SIXTH QUARTERLY REPORT

SECOND YEAR OF GROUNDWATER TREATMENT FACILTY OPERATION

VOLUME 2 OF 2

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

Prepared By: The Town of Oyster Bay Division of Environmental Control

April 1994

SIXTH QUARTERLY REPORT

SECOND YEAR

OF

GROUNDWATER TREATMENT FACILITY OPERATION

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS

Prepared By:
Town of Oyster Bay
Division of Environmental Control

TABLE OF CONTENTS

				<u>Page No.</u>
SECTION 1.0 -				
	1.1		e of this Document	1
	1.2	Scope	of this Document	1
SECTION 2.0 -	BACKO	ROUNI	DINFORMATION	
	2.1	Site His		2
	2.2		nt Decree Requirements Pertaining to	_
			Remediation	3
		2.2.1	Requirements for Groundwater Monitoring	3
		2.2.2	Treatment Facility Discharge Limitations	
			and Monitoring Requirements	4
SECTION 3.0 -	GROUI	UDWAT	ER TREATMENT FACILITY OPERATIONS	
020110110.0	3.1		of Operation	10
	3.2	Physica		10
	3.3		Operating Conditions	11
	3.4		ring Functions	11
	0.4		Daily Operations Reports	11
		3.4.2		12
		3.4.3	Inorganic Analyses Reports	12
		3.4.4	State Pollution Discharge Elimination	
		0.4.4	System (SPDES) Reports	14
		3.4.5	Air Stripper Emissions Testing	14
SECTION 4.0	CROU	IDMA T	ER MONITORING PROGRAM	
3ECTION 4.0 -	4.1			15
	4, 1	Genera 4.1.1		15
		4.1.1	Field Sampling Protocals Well Construction Details	16
	4.2		lic Monitoring	17
	4.2	4.2.1	Monthly Water Level Measurements -	"
		4.2.1	July, August and September 1993	18
	4.3	Ground	Iwater Quality and Quarterly Monitoring	22
	4.3	4.3.1	Analyses of Volatile Organic Compound	44
		4.5.1	(VOC) Data - July 1993	24
		4.3.2	Delineation of the VOC Plume	26
		4.3.3	Analyses of Inorganic Compound Data -	
		1.0.0	July 1993	26
	4.4	Hydrau	lic Evaluation of the Groundwater	
			liation System	27
		4.4.1	Effective Capture Zone	27
		4.4.2	Effects of Mounding Due to Recharge	28
		443	Evaluation of System Pumpage	29

TABLE OF CONTENTS (Cont'd)

			<u>Page No.</u>
SECTION 5.0 - FII	NDINGS AN	D RECOMENDATIONS	
5.1	1 Discus	ssion	32
	5.1.1	Facility Operations	32
	5.1.2	Hydraulic Control of the VOC Plume	41
	5.1.3	Remediation of Potential Groundwater	
		Plumes from Other Sources	42
5.2	2 Recor	nmendations	51
	5.2.1	Groundwater Treatment Facility	51
	5.2.2	Groundwater Monitoring Program	51

LIST OF TABLES

		PAGE NO.
1.	Effluent Limitations/Volatile Organic Compounds (VOC's)	5
2.	Effluent Limitations/Inorganics	6
3.	Applicable Air Discharge Requirements for Air Stripping Treatment System	8
4.	Analytical Methods	13
	LIST OF FIGURES	
1	Tomporal Variation in Equility Influent	22
1.	Temporal Variation in Facility Influent	33
2.	Temporal Comparison of Influent/Effluent Total VOC Concentrations	34
3.	Temporal Variation in Facility Influent VOC Concentrations	36
4.	Temporal Variation in Wellfield VOC Concentrations	37
5.	Temporal Variation in Treatment Efficiency	38
6.	Temporal Variation in VOC Concentrations at Recovery Well No. 1	43
7.	Temporal Variation in VOC Concentrations at Recovery Well No. 2	44
8.	Temporal Variation in VOC Concentrations at Recovery Well No. 3	45
9.	Temporal Variation in VOC Concentrations at Recovery Well No. 4	46
10.	Temporal Variation in VOC Concentrations at Recovery Well No. 5	47
11.	Temporal Variation In Wellfield Tetrachloroethene Concentrations	49

LIST OF APPENDICES

Α.	Location	Plan

- B. Daily Operations Reports, July 1 through September 30, 1993
- C. Self-Monitoring Organic Analyses
- D. Self-Monitoring Inorganic Analyses
- E. SPDES Reports
- F. "Air Stripper Stack Emissions Test Program" Second Year of Operation 1993 - 1994 Second Quarterly Report February 1994
- G. "Quarterly Monitoring Report Sixth Quarter Results," February 1994

APPENDIX C

Self-Monitoring Organic Analyses

Jul 2, 1993

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

AM

Influent

	Chemical	Concent	ration	
Constituent		Allowed *	Measured ** (ug/i)	

Total VOCs	100	188.73
Benzene (ND)	0	3.76
Bromodiohioromethane	50***	o
Bromoform	50***	0
Carbon Tetrachloride	5	• • • • • • • • • • • • • • • • • • •
Chlorobenzene	5	0.78
Chlorodibromomethane	50***	٥
Chloroethane	5	0.65
Chloroform	100***	3,04
Dichlorobenzene, o&p	4.7	3.18
Diohiorobenzene, o,m&g	50	3,38
1,1 Diohioroethane	5	6.3
1,2 Dichloroethane	5	0.57
1,1 Dichloroethene	0.07	0.19
cis-1,2 Dichloroethene	5	29.49
trans-1,2 Dichloroethene	5	0.01
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.1
Methylene Chloride	5	0.81
Tetrachloroethene	0.7	122.94
Toluene	5	0.09
1.1.1 Trichloroethane	5	2.47
Trichloroethylene	5	11.61
Vinyl Chloride	1	0.77
Xylene, o	5	1.68
Xylene, m&p	5	0.09
Xylene, o,m&p	50	1.77
fourTrihalomethanes (***	100	0

- * Begulalary officiant discharge standards at apacified in its famous it is easier.

 and modified by 19/10/60 large to the fown.
- " Topi concernion of these low shakementaries shall not received 100 upl.

Department of Fublic Works
Calcundwater Treatment Facility
CFBAMICS ANALYSIS FEFGET

Jul 2, 1998

Chemical

AM

Concentration

Effluent

=			
Constituent	Allowed *	Measured **	
	(ug/i)	(ug/l)	
Total VOCs	100	2.77	
Benzene (ND)	0	. 0	
Bromodiohioromethane	50***	0	
Bromolorm	50***	0	
Carbon Tetrachioride	5	0	
Chlorobenzene	5	0.04	
Chlorodibromomethane	50***	0	
Chloroethane	5	0	
Chloroform	100***	0.14	
Dichlorobenzene, o&p	4.7	0.27	
Dichlorobenzene, o,m&p	60	0.3	
1,1 Diohioroethane	6	0.11	
1,2 Dichloroethane	6	0.16	
1,1 Dichioroethene	0.07	0	
ols-1,2 Dichloroethene	6	0.73	
trans-1,2 Dichloroethene	6	0	
1,2 Dichloropropane	6	0	
Ethylbenzene	6	0.02	
Methylene Chloride	5	0.14	
Tetrachioroethene	0.7	0.94	
Toluene	5	0.02	
1,1,1 Trichloroethane	5	0.04	
Trichioroethylene	5	0.1	
Vinyl Chloride	1	0	
Xylene, o	5	0.02	
Xylene, m&p	5	0.01	
Xylene, o,m&p	50	0.03	
fourTribalomethanes (***	100	0	

- र राज्या अस्तर महिल्लामा राज्या राज्याचार है सार राज्या हरा है । इसे निर्देश के राज्या महिल्ला महिल्ला राज्या है से समान

Department of Public World Groundwater Treatment Facility GREANICS ANALYSIS REPORT

Jul 5, 1993

AM

Influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	233.76
Benzene (ND)	0	0.25
Bromodiohioromethane	50***	2.71
Bromoform	50***	1.65
Carbon Tetrachloride	5	0.84
Chlorobenzene	5	1.8
Chlorodibromomethane	50***	0
Chloroethane	5	0.18
Chloroform	100***	2.32
Dichicrobenzene, c&p	4.7	5.33
Dichlorobenzene, o,m&g	50	6.76
1,1 Dichloroethane	5	8.36
1,2 Diohioroethane	5	1.78
1,1 Diohioroethene	0.07	0.15
ols-1,2 Dichloroethene	5	34.93
trans-1,2 Dichloroethene	5	1.6
1,2 Diohioropropane	5	3.97
Ethylbenzene	5	2.28
Methylene Chloride	5	4.38
Tetrachioroethene	0.7	139.97
Toluene	5	1.38
1,1,1 Trichloroethane	5	2.78
Trichioroethylene	5	14.8
Vinyl Chloride	1	0.1
Xylene, o	5	0.03
Xylene, m&p	5	0.64
Xylene, o,m&p	50	0.67
fourTrihalomethanes (***	100	0

- Respectiony of the deleter part to the deleter and the deleter of th
- . Compressed generalist state like the SPA compressed and a program in

PARTIES - THE PART

Department of Public Works
Calclandwater Treatment Facility
CRSANICE ANAL 1919 REPORT

Chemical Concentration Constituent Allowed Measured (ug/i) Total VOCs 100 0.67 Benzene (ND) 0 0.02 Bromodichloromethane 50*** 0 Carbon Tetrachloride 5 0.05 Chlorobenzene 5 0.05 Chlorodibromomethane 50*** 0 Chlorodibromomethane 5 0.05 Chlorodibromomethane 5 0.02 Dichlorobenzene, o.m&p 4.7 0.09 Dichlorobenzene, o.m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 Inne-1,2 Dichloroethane 5 0.01 Irane-1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.01 Toluene 5 0.01 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 5 0.03 Kylene, o,m&p 5 0.03 Kylene, o,m&p 5 0.03 OurTrithalomethanee **** 100	Jul 5, 1998	AM_	Elliuent	
Constituent Allowed * (ug/i) (ug/i) Total VOCs 100 0.87 Berzene (ND) 0 0.02 Bromodichloromethane 50*** 0 Bromotorm 50*** 0 Carbon Tetrachloride 5 0.05 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorodibromomethane 5 0.05 Chlorodibromomethane 5 0.05 Chlorodibromomethane 5 0.02 Dichlorobenzene, o,mkp 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 Tichloroethane 5 0.01 Tichloroethane 5 0.01 Tichloroethane 5 0.01 Xytene, 0 5 0.02 Xytene, 0,m&p 5 0.03	Chamical	Concentr	etian	
(ug/i) (ug/i)	Chemica	Concent	20011	
Total VOCs 100 0.67	Constituent	Allowed *	Measured **	
Berizane		(ug/l)	(ug/l)	
Berizane				
Bromodichloromethane 50*** 0 Bromotorm 50*** 0 Carbon Tetrachloride 5 0 Chlorobenzene 5 0.05 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chloroform 100*** 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 Trichloroethane 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 1,1,1 Trichloroethane 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, o,m&p 5 0.03 Xylene, o,m&p 50 0.03	Total VOCs	100	0.67	
Bromotorm	Benzene (ND)	0	0.02	
Carbon Tetrachloride 5 0 Chlorobenzene 5 0.05 Chlorodibromomethane 50°*** 0 Chloroethane 5 0 Chloroform 100°*** 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.04 1,1 Dichloroethane 5 0.1 trane-1,2 Dichloroethane 5 0.1 trane-1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.01 1,1,1 Trichloroethane 5 0.01 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, o,m&p 5 0.03	Bromodichloromethane	50***	0	
Chlorodibromomethane 50°+** 0 Chlorodibromomethane 50°+** 0 Chloroform 100°+* 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.04 1,1 Dichloroethane 5 0.07 0 cis-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 Ethylbenzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 Tichloroethane 5 0.01 Trichloroethane 5 0.01 Xylene, o 5 0.02 Xylene, o,m&p 5 0.03 Xylene, o,m&p 5 0.03		50***	0	
Chlorodibromomethane 50*** 0 Chlorotinane 5 0 Chlorotorm 100*** 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.04 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 Ethylbenzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.01 Tetrachloroethane 5 0.01 Titrachloroethane 5 0.01 Toluene 5 0.01 1,1,1 Trichloroethane 5 0.01 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.03 Xylene, o,m&p 50 0.08	Carbon Tetrachloride			
Chloroform 100*** 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.04 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.1 trans-1,2 Dichloroethane 5 0.1 1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, m&p 5 0.03		_	0.05	
Chloroform 100*** 0.02 Dichlorobenzene, o&p 4.7 0.09 Dichlorobenzene, o,m&p 50 0.11 1,1 Dichlorosthane 5 0.01 1,2 Dichlorosthane 5 0.04 1,1 Dichlorosthane 5 0.1 trane-1,2 Dichlorosthane 5 0 1,2 Dichlorosthane 5 0 1,2 Dichlorosthane 5 0.02 Methylene Chloride 5 0.01 Tetrachlorosthane 5 0.01 Toluene 5 0.01 1,1,1 Trichlorosthane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, m&p 5 0.03	Chlorodibromomethane	50***	0	
Dichlorobenzene, o&p 4.7 0.09	Chloroethane	_	: -	
Dichlorobenzene, o,m&p 50 0.11 1,1 Dichlorosthane 5 0.04 1,2 Dichlorosthane 5 0.04 1,1 Dichlorosthane 0.07 0 0 0 0 0 0 0 0 0	Chloroform			_
1,1 Dichlorosthane 5 0.01 1,2 Dichlorosthane 5 0.04 1,1 Dichlorosthane 0.07 0 cis-1,2 Dichlorosthane 5 0.1 trans-1,2 Dichlorosthane 5 0 1,2 Dichloropropane 5 0.02 Methylene Chloride 5 0.01 Tetrachlorosthane 0.7 0.23 Toluene 5 0.01 1,1,1 Trichlorosthane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, m&p 5 0.03	Dichlorobenzene, o&p	4.7		
1,2 Dichloroethane 5 0.04 1,1 Dichloroethane 0.07 0 cis-1,2 Dichloroethane 5 0.1 trane-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethane 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 5 0.03	Dichlorobenzene, o,m&p	50	0.11	
1,1 Dichloroethene 0.07 0 cie-1,2 Dichloroethene 5 0.1 trane-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbertzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 5 0.03	1,1 Dichloroethane	_	0.01	
cie-1,2 Dichloroethene 5 0.1 trane-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.03 Xylene, o,m&p 50 0.03	1,2 Dichloroethane		0.04	
trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylberizane 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03	1,1 Dichloroethene	0.07	0	
1,2 Dichloropropane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0.01 Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03		5	0.1	
Ethylbenzene 5 0.02	trans-1,2 Dichloroethene	5	0	
Methylene Chloride 5 0.01 Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03	1,2 Dichloropropane	5	•	
Tetrachloroethene 0.7 0.23 Toluene 5 0.01 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03	Ethylbenzene			
Toluene 5 0.01 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.08	Methylene Chloride	_	0.01	
1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03	Tetrachioroethene		0.23	
Trichloroethylene 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03		_	0.01	
Vinyl Chloride 1 0 Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.08	1,1,1 Trichloroethane		: -	
Xylene, o 5 0.02 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03		-	0.02	
Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.03			<u> </u>	
Xylene, o,m&p 50 0.08		_		
			•	
fourTrihalomethanes (***) 100 0				
	fourTribalomethanes (***	100	0	

Department of Public Works
Circundwater Treatment Facility
GRGANICS ANALYSIS REPORT

Jul 7, 1993

AM

Influent

Chemical	Concentration	
Constituent	Allowed * (ug/l)	Measured ** (ug/l)
Total VOCs	100	273.53
	_	:

Total VOCs	100	273.53
Benzene (ND)	0	0.37
Bromodiohioromethane	50***	4.35
Bromoform	50***	2.57
Carbon Tetrachioride	5	1 41
Chlorobenzene	5	2.56
Chlorodibromomethane	50***	0
Chloroethane	5	0.36
Chloroform	100***	5,38
Dichicrobenzene, c&p	4.7	7.44
Dichlorobenzene, o,m&	50	9.48
1,1 Dichloroethane	5	9.23
1,2 Dichloroethane	5	2.52
1,1 Diohioroethene	0.07	0.18
ols-1,2 Diobloroethene	5	42.74
trans-1,2 Dichloroethene	5	1.29
1,2 Dichloropropane	5	4.97
Ethylbenzene	5	2.77
Methylene Chloride	5	3.62
Tetrachioroethene	0.7	153.86
Toluene	_ 5	2
1,1,1 Trichloroethane	- 5	4.03
Triohioroethylene	5	16.51
Vinyl Chlorid●	1	2.39
Xylene, o	5	0.04
Xylene, m&p	5	0.92
Xylene, o,m&p	50	0.96
fourTrihalomethanes (***	100	0

- Pagulatay alkard daalaaga daadaala sa ajaadaalag ba Saraga Daama - Pagulanii 1981 | 1981 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1881 | 1
- Compounds assessing about its SEC USAT concentrators are highlighted.

Exportment of Fublic Works Cacundwater Treatment Excility IFGAMOS ANALYSIS FEFORT

Ja	4	7.	1	993	

AM

Elluent

Chemical	Concentr	ation
Constituent	Allowed * Measured	
	(ug/l)	(ug/l)
	444	
Total VOCs	100	0.82
Benzene (ND)	0	0.02
Bromodichioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.01
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.02
Dichlorobenzene, olip	4.7	0.15
Dichlorobenzene, o,m&p		0.16
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.04
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.18
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	0.03
Tetrachioroethene	0.7	0.81
Toluene	5	0.03
1,1,1 Trichloroethane	5	0
Trichioroethylene	5	0.02
Vinyl Chloride	1	0
Xylene, c	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.08
tourTrihalomethanes (***	100	<u> </u>

·.)

BOWNER CASTERBAY

Department of Public Works
Groundwater Treatment Facility
URBANITS ANALYSIS REPORT

Jul 9, 1993	AM	Influent	
Chemical	Concentr	ation	
Constituent	Allowed *	Measured *	-
	(ug/l)	(ug/l)	

Total VOCs	100	186.72
Benzene (ND)	0	2.7
Bromodichloromethane	50***	0
Bromoform	50***	o
Carbon Tetrachloride	5	Ö
Chlorobenzene	5 :	0.52
Chlorodibromomethane	50***	o
Chloroethane	5	0.15
Chloroform	100***	1.19
Dichlorobenzene, o&p	4.7	2.22
Dichlorobenzene, o,m&¢	50	2.31
1,1 Dichloroethane	5	1.81
1,2 Dichloroethane	5	0.2
1,1 Dichloroethene	0.07	0
ols-1,2 Diobioroethene	6	8.64
trans-1,2 Dichloroethene	6	O
1,2 Diohloropropane	6	0
Ethylbenzene	5	0
Methylene Chloride	6	3.49
Tetrachloroethene	0.7	148.9
Toluene	5	0
1,1,1 Trichloroethane	5	1.5
Trichloroethylene	6	12.18
Vinyl Chloride	1	1.32
Xylene, o	5	0.78
Xylene, m&p	5	0.03
Xylene, o.m&p	50	0.81
fourTrihalomethanes (***	100	0

- * Toggelender Mengerhand anger programet set gestilled in the reconstruction of the set of the set

THE RESERVE OF THE PROPERTY OF

Organios Analysis Report

Department of Flubbal Marks
Cacundwater Treatment Famility
18 GAMES NALL 13 3 REPORT

		Jul 9, 19	188	AM	Effluent
--	--	-----------	-----	----	----------

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	0.7
Benzene (ND)		0.01
Bromodichloromethane	50***	0
Bromolorm	50***	O
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.07
Chlorodibromomethane	50***	O
Chloroethane	5	O
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.13
Dichlorobenzane, o,mêp	50	0.15
1,1 Dichlorosthane	5	O
1,2 Dichloroethane	5	0.02
1,1 Dichloroethene	0.07	O
cis-1,2 Dichloroethene	5	0.07
trans-1,2 Dichloroethene	5	
1,2 Dichloropropene	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.21
Toluene	5	0.05
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.04
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.04
fourTribalomethanes (***	100	

eq (

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 12, 1993

AM

influent

Chemical		Concentration		
Constituent		(lig/i)	Measured ** (ug/l)	
Total VOCs		100	206.83	
Benzene (N	(D)	0	2.69	

Total VOCs	100	206.83
Benzene (ND)	0 :	2.69
Bromodichloromethane	50***	O
Bromoform	50***	
Carbon Tetrachloride	5 :	0
Chlorobenzene	5	0.47
Chlorodibromomethane	50***	n
Chioroethane	5	U
Chloroform	100***	1.93
Dichlorobenzene, o&p	4.7	1.93
Dichlorobenzene, o,m&	and the second s	2.61
1,1 Dichloroethane	5	1.5
1,2 Diohloroethane	5	0.28
1.1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	10.77
trans-1,2 Diohloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0
Methylene Chloride	5	5.02
Tetrachioroethene	0.7	163,33
Toluene	5	0.06
1,1,1 Trichloroethane	5	1 8
Trichioroethylene	6	14.23
Vinyl Chloride	1	1.1
Xylene, o	5	0.99
Xyiene, m&p	6	0.06
Xylene, o,m&p	50	1.04
fourTrihalomethanes (***	100	0

- En / Julius y Marchell (1914)

HAMPI GODINA

Department of Public Works Circumdyvater Treatment Facility **CRGAMES ANALYSIS REPORT**

Jul 12, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed * Measured	
	(ug/l)	(ug/l)
	100	:
Total VOCs	100	0.56
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobertzene	5	0.02
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	O
Dichlorobenzene, o&p	4.7	0.05
Dichlorobenzene, o,m&p	50	0.06
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0.01
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.03
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	0.01
Tetrachloroethene	0.7	0.33
Toluene	5	0.03
1,1,1 Tric Forcethane	5	0
Trichloroe viene	5	0.02
Vinyl Chlorice	1	0
Xylene, o	5	0.01
Xylene, m&p	5	0.01
Xylene, o,m&ç	50	0.02
fourTribaloguethanes (***	100	0

- indepat Terra (Alta antaria de la comencia de la calega de En en antario (Alta antario de la calega de l

Organios Analysis Report

			R	1653
**	Marie Carlos Car	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sistanti Communication of the	a TE
g. D.	CEBN TEGERS		o de l'atty	
ř	Jul 14, 1998	AM	Influent	
	Chemical	Concentr	ration	
	Constituent	Allowed *	Measured **	
		(ug/l)	(ug/i)	
	T-4-13/00-	100	45.00	
	Total VOCs Berszene (ND)	100 0	147.50	
	Bromodichioromethane	60***	0	
	Bromotorm	50***	0	
	Carbon Tetrachioride	6	0	
	Chlorobenzene	5	1.08	
	Chlorodibromomethane	60***	0	
	Chlorosthane	5	1.5	were the control of t
	Chloroform	100***	2.35	
	Dichlorobenzane, o&p	4.7	8.84	
	Dichiorobenzene, o,mâg	60	3.5	
\	1,1 Dichloroethane		8.47	
\ =====	1,2 Dichloroethane 1,1 Dichloroethane	5 0.07	0.36	
\ ==	de-1,2 Dichloroethene	5	38.68	
	trans-1,2 Dichloroethene		0.11	
	1,2 Dichloropropane	<u> </u>	0.11	
	Ethylbenzene	5	0	- Valenting and
	Methylene Chloride	5	5.15	
	Tetrachiorostrone	0.7	06.12	The state of the s
	Teluene	6	0.1	The second secon
	1,1,7 Trichloroethane	5	1.91	
	Trichk Mhylene	6	4.94	The state of the s
	Vinyi Chik 1de	_ 1	7.57	
	Xylene, a	5	1.63	
)Qriene, milip	5	0.06	
	Xylene, o,mb/s	50	1.68	The state of the s
	tour Tribalovischanes (**	100		THE PARTY OF THE P

DOWNER OF THE PRINCE

Department of Public Works'
Circumdwater Treatment Facility
DRGANICS ANALYSIS REPORT:

Jul 14, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed * Measured	
	(ug/l)	(ug/l)
Total VOCs	100	1.45
Benzene (ND)	0	0.01
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.04
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.07
Dichlorobenzene, o&p	4.7	0.24
Dichlorobenzene, o,m&p	50	0.27
1,1 Dichloroethane	5	0.05
1,2 Dichloroethane	5	0.05
1,1 Dicktoroethene	0.07	0
cis-1,2 Dichloroethene	5	0.44
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0.01
Ethylbenzene	5	0.02
Methylene Chloride	5	0.07
Tetrachloroethene	0.7	0.21
Toluene	5	0.03
1,1,1 Trichloroethane	5	0.01
Trichioroethylene	5	0.05
Vinyl Chloride	1	0.06
Xylene, o	<u> </u>	0.04
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.06
fourTrihalomethanes (***)	100	0

1.30 () d ប្រើប្រែក ្រើសែលមេ ent of Floring Models Castaldwides Treatment Hoogs

Jul 16, 1993 AM Influent

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	218.83
Benzene (ND)	0	3.41
Bromodichioromethane	- 60 	0
Bromoform	60***	0
Carbon Tetrachioride	6	0
Chlorobenzene	6	0.6
Chlorodibromomethane	60***	0
Chloroethane	6	0.26
Chloroform	100***	1.54
Dichlorobenzene, olip	4.7	3.53
Dichlerobenzene, o,mâp	6 0	3.72
1,1 Dichioroethane	6	1.82
1,2 Dichloroethane	6	0.34
1,1 Dichlorochene	0.07	Ō
cis-1,2 Dichlor: ethene	5	11.19
trans-1,2 Dichlore ethene	5	0
1,2 Dichloropropena	5	0
Ethythenzene	5	0
Methylene Chloride	5	1.66
Tetrachioroethene	· 0.7	175.74
Toluene	5	0
1,1,1 Trichioroethane	3	2.16
Trichloroethylene	5	14.94
Vinyl Chloride	1	0.52
Xylene, o	5	0.9
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.93
fourTribalomethanee (***	100	0

1. WHO FOR HERAT

Department of Public Works Groundwater Treatment Facility GRGANICS ANALYSIS REPORT

Jul 16, 1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed * Measured *	
	(ug/l)	(ug/l)
Total VOCs	100	0.44
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.01
Dichlorobenzena, o&p	4.7	0.09
Dichlorobenzene, ാ,ന&p	50	0.11
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0.01
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.03
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5 .	0.02
Tetrachloroethene	0.7	0.12
Toluene	5	0.02
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.02
Vinyl Chloride	1	0
Xylene, o	5	0.01
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.02
fourTrihalomethanes (***	100	. 0

- · The property of the state of

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	225.89
Benzene (ND)	0	4.23
Bromodiohioromethane	50 ***	0
Bromotorm	50***	0
Carbon Tetrachioride	5	0
Chlorobenzene	5	0.61
Chlorodibromomethane	60***	0
Chloroethane	5	1.21
Chloroform	100***	3.33
Dichlorobenzene, v&p	4.7	8
Dichlorobenzene, o,n.&	<u> </u>	3.19
1,1 Dichloroethane	6	5.1
1,2 Dichloroethane	5	0.31
1,1 Dichicroethene	0.07	O O
ols-1,2 Dichloroethene	5	36.7
trans-1,2 Dichloroethene		0.6
1,2 Dichloropropane		0
Ethylberizene	5	0
Methylene Chloride	5	5.13
Tetrachioroethene	0.7	142.61
Toluene	6	0.05
1,1,1 Trichloroefhane	5	2.38
Trichloroethylene	5	13.
Vinyl Chloride	11	5.19
Xylene, o	5	1.87
Xylene, m&p	5	0.03
Xylene, o,m&p	60	1.9
fourTribalomethanes (***	100	9

TOWN OF THE BAY

Department of Public Works
Croundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 19, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	0,81
Benzene (ND)	0	0.01
Bromodichloromethane	50***	o
Bromoform	50***	o
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.03
Dichlorobenzene, o&p	4.7	0.13
Dichlorobenzene, o,m&p	50	0.15
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.03
1,1 Dichloroethene	0.07	. 0
cis-1,2 Dichloroethene	5	0.2
trans-1,2 Dichloroethene	5	. 0
1,2 Dichloropropane	5_	.0
Ethylbenzene	5	6
Methylene Chloride	5	0.03
Tetrachioroethene	0.7	0.22
Toluene	5	0.01
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.04
Vinyl Chloride	1	O
Xylene, o	5	0.02
Xylene, m&p		0.01
Xylene, o,m&p	50	0.03
fourTrihalomethanes (***)	100	<u> </u>

하신 세계 하루 인사 5차분을 감석 신

1. openin i na offentita Svori s Calcundo ater Treatment Facility GRGANCS ANALYS S FERSET

Jul 21, 1998

AM

Influent

Chemical	Concentr	etion	
Constituent	Allowed *	Measured **	
	(ug/l)	(ug/l)	
Total VOCs	100	317.16	
Benzene (ND)			
Bromodiohioromethane	60***	0	
Bromoform	50***	0	
Carbon Tetrachioride		0	
Chlorobenzene	5	0.83	
Chlorodibromomethane	60***	0	
Chloroethane	5	2.95	
Chioroform	100***	3.51	
Dichlorobenzene, oftp	4.7	2.24	
Dichicrobenzene, o,m&		2.31	
1,1 Diohioroethane		7.03	
1,2 Dichloroethane	5	0.3	
1,1 Dichloroethene	0.07	0.62	
cis-1,2 Dichloroethene	5	44.22	
trans-1,2 Dichloroethene	6	O	
1,2 Dichloropropane	5	0	
Ethylbenzene	6	0	
Methylene Chloride	5	4.75	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Tetrachioroethene	0.7	209.87	
Toluene	5	0.08	
1,1,1 Trichloroethane	5	2.98	
Trichioroethylene	5	19.50	
Vinyl Chloride	1	2.34	
Xylene, o	6	2.5	
Xylene, m&p	5	0.05	
Xylene, o,m&p	60	2.56	
four Tribalomethanes (***	100	0	

(:

TOWN OF BUSH RUAY

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Ĵ	ul	21	, 19	93	

Chemical

Toluene

Xylene, o

1,1,1 Trichloroethane

fourTribalomethanes (***

Trichloroethylene

Vinyl Chloride

Xylene, m&p

Xylene, o,m&p

AM

Concentration

Effluent

0.01

0.03

0.02

0.01

0.03

Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	0,77
Benzene (ND)	0	0.03
Bromodichloromethane	50***	o
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	. 0
Chloroform	100***	0.02
Dichlorobenzene, o&p	4.7	0.1
Dichlorobenzene, o,m&p	50	0.12
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.03
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.22
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0
Methylene Chloride	5	0.04
Tetrachloroethene	0.7	0.18

5

5

5

1

5

5

50

Jul 23, 1993

Department of Public World Secundwater Treatment Facility SEGANCS ANALYSIS REPORT

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)

Total VOCs	100	294.4
Benzene (ND)	0	5.64
Bromodichioromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachioride	6	0
Chloroberzzene	5	0.95
Chlorodibromomethane	60***	0
Chloroethane	5	0.38
Chioroform	100***	4.49
Dichlorobenzene, o&p	4.7	1.65
Dichicrobenzene, o,m&	50	1.76
1,1 Dichicroethane	6	7.46
1,2 Dichloroethane	5	0.43
1,1 Dichloroethene	0.07	0.43
cis-1,2 Dichloroethene	5	45.3
trans-1,2 Dichloroethene	6 _	0
1,2 Dichloropropane	5	. 0
Ethylbenzene	6	0
Methylene Chloride	6	6.87
Tetrachioroethene	0.7	191.29
Toluene	5	0.08
1,1,1 Trichloroethane	6	2.56
Trichicroethylene	6	17.36
Vinyi Chioride	1	6.74
Xylene, o	5	2.62
Xylene, m&p	6	0.06
Xylene, o,m&p	50	2.68
fourTrihalomethanes (***	100	0

a varification of the

Deportment of Fields (Morks)
Caronide of Tractories (Facility)
(F84M65-4M42, 1919 FEF 3F7

 20	4000	

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/i)	(l /g /l)
Total VOCs	100	2.08
Benzene (ND)	0	0.07
Bromodichloromethane	50***	0.01
Bromolorm	50***	0
Carbon Tetrachloride	5	0.04
Chlorobenzene	5	0.06
Chlorodibromomethane	50***	O
Chloroethane	5	0.08
Chloroform	100***	0.05
Dichlorobenzene, o&p	4.7	0.16
Dichlorobertzene, o,m&p	50	0.19
1,1 Dichloroethane	5	0.05
1,2 Dichloroethane	5	0.09
1,1 Dichloroethene	0.07	0.02
cis-1,2 Dichloroethene	5	0.83
trans-1,2 Dichloroethene	5	0.04
1,2 Dichloropropane	5	0.03
Ethylbenzene	5	0.05
Methylene Chloride	5	0.14
Tetrachloroethene	0.7	0.27
Toluene	5	0.05
1,1,1 Trichloroethane	5	0.05
Trichlorosthylene	5	0.09
Vinyl Chloride	1	0.23
Xylene, o	5	0.04
Xylene, m&p	5	0.05
Xylens, o,m&p	50	0.09
tourTribalomethenes (***	100	0

Jul 26, 1993

Department of Public Worls
Croundwater Treatment Facility;
CREANIES ANALYSIS REPORT

AM

Chemical	Concentr	ation
Constituent	Allowed *	Measured ** (ug/i)
	(ug/l)	(ug/f)

Total VOCs	100	283.74
Benzene (ND)	0	5.44
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachioride	5	0
Chlorobenzane	5	0.92
Chiorodibromomethane	50***	0
Chloroethane	5	2.39
Chloroform	100***	4.81
Dichlorobenzene, o&p	4.7	2.6
Dichicrobenzene, o,mêq	60	2.72
1,1 Dichloroethane	5	7.58
1,2 Dichloroethane	6	0.77
1,1 Dichloroethene	0.07	0.11
cis-1,2 Dichloroethene	5	44.7
trans-1,2 Dichloroethene	6	0
1,2 Dichloropropane	5	. 0
Ethylbenzene	5	0
Methylene Chloride	6	6.7
Tetrachioroethene	0.7	178.92
Toluene	5	0.07
1,1,1 Trichloroethane	5	2.71
Trichicroethylene	5	15.41
Vinyi Chloride	1	7.82
Xylene, o	5	2.62
Xylene, m&p	5	0.05
Xylene, o,m&p	50	2.67
fourTrihalomethanes (***	100	0

TARAMIA . TO THE TAR

Department of Fluidic Works Calcumdwister Treatment Facility CRBAMES ANALYSIS REFORT

Jul 28, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed * Measured	
	(ug/l)	(ug/l)
Total VOCs	100	0.53
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachloride	5	0.01
Chlorobenzene	5	0.02
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100*** 0.	
Dichlorobenzane, o&p	4.7	0.08
Dichlorobenzene, o,m&p	50	0.1
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.03
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	. 5	0.07
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.1
Toluene	5	0.02
1,1,1 Trichloroethane	5	0.02
Trichloroethylene	5	0.03
Vinyl Chloride	1	O
Xylene, o	5	0.03
Xylene, m&p	5	0.02
Xylens, o,m&p	50	0.05
fourTribalomethanes (***	100	0

Jul 28, 1993

Department of Public Worls
Crounds, ster Treatment Facility
CESANICS ANALYSIS REPORT

AM

Influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	290.72
Benzene (ND)		5.8
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.96
Chlorodibromomethane	60***	0
Chloroethane	5	1.79
Chloroform	100***	4.9
Dichlorobenzene, o&p	4.7	1.89
Dichlorobenzene, o,måg	6 0	2.02
1,1 Dichicroethane	6	7.54
1,2 Dichloroethane	5	0.38
1,1 Dichloroethene	0.07	0.78
cis-1,2 Dichloroethene	5	46.75
trans-1,2 Dichloroethene	£	0.01
1,2 Dichloropropane	5	. 0
Ethylbenzene	5	0
Methylene Chloride	6	7.09
Tetrachioroethene	0.7	183.77
Toluene	5	0.07
1,1,1 Trichiorcethane	_6	2.29
Trichioroethylene	6	16.39
Vinyl Chioride	1	7.44
Xylene, o	5	2.69
Xylene, m&p	6	0.05
Xylene, o,m&p	50	2.74
fourTrihalomethanes (***	100	C

그들을 살아 있는데 얼마를 하셨습니다. 아이들이 아이라 아이들은 모든 100 분기를 받는다고 그게 하는 물 것 같아.

Deportment of Fublic Works
Lacundwater Treatment Facility
CFS4MCS ANALYSIS FEFORT

Jul 28, 1983

K

Effluent

Chemical	Concentration	
Constituent	Allowed * Measured	
	(ug/l)	(ug/l)
		4.84
Total VOCs	100	1.56
Benzene (ND)	0	0.08
Bromodichloromethane	50***	0.02
Bromotorm	50***	0
Carbon Tetrachloride	5	0.06
Chlorobenzene	5	0.06
Chlorodibromomethane	50***	O
Chloroethane	5	. 0
Chloroform	100***	0.07
Dichlorobenzene, o&p	4.7	0.14
Dichlorobenzane, o,m&p		0.19
1,1 Dichloroethane	5	0.04
1,2 Dichloroethane	5	0.05
1,1 Dichloroethene	0.07	0.02
cis-1,2 Dichloroethene	5	0.08
trans-1,2 Dichloroethene	5	0.03
1,2 Dichloropropane	5	0.04
Ethylberizene	5	0.07
Methylene Chloride	5	0.1
Tetrachioroethene	0.7	0.15
Tokuene	5	0.11
1,1,1 Trichloroethane	5	0.06
Trichlorosthylene	5	0.07
Vinyl Chloride	1	0.11
Xylene, a	5	0.07
Xylene, m&p	5	0.08
Xylene, o,m&p	50	0.15
four Tribalomethenes (***	100	0

Department of Public Works Circumdwater Treatment Facility ORGANICS ANALYSIS REPORT

Jul 30, 1993	AM	Influent
Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(mall)	l (vot)

Total VOCs	100	185.16
Benzene (ND)	0	4.67
Bromodiohloromethane	60***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.29
Chlorodibromomethane	50***	0
Chloroethane	5	2.11
Chloroform	100***	3.81
Dichlorobenzene, o&p	4.7	3.57
Diohiorobenzene, o,m&	6 0	3.7
1,1 Diohioroethane	5	10.38
1,2 Dichloroethane	5	0.31
1,1 Dichloroethene	0.07	0.81
cis-1,2 Dichloroethene	5	45.93
trans-1,2 Dichloroethene	6	0.04
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.09
Methylene Chloride	5	5.65
Tetrachioroethene	0.7	87.4
Tokuene	5	0.12
1,1,1 Triohioroethane	- 6	1.98
Trichicrosthylene	_ 6	5.67
Vinyi Chloride	1	9.06
Xylene, o	5	2.09
Xylene, m&p	5	0.06
Xylene, o,m&p	50	2.14
fourTrihalomethanes (***	100	0

TOWN OF THE REACT

Department of Public Works
Circumdwater Treatment Facility
CRGAMICS ANALYSIS REPORT

Jul 30, 19	93	AM I	Effluent

Chemical	Concentration	
Constituent	Allowed * Measured	
	(ug/l)	(u g/ l)
Total VOCs	100	0.66
Benzene (ND)	0	0.03
Bromodichloromethane	50***	O
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.01
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	
Dichlorobenzene, o&p	4.7	0.07
Dichlorobenzene, o,m&p	50	0.03
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.03
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.31
Toluene	5	0.08
1,1,1 Trichloroethane	5	0.01
Trichloroethylene	5	0.02
Vinyl Chloride	1	0
Xylene: e	5	0:00
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.06
fourTrihalomethanes (***)	100	0

- · Bogge Congress (Constant of the Constant of

Aug 2, 1993

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

AM

influent

3_				
	Chemical	Concentr	ation	
	Constituent	Allowed *	Measured **	
L		(ug/l)	(ug/l)	

Total VOCs	100	175.67
Benzene (ND)	0	3.75
Bromodiohioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.3
Chlorodibromomethane	50***	0
Chloroethane	5	3.08
Chloroform	100***	4.81
Dichlorobertzene, o&p	4.7	3.73
Dichicrobenzene, o,m&	60	3.76
1,1 Diohioroethane	5	9.95
1,2 Dichloroethane	5	0.36
1,1 Dichloroethene	0.07	0.21
cis-1,2 Dichloroethene	5	43
trans-1,2 Diohioroethene	5	0.08
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.08
Methylene Chloride	5	6.47
Tetrachloroethene	0.7	81.09
Toluene	5	0.09
1,1,1 Trichloroethane	5	1.49
Trichicroethylene	5	5.13
Vinyi Chloride	1	8.14
Xylene, o	5	2.06
Xylene, m&p	6	0.04
Xylene, o,m&p	50	2.1
fourTrihalomethanes (***	100	0

- = 25,7 c Trayen of the engine of the production of the product of the engine of the confidence of the

TOWNER OF THE REPORT

Department of Public Works
Croundwater Treatment Facility
ORGANICS ANALYSIS REPORT

A	~	400	•
Aua		1993	ж.
\sim	_,		-

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
	ntar	
Total VOCs	100	0.4
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.02
Chlorodibromomethane	50***	O
Chloroethane	5	0
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.07
Dichlorobenzene, o,m&p	50	0.09
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0.01
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.06
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	0.01
Tetrachloroethene	0.7	0.03
Toluene	5	0.03
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.07
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.04
fourTrihalomethanes (***)	100	0

- The surface party of Market Constitutes and Property of the Constitution of the Consti

Department of Public Worls
Circundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 4, 1993

PAA

Influent

Chemical	Concentr	Concentration	
Constituent	Allowed *	Measured **	
	(ug/l)	(u g/l)	

Total VOCs	100	250.75
Benzene (ND)	0	4.6
Bromodichioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.06
Chlorodibromomethane	50***	0
Chloroethane	5	1.28
Chloroform	100***	4.14
Dichlorobenzene, o&p	4.7	4.26
Diohiorobenzene, o,m&	50	4.29
1,1 Dichloroethane	5	5.89
1,2 Dichloroethane	5	0.46
1,1 Dichloroethene	0.07	0.79
cis-1,2 Dichloroethene	5	34.98
trans-1,2 Dichloroethene	6	0
1,2 Dichloropropane	5	0
Ethylbenzene	6	0.07
Methylene Chloride	6	7.46
Tetrachicroethene	0.7	159.23
Toluene	5	0.09
1,1,1 Triohloroethane	5	2.58
Triohioroethylene	5	15.05
Vinyi Chiorid●	1	5.58
Xylene, o	5	2.15
Xylene, m&p	5	0.05
Xylene, o,m&p	50	2.2
fourTrihalomethanes (***	100	0

- en en forget forget forget fordet en gestalte elle die en sopre global ses fans termonet staaten in En stage en 10-1 gestalte ooste en skriven ook en

DWHDI OF HERDS

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 4,	1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	1.07
Benzene (ND)	0	0.05
Bromodichloromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.08
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.04
Dichlorobenzene, o&p	4.7	0.18
Dichlorobenzene, o,m&p	· · · · · · · · · · · · · · · · · · ·	0.21
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.04
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.15
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	0.06
Tetrachioroethene	0.7	0.13
Toluene	5	0.11
1,1,1 Trichloroethane	5	0.01
Trichioroethylene	5	0.03
Vinyl Chloride	1	0.05
Xylene, o	5	0.04
Xylene, m&p	5	0.04
Xylene, o,m&p	50	0.08
fourTrihalomethanes (***)	100	0

PÓWNIEF CHSTER BAY

Department of Patric Wed Croundwater Treatment Fability GEGANICS ANACYSIS REPORT

Aug 6, 1993

Chemical

AM

Concentration

Influent

Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)
Total VOCs	100	210.77
Benzene (ND)	0	4.13
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachioride	6	0
Chlorobenzene	5	0.76
Chiorodibromomethane	50***	0
Chloroethane	5	0.47
Chloroform	100***	3.97
Dichlorobenzene, o&p	4.7	2.87
Dichlorobenzene, o,m&	50	2.52
1,1 Dichloroethane	5	5.06
1,2 Dichloroethane	5	0.39
1,1 Dichloroethene	0.07	0
ols-1,2 Dichioroethene	5	30.05
trans-1,2 Dichloroethers	5	0.34
1,2 Dichloropropane	6	0
Ethylbenzene	5	0.04
Methylene <u>Chloride</u>	5	5.23
Tetrachloroethene	0.7	137.66
Toluene	6	0
1,1,1 Trichloroethane	5	2.39
Trichloroethylene	5	12.17
Virryl Chloride	1	3.84
Xylene, o	6	1.72
Xylene, m&p	5	0.03
Xylene, o,m&p	50	1.75
fourTribalomethanes (***	100	. 0

TO THE RESERVE OF THE PROPERTY OF

Department of Fublic World Groundwater Treatment Facility CBBANICS ANALISIS FEPORT

Aug	8,	11)

AM

Effuent

Constituent Constituent Cug/i) Cug/i Cug/i) Cug/i Cug/i) Cug/i Cug/i) Cug/i Cual Cug/i Cual Cual		Chemical	Concentration	
Total VOCs		Constituent	Allowed *	Measured **
Berzene (ND) 0 0.06			(ug/l)	(ug/l)
Berzene (ND) 0 0.06	Ξ			
Bromodichloromethane 50°** 0 Carbon Tetrachloride 5 0.07 Chlorobenzene 5 0.07 Chlorodibromomethane 50°** 0 Chlorodibromomethane 50°** 0 Chlorodibromomethane 5 0°** 0 Chlorotom 100°** 0.02 Dichlorobenzene, o&p 4.7 0.14 Dichlorobenzene, o,m&p 50 0.18 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.03 Trich roethylene 5 0.03 Trich roethylene 5 0.03 Viryl Chloride 1 0.07 Xylene, o 5 0.02 Xylene, o m&p 50 0.05 Xylene, o m&p 50 0.05		Total VOCs	100	
Bromoform 50°** 0 Carbon Tetrachloride 5 0 0 Chlorobenzene 5 0.07 Chlorodibromomethane 50°** 0 Chlorodibromomethane 50°** 0 Chlorodibromomethane 5 0 0.02 Chloroform 100°** 0.02 Dichlorobenzene, o.m&p 50 0.18 1,1 Dichloroethane 5 0 0.18 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.05 1,1,1 Trichloroethane 5 0.05 1,1,1 Trichloroethane 5 0.03 Trichloroethane 5 0.03 Trichloroethane 5 0.03 Trichloroethane 5 0.03 Viryl Chloride 1 0.07 Xytene, o 5 0.02 Xytene, o m&p 50 0.05 Xytene, o m&p 50 0.05		Berzene (ND)	0	0.06
Carbon Tetrachloride 5 0.07 Chlorobenzene 5 0.07 Chlorodibromomethane 50*** 0 Chlorotem 100*** 0.02 Chlorotem 100*** 0.02 Dichlorobenzene, o&p 4.7 0.14 Dichlorobenzene, o,m&p 50 0.18 1,1 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 Tetrachloropropane 5 0.02 Methylene Chloride 5 0.02 Tetrachloroethane 5 0.03 Trick roethylene 5 0.03 Viryl Chloride 1 0.07 Xylene, o 5 0.03 Xylene, o,m&p 5 0.05 Xylene, o,m&p 5 0.05		Bromodichloromethane	50***	0
Chlorodibromomethane 50**** 0 Chlorodibromomethane 50**** 0 Chlorothane 5 0 Chlorothane 100**** 0.02 Dichlorothane, olimber olimber 4.7 0.14 Dichlorothane, olimber olimber 5 0 1,1 Dichlorothane 5 0 1,2 Dichlorothane 5 0.01 1,1 Dichlorothane 5 0.18 trans-1,2 Dichlorothane 5 0.18 trans-1,2 Dichlorothane 5 0 1,2 Dichlorothane 5 0 Ethylbertzene 5 0 Methylene Chloride 5 0 Toluene 5 0.03 Trick voethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, olimber 5 0.03 Xylene, olimber 5 0.02 Xylene, olimber 5 0.05			50***	O
Chlorodibromomethane 50°°°° 0 Chlorothane 5 0.02 Chlorotorm 100°°° 0.02 Dichlorobenzene, o&p 4.7 0.14 Dichlorobenzene, o,m&p 50 0.18 1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.07 0 cis-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.2 Ethytbenzene 5 0.02 Methylene Chloride 5 0.02 Tetrachloroethane 5 0.03 Trick voethylene 5 0.03 Trick voethylene 5 0.03 Xylene, o m&p 5 0.02 Xylene, o m&p 5 0.02 Xylene, o m&p 5 0.03		Carbon Tetrachloride	5	0
Chloroform 100*** 0.02 Dichlorobenzene, o&p 4.7 0.14 Dichlorobenzene, o,m&p 50 0.18 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.05 1,i,1 Trichloroethane 5 0.03 Trick roethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.03 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Chlorobenzene	5	0.07
Chloroform 100*** 0.02 Dichlorobenzene, o&p 4.7 0.14 Dichlorobenzene, o,m&p 50 0.18 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0.02 Methylene Chloride 5 0.02 Methylene Chloride 5 0.05 1,i,1 Trichloroethane 5 0.03 Trich, zoethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.03 Xylene, o,m&p 5 0.05 Xylene, o,m&p 5 0.05		Chlorodibromomethane	50***	O
Dichlorobenzene, o&p 4.7 0.14		Chloroethane	5	0
Dichlorobenzene, o,m&p 50 0.18		Chioruiorm	100***	0.02
1,1 Dichloroethane 5 0.01 1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 0.07 0 cis-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0 Tetrachloroethane 0.7 0.19 Toluene 5 0.05 1,1,1 Trichloroethane 5 0.03 Trich roethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.02 Xylene, o,mitp 5 0.05 Xylene, o,mitp 50 0.05		Dichlorobenzene, o&p	4.7	0.14
1,2 Dichloroethane 5 0.01 1,1 Dichloroethane 0.07 0 cis-1,2 Dichloroethane 5 0.18 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0 Tetrachloroethane 0.7 0.19 Toluene 5 0.05 1,i,1 Trichloroethane 5 0.03 Trick zoethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.08 Xylene, o,mikp 5 0.05 Xylene, o,mikp 50 0.05		Dichlorobenzene, o,m&p	50	0.18
1,1 Dichloroethene 0.07 0 cis-1,2 Dichloroethene 5 0.18 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylberzene 5 0.02 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1, i.1 Trichloroethane 5 0.03 Trick voethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.08 Xylene, o 5 0.02 Xylene, o,mitp 50 0.05		1,1 Dichloroethane	5	0
cis-1,2 Dichloroethene 5 0.18 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0.02 Ethylbenzene 5 0.02 Methylene Chloride 5 0.7 Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1,1,1 Trichloroethane 5 0.03 Trichloroethane 5 0.03 Vinyl Chloride 1 0.07 Xylene, c 5 0.03 Xylene, c 5 0.03 Xylene, c 5 0.03 Xylene, c 5 0.03 Xylene, c m&p 5 0.05		1,2 Dichloroethane	5	0.01
trane-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.02 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1, i, 1 Trichloroethene 5 0.03 Trichloroethene 5 0.03 Vinyl Chloride 1 0.07 Xylene, a 5 0.03 Xylene, a 5 0.02 Xylene, a, mitp 5 0.05 Xylene, a, mitp 50 0.05		1,1 Dichloroethene	0.07	0
1,2 Dichloropropane 5 0 Ethylberzene 5 0.02 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1, i.1 Trichloroethane 5 0.03 Trichloroethane 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.08 Xylene, o 5 0.02 Xylene, o,mitp 50 0.05		cis-1,2 Dichloroethene	5	0.18
Ethylbenzene 5 0.02		trans-1,2 Dichloroethene	5	0
Methylene Chloride 5 0 Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1, i, 1 Trichloroethane 5 0.03 Trichloroethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, a 5 0.03 Xylene, mate 5 0.02 Xylene, a, mate 50 0.05		1,2 Dichloropropane	5	0
Tetrachloroethene 0.7 0.19 Toluene 5 0.05 1, 1 Trichloroethane 5 0.03 Trich roethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.03 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Ethylbenzene	5	0.02
Toluene 5 0.05 1, i.1 Trichloroethane 5 0.03 Trick zoethylene 5 0.08 Vinyl Chloride 1 0.07 Xylene, o 5 0.08 Xylene, mikp 5 0.02 Xylene, o,mikp 50 0.05		Methylene Chloride	5	0
1, i 1 Trichloroethane 5 0.03 Trich 70ethylene 5 0.08 Vinyl Chloride 1 0.07 Xylene, c 5 0.08 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Tetrachloroethene	0.7	0.19
Trich 70ethylene 5 0.03 Vinyl Chloride 1 0.07 Xylene, o 5 0.03 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Toluene	5	0.05
Vinyl Chloride 1 0.07 Xylene, o 5 0.08 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		1,1,1 Trichloroethane	5	0.03
Xylene, o 5 0.03 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Trich: 70ethylene	5	
Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.05		Vinyl Chloride	1	
Xylene, o,m&p 50 0.05		Xylene, c	5	
		Xylene, m&p	_	0.02
four?rihalomethanes (*** 100 0				
		four ! rihalomethanes (***	100	0

Organios Analysis Report

department of Futhic Worls Groundwater Eccalment Capitily

Aug 9, 1998	AM	Influent
Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	188.06
Benzene (ND)	0	3.61
Bromodichloromethane	50***	0
Bromoform	50***	O
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.69
Chlorodibromomethane	50***	0 10
Chloroethane	5	0.18
Chloroform	100***	3.68
Dichlorobenzene, okp	4.7	2.16
Dichlorobenzene, o,m&q		2.29 4.63
1,1 Dichloroethane	5	!
1,2 Dichloroethane	5 0.07	9
1,1 Dichloroethene		45 44
ols-1,2 Dichloroethene	<u> </u>	25.23
trans-1,2 Dichloroethene	5 5	
1,2 Dichloropropane	5	0.04
Ethylbenzene	5	4.03
Methylene Chloride		
Texachloroethene	0.7	126.87
Toluene	<u>5</u>	2.06
1,1,1 Tra hioroethane		11.2
Trichloroe	5	
Vinyl Chlorida	1	2.02
Xylene, o	5	0.09
Xylene, mes	5 50	1.55
Sylene, oʻm&p	5 U	1.55

four Tritialomethanes (*** 100

DOMEST SCHOOL

Department of Public Works
Cold undwater Treatment Facility
CRBANICS ANALYSIS PEPORT

Aug 9, 1993

AM

Effluent

Chemical [Concentration	
Constituent	Allowed *	Measured **
	(Ngu)	(ug/l)
Total VOCs	100	0.94
Benzene (ND)	0	0.06
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0.01
Chlorobenzene	5	0.06
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.09
Dichlorobenzene, o,m&p	50	0.13
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0.02
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.07
trans 1,2 Dichloroethene	5	0.02
1,2 Dicî loropropane	5	0
Ethylbenzene	5	0.05
Methylene Chloride	5	0
Tetrachloroethane	0.7	0.27
Toluene	5	0.09
1,1,1 Trichloroethau 9		0.01
Trichloroethylene	5	0.04
Vinyl Chloride	<u> </u>	0
Xylene, o	5	0.04
Xylene, m&p	5	0.06
Xylene, o,m&p	50	0.1
four Tribalomethanes (***	100	0

- <mark>The state of the first of the state of the late of the state of the s</mark>

Trepartment of Put to Well's Croundwater Treatment Facility CREANICS ANALYSIS REPORT

Aug	, 11,	1993	AM	influent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	256.33
Benzene (ND)	0	4.29
Bromodiohioromethane	60***	0
Bromotorm	50***	0
Carbon Tetrachioride	5	0.00
Chlorobenzene	5 50***	0.99
Chlorodibromomethane Chloroethane	5	0.51
Chloroform	100***	4.12
Dichlorobenzene, o&p	4.7	0.69
Dichiorobenzene, o,mêt	50	0.78
	5	5.98
1,1 Dichloroethane	5	0.14
1,1 Dichloroethene	0.07	0.14
		37.32
ols-1,2 Dichloroethene	<u> </u>	0.09
trans-1,2 Dichloroethens	<u> </u>	0.03
1,2 Dichioropropane	5	0.04
Ethylbenzeno Methylene Chloride	5	3.96
Tetrachloroethene	0.7	176.31
Toluene	5.7	0.05
1,1,1 Trichloroethane	6	2.24
Trichioroethylene	5	15.00
Vinyi Chloride	1	2.4
Xylene, c	. 5	1.99
Xylene, map	6	0.03
Xylene, o,m&p	50	2.02
fourTribalomethenes (***	100	O

ARRAM OF THE ROAD

Department of Public Works
Circumdwater Treatment Facility
CRGANICS ANAL 1919 REPORT

Aug 11, 1998

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)
Total VOCs	100	0.48
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	O
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.01
Chlorodibromomethane	50***	O
Chicroethane	5	0
Chloreform	100***	0
Dichlorobenzene, o&p	4.7	0.03
Dichlorobenzene, o,m&p	50	0.04
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0
1,1 Dichloroethen	0.07	0
cis-1,2 Dichloroethene	5	0.06
trans-1,2 Dichloroethers	5	0
1,2 Dichloropropane	s_ 5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	ū
Tetrachloroethene	0.7	0.23
Toluene	5	0.0
1,1,1 Trichloroethane	5	0
Trichloroethylene_	5	0.05
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
fourTrihalomethanes (***	100	0

TOWING FONSTER BAY

Aug 13, 1998

Department of Public West -Groundwater Treatment Faculty GREANIES ANALYSIS REPORT

Chemical	Concent	Concentration		
Constituent	Allowed *	Measured **		
	(uall)	(mall)		

Influent

Total VOCs	100	248.63
Benzene (ND)	0	4.23
Bromodichioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	6	0
Chiorobenzene	5	0.73
Chlorodibromomethane	60***	0
Chloroethane	5	0.94
Chloroform	100***	3.5
Dichlorobenzene, o&p	4.7	2.25
Dichlorobenzene, o,mêç	60	2.37
1,1 Dichloroethane	6	5.83
1,2 Dichloroethane	5	0.29
1,1 Dichloroethene	0.07	0
ols-1,2 Dichloroethene	- 6	35.51
trans-1,2 Dichloroethens	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	. 5	0.04
Methylene Chloride	6	4.31
Tetrachioroethene	0.7	168.54
Toluene	5	0.05
1,1,1 Trichloroethane	6	2.86
Trichioroethylene	5	13.43
Vinyi Chloride	1	4.11
Xylene, o	5	1.86
Xylene, m&p	6	0.03
Xylene, o,m&p	50	1.89
four Tribalomethanee (***	100	

THE PROPERTY OF THE PROPERTY OF

Department of Fublic Works Ordundwater Treatment Facility ORBANICS ANALYSIS REPORT

Aug 13, 1993

AM

Effluent

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/l)	(Ngu)
Total VOCs	100	0.78
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.04
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.02
Dichlorobenzene, o&p	4.7	0.09
Dichlorobenzene, o.m&p	50	0.12
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.02
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.27
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylberizene	5	0.01
Methylene Chloride	5	0.01
Tetrachloroethene	0.7	0.2
Toluene	5	0.01
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.02
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
fourTrihalomethanes (***	100	0

<u>ा कि क्षेत्र के लिल के पर कि कि कि कि के लिल के कि कि कि कि कि कि लि</u>

TOWN OF OVETER BAY

Aug 16, 1993

Department of Public Works Groundwater Treatment Facility GREANICS ANALYSIS REPORT

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)

AM

Influent

Total VOCs	100	243.25
Benzene (ND)	0	3.99
Bromodiohioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.65
Chlorodibromomethane	<u> </u>	0.05
Chloroethane	5	1.57
Chloroform	100***	3.96
	4.7	2.1
Dichlorobenzene, o&p Dichlorobenzene, o,m&c	60	2.22
		•
1,1 Dichloroethane	6	5.65
1,2 Dichloroethane	5	0.33
1,1 Dichloroethene	0.07	0
ols-1,2 Dichloroethene	6	34.22
trans-1,2 Dichloroethens	<u>5</u>	. 0
1,2 Dichloropropane	<u> </u>	
Ethylbenzene	5	0.04
Methylene Chloride	5	4.47
Tetrachioroethene	0.7	163.63
Toluene	5	. 0
1,1,1 Triohioroethane	6	2.7
Trichicroethylene	6	12.86
Vinyl Chloride	1	5.00
Xylene, a	5	1.84
Xylene, m&p	6	0.03
Xylene, o,m&p	50	1.87
fourTrihalomethanee (***	100	. 0

1000011000001111111000

Department of Public Works
Croundwater Treatment Facility
CRBANICS ANALYSIS REPORT

Aug 16, 1998

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	1.74
Benzene (ND)	0	0.09
Bromodichloromethane	50***	0.03
Bromolorm	50***	0
Carbon Tetrachloride	5	0.08
Chlorobenzene	5	0.08
Chlorodibromomethane	50***	O
Chloroethane	5	0.02
Chloroform	100***	0.05
Dichloroberzene, o&p	4.7	0.11
Dichlorobenzene, o,m&p	50	0.19
1,1 Dichloroethane	5	0.05
1,2 Dichloroethane	5	0.07
1,1 Dichloroethene	0.07	0.03
cis-1,2 Dichloroethene	5	0.15
trans-1,2 Dichloroethene	5	0.02
1,2 Dichloropropane	5	0.06
Ethylbenzene	5	0.08
Methylene Chloride	5	0.04
Tetrachloroethene	0.7	0.19
Toluene	5	0.08
1,1,1 Trichloroethane	5	0.09
Trichloroethylene	5	0.1
Vinyl Chloride	1	0.08
Xylene, o	5	0.07
Xylene, m&p	5	0.09
Xylene, o,m&p	50	0.16
fourTrihalomethanes (***	100	. 0

TOWN OF OVETER BAY

Department of Public Worls Circumstivater Treatment Facility: ORGANICS ANALYSIS REPORT

Aug 18, 1993

Chemical

Constituent

Xylene, o.m&p

four Tribalomethanes (***

AM

Concentration

Allowed * Measured **

Influent

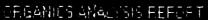
	7 HOW TO	1,000,000
	(ug/i)	(ug/l)
Total VOCs	100	264.53
Benzene (ND) 0	4.35
Bromodiohioromethane		0
Bromotorm	50***	0
Carbon Tetrachloride	6	0
Chlorobenzene	5	0.76
Chlorodibromomethane	50***	. 0
Chloroethane	5	0.95
Chioroform	100***	4.15
Dichlorobenzene, o&p	4.7	2.46
Dichicrobenzene, o,mê	≰ 60	2.57
1,1 Dichloroethane	6	5.87
1,2 Dichleroethane	. 6	0.29
1,1 Dichloroethene	0.07	0.07
ols-1,2 Dichloroethene	5	36.49
trans-1,2 Dichloroethen	e 5	0.03
1,2 Diohioropropane	5	0
Ethylbenzene	5	0.04
Methylene Chloride	5	4.78
Tetrachioroethene	0.7	180.93
Toluene	5	0.05
1,1,1 Trichiorcethane	5	2.6
Trichloroethylene	5	14.33
Vinyl Chloride	1	4.31
Xylene, o	5	1.93
Xylene, m&p	6	0.03

50

100

1.96

TOWNS CONTRIBUTE


Department of Public Works
Cycundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 18, 1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(NgA)
		7
Total VOCs	100	0.93
Benzene (ND)	0	0.04
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	
Chloroform	100***	0.03
Dichlorobenzene, o&p	4.7	0.12
Dichlorobenzene, o,m&p	50	0.16
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.03
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.29
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.21
Toluene	5	0.01
1,1,1 Trichloroethane	5	0.01
Trichloroethylene	5	0.04
Vinyl Chloride	11	0
Xylene, o	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
fourTrihalomethanes (***	100	0

Repartment of Public Works Croutsdwater Treatment Facility

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	288.99
Benzene (ND)	0	4.92
Bromodiohioromethane	50***) 0
Bromolorm	50***	Q
Carbon Tetrachioride	5	0
Chlorobenzene	5	0.81
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	5.91
Dichlorobenzene, o&p	4.7	2.95
Dichicrobenzene, o,mâg	60	3.07
1,1 Dichloroethane	5	6.64
1,2 Dichloroethane	5	0.49
1,1 Dichloroethene	0.07	0.14
cis-1,2 Dichloroethene	5	43.51
trans-1,2 Dichloroethene	6	0
1,2 Dichloropropane	5	. 0
Ethylbenzene	5	0.05
Methylene Chloride	5	5.01
Tetrachioroethene	0.7	193.78
Toluene	5	0.07
1,1,1 Triohioroethane	<u> </u>	3.13
Trichloroethylene	5	15.44
Vinyi Chloride	1	3.71
Xylene, o	5	2.27
Xylene, m&p	5	0.04
Xylene, a,m&p	50	2.31
iourTrihalomethanes (***	100	0

DEADLE OF THE PERSON

Department of Public Works Calcumdwater Treatment Facility OBSANICS ANAL 1919 FERORI

Aug 20, 1993

AM

Effluent

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	0.62
Benzene (ND)	0	0.02
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.04
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.02
Dichlorobenzene, o&p	4.7	0.09
Dichlorobenzene, o,m&p	50	0.12
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0.02
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.18
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	_5	0.01
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.12
Toluene	5	0.03
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.02
Vinyl Chloride	1	O
Xylene, o	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
fourTrihalomethanes (***	100	0

Leen kinnin nagat ayan kerana ayaki ni maraka kerana mili kabanan biyan da k Leen kinagan mili biyaki (kingin) biyan karan kinaga karan da karan da karan da karan da karan da karan da kar

TOWN OF ONSTER BAY

Department of Public Worls
Croundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 23, 1868		MANUON
		N
Chemical	Concent	ration

Constituent	Allowed *	Measured **
	(ug/l)	(ug/i)
Total VOCs	100	274.15
	0	4.54
Benzene (ND) Bromodiohioromethane	50***	0
Bromotorm	50***	۵
Carbon Tetrachioride	6	0
Chlorobenzene	5	0.76
Chlorodibromomethane	50***	0
Chloroethane	5	0.81
Chloroform	100***	5.56
Dichlorobenzane, o&p	4.7	1.07
Diohiorobenzene, o,måg	60	1.17
1,1 Dichloroethane	5	6.18
1,2 Dichloroethane	5	0.37
1,1 Dichioroethene	0.07	0
ols-1,2 Diohioroethene	5	40.41
trans-1,2 Dichloroethens	5	0
1,2 Dichioropropane	6	0
Ethylbenzene	5	0.04
Methylene Chloride	5	5.96
Tetrachloroethene	0.7	185.29
Toluene	6	0.06
1,1,1 Trichloroethane	5	2.68
Trichloroethylene	_5	14.71
Virnyl Chloride	11	3.44
Xylene, o	6	2.14
Xylene, m&p	5	0.03
Xylene, o,m&p	50	2.17
fourTribalomethanes (***	100	0

HAMINE GOOD FRAN

Department of Public Works
Groundwater Treatment Facility
CRSANICS ANALYSIS REPORT

Aug 23, 1993	AM	Effluent
Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(Ngu)	(Vg/I)
Total VOCs	100	1.6
Benzene (ND)	0	0.06
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	0.17
Chloroform	100***	0.04
Dichlorobenzene, o&p	4.7	0.14
Dichlorobenzene, o,m&	50	0.17
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0.04
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.36
trans-1,2 Dichloroethene		0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	0.02
Tetrachloroethene	0.7	0.4
Toluene	5	0.06
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.16
Vinyl Chloride	1 -	0
Xylene, o	5	0.04
Xylene, m&p	5 50	0.02 0.06
Xylene, o,m&p	<u>-</u>	0.06
fourTrihalomethanes (***	; 100	<u>: U</u>

Department of Public Worls
Circumdwater Treatment Facility
CEGANICS ANALYSIS REPORT

Aug 27, 1993

AM

Influent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

		•
Total VOCs	100	263.11
Benzene (ND)		5.27
Bromodiohloromethane	50***	0
Bromoiorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.04
Chlorodibromomethane	50***	0
Chloroethane	5	0.24
Chloroform	100***	0
Dichlorobenzene, o&p	4.7	2.17
Dichlorobenzene, o,m&	60	2.33
1,1 Dichioroethane	5	7.58
1,2 Dichloroethane	5	0.21
1,1 Diohioroethene	0.07	0
ols-1,2 Diohioroethene	5	48.85
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.05
Methylene Chloride	5	7.22
Tetrachioroethene	0.7	164.29
Toluene	5	0.07
1.1.1 Trichloroethane	5	2.44
Trichloroethylene	5	15.52
Vinyl Chloride	1	5.36
Xylene, o	6	2.6
Xylene, m&p	5	0.04
Xylene, o,m&p	50	2.64
fourTrihalomethanes (***	100	0

- W Conseque e la communica que d'annocida de LOCAT de la comparte de la companya del la companya de la companya

Organios Analysis Report

(*) Assignment of Franch (Z. 18) A supported Treatment South,

- Aug 27	, 1993	AM	Elluent	
Chen	nice!	Concentr	etion	
Const	ituent	Allowed *	Measured **	
		(ug/i)	(ug/l)	
Total VOCs		100	1.61	
Benzene	(NID)	0	0.07	
Bromodichlo	romethene	50***	0	
Bromotorm		50***	0	
Carbon Tetra	•	5	0	
Chloroberiza		5	0.07	
Chlorodibron	•	50***	0	
Chloroethan	P	5	0	
Chloroform		100***	0.07	
Dichlorobenz		4.7	0.23	
Dichlorobens 1,1 Dichloros		<u>50</u>	0.28	
1,1 Dichloros		<u> </u>	0.01	
1,1 Dichloros		0.07	0.04	
cie-1,2 Dichic	i	5	0.47	
trane-1,2 Dick			0.47	
1,2 Dichlorop	i	5	0	
Ethylberizen		5	0.03	
Methylene C		5	0.02	
Tetrachioroe		0.7	0.91	
Toluene		5	0.09	
1,1,1 Trichlo	roethane	5	0.01	
Trichloroethy		5	0.05	
Vinyl Chlorid		1	0	
Xylene, o		<u> 5</u>	0.06	
Xylene, m&p		5	0.03	
Xylene, o.ml		50	0.09	**************************************
four Tribalom	STANCE (***)	100		TOTAL S. MARK.

Chemical

Xylene, o,m&p

fourTrihalomethanes (***

Department of Public World Groundwater Treatment Facility GREANICS ANALYSIS REPORT

Aug 31, 1993 AM Influent

Concentration

Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
	(-4-)	(-4,-7
Total VOCs	100	262.25
Benzene (ND) 0	6.35
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	Ó
Chlorobenzene	5	1.2
Chlorodibromomethane	50***	0
Chloroethane	5	1.22
Chloroform	100***	0
Dichlorobenzene, o&p	4.7	2.63
Dichlorobenzene, o,m&	\$ 50	2.88
1,1 Dichloroethane	6	7.65
1,2 Dichloroethane	5	0.44
1,1 Dichloroethene	0.07	0.45
cis-1,2 Dichloroethene	5	53.44
trans-1,2 Dichloroethen	6 5	0.34
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.97
Methylene Chloride	6	6.71
Tetrachioroethene	0.7	145.5
Toluene	5	0.21
1,1,1 Triohloroethane	6	3.01
Trichioroethylene	5	16.27
Vinyi Chloride	1	5.47
Xylene, o	6	10
Xylene, m&p	5	0.14

60

100

10.14

Organios Analysis Report

7.=pame entroblé Works • Carondazte i Treatment Footit, อัตถุงพระ บทุง 13.3 ตรีตวิตรี

 Aug 81, 1998	AM	Effluent	
Chemical	Concentr	ation	
Constituent	Allowed *	Measured **	
	(ug/i)	(Ug/l)	
Total VOCs	100	1.09	
Benzene (ND)	0	0.04	
 Bromodichloromethane	50***	0.55	272
Bromoform	50***	0	
Carbon Tetrachloride	5	0	
 Chlorobenzene	5	0.06	
Chlorodibromomethane	50***	0	
Chloroethane	5	0	
 Chloroform	100***	0.04	
Dichlorobenzene, o&p	4.7	0.18	
Dichlorobenzene, o,m&p		0.22	
1,1 Dichloroethane	5	0	
1,2 Dichloroethene	5	0.02	
 1,1 Dichloroethene cis-1,2 Dichloroethene	0.07	0.84	
trans-1,2 Dichlorosthens	<u>5</u>	0.84	
1,2 Dichloropropene	5	. 0	
Ethylbenzene	5	0.01	
Methylene Chloride	5	0.01	
Tetrachioroethene	0.7	0.18	
Taluene	5	0.06	
1,1,1 Trichloroethane	5	0.01	
Trichloroethylene	5	0.03	
Vinyl Chloride	1	0	
Xylene, o	5	0.05	
Xylene, m&p	5	0.02	
Xylene, o,m&p	50	0.07	
tourTribalomethenee (****	100	0	

Sep 3, 1993

Department of Public Works Groundwater Treatment Facility GREANICS ANALYSIS REPORT

AM

Influent

<u> </u>				
	Chemical	Concenti	ration	
	Constituent	Allowed *	Measured **	
		(u g/l)	(ug/l)	

Total VOCs	100	247.45
Benzene (ND)	0	5.46
Bromodiohioromethane	50***	O
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.27
Chlorodibromomethane	50***	0
Chloroethane	5	0.86
Chloroform	100***	6.57
Dichlorobenzene, o&p	4.7	4.1
Dichlorobenzene, o,m&g	50	4.27
1,1 Dichloroethane	6	8.85
1,2 Dichloroethane	5	0.41
1,1 Dichloroethene	0.07	0.42
cis-1,2 Dichloroethene	5	46.51
trans-1,2 Dichloroethene	5	0.11
1,2 Dichloropropane	5	O
Ethylbenzene	5	0.06
Methylene Chloride	5	5. <i>2</i> 5
Tetrachioroethene	0.7	138.14
Toluene	5	0.13
1,1,1 Triohioroethane	5	3.64
Trichicroethylene	5	18.54
Vinyl Chloride	1	4.33
Xylene, o	5	2.58
Xylene, m&p	5	0.06
Xylene, ο,π&ρ	50	2.63
fourTrihalomethanes (***	100	0

- · Bagaldayedharakida bagatatan karanta aran ayanda karan ayan karan barata barata baran baran baran baran bara Baran 1980 - Baran B
- On Concentration of these for this one frame that no second its sign

Deportment of Fuldic Works CARANICS ANALYSIS PEPCRIT

Sep 3, 1993	AM	Effluent
Chemical	Concentr	ation
Constituent	Allowed * Measured	
	(ug/i)	Measured ** (ug/l)

	(ug/l)	(ug/l)
anti-		
Total VOCs	100	1.87
Benzene (ND)	0	0.06
Bromodichloromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.08
Chlorodibromomethane	50***	O
Chloroethane	5	0
Chloroform	100***	0.05
Dichlorobenzene, o&p	4.7	0.26
Dichlorobenzene, o,m&p		0.31
1,1 Dichloroethane	5	0.03
1,2 Dichloroethane	5	0.04
1,1 Dichloroethene	0.07	O
cis-1,2 Dichloroethene	5_	0.58
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	O
Ethythenzene	5	0.09
Methylene Chloride	5	0.03
Tetrachioroethene	0.7	0.29
Toluene	5	0.03
1,1,1 Trichloroethane	5	0.01
Trichloroethylene	5	0.06
Vinyl Chloride	1	O
Xylene, o	5	0.19
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.21
iourTribalomathanes (***	100	0

THE WOLDS TENDED AND THE STATE OF THE STATE

Department of Public Works
Circumdwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep	8.	1993

AM

Influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	252.29
Benzene (ND)	0	4.51
Bromodiohioromethane	5 0***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.99
Chlorodibromomethane	50***	0
Chloroethane	5	0.09
Chioroform	100***	5.13
Dichlorobenzene, o&p	4.7	3.5
Diohiorobenzene, o,m&	50	3,69
1,1 Diohioroethane	5	7.26
1,2 Dichloroethane	5	0.32
1,1 Dichloroethene	0.07	0.54
cis-1,2 Dichloroethene	5	41.21
trans-1,2 Diohioroethene	6	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.07
Methylene Chloride	5	6.73
Tetrachioroethene	0.7	160.59
Toluene	5	0.09
1,1,1 Trichloroethane	5	2.14
Triohioroethylene	5	15.84
Vinyl Chloride	1	0.72
Xylene, o	6	2.32
Xylene, m&p	5	0.05
Xylene, o,m&p	50	2.37
fourTrihalomethanes (***	100	0

- * Compressible managelegy alternative PEEEEEE a comprehensive on highlighted
- Total concentration of them to be eithetemathem and the release and life upt.

paragram a hitipatas

Cepartment of Fublic Works Capundwater Treatment Facility CESANICS ANALYSIS FERGET

Sep 8, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
	1.00	
Total VOCs	100	0.45
Benzene (ND)		0.01
Bromodichloromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.03
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.06
Dichlorobenzene, o,m&p	50	0.08
1,1 Dichloroethane	5	O
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	O
cis-1,2 Dichloroethene	5	0.09
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	. O
Tetrachicroethene	0.7	0.08
Toluene	5	0.05
1,1,1 Trichloroethane	5	0.02
Trichloroethylene	5	0.04
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
lourTrihalomethanes (***)	100	O

TOWARD TRABA.

per office of that the weeks of constructed Treatment Facility obsAloss elektrists REbobl

	Sep 10, 1993	AM	Influent	
	Chemical	Concentr	ation	
	Constituent		1	
	Consuluent	Allowed *	Measured **	
		(ug/l)	(ug/i)	
			in a sur	
	Total VOCs	100	251.22	
	Benzene (ND)	0	3.38	
-	Bromodichioromethane	60***	0	
	Bromoform	50***	0	
	Carbon Tetrachioride	6	0	
	Chlorobenzene	5	0.76	
	Chlorodibromomethane	50***	0	
	Chioroethane	5	0.66	
	Chloroform	100***	8.01	
	Dichlorobenzene, o&p	4.7	1.48	
	Dichicrobenzene, o,mêş	60	1.59	
	1,1 Diohioroethane	6	8.46	Ē
	1,2 Dichloroethane	5	0.69	
	1,1 Dichloroethene	0.07	0.61	
	cis-1,2 Dichloroethene	5	35.44	Ξ
	trans-1,2 Dichloroethene	5	0	
	1,2 Dichloropropane	5	0	
	Ethylbenzene	6	0.05	
	Methylene Chloride		9.11	
	Tetrachioroethene	0.7	162.11	
	Toluene	5	0	
	1,1,1 Trichloroethane	5	3,58	
	Trichioroethylene	6	14.2	Ξ
	Vinyl Chloride	1	0.67	
	Xylene, o	6	1.86	
	Xylene, m&p	5	0.04	
	Xylene, o,m&p	50	1.9	
	fourTrihalomethanes (***	100	0	
_				-

DOWN OF COST RUAL

Department of Public Works
Groundwater Treatment Facility

ORGANICS ANALYSIS REPORT

Sep 10, 1993	AM	Effluent
Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
		Marin Marin
Total VOCs	100	60.19
Bertzene (ND)	0	0.98
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.24
Chlorodibromomethane	50***	0
Chloroethane	5	0.05
Chloroform	100***	2.04
Dichlorobenzene, o&p	4.7	0.42

Dichlorobenzene, o,m&p

1,1 Dichloroethane

1,2 Dichloroethane

1,1 Dichioroethene

cis-1,2 Dichloroethene

1,2 Dichloropropane

Methylene Chloride

1,1,1 Triohioroethane

fourTribalomethanes (**

Tetrachicroethene

Triohioroethylene

Vinyl Chloride

Xylene, m&p

Xylene, o,m&p

Ethylbenzene

Toluene

Xylene, o

trans-1,2 Dichloroethene

50

5

5

0.07

5

5

5

5

5

0.7

5

6

5

1

5

5

50

100

0.45

2.58

0.33

0.08 11.01

0.09

0.48

0.84

4.12

0.73

0.57

0.01

0.58

35.54 0.03

0.02

* Proposition and the second and the

· Comparable marketing about the FFE DEN - second above and by by buil

Department of Public Works Groundwater Treatment Facility OFGANICS ANALYSIS REPORT

3•	p 15,	1993	AM	influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(u g/l)
Total VOCs	100	263.27
Benzene (ND)	0	3.41
Bromodiohioromethane	50***	О
Bromatorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.58
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	7.2
Dichlorobenzene, o&p	4.7	0.9
Diohiorobenzene, o,m&	50	1.04
1,1 Dichloroethane	5	7.27
1,2 Dichloroethane	5	0.75
1,1 Dichioroethene	0.07	0
ois-1,2 Diohloroethene	5	34.84
trans-1,2 Dichloroethene		0
1,2 Diohioropropane	5	0
Ethylbenzene	5	0.04
Methylene Chloride	5	6.81
Tetrachloroethene	0.7	180.44
Toluene	- 6	0
1,1,1 Trichloroethane	5	3.26
Trichloroethylene	5	15.75
Vinyi Chioride	1	0
Xylene, o	5	1.88
Xylene, m&p	6	0
Xylene, o,m&p	50	1.88
fourTrihalomethanes (***	100	0

TOWN OF COSTERUAL

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 15, 1993

AM

Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	58,69
	<u> 100</u>	
Benzene (ND)	•	0.9
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.17
Chlorodibromomethane	50***	0
Chloroethane	5	0.4
Chloroform	100***	1.77
Dichlorobenzene, o&p	4.7	0.35
Dichlorobenzene, o,m&p	50	0.37
1,1 Dichloroethane	5	1.85
1,2 Dichloroethane	5	0.09
1,1 Dichloroethene	0.07	0
ois-1,2 Diohloroethene	6	9.83
trans-1,2 Dichloroethene	6	0.08
1,2 Diohioropropane	6	0
Ethylbenzene	6	0.01
Methylene Chloride	6	0.42
Tetrachloroethene	0.7	36.43
Toluene	5	0.03
1,1,1 Trichloroethane	5	0.55
Trichloroethylene	5	4.3
Vinyl Chloride	1	0.98
Xylene, o	5	0.5
Xylene, m&p	5	0.01
Xylene, a,m&p	50	0.51
fourTrihalomethanes (***	100	0

- Doggo brong a victorio adigidi salogo a victorio della perceito di presenta dispersona dispersona
 Doggo brong a victorio adigidi di presenta di pres

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 17, 199	3 AM	Influent

	Chemical	Concentr	ation	
	Constituent	Allowed *	Measured **	
		(ug/l)	(ug/l)	
				Ξ
	Total VOCs	100	304.82	
	Benzene (ND)	0	5.35	
	Bromodiohioromethane	50***	0	
	Bromoform	50***	0	
	Carbon Tetrachloride	5	0	
	Chlorobenzene	5	1	
	Chlorodibromomethane	50***	0	
	Chloroethane	5	2.47	
	Chioroform	100***	2.3	
	Dichlorobenzene, o&p	4.7	3.53	
	Dichlorobenzene, o,m&g	60	3.72	
	1,1 Diohioroethane	6	8.19	
	1,2 Dichloroethane	5	0.32	
	1,1 Dichloroethene	0.07	0.73	
	cis-1,2 Dichloroethene	5	51.09	
	trans-1,2 Diohioroethene	5	0.74	
3	1,2 Dichloropropane	5	0	
	Ethylbenzene	5	0.05	
	Methylene Chloride	6	7.83	
	Tetrachioroethene	0.7	198.22	
	Toluene	5	0.08	
	1,1,1 Trichloroethane	5	3.3	
	Trichicroethylene	6	17.06	
	Vinyl Chloride	1	0	
	Xylene, o	6	2.33	
	Xylene, m&p	5	0.04	
	Xylene, o,m&p	60	2.37	
	fourTrihalomethanes (***	100	0	

- ' Regulatory ethern's decharge standards as specified in the Consent Decree and modified by 1770/00 letter to the Town.
- " Company of a manager of a state of the sta
- " Total concentration of these loss inhalomethanes shall not exceed 100 up/l.

TOWN OF GITTLE HAT Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

***	3ep 17, 1983	AM	Emuent	
	Chemical	Concentr	ation	
	Constituent	Allowed *	Measured *	•
		(ug/l)	(ug/l)	

Total VOCs	100	80.21
Benzene (ND)	0	1.57
Bromodichloromethane	50***	0
Bromoform	50***	О
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.31
Chlorodibromomethane	50***	O
Chloroethane	5	0.67
Chloroform	100***	0.59
Dichlorobenzene, o&p	4.7	0.91
Dichlorobenzene, o,m&p	50	0.96
1,1 Dichloroethane	5	2.36
1,2 Dichloroethane	5	0.21
1,1 Diohloroethene	0.07	0.14
cis-1,2 Dichloroethene	5	13.8
trans-1,2 Dichloroethene	5	0.07
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	0.52
Tetrachicroethene	0.7	52.17
Toluene	5	0.03
1,1,1 Trichioroethane	5	1.08
Trichloroethylene	5	6.06
Vinyl Chloride	1	0
Xylene, o	5	0.64
Xylene, m&p	5	0.02
Xylene, o ₋ m&p	50	0.66
fourTrihalomethanes (***)	100	0

- The publicacy indicated dock argo is bandards, as improving the foreign of the same and the same
- "Compounds accounding allowable but to University to the highlighted.

Sep 20, 1993

Department of Public Works
Groundwater Treatment Facility
DRGANICS ANALYSIS REPORT

AM

Influent

Chemical	Concent	ration	
Constituent	Allowed *	Measured **	
	(ug/l)	(u ạ/ 1)	

Total VOCs	100	295.31
Benzene (ND)	0	4.77
Bromodichioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	6	Ó
Chlorobenzene	5	0.94
Chlorodibromomethane	60***	
Chloroethane	5	0.71
Chloroform	100***	4.6
Dichlorobenzene, o&p	4.7	3.11
Dichlorobenzene, o,m&g	50	3.29
1,1 Diohioroethane	5	7.68
1,2 Dichloroethane	5	0.31
1,1 Dichloroethene	0.07	0.11
cis-1,2 Dichloroethene	5	45.2
trans-1,2 Diohloroethene	6	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.09
Methylene Chloride	5	5.62
Tetrachioroethene	0.7	195.08
Toluene	5	0.1
1,1,1 Trichioroethane	5	3.76
Trichioroethylene	6	15.11
Vinyi Chioride	1	5.61
Xylene, o	5	2.38
Xylene, m&p	5	0.05
Xylene, o,m&p	50	2.43
fourTrihalomethanes (***	100	0
<u> </u>		

- · Compounds accounting allowable size U.S.V. concentrations are highlighted.

和75年19年 - 1777年1月6

Department of Fublic Works
Capundwater Treatment Facility
CRGANIC NALTSIS FEFORT

Sep 20, 1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured =
	(ug/i)	(ug/l)
Total VOCs	100	1.09
Beriziene (ND)	0	0.03
Bromodichloromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachioride	5	0
Chiorobenzane	5	0.03
Chlorodibromomethane	50***	O
Chioroethane	5	O
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.05
Dichlorobenzene, o,m&p	50	0.16
1,1 Dichloroelhane	5	O
1,2 Dichloroethane	5	O
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethens	5	0.2
trans-1,2 Dichloroethene	5	O
1,2 Dichloropropane	5	O
Ethylbenzone	5	0.01
Methylene Chloride	5	0
Tetrachioroethene	0.7	0.54
Toluene	5	0.02
1,1,1 Trichloroethane	5	0
Trichloroethylene	_ 5	0.06
Vinyl Chloride	1	O
Xylene, o	5	0.02
>Cylene, m&p	5	0.01
Xylene, o,m&p	50	0.03
fourTribalomethanes (***	100	0

Department of Public Works
Groundwater Treatment Facility
DRGANICS ANALYSIS REPORT

Sep 21, 1993	AM	Influent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/i)	(u g/i)
Total VOCs	100	301.98
Benzene (ND)	0	4.97
Bromodiohioromethane	50***	0
Bromoform	50***	. 0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.02
Chlorodibromomethane	50***	0
Chloroethane	5	0.13
Chloroform	100***	5,68
Dichlorobenzene, o&p	4.7	3.55
Diohiorobenzene, o,m&g	60	3,73
1,1 Diohioroethane	5	6.78
1,2 Dichloroethane	5	0.75
1,1 Dichloroethene	0.07	0.28
cis-1,2 Dichloroethene	5	47.58
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.07
Methylene Chloride	- 6	5.72
Tetrachioroethene	0.7	198.44
Toluene	5	0.09
1,1,1 Trichloroethane	5	3,48
Triohioroethylene	5	15.99
Vinyl Chloride	1	3.93
Xylene, o	5	2.29
Xylene, m&p	5	0.06
Xylene, o,m&p	50	2.34
fourTrihalomethanes (***	100	0

- * Required any observed describe approximation of a special control of the Community Described and the Community D
- " Tool convenience of these too blackmelance had not exceed 10 upl.

Organios Analysis Report

1.3.17.12

Department of Foblic Works
Contondivate: Treatment Facility
ERBANICS 4042/318 REPORT

Sep 21,	1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/i)
Total VOCs	100	1.3
Benzene (ND)	0	0.03
Bromodichloromethane	50***	
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.02
Chlorodibromomelhane	50***	0
Chloroethane	5	0
Chioroform	100***	0.04
Dichlorobenzene, o&p	4.7	0.05
Dichlorobenzene, o,m&p		0.07
1,1 Dichloroshane	5	0.01
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	. 0
cis-1,2 Dichloroethene	5	0.19
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	. 0
Ethythenzene	5	0.01
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.78
Toluene	5	0.04
1,1,1 Trichioroethane	.6	0
Triohioroethylene	6	0.06
Vinyi Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p		0.02
Xylene, o,m&p	60	0.04
four Trihalomethanes (***)	100	0

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Sep 22, 1993	AM	Influent	
Chemical	Concentration		
_		r	=
Constituent	Allowed *	Measured **	
	(ug/l)	(ug/i)	
Total VOCs	100	267.97	
Benzene (ND)	0	4.4	
Bromodiohioromethane	60***	0	
Bromoform	50***	0	
Carbon Tetrachloride	5	0	
Chlorobenzene	5	0.94	
Chlorodibromomethane	60***	0	
Chloroethane	5	0.24	
Chloroform	100***	6.04	Ξ
Dichlorobenzene, o&p	4.7	3.01	
Dichlorobenzene, o,m&g	<u> </u>	3.17	
1,1 Diohioroethane	<u> </u>	6.9	=
1,2 Dichloroethane	<u>5</u> 0.07	0.19	=
1,1 Diohioroethene			
ols-1,2 Diohioroethene		42.67	Ξ
trans-1,2 Dichloroethene	5	0	
1,2 Dichloropropane	<u> </u>	0.09	Ξ
Ethylbenzene	5	7.2	
Methylene Chloride		· · · · · · · · · · · · · · · · · · ·	
Tetrachloroethene	0.7	175.61	Ξ
Toluene 1,1,1 Trichloroethane	<u> </u>	0.09	
	<u>5</u>	15.17	
 Trichloroethylene		1.79	
Vinyl Chloride	1	2.1	
Xylene, o Xylene, m&p	5	0.07	
Xylene, o,m&p	60	2.17	Ξ
fourTrihalomethanes (***		- 10	
	,		≡

Programmy with control advisoring a standard on an appendict of the Consent Decrees and modular by 17/10/00 later to the Town.

^{*} Company to a covering of control of Part 11-11 control of control of the contro

⁻ Total concentration of fine a love inhalograph or an instituct received. Whose

COMPLETE STREET

Department of Fublic World Calcundwater Treatment Facility ORBANIES ANALYSIS REFORT

Sep 22, 1988 AM Effluent	-	7	-	1000		
	-	Lan	22	1002	AM	Effluent

Total VOCs 100 0,82 Benzene (ND) 0 0.02 Bromodichloromethane 50*** 0 Carbon Tetrachloride 5 0,02 Chlorobenzene 5 0,02 Chlorothane 50*** 0 Chlorothane 5 0 Chlo	Chemical	Concentr	ation
Total VOCs	Constituent	Allowed *	Measured **
Berzene (ND) 0 0.02		(ug/l)	(ug/l)
Berzene (ND) 0 0.02			100
Bromodichloromethane 50*** 0 Bromoform 50*** 0 Carbon Tetrachloride 5 0.02 Chloroberzene 5 0.02 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorotorm 100*** 0 Dichloroberzene, o&p 4.7 0.03 Dichloroberzene, o,m&p 50 0.05 1,1 Dichloroethane 5 00 1,2 Dichloroethane 5 00 1,1 Dichloroethane 5 0.07 0 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,1 Dichloroethane 5 0.01 Methylene Chloride 5 0.01 Methylene Chloride 5 0.01 Toluene 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, o,m&p 5 0.02 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.02	Total VOCs	100	0.82
Bromotorm 50*** 0	Benzene (ND)	0	0.02
Carbon Tetrachloride 5 0.02 Chlorobenzene 5 0.02 Chlorodibromomethane 50**** 0 Chlorotime 5 00 Chlorotorm 100**** 0 Dichlorobenzene, oftp 4.7 0.03 Dichlorobenzene, omftp 50 0.05 1,1 Dichloroethane 5 00 1,2 Dichloroethane 5 00 1,1 Dichloroethane 5 0.07 cie-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 Tetrachloroethane 5 0.01 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 Trichloroethane 5 0.03 Toluene 5 0.04 Vinyl Chloride 1 0 Xytene, o 5 0.01 Xytene, o 5 0.01 Xytene, o,mftp 5 0.02	Bromodichloromethane	50°**	0
Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorothane 5 0 Chlorotorm 100*** 0 Dichlorobenzene, o&p 4.7 0.03 Dichlorobenzene, o,m&p 50 0.05 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0.07 0 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.01 Methylone Chloride 5 0.01 Tetrachloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, o,m&p 5 0.02	Bromoform	50***	0
Chlorodibromomethane 50*** 0 Chlorothane 5 0 Chlorotorm 100*** 0 Dichlorobenzene, o&p 4.7 0.03 Dichlorobenzene, o,m&p 50 0.05 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0.07 0 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0.11 Tetrachloropropane 5 0.01 Methylene Chloride 5 0.01 Tetrachloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 1,1,1 Trichloroethane 5 0.02 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, o,m&p 5 0.02	Carbon Tetrachloride	5	O
Chloroform 100*** 0 Dichlorobenzene, o&p 4.7 0.03 Dichlorobenzene, o,m&p 50 0.05 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethane 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, o,m&p 50 0.02	Chlorobenzene	5	0.02
Chloroform 100*** 0 Dichloroberzene, olep 4.7 0.03 Dichloroberzene, olep 50 0.05 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0.07 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethytherzene 5 0.01 Mathylene Chloride 5 0.01 Mathylene Chloride 5 0.02 1,1,1 Trichloroethane 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02	Chlorodibromomethane	50***	O
Dichlorobenzene, o&p 4.7 0.03	Chloroethane	_	0
Dichloroethane 50 0.05 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethylbenzane 5 0.01 Methylene Chloride 5 0 Tetrachloroethane 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, 0 5 0.01 Xylene, m&p 5 0.02 Xylene, n,m&p 50 0.02	Chloroform	100***	0
1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 cis-1,2 Dichloroethane 5 0.11 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethytherzene 5 0.01 Methylene Chloride 5 0.01 Methylene Chloride 5 0.02 1,1,1 Trichloroethane 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.02	Dichlorobenzene, o&p	4.7	0.03
1,2 Dichloroethene 5 0 1,1 Dichloroethene 0.07 0 cis-1,2 Dichloroethene 5 0.11 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylberzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02		50	0.05
1,1 Dichloroethene 0.07 0 cis-1,2 Dichloroethene 5 0.11 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylberzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02		5	0
cis-1,2 Dichloroethene 5 0.11 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0.04 Vinyl Chloride 1 0 Xylene, c 5 0.01 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.02	1,2 Dichloroethane	5	O
trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02		0.07	:
1,2 Dichloropropane 5 0 Ethylberzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.02		5	0.11
Eltrythenzene 5 0.01 Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, 0 5 0.01 Xylene, m&p 5 0.02 Xylene, o,m&p 50 0.02			. 0
Methylene Chloride 5 0 Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02	The state of the s	5	0
Tetrachloroethene 0.7 0.53 Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02			0.01
Toluene 5 0.02 1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02			
1,1,1 Trichloroethane 5 0 Trichloroethylene 5 0.04 Vinyl Chloride 1 0 Xylene, c 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02	Tetrachioroethene		<u> </u>
Trichlorosthylene 5 0.04 Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02		_	0.02
Vinyl Chloride 1 0 Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02			<u> </u>
Xylene, o 5 0.01 Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02			0.04
Xylene, m&p 5 0.01 Xylene, o,m&p 50 0.02		<u>-</u>	O
Xylene, o,m&p 50 0.02			
fourTrihalomethanes (****) 100 0			
	fourTribalomethanes (***)	100	O

Department of Public Works
Groundwater Treatment Facility
BEGANICS ANALYSIS REPORT

Sep 23, 1993	AM	Influent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(u g/l)	(ug/l)
	HIANITA,	
Total VOCs	100	307.83
Benzene (ND)		5.26
Bromodiohloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.01
Chlorodibromomethane	50***	0
Chloroethane	5	0.91
Chloroform	100***	4.41
Dichlorobenzene, o&p	4.7	1.64
Dichlorobenzene, o,m&	60	1.77
1,1 Diohioroethane	6	8.28
1,2 Dichloroethane	5	0.34
1,1 Diohioroethene	0.07	0
 ois-1,2 Diohioroethene	5	49.86
trans-1,2 Dichloroethene	5	0
1,2 Diohioropropane	5	o
Ethylbenzene	5	0.06
Methylene Chloride	5	6.24
Tetrachioroethene	0.7	200.91
Toluene	5	0.09
1,1,1 Trichloroethane	5	3.45
Trichloroethylene	5	17.36
Vinyl Chloride	1	5.47
Xylene, o	5	2.37
Xylene, m&p	5	0.04
Xylene, o,m&p	50	2.41
fourTrihalomethanes (***	100	0

- Europe Control of the C
- ** Company with managering allowable PIP UPM narrangerings and highlighted
- Total concentration of these bus tributometraces shall not exceed 100 upt.

1 600 10 4 600 11 15 11 16 11 16 17

Department of Fublic Works
Calcundwater Treatment Facility
CREANICS ANALYSIS REPORT

Sep 23, 186 <u>3</u>		EMUTIK
Chemical	Concentr	ration

Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	0.52
Benzene (ND)	0	0.03
Bromodichloromethane	50***	O
Bromolorm	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0.02
Chlorodibromomethane	50°**	O
Chloroethane	5	0
Chloroform	100***	0
Dichlorobenzene, o&p	4.7	0.03
Dichlorobenzane, o,m&p	50	0.05
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.08
trans-1,2 Dichloroethene	5	O
1,2 Dichloropropane	5	0
Etrylbenzane	5	0.01
Methylene Chloride	5	0.01
Tetrachioroethene	0.7	0.19
Toluene	5	0.07
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.02
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.04
four Tribalomethanes (***	100	0

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 24,	1993	AM	Influent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	305.12
Benzene (ND)	0	5.01
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	1.27
Chlorodibromomethane	50***	
Chloroethane	5	0.17
Chloroform	100***	4.51
Dichlorobenzene, o&p	4.7	3.51
Dichlorobenzene, o,m&		3.66
1,1 Diohioroethane	- 5	8.03
1,2 Dichloroethane	5	0.54
1,1 Dichloroethene	0.07	0.54
cis-1,2 Dichloroethene	5	47.21
trans-1,2 Diohioroethene	5	0.36
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.04
Methylene Chloride	5	6.47
Tetrachioroethene	0.7	198.14
Toluene	5	0.06
1,1,1 Triohloroethane	5	3.79
Triohioroethylene	6	17.78
Vinyl Chloride	1	5.35
Xylene, o	5	2.16
Xylene, m&p	- 5	0.03
Xylene, o,m&p	50	2.19
fourTrihalomethanes (***	100	0

- Happeleter officers the forget descinate as special at the Consess Decreases and modified by 11/10/28 letter to the Town.

1. MATERIA - 1 7:14 1-13 4 5

Department of Public Works
Caroundwater Treatment Facility
CRBANICS ANALYSIS REPORT

Sep 24, 1993

AM

Effluent

	Chemical	Concentre	ation
	Constituent	Allowed *	Measured
		(ug/l)	(ug/l)
=			
	Total VOCs	100	1.36
	Benzene (ND)	0	0.04
	Bromodichloromethane	50***	O
	Bromoform	50***	0
	Carbon Tetrachloride	5	0
	Chlorobenzene	5	0.02
	Chlorodibromomethane	50***	O
	Chloroethane	5	: O
	Chloroform	100***	0.01
	Dichlorobenzana, o&p	4.7	0.05
1	Dichlorobenzene, o,m&p		0.07
	1,1 Dichloroethane	5	0.01
	1,2 Dichloroethane	5	O
	1,1 Dichloroethene	0.07	O
	cis-1,2 Dichloroethene	5	0.23
	irans-1,2 Dichloroethene	5	. O
	1,2 Dichloropropane	5	0
	Ethylbenzene	5	0.01
1	Methylene Chloride	5	0
	Tetrachioroethene	0.7	0.85
	Toluene	5	0.01
	1,1,1 Trichloroethane	6	O
	Trichioroethylene	5	0.08
	Vinyl Chioride	1	0
	Xylene, o	5	0.02
	Xylene, m&p	6	0.01
	Xylene, o,m&p	5 0	0,03
	fourTribalomethanes (***	- 100	0

Sep 27, 1993

Department of Public Works
Groundwater Treatment Facility
GREANICS ANALYSIS PEPORT

AM

Influent

Chemical	Concentration	
Constituent	Allowed * (ug/l)	Measured ** (ug/l)
Total VOCs	100	209.1

100	209.1
0	3.38
	0
50***	0
5	0
5	0.69
50***	0
5	0.21
100***	4.08
4.7	2.39
50	2.55
6	5.6
5	0.33
0.07	0
5	33.24
5	0
5	0
5	0.04
5	5.9
0.7	132.3
6	0.21
5	2.3
5	11.32
1	5.35
6	1.57
5	0.03
60	1.8
100	0
	0 50*** 50*** 6 5 5 60*** 5 100*** 4.7 60 6 5 0.07 6 5 5 5 0.7 6 5 5

419A件(4.1.2014)根据

Department of Public Works
Calciumdwater Treatment Facility
CRBANICS ANALYSIS REPORT

Sep 27, 1993

AM

Effuent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
	34.04.40	, Venezavine
Total VOCs	100	1.43
Benzene (ND)	0	0.05
Bromodichloromethane	50***	O
Bromolorm	50***	O
Carbon Tetrachloride	5	0
Chloroberizene	5	0.03
Chlorodibromomethane	50***	O
Chloroethane	5	0
Chloroform	100***	0.02
Dichlorobenzene, o&p	4.7	0.08
Dichlorobenzene, o,m&p	50	0.11
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	O
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.14
trans-1,2 Dichloroethene	5	C
1,2 Dichloropropane	5	O
Elhylbenzene	5	0.02
Methylene Chloride	5	0.01
Tetrachicroethene	0.7	0.81
Toluene	- 5	0.1
1,1,1 Trichloroethane	6	0.01
Trichicroethylene	5	0.08
Vinyl Chloride	1	0
Xylene, o	5	0.03
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.06
fourTrihalomethanes (***	100	0

보다 이 회장 다른 것은 것이 살아보니요. 그리고 그를 보면 보는 것이 없는데, 그리고 그를 보면 한 학교로 되는데 다른 것이 되다.

Department of Public Works
Cooundwater Treatment Facility
GEGANICS ANALYSIS REPORT

Sep 28, 1993	AM	Influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	208.22
Benzene (ND)		3.46
Bromodichioromethane	60***	0
Bromoform	50***	0
Carbon Tetrachioride	5	0
Chlorobenzene	5	0.68
Chlorodibromomethane	50** *	0
Chloroethane	5	0.32
Chloroform	100***	4.21
Dichlorobenzene, o&p	4.7	2.43
Dichlorobenzene, o,mêş	_ 60	2.58
1,1 Dichioroethane	5	5.47
1,2 Dichloroethane	5	0.35
1,1 Dichioroethene	0.07	0
ols-1,2 Dichloroethene	5	32.17
trans-1,2 Dichloroethene	5	0
1,2 Dichioropropane	6	0
Ethylbenzene	5	0.04
Methylene Chloride	5	5.11
Tetrachioroethene	0.7	136.01
Toluene	6	0,24
1,1,1 Trichloroethane	5	2.91
Trichloroethylene	5	11.66
Vinyl Chloride	1	o
Xylene, a	5	1.57
Xylene, m&p	6	0.04
Xylene, o.m&p	50	1.61
fourTrihalomethanes (***	100	0

Sep 29, 1993

Department of Public Works
Circuidwater Treatment Facility
ORGANICS ANALYSIS REPORT

		the state of the s
Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	4	4

AM

Influent

Total VOCs	100	228.11
Benzene (ND)	0	3.68
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachioride	5	0
Chlorobenzene	5	0.69
Chlorodibromomethane	50 ***	0
Chloroethane	5	0.74
Chloroform	100***	3.79
Dichlorobenzene, o&p	4.7	2.19
Dichicrobenzene, o,mêg	- 60	2.31
1,1 Dichloroethane	5	5.47
1,2 Dichloroethane	5	0.31
1,1 Dichioroethene	0.07	0
ois-1,2 Diohioroethene	5	34.32
trans-1,2 Dichloroethene	5	0
1,2 Dichioropropane	5	0
Ethylberzene	5	0.05
Methylene Chloride	5	5.65
Tetrachloroethene	0.7	148.94
Toluene	6	0.26
1,1,1 Trichloroethane	5	2.82
Trichloroethylene	5	13.49
Vinyl Chloride	1	1.99
Xylene, o	6	1.56
Xylene, m&p	5	0.04
Xylene, o,m&p	60	1.6
fourTrihaiomethanes (***	100	0

Beneve Transportation and sold and the Boundary Boundary Boundary Boundary Boundary Boundary Boundary Boundary - The Boundary Bo

LOWING TO THE REAL

Department of Public Works
Calcundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 29, 1993	AM	Effluent

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)
Total VOCs	100	0.93
Benzene (ND)	0	0.03
Bromodichloromethane	50***	O
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.01
Chlorodibromomethane	20ess	0
Chloroethane	5	0
Chloroform	100***	0.01
Dichlorobenzene, o&p	4.7	0.05
Dichlorobenzene, o,m&p	50	0.07
1,1 Dichloroethane	5	0.01
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	0.1
trans-1,2 Dichloroethene	5	0.06
1,2 Dichloropropane	5	O
Elhylbenzene	5	0.01
Methylene Chloride	5	0
Tetrachloroethene	0.7	0.49
Tokene	5	0.06
1,1,1 Trichloroethane	5	0
Trichloroethylene	5	0.04
Vinyl Chloride	1	0
Xylene, o	5	0.02
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.04
four Trihalomethanes (***	100	0

(:,:)

Department of Public World Groundwater Treatment Facility GRGANICS ANALYSIS REPORT

Sep 30, 1993 AM

Influent

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
		A THE RESIDENCE OF THE PARTY OF
Total VOCs	100	271.93
Benzene (ND)		4.64
Bromodiohioromethane	60***	0
Bromoform	50***	0
Carbon Tetrachioride	5	0
Chlorobenzene	5	0.85
Chlorodibromomethane	50***	0
Chloroethane	5	0.86
Chloroform	100***	2.78
Dichlorobenzene, o&p	4.7	2.52
Dichlorobenzene, o,m&		2.65
1,1 Dichloroethane	5	4.39
1,2 Diohioroethane	- 6	0.38
1,1 Dichloroethene	0.07	0.07
cis-1,2 Dichloroethene	5	42.09
trans-1,2 Dichloroethene		0
1,2 Dichloropropane	5	0
Ethylbenzene		0.05
Methylene Chioride	6	5.12
Tetrachioroethene	0.7	182.38
Toluene	5	0.06
1,1,1 Triohioroethane	6	2.85
Trichioroethylene	6	14.61
Vinyl Chloride	1	6.18
Xylene, o	5	1.97
Xylene, m&p	6	0.02
Xylene, o.m&p	50	1.99
fourTrihalomethanes (***	100	0

TOWNER FOR HINDAY

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 30,	1993	AM	Effluent

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
=	Market		
	Total VOCs	100	0.73
	Benzene (ND)	0	0.03
	Bromodichloromethane	50***	0
	Bromoform	50***	0
	Carbon Tetrachloride	5	0
	Chlorobenzene	5	0.02
	Chlorodibromomethane	50***	0
	Chloroethane	5	O
	Chloroform	100***	0
	Dichlorobenzene, o&p	4.7	0.04
-	Dichlorobenzene, o,m&p	50	0.07
1	1,1 Dichloroethane	5	O
	1,2 Dichloroethane	5	0
	1,1 Dichloroethene	0.07	O
	cis-1,2 Dichloroethene	5	0.08
	trans-1,2 Dichloroethene	5	O
	1,2 Dichloropropane	5	O
	Ethylbenzene	5	0
	Methylene Chloride	5	O
	Tetrachloroethene	0.7	0.23
	Toluene	5	0.02
	1,1,1 Trichloroethane	5	0.01
	Trichloroethylene	5	0.25
	Vinyl Chloride	1	O
	Xylene, a	5	0.01
	Xylene, m&p	5	0.01
	Xylene, o,m&p	50	0.02
	tourTrihalomethanes (***	100	O

(°)

Department of Public Works
Groundwater Treatment Facility
DRGANICS ANALYSIS REPORT

Jul 1, 1993

WEIL

1

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	19.49
Benzene (ND)	0	2.2
Bromodichloromethane	50***	0
Bromoform	50***	O
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.63
Chlorodibromomethane	50***	0
Chloroethane	5	0.23
Chloroform	100***	0.6
Dichlorobenzene, o&p	4.7	2.87
Dichlorobenzene, o,m&p	50	2.96
1,1 Dichloroethane	5	1.51
1,2 Dichloroethane	5	0.19
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	3.99
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.04
Methylene Chloride	5	4.19
Tetrachioroethene	0.7	0.91
Toluene	5	0
1,1,1 Triohioroethane	5	0.08
Trichioroethylene	6	0.79
Vinyl Chloride	1	1.08
Xylene, o	5	0.06
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.09
fourTrihalomethanes (***	100	0

TOWNOR OF BLICHAY

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 8, 1993

Chemical

Tetrachioroethene

Vinyl Chloride

Xylene, m&p

Xylene, o,m&p

1,1,1 Triohioroethane Triohioroethylene

fourTrihalomethanes (***

Toluene

Xylene, o

WELL

Concentration

1

1.37

0.16

1.12 0.06

0.19

0.06

0.24

	Olleniicai Solicalii alaii	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	21.14
Benzene (ND)	0	2.63
Bromodichloromethane	50***	0
Bromoform	50***	. 0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.96
Chlorodibromomethane	50***	0
Chloroethane	5	0.24
Chloroform	100***	0.72
Dichlorobenzene, o&p	4.7	3.64
Dichlorobenzene, o,m&p	50	3.78
1,1 Dichloroethane	5	1.72
1,2 Dichloroethane	5	0.13
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	4.62
trans-1,2 Dichloroethene		1.11
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.06
Methylene Chloride	5	2.22

- Happidagey altraget bankonga streptante ar spendante; for Compact Segran - und modified by 1 / 1 / 10 to talor to be Town.

0.7

6

5

5

1

5

5

50

- Compound sweet the above his section is a substituted.
- to the content of the

THE WHITE UP THE BAT

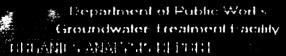
Department of Public Works

© Groundwater Treatment Facility

ORGANICS ANALYSIS REPORT

Jul 15, 1998

WELL


ì

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
		-
Total VOCs	100	26.01
Benzene (ND)		2.97
Bromodichloromethane	20***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.14
Chlorodibromomethane	50***	0
Chloroethane	5	0.15
Chloroform	100***	0.91
Dichlorobenzene, o&p	4.7	4.05
Dichlorobenzene, o,m&	p 50	4.2
1,1 Dichloroethane	5	1.57
1,2 Dichloroethane	5	0.14
1,1 Dichloroethene	0.07	0
ols-1,2 Diobloroethene	5	5.14
trans-1,2 Diohioroethene	• 5	0
1,2 Diohioropropane	6	0
Ethylbenzene	6	0
Methylene Chloride	5	4.88
Tetrachioroethene	0.7	1.67
Toluene	5	0.03
1,1,1 Trichloroethane	5	0.2
Trichloroethylene	5	1.03
Vinyl Chloride	1	1.89
Xylene, o	5	0.18
Xylene, m&p	6	0.03
Xylene, o,m&p	60	0.21
fourTrihalomethanes (**	100	0

- the computations of the distriction of a standard consumption of the Common Consum.

 The Common Consum Co
- ** Compression and a professional first Committee of the Committee of the

TOWN OF OWNER

Ļ	Jul 22, 1993	WELL	1
Ī	Chemical	Concentr	ation
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)

Total VOCs	100	25.14
. Million	100	35.14
Benzene (ND)	0	3.69
Bromodiohloromethane	50***	. 0
Bromoform	50***	·0
Carbon Tetrachloride	5	0
Chlorobenzene	6	1.33
Chlorodibromomethane	50***	0
Chloroethane	6	1.23
Chloroform	100***	0.85
Dichlorobenzene, o&p	4.7	4.78
Dichlorobenzene, o,m&p	50	4.94
1,1 Dichloroethane	5	2.29
1,2 Dichloroethane	_ 5	0.15
1,1 Dichloroethene	0.07	0.29
cis-1,2 Dichloroethene	5	5.98
trans-1,2 Dichloroethene	5	0.52
1,2 Dichloropropane	5	O
Ethylbenzene	5	O
Methylene Chloride	5	4.23
Tetrachioroethene	0.7	1.58
Toluene	5	0.03
1,1,1 Triohioroethane	5	0.24
Trichicroethylene	6	1.38
Vinyl Chloride	1	6.19
Xylene, o	_ 5	0.19
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.22
fourTrihalomethanes (***	100	0

- · Compounds accounting about the PPE Webs concentrations are highlighted.

Department of Fulfilic Works Calclundwater Treatment Facility CRBANICS ANALYSIS REPORT

	1983	

WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(llgu)	(Ug/l)
Total VOCs	100_	34.05
Benzene (ND)	0	2.98
Bromodichloromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.31
Chlorodibromomethane	50***	0
Chloroethane	5	1.2
Chloroform	100***	0.76
Dichlorobenzene, o&p	4.7	3.55
Dichlorobenzene, o,m&p	50	3.74
1,1 Dichloroethane	5	2.53
1,2 Dichloroethane	5	0.17
1,1 Dichloroethene	0.07	0
ols-1,2 Dichloroethene	5	5.7
trans-1,2 Dichloroethene	5	0.65
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.11
Methylene Chloride	5	6.39
Tetrachioroethene	0.7	1.31
Toluene	- 6	0.06
1,1,1 Triohioroethane	5	0.17
Trichicroethylene	6	1.09
Vinyl Chloride	1	5.66
Xylene, o	5	0.18
Xylene, m&p	5	0.05
Xylene, o,m&p	50	0.23
fourTrihalomethanes (***	100	0

DOWN OF THE BOAT

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 1, 1993	WELL	2

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	29.94
Benzene (ND)	0	1.71
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.46
Chlorodibromomethane	50***	O
Chloroethane	5	1.12
Chloroform	100***	0.94
Diohiorobenzene, o&p	4.7	4.99
Diohiorobenzene, o,m&p		5.29
1,1 Diohioroethane	6	3.39
1,2 Dichloroethane	6	0.36
1,1 Diohioroethene	0.07	O
cis-1,2 Dichloroethene	5	6.79
trans-1,2 Dichloroethene	5	0.12
1,2 Dichloropropane	5	O
Ethylbenzene	_5	0.14
Methylene Chloride	5	4.66
Tetrachioroethene	0.7	1.37
Toluene	5	0.09
1,1,1 Triohioroethane	5	0.45
Trichloroethylene	5	1.57
Vinyl Chloride	1	0.26
Xylene, o	5	0.09
Xylene, m&p	5	0.13
Xylene, o,m&p	60	0.22
fourTrihalomethanes (***)	100	٥

[·] Company of a community of bounding 1912 in Management by the first bull of the community of the community

TOWN OF THE HERAT

Department of Public Works
Groundwater Treatment Facility
GRGANICS ANALYSIS REPORT

La =1	15	1993
JUI	15.	1000

WELL

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)
Total VOCs	100	35.28
Benzene (ND)	0	1.95
Bromodichloromethane	50***	O
Bromoform	50***	O
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.69
Chlorodibromomethane	50***	O
Chloroethane	5	1.04
Chloroform	100***	1.47
Diohiorobenzene, ošp	4.7	5.09
Diohiorobenzene, o,m&p	50	5.16
1,1 Dichloroethane	6	4.06
1,2 Dichloroethane	6	0.19
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	7.69
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	
Ethylbenzene	5	O
Methylene Chloride	5	4.17 -3.68
Tetrachioroethene	0.7	T.48
Toluene		0
1,1,1 Triohioroethane		1
Triohioroethylene		1.79 2.01
Vinyl Chloride		1.08 -3.39
Xylene, o	5	0.45
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.48
fourTribalomethanes (***)	100	0

- * Bugginings March Plathage Standards respectively in the Someonic Sector

 The Company of the Company of the Source

LOWN OF CASTER BASE

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 29, 1993

WEIL

Chemical	Concentration Allowed * Measured *	
Constituent		
	(ug/l)	(ug/l)

Total VOCs	100	16,63
		0.34
Benzene (ND)	0	
Bromodichloromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.48
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0.74
Dichlorobenzene, o&p	4.7	2.56
Dichlorobenzene, o,m&p	50	2.61
1,1 Dichloroethane	5	0.98
1,2 Dichloroethane	5	0.05
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	2.76
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	O
Methylene Chloride	5	6.25
Tetrachioroethene	0.7	0.62
Toluene	6	0
1,1,1 Trichloroethane	5	0.19
Triohioroethylene	5	0,63
Vinyl Chloride	1	0.87
Xylene, o	5	0.08
Xylene, m&p	5	0.03
Xylene, o,m&p	50	0.11
fourTrihalomethanes (***	100	0

- Compounds exceeding allowable CTSUEAT concentrations are highlighted.
- Total concentration of here four inhalometranes that not exceed 100 upt.

 Department of Public World Georgewater Treatment Facility
 GEGANICS ANALYSIS REPORT

Aug	5,	1998

WELL

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
Ξ			
	Total VOCs	100	42.2
	Benzene (ND)	0	2.19
	Bromodichloromethane	50***	0
	Bromoform	50***	0
11	Carbon Tetrachloride	5	0
	Chlorobenzene	5	1.9
Į	Chlorodibromomethane	50***	0
	Chloroethane	6	2.55
	Chloroform	100***	1.45
	Dichlorobenzene, o&p	4.7	5.72
	Dichlorobenzene, o,måg	60	5.85
i i i	1,1 Dichloroethane	5	4.68
Ē	1,2 Dichloroethane	5	0.27
	1,1 Dichioroethene	0.07	0.1
i, i	ols-1,2 Dichloroethene	6	8.21
	trans-1,2 Dichloroethene	5	0.77
	1,2 Diohioropropane	5	0
	Ethylbenzene	5	0.11
	Methylene Chloride	5	6.8
	Tetrachioroethene	0.7	1.62
	Toluene	6	0.05
	1,1,1 Trichloroethane	5	1.34
JE	Trichicroethylene	6	1.73
	Vinyi Chioride	1	2
	Xylene, o	5	0.53
	Xylene, mêp	5	0.05
	Xylene, o,m&p	50	0.58
	fourTrihalomethanes (***	100	0

- Laguet de la grande de la compre de la compre de la grande de la grand

TOWITH OTHERWAY

Department of Public Works
Groundwater Frealment Capity
HIJAMI CAMALCAS 19 1993

Aug 12, 1998 WELL 2

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
Ī	Total VOCs	100	35.58
	Benzene (ND)	0	1.9
	Bromodichioromethane	50***	O
_	Bromoform	50***	O
-	Carbon Tetrachioride	6	O
	Chiorobenzene	_6	1.49
_	Chlorodibromomethane	50***	0
	Chloroethane		1.57
	Chloroform	100***	1.18
	Dichlorobenzane, o&p	4.7	4.74
	Dichlorobenzene, o.m&p	50	5
	1,1 Dichloroethane	5	3.61
	1,2 Dichloroethane	5	0.11
	1,1 Dichioroethene	0.07	0.18
	cis-1,2 Dichloroethene	5	7.97
	trans-1,2 Dichloroethene	5	O
	1,2 Dichloropropane	5	O
	Ethylbenzene	5	0.04
	Methylene Chloride	5	4.52
ŀ	Tetrachioroethene	0.7	1.16
	Toluene	6	0
	1,1,1 Trichioroethane	5	0.7
	Trichicroethylene	6	1,54
	Vinyl Chloride	1	4.21
	Xylene, o	5	0.38
	Xylene, m&p	5	0.02
	Xylene, o,m&p	50	0.4
	lourTrihalomethanes (***	100	0

en fill manger i minge i mangang mangang mengeng menggan ing pinggan penggan belang mengan pinggan mengan peng Denggan panggan ing Bayar Silatan panggan panggan panggan penggan panggan panggan panggan panggan panggan pang

. Maister

LAWIDS OF BURNEY

Department of Public Works
Circundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug	19.	1993

WELL

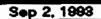
2

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
		7
Total VOCs	100	38.39
Benzene (ND)	0	2.38
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chloroberizene	5	1.61
Chlorodibromomethane	50***	0
Chloroethane	5	0.89
Chloroform	100***	1.08
Dichlorobenzene, o&p	4.7	4.45
Dichlorobenzene, o,m&p		4.78
1,1 Dichloroethane	5	3.29
1,2 Dichloroethane	5	0.12
1,1 Dichloroethene	0.07	0
ois-1,2 Dichloroethene	5	8.75
trans-1,2 Dichloroethene	6	0.17
1,2 Diohloropropane	6	0
Ethylbenzene	<u> </u>	0.19
Methylene Chloride	6	3,45
Tetrachiorosthene	0.7	1.57
Toluene	5	0.12
1,1,1 Trichloroethane	5	0.96
Trichloroethylene	5	1.82
Vinyl Chioride	1	3.44
Xylene, o	- 6	1.67
Xylene, m&p	5	0.1
Xylene, o,m 8p	50	1.77
fourTrihalomethanes (***	100	O

시작회 경취를 취득하는 공통하는

LANGE OF STERBAY

Aua	26.	199	3


WELL

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(Ngu)	(ug/l)

Total VOCs	100	34.95
Benzene (ND)	0	2.37
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	1.93
Chlorodibromomethane	50***	0
Chioroethane	5	0.58
Chloroform	100***	1.51
Dichicrobenzene, c&p	4.7	5.97
Dichicrobenzene, o,m&p	60	6.33
1,1 Diohioroethane	6	3.31
1,2 Dichloroethane	6	0.13
1,1 Diohioroethene	0.07	O
cis-1,2 Dichloroethene	5	9.77
trans-1,2 Dichloroethene	5	O
1,2 Dichloropropane	5	0
Ethythenzene	5	0.1
Methylene Chloride	5	4.28
Tetrachioroethene	0.7	1.47
Toluene	6	0.1
1,1,1 Triohioroethane	5	0.78
Trichicroethylene		1.77
Vinyi Chloride	1	0
Xylene, o	- 6	0.48
Xylene, m&p	5	0.06
Xylene, o,m&p	60	0.54
fourTrihalomethanes (***)	100	0

towner or othicas

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

WELL

Chemice	l	Concentration		
Constitue	nt	Allowed *	Measured **	
		(ug/l)	(ug/l)	
Total VOCs		100	33.44	
Benzene	(ND)	0	2.12	
Bromodichlorom	ethane	50***	O	
Bromotorm		50***	0	
Carbon Tetrachi	orid e	5	0	
Chlorobenzene		5	1.76	
Chlorodibromon	nethane	50***	0	
Chloroethane		5	0	
Chloroform		100***	0	
Diohiorobenzen	e, o&p	4.7	5.29	
Dichiorobenzen	e, o,maq	60	5.66	
1,1 Diohioroetha	no .	6	2.92	
1,2 Diohloroetha	N•	6	0.08	
1,1 Diohioroethe	ne	0.07	0	
cis-1,2 Dichloro	ethene	5	9.63	
trans-1,2 Dichlor	pethene	5	0	
1,2 Dichloroprop	ane	5	0	
Ethythenzene		5	0.11	
Methylene Chio	ebin	5	3.2	
Tetrachloroethe	n o	0.7	1.41	
Toluene		6	0.12	
1,1,1 Trichloroet	hane	5	0.58	
Triohioroethylen	•	6	1.79	
Vinyl Chloride		1	3.49	
Xylene, o		5	0.49	
Xylene, m&p		5	0.08	
Xylene, o,m&p		50	0.57	
fourTrihalometh	2008 (***	100	0	

TOWN OF DATHER HAY

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 9, 1993 WELL 2

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
	Total VOCs	100	34,62
	Benzene (ND)	0	2.13
	Bromodichloromethane	50***	0
	Bromoform	50***	0
	Carbon Tetrachloride	5	; O
	Chlorobenzene	5	1.81
	Chlorodibromomethane	50***	0
	Chloroethane	5	0
	Chloroform	100***	1.94
	Diohiorobenzene, o&p	4.7	5.81
	Diohiorobenzene, o,m&p	60	6.09
	1,1 Dichicroethane	5	3,98
▋	1,2 Dichloroethane	5	0.17
	1,1 Dichloroethene	0.07	0
	cis-1,2 Dichloroethene	5	9.25
	trans-1,2 Dichloroethene	5	0
	1,2 Dichloropropane	5	o
▋	Ethylbenzene	5	0.07
	Methylene Chloride	5	4.03
	Tetrachicroethene	0.7	1.24
	Toluene	5	0
	1,1,1 Trichloroethane	5	1.15
	Triohioroethylene	5	1.98
_	Vinyl Chloride	1	0.33
	Xylene, o	5	0.45
_	Xylene, m&p	5	__
	Xylene, o,m&p	60	0.45
	fourTrihalomethanes (***	100	. 0

- Deputatory efficient discharge standards as specified in the Consent Secret and modified by 19/10/00 inter-tecture basis
- ** Communication promoned regulations and the Latest Classical Control of the Control of the

Department of Public Works
Circumdwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep	16,	1993	WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	33.96
Benzene (ND)	0	1.94
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.64
Chlorodibromomethane	50***	O
Chloroethane	5	1.02
Chloroform	100***	1.62
Diohiorobenzene, o&p	4.7	4.81
Dichlorobenzene, o,m&p	50	5.09
1,1 Dichloroethane	5	3.7
1,2 Diohioroethane	5	0.11
1,1 Diohioroethene	0.07	0
cis-1,2 Dichloroethene	5	8.76
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.07
Methylene Chloride	5	5.31
Tetrachloroethene	0.7	1.31
Toluene	5	0
1,1,1 Trichloroethane	5	1.03
Trichloroethylene	5	1.67
Vinyl Chloride	1	0.25
Xylene, o	5	0.4
Xylene, m&p	5	0.04
Xylene, o,m&p	50	0.44
fourTrihalomethanes (***	100	O

- Eleja Menjat fotos Ericelos posturos a respectó del 1983 e Ericelos fotos de la como - Professo Mento de 1800 de Como de 1800 de 1

THOWN OF BUILDING

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

30	p 2	3, 1	883

WELL

2

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	37.63
	0	2.25
Benzene (ND) Bromodichloromethane	50***	
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	1.94
Chlorodibromomethane	50***	1.34
Chloroethane	5	0.84
Chloroform	100***	1.9
Diohiorobenzene, o&p	4.7	5.34
Dichicrobenzene, c,m&p		5,8
1,1 Diohioroethane	5	2.35
1,2 Diohioroethane	5	0.13
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	11.13
trans-1,2 Dichloroethene	5	O
1,2 Dichloropropane	5	O
Ethylbenzene	5	0.08
Methylene Chloride	5	5.5
Tetrachloroethene	0.7	1.66
Toluene	5	0
1,1,1 Trichloroethane	5	0.95
Trichloroethylene	5	2.26
Vinyl Chloride	1	0.57
Xylene, o	5	0.45
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.47

* Regulatory anterest discharge attandands as appending in the Consum Resona.

- mod mod first by \$17 (4) for insure or \$1,00 (4) ms.

100

fourTrihalomethanes (***

HOWHELL THE REAL

Department of Public Works
Groundwater Treatment Facility
DRGANICS ANALYSIS PEPORT

S.	30 ,	1993	WELL	2

 Chemical	Concentration		
Constituent	Allowed *	Measured **	
	(ug/l)	(ug/l)	
Total VOCs	100	33.37	
Benzene (ND)	0	2.06	
 Bromodichloromethane	50***	어	
Bromotorm	50***	0	
 Carbon Tetrachloride	5	0	
Chlorobenzene	5	1.62	
Chlorodibromomethane	50***	O	
Chloroethane	5	0.22	
Chloroform	100***	0.69	
Dichlorobenzene, o&p	4.7	4.32	
Dichlorobenzene, o,m&p	50	4.57	
1,1 Dichloroethane	5	3.43	
1,2 Dichloroethane	5	0.09	
1,1 Dichloroethene	0.07	0	
cis-1,2 Dichloroethene	6	10.55	
trans-1,2 Dichloroethene	6	0	
1,2 Diohioropropane	5	0	
Ethylbenzene	5	0.06	
Methylene Chloride	5	4.96	
Tetrachloroethene	0.7	2.03	
Toluene	5	0.04	
1,1,1 Trichloroethane	5	0.63	
Trichloroethylene	5	2.06	
Vinyl Chloride	1	0	
Xylene, o	5	0.37	
Xylene, m&p	5	0.01	
Xylene, o,m&p	50	0.38	
fourTrihalomethanes (***	100	O	

TOWN OF CYSTER BAY
Department of Public Works Cround after Treatment Facility ORGANICS ANALYSIS REPORT

Jul 1, 1993 WELL 3

Chemical	Concent	ration
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	193.24
Benzene (ND)	0	7.74
Bromodiohioromethane	50***	0
Bromoform	50***	ō
Carbon Tetrachloride	5	ō
Chlorobenzene	5	1.38
Chlorodibromomethane	50***	0
Chloroethane	5	0.78
Chloroform	100***	7.11
Dichlorobenzene, o&p	4.7	1.68
Dichlorobenzene, o,m&s	50	1.93
1,1 Dichloroethane	6	19.29
1,2 Dichloroethane	5	0.68
1,1 Dichloroethene	0.07	0.59
cis-1,2 Dichloroethene	5	94.99
trans-1,2 Dichloroethene	6	1.3
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.07
Methylene Chloride	5	16.74
Tetrachioroethene	0.7	26.2
Toluene	5	0.13
1,1,1 Triohioroethane	6	2.01
Triohioroethylene	6	7.68
Vinyl Chloride	1	4.54
Xylene, o	5	0.05
Xylene, m&p	6	0.05
Xylene, o,m&p	50	0.1
fourTrihalomethanes (***	100	0

- Compared succeeding slowering street in the contract contract of high sec
- that preventation of these but it along the entry and the access the spirit

Department of Public Works
Groundwater Treatment Facility
GEGANICS ANALYSIS REPORT

Jul 8, 1993

WELL

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(u g/i)
	Total VOCs	100	220.31
Ш	Benzene (ND)	0	9.24
	Bromodiohloromethane	50***	0
	Bromoform	50***	0
	Carbon Tetrachloride	6	0
	Chlorobenzene	5	1.72
	Chlorodibromomethane	50***	0
Ш	Chloroethane	5	0.33
	Chloroform	100***	9.59
	Dichlorobenzene, o&p	4.7	2.11
	Dichlorobenzene, o,m&g	50	2.28
	1,1 Diohioroethane	6	23.22
	1,2 Dichloroethane	5	0.4
	1,1 Dichloroethene	0.07	0.19
	cis-1,2 Dichloroethene	5	111.2
	trans-1,2 Dichloroethene	5	0.13
	1,2 Dichloropropane	5	0
	Ethylbenzene	5	0.14
	Methylene Chloride	5	3.47
	Tetrachioroethene	0.7	31.63
	Toluene	6	0.16
	1,1,1 Trichloroethane	5	3.49
	Trichloroethylene	5	9.74
	Vinyl Chloride	1	7.23
	Xylene, o	5	6.06
	Xylene, m&p	5	0.09
	Xylene, o,m&p	50	6.15
	fourTrihalomethanes (***	100	O
	The state of the s		

Department of Public Works

%. Groundwater Treatment Facility

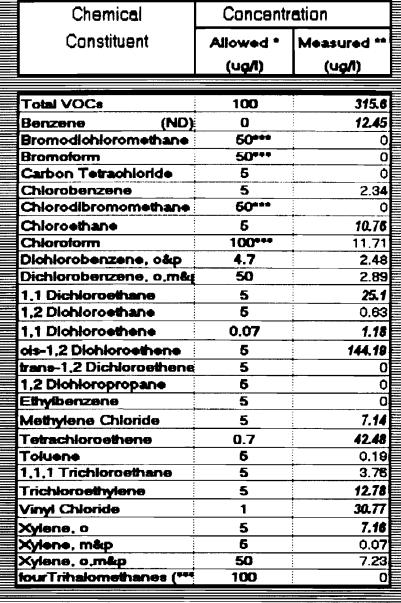
BRGANICS ANALYSIS REPORT

Jul 15, 1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(u g/ i)

Total VOCs	100	292.5
Benzene (ND)	0	10.56
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	2.25
Chlorodibromomethane	50***	0
Chloroethane	5	4.15
Chloroform	100***	14.49
Dichlorobenzene, o&p	4.7	2.45
Diohiorobenzene, o,m&g	60	4.08
1,1 Diohioroethane	5	27.67
1,2 Dichloroethane	5	0.59
1,1 Diohioroethene	0.07	0
ols-1,2 Dichloroethene	5	131.46
trans-1,2 Dichloroethene	5	2.37
1,2 Diohioropropane	6	0
Ethylbenzene	5	0
Methylene Chloride	5	14.54
Tetrachioroethene	0.7	37.08
Toluene	5	0.23
1,1,1 Trichloroethane	5	4.4
Trichloroethylene	5	11.88
Vinyl Chloride	1	20.16
Xylene, o	5	6.5
Xylene, m&p	5	0.09
Xylene, o,m&p	50	6.59
fourTrihalomethanes (***	100	0

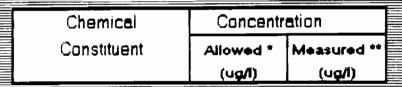

- Stepptistery inflate of the observation for the experiment of the Stephens House in the Stephens Step 11 (1995) and the Step 1 (1995) and the

ैं TOWN OF DYSTER BAY

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Jul 22, 1993

WELL


- * Programmy efficient discharge standards as specified in the Consent Decree
 and modified by 1 (10)00 lease to the Town.

Department of Public Works
Groundwater Treatment Facility

ORGANICS ANALYSIS REPORT

Jul 29, 1993

WELL

Total VOCs	100	359.98
Benzene (ND)	0	13.16
Bromodiohioromethane	50***	O
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	3.22
Chlorodibromomethane	50***	O O
Chloroethane	5	7.66
Chloroform	100***	16.34
Dichlorobenzene, c&p	4.7	4.39
Dichlorobenzene, o,m&	50	4.99
1,1 Dichloroethane	5	29.99
1,2 Dichloroethane	6	0.92
1,1 Dichloroethene	0.07	1.39
ois-1,2 Diohioroethene	5	162.79
trans-1,2 Dichloroethene	5	O
1,2 Dichloropropane	6	0
Ethylbenzene	5 :	O
Methylene Chloride	5	20.84
Tetrachloroethene	0.7	45.05
Toluene	5	0.26
1,1,1 Trichloroethane	5	4.11
Trichloroethylene	5	12.87
Vinyl Chloride	1	27.52
Xylene, o	5	8.74
Xylene, m&p	5	0.13
Xylene, o,m&p	50	8.87
fourTrihalomethanes (***	100	0

- Harpetatory attraces of technique than dards as appreciated in the Economic Courses.
 violation (that system) by the following the following.
- Compounds exceeding allowable PPP UPNF concentrations are highlighted.
- Top concentrator of these low this cometiones that no exceed life upt.

Aug 5, 1993

Department of Public Works
Groundwater Treatment Facility
GREANICS ANALYSIS REPORT

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

WELL

Total VOCs	100	324.55
Benzene (ND)	0	11.26
Bromodiohioromethane	50***	0
Bromaiorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	2.36
Chlorodibromomethane	50***	0
Chloroethane	5	9.19
Chloroform	100***	13.18
Diohiorobenzene, o&p	4.7	2.65
Dichlorobenzene, o,m&g	50	4.41
1,1 Dichloroethane	5	29.15
1,2 Dichloroethane	5	0.97
1,1 Diohioroethene	0.07	0.45
ols-1,2 Diohloroethene	5	138.52
trans-1,2 Dichloroethene	5	0.06
1,2 Dichioropropane	5	0
Ethythenzene	5	0.15
Methylene Chloride	5	15.61
Tetrachioroethene	0.7	44
Toluene	5	0.18
1,1,1 Trichloroethane	5	4.21
Trichloroethylene	5	13.33
Vinyl Chloride	1	30.19
Xylene, o	5	7.25
Xylene, m&p	5	0.08
Xylene, o,m&p	50	7.33
fourTrihalomethanes (***	100	0

Department of Public Worls. Circumdwater Treatment Facility ORGANICS ANALYSIS REPORT

Aug 12, 1998

WELL

3

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)

	Total VOCs	100	277.86
	Benzene (ND)		9.91
	Bromodiohioromethane	50***	0
	Bromoform	50***	0
	Carbon Tetrachioride	6	0
	Chlorobenzene	5	1.69
	Chlorodibromomethane	50***	0
	Chloroethane	6	6.7
	Chloroform	100***	14.69
	Dichlorobenzene, o&p	4.7	1.32
	Dichlorobenzene, o,m&	50	1.54
	1,1 Dichloroethane	5	27.27
	1,2 Dichloroethane	6	0.62
	1,1 Dichloroethene	0.07	0.34
	ols-1,2 Diobloroethene	5	121.47
	trans-1,2 Dichloroethene	5	0
	1,2 Dichioropropane	6	0
	Ethylbenzene	5	0.09
	Methylene Chloride	5	14.01
	Tetrachloroethene	0.7	36.96
	Toluene	6	0.14
	1,1,1 Trichloroethane	6	5.08
	Trichicroethylene	6	10.11
	Vinyi Chloride	1	21.11
	Xylene, o	5	6.07
	Xylene, m&p	5	0.06
	Xylene, o,m&p	60	6.13
	fourTrihalomethanes (***	100	0

Department of Public Works Groundwater Treatment Facility ORGANICS ANALYSIS REPORT

Aug 19, 1993

WELL

3

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/i)
Total VOCs	100	277.45
Benzene (ND)	0	10.69
Bromodiohioromethane	60***	0
Bromolorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzane	5	1.62
Chlorodibromomethane	50***	0
Chloroethane	5	3.43
Chloroform	100***	13.86
Dichlorobenzene, o&p	4.7	1.1
Dichlorobenzene, o,m&g	50	1.28
1,1 Dichiorcethane	6	24.31
1,2 Dichloroethane	5	0.62
1,1 Diohioroethene	0.07	0
ols-1,2 Dichloroethene	5	131.41
trans-1,2 Dichloroethens	5	0
1,2 Dichioropropane	6	0
Elhylbenzene	5	0.08
Methylene Chloride	5	10.74
Tetrachioroethene	0.7	41.26
Tokuene	6	0.16
1,1,1 Trichloroethane	5	4.52
Trichloroethylene	5	9.96
Vinyl Chloride	1	17.21
Xylene, o	5	6.2 5
Xylene, m&p	6	0.05
Xylene, o,m&p	50	6.3
fourTrihalomethanes (***	100	0

er jan myentaraki mangasaraki mengasaraki mengan bahan kenaraki dan berakan bahan kenaraki menaraki menaraki Bahan mangan mengan bahan bahan

Department of Public Works
Groundwater Treatment Facility
GREANICS ANALYSIS REPORT

Aug 26, 1993	WELL	8
Chemical	Concent	ration
Constituent	Allowed *	Measured **
	(ug/i)	(ug/i)

Total VOCs	100	313.78
Benzene (ND)	0	12.29
Bromodiohioromethane	60***	O
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	2.25
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	19.27
Dichlorobenzene, o&p	4.7	1.59
Dichlorobenzene, o,m&r	50	1.79
1,1 Dichiorcethane	5	25.36
1,2 Dichloroethane	5	0.7
1,1 Dichioroethene	0.07	0
ols-1,2 Dichloroethene	5	154.74
trans-1,2 Dichloroethene	5	0
1,2 Dichioropropane	5	0
Ethylbenzene	5	0.16
Methylene Chloride	5	13.38
Tetrachioroethene	0.7	43.71
Toluene	6	0.33
1,1,1 Trichloroethane	5	4.37
Trichloroethylene	5	9.79
Virnyl Chloride	1	17.7
Xylene, o	5	7.81
Xylene, m&p	5	0.13
Xylene, o,m&p	50	7.94
fourTrihalomethanes (***	100	0

- 🚢 स्थेत रहत हम 🗃 १४० वर्ग । इ.स. १४४४ (४४ ५ वर्ग ५० १०) तथे स्टेन्स्टर का का का अहा साथ दहार हा राज्य हार ह
 - 🚟 ಕರ್ನ ಪರ್ವಚರಣಗಳ ನಿರಾಪರಕ್ಷಿಸುತ್ತಾಗಳ ಪ್ರತಿಗಳ ಮುಂದು ಕರ್ಮ ಕರ್ಮಕ್ಷಿಸು ಕರ್ಮಕ್ರಮ ಕರ್ಮಕ್ರಮ ಕರ್ಮಕ್ಷಿಸುತ್ತಾಗುತ್ತಿ

Department of Public Works
Groundwater Treatment Facility
GEGANICS ANALYSIS REPORT

Sep 2, 1993	WELL	3

Total VOCs 100 279.51 Benzene (ND) 0 11.08 Bromodichloromethane 50*** 0 Carbon Tetrachloride 5 0 Chlorobenzene 5 2.08 Chlorodibromomethane 50*** 0 Chlorothane 5 0 Chlorothane	Chemical	Concentration	
Total VOCs	Constituent	Allowed *	Measured **
Benzene (ND) 0 11.08		(ug/l)	(u g/ i)
Benzene (ND) 0 11.08			
Bromodichloromethane 50°°° 0	Total VOCs	100	279.51
Bromoform 50°°°° 0 Carbon Tetrachloride 5 0 0 Chlorobenzene 5 2.08 Chlorodibromomethane 60°°°° 0 Chloroethane 5 0 0 Chloroform 100°°°° 0 0 Dichlorobenzene, o&p 4.7 1.99 Dichlorobenzene, o,m&p 50 2.38 1,1 Dichloroethane 6 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 5 0.78 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethane 5 0.17 Methylene Chloride 5 10.64 Toluene 5 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 4.91 Trichloroethylene 5 4.91 Trichloroethylene 5 4.91 Trichloroethylene 5 6.95 Xylene, o 5 6.95 Xylene, o 5 6.95 Xylene, o,m&p 50 7.1		0	11.08
Carbon Tetrachloride 5 0 Chlorobenzene 5 2.08 Chlorodibromomethane 60***** 0 Chlorotorm 100***** 0 Chlorotorm 100***** 0 Dichlorobenzene, o.måt 60 2.38 1,1 Dichloroethane 5 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 Ethylberszene 5 0.17 Methylene Chloride 5 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 4.91 Trichloroethylene 5 6.95 Xylene, o 5 6.95 Xylene, o,måp 50 7.1	Bromodiohioromethane		0
Chlorobenzene 5 2.08 Chlorodibromomethane 50°*** 0 Chlorotorm 100°*** 0 Chlorotorm 100°*** 0 Dichlorobenzene, o&p 4.7 1.99 Dichlorobenzene, o,m&g 60 2.38 1,1 Dichloroethane 5 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.17 Methylene Chloride 5 0.17 Methylene Chloride 5 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 4.91 Trichloroethylene 5 6.95 Xylene, o 5 6.95 Xylene, o,m&p 50 7.1		50***	0
Chlorodibromomethane 50°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	Carbon Tetrachioride	5	0
Chloroethane 5 0 Chloroform 100**** 0 Dichlorobenzene, o&p 4.7 1.99 Dichlorobenzene, o,m&g 50 2.38 1,1 Dichloroethane 5 23.22 1,2 Dichloroethane 5 0.78 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 6 143.83 trans-1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.17 Methylene Chloride 5 0.17 Methylene Chloride 5 10.64 Toluane 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, o,m&p 50 7.1	Chlorobenzene		2.08
Chloroform 100**** 0 Dichlorobenzene, o&p 4.7 1.99 Dichlorobenzene, o,m&g 50 2.38 1,1 Dichloroethane 5 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 5 0.78 1,1 Dichloroethane 6 143.83 trans-1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 5 0.17 Methylene Chloride 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethane 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, o,m&p 50 7.1	Chlorodibromomethane	50***	0
Dichlorobenzene, o&p 4.7 1.99	Chloroethane		0
Dichlorobenzene, o,m&r 60 2.38 1,1 Dichloroethane 6 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 0.07 0 0 0 0 0 0 0 0 0	Chloroform	100***	0
1,1 Dichloroethane 5 23.22 1,2 Dichloroethane 5 0.76 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 5 143,83 trans-1,2 Dichloroethane 5 0.12 1,2 Dichloroethane 6 0 Ethylbertzene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethane 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, o,m&p 5 0.16 Xylene, o,m&p 50 7.1			1.99
1,2 Dichloroethane 5 0.78 1,1 Dichloroethene 0.07 0 ols-1,2 Dichloroethene 5 143,83 trans-1,2 Dichloroethene 5 0.12 1,2 Dichloroethene 5 0.12 1,2 Dichloroethene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43,24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, o,m&p 5 0.16 Xylene, o,m&p 50 7.1	Dichiorobenzene, o,måg	60	2.38
1,1 Dichloroethene 0.07 0 ols-1,2 Dichloroethene 5 143.83 trans-1,2 Dichloroethene 5 0.12 1,2 Dichloropropane 6 0 Eithylbertzene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethene 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, o,m&p 5 0.16 Xylene, o,m&p 50 7.1	1,1 Diohioroethane	5	23.22
cls-1,2 Dichloroethene 5 143,93 trans-1,2 Dichloroethene 5 0.12 1,2 Dichloropropane 6 0 Ethylberizene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethene 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 6 0.16 Xylene, o,m&p 50 7.1	1,2 Dichloroethane	5	0.76
trans-1,2 Dichloroethene 5 0.12 1,2 Dichloropropane 6 0 Eithylberszene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	1,1 Dichioroethene	0.07	0
1,2 Dichloropropane 5 0 Ethylbertzene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1		-	143.93
Ethylbenzene 5 0.17 Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 6 0.16 Xylene, o,m&p 50 7.1	trans-1,2 Dichloroethene	5	
Methylene Chloride 5 10.64 Tetrachloroethene 0.7 43.24 Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	1,2 Diohioropropane	5	0
Tetrachloroethene 0.7 43.24 Toluene 5 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Virryl Chloride 1 19.42 Xylene, a 5 6.95 Xylene, m&p 5 0.16 Xylene, a, m&p 50 7.1	Ethylbenzene	5	0.17
Toluene 6 0.3 1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Virryl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	Methylene Chloride	5	10.64
1,1,1 Trichloroethane 5 4.91 Trichloroethylene 5 10.16 Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	Tetrachioroethene	0.7	43.24
Trichloroethylene 5 10.16 Virryl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	Toluene	5	0.3
Vinyl Chloride 1 19.42 Xylene, o 5 6.95 Xylene, m&p 5 0.15 Xylene, o,m&p 50 7.1	1,1,1 Trichloroethane	5	4.91
Xylene, o 5 6.95 Xylene, m&p 5 0.16 Xylene, o,m&p 50 7.1	Trichloroethylene	5	10.16
Xylene, m&p 5 0.15 Xylene, o,m&p 50 7.1	Vinyl Chloride	1	19.42
Xylene, o,m&p 50 7.1	≍ylene, α	5	6.95
	Xylene, m&p	5	0.16
34	Xylene, o,m&p	50	7.1
iour i maiomemanes (*** 100 0	fourTrihalomethanes (***	100	0

Particular de la completa de la comp En la completa de la completa del completa de la completa de la completa del completa de la completa del la completa del la completa de la completa del la completa de la completa del la comp

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 16, 1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(u g/l)
Total VOCs	100	271.64
Benzene (ND)		9.72
Bromodiohioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachioride	5	0
Chlorobenzene	5	1.88
Chlorodibromomethane	50***	0
Chloroethane	5	4
Chloroform	100***	14.49
Dichlorobenzene, o&p	4.7	3.42
Diohiorobenzene, o,m&p		3.7
1,1 Dichloroethane	5	23.74
1,2 Dichloroethane	5	0.93
1,1 Dichloroethene	0.07	0
ois-1,2 Diohioroethene	5	120.81
trans-1,2 Dichloroethene	5	2.09
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.12
Methylene Chloride	5	14.18
Tetrachioroethene	0.7	37.8
Toluene	5	0.29
1,1,1 Triohioroethane	5	5.61
Triohioroethylene	5	10.41
Vinyl Chloride	1	15.86
Xylene, o	5	5.92
Xylene, m&p	5	0.09
Xylene, o,m&p	50	6.01
fourTrihalomethanes (***	100	0

- Page have year the constant of the constant of

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 23, 1993

WELL

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
	10.00	(u ạ/ l)	(u g/ l)
Ξ			
	Total VOCs	100	338.84
	Benzene (ND)	0	12.47
H	Bromodiohioromethane	50***	0
	Bromoform	50***	0
	Carbon Tetrachloride	5	0
	Chlorobenzene	5	2.36
	Chlorodibromomethane	50***	o
	Chloroethane	5	0.59
	Chloroform	100***	17.84
	Dichlorobenzene, o&p	4.7	3.99
	Diohiorobenzene, o,m&g	50	4.25
	1,1 Diohioroethane	5	28.2
	1,2 Dichloroethane	5	1.19
	1,1 Diohioroethene	0.07	0
	ols-1,2 Diohloroethene	5	164.04
	trans-1,2 Dichloroethene	5	2.48
	1,2 Diohioropropane	5	0
	Ethylbenzene	5	0.12
	Methylene Chloride	5	15.07
	Tetrachloroethene	0.7	48.72
	Toluene	5	0.2
	1,1,1 Triohioroethane	5	6.08
	Triohioroethylene	5	12.91
	Vinyl Chloride	1	14.84
	Xylene, o	5	7.42
	Xylene, m&p	5	0.06
	Xylene, o,m&p	50	7.48
	fourTrihalomethanes (***	100	0
	A CONTRACTOR OF THE CONTRACTOR		

- * Riggs becape all come discharges constants as a specified in the Constant Parameter and the American Constant Parameter and the Constant Parameter and Table Parame
- ···· I salid manusia da kara ak karan kara kabaharan karana atauk sad manusia (1717-199).

Department of Public Works
Groundwater Treatment Facility
DRGANICS ANALYSIS REPORT

Sep 30, 1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	306.11
Benzene (ND)	0	12.11
Bromodichioromethane	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	2.02
Chlorodibromomethane	50***	0
Chloroethane	5	4.05
Chioroform	100***	3.04
Dichlorobenzene, o&p	4.7	1.56
Dichicrobenzene, o,m&j	50	1.82
1,1 Dichloroethane	5	25.77
1,2 Dichloroethane	5	0.45
1,1 Dichloroethene	0.07	0
ols-1,2 Diohloroethene	5	149.21
trans-1,2 Dichloroethene	5	1.75
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.09
Methylene Chloride	5	17.12
Tetrachloroethene	0.7	44.26
Toluene	6	0.16
1,1,1 Trichloroethane	5	2.95
Trichloroethylene	5	10.67
Vinyl Chloride	1	24.21
Xylene, o	5	6.39
Xylene, m&p	6	0.04
Xylene, o,m&p	50	6.43
fourTrihalomethanes (***	100	0

TÖMHOL GASHLABAA

Department of Public Works Groundwater Treatment Facility DEDAND SANALY AS ELECTED.

Jul 1, 1993

WELL

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
	Total VOCs	100	270.13
	Benzene (ND)	0	1.77
	Bromodichloromethane	50***	0. 5 7
	Bromoform	50***	0
	Carbon Tetrachloride	5	1.22
	Chlorobenzene	5	1.14
	Chlorodibromomethane	50***	0
	Chloroethane	5	0.44
IIII	Chloroform	100***	3.16
	Dichlorobenzene, o&p	4.7	4.19
	Dichlorobenzene, o,m&c		5.21
	1,1 Dichloroethane	5	1.94
	1,2 Dichloroethane	5	2.05
	1,1 Dichioroethene	0.07	0.15
	cis-1,2 Dichloroethene	5	7.53
	trans-1,2 Dichloroethene	5	1.65
	1,2 Dichloropropane	5	2.12
	Ethylbenzene	5	1.65
	Methylene Chloride	5	11.86
	Tetrachloroethene	0.7	215.75
	Toluene	5	1.51
	1,1,1 Trichloroethane	5	2.58
	Trichloroethylene	5	4.67
	Vinyl Chloride	11	0.36
	Xylene, o	5	1.2
	Xylene, m&p	5	1.6
	Xylene, o,m&p	50	2.8
	fourTrihalomethanes (***	100	0

- Sugal way address the charge mandards as peopled in the Control Decree.

TOWN OF THE BUSE

Department of Public Works
Groundwaler Treatment Facility
OFFIABILS ANALYSIS BETTILL

Jul 8, 1993

WELL

|--|

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/i)	(ug/l)

Total VOCs	100	218.95
Benzene (ND)	0	0.29
Bromodichloromethane	50***	0.22
Bromotorm	50***	0
Carbon Tetrachloride	5	o
Chlorobenzene	5	. 0
Chlorodibromomethane	50***	ō
Chloroethane	5	0
Chloroform	100***	1.42
Dichlorobenzene, o&p	4.7	0.72
Dichlorobenzene, o,m&r	50	0.72
1,1 Dichloroethane	5	0.79
1,2 Dichloroethane	5	0.08
1,1 Dichloroethene	0.07	0
ols-1,2 Dichloroethene	6	6.31
trans-1,2 Dichloroethene	6	Ó
1,2 Dichloropropane	5	0
Ethylbenzene	5	0
Methylene Chloride	5	5.65
Tetrachioroethene	0.7	196.4
Toluene	6	O
1,1,1 Triohioroethane	6	0.69
Trichicroethylene	5	3.48
Vinyl Chloride	1	2.83
Xylene, o	5	0.27
Xylene, m&p	5	0.02
Xylene, o,m&p	50	0.29
fourTrihalomethanes (***	100	0

- Regulatory efficient discharge mandards as specified in the Consum Petrose and modified by 17/10/88 letter to the Town.
- Compounds exceeding allowable CFT LENT concentrations are highlighted.
- *** Total concentration of these loss that omethanes shall not access 100 upt.

FIDWING BY: HABBAC

Department of Public Works
Circundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 22, 1993

WELL

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	291.37
Benzene (ND)	0	0.4
Bromodiohioromethane	50***	0
Bromotorm	60***	Q
Carbon Tetrachloride	5	O
Chlorobenzene	6	0
Chlorodibromomethane	60***	o
Chloroethane	5	0
Chloroform	100***	1.3
Dichlorobenzene, o&p	4.7	0.94
Dichlorobenzene, o,m&p	60	0.94
1,1 Diohioroethane	6	0.88
1,2 Dichloroethane	6	0.07
1,1 Dichloroethene	0.07	0
cis-1,2 Dichloroethene	5	7.96
trans-1,2 Dichloroethene	5	0.72
1,2 Dichloropropane	5	0
Ethylbenzene	5	0
Methylene Chloride	6	7.99
Tetrachioroethene	0.7	265.13
Toluene	5	0
1,1,1 Trichloroethane	5	0.61
Trichloroethylene	5	4.06
Vinyl Chloride	1	0.48
Xylene, o	5	0.86
Xylene, m&p	5	0
Xylene, o.m&p	50	0.86
fourTrihalomethanes (***)	100	0

- " Compounds according alloyable the Utility concentration are highlighed.

Department of Public Works

Groundwater Treatment Facility

DEDANIC ANALYSIS DEFURT

Jul	29,	1993

WELL

Chemical	Concentration	
Canstituent	Allowed *	Measured **
	(u g/ l)	(ug/l)

T-HIVOC-	100	325.19
Total VOCs		
Benzene (ND)		0.44
Bromodichloromethane	50***	0
Bromoform	50***	٥
Carbon Tetrachloride	5	O
Chlorobenzene	5	0
Chlorodibromomethane	50***	<u>0</u>
Chloroethane	5	O
Chloroform	100***	0.1
Dichlorobenzene, o&p	4.7	0.15
Dichlorobenzene, o,m&r	50	0.15
1,1 Dichloroethane	5	1.23
1,2 Dichloroethane	5	0.17
1,1 Dichioroethene	0.07	1.35
cis-1,2 Dichloroethene	5	9.9
trans-1,2 Dichloroethene	5	o
1,2 Dichloropropane	5	O
Ethylbenzene	5	
Methylene Chloride	5	23.8
Tetrachloroethene	0.7	<i>281.35</i>
Toluene	5	o
1,1,1 Trichloroethane	5	0.71
Trichloroethylene	5	4.76
Vinyl Chloride	1	0.66
Xylene, o	5	0.53
Xylene, m&p	5	0.04
Xylene, o,m&p	50	0.57
fourTrihalomethanes (***	100	0

- Regulatory effluent discharge standards at specified in the Consent Decree and modified by 11/10/65 fetter to the Town.
- Compounds exceeding allowable EPT UENT concentrations are highlighted.
- 10 Total concentration of these local thatometheres that not access 100 upt.

1000年1月1日 1日本日本

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 5, 1993

WELL

Constituent Allowed (ug/l) (ug/l) Total VOCs Benzene (ND) Bromodiohioromethane 60°°° Carbon Tetrachioride Chiorodibromomethane 50°°° Chiorodibromomethane 50°°° Chiorotom 100°°° Chiorotom 100°°° Chiorotom 100°°° 1.46 Diohiorobenzene, o&p 1.1 Diohioroethane 50°°° 1.07
Total VOCs 100 298.64 Benzene (ND) 0 0.37 Bromodiohioromethane 50°°° 0 Bromoform 50°°° 0 Carbon Tetrachloride 5 0 Chlorobenzene 6 0 Chlorodibromomethane 50°°° 0 Chlorotom 100°°° 1.46 Dichlorobenzene, o&p 4.7 0.68 Dichlorobenzene, o,m&p 60 0.68
Benzene (ND) 0 0.37 Bromodiohioromethane 50°** 0 Bromoform 50°** 0 Carbon Tetrachioride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50°** 0 Chloroethane 5 0 Chloroform 100°** 1.46 Dichlorobenzene, o&p 4.7 0.68 Dichlorobenzene, o,m&p 50 0.68
Benzene (ND) 0 0.37 Bromodiohioromethane 50°** 0 Bromoform 50°** 0 Carbon Tetrachioride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50°** 0 Chloroethane 5 0 Chloroform 100°** 1.46 Dichlorobenzene, o&p 4.7 0.68 Dichlorobenzene, o,m&p 50 0.68
Bromodiohioromethane 50°°°° 0 Bromoform 50°°°° 0 Carbon Tetraohioride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50°°° 0 Chloroethane 5 00°°° 1.46 Diohiorobenzene, o&p 4.7 0.68 Diohiorobenzene, o,m&p 50 0.68
Bromoform 50°*** 0 Carbon Tetrachioride 5 0 Chiorobenzene 6 0 Chiorodibromomethane 50°*** 0 Chioroethane 5 0 Chioroform 100°*** 1.46 Dichlorobenzene, o&p 4.7 0.68 Dichlorobenzene, o,m&p 60 0.68
Carbon Tetrachioride50Chiorobenzene60Chiorodibromomethane50***0Chioroethane50Chiorotorm100***1.46Dichlorobenzene, o&p4.70.88Dichlorobenzene, o,m&p600.68
Chlorobenzene50Chlorodibromomethane50°°°0Chloroethane50Chloroform100°°°1.46Diohlorobenzene, o&p4.70.68Diohlorobenzene, o,m&p600.68
Chlorodibromomethane50***0Chloroethane50Chloroform100***1.46Diohlorobenzene, o&p4.70.68Diohlorobenzene, o,m&p600.68
Chloroethane 5 0 Chloroform 100*** 1.46 Diohlorobenzene, o&p 4.7 0.68 Diohlorobenzene, o,m&p 60 0.68
Chloroform100***1.46Diohlorobenzene, o&p4.70.68Diohlorobenzene, o,m&p600.68
Dichlorobenzene, o&p 4.7 0.68 Dichlorobenzene, o,m&p 60 0.68
Diohiorobenzone, o,m&p 60 0.68
1.1 Dichloroethane 5 1.07
1,2 Diohioroethane 5 0.14
1,1 Dichloroethene 0.07 0
cis-1,2 Dichloroethene 5 8.08
trans-1,2 Dichloroethene 5 0
1,2 Dichloropropane 5 0
Ethylbenzene 5 0.01
Methylene Chloride 5 15.65
Tetrachloroethene 0.7 264.97
Toluene 5 0
1,1,1 Trichloroethane 5 0.75
Trichloroethylene 5 4.72
Vinyl Chloride 1 0.58
Xylene, o 5 0.16
Xylene, m&p 5 0
Xylene, o,m&p 50 0.16
iourTrihalomethanes (*** 100 0

TOWNER OF STREAM

Department of Public Works Groundwater Treatment Facility。 THUAND CANALYSIS DEPURA

Aua	12.	1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Fotol VOCo	100	354.00

Triohloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82			
Bromodichloromethane 50°°° 0 0 Carbon Tetrachloride 5 0 0 Chlorobenzane 5 0 0 Chlorodibromomethane 50°°° 0 0 Chlorodibromomethane 50°°° 0 0 Chlorodibromomethane 5 0 0 Chlorodiorm 100°°° 1.04 Dichlorobenzane, o&p 4.7 0.73 Dichlorobenzane, o,m&c 50 0.73 1.1 Dichloroethane 5 0.4 1.2 Dichloroethane 5 0.4 1.2 Dichloroethane 5 0.4 1.2 Dichloroethane 5 0.07 0 0 0 0 0 0 0 0 0	Total VOCs	100	254.06
Bromoform	Benzene (ND)	0	0.31
Carbon Tetrachloride 5 0 Chlorobenzane 5 0 Chlorodibromomethane 50**** 0 Chlorostrane 5 0 Chlorostrane 100**** 1.04 Dichlorobenzene, o.m&r 50 0.73 Dichlorobenzene, o.m&r 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 6 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.33 Tetrachloroethane 5 0.03 Methylene Chloride 5 0.34 Trichloroethylene 6 0.34 Trichloroethylene 6 0.34 Trichloride 1 2.75 Xylene, m&p	Bromodichloromethane	50***	0
Chlorodibromomethane 50**** 0 Chlorodibromomethane 50**** 0 Chlorotorm 100**** 1.04 Dichlorobenzene, o&p 4.7 0.73 Dichlorobenzene, o,m&p 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 6 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.03 Methylene Chloride 5 11.13 Tetrachloroethane 0.7 226.21 Toluene 6 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, m&p 5 0.04 Xylene, m,m&	Bromoform	50***	0
Chlorodibromomethane 50*** 0 Chlorotorm 100*** 1.04 Dichlorobenzene, o&p 4.7 0.73 Dichlorobenzene, o,m&r 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 2 Dichloroethane 6 0.33 Methylene Chloride 5 0.113 Tetrachloroethane 6 0.34 Triohloroethane 6 0.34 Triohloroethane 6 0.34 Triohloroethane 6 0.33 Viryl Chlo	Carbon Tetrachloride	5	O
Chloroform 100°*** 1.04 Dichlorobenzene, o&p 4.7 0.73 Dichlorobenzene, o,m&r 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 1,1 Dichloroethane 6 6.63 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.03 Methylene Chloride 5 11.13 Tetrachloroethane 6 0 1,1,1 Trichloroethane 6 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.04 Xylene, o,m&p 50 0.82	Chlorobenzene	5	0
Chloroform 100°** 1.04 Dichlorobenzene, o&p 4.7 0.73 Dichlorobenzene, o,m&p 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 6 6.63 1,2 Dichloroethane 6 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 5 0.03 Methylene Chloride 5 0.03 Methylene Chloride 5 0.34 Trobloroethane 6 0.34 Trobloroethane 6 0.34 Triohloroethane 6 0.32 Vinyl Chloride 1 2.75 Xylene, o,m&p 5 0.04 Xylene, o,m&p	Chlorodibromomethane	50***	O
Dichlorobenzene, o&p 4.7 0.73 Dichlorobenzene, o,m&r 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 6 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.35 1,2 Dichloroethane 6 0.03 Methylene Chloride 5 0.73 Tetrachloroethane 6 0.34 Triohloroethane 6 0.34 Triohloroethane 6 0.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.04 Xylene, o,m&p 5 0.04 Xylene, o,m&p <th>Chicroethane</th> <th>5</th> <th>0</th>	Chicroethane	5	0
Dichlorobenzene, o,m&r 50 0.73 1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 5 0.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0.03 Methylene Chloride 5 1.113 Tetrachloroethane 0.7 226.21 Toluene 5 0.34 Triohloroethane 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	Chloroform	100***	1.04
1,1 Dichloroethane 5 0.4 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 5 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloropropane 5 0 Ethylbenzene 6 0.03 Methylene Chloride 5 11.13 Tetrachloroethane 0.7 226.21 Toluane 6 0 1,1,1 Trichloroethane 5 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.04 Xylene, o,m&p 5 0.04 Xylene, o,m&p 50 0.82	Dichlorobenzene, o&p	4.7	0.73
1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 5 6.63 trans-1,2 Dichloroethane 5 0.35 1,2 Dichloropropane 6 0 2 Ethylbenzene 5 0,03 Methylene Chloride 5 11.13 Tetrachloroethane 0.7 226.21 Toluene 6 0 1,1,1 Trichloroethane 5 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, map 5 0.04 Xylene, o,map 50 0.82	Dichlorobenzene, o,m&c	50	0.73
1,1 Dichloroethene 0.07 0 ols-1,2 Dichloroethene 5 6.63 trans-1,2 Dichloroethene 6 0.36 1,2 Dichloropropane 5 0 Ethylbenzene 5 0,03 Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 5 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, map 5 0.04 Xylene, o,map 50 0.82	1,1 Dichloroethane	5	0.4
ols-1,2 Diohioroethene 5 6.63 trans-1,2 Diohioroethene 5 0.35 1,2 Diohioropropane 5 0 Ethylbenzene 5 0.03 Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Triohloroethane 6 0.34 Triohloroethylene 5 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	1,2 Dichloroethane	5	O
trans-1,2 Diohloroethene 5 0.35 1,2 Diohloropropane 5 0 Ethylbenzene 5 0,03 Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 5 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	1,1 Dichloroethene	0.07	0
1,2 Dichloropropane 5 0 Ethylbenzene 5 0,03 Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 6 0.34 Trichloroethylene 5 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, map 5 0.04 Xylene, o,map 50 0.82	ols-1,2 Diohioroethene	5	6.63
Ethylbenzene 5 0,03 Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 5 0,34 Trichloroethylene 6 3,32 Vinyl Chloride 1 2,75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	trans-1,2 Diobloroethene	6	0.35
Methylene Chloride 5 11.13 Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 5 0.34 Trichloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, map 5 0.04 Xylene, o,map 50 0.82	1,2 Dichloropropane	6	0
Tetrachloroethene 0.7 226.21 Toluene 5 0 1,1,1 Trichloroethane 6 0.34 Trichloroethylene 5 3.32 Vinyl Chloride 1 2.75 Xylene, σ 5 0.78 Xylene, m&p 5 0.04 Xylene, σ,m&p 50 0.82	Ethylbenzene	5	0.03
Toluene 5 0 1,1,1 Triohioroethane 5 0.34 Triohioroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	Methylene Chloride	5	11.13
1,1,1 Triohioroethane 5 0.34 Triohioroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	Tetrachloroethene	0.7	226.21
Triohloroethylene 6 3.32 Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	Toluene	6	0
Vinyl Chloride 1 2.75 Xylene, o 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	1,1,1 Triohioroethane	5	0.34
Xylene, о 5 0.78 Xylene, m&p 5 0.04 Xylene, o,m&p 50 0.82	Trichicroethylene	6	3.32
Хуlene, m&p 5 0.04 Хуlene, o,m&p 50 0.82	Vinyl Chloride	1	2.75
Xylene, o,m&p 50 0.82	Xylene, o	5	0.78
	Xylene, m&p	5	0.04
fourTrihalomethanes (*** 100 0	Xylene, o,m&p	50	0.82
	fourTrihalomethanes (***	100	0

TOWN OF THE WAY

Department of Public Works
Groundwater Treatment Facility
FIERARIE CANALYSE ELEPTICE

Δ	10	1998
\sim	10.	1000

WELL

Chemical	Concentre	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

		E
Total VOCs	100	286.87
Benzene (ND)	0	0.31
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	O
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	1
Dichlorobenzene, o&p	4.7	0.35
Dichlorobenzene, o,m&ç	50	0.35
1,1 Dichloroethane	5	0.45
1,2 Dichloroethane	5	O
1,1 Dichloroethene	0.07	0
ols-1,2 Diohioroethene	6	7.07
trans-1,2 Dichloroethene	5	O
1,2 Diohioropropane	6	0
Ethylbenzene	5	0.02
Methylene Chloride	5	9.55
Tetrachioroethene	0.7	262.82
Toluene	5	0
1,1,1 Trichlorcethane	5	0.33
Trichloroethylene	5	3.29
Vinyl Chloride	1	1.57
Xylene, a	5	0.11
Xylene, m&p	5	O
Xylene, o,m&p	50	0.11
fourTrihalomethanes (***	100	0

TOWN OF GRANT BOAT

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Aug 2	8, 1	993	W	ÆLL	4

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	303.46
Benzene (NC) 0	0.44

Total VOCs	100	303.46
Benzene (ND)	0	0.44
Bromodiohioromethane	50***	0
Bromolorm	50***	0
Carbon Tetrachioride	6	0
Chlorobenzene	5	0
Chiorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	1.31
Diohiorobenzene, o&p	4.7	0.24
Dichicrobenzene, o,m&p	60	0.24
1,1 Diohloroethane	5	0.51
1,2 Diohioroethane	6	0
1,1 Diohioroethene	0.07	0
cis-1,2 Dichloroethene	5	8.12
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	6	9.7
Tetrachioroethene	0.7	278.64
Toluene	5	0.16
1,1,1 Trichloroethane	5	0.32
Trichloroethylene	5	9.58
Vinyl Chloride	1	0
Xylene, o	5	0.37
Xylene, m&p	5	0.05
Xylene, o,m&p	50	0.42
fourTrihalomethanes (***	100	0

* TOWNOCCCSTERIAL

Department of Public Works
Groundwater Treatment Facility
DEFANICS ANALYSIS ELEDET

Sep 9, 19	93 W	Æ17	4
~ 1.	1 A		

Chemical	Concentration		
Constituent	Allowed * Measured		
	(ug/l)	(ug/l)	

Total VQCs	100	334.31
Benzene (ND)	0	0.38
Bromodichloromethane	50***	o
Bromoform	50***	ol
Carbon Tetrachloride	5 .	O
Chlorobenzene	5	0.2
Chlorodibromomethane	50***	o
Chloroethane	5	o
Chloroform	100***	1.33
Dichlorobenzene, o&p	4.7	0.77
Dichlorobenzene, o,m&¢	50	1.13
1,1 Dichloroethane	5	0.22
1,2 Dichloroethane	5	0.15
1,1 Dichloroethene	0.07	O
ols-1,2 Diobloroethene	6	7. 45
trans-1,2 Dichloroethene	5	0
1,2 Dichioropropane	5	٥
Ethylbenzene	5	0.2
Methylene Chloride	5	9.43
Tetrachloroethene	0.7	307.66
Toluene	5	0.2
1,1,1 Trichloroethane	5	0.44
Trichloroethylene	5	5.04
Vinyl Chloride	1	0
Xylene, o	5	0.28
Хylene, m&p	5	0.2
Xylene, ο,m&ρ	50	0.48
fourTrihalomethanes (***	100	0

- Regulatory efficient discharge translands to appealled in the Consent Depress
 and modified by 11/1088 jetter to the Fown.
- Compounds exceeding allowable CPP UPAT concentrations are highlighted.

"TOWN OF COST, RUAY

Department of Public Works
Groundwater Treatment Facility
BRGANICS ANALYSIS REPORT

Sep 16, 1993

WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	273.11
Benzene (ND)	0	0.38
Bromodiohioromethane	60** *	· O
Bromotorm	60***	0
Carbon Tetrachloride	5	0
Chlorobenzene	6	0
Chlorodibromomethane	60** *	0
Chloroethane	5	0
Chloroform	100***	1.09
Diohiorobenzene, o&p	4.7	0.7
Dichlorobenzene, o,m&p	60	0.9
1,1 Diohioroethane	5	0. 59
1,2 Dichioroethane	5	0
1,1 Diohioroethene	0.07	0
cis-1,2 Dichloroethene	5	7.36
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.05
Methylene Chloride	5	10.36
Tetrachloroethene	0.7	247.73
Toluene	5	0
1,1,1 Trichloroethane	5	0.46
Trichloroethylene	5	3.94
Vinyl Chloride	1	0
Xylene, o	5	0.16
Xylene, m&p	5	0.1
Xylene, o,m&p	50	0.26
fourTrihalomethanes (***	100	0

- " Compounds assembly allowable size Ulike concentrations as highlighted.
- " Ton concern along these four electronic area that no exceed 100 mg/.

TOWN OF CASTLERIAN

Department of Public Worls Groundwater Freatment Facility ก็โรยAที่แร ANAL ราย ประกาณ

Sep 23, 1993

WELL

Co	ncentre	tion

Chemical	Concentration		
Constituent	Allowed *	Measured **	
	(ug/l)	(ug/l)	

Total VOCs	100	345.25
Benzene (ND)	0	0.41
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0
Chlorodibromomethane	50***	O
Chloroethane	5	0
Chloroform	100***	2.66
Dichlorobenzene, o&p	4.7	0.42
Dichlorobenzene, o,m&g	50	0.42
1,1 Dichloroethane	5	0.54
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
ois-1,2 Diohloroethene	6	9.85
trans-1,2 Diohioroethene	6	0
1,2 Dichloropropane	6	Ó
Ethylbenzene	6	0.03
Methylene Chloride	5	13.32
Tetrachloroethene	0.7	311.29
Toluene	5	0
1,1,1 Trichloroethane	5	0.98
Trichloroethylene	5	5.45
Vînyl Chloride	1	0
Xylene, o	5	0.3
Xylene, m&p	5	0
Xylene, o,m&p	50	0.3
fourTrihalomethanes (***	100	0

- Compulsion y additions of colorings, exercised in a specified in the Conserve Decree
- The concentration of these locality abundances that no some of 100 agric

Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 30, 1993

WELL

4

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	341.46
Benzene (ND)	0	0.51
Bromodiohioromethane	60***	o
Bromotorm	50***	O
Carbon Tetrachloride	5	o
Chlorobenzene	5	0.05
Chlorodibromomethane	50***	0
Chloroethane	5	o
Chioroform	100***	0.95
Dichlorobenzene, c&p	4.7	0.25
Dichicrobenzene, o,m&	60	0.33
1,1 Dichloroethane	5	1.02
1,2 Diohioroethane	6	0
1,1 Dichloroethene	0.07	O
cis-1,2 Dichloroethene	5	11.82
trans-1,2 Diobloroethene	- 5	0
1,2 Dichloropropane	5	0
Ethylbenzene	5	0.02
Methylene Chloride	5	10.83
Tetrachioroethene	0.7	303
Toluene	5	0.1
1,1,1 Trichloroethane	6	0.62
Trichloroethylene	5	5.65
Vinyi Chloride	1	6.46
Xylene, o	5	0.08
Xylene, m&p	6	0.02
Xylene, o,m&p	50	0.1
fourTrihalomethanes (***	100	0

Department of Public Works
Croundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Jul 1, 1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(u g/l)	(u g/ 1)
Total VOCs	100	587.98
Benzene (ND)		7.05
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0.26
Chlorobenzene	5	0.49
Chlorodibromomethane	50***	
Chloroethane	5	0
Chloroform	100***	1.81
Dichlorobenzene, o&p	4.7	4.56
Dichlorobenzene, o,m&g		5.22
1,1 Dichloroethane	5	0.56
1,2 Diohioroethane	5	0.68
1,1 Diohioroethene	0.07	0.37
ols-1,2 Diohioroethene	5	18.97
trans-1,2 Dichloroethene	5	0
1,2 Diohioropropane	5	Ó
Ethylbenzene	5	0.72
Methylene Chloride	5	19.59
Tetrachloroethene	0.7	488.9
Toluene	5	0.83
1,1,1 Trichloroethane	5	3.86
Trichloroethylene	5	37.84
Vinyi Chloride	1	0
Xylene, o	5	0.11
Xylene, m&p	5	0.72
Xylene, α,m&p	50	0.83
fourTrihalomethanes (***	100	0

- Targetalong ellerent discharge stendards av appecilled in the Constant Decree and modified by Physiological Lagrence bas Fours.
- " compounds acceptable above the PET CARN Concentration are lightly to be
- " Total conference to red has a four electronic beautiful received a fill the party of the party

Department of Public Works
Groundwater Treatment Facility
GRGANICS ANALYSIS REPORT

Jul 8, 1993

WELL

6

(Chemical	Concentr	ation
	Constituent	Allowed *	Measured **
		(u ạ/i)	(u g/l)
Total V	OCs .	100	554.04
Benzen	e (ND)	0	5.99
Bromod	llohloromethane	50***	0
Bromote	om	50***	0
Carbon	Tetrachloride	5	0
Chlorob	enzene	5	0
Chlorod	libromomethane	50***	O
Chloroe	ithane	5	0
Chlorok	orm	100***	3.99
Diohlore	obenzene, o&p	4.7	4.75
Dichlor	obenzene, o,m&	50	5.01
1,1 Diot	loroethane	6	0.42
1,2 Dict	nloroethane	5	0.53
1,1 Dlot	nloroethene	0.07	0
ols-1,2 [Diohioroethene	5	17.78
trans-1,	2 Di <mark>chloroethene</mark>	5	0
1,2 Dlot	loropropane	5	0
Ethylbe	nzene	5	0
Methyle	ne Chloride	5	15.14
Tetrach	loroethene	0.7	453.32
Toluene		5	0
1,1,1 Tr	iohioroethane	5	5.93
Triohlor	oethylene	6	43.17
Virryl C	nloride	1	0
Xylene,		5	2.63
Xylene.		5	0.13
Xylene,		50	2.76
fourTrlh	alomethanes (***	100	Ó

- The Composition of the Compositi
- " Total concentration of these type introductions and not exceed 10 tuple.

. An

ORGANICS ANALYSIS REPORT

Jul 16, 1998 WELL 5

Chemical	Concentration Allowed * Measured **	
Constituent		
	(u g/l)	(ug/l)

Total VOCs	100	685.09
Benzene (ND)	0	9.84
Bromodiohioromethane	50***	0
Bromoform	50***	۵
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.19
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	3.22
Dichlorobenzene, o&p	4.7	4.36
Dichlorobenzene, o,m&g	60	4.65
1,1 Dichloroethane	_ 5	0.84
1,2 Diobloroethane	- 6	0.43
1,1 Dichloroethene	0.07	O
cis-1,2 Dichloroethene	5	24.67
trans-1,2 Dichloroethene	6	2.56
1,2 Dichloropropane	5	0
Ethylbenzene	6	0
Methylene Chloride	6	18.59
Tetrachioroethene	0.7	5 26.8 5
Toluene	5	0.25
1,1,1 Trichloroethane	5	6.93
Trichloroethylene	5	54.1
Vinyl Chloride	1	8.15
Xylene, o	5	3.56
Xylene, m&p	5	0.26
Xylene, o,m&p	60	3.82
fourTrihalomethanes (***	100	0

[—] Company of the contract o

Department of Public Worls
Groundwater Treatment Facility
BEGANICS ANALYSIS REPORT

Jul 22, 1993

WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(u g/ I)
Total VOCs	100	635.31
Benzene (ND)	0	7.69
Bromodiohioromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	2.38
Dichlorobenzene, o&p	4.7	3.6
Diohiorobenzene, o,m&ş	60	3.84
1,1 Dichloroethane	5	0.44
1,2 Diohioroethane		0.21
1,1 Diohioroethene	0.07	
ols-1,2 Dichloroethene	5	21.72
trans-1,2 Dichloroethene	5	1.53
1,2 Diohioropropane	6	0
Ethylbenzene	5	0
Methylene Chloride	5	17.26
Tetrachloroethene	0.7	513.74
Toluene	6	0
1,1,1 Triohioroethane	5	5.53
Triohioroethylene	6	52.61
Vinyl Chloride	1	3.54
Xylene, o	5	2.98
Xylene, m&p	5	0.14
Xylene, o,m&p	50	3.12
fourTribalomethanes (***	100	0

- * Propolition and the design of the design of the second of the Proposition of the Proposition of the Second of th

Department of Patric World Groundwater Treatment Facility GESANICS ANALYSIS REPORT

5

3.55

0.11

3,66

Aug	5,	1993	WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(u g/i)
	400	070.00
Total VOCs	100	670.86
Benzene (ND)		7.91
Bromodichioromethane	60***	0
Bromoform	20***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	2.88
Dichlorobenzene, o&p	4.7	4.91
Diohiorobenzene, o,m&	· · · · · · · · · · · · · · · · · · ·	4.56
1,1 Dichloroethane	5	0.62
1,2 Diohioroethane	5	0.32
1,1 Dichloroethene	0.07	0.8
ols-1,2 Dichloroethene	5	22.71
trans-1,2 Dichloroethene		0
1,2 Diohioropropane	5	0
Ethylbenzene	5	0.01
Methylene Chloride	5	30.61
Tetrachioroethene	0.7	536.36
Toluene	6	0
1,1,1 Triohioroethane	5	6.01
Trichioroethylene	6	54.41
Vinyl Chloride	1	0

<u>5</u>

50

100

Xylene, o

Xylene, m&p Xylene, o,m&p

fourTrihaiomethanes (***

TOWN OF WISTING

Department of Public Works Groundwater Treatment Lacility क्षामानुस्थान, अपना स्थान महिल्ला

Aug 12, 1998 WELL 5					
	Aug 1	2,	1998	WELL	5

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Total VOCs	100	538.91
Benzene (ND)	0	5.75
Bromodichloromethane	50***	0
Bromoform	50***	0
Carbon Tetrachloride	5	O
Chlorobenzene	5	0
Chlorodibromomethane	50***	O
Chioroethane	5	0
Chloroform	100***	3.32
Dichlorobenzene, o&p	4.7	2.94
Dichlorobenzene, o,m&c	50	2.94
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	O
1,1 Dichloroethene	0.07	0
ols-1,2 Diohioroethene	6	17.68
trans-1,2 Diohioroethene	5	0
1,2 Dichioropropane	6	0
Ethylbenzene	5	0.06
Methylene Chloride	5	19.11
Tetrachioroethene	0.7	440.13
Toluene	5	0
1,1,1 Trichloroethane	5	4.31
Trichloroethylene	5	42.98
Vinyl Chloride	1	O
Xylene, o	5	2.48
Xylene, m&p	5	0.15
Xylene, o,m&p	50	2.63
fourTrihalomethanes (***	100	0

BONG PROGRESS BONE CONTRACTOR BUSINESS SERVICES BY SERVICES SERVICES BUSINESS BUSIN

⊒geometrica kolta rejal kon ki a≃aa torda aeroni ili on a raaki ji i gibiki

Aug 19, 1998

Department of Public Works
Groundwaler Treatment Caulity
Officially ANALYSIS ELECTION

WELL

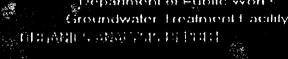
5

=				
T	Chemical	Concentr	ation	
	Constituent	Allowed *	Measured **	
		(ug/l)	(ug/l)	

Total VOCs 100 597.74 Benzene (ND) 0 6.14 Bromodichloromethane 50**** 0 Bromoform 50**** 0 Carbon Tetrachloride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50*** 0 Chlorodibromomethane 5 0 Chloroform 100**** 3.4 Dichlorobenzene, o&p 4.7 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 Ethylbenzene 5 0 Ethylbenzene 5 0 Methylene Chloride 5	<u></u>		
Bromodichloromethane 50*** 0 Bromoform 50*** 0 Carbon Tetrachloride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50*** 0 Chlorodibromomethane 50*** 0 Chlorothane 5 0 Chlorothane 5 0 Chlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&g 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dlohloroethane 5 0 1,1 Trichloroethane 5 0 Xylene 6 0 Xylene, o m&p 5 0 Xylene, o,m&p 5 0 Xylene, o,m&p 50 2.34	Total VOCs	100	597.74
Bromoform	Benzene (ND)	0	6.14
Carbon Tetrachloride 5 0 Chlorobenzene 5 0 Chlorodibromomethane 50***** 0 Chlorothane 5 0 Chlorothane 5 0 Chlorothane 100**** 3.4 Dichlorobenzene, o.m&r 50 3.68 Dichlorobenzene, o.m&r 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 6 0 1,2 Dichloroethane 5 0 Ethylbenzene 5 0 Methylene Chloride 5 14.38 Tetrachloroethane 0 0 Toluene 6 0 1,1,1 Trlohloroethane 5 4.83 Trichloroethylene 5 4.83 Trichloroethylene 5 2.34	Bromodichloromethane	50***	0
Chlorodibromomethane 50°°°° 0 Chlorodibromomethane 50°°°° 0 Chloroform 100°°°° 3.4 Dichlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&g 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,2 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 6 0.07 0 cls-1,2 Dichloroethane 6 0.07 L2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 6 0.04 Methylene Chloride 5 14.38 Tetrachloroethane 6 0.7 499.16 Toluene 6 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Bromoform	50***	0
Chlorodibromomethane 50°°°° 0 Chloroform 100°°° 3.4 Dichlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&g 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 6 20.46 trans-1,2 Dichloroethene 6 20.46 trans-1,2 Dichloroethene 6 0 1,2 Dichloroethene 6 0 1,2 Dichloroethene 5 0 1,2 Dichloroethene 6 0 1,2 Dichloroethene 6 0 1,1 Trichloroethene 6 0 1,1,1 Trichloroethene 5 14.38 Tetrachloroethene 6 0 1,1,1 Trichloroethane 6 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Carbon Tetrachloride	5	0
Chloroform 100**** 3.4 Dichlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&r 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 6 0 1,2 Dichloroethane 6 0 1,2 Dichloroethane 6 0 Ethylbenzene 6 0 Ethylbenzene 6 0 Methylene Chloride 5 14.38 Tetrachloroethane 0.7 499.16 Toluene 6 0 1,1,1 Trichloroethane 5 43.31 Vinyl Chloride 1 0 Xylene, m&p 5 2.34 Xylene, m&p 5 0 Xylene, m,m&p 50 2.34	Chlorobenzene	5	O
Chloroform 100*** 3.4 Dichlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&r 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 5 0 1,1 Dichloroethane 5 20.46 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,2 Dichloroethane 5 0 Ethylbenzene 5 0 Ethylbenzene 5 0 Methylene Chloride 5 14.38 Tetrachloroethane 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, m&p 5 2.34 Xylene, m,m&p 50 2.34	Chlorodibromomethane	50***	0
Dichlorobenzene, o&p 4.7 3.68 Dichlorobenzene, o,m&r 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 6 0 1,2 Dichloroethane 6 0 1,2 Dichloroethane 6 0 1,2 Dichloroethane 6 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethane 0.7 488.16 Toluene 6 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Chloroethane		0
Dichlorobenzene, o,m&r 50 3.68 1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethane 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethane 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Chloroform	100***	3.4
1,1 Dichloroethane 5 0 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 ols-1,2 Dichloroethane 6 20.46 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethane 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, name 5 0 Xylene, o,m&p 50 2.34	Dichlorobenzene, o&p	4.7	3.68
1,2 Dichloroethane 5 0 1,1 Dichloroethene 0.07 0 cls-1,2 Dichloroethene 5 20.46 trans-1,2 Dichloroethene 5 0 1,2 Dichloroethene 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 6 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Dichlorobenzene, o,m&ç	50	3.68
1,1 Dichloroethene 0.07 0 cls-1,2 Dichloroethene 6 20.46 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 6 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	1,1 Dichloroethane	5	0
ols-1,2 Dichloroethene 5 20.46 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, map 5 0 Xylene, o,m&p 50 2.34	1,2 Dichloroethane	5	. 0
trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 489.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, c,m&p 50 2.34	1,1 Dichloroethene	0.07	0
1,2 Dichloropropane 5 0 Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, c,m&p 50 2.34	ols-1,2 Diohloroethene	6	20.46
Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, a 5 2.34 Xylene, m&p 5 0 Xylene, a, m&p 50 2.34	trans-1,2 Diobloroethene	6	0
Ethylbenzene 5 0.04 Methylene Chloride 5 14.38 Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, a 5 2.34 Xylene, m&p 5 0 Xylene, a, m&p 50 2.34	1,2 Dichioropropane	5	0
Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Ethylbenzene	5	0.04
Tetrachloroethene 0.7 499.16 Toluene 5 0 1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Methylene Chloride	5	14.38
1,1,1 Trichloroethane 5 4.83 Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	· · · · · · · · · · · · · · · · · · ·	0.7	499.16
Trichloroethylene 5 43.31 Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Toluene	6	0
Vinyl Chloride 1 0 Xylene, o 5 2.34 Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	1,1,1 Trichiorcethane	6	4.83
Xylene, c 5 2.34 Xylene, m&p 5 0 Xylene, c,m&p 50 2.34	Trichloroethylene	5	43.31
Xylene, m&p 5 0 Xylene, o,m&p 50 2.34	Vinyl Chloride	1	O
Xylene, o,m&p 50 2.34	Xylene, o	5	2.34
	Xylene, m&p	5	O
tourTrihalomethanes (*** 100 0	Xylene, o,m&p	50	2.34
	tourTribaiomethanes (***	100	0

TOWN OF THE BANK

Department of Public Works
Groundwater Treatment Facility
FIDITANI S ANALYSIS, PT 1700


Au	g 26, 1993	WEIT_	5
	hemical	Concentr	ation
C	onstituent	Allowed *	Measured **
		(ug/l)	(ug/l)

Total VOCs	100	647.59
Benzene (ND)	0	6.73
Bromodichloromethane	50***	O
Bromoform	50***	O
Carbon Tetrachloride	5	O
Chlorobenzene	5	O
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	3.15
Dichlorobenzene, o&p	4.7	3.49
Dichlorobenzene, o,m&p	50	3.71
1,1 Dichloroethane	5	0.2
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
ols-1,2 Dichloroethene	5	22.88
trans-1,2 Dichloroethene	5	0
1,2 Dichloropropane	6	O
Ethylbenzene	5	0.07
Methylene Chloride	5	19.65
Tetrachioroethene	0.7	536.64
Toluene	5	0.36
1,1,1 Triohloroethane	5	4.21
Trichlorosthylene	5	47.08
Vinyl Chloride	1	0
Xylene, o	5	2.73
Xylene, m&p	5	0.18
Xylene, o,m&p	50	2.91
fourTrihalomethanes (***	100	0

Afficial Control of the Control of t

DOWN OF STREET

Department of Public Worts Groundwater Treatment Facility

Sep 2, 1993

WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)
Total VOCs	100	600.43
Benzene (ND)	0	6.29
Bromodichloromethane	50***	O
Bromoform	50***	0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0.58
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	0
Dichlorobenzene, o&p	4.7	4.3
Dichlorobenzene, o,m&ç		4.99
1,1 Dichloroethane	5	0
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
ols-1,2 Diohioroethene	<u> </u>	23.18
trans-1,2 Dichloroethene		1.12
1,2 Diohioropropane	6	0
Ethylbenzene	6	0.38
Methylene Chloride	5	18.1
Tetrachioroethene	0.7	493.49
Toluene	5	0.58
1,1,1 Triohioroethane	6	3.16
Trichloroethylene	5	44.76
Vinyl Chloride	11	0
Xylene, a	5	3.29
Xylene, m&p	5	0.53
Xylene, o,m&p	50	3.82
fourTrihalomethanes (***	100	9

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 9, 1993

WELL

Chemical	Concentration	
Constituent	Allowed *	Measured **
	(ug/l)	(u g/l)

Total VOCs	100	618.56
Benzene (ND)	O	6.21
Bromodiohioromethane:	50***	0
Bromotorm	50***	0
Carbon Tetrachloride	5	O D
Chlorobenzene	5	0.46
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	6,88
Dichicrobenzene, c&p	4.7	5.03
Dichlorobenzene, o.m&	50	5.77
1,1 Diohioroethane	5	0
1,2 Dichloroethane	5	1.35
1,1 Dichloroethene	0.07	0
ols-1,2 Diohioroethene	5	21.63
trans-1,2 Dichloroethene	5	o
1.2 Dichloropropane	5	0
Ethylbenzene	5	0.45
Methylene Chloride	5	27.49
Tetrachioroethene	0.7	486.04
Toluene	5	0.62
1,1,1 Trichloroethane	5	6.79
Trichloroethylene	5	51.07
Vinyl Chloride	1 :	0
Xylene, o	5	3.37
Xylene, m&p	5	0.53
Xylene, o,m&p	50	3.9
fourTrihalomethanes (***	100	0

- * Transportation y and the contraction of the state of the angle of the state of th
- · Compression committee allowable FFESSII amount intermeter impligated
- " Table concentration of these tors of histornationers that not exceed it is ugit.

STORMHOLDS THEREAS

Department of Public Works
Groundwaler Treatment Facility
FIREANT ANALYST AT FIRE

Sep 16, 1993

WELL

Chemical	Concentr	ation
Constituent	Allowed *	Measured **
	(ug/l)	(ug/l)

Tably/OCa	100	598,36
Total VOCs	100	+
Benzene (ND)		6.1
Bromodichloromethane	50***	0
Bromoform	50***	. 0
Carbon Tetrachloride	5	0
Chlorobenzene	5	0
Chlorodibromomethane	50***	0
Chloroethane	5	0
Chloroform	100***	4.4
Dichlorobenzene, o&p	4.7	4.32
Dichlorobenzene, o,m&ç	50	4.72
1,1 Dichloroethane	5	0.25
1,2 Dichloroethane	5	0
1,1 Dichloroethene	0.07	0
ois-1,2 Diohloroethene	6	21.25
trans-1,2 Dichloroethene	6	0
1,2 Diohioropropane	5	0
Ethylbenzene	5	0.27
Methylene Chloride	5	22.98
Tetrachloroethene	0.7	481.67
Toluene	5	0.41
1,1,1 Trichloroethane	5	4.96
Trichloroethylene	5	47.86
Vinyl Chloride	1	0
Xylene, a	_ 5	3.13
Xylene, m&p	5	0.36
Xylene, o,m&p	50	3.49
fourTrihalomethanes (***	100	0

- Engularry efficient discharge constants at specified in the Experient Parents
 and tracified by 11/10/65 intents for Town.

Department of Public Works
Groundwater Treatment Facility
ORGANICS ANALYSIS REPORT

Sep 23, 1993

WELL

	Chemical	Concentration	
	Constituent	Allowed *	Measured **
		(ug/l)	(ug/l)
	- Hillian - Hill		
	Total VOCs	100	656.01
	Benzene (ND)	0	7.41
	Bromodiohioromethane	50***	O
	Bromoform	50***	0
	Carbon Tetrachloride	5	0
	Chlorobenzene	5	0.33
	Chlorodibromomethane	50***	O
	Chloroethane	5	0
	Chloroform	100***	5.37
	Dichicrobenzene, cap	4.7	4.8
	Dichlorobenzene, o,m&		5.2
	1,1 Diohioroethane	- 6	0.27
	1,2 Dichloroethane	5	0
	1,1 Dichioroethene	0.07	0
	ois-1,2 Diohioroethene	- 5	27.42
	trans-1,2 Dichloroethene	5	0
	1,2 Diohioropropane	6	0
	Ethylbenzene	5	0.23
	Methylene Chloride	5	26.43
	Tetrachloroethene	0.7	523.27
	Toluene	5	0.3
	1,1,1 Trichloroethane	5	5.83
	Triohioroethylene	5	50.3
	Vinyl Chloride	1	0
	Xylene, o	5	3,28
	Xylene, m&p	5	0.27
	Xylene, o,m&p	50	3.56
	fourTrihalomethanes (***	100	· O
=			

- Toppolatory efficient discharge Handards of specified in the Coment Peores

 Following the Coment Peores
- Take concentrator of these boas that another as that not worse and this upt.

TOWN OF IT SHERBAY

Department of Public Works
Groundwater Treatment Facility
ORGANIC ANALYSIS ELECTRIC

Sep 30, 1993

WELL

Chemical	Concentr	ation
Constituent	* bewollA	Measured **
	(ug/l)	(ug/l)

Benzene (ND) 0 6.52 Bromodichloromethane 50*** 0 Bromotorm 50*** 0 Carbon Tetrachloride 5 0.12 Chlorobenzene 5 0.12 Chlorodibromomethane 50*** 0 Chlorotom 100*** 3.48 Chlorotom 100*** 3.49 Dichlorobenzene, o&p 4.7 2.92 Dichlorobenzene, o,m&r 50 3.09 1,1 Dichloroethane 5 0.39 1,2 Dichloroethane 5 0.07 01s-1,2 Dichloroethane 6 25.38 trans-1,2 Dichloroethane 5 0.07 Lthylbenzene 6 0.07 Methylene Chloride 5 22.17 Tetrachloroethane 0.7 487.07 Toluene 6 0.08 1,1,1 Trichloroethane 5 4.60			
Bromotorm 50°°°° (Carbon Tetrachloride 5 (Chlorobenzene 5 (Chlorodibromomethane 50°°°° (Chlorodibromomethane 50°°°° (Chlorodibromomethane 50°°°° (Chlorodibromomethane 50°°°° (Chlorodibromomethane 5 (Chlorotorm 100°°°° (Chlorotorm 100°°°° (Chlorobenzene, o&p 4.7 (2.9°° (2.9°° (2.9°° (2.9°° (2.9°° (2.9°° (2.9° (2	Total VOCs	100	600.89
Bromoform	Benzene (ND)	0	6.52
Carbon Tetrachloride 5 0.12 Chlorobenzene 5 0.12 Chlorodibromomethane 50°*** 0 Chlorotorm 100°*** 3.44 Chlorotorm 100°*** 3.44 Dichlorobenzene, o.m&r 50 3.04 Dichlorobenzene, o.m&r 50 3.04 1,1 Dichloroethane 5 0.34 1,2 Dichloroethane 5 0.34 1,1 Dichloroethane 5 0.07 0ls-1,2 Dichloroethane 6 25.3 trans-1,2 Dichloroethane 5 0.0 1,2 Dichloropropane 5 0.0 Ethylbenzene 5 0.0 Methylene Chloride 5 22.17 Tetrachloroethane 0.7 487.07 Toluene 5 0.0 1,1,1 Trichloroethane 5 4.6	Bromodichloromethane	50***	0
Chlorodibromomethane 50°*** 0.12 Chlorodibromomethane 50°*** 0 Chlorotorm 100°*** 3.48 Chlorotorm 100°*** 3.48 Dichlorobenzene, o&p 4.7 2.92 Dichlorobenzene, o,m&r 50 3.09 1,1 Dichloroethane 5 0.39 1,2 Dichloroethane 5 0.07 012-1,2 Dichloroethane 5 25.39 trans-1,2 Dichloroethane 5 0.07 1,2 Dichloroethane 5 0.0° Ethylbenzene 5 0.0° Methylene Chloride 5 22.1° Tetrachloroethane 0.7 487.0° Toluene 5 0.0° 1,1,1 Trichloroethane 5 4.6°	Bromoform	50***	0
Chlorodibromomethane 50°** 0 Chlorosthane 5 0 Chloroform 100°*** 3.44 Dichlorobenzene, o&p 4.7 2.97 Dichlorobenzene, o,m&r 50 3.00 1,1 Dichloroethane 5 0.33 1,2 Dichloroethane 5 0.07 0ls-1,2 Dichloroethane 5 25.33 trans-1,2 Dichloroethane 5 0.0° 1,2 Dichloroethane 5 0.0° Lethylbenzene 5 0.0° Methylene Chloride 5 22.1° Tetrachloroethane 0.7 487.0° Toluene 5 0.0° 1,1,1 Trichloroethane 5 4.6°	Carbon Tetrachloride	5	0
Chlorosthane 5 6 Chloroform 100°°° 3.48 Dichlorobenzene, o.m&p 4.7 2.92 Dichlorobenzene, o.m&p 50 3.00 1,1 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0.07 0is-1,2 Dichloroethane 6 25.30 trans-1,2 Dichloroethane 5 0.07 1,2 Dichloropropane 5 0.07 Ethylbenzene 5 0.07 Methylene Chloride 5 22.17 Tetrachloroethane 0.7 487.07 Toluene 5 0.08 1,1,1 Trichloroethane 5 4.68	Chlorobenzene	5	0.12
Chloroform 100*** 3.46 Dichlorobenzene, o&p 4.7 2.92 Dichlorobenzene, o,m&p 50 3.06 1,1 Dichloroethane 5 0.36 1,2 Dichloroethane 5 0.07 0ls-1,2 Dichloroethane 6 25.36 trans-1,2 Dichloroethane 5 0.07 1,2 Dichloropropane 5 0.07 Ethylbenzene 5 0.07 Methylene Chloride 5 22.17 Tetrachloroethane 0.7 487.07 Toluene 5 0.08 1,1,1 Trichloroethane 5 4.68	Chlorodibromomethane	50***	0
Dichlorobenzene, o&p 4.7 2.92 Dichlorobenzene, o,m&r 50 3.03 1,1 Dichloroethane 5 0.33 1,2 Dichloroethane 5 0.07 0ls-1,2 Dichloroethane 6 25.33 trans-1,2 Dichloroethane 5 0 1,2 Dichloroethane 6 0 1,2 Dichloropropane 6 0 Ethylbenzene 5 0.0° Methylene Chloride 5 22.1° Tetrachloroethane 0.7 487.0° Toluene 5 0.0° 1,1,1 Trichloroethane 5 4.6°	Chloroethane		O
Dichlorobenzene, o,m&r 50 3.00 1,1 Dichloroethane 5 0.39 1,2 Dichloroethane 5 0.07 1,1 Dichloroethene 0.07 0 cls-1,2 Dichloroethene 5 25.30 trans-1,2 Dichloroethene 5 0 1,2 Dichloropropane 6 0.00 Ethylbenzene 5 0.00 Methylene Chloride 5 22.17 Tetrachloroethene 0.7 487.07 Toluene 5 0.08 1,1,1 Trichloroethane 5 4.60	Chloroform	100***	3.48
1,1 Dichloroethane 5 0.35 1,2 Dichloroethane 5 0 1,1 Dichloroethane 0.07 0 cls-1,2 Dichloroethane 5 25.3 trans-1,2 Dichloroethane 5 0 1,2 Dichloropropane 5 0.0 Ethylbenzene 5 0.0 Methylene Chloride 5 22.17 Tetrachloroethane 0.7 487.07 Toluene 5 0.06 1,1,1 Trichloroethane 5 4.66	Dichlorobenzene, o&p	4.7	2.92
1,2 Dichloroethane 5 1,1 Dichloroethene 0.07 (25.3) cls-1,2 Dichloroethene 5 25.3) trans-1,2 Dichloroethene 5 (25.3) trans-1,2 Dichloroethene 5 (25.3) Ethylbenzene 5 (25.3) Methylene Chloride 5 22.17 Tetrachloroethene 0.7 487.07 Toluene 5 0.00 1,1,1 Trichloroethane 5 4.60	Dichlorobenzene, o.m&g	50	3.08
1,1 Dichloroethene 0.07 (als-1,2 Dichloroethene 5 25.3) trans-1,2 Dichloroethene 5 (als-1,2 Dichloroethene 5 (als-1,2 Dichloropropane 5 (als-1,2 Dichloroethene 5 (als-1,2 Dichloroethene 6 (als-1,	1,1 Dichloroethane	5	0.35
ois-1,2 Dichloroethene 5 25.38 trans-1,2 Dichloroethene 5 (25.38 1,2 Dichloropropane 5 (25.38 Ethylbenzene 5 (25.38 Methylene Chloride 5 22.17 Tetrachloroethene 0.7 487.07 Toluene 5 0.08 1,1,1 Trichloroethane 5 4.68	1,2 Dichloroethane	5	0
trans-1,2 Dichloroethene 5 1,2 Dichloropropane 5 Ethylbenzene 5 Methylene Chloride 5 Z2.17 Tetrachloroethene 0.7 Toluene 5 0.00 1,1,1 Trichloroethane 5 4.60	1,1 Dichloroethene	0.07	0
1,2 Dichloropropane50Ethylbenzene50.0°Methylene Chloride522.1°Tetrachloroethene0.7487.0°Toluene50.0°1,1,1 Trichloroethane54.6°	cis-1,2 Dichloroethene	6	25.39
Ethylbenzene 5 0.0° Methylene Chloride 5 22.1° Tetrachloroethene 0.7 487.0° Toluene 5 0.00 1,1,1 Trichloroethane 5 4.60	trans-1,2 Diobloroethene	5	o
Methylene Chloride522.17Tetrachloroethene0.7487.07Toluene50.081,1,1 Trichloroethane54.68	1,2 Dichloropropane	6	o
Tetrachloroethene 0.7 487.07 Toluene 5 0.00 1,1,1 Trichloroethane 5 4.60	Ethylbenzene	6	0.07
Tetrachloroethene 0.7 487.07 Toluene 5 0.06 1,1,1 Trichloroethane 5 4.66	Methylene Chloride	5	22.17
1,1,1 Trichloroethane 5 4.60	Tetrachloroethene	0.7	487.07
	Toluene	5	0.09
Trichloroethylene 5 45.50	1,1,1 Trichloroethane	5	4.65
	Trichloroethylene	5	45.56
Vinyl Chloride 1 (Vinyl Chloride	1	0
Xylene, o 5 2.3	Xylene, o	5	2.37
Xylene, m&p 5 0.0	Xylene, m&p	5	0.07
			2.44
fourTrihalomethanes (*** 100	fourTrihalomethanes (***	100	. 0

- · Pargo usony a dissonarity charges so not unit so a specific de la la la la come de la come.

 Pargo usony a dissonarity charges de la come.

APPENDIX D

Self-Monitoring Inorganic Analyses

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (C):	30702IA	SAMPLER:	PM/MA
LOCATION:		ANALYST:	PM
DATE:	7/2/93	TWE	8:10 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l):
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.255
DISSOLVED OXYGEN	>=5.0	2.9
AMMONIA	10	6.5

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30702EA	SAMPLER:	PM/MA
LOCATION		ANALYST:	
DATE:	7/2/93	工機伝	8:05 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.257
DISSOLVED OXYGEN	>=5.0	8.5
AMMONIA	10	6.75

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

 $_{\rm XXX}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30712IA	SAMPLER	LK
LOCATION	INFLUENT-RAP	ANALYST.	LK
DATE:	7/12/93	TIME	11:45 AM

WELL #1 & #3 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MÉASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	HOT PERFORMED
AMMONIA	10	NOI PERFORMED
		

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/68 LETTER TO THE TOWN.

 $_{\rm XXX}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30712 EA	SAMPLER:	LK
LOCATION::	EFFLUENI-RAP	ANALYST:	1K
DATE:	7/12/93	TUNE	11:30

WELL #1 6 #9 MEDE DOWN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D):	30714IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
OATE:	7/14/93	TWE	8:30 AM

WELL #5 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5,7
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30714EA	SAMPLER:	LK
LOCATION!	EFFLUENT-RAP	ANALYST:	LK
DATE:	7/14/93	TME	8:20 AM

MELL #5 MAS DOMN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	307 1 6IA	SAMPLER:	LK
LOCATION:::	INFLUENT-RAP	ANALYST:	LK
DATE:	7/16/93	TIME	8:05 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5,6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE. TOTAL	0.3	.270
DISSOLVED OXYGEN	>=5.0	3.0
AMMONIA	10	9.5

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30716EA	SAMPLER:	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	LK
DATE:	7/16/93	TME	7:55 AM

WELL #9 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* {mg/l}**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.268
DISSOLVED OXYGEN	>=5.0	8.8
AMMONIA	10	9

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO		SAMPLER:	MA & JB
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	7/19/93	TIME	11:05AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (ing/l)
pH (units)	6,5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	MOI PERFORMED
IRON, TOTAL	0.3	HOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5 . 0	HOI PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)		SAMPLER:	MA & JB
LOCATION	EFFLUENI-RAP	ANALYST:	LK
DATE	7/19/93	TWE	11:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLE 10:		SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE	7/21/93	TIME	8:00 AM

CHÉMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
(ennu) Ha	6.5 - 3.5	5.7
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	HOI PERFORMED
AMMONIA	10	NOI PERFORMED

W REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLETO	30721EA	SAMPLER:	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	LK
DATE	7/21/93	TWE	7:55 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLE ID:		SAMPLER:	LK
LOCATION!	INFLUENT-RAP	ANALYST:	
DATE.	7/23/93	TME	10:40 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.262
DISSOLVED OXYGEN	>=5.0	4.5
AMMONIA	10	5.38

^{**} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLE (Q):	30723EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE:	7/23/93	TWE	10:35 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.264
DISSOLVED OXYGEN	>=5.0	8.7
AINOMMA	10	5.00

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLE (D):	30726IA	SANPLER:	LK
LOCATION	INFLUENT-RAP	ANALYST:	LK
DATE:	7/26/93	工物层	11:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

央東 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (O)	30726EA	SAMPLER:	LK
LOCATION	EFFLUENI-RAP	ANALYST:	LK
DATE	7/26/93	TME	10:55 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AIMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MIG/L EXCEPT PH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30728IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE.	7/28/93	TIME	7:50 AM

WELL #2 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (ing/l)
(etinu) Hq	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	MOI PERFORMED
IRON, TOTAL	0,3	HOI PERFORMED
MANGANESE. TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	HOI PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLEID	30728EA	SAMPLER:	LK
LOCATION!		ANALYST:	LK
CATE	7/28/93	TORE	7:45 AM

WELL #2 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AIMOMIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/85 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30730IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	7/30/93	TIME	7:55 AM

WELL #1 & #5 WERE DOWN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	1.5
ORP (mv)	NO REQUIREMENT	MOI PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.207
DISSOLVED OXYGEN	>=5.0	2.4
AMMONIA	10	7.00
<u> </u>		
•		

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30730EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
CATE	7/30/93		7:55 AM

WELL #1 6 #5 WERE DOWN

CHEMICAL	ALLOWABLE EFFLUENT CONCENTRATION* tray/j**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.198
DISSOLVED OXYGEN	>=5.0	8.8
AMMONIA	10	7.00

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLEID	30802IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE	8/2/93	TWE	7:45 AM

WELL #1 & #5 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	HOI PERFORMED
MANGANESE. TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	HOI PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30802EA	SAMPLER	LK
LOCATION		ANALYST	
OATE	8/2/93	TOR	7:45 AM

WELL #1 & #5 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30804IA	SAMPLER:	LK
LOCATION !!	INFLUENT-RAP	ANALYST:	LK
CATE	8/4/93	TIME	8:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	.30804EA	SANPLER:	LK
LGCATION!	EFFLUENT-RAP	ANALYST:	LK
DATE	8/4/93	TOPE	7:55 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED
		

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30806IA	SAMPLER:	LK
LOCATION		ANALYST:	
DATE:	8/6/93	TIME	9:10 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.264
DISSOLVED OXYGEN	>=5.0	2.5
AMMONIA	10	7.62

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30806EA	\$AND LER	ĹK
LOCATION	EFFLUENT-RAP	ANALYST:	ĹK
CATE	8/6/93	1	9:05 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.267
DISSOLVED OXYGEN	>=5.0	8.6
AMMONIA	10	7.50

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/1/0/06 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (O):	30809IA	SAMPLER:	LK
LOCATION!!		ANALYST:	LK
CATE:	8/9/93	TIME	7:55 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* {mg/l}**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30809EA	SAMPLER:	LK
LOCATION:		ANALYST	LK
DATE:	8/9/93	T	7:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERPORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/08 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

SAMPLE (D)	30 811 IA	SAMPLER:	LK
LOCATION!		ANALYST:	LK
DATE	8/11/93	TIME	

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (Ing/I)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (U)	30811EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE	8/11/93	THE	7:50 AM

WELL #1 WAS DOWN

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.2
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AIMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/08 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT PH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30 816IA	SAMPLER:	LK
LOCATION!	INFLUENT-RAP	ANALYST:	LK
DATE:	8/16/93	TIME	

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (rig/l)
pH (units)	3.5 - 8.5	5.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.03
MANGANESE. TOTAL	0.3	0.187
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	5.12

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30816EA	SAMPLER:	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	
DATE	8/16/93	TIME:	8:15 AM

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.189
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	5.05

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

!NORGANICS ANALYSIS REPORT

SAMPLE ID:	30818IA	SANPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	8/18/93	T M €	

WELL #1 WAS DOWN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	3.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE. TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOI PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30818EA	SAMPLER:	LK
LOCATION:		ANALYST:	
DATE:	8/18/93	TME	7:40 AM

WELL #1 WAS DOWN.

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

火 REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

'NORGANICS ANALYSIS REPORT

SAMPLETO		SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	8/20/93	TIME:	1

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6 .5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	MOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE. TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	MOI PERFORMED
	i	

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO:	30820EA	SAMPLER:	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	
DATE	8/20/93	TWE	7:45 AM

WELL #1 WAS DOWN.

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)	
pH (units)	6.5 - 8.5	7.4	
ORP (mv)	NO REQUIREMENT	NOI PERFORMED	
IRON, TOTAL	0.3	NOT PERFORMED	
MANGANESE, TOTAL	0.3	NOT PERFORMED	
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED	
AMMONIA	10	NOT PERFORMED	

^{**} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

!NORGANICS ANALYSIS REPORT

	30823IA	SAMPLER:	LK
LOCATION!	INFLUENT-RAP	ANALYST:	LK
DATE:	8/23/93	TIME	7:58 AM

Well # 1 was Sown

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.3
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.184
DISSOLVED OXYGEN	>=5.0	4.00
AMMONIA	10	4.62

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30823EA	SAMPLER:	LK
LOCATION!		ANALYST:	
DATE	8/23/93	TOPE	7:50 AM

Well # 1 was lown

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.3
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.189
DISSOLVED OXYGEN	>=5.0	8.1
AIMOMIMA	10	4.88
	-	

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/08 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

INORGANICS ANALYSIS REPORT

SAMPLETO		SAMPLER:	LK
LOCATION!!	INFLUENT-RAP	ANALYST:	LK
DATE	8/27/93	TIME	

MELL #1 MAS DOMN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30827EA	SAMPLER:	LK
LOCATION!	EFFLUENT-RAP	ANALYST:	LK .
DATE:	8/27/93	TORE	11:15 AM

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l):
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30831IA	AVIDLEA.	LK
LOCATION:	INFLUENT-RAP	ANALYST:	
DATE:	8/31/93	TME	8:00 AM

WELLS #1.& #4 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.237
DISSOLVED OXYGEN	>=5.0	3
AMMONIA	10	6.5

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30831EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE	8/31/93		7:50 AM

WELL #1 & #4 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLIENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mgf)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.240
DISSOLVED OXYGEN	>=5.0	6.4
AMMONIA	10	6.75

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/06 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT PH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30903IA	SAMPLER:	LK
LOCATION!!	INFLUENT-RAP	ANALYST:	LK
DATE:	9/3/93	TIME	8:05 AM

WELLS #1 % #4 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	MOT PERFORMED
MANGANESE. TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ - ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30903EA	SAMPLES:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE	9/3/93		8:00 AM

WELLS #1 & #4 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLIENT CONCENTRATION* (mg/)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/08 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30908IA	SAMPLER:	LK
LOCATION	INFLUENT-RAP	ANALYST:	LK
DATE:	9/8/93	TIME	10:30 AM

WELL #1 MAS DOWN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ - ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

\$310PLE (C):	30908EA	SAMPLER	LK
LOCATION		ANALYST:	
CATE	9/8/93	TORE	10:25 AM

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLIENT CONCENTRATION* (100/1)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID	30 91 0IA	SAMPLER	LK
LOCATION	INFLUENT-RAP	ANALYST:	LK
DATE	9/10/93	TIME	2:35 PM

WELL #1 WAS DOWN. DIHERS WERE UP AT 2:10 PM.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (rng/l)
pH (units)	5.5 + 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0,3	HOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	HOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLERO	30910EA	SAMPLER	LK
LOCATION	EFFLUENT-RAP	ANALYST	LK
DATE	9/10/93	TOPE	2:30 PM

WELL #1 WAS DOWN. OTHERS UP AT 2:10 PM.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLIENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	6.0
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERPORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODRIED BY 11/10/06 LETTER TO THE TOWN.

^{##} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.
HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30915IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	9/15/93	TIME	8:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.177
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	1.75

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30915EA	SAMPLER:	LK
LOCATION!		ANALYST:	
DATE:	9/15/93	TME	8:45 AM

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.177
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	1.38

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODRHED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

3AMPLE ID:	30 916 IA	SAMPLER:	LK
LOCATION!!	INFLUENT-RAP	ANALYST:	LK
DATE	9/16/93	TIME:	8:05 AM

Well # 1 was down

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
oH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	<u> </u>	HOI PERFORMED
AMMONIA	10	NOI PERFORMED

^{**} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

東東 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30916EA	SAMPLER:	LK
LOCATION :	EFFLUENT-RAP	ANALYST:	LK
DATE	9/16/93	TME	11:15 AM

WELL #1 WAS DOWN.

Chenical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	7.4
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30 91 7IA	SAMPLER:	LK
LOCATION!	INFLUENT-RAP	ANALYST:	LK
DATE:	9/17/93	TIME	7:55 AM

Well # I was down.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	3
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ - ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (O)	30917EA	SAMPLER.	LK
LOCATION	EFFLUENI-RAP	ANALYST:	LK
DATE:	9/17/93	丁柳 医	7:50 AM

Well # 1 was lown ALLOWABLE EFFLUENT MEASURED CONSTITUENT CONCENTRATION CONCENTRATION*** (mg/l)** (mg/l) 6.5 - 8.55.8 pH (units) **NO REQUIREMENT** NOT PERFORMED ORP (mv) NOI PERFORMED 0.3 IRON, TOTAL 0.3 **HOT PERFORMED MANGANESE, TOTAL** >=5.0 7.8 DISSOLVED OXYGEN NOT PERFORMED **AMMONIA** 10

米水 地域水 地域水 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30920IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	9/20/93	TIME	8:00 AM

Well # I was Lown.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	4
AMMONIA	10	NOI PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30920EA	SAMPLER:	LK
LOCATION		ANALYST:	
DATE	9/20/93	TIME	7:55 AM

Well #1 was down.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.5
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	8.1
AMMOMIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\rm XXX}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30921IA	SAMPLER:	LK
LOCATION:		ANALYST:	
DATE;	9/21/93	TIME	1:30 PM

Dell #1 was down.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.2
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	3.6
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30921EA	SAMPLER:	LK
LOCATION		ANALYST:	LK
DATE	9/21/93	TME	1:25 PM

Well # 1 was down.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.2
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	8.6
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30922IA	SAMPLER:	LK
LOCATION!		ANALYST:	
DATE:	9/22/93	TIME	7:50 AM

WELL #1 WAS DOWN.

CHÉMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30922EA	SAMPLER:	LK
LOCATION:		ANALYST:	
DATE:	9/22/93	TIME	7:45 AM

WELL #1 DOWN.

Chenical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.9
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERPORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30923IA	SAMPLES:	LK
LOCATION!!		ANALYST:	LK
DATE:	9/23/93	TIME	

WELL #1 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLEID	30923EA	SAMPLER	LK
LOCATION		ANALYST:	LK
OATE:	9/23/93	Time	9:25 AM

WELL #1 WAS DOWN

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED
_		

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/1/0/88 LETTER TO THE TOWN.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30924IA	SAMPLEY:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	9/24/93	TIME	9:45 AM

17

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.188
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	4.88
	West of the second seco	

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $[\]chi_{\rm SM}$ - ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30924EA	SAMPLEP:	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	LK
DATE:	9/24/93	TWE	9:40 AM

Well # 1 was down

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.1
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.192
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	5.00

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30927IA	SAMPLER:	LK
LOCATION:	INFLUENT-RAP	ANALYST:	LK
DATE:	9/27/93	TIME:	8:40 AM

11) ell # 1 was down.

ALLOWABLE EFFLUENT MEASURED CONCENTRATION" CONCENTRATION* CONSTITUENT (mg/l)** (mg/l) 5.5 pH (units) 6.5 - 8.5**NO REQUIREMENT** NOT PERFORMED ORP (mv) NOI PERFORMED IRON, TOTAL 0.3 NOT PERFORMED **MANGANESE, TOTAL** 0.3 **DISSOLVED OXYGEN** >=5.0 NOT PERFORMED NOT PERFORMED 10 **AMMONIA**

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLERO	30927EA	SAMPLER:	LK
LOCATION	EFFLUENI-RAP	ANALYST:	LK
QATE:	9/27/93	TME	8:35 AM

CHEMICAL ALLOWABLE EFFLUENT MEASURED CONCENTRATION* CONCENTRATION"" CONSTITUENT (mg/l)** (mg/l) 7.4 pH (units) **5.5 - 8.5 NO REQUIREMENT** NOT PERFORMED ORP (mv) NOT PERFORMED IRON, TOTAL 0.3 MANGANESE, TOTAL 0.3 NOT PERFORMED >=5.0 NOI PERFORMED **DISSOLVED OXYGEN** NOT PERFORMED 10 **AMMONIA**

Well #1 was down.

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30928IA	SAMPLER	LK
LOCATION!!	INFLUENT-RAP	ANALYST:	LK
DATE:	9/28/93	TIME	7:50 AM

Well # I was down. ALLOWABLE EFFEUENT MEASURED CONCENTRATION* CONCENTRATION*** CONSTITUENT (mg/l) (mg/l)** ä.**5 -** 3.5 aH (units) CRP (mv) NO REQUIREMENT MOI PERFORMED HOI CERFORMED IRON, TOTAL 0.3 MANGANESE, TOTAL 0.3MOI PERFORMED >=5.0 HOI PERFORMED **DISSOLVED OXYGEN** HOT PERFORMED 10 **AMMONIA**

A REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.
HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (0)	30928EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE:	9/28/93	TIME	7:45 AM

WELL #1 WAS DOWN.

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.2
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30929IA	SAMPLER.	LK
LOCATION::	INFLUENT-RAP	ANALYST:	LK
DATE	9/29/93	TIME:	7:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION***
(zinu) Ho	5.5 - 8 .5	□. ↓
ORP (mv)	NO REQUIREMENT	MOI PERFORMED
RON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	HOT PERFORMED
AMMONIA	10	NOT PERFORMED
	1	

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\tiny MMM}}$ - ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30929EA	SAMPLER	LK
LOCATION:	EFFLUENT-RAP	ANALYST:	LK
CATE	9/29/93	TIME	7:40 AM

well #1 was down

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.2
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	2.0	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.
HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS **GROUNDWATER TREATMENT FACILITY**

!NORGANICS ANALYSIS REPORT

SAMPLE ID.	30930IA	SAMPLER:	LK
LOCATION!!	INFLUENT-PAP	ANALYST:	LK
DATE:	6\3 0\3 8	TIME!	3:10 AM

10) 01/ # / 1

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION! (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
on (units)	ö.5 - 3.5	3.4
ORP (my)	NO REQUIREMENT	MOT PERFORMED
RON, TOTAL	2.3	HOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED
	i	
i		

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

来来 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30930EA	SAMPLER:	LK
LOCATION	EFFLUENT-RAP	ANALYST:	LK
DATE:	9/30/93	下 脚匠	8:05 AM

1.) oll # 1 was down

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	7.3
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30701W1	SANPLER:	PM/MA
LOCATION	WELL 1	ANALYST:	PM
DATE	7/1/93	TME	8:00-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.15
MANGANESE, TOTAL	0.3	0.559
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AIMOMIA	10	18.625

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT PH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:		SAMPLER:	MA & JB
LOCATION	WELL 1	ANALYST:	LK
CATE	7/15/93	TME	8:25-8:45 AM

WELL #4 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5.5 - 8.5	5.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30722W1	SAMPLER:	MA & JB
LOCATION	WE11 1	ANALYST	LK
DATE:	7/22/93	TME	8:05-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.14
MANGANESE, TOTAL	0.3	0.562
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	19.5

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS 火 MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

384P/LE 10:	30805W1	SAMPLER:	MA & JB
LOCATION	WELL 1	ANALYST:	LK
OATE:	8/5/93	T T	9:05-9:30 AM

CHERICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.12
MANGANESE, TOTAL	0.3	0.548
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	18.75

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30701W2	SAMPLER:	PM/MA
LOCATION:		ANALYST	
DATE:	7/1/93	TOE	8:00-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.303
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	16

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO:	30 71 5W2	SAMPLER:	MA & JB
LOCATION	WELL 2	ANALYST:	LK
DATE:	7/15/93	下降 尼	8:25-8:45 AM

WELL #4 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\chi\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30729W2	SAMPLER:	MA & JB
LOCATION	WELL 2	ANALYST:	
DATE:	7/29/93	工機匠	10:00-10:20 AM

WELL #1.6#5 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	2.0	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERPORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30805W2	SAMPLER:	MA & JB
LOCATION !	WELL 2	ANALYST:	LK
OATE:	8/5/93	TOPE	9:05-9:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	2.0	0.296
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	16.38

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS 火 MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (C):	30812W2	SAMPLER	MA & JB
LOCATION!		ANALYST:	LK
QATE:	8/12/93	TIME	8:25-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO:	30819W2	SAMPLER:	MA & JB
LOCATION!	WELL 2	ANALYST:	LK
DATE:	8/19/93	TWE	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.300
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	16.5

火 REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ — ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 大大大 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30826W2	SAMPLER:	MA & JB
LOCATION!	WELL 2	ANALYST:	LK
DATE	8/26/93	TOPE	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/08 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SIMPLETO	30902W2	\$AMPLEY:	MA & JB
LOCATION:		ANALYST:	LK
OATE:	9/2/93	T	8:30-8:45 AM

CHEMICAL COMSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.300
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	16.12

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30909W2	SAMPLER:	MA & 66
LOCATION:	WELL 2	ANALYST:	LK
DATE:	9/9/93	TIME	9:00-9:15 AM

WELLS #1 6 #9 WERE DOWN

CHÉMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOI PERFORMED
	-	

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS 火 MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30916W2	SAMPLER:	MA & JB
LOCATION!	WELL 2	ANALYST	
CATE:	9/16/93	TIME	8:10-8:35 AM

Well #1 was down

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.5
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.301
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	16.38

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN NIG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30923W2	SAMPLER:	MA & JB
LOCATION	WELL 2	ANALYST:	LK
DATE:	9/23/93	TOME	8:30-8:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.6
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30930W2	SAMPLER:	MA & JB
LOCATION	WELL 2	ANALYST:	LK
DATE:	9/30/93	TIME	8:10 AM

CHÉMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.4
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.300
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	16.1

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS NODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30701W3	SAMPLER:	PM/MA
LOCATION!	WELL 3	ANALYST:	PM
DATE	7/1/93	TME	8:00-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.249
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.47

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/1/0/08 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (O:	30 715 W3	SAMPLER:	MA & JB
LOCATION	WELL 3	ANALYST:	LK
DATE:	7/15/93	TME	8:25-8:45 AM

WELL #4 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.0
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30722W3	SAMPLER:	MA & JB
LOCATION!		ANALYST:	
DATE:	7/22/93	TOTE	8:05-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.00
MANGANESE, TOTAL	0.3	0.246
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.45

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30729W3	SAMPLER:	MA & JB
LOCATION:		ANALYST:	
DATE:	7/29/93	TWE	10:00-10:20 AM

WELL #1.6#5 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10: 30805W3	SAMPLER: MA & JB
LACATION: WELL 3	ANALYST: LK
OATE: 8/5/93	9:05-9:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.246
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AIMONINA	10	0.45

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/06 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (C):	30812W3	SARPLER:	MA & JB
LOCATION:	WELL 3	ANALYST:	LK
DATE:	8/12/93	TWE	8:25-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.0
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

XX ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30819W3	SAMPLER:	MA & JB
LOCATION:	WELL 3	ANALYST:	LK
DATE:	8/19/93	TIME	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.249
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.45

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11M0/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30826W3	SAMPLER:	MA & JB
LOCATION!		ANALYST	
DATE:	8/26/93	TRIE	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERPORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30902W3	\$AMPLER:	MA & JB
LOCATION!!		ANALYST	LK
OATE:	9/2/93	TOP	8:30-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.247
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.45

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

** ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30916W3	SAMPLER:	MA & JB
LOCATION!		ANALYST	
DATE:	9/16/93	下确定	8:10-8:35 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.248
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.44

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\rm XXX}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30923W3	SAMPLER	MA & JB
LOCATION!	WELL 3	ANALYST:	LK
DATE:	9/23/93	TME	8:30-8:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	5.0
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

火 REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MGAL EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30930W3	SAMPLER:	MA & JB
LOCATION!!	WELL 3	ANALYST:	LK
DATE	9/30/93	丁则 包	8:15 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.248
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.45

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30701W4	SAMPLER:	PM/MA
LOCATION	WELL 4	ANALYST:	PM
DATE:	7/1/93	TOPE	8:00-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/i)**	MEASURED CONCENTRATION*** (mg/l):
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.01
MANGANESE, TOTAL	0.3	0.031
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.02

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10	30722W4	SAMPLER:	MA & JB
LOCATION !		ANALYST:	LK
DATE	7/22/93	下随后	8:05-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.05
MANGANESE, TOTAL	0.3	0.027
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.03

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30729W4	SAMPLER:	MA & JB
LOCATION:	WELL 4	ANALYST:	LK
CATE:	7/29/93	TOME	10:00-10:20 AM

WELL #1.6#5 WERE DOWN.

CHEMICAL	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED
	_	

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

 $_{\mbox{\scriptsize MW}}$ ALL CONCENTRATIONS EXPRESSED IN NG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO:	30812W4	SARPLER:	MA & JB
LOCATION!	WELL 4	ANALYST	LK
CATE:	8/12/93	TWE	8:25-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOT PERFORMED

火 REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

 $_{\chi\chi}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30819W4	SAMPLER:	MA & JB
LOCATION:	WELL 4	ANALYST:	LK
OATE:	8/19/93	下降	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.031
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	0.03

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE ID:	30826W4	SAMPLER	MA & JB
LOCATION!	WELL 4	ANALYST:	LK
OATE:	8/26/93	TME	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	5. 5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOI PERFORMED

 $[\]star$ REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

** ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30909W4	SAMPLER:	MA & BB
LOCATION:		ANALYST:	
DATE	9/9/93	TIME	9:00-9:15 AM

WELLS #1 & #9 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30916W4	SAMPLEY:	MA & JB
LOCATION		ANALYST:	LK
DATE:	9/16/93	TIME	8:10-8:35 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.03
MANGANESE, TOTAL	0.3	0.027
DISSOLVED OXYGEN	>=5.0	NOI PERFORMED
AMMONIA	10	0.03

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/16 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30923W4	SAMPLER:	MA & JB
LOCATION		ANALYST:	
CATE	9/23/93	TME	8:30-8:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AIMOMIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO:	30930W4	SAMPLER:	MA & JB
LOCATION	WELL 4	ANALYST:	LK
DATE	9/30/93	TIME	8:20 AM

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.7
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.02
MANGANESE, TOTAL	0.3	0.030
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	0.03

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30701W5	SAMPLER:	PM/MA
LOCATION	WELL 5	ANALYST:	
DATE:	7/1/93	TME	8:00-8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.03
MANGANESE, TOTAL	0.3	0.153
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.16

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/86 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT PH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE (D)	30715W5	SAMPLER:	MA & JB
LOCATION	WELL 5	ANALYST:	LK
DATE:	7/15/93	TWE	8:25-8:45 AM

WELL #4 WAS DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFOMRED
IRON, TOTAL	0.3	NOT PERFOMRED
MANGANESE, TOTAL	0.3	NOT PERFOMRED
DISSOLVED OXYGEN	>=5.0	NOT PERPOMRED
AMMONIA	10	NOT PERFOMRED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30722W5	SAMPLER:	MA & JB
LOCATION		ANALYST:	
DATE	7/22/93	TME	8:05-8:30 AM

Chemical Constituent	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.03
MANGANESE, TOTAL	0.3	0.147
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AIMOMIA	10	0.17

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

 $_{\rm XXX}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLEXIX	30805W5		MA & JB
LOCATION	WELL 5	ANALYST:	LK
DATE	8/5/93		9:05-9:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 <u>-</u> - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.163
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	0.19

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/06 LETTER TO THE TOWN.

大大大 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30812W5	SAMPLER:	MA & JB
LOCATION	WELL 5	ANALYST:	LK
OATE:	8/12/93	TME	8:25-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASLIRED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOI PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30819W5	SAMPLER:	MA & JB
LOCATION!		ANALYST:	
DATE	8/19/93	TWE	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.158
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.18

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

*** HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE IO	30826W5	SAMPLER	MA & JB
LOCATION!		ANALYST	
CATE:	8/26/93	TME	8:30-9:00 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOI PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	NOT PERFORMED
-		-
		<u> </u>
<u> </u>		

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/98 LETTER TO THE TOWN.

ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

光光 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30902W5	SAMPLEY:	MA & JB
LOCATION!	WELL 5	ANALYST:	LK
CATE	9/2/93		8:30-8:45 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.153
DISSOLVED OXYGEN	>=5.0	NOT PERPORMED
AMMONIA	10	0.18

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

大大大 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

 $_{\mbox{\scriptsize MW}}$ ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30909W5	SAMPLER:	MA & BB
LOCATION	WELL 5	ANALYST:	LK
OATE:	9/9/93	TME	9:00-9:15 AM

WELLS #1 & #3 WERE DOWN.

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l):
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	NOI PERFORMED

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

^{**} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30916W5	SAMPLER:	MA & JB
LOCATION	WELL 5	ANALYST:	LK
DATE:	9/16/93	TME	8:10-8:35 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.8
ORP (mv)	NO REQUIREMENT	NOI PERFORMED
IRON, TOTAL	0.3	0.03
MANGANESE, TOTAL	0.3	0.162
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.17

REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS * MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP. 火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLETO	30923W5	SAMPLER:	MA & JB
LOCATION	WELL 5	ANALYST:	LK
DATE	9/23/93	TOME	8:30-8:50 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION: (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.9
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	NOT PERFORMED
MANGANESE, TOTAL	0.3	NOT PERFORMED
DISSOLVED OXYGEN	>=5.0	NOI PERPORMED
AMMONIA	10	NOT PERFORMED
-		

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

火火火 HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

火火 ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT PH AND ORP.

DEPARTMENT OF PUBLIC WORKS GROUNDWATER TREATMENT FACILITY

INORGANICS ANALYSIS REPORT

SAMPLE 10:	30930W5	SAMPLER:	MA & JB
LOCATION	WELL 5	ANALYST:	LK
DATE:	9/30/93	TIME	8:30 AM

CHEMICAL CONSTITUENT	ALLOWABLE EFFLUENT CONCENTRATION* (mg/l)**	MEASURED CONCENTRATION*** (mg/l)
pH (units)	6.5 - 8.5	4.7
ORP (mv)	NO REQUIREMENT	NOT PERFORMED
IRON, TOTAL	0.3	0.04
MANGANESE, TOTAL	0.3	0.164
DISSOLVED OXYGEN	>=5.0	NOT PERFORMED
AMMONIA	10	0.17

^{*} REGULATORY EFFLUENT DISCHARGE STANDARDS AS SPECIFIED IN THE CONSENT DECREE AND AS MODIFIED BY 11/10/88 LETTER TO THE TOWN.

^{###} ALL CONCENTRATIONS EXPRESSED IN MG/L EXCEPT pH AND ORP.
HIGHLIGHTED COMPOUNDS IN EXCESS OF REQUIRED EFFLUENT CONCENTRATIONS.

APPENDIX E

SPDES Reports

LAB NO. 0932939/1

07/28/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

DATE COL'D:07/14/93 RECEIVED:07/14/93 COLLECTED BY: Client

SAMPLE: Wastewater sample, Influent

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Vinyl Chloride	ug/L	6.2	
Chloroethane	ug/L	2.2	
Methylene Chloride	ug/L	2.7	
1,1 Dichloroethene	ug/L	<1.	
1,2 Dichloroethene	ug/L	48	
Chloroform	ug/L	<1.	
1,2 Dichloroethane	ug/L	<1.	
1,1 Dichloroethane	ug/L	11	
111 Trichloroethane	ug/L	1.2	
Carbon Tetrachloride	ug/L	<1.	
Bromodichloromethane	ug/L	<1.	
1,2 Dichloropropane	ug/L	<1.	
Trichloroethylene	ug/L	4.6	
Chlorodibromomethane	ug/L	<1.	
Bromoform	ug/L	<2.	
Tetrachloroethene	ug/L	67	
Chlorobenzene	ug/L	<1.	
1,2 Dichlorobenzene	ug/L	<2.	
1,3 Dichlorobenzene	ug/L	<2.	
1,4 Dichlorobenzene	ug/L	<2.	
Benzene	ug/L	3. '9	
Toluene	ug/L	<2.	
Ethyl Benzene	ug/L	<1.	
m Xylene	ug/L	<2.	
o+p Xylene	ug/L	<4.	

cc:

REMARKS:

DIRECTOR

LAB NO. 0932939/2

07/28/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:07/14/93 RECEIVED:07/14/93

SAMPLE: Wastewater sample, Effluent

ANALYTICAL PARAM	ETERS		ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	<1.		
Chloroethane	ug/L	<1.		
Methylene Chloride	ug/L	<1.		
1,1 Dichloroethene	ug/L	ND+		
1,2 Dichloroethene	ug/L	<1.		
Chloroform	ug/L	<1.		
1,2 Dichloroethane	ug/L	<1.		
1,1 Dichloroethane	ug/L	<1.		
111 Trichloroethane	ug/L	<1.		
Carbon Tetrachloride	ug/L	<1.		
Bromodichloromethane	ug/L	<1.		
1,2 Dichloropropane	ug/L	<1.		
Trichloroethylene	ug/L	<1.		
Chlorodibromomethane	ug/L	<1.		
Bromoform	ug/L	<2.		
Tetrachloroethene	ug/L	<1.		
Chlorobenzene	ug/L	<1.		
1,2 Dichlorobenzene	ug/L	<2.		
1,3 Dichlorobenzene	ug/L	<2.		
1,4 Dichlorobenzene	ug/L	<2.		
Benzene	ug/L	<1.		
Toluene	ug/L	<2.		
Ethyl Benzene	ug/L	<1.		
m Xylene	ug/L	<2.		
o÷p Xyle ne	ug/L	<4.		

cc:

REMARKS: * Not detected at the MDL of 0.07 ug/L.

DIRECTOR_

LAB NO. 0932939/3

07/28/93

ANALYTICAL PARAMETERS

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

FOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:07/14/93 RECEIVED:07/14/93

SAMPLE: Wastewater sample, Air Stripper Effluent

ANALYTICAL PARAMETERS 0.10 Barium as Ba ma/L <0.001 Cadmium as Cd mg/L Chloride as Cl mg/L 130 Chromium as Cr <0.02 mq/L Copper as Cu <0.02 mq/L Cyanide as CN mg/L <0.02 Iron as Fe 0.07 mg/L Lead as Pb <0.005 mg/L Magnesium as Mg mg/L 10 Manganese as Mn mq/L 0.28 <0.001 Mercury as Hg mg/L <0.01 Silver as Ag mg/L <0.02 Zinc as Zn mq/L Tot Dissolved Solids mg/L 290 Nitrate as N mg/L 0.7 Sulfate as 504 mg/L 20

mg/L

<0.001

cc:

Phenols as Phenol

REMARKS:

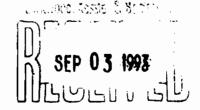
DIRECTOR

ECO EST LABORATORIES, INC.

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C933507/1

08/31/93


ANALYTICAL PARAMETERS

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:08/16/93 RECEIVED:08/16/93

SAMPLE: Wastewater sample, Influent

ANALYTICAL PARAME	ETERS	
Vinyl Chloride	ug/L	4.7
Chloroethane	ug/L	1.6
Methylene Chloride	ug/L	3.0
1,1 Dichloroethene	ug/L	<1.
1,2 Dichloroethene	ug/L	51
Chloroform	ug/L	<1.
1,2 Dichloroethane	ug/L	<1.
1,1 Dichloroethane	ug/L	9.7
111 Trichloroethane	ug/L	2.7
Carbon Tetrachloride	ug/L	<1.
Bromodichloromethane	ug/L	<1.
1,2 Dichloropropane	ug/L	<1.
Trichloroethylene	ug/L	18
Chlorodibromomethane	ug/L·	<1.
Bromoform	ug/L	<2.
Tetrachloroethene	ug/L	170
Chlorobenzene	ug/L	1.1
1,2 Dichlorobenzene	ug/L	<2.
1,3 Dichlorobenzene	ug/L	<2.
1,4 Dichlorobenzene	ug/L	<2.
Benzene	ug/L	4.8
Toluene	ug/L	<2.
Ethyl Benzene	ug/L	<1.
m Xylene	ug/L	<2.
o+p Xylene	ug/L	5.8

cc:

REMARKS:

DIRECTOR

LAB NO. C933507/2

08/31/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:08/16/93 RECEIVED:08/16/93

SAMPLE: Wastewater sample, Effluent

ANALYTICAL PARAM	ETERS		ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	<1.		
Chloroethane	ug/L	<1.		
Methylene Chloride	ug/L	<1.		
1,1 Dichloroethene	ug/L	ND*		
1,2 Dichloroethene	ug/L	<1.		
Chloroform	ug/L	<1.		
1,2 Dichloroethane	ug/L	<1.		
1,1 Dichloroethane	ug/L	<1.		
111 Trichloroethane	ug/L	<1.		
Carbon Tetrachloride	ug/L	<1.		
Bromodichloromethane	ug/L	<1.		
1,2 Dichloropropane	ug/L	<1.		
Trichloroethylene	ug/L	<1.		
Chlorodibromomethane	ug/L	<1.		
Bromoform	ug/L	<2.		
Tetrachloroethene	ug/L	<1.		
Chlorobenzene	ug/L	<1.		
1,2 Dichlorobenzene	ug/L	<2.		
1,3 Dichlorobenzene	ug/L	<2.		
1,4 Dichlorobenzene	ug/L	<2.		
Benzene	ug/L	<1.		
Toluene	ug/L	<2.		
Ethyl Benzene	ug/L	<1.		
m Xylene	ug/L	<2.		
o÷p Xylene	ug/L	<4.		

cc:

REMARKS: . Not detected at the MDL of 0.07 ug/L.

LAB NO. C933507/3

08/31/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Ray Wegener

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:08/16/93 RECEIVED:08/16/93

SAMPLE: Wastewater sample, Air Stripper Effluent

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

MUNICITIONS CHARACTE	110117	
Barium as Ba	mg/L	0.10
Cadmium as Cd	mg/L	<0.001
Chloride as Cl	mg/L	94
Chromium as Cr	mg/L	<0.02
Copper as Cu	mg/L	<0.02
Cyanide as CN	mg/L	<0.02
Iron as Fe	mg/L	0.15
Lead as Pb	mg/L	<0.005
Magnesium as Mg	mg/L	7.6
Manganese as Mn	mg/L	0.17
Mercury as Hg	mg/L	<0.001
Silver as Ag	mg/L	<0.05
Zinc as Zn	mg/L	0.04
Tot Dissolved Solids	mg/L	230
Nitrate as N	mg/L	1.0
Sulfate as SO4	mg/L	15
Phenols as Phenol	mg/L	<0.001

cc:

REMARKS:

DIRECTOR

LAB NO. C934005/1

10/04/93

Locky

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

Laureen Ku

Town of Oyster Bay-Solid Waste Disp SOURCE OF SAMPLE:

COLLECTED BY: Client

DATE COL'D:09/15/93 RECEIVED:09/15/93

SAMPLE: Wastewater sample, Air Stripper Influent

ANALYTICAL PARAM	ETERS			ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	5. 1	•		
Chloroethane	ug/L	<1.		•	
Methylene Chloride	ug/L	<1.			
1,1 Dichloroethene	ug/L	<1.			
1,2 Dichloroethene	ug/L	59			
Chloroform	ug/L	<1.			
1,2 Dichloroethane	ug/L	<1.			
1,1 Dichloroethane	ug/L	9.0			
111 Trichloroethane	ug/L	2.2			
Carbon Tetrachloride	ug/L	<1.			
Bromodichloromethane	ug/L	<1.			•
1,2 Dichloropropane	ug/L	<1.			
Trichloroethylene	ug/L	17			
Chlorodibromomethane	ug/L	<1.			
Bromoform	ug/L	<2.			
Tetrachloroethene	ug/L	170			
Chlorobenzene	ug/L	<1.			
1,2 Dichlorobenzene	ug/L	<2.			
1,3 Dichlorobenzene	ug/L	<2.			
1,4 Dichlorobenzene	ug/L	<2.			
Benzene	ug/L	15			
Toluene	ug/L	<2.			
Ethyl Benzene	ug/L	<1.			, •
m Xylene	ug/L	<2.		•	
o+p Xylene	ug/L	<4.			

cc:

REMARKS:

LAB NO. C934005/2

10/04/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Laureen Ku

OCT 0 8 19931

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:09/15/93 RECEIVED:09/15/93

SAMPLE: Wasteyater sample, Air Stripper Effluent

ANALYTICAL PARAM	ETERS		ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	1.1		
Chloroethane	ug/L	<1.		
Methylene Chloride	ug/L	<1.		
1,1 Dichloroethene	ug/L	0. 1 9		
1,2 Dichloroethene	ug/L	14		
Chloroform	ug/L	<1.		
1,2 Dichloroethane	ug/L	<1.		
1,1 Dichloroethane	ug/L	1.7		
111 Trichloroethane	ug/L	<1.		
Carbon Tetrachloride	ug/L	<1.		
Bromodichloromethane	ug/L	<1.		
1,2 Dichloropropane	ug/L	<1.		
Trichloroethylene	ug/L	3.7		
Chlorodibromomethane	ug/L	<1.		
Bromoform	ug/L	<2.		
Tetrachloroethene	ug/L	49		
Chlorobenzene	ug/L	<1.		
1,2 Dichlorobenzene	ug/L	<2.		
1,3 Dichlorobenzene	ug/L	<2.		
1,4 Dichlorobenzene	ug/L	<2.		
Benzene	ug/L	1.3		
Toluene	ug/L	<2.		
Ethyl Benzene	ug/L	<1.		
m Xylene	ug/L	<2.		
o≁p Xylene	ug/L	<4.		

CC:

REMARKS:

DIRECTOR

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770 10/04/93 LAB NO. C934005/3

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Laureen Ku

Town of Oyster Bay-Solid Waste Disposal SOURCE OF SAMPLE:

DATE COL'D:09/15/93 RECEIVED:09/15/93 COLLECTED BY: Client

SAMPLE: Wastewater sample, Air Stripper Effluent

ANALYTICAL PARAM	ETERS		;	ANALYTICAL	PARAMETERS
Barium as Ba .	mg/L	0.10	•		
Cadmium as Cd	mg/L	<0.001			
Chloride as Cl	mg/L	71			
Chromium as Cr	mg/L	<0.02			
Copper as Cu	mg/L	0.06			
Cyanide as CN	mg/L	<0.02			
Iron as Fe	mg/L	0.06			
Lead as Pb	mg/L	0.016			
Magnesium as Mg	mg/L	7.0			
Kanganese as Kn	mg/L	0.16			
Mercury as Hg	mg/L	0.0012			•
Silver as Ag	mg/L	<0.01			
Zinc as Zn	mg/L	0.03			
Tot Dissolved Solids	mg/L	140			
Nitrate as N	mg/L	1.4			
Sulfate as SO4	mg/L	11			
Phenols as Phenol	mg/L	<0.001			

CC 1

REMARKS:

LAB NO. C934170/1

10/11/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

Laureen Ku ATTN:

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:09/24/93 RECEIVED:09/24/93

SAMPLE: Wastewater sample, Air Stripper Influent

ANALYTICAL PARAM	ETERS		ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	4.3		
Chloroethane	ug/L	<1.		
Methylene Chloride	ug/L	2.1		
1,1 Dichloroethene	ug/L	<1.		
1,2 Dichloroethene	ug/L	47		
Chloroform	ug/L	<1.		
1,2 Dichloroethane	ug/L	<1.		
1,1 Dichloroethane	ug/L	8.7		
111 Trichloroethane	ug/L	2.4		
Carbon Tetrachloride	ug/L	<1.		
Bromodichloromethane	ug/L	<1.		
1,2 Dichloropropane	ug/L	<1.		
Trichloroethylene	ug/L	13		
Chlorodibromomethane	ug/L	<1.		
Bromoform	ug/L	<2.		
Tetrachloroethene	ug/L	150		
Chlorobenzene	ug/L	<1.		
1,2 Dichlorobenzene	ug/L	<2.		
1,3 Dichlorobenzene	ug/L	<2.		
1,4 Dichlorobenzene	ug/L	<2.		
Benzene	ug/L	4.2		
Toluene	ug/L	<2.		
Ethyl Benzene	ug/L	<1.		
m Xylene	ug/L	<2.		
o+p Xylene	ug/L	<4.		

cc:Ralph Cuomo

REMARKS:

NYSDOH ID# 10320

LAB NO. C934170/3

10/11/93

ANALYTICAL PARAMETERS

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

ATTN: Laureen Ku

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

COLLECTED BY: Client DATE COL'D:09/24/93 RECEIVED:09/24/93

SAMPLE: Wastewater sample, Air Stripper Effluent

ANALYTICAL PARAME	TERS	
Barium as Ba	mg/L	0.09
Cadmium as Cd	mg/L	<0.001
Chloride as Cl	mg/L	9 5
Chromium as Cr	mg/L	<0.02
Copper as Cu	mg/L	0.02
Cyanide as CN	mg/L	<0.02
Iron as Fe	mg/L	0.13
Lead as Pb	mg/L	<0.005
Magnesium as Mg	mg/L	8.9
Manganese as Mn	mg/L	0.16
Mercury as Hg	mg/L	<0.001
Silver as Ag	mg/L	<0.01
Zinc as Zn	mg/L	<0.02
Tot Dissolved Solids	mg/L	230
Nitrate as N	mg/L	0.9
Sulfate as SO4	mg/L	15
Phenols as Phenol	ma/L	<0.001

cc:Ralph Cuomo

REMARKS:

LAB NO. C934170/2

10/11/93

Lockwood, Kessler & Bartlett

1 Aerial Way

Syosset, NY 11797

Laureen Ku ATTN:

SOURCE OF SAMPLE: Town of Oyster Bay-Solid Waste Disposal

DATE COL'D:09/24/93 RECEIVED:09/24/93 COLLECTED BY: Client

SAMPLE: Wastewater sample, Air Stripper Effluent

ANALYTICAL PARAME	ETERS		ANALYTICAL	PARAMETERS
Vinyl Chloride	ug/L	<1.		
Chloroethane	ug/L	<1.		
Methylene Chloride	ug/L	<1.		
1,1 Dichloroethene	ug/L	ND*		
1,2 Dichloroethene	ug/L	<1.		
Chloroform	ug/L	<1.		
1,2 Dichloroethane	ug/L	<1.		
1,1 Dichloroethane	ug/L	<1.		
111 Trichloroethane	ug/L	<1.		
Carbon Tetrachloride	ug/L	<1.		
Bromodichloromethane	ug/L	<1.		
1,2 Dichloropropane	ug/L	<1.		
Trichloroethylene	ug/L	<1.		
Chlorodibromomethane	ug/L	<1.		
Bromoform	ug/L	<2.		
Tetrachloroethene	ug/L	<1.		
Chlorobenzene	ug/L	<1.		
1,2 Dichlorobenzene	ug/L	<2.		
1,3 Dichlorobenzene	ug/L	<2.		
1,4 Dichlorobenzene	ug/L	<2.		
Benzene	ug/L	<1.		
Toluene	ug/L	<2.		
Ethyl Benzene	ug/L	<1.		
m Xylene	ug/L	<2.		
o+p Xylene	ug/L	<4.		

cc:Ralph Cuomo

REMARKS: * Not detected at MDL of 0.07 ug/L.

APPENDIX F

"Air Stripper Stack Emissions Test Program"
Second Year of Operation
1993 - 1994 Second Quarterly Report
February 1994

OLD BETHPAGE LANDFILL OYSTER BAY SOLID WASTE DISPOSAL COMPLEX AIR STRIPPER STACK EMISSIONS TEST PROGRAM

Second Year of Operation

1993 - 1994 Second Quarterly Report

Prepared for:

Lockwood Kessler & Bartlett, Inc. One Aerial Way Syosset, New York 11791

Prepared by:

RTP Environmental Associates, Inc. 400 Post Avenue Westbury, New York 11590

FEBRUARY 1994

SECOND YEAR OF OPERATION SECOND QUARTERLY REPORT OBSWDC AIR STRIPPER TEST PROGRAM

TABLE OF CONTENTS

Section	<u>n</u>	<u>Page</u>
1.0	INTRODUCTION	1
2.0	SAMPLING AND ANALYSIS PROCEDURES	1
3.0	DISCUSSION OF RESULTS	3
	 3.1 Air Stripper Operational Data 3.2 Air Stripper VOST Results 3.3 Air Stripper Ammonia Emission Results 3.4 Ambient Air VOST Results 	3 4 5 5
4.0	COMPARISON OF EMISSION RATES TO CONSENT DECREE LIMITATIONS	6
5.0	AIR QUALITY MODELING	7
	 5.1 Modeling Methodology 5.2 Model and Source Configuration 5.3 Model Validation 5.4 Modeling Results 	7 8 9 10
6.0	CONCLUSIONS AND RECOMMENDATIONS	12
	APPENDICES A. Equipment Calibrations B. Process Data Sheets C. RTL VOST Results D. Field Data Sheets E. Influent and Effluent Water VOC Results F. Ammonia Stack Test Analytical Results G. Meteorological Data H. Modeling Data	

SECOND YEAR OF OPERATION SECOND QUARTERLY REPORT OBSWDC AIR STRIPPER TEST PROGRAM

LIST OF TABLES

<u>No.</u>	<u>Description</u>
1	Program Target Compound List and NYSDEC Ambient Guidelines
2	Summary of Air Stripper Operational Data
3	Air Stripper VOST Results - (Test P)
4	Air Stripper VOST Results - (Test Q)
5	Air Stripper VOST Results - (Test R)
6	Air Stripper VOST Test Results
7	Comparison of Air Stripper Emission Concentrations Using Two Independent Methods
8	Summary of Air Stripper Ammonia Emissions
9	Ambient Air VOST Test Results
10	Comparison of Applicable Discharge Requirements for Air Stripper Treatment System with
	Stack Test Results
11	Model Validation Results for Tetrachloroethene
12	Maximum Annual Impacts Based on Corrected Air Stripper Emissions Test Results

FIGURE NO 1: SITE MAP

SECOND YEAR OF OPERATION SECOND QUARTERLY REPORT OBSWDC AIR STRIPPER TEST PROGRAM

1.0 INTRODUCTION

The Town of Oyster Bay entered into a Consent Decree (83CIV5357) with the New York State Department of Law (DOL) regarding remediation efforts at the Oyster Bay Solid Waste Disposal Complex (OBSWDC). The Decree requires, among other items, quarterly stack emissions testing of the air stripper. The air stripper was constructed to remediate an offsite groundwater plume.

This report has been prepared by RTP Environmental Associates, Inc. (RTP), the subcontractor for conducting source testing of the air stripper emissions and evaluating ambient impacts. This report presents the second year second quarterly test results. It is one of a series of quarterly reports that provide data on the individual air emission tests being performed by RTP. This report provides a brief summary of sampling procedures and analytical methods; a presentation of data collected during the test; an analysis of the data including comparisons to the Consent Decree emission limits used in facility design; and an air quality modeling analysis.

The report contains five additional sections that address sampling and analysis procedures, discussion of results, comparison of emission rates to Consent Decree limitations, air quality modeling and conclusions and recommendations. An annual summary report will be prepared at the conclusion of the second year of quarterly sampling. The annual report will include a direct comparison of observed ambient concentrations and predicted impacts with applicable and relevant guidelines and regulations.

2.0 SAMPLING AND ANALYSIS PROCEDURES

Prior to initiating the stack testing, RTP developed and submitted a monitoring and analysis protocol (RTP, 1992) for the quarterly tests to the New York State Department of Environmental Conservation (NYSDEC) for approval. The specific sampling and analysis procedures are fully defined in a series of documents including the project scope of work and subsequent correspondence with the NYSDEC and Lockwood, Kessler & Bartlett, Inc. (LKB). NYSDEC gave formal protocol approval on May 14, 1992

AS2-2Q-2/7/94

(NYSDEC,1992a). A subsequent modification to the protocol was suggested to and approved by the NYSDEC (1992b) to reduce the run time and increase the flow volume for a Volatile Organic Sampling Train (VOST) run.

An additional protocol modification was requested by RTP (RTP, 1993) and approved by the NYSDEC (NYSDEC, 1993) to change from the originally proposed mass balance approach in determining air stripper ammonia emissions to a stack sampling method using sorbent trap media. The approved protocol as used during this effort is detailed below:

- Monitor air stripper operations continuously. Monitor process parameters including all five individual recovery well flow rates in gallons per minute (GPM), system flow rate (well total/pump station tank influent GPM), air stripper influent flow (GPM), pressure filter flow (final holding tank effluent flow GPM), air stripper blower pressure (inches H₂O), air stripper blower flow rate in cubic feet per minute (CFM) and the status of air stripper operations. Record the above mentioned process parameters every 10 minutes during the test program. Record air stripper groundwater inlet totalizer readings at the beginning and end of each VOST run to calculate the total system flow (gallons of groundwater processed) during each VOST run.
- o Determine air stripper exhaust concentrations of targeted Volatile Organic Compounds (VOCs) presented in Table 1 by utilizing the VOST procedure as outlined in EPA SW846 Method 0030. Perform three (3) VOST tests consisting of four (4) 20-minute VOST runs (total of twelve (12) 20-minute VOST runs). Utilize VOST train flow rate of 0.2 liters per minute (Lpm) and a probe temperature of ≥265°F. Analyze all VOST samples for targeted VOCs (Table 1) by Desorb Purge Trap Desorb Gas Chromatography Mass Spectrometry (DPTD GC/MS) in accordance with EPA SW846 Method 5040/8240.
- O Determine air stripper exhaust ammonia mass emission rate by performing ammonia sampling at the exhaust stack utilizing modified NIOSH P&CAM Method 205 (silica gel tubes impregnated with 0.1N sulfuric acid, analyzed by colorimetric methodology). Collect one pair of silica gel tubes (1 Test) per four VOST runs (1 Test).

AS2-20-2/7/94 2

O Determine the air stripper volumetric flow rate in accordance with EPA Methods 1 and 2 before and after each VOST test (every four (4) VOST runs). Flow rate data is used to determine air stripper exhaust VOC mass emission rates and ammonia concentrations.

The analytical laboratories selected for this project were Research Triangle Laboratories (RTL), and Environmental Health Laboratories. RTL provided the required analytical gas chromatograph-mass spectrographic services to identify and quantify all substances listed on the Target Compound List (TCL) except ammonia. The TCL was based on the Consent Decree and is provided in Table 1. Environmental Health Laboratories provided analyses of the stack test samples for ammonia.

All sampling equipment was calibrated before and after the quarterly field effort. Equipment pre and post calibrations are presented in Appendix A.

3.0 DISCUSSION OF RESULTS

The following section presents a discussion of results for the second year, second quarterly stack test at the OBSWDC air stripper performed on September 24, 1993. This includes the results of quarterly measured monitoring parameters (process operations and VOC and ammonia emissions) detailed in the test protocol as outlined in Section 2.0 and the concurrent ambient VOST data. A comparison of the stack test results to Consent Decree stack discharge limits will be presented in Section 4.0. An air quality impact analysis based on stack and ambient air VOST test data is presented in Section 5.0. Section 6.0 provides a discussion of conclusions and recommendations. In all, the testing was within the general parameters and conditions outlined in the test protocol and the results, as discussed below, are considered valid for this quarter.

3.1 Air Stripper Operational Data

The facility operations were monitored on a continuous basis during the performance of the stack test. Site personnel kept detailed records of well flows, air stripper flow, air blower flow and blower pressure. Table 2 summarizes the operational data for the groundwater treatment facility during the air stripper stack test. Operations data during each stack test performed by RTP are provided in the table. Well 1 was non-operational, however, all other major unit processes were operating normally during the entire

AS2-2Q-2/7/94 3

period of the test. The process data is presented in Appendix B. Air stripper exhaust flow rates measured at the stack in accordance with EPA Methods 1 and 2 are presented in Section 3.2 along with the target compound concentration results.

The observed second year, second quarter operations data and VOC and ammonia results are corrected in Section 5.4 of this report, to estimate "expected" air stripper exhaust stack emissions and their impacts during normal operations (all 5 wells operating). These corrected results will be combined with other second year quarterly test results and modeled (tested during normal operating conditions) for comparison to NYSDEC ambient Annual Guideline Concentration (AGC) values in the annual report.

3.2 Air Stripper VOST Results

Tables 3 through 5 provide the nanograms per liter (ng/l) air concentrations for each TCL constituent detected during the twelve (12) VOST runs performed by RTP at the air stripper exhaust stack. A test is comprised of four (4) individual 20-minute VOST runs. The test averages (P, Q and R) are provided in Table 6 along with the average for all test runs. Several compounds were identified in the exhaust gases with the most prevalent being tetrachloroethene. There was no condensate in any of the test samples primarily because of the low (4 liter) total sample volume required for each test run. Field and trip blank samples were collected. There is no indication that contamination was present in the blank sample tubes. This is described in the RTL report presented in Appendix C and in Table 6. Field data sheets are presented in Appendix D.

In-stack measurements at the facility were made of pressure differential, temperature and dew point. This data was used to calculate the air stripper volumetric flow rate for each VOST test and to correct each individual VOST run sample volume to air stripper exhaust stack conditions. VOST test volumetric flow rates and corrected VOST run sample volumes are presented in Tables 3 through 6. EPA Method 2 field data sheets are presented in Appendix D.

Air stripper influent and effluent water samples were collected and analyzed for target VOCs. Table 7 provides a direct comparison between stack VOC concentrations (via mass balance) as determined by water analyses (water samples collected during VOST Run 63) and by VOST stack test (Run 63 VOC

AS2-2Q-2/7/94

results). In general, the water analyses suggested lower concentrations of VOCs. Influent and effluent water VOC laboratory results are presented in Appendix E.

3.3 Air Stripper Ammonia Emission Results

Prior to this effort, RTP has evaluated the air stripper ammonia release rate by collecting and analyzing influent and effluent air stripper water samples and applying mass balance methodology. This approach had provided unsatisfactory results (negative mass emission rates). RTP has in the past supplemented this means of estimating the air stripper's ammonia emissions by measuring the ammonia concentrations in the air stripper exhaust according to NIOSH P&CAM sampling Method S347 (Adsorption onto sulfuric acid-treated silica gel tubes) and modified NIOSH P&CAM analytical Method 205 (colorimetric). This supplemental method has been a reliable means of determining the air stripper exhaust stack ammonia concentrations at levels below the assigned AGC for ammonia (360 ug/m³). As mentioned in Section 2.0, RTP has requested a modification to the sampling protocol allowing the continuance of the supplemental method (using sorbent traps) and omission of further ammonia mass balance activities. The NYSDEC has approved this change which is effective as of this second year, second quarter air stripper effort.

RTP measured ammonia emissions at the air stripper exhaust stack during the second year, second quarterly sampling event in accordance with modified NIOSH P&CAM Method 205 (silica gel tubes impregnated with 0.1N sulfuric acid, analyzed by colorimetric methodology). The silica gel tubes were analyzed by Environmental Health Laboratories to a minimum detection level of 5 micrograms. The ammonia stack tests are presented in Table 8. As shown, the test results were as follows: <211 ug/m³ (Test P), <196 ug/m³ (Test Q) and <221 ug/m³ (Test R). RTP will present measured stack ammonia emissions data for comparison with discharge requirements and ambient air guideline values in Section 4.0. Field data sheets are presented in Appendix D and rotameter calibrations are presented in Appendix A. Ammonia stack test analytical results from Environmental Health Laboratories are presented in Appendix F.

3.4 Ambient Air VOST Results

Ambient VOST samples were collected at three locations during the air stripper tower stack test. Sample A2-2U was collected upwind of the tower to provide background VOC concentrations in the air

AS2-2Q-2/7/94 5

approaching or being drawn into the tower. The upwind sample location was about 90 feet west northwest of the air stripper tower and at the base elevation of the tower. Sample A2-2D.1 and A2-2D.2 were collected downwind of the tower to determine combined VOC impacts from background sources and the operation of the tower. Downwind site A2-2D.1 was about 150 feet east southeast of the air stripper tower with an elevation of about 10 feet below the air stripper tower base, located near the entrance gate to the RAP building. The second site, A2-2D.2, was 250 feet south of the RAP building.

The analytical TCL results for the ambient VOST samples are presented in Table 9. The same nine (9) VOCs were detected at or above the lower quantitation limit (LQL) in each of the downwind ambient air samples (A2-2D.1 and A2-2D.2) and the upwind ambient air sample (A2-2U). Those VOCs are benzene, carbon tetrachloride, ethylbenzene, methylene chloride, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene and xylenes.

VOCs detected at the downwind and upwind sampling locations were also detected in the air stripper exhaust stack (see Table 6) with the exception of three VOCs: carbon tetrachloride, ethylbenzene and toluene. In addition, 1,1-dichloroethane and cis-1,2-dichloroethene were detected in the stack exhaust but were not detected in the ambient air. An ambient air field blank (A2-2FB) and trip blank (A2-2TB) were collected and both were free of any quantifiable contamination. The respective upwind and two downwind air samples (D.1 and D.2) with total air volumes of 391, 382 and 408 liters did not contain sufficient moisture to have a collectable condensate sample. Rotameter calibrations are presented in Appendix A. Field data sheets are presented in Appendix D, and RTL ambient VOST results are presented in Appendix C.

4.0 COMPARISON OF EMISSION RATES TO CONSENT DECREE LIMITATIONS

The Consent Decree stipulates air stripper discharge concentration requirements which are provided in Table 10. A direct comparison of observed discharge concentrations to the limits tabulated in the Consent Decree, which is the first step in the analysis, indicates that potentially one (1) compound (tetrachloroethene) exceeds the specified limit. Several other targeted VOCs (bromodichloromethane, bromoform, dibromochloromethane, 1,3-dichlorobenzene, 1,2-dichloroethane, freon 13 and/or vinyl chloride) may have exceeded, but were not identified as exceeding Consent Decree discharge requirements since their individually assigned discharge limit (ranging from 0.03 to 20 ug/m³) was lower

AS2-2Q-2/7/94 6

than the combined sampling and analytical lower quantitation limit (41.9 ug/m³). This limitation results from the combination of the wide range of concentrations observed in the tower outlet and the limited range of the analytical methods.

This was the second quarterly stack test performed during the second year of testing at the air stripper. Future and past stack test data will be combined to evaluate facility operations on an annual basis. In Section 5.0, the impacts of VOC and ammonia emissions as observed during the second year, second quarterly tests are analyzed using a dispersion model. Modeled emission impacts are then compared to former and current AGCs (NYSDEC 1991 a,b).

5.0 AIR QUALITY MODELING

An air quality modeling analysis is performed to validate the dispersion model and to determine if the annual air quality impacts of the air stripper operation exceeded ambient air quality guideline concentrations. The air quality impact analysis uses the approved United States Environmental Protection Agency (USEPA) ISCST2 model (EPA, 1993) and is based on stack and ambient air VOST test data. The air stripper emission rates and associated source parameters, as monitored in the second year second quarterly stack test, were used in this modeling analysis. Meteorological data used in the analysis are presented in Appendix H and the model results are presented in Appendix I. Predicted model values were compared to observed ambient air VOST test data and will be compared to NYSDEC ambient air annual guidelines as provided in Air Guide-1 (NYSDEC, 1991a).

5.1 Modeling Methodology

The ISCST2 dispersion model is a restructured and reprogrammed version of the original ISCST model. This model provides the ability to simulate the dispersion of emissions from a wide range of air pollutant sources including elevated point sources. The basis of the model is the straight-line, steady-state Gaussian plume dispersion equation. It has the ability to take into account building downwash effects for different wind angles and incorporates local terrain information and hourly meteorological data. The user can select various time period averages including an annual average. Because of these features, the model has been selected for evaluating the air stripper tower air quality impacts on receptors surrounding the OBSWDC.

AS2-2Q-2/7/94

5.2 Model and Source Configuration

The ISCST2 model has a variety of run options that are useful in customizing the model for a specific application. Prior to running the model for predicting annual impacts, a validation effort was prepared based on the data recorded during the quarterly test program. General model options, source/receptor configurations and meteorological data were then input into the model to predict the maximum annual average impacts for off-property receptors associated with the air stripper tower.

The following regulatory default options are applied in the simulation:

- o stack-tip downwash,
- o buoyancy-induced dispersion,
- o calm wind speed processing routine,
- o upper bound concentration estimates for sources influenced by building downwash from a super-squat building,
- o regulatory default wind speed profile exponents and
- o regulatory default vertical potential temperature gradients.

The source parameters utilized in the model are based on the second year, second quarterly air stripper exhaust tests. The important parameters are air stripper base location and elevation, tower height, stack exit temperature, inner stack diameter of the exhaust section, exhaust volume flow rates and various VOC emission rates. Since building downwash is included, the building crosswind dimensions for various wind directions are also input into the model. The air stripper tower base elevation is 42.8 meters, the tower height is 16.7 meters, the stack exit diameter is 1.02 meters and other parameter values (stack exit temperature and velocity) vary with the tower's operation. In this second year, second quarterly effort, the monitored average exit temperature and velocity were 285°K and 7.24 m/s, respectively.

Receptors used in the modeling analysis covered a one (1) kilometer square area around the air stripper. A receptor grid with 100 meter spacing was used along with a separate series of property line receptors. The above surface height of each receptor was set at one (1) meter.

AS2-2O-2/7/94

5.3 Model Validation

The objective of the model validation process is to verify that the model set-up and results compare favorably with available onsite ambient air sampling results. Both upwind and downwind ambient air concentrations along with the onsite meteorological data were collected during the second year, second quarterly test effort. These data were collected concurrent with the air stripper emissions tests described in Section 3.0.

Ambient volatile organic compounds were monitored at one upwind and two downwind sites surrounding the air stripper during the second quarter, second year stack tests. The ambient monitoring was performed over a six hour period concurrent with the stack tests. Laboratory results indicated that tetrachloroethene was the only VOC emitted from the air stripper that was detected in significant quantities at both downwind monitoring sites and at the effluent of the air stripper. Therefore, tetrachloroethene was used to validate the ISCST2 model results. A variety of options were chosen to try to validate the ISCST2 model to the observed measurements which were averaged over the six-hour sampling period. The following parameters were used in successive model runs to simulate field conditions: hourly meteorological data including wind direction, speed and atmospheric stability for two independent meteorological stations; building wake effects; stack tip downwash; detailed receptor grids; and downwind sampling results for two monitoring sites. Two of these modeling runs are discussed below and are included in Appendix I. The Site Map, Figure 1, shows the three sampling locations: 1U (upwind), 1D and 2D (downwind).

Only one set of meteorological data can be used for an ISCST2 model run. Model run 9321 used data collected from the meteorological station located on top of the RAP building. Model run 9322 used meteorological data collected at sampling location 1D.

The model estimated the normalized concentrations over the test period at all receptor grid points including the downwind sampling locations for a one gram per second emission rate. These concentration values were then multiplied by the measured tetrachloroethene emission rate of 0.0238 g/sec as measured during the stack tests.

AS2-2Q-2/7/94

The background tetrachloroethene concentration in the ambient air upwind of the air stripper was measured. The upwind sample was collected to the northwest of the air stripper tower under average northwesterly wind conditions. The measured upwind tetrachloroethene concentration was 0.742 micrograms per cubic meter. The tetrachloroethene results for the downwind sampling locations were adjusted for the measured upwind background concentration so that the resultant concentrations could then be compared directly to the tetrachloroethene concentrations resulting from air stripper emissions as predicted by the ISCST2 model.

5.4 Modeling Results

The modeling results for this quarter are presented in Table 11 for the two sets of meteorological data collected onsite during the stack tests. The observed versus predicted ratios are provided for model run 9321 which used meteorological data from the meteorology station located atop the RAP building and for model run 9322 which used meteorology obtained at sampling site 1D. Both ratios for predicted to observed tetrachloroethene concentrations show poor correlations. If there was reasonable correlation between the modeling and monitoring results, the concentration ratios indicated above could then be used to define the ambient impacts for the other targeted compounds. However, the correlations during this quarterly test do not warrant further extrapolation to other compounds. Observed to predicted ratios at 0.9 and above are preferred to confidently verify receptor concentrations and then for use in determining regulatory compliance.

A primary reason for the lack of model calibration data being experienced at the site is the high background concentrations of tetrachloroethene. Tetrachloroethene is released from the air stripper tower at sufficiently high emission rates to have a detectable impact at selected monitoring sites. Unfortunately, the background levels of tetrachloroethene are also in the same relative range of concentration, making it difficult to differentiate between the tetrachloroethene levels generated by the tower versus those occurring in the background. This has been somewhat of a problem since the program began. However, during this quarterly effort, the positioning of the monitoring sites and the maximum impact point during the test, combined with the high background levels, has made it impossible to validate the ISCST2 model predictions with confidence. Other compounds in the air stripper exhaust can also be used in validating the model, however, again background concentration of these compounds, monitoring site positioning and the position of the maximum impact point made validation impossible during this quarterly field effort.

AS2-2Q-2/7/94 10

Should the background levels continue to interfere with model validation, an alternative solution for model validation may need to be applied to assure model predictions are realistic. An alternative approach would be to release a tracer like sulfur hexafluoride from the tower and monitor ambient impacts for direct comparison to predicted impacts under specific meteorological conditions. Using a tracer such as sulfur hexafluoride is advantageous for expanding the range of meteorological conditions that can be used in model validation. Using a tracer would also be helpful in determining how well the model predicts air stripper tower impacts for wind directions from the south and southwest. These directions are important in defining dispersion under the influence of the landfill. Model predictions can thus be verified for receptors in the lee of the landfill and for other turbulent diffusion regimes affecting the dispersion rate of tower emissions.

A modeling analysis using annual meteorological data is not included in this report because the validation runs as discussed above did not have sufficient correlation to justify extrapolating the data to determine predicted annual concentrations. Table 12, however, provides the corrected mass emission rates for the second quarter, second year tests for use in the annual report. Corrected mass emission rates are derived by converting the air stripper exhaust stack VOC concentrations shown in Table 10 to grams per second values using the average observed air stripper exhaust flow rate of 12,400 actual cubic feet per minute (see Table 6). The grams per second emissions rate for each reported VOC is corrected to represent emissions during the operation of all five (5) groundwater collection wells. At the time of the second year second quarter test (9/24/93), only four (4) wells were in service (Wells 2,3,4 and 5). A mass emission rate multiplier for each reported individual VOC is based on dividing the total mass flow rate for all five (5) Wells by the total mass flow rate for Wells 2,3,4 and 5. September 23, 1993 (Wells 2,3,4 and 5) and August 5, 1993 (Well 1) Well water VOC analysis data (included in Appendix E) and September 24, 1994 well flow rate data were used for all mass flow rate calculations. Well 1 ground water flow was assumed at 200 gallons per minute.

The USEPA periodically upgrades and improves the preferred list of atmospheric diffusion models. The USEPA's ISCST2 model initially used for defining air stripper impacts was released in 1992. There were several error messages within the code which apparently had no impact on the calculations or predictive accuracy of the model. However, these were unsettling since there was a slim possibility that concentration calculations were in error. In order to rule out any fault with the software program, the

AS2-20-2/7/94 11

latest 1993 ISCST2 version was obtained and was run for this quarterly report. The results were identical for the 1992 and 1993 versions of the models.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The second year, second quarter air stripper test results indicate that the air stripper continues to operate according to design. Test results indicate that there is one compound, tetrachloroethene, that exceeds the specified discharge concentration limit based on the Consent Decree. Annual modeling of the observed emission rates was not performed because of several issues that were discussed.

Reviewing the data accumulated thus far indicates that the significance of the air stripper emissions in terms of the New York State Air Guide-1 (AG-1) compliance cannot be adequately determined using the current modeling and monitoring techniques. The complexities of the site require a more sophisticated approach to adequately evaluate actual airflow patterns and contaminant dispersion on the site and beyond the property boundaries. As an example, the RAP building adjacent to the air stripper tower generates substantial wake effects which may not be adequately addressed by the ISCST2 algorithms for predicting building downwash. This is evidenced by the results of the modeling efforts as compared to the measured emission rates and ambient air sampling results. In addition to the RAP building, the northwesterly winds prevalent in the winter months are significantly modified by the turbulence resulting from the old incinerator plant located directly northwest of the tower. The southwesterly winds that tend to occur in the summer months are impacted upwind of the tower by the steep landfill embankment southwest of the tower. The old incinerator also impacts the dispersion rates downwind of the tower for south and southeasterly winds. These unaccounted for obstacles could effect the predicted concentrations of the receptors to the north and east of the property.

Based on these conditions, additional data is required to reasonably predict impact concentrations and therefore, appropriate air stripper operating conditions. It is important to obtain this additional information since the contribution to certain targeted VOC concentrations at the property line by the air stripper, although they may at times be small relative to background concentrations from other sources in the area, could potentially determine compliance or exceedance of New York State Guidelines.

AS2-20-2/7/94 12

Variations in background concentrations of VOCs and recent increases in these values have been observed both upwind of the air stripper as well as at the monitoring locations. To date, the single upwind sample has been subtracted from downwind sample concentrations for each targeted compound. The upwind and downwind samples are collected during the same sampling interval, however, the source contributions to these levels needs to be more precisely defined to assure spatial distributions have been properly addressed.

Several sets of data are, therefore, necessary to validate an appropriate modeling and monitoring protocol for a complex site such as the OBSWDC.

AS2-2Q-2/7/94 13

REFERENCES

- EPA, 1972. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States, George C. Holzworth, Division of Meteorology, January 1972.
- EPA, 1992. Users Guide for the Industrial Source Complex (ISC2) Dispersion Model, EPA-450/4-92-008a OAQPS, Research Triangle Park, North Carolina 27711
- NYSDEC, 1991a. New York State Air Guide-1, Division of Air Resources, New York State Department of Environmental Conservation (NYSDEC), Albany, New York
- NYSDEC, 1991b. Letter submitted to NYSDEC Regional Air Pollution Control Engineers, Bureau Directors and Section Chiefs from Mr. Tom Allen (Director, Division of Air Resources) stating the new 1.2 ug/m³ AGC for perchloroethylene (tetrachloroethene), November 22, 1991.
- NYSDEC, 1992a. Letter submitted to Mr. Karl J. Leupold (Commissioner of the Town of Oyster Bay) from Mr. Robert C. Knizek (NYSDEC) approving the March 1992 sampling protocol for the air stripper monitoring and assessment program, May 14, 1992.
- NYSDEC, 1992b. Letter submitted to Mr. Scott Mills (RTP) from Mr. Robert Waterfall (NYSDEC) approving sampling protocol changes resulting in a 20 minute VOST run sample time at a sampling rate of 0.25 Lpm (nominal), August 18, 1992.
- NYSDEC, 1993. Letter submitted to Mr. Scott Mills (RTP) from Mr. Robert Waterfall (NYSDEC) approving ammonia sampling protocol changes, July 7, 1993.
- RTP, 1992. Sampling Protocol for the Air Stripper Monitoring and Assessment Program at the Old Bethpage Solid Waste Disposal Complex, RTP Environmental Associates, Inc., March 1992.
- RTP, 1993. Sampling Protocol Change (ammonia sampling) for the Air Stripper Monitoring and Assessment Program at the Old Bethpage Landfill in Nassau County (Site No. 1-30-001) submitted to Mr. Robert Waterfall (NYSDEC) from Mr. Scott Mills (RTP), June 21, 1993.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

PROGRAM TARGET COMPOUND LIST AND NYSDEC AMBIENT GUIDELINES

	 _				_		
		CURREN	łΤ	CURRE		FORMER	CONSENT
		SGC		AGC	;	AGC	DECREE
VOC COMPOUND NAME	TOXICITY	(ug/m3)		(ug/m	3)	(ug/m3)	LIMITS***
Benzene	н	30	(p)	0.12	(E,U)	100	100
Bromodichloromethane	Н			0.02	(D)	0.03**	0.03
Bromoform	М	1,200	(t)	12	Œ	11.9**	16.7
Carbon Tetrachloride	Н	1,300	(r)	0.07	(E,U)	100	100
Chlorobenzene	М	11,000	(p)	20	(E)	1,170	1,170
Chloroethane	Ĺ	630,000	(t)	63,000	(F)	52,000	52,000
Chloroform	M	980	(r)	23	(R)	167	167
Dibromochloromethane	М			0.1	(D)	0.03**	0.03
1,2-Dichlorobenzene (o)	M	30,000	(t)	200	(E)	1,000	1,000
1,3-Dichlorobenzene (m)	М	30,000	(a)	200	(A)	714**	0.03
1,4-Dichlorobenzene (p)	M**	110,000**		700**			1,500
1,1-Dichloroethane	L	190,000	(t)	500	(E)	9,524**	2,700
1,2-Dichloroethane	M	950	(r)	0.039	(E,U)	0.2	20
1,1-Dichloroethene	Н	2,000	(t)	0.02	(E,U)	66.7	66.7
cis-1,2-Dichloroethene*	М	190,000	(a)	1,900	(A)	1,880**	2,630****
trans-1,2-Dichloroethene	M			360	(D)	360**	
1,2-Dichloropropane	М	83,000	(t)	0.15	(D)	833**	1,170
Ethylbenzene	М	100,000	(t)	1,000	(T)	1,450	1,450
Freon 13*	L	43,000	(a)	530	(A)	133,333**	0.03
Methylene Chloride	М	41,000	(t)	27	(D,U)	1,170	1,170
Tetrachloroethene	М	81,000	(t)	1.2****	(D,U)	1,120	1,120
Toluene	L	89,000	(r)	2,000	(1)	7,500	7,500
1,1,1-Trichloroethane	L	450,000	(t)	1,000	(E)	38,000	38,000
Trichloroethene	М	33,000	(r)	0.45	(D,U)	900	900
Vinyl Chloride	Н	1,300	(t)	0.02	(E,U)	0.4	0.4
Xylenes (Total)	м	100,000	(t)	300	(1)	1,450	1,450*****
OTHER COMPOUNDS		·		_	`,,		
Ammonia	L	4,000	(t)	360	(E)	360	360

FOOTNOTES:

- SGC Short-term guideline concentration (current as of June 1991).
- AGC Annual guideline concentration (current as of June 1991, former as of 1986, 9/89 Edition).
- * Tentatively Identified Compound (TIC) using EPA SW846 Method 8240.
- ** Proposed Value.
- As per Table 1 of the Final Consent Decree. Reported in micrograms per cubic meter (ug/m3).
- **** Total for cis and trans Isomers.
- Tetrachloroethene AGC currrent as of November 22, 1991.
- 1,450 total for ortho and para xylene and 1450 total for meta xylene.

Toxicity - H for high; M for moderate; and L for low as defined by NYSDEC.

- (a) SGC based on NYSDEC structure-activity analogy.
- (p) SGC dervied from proposed ACGIH TLV-TWA (1990-1991).
- (r) SGC derived from NIOSH REL-TWA (1988).
- (1) SGC derived from ACGIH TLV-TWA (1990-1991).
- (A) AGC based on NYSDEC structure-activity analogy.
- (D) AGC derived from NYSDEC, Divison of Air Resources, Bureau of Air Toxics, Toxics Assessment Section.
- (E) AGC based on derivation by USEPA.
- (I) AGC based on RFC developed by USEPA Integrated Risk Information System (IRIS), input pending.
- (R) AGC derived from NIOSH REL-TWA (1988).
- (T) AGC derived from ACGIH TLV-TWA (1990-1991).
- (U) AGC is the ambient air concentration which corresponds to an excess cancer risk of one in one million for a lifetime exposure.

GROUNDWATER TREATMENT FACILITY OLD BETHPAGE LANDFILL

SUMMARY OF AIR STRIPPER OPERATIONAL DATA

Second Year of Operation Second Quarter Test

TER	(p)Q									-					-
GROUNDWATER	PROCESSED(d)	(gallons)	25,500	14,400	19,800	16,400	14,500	20,000	13,800	20,500	12,600	20,400	12,400	21,500	17,700
AIR	PRESSURE(c)	(Inches H2O)	NA	ΝA											
BLOWER	AIR FLOW(b)	(CFM)	NA												
PRESSURE	FILTER FLOW AIR FLOW(b)	(GPM)	1,110	227	1,110	1,120	559	562	1,110	906	558	1,100	897	1,100	891
SYSTEM STRIPPER	FLOW	(GPM)	1,030	789	1,030	1,010	794	908	720	876	792	1,030	789	1,032	168
SYSTEM	FLOW	(GPM)	842	867	874	875	880	878	876	862	882	874	853	839	298
WELL 3 WELL 4 WELL 5	FLOW	(GPM)	212	203	228	233	231	218	226	208	235	224	214	204	220
WELL 4	FLOW	(GPM)	202	198	192	197	195	197	200	197	197	201	199	202	198
WELL 3	FLOW	(GPM)	199	197	204	200	204	201	196	204	198	204	198	196	200
WELL 2	FLOW	(GPM)	277	280	279	278	277	275	276	277	278	275	278	278	277
WELL 1 WELL 2	FLOW(a) FLOW	(GPM)	NA												
VOST	RUN	NUMBER	S-61	S-62	S-63	S-64	S-65	99-S	29-S	89-S	69-S	S-70	S-71	S-72	Average

NOTE:

NA - Measurements were not available.

(a) Well 1 was down for repairs.

(b) Blower air flow meter not working.

(c) Air pressure meter not working.(d) Values determined from the air stripper inlet flow totalizer recordings.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

AIR STRIPPER VOST RESULTS - TEST P

Second Year of Operation Second Quarter Test Results

Sample ID	S-61	S-62	S-63	S-64	Condensate	Average
Sample Volume (L)*	3.94	4.03	3.98	3.87		3.96
Flow Rate (ACFM)	11,900			12,800		12,400
Stack Temperature (Deg.F)	54			54		54
Lower Quantitation Limit (ng/l)	60.9	54.6	40.2	41.3		49.3

	T					
TARGET COMPOUND	(ng/l)	(ng/l)	(ng/l)	(ng/l)	(ng)	(ng/l)
Benzene	86.3	57.1	70.4	64.6	NA	69.6
Bromodichloromethane					NA	
Bromoform					NA	_
Carbon Tetrachloride					NA	
Chlorobenzene					NA	
Chloroethane					NA	
Chloroform					NA	
Dibromochloromethane					NA	
1,2-Dichlorobenzene (o)					NA	
1,3-Dichlorobenzene (m)					NA	
1,4-Dichlorobenzene (p)					NA	
1,1-Dichloroethane	147	86.8	116	114	NA	116
1,2-Dichloroethane					NA	
1,1-Dichloroethene					NA	
cis-1,2-Dichloroethene **	558	471	503	543	NA	519
trans-1,2-Dichloroethene					NA	
1,2-Dichloropropane					NA	
Ethylbenzene					NA	
Freon 13**					NA	
Methylene Chloride					NA	
Tetrachloroethene	4,820	2,110	4,270	3,880	NA	3,770
Toluene					NA	
1,1,1-Trichloroethane					NA	
Trichloroethene	254	161	216	186	NA	204
Vinyl Chloride					NA	
Xylenes (Total)	68.5		57.8	51.7	NA	<58.2

- All blank values are below the Lower Quantitation Limit.
- < Values are used where the Lower Quantitation Limit is averaged with reported values.
- A condensate sample was not available (NA) for collection.
- * Corrected to stack conditions.
- ** Tentatively Identified Compound (TIC).

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

AIR STRIPPER VOST RESULTS - TEST Q

Second Year of Operation Second Quarter Test Results

Sample ID	S-65	S-66	S-67	S-68	Condensate	Average
Sample Volume (L)*	3.87	3.73	3.62	4.2		3.86
Flow Rate (ACFM)	12,800			11,800		12,300
Stack Temperature (Deg.F)	54			54		54
Lower Quantitation Limit (ng/l)	46.5	37.5	38.7	33.3		39.0

TARGET COMPOUND	(ng/l)	(ng/l)	(ng/l)	(ng/l)	(ng)	(ng/l)
Benzene	62.0	83.1	55.2	81	NA	70.3
Bromodichloromethane					NA	
Bromoform					NA	
Carbon Tetrachioride					NA	
Chlorobenzene					NA	
Chloroethane					NA	
Chloroform					NA	
Dibromochloromethane					NA	
1,2-Dichlorobenzene (o)					NA	
1,3-Dichlorobenzene (m)					NA	
1,4-Dichlorobenzene (p)					NA	
1,1-Dichloroethane	103	147	99.4	155	NA	126
1,2-Dichloroethane					NA	
1,1-Dichloroethene					NA	
cis-1,2-Dichloroethene **	388	536	359	452	NA	434
trans-1,2-Dichloroethene					NA	
1,2-Dichloropropane					NA	
Ethylbenzene					NA	
Freon 13**					NA NA	
Methylene Chloride		42.9		45.2	NA	<43.3
Tetrachloroethene	3,620	5,360	3,590	5,240	NA	4,450
Toluene					NA	
1,1,1-Trichloroethane		40.2		42.9	NA	<42.1
Trichloroethene	183	241	169	238	NA	208
Vinyl Chloride					NA	
Xylenes (Total)	49.1	69.7	47.0	71.4	NA _	59.3

- All blank values are below the Lower Quantitation Limit.
- < Values are used where the Lower Quantitation Limit is averaged with reported values.
- A condensate sample was not available (NA) for collection.
- * Corrected to stack conditions.
- ** Tentatively Identified Compound (TIC).

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

AIR STRIPPER VOST RESULTS - TEST R

Second Year of Operation Second Quarter Test Results

Sample ID	S-69	S-70	S-71	S-72	Condensate	Average***
Sample Volume (L)*	3.67	3.78	3.97	4.13		3.89
Flow Rate (ACFM)	11,800			12,900		12,400
Stack Temperature (Deg.F)	54			54		54
Lower Quantitation Limit (ng/l)	38.1	37.0	35.3	38.7		37.3

TARGET COMPOUND	(ng/l)	(ng/l)	(ng/i)	(ng/l)	(ng)	(ng/l)
Benzene	49.0	82.0	47.9	72.6	NA	62.9
Bromodichloromethane					NA	
Bromoform					NA	
Carbon Tetrachloride					NA	
Chlorobenzene					NA	
Chloroethane					NA	
Chloroform					NA	
Dibromochloromethane					NA	
1,2-Dichlorobenzene (o)					NA	
1,3-Dichlorobenzene (m)					NA	
1,4-Dichlorobenzene (p)					NA	
1,1-Dichloroethane	81.7	138	75.6	140	NA	109
1,2-Dichloroethane					NA	
1,1-Dichloroethene					NA	
cis-1,2-Dichloroethene **	381	661	302	484	NA	457
trans-1,2-Dichloroethene					NA	
1,2-Dichloropropane					NA	
Ethylbenzene					NA	
Freon 13**					NA	
Methylene Chloride		39.7		38.7	NA	<38.0
Tetrachloroethene	3,000	5,030	2,770	5,080	NA	3,970
Toluene					NA	
1,1,1-Trichloroethane	139	39.7		43.6	NA	<64.4
Trichloroethene		233	136	235	NA	<161
Vinyl Chloride					NA NA	
Xylenes (Total)	40.9	71.4	37.8	63.0	NA	53.3

- All blank values are below the Lower Quantitation Limit.
- < Values are used where the Lower Quantitation Limit is averaged with reported values.
- A condensate sample was not available (NA) for collection.
- Corrected to stack conditions.
- ** Tentatively Identified Compound (TIC).

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

AIR STRIPPER VOST TEST RESULTS

Second Year of Operation Second Quarter Test Results

Sample ID	Р	Q	R	Average****	S-FB(A)	S-TB(A)
Sample Volume (L)*	3.96	3.86	3.89	3.90		
Flow Rate (ACFM)	12,400	12,300	12,400	12,400		
Stack Temperature (Deg.F)	54	54	54	54		
Lower Quantitation Limit (ng/l)	49.3	39.0	37.3	41.9	20****	20****

						
TARGET COMPOUND	(ng/l)	(ng/l)	(ng/l)	(ng/l)	(ng)	(ng/l)
Benzene	69.6	70.3	62.9	67.6		
Bromodichloromethane				1		
Bromoform						
Carbon Tetrachloride						
Chlorobenzene						
Chloroethane						
Chloroform						
Dibromochloromethane						
1,2-Dichlorobenzene (o)						
1,3-Dichlorobenzene (m)						
1,4-Dichlorobenzene (p)						
1,1-Dichloroethane	116	126	109	117		
1,2-Dichloroethane						
1,1-Dichloroethene						
cis-1,2-Dichloroethene **	519	434	457	470		
trans-1,2-Dichloroethene						
1,2-Dichloropropane						
Ethylbenzene						
Freon 13**						
Methylene Chloride		<43.3	<38.0	<43.5		
Tetrachloroethene	3,770	4,450	3,970	4,060		
Toluene						
1,1,1-Trichloroethane		<42.1	<64.4	<51.9		
Trichloroethene	204	208	<161	<191		
Vinyl Chloride						-
Xylenes (Total)	<58.2	59.3	53.3	<56.9		

- All blank values are below the Lower Quantitation Limit.
- < Values are used where the Lower Quantitation Limit is averaged with reported values.
- Test ID: P Average of Runs S-61, S-62, S-63 and S-64
 - Q Average of Runs S-65, S-66, S-67 and S-68
 - R Average of Runs S-69, S-70, S-71 and S-72
- ** Corrected to stack conditions.
- *** Tentatively Identified Compound (TIC).
- **** Average of three (3) VOST tests.
- ***** The Lower Quantitation Limit (LQL) for the Stack Sampling Train Field Blank (S-FB(A)) and Trip Blank (S-TB(A)) as 20ng (mass loading limit of detection).
- S-FB(A) Second year second quarter stack sampling train.
- S-TB(A) Second year second quarter stack and ambient air trip blank.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

COMPARISON OF AIR STRIPPER EMISSION CONCENTRATIONS USING TWO INDEPENDENT METHODS

Second Year of Operation Second Quarter Test Results

	WATER	WATER		VOST	
	INFLUENT	EFFLUENT	STACK EXHAUST	STACK EXHAUST	RATIO
	CONCENTRATION	CONCENTRATION	CONCENTRATION	CONCENTRATION	WATER/VOST
CONSTITUENT	(ug/l)	(ug/l)	(ng/l)	(ng/l)	
Benzene	5.01	0.04	53.1	70.4	0.75
Bromodichloromethane					
Bromoform					
Carbon Tetrachloride					
Chlorobenzene	1.27	0.02	13.4		
Chloroethane	0.17				
Chloroform	4.51	0.01	48.1		
Dibromochloromethane					
1,2-Dichlorobenzene (o)	0.81	0.02	8.44		
1,3-Dichlorobenzene (m)	0.14	0.02	1.28		
1,4-Dichlorobenzene (p)	2.70	0.03	28.5		
1,1-Dichloroethane	8.03	0.01	85.7	116	0.74
1,2-Dichloroethane	0.54				
1,1-Dichloroethene	0.54				
cis-1,2-Dichloroethene*	47.21	0.23	502	503	1.0
trans-1,2-Dichloroethene	0.36				
1,2-Dichloropropane					
Ethylbenzene	0.04	0.01	0.320		
Methylene Chloride	6.47				
Tetrachloroethene	198.14	0.85	2,110	4,270	0.49
Toluene	0.06	0.01	0.534		
1,1,1-Trichloroethane	3.79				
Trichloroethene	17.79	0.08	189	216	0.88
Vinyl Chloride	5.35				
Xylenes (Total)	4.38	0.06	46.1	57.8	0.80

- ug/l = micrograms per liter of water.
- ng/l = nanograms per liter of air leaving tower.
- Exhaust Concentration: Concentration in ng/l based on water samples.
- VOST Exhaust Concentration: Concentration in ng/l based on VOST sample run S-63 collected at the air stripper stack. Blank values <40.2 ng/l.
- Ratio Water/VOST: Ratio of Water derived emission estimate vs. stack test VOST emission estimate.
- Water test 9/24/93 results provided by the Town of Oyster Bay, Department of Public Works on-site laboratory.

^{*}Tentatively Identified Compound (TIC) via VOST.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

SUMMARY OF AIR STRIPPER AMMONIA EMISSIONS

Second Year of Operation Second Quarter Test Results

					AMMONIA	STACK FLOW	MASS EMISSION
	TEST	SAMPLE	SAMPLE VOLUME	CATCH	CONC.	RATE	RATE
L	ID	ID	(m3)	(ug)	(ug/m3)	(ACFM)	(lb/hr)
	Р	2-2NH3-1F&B	0.0237	<5	<211	12,400	<0.00980
	Q	2-2NH3-2F&B	0.0255	< 5	<196	12,300	<0.00903
IC	R	2-2NH3-3F&B	0.0226	<5	<221	12,400	<0.0103
				AVERAGE	<209	12,400	<0.00971

Notes:

m3 - cubic meters

ug - micrograms

ug/m3 - micrograms per cubic meter.

ACFM - actual cubic feet per minute.

lb/hr - pounds per hour.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

AMBIENT AIR VOST TEST RESULTS

Second Year of Operation Second Quarter Test Results

Sample ID*	A2-2U	A2-2D1	A2-2D2	A2-2(FB)	A2-2(TB)
Sample Volume (L)**	391	382	408		
Ambient Temperature (Deg.F)	66	66	66		
Lower Quantitation Limit (ng/l)	0.0512	0.0524	0.142****	20****	20****

(ng/l) 0.120 0.126	(ng/l) 0.189 0.221	(ng/l)	
	0.189		
0.126	0.221		
0.126	0.221		
0.126	0.221		
			_
		_	_
0.288	0.225		
0.0524	0.184		
0.812	1.67		
1.99	2.18		
0.212	0.368		
0.173	0.142		
	0.0524 0.812 1.99 0.212	0.0524 0.184 0.812 1.67 1.99 2.18 0.212 0.368	0.0524 0.184 0.812 1.67 1.99 2.18 0.212 0.368

NOTE:

- All blank values are below the Lower Quantitation Limit.
- * Run Number: A2-2U (Ambient sample upwind of the air stripper).

A2-2D1 (Ambient sample downwind of the air stripper).

A2-2D2 (Ambient sample downwind of the air stripper).

A2-1FB (Ambient sampling train field blank).

S-TB(A) (Second year, second quarter stack and ambient air trip blank).

- ** Sample volume at ambient conditions.
- *** Tentatively Identified Compound (TIC).
- **** Lowest reported detected limit. See RTL report.
- ***** The Lower Quantitation Limit (LQL) for the Ambient Sampling Train Field Blank A2-2(FB) and the Second Year, Second Quarter Test Effort Trip Blank A2-2(TB) as 20 ng (mass loading LQL).

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

COMPARISON OF APPLICABLE DISCHARGE REQUIREMENTS FOR AIR STRIPPER TREATMENT SYSTEM WITH STACK TEST RESULTS

Second Year of Operation Second Quarter Test Results

	STACK TEST	STACK
	DISCHARGE	DISCHARGE
	CONCENTRATION*	REQUIREMENTS**
CONSTITUENT	(ug/m3)	(ug/m3)
Ammonia	<209	360
Benzene	67.6	100
Bromodichloromethane		0.03
Bromoform		16.7
Carbon Tetrachloride		100
Chlorobenzene		1,170
Chloroethane		52,000
Chloroform		167
Dibromochloromethane		0.03
1,2-Dichlorobenzene (o)		1,000
1,3-Dichlorobenzene (m)		0.03
1,4-Dichlorobenzene (p)		1,500
1,1-Dichloroethane	117	2,700
1,2-Dichloroethane		20
1,2-Dichloroethenes***	<512	2,630****
1,1-Dichloroethene		66.7
1,2-Dichloropropane		1,170
Ethylbenzene		1,450
Freon 13***		0.03
Methylene Chloride	<43.5	1,170
Tetrachloroethene	4,060	1,120
Toluene		7,500
1,1,1-Trichloroethane	<51.9	38,000
Trichloroethene	<191	900
Vinyl Chloride		0.4
Xylenes (Total)	<56.9	1,450

- Stack test discharge concentrations are derived from VOST tests.
- All blank values are below the Lower Quantitation Limit (41.9 ug/m3).
- * Values in shaded areas exceed applicable air discharge requirements.
- ** As per of the Final Consent Decree (Table 1).
- *** Tentatively Identified Compounds (TIC).
- **** Total of cis and trans isomers.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

MODEL VALIDATION RESULTS FOR TETRACHLOROETHENE

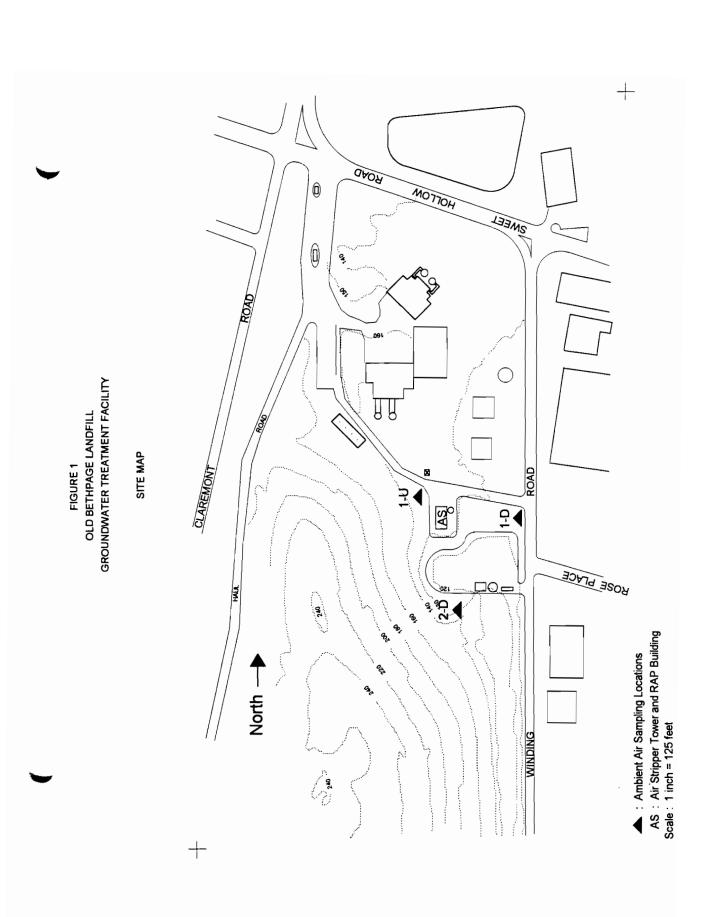
Second Year of Operation Second Quarter Test Results

	MODEL RUN 9321	MODEL RUN 9322		MODEL RUN 9321	MODEL RUN 9322
	RESULTS	RESULTS	MEASURED IMPACT	PRED: OBS	PRED: OBS
SAMPLE LOCATION	(ug/m3)	(ng/m3)	(ug/m3)	(Ratio)	(Ratio)
10	0.000022	00:00	0.070	0.00031	0
2D	0.187	0.612	0.928	0.20	0.66

Model Run 9321 = 1993 second quarter, second year run 1 using RAP building meteorology. Model Run 9322 = 1993 second quarter, second year run 1 using site ID meteorology.

OLD BETHPAGE LANDFILL GROUNDWATER TREATMENT FACILITY

MAXIMUM ANNUAL IMPACTS BASED ON CORRECTED AIR STRIPPER EMISSIONS TEST RESULTS


Second Year of Operation Second Quarter Test Results

	EMISSION RATES	MAXIMUM ANNUAL	PREVIOUS	CURRENT
CONSTITUENT	(g/s)	IMPACT	AGC**	AGC**
Ammonia	<0.00223		360	360
Benzene	0.000444		100	0.12
Bromodichloromethane			0.03	0.02
Bromoform			11.9	12
Carbon Tetrachloride			100	0.07
Chlorobenzene			1,170	20
Chioroethane			52,000	63,000
Chloroform			167	23
Dibromochloromethane			0.03	0.1
1,2-Dichlorobenzene (o)			1,000	200
1,3-Dichlorobenzene (m)			714	200
1,4-Dichlorobenzene (p)				700
1,1-Dichloroethane	0.000740		9,524	500
1,2-Dichloroethane			0.2	0.039
1,1-Dichloroethene			66.7	0.02
cis-1,2-Dichloroethene *	0.00283		1,880	1,900
trans-1.2-Dichloroethene			360	360
1,2-Dichloropropane			833	0.15
Ethylbenzene			1,450	1,000
Freon 13°			133,333	530
Methylene Chloride	<0.000281		1,170	27
Tetrachioroethene	0.0238		1,120	1.2
Toluene			7,500	2,000
1,1,1-Trichloroethane	<0.000307		38,000	1,000
Trichloroethene	<0.00113		900	0.45
Vinyl Chloride			0.4	0.02
Xylenes (Total)	<0.000340		1,450	300

NOTES:

- Emission rates for each reported VOC and ammonia was corrected to represent emissions during the operations of all five (5) ground water wells. At the time of the second year, second quarter test (9/24/93) only four wells were in service (2,3,4 and 5).
- All blank Emission Rate values are <0.000333 g/s.
- Annual maximum impacts were not calculated due to poor model verification tests.

AGC = Annual Guideline Concentration

APPENDIX G

"Quarterly Monitoring Report Sixth Quarter Results" February 1994

QUARTERLY MONITORING REPORT SIXTH (OPERATIONAL) QUARTER RESULTS JULY THROUGH SEPTEMBER 1993 OLD BETHPAGE LANDFILL GROUNDWATER REMEDIATION PROGRAM OLD BETHPAGE, NEW YORK

February 1994

Prepared for

Lockwood, Kessler & Bartlett, Inc.
One Aerial Way
Syosset, New York 11791

and

Town of Oyster Bay Oyster Bay, New York 11771

Prepared by

Geraghty & Miller, Inc. 125 East Bethpage Road Plainview, New York 11803 (516) 249-7600

QUARTERLY MONITORING REPORT THIRD QUARTER 1993 RESULTS OLD BETHPAGE LANDFILL GROUNDWATER REMEDIATION PROGRAM OLD BETHPAGE, NEW YORK

February 28, 1994

Geraghty & Miller, Inc. is submitting this report to Lockwood, Kessler & Bartlett, Inc. and the Town of Oyster Bay for work performed at the Old Bethpage Landfill, Bethpage, New York. The report was prepared in conformance with Geraghty & Miller's strict quality assurance/quality control procedures to ensure that the report meets industry standards in terms of the methods used and the information presented. If you have any questions or comments concerning this report, please contact one of the individuals listed below.

Respectfully submitted,

GERAGHTY & MILLER, INC.

Carlo San Grovamm for

Indo San Gwanni

John Burke

Staff Scientist/Project Chemist

Carlo San Giovanni Senior Scientist/Project Manager

Michael F. Wolfert

Vice President/Project Director

JB/CSG/MFW:vk 8C:3rdqt93.doc NY02899/2ndqt93.doc

CONTENTS

	<u>Page</u>
INTR	ODUCTION 1
WAT	ER-LEVEL MEASUREMENTS AND MAPPING
	JULY 1993 WATER-LEVEL ELEVATIONS3AUGUST 1993 WATER-LEVEL ELEVATIONS3SEPTEMBER 1993 WATER-LEVEL ELEVATIONS4
GRO	UNDWATER SAMPLING AND CONTAMINANT DISTRIBUTION 4
	VOLATILE ORGANIC COMPOUND PLUME
POSS	TIBLE SOURCES OF VOLATILE ORGANIC COMPOUNDS
FIND	OINGS AND CONCLUSIONS 9
REC	OMMENDATIONS
REFI	ERENCES
	<u>TABLES</u>
1.	Water-Level Data Collected on July 6, 1993, Old Bethpage Landfill, Old Bethpage, New York.
2.	Water-Level Data Collected on August 3, 1993, Old Bethpage Landfill, Old Bethpage, New York.
3.	Water-Level Data Collected on September 13, 1993, Old Bethpage Landfill, Old Bethpage, New York.
4.	Pumpage Records for the Groundwater Remediation System, July 1 Through September 30, 1993, Old Bethpage Landfill, Old Bethpage, New York.

TABLES (Continued)

- 5. Sixth (Operational) Quarter Results of Analyses for Volatile Organic Compounds in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.
- 6. Sixth (Operational) Quarter Results of Analyses for Dissolved (Filtered) Metals in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.
- 7. Sixth (Operational) Quarter Results for Total (Unfiltered) Metals and Leachate Indicators in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

FIGURES

- 1. Configuration of the Water-Table Surface on July 6, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 2. Configuration of the Shallow Potentiometric Surface on July 6, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 3. Configuration of the Deep Potentiometric Surface on July 6, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 4. Configuration of the Water-Table Surface on August 3, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 5. Configuration of the Shallow Potentiometric Surface on August 3, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 6. Configuration of the Deep Potentiometric Surface on August 3, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 7. Configuration of the Water-Table Surface on September 13, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 8. Configuration of the Shallow Potentiometric Surface on September 13, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.
- 9. Configuration of the Deep Potentiometric Surface on September 13, 1993 in the Vicinity of the Old Bethpage Landfill, Old Bethpage, New York.

FIGURES (Continued)

- 10. Approximate Distribution of Total Volatile Halogenated Organics in Groundwater in July 1993, Old Bethpage Landfill, Old Bethpage, New York.
- 11. Approximate Distribution of Total Aromatic Hydrocarbons in Groundwater in July 1993, Old Bethpage Landfill, Old Bethpage, New York.
- 12. Approximate Distribution of Tetrachloroethene in Groundwater in July 1993, Old Bethpage Landfill, Old Bethpage, New York.

APPENDICES

- A. Laboratory Data Reports.
- B. Third Quarter 1993 Water Sampling Logs.
- C. Groundwater Sampling Protocols.

QUARTERLY MONITORING REPORT SIXTH (OPERATIONAL) QUARTER RESULTS JULY THROUGH SEPTEMBER 1993 OLD BETHPAGE LANDFILL GROUNDWATER REMEDIATION PROGRAM OLD BETHPAGE, NEW YORK

INTRODUCTION

Geraghty & Miller, Inc. has prepared this report at the request of Lockwood, Kessler & Bartlett, Inc. (LKB) and the Town of Oyster Bay to summarize and evaluate data collected at the Old Bethpage Landfill, Old Bethpage, New York during the sixth quarter (July through September 1993) of the groundwater remediation system operation.

The groundwater remediation system at the Old Bethpage Landfill became operational on April 1, 1992. Geraghty & Miller initiated monthly hydraulic monitoring approximately 30 days after system start-up and quarterly groundwater quality monitoring 3 months after system start-up in accordance with the Remedial Action Plan (RAP), which is Appendix I of the Record of Decision (New York State Department of Environmental Conservation [NYSDEC] and U.S. Environmental Protection Agency [USEPA] 1988). During the third quarter of 1993, three synoptic rounds of water-level measurements (July 6, August 3, and September 13, 1993) and one round of quarterly groundwater sampling (July 7 through 9, 1993) were conducted.

The purposes of the hydraulic monitoring are to (1) delineate the mounding effects (if any) in the vicinity of the recharge basin and (2) delineate the effective capture zone of the recovery system (i.e., determine the effectiveness of the hydraulic containment system in exerting control over the volatile organic compound [VOC] plume). The purposes of the groundwater quality monitoring are to (1) assess the progress of groundwater cleanup and (2) demonstrate whether the termination criteria set forth in the RAP have been met.

Water-level data collected during this quarter are summarized in Tables 1, 2, and 3; pumpage data for the third quarter 1993 groundwater recovery system operation are

provided in Table 4. Groundwater quality data are summarized in Tables 5 through 7 and are provided in Appendix A. Water sampling logs for this quarter and groundwater sampling protocols are provided in Appendices B and C, respectively.

WATER-LEVEL MEASUREMENTS AND MAPPING

On July 6, August 3, and September 13, 1993, Geraghty & Miller collected synoptic water-level measurements from site monitoring wells. All recovery wells were in operation for the July and August water-level measurement rounds; Recovery Well RW-1 was not operating during the September round. Pumpage records for the groundwater remediation system from July 1 through September 30, 1993 are summarized in Table 4. The groundwater recovery system was fully operational for approximately 10 days of the 92-day third quarter 1993 reporting period.

Depth-to-water measurements and water-level elevations (relative to mean sea level) for the July 1993, August 1993, and September 1993 rounds are summarized in Tables 1, 2, and 3, respectively. Similar to previous rounds, water-level elevations for each round were plotted for the water-table, shallow potentiometric, and deep potentiometric surfaces on the site base map (see Figures 1 through 9). Where appropriate, water-level contour lines, the approximate extent of the VOC plume (using data from the July 1993 groundwater sampling round), and limiting flow lines were drawn on the maps. Contour lines were dashed where the data points were less than optimum, and limiting flow lines through these areas are approximate. Water-level elevation data and limiting flow lines presented on Figures 2, 3, 5, and 6 indicate that system pumpage, which was approximately 1,053 gallons per minute (gpm) on the day the water levels were measured, was sufficient to create and maintain a capture zone that exerted effective hydraulic control over the VOC plume, both horizontally and vertically. The effective capture zone shown on Figures 8 and 9 is smaller than that shown on Figures 2, 3, 5, and 6; and, it is questionable if effective hydraulic control over the VOC plume was maintained. The most likely reason for the reduced capture zone is that Recovery Well RW-1 was not operating.

JULY 1993 WATER-LEVEL ELEVATIONS

Contour maps depicting elevations of the water-table, shallow potentiometric, and deep potentiometric surfaces on July 6, 1993 are shown on Figures 1, 2, and 3, respectively. Compared to the June 1993 data, water-level elevations from the July 1993 round generally decreased by approximately 0.5 ft. However, water-level elevations in Wells 6C, 6D, 6F, RW-1, RW-2, and RW-5 decreased by approximately 1.5 ft. Water-level elevations measured in this round ranged from over 70 ft above mean sea level (msl) (north of the site) to less than 57 ft above msl (south of the site), and the horizontal direction of groundwater flow was generally to the southeast across the site.

In general, water-level elevation data for the July 1993 round indicate an overall decline in water levels of approximately 2.5 ft compared to baseline data collected prior to system start-up (Geraghty & Miller, Inc. 1992a). Furthermore, data presented on Figure 1 indicate a localized mounding of the water table immediately adjacent to the recharge basin that receives treated water from the groundwater remediation system. Well OBS-1 was damaged sometime between the June 1993 and the July 1993 water-level measurement rounds; therefore, water levels were not measured in this well during the third quarter 1993. Well OBS-1 will be repaired in the near future.

AUGUST 1993 WATER-LEVEL ELEVATIONS

Contour maps depicting elevations of the water-table, shallow potentiometric, and deep potentiometric surfaces on August 3, 1993 are shown on Figures 4, 5, and 6, respectively. Compared to the July 6, 1993 round, water-level elevations from the August round generally decreased by 0.6 ft across the site, except in Recovery Well RW-3, where the water level was approximately the same as the July round, and in Recovery Wells RW-1 and RW-5, where water levels decreased by more than 2 ft. Water-level elevation data for August 1993 decreased approximately 3.0 ft compared to baseline data (Geraghty & Miller, Inc. 1992a), and the horizontal direction of groundwater flow was similar to the July round.

During this round, localized mounding was also observed immediately adjacent to the recharge basin that receives treated water from the groundwater remediation system (see Figure 4).

SEPTEMBER 1993 WATER-LEVEL ELEVATIONS

Contour maps depicting elevations of the water-table, shallow potentiometric, and deep potentiometric surfaces on September 13, 1993 are shown on Figures 7, 8, and 9, respectively. Compared to the August 3, 1993 round, water-level elevations from the September round generally decreased by 1 ft across the site, except in Recovery Well RW-5, which did not change from the August round. Because Recovery Well RW-1 was not operating during the September round, water-level elevations in and adjacent to Well RW-1 are higher than in the August round. Water-level elevation data for September 1993 decreased approximately 4.0 ft compared to baseline data (Geraghty & Miller, Inc. 1992a). The horizontal direction of groundwater flow was similar to the July and August rounds, and localized mounding, immediately adjacent to the recharger basin that receives treated water from the groundwater remediation system, was also observed during the September round (see Figure 7).

GROUNDWATER SAMPLING AND CONTAMINANT DISTRIBUTION

Geraghty & Miller conducted the third quarter 1993 round of groundwater quality sampling at the site from July 7 through 9, 1993. The sampling protocols followed were the same as those used in previous rounds and are provided in Appendix C. The analytical parameters and results obtained are summarized in Tables 5 through 7. Laboratory data reports for this sampling round are provided in Appendix A. The water sampling logs used to record observations and measurements during groundwater sampling are provided in Appendix B.

Sample collection, equipment decontamination, and quality assurance/quality control (QA/QC) procedures used for the July 1993 round were identical to those used for the previous sampling round in April 1993. As discussed previously, Well OBS-1 was damaged and, therefore, a sample could not be collected from this well. Well OBS-2 was sampled in place of OBS-1 because their screen zones are similar. Data collected during the July 1993 sampling round are summarized below and compared to data from the April 1993 round and the July/August 1991 baseline sampling round in which samples were collected prior to remediation system start-up.

VOLATILE ORGANIC COMPOUND PLUME

VOCs detected in the July 1993 sampling round exhibit the same groupings of compounds, but a slightly different pattern of groundwater contamination from previous quarterly sampling rounds and the baseline sampling round. These VOC groupings include (1) volatile halogenated organics (VHOs), except tetrachloroethene; (2) aromatic hydrocarbons; and (3) tetrachloroethene. Analytical results of the samples collected for VOC analysis during the July 1993 sampling round are summarized in Table 5 and described below. The extent and distribution of the VOC groupings listed above are depicted on Figures 10 through 12. The plume dimensions are based upon data from both the monitoring wells and the recovery wells. It is imprtant to note that the screen length of these wells vary greatly. Monitoring wells have 5-ft screen zones, Well OBS-2 has a 25-ft screen zone, and recovery well screen zones vary from 82 ft (RW-2) to 110 ft (RW-5).

In the first VOC grouping, the most prevalent compounds detected, in terms of frequency of occurrence and concentration, were 1,2-dichloroethene and trichloroethene. Other VHOs were also detected, but typically in concentrations of less than 10 micrograms per liter (ug/L). Well 8A had the highest concentration of total VHOs detected, followed in order of decreasing concentrations by Wells 7B, OBS-2, 8B, and 5B. In general, concentrations of total VHOs detected in the July 1993 round were less than those detected in the April 1993 round and in the baseline round. For example, the concentration of 1,2-

dichloroethene detected in Well 7B decreased from 33 ug/L in the April 1993 round to 14 ug/L in the July 1993 round and concentrations of trichloroethene detected in Well 8A decreased from 35 ug/L in the July/August 1991 baseline round to 14 ug/L in the July 1993 round. In addition, VHOs were not detected (above the method detection limit) in Well Clusters 6 and 9 in the July 1993 round. The approximate lateral extent of VHOs in groundwater in July 1993 is shown on Figure 10.

The second VOC grouping, aromatic hydrocarbons (consisting of benzene, ethylbenzene, chlorobenzene, p-dichlorobenzene, and o-dichlorobenzene), is shown on Figure 11. The highest concentrations of aromatic hydrocarbons were detected in Wells 6B and 6E, followed in order of decreasing concentration by Wells 9C, 5B, and 6A. In general, total concentrations of aromatic hydrocarbons detected in the July 1993 round were approximately the same as those detected in the April 1993 round and less than those detected in the July/August 1991 baseline round (Geraghty & Miller, Inc. 1992a). The approximate lateral extent of aromatic hydrocarbons in groundwater in July 1993 (Figure 11) is similar to the lateral extent based on April 1993 data and has decreased compared to the lateral extent in the July/August 1991 baseline round (Geraghty & Miller, Inc. 1992a).

The third VOC grouping, tetrachloroethene, exhibits a very different distribution than the first two VOC groupings. Figure 12 illustrates the approximate lateral extent of tetrachloroethene in groundwater in July 1993. The July 1993 lateral extent for tetrachloroethene is similar to the April 1993 data and to the July/August 1991 baseline round data (Geraghty & Miller, Inc. 1992a), except the western plume was not observed in this round. The western plume may not have been observed because Well OBS-1 is damaged and was not sampled during the July 1993 round. The highest concentration of tetrachloroethene was detected in Well 8A, followed by Well 7B. The concentrations of tetrachloroethene detected in the July 1993 round are less than those detected in the April 1993 round and in the July/August 1991 baseline rounds (Geraghty & Miller, Inc. 1992a). For example, the concentrations of tetrachloroethene detected in the July 1993 round have decreased in Wells 7B and 8A when compared with the July/August 1991 baseline data and

the April 1993 data. The concentrations of tetrachloroethene detected in Well 7B decreased from 140 ug/L and 130 ug/L in the July/August 1991 baseline round and April 1993 round, respectively, to 75 ug/L in the July 1993 round. The concentrations of tetrachloroethene detected in Well 8A decreased from 440 ug/L and 380 ug/L in the July/August 1991 baseline round and April 1993 round, respectively, to 270 ug/L in the July 1993 round.

INORGANIC COMPOUND PLUME

Inorganic data collected during the July 1993 groundwater sampling round are summarized in Tables 6 and 7. In general, leachate indicators detected in total (unfiltered) samples from the July 1993 round depict a distribution similar to the data from the April 1993 round. Specifically, the landfill leachate plume exhibits its greatest approximate lateral extent in the middle zone (which is at the approximate elevation of the "B" and "C" wells and is roughly equivalent to the shallow potentiometric zone) and its greatest approximate thickness (approximately 200 ft) in Well Cluster 6. The highest concentrations of ammonia and chloride detected in the July 1993 round were found in Wells 5B, 6B, and 9C. Iron was detected at its highest levels in Wells 5B, 6B, 6C, 6E, 8B, and LF-1. Alkalinity was detected at its highest levels in Wells 5B, 6B, 9C, and LF-1. Manganese was detected at its highest level in Well LF-1. The concentrations of leachate indicators detected in the July 1993 round are similar to those detected in the April 1993 round.

POSSIBLE SOURCES OF VOLATILE ORGANIC COMPOUNDS

As previously described by Geraghty & Miller (Geraghty & Miller, Inc. 1986 and 1992b), historical water-quality data for the site indicate that a portion of the observed VOC contamination may be potentially attributable to sources upgradient of the off-site monitoring wells, including the industrial area north of Bethpage State Park (which includes

the Claremont Polychemical site, a USEPA National Priority List site) and the Nassau County Fireman's Training Center, located northwest of Bethpage State Park. Specifically, because Wells 5B and OBS-1 are located hydraulically downgradient of the Nassau County Fireman's Training Center and Wells 8A, 8B, and 7B are located hydraulically downgradient of the Claremont Polychemical site, VOCs detected in these wells may potentially be attributable to these sites. The data indicate that the Claremont Polychemical site is a potential source of VHOs and tetrachloroethene, and the Nassau County Fireman's Training Center is a potential source of aromatic hydrocarbons, VHOs, and tetrachloroethene.

Although the monitoring wells sampled for the July/August 1991 baseline round and the July 1993 monitoring round were installed to identify contamination attributable to the Old Bethpage Landfill, the distribution of VOCs and the groundwater flow direction measured during this reporting period support the findings of Geraghty & Miller's 1986 and 1992 reports that a portion of the VOC contamination detected at the site may be attributable to upgradient sources (Geraghty & Miller, Inc. 1986; 1992a; 1992b). In general, a comparison of the July/August 1991 baseline data and the July 1993 water-quality data indicate an overall decrease in the concentrations of VHOs and tetrachloroethene from potential upgradient sources, while concentrations of aromatic hydrocarbons have remained approximately the same. For example, the concentrations of total VHOs in Wells 8A and 8B (located downgradient of the Claremont Polychemical site) decreased between the July/August 1991 baseline round (65 ug/L and 40 ug/L, respectively) and the July 1993 monitoring round (53 ug/L and 11 ug/L, respectively). In addition, tetrachloroethene, detected in the baseline round at a maximum concentration of 440 ug/L (Well 8A), was detected in the July 1993 round at a maximum concentration of 270 ug/L (Well 8A). Exceptions to these general patterns may be due to pumpage from the adjacent recovery wells.

FINDINGS AND CONCLUSIONS

The following findings and conclusions are based on data presented in this report:

- Water-level elevation data for July and August 1993 indicate that system
 pumpage, which was approximately 1.053 gpm on the day the water levels
 were measured, was sufficient to create and maintain a capture zone that
 exerted effective hydraulic control over the VOC plume, both horizontally and
 vertically.
- Based on water-level elevation data collected on September 13, 1993 when Recovery Well RW-1 was not operating, it is questionable if effective hydraulic control of the VOC plume was maintained.
- 3. Pumpage data indicate that the groundwater recovery system was fully operational for approximately 10 days of the 92-day third quarter 1993 reporting period.
- 4. An overall decrease in water-level elevation of approximately 0.5 ft was observed across the site in the July 1993 data, as compared to the June 1993 water-level data. Compared to the July 1993 data, water-level elevations from the August 1993 round also showed a general 0.6 ft decrease across the site. Compared to the August 1993 data, water-level elevations from the September 1993 round were approximately 1 ft lower across the site. Overall, the September 1993 water-level elevation data indicate a decrease of approximately 4 ft across the site compared to the baseline data.
- Localized mounding of the water table immediately adjacent to the recharge basin, which receives treated water from the groundwater remediation system, was observed during the third quarter 1993.

- 6. VOCs detected in the third quarter 1993 groundwater sampling round exhibit the same groupings of compounds, but a slightly different pattern of contamination from previous sampling rounds and the baseline sampling round. These VOC groupings include VHOs (except tetrachloroethene), aromatic hydrocarbons, and tetrachloroethene. The July 1993 lateral extent of the VHO plume and the lateral extent of the aromatic hydrocarbon plumes are similar to previous rounds, except that VHOs were not detected in Well Clusters 6 and 9. The July 1993 lateral extent of the tetrachloroethene plume is different than previous rounds. The western tetrachloroethene plume was not observed in July 1993; however, this may be because Well OBS-1 is damaged and was not sampled in July 1993.
- 7. In general, the concentrations of VHOs and tetrachloroethene detected in the third quarter 1993 groundwater sampling round have decreased compared to the April 1993 round and to baseline data collected in July/August 1991 prior to system start-up.
- Concentrations of aromatic hydrocarbons detected in the third quarter 1993
 are similar to the April 1993 results and have decreased compared to the
 July/August 1991 baseline data.
- 9. Although a few exceptions exist, concentrations of leachate indicators detected in total (unfiltered) samples from the third quarter 1993 groundwater sampling round are consistent with the second quarter data. These leachate concentrations depict a similar distribution (i.e., the landfill leachate plume exhibits its greatest approximate lateral extent in the middle zone, which is at the approximate elevation of the "B" and "C" wells and is roughly equivalent to the shallow potentiometric zone, and its greatest approximate thickness [approximately 200 ft] in Well Cluster 6).

10. The Claremont Polychemical site is a potential source of VHOs and tetrachloroethene, and the Nassau County Fireman's Training Center is a potential source of aromatic hydrocarbons, VHOs, and tetrachloroethene.

RECOMMENDATIONS

Based on the data presented in this report, Geraghty & Miller recommends the following:

- The frequency of hydraulic monitoring should be reduced from monthly to quarterly. To provide for efficient data collection, quarterly hydraulic monitoring should be timed to coincide with the on-going quarterly groundwater sampling program. Geraghty & Miller recommends that the October 1993 round be the last monthly hydraulic monitoring round.
- To ensure that the largest possible capture zone is created, Geraghty & Miller recommends that the pumpage rate in Well RW-2 be increased when Well RW-1 is inoperable.
- 3. To determine if hydraulic control of the VOC plume can be effectively maintained at a lower total system pumpage rate, system pumpage should, on a trial basis, be reduced incrementally and hydraulic monitoring should be increased to weekly. Weekly hydraulic monitoring should be continued until the effect of the reduced pumpage rate is determined.
- 4. The quarterly groundwater sampling program should be continued without change.
- Wells 9A and OBS-1 should be repaired or replaced so that water levels can be measured year-round and groundwater samples can be collected.

REFERENCES

- Geraghty & Miller, Inc. 1986. OBSWDC Offsite Ground-Water Monitoring Program, Old Bethpage, Long Island, New York.
- Geraghty & Miller, Inc. 1992a. Baseline Water-Level Elevation and Ground-Water Quality Report, Old Bethpage Landfill Ground-Water Remediation Program, Old Bethpage, New York, June 1992.
- Geraghty & Miller, Inc. 1992b. Hydraulic Evaluation of the Ground-Water Remediation System, Old Bethpage Landfill, Old Bethpage, New York, June 1992.
- New York State Department of Environmental Conservation and U.S. Environmental Protection Agency. 1988. Record of Decision for the Remediation of the Old Bethpage Landfill, Town of Oyster Bay, New York, March 17, 1988.
- Ott, D. 1993a. Farmingdale Water District. Personal Communication with J. Burke, Geraghty & Miller, Inc., July 1993
- Ott, D. 1993b. Farmingdale Water District. Personal communication with J. Burke, Geraghty & Miller, Inc., August 1993.
- Ott, D. 1993c. Farmingdale Water District. Personal communication with J. Burke, Geraghty & Miller, Inc., September 1993.

8C:3rdQT93.doc\NY02899

Table 1. Water-Level Data Collected on July 6, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Well Designation	Elevation of Measuring Point (feet above mean sea level)	Depth to Water (feet below measuring point)	Water-Level Elevation (feet above mean sea level)	Remarks
	407.40	70.04	64.00	
5A	137.13	72.21	64.92	
5B	138.43	73.48	64.95	
5A	160.24	95.57	64.67	
6 B	160.39	95.77	64.62	
SC	159.99	96.25	63.74	
SD	160.39	96.81	63.58	
SE .	160.88	96.34	64.54	
6F	159.88	96.86	63.02	
'A	148.44	86.80	61.64	
' B	147.94	88.14	59.80	
BA	134.94	68. 99	65.95	
BB	134.24	68.39	65.85	
BC	135.72	70.17	65.55	
9A (1)	153.35 (1)	90.43 (1)	62.92 (1)	
BB	153.28	91.97	61.31	
OC .	153.53	93.29	60.24	
9D	152.95	91.98	60.97	
0A	161.28	96.42	64.86	
OB	161.12	96.77	64.35	
10C	160.27	96.02	64.25	
10D	161.17	97.15	64.02	
1 1A	80 .19	22.92	57.27	
1B	79.91	22.79	57.12	
И-29A	158.56	Dry	Dry	Total depth of well is 89
И-29B	157.41	86.46	70.95	
И-30A	151.20	81.14	70.06	
M-30B	155.65	85.39	70.26	
N-9980	80.46	23.94	56.52	
.F-1	111.40	45.10	66.30	
.F-2	118.70	52.23	66.47	
.F-3	126.50	58.34	68.16	
.F-4	149.93	80.33	69.60	
DBS-1	110.20	NA		Damaged
OBS-2	105.26	45.25	60.01	
RW-1	110.94	56.32	54.62	Pumping
RW-2	145.31	91.92	53.39	Pumping
RW-3	120.92	70.36	50.56	Pumping
₹W-4	144.82	88.90	55.92	Pumping
RW-5	149.74	95.15	54.59	Pumping
τW-1	121.12	51.73	69.39	
ΓW-2	117.52	50.88	66.64	
TW-3	122.94	56.26	66.68	
Farm W.D. 1-3	-	26 (2)	CNBC	Static
Farm W.D. 2-2	-	64.5 (2)	CNBC	Static
Farm W.D. 2-3		38 (2)	CNBC	Static
Recharge Basin	125.86	2.50	123.36	From top of gauge

Elevation unknown.

NA Not assessable; water level could not be measured.

CNBC Could not be calculated.

⁽¹⁾ Screen zone for Well 9A is apparently damaged, gravel pack has entered the well.

⁽²⁾ Data received from Don Ott on July 6, 1993 (Ott 1993a).

Table 2. Water-Level Data Collected on August 3, 1993 Old Bethpage Landfill, Old Bethpage, New York.

Well Designation	Elevation of Measuring Point (feet above mean sea level)	Depth to Water (feet below measuring point)	Water-Level Elevation (feet above meari sea level)	Remarks
5A	137.13	72.84	64.29	
5B	138.43	74.16	64.27	
6A	160.24	96.18	64.06	
6 B	160.39	96.38	64.01	
6C	159.99	95.90	64.09	
6D	160.39	96.43	63.96	
6 E	160.88	96.95	63.93	
6F	159.88	96.91	62.97	
7A	148.44	87.37	61.07	
7B	147.94	88.71	59.23	
BA	134.94	69.67	65.27	
3B	134.24	69.11	65.13	
ВС	135.72	70.93	64.79	
9A (1)	153.35 (1)	89.90 (1)	63.45 (1)	
9B	153.28	92.55	60.73	
9C	153.53	93.88	59.65	
9D	152.95	92.72	60.23	
10A	161.28	97.07	64.21	
10B	161.12	97.43	63.69	
10C	160.27	96.76	63.51	
10D	161.17	98.11	63.06	
11A	80.19	23.85	56.34	
11B .	79.91	23.58	56.33	
	158.56	Dry	Dry	Total depth of well is 89
M-29A	157.41	87.43	69.98	Total depth of Well is 05
M-29B		81.97	69.23	
M-30A	151.20	86.39	69.26	
M-30B	155.65		55.59	
N-9980	80.46	24.87		
LF-1	111.40	45.85	65.55	
-F-2	118.70	52.85	65.85	
_F-3	126.50	59.09	67.41	
_F-4	149.93	81.12	68.81	
OBS-1	110.20	NA	CNBC	Damaged
OBS-2	105.26	45.98	59.28	
RW-1	110.94	58.51	52. 43	Pumping
RW-2	145.31	92.12	53.19	Pumping
₹W-3	120.92	70.28	50.64	Pumping
₹W- 4	144.82	89.45	55.37	Pumping
RW-5	149.74	95.88	53.86	Pumping
ΓW-1	121.12	52.46	68. 66	
ΓW-2	117.52	51.72	65.80	
TW-3	122.94	56. 95	65.99	
Farm W.D. 1-3	-	27.50 (2)	CNBC	Static
Farm W.D. 2-2	_	64.50 (2)	CNBC	Static
Farm W.D. 2-3		27.50 (2)	CNBC	Static
Recharge Basin	125.86	2.25 (3)	123.61	From top of gauge

NA Not assessable; water level could not be measured.

CNBC Could not be calculated.

(2) Data received from Don Ott on August 3, 1993 (Ott 1993b).

(3) Data collected August 5, 1993.

⁽¹⁾ Screen zone for Well 9A is apparently damaged; gravel pack has entered the well. Water-level measurement does not conform to water levels in surrounding wells. This measurement appears to be inaccurate and was therefore not plotted on water-table figure.

Table 3. Water-Level Data Collected on September 13, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Well Designation	Elevation of Measuring Point (feet above mean sea level)	Depth to Water (feet below measuring point)	Water-Level Elevation (feet above mean sea level)	Remarks
5A	137.13	73.68	63.45	
5B	138.43	74.99	63.44	
6A	160.24	97.08	63.16	
5B	160.39	97.29	63.10	
SC SC	159.99	96,79	63.20	
6D	160.39	97.29	63.10	
6E	160.88	97.86	63.02	
F	159.88	97.32	62.56	
'A	148.44	88.32	60.12	
В	147.94	89.64	58.30	
A	134.94	70.55	64.39	
В	134.24	69.91	64.33	
iC	135.72	71.64	64.08	
PA (1)	153.35 (1)	Dry	Dry	Total depth of well is 93 ft
	153.28	93.38	59.90	rotal depth of well to so it
9B 9C	153.53	94.69	58.84	
D .	152.95	93.36	59.59	
	161.28	98.07	63.21	
OA	161.12	98.29	62.83	
0B		97.50	62.77	
00	160.27	98.73	62. <i>11</i>	
OD	161.17		55.34	
1A	80.19	24.85		
1B	79.91	24.69	55.22	Total donth of wall in 90 ff
Л-29A	158.56	Dry	Dry	Total depth of well is 89 ft
И-29В	157.41	88.59	68.82	
Л-30Å	151.20	82.96	68.24	
M-30B	155.65	87.44	68.21	
1-9980	80.46	25.92	54.54	
.F-1	111.40	46.61	64.79	
F-2	118.70	53.67	65.03	
.F-3	126.50	59.81	66.69	
.F-4	149.93	81.86	68.07	
DBS-1	110.20	NA	CNBC	Damaged
DBS-2	105.26	46.75	58.51	
RW-1	110.94	50.30	60.64	Not pumping
RW-2	145.31	93.40	51.91	Pumping
RW-3	120.92	71.35	49.57	Pumping
RW-4	144.82	90.50	54.32	Pumping
RW-5	149.74	95.80	53.94	Pumping
™-1	121.12	53.41	67.71	
rW-2	117.52	52.47	65.05	
TW-3	122.94	Dry	Dry	Total depth of well is 59 ft
arm W.D. 1-3		27.00 (2)		Static
arm W.D. 2-2		65.00 (2)		Static
Farm W.D. 2-3	·	38.00 (2)		Static
Recharge Basin	125.86	2.00	123.86	

⁻⁻ Elevation unknown.

NA Not assessable; water level could not be measured.

CNBC Could not be calculated.

(1) Screen zone for Well 9A is apparently damaged; gravel pack has entered the well.

(2) Data received from Don Ott on September 13, 1993 (Ott 1993c).

Table 4. Pumpage Records for the Groundwater Remediation System, July 1 Through September 30, 1993, Old Bethpage Landfill, Old Bethpage, New York.

	Estimated Average	
	System Flow	Comments
ates	(gpm)	Comments
/1 - 7/5	1108	All recovery wells on.
7/6	1053	Recovery well 1 off.
7	942	Recovery wells 1 & 2 off for part of the day.
, /8 - 7/10	873	All recovery wells off for part of the day.
/11	784	Recovery wells 1 & 3 off for part of the day.
/12	779	Recovery wells 1, 3 & 5 off for part of the day.
713	707	All recovery wells off for part of the day.
		, , ,
7/14	958 967	Recovery wells 4 & 5 off for part of the day.
7/15	967	Recovery wells 3 & 4 off for part of the day.
/16 - 7/18	956	Recovery well 3 off for part of the day.
/19	931	Recovery wells 2 & 3 off for part of the day.
/20	791	Recovery wells 2 & 4 off for part of the day.
/21 - 7/24	894	Recovery well 2 off for part of the day.
<i>'/</i> 25	782	Recovery wells 1, 2, 3 & 5 off for part of the day.
1/26 - 7/27	561	All recovery wells off for part of the day.
/28	867	Recovery well 2 off for part of the day.
/29	605	All recovery wells off for part of the day.
/30 - 7/31	680	Recovery wells 1 & 5 off for part of the day.
1 - 8/3	766	Recovery wells 1 & 5 off for part of the day.
/4 - 8/8	1103	All recovery wells on.
9	899	All recovery wells off for part of the day.
10 - 8/11	907	Recovery well 1 off.
12	726	All recovery wells off for part of the day.
/13	720 790	Recovery well 5 off for part of the day.
	790 878	Recovery wells 2, 3 & 4 off for part of the day.
/14	898	Recovery well 1 off.
/15 - 8/16 /17		·
V17	880	All recovery wells off for part of the day.
/18 - 8/19	923	Recovery well 1 off.
/20	807	Recovery wells 1, 2, 3 & 4 off for part of the day.
/21	875	All recovery wells off for part of the day.
/22 - 8/24	923	Recovery well 1 off.
/25	531	All recovery wells off for part of the day.
/26	923	Recovery well 1 off.
/27 - 8/31	404	All recovery wells off for part of the day.
/1 - 9/2	712	Recovery wells 1 & 4 off for part of the day.
<i>r</i> 3	636	Recovery wells 1, 2 & 4 off for part of the day.
/4	620	All recovery wells off for part of the day.
/5 - 9/7	715	Recovery wells 1 & 4 off for part of the day.
/8	693	All recovery wells off for part of the day.
9	732	Recovery wells 1, 2 & 3 off for part of the day.
10	442	All recovery wells off for part of the day.
11 - 9/13	898	Recovery well 1 off.
	827	Recovery wells 1, 2 & 4 off for part of the day.
/14 - 9/15	915	Recovery well 1 off.
/16 - 9/21		All recovery wells off for part of the day.
722	811	Recovery well 1 off.
23 - 9/26	941	•
27	737	Recovery wells 1, 2, 3 & 5 off for part of the day.
28 - 9/30	892	Recovery well 1 off.

gpm Gallons per minute.

Table 5. Sixth (Operational) Quarter Results of Analyses for Volatile Organic Compounds in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation: Sample Date:	5B 7/7/93	6A 7/7/93	6B 7/8/93	6C 7/8/93	6C-Rep 7/8/93	6E 7/8/93
Parameter	111195	111133	110/33	110/33	770/33	110/30
(concentrations in ug/L)						
Chloromethane	<1	<1	<1	<1	<1	<1
Bromomethan e	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2
Vinyl chloride	1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1
Methylene chloride	<1	<1	<1	<1	<1	<1
Frichlorofluoromethane	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	1	<1	<1	<1	<1	<1
1,2-Dichloroethene	1	<1	<1	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1
1.2-Dichloroethane	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	<1	<1	<1	<1	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<1
Bromodichloromethane	<1	<1	<1	<1	<1	<1
,2-Dichloropropane	<1	<1	<1	<1	<1	<1
rans-1,3-Dichloropropene	<2	<2	<2	<2	<2	<2
Frichloroethene	<1	<1	<1	<1	<1	<1
Chlorodibromomethane	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	<2	<2	<2	<2	<2	<2
cis-1,3-Dichloropropene	- <2	<2	<2	<2	<2	<2
2-Chloroethylvinylether	<2	<2	<2	<2	<2	<2
Bromoform	<2	<2	<2	<2	<2	<2
1,1,2,2-Tetrachloroethane	<2	<2	<2	<2	<2	<2
Tetrachloroethene	<1	<1	<1	<1	<1	<1
Chlorobenzene	1	1	2	<1	<1	<1
1,3-Dichlorobenzene	<2	<2	<2	<2	<2	<2
1,2-Dichlorobenzene	<2	<2	<2	<2	<2	4
1,4-Dichlorobenzene	3	<2	6	<2	<2	11
Benzene	1	<1	7	<1	<1	<1
Toluene	<2	<2	<2	<2	<2	<2
Ethyl benzene	<1	<1	<1	<1	<1	<1
m-Xylene	<2	<2	<2	<2	<2	<2
p+p-Xylene	<4	<4	<4	<4	<4	<4
Total VOCs	8	1	15	0	0	15

ug/L Micrograms per liter.

VOCs Volatile organic compounds.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 5. Sixth (Operational) Quarter Results of Analyses for Volatile Organic Compounds in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation:	6F	7B	8 A	8 B	9B	90
Sample Date:	7/8/93	7/7/93	7/7/93	7/7/93	7/8/93	7/9/93
Parameter						
(concentrations in ug/L)						
Chloromethane	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2
Vinyl chloride	<1	<1	<1	<1	<1	<1
Chloroethane	<1	<1	<1	<1	<1	<1
Methylene chloride	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	<1	<1	2	<1	<1	<1
1,2-Dichloroethene	<1	14	32	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	<1	<1	<1	<1	<1	<1
1,1,1-Trichloroethane	<1	<1	5	4	<1	<1
Carbon tetrachloride	<1	<1	<1	<1	<1	<
Bromodichloromethane	<1	<1	<1	<1	<1	<1
1,2-Dichloropropane	<1	<1	<1	<1	<1	<1
rans-1,3-Dichloropropene	<2	<2	<2	<2	<2	<2
Trichloroetherie	<1	2	14	7	<1	<1
Chlorodibromomethane	<1	<1	<1	<1	<1	<1
1,1,2-Trichloroethane	<2	<2	<2	<2	<2	<2
cis-1,3-Dichloropropene	<2	<2	<2	<2	<2	<2
2-Chloroethylvinylether	<2	<2	<2	<2	<2	<2
Bromoform	<2	<2	<2	<2	<2	<2
1,1,2,2-Tetrachloroethane	<2	<2	<2	<2	<2	<2
Tetrachloroethene	<1	75	270	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	
1,3-Dichlorobenzene	<2	<2	<2	<2	<2	<2
1,2-Dichlorobenzene	<2	<2	<2	<2	<2	2
1.4-Dichlorobenzene	<2	<2	<2	<2	<2	1
Benzene	<1	<1	<1	<1	<1	2
Toluene	<2	<2	<2	<2	<2	<2
Ethyl benzene	<1	<1	<1	<1	<1	<
m-Xylene	<2	<2	<2	<2	<2	<2
o+p-Xylene	<4	<4	<4	<4	<4	<4
Total VOCs	0	91	323	11	0	13

ug/L Micrograms per liter.

VOCs Volatile organic compounds.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 5. Sixth (Operational) Quarter Results of Analyses for Volatile Organic Compounds in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation: Sample Date:	11 A 7/9/9 3	11B 7/9/93	OBS-2 (a) 7/8/93	M-30B 7/7/93	Field Blank 1 7/7/93	Field Blank 2 7/7/93
Parameter	.,5,50	170,00	170,00	777750	777733	77773
(concentrations in ug/L)						
Chloromethane	<1	<1	<1	<1	<1	<1
Bromomethane	<1	<1	<1	<1	<1	<1
Dichlorodifluoromethane	<2	<2	<2	<2	<2	<2
Vinyl chloride	<1	<1	<1	<1	<1	<
Chloroethane	<1	<1	<1	<1	<1	<1
Methylene chloride	<1	<1	<1	<1	<1	<1
Trichlorofluoromethane	<2	<2	<2	<2	<2	<2
1,1-Dichloroethene	<1	<1	<1	<1	<1	<1
1,1-Dichloroethane	<1	<1	<1	<1	<1	<1
1,2-Dichloroethene	<1	<1	10	<1	<1	<1
Chloroform	<1	<1	<1	<1	<1	<1
1,2-Dichloroethane	<1	<1	<1	<1	<1	<
1,1,1-Trichloroethane	<1	<1	<1	<1	<1	<
Carbon tetrachloride	<1	<1	<1	<1	<1	<
Bromodichloromethane	<1	<1	<1	<1	<1	<
,2-Dichloropropane	<1	<1	<1	<1	<1	<
rans-1,3-Dichloropropene	<2	<2	<2	<2	<2	<7
Trichloroethene	<1	<1	2	<1	<1	<
Chlorodibromomethane	<1	<1	<1	<1	<1	<
1,1,2-Trichloroethane	<2	<2	<2	<2	<2	<2
cis-1,3-Dichloropropene	<2	<2	<2	<2	<2	<2
2-Chloroethylvinylether	<2	<2	<2	<2	<2	<2
Bromoform	<2	<2	<2	<2	<2	<2
1,1,2,2-Tetrachloroethane	<2	<2	<2	<2	<2	<2
Tetrachloroethene	<1	<1	<1	<1	<1	<1
Chlorobenzene	<1	<1	<1	<1	<1	< '
1,3-Dichlorobenzene	<2	<2	<2	<2	<2	<2
I.2-Dichlorobenzene	< <u>2</u>	<2	<2	<2	<2	<2
1.4-Dichlorobenzene	<2	<2	<2	<2	<2	<2
Benzene	<1	- <1	<1	<1	<1	< '
Toluene	<2	<2	<2	<2	<2	<2
Ethyl benzene	<1	- <1	<1	<u>-</u> <1	<1	<
m-Xylene	<2	· <2	<2	<2	<2	<2
p+p-Xylene	<4	<4	<4	<4	<4	<4
Total VOCs	0	0	12	0	0	C

ug/L Micrograms per liter.

VOCs Volatile organic compounds.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 5. Sixth (Operational) Quarter Results of Analyses for Volatile Organic Compounds in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation: Sample Date:	Trip Blank 1 7/7/93	Trip Blank 2 7/8/93	Trip Blank 3 7/8/93	Trip Blank 4 7/9/93	
Parameter .					
(concentrations in ug/L)					
Chloromethane	<1	<1	<1	<1	
Bromometharie	<1	<1	<1	<1	
Dichlorodifluoromethane	<2	<2	<2	<2	
Vinyl chloride	<1	<1	<1	<1	
Chloroethane	<1	<1	<1	<1	
Methylene chloride	<1	<1	<1	<1	
Trichlorofluoromethane	<2	<2	<2	<2	
1,1-Dichloroethene	<1	<1	<1	<1	
1,1-Dichloroethane	<1	<1	<1	<1	
1,2-Dichloroethene	<1	<1	<1	<1	
Chloroform	<1	<1	<1	<1	
1,2-Dichloroethane	<1	<1	<1	<1	
1,1,1-Trichloroethane	<1	<1	<1	<1	
Carbon tetrachloride	<1	<1	<1	<1	
Bromodichloromethane	<1	<1	<1	<1	
1,2-Dichloropropane	<1	<1	<1	<1	
trans-1,3-Dichloropropene	<2	<2	<2	<2	
Trichloroethene	<1	<1	<1	<1	
Chlorodibromomethane	<1	<1	<1	<1	
1,1,2-Trichloroethane	<2	<2	<2	<2	
cis-1,3-Dichloropropene	<2	<2	<2	<2	
2-Chloroethylvinylether	<2	<2	<2	<2	
Bromoform	<2	<2	<2	<2	
1,1,2,2-Tetrachloroethane	<2	<2	<2	<2	
Tetrachloroethene	<1	<1	<1	<1	
Chlorobenzene	<1	<1	<1	<1	
1,3-Dichlorobenzene	<2	<2	<2	<2	
1,2-Dichlorobenzene	<2	<2	<2	<2	
1,4-Dichlorobenzene	<2	<2	<2	<2	
Benzene	<1	<1	<1	<1	
Toluene	<2	<2	<2	<2	
Ethyl benzene	<1	<1	<1	<1	
m-Xylene	<2	<2	<2	<2	
o+p-Xylene	<4	<4	<4	<4	
Total VOCs	0	0	0	0	

ug/L Micrograms per liter.

VOCs Volatile organic compounds.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 6. Sixth (Operational) Quarter Results of Analyses for Dissolved (Filtered) Metals in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation:	5B	6A	6B	6C	6C-Rep	6E
Sample Date:	7/7/93	7/8/93	7/8/93	7/8/93	7/8/93	7/8/93
Parameter						
concentrations in mg/L)						
ron	<0.05	<0.05	24	32	32	0.57
Barium	0.09	0.06	0.06	0.07	0.08	0.21
Aluminum	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Copper	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
_ead	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	0.98	0.06	0.36	0.36	0.38	0.50
lickel .	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	330	6.2	200	56	55	34
linc	<0.02	<0.02	<0.02	<0.02	<0.02	0.06
Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005
Mercury	<0.00025	<0.00025	<0.00025	< 0.00025	< 0.00025	< 0.00025
otassium	92	1.3	98	31	34	14
/lagnesium	24	3.2	13	12	13	11
Calcium	24	4.8	8.7	32	33	24

mg/L Milligrams per liter.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 6. Sixth (Operational) Quarter Results of Analyses for Dissolved (Filtered) Metals in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation: Sample Date:	6F 7/8/93	7B 7/7/93	8A 7/7/93	8B 7/7/9 3	9B 7/9/93	9C 7/9/93
Parameter	1,000	171700	171700	771700	170700	773733
(concentrations in mg/L)						
Iron	<0.05	<0.05	<0.05	0.78	<0.05	<0.05
Barium	0.09	0.06	0.07	0.29	0.09	0.06
Aluminum	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Copper	<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Lead	<0.001	0.001	0.003	<0.02	<0.001	0.002
Manganese	<0.02	0.12	0.20	0.97	0.20	0.12
Nickel	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium	40	16	8.9	34	11	230
Zinc	<0.02	0.03	<0.02	0.05	<0.02	<0.02
Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Mercury	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.00025
Potassium	2.3	1.6	3.1	15	6.8	130
Magnesium	9.2	4.5	4.7	12	5.5	14
Calcium	19	7.8	13	34	7.4	6.5

mg/L Milligrams per liter.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 6. Sixth (Operational) Quarter Results of Analyses for Dissolved (Filtered) Metals in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

Sample Designation: Sample Date:	11A 7/9/93	11B 7/9/93	LF-1 7/7/93	OBS-2 (a) 7/8/93	M-30B 7/7/93	
Parameter	119193	119193	111193	110193	111193	
(concentrations in mg/L)						_
Iron	<0.05	<0.05	1.4	<0.05	0.28	
Barium	<0.05	<0.05	NA	<0.05	0.20	
Aluminum	<0.20	<0.20	NA	<0.20	0.25	
Copper	<0.02	<0.02	NA	<0.02	<0.02	
Lead	0.001	<0.001	NA	0.003	<0.001	
Manganese	<0.02	<0.02	15	<0.02	0.10	
Nickel	<0.10	<0.10	NA	<0.10	<0.10	
Sodium	4.9	3.7	46	5.4	26	
Zinc	<0.02	<0.02	NA	0.02	<0.02	
Chromium	<0.005	<0.005	NA	<0.005	<0.005	
Mercury	<0.00025	<0.00025	NA	<0.00025	<0.00025	
Potassium	0.74	0.61	19	1.4	2.7	
Magnesium	1.2	0.75	NA	3.6	8.3	
Calcium	1.8	1.4	15	3.3	13	

mg/L Milligrams per liter.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 7. Sixth (Operational) Quarter Results of Analyses for Total (Unfiltered) Metals and Leachate Indicators in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

S	sample Designation:	5B 7/7/93	6A 7/8/93	6 B 7/8/9 3	6C 7/8/92	6C-Rep 7/8/93	6E 7/8/93
Parameter	Sample Date:	111/93	7/0/93	770/93	7/0/92	7/6/93	7/6/93
(concentrations in	ma/L)						
(concentrations in	mg/c/						
Chloride		370	12	240	160	160	140
Ammonia		73	0.17	68	17	16	3.2
Iron		<0.05	0.06	24	33	33	0.53
Hardness		150	25	85	130	130	110
Alkalinity (total)		630	10	520	130	130	10
Phenols		<0.001	<0.001	<0.001	<0.001	<0.001	<0.0 0 1
Barium		0.08	0.06	0.06	0.08	0.08	0.23
Aluminum		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Copper		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Lead		<0.001	0.003	0.001	<0.001	<0.001	0.002
Manganese		0.99	0.07	0.36	0.37	0.36	0.48
Nickel		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium		320	6.0	170	58	58	32
Zinc		<0.02	0.03	0.03	<0.02	<0.02	0.08
Chromium hex		< 0.02	<0.02	<0.02	<0.02	<0.02	< 0.02
Chromium		<0.005	<0.005	0.006	<0.005	<0.005	<0.005
Mercury		<0.00025	< 0.00025	<0.00025	<0.00025	<0.00025	< 0.00025
Potassium		90	1.3	120	33	33	14
Magnesium		23	3.3	16	12	11	11
Calcium		24	4.5	8.3	33	34	24
Total dissolved sol	ids	1100	44	740	360	370	300
Nitrate		<0.5	4.4	<0.5	<0.5	<0.5	<0.5
Sulfate		59	<5	24	20	20	18
Carbonate alkalinit	y	0	0	0	0	0	C
Total kjeldahl		77	1.2	69	18	17	6.4
Vitrogen (total)		77	5.6	69	18	17	6.4
Bicarbonate		630	10	520	130	130	10
Cyanide		< 0.02	<0.02	< 0.02	<0.02	<0.02	< 0.02

mg/L Milligrams per liter.

NA Not analyzed.

Rep Replicate sample.

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

Table 7. Sixth (Operational) Quarter Results of Analyses for Total (Unfiltered) Metals and Leachate Indicators in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

San	nple Designation:	6F	7B	8A	8B	9B	90
	Sample Date:	7/8/93	7/7/93	7/7/93	7/7/93	7/9/93	7/9 /93
Parameter							
(concentrations in mo	1/L)						
Chlorid e		130	41	24	140	19	310
Ammonia		<0.05	0.39	1.2	1.8	2.1	94
Iron		<0.05	0.51	<0.05	0.81	<0.05	< 0.05
Hardness		81	37	52	140	41	74
Alkalinity (total)		4	6	18	2	4	600
Phenois		<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001
Barium		0.09	0.05	0.07	0.29	0.09	0.00
Aluminum		<0.20	0.26	<0.20	<0.20	<0.20	<0.20
Copper		<0.02	<0.02	<0.02	<0.02	<0.02	0.03
Lead		<0.001	<0.001	0.002	<0.001	<0.001	0.00
Manganese		<0.02	0.12	0.20	0.98	0.20	0.13
Nickel		<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sodium		45	13	9.0	34	11	220
Zinc		<0.02	0.03	<0.02	0.05	<0.02	<0.02
Chromium hex		<0.02	<0.02	<0.02	<0.02	<0.02	<0.03
Chromium		<0.005	<0.005	<0.005	<0.005	<0.005	<0.00
Mercury		<0.00025	<0.00025	<0.00025	<0.00025	<0.00025	<0.0002
Potassium		2.2	1.6	3.2	15	6.8	130
Magnesium		7.8	4.9	4.7	12	5.5	14
Calcium		20	6.9	13	34	7.3	6.4
Total dissolved solids		260	58	79	330	85	860
Nitrate		0.6 .	2.7	1.1	<0.5	4.6	<0.5
Sulfate		<5	<5	23	34	32	17
Carbonate alkalinity		0	0	0	0	0	(
Total kjeldahl		1.8	1.0	2.4	2.4	3.4	100
Nitrogen (total)		2.4	3.7	3.5	2.4	8.0	100
Bicarbonate		4	6	18	2	4	600
Cyanide		<0.02	<0.02	<0.02	<0.02	<0.02	<0.02

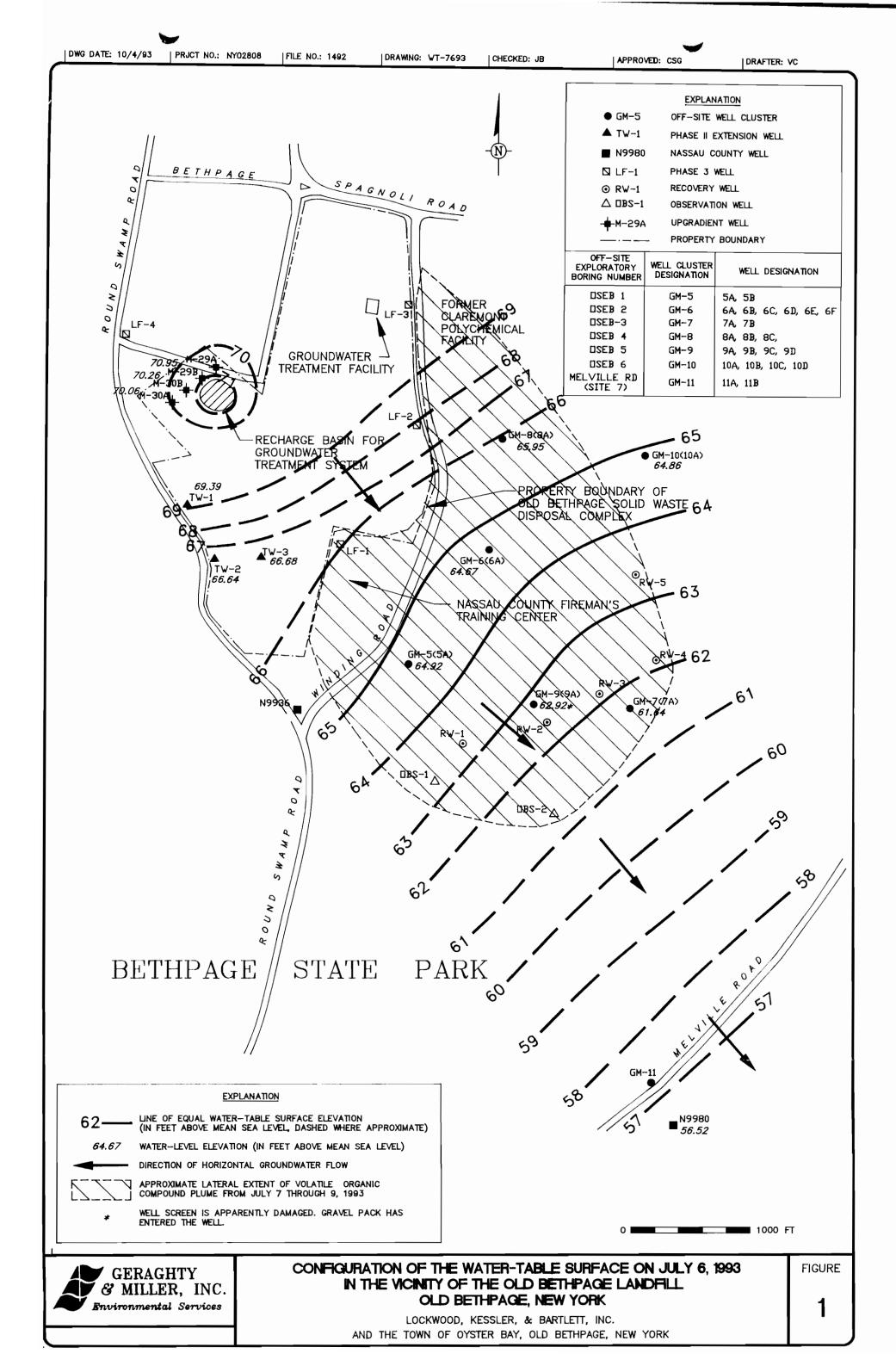
mg/L Milligrams per liter.

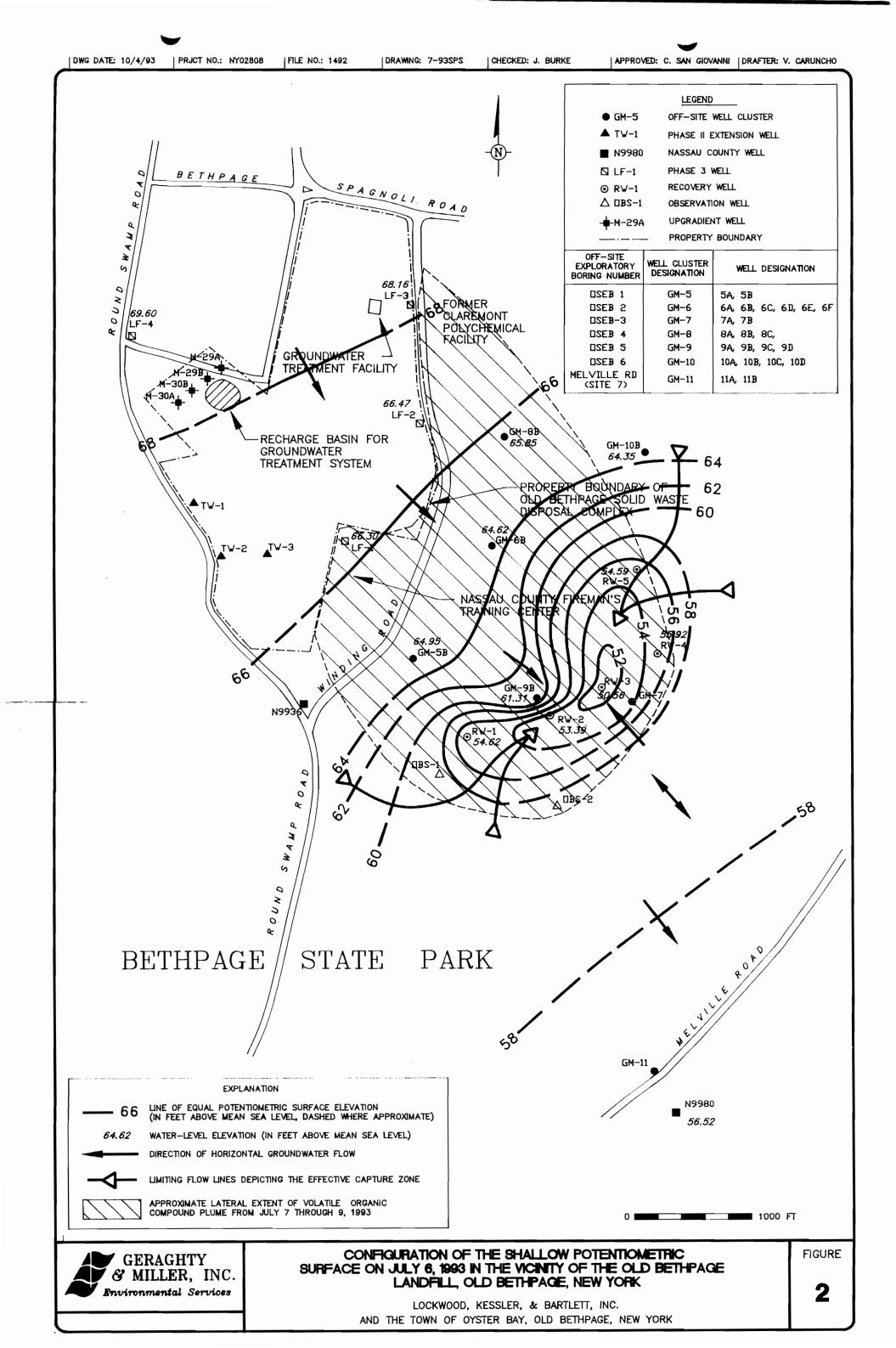
NA Not analyzed.

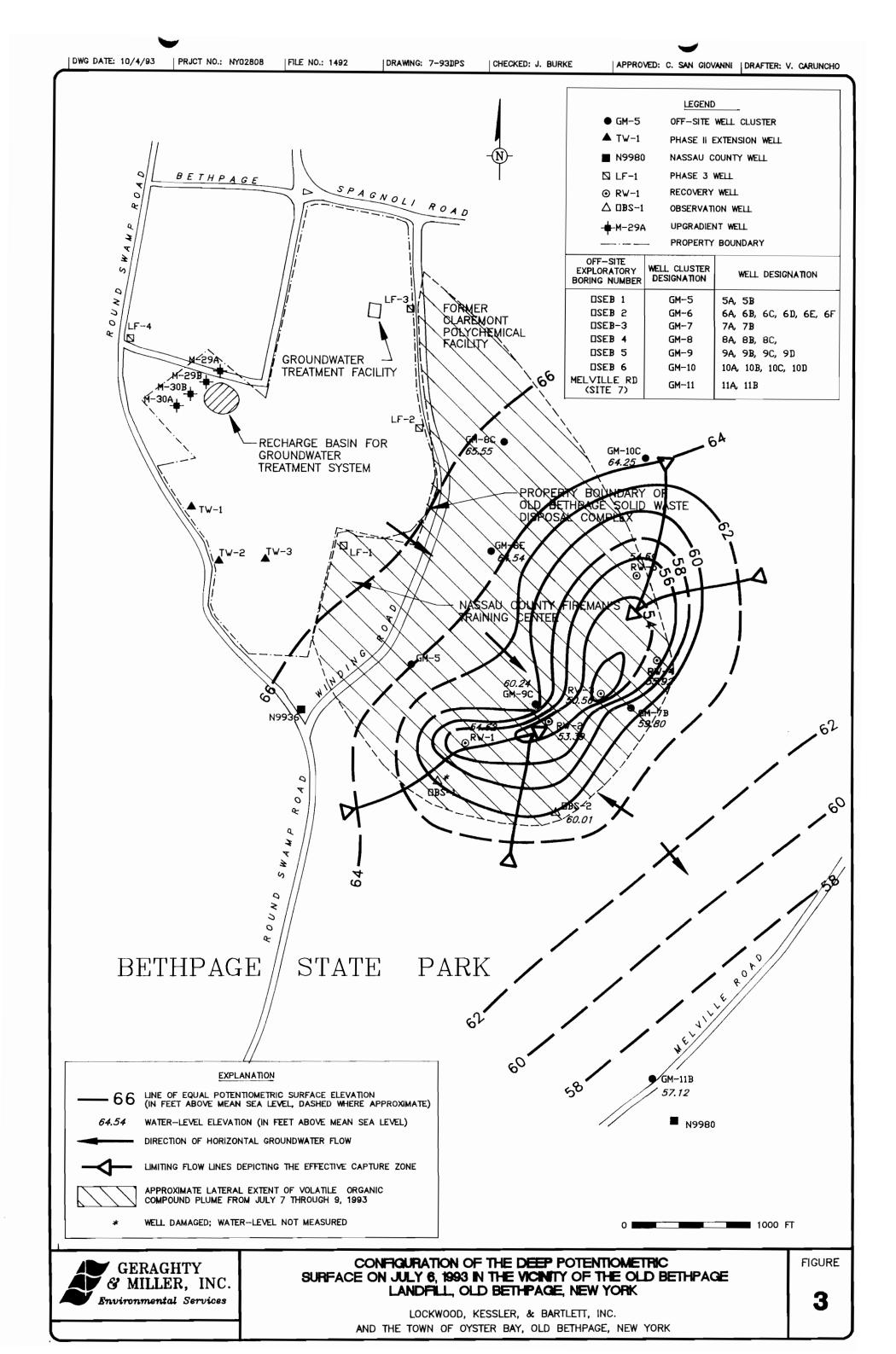
Rep Replicate sample.

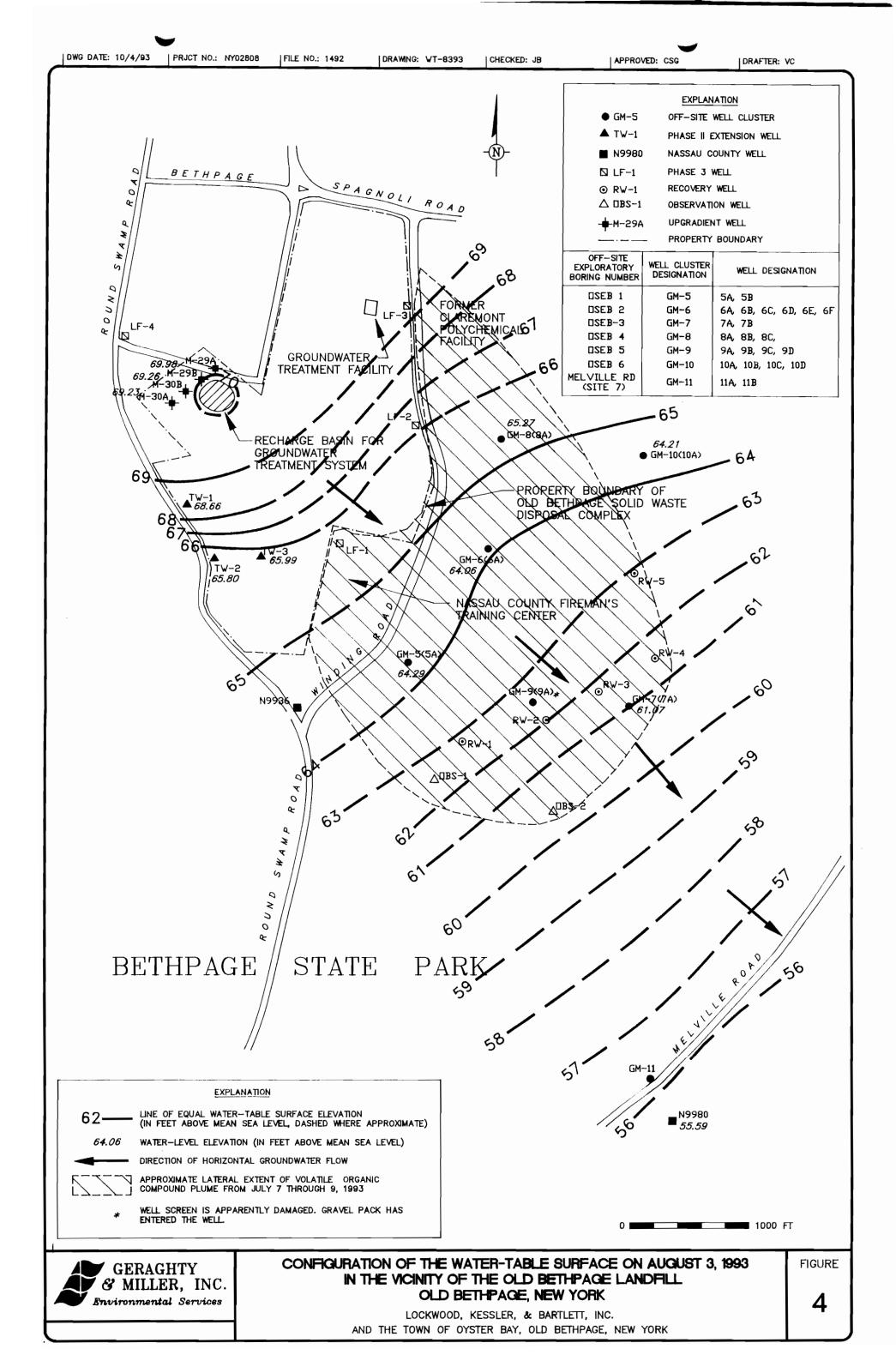
⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

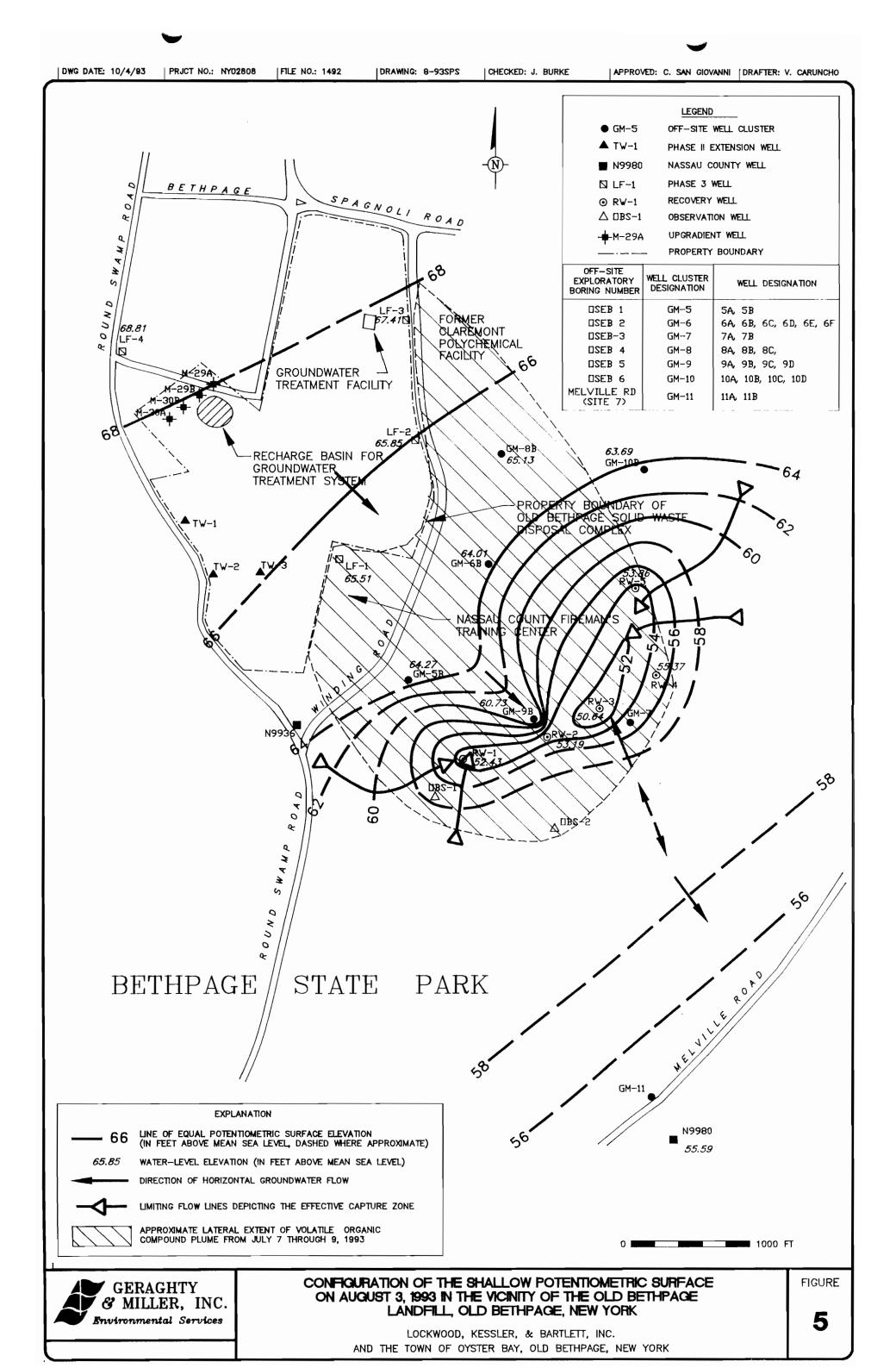
Table 7. Sixth (Operational) Quarter Results of Analyses for Total (Unfiltered) Metals and Leachate Indicators in Groundwater Samples Collected from July 7 Through July 9, 1993, Old Bethpage Landfill, Old Bethpage, New York.

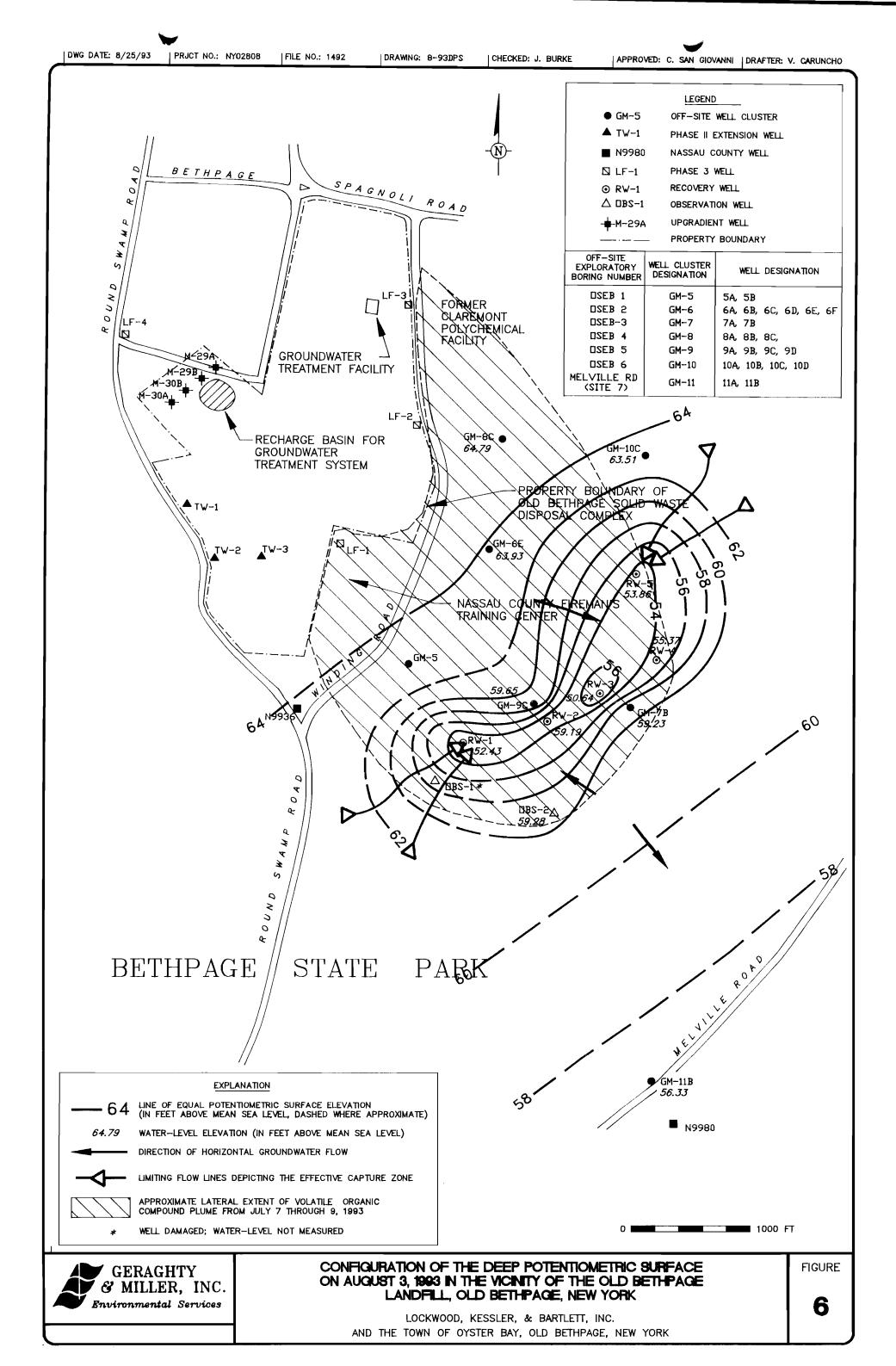

Sar	mple Designation:	11A	118	OBS-2 (a)	M-30B	LF-1	
	Sample Date:	7/9/93	7/9/93	7/8/93	7/7/93	7/7/93	
Parameter							
(concentrations in m	g/L)						
Chloride		10	8	14	57	120	
Ammonia -		<0.05	<0.05	<0.05	<0.05	12	
lro n		<0.05	<0.05	0.13	120	1.5	
Hardness		9.6	6.6	23	70	110	
Alkalinity (total)		2	2	2	2	130	
Phenois		<0.001	<0.001	<0.001	<0.001	NA	
Barium		<0.05	<0.05	0.05	2.1	NA	
Aluminum		<0.20	<0.20	<0.20	86	NA	
Copper		<0.02	<0.02	<0.02	0.06	NA	
Lead		0.001	<0.001	0.004	0.066	NA	
Manganese		<0.02	<0.02	<0.02	2.1	15	
Nickel		<0.10	<0.10	<0.10	<0.10	NA	
Sodium		4.7	3.9	4.9	20	48	
Zinc		< 0.02	<0.02	0.03	0.12	NA	
Chromium hex		<0.02	<0.02	<0.02	<0.02	NA	
Chromium		<0.005	<0.005	<0.005	0.081	NA	
Mercury		<0.00025	< 0.00025	<0.00025	0.0011	NA	
Potassium		0.74	0.62	1.5	6.9	19	
Magnesium		1.2	0.74	4.0	10	NA	
Calcium		1.9	1.4	2.6	11	15	
Total dissolved solids	5	12	13	24	140	280	
Nitrate		2.9	1.8	2.7	3.3	<0.5	
Sulfate		<5	<5	<5	32	43	
Carbonate alkalinity		0	0	0	0	0	
Total kjeldahl		1.2	1.4	2.2	1.2	14	
Nitrogen (total)		4.1	3.2	4.9	4.5	NA	
Bicarbonate		2	2	2	2	130	
Cyanide		< 0.02	<0.02	<0.02	< 0.02	NA	

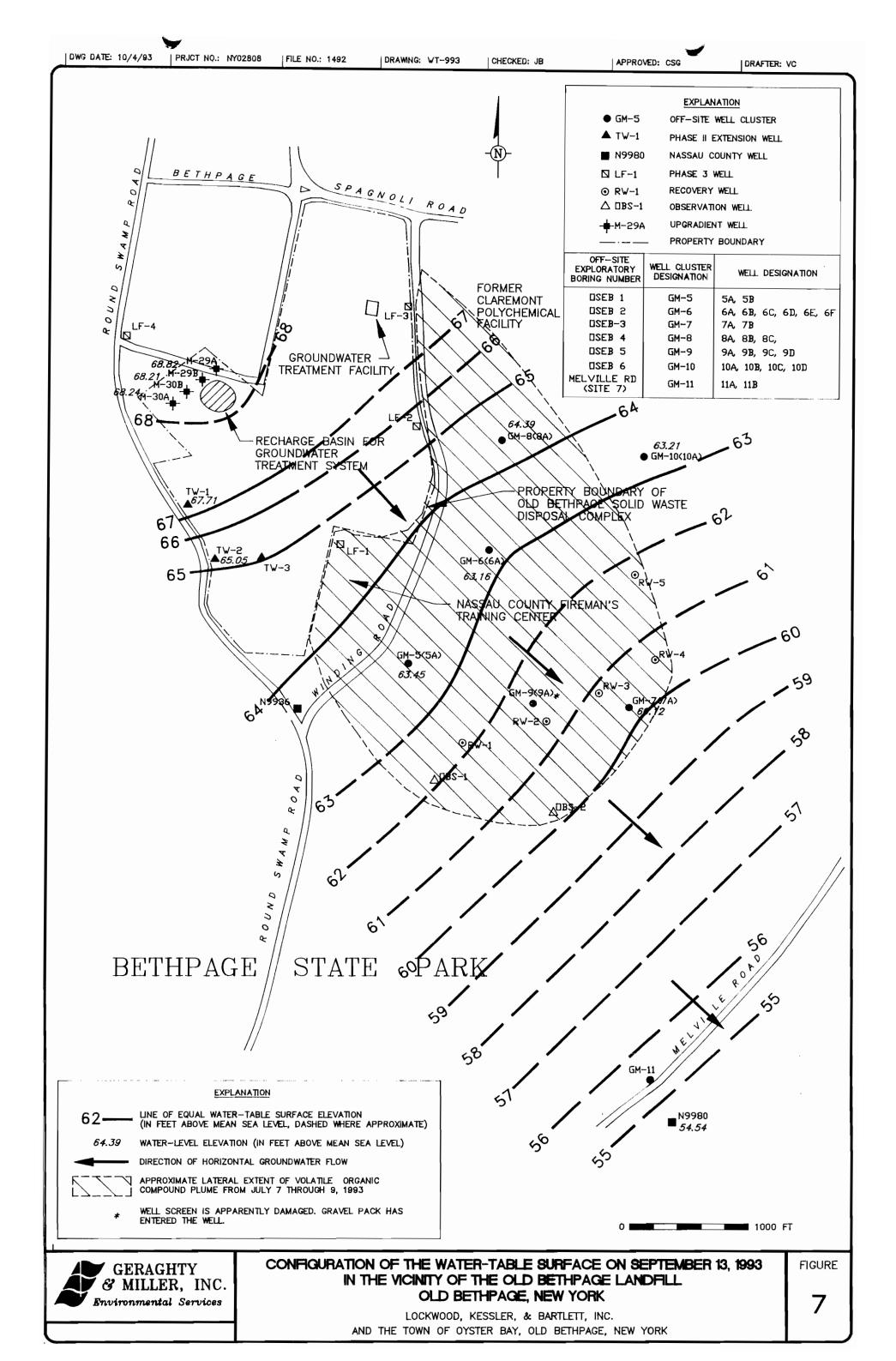

mg/L Milligrams per liter.

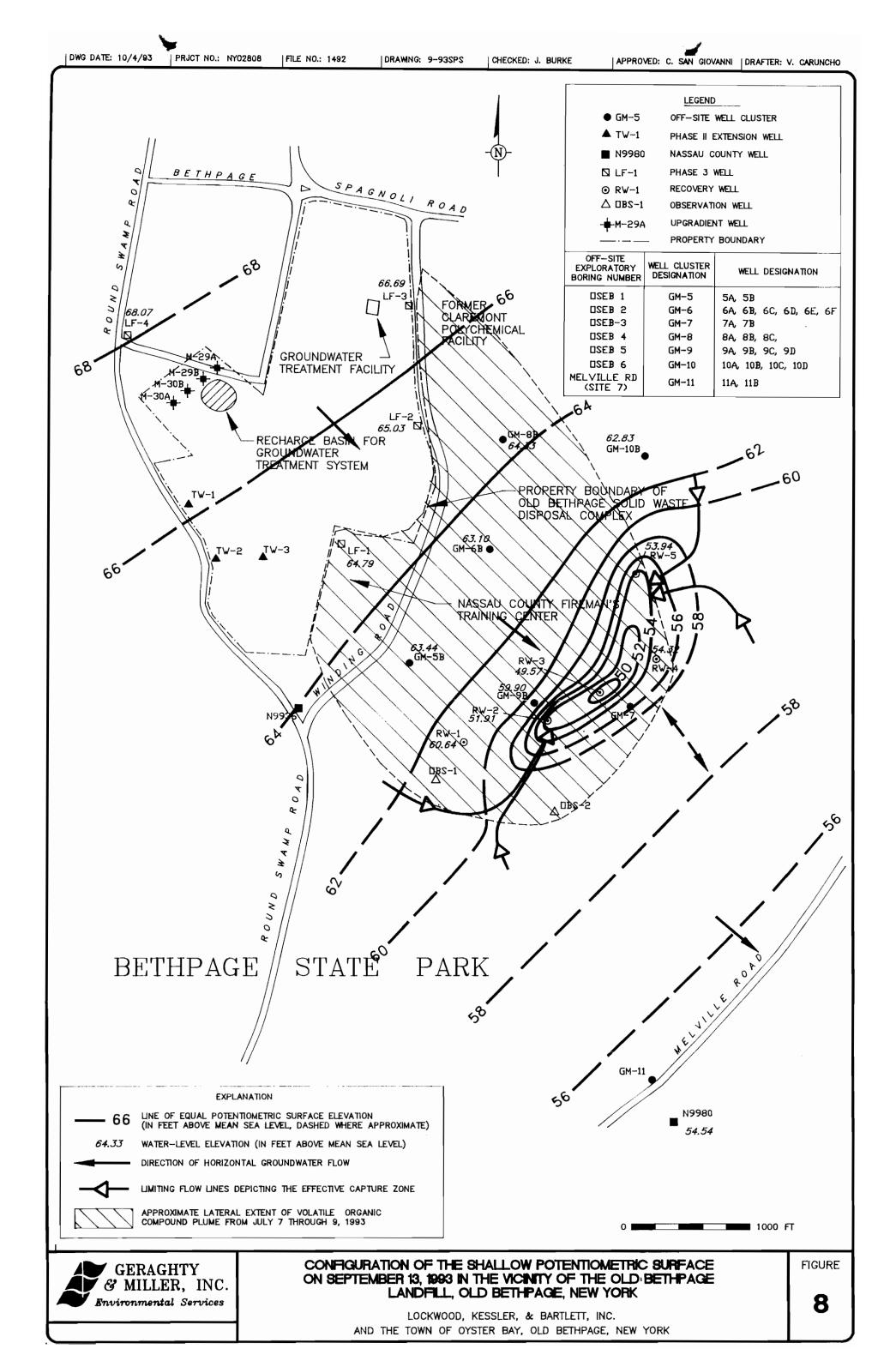

NA Not analyzed.

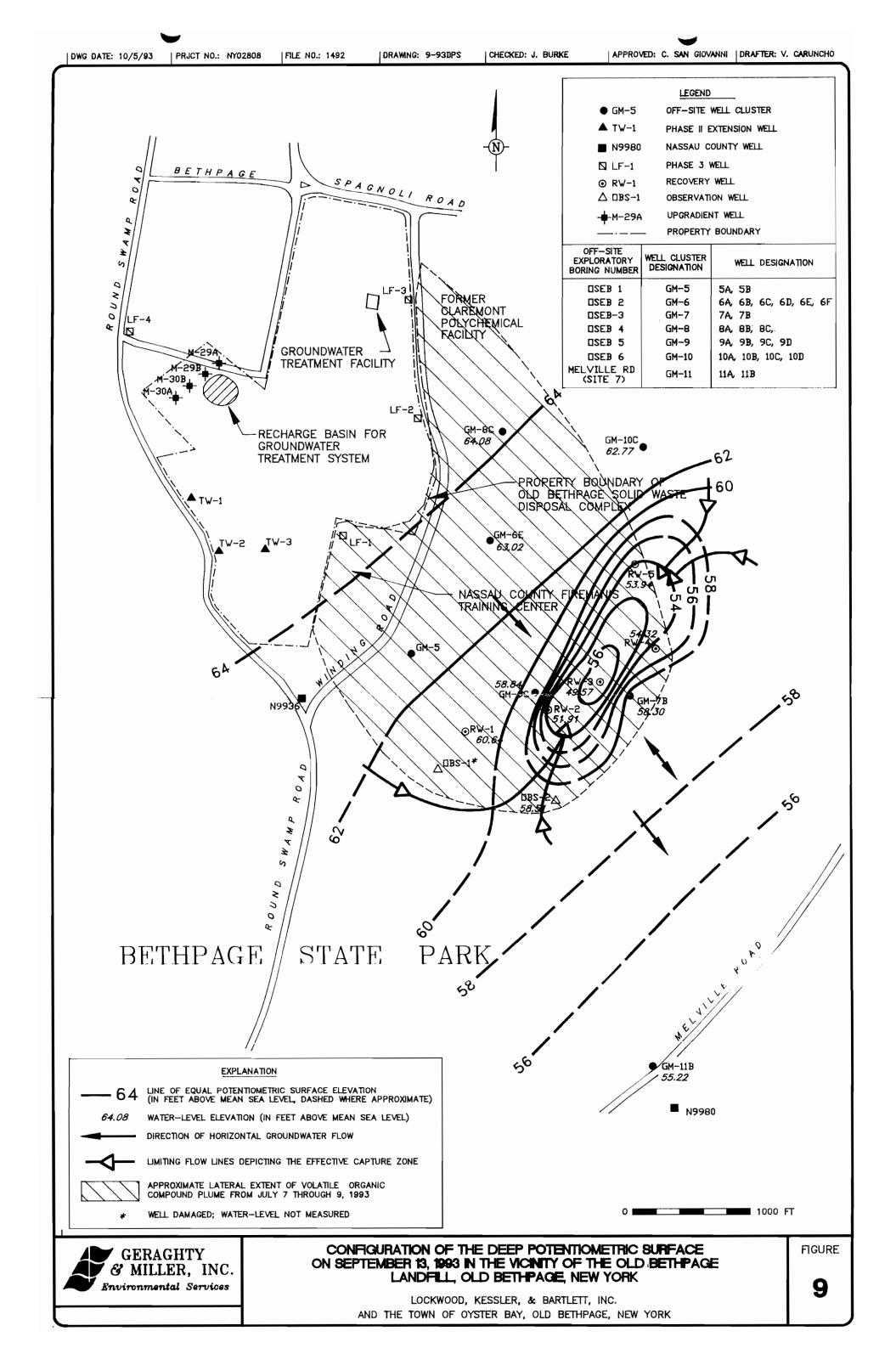

Rep Replicate sample.

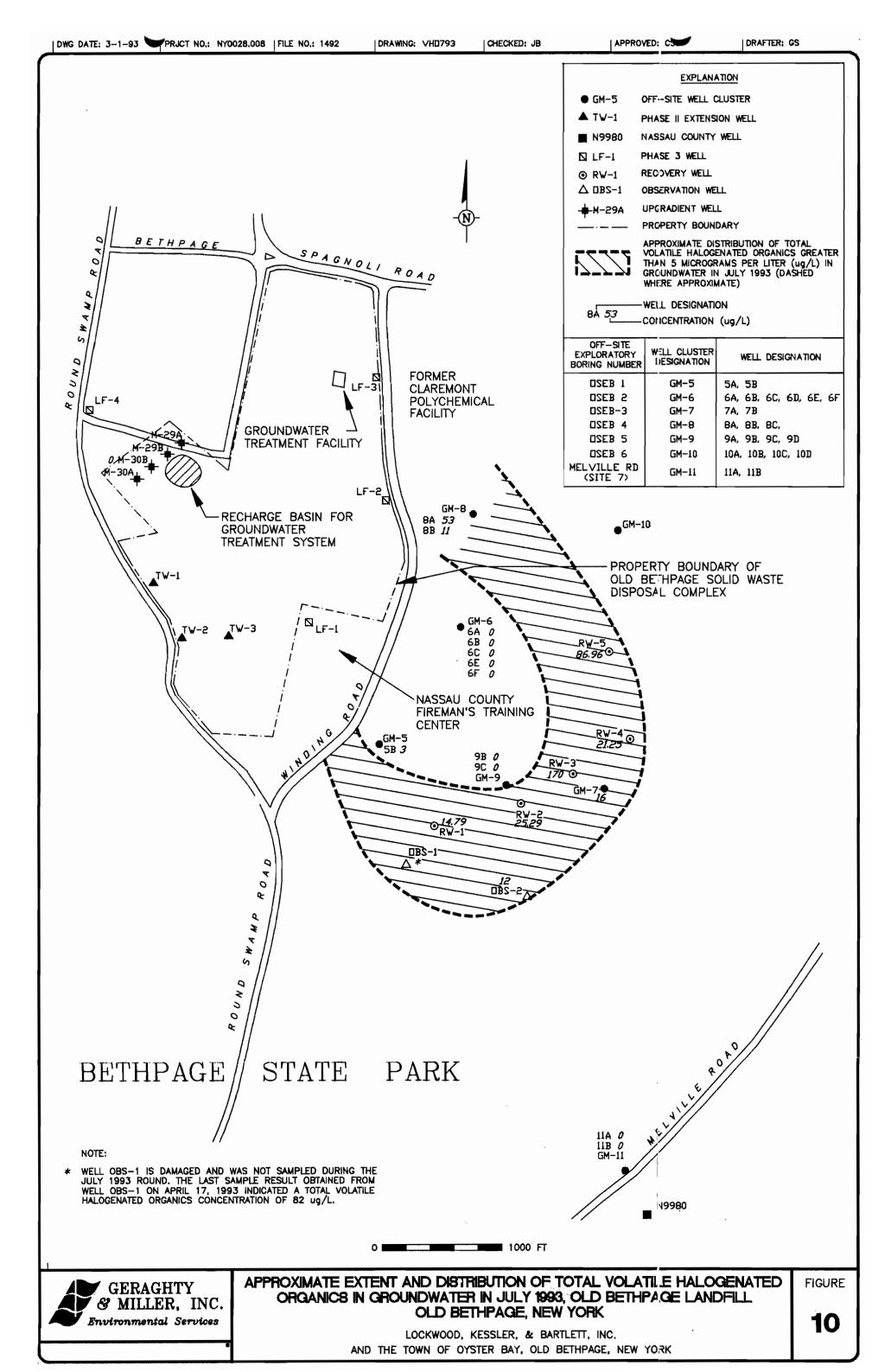

⁽a) Well OBS-2 was sampled as a replacement for Well OBS-1. Well OBS-1 is damaged.

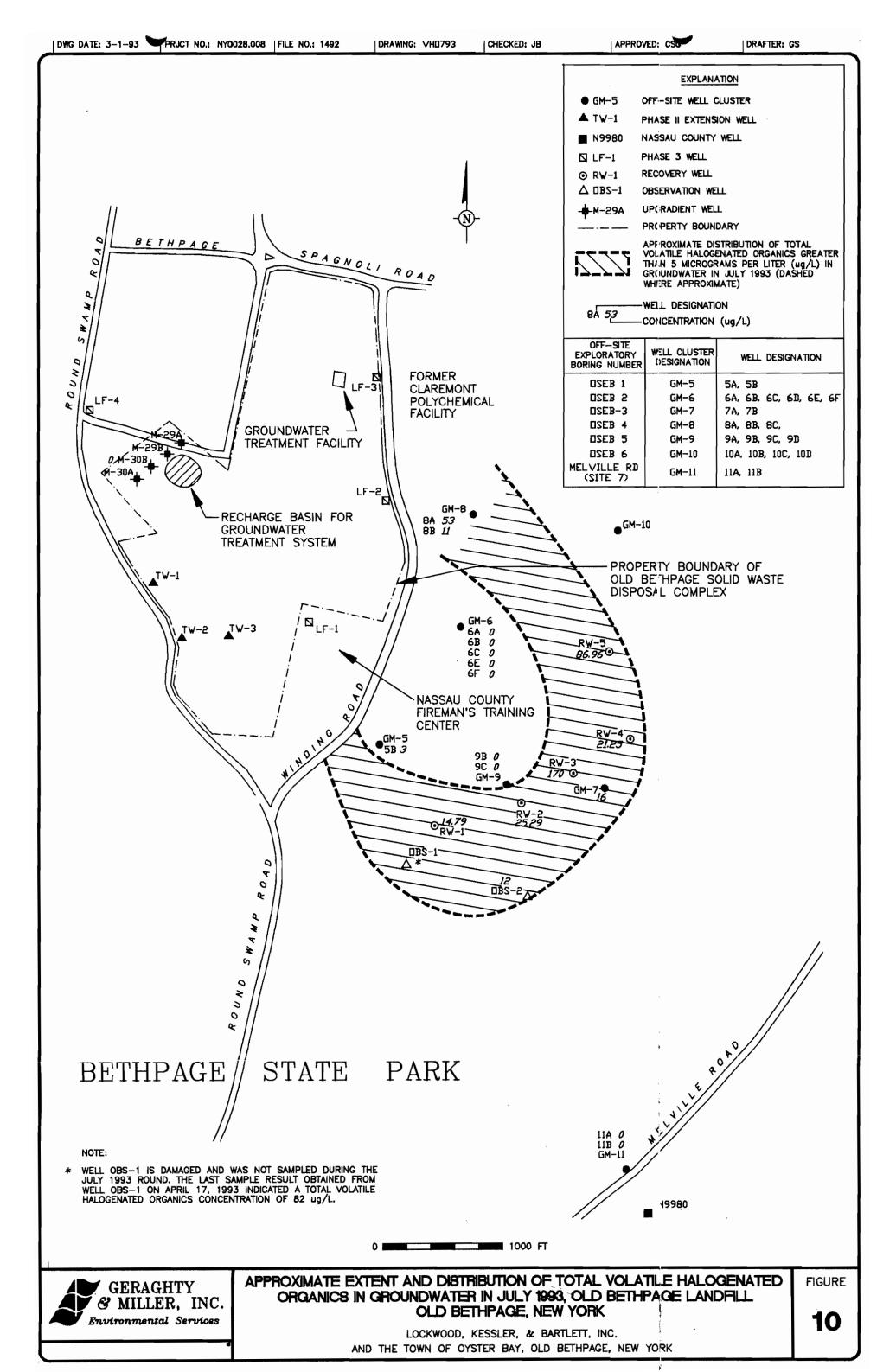


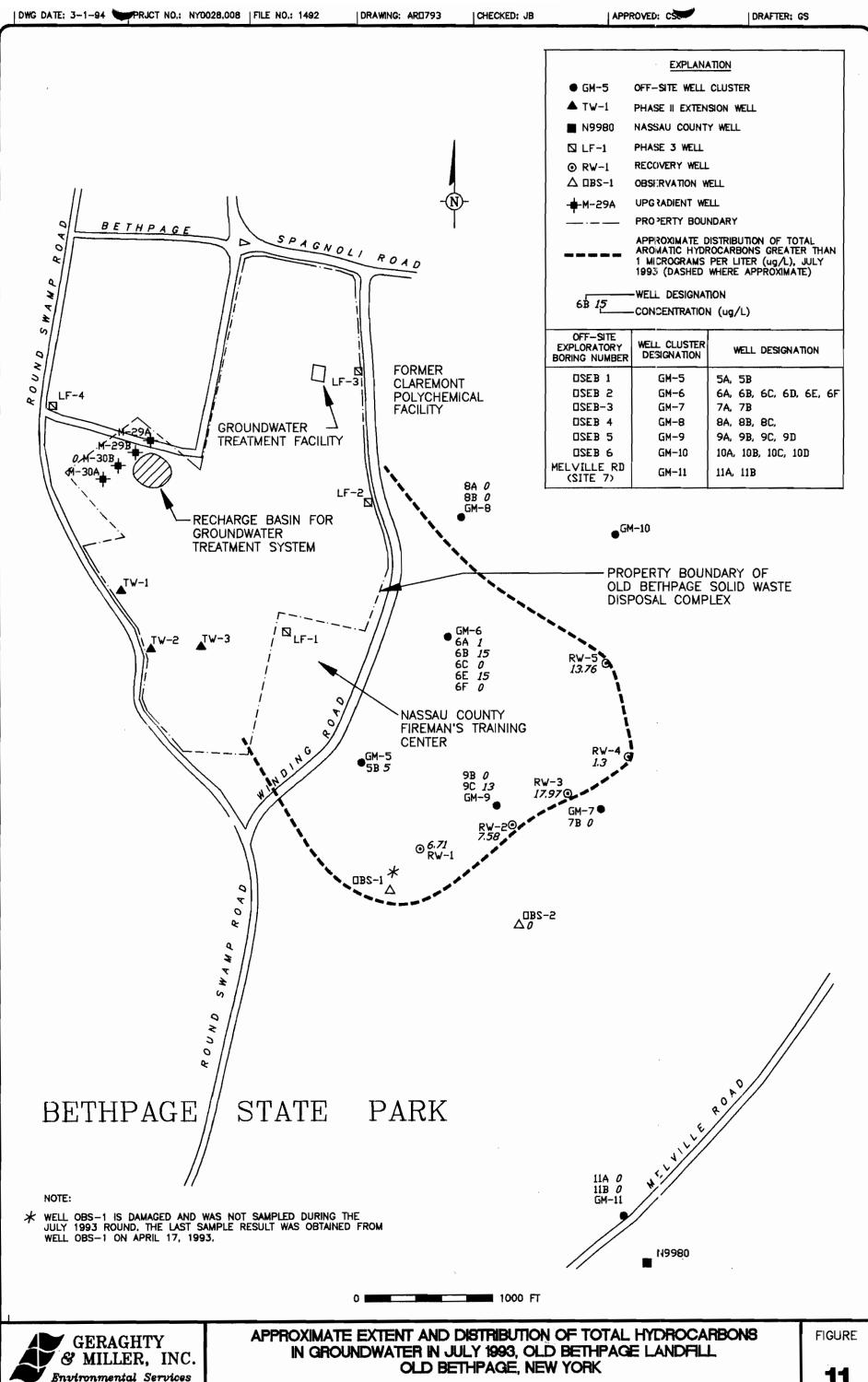


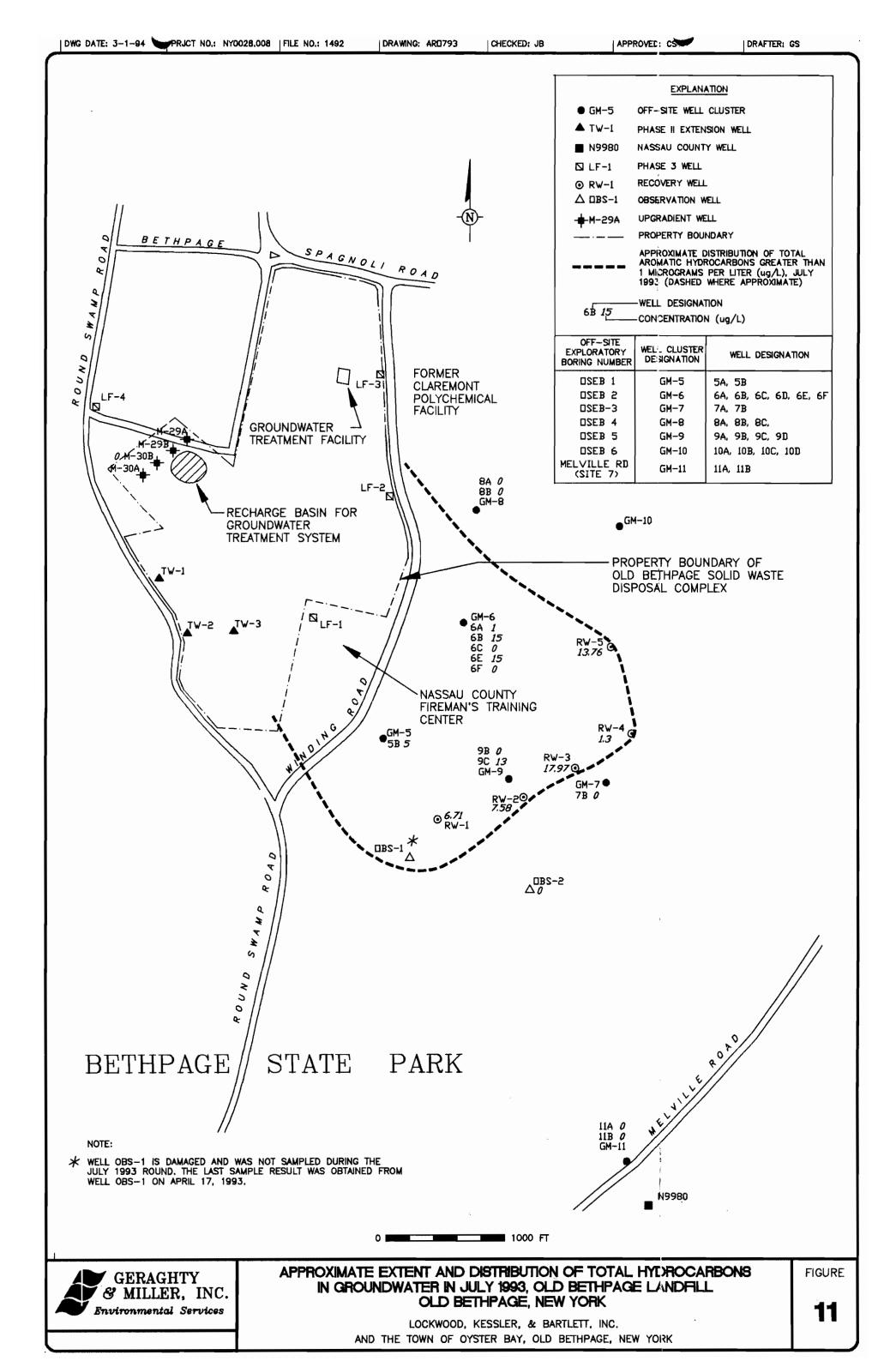


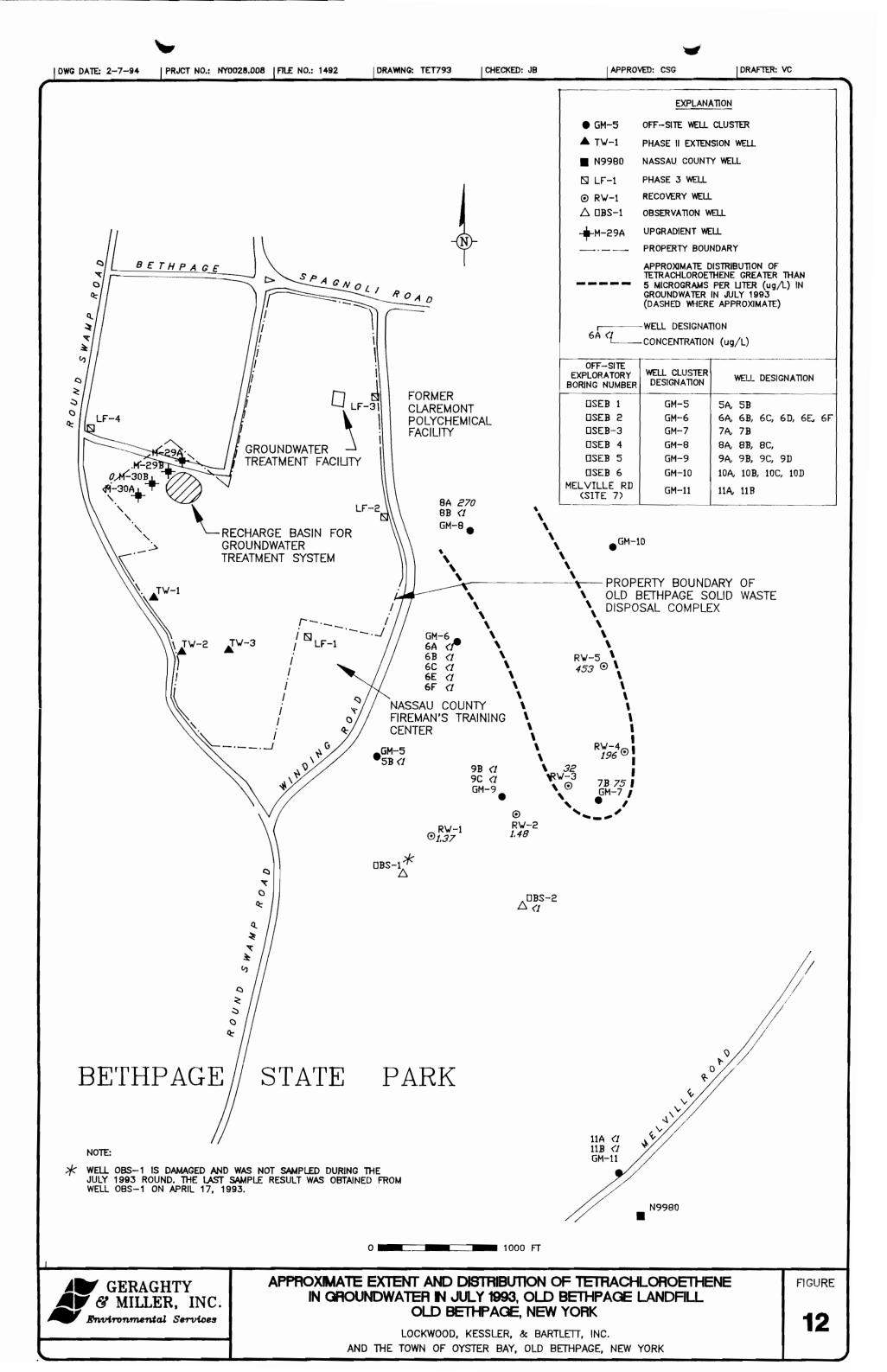












LOCKWOOD, KESSLER, & BARTLETT, INC. AND THE TOWN OF OYSTER BAY, OLD BETHPAGE, NEW YORK

APPENDIX A

LABORATORY DATA REPORTS

ENVIRONMENTAL TESTING

2.4

<0.02

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/5

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	140	Nitrogen, total as N mg/L
Ammonia as N	mg/L	1.8	Bicarb. Alk CaCO3 mg/L
Iron as Fe	mg/L	0.81	Cyanide as CN mg/L
Hardness as CaC03	mg/L	140	
Alkalinity tot CaCo3	mg/L	2	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	0.2 9	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	<0.001	
Manganese as Mn	mg/L	0. 98	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	34	
Zinc as Zn	mg/L	0.05	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	<0.005	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	15	
Magnesium as Mg	mg/L	12	
Calcium as Ca	mg/L	34	
Tot Dissolved Solids	mg/L	33 0	
Nitrate as N	mg/L	<0.5	
Sulfate as 504	mg/L	34	
Carbonate Alk CaCO3	mg/L	Ø	
Tot. Kjeldahl N.	mg/L	2.4	

cc:

REMARKS:

DIRECTOR

LAB NO. C932859/11

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 6F

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Kylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1.2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	•	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene		<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

REMARKS:

DIRECTOR___

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/7

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, 7B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Kylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o÷p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	14			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	2			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	75			

cc:

REMARKS:

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/5

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	< 1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1.2 Dichloroethane	ug/L	< 1			
111 Trichloroethane	ug/L	4			
Carbon Tetrachloride	ug/L	< 1			
Bromodichloromethane	ug/L	< 1			
1,2 Dichloropropane	ug/L	< 1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	7			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

೯೮:

REMARKS:

DIRECTOR_______

LAB NO. C932842/3

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8A

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	< 1·	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	2	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	32			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	5			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	14			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	270			

cc:

REMARKS:

DIRECTOR_

NYSDOH ID# 10320

LAB NO. C932886/1

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 9B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o≁p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	_	<2			
2chloroethvinylether	_	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

REMARKS:

LAB NO. C932886/3

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/09/93 RECEIVED:07/09/93 COLLECTED BY: Client

SAMPLE: Water sample, 90

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETERS				
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	1		
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2		
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	2		
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	8		
Chloroethane	ug/L	<1	Benzene	ug/L	2		
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2		
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1		
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2		
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4		
1,2 Dichloroethene	ug/L	<1					
Chloroform	ug/L	<1					
1,2 Dichloroethane	ug/L	<1					
111 Trichloroethane	ug/L	<1					
Carbon Tetrachloride	ug/L	<1					
Bromodichloromethane	ug/L	<1					
1,2 Dichloropropane	ug/L	<1					
t-1,3Dichloropropene	ug/L	<2					
Trichloroethylene	ug/L	<1					
Chlorodibromomethane	ug/L	<1					
112 Trichloroethane	ug/L	<2					
c 13 Dichloropropene	ug/L	<2					
2chloroethvinylether	ug/L	<2					
Bromoform	ug/L	<2					
1122Tetrachloroethan	ug/L	<2					
Tetrachloroethene	ug/L	<1					

cc:

REMARKS:

LAB NO. C932886/7

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 11A

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1		•	
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

REMARKS:

DIRECTOR_

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/5

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 11B

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETERS			
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1	
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2	
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2	
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2	
Chloroethane	ug/L	<1	Benzene	ug/L	< 1	
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2	
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1	
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2	
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4	
1,2 Dichloroethene	ug/L	<1				
Chloroform	ug/L	<1				
1,2 Dichloroethane	ug/L	<1				
111 Trichloroethane	ug/L	<1				
Carbon Tetrachloride	ug/L	<1				
Bromodichloromethane		<1				
1,2 Dichloropropane	ug/L	<1				
t-1,3Dichloropropene	ug/L	<2				
Trichloroethylene	ug/L	<1				
Chlorodibromomethane	ug/L	<1				
112 Trichloroethane	ug/L	<2				
c 13 Dichloropropene	ug/L	<2				
2chloroethvinylether	ug/L	<2				
Bromoform	ug/L	<2				
1122Tetrachloroethan		<2				
Tetrachloroethene	ug/L	<1				

cc:

REMARKS:

DIRECTOR // MA

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/10

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 6E

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	0.57
Barium as Ba	mg/L	0.21
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	0.50
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	34
Zinc as Zn	mg/L	0.06
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	14
Magnesium as Mg	mg/L	11
Calcium as Ca	mg/L	24

cc:

REMARKS:

DIRECTOR

LAB NO. C932859/1

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, OBS-2

ANALYTICAL PARAMETERS		ANALYTICAL PARAMETERS			
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Kylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	10			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	-	<2			
Trichloroethylene	ug/L	2			
Chlorodibromomethane	3	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene		<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	_	<2			
Tetrachloroethene	ug/L	<1			

cc:

REMARKS:

DIRECTOR

LAB NO. C932842/11

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, M-30B

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETERS		
Chloromethane	ug/L	< 1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	< 1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1		_	
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	< 1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	< 1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	< 1			
Chlorodibromomethane	ug/L	< 1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	< 1			

GG:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/13

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, FB-B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	< 4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	< 1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	< 1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	< 1			
Chlorodibromomethane	ug/L	< 1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	< 1			

cc:

LAB NO. C932842/15

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, FB-C

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETER		
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	< 4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichlorsethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
Echloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	< 1			

TT:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/14

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, Trip Blank

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	< 1	m Xylene	ug/L	<2
1.1 Dichloroethane	ug/L	<1	o÷p Xylene	ug/L	< 4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Sarbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1.2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

LAB NO. C932859/15

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, Trip Blank

ANALYTICAL PARAMETERS		ANALYTICAL PARAMETERS			
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	< 1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	< 1			

cc:

LAB NO. C932886/9

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

DATE COL'D:07/09/93 RECEIVED:07/09/93 COLLECTED BY: Client

SAMPLE: Water Sample, Trip Blank

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETERS		
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	< 1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/10

07/19/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 5B

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	0.0 9
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	Ø. 98
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	330
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	92
Magnesium as Mg	mg/L	24
Calcium as Ca	mg/L	24

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/4

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 6A

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	0.06
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	0.06
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	6.2
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	1.3
Magnesium as Mg	mg/L	3.2
Calcium as Ca	mg/L	4.8

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/6

07/22/93

ANALYTICAL PARAMETERS

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6B

Iron as Fe mg/L 24 0.06 Barium as Ba mg/L Aluminum as Al mg/L <0.20 <0.02 Copper as Cu mg/L mg/L <0.001 Lead as Pb Manganese as Mn mg/L 0.36 <0.10 Nickel as Ni mg/L

Sodium as Na mg/L 200 <0.02 Zinc as Zn mg/L <0.005 Chromium as Cr mg/L <0.00025 Mercury as Hg mg/L

98 Potassium as K mg/L 13 Magnesium as Mg mg/L Calcium as Ca mg/L 8.7

ANALYTICAL PARAMETERS

cc:

LAB NO. C932859/8

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

William Conroy

SOURCE OF SAMPLE:

Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 60

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	32
Barium as Ba	mg/L	0.07
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	0.36
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	56
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	31
Magnesium as Mg	mg/L	12
Calcium as Ca	mg/L	32

cc:

LAB NO. C932859/14

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, REP 1

ANALYTICAL PARAMETERS ANALYTICAL PARAMETERS

mg/L	32
mg/L	0.08
mg/L	<0.20
mg/L	<0.02
mg/L	<0.001
mg/L	0. 38
mg/L	<0.10
mg/L	55
mg/L	<0.02
mg/L	<0.005
mg/L	<0.00025
mg/L	34
mg/L	13
mg/L	33
	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/10

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

William Conroy ATTN:

SOURCE OF SAMPLE:

Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 6E

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	0.57
Barium as Ba	mg/L	0.21
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	0.50
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	34
Zinc as Zn	mg/L	0.06
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	14
Magnesium as Mg	mg/L	11
Calcium as Ca	mg/L	24

cc:

LAB NO. C932859/12

07/22/93

ANALYTICAL PARAMETERS

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 6F

mg/L

19

ANALYTICAL PARAMETERS

Iron as Fe <0.05 mg/L Barium as Ba mg/L 0.09 mg/L Aluminum as Al <0.20 Copper as Cu mg/L <0.02 Lead as Pb <0.001 mg/L <0.02 Manganese as Mn mg/L Nickel as Ni <0.10 mg/L Sodium as Na mg/L 40 Zinc as Zn mg/L <0.02 Chromium as Cr mg/L <0.005 mg/L <0.00025 Mercury as Hg Potassium as K mg/L 2.3 9.2 Magnesium as Mg mg/L

cc:

Calcium as Ca

REMARKS:

DIRECTOR_

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/8

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE:

Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 7B

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	0.06
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	0.001
Manganese as Mn	mg/L	0.12
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	16
Zinc as Zn	mg/L	0.03
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	1.6
Magnesium as Mg	mg/L	4.5
Calcium as Ca	mg/L	7.8

cc:

REMARKS:

NYSDOH ID# 10320

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/4

07/19/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8A

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

MUNCTITONE I WILL	AHE LENS	
Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	0.07
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	0.003
Manganese as Mn	mg/L	0.20
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	8.9
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	3.1
Magnesium as Mg	mg/L	4.7
Calcium as Ca	mg/L	13

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/6

07/19/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8B

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L	0.78
Barium as Ba	mg/L	0.2 '9
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.02
Manganese as Mn	mg/L	0.97
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	3 4
Zinc as Zn	mg/L	0.05
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	15
Magnesium as Mg	mg/L	12
Calcium as Ca	mg/L	3 4

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/2

07/23/93

ANALYTICAL PARAMETERS

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

7.4

mg/L

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 9B

ANALYTICAL PARAMETERS

Iron as Fe mg/L <0.05 Barium as Ba 0.09 mg/L <0.20 Aluminum as Al mg/L <0.02 Copper as Cu mg/L Lead as Pb mg/L <0.001 0.20 Manganese as Mn mg/L <0.10 Nickel as Ni mg/L Sodium as Na mg/L 11 Zinc as Zn <0.02 mg/L <0.005 Chromium as Cr mg/L <0.00025 Mercury as Hg mg/L 6.8 Potassium as K mg/L Magnesium as Mg mg/L 5.5

cc:

Calcium as Ca

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/4

07/23/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 90

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

MANDITIOND IN		
Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	0.06
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	0.03
Lead as Pb	mg/L	0.002
Manganese as Mn	mg/L	0.12
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	230
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	130
Magnesium as Mg	mg/L	14
Calcium as Ca	mg/L	6.5

cc:

REMARKS:

DIRECTOR

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/8

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

William Conroy ATTN:

Old Bethpage LF, #NY02808, DISSOLVED SOURCE OF SAMPLE:

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 11A

ANALYTICAL PARAMETERS ANALYTICAL PARAMETERS <0.05 Iron as Fe mg/L <0.05 Barium as Ba mg/L <0.20 Aluminum as Al mg/L <0.02 Copper as Cu mg/L 0.001 Lead as Pb mg/L <0.02 Manganese as Mn mg/L <0.10 Nickel as Ni mg/L 4,9 Sodium as Na mg/L Zinc as Zn mg/L <0.02 <0.005 Chromium as Cr mg/L <0.00025 mg/L Mercury as Hg 0.74 Potassium as K mg/L mg/L 1.2 Magnesium as Mg 1.8 Calcium as Ca mg/L

cc:

<0.02

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/9

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, 5B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloride as Cl	mg/L	370	Nitrogen, total as N mg/L 77	
Ammonia as N	mg/L	73	Bicarb. Alk CaCO3 mg/L 630	9
Iron as Fe	mg/L	<0.05	Cyanide as CN mg/L <0.	0:
Hardness as CaC03	mg/L	150		
Alkalinity tot CaCo3	mg/L	630		
Phenols as Phenol	mg/L	<0.001		
Barium as Ba	mg/L	0.08		
Aluminum as Al	mg/L	<0.20		
Copper as Cu	mg/L	<0.02		
Lead as Pb	mg/L	<0.001		
Manganese as Mn	mg/L	0. 99		
Nickel as Ni	mg/L	<0.10		
Sodium as Na	mg/L	320		
Zinc as Zn	mg/L	<0.02		
Chromium hex as Cr	mg/L	<0.02		
Chromium as Cr	mg/L	<0.005		
Mercury as Hg	mg/L	<0.00025		
Potassium as K	mg/L	90		
Magnesium as Mg	mg/L	23		
Calcium as Ca	mg/L	24		
Tot Dissolved Solids	mg/L	1100		
Nitrate as N	mg/L	<0.5		
Sulfate as SO4	mg/L	59		
Carbonate Alk CaCO3	mg/L	Ø		
Tot. Kjeldahl N.	mg/L	7 7		

cc:

REMARKE:

LAB NO. C932859/3

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6A

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	12	Nitrogen, total as N mg/L 5.6
Ammonia as N	mg/L	0.17	Bicarb. Alk CaCO3 mg/L 10
Iron as Fe	mg/L	0.06	Cyanide as CN mg/L <0.02
Hardness as CaC03	mg/L	25	
Alkalinity tot CaCo3	mg/L	10	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	0.06	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	0.003	
Manganese as Mn	mg/L	0.07	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	6.0	
Zinc as Zn	mg/L	0.03	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	<0.005	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	1.3	
Magnesium as Mg	mg/L	3.3	
Calcium as Ca	mg/L	4.5	
Tot Dissolved Solids	mg/L	44	
Nitrate as N	mg/L	4.4	
Sulfate as 504	mg/L	<5	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	1.2	

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/6

07/23/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 11B

ANALYTICAL PARAMETERS ANALYTICAL PARAMETERS <0.05 Iron as Fe mg/L <0.05 Barium as Ba mg/L <0.20 Aluminum as Al mg/L <0.02 Copper as Cu mg/L <0.001 Lead as Pb mg/L <0.02 Manganese as Mn mg/L <0.10 Nickel as Ni mg/L Sodium as Na 3.7 mg/L <0.02 Zinc as Zn mg/L Chromium as Cr <0.005 mg/L <0.00025 Mercury as Hg mg/L 0.61 Potassium as K mg/L

mg/L

mg/L

0.75

1.4

cc:

Magnesium as Mg

Calcium as Ca

REMARKS:

DIRECTOR

M/m M/

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/2

07/19/93

Geraghty & Miller, Incorporated

125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Leachate sample, LF-1

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Manganese as Mn mg/L 15 Sodium as Na mg/L 46 Iron as Fe mg/L 1.4 19 Potassium as K mg/L 15 Calcium as Ca mg/L

cc:

REMARKE:

NYSDOH ID# 10320

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/12

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, M-30B

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

Iron as Fe	mg/L,	0.28
Barium as Ba	mg/L	0.20
Aluminum as Al	mg/L	0.25
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	<0.001
Manganese as Mn	mg/L	0.10
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	26
Zinc as Zn	mg/L	<0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	2.7
Magnesium as Mg	mg/L	8.3
Calcium as Ca	mg/L	13

cc:

LAB NO. C932859/2

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, DISSOLVED

COLLECTED BY: Client

DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, OBS-2

ANALYTICAL PARAMETERS

ANALYTICAL PARAMETERS

MINDITIOND I MIN		
Iron as Fe	mg/L	<0.05
Barium as Ba	mg/L	<0.05
Aluminum as Al	mg/L	<0.20
Copper as Cu	mg/L	<0.02
Lead as Pb	mg/L	0.003
Manganese as Mn	mg/L	<0.02
Nickel as Ni	mg/L	<0.10
Sodium as Na	mg/L	5. 4
Zinc as Zn	mg/L	0.02
Chromium as Cr	mg/L	<0.005
Mercury as Hg	mg/L	<0.00025
Potassium as K	mg/L	1.4
Magnesium as Mg	mg/L	3.6
Calcium as Ca	mg/L	3 . 3

cc:

REMARKS:

DIRECTOR

69

520 <0.02

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/5

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE:

Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client

DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 68

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	240	Nitrogen, total as N mg/L
Ammonia as N	mg/L	6 8	Bicarb. Alk CaCO3 mg/L
Iron as Fe	mg/L	24	Cyanide as CN mg/L
Hardness as CaC03	mg/L	85	
Alkalinity tot CaCo3	mg/L	520	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	0.06	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	0.001	
Manganese as Mn	mg/L	0. 36	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	170	
Zinc as Zn	mg/L	0.03	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	0.006	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	120	
Magnesium as Mg	mg/L	16	
Calcium as Ca	mg/L	8.3	
Tot Dissolved Solids	mg/L	740	
Nitrate as N	mg/L	< 0. 5	
Sulfate as 504	mg/L	24	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	6 '9	

cc:

LAB NO. C932859/7

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6C

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloride as Cl	mg/L	160	Nitrogen, total as N	mg/L	18
Ammonia as N	mg/L	17	Bicarb. Alk CaCO3	mg/L	130
Iron as Fe	mg/L	33	Cyanide as CN	mg/L	<0.02
Hardness as CaC03	mg/L	130			
Alkalinity tot CaCo3	mg/L	130			
Phenols as Phenol	mg/L	<0.001			
Barium as Ba	mg/L	0.08			
Aluminum as Al	mg/L	<0.20			
Copper as Cu	mg/L	<0.02			
Lead as Pb	mg/L	<0.001			
Kanganese as Kn	mg/L	0.37			
Nickel as Ni	mg/L	<0.10			
Sodium as Na	mg/L	58			
Zinc as Zn	mg/L	<0.02			
Chromium hex as Cr	mg/L	<0.02			
Chromium as Cr	mg/L	<0.005			
Mercury as Hg	mg/L	<0.00025			
Potassium as K	mg/L	33			
Magnesium as Mg	mg/L	12			
Calcium as Ca	mg/L	33			
Tot Dissolved Solids	mg/L	360			
Nitrate as N	mg/L	<0.5			
Sulfate as SO4	mg/L	20			
Carbonate Alk CaCO3	mg/L	0			
Tot. Kjeldahl N.	mg/L	18			

cc:

LAB NO. C932859/13

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803 ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, REP 1

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAME	TERS	
Chloride as Cl	mg/L	160	Nitrogen, total as N	mg/L	17
Ammonia as N	mg/L	16	Bicarb. Alk CaCO3	mg/L	130
Iron as Fe	mg/L	33	Cyanide as CN	mg/L	<0.02
Hardness as CaC03	mg/L	130			
Alkalinity tot CaCo3	mg/L	130			
Phenols as Phenol	mg/L	<0.001			
Barium as Ba	mg/L	0.08			
Aluminum as Al	mg/L	<0.20			
Copper as Cu	mg/L	<0.02			
Lead as Pb	mg/L	<0.001			
Manganese as Mn	mg/L	0.36			
Nickel as Ní	mg/L	<0.10			
Sodium as Na	mg/L	58			
Zinc as Zn	mg/L	<0.02			
Chromium hex as Cr	mg/L	<0.02			
Chromium as Cr	mg/L	<0.005			
Mercury as Hg	mg/L	<0.00025			
Potassium as K	mg/L	33			
Magnesium as Mg	mg/L	11			
Calcium as Ca	mg/L	34			
Tot Dissolved Solids	mg/L	370			
Nitrate as N	mg/L	<0.5			
Sulfate as 504	mg/L	20			
Carbonate Alk CaCO3	mg/L	0			
Tot. Kjeldahl N.	mg/L	17			

cc:

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932859/9

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

Old Bethpage LF, #NY02808, TOTAL SOURCE OF SAMPLE:

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6E

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	140	Nitrogen, total as N mg/L 6.4
Ammonia as N	mg/L	3.2	Bicarb. Alk CaCO3 mg/L 10
Iron as Fe	mg/L	0.53	Cyanide as CN mg/L <0.02
Hardness as CaC03	mg/L	110	
Alkalinity tot CaCo3	mg/L	10	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	0. 23	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	0.002	
Manganese as Mn	mg/L	0.4 8	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	32	
Zinc as Zn	mg/L	0.08	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	<0.005	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	14	
Magnesium as Mg	mg/L	11	
Calcium as Ca	mg/L	24	
Tot Dissolved Solids	mg/L	300	
Nitrate as N	mg/L	<0.5	
Sulfate as SO4	mg/L	18	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	6.4	

cc:

LAB NO. C932859/11

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

William Conroy ATTN:

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6F

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloride as Cl	mg/L	130	Nitrogen, total as N	mg/L	2.4
Ammonia as N	mg/L	<0.05	Bicarb. Alk CaCO3	mg/L	4
Iron as Fe	mg/L	<0.05	Cyanide as CN	mg/L	<0.02
Hardness as CaC03	mg/L	81		_	
Alkalinity tot CaCo3	mg/L	4			
Phenols as Phenol	mg/L	<0.001			
Barium as Ba	mg/L	0.0 9			
Aluminum as Al	mg/L	<0.20			
Copper as Cu	mg/L	<0.02			
Lead as Pb	mg/L	<0.001			
Manganese as Mn	mg/L	<0.02			
Nickel as Ni	mg/L	<0.10			
Sodium as Na	mg/L	45			
Zinc as Zn	mg/L	<0.02			
Chromium hex as Cr	mg/L	<0.02			
Chromium as Cr	mg/L	<0.005			
Mercury as Hg	mg/L	<0.00025			
Potassium as K	mg/L	2.2			
Magnesium as Mg	mg/L	7.8			
Calcium as Ca	mg/L	20			
Tot Dissolved Solids	mg/L	260			
Nitrate as N	mg/L	0. 6			
Sulfate as SO4	mg/L	<5			
Carbonate Alk CaCO3	mg/L	0			
Tot. Kjeldahl N.	mg/L	1.8			

cc:

LAB NO. C932842/9

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY: Client

SAMPLE: Water sample, 5B

ANALYTICAL PARAMETERS			ANALYTICAL PARAMETERS		
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	1	1,4 Dichlorobenzene	ug/L	3
Chloroethane	ug/L	<1	Benzene	ug/L	1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	< 1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	1	o+p Xylene	ug/L	< 4
1,2 Dichloroethene	ug/L	1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2 ,			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

LAB NO. C932886/1

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 9B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloride as Cl	mg/L	19	Nitrogen, total as N mg/L	8.0
Ammonia as N	mg/L	2.1	Bicarb. Alk CaCO3 mg/L	4
Iron as Fe	mg/L	<0.05	Cyanide as CN mg/L	<0.02
Hardness as CaC03	mg/L	41	_	
Alkalinity tot CaCo3	mg/L	4		
Phenols as Phenol	mg/L	<0.001		
Barium as Ba	mg/L	0.0 9		
Aluminum as Al	mg/L	<0.20		
Copper as Cu	mg/L	<0.02		
Lead as Pb	mg/L	<0.001		
Manganese as Mn	mg/L	0.20		,
Nickel as Ni	mg/L	<0.10		
Sodium as Na	mg/L	11		
Zinc as Zn	mg/L	<0.02		
Chromium hex as Cr	mg/L	<0.02		
Chromium as Cr	mg/L	<0.005		
Mercury as Hg	mg/L	<0.00025		
Potassium as K	mg/L	6.8		
Magnesium as Mg	mg/L	5.5		
Calcium as Ca	mg/L	7.3		
Tot Dissolved Solids	mg/L	85		
Nitrate as N	mg/L	4.6		
Sulfate as 504	mg/L	32		
Carbonate Alk CaCO3	mg/L	0		
Tot. Kjeldahl N.	mg/L	3. 4		

cc:

REMARKS: *Analysis performed in the field.

DIRECTOR

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/3

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 8A

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	24	Nitrogen, total as N mg/L 3.5
Ammonia as N	mg/L	1.2	Bicarb. Alk CaCO3 mg/L 18
Iron as Fe	mg/L	<0.05	Cyanide as CN mg/L <0.02
Hardness as CaC03	mg/L	52	
Alkalinity tot CaCo3	mg/L	18	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	0.07	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	0.002	
Manganese as Mn	mg/L	0.20	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	9.0	
Zinc as Zn	mg/L	<0.02	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	<0.005	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	3.2	
Magnesium as Mg	mg/L	4.7	
Calcium as Ca	mg/L	13	
Tot Dissolved Solids	mg/L	7 '3	
Nitrate as N	mg/L	1.1	
Sulfate as 504	mg/L	23	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	2.4	

cc:

REMARKS:

NYSDOH ID# 10320

LAB NO. C932886/3

07/23/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/09/93 RECEIVED:07/09/93

SAMPLE: Water sample, 90

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloride as Cl	mg/L	310	Nitrogen, total as N mg/L 10	00
Ammonía as N	mg/L	94	Bicarb. Alk CaCO3 mg/L 60	00
Iron as Fe	mg/L	<0.05	Cyanide as CN mg/L <	0.02
Hardness as CaC 0 3	mg/L	74	•	
Alkalinity tot CaCo3	mg/L	6 00		
Phenols as Phenol	mg/L	<0.001		
Barium as Ba	mg/L	0.06		
Aluminum as Al	mg/L	<0.20		
Copper as Cu	mg/L	0.03		
Lead as Pb	mg/L	0.002		
Kanganese as Kn	mg/L	0. 13		
Nickel as Ni	mg/L	<0.10		
Sodium as Na	mg/L	220		
Zinc as Zn	mg/L	<0.02		
Chromium hex as Cr	mg/L	<0.02		
Chromium as Cr	mg/L	<0.005		
Mercury as Hg	mg/L	<0.00025		
Potassium as K	mg/L	130		
Magnesium as Mg	mg/L	14		
Calcium as Ca	mg/L	6.4		
Tot Dissolved Solids	mg/L	860		
Nitrate as N	mg/L	<0.5		
Sulfate as SO4	mg/L	17		
Carbonate Alk CaCO3	mg/L	0		
Tot. Kjeldahl N.	mg/L	100		

cc:

REMARKS: *Analysis performed in the field.

DIRECTOR'

LAB NO. C932886/5

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/09/93 RECEIVED:07/09/93 COLLECTED BY: Client

SAMPLE: Water sample, 11B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	8	Nitrogen, total as N mg/L 3.2
Ammonia as N	mg/L	<0.05	Bicarb. Alk CaCO3 mg/L 2
Iron as Fe	mg/L	<0.05	Cyanide as CN mg/L <0.02
Hardness as CaC03	mg/L	6.6	
Alkalinity tot CaCo3	mg/L	2	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	<0.05	
Aluminum as Al	mg/L	<0.20	
Copper as Cu	mg/L	<0.02	
Lead as Pb	mg/L	<0.001	
Manganese as Mn	mg/L	<0.02	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	3.9	
Zinc as Zn	mg/L	<0.02	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	<0.005	
Mercury as Hg	mg/L	<0.00025	
Potassium as K	mg/L	0.62	
Magnesium as Mg	mg/L	0.74	
Calcium as Ca	mg/L	1.4	
Tot Dissolved Solids	mg/L	13	
Nitrate as N	mg/L	1.8	
Sulfate as SO4	mg/L	<5	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	1.4	

cc:

REMARKS: *Analysis performed in the field.

LAB NO. C932859/3

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6A

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Kylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932886/7

07/23/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

Old Bethpage LF, #NY02808, TOTAL SOURCE OF SAMPLE:

DATE COL'D:07/09/93 RECEIVED:07/09/93 COLLECTED BY: Client

SAMPLE: Water sample, 11A

ANALYTICAL PARAM	ETERS		ANA	LYTICAL PARAM	ETERS	
Chloride as Cl	mg/L	10	Nitroge	n, total as N	mg/L	4.1
Ammonia as N	mg/L	<0.05	Bicarb.	Alk CaCO3	mg/L	2
Iron as Fe	mg/L	<0.05	Cyanide	as CN	mg/L	<0.02
Hardness as CaC03	mg/L	9.6				
Alkalinity tot CaCo3	mg/L	2				
Phenols as Phenol	mg/L	<0.001				
Barium as Ba	mg/L	<0.05				
Aluminum as Al	mg/L	<0.20				
Copper as Cu	mg/L	<0.02				
Lead as Pb	mg/L	0.001				
Manganese as Mn	mg/L	<0.02				
Nickel as Ni	mg/L	<0.10				
Sodium as Na	mg/L	4.7				
Zinc as Zn	mg/L	<0.02				
Chromium hex as Cr	mg/L	<0.02				
Chromium as Cr	mg/L	<0.005				
Mercury as Hg	mg/L	<0.00025				
Potassium as K	mg/L	0.74				
Magnesium as Mg	mg/L	1.2				
Calcium as Ca	mg/L	1.9				
Tot Dissolved Solids	mg/L	12				
Nitrate as N	mg/L	2.9				
Sulfate as 504	mg/L	<5				
Carbonate Alk CaCO3	mg/L	0				
Tot. Kjeldahl N.	mg/L	1.2				

cc:

REMARKS: *Analysis performed in the field.

LAB NO. C932859/1

07/22/93

Geraghty & Miller, Incorporated

125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, OBS-2

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS	
Chloride as Cl	mg/L	14	Nitrogen, total as N mg/L 4.9	
Ammonia as N	mg/L	<0.05	Bicarb. Alk CaCO3 mg/L 2	
Iron as Fe	mg/L	0.13	Cyanide as CN mg/L <0.0	ð2
Hardness as CaC 0 3	mg/L	23		
Alkalinity tot CaCo3	mg/L	2		
Phenols as Phenol	mg/L	<0.001		
Barium as Ba	mg/L	0.05		
Alumínum as Al	mg/L	<0.20		
Copper as Cu	mg/L	<0.02		
Lead as Pb	mg/L	0.004		
Manganese as Mn	mg/L	<0.02		
Nickel as Ni	mg/L	<0.10		
Sodium as Na	mg/L	4.9		
Zinc as Zn	mg/L	0.03		
Chromium hex as Cr	mg/L	<0.02		
Chromium as Cr	mg/L	<0.005		
Mercury as Hg	mg/L	<0.00025		
Potassium as K	mg/L	1.5		
Magnesium as Mg	mg/L	4.0		
Calcium as Ca	mg/L	2.6		
Tot Dissolved Solids	mg/L	24		
Nitrate as N	mg/L	2.7		
Sulfate as 504	mg/L	<5		
Carbonate Alk CaCO3	mg/L	0		
Tot. Kjeldahl N.	mg/L	2.2		

cc:

REMARKS: *Analysis performed in the field.

LAB NO. C932859/5

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	2
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	6
Chloroethane	ug/L	<1	Benzene	ug/L	7
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	< i	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	_	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	_	<2			
Tetrachloroethene	ug/L	<1			

cc:

LAB NO. C932859/7

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/08/93 RECEIVED:07/08/93

SAMPLE: Water sample, 60

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	< 1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o÷p Kylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

REMARKS:

DIRECTOR

LAB NO. C932859/13

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

William Conroy ATTN:

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, REP 1

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	<2
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	<2
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene		<2			
2chloroethvinylether		<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2			
Tetrachloroethene	ug/L	<1			

cc:

LAB NO. C932859/9

07/22/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

DATE COL'D:07/08/93 RECEIVED:07/08/93 COLLECTED BY: Client

SAMPLE: Water sample, 6E

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloromethane	ug/L	<1	Chlorobenzene	ug/L	<1
Bromomethane	ug/L	<1	1,3 Dichlorobenzene	ug/L	<2
Dichlordifluomethane	ug/L	<2	1,2 Dichlorobenzene	ug/L	4
Vinyl Chloride	ug/L	<1	1,4 Dichlorobenzene	ug/L	11
Chloroethane	ug/L	<1	Benzene	ug/L	<1
Methylene Chloride	ug/L	<1	Toluene	ug/L	<2
Trichlorofluomethane	ug/L	<2	Ethyl Benzene	ug/L	<1
1,1 Dichloroethene	ug/L	<1	m Xylene	ug/L	<2
1,1 Dichloroethane	ug/L	<1	o+p Xylene	ug/L	<4
1,2 Dichloroethene	ug/L	<1			
Chloroform	ug/L	<1			
1,2 Dichloroethane	ug/L	<1			
111 Trichloroethane	ug/L	<1			
Carbon Tetrachloride	ug/L	<1			
Bromodichloromethane	ug/L	<1			
1,2 Dichloropropane	ug/L	<1			
t-1,3Dichloropropene	ug/L	<2			
Trichloroethylene	ug/L	<1			
Chlorodibromomethane	ug/L	<1			
112 Trichloroethane	ug/L	<2			
c 13 Dichloropropene	ug/L	<2			
2chloroethvinylether	ug/L	<2			
Bromoform	ug/L	<2			
1122Tetrachloroethan	ug/L	<2		•	
Tetrachloroethene	ug/L	<1			

cc:

ENVIRONMENTAL TESTING

4.5

<0.02

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/11

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

SOURCE OF SAMPLE: Old Bethpage LF, #NY02808, TOTAL

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, M-30B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAMETERS
Chloride as Cl	mg/L	57	Nitrogen, total as N mg/L
Ammonia as N	mg/L	<0.05	Bicarb. Alk CaCO3 mg/L
Iron as Fe	mg/L	120	Cyanide as CN mg/L
Hardness as CaC03	mg/L	70	•
Alkalinity tot CaCo3	mg/L	2	
Phenols as Phenol	mg/L	<0.001	
Barium as Ba	mg/L	2.1	
Aluminum as Al	mg/L	86	
Copper as Cu	mg/L	0.06	
Lead as Pb	mg/L	0.066	
Manganese as Mn	mg/L	2.1	
Nickel as Ni	mg/L	<0.10	
Sodium as Na	mg/L	20	
Zinc as Zn	mg/L	0.12	
Chromium hex as Cr	mg/L	<0.02	
Chromium as Cr	mg/L	0.081	
Mercury as Hg	mg/L	0.0011	
Potassium as K	mg/L	6.9	
Magnesium as Mg	mg/L	10	
Calcium as Ca	mg/L	11	
Tot Dissolved Solids	mg/L	140	
Nitrate as N	mg/L	3.3	
Sulfate as 504	mg/L	32	
Carbonate Alk CaCO3	mg/L	0	
Tot. Kjeldahl N.	mg/L	1.2	

cc:

ENVIRONMENTAL TESTING

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/1

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road Plainview, NY 11803

ATTN: William Conroy

Old Bethpage LF, #NY02808, TOTAL SOURCE OF SAMPLE:

Client DATE COL'D:07/07/93 RECEIVED:07/07/93 COLLECTED BY:

SAMPLE: Leachate sample, LF-1

ANALYTICAL PARAM	ETERS		ANALYTICAL	PARAMETERS
Chloride as Cl	mg/L	120		
Ammonía as N	mg/L	12		
Iron as Fe	mg/L	1.5		
Hardness as CaC03	mg/L	110		
Alkalinity tot CaCo3	mg/L	130		
Manganese as Mn	mg/L	15		
Sodium as Na	mg/L	48		
Potassium as K	mg/L	19		
Calcium as Ca	mg/L	15		
Tot Dissolved Solids	mg/L	280		
Nitrate as N	mg/L	<0.5		
Sulfate as SO4	mg/L	43		
Carbonate Alk CaCO3	mg/L	Ø		
Tot. Kjeldahl N.	mg/L	14		
Bicarb. Alk CaCO3	mg/L	130		

cc:

REMARKS:

NYSDOH ID# 10320

02

377 SHEFFIELD AVE. • N. BABYLON, N.Y. 11703 • (516) 422-5777 • FAX (516) 422-5770

LAB NO. C932842/7

07/19/93

Geraghty & Miller, Incorporated 125 East Bethpage Road

Plainview, NY 11803

ATTN: William Conroy

Old Bethpage LF, #NY02808, TOTAL SOURCE OF SAMPLE:

COLLECTED BY: Client DATE COL'D:07/07/93 RECEIVED:07/07/93

SAMPLE: Water sample, 7B

ANALYTICAL PARAM	ETERS		ANALYTICAL PARAM	ETERS	
Chloride as Cl	mg/L	41	Nitrogen, total as N	mg/L	3.7
Ammonia as N	mg/L	0.3 9	Bicarb. Alk CaCO3	mg/L	6
Iron as Fe	mg/L	0.51	Cyanide as CN	mg/L	<0.0
Hardness as CaC03	mg/L	37	-	_	
Alkalinity tot CaCo3	mg/L	6			
Phenols as Phenol	mg/L	<0.001			
Barium as Ba	mg/L	0.05			
Aluminum as Al	mg/L	0.26			
Copper as Cu	mg/L	<0.02			
Lead as Pb	mg/L	<0.001			
Manganese as Mn	mg/L	0.12			
Nickel as Ni	mg/L	<0.10			
Sodium as Na	mg/L	13			
Zinc as Zn	mg/L	0.03			
Chromium hex as Cr	mg/L	<0.02			
Chromium as Cr	mg/L	<0.005			
Mercury as Hg	mg/L	<0.00025			
Potassium as K	mg/L	1.6			
Magnesium as Mg	mg/L	4.9			
Calcium as Ca	mg/L	6.9			
Tot Dissolved Solids	mg/L	58			
Nitrate as N	mg/L	2.7			
Sulfate as SO4	mg/L	<5			
Carbonate Alk CaCO3	mg/L	Ø			
Tot. Kjeldahl N.	mg/L	1.0			

cc:

APPENDIX B

THIRD QUARTER 1993 WATER SAMPLING LOGS

Project/No. OBL NY ODZ8008	Page of
Site Location BETHRAGE NY	
Site/Well No. 58 Coded/ Replicate No	Date 7-7-93
Weather CLEAR SSC Time Sampling 9:35 Began	Time Sampling Completed
EVACUATION DATA	
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface MP Elevation	
,	<u> </u>
Held Depth to Water Below MP 73.48 Diameter of Casing _	4"
	ed 84.86
GC Gallons per Foot	
Gallons in Well Co. Co. (feet below land surfa	
Evacuation Method OFDICATED SUBMERSTBLE	PomP
SAMPLING DATA/FIELD PARAMETERS	
Color CLEAR Odor NOWE Appearance CLEAN	Temperature
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, umhos/cmphC, \	
Sampling Method and Material Flow CFTL DESCHANCE	
Container Description Constituents Sampled From Lab or G&M	Preservative
SPE COC	1 10301 141110
Remarks	
Sampling Personnel 6ARY WELLERING RUBEN PONC	SAWO
Camping Leisonner	
WELL CASING VOLUMES GAL./FT. 1-1/4" = 0.077 2" = 0.16 3" = 0.37	4″ ⇒ 0.65
$1-\frac{1}{2} = 0.10$ $2-\frac{1}{2} = 0.24$ $3-\frac{1}{2} = 0.50$	6" = 1.46

Project/No. OBC NYOOZ8008	Page of
Site Location BETHPAGE NY	
Site/Well No. GA Coded/ Site/Well No. GA Coded/ Replicate No	Date7-8-93
Weather CLFAN 750 Time Sampling Began	
EVACUAT	TION DATA
Description of Measuring Point (MP)	_
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP #05	Water-Level Elevation
Held Depth to Water Below MP 95.5 7	Diameter of Casing
Wet Water Column in Well 9, 43	Gallons Pumped/Bailed Prior to Sampling
Gallons per Foot $\frac{165}{1}$	
Gallons in Well $\frac{6}{2}$	Sampling Pump Intake Setting
To 1 1 12	(feet below land surface)
Evacuation Method 1/50009790 Fump	
	ELD PARAMETERS
Color NONE Odor NONE Appe	arance C/eqv Temperature/ E off
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, 07) 5-4	
umhos/cmpHpHpH	
Sampling Method and Material	jarsi –
Container D	
Constituents Sampled From Lab	or G&M Preservative
	-
Remarks	0 -
Sampling Personnel GWITANS R.	Pon (Ravio
	IG VOLUMES

Project/No. BBC NJ 00280	o 8 Page / of /
Site Location 3 FTHPAEF 127	
Coded/	Date $7/9/9$
Weather Clary 95 Began	
EVACUATI	ON DATA
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP	Water-Level Elevation
Held Depth to Water Below MP 95.77	Diameter of Casing
Wet Water Column in Well	Gailons Pumped/Bailed 86. Prior to Sampling
Gallons per Foot	
	Sampling Pump Intake Setting (feet below land surface)
Fracuation Method DEDICATED Fund	
Color Odor Odor Appea	aranceTemperature
Specific Conductance, /600 pH 6.5 Sampling Method and Material PlmP 55504	
Sampling Method and Material	
Container D Constituents Sampled From Lab	
Remarks	
Sampling Personnel 6. WILLEAMS R. Por	
WELL CASIN	G VOLUMES
GAL./FT. $1-\frac{1}{4}$ " = 0.077 2" = 0.1 $1-\frac{1}{2}$ " = 0.10 $2-\frac{1}{2}$ " = 0.2	

Project/No. <u>564</u> NY 00 2868		Pageof
Site Location BETHPAGE NY		
Site/Well No. 6C Coded/ Site/Well No. 6C Replicate No	REP-1	Date 7-8-93
Weather CLOUDY 95° Time Sampling Began		Time Sampling 2:25
) EVACUATI	ON DATA	
Description of Measuring Point (MP)		
Height of MP Above/Below Land Surface	MP Elevation	
Total Sounded Depth of Well Below MP	Water-Level Elevation	
Held Depth to Water Below MP 96.25	Diameter of Casing	
Wet Water Column in Well 63.75	Gallons Pumped/Bailed Prior to Sampling	124.31
$7-7$ $7=10$ Gallons per Foot $\frac{165}{100}$		
Gallons in Well $\frac{41.43}{1.43}$	Sampling Pump Intake Si (feet below land surface)	etting ————————————————————————————————————
Evacuation Method DEDECATIO PUMP		
SAMPLING DATA/FIE	\wedge	
Color Local Odor Maderately Appea	rance (Sour	Temperature 26 oF/C
Other (specific ion; OVA; HNU; etc.)		
Specific Conductance, 60 pH 6./		
Sampling Method and Material How CFU	OBSCHALGE	
Container De Constituents Sampled From Lab		Preservative
SCA COC	or daw	i reservative
Remarks		
	PONCIONO	
WELL CASINO GAL./FT. $1-\frac{1}{4}$ " = 0.077 2" = 0.16	3" = 0.37	4" = 0.65
$1-\frac{1}{2}$ " = 0.10 $2-\frac{1}{2}$ " = 0.24	3-1/2" = 0.50	6" = 1.46

	Project/No. OBL NY 602	8008		Page of
	Site Location BETHPAGE	U ² 4		
	Site/Well No. 6 E	Coded/ Replicate No		Date 7-8-93
	Weather_CLEAR 95°	Time Sampling Began	11:002	Time Sampling 12:55
		EVACUATIO	ON DATA	
	Description of Measuring Point (MP)	TOC		
	Height of MP Above/Below Land Surface		MP Elevation	
	Total Sounded Depth of Well Below MP	250	Water-Level Elevation	
	Held Depth to Water Below MF	s <u>96.34</u>	Diameter of Casing	
	Wet Water Column in We	1/2 66	Gallons Pumped/Bailed Prior to Sampling	299.63
Q:	Gallons per Foo	n 605		
•	Gallons in Wel	99.37	Sampling Pump Intake S (feet below land surface)	Setting
01	Evacuation Method	D SUBPU	np	
	SAN	MPLING DATA/FIE	LD PARAMETERS	
	Color CLEAK Odor Nont	Appear	rance <u>CLBAR</u>	Temperature <u>24</u> •F7°C
	Other (specific ion; OVA; HNU; etc.)			
	Specific Conductance. umhos/cmpH_	4.9		
	,	row CEU	DISCHARGE	
	- 1 3	Container De	escription	
	•	From Lab 🔟 o		Preservative
	SEF COC			
				
			<u> </u>	
	Remarks	0 0		<u> </u>
	Sampling Personnel 6. WTUTAM	15 Rilon	(Dam)	
		WELL CASING	VOLUMES	
	GAL./FT. $1-\frac{1}{4}$ " = 0.077 $1-\frac{1}{2}$ " = 0.10	$2'' = 0.16$ $2 - \frac{1}{2}'' = 0.24$	3" = 0.37	4" = 0.65 6" = 1.46

WAILITOAN	ir Lina Loa		
Project/No. OBL NY 0028008		Page	of
Site Location BETHPAGE NY			
Site/Well No. 64 Coded/ Replicate No	Da	ate 7-8-	93
Weather CLFAR 95 Time Sampling Began	9:30 Ti	me Sampling ompleted	11:01
EVACUATI	ON DATA		
Description of Measuring Point (MP)			
Height of MP Above/Below Land Surface	MP Elevation		
Total Sounded Depth of Well Below MP 350	Water-Level Elevation		
Held Depth to Water Below MP 96.86	Diameter of Casing		
Wet Water Column in Well 253,14	Gallons Pumped/Bailed Prior to Sampling	493,6	2
-7 T=70 Gallons per Foot			
Gallons in Well 164,57	Sampling Pump Intake Sett (feet below land surface)	ing	
Evacuation Method OFOSTATIO PLMP			
SAMPLING DATA/FII	ELD PARAMETERS		
Color CLEM Odor NOWE Appea	arance CLFM Te	mperature	<u>23</u> 4/00
Other (specific ion; OVA; HNU; etc.)			
Specific Conductance, 3 10 pH 4.9	 .		
Sampling Method and Material			
Container 5		Dragan	eativ ea
Constituents Sampled From Lab	or G&M	Preserv	alive
Remarks CHAWBER PH METTER			
C. Tang	Pow CIANO		
Sampling Personnel 9. WYCLATO	V C - WV - C		
	G VOLUMES 16 3" = 0.37 4"	= 0.65	
GAL./FT. $1-\frac{1}{2}$ " = 0.077 2 " = 0.1 $1-\frac{1}{2}$ " = 0.10 $2-\frac{1}{2}$ " = 0.2	•	= 0.65	

Project/No. OBL NY C	028008		Page	of
Site Location BFTHPAGE				
Site/Well No. 78	Coded/ Replicate No		Date	-93
Weather CLEAR 850	Time Sampling $_{\perp}$ Began $_{\parallel}$ $_{\parallel}$ $_{\downarrow}$ $_{\downarrow}$:45	Time Sampling Completed	11:45
	EVACUATION DA	TA		
Description of Measuring Point (MP)_	70 C			
Height of MP Above/Below Land Sur		Elevation		
Total Sounded Depth of Well Below N	1P <u>235. ぴ</u> Water	-Level Elevation		
Held Depth to Water Below Wet Water Column in	JUL 76 Gallo	eter of Casing ns Pumped/Bailed	22/.3	.7
1.17-31	165 acres	to Sampling	<u> </u>	
Gallons per 10.59 Gallons ir 11.35	Well GS, G Samp	bling Pump Intake below land surface	e)	
Evacuation Method	CATED SUB Pump	WELL S	SURBENE /	1/03
off AT 11:53	SAMPLING DATA/FIELD PA	RAMETERS	565 0 6Pm	11:45-36
Color to more Odor Y	WWL Appearance_	clear	_Temperature	2/ 0F/C
Other (specific ion; OVA; HNU; etc.) _				
	· 			
Specific Conductance, umhos/cm	pH 7.7			
Sampling Method and Material	from CEU DE	SCHARCE		
Constituents Sampled	Container Description		Presen	/ative
SEE COC				
Remarks				
Sampling Personnel 6, WTC	sons Ruser	En Othe		
	WELL CASING VOLUM	MES = 0.37	4" = 0.65	-
GAL./FT. $1-\frac{1}{4}$ " = 0 1-\frac{1}{2}" = 0		3-1/2'' = 0.50	6" = 1.46	

	WAI EN SAIV	IPLING LOG		
Project/No. OBL Ny OC	28008		Pageof	
Site Location BETAPAGE N	ч			
Site/Well No. 8 A	Coded/ Replicate No		Date 7-7-93	
Weather CLPAR 90°	Time Sampling Began	1:25	Time Sampling Completed 1550)
	EVACUATI	ON DATA		
Description of Measuring Point (MP)				
Height of MP Above/Below Land Surface	e	MP Elevation		
Total Sounded Depth of Well Below MP	90.00	Water-Level Elevation_		
Held Depth to Water Below N	1P 68 99	Diameter of Casing		
Wet Water Column in W	/ellZ 1, 0	Gallons Pumped/Bailed Prior to Sampling		
Q=7 T=6 Gallons per Fo	oot, 65			
SN 1933 Gallons in M	12/	Sampling Pump Intake (feet below land surface	Setting e)	
Evacuation Method OFDE	CATED SU	B Pump SULL	EDUC # 1:36-	42
SA	ampling data/fii	ELD PARAMETERS	off AT 1:42	_
			_Temperature _ 2 Z _ c	oF/PC)
Other (specific ion; OVA; HNU; etc.)			·	
Curici (Specimo Iori, Cari, Firto, Cas.)				
Specific Conductance, umhos/cmpl	1 6.7	-		
Sampling Method and Material	mu (FII	DISC HARGE		
Sampling Wellou and Waterial	Container D	Rescription		
Constituents Sampled	From Lab	or G&M	Preservative	
SEE COC				
	_			
Remarks				
Sampling Personnel G. WYLTHU	S R. Pou	THUO		
	MELL CACIN	C VOLUMES		
GAL./FT. $1-\frac{1}{4}'' = 0.07$ $1-\frac{1}{2}'' = 0.10$	WELL CASING 7 2" = 0.1 $2-\frac{1}{2}$ " = 0.2	6 3" = 0.37	4" = 0.65 6" = 1.46	
1 /2 = 0.10	0.2			

1	28008	Page of/
Site Location BUTHPAGES	Ny	
Site/Well No. 8B	Coded/ Replicate No	
Weather CLEAR GO"	Time Sampling 153	Time Sampling 3.05
	EVACUATION DATA	
Description of Measuring Point (MP)		
Height of MP Above/Below Land Surface	ce MP Elevation _	
Total Sounded Depth of Well Below MP	Water-Level Ele	vation
Held Depth to Water Below	MP <u>68,39</u> Diameter of Ca	asing
Wet Water Column in V	Well 96.21 Gallons Pumpe Prior to Sampli	
Q=8 7=22 ON 6 157 OFF 9 21. Gallons in V	Sampling Pum	p Intake Setting d surface)
Evacuation Method DEDICATED	SUBPUMP LOWERED	TO 26Pm AT 2109
Other (specific ion; OVA; HNU; etc.)	Appearance Cleiv	
(TYDE CET C DESCHAR	2065
Sampling Method and Material	COW CECE DOSCAMO	<u> </u>
Constituents Sampled SeaCioC	Container Description From Lab or G&M	Preservative

WAIER SAMPLING LOG	
Project/NoOBL N 100 2808	Page of
Site Location BETHPAGE 104	
Site/Well No. Coded/ Replicate No	
Weather CURA GPS Time Sampling 10;58	Time Sampling Completed 11:45
EVACUATION DATA	
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface MP Elevation	· · · · · · · · · · · · · · · · · · ·
•	on
Held Depth to Water Below MP 91,97 Diameter of Casin	_
Wet Water Column in Well 76.03 Gallons Pumped/E	Bailed 148,75
Q = (T = 2) Gallons per Foot	
Sampling Pump Ir	ntake Setting urface)
Evacuation Method DEDECATED SUB Pump	
SAMPLING DATA/FIELD PARAMETERS	
Color CLEAR Odor MANTE Appearance CLEAR	Temperature
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, 150 pH 5,8	
Sampling Method and Material _ Frow CEU DESCOTABLE	
Container Description	D anaga ati a
Constituents Sampled From Lab or G&M	Preservative
	-
	-
	
Sampling Personnel G. IN DUDANS R. Pow Graw)	
Sampling Personnel 6. WILLIAMS (C. Vow GDOW)	
WELL CASING VOLUMES	45 0.05
GAL./FT. $1-\frac{1}{4}" = 0.077$ $2" = 0.16$ $3" = 0.37$ $1-\frac{1}{2}" = 0.10$ $2-\frac{1}{2}" = 0.24$ $3-\frac{1}{2}" = 0.50$	

Project/No. OBC N4007	8608		Pageof
Site Location BATHPAGE No.	1		
Site/Well No.	Coded/ Replicate No		Date 7-9-93
Weather CLDAR 90 °	Time Sampling Began	9:44	Time Sampling Completed 10:40
	EVACUATION	ON DATA	
Description of Measuring Point (MP)	Be		
Height of MP Above/Below Land Surface		MP Elevation	
Total Sounded Depth of Well Below MP	225,0	Water-Level Elevation	
Held Depth to Water Below M	93.29	Diameter of Casing	
Wet Water Column in We	ell 131.71	Gallons Pumped/Bailed Prior to Sampling	25683
Q = 7 $T = 36$ Gallons per Fo			
off 10:28	ell <u>85,61</u>	Sampling Pump Intake (feet below land surface	
Evacuation Method DEOXCAT	FO SUB FUM	ρ	
SA	MPLING DATA/FIE	ELD PARAMETERS	
Color CLEAR Odor Now [Appea	rance CLF AM	_Temperature
Other (specific ion; OVA; HNU; etc.)			
		<u> </u>	<u> </u>
Specific Conductance, (650 ph	6.7		
Sampling Method and Material	row CFU	DESCHARGE	
	Container D		
Constituents Sampled	From Lab	or G&M	Preservative
<u> </u>			
	_	· .	
Remarks	0 0		
Sampling Personnel 6. WOUTS	ans K. Pa	W (IIAM)	
	WELL CASING	3 VOLUMES	
GAL./FT. $1-\frac{1}{4}^{n} = 0.077$ $1-\frac{1}{2}^{n} = 0.10$	$2'' = 0.16$ $2-\frac{1}{2}'' = 0.24$		4" = 0.65 6" = 1.46

WAILII OAN	m Enta Loa
Project/No. OBL NY 0028008	Page/of
Site Location BETHPALE N.1	
,	Date 7-9-93
Weather CLEAR 909 Time Sampling Began	
EVACUAT	TON DATA
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface	MP Elevation
Total Sounded Depth of Well Below MP	Water-Level Elevation
Held Depth to Water Below MP 2292	Diameter of Casing
Wet Water Column in Well	Gallons Pumped/Bailed 277.36 Prior to Sampling
Gallons per Foot $\frac{.65}{.000}$ One 1:37 Gallons in Well $\frac{76.10}{.000}$	Sampling Pump Intake Setting (feet below land surface)
Evacuation Method DEDIZATED PUMP	
	IELD PARAMETERS
Color Norl Appe	earance Clar Temperature 19 ºF/6
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, 30 pH 4.9	
Sampling Method and Material — from CEU	DISCHARCE
Container I Constituents Sampled From Lab	Description or G&M Preservative
SET COC	
	<u> </u>
Remarks	
Sampling Personnel 6, WD JAMS R. Pow C	DAWO
	NG VOLUMES
GAL./FT. $1-\frac{1}{2}" = 0.077$ $2" = 0$ $1-\frac{1}{2}" = 0.10$ $2-\frac{1}{2}" = 0$	

		WAI ER SAW	FEING LOG	1
	Project/No. OBC P 1002	<u>Boo9</u>		Pageof
	Site Location BETHAGY WY			
	Site/Well No.	Coded/ Replicate No		Date 7-9-93
	Weather CLOAR 90°S	Time Sampling Began	12:15	Time Sampling /: 30 Completed /: 30
		EVACUATIO	ON DATA	
	Description of Measuring Point (MP)			
	Height of MP Above/Below Land Surface	250	MP Elevation	
	Total Sounded Depth of Well Below MP	235	Water-Level Elevation	
	Held Depth to Water Below M	IP 27.79	Diameter of Casing	·
	Wet Water Column in We	ell 2/2,27	Gallons Pumped/Bailed Prior to Sampling	
E	7-8 $T=5$ Gallons per Fo	ot		·
N 12	Gallons in We	ell <u>137,93</u>	Sampling Pump Intake (feet below land surface	
9 K 1	Evacuation Method DEDICAT	ED Rumt	•	
	SA	MPLING DATA/FIE	LD PARAMETERS	
	Color_nowlOdor_MS	Appea	rance Clear	_TemperatureoF@c
	Other (specific ion; OVA; HNU; etc.)			
	Specific Conductances phonon p	5		
	Sampling Method and Material	owcer or	SCHARGE	
		Container De		December 1945
	Constituents Sampled	From Lab	or G&M	Preservative
				
			· .	
	Remarks	Las P	PON DAWD	-
	Sampling Personnel 6. WALLER	745	1 O'C CP-VMO	
		WELL CASING		
	GAL./FT. $1-\frac{1}{4}$ " = 0.077 $1-\frac{1}{2}$ " = 0.10	2'' = 0.16 $2-1/2'' = 0.24$		4" = 0.65 6" = 1.46

Project/No. OBL NY 0028008		Page	of			
Site Location BETHPAGE NEW YORK	C	•				
Coded/		Date 7-7-0	13			
Weather CUMR 85° Time Sampling Began		Time Sampling Completed	920			
EVACUATION DATA						
Description of Measuring Point (MP)						
Height of MP Above/Below Land Surface	MP Elevation					
Total Sounded Depth of Well Below MP 167	Water-Level Elevation					
Held Depth to Water Below MP 45,10	Diameter of Casing	<u> </u>				
Wet Water Column in Well 61.9	Gallons Pumped/Bailed Prior to Sampling	271,4				
SW: 8:46 Gallons per Foot 1:46						
9!19=28 Gallons in Well 90.37	Sampling Pump Intake (feet below land surface	Setting)				
Evacuation Method DED SUBMERS 15	PUMP					
SAMPLING DATA/FIE	ELD PARAMETERS					
Color_noulOdor_noul_Appea	rance Clear	_Temperature7	<u>.</u> 7_ ∘F€€			
Other (specific ion; OVA; HNU; etc.)		_				
Specific Conductance, 600 pH 6.0						
Sampling Method and Material Pump dirch	aige					
Container D Constituents Sampled From Lab		Preserv	ativo			
Constituents Sampled From Lab	or Gaivi	Fleserv	alive			
						
Pomorko	·.					
Sampling Personnel	N(59ND					
Sampling reisonner						
WELL CASING GAL./FT. 1-1/4" = 0.077 2" = 0.1		4" = 0.65				
$\frac{1-\sqrt{2}}{1-\sqrt{2}} = 0.10$ $2-\sqrt{2}$ = 0.2	·	6" = 1.46				

WAIER SAMPLING LUG	
Project/No. OBL NY 0028608	Page of
Site Location BETHPAGE NEW YORK	
Site/Well No. M -30 B Coded/ Replicate No	Date <u>7-7-93</u>
Weather CLEAR 8.5° Time Sampling 7:01	Time Sampling 7,55
EVACUATION DATA	
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface MP Elevation	
Total Sounded Depth of Well Below MP Water-Level Elevation_	
Held Depth to Water Below MP <u>85.39</u> Diameter of Casing	2"
Wet Water Column in Well 12,61 Gallons Pumped/Bailed Prior to Sampling	
Gallons per Foot16	
Gallons in Well 2.01 Sampling Pump Intake	Setting e)
Evacuation Method TEFON BATTER	
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, 220 pH 5, 4	
Sampling Method and Material TETTON BATTER	
Container Description Constituents Sampled From Lab or G&M	Preservative
Remarks FIELD BLANK PERFORMEN AFTEN M-30	B
Sampling Personnel 6ANY WELLSAMS RUBEN PONCE	DANO
WELL CASING VOLUMES GAL./FT. $1-\frac{1}{2}$ " = 0.077 2" = 0.16 3" = 0.37 $1-\frac{1}{2}$ " = 0.10 $2-\frac{1}{2}$ " = 0.24 $3-\frac{1}{2}$ " = 0.50	4" = 0.65 6" = 1.46

Project/No. OBL NY 0028008	Pageof
Site Location BETHRAGE N.Y.	
Site/Well No. OBS-Z Coded/ Replicate No	
Weather CLEAR 90°5 Time Sampling 8:15	Time Sampling 9:19
EVACUATION DATA	
Description of Measuring Point (MP)	
Height of MP Above/Below Land Surface MP Elevation	
Total Sounded Depth of Well Below MP Water-Level Elevation	1
Held Depth to Water Below MP 45,75 Diameter of Casing.	
Wet Water Column in Well 144.75 Gallons Pumped/Ba	iled 282.26
Q = Z(T = 13) Gallons per Foot65	
Gallons in Well Gallons in Well Get below land sur	ake Setting 75
off 8 8:44 Evacuation Method 4'1 SJB PUMT	
SAMPLING DATA/FIELD PARAMETERS	
Color_CLEAR Odor_NOW? Appearance_CLEAR	Temperature′ > ºF/ºC
Other (specific ion; OVA; HNU; etc.)	
Specific Conductance, pH 7,23	
Sampling Method and Material TEHOW BATTER	_
Container Description	Preservative
Constituents Sampled From Lab or G&M	Freservative
•	
Remarks & BATTEUES LOW	
Sampling Personnel 6. WELLERMI R. PONCESANO	
Sampling Personnel	
WELL CASING VOLUMES GAL/FT 1-1/4" = 0.077 2" = 0.16 3" = 0.37	4" = 0.65
GAL/FT. $1-\frac{1}{4}$ " = 0.077 2" = 0.16 3" = 0.37 $1-\frac{1}{2}$ " = 0.10 $2-\frac{1}{2}$ " = 0.24 $3-\frac{1}{2}$ " = 0.50	6" = 1.46

APPENDIX C

GROUNDWATER SAMPLING PROTOCOLS

Ground Water

Engineering -

Hydrocarbon

Remediation

Educatio

July 10, 1991

Mr. Joe Schechter Lockwood, Kessler & Bartlett, Inc. One Aerial Way Syosset, New York 11791

Re:

First Round Ground-Water Monitoring at Old Bethpage Solid Waste Disposal Complex; Project No. NY02807

Dear Mr. Schechter:

We are writing to apprise LKB that Geraghty & Miller will be collecting first round ground-water samples at Old Bethpage Landfill on the week of July 29, 1991. Sampling will be conducted in accordance with the requirements described in the Remedial Action Plan (RAP). As stipulated in the RAP, the first round of samples are to be collected prior to the commencement of pumping of the recovery system. Because the exact start-up date for testing the treatment facility has not been set, we have scheduled the sampling as soon as possible in order that this work can be completed prior to activation of the recovery system.

Attached is a copy of the "Protocols for Sampling Ground-Water at Old Bethpage Solid Waste Disposal Complex." These protocols will be followed for the collection of the first round samples and also for subsequent quarterly sampling rounds. In compliance with the Town of Oyster Bay's request that all project correspondences be handled by LKB, we respectfully request that LKB forward the attached sampling protocols and provide notification of our intent to sample (at least 1 week prior) to the appropriate regulatory agency.

If you have any questions or require additional information, please call.

Sincerely,

GERAGHTY &/MILLER, INC.

Richard Eby **Project Scientist** (516) 391-5241

allo San Glovouni

Carlo SanGiovanni

Senior Hydrogeologist/Project Manager

(516) 391-5259

Attachment

John Lekstutis

Ralph Cuomo

125 East Bethpage Road • Plainview. New York 11803 • (516) 249-7600 • FAX (516) 249-7610

PROTOCOLS FOR SAMPLING GROUND WATER UNDER THE OLD BETHPAGE SOLID WASTE DISPOSAL COMPLEX REMEDIAL ACTION PLAN

Equipment:

Generator
Extension Cord
Water Level Meter (M-Scope) or
Steel Tape and Chalk
Sample/Discharge Fitting
Beakers
Graduated Bucket
Gloves (Latex, Nitrile, or
equivalent)
Nylon or Polypropylene Cord
Cooler with Ice
Teflon Tape

Distilled Water
Polyethylene Tubing
Rags
MICRO™ Laboratory Cleaner
Sample Containers
(including duplicate,
field and trip blanks)
Plastic Sheeting
Flow-through Cell
pH Meter & Buffers (4 & 7)
Conductivity Meter
Thermometer
Scrub Brush
PVC Bailer
Grundfos™ Stainless Steel Submersible pump

Procedure: Wells equipped with permanent submersible pumps.

- 1. Unlock the well and measure the depth to water to the hundredth of a foot with a water-level meter (m-scope) or steel tape and chalk. Record this measurement on the Water Sampling Log, and calculate the amount of water standing in the well.
- 2. Lay plastic sheeting down around well. Clean the sample/discharge fitting and the flow-through cell in 2% MICRO™ solution, and rinse with distilled water.
- 3. Connect the sample/discharge fitting to the flow-through cell. Connect this assemblage to the riser pipe. Use Teflon tape where needed. Start generator and plug extension cord in; connect extension cord to the pump power cable. Record the time pumping began on the Water Sampling Log.
- 4. Close the valve on the fitting to the flow-through cell. Using the other valve, adjust the pumping rate so that it does not continuously draw down to the pump intake (consult sampling logs from previous sampling rounds for pumping rates). Periodically measure the flow rate using a graduated bucket. Record pumping rate on the Water Sampling Log.

- 5. Pump three times the amount of standing water from the well. If necessary, evacuate Well No. 8B by pumping dry three times, allowing time for recovery between each pumping. Water pumped from Well No. 6B is to be discharged away from the well to prevent possible contamination of the less contaminated water table zone tapped by Well No. 6A. A minimum of 100 feet of polyethelene tubing will be used to direct discharge away from the well cluster. Note: the flow-through cell is not used to sample Well No. 6B. Label and tape the sample containers.
- 6. When the well is nearly ready for sampling, put on protective gloves and open the valve to the flow-through cell. Insert thermometer, pH 4 and 7 buffers, and the conductivity electrode into the flow-through cell and allow a few minutes for thermal equilibration. Read and record temperature; set pH temperature knob to the measured temperature and calibrate both pH and conductivity meters with buffers. Remove vials containing buffers and insert pH electrode into the flow-through cell. Record pH, temperature, and conductivity on Water Sampling Log.
- 7. Adjust valve so that flow from the sample discharge (polyethylene tubing) is a trickle. Fill VOC vials, making sure that there are no trapped air bubbles, and place in a cooler with ice.
- 8. Fill remaining containers and place in a cooler with ice. Note: do not rinse bottles with sample water before filling, as some bottles contain preservative.
- 9. Complete Water Sampling Log and Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler.
- 10. Remove sample/discharge fitting and flow-through cell, replace all plugs, and lock the well. Discard plastic sheeting and gloves. Deliver samples to laboratory as soon as possible. Obtain signature from receiver at laboratory on Chain-of-Custody Form.

<u>Procedure</u>: Wells not equipped with a permanent submersible pump.

- 1. Wells which are not equipped with permanent submersible pumps will be evacuated with a submersible pump or PVC bailer, and sampled with a PVC bailer.
- 2. Open the Well and clean off any surficial dirt from protective casing. Remove well cap.
- 3. Measure the depth to water to the hundredth of a foot with a water level recorder (m-scope) or steel tape and chalk. Record this measurement on the Water Sampling Log, and calculate the amount of water standing in the well.
- 4. Lay plastic sheeting down around well. Label and tape the sample containers.

- Disassemble the bailer, if appropriate, and immerse the bailer and/or submersible pump in a 2% solution of MICRO™, or pour the solution in and over the bailer/pump. Scrub the bailer/pump with a brush to remove surficial contaminants. Rinse the bailer/pump with copious amounts of distilled water. Wear clean gloves when handling a clean bailer/pump.
- 6. Reassemble the bailer and place on the plastic sheeting. Attached an appropriate length of nylon or polypropylene cord to the bailer using a secure knot. Tie loose end of cord to well casing. Attach the appropriate lengths of nylon or polypropylene cord and polyethylene tubing to the submersible pump. New cord and tubing will be used at each well.
- 7. If a bailer is being used to evacuate the well, lower the bailer into the well and into the water column gradually, to minimize turbulence. Allow the bailer to sink and become fully submerged. Recover the bailer from the well and empty into the graduated bucket. If the submersible pump is being used to evacuate the well, lower the pump below the water table, secure the safety line, and plug into generator.
- 8. Bail/pump three times the amount of standing water from the well, or bail/pump well dry and allow to recover. Bailer cord can be held in hand or laid on plastic sheeting while bailing. Following evacuation, pull pump out of well slowly while pump is still operating. This will ensure that any water remaining above the pump has been evacuated from the well.
- 9. All samples for wells without dedicated pumps will be collected with a PVC bailer. Slowly lower clean bailer into well to minimize turbulence. Fill the 40-ml vials for VOCs analysis insuring that there are no air bubbles. Place vials in cooler with ice.
- 10. Fill remaining sample containers and place in cooler with ice. Note: do not rinse containers with sample, as some containers contain preservatives.
- 11. Lock well. Discard cord, tubing, gloves, and sheeting.
- 12. Fill out remaining data on Water Sampling Log and complete Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler. Deliver samples to the lab as soon as possible and obtain receiver's signature on Chain-of-Custody Form.

Procedure: (Field Blank and Trip Blank)

1. Label and tape one of the 40-ml vials filled with lab water as "Trip Blank", and store unopened in a cooler on ice. One trip blank will accompany each day's samples.

- 2. Label and tape one of the empty 40-ml vials as "Field Blank" and store it and the the remaining two 40-ml vials filled with lab water, unopened with the other empty sample containers.
- 3. On the last day of sampling, two Field Blanks will be collected by running the two vials of lab water through (1) the sample/discharge fitting and (2) the bailer used in the sampling round (the fitting and bailer will be decontaminated prior to sample collection following the identical procedure used between sampling different wells). Make sure that there are no trapped air bubbles in the sample vial. Place blank in cooler with ice.
- 4. Complete Water Sampling Log and Chain-of-Custody Form. Affix Chain-of-Custody Seal to cooler.
- 5. Deliver samples to laboratory as soon as possible. Obtain signature from receiver at laboratory on Chain-of-Custody Form.

RE:mb 7/10/91 rebeth.doc