

November 20, 2002 ECTL02-217

Steven M. Scharf, P.E., Project Engineer New York State Department of **Environmental Conservation Division of Environmental Remediation** Bureau of Eastern Remedial Action 625 Broadway Albany, NY 12233-7015

Re:

Remedial Investigation

Northrop Grumman Corporation

South Receiving Basin Bethpage, New York

Attachment 1.

Dear Mr. Scharf: The purpose of this letter report is to document the field activities and present the preliminary analytical results associated with the remedial investigation (RI) conducted at the South Receiving Basin (SRB) located at the Northrop Grumman Corporation (NGC) site in Bethpage, New York. A site location map is presented on Figure 1 in

A description of the project site, discussion of the field activities and presentation of the preliminary analytical results are provided below. It should be noted that a Remedial Investigation report will be prepared for the SRB that summarizes the validated analytical results.

Introduction

The South Receiving Basin is located along the southern portion of the NGC Bethpage campus. The SRB property is owned and operated by NGC. The SRB is approximately 140 feet by 140 feet square and approximately 15 feet deep. A single story building, currently operated by the Long Island Rail Road, is located immediately north of the site. Surrounding property to the northwest, north and east is zoned industrial. Directly to the west and south along Route 107/Hicksville Road, is an area of strip commercial zoning. Farther west is high-density residential zoning. Directly south of the site is also

Northrop Grumman Corporation Airborne Early Warning and **Electronic Warfare Systems** South Oyster Bay Road Bethpage, NY 11714-3581

high density residential zoning. A site plan is provided in **Figure 2** in **Attachment 2**. The topography of the site is generally level. Ground elevation is approximately 110 feet above mean sea level, with the depth to groundwater approximately 50 feet below grade.

Historically, Plant 2 SPDES permitted treated wastewater, non-metal rinse water, storm water and treated groundwater was discharged to the SRB, which then conveyed flows to a series of recharge basins located to the east of the SRB. However, for the last 2 years, storm water discharges have bypassed the SRB and, instead have been conveyed to the adjacent recharge basins. At the current time, the SRB only receives storm water in the form of direct precipitation. However, because the SRB served as a solids settling basin for metal precipitates from Plant 2, we believe that it may be contributing to local groundwater contamination. As a result, NGC wishes to backfill and formally close the SRB following all applicable environmental regulations, by the installation of an asphalt cap to eliminate any infiltration to groundwater. Consequently, NGC has conducted a RI at this basin to determine if the media beneath the basin has been impacted in a manner that would preclude closure of the SRB in the manner suggested.

Field Activities

Subsurface Soil Samples

Based upon the NYSDEC approved Work Plan – Revision 1, dated September 2002, a total of five soil borings were advanced within the "floor" of the SRB. The four soil borings located in the corners of the basin were advanced to a depth of 20 feet below the bottom of the basin utilizing the Geoprobe technique. Continuous two-foot soil samples were collected for laboratory analysis. In addition, a soil boring was advanced in the center of the basin to a depth of approximately 42 feet below the bottom of the basin. Continuous two-foot soil samples were collected to a depth of 20 feet below the bottom of the basin. Soil samples were collected every 5 feet from 20 feet below the bottom of the SRB to 42 feet where the water table was encountered. The soil samples were analyzed for VOCs by Method 8260, SVOCs by Method 8270, RCRA metals by Methods 6010/7471 and PCBs by Method 8082. Soil boring locations are shown on Figure 3 in Attachment 3.

The soil probes were advanced utilizing Geoprobe tooling and a track-mounted Simco 6600 Earthprobe. The Geoprobe tooling consisted of drill rods and either a 1.5-inch outside diameter by 2-foot long or a 2-inch outside diameter by 4-foot long soil probe

sampler. A clear polyethylene terephthalate-G (PETG) sample tube liner, dedicated to each soil probe sample, was used to contain the sample within the sampler. Each soil probe was advanced utilizing the Earthprobe to drive the soil probe sampler, sample tube liner and drill rods to the desired depth. The soil probe sampler was retrieved using the Earthprobe.

All soil samples collected were geologically characterized, inspected for staining, discoloration or odors, and screened for volatile organic compounds (VOCs) using an organic vapor analyzer equipped with a photoionization detector (PID). This information is included on the soil boring logs presented in **Attachment 4**.

Surface Soil Samples

Based upon the NYSDEC approved Work Plan, two surface soil samples (0 to 2 inches) were collected from the south side of the SRB adjacent to the fence line. Likewise, a surface soil sample was collected from the three remaining locations at the perimeter of the SRB outside of the berm area. In addition, a surface soil sample of the gray surface sediments was collected at each of the five Geoprobe soil boring locations and a surface soil sample from each of the SRB sidewalls were also collected. The surface soil samples were analyzed for VOCs by Method 8260, SVOCs by Method 8270, RCRA metals by Methods 6010/7471 and PCBs by Method 8082. Surface soil sample locations are shown on **Figure 3** in **Attachment 3**.

Sand Pile Samples

Based upon the NYSDEC approved Work Plan, a total of six grab soil samples were collected from six sand piles located immediately to the west of the SRB. The sand pile samples were analyzed for VOCs by Method 8260, SVOCs by Method 8270, RCRA metals by Methods 6010/7471 and PCBs by Method 8082.

Groundwater

As part of the SRB RI, shallow groundwater monitoring well SRMW-01 was installed utilizing a CME-55 rotary drill rig equipped with 4 1/4-inch hollow stem augers. All equipment, including the 4 1/4-inch hollow stem augers, was decontaminated utilizing a high-pressure steam cleaner. All decontamination water was contained in 55-gallon DOT drums for proper off-site disposal. The monitoring well was installed to a depth of 54.2 feet below grade. A well construction log is presented in **Attachment 5**. Fifteen feet of 2-inch diameter 0.010 slot schedule 40 flush joint threaded PVC screen and

2-inch diameter Schedule 40 flush joint thread PVC riser pipe was utilized for the well construction. All drill cuttings and well development water was contained in 55-gallon DOT drums for proper disposal. Number 1 Morie well gravel was utilized for the well screen annulus. The remainder of the annular void was filled with hydrated bentonite pellets and a cement and bentonite grout mix was applied as a seal. Subsequent well development activities reduced the turbidity of the well water to approximately 8 NTU's.

During the groundwater sampling activities, turbidity was greater than 50 NTU's. Therefore, both filtered and unfiltered groundwater samples were collected for metals laboratory analysis. The groundwater sample was analyzed for VOCs by Method 8260, SVOCs by Method 8270, RCRA metals by Methods 6010/7471 (filtered and unfiltered) and PCBs by Method 8082.

Quality Control/Quality Assurance

Based upon the NYSDEC approved Work Plan, a set of quality control/quality assurance (QA/QC) samples consisting of a matrix spike and a matrix spike duplicate were collected for analysis at the rate of one set for every 20 environmental samples collected in the field. Mitkem Corporation, a New York State ELAP-approved and CLP-certified laboratory, reported all analytical results following a Category B deliverable format.

Analytical Results

This section presents the preliminary analytical results of the RI conducted at the SRB. Soil sample results generated during this investigation were compared to the criteria included in Appendix A of the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 (referred to in this document as the "NYSDEC TAGM criteria"). It should be noted that the TAGM 4046 criteria for PCBs of 1,000 and 10,000 ug/kg was utilized for surface and subsurface soil, respectively. Groundwater sample results were compared to the NYSDEC Division of Water Groundwater Guidance Value for GA Class Water as outlined in the TOGS 1.1.1.

A discussion of the field investigation findings for the SRB is presented below. In addition, tables summarizing the analytical results of samples collected at the SRB are included in **Attachment 6**.

Subsurface Soil Samples

At the SRB, a total of 52 soil samples were collected at 5 soil boring locations during the RI field investigation program. Soil samples were analyzed as described above. The analytical results are presented in **Tables 1A** through **1D** in **Attachment 6** and are summarized as follows:

Volatile Organic Compounds

 Several Volatile Organic Compounds (VOCs) were detected in all 52 soil samples but at concentrations that were below the NYSDEC TAGM criteria.

Semivolatile Organic Compounds

 Several individual Semivolatile Organic Compounds (SVOCs) were detected in 11 soil samples at concentrations that exceeded the NYSDEC TAGM criteria. However, total carcinogenic polycyclic aromatic hydrocarbons (CaPAHs) were not detected at concentrations exceeding the NYSDEC TAGM criterion of 10,000 ug/kg for total CaPAHs.

RCRA Metals

- Cadmium was detected at concentrations of 17.6 mg/kg, 15.3 mg/kg, 29.8 mg/kg, 44 mg/kg, 17.2 mg/kg, 11.7 mg/kg, 35.6 mg/kg in soil samples SRSB-02 (8-10), SRSB-02 (12-14), SRSB-02 (16-18), SRSB-03 (18-20), SRSB-04 (0-2), SRSB-04 (12-14) and SRSB-04 (14-16), respectively, that exceeded the NYSDEC TAGM criterion of 10 mg/kg.
- Chromium was detected at concentrations of 60.2 mg/kg, 63.8 mg/kg, 66.1 mg/kg, 53.4 mg/kg, 1,290 mg/kg, 72.5 mg/kg, 505 mg/kg, 72.6 mg/kg, 240 mg/kg, 613 mg/kg, 145 mg/kg, 71 mg/kg, 79.4 mg/kg, 75 mg/kg, 203 mg/kg, 85.2 mg/kg, 309 mg/kg, 377 mg/kg, 120 mg/kg, 106 mg/kg and 57 mg/kg in soil samples SRSB-02 (2-4), SRSB-02 (4-6), SRSB-02 (8-10), SRSB-02 (10-12), SRSB-02 (12-14), SRSB-02 (14-16), SRSB-04 (16-18), SRSB-03 (2-4), SRSB-03 (18-20), SRSB-04 (0-2), SRSB-04 (2-4), SRSB-04 (6-8), SRSB-04 (8-10), SRSB-04 (12-14) SRSB-04 (14-16), SRSB-04 (16-18), SRSB-04 (18-20), SRSB-05 (0-2), SRSB-05

- (2-4), SRSB-05 (14-16) and SRSB-05 (18-20), respectively, that exceeded the NYSDEC TAGM criterion of 50 mg/kg.
- Mercury was detected at a concentration of 0.58 mg/kg that exceeded the NYSDEC TAGM criterion of 0.2 mg/kg in soil sample SRSB-05 (0-2).

Polychlorinated Biphenyls

Soil samples SRSB-03 (0-2) and SRSB-04 (0-2) exhibited total PCBs concentrations of 1,600 ug/kg and 3,000 ug/kg, respectively, that exceeded the NYSDEC TAGM criteria of 1,000 ug/kg respectively.

Surface Soil Samples

At the SRB, a total of 14 surface soil samples were collected during the RI field investigation program. Surface soil samples were analyzed as described above. The analytical results are presented in **Tables 2A** through **2D** in **Attachment 6** and are summarized as follows:

Volatile Organic Compounds

 Several VOCs were detected in all 14 soil samples but at concentrations that were below the NYSDEC TAGM criteria.

Semivolatile Organic Compounds

Several individual SVOCs were detected in 13 soil samples at concentrations that exceeded the NYSDEC TAGM criteria. However, total CaPAHs were detected at concentrations of 26,990 ug/kg, 11,980 ug/kg, 13,060 ug/kg and 250,700 ug/kg which exceeded the NYSDEC TAGM criterion of 10,000 ug/kg for total CaPAHs in soil samples SRSS-09, SRSB-01SS, SRSB-04SS and SRSB-05SS, respectively.

RCRA Metals

 Arsenic was detected at a concentration of 37.1 mg/kg that exceeded the NYSDEC TAGM criterion of 12 mg/kg in soil sample SRSS-04.

- Chromium was detected at concentrations of 75.5 mg/kg, 352 mg/kg, 292 mg/kg, 389 mg/kg, 54.9 mg/kg and 587 mg/kg in soil samples SRSS-04, SRSS-05, SRSS-09, SRSB-01SS, SRSB-02SS and SRSB-05SS, respectively, that exceeded the NYSDEC TAGM criterion of 50 mg/kg.
- Lead was detected at a concentration of 789 mg/kg that exceeded the NYSDEC TAGM criterion of 500 mg/kg in soil sample SRSB-05SS.
- Mercury was detected at concentrations of 0.4 mg/kg, 0.37 mg/kg and 1.2 mg/kg in soil samples SRSS-09, SRSB-01SS and SRSB-05SS, respectively, that exceeded the NYSDEC TAGM criterion of 0.2 mg/kg.
- Polychlorinated Biphenyls
 - Soil sample SRSS-02 exhibited a total PCBs concentration of 1,300 ug/kg that exceeded the NYSDEC TAGM criterion of 1,000 ug/kg.

Sand Pile Samples

At the SRB, a total of 6 grab soil samples were collected during the RI field investigation program. Soil samples were analyzed as described above. The analytical results are presented in **Tables 3A** through **3D** in **Attachment 6** and are summarized as follows:

- Volatile Organic Compounds
 - Soil samples did not exhibit VOC concentrations that exceeded the NYSDEC TAGM criteria.
- Semivolatile Organic Compounds
 - Several individual SVOCs were detected in all 6 grab soil samples at concentrations that exceeded the NYSDEC TAGM criteria. However, total CaPAHs were detected at concentrations of 17,750 ug/kg, 24,640 ug/kg and 29,680 ug/kg which exceeded the NYSDEC TAGM criterion of 10,000 ug/kg for total CaPAHs in soil samples SRSP-02, SRSP-03 and SRSP-04, respectively.

RCRA Metals

 Soil samples did not exhibit RCRA metals concentrations that exceeded the NYSDEC TAGM criteria.

Polychlorinated Biphenyls

 Soil samples did not exhibit total PCBs concentrations that exceeded the NYSDEC TAGM criteria of 1,000/10,000 ug/kg.

Groundwater

One groundwater sample was collected from the monitoring well installed immediately downgradient of the SRB during the RI field investigation program. The groundwater sample was analyzed as described above. The analytical results are presented in **Tables 4A** through **4D** in **Attachment 6** and are summarized as follows:

- Volatile Organic Compounds
 - VOCs were detected in the groundwater sample but at concentrations that were below the NYSDEC groundwater standards.
- Semivolatile Organic Compounds
 - Groundwater sample SRMW-01 did not exhibit any SVOC exceedances of the NYSDEC groundwater standards.

RCRA Metals

- Arsenic was detected at a concentration of 104 ug/l in the unfiltered groundwater sample that exceeded the NYSDEC groundwater standard of 25 ug/l. Arsenic was not detected above the detection limit in the filtered groundwater sample.
- Cadmium was detected at concentrations of 1,950 ug/l and 42.2 ug/l in the unfiltered and filtered groundwater samples that exceeded the NYSDEC groundwater standard of 5 ug/l, respectively.

- Chromium was detected at a concentration of 284 ug/l in the unfiltered groundwater sample that exceeded the NYSDEC groundwater standard of 50 ug/l. Chromium was detected at a concentration of 8.3 ug/l in the filtered groundwater sample.
- Lead was detected at a concentration of 138 ug/l in the unfiltered groundwater sample that exceeded the NYSDEC groundwater standard of 25 ug/l. Lead was not detected above the detection limit in the filtered groundwater sample.
- Polychlorinated Biphenyls
 - Groundwater sample SRMW-01 did not exhibit total PCB exceedances of the NYSDEC groundwater standard.

TCLP Chromium Analysis

At the SRB, the soil samples that exhibited the five highest total chromium concentrations were analyzed for TCLP chromium. The analytical results are presented in **Tables 5** in **Attachment 6** and are summarized as follows:

 Chromium was not detected at concentrations exceeding the toxicity characteristic regulatory limit for chromium.

Recommendations

Based upon the preliminary SRB RI results presented above, additional sampling and analysis activities at the SRB do not appear to be warranted. As a result, NGC intends to backfill and formally close the South Receiving Basin in a manner consistent with the closure of the adjacent receiving basing located to the west of the SRB. In support of closure, NGC is proposing to remove the two ladders and concrete cap the influent and effluent pipes located within the SRB. NGC is also proposing to transfer the six sand piles to the SRB and backfill the SRB with clean bank-run sand. In addition, an engineered asphalt cap consisting of six inches of recycled concrete aggregate (RCA) and two inches of asphalt will be installed over the entire South Receiving Basin to eliminate the infiltration of water and the migration of any chemical constituents.

As part of formal closure of the SRB, a property deed restriction will be filed with the Nassau County Clerk's office that indicates the locations and concentrations of

constituents that exceed the NYSDEC TAGM criteria. The deed restriction will also stipulate that the engineered asphalt cap shall be maintained and that the State agencies must be notified prior to future soil removal activities. In addition, the deed restriction will limit future land use at the SRB to industrial/commercial and will prohibit residential land uses that may involve: persons other than employees staying over night; a hotel, nursing home or assisted living facility; or facilities involving children including a school, day care facility or outdoor recreation.

If you have any questions and/or comments, please do not hesitate to contact me at (516) 575-2333

Very truly yours,

Larry Leskovjan

Manager

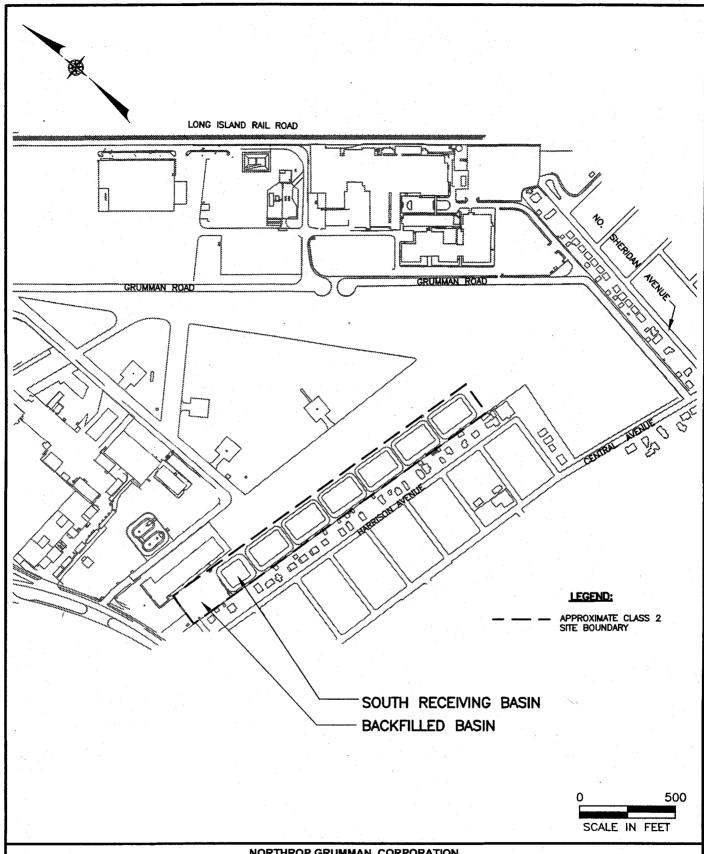
Environmental, Safety, Health &

Medical Services M/S: Z18-025

CC:

B. Gilday (NYSDOH)

J. Cofman (NGC)


F. Weber (NGC)

R. Walka (D&B)

A. Postyn (D&B)

₫ 1965\MISC11182SMS.doc

ATTACHMENT 1

NORTHROP GRUMMAN CORPORATION BETHPAGE FACILITY SOUTH RECEIVING BASIN

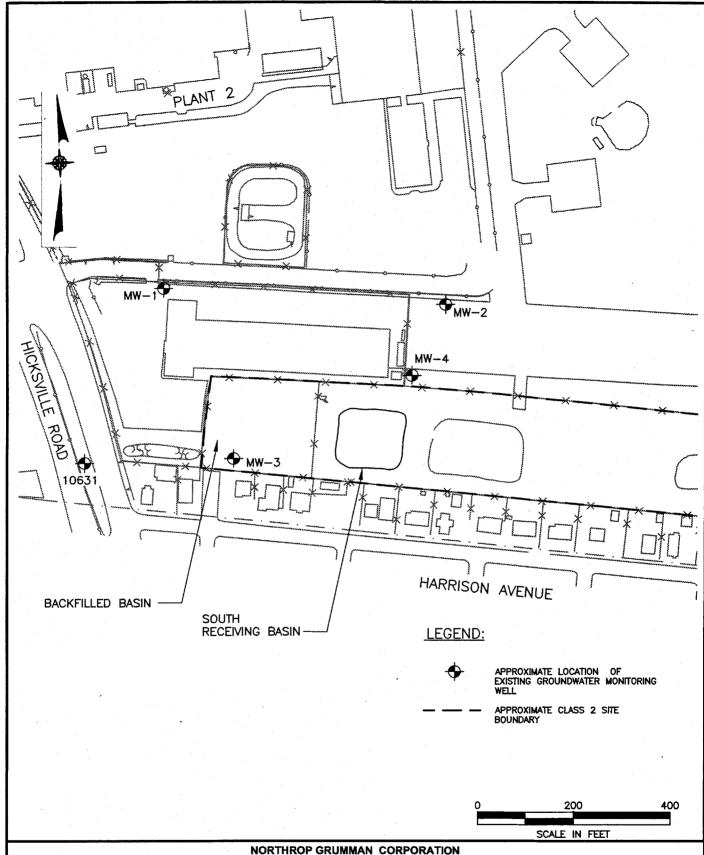
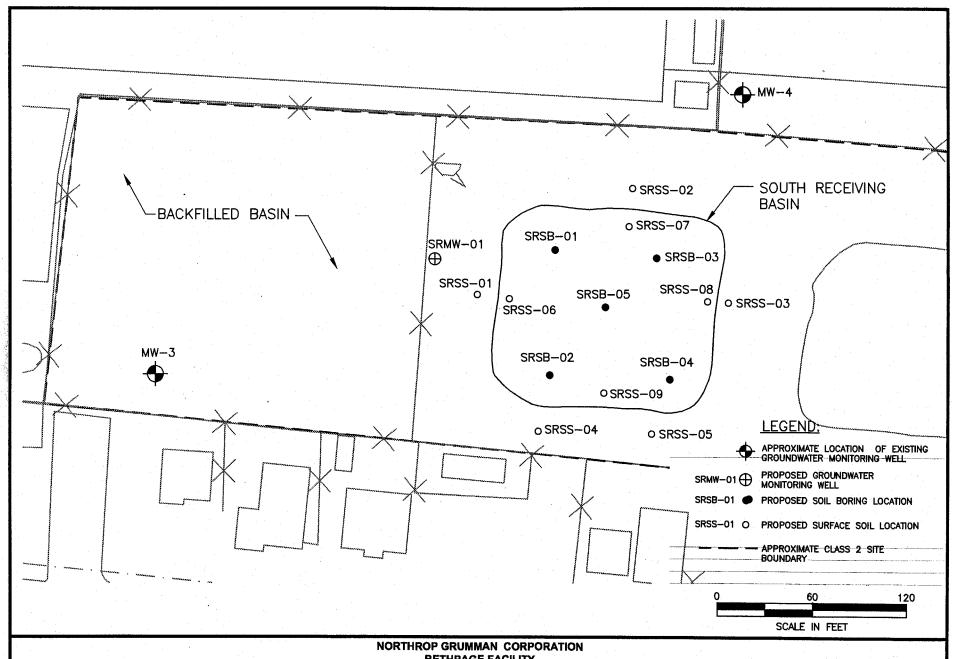

SITE LOCATION MAP

FIGURE 1

VLLYCHMENL 5

Dvirka and

Bartilucci CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.



SITE PLAN

FIGURE 2

VILYCHMENL 3

BETHPAGE FACILITY SOUTH RECEIVING BASIN

> **SAMPLE LOCATION** MAP

FIGURE 3

ATTACHMENT 4

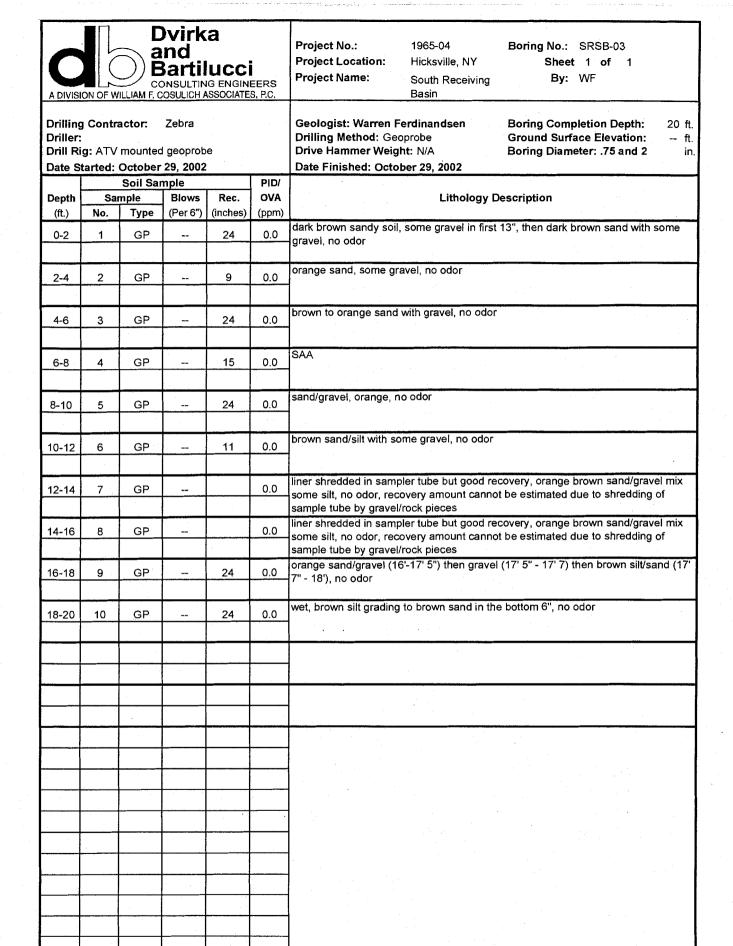
A DIVISI	ON OF W) a	DNSULTIN	a lucc IG ENGIN ASSOCIATE	EERS -	Project No.: Project Location: Project Name:	1965-04 Hicksville, NY South Receiving Basin	Boring No.: SRMW-01 Sheet 1 of 1 By: WF
Driller: Drill Ri	g:Hollo	and Deni w Stem A	Clearwanis Viglitta Auger	а		Geologist: Kristen F Drilling Method: Hol Drive Hammer Weig Date Finished: Nove	llow Stem Auger Jht: N/A	Boring Completion Depth: 54.7 ft Ground Surface Elevation: ft. Boring Diameter: 6 in.
Depth (ft.)		Soil Sai nple Type		Rec.	PID/ OVA (ppm)	Date I mislied. Nove	Lithology D	Description
3-5	1	SS		12	0.0	brown, medium sand,	trace pebbles, dry, r	no odor
9-11	2	SS		2	0.0	dark brown, medium s	sand, moist, no odor	
14-16	3	SS		20	0.0	light brown, medium s	sand, moist, no odor	
21-23	4	SS		20	0.0	light brown, coarse sa	ind, trace pebbles, sa	aturated, no odor
26-28	5	SS		2	0.0	light brown, coarse sa	ind, trace pebbles, su	upersaturated, no odor
31-33	6	SS		12	0.0	light to dark brown sar odor	nd, trace pebbles, so	me organic material, supersaturated, no
36-38	7	SS		2	0.0			no odor, trace organic material
41-43	8	SS		12	0.0	dark to light brown, me	edium sand, trace pe	bbles, saturated, no odor
46-48	9	SS		12	0.0	light brown, fine sand,		
51-53	10	SS		18	0.0	light brown, fine sand	to silt, supersaturate	d, no odor
							·	

Notes:

VV/field forms/log

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe


CC = Concrete Core HP = Hydropunch

A DIVISI	ON OF W) a	Ovirk Ind Bartil DNSULTIN COSULICH A	UCC IG ENGIN	EERS	Project No.: 1965-04 Boring No.: SRSB-01 Project Location: Hicksville, NY Sheet 1 of 1 Project Name: South Receiving By: WF Basin
Driller: Drill Ri	g: 6600	tracked	Zebra rig and A 28, 2002		ted	Geologist: Warren Ferdinandsen Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Finished: October 31, 2002 Boring Completion Depth: 20 ft. Ground Surface Elevation: ft. Boring Diameter: .75 and 2 in
		Soil Sar			PID/	
Depth		nple	Blows	Rec.	OVA	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	Accept to Early City the consequent with consequent to the consequence to t
0-2	1	GP		24	0.0	topsoil in first 6" then orange sand with gravel, no odor
2-4	2	GP		18	0.0	orange sand and gravel, no odor
2-4		- Of-		10	0.0	
4.0		GP		24	0.0	orange brown sand, some gravel, no odor
4-6	3	GP		24	0.0	
6-8	4	GP		8	0.0	SAA
0-0	4	- 61			0.0	
8-10	5	GP		24	0.0	orange brown sand with gravel, wet from recent rains, no odor
0-10	3	GI			0.0	
					_	SAA
10-12	6	GP		24	0.0	
	<u> </u>					sandy, gravel, damp, orange brown in color, no odor
12-14	7	GP		24	0.0	[[] [] [] [] [] [] [] [] [] [
14-16	8	GP		10	0.0	dark brown silt with some sand/gravel, damp, no odor
16-18	9	GP		15/32	0.0	orange brown sand, some gravel, small diameter sampler used, resample on 10/31/2002 for SVOA and PCBs, no odor
						I ISAA
18-20	10	GP		15/32	0.0	
			·			
			-			
					-	
						
			1			
						<u> Nada</u>
Sample		n ⊔∧-	Hand Au	ger CB	- 000-	Notes:
იი ~ o[ur ohno	п ⊓А≖	⊤ianu Au	yer GP	– Geop	lone

Dvirka Project No.: 1965-04 Boring No.: SRSB-02 Hicksville, NY Project Location: Sheet 1 of 1 **Project Name:** By: WF South Receiving CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C. Basin Drilling Contractor: Zebra Geologist: Warren Ferdinandsen Boring Completion Depth: 20 ft. Driller: Drilling Method: Geoprobe **Ground Surface Elevation:** - ft. Drill Rig: 6600 tracked rig and ATV mounted Drive Hammer Weight: N/A Boring Diameter: .75 and 2 in. Date Finished: October 31, 2002 Date Started: October 28, 2002 Soil Sample PID/ Depth Sample Blows Rec. OVA **Lithology Description** (Per 6") (inches) (ft.) No. Type (ppm) orange to brown sand, some gravel, no odor GP 0.0 0-2 1 24 orange to brown sand, some gravel, no odor GP 0.0 2-4 2 6 orange/brown sand/gravel mix, no odor 4-6 3 GP 24 0.0 orange/brown sand/gravel mix, no odor GΡ 0.0 6-8 4 8 brown/orange sand, some gravel, no odor GP 24 0.0 8-10 5 brown/orange sand, some gravel, silt at bottom of recovered material, wet, no odor GΡ 0.0 10-12 4 6 dark brown, plastic silt/sand with some gravel, no odor 12-14 7 GΡ 18 0.0 brown, sand with some gravel GΡ 0.0 14-16 8 15 clean damp sands/gravel at bottom, brown silty, sand at top 16-18 9 GΡ 24 0.0 wet, brown silt/brown sand, refusal at 19', no odor 18-20 10 GΡ 12 0.0 Notes: Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Sample Type: SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

A DIVISI	ON OF W) a E	NSULTIN	UCC IG ENGIN ASSOCIATE	EERS	Project No.: 1965-04 Boring No.: SRSB-04 Project Location: Hicksville, NY Sheet 1 of 1 Project Name: South Receiving By: WF Basin
Driller: Drill Ri	g: ATV	mounted October	Zebra geoprob 29, 2002		· · · · · · · · · · · · · · · · · · ·	Geologist: Warren Ferdinandsen Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Finished: October 31, 2002 Boring Completion Depth: 20 ft. Ground Surface Elevation: — ft. Boring Diameter: .75 and 2 in:
Depth (ft.)	Sai No.	Soil Sar nple Type	nple Blows (Per 6")	Rec.	PID/ OVA (ppm)	Lithology Description
0-2	1	GP		20	0.0	brown, wet silty soil with sand and gravel, no odor
2-4	2	GP		17	0.0	brown, wet silty soil with sand and gravel, no odor
. <u>.</u>						orange sand/gravel mix, liner jammed up, no odor
4-6	3	GP		24	0.0	
6-8	4	GP		4	0.0	liner jammed up, brown sand, no odor
8-10	5	GP		24	0.0	sand/gravel mix, well graded, no odor
10-12	6	GP		4	0.0	sand/gravel mix, well graded, no odor
12-14	7	GP		24	0.0	brown sand/silt/gravel mix, saturated due to inflow from pipe, no odor
14-16	8	GP		4	0.0	brown sand/silt/gravel mix, saturated due to inflow from pipe, no odor
16-18	9	GP		24	0.0	sand, yellow to orange to brown, some gravel, no odor
18-20	10	GP		2	0.0	sand, yellow to orange to brown, some gravel, no odor
		·				
					,	
	,					
				.,	·	
	-					
		· · · · ·				
			_			
Sample						Notes:
			Hand Au P = Hydi	ger GP :	= Geopr	obe
33 0		J J , J 1	. riyu	- Pariori		

Drill Rig: ATV mounted probe/6600 tracked rig

Project No.: Project Location:

Project Name:

1965-04 Hicksville, NY

Boring No.: SRSB-05

Sheet 1 of 1

By: WF

South Receiving Basin

Drilling Contractor:

Driller:

Zebra

Geologist: Warren Ferdinandsen Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter: .75 and 2 42 ft. -- ft. in.

	_		28, 2002	ouu tracke	eu ny	Date Finished: October 31, 2002
Date 5	tarteu.	Soil Sar			PID/	Date Fillished. October 31, 2002
Depth	Sai	nple	Blows	Rec.	OVA	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	Eldiology Besonption
0-2	1	GP		24	0.0	black, silty organics, then gravelly sand, orange to brown in color, no odor
2-4	2	GP		8	0.0	gravelly sand, orange to brown in color, no odor
4-6	3	GP		24	0.0	orange sand with gravel, no odor
-						SAA
6-8	4	GP		16	0.0	
8-10	5	GP	-	24	0.0	SAA
10-12	6	GP		20	0.0	SAA
12-14	7	GP		20	0.0	6" silt, dark brown, then orange sand, no odor
14-16	8	GP		16	0.0	orange sand, no odor
16-18	9	GP		24	0.0	orange/brown sand with gravel, no odor
18-20	10	GP		18	0.0	SAA
25-27	11	GP		18	0.0	fine, yellow sand, damp, w/intermixed gravel, no odor
						light brown, fine sand to silt, supersaturated, no odor
30-32	12	GP		24	0.0	
35-37	13	GP		24	0.0	SAA
40-42	14	GP		24	0.0	SAA
-						
					·	
						Notes: Macro and Micro cores used for sampling as

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Macro and Micro cores used for sampling as Macro sampler broke off on first day of sampling

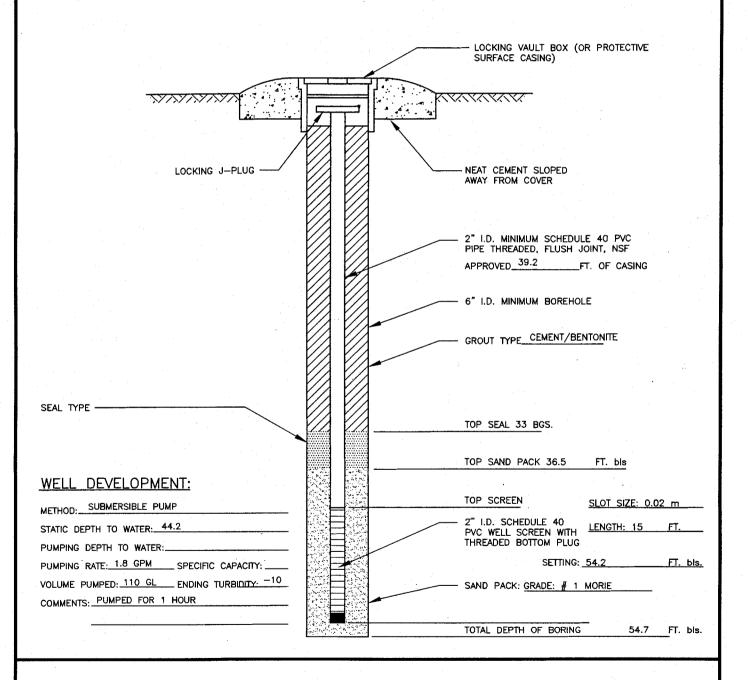
STATEMENT 5

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN RI

WELL CONSTRUCTION LOG

WELL No.: SR MW-01

SITE: NGC-SRB


DRILLING COMPANY: CLEAR WATER

DATE STARTED: 11/01/02 DATE COMPLETED: 11/01/02

DRILLING METHOD: HOLLOW STEM AUGER

BOREHOLE DIAMETER: 6 IN TOTAL BOREHOLE DEPTH: 54.7 FT

TOTAL WELL DEPTH: 54.2 FT. DEPTH TO WATER: 44.2 FT. BELOW TOC.

PLAN FOR CONSTRUCTION OF MONITORING WELLS WITH FLUSH MOUNT LOCKING VAULT

VLLVCHMENL 0

TABLE 1A

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-01 (0-2)	SRSB-01 (4-6)	SRSB-01 (6-8)	SRSB-01 (8-10)	SRSB-01 (10-12)	SRSB-01 (12-14)	SRSB-01 (14-16)	1
Sample Depth	0-2	4-6	6-8	8-10	10-12	12-14	14-16	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	95	89	89	89	89	90	84	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
				Photographic and American and American and American				
Dichlorodifluoromethane	U .	Ū	. U	. U .	· U	, U	U	
Chloromethane	U	U	U	U	U	U	U]
Vinyl Chloride	U	U ·	U	· U	U	U	U	200
Bromomethane	U	U	U	U	U	U	· U	
Chloroethane	· U	U	U	U	U	U	U	1,900
Trichlorofluoromethane	U	. U	U	U	U	U	U	
1,1-Dichloroethene	U	· U	U	U	U	Ū	U	400
Acetone	10	10	21 .	14	14	11	18	200
lodomethane	U	U	U	U	U	U	U	
Carbon Disulfide	U	U	J U	U	U	3 J	5 J	2,700
Methylene Chloride	2 J	3 J	. 5 J	3 J	2 J	2 J	6	100
trans-1,2-Dichloroethene	U	U	U	U .	. U	. U	4 J	
Methyl tert-butyl ether	U	U '	U	. U	U	U	U	
1,1-Dichloroethane	U	U	U	U	U	U	U	200
Vinyl Acetate	U	, U	· U	U	U	U	U	-
2-Butanone	: U	U	U	U	U	U	U	300
cis-1,2-Dichloroethene	U	U	U	1 J	Ú	U	68	
2,2-Dichloropropane	U	U	U .	U	U	U	U	
Bromochloromethane	U	U	U	U	U	· U	U	
Chloroform	U	U	U	U	U .	U	U	300
1,1,1-Trichloroethane	U	U	U	, U	.U	U	U	800
1,1-Dichloropropene	U	, U	U	U	. U	· U	U	
Carbon Tetrachloride	· U	U	U	U	U	U	U	600
1,2-Dichloroethane	U	U .	U .	U	U	U	U	100
Benzene	U	U	Ú	U	U	U	U	60
Trichloroethene	U	4 J	4 J	10	3 J	2 J	. 1 J	700
1,2-Dichloropropane	U	U	U	U	U	U	U	
Dibromomethane	U	· U	U	U	U	U	U	Maria
Bromodichloromethane	U.	U	U	U	· · · U	U	U	
cis-1,3-Dichloropropene	U	U	. U :	. U	U	U	U	
4-Methyl-2-pentanone	U	Ū	U	U	U	U	U	1,000
Toluene	U	U	··U	u u	U	U	3 J	1,500
trans-1,3-Dichloropropene	U	U	U .	Ú .	· · U	U	U	
1,1,2-Trichloroethane	U	·U	U	U	U	U	U	
1,3-Dichloropropane	U	U	U	U	U	U	U U	300
Tetrachloroethene	U	U	U	1 J	U	U	Ū	1,400
2-Hexanone	U	U	Ü	U	U	U	Ū	

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Total VOCs	1,2,3-Trichlorobenzene	Naphthalene	Hexachlorobutadiene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	sec-Butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	4-Chlorotoluene	1,3,5-Trimethylbenzene	2-Chlorotoluene	n-Propylbenzene	1, 2, 3 -Trichloropropane	Bromobenzene	1, 1, 2, 2-Tetrachloroethene	Isopropyibenzene	Bromoform	Styrene	Xylene (total)	Ethylbenzene	1,1,2,2-Tetrachloroethane	Chlorobenzene	1,2-Dibromoethane	Dibromochloromethane	Units	Dilution Factor	% Solids	Sampling Date	Sample Depth (ft)/Location
12	C		<u>_</u>	-	ı	_	C	C	_				⊂.	_	_	_	_	_	_		<u>_</u>	C	_ _	C	C		_	_	· ·	ug/kg	1.0	95	10/28/02	0-2
17	C	C	_	· -	_	_	· ·		<u>_</u>	·.C	_	_	_	<u>_</u>	_	_				_	U		<u></u>	_	_	_	_	C		ug/kg	1.0	89	10/28/02	4-6
30	U	ī.	_	_	· _	_	<u></u>	_	_			Ľ	_			<u> </u>	_	_	_	_	_	_	C		_	_	_	C		ug/kg	1.0	89	10/28/02	6-8
29	U	_	_	_	_	_	_	_	_	_	_	_	· 	· 	_	_	_	_		_		_	<u>_</u>	_	<u>_</u>	_	C	_	C	ug/kg	1.0	89	10/28/02	8-10
19	U		<u> </u>	<u>_</u>	_				_	_		_	<u> </u>	_	_	<u>_</u>	_	_	_	_		_	_		_	_		·	C	ug/kg	1.0	89	10/28/02	10-12
18	U	:	_	_		_	_	_	_	_	_	C	_	_	_	<u> </u>	_		<u> </u>		_	C	_		_	<u>_</u>	_	_	<u> </u>	ug/kg	1.0	90	10/28/02	12-14
116	_	4 J	_	_	_			<u></u>				2 J			1		Ç						_	4 J					C	ug/kg	1.0	84	10/28/02	14-16
10,000	ı	13,000	1	3,400]	7,900	1	8,500	1,600	I	ı	1	ı	1	ı	ı	ı	400	ı	600	1	ŀ	1	1,200	5,500	600	1,700]	1	ug/kg	CITCIE	Critorio	4046 Appendix A	NYSDEC TAGM

- Qualifiers

 U: The compound was analyzed for, but not detected.

 J: Data indicates the presence of a compound that meets the identification oriteria. The result is less than the quantitation limit but greater than zero.
- B. Constituent detected in the method blank as well as the sample.

Notes
---: Not established.

Page 2 of 16

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID Sample Depth Sampling Date	SRSB-01 (16-18) 16-18 10/31/02	SRSB-01 (18-20) 18-20 10/31/02	SRSB-02 (0-2) 0-2 10/31/02	SRSB-02 (2-4) 2-4 10/31/02	SRSB-02 (4-6) 4-6 10/31/02	SRSB-02 (6-8) 6-8 10/31/02	SRSB-02 (8-10) 8-10 10/31/02	NYSDEC TAGM 4046 Appendix A
% Solids Dilution Factor	98	98	96 1.0	85 1.0	89 10	93	89	Comparison Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	<u> </u>		Ü	· ·				
Chloromethane			c (_ (_ (_ (<u> </u>	
Vinyl Chloride		_	c	_	_	_	<u> </u>	200
Bromomethane			c	1 _	<u>_</u>		<u>_</u>	-
Chloroethane			_	1 J	_			1,900
Trichlorofluoromethane		_	c	<u> </u>	_	_	<u> </u>	1
1,1-Dichloroethene	_	_	· _	_		<u> </u>		400
Acetone	1	=======================================	_	_	1	22	10	200
lodomethane		· C	· C		<u> </u>		_	1
Carbon Disulfide	<u> </u>	3 [°]		<u>`</u>		· - C	· - C	2,700
trans-1.2-Dichloroethene		_ ;		_ 4	_ 6		- c	6
Methyl tert-butyl ether		<u> </u>	C	<u> </u>	<u> </u>	· _ (_ (-
1,1-Dichloroethane		_	C	_	C	_ ·	<u> </u>	200
Vinyl Acetate	_	<u> </u>	C	<u>_</u>	<u></u>	<u> </u>	<u> </u>	
2-Butanone	_	<u></u>	_	_	_	C	_	300
cis-1,2-Dichloroethene		: C		2 J	3	<u>ء</u> ت		1
2,2-Dichloropropane	= =	: -	: C		:		_	1
Chloroform	<u> </u>	= c	= 0	- c	= =	= C	= =	3
1,1,1-Trichloroethane	·	c (C (C (_ (= 0	= c	800
1,1-Dichloropropene	C	_		_		<u> </u>	_ ·	
Carbon Tetrachloride	· ·		_	_	_	_	_	600
1,2-Dichloroethane		_	_	c	_	_	_	100
Benzene	· c		: _		· 	_	_	60
Trichloroethene		5		o	13	ത	7	700
1,2-Dichloropropane			: ⊂	: =	: _		_	1
Dipromomenane	= <		: <	: C	: c	:	: -	1
cis_1 3-Dichloropropene	= 0	= C		= C	= =	= =	· .	1
4-Methyl-2-pentanone		C (· ·	<u> </u>	_ (= 0	= 0	1 000
Toluene				ے.	<u> </u>	c (_ (1,500
trans-1,3-Dichloropropene		_	_	_	C.	<u> </u>	c (0
1,1,2-Trichloroethane	c		_	_	C	<u> </u>	_	1
1,3-Dichloropropane	: C	, . c	· C	· c	· _		C	300
l etrachioroethene	= c	22	: C	2 J	2 _		_	1,400
2-Hexanone	_	_	C	<u> </u>	C	c	· 	1

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-01 (16-18)	SRSB-01 (18-20)	SRSB-02 (0-2)	SRSB-02 (2-4)	SRSB-02 (4-6)	SRSB-02 (6-8)	SRSB-02 (8-10)	NYSDEC TAGM
Sample Depth (ft)/Location	16-18	18-20	0-2	2-4	4-6	6-8	8-10	4046 Appendix A
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	Comparison
% Solids	98	98	96	. 85	89	93	89	Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Cilleria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dibromochloromethane	U	U	U	U	U	U	U	
1,2-Dibromoethane	U	U	U	U	l u	U -	U	
Chlorobenzene	U	U	U	U	· U	U .	U	1,700
1,1,2,2-Tetrachloroethane	U	U	· U	U	U	l υ	. U	600
Ethylbenzene	U	. U	U	U	U	U	U	5,500
Xylene (total)	U	U	. U	1 J	l u	U	Ι . υ	1,200
Styrene	U .	U	U	Ü	U	U	ن ۱۰۰۰	
Bromoform	U	U	U	U	U	U	l	
Isopropylbenzene	U	U	U U	U	U	. U	. u	
1, 1, 2, 2-Tetrachloroethene	U	U	U	1 J	U	U U	U	600
Bromobenzene	l u	U	U	U	U	υ	. U	
1, 2, 3 -Trichloropropane	U	U	U	U	U	· · · U	U	400
n-Propylbenzene	U	U	· U	· U	U .	U	l . u	
2-Chlorotoluene	U	U	Ų	U	U	U	U .	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	. U	
4-Chlorotoluene	U	U	U	U	U	· U .	l	
tert-Butylbenzene	U	U	U	U	U	U	lυ	
1,2,4-Trimethylbenzene	U	U	U	U	U	· U	lυ	
sec-Butylbenzene	U	. U	U	· U	U	U	U	
4-Isopropyltoluene	U	Ù	Ū	U	U	U	. U	
1,3-Dichlorobenzene	U	U	U	U	l u	U	lυ	1,600
1,4-Dichlorobenzene	U	U	U	1 J	U	U	l u	8,500
n-Butylbenzene	U	, U	U	U	U	U	Ū	
1,2-Dichlorobenzene	U. ·	U	U	υ ·	U U	U	U	7,900
1,2-Dibromo-3-chloropropane	U	U	U	· U	·U	U	Ū	
1,2,4-Trichlorobenzene	U	U	U	U	, .U	U	Ū	3,400
Hexachlorobutadiene	U	U	U	. · U	U	U	Ū	
Naphthalene	U	U	U	U	U	U	Ū	13,000
1,2,3-Trichlorobenzene	U	U	U	U	U	U	Ū	
Total VOCs	12	20	4	20	34	32	21	10,000

Qualifiers

U. The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	
Sample Depth	10-12	12-14	14-16	16-18	18-20	0-2	2-4	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/29/02	10/29/02	4046 Appendix A
% Solids	88	89	91	. 86	97	93	90	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	U	υ	U	U	U	U	· U	
Chloromethane	U	υ	U	U	U	U .	· U	
Vinyl Chloride	Ū	U	U	U	. U	U	U	200
Bromomethane	U	U	U	U	U	U	U	***
Chloroethane	· U	U ·	U	U	U ,	U	U	1,900
Trichlorofluoromethane	U	U	U	U	U	υ	U	
1,1-Dichloroethene	U	U	υ	U	υ	U	U	400
Acetone	. 15	U	Ū	8	Ū	· U	Ū	200
lodomethane	Ū	υ	U	U		U	U	
Carbon Disulfide	υ	υ	U	U	Ū	Ū	Ū	2,700
Methylene Chloride	2 J	4 J	5 J	4 J	4 J	2.JB	2 JB	100
trans-1,2-Dichloroethene	U.	lυ	U	Ü	U	Ü	Ü	
Methyl tert-butyl ether	U	Ū.	Ū	Ü	ľ	Ü	Ŭ	
1,1-Dichloroethane	Ū	Ū ·	Ü	Ü	ŀ	Ŭ	Ŭ	200
Vinyl Acetate	U	U	Ū	Ü	Ū	Ü	Ŭ	
2-Butanone	Ū	Ū	Ū	Ü	ľ	Ŭ	Ü	300
cis-1,2-Dichloroethene	Ū	Ū	Ū	Ū	Ü	ŭ	l ŭ	
2,2-Dichloropropane	U	U	U	Ū	Ū	Ü	ŭ	
Bromochloromethane	U	U	Ū	Ū	Ū	ŭ	Ü	
Chloroform	Ū	υ	U	· U	Ū	Ŭ	ı ü	300
1,1,1-Trichloroethane	U	υ	. U	Ū	Ū	Ü	Ü	800
1,1-Dichloropropene	U	U	U	U	ľ	ľ	Ü	
Carbon Tetrachloride	U	U	Ū	Ū	Ū	Ū	Ü	600
1,2-Dichloroethane	U	U	U	U	Ū	ĺ	Ü	100
Benzene	Ü	Ū	Ū	Ū	Ū	Ŭ	Ü	60
Trichloroethene	7	5 J	Ů	3 J	Ū	Ŭ	Ŭ	700
1,2-Dichloropropane	U	Ü	Ū	U	Ū	ľ	Ü	7.00
Dibromomethane	U	U	· U	Ū	Ū	Ū	Ŭ	
Bromodichloromethane	Ü	U	Ū	Ū	Ū	Ŭ	Ŭ	
cis-1,3-Dichloropropene	U	Ū	Ü	Ū,	Ū	Ŭ	ŭ	
4-Methyl-2-pentanone	. U	U	U	U ·	Ū	Ū,	Ŭ	1,000
Toluene	U	U	U	U	l ū	Ü	Ü	1,500
trans-1,3-Dichloropropene	. U	U	U	U	Ū	Ū	Ü	
1,1,2-Trichloroethane	Ü	Ü	Ū	Ū	Ū	Ü	ŭ	
1,3-Dichloropropane	U	U	Ū	Ü	Ū	Ū	ŭ	300
Tetrachloroethene	Ü	· U	U	2 J	Ū	ľ	ŭ	1,400
2-Hexanone	U	U	U	Ū	Ŭ	ĺ	Ü	1,400

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	NYSDEC TAGM
Sample Depth (ft)/Location	10-12	12-14	14-16	16-18	18-20	0-2	2-4	
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/29/02	10/29/02	4046 Appendix A
% Solids	88	89	91	86	97	93	90	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
								
Dibromochloromethane	U	U	U	. U	U	U	υ	
1,2-Dibromoethane	U	u	U	Ù	U	U	l ' U	
Chlorobenzene	U	U	U	. U	U	U	Ú	1,700
1,1,2,2-Tetrachloroethane	U	U	U	U	. U	U	Ū	600
Ethylbenzene	U	U	U	lυ	U	U	U	5,500
Xylene (total)	u U	U	U	l · u	U	1 J	l / Ū	1,200
Styrene	U	. u	U	U	U	U	Ū	
Bromoform	U,	U	U	U	U	U	Ū	
Isopropylbenzene	U	U ·	U	l	Ú	u	Ü	
1, 1, 2, 2-Tetrachloroethene	U	U	U	l u	l ū	Ü	l u	600
Bromobenzene	U	υ	Ū	l ū	Ū.	Ü	Ü	
1, 2, 3 -Trichloropropane	U	U	, u	l ū	Ū	Ū	Ü	400
n-Propylbenzene	U	U	Ū	lū	Ū.	Ü	Ü	
2-Chlorotoluene	U	U	U	l. Ū	Ū	Ü	Ū	
1,3,5-Trimethylbenzene	U	·υ	U	l ū	ľ	ū	Ü	
4-Chlorotoluene	U	U	U	lΰ	Ū	Ū	Ü	
tert-Butylbenzene	U	l · u	U	l u	l	Ü	. ŭ	
1,2,4-Trimethylbenzene	Ų	U	U	l u	Ū	Ü	Ü	
sec-Butylbenzene	Ù	l u u	ľυ	ĺ	Ū	Ü	Ü	
4-Isopropyltoluene	U	υ	. U	ľυ	ľ	Ū	Ü	
1,3-Dichlorobenzene	U	U	υ	ľυ	Ū	Ū	Ü	1,600
1,4-Dichlorobenzene	, U	υ	U	U	Ū	· Ü	Ü	8,500
n-Butylbenzene	U	U	. u	U	Ū	· Ü	Ü	
1,2-Dichlorobenzene	U.	υ	υ	U	Ū	ŭ	Ŭ	7,900
1,2-Dibromo-3-chloropropane	U	U	υ	. u	Ū	Ü	Ü	1
1,2,4-Trichlorobenzene	U	υ	U	υ	Ū	Ü	Ü	3,400
Hexachlorobutadiene	U	U	. · · · · · · · · · · · · · · · · · · ·	• υ	Ū	Ü	Ŭ	
Naphthalene	U	, n	U -	Ū	Ū	Ü	Ü	13,000
1,2,3-Trichlorobenzene	U	Ū	U	Ū	Ū	l. ŭ l	Ŭ	10,000
Total VOCs	24	9	5	17	4	3	2	10,000

Qualifiers
U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-03 (4-6)	SRSB-03 (6-8)	SRSB-03 (8-10)	SRSB-03 (10-12)	SRSB-03 (12-14)	SRSB-03 (14-16)	SRSB-03 (16-18)	
Sample Depth	4-6	6-8	8-10	10-12	12-14	14-16	16-18	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	91	93	86	86	89	89	91	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	ugrig	uging	ugrkg	ug/itg	L ug/ng	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	U	. u	U	U.	· U	U	U	
Chloromethane	. u	u ·	· U	U	U	l ū	l · ū	
Vinyl Chloride	U	υ	U	U	Ū	Ū	Ů	200
Bromomethane	U	ີ ບ	U	U	Ū	Ū	Ú	
Chloroethane	U	U	Ü	Ü.	l. Ū	l ŭ	Ŭ.	1,900
Trichlorofluoromethane	U	U	U	U	Ū	ľ	Ū	.,,,,,,
1,1-Dichloroethene	U	U	U	U	l ŭ	Ū	Ŭ	400
Acetone	6	10	35	14	27	l ŭ	10	200
lodomethane	U	U	U	··υ	υ	υ	ا `` u	
Carbon Disulfide	U	Ū	Ū	1 J	ľ	2 J	2 J	2,700
Methylene Chloride	2 JB	2 JB	• 4 J	2 JB	2 J	3 JB	3 J	100
trans-1,2-Dichloroethene	Ü	U .	Ū	U	U	U	Ü	
Methyl tert-butyl ether	Ū	· U	Ū	Ū	ľ	Ŭ	l ŭ :	
1,1-Dichloroethane	Ū	Ū	Ū	Ü	ľ	Ŭ	l ŭ	200
Vinyl Acetate	· u	U	Ū	Ū	l ū	Ū	l ŭ	
2-Butanone	· u u	U .	U	Ū	ľ	Ŭ	ŭ	300
cis-1,2-Dichloroethene	U	U	U	1 J	l	ľ	Ü	
2,2-Dichloropropane	U	U	U	U	l	l	Ü	
Bromochloromethane	U	υ	U	U	ľ	l ū	Ü	
Chloroform	U	U	· U	U	Ū	l ū·	Ü.	300
1,1,1-Trichloroethane	. U	U	U	U	U	Ū	Ú	800
1,1-Dichloropropene	· U	U	. U	U	U	l ū	Ŭ	
Carbon Tetrachloride	. · U	Ü	U	U.	Ū	ũ	Ŭ	600
1,2-Dichloroethane	U	U	U	· U	l u	Ū	ľ	100
Benzene	U	U	U	U .	· U	l u	Ū	60
Trichloroethene	U	U	U	U	2 J	υ	Ū	700
1,2-Dichloropropane	U	. U	U	U	ט	U	Ū	
Dibromomethane	U	U	U	U	U	U	l ū	
Bromodichloromethane	U	U	U	U	U	U	ĺů	
cis-1,3-Dichloropropene	U	. U	U	· U	U	l ū	Ū.	
4-Methyl-2-pentanone	U	U	U	U	U	Ū	Ü	1,000
Toluene	Ü	U	U	2 J	Ū	Ū	Ŭ	1,500
trans-1,3-Dichloropropene	, U	U	U	U	U	Ū	Ü	
1,1,2-Trichloroethane	U	·U	· U	U	ĺ	ľ	. Ŭ	
1,3-Dichloropropane	. U	U	Ū	Ū	Ū	ľ	Ŭ	300
Tetrachloroethene	U	U	U	Ū	Ū	Ū	Ŭ	1,400
2-Hexanone	U	υ	Ū	Ū	Ū	ŭ	Ŭ	1,400

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-03 (4-6)	SRSB-03 (6-8)	SRSB-03 (8-10)	SRSB-03 (10-12)	SRSB-03 (12-14)	SRSB-03 (14-16)	SRSB-03 (16-18)	NYSDEC TAGM
Sample Depth (ft)/Location	4-6	6-8	8-10	10-12	12-14	14-16	16-18	4046 Appendix A
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	Comparison
% Solids	91	93	86	86	89	89	91	Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Cilleria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
5:								1-
Dibromochloromethane	U	U	u	U	U	U	U	
1,2-Dibromoethane	U	U	U	U	U	U	0	·
Chlorobenzene	U	U	U	U	U	U	l U	1,700
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	Ų	600
Ethylbenzene	Ų	U	U.	U	U	U	U	5,500
Xylene (total)	U	1 J	U	U	U	U	j U	1,200
Styrene	Ų	U	U	U	U	U	U U	
Bromoform	Ú	, U	U	U	U	U	J. U	
Isopropyibenzene	U	U	U	U	U	U ,	J U	·
1, 1, 2, 2-Tetrachloroethene	U	U	U .	U	U	U	l . U	600
Bromobenzene	Ų	U	U	U	U	U. U	υ	
1, 2, 3 -Trichloropropane	U	U	U	. U	U	U	U	400
n-Propylbenzene	U	U	U ·	U	U	l u	U -	
2-Chlorotoluene	U	U	U	l u	Jυ	l u	U	
1,3,5-Trimethylbenzene	U	· U	U	l U	U	U	2 J	
4-Chlorotoluene	· U	U U	U -	U	U	l · U	· U	
tert-Butylbenzene	U'	Ü	U	ľ	U	l u	U	
1,2,4-Trimethylbenzene	Ų	U	· U	U,	· U	U	2 J	
sec-Butylbenzene	U	U	. · · · · U	lυ	U	l u	U	
4-Isopropyltoluene	U	U	· U	l U	U	ĺυ	l u	
1,3-Dichlorobenzene	U	· U	U	U .	U	lυ	Ìυ	1,600
1,4-Dichlorobenzene	U .	U	U	U.	U	l. U	Ū	8,500
n-Butylbenzene	U	U	U	l u	U	Ū	Ŭ	
1,2-Dichlorobenzene	U	U	. U	U	U	l u	l . ū	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	l ū	l ŭ	
1,2,4-Trichlorobenzene	Ū	Ū	Ū	Ū	Ū	Ū	ľ	3,400
Hexachlorobutadiene	U	Ū	Ū	Ū	Ū	Ū	l ŭ	
Naphthalene	U	Ū	U	Ū	ľű	ĺ	Ĭ	13,000
1,2,3-Trichlorobenzene	Ü	Ū	Ü	Ü	Ū	l ŭ	Ŭ	10,000
Total VOCs	8	13	39	20	31	5	19	10,000

Qualifiers
U: The compound was analyzed for, but not detected.

J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

2-Hexanone	Tetrachloroethene	1,3-Dichloropropane	1,1,2-Trichloroethane	trans-1,3-Dichloropropene	loluene	4-Methyl-2-pentanone	cis- l'a-Dictilotoproperie	cis 13 Dichloropropens	Dromodichloromothono	Dibromomethane	1 2-Dichloropropane	Trichloroethene	Benzene	1,2-Dichloroethane	Carbon Tetrachloride	1, 1-Dichloropropene	1,1,1-Trichloroethane	Chloroform	Bromochloromethane	2,2-Dichloropropane	cis-1,2-Dichloroethene	2-Butanone	Vinyi Acetate	1,1-Dichloroethane	Methyl tert-butyl ether	trans-1,2-Dichloroethene	Methylene Chloride	Carbon Disulfide	lodomethane	Acetone	1, 1-Dichloroethene	Trichlorofluoromethane	Chloroethane	Bromomethane	Vinyl Chloride	Chloromethane	Dichlorodifluoromethane	Units	Dilution Factor	% Solids	Sampling Date	Sample Depth
U	۵							= 0	= 0	= 0		13															4 JB	2 J		·								ug/kg	1.0	82	10/29/02	18-20
U					: =		: c	. = c	= 0	= (_	_		_				: =	: C	:			2 JB			9	_	_	C	c				ug/kg	1.0	89	10/29/02	0-2
U				:	2	, _		= 0	= 0	= 0				_			_			_	:	25		: =	_		2 JB	3 J	_	110	C	_	c	_	_	C	_	ug/kg	1.0	89	10/31/02	2-4
_	_	_			:			= c	= c	= 0	= .		_	_	_		<u>1</u>	_	_			00				_	2 JB	2J	_	35		_	_	_	_	_	_	ug/kg	1.0	92	10/31/02	4-6
_	_	_	_		· C	:		= c	. c	= c	= 1		_	_	C	_	_	_	_	_	_	_	_	:	_	_	2 JB	_	_	_	_	_	_		_	_	_	ug/kg	1.0	91	10/31/02	6-8
_		_	_	_	_	_	_	: c	: c	= 0	= (_	_	<u> </u>	C	_	<u> </u>	_	_		_	_	_		2 JB	_			_	c	<u> </u>			_	C	ug/kg	1.0	88	10/31/02	8-10
	_								: c	- -	= (= (· C			2 JB						C	· .		_		ug/kg	1.0	88	10/31/02	10-12
1	1.400	300	ļ		1,500	1,000	1.7	;	1	ı		700	8	100	600	1	800	300	1	-	1	300	1	200			100	2,700	1	200	400	1	1,900	ľ	200	1	1	ug/kg		Criteria	Comparison	NYSDEC TAGM

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Total VOCs	1,2,3-111011010001120110	Naphthalene	mexacilloroputadiene	Lovachlorobutadiona	1 2 4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	n-Butylbenzene		1 A-Dichlorohenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	sec-Butylbenzene	1, 2, 4- I rimethylbenzene	101 Timelizerie	to a Picture de la constante	4-Chlorotolijene	1,3,5-Trimethylbenzene	2-Chlorotoluene	n-Propylbenzene	1, 2, 3 -Trichloropropane	Bromobenzene	1, 1, 2, 2-1 etrachloroethene	Isopropylberizene	bouldout	Styrene	Aylene (total)	Cultividence (t-t-l)	E+by/bonzono	1 1 2 2 Tetrachioroothor	Chlorobenzene	1.2-Dibromoethane	Dibromochloromethane		Units	Dilution Factor	% Solids	Sampling Date	Sample Depth (ft)/Location	Sample ID
		-				pane																	ene						- त	<u> </u>									<u>s</u>	
22	C		: c	= 0		_	_	_	: 0	= '	_	_	_			- 0	= 1	_	_		_	_	:			= c	: c	: c	- c	= 0	= (=	_		in/ka	1.0	82	10/29/02	18-20	SRSB-03 (18-20)
11	c	= =	: c	= 0	= '		_		: c	Ξ,	-	_	· ·		· ·		= •	_		_	<u> </u>	_			= c	= =	: c	: c	= c	= 0	= 0	=	C	9	lla/ka	1.0	88	10/29/02	0-2	SRSB-04 (0-2)
155	C	= C	: c	= 0	_	C	<u></u>		, c	<u>،</u>	C	· -	_	· c	: c	= 0	= 1	_	_	C				: ़⊂	: c	= =	: c	: c	<u> </u>	= 0	= 0	=	<u></u>	4	lla/ka	10	89	10/31/02	2-4	SRSB-04 (2-4)
72		<u>۔</u> د	· c	= 0	= '	c	15	_		٠ 	C		_			= 0	= •	_	_	_	_			:	: c	= =	:	: c	: c	= 0	= 0		<u> </u>	9	IIa/ka	10	92	10/31/02	4-6	SRSB-04 (4-6)
2		= =	: <	: c	= (C	_	_	: c	= (=	C	C	_	: c	: c	= •	_	<u> </u>		_	· .	: _	: =	: c	= C	: =	: c	- c	· .	= 0	=	<u></u>	200	in/ka	1.0	91	10/31/02	6 -8	SRSB-04 (6-8)
2	c	= c	_	: c	= (<u>_</u>	_	_	: <	Ξ (=	<u>_</u>	_	_	: c	: c	= (· _		<u>_</u>		_	· C	: C		= =	: ⊂		: c	= .c	= 0	=	C	ag/Kg	IIa/ka	10	88	10/31/02	8-10	SRSB-04 (8-10)
2		: C	_		= (=				Ξ (=				: c	: c	= (=				_				= =	: C				= 0	=		S. K.	10/60	10	88	10/31/02	10-12	SRSB-04 (10-12)
10,000		13,000	!	3,400	3		7,900	-	8,500		1 600	!	1	!	1	1]	ı	400	1	600	;	1	1	1,200	5,500	500	,,,	1 700		-	GW.	in alba	Criteria	Comparison	4046 Appendix A	NYSDEC TAGM	

- Qualifiers

 U: The compound was analyzed for, but not detected.

 U: Data indicates the presence of a compound that meets the identification oriteria. The result is less than the quantitation limit, but greater than zero.
- B: Constituent detected in the method blank as well as the sample.

Notes
---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

Sample ID	SRSB-04 (12-14)	SRSB-04 (14-16)	SRSB-04 (16-18)	SRSB-04 (18-20)	SRSB-05 (0-2)	SRSB-05 (2-4)	SRSB-05 (4-6)	r
Sample Depth	12-14	14-16	16-18	18-20	0-2	2.4	4-6	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	82	83	93	95	92	95	89	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1,0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	ggrig	ugritg	ugrig	ug/kg	ugrig	ugrig	ug/ng	ug/kg
Dichlorodifluoromethane	U	U	. U	U	. U	U	Ú	
Chloromethane	Ü	Ü	Ū	Ú	l. Ü	l ŭ	ľ	
Vinyl Chloride	Ū	Ū	Ū	Ú	Ú	ŭ	l ŭ	200
Bromomethane	Ū	ŭ	Ū	Ŭ	Ŭ	ľ	Ü	
Chloroethane	Ū	l Ü	Ū	Ü	Ū		lŭ	1,900
Trichlorofluoromethane	l u⊢	Ū	ů	Ū	l. • ū	Ū	l ŭ	
1,1-Dichloroethene	ū	2 J	l ŭ	Ü	Ü	ŭ.	Ü	400
Acetone	ľ	33	13	10	17	12	21	200
lodomethane	l ū	U	U	ľ	l "u] · · · · · · · · · · · · · · · · · · ·	Ū	
Carbon Disulfide	l. ū	2 J	Ū.	Ū	U	Ū	Ū	2,700
Methylene Chloride	3 JB	3 JB	3 J	- 3 J	5.J	2 J	3 J	100
trans-1,2-Dichloroethene	U	U	l u	U	Ū.	. u	ľ	
Methyl tert-butyl ether	U	. ن ا	Ū	Ū	Ū	ľ	Ŭ	
1.1-Dichloroethane	l u	ľ	l ū	Ū	l ŭ	l ŭ	l ü	200
Vinyl Acetate	Ū	Ū	l ū	Ū	Ū	Ū	l ŭ	
2-Butanone	l u	Ū	l ū	Ū	Ū	liū	Ŭ	300
cis-1,2-Dichloroethene	1 J	6	ĺ	U	ũ	lů	ľ	
2,2-Dichloropropane	U	Ū	Ū	U	Ū	Ů	Ŭ	
Bromochloromethane	U	U	U	U	Ū	Ü	Ŭ	
Chloroform	U	Ū	l ū	l. ū	ū	Ū	ľ	300
1,1,1-Trichloroethane	Ü	· U	U	U 1	Ū	Ū	l ŭ	800
1,1-Dichloropropene	U	U	l U	U	U	Ū	l . ŭ	
Carbon Tetrachloride) · U		U	U	U	· U	Ū	600
1,2-Dichloroethane	U	· U	U	U	U .	υ	ľ	100
Benzene	U	U	U	U	U	υ	ľ	60
Trichloroethene	8	140	16	U	U	υ	l u	700
1,2-Dichloropropane	. U	U	U	U	U.	U	Ų	
Dibromomethane	U	U	U	U	U	U ·	U	
Bromodichloromethane	U	U	U	U	U	U	Ū	ļ. · ·
cis-1,3-Dichloropropene	U	Ú	U	U	U	U	U	
4-Methyl-2-pentanone	' u	Ü	U	U .	U	U	Ū	1,000
Toluene	U	U	٠ ن	U	U	U	Ū	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	
1,1,2-Trichloroethane	U	U	· U	U	U	U	Ū	·
1,3-Dichloropropane	U .	U	U	l i u	U	Ū	Ū	300
Tetrachioroethene	2 J	38	6	U	Į. U	u u	U	1,400
2-Hexanone	U	υ	U	U U	ľυ	. U	ū	

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-04 (12-14)	SRSB-04 (14-16)	SRSB-04 (16-18)	SRSB-04 (18-20)	SRSB-05 (0-2)	SRSB-05 (2-4)	SRSB-05 (4-6)	NYSDEC TAGM
Sample Depth (ft)/Location	12-14	14-16	16-18	18-20	0-2	2-4	4-6	
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	82	83	93	95	92	95	89	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dibromochloromethane	U	U·-	U	U	. U	U	U	
1,2-Dibromoethane	U	U	l U	· U	U	U	U	
Chlorobenzene	U	U	· U	U ·	Ü	U	U	1,700
1,1,2,2-Tetrachloroethane	U -	U	U	. U	U	U	U	600
Ethylbenzene	U	U	U	U	U	U	U	5,500
Xylene (total)	U U	U	· U	U	U	U	U	1,200
Styrene	l L	U	U	U	U	Ü.	U	
Bromoform	U	U	l U	.U	U	U	U	
Isopropylbenzene	U	· U	U	U	U	·U	U	i i
1, 1, 2, 2-Tetrachloroethene	U .	, U	U	U	U	U	υ	600
Bromobenzene	U	U	U	U .	U	U	U	
1, 2, 3 -Trichloropropane	U	Ū	U	U ·	U	U	υ	400
n-Propylbenzene	U	·U .	·υ	U	U	Ū	Ü	
2-Chlorotoluene	U	U	U	U	U	Ü	Ü	
1,3,5-Trimethylbenzene	J	υ .	U	U	U	U	Ū	
4-Chiorotoluene	U	U	lυ	U	U	U	Ū.	
tert-Butylbenzene	U	U	lυ	U	U	. Ū	Ū	
1,2,4-Trimethylbenzene	· υ	υ	ľ	U	U	Ū	Ü	
sec-Butylbenzene	Ú	υ	lυ	U	U	U	Ü	
4-Isopropyltoluene	U	U	lυ	J	U	Ū	Ŭ.	
1,3-Dichlorobenzene	U	U .	lυ	U	U	U	Ū	1,600
1,4-Dichlorobenzene	2 J	2 J	U	U	ľ	Ū	ŭ	8,500
n-Butylbenzene	ľ	U	U	U	Ū	Ū	Ü	0,000
1,2-Dichlorobenzene	10	9	U	U	Ū	Ū	ŭ -	7,900
1,2-Dibromo-3-chloropropane	U	U	Ū	Ū	Ū	Ū	ű	7,550
1,2,4-Trichlorobenzene	υ	Ū	ľ	ľ	Ŭ	Ü	l u .	3,400
Hexachlorobutadiene	Ū	l ū	Ū	ľ	Ü	ŭ	l ii	5,400
Naphthalene	· Ū	Ŭ	3 J	ľ	Ŭ	ŭ	l ii	13,000
1,2,3-Trichlorobenzene	U	Ū	U	Ū	Ū	Ŭ	ŭ	10,000
Total VOCs	26	235	41	13	22	14	24	10,000

<u>Qualifier</u>

U. The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

Sample ID	SRSB-05 (6-8)	SRSB-05 (8-10)	SRSB-05 (12-14)	SRSB-05 (14-16)	SRSB-05 (16-18)	SRSB-05 (18-20)	SRSB-05 (25-27)	NYSDEC TAGM
Sample Depth	6-8	8-10	12-14	14-16	16-18	18-20	25-27	
Sampling Date	10/28/02	10/28/02	10/28/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	90	86	85	72	97	96	86	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	U	U	U	· U	U	, U	U	
Chloromethane	Ū	U	U	U	U	U	. U	
Vinyl Chloride	U	U	U	U	U	2 J	Ų	200
Bromomethane	U	U	U	U	U	U	Ú	
Chloroethane	U .	U	U	U	U	U	U	1,900
Trichlorofluoromethane	· U	U	U	U	U	· U	U	
1,1-Dichloroethene	U	U	U	U	U	U	U	400
Acetone	11	24	23	U	13	62	· U	200
lodomethane	U	υ	U	U	Ü	U	U	
Carbon Disulfide	U	U	U	U	U	2 J	U	2,700
Methylene Chloride	6	6 ·	6	2 J	3 J.	. 3 J	2 J	100
trans-1,2-Dichloroethene	U	U	U	U	U	· U	U	
Methyl tert-butyl ether	U	U '	U -	U	U	U	U	
1,1-Dichloroethane	Ü	U	U	Ū	U	U	U	200
Vinyl Acetate	U	U	U	U	U	U	U	
2-Butanone	U	U	U	U	U	14	U	300
cis-1,2-Dichloroethene	U	U	U	U	U	9	U	
2,2-Dichloropropane	U	U	U	U	U	U	U	
Bromochloromethane	· U	U	U ·	U	U	U	U	
Chloroform	U	U	U	U	· U	U	U	300
1,1,1-Trichloroethane	U .	U	U.	U	U	U	U	800
1,1-Dichloropropene	U	υ	Į "U	U	U	. U	U	
Carbon Tetrachloride	U.	U	U	U	.U	U	U	600
1,2-Dichloroethane	U	U	· U	U	U	U	U	100
Benzene	Ū	U	U	U	U	U	U	60
Trichloroethene	U	2 J	U ·	u U	U	2 J	U	700
1,2-Dichloropropane	U	. U	U	U	U	U	U	
Dibromomethane	U	U	U	U	U	U	Ū	
Bromodichloromethane	U	· U	U .	· U	U	Ū	Ü	
cis-1,3-Dichloropropene	U	u U	U	∪	U	U	Ü	
4-Methyl-2-pentanone	U ·	U	U	; U	U	Ū	Ü	1,000
Toluene	U	U	U	U	· U	3 J	Ü	1,500
trans-1,3-Dichloropropene	U	U ·	U	U	U	υ	ŭ	
1,1,2-Trichloroethane	U	U	U	U	Ū	Ū	ű	
1,3-Dichloropropane	Ū	Ü.	Ü	Ů	ľ	Ŭ	Ü	300
Tetrachioroethene	U	U	Ū	Ü	ľ	1 J	Ü	1,400
2-Hexanone	Ū	Ü	Ü	l ü	l	l ii i	Ü	1,400

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-05 (6-8)	SRSB-05 (8-10)	SRSB-05 (12-14)	SRSB-05 (14-16)	SRSB-05 (16-18)	SRSB-05 (18-20)	SRSB-05 (25-27)	NYSDEC TAGM
Sample Depth (ft)/Location	6-8	8-10	12-14	14-16	16-18	18-20	25-27	
Sampling Date	10/28/02	10/28/02	10/28/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	90	86	85	72	97	96	86	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
						H		
Dibromochloromethane	U	U ·	U	. υ	U	. u	l υ	
1,2-Dibromoethane	U	υ	U	U	U	u l	Ū	·
Chlorobenzene	U	U	U	U	Ū	Ū	Ū	1,700
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	600
Ethylbenzene	U	Ü	U	U	U	Ū.	U	5,500
Xylene (total)	U	Ų	U	· U	U	Ū	Ū	1,200
Styrene	U	U	U	U	U	U	Ū	
Bromoform	Ü	U	U	Ū	U	U.	Ú -	
Isopropylbenzene	U	U.	· U	U	U	U	U	· · · ·
1, 1, 2, 2-Tetrachloroethene	U	Ü	U	Ū	U	U	Ū	600
Bromobenzene	U	U	U	U	U	U	Ú	
1, 2, 3 -Trichloropropane	U	U	. U	U	U	U	U	400
n-Propylbenzene	· · U	Ú	U	U	U	Ū	Ū	
2-Chlorotoluene	U	U	U	U	U	U . · ·	Ū	
1,3,5-Trimethylbenzene	U	U	U	U	U ·	U	Ū	
4-Chlorotoluene	U	· U	U	U	Ü	U	Ū	
tert-Butylbenzene	U	U	. U	U.	U	U .	Ū	
1,2,4-Trimethylbenzene	U	· U	U	U	U	U	U .	
sec-Butylbenzene	U	U	U	U	U		Ū	
4-Isopropyltoluene	, U	U	U	U	U	U	Ū	
1,3-Dichlorobenzene	U	U	U	U	Ū	U	U	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	8,500
n-Butylbenzene	U	U	U	U	U	U	U	
1,2-Dichlorobenzene	U	U	U	U -	U	U	. U	7,900
1,2-Dibromo-3-chloropropane	U	U ·	· U	U	U	Ü	U	
1,2,4-Trichlorobenzene	U	U	U	U	U	. U	U	3,400
Hexachlorobutadiene	U	U	, U	Ú	U	U	U	
Naphthalene	U	U	U	U	U	U	Ū	13,000
1,2,3-Trichlorobenzene	U	U	· U	U	U	U	Ü	
Total VOCs	17	32	29	2	16	98	2	10,000

Qualifiers

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

Sample ID Sample Depth Sampling Date	SRSB-05 (30-32) 30-32 11/1/02	SRSB-05 (35-37) 35-37 11/1/02	SRSB-05 (40-42) 40-42 11/1/02					NYSDEC TAGM 4046 Appendix A
% Solids	84	85	85					Comparison
Dilution Factor	1.0	1.0	1.0					Criteria
Units	ug/kg	ug/kg	ug/kg					ug/kg
Dichlorodifluoromethane	U	U	U					
Chloromethane	ľ	Ü	Ü					
Vinyl Chloride	Ü	Ü	Ü		,			 200
Bromomethane	Ü	Ü	, Ü					
Chloroethane	Ü	Ü	Ü	·				 1,900
Trichlorofluoromethane	Ü	. 0	Ü					
1.1-Dichloroethene	Ü	Ü	Ü					400
Acetone	14	7	7		-			200
lodomethane	1 ⁴ U	, u	΄υ		i ·		* 1	
Carbon Disulfide	Ü	Ŭ	Ŭ					2,700
Methylene Chloride	4 J	4 J	4 J					100
trans-1,2-Dichloroethene	4 3 U	U	l tu					
Methyl tert-butyl ether	ľ	Ü	Ü					
1,1-Dichloroethane	Ü	Ü	Ü					
Vinyl Acetate	ľ	Ü	ľ					200
2-Butanone	l Ü	Ü	Ü					
cis-1,2-Dichloroethene	U	· U	. U					300
2,2-Dichloropropane	U	U	Ü	•		•	1	
Bromochloromethane	l U	Ü	U					
Chloroform	Ü	Ü	_					
1,1,1-Trichloroethane		_	U	· ·			· ·	300
	Ü	U	U					800
1,1-Dichloropropene	U		U					
Carbon Tetrachloride	U	U	U				14.	600
1,2-Dichloroethane	U	U	U					100
Benzene	U	U	U					60
Trichloroethene	U	U	U	İ				700
1,2-Dichloropropane	U	U	U					
Dibromomethane	U	U	U					
Bromodichloromethane	U	U	U					
cis-1,3-Dichloropropene	U	U	U					
4-Methyl-2-pentanone	U	U	U U					1,000
Toluene	U	U	U	44				1,500
trans-1,3-Dichloropropene	Ü	· U	Ū					
1,1,2-Trichloroethane	U	U	U ·					
1,3-Dichloropropane	U	U	U		1	1		300
Tetrachloroethene	U	U	U					1,400
2-Hexanone	U	U	U					

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSB-05 (30-32)	SRSB-05 (35-37)	SRSB-05 (40-42)				NYSDEC TAGM
Sample Depth (ft)/Location	30-32	35-37	40-42	-			4046 Appendix A
Sampling Date	11/1/02	11/1/02	11/1/02				
% Solids	84	85	85		·		Comparison Criteria
Dilution Factor	1.0	1.0	1.0				Ciliena
Units	ug/kg	ug/kg	ug/kg			·	ug/kg
Dibromochloromethane	U	U	U				
1,2-Dibromoethane	U	U	U			1	
Chlorobenzene	U	U	U				1,700
1,1,2,2-Tetrachloroethane	U	U	U			4.5	600
Ethylbenzene	U	U	Ü				5,500
Xylene (total)	U	U	U				1,200
Styrene	U	U .	U				
Bromoform	U	U	U				
Isopropylbenzene	U	U	U				
1, 1, 2, 2-Tetrachloroethene	U	U	U				600
Bromobenzene	U	U	U	•			·
1, 2, 3 -Trichloropropane	U	U	l U				400
n-Propylbenzene	U	U	U			!	
2-Chlorotoluene	U	U	U				
1,3,5-Trimethylbenzene	U	U	U				
4-Chlorotoluene	U	U ·	U				
tert-Butylbenzene	U	U	ĺυ				
1,2,4-Trimethylbenzene	U	U	Ι. υ			1	
sec-Butylbenzene	U	. U	Ū				
4-Isopropyltoluene	U	U	l u				
1,3-Dichlorobenzene	U.	U	l ú				1,600
1.4-Dichlorobenzene	Ū	l ū	l ū				8,500
n-Butylbenzene	Ū	Ů	l ū				
1,2-Dichlorobenzene	Ū	Ū	l ū				7,900
1,2-Dibromo-3-chloropropane	Ū	Ū	Ū				7,500
1.2.4-Trichlorobenzene	Ū	Ū	Ū				3,400
Hexachlorobutadiene	Ü	Ü	Ū	* .		·	3,400
Naphthalene	Ü	Ŭ	ľ			1	13,000
1,2,3-Trichlorobenzene	. Ŭ	Ŭ	ľ				13,000
Total VOCs	. 18	11	11			2.5	10,000

QualifiersU: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

B: Constituent detected in the method blank as well as the sample.

<u>Notes</u>

TABLE 1B

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Dibenzofuran	4-Nitrophenol	2,4-Dinitrophenol	Acenaphthene	3-Nitroaniline	2,6-Dinitrotoluene	Acenaphthylene	Dimethylphthalate	2-Nitroanline	z-Cillororiaprillaierre	C, 4, 0-11 CHO OPTICHO	2 4 5 Trichlorophenol	2.4.6-Trichlorophenol	Hexachlorocyclopentadiene	2-Methylnaphthalene	4-Chloro-3-methylphenol	Hexachlorobutadiene	bis(2-Chloroethoxy)methane	4-Chloroaniline	Naphthalene	1,2,4-i richlorobenzene	z,4-Uchiorophenoi	2,4-Dimetnylphenol	z-Nitroprienol	2 Pittonbone	Millocalizatio	Nitrohenzene	Heyachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	2,2'-oxybis(1-Chloropropane)	2-Methylphenol	1,2-Dichlorobenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	2-Chlorophenol	bis(2-Chloroethyl)ether	Phenol	-	Units	Dilution Factor	% Solids	Sampling Date	Sample Depth	Sample ID
40 J			98 J	_	_		: C		: C		= (<u> </u>			·		_				: c			- c	= 0	= 0	= (ug/kg	1.0	95	10/28/02	0-2	SRSB-01 (0-2)
100 J	_	_	240 J	_	_	<u></u>			: c	- 0	= 0		_	53 J	_	_		_	L 88			: ⊂		= c	- c	= 0	= (_	_	_		_	_		_	_		ug/kg	1.0	89	10/28/02	4-6	SRSB-01 (4-6)
	_	_			·	_		: =		= c	= (=	<u> </u>	_	_		_		· c	: ,⊂	: c		· c	= c	= 0	= 0	= (<u>_</u>	· _	· _	<u>_</u>	<u>_</u>	_	_	_	_			ug/kg	1.0	89	10/28/02	6-8	SRSB-01 (6-8)
U	_	_	· C		_	_	_	: _	: =	: c	= 0	=	<u> </u>	_	_	_	_	_		· C	: ⊂	: C	: c	: c	= c	= 0	= 0		_	<u></u>	· C	· _	_	_	_				ug/kg	1.0	89	10/28/02	8-10	SRSB-01 (8-10)
U	_	_		<u> </u>	_		_	: C		: c	= 0	= -	-	<u>_</u>	<u>_</u>	<u></u>	_			· C	: C		: ⊂	: c	: c	= 0	= •		c	<u> </u>	· 	_	_ 		_	_			ug/kg	1.0	89	10/28/02	10-12	SRSB-01 (10-12)
U	_	_	_	_	_	<u>_</u>	_	_	· c		= c	= •		C	_	_	_	_	_	_	C		: C		: c	= 0	-	_	C		_	_	_	<u>_</u>		_	_		ug/kg	1.0	90	10/28/02	12-14	SRSB-01 (12-14)
U		_	_	_	_	_	_		_	: c	= 0	= •			<u> </u>					_	_	:			- c	_ c	= 0	= '			c		c	_	_	C	_		ug/kg	1.0	84	10/28/02		SRSB-01 (14-16)
6,200	100	1	50,000	500	1,000	41,000	2,000	430	1	100	3 1			36.400	240	1.	. i	220	13,000	1	400	1	330	1	200	3 1	1	1 ;	900	1	100	1	i	I	800	ì	30		ug/kg	CIIGIA	Criteria	Comparison	4046 Appendix A	NOTO TAOL

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

_											_	_						_																	_	
Total SVOCs	Total PAHs	Total Carcinogenic PAHs	Benzo(g,h,i)perylene	Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Benzo(a)pyrene	Benzo(k)fluoranthene	Benzo(b)fluoranthene	Di-n-octyl phthalate	bis(2-Ethylhexyl)phthalate	Chrysene	Benzo(a)anthracene	3,3'-Dichlorobenzidine	Butylbenzylphthalate	Pyrene	Fluoranthene	Di-n-butylphthalate	Carbazole	Anthracene	Phenanthrene	Pentachlorophenol	Hexachlorobenzene	4-Bromophenyl-phenylether	N-Nitrosodiphenylamine	4,6-Dinitro-2-methylphenol	4-Nitroaniline	Fluorene	4-Chlorophenyl-phenylether	Diethylphthalate	2,4-Dinitrotoluene	Units	Dilution Factor	% Solids	Sampling Date	Sample Depth (ft)/Location	Sample ID
7,193	6,613	3,344	290 J	94 J	310 J	560	380	860	U	370	640	500	c	110 J	1,000	1,000		100 J	130 J	640		· _	· C	<u>_</u>	_		71 J			· ·	ug/kg	1.0	95	10/28/02	0-2	SRSB-01 (0-2)
12,194	10,801	4,990	370	130 J	400	870	540	1,200		1,100	930	920	U	63 J	1,600	1,500	_	230 J	380	1,300				_	_	_	180 J				ug/kg	1.0	89	10/28/02	4-6	SRSB-01 (4-6)
55	0	0				· C	_	_		r 55	C	_				_										_	_	_	_	C	ug/kg	1.0	89	10/28/02	6-8	SRSB-01 (6-8)
280	0	0	C	_		· C		_	_	280 J			_			_		_	_		_	_	_		_				_	. ·	ug/kg	1.0	89	10/28/02	8-10	SRSB-01 (8-10)
53	0	0	C	_	_					53 J		· ·	_			_	· C	_												· C	ug/kg	1.0	89	10/28/02	10-12	SRSB-01 (10-12)
967	37	0		_	_				_	930	_				37 J	_					 _					 					ug/kg	1.0	90	10/28/02	12-14	SRSB-01 (12-14)
620	0	0	C	C					_	620												_									ug/kg	1.0	. 84	10/28/02	14-16	SRSB-01 (14-16)
500,000	100,000	10,000	50,000	14	3,200	61	224	224	50,000	50,000	400	224	į.	50,000	50,000	50,000	8,100	1	50,000	50,000	1,000	410	1	i	1		50,000	1	7,100	1	ug/kg	Cilena	Companison	4046 Appendix A	NYSDEC TAGM	

Qualifiers

U. The compound was analyzed for, but not detected

J. Data indicates the presence of a compound that meets the
identification criteria. The result is less than the quantitation limit but
greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a
secondary dilution factor.

: Result exceeds Comparison Value. ∴ Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Sample ID	SRSB-01 (16-18)	SRSB-01 (18-20)	SRSB-02 (0-2)	SRSB-02 (2-4)	SRSB-02 (4-6)	SRSB-02 (6-8)	SRSB-02 (8-10)	
Sample Depth	16-18	18-20	0-2	2-4	4-6	6-8	8-10	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	98	98	96	85	89	93	89	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	49/13		- Jane	agrig	dgrig	ugritg	ug/kg	l ug/kg
Phenol	U	U U	U	U	U .	U	U -	30
bis(2-Chloroethyl)ether	Ū	Ū	ŭ	Ŭ	Ü	Ü	Ŭ	
2-Chlorophenol	Ŭ	ľ	ŭ	Ŭ	l ŭ.	Ü	l ü	800
1,3-Dichlorobenzene	Ū	ľ	Ū	Ū	l บ	υ	Ĭ	
1.4-Dichlorobenzene	Ū.	Ŭ	Ü	Ŭ	Ū	Ü	lŭ	
1,2-Dichlorobenzene	l ü	Ŭ	Ü	Ü	ŭ	Ŭ	l ŭ	
2-Methylphenol	l ū.	ľ	Ü	Ü	Ū	Ū	ŭ	100
2,2'-oxybis(1-Chloropropane)	l ŭ.	Ŭ	Ŭ	Ü	Ŭ	Ü	Ü	
4-Methylphenol	l ŭ	l ŭ .	Ŭ -	Ū	Ū	Ü	l ii ŭ	900
N-Nitroso-di-n-propylamine	ĺ	Ū	Ū	Ū	Ů	350 J	Ü	
Hexachloroethane	U	U ·	Ū	Ū	Ü	U	ľű	
Nitrobenzene	U	Ū	Ü	Ū	Ŭ ·	Ŭ	Ĭ	200
Isophorone	U	U .	Ū	Ū	U	Ū	Ĭ	
2-Nitrophenol	U	Ü	Ū	Ū	Ü	Ū	ŭ	330
2,4-Dimethylphenol	U	ľ u	U	U	Ū	ĺ	ŭ	
2,4-Dichlorophenol	U	U	U	U	Ū	Ū	Ü	400
1,2,4-Trichlorobenzene	l . u	U	U	U	Ū	Ü	Ŭ	
Naphthalene	U	U	. U	U	U	U	Ü	13,000
4-Chloroaniline	U ·	U	· U	U	U	U	Ū	220
bis(2-Chloroethoxy)methane	U	U .	U	· U	, U	U	U	
Hexachlorobutadiene	U	U	U	U	U	U	U	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	240
2-Methylnaphthalene	U	U	U	U	U	U	Ū	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	·U	
2,4,6-Trichlorophenol	U	U	U	. υ	U	· U	U	
2,4,5-Trichlorophenol	U	. υ	U	U	U	U	U	100
2-Chloronaphthalene	U	· U	U	U	U	U	· U	
2-Nitroaniline	U	U	U	U	U	U	U	430
Dimethylphthalate	U	U	U	U .	· U	U	U	2,000
Acenaphthylene	U	U	. U	U	U	U	υ	41,000
2,6-Dinitrotoluene	U	U	ı U	U	υ	490	υ	1,000
3-Nitroaniline	. U	U	U	U	υ	U	U	500
Acenaphthene	U	. U	. U	U	υ .	U	U ·	50,000
2,4-Dinitrophenol	υ	U	U	U	U	· U	U	
4-Nitrophenol	υ	U	· U		U	U	Ü	100
Dibenzofuran	U	Ų	U	U	υ	U	U	6,200

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

	1 3/3				7000	47	Total SVOCs
1		0	0	0	n	0	Total PAHs
	0	0	0	0	0	0	Total Carcinogenic PAHs
	_	<u> </u>	U		U	U	Benzo(g,h,i)perylene
		_	_	· -	_	_	Dibenzo(a,h)anthracene
	u	_	_	_		_	Indeno(1,2,3-cd)pyrene
	_		_	_		: C	Benzo(a)pyrene
		_	_	C	_		Benzo(k)fluoranthene
		_		C		_	Benzo(b)fluoranthene
- "			· C	_		_	Di-n-octyl phthalate
	_	_			56 J	47 J	bis(2-Ethylhexyl)phthalate
	U	_	· C			U	Chrysene
		_	C	C	_		Benzo(a)anthracene
		c	<u> </u>	c		C	3,3'-Dichlorobenzidine
_			_			Ç	Butylbenzylphthalate
	: _	_	_			_	Pyrene
_		<u> </u>				_	Fluoranthene
		_	_	C	_		Di-n-butylphthalate
		_		·.	_	_	Carbazole
			_	_		_	Anthracene
		C .			_	_	Phenanthrene
-		_	_	C		_	Pentachlorophenol
		C	_	_		_	Hexachlorobenzene
	53 J	_	<u> </u>		· 	_	4-Bromophenyl-phenylether
_		C			<u> </u>		N-Nitrosodiphenylamine
		_	_				4,6-Dinitro-2-methylphenol
		_	C .			_	4-Nitroaniline
		_	_			_	Fluorene
		_	_				4-Chlorophenyl-phenylether
		_	_	_	_		Diethylphthalate
	450	_	_	_	C	C	2,4-Dinitrotoluene
	ua/ka	ua/ka	ua/ka	ug/kg	ug/kg	ug/kg	Units
	10	1.0	1.0	1.0	10	1.0	Dilution Factor
	93	89	85	96	98	98	% Solids
	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	Sampling Date
	6-8	4-6	2-4	0-2	18-20	16-18	Sample Depth (ft)/Location
=	SRSB_02 (6_8)	SRSR-02 (4-6)	SRSR-52 (2.4)	SRSR-02 (0-2)	SRSB-01 (18-20)	SRSB-01 (16-18)	Sample

Qualifiers

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Notes

Result exceeds Comparison Value.

Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

10310/2 1031	Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	NYSDEC TAGM
100 100	Sampling Date	10/31/02	10/31/02	10/31/02	16-18	10/31/02	10/29/02	10/29/02	4046 Appendix A
### 10 10 10 10 10 10 10 10 10 10 10 10 10	% Solids	88	89	91	86	97	93	90	Comparison
ether	Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
ether	Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ether anne anne anne anne anne anne anne a	Phenol			_	_		_	_	30
since of the control	bis(2-Chloroethyl)ether	Ċ 1	C :	c '	C (_ (i 8
anne me de la composane) In corpropane) In c	2-Chlorophenol		_	_	<u> </u>		<u></u>	· ·	800
none one one one one one one one one one	1,3-Dichlorobenzene	· _	_ _	_	C	_	<u> </u>	_	l
nopropane) vopropane) vopropane) vopropane) vopropane) volume vo	1,4-Dichlorobenzene	_	_	_	_	_	· _	<u> </u>	1
pylamine U U U U U U U U U U U U U U U U U U U	1,2-Dichlorobenzene	_			C	_	_		İ
propopare) upplannine upplan	2-Methylphenol	_	_		C	_	_	· 	100
pylamine U U U U U U U U U U U U U	2,2'-oxybis(1-Chloropropane)	· .	_		_	<u> </u>	_	<u> </u>	ì
pylamine U U U U U U U U U U U U U U U U U U U	4-Methylphenol	<u></u>	<u> </u>	_		⊂ .	_	<u> </u>	900
ymethane U U U U U U U U U U U U U	N-Nitroso-di-n-propylamine	_	C	_	_	C	_	_	i
ol ol ol ol ol ol ol ol ol ol ol ol ol o	Hexachloroethane	· C	_	_	_	_	_		İ
ol vicence vic	Nitrobenzene	_	_	C	_	_	C	<u>_</u>	200
ol ol ol ol ol ol ol ol ol ol ol ol ol o	Isophorone	_	_		_	_	_	· 	ĺ
Izene I	2-Nitrophenol					_	_		330
ymethane ymethane u u u u u u u u u u u u u	2,4-Dimethylphenol	_	U	_	_	_	_		1
Izene	2,4-Dichlorophenol	_			_	_	C	C	400
ymethane U U U U U U U U U U U U U	1,2,4-Trichlorobenzene			<u> </u>	_	_	C	C	1
ymethane U U U U U U U U U U U U U	Naphthalene			C		_	<u>_</u>	<u>_</u>	13,000
ymethane u u u u u u u u u u u u u	4-Chloroaniline	_		_	_	_	_	_	220
ene ene ene ene ene ene ene ene ene ene	bis(2-Chloroethoxy)methane	Č	_	_	_	_	_ 	<u> </u>	i
	Hexachlorobutadiene				_		C	_	
	4-Chloro-3-methylphenol		_	_	_	_	<u> </u>		240
	2-Methylnaphthalene	_	_	_	_	_	· C		36,400
	Hexachlorocyclopentadiene	_	_		_	_	_	· _	į.
	2,4,6-Trichlorophenol	_		C		_	_	<u> </u>	1
	2,4,5-Trichlorophenol		C	_		_	_	_	100
	2-Chloronaphthalene		C	_	_	_	_	<u> </u>	l
	2-Nitroaniline	_	_	C			_	· ·	430
	Dimethylphthalate	· C	_	_	_	_	<u></u>		2,000
	Acenaphthylene		: ⊂	: ⊂	. c	_	· ·	_	41,000
	2,6-Unitrotoluene		· : C	:			· ·		1,000
	3-Nitroanline	: ⊂	:	<u></u>			_	_	500
	Acenaphthene	:	C	_		_	· - -		50,000
	2,4-Dinitrophenol	: ⊂	: _	· C	U		_	_	i
	4-Nitrophenol	:	: =	<u>_</u>	_	_	_	_	100
	Dibenzofuran	U	c	C	C		∪	c	6,200

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	NYSDEC TAGM
Sample Depth (ft)/Location	10-12	12-14	14-16	16-18	18-20	0-2	2-4	
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/29/02	10/29/02	4046 Appendix A
% Solids	88	89	91	86	97	93	90	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	·							
2,4-Dinitrotoluene	U	U	U	U	· U	U ·	U	
Diethylphthalate	U	·U	U	U	. ∪	U	U	7,100
4-Chlorophenyl-phenylether	U	U	U	U	ļ, jū,	U	U	
Fluorene	U	U	U	U	U.	U	U	50,000
4-Nitroaniline	U	U	U	U	U	U	U	
4,6-Dinitro-2-methylphenol	U	U	U	Ú	U	U	U	
N-Nitrosodiphenylamine	U	U	U-	U	ĺυ	U	U	
4-Bromophenyl-phenylether	U	U	· U	U	[. U	· U	U U	
Hexachlorobenzene	U	U	U	. U	U	U	υ	410
Pentachlorophenol	U	U	U	U	ľ	l u	U	1,000
Phenanthrene	U	· 42 J	U	U	υ	160 J	150 J	50,000
Anthracene	U	U	U .	U	lυ	ĺ	U	50,000
Carbazole	U	U	U	U·	U	U	U.	
Di-n-butylphthalate	U ⁻	U	lυ	U	l u	U	· U	8,100
Fluoranthene	U	56 J	υ	U	U	250 J	330 J	50,000
Pyrene	U	49 J	l . U	U.	U	200 J	270 J	50,000
Butylbenzylphthalate	U	U	l u .	U	l . u	38 J	190 J	50,000
3,3'-Dichlorobenzidine	U	U	Ū	U	U	U	U	
Benzo(a)anthracene	U	U	U	U	U	97 J	130 J	224
Chrysene	. · · U	U	U	U	U	120 J	170 J	400
bis(2-Ethylhexyl)phthalate	71 J	37 J	42 J	46 J	40 J	69 J	360 J	50,000
Di-n-octyl phthalate	Ü	U	U	U	U	U	U	50,000
Benzo(b)fluoranthene	U	60 J	U	U ·	U	120 J	210 J	224
Benzo(k)fluoranthene	U	U	U	U	U	71 J	- 110 J	224
Benzo(a)pyrene	U	U	U	U	U	87 J	140 J	61
Indeno(1,2,3-cd)pyrene	U	U	IJ	l u	U .	53 J	91 J	3,200
Dibenzo(a,h)anthracene	U	U	U	U	l ū	U	U	14
Benzo(g,h,i)perylene	Ū	U	Ú	Ū.	Ū	60 J	100 J	50,000
Total Carcinogenic PAHs	0	60	0	0	0	548	851	10,000
Total PAHs	. 0	207	0	0	. 0	1,218	1,701	100,000
Total SVOCs	. 71	244	42	46	40	1,325	2,251	500,000

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but

greater than zero.
D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Result exceeds Comparison Value. ---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Sample ID	SRSB-03 (4-6)	SRSB-03 (6-8)	SRSB-03 (8-10)	SRSB-03 (10-12)	SRSB-03 (12-14)	SRSB-03 (14-16)	SRSB-03 (16-18)	
Sample Depth		6-8	8-10	72	12-14		<u> </u>	NYSDEC TAGM
% Solids	91	93	98	98	10/29/02	70/29/02 89	10/29/02 91	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	C	<u> </u>	<u> </u>	c			= .	UE
bis(2-Chloroethyl)ether	_	<u> </u>	C	C (_ ·	_ (_ ·	1 8
2-Chlorophenol	<u>_</u>	C	· C	_	_	<u>.</u>		800
1,3-Dichlorobenzene	<u> </u>		_	c		_	_	1 }
1,4-Dichlorobenzene	_	<u>_</u>	_	· •	_	C	_	ŀ
1,2-Dichlorobenzene	_	_	_	<u> </u>	_	<u></u>	<u> </u>	ŀ
2-Methylphenol	<u> </u>	C	C	_	_	C	<u> </u>	100
2,2'-oxybis(1-Chloropropane)		_	C	_		_		ŀ
4-Methylphenol	_	· C	C	C		_	_	900
N-Nitroso-di-n-propylamine	_	<u></u>	C	_	<u> </u>	· .		ì
Hexachloroethane	C	_	C	_	_	- -	Ċ	j
Nitrobenzene		_	_	C		_		200
Isophorone	_	_	_ _	_	_	_	_	1
2-Nitrophenol	<u></u>	_		_		C		330
2,4-Dimethylphenol	_		<u> </u>	_		_		ŀ
2,4-Dichlorophenol	· ·	_	_	C		_	· C	400
1,2,4-Trichlorobenzene	_	· -	C		· _		C	l
Naphthalene	_	_	_	C		_	_	13,000
4-Chloroaniline	_	_	C	_	· C	<u> </u>	_	220
bis(2-Chloroethoxy)methane	<u> </u>	_	· ·	C	<u> </u>	_		I
Hexachlorobutadiene	_	- -	_	_		_		ľ
4-Chloro-3-methylphenol	_	_	C	· ·		_	_	240
2-Methylnaphthalene	_	· -	C	Ċ		_	<u> </u>	36,400
Hexachlorocyclopentadiene	· ·	<u>_</u>	_	C	_		_	1
2,4,6-Trichlorophenol	€	<u> </u>	_	c			U	i
2,4,5-Trichlorophenol	· ·				· _	_ 	C	100
2-Chloronaphthalene	_	_	U.		_	_	_	ì
2-Nitroaniline	· C		_	C	_			430
Dimethylphthalate	_	_		C			_	2,000
Acenaphthylene	· C	· C		C	_	<u></u>		41,000
2,6-Dinitrotoluene	: -	· ·	_		_	·		1,000
3-Nitroaniline	· : ⊂	: _	:	· C	_	_	_	500
	. =	: ⊂		: C		_	_	50,000
Acenaphthene	: -	: ⊂	· C	· C		_		i
Acenaphthene 2,4-Dinitrophenol			_				=	13
Acenaphthene 2,4 Dinitrophenol 4-Nitrophenol	· c			<u>_</u>		1	(100

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID Sample Depth (ft)/Location Sampling Date % Solids Dilution Factor	SRSB-03 (4-6) 4-6 10/29/02 91 1.0	SRSB-03 (6-8) 6-8 10/29/02 93 1.0	SRSB-03 (8-10) 8-10 10/29/02 86 1.0	SRSB-03 (10-12) 10-12 10/29/02 86 1.0	SRSB-03 (12-14) 12-14 10/29/02 89 1.0	SRSB-03 (14-16) 14-16 10/29/02 89 1.0	SRSB-03 (16-18) 16-18 10/29/02 91 1.0	NYSDEC TAGM 4046 Appendix A Comparison Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2,4-Dinitrotoluene		<u> </u>	c	_	C		C	1
Diethylphthalate	_		_ 	C	C	<u>_</u>	<u> </u>	7,100
4-Chlorophenyl-phenylether	_	C	· 	_	_	_	_	1
Fluorene	_	C	· ·	_	_	_	_	50,000
4-Nitroaniline	_	_	<u>_</u>	_	_	_	_	-
4,6-Dinitro-2-methylphenol	_	C.		_	_	_		1
N-Nitrosodiphenylamine	: _	· C	: C	· C	_	_ _	_	1
9-Bromophenyl-phenylether	= =	= ;=		= =	:· C	: c	. c	; ;
Pentachlorophenol	_ ·	C (C (c (C (⊂ (<u> </u>	1.000
Phenanthrene	_	_	C		C	_	C .	50,000
Anthracene	_	_	_	_	_	· ·		50,000
Carbazole		C	_		_			ı
Di-n-butylphthalate	_		_	41 J	_	_	_	8,100
Fluoranthene	: _	· c	: _	· C	· C	_	U	50,000
Pyrene		· C	_	_		_	_	50,000
Butylbenzylphthalate	: C	: =	: ⊂	: C	: c	: ⊂	_	50,000
3,3-Dichloroperizione	: C		: ⊂	: C	: =	: ⊂	: C	-
Genzo(a)anthracene	: c	: c	: ⊂	: ⊂	: ⊂	: ⊂	: ⊂	224
his(2-Ethylhexyl)nhthalate	3	= c	A0 - C	57 – C) - C	3 - C	6. - C	400
Di-n-octyl phthalate		= 1	= :	= :	= {			50,000
Benzo(b)fluoranthene		C	_	<u> </u>	<u> </u>	<u> </u>	⊂ (224
Benzo(k)fluoranthene			· C		_	_	<u> </u>	224
Benzo(a)pyrene	_	_	_	_		_	_	61
Indeno(1,2,3-cd)pyrene	: c	: c	: C	: ⊂	: C	: =	-	3,200
Benzo(a,ii)aliiiii acelie	= 0	= 0	= c	= <	= c	= =	= =	74
Total Carcinogenic PAHs					0	0		10.000
Total PAHs	0	0	0	0	0	0	0	100,000
Total SVOCs	62	0	40	98	240	330	64	500,000

Qualifiers

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but

greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a

secondary dilution factor.

--: Not established. Result exceeds Comparison Value.

TABLE 1B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSB-03 (18-20)	SRSB-04 (0-2)	SRSB-04 (2-4)	SRSB-04 (4-6)	SRSB-04 (6-8)	SRSB-04 (8-10)	SRSB-04 (10-12)	10/0050 74014
Sample Depth (ft)/Location	18-20	0-2	2-4	4-6	6-8	8-10	10-12	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	82	89	89	92	91	88	88	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2.4-Dinitrotoluene	U	U	470	470	U	U	U	
Diethylphthalate	· U		470 U	470 U	Ü	Ü	U	7.400
4-Chlorophenyl-phenylether	U U	Ü	Ü	Ü	l ü	l ü	Ü	7,100
Fluorene	.U	100 J	Ü	51 J	ľ	11	l ü	50,000
4-Nitroaniline	U	100 S	Ü	J 313	ľ	11.	Ü	50,000
4.6-Dinitro-2-methylphenol	Ü	ľ	Ü	Ü	ľ	Ĭ	11	
N-Nitrosodiphenylamine	Ü	l ü	Ü	Ü	l ü	l	Ü	
4-Bromophenyl-phenylether	Ü	l i	Ü	l	Ü	l ii		
Hexachlorobenzene	Ü	l ü	ľ	Ĭ	l ii	l ü	l i	410
Pentachlorophenol	u U	71 J	l ŭ	40 J	ł	l ii	Ü	1,000
Phenanthrene	Ŭ	860	230 J	470	140 J		l ü	50,000
Anthracene	ŭ	180 J	52 J	94 J	1 1700	Ĭ	l	50,000
Carbazole	Ü	130 J	39 J	80 J	l ŭ	l ŭ	l ü	30,000
Di-n-butylphthalate	Ü	Ü	ľ	Ü	Ŀű.	l ŭ	l ü	8,100
Fluoranthene	92 J	1,500	520	920	220 J	50 J	l . ŭ	50,000
Pyrene	78 J	1,200	420	720	180 J	41 J	Ü	50,000
Butylbenzylphthalate	u`	1,000	290 J	470	150 J	U	Ū.	50,000
3.3'-Dichlorobenzidine	U	U	U	l	U	Ü	ŭ	
Benzo(a)anthracene	44 J	620	230 J	390	100 J	Ū	Ū	224
Chrysene	54 J	700	290 J	500	120 J	ĺ	ن ا	400
bis(2-Ethylhexyl)phthalate	40 J	3,800	1,100	1,700	390	460	80 J	50,000
Di-n-octyl phthalate	U	U	υ,,,,,,	., _U	l u	l u	ا	50,000
Benzo(b)fluoranthene	51 J	750	350 J	560	150 J	Ü	ن ا	224
Benzo(k)fluoranthene	U	440	150 J	230 J	72 J	Ü	l ü	224
Benzo(a)pyrene	Ū	560	230 J	380	110 J	i ŭ	l ŭ	61
Indeno(1,2,3-cd)pyrene	Ū	310 J	150 J	260 J	84 J	Ü	ں ا	3,200
Dibenzo(a,h)anthracene	Ü	86 J	,,,,,	67 J	1 0 0	Ŭ	Ü	3,200 14
Benzo(g,h,i)perylene	Ü	320 J	150 J	250 J	76 J	l ĭ	Ü	50,000
Total Carcinogenic PAHs	149	3,466	1,400	2,387	636	- 0	0	10,000
Total PAHs	319	7,899	2,772	4,952	1,252	91	0	100,000
Total SVOCs	359	13,534	5,299	8,412	1,792	551	80	500,000

Qualifiers
U: The compound was analyzed for, but not detected.
J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

: Result exceeds Comparison Value. --: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Sample ID Sample Depth Sampling Date % Solids Dilution Factor	SRSB-04 (12-14) 12-14 10/31/02 82 1.0 ug/kg	SRSB-04 (14-16) 14-16 10/31/02 83 1.0 ug/kg	SRSB-04 (16-18) 16-18 10/31/02 93 1.0 ug/kg	SRSB-04 (18-20) 18-20 18-20 10/31/02 95 1.0 ug/kg	SRSB-05 (0-2) 0-2 10/28/02 92 1.0 1.0 ug/kg	SRSB-05 (2-4) 2-4 10/28/02 95 1.0 ug/kg	SRSB-05 (4-6) 4-6 10/28/02 89 1.0 ug/kg
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	= c	: C	: c	: C	42 J	: C	: C
2-Chlorophenol			C C		<u> </u>	= c	
1,3-Dichlorobenzene		_ ·			_ ·	. ·	= (
1,4-Dichlorobenzene	<u> </u>	_ (_ (<u> </u>	c (⊂ (C (
1,2-Dichlorobenzene				_ ·	57 J	c (_ (
2-Methylphenol		C	C 1	_ ·		c (~ (
2,2'-oxybis(1-Chloropropane)	_	_	_	_	_	<u> </u>	C
4-Methylphenol			_	_		<u> </u>	_
N-Nitroso-di-n-propylamine	_	·	_	_	_	_	
Hexachloroethane			_	_			_
Nitrobenzene		<u> </u>	_	_	_	_	_
Isophorone		: C	: ⊂		: ⊂	: ⊂	
2-Nitrophenol		_	_		_	_	_
2,4-Dimethylphenol		: ⊂		: C	_	: ⊂	
1 2 1 Trichlorehenzene	= C	= <	= C	= C	= =	= =	· : C
Naphthalene		_ (_ (= 0	110.	_ C	= C
4-Chloroaniline	· .		_	C	_	_ ·	C (
bis(2-Chloroethoxy)methane		_	_	_	, _	_	_
Hexachlorobutadiene			_	_	_	_	C
4-Chloro-3-methylphenol	:					· C	_
2-Methylnaphthalene	: c		: c	: C	62 J	· C	
Hexachiorocyclopentaciene 2 A 6-Trichlorophenol	= c	= c	= =	= C		= C	: c
2.4,0-Trichlorophenoi	= 0	= c	= =	= 0	= c	_ c	= c
2-Chloronaphthalene		C (<u> </u>	c (<u> </u>	= c
2-Nitroaniline			c	C	C .	<u> </u>	– (
Dimethylphthalate		_		_	180 J	_	C
Acenaphthylene				_		_	· _
2,6-Dinitrotoluene		· C	_	_	_	_	_ _
3-Nitroaniline		_		_	_	_	_
Acenaphthene					330 J		78 J
2,4-Dinitrophenol			_	_		_	
4-Nitrophenol		_	_	_		_	_
			=	-	200	=	=

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSB-04 (12-14)	SRSB-04 (14-16)	SRSB-04 (16-18)	SRSB-04 (18-20)	SRSB-05 (0-2)	SRSB-05 (2-4)	SRSB-05 (4-6)	NYSDEC TAGM
Sample Depth (ft)/Location	12-14	14-16	16-18	18-20	0-2	2-4	4-6	
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	82	83	93	95	92	95	89	Comparison
Dilution Factor	1.0	1.0	1,0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2.4-Dinitrotoluene	U	· U	U	U	U	U		:
Diethylphthalate	U U	11	· U	U	U	ט .	U	7.400
4-Chlorophenyl-phenylether	Ü	U	Ü	U	U	ט ט	U U	7,100
Fluorene	Ü	IJ	Ü	· U	220 J	U	57 J	
4-Nitroaniline	0 11	Ü	l	Ü	220 J	U		50,000
4,6-Dinitro-2-methylphenol			l : U	Ü	"	ı Ü	U	
N-Nitrosodiphenylamine	U	Ü	l Ü	l ü	"	U I	11	H=-
4-Bromophenyl-phenylether	Ü	i i	Ü	· U		ü	11	
Hexachlorobenzene	Ü	Ü	ľ	Ü	J	Ü	. 11	410
Pentachlorophenol	Ü	Ü	. ŭ	Ü	1 11		11	1,000
Phenanthrene	Ü	Ü	77 J	Ü	1,900	Ü	420	50,000
Anthracene	Ü	Ŭ	l " ŭ	Ŭ	420	Ü	420 110 J	50,000
Carbazole	Ü	ŭ	lυ	Ĭ	270 J	U	70 J	30,000
Di-n-butylphthalate	Ü	Ü	l ü	ľ	86 J	Ü	, , , , , , , , , , , , , , , , , , ,	8,100
Fluoranthene	Ü	Ü	150 J	Ŭ	2,200	Ŭ	510	50,000
Pyrene	U	Ū	120 J	Ü	3,100	l u	440	50,000
Butylbenzylphthalate	U	Ū	45 J	U	680	Ŭ	U	50,000
3,3'-Dichlorobenzidine	U	U	υ	Ū	u	. U	∵ ŭ	55,550
Benzo(a)anthracene	U	U	56 J	l ū i	1,200	U	210 J	224
Chrysene	U	U	80 J	Ū	1,400	Ü	230 J	400
bis(2-Ethylhexyl)phthalate	48 J	u U	320 J	Ū	1,600	42 J	84 J	50,000
Di-n-octyl phthalate	. U	U	U	l ū	U	u u	U U	50,000
Benzo(b)fluoranthene	U	υ	100 J	Ū	2,000	Ü	240 J	224
Benzo(k)fluoranthene	U	υ	45 J	Ū	980	Ü	130 J	224
Benzo(a)pyrene	U	ΰ	62 J	Ū	1,300	Ü:	190 J	61
Indeno(1,2,3-cd)pyrene	U	υ	42 J	U	520	Ü	97 J	3,200
Dibenzo(a,h)anthracene	U	υ˙	υ	U	150 J	Ü	Ü	14
Benzo(g,h,i)perylene	U	U	39 J	U	530	' ' Ū	96 J	50,000
Total Carcinogenic PAHs	0	0	385	0	7,550	0	1,097	10,000
Total PAHs	0	0	771	0	16,542	0	2,808	100,000
Total SVOCs	48	.0	1,136	0	19,457	42	2,962	500,000

Qualifiers

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Notes				
	Result ex	ceeds C	Compariso	n Value.
	Not establi	shed.		

Page 13 of 16

TABLE 1B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Dibenzofuran	4-Nitrophenol	2,4-Dinitrophenol	Acenaphthene	3-Nitroaniline	2,6-Dinitrotoluene	Acenaphthylene	Dimethylphthalate	2-Nitroaniline	2-Chloronaphthalene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	Hexachlorocyclopentadiene	2-Methylnaphthalene	4-Chloro-3-methylphenol	Hexachlorobutadiene	bis(2-Chloroethoxy)methane	4-Chloroaniline	Naphthalene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dimethylphenol	2-Nitrophenol	Isophorone	Nitrobenzene	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	2,2'-oxybis(1-Chloropropane)	2-Methylphenol	1,2-Dichlorobenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	2-Chlorophenol	bis(2-Chloroethyl)ether	Phenol	CHIE	Charlott Factor	% wollds	Sampling Date	Sample Depth	Sample ID
 -		: C	<u></u>	· C	_	_	_	_	· •	C	_		_	_	C		C	_	_	_	_	_	· -	_	_	_	_	Ċ	_ _	<i>.</i>	<u>_</u>	_	_ _	C	C	ug/kg	<u>.</u> 1.0	, 90	10/28/02	6-8	SRSB-05 (6-8)
C	_	C	_	C	_	_		C	_	_	_		_	_	_	c	C	C	_	_	_		⊂ .	C	_		<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>	_		ug/kg	1.0	86	10/28/02	8-10	SRSB-05 (8-10)
U	_		_	_	_	_	_	<u> </u>	_	C	_	_	C	C	_	c.	c	_		_				_		_	C	_ ·	<u> </u>			_ '	_ (<u> </u>	ug/kg	1.0	85	10/28/02	12-14	SRSB-05 (12-14)
U	_	C	_	_	_	C	_		_	<u> </u>		C	<u> </u>	<u> </u>	<u> </u>	<u> </u>		-	_		_	_	C	<u> </u>	_	_	_ (= (— (= (= (= (= 0	= •	-	ug/kg	1.0	72	10/31/02	14-16	CDCB 05 /4/ 46)
U	_	C	_	_	<u> </u>			_	_	_	_		_ (_ (= (<u> </u>	_	C		<u> </u>	<u> </u>	<u> </u>	<u> </u>	_ •	C (<u> </u>	= 0	= 0	= 0	= 0	= 0	= 9	= (ug/kg	10	97	10/28/02	16-18	CDCD 05 /46 48)
U			<u> </u>	<u> </u>		<u> </u>	_ •	c (_ ·	· ·	<u> </u>	<u> </u>	= (= 0	= 0	= (= (= 1	<u> </u>	<u> </u>	C (c (= 0	= (_ (= 0	= 0	= 0	= 0	= 0	= 0	<u> </u>	= (=	ug/kg	1.0	96	10/28/02	18-20	0000 05 (40 00)
<u> </u>	= '	_ ·	= (= (= 0	= (= 0	= 0	= (= 0	= 0	= 0	= 0	= 0	= 0	= 0	= (= 0	= (= 0	= (= 0	= c	= 6	= c	- c	= c	= c	= c	= c	Ξ .	ug/kg	1.0	88	10/28/02	25-27	200 05 /25 07/
6.200	100	1 00	50 000	500	1,000	41,000	3 450	430 1	į	3 1		JC,+00	36 400	3 1	ŀ	222	3,00	13 000	i	400	ا ا	330	1 00	3 1	1	i g	§ 1	5	3 1	i	1	800	3 1	30	30	ug/kg	Cilicila	Companson	4046 Appendix A	NYSDEC TAGM	

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSB-05 (6-8)	SRSB-05 (8-10)	SRSB-05 (12-14)	SRSB-05 (14-16)	SRSB-05 (16-18)	SRSB-05 (18-20)	SRSB-05 (25-27)	NYSDEC TAGM
Sample Depth (ft)/Location	6-8	8-10	12-14	14-16	16-18	18-20	25-27	
Sampling Date	10/28/02	10/28/02	10/28/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	90	86	85	. 72	97	96	- 86	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Chiena
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2,4-Dinitrotoluene	U	U	U	U	U	U	U. ·	- 1
Diethylphthalate	U ·	U	U	Ū	U -	U	· U	7,100
4-Chlorophenyl-phenylether	· U	. U	U	U ·	U	U	U	- 1
Fluorene	U	. U	U	U	U	U	U	50,000
4-Nitroaniline	U	υ	U	U	U	· U .	U	- 1
4,6-Dinitro-2-methylphenol	U	U	U	U	Ü	U	U	
N-Nitrosodiphenylamine	U	l u	U	U	U	U	U	
4-Bromophenyl-phenylether	. U) U	U	U	U	· U	U	
Hexachlorobenzene	U	l u	U	U	U	U	U	410
Pentachlorophenol	U	υ	/ U	U	· U	U	U	1,000
Phenanthrene	U	l u	60 J	78 J	Ü	U	U	50,000
Anthracene	U	J U	U	U	Ü	Ü	U	50,000
Carbazole	U ·	l u	U	U		U	U	
Di-n-butylphthalate	U	ŀυ	l' U	U	U	U	U	8.100
Fluoranthene	U .	υ	89 J	110 J	. U	37 J	Ū	50,000
Pyrene	U	U	79 J	87 J	U	U	Ū	50,000
Butylbenzylphthalate	U	U	υ	U	Ū	U-	Ī	50,000
3,3'-Dichlorobenzidine	U	U	υ	.U	U	U	U	
Benzo(a)anthracene	U	U	υ	48 J	U	U	Ū	224
Chrysene	U	U	υ	53 J	U	U	Ü	400
bis(2-Ethylhexyl)phthalate	U	38 J	83 J	74 J	U	58 J	ĺ	50,000
Di-n-octyl phthalate	· U	υ	U	U	lυ	l u	Ū	50,000
Benzo(b)fluoranthene	U	Ü	- 56 J	U	· U	Ū	l ū	224
Benzo(k)fluoranthene	U	U	l u	l u	U	Ū.	l ū	224
Benzo(a)pyrene	U	U	U	U	U	U	ū	61
Indeno(1,2,3-cd)pyrene	U	lυ	U	U	U	Ū	Ü	3,200
Dibenzo(a,h)anthracene	U	U	U .	Ū	Ü	Ŭ	Ĭ	14
Benzo(g,h,i)perylene	Ú	U	Ū	Ū	l i ŭ	lŭ	Ĭ	50,000
Total Carcinogenic PAHs	0	0	56	101	0	0	0	10,000
Total PAHs	0	0	284	376	0	37	0	100,000
Total SVOCs	0	38	367	450	0	95	0	500,000

<u>Qualifiers</u>

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Notes
Result exceeds Comparison Value.
---: Not established.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

Sample ID Sample Depth Sampling Date % Solids Dilution Factor Units	SRSB-05 (30-32) 30-32 11/1/02 84 1.0 ug/kg	SRSB-05 (35-37) 35-37 11/1/02 85 1.0 ug/kg	SRSB-05 (40-42) 40-42 11/1/02 85 1.0 ug/kg			NYSDEC TAGM 4046 Appendix A Comparison Criteria ug/kg
Onto	ug/kg	dgritg	ugrkg			ug/kg
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 2-Methylphenol 2,2'-oxybis(1-Chloropropane) 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol 2,4-Dimethylphenol 1,2,4-Trichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline bis(2-Chloroethoxy)methane Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol 4-Nitrophenol						30 800 100 900 200 330 400 240 36,400 100 430 2,000 41,000 500 50,000
Dibenzofuran	Ü	ŭ	ŭ			100 6,200

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SUBSURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSB-05 (30-32)	SRSB-05 (35-37)	SRSB-05 (40-42)					NVODEO TAGN
Sample Depth (ft)/Location	30-32	35-37	40-42	No. 1				NYSDEC TAGM
Sampling Date	11/1/02	11/1/02	11/1/02			*		4046 Appendix A
% Solids	84	85	85					Comparison
Dilution Factor	1.0	1.0	1.0					Criteria
Units	ug/kg	ug/kg	ug/kg					ug/kg
2,4-Dinitrotoluene	U	U	U					·
Diethylphthalate	U	U	U					7,100
4-Chlorophenyl-phenylether	Ü	U	,. U		i e			` .
Fluorene -	U	U	U		1			50,000
4-Nitroaniline	U	U	U			. :		
4.6-Dinitro-2-methylphenol	U	U	U					
N-Nitrosodiphenylamine	U	U	U					- -
4-Bromophenyl-phenylether	U	U	U					- .
Hexachlorobenzene	U	U	U					410
Pentachlorophenol	U	U	U					1,000
Phenanthrene	U	U	U					50,000
Anthracene	U	, U ,	U					50,000
Carbazole	U	U	U					
Di-n-butylphthalate	U	U	U					8,100
Fluoranthene	· U.	U	U					50,000
Pyrene	U	U	U					50,000
Butylbenzylphthalate	U.	U	· U				4.5	50,000
3,3'-Dichlorobenzidine	U	U	U					
Benzo(a)anthracene	ĺ. Ú.	. U	U	1				224
Chrysene	U	. U	U					400
bis(2-Ethylhexyl)phthalate	130 J	54 J	49 J				1.	50,000
Di-n-octyl phthalate	l u	Ú	U					50,000
Benzo(b)fluoranthene	l u	Ū	Ū					224
Benzo(k)fluoranthene	l and a little	Ū	Ū					224
Benzo(a)pyrene	ľ	Ū	Ī		1			61
Indeno(1,2,3-cd)pyrene	ľ	Ü	Ū		1			3,200
Dibenzo(a,h)anthracene	Ū	ĺŪ	Ū					14
Benzo(g,h,i)perylene	U	Ŭ	l i					50,000
Total Carcinogenic PAHs	0	0	0					10,000
Total PAHs	0	0	0					100,000
Total SVOCs	130	54	49					500,000

Qualifiers

U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.
D: This qualifier identifies all compounds identified in an analysis at a

secondary dilution factor.

Result exceeds Comparison Value. --: Not established.

TABLE 1C

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-01 (0-2)	SRSB-01 (4-6)	SRSB-01 (6-8)	SRSB-01 (8-10)	SRSB-01 (10-12)	SRSB-01 (12-14)	SRSB-01 (14-16)	
Sample Depth (ft)	0-2	4-6	6-8	8-10	10-12	12-14	14-16	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	95	89	89	89	89	90	84	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1,0	1.0	· ·
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
								1.00
Arsenic	1.7	1.3	0.93 B	1.3	1.9	1.5	3.6	12
Barium	11.9	8.9 B	6.1 B	6.7 B	13.8	7.4 B	21.8	600
Cadmium	0.79	0.25 B	0.43	0.37	0.24 B	0.64	0.33 B	10
Chromium	27	15.2	12.1	18	9.1	16.9	29.8	50
Lead	14.1	5.4	1.8	3.3	5.6	3.8	7.5	500
Mercury	0.017 B	. U	U	U	U	U	0.025 B	0.2
Selenium	U	U	U U	U	U	U	U	3.9
Silver	2.9	1.2 B	0.58 B	1.1 B	0.22 B	0.66 B	0.28 B	<u></u>

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-01 (16-18)	SRSB-01 (18-20)	SRSB-02 (0-2)	SRSB-02 (2-4)	SRSB-02 (4-6)	SRSB-02 (6-8)	SRSB-02 (8-10)	
Sample Depth (ft)	16-18	18-20	0-2	2-4	4-6	6-8	8-10	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	94	96	96	. 85	89	93	89	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	1.1	2.1	0.77 B	0.78 B	1.6	1.1	1.7	12
Barium	5.4 B	4.1 B	4.5 B	6.6 B	10.4 B	5.6 B	9.8 B	600
Cadmium	1.4	2	1.7	1.7	6.1	4.8	17.6	10
Chromium	28.4	26.5	30	60.2	63.8	35.1	66.1	50
Lead	1.6	2.7	1.8	2.4	3.5	1.6	2.8	500
Mercury	U	U	Ü	U	U	υ	0.029 B	0.2
Selenium	U	U	U	U	U	U	U	3.9
Silver	0.59 B	0.52 B	0.13 B	0.7 B	0.95 B	0.78 B	2.3	

Qualifiers

U. The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	
Sample Depth (ft)	10-12	12-14	14-16	16-18	18-20	0-2	2-4	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/29/02	10/29/02	4046 Appendix A
% Solids	88	89	91	86	97	93	90	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	,
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	7.2	5.8	1.5	2.6	1.8	4	3.3	12
Barium	13.1	11.3	5,1 B	18.2	3.5 B	13.8	10.6	600
Cadmium	9.5	15.3	3.2	29.8	2.2	1.2	1.5	10
Chromium	53.4	1290	72.5	505	19.8	37.5	72.6	. 50°
Lead	2.8	34.5	4.1	13.5	1.3	13.5	21.9	500
Mercury	U	0.059	U	0.029 B	U	0.036	0.033	0.2
Selenium	U	0.45 B	U	0.85 B	U	U	U	3.9
Silver	1.2 B	13.5	0.68 B	19.9	0.53 B	4.3	11.9	

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Note	<u>es</u>

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-03 (4-6)	SRSB-03 (6-8)	SRSB-03 (8-10)	SRSB-03 (10-12)	SRSB-03 (12-14)	SRSB-03 (14-16)	SRSB-03 (16-18)	
Sample Depth (ft)	4-6	6-8	8-10	10-12	12-14	14-16	16-18	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	91	93	86	86	89	89	91	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	0.91 B	0.82 B	0.73 B	5.3	2.3	1.5	0.91 B	12
Barium	4.4 B	4.5 B	4.2 B	34.3	11.4	6.6 B	6.1 B	600
Cadmium	0.48	0.13 B	· U	0.27 B	1	1,6	0.81	10
Chromium	4.3	7.9	6.7	20.2	32.3	37	15.3	50
Lead	1.2	1.2	0.99	9.1	10.4	3	1.7	500
Mercury	. U	U	U	0.033	U	U	U	0.2
Selenium	U	U	U	U	U	U .	l u	3.9
Silver	0.23 B	0.28 B	0.17 B	0.43 B	1.3 B	0.67 B	0.71 B	

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Note	s
------	---

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-03 (18-20)	SRSB-04 (0-2)	SRSB-04 (2-4)	SRSB-04 (4-6)	SRSB-04 (6-8)	SRSB-04 (8-10)	SRSB-04 (10-12)	
Sample Depth (ft)	18-20	0-2	2-4	4-6	6-8	8-10	10-12	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	82	89	89	92	91	88	88	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg_	mg/kg
Arsenic	5.1	8.7	3.1	1.3	6.9	1.1 B	1.1 B	12
Barium	131	26.1	17.1	6.6 B	5.6 B	11.8	5 B	600
Cadmium	44	17.2	5.1	1.2	4.9	8	5.2	10
Chromium	240	613	145	49.3	71	79.4	21.2	50
Lead	78.9	95.8	24.7	19.1	8.7	2.5	2.3	500
Mercury	0.11	0.05	0.046	0.021 B	U	U	U	0.2
Selenium	U	U	0.72 B	U	ับ	U	U	3.9
Silver	4.3	88.4	20.9	6.1	3.4	0.38 B	0.28 B	

Qualifiers:

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

Result exceeds Comparison Value.

U: The constituent was analyzed for, but not detected.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-04 (12-14)	SRSB-04 (14-16)	SRSB-04 (16-18)	SRSB-04 (18-20)	SRSB-05 (0-2)	SRSB-05 (2-4)	SRSB-05 (4-6)	
Sample Depth (ft)	12-14	14-16	16-18	18-20	0-2	2-4	4-6	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	82	83	93	95	92	95	89	Comparison Criteria
Dilution Factor	1.0 ·	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	4	3.7	1.6	2.3	4.9	10.6	0.98 B	12
Barium	26.9	18.6	5.5 B	8 B	27.5	6 B	5.1 B	600
Cadmium	11.7	35.6	3.5	4.8	3.1	9.6	4.7	10
Chromium	75	203	85.2	309	377	120	30.7	50
Lead	7.4	6	10.1	10.1	243	2	2.8	500
Mercury	0.022 B	0.042	0.019 B	0.044	0.58	U	U	0.2
Selenium	0.49 B	0.55 B	U	0.38 B	1 B	U, İ	U	3.9
Silver	0.29 B	2.2	2.1	4.6	44.7	1.9	0.81 B	

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

٧	О	t	е	\$:

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID	SRSB-05 (6-8)	SRSB-05 (8-10)	SRSB-05 (12-14)	SRSB-05 (14-16)	SRSB-05 (16-18)	SRSB-05 (18-20)	SRSB-05 (25-27)	
Sample Depth (ft)	6-8	8-10	12-14	14-16	16-18	18-20	25-27	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/28/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	90	86	85	72	97	96	86	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	1.1	1.9	4.2	4.6	4.5	1.1	4	12
Barium	5 B	23.5	29.6	31.9	8.6 B	5.5 B	4.5 B	600
Cadmium	3.7	2.8	1.8	5.6	4.2	2.3	. 1.1	10
Chromium	28.8	27.9	29.7	106	43.6	57	20.3	50
Lead	1.8	4.9	9.9	222	2.3	2.1	3	500
Mercury	ų U	U	0.033 B	0.061	U	U	U	0.2
Selenium	. U	U	U	0.55 B	U	U	U	3.9
Silver	0.57 B	0.93 B	0.36 B	1.4 B	0.4 B	0.41 B	U	<u></u> -

Qualifiers:

U: The constituent was analyzed for, but not detected.

B. Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds Comparison Value.

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

RCRA METALS

Sample ID Sample Depth (ft) Sampling Date % Solids Dilution Factor	SRSB-05 (30-32) 30-32 11/1/02 84 1.0	SRSB-05 (35-37) 35-37 11/1/02 85 1.0	SRSB-05 (40-42) 40-42 11/1/02 85 1.0			NYSDEC TAGM 4046 Appendix A Comparison Criteria
Units	mg/kg	mg/kg	mg/kg			mg/kg
Arsenic Barium Cadmium Chromium	1.8 5.5 B 0.42 16.8	4.9 5 B 3.7 9.4	4.6 6.4 B 2.8 9.3			12 600 10 50
Lead	2.9	2.5	4			500
Mercury Selenium Silver	U U 0.33 B	0.65 B U	U U 0.22 B			0.2 3.9

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

<u>Note</u>	S

: Result exceeds Comparison Value.

TABLE 1D

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-01 (0-2)	SRSB-01 (4-6)	SRSB-01 (6-8)	SRSB-01 (8-10)	SRSB-01 (10-12)	SRSB-01 (12-14)	SRSB-01 (14-16)	
Sample Depth (ft)	0-2	4-6	6-8	8-10	10-12	12-14	14-16	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	95	89	89	. 89	89	90	84	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg '	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	U	U	U	U	U	U	U	.
Aroclor 1221	· U	U	U	U	υ	U	U	
Aroclor 1232	U	· υ	U	U	U	U	U	
Aroclor 1242	U	U	U	U	U	U	U	
Aroclor 1248	110 P	180 P	U	U ·	u	2,800	78	
Aroclor 1254	Ū	U	Ū	U	l u	U	U	
Aroclor 1260	U	U	U	U	U	U	U	
Total	110	180	0	0	0	2,800	78	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

Notes

: Result exceeds Comparison Value.

--- : Not applicable.

*: According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN

ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-01 (16-18)	SRSB-01 (18-20)	SRSB-02 (0-2)	SRSB-02 (2-4)	SRSB-02 (4-6)	SRSB-02 (6-8)	SRSB-02 (8-10)	
Sample Depth (ft)	16-18	18-20	0-2	2-4	4-6	6-8	8-10	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	98	98	96	85	89	93	89	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	U	U	U	. U	U	U	. U	
Aroclor 1221	· U	U	· U	U	U	U	U	·
Aroclor 1232	٠	U J	U	U	U	U	U	
Aroclor 1242	U	U	U	U	U	U	U ·	
Aroclor 1248	U	U	U	U	U	U	U U	
Aroclor 1254	U	U	U	U	U	U .	U	<u></u>
Aroclor 1260	U	U	· U	U	U	· U	U	
Total	0	0	0	0	0	0	0	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value.

--- : Not applicable.

* : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-02 (10-12)	SRSB-02 (12-14)	SRSB-02 (14-16)	SRSB-02 (16-18)	SRSB-02 (18-20)	SRSB-03 (0-2)	SRSB-03 (2-4)	
Sample Depth (ft)	10-12	12-14	14-16	16-18	18-20	0-2	2-4	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	10/29/02	10/29/02	4046 Appendix A
% Solids	88	89	91	86	97	93	90	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
,								
Aroclor 1016	Ū	U	U	U	U	U	U	
Aroclor 1221	U	U	U	U	U	U	U	
Aroclor 1232	U	U	U	U	U	U	U	
Aroclor 1242	U	U	U	U	υ	U	U	
Aroclor 1248	U _.	U	U	· U	U	1,600 P	1,200	
Aroclor 1254	U	U	U	. U	U	U	Ū	· · · ·
Aroclor 1260	U	570	97	100	U	U	. U	
Total	0	570	97	100	0	1,600	1,200	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value.

--- : Not applicable.

* : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-03 (4-6)	SRSB-03 (6-8)	SRSB-03 (8-10)	SRSB-03 (10-12)	SRSB-03 (12-14)	SRSB-03 (14-16)	SRSB-03 (16-18)	
Sample Depth (ft)	4-6	6-8	8-10	10-12	12-14	14-16	16-18	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	91	93	. 86	86	89	89	91	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	U	· U	U	, U	Ü	U	Ú	
Aroclor 1221	U	U	U	U	U	U	. U	
Aroclor 1232	U .	U	U	U	U	U	U	
Aroclor 1242	U	U	· U	U	U	Ü	U	
Aroclor 1248	69	U	U	U	U	U	U	
Aroclor 1254	U	U	U	U	U	U	· U	
Aroclor 1260	U	U	U	, U	U	U	U	
Total	.69	0	0	0	Ö	0	0	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

Notes

: Result exceeds Comparison Value.

--- : Not applicable.

* : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-03 (18-20)	SRSB-04 (0-2)	SRSB-04 (2-4)	SRSB-04 (4-6)	SRSB-04 (6-8)	SRSB-04 (8-10)	SRSB-04 (10-12)	
Sample Depth (ft)	18-20	0-2	2-4	4-6	6-8	8-10	10-12	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/31/02	10/31/02	10/31/02	10/31/02	10/31/02	4046 Appendix A
% Solids	82	89	89	92	91	88	88	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1,0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	Ū	U	· U	U	U	U -	U	
Aroclor 1221	U	U	, U	U	U	U	U	
Aroclor 1232	U	· · · · U	U	U	U	L U	U	. ·
Aroclor 1242	U	U	Ú	U	. U	U	U	
Aroclor 1248	U	3,000	570 P	570	250	U	U	
Aroclor 1254	U	U	Ų	U	U	U	U	
Aroclor 1260	U	U	U	U	U	U .	U	
Total	0	3,000	570	570	250	0	0	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value.

--- : Not applicable.

 : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

TABLE 1D (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-04 (12-14)	SRSB-04 (14-16)	SRSB-04 (16-18)	SRSB-04 (18-20)	SRSB-05 (0-2)	SRSB-05 (2-4)	SRSB-05 (4-6)	
Sample Depth (ft)	12-14	14-16	16-18	18-20	0-2	2-4	4-6	NYSDEC TAGM
Sampling Date	10/31/02	10/31/02	10/31/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	82	83	93	95	92	95	89	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	U	U	U	U	U	U	U	
Aroclor 1221	U	U	U	U	Ū	U	U	
Aroclor 1232	U	U	U	U	U	· U	U	
Aroclor 1242	U	U	U	U .	U	U	U	
Aroclor 1248	U	Ü	U	U	580	U	U	
Aroclor 1254	U	U	U .	U	U	U	U	<u></u>
Aroclor 1260	U	U	Ü	U	U	U	U	
Total	0	0	0	0	580	0	0	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

Notes

: Result exceeds Comparison Value.

--- : Not applicable.

* : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

TABLE 1D (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSB-05 (6-8)	SRSB-05 (8-10)	SRSB-05 (12-14)	SRSB-05 (14-16)	SRSB-05 (16-18)	SRSB-05 (18-20)	SRSB-05 (25-27)	
Sample Depth (ft)	6-8	8-10	12-14	14-16	16-18	18-20	25-27	NYSDEC TAGM
Sampling Date	10/28/02	10/28/02	10/28/02	10/31/02	10/28/02	10/28/02	10/28/02	4046 Appendix A
% Solids	90	. 86	85	72	97	96	86	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	Ū	U	Ú	U	U	U	U	
Aroclor 1221	U	U	U	U	U	U	U	
Aroclor 1232	U	U	U	U	U	U	U	
Aroclor 1242	U	U	. "U	Ū	U .	U	U	
Aroclor 1248	U	U	U	U	U	, U	U	
Aroclor 1254	U	U	U	, U,	U	U	U	
Aroclor 1260	U	U	U	U	U	U	U	
Total	0	Ö	0	0	0	0	0	1,000/10,000*

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value.

--- : Not applicable.

*: According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

TABLE 1D (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SUBSURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID Sample Depth (ft) Sampling Date % Solids	11/1/02 84	SRSB-05 (35-37) 35-37 11/1/02 85	SRSB-05 (40-42) 40-42 11/1/02 85				NYSDEC TAGM 4046 Appendix A Comparison Criteria
Dilution Factor Units	1.0 ug/kg	1.0 ug/kg	1.0 ug/kg				ug/kg
							uging
Aroclor 1016	U	U	U				<u></u>
Aroclor 1221	U	U	. U			1	
Arocior 1232	U	U	U				
Aroclor 1242	U	U	U	1			·
Aroclor 1248	U	· U	U				
Aroclor 1254	U	. U	· U				
Aroclor 1260	U	U	U				
Total	0	0	0				1,000/10,000*

Qualifiers

U. The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

Notes

: Result exceeds Comparison Value.

--- : Not applicable.

• : According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

TABLE 2A

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSS-01	SRSS-02	SRSS-03	SRSS-04	SRSS-05	SRSS-06	SRSS-07	· · · · · · · · · · · · · · · · · · ·
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	96	92	96	92	92	98	97	Comparison
Dilution Factor	1.0	1,0	1.0	1,0	1.0	1.0	1.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	1400 (1400
Cilità	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	U	ט	· U	U	· U	U	U	
Chloromethane	U	U	U	U	U	u	l ū	
Vinyl Chloride	U	U	U	U	u ·	Ū	ľ	200
Bromomethane	U	U	U	U	Ū	l Ü	Ü	
Chloroethane	U.	U	Ū	Ū	Ü	Ü	Ū	1,900
Trichlorofluoromethane	U	U	Ū	Ū	Ū	ľ	Ŭ	
1.1-Dichloroethene	U	Ū	Ū	Ü	Ú	Ŭ	Ŭ	400
Acetone	7	Ū	Ü	4 J	Ŭ	Ü	Ŭ	200
lodomethane	` ں ٔ	Ü	Ü	ľ	· Ü	Ü	Ü	200
Carbon Disulfide	l ü	Ŭ.	l ü	ľ	Ŭ	l	ľ	2,700
Methylene Chloride	2 JB	2 J	2 JB	2 J	2 J	2 J	3 J	100
trans-1,2-Dichloroethene	l. "U	ľů ·	U	ĺ	U	1	i Ü	100
Methyl tert-butyl ether	ı . Ŭ	ŭ	Ŭ	Ū	l ü	ŭ	l · Ü	
1,1-Dichloroethane	Ü	υ	l	ľ	Ü	Ü	U	200
Vinyl Acetate	Ŭ	Ŭ	ľ	Ü	Ü	Ü	l ü	1
2-Butanone	Ŭ.	Ü	. Ü	U	Ü	U	U	 300
cis-1,2-Dichloroethene	Ū	Ü	l	Ü	Ŭ	Ü	1	
2,2-Dichloropropane		Ŭ	ľ	ľ	i i	U	l ü	·
Bromochloromethane	l	Ŭ	l ŭ	Ŭ	ا ن	Ü	ľ	. ~~~
Chloroform	l ü	Ü	Ū	Ŭ	Ü	Ü	Ü	 ·300
1,1,1-Trichloroethane	Ŭ	l Ü	ľ	Ŭ	Ü	Ü	Ü	800
1.1-Dichloropropene	Ü	Ü	l	l ü	Ü	Ŭ	U U	l '''
Carbon Tetrachloride	Ü	Ü	l	ľ	Ü	Ü	U	
1,2-Dichloroethane	Ü	Ü	Ü	J . U	U	l ü	U	600 100
Benzene	Ü	ľ	ľ	ľ	ľ	u u	l J	
Trichloroethene	l Ü	Ŭ.	l Ü.	l ü	ľ	l ··	-	60
1,2-Dichloropropane	l	Ü	U	U	Ü	Ü	U U	700
Dibromomethane	J . U	Ü	Ü	· Ü	l ü	l u	. U	
Bromodichloromethane	Ü	U U	Ü	Ü	ľ	U		-
cis-1,3-Dichloropropene	Ü	U	lυ	U.	Ü	U	U U	
4-Methyl-2-pentanone	. u	Ü	l · · · · · ·	Ü	U		U	1.000
Toluene	Ü	. U	l	Ü	U	Ü	I -	1,000
trans-1,3-Dichloropropene	ľ	Ü	ľ	Ü	Ü	l O	U U	1,500
1,1,2-Trichloroethane	l	Ü	U	U	U	, U	U	-
1,3-Dichloropropane	Ü	· U	U ·	l ü	U	U U	·	
Tetrachloroethene	· U	Ü	U	Ü	U	-	U	300
2-Hexanone		ا نا	Ü	U	Ü	U	U	1,400
Z 1 TOXALIONO			L	<u> </u>		U	L. U	

TABLE 2A (continued)

NORTHROP GRUMMAN CORPORATION
SOUTH RECEIVING BASIN
ANALYTICAL SUMMARY TABLES
SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Fotal VOCs	1,2,3-I richlorobenzene	Naphthalene	Hexachlorobutadiene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	4-Isopropyitoluene	sec-Butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	4-Chlorotoluene	1,3,5-Trimethylbenzene	2-Chlorotoluene	n-Propylbenzene	1, 2, 3 -Trichloropropane	Bromobenzene	1, 1, 2, 2-Tetrachloroethene	Isopropylbenzene	Bromoform	Styrene	Xylene (total)	Ethylbenzene	1,1,2,2-Tetrachloroethane	Chlorobenzene	1,2-Dibromoethane	Dibromochloromethane	Units	Dilution Factor	% Solids	Sampling Date	Sample Depth (ft)/Location	Sample (D
9		:		_	_	<u>_</u>	_	<u>_</u>	_	_	<u> </u>	_	C		_	_			_	_		<u> </u>	_	_	_		U	_	_	ug/kg	1.0	96	10/29/02	0-2"	SRSS-01
2		: ⊂	_	_	_	_	_		_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_		_	c	ug/kg	1.0	92	10/29/02	0-2"	SRSS-02
2		: C	_	_	· -		_		_	C	_	_	_	U	U	_	_	_			_		_	_	_		_		C	ug/kg	1.0	96	10/29/02	0-2"	SRSS-03
6		: C	U	C	C	_		U	_	_	_		_	_	_	_	C	<u> </u>	_	Ç	_	_	_	 C		_	_	_	C	ug/kg	1.0	92	10/29/02	0-2"	SRSS-04
2	_		_		_		_	_	_			_	_		_	_	_	_	_	C	_		_		_		_	_	C	ug/kg	1.0	92	10/29/02	0-2"	SRSS-05
2		· _	_	_	_	C	_	_	_		_	_		C	C		_	_	_	_	<u> </u>	_	C	_		_	<u> </u>	_		ug/kg	1.0	98	10/29/02	0-2"	SRSS-06
7		3									_						_											_	_	ug/kg	1.0	97	10/29/02	0-2	SRSS-07
10,000	i	13,000	1	3,400	1	7,900	i	8,500	1.600	i	i	ì	1	1	i	1	1	400	í	600		i	i	1,200	5,500	600	1 700	1	1	ug/kg	Cliena	Collibation	4046 Appendix A	NYSDECTAGM	

- Qualifiers

 U: The compound was analyzed for, but not detected.

 J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but
- secondary dilution factor.

 B: Constituent detected in the method blank as well as the sample. greater than zero.

 D. This qualifier identifies all compounds identified in an analysis at a

Notes
---: Not established.

TABLE 2A (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRSS-08	SRSS-09	SRSB-01SS	SRSB-02SS	SRSB-03SS	SRSB-04SS	SRSB-05SS	
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	97	82	86	93	91	76	59	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1,0	1.0	1.0	Criteria
Units	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	Haiti III				49/19	- sg/ng	ugriig	ugng
Dichlorodifluoromethane	U	υ	U	U	U	Ú	U	
Chloromethane	U	U	· U	Ū	U	U	U	
Vinyl Chloride	U	. · U	U	U	U	Ū	Ū	200
Bromomethane	U	3 J	U	U	U	Ū	l ŭ	
Chloroethane	U	3 J	U	Ū	Ū	l · ŭ	ľ	1,900
Trichlorofluoromethane	U	U	l u	U	Ū	Ū	ľ	
1,1-Dichloroethene	U ·	10	Ū	Ü	Ü	2 J	7 J	400
Acetone	6	88 D	38	17	29	46	83	200
lodomethane	l u	4 J	ן י	υ	l u	l "u	ľ	
Carbon Disulfide	บ	Ü	ĺ	Ŭ	Ŭ		Ĭ ŭ.	2,700
Methylene Chloride	2 J	14	4 J	4 J	3 J	5 J	10	100
trans-1,2-Dichloroethene	Ū	U	Ū	U	Ü	ľ	U	
Methyl tert-butyl ether	· U	Ü	l	Ü	Ŭ	l ŭ	Ŭ	
1,1-Dichloroethane	Ü	Ü	ľ	Ü	Ŭ	l . ŭ	l ŭ	200
Vinyl Acetate	Ū	U	Ü	Ū z	Ü	ľ	Ŭ	
2-Butanone	Ü	74	8	Ŭ	Ŭ	8	17	300
cis-1.2-Dichloroethene	Ŭ	ľυ	υ	Ŭ.	ŭ	υ	l: ''u	
2,2-Dichloropropane	Ú	Ū	ŭ	Ü	Ū	Ŭ	l ü	
Bromochloromethane	Ü	Ü	Ü	Ŭ	Ü	l ü	Ü	
Chloroform	ľ	Ü	ľυ	Ü	Ü	Ĭ	Ü	 300
1,1,1-Trichloroethane	l ·	Ŭ	3 J	Ü	Ü	ľ	Ü	800
1,1-Dichloropropene	ŭ	Ŭ	l. ŭ	Ŭ	Ŭ	ľ	Ü	
Carbon Tetrachloride	Ŭ	Ü	Ĭ	Ŭ	Ŭ.	ľ	l ü	600
1,2-Dichloroethane	Ū .	Ü	ľ	Ŭ	Ŭ	l · ŭ	Ü	100
Benzene	Ü.	, ŭ	Ŭ	ŭ	Ü	ا ت	ľ	60
Trichloroethene	l ŭ	. 3 J	ŭ	. 2 J	l ü	l ü	1 4 J	700
1,2-Dichloropropane	Ū	Ü	Ŭ	Ü	Ŭ	ľ	U	
Dibromomethane	Ü	Ü	Ŭ	Ŭ	Ŭ.	Ŭ	Ü	
Bromodichloromethane	. י ט	ľ	ľ	Ü	Ü	Ü	l ü	
cis-1,3-Dichloropropene	Ŭ.	Ŭ	Ŭ	Ú	Ŭ	l	U	
4-Methyl-2-pentanone	Ü	3 J	Ŭ	Ŭ	Ü	Ü	Ü	1.000
Toluene	Ŭ	Ü	Ü	Ü	U	Ü	Ü	1,000
trans-1,3-Dichloropropene	ľ	Ü	Ŭ	Ü.	Ü	Ü	U	1,500
1,1,2-Trichloroethane	Ū	Ü	ŭ	l ü		U	Ü	
1,3-Dichloropropane	Ü	Ü	, U	Ü	Ü	U	U	
Tetrachloroethene	Ü	Ü	. U	l	U	U		300
2-Hexanone]	9	Ü]	U	"	U	1,400
4-1 ICAGITOTIC	Ų į	9		U	U	Į U	U	

TABLE 2A (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

VOLATILE ORGANIC COMPOUNDS (VOCs)

10,000	121	61	32	23	53	211	æ	I otal VOCs
						C	U	1,2,3-i richlorobenzene
13,000	_			: C	· C			Naphthalene
1	C	_	_				_	Hexachlorobutadiene
3,400					_			1,2,4-Trichlorobenzene
<u> </u>	· -		C					1,2-Dibromo-3-chloropropane
7,900					_		U	1,2-Dichlorobenzene
1			_	C			_	n-Butylbenzene
8,50			_	c	C .		_	1,4-Dichlorobenzene
1,60			C		_		_	1,3-Dichlorobenzene
	_				_	_	_	4-IsopropyItoluene
	_	_	<u> </u>					sec-Butylbenzene
		_	<u> </u>	<u></u>	_		_	1,2,4-Trimethylbenzene
		_	C	_	_	<u></u>		tert-Butylbenzene
-			C			_		4-Chlorotoluene
1			C	_	_		_	1,3,5-Trimethylbenzene
1							_	2-Chlorotoluene
				_				n-Propylbenzene
400	<u> </u>		_		_		_	1, 2, 3 -Trichloropropane
1			_			_		Bromobenzene
600	_	_		C				1, 1, 2, 2-Tetrachloroethene
i			_	<u></u>	_	C	_	Isopropylbenzene
· .		_ ·	□		_	_	_	Bromoform
	_	_	_	_			_	Styrene
1,200	_	_	C					Xylene (total)
5.50			<u></u>		C	· ·	_	Ethylbenzene
60			<u> </u>	<u> </u>	· C		_	1,1,2,2-Tetrachloroethane
1.700				_		_	_	Chlorobenzene
		_	_		_			1,2-Dibromoethane
		C		C	_	C		Dibromochloromethane
ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	Units
CITEILA	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Dilution Factor
Comparison	59	76	91	93	86	82	97	% Solids
4046 Appendix	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	Sampling Date
NYSDEC TAGN	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	Sample Depth (ft)/Location
	SRSR-05SS	SRSB-04SS	SRSB-03SS	SRSB-02SS	SRSB-01SS	SRSS-09	SRSS-08	Sample ID

Qualifiers

U: The compound was analyzed for, but not detected.

U: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but

greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

B: Constituent detected in the method blank as well as the sample.

Notes
--- Not established.

TABLE 2B

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSS-01	SRSS-02	SRSS-03	SRSS-04	SRSS-05	SRSS-06	SRSS-07	T
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	96	92	96	92	92	98	97	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg							
	sayrii g	ugrig	i agrig	gang	l ogrig	ugrig	L ug/ng	ug/kg
Phenol	U	lυ	U	U	U	U	υ	30
bis(2-Chloroethyl)ether	Ū	Ū	Ū	Ū	Ü	ŭ	Ü	
2-Chlorophenol	Ŭ	l ū	ľ	Ū	l ŭ	Ŭ	ľ	800
1.3-Dichlorobenzene	Ū	ĺ	ľ	. ŭ	ľ	Ŭ	Ū	
1.4-Dichlorobenzene	l	ĺ	ľ	Ů	l ŭ	Ü	l · Ü	
1.2-Dichlorobenzene	ľů	l ū	l ŭ	Ú	130 J	Ŭ	· Ü	
2-Methylphenol	Ŭ	ľ	l ŭ	ŭ	l	Ü	Ü	100
2,2'-oxybis(1-Chloropropane)	ľ	lυ	ľ	Ŭ	ľ	Ü	Ü	100
4-Methylphenol	l ū	ľ	ĺ	l ŭ	ľ	ľ	Ü	900
N-Nitroso-di-n-propylamine	Ü	Ū	l ŭ	· Ū	Ŭ	Ü	ŭ	
Hexachloroethane	ū	Ū	Ū	Ū	Ü	Ū	. ŭ	
Nitrobenzene	Ü	Ū	l ŭ :	υ	Ŭ	Ū	Ü	200
Isophorone	Ū	Ū	Ū	Ū	ĺ	Ū	i ü	1
2-Nitrophenol	Ū	Ū,	l ū	l ū	l ŭ	Ü	Ü	330
2,4-Dimethylphenol	Ū	Ū	ľ	Ū	Ū	l ŭ	. ŭ	
2,4-Dichlorophenol	Ū	Ū	l ū	Ū	Ů	Ŭ	Ŭ	400
1,2,4-Trichlorobenzene	υ	U	l ū	ĺ	Ū	ŭ	Ŭ	
Naphthalene	. U	U	l u	Ū	l ū	Ŭ	ľ	13,000
4-Chloroaniline	U	U	l	Ū	Ū	Ŭ	ŭ	220
bis(2-Chloroethoxy)methane	l U	U	l u	U	ĺ	ŭ	Ü	
Hexachlorobutadiene	Ù	U	l u	U	l ū	Ū	ľ	
4-Chloro-3-methylphenol	U	U	l u	U	l ū	Ū	ľů	240
2-Methylnaphthalene	U	U	l u	U	l u	ĺ	ĺ	36,400
Hexachlorocyclopentadiene	U	U	l. u	U	U	l ŭ	ľű	
2,4,6-Trichlorophenol	U.	U	U	U	Ū	l ū	Ú	ļ <u>_</u> [
2,4,5-Trichlorophenol	U	U	l u	U	U	Ū	Ū	100
2-Chloronaphthalene	U	l u	l u	. U	U	Ū	l ŭ	
2-Nitroaniline	Ū	U	U	U	Ū	l ū	ľ	430
Dimethylphthalate	U	. U	l · u	U	l u	Ū	Ū	2,000
Acenaphthylene	U	U	U	U	l	l	l ŭ	41,000
2,6-Dinitrotoluene	. • U .	U	Ū	Ū	Ū	Ū	l ŭ	1,000
3-Nitroaniline	Ü	· U	U	Ū	Ū	l ū	ľ	500
Acenaphthene	U .	U	Ū	Ū	44 J	79	ا ن	50,000
2,4-Dinitrophenol	U	U	Ū	Ū	ĺ		Ŭ	
4-Nitrophenol	U	U	U	Ū	U	Ū.	Ū	100
Dibenzofuran	U	U	U	Ū	Ŭ	Ū	Ŭ	6,200

TABLE 2B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSS-01	SRSS-02	SRSS-03	SRSS-04	SRSS-05	SRSS-06	SRSS-07	NIVODEO TAGA
Sample Depth (ft)/Location	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	96	92	96	92	92	98	97	Comparison
Dilution Factor	1.0	1,0	1.0	1.0	1.0	1.0	1.0	Criteria
Units	ug/kg							
0.450.71.41								
2,4-Dinitrotoluene	U	U	U	U	U	U	U	
Diethylphthalate	U	· · U	U	U	U	U	U	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	
Fluorene	U	39 J	U	. U	U	46 J	U	50,000
4-Nitroaniline	U	U	U	U	U	U	U	<u></u>
4,6-Dinitro-2-methylphenol	·U	U	U	, n	Ų	∵ U	U	
N-Nitrosodiphenylamine	U	· U	, U	U	Ú	U	U	
4-Bromophenyl-phenylether	U ,	U	U	U	Į U	· U	U	
Hexachlorobenzene	U	U	U	U	· U	U	U	410
Pentachlorophenol	U ,	U	U	U	51 J	U	U .	1,000
Phenanthrene	70 J	570	59 J	100 J	400	470	U	50,000
Anthracene	U	120 J	U	U	72 J	82 J	140 J	50,000
Carbazole	U	68 J	U	U	81 J	65 J	U	
Di-n-butylphthalate	Ų	U	U	U	46 J	U	U	8,100
Fluoranthene	190 J	980	120 J	240 J	980	670	280 J	50,000
Pyrene	180 J	770	100 J	210 J	830	710	270 J	50,000
Butylbenzylphthalate	U	U	U	73 J	760	110 J	U	50,000
3,3'-Dichlorobenzidine	U	U	U	U	LU	U	U ·	
Benzo(a)anthracene	83 J	380	48 J	100 J	480	310 J	120 J	224
Chrysene	100 J	400	51 J	100 J	560	380	170 J	400
bis(2-Ethylhexyl)phthalate	72 J	80 J	63 J	100 J	650	99 J	66 J	50,000
Di-n-octyl phthalate	U	U	U	U	U	U	U	50,000
Benzo(b)fluoranthene	120 J	380	70 J	160 J	690	530	260 J	224
Benzo(k)fluoranthene	68 J	230 J	37 J	86 J	400	280 J	110 J	224
Benzo(a)pyrene	87 J	270 J	46 J	110 J	510	300 J	140 J	1 61
Indeno(1,2,3-cd)pyrene	56 J	140 J	· U	59 J	320 J	160 J	78 J	3,200
Dibenzo(a,h)anthracene	U	Ú	Ū	U	96 J	38 J	U	14
Benzo(g,h,i)perylene	64 J	140 J	37 J	69 J	340 J	160 J	66 J	50,000
Total Carcinogenic PAHs	514	1,800	252	615	3,056	1,998	878	10,000
Total PAHs	1,018	4,419	568	1,234	5,722	4,215	1,634	100,000
Total SVOCs	1,090	4,567	631	1,407	7,440	4,489	1,700	500,000

Qualifiers
U: The compound was analyzed for, but not detected
J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

D. This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Result exceeds Comparison Value. --: Not established.

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Dibenzoturan	4-Nitrophenol	2,4-Dinitrophenol	Acenaphthene	3-Nitroaniline	2,6-Dinitrotoluene	Acenaphthylene	Dimethylphthalate	2-Nitroaniine	2-Cilioloriapritilaierie	2-Chloropaphthalene	2 4 5-Trichlorophenol	2,4,6-Trichlorophenol	Hexachlorocyclopentadiene	2-Methylnaphthalene	4-Chloro-3-methylphenol	Hexachlorobutadiene	bis(2-Chloroethoxy)methane	4-Chloroaniline	Naphthalene	1,2,4-Trichlorobenzene	2,4-Dichlorophenol	2,4-Dimethylphenol	2-Nitrophenol	Isophorone	Nitrobenzene	Hexachloroethane	N-Nitroso-di-n-propylamine	4-Methylphenol	2,2'-oxybis(1-Chloropropane)	2-Methylphenol	1,2-Dichlorobenzene	1.4-Dichlorobenzene	1,3-Dichlorobenzene	2-Chlorophenol	bis(2-Chloroethyl)ether	Phenol	Units	Dilution Factor	% Solids) Date 1	Sample Depth
	: c	_	,	_	<u>_</u>		_	: c	= 0	= 0	= -	_	<u></u>		_	_		_		<u>_</u>			_		<u></u>			<u>_</u>		_	_	_	C		< _	C	ug/kg u	1.0	97		0-2"
190 J 1		_	600			54 J				= (_	_	76 J	_	<u></u>		<u>-</u>	100 J	_	_	<u></u>	<u></u>	<u>.</u>	<u></u>	<u>.</u>			<u> </u>	<u> </u>			_		:	73 J	ug/kg ug/kg	1.0		10/29/02 10/29/02	0-2"
150 J			340 J					: C		= (67 J U	c 		· ·		82 J U					_				-			C 64 J		•			51 _	kg ug/kg	1.0		02 10/29/02	0-2" 0-2"
								· · ·		= (= 1																										ug/kg	1.0	91	10/29/02	0-2"
190 J	C		500		_	_	_	:		= 0	= (_	61 _			c		80 J	_ ·		<u>_</u>	_	_	_	<u> </u>	_	<u> </u>	_ (_ ·	c (= •	_ ·	= (= .	<u> </u>	ug/kg	1.0	76	10/29/02	0-2
7,600	_		18,000				_			- c	= 0			3.900 J		_ ·	<u> </u>	_	7.600	<u> </u>	_	_	_	-	_ ·	<u> </u>	<u> </u>	c (_ (<u> </u>	_ (= (<u> </u>	= 0	= -		ug/kg	10.0	59	10/29/02	0-2
6,200	100	1	50,000	500	1,000	41,000	2,000	430		ē	3		1	36 400	240	1	I	220	13.000	ì	400	,	330	1	200	1	1	900	i §	100	ľ	1	1 8	800		30	ug/kg	C	Criteria	Comparison	ADAS Appopulic A

TABLE 2B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSS-08	SRSS-09	SRSB-01SS	SRSB-02SS	SRSB-03SS	SRSB-04SS	SRSB-05SS	NYSDEC TAGM
Sample Depth (ft)/Location	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	97	82	86	93	91	76	59	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	10.0	Ciliteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2.4-Dinitrotoluene	U	U	<u>ن</u> .	. U .	· U			
Diethylphthalate	Ü	Ü	Ü	U	Ü	U U	U	7.400
4-Chlorophenyl-phenylether	Ü	u		U	Ü	Ü	U II	7,100
Fluorene	U U	390 J	310 J	U	U	360 J		50,000
4-Nitroaniline	ı u	3903	3103	Ü	U	360 J	13,000 U	50,000
4,6-Dinitro-2-methylphenol	i i	Ü	Ŭ	Ü	Ü	Ü	Ü	
N-Nitrosodiphenylamine	i ü	Ŭ	ľ	Ü	Ü	11	l ü	
4-Bromophenyl-phenylether	Ü	Ŭ.	ľ	Ü	Ü	Ü	U U	
Hexachlorobenzene	IJ	l ü	l ü	Ŭ	Ü		l i	 410
Pentachlorophenol	Ū	ū	l i	i ii	Ü	l ĭi	l ü	1,000
Phenanthrene	36 J	4.900	2,700	310 J	. 86 J	3,200	88,000	50,000
Anthracene	U	810	520	56 J	U	620	22,000	50,000
Carbazole	Ū	700	370 J	47 J	Ü	420 J	13,000	50,000
Di-n-butylphthalate	U	350 J	140 J	U	Ū	77 J	610 J	8,100
Fluoranthene	100 J	7,300 D	3,300	510	190 J	4,100	84,000 D	50,000
Pyrene	100 J	7,200 D	4,700	540	160 J	4,600	76,000 D	50,000
Butylbenzylphthalate	U	4,200	660	180 J	U	310 J	7,000	50,000
3,3'-Dichlorobenzidine	U -	υ	U	U	Ū	U	l ,,,,,,,	
Benzo(a)anthracene	49 J	3,900	1,700	240		2,100	45,000	224
Chrysene	69 J	4,900	2,200	330 J	100 J	2,400	48,000	400
bis(2-Ethylhexyl)phthalate	44 J	3,800	5,200	570	71 J	1,400	11,000	50,000
Di-n-octyl phthalate	U	93 J	52 J	U	U	72 J	Ι "" υ	50,000
Benzo(b)fluoranthene	120 J	7,200 D	3,600	480	140 J	3,500	69,000	224
Benzo(k)fluoranthene	55 J	3,700	1,400	260 J	68 J	1,800	26,000	224
Benzo(a)pyrene	70 J	4,400	1,900	280 J	82 J	2,100	43,000	61
Indeno(1,2,3-cd)pyrene	35 J	2,300	960	140 J	51 J	920	15,000	3,200
Dibenzo(a,h)anthracene	·U ·	590	220 J	U	U	240 J	4,700 J	14
Benzo(g,h,i)perylene	· U	2,300	960	110 J	49 J	910	14,000	50,000
Total Carcinogenic PAHs	398	26,990	11,980	1,730	515	13,060	250,700	10,000
Total PAHs	634	50,910	25,109	3,256	1,000	27,681	584,800	100,000
Total SVOCs	678	60,126	31,582	4,117	1,071	29,960	616,410	500,000

Qualifiers
U: The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

D: This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

: Result exceeds Comparison Value. --: Not established.

TABLE 2C

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

RCRA METALS

Sample ID	SRSS-01	SRSS-02	SRSS-03	SRSS-04	SRSS-05	SRSS-06	SRSS-07	
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	. 96	92	. 96	96	92	98	97	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg							
Arsenic	3.5	3.6	3.7	37.1	4.9	1.3	1.7	12
Barium	16.6	16.1	13.8	12.1	14	4.6 B	7.2 B	600
Cadmium	0.22 B	0.94	0.73	0.92	5.8	0.62	0.3	10
Chromium	19.7	35.8	33.6	75.5	352	16.9	16.5	50
Lead	9.1	13.1	12.9	37.4	51.4	17.2	7.7	500
Mercury	0.02 B	0.027 B	U	0.049	0.098	0.019 B	U	0.2
Selenium	U	U	U	0.41 B	U	U	U	3.9
Silver	4	3.4	3.8	5.1	47.9	2.1	1.3	

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

: Result exceeds Comparison Value.

-- : Not established.

TABLE 2C (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

RCRA METALS

Sample ID	SRSS-08	SRSS-09	SRSB-01SS	SRSB-02SS	SRSB-03SS	SRSB-04SS	SRSB-05SS	
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	97	82	86	93	91	76	59	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0]
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	2	4.6	5.7	3,1	3.1	3	9.6	12
Barium	16.4	11.3	34.2	12.9	15.6	14	54.5	600
Cadmium	0.32	1.3	7.6	3.2	0.81	0.52	8.3	10
Chromium	17.4	292	389	54.9	43.3	42.5	587	50
Lead	5.5	196	175	13.8	65.7	53.1	789	500
Mercury	, U	0.4	0.37	0.032 B	0.022 B	0.03 B	1.2	0.2
Selenium	U	0.67 B	1.5 B	U	U	υ	1.6 B	3.9
Silver	1.7	50.1	29.6	8.1	3.8	3.9	40.8	

Qualifiers:

U: The constituent was analyzed for, but not detected.

B: Constituent concentration is less than the CRDL, but greater than the IDL.

Notes:

: Result exceeds Comparison Value.

-- : Not established.

TABLE 2D

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSS-01	SRSS-02	SRSS-03	SRSS-04	SRSS-05	SRSS-06	SRSS-07	
Sample Depth	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	96	92	96	96	92	98	97	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg							
Aroclor 1016	U	U	Ü	·· U	U	U	U	
Aroclor 1221	U	U	U	U	U	U	U	
Aroclor 1232	U	U	U	U	U	. U	U	
Aroclor 1242	U	U	. U	U	U	U	<u></u>	
Aroclor 1248	160	1,300 P	630	710	850	560	420	
Aroclor 1254	U	U	Ü	U	U	U	IJ	
Aroclor 1260	U	U	U	U	U	U	U	
Total	160	1,300	630	710	850	560	420	1,000

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value

--- : Not applicable.

TABLE 2D (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SURFACE SOIL

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSS-08	SRSS-09	SRSB-01SS	SRSB-02SS	SRSB-03SS	SRSB-04SS	SRSB-05SS	
Sample Depth	0-2"	0-2"	0-2"	. 0-2"	0-2"	0-2"	0-2"	NYSDEC TAGM
Sampling Date	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	10/29/02	4046 Appendix A
% Solids	97	82	86	93	91	76	59	Comparison Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	. U.	U	U	U	U	· U	U	
Aroclor 1221	U	U	U	U	U	U	U	
Aroclor 1232	U.	· U	U	U	. U	U	U	
Aroclor 1242	. U	U	U	U	U	U :	U	
Aroclor 1248	180	300 P	1,000	740	U	360	710	
Aroctor 1254	U	U	U	U	U	U	U	
Aroclor 1260	U	U	U	U	U	U	U	
Total	180	300	1,000	740	0 ,	360	710	1,000

Qualifiers

U: The constituent was analyzed for, but not detected.

P: For dual column analysis, the percent difference between the quantitated concentrations on the 2 columns is greater than 40%, lower value reported.

<u>Notes</u>

: Result exceeds Comparison Value.

--- : Not applicable.

TABLE 3A

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SAND PILES WEST OF BASIN

VOLATILE ORGANIC COMPOUNDS (VOCs)

ample ID	SRSP-01	SRSP-02	SRSP-03	SRSP-04	SRSP-05	SRSP-06	NYSDEC TAGM
Sampling Date	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	4046 Appendix A
% Solids	87	98	95	97	99	84	Comparison
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	Criteria
Jnits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Dichlorodifluoromethane	=	=	=	=		= .	
Chloromethane	= (= (= (= 0	= 0	= (
inyl Chloride	= (= (= 0	= 0	= (= 0	3
gromomethane	_ _ ·	=	= (= (_ (= (200
Chloroethane		c (C (<u> </u>		<u> </u>	1 900
richlorofluoromethane		_ 	C		_		[]
,1-Dichloroethene	· .	<u> </u>	C	C	<u> </u>	C	400
cetone	1	<u>_</u>	C	C			200
odomethane	_	_	C	_	C		
Carbon Disulfide	<u></u>	<u>_</u>	_	_		_	2,700
Methylene Chloride	2 JB	. 1 JB	C	1 JB	1 JB	2 JB	100
rans-1,2-Dichloroethene	· ·		C	_	_	_	
/lethyl tert-butyl ether			_	_	_	_	
,1-Dichloroethane	_	C	_		_	_	200
inyl Acetate	_		C	_		_	l
2-Butanone	Ċ	C	_			_	300
is-1,2-Dichloroethene		_	_	_	,	C,	-
,2-Dichloropropane		_	C	_	C	_	
Bromochloromethane	_	_	_	C	_		-
hloroform			_				300
,1,1-Trichloroethane		_	_	_	_	_	800
,1-Dichloropropene	_	_	_	_	_		1
arbon Tetrachloride			_		_	_	600
,2-Dichloroethane			_	_		_	100
Benzene	· ·	_	: C				60
richloroethene	_	<u>_</u>	_	_		C	700
,2-Dichloropropane	_	_	_		_	C	l
ibromomethane	_	_	_		_	C	!
Bromodichloromethane	_	_		_	_	_	1
is-1,3-Dichtoropropene						C	1
l-Methyl-2-pentanone	<u> </u>	C	_		C.	C	1,000
oluene	_	_	_		_	_	1,500
rans-1,3-Dichloropropene	_	<u> </u>	_		_	C	ì
,1,2-Trichloroethane		C	· C	_			1
,3-Dichloropropane	_	· .	C	C	· ·	C	300
etrachloroethene	_	<u> </u>	_	_		_	1,400
-Hexanone	_	_	<u></u>	_		_	}

TABLE 3A (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SAND PILES WEST OF BASIN

VOLATILE ORGANIC COMPOUNDS (VOCs)

	Total VOCs	1,2,3-Trichlorobenzene	Naphthalene	Hexachlorobutadiene	1,2,4-Trichlorobenzene	1,2-Dibromo-3-chloropropane	1,2-Dichlorobenzene	n-Butylbenzene	1,4-Dichlorobenzene	1,3-Dichlorobenzene	4-Isopropyltoluene	sec-Butylbenzene	1,2,4-Trimethylbenzene	tert-Butylbenzene	4-Chlorotoluene	1,3,5-Trimethylbenzene	2-Chlorotoluene	n-Propylbenzene	1, 2, 3 -Trichloropropane	Bromobenzene	1, 1, 2, 2-Tetrachloroethene	IsopropyIbenzene	Bromoform	Styrene	Xylene (total)	Ethylbenzene	1, 1,2,2-Tetrachloroethane	Chlorobenzene	1,2-Dibromoethane	Dibromochloromethane	Units	Dilution Factor	% Solids	Sampling Date	Sample ID
	13	_		_			_	_		_		: ⊂	: =			_	_		<u>_</u>			_		_	_	_			_	c,	ug/kg	1.0	.87	11/4/02	LUdsas
	_	C	_			_	<u>_</u>	_	_	_		: ⊂	: -	_	_	_	_	_	_		<u> </u>	_	_	_	_		_	_		Ċ	ug/kg	1.0	98	11/4/02	CD 03
	0	<u> </u>	<u>_</u>	<u> </u>	_	_		· 		<u></u>		· ·	_		_	_	_	<u></u>		_		_	_	_		_			· -	C	ug/kg	1.0	95	11/4/02	CDCD 03
	4	<u></u>	· _	· ·	_	_		_		_	_	:				_	_ _	_	_		<u></u>		_	C	_	_	<u>_</u>	<u> </u>	<u>_</u>	C	ug/kg	1.0	97	11/4/02	VU 0303
	4		<u>_</u>	_	<u>_</u>	· ·		_	_	_			_	<u> </u>	· _	_	_		_	_	_	<u> </u>	C	· .	· _	· C	C	· _	C	C	ug/kg	1.0	99	11/4/02	CDCD OF
	3	<u> </u>		_	C	_		_		_	 		_	_	_			_	_	_		Ċ	_		C	<u>.</u>	_	_	_	C	ug/kg	1.0	84	11/4/02	SDCD 06
10,000	10000		13 000	ì	3,400	1	7,900	1	8,500	1,600	ī	-	1		1	İ	1	Ī	400	1	600	ŀ	J	1	1,200	5,500	600	1,700			ug/kg	Criteria	Comparison	4046 Appendix A	MOVE CLICON

Qualifiers

U. The compound was analyzed for, but not detected.

J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

B. Constituent detected in the method blank as well as the sample.

Notes
-- Not Established.

TABLE 3B

NORTHROP GRUMMAN CORPORATION
SOUTH RECEIVING BASIN
ANALYTICAL SUMMARY TABLES
SAND PILES WEST OF BASIN

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSP-01	SRSP-02	SRSP_03	SRSP_04	SRSPLA	80.4285	NYSDEC TACM
Sampling Date	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	4046 Appendix A
% Solids	87	98	95	97	99	84	Comparison
Dilution Factor	5.0	5.0	5.0	5.0	5.0	5.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	_ _		<u> </u>	<u> </u>		=	 2
bis(2-Chloroethyl)ether	_			= '	 _ (= 0	{
2-Chlorophenol	_ ·		⊏. 1	= (= (= (800
1,3-Dichlorobenzene			<u> </u>	<u> </u>	_ ·	Ċ	1 8
1,4-Dichlorobenzene	C		_		_	_	1
1,2-Dichlorobenzene		_		<u> </u>			1
2-Methylphenol	_				<u> </u>	<u> </u>	100
2,2'-oxybis(1-Chloropropane)				C		<u> </u>	
4-Methylphenol	_		_	_	_	_	900
N-Nitroso-di-n-propylamine	· _		_	Ċ	_		
Hexachloroethane	<u> </u>					_	
Nitrobenzene	_				_	_	200
Isophorone	_	_		_	_	<u> </u>	1
2-Nitrophenol	_				_	_	330
2,4-Dimethylphenol				C	_	<u>_</u>	ŀ
2,4-Dichlorophenol	_	_				_	400
1,2,4-Trichlorobenzene							1
Naphthalene	_			_	_	_	13,000
4-Chloroaniline			_	_		· ·	220
bis(2-Chloroethoxy)methane	_			_		_	1
Hexachlorobutadiene				- -		_	
4-Chloro-3-methylphenol	_	_		_		_	240
2-Methylnaphthalene	_				_	_	36,400
Hexachlorocyclopentadiene	_				_	_	
2,4,6-Trichlorophenol	C			_	_	_	:
2,4,5-Trichlorophenol	_				_	_	100
2-Chloronaphthalene	_				_	_	1
2-Nitroaniline	· _		_		C		430
Dimethylphthalate	_			_	C ,	· ·	2,000
Acenaphthylene	:				_	_	41,000
2,6-Unitrotoluene	: ⊂			: C			1,000
Acenanthene	= c) - C	2 20 - C	ာ - င	= c	= C	500
2,4-Dinitrophenol	C (_ (= 0	00,000
4-Nitrophenol	⊂ :		_ ·	C (~ (_ (100
Dibenzofuran	_		· ·				6 200

TABLE 3B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SAND PILES WEST OF BASIN

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	SRSP-01	SRSP-02	SRSP-03	SRSP-04	SRSP-05	SRSP-06	NYSDEC TAGM
Sampling Date	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	4046 Appendix A
% Solids	87	98	. 95	97	99	84	Comparison
Dilution Factor	5.0	5.0	5.0	5.0	5.0	5.0	Criteria
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	·						
2,4-Dinitrotoluene	· U	U	U	U	U	U	
Diethylphthalate	U	U	U	U	U -	· U	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U.	
Fluorene	U	230 J	300 J	350 J	· U	U	50,000
4-Nitroaniline	U	U	U	U	U	U	
4,6-Dinitro-2-methylphenol	Ú U	U	U	U	U	U	
N-Nitrosodiphenylamine	U	U .	U	U.	U	. U	
4-Bromophenyl-phenylether	U	. U	· U	U .	U	Ú	
Hexachlorobenzene	U	U	U	U	U	υ	410
Pentachlorophenol	U	U	U	. U	Ü	. О	1,000
Phenanthrene	690 J	4,100	5,600	6,700	690 J	590 J	50,000
Anthracene	U	460 J	570 J	710 J	U	U	50,000
Carbazole	U	500 J	650 J	860 J	U	U	
Di-n-butylphthalate	Ų	U	U	U	U	U	8.100
Fluoranthene	1,400 J	7,600	11,000	13,000	1,000 J	1,200 J	50,000
Pyrene	1,200 J	6,100	8,500	10,000	850 J	970 J	50,000
Butylbenzylphthalate	· U	· U	Ū	U	U	270 J	50,000
3,3'-Dichlorobenzidine	U	U	U	U ·	U	U	
Benzo(a)anthracene	580 J	2,700	3,500	4,400	460 J	420 J	224
Chrysene	770 J	3,600	5,100	6,100	560 J	640 J	400
bis(2-Ethylhexyl)phthalate	C	210 J	260 J	180 J	···U	Ü	50,000
Di-n-octyl phthalate	U	U	U	U	U	Ū	50,000
Benzo(b)fluoranthene	920 J	4,300	6,000	7,100	640 J	790 J	224
Benzo(k)fluoranthene	400 J	1,800	2,600	3,200	280 J	310 J	224
Benzo(a)pyrene	690 J	2,900	4,000	4,800	440 J	500 J	61
Indeno(1,2,3-cd)pyrene	450 J	2,000	2,800	3,300	290 J	380 J	3,200
Dibenzo(a,h)anthracene	U	450 J	640 J	780 J	U	U	14
Benzo(g,h,i)perylene	520 J	2,000	2,700	3,300	U	410 J	50,000
Total Carcinogenic PAHs	3,810	17,750	24,640	29,680	2,670	3,040	10,000
Total PAHs	7,620	38,500	53,640	64,100	5,210	6,210	100,000
Total SVOCs	7,620	39,210	54,550	65,140	5,210	6,480	500,000

Qualifiers
U: The compound was analyzed for, but not detected. J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

Notes : Result exceeds Comparison Value. -- : Not established.

TABLE 3C

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES SAND PILES WEST OF BASIN

RCRA METALS

Sample ID	SRSP-01	SRSP-02	SRSP-03	SRSP-04	SRSP-05	SRSP-06	NYSDEC TAGM 4046
Sampling Date	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	Appendix A Comparison
% Solids	87	98	95	97	99	84	Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	1 B	0.85 B	1,3	1 B	0.98	1.3	12
Barium	5.4 B	5.1 B	15.5	4.8 B	15.6	7.1 B	600
Cadmium	0.21 B	0.49	0.47	0.19 B	0.25 B	0.19 B	10
Chromium	7.3	7.1	7.5	5.1	5.4	10.1	50
Lead	11.3	13.9	21.8	10.3	9 //	26.9	500
Mercury	υ	U	0.016 B	0.018 B	U	U	0.2
Selenium	0.6 B	0.77 B	0.65 B	0.64 B	0.64 B	0.75 B	3.9
Silver	U_	U.	U	U	U	U	

Qualifiers

U: The constituent was analyzed for, but not detected.

B. Constituent concentration is less than the CRDL, but greater than the IDL.

<u>Notes</u>

--- : Not established.

TABLE 3D

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SAND PILES WEST OF BASIN

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID	SRSP-01	SRSP-02	SRSP-03	SRSP-04	SRSP-05	SRSP-06	NYSDEC TAGM 4046
Sampling Date	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	11/4/02	Appendix A Comparison
% Solids	87	98	95	97	99	84	Criteria
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
			: -				
Aroclor 1016	U	U	U	U	U	U	
Aroclor 1221	U	U	U	, O	U	U	
Aroclor 1232	U	U .	U,	U	U	U	
Aroclor 1242	U	U	U	U ·	U	U	
Aroclor 1248	υ .	U	U	U	U	· U	
Aroclor 1254	U	U	U	U	U	U	
Aroclor 1260	U	U	U	U	U	U	
Total	0	0	0	0	0	0	1,000/10,000*

 $\label{eq:Qualifiers} \mbox{U. The constituent was analyzed for}_{\mbox{\scriptsize 1}} \mbox{ but not detected.}$

<u>Notes</u>

- --- : Not applicable.
- *: According to NYSDEC TAGM 4046 Appendix A Criteria, 1,000 ug/kg is utilized for surface soil [0-2' below ground surface (bgs)] and 10,000 ug/kg is utilized for subsurface soil (soil deeper than 2' bgs).

TABLE 4A

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES GROUNDWATER

VOLATILE ORGANIC COMPOUNDS (VOCs)

Sample ID	SRMW-01	NYSDEC Class GA Groundwater
Sampling Date	11/4/02	Standards/Guidelines
Dilution Factor	1.0	N. C. C. C. C. C. C. C. C. C. C. C. C. C.
Units	ug/l	ug/l
Dichlorodifluoromethane	U	5 ST
Chloromethane	Ū	5 ST
Vinyl Chloride	U	2 ST
Bromomethane	U	5 ST
Chloroethane	U	5 ST
Trichlorofluoromethane	U	5 ST
1,1-Dichloroethene	U	5 ST
Acetone	Ū	50 GV
lodomethane	U	. · <u></u>
Carbon Disulfide	U	
Methylene Chloride	U	5 ST
trans-1,2-Dichloroethene	U	5 ST
Methyl tert-butyl ether	4 J	
1,1-Dichloroethane	U	5 ST
Vinyl acetate	U	.
cis-1,2-Dichloroethene	U	5 ST
2,2-Dichloropropane	U	5 ST
2-Butanone	· · U	50 GV
Bromochloromethane	· U	5 ST
Chloroform	U	7 ST
1,1,1-Trichloroethane	U-	5 ST
1,1-Dichloropropene	, and the U	5 ST
Carbon Tetrachloride	U	5 ST
1,2-Dichloroetharie	· U	5 ST
Benzene	U	0.7 ST
Trichloroethene	2 J	5 ST
1,2-Dichloropropane	U	5 ST
Dibromomethane	U	5 ST
Bromodichloromethane	U	50 GV
2-Chloroethyl vinyl ether	U	
cis-1,3-Dichloropropene	U	5 ST
4-Methyl-2-pentanone	U	
Toluene	U	5 ST
trans-1,3-Dichloropropene	U	5 ST
1,1,2-Trichloroethane	U	5 ST

TABLE 4A (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES GROUNDWATER

VOLATILE ORGANIC COMPOUNDS (VOCs)

		
SAMPLE ID DATE OF COLLECTION DILUTION FACTOR UNITS	SRMW-01 11/04/02 1.0 ug/L	NYSDEC Class GA Groundwater Standards/Guidelines ug/L
1,3-Dichloropropane Tetrachloroethene 2-Hexanone Dibromochloromethane 1,2-Dibromoethane Chlorobenzene 1,1,1,2-Tetrachloroethane Ethylbenzene Styrene Xylene (total) Bromoform Isopropylbenzene 1,1,2,2-Tetrachloroethane Bromobenzene 1,2,3-Trichloropropane n-Propylbenzene 2-Chlorotoluene 1,3,5-Trimethylbenzene 4-Chlorotoluene tert-Butylbenzene 1,2,4-Tnmethylbenzene sec-Butylbenzene 1,3-Dichlorobenzene 4-Isopropyltoluene 1,4-Dichlorobenzene n-Butylbenzene 1,2-Dichlorobenzene		5 ST 5 ST 5 ST 5 SO GV 5 ST 5 S
1,2-Dibromo-3-chloropropane	Ü	0.04 ST
1,2,4-Trichlorobenzene	Ü	5* ST
	U	0.5 ST
Hexachlorobutadiene	U	1
Naphthalene		10 GV
1,2,3-Trichlorobenzene	υ	5* ST

Qualifiers

U. The compound was analyzed for, but not detected.

J: Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero.

Notes

---: Not established.

GV: Guidance Value.

ST: Standard.

*: Value pertains to the sum of the isomers.

**: Value pertains to total phenols.

TABLE 4B

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES GROUNDWATER

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	0044404	
	SRMW-01	NYSDEC Class GA
Sampling Date	11/4/02	Groundwater Standards/Guidelines
Dilution Factor	1.0	Otalidalds/Odidelliles
Units	ug/l	ug/l
Phenol	U	1.0 ST **
bis(2-Chloroethyl)ether	Ü	1.0 ST
2-Chlorophenol	Ü	1.0 ST **
1,3-Dichlorobenzene	Ü	5.0 ST
1,4-Dichlorobenzene	Ü	4.7 ST *
1,2-Dichlorobenzene	Ü	4.7 ST •
2-Methylphenol	Ü	1.0 ST **
2,2'-oxybis(1-Chloropropane)	Ü	5.0 ST
4-Methylphenol	Ü	1.0 ST **
N-Nitroso-di-n-propylamine	Ŭ	
Hexachloroethane	Ü	5.0 ST
Nitrobenzene	Ü	5.0 ST
Isophorone	Ü	50 GV
2-Nitrophenol	Ü	1.0 ST **
2,4-Dimethylphenol	Ŭ	1.0 ST **
2,4-Dichlorophenol	Ŭ	1.0 ST **
1,2,4-Trichlorobenzene	Ü	5.0 ST
Naphthalene	Ü	10 GV
4-Chloroaniline	Ü	5.0 ST
bis(2-Chloroethoxy)methane	Ü	5.0 ST
Hexachlorobutadiene	Ŭ	5.0 ST
4-Chloro-3-methylphenol	Ü	1.0 ST **
2-Methylnaphthalene	Ü	
Hexachlorocyclopentadiene	Ŭ	5.0 ST
2,4,6-Trichlorophenol	Ü	1.0 ST **
2,4,5-Trichlorophenol	Ü	1.0 ST **
2-Chloronaphthalene	Ü	10 GV
2-Nitroaniline	Ü	5.0 ST
Dimethylphthalate	Ü	50 GV
Acenaphthylene	Ü	
2,6-Dinitrotoluene	Ü	5.0 ST
3-Nitroaniline	Ü	5.0 ST
Acenaphthene	Ū	20 GV
2,4-Dinitrophenol	Ü	1.0 ST **
4-Nitrophenol	Ü	1.0 ST **
Dibenzofuran	Ŭ	

TABLE 4B (continued)

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES GROUNDWATER

SEMIVOLATILE ORGANIC COMPOUNDS (SVOCs)

Sample ID	CDCD 04	
	SRSP-01	NYSDEC Class GA
Sampling Date	11/4/02	Groundwater
Dilution Factor	1.0	Standards/Guidelines
Units	ug/l	ug/l
2,4-Dinitrotoluene	U	5.0 ST
Diethylphthalate	U	50 GV
4-Chlorophenyl-phenylether	U	
Fluorene	U	50 GV
4-Nitroaniline	U	5.0 ST
4,6-Dinitro-2-methylphenol	U	1.0 ST **
N-Nitrosodiphenylamine	U	50 GV
4-Bromophenyl-phenylether	U	<u> </u>
Hexachlorobenzene	U	0.35 ST
Pentachiorophenol	U	1.0 ST **
Phenanthrene	U	50 GV
Anthracene	Ū	50 GV
Carbazole	ľ	
Di-n-butylphthalate	ľ	50 ST
Fluoranthene	U	50 GV
Pyrene	ľ	50 GV
Butylbenzylphthalate	U	50 GV
3,3'-Dichlorobenzidine	U	5.0 ST
Benzo(a)anthracene	Ü	0.002 GV
Chrysene	ľ	0.002 GV
bis(2-Ethylhexyl)phthalate	ľ	50 ST
Di-n-octyl phthalate	Ú	50 GV
Benzo(b)fluoranthene	Ü	0.002 GV
Benzo(k)fluoranthene	Ŭ	0.002 GV
Benzo(a)pyrene	l Ü.	ND ST
Indeno(1,2,3-cd)pyrene	Ū	0.002 GV
Dibenzo(a,h)anthracene	Ü	-
Benzo(g,h,i)perylene	Ū	

Qualifiers

U: The compound was analyzed for, but not detected.

Notes

- ---: Not established.
- GV: Guidance Value.
- ST: Standard.
- *: Value pertains to the sum of the isomers.
- **: Value pertains to total phenols.

TABLE 4C

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN ANALYTICAL SUMMARY TABLES GROUNDWATER

RCRA METALS

Sample ID	SRMW-01 (unfiltered)	SRMW-01 (filtered)	NYSDEC Class GA
Sampling Date	11/4/02	11/4/02	Groundwater
Dilution Factor	1.0	1.0	Standards/Guidelines
Units	ug/l	ug/l	ug/l
Arsenic	104	U	25
Banum	538	23.2 B	1,000
Cadmium	1,950	42.2	5
Chromium	284	8.3 B	50
Lead	138	U	25
Mercury Selenium Silver	0.15 B U U	U U	0.7 10 50

Qualifiers

U. The constituent was analyzed for, but not detected.

B: The constituent concentration is less than the CRDL, but greater than the IDL.

N	<u>01</u>	<u>e</u> :	<u>s</u>	
			7	

: Result exceeds Companson Value.

TABLE 4D

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES GROUNDWATER**

POLYCHLORINATED BIPHENYLS (PCBs)

Sample ID Sampling Date Dilution Factor Units	SRMW-01 11/4/02 1.0 ug/l	NYSDEC Class GA Groundwater Standards/Guidelines ug/l
		49.1
Aroclor 1016	U .	
Aroclor 1221	U	 .
Aroclor 1232	U	
Aroclor 1242	Ų	
Aroclor 1248	U	
Aroclor 1254	U	<u></u>
Aroclor 1260	U	
Total	0	0.09

Qualifiers
U: Constituent analyzed for, but not detected.

<u>Notes</u>

--- : Not applicable.

TABLE 5

NORTHROP GRUMMAN CORPORATION SOUTH RECEIVING BASIN **ANALYTICAL SUMMARY TABLES** SURFACE/SUBSURFACE SOIL

TCLP - CHROMIUM

Sample ID	SB-01SS	SB-05SS	SB-02 (12-14)	SB-02 (16-18)	SB-04 (0-2')	
Sample Depth	0-2"	0-2"	12-14'	16-18'	0-2'	
Sampling Date	10/29/02	10/29/02	10/31/02	10/31/02	10/29/02	Regulatory Level
Dilution Factor	1.0	1.0	1.0	1.0	1.0	
Units	ug/l	l ug/l	ug/l	ug/l	ug/l	ug/l
Chromium	U	30.6 B	201 B	U	143 B	5,000

Qualifiers:

- U: The constituent was analyzed for, but not detected.

 B: Constituent concentration is less than the CRDL, but greater than the IDL.