NORTHROP GRUMMAN

Town of Oyster Bay Bethpage Community Park Investigation Sampling Program

Field Report

December 2003

Northrop Grumman Corporation Airborne Early Warning and Electronic Warfare Systems South Oyster Bay Road Bethpage, NY 11714-3581

December 23, 2003 ESH&M-03L-158

Mr. Edwin Dassatti, Director
Bureau of Solid Waste and Corrective Action
Division of Solid and Hazardous Materials
New York State Department of Environmental Conservation
625 Broadway – 9th Floor
Albany, NY 12233-7258

Re:

Town of Oyster Bay

Bethpage Community Park Investigation Sampling Program

Dear Mr. Dassatti:

Enclosed please find three copies of the document entitled:

"Town of Oyster Bay Bethpage Community Park Investigation Sampling Program Field Report"

By copy of this letter, the enclosed report is being submitted to the individuals listed below. If you have any questions or comments regarding the enclosed report, please do not hesitate to give me a call at (516) 575-2333.

Very truly yours,

NORTHROP GRUMMAN CORPORATION

Larry L. Leskovjan

Manager

Environmental, Safety, Health & Medical

Enclosure

Mr. Edwin Dassatti December 23, 2003 Page 2

CC:

H. Wilkie (NYSDEC)

L. Rosenmann (NYSDEC)

S. Hamilton (NYSDED)

A. Cava (NYSDEC)

R. Fedigan (NYSDOH)

I. Ushe (NYSDOH)

J. Colter (US Navy)

J. Kaminski (US Navy)

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

Field Report

Prepared for:

NORTHROP GRUMMAN SYSTEMS CORPORATION Bethpage, New York

Prepared by:

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS
Woodbury, New York

DECEMBER 2003

FIELD REPORT TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

TABLE OF CONTENTS

Section		<u>Title</u>	<u>Page</u>
1.0	INTE	RODUCTION	1-1
2.0	SITE	BACKGROUND	2-1
	2.1	Site Description	2-1
	2.2	Site History	
	2.3	Previous Investigations	
		2.3.1 November 1994	
		2.3.2 April 1998	
		2.3.3 March 2002	
		2.3.4 May 2002	2-7
3.0	FIEL	D PROGRAM	3-1
	3.1	Objectives and Approach	3-1
	3.2	Field Activities	
		3.2.1 Borings	3-6
		3.2.2 Monitoring Wells	
	3.3	Changes to the Proposed Field Program	3-21
4.0	FIND	DINGS	4-1
	4.1	Sample Analyses	4-1
		4.1.1 Soil Screening Criteria	
		4.1.2 Groundwater Screening Criteria	4-4
	4.2	Data Validation	4-5
	4.3	Boring Logs	
	4.4	Summary of Analytical Results	4-8
		4.4.1 Soil Samples	4-8
		4.4.2 Groundwater Samples	
		4.4.2.1 June 19, 2003 Groundwater Sampling Event	
		4.4.2.2 September 12, 2003 Groundwater Sampling Event	4-15
		4.4.2.3 November 25 and 26, 2003	116
	15	Groundwater Contour Man	

TABLE OF CONTENTS (continued)

Section	<u>1</u>	<u>Title</u>	<u>Page</u>			
5.0	CON	ICLUSIONS	5-1			
	5.1	Conclusions 5.1.1 Soil				
		5.1.1.1 Vertical Delineation				
		5.1.1.2 Horizontal Delineation	5-4			
		5.1.2 Groundwater				
		5.1.2.1 VOCs				
		5.1.2.2 TAL Metals	5-15			
List of	Appendi	ices				
	Moni	itoring Well Construction Logs	A			
	Laboratory Analysis Summary Tables					
	Data Validation Documentation					
	Borir	ng Logs	D			
List of	Figures					
	2-1	Site Location Map	2-2			
	2-2	Site Plan and Surrounding Areas	2-4			
	2-3	April 10, 1962 Aerial Photograph Overlay	2-8			
	3-1	Sample Location Plan	3-5			
	4-1	Baseball Field - Summary of Exceedances				
	4-2	Boring B-1 - Summary of Exceedances				
	4-3	South Playground Area - Summary of Exceedances				
	4-4	Groundwater Contour Map	4-20			
	5-1	Baseball Field - Comprehensive Summary of Exceedances	5-6			

TABLE OF CONTENTS (continued)

List of Tables		
2-1	March 2002 Soil Sampling Program - Summary of Detected Contamination	9
3-1	Soil Sample Summary3-7	7
4-1	Water Level Measurements and Surveyed Well Elevations4-1	19
List of Tables In	Appendix B	
B-1	Soil Sampling Results - Volatile Organic Compounds	
B-2	Soil Sampling Results - Semivolatile Organic Compounds	
B-3	Soil Sampling Results - Polychlorinated Biphenyls	
B-4	Soil Sampling Results - RCRA/TAL Metals and Hexavalent Chromium	
B-5	Groundwater Sampling Results - Volatile Organic Compounds	
B-6	Groundwater Sampling Results - Semivolatile Organic Compounds	
B-7	Groundwater Sampling Results - Polychlorinated Biphenyls	
B-8	Groundwater Sampling Results - TAL Metals and Hexavalent Chromium	

1.0 INTRODUCTION

The purpose of this report is to document the field activities and present a discussion of the findings and conclusions of the analytical results associated with the Investigation Sampling Program undertaken within the Town of Oyster Bay Bethpage Community Park by Dvirka and Bartilucci Consulting Engineers (D&B) on behalf of Northrop Grumman Systems Corporation (NGSC). This program was undertaken in accordance with the document entitled, "Town of Oyster Bay Bethpage Community Park, Investigation Sampling Program, Bethpage, New York, Site-Specific Work Plan" dated April 2003, which was reviewed and approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH).

The objectives of the Investigation Sampling Program, as presented in the Site-Specific Work Plan, are as follows:

- Identify the limits of contamination above levels of concern.
- Define the areas of highest contamination within the park.
- Provide sufficient information to allow evaluation of various remedial alternatives.
- Determine whether the soil contamination previously detected within the park is currently impacting groundwater quality.

In order to achieve the objectives presented above, the field program was implemented as specified in the Site-Specific Work Plan.

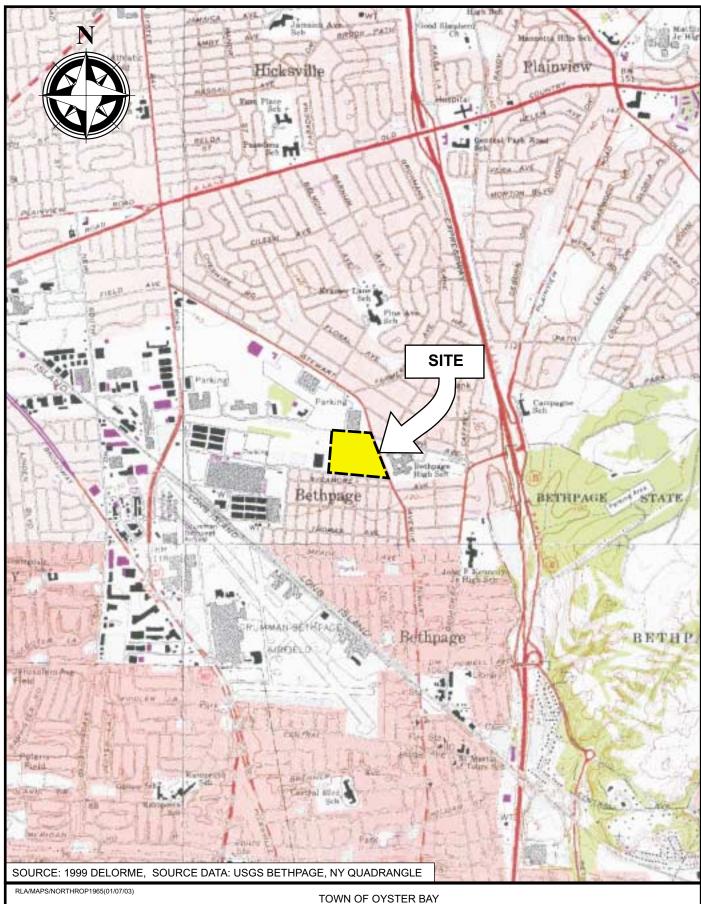
Section 2.0 of this report provides a description of the park property and presents a brief summary of the site history and previous investigation programs. A description of the field activities and overall scope of the Investigation Sampling Program is presented in Section 3.0. Section 4.0 provides a summary of analytical results of the environmental samples collected during the Investigation Sampling Program and presents the findings of the program.

Conclusions drawn as a result of undertaking the Investigation Sampling Program are presented in Section 5.0 of this report.

Appendix A of this report presents monitoring well construction logs for the three groundwater monitoring wells installed during the Investigation Sampling Program. Laboratory analysis summary tables presenting results for the soil and groundwater samples collected and analyzed during the Investigation Sampling Program are provided in Appendix B. Appendix C presents data validation documentation for the laboratory analyses performed on the soil and groundwater samples collected during the Investigation Sampling Program. Boring logs prepared for all soil borings advanced during the Investigation Sampling Program are provided in Appendix D.

2.0 SITE BACKGROUND

This section provides a general description of the Town of Oyster Bay Bethpage Community Park ("Park property") and surrounding areas and presents a brief summary of site history and historic investigation programs conducted on the property.

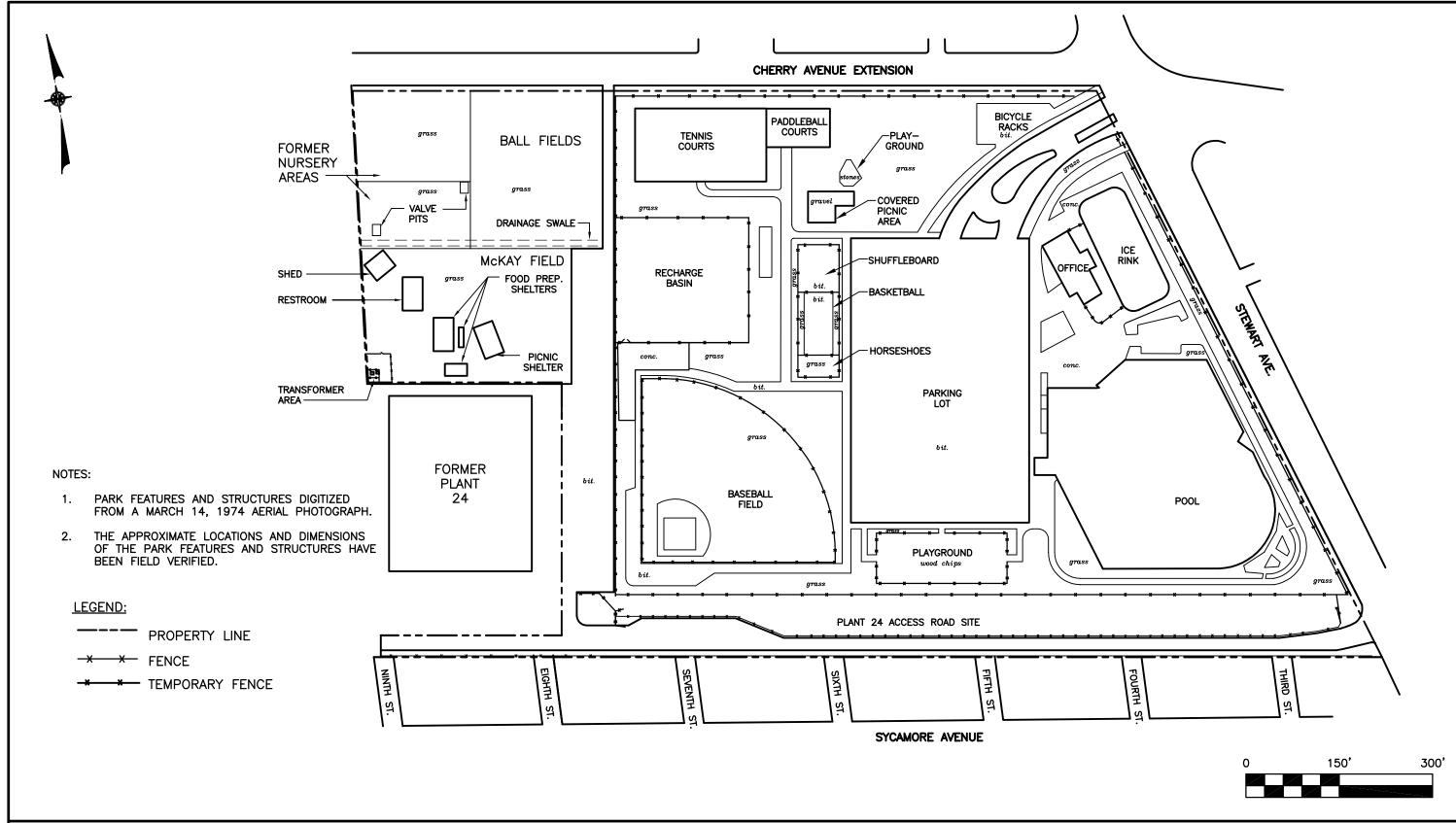

2.1 Site Description

The Town of Oyster Bay Bethpage Community Park is located on Stewart Avenue in Bethpage, Nassau County, New York and is situated adjacent to the northeastern portion of the Northrop Grumman Systems Corporation (NGSC) Bethpage Facility. A figure showing the location of the property in relation to the surrounding areas is provided as Figure 2-1.

The entire Park property is comprised of approximately 18 acres and is currently owned by the Town of Oyster Bay. The site is bordered by the Cherry Avenue Extension and the Robert Plan Company building (formerly NGSC's Plant 30) to the north, Stewart Avenue and a high school to the east, the Plant 24 access road to the south, and a second Robert Plan Company building (formerly NGSC's Plant 24) and the McKay Field property, ball fields and former nursery areas (currently owned by NGSC) to the west. The Park is available to community residents year round. The major features and structures located on the Park property include the following:

- Tennis courts
- Paddleball courts
- Covered picnic area
- Two playground areas
- Baseball field
- Two swimming pools
- Covered ice skating rink

- Shuffleboard courts
- Basketball court
- Horseshoe courts
- Park offices
- Parking lot
- Bicycle rack area
- Storm water recharge basin


TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK BETHPAGE, NEW YORK A site plan for the Park property is provided as Figure 2-2. The site is generally level with good drainage. Ground elevation is approximately 120 feet above mean sea level and the depth from ground surface to the upper glacial aquifer is approximately 58 feet. The Soil Conservation Service classifies the site as Urban Land (Ug). Urban Land is defined as an area with at least 85 percent asphalt, concrete, or other impervious building materials, with most of the remaining small areas of soil being well drained Riverhead, Hempstead or Enfield soils, or excessively drained Udipsaments. Udipsaments are defined as manmade fills or borrow areas, most of which are grassed with 0 to 60 percent slopes, which consist of very deep soils that are excessively drained to well-drained.

2.2 Site History

The area comprising what is now the Town of Oyster Bay Bethpage Community Park was primarily farmland until the 1940s. Around that time, the property was purchased by Grumman Aircraft Engineering Corporation, a predecessor company of Northrop Grumman Systems Corporation, as part of the Bethpage Facility. The site was not involved with any of the manufacturing operations undertaken at the Bethpage Facility, and no buildings or structures were ever erected on the property by Grumman Aircraft Engineering Corporation.

According to Northrop Grumman Systems Corporation records, the property comprising the park was donated by Grumman Aircraft Engineering Corporation to the Town of Oyster Bay on October 17, 1962. Shortly thereafter, the park as it appears now was constructed on the property.

Aerial photographs of the Grumman Aircraft Engineering Corporation Bethpage Facility dated from before the transfer of property show the site as undeveloped and indicate some earth disturbances. Northrop Grumman Systems Corporation conducted an investigation which produced the following information:

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK BETHPAGE, NEW YORK

SITE PLAN AND SURROUNDING AREAS

- Wastewater treatment sludge generated at the Grumman Aircraft Engineering Corporation Plant 2 Industrial Wastewater Treatment Facility was transported to the Park property and placed in one of two sludge drying beds. The wastewater treated at the Plant 2 Industrial Wastewater Treatment Facility resulted from metal finishing operations conducted at both Plant 2 and Plant 3 at the Naval Weapons Industrial Reserve Plant.
- The area where the sludge drying beds were located was enclosed by a chain-link fence, which was secured by a locked gate. This fenced area is visible in available aerial photographs dated between the 1950s and 1962, when the property was transferred to the Town of Oyster Bay.
- Spent rags generated during the wipe-down of a paint booth water curtain located in Plant 2 were transported to the fenced-in area of the Park property where they were emptied into a pit located on the property. In addition, used oil may have been discarded in this pit.
- The southeastern portion of the current park property was utilized as a fire training area where waste oil and jet fuel were ignited and extinguished. The requirement to develop, operate and maintain an on-site fire fighting force ("Crash Crew"), including a fire training program, was imposed on Grumman Aircraft Engineering Corporation by the U.S. Navy.

Northrop Grumman Systems Corporation does not have any information regarding the operations conducted by the Town of Oyster Bay subsequent to the property transfer.

2.3 Previous Investigations

Three previous investigations programs were conducted which included soil sampling within the Park property. The following sections provide a brief description of each program.

2.3.1 November 1994

On November 16 and 17, 1994, an investigation was conducted by Halliburton NUS Corporation on behalf of the U.S. Department of the Navy to determine whether polychlorinated biphenyl (PCB) contamination from the Naval Weapons Industrial Reserve Plant (NWIRP) Site 1 had migrated and impacted downwind off-site locations. Of the 17 locations sampled during this investigation, one was located on the Bethpage Community Park property adjacent to

the basketball court. A soil sample was collected in this location from the 0 to 6-inch depth interval below grade and analyzed for PCBs.

The analytical results of this sample indicated that PCBs were not present at concentrations exceeding the New York State Department of Environmental Conservation's Technical and Administrative Guidance Memorandum (TAGM) No. 4046 Recommended Soil Cleanup Objective. The results of the program were summarized in the report entitled, "Off-site Soil Sampling and PCB Analysis Report, NWIRP, Bethpage, New York - CTO 0089." The report did not recommend additional sampling since PCB concentrations in excess of the TAGM criteria were not detected.

2.3.2 April 1998

In April 1998, the Town of Oyster Bay retained EDER Associates (EDER) to conduct a surface soil sampling program within the Bethpage Community Park to determine whether PCBs were present in the surface soil. As part of this program, EDER collected surface soil samples from five locations within the park including the picnic area (two locations), the baseball field (two locations) and the area between the ice rink and the pool along Stewart Avenue (one location). Soil samples were collected from the surface at each location and analyzed for PCBs.

The analytical results of the surface soil samples indicated that PCBs were not present at concentrations exceeding the NYSDEC's TAGM 4046 Recommended Soil Cleanup Objective. The results of the program were summarized in the letter report entitled, "Soil Sampling - Polychlorinated Biphenyls, Bethpage Community Park," dated April 27, 1998. Recommendations for additional sampling were not presented in the letter report since PCB concentrations in excess of the TAGM criteria were not detected.

2.3.3 <u>March 2002</u>

In March 2002, as a result of detecting PCB concentrations in excess of the NYSDEC TAGM 4064 Recommended Soil Cleanup Objectives on an adjacent property, Northrop

Grumman Systems Corporation retained Dvirka and Bartilucci Consulting Engineers to conduct a soil sampling program within the Bethpage Community Park. The program consisted of advancing 60 soil probes on a 100-foot grid to a depth of 8 feet below grade. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval and at 2-foot intervals from that point until the total depth of each boring was reached (a total of 5 soil samples per probe). In addition, surface soil samples were collected from 19 "exposure point locations." All soil samples collected were analyzed for PCBs and Resource Conservation and Recovery Act (RCRA) metals. The analytical results of the soil samples indicated that PCBs and some RCRA metals were present at some locations in the park at concentrations exceeding the NYSDEC's TAGM 4046 Recommended Soil Cleanup Objectives. The results of the program were summarized in the report entitled, "Town of Oyster Bay Bethpage Community Park, Soil Sampling Program, Report of Findings," dated June 2002. Subsequent to this soil sampling program, in May 2002, the Town of Oyster Bay closed the Bethpage Community Park. Following installation of a fence to prevent access to the grass areas, the park partially reopened in November 2002.

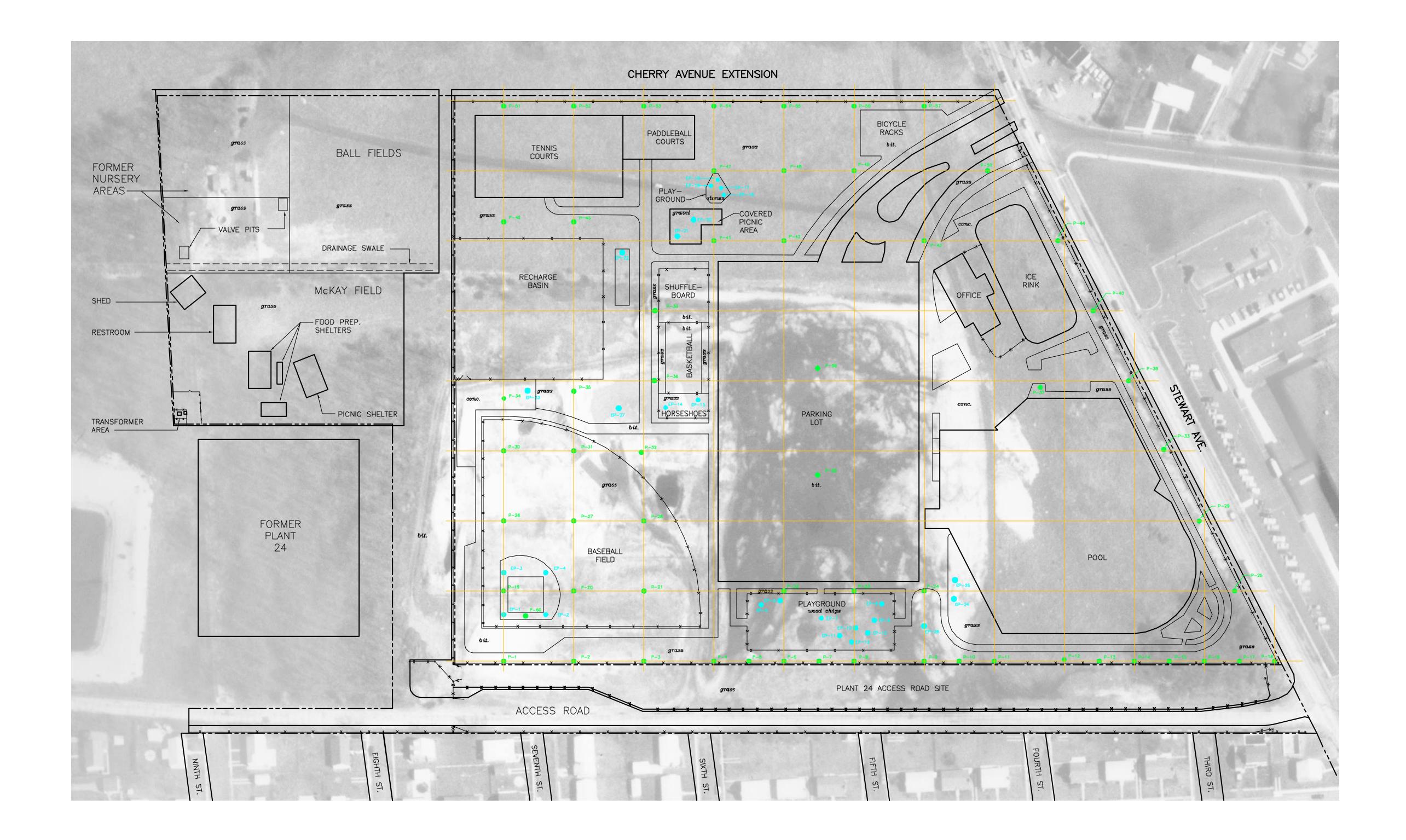

The grid and sampling locations utilized during the March 2002 soil sampling program has been overlain on an April 10, 1962 aerial photograph and provided as Figure 2-3.

Table 2-1 presents the concentrations of PCBs and RCRA metals detected in soil probe samples in excess of the NYSDEC's TAGM 4046 Recommended Soil Cleanup Objectives. The table presents each soil sample by probe location and depth, and is organized by general location within the Bethpage Community Park. It should be noted that only constituent concentrations in excess of the TAGM 4046 Recommended Soil Cleanup Objectives are presented on the table; if the soil sample did not exhibit any TAGM 4046 exceedances, then "none" is noted in the table cell corresponding to that soil sample.

2.3.4 May 2002

Subsequent to the March 2002 soil sampling program, NYSDOH inspected the park and requested that Northrop Grumman Systems Corporation collect additional exposure point

NOTES;

 PARK FEATURES AND STRUCTURES DIGITIZED FROM A MARCH 14, 1974 AERIAL PHOTOGRAPH.
 THE APPROXIMATE LOCATIONS AND DIMENSIONS OF THE PARK FEATURES AND STRUCTURES HAVE BEEN FIELD VERIFIED.

TEMPORARY FENCE

SOIL PROBE LOCATION (ADVANCED TO A DEPTH OF 8 FEET BELOW GRADE)

SOIL PROBE POINT SAMPLING LOCATION (COLLECTED FROM THE 0-2" DEPTH

● EXPOSURE POINT SAMPLING LOCATION (COLLECTED FROM THE 0-2" DEPTH INTERVAL)

TOWN OF OYSTER BAY
BETHPAGE COMMUNITY PARK
INVESTIGATION SAMPLING PROGRAM

Table 2-1

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK MARCH 2002 SOIL SAMPLING PROGRAM SUMMARY OF DETECTED CONTAMINATION

Baseball Field Area (extending from the south fence line to the recharge basin)

			Sample Depth		
Probe	0-2"	2"-2'	2'-4'	4'-6'	6'-8'
P-1	None	Cr (58.3)	Cr (102), Hg (0.21)	As (33), Cd (46), Cr (11,800), Hg (0.34), Se (5)	Cr (69.5)
P-2	Cr (86), Hg (0.21), PCBs (1.01)	Cr (147)	Cr (262)	Cr (162)	None
P-3	None	Cr (476), Hg (0.25)	Hg (0.24)	None	None
P-4	Cr (126)	Cr (101), PCBs (1.61)	None	None	None
P-19	None	None	None	None	Cr (155), PCBs (23)
P-20	None	None	Cr (98.6)	Cr (149), PCBs (59)	None
P-21	None	None	Hg (0.54)	None	None
P-26	Hg (0.22)	Hg (0.23)	Cr (126)	Cr (76.3), PCBs (11)	Cr (185), PCBs (31)
P-27	None	None	As (12.2), Cr (64.6), Hg (0.23)	Cr (87.9)	Cr (142), PCBs (41)
P-28	None	None	None	Cr (93.5), PCBs (31)	Cr (186), PCBs (20)
P-30	Cr (123)	Cr (378), PCBs (6.3)	Cr (339), PCBs (16)	Cr (293)	Cr (91.5)
P-31	Cr (364), PCBs (23)	Cr (75.1), Hg (0.26), PCBs (1.14)	Cr (214), PCBs (550)	Cr (222), PCBs (880)	Cd (11.4), Cr (531), PCBs (16)
P-32	Cr (57.3), Hg (0.22)	Cr (112), PCBs (1.3)	Cr (364)	Cr (160)	Cr (52.2)
P-34	Cr (51.3)	Cr (170), PCBs (6.2)	Cr (54)	Cd (10.8), Cr (431), PCBs (17)	Cd (13.7), Cr (760), PCBs (14)
P-35	Cr (277), PCBs (3.62)	Cr (131), PCBs (4.9)	Cr (967)	Cr (858)	Cr (157)
P-36	None	Cd (21.5), Cr (857), Hg (0.29), PCBs (19.2)	Cr (141), PCBs (14)	Cr (180)	Cr (50.3)
P-39	None	None	None	None	None
P-60	None	None	Cr (78.5)	Cr (82.5), PCBs (11)	Cr (121), Hg (0.28), PCBs (11)

Table 2-1 (continued)

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK MARCH 2002 SOIL SAMPLING PROGRAM SUMMARY OF DETECTED CONTAMINATION

Area South of Tennis Courts

	Sample Depth					
Probe	0 – 2"	2"-2'	2'-4'	4' - 6'	6' - 8'	
P-45	None	Cr (117)	Cr (97.3)	None	None	
P-46	None	Cr (68)	Cr (59.1)	Cr (176)	Cr (83.5)	

South Playground Area

	Sample Depth						
Probe	0 – 2"	2" – 2'	2'-4'	4'-6'	6' - 8'		
P-5	None	None	Cr (971)	As (472), Ba (5,470), Cd (56.3), Cr (124,000), Pb (1,410), Hg (18.5)	Cr (136)		
P-6	None	None	None	None	None		
P-7	None	Cr (151), Pb (594)	None	None	None		
P-8	None	Hg (0.36)	None	None	None		
P-9	None	PCBs (3.7)	PCBs (55)	None	None		
P-22	None	None	As (15.7), Cr (204), Hg (0.22), PCBs (26)	As (14.5), Cr (76.6), Pb (584)	None		
P-23	None	None	None	None	None		
P-24	PCBs (1.75)	PCBs (3.8)	None	None	None		

Southeast Fence Line

	Sample Depth						
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6'-8'		
P-10	None	None	None	None	None		
P-11	None	None	None	None	None		
P-12	Hg (0.23), PCBs (1.04)	None	None	None	None		
P-13	As (13.7), Hg (0.25)	Hg (0.44)	None	None	None		
P-14	Hg (0.25), PCBs (1.8)	None	None	Cr (76.4)	Cr (90.9)		

Table 2-1 (continued)

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK MARCH 2002 SOIL SAMPLING PROGRAM SUMMARY OF DETECTED CONTAMINATION

Southeast Fence Line (continued)

	Sample Depth						
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6' - 8'		
P-15	PCBs (1.5)	None	None	None	None		
P-16	None	None	None	None	None		
P-17	None	None	None	None	None		
P-18	As (16.9)	As (13.3), Hg (0.52)	None	None	None		

Eastern Side of Park

	Sample Depth						
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6'-8'		
P-25	PCBs (2)	Cr (645)	Cr (208)	None	None		
P-29	Hg (0.29), PCBs (3.4)	None	Cr (79.5)	None	None		
P-33	As (13.4), Hg (0.23), PCBs (2.3)	Cr (201)	Cr (70)	None	None		
P-37	PCBs (1.7)	Hg (0.25)	None	None	None		
P-38	None	None	None	None	None		
P-40	None	None	Cr (62.5)	Cr (320)	None		
P-43	As (14.2)	None	None	None	None		
P-44	Cr (107), Hg (0.31)	None	Cr (85)	None	None		
P-50	Hg (0.21)	None	None	None	None		

North Area

	Sample Depth						
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6' - 8'		
P-41	Hg (0.23)	None	None	None	None		
P-42	Hg (0.25), PCBs (1.75)	None	None	None	None		
P-47	PCBs (2.9)	Cr (51.5), PCBs (1.16)	None	PCBs (44)	None		
P-48	Hg (0.23)	PCBs (4.2)	None	Hg (0.23)	Hg (0.3)		
P-49	Hg (0.24)	None	Hg (0.22)	Hg (0.31)	None		

Table 2-1 (continued)

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK MARCH 2002 SOIL SAMPLING PROGRAM SUMMARY OF DETECTED CONTAMINATION

North Fence Line

	Sample Depth						
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6'-8'		
P-51	As (16), Hg (0.28)	As (12.6)	None	None	None		
P-52	As (16.4), Hg (0.31)	None	None	None	None		
P-53	As (16.2), Hg (0.27)	As (15.4), Hg (0.37)	None	None	None		
P-54	Hg (0.29)	Hg (0.23)	None	None	None		
P-55	As (14.4), Hg (0.26)	As (24.3), Hg (0.3)	None	None	None		
P-56	As (13.9), Hg (0.24)	Hg (0.47)	None	None	None		
P-57	Hg (0.23)	Hg (0.23)	Hg (0.22)	None	None		

Parking Lot

	Sample Depth					
Probe	0 – 2"	2"-2'	2'-4'	4'-6'	6' - 8'	
P-58		None	None	None	None	
P-59		None	As (15.7)	None	None	

Notes:

- 1. All analytical results reported in units of mg/kg (parts per million [ppm]).
- 2. All analytical results not provided above are below the NYSDEC's TAGM 4046 Recommended Soil Cleanup Objectives.
- 3. "None" indicates that none of the constituent concentrations exceeded the NYSDEC's TAGM 4046 Recommended Soil Cleanup Objectives.
- 4. -- = No soil sample collected.

samples from eight locations within the Bethpage Community Park, as well as collect a number of surface soil samples immediately adjacent to a soil probe located in left center field of the baseball field (probe P-31) in order to achieve improved horizontal delineation. In May 2002, NGSC retained Dvirka and Bartilucci Consulting Engineers to collect the additional exposure point samples and limited surface soil samples adjacent to probe P-31 within the Park property. This program consisted of collecting surface soil samples (0 to 2 inches below grade) from 8 exposure point locations as well as 12 locations surrounding P-31 (radii of 5, 10 and 50 feet with 4 soil samples collected at each distance). The sample collection program work plan indicated that the soil samples collected from the 10 and 50-foot radii would only be analyzed if the samples from the 5-foot radius exceeded the NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives. Since the samples analyzed from the 5-foot radius did not exceed the TAGM 4046 values, only the 4 exposure point samples from the 5-foot radius associated with P-31 were analyzed, along with the other 8 exposure point samples. All soil samples were analyzed for PCBs and RCRA metals. The results of the program were summarized in a letter report entitled, "Additional Soil Sampling Program, Town of Oyster Bay Bethpage Community Park, Bethpage, New York" dated July 18, 2002. Only one sample exceeded the TAGM 4046 values, with an analytical result of 3.5 mg/kg.

It should be noted that the Town of Oyster Bay's consultant, Gannett Fleming Engineers and Architects (Gannett Fleming), and the NYSDEC split soil samples with Dvirka and Bartilucci Consulting Engineers during the soil sampling program conducted in May 2002. In addition to the samples listed previously, Gannett Fleming had the 8 soil samples collected from the 10 and 50-foot radii surrounding P-31 analyzed, and collected soil samples from two locations within the recharge basin area from the 0 to 2-inch and 2-inch to 2-foot depth intervals below grade for analysis. Only three samples exceeded the TAGM 4046 values, with PCB analytical results of 1.4 mg/kg, 5.8 mg/kg and 8 mg/kg. The NYSDEC collected surface soil samples from only 7 of the locations from which Dvirka and Bartilucci Consulting Engineers collected soil samples; however, the analytical results have not been made available to NGSC.

3.0 FIELD PROGRAM

This section of the report presents a description of the Investigation Sampling Program undertaken within the Town of Oyster Bay Bethpage Community Park. The field activity portion of the program was conducted May 27 through June 12, 2003, with groundwater sampling performed on June 19, September 12 and November 25 and 26, 2003.

All work conducted within the Bethpage Community Park was performed in accordance with the document entitled, "Town of Oyster Bay Bethpage Community Park, Investigation Sampling Program, Bethpage, New York, Site-Specific Work Plan," dated April 2003. The Site-Specific Work Plan was approved by the New York State Department of Environmental Conservation (NYSDEC) and the New York State Department of Health (NYSDOH).

3.1 Objectives and Approach

The purpose of the Investigation Sampling Program is to further characterize the environmental quality of surface and subsurface soil located within the Town of Oyster Bay Bethpage Community Park and to determine whether groundwater quality is being adversely impacted by the site.

Based on the results of the soil sampling program undertaken by Northrop Grumman Systems Corporation in March/May 2002 and subsequent meetings and discussions with representatives of the NYSDEC and NYSDOH, areas of the property which exhibited evidence of earth disturbances on historical aerial photographs were identified as primary areas of concern within the Bethpage Community Park. As a result, the Investigation Sampling Program addresses these areas and seeks to further delineate the contamination previously detected.

Boring and Monitoring Well Locations

In order to improve the delineation of any previously detected contamination (i.e., impacted soil), a total of 28 soil borings were advanced within the Bethpage Community Park

during the Investigation Sampling Program. Subsequently, three of these borings were converted to groundwater monitoring wells in order to assess groundwater quality. The rationale for the location and depth of these soil borings and monitoring wells follows:

- Five borings were advanced along the east side of the baseball field area just west of the sidewalk at locations on the east/west lines of the previously established 100-foot grid. These borings are identified as B-2, B-4, B-10, B-15 and BCPMW-3. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- Four borings were advanced along the west side of the baseball field area just east of the fence line at locations on the east/west lines of the previously established 100-foot grid. These borings are identified as B-3, B-8, B-18 and B-21. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- One boring was advanced south of the recharge basin area and identified as BCPMW-1. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- Eight borings were advanced adjacent to previously-advanced soil probes where the deepest soil sample exhibited a polychlorinated biphenyl (PCB) concentration in excess of 10 ppm (the TAGM 4046 Recommended Soil Cleanup Objective for subsurface soil). These borings are identified as B-5 (adjacent to P-34), B-9 (adjacent to P-31), B-12 (adjacent to P-26), B-13 (adjacent to P-27), B-14 (adjacent to P-28), B-19 (adjacent to P-19), B-20 (adjacent to P-60) and B-22 (adjacent to P-20). Soil samples were collected at 2-foot intervals starting at 8 feet below grade until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.

It should be noted that, in addition to that specified above, for borings B-19, B-20 and B-22, soil samples were collected at 2-foot intervals from 0 to 8 feet below grade, screened with the photoionization detector (PID) and selected for volatile and semivolatile organic compound analyses if a particular sample exhibited the highest PID reading within the boring or greater than 50 ppm above background concentrations. These three locations represent the suspected area where fire training activities were historically conducted.

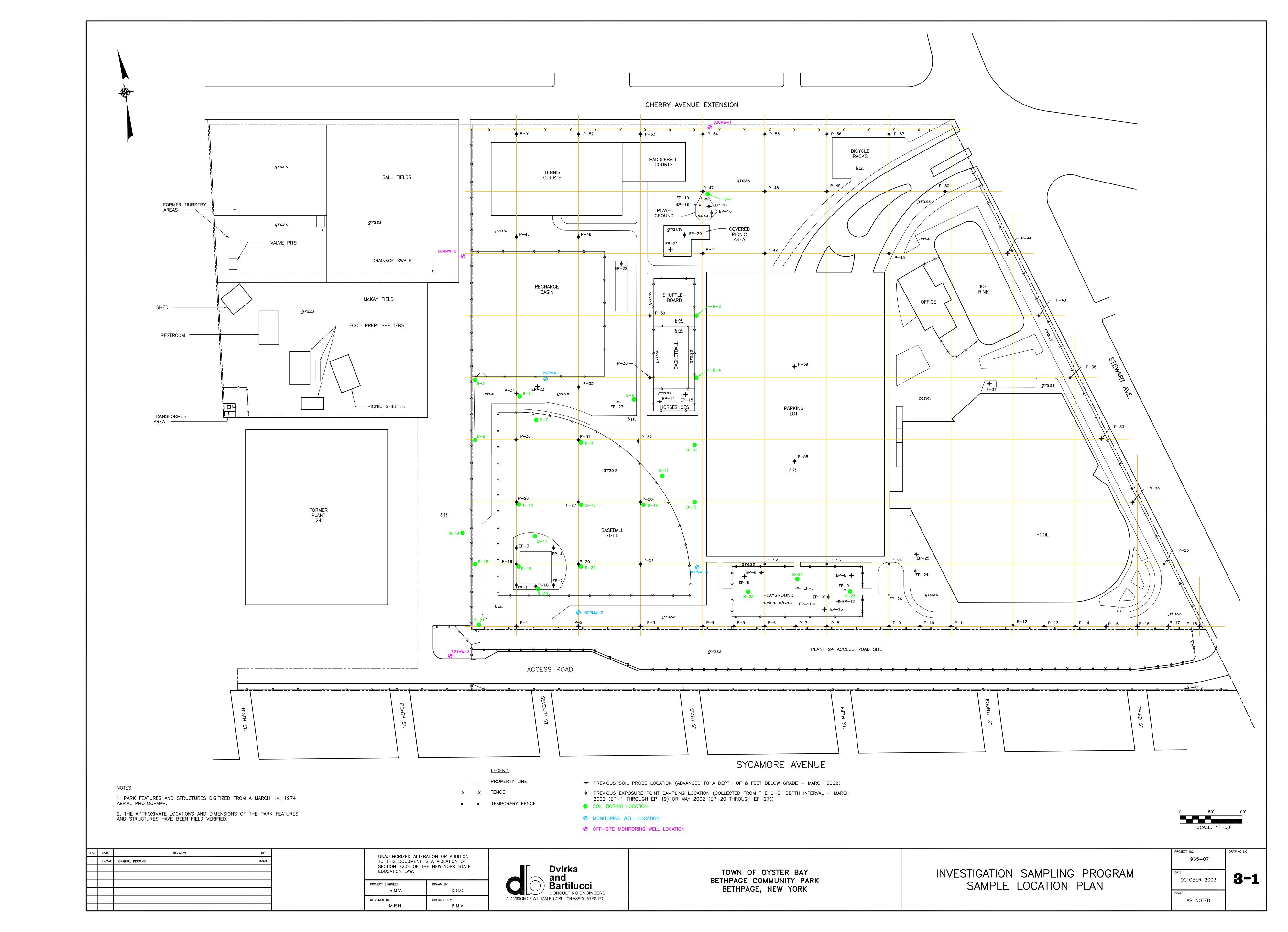
• One boring was advanced between previously-advanced soil probes P-2 and P-20 in order to delineate the southern limit of the suspected area where fire training activities

were historically conducted. This boring is identified BCPMW-2. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.

- Five borings were advanced in locations where the historic aerial photographs indicate that former sludge drying beds/pits/excavations were located. These borings are identified as B-6, B-7, B-11, B-16 and B-17. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- One boring was advanced adjacent to previously-advanced soil probe P-47 in order to vertically delineate the PCB contamination detected in this location. This boring is identified as B-1. Soil samples were collected at 2-foot intervals starting at 8 feet below grade until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- Three borings were advanced within the south playground area and identified as B-23, B-24 and B-25. Soil samples were collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached, consistent with the field protocol established as part of the Site-Specific Work Plan.
- Three of the borings advanced as part of this program were converted to groundwater monitoring wells. These borings are identified as BCPMW-1, BCPMW-2 and BCPMW-3. As such, each boring was continued from its total depth to 10 feet below the water table interface (approximately 70 feet below grade). Soil samples were collected at 2-foot intervals for each 5 feet of boring, characterized and screened with a PID. Laboratory analysis of these soil samples was proposed for all 2-foot intervals which exhibited visual signs of staining and/or discoloration or PID readings above background concentrations. However, based on the field observations and PID readings, it was determined that these soil samples did not require laboratory analysis.

Boring Depth

Earth disturbances were historically located within the present location of the ball field; however, the vertical extent of impacted soil was unclear. Consequently, the total depth of each boring was field determined by a qualified geologist. As such, the soil borings were advanced to the following depth at each location, whichever was greater:


- Twelve (12) feet below grade for borings B-1 through B-5, B-8 through B-10, B-12 through B-15, and B-18 through B-22;
- Sixteen (16) feet below grade for borings B-6, B-7, B-11, B-16 and B-17;
- Undisturbed native soil or a confining layer; or,
- Soil which does not exhibit evidence of contaminant impact such as visual appearance of staining and/or discoloration or PID readings above background concentrations. All borings were continued until two consecutive "visibly clean" sample intervals were collected that did not exhibit PID readings above background concentrations.

The locations of all of the soil borings and monitoring wells advanced/installed during the Investigation Sampling Program are presented on Figure 3-1.

Sample Analyses

The soil samples collected during the Investigation Sampling Program were analyzed for the following parameters as noted:

- Volatile Organic Compounds If PID readings above background concentrations
 were detected in a particular boring, then the soil sample exhibiting the highest PID
 reading, as well as the deepest sample collected from that boring, were analyzed for
 Target Compound List (TCL) volatile organic compounds (VOCs). In addition, any
 soil sample exhibiting a PID reading greater than 50 ppm above background
 concentrations was analyzed for TCL VOCs.
- <u>Semivolatile Organic Compounds</u> If PID readings above background concentrations were detected in a particular boring, then the soil sample exhibiting the highest PID reading, as well as the deepest sample collected from that boring, were analyzed for TCL semivolatile organic compounds (SVOCs). In addition, any soil sample exhibiting a PID reading greater than 50 ppm above background concentrations was analyzed for TCL SVOCs.
- <u>Polychlorinated Biphenyls</u> All soil samples collected were analyzed for polychlorinated biphenyls (PCBs). The only exceptions were the soil samples collected from depth intervals of less than 8 feet below grade at borings B-19, B-20 and B-22, since samples from these intervals were previously collected and analyzed for PCBs during the March 2002 soil sampling program.

- Resource Conservation and Recovery Act/Target Analyte List Metals All soil samples were analyzed for either Resource Conservation and Recovery Act (RCRA) metals or Target Analyte List (TAL) metals; approximately 80% of the soil samples were analyzed for RCRA metals with the remaining 20% analyzed for TAL metals. The only exceptions were the soil samples collected from depth intervals of less than 8 feet below grade at borings B-19, B-20 and B-22, since samples from these intervals were previously collected and analyzed for RCRA metals during the March 2002 soil sampling program.
- Hexavalent Chromium All soil samples were analyzed for hexavalent chromium.
 The only exceptions were the soil samples collected from depth intervals of less than 8 feet below grade at borings B-19, B-20 and B-22, since samples from these intervals were previously collected and analyzed for RCRA metals during the March 2002 soil sampling program.

A summary of all of the soil samples collected for laboratory analysis during the Investigation Sampling Program along with the constituents analyzed for is provided in Table 3-1.

3.2 Field Activities

At the request of Northrop Grumman Systems Corporation, on May 27 through June 12, June 19, September 12 and November 25 and 26, 2003, Dvirka and Bartilucci Consulting Engineers (D&B) undertook the Investigation Sampling Program within the Town of Oyster Bay Bethpage Community Park. During the course of the field program, D&B utilized and implemented the Site-Specific Work Plan prepared for the project and approved by both the NYSDEC and NYSDOH.

The following sections present a general description of the soil and groundwater sampling and monitoring well construction activities conducted during the course of the field activity portion of the Investigation Sampling Program.

3.2.1 Borings

Prior to the initiation of the field program, all boring locations proposed in the Site-Specific Work Plan were "marked-out" within the park by a licensed surveyor. It should be noted

			Laboratory Analyses						
Boring	Sample	Collection			RCRA	TAL	Hexavalent		
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs	
B-1	8'-10'	5/28/2003			Χ		Х	Χ	
D- I	10'-12'	5/28/2003	Х	X	X		Х	Х	
	0-2"	5/28/2003			Χ		Х	Х	
	2"-2'	5/28/2003			Χ		Х	Х	
	2'-4'	5/28/2003			Х		Х	Х	
	4'-6'	5/28/2003			Χ		Х	Х	
B-2	6'-8'	5/28/2003	Χ	X		Х		Χ	
	8'-10'	5/28/2003			Х		Х	Х	
	10'-11'	5/28/2003			Х		Х	Х	
	11'-12'	5/28/2003			Χ		Х	Χ	
	12'-14'	5/28/2003	Χ	X	X		X	Х	
	0-2"	5/28/2003			X		Х	Χ	
	2"-2'	5/28/2003			Х		Х	Χ	
	2'-4'	5/28/2003	Χ	Х		Х	Х	Χ	
B-3	4'-6'	5/28/2003			Х		Х	Χ	
	6'-8'	5/28/2003			Χ		Х	Х	
	8'-10'	5/28/2003				Х	Х	Х	
	12'-14'	6/02/2003	Х	X	X		Х	Х	
	0-2"	5/28/2003			Χ		X X	Х	
	2"-2'	5/28/2003			Х		Х	Х	
	2'-3'	5/28/2003	Х	Х		Х	Х	Х	
B-4	3'-4'	5/28/2003			Х		Х	Х	
D- 4	4'-6'	5/28/2003			X		Х	Х	
	6'-8'	5/28/2003				Х	Х	Х	
	8'-10'	6/02/2003			Χ		Х	Х	
	12'-14'	6/02/2003	Χ	X	X		X	Х	
	8'-10'	5/29/2003			Χ		Х	Х	
	10'-12'	5/29/2003			Х		Х	Х	
	12'-14'	5/29/2003	Х	X		Х	X X X X X X X X X X X X X	Х	
B-5	14'-16'	5/29/2003			Х		Х	Х	
	16'-18'	5/29/2003			X		X	Χ	
	18'-20'	5/29/2003			X			Χ	
	20'-22'	5/29/2003	Χ	Х		X	X X X X X X X X X X X X X X X X X X X	Х	
	0-2"	5/27/2003			X		X	Χ	
	2"-2'	5/27/2003			Х			Χ	
	2'-4'	5/27/2003			X			Χ	
	4'-6'	5/27/2003	Χ	Х	Х		X	Χ	
B-6	8'-10'	5/27/2003			Х		X	Χ	
ט-ט	10'-12'	5/27/2003				Х	X	Χ	
	12'-14'	5/27/2003	Χ	Х		Х		Χ	
	14'-16'	5/27/2003			Х		X	Χ	
	16'-18'	5/27/2003			Х			Χ	
	18'-20'	5/27/2003	Χ	Х	X		Х	Χ	
B-7	0-2"	6/02/2003			X			Χ	
D-1	2"-2'	6/02/2003			Х		X	Χ	

Boring	Sample	Collection			RCRA	y Analyses TAL	Hexavalent	
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs
	2'-4'	6/02/2003	Х	Х	Х		Х	Χ
	4'-6'	6/02/2003				Х		Χ
	6'-8'	6/02/2003	Х	Х	X		Х	Х
	8'-10'	6/02/2003	Х	Х		Х	Х	Х
B-7	10'-12'	6/02/2003	Х	Х	Х		Х	Х
(continued)	12'-14'	6/02/2003	Х	Х	Х		Х	Х
(continued)	14'-16'	6/02/2003				Х	X	Х
	16'-18'	6/02/2003	Χ	Х	Χ		X	Х
	18'-20'	6/02/2003			Χ			Χ
	20'-22'	6/02/2003			Χ			Χ
	22'-24'	6/02/2003	Х	X	Х		X X X X X X X X X	Χ
	0-2"	5/29/2003			X			Χ
	2"-2'	5/29/2003			X			Χ
	2'-4'	5/29/2003			X			Χ
B-8	4'-6'	5/29/2003				X		Χ
	6'-8'	5/29/2003			X			Χ
	8'-10'	5/29/2003			Х			Χ
	10'-12'	5/29/2003	X	Х	Х			Χ
	8'-10'	6/10/2003	Χ	X	X		Х	Χ
	10'-12'	6/10/2003				Х		Χ
	12'-14'	6/10/2003			X			Χ
B-9	14'-16'	6/10/2003			Х			Х
	16'-18'	6/10/2003			X			Х
	20'-22'	6/10/2003			X			Х
	22'-24'	6/10/2003			Х			X
	24'-26'	6/10/2003	Χ	Х		Х	X X X X X X X X X X X X X X X X X X X	Χ
	0-2"	6/02/2003			X			X
	2"-2'	6/02/2003				Х		X
B-10	2'-4'	6/02/2003			X			X
	6'-8'	6/02/2003			X			X
	8'-10'	6/02/2003			Х			X
	10'-12'	6/02/2003	Х	Х		Х		X
	0-2"	5/27/2003			X			X
	2"-2'	5/27/2003			X			X
	2'-4'	5/27/2003			Х			X
	4'-6'	5/27/2003			X			X
D 44	6'-8'	5/27/2003			X			X
B-11	8'-10'	5/27/2003			Х			X
	10'-12'	5/27/2003	X	Х		Х		X
	12'-14'	5/27/2003		1	X			X
	14'-16'	5/27/2003			Х			X
	16'-18'	5/27/2003				Х		X
	18'-20'	5/27/2003	X	Х	X		Х	Χ

			Laboratory Analyses						
Boring	Sample	Collection			RCRA	TAL	Hexavalent		
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs	
	8'-10'	6/09/2003			X		Х	Χ	
	10'-12'	6/09/2003			Х		Х	Х	
	12'-14'	6/09/2003				Х	Х	Х	
	14'-16'	6/09/2003			Х		Х	Х	
B-12	16'-18'	6/09/2003	Х	Х	Х		Х	Х	
D-12	18'-20'	6/09/2003				Х	Х	Х	
	20'-22'	6/09/2003	Х	X	Х		Х	Х	
	22'-24'	6/09/2003			Х		X	Х	
	25'-26'	6/09/2003			Χ		X	Χ	
	26'-28'	6/09/2003	Χ	X	Χ		X X X X X X X X X X X X X X X X X X X		
	8'-10'	6/09/2003				X		Х	
	10'-12'	6/09/2003			Χ		Chromium X<	Χ	
	12'-14'	6/09/2003			Χ		X	Χ	
	14'-16'	6/09/2003			Χ		Х	Х	
B-13	16'-18'	6/09/2003					Х	Х	
	18'-20'	6/09/2003	Х	X		X		Х	
	20'-22'	6/09/2003			Χ		X	Χ	
	22'-24'	6/09/2003			Χ			Χ	
	24'-26'	6/09/2003	Χ	X		X	X	Χ	
	8'-10'	6/11/2003			Χ		Х	Χ	
B-14	10'-12'	6/11/2003			X				
	12'-14'	6/11/2003	X	X		Х	Х		
	0-2"	6/02/2003			X				
	2"-2'	6/02/2003				X			
B-15	4'-6'	6/02/2003			Х				
	6'-8'	6/02/2003			Х				
	8'-10'	6/02/2003			X				
	10'-12'	6/02/2003	Χ	Х		Х	X X X X X X X X X X X X X X X X X X X		
	0-2"	5/29/2003			X				
	2"-2'	5/29/2003			Х				
	2'-4'	5/29/2003				Х			
D 40	4'-6'	5/29/2003			X		X	X	
B-16	6'-8'	5/29/2003			X				
	8'-10'	5/29/2003			X				
	10'-12'	5/29/2003			X			X	
	12'-14'	5/29/2003	V		Х	V		X	
	14'-16'	5/29/2003	Χ	Х				X	
	0-2"	6/03/2003			X			X	
	2"-2'	6/03/2003	V	V	X	V		X	
B-17	2'-4'	6/03/2003	X	X	X	Х		X	
D-1 <i>1</i>	4'-6'	6/03/2003	X	X	X			X	
	6'-8'	6/03/2003	Х	Х	X				
	8'-10'	6/03/2003			X		X	X	
	10'-12'	6/03/2003			X		X	X	

			Laboratory Analyses						
Boring	Sample	Collection			RCRA	TAL	Hexavalent		
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs	
	12'-14'	6/03/2003	Χ	Χ	Х		Х	Х	
•	14'-16'	6/03/2003	Χ	Х		Х	Х	Х	
	16'-18'	6/03/2003	Х	Х	Х		Х	X	
	18'-20'	6/03/2003			Х		Х	Х	
B-17	20'-22'	6/03/2003			Х		X	Х	
(continued)	22'-24'	6/03/2003				Х	Х	Х	
(continued)	24'-26'	6/03/2003			Х		Х	X	
	28'-30'	6/03/2003			Х		Х	X	
	30'-32'	6/03/2003			Х		Х	X	
	32'-34'	6/03/2003			Х		Х	X	
	34'-36'	6/03/2003	Х	Х		Х	X	Х	
	0-2"	5/29/2003			Х		X	X	
	2"-2'	5/29/2003			Х		Х	X	
	2'-4'	5/29/2003	Х	Х		Х	Х	Х	
B-18	4'-6'	5/29/2003			Х		Х	Х	
D-10	6'-8'	5/29/2003			Х		Х	X	
	8'-10'	5/29/2003			Х		Х	X	
	10'-12'	5/29/2003			Х		Х	X	
	12'-14'	5/29/2003	Х	Х		Х	X	Х	
	8'-10'	6/03/2003	Χ	Х		X	X	X	
	10'-12'	6/03/2003			Х		Х	Х	
	12'-14'	6/03/2003	Х	Х	Х		Х	Х	
	16'-18'	6/03/2003	Х	Х	Х		Х	Х	
B-19	18'-20'	6/03/2003	Х	Х		Х	X	Х	
D-19	22'-24'	6/03/2003			Х		Х	Х	
	24'-26'	6/03/2003				Х	Х	Х	
	26'-27'	6/03/2003			Х		Х	Х	
	27'-28'	6/03/2003			Х		X	Х	
	28'-30'	6/03/2003	Х	Х	X		X	Х	
	6'-8'	6/03/2003	Χ	Х					
	8'-10'	6/03/2003	Х	Х		Х	Х	Х	
	10'-12'	6/03/2003	Х	Х	Х		Х	Χ	
	12'-14'	6/03/2003	Х	Х	Х		Х	Х	
B-20	14'-16'	6/03/2003	Х	Х		Х	Х	Χ	
	16'-18'	6/03/2003	Х	Х	Х		Х	X	
	18'-20'	6/03/2003	Х	Х	Х		Х	Х	
	22.5'-24'	6/03/2003			Х		Х	Х	
	24'-26'	6/03/2003	Х	Х	_	Х	Х	Χ	

	1		Laboratory Analyses						
Boring	Sample	Collection			RCRA	TAL	Hexavalent		
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs	
	0-2"	6/02/2003			Х		Х	Χ	
B-21	2"-2'	6/02/2003			Х		Х	Х	
	2'-4'	6/02/2003				Х	Х	Х	
	4'-6'	6/02/2003			Х		Х	Х	
	6'-8'	6/02/2003			Х		Х	Х	
	8'-10'	6/02/2003			Х		Х	Х	
	10'-12'	6/02/2003	Х	X	X		Х	Х	
	4'-6'	6/09/2003	Χ	X					
	6'-8'	6/09/2003	Χ	X					
	8'-10'	6/09/2003	Χ	X	X		X	Χ	
	10'-12'	6/09/2003	Χ	X		Χ	Х	Χ	
	12'-14'	6/09/2003	Χ	X	X		Х	Χ	
B-22	14'-16'	6/09/2003	Χ	X	X		X	Χ	
D-22	16'-18'	6/09/2003	Χ	X	Χ		X	Χ	
	18'-20'	6/09/2003				Χ	X	Χ	
	20'-22'	6/09/2003			X		X	Χ	
	22'-24'	6/09/2003			Χ		X	Χ	
	25'-26'	6/09/2003			Χ		X	Χ	
	28'-30'	6/09/2003	Χ	Х		X		Χ	
	0-2"	6/10/2003			X			Χ	
	2"-2'	6/10/2003			X			X	
	2'-4'	6/10/2003				X		X	
B-23	4'-6'	6/10/2003			Х			X	
	6'-8'	6/10/2003			X			Χ	
	8'-10'	6/10/2003			X			Χ	
	10'-12'	6/10/2003			Х		X X X X X X X X X X X X X X X X X X X	Χ	
	0-2"	6/10/2003			Х			Х	
	2"-2'	6/10/2003			Х			Χ	
	2'-4'	6/10/2003			Х			Χ	
B-24	4'-6'	6/10/2003	Х	Х	Х			X	
	6'-8'	6/10/2003				Х	_	X	
	8'-10'	6/10/2003			X		X	X	
	10'-12'	6/10/2003	Χ	Х					
	0-2"	6/10/2003			X		X	X	
	2"-2'	6/10/2003			Х		X	X	
D 05	2'-4'	6/10/2003				Х	X	X	
B-25	4'-6'	6/10/2003		ļ	X		X	X	
	6'-8'	6/10/2003			X		X	X	
	8'-10'	6/10/2003		V	Х	V	X	X	
	10'-12'	6/10/2003	Х	Х	V	Х	X	X	
	0-2"	5/30/2003			Х		X	X	
BCPMW-1	2"-2'	5/30/2003			V/	Х	X	X	
	2'-4'	5/30/2003			X		X	X	
	4'-6'	5/30/2003		l	X		X	X	

					Laboratory	y Analyses		
Boring	Sample	Collection			RCRA	TAL	Hexavalent	
ID	Depth	Date	VOCs	svocs	Metals	Metals	Chromium	PCBs
	6'-8'	5/30/2003			Χ		Х	Χ
	8'-10'	5/30/2003			Х		Х	Х
	10'-12'	5/30/2003	Χ	X		X	Х	Х
	0-2"	6/05/2003			Х		Х	Χ
	2"-2'	6/05/2003			Χ		X	Χ
	2'-4'	6/05/2003				Χ	X	Χ
BCPMW-2	4'-6'	6/05/2003			Χ		Х	Х
	6'-8'	6/05/2003			Χ		Х	Х
	8'-10'	6/05/2003			Χ		Х	Х
	10'-12'	6/05/2003	Χ	X		Χ	X	Χ
	0-2"	6/05/2003			Χ		Х	Χ
	2"-2'	6/05/2003			Χ		Х	Х
	2'-4'	6/05/2003				X	X	Χ
BCDM\M-3	2-4	6/10/2003	Χ	X				
BOI WW-5	4'-6'	6/05/2003			Χ		Х	Χ
	6'-8'	6/05/2003			Χ		Х	Χ
	8'-10'	6/05/2003			Χ		Х	Χ
	10'-12'	6/05/2003	Х	X	Χ		Х	Х

Total: 71 71 174 54 228 228

that, during the field program, some of the boring locations had to be relocated in order to provide access for the drill rig. A complete description of the changes made to the boring locations proposed in the Site-Specific Work Plan is provided in Section 3.3 of this report. It should be noted that Figure 3-1 of this report has been updated to reflect the correct locations where the borings were relocated and advanced.

Soil sampling activities were conducted within the Bethpage Community Park on May 27 through June 11, 2003. It should be noted that field activities were not performed on June 4, 2003 due to a rainfall event.

At each boring location, a 4.25-inch hollow stem auger was advanced to the appropriate depth (as described previously) with soil samples collected at 2-foot intervals utilizing the split spoon sampling method. The soil samples collected from each boring were characterized and screened with a PID by a D&B field geologist. The PID was calibrated at the beginning of each day and following the lunch break. All field observations were logged in a bound field log book by the field geologist. All soil samples were placed in precleaned laboratory-supplied sample jars, labeled, placed on ice and packed into a sample cooler for delivery to the laboratory. All soil samples collected were denoted by their respective boring number (as shown on Figure 3-1) following by the depth interval below grade from which the sample was retrieved. All drill cuttings were placed in 55-gallon drums and temporarily staged on-site prior to off-site transportation for proper disposal in accordance with all applicable federal, state and local regulations. With the exception of the three borings that were converted to monitoring wells, following sample collection, all of the boreholes were grouted flush to grade utilizing bentonite grout.

Following sample collection at each boring location, all non-disposable drilling and sampling equipment was properly decontaminated utilizing the procedures outlined in the Site-Specific Work Plan. All disposable drilling and sampling equipment was properly discarded following its one-time use.

In total, 28 soil borings were advanced within the Bethpage Community Park and 231 soil samples were collected for laboratory analysis. Two hundred twenty-eight (228) of the soil samples were analyzed for PCBs and hexavalent chromium; 174 of the soil samples were analyzed for RCRA metals; 54 of the soil samples were analyzed for TAL metals; and 71 of the soil samples were analyzed for TCL VOCs and TCL SVOCs. The laboratory utilized to perform the analyses of the soil samples (Mitkem Corporation) participates in the NYSDOH Environmental Laboratory Approval Program (ELAP).

It should be noted that six boring locations (i.e., B-6, B-10, B-21, BCPMW-1, BCPMW-2 and BCPMW-3) had to be relocated from their original proposed locations due to drill rig access limitations. In addition, at the request of the Town of Oyster Bay, three boring locations (i.e., B-23, B-24 and B-25) were added to the program in the south playground area. A complete description of the changes to the sampling locations proposed in the Site-Specific Work Plan is presented in Section 3.3 of this report. It should be noted that Figure 3-1 has been updated to reflect the correct boring locations.

A representative of the NYSDEC was present on-site for 8 of the 13 days of the field program to witness the soil characterization and sampling of each boring advanced during that day. In addition, the NYSDEC representative split soil samples with D&B for select boring intervals.

3.2.2 Monitoring Wells

At boring locations BCPMW-1, BCPMW-2 and BCPMW-3, once the total depth of each boring was reached and soil sampling activities were completed, these three borings were converted to groundwater monitoring wells. The sections that follow describe the construction, development and sampling of each of the three monitoring wells installed within the Bethpage Community Park during the Investigation Sampling Program. The monitoring well locations are shown on Figure 3-1 of this report.

Monitoring Well Construction

Once borings BCPMW-1, BCPMW-2 and BCPMW-3 were advanced to 12 feet below grade and all environmental samples were collected, the borings were continued to approximately 10 feet below the water table. Soil samples were retrieved at 2-foot intervals for each 5 feet of boring, characterized and screened with a PID. Laboratory analysis of these soil samples was proposed in the Site-Specific Work Plan for all 2-foot intervals which exhibited visual signs of staining and/or discoloration or PID readings above background concentrations. However, based on field observations and PID readings, it was determined that these soil samples did not require laboratory analysis. All drill cuttings were placed in 55-gallon drums and staged on-site prior to off-site transportation for proper disposal in accordance with all applicable federal, state and local regulations.

Prior to constructing the monitoring wells, the well casings and screens were decontaminated as outlined in the Site-Specific Work Plan. The monitoring wells were constructed of a 2-inch diameter, 15-foot long, 0.010-inch slot PVC well screen and Schedule 40 PVC riser pipe. The wells were set approximately 5 feet above and 10 feet below the water table interface (approximately 58 feet below ground surface). A number 1 grade silica sand pack was tremied in place to a depth of approximately 2 feet above the top of the well screen.

A finer grain sand pack (100% passing No. 30 sieve and less than 2% passing the No. 200 sieve) approximately 6 inches thick was placed above the sand pack. This finer sand pack was installed by the tremie method.

The remaining annular space above the finer sand pack was filled with "Pure Gold" bentonite manufactured by the American Colloid Co. The bentonite was installed in the annular space by the tremie method from the top of the finer sand pack to ground surface.

A flush-mount bolted steel vault box houses each monitoring well at grade. The vault box was set in concrete and finished to remain flush with surrounding grade while not allowing the

accumulation and infiltration of precipitation or runoff. As such, the concrete gently slopes away from the well cover in such a manner as to not create a trip hazard.

Following completion of the monitoring well construction, a locking vented PVC well cap was placed on the riser pipe and the well labeled with its respective well number. A well construction "as-built" log showing details of the monitoring well construction, description of the materials used and elevations of well features has been prepared and is provided in Appendix A of this report.

On July 30, 2003, top of casing elevations for each well were surveyed by a licensed surveyor for the purpose of determining the groundwater elevation at each monitoring well location. In addition, top of casing elevations of three nearby existing off-site monitoring wells were surveyed to assist in the preparation of a groundwater contour map for the park property.

It should be noted that the water table at BCPMW-1 was located within a thick clay layer. As a result, depth to groundwater measurements were collected from nearby existing off-site monitoring wells in order to determine the approximate depth of the water table in the area. Once the approximate depth of the water table was determined, the screen for this well was set at approximately 5 feet above and 10 feet below the water table. It should also be noted that the vertical extent of the clay layer was not determined in this boring due to concerns about providing a potential pathway for the vertical migration of contamination to deeper aquifers.

Monitoring Well Development

All three monitoring wells were developed subsequent to completion of installation after allowing a minimum of 24 hours for the grout material to set. The wells were developed in accordance with NYSDEC-approved methods and criteria and included pump and surge, and bailing.

Each monitoring well was pumped utilizing a properly decontaminated submersible pump and new disposable polyethylene tubing. All development water was containerized in 55-gallon drums and temporarily staged on-site prior to off-site transportation for proper disposal.

The monitoring wells were developed until the discharged water achieved a turbidity of 50 Nephelometric Turbidity Units (NTUs) or less for a minimum of three consecutive measurements. Sample measurements were collected at every three to five well volumes. One well volume is considered the amount of water contained in the well riser pipe and sand pack. Well development monitoring was supplemented by additional measurements of pH, conductivity, dissolved oxygen and temperature. These measurements were collected concurrent with the turbidity measurements. Well development continued until the turbidity requirements were achieved and the turbidity, pH, conductivity, dissolved oxygen and temperature values had stabilized. Stabilized values are defined as three consecutive readings with 10% variation or less.

All well development water was placed in 55-gallon drums and temporarily staged onsite prior to off-site transportation for proper disposal in accordance with all applicable federal, state and local regulations. All disposable development equipment and supplies were placed in a separate 55-gallon drum and temporarily staged on-site prior to off-site transportation for proper disposal in accordance with all applicable federal, state and local regulations.

The following general procedures were utilized during the development of all three monitoring wells:

- Calibrate meters and instruments prior to use. Record calibration notes in field book.
- Monitor air quality of the well head space and ambient air in the working zone immediately around the well. Determine the appropriate level of respiratory protection.
- Measure water level and total depth of well from the fixed measuring point.
- Calculate well volume in gallons using the following formula:

$$V = r^2L$$
 (3.14) (7.48 gallons/cubic foot)

Also include volume calculation of the saturated sand pack in the total volume calculation.

- Remove the required volume of water in accordance with NYSDEC protocol and monitor for turbidity, pH, conductivity, dissolved oxygen and temperature at the appropriate intervals. Ensure down-hole tools and instruments have been properly decontaminated in accordance with the procedures outlined in the Site-Specific Work Plan.
- At the completion of well development, remove down-hole tools and secure well site and well.

All down-hole tools (e.g., bailers, water level probe, pump and surge blocks) were decontaminated prior to use utilizing the decontamination procedures outlined in the Site-Specific Work Plan.

It should be noted that, during development, monitoring well BCPMW-1 recharged very slowly. As a result, the well was completely evacuated and allowed to recharge. Due to the slow recharge rate of the well, additional development was not conducted.

As discussed later in this report, Northrop Grumman Systems Corporation decided to sample three off-site monitoring wells located immediately adjacent to the Bethpage Community Park. These three monitoring wells are identified as B24MW-2, B24MW-3 and B30MW-1 and located as shown on Figure 3-1. These wells were installed as part of delisting activities conducted on adjacent properties in February and March 1994. Since these wells have not been developed or sampled since around that time, it was decided that these three wells should be redeveloped prior to sampling.

On November 13 and 19, 2003, monitoring wells B24MW-2, B24MW-3 and B30MW-1 were redeveloped utilizing the procedure detailed previously. It should be noted that, during development, monitoring well B24MW-2 recharged very slowly and was completely evacuated. As a result, a second attempt to develop this well was performed utilizing low-flow techniques. During this second attempt, all parameters had stabilized except for turbidity which dropped to only approximately 100 NTUs.

Groundwater Sampling

On June 19, 2003, D&B collected groundwater samples from each of the three monitoring wells installed within the Bethpage Community Park during the Investigation Sampling Program. It should be noted that a representative of the NYSDEC was present on-site during the groundwater sampling activities and the NYSDEC obtained split samples for groundwater samples collected from each monitoring well.

Prior to sample collection, approximately three to five well volumes were purged from each monitoring well utilizing a new disposable polyethylene bailer (BCPMW-1) or a properly decontaminated submersible pump and new dedicated polyethylene tubing (BCPMW-2 and BCPMW-3). The volume of each well was calculated from depth to water and total well depth measurements collected immediately prior to purging each well. All purge water was containerized in a 55-gallon drum and temporarily staged on-site prior to off-site transportation for proper disposal in accordance with all applicable federal, state and local regulations. Measurements of conductivity, turbidity, dissolved oxygen, temperature and pH were recorded initially and for every half well volume of groundwater purged. Following the purge and stabilization of the aforementioned parameters, a groundwater sample was collected from each monitoring well utilizing a dedicated, disposable polyethylene bailer. All groundwater samples were placed in precleaned laboratory-supplied sample bottles, labeled, placed on ice and packed into a sample cooler for delivery to the laboratory. Each groundwater sample collected was identified according to its respective monitoring well number.

Following sample collection at each monitoring well location, all non-disposable sampling equipment was properly decontaminated utilizing the procedures outlined in the Site-Specific Work Plan. All disposable sampling equipment was properly discarded following its one-time use.

In total, three groundwater samples were collected for laboratory analysis. All groundwater samples were analyzed for TCL VOCs, TCL SVOCs, PCBs, hexavalent chromium (total and dissolved) and TAL metals (total and dissolved). The laboratory utilized to perform the

analyses of the groundwater samples (Mitkem Corporation) participates in the NYSDOH Environmental Laboratory Approval Program (ELAP). All filtering of the groundwater samples was completed by and at the laboratory.

It should be noted that following the groundwater sampling activities, depth to water measurements were collected from three nearby existing off-site monitoring wells located immediately adjacent to the Bethpage Community Park. The purpose of taking these measurements was to assist in the preparation of a groundwater contour map to determine the direction of groundwater flow across the park property.

It should also be noted that, following the purge of four well volumes from monitoring well BCPMW-1, there was not enough water remaining within the well to fill all of the sample bottles. As a result, following the purge, the well was allowed to recharge for approximately 3 hours prior to collection of the groundwater sample.

Following receipt and review of the analytical results of the groundwater samples collected on June 19, 2003, it was determined that each of the three monitoring wells should be resampled (a discussion of the rationale for resampling the wells is provided in Section 4.0 of this report). As a result, on September 12, 2003, groundwater samples were collected from all three monitoring wells utilizing the same procedure described above, with the exception that dedicated disposable polyethylene bailers were utilized to purge all of the monitoring wells (a submersible pump and tubing were not utilized). All of the groundwater samples collected on September 12, 2003 were analyzed for VOCs only.

On November 25 and 26, 2003, groundwater samples were collected from off-site monitoring wells B24MW-2, B24MW-3 and B30MW-1, as well as on-site monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3. The groundwater samples were collected utilizing the same procedure described previously. The wells were purged utilizing a new disposable polyethylene bailer (BCPMW-1 and B24MW-2; due to poor recharge) or a properly decontaminated submersible pump and new dedicated polyethylene tubing (BCPMW-2, BCPMW-3, B24MW-3 and B30MW-1). All groundwater samples were collected utilizing new

disposable polyethylene bailers which were discarded following their one-time use. All of the groundwater samples collected on November 25 and 26, 2003 were analyzed for VOCs only.

3.3 Changes to the Proposed Field Program

During the course of the field program and discussions with the NYSDEC, it became necessary to make some changes to the original field program proposed in the Site-Specific Work Plan. These changes became necessary as a result of drill rig access limitations, requests for additional sampling and requests for changes in methodology. The following list presents the changes made to the original field program proposed in the Site-Specific Work Plan:

- Boring B-6 This boring was moved 5 feet to the south and 1-foot to the west due to a newly-installed fence located in the area which prevented the drill rig from accessing the proposed location. This boring was relocated to the opposite side of the fence which placed it within the area of the park fenced-off from the public.
- <u>Boring B-10</u> This boring was moved 8 feet to the south due to a tree which prevented the drill rig from accessing the proposed location.
- Boring B-21 This boring was moved 1.5 feet to the north and 6 feet to the east due to the park boundary fence which prevented the drill rig from accessing the proposed location.
- Boring BCPMW-1 This boring was moved 9 feet to the south and 10 feet to the east since the proposed location did not allow access of the drill rig. The proposed location was situated along the southern boundary of the recharge basin area but due to large trees and vegetation growing in this area, the drill rig could not access the proposed location. As a result, the boring was relocated to the opposite side of the fence, east of the concrete pad.
- <u>Boring BCPMW-2</u> This boring was moved 6 feet to the south due to a park bench which prevented the drill rig from accessing the proposed location.
- <u>Boring BCPMW-3</u> This boring was moved 5 feet to the south due to a newly-installed fence located in the area which prevented the drill rig from accessing the proposed location. The relocated boring is situated within the area of the park fenced-off from the public.
- Borings B-23, B-24 and B-25 These three borings were added to the Investigation Sampling Program at the request of the Town of Oyster Bay. All three borings are located within the south playground area as shown on Figure 3-1. Soil samples were

collected from the 0 to 2-inch depth interval, the 2-inch to 2-foot depth interval, and at 2-foot intervals from that point until the total depth of the boring was reached (as described previously in this section). Based on field observations, all borings were advanced to 12 feet below grade. All soil samples were analyzed for PCBs, hexavalent chromium, RCRA/TAL metals, VOCs and SVOCs (as described previously in this section).

- TAL Metals The Site-Specific Work Plan proposed to analyze all of the soil samples collected for RCRA metals. However, based on the NYSDEC's letter dated May 6, 2003, Northrop Grumman Systems Corporation agreed to analyze 20% of the soil samples collected for TAL metals and the remaining 80% of the soil samples collected for RCRA metals.
- <u>VOC/SVOC Sample Selection</u> The Site-Specific Work Plan proposed that, if PID readings above background concentrations were detected in a particular boring, then the soil sample exhibiting the highest PID reading as well as the deepest sample collected from that boring would be analyzed for VOCs and SVOCs. However, based on the NYSDEC's letter dated May 6, 2003, Northrop Grumman Systems Corporation agreed to also analyze any soil sample which exhibited a PID reading of 50 ppm or greater above background concentrations for VOCs and SVOCs.
- Monitoring Wells B24MW-2, B24MW-3 and B30MW-1 These three off-site monitoring wells are located immediately adjacent to the Bethpage Community Park as shown on Figure 3–1. As discussed in greater detail later in this report, Northrop Grumman Systems Corporation decided to sample these three wells in order to confirm the presence of certain constituents in the groundwater samples collected from within the park.

It should be noted that Figure 3-1 presented in this report has been updated to reflect the correct locations of all borings and monitoring wells advanced/installed during the course of the Investigation Sampling Program. In addition, it should be noted that Figure 3-1 has been updated to identify the location of the concrete pad constructed by the Town of Oyster Bay and located to the south of the recharge basin.

4.0 FINDINGS

This section presents the findings of the Investigation Sampling Program undertaken within the Town of Oyster Bay Bethpage Community Park including a summary of the analytical results of the soil and groundwater samples collected during the field program.

4.1 Sample Analyses

A total of 231 soil samples were collected for laboratory analysis during the field activities conducted within the Town of Oyster Bay Bethpage Community Park during the Investigation Sampling Program between May 27 and June 11, 2003. Two hundred twenty-eight (228) of the soil samples were analyzed for polychlorinated biphenyls (PCBs) utilizing USEPA SW-846 Method 8082 and hexavalent chromium utilizing USEPA SW-846 Method 7196; 174 of the soil samples were analyzed for Resource Conservation and Recovery Act (RCRA) metals utilizing USEPA SW-846 Method 6010/7471; 54 of the soil samples were analyzed for Target Analyte List (TAL) metals utilizing USEPA SW-846 Method 6010/7471; and 71 of the soil samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) utilizing USEPA SW-846 Method 8260 and TCL semivolatile organic compounds (SVOCs) utilizing USEPA SW-846 Method 8270.

Soil Sample Totals								
Total	VOCs	SVOCs	RCRA Metals	TAL Metals	PCBs	Hexavalent Chromium		
231	71	71	174	54	228	228		

In addition to the soil samples mentioned previously, matrix spike and matrix spike duplicate samples (MS/MSDs) were collected for Quality Assurance/Quality Control (QA/QC) purposes daily or for each "batch" of 20 soil samples collected. As a result, a total of 14 sets of MS/MSD samples were collected during the Investigation Sampling Program for VOC, SVOC, PCB, TAL metal and hexavalent chromium analyses.

A total of three groundwater samples were collected from the three monitoring wells located within the park for laboratory analysis during the field activities conducted within the Town of Oyster Bay Bethpage Community Park during the Investigation Sampling Program on June 19, 2003. All three groundwater samples were analyzed for TCL VOCs utilizing USEPA SW-846 Method 8260, TCL SVOCs utilizing USEPA SW-846 Method 8270, PCBs utilizing USEPA SW-846 Method 8082, TAL metals (total and dissolved) utilizing USEPA SW-846 Method 6010/7471 and hexavalent chromium (total and dissolved) utilizing USEPA SW-846 Method 7196.

In addition to the groundwater samples mentioned previously, a set of MS/MSDs, a trip blank and a field blank were collected for QA/QC purposes. The MS/MSD and field blank samples were analyzed for VOCs, SVOCs, PCBs, TAL metals (total and dissolved) and hexavalent chromium (total and dissolved), and the trip blank was analyzed for VOCs only.

Following receipt and review of the groundwater sample analytical results, it was determined that the three monitoring wells located within the park should be resampled and analyzed for VOCs only (the rationale for making this decision is presented later in this section). As a result, an additional three groundwater samples were collected on September 12, 2003 for VOC analyses only utilizing USEPA SW-846 Method 8260. In addition, a set of MS/MSDs and a trip blank were collected for QA/QC purposes and analyzed for VOCs only.

As discussed later in this section, it was determined that three off-site monitoring wells located immediately adjacent to the Bethpage Community Park (identified as B24MW-2, B24MW-3 and B30MW-1), as well as the three monitoring wells located within the park, should be sampled/resampled and analyzed for VOCs only. As a result, groundwater samples were collected from these six monitoring wells on November 25 and 26, 2003 for VOC analyses only utilizing USEPA SW-846 Method 8260. In addition, two sets of MS/MSDs, two field blanks and two trip blanks were collected for QA/QC purposes and analyzed for VOCs only.

All soil and groundwater sample analyses were performed by Mitkem Corporation which participates in the New York State Department of Health (NYSDOH) Environmental Laboratory

Approval Program (ELAP). The specific compounds/constituents analyzed for were those presented in the Site-Specific Work Plan.

The results of the laboratory analyses performed on the soil and groundwater samples are summarized on Tables B-1 through B-8 presented in Appendix B of this report as follows:

Table No.	<u>Matrix</u>	<u>Analysis</u>
B-1	Soil	VOCs
B-2	Soil	SVOCs
B-3	Soil	PCBs
B-4	Soil	RCRA/TAL Metals and Hexavalent Chromium
B-5	Groundwater	VOCs
B-6	Groundwater	SVOCs
B-7	Groundwater	PCBs
B-8	Groundwater	TAL Metals and Hexavalent Chromium

It should be noted that the soil samples are presented on the tables in boring number order, B-1 through B-25, followed by the soil samples collected from the monitoring well borings. The soil samples for each boring are presented in depth order from grade to the deepest sample.

4.1.1 <u>Soil Screening Criteria</u>

The criteria listed in Appendix A of the New York State Department of Environmental Conservation's (NYSDEC's) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 - "Determination of Soil Cleanup Objectives and Cleanup Levels" has been selected as the soil screening criteria (i.e., Standards, Criteria and Guidelines [SCGs]) for the Investigation Sampling Program. As a result, the Recommended Soil Cleanup Objectives listed in TAGM 4046 have been established as screening criteria for VOCs and SVOCs. The Recommended Soil Cleanup Objectives listed for Total PCBs of 1 part per million (ppm) for surface soil and 10 ppm for subsurface soil have been established as screening criteria. It should be noted that, in

accordance with the NYSDOH, surface soil has been determined to include both the 0 to 2-inch soil samples and the 2-inch to 2-foot soil samples; i.e., "surface soil" corresponds to the first two feet of soil below grade. In addition, the Eastern USA Background Levels listed in TAGM 4046 have been established as screening criteria for RCRA and TAL metals. It should be noted that criteria listed in the revised draft TAGM 4046 dated April 7, 1995 for cadmium and chromium of 10 ppm and 50 ppm, respectively, have been established as screening criteria for these two metals.

The soil screening criteria described in the preceding paragraph is presented in the right-hand column on the laboratory analytical summary tables for the soil samples (Tables B-1 through B-4) presented in Appendix B. If, for a given compound/constituent, the concentration of the compound/constituent detected in the soil sample exceeds the screening criterion then the compound/constituent concentration has been boxed and bolded on the table.

4.1.2 <u>Groundwater Screening Criteria</u>

The Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1 - "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" have been selected as groundwater screening criteria (i.e., Standards, Criteria and Guidelines [SCGs]) for the Investigation Sampling Program. As a result, the respective Class GA Groundwater Standard or Guidance Value has been established as groundwater screening criteria for each VOC, SVOC, PCB, TAL metal and hexavalent chromium.

The groundwater screening criteria described in the preceding paragraph is presented in the right-hand column on the laboratory analytical summary tables for the groundwater samples (Tables B-5 through B-8) presented in Appendix B. If, for a given compound/constituent, the concentration of the compound/constituent detected in the groundwater sample exceeds the screening criterion then the compound/constituent concentration has been boxed and bolded on the table.

4.2 Data Validation

Surface soil, subsurface soil and groundwater samples were collected during the Investigation Sampling Program conducted within the Town of Oyster Bay Bethpage Community Park during May, June, September and November 2003. The majority of the soil samples were analyzed for PCBs, RCRA/TAL metals and hexavalent chromium. In addition, several of the soil samples were analyzed for VOCs and SVOCs. All of the groundwater samples were analyzed for VOCs, SVOCs, PCBs, TAL metals (total and dissolved) and hexavalent chromium (total and dissolved), with the exception of those collected on September 12 and November 25 and 26, 2003 which were analyzed for VOCs only.

All sample analyses were performed by Mitkem Corporation, a subcontractor to Dvirka and Bartilucci Consulting Engineers (D&B), in accordance with the Site-Specific Work Plan, USEPA SW-846 methods and NYSDEC 6/00 Analytical Services Protocol (ASP) Quality Assurance/Quality Control (QA/QC) requirements. The data packages submitted by Mitkem Corporation have been reviewed for completeness and compliance with the specified methods and validated in accordance with NYSDEC QA/QC requirements. All of the environmental sample results as well as all of the QA/QC samples have been reviewed for transcription and/or calculation errors and contractual compliance to yield a "100% Validation." Data validation summary forms have been prepared for each data package and copies are provided in Appendix C of this report. The findings of the validation process are summarized below.

All samples were analyzed within the method specified holding times with the exception of several re-extractions.

The SVOC fraction for sample B-7 (12'-14') was re-extracted outside of its holding time since all of the surrogate recoveries in the initial extract were outside QC limits. The data from the re-extract is considered the "best set" and is included on the data summary tables.

Several of the VOC samples (i.e., B-7 [6'-8'], B-7 [8'-10'], B-7 [10'-12'], B-7 [12'-14'] and B-7 [16'-18']) were analyzed at medium level due to the high concentrations of several compounds present in the samples.

The acetone result for sample B-19 (8'-10') slightly exceeded the instrument calibration range. Since the sample was not reanalyzed at a secondary dilution, the result has been qualified as estimated.

The laboratory noted that the following samples exhibited fuel product contamination: B-2 (6'-8'), B-6 (4'-6'), B-6 (12'-14'), B-6 (18'-20'), B-11 (10'-12') and B-11 (18'-20').

Samples B-2 (6'-8') and B-2 (10'-11') had percent moistures greater than 50% and sample B-23 (0-2") had a percent moisture of 46%. The analytical results for both of these samples have been qualified as estimated, possibly biased high.

Several samples required reanalysis due to surrogate recoveries and/or internal standard area counts being outside QC limits. Both sets of data were included in the data packages and have been reviewed to determine which set was the most contractually compliant. The results of the analysis which were considered as the "best set" have been included on the data summary tables.

Soil sample BCPMW-3 (2'-4') was initially sampled on June 5, 2003, and analyzed for PCBs, TAL metals and hexavalent chromium. However, since this sample interval was supposed to be analyzed for VOCs and SVOCs also, the sample interval was resampled on June 10, 2003, and analyzed for VOCs and SVOCs only.

Methylene chloride has been qualified as nondetect in several samples due to laboratory contamination. That is, the method blanks associated with the qualified samples also contained methylene chloride and the sample result was less than ten times the blank result. The affected sample results have been qualified with the "U*" qualifier on the data summary tables. If the

sample result was greater than ten times the blank result, than the result was qualified with the "J*" qualifier on the data summary tables.

Bis(2-ethylhexyl)phthalate has been qualified as nondetect in several samples due to laboratory contamination. That is, the method blanks associated with the qualified samples also contained bis(2-ethylhexyl)phthalate and the sample result was less than ten times the blank result. The affected sample results have been qualified with the "U*" qualifier on the data summary tables.

Two groundwater samples, BCPMW-2 and BCPMW-3, collected on September 12, 2003 were reanalyzed at secondary dilutions due to compound concentrations exceeding the instrument calibration range during the initial analysis. The analytical results for the affected compounds have been taken from the diluted analysis and are flagged with the "D" qualifier on the data summary tables.

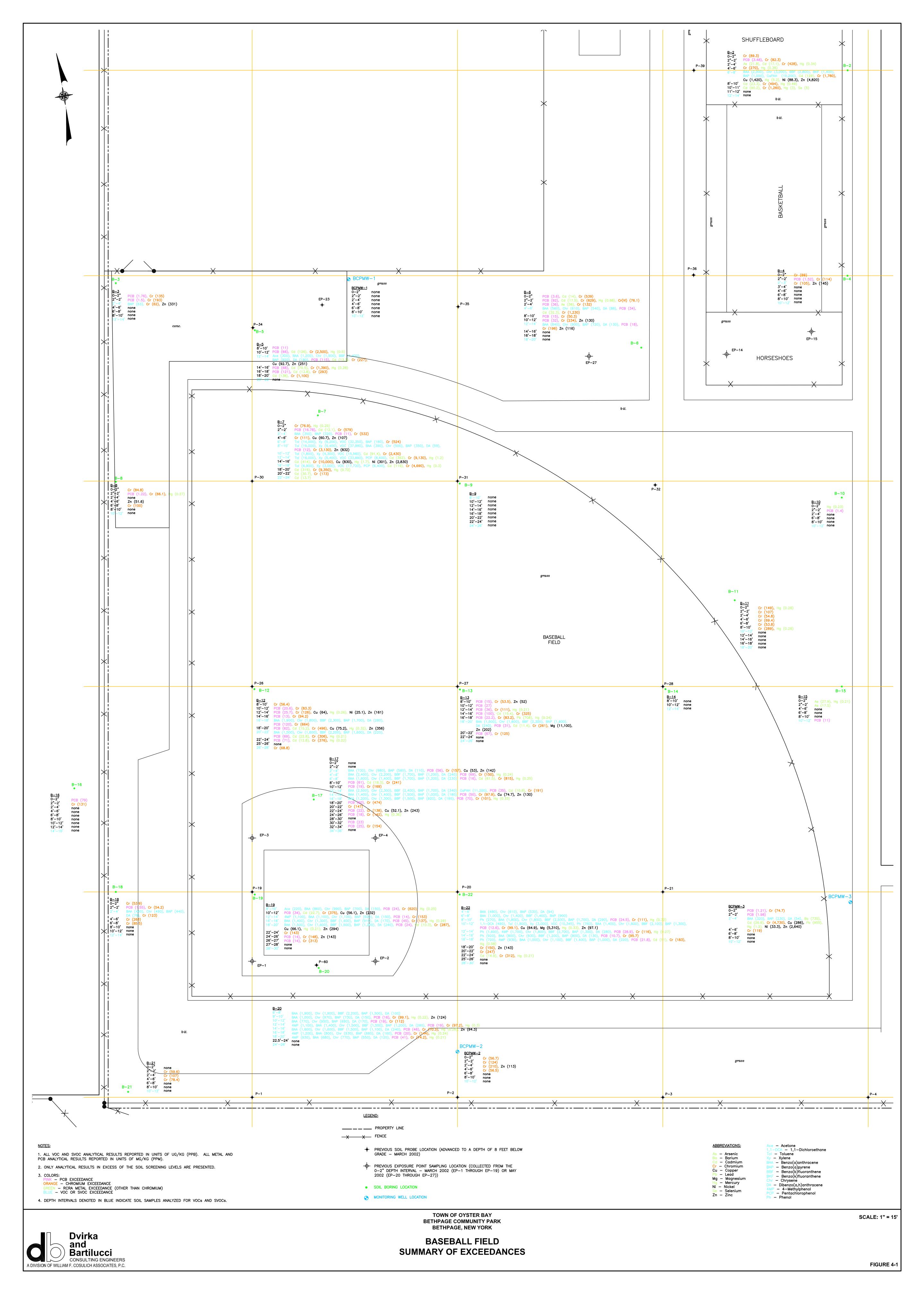
The methylene chloride results for samples BCPMW-1 and B24MW-2, collected on November 25, 2003 and November 26, 2003, respectively, have been qualified as nondetect due to field blank contamination.

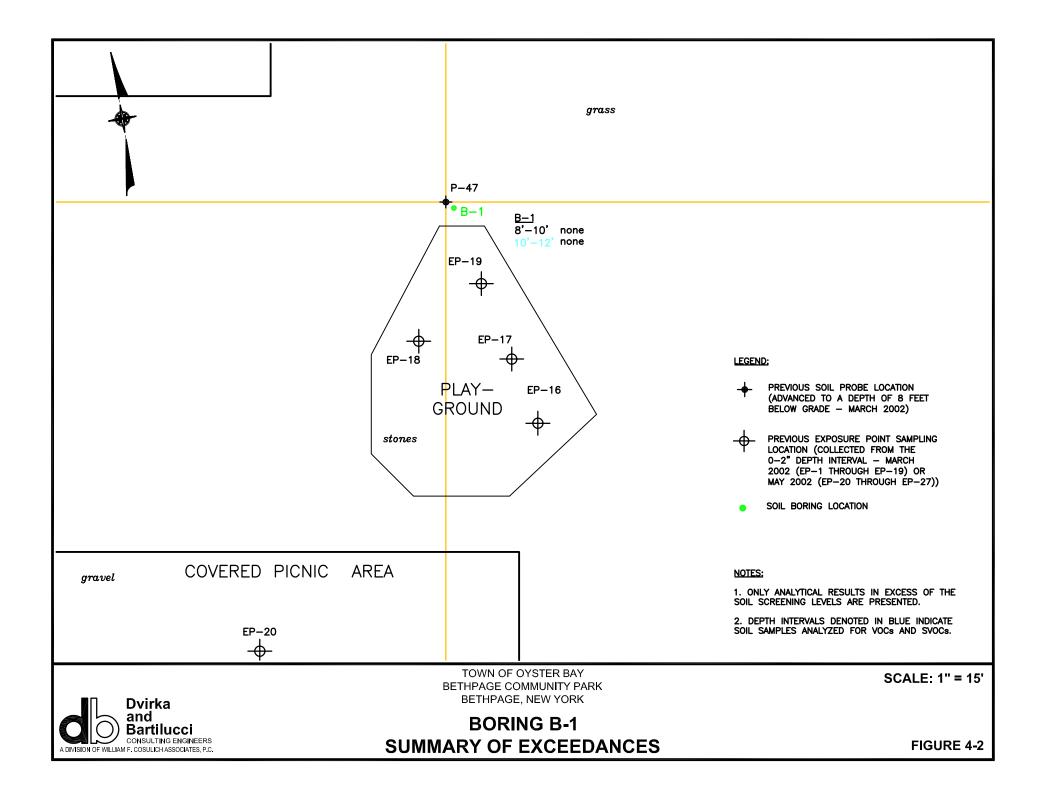
Samples BCPMW-2 and BCPMW-3, collected on November 25, 2003, were initially analyzed at 1:2 and 1:40 dilutions, respectively, due to the concentrations of targeted compounds detected. Since the samples were run at dilutions, low concentrations of some target compounds may have been diluted out of these samples. Sample BCPMW-3 was reanalyzed at a 1:100 dilution due to the high concentration of cis-1,2-dichloroethene detected in the sample. The result for this compound has been taken from the 1:100 dilution and flagged "D" on the data summary tables.

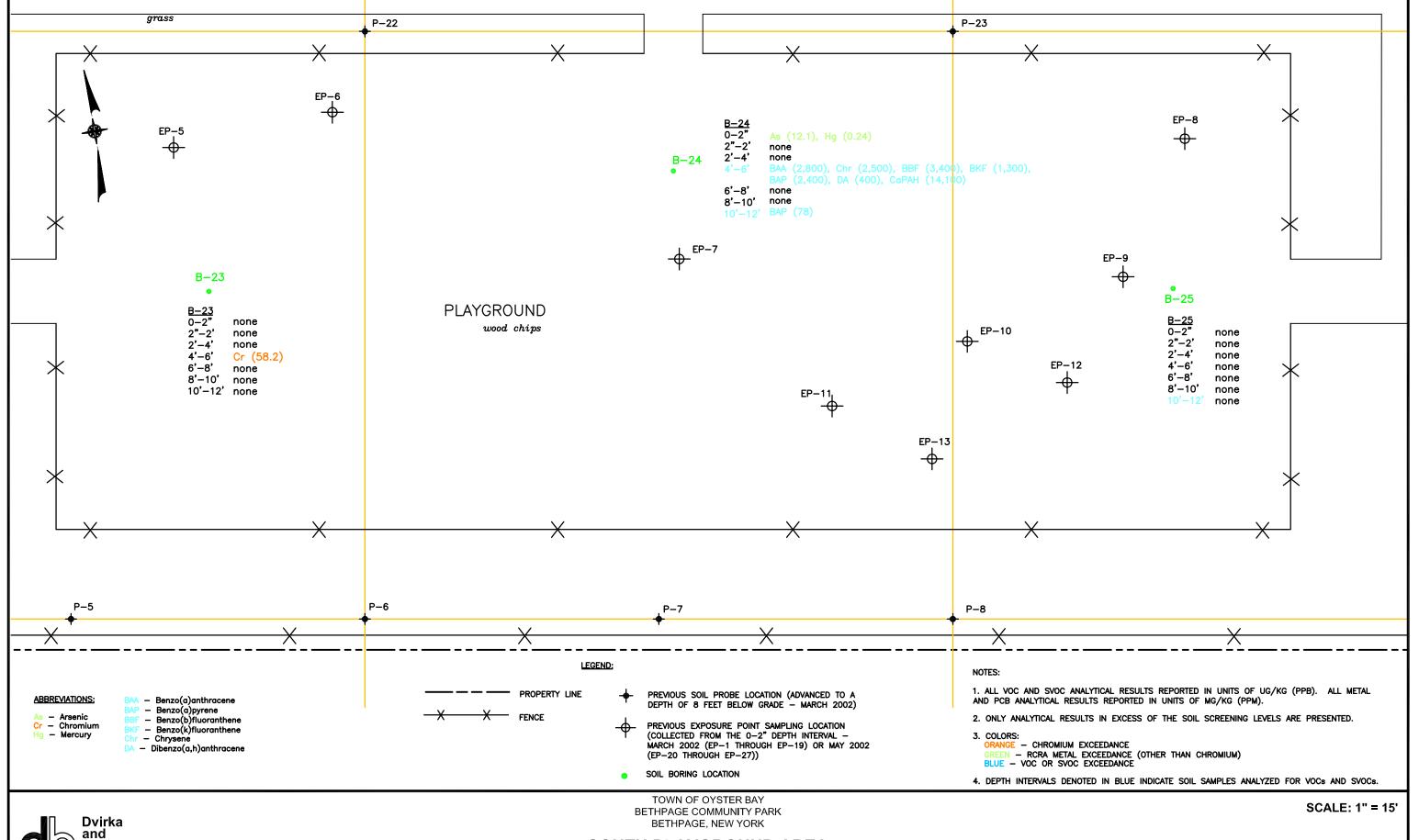
No other problems were found with the sample results. All results have been deemed valid and usable for environmental assessment purposes as qualified above.

4.3 Boring Logs

During the course of the Investigation Sampling Program undertaken within the Town of Oyster Bay Bethpage Community Park, a D&B geologist characterized the soil collected from each sample interval in the soil borings and noted all observations in a bound field log book. The observations recorded by the geologist have been transcribed onto boring logs for each of the 28 soil borings advanced during the Investigation Sampling Program. These boring logs are presented as Appendix D of this report.


4.4 Summary of Analytical Results


The sections which follow provide a summary of the analytical results of the soil and groundwater samples collected from the Town of Oyster Bay Bethpage Community Park during the Investigation Sampling Program.


4.4.1 Soil Samples

Due to the number of samples collected from the soil borings advanced within the Bethpage Community Park during the Investigation Sampling Program, it has been determined that the best manner in which to summarize the laboratory data is to present the data graphically. As a result, three figures have been created to summarize the individual compound/constituent concentrations which exceeded the soil screening criteria. These figures are presented as follows:

<u>Figure No.</u>	Area/Location Summarized		
4-1	Baseball Field		
4-2	Boring B-1		
4-3	South Playground Area		

SOUTH PLAYGROUND AREA SUMMARY OF EXCEEDANCES

Bartilucci consulting engineers

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Again, it should be noted that only the analytical results for soil samples which exhibited a compound/constituent concentration in excess of the soil screening criteria are provided on the figures. A complete set of all of the analytical results for the soil samples are provided on Tables B-1 through B-4 provided in Appendix B of this report.

Please note that all VOC and SVOC analytical results presented on the figure are reported in units of ug/kg (ppb). In addition, all PCB and metal analytical results presented on the figures are reported in units of mg/kg (ppm). If "none" is listed adjacent to a particular sample interval on the figures, it indicates that none of the compounds/constituents analyzed for in that soil sample exceeded their respective soil screening criterion.

The analytical results of the soil samples presented on the figures have been color coded to assist in the review of the data. As such, soil sample results presented in pink represent PCB concentrations detected in excess of the soil screening criteria; soil sample results presented in orange represent chromium concentrations detected in excess of the soil screening criteria; soil sample results presented in green represent RCRA metal concentrations (other than chromium) detected in excess of the soil screening criteria; and, soil sample results presented in blue represent VOC or SVOC concentrations detected in excess of the soil screening criteria. In addition to the above, any sample interval presented in blue indicates an interval where the soil samples were analyzed for VOCs and SVOCs, regardless of whether any compound/constituent exceeded its respective soil screening criterion.

It should be noted that due to the complex nomenclature of a number of the compounds/constituents presented on the figures, abbreviations have been utilized to conserve space. A list of the applicable abbreviations is presented on each figure.

Please note that the analytical results presented on the figures for BCPMW-1, BCPMW-2 and BCPMW-3 are for the soil samples collected from that boring only; groundwater sample results are not presented on these figures.

4.4.2 <u>Groundwater Samples</u>

Groundwater samples were collected from Bethpage Community Park monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 during the Investigation Sampling Program. The location of these three monitoring wells are shown on Figure 3-1 of this report.

As mentioned previously, groundwater samples were collected from the three Bethpage Community Park monitoring wells on three separate dates, June 19, September 12 and November 25, 2003. In addition, groundwater samples were collected from three off-site monitoring wells located immediately adjacent to the Bethpage Community Park (identified as B24MW-2, B24MW-3 and B30MW-1) on November 26, 2003. The analytical results of the groundwater samples and the rationale for resampling the park wells and sampling the three off-site wells is discussed in the following sections.

4.4.2.1 - June 19, 2003 Groundwater Sampling Event

Groundwater samples were collected from Bethpage Community Park monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 during the Investigation Sampling Program on June 19, 2003. The procedures utilized to collect these groundwater samples is discussed in Section 3.0 of this report.

All groundwater samples collected on June 19, 2003, were analyzed for VOCs, SVOCs, PCBs, TAL metals (total and dissolved) and hexavalent chromium (total and dissolved). The analytical results of these groundwater samples are presented on Tables B-5 through B-8 provided in Appendix B of this report and are summarized as follows:

Groundwater Samples BCPMW-1, BCPMW-2 and BCPMW-3

• All VOCs analyzed for were either not detected or were detected at concentrations below the Class GA Groundwater Standards/Guidance Values with the exception of the following:

- 1,1-Dichloroethane was detected at a concentration of 18 ug/l in groundwater sample BCPMW-2 which exceeds the Class GA Groundwater Standard of 5 ug/l.
- cis-1,2-Dichloroethene was detected at concentrations of 120 ug/l and 5,300 ug/l in groundwater samples BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.
- Trichloroethene was detected at concentrations of 83 ug/l, 230 ug/l and 620 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.
- All SVOCs analyzed for were not detected.
- All PCBs analyzed for were not detected.
- All TAL metals and hexavalent chromium analyzed for were either not detected or were detected at concentrations below the Class GA Groundwater Standards/Guidance Values with the exception of the following:
 - Antimony was detected at a concentration of 3.8 ug/l in groundwater sample BCPMW-2 which exceeds the Class GA Groundwater Standard of 3 ug/l.
 - Arsenic was detected at concentrations of 52.4 ug/l, 113 ug/l and 81.5 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 25 ug/l.
 - Chromium was detected at concentrations of 102 ug/l and 93.3 ug/l in groundwater samples BCPMW-1 and BCPMW-2, respectively, which exceed the Class GA Groundwater Standard of 50 ug/l.
 - Iron was detected at concentrations of 67,800 ug/l, 111,000 ug/l and 61,300 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 300 ug/l.
 - Dissolved iron was detected at a concentration of 463 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 300 ug/l.
 - Lead was detected at concentrations of 41.9 ug/l, 72.6 ug/l and 31.4 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 25 ug/l.
 - Manganese was detected at concentrations of 302 ug/l and 377 ug/l in groundwater samples BCPMW-1 and BCPMW-2, respectively, which exceed the Class GA Groundwater Standard of 300 ug/l.

- Sodium was detected at concentrations of 24,500 ug/l and 27,500 ug/l in groundwater samples BCPMW-1 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 20,000 ug/l.
- Dissolved sodium was detected at concentrations of 21,700 ug/l and 23,700 ug/l in groundwater samples BCPMW-1 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 20,000 ug/l.
- Thallium was detected at a concentration of 10.3 ug/l in groundwater sample BCPMW-2 which exceeds the Class GA Groundwater Guidance Value of 0.5 ug/l.
- Total iron and manganese was detected at concentrations of 68,102 ug/l, 111,377 ug/l and 61,521 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 500 ug/l.
- Dissolved total iron and manganese was detected at a concentration of 594 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 500 ug/l.

4.4.2.2 - September 12, 2003 Groundwater Sampling Event

Due to the concentrations of 1,1-dichloroethane, cis-1,2-dichloroethene and trichloroethene detected in the groundwater samples collected from BCPMW-2 and BCPMW-3 on June 19, 2003, it was determined that all three monitoring wells located within the Bethpage Community Park should be resampled in order to confirm the presence and concentrations of these compounds in the groundwater.

As a result, monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 were resampled during the Investigation Sampling Program on September 12, 2003. The procedures utilized to collect these groundwater samples is discussed in Section 3.0 of this report.

All groundwater samples collected on September 12, 2003 were analyzed for VOCs only. The analytical results of these samples are presented on Table B-5 provided in Appendix B of this report and are summarized as follows:

Groundwater Samples BCPMW-1, BCPMW-2 and BCPMW-3

- All VOCs analyzed for were either not detected or were detected at concentrations below the Class GA Groundwater Standards/Guidance Values with the exception of the following:
 - Vinyl chloride was detected at a concentration of 6 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 2 ug/l.
 - 1,1-Dichloroethene was detected at a concentration of 11 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 5 ug/l.
 - 1,1-Dichloroethane was detected at concentrations of 18 ug/l and 10 ug/l in groundwater samples BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.
 - cis-1,2-Dichloroethene was detected at concentrations of 6 ug/l, 150 ug/l and 2,900 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.
 - 1,1,1-Trichloroethane was detected at a concentration of 6 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 5 ug/l.
 - Trichloroethene was detected at concentrations of 76 ug/l, 280 ug/l and 760 ug/l in groundwater samples BCPMW-1, BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.

4.4.2.3 - November 25 and 26, 2003 Groundwater Sampling Event

Due to the concentrations of certain chlorinated VOCs detected in the groundwater samples collected from BCPMW-2 and BCPMW-3 on June 19, 2003 and September 12, 2003, it was determined that three off-site monitoring wells located immediately adjacent to the Bethpage Community Park should be sampled in order to assist in determining the source of these chlorinated VOCs. These three monitoring wells are identified as B24MW-2, B24MW-3 and B30MW-1 and located as shown on Figure 3-1 presented in Section 3.0 of this report. In addition, in order to confirm the presence and concentrations of the previously detected chlorinated VOCs in the groundwater, it was determined that on-site monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 should be resampled.

As a result, groundwater samples were collected from on-site monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 and off-site monitoring wells B24MW-2, B24MW-3 and B30MW-1 during the Investigation Sampling Program on November 25 and 26, 2003. The procedures utilized to collect these groundwater samples is discussed in Section 3.0 of this report.

It should be noted that since off-site monitoring wells B24MW-2, B24MW-3 and B30MW-1 had not been developed or sampled since their installation in early 1994, it was decided that these three wells should be redeveloped prior to sampling. A description of the well developing activities is provided in Section 3.0 of this report.

All groundwater samples collected on November 25 and 26, 2003 were analyzed for VOCs only. The analytical results of these samples are presented on Table B-5 provided in Appendix B of this report and are summarized as follows:

Groundwater Samples BCPMW-1, BCPMW-2, BCPMW-3, B24MW-2, B24MW-3 and B30MW-1

- All VOCs analyzed for were either not detected or were detected at concentrations below the Class GA Groundwater Standards/Guidance Values with the exception of the following:
 - Vinyl chloride was detected at a concentration of 70 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 2 ug/l.
 - 1,1-Dichloroethene was detected at a concentration of 44 ug/l in groundwater sample BCPMW-3 which exceeds the Class GA Groundwater Standard of 5 ug/l.
 - 1,1-Dichloroethane was detected at concentrations of 16 ug/l and 18 ug/l in groundwater samples BCPMW-2 and BCPMW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.
 - cis-1,2-Dichloroethene was detected at concentrations of 120 ug/l, 5,200 ug/l and 6 ug/l in groundwater samples BCPMW-2, BCPMW-3 and B24MW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.

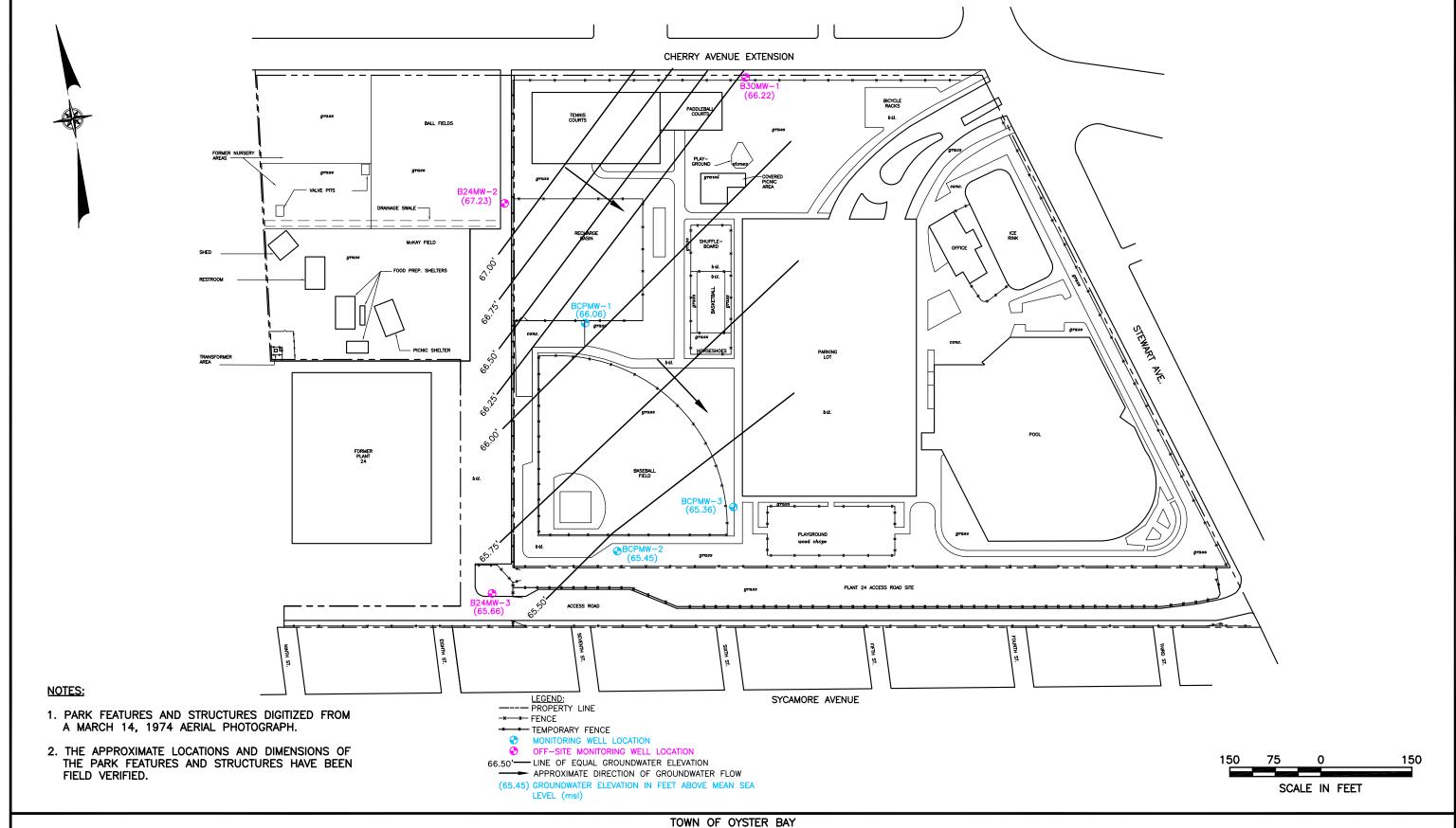
Trichloroethene was detected at concentrations of 60 ug/l, 210 ug/l, 1,800 ug/l and 54 ug/l in groundwater samples BCPMW-1, BCPMW-2, BCPMW-3 and B24MW-3, respectively, which exceed the Class GA Groundwater Standard of 5 ug/l.

4.5 Groundwater Contour Map

In order to determine the current flow direction of groundwater beneath the Town of Oyster Bay Bethpage Community Park, a groundwater contour map has been prepared for the site. The map was prepared based on measurements recorded from the three monitoring wells installed within the Bethpage Community Park during the Investigation Sampling Program (i.e., BCPMW-1, BCPMW-2 and BCPMW-3). In addition, in order to provide additional information and increase the reliability of the groundwater elevation contour lines and the calculated groundwater flow direction, depth to water measurements were collected from three nearby existing off-site monitoring wells located immediately adjacent to the Bethpage Community Park. These three off-site monitoring wells are identified as B24MW-2, B24MW-3 and B30MW-1. Top of casing elevations of these three nearby existing off-site monitoring wells were surveyed on July 30, 2003 after the three on-site monitoring wells were surveyed.

Depth to groundwater measurements were recorded for monitoring wells BCPMW-1, BCPMW-2, BCPMW-3, B24MW-2, B24MW-3 and B30MW-1 on June 19, 2003. The depth to water measurement collected on June 19, 2003, the top of casing elevation and the calculated groundwater elevation for each monitoring well is summarized on Table 4-1. The groundwater elevation contours and calculated groundwater flow direction are shown on the groundwater contour map for June 19, 2003 provided as Figure 4-4.

Groundwater flow across the Bethpage Community Park site was found to be generally toward the southeast. Groundwater ranged in elevation from 67.23 feet at B24MW-2 to 65.36 feet at BCPMW-3. The hydraulic gradient is approximately 0.005 feet per foot in the northwest portion of the park property and approximately 0.002 feet per foot in the southwest portion of the park property, as calculated from Figure 4-4.


Table 4-1

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM WATER LEVEL MEASUREMENTS AND SURVEYED WELL ELEVATIONS

JUNE 2003

Monitoring <u>Well</u>	Top of Casing Elevation (feet)	Depth to Water (feet)	Date Measured	Groundwater Elevation (feet)
BCPMW-1	125.72	59.66	June 19, 2003	66.06
BCPMW-2	126.35	60.90	June 19, 2003	65.45
BCPMW-3	124.96	59.60	June 19, 2003	65.36
B24MW-2	126.94	59.71	June 19, 2003	67.23
B24MW-3	127.06	61.40	June 19, 2003	65.66
B30MW-1	128.32	62.10	June 19, 2003	66.22

Note: Elevations are recorded in feet above mean sea level.

Dvirka and Bartilucci CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

TOWN OF OYSTER BAY
BETHPAGE COMMUNITY PARK
BETHPAGE, NEW YORK

GROUNDWATER CONTOUR MAP JUNE 19, 2003

5.0 CONCLUSIONS

Based upon the findings of the Investigation Sampling Program conducted within the Town of Oyster Bay Bethpage Community Park as presented in Section 4.0 of this report, conclusions are presented in this section.

In support of providing conclusions for the project, the New York State Department of Environmental Conservation's (NYSDEC's) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 - "Determination of Soil Cleanup Objectives and Cleanup Levels" has been selected as the soil screening criteria for the site. As discussed in the introduction to TAGM 4046, the document is designed for use by NYSDEC Project Managers at "...individual Federal Superfund, State Superfund, 1986 EQBA Title 3 and Responsible Party (RP) sites...." TAGM 4046 provides a number of guidelines, including Recommended Soil Cleanup Objectives and Eastern USA Background Levels.

The Bethpage Community Park is not a Federal Superfund or State Superfund site nor is it an RP or 1986 EQBA (Environmental Quality Bond Act) Title 3 property. However, it is reasonable to establish the TAGM 4046 Recommended Soil Cleanup Objectives for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) and polychlorinated biphenyls (PCBs) and the Eastern USA Background Levels for metals for soil screening criteria for the site. In addition, the proposed revised TAGM 4046 Recommended Soil Cleanup Objectives for cadmium and chromium were established as soil screening criteria for these two metals. The Class GA Groundwater Standards and Guidance Values listed in the NYSDEC Division of Water's Technical and Operational Guidance Series (TOGS) 1.1.1 - "Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" have been selected as groundwater screening criteria for the site.

As discussed previously, the purpose of the Investigation Sampling Program is to further characterize the environmental condition of surface and subsurface soil located within the Town of Oyster Bay Bethpage Community Park and to determine whether groundwater quality is

currently being adversely impacted by the site. As such, soil and groundwater samples were collected to assess the environmental condition of the soil and groundwater within the park.

The sections which follow provide conclusions developed from the findings of the soil and groundwater sampling activities.

5.1 Conclusions

The following sections present the conclusions drawn from the findings of the Investigation Sampling Program as separate discussions of soil and groundwater.

5.1.1 Soil

As discussed in Section 3.0 of this report, a total of 231 soil samples were collected from 28 borings advanced during the Investigation Sampling Program undertaken within the Bethpage Community Park between May 27 and June 11, 2003. These soil samples were analyzed for VOCs (71 samples), SVOCs (71 samples), PCBs (228 samples), Resource Conservation and Recovery Act (RCRA) metals (174 samples), Target Analyte List (TAL) metals (54 samples) and hexavalent chromium (228 samples). The analytical results of the soil samples are summarized on Tables B-1 through B-4 provided in Appendix B and shown graphically on Figures 4-1, 4-2 and 4-3 provided in Section 4.0 of this report. As shown on the tables and figures, some of the soil samples exhibited compound/constituent concentrations in excess of the soil screening criteria (i.e., TAGM 4046 Recommended Soil Cleanup Objectives and Eastern USA Background Levels).

The sections which follow present the conclusions as separate discussions of the vertical and horizontal delineation of the contamination detected in the soil samples collected during the Investigation Sampling Program.

5.1.1.1 - Vertical Delineation

As discussed in Section 3.0 of this report, the total depth of each boring was field determined by a trained geologist. Each boring was advanced until two consecutive 2-foot intervals were retrieved which met the following criteria: a boring-specific minimum depth (i.e., 12 or 16 feet below grade depending upon location), undisturbed native soil or a confining layer, and visually unimpacted soil (i.e., soil that did not exhibit signs of staining and/or discoloration) and which did not exhibit photoionization detector (PID) readings above background concentrations. As a result, as noted on the boring logs provided in Appendix D of this report, the deepest two consecutive 2-foot intervals from all 28 borings were "visibly clean" undisturbed native soil which did not exhibit a PID reading above background concentrations.

As presented on Tables B-1 through B-4 provided in Appendix B and shown graphically on Figures 4-1, 4-2 and 4-3 provided in Section 4.0 of this report, of the 28 borings advanced during this program, there are at least two consecutive soil samples without any exceedances of the soil screening criteria at the bottom of 22 borings, one soil sample without any exceedances of the soil screening criteria at the bottom of 2 borings, and a soil sample with only one exceedance of the soil screening criteria at the bottom of the remaining 4 borings.

The four borings which exhibited only one exceedance of the soil screening criteria in the deepest soil sample are borings B-7, B-12, B-15 and B-24. The exceedances detected in the deepest soil sample collected from these borings are summarized as follow:

- Cadmium was detected at a concentration of 13.7 mg/kg in soil sample B-7 (22'-24') which exceeds the soil screening criterion of 10 mg/kg.
- Chromium was detected at a concentration of 68.8 mg/kg in soil sample B-12 (26'-28') which exceeds the soil screening criterion of 50 mg/kg.
- PCBs were detected at a concentration of 11 mg/kg in soil sample B-15 (10'-12') which exceeds the soil screening criterion of 10 mg/kg.
- Benzo(a)pyrene was detected at a concentration of 78 ug/kg in soil sample B-24 (10'-12') which exceeds the soil screening criterion of 61 ug/kg.

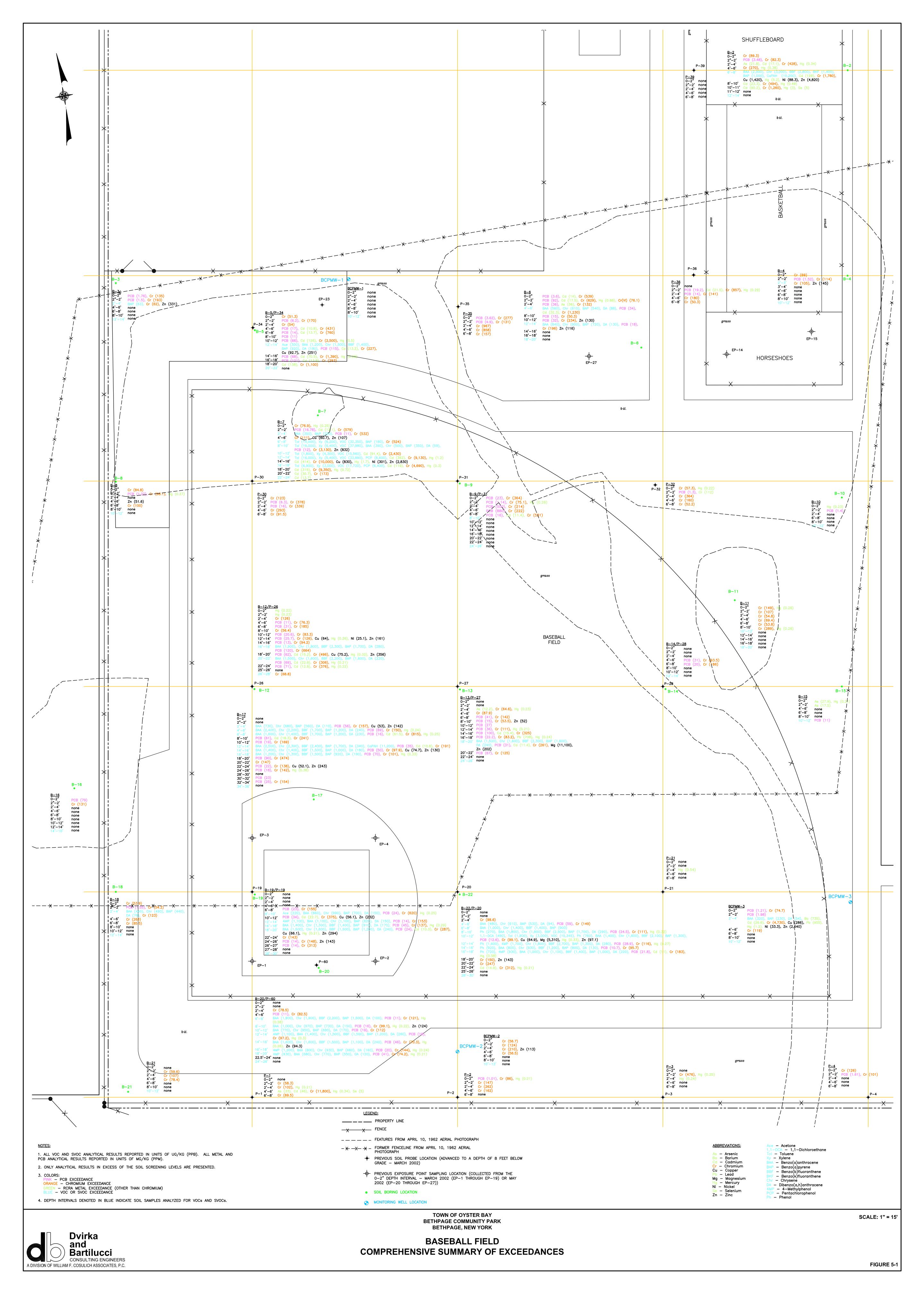
The concentrations presented above only slightly exceed their respective soil screening criterion. In addition, the adjacent shallower soil sample in boring B-12 (i.e., B-12 [25'-26']), the three adjacent shallower soil samples in boring B-15 (i.e., B-15 [4'-6'], B-15 [6'-8'] and B-15 [8'-10']) and the two adjacent shallower soil samples in boring B-24 (i.e., B-24 [6'-8'] and B-24 [8'-10']) did not exhibit any compound/constituent concentrations which exceeded their respective soil screening criterion. Based on these findings, coupled with the fact that the two deepest 2-foot intervals from each of these borings were "visibly clean" undisturbed native soil which did not exhibit a PID reading above background concentrations, no additional investigation is necessary at these boring locations in order to determine the vertical extent of impacted soil.

Based upon the analytical results of the soil samples, it appears that the maximum depth of impacted soil ranges from 8 to 34 feet below grade in the baseball field area and up to 12 feet below grade along the perimeter of the baseball field area. The maximum depth of impacted soil in the boring B-1 area is 6 feet below grade based on the findings of this program along with those of the soil sampling program conducted in March/May 2002 (probe P-47). The maximum depth of impacted soil in the south playground area is 12 feet below grade.

Based upon the findings presented above, delineation of the vertical extent of impacted soil for the borings advanced during the Investigation Sampling Program has been achieved and further investigation to determine vertical impact is not warranted.

5.1.1.2 - Horizontal Delineation

The analytical results of the Investigation Sampling Program are shown graphically on Figures 4-1, 4-2 and 4-3 provided in Section 4.0 of this report for the baseball field area, boring B-1 area and the south playground area, respectively. The conclusions provided below are presented as separate discussions of the baseball field area, boring B-1 area and the south playground area.


Baseball Field Area

As mentioned previously, Figure 4-1 provided in Section 4.0 of this report graphically presents the analytical results of the soil samples collected from the baseball field area during the Investigation Sampling Program. Utilizing Figure 4-1 as a starting point, a second figure has been prepared to incorporate the analytical results of the soil samples collected from the soil probes advanced during the March 2002 soil sampling program along with the data obtained from the Investigation Sampling Program. This new figure is presented as Figure 5-1. In addition, in order to supplement the analytical data, some of the prominent features shown on the April 10, 1962 aerial photograph (i.e., sludge drying beds, excavations, fence line and roadway) have been digitized and overlain on Figure 5-1. These features are presented as the dashed lines shown on the figure.

The following subsections describe horizontal delineation to the south, west, north and east of the baseball field area.

Delineation to South and West

As presented in the Site-Specific Work Plan and discussed in the April 4, 2003 comment response letter submitting the final Site-Specific Work Plan to the NYSDEC, the objectives of the Investigation Sampling Program limit the investigation to the Bethpage Community Park and are not intended to address or investigate any off-site impacts. Therefore, any detected contamination which extends to the property line of the Bethpage Community Park is considered to be horizontally delineated. As a result, even though certain compounds/constituents have been detected in soil samples at concentrations exceeding their respective soil screening criterion up to the southern and western property/fence lines of the Bethpage Community Park, further investigation pursuant to the Site-Specific Work Plan to determine the horizontal extent of impact along the south and west fence lines in the vicinity of the baseball field area is not warranted.

Delineation to North

The baseball field area is bounded to the north by borings/probes B-3, B-5/P-34, BCPMW-1, P-35, B-6, P-36, P-39 and B-2 (west to east).

The analytical results of the soil samples collected from borings/probes B-5/P-34, P-35, B-6 and P-36 exhibit compound/constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, these borings/probes are located within a former sludge drying bed shown on the April 10, 1962 aerial photograph of the property. As a result, these compound/constituent concentrations are most likely due to the sludge drying bed itself or the fill material utilized to backfill the sludge drying bed.

None of the soil samples collected from borings/probes BCPMW-1 and P-39 exhibited compound/constituent concentrations in excess of the soil screening criteria.

The analytical results of the soil samples collected from boring B-3 exhibit compound/ constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, this boring is located just outside the former fence line of the sludge drying bed area shown on the April 10, 1962 aerial photograph of the property. The compound/constituent concentrations detected in these samples are relatively low compared to those detected in soil samples collected from within the adjacent former sludge drying bed area. The soil screening criteria exceedances detected in the soil samples collected from this boring are relatively shallow (i.e., up to 4 feet below grade).

The analytical results of the soil samples collected from boring B-2 exhibit compound/ constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, this boring is located outside of the former fence line of the sludge drying bed area shown on the April 10, 1962 aerial photograph of the property. As presented in the data validation discussion provided in Section 4.0 of this report, the two soil samples from this boring which exhibited the highest compound/constituent concentrations (i.e., B-2 [6'-8'] and B-2 [10'-11']) also contained high percent moistures (in excess of 50%) and therefore, the analytical results for these samples

have been qualified as estimated, possibly biased high. The compounds/constituents detected in the samples collected from this boring are bounded to the west by probe P-39 and to the north by probe P-41. There is no boring or probe located directly to the east of boring B-2. However, since the parking lot is located immediately adjacent to boring B-2 to the east, the parking lot effectively caps any contamination which may be present to the east of this location. It should be noted that even though concentrations of certain polycyclic aromatic hydrocarbons (PAHs) were detected in sample B-2 (6'-8') and none of the soil probe samples were analyzed for SVOCs, the high percent moisture detected in this sample makes these PAHs concentrations suspect. The concentrations of Total PAHs and Total SVOCs are below their respective soil screening criterion for sample B-2 (6'-8'). Factoring in the high percent moisture present in the sample, the concentration of Total CaPAHs would likely be below its respective soil screening criterion for this sample.

Based upon the findings presented above, the contamination detected in the baseball field area is bounded to the north. In addition, based on the April 10, 1962 aerial photograph overlain on Figure 5-1, areas situated further to the north of the baseball field area than those already investigated are located outside of the former fence line of the sludge drying bed area. As a result, further investigation to determine the horizontal extent of impact to the north of the baseball field area is not warranted.

Delineation to East

The baseball field area is bounded to the east by borings/probes B-4, B-10, B-15, BCPMW-3 and P-4 (north to south).

The analytical results of the soil samples collected from borings B-4 and B-10 exhibit compound/constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, these borings/probes are located within a former sludge drying bed shown on the April 10, 1962 aerial photograph of the property. As a result, these compound/constituent concentrations are most likely due to the sludge drying bed itself or the fill material utilized to

backfill the sludge drying bed. The soil screening criteria exceedances detected in the soil samples collected from these borings are relatively shallow (i.e., up to 3 feet below grade).

The analytical results of the soil samples collected from boring B-15 exhibit compound/ constituent concentrations in excess of the soil screening criteria. However, the concentrations only slightly exceed their respective soil screening criteria. As shown on Figure 5-1, this boring is located within the former fence line of the sludge drying bed area shown on the April 10, 1962 aerial photograph of the property.

The analytical results of the soil samples collected from boring BCPMW-3 exhibit compound/constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, this boring is located outside the former fence line of the sludge drying bed area shown on the April 10, 1962 aerial photograph of the property. Boring B-23 is located to the east of boring BCPMW-3. None of the compounds/constituents analyzed for in the soil samples collected from boring B-23 were detected at concentrations in excess of the soil screening criteria. As a result, boring BCPMW-3 is bounded to the east.

The analytical results of the soil samples collected from probe P-4 exhibit compound/ constituent concentrations in excess of the soil screening criteria. As shown on Figure 5-1, this boring is located outside the former fence line of the sludge drying bed area shown on the April 10, 1962 aerial photograph of the property. Probe P-6 is located to the east of probe P-4. None of the compounds/constituents analyzed for in the soil samples collected from probe P-6 were detected at concentrations in excess of the soil screening criteria. As a result, probe P-4 is bounded to the east.

Based upon the findings presented above, the contamination detected in the baseball field area is bounded to the east. In addition, based on the April 10, 1962 aerial photograph overlain on Figure 5-1, areas situated further to the east of the baseball field area than those already investigated are located outside of the former fence line of the sludge drying bed area. Also, the parking lot is located immediately adjacent to the baseball field area and eliminates any potential pathway associated with exposure to surface soil contamination which may be present to the

east. As a result, further investigation to determine the horizontal extent of any potentially impacted soil to the east of the baseball field area is not warranted.

Boring B-1 Area

The purpose of advancing a soil boring in this location during the Investigation Sampling Program was to determine the vertical extent of the PCB contamination detected in this location during the soil sampling program undertaken in March 2002 (i.e., at probe P-47). The horizontal extent of impact has previously been determined by the soil probes advanced during the March 2002 soil sampling program (i.e., probes P-41, P-46, P-48 and P-54). As a result, further investigation to determine the horizontal extent of impact in this location is not warranted.

South Playground Area

Soil borings were advanced within the south playground area during the Investigation Sampling Program in response to a request from the Town of Oyster Bay. The Town of Oyster Bay requested three borings (i.e., B-23, B-24 and B-25) and associated soil sampling in this area in an effort to obtain data to assess the health and safety of the workers involved in the reconstruction of the south playground area. Since these boring were not proposed in the Site-Specific Work Plan and the horizontal extent of any previously detected contamination within this area has been delineated by the March 2002 soil sampling program, further investigation to determine the horizontal extent of any impacted soil in this location is not warranted.

5.1.2 Groundwater

As discussed in Section 3.0 of this report, following the installation of monitoring wells BCPMW-1, BCPMW-2 and BCPMW-3 within the Bethpage Community Park, groundwater samples were collected from each well on June 19, 2003, for laboratory analysis for VOCs, SVOCs, PCBs, TAL metals (total and dissolved) and hexavalent chromium (total and dissolved). As discussed in Section 4.0 of this report, all compounds/constituents analyzed for were either not detected or were detected at concentrations below the Class GA Groundwater Standards/

Guidance Values with the exception of certain VOCs and TAL metals. In addition, as discussed in Section 4.0, due to the concentrations of certain VOCs detected in the groundwater samples collected on June 19, 2003, all three monitoring wells were resampled on September 12, 2003 and analyzed for VOCs only. Also, as discussed in Section 4.0, in order to confirm the presence and attempt to determine the source of certain VOCs detected in the groundwater samples collected on June 19 and September 12, 2003, three off-site monitoring wells as well as the three on-site monitoring wells were sampled/resampled on November 25 and 26, 2003 and analyzed for VOCs only.

The sections which follow present the conclusions as separate discussions of the VOC and TAL metal concentrations detected in groundwater samples collected during the Investigation Sampling Program. In summary, the groundwater and soil VOC analytical results seem to indicate that while the soil located within the Bethpage Community Park may have been an historic source of the chlorinated VOCs detected in the downgradient monitoring well groundwater samples, it does not appear that the soil is a continuing source of the chlorinated VOCs. The TAL metal groundwater analytical results in excess of the Class GA Groundwater Standards/Guidance Values are either due to the excessive turbidity of the samples or are naturally occurring on Long Island (i.e., background).

5.1.2.1 - <u>VOCs</u>

As discussed in Section 4.0 of this report, three VOCs, specifically 1,1-dichloroethane, cis-1,2-dichloroethene and trichloroethene, were detected in the groundwater samples collected on June 19, 2003, from BCPMW-1, BCPMW-2 and BCPMW-3, the one on-site upgradient and two on-site downgradient wells, respectively (relative to the ball field within the park) at concentrations in excess of the Class GA Groundwater Standards. Upon resampling the three monitoring wells on September 12, 2003, six VOCs, specifically vinyl chloride, 1,1-dichloroethene, 1,1-dichloroethene, 1,1-trichloroethane and trichloroethene, were detected in the groundwater samples at concentrations in excess of the Class GA Groundwater Standards. Based on further sampling on November 25, 2003, five VOCs, specifically vinyl chloride, 1,1-dichloroethene, 1,1-dichloroethene, cis-1,2-dichloroethene

and trichloroethene, were detected in the groundwater samples collected from the on-site monitoring wells at concentrations in excess of the Class GA Groundwater Standards. In addition, based on sampling off-site sidegradient groundwater monitoring well B24MW-3 on November 26, 2003, two VOCs, specifically cis-1,2-dichloroethene and trichloroethene, were detected at concentrations in excess of the Class GA Groundwater Standards. On November 26, 2003, two off-site upgradient groundwater monitoring wells (B24MW-2 and B30MW-1) were sampled and analyzed. Based on the analytical results, VOCs were not detected in excess of the Class GA Groundwater Standards.

Based on the calculated groundwater elevations and the groundwater contour map presented in Section 4.0 of this report, monitoring well BCPMW-1 is located upgradient of the baseball field area and monitoring wells BCPMW-2 and BCPMW-3 are located downgradient of the baseball field area. Based on the results of the groundwater samples presented in Section 4.0 of this report, the concentrations of the VOCs which exceeded their respective Class GA Groundwater Standard (those presented above) were detected at higher concentrations in the downgradient wells (i.e., BCPMW-2 and BCPMW-3) than the upgradient well (i.e., BCPMW-1). As a result, it appears that the baseball field area may be an historic source of these VOC concentrations

However, as noted in Section 3.0 and shown in the boring logs presented in Appendix D of this report, the water table at upgradient monitoring well BCPMW-1 is partially screened within a layer of clay. As a result, accurate measurements of the depth to groundwater could not be obtained from this well and, in fact, were obtained from nearby existing off-site monitoring wells in order to determine the approximate depth of the water table in the area in order to set the well screen at the correct elevation (i.e., 5 feet above the water table interface and 10 feet below). Based on the measured depth to water obtained following installation of monitoring well BCPMW-1, the screen was installed at a suitable elevation across the water table interface for groundwater sampling purposes (approximately 9.5 feet above the water table and 5.5 feet below).

However, groundwater flow in the vicinity of monitoring well BCPMW-1 may be affected due to the clay layer present at this well location. As a result, the groundwater sample collected from this well may not be representative of actual groundwater quality upgradient of the baseball field area.

During the course of the Investigation Sampling Program field activities, as specified in the Site-Specific Work Plan, a photoionization detector (PID) was utilized to screen on-site soil collected from the soil borings to determine which sample intervals should be selected for laboratory analysis of VOCs and SVOCs. This procedure was followed for all of the borings advanced within the park as part of this program. Accordingly, soil samples were selected for laboratory analysis of VOCs and SVOCs if any of the following conditions were met:

- if PID readings exceeded background concentrations in any of the soil samples collected from a particular boring, the soil sample within that boring that exhibited the highest PID reading, as well as the deepest soil sample collected within that boring, would be selected.
- any soil sample which resulted in a PID reading of 50 ppm or greater above background concentrations would be selected.

The results of the soil samples selected for laboratory analysis do not exhibit the presence of any of the VOCs detected in the groundwater samples at concentrations in excess of the Class GA Groundwater Standards with the exception of one sample (B-22 [10'-12']), which exhibited a 1,1-dichloroethane concentration of 490 ug/kg which exceeds the soil screening criterion of 200 ug/kg. Soil samples collected from the remainder of this boring (B-22) for VOC analysis did not exhibit 1,1-dichloroethane concentrations in excess of the soil screening criterion and the deepest soil sample collected from this boring (B-22 [28'-30']) was nondetect for VOCs.

Borings BCPMW-1, BCPMW-2 and BCPMW-3 were advanced to depths of 70 feet, 75.5 feet and 74.5 feet below grade, respectively, which corresponds to approximately 10 feet below the water table interface at each location. Based on field observations, soil samples were collected for laboratory analysis from grade to 12 feet below grade in each boring. However, in accordance with the Site-Specific Work Plan, soil samples collected from each boring for depths

greater than 12 feet below grade were all screened with the PID and were to be selected for laboratory analysis if the PID readings were above background concentrations or staining and/or discoloration was observed. None of the soil samples collected from depth intervals greater than 12 feet below grade from these three borings exhibited PID readings above background concentrations and no evidence of staining and/or discoloration was observed.

Based on the VOC analytical results of the soil samples as wells as the PID readings and visual observations noted during the collection of soil samples from the borings, the soil located within the baseball field area does not appear to be a *current* source of the six chlorinated VOCs detected in the groundwater samples at concentrations in excess of the Class GA Groundwater Standards.

Groundwater in the vicinity of the Bethpage Community Park (i.e., Bethpage groundwater) has been the focus of a detailed investigation program which resulted in the preparation of a Record of Decision and the implementation of a remediation program. Bethpage groundwater has been impacted by chlorinated VOCs which originated from operations conducted by Northrop Grumman Corporation and Ruco Polymer resulting in the degradation of groundwater quality.

In order to ascertain whether chlorinated VOCs are present in the groundwater surrounding the park, three off-site monitoring wells located immediately adjacent to the park (i.e., wells B24MW-2, B24MW-3 and B30MW-1) were sampled on November 26, 2003 and analyzed for VOCs only. According to the groundwater contour map presented as Figure 4-4 in Section 4.0 of this report, monitoring wells B24MW-2 and B30MW-1 are located upgradient of the park and monitoring well B24MW-3 is located sidegradient to the park. The VOC analyses performed on the groundwater samples collected from these three wells show concentrations of cis-1,2-dichloroethene and trichloroethene in excess of their respective Class GA Groundwater Standards for sidegradient monitoring well B24MW-3, and no concentrations in excess of the Class GA Groundwater Standards/Guidance Values for upgradient monitoring wells B24MW-2 and B30MW-1. However, since none of the six chlorinated VOCs were detected in the upgradient off-site monitoring wells and the concentrations of those VOCs detected in off-site

monitoring well B24MW-3 were much lower than those detected on-site, it does not appear that these six chlorinated VOCs are attributable to Bethpage groundwater outside the park. It should be noted that, according to the boring log prepared following the installation of off-site monitoring well B24MW-2, the same clay layer encountered at on-site well BCPMW-1 was also present at well B24MW-2 and may be affecting groundwater flow adjacent to this well in much the same manner.

Based on the discussion presented above, the soil sample screening and analytical results seem to indicate that, at the current time, the soil located within the park is not a continuing source of the six chlorinated VOCs detected in the downgradient groundwater samples since residual concentrations of VOCs were not detected in the soil samples and elevated PID readings were not encountered. However, the analytical results of the groundwater samples collected from the three off-site monitoring wells (two of which were upgradient) coupled with the groundwater samples collected from the three on-site monitoring wells seem to indicate that the park property could have been an historic source of these six chlorinated VOCs. As a result, further investigation to determine the source of the six chlorinated VOCs detected in the downgradient groundwater samples is necessary.

5.1.2.2 - TAL Metals

As discussed in Section 4.0 of this report, several TAL metals, including antimony, arsenic, chromium, iron, lead, manganese, sodium and thallium, were detected in the unfiltered groundwater samples collected from BCPMW-1, BCPMW-2 and BCPMW-3 on June 19, 2003, at concentrations in excess of the Class GA Groundwater Standards/Guidance Values.

As discussed in Section 3.0 of this report, monitoring well BCPMW-1 was purged with a new disposable polyethylene bailer. Following the purge of four well volumes, all parameters measured (i.e., conductivity, turbidity, dissolved oxygen, temperature and pH) had stabilized and the turbidity of the groundwater was >999 Nephelometric Turbidity Units (NTUs). This was most likely due to agitation resulting from lowering the bailer into the groundwater. After

allowing the well to recharge for three hours prior to sampling, the turbidity of the sample was measured at 800 NTUs.

As discussed in Section 3.0 of this report, monitoring wells BCPMW-2 and BCPMW-3 were purged utilizing a properly decontaminated submersible pump and new dedicated polyethylene tubing. Following the purge of 7 and 7.5 well volumes from BCPMW-2 and BCPMW-3, respectively, all parameters measured (i.e., conductivity, turbidity, dissolved oxygen, temperature and pH) had stabilized and the turbidity of the groundwater was 17 NTUs and 5 NTUs, respectively. At this point in time, the pump and tubing were removed from each well and a new, dedicated, disposable polyethylene bailer was utilized to collect the groundwater sample from the well. The turbidity of the samples was measured at 587 NTUs and 685 NTUs for monitoring wells BCPMW-2 and BCPMW-3, respectively, most likely due to agitation resulting from lowering the bailer into the groundwater.

The analytical results of the filtered groundwater samples exhibited concentrations of only iron, sodium and total iron and manganese in excess of the Class GA Groundwater Standards. As a result, the concentrations of the other TAL metals detected at concentrations in excess of the Class GA Groundwater Standards/Guidance Values are most likely attributable to suspended solids (e.g., soil particles) in the groundwater samples. These suspended solids are likely due to dropping the bailer into the groundwater repetitively as evident by the high turbidity readings. Therefore, the unfiltered groundwater samples are not indicative of actual groundwater quality.

Concentrations of iron and total iron and manganese were detected in the filtered groundwater sample collected from BCPMW-3. However, iron is naturally occurring and is commonly detected in Long Island groundwater at concentrations in excess of the applicable groundwater standard. As a result, the concentrations of iron and total iron and manganese are not attributable to the site.

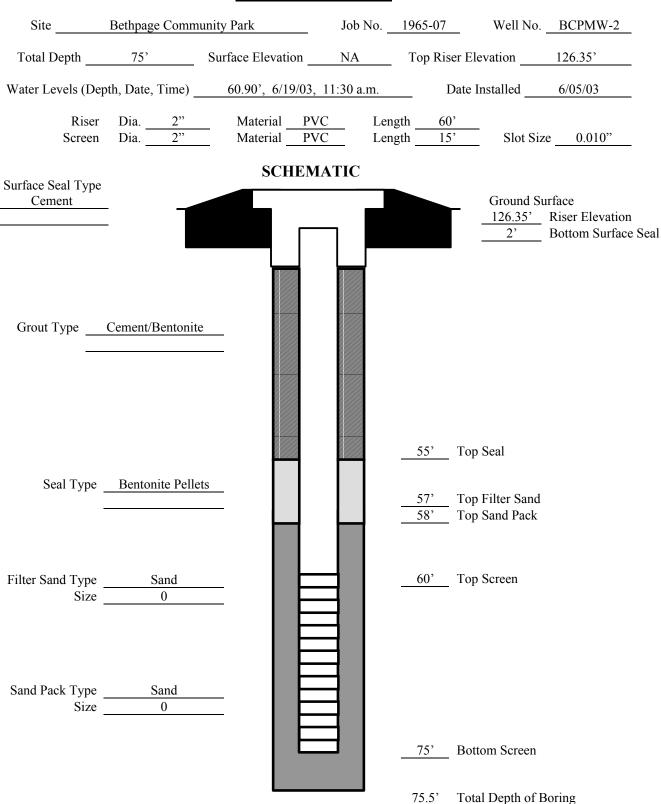
Concentrations of sodium were detected in the filtered groundwater samples collected from both BCPMW-1 and BCPMW-3. However, sodium is naturally occurring and is commonly

detected in Long Island groundwater at concentrations in excess of the applicable groundwater standard. As a result, the concentrations of sodium are not attributable to the site.

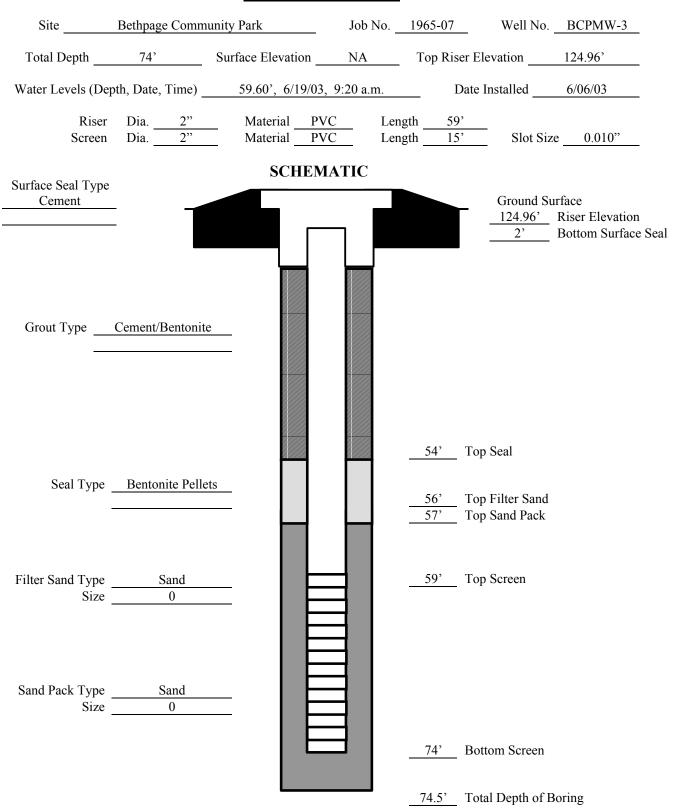
Based on the conclusions presented above, further investigation activities with regard to groundwater TAL metal concentrations are not warranted.

APPENDIX A

MONITORING WELL CONSTRUCTION LOGS



Well Construction Log



Well Construction Log

Well Construction Log

APPENDIX B

LABORATORY ANALYSIS SUMMARY TABLES

TABLE B-1

SOIL SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-1	Boring		Borin		Borin		Boring B-5		
SAMPLE IDENTIFICATION	B-11012	B-268	B-21214	B-324	B-31214	B-423	B-41012	B-51214	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	6' - 8'	12' - 14'	2' - 4'	12' - 14'	2' - 3'	10' - 12'	12' - 14'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	6/02/2003	5/28/2003	6/02/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	5	LIMIT	OBJECTIVES
PERCENT SOLIDS	85	31	92	92	95	87	95	88		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	4 J	U	U	U	U	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	3 J	U	U	U	U	U	5	400
Acetone	130	64	71	U	U	U	U	300	5	200
Carbon Disulfide	U	5 J	U	U	U	U	U	29 J	5	2,700
Methylene Chloride	32 B	U*	U*	U*	U*	U*	U	U*	5	100
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	16 J	U	U	U	U	U	U	5	200
2-Butanone	U	U	U	U	U	U	U	U	5	300
cis-1,2-Dichloroethene	U	6 J	U	U	U	U	U	U	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	U	5	100
Benzene	U	U	U	U	U	U	U	U	5	60
Trichloroethene	U	12 J	U	U	U	1 J	U	U	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	U	5	1,000
Toluene	U	5 J	U	U	U	U	U	41 J	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	5	
Tetrachloroethene	U	U	U	U	U	U	U	U	5	1,400
2-Hexanone	U	U	U	U	U	U	U	U	5	
Dibromochloromethane	Ū	Ū	Ü	Ū	Ū	Ū	Ū	Ü	5	
1,2-Dibromoethane	Ū	Ū	Ü	Ū	Ū	Ū	Ū	Ü	5	
Chlorobenzene	Ū	Ü	Ü	Ū	Ū	Ū	Ū	13 J	5	1,700
Ethylbenzene	Ū	Ü	Ü	Ū	Ū	Ū	Ū	37 J	5	5,500

SAMPLE LOCATION	Boring B-1	Borin	a P 2	Porin	g B-3	Porin	g B-4	Boring B-5	1	
							U		001170407	T. 014 4040
SAMPLE IDENTIFICATION	B-11012	B-268	B-21214	B-324	B-31214	B-423	B-41012	B-51214	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	6' - 8'	12' - 14'	2' - 4'	12' - 14'	2' - 3'	10' - 12'	12' - 14'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	6/02/2003	5/28/2003	6/02/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	5	LIMIT	OBJECTIVES
PERCENT SOLIDS	85	31	92	92	95	87	95	88		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	C	4 J	C	C	C	U	С	36 J	5	1,200 *
o-Xylene	U	U	U	U	U	U	U	78	5	1,200 *
Xylene (total)	U	4 J	U	U	U	U	U	110	5	1,200
Styrene	U	U	U	U	U	U	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	U	U	U	U	U	U	U	83	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	14 J	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	U	14 J	U	U	U	U	U	260	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	U	40	U	U	U	U	U	18 J	5	
Total VOCs	162	188	74	0	0	1	0	1,005		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

J*: Result qualified as estimated based on validation criteria.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

N	0	ł۵	c	•
I	U	ιc	J	•

---- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION	Boring B-5		Boring B-6			Borin	g B-7			
SAMPLE IDENTIFICATION	B-52022	B-646	B-61214	B-61820	B-724	B-768	B-7810	B-71012	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	4' - 6'	12' - 14'	18' - 20'	2' - 4'	6' - 8'	8' - 10'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/27/2003	5/27/2003	5/27/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	100	100	50	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	89	82	97	91	89	89	90		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	U	U	U	U	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	6	64	39	9	82	U	U	U	5	200
Carbon Disulfide	U	U	U	U	U	U	U	U	5	2,700
Methylene Chloride	8	U*	U*	U*	U*	U	U	U	5	100
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	U	U	U	U	U	U	U	5	200
2-Butanone	U	U	U	U	12	U	U	U	5	300
cis-1,2-Dichloroethene	U	1 J	U	U	3 J	U	U	U	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	1 J	U	U	U	U	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	U	5	100
Benzene	U	U	U	U	U	U	U	U	5	60
Trichloroethene	U	6	4 J	U	2 J	U	U	U	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	U	5	1,000
Toluene	U	4 J	3 J	U	9	14,000	19,000	1,800	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	5	
Tetrachloroethene	U	υ	υ	U	U	U	U	U	5	1,400
2-Hexanone	Ü	Ū	Ū	Ü	Ü	Ü	Ü	Ü	5	
Dibromochloromethane	Ü	Ū	Ü	Ü	Ü	Ü	Ü	Ü	5	
1,2-Dibromoethane	Ū	Ū	Ū	Ü	Ū	Ü	Ū	Ü	5	
Chlorobenzene	Ū	Ū	Ū	Ü	Ū	Ü	Ū	Ü	5	1,700
Ethylbenzene	U	U	5 J	U	U	1,200	1,200	840	5	5,500

SAMPLE LOCATION	Boring B-5		Boring B-6			Borin	g B-7			
SAMPLE IDENTIFICATION	B-52022	B-646	B-61214	B-61820	B-724	B-768	B-7810	B-71012	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	4' - 6'	12' - 14'	18' - 20'	2' - 4'	6' - 8'	8' - 10'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/27/2003	5/27/2003	5/27/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	100	100	50	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	97	82	97	91	89	89	90		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	U	2 J	9	U	U	4,500	4,600	3,100	5	1,200 *
o-Xylene	U	4 J	8	U	U	1,700	1,800	1,200	5	1,200 *
Xylene (total)	U	6	17	U	U	6,200	6,400	4,300	5	1,200
Styrene	U	U	U	U	U	U	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	U	2 J	5 J	U	U	220 J	280 J	170 J	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	U	1 J	4 J	U	5 J	430 J	400 J	250 J	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	U	5 J	14	U	8	4,100	4,300	3,900	5	
Total VOCs	14	96	108	9	121	32,350	37,980	15,560		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

- ---- : Not established.
- * : Value is for total xylenes.
- : Value exceeds the Recommended Soil Cleanup Objective.

J*: Result qualified as estimated based on validation criteria.

SAMPLE LOCATION		Boring B-7		Boring B-8	Borin	g B-9	Boring B-10	Boring B-11		
SAMPLE IDENTIFICATION	B-71214	B-71618	B-72224	B-81012	B-9810	B-92426	B-101012	B-111012	CONTRACT	TAGM 4046
SAMPLE DEPTH	12' - 14'	16' - 18'	22' - 24'	10' - 12'	8' - 10'	24' - 26'	10' - 12'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	5/29/2003	6/10/2003	6/10/2003	6/02/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	100	50	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	88	81	96	91	95	96	81	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	U	U	6	U	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	U	U	7	U	34 BJ*	U*	U	39	5	200
Carbon Disulfide	U	U	U	U	2 J	U	U	1 J	5	2,700
Methylene Chloride	U	U	U*	U*	19 BJ*	U*	U*	U*	5	100
trans-1,2-Dichloroethene	U	U	U	U	4 J	U	U	6	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	U	U	U	1 J	U	U	9	5	200
2-Butanone	U	U	U	U	U	U	U	U	5	300
cis-1,2-Dichloroethene	U	U	U	2 J	60	U	U	84	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	U	U	U	U	U	U	3 J	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	U	5	100
Benzene	U	U	U	U	U	U	U	U	5	60
Trichloroethene	U	U	U	4 J	88	U	U	29	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	U	5	1,000
Toluene	16,000	6,900	U	U	23	U	U	1 J	5	1,500
trans-1,3-Dichloropropene	Ú	Ú	υ	U	U	U	U	U	5	
1,1,2-Trichloroethane	Ū	Ū	Ū	Ü	Ü	Ü	Ü	Ū	5	
Tetrachloroethene	ū	Ü	ū	Ü	2 J	Ü	Ü	Ū	5	1,400
2-Hexanone	ŭ	Ū	ŭ	Ü	Ū	Ü	Ü	Ü	5	
Dibromochloromethane	ŭ	ŭ	ŭ	Ü	Ü	Ü	Ü	Ü	5	
1,2-Dibromoethane	ŭ	ŭ	ŭ	Ü	Ü	Ü	Ü	Ü	5	
Chlorobenzene	ŭ	ŭ	ŭ	Ü	Ü	Ü	Ü	Ü	5	1,700
Ethylbenzene	1,100	600	Ü	Ü	16	Ü	Ü	Ü	5	5,500

SAMPLE LOCATION		Boring B-7		Boring B-8	Borin	g B-9	Boring B-10	Boring B-11		
SAMPLE IDENTIFICATION	B-71214	B-71618	B-72224	B-81012	B-9810	B-92426	B-101012	B-111012	CONTRACT	TAGM 4046
SAMPLE DEPTH	12' - 14'	16' - 18'	22' - 24'	10' - 12'	8' - 10'	24' - 26'	10' - 12'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	5/29/2003	6/10/2003	6/10/2003	6/02/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	100	50	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	88	81	96	91	95	96	81	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	3,900	2,100	U	U	23	U	U	U	5	1,200 *
o-Xylene	1,600	810	U	U	31	U	U	U	5	1,200 *
Xylene (total)	5,400	3,000	U	U	54	U	U	U	5	1,200
Styrene	U	U	U	U	U	U	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	230 J	140 J	U	U	13	U	U	U	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	360 J	270 J	U	U	5 J	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	4 J	U	U	U	5	
Methylcyclohexane	5,300	3,900	U	U	60	U	U	U	5	
Total VOCs	33,890	17,720	7	6	445	0	0	172		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

J*: Result qualified as estimated based on validation criteria.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

---- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION	Boring B-11		Boring B-12		Boring		Boring B-14	Boring B-15		
SAMPLE IDENTIFICATION	B-111820	B-121618	B-122022	B-122628	B-131820	B-132426	B-141214	B-151012	CONTRACT	TAGM 4046
SAMPLE DEPTH	18' - 20'	16' - 18'	20' - 22'	26' - 28'	18' - 20'	24' - 26'	12' - 14'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	86	91	96	89	98	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	1 J	2 J	U	2 J	U	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	U	110	140	U	93	7	U	U	5	200
Carbon Disulfide	U	1 J	1 J	U	2 J	U	U	U	5	2,700
Methylene Chloride	8	U*	U*	U*	12 BJ*	U*	U*	U*	5	100
trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	U	U	U	2 J	U	U	U	5	200
2-Butanone	U	23	29	U	17	U	U	U	5	300
cis-1,2-Dichloroethene	U	2 J	2 J	U	4 J	U	U	U	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	U	5	100
Benzene	U	U	U	U	U	U	U	U	5	60
Trichloroethene	U	1 J	1 J	U	6	U	U	U	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	U	5	1,000
Toluene	U	110	12	U	8	U	U	U	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	5	
Tetrachloroethene	U	U	U	U	U	U	U	U	5	1,400
2-Hexanone	U	U	U	U	U	U	U	U	5	
Dibromochloromethane	U	U	U	U	U	U	U	U	5	
1,2-Dibromoethane	Ū	Ū	Ū	Ū	Ū	Ū	Ü	Ü	5	
Chlorobenzene	Ū	Ū	Ū	Ū	Ū	Ū	Ü	Ü	5	1,700
Ethylbenzene	Ū	57	2 J	Ü	2 J	Ü	Ū	Ü	5	5,500

									-1	
SAMPLE LOCATION	Boring B-11		Boring B-12		Boring	g B-13	Boring B-14	Boring B-15		
SAMPLE IDENTIFICATION	B-111820	B-121618	B-122022	B-122628	B-131820	B-132426	B-141214	B-151012	CONTRACT	TAGM 4046
SAMPLE DEPTH	18' - 20'	16' - 18'	20' - 22'	26' - 28'	18' - 20'	24' - 26'	12' - 14'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	86	91	96	89	98	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	C	50	5 J	U	4 J	U	U	U	5	1,200 *
o-Xylene	U	71	6	U	7	U	U	U	5	1,200 *
Xylene (total)	U	120	11	U	11	U	U	U	5	1,200
Styrene	U	U	U	U	U	U	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	U	17	2 J	U	4 J	U	U	U	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	U	120	8	U	7	U	U	U	5	
Total VOCs	8	683	221	0	181	7	0	0		10,000

Qualifiers:

- U: Constituent analyzed for but not detected.
- J*: Result qualified as estimated based on validation criteria.
- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

- --- : Not established.
- * : Value is for total xylenes.
- : Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION	Boring B-16				Boring B-17					
SAMPLE IDENTIFICATION	B-161416	B-1724	B-1746	B-1768	B-171214	B-171416	B-171618	B-173436	CONTRACT	TAGM 4046
SAMPLE DEPTH	14' - 16'	2' - 4'	4' - 6'	6' - 8'	12' - 14'	14' - 16'	16' - 18'	34' - 36'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	91	91	90	88	91	91	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	U	U	U	5 J	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	1 J	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	U	16	40	75	73	83	95	10	5	200
Carbon Disulfide	U	1 J	2 J	U	U	3 J	1 J	U	5	2,700
Methylene Chloride	4 J	U*	U*	U*	U*	U*	U*	U*	5	100
trans-1,2-Dichloroethene	U	U	U	U	U	1 J	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	U	3 J	U	U	21	3 J	U	5	200
2-Butanone	U	U	U	18	U	16	14	U	5	300
cis-1,2-Dichloroethene	U	4 J	10	3 J	3 J	19	2 J	U	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	U	5	100
Benzene	U	U	U	U	U	U	U	U	5	60
Trichloroethene	U	4 J	13	4 J	U	16	2 J	U	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	U	5	1,000
Toluene	U	24	8	17	65	19	10	U	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	5	
Tetrachloroethene	U	U	U	U	U	U	U	U	5	1,400
2-Hexanone	U	U	U	U	U	U	U	U	5	
Dibromochloromethane	U	U	U	U	U	U	U	U	5	
1,2-Dibromoethane	U	U	U	U	U	U	U	U	5	
Chlorobenzene	U	U	U	U	U	U	U	U	5	1,700
Ethylbenzene	U	6	2 J	6	21	7	4 J	U	5	5,500

SAMPLE LOCATION	Boring B-16				Boring B-17					
SAMPLE IDENTIFICATION	B-161416	B-1724	B-1746	B-1768	B-171214	B-171416	B-171618	B-173436	CONTRACT	TAGM 4046
SAMPLE DEPTH	14' - 16'	2' - 4'	4' - 6'	6' - 8'	12' - 14'	14' - 16'	16' - 18'	34' - 36'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	91	91	90	88	91	91	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	U	22	13	25	67	21	13	U	5	1,200 *
o-Xylene	U	40	26	30	130	36	30	U	5	1,200 *
Xylene (total)	U	62	39	55	200	57	43	U	5	1,200
Styrene	U	U	U	U	4 J	2 J	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	U	15	7	32	48	12	7	U	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	2 J	U	U	U	5	8,500
1,2-Dichlorobenzene	U	U	U	U	18	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	U	1 J	U	8	10	3 J	2 J	U	5	
=										40.000
Total VOCs	4	195	163	273	641	322	226	10		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

J*: Result qualified as estimated based on validation criteria.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

--- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE IDENTIFICATION B-1824 B-181214 B-19810 B-191214 B-191618 B-191820 B-192830 B-2068 CONTRACT TAGM 4046 SAMPLE DEPTH 2'-4' 12'-14' 8'-10' 12'-14' 16'-18' 18'-20' 28'-30' 6'-8' REQUIRED RECOMMEND TAGE TA	SAMPLE LOCATION	Boring	g B-18			Boring B-19			Boring B-20		
DATE OF COLLECTION 5/29/2003 5/29/2003 6/03/20				B-19810	B-191214	B-191618	B-191820	B-192830		CONTRACT	TAGM 4046
DILUTION FACTOR											RECOMMENDED
PERCENT SOLIDS		5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
UNITS	DILUTION FACTOR	1					1	1	1	LIMIT	OBJECTIVES
Dichlorodifluoromethane	PERCENT SOLIDS	89	95	91	92	85	91	98	92		
Chloromethane U U U U U U U U U U S	UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Chloromethane U U U U U U U U U U S											
Vinyl Chloride U U 3 J 6 24 3 J U U 5 200 Bromomethane U <	Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Bromomethane	Chloromethane	U	U	U	U	U	U	U	U	5	
Chloroethane U <t< td=""><td>Vinyl Chloride</td><td>U</td><td>U</td><td>3 J</td><td>6</td><td>24</td><td>3 J</td><td>U</td><td>U</td><td>5</td><td>200</td></t<>	Vinyl Chloride	U	U	3 J	6	24	3 J	U	U	5	200
Trichlorofluoromethane U	Bromomethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene U 5 400 Acetone 30 U 220 E 88 190 75 8 68 5 200 Carbon Disulfide U U U T 1 J 2 J 3 J U 2 J 5 2,700 Methylene Chloride 6 8 U* U	Chloroethane	U	U	U	U	U	U	U	U	5	1,900
Acetone 30 U 220 E 88 190 75 8 68 5 200 Carbon Disulfide U U T 1 J 2 J 3 J U 2 J 5 2,700 Methylene Chloride 6 8 U* U* U* U* U* U* U* 5 100 trans-1,2-Dichloroethene U	Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
Carbon Disulfide U U T	1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Methylene Chloride 6 8 U* U* U* U* U* U 5 100 trans-1,2-Dichloroethene U	Acetone	30	U	220 E	88	190	75	8	68	5	200
Methylene Chloride 6 8 U* U* U* U* U* U 5 100 trans-1,2-Dichloroethene U	Carbon Disulfide	U	U	7	1 J	2 J	3 J	U	2 J	5	2.700
trans-1,2-Dichloroethene U <td></td> <td>6</td> <td>8</td> <td>U*</td> <td></td> <td></td> <td></td> <td>Ú*</td> <td>_ U*</td> <td></td> <td></td>		6	8	U*				Ú*	_ U*		
Methyl tert-Butyl Ether U U U U U U U 5		U	U	Ū	ŭ	2 J	1 J	Ü	Ü	5	
		Ū	_	ŭ	ŭ	-		Ü	Ü	-	
1,1-Dichloroethane		_	_	_	29	45	-	_	_	-	200
2-Butanone U U 61 28 51 U U 5 300		Ü	_				-	Ü		5	
cis-1.2-Dichloroethene U U 8 12 19 11 U 4 J 5		Ū	Ü	-		19	11	Ü	4 J	5	
Chloroform	,	Ü	_	ŭ U				Ü		-	300
1.1.1-Trichloroethane		_	_	_	_	~	_	_	_	-	
Carbon Tetrachloride U U U U U U U U 5 600	, ,	Ū	Ü	ŭ		ŭ	ŭ	Ü	· U	5	
1.2-Dichloroethane U U U U U U U U 5 1000		Ū	Ü	ŭ	_	_	_	Ü	_	5	
Benzene U U U U U U U U 5 60	,	Ū	Ü	ŭ	_	_	_	Ü	_	-	
Trichloroethene 3 J U 7 10 13 9 U 19 5 700		3 J	_	7	10	13	9	Ü	19	_	
1,2-Dichloropropane		Ü	_	1 J	-	_	, u	_		-	
Bromodichloromethane	*	_	_		_	_	_	_	_	5	
cis-1,3-Dichloropropene		_	_	~	~	~	_	_	_	-	
4-Methyl-2-pentanone U U U U U U U U 5 1,000		_		_	_	_	_	Ü	_	5	1 000
Toluene 2 J U 16 150 38 30 U 25 5 1,500		2 J	_	16	150	38	30	Ü	25	5	,
trans-1,3-Dichloropropene U U U U U U U U 5		-	_	_				Ü	_	5	·
1.1.2-Trichloroethane		Ü	_	~	_	_	_	Ü	_	-	
Tetrachloroethene U U U U U U U U U 5 1,400		-	_	-	· u	_	_	-	_	_	
2-Hexanone U U U U U U U U U 5		_	_	-	~	~	_	•		-	·
Dibromochloromethane U U U U U U U U U 5		_	_	-	~	-	_	•		•	
1,2-Dibromoethane		_	_	-	•	-	-	•	_	•	
Chlorobenzene		_		_	~	_	_	_	_	-	
Ethylbenzene U U 7 21 9 25 U 11 5 5,500	CC. C. C. C. I.	, ,		0	0	0	0	0	0		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

SAMPLE LOCATION	Borino	ј В-18			Boring B-19			Boring B-20		
SAMPLE IDENTIFICATION	B-1824	B-181214	B-19810	B-191214	B-191618	B-191820	B-192830	B-2068	CONTRACT	TAGM 4046
SAMPLE DEPTH	2' - 4'	12' - 14'	8' - 10'	12' - 14'	16' - 18'	18' - 20'	28' - 30'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	89	95	91	92	85	91	98	92		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	C	C	6	74	40	88	U	46	5	1,200 *
o-Xylene	U	U	37	70	51	99	U	72	5	1,200 *
Xylene (total)	U	U	44	140	91	190	U	120	5	1,200
Styrene	U	U	U	2 J	U	3 J	U	2 J	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	U	U	13	16	U	U	U	26	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	4 J	U	U	U	U	5	
Methylcyclohexane	U	U	28	16	26	4 J	U	5	5	
Total VOCs	41	8	460	676	601	547	8	407		10,000

Qualifiers:

- U: Constituent analyzed for but not detected.
- J*: Result qualified as estimated based on validation criteria.
- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.
- E: Result exceeds the instrument calibration range, value estimated.

Notes:

- --- : Not established.
- * : Value is for total xylenes.
- : Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION				Boring B-20				Boring B-21		
SAMPLE IDENTIFICATION	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-202426	B-211012	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	24' - 26'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	93	89	92	91	91	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	43	14	14	4 J	26	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	2 J	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	42	73	70	54	120	90	9	U	5	200
Carbon Disulfide	U	1 J	U	1 J	1 J	2 J	U	U	5	2,700
Methylene Chloride	U*	U*	U*	U*	U*	U*	U*	U	5	100
trans-1,2-Dichloroethene	U	3 J	U	2 J	2 J	2 J	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	49	22	21	22	120	U	U	5	200
2-Butanone	7	14	26	14	43	35	U	U	5	300
cis-1,2-Dichloroethene	1 J	19	9	21	43	38	U	U	5	
Chloroform	U	U	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	3 J	U	2 J	U	2 J	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	1 J	U	U	5	100
Benzene	U	U	U	U	U	0.9 J	U	U	5	60
Trichloroethene	U	18	6	17	7	13	U	U	5	700
1,2-Dichloropropane	U	U	U	U	U	U	U	U	5	
Bromodichloromethane	U	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	8	3 J	26	16	U	U	5	1,000
Toluene	7	6	30	13	85	83	U	U	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	5	
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	5	
Tetrachloroethene	U	U	U	U	1 J	1 J	U	U	5	1,400
2-Hexanone	U	U	U	U	U	U	U	U	5	
Dibromochloromethane	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	5	
1,2-Dibromoethane	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	5	
Chlorobenzene	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	5	1,700
Ethylbenzene	4 J	Ū	11	4 J	16	18	Ü	Ū	5	5,500

SAMPLE LOCATION				Boring B-20				Boring B-21		
SAMPLE IDENTIFICATION	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-202426	B-211012	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	24' - 26'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	93	89	92	91	91	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
m,p-Xylene	12	4 J	55	25	80	77	U	U	5	1,200 *
o-Xylene	18	10	70	35	90	96	U	U	5	1,200 *
Xylene (total)	30	15	120	60	170	170	U	U	5	1,200
Styrene	U	U	2 J	1 J	3 J	3 J	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	7	U	24	10	26	39	U	U	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	1 J	U	U	U	U	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	1 J	2 J	11	4 J	20	18	U	U	5	
Total VOCs	130	260	478	301	759	853	9	0		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

J*: Result qualified as estimated based on validation criteria.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

--- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION				Boring	B-22					
SAMPLE IDENTIFICATION	B-2246	B-2268	B-22810	B-221012	B-221214	B-221416	B-221618	B-222830	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	28' - 30'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	50	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	93	91	92	91	95	92	96		
UNITS	(ug/kg)									
		,								
Dichlorodifluoromethane	U	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	3 J	4 J	U	14	16	8	U	5	200
Bromomethane	U	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	2 J	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	U	5	400
Acetone	47	120	91	U	57	38	64	U	5	200
Carbon Disulfide	U	1 J	U	U	3 J	3 J	6	U	5	2,700
Methylene Chloride	U*	U*	U*	U	12 BJ*	13 BJ*	13 BJ*	U*	5	100
trans-1,2-Dichloroethene	U	1 J	U	U	2 J	2 J	U	U	5	300
Methyl tert-Butyl Ether	U	U	U	U	U	U	U	U	5	
1,1-Dichloroethane	Ü	8	60	490	150	84	40	Ü	5	200
2-Butanone	7	26	20	U	15	14	18	Ü	5	300
cis-1.2-Dichloroethene	1 J	7	5	270	80	60	52	Ü	5	
Chloroform	Ü	· U	Ū	U	u	u	U	Ü	5	300
1.1.1-Trichloroethane	Ü	1 J	1 J	75 J	15	6	4 J	Ü	5	800
Carbon Tetrachloride	Ü	Ü	Ü	Ü	U	u l	Ü	Ü	5	600
1,2-Dichloroethane	Ü	Ü	Ü	Ü	ŭ	2 J	Ü	Ü	5	100
Benzene	Ü	Ü	Ū	Ü	2 J	1 J	Ü	Ū	5	60
Trichloroethene	3 J	8	4 J	280	37	32	30	Ü	5	700
1,2-Dichloropropane	Ü	U	Ü	U	u l	u l	U	Ü	5	
Bromodichloromethane	Ü	Ü	Ü	Ü	ŭ	ŭ	Ü	Ü	5	
cis-1,3-Dichloropropene	Ü	Ü	Ū	Ü	Ū	Ū	Ü	Ū	5	
4-Methyl-2-pentanone	Ü	Ü	Ü	Ü	ū	ū	Ü	Ü	5	1,000
Toluene	2 J	7	86	1,900	200	130	100	Ü	5	1,500
trans-1,3-Dichloropropene	U	· U	U	U	U	U	U	Ü	5	
1,1,2-Trichloroethane	Ü	Ü	Ü	Ü	ŭ	ŭ	Ü	Ú	5	
Tetrachloroethene	Ü	Ü	Ü	Ü	2 J	2 J	2 J	Ü	5	1,400
2-Hexanone	Ū	Ü	Ü	Ü	Ū	Ū	Ü	Ü	5	
Dibromochloromethane	Ü	Ü	Ü	Ü	Ü	ŭ	Ü	Ü	5	
1.2-Dibromoethane	Ü	Ü	Ü	Ü	ŭ	ŭ	Ü	Ü	5	
Chlorobenzene	Ü	Ü	Ü	Ü	ŭ	ŭ	Ü	Ü	5	1,700
Ethylbenzene	Ü	3 J	13	320	30	20	19	Ü	5	5,500

SAMPLE LOCATION				Boring	B-22					
SAMPLE IDENTIFICATION	B-2246	B-2268	B-22810	B-221012	B-221214	B-221416	B-221618	B-222830	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	28' - 30'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	50	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	93	93	92	91	95	92	96		
UNITS	(ug/kg)									
m,p-Xylene	2 J	5	68	1,600	130	87	88	U	5	1,200 *
o-Xylene	5	10	71	1,400	130	100	110	U	5	1,200 *
Xylene (total)	6	16	140	3,000	260	190	200	U	5	1,200
Styrene	U	U	U	U	U	U	U	U	5	
Bromoform	U	U	U	U	U	U	U	U	5	
Isopropylbenzene	2 J	6	23	650	40	29	28	U	5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U	U	5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U	U	5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U	U	5	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	U	U	5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U	U	5	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	U	U	5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U	U	5	6,000
Methyl Acetate	U	U	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	U	U	5	
Methylcyclohexane	U	8	9	360	45	17	12	U	5	
Total VOCs	75	230	595	10,345	1,226	846	794	0		10,000

Qualifiers:

U: Constituent analyzed for but not detected.

J*: Result qualified as estimated based on validation criteria.

- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

---- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

SAMPLE LOCATION	Boring	B-24	Boring B-25	BCPMW-1	BCPMW-2	BCPN	ЛW-3		
SAMPLE IDENTIFICATION	B-2446	B-241012	B-251012	MW-11012	MW-21012	MW-324	MW-31012	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	10' - 12'	10' - 12'	10' - 12'	10' - 12'	2' - 4'	10' -12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	5/30/2003	6/05/2003	6/10/2003	6/05/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	96	90	89	93	92	95		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
							· -		
Dichlorodifluoromethane	U	U	U	U	U	U	U	5	
Chloromethane	U	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	U	U	U	U	U	5	200
Bromomethane	U	U	U	U	U	U	U	5	
Chloroethane	U	U	U	U	U	U	U	5	1,900
Trichlorofluoromethane	U	U	U	U	U	U	U	5	
1,1-Dichloroethene	U	U	U	U	U	U	U	5	400
Acetone	U*	U*	U*	30	8	58 BJ*	12	5	200
Carbon Disulfide	U	U	U	U	U	2 J	U	5	2,700
Methylene Chloride	16 BJ*	U*	U*	6	U*	18 BJ*	U*	5	100
trans-1,2-Dichloroethene	U	U	υ	U	U	U	U	5	300
Methyl tert-Butyl Ether	Ū	Ü	Ū	Ü	Ü	Ū	Ü	5	
1,1-Dichloroethane	Ū	Ü	Ū	Ü	Ū	Ū	Ü	5	200
2-Butanone	Ū	Ü	Ū	Ü	Ü	12	Ü	5	300
cis-1,2-Dichloroethene	8	Ü	Ū	Ü	Ū	1 J	Ü	5	
Chloroform	υ	U	U	U	U	U	U	5	300
1,1,1-Trichloroethane	U	U	U	U	U	U	U	5	800
Carbon Tetrachloride	U	U	U	U	U	U	U	5	600
1,2-Dichloroethane	U	U	U	U	U	U	U	5	100
Benzene	U	U	υ	U	U	U	U	5	60
Trichloroethene	33	U	U	U	U	3 J	U	5	700
1,2-Dichloropropane	U	Ü	Ū	Ü	Ū	Ü	Ü	5	
Bromodichloromethane	U	U	U	U	U	U	U	5	
cis-1,3-Dichloropropene	U	U	U	U	U	U	U	5	
4-Methyl-2-pentanone	U	U	U	U	U	U	U	5	1,000
Toluene	U	U	U	U	U	5 J	U	5	1,500
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	5	
1.1.2-Trichloroethane	U	U	υ	U	U	U	U	5	
Tetrachloroethene	Ü	Ü	Ū	Ü	Ü	Ū	Ü	5	1,400
2-Hexanone	Ü	Ü	Ū	Ü	Ü	Ū	Ü	5	
Dibromochloromethane	Ü	Ü	Ū	Ü	Ü	Ū	Ü	5	
1,2-Dibromoethane	Ü	Ü	Ū	Ü	Ü	Ū	Ü	5	
Chlorobenzene	Ü	Ü	Ü	Ü	Ü	Ü	Ü	5	1,700
Ethylbenzene	ŭ	Ü	ŭ	Ü	Ü	1 J	Ü	5	5,500

								-		
SAMPLE LOCATION	Boring	g B-24	Boring B-25	BCPMW-1	BCPMW-2	BCPI	ЛW-3			
SAMPLE IDENTIFICATION	B-2446	B-241012	B-251012	MW-11012	MW-21012	MW-324	MW-31012		CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	10' - 12'	10' - 12'	10' - 12'	10' - 12'	2' - 4'	10' -12'		REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	5/30/2003	6/05/2003	6/10/2003	6/05/2003		DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1		LIMIT	OBJECTIVES
PERCENT SOLIDS	92	96	90	89	93	92	95			
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)		(ug/kg)	(ug/kg)
m,p-Xylene	C	U	U	U	C	7	C		5	1,200 *
o-Xylene	U	U	U	U	U	6	U		5	1,200 *
Xylene (total)	U	U	U	U	U	13	U		5	1,200
Styrene	U	U	U	U	U	U	U		5	
Bromoform	U	U	U	U	U	U	U		5	
Isopropylbenzene	U	U	U	U	U	2 J	U		5	
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	U		5	600
1,3-Dichlorobenzene	U	U	U	U	U	U	U		5	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	U		5	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	U		5	7,900
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	U		5	
1,2,4-Trichlorobenzene	U	U	U	U	U	4 J	U		5	3,400
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	U		5	6,000
Methyl Acetate	U	U	U	U	U	U	U		5	
Cyclohexane	U	U	U	U	U	U	U		5	
Methylcyclohexane	U	U	U	U	U	12	U		5	
Total VOCs	57	0	0	36	8	144	12			10,000

Qualifiers:

U: Constituent analyzed for but not detected.

- J*: Result qualified as estimated based on validation criteria.
- U*: Result qualified as non-detect based on validation criteria.
- B: Compound found in the method blank as well as the sample.
- J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

--- : Not established.

* : Value is for total xylenes.

: Value exceeds the Recommended Soil Cleanup Objective.

TABLE B-2

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-1	Borin	g B-2	Borin	g B-3	Borin		Boring B-5		
SAMPLE IDENTIFICATION	B-11012	B-268	B-21214	B-324	B-31214	B-423	B-41012	B-51214	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	6' - 8'	12' - 14'	2' - 4'	12' - 14'	2' - 3'	10' - 12'	12' - 14'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	6/02/2003	5/28/2003	6/02/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	5	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	85	31	92	92	95	87	95	88		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	U	U	U	U	U	U	U	77 J	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	U	U	U	U	U	U	U	360 J	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	U	U	U	U	U	U	U	490	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	U	39 J	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	Ü	Ü	U	Ū	U	U	U	Ū	660	500 or MDL
Acenaphthene	U	540 J	U	U	U	U	U	510	330	50,000
2,4-Dinitrophenol	Ü	U	Ü	Ü	Ü	Ü	Ü	U	660	200 or MDL
4-Nitrophenol	U	Ü	Ü	Ü	U	Ü	Ü	Ū	660	100 or MDL
Dibenzofuran	Ü	Ü	Ü	Ü	Ü	Ü	Ü	230 J	330	6,200
2,4-Dinitrotoluene	U	Ü	Ü	Ü	U	Ü	Ü	U	330	

TABLE B-2 (continued)

NORTHROP GRUMMAN CORPORATION

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-1	Borin	g B-2	Borin	g B-3	Borine	g B-4	Boring B-5		
SAMPLE IDENTIFICATION	B-11012	B-268	B-21214	B-324	B-31214	B-423	B-41012	B-51214	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	6' - 8'	12' - 14'	2' - 4'	12' - 14'	2' - 3'	10' - 12'	12' - 14'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	6/02/2003	5/28/2003	6/02/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	5	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	85	31	92	92	95	87	95	88		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	U	1,100 J	U	U	U	U	U	500	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	190 J	660	1,000 or MDL
Phenanthrene	U	4,000 J	U	41 J	U	40 J	U	2,500	330	50,000
Anthracene	U	760 J	U	U	U	U	U	420	330	50,000
Carbazole	U	U	U	U	U	U	U	460	330	
Di-n-butylphthalate	U	U	U	U	U	U	U	100 J	330	8,100
Fluoranthene	U	4,700 J	U	98 J	U	94 J	U	2,500	330	50,000
Pyrene	U	5,600	U	97 J	U	97 J	U	2,500	330	50,000
Butylbenzylphthalate	U	U	U	U	U	52 J	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	2,000 J	U	53 J	U	50 J	U	1,200	330	224 or MDL
Chrysene	U	3,000 J	U	63 J	U	72 J	U	1,500	330	400
bis(2-Ethylhexyl)phthalate	U	48,000	1,300 J	67 J	U	83 J	U	4,300	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	U	2,800 J	U	88 J	U	90 J	U	1,400	330	1,100
Benzo(k)fluoranthene	U	1,400 J	U	U	U	U	U	540	330	1,100
Benzo(a)pyrene	Ü	1,000 J	Ü	63 J	Ü	59 J	Ū	920	330	61 or MDL
Indeno(1,2,3-cd)pyrene	Ü	U	Ü	39 J	Ü	Ü	Ü	570	330	3,200
Dibenzo(a,h)anthracene	Ü	Ū	Ü	U	Ü	Ū	Ü	180 J	330	14 or MDL
Benzo(g,h,i)perylene	Ü	ū	Ü	50 J	Ü	40 J	Ü	590	330	50,000
1,1'-Biphenyl	Ü	ŭ	Ü	U	Ü	ŭ	ŭ	110 J	330	
Acetophenone	ŭ	ŭ	Ü	Ü	Ü	ŭ	ŭ	U	330	
Atrazine	Ü	ŭ	Ū	Ū	Ü	ū	ū	Ü	330	
Benzaldehyde	Ü	ŭ	Ü	Ü	Ü	ŭ	ŭ	Ü	330	
Caprolactam	Ü	ŭ	Ü	Ü	Ü	ŭ	Ü	Ü	330	
	· ·	١				١	١	J		
Total PAHs	0	26,900	0	592	0	542	0	16,229		100,000
Total CaPAHs	0	10,200	0	306	0	271	0	6,310		10,000
Total SVOCs	0	74,900	1,300	659	0	677	0	22,186		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

--- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE DENTIFICATION	SAMPLE LOCATION	Boring B-5		Boring B-6			Borine	n R-7			
SAMPLE DEPTH			B-646		B-61820	R-724			R-71012	CONTRACT	TAGM 4046
DATE OF COLLECTION 5/99/2003 5/77/2003 5/77/2003 5/77/2003 6/02/20									_		
DILLITION FACTOR											
PERCENT SOLIDS					1	1					
NITS		95	89	82	97	91	89	89	90		0502011120
Phenol										(ua/ka)	(ua/ka)
bis(2-Chloropethyl)ether U	00	(ug/itg)	(ug/itg)	(49/119)	(ug/ng)	(ug/ng/	(ug/itg)	(49/119)	(49/119)	(49/119)	(ug/ng/
2-Chirophenol	Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
2-Methylphenol	bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2.2-0x/bis(1-chloropropane)	2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
A-Methylphenol	2-Methylphenol	U	U	U	U	U	73 J	68 J	U	330	100 or MDL
A-Methylphenol	2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
Hexachloroethane		U	U	U	U	50 J	100 J	130 J	U	330	900
Nitroberzene	N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Isophorone		U	U	U	U	U	U	U	U	330	
2-Nitrophenol	Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
2,4-Dimethylphenol	Isophorone	U	U	U	U	U	U	U	U	330	4,400
2,4-Dichlorophenol	2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
Naphthalene	2,4-Dimethylphenol	U	U	U	U	84 J	U	U	75 J	330	
4-Chloroaniline	2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Dis(2-Chloroethoxy)methane	Naphthalene	U	67 J	110 J	U	94 J	470	460	90 J	330	13,000
Hexachlorobutadiene	4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
4-Chloro-3-methylphenol U	bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
2-Methylnapthalene	Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
Hexachlorocyclopentadiene	4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	2-Methylnapthalene	U	58 J	150 J	U	68 J	510	710	150 J	330	36,400
2,4,5-Trichlorophenol	Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2-Chloronapthalene U	2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
Dimethylphthalate	2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
Acenaphthylene	2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
2,6-Dinitrotoluene U	Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
3-Nitroaniline	Acenaphthylene	U	U	U	U	U	U	U	U	330	41,000
Acenaphthene U 120 J 220 J U 160 J 87 J 120 J U 330 50,000 2,4-Dinitrophenol U 0	2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
2,4-Dinitrophenol	3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
2,4-Dinitrophenol	Acenaphthene	U	120 J	220 J	U	160 J	87 J	120 J	U	330	50,000
4-Nitrophenol		U	U	U	U	U	U	U	U	660	200 or MDL
Dibenzofuran U 52 J 130 J U 94 J U 150 J U 330 6,200		Ū	Ū	Ü	Ü	Ū	Ū	Ü	Ü	660	100 or MDL
	•	υ	52 J	130 J	Ü	94 J	Ū	150 J	Ü		
2,4-Dinitrotoluene	2,4-Dinitrotoluene	Ü	Ü	U	Ü	U	Ū	U	Ü	330	

NORTHROP GRUMMAN CORPORATION

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-5		Boring B-6			Borine	a B-7		1	
SAMPLE IDENTIFICATION	B-52022	B-646	B-61214	B-61820	B-724	B-768	B-7810	B-71012	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	4' - 6'	12' - 14'	18' - 20'	2' - 4'	6' - 8'	8' - 10'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/27/2003	5/27/2003	5/27/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	97	82	97	91	89	89	90	1	
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	U	100 J	300 J	U	200 J	110 J	310 J	39 J	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	750	660	1,000 or MDL
Phenanthrene	U	630	1,500	U	840	620	1,400	150 J	330	50,000
Anthracene	U	170 J	270 J	U	140 J	U	180 J	U	330	50,000
Carbazole	U	120 J	200 J	U	100 J	U	100 J	U	330	
Di-n-butylphthalate	U	U	80 J	U	62 J	U	85 J	U	330	8,100
Fluoranthene	U	990	1,800	U	610	260 J	550	48 J	330	50,000
Pyrene	U	940	1,700	U	1,100	760	1,700	58 J	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	560	840	U	350 J	210 J	390	U	330	224 or MDL
Chrysene	U	610	900	U	380	250 J	500	40 J	330	400
bis(2-Ethylhexyl)phthalate	U	3,600	6,200	U	1,300	1,300	1,000	2,500	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	38 J	U	330	50,000
Benzo(b)fluoranthene	U	760	1,100	U	540	270 J	430	U	330	1,100
Benzo(k)fluoranthene	U	350 J	420	U	200 J	140 J	180 J	U	330	1,100
Benzo(a)pyrene	U	540	720	U	320 J	180 J	350 J	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	240 J	380 J	U	110 J	66 J	170 J	U	330	3,200
Dibenzo(a,h)anthracene	U	88 J	130 J	U	U	U	59 J	U	330	14 or MDL
Benzo(g,h,i)perylene	U	250 J	410	U	140 J	77 J	190 J	U	330	50,000
1,1'-Biphenyl	U	U	45 J	U	U	U	U	U	330	
Acetophenone	U	U	U	U	U	U	U	U	330	
Atrazine	U	U	U	U	U	U	U	U	330	
Benzaldehyde	U	U	U	U	U	U	U	U	330	
Caprolactam	U	U	U	U	U	U	U	U	330	
Total PAHs	0	6,415	10,800	0	5,184	3,500	6,989	425		100,000
Total CaPAHs	0	3,148	4,490	0	1,900	1,116	2,079	40		10,000
Total SVOCs	0	10,245	17,605	0	6,942	5,483	9,270	3,900		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION		Boring B-7		Boring B-8	Borine	a B-9	Boring B-10	Boring B-11		
SAMPLE IDENTIFICATION	B-71214	B-71618	B-72224	B-81012	B-9810	B-92426	B-101012	B-111012	CONTRACT	TAGM 4046
SAMPLE DEPTH	12' - 14'	16' - 18'	22' - 24'	10' - 12'	8' - 10'	24' - 26'	10' - 12'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	5/29/2003	6/10/2003	6/10/2003	6/02/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	88	81	96	91	95	96	81	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	, , ,	, o	` •	` ` ` ` ` ` ` ` `	` ` ` ` ` ,	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	` ` ` ` ` ` ` ` ` `	` ` ` ` ` ` ` ` `	, , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	85 J	49 J	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	210 J	97 J	U	U	U	U	U	U	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	220 J	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	270 J	180 J	U	U	56 J	U	U	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	570	340 J	U	U	U	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	100 J	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	48 J	U	U	U	U	U	U	U	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	U	U	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	49 J	U	U	U	U	U	U	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	

TABLE B-2 (continued) NORTHROP GRUMMAN CORPORATION

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION		Boring B-7		Boring B-8	Borin	a B-9	Boring B-10	Boring B-11		
SAMPLE IDENTIFICATION	B-71214	B-71618	B-72224	B-81012	B-9810	B-92426	B-101012	B-111012	CONTRACT	TAGM 4046
SAMPLE DEPTH	12' - 14'	16' - 18'	22' - 24'	10' - 12'	8' - 10'	24' - 26'	10' - 12'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	5/29/2003	6/10/2003	6/10/2003	6/02/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	88	81	96	91	95	96	81	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	C	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	94 J	63 J	U	U	49 J	U	U	U	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	8,600	6,400 DJ	37 J	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	350 J	260 J	U	U	300 J	U	U	U	330	50,000
Anthracene	U	U	U	U	54 J	U	U	U	330	50,000
Carbazole	U	U	U	U	U	U	U	U	330	
Di-n-butylphthalate	130 J	230 J	U	U	U	U	U	U	330	8,100
Fluoranthene	180 J	110 J	U	U	100 J	U	U	U	330	50,000
Pyrene	170 J	240 J	U	U	87 J	U	U	U	330	50,000
Butylbenzylphthalate	89 J	300 J	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	65 J	U	U	U	52 J	U	U	U	330	224 or MDL
Chrysene	120 J	83 J	U	U	45 J	U	U	U	330	400
bis(2-Ethylhexyl)phthalate	24,000	33,000 DJ	380	75 J	100 J	U	U	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	97 J	49 J	U	U	48 J	U	U	U	330	1,100
Benzo(k)fluoranthene	44 J	U	U	U	U	U	U	U	330	1,100
Benzo(a)pyrene	58 J	U	U	U	U	U	U	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	47 J	U	U	U	U	U	U	U	330	3,200
Dibenzo(a,h)anthracene	U	U	U	U	U	U	U	U	330	14 or MDL
Benzo(g,h,i)perylene	57 J	U	U	U	U	U	U	U	330	50,000
1,1'-Biphenyl	87 J	60 J	U	U	U	U	U	U	330	
Acetophenone	U	U	U	U	U	U	U	U	330	
Atrazine	U	U	U	U	U	U	U	U	330	
Benzaldehyde	U	U	U	U	U	U	U	U	330	
Caprolactam	U	U	U	U	U	U	U	U	330	
Total PAHs	1,600	985	0	0	791	0	0	0		100,000
Total CaPAHs	431	132	0	0	145	0	0	0		10,000
Total SVOCs	35,520	41,681	417	75	891	0	0	0		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-11		Boring B-12		Borino	1 B-13	Boring B-14	Boring B-15		
SAMPLE IDENTIFICATION	B-111820	B-121618	B-122022	B-122628	B-131820	B-132426	B-141214	B-151012	CONTRACT	TAGM 4046
SAMPLE DEPTH	18' - 20'	16' - 18'	20' - 22'	26' - 28'	18' - 20'	24' - 26'	12' - 14'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	10	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	86	91	96	89	98	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0/	(0 0/	(0 0/	(0 0/	(0 0/	(0 0/	(0 0/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(0 0/
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	U	110 J	38 J	U	43 J	U	U	U	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	U	560	170 J	U	330 J	U	U	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	U	490	130 J	U	220 J	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	42 J	37 J	U	41 J	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	U	460	340 J	U	350 J	U	U	U	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	U	U	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	U	320 J	180 J	U	200 J	U	U	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	

NORTHROP GRUMMAN CORPORATION

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-11		Boring B-12		Boring	B-13	Boring B-14	Boring B-15		
SAMPLE IDENTIFICATION	B-111820	B-121618	B-122022	B-122628	B-131820	B-132426	B-141214	B-151012	CONTRACT	TAGM 4046
SAMPLE DEPTH	18' - 20'	16' - 18'	20' - 22'	26' - 28'	18' - 20'	24' - 26'	12' - 14'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	10	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	86	91	96	89	98	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	U	640	380	U	430	U	U	U	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	U	3,100	2,100	U	2,400	U	U	U	330	50,000
Anthracene	U	670	470	U	530	U	U	U	330	50,000
Carbazole	U	440	330 J	U	340 J	U	U	U	330	
Di-n-butylphthalate	U	U	U	U	58 J	U	U	U	330	8,100
Fluoranthene	U	3,500	2,800	U	2,800	U	U	U	330	50,000
Pyrene	U	3,700	2,900	U	3,000	U	U	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	1,900	1,500	U	1,500	U	U	U	330	224 or MDL
Chrysene	U	1,800	1,600	U	1,600	U	U	U	330	400
bis(2-Ethylhexyl)phthalate	U	2,700	990	U	630	54 J	U	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	U	2,300	2,200	U	2,300	U	U	U	330	1,100
Benzo(k)fluoranthene	U	960	900	U	990	U	U	U	330	1,100
Benzo(a)pyrene	U	1,700	1,600	U	1,600	U	U	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	830	800	U	790	U	U	U	330	3,200
Dibenzo(a,h)anthracene	Ū	280 J	220 J	Ū	240 J	Ü	Ü	Ü	330	14 or MDL
Benzo(g,h,i)perylene	Ü	860	800	Ü	810	Ü	Ü	Ü	330	50,000
1,1'-Biphenyl	Ü	100 J	48 J	Ü	54 J	Ü	Ü	Ü	330	
Acetophenone	ŭ	Ü	Ü	Ü	ů. ů	Ü	Ü	Ü	330	
Atrazine	Ü	ŭ	Ü	Ü	ŭ	Ü	Ü	Ü	330	
Benzaldehyde	Ü	ŭ	Ü	Ü	ŭ	Ü	Ü	Ü	330	
Caprolactam	Ü	ŭ	ŭ	Ü	ŭ	Ü	Ü	Ü	330	
		Ĭ l	Ĭ	Ĭ,	Ĭ	Ĭ	Ĭ,	Ü		
Total PAHs	0	23,302	18,817	0	19,711	0	0	0		100,000
Total CaPAHs	0	9,770	8,820	0	9,020	0	0	0		10,000
Total SVOCs	0	27,462	20,533	0	21,256	54	0	0		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-16				Boring B-17					
SAMPLE IDENTIFICATION	B-161416	B-1724	B-1746	B-1768	B-171214	B-171416	B-171618	B-173436	CONTRACT	TAGM 4046
SAMPLE DEPTH	14' - 16'	2' - 4'	4' - 6'	6' - 8'	12' - 14'	14' - 16'	16' - 18'	34' - 36'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	91	91	90	88	91	91	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	U	160 J	330 J	140 J	180 J	150 J	220 J	U	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	U	160 J	590	670	740	340 J	740	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	U	290 J	1,200	290 J	1,800	440	690	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	120 J	U	43 J	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	U	200 J	2,200	800	500	340 J	490	U	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	U	U	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	U	110 J	3,000	490	440	210 J	300 J	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring B-16				Boring B-17					
SAMPLE IDENTIFICATION	B-161416	B-1724	B-1746	B-1768	B-171214	B-171416	B-171618	B-173436	CONTRACT	TAGM 4046
SAMPLE DEPTH	14' - 16'	2' - 4'	4' - 6'	6' - 8'	12' - 14'	14' - 16'	16' - 18'	34' - 36'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	96	91	91	90	88	91	91	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	U	220 J	6,200 D	820	770	430	630	U	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	U	1,100	17,000 D	3,900	4,700	2,500	3,000	U	330	50,000
Anthracene	U	200 J	2,700	910	1,000	480	560	U	330	50,000
Carbazole	U	96 J	2,000	630	500	310 J	360 J	U	330	
Di-n-butylphthalate	U	U	U	U	87 J	U	U	U	330	8,100
Fluoranthene	U	820	4,100	3,100	3,100	2,600	2,100	U	330	50,000
Pyrene	U	2,600	8,200 D	3,600	5,200 D	4,300	4,400	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	730	2,400	1,600	2,500	1,400	1,200	U	330	224 or MDL
Chrysene	U	680	2,200	1,400	2,300	1,400	1,300	U	330	400
bis(2-Ethylhexyl)phthalate	38 J	U*	U*	U*	U*	U*	U*	U*	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	U	740	1,700	1,700	2,400	1,500	1,500	U	330	1,100
Benzo(k)fluoranthene	U	340 J	910	740	980	700	520	U	330	1,100
Benzo(a)pyrene	U	560	1,200	1,200	1,700	1,000	920	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	350 J	680	630	980	520	570	U	330	3,200
Dibenzo(a,h)anthracene	U	110 J	240 J	230 J	340 J	180 J	190 J	U	330	14 or MDL
Benzo(g,h,i)perylene	U	360	670	670	980	530	580	U	330	50,000
1,1'-Biphenyl	Ü	66 J	490	96 J	140 J	80 J	140 J	Ü	330	
Acetophenone	Ū	Ü	U	Ü	Ü	U	Ü	Ü	330	
Atrazine	Ü	Ü	Ü	Ü	Ü	Ü	Ū	Ü	330	
Benzaldehyde	Ü	Ü	Ü	Ü	Ü	Ü	Ū	Ü	330	
Caprolactam	Ü	Ü	Ü	Ü	Ü	Ü	Ū	Ü	330	
Total PAHs	0	9,170	51,110	21,970	28,233	18,220	18,700	0		100,000
Total CaPAHs	0	3,510	9,330	7,500	11,200	6,700	6,200	0		10,000
Total SVOCs	38	9,892	58,130	23,616	31,380	19,410	20,410	0		500,000

Qualifiers

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring	ı B-18			Boring B-19			Boring B-20		
SAMPLE IDENTIFICATION	B-1824	B-181214	B-19810	B-191214	B-191618	B-191820	B-192830	B-2068	CONTRACT	TAGM 4046
SAMPLE DEPTH	2' - 4'	12' - 14'	8' - 10'	12' - 14'	16' - 18'	18' - 20'	28' - 30'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	89	95	91	92	85	91	98	92		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	, ,	, , ,	, , ,	` ` ` ` ` ,	, , ,	, , ,	, , ,	` ` ` ` ` ` ` ` ` `		, , , ,
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	U	U	180 J	1,100	740	660	U	110 J	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	U	U	290 J	560	870	730	U	390	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	U	U	310 J	1,500	730	860	U	490	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	42 J	51 J	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	59 J	U	260 J	270 J	470	540	U	430	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	U	U	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	U	U	160 J	230 J	430	410	U	240 J	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Boring	1 B-18			Boring B-19			Boring B-20]	
SAMPLE IDENTIFICATION	B-1824	B-181214	B-19810	B-191214	B-191618	B-191820	B-192830	B-2068	CONTRACT	TAGM 4046
SAMPLE DEPTH	2' - 4'	12' - 14'	8' - 10'	12' - 14'	16' - 18'	18' - 20'	28' - 30'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	89	95	91	92	85	91	98	92		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	C	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	44 J	U	350 J	390	750	770	U	490	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	440	U	1,800	2,200	3,000	3,400	U	3,500	330	50,000
Anthracene	90 J	U	300 J	240 J	570	630	U	930	330	50,000
Carbazole	84 J	U	200 J	180 J	340 J	340 J	U	430	330	
Di-n-butylphthalate	U	U	U	U	U	U	U	U	330	8,100
Fluoranthene	800	U	1,400	1,200	2,300	2,000	U	3,200	330	50,000
Pyrene	740	U	3,200	3,800	4,500	4,000 D	U	3,000 D	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	440	U	860	1,100	1,400	1,500	U	1,900	330	224 or MDL
Chrysene	490	U	990	1,100	1,300	1,600	U	1,900	330	400
bis(2-Ethylhexyl)phthalate	170 J	U	U*	U*	6,300 BE	5,400 BJ*	U*	U*	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	620	U	960	1,100	1,400	1,500	U	2,200	330	1,100
Benzo(k)fluoranthene	260 J	U	470	590	550	780	U	800	330	1,100
Benzo(a)pyrene	440	U	700	620	910	1,200	U	1,500	330	61 or MDL
Indeno(1,2,3-cd)pyrene	270 J	U	430	470	510	700	U	830	330	3,200
Dibenzo(a,h)anthracene	78 J	U	150 J	150 J	170 J	240 J	U	100 J	330	14 or MDL
Benzo(g,h,i)perylene	290 J	U	420	470	510	710	U	890	330	50,000
1,1'-Biphenyl	U	U	U	U	160 J	180 J	U	98 J	330	
Acetophenone	U	U	U	U	U	U	U	U	330	
Atrazine	U	U	U	U	U	U	U	U	330	
Benzaldehyde	U	U	U	U	U	U	U	U	330	
Caprolactam	U	U	U	U	U	U	U	U	330	
Total PAHs	5,061	0	12,580	14,260	19,252	20,351	0	22,060		100,000
Total CaPAHs	2,598	0	4,560	5,130	6,240	7,520	0	9,230		10,000
Total SVOCs	5,315	0	13,430	17,270	27,952	28,201	0	23,428		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION				Boring B-20			I	Boring B-21		
SAMPLE IDENTIFICATION	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-202426	B-211012	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	24' - 26'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	93	89	92	91	91	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	(#9***9)	(#.3.1.9)	(=99)	(=99)	(=9.1.9)	(=9.1.9)	(=9.1.9)	(=99)	(=99)	(#3:1.9)
Phenol	U	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	44 J	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	390	240 J	1,100	630	1,200	930	U	U	330	900
N-Nitroso-di-n-propylamine	U	Ü	, U	U	,	U	Ü	Ü	330	
Hexachloroethane	Ü	ŭ	Ü	Ü	Ü	ū	ū	Ü	330	
Nitrobenzene	Ü	Ü	Ü	Ü	Ü	Ū	Ū	Ü	330	200 or MDL
Isophorone	Ü	ŭ	Ü	Ü	Ü	ū	ū	Ü	330	4,400
2-Nitrophenol	Ü	Ü	Ü	Ü	Ü	Ū	Ū	Ü	330	330 or MDL
2,4-Dimethylphenol	Ü	Ü	Ü	Ü	Ü	Ū	Ü	Ü	330	
2,4-Dichlorophenol	Ü	Ü	Ü	Ü	Ü	Ū	Ü	Ü	330	400
Naphthalene	450	440	550	600	740	660	Ū	Ü	330	13.000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	Ü	Ü	Ü	Ü	Ū	Ū	Ū	Ü	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	670	390	570	690	1,100	710	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	Ú	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	260 J	290 J	410	360	250 J	280 J	U	U	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	Ū	Ü	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	160 J	180 J	270 J	210 J	180 J	200 J	Ū	Ü	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	
		-	•	·	-					

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	I			Boring B-20				Boring B-21	1	
SAMPLE IDENTIFICATION	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-202426	B-211012	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	24' - 26'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	93	89	92	91	91	97	97		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	320 J	360	550	440	360	380	U	U	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	1,800	1,700	3,000	2,500	1,800	2,000	U	U	330	50,000
Anthracene	270 J	310 J	530	520	300 J	300 J	U	U	330	50,000
Carbazole	190 J	210 J	350 J	270 J	180 J	210 J	U	U	330	
Di-n-butylphthalate	U	U	U	U	U	U	U	U	330	8,100
Fluoranthene	1,300	1,600	2,700	2,500	1,300	1,300	U	U	330	50,000
Pyrene	3,200	2,400	4,400	5,000	2,800	2,700	U	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	1,000	770	1,400	1,600	800	680	U	U	330	224 or MDL
Chrysene	970	950	1,500	1,600	930	770	U	U	330	400
bis(2-Ethylhexyl)phthalate	U*	U*	U*	U*	U*	U*	U*	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	1,000	1,100	1,500	1,500	1,100	870	U	U	330	1,100
Benzo(k)fluoranthene	560	410	840	840	380	380	U	U	330	1,100
Benzo(a)pyrene	730	690	1,200	1,100	660	550	U	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	550	460	750	660	420	370	U	U	330	3,200
Dibenzo(a,h)anthracene	150 J	170 J	260 J	240 J	160 J	120 J	U	U	330	14 or MDL
Benzo(g,h,i)perylene	620	520	850	710	500	420	Ü	Ü	330	50,000
1,1'-Biphenyl	130 J	92 J	140 J	140 J	200 J	120 J	Ü	Ü	330	
Acetophenone	U	Ü	Ü	U	Ü	Ü	Ü	Ü	330	
Atrazine	Ü	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	
Benzaldehyde	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	
Caprolactam	Ū	Ü	Ü	Ü	Ü	Ü	Ü	U	330	
Total PAHs	13,180	12,170	20,440	20,170	12,500	11,780	0	0		100,000
Total CaPAHs	4,960	4,550	7,450	7,540	4,450	3,740	0	0		10,000
Total SVOCs	14,720	13,282	22,914	22,110	15,360	13,950	0	0		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION				Borino	ı B-22					
SAMPLE IDENTIFICATION	B-2246	B-2268	B-22810	B-221012	B-221214	B-221416	B-221618	B-222830	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	28' - 30'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	10	1	10	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	93	91	92	91	95	92	96		
UNITS	(ug/kg)									
	(*5 5/	(*5 5/	(*5 5/	(*5 5/	(*3 3)	(*5 5)	(*5 5)	(*3 3/	(*3-3/	(*5 5)
Phenol	U	U	270 J	760 J	1,600	920	720	U	330	30 or MDL
bis(2-Chloroethyl)ether	U	U	U	O	U	U	U	U	330	
2-Chlorophenol	U	U	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	U	U	330	100 or MDL
2,2'-oxybis(1-chloropropane)	U	U	U	U	U	U	U	U	330	
4-Methylphenol	62 J	U	160 J	630 J	1,700	430	930	U	330	900
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	U	U	330	4,400
2-Nitrophenol	U	U	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	88 J	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	U	U	330	400
Naphthalene	99 J	580 J	260 J	710 J	1,200	350	520	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	U	U	330	220 or MDL
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	U	U	330	
Hexachlorobutadiene	U	U	U	U	U	U	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	U	U	330	240 or MDL
2-Methylnapthalene	140 J	1,200 J	460	1,600 J	2,000	480	780	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	U	U	330	
2,4,6-Trichlorophenol	U	U	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	U	U	660	100
2-Chloronapthalene	U	U	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	U	U	660	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	44 J	U	82 J	U	45 J	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	U	U	330	1,000
3-Nitroaniline	U	U	U	U	U	U	U	U	660	500 or MDL
Acenaphthene	130 J	570 J	400	470 J	650	230 J	270 J	U	330	50,000
2,4-Dinitrophenol	U	U	U	U	U	U	U	U	660	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	U	U	660	100 or MDL
Dibenzofuran	58 J	U	200 J	U	360	130 J	180 J	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	U	U	330	

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION										
SAMPLE IDENTIFICATION	B-2246	B-2268	B-22810	Boring B-221012	B-221214	B-221416	B-221618	B-222830	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	28' - 30'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	10	1	10	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	95	93	91	92	91	95	92	96		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Diethylphthalate	U	U	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Fluorene	140 J	720 J	490	520 J	730	250 J	380	U	330	50,000
4-Nitroanline	U	U	U	U	U	U	U	U	660	
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	U	660	
N-Nitrosodiphenylamine	U	U	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	U	U	330	410
Pentachlorophenol	U	U	U	U	U	U	U	U	660	1,000 or MDL
Phenanthrene	870	3,900	3,000	2,800 J	3,900	1,400	2,000	U	330	50,000
Anthracene	140 J	390 J	640	410 J	1,100	200 J	310 J	U	330	50,000
Carbazole	98 J	U	380	420 J	U	310 J	260 J	U	330	
Di-n-butylphthalate	U	U	50 J	460 J	300 J	95 J	190 J	U	330	8,100
Fluoranthene	1,100	2,500 J	3,300	3,100 J	2,700	1,800	1,800	U	330	50,000
Pyrene	1,100	2,600 J	3,400	2,700 J	140 J	1,400	2,200	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	68 J	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	U	330	
Benzo(a)anthracene	480	1,000 J	1,800	1,400 J	38 J	800	1,000	U	330	224 or MDL
Chrysene	610	1,400 J	1,800	1,600 J	1,800	930	1,100	U	330	400
bis(2-Ethylhexyl)phthalate	1,000	2,500 J	1,100	2,800 J	4,100	890 B	1,800	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	790	1,400 J	2,500	2,100 J	2,700	1,200	1,400	U	330	1,100
Benzo(k)fluoranthene	390	650 J	880	780 J	860	630	470	U	330	1,100
Benzo(a)pyrene	530	900 J	1,700	1,300 J	1,300	800	1,000	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	310 J	410 J	890	860 J	36 J	380	660	U	330	3,200
Dibenzo(a,h)anthracene	94 J	U	290 J	U	280 J	130 J	220 J	U	330	14 or MDL
Benzo(g,h,i)perylene	300 J	550 J	880	840 J	1.000	420	710	Ü	330	50,000
1,1'-Biphenyl	U	U	69 J	U	220 J	66 J	100 J	Ü	330	
Acetophenone	Ü	Ü	U	Ü	Ü	U	U	Ū	330	
Atrazine	U	U	U	U	U	U	U	U	330	
Benzaldehyde	Ü	Ü	Ü	Ü	Ü	Ü	Ü	Ū	330	
Caprolactam	U	U	U	U	U	U	U	U	330	
Total PAHs	7,083	17,570	22,274	19,590	18,516	10,920	14,085	0		100,000
Total CaPAHs	3,204	5,760	9,860	8,040	7,014	4,870	5,850	0		10,000
Total SVOCs	8,441	21,270	24,963	26,260	28,796	14,397	19,045	0		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

J*: Result qualified as estimated based on validation criteria.

U*: Result qualified as non-detect based on validation criteria.

J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE LOCATION	Borino	g B-24	Boring B-25	BCPMW-1	BCPMW-2	BCPI	/W-3		
SAMPLE IDENTIFICATION	B-2446	B-241012	B-251012	MW-11012	MW-21012	MW-324	MW-31012	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	10' - 12'	10' - 12'	10' - 12'	10' - 12'	2' - 4'	10' -12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	5/30/2003	6/05/2003	6/10/2003	6/05/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
PERCENT SOLIDS	92	96	90	89	93	92	95		
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	U	330	30 or MDL
bis(2-Chloroethyl)ether	Ū	Ü	Ü	Ü	ŭ	Ū	Ü	330	
2-Chlorophenol	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	800
2-Methylphenol	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	100 or MDL
2,2'-oxybis(1-chloropropane)	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	
4-Methylphenol	Ū	Ü	Ü	Ü	Ü	57 J	ŭ	330	900
N-Nitroso-di-n-propylamine	Ü	Ü	Ü	Ü	Ü	U.	Ü	330	
Hexachloroethane	Ū	Ü	Ü	Ü	ŭ	Ü	Ü	330	
Nitrobenzene	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	200 or MDL
Isophorone	Ū	Ü	Ü	Ü	Ü	Ü	ŭ	330	4,400
2-Nitrophenol	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	330 or MDL
2,4-Dimethylphenol	Ū	Ü	Ü	Ü	ŭ	Ü	Ü	330	
2,4-Dichlorophenol	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	400
Naphthalene	240 J	Ü	Ü	Ü	Ü	96 J	Ü	330	13.000
4-Chloroaniline	Ü	Ü	Ü	Ü	Ü	U	Ü	330	220 or MDL
bis(2-Chloroethoxy)methane	Ü	Ü	Ü	Ü	Ü	Ü	Ü	330	
Hexachlorobutadiene	Ū	Ü	Ü	Ü	Ü	40 J	Ü	330	
4-Chloro-3-methylphenol	Ū	Ü	Ü	Ü	Ü	U	Ü	330	240 or MDL
2-Methylnapthalene	200 J	Ü	Ü	Ü	Ü	100 J	Ü	330	36,400
Hexachlorocyclopentadiene	U	Ü	Ü	Ü	Ü	U	Ü	330	
2,4,6-Trichlorophenol	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	
2,4,5-Trichlorophenol	Ū	Ü	Ü	Ü	Ü	Ü	Ü	660	100
2-Chloronapthalene	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	
2-Nitroaniline	Ū	Ü	Ü	Ü	Ü	Ü	Ü	660	430 or MDL
Dimethylphthalate	Ū	Ü	Ü	Ü	Ü	Ü	Ü	330	2.000
Acenaphthylene	160 J	Ü	Ü	Ü	Ü	Ü	Ü	330	41,000
2.6-Dinitrotoluene	U	Ü	Ü	Ü	Ü	Ü	Ü	330	1.000
3-Nitroaniline	Ū	Ü	Ü	Ü	Ü	Ü	Ü	660	500 or MDL
Acenaphthene	520	Ü	Ü	Ü	Ü	100 J	Ü	330	50,000
2,4-Dinitrophenol	U	Ü	Ü	Ü	Ü	U	Ü	660	200 or MDL
4-Nitrophenol	Ū	Ü	Ü	Ü	Ü	Ü	Ü	660	100 or MDL
Dibenzofuran	390	Ü	Ü	Ü	Ü	45 J	Ü	330	6,200
2,4-Dinitrotoluene	U	Ü	Ü	Ü	ŭ	J.	Ü	330	
_,				0	0	0	0	000	l

NORTHROP GRUMMAN CORPORATION

TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE DETRICATION B-24466 B-241012 B-251012 MW-11012 MW-21012 MW-324 MW-31012 CONTRACT REQUIRED DATE OF COLLECTION 61/02/203	SAMPLE LOCATION	Borino	ı B-24	Boring B-25	BCPMW-1	BCPMW-2	BCPN	/IW-3		
DATE OF COLLECTION	SAMPLE IDENTIFICATION	B-2446	B-241012		MW-11012	MW-21012	MW-324	MW-31012	CONTRACT	TAGM 4046
DILLITION FACTOR	SAMPLE DEPTH	4' - 6'	10' - 12'	10' - 12'	10' - 12'	10' - 12'	2' - 4'	10' -12'	REQUIRED	RECOMMENDED
PERCENT SOLIDS	DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	5/30/2003	6/05/2003	6/10/2003	6/05/2003	DETECTION	SOIL CLEANUP
UNITS	DILUTION FACTOR	1	1	1	1	1	1	1	LIMIT	OBJECTIVES
Diethyphthalate	PERCENT SOLIDS	92	96	90	89	93	92	95		
4-Chiorophenyl-phenylether Fluorene 840 72 J U U U U U U U U U G660	UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Fluorene	Diethylphthalate	U	U	U	U	U	U	C	330	7,100
A-Nitrosanline	4-Chlorophenyl-phenylether	U	U	U	U	U	U	U	330	
4.6-Dinthro-2-methylphenol U </td <td>Fluorene</td> <td>840</td> <td>72 J</td> <td>U</td> <td>U</td> <td>U</td> <td>84 J</td> <td>U</td> <td>330</td> <td>50,000</td>	Fluorene	840	72 J	U	U	U	84 J	U	330	50,000
N-Nirosodiphenylamine 4-Bromophenyl-henylether Hexachlorophenzene U U U U U U U U U U U U U U U U U U U	4-Nitroanline	U	U	U	U	U	U	U		
A-Bromophenyl-phenylether Hexachlorobenzene	4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	U	660	
Hexachlorobenzene	N-Nitrosodiphenylamine	U	U	U	U	U	U	U	330	
Pentachlorophenol	4-Bromophenyl-phenylether	U	U	U	U	U	U	U	330	
Phenanthrene	Hexachlorobenzene	U	U	U	U	U	U	U	330	410
Anthracene	Pentachlorophenol	U	U	U	U	U	U	U	660	1,000 or MDL
Carbazole	Phenanthrene	5,100		U	U	U	520	U	330	50,000
Di-n-butylphthalate	Anthracene	1,100	89 J	U	U	U	110 J	U	330	50,000
Fluoranthene	Carbazole	340 J	U	U	U	U		U		
Pyrene	Di-n-butylphthalate	45 J	U	U	U	U	53 J	U	330	8,100
Butylbenzylphthalate	Fluoranthene	4,700	280 J	U	U	48 J	600	U	330	50,000
3,3°-Dichlorobenzidine	Pyrene	5,100	240 J	U	U	43 J	670	U	330	50,000
Benzo(a)anthracene 2,800	Butylbenzylphthalate	U	U	U	U	U	U	U	330	50,000
Chrysene	3,3'-Dichlorobenzidine	U	U	U	U	U	U	U	330	
bis(2-Ethylhexyl)phthalate 56 J U	Benzo(a)anthracene	2,800	120 J	U	U	U	320 J	U	330	224 or MDL
Di-n-octylphthalate	Chrysene	2,500	140 J	U	U	U	400	U	330	400
Benzo(b)fluoranthene 3,400 110 J U U U 370 U 330 1,100	bis(2-Ethylhexyl)phthalate	56 J	U	U	U	U	67 J	37 J	330	50,000
Benzo(k)fluoranthene	Di-n-octylphthalate	U	U	U	U	U	U	U	330	50,000
Benzo(a)pyrene 2,400 78 J	Benzo(b)fluoranthene	3,400	110 J	U	U	U	370	U	330	1,100
Indeno(1,2,3-cd)pyrene	Benzo(k)fluoranthene	1,300	45 J	U	U	U	140 J	U	330	1,100
Dibenzo(a,h)anthracene 400	Benzo(a)pyrene	2,400	78 J	U	U	U	230 J	U	330	61 or MDL
Benzo(g,h,i)perylene 1,600 36 J U<	Indeno(1,2,3-cd)pyrene	1,300	U	U	U	U	140 J	U	330	3,200
1,1'-Biphenyl 86 J U	Dibenzo(a,h)anthracene	400	U	U	U	U	54 J	U	330	14 or MDL
1,1'-Biphenyl 86 J U	Benzo(q,h,i)perylene	1,600	36 J	U	U	U	160 J	U	330	50,000
Atrazine U<		86 J	U	U	U	U	U	U	330	
Atrazine U<	Acetophenone	U	U	U	U	U	U	U	330	
Caprolactam U <th< td=""><td>Atrazine</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>330</td><td></td></th<>	Atrazine	U	U	U	U	U	U	U	330	
Total PAHs 33,460 1,580 0 0 91 3,994 0 100,000 Total CaPAHs 14,100 493 0 0 1,654 0 10,000	Benzaldehyde	U	U	U	U	U	U	U	330	
Total CaPAHs 14,100 493 0 0 0 1,654 0 10,000	Caprolactam	U	U	U	U	U	U	U	330	
Total CaPAHs 14,100 493 0 0 0 1,654 0 10,000	Total PAHs	33,460	1,580	0	0	91	3,994	0		100,000
Total SVOCs 34.577 1.580 0 0 91 4.424 37 500.000		,						0		,
	Total SVOCs	34,577	1,580	0	0	91	4,424	37		500,000

Qualifiers:

U: Constituent analyzed for but not detected.

D: Result taken from reanalysis at a secondary dilution.

- J*: Result qualified as estimated based on validation criteria.
- U*: Result qualified as non-detect based on validation criteria.
- J: Constituent concentration found below CRDL, value estimated.

Notes:

---- : Not established.

MDL: Method Detection Limit.

: Value exceeds the Recommended Soil Cleanup Objective.

TABLE B-3

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

TABLE B-3

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION	Borin	g B-1			Borin	ıg B-2				
SAMPLE IDENTIFICATION	B-1810	B-11012	B-202	B-222	B-224	B-246	B-268	B-2810	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	10	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	96	85	87	93	82	73	31	82		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	U	2.900	0.630	0.180 P	U	0.900	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	0.340 P	0.580	0.550	0.310	2.700	0.830	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	0	0.340	3.480	1.180	0.490	2.700	1.730		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		Boring B-2				Boring B-3				
SAMPLE IDENTIFICATION	B-21011	B-21112	B-21214	B-302	B-322	B-324	B-346	B-368	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 11'	11' - 12'	12' - 14'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	43	95	92	90	93	92	97	84		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	3.100 P	U	U	1.400	0.910	0.290	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	2.400	0.120	0.160	0.360	0.590	0.180	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	5.500	0.120	0.160	1.760	1.500	0.470	0	0		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHI	ORINATED	BIPHENYLS
I OLIOIIL		

SAMPLE LOCATION	Borin	g B-3			Borin	g B-4				
SAMPLE IDENTIFICATION	B-3810	B-31214	B-402	B-422	B-423	B-434	B-446	B-468	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	12' - 14'	0 - 2"	2" - 2'	2' - 3'	3' - 4'	4' - 6'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/28/20003	6/02/2003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	93	95	79	89	87	95	96	96		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	0.360	1.200	1.300	U	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	0.220 P	0.320	0.350 P	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	0	0.580	1.520	1.650	0	0	0		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

SAMPLE LOCATION	Borin	g B-4			Borin	g B-5				
SAMPLE IDENTIFICATION	B-4810	B-41012	B-5810	B-51012	B-51214	B-51416	B-51618	B-51820	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	10	50	50	50	50	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	96	95	88	78	88	83	85	87		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	11.000	58.000	62.000	50.000	65.000	0.062 P	0.033	
Aroclor-1248	U	0.065 P	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	53.000	18.000	56.000	0.100	0.033	
Aroclor-1260	U	U	U	8.000	U	U	U	U	0.033	
TOTAL PCBs	0	0.065	11.000	66.000	115.000	68.000	121.000	0.162		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION	Boring B-5				Boring B-6					
SAMPLE IDENTIFICATION	B-52022	B-602	B-622	B-624	B-646	B-6810	B-61012	B-61214	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	8' - 10'	10' - 12'	12' - 14'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	10	50	50	20	10	20	10	LIMIT	OBJECTIVE
PERCENT SOLIDS	95	83	70	82	89	89	87	82		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	3.600 P	92.000	36.000	34.000	15.000	32.000	18.000	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	3.600	92.000	36.000	34.000	15.000	32.000	18.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		Boring B-6				Boring B-7				
SAMPLE IDENTIFICATION	B-61416	B-61618	B-61820	B-702	B-722	B-724	B-746	B-768	CONTRACT	TAGM 4046
SAMPLE DEPTH	14' - 16'	16' - 18'	18' - 20'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	5/27/2003	5/27/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	10	10	10	50	LIMIT	OBJECTIVE
PERCENT SOLIDS	98	97	97	73	92	91	91	89		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.160	0.310	0.220	U	16.000 P	11.000	U	5.000	0.033	
Aroclor-1248	U	U	U	U	U	U	7.400	U	0.033	
Aroclor-1254	U	U	U	0.330	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	0.780	U	U	U	0.033	
TOTAL PCBs	0.160	0.310	0.220	0.330	16.780	11.000	7.400	5.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Borin	g B-7					
SAMPLE IDENTIFICATION	B-7810	B-71012	B-71214	B-71416	B-71618	B-71820	B-72022	B-72224	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	20	1	1	10	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	89	90	88	59	81	62	97	96		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	12.000	0.580	0.600 P	4.900	1.000	0.790 P	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	0.420	0.550	2.700	0.820	2.100	U	U	0.033	
TOTAL PCBs	12.000	1.000	1.150	7.600	1.820	2.890	0	0		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring B-8				Boring B-9		
SAMPLE IDENTIFICATION	B-802	B-822	B-824	B-846	B-868	B-8810	B-81012	B-9810	CONTRACT	TAGM 4046
SAMPLE DEPTH	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	8' - 10'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/10/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	5	10	1	1	5	LIMIT	OBJECTIVE
PERCENT SOLIDS	81	88	90	92	92	95	91	95		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	0.900	0.960	3.300	9.000	U	U	2.200	0.033	
Aroclor-1248	U	U	U	U	U	U	0.130	U	0.033	
Aroclor-1254	0.500	0.320 P	0.550	U	U	0.043	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0.500	1.220	1.510	3.300	9.000	0.043	0.130	2.200		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK **INVESTIGATION SAMPLING PROGRAM**

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring B-9				Boring B-10		
SAMPLE IDENTIFICATION	B-91012	B-91214	B-91416	B-91618	B-92022	B-92224	B-92426	B-1002	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	12' - 14'	14' - 16'	16' - 18'	20' - 22'	22' - 24'	24' - 26'	0 - 2"	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	5	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	98	94	95	95	97	94	96	78		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	1.400	2.100	0.120	U	0.090	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	0.370	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	0	1.400	2.100	0.120	0	0.090	0.370		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
 - Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION			Boring B-10				Boring B-11			
SAMPLE IDENTIFICATION	B-1022	B-1024	B-1068	B-10810	B-101012	B-1102	B-1122	B-1124	CONTRACT	TAGM 4046
SAMPLE DEPTH	2" - 2'	2' - 4'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	10	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	89	97	79	100	100	75	92	92		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	U	U	U	0.180 P	0.160 P	0.098 P	0.033	
Aroclor-1248	1.400	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	0.370	0.260	0.080	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	1.400	0	0	0	0	0.550	0.420	0.178		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring	B-11					
SAMPLE IDENTIFICATION	B-1146	B-1168	B-11810	B-111012	B-111214	B-111416	B-111618	B-111820	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	10	10	5	5	10	10	LIMIT	OBJECTIVE
PERCENT SOLIDS	88	86	92	96	98	92	95	96		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.380 P	0.340 P	U	U	U	U	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	0.260	0.290	4.800	2.700	2.400	2.900	4.900	3.800	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0.640	0.630	4.800	2.700	2.400	2.900	4.900	3.800		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring	B-12					
SAMPLE IDENTIFICATION	B-12810	B-121012	B-121214	B-121416	B-121618	B-121820	B-122022	B-122224	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	20	20	50	100	100	100	100	LIMIT	OBJECTIVE
PERCENT SOLIDS	84	82	83	87	86	90	91	88		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	1.800	19.000	22.000	13.000	120.000	62.000	69.000	71.000	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	0.240	1.600	3.700	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	2.040	20.600	25.700	13.000	120.000	62.000	69.000	71.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION	Boring	B-12			Boring	g B-13				
SAMPLE IDENTIFICATION	B-122526	B-122628	B-13810	B-131012	B-131214	B-131416	B-131618	B-131820	CONTRACT	TAGM 4046
SAMPLE DEPTH	25' - 26'	26' - 28'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	20	50	50	200	20	50	LIMIT	OBJECTIVE
PERCENT SOLIDS	88	96	87	85	89	90	90	89		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.090	0.045	15.000	27.000	36.000	100.000	19.000	31.000	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	3.200	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0.090	0.045	15.000	27.000	36.000	100.000	22.200	31.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		Boring B-13			Boring B-14		Boring	B-15		
SAMPLE IDENTIFICATION	B-132022	B-132224	B-132426	B-14810	B-141012	B-141214	B-1502	B-1522	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	22' - 24'	24' - 26'	8' - 10'	10' - 12'	12' - 14'	0 - 2"	2" - 2'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/11/2003	6/11/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	100	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	90	95	98	96	96	97	83	90		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	67.000	0.110	0.073	0.270 P	0.140 P	0.063 P	0.120 P	0.340 P	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	0.280	0.140	0.053	0.230 P	0.340	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	67.000	0.110	0.073	0.550	0.280	0.116	0.350	0.680		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		Boring	B-15			Boring	B-16			
SAMPLE IDENTIFICATION	B-1546	B-1568	B-15810	B-151012	B-1602	B-1622	B-1624	B-1646	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	20	100	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	97	94	96	97	93	100	89	94		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	U	11.000	79.000	0.720	0.140	0.370	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	0.180	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	0	0	11.000	79.000	0.900	0.140	0.370		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POI	VCHI	OPINATE	D BIPHENYL	9
FUL		OKINA I E	D DIFFICINT L	

SAMPLE LOCATION			Boring B-16				Boring B-17			
SAMPLE IDENTIFICATION	B-1668	B-16810	B-161012	B-161214	B-161416	B-1702	B-1722	B-1724	CONTRACT	TAGM 4046
SAMPLE DEPTH	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	0 - 2"	2" - 2'	2' - 4'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	50	LIMIT	OBJECTIVE
PERCENT SOLIDS	87	98	98	97	96	91	94	91		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	U	U	U	U	U	56.000	0.033	
Aroclor-1248	U	U	U	U	U	0.073	0.890	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	0	0	0	0	0.073	0.890	56.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring	B-17					
SAMPLE IDENTIFICATION	B-1746	B-1768	B-17810	B-171012	B-171214	B-171416	B-171618	B-171820	CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	100	20	100	20	50	100	100	100	LIMIT	OBJECTIVE
PERCENT SOLIDS	91	90	90	90	88	91	91	90		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	69.000	16.000	61.000	19.000	35.000	50.000	70.000	90.000	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	69.000	16.000	61.000	19.000	35.000	50.000	70.000	90.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring B-17				Boring B-18		
SAMPLE IDENTIFICATION	B-172022	B-172224	B-172426	B-172830	B-173032	B-173234	B-173436	B-1802	CONTRACT	TAGM 4046
SAMPLE DEPTH	20' - 22'	22' - 24'	24' - 26'	28' - 30'	30' - 32'	32' - 34'	34' - 36'	0 - 2"	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	5/29/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	10	20	20	1	20	20	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	89	91	89	96	98	92	96	78		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	8.600	22.000	18.000	1.200	23.000	25.000	0.150	0.640	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	0.330 P	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	8.600	22.000	18.000	1.200	23.000	25.000	0.150	0.970		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring B-18				Boring B-19]	
SAMPLE IDENTIFICATION	B-1822	B-1824	B-1846	B-1868	B-18810	B-181012	B-181214	B-19810	CONTRACT	TAGM 4046
SAMPLE DEPTH	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	8' - 10'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	20	LIMIT	OBJECTIVE
PERCENT SOLIDS	91	89	91	87	96	95	95	91		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	1.300	1.600	0.240	0.900	U	0.069	U	24.000	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	0.250	0.330	0.072	0.110	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	1.550	1.930	0.312	1.010	0	0.069	0	24.000		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring	g B-19					
SAMPLE IDENTIFICATION	B-191012	B-191214	B-191618	B-191820	B-192224	B-192426	B-192627	B-192728	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	12' - 14'	16' - 18'	18' - 20'	22' - 24'	24' - 26'	26' - 27'	27' - 28'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	50	20	50	50	5	20	20	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	91	92	85	91	91	91	90	96		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	34.000	14.000	45.000	24.000	3.100	14.000	14.000	0.410	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	34.000	14.000	45.000	24.000	3.100	14.000	14.000	0.410		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED	BIPHENYLS

SAMPLE LOCATION	Boring B-19				Boring B-20					
SAMPLE IDENTIFICATION	B-192830	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-2022524	CONTRACT	TAGM 4046
SAMPLE DEPTH	28' - 30'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	22.5' - 24'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	20	20	20	50	20	50	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	98	92	93	89	92	91	91	98		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	16.000	19.000	19.000	46.000	20.000	41.000	0.065	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0	16.000	19.000	19.000	46.000	20.000	41.000	0.065		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION	Boring B-20				Boring B-21					
SAMPLE IDENTIFICATION	B-202426	B-2102	B-2122	B-2124	B-2146	B-2168	B-21810	B-211012	CONTRACT	TAGM 4046
SAMPLE DEPTH	24' - 26'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/03/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	97	87	90	93	90	97	97	97		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.092	U	0.093 P	U	U	U	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	0.120 P	0.150	U	0.061 P	U	U	U	0.033	
Aroclor-1260	U	U	U	0.084	U	U	U	U	0.033	
TOTAL PCBs	0.092	0.120	0.243	0.084	0.061	0	0	0		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for
 - surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring	B-22					
SAMPLE IDENTIFICATION	B-22810	B-221012	B-221214	B-221416	B-221618	B-221820	B-222022	B-222224	CONTRACT	TAGM 4046
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	20	10	20	10	20	10	10	10	LIMIT	OBJECTIVE
PERCENT SOLIDS	91	92	91	95	92	90	88	87		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	21.000	9.400	24.000	9.200	19.000	8.000	7.600	5.200	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	3.500	3.200	4.900	1.500	2.800	0.830	0.800	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	24.500	12.600	28.900	10.700	21.800	8.830	8.400	5.200	•	1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION	Boring	B-22	Boring B-23							
SAMPLE IDENTIFICATION	B-222526	B-222830	B-2302	B-2322	B-2324	B-2346	B-2368	B-23810	CONTRACT	TAGM 4046
SAMPLE DEPTH	25' - 26'	28' - 30'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/09/2003	6/09/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	96	96	54	84	82	74	83	93		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.230	0.061	U	U	U	2.000	U	0.074	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	0.260	U	U	0.033	
Aroclor-1260	U	U	U	U	U	U	0.098	0.088	0.033	
TOTAL PCBs	0.230	0.061	0	0	0	2.260	0.098	0.162		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

					_	_	-
POL	Y.	CHI	_ORIN	ATED	BIP	HE	NYLS

SAMPLE LOCATION	Boring B-23				Boring B-24					
SAMPLE IDENTIFICATION	B-231012	B-2402	B-2422	B-2424	B-2446	B-2468	B-24810	B-241012	CONTRACT	TAGM 4046
SAMPLE DEPTH	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	94	80	92	90	92	95	97	96		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.046	U	U	0.180 P	0.330	U	U	U	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	0.061 P	U	U	U	U	0.033	
Aroclor-1260	0.038	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0.084	0	0	0.241	0.330	0	0	0		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for
- surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION				Boring B-25				BCPMW-1		
SAMPLE IDENTIFICATION	B-2502	B-2522	B-2524	B-2546	B-2568	B-25810	B-251012	MW-102	CONTRACT	TAGM 4046
SAMPLE DEPTH	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	5/30/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	88	95	91	95	97	97	90	100		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.071 P	U	U	U	U	U	U	0.150 P	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	0.072	U	U	U	U	U	U	0.190 P	0.033	
Aroclor-1260	U	U	U	U	U	U	U	U	0.033	
TOTAL PCBs	0.143	0	0	0	0	0	0	0.340		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		BCPMW-1 BCPMW-2								
SAMPLE IDENTIFICATION	MW-122	MW-124	MW-146	MW-168	MW-1810	MW-11012	MW-202	MW-222	CONTRACT	TAGM 4046
SAMPLE DEPTH	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	5/30/2003	5/30/2003	5/30/2003	5/30/2003	5/30/2003	5/30/2003	6/05/2003	6/05/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	OBJECTIVE
PERCENT SOLIDS	100	100	100	92	97	89	81	93		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	U	U	U	U	U	U	0.340	0.760	0.033	
Aroclor-1248	U	U	U	U	U	U	U	U	0.033	
Aroclor-1254	U	U	U	U	U	U	0.250 P	U	0.033	
Aroclor-1260	U	U	U	U	U	U	U	0.140	0.033	
TOTAL PCBs	0	0	0	0	0	0	0.590	0.900		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK

INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION			BCPMW-2				BCPMW-3			
SAMPLE IDENTIFICATION	MW-224	MW-246	MW-268	MW-2810	MW-21012	MW-302	MW-322	MW-324	CONTRACT	TAGM 4046
SAMPLE DEPTH	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	DETECTION	SOIL CLEANUP
DILUTION FACTOR	1	1	1	1	1	1	1	10	LIMIT	OBJECTIVE
PERCENT SOLIDS	91	90	93	97	93	78	92	91		
UNITS	(mg/kg)									
Aroclor-1016	U	U	U	U	U	U	U	U	0.033	
Aroclor-1221	U	U	U	U	U	U	U	U	0.067	
Aroclor-1232	U	U	U	U	U	U	U	U	0.033	
Aroclor-1242	0.180	0.530	U	U	U	0.800	1.700	7.300	0.033	
Aroclor-1248	U	U	U	0.044	U	U	U	U	0.033	
Aroclor-1254	U	0.240 P	U	U	U	0.410	0.280	U	0.033	
Aroclor-1260	0.140	U	U	U	U	U	U	1.200	0.033	
TOTAL PCBs	0.320	0.770	0	0.044	0	1.210	1.980	8.500		1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

Notes:

--- : Not established.

* : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.

Value exceeds the Recommended Soil Cleanup Objective.

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM

SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE LOCATION		BCPI	ЛW-3					
SAMPLE IDENTIFICATION	MW-346	MW-368	MW-3810	MW-31012			CONTRACT	TAGM 4046
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'			REQUIRED	RECOMMENDED
DATE OF COLLECTION	6/05/2003	6/05/2003	6/05/2003	6/05/2003			DETECTION	SOIL CLEANUP
DILUTION FACTOR	5	1	1	1			LIMIT	OBJECTIVE
PERCENT SOLIDS	92	85	89	95				
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	mg/kg			(mg/kg)	(mg/kg)
Aroclor-1016	U	U	U	U			0.033	
Aroclor-1221	U	U	U	U			0.067	
Aroclor-1232	U	U	U	U			0.033	
Aroclor-1242	3.300	0.840	U	U			0.033	
Aroclor-1248	U	U	U	U			0.033	
Aroclor-1254	U	U	U	U			0.033	
Aroclor-1260	U	U	U	U			0.033	
TOTAL PCBs	3.300	0.840	0	0	_		•	1/10 *

Qualifiers:

- U: Constituent analyzed for but not detected.
- B: Constituent concentration is less than the CRDL, but greater than the IDL.
- P: Concentration estimated, possibly biased low since primary and confirmation column concentrations had a percent difference >25%; lower value reported.

- --- : Not established.
- * : Recommended Soil Cleanup Objective is 1 mg/kg for surface soil and 10 mg/kg for subsurface soil.
- : Value exceeds the Recommended Soil Cleanup Objective.

TABLE B-4

SOIL SAMPLING RESULTS RCRA/TAL METALS AND HEXAVALENT CHROMIUM

SAMPLE LOCATION	Borin	g B-1			Borin	ig B-2]	
SAMPLE IDENTIFICATION	B-1810	B-11012	B-202	B-222	B-224	B-246	B-268	B-2810		
SAMPLE DEPTH	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	96	85	87	93	82	73	31	82		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	19,500	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	N/A	33.6	N/A	3.0	
Arsenic	1	1.5	9.3	4.2	21.8	6.7	11.8	7.5	3.0	3 - 12*
Barium	5.3 B	6.2 B	33.4	17.6	39.5	48.6	227	78.7	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	N/A	0.4 B	N/A	0.5	0 - 1.75
Cadmium	U	0.038 B	2.7	2.5	17.1	9.2	129	23.3	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	N/A	26,500	N/A	240.0	130 - 35,000*
Chromium	2.1	2.5	89.3	82.3	428	270	1,780	494	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	N/A	8.8	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	N/A	1,420	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	N/A	34,200	N/A	26.0	2,000 - 550,000
Lead	1.1	1.1	44.6	14.5	47.2	62.8	445	98.3	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	N/A	2,170	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	N/A	291	N/A	0.8	50 - 5,000
Mercury	0.025 B	U	0.13	0.15	0.34	0.38	5.2	0.49	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	N/A	88.3	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	N/A	389	N/A	78.0	8,500 - 43,000*
Selenium	U	0.59 B	0.75 B	U	2	U	U	2.4	9.0	0.1 - 3.9
Silver	0.14 B	0.2 B	1.8	2.9	1.4 B	3.6	9.8	2.4	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	N/A	299	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	N/A	0.98 B	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	N/A	20.9	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	N/A	4,820	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	22.20	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION		Boring B-2				Boring B-3				
SAMPLE IDENTIFICATION	B-21011	B-21112	B-21214	B-302	B-322	B-324	B-346	B-368		
SAMPLE DEPTH	10' - 11'	11' - 12'	12' - 14'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	5/28/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	43	95	92	90	93	92	97	84		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A	N/A	5,330	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	0.17 B	N/A	N/A	3.0	
Arsenic	4.9	4.7	1.2	4.8	2.8	2.7	2.3	3.7	3.0	3 - 12*
Barium	159	10.5	7.7 B	33.7	23.9	16.6	6.7 B	18.4	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	0.07 B	N/A	N/A	0.5	0 - 1.75
Cadmium	90.2	0.49	0.16 B	2.9	2.9	1.6	0.29	0.095 B	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	6,430	N/A	N/A	240.0	130 - 35,000*
Chromium	1,260	18.2	4.8	135	193	62	17.4	11.6	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	2.1 B	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	11.5	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	7,390	N/A	N/A	26.0	2,000 - 550,000
Lead	293	2.6	1.7	25.7	16.1	13.1	2.6	4.5	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	3,010	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	88.4	N/A	N/A	0.8	50 - 5,000
Mercury	3	0.016 B	0.026 B	0.076	0.057	0.037	U	U	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	4.4	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	261	N/A	N/A	78.0	8,500 - 43,000*
Selenium	5	U	U	0.64 B	0.56 B	U	1.6	0.9 B	9.0	0.1 - 3.9
Silver	7.4	0.3 B	0.32 B	1.3 B	2.6	1.1 B	0.71 B	0.23 B	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	21.6 B	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	U	N/A	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	11.8	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	331	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	5.92	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Borir	ıg B-3			Borin	g B-4				
SAMPLE IDENTIFICATION	B-3810	B-31214	B-402	B-422	B-423	B-434	B-446	B-468		
SAMPLE DEPTH	8' - 10'	12' - 14'	0 - 2"	2" - 2'	2' - 3'	3' - 4'	4' - 6'	6' - 8'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/28/20003	6/02/2003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	5/28/20003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	93	95	79	89	87	95	96	96		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	2,010	N/A	N/A	N/A	7,510	N/A	N/A	784	17.0	33,000
Antimony	U	N/A	N/A	N/A	0.36 B	N/A	N/A	U	3.0	
Arsenic	6.2	0.72 B	6	4.4	6.9	0.78 B	0.21 B	1	3.0	3 - 12*
Barium	5.2 B	4.1 B	35.1	22.1	29.5	4.4 B	4.9 B	5.5 B	4.0	15 - 600
Beryllium	0.11 B	N/A	N/A	N/A	0.12 B	N/A	N/A	0.047 B	0.5	0 - 1.75
Cadmium	0.083 B	U	0.96	1.5	1.7	0.26	0.061 B	0.039 B	0.7	0.1 - 1, (10***)
Calcium	15.6 B	N/A	N/A	N/A	913	N/A	N/A	U	240.0	130 - 35,000*
Chromium	16.8	2	69	114	105	4.7	6.6	8.2	0.6	1.5 - 40*, (50***)
Cobalt	1 B	N/A	N/A	N/A	2.6	N/A	N/A	0.54 B	0.9	2.5 - 60*
Copper	5.1	N/A	N/A	N/A	26.8	N/A	N/A	1.8 B	4.0	1 - 50
Iron	7,270	N/A	N/A	N/A	9,640	N/A	N/A	2,820	26.0	2,000 - 550,000
Lead	1.5	0.98	36.8	15.7	23.6	1.7	1.6	0.9	4.0	200 - 500**
Magnesium	294	N/A	N/A	N/A	1,120	N/A	N/A	174	8.0	100 - 5,000
Manganese	34.5	N/A	N/A	N/A	127	N/A	N/A	36.1	0.8	50 - 5,000
Mercury	U	U	0.11	0.067	0.15	U	U	U	0.1	0.001 - 0.2
Nickel	1.5 B	N/A	N/A	N/A	5.5	N/A	N/A	0.89 B	0.8	0.5 - 25
Potassium	169	N/A	N/A	N/A	376	N/A	N/A	142	78.0	8,500 - 43,000*
Selenium	U	U	1.6 B	1 B	U	U	0.53 B	U	9.0	0.1 - 3.9
Silver	0.31 B	0.11 B	1.9	2.1	4.6	0.14 B	0.29 B	0.12 B	2.0	
Sodium	8.9 B	N/A	N/A	N/A	23.8 B	N/A	N/A	8.7 B	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	N/A	U	N/A	N/A	U	3.0	
Vanadium	5.2	N/A	N/A	N/A	16.7	N/A	N/A	2.3	0.7	1 - 300
Zinc	11.1	N/A	N/A	N/A	145	N/A	N/A	5.5	7.0	9 - 50
Hexavalent Chromium	U	U	9.81	5.20	4.78	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- Proposed revised criteria in TAGM 4046 Appendix A.
 Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Borin	ıg B-4			Borin	ng B-5				
SAMPLE IDENTIFICATION	B-4810	B-41012	B-5810	B-51012	B-51214	B-51416	B-51618	B-51820		
SAMPLE DEPTH	8' - 10'	10' - 12'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/02/2003	6/02/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	96	95	88	78	88	83	85	87		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	N/A	N/A	5,380	N/A	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	1.5	N/A	N/A	N/A	3.0	
Arsenic	0.56 B	0.83 B	4.7	U	2.7	1.2	4	U	3.0	3 - 12*
Barium	6.1 B	9.3	26.8	65.3	48.3	41.6	42	20.6	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	0.46	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	0.17 B	0.76	2.4	126	13.2	70.5	13.8	138	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	1,480	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	8.2	13.2	47.9	2,500	227	1,390	293	1,100	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	3	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	92.7	N/A	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	9,740	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	1.2	3.4	18	97.8	41.3	63.6	42.1	33.1	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	712	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	72.8	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	U	U	0.16	0.50	0.16	0.28	0.16	0.07	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	11.6	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	233	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	1.4	U	U	U	9.0	0.1 - 3.9
Silver	0.13 B	0.27 B	2.1	7.1	11.4	5.2	9.2	0.17 B	2.0	
Sodium	N/A	N/A	N/A	N/A	42.4 B	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	U	N/A	N/A	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	10.5	N/A	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	251	N/A	N/A	N/A	7.0	9 - 50
				'						
Hexavalent Chromium	U	U	U	6.23	U	U	U	13.00	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring B-5				Boring B-6					
SAMPLE IDENTIFICATION	B-52022	B-602	B-622	B-624	B-646	B-6810	B-61012	B-61214		
SAMPLE DEPTH	20' - 22'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	8' - 10'	10' - 12'	12' - 14'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/29/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	95	83	70	82	89	89	87	82		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	1,430	N/A	N/A	N/A	N/A	N/A	7,160	6,320	17.0	33,000
Antimony	U	N/A	N/A	N/A	N/A	N/A	1.7	1.5	3.0	
Arsenic	0.99 B	6.4	7.3	36.0	2.7	4.4	4.9	3.7	3.0	3 - 12*
Barium	7.9 B	38.7	75.7	39.2	49.7	48.8	42.6	37.1	4.0	15 - 600
Beryllium	0.21 B	N/A	N/A	N/A	N/A	N/A	0.14 B	0.11 B	0.5	0 - 1.75
Cadmium	6.9	14	17.5	3.2	32.3	3.5	7.7	7.8	0.7	0.1 - 1, (10***)
Calcium	132	N/A	N/A	N/A	N/A	N/A	8,180	7,780	240.0	130 - 35,000*
Chromium	16.9	539	629	132	1,230	50.3	234	196	0.6	1.5 - 40*, (50***)
Cobalt	0.5 B	N/A	N/A	N/A	N/A	N/A	2.8	2.5 B	0.9	2.5 - 60*
Copper	3.4	N/A	N/A	N/A	N/A	N/A	38.9	32.1	4.0	1 - 50
Iron	3,420	N/A	N/A	N/A	N/A	N/A	9,030	8,280	26.0	2,000 - 550,000
Lead	1.5	45.4	125	21.1	53.0	16.9	31.8	24.4	4.0	200 - 500**
Magnesium	170	N/A	N/A	N/A	N/A	N/A	1,700	2,890	8.0	100 - 5,000
Manganese	14.2	N/A	N/A	N/A	N/A	N/A	160	111	0.8	50 - 5,000
Mercury	U	0.16	0.68	0.086	0.15	0.063	0.11	0.13	0.1	0.001 - 0.2
Nickel	2.7	N/A	N/A	N/A	N/A	N/A	10.6	8.7	0.8	0.5 - 25
Potassium	155	N/A	N/A	N/A	N/A	N/A	383	333	78.0	8,500 - 43,000*
Selenium	U	1.8 B	1.5 B	0.69 B	0.95 B	1.3 B	U	U	9.0	0.1 - 3.9
Silver	0.21 B	3.5	5.1	2.3	3.1	3.8	4.3	3.7	2.0	
Sodium	9.1 B	N/A	N/A	N/A	N/A	N/A	35 B	29.4 B	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	N/A	N/A	N/A	U	U	3.0	
Vanadium	3.9	N/A	N/A	N/A	N/A	N/A	13.5	11.6	0.7	1 - 300
Zinc	42.1	N/A	N/A	N/A	N/A	N/A	130	116	7.0	9 - 50
Hexavalent Chromium	U	7.38	76.10	5.56	23.30	U	U	5.88	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or Recommended Soil Cleanup Objective.

SAMPLE LOCATION		Boring B-6				Boring B-7				
SAMPLE IDENTIFICATION	B-61416	B-61618	B-61820	B-702	B-722	B-724	B-746	B-768		
SAMPLE DEPTH	14' - 16'	16' - 18'	18' - 20'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/27/2003	5/27/2003	5/27/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	98	97	97	73	92	91	91	89		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	4,960	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	N/A	U	N/A	3.0	
Arsenic	1.2	0.9 B	1.4	11.9	3.5	3.1	4.6	1.5	3.0	3 - 12*
Barium	5.4 B	9 B	7.4 B	36.5	36	35.7	27.7	39.6	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	N/A	0.23 B	N/A	0.5	0 - 1.75
Cadmium	1.2	0.38	0.51	1.5	12.1	8	3.3	3.3	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	N/A	1,150	N/A	240.0	130 - 35,000*
Chromium	43.2	38.8	30.2	76.9	579	532	111	524	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	N/A	2.7	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	N/A	60.7	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	N/A	7,810	N/A	26.0	2,000 - 550,000
Lead	1.5	1.5	1.6	40.9	34.8	45.7	41	14.8	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	N/A	704	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	N/A	75.9	N/A	0.8	50 - 5,000
Mercury	U	U	U	0.25	0.15	0.12	0.16	0.077	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	N/A	12.3	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	N/A	367	N/A	78.0	8,500 - 43,000*
Selenium	U	0.7 B	U	U	0.76 B	0.65 B	U	U	9.0	0.1 - 3.9
Silver	0.26 B	0.16 B	0.2 B	5.7	5.8	3.8	18.7	0.79 B	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	N/A	51.4	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	N/A	U	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	N/A	17.9	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	N/A	107	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	5.54	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Borin	g B-7]	
SAMPLE IDENTIFICATION	B-7810	B-71012	B-71214	B-71416	B-71618	B-71820	B-72022	B-72224		
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	89	90	88	59	81	62	97	96		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	5,840	N/A	N/A	15,900	N/A	N/A	N/A	N/A	17.0	33,000
Antimony	U	N/A	N/A	U	N/A	N/A	N/A	N/A	3.0	
Arsenic	U	U	U	U	U	U	1.4	0.78 B	3.0	3 - 12*
Barium	62.5	48.8	89.1	107	60.3	82.2	11.3	7.3 B	4.0	15 - 600
Beryllium	0.11 B	N/A	N/A	0.082 B	N/A	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	6.5	91.4	362	414	119	315	30.7	13.7	0.7	0.1 - 1, (10***)
Calcium	2,500	N/A	N/A	14,000	N/A	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	3,130	2,430	9,130	10,000	4,690	9,350	173	39.7	0.6	1.5 - 40*, (50***)
Cobalt	4.1	N/A	N/A	5.4	N/A	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	36.1	N/A	N/A	830	N/A	N/A	N/A	N/A	4.0	1 - 50
Iron	5,900	N/A	N/A	8,150	N/A	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	53	59.5	118	161	80.6	160	5.6	1.7	4.0	200 - 500**
Magnesium	703	N/A	N/A	1,220	N/A	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	74.4	N/A	N/A	133	N/A	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	0.18	0.14	1.2	1.7	0.3	0.72	U	U	0.1	0.001 - 0.2
Nickel	4.6	N/A	N/A	301	N/A	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	291	N/A	N/A	252	N/A	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	0.64 B	U	U	U	1.1 B	U	U	9.0	0.1 - 3.9
Silver	2.8	1.5 B	2.1	2.2	1.6 B	1.4 B	0.45 B	U	2.0	
Sodium	34.8 B	N/A	N/A	59.0 B	N/A	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	1.9	N/A	N/A	N/A	N/A	3.0	
Vanadium	9	N/A	N/A	U	N/A	N/A	N/A	N/A	0.7	1 - 300
Zinc	832	N/A	N/A	2,830	N/A	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	35.00	U	8.08	9.81	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring B-8				Boring B-9		
SAMPLE IDENTIFICATION	B-802	B-822	B-824	B-846	B-868	B-8810	B-81012	B-9810		
SAMPLE DEPTH	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	8' - 10'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/10/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	81	88	90	92	92	95	91	95		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	6,040	N/A	N/A	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	U	N/A	N/A	N/A	N/A	3.0	
Arsenic	8.8	5.3	5.3	4.6	2.9	0.93 B	1.7	2.2	3.0	3 - 12*
Barium	29.2	28.4	26.3	22	26	7.7 B	9.3 B	10.5	4.0	15 - 600
Beryllium	N/A	N/A	N/A	0.43	N/A	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	1.9	1.5	0.83	1.5	2	0.6	0.23 B	2.7	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	436	N/A	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	84.8	66.1	26.7	49.8	100	45.5	15.8	29.9	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	2.1 B	N/A	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	27.2	N/A	N/A	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	9,070	N/A	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	112	23.1	18	20.8	20.9	2.5	2.2	5.0	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	690	N/A	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	129	N/A	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	0.18	0.27	0.20	0.11	0.1	U	0.022 B	U	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	4.1	N/A	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	250	N/A	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	0.98 B	U	U	U	U	9.0	0.1 - 3.9
Silver	2.4	8.8	2.6	4.7	3.5	0.17 B	0.22 B	U	2.0	
Sodium	N/A	N/A	N/A	18.3 B	N/A	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	U	N/A	N/A	N/A	N/A	3.0	
Vanadium	N/A	N/A	N/A	12.6	N/A	N/A	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	51.6	N/A	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

0.11.151.5.1.00.17101/									1	
SAMPLE LOCATION			_	Boring B-9			T	Boring B-10		,
SAMPLE IDENTIFICATION	B-91012	B-91214	B-91416	B-91618	B-92022	B-92224	B-92426	B-1002		
SAMPLE DEPTH	10' - 12'	12' - 14'	14' - 16'	16' - 18'	20' - 22'	22' - 24'	24' - 26'	0 - 2"	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/02/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	98	94	95	95	97	94	96	78		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	1,050	N/A	N/A	N/A	N/A	N/A	1,650	N/A	17.0	33,000
Antimony	0.26 E		N/A	N/A	N/A	N/A	U	N/A	3.0	
Arsenic	2.9	0.49 B	1.6	1.2	1.2	1.5	2.1	8.4	3.0	3 - 12*
Barium	5 E	3.8 B	11.3	9.3 B	6.5 B	9.5 B	10	35.6	4.0	15 - 600
Beryllium	0.065 E	N/A	N/A	N/A	N/A	N/A	0.15 B	N/A	0.5	0 - 1.75
Cadmium	L	U	1.1	2.1	0.23 B	0.16 B	0.22 B	1.2	0.7	0.1 - 1, (10***)
Calcium	13.7 E	N/A	N/A	N/A	N/A	N/A	41	N/A	240.0	130 - 35,000*
Chromium	6.6	2	33	45.8	4.4	3.7	6.3	43.1	0.6	1.5 - 40*, (50***)
Cobalt	1.2 E	N/A	N/A	N/A	N/A	N/A	0.85 B	N/A	0.9	2.5 - 60*
Copper	2.4	N/A	N/A	N/A	N/A	N/A	2.6	N/A	4.0	1 - 50
Iron	2,800	N/A	N/A	N/A	N/A	N/A	4,190	N/A	26.0	2,000 - 550,000
Lead	1	0.81	3.9	4.8	1.1	0.99	1	45.7	4.0	200 - 500**
Magnesium	175	N/A	N/A	N/A	N/A	N/A	229	N/A	8.0	100 - 5,000
Manganese	22.5	N/A	N/A	N/A	N/A	N/A	55.2	N/A	0.8	50 - 5,000
Mercury	L	U	U	U	U	0.026 B	0.046	0.23	0.1	0.001 - 0.2
Nickel	1.2 E	N/A	N/A	N/A	N/A	N/A	1.7 B	N/A	0.8	0.5 - 25
Potassium	123	N/A	N/A	N/A	N/A	N/A	207	N/A	78.0	8,500 - 43,000*
Selenium	Ĺ	U	U	U	lυ	lυ	U	U	9.0	0.1 - 3.9
Silver	Ĺ	_	Ū	Ū	0.19 B	0.15 B	0.17 B	5.9	2.0	
Sodium	16.1 E	_	N/A	N/A	N/A	N/A	15.0 B	N/A	83.0	6,000 - 8,000
Thallium	L		N/A	N/A	N/A	N/A	U	N/A	3.0	
Vanadium	2.9	N/A	N/A	N/A	N/A	N/A	3.9	N/A	0.7	1 - 300
Zinc	3.2	N/A	N/A	N/A	N/A	N/A	6.4	N/A	7.0	9 - 50
Hexavalent Chromium	L	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)
										- , (/

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION			Boring B-10				Boring B-11			
SAMPLE IDENTIFICATION	B-1022	B-1024	B-1068	B-10810	B-101012	B-1102	B-1122	B-1124		
SAMPLE DEPTH	2" - 2'	2' - 4'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	89	97	79	100	100	75	92	92		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	7,940	N/A	N/A	N/A	1,080	N/A	N/A	N/A	17.0	33,000
Antimony	U	N/A	N/A	N/A	0.24 B	N/A	N/A	N/A	3.0	
Arsenic	3.5	3	8.4	0.64 B	0.59 B	8.7	3.4	1.6	3.0	3 - 12*
Barium	22	20.9	4.6 B	4.5 B	5.4 B	35.5	19.4	17.4	4.0	15 - 600
Beryllium	0.23 B	N/A	N/A	N/A	0.088 B	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	0.61	0.1 B	0.053 B	U	0.079 B	4.4	1.9	0.75	0.7	0.1 - 1, (10***)
Calcium	646	N/A	N/A	N/A	75.6	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	21.7	8.9	2.1	2.2	4.1	149	107	54.8	0.6	1.5 - 40*, (50***)
Cobalt	3.5	N/A	N/A	N/A	0.63 B	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	13.1	N/A	N/A	N/A	2	N/A	N/A	N/A	4.0	1 - 50
Iron	9,520	N/A	N/A	N/A	2,690	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	11.9	3.9	11	0.84	1.1	59.8	21.7	5.9	4.0	200 - 500**
Magnesium	1,080	N/A	N/A	N/A	232	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	134	N/A	N/A	N/A	29.6	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	0.08	0.016 B	U	U	U	0.26	0.041	U	0.1	0.001 - 0.2
Nickel	5.2	N/A	N/A	N/A	1.1 B	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	357	N/A	N/A	N/A	159	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	1.9	0.92 B	0.59 B	9.0	0.1 - 3.9
Silver	2.3	0.18 B	0.14 B	U	0.12 B	8.4	3.4	0.51 B	2.0	
Sodium	26.4 B	N/A	N/A	N/A	12.3 B	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	0.17 B	N/A	N/A	N/A	U	N/A	N/A	N/A	3.0	
Vanadium	13.3	N/A	N/A	N/A	2.2	N/A	N/A	N/A	0.7	1 - 300
Zinc	27.8	N/A	N/A	N/A	3.8	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- Proposed revised criteria in TAGM 4046 Appendix A.
 Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring	р В-11]	
SAMPLE IDENTIFICATION	B-1146	B-1168	B-11810	B-111012	B-111214	B-111416	B-111618	B-111820		
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	5/27/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	88	86	92	96	98	92	95	96		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	N/A	1,200	N/A	N/A	755	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	U	N/A	N/A	U	N/A	3.0	
Arsenic	4.4	3.4	1.4	0.53 B	0.88 B	1.2	0.67 B	0.68 B	3.0	3 - 12*
Barium	28	24.2	20.5	6.9 B	5.3 B	11.6	4.1 B	5.1 B	4.0	15 - 600
Beryllium	N/A	N/A	N/A	0.067 B	N/A	N/A	0.084 B	N/A	0.5	0 - 1.75
Cadmium	3.6	1.3	5.8	0.36	0.099 B	0.88	0.11 B	0.11 B	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	161	N/A	N/A	149	N/A	240.0	130 - 35,000*
Chromium	69.4	53.8	289	5.4	3.1	20.3	5.4	5.7	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	0.91 B	N/A	N/A	1.1 B	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	3.8	N/A	N/A	2.3	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	2,850	N/A	N/A	3,080	N/A	26.0	2,000 - 550,000
Lead	24.2	18.2	38.6	2.9	1.7	6	1.3	1.5	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	229	N/A	N/A	124	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	33.2	N/A	N/A	67.4	N/A	0.8	50 - 5,000
Mercury	0.14	0.095	0.26	U	U	0.026 B	U	0.018 B	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	1.3 B	N/A	N/A	1.1 B	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	150 B	N/A	N/A	104 B	N/A	78.0	8,500 - 43,000*
Selenium	1.2 B	1.3 B	U	U	U	1.5 B	U	U	9.0	0.1 - 3.9
Silver	3	3	4.7	0.21 B	0.2 B	0.59 B	0.17 B	0.19 B	2.0	
Sodium	N/A	N/A	N/A	8.8 B	N/A	N/A	8.2 B	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	U	N/A	N/A	0.15 B	N/A	3.0	
Vanadium	N/A	N/A	N/A	3.3	N/A	N/A	2.7	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	7	N/A	N/A	3.6	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	11.70	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- Proposed revised criteria in TAGM 4046 Appendix A.
 Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring	g B-12]	
SAMPLE IDENTIFICATION	B-12810	B-121012	B-121214	B-121416	B-121618	B-121820	B-122022	B-122224		
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	84	82	83	87	86	90	91	88		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	6,880	N/A	N/A	6,700	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	5.9	N/A	N/A	20.1	N/A	N/A	3.0	
Arsenic	5	7.7	6.5	7	6.5	6.5	5.9	6.3	3.0	3 - 12*
Barium	22.9	50.8	46.1	40.6	57.9	52.1	46.6	60.4	4.0	15 - 600
Beryllium	N/A	N/A	0.28	N/A	N/A	0.3	N/A	N/A	0.5	0 - 1.75
Cadmium	1.2	3.3	5.8	3.6	7.6	15.2	22.8	12.8	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	3,490	N/A	N/A	2,510	N/A	N/A	240.0	130 - 35,000*
Chromium	56.4	83.3	126	94.2	664	496	306	376	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	3.2	N/A	N/A	3.1	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	64	N/A	N/A	75.2	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	15,900	N/A	N/A	9,530	N/A	N/A	26.0	2,000 - 550,000
Lead	14.2	32.6	36.8	30.2	47.6	55.2	43.8	45.9	4.0	200 - 500**
Magnesium	N/A	N/A	960	N/A	N/A	956	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	195	N/A	N/A	104	N/A	N/A	0.8	50 - 5,000
Mercury	0.12	0.16	0.26	0.17	0.12	0.32	0.21	0.22	0.1	0.001 - 0.2
Nickel	N/A	N/A	25.1	N/A	N/A	9	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	290	N/A	N/A	328	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	0.62 B	U	U	9.0	0.1 - 3.9
Silver	4.1	2.5	5.2	3.1	4.9	5.5	5.0	5.5	2.0	
Sodium	N/A	N/A	44.8 B	N/A	N/A	68.9	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	U	N/A	N/A	U	N/A	N/A	3.0	
Vanadium	N/A	N/A	19.4	N/A	N/A	17.0	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	161	N/A	N/A	356	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	υ	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring	B-12			Boring	g B-13			1	
SAMPLE IDENTIFICATION	B-122526	B-122628	B-13810	B-131012	B-131214	B-131416	B-131618	B-131820		
SAMPLE DEPTH	25' - 26'	26' - 28'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	88	96	87	85	89	90	90	89		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	6,400	N/A	N/A	N/A	N/A	6,050	17.0	33,000
Antimony	N/A	N/A	0.39 B	N/A	N/A	N/A	N/A	1.8	3.0	
Arsenic	1.1	1.4	3	3.2	4.5	5.6	5.4	4.3	3.0	3 - 12*
Barium	12.6	22.1	29.3	22.3	39.8	52.3	70.4	52.1	4.0	15 - 600
Beryllium	N/A	N/A	0.12 B	N/A	N/A	N/A	N/A	0.15 B	0.5	0 - 1.75
Cadmium	0.13 B	U	2.3	1.8	6.3	15.4	4.2	11.4	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	783	N/A	N/A	N/A	N/A	23,500	240.0	130 - 35,000*
Chromium	36.5	68.8	53.5	46.1	111	325	83.2	261	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	3	N/A	N/A	N/A	N/A	2.8	0.9	2.5 - 60*
Copper	N/A	N/A	18.5	N/A	N/A	N/A	N/A	48	4.0	1 - 50
Iron	N/A	N/A	8,250	N/A	N/A	N/A	N/A	9,550	26.0	2,000 - 550,000
Lead	0.81	1	13.7	16.1	36.5	78.8	708	43.5	4.0	200 - 500**
Magnesium	N/A	N/A	1,110	N/A	N/A	N/A	N/A	11,100	8.0	100 - 5,000
Manganese	N/A	N/A	93.1	N/A	N/A	N/A	N/A	141	0.8	50 - 5,000
Mercury	U	U	0.084	0.092	0.21	0.16	0.24	0.15	0.1	0.001 - 0.2
Nickel	N/A	N/A	6.5	N/A	N/A	N/A	N/A	8.7	0.8	0.5 - 25
Potassium	N/A	N/A	340	N/A	N/A	N/A	N/A	337	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	0.14 B	0.13 B	3.4	2.6	5.8	6.5	3.3	5.4	2.0	
Sodium	N/A	N/A	30 B	N/A	N/A	N/A	N/A	98.1	83.0	6,000 - 8,000
Thallium	N/A	N/A	U	N/A	N/A	N/A	N/A	U	3.0	
Vanadium	N/A	N/A	12.7	N/A	N/A	N/A	N/A	15.7	0.7	1 - 300
Zinc	N/A	N/A	52	N/A	N/A	N/A	N/A	202	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION		Boring B-13			Boring B-14		Boring	B-15		
SAMPLE IDENTIFICATION	B-132022	B-132224	B-132426	B-14810	B-141012	B-141214	B-1502	B-1522		
SAMPLE DEPTH	20' - 22'	22' - 24'	24' - 26'	8' - 10'	10' - 12'	12' - 14'	0 - 2"	2" - 2'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/11/2003	6/11/2003	6/11/2003	6/02/2003	6/02/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	90	95	98	96	96	97	83	90		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	1,970	N/A	N/A	1,030	N/A	7,220	17.0	33,000
Antimony	N/A	N/A	U	N/A	N/A	U	N/A	U	3.0	
Arsenic	1.8	0.94	0.79 B	0.68 B	0.74 B	0.89 B	27.9	17.5	3.0	3 - 12*
Barium	17.8	5.8 B	6.3 B	7.6 B	5.8 B	5.9 B	32	24.2	4.0	15 - 600
Beryllium	N/A	N/A	0.069 B	N/A	N/A	0.12 B	N/A	0.21 B	0.5	0 - 1.75
Cadmium	4.4	U	U	0.1 B	0.11 B	0.084 B	0.87	0.77	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	53.3	N/A	N/A	U	N/A	834	240.0	130 - 35,000*
Chromium	125	9.1	7.9	8.1	7.2	7.5	32.9	33.3	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	0.61 B	N/A	N/A	0.89 B	N/A	2.1 B	0.9	2.5 - 60*
Copper	N/A	N/A	2	N/A	N/A	4.9	N/A	19.1	4.0	1 - 50
Iron	N/A	N/A	2,030	N/A	N/A	5,050	N/A	7,810	26.0	2,000 - 550,000
Lead	18.3	1.2	0.96	1.5	0.93	1.1	45.9	27.6	4.0	200 - 500**
Magnesium	N/A	N/A	137	N/A	N/A	199	N/A	857	8.0	100 - 5,000
Manganese	N/A	N/A	12.9	N/A	N/A	39.3	N/A	139	0.8	50 - 5,000
Mercury	0.091	U	U	U	U	U	0.21	0.17	0.1	0.001 - 0.2
Nickel	N/A	N/A	1.5 B	N/A	N/A	1.7 B	N/A	4.8	0.8	0.5 - 25
Potassium	N/A	N/A	U	N/A	N/A	125	N/A	321	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	1.2 B	0.098 B	U	0.2 B	0.22 B	0.24 B	4.8	3.7	2.0	
Sodium	N/A	N/A	22.3 B	N/A	N/A	13.3 B	N/A	35.9 B	83.0	6,000 - 8,000
Thallium	N/A	N/A	U	N/A	N/A	0.21 B	N/A	0.48 B	3.0	
Vanadium	N/A	N/A	2.2 B	N/A	N/A	3.8	N/A	14.7	0.7	1 - 300
Zinc	N/A	N/A	3.8	N/A	N/A	7	N/A	40.8	7.0	9 - 50
Hexavalent Chromium	U	U	U	4.21	U	4.30	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION		Boring	g B-15			Borin	g B-16]	
SAMPLE IDENTIFICATION	B-1546	B-1568	B-15810	B-151012	B-1602	B-1622	B-1624	B-1646		
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/02/2003	6/02/2003	6/02/2003	6/02/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	97	94	96	97	93	100	89	94		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	N/A	1,410	N/A	N/A	6,440	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	U	N/A	N/A	U	N/A	3.0	
Arsenic	0.83 B	0.5 B	0.6 B	0.64 B	3.2	1.6	2.3	1.5	3.0	3 - 12*
Barium	6.9 B	3.8 B	5.1 B	4.3 B	18.9	13.1	16.8	11.3	4.0	15 - 600
Beryllium	N/A	N/A	N/A	0.12 B	N/A	N/A	0.38	N/A	0.5	0 - 1.75
Cadmium	0.095 B	0.037 B	U	0.039 B	0.81	1.7	0.32	0.049 B	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	92.5	N/A	N/A	726	N/A	240.0	130 - 35,000*
Chromium	3.1	2.5	5.1	3.3	45.2	131	23.3	22.6	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	0.74 B	N/A	N/A	2 B	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	2.5	N/A	N/A	4	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	4,690	N/A	N/A	8,370	N/A	26.0	2,000 - 550,000
Lead	1.6	0.83	1.8	1	32.9	7.4	9.7	3.1	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	292	N/A	N/A	759	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	40.9	N/A	N/A	141	N/A	0.8	50 - 5,000
Mercury	U	U	U	U	0.029 B	0.057	0.037	0.019 B	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	1.6 B	N/A	N/A	2.9	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	138	N/A	N/A	202	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	1.2 B	U	9.0	0.1 - 3.9
Silver	0.12 B	0.088 B	U	0.17 B	0.33 B	0.81 B	0.36 B	0.21 B	2.0	
Sodium	N/A	N/A	N/A	17.9 B	N/A	N/A	13.5 B	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	U	N/A	N/A	U	N/A	3.0	
Vanadium	N/A	N/A	N/A	3.2	N/A	N/A	10.4	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	5.6	N/A	N/A	21.9	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION			Boring B-16				Boring B-17			
SAMPLE IDENTIFICATION	B-1668	B-16810	B-161012	B-161214	B-161416	B-1702	B-1722	B-1724		
SAMPLE DEPTH	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	0 - 2"	2" - 2'	2' - 4'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	87	98	98	97	96	91	94	91		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A	1,330	N/A	N/A	6,320	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	U	N/A	N/A	2.7	3.0	
Arsenic	2.6	1.5	0.68 B	0.74 B	1.8	4.6	2.8	5.3	3.0	3 - 12*
Barium	32.4	5.6 B	2.8 B	3.2 B	6.7 B	23.8	16.6	36.7	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	0.22 B	N/A	N/A	0.16 B	0.5	0 - 1.75
Cadmium	U	U	U	U	0.11 B	U	0.2 B	8.5	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	112	N/A	N/A	2,970	240.0	130 - 35,000*
Chromium	9.6	2.8	2	2.2	7.4	14.3	31	157	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	0.82 B	N/A	N/A	2.3 B	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	3.7	N/A	N/A	53	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	9,110	N/A	N/A	14,900	26.0	2,000 - 550,000
Lead	4.6	0.96	0.75	0.56	1.5	8.1	8.9	35.6	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	271	N/A	N/A	1,600	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	51.2	N/A	N/A	131	0.8	50 - 5,000
Mercury	U	U	U	U	U	0.02 B	0.036	0.16	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	1.3 B	N/A	N/A	8.6	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	177	N/A	N/A	358	78.0	8,500 - 43,000*
Selenium	U	U	U	U	1.1 B	U	U	U	9.0	0.1 - 3.9
Silver	U	0.1 B	U	U	0.28 B	0.77 B	1.2 B	7.4	2.0	
Sodium	N/A	N/A	N/A	N/A	13.1 B	N/A	N/A	142	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	0.2 B	N/A	N/A	U	3.0	
Vanadium	N/A	N/A	N/A	N/A	5.6	N/A	N/A	15.5	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	7	N/A	N/A	142	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring	g B-17]	
SAMPLE IDENTIFICATION	B-1746	B-1768	B-17810	B-171012	B-171214	B-171416	B-171618	B-171820		
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	91	90	90	90	88	91	91	90		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	N/A	N/A	N/A	N/A	6,310	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	9.4	N/A	N/A	3.0	
Arsenic	4.4	6.9	3.2	5.3	4.6	5	4.7	4.9	3.0	3 - 12*
Barium	43.9	41.9	42.4	50	47.7	42.1	43.8	55.5	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	0.17 B	N/A	N/A	0.5	0 - 1.75
Cadmium	8.6	61.5	18.3	7.1	10.8	5.1	5.7	9.9	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	1,990	N/A	N/A	240.0	130 - 35,000*
Chromium	150	815	241	169	191	97.9	101	474	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	2.9	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	74.7	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	8,360	N/A	N/A	26.0	2,000 - 550,000
Lead	47.9	35.7	38.9	65.4	38.9	257	44.7	44.8	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	814	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	103	N/A	N/A	0.8	50 - 5,000
Mercury	0.24	0.25	0.13	0.16	0.17	0.19	0.33	0.15	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	8.2	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	307	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	9.4	2.7	5.1	4.7	6.7	7.3	12.4	7.2	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	73.5	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	U	N/A	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	14.8	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	130	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring B-17				Boring B-18]	
SAMPLE IDENTIFICATION	B-172022	B-172224	B-172426	B-172830	B-173032	B-173234	B-173436	B-1802		
SAMPLE DEPTH	20' - 22'	22' - 24'	24' - 26'	28' - 30'	30' - 32'	32' - 34'	34' - 36'	0 - 2"	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	5/29/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	89	91	89	96	98	92	96	78		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	7,520	N/A	N/A	N/A	N/A	1,360	N/A	17.0	33,000
Antimony	N/A	1.9	N/A	N/A	N/A	N/A	U	N/A	3.0	
Arsenic	5	6.1	5.6	1	0.93 B	5.9	1.8	5.4	3.0	3 - 12*
Barium	65.3	82.6	65.9	6.2 B	7.7 B	10.8	6.7 B	44.3	4.0	15 - 600
Beryllium	N/A	0.096 B	N/A	N/A	N/A	N/A	0.39	N/A	0.5	0 - 1.75
Cadmium	6	5.1	6.6	2.1	0.08 B	6.3	U	1	0.7	0.1 - 1, (10***)
Calcium	N/A	3,580	N/A	N/A	N/A	N/A	U	N/A	240.0	130 - 35,000*
Chromium	147	138	142	9.6	12.8	154	18.5	53.9	0.6	1.5 - 40*, (50***)
Cobalt	N/A	3.1	N/A	N/A	N/A	N/A	0.29 B	N/A	0.9	2.5 - 60*
Copper	N/A	52.1	N/A	N/A	N/A	N/A	2.1	N/A	4.0	1 - 50
Iron	N/A	12,300	N/A	N/A	N/A	N/A	9,220	N/A	26.0	2,000 - 550,000
Lead	58.9	49.7	127	1.2	1.5	6.6	1.4	71.3	4.0	200 - 500**
Magnesium	N/A	1,100	N/A	N/A	N/A	N/A	121	N/A	8.0	100 - 5,000
Manganese	N/A	131	N/A	N/A	N/A	N/A	23	N/A	0.8	50 - 5,000
Mercury	0.20	0.17	0.36	U	U	0.018 B	U	0.16	0.1	0.001 - 0.2
Nickel	N/A	12.1	N/A	N/A	N/A	N/A	2.2 B	N/A	0.8	0.5 - 25
Potassium	N/A	390	N/A	N/A	N/A	N/A	115	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	7.6	5.5	5.8	0.17 B	0.16 B	0.88 B	0.53 B	2.4	2.0	
Sodium	N/A	79.4	N/A	N/A	N/A	N/A	U	N/A	83.0	6,000 - 8,000
Thallium	N/A	U	N/A	N/A	N/A	N/A	U	N/A	3.0	
Vanadium	N/A	20	N/A	N/A	N/A	N/A	8.1	N/A	0.7	1 - 300
Zinc	N/A	243	N/A	N/A	N/A	N/A	10.6	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring B-18				Boring B-19]	
SAMPLE IDENTIFICATION	B-1822	B-1824	B-1846	B-1868	B-18810	B-181012	B-181214	B-19810		
SAMPLE DEPTH	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	12' - 14'	8' - 10'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	5/29/2003	6/03/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	91	89	91	87	96	95	95	91		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A	N/A	N/A	1,240	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	N/A	U	N/A	3.0	
Arsenic	1.5	3.1	2	6.2	0.79 B	0.86 B	1.1	3.3	3.0	3 - 12*
Barium	9.1 B	20.7	18.5	29.1	3.8 B	7.8 B	4.7 B	35.5	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	N/A	0.21 B	N/A	0.5	0 - 1.75
Cadmium	0.66	4.2	2.3	5.8	0.25	0.67	0.25 B	7.1	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	N/A	68.8	N/A	240.0	130 - 35,000*
Chromium	54.2	123	263	85.5	2.6	35.5	3.4	620	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	N/A	1.9 B	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	N/A	2.9	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	N/A	4,130	N/A	26.0	2,000 - 550,000
Lead	10.2	24.6	18.5	38.9	0.61	4.9	1.1	33.2	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	N/A	265	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	N/A	69.8	N/A	0.8	50 - 5,000
Mercury	0.026 B	0.10	0.056	0.081	U	U	U	0.25	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	N/A	1.1 B	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	N/A	143	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	6.1	21	6.5	13	U	1.4 B	0.17 B	6.1	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	N/A	9.5 B	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	N/A	U	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	N/A	4.2	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	N/A	9.3	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	6.28	6.43	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- Proposed revised criteria in TAGM 4046 Appendix A.
 Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring	B-19				1	
SAMPLE IDENTIFICATION	B-191012	B-191214	B-191618	B-191820	B-192224	B-192426	B-192627	B-192728		
SAMPLE DEPTH	10' - 12'	12' - 14'	16' - 18'	18' - 20'	22' - 24'	24' - 26'	26' - 27'	27' - 28'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	91	92	85	91	91	91	90	96		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	6,710	N/A	N/A	6,650	N/A	5,330	N/A	N/A	17.0	33,000
Antimony	5.3	N/A	N/A	4	N/A	2.1	N/A	N/A	3.0	
Arsenic	4.4	3.8	5.3	5.5	4.4	4.1	4.4	2	3.0	3 - 12*
Barium	53.6	38.4	48.5	61.5	25.4	38.5	40.5	11.5	4.0	15 - 600
Beryllium	0.086 B	N/A	N/A	0.11 B	N/A	0.088 B	N/A	N/A	0.5	0 - 1.75
Cadmium	22.7	8.4	5	10.3	3.3	3.9	4.1	1.4	0.7	0.1 - 1, (10***)
Calcium	2,990	N/A	N/A	4,750	N/A	7,300	N/A	N/A	240.0	130 - 35,000*
Chromium	375	153	137	287	143	148	313	42.9	0.6	1.5 - 40*, (50***)
Cobalt	2.6 B	N/A	N/A	3.1	N/A	5.4	N/A	N/A	0.9	2.5 - 60*
Copper	56.1	N/A	N/A	66.1	N/A	35.6	N/A	N/A	4.0	1 - 50
Iron	9,890	N/A	N/A	10,600	N/A	9,280	N/A	N/A	26.0	2,000 - 550,000
Lead	42.4	38.8	62.4	53.1	24.2	35.4	59.3	4.7	4.0	200 - 500**
Magnesium	926	N/A	N/A	1,210	N/A	2,390	N/A	N/A	8.0	100 - 5,000
Manganese	113	N/A	N/A	130	N/A	107	N/A	N/A	0.8	50 - 5,000
Mercury	0.16	0.14	0.29	0.21	0.12	0.11	0.15	U	0.1	0.001 - 0.2
Nickel	9.2	N/A	N/A	13.1	N/A	8.8	N/A	N/A	0.8	0.5 - 25
Potassium	337	N/A	N/A	342	N/A	376	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	6.2	27.1	5.3	7	3.3	5.7	4.2	0.39 B	2.0	
Sodium	63.7	N/A	N/A	86.6	N/A	81.9	N/A	N/A	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	U	N/A	U	N/A	N/A	3.0	
Vanadium	15.5	N/A	N/A	37.7	N/A	13.2	N/A	N/A	0.7	1 - 300
Zinc	232	N/A	N/A	294	N/A	143	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	12.90	U	19.90	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring B-19				Boring B-20]	
SAMPLE IDENTIFICATION	B-192830	B-20810	B-201012	B-201214	B-201416	B-201618	B-201820	B-2022524		
SAMPLE DEPTH	28' - 30'	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	22.5' - 24'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	6/03/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	98	92	93	89	92	91	91	98		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	5,410	N/A	N/A	4,460	N/A	N/A	N/A	17.0	33,000
Antimony	N/A	1.4	N/A	N/A	1.4	N/A	N/A	N/A	3.0	
Arsenic	1.2	3.5	5.4	6.5	3.5	4.9	3.7	1.1	3.0	3 - 12*
Barium	5.1 B	32.1	39.3	53.6	32.9	49.6	38.2	11.2	4.0	15 - 600
Beryllium	N/A	0.082 B	N/A	N/A	0.069 B	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	0.031 B	7.8	6.6	5.4	4.5	8.1	4.9	0.035 B	0.7	0.1 - 1, (10***)
Calcium	N/A	3,420	N/A	N/A	3,420	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	9.4	99.1	112	97.2	70.3	144	74.2	3.6	0.6	1.5 - 40*, (50***)
Cobalt	N/A	2.6 B	N/A	N/A	2.1 B	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	49.1	N/A	N/A	34.4	N/A	N/A	N/A	4.0	1 - 50
Iron	N/A	8,180	N/A	N/A	7,000	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	0.82	29.5	33.8	43.8	28.9	48.5	35.9	1.1	4.0	200 - 500**
Magnesium	N/A	877	N/A	N/A	879	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	109	N/A	N/A	98	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	U	0.22	0.15	0.3	0.26	0.24	0.21	U	0.1	0.001 - 0.2
Nickel	N/A	8.7	N/A	N/A	7.5	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	294	N/A	N/A	215	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	0.13 B	9.7	6.7	5.3	5.1	8.9	8.7	0.12 B	2.0	
Sodium	N/A	45.5 B	N/A	N/A	42.3 B	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	U	N/A	N/A	U	N/A	N/A	N/A	3.0	
Vanadium	N/A	14.6	N/A	N/A	11.4	N/A	N/A	N/A	0.7	1 - 300
Zinc	N/A	124	N/A	N/A	94.3	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring B-20				Boring B-21]	
SAMPLE IDENTIFICATION	B-202426	B-2102	B-2122	B-2124	B-2146	B-2168	B-21810	B-211012		
SAMPLE DEPTH	24' - 26'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/03/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	6/02/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	97	87	90	93	90	97	97	97		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	1,120	N/A	N/A	4,190	N/A	N/A	N/A	N/A	17.0	33,000
Antimony	U	N/A	N/A	U	N/A	N/A	N/A	N/A	3.0	
Arsenic	0.69 B	4.1	4.5	1.3	3.4	1.1	0.56 B	1	3.0	3 - 12*
Barium	8.6 B	26.2	25.1	12.6	21.2	7.7 B	5.7 B	8.2 B	4.0	15 - 600
Beryllium	0.055 B	N/A	N/A	0.14 B	N/A	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	0.079 B	1.1	1.2	1.6	1.2	0.37	0.17 B	0.16 B	0.7	0.1 - 1, (10***)
Calcium	30.4 B	N/A	N/A	344	N/A	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	4.8	48.1	59.6	107	78.4	5	3.4	10.2	0.6	1.5 - 40*, (50***)
Cobalt	0.61 B	N/A	N/A	1.4 B	N/A	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	3	N/A	N/A	10.8	N/A	N/A	N/A	N/A	4.0	1 - 50
Iron	2,230	N/A	N/A	5,530	N/A	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	1	43.1	25.7	7.4	23.4	1.4	1.3	1.2	4.0	200 - 500**
Magnesium	144	N/A	N/A	456	N/A	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	63.8	N/A	N/A	92.2	N/A	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	U	0.11	0.074	0.067	0.063	U	U	U	0.1	0.001 - 0.2
Nickel	2.3	N/A	N/A	2.7	N/A	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	115	N/A	N/A	191	N/A	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	0.46 B	U	U	U	U	9.0	0.1 - 3.9
Silver	0.16 B	2.3	3	6.1	5.6	0.18 B	0.12 B	0.15 B	2.0	
Sodium	13 B	N/A	N/A	12.6 B	N/A	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	0.26 B	N/A	N/A	N/A	N/A	3.0	
Vanadium	2.5	N/A	N/A	7	N/A	N/A	N/A	N/A	0.7	1 - 300
Zinc	4.7	N/A	N/A	34.2	N/A	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION				Boring	g B-22]	
SAMPLE IDENTIFICATION	B-22810	B-221012	B-221214	B-221416	B-221618	B-221820	B-222022	B-222224		
SAMPLE DEPTH	8' - 10'	10' - 12'	12' - 14'	14' - 16'	16' - 18'	18' - 20'	20' - 22'	22' - 24'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	6/09/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	91	92	91	95	92	90	88	87		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	5,400	N/A	N/A	N/A	7,820	N/A	N/A	17.0	33,000
Antimony	N/A	4.4	N/A	N/A	N/A	6.4	N/A	N/A	3.0	
Arsenic	7.9	4.8	5.6	5.1	6	6.3	6.6	6.7	3.0	3 - 12*
Barium	43	37	57.9	48.1	48.1	39.5	43.3	56.9	4.0	15 - 600
Beryllium	N/A	0.29	N/A	N/A	N/A	0.31	N/A	N/A	0.5	0 - 1.75
Cadmium	5.5	5	6.3	4.2	11	6.2	9.2	14.9	0.7	0.1 - 1, (10***)
Calcium	N/A	20,200	N/A	N/A	N/A	3,490	N/A	N/A	240.0	130 - 35,000*
Chromium	111	99.1	116	95.7	183	150	247	312	0.6	1.5 - 40*, (50***)
Cobalt	N/A	2.7	N/A	N/A	N/A	2.8	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	64.9	N/A	N/A	N/A	34	N/A	N/A	4.0	1 - 50
Iron	N/A	8,100	N/A	N/A	N/A	9,370	N/A	N/A	26.0	2,000 - 550,000
Lead	40.9	39.8	82.1	52.3	45.8	36.2	42.2	46.4	4.0	200 - 500**
Magnesium	N/A	5,310	N/A	N/A	N/A	888	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	96.7	N/A	N/A	N/A	129	N/A	N/A	0.8	50 - 5,000
Mercury	0.32	0.33	0.27	0.13	0.58	0.13	0.17	0.21	0.1	0.001 - 0.2
Nickel	N/A	8.4	N/A	N/A	N/A	7.4	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	341	N/A	N/A	N/A	332	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	0.47 B	1.1 B	0.5 B	0.5 B	U	U	9.0	0.1 - 3.9
Silver	9.1	16.2	10.6	7.8	6.4	4.3	4.0	4.5	2.0	
Sodium	N/A	54.6	N/A	N/A	N/A	45.9 B	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	U	N/A	N/A	N/A	U	N/A	N/A	3.0	
Vanadium	N/A	15.7	N/A	N/A	N/A	13.9	N/A	N/A	0.7	1 - 300
Zinc	N/A	97.1	N/A	N/A	N/A	143	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

U: Analyte analyzed for but not detected.

B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

--- : Not established.

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria in TAGM 4046 Appendix A.

: Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring	B-22			Boring	g B-23				
SAMPLE IDENTIFICATION	B-222526	B-222830	B-2302	B-2322	B-2324	B-2346	B-2368	B-23810		
SAMPLE DEPTH	25' - 26'	28' - 30'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/09/2003	6/09/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	96	96	54	84	82	74	83	93		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	N/A	885	N/A	N/A	5,860	N/A	N/A	N/A	17.0	33,000
Antimony	N/A	U	N/A	N/A	0.69 B	N/A	N/A	N/A	3.0	
Arsenic	0.87 B	1	1.8 B	1.1	9	2.1	1.7	0.92 B	3.0	3 - 12*
Barium	4.2 B	5.8 B	17 B	11	35.9	15.2	18.2	7.5 B	4.0	15 - 600
Beryllium	N/A	0.052 B	N/A	N/A	0.4	N/A	N/A	N/A	0.5	0 - 1.75
Cadmium	0.42	U	U	U	U	2.5	U	U	0.7	0.1 - 1, (10***)
Calcium	N/A	26.2 B	N/A	N/A	1,260	N/A	N/A	N/A	240.0	130 - 35,000*
Chromium	8.1	4.2	18.6	12.9	9.7	58.2	18.6	11.4	0.6	1.5 - 40*, (50***)
Cobalt	N/A	0.56 B	N/A	N/A	4.1	N/A	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	2.1	N/A	N/A	18.5	N/A	N/A	N/A	4.0	1 - 50
Iron	N/A	2,710	N/A	N/A	8,360	N/A	N/A	N/A	26.0	2,000 - 550,000
Lead	1.6	0.74	11	3.6	23.7	10.4	3.9	2.5	4.0	200 - 500**
Magnesium	N/A	107	N/A	N/A	704	N/A	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	46.4	N/A	N/A	102	N/A	N/A	N/A	0.8	50 - 5,000
Mercury	0.11	U	0.047 B	U	0.061	0.02 B	U	U	0.1	0.001 - 0.2
Nickel	N/A	1.1 B	N/A	N/A	7.8	N/A	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	97.2	N/A	N/A	259	N/A	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	1.1 B	0.63 B	U	U	U	3.0	U	U	2.0	
Sodium	N/A	8 B	N/A	N/A	68.5	N/A	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	U	N/A	N/A	U	N/A	N/A	N/A	3.0	
Vanadium	N/A	3.3	N/A	N/A	17.3	N/A	N/A	N/A	0.7	1 - 300
Zinc	N/A	3.6	N/A	N/A	32	N/A	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.
- N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

SAMPLE LOCATION	Boring B-23				Boring B-24]	
SAMPLE IDENTIFICATION	B-231012	B-2402	B-2422	B-2424	B-2446	B-2468	B-24810	B-241012		
SAMPLE DEPTH	10' - 12'	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	94	80	92	90	92	95	97	96		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A	N/A	863	N/A	N/A	17.0	33,000
Antimony	N/A	N/A	N/A	N/A	N/A	0.27 B	N/A	N/A	3.0	
Arsenic	0.65 B	12.1	1	7.6	4.3	0.51 B	0.53 B	0.58 B	3.0	3 - 12*
Barium	6 B	30.2	5.1 B	81.5	47	4.1 B	4 B	5.4 B	4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A	N/A	0.094 B	N/A	N/A	0.5	0 - 1.75
Cadmium	U	U	U	3.3	0.95	U	U	U	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	N/A	N/A	N/A	50.9	N/A	N/A	240.0	130 - 35,000*
Chromium	7.8	14	14.4	33.8	24.9	1.6	3.3	2.8	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	N/A	N/A	N/A	0.52 B	N/A	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A	N/A	2.1	N/A	N/A	4.0	1 - 50
Iron	N/A	N/A	N/A	N/A	N/A	3,460	N/A	N/A	26.0	2,000 - 550,000
Lead	1.5	24.6	1.8	24.6	13.1	0.89	0.88	1	4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A	N/A	129	N/A	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A	N/A	24.4	N/A	N/A	0.8	50 - 5,000
Mercury	U	0.24	U	0.14	0.033	U	U	U	0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A	N/A	0.9 B	N/A	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A	N/A	111	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	U	U	U	U	U	U	U	U	2.0	
Sodium	N/A	N/A	N/A	N/A	N/A	8.8 B	N/A	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A	N/A	U	N/A	N/A	3.0	
Vanadium	N/A	N/A	N/A	N/A	N/A	3.7	N/A	N/A	0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A	N/A	4.0	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- Proposed revised criteria in TAGM 4046 Appendix A.
 Value exceeds the Eastern USA Background Level or

TABLE B-4 (continued) NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS TAL/RCRA METALS AND HEXAVALENT CHROMIUM

SAMPLE LOCATION				Boring B-25				BCPMW-1	7	
SAMPLE IDENTIFICATION	B-2502	B-2522	B-2524	B-2546	B-2568	B-25810	B-251012	MW-102		
SAMPLE DEPTH	0 - 2"	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	6/10/2003	5/30/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	88	95	91	95	97	97	90	100		
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(mg/kg)
Aluminum	N/A	N/A	849	N/A	N/A	N/A	962	N/A	17.0	33,000
Antimony	N/A	N/A	U	N/A	N/A	N/A	U	N/A	3.0	
Arsenic	2.4	1.4	5.8	0.96	0.86 B	0.44 B	1.1	7.4	3.0	3 - 12*
Barium	16.1	7.2 B	3.7 B	5.5 B	3.3 B	3.9 B	4.2 B	19.2	4.0	15 - 600
Beryllium	N/A	N/A	0.13 B	N/A	N/A	N/A	0.13 B	N/A	0.5	0 - 1.75
Cadmium	0.54	0.21 B	0.12 B	0.077 B	0.052 B	0.12 B	0.052 B	0.62	0.7	0.1 - 1, (10***)
Calcium	N/A	N/A	43	N/A	N/A	N/A	55.3	N/A	240.0	130 - 35,000*
Chromium	16.1	11.1	2.1	3.5	3.8	3.4	3.7	27.1	0.6	1.5 - 40*, (50***)
Cobalt	N/A	N/A	1.4 B	N/A	N/A	N/A	1 B	N/A	0.9	2.5 - 60*
Copper	N/A	N/A	1.8	N/A	N/A	N/A	1.9	N/A	4.0	1 - 50
Iron	N/A	N/A	3,130	N/A	N/A	N/A	3,340	N/A	26.0	2,000 - 550,000
Lead	11.2	1.8	0.98	0.61	0.71	0.51	0.77	24.6	4.0	200 - 500**
Magnesium	N/A	N/A	148	N/A	N/A	N/A	148	N/A	8.0	100 - 5,000
Manganese	N/A	N/A	42.1	N/A	N/A	N/A	49.6	N/A	0.8	50 - 5,000
Mercury	0.054	0.023 B	U	U	U	U	U	0.11	0.1	0.001 - 0.2
Nickel	N/A	N/A	1.7 B	N/A	N/A	N/A	1.2 B	N/A	0.8	0.5 - 25
Potassium	N/A	N/A	94.2	N/A	N/A	N/A	125	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	0.2 B	0.21 B	0.13 B	0.47 B	0.41 B	0.21 B	0.27 B	3.8	2.0	
Sodium	N/A	N/A	4.9 B	N/A	N/A	N/A	7.7 B	N/A	83.0	6,000 - 8,000
Thallium	N/A	N/A	U	N/A	N/A	N/A	U	N/A	3.0	
Vanadium	N/A	N/A	2.1 B	N/A	N/A	N/A	2.3 B	N/A	0.7	1 - 300
Zinc	N/A	N/A	3.1	N/A	N/A	N/A	4.3	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

TABLE B-4 (continued) NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS TAL/RCRA METALS AND HEXAVALENT CHROMIUM

SAMPLE LOCATION			BCPN	/IW-1			BCPI	MW-2]	
SAMPLE IDENTIFICATION	MW-122	MW-124	MW-146	MW-168	MW-1810	MW-11012	MW-202	MW-222		
SAMPLE DEPTH	2" - 2'	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	5/30/2003	5/30/2003	5/30/2003	5/30/2003	5/30/2003	5/30/2003	6/05/2003	6/05/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	100	100	100	92	97	89	81	93		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	7,710	N/A	N/A	N/A	N/A	913	N/A	N/A	17.0	33,000
Antimony	U	N/A	N/A	N/A	N/A	U	N/A	N/A	3.0	
Arsenic	1.9	1.5	0.81 B	1.9	0.45 B	0.45 B	11.6	2.6	3.0	3 - 12*
Barium	47.2	7.9 B	8.6 B	16.5	5.9 B	5.8 B	36.3	23.6	4.0	15 - 600
Beryllium	0.11 B	N/A	N/A	N/A	N/A	0.054 B	N/A	N/A	0.5	0 - 1.75
Cadmium	0.22 B	0.085 B	0.14 B	0.055 B	0.12 B	0.06 B	1.4	2.3	0.7	0.1 - 1, (10***)
Calcium	U	N/A	N/A	N/A	N/A	U	N/A	N/A	240.0	130 - 35,000*
Chromium	7.9	5.5	2.3	5	2.4	2	56.7	124	0.6	1.5 - 40*, (50***)
Cobalt	4.7	N/A	N/A	N/A	N/A	0.92 B	N/A	N/A	0.9	2.5 - 60*
Copper	3.7	N/A	N/A	N/A	N/A	2.1	N/A	N/A	4.0	1 - 50
Iron	10,500	N/A	N/A	N/A	N/A	4,930	N/A	N/A	26.0	2,000 - 550,000
Lead	3.8	2.0	0.6	2.4	0.41 B	0.5 B	46.9	17.8	4.0	200 - 500**
Magnesium	558	N/A	N/A	N/A	N/A	121	N/A	N/A	8.0	100 - 5,000
Manganese	444	N/A	N/A	N/A	N/A	59	N/A	N/A	0.8	50 - 5,000
Mercury	0.015 B	U	U	U	U	U	0.16	0.074	0.1	0.001 - 0.2
Nickel	5.2	N/A	N/A	N/A	N/A	1.1 B	N/A	N/A	0.8	0.5 - 25
Potassium	198	N/A	N/A	N/A	N/A	89.1	N/A	N/A	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	U	9.0	0.1 - 3.9
Silver	0.38 B	0.29 B	0.38 B	0.26 B	0.4 B	0.23 B	8.9	4.2	2.0	
Sodium	11.7 B	N/A	N/A	N/A	N/A	5 B	N/A	N/A	83.0	6,000 - 8,000
Thallium	0.67 B	N/A	N/A	N/A	N/A	0.23 B	N/A	N/A	3.0	
Vanadium	12.4	N/A	N/A	N/A	N/A	2.1 B	N/A	N/A	0.7	1 - 300
Zinc	21.1	N/A	N/A	N/A	N/A	4	N/A	N/A	7.0	9 - 50
Hexavalent Chromium	U	U	U	U	U	U	U	11.90	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

TABLE B-4 (continued) NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS TAL/RCRA METALS AND HEXAVALENT CHROMIUM

SAMPLE LOCATION			BCPMW-2				BCPMW-3]	
SAMPLE IDENTIFICATION	MW-224	MW-246	MW-268	MW-2810	MW-21012	MW-302	MW-322	MW-324		
SAMPLE DEPTH	2' - 4'	4' - 6'	6' - 8'	8' - 10'	10' - 12'	0 - 2"	2" - 2'	2' - 4'	INSTRUMENT	EASTERN USA
DATE OF COLLECTION	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	6/05/2003	DETECTION	BACKGROUND
DILUTION FACTOR	1	1	1	1	1	1	1	1	LIMIT	LEVELS
PERCENT SOLIDS	91	90	93	97	93	78	92	91		
UNITS	(mg/kg)	(ug/L)	(mg/kg)							
Aluminum	3,740	N/A	N/A	N/A	1,890	N/A	N/A	7,420	17.0	33,000
Antimony	2	N/A	N/A	N/A	U	N/A	N/A	91.6	3.0	
Arsenic	2.3	7.3	0.7 B	0.68 B	2.2	6.3	2.5	U	3.0	3 - 12*
Barium	26.6	23.2	14.7	6.6 B	8.4 B	28.7	18.8	735	4.0	15 - 600
Beryllium	0.07 B	N/A	N/A	N/A	0.097 B	N/A	N/A	U	0.5	0 - 1.75
Cadmium	3.5	1	0.29	0.31	0.6	1.2	1.1	26.6	0.7	0.1 - 1, (10***)
Calcium	345	N/A	N/A	N/A	32.3 B	N/A	N/A	1,040	240.0	130 - 35,000*
Chromium	210	56.5	4.5	11.9	26.6	74.7	46.1	4,730	0.6	1.5 - 40*, (50***)
Cobalt	2.2 B	N/A	N/A	N/A	1 B	N/A	N/A	5.5	0.9	2.5 - 60*
Copper	20.9	N/A	N/A	N/A	6	N/A	N/A	286	4.0	1 - 50
Iron	5,010	N/A	N/A	N/A	4,120	N/A	N/A	12,700	26.0	2,000 - 550,000
Lead	22.9	25.1	1.3	1.8	2.3	48.2	13.1	955	4.0	200 - 500**
Magnesium	472	N/A	N/A	N/A	263	N/A	N/A	1,030	8.0	100 - 5,000
Manganese	102	N/A	N/A	N/A	54.4	N/A	N/A	122	0.8	50 - 5,000
Mercury	0.079	0.16	U	U	U	0.12	0.038	1.2	0.1	0.001 - 0.2
Nickel	3.5	N/A	N/A	N/A	2.2 B	N/A	N/A	33.3	0.8	0.5 - 25
Potassium	200	N/A	N/A	N/A	159	N/A	N/A	420	78.0	8,500 - 43,000*
Selenium	U	U	U	U	U	U	U	0.99 B	9.0	0.1 - 3.9
Silver	6.9	6.5	Ü	0.18 B	0.28 B	3.6	2.5	2.8	2.0	
Sodium	17.2 B	N/A	N/A	N/A	12.4 B	N/A	N/A	36.5 B	83.0	6,000 - 8,000
Thallium	U	N/A	N/A	N/A	U	N/A	N/A	U	3.0	
Vanadium	8	N/A	N/A	N/A	4	N/A	N/A	76.1	0.7	1 - 300
Zinc	113	N/A	N/A	N/A	15.8	N/A	N/A	2,640	7.0	9 - 50
Hexavalent Chromium	4.94	U	U	U	U	U	5.01	U	3.0	1.5 - 40*, (50***)

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.
- N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

TABLE B-4 (continued) NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM SOIL SAMPLING RESULTS

TAL/RCRA METALS AND HEXAVALENT CHROMIUM

SAMPLE LOCATION		BCPI	MW-3					
SAMPLE IDENTIFICATION	MW-346	MW-368	MW-3810	MW-31012				
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	10' - 12'			INSTRUMENT	EASTERN U
DATE OF COLLECTION	6/05/2003	6/05/2003	6/05/2003	6/05/2003			DETECTION	BACKGROU
DILUTION FACTOR	1	1	1	1			LIMIT	LEVELS
PERCENT SOLIDS	92	85	89	95				
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			(ug/L)	(mg/kg)
Aluminum	N/A	N/A	N/A	N/A			17.0	33,000
Antimony	N/A	N/A	N/A	N/A			3.0	
Arsenic	2.7	3.2	1	0.43 B			3.0	3 - 12*
Barium	29.9	48.1	5.9 B	2.8 B			4.0	15 - 600
Beryllium	N/A	N/A	N/A	N/A			0.5	0 - 1.75
Cadmium	1.6	0.2 B	0.056 B	U			0.7	0.1 - 1, (10**
Calcium	N/A	N/A	N/A	N/A			240.0	130 - 35,000
Chromium	119	21.2	3.6	2.2			0.6	1.5 - 40*, (50*
Cobalt	N/A	N/A	N/A	N/A			0.9	2.5 - 60*
Copper	N/A	N/A	N/A	N/A			4.0	1 - 50
Iron	N/A	N/A	N/A	N/A			26.0	2,000 - 550,00
Lead	18.8	8.3	0.78	0.72			4.0	200 - 500**
Magnesium	N/A	N/A	N/A	N/A			8.0	100 - 5,000
Manganese	N/A	N/A	N/A	N/A			0.8	50 - 5,000
Mercury	0.095	0.038	U	U			0.1	0.001 - 0.2
Nickel	N/A	N/A	N/A	N/A			0.8	0.5 - 25
Potassium	N/A	N/A	N/A	N/A			78.0	8,500 - 43,00
Selenium	U	U	U	U			9.0	0.1 - 3.9
Silver	2.2	0.45 B	0.23 B	U			2.0	
Sodium	N/A	N/A	N/A	N/A			83.0	6,000 - 8,000
Thallium	N/A	N/A	N/A	N/A			3.0	
Vanadium	N/A	N/A	N/A	N/A			0.7	1 - 300
Zinc	N/A	N/A	N/A	N/A			7.0	9 - 50
Hexavalent Chromium	U	34.70	U	U			3.0	1.5 - 40*, (50*

Qualifiers:

- U: Analyte analyzed for but not detected.
- B: Analyte concentration is less than the CRDL, but greater than the IDL.

N/A: Analyte not analyzed for.

Notes:

- --- : Not established.
- * : New York State Background.
- ** : Background for metropolitan or suburban areas.
- *** : Proposed revised criteria in TAGM 4046 Appendix A.
- : Value exceeds the Eastern USA Background Level or

TABLE B-5

GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

TABLE B-5 NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	BCPMW-1	BCPMW-2	BCPMW-3	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/2003	6/19/2003	6/19/2003	9/12/03	9/12/03	9/12/03	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	2	40	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Dichlorodifluoromethane	U	U	U	U	U	U	5	5 ST
Chloromethane	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	U	U	U	6	5	2 ST
Bromomethane	U	U	U	U	U	U	5	5 ST
Chloroethane	U	U	U	U	U	U	5	5 ST
Trichlorofluoromethane	U	U	U	U	U	U	5	5 ST
1,1-Dichloroethene	U	U	U	U	U	11	5	5 ST
Acetone	U	U	U	U	U	U	5	50 GV
Carbon Disulfide	U	U	U	U	U	U	5	
Methylene Chloride	U	U	U	4 J	U	U	5	5 ST
trans-1,2-Dichloroethene	U	U	U	U	U	2 J	5	5 ST
Methyl tert-Butyl Ether	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	18	U	U	18	10	5	5 ST
2-Butanone	U	U	U	U	U	U	5	50 GV
cis-1,2-Dichloroethene	4 J	120	5,300	6	150	2,900 D	5	5 ST
Chloroform	4 J	U	U	3 J	2 J	6	5	7 ST
1,1,1-Trichloroethane	U	U	U	U	1 J	6	5	5 ST
Carbon Tetrachloride	U	U	U	U	U	U	5	5 ST
1,2-Dichloroethane	U	U	U	U	U	U	5	0.6 ST
Benzene	U	U	U	U	U	U	5	1 ST
Trichloroethene	83	230	620	76	280 D	760 D	5	5 ST
1,2-Dichloropropane	U	U	U	U	U	U	5	1 ST
Bromodichloromethane	U	U	U	U	U	U	5	50 GV
cis-1,3-Dichloropropene	U	U	U	U	U	U	5	0.4 ST
4-Methyl-2-pentanone	U	U	U	U	U	U	5	
Toluene	U	U	U	U	U	U	5	5 ST
trans-1,3-Dichloropropene	U	U	U	U	U	U	5	0.4 ST
1,1,2-Trichloroethane	U	U	U	U	U	U	5	1 ST
Tetrachloroethene	U	U	U	U	2 J	U	5	5 ST
2-Hexanone	U	U	U	U	U	U	5	50 GV
Dibromochloromethane	U	U	U	U	U	U	5	50 GV
1,2-Dibromoethane	U	U	U	U	U	U	5	
Chlorobenzene	U	U	U	U	U	U	5	5 ST
Ethylbenzene	U	U	U	U	U	U	5	5 ST

TABLE B-5 (continued)

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	BCPMW-1	BCPMW-2	BCPMW-3	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/2003	6/19/2003	6/19/2003	9/12/03	9/12/03	9/12/03	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	2	40	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
m,p-Xylene	C	U	C	U	O	U	5	5 ST
o-Xylene	U	U	U	U	U	U	5	5 ST
Xylene (total)	U	U	U	U	U	U	5	5 ST
Styrene	U	U	U	U	U	U	5	5 ST
Bromoform	U	U	U	U	U	U	5	50 GV
Isopropylbenzene	U	U	U	U	U	U	5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	5	5 ST
1,3-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,4-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,2-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	5	5 ST
Methyl Acetate	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	5	
Methylcyclohexane	U	U	U	U	U	U	5	
Total VOCs	91	368	5,920	89	453	3,701		

Qualifiers:

U: Constituent analyzed for but not detected.

J: Constituent detected at a concentration below the CRDL, value estimated.

D: Result taken from reanalysis at a secondary dilution.

U*: Result qualified as non-detect based on validation criteria.

Notes:

ST : Standard.

GV: Guidance value.

---- : Not established.

: Value exceeds Class GA Groundwater

Standard/Guidance Value.

TABLE B-5 (continued)

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	B24MW-2	B24MW-3	B30MW-1	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	11/25/03	11/25/03	11/25/03	11/26/03	11/26/03	11/26/03	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	2	40	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)						
Dichlorodifluoromethane	U	U	U	U	U	U	5	5 ST
Chloromethane	U	U	U	U	U	U	5	
Vinyl Chloride	U	U	70 J	U	U	U	5	2 ST
Bromomethane	U	U	U	U	U	U	5	5 ST
Chloroethane	U	U	U	U	U	U	5	5 ST
Trichlorofluoromethane	U	U	U	U	U	U	5	5 ST
1,1-Dichloroethene	U	U	44 J	U	U	U	5	5 ST
Acetone	U	U	U	U	U	U	5	50 GV
Carbon Disulfide	U	U	U	U	U	U	5	
Methylene Chloride	U*	U	U	U*	U	U	5	5 ST
trans-1,2-Dichloroethene	U	U	U	U	U	U	5	5 ST
Methyl tert-Butyl Ether	U	U	U	U	U	U	5	
1,1-Dichloroethane	U	16	18	U	U	U	5	5 ST
2-Butanone	U	U	U	U	U	U	5	50 GV
cis-1,2-Dichloroethene	5	120	5200 D	U	6	U	5	5 ST
Chloroform	2 J	U	U	U	U	U	5	7 ST
1,1,1-Trichloroethane	U	U	U	U	U	U	5	5 ST
Carbon Tetrachloride	U	U	U	U	U	U	5	5 ST
1,2-Dichloroethane	U	U	U	U	U	U	5	0.6 ST
Benzene	U	U	U	U	U	U	5	1 ST
Trichloroethene	60	210	1800	1 J	54	U	5	5 ST
1,2-Dichloropropane	U	U	U	U	U	U	5	1 ST
Bromodichloromethane	U	U	U	U	U	U	5	50 GV
cis-1,3-Dichloropropene	U	U	U	U	U	U	5	0.4 ST
4-Methyl-2-pentanone	U	U	U	U	U	U	5	
Toluene	U	U	U	U	U	U	5	5 ST
trans-1,3-Dichloropropene	U	U	U	U	U	U	5	0.4 ST
1,1,2-Trichloroethane	U	U	U	U	U	U	5	1 ST
Tetrachloroethene	U	U	U	U	U	U	5	5 ST
2-Hexanone	U	U	U	U	U	U	5	50 GV
Dibromochloromethane	U	U	U	U	U	U	5	50 GV
1,2-Dibromoethane	U	U	U	U	U	U	5	
Chlorobenzene	U	U	U	U	U	U	5	5 ST
Ethylbenzene	U	U	U	U	U	U	5	5 ST

TABLE B-5 (continued)

NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS VOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	B24MW-2	B24MW-3	B30MW-1	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	11/25/03	11/25/03	11/25/03	11/26/03	11/26/03	11/26/03	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	2	40	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)						
m,p-Xylene	C	U	C	U	Ω	U	5	5 ST
o-Xylene	U	U	U	U	U	U	5	5 ST
Xylene (total)	U	U	U	U	U	U	5	5 ST
Styrene	U	U	U	U	U	U	5	5 ST
Bromoform	U	U	U	U	U	U	5	50 GV
Isopropylbenzene	U	U	U	U	U	U	5	5 ST
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	5	5 ST
1,3-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,4-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,2-Dichlorobenzene	U	U	U	U	U	U	5	3 ST
1,2-Dibromo-3-chloropropane	U	U	U	U	U	U	5	0.04 ST
1,2,4-Trichlorobenzene	U	U	U	U	U	U	5	5 ST
1,1,2-Trichloro-1,2,2-trifluoroethane	U	U	U	U	U	U	5	5 ST
Methyl Acetate	U	U	U	U	U	U	5	
Cyclohexane	U	U	U	U	U	U	5	
Methylcyclohexane	U	U	U	U	U	U	5	
Total VOCs	67	346	7,132	1	60	0		

Qualifiers:

U: Constituent analyzed for but not detected.

J: Constituent detected at a concentration below the CRDL, value estimated.

D: Result taken from reanalysis at a secondary dilution.

U*: Result qualified as non-detect based on validation criteria.

	- 4 -	_
N	∩t≏	c

ST : Standard.

GV: Guidance value.

---- : Not established.

: Value exceeds Class GA Groundwater

Standard/Guidance Value.

TABLE B-6

GROUNDWATER SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

TABLE B-6 NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/2003	6/19/2003	6/19/2003	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	,	, ,	, ,	, ,	, ,
Phenol	U	U	U	10	1 ST*
bis(2-Chloroethyl)ether	U	U	U	10	1 ST
2-Chlorophenol	U	U	U	10	1 ST*
2-Methylphenol	U	U	U	10	1 ST*
2,2'-oxybis(1-chloropropane)	U	U	U	10	
4-Methylphenol	U	U	U	10	1 ST*
N-Nitroso-di-n-propylamine	U	U	U	10	
Hexachloroethane	U	U	U	10	5 ST
Nitrobenzene	U	U	U	10	0.4 ST
Isophorone	U	U	U	10	50 GV
2-Nitrophenol	U	U	U	10	1 ST*
2,4-Dimethylphenol	U	U	U	10	50 GV
2,4-Dichlorophenol	U	U	U	10	5 ST
Naphthalene	U	U	U	10	10 GV
4-Chloroaniline	U	U	U	10	5 ST
bis(2-Chloroethoxy)methane	U	U	U	10	5 ST
Hexachlorobutadiene	U	U	U	10	0.5 ST
4-Chloro-3-methylphenol	U	U	U	10	1 ST*
2-Methylnapthalene	U	U	U	10	
Hexachlorocyclopentadiene	U	U	U	10	5 ST
2,4,6-Trichlorophenol	U	U	U	10	1 ST*
2,4,5-Trichlorophenol	U	U	U	20	1 ST*
2-Chloronapthalene	U	U	U	10	10 GV
2-Nitroaniline	U	U	U	20	5 ST
Dimethylphthalate	U	U	U	10	50 GV
Acenaphthylene	U	U	U	10	
2,6-Dinitrotoluene	U	U	U	10	5 ST
3-Nitroaniline	U	U	U	20	5 ST
Acenaphthene	U	U	U	10	20 GV
2,4-Dinitrophenol	U	U	U	20	10 GV
4-Nitrophenol	U	U	U	20	1 ST*
Dibenzofuran	U	U	U	10	
2,4-Dinitrotoluene	U	U	U	10	5 ST

TABLE B-6 (continued) NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/2003	6/19/2003	6/19/2003	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Diethylphthalate	U	U	U	10	50 GV
4-Chlorophenyl-phenylether	U	U	U	10	
Fluorene	U	U	U	10	50 GV
4-Nitroanline	U	U	U	20	5 ST
4,6-Dinitro-2-methylphenol	U	U	U	20	1 ST*
N-Nitrosodiphenylamine	U	U	U	10	50 GV
4-Bromophenyl-phenylether	U	U	U	10	
Hexachlorobenzene	U	U	U	10	0.04 ST
Pentachlorophenol	U	U	U	20	1 ST*
Phenanthrene	U	U	U	10	50 GV
Anthracene	U	U	U	10	50 GV
Carbazole	U	U	U	10	
Di-n-butylphthalate	U	U	U	10	50 ST
Fluoranthene	U	U	U	10	50 GV
Pyrene	U	U	U	10	50 GV
Butylbenzylphthalate	U	U	U	10	50 GV
3,3'-Dichlorobenzidine	U	U	U	10	5 ST
Benzo(a)anthracene	U	U	U	10	0.002 GV
Chrysene	U	U	U	10	0.002 GV
bis(2-Ethylhexyl)phthalate	U	U	U	10	5 ST
Di-n-octylphthalate	U	U	U	10	50 GV
Benzo(b)fluoranthene	U	U	U	10	0.002 GV
Benzo(k)fluoranthene	U	U	U	10	0.002 GV
Benzo(a)pyrene	U	U	U	10	ND ST
Indeno(1,2,3-cd)pyrene	U	U	U	10	0.002 GV
Dibenzo(a,h)anthracene	U	U	U	10	
Benzo(g,h,i)perylene	U	U	U	10	
1,1'-Biphenyl	U	U	U	10	5 ST
Acetophenone	U	U	U	10	
Atrazine	U	U	U	10	7.5 ST
Benzaldehyde	U	U	U	10	
Caprolactam	U	U	U	10	
Total PAHs	0	0	0		
Total CaPAHs	0	0	0		
Total SVOCs	0	0	0		

Qualifiers:

U: Constituent analyzed for but not detected.

J: Constituent detected at a concentration below the CRDL, value estimated.

Notes:

ST : Standard.

GV : Guidance value.

--- : Not established.

* : Applies to the sum of all Phenols

TABLE B-7

GROUNDWATER SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

TABLE B-7 NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS POLYCHLORINATED BIPHENYLS

SAMPLE IDENTIFICATION	BCPMW-1	BCPMW-2	BCPMW-3	CONTRACT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/2003	6/19/2003	6/19/2003	REQUIRED	GROUNDWATER STANDARDS/
DILUTION FACTOR	1	1	1	DETECTION LIMIT	GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Aroclor-1016	U	U	U	1.0	
Aroclor-1221	U	U	U	1.0	
Aroclor-1232	U	U	U	1.0	
Aroclor-1242	U	U	U	1.0	
Aroclor-1248	U	U	U	1.0	
Aroclor-1254	U	U	U	1.0	
Aroclor-1260	U	U	U	1.0	
TOTAL PCBs	0	0	0		0.09 ST

Qualifiers: Notes:

U: Constituent analyzed for but not detected. ST : Standard.

--- : Not established.

TABLE B-8

GROUNDWATER SAMPLING RESULTS TAL METALS AND HEXAVALENT CHROMIUM

TABLE B-8 NORTHROP GRUMMAN CORPORATION TOWN OF OYSTER BAY BETHPAGE COMMUNITY PARK INVESTIGATION SAMPLING PROGRAM GROUNDWATER SAMPLING RESULTS TAL METALS AND HEXAVALENT CHROMIUM

SAMPLE IDENTIFICATION	BCPN	ЛW-1	BCPM	/W-2	BCPI	MW-3	INSTRUMENT	NYSDEC CLASS GA
DATE OF COLLECTION	6/19/	2003	6/19/	2003	6/19/	2003	DETECTION	GROUNDWATER
TOTAL/DISSOLVED	undissolved	dissolved	undissolved	dissolved	undissolved	dissolved	LIMITS	STANDARDS/
DILUTION FACTOR	1	1	1	1	1	1		GUIDANCE VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Aluminum	19,600	U	55,000	U	24,400	U	17.0	
Antimony	U	U	3.8 B	U	U	U	3.0	3 ST
Arsenic	52.4	U	113	U	81.5	U	3.0	25 ST
Barium	169 B	42.8 B	260	75.1 B	129 B	34.4 B	4.0	1,000 ST
Beryllium	1.3 B	U	2.8 B	U	1.2 B	U	0.50	3 GV
Cadmium	1.1 B	U	U	U	U	U	0.70	5 ST
Calcium	6,840	5,230	43,300	39,700	12,200	9,620	240	
Chromium	102	U	93.3	U	36.3	U	0.60	50 ST
Cobalt	13 B	8.7 B	30.3 B	6.1 B	12.8 B	6.8 B	0.90	
Copper	75	14.4 B	110	U	47.5	U	4.0	200 ST
Iron	67,800	44.4 B	111,000	29.8 B	61,300	463	26.0	300 ST
Lead	41.9	U	72.6	U	31.4	U	4.0	25 ST
Magnesium	2,940	2,120	16,500	15,500	4,890	3,610	8.0	35,000 GV
Manganese	302	204	377	88.1	221	131	0.8	300 ST
Mercury	U	U	U	U	U	U	0.10	0.7 ST
Nickel	28.7 B	10.4 B	32.1 B	3 B	12.8 B	2.7 B	0.80	100 ST
Potassium	9,300	6,100	6,860	2,760	4,540	1,890	78.0	
Selenium	U	U	U	U	U	U	9.0	10 ST
Silver	2.3 B	U	U	U	U	U	2.0	50 ST
Sodium	24,500	21,700	17,300	11,800	27,500	23,700	83.0	20,000 ST
Thallium	U	U	10.3 B	U	U	U	3.0	0.5 GV
Vanadium	126	U	313	U	158	U	0.70	
Zinc	134	42.8 B	147	14.8 B	116	19.8 B	7.0	2,000 GV
Hexavalent Chromium	U	U	U	U	U	U	30	50 ST
Iron and Manganese*	68,102	248	111,377	118	61,521	594		500 ST

Qualifiers:

U: Analyzed for but not detected.

B: Concentration is less than the CRDL but greater than the IDL.

Notes:

ST: Standard.

 $\ensuremath{\mathsf{GV}}$: Guidance value.

---- : Not established.

* : Value summed from laboratory-reported values.

: Value exceeds Class GA Groundwater Standard/Guidance Value.

APPENDIX C

DATA VALIDATION DOCUMENTATION

Site Name: Bethpage Park	_ Laboratory Name: Mitkem			
Reviewer: R. Petrella	Date of Review: 7/30/03			
I. Data Deliverable Requirements				
A. Legible	Yes			
B. Paginated	Yes			
C. Arranged in order	Yes			
D. Consistent dates	Yes			
E. Case Narrative	Yes			
F. Chain-of-Custody Record	Yes			
G. Sample Data Complete	Yes			
H. Standard Date Complete	Yes			
I. Raw QC Data Complete	Yes			
Comments: SDG B0946 – 21 soils shallow samples run for PCB, RCRA meta VOA, SVOA, PCB, TAL metals and hex comments.	als and hex chrom, 5 deeper samples run for hrom			
B6(12-14) RUN AS MS/MSD				
B11(10-12), B11(18-20), B6(12-14), B6(18 contamination	8-20), B6(4-6) exhibited fuel product			

Site Name: Bethpage Park Laboratory Name: Mitkem
--

Reviewer: R. Petrella Date of Review: 7/30/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B6(0-2)	Received 5/28	Extracted 6/9	<u>Analyzed</u> 6/18-6/20	Exceeded?
B6(2'-2')	5/28	6/9	6/18-6/20	
B6(2-4)	5/28	6/9	6/18-6/20	
B6(4-6)*	5/28	6/6, 6/9	5/30, 6/18, 6/18- 6/20	
B6(8-10)	5/28	6/9	6/18-6/20	
B6(10-12)	5/28	6/9	6/18-6/20	
B6(12-14)*	5/28	6/6, 6/9	5/30, 6/18, 6/18- 6/20	
B6(14-16)	5/28	6/9	6/18-6/20	
B6(16-18)	5/28	6/9	6/18-6/20	
B6(18-20)*	5/28	6/6, 6/9	5/30, 6/18, 6/18- 6/20	
B11(0-2)	5/28	6/9	6/18-6/20	
B11(2'-2')	5/28	6/9	6/18-6/20	
B11(2-4)	5/28	6/9	6/18-6/20	
B11(4-6)	5/28	6/9	6/18-6/20	
B11(6-8)	5/28	6/9	6/18-6/20	
B11(8-10)	5/28	6/9	6/18-6/20	
B11(10-12)*	5/28	6/6, 6/9	5/30, 6/18, 6/18- 6/20	
B11(12-14)	5/28	6/9	6/18-6/20	
B11(14-16)	5/28	6/9	6/18-6/20	
B11(16-18)	5/28	6/9	6/18-6/20	
B11(18-20)*	5/28	6/6, 6/9	6/3, 6/18, 6/18- 6/20	
* RUN FOR	OTHERS RUN			

^{*} RUN FOR OTHERS RUN

^{♦0020\}B0946 VALID\2

VOA,SVOA, PCB TALMETALS, FOR PCB, PP METALS, hex cr

hex cr

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: <u>7/30/03</u>	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V2F6930	YES	INITIAL
2. V2F6940A	YES	SAMPLES
3. V2F6970A	YES	SAMPLES
4. V2F7000A	YES	SAMPLES
5.		
6.		
7. S4A0965	YES	INITIAL
8. S4A0973	YES	SAMPLES
9. S4A1075	YES	INITIAL
10. S4A1159	YES	SAMPLES
11.		
12.		
13.		

Site Name	ite Name: Bethpage Park			lame: <u>Mi</u>	tkem		
Reviewer:	Reviewer: R. Petrella			Date of Review: 7/30/03			
Fraction:	VOA, SVOA						
IV. Initia	al Calibration Su	ımmary (GC/MS)					
Date of Ca	libration: <u>5/29, 6</u>	6/17, 6/22					
A.	Standard Data	Files					
	Standard 1 ID:	V2F6932, S4A09 S4A1082	967,	Conc:	5, 10		
	Standard 2 ID:	V2F6935, S4A09 S4A1076	968	Conc:	20, 50		
	Standard 3 ID:	V2F6931, S4A09 S4A1080	970,	Conc:	50, 80		
	Standard 4 ID:	V2F6934, S4A09 S4A1079	971,	Conc:	100, 120		
	Standard 5 ID: V2F6933, S4A09 S4A1078			Conc:	200, 160		
B.	1. All SPCC n	net Criteria ?					
		Yes					
2. Calculate a SPCC average RRF							
Comments: All ok							

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Fraction: VOA, SVOA	Date of Calibration: 5/29, 6/17, 6/22
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria ?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	ithin 12 hours of the tune
Yes	
Comments:	
D. Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	ation:

Site Name: Bethpage Park Laboratory Name: Mitkem						
Reviewer: R. Petrella Date of Review: 7/30/03						
Fraction: VOA, SVOA						
VI. Continuing Calibration Summary (G	C/MS)					
Date of Initial Calibration: 5/29, 6/17, 6/22						
Date of Continuing Calibration: 5/30, 6/2, 6	/3, 6/18, 6/25 File ID:V2F6941, V2F6971A, V2F7001, S4A0974, S4A1160					
A. 1. All SPCC met criteria?						
Yes						
Calculate a SPCC RRF						
Comments:						
2. All CCC met criteria ?						
Yes						
Calculate a CCC % D						
Comments: Carbon tetrachloride slightly abrequired	ove limits, but less than 40%, no action					

♦0020\B0946 VALID\8

B. Overall assessment of Continuing Calibration

(list associated samples)

ok			

Site Name:	Bethpage Park	Laboratory Name	:Mitkem			
Reviewer:	R. Petrella	Date of Review	:7/30/03			
Fraction:	VOA, SVOA					
VIII. Inter	rnal Standard Area Summary (G	GC/MS)				
Were all in	ternal standard peak areas with	in the contract limits	3?			
		Yes	NO*			
f No, pleas	se note below					
Several samples had area counts outside of QC limits but samples were reanalyzed or run at secondary dilutions with similar results, no further action was required						
Sample	Internal Standard Outside Limits	Amount Above Contract Requireme	ent <u>Comments</u>			

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review	w:7/30/03
Fraction:	VOA, SVOA, PCB	_	
IX. Blar	nk Summary		
Date/Time Analysis:	of	Fi	le ID:
Compound	<u>Concentration</u>	< CROL	<u>Comments</u>
Methylene was detect VBLK2E	chloride 2 ppb ed in		MeCl2 results for all associated samples have been qualified as nondetect
List the sar	mples associated with this me	thod blank.	
SVOA and	d PCB blanks were clean		

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: <u>7/30/03</u>	
Fraction:	VOA, SVOA, PCB		
		s protocol allows 1 surrogate recovery its as long as it is >10%.	per fraction to
X. Surr	ogate Recovery Summary		
Were all su	rrogate recoveries within the cont	ract limits ?	
		Yes*	
If No, pleas	se note below.		
Sample	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement Co	omments

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review: 7/30/03		
Fraction: VOA, SVOA,PCB			
XI. Matrix Spike/Matrix Spike Duplication Summary			
Sample ID: <u>B6(12-14)</u>	Matrix:SOIL		
Did the MS/MSD recovery data meet the contract recommended requirements ?			
•	Yes		
If No, please note below.			
SVOA several recoveries were slightly below limits but all RPD's were in limits so no action, qualification of the data is required			
VOA several recoveries in MSD above limits but RPD ok, no action required			
PCB recoveries were high in both MS/MSD) but RPD ok		

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review:7/30/03

I. Holding times

	Date	Date	Date	Holding Time
Sample Be(0.2)	Received 5/28	<u>Digested</u>	<u>Analyzed</u>	Exceeded?
B6(0-2)			5/30-6/4	NO
B6(2'-2')	5/28		5/30-6/4	NO
B6(2-4)	5/28		5/30-6/4	NO
B6(4-6)*	5/28		5/30-6/4	NO
B6(8-10)	5/28		5/30-6/4	NO
B6(10-12)	5/28		5/30-6/4	NO
B6(12-14)*	5/28		5/30-6/4	NO
B6(14-16)	5/28		5/30-6/4	NO
B6(16-18)	5/28		5/30-6/4	NO
B6(18-20)*	5/28		5/30-6/4	NO
B11(0-2)	5/28		5/30-6/4	NO
B11(2'-2')	5/28		5/30-6/4	NO
B11(2-4)	5/28		5/30-6/4	NO
B11(4-6)	5/28		5/30-6/4	NO
B11(6-8)	5/28		5/30-6/4	NO
B11(8-10)	5/28		5/30-6/4	NO
B11(10-12)*	5/28		5/30-6/4	NO
B11(12-14)	5/28		5/30-6/4	NO
B11(14-16)	5/28		5/30-6/4	NO
B11(16-18)	5/28		5/30-6/4	NO
B11(18-20)*	5/28		5/30-6/4	NO
* TAL METALS, OTHERS PP METALS				

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Associated Samples:	
II. Initial Calibration	
Were all initial instrument calibrat	tions performed?
Yes	
Comments:	
Were the initial calibration verification specified frequency?	ation standards analyzed at the contract
Yes	
Comments:	
3. Were the initial calibration results	within the control limits listed below?
For tin and mercury: 80-120% of For all other metals: 90-110% of	
Yes	
If "No", note analytes	

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem
		: R. Petrella ed Samples:	Date of Review: 7/30/03
III.		ntinuing Calibration	
	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes		
	Cor	mments:	
	2.	Were the continuing calibration refer tin and mercury: 80-120% of For all other metals: 90-110% of Yes	
	If "N	lo", note analytes	

Site N	lam	e: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer	R. Petrella	Date of Review: 7/30/03
IV.		nk Summary	
	Α.	Method Blanks	
	1.	Was a method blank prepared an frequency?	d analyzed at the contract specified
		Yes	
	2.	Were all the analytes below the C	RDL in the method blank?
		Yes	
	Coı	mments:	
	В.	Calibration Blanks	
	1.	Were all initial and continuing cali specified frequency/	bration blanks analyzed at the contract
		Yes	
	2.	Were all the analytes below the C	RDL in all the calibration blanks?
		Yes	
	Coı	mments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
B6(12-14)	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	e percent differences (RPD) met for each
No	
Comments: 5 analytes had RPD out of limits	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review: 7/30/03		
6(12-14)			
VI. Matrix Spike Analysis			
 Was a matrix spike prepared and analyzed at the contract specified frequency? Yes 			
Comments:			
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits		
Yes			
Sb and Cr had If "No", note analytes recoveries ok	%R out of limits, post digest spike run		

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem			
Reviewer: R. Petrella	Date of Review: 7/30/03			
VII. ICP Interference Check Sample Summary				
 Was the ICP serial dilution analyzed at the contract specified frequency? Yes 				
Comments:				
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of			
Comments:				
Was the ICP CRDL check standard frequency for the analytes require Yes	ard analyzed at the contract specified ed?			
Comments:				

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
VII. ICP Interference Check Sample Sum	mary (continued):
 Was the ICP interference check strength 	sample analyzed at the contract specified
Yes	
Comments:	
9	
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:7/30/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	nin the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
Comments: SDG B0952 – 23 soils shallow samples run for PCB, RCRA meta VOA, SVOA, PCB, TAL metals and hex ch	ls and hex chrom, 5 deeper samples run for arom
Sample B2(6-8) had a %moisture >50% al high	I results qualified as estimated possibly biased
Evidence of fuel contamination in sample I	32(6-8)

Site Name: Bethpage Park	Laboratory Name:Mitkem
--------------------------	------------------------

Reviewer: R. Petrella Date of Review: 7/30/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B1(8-10))	Received 5/29	Extracted 6/10	<u>Analyzed</u> 6/18-6/19	Exceeded?
B1(10-12)*	5/29	6/11, 6/10	5/30, 6/25, 6/18-6/19	No
B2(2"-2")	5/29	6/10	6/18-6/19	No
B2(0-2)	5/29	6/10	6/18-6/19	No
B2(2-4)	5/29	6/10	6/18-6/19	No
B2(4-6)	5/29	6/10	6/18-6/19	No
B2(6-8)*	5/29	6/11, 6/10	6/2, 6/27, 6/18- 6/19	No
B2(8-10)	5/29	6/10	6/18-6/19	No
B2(10-11)	5/29	6/10	6/18-6/19	No
B2(12-14)*	5/29	6/11, 6/10	5/30, 6/26, 6/18- 6/19	No
B4(0-2)	5/29	6/10	6/18-6/19	No
B4(2'-2')	5/29	6/10	6/18-6/19	No
B4(2-3)*	5/29	6/11, 6/10	5/30, 6/26, 6/18- 6/19	No
B4(4-6)	5/29	6/10	6/18-6/19	No
B4(6-8)	5/29	6/10	6/18-6/19	No
B4(3-4)	5/29	6/10	6/18-6/19	No
B3(0-2)	5/29	6/10	6/18-6/19	No
B3(2"-2")	5/29	6/10	6/18-6/19	No
B3(2-4)* MS/MSD	5/29	6/11, 6/10	6/2,6/26, 6/18- 6/19	No
B3(4-6)	5/29	6/10	6/18-6/19	No
B3(6-8)	5/29	6/10	6/18-6/19	No
B3(8-10)	5/29	6/10	6/18-6/19	No

B2(11-12) 5/29 6/10 6/18-6/19 No

* RUN FOR OTHERS RUN VOA,SVOA, FOR PCB, PP METALS

TALMETALS

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: <u>7/30/03</u>	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V2F6930	YES	INITIAL
2. V2F6940A	YES	SAMPLES
3. V2F6970A	YES	SAMPLES
4. V2F7040	YES	INITIAL
5. V2F7070	YES	MSD
6.		
7. S3C4347	YES	INITIAL
8. S3C4355	YES	SAMPLES
9. S3C4410	YES	SAMPLES
10.		
11.		
12.		
13.		

Site Name: Bethpage Park		Laboratory Name: Mitkem				
Reviewer:	Reviewer: R. Petrella		Date of Review: 7/30/03			
Fraction:	VOA, SVOA					
IV. Initial Calibration Summary (GC/MS)						
Date of Ca	alibration: <u>5/29, 6</u>	6/4, 6/25				
A.	Standard Data	Files				
	Standard 1 ID:	V2F6932, V2F7 S3C4350	046,	Conc:	5, 10	
	Standard 2 ID:	V2F6935, V2F7 S3C4348	045,	Conc:	20, 50	
	Standard 3 ID:	V2F6931, V2F7 S3C4352	041,	Conc:	50, 80	
	Standard 4 ID:	V2F6934, V2F7 S3C4351	044,	Conc:	100, 120	
	Standard 5 ID: V2F6933, V2F7043, S3C4349			Conc:	200, 160	
B. 1. All SPCC met Criteria ?						
		Yes				
2. Calculate a SPCC average RRF						
Cor	nments:					

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review:7/30/03
Fraction: VOA, SVOA	Date of Calibration: 5/29, 6/4, 6/25
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria ?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	thin 12 hours of the tune
Yes	
Comments:	
D. Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	tion:

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA		
VI. Continuing Calibration Summary (G	C/MS)	
Date of Initial Calibration: 5/29, 6/4, 6/25		
Date of Continuing Calibration: 5/30, 6/2, 6	/5, 6/25, 6/27 File ID:V2F6941, V2F6971A, V2F7071, S3C4356, S3C4411	
A. 1. All SPCC met criteria?		
Yes		
Calculate a SPCC RRF		
Comments:		
2. All CCC met criteria?		
Yes		
Calculate a CCC % D		
Comments: Carbon tetrachloride slightly abrequired	ove limits, but less than 40%, no action	

♦0020\B0952 VALID\8

B. Overall assessment of Continuing Calibration

(list associated samples)

ok			

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	
Fraction:	VOA, SVOA	-	
VIII. Inter	rnal Standard Area Summary (0	GC/MS)	
Were all in	ternal standard peak areas with	nin the contract limits?	
		Yes	
If No, pleas	se note below		
<u>Sample</u>	Internal Standard <u>Outside Limits</u>	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA, PCB	<u>-</u>	
IX. Blank Summary		
Date/Time of Analysis:	File ID:	
<u>Compound</u> <u>Concentration</u>	< CROL Comments	
Methylene chloride 2 ppb, 1 ppb was detected in VBLK2E, vblk2f	MeCl2 results for all associated samples have been qualified as non-detect	
List the samples associated with this metl	hod blank.	
SVOA and PCB blanks were clean		

Site Name:	Bethpage Park	Laboratory Name:Mitke	m
	-		
Reviewer:	R. Petrella	Date of Review: 7/30/	03
Fraction:	VOA, SVOA, PCB		
		sis protocol allows 1 surrogate re nits as long as it is >10%. PCB l ONLY	· .
X. Surr	ogate Recovery Summary		
More all au	urragata racovarios within the con	traat limita 2	
vvere all Su	irrogate recoveries within the con	tract iiriits ?	
		Yes*	
If No, pleas	se note below.		
Sample	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Fraction: VOA, SVOA,PCB	
XI. Matrix Spike/Matrix Spike Duplication	n Summary
Sample ID: B3(2-4)	Matrix:SOIL
Did the MS/MSD recovery data meet the co	ontract recommended requirements ?
•	Yes
If No, please note below.	
SVOA 5 of 120 recoveries were outside lim required	nits and 3 of 60 RPD's were out no action,
VOA 12 of 96 recoveries in MS/MSD above	e limits 6 of 48 RPD out, no action required
PCB recoveries were high in both MS/MSD) but RPD ok

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review: 7/30/03

I. Holding times

	Date	Date	Date	Holding Time
Sample B1(8-10))	Received 5/29	<u>Digested</u>	Analyzed	Exceeded?
B1(0·10))*	5/29		6/03-6/9	NO
B2(2"-2')	5/29		6/03-6/9	NO
B2(2 -2) B2(0-2)	5/29		6/03-6/9	NO
B2(0-2) B2(2-4)	5/29		6/03-6/9	NO
, ,			6/03-6/9	NO
B2(4-6)	5/29		6/03-6/9	NO
B2(6-8)*	5/29		6/03-6/9	NO
B2(8-10)	5/29		6/03-6/9	NO
B2(10-11)	5/29		6/03-6/9	NO
B2(12-14)*	5/29		6/03-6/9	NO
B4(0-2)	5/29		6/03-6/9	NO
B4(2'-2')	5/29		6/03-6/9	NO
B4(2-3)*	5/29		6/03-6/9	NO
B4(4-6)	5/29		6/03-6/9	NO
B4(6-8)	5/29		6/03-6/9	NO
B4(3-4)	5/29		6/03-6/9	NO
B3(0-2)	5/29		6/03-6/9	NO
B3(2"-2')	5/29		6/03-6/9	NO
B3(2-4)*	5/29		6/03-6/9	NO
B3(4-6)	5/29		6/03-6/9	NO
B3(6-8)	5/29		6/03-6/9	NO
B3(8-10)	5/29		6/03-6/9	NO
B2(11-12)	5/29			
* run for TAL			6/03-6/9	NO

^{*} run for TAL metals others PP metals

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Associated Samples:		
II. Initial Calibration		
Were all initial instrument calibrations performed? Yes		
Comments:		
Were the initial calibration verification specified frequency? Yes	ation standards analyzed at the contract	
Comments:		
Were the initial calibration results	within the control limits listed below?	
For tin and mercury: 80-120% of For all other metals: 90-110% of Yes		
If "No", note analytes		

Site Na	me: Bethpage Park	Laboratory Name: Mitkem	
	er: R. Petrella	Date of Review: 7/30/03	
	ontinuing Calibration		
1.	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes		
С	omments:		
2.	Were the continuing calibration re	sults within the control limits listed below?	
	For tin and mercury: 80-120% of the For all other metals: 90-110% of the Formal of the		
Yes If "No", note analytes			

Site N	Nam	e: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer	R. Petrella	Date of Review: 7/30/03
IV.		nk Summary	
	Α.	Method Blanks	
	1.	Was a method blank prepared an frequency?	d analyzed at the contract specified
		Yes	
	2.	Were all the analytes below the C	RDL in the method blank?
		Yes	
	Coı	mments:	
	В.	Calibration Blanks	
	1.	Were all initial and continuing cali specified frequency/	bration blanks analyzed at the contract
		Yes	
	2.	Were all the analytes below the C	RDL in all the calibration blanks?
		Yes	
	Coı	mments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
B3(2-4)	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
No)
Comments: Mn RPD out of limits	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
B3(2-4)	
VI. Matrix Spike Analysis	
 Was a matrix spike prepared and Yes 	analyzed at the contract specified frequency?
Comments:	
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits
Yes	
Sb and Cn had If "No", note analytes <u>recoveries ok</u>	%R out of limits, post digest spike run

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
VII. ICP Interference Check Sample Sum	mary	
 Was the ICP serial dilution analyzed at the contract specified frequency? Yes 		
Comments:		
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of	
Comments:		
3. Was the ICP CRDL check standa frequency for the analytes require	ard analyzed at the contract specified ed?	
Comments:		

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
VII. ICP Interference Check Sample Sum	mary (continued):
 Was the ICP interference check strength 	sample analyzed at the contract specified
Yes	
Comments:	
9	
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	in the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
shallow samples run for PCB, RCRA metal VOA, SVOA, TAL metals and hex chrom	s and hex chrom, deeper samples run for
	_

Site Name: Bethpage Park	Laboratory Name:Mitkem

Reviewer: R. Petrella Date of Review: 7/29/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B5(8-10)	<u>Received</u> 5/30/03	Extracted 6/11	<u>Analyzed</u> 6/20-6/22	Exceeded?
B5(10-12)	5/30/03	6/11	6/20-6/22	no
B5(12-14)*	5/30/03	6/11	6/4, 6/28, 6/20- 6/22	no
B5(14-16)	5/30/03	6/11	6/20-6/22	no
B5(16-18)	5/30/03	6/11	6/20-6/22	no
B5(18-20)	5/30/03	6/11	6/20-6/22	no
B5(20-22)*	5/30/03	6/11	6/3, 6/25, 6/20- 6/22	no
B8(0-2)	5/30/03	6/11	6/20-6/22	no
B8(2"-2")	5/30/03	6/11	6/20-6/22	no
B8(2-4)	5/30/03	6/11	6/20-6/22	no
B8(4-6)	5/30/03	6/11	6/20-6/22	no
B8(6-8)	5/30/03	6/11	6/20-6/22	no
B8(8-10)	5/30/03	6/11	6/20-6/22	no
B8(10-12)*	5/30/03	6/11	6/4, 6/26, 6/20- 6/22	no
B16(0-2)	5/30/03	6/11	6/20-6/22	no
B16(2"-2')	5/30/03	6/11	6/20-6/22	no
B16(2-4)	5/30/03	6/11	6/20-6/22	no
B16(4-6)	5/30/03	6/11	6/20-6/22	no
B16(6-8)	5/30/03	6/11	6/20-6/22	no
B16(8-10)	5/30/03	6/11	6/20-6/22	no
B16(10-12)	5/30/03	6/11	6/20-6/22	no
B16(12-14)	5/30/03	6/11	6/20-6/22	no
B16(14-16)*	5/30/03	6/11	6/3, 6/25, 6/20-	no

			6/22	
B18(0-2)	5/30/03	6/11	6/20-6/22	no
B18(2-4)*	5/30/03	6/11	6/3, 6/26, 6/20- 6/22	no
B18(2"-2")	5/30/03	6/11	6/20-6/22	no
B18(4-6)	5/30/03	6/11	6/20-6/22	no
B18(6-8)	5/30/03	6/11	6/20-6/22	no
B18(8-10)	5/30/03	6/11	6/20-6/22	no
B18(10-12)	5/30/03	6/11	6/20-6/22	no
B18(12-14)* **	5/30/03	6/11	6/3, 6/25, 6/20- 6/22	no
* sample run for VOA, SVOA, PCB, TAL Metals and hex Cr	Other samples run for PCB, Ppmetals and hex CR	** Run as MS/MSD		

Site Name:	Bethpage Park	Laboratory Name: Mitkem
Reviewer:	R. Petrella	Date of Review: 8/1/03
Fraction:	VOA, SVOA	
III. Tun	e Summary	

Tune File I.D. Number	Acceptable ?	Comments
1. V2F6930	YES	INITIAL
2. V2F7000A	YES	SAMPLES
3. V2F7040	YES	INITIAL AND SAMPLES
4.		
5. S3C4347	YES	INITIAL
6. S3C4355	YES	SAMPLES
7. S3C4410	YES	SAMPLES
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		

Site Name: Bethpage Park Laborat		Laboratory	Name: <u>Mi</u>	tkem	
Reviewer	Reviewer: R. Petrella		Date of Review: 8/1/03		
Fraction:	VOA, SVOA				
IV. Init	ial Calibration Su	ummary (GC/MS)			
Date of C	alibration: <u>5/29, (</u>	6/4, 6/25,			
A.	Standard Data	Files			
	Standard 1 ID:	V2F6932, V2F7 S3C4350	046,	Conc:	5, 10
	Standard 2 ID:	V2F6935, V2F7 S3C4348	045,	Conc:	20, 50
	Standard 3 ID:	V2F6931, V2F7 S3C4352	041,	Conc:	50, 80
	Standard 4 ID:	V2F6934, V2F7 S3C4351	044,	Conc:	100, 120
	Standard 5 ID:	V2F6933, V2F7 S3C4349	043,	Conc:	200, 160
B.	1. All SPCC n	net Criteria ?			
		Yes			
	2. Calculate a	SPCC average	RRF		
Со	mments:				
					_

Site Name: Beth	page Park	Laboratory Name:Mitkem
Reviewer: R. Po		Date of Review:8/1/03
ixeviewei. <u>ix. Fi</u>	<u>sti elia</u>	Date of Neview. of 1703
Fraction: VOA	, SVOA	Date of Calibration: <u>5/29, 6/4, 6/25</u>
IV. Initial Cali	bration Summary (continue	d)
2. All CC	CC met Criteria ?	
	Yes	
Comments:		
Calculate	a CCC % RSD	
C. 1. Was th	ne tune for the initial calibra	tion acceptable ?
	Yes	
2. Was th	ne calibration conducted wit	hin 12 hours of the tune
	Yes	
Comments:		
	ssment of the initial calibrat ciated samples) DK	ion:
	<u>:</u>	

Site Name:	Bethpage Park	Laboratory Name: Mi	tkem
Reviewer:	R. Petrella	Date of Review: 8/1/03	
Fraction:	VOA, SVOA		
VI. Con	tinuing Calibration Summary (G0	C/MS)	
Date of Init	ial Calibration: <u>5/29, 6/4, 6/25</u>		
Date of Co	ntinuing Calibration: 6/3, 6/4, 6/2	5, 6/27	File ID:V2F7001, V2F7041, S3C4356, S3C4411
A.	1. All SPCC met criteria?		
	Yes		
Calo	ulate a SPCC RRF		
Comments	<u> </u>		
2. /	All CCC met criteria ?		
	Yes		
Calc	ulate a CCC % D		
Comments	<u> </u>		
	Overall assessment of Continuin (list associated samples)	ng Calibration	

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 8/1/03	
Fraction:	VOA, SVOA	-	
VIII. Inter	rnal Standard Area Summary (0	GC/MS)	
Were all in	ternal standard peak areas with	nin the contract limits?	
		Yes	
If No, pleas	se note below		
<u>Sample</u>	Internal Standard <u>Outside Limits</u>	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer: R. Petrella	<u> </u>	Date of Review:8/1/03	
Fraction: VOA, SVO	OA, PCB		
IX. Blank Summary	′		
Date/Time of Analysis:		Fi	le ID:
<u>Compound</u>	Concentration	< CROL	<u>Comments</u>
Methylene chloride 4 was detected in VBLK2H	ppb		MeCl2 results for all associated samples have been qualified as nondetect
List the samples assoc	ciated with this meth	od blank.	
PCB blanks were clear	n		
SVOA blank clean			

Site Name:	Bethpage Park	Laboratory Name: Mitken	1
Reviewer:	R. Petrella	Date of Review: <u>8/1/03</u>	
Fraction:	VOA, SVOA, PCB	_	
X. Surr	rogate Recovery Summary		
Were all su	urrogate recoveries within the contract	limits?	
		Yes*	
If No, pleas	se note below.		
<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park	Laboratory Name:Mitkem			
Reviewer: R. Petrella	Date of Review: 8/1/03			
Fraction: VOA, SVOA,PCB				
XI. Matrix Spike/Matrix Spike Duplication Summary				
Sample ID: <u>B18(12-14)</u> , b16(2-4) PCB or	nly Matrix:SOIL			
Did the MS/MSD recovery data meet the contract recommended requirements?				
	Yes			
If No, please note below.				
SVOA 2 of 120 spike recoveries were slightly below limits but all RPD's were in limits so no action required				
VOA 6 of 96 spike recoveries were outside limits but all RPD ok, no action required				
PCB recoveries were within limits for both MS/MSDs				
	•			

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review: 8/1/03

I. Holding times

Sample	Date	Date	Date	Holding Time
<u>Sample</u> B5(8-10)	<u>Received</u> 5/30/03	<u>Digested</u>	<u>Analyzed</u> 6/4	Exceeded? NO
B5(10-12)	5/30/03		6/4	NO
B5(12-14)*	5/30/03		6/4	NO
B5(14-16)	5/30/03		6/4	NO
B5(16-18)	5/30/03		6/4	NO
B5(18-20)	5/30/03		6/4	NO
B5(20-22)*	5/30/03		6/4	NO
B8(0-2)	5/30/03		6/4	NO
B8(2"-2')	5/30/03		6/4	NO
B8(2-4)	5/30/03		6/4	NO
B8(4-6)	5/30/03		6/4	NO
B8(6-8)	5/30/03		6/4	NO
B8(8-10)	5/30/03		6/4	NO
B8(10-12)*	5/30/03		6/4	NO
B16(0-2)	5/30/03		6/4	NO
B16(2"-2')	5/30/03		6/4	NO
B16(2-4)	5/30/03		6/4	NO
B16(4-6)	5/30/03		6/4	NO
B16(6-8)	5/30/03		6/4	NO
B16(8-10)	5/30/03		6/4	NO
B16(10-12)	5/30/03		6/4	NO
B16(12-14)	5/30/03		6/4	NO
B16(14-16)*	5/30/03		6/4	NO
B18(0-2)	5/30/03		6/4	NO
B18(2-4)*	5/30/03		6/4	NO
B18(2"-2')	5/30/03		6/4	NO
B18(4-6)	5/30/03		6/4	NO

B18(6-8)	5/30/03	6/4	NO	
B18(8-10)	5/30/03	6/4	NO	
B18(10-12)	5/30/03	6/4	NO	
B18(12-14)* **	5/30/03	_		
* sample run	Other samples run ** Run as	6/4	NO	
for, TAL Metals for Ppmetals and hex MS/MSD				
and hex Cr	CR			

Site Name	e: Bethpage Park	Laboratory Name: Mitkem
Reviewer	R. Petrella	Date of Review: 8/1/03
Associate	d Samples:	
II. Initia	al Calibration	
1.	Were all initial instrument calibrat Yes	ions performed?
Con	nments:	
	Were the initial calibration verification specified frequency? Yes	ation standards analyzed at the contract
Con	nments:	
3.	Were the initial calibration results	within the control limits listed below?
	For tin and mercury: 80-120% of For all other metals: 90-110% of	
	Yes	
	If "No", note analytes	

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella Associated Samples:			Date of Review: 8/1/03
III.		ntinuing Calibration	
	1.	Were the continuing calibration versions specified frequency? Yes	erification standards analyzed at the contract
	Cor	mments:	
	2.	Were the continuing calibration re	esults within the control limits listed below?
		For tin and mercury: 80-120% of For all other metals: 90-110% of the second sec	
	I£ "N	Yes	
	IT T	No", note analytes	

Site N	Name: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer: R. Petrella	Date of Review:8/1/03
IV.	 Blank Summary A. Method Blanks 1. Was a method blank prepared a frequency?	nd analyzed at the contract specified CRDL in the method blank?
	Yes Comments:	
	B. <u>Calibration Blanks</u>1. Were all initial and continuing caspecified frequency/Yes	llibration blanks analyzed at the contract
	2. Were all the analytes below the Yes	CRDL in all the calibration blanks?
	Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
B18(12-14), B16(2-4)	
V. Duplicate Analysis	
Was a duplicate prepared and and Yes	alyzed at the contract specified frequency?
Comments:	
Were control limits for the relative analyte?	e percent differences (RPD) met for each
No)
Comments: B16(2-4) 3 RPDs out Ca, Pb, Zn all RPDs	for B18(12-14) were within limits

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
B18(12-14), b16(2-4)	
VI. Matrix Spike Analysis	
 Was a matrix spike prepared and Yes 	analyzed at the contract specified frequency?
Comments:	
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits
Yes	
Sb slightly out in If "No", note analytes metals out post	n B18(12-14), post digest spike ok, B16(2-4) 2 digest spike ok.

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer:	R. Petrella	Date of Review: 8/1/03
VII.	ICP	Interference Check Sample Sum	mary
	1.	Was the ICP serial dilution analyz	zed at the contract specified frequency?
	Com	nments:	
	2.	Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of
	Com	nments:	
		frequency for the analytes require	ard analyzed at the contract specified ed?
		Yes	
	Com	nments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
VII. ICP Interference Check Sample Sum	mary (continued):
4. Was the ICP interference check frequency:	sample analyzed at the contract specified
Yes	
Comments:	
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	nin the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
Comments: SDG B0985 – 7 soils samples run for PCB, RCRA metals and he SVOA,PCB, TAL metals and hex chrom all	ex chrom, sample MW1(10-12) run for VOA, lso MW-1(2"-2') run for TAL metals

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D.	Received	Extracted	<u>Analyzed</u>	Exceeded?
MW1(0-2)	5/31/03	6/13	6/19-7/10	No
MW-1(2"-2")	5/31/03	6/13	6/19-7/10	No
MW-1(2-4)	5/31/03	6/13	6/19-7/10	No
MW-1(4-6)	5/31/03	6/13	6/19-7/10	No
MW-1(6-8)	5/31/03	6/13	6/19-7/10	No
MW-1(8-10)	5/31/03	6/13	6/19-7/10	No
MW-1(10-12)*	5/31/03	6/11, 6/13	6/3, 6/25, 6/19- 7/10	No

Site Name: Bethpage Park	Laboratory Name: <u>Mitkem</u>	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V2F6930	YES	INITIAL
2. V2F7000A	YES	SAMPLES
3.		
4.		
5. S3C4347	YES	INITIAL
6. S3C4355	YES	SAMPLES
7.		
8.		
9.		
10.		
11.		

Site Name:	Bethpage Park	Laboratory Name: Mi	tkem
Reviewer:	R. Petrella	Date of Review: 7/3	30/03
Fraction:	VOA, SVOA		
IV. Initia	al Calibration Summary (GC/MS)		
Date of Ca	libration: <u>5/29, 6/25</u>		
	Standard Data Files	250 Const	F 10
	Standard 1 ID: <u>V2F6932</u> , S3C43		5, 10
	Standard 2 ID: <u>V2F6935</u> , S3C43		20, 50
	Standard 3 ID: <u>V2F6931, S3C43</u>		50, 80
	Standard 4 ID: <u>V2F6934</u> , S3C43		100, 120
	Standard 5 ID: <u>V2F6933, S3C43</u>	349 Conc:	200, 160
В.	1. All SPCC met Criteria ?		
	Yes		
	2. Calculate a SPCC average F	RRF	
Con	nments:		

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Fraction: VOA, SVOA	Date of Calibration: 5/29, 6/25
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria ?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted w	ithin 12 hours of the tune
Yes	
Comments:	
Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	ation:

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella		Date of Review: 7/30/03	
Fraction:	VOA, SVOA		
VI. Con	tinuing Calibration Summary (GC	C/MS)	
Date of Initi	ial Calibration:5/29, 6/25		
Date of Co	ntinuing Calibration: 6/3, 6/25	File ID:V2F7001, S3C4356	
A.	All SPCC met criteria ?		
	Yes		
Calc	ulate a SPCC RRF		
Comments	:		
2. /	All CCC met criteria ?		
	Yes		
Calculate a CCC % D			
Comments	: Carbon tetrachloride slightly aborequired	ove limits, but less than 40%, no action	
	Overall assessment of Continuin (list associated samples)	g Calibration	

Site Name:	Bethpage Park	_ Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: <u>7/30/03</u>	
Fraction:	VOA, SVOA	_	
VIII. Inter	nal Standard Area Summary ((GC/MS)	
Were all int	ternal standard peak areas wit	hin the contract limits?	
		Yes	
If No, pleas	se note below		
<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name:	Bethpage	Park	Laboratory Name:	Mitkem
Reviewer:	R. Petrella		Date of Review:	7/30/03
Fraction:	VOA, SVC	A, PCB		
IX. Blan	ık Summary	,		
Date/Time Analysis:	of -		File	ID:
<u>Compound</u>		Concentration	< CROL	<u>Comments</u>
List the san	nples assoc	ciated with this meth	od blank.	
VOA,SVO	A and PCB	blanks were clean		

Site Name:	Bethpage Park	Laboratory Name: Mitkem
Poviower:	D. Dotrollo	Date of Review: 7/30/03
Reviewer:	R. Fellella	Date of Review. 1730/03
Fraction:	VOA, SVOA, PCB	
		alysis protocol allows 1 surrogate recovery per fraction to C limits as long as it is >10%.
X. Surr	ogate Recovery Summary	
Were all su	irrogate recoveries within the	contract limits ?
		Yes*
If No, pleas	se note below.	
Sample	Surrogate Compou Outside Recovery L	

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA,PCB		
XI. Matrix Spike/Matrix Spike Duplication	on Summary	
Sample ID: MW1(10-12)	Matrix: SOIL	
Did the MS/MSD recovery data meet the contract recommended requirements ?		
	Yes	
If No, please note below.		

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review:7/30/03	

I. Holding times

Sample	Date Received	Date Digested	Date Analyzed	Holding Time Exceeded?
MW1(0-2)	5/31/03	<u>Digooloa</u>		
` ,			6/10-6/11	NO
MW-1(2"-2')*	5/31/03		6/10-6/11	NO
MW-1(2-4)	5/31/03		6/10-6/11	NO
MW-1(4-6)	5/31/03		6/10-6/11	NO
MW-1(6-8)	5/31/03		6/10-6/11	NO
MW-1(8-10)	5/31/03		6/10-6/11	NO
MW-110-12)*	5/31/03		6/10-6/11	NO

* TAL METALS, OTHERS PP METALS

Site Name	e: Bethpage Park	Laboratory Name: Mitkem
Reviewer	R. Petrella	Date of Review: 7/30/03
Associate	d Samples:	
II. Initia	al Calibration	
1.	Were all initial instrument calibrat Yes	ions performed?
Con	nments:	
	Were the initial calibration verification specified frequency? Yes	ation standards analyzed at the contract
Con	nments:	
3.	Were the initial calibration results	within the control limits listed below?
	For tin and mercury: 80-120% of For all other metals: 90-110% of	
	Yes	
	If "No", note analytes	

Site Na	me: Bethpage Park	Laboratory Name: Mitkem		
	er: R. Petrella	Date of Review: 7/30/03		
	ontinuing Calibration			
1.	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes			
С	omments:			
2.	Were the continuing calibration re	sults within the control limits listed below?		
	For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value			
lf	Yes "No", note analytes			

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem			
Reviewer: R. Petrella		R. Petrella	Date of Review: 7/30/03			
IV.	,					
	Α.	Method Blanks				
	 Was a method blank prepared and analyzed at the contract specified frequency? 					
		Yes				
	2.	Were all the analytes below the C	RDL in the method blank?			
	Yes					
	Coı	mments:				
	В.	Calibration Blanks				
	 Were all initial and continuing calibration blanks analyzed at the contract specified frequency/ 					
		Yes				
	2.	Were all the analytes below the C	RDL in all the calibration blanks?			
		Yes				
	Coı	mments:				

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review:7/30/03	
MW1(10-12)		
V. Duplicate Analysis		
Was a duplicate prepared and and Yes	alyzed at the contract specified frequency?	
Comments:		
Were control limits for the relative analyte?	percent differences (RPD) met for each	
No		
Comments: 2 analytes had RPD out of limits		

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park			Laboratory Name:Mitkem
Revi	ewei	r: R. Petrella	Date of Review: <u>7/30/03</u>
MW	1(10-	-12)	
VI. Matrix Spike Analysis			
Was a matrix spike prepared and analyzed at the contract specified frequency Yes			
	Со	mments:	
 Were the matrix spike recoveries within the contract specified control lir (75-125%)? 			spike recoveries within the contract specified control limits
		Yes	
Sb HAD %R 699 If "No", note analytes			Sb HAD %R 69%. Post digest spike ok

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem				
Reviewer: R. Petrella	Date of Review: 7/30/03				
VII. ICP Interference Check Sample Sum	mary				
Was the ICP serial dilution analy. Yes					
Comments:					
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of				
Comments:					
3. Was the ICP CRDL check standa frequency for the analytes require	ard analyzed at the contract specified ed?				
Comments:					

Site Name: Bethpage Park	Laboratory Name: Mitkem			
Reviewer: R. Petrella	Date of Review: 7/30/03			
VII. ICP Interference Check Sample Sum	mary (continued):			
Was the ICP interference check sample analyzed at the contract specified frequency:				
Yes				
Comments:				
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of			
Yes				
If "No", not analytes	If "No", not analytes			

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?	
Comments:		
9		
Were the percent recoveries with and Sb) for each analyte?	nin the control limits of 80-120% (except for Ag	
Yes		
Comments:		

Site Name: Bethpage Park	Laboratory Name:Mitkem	
Reviewer: R. Petrella	Date of Review:8/1/03	
I. Data Deliverable Requirements		
A. Legible	Yes	
B. Paginated	Yes	
C. Arranged in order	Yes	
D. Consistent dates	Yes	
E. Case Narrative	Yes	
F. Chain-of-Custody Record	Yes	
G. Sample Data Complete	Yes	
H. Standard Date Complete	Yes	
I. Raw QC Data Complete	Yes	
Comments: <u>SDG B0987 – 35 soils</u> shallow samples run for PCB, RCRA meta VOA, SVOA, TAL metals and hex chrom	als and hex chrom, deeper samples run for	
VOA run 6/5-6/13		
SVOA ext 6/13 re-extract of b7(12-14) on		
PCB extracted 6/13 run 6/20-7/17	0/30, 1411 0/23-1/ 1	
1 OB extracted 0/13 full 0/20-1/17		
. , ,	re-extracted out of hold due to all surrogate extract, data from the re-extract is considered	
Sample B4(10-12) was mis-labeled in the	field as B4(12-14)	
Several of the soil samples (b7(6-8), B7(8-analyzed at medium level for volatile analy	-10), B7(10-12), B7(12-14), B7(16-18) were vsis	

Site Name: Bethpage Park	Laboratory Name:Mitkem

Reviewer: R. Petrella Date of Review: 8/1/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B4(8-10)	Received 6/3/03	Extracted 6/13	<u>Analyzed</u> 6/5-7/17	Exceeded?
B4(10-12)*	6/3/03	6/13	6/5-7/17	no
B3(12-14)*	6/3/03	6/13	6/5-7/17	no
B7(0-2)	6/3/03	6/13	6/5-7/17	no
B7(2"-2')	6/3/03	6/13	6/5-7/17	no
B7(2-4)*)	6/3/03	6/13	6/5-7/17	no
B7(4-6)	6/3/03	6/13	6/5-7/17	no
B7(6-8))*	6/3/03	6/13	6/5-7/17	no
B7(8-10)* **	6/3/03	66133	6 <i>68 5</i> 771177	n o o
B7(10-12)*	6/3/03	6/13	6/5-7/17	no
B7(12-14)*	6/3/03	6/13	6/5-7/17	no
B7(14-16)	6/3/03	6/13	6/5-7/17	no
B7(16-18)*	6/3/03	6/13	6/5-7/17	no
B7(18-20)	6/3/03	6/13	6/5-7/17	no
B7(20-22)	6/3/03	6/13	6/5-7/17	no
B7(22-24)*	6/3/03	6/13	6/5-7/17	no
B21(0-2)	6/3/03	6/13	6/5-7/17	no
B21(2"-2")	6/3/03	6/13	6/5-7/17	no
B21(2-4)	6/3/03	6/13	6/5-7/17	no
B21(4-6)	6/3/03	6/13	6/5-7/17	no
B21(6-8)	6/3/03	6/13	6/5-7/17	no
B21(8-10)	6/3/03	6/13	6/5-7/17	no
B21(10-12)*	6/3/03	6/13	6/5-7/17	no
B15(0-2)	6/3/03	6/13	6/5-7/17	no
B15(2-4)	6/3/03	6/13	6/5-7/17	no

B15(2"-2')	6/3/03	6/13	6/5-7/17	no
B15(4-6)	6/3/03	6/13	6/5-7/17	no
B15(6-8)	6/3/03	6/13	6/5-7/17	no
B15(8-10)	6/3/03	6/13	6/5-7/17	no
B15(10-12)*	6/3/03	6/13	6/5-7/17	no
B10(0-2)	6/3/03	6/13	6/5-7/17	no
B10(2"-2')	6/3/03	6/13	6/5-7/17	no
B10(2-4)	6/3/03	6/13	6/5-7/17	no
B10(4-6)	6/3/03	6/13	6/5-7/17	no
B10(6-8)	6/3/03	6/13	6/5-7/17	no
B10(10-12)* **	6/3/03	6/13	6/5-7/17	no
B10(8-10)	6/3/03	6/13	6/5-7/17	no
* sample run for VOA, SVOA, PCB, TAL Metals and hex Cr	Other samples run for PCB, Ppmetals and hex CR	** Run as MS/MSD		

tory Name: <u>Mitkem</u>
of Review:8/1/03

III. Tune Summary

Tune File I.D. Number	Acceptable ?	Comments
1. V2F7040	YES	INITIAL
2. V2F7070	YES	SAMPLES
3. V2F7130	YES	INITIAL
4. V2F7140	YES	SAMPLES
5. V6C7300	YES	INITIAL-MEDIUM LEVEL
6. V6C7380	YES	SAMPLES- MED
7. V6C7410	YES	SAMPLES - MED
8.		
9. S1D6435	YES	INITIAL
10. S1D6530	YES	SAMPLES
11. S1D6575	YES	INITIAL
12. S1D6538	YES	SAMPLES
13. S3C4347	YES	INITIAL
14. S3C4470	YES	RE-EXTRACT
15. S3C4492	YES	DILUTION
16.		
17.		
18.		
19.		

Site Name: Bethpage Park		Laboratory Name: Mitkem			
Reviewer: <u>I</u>	Reviewer: R. Petrella		Date of Review:8/1/03		
Fraction: VOA, SVOA					
IV. Initial Calibration Summary (GC/MS)					
Date of Calibration: 6/4,6/8, 6/10, 6/20, 6/25, 6/25					
A. S	Standard Data	Files			
S	Standard 1 ID:	V2F7046, V2F7 V6C7302, S1D6 S1D6578, S3C4	6438,	Conc:	5, 10
S	standard 2 ID:	V2F7045, V2F7 V6C7305, S1D0 S1D6576, S3C4	6437,	Conc:	20, 50
S	standard 3 ID:	V2F7041, V2F7 V6C7301, S1D0 S1D6580, S3C4	6441,	Conc:	50, 80
S	standard 4 ID:	V2F7044, V2F7 V6C7304, S1D0 S1D6579, S3C4	6442,	Conc:	100, 120
S	standard 5 ID:	V2F7043, V2F7 V6C7303, S1D6 S1D6577, S3C4	6436,	Conc:	200, 160
B. 1. All SPCC met Criteria ?					
		Yes			
2. Calculate a SPCC average RRF					
Comments:					

Site Name: Be	ethpage Park	Laboratory Name:Mitkem
Reviewer: R.	Petrella	Date of Review: 8/1/03
Fraction: VC	DA, SVOA	Date of Calibration: 6/4, 6/8, 6/10, 6/20, 6/25, 6/25
IV. Initial C	alibration Summary (continued)
2. All (CCC met Criteria ?	
	Yes	
Comments:		
Calcula	te a CCC % RSD	
C. 1. Was	s the tune for the initial calibration	on acceptable ?
	Yes	
2. Was	s the calibration conducted with	in 12 hours of the tune
	Yes	
Comments:		
	sessment of the initial calibrationsociated samples)	on:

Site Name: Bethpage Park		Laboratory Name: Mitkem		
Reviewer: R. Petrella		Date of Review: 8/1/03		
Fraction:	VOA, SVOA			
VI. Cont	inuing Calibration Summary (GC	C/MS)		
Date of Initia	al Calibration: <u>6/4,6/8, 6/10, 6/20</u>	, 6/25, 6/25		
Date of Cor	ntinuing Calibration: 6/5, 6/8, 6/1 7/1	2, 6/13, 6/25, 6/30,	File ID:V2F7071, V2F7141, V6C7381, V6C7411, S1D6531, S1D6584 S3C4471, S3C4494	
A.	1. All SPCC met criteria ?			
	Yes			
Calcu	ulate a SPCC RRF			
Comments:				
2. <i>A</i>	All CCC met criteria ?			
	Yes			
Calcu	ulate a CCC % D			
Comments: Carbon tetrachloride slightly above limits, but less than 40%, no action required				

B. Overall assessment of Continuing Calibration (list associated samples)

ok

|--|

Reviewer: R. Petrella Date of Review:8/1/03

Fraction: VOA, SVOA

VIII. Internal Standard Area Summary (GC/MS)

Were all internal standard peak areas within the contract limits?

Yes – voa, No-Svoa

If No, please note below

<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	<u>Comments</u>
B7(16-18)	CRY		Sample not reanalyzed
B7(2-4)	PRY		Sample not reanalyzed
B7(6-8)	CRY, PRY		Sample not reanalyzed

Site Name: Bethpage Park	Laboratory Name:Mitkem	
Reviewer: R. Petrella	Date of Review:8/1/03	
Fraction: VOA, SVOA, PCB	·	
IX. Blank Summary		
Date/Time of Analysis:	File ID:	
<u>Compound</u> <u>Concentration</u>	< CROL Comments	
Methylene chloride 2 ppb, 2 ppb, was detected in VBLK2I, VBLK2L	MeCl2 results for all associated samples have been qualified as non-detect	
List the samples associated with this meth	nod blank.	
PCB blanks were clean	_	
SVOA blank clean		

Site Name:	Bethpage Park	Laboratory Name:Mitker	n
Reviewer:	R. Petrella	Date of Review:8/1/03	1
Fraction:	VOA, SVOA, PCB		
	For SVOA fraction QC limits as long a	protocol allows 1 recovery per fas it is >10%.	raction to be outside
X. Surr	ogate Recovery Summary		
Were all su	rrogate recoveries within the contr	ract limits ?	
		Yes*	
If No, pleas	e note below.		
Sample	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park	Laboratory Name:Mitkem		
Reviewer: R. Petrella	Date of Review: 8/1/03		
Fraction: VOA, SVOA,PCB	_		
XI. Matrix Spike/Matrix Spike Duplicat	ion Summary		
Sample ID: B10(10-12), B7(8-10) – med level	d Matrix: SOIL		
Did the MS/MSD recovery data meet the contract recommended requirements ?			
	Yes		
If No, please note below.			
SVOA 2 of 120 spike recoveries were slightly below limits but all RPD's were in limits so no action required, for B7(8-10) 16 of 120 spike recoveries and 4 of 60 RPDs were outside QC limits			
VOA several spike recoveries were outsi	de limits but all RPD ok, no action required		
PCB recoveries were within limits for B10 recoveries were out but RPDs were within	(10-12), BUT rpdS OUT. For B7(8-10) all n limits.		
Blank spikes were run for all fractions wit	h recoveries within limits		

Site Name: Bethpage Park	Laboratory Name:Mitkem	

Reviewer: R. Petrella Date of Review: 8/1/03

I. Holding times

<u>Sample</u>	Date <u>Received</u>	Date <u>Digested</u>	Date <u>Analyzed</u>	Holding Time Exceeded?
B4(8-10)	6/3/03	<u>g</u>	6/6	NO
B4(10-12)*	6/3/03		6/6	NO
B3(12-14)*	6/3/03		6/6	NO
B7(0-2)	6/3/03		6/6	NO
B7(2"-2')	6/3/03		6/6	NO
B7(2-4)*)	6/3/03		6/6	NO
B7(4-6)	6/3/03		6/6	NO
B7(6-8))*	6/3/03		6/6	NO
B7(8-10)*	6/3/03		6/6	NO
B7(10-12)*	6/3/03		6/6	NO
B7(12-14)*	6/3/03		6/6	NO
B7(14-16)	6/3/03		6/6	NO
B7(16-18)*	6/3/03		6/6	NO
B7(18-20)	6/3/03		6/6	NO
B7(20-22)	6/3/03		6/6	NO
B7(22-24)*	6/3/03		6/6	NO
B21(0-2)	6/3/03		6/6	NO
B21(2"-2')	6/3/03		6/6	NO
B21(2-4)	6/3/03		6/6	NO
B21(4-6)	6/3/03		6/6	NO
B21(6-8)	6/3/03		6/6	NO
B21(8-10)	6/3/03		6/6	NO
B21(10-12)*	6/3/03		6/6	NO
B15(0-2)	6/3/03		6/6	NO
B15(2-4)	6/3/03		6/6	NO
B15(2"-2")	6/3/03		6/6	NO
B15(4-6)	6/3/03		6/6	NO

B15(6-8)	6/3/03	6/6	NO
B15(8-10)	6/3/03	6/6	NO
B15(10-12)*	6/3/03	6/6	NO
B10(0-2)	6/3/03	6/6	NO
B10(2"-2")	6/3/03	6/6	NO
B10(2-4)	6/3/03	6/6	NO
B10(4-6)	6/3/03	6/6	NO
B10(6-8)	6/3/03	6/6	
B10(10-12)*	6/3/03	6/6	
B10(8-10)	6/3/03	6/6	

^{*} sample run for Other samples run TAL Metals and for Ppmetals and hex hex Cr CR

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:8/1/03
Associated Samples:	_
II. Initial Calibration	
1. Were all initial instrument calibra	tions performed?
Yes	
Comments:	
Were the initial calibration verific specified frequency?	ation standards analyzed at the contract
Yes	
Comments:	
3. Were the initial calibration results	s within the control limits listed below?
For tin and mercury: 80-120% of For all other metals: 90-110% of	
Yes	
If "No", note analytes	

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem	
		: R. Petrella	Date of Review: 8/1/03	
III.		ntinuing Calibration		
	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes			
	Coi	mments:		
	2.	Were the continuing calibration re	esults within the control limits listed below?	
	For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value			
		Yes		
	If "N	No", note analytes		

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem	
Revie	ewer	R. Petrella	Date of Review: 8/1/03	
IV.		nk Summary		
	Α.	Method Blanks		
	1.	Was a method blank prepared an frequency?	d analyzed at the contract specified	
		Yes		
	2.	Were all the analytes below the C	RDL in the method blank?	
		Yes		
	Coı	mments:		
	В.	Calibration Blanks		
	1.	Were all initial and continuing cali specified frequency/	bration blanks analyzed at the contract	
		Yes		
	2.	Were all the analytes below the C	RDL in all the calibration blanks?	
		Yes		
	Coı	mments:		

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
B10(10-12), B7(8-10)	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
No	
Comments: B10(10-12) 5 RPDs out . B7(8-10) 4 ANAL	YTES WERE OUTSIDE LIMITS

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site N	lam	e: <u>Bethpage Park</u>	Laboratory Name: Mitkem
Revie	wer	R. Petrella	Date of Review: 8/1/03
•		2), B7(8-10) rix Spike Analysis	
	1.	Was a matrix spil	ke prepared and analyzed at the contract specified frequency?
	Cor	nments:	
	2.	Were the matrix (75-125%)?	spike recoveries within the contract specified control limits
		Yes	
	lf "N	lo", note analytes	B10(10-12) all recoveries ok, B7(8-10) Sb and Pb outside limits – post digest spike run Pb ok Sb had a %R of 4.1%

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:8/1/03
VII. ICP Interference Check Sample Sum	nmary
 Was the ICP serial dilution analy Yes 	zed at the contract specified frequency?
Comments:	
2. Were the serial dilution difference =w 10%? Yes	es within the contract specified limits of
Comments:	
3. Was the ICP CRDL check stands frequency for the analytes require Yes	ard analyzed at the contract specified ed?
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
VII. ICP Interference Check Sample Sum 4. Was the ICP interference check s	mary (continued): sample analyzed at the contract specified
frequency: Yes	
Comments:	
5. Were the ICP interference check <u>+</u> 20% of the mean value?	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:8/1/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
2. Were the percent recoveries with and Sb) for each analyte? Yes	nin the control limits of 80-120% (except for Ag
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella Date of Review: 7/29/03		
I. Data Deliverable Requirements		
A. Legible	Yes	
B. Paginated	Yes	
C. Arranged in order	Yes	
D. Consistent dates	Yes	
E. Case Narrative	Yes	
F. Chain-of-Custody Record	Yes	
G. Sample Data Complete	Yes	
H. Standard Date Complete	Yes	
I. Raw QC Data Complete	Yes	
Comments: SDG B0996 – 37 soils shallow samples run for PCB, RCRA metal VOA, SVOA, TAL metals and hex chrom	s and hex chrom, deeper samples run for	
Non run C/O C/A2 halding times als		
Voa run 6/8-6/13 holding times ok		
Svoa extracted 6/14 holding time ok	- 4.4 days for CVV 0.40	
Pcb extracted 6/14, 6/16 holding time within	n 14 days for Svv-846	
VOA sample B19(8-10) was not reanalyzed qualified as estimated.	d at a secondary dilution for acetone, result	

Site Name: Bethpage Park	Laboratory Name:Mitkem

Reviewer: R. Petrella Date of Review: 7/29/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B20(8-10)	Received 6/4/03	Extracted 6/14, 6/16	<u>Analyzed</u> 6/8-6/13	Exceeded? No
B20(10-12)	6/4/03	6/14, 6/16	6/8-6/13	No
B2012-14)*	6/4/03	6/14, 6/16	6/8-6/13	No
B20(14-16)	6/4/03	6/14, 6/16	6/8-6/13	No
B20(16-18)	6/4/03	6/14, 6/16	6/8-6/13	No
B20(18-20)	6/4/03	6/14, 6/16	6/8-6/13	No
B20(22.5-24)	6/4/03	6/14, 6/16	6/8-6/13	No
B20(24-26)	6/4/03	6/14, 6/16	6/8-6/13	No
B20(6-8)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(28-30)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(8-10)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(10-12)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(12-14)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(16-18)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(18-20)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(22-24)	6/4/03	6/14, 6/16	6/8-6/13	No
B19 (24-26)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(26-27)	6/4/03	6/14, 6/16	6/8-6/13	No
B19(27-28)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(22-24)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(24-26)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(0-2)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(22)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(2-4)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(4-6)	6/4/03	6/14, 6/16	6/8-6/13	No

B17(6-8)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(8-10)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(10-12)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(12-14)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(14-16)*	6/4/03	6/14, 6/16	6/8-6/13	No
B17(16-18)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(18-20)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(20-22)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(30-32)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(32-34)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(34-36)	6/4/03	6/14, 6/16	6/8-6/13	No
B17(28-30)	6/4/03	6/14, 6/16	6/8-6/13	No
*MS/MSD				

^{*}MS/MSD

^{*}Voa, SVOA PCB Tal metals, hex cr, others PCB, PP metals and Hex cr

Site Name	: Bethpage Park	Laboratory Name:Mitkem	
Reviewer:	R. Petrella	Date of Review:7/29/03	
Fraction:	VOA, SVOA	_	

III. Tune Summary

Tune File I.D. Number	Acceptable ?	Comments
1. V2F7130	YES	INITIAL
2. V2F7140	YES	SAMPLES
3. V2F7170	YES	SAMPLES
4. V2F7230	YES	SAMPLES
5. V2F7260A	YES	SAMPLES
6. V2F7290	YES	SAMPLES
7.		
8.		
9. S1D6435	YES	INITIAL
10. S1D6554	YES	SAMPLES
11. S1D6575	YES	INITIAL
12. S1D6606	YES	SAMPLES
13. S1D6657	YES	INITIAL
14. S1D6665	YES	SAMPLES
<u>15.</u>		

Site Name	: Bethpage Park	(Laboratory I	Name: <u>Mi</u>	tkem
Reviewer:	Reviewer: R. Petrella		Date of Review: 7/29/03		
Fraction: VOA, SVOA					
IV. Initia	al Calibration Su	ummary (GC/MS)			
Date of Ca	libration: 6/8/03 6/25, 6				
A.	Standard Data	Files			
	Standard 1 ID:	V2F7137, S1D6 S1D6578, S1D6		Conc:	5, 10
	Standard 2 ID:	V2F7134, S1D6 S1D6576, S1D6		Conc:	20, 50
	Standard 3 ID:	V2F7131, S1D6 S1D6580, S1D6		Conc:	50, 80
	Standard 4 ID:	V2F7133, S1D6 S1D6579, S1D6	•	Conc:	100, 120
	Standard 5 ID:	V2F7132, S1D6- S1D6577, S1D6	•	Conc:	200, 160
B.	1. All SPCC n	net Criteria ?			
		Yes			
2. Calculate a SPCC average RRF					
Con	nments:				

Site Name: Bethpage Park	Laboratory Name: <u>Mitkem</u>
Reviewer: R. Petrella	Date of Review: 7/29/03
Fraction: VOA, SVOA	Date of Calibration: 6/8/03, 6/20, 6/25, 6/28
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	ithin 12 hours of the tune
Yes	
Comments:	
D. Overall assessment of the initial calibra (list the associated samples)CALIBRATION OK	ation:

Site Name: Bethpage Park		Laboratory Name: Mitkem		
Reviewer:	R. Petrella	Date of Review: 7/2	9/03	
Fraction:	VOA, SVOA			
VI. Con	tinuing Calibration Summary (G	C/MS)		
Date of Init	ial Calibration: <u>6/8/03, 6/20, 6/25</u>	5, 6/28		
Date of Co	ntinuing Calibration: 6/8, 6/9, 6/ ⁻ 6/26, 6/30	11, 6/12, 6/13,6/24,	File ID:V2F7141, V2F7171, V2F7231A, V2F7261, V2F7292 S1D6555, S1D6607, S1D6666	
A.	1. All SPCC met criteria?			
	Yes	3		
Calc	culate a SPCC RRF			
Comments	:			
2	All CCC met criteria ?			
	Yes	3		
Calc	culate a CCC % D			
Comments	: Carbon tetrachloride slightly ab required	pove limits, but less than	n 40%, no action	

B. Overall assessment of Continuing Calibration (list associated samples)

ok

Site Name	: Bethpage Park	_ Laboratory Name	:Mitkem	
Reviewer:	R. Petrella	Date of Review	:7/29/03	
Fraction:	VOA, SVOA	-		
VIII. Inte	rnal Standard Area Summary (GC/MS)		
Were all in	ternal standard peak areas with	nin the contract limit	s ?	
		Yes	NO*	
If No, pleas	se note below			
	mples had area counts outside andary dilutions with similar res		•	alyzed or
<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	ent <u>Com</u>	<u>ments</u>

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Fraction: VOA, SVOA, PCB	_
IX. Blank Summary	
Date/Time of Analysis:	File ID:
<u>Compound</u> <u>Concentration</u>	< CROL Comments
Methylene chloride 1-4 ppb was detected in all VOA method blanks	MeCl2 results for all associated samples have been qualified as nondetect
Bis-2ethylhexyl 340 ppb phthalate	All concentrations less than 3400 have been qualified as non-detect
List the samples associated with this met	thod blank.
PCB blanks were clean	

Site Name:	Bethpage Park	Laboratory Name:Mi	tkem
Reviewer:	R. Petrella	Date of Review: <u>7/2</u>	29/03
Fraction:	VOA, SVOA, PCB	<u></u>	
	For SVOA analysis pr be outside QC limits a	otocol allows 1 surrogate as long as it is >10%.	recovery per fraction to
X. Surr	ogate Recovery Summary		
Were all su	rrogate recoveries within the contract	limits?	
		Yes*	
If No, pleas	se note below.		
<u>Sample</u> B19(8-10)	Surrogate Compound Outside Recovery Limits DCE	Amount Above Contract Requirement 136	Comments Sample rerun with similar results

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Fraction: VOA, SVOA,PCB	
XI. Matrix Spike/Matrix Spike Duplication	on Summary
Sample ID: <u>B17 (14-16), B20 (12-14)</u>	Matrix:SOIL
Did the MS/MSD recovery data meet the co	ontract recommended requirements ?
,	Yes
If No, please note below.	
SVOA several recoveries were slightly beloaction, qualification of the data is required	ow limits but all RPD's were in limits so no
VOA several recoveries in MSD above limi	ts but RPD ok, no action required
PCB recoveries were high in both MS/MSE) but RPD ok

Site Name: <u>Beth</u>	page Park	Laborato	ory Name: <u>Mitkem</u>	1
Reviewer: R. P	etrella	Date o	f Review: <u>7/29/03</u>	
I. Holding tin	nes			
<u>Sample</u>	Date <u>Received</u>	Date <u>Digested</u>	Date <u>Analyzed</u>	Holding Time Exceeded?

6/14-18 NO

Same as

organic list

6/12/03

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Associated Samples:	
II. Initial Calibration	
Were all initial instrument calibrate Yes	tions performed?
Comments:	
specified frequency?	ation standards analyzed at the contract
Yes Comments:	
2 Mare the initial calibration requile	within the control limits listed below?
For tin and mercury: 80-120% of	
For all other metals: 90-110% of Yes	tne true value
If "No", note analytes	

Site I	Nam	e: Bethpage Park	Laboratory Name: Mitkem
		: R. Petrella	Date of Review: 7/29/03
III.		ntinuing Calibration	
	1.	Were the continuing calibration versions specified frequency? Yes	erification standards analyzed at the contract
	Cor	mments:	
	2.	Were the continuing calibration re	esults within the control limits listed below?
		For tin and mercury: 80-120% of For all other metals: 90-110% of the second sec	
	If "N	Yes lo", note analytes	

Site 1	Nam	e: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer	R. Petrella	Date of Review: 7/29/03
IV.	A. 1.	nk Summary Method Blanks Was a method blank prepared an frequency? Yes Were all the analytes below the C	d analyzed at the contract specified RDL in the method blank?
	Cor	Yes mments:	
	В.	Calibration Blanks	
	1.	Were all initial and continuing cali specified frequency/	bration blanks analyzed at the contract
	2.	Were all the analytes below the C	RDL in all the calibration blanks?
	Cor	mments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
B17(14-16), B20(12-14)	
V. Duplicate Analysis	
1. Was a duplicate prepared and and	alyzed at the contract specified frequency?
Yes	
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
No	
Comments:	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
B17(14-16), B20(12-14 VI. Matrix Spike Analysis	
 Was a matrix spik Yes 	ke prepared and analyzed at the contract specified frequency?
Comments:	
2. Were the matrix s (75-125%)?	spike recoveries within the contract specified control limits
Yes	
If "No", note analytes	6 metals had RPD out of limits Sb, Cr, Cu in B17(14-16) Cd and Cr out in B20(12-14) post digest spikes were run and recoveries were within limits.

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
VII. ICP Interference Check Sample Sum	mary
Was the ICP serial dilution analy. Yes	zed at the contract specified frequency?
Comments:	
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of
Comments:	
3. Was the ICP CRDL check standa frequency for the analytes require	ard analyzed at the contract specified ed?
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
VII. ICP Interference Check Sample Sum	mary (continued):
 Was the ICP interference check strength 	sample analyzed at the contract specified
Yes	
Comments:	
5. Were the ICP interference check + 20% of the mean value?	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	in the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review:8/4/03		
I. Data Deliverable Requirements			
A. Legible	Yes		
B. Paginated	Yes		
C. Arranged in order	Yes		
D. Consistent dates	Yes		
E. Case Narrative	Yes		
F. Chain-of-Custody Record	Yes		
G. Sample Data Complete	Yes		
H. Standard Date Complete	Yes		
 Raw QC Data Complete 	Yes		
12 samples run for PCB, RCRA metals and SVOA,PCB, TAL metals and hex chrom	d hex chrom, 2 samples run for VOA,		

Site Name: Bethpage Park	Laboratory Name:Mitkem		
Reviewer: R. Petrella	Date of Review:8/4/03		

II. Holding Times

Comple I D	Date	Date	Date	Holding Time Exceeded?
Sample I.D. MW2(0-2)	Received 6/6/03	Extracted 6/17	Analyzed 6/25	NO
MW2(2"-2')	6/6/03	6/17	6/25	
MW2(2-4)	6/6/03	6/17	6/25	
MW2(4-6)	6/6/03	6/17	6/25	
MW2(6-8)	6/6/03	6/17	6/25	
MW2(8-10)	6/6/03	6/17	6/25	
MW2(10-12)* **	6/6/03	6/17	6/13, 6/27, 6/25	
MW3(0-2)	6/6/03	6/17	6/25	
MW3(2"-2")	6/6/03	6/17	6/25	
MW3(2-4)	6/6/03	6/17	6/25	
MW3(6-8)	6/6/03	6/17	6/25	
MW3(8-10)	6/6/03	6/17	6/25	
MW3(10-12)*	6/6/03	6/17	6/12, 6/26, 6/25	
MW3(4-6)	6/6/03	6/17	6/25	
* RUN FOR VOA,SVOA, PCB TALMETALS	OTHERS RUN FOR PCB, PP METALS	** RUN AS MS/MSD		

Site Name:	Bethpage Park	Laboratory Name: Mitkem
Reviewer:	R. Petrella	Date of Review:8/4/03
Fraction:	VOA, SVOA	
III. Tun	e Summary	

Tune File I.D. Number	Acceptable ?	Comments
1. V2F7130	YES	INITIAL
2. V2F7260A	YES	SAMPLES
3. V2F7290	YES	SAMPLES
4.		
5. S3C4347	YES	INITIAL
6. S3C4380	YES	SAMPLES
7. S3C4410	YES	BLANK
8.		
9.		
10.		
11.		
12.		
13.		
14.		
15.		

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review: 8/4/03		
Fraction: VOA, SVOA			
IV. Initial Calibration Summary (GC/MS)		
Date of Calibration: <u>6/8, 6/25</u>			
A. Standard Data Files Standard 1 ID: V2F7137, S3C4 Standard 2 ID: V2F7134, S3C4 Standard 3 ID: V2F7131, S3C4 Standard 4 ID: V2F7133, S3C4 Standard 5 ID: V2F7132, S3C4	Conc: 20, 50 Conc: 50, 80 Conc: 100, 120		
B. 1. All SPCC met Criteria ? Yes 2. Calculate a SPCC average			
Comments:			

Site Name: Bethpage Park	Laboratory Name:Mitkem		
Reviewer: R. Petrella	Date of Review: 8/4/03		
Fraction: VOA, SVOA	Date of Calibration: 6/8, 6/25		
IV. Initial Calibration Summary (continue	ed)		
2. All CCC met Criteria ?			
Yes			
Comments:			
Calculate a CCC % RSD			
C. 1. Was the tune for the initial calibration acceptable ?			
Yes			
2. Was the calibration conducted w	ithin 12 hours of the tune		
Yes			
Comments:			
Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	ation:		

Site Name: Bethpage	e Park	Laboratory Name: Mit	kem	
Reviewer: R. Petrel	a	Date of Review: <u>8/4</u>	/03	
Fraction: VOA, SV	OA			
VI. Continuing Ca	libration Summary (G	C/MS)		
Date of Initial Calibra	tion:6/8, 6/25			
Date of Continuing C	Date of Continuing Calibration: 6/12, 6/13, 6/26, 6/27 File ID:V2F7261, V2F7262 S3C4381, S3C4411			
A. 1. All S	SPCC met criteria ?			
	Yes	;		
Calculate a SF	PCC RRF			
Comments:	Comments:			
2. All CCC met criteria ?				
	Yes	;		
Calculate a CCC % D				
Comments: Carbon tetrachloride slightly above limits, but less than 40%, no action required				
	sessment of Continuii iated samples)	ng Calibration		

Site Name: I	Bethpage Park	Name: Mitken	1
Reviewer: <u>I</u>	R. Petrella	Date of Review: 8/4/03	
Fraction:	VOA, SVOA	-	
VIII. Intern	nal Standard Area Summary (GC/MS)	
Were all inte	ernal standard peak areas with	nin the contract limits?	
		Yes	
If No, please	e note below		
<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
Fraction: VOA, SVOA, PCB	
IX. Blank Summary	
Date/Time of Analysis:	File ID:
<u>Compound</u> <u>Concentrate</u>	tion < CROL Comments
Methylene chloride 4 ppb, 3 ppb was detected in the respectively blanks	MeCl2 results both samples have been qualified as non-detect
List the samples associated with th	is method blank.
SVOA and PCB blanks were clear	1

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review:8/4/03	
Fraction:	VOA, SVOA, PCB		
X. Surr	ogate Recovery Summary PCB surrogate recovery	limits are advisory only	
Were all su	irrogate recoveries within the contract lir	nits ?	
		Yes	
If No, pleas	se note below.		
<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	Comments

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 8/4/03	
Fraction:	VOA, SVOA,PCB		
XI. Matı	rix Spike/Matrix Spike Duplicatio	n Summary	
Sample ID:	MW2(10-12)	Matrix:soil	
Did the MS/MSD recovery data meet the contract recommended requirements ?			
	•	res*	
If No, pleas	se note below.		
VOA all recoveries and RPDs were within QC limits			
SVOA 11 of 120 recoveries were outside limits but all RPDs were within QC limits			
PCB all red	PCB all recoverues and RPDs were within limits		
	·		

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review: 8/4/03

I. Holding times

0 1 -	Date	Date	Date	Holding Time
Sample	Received	<u>Digested</u>	<u>Analyzed</u>	Exceeded?
MW2(0-2)	6/6/03		6/9-6/14	NO
MW2(2"-2")	6/6/03		6/9-6/14	NO
MW2(2-4)	6/6/03		6/9-6/14	NO
MW2(4-6)	6/6/03		6/9-6/14	NO
MW2(6-8)	6/6/03		6/9-6/14	NO
MW2(8-10)	6/6/03		6/9-6/14	NO
MW2(10-12)*	6/6/03		6/9-6/14	NO
MW3(0-2)	6/6/03		6/9-6/14	NO
MW3(2"-2")	6/6/03		6/9-6/14	NO
MW3(2-4)	6/6/03		6/9-6/14	NO
MW3(6-8)	6/6/03		6/9-6/14	NO
MW3(8-10)	6/6/03		6/9-6/14	NO
MW3(10-12)*	6/6/03		6/9-6/14	NO
MW3(4-6)	6/6/03		6/9-6/14	NO
			0/3-0/14	NO

* RUN FOR OTHERS RUN FOR TALMETALS PP METALS

Site Name: Bethpage Park	Laboratory Name: Mitkem				
Reviewer: R. Petrella	Date of Review: 8/4/03				
Associated Samples: As listed on cover sh	eet				
II. Initial Calibration	. Initial Calibration				
1. Were all initial instrument calibra	tions performed?				
Yes					
Comments:					
Were the initial calibration verification specified frequency?	· · · · · · · · · · · · · · · · · · ·				
Yes					
Comments:					
3. Were the initial calibration results	s within the control limits listed below?				
For tin and mercury: 80-120% of For all other metals: 90-110% of					
Yes					
If "No", note analytes					

Site Name: Bethpag	e Park	Laboratory Name: Mitkem			
Reviewer: R. Petrel Associated Samples		Date of Review: 8/4/03			
III. Continuing Ca					
specified f	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes				
Comments:					
2. Were the	continuing calibration re	esults within the control limits listed below?			
	For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value				
	Yes				
If "No", note analytes					

Site I	Site Name: Bethpage Park		Laboratory Name:Mitkem		
Revie	Reviewer: R. Petrella		Date of Review: 8/4/03		
IV.	Bla A. 1.	frequency? Yes	nd analyzed at the contract specified CRDL in the method blank?		
	Were all the analytes below the CRDL in the method blank? Yes				
	Co	mments:			
	В.	Calibration Blanks			
	1.	specified frequency/	ibration blanks analyzed at the contract		
	2.	Yes Were all the analytes below the C Yes	CRDL in all the calibration blanks?		
	Co	mments:			

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
MW2(10-12)	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
	,
Comments: 8 analytes had RPD out of limits	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem				
Reviewer: R. Petrella	Date of Review: 8/1/03				
MW2(10-12) VI. Matrix Spike Analysis					
Was a matrix spike prepared and analyzed at the contract specified frequency Yes					
Comments:					
2. Were the matrix spike recoveries (75-125%)?	s within the contract specified control limits				
No					
Antimony 67.1 If "No", note analytes	% recovery, post digest spike run recovery ok				

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem		
Revie	ewer:	R. Petrella	Date of Review: 8/4/03		
VII.	ICP	Interference Check Sample Sum	mary		
	 Was the ICP serial dilution analyzed at the contract specified frequency? Yes 				
	Con	nments:			
	2.	Were the serial dilution difference <u>=</u> w 10%? Yes	es within the contract specified limits of		
	Con	nments:			
		frequency for the analytes require	ard analyzed at the contract specified ed?		
		Yes			
	Con	nments:			

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review:8/4/03	
VII. ICP Interference Check Sample Sum 4. Was the ICP interference checks	mary (continued): sample analyzed at the contract specified	
frequency: Yes	, ,	
Comments:		
5. Were the ICP interference check <u>+</u> 20% of the mean value?	sample results within the control limit of	
Yes		
If "No", not analytes		

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:8/4/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
2. Were the percent recoveries with and Sb) for each analyte? Yes	nin the control limits of 80-120% (except for Ag
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
shallow samples run for PCB, RCRA meta VOA, SVOA,PCB, TAL metals and hex ch	
SAMPLE Mw3(2-4) was originally sampled for VOA and SVOA this fraction was resam	on 6/5 but due to an oversight not requested on 6/10
Sample B23(0-2) had %solids 54	

Site Name: Bethpage Park	Laboratory Name:Mitkem

Reviewer: R. Petrella Date of Review: 8/1/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D. B23(0-2)	<u>Received</u> 6/11/03	Extracted 6/20	<u>Analyzed</u> 6/28-7/3	Exceeded? NO
B23(2'-2')	6/11/03	6/20	6/28-7/3	NO
B23(2-4)	6/11/03	6/20	6/28-7/3	NO
B23(4-6)	6/11/03	6/20	6/28-7/3	NO
B23(6-8)	6/11/03	6/20	6/28-7/3	NO
B23(8-10)	6/11/03	6/20	6/28-7/3	NO
B23(10-12)	6/11/03	6/20	6/28-7/3	NO
MW3(2-4)*	6/11/03	6/18, 6/20	6/15, 6/24, 6/28- 7/3	NO
B24(0-2)	6/11/03	6/20	6/28-7/3	NO
B24(2'-2')	6/11/03	6/20	6/28-7/3	NO
B24(2-4)	6/11/03	6/20	6/28-7/3	NO
B24(4-6)*	6/11/03	6/18, 6/20	6/15, 6/24, 6/28- 7/3	NO
B24(6-8)	6/11/03	6/20	6/28-7/3	NO
B24(8-10)	6/11/03	6/20	6/28-7/3	NO
B24(10-12)*	6/11/03	6/18, 6/20	6/15, 6/21, 6/28- 7/3	NO
B09(8-10)*	6/11/03	6/18, 6/20	6/15, 6/24, 6/28- 7/3	NO
B9(10-12)	6/11/03	6/20	6/28-7/3	NO
B9(12-14)	6/11/03	6/20	6/28-7/3	NO
B9(14-16)	6/11/03	6/20	6/28-7/3	NO
B9(16-18)	6/11/03	6/20	6/28-7/3	NO
B9(20-22)	6/11/03	6/20	6/28-7/3	NO
B9(22-24)	6/11/03	6/18, 6/20	6/15, 6/21, 6/28- 7/3	NO

B9(24-26)*	6/11/03	6/20	6/28-7/3	NO
B25(0-2)	6/11/03	6/20	6/28-7/3	NO
B25(2'-2')	6/11/03	6/20	6/28-7/3	NO
B25(2-4)	6/11/03	6/20	6/28-7/3	NO
B25(4-6)	6/11/03	6/20	6/28-7/3	NO
B25(6-8)	6/11/03	6/20	6/28-7/3	NO
B25(8-10)	6/11/03	6/20	6/28-7/3	NO
B25(10-12)*	6/11/03	6/18, 6/20	6/15, 6/21, 6/28- 7/3	NO
* RUN FOR	OTHERS RUN			
VOA,SVOA,	FOR PCB, PP			
PCB	METALS			
TALMETALS				

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review:8/1/03	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V5E7440A	YES	INITIAL AND SAMPLES
2.		
3. S1D6435	YES	INITIAL
4. S1D6470	YES	SAMPLES
5. S1D6554	YES	SAMPLES
6.		
7.		
8.		
9.		
10.		
11.		
12.		
13.		

Site Name:	Bethpage Park	Laboratory Name	Mitkem		
Reviewer:	R. Petrella	Date of Review	8/1/03		
Fraction:	VOA, SVOA				
IV. Initia	al Calibration Summary (GC/MS)				
Date of Ca	libration: <u>6/15, 6/20</u>				
A.	Standard Data Files				
	Standard 1 ID: <u>V5E7447</u> , S1D6	438 Cor	c: <u>5</u> , 10		
	Standard 2 ID: <u>V5E7446</u> , S1D6	437 Cor	c: <u>20</u> , 50		
	Standard 3 ID: <u>V5E7441, S1D6</u>	441 Cor	ic: <u>50, 80</u>		
	Standard 4 ID: <u>V5E7443</u> , S1D6	442 Cor	ic: 100, 120		
	Standard 5 ID: <u>V5E7442</u> , S1D6	436 Cor	ic: 200, 160		
В.	1. All SPCC met Criteria ?				
	Yes				
	Calculate a SPCC average F	RRF			
Comments:					

Site Name: B	sethpage Park	Laboratory Name:Mitkem
Reviewer: R	_	Date of Review: 8/1/03
iveviewei. Iv	. Feliciia	Date of Neview. of 1703
Fraction: V	OA, SVOA	Date of Calibration: 6/15, 6/20
IV. Initial (Calibration Summary (continued	
2. All	I CCC met Criteria ?	
	Yes	
Comments: _		
Calcul	ate a CCC % RSD	
C. 1. Wa	as the tune for the initial calibrati	on acceptable ?
	Yes	
2. Wa	as the calibration conducted with	nin 12 hours of the tune
	Yes	
Comments:		
	ssessment of the initial calibrationssociated samples)	on:

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review:8	/1/03
Fraction:	VOA, SVOA	-	
VI. Con	tinuing Calibration Summary (G	SC/MS)	
Date of Init	ial Calibration: <u>6/15, 6/20</u>		
Date of Continuing Calibration: 6/15, 6/21, 6/24 File ID:V5E7441, S1D6471,			
A.	1. All SPCC met criteria ?		
	Yes	S	
Calc	Calculate a SPCC RRF		
Comments	<u>:</u>		
2	All CCC met criteria ?		
	Yes	S	
Calculate a CCC % D			
Comments	<u> </u>		
B. Overall assessment of Continuing Calibration (list associated samples)			

Site Name: Beth	page Park	Laboratory Name:Mitkem	
Reviewer: R. P	etrella	Date of Review: 8/1/03	
Fraction: VOA	, SVOA		
VIII. Internal S	tandard Area Summary	(GC/MS)	
Were all internal	standard peak areas w	rithin the contract limits?	
		Yes	
If No, please not	e below		
<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer: R. Petrella		Date of Review: 8/1/03	
Fraction: VOA, SV	OA, PCB	-	
IX. Blank Summa	ry		
Date/Time of Analysis:		F	ile ID:
Compound	Concentration	< CROL	<u>Comments</u>
Compound Concentration Methylene chloride 1 ppb, 2 ppb and acetone were detected in the blank			MeCl2 results of 10 ppb or less and acetone results of 20 ppb or less for all associated samples have been qualified as non-detect
List the samples associated with this meth		nod blank.	
SVOA and PCB blar	nks were clean		

Site Name	: Bethpage Park	Laboratory Name: Mitke	m
Reviewer:	R. Petrella	Date of Review: 8/1/0	3
Fraction:	VOA, SVOA, PCB		
	•	protocol allows 1 surrogate ress as long as it is >10%.	covery per fraction t
X. Surr	ogate Recovery Summary		
Were all su	urrogate recoveries within the contra	act limits ?	
		Yes*	
If No, pleas	se note below.		
Sample Sample	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Deviewer D. Detrelle	Data of Davisova 0/4/02	
Reviewer: R. Petrella	Date of Review: 8/1/03	
Fraction: VOA, SVOA,PCB		
Site specific QC not provided in this	data package	
XI. Matrix Spike/Matrix Spike Duplication	n Summary	
Sample ID:	Matrix:	
Did the MS/MSD recovery data meet the co	ontract recommended requirements?	
`	Yes	
If No, please note below.		
Blank spike data was provided and met QC requirements		

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review: 8/1/03

I. Holding times

<u>Sample</u>	Date <u>Received</u>	Date <u>Digested</u>	Date <u>Analyzed</u>	Holding Time Exceeded?
B23(0-2)	6/11/03		6/24-7/16	NO
B23(2'-2')	6/11/03		6/24-7/16	NO
B23(2-4)	6/11/03		6/24-7/16	NO
B23(4-6)	6/11/03		6/24-7/16	NO
B23(6-8)	6/11/03		6/24-7/16	NO
B23(8-10)	6/11/03		6/24-7/16	NO
B23(10-12)	6/11/03		6/24-7/16	NO
MW3(2-4)*	6/11/03		6/24-7/16	NO
B24(0-2)	6/11/03		6/24-7/16	NO
B24(2'-2')	6/11/03		6/24-7/16	NO
B24(2-4)	6/11/03		6/24-7/16	NO
B24(4-6)*	6/11/03		6/24-7/16	NO
B24(6-8)	6/11/03		6/24-7/16	NO
B24(8-10)	6/11/03		6/24-7/16	NO
B24(10-12)*	6/11/03		6/24-7/16	NO
B09(8-10)*	6/11/03		6/24-7/16	NO
B9(10-12)	6/11/03		6/24-7/16	NO
B9(12-14)	6/11/03		6/24-7/16	NO
B9(14-16)	6/11/03		6/24-7/16	NO
B9(16-18)	6/11/03		6/24-7/16	NO
B9(20-22)	6/11/03		6/24-7/16	NO
B9(22-24)	6/11/03		6/24-7/16	NO
B9(24-26)*	6/11/03		6/24-7/16	NO
B25(0-2)	6/11/03		6/24-7/16	NO
B25(2'-2')	6/11/03		6/24-7/16	NO
B25(2-4)	6/11/03		6/24-7/16	NO

B25(4-6)	6/11/03	6/24-7/16	NO
B25(6-8)	6/11/03	6/24-7/16	NO
B25(8-10)	6/11/03	6/24-7/16	NO
B25(10-12)*	6/11/03	6/24-7/16	NO
* RUN FOR	OTHERS RUN FOR	0,21,,10	110
VOA,SVOA,	PCB, PP METALS		
PCB			
TALMETALS			

Site Name	e: Bethpage Park	Laboratory Name: Mitkem	
Reviewer	R. Petrella	Date of Review: 8/1/03	
Associate	d Samples:		
II. Initia	al Calibration		
1.	Were all initial instrument calibrat Yes	ions performed?	
Con	nments:		
	Were the initial calibration verification standards analyzed at the contract specified frequency? Yes		
Con	nments:		
3.	Were the initial calibration results	within the control limits listed below?	
	For tin and mercury: 80-120% of For all other metals: 90-110% of		
	Yes		
	If "No", note analytes		

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella Associated Samples:			Date of Review: 8/1/03	
III.		ntinuing Calibration		
	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes			
	Cor	mments:		
	2.	Were the continuing calibration re	esults within the control limits listed below?	
	For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value			
	Yes			
	IT T	No", note analytes		

Site N	Name: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer: R. Petrella	Date of Review:8/1/03
IV.	 Blank Summary A. Method Blanks 1. Was a method blank prepared a frequency?	nd analyzed at the contract specified CRDL in the method blank?
	Yes Comments:	
	B. <u>Calibration Blanks</u>1. Were all initial and continuing caspecified frequency/Yes	llibration blanks analyzed at the contract
	2. Were all the analytes below the Yes	CRDL in all the calibration blanks?
	Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
B24(6-8), B9(20-22)	
V. Duplicate Analysis	
Was a duplicate prepared and and Yes	alyzed at the contract specified frequency?
Comments:	
Were control limits for the relative analyte?	percent differences (RPD) met for each
No	
Comments: 2 analytes had RPD out of limits	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
B24(6-8), B9(20-22) VI. Matrix Spike Analysis	
,	analyzed at the contract specified frequency?
Comments:	
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits
Yes	
If "No", note analytes	

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
VII. ICP Interference Check Sample Sum1. Was the ICP serial dilution analyYes	nmary zed at the contract specified frequency?
Comments:	
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of
Comments:	
Was the ICP CRDL check standard frequency for the analytes require Yes	ard analyzed at the contract specified ed?
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/1/03
VII. ICP Interference Check Sample Sum	,
 Was the ICP interference check strength frequency: 	sample analyzed at the contract specified
Yes	
Comments:	
5. Were the ICP interference check <u>+</u> 20% of the mean value?	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:8/1/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
2. Were the percent recoveries with and Sb) for each analyte?	in the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
 Raw QC Data Complete 	Yes
Several samples run for PCB, RCRA metal SVOA,PCB, TAL metals and hex chrom	ls and hex chrom, other samples run for VOA,
VOA run 6/13-6/19, SVOA extracted 6/17 r 6/26	run 6/27, 7/7, PCB extracted 6/19 & 6/20 run

Site Name: Bethpage Park Laboratory Name: Mitkem
--

Reviewer: R. Petrella Date of Review: 8/4/03

II. Holding Times

Commis I D	Date	Date	Date	Holding Time
Sample I.D. B12(8-10)	Received 6/10	Extracted 6/17, 6/19, 6/20	<u>Analyzed</u> 6/13-6/19, 6/27, 7/7, 6/26	Exceeded? NO
B12(10-12)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(12-14)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(14-16) B12(16-18)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(18-20)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(20-22)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(22-24)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(25-26)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B12(26-28)* B22(4-6)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(6-8)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(8-10)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(10-12)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(12-14)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(14-16)* B22(16-18)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO

B22(18-20)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(20-22)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(22-24)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(25-26)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B22(28-30)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(8-10)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(10-12)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(12-14)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(14-16) B13(16-18)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(18-20)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(20-22)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(22-24)	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO
B13(24-26)*	6/10	6/17, 6/19, 6/20	6/13-6/19, 6/27, 7/7, 6/26	NO

* RUN FOR OTHERS RUN VOA,SVOA, FOR PCB, PP METALS TALMETALS

Site Name	: Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 8/4/03	
Fraction:	VOA, SVOA		
	_		

III. Tune Summary

Tune File I.D. Number	Acceptable ?	Comments
1. V2F7130	YES	Initial
2. V2F7290	YES	SAMPLES
3. V2F7320	YES	SAMPLES
4. V2F7350	YES	SAMPLES
5. V2F7380	YES	INITIAL
6. V2F7390	YES	SAMPLES
7. V2F7440	RES	RERUN
8. V6C7300	YES	INITIAL – MED LEVEL
9. V6C7500	YES	SAMPLE- MED. LEVEL
10.		
11. S3C4347	YES	INITIAL
12. S3C4380	YES	SAMPLES
13. S3C4410	YES	SAMPLES
14. S3C4492	YES	SAMPLE
15. S4A1323	YES	INITIAL
16. S4A1331	YES	RERUN
17.		
18.		
19.		
20.		
<u>21.</u>		

Site Name: Bethpage Park	(Laborator	y Name: <u>Mi</u> t	kem
Reviewer: R. Petrella	_	Date of	Review: 8/4	1/03
Fraction: VOA, SVOA				
IV. Initial Calibration Su	ımmary (GC/MS)		
Date of Calibration: 6/8, 6/6/25,				
A. Standard Data	Files			
Standard 1 ID:	V2F7137, V2F7 V6C7302, S3C4 S4A1326	•	Conc:	5, 10
Standard 2 ID:	V2F7134, V2F7 V6C7305, S3C S4A1324		Conc:	20, 50
Standard 3 ID:	V2F7131, V2F7 V6C7301, S3C S4A1328		Conc:	50, 80
Standard 4 ID:	V2F7133, V2F7 V6C7304, S3C S4A1329		Conc:	100, 120
Standard 5 ID:	V2F7132, V2F7 V6C7303, S3C S4A1325	•	Conc:	200, 160
B. 1. All SPCC met Criteria ?				
	Yes			
2. Calculate a SPCC average RRF				
Comments:				

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
Fraction: VOA, SVOA	Date of Calibration: 6/8, 6/17, 6/10, 6/25, 7/7
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	thin 12 hours of the tune
Yes	
Comments:	
Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	ition:

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review:8/4/03		
Fraction: VOA, SVOA			
VI. Continuing Calibration Summary (G	C/MS)		
Date of Initial Calibration: 6/8, 6/17, 6/10, 6	/25, 7/7		
Date of Continuing Calibration: 6/13, 6/15, 6/21, 6/26,			
A. 1. All SPCC met criteria ?			
Yes	3		
Calculate a SPCC RRF			
Comments:			
2. All CCC met criteria?			
Yes Calculate a CCC % D	5		
Comments: Protocol allows up to 4 %D to be above 25% if < 40%			

B. Overall assessment of Continuing Calibration (list associated samples)

ok

Lab	orat	tory
-----	------	------

Site Name: Bethpage Park Name: Mitkem

Reviewer: R. Petrella Date of Review: 8/4/03

Fraction: VOA, SVOA

VIII. Internal Standard Area Summary (GC/MS)

Were all internal standard peak areas within the contract limits?

Yes

If No, please note below

Several SVOA samples had area counts outside of QC limits samples rerun with similar results.

<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requirement	<u>Comments</u>
B12(20-22)	DCB		Sample rerun with similar results
B22(4-6)	DCB		Sample rerun with similar results
B22(6-8)	DCB		Sample rerun with similar results
B22(8-10)	DCB		Sample rerun with similar results

Site Name: Bethpage Park	Laboratory Name:Mitkem	
Reviewer: R. Petrella	Date of Review:8/4/03	
Fraction: VOA, SVOA, PCB		
IX. Blank Summary		
Date/Time of Analysis:	File ID:	
Compound Concentration MeCl2		
List the samples associated with this methor SVOA and PCB blanks were clean	od blank.	
2. 2. a.a. 22 S.a.mo Noro oroan		

Site Name: Bethpage Park		Laboratory Name: Mitkem
Reviewer:	R. Petrella	Date of Review:8/4/03

Fraction: VOA, SVOA, PCB

For SVOA analysis protocol allows 1 surrogate recovery per fraction to be outside QC limits as long as it is >10%.

X. Surrogate Recovery Summary

Were all surrogate recoveries within the contract limits?

Yes*

If No, please note below.

<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>Comments</u>
B22(8-10)	Dibromofluoromethane	135	Sample rerun with similar results
B22(14-16)	Dibromofluoromethane	131	Sample rerun with similar results
B22(16-18)	DCE	134	Sample rerun with similar results
B13(18-20)	Dibromofluromethane	132	Sample run as MS/MSD
B22(14-16)	All base surr. Recoveries were ou	t	Sample rerun with similar results.

Site Name: Bethpage Park	Laboratory Name:Mitkem			
Reviewer: R. Petrella	Date of Review:8/4/03			
Fraction: VOA, SVOA,PCB	_			
XI. Matrix Spike/Matrix Spike Duplicat	ion Summary			
Sample ID: B13(18-20) Matrix: Soil				
Did the MS/MSD recovery data meet the contract recommended requirements?				
	Yes			
If No, please note below.				
VOA fraction had 32 of 96 recoveries outside limits and only 1 of 48 RPDs out.				
SVOA fraction had 29 of 120 recoveries outside limits and only 11 of 60 RPDs				
Blank spikes were run for each fraction a	nd recoveries were within limits.			

Site Name: Bethpage Park Laboratory Name: Mitkem

Reviewer: R. Petrella Date of Review: 8/4/03

I. Holding times

Sample	Date	Date	Date	Holding Time
<u>Sample</u> B12(8-10)	Received 6/10	<u>Digested</u>	<u>Analyzed</u> 6/23-6/30	Exceeded? NO
B12(10-12)	6/10		6/23-6/30	NO
B12(12-14)	6/10		6/23-6/30	NO
B12(14-16)	6/10		6/23-6/30	NO
B12(16-18)*			0/23-0/30	NO
B12(18-20)	6/10		6/23-6/30	NO
B12(20-22)*	6/10		6/23-6/30	NO
B12(22-24)	6/10		6/23-6/30	NO
B12(25-26)	6/10		6/23-6/30	NO
B12(26-28)*	6/10		6/23-6/30	NO
B22(4-6)*			0/20 0/00	110
B22(6-8)*	6/10		6/23-6/30	NO
B22(8-10)*	6/10		6/23-6/30	NO
B22(10-12)*	6/10		6/23-6/30	NO
B22(12-14)*	6/10		6/23-6/30	NO
B22(14-16)*	6/10		6/23-6/30	NO
B22(16-18)*			0.20 0.00	
B22(18-20)	6/10		6/23-6/30	NO
B22(20-22)	6/10		6/23-6/30	NO
B22(22-24)	6/10		6/23-6/30	NO
B22(25-26)	6/10		6/23-6/30	NO
B22(28-30)*	6/10		6/23-6/30	NO
B13(8-10)	6/10		6/23-6/30	NO
B13(10-12)	6/10		6/23-6/30	NO
B13(12-14)	6/10		6/23-6/30	NO
B13(14-16)	6/10		6/23-6/30	NO
B13(16-18)				

B13(24-26)*	6/10	6/23-6/30	NO
B13(22-24)	6/10	6/23-6/30	NO
B13(20-22)	6/10	6/23-6/30	NO
	6/10	6/23-6/30	NO

* RUN FOR OTHERS RUN FOR TALMETALS PP METALS

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
Associated Samples:	
II. Initial Calibration	
Were all initial instrument calibrat Yes	ions performed?
Comments:	
Were the initial calibration verification specified frequency? Yes	ation standards analyzed at the contract
Comments:	
Were the initial calibration results	within the control limits listed below?
For tin and mercury: 80-120% of For all other metals: 90-110% of Yes	
If "No", note analytes	

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella Associated Samples:			Date of Review: 8/4/03
III.		ntinuing Calibration	
	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes		
	Coi	mments:	
	2.	Were the continuing calibration re	esults within the control limits listed below?
		For tin and mercury: 80-120% of For all other metals: 90-110% of	
		Yes	
	If "N	No", note analytes	

Site I	Nam	e: Bethpage Park	Laboratory Name: Mitkem	
Revie	ewer	R. Petrella	Date of Review: 8/4/03	
IV.	Bla A. 1.	nk Summary Method Blanks Was a method blank prepared ar frequency? Yes Were all the analytes below the C	nd analyzed at the contract specified CRDL in the method blank?	
	۷.	Yes	TO THE METHOD BLANK!	
	Co	mments:		
	В.	Calibration Blanks		
	1.	specified frequency/	ibration blanks analyzed at the contract	
	2.	Yes Were all the analytes below the C Yes	CRDL in all the calibration blanks?	
	Co	mments:		

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
B22(18-20), B13(18-20) V. Duplicate Analysis	
Was a duplicate prepared and and Yes	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
No	
Comments: 4 RPD outside limits for B22(18-20) 3 RPD outside limits for B13(18-20)	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name:Mitkem		
Reviewer: R. Petrella	Date of Review: 8/4/03		
B22(18-20), B13(18-20) VI. Matrix Spike Analysis			
Was a matrix spike prepared and analyzed at the contract specified frequency? Yes			
Comments:			
2. Were the matrix spike reco	overies within the contract specified control limits		
Yes			
If "No", note analytes 20), Sb a	very 58.3%, post digest run recovery ok. In B22(18- and Cu out in B13(18-20) post digest run all es within limits		

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem		
Revie	ewer:	R. Petrella	Date of Review: 8/4/03		
VII.	ICP	Interference Check Sample Sum	mary		
	 Was the ICP serial dilution analyzed at the contract specified frequency? Yes 				
	Con	nments:			
	2.	Were the serial dilution difference <u>=</u> w 10%? Yes	es within the contract specified limits of		
	Con	nments:			
		frequency for the analytes require	ard analyzed at the contract specified ed?		
		Yes			
	Con	nments:			

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
VII. ICP Interference Check Sample Sum	mary (continued):
4. Was the ICP interference check frequency:	sample analyzed at the contract specified
Yes	
Comments:	
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 8/4/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	in the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
2 shallow samples run for PCB, RCRA met VOA, SVOA, TAL metals and hex chrom	tals and hex chrom, (12-14) sample run for

Site Name:	: Bethpage Park	Laboratory Name: Mitkem
Reviewer:	R. Petrella	Date of Review:7/29/03

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D.	Received	Extracted	<u>Analyzed</u>	Exceeded?
B14 (8-10)	6/12	6/20	7/1	Pcb only
B14 (10-12)	6/12	6/20	7/1	Pcb only
B-14 (12-14)	6/12	6/18, 6/20	6/15, 6/21, 7/1	

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review:7/29/03	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V2F7130	YES	INITIAL
2. V2F7320	YES	SAMPLES
3.		
4. S1D6435	YES	INITIAL
5. S1D6470	YES	SAMPLES
6.		
7.		
8.		
9.		
10.		

Site Name	: Bethpage Park	Laboratory Name: <u>M</u>	itkem	
Reviewer:	R. Petrella	Date of Review: 7/	29/03	
Fraction:	VOA, SVOA			
IV. Initia	al Calibration Summary (GC/MS)			
Date of Ca	libration: <u>6/8/03, 6/20</u>			
A.	Standard Data Files			
	Standard 1 ID: <u>V2F7137</u> , S1D64	38 Conc:	5, 10	
	Standard 2 ID: <u>V2F7134</u> , S1D64	37 Conc:	20, 50	
	Standard 3 ID: <u>V2F7131, S1D64</u>	41 Conc:	50, 80	
	Standard 4 ID: <u>V2F7133</u> , S1D64	42 Conc:	100, 120	
	Standard 5 ID: <u>V2F7132</u> , S1D64	36 Conc:	200, 160	
B.	1. All SPCC met Criteria ?			
	Yes			
	2. Calculate a SPCC average R	RF		
Con	nments:			

Site Name: Bethpage Park	Laboratory Name: <u>Mitkem</u>
Reviewer: R. Petrella	Date of Review:7/29/03
Fraction: VOA, SVOA	Date of Calibration: 6/8/03, 6/20
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria ?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	thin 12 hours of the tune
Yes	
Comments:	
D. Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK	tion:

Site Name: Bethpage Park		Laboratory Name: Mitkem		
Reviewer:	R. Petrella	Date of Review: 7/29/03		
Fraction:	VOA, SVOA			
VI. Con	tinuing Calibration Summary (G	C/MS)		
Date of Init	ial Calibration: <u>6/8/03, 6/20</u>			
Date of Co	ntinuing Calibration: 6/15, 6/21	File ID:V2F7321, S1D6471		
A.	1. All SPCC met criteria ?	<u> </u>		
	Yes			
Calc	culate a SPCC RRF			
Comments	:			
2.	All CCC met criteria ?			
	Yes			
Calc	culate a CCC % D			
Comments: Carbon tetrachloride slightly above limits, but less than 40%, no action required				
	Overall assessment of Continuir (list associated samples)	ng Calibration		

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/29/03	
Fraction:	VOA, SVOA	-	
VIII. Inter	rnal Standard Area Summary (0	GC/MS)	
Were all in	ternal standard peak areas with	nin the contract limits?	
		Yes	
If No, pleas	se note below		
<u>Sample</u>	Internal Standard <u>Outside Limits</u>	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Fraction: VOA, SVOA, PCB	
IX. Blank Summary	
Date/Time of Analysis: 6/15	File ID:VBLK2R
Compound Concentration Methylene chloride 1	CROL Comments Result for sample B14(12-14) qualified as non-detect
List the samples associated with this methodal SVOA, PCB blanks were clean	od blank.
,	

Site Name:	: Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/29/03	
Fraction:	VOA, SVOA, PCB	_	
X. Surr	rogate Recovery Summary		
Were all su	urrogate recoveries within the contract	limits?	
		Yes	
If No, pleas	se note below.		
<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Fraction: VOA, SVOA,PCB	
XI. Matrix Spike/Matrix Spike Duplication	on Summary
Sample ID: <u>B14 (12-14)</u>	Matrix: SOIL
Did the MS/MSD recovery data meet the co	ontract recommended requirements ?
,	Yes
If No, please note below.	
SVOA several recoveries were slightly beloaction, qualification of the data is required	ow limits but all RPD's were in limits so no

Site Name: <u>Bethpage Par</u>	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03

I. Holding times

Cample	Date Received	Date	Date	Holding Time Exceeded?
<u>Sample</u>	Received	<u>Digested</u>	<u>Analyzed</u>	Exceeded?
B14(8-10)	6/12/03		6/12-6/14	NO
B14(10-12)	6/12		6/12-6/14	NO
B14(12-14)	6/12		6/12-6/14	NO

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
Associated Samples:	
II. Initial Calibration	
Were all initial instrument calibrat	tions performed?
Yes	
Comments:	
Were the initial calibration verification specified frequency?	ation standards analyzed at the contract
Yes	
Comments:	
3. Were the initial calibration results	within the control limits listed below?
For tin and mercury: 80-120% of For all other metals: 90-110% of	
Yes	
If "No", note analytes	

Site	Nam	e: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella Associated Samples:			Date of Review: 7/29/03		
III.					
	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes				
	Coı	mments:			
	2. Were the continuing calibration results within the control limits listed below?				
		For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value Yes			
	If "No", note analytes				

Site Name: Bethpage Park		e: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella		R. Petrella	Date of Review: 7/29/03	
IV.		nk Summary		
	Α.	Method Blanks		
	1. Was a method blank prepared and analyzed at the contract specified frequency?			
		Yes		
	2.	Were all the analytes below the C	RDL in the method blank?	
		Yes		
	Coı	mments:		
	В.	Calibration Blanks		
	 Were all initial and continuing calibration blanks analyzed at the contract specified frequency/ 		bration blanks analyzed at the contract	
		Yes		
	2.	Were all the analytes below the C	RDL in all the calibration blanks?	
		Yes		
	Coı	mments:		

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
B14(12-14)	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
No	
Comments: 6 metals had RPD out of limits AL, Ca, Cu,	Fe, Mn, K

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/29/03
B14(12-14)	
VI. Matrix Spike Analysis	
 Was a matrix spike prepared and Yes 	analyzed at the contract specified frequency?
Comments:	
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits
Yes	
If "No", note analytes	

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name:Mitkem			
Reviewer: R. Petrella	Date of Review: 7/29/03			
ICP Interference Check Sample SummaryWas the ICP serial dilution analyzed at the contract specified frequency?Yes				
Comments:				
2. Were the serial dilution difference =w 10%? Yes	es within the contract specified limits of			
Comments:				
Was the ICP CRDL check standard frequency for the analytes require Yes	ard analyzed at the contract specified ed?			
Comments:				

Site Name: Bethpage Park	Laboratory Name: Mitkem		
Reviewer: R. Petrella	Date of Review: 7/29/03		
VII. ICP Interference Check Sample Sum	mary (continued):		
Was the ICP interference check sample analyzed at the contract specified frequency:			
Yes			
Comments:			
 Were the ICP interference check ± 20% of the mean value? 	sample results within the control limit of		
Yes			
If "No", not analytes			

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review:7/29/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
2. Were the percent recoveries with and Sb) for each analyte? Yes	nin the control limits of 80-120% (except for Ag
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
I. Data Deliverable Requirements	
A. Legible	Yes
B. Paginated	Yes
C. Arranged in order	Yes
D. Consistent dates	Yes
E. Case Narrative	Yes
F. Chain-of-Custody Record	Yes
G. Sample Data Complete	Yes
H. Standard Date Complete	Yes
I. Raw QC Data Complete	Yes
chrom	n for VOA, SVOA, PCB, TAL metals and hex

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D.	Received	Extracted	<u>Analyzed</u>	Exceeded?
TB-1	6/20		6/24	NO
BCPMW-3	6/20	6/23	6/25, 6/27, 6/29	
BCPMW-2	6/20	6/23	6/25, 6/27, 6/29	
BCPMW-1	6/20	6/23	6/25, 6/27, 6/29	
FB-1	6/20	6/23	6/24, 6/27, 6/29	

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA		
III. Tune Summary		

Tune File I.D. Number	Acceptable ?	Comments
1. V6C7300	YES	INITIAL
2. V6C7520A	YES	SAMPLES
3. V6C7550	YES	SAMPLES
4. V6C7620	YES	INITIAL AND SAMPLES
5. S1D6575	YES	INITIAL
6. S1D6624	YES	SAMPLES
7.		
8.		
9.		
10.		
11.		

Site Name: Bethpage Park		Laborato	ry Name: <u>Mi</u>	kem		
Reviewer: R. Petrella		Date o	f Review: <u>7/3</u>	30/03		
Fraction:	VOA, SVOA					
IV. Init	ial Calibration Su	ummary (GC/MS)			
Date of C	alibration: 6/10/0 6/25	03, 6/27,				
A.	Standard Data	Files				
	Standard 1 ID:	V6C7302, V6C7 S1D6578	7622,	Conc:	5, 10	
	Standard 2 ID:	V6C7305, V6C7 S1D6576	7625,	Conc:	20, 50	
	Standard 3 ID:	V6C7301, V6C7 S1D6580	7626,	Conc:	50, 80	
	Standard 4 ID:	V6C7304, V6C7 S1D6579	7624,	Conc:	100, 120	
	Standard 5 ID:	V6C7303, V6C7 S1D6577	7623,	Conc:	200, 160	
B. 1. All SPCC met Criteria ?						
		Yes				
2. Calculate a SPCC average RRF						
Comments:						

Site Name: Bethpage Park	Laboratory Name:Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Fraction: VOA, SVOA	Date of Calibration: 6/10/03, 6/27, 6/25
IV. Initial Calibration Summary (continue	ed)
2. All CCC met Criteria ?	
Yes	
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibra	ation acceptable ?
Yes	
2. Was the calibration conducted wi	thin 12 hours of the tune
Yes	
Comments:	
 D. Overall assessment of the initial calibra (list the associated samples) CALIBRATION OK 	ition:

Site Name:	Bethpage Park	Laboratory Name: Mit	kem
Reviewer:	R. Petrella	Date of Review: 7/3	80/03
Fraction:	VOA, SVOA		
VI. Con	tinuing Calibration Summary (G	C/MS)	
Date of Init	ial Calibration: <u>6/10, 6/27 6/25</u>		
Date of Continuing Calibration: 6/24, 6/25, 6/27, 6/27 File ID:V6C7521A, V6C7551, V6C7626,			V6C7551,
A.	1. All SPCC met criteria ?		
	Yes	3	
Calc	ulate a SPCC RRF		
Comments	<u> </u>		
2. /	All CCC met criteria ?		
	Yes	3	
Calc	ulate a CCC % D		
Comments	: Carbon tetrachloride slightly at required	pove limits, but less tha	n 40%, no action
B. Overall assessment of Continuing Calibration (list associated samples)			

Site Name:	Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	
Fraction:	VOA, SVOA	-	
VIII. Inter	rnal Standard Area Summary (0	GC/MS)	
Were all in	ternal standard peak areas with	nin the contract limits?	
		Yes	
If No, pleas	se note below		
<u>Sample</u>	Internal Standard <u>Outside Limits</u>	Amount Above Contract Requirement	Comments

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA, PCB		
IX. Blank Summary		
Date/Time of Analysis: 6/15	File ID:VBLK2R	
Compound Concentration Methylene chloride 5 found in the trip blank List the samples associated with this method All SVOA PCB blanks were clean		
All SVOA, PCB blanks were clean		

Site Name: Bethpage Park		Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	
Fraction:	VOA, SVOA, PCB		
X. Surr	rogate Recovery Summary		
Were all su	urrogate recoveries within the contract lin	nits ?	
		Yes	
If No, pleas	se note below.		
<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>Comments</u>

Site Name: Bethpage Park	Laboratory Name: Mitkem	
Reviewer: R. Petrella	Date of Review: 7/30/03	
Fraction: VOA, SVOA,PCB		
XI. Matrix Spike/Matrix Spike Duplication	on Summary	
Sample ID: BCPMW-2	Matrix:WATER	
Did the MS/MSD recovery data meet the contract recommended requirements?		
	Yes	
If No, please note below.		

Site Name	: Bethpage Park	Laboratory Name: Mitkem	
Reviewer:	R. Petrella	Date of Review: 7/30/03	

I. Holding times

<u>Sample</u>	Date <u>Received</u>	Date <u>Digested</u>	Date <u>Analyzed</u>	Holding Time Exceeded?
BCPMW-3	6/20		6/26-7/7	NO
BCPMW-2*	6/20		6/26-7/7	NO
BCPMW-1	6/20		6/26-7/7	NO
FB-1	6/20		6/26-7/7	NO

^{*} MS/MSD

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
Associated Samples:	
II. Initial Calibration	
Were all initial instrument calibrate	tions performed?
Yes	
Comments:	
Were the initial calibration verification specified frequency?	ation standards analyzed at the contract
Yes	
Comments:	
3. Were the initial calibration results	within the control limits listed below?
For tin and mercury: 80-120% of For all other metals: 90-110% of	
Yes	
If "No", note analytes	

Site Na	me: Bethpage Park	Laboratory Name: Mitkem	
	er: R. Petrella	Date of Review: 7/30/03	
	ontinuing Calibration		
1.	Were the continuing calibration verification standards analyzed at the contract specified frequency? Yes		
С	omments:		
2.	Were the continuing calibration re	sults within the control limits listed below?	
	For tin and mercury: 80-120% of the true value For all other metals: 90-110% of the true value		
Yes If "No", note analytes			

Site N	lam	e: Bethpage Park	Laboratory Name: Mitkem
Revie	ewer	R. Petrella	Date of Review: 7/30/03
IV.		nk Summary	
	Α.	Method Blanks	
	1.	Was a method blank prepared an frequency?	d analyzed at the contract specified
		Yes	
	2.	Were all the analytes below the C	RDL in the method blank?
		Yes	
	Coı	mments:	
	В.	Calibration Blanks	
	1.	Were all initial and continuing cali specified frequency/	bration blanks analyzed at the contract
		Yes	
	2.	Were all the analytes below the C	RDL in all the calibration blanks?
		Yes	
	Coı	mments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
BCPMW-2	
V. Duplicate Analysis	
 Was a duplicate prepared and an Yes 	alyzed at the contract specified frequency?
Comments:	
2. Were control limits for the relative analyte?	percent differences (RPD) met for each
Yes	
Comments:	

For sample values >5 times the CRDL, the RPD control limit is $\pm 20\%$.

For sample values \leq 5 times the CRDL, the RPD control limit is \pm CRDL.

If sample results were outside of the control limits, all data associated with that duplicate sample should have been flagged with a "*".

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
BCPMW-2	
VI. Matrix Spike Analysis	
 Was a matrix spike prepared and Yes 	analyzed at the contract specified frequency?
Comments:	
2. Were the matrix spike recoveries (75-125%)?	within the contract specified control limits
Yes	
If "No", note analytes	

Data should have been flagged with "N" for analytes out of control limits. If the sample concentration exceeds the spike concentration by a factor of four or more, no flag is required.

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
VII. ICP Interference Check Sample Sum	mary
Was the ICP serial dilution analy. Yes	zed at the contract specified frequency?
Comments:	
2. Were the serial dilution difference = w 10%? Yes	es within the contract specified limits of
Comments:	
3. Was the ICP CRDL check standa frequency for the analytes require	ard analyzed at the contract specified ed?
Comments:	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
	mary (continued): sample analyzed at the contract specified
frequency: Yes	
Comments:	
5. Were the ICP interference check ± 20% of the mean value?	sample results within the control limit of
Yes	
If "No", not analytes	

Site Name: Bethpage Park	Laboratory Name: Mitkem
Reviewer: R. Petrella	Date of Review: 7/30/03
VIII. Laboratory Control Sample Analysis 1. Was a laboratory control sample Yes	analyzed at the contract required frequency?
Comments:	
Were the percent recoveries with and Sb) for each analyte?	in the control limits of 80-120% (except for Ag
Yes	
Comments:	

Site Name: Community Park	_Laboratory Name:_	Mitkem
Reviewer: R. Petrella	Date of Review:_	10/9/03
I. Data Deliverable Requirements		
A. Legible	Yes	No
B. Paginated	es	No
C. Arranged in order	(res)	No
D. Consistent dates	Yes	No
E. Case Narrative	Yes	No
F. Chain-of-Custody Record	Yes	No
G. Sample Data Complete	(es)	No
H. Standard Date Complete	(es)	No
 Raw QC Data Complete 	Yes	No
Comments: 3 ground vaters B1458	~ VOA	
81420		·
MW-2 was rerun at MW-3 was rerun at	1:2.5	due to compound concentrations
		exceeding instrument
	44,000	calibration sange
COC-VOC does not	state his	t to report

Site Name: Community	Park Laboratory Name:	Mitkem	
Reviewer: R. Petrella	Date of Review:		

II. Holding Times

	Date	Date	Date	Holding Time
Sample I.D.	Received	<u>Extracted</u>	<u>Analyzed</u>	Exceeded?
BCPMW-1	9/13/03	NA	9/16	No
BCPMW-2	1		1,9/18	
*BCPMW-3	1		9/169/18	
TB-1	V		9/16	

*Runas MS/MSD

Site Name: Community Fark	_ Laboratory Name:_	Mitkem
Reviewer: R. Petrella	Date of Review:	
Fraction: VDA		11/9
III Tune Summary		

Tune File I.D. Number	Acceptable?	Comments
1. Va F8800	ues	initial
1. Va F8800 2. Va F9010	ius	Sangles
3. V2F9070A	uls	delutions spiles Dups
4.	0	'
5.		
6.		
7.		
8.		
9.		
10		

Site Name: Community Park Laboratory Name: Mitken
Reviewer: Review: 10/9/03
Fraction: Von
IV. Initial Calibration Summary (GC/MS)
Date of Calibration: 9\1003
A. Standard Data Files Standard 1 ID: VaF8802 Conc: 5 Standard 2 ID: VaF8801 Conc: 30 Standard 3 ID: VaF8801 Conc: 50 Standard 4 ID: VaF8805 Conc: 100 Standard 5 ID: VaF8804 Conc: 300 B. 1. All SPCC met Criteria?
2. Calculate a SPCC average RRF
Comments:

Site Name: Community Park	Laboratory Name: Mutkern
Reviewer: Retrella	
Fraction: $\gamma O \beta$	Date of Calibration: 9 10 03
IV. Initial Calibration Summary (continu	ed)
2. All CCC met Criteria?	
Ves	No
Comments: OR	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibr	ation acceptable ?
Yes	No
2. Was the calibration conducted w	rithin 12 hours of the tune
Yes	No
Comments:	
D. Overall assessment of the initial calibra (list the associated samples)	

Site Name: Community Park Laboratory Name: Metkern
Reviewer: Potrella. Date of Review: 10903
Fraction: VOA
VI. Continuing Calibration Summary (GC/MS)
Date of Initial Calibration: 9/10/03 Date of Continuing Calibration: 9/16/03,9/18/03 File ID: VaF901/ VaF907/
Yes No
Calculate a SPCC RRF
Comments:
2. All CCC met criteria ?
Calculate a CCC % D
Comments: Protocol allows up to 4 % D to be out y < 40 % Acetore 26.7, Virylacetate 20% > Cripos not found m. Darriplesto B. Overall assessment of Continuing Calibration
(list associated samples)

Site Name: Conur	nunti Park	Laboratory Name	: Mitken	
Reviewer: Reviewer:	trella.	Date of Reviev	v: 10 9 03	
Fraction: VOA	i			
VIII. Internal Star	ndard Area Summary	(GC/MS)		
Were all internal standard peak areas within the contract limits?				
		Yes	No	
If No, please note below				
Sample	Internal Standard Outside Limits	Amount Above Contract Requirem		<u>3</u>

Site Name: Community Park	Laboratory Name:_	Mitken
Site Name: Community Park Reviewer: Reviewer: Reviewer	Date of Review:_	10/9/03
Fraction: VOA	-	
IX. Blank Summary		
Date/Time of Analysis:	File I	D:
<u>Compound</u> <u>Concentration</u>	< CROL	<u>Comments</u>
nithod blank - Clear hip blank - Clear	∼	
<i>†</i>		
List the samples associated with this meth	nod blank.	

Site Name: Con	nunty Park	_ Laboratory Name	»: <u>Mitk</u>	(em
Reviewer: <u>R</u>	,	_ Date of Review	1: 10/9	103
Fraction: <u>V</u>	0A	_		
X. Surrogate F	Recovery Summary			
Were all surrogate	e recoveries within the contract I	imits ?		
		Yes	No	
If No, please note	below.			
<u>Sample</u>	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	<u>ent</u>	<u>Comments</u>

Site Name: Community Park	Laboratory Name: Matkern	
Reviewer: Retrella	Date of Review: 10903	
Fraction: VOA		
XI. Matrix Spike/Matrix Spike Duplication	Summary	
Sample ID: BCPMW-3	Matrix: Water	
Did the MS/MSD recovery data meet the contract recommended requirements?		
(Y	res * No	
If No, please note below.		
#40132 recoverus ow		
1400 132 recoverus out.		
0 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

Site Name: Bethpage Park	Laboratory Name:	mitten
Reviewer: R.Petrella	Date of Review:	12/15/03
I. Data Deliverable Requirements		, ,
A. Legible	Yes	
B. Paginated	Yes	
C. Arranged in order	Yes	
D. Consistent dates	Yes	
E. Case Narrative	Yes	
F. Chain-of-Custody Record	Yes	
G. Sample Data Complete	Yes	
H. Standard Date Complete	Yes	
I. Raw QC Data Complete	Yes	
Comments: <u>B1866 - Zwel</u> <u>B1858 Zwe</u> Saruples analyzed	US FB, TB	sonly
		<u> </u>
	:	
en engler in se emilika kina en menerika ken menerika ken kanala kanala ken in kenala ken in kenala in ini men Territoria Territoria		

Site Name:	Bethpage Park	_ Laboratory Name:_	mitken
	0 5		•
Reviewer:	R. Petrella	Date of Review:_	12/15/03

II. Holding Times

Sample I.D.	Date <u>Received</u>	Date Extracted	Date <u>Analyzed</u>	Holding Time Exceeded?
B30 MW-1	11/28/03		12/1/03	No
TB	Ì			
Field Blank BOHMW-2				
Ba4MW-3	\downarrow		\downarrow	\downarrow
BCPMW-01	11/26/0	3	12/1/03	No
BCPMW-03	5		12/2/03	
TB				
BCPMW-02				
	•		\downarrow	

Site Name: Sithpage Park	_Laboratory Name:_	mitken
Reviewer: Patula	Date of Review:_	12/15/03
Fraction: VOA	_	
III. Tune Summary		

Tune File I.D. Number	Acceptable?	Comments
1. VIF8930A	MA	initial
2. VIF8940	Jes .	panples
3. VIF8000	Lus	panoles
4. VIF8970	les	panbles
5.	0	1
6.		
7.		
8.		
9.		
10.		

Site Name: Bethpage Park Laboratory Name: Mitkers
Reviewer: <u>Putrulla</u> Date of Review: <u>/2/15/03</u>
Fraction: VoA
IV. Initial Calibration Summary (GC/MS)
Date of Calibration: <u> </u>
A. Standard Data Files Standard 1 ID: VIF8932 Conc: 5 Standard 2 ID: VIF8935 Conc: 30 Standard 3 ID: VIF8931 Conc: 50 Standard 4 ID: VIF8934 Conc: 100 Standard 5 ID: VIF8933 Conc: 200 B. 1. All SPCC met Criteria? Yes No 2. Calculate a SPCC average RRF
Comments:

Site Name: Beth page Parke	aboratory Name: Mitkem
Reviewer: Retulla	Date of Review: 12/15/03
Fraction: VOA	Date of Calibration: 12/1/03
IV. Initial Calibration Summary (continued	i)
2. All CCC met Criteria ? Yes	No
Comments:	
Calculate a CCC % RSD	
C. 1. Was the tune for the initial calibrati	on acceptable ?
Yes	No
2. Was the calibration conducted with	nin 12 hours of the tune
Yes	No
Comments:	:
Overall assessment of the initial calibration (list the associated samples)	on:
OK	

Site Name: BHROAGE FAIK Laboratory Name: MHKerry
Reviewer: Petrella Date of Review: 12/15/03
Fraction: VoA
VI. Continuing Calibration Summary (GC/MS)
Date of Initial Calibration: $12/1/03$ Date of Continuing Calibration: $12/1/03$, $12/3/03$ File ID: $15/894$ A. 1. All SPCC met criteria? $12/2/03$ Yes No
Calculate a SPCC RRF
Comments:
2. All CCC met criteria ? (Yes No
Calculate a CCC % D
comments: Protocol allows up to 4 % D to be >20% y < 40%.
B. Overall assessment of Continuing Calibration (list associated samples) Ou

Site Name:	Charge Par	Laboratory Name:	Mitken
Reviewer: Reviewer:	tella	Date of Review:	12/15/03
Fraction: Va)A		. ,
VIII. Internal Stan	ndard Area Summary	y (GC/MS)	
Were all internal sta	andard peak areas v	vithin the contract limits	>
		Yes	No
If No, please note b	elow		
<u>Sample</u>	Internal Standard Outside Limits	Amount Above Contract Requiremen	t <u>Comments</u>

	Site Name	Beth	page ta	<u>U</u> L_La	aboratory N	ame:	Mitke	nU
	Reviewer:	PReti	illa		Date of Rev	view:	12/15/1	<u>EC</u>
	Fraction:	VOA						
	IX. Blar	nk Summary	,					
	Date/Time	of Analysis:				File ID:_		
	Compound	<u>i</u>	Concentration	1	≤ <u>CROL</u>		Comme	<u>nts</u>
U	l m	ethog	1 blax	ks	clea.	ζ,		·
								•
							<u>.</u> '	
						:		
	List the san	malos assoc	iotod with this m	nothod bl	onk	- nd	1/25	
	Fuld k	Mank	iated with this m			26 C	ontau	red
1	Je Clz	at	()	gleres	ult d	elect	ed in	
	Day M	nuxat	150) NU	due:	to to	
		and	L BCPMW	-01				

Site Name:	34hpage Park	Laboratory Name: M	tken
Reviewer:	2 Petrella	Date of Review:/。	2/15/03
Fraction:	IOA		
X. Surroga	ate Recovery Summary		
Were all surro	gate recoveries within the contrac	et limits ?	
		Yes No	
If No, please n	ote below.		
Sample	Surrogate Compound Outside Recovery Limits	Amount Above Contract Requirement	Comments

	Site Name: Bothpage Park Laboratory Name: Mitkern
	Reviewer: Petrella Date of Review: 12/15/03
	Fraction: VoA
	XI. Matrix Spike/Matrix Spike Duplication Summary
	Sample ID: B30MW-1 Matrix: Water BCPMW-03
	Did the MS/MSD recovery data meet the contract recommended requirements?
	Yes No
	If No, please note below.
B30 MW	12 spike recovery out of 136 and 12PD out of 168 were outside ac limits - No action required.
Both	Blank spekls was run all pecoveries were within limits
BCPM	1W03 - 6 of 136 Spile recoveries + 1 of 68 RPD were outside limits - no action required

APPENDIX D

BORINGS LOGS

Project No.:1965-07Boring No.:B-1Project Location:Bethpage, NYSheet1 of 1

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 12 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Date Completed: 5/28/03

Date S	tarted:	5/28/03			Date Completed: 5/28/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	1	SS	1.5	0.0	0-0.08' 0.08-1.5'	Gray-dark gray, FILL w/silty fine sand, slight fuel oil-like odor Orange-tan, poorly sorted fine-coarse SAND w/trace fine-coarse gravel, poorly sorted fine-medium SAND, slight layering		
10-12	2	SS	1.5	0.0	0-1.5'	Orange-tan, poorly sorted fine-coarse SAND w/trace fine-coarse gravel, poorly sorted fine-medium SAND, slight layering		
Sample	Type:	_				Notes:		

Samples selected for analysis at 8-10' and 10-12'.

Project No.:1965-07Boring No.:B-2Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs. Boring Completion Depth: 14 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Date S	tarted:	5/28/03			Date Completed: 5/28/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam			
0.17-2	2	SS	1.5	0.0	0-1.5'	Brown-dark brown, FILL w/poorly sorted fine-medium sand, some silt and fine gravel, moist			
2-4	3	SS	1.0	0.0	0-1'	Dark brown, FILL w/poorly sorted silty fine-medium sand, lenses of gray clay, plastic, wood fragments, wet			
4-6	4	SS	1.67	0.0	0-0.83' 0.83-1.67'	SAME AS ABOVE Green/biege, FILL w/silt layers, layers of black silty material w/reddish silt lenses, hard			
6-8	5	SS	2.0	0.0	0-2'	Black, FILL w/clayey silt, trace pieces of plastic, aluminum foil and wood, slight fuel oil-like odor, moist-wet			
Sample	Type:	n HQ = Ha	nd Samp	l le		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and			

SS = Split Spoon HS = H

HS = Hand Sample

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.

Project No.: 1965-07 Boring No.: B-2 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 5/28/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 5/28/03

Boring Completion Depth: 14 ft. **Ground Surface Elevation:**

-- ft. **Boring Diameter:** 8 in.

Date	tarteu.	5/28/03			Date Completed: 5/28/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	0.5	19.0	0-0.25'	Black, FILL w/clayey silt, trace plastic, aluminum foil and plywood, slight fuel oil-like odor, moist-wet		
					0.25-0.5'	Gray, FILL w/poorly sorted fine-coarse sand, trace fine-coarse gravel		
10-12	7	SS	1.67	2.0	0-0.83'	Black, FILL w/clayey silt, slight fuel oil-like odor, moist-wet		
					0.83-1.67'	Orange, poorly sorted fine-coarse SAND, trace fine-coarse gravel, layers of poorly sorted fine-medium sand w/trace gravel		
12-14	8	SS	1.67	0.0	0-1.67'	Orange, poorly sorted fine-coarse SAND, trace fine-coarse gravel, layers of poorly sorted fine-medium sand w/trace gravel		
Sample	Turner					Notes:		

Page 3

Samples selected for analysis at 8-10', 10-12' and 12-14'.

Project No.:1965-07Boring No.:B-3Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/28/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 14 ft. Ground Surface Elevation: - ft.

Boring Diameter: 8 in.

Date 3	tarted:			1	Date Completed: 6/2/03			
	1	Soil Sample				Little Lance Boundaries		
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam, some fine-coarse gravel		
0.17-2	2	SS	1.67	0.0	0-0.83' 0.83-1.67'	Dark brown/gray, FILL w/poorly sorted fine-coarse sand, little fine-coarse gravel, little silt, piece of rubber Brown, FILL w/poorly sorted fine-coarse sand, little silt, trace fine-coarse gravel		
2-4	3	SS	1.67	0.0	0-1.67'	Brown, FILL w/poorly sorted fine-coarse sand, little silt, trace fine-coarse gravel		
4-6	4	SS	2.0	0.0	0-1'	Dark brown/gray, FILL w/poorly sorted fine-coarse silty sand, trace fine-coarse gravel Orange, poorly sorted fine-coarse SAND and GRAVEL		
6-8	5	SS	2.0	0.0	0-0.33' 0.33-1.5' 1.5-2'	Orange, poorly sorted fine-coarse SAND and GRAVEL Gray, CLAY, cohesive Orange, poorly sorted fine-coarse SAND, trace fine gravel w/coarse sand layers		
Sample SS = Sp		n HS = Ha	ind Samp	ole		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.		

Project No.:1965-07Boring No.:B-3Project Location:Bethpage, NYSheet2 of2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/28/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 14 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 5	tartea:				Date Completed: 6/2/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	1.67	0.0	0-0.83'	Gray/brown, CLAY, trace fine gravel, cohesive		
					0.83-1.67'	Orange, poorly sorted fine-medium SAND w/layers of fine sand and fine gravel		
10-12	7	SS	0.0	N/A		NO RECOVERY		
12-14	8	SS	1.67	0.0	0-1.67'	Orange, poorly sorted fine-medium SAND w/layers of fine sand and fine gravel		
Sample	Type					Notes:		

Page 5

Samples selected for analysis at 8-10' and 12-14'.

N/A: Not Available

Project No.: 1965-07 Boring No.: B-4 **Project Location:** Bethpage, NY Sheet 1 of

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 5/28/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth:

12 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and

	Soil Sample					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam
0.17-2	2	SS	1.67	0.0	0-1.67'	Brown, FILL w/poorly sorted fine-medium sand, trace fine gravel
2-4	3	SS	1.67	0.0	0-0.83' 0.83-1.67'	SAME AS ABOVE, some coal fragments Brown-light brown, poorly sorted fine-coarse SAND, trace fine gravel, some orange layers of moderately sorted fine-medium sand
4-6	4	SS	1.67	0.0	0-1.67'	Brown-light brown, poorly sorted fine-coarse SAND, trace fine gravel, some orange layers of moderately sorted fine-medium sand
6-8	5	SS	1.67	0.0	0-1.67'	SAME AS ABOVE Notes:

Page 6

6-8'.

HS = Hand Sample

Project No.: 1965-07 Boring No.: B-4

Project Location: Bethpage, NY Sheet 2 of 2 **Project Name:** Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date S	tarted:	5/28/03			Date Com	Date Completed: 6/2/03			
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
8-10	6	SS	1.67	0.0	0-1.67'	Orange/brown, poorly sorted fine-medium SAND w/trace fine-coarse gravel, poorly sorted fine-coarse SAND w/some fine gravel, slight layering			
10-12	7	SS	2.0	0.0	0-2'	SAME AS ABOVE			
Sample SS = Sp		n				Notes: Samples selected for analysis at 8-10' and 10-12'.			

Project No.:1965-07Boring No.:B-5Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/29/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 22 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Date Completed: 5/29/03

Date S	tarted:	3/29/03			Date Completed: 5/29/03				
		Soil Sample	,						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
8-10	1	SS	2.0	10.4	0-1.17'	Brown, FILL w/poorly sorted fine-medium sand and fine-coarse gravel			
					1.17-2'	Gray/dark gray, FILL w/poorly sorted fine-medium sand and fine-coarse gravel, wet			
10-12	2	SS	1.0	0.0	0-1'	Gray/dark gray, FILL w/poorly sorted fine-medium sand and fine-coarse gravel, wet			
12-14	3	SS	2.0	84.0	0-0.17' 0.17-1.67' 1.67-2'	Gray/dark gray, FILL w/poorly sorted fine-medium sand and fine-coarse gravel, wet Black, FILL w/poorly sorted fine-coarse sand, trace fine-coarse gravel, plastic bag, fuel oil-like odor Light gray, FILL w/clay lenses			
14-16	4	SS	1.0	30.0	0-1'	Brown/black, FILL w/poorly sorted fine-medium sand and fine-coarse gravel, moderate fuel oil-like odor			
16-18	5	SS	1.0	2.0	0-1'	SAME AS ABOVE, w/black plastic bag			

Page 8

Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

Project No.: 1965-07 Boring No.: B-5 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 22 ft. **Ground Surface Elevation:** -- ft. 8 in. **Boring Diameter:**

tarted:	5/29/03			Date Completed: 5/29/03				
	Soil Sample							
No.	Туре	Rec. (ft.)	PID (ppm)	Lithology Description				
6	SS	2.0	0.0	0-2' Brown, poorly sorted fine-coarse SAND and GRAVEL, slight layering, brown-orange layers of poorly sorted fine-medium sand and fine-coarse gravel				
7	SS	2.0	0.0	0-2' SAME AS ABOVE, w/orange layers of moderately sorted fine sand trace iron concretion, moist				
	No. 6	No. Type 6 SS 7 SS	No. Type Rec. (ft.)	No. Type Rec. (ft.) PID (ppm)				

SS = Split Spoon

Samples selected for analysis at 18-20' and 20-22'.

Project No.: 1965-07 Boring No.: B-6 **Project Location:** Bethpage, NY Sheet 1 of

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 20 ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Date S	tarted:	5/27/03			Date Comp	Date Completed: 5/27/03			
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0-0.17	1	HS	0.17	0.0	0-0.17'	Dark brown, FILL w/silty loam, some fine gravel			
0.17-2	2	SS	1.5	0.0	0-0.17'	Dark brown/gray, FILL w/silty fine sand			
					0.17-1.5'	Orange, FILL w/poorly sorted fine-coarse sand			
2-4	3	SS	1.0	0.0	0-0.25'	Light brown, FILL w/fine sand and silt, trace fine gravel			
					0.25-1'	Gray, FILL w/silt and fine sand, slight fuel oil-like odor			
4-6	4	SS	1.0	14.0	0-1'	Dark brown/gray, FILL w/fine-medium sand, trace silt and fine gravel, moderate fuel oil-like odor			
6-8	5	SS	0.0	N/A		NO RECOVERY			
Sample	Type					Notes:			

Sample Type:

SS = Split Spoon

HS = Hand Sample

Notes:

Samples selected for analysis at 0-2", 2"-2', 2-4' and 4-6'.

N/A: Not Available

Project No.:1965-07Boring No.:B-6Project Location:Bethpage, NYSheet2 of

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/27/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 20 ft. Ground Surface Elevation: -- ft. Boring Diameter: 8 in.

Date Completed: 5/27/03

		Soil Sample				ipieted. 3/2//03
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description
8-10	6	SS	2.0	0.0	0-0.25'	Brown, FILL w/poorly sorted fine sand and silt, moist
					0.25-2'	Dark gray, FILL w/poorly sorted fine-medium sand, little silt,
						trace fine gravel, moderate fuel oil-like odor, wet
10-12	7	SS	2.0	0.0	0-2'	Gray-brown, FILL w/poorly sorted fine-coarse sand, trace fine gravel, moderate fuel oil-like odor, wet
12-14	8	SS	2.0	11.0	0-2'	SAME AS ABOVE, w/lenses of clay
14-16	9	SS	1.0	0.0	0-0.25'	SAME AS ABOVE, wet
					0.25-1'	Orange/light tan, poorly sorted medium-coarse SAND, some fine-
						coarse gravel, moist
16-18	10	SS	1.0	0.0	0-1'	SAME AS ABOVE
Sample	Type:					Notes:

Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

Project No.:1965-07Boring No.:B-6Project Location:Bethpage, NYSheet3 of

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

iotta Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Geologist: Al Jaroszewski

Boring Completion Depth: 20 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: - π. 8 in.

Date St	tarted:	5/27/03			Date Completed: 5/27/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)	Lithology Description				
18-20	11	SS	1.5	0.0	0-1.5' Orange/light tan, poorly sorted medium-coarse SAND and moderately sorted fine-medium SAND, trace fine-coarse gravel, stratified w/thin orange laminations of silt and fine sand				
Sample SS = Sp		on			Notes: Samples selected for analysis at 18-20'.				

Project No.:1965-07Boring No.:B-7Project Location:Bethpage, NYSheet1 of

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 24 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

		Soil Sample)					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown-dark brown, FILL w/silty loam		
0.17-2	2	SS	1.5	0.0	0-0.5'	SAME AS ABOVE		
					0.5-1.5'	Dark brown, FILL w/silty fine sand and fine-coarse gravel, brick fragment		
2-4 3	3	SS	1.67	4.4	0-0.83'	Dark brown, FILL w/silty fine sand and fine-coarse gravel, brick fragment		
					0.83-1.67'	Dark gray-black, FILL w/poorly sorted silty fine sand, some fine- coarse gravel, slight fuel oil-like odor		
4-6	4	SS	2.0	1.4	0-2'	Dark gray-black, FILL w/poorly sorted silty fine sand, some fine-coarse gravel, slight fuel oil-like odor		
6-8	5	SS	1.83	188	0-1.83'	SAME AS ABOVE, w/occasional lenses of blue and gray clay		
Sample SS = Sp		n HS = H	and Samp	Ja		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and		

Page 13

6-8'.

Project No.:1965-07Boring No.:B-7Project Location:Bethpage, NYSheet2 of3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 24 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

Date S	tarted:	6/2/03			Date Completed: 6/2/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	1.83	132	0-1.83'	Dark gray-black, FILL w/poorly sorted silty fine sand, some fine- coarse gravel, occasional lenses of blue and gray clay, slight fuel oil-like odor		
10-12	7	SS	1.67	88.0	0-0.83'	SAME AS ABOVE		
					0.83-1.67'	Light blue/gray/orange, FILL w/mottled clay, interlayered w/black poorly sorted fine-medium sand, soft, strong layering, wet		
12-14	8	SS	2.0	54.0	0-2'	Gray-light blue, FILL w/clay, interlayered w/black poorly sorted fine-coarse sand, pasty, wet		
14-16	9	SS	2.0	5.8	0-2'	SAME AS ABOVE		
16-18	10	SS	1.83	95.4	0-1.17'	SAME AS ABOVE, more sand than clay		
					1.17-1.67'	FILL w/fine-coarse gravel, wet		
					1.67-1.83'	Orange, FILL w/moderately sorted fine-medium sand, trace fine gravel		
Sample SS = Sp	Type: olit Spoo	n				Notes: Samples selected for analysis at 8-10', 10-12', 12-14', 14-16' and 16-18'.		

Project No.: 1965-07 **Boring No.:** B-7

Project Location:Bethpage, NYSheet3ofProject Name:Bethpage Community ParkBy:CS

t Name: Bethpage Community Park
Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 24 ft.

Samples selected for analysis at 18-20', 20-22' and 22-24'.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Date 5	tartea: (Date Completed: 6/2/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
18-20	11	SS	1.0	20.4	0-1'	Brown, FILL w/poorly sorted fine-coarse sand, some fine-coarse gravel, trace gray/orange pasty material			
20-22	12	SS	1.5	0.0	0-1.5'	Buff, poorly sorted fine-coarse SAND, trace fine gravel, layers of moderately sorted fine-medium sand w/trace fine gravel, stratified w/orange fine sand layers approximately 1/8" thick			
22-24	13	SS	2.0	0.0	0-2'	SAME AS ABOVE			
Sample	Type:					Notes:			

Page 15

Project No.: 1965-07 Boring No.: B-8 **Project Location:** Bethpage, NY Sheet 1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 5/29/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date Completed: 5/29/03

Butee	tartoa.	5/29/03			Date Completed: 5/29/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17		0-0.17'	Brown, FILL w/silty loam		
0.17-2	2	SS	2.0	0.0	0-0.5' 0.5-2'	SAME AS ABOVE Brown, FILL w/moderately sorted fine-medium sand, little silt and fine-coarse gravel		
2-4	3	SS	2.0	0.0	0-2'	Brown, FILL w/moderately sorted fine-medium sand, little silt and fine-coarse gravel		
4-6	4	SS	2.0	0.0	0-2'	SAME AS ABOVE		
6-8	5	SS	2.0	0.0	0-2'	SAME AS ABOVE Notes:		

HS = Hand Sample

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and

Project No.:1965-07Boring No.:B-8Project Location:Bethpage, NYSheet2 of2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/29/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 5/29/03

Boring Completion Depth: 12 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

		Soil Sample			Date Completed. 3/29/03			
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	2.0	0.0	0-0.5'	Brown, FILL w/moderately sorted fine-medium silty sand and fine-coarse gravel		
					0.5-2'	Orange, layered fine-medium SAND w/trace fine gravel, moderately sorted fine-coarse SAND and fine-coarse GRAVEL		
10-12	7	SS	1.5	0.0	0-1.5'	Orange, layered fine-medium SAND w/trace fine gravel, moderately sorted fine-coarse SAND and fine-coarse GRAVEL		

Samples selected for analysis at 8-10' and 10-12'.

Project No.: 1965-07 Boring No.: B-9 **Project Location:** Bethpage, NY Sheet 1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/10/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs. Date Completed: 6/10/03

Boring Completion Depth: 26 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

	Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	1	SS	1.67	51.0	0-0.5'	Black/dark gray, FILL w/silty fine sand, trace fine-coarse gravel, piece of wood		
					0.5-1.67'	Orange-brown, FILL w/poorly sorted fine-medium sand, trace fine-coarse gravel		
10-12	2	SS	1.67	7.4	0-0.17'	Brown, FILL w/silty fine sand		
					0.17-1.67'	Brown, FILL w/silty fine sand and poorly sorted fine-coarse sand		
12-14	3	SS	1.67	0.0	0-1.67'	Light brown, FILL w/poorly sorted fine-coarse sand and fine-coarse gravel, moderately sorted fine-medium sand w/trace fine-coarse gravel		
14-16	4	SS	1.67	0.0	0-0.83'	Brown, FILL w/poorly sorted silty fine sand, trace fine-coarse gravel, wood fragments		
					0.83-1.67'	Buff, FILL w/poorly sorted fine-coarse sand, trace fine-coarse gravel		
16-18	5	SS	1.67	9.6	0-0.83'	Brown, FILL w/poorly sorted silty fine sand, trace fine-coarse gravel		
					0.83-1.67'	Buff, moderately sorted fine-coarse SAND, trace fine-coarse gravel		
Sample	Type:					Notes:		

Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

Project No.: 1965-07
Project Location: Bethpage, NY

Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 26 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Boring No.: B-9

Sheet 2 of 2

By: CS

Date Completed: 6/10/03

Project Name:

Date Sta	arted: 6	6/10/03			Date Completed: 6/10/03		
		Soil Sample					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description	
18-20	6	SS	0.0	N/A		NO RECOVERY	
20-22	7	SS	1.67	1.6	0-0.83' 0.83-1.67'	Brown-light brown, poorly sorted fine-medium sand, trace fine-coarse gravel Buff, moderately sorted medium SAND, trace fine-coarse gravel	
22-24	8	SS	1.5	0.0	0-1.5'	Buff, moderately sorted medium SAND, occasional orange laminations, trace fine-coarse gravel	
24-26	9	SS	1.67	0.0	0-1.67'	SAME AS ABOVE, w/fine sand laminations	

Sample Type:

SS = Split Spoon

Notes:

Samples selected for analysis at 20-22', 22-24' and 24-26'.

N/A : Not Available

Project No.: 1965-07
Project Location: Bethpage, NY

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 12 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

Boring No.: B-10

Sheet 1 of 2

Date 5	tartea:				Date Completed: 6/2/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	нѕ	0.17	0.0	0-0.17'	Brown, FILL w/silty loam		
0.17-2	2	SS	1.67	0.0	0-1.67'	Dark brown, FILL w/silty fine sand and fine-coarse gravel, some fine-medium sand, moist		
2-4	3	SS	1.67	0.0	0-1.67'	Brown, FILL w/silty fine sand, trace fine-coarse gravel and cobbles		
4-6	4	SS	0.0	N/A		NO RECOVERY		
6-8	5	SS	1.67	0.0	0-1.67'	Orange, moderately sorted fine-medium SAND, trace fine-coarse gravel		
Sample	Tyne:					Notes:		

Sample Type:

SS = Split Spoon HS = Hand Sample

Notes:

Samples selected for analysis at 0-2", 2"-2', 2-4' and 6-8'.

N/A : Not Available

Project No.: 1965-07 Boring No.: B-10 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 5	tarted: (0/2/03			Date Completed: 6/2/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)	Lithology Description				
8-10	6	SS	0.5	0.0	0-0.5' Orange/light brown, fine-medium SAND, trace fine-coarse gravel				
10-12	7	SS	2.0	0.0	0-0.83' Orange, moderately sorted fine-medium SAND, trace fine gravel 0.83-2' Buff, poorly sorted medium-coarse SAND, some fine sand and fine-coarse gravel				

Page 21

Samples selected for analysis at 8-10' and 10-12'.

Project No.: 1965-07 Boring No.: B-11 **Project Location:** Bethpage, NY Sheet 1 of 3

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 5/27/03

Boring Completion Depth: 20 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date S	tarted:	5/27/03			Date Completed: 5/27/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam, trace fine gravel		
0.17-2	2	SS	1.0	0.0	0-0.5'	SAME AS ABOVE		
					0.5-1'	Light brown, FILL w/fine sand, some fine gravel		
2-4	3	SS	1.5	0.0	0-1.5'	Light brown, FILL w/poorly sorted fine-coarse sand, some fine-coarse gravel		
4-6	4	SS	1.17	0.0	0-1.17'	Dark brown-black, FILL w/poorly sorted silty fine sand, trace fine-coarse gravel, slight fuel oil-like odor		
6-8	5	SS	1.17	0.0	0-1.17'	Light brown, FILL w/poorly sorted silty fine-medium sand, trace fine-coarse gravel, trace cobbles		
Sample SS = Sp		on HS = H	and Samp	ole		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and		

Page 22

6-8'.

Project No.: 1965-07 **Boring No.:** B-11

Project Location:Bethpage, NYSheet2of3Project Name:Bethpage Community ParkBy:CS

Bethpage Community Park By: CS
Soil Sampling Program

Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/27/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs. Boring Completion Depth: 20 ft. Ground Surface Elevation: -- ft. Boring Diameter: 8 in.

Date Completed: 5/27/03

Date 3	tarteu.	Soil Sample			Date Con	Date Completed: 3/27/03			
Depth			Rec.	PID		Lithology Description			
(ft.)	No.	Type	(ft.)	(ppm)					
8-10	6	SS	1.17	0.0	0-1.17'	Light brown, FILL w/poorly sorted silty fine-medium sand, trace fine-coarse gravel, trace cobbles			
10-12	7	SS	1.67	0.0	0-1.67'	Orange/light brown, poorly sorted fine-coarse SAND and fine-coarse GRAVEL w/poorly sorted fine-medium SAND, trace fine gravel and coarse sand, strong layering			
12-14	8	SS	1.5	0.0	0-1.5'	SAME AS ABOVE, broken gray cobble in upper 3" w/slight fuel oil-like odor			
14-16	9	SS	0.5	0.0	0-0.5'	Brown/gray, poorly sorted fine-medium SAND, some fine-coarse gravel			
16-18	10	SS	1.67	0.0	0-1.67'	SAME AS ABOVE, light brown/gray			
Sample	Type:					Notes:			

1965-07 Boring No.: B-11 Project No.:

Project Location: Bethpage, NY Sheet 3 of **Project Name:**

Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Geologist: Al Jaroszewski

Boring Completion Depth: 20 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

	tarted:	5/27/03			Date Completed: 5/27/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)	== :				
18-20	11	SS	1.67	0.0	0-1.67' Light brown/gray, poorly sorted fine-medium SAND, some fine-coarse gravel				
					course graver				
Sample	Type:				Notes:				
SS = Sp	olit Spoo	n			Samples selected for analysis at 18-20'.				

Project No.:1965-07Boring No.:B-12Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth: 28 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

Date Started: 6/9/03					Date Completed: 6/9/03	
	Soil Sample					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description
8-10	1	SS	1.17	2.1	0-1.17'	Brown-dark brown, dark gray, FILL w/poorly sorted silty fine sand, trace fine-coarse gravel
10-12	2	SS	2.0	45.0	0-2'	Brown/black, FILL w/silty fine sand, some fine-coarse gravel, trace cobble, fuel oil-like odor, wet
12-14	3	SS	1.0	38.0	0-1'	SAME AS ABOVE
14-16	4	SS	0.83	42.0	0-0.83'	SAME AS ABOVE, w/concrete and canvas bag in tip of spoon
16-18	5	SS	2.0	112	0-2'	Brown/black, FILL w/silty fine sand, some fine-coarse gravel, trace cobble, piece of rubber hose (1/8" diameter), glass, fuel oil-like odor, wet
Sample Type: SS = Split Spoon						Notes: Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

Project No.: 1965-07 Boring No.: B-12 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth: 28 ft. **Ground Surface Elevation:**

-- ft. **Boring Diameter:** 8 in.

Sheet 2 of 2

Date 5	tarted: (6/9/03			Date Completed: 6/9/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
18-20	6	SS	1.67	40.0	0-1.67'	Brown/black, FILL w/silty fine sand, some fine-coarse gravel, trace cobble, piece of electrical wire, dense, fuel oil-like odor, moist		
20-22	7	SS	1.67	60.0	0-1.67'	SAME AS ABOVE, strand of hair		
22-24	8	SS	2.0	15.0	0-1.17'	Brown/black, FILL w/silty fine sand, some fine-coarse gravel, trace cobble, pieces of wood, dense, fuel oil-like odor, moist		
					1.17-1.67'	Brown-gray, FILL w/poorly sorted fine-medium sand, trace fine gravel		
					1.67-2'	Buff, FILL w/moderately sorted m SAND and f-c GRAVEL		
24-26	9	SS	1.0	2.7	0-0.5' 0.5-1'	Black, FILL w/silty fine sand, trace cobble Buff, poorly sorted fine-medium SAND w/trace fine-coarse gravel, moderately sorted fine-medium SAND, stratified		
26-28	10	SS	1.67	0.0	0-1.67'	SAME AS ABOVE Notes:		

Page 26

Samples selected for analysis at 18-20', 20-22', 22-24',

24-26' and 26-28'.

Project No.:1965-07Boring No.:B-13Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth: 26 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date St	tarted:	6/9/03			Date Completed: 6/9/03			
		Soil Sample)					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	1	SS	1.67	10.0	0-0.83'	Brown, FILL w/poorly sorted fine-medium sand, trace fine-coarse gravel, wet		
					0.83-1.67'	Black, FILL w/silty fine sand, trace fine-coarse gravel and green clay		
10-12	2	SS	1.67	26.0	0-1.67'	Brown-black, FILL w/clayey silty fine sand, trace fine-coarse gravel, wet		
12-14	3	SS	1.67	12.0	0-1.67'	Black, FILL w/clayey silty fine sand, trace fine-coarse gravel, pieces of canvas bag, wet		
14-16	4	SS	1.67	0.0	0-1.67'	Dark gray, FILL w/clayey silty fine sand, trace fine-coarse gravel, piece of plastic, pieces of canvas bag, wet		
16-18	5	SS	2.0	12.0	0-2'	Dark gray/black, FILL w/silty fine sand, trace fine-coarse gravel, some wood and concrete fragments		
Sample SS = Sp	Type:	on				Notes: Samples selected for analysis at 8-10', 10-12', 12-14',		

Page 27

14-16' and 16-18'.

Project No.:1965-07Boring No.:B-13Project Location:Bethpage, NYSheet2 of2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth: 26 ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

				Date Completed: 6/9/03				
Soil Sample								
No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0	SS	2.0	42.0		Dark gray/black, FILL w/silty fine sand, trace fine-coarse gravel, some wood and concrete fragments			
7	SS	2.0	12.0	0-2'	SAME AS ABOVE			
8	SS	1.67	0.0	0-1.67'	Buff, well sorted medium SAND, slightly stratified			
9	SS	1.83	0.0		SAME AS ABOVE, w/layers of moderately sorted fine-coarse SAND, trace fine-coarse gravel			
· Type:					Notes:			
	7	No. Type 6 SS 7 SS 8 SS 9 SS	No. Type (ft.) 6 SS 2.0 7 SS 2.0 8 SS 1.67 9 SS 1.83 4 1.83 1.83	No. Type Rec. (ft.) (ft.) (ppm) (ppm) 6 SS 2.0 42.0 7 SS 2.0 12.0 8 SS 1.67 0.0 9 SS 1.83 0.0 4 0.0 0.0 0.0 8 0.0 0.0 0.0	No. Type Rec. (ft.) (ft.) (ppm) PID (ppm) 6 SS 2.0 42.0 0-2' 7 SS 2.0 12.0 0-2' 8 SS 1.67 0.0 0-1.67' 9 SS 1.83 0.0 0-1.83'			

Page 28

and 24-26'.

Samples selected for analysis at 18-20', 20-22', 22-24'

Project No.: 1965-07 Boring No.: B-14 **Project Location:** Bethpage, NY Sheet 1 of 1

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/11/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/11/03

Boring Completion Depth: 14 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date S	tarted:				Date Comp	Date Completed: 6/11/03			
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
8-10	1	SS	1.67	0.0	0-0.17'	Brown/gray, FILL w/silt and fine sand, trace fine-coarse gravel			
					0.17-0.25'	Black, FILL w/well sorted fine sand, trace fine-coarse gravel			
					0.25-1.67'	Orange, moderately sorted medium SAND and moderately sorted			
						fine-coarse SAND w/trace fine-coarse gravel, layered			
10-12	2	SS	1.67	0.0	0-1.67'	Orange, moderately sorted medium SAND and moderately sorted			
						fine-coarse SAND w/trace fine-coarse gravel, slightly stratified			
						laminations			
12-14	3	SS	1.67	0.0	0-1.67'	Buff, moderately sorted medium SAND and moderately sorted fine-			
						coarse SAND w/trace fine-coarse gravel, slightly stratified orange			
						laminations			
Sample	Type:			<u> </u>		Notes:			
	.,,,,,,,								

Page 29

Samples selected for analysis at 8-10', 10-12' and 12-14'.

Project No.:1965-07Boring No.:B-15Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 12 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

Date S	tarted:	6/2/03			Date Completed: 6/2/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam		
0.17-2	2	SS	1.67	0.0	0-1.67'	Brown, FILL w/silty fine sand, trace fine-coarse gravel, cinder fragment		
2-4	3	SS	0.0	N/A		NO RECOVERY		
4-6	4	SS	1.67	0.0	0-1.67'	Light brown, poorly sorted fine-coarse SAND and moderately sorted fine-medium SAND, trace fine-coarse gravel		
6-8	5 Type:	SS	1.5	0.0	0-1.5'	Orange, poorly sorted fine-coarse SAND, trace fine-coarse gravel		
Sample	ype:					Notes:		

Page 30

Samples selected for analysis at 0-2", 2"-2', 4-6' and 6-8'.

N/A: Not Available

HS = Hand Sample

Project No.: 1965-07 Boring No.: B-15 Sheet 2 of 2

Project Location: Bethpage, NY **Project Name:** Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 6/2/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth:

12 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date S	tarted:	6/2/03			Date Completed: 6/2/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
8-10	6	SS	0.83	0.0	0-0.83'	Orange, poorly sorted fine-coarse SAND, trace fine-coarse gravel			
10-12	7	SS	1.83	0.0	0-1.83'	SAME AS ABOVE			
Sample SS = Sp	Type: olit Spoo	n				Notes: Samples selected for analysis at 8-10' and 10-12'.			

Page 31

Project No.:1965-07Boring No.:B-16Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/29/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 16 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Date Completed: 5/29/03

		Soil Sample	ļ					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown/dark gray, FILL w/silty loam, trace fine gravel		
0.17-2	2	SS	2.0	0.0	0-0.33'	SAME AS ABOVE		
					0.33-0.67'	Orange, FILL w/poorly sorted silty fine sand, some fine-coarse gravel		
					0.67-2'	Gray, FILL w/poorly sorted silty fine sand, some fine-coarse gravel		
2-4	3	SS	2.0	0.0	0-1.5'	Brown/dark brown, FILL w/poorly sorted fine sand and silt, trace fine-coarse gravel		
					1.5-2'	Light brown, FILL w/poorly sorted fine-medium sand and silt, trace fine-coarse gravel		
4-6	4	SS	2.0	0.0	0-1.5'	Brown, FILL w/silty fine sand and fine-coarse gravel		
					1.5-2'	Light brown, moderately sorted fine-medium SAND, trace fine gravel		
6-8	5	SS	2.0	0.0	0-0.5'	Brown-dark brown, poorly sorted fine SAND, some silt and fine gravel		
					0.5-0.67' 0.67-2'	Orange, well sorted fine SAND Orange-gray, CLAY and silty CLAY w/fine gravel, layered		
Sample SS = Sp		on HS = H	and Samp	ole		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.		

Project No.: 1965-07 Boring No.: B-16 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 5/29/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 16 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date Completed: 5/29/03

	Soil Sample				Date Completed: 0/20/00		
Danish		Soil Sample	Des	חים		Lithology Deparinting	
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description	
8-10	6	SS	1.67	0.0	0-1.67'	Orange, moderately sorted fine-medium SAND and fine GRAVEL w/poorly sorted medium-coarse SAND and fine GRAVEL, layered	
10-12	7	SS	1.67	0.0	0-1.67'	SAME AS ABOVE, w/fine-coarse gravel and orange stained layer (iron and heavy minerals)	
12-14	8	SS	1.67	0.0	0-0.5'	SAME AS ABOVE	
					0.5-1.67'	Light brown, poorly sorted fine-medium SAND, trace fine gravel	
14-16	9	SS	2.0	0.0	0-2'	SAME AS ABOVE, w/poorly sorted fine-coarse sand layer	
Sample	Type:					Notes:	

Page 33

14-16'.

Samples selected for analysis at 8-10', 10-12', 12-14' and

Project No.: 1965-07 Boring No.: B-17 **Project Location:** Bethpage, NY Sheet 1 of 4

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 34 ft.

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

					Date Completed: 6/3/03			
		Soil Sample)					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Light brown, FILL w/well sorted fine sand and silt		
0.17-2	2	SS	1.67	0.0	0-0.17'	SAME AS ABOVE		
					0.17-1.33'	Brown, FILL w/silty fine sand, trace fine-coarse gravel, dense		
					1.33-1.67'	Buff, FILL w/moderately sorted fine-medium sand, trace fine gravel		
2-4	3	SS	1.83	190	0-1'	Buff, FILL w/moderately sorted fine-medium sand, trace fine gravel		
					1-1.83'	Black, FILL w/silty fine sand and fine-coarse gravel		
4-6	4	SS	1.67	61.0	0-1.67'	Black/greenish brown, FILL w/silty fine sand and fine-coarse gravel, slight layering		
6-8	5	SS	1.67	61.0	0-1.67'	SAME AS ABOVE		

Page 34

SS = Split Spoon

HS = Hand Sample

Project No.: 1965-07 Boring No.: B-17

Project Location: Bethpage, NY Sheet 2 of 4

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Date Started: 6/3/03

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs. Date Completed: 6/3/03

Boring Completion Depth: 34 ft. **Ground Surface Elevation:**

Samples selected for analysis at 8-10', 10-12', 12-14',

14-16' and 16-18'.

-- ft. **Boring Diameter:** 8 in.

Date 3	tartea: (Date Completed: 6/3/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	1.67	22.0	0-1.67'	Black/greenish brown, FILL w/silty fine sand and fine-coarse gravel, some hard blue/gray fragmented material, wood block, slight layering		
10-12	7	SS	1.67	16.0	0-1.67'	SAME AS ABOVE		
12-14	8	SS	1.67	235	0-1.67'	SAME AS ABOVE		
14-16	9	SS	1.83	51.0	0-1.83'	SAME AS ABOVE, w/pieces of particle board		
16-18	10	SS	1.67	62.0	0-1.67'	SAME AS ABOVE Notes:		

Page 35

SS = Split Spoon

 $I:\BVeith\Grumman\Park\Boring\ Logs2003\B-17.xls\cs$

Project No.: 1965-07 **Boring No.:** B-17

Project Location:Bethpage, NYSheet3 of4Project Name:Bethpage Community ParkBy:CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 34 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

	Soil Sample				Date Completed: 0/0/00			
		Soil Sample	ı					
Depth	No.	Туре	Rec.	PID		Lithology Description		
(ft.)		• •	(ft.)	(ppm)				
18-20	11	SS	1.83	40.5	0-1.83'	Black/greenish brown, FILL w/silty fine sand and fine-coarse gravel, some hard blue/gray fragmented material, wood block, slight layering		
20-22	12	SS	1.83	17.0	0-1.83'	SAME AS ABOVE, w/piece of plastic		
22-24	13	SS	1.67	40	0-1.67'	SAME AS ABOVE		
24-26	14	SS	1.83	14.0	0-1.67'	SAME AS ABOVE, w/pieces of rubber, glass and rag fibers		
					1.67-1.83'	Brown, poorly sorted fine-coarse SAND		
26-28	15	SS	0.0	N/A		NO RECOVERY Notes:		
Sample	, i j po.	_				O - -		

Page 36

24-26'.

Samples selected for analysis at 18-20', 20-22', 22-24' and

N/A: Not Available

Project No.: 1965-07 Boring No.: B-17 **Project Location:** Bethpage, NY Sheet 4 of 4

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 34 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date	tartea:				Date Completed: 6/3/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
28-30	16	SS	1.67	0.0	0-1.67'	Buff, well sorted fine-medium SAND, slightly stratified			
30-32	17	SS	1.83	0.0	0-1.83'	SAME AS ABOVE			
32-34	18	SS	1.83	0	0-1.83'	Buff/brown, poorly sorted fine-medium SAND, trace fine gravel, mottled			
Sample	Tyne					Notes:			

Samples selected for analysis at 28-30', 30-32' and 32-34'.

Project No.: 1965-07
Project Location: Bethpage, NY
Project Name: Bethpage Commun

Bethpage Community Park

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/29/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 14 ft. Ground Surface Elevation: -- ft. Boring Diameter: 8 in.

Boring No.: B-18

Sheet 1 of 2

By: CS

Date Completed: 5/29/03

Date S	tarted:	5/29/03			Date Completed: 5/29/03				
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty loam			
0.17-2	2	SS	2.0	0.0	0-0.5'	SAME AS ABOVE			
					0.5-1.67'	Brown, FILL w/poorly sorted fine-medium sand and silt, some fine-coarse gravel, moist			
					1.67-2'	Light brown, FILL w/moderately sorted fine-medium sand, little silt and fine gravel, wet			
2-4	3	SS	2.0	0.0	0-1.5'	Light brown, FILL w/moderately sorted fine-medium sand, little silt and fine gravel, wet			
					1.5-1.67'	Gray/black, FILL w/silty fine sand, slight fuel oil-like odor			
					1.67-2'	Dark brown, FILL w/silty fine sand, some fine-coarse gravel			
4-6	4	SS	2.0	0.0	0-2'	Brown-dark brown, FILL w/poorly sorted fine-coarse sand, some			
						of light gray-dark gray silt and clay, slight fuel oil-like odor, wet			
6-8	5	SS	2.0	0.0	0-2'	Dark brown, FILL w/poorly sorted fine sand and silt, little fine-			
						coarse gravel, piece of root, occasional dark gray zones			
Sample			1.6	<u>. </u>		Notes:			
55 = Sp	olit Spoo	on HS = Ha	and Samp	oie		Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and			

SS = Split Spoon HS =

HS = Hand Sample

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.

Project No.: 1965-07 Boring No.: B-18 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 5/29/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 5/29/03

Boring Completion Depth: 14 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

	0 !! 0 !					
Soil Sample						
No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description	
6	SS	2.0	0.0	0-0.5'	gravel, piece of root, occasional dark gray zones Orange, poorly sorted fine-coarse SAND w/trace fine gravel, moderately sorted fine-medium SAND w/some fine gravel, slight layering	
7	SS	1.5	0.0	0-1.5'	Orange, poorly sorted fine-coarse SAND w/trace fine gravel, moderately sorted fine-medium SAND w/some fine gravel, thin gray clay layer at 1.33', slight layering	
8	SS	1.67	0.0	0-1.67'	Buff-orange, poorly sorted fine-coarse SAND w/trace fine gravel, moderately sorted fine-medium SAND w/some fine gravel, thin gray clay layer at 1.33', slight layering	
					Notes:	
	7	6 SS 7 SS 8 SS	No. Type (ft.) 6 SS 2.0 7 SS 1.5 8 SS 1.67	No. Type (ft.) (ppm) 6 SS 2.0 0.0 7 SS 1.5 0.0 8 SS 1.67 0.0	No. Type (ft.) (ppm) 6 SS 2.0 0.0 0-0.5' 7 SS 1.5 0.0 0-1.5' 8 SS 1.67 0.0 0-1.67'	

Samples selected for analysis at 8-10', 10-12' and 12-14'.

1965-07 Project No.: Boring No.: B-19 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 30 ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Sheet 1 of 3

By: CS

Date S	tarted:	6/3/03			Date Completed: 6/3/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-2	1	SS	2.0	0.0	0-0.5'	Brown, FILL w/silty fine sand		
					0.5-2'	Brown, FILL w/silty fine sand, trace fine-coarse gravel, dense		
2-4	2	SS	1.67	0.0	0-1.67'	Brown, FILL w/silty fine sand, trace fine-coarse gravel, dense		
4-6	3	SS	1.83	25.0	0-0.92'	SAME AS ABOVE		
					0.92-1.83'	Brown-dark gray, FILL w/silty fine sand, embedded w/trace fine-coarse gravel, dense		
6-8	4	SS	1.83	10.4	0-1.83'	Brown-dark gray, FILL w/silty fine sand, embedded w/trace fine-coarse gravel, dense		
8-10	5	SS	1.83	84.0	0-1.83'	Dark gray-black, FILL w/silty fine sand, piece of rubber, dense		
Sample SS = Sr	Type:					Notes: Samples selected for analysis 8-10'.		
55 - 5	ont Opuc	/11				Camples selected for analysis of to.		

Project No.: 1965-07 Boring No.: B-19 **Project Location:** Bethpage, NY Sheet 2 of 3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Data Startad: 6/3/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth:

Samples selected for analysis at 10-12', 12-14', 16-18' and

N/A: Not Available

30 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date S	tarted:	6/3/03			Date Completed: 6/3/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
10-12	6	SS	1.67	10.0	0-1.67'	Dark gray-dark brown, FILL w/silty fine sand, pieces of rubber and non-rusting metal, dense		
12-14	7	SS	2.0	106	0-2'	SAME AS ABOVE		
14-16	8	SS	0.0	N/A		NO RECOVERY		
16-18	9	SS	2.0	70.3	0-2'	Dark gray-dark brown, FILL w/silty fine sand, pieces of rubber and non-rusting metal, dense		
18-20	10 Tvpe:	SS	1.67	156	0-1.67'	Dark gray-dark brown, FILL w/silty fine sand, pieces of wood, rivets, metal Notes:		

Page 41

18-20'.

Project No.:1965-07Boring No.:B-19Project Location:Bethpage, NYSheet3 of3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 30 ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

(ft.)	Soil Samp Io. Type 11 SS	Rec. (ft.) 0.0	PID (ppm) N/A		Lithology Description NO RECOVERY
(ft.)	lo. Type	Rec. (ft.)	(ppm)		
	11 SS	0.0	N/A		NO RECOVERY
22-24 12	12 SS	2.0	16.1	0-2'	Dark gray-dark brown, FILL w/silty fine sand, pieces of wood, rivets, metal
24-26 13	13 SS	0.67	21.0	0-0.67'	SAME AS ABOVE, cobble in tip of spoon
26-28 14	14 SS	1.0		0-0.5' 0.5-1'	Black, FILL w/silty fine sand, pieces of wood, loose Buff/orange, well sorted fine SAND
28-30 15	15 SS	1.0	0.0	0-1'	Buff/orange, well sorted fine SAND Notes:

Page 42

Samples selected for analysis at 22-24', 24-26', 26-27',

N/A: Not Available

27-28' and 28-30'.

Project No.:1965-07Boring No.:B-20Project Location:Bethpage, NYSheet1 of 3

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 26 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date S	tarted:				Date Completed: 6/3/03				
		Soil Sample	_]					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0-2	1	SS	2.0	0.0	0-0.5'	Light brown, FILL w/well sorted medium sand, trace silt and fine gravel			
					0.5-2'	Brown-dark brown, FILL w/silty fine sand, trace fine-coarse gravel			
2-4	2	SS	2.0	0.0	0-2'	Brown-dark brown, FILL w/silty fine sand, trace fine-coarse gravel			
4-6	3	SS	1.0	0.0	0-1'	SAME AS ABOVE			
6-8	4	SS	2.0	70.2	0-0.17'	SAME AS ABOVE			
					0.17-2'	Gray-dark gray, FILL w/silty fine sand, trace fine-coarse gravel, lens of yellow silt, trace black silty fine sand			
8-10	5	SS	1.67	55.4	0-1.67'	Brown/gray, FILL w/silty fine sand, trace fine gravel, some concrete fragments			
Sample SS = Sp		n				Notes: Samples selected for analysis at 6-8' and 8-10'.			

Project No.: 1965-07
Project Location: Bethpage, NY

Project Name: Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/3/03

Boring Completion Depth: 26 ft. **Ground Surface Elevation:** -- ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Boring No.: B-20

Sheet 2 of 3

By: CS

Depth (ft.) 10-12	No.	Soil Sample Type	Rec.	PID		Litherton Bernet ii
(ft.)				PID	I	Little Lance Board of
10-12	6		(11.)	(ppm)		Lithology Description
		SS	2.0	55.4	0-2'	Black-dark brown, FILL w/silty fine sand, trace fine-coarse gravel, brick and wood fragments
12-14	7	SS	2.0	105	0-2'	SAME AS ABOVE
14-16	8	SS	2.0	69.7	0-2'	SAME AS ABOVE
16-18	9	SS	1.33	113	0-1.33'	SAME AS ABOVE
18-20 Sample 1	10	SS	2.0	226	0-2'	SAME AS ABOVE Notes:

Samples selected for analysis at 10-12', 12-14', 14-16',

16-18' and 18-20'.

Project No.:1965-07Boring No.:B-20Project Location:Bethpage, NYSheet3 of 3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/3/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Drive Hammer Weight. 140 lbs

Boring Completion Depth: 26 ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Date S	tarted:	6/3/03			Date Completed: 6/3/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
20-22	11	SS	0.33	31.0	0-0.33'	Black-dark brown-brown, FILL w/silty fine sand, trace fine-coarse gravel, brick and wood fragments		
22-24	12	SS	1.67	70.0	0-0.33'	SAME AS ABOVE, black		
					0.33-1.67'	Brown-orange, poorly sorted fine-medium SAND, trace fine-coarse gravel		
24-26	13	SS	1.17	0.0	0-1.17'	Buff, poorly sorted fine-coarse SAND and GRAVEL		
Sample	Type					Notes:		

Page 45

Samples selected for analysis at 22.5-24' and 24-26'.

Project No.:1965-07Boring No.:B-21Project Location:Bethpage, NYSheet1 of 2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 12 ft. Ground Surface Elevation: - ft.

Boring Diameter: 8 in.

	\equiv	Soil Sample	į.				
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description	
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown/dark brown, FILL w/silty loam	
0.17-2	2	SS	1.5	0.0	0-0.5'	SAME AS ABOVE	
					0.5-1.5'	Brown/dark brown, FILL w/silty fine sand, trace fine-coarse gravel, ash fragment	
2-4	3	SS	1.67	0.0	0-1.5'	Brown/gray, FILL w/poorly sorted fine-medium sand, some fine-coarse gravel	
.]	1				1.5-1.58'	Gray, FILL w/silty fine sand	
					1.58-1.67'	Brown, FILL w/moderately sorted fine-medium sand, trace fine-coarse gravel	
4-6	4	SS	1.67	0.0	0-1.17'	Brown/gray, FILL w/silty fine sand, trace fine gravel	
					1.17-1.67'	Orange, FILL w/silty fine sand, trace fine-coarse gravel, trace black mottled silt zones	
6-8	5	SS	1.67	0.0	0-1.67'	Buff, moderately sorted fine-medium SAND, trace fine gravel, trace layers of orange moderately sorted fine-coarse sand w/trace fine-coarse gravel	
Sample	Tvpe:	<u></u>				Notes:	
SS = Sp			land Samp	ole		Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and	

Page 46

6-8'.

Project No.: 1965-07 **Boring No.:** B-21

Project Location: Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/2/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/2/03

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

	tarted: (T	Duto Con	Date Completed: 6/2/03				
		Soil Sample								
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description				
8-10	6	SS	1.83	0.0	0-1.83'	Buff, moderately sorted fine-medium SAND, trace fine gravel, trace layers of orange moderately sorted fine-coarse sand w/trace fine-coarse gravel				
10-12	7	SS	1.83	0.0	0-1.83'	Orange, poorly sorted medium-coarse SAND, some fine-coarse gravel				

Page 47

Samples selected for analysis at 8-10' and 10-12'.

Project No.:1965-07Boring No.:B-22Project Location:Bethpage, NYSheet1 of 3

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski **Drilling Method**: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth: 30 ft. **Ground Surface Elevation:** -- ft.

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Date S	tarted:	6/9/03			Date Completed: 6/9/03					
		Soil Sample	_							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description				
0-2	1	SS	1.67	0.0	0-0.5'	Brown, FILL w/well sorted fine sand				
					0.5-1.67'	Dark brown, FILL w/silty fine sand, trace fine-coarse gravel, loose				
2-4	2	SS	1.67	0.0	0-0.83'	Dark brown, FILL w/silty fine sand, trace fine-coarse gravel, loose				
					0.83-1.67'	Dark gray, FILL w/silty fine sand, trace fine-coarse gravel, loose, slight fuel oil-like odor				
4-6	3	SS	1.67	69.0	0-1.33'	Dark gray, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of slag, slight fuel oil-like odor				
					1.33-1.67'	Brown, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of slag, slight fuel oil-like odor				
6-8	4	SS	1.67	53.0	0-1.67'	Brown/dark gray, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of slag, fuel oil-like odor				
8-10	5	SS	0.83	143	0-0.83'	SAME AS ABOVE				
Sample	Sample Type: Notes:									

Page 48

Samples selected for analysis at 4-6', 6-8' and 8-10'.

Project No.: 1965-07 Boring No.: B-22 **Project Location:** Bethpage, NY Sheet 2 of 3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth:

30 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 5	tarteu.				Date Completed. 0/9/03				
		Soil Sample	1	Į					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
10-12	6	SS	1.5	146	0-1.5'	Brown/dark gray, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of plastic, fuel oil-like odor			
12-14	7	SS	1.17	175	0-1.17'	SAME AS ABOVE			
14-16	8	SS	2.0	105	0-2'	SAME AS ABOVE, w/piece of concrete			
16-18	9	SS	1.67	158	0-1.67'	Brown-green, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of plastic, fuel oil-like odor			
18-20	10	SS	1.67	0.0	0-1.67'	SAME AS ABOVE, no odor			
Sample	Sample Type: Notes:								

16-18' and 18-20'.

Samples selected for analysis at 10-12', 12-14', 14-16',

Project No.: 1965-07 Boring No.: B-22 **Project Location:** Bethpage, NY **Sheet** 3 **of** 3

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/9/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/9/03

Boring Completion Depth:

Samples selected for analysis at 20-22', 22-24', 25-26' and

N/A: Not Available

30 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date S	tarted: (6/9/03			Date Completed: 6/9/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
20-22	11	SS	0.67	0.0	0-0.67'	Brown-green, FILL w/silty fine sand, trace fine-coarse gravel, loose, piece of wire		
22-24	12	SS	0.5	0.0	0-0.5'	SAME AS ABOVE		
24-26	13	SS	2.0	0.0	0-1'	SAME AS ABOVE		
					1-2'	Buff, poorly sorted fine-coarse SAND, trace fine-coarse gravel		
26-28	14	SS	0.0	N/A		NO RECOVERY		
28-30	15 • Type :	SS	1.67	0.0	0-1.67'	Buff, poorly sorted fine-coarse SAND and GRAVEL w/layers of moderately sorted medium SAND, trace fine-coarse gravel Notes:		

Page 50

28-30'.

Project No.:1965-07Boring No.:B-23Project Location:Bethpage, NYSheet1 of2

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/10/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Date Completed: 6/10/03

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 5	tarted: (Date Completed: 6/10/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
0-0.17	1	HS	0.17	0.0	0-0.17'	Light brown, FILL w/well sorted fine-medium sand		
0.17-2	2	SS	1.67	0.0	0-1.5' 1.5-1.67'	Light brown, FILL w/moderately sorted medium-coarse sand, trace fine-coarse gravel, wet Dark brown-brown, FILL w/moderately sorted medium sand, trace fine-coarse gravel		
2-4	3	SS	2.0	0.0	0-2'	Brown/gray, FILL w/poorly sorted silty fine sand, some fine-coarse gravel, dense, moist		
4-6	4	SS	1.0	0.0	0-1'	SAME AS ABOVE, w/piece of wood		
6-8	5	SS	2.0	0.0	0-0.67' 0.67-2'	Orange, moderately sorted fine-medium SAND, trace fine gravel, dry Gray-orange, variegated clayey SILT and mottled SAND, embedded fine gravel		
Sample SS = Sp		n HS = Ha	and Samp	le		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.		

Project No.:1965-07Boring No.:B-23Project Location:Bethpage, NYSheet2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 6/10/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Ground Surface Elevation: Boring Diameter:

Samples selected for analysis at 8-10' and 10-12'.

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft.

Drive Hammer Weight: 140 lbs. **Boring Diameter:** 8 in. **Date Completed:** 6/10/03

24.0 0	Soil Sample				Date Completed. 0/10/03				
Depth			Rec.	PID		Lithology Description			
(ft.)	No.	Type	(ft.)	(ppm)		_imology _coonplion			
8-10	6	SS	1.0		0-1'	Gray-orange, variegated clayey SILT and mottled SAND,			
						embedded fine gravel			
						embedded line gravei			
10-12	7	SS	1.67	0.0	0-1.67'	Buff, moderately sorted fine SAND, trace fine-coarse gravel			
}ample	Type:					Notes:			

Project No.: 1965-07 Boring No.: B-24 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 6/10/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Sheet 1 of 2

Date Completed: 6/10/03

Depth (ft.) 0-0.17	No.	Soil Sample Type	Rec.			
(ft.)	No.	Type	Rec.			Lithalama Dagamintian
0-0.17		, , , , , , , , , , , , , , , , , , ,	(ft.)	PID (ppm)		Lithology Description
	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silty fine sand, trace pebbles, dense
0.17-2	2	SS	1.67	0.0	0-1.67'	Light brown, FILL w/poorly sorted fine-coarse sand, some fine-coarse gravel
2-4	3	SS	1.67	0.0	0-1.33' 1.33-1.67'	Dark brown, FILL w/silty fine sand, trace fine-coarse gravel, piece of concrete Brown-dark brown, FILL w/poorly sorted fine-coarse sand, trace fine-coarse gravel
4-6	4	SS	1.67	3.7	0-1'	SAME AS ABOVE
					1-1.17' 1.17-1.67'	Gray/orange, variegated clayey SILT embedded w/fine gravel Orange, moderately sorted medium SAND
6-8	5	SS	2.0	0.0	0-2'	Orange, moderately sorted medium SAND, trace fine-coarse gravel Notes:

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and

HS = Hand Sample

1965-07 Project No.: Boring No.: B-24 **Project Location:** Bethpage, NY Sheet 2 of 2

Project Name: Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 6/10/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 12 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Date Completed: 6/10/03

Date S	tarted:	6/10/03			Date Con	Date Completed: 6/10/03				
	Soil Sample									
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description				
8-10	6	SS	1.83	0.0	0-1.83'	Orange/buff, moderately sorted medium-coarse SAND, trace fine-coarse gravel, slight layering				
10-12	7	SS	1.83	0.0	0-1.83'	SAME AS ABOVE				
Sample SS = Sp		on				Notes: Samples selected for analysis at 8-10' and 10-12'.				

Project No.: 1965-07
Project Location: Bethpage, NY

Project Name: Bethpage Community Park

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 6/10/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 12 ft. Ground Surface Elevation: -- ft. Boring Diameter: 8 in.

Boring No.: B-25

Sheet 1 of 2

By: CS

Date Completed: 6/10/03

		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/moderately sorted fine sand			
0.17-2	2	SS	1.67	0.0	0-1.67'	Brown-gray, FILL w/moderately sorted fine-coarse sand, trace fine-coarse gravel, silty fine-medium SAND and fine-coarse GRAVEL, layered			
2-4	3	SS	0.67	0.0	0-0.67'	Buff, poorly sorted medium-coarse SAND, trace fine-coarse gravel and fine sand			
4-6	4	SS	1.0	0.0	0-1'	SAME AS ABOVE, w/layers of moderately sorted medium sand, trace fine-coarse gravel and cobble			
6-8	5	SS	1.67	0.0	0-1.67'	Brown-buff, moderately sorted medium SAND w/fine-coarse gravel, slight layering			

Page 55

Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and

HS = Hand Sample

Project No.: 1965-07 **Boring No.:** B-25

Project Location:Bethpage, NYSheet2 of2Project Name:Bethpage Community ParkBy:CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 6/10/03

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger **Drive Hammer Weight:** 140 lbs.

Boring Completion Depth: 12 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

Date Completed: 6/10/03

Date 5	tartea:				Date Comp	Date Completed: 6/10/03			
		Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description			
8-10	6	SS	1.83	0.0	0-0.33'	Orange, moderately sorted medium SAND, trace fine-coarse gravel and cobbles			
					0.33-1.83'	Buff, moderately sorted medium-coarse SAND, trace fine-coarse gravel			
10-12	7	SS	1.67	0.0	0-1.67'	Buff, moderately sorted medium-coarse SAND, trace fine-coarse gravel			
Sample	Type:		<u> </u>	<u> </u>	<u> </u>	Notes:			

Samples selected for analysis at 8-10' and 10-12'.

Project No.: 1965-07 Boring No.: BCPMW-1 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 5/30/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs. Date Completed: 5/30/03

Boring Completion Depth: 70 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Sheet 1 of 5

Date 3	tarteu.				Date Completed: 3/30/03			
Donth	Soil Sample Rec. PID		PID	Lithology Description				
Depth (ft.)	No.	Type	(ft.)	(ppm)		Littlology Description		
0-0.17	1	HS	0.17		0-0.17'	Dark brown, FILL w/silty loam		
0.17-2	2	SS	1.83	0.0	0-0.67'	SAME AS ABOVE, w/dark brown silt and fine sand		
					0.67-1.33' 1.33-1.83'	Light brown, FILL w/fine sand and silt, some rounded f-c gravel Brown, FILL w/poorly sorted fine-medium sand, little silt and fine		
						gravel		
2-4	3	SS	1.67	0.0	0-1.67'	Orange, poorly sorted fine-medium SAND w/little fine-coarse gravel and trace silt, moderately sorted fine SAND w/trace fine gravel and silt, layered		
4-6	4	SS	1.67	0.0	0-1.67'	SAME AS ABOVE		
6-8	5	SS	1.67	0.0	0-0.33'	Dark orange, moderately sorted fine SAND, trace fine-coarse gravel		
	0	00	1.07	0.0	0.33-1.33'	Light brown, moderately sorted fine SAND, trace fine-coarse gravel		
					1.33-1.67'	Light gray-orange, mottled SILT		
Sample SS = Sp		on HS = Ha	Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and					

6-8'.

Project No.: 1965-07 **Project Location:** Bethpage, NY **Project Name:**

Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 5/30/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 70 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Boring No.: BCPMW-1

By: CS

Sheet 2 of 5

Date Completed: 5/30/03

Date S	tarted:	5/30/03			Date Completed: 5/30/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	2.0	0.0	0-2'	Orange, moderately sorted fine SAND w/trace fine gravel, poorly sorted fine-coarse SAND w/little fine-coarse gravel, layered, well rounded		
10-12	7	SS	1.67	0.0	0-1.67'	SAME AS ABOVE		
14-16	8	SS	1.67	0.0	0-1.67'	Light brown, moderately sorted fine-coarse SAND, little fine gravel, trace coarse gravel		
19-21	9	SS	1.67	0.0	0-1.67'	Orange-buff, fine-coarse GRAVEL, trace cobbles		
24-26	10	SS	2.0	0.0	0-2'	SAME AS ABOVE, w/well sorted fine SAND and dark orange mineral laminations, layered		
Sample SS = Sp		n				Notes: Samples selected for analysis at 8-10' and 10-12'.		

Project No.: 1965-07 **Project Location:** Bethpage, NY **Project Name:**

Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 70 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Boring No.: BCPMW-1

By: CS

Sheet 3 of 5

Date Started: 5/30/03 Date Completed: 5/30/03 Soil Sample Depth PID **Lithology Description** Rec. No. Type (ft.) (ft.) (ppm) 0-1.67' 29-31 11 SS 1.67 0.0 Orange-buff, poorly sorted fine SAND w/fine-coarse GRAVEL, trace cobbles, dark orange heavy mineral laminations, slight layering 34-36 12 SS 1.67 0-1.67' SAME AS ABOVE 0.0 39-41 2.0 0.0 0-0.83' 13 SS Buff, well sorted fine-medium SAND 0.83-2' Buff, medium-coarse SAND and fine GRAVEL

44-46	14	SS	1.67	0.0	0-0.67'	Brown-buff, moderately sorted fine-medium SAND, trace fine gravel
					0.67-0.83'	Dark gray/beige, silty CLAY
					0.83-1.67'	Biege, CLAY, light varves of dark gray clay
49-51	15	SS	0.75	0.0	0-0.25'	Gray/black, CLAY, layered
					0.25-0.5'	Light brown, poorly sorted fine-medium SAND, trace fine gravel, moist
					0.5-0.75'	Gray/black, CLAY, layered, wet

Sample Type:

SS = Split Spoon

Notes:

No samples selected for analysis.

1965-07 Project No.: **Project Location:** Bethpage, NY **Project Name:**

Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger Date Started: 5/30/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 70 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Boring No.: BCPMW-1

By: CS

Sheet 4 of 5

Date Completed: 5/30/03

Date 0	tarteu.			1	Date Completed. 3/30/03			
Depth		Soil Sample	Rec.	PID		Lithology Description		
(ft.)	No.	Type	(ft.)	(ppm)		o.ogy		
54-56	16	SS	0.8		0-0.8'	Black/beige/light green, silty CLAY and CLAY, layered, moist-wet		
56-58	17	SS	1.67	0.0	0-0.5' 0.5-1.67'	Orange/black/gray, silty CLAY, layered, stiff, dry Gray, CLAY, stiff, dry		
58-60	18	SS	1.67	0.0	0-0.5'	Orange/gray/dark gray, silty fine SAND, layered		
					0.5-1.67'	Gray-dark gray, silty CLAY, trace embedded cobbles, stiff		
60-62	19	SS	1.67	0.0	0-0.83'	Gray/dark gray, silty CLAY, fluffy		
					0.83-1.67'	Gray, CLAY, stiff		
62-64	20	SS	1.67	0.0	0-0.83'	Gray, silty CLAY w/thin orange layers of silty fine sand, moist		
					0.83-1.67'	Gray, CLAY, stiff		
Sample	Type:		<u> </u>			Notes:		
	olit Spoc	on				No samples selected for analysis.		
l						1		

Page 60

Project No.: 1965-07
Project Location: Bethpage, NY
Project Name: Bethpage Com

Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger **Date Started:** 5/30/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs. Boring Completion Depth: 70 ft. Ground Surface Elevation: -- ft. Boring Diameter: 8 in.

Boring No.: BCPMW-1

By: CS

Sheet 5 of 5

Date Completed: 5/30/03

Date S	tarted:	5/30/03			Date Completed: 5/30/03			
	Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
64-66	21	SS	1.0	0.0	0-0.33'	Gray, silty CLAY		
					0.33-0.5'	Orange, silty fine SAND, moist		
					0.5-1'	Beige, CLAY		
						.		
68-70	22	SS	1.0	0.0	0-0.5'	Gray/brown, silty fine SAND, wet		
					0.5-1'	Gray, silty CLAY		
Sample		_				Notes:		
SS = Sp	olit Spoo	n				No samples selected for analysis.		

 Project No.:
 1965-07
 Boring No.:
 BCPMW-2

 Project Location:
 Bethpage, NY
 Sheet
 1 of 4

Project Name: Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/5/03

Geologist: Al Jaroszewski
Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/5/03

Boring Completion Depth: 75 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 8 in.

0 11

	Soil Sample					
Depth (ft.)	No.	Type	Rec. (ft.)	PID (ppm)		Lithology Description
0-0.17	1	HS	0.17	0.0	0-0.17'	Brown, FILL w/silt and loam
0.17-2	2	SS	1.67	0.0	0-0.5'	SAME AS ABOVE
					0.5-1.67'	Light brown-brown, FILL w/silty fine sand, trace fine-coarse gravel
2-4	3	SS	1.67	0.0	0-1.67'	Brown, FILL w/poorly sorted fine-medium sand, some-little silt and fine-coarse gravel, trace cobbles, moist
4-6	4	SS	1.33	0.0	0-1.33'	SAME AS ABOVE
6-8	5	SS	1.67	0.0	0-1'	Brown-orange, moderately sorted fine-coarse SAND, trace fine-coarse gravel
					1-1.67'	Brown-buff, moderately sorted medium SAND, little fine sand, trace fine gravel
Sample SS = Sp		on HS = H	I and Samp	ole		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.

Boring No.: BCPMW-2 Project No.: 1965-07 **Project Location:** Bethpage, NY Sheet 2 of 4 **Project Name:** By: CS

Bethpage Community Park Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/5/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/5/03

Boring Completion Depth: 75 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date S	tarted:	6/5/03			Date Completed: 6/5/03			
	Soil Sample							
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	0.5	0.0	0-0.5'	Brown-buff, moderately sorted medium SAND, little fine sand, trace fine gravel		
10-12	7	SS	1.33	0.0	0-1.33'	Brown-light brown, poorly sorted fine-medium SAND, trace fine gravel		
12-14	8	SS	1.5	0.0	0-1.5'	Brown-buff, moderately sorted medium SAND, little silt and fine- coarse gravel, trace cobbles		
19-21	9	SS	1.67	0.0	0-1' 1-1.67'	Buff, poorly sorted medium-coarse SAND, trace fine-coarse gravel and cobble Buff, moderately sorted medium SAND, trace fine-coarse gravel		
24-26	10	SS	1.67	0.0	0-1.67'	Buff/brown, poorly sorted fine-coarse SAND w/fine-coarse GRAVEL		
Sample	Туре:		•		•	Notes:		

Page 63

Samples selected for analysis at 8-10' and 10-12'.

1965-07 Project No.: **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski **Drilling Method:** Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Boring Completion Depth: 75 ft. **Ground Surface Elevation:**

-- ft. **Boring Diameter:** 8 in.

Boring No.: BCPMW-2

By: CS

Sheet 3 of 4

Date S	tarted:	6/5/03			Date Completed: 6/5/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
29-31	11	SS	1.17	0.0	0-0.75'	Brown/dark brown, fine-medium SAND		
					0.75-1.17'	Buff, medium-coarse SAND, trace fine gravel		
34-36	12	SS	1.67	0.0	0-0.83'	Buff, moderately sorted fine-medium SAND, trace fine gravel		
					0.83-1.67'	Buff, moderately sorted medium-coarse SAND, trace fine-coarse gravel		
39-41	13	SS	1.0	0.0	0-0.5'	Brown-beige, fine SAND		
					0.5-1'	Beige, clayey SILT, stiff		
44-46	14	SS	1.5	0.0	0-1'	Beige, silty fine SAND, some light gray clay, trace embedded cobbles		
					1-1.5'	Buff/orange, well sorted fine SAND, stratified		
49-51	15	SS	1.83	0.0	0-1.83'	Buff/orange, well sorted fine SAND, stratified		
Sample					•	Notes:		
SS = Sp	olit Spoc	on				No samples selected for analysis.		

Project No.: 1965-07 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger Drive Hammer Weight: 140 lbs. **Boring Completion Depth:** 75 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 8 in.

Boring No.: BCPMW-2

By: CS

Sheet 4 of 4

Date Completed: 6/5/03

Date S	tarted:	6/5/03			Date Completed: 6/5/03		
		Soil Sample					
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description	
54-56	16	SS	1.67	0.0	0-1.59'	Buff/orange, well sorted fine SAND, stratified	
					1.59-1.67'	Light gray/light beige, CLAY, stiff	
59-61	17	SS	1.67	0.0	0-1.67'	Buff/orange, well sorted fine SAND, stratified	
64-66	18	SS	1.67	0.0	0-1.67'	Orange/light gray, moderately sorted fine-medium SAND, stratified, wet at 65'	
69-70	19	SS	1.0	0.0	0-1'	Light brown, well sorted medium SAND, little fine-coarse sand	
Sample	туре:					Notes:	
Sample SS = Sp		on				Notes: No samples selected for analysis.	

Page 65

Project No.: 1965-07 Boring No.: BCPMW-3 **Project Location:** Bethpage, NY Sheet 1 of 4 **Project Name:** Bethpage Community Park By: CS

Investigation Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Drive Hammer Weight: 140 lbs. Date Started: 6/5/03 Date Completed: 6/6/03

Boring Completion Depth: 74 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 3	tarted:			1	Date Completed: 6/6/03			
Depth		Soil Sample	Rec.	PID		Lithology Description		
(ft.)	No.	Type	(ft.)	(ppm)		Lithology Description		
0-0.17	1	HS	0.17		0-0.17'	Dark brown, FILL w/silt and loam		
0.17-2	2	SS	1.5	0.0	0-0.5' 0.5-1.5'	SAME AS ABOVE Brown/gray, FILL w/poorly sorted fine-medium sand, trace fine-coarse gravel		
2-4	3	SS	1.67	14.0	0-0.83'	Orange, FILL w/moderately sorted fine-medium sand and fine-coarse gravel		
					0.83-1.67'	Dark gray, FILL w/silty fine sand and fine-coarse gravel		
4-6	4	SS	2.0	0.0	0-1' 1-2'	Dark gray, FILL w/silty fine sand and fine-coarse gravel Orange, moderately sorted fine-coarse SAND, trace fine-coarse gravel		
6-8	5	SS	2.0	0.0	0-1'	Orange, moderately sorted fine-coarse SAND, trace fine-coarse gravel Gray, SILT, little fine sand w/trace fine-coarse gravel		
Sample SS = Sp	Type:	on HS = H	and Samp	ole		Notes: Samples selected for analysis at 0-2", 2"-2', 2-4', 4-6' and 6-8'.		

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Project No.: 1965-07
Project Location: Bethpage, NY
Project Name: Bethpage Commun

Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/5/03

Geologist: Al Jaroszewski

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/6/03

Boring Completion Depth: 74 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 8 in.

Boring No.: BCPMW-3

Sheet 2 of 4

Date 5	tarted:	0/5/03			Date Completed: 6/6/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
8-10	6	SS	1.5	0.0	0-1.5'	Orange, poorly sorted fine-coarse SAND w/trace fine-coarse gravel, poorly sorted fine-medium SAND w/trace fine-coarse gravel, layered		
10-12	7	SS	1.83	0.0	0-0.92'	SAME AS ABOVE		
					0.92-1.83'	Buff, well sorted fine-medium SAND		
19-21	8	SS	1.67	0.0	0-1.67'	Brown-light brown, moderately sorted medium-coarse SAND, little fine-coarse gravel		
24-26	9	SS	1.0	0.0	0-1'	Light brown, poorly sorted fine-coarse SAND and moderately sorted medium SAND, trace coarse gravel, slight layering		
29-31	10	SS	0.5	0.0	0-0.5'	Buff, moderately sorted fine-medium SAND, trace fine-coarse gravel		
Sample	Type:		-		•	Notes:		
	olit Spoc	n				Samples selected for analysis at 8-10' and 10-12'.		

Project No.: 1965-07 **Project Location:** Bethpage, NY **Project Name:**

Bethpage Community Park By: CS

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/5/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/6/03

Boring Completion Depth: 74 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Boring No.: BCPMW-3

Sheet 3 of 4

Date 5	tarteu.			1	Date Completed. 0/0/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
34-36	11	SS	2.0	0.0	0-1.67'	Buff, poorly sorted medium-coarse SAND, some fine-coarse gravel,		
						little coarse iron grains		
					1.67-2'	Orange, well sorted medium SAND, trace fine gravel		
39-41	12	SS	1.67	0.0	0-1.67'	Orange/beige, SILT, trace fine sand w/silt, trace clay, stratified		
44-46	13	SS	2.0	0.0	0-0.5'	Light gray, CLAY, stiff		
					0.5-2'	Orange/light gray, well sorted fine SAND and SILT, stratified		
49-51	14	SS	1.83	0.0	0-0.17'	Beige, CLAY		
					0.17-1.83'	Buff/orange, well sorted fine SAND, stratified		
54-56	15	SS	1.67	0.0	0-1.67'	Buff/orange, well sorted fine SAND, stratified		
Sample	Type					Notes:		
SS = Sp		n				No samples selected for analysis.		

Project No.: 1965-07 **Project Location:** Bethpage, NY

Project Name: Bethpage Community Park

Soil Sampling Program

Drilling Contractor: Clearwater

Driller: B. Vigliotta

Drill Rig: Hollow Stem Auger

Date Started: 6/5/03

Geologist: Al Jaroszewski Drilling Method: Hollow Stem Auger

Drive Hammer Weight: 140 lbs.

Date Completed: 6/6/03

Boring Completion Depth: 74 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Boring No.: BCPMW-3

By: CS

Sheet 4 of 4

Date S	tarted:	6/5/03			Date Completed: 6/6/03			
		Soil Sample						
Depth (ft.)	No.	Туре	Rec. (ft.)	PID (ppm)		Lithology Description		
59-61	16	SS	1.67	0.0	0-1.67'	Buff/orange, well sorted fine SAND, stratified		
64-65	17	SS	1.67	0.0	0-1.67'	Brown, moderately sorted fine-medium SAND, trace silt, wet		
69-71	18	SS	1.67	0.0	0-1.67'	SAME AS ABOVE		
Sample SS = Sp		on				Notes: No samples selected for analysis.		