ANALYSIS DATA SHEET

VOST

| | | | : | Sample No. |
|---------------------------------|--------------------|------------|------------------------------|------------------|
| H2M LABS INC. | | | | VBLK100509 |
| MATRIX : AIR | | eanipie in | /BLK100509
V2270.D
ed: | 5 Oct 20 9 18:21 |
| Split Factor :
Quant Range : | 1 : 1
5 to 1000 | | | |

| COMPOUND NAME: | Result : | ng | |
|---------------------------|--|----|--------|
| Chloromethane | | 5 | |
| Vinyi Chloride | | 5 | |
| Bromomethane | | 5 | _ |
| Chloroethane | | 5 | - 1 |
| 1,1-Dichloroethene | | 5 | |
| Trichlorofluoromethane | | | υ |
| Acetone | | 26 | |
| Carbon Disulfide | | | U |
| Methylene Chloride | | 11 | |
| 2-Butanone | | | Ú. |
| trans-1,2-Dichloroethene | · | | U |
| cis-1,2-Dichloroethene | | | S |
| 1,1-Dichloroethane | | | U |
| Chloroform | - | | U |
| 1,2-Dichloroethane | | 5 | |
| 1,1,1-Trichloroethane | | | U |
| Carbon Tetrachloride | | | U |
| Trichloroethene | | | U
U |
| Benzene | | | |
| 1,2-Dichloropropane | | | |
| Bromodichloromethane | | | U |
| cis-1,3-Dichleropropene | | | U |
| trans-1,3-Dichloropropene | | | u |
| 1,1,2-Trichloroethane | | | |
| 4-Methyl-2-Pentanone | ······································ | | |
| 2-Hexanone | ······································ | | |
| Toluene | · · · · · · · · · · · · · · · · · · · | | |
| Tetrachloroethene | | | 50 |
| Dibromochloromethane | w | | 50 |
| Chlorobenzene | | | 50 |
| Ethylbenzene | ······································ | | 50 |
| Xylene (total) | | | 50 |
| Styrene | <u></u> | | 310 |
| Bromoform | | | 50 |
| 1,1,2,2-Tetrachloroethane | | | 50 |
| 2/4-Ethyltoluene (total) | | | 5 U |
| 1,3-Dichlorobenzene | | | 50 |
| 1,4-Dichlorobenzene | | | 50 |
| 1,2-Dichlorobenzene | | | 5 0 |
| Chlorotrifluoromethane | | | 5 U |
| Chloroethylvinylether | | | |
| Benzaldehyde
Decane | | | 50 |
| Decane | | | 1 |

TOY125 S91

÷

| | | 1F | | | 1 | epa sample | NO |
|-----------|-------------------|---|------------|-------------|------------|-----------------|------|
| | | VOLATILE ORGANICS AN
TENTATIVELY IDENT | | | | VBLK100509 | |
| Lab Name | H2M LABS, INC | | Contract | | | | |
| Dan Manue | | <u></u> | | | | | |
| Lab Code | : <u>10478</u> | Case No.: TOY | SAS No.: _ | | SDG No. | : <u>TOY125</u> | |
| Matrix: | (soil/water) | AIR | | Lab Sample | ID: | VBLK100509 | |
| Sample w | rt/vol: <u>5</u> | (g/mL) | G | Lab File I | D: | 09\W2270.D | |
| Level: | (low/med) LOW | | | Date Recei | .ved : | | |
| % Moistu | re: not dec. | | | Date Analy | zed: | 10/05/09 | |
| GC Colum | m: <u>R-502.2</u> | ID: <u>.53</u> (mm) | | Dilution H | actor: | 1.00 | |
| Soil Ext | ract Volume: | (µl) | | Soil Aliqu | ot Volume: | <u>0</u> | (րԼ) |
| | | | CONCENTI | RATION UNIT | IS: | | |
| Number 1 | ICs found: | 0 | (µg/L o | r µg/Kg) | | ng | |
| ſ | CAS NUMBER | COMPOUND | NAME | RT | EST.CON | vc. g | |

TOY125 S92

÷

| | 4 A | | |
|----------|------------|-------|---------|
| VOLATILE | METHOD | BLANK | SUMMARY |

• . • .

EPA SAMPLE NO. VBLK100709

| Lab Name: H2M LABS, INC. | Contract: |
|---|-----------------------------|
| Lab Code: <u>10478</u> Case No.: <u>TOY</u> | SAS No.: SDG No.: TOY125 |
| Lab File ID: 09\W2289.D | Lab Sample ID: VBLK100709 |
| Date Analyzed: 10/07/09 | Time Analyzed: <u>12:58</u> |
| GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm) | Heated Purge: (Y/N) Y |
| Instrument ID: <u>HP5996</u> | |

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, AND MSD:

| Γ | EPA | LAB | LAB | TIME |
|-----|------------|--------------|------------|----------|
| | SAMPLE NO. | SAMPLE ID | FILE ID | ANALYZED |
| ทโ | D1.F+B | 0910546-001A | 09\W2290.D | 13:37 |
|)2ľ | U1.F+B | 0910546-028A | 09\W2291.D | 14:13 |
| 3 | M9(20).F+B | 0910546-015A | 09\W2292.D | 14:52 |
|)4 | M9(40).F+B | 0910546-018A | 09\W2293.D | 15:28 |
| 05 | M37.F+B | 0910546-025A | 09\W2294.D | 16:03 |

COMMENTS:

.....

.

VOLATILE ORGANIC ANALYSIS DATA SHEET

H2M LABS INC.

Sample No. VBLK100709

MATRIX : AIR

Sample ID. : VBLK100709 Lab File ID : W2289.D Date/Time Analyzed: Instument ID:

7 Oct 20 9 00:58

Split Factor:1 : 1Quant Range:5 to 1000

| COMPOUND NAME: | Result : | ng | |
|---------------------------|---------------------------------------|----|------------|
| Chloromethane | | | U |
| Vinyl Chloride | | | υ |
| Bromomethane | | | U |
| Chloroethane | | | U |
| 1,1-Dichloroethene | | | U |
| Trichlorofluoromethane | | | U |
| Acetone | | 23 | |
| Carbon Disulfide | | | υ |
| Methylene Chloride | | 10 | |
| 2-Butanone | | | U |
| trans-1,2-Dichloroethene | | 5 | |
| cis-1.2-Dichloroethene | | | C |
| 1.1-Dichloroethane | | | U |
| Chloroform | | | U |
| 1,2-Dichloroethane | | | U |
| 1.1.1-Trichloroethane | | | U |
| Carbon Tetrachloride | | | U |
| Trichloroethene | | | U |
| Benzene | | | U. |
| 1,2-Dichloropropane | | - | U |
| Bromodichloromethane | | | U |
| cis-1,3-Dichloropropene | | | U |
| trans-1,3-Dichloropropene | | | <u>i</u> u |
| 1,1,2-Trichloroethane | · · · · · · · · · · · · · · · · · · · | | i U |
| 4-Methyl-2-Pentanone | | | βU |
| 2-Hexanone | | | βU |
| Toluene | | | δU |
| Tetrachloroethene | · | | 5 U |
| Dibromochloromethane | · · · · · · · · · · · · · · · · · · · | | 50 |
| Chlorobenzene | · · · · · · · · · · · · · · · · · · · | | รีบ
5 ม |
| Ethylbenzene | | | |
| Xylene (total) | | | 5 U |
| Styrene | | | 5 U |
| Bromoform | | | ΒU |
| 1,1,2,2-Tetrachloroethane | | | 5 U |
| 2/4-Ethyltoluene (total) | · | | 5 U |
| 1,3-Dichlorobenzene | | | 5υ
5υ |
| 1,4-Dichlorobenzene | · · · · · · · · · · · · · · · · · · · | | |
| 1,2-Dichlorobenzene | | | 5 U |
| Chlorotrifluoromethane | | | 5 U |
| Chloroethylvinylether | | | 5 U |
| Benzaldehyde | | | <u>0 u</u> |
| Decane | | 2 | 5 บ |

| | | 1F | | | ; | epa sami | PLE NO | · |
|----------------------|-----------------|--|----------|------------|-------------|--------------|----------|------|
| | v | OLATILE ORGANICS AN
TENTATIVELY IDENT | | | Ŀ | VBLK100' | 709 | |
| Lab Name: H | 12M LABS, INC. | - | Contrac | t: | | | | |
| Lab Code: 1 | .0478 | Case No.: TOY | SAS No.: | | SDG No. | : <u>TOY</u> | 125 | |
| Matrix: (soil/ | water) | AIR | | Lab Sample | a ID: | VBLK100 | 709 | |
| Sample wt/vol: | <u>5</u> | (g/mL) | G | Lab File I | ID: | 09\W228 | 9.D | |
| Level: {low/ | med) <u>LOW</u> | | | Date Recei | ived: | | | |
| % Moisture: no | t dec. | | | Date Analy | yzed: | 10/07/0 | 9 | |
| GC Column: <u>R-</u> | 502.2 | ID: <u>.53</u> (mm) | | Dilution 1 | Factor: | 1.00 | | |
| Soil Extract V | olume: | (lul) | | Soil Aliq | uot Volume: | | <u>o</u> | (µL) |
| | | | CONCENT | RATION UNI | TS: | | | |
| Number TICs fo | ound: | 0 | (µg/L o | r µg/Kg) | | ng | | - |
| CAS | S NUMBER | COMPOUND | NAME | RT | EST.CO | NC. | Q | |

•. •

• • •

.

· .

TOY125 S95

.

H2M LABS, INC.

7. INTERNAL STANDARD AREA DATA 7.1 VOLATILES

TOY125 S96

. :

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

| Lab Name: <u>H2M LABS, INC.</u> | Contract: |
|---|---------------------------------|
| Lab Code: <u>10478</u> Case No.: <u>TOY</u> | SAS No.: SDG No.: <u>TOY125</u> |
| Lab File ID (Standard): 09\W2247.D | Date Analyzed: <u>10/01/09</u> |
| EPA Sample No.(VSTD050##): <u>VSTD250NG</u> | Time Analyzed: <u>18:49</u> |
| Instrument ID: <u>HP5996</u> | Heated Purge: (Y/N) Y |

GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm)

| | IS1 BCM
AREA # | RT # | IS2 DFB
AREA # | RT # | IS3 CBZ
AREA # | RT # |
|--------------|-------------------|------|-------------------|------|-------------------|-------|
| 12 HOUR STD | 306063 | 5.51 | 1655534 | 6.57 | 1238866 | 10.75 |
| UPPER LIMIT | 612126 | 6.01 | 3311068 | 7.07 | 2477732 | 11.25 |
| LOWER LIMIT | 153032 | 5.01 | 827767 | 6.07 | 619433 | 10,25 |
| EPA SAMPLE | | | | | | |
| 1 VBLK100109 | 296310 | 5.47 | 1624897 | 6.55 | 1195678 | 10.74 |
| 2 FB1.F+B | 286232 | 5.56 | 1553848 | 6.60 | 1258709 | 10.77 |
| 3 FB2.F+B | 267150 | 5.50 | 1469384 | 6.57 | 1200015 | 10.75 |
| 4 FB3.F+B | 259045 | 5.50 | 1423538 | 6.57 | 1163725 | 10.77 |
| 5 D2.B | 247434 | 5.50 | 1361001 | 6.57 | 1040851 | 10.78 |
| 6 D2.F | 232772 | 5.50 | 1319036 | 6.57 | 998976 | 10.75 |
| 7 D3.B | 261025 | 5.51 | 1382935 | 6.56 | 1010068 | 10.75 |
| 8 D3.F | 220466 | 5.50 | 1305093 | 6.56 | 1005395 | 10.74 |
| 9 U2.F | 243119 | 5.51 | 1405706 | 6.57 | 1058311 | 10.76 |
| 0 U2.B | 255986 | 5.48 | 1357249 | 6.54 | 1034482 | 10.75 |

IS1 BCM = Bromochloromethane
IS2 DFB = 1,4-Difluorobenzene
IS3 CBZ = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
\* Values outside of QC limits.

page 1 of 1

.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

| Lab Name: H2M LABS, INC. | Contract: |
|---|--------------------------|
| Lab Code: <u>10478</u> Case No.: <u>TOY</u> | SAS No.: SDG No.: TOY125 |
| Lab File ID (Standard): 09\W2261.D | Date Analyzed: 10/02/09 |
| EPA Sample No.(VSTD050##): VSTD250NG | Time Analyzed: 15:37 |
| Instrument ID: <u>HP5996</u> | Heated Purge: (Y/N) Y |

GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm)

| | IS1 BCM | RT # | IS2 DFB
AREA # | RT # | IS3 CBZ
AREA # | RT # |
|----------------|------------------|------|-------------------|------|-------------------|-------|
| 12 HOUR STD | AREA #
212798 | 5.59 | 1216699 | 6.64 | 866057 | 10.8 |
| UPPER LIMIT | 425596 | 6.09 | 2433398 | 7.14 | 1732114 | 11.3 |
| LOWER LIMIT | 106399 | 5.09 | 608350 | 6.14 | 433029 | 10.3 |
| EPA SAMPLE | | | | | | 10.75 |
| VBLK100209 | 225544 | 5.49 | 1276823 | 6.56 | 975237 | 10.75 |
| M9(30).B | 212553 | 5.52 | 1157893 | 6.58 | 856023 | 10.76 |
| | 197845 | 5.52 | 1092934 | 6.57 | 801663 | 10.76 |
| M9(30).F | 186099 | 5.53 | 1053693 | 6,59 | 781673 | 10.77 |
| M39.B
M39.F | 186870 | 5.51 | 1028528 | 6.58 | 761964 | 10.78 |

IS1 BCM = Bromochloromethane
IS2 DFB = 1,4~Difluorobenzene
IS3 CBZ = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
\* Values outside of QC limits.

page 1 of 1

OLM04.2

ì

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

۰,

| Lab Name: <u>H2M LABS, INC.</u> | Contract: |
|--------------------------------------|--------------------------------|
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG No.: TOY125 |
| Lab File ID (Standard): 09\W2269.D | Date Analyzed: <u>10/05/09</u> |
| EPA Sample No.(VSTD050##): VSTD250NG | Time Analyzed: 17:37 |
| Instrument ID: <u>HP5996</u> | Heated Purge: (Y/N) Y |

GC Column: <u>R-502.2</u> ID: <u>.53</u> (mm)

| | | | | | | | · · · · · · · · · · · · · · · · · · · |
|----|-------------|---------|------|---------|----------|---------|---------------------------------------|
| | | IS1 BCM | | IS2 DFB | | IS3 CBZ | |
| | | AREA # | RT # | AREA # | RT # | AREA # | RT # |
| | 12 HOUR STD | 123119 | 5.49 | 740018 | 6.54 | 610412 | 10.72 |
| | UPPER LIMIT | 246238 | 5.99 | 1480036 | 7.04 | 1220824 | 11.22 |
| | LOWER LIMIT | 61560 | 4.99 | 370009 | 6.04 | 305206 | 10.22 |
| | EPA SAMPLE | 1 | | | <u> </u> | | |
| 01 | VBLK100509 | 133475 | 5.49 | 756283 | 6.56 | 634500 | 10.76 |
| 02 | F1.F+B | 117899 | 5.51 | 666745 | 6.57 | 544433 | 10.78 |
| 03 | M2.F+B | 127878 | 5.49 | 687404 | 6.56 | 556217 | 10.76 |
| 04 | M4.F+B | 126228 | 5.53 | 684157 | 6.59 | 531973 | 10.78 |
| 05 | M5.F+B | 114336 | 5.52 | 625093 | 6.59 | 484043 | 10.79 |
| 06 | M6.F+B | 116233 | 5.53 | 628519 | 6.59 | 483286 | 10.79 |
| 07 | M9(10).F+B | 116922 | 5.49 | 616381 | 6.57 | 476857 | 10.77 |
| 08 | M13.F+B | 111114 | 5.54 | 611700 | 6.59 | 468301 | 10.77 |
| 09 | M16.F+B | 108361 | 5.50 | 621724 | 6.57 | 467892 | 10.76 |
| | M22.F+B | 112352 | 5.53 | 595832 | 6.60 | 456579 | 10.81 |
| 10 | M28.F+B | 111532 | 5.53 | 589707 | 6.60 | 450988 | 10.80 |
| 11 | | 108035 | 5.52 | 587624 | 6.58 | 436648 | 10.78 |
| 12 | M31.F+B | | 5.52 | 562747 | 6.59 | 428855 | 10.82 |
| 13 | M34.F+B | 105482 | 0.02 | VVE1 | | | |

IS1 BCM = Bromochloromethane
IS2 DFB = 1,4-Difluorobenzene
IS3 CBZ = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
\* Values outside of QC limits.

page 1 of 1

OLM04.2

.

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

| Lab Name: <u>H2M LABS, INC.</u> | Contract: |
|---|---------------------------------|
| Lab Code: 10478 Case No.: TOY | SAS No.: SDG No.: <u>TOY125</u> |
| Lab File ID (Standard): 09\W2288.D | Date Analyzed: 10/07/09 |
| EPA Sample No.(VSTD050##): <u>VSTD250NG</u> | Time Analyzed: <u>12:15</u> |
| Instrument ID: <u>HP5996</u> | Heated Purge: (Y/N) Y |

GC Column: R-502.2 ID: .53 (mm)

| | IS1 BCM | | IS2 DFB | | IS3 CBZ | |
|-------------|---------|------|---------|------|---------|-------|
| | AREA # | RT # | AREA # | RT # | AREA # | RT # |
| 12 HOUR STD | 181407 | 5.46 | 975458 | 6.51 | 724537 | 10.69 |
| UPPER LIMIT | 362814 | 5.96 | 1950916 | 7.01 | 1449074 | 11.19 |
| LOWER LIMIT | 90704 | 4.96 | 487729 | 6.01 | 362269 | 10.19 |
| EPA SAMPLE | | T | | | | |
| VBLK100709 | 218010 | 5.48 | 1169724 | 6.54 | 858917 | 10.73 |
| D1.F+B | 234287 | 5.51 | 1237960 | 6.57 | 938288 | 10.74 |
| U1.F+8 | 233636 | 5.50 | 1277564 | 6.56 | 933094 | 10.75 |
| M9(20).F+B | 251088 | 5.49 | 1313895 | 6.54 | 973861 | 10.72 |
| M9(40).F+B | 251688 | 5.47 | 1314402 | 6.53 | 961430 | 10.71 |
| M37.F+B | 248331 | 5.50 | 1320129 | 6.57 | 991091 | 10.75 |

IS1 BCM = Bromochloromethane
IS2 DFB = 1,4-Difluorobenzene
IS3 CB2 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.
\* Values outside of QC limits.

page 1 of 1

ł

APPENDIX D

FIELD DATA FORMS

| Project: TOBOBL09-3 | Date: $9/11/09$ |
|---|--|
| Project Site: TOBOBSWDC | Operators: KJS, BA, JKB, JLV, VV |
| General Weather Conditions: | |
| Sample ID: TOBOBL09-3: U
Pump ID:
Sampler ID: {R- & } | Sample Location:
Nominal Flow Rate: 0.25 LPM
Nominal Sample Volume: 360 liters |

| Leak Check: 01C | |
|--|--|
| Sampling Start Time: 15,07 | |
| Initial Rotameter Reading (Bottom of the S.S. Ball): 5 | |
| Initial Pressure Drop Across Traps: 8 | |

| Rotameter
Reading | Total
Elapse Time | Local
Time | Rotameter
Reading | Total
Elapse Time | Local
Time | |
|----------------------|----------------------|---------------|----------------------|----------------------|---------------|---------|
| 58 | 0 | 15:07 | Ø | 541 | 640 | K6 Pung |
| 60 | 54 | 16.0 | 40 | | 6TX
HOTOT | Norocep |
| 58- | $\frac{343}{527}$ | 20.55 | 40 | | 104h | |
| 60 | 538 | 1:10 | 60 | 234 | 1040 | |

| Final Leak Check: $\vartheta \ll$ | |
|--|--|
| Sample Stop Time: 1507 | |
| Final Rotameter Reading: 55 | |
| Total Elapse Time: 144 | |
| Final Ambient VOC Conc. (ppm): | |
| Final Pressure Drop Across Traps: 🛛 🔏 👸 👔 | |
| Final Max/Min Temperature Inside Cooler: 68/57 | |
| | |

| Comments: .f = 7 <sub>6</sub> | |
|-------------------------------|--|
| .b=_75 | |
| | |
| Lo batt @ 00:47 | |
| | |
| Chazed battery | |
| 7 FTU abor 0 10:40 | |
| | |

| Project: | TOBOBL09-3 | Date: $9/\mathcal{U}/\partial 9$ |
|---------------|-------------------|---|
| Project Site: | TOBOBSWDC | Operators: <sup>+</sup> KJS, BA, JKB, JLV, VV |
| General Wea | ather Conditions: | |

| Sample ID: TOBOBL09-3: | 15 | Sample Location: | |
|------------------------|-----------|------------------------|------------|
| Pump ID: | 7 | Nominal Flow Rate: | 0.25 LPM |
| Sampler ID: {R- 9 } | | Nominal Sample Volume: | 360 liters |
| ii | | | |

| Leak Check: Auk | |
|---|--|
| Sampling Start Time: 1503 | |
| Initial Rotameter Reading (Bottom of the S.S. Ball): 58 | |
| Initial Pressure Drop Across Traps: 71/2 | |

| Rotameter
Reading | Total
Elapse Time | Local
Time | Rotameter Total Local
Reading Elapse Time Time |
|----------------------|----------------------|---------------|---|
| 58 | 0. | 1503 | 53 938 640 |
| 53 | 57 | 16:01 | 60 938 640 401 |
| 59 | 5.8 | 16:02 | ×4 |
| 49 | 347 | 20.55 | 60 - 8/cR - 1043 - 1101 |
| 53 | 34 | 20:66 | 45 1080 1042 |
| 48 | 583 | <u>(v):47</u> | 60 1080 1042 |
| 58 | 584 | 00:48 | 0 1432 1454 |

| Final Leak Check: | AOK | |
|--------------------|-------------------------------|--|
| Sample Stop Time | 1503 | |
| Final Rotameter R | | |
| Total Elapse Time: | 140 | |
| Final Ambient VOC | | |
| Final Pressure Dro | | |
| Final Max/Min Terr | perature Inside Cooler: 68/45 | |
| | ••• | |

| Comments: $f = 2g$ | |
|--|---|
| .b= 26 | |
| | |
| K No filter # | |
| | |
| * FTC sroke of @ 1040 | |
| | |
| Twisted sample line sacend draps ficesuce! | |
| | - |

ŧ٠

| Project: TOBOBL09-3 | Date: 9/21/09 |
|-----------------------------|---|
| Project Site: TOBOBSWDC | Operators: KJS, BA, JKB, JLV, VV |
| General Weather Conditions: | |
| Sample ID: TOBOBL09-3: | Sample Location:
Nominal Flow Rate: 0.25 LPM |
| Sampler ID: {R- } | Nominal Sample Volume: 360 liters |
| | 2 June 1 |

| Initial Ambient VOC Conc. (ppm): // S | |
|--|--|
| Sampling Start Time: 19:55 | |
| Initial Rotameter Reading (Bottom of the S.S. Ball): | |
| Initial Pressure Drop Across Traps: 0 | |
| Initial Max/Min Temperature Inside Cooler: | |

| Rotameter
Reading | Total
Elapse Time | Local
Time | Rotameter
Reading | Total
Elapse Time | Local
Time |
|----------------------|----------------------|---------------|----------------------|----------------------|---------------|
| 60 | 4 | 19.59 | 60 | 1189 | 1043 |
| 60 | | 15:52 | 60 | 1435 | 14.53 |
| 59 | 36.3 | 21:06 | | | |
| <u></u> | 601 | 80.58 | <u> </u> | | |
| 35 | 921
928 | 626 | | · | |
| $\frac{38}{42}$ | 968 | 1042 | | | |

| Final Leak Check: 6/c | |
|--|--|
| Sample Stop Time: 14.57 | |
| Final Rotameter Reading: | |
| Total Elapse Time: ////D | |
| Final Ambient VOC Conc. (ppm): | |
| Final Pressure Drop Across Traps: /6 | |
| Final Max/Min Temperature Inside Cooler: 14/4) | |

| b- ch | |
|--------------------------|---------------------------------------|
| .b= 5.b | |
| | |
| | |
| * FTC. Smike and @ 10.85 | · · · · · · · · · · · · · · · · · · · |

| | TOBOBL09-3 | Date: 9/ レ/ 09 |
|---------------|-------------------|----------------------------------|
| Project Site: | TOBOBSWDC | Operators: KJS, BA, JKB, JLV, VV |
| General Wea | ather Conditions: | |

| Sample ID: TOBOBL09-3: D D | Sample Location: | |
|----------------------------|------------------------|------------|
| Pump ID: | Nominal Flow Rate: | 0.25 LPM |
| Sampler ID: {R- } | Nominal Sample Volume: | 360 liters |

| Leak Check: | |
|--|--|
| Sampling Start Time: 14-5-6 | |
| Initial Rotameter Reading (Bottom of the S.S. Ball): | |
| Initial Pressure Drop Across Traps: 6 | |

| Rotameter
Reading | Total
Elapse Time | Local
Time | Rotameter
Reading | Total
Elapse Time | Local
Time | |
|----------------------|----------------------|---------------|----------------------|----------------------|---------------|-------|
| 60 | 3 | 1459 | 0 | 750 | 659 | |
| 59 | FZ | 15:52 | 10 | 753 | 654703 | 1 |
| 50 | 362 | 2:26 | 60 | 0 | 704 | RIPHY |
| 63 | 763 | 2:07 | 49 | 218 | 1042 | 171 0 |
| 60 | 600 | 1.00 | 60 | 219 | 1043 | |
| 0 | 74-3 | 6:29 | 5/ | 467 | 14.54 | |
| 60 | 743 | 6:30 | | | | |

| Sample Stop Time: 19.57 | |
|---|--|
| Final Rotameter Reading: 1/ | |
| Total Elapse Time: $477 + 753$ | |
| Final Ambient VOC Conć. (ppm): | |
| Final Pressure Drop Across Traps: 20 | |
| Final Max/Min Temperature Inside Cooler: 10 7/0/4/0 | |

| Comments: .f | = 86 | |
|--------------|------|--|
| .b | = 85 | |
| | | |
| | | |
| | | |
| | | |
| <u> </u> | | |
| | | |
| | | |

| | TOBOBL09-3 | Date: 9/ 31 / 0 9 |
|---------------|-------------------|----------------------------------|
| Project Site: | TOBOBSWDC | Operators: KJS, BA, JKB, JLV, VV |
| General Wea | ather Conditions: | |

| Sample ID: TOBOBL09-3:) 3 | Sample Location: | |
|----------------------------|------------------------|------------|
| Pump ID: | Nominal Flow Rate: | 0.25 LPM |
| Sampler ID: {R- 5} | Nominal Sample Volume: | 360 liters |

| Initial Ambient VOC Conc. (ppm): ↓↓
Leak Check: ⑦ | |
|---|---------------------------------------|
| Sampling Start Time: 15:06 | |
| Initial Rotameter Reading (Bottom of the S.S. Ball): 60 | |
| Initial Pressure Drop Across Traps: | · · · · · · · · · · · · · · · · · · · |

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Rotameter
Reading | Total
Elapse Time | Local
Time | Rotameter
Reading | Total
Elapse Time | Loc
Tim |
|--|----------------------|----------------------|---------------|----------------------|----------------------|------------|
| 62 356 200 | 60 | | 15:08 | | | |
| 62 594 1.03 | 62 | 4357 | 5.55 | | | |
| | 62 | 594 | 1.03 | | | |
| | 56 | 1440 | 1508 | | | |

| Sample Stop Time: 156 | 2 | |
|---------------------------|--|--|
| Final Rotameter Reading: | 56 | |
| Total Elapse Time: 1440 | | |
| Final Ambient VOC Conc. | | |
| Final Pressure Drop Acros | s Traps: g
e Inside Cooler: 7645, GC/50 | |

| Comments: $f = \frac{1}{2} \int G G$ | |
|--|--|
| Comments: $f = \frac{1}{2} \frac{6a}{5}$ | |
| | |
| | |
| | |
| · · · · · · · · · · · · · · · · · · · | |
| | |
| | |
| | |

| | TOBOBL09-3
TOBOBSWDC
eather Conditions: | Date: 9/21/09
Operators: KJS, BA, JKB, | JLV, VV |
|---------------------------------------|---|--|------------------------|
| Sample ID:
Pump ID:
Sampler ID: | TOBOBL09-3: FB 3 | Sample Location:
Nominal Flow Rate:
Nominal Sample Volume: | 0.25 LPM
360 liters |
| | Initial Ambient VOC Conc. (ppm):
Leak Check:
Sampling Start Time:
Initial Rotameter Reading (Bottom of the S.S.
Initial Pressure Drop Across Traps:
Initial Max/Min Temperature Inside Cooler: | Bay): | |
| | Reading Elapse 7 ime Time | Reading Elapse Time | |
| | Final Leak Check: Sample Stop Time: Final Rotameter Reading: Total Elapse Time: Final Ambient VOC Conc. (ppm): Final Pressure Drop Across Traps: Final Max/Min Temperature Inside Cooler: | | |
| Comments: | $f = \int \frac{4}{\beta}$ $b = \int \frac{4}{\beta}$ | | |

| COLO API | Jost Luci Savan |
|----------|--------------------|
| PTP THE | -DOST LYSOL OPTICI |
| | |
| | |

Page \_\_\_\_\_ of \_\_\_\_\_

| | Location TOBOBSWDC | | Date 9/22/09 |
|--|--------------------|-----------------------------|--------------------------------|
| Invesitgators KJS, BA, JKB, JB, VV | FUR. | 5@2 | _ |
| General Weather Conditions | FLITK • | S(C) L | · |
| SAMPLE ID TOBOBL09-3: | <u></u> | SAMPLER ID | <u>(R-4)</u> |
| PUMPID <u>R4</u> | | SAMPLE LOCATIO | N |
| WELL ID F-1 | | WELL DEPTH | (30")or 10', 20', 30', or 40' |
| NOMINAL FLOW RATE | 1 LPM | NOMINAL SAMPLE | VOLUME <u>10 Liters</u> |
| INITIAL LEAK CHECK | AOK | PID ID | |
| INITIAL AMBIENT
VOC READING $\theta_{,\zeta}$ | <u></u> | INITIAL WELL
VOC READING | <u>с</u> -0 |
| INITIAL INLET LINE
VOC READING | L | SAMPLE START TI | ME 905 |
| INITIAL ROTAMETER READING | 120 | | _BOTTOM OF THE _S.S BALL |
| 5 MIN ROTAMETER READING | | | _ |
| FINAL AMBIENT
VOC READING | | FINAL WELL
VOC READING | 0.0 |
| SAMPLE STOP TIME 915 | | DURATION | 10 |
| FINAL ROTAMETER READING
FINAL LEAK CHECK | | | _BOTTOM OF THE <u>S.S</u> BALL |
| Comments: FRONT TRAP
BACK TRAP I | | | PTC Detive burning - |
| | • • • | | |
| |)' RED = 30' Y | 'ELLOW 40' | |

Page \_\_\_\_\_ of \_\_\_\_\_

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date 09 |
|--|-----------------------------|-------------------------------|
| Invesitgators KJS, BA, JKB, JB, VV | | 7 |
| General Weather Conditions | Clan - SQ 244 | high |
| | / | · . |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R-4) |
| PUMP ID <u>R4</u> | SAMPLE LOCATION | N_M2 |
| WELL ID M2 | WELL DEPTH | (3) or 10', 20', 30', or 40' |
| NOMINAL FLOW RATE1 | LPM NOMINAL SAMPLE | VOLUME <u>10 Liters</u> |
| INITIAL LEAK CHECK | 11K PID ID | <u> </u> |
| INITIAL AMBIENT
VOC READING | INITIAL WELL
VOC READING | 0.0 |
| | | |
| INITIAL INLET LINE | SAMPLE START TIN | ие 927 |
| INITIAL ROTAMETER READING | 120
120 | BOTTOM OF THEBALL |
| FINAL AMBIENT
VOC READING <u>Ø.</u>
SAMBLE STOR TIME Ø. <sup>37</sup> | FINAL WELL
VOC READING | <u> </u> |
| SAMPLE STOP TIME 9 | DURATION | |
| FINAL ROTAMETER READING /
FINAL LEAK CHECK ADV | 20 | BOTTOM OF THE <u>S.S</u> BALL |
| Comments: FRONT TRAP ID:
BACK TRAP ID: | 24A
24B | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' RE | ED = 30' YELLOW 40' | |

| Project ID TOBOBL09-3 Location T | OBOBSWDC | |
|--|---------------------------------------|-------------------------------|
| Invesitgators / KJS BA, JKB, JB, VV | | - |
| General Weather Conditions | dy Inghs | 5-54 |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R-4) |
| PUMP ID R4 | SAMPLE LOCATION | M4 |
| WELLID MH | WELL DEPTH | (30) or 10', 20', 30', or 40' |
| NOMINAL FLOW RATE 1 LPM | NOMINAL SAMPLE | |
| INITIAL LEAK CHECK AOK | PID ID | |
| INITIAL AMBIENT
VOC READING <u>Ø</u> , <u>Ø</u> | INITIAL WELL
VOC READING | 0.6 |
| INITIAL INLET LINE
VOC READING | SAMPLE START TIN | л <u>е 945</u> |
| INITIAL ROTAMETER READING |) | BOTTOM OF THE S.S. BALL |
| 5 MIN ROTAMETER READING /20 |) | _ |
| FINAL AMBIENT
VOC READING <u>() - ()</u>
SAMPLE STOP TIME <u>955</u> | FINAL WELL
VOC READING
DURATION | <u>ن (</u>
۱۵ |
| FINAL ROTAMETER READING | | BOTTOM OF THE S.S BALL |
| Comments: FRONT TRAP ID: 2
BACK TRAP ID: 25 | 5A
B | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' RED = 30' | YELLOW 40' | |

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date 9/22/09 |
|-----------------------------------|---------------------------|------------------------------|
| Invesitgators KJS2BA, JKB, JB, VV | | |
| General Weather Conditions | all Suls | |
| · - | | |
| | | |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R - 1/) |
| PUMPID <u>R4</u> | SAMPLE LOCATION | <u>M5</u> |
| WELL ID | WELL DEPTH | 30) or 10', 20', 30', or 40' |
| NOMINAL FLOW RATE | 1 LPM NOMINAL SAMPLE | /OLUME <u>10 Liters</u> |
| INITIAL LEAK CHECK | AVIL PID ID | |
| | | |
| INITIAL AMBIENT | INITIAL WELL | |
| VOC READING | VOC READING | 0,9 |
| INITIAL INLET LINE | | 7.4 |
| VOC READING | SAMPLE START TIM | E 1024 |
| INITIAL ROTAMETER READING | 120 | BOTTOM OF THE S.S. BALL |
| 5 MIN ROTAMETER READING | 124 | |
| | / | |
| | | |
| FINAL AMBIENT
VOC READING ロ のの | FINAL WELL
VOC READING | 0.9 |
| SAMPLE STOP TIME 1035 | ¢ DURATION | |
| SAMPLE STOP TIME70×1 | DURATION | |
| FINAL ROTAMETER READING | 127 | BOTTOM OF THE S.S BALL |
| FINAL LEAK CHECK | | |
| | | |
| × . | | |
| | : 11A | |
| Comments: FRONT TRAP ID | 11A | |
| | 11A
11B | |
| Comments: FRONT TRAP ID | : 1(A
11B | |
| Comments: FRONT TRAP ID | : 1(A
11B | |

| Project ID TOBOBL09-3 Location To | OBOBSWDC | Date 9/2019 |
|--|---------------------------|--|
| Invesitgators 156, BA, JKB, JB, VV | | |
| General Weather Conditions | 4 8WO | 5 |
| | / | |
| | | |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R-4-) |
| PUMPID R4 | SAMPLE LOCATION | M6 |
| WELLID MG | WELL DEPTH | 50" or 10', 20', 30', or 40' |
| NOMINAL FLOW RATE 1 LPM | NOMINAL SAMPLE | |
| INITIAL LEAK CHECK ADK | PID ID | |
| | | |
| | | |
| INITIAL AMBIENT | INITIAL WELL | (n <sup>1</sup> m) |
| VOC READING | VOC READING | 0.3 |
| INITIAL INLET LINE | | 1006 |
| VOC READING | SAMPLE START TIN | <u>AE 70 </u> |
| | | BOTTOM OF THE _S.S BALL |
| 5 MIN ROTAMETER READING | 0 | - |
| | | |
| · · · · · | | |
| FINAL AMBIENT
VOC READING | FINAL WELL
VOC READING | 0,2 |
| SAMPLE STOP TIME 10 14 | VOOTLEADING | |
| SAMPLE STOP TIME | DURATION | |
| FINAL ROTAMETER READING | _ | BOTTOM OF THE S.S. BALL |
| FINAL LEAK CHECK | | |
| l | | |
| | | |
| Comments: FRONT TRAP ID: 151- | ł | |
| BACK TRAP ID: 15B | > | |
| | | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' RED = 30' | YELLOW 40' | ······································ |

Page \_\_\_\_\_ of \_\_\_\_\_

| Project ID TOBOBL09-3 Location T | OBOBSWDC | Date |
|---|-----------------------------|--------------------------------|
| Invesitgators KS, BA, JKB, JB, VV | | |
| General Weather Conditions | elly sw-5 | <u> </u> |
| | / | |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R 4) |
| PUMPID RH | SAMPLE LOCATION | <u>M9</u> |
| WELL ID M9 | WELL DEPTH | 30" or 10' 20', 30', or 40' |
| NOMINAL FLOW RATE1 LPM | NOMINAL SAMPLE | VOLUME <u>10 Liters</u> |
| INITIAL LEAK CHECK ANK | PID ID | |
| INITIAL AMBIENT
VOC READING 0.0 | INITIAL WELL
VOC READING | 0.0 |
| INITIAL INLET LINE | SAMPLE START TIN | ле // <sup>10</sup> |
| _ | 20
21 | BOTTOM OF THE <u>S.S.</u> BALL |
| FINAL AMBIENT
VOC READING | FINAL WELL
VOC READING | 010 |
| SAMPLE STOP TIME // 20 | DURATION | 10 |
| FINAL ROTAMETER READING 120
FINAL LEAK CHECK 401 | | _BOTTOM OF THE <u>S.S</u> BALL |
| Comments: FRONT TRAP ID: 4A
BACK TRAP ID: 4B | | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' RED = 30' | YELLOW 40' | |

| RTP ENVIRONMENTAL ASSOCIATES, IN |
|----------------------------------|
|----------------------------------|

SOIL GAS WELL SAMPLING DATA SHEET

| Project ID TOBOBL09-3 Location T | OBOBSWDC | Date 9/22/09 |
|--|---|---|
| Invesitgators KUS, BA, JKB, JB, VV | | _ / |
| General Weather Conditions | Ula SW | 25 |
| · · · | 1 | |
| SAMPLE ID TOBOBL09-3:
PUMP ID R4
WELL ID M9 (20)
NOMINAL FLOW RATE <u>1 LPM</u>
INITIAL LEAK CHECK AVK | SAMPLER ID
SAMPLE LOCATION
WELL DEPTH
NOMINAL SAMPLE
PID ID | 30" or 10'/20'/30', or 40' |
| INITIAL AMBIENT O.D
VOC READING | INITIAL WELL
VOC READING
SAMPLE START TIN | 0.0
ME <u>1127</u>
BOTTOM OF THE <u>S.S.</u> BALL |
| FINAL AMBIENT
VOC READING 0.0
SAMPLE STOP TIME 1237
FINAL ROTAMETER READING 119
FINAL LEAK CHECK AULC | FINAL WELL
VOC READING
DURATION | 0,0

 |
| Comments: FRONT TRAP ID: 9A
BACK TRAP ID: 9B | | |
| M-9 = BLUE = 10' GREEN = 20' RED = 30' | YELLOW 40' | |

ł

| | RTP | ENVIRONMENTAL | ASSOCIATES, | INC. |
|--|-----|---------------|-------------|------|
|--|-----|---------------|-------------|------|

| Project ID TOBOBL09-3 Location | TOBOBSWDC | |
|---------------------------------------|---------------------------|-----------------------------|
| InvesitgatorsKS, BA, JKB, JB, VV | 1 | _/ |
| General Weather Conditions | Mel SWC | 5 |
| | | |
| | | |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R-4f |
| PUMPID RH | -
SAMPLE LOCATIO | N M.G |
| WELL ID MAG | –
WELL DEPTH | 30" or 10', 20', 60) or 40' |
| NOMINAL FLOW RATE 1 LPM | -
NOMINAL SAMPLE | |
| INITIAL LEAK CHECK | PID ID | <u></u> |
| | | |
| | | |
| | INITIAL WELL | |
| VOC READING | VOC READING | 0.0 |
| | | ME 1141 |
| VOC READING | SAMPLE START TI | ME |
| | 19 | BOTTOM OF THEBALL |
| 5 MIN ROTAMETER READING | 19 | _ |
| t | | |
| | | |
| FINAL AMBIENT
VOC READING | FINAL WELL
VOC READING | 0.0 |
| | | |
| SAMPLE STOP TIME | DURATION | 10 |
| FINAL ROTAMETER READING |) | BOTTOM OF THE S.S BALL |
| FINAL LEAK CHECK ANG | | |
| · | | |
| | | |
| Comments: FRONT TRAP ID: /2 | 8 | |
| BACK TRAP ID: 12. | ß | |
| | | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' RED = 30 |)' YELLOW 40' | |

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date 9/22/09 |
|-----------------------------------|-----------------------------|--------------------------------|
| Invesitgators BA, JKB, JB, VV | | |
| General Weather Conditions | Clay Sw@ 2 | 5 |
| | | |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID | (R-4/) |
| PUMPID RH | SAMPLE LOCATION | <u>M9</u> |
| WELL ID | WELL DEPTH | 30" or 10', 20', 30', 240 |
| NOMINAL FLOW RATE | 1 LPM NOMINAL SAMPLE | VOLUME 10 Liters |
| INITIAL LEAK CHECK | ANY_ PID ID | |
| INITIAL AMBIENT
VOC READING | INITIAL WELL | 0.0 |
| | | |
| INITIAL INLET LINE
VOC READING | SAMPLE START TIM | 1 <u>e // 55</u> |
| INITIAL ROTAMETER READING | 120 | BOTTOM OF THE <u>S.S.</u> BALL |
| 5 MIN ROTAMETER READING | 12 | _ |
| FINAL AMBIENT | 2 FINAL WELL
VOC READING | 0.0 |
| SAMPLE STOP TIME 12" | DURATION | 11) |
| SAMPLE STOP TIME | | |
| FINAL ROTAMETER READING | 121 | _BOTTOM OF THE <u>S.S</u> BALL |
| | | |
| Comments: FRONT TRAP I | D: 1.613 | |
| BACK TRAP ID | 160 | |
| | | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' | RED = 30' YELLOW 40' | |

| Project ID TOBOBL09-3 L | ocation TOBOBSWDC | Date 9/2/09 |
|-----------------------------------|-----------------------------|---------------------|
| Invesitgators KJS BA, JKB, JB, VV | 1 | |
| General Weather Conditions | Clay SQ3 | . 7 |
| | 1 | ICMI |
| SAMPLE ID TOBOBL09-3: | SAMPLER ID (R | |
| PUMP ID | SAMPLE LOCATION | |
| WELL ID | WELL DEPTH <u>30" or 10</u> | ', 301, or 40' |
| NOMINAL FLOW RATE1 | LPM NOMINAL SAMPLE VOLUME | 10 Liters |
| INITIAL LEAK CHECK | PID ID | |
| | | |
| INITIAL AMBIENT | INITIAL WELL | |
| VOC READING | VOC READING | |
| INITIAL INLET LINE
VOC READING | SAMPLE START TIME | |
| INITIAL ROTAMETER READING | | THE S.S. BALL |
| 5 MIN ROTAMETER READING | | |
| | | |
| FINAL AMBIENT | FINAL WELL | |
| VOC READING | VOC READING | |
| SAMPLE STOP TIME | DURATION | |
| FINAL ROTAMETER READING | BOTTOM O | THE <u>S.S</u> BALL |
| | | |
| Comments: FRONT TRAP ID: | 2313 | |
| BACK TRAP ID: | <u>236</u> . | |
| | <u></u> | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' R | ED = 30' YELLOW 40' | |

Page \_\_\_\_\_ of \_\_\_\_\_

| Project ID <u>TOBOBL09-3</u> Locatio
Invesitgators KJS, BAJKB, JB, VA
General Weather Conditions P.H. | TOBOBSWDC | Date | 9/22/01
F. winds | 5_5-10
Mph |
|---|---|-------------------------------|---------------------|---------------|
| SAMPLE ID TOBOBL09-3: M(3
PUMP ID 3
WELL ID M/3
NOMINAL FLOW RATE 1 LPM
INITIAL LEAK CHECK OK | SAMPLER ID
SAMPLE LOCATION
WELL DEPTH
NOMINAL SAMPLE
PID ID | 80" or 10', 20', 30', or 40 | _iters
 | |
| INITIAL AMBIENT
VOC READING | INITIAL WELL
VOC READING
SAMPLE START TIN
127
127 |
ME
_ ВОТТОМ OF THE
 | | |
| FINAL AMBIENT
VOC READING
SAMPLE STOP TIME ():()
FINAL ROTAMETER READING
FINAL LEAK CHECK | FINAL WELL
VOC READING
DURATION | <u>ل ال</u> BOTTOM OF THE | 5BALL | |
| Comments: FRONT TRAP ID:
BACK TRAP ID:
Hered converts and confers
will rectes to be public of
M-9 = BLUE = 10' GREEN = 20' RED = 30 | JZA
JZB
- 1 electric
P cm s reset
YELLOW 40' | I ppe u/ | odur. | |

Page \_\_\_\_\_ of \_\_\_\_\_

SOIL GAS WELL SAMPLING DATA SHEET

7

| | Project ID TOBOBL09-3 | Location T | OBOBSWDC | | Date 9/22/09 | |
|----|---|-------------------|------------------------------|------------------|---------------------|------------------|
| | Invesitgators KJS, BA, JKB, J | IB(VV) | | _ / | | - (|
| | General Weather Conditions | partly | clored . w | (1), + | p= 780F L | unto 5-10
mph |
| | SAMPLE ID <u>TOBOBL09-3:</u> 2
PUMP ID | <u>/116</u> | SAMPLER ID
SAMPLE LOCATIO | <u>(R-</u> З) | 116 | |
| | WELL ID | M16 | WELL DEPTH | 30")or 10', 20', | 30', or 40' | |
| | NOMINAL FLOW RATE | 1 LPM | NOMINAL SAMPLE | VOLUME | 10 Liters | |
| | INITIAL LEAK CHECK | DC | PID ID | | 10-010070 | <u>)</u> |
| | | | | (· | | |
| | INITIAL AMBIENT
VOC READING | \square | INITIAL WELL
VOC READING | | QQ 23.7 | |
| | | <i>·//</i> | VOO NEADING | | | |
| | INITIAL INLET LINE | | SAMPLE START TI | M <u>E</u> | 11:34 | |
| N. | INITIAL ROTAMETER READIN
5 MIN ROTAMETER READING | _ | 25 | BOTTOM OF 1 | HE <u>S.S.</u> BALL | |
| | | | [# . <u>U</u> | _ | | |
| | | c) c | FINAL WELL
VOC READING | | 0-0 | |
| | VOC READING | -0.0 | | | (a) | |
| | SAMPLE STOP TIME / | /. 9 9 | DURATION | t | 10 nh | |
| | FINAL ROTAMETER READING | <u>~k</u> | 28 | _BOTTOM OF 1 | HE <u>S.S</u> BALL | |
| | Comments: FRONT
BACK TI | TRAP ID: 13/ | <u>}</u> | | | |
| | # Sticky sel | type substan | il on en | to k | probe affer | pulled |
| | <u>M-9 = BLUE = 10' GREE</u> | N = 20' RED = 30' | YELLOW 40' | | | |

•

SOIL GAS WELL SAMPLING DATA SHEET

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date <u>9/22/09</u> |
|--|---|---|
| Invesitgators_KJS, &A JKB, JB, VV) | | |
| General Weather Conditions | landy i mild te | paroif und S 5mph |
| SAMPLE ID TOBOBLO9-3: M22
PUMP ID 5
WELL ID M21 | SAMPLER ID SAMPLE LOCATION WELL DEPTH | <u>30" or 10', 20', 30', or 40'</u> |
| NOMINAL FLOW RATE | <u>I LPM</u> NOMINAL SAMPLE | $\frac{10 \text{ Liters}}{10 - 10 \text{ C}}$ |
| INITIAL AMBIENT
VOC READING ()
INITIAL INLET LINE
VOC READING | INITIAL WELL
VOC READING
SAMPLE START TIM | 13.9
NE 10:52 |
| | <u> </u> | |
| INITIAL ROTAMETER READING | 121 | BOTTOM OF THE <u>S.S.</u> BALL |
| 5 MIN ROTAMETER READING | FINAL WELL
VOC READING | 7.0 |
| SAMPLE STOP TIME 11:07 | DURATION | 10 min |
| FINAL ROTAMETER READING
FINAL LEAK CHECK | 198 | BOTTOM OF THE <u>S.S</u> BALL |
| Comments: FRONT TRAP ID:
BACK TRAP ID: | 174
176 | |
| | | |
| | | |
| M-9 = BLUE = 10' GREEN = 20' | RED = 30' YELLOW 40' | |

4

Page \_\_\_\_ of \_\_\_\_

SOIL GAS WELL SAMPLING DATA SHEET

| Project ID TOBOBL09-3 Location | TOBOBSWDC | Date | 9/22/09 |
|--|---|--|-------------------------|
| InvesitgatorsKJS, BA, JKB, JB, VV | | | (/ , |
| General Weather Conditions | mild, ferr | = 70°F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ind, 5 5mph |
| SAMPLE ID TOBOBL09-3: MJJ
PUMP ID
WELL ID
NOMINAL FLOW RATE
INITIAL LEAK CHECK | SAMPLER ID
SAMPLE LOCATION
WELL DEPTH
NOMINAL SAMPLE V
PID ID | $(R \cdot 3)$ (R · 30" or 10', 20', 30', or 40
OLUME 10
10 - 0 | י
Liters
בולפט קס |
| INITIAL AMBIENT | INITIAL WELL
VOC READING | 16 | 5 |
| INITIAL INLET LINE | SAMPLE START TIME | E 10:23 | |
| INITIAL ROTAMETER READING | , | BOTTOM OF THE S. | S. BALL |
| FINAL AMBIENT
VOC READING <u>10:33</u>
SAMPLE STOP TIME <u>10:33</u> | FINAL WELL
VOC READING | 9. | 3 |
| SAMPLE STOP TIME [0. 3.3] | DURATION | BOTTOM OF THE S. | S BALL |
| Comments: FRONT TRAP ID:
BACK TRAP ID: 3 | A
B | | ۶
 |
| M-9 = BLUE = 10' GREEN = 20' RED = 30' | YELLOW 40' | | |

-

Page \_\_\_\_\_ of \_\_\_\_\_

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date <u>7/22/09</u> | |
|---|---|--|-----|
| Invesitgators KJS, 🔊 (VKB, JB | | / 1 | |
| | lostly (fond of p | ild, ferp = 70°F winds S S | mpl |
| SAMPLE ID TOBOBL09-3: 131
PUMP ID 3
WELL ID <u>M31</u>
NOMINAL FLOW RATE
INITIAL LEAK CHECK | SAMPLER ID
SAMPLE LOCATION
WELL DEPTH
LPM NOMINAL SAMPLE V | $(R \cdot)$ $M3/$ 30" or 10', 20', 30', or 40' OLUME $\frac{10 \text{ Liters}}{10 - 0[00, 70]}$ | |
| INITIAL AMBIENT
VOC READING D.O | INITIAL WELL
VOC READING | 8.6 | |
| VOC READING | SAMPLE START TIM | = 1:55 | |
| INITIAL ROTAMETER READING | 129 | BOTTOM OF THE <u>S.S.</u> BALL | |
| FINAL AMBIENT
VOC READING D.D
SAMPLE STOP TIME 12:05 | FINAL WELL
VOC READING | 10 min | |
| FINAL ROTAMETER READING | | BOTTOM OF THE <u>S.S</u> BALL | |
| Comments: FRONT TRAP ID:
BACK TRAP ID: | 18A
18B | · · · · · · · · · · · · · · · · · · · | |
| M-9 = BLUE = 10' GREEN = 20' F | RED = 30' YELLOW 40' | | |

Page \_\_\_\_\_ of \_\_\_\_\_

.

SOIL GAS WELL SAMPLING DATA SHEET

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date 7/22/07 | |
|---|---|--------------------------------|----|
| Invesitgators_KJS, BA,JKB, JB, | | | |
| General Weather Conditions | lostly closely is m | 1) tup = 70"F, windy 5 5 mg | n(|
| SAMPLE ID TOBOBL09-3: <u>M34</u>
PUMP ID <u>5</u>
WELL ID <u>M34</u>
NOMINAL FLOW RATE <u></u>
INITIAL LEAK CHECK <u></u> | SAMPLER ID
SAMPLE LOCATIO
WELL DEPTH
LPM NOMINAL SAMPLE
OL PID ID | 30" Pr 10', 20', 30', or 40' | |
| INITIAL AMBIENT
VOC READING Ú | INITIAL WELL | 0 | |
| INITIAL INLET LINE
VOC READING | SAMPLE START T | м <u>е 9:36</u> | |
| INITIAL ROTAMETER READING | 129 | BOTTOM OF THE <u>S.S.</u> BALL | |
| FINAL AMBIENT
VOC READINGO
SAMPLE STOP TIME9-46 | FINAL WELL
VOC READING
DURATION | 5.7 | |
| FINAL ROTAMETER READING | DONATION
]29 | BOTTOM OF THEBALL | |
| Comments: FRONT TRAP ID:
BACK TRAP ID: | 200
205
buby Spillerh | ut ch | |
| M-9 = BLUE = 10' GREEN = 20' R | ED = 30' YELLOW 40' | | |

3

Page \_\_\_\_\_ of \_\_\_\_\_

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date | 9/22/09 | |
|---|--|--|--------------|---------|
| Invesitgators KJS, BA)JKB, JB, VV | A. 1 1 4. | - `` r | | · / |
| General Weather Conditions | lastly clored = mi | ild , temp = 7 | SF, Lunhola | 5. 5-ph |
| SAMPLE ID TOBOBL09-3: M37
PUMP ID
WELL ID
NOMINAL FLOW RATE
INITIAL LEAK CHECK | SAMPLER ID
SAMPLE LOCATION
WELL DEPTH
LPM NOMINAL SAMPLE T
OC PID ID | 30")r 10', 20', 30', or 40' | ers
10070 | |
| INITIAL AMBIENT
VOC READING <u>5.0</u>
INITIAL INLET LINE
VOC READING <u>-</u>
INITIAL ROTAMETER READING
5 MIN ROTAMETER READING | INITIAL WELL
VOC READING
SAMPLE START TIM | <u>587</u>
IE <u>9:09</u> BOTTOM OF THES.S. | BALL | |
| FINAL AMBIENT
VOC READING | FINAL WELL
VOC READING
DURATION | 470
10 ~
BOTTOM OF THE <u>S.S</u> | BALL | |
| Comments: FRONT TRAP ID:
BACK TRAP ID: | 1623-36-21A | | | |
| M-9 = BLUE = 10' GREEN = 20' I | RED = 30' YELLOW 40' | | | |

| RTP ENVIRONMENTAL A | SSOCIATES, INC. |
|---------------------|-----------------|
|---------------------|-----------------|

SOIL GAS WELL SAMPLING DATA SHEET

| | on TOBOBSWDC | Date7/22/09 |
|--|--|-------------------------------------|
| Invesitgators_KJS(BA, JKB, JB, VV >> | | |
| General Weather Conditions | | |
| SAMPLE ID TOBOBL09-3: MBS
PUMP ID 3
WELL ID 00 M59
NOMINAL FLOW RATE 1 LPM
INITIAL LEAK CHECK 04 | SAMPLER ID
SAMPLE LOCATIO
WELL DEPTH
NOMINAL SAMPLE
PID ID | <u>30" or)0', 20', 30', or 40'</u> |
| INITIAL AMBIENT
VOC READING () | INITIAL WELL
VOC READING | 30 |
| VOC READING | SAMPLE START T | |
| INITIAL ROTAMETER READING | | BOTTOM OF THE S.S. BALL |
| 5 MIN ROTAMETER READING | 7 | |
| FINAL AMBIENT | FINAL WELL
VOC READING | 38.7 |
| <u> </u> | | |
| SAMPLE STOP TIME 11.73 | DURATION | <u> </u> |
| FINAL ROTAMETER READING | 7 | BOTTOM OF THES.SBALL |
| Comments: FRONT TRAP ID: 6 6
BACK TRAP ID: 6 b | | |
| $\frac{1}{M-9} = BLUE = 10' GREEN = 20' RED = 3'$ | it of en' | s of pole after pulles |

a ha substance of

1

ţ

Page \_\_\_\_\_ of \_\_\_\_\_

SOIL GAS WELL SAMPLING DATA SHEET

| Project ID TOBOBL09-3 | Location TOBOBSWDC | Date | 9/22/09 | |
|--|---|-------------------------|---------------------------------------|----------|
| Invesitgators KJS, KA, JKB, JB, VV
General Weather Conditions | eithe claref: mill | frap = 75°F | wints 5 | t=10 mph |
| SAMPLE ID TOBOBL09-3: Fb2
PUMP ID
WELL ID
NOMINAL FLOW RATE
INITIAL LEAK CHECK | SAMPLER IN
SAMPLE LOCATION
WELL DEPTH
1 LPM NOMINAL SAMPLE
PID ID | 30" or 10', 20', 30', o | M) (
r 40'
10 Liters | |
| INITIAL AMBIENT
VOC READING | INITIAL WELL
VOC READING | | | |
| INITIAL INLET LINE VOC READING | SAMPLE START TIN | NE 12:18 | | |
| INITIAL ROTAMETER READING
5 MIN ROTAMETER READING | | BOTTOM OF THE | <u>S.S.</u> BALL | |
| FINAL AMBIENT
VOC READING | FINAL WELL | | | |
| SAMPLE STOP TIME | DURATION | | | |
| FINAL ROTAMETER READING | v | _BOTTOM OF THE | <u>S.S</u> BALL | |
| Comments: FRONT TRAP ID: BACK TRAP ID: | 195 | | | |
| M-9 = BLUE = 10' GREEN = 20' F | RED = 30' YELLOW 40' | | · · · · · · · · · · · · · · · · · · · | |

;

-

PRESSURE WELL READING DATA SHEET

| Project ID: | TOBOBL09-3 |
|---------------|------------------------------|
| Project Site: | TOBOBSWDC |
| Date: | 9/22/04 |
| General Weath | ner Condition: Fm.R |
| Equipment ID: | Dwyer 10" inclined manometer |
| Operators: | (KJS, JLV, BA, JKB, VV |
| | |

| Well ID | Pressure Well Location | Color Code | Time | Reading |
|---------|------------------------|------------|-------|---------|
| | | blue | 0 | 7 45 |
| PW1 | NW corner of landfill | green | -0,02 | 745 |
| | | blue | 0 | 746 |
| | | green | -0,03 | 746 |
| Well ID | Pressure Well Location | Color Code | Time | Reading |
| | | blue | 758 | 0.0 |
| PW2 | SE corner of landfill | green | 7.38 | -0.01 |
| ľ | | blue | 740 | -0-0 |
| | | green | 740 | -0.07 |
| Well ID | Pressure Well Location | Color Code | Time | Reading |
| | | blue | 826 | 0 |
| PW3 | FTC | green | 826 | -0,06 |
| | | blue | 827 | 0 |
| | | green | 827 - | 0.07 |
| Well ID | Pressure Well Location | Color Code | Time | Reading |
| | | | | |
| | | | | |
| l T | | | | |
| | | | | |

Comments:

•

ł

BLUE (Short) = 10' GREEN (Long) = 20'

APPENDIX E

EQUIPMENT CALIBRATIONS

| | 9/24/2009
15:18
29.93
74.7
101996 | | | | TL | | | | | | | | | | | | | | | | | | | | | |)! #DIV/0! | |)! #DIV/0! | | | | | |
|---------------------------------|---|---|-------|-----------------|--|--------------------------------|----------------|-----|-----|------|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|-------------|-----------------------|------------------------|-------------------------|------------|---|------------------------|-----------------------|--|
| RATION SHEET | Date:
Time (EDT);
Barometric Pressure (in. Hg);
Temperature (deg. F);
Calibrator LD.; | the SS, R, B Ball) | 70 30 | ium | T-T/C WITH FLOW SPLITTER BOTTOM OF SS BALL | ute, ALPM | 0.332 0.092 | | | | | | | | | | | | | | | | | | | | 0.3320 0.0920 #DIV/0! | ŀ | 0.3234 0.0896 #DIV/0! | | | | | |
| PERSONAL PUMP CALIBRATION SHEET | | Rotameter Reading (Bottom of the SS, R, B Ball) | 09 | Sampling Medium | C WITH FLOW SPLIT | Actual Liters Per Minute, ALPM | 0.262 | | | | | | | | | | | | | | | | | | | Average (A) | 80 0.2620 0.3 | Standard Liters Per | 0.2552 | | ~ | 2 | | S REFERENCE |
| PERSO | 0BL09-3
625226-5
51-2
1
POST
DryCal | Rotame | 40 50 | | T-T | | 0.139 0.193 | | | | | | | | | | | | | | | | | | | | 0.1390 0.1930 | - | 0.1354 0.1880 | Ta °C= | | std Press in. Hg 29.92 | $Tstd {}^{o}C = 25$ | JEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRF. AS REFERENCE |
| | <u>Project:</u>
<u>Pump LD.</u>
<u>Rotameter R- ?:</u>
<u>PRE- or POST- ?</u>
<u>Calibrator Model</u> : | | | | | | | 7 0 | C 4 | + v: | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | REMARKS: | | | | ING TO STANDARD I |
| | 8/7/2009
13:53
30.01
70.7
101996 | | | | Т | | | | | | | | | | | | | | | | | | | | | | V/0! #DIV/0! | ŀ | V/0! #DIV/0! | | | | | RATIONS ACCORD |
| ALIBRATION SHEET | <u>Date:</u>
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD: | Rotameter Reading (Bottom of the SS, R, B Ball) | 70 80 | Sampling Medium | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 0.332 0.400 | | | | | | | | | | | | | | | | | | | (ALPM) | 0.3320 0.4000 #DIV/0! | er Minute, Avg. (SLPM) | 5 0.3276 0.3947 #DIV/0! | | | | | ACCURACY CHECK BETWEEN CALIB |
| PERSONAL PUMP CALIBRATION SHI | OBL09-3
625226
1
PRE
DryCal | Rotameter Reading (Bo | | - | C FOR LOW FLOW WITH S | Actual L | 37 0.193 0.260 | | | | | | | | | | | | | | | | | | | | | ſ | 52 0.1905 0.2566 | | | in. Hg 29.92 | Tstd $^{\circ}C = 25$ | ACCIT |
| | Project:
Pump I.D.:
Rotameter R-?:
PRE- or POST-?
Calibrator Model: | | 40 | | /L-L | | 1 0.137 | 7 0 | C P | t vo | 6 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 0.1370 | - | 0.1352 | REMARKS: 7 | | std Press in. Hg | Tst | |

ROTAMETER ONE : R1

| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE POINT # POINT 1 POINT 2 POINT 3 POINT 6 POINT 7 POINT # POINT 1 POINT 2 POINT 3 POINT 6 POINT 7 RR Reading: 40 50 60 70 77.299 #DIV/0! ACCURACY: 0.148 -0.546 -1.282 -77.299 #DIV/0! P |
|--|
|--|

| 9/24/2009
16:04
29.93
75.6
101996 | | | | | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | | |
|---|---|----|-----------------|--|--------------------------------|---------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----------------|----------|---|----------|-------------------|---------------|------------------|--------------------------|---|
| | (| | | T-T/C WITH FLOW SPLITTER BOTTOM OF SS BALL | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | | |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator 1D.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 80 | | R BOTTOM | ALPM | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | Average Standard Liters Per Minute, Avg. (SLPM) | #DIV/0! | | | | | |
| <u>Date:</u>
Time (EDT):
Barometric Pre
Temperature (c
Calibrator LD.: | ottom of the S | 70 | Sampling Medium | V SPLITTE | Actual Liters Per Minute, ALPM | 0.326 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.3260 | s Per Minute, | 0.3176 | | | | | |
| | Reading (Bc | 60 | Sampli | WITH FLOV | ctual Liters] | 0.267 | | | | | | | | | | | | | | | | | | | | Averag | 0 0.2670 | tandard Liters | 0 0.2601 | | | | | |
| OBL09-3
625232
2
POST
DryCal | Rotameter | 50 | | T-T/C | V | 0.19 | | | | | | | | | | | | | | | | | | | | | 0.1940 | Average S | 0.1890 | $Ta ^{\circ}C=24$ | $P_v a= 0.88$ | Hg 29.92 | C = 25 | |
| <u>.</u>
<u>r</u> .R- <u>?</u> :
<u>oOST-</u> <u>?</u> | | 40 | | | | 0.133 | | | | | | | | | | | | | | | | | | | | | 0.1330 | | 0.1296 | | P | std Press in. Hg | T std <sup>o</sup> $C =$ | |
| Project:
Pump I.D.:
Rotameter R- 2:
PRE- or POST- 2
Calibrator Model: | | | | | | 1 | 2 | ŝ | 4 | 5 | 9 | 7 | × | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | REMARKS: | | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |] |
| 8/7/2009
14:14
30.01
71.0
101996 | | | | T | | | | | | | | | | | | | | | | | | | | | | | #DIV/0 | | #DIV/0! | | | | | |
| (in. Hg): | (] | | | DTTOM OF SS BALL | | 03 | | | | | | | | | | | | | | | | | | | | | ;0//NIC# | () | #DIV/0! | | | | | |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | SS, R, B Ball) | 80 | | R BOTTON | ALPM | 0.403 | | | | | | | | | | | | | | | | | | | | | 0 0.4030 | , Avg. (SLPM) | 7 0.3977 | | | | | |
| <u>Date:</u>
Time (EDT):
Barometric <u>P</u>
Temperature
Calibrator I.I. | Rotameter Reading (Bottom of the SS, R | 70 | Sampling Medium | T-T/C WITH FLOW SPLITTER BC | Actual Liters Per Minute, ALP | 2 0.329 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.3290 | Average Standard Liters Per Minute, Avg. | 0.3247 | | | | | |
| | - Reading (B | 60 | Sampl | WITH FLO' | ctual Liters | 0.262 | | | | | | | | | | | | | | | | | | | | Avera | | tandard Liter | 0.2586 | | | | | |
| 0BL09-3
625232
2
PRE
DryCal | Rotameter | 50 | | T-T/C | V | 0.191 | | | | | | | | | | | | | | | | | | | | | 0.1910 | Average S | | | | lg 29.92 | = 25 | |
| | | 40 | | | | 0.135 | | | | | | | | | | | | | | | | | | | | | 0.1350 | | 0.1332 | Ta °C= | $P_v a=$ | std Press in. Hg | Tstd °C = | |
| Project:
Pump LD.:
Rotameter R- <u>?</u> :
PRE- or POST- <u>?</u>
Calibrator Model: | | | | | | 0 | | | | | | | | | | | | _ | | - | ┥ | | + | + | _ | | | | | REMARKS: | | td Pre | | |

PERSONAL PUMP CALIBRATION SHEET

ROTAMETER TWO : R2

| AS REFERENCE | LT 7 | | ;0// | ;0// | 10// |
|---|--------------------------|----------------|------------------|--------------------------------|---------------------------------|
| G PRE | POINT 7 | 0 | #DIV/0 | #DIV/0 | #DIV/0 |
| OWS USIN | POINT 6 | 0 | #DIV/0! | #DIV/0 | #DIV/0! |
| ANDARD FL | POINT 5 POINT 6 | 80 | #DIV/0! | #DIV/0 | #DIV/0! |
| DING TO ST | POINT 4 | 70 | -2.187 | #DIV/0! | #DIV/0! |
| TIONS ACCOR | POINT 3 POINT 4 | 60 | 0.58 | #DIV/0 | #DIV/0! |
| CALIBRAT | POINT #: POINT 1 POINT 2 | 50 | 0.265 | #DIV/0! | #DIV/0! |
| BETWEEN | POINT 1 | 40 | -2.703 | #DIV/0! | #DIV/0! |
| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | POINT #: | RR Reading: 40 | ACCURACY: -2.703 | PRE Precision: #DIV/0! #DIV/0! | POST Precision: #DIV/0! #DIV/0! |

ROTAMETER THREE : R3

PERSONAL PUMP CALIBRATION SHEET

| 8/10/2009 | 9:50 | 29.89 | 74.0 | 101996 | |
|----------------|-------------|-------------------------------|-----------------------|-------------------|--|
| Date: | Time (EDT): | Barometric Pressure (in. Hg): | Temperature (deg. F): | Calibrator I.D.: | |
| OBL09-3 | 522574 | 3 | PRE | DryCal | |
| Project: | Pump I.D.: | Rotameter R- ?: | PRE- or POST- ? | Calibrator Model: | |

| - | R | Rotameter Reading (Bottom of the SS, R, B | ading (Bott | om of the S | S, R, B Ball) | | |
|----------|------------------|---|--------------------------------|-----------------|---|-----------|--------|
| | | | 100 | 110 | 120 | 130 | 140 |
| | | | Sampling | Sampling Medium | | | |
| | | T-T/C FC | JR AMBIE | NT AIR B | T-T/C FOR AMBIENT AIR BOTTOM OF SS BALL | F SS BALL | |
| | | Actua | Actual Liters Per Minute, ALPM | r Minute, A | TPM | | |
| 1 | | | 0.781 | 0.871 | 156.0 | 1.036 | 1.123 |
| 2 | | | | | | | |
| 3 | | | | | | | |
| 4 | | | | | | | |
| 5 | | | | | | | |
| 9 | | | | | | | |
| 7 | | | | | | | |
| 8 | | | | | | | |
| 6 | | | | | | | |
| 10 | | | | | | | |
| 11 | | | | | | | |
| 12 | | | | | | | |
| 13 | | | | | | | |
| 14 | | | | | | | |
| 15 | | | | | | | |
| 16 | | | | | | | |
| 17 | | | | | | | |
| 18 | | | | | | | |
| 19 | | | | | | | |
| 20 | | | | | | | |
| | | | Average (ALPM) | (ALPM) | | | |
| # | #DIV/0! | #DIV/0! | 0.7810 | 0.8710 | 0.9570 | 1.0360 | 1.1230 |
| | ł | Average Standard Liters Per Minute, | dard Liters F | | Avg. (SLPM) | (| |
| # | #DIV/0! | #DIV/0! | 0.7637 | 0.8517 | 0.9358 | 1.0130 | 1.0981 |
| | | | | | | | |
| REMARKS: | Ta °C= | 23 | | | | | |
| | $P_v a=$ | 0.83 | | | | | |
| std Pre | std Press in. Hg | 29.92 | | | | | |

| 4 | | |
|------------------|----------------|--|
| 29.92 | 25 | |
| std Press in. Hg | $Tstd ^{o}C =$ | |

PERSONAL PUMP CALIBRATION SHEET

| Project: | OBL09-3 | Date: | 9/24/2009 |
|-------------------|--------------------|-------------------------------|-----------|
| Pump I.D.: | 522574 | Time (EDT): | 16:25 |
| Rotameter R- 7: | 3 | Barometric Pressure (in. Hg): | 29.93 |
| PRE- or POST- ? | POST | Temperature (deg. F): | 75.6 |
| Calibrator Model: | DryCal | Calibrator I.D.: | 101996 |
| | | | |
| a | otameter Reading (| Rottom of the SS, R, R, Rall) | |

| | R | Rotameter Reading (Bottom of the SS, R, B Ball) | iding (Botto | om of the S | S, R, B Bal | | |
|----------|---------|---|--------------------------------|-------------|-------------|---|--------|
| | | | | 110 | 120 | 130 | 140 |
| | | | Sampling Medium | Medium | | | |
| | | T-T/C FO | R AMBIEN | VT AIR B | OTTOM 0 | T-T/C FOR AMBIENT AIR BOTTOM OF SS BALL | |
| | | Actual | Actual Liters Per Minute, ALPM | Minute, A | LPM | | |
| 1 | | | | 0.878 | 0.968 | 1.044 | 1.123 |
| 2 | | | | | | | |
| 3 | | | | | | | |
| 4 | | | | | | | |
| S | | | | | | | |
| 9 | | | | | | | |
| 7 | | | | | | | |
| 8 | | | | | | | |
| 6 | | | | | | | |
| 10 | | | | | | | |
| 11 | | | | | | | |
| 12 | | | | | | | |
| 13 | | | | | | | |
| 14 | | | | | | | |
| 15 | | | | | | | |
| 16 | | | | | | | |
| 17 | | | | | | | |
| 18 | | | | | | | |
| 19 | | | | | | | |
| 20 | | | | | | | |
| | | | Average (ALPM) | ALPM) | | | |
| | #DIV/0! | #DIV/0! | #DIV/0! | 0.8780 | 0.9680 | 1.0440 | 1.1230 |
| | P | Average Standard Liters Per Minute, | ard Liters Pe | | Avg. (SLPM) | (| |
| | #DIV/0! | #DIV/0! | #DIV/0! | 0.8553 | 0.9430 | 1.0171 | 1.0940 |
| | | | | | | | |
| REMARKS: | Ta °C= | 24 | | | | | |
| | P. a= | 0.88 | | | | | |
| | | | | | | | |

| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | BETWEEN | CALIBRAT | IONS ACCORI | DING TO ST | ANDARD FL(| OWS USING | i PRE- AS RE | FERENCE |
|---|-----------------|----------|-------------|------------|------------|-----------|--------------|---------|
| Final Point #: Final | POINT 1 | POINT 2 | POINT 3 | POINT 4 | POINT 5 | POINT 6 | POINT 7 | |
| RR Reading: | 0 | 0 | 100 | 110 | 120 | 130 | 140 | |
| ACCURACY: #DIV/0! | #DIV/0 | #DIV/0! | #DIV/0! | 0.423 | 0.769 | 0.405 | -0.373 | |
| PRE Precision: | #DIV/0! #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0 | #DIV/0! | #DIV/0! | |
| POST Precision: #DIV/0! #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | |

0.88 29.92 25

> std Press in. Hg $= O^{\circ} C$

Obl09-3-POST\_FINAL

| ••• | |
|----------|--|
| R FOUR | |
| OTAMETER | |
| R | |

 $\mathbb{R}4$

PERSONAL PUMP CALIBRATION SHEET

| <u>Date:</u>
Time (EDT): | Barometric Pressure (in. Hg): | Temperature (deg. F): | Calibrator I.D.: | sottom of the SS, R, B Ball) |
|-------------------------------|-------------------------------|-----------------------|-------------------|------------------------------|
| OBL09-3
545761 | 4 | PRE | DryCal | Rotameter Reading (B |
| <u>Project:</u>
Pump I.D.: | Rotameter R- ?: | PRE- or POST- ? | Calibrator Model: | |

8/10/2009 10:22 29.89 74.0 101996

| | | | | | | OCT | 2 |
|----|---------|--------------|-----------------------|--------------------------------|---|-------------------|--------|
| | | | Samplin | Sampling Medium | | | |
| | | T-T/C F | T-T/C FOR AMBIENT AIR | | BOTTOM (| BOTTOM OF SS BALL | |
| | | Actu | al Liters P | Actual Liters Per Minute, ALPM | ALPM | | |
| 1 | | | 0.833 | 0.927 | 1.007 | 1.094 | 1.170 |
| 2 | | | | | | | |
| 3 | | | | | | | |
| 4 | | | | | | | |
| 5 | | | | | | | |
| 9 | | | | | | | |
| L | | | | | | | |
| 8 | | | | | | | |
| 6 | | | | | | | |
| 10 | | | | | | | |
| 11 | | | | | | | |
| 12 | | | | | | | |
| 13 | | | | | | | |
| 14 | | | | | | | |
| 15 | | | | | | | |
| 16 | | | | | | | |
| 17 | | | | | | | |
| 18 | | | | | | | |
| 19 | | | | | | | |
| 20 | | | | | | | |
| | | | Average | Average (ALPM) | | | |
| | #DIV/0! | #DIV/0! | 0.8330 | 0.9270 | 1.0070 | 1.0940 | 1.1700 |
| | A | Average Star | ndard Liters | Per Minute, | Average Standard Liters Per Minute, Avg. (SLPM) | 4) | |
| | #DIV/0 | i0/AIC# | 0.8145 | 0.9064 | 0.9847 | 1.0697 | 1.1440 |

PERSONAL PUMP CALIBRATION SHEET

| 9/24/2009 | 16:50 | 29.93 | 75.8 | 101996 | |
|-----------------|-------------|-------------------------------|-----------------------|-------------------|--|
| Date: | Time (EDT): | Barometric Pressure (in. Hg): | Temperature (deg. F): | Calibrator I.D.: | |
| OBL 09-3 | 545761 | 4 | POST | DryCal | |
| Project: | Pump I.D.: | Rotameter R- 7: | PRE- or POST- ? | Calibrator Model: | |

| | Rotameter | Rotameter Reading (Bottom of the SS, R, B Ball) | tom of the | SS, R, B B | ull) | |
|------------------|-----------------------|---|-----------------|-------------------|------------------|--------|
| | | | 110 | 120 | 130 | 140 |
| | | Samplin | Sampling Medium | | | |
| | T-T/C | T-T/C FOR AMBIENT AIR | | BOTTOM OF SS BALI | DF SS BAL | Т |
| | Υc | Actual Liters Per Minute, ALPM | er Minute, / | NLPM | | |
| 1 | | | 0.925 | 1.016 | 1.098 | 1.175 |
| 2 | | | | | | |
| 3 | | | | | | |
| 4 | | | | | | |
| 5 | | | | | | |
| 9 | | | | | | |
| 7 | | | | | | |
| 8 | | | | | | |
| 6 | | | | | | |
| 10 | | | | | | |
| 11 | | | | | | |
| 12 | | | | | | |
| 13 | | | | | | |
| 14 | | | | | | |
| 15 | | | | | | |
| 16 | | | | | | |
| 17 | | | | | | |
| 18 | | | | | | |
| 19 | | | | | | |
| 20 | | | | | | |
| | Avera | Average Actual Liters Per Minute (ALPM) | rs Per Minut | e (ALPM) | | |
| #DIV/0! | | i0/AIC# i0 | 0.9250 | 1.0160 | 1.0980 | 1.1750 |
| | Average S | Average Standard Liters Per Minute, | Per Minute, | Avg. (SLPM) | (I) | |
| #DIV/0! | /0; #DIV/0 | i()//0i | 0.9011 | 0.9898 | 1.0697 | 1.1447 |
| | | | | | | |
| REMARKS: Ta | Ta <sup>o</sup> C= 24 | | | | | |
| ų | $P_v a= 0.88$ | | | | | |
| std Press in. Hg | | | | | | |
| | | | | | | |

| 23 | 0.83 | 29.92 | 25 | |
|--------|----------|------------------|----------------|--|
| Ta °C= | $P_v a=$ | std Press in. Hg | $Tstd ^{o}C =$ | |
| ARKS: | | std Pre | | |

REMARKS:

25

 $= O^{\circ} C$

| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | BETWEEN C | CALIBRATI | ONS ACCORDI | NG TO STA | NDARD FLO | WS USING | PRE- AS R | EFERENCE |
|---|-----------|-----------|-------------|-----------|-----------|----------|-----------|----------|
| :# LNIOA | POINT 1 | POINT 2 | POINT 3 | POINT 4 | POINT 5 | POINT 6 | POINT 7 | |
| RR Reading: | 0 | 0 | 100 | 110 | 120 | 130 | 140 | |
| ACCURACY: #DIV/0 | #DIV/0 | #DIV/0! | #DIV/0! | -0.585 | 0.518 | 0 | 0.061 | |
| PRE Precision: | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0 | #DIV/0! | #DIV/0! | #DIV/0! | |
| POST Precision: | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | #DIV/0! | |

| SHEET |
|------------|
| Z |
| TION |
| BRA |
| Ē |
| JAI |
| P |
| PUMP (|
| Ъ, |
| N |
| õ |
| ERSON |
| 2 |

| Date: | Time (EDT): | Barometric Pressure (in. Hg): | Temperature (deg. F): | Calibrator I.D.: |
|-----------------|-------------|-------------------------------|-----------------------|-------------------|
| OBL 09-3 | 625239 | 5 | PRE | DryCal |
| Project: | Pump I.D.: | Rotameter R- ?: | PRE- or POST- ? | Calibrator Model: |

8/7/2009 15:40 30.01 71.0 101996

| | | | | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0 | |
|---|----|-----------------|--|--------------------------------|-------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----------------|---------|---|---------|--|
| | | | F SS BALL | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | |
| S, R, B Ball | 80 | | OTTOM 0 | 'MM | 0.386 | | | | | | | | | | | | | | | | | | | | | 0.3860 | vvg. (SLPM) | 0.3809 | |
| om of the SS | 70 | Medium | LITTER B | Actual Liters Per Minute, ALPM | 0.316 | | | | | | | | | | | | | | | | | | | | ALPM) | 0.3160 | er Minute, A | 0.3119 | |
| ading (Bott | 60 | Sampling Medium | / WITH SP | I Liters Per | 0.251 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.2510 | lard Liters P | 0.2477 | |
| Rotameter Reading (Bottom of the SS, R, B Ball) | 50 | | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actua | 0.184 | | | | | | | | | | | | | | | | | | | | | 0.1840 | Average Standard Liters Per Minute, Avg. (SLPM) | 0.1816 | |
| R | 40 | | I-T/C FOR | | 0.127 | | | | | | | | | | | | | | | | | | | | | 0.1270 | 1 | 0.1253 | |
| | | | | | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | |

| OTAMETER FIVE : R5 |
|---------------------------|
| ROT |

PERSONAL PUMP CALIBRATION SHEET

| PRE- or POST-? POST Temperature (deg. F): 75.8 Collibrator Modal: Draff Collibrator ID: 10100K |
|--|
| DrvCal Calibrator I D . |
| DI J Can |

| | R | Rotameter Reading (Bottom of the SS, R, B Ball) | ading (Botte | om of the S | S, R, B Bal | (1 | |
|----------|--------|---|---|--------------|-------------|-------------------|---------|
| | 40 | 50 | 60 | 70 | 80 | | |
| | | | Sampling Medium | Medium | | | |
| | | T-T/C FC | T-T/C FOR AMBIENT AIR | | BOTTOM (| BOTTOM OF SS BALL | |
| | | Actua | Actual Liters Per Minute, ALPM | · Minute, A | LPM | | |
| 1 | 0.128 | 0.187 | 0.259 | 0.325 | | | |
| 2 | | | | | | | |
| 33 | | | | | | | |
| 4 | | | | | | | |
| 5 | | | | | | | |
| 9 | | | | | | | |
| 7 | | | | | | | |
| 8 | | | | | | | |
| 6 | | | | | | | |
| 10 | | | | | | | |
| 11 | | | | | | | |
| 12 | | | | | | | |
| 13 | | | | | | | |
| 14 | | | | | | | |
| 15 | | | | | | | |
| 16 | | | | | | | |
| 17 | | | | | | | |
| 18 | | | | | | | |
| 19 | | | | | | | |
| 20 | | | | | | | |
| | | Average A | Average Actual Liters Per Minute (ALPM) | Per Minute | (MLPM) | | |
| | 0.1280 | 0.1870 | 0.2590 | 0.3250 | #DIV/0! | #DIV/0! | #DIV/0! |
| | P | Average Standard Liters Per Minute, Avg. (SLPM) | ard Liters P | er Minute, / | Avg. (SLPM | (| |
| | 0.1247 | 0.1822 | 0.2523 | 0.3166 | #DIV/0! | #DIV/0! | #DIV/0! |
| | | | | | | | |
| REMARKS: | Ta °C= | 24 | | | | | |

| EFERENCE | | | | | |
|---|--|-------------|------------------|--------------------------------|---------------------------------|
| G PRE- AS RI | POINT 7 | 0 | #DIV/0! | #DIV/0! | #DIV/0! |
| NISU ZWO | POINT 6 | 0 | #DIV/0! | #DIV/0! | #DIV/0! |
| TANDARD FI | POINT 5 | 80 | #DIV/0! | #DIV/0 | #DIV/0! |
| DING TO S | POINT 4 | 70 | 1.507 | #DIV/0 | #DIV/0 |
| TONS ACCOR | POINT #: POINT 1 POINT 2 POINT 3 POINT 4 POINT 5 POINT 6 | 60 | 1.857 | #DIV/0 | #DIV/0! #DIV/0! |
| CALIBRAT | POINT 2 | 50 | 0.33 | #DIV/0! | #DIV/0! |
| BETWEEN | POINT 1 | 40 | -0.479 | #DIV/0! | #DIV/0! |
| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | POINT #: | RR Reading: | ACCURACY: -0.479 | PRE Precision: #DIV/0! #DIV/0! | POST Precision: #DIV/0! #DIV/0! |

0.88 29.92 25

 $P_v a=$ std Press in. Hg $T std {}^{\circ}C =$

22 0.78 **29.92** 25

REMARKS:Ta $^{\circ}C=$ P_v a=std Press in. HgTstd $^{\circ}C =$

Obl09-3-POST\_FINAL

| | | _ | | _ | _ | _ | | - | _ | _ | _ | | | | | | | | | | | | | | | _ | _ | | | | | | | |
|--|---|---------|-----------------|--|--------------------------------|-------------------|---|---|---|-----|---|---|---|-------|--------------|----|----|-------|----|----|-------|----|----|----|--|----------------|-------------------------------------|---|-------------------------------------|---|----------|----------|------------------|-------------------------|
| 9/25/2009
11:03
30.16
72.8
101996 | | 140 | | Ľ | | 1.146 | | | | | | | | | | | | | | | | | | | | | 1.1460 | | 1.1310 | | | | | |
| | () | 130 | | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | | 1.081 | | | | | | | | | | | | | | | | | | | | | 1.0810 | ~ | 1.0668 | | | | | |
| :
Tessure (in
(deg. F):
D.: | , R, B Ball | 120 | | OTTOM (| LPM | 966.0 | | | | - | | | | | | | | | | | | | | | | ALPM) | 0.9960 | vg. (SLPM | 0.9830 | | | | | |
| Date:
Time (EDT);
Barometric Pressure (in. Hg);
Temperature (deg. F);
Calibrator LD2; | m of the SS | 110 | Medium | LITTER F | Minute, Al | 0.910 | | | | | | | | | | | | | | | | | | | | Per Minute (| 0.9100 | r Minute, A | 0.8981 | | | | | |
| | ling (Botto | 100 | Sampling Medium | WITH SP | Actual Liters Per Minute, ALPM | | | | | | | | | | | | | | | | | | | | | tual Liters I | #DIV/0! | rd Liters Pe | #DIV/0! | | | | | |
| OBL09-3
545774
6
POST
DryCal | Rotameter Reading (Bottom of the SS, R, B Ball) | | | OW FLOW | Actual | | | | | | | | | | | | | | | | | | | | | Ac | #DIV/0! | Average Standard Liters Per Minute, Avg. (SLPM) | #DIV/0! | | 23 | 0.83 | 29.92 | 25 |
| | Rota | | | I/C FOR LO | | | | | | | | | | | | | | | - | | | | | | | | #DIV/0! | Ave | #DIV/0! | | Ta °C= | $P_v a=$ | std Press in. Hg | Tstd <sup>o</sup> $C =$ |
| <u>Project:</u>
<u>Pump I.D.</u> :
<u>Rotameter R-?</u> :
<u>PRE- or POST-?</u>
Calibrator Model: | | | | T-1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | # | | # | | REMARKS: | | std Pres | Τ |
| <u>Project:</u>
<u>Pump I.</u>
<u>Rotame</u>
<u>PRE- or</u>
<u>Calibrat</u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | REN | | | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| | . <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | a | | | | |
| 8/10/2009
11:01
29.89
74.0
101996 | | 140 | | | | 1.150 | | | | | | | | | | | | | | | | | | | | | 1.1500 | | 1.1245 | | | | | |
| | | 130 140 | | SS BALL | | 1.070 1.150 | | | | | | | | | | | | | | | | | | | | | 1.0700 1.1500 | | | | | | | |
| iii. Hg): | B Ball) | 130 | | OM OF SS BALL | | 1.070 | | | | | | | | | | | | | | | | | | | | | 1.0700 | SLPM) | 1.0463 | | | | | |
| iii. Hg): | ie SS, R, B Ball) | 120 130 | n | R BOTTOM OF SS BALL | , ALPM | 0.981 1.070 | | | | | | | | | | | | | | | | | | | | | 0.9810 1.0700 | te, Avg. (SLPM) | 1.0463 | | | | | |
| Date: 8/10/2009 Time (EDT): 11:01 Barometric Pressure (in. Hg): 29.89 Temperature (deg. F): 74.0 Calibrator I.D.: 101996 | ttom of the SS, R, B Ball) | 120 130 | ig Medium | SPLITTER BOTTOM OF SS BALL | er Minute, ALPM | 1.070 | | | | | | | | | | | | | | | | | | | | e (ALPM) | 1.0700 | Per Minute, Avg. (SLPM) | 1.0463 | | | | | |
| EDT);
hetric Pressure (in. Hg);
erature (deg. F);
ator LD.: | iding (Bottom of the SS, R, B_Ball) | 120 130 | Sampling Medium | / WITH SPLITTER BOTTOM OF SS BALL | I Liters Per Minute, ALPM | 0.981 1.070 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.9810 1.0700 | ard Liters Per Minute, Avg. (SLPM) | 1.0463 | | | | | |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | tameter Reading (Bottom of the SS, R, B Ball) | 120 130 | Sampling Medium | OW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 0.895 0.981 1.070 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.8080 0.8950 0.9810 1.0700 | /erage Standard Liters Per Minute, Avg. (SLPM) | 1.0463 | | 23 | 0.83 | 29.92 | 25 |
| Date: Time (EDT): Barrometric Pressure (in. Hg): Temperature (deg. F): Calibrator LD.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 120 130 | Sampling Medium | C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 0.895 0.981 1.070 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | #DIV/0! 0.8080 0.8950 0.9810 1.0700 | Average Standard Liters Per Minute, Avg. (SLPM) | #DIV/0! 0.7901 0.8751 0.9592 1.0463 | | | | | |
| OBL09-3 Date:
545774 S45774 Time (EDT):
Barometric Pressure (in. Hg); 6 Barometric Pressure (in. Hg); PRE Temperature (deg. F); DryCal Calibrator LD.; | Rotameter Reading (Bottom of the SS, R, B Ball) | 120 130 | Sampling Medium | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 0.895 0.981 1.070 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.8080 0.8950 0.9810 1.0700 | Average Standard Liters Per Minute, Avg. (SLPM) | 1.0463 | | Ta °C= | $P_v a=$ | | Tstd $^{\circ}C = 25$ |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 120 130 | Sampling Medium | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 0.895 0.981 1.070 | | 3 | 4 | 5 5 | 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | | 8 | 9 9 9 | 10 1 1 1 1 1 | | 12 | 13 13 | 14 | 15 | 16 16 | 17 | 18 | 19 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | Average (ALPM) | #DIV/0! 0.8080 0.8950 0.9810 1.0700 | Average Standard Liters Per Minute, Avg. (SLPM) | #DIV/0! 0.7901 0.8751 0.9592 1.0463 | | | $P_v a=$ | | |

| IFERENCE | | | | | |
|---|---|-------------|-------------------|------------------------|-------------------------|
| FRE- AS RE | POINT 7 | 140 | 0.578 | #DIV/0 | #DIV/0! |
| OWS USING | POINT 6 | 130 | 1.959 | #DIV/0! | #DIV/0! |
| NDARD FL | POINT 5 | 120 | 2.481 | #DIV/0 | #DIV/0! |
| ING TO STA | POINT 4 | 110 | 2.628 | #DIV/0! | #DIV/0! |
| ONS ACCORD | POINT 3 POINT 4 POINT 5 POINT 6 POINT 7 | 100 | #DIV/0 | #DIV/0! | #DIV/0! |
| CALIBRATI | OINT #: POINT 1 POINT 2 | 0 | #DIV/0 | #DIV/0! | #DIV/0! |
| BETWEEN | POINT 1 | 0 | #DIV/0! | #DIV/0! | #DIV/0! |
| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | POINT #: | RR Reading: | ACCURACY: #DIV/0! | PRE Precision: #DIV/0! | POST Precision: #DIV/0! |

ROTAMETER SIX : R6

| 9/25/2009
11:25
30.16
75.9
101996 | | | | | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | |
|--|---|-------|-----------------|--|--------------------------------|-------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|---|-----------------|---|-----------------|--|-----------------------|
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator 1.D.: | SS, R, B Ball) | 70 | | T-T/C FOR LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | ALPM | | | | | | | | | | | | | | | | | | | | | s (ALPM) | #DIV/0! #DIV/0! | Avg. (SLPM) | #DIV/0! #DIV/0! | | |
| <u>Date:</u>
<u>Time (EDT):</u>
<u>Barometric Pre</u>
<u>Temperature (d</u>
<u>Calibrator I.D.</u> : | sottom of the S | 99 | Sampling Medium | H SPLITTER | Actual Liters Per Minute, ALPM | 6 0.408 | | | | | | | | | | | | | | | | | | | | ters Per Minut | 0.4080 | rs Per Minute, | 0.4006 | | |
| 081.09-3
538819
7
POST
DryCal | Rotameter Reading (Bottom of the SS, R, B Ball) | 40 50 | Samp | V FLOW WITH | Actual Liters | 0.233 0.326 | | | | | | | | | | | | | | | | | | | | Average Actual Liters Per Minute (ALPM) | 0.2330 0.3260 | Average Standard Liters Per Minute, Avg. (SLPM) | 0.2288 0.3201 | 24
0.88
29.92 | 25 |
| | Rotam | 30 | | T/C FOR LOV | | 0.156 0 | | | | | | | | | | | | | | | | | | | | A | 0.1560 0. | Avera | 0.1532 0. | <u>KS:</u> Ta °C=
P <sub>v</sub> a= (
std Press in. Hg 2 | |
| <u>Project:</u>
<u>Pump I.D.</u> :
<u>Rotameter R- ?</u> :
<u>PRE- or POST- ?</u>
Calibrator Model. | | | | Ļ | | 1 | 2 | ŝ | 4 | 5 | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | <u>REMARKS:</u>
std Pr | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8/10/2009
11:20
29.89
74.2
101996 | | | | L | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0 | | |
| in. Hg): | (IIt | | | BOTTOM OF SS BALL | | 5 | | | | | | | | | | | | | | | | | | | | | #DIV/0! | (I) | #DIV/0! | | |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 70 | | BOTTOM | ALPM | 0.485 | | | | | | | | | | | | | | | | | | | | | 0.4850 | Avg. (SLPN | 0.4742 | | |
| <u>Date:</u>
<u>Time (EDT):</u>
<u>Barometric Pre</u>
<u>Temperature (d</u>
<u>Calibrator I.D.</u> : | ttom of the | 60 | _ | | | 0.409 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.4090 | Per Minute, | 0.3999 | | |
| | eading (Bot | 50 | Samplin | W WITH S | Actual Liters Per Minute, | 0.321 | | | | | | | | | | | | | | | | | | | | Average | 0.3210 | ndard Liters | 0.3139 | | |
| 0BL09-3
538819
7
PRE
DryCal | otameter R | 40 | | T-T/C FOR LOW FLOW WITH SPLITTER | Actu | 0.226 | | | | | | | | | | | | | | | | | | | | | 0.2260 | Average Standard Liters Per Minute, Avg. (SLPM) | 0.2210 | 23
0.83
29.92 | 25 |
| | \sim | | | \simeq | | | | | | | | | | | | | | | | | | | | | | | 0 | | 9 | Ta °C=
P <sub>v</sub> a=
s in. Hg | ő |
| Project:
Pump 1.D.:
Rotameter R- <u>?:</u>
PRE- or POST- <u>?</u>
Calibrator Model: | R | 30 | | T-T/C FO | | 0.152 | | | | | | | | | | | | | | | | | | | | | 0.1520 | | 0.1486 | REMARKS: Ta°C=
P <sub>v</sub> a=
std Press in. Hg | Tstd <sup>o</sup> C = |

PERSONAL PUMP CALIBRATION SHEET

ROTAMETER SEVEN : R7

| | r— | | | | | | - | | | | | | | - | - | - | - | | | | | | | | | r | | | |
 | | | |
|---|---|-------|-----------------|----------------------------------|--------------------------------|-----------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----------------|----------------|---|----------------|-------------|----------|-------------------------------|----------|
| 9/25/2009
11:51
30.16
75.6
101996 | | | | LL | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
| e (in. Hg):
E): | 3all) | | | BOTTOM OF SS BALL | | | | | | | | | | | | | | | | | | | | | | | 0! #DIV/0! | PM) | 0; #DIV/0! | | | | |
| Date:
Time (EDT);
Barometric Pressure (in. Hg);
Temperature (deg. F);
Calibrator LD.; | the SS, R, B | 70 80 | mm | | ite, ALPM | 0.338 | | | | | | | | | | | | | | | | | | | | inute (ALPM) | 0.3380 #DIV/0! | ute, Avg. (SLI | 0.3319 #DIV/0! | | | | |
| Date:
Time
Barror
Calib | ig (Bottom of | 60 7 | Sampling Medium | ITH SPLITT | Actual Liters Per Minute, ALPM | 0.274 0.2 | | | | | | | | | | | | | | | | | | | | s Pe | 0.2740 0.3 | Liters Per Min | 0.2690 0.3 | | | | |
| 0BL09-3
625276
8
POST
DryCal | Rotameter Reading (Bottom of the SS, R, B Ball) | 50 | S | T/T-C FOR LOW FLOW WITH SPLITTER | Actual L | 0.200 | | | | | | | | | | | | | | | | | | | | Average Actu | 0.2000 (| Average Standard Liters Per Minute, Avg. (SLPM) | 0.1964 0 | 24 | 0.88 | 29.92
35 | 3 |
| | Rot | 40 | | I/T-C FOR LO | | 0.141 | | | | | | | | | | | | | | | | | | | | | 0.1410 | Av | 0.1384 | Ta °C= | $P_v a=$ | std Press in. Hg
Total Oct | TSTO C = |
| <u>Project:</u>
Pump I.D.:
Rotameter R- <u>?</u> :
PRE- or POST- <u>?</u>
Calibrator Model: | | | | [| | 1 | 2 | ŝ | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 61 | 20 | | | | | REMARKS: | | std F | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8/7/2009
16:05
30.01
71.0
101996 | | | | . 1 | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
| | | | | F SS BALI | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
| Date:
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | , R, B Ball) | 80 | | BOTTOM OF SS BALL | LPM | 0.407 | | | | | | | | | | | | | | | | | | | | | 0.4070 | vg. (SLPM) | 0.4017 | | | | |
| <u>Date:</u>
Time (EDT):
Barometric Pressure (
Temperature (deg. F):
Calibrator LD.: | om of the SS | 10 | Sampling Medium | PLITTER | Actual Liters Per Minute, ALPM | 0.341 | | | | | | | | | | | | | | | | | | | | (ALPM) | 0.3410 | er Minute, A | 0.3365 | | | | |
| | ading (Bott | 09 | Samplin | N WITH SI | al Liters Po | 0.272 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.2720 | lard Liters F | 0.2684 | | | | |
| 0BL09-3
625276
8
PRE
DryCal | Rotameter Reading (Bottom of the SS. | 50 | | T/T-C FOR LOW FLOW WITH SPLITTER | Actu | 0.200 | | | | | | | | | | | | | | | | | | | | | 0.2000 | Average Standard Liters Per Minute, Avg. (SLPM) | 0.1974 | | 0.78 | | |
| | | 1 | 1 | OR | | | | | | | | | | | | | | | | | | | | | | | 0 | ł | 1 | $Ta ^{o}C=$ | $P_v a=$ | ы
Н. | Tsta C = |
| Project:
Pump 1.D.:
Rotameter R- <u>?</u> :
PRE- or POST- <u>?</u>
Calibrator Model: | | 40 | | T/T-C F0 | | 0.143 | | | | | | | | | | | | | | | | | | | | | 0.1430 | | 0.1411 | Ta | д, | std Press in. Hg | DIST |

| FERENCE | | | | | |
|---|-----------------|-------------|------------------|------------------------|-------------------------|
| 3 PRE- AS REI | POINT 7 | | #DIV/0! | #DIV/0! | #DIV/0! |
| OWS USING | | 0 | #DIV/0! | #DIV/0! | #DIV/0! |
| ANDARD FL | POINT 5 POINT 6 | 80 | #DIV/0! | #DIV/0! | #DIV/0! |
| ING TO ST/ | POINT 4 | 70 | -1.367 | #DIV/0! | #DIV/0! |
| TONS ACCORI | POINT 3 | 60 | 0.224 | #DIV/0 | #DIV/0! |
| CALIBRAT | POINT 1 POINT 2 | 50 | -0.507 | #DIV/0 | #DIV/0! |
| BETWEEN | POINT 1 | 40 | -1.914 | #DIV/0! | |
| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | POINT #: | RR Reading: | ACCURACY: -1.914 | PRE Precision: #DIV/0! | POST Precision: #DIV/0! |

Б

٦

PERSONAL PUMP CALIBRATION SHEET

ROTAMETER EIGHT : R8

| 9/25/2009
13:17
30.17
75.0
101996 | | | | VLL | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
|--|---|----------|-----------------|--|--------------------------------|-------------------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|---|----------------------------|------------------|----------------------------|-----------------------|---|-------|--|
| <u>Date:</u>
Time (EDT):
Barometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator (.D.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 0 70 80 | Sampling Medium | ITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | 62 0.329 | | | | | | | | | | | | | | | | | | | | Average Actual Liters Per Minute (ALPM) | 520 0.3290 #DIV/0! #DIV/0! | rs Per Minute, A | 573 0.3232 #DIV/0! #DIV/0! | | | | |
| 001.09-3
625277
9
6-2
POST
DryCal | Rotameter Reading | 40 50 60 | S | T/T-C FOR LOW FLOW WITH SPLITTER | Actual Li | 0.117 0.191 0.262 | | | | | | | | | | | | | | | | | | | | Average Actua | 0.1173 0.1910 0.2620 | | 0.1152 0.1876 0.2573 | Ta <sup>o</sup> C= 24 | 0 | | |
| <u>Project:</u>
<u>Pump I.D.:</u>
<u>Rotameter R ?:</u>
<u>PRE- or POST- ?</u>
Calibrator Model. | | | | | | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 6 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | REMARKS: | | std F | |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 8/7/2009
16:42
30.01
71.0
101996 | | | | .] | | | | | | | | | - | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
| (EDT):
netric Pressure (in. Hg):
erature (deg. F):
ator I.D.: | of the SS, R, B Ball) | 70 80 | edium | ER BOTTOM OF SS BALL | linute, ALPM | 0.333 0.397 | | | | | | | | | | | | | | | | | | | | JPM) | (30 0.3970 #DIV/0! | vg. (SLPM) | 0.3918 #DIV/0! | | | | |
| sure (in. Hg):
 | Rotameter Reading (Bottom of the SS, R, B Ball) | | Sampling Medium | T/T-C LOW FLOW WITH SPLITTER BOTTOM OF SS BALL | Actual Liters Per Minute, ALPM | | | | | | | | | | | | | | | | | | | | | Average (ALPM) | (30 0.3970 #DIV/0! | | #DIV/0! | $Ta^{\circ}C=22$ | Ŭ | | |

| : R9 | |
|-----------|--|
| NINE | |
| TAMETER] | |
| RO | |

PERSONAL PUMP CALIBRATION SHEET

PERSONAL PUMP CALIBRATION SHEET

ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE

POINT 3 POINT 4 POINT 5 POINT 6 POINT 7

0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

80 #DIV/0! #DIV/0! #DIV/0!

70 -1.643 #DIV/0! #DIV/0!

60 -2.353 #DIV/0! #DIV/0!

 POINT #:
 POINT 1
 POINT 2

 RR Reading:
 40
 50

 ACCURACY:
 -18.356
 -2.495

 PRE Precision:
 #DIV/0!
 #DIV/0!

 POST Precision:
 #DIV/0!
 #DIV/0!

| | 101996 | | | | BALL | | | | | | | | | | | | | | | | | | | | | | | i #DIV/0! | | i #DIV/0! | | | | |
|---------------------------------|---|---|------------|-----------------|----------------------------------|--------------------------------|-------|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|---|-----------------|---|-----------------|----------------|-------|------------------|-----------|
| TION SHEET | Date:
Time (EDT):
Barrometric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD.: | S, R, B Ball) | 50 | | BOTTOM OF SS BALL | ALPM | | | | | | | | | | | | | | | | | | | | | (ALPM) | #DIV/0! #DIV/0! | Avg. (SLPM) | #DIV/0! #DIV/0! | | | | |
| PERSONAL PUMP CALIBRATION SHEET | <u>Date:</u>
Time (EDT):
Barometric Pre
Temperature (d
Calibrator LD.: | Rotameter Reading (Bottom of the SS, R, B Ball) | 40 45 | Sampling Medium | T/T-C FOR LOW FLOW WITH SPLITTER | Actual Liters Per Minute, ALPM | | | | | | | | | | | | | | | | | | | | | Average Actual Liters Per Minute (ALPM) | #DIV/0! #DIV/0! | Average Standard Liters Per Minute, Avg. (SLPM) | #DIV/0! #DIV/0! | | | | |
| PERSONAL PU | OBL09-3
545767
10
POST
DryCal | Rotameter Readin | 35 | | R LOW FLOW V | Actual I | | | | | | | | | | | | | | | | | | | | | Average Actu: | #DIV/0! | Average Standard | | | | (1 | = 25 |
| Ц | Project:
Pump I.D.:
Rotameter R- <u>?</u> :
PRE- or POST- <u>?</u>
Calibrator Model: | | 30 | | T/T-C FO | | 1 | 2 | 3 | 4 | 5 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | #DIV/0 | | #DIV/0! | REMARK: Ta oC= | Pv a= | std Press in. Hg | Tstd oC = |
| | 뙤 뙤 찌 띴 있 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | RI | | | |
| | 8/10/2009
11:48
29.89
74.2
101996 | | | | L | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | | #DIV/0! | | | | |
| HEET | 1. Hg): | (1 | | | R BOTTOM OF SS BALL | | | | | | | | | | | | | | | | | | | | | | | #DIV/0! | - | #DIV/0! | | | | |
| ATION SI | Date:
Time (EDT):
Baronetric Pressure (in. Hg):
Temperature (deg. F):
Calibrator LD: | S, R, B Bal | 50 | | BOTTOM | ALPM | 0.326 | | | | | | | | | | | | | | | | | | | | | 0.3260 | Avg. (SLPM | 0.3188 | | | | |
| CALIBR/ | <u>Date:</u>
<u>Time (EDT):</u>
<u>Barometric Pre;</u>
<u>Temperature (d</u>
<u>Calibrator I.D.</u> ; | om of the S | 45 | Sampling Medium | LITTER | Actual Liters Per Minute, ALPM | 0.279 | | | | | | | | | | | | | | | | | | | | (MLPM) | 0.2790 | er Minute, / | 0.2728 | | | | |
| | | ading (Bott | 40 | Sampli | V WITH SP | tual Liters I | 0.227 | | | | | | | | | | | | | | | | | | | | Average (ALPM) | 0.2270 | lard Liters F | 0.2220 | | | | |
| PERSONAL PUMP CALIBRATION SHEET | OBL09-3
545767
10
PRE
DryCal | Rotameter Reading (Bottom of the SS, R, B Ball) | 35 | | T/T-C LOW FLOW WITH SPLITTEI | Act | 0.184 | | | | | | | | | | | | | | | | | | | | | 0.1840 | Average Standard Liters Per Minute, Avg. (SLPM) | 0.1799 | | | 2 | 25 |
| H | Project:
Pump I.D.:
Rotameter R- ?:
PRE- or POST- ?
Calibrator Model: | I | 0 E | | T/T-C | | 0.150 | | | | | | | | | | | | | | | | | | | | | 0.1500 | | 0.1467 | L | Pv a= | std Press in. Hg | Tstd oC = |
| | <u>Project:</u>
<u>Pump I.D</u>
<u>Rotameter</u>
<u>PRE- or PC</u>
Calibrator] | | | | | | | 2 | 3 | | 5 | 9 | | 8 | Ī | 10 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | REMARK | | stc | |

ROTAMETER TEN : R10

| ACCURACY CHECK BETWEEN CALIBRATIONS ACCORDING TO STANDARD FLOWS USING PRE- AS REFERENCE | 3 POINT 4 POINT 5 POINT 6 POINT 7 | | i #DIV/0! #DIV/0! #DIV/0! #DIV/0! | i #DIV/0! #DIV/0! #DIV/0! #DIV/0! | ! #DIV/0! #DIV/0! #DIV/0! #DIV/0! |
|---|-----------------------------------|-------------|-----------------------------------|-----------------------------------|-----------------------------------|
| JBRATIONS ACC | DINT 2 POINT 3 | 50 60 | DIV/0! #DIV/0! | DIV/0! #DIV/0! | DIV/0! #DIV/0! |
| ETWEEN CAI | OINT #: POINT 1 POINT 2 | 40 | #DIV/0! # | #DIV/0! # | #DIV/0! # |
| ACCURACY CHECK BF | FOINT #: | RR Reading: | ACCURACY: #DIV/0! #DIV/0! | PRE Precision: #DIV/0! #DIV/0! | POST Precision: #DIV/0! #DIV/0! |

Bios Driving a Higher Standard in Flow Measurement<sup>see</sup>

Calibration Certificate

| Certificate No. | 35988 | Sold to: | RTP Environmental Associates - Westbury |
|-----------------|----------------------------|----------|---|
| Product | DryCal DC-Lite Medium High | | 400 Post Ave
Suite 105 |
| Serial No. | 101996 | | Westbury, NY 11590 |
| Cal. Date | 2/6/2009 | | USA |

All calibrations are performed in accordance with ISO 17025 at Bios International Corporation, 10 Park Place, Butler, NJ, 07405, 800-663-4977, an ISO 17025:2005 – accredited laboratory through NVLAP. This report shall not be reproduced except in full without the written approval of the laboratory. Results only relate to the items calibrated. This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

All units tested in accordance with Bios International Corporation test number PR05-2 or PR01-10 using high-purity bottled nitrogen or dry filtered laboratory air.

As Received Calibration Data

Lab. Pressure745 mmHgLab. Temperature22.3 °C

| Instrument Reading | Lab Standard
Reading | Deviation | Allowable
Deviation | As
Received |
|--------------------|-------------------------|-----------|------------------------|----------------|
| 200.7ccm | 200.93ccm | -0.11% | 1.00% | In Tolerance |
| 5003ccm | 5009.35ccm | -0.13% | 1.00% | In Tolerance |
| 16970ccm | 17042.5ccm | -0.43% | 1.00% | In Tolerance |

Bios International Standards Used

| Description | Standard Serial Number | Calibration Date | Calibration Due Date |
|-------------|------------------------|------------------|----------------------|
| ML_500_10 | 113784 | 5/1/2008 | 5/1/2009 |
| ML_500_44 | 110104 | 5/15/2008 | 5/15/2009 |

Bios International • 10 Park Place Butler, NJ 07405 • 800.663.4977 • www.biosint.com

Blos Driving a Higher Standard in Flow Measurement<sup>®</sup>

As Shipped Calibration Data

Certificate No. 35988 Technician David Stratheran Lab. Pressure 761 mmHg Lab. Temperature 22.4 °C

| Instrumer | nt Reading | Lab Standard | Deviation | Allowable | As |
|-----------|------------|--------------|-----------|-----------|--------------|
| 1 | - | Reading | | Deviation | Shipped |
| 200.4 | ccm | 200.505ccm | -0.05% | 1.00% | In Tolerance |
| 4992 | ccm | 5002.2ccm | -0.2% | 1.00% | In Tolerance |
| 16950 | Dccm | 17000ccm | -0.29% | 1.00% | In Tolerance |

Bios International Standards Used

| Description | Standard Serial Number | Calibration Date | Calibration Due Date |
|-------------|------------------------|------------------|----------------------|
| ML_500_10 | 113778 | 5/1/2008 | 5/1/2009 |
| ML_500_44 | 113761 | 5/1/2008 | 5/1/2009 |

Calibration Notes

Bios is an ISO 17025-accredited metrology laboratory. Each Bios primary gas flow standard is dynamically verified by comparing it to one of our laboratory standards, which is a Proven DryCal® Technology volumetric piston prover of much higher accuracy (± 0.25% or better) but of similar operating principles. For this purpose, a flow generator of ±0.03% stability is used. Our laboratory standards are qualified by direct measurement of their dimensions (diameter, length and time) using NIST-traceable precision gauges and instruments, such as depth micrometers and laser micrometers. NIST numbers for these gauges and instruments are available upon request. Rigorous analyses of our laboratory standards' uncertainties have been performed, in accordance with The Guide to the Expression of Uncertainty in Measurement (the GUM), assuring their traceable accuracy.

Harry 2. Part

Harvey Padden, President and Chief Metrologist

Bios International • 10 Park Place Butler, NJ 07405 • 800.663.4977 • www.biosint.com

Page 2 of 2

CAL02-53 REV E