

Scanned & eDoced

Imagine the result

Northrop Grumman Systems Corporation

Operable Unit 3- Interim Operation, Maintenance and Monitoring Report

July 2008 to August 2008

Operable Unit 3 – Soil Gas Interim Remedial Measure Former Grumman Settling Ponds Bethpage, New York

NYSDEC ID # 1-30-003A

Rich-Patricia Riche

Environmental Engineering Specialist 2

Kenneth Zegel PE Senior Engineer

San Geovannin

.

Carlo San Giovanni Project Manager

Operable Unit 3 – Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

Operable Unit 3 Soil Gas Interim Remedial Measure

Former Grumman Settling Ponds Bethpage, New York

NYSDEC ID# 1-30-003A

Prepared for: Northrop Grumman Systems Corporation

Prepared by: ARCADIS Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631.249.7600 Fax 631.249.7610

Our Ref.: NY001464.0908.00004

Date: October 8, 2008

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	Introdu	uction		1
2.	Soil Ga	as Inter	im Remedial Measure System Description	1
3.	Operat	tion and	d Maintenance Activities	2
4.	Monito	oring Ac	ctivities	3
	4.1	Routin	e Performance Monitoring	3
		4.1.1	System Operating Parameters	3
		4.1.2	Vapor Samples	4
	4.2	Routin	e Compliance Monitoring	4
		4.2.1	System Operating Parameters	4
		4.2.2	Vapor Samples	4
		4.2.3	Condensate Samples	5
5.	Monito	oring Re	esults and Discussion	5
	5.1	Routin	e Performance Monitoring	5
		5.1.1	System Operating Parameters	5
		5.1.2	Vapor Samples	6
	5.2	Routin	e Compliance Monitoring	7
		5.2.1	Induced Vacuum Measurements	7
		5.2.2	Vapor Samples	7
		5.2.3	Condensate Samples	8
6.	Air Em	issions	Model	8
7.	Conclu	isions a	and Recommendations	9
	7.1	Conclu	sions	9
	7.2	Recom	mendations	9
8.	Refere	nces		11

g.\aprojecl\northrop grumman\superfund\2008\ou3\ny001464 0908 mlrg rpts\om&m reports\august 2008 monthly report\august_2008 final.doc

i

Tables

Table 1	Summary of General System Operating Parameters, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Table 2	Summary of Induced Vacuum Readings, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Table 3	Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Table 4	Summary of Condensate Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Table 5	Air Emissions Model Output Summary, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Figures	
Figure 1	Site Location Map, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Figure 2	General Site Plan, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.
Figure 3	Process Flow Diagram, Northrop Grumman Operable Unit 3

Soil Gas Interim Remedial Measure, Former Grumman

Settling Ponds, Bethpage, New York.

Table of Contents

Appendices

- A Summary of Vapor Sample Analytical Results Including Tentatively Identified Compounds
- B Summary of Condensate Sample Analytical Results Including Tentatively Identified Compounds
- C Air Modeling Calculations

g.laprojecl/northrop grumman/superfund/2008/ou3/ny001464.0908 mlrg rpts/om&m reports/august 2008 monthly report/august_2008

July 2008 to August 2008

1. Introduction

This Operable Unit 3 (OU3) Soil Gas Interim Remedial Measure (soil gas IRM) Interim Operation, Maintenance, and Monitoring Report was prepared by ARCADIS of New York, Inc. (ARCADIS) on behalf of Northrop Grumman Systems Corporation (Northrop Grumman). This report is being submitted pursuant to the Order On Consent (Consent Order or CO) Index # W1-0018-04-01 that was executed by the New York State Department of Environmental Conservation (NYSDEC) and Northrop Grumman, effective July 4, 2005 (NYSDEC 2005). The present day Bethpage Community Park property (Park), which the NYSDEC has termed the "Former Grumman Settling Ponds Area" and designated as OU3, is referred to herein as the Site. A Site location map is provided on Figure 1.

This report summarizes the routine operation, maintenance and monitoring (OM&M) activities for the soil gas IRM performed from July 8, 2008 through August 6, 2008. System O&M was completed in accordance with the Operable Unit 3 Soil Gas Interim Remedial Measure OM&M Manual that was submitted to the NYSDEC on August 26, 2008 (ARCADIS 2008a). System monitoring was completed in accordance with the Sampling and Analysis Plan (SAP), which was provided to the NYSDEC as Appendix C of the Soil Gas Interim Remedial Measure 95% Design Report and Design Drawings dated September 7, 2007 (ARCADIS 2007) and the OM&M Manual. The Sampling and Analysis Plan (ARCADIS 2008b) was approved by the NYSDEC in a letter dated August 1, 2008 (NYSDEC 2008).

A description of the soil gas IRM system OM&M activities completed during the reporting period is provided below.

2. Soil Gas Interim Remedial Measure System Description

The OU3 soil gas IRM was constructed in accordance with the Soil Gas Interim Remedial Measure 95% Design Report and Design Drawings, which was approved by the NYSDEC on September 19, 2007. A general site plan that shows the major process equipment, depressurization, and monitoring well locations is provided on Figure 2. A process flow diagram that shows sampling and monitoring locations is provided on Figure 3. A complete set of as-built drawings is provided in the OM&M Manual (ARCADIS 2008a).

In summary, the soil gas IRM consists of the following major components:

g:\aprojecl\northrop grumman\superfund\2008\ou3\ny001464.0908 mtrg rpts\om&m reports\august 2008 monthly report\august_2008 final.doc

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

- 18 depressurization wells and 47 associated induced vacuum monitoring wells at the locations shown on Figure 2.
- Two (2) "dry-van" type storage containers, which contain the following equipment:
 - Three (3) 52-gallon moisture separators to remove condensate from the influent vapor stream;
 - Two (2) 20-horsepower(hp) and one (1) 30-hp regenerative type depressurization blowers;
 - A programmable logic controller (PLC) based control system;
 - An autodialer;
 - Associated piping, valves, sample ports, gauges, electrical equipment, and other devices necessary to safely control, operate, and monitor the system.
- One (1) heat exchanger to condition the effluent vapor stream prior to treatment; and,
- One (1) 10,000 pound (lb) vapor phase granular activated carbon bed (VPGAC).
- One (1) 33-foot tall by 16-inch diameter stack and associated ductwork.

A detailed description of the system is provided in the OM&M Manual (ARCADIS 2008a).

3. Operation and Maintenance Activities

The soil gas IRM operated continuously during the reporting period with only brief system shutdowns to perform routine maintenance or troubleshooting activities. The routine, monthly O&M site visit was conducted on August 6, 2008. Routine monthly O&M activities included inspection of all piping, appurtenances, and mechanical equipment for leaks, defects, or other problems and maintenance of equipment in accordance with the manufacturers' specifications and as described in the OM&M

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

Manual. In addition to the routine O&M site visit, supplemental site visits were completed on a weekly basis to monitor the physical condition of the temporary site controls (i.e., temporary fence).

Discussion of the routine OM&M monitoring program and results is provided in the subsequent sections of this report.

4. Monitoring Activities

The following sections summarize the methodology used for routine performance monitoring and routine compliance monitoring during the current reporting period. The performance monitoring program is completed to ensure that the system components are operating in accordance with the manufacturers specifications, to ensure that the VPGAC unit is operating as designed (if applicable), and to ensure that the general system operating parameters remain consistent with design data and/or historical operating data. The compliance monitoring program consists of the collection of effluent vapor and/or water samples to demonstrate compliance with regulatory discharge criteria and the collection of induced vacuum readings from key monitoring points to demonstrate the soil gas IRM is achieving the design vacuum of -0.1 inches of water (iwc) within the subsurface.

A description of the monitoring activities completed during the reporting period is provided below.

4.1 Routine Performance Monitoring

Routine performance monitoring was completed on August 6, 2008, in accordance with Table C-1 of the SAP (ARCADIS 2008b). A brief discussion of the routine performance monitoring methodology and/or deviations from the methodology described in the SAP is provided below.

4.1.1 System Operating Parameters

System operating parameters that fall under the performance monitoring program include the parameters listed in Attachments C-3.2 and C-3.3 of the SAP (ARCADIS 2008b). There were no significant deviations from the recording of these parameters during the routine monitoring event.

July 2008 to August 2008

4.1.2 Vapor Samples

One (1) routine performance monitoring vapor sample was collected for laboratory analysis from the total influent sample location (VSP-601) during the August 6, 2008 monitoring event. The sample was collected and submitted to the laboratory in accordance with the requirements set forth in the SAP (ARCADIS 2008b). The sample was analyzed using USEPA Method TO-15 with the site-specific compound list provided in the SAP (ARCADIS 2008b). As requested by the NYSDEC, Freon 12 was quantified using USEPA Method TO-15 and the top 20 tentatively identified compounds (TICs) were reported. As referenced in previous correspondence to the NYSDEC, the analytical laboratory does not currently have a calibration standard for the compound Freon 22. Accordingly, Freon 22 is scanned for and reported as a TIC. The analytical laboratory anticipates acquiring the Freon 22 calibration standard during the Fall/Winter of 2008.

In addition, a screening level vapor sample was collected and monitored from VSP-601 using a photoionization detection (PID). In accordance with previous recommendations, PID measurements were not collected from individual depressurization wells during the reporting period.

4.2 Routine Compliance Monitoring

Routine compliance monitoring was completed on August 6, 2008 in accordance with Table C-1 of the SAP (ARCADIS 2008b). A brief discussion of the routine compliance monitoring methodology and/or deviations from the methodology described in the SAP is provided below.

4.2.1 System Operating Parameters

System operating parameters that fall under the compliance monitoring program include the compliance-related induced vacuum measurements listed in Table 2 of the OM&M Manual (ARCADIS 2008a). There were no significant deviations from the recording of these parameters during the routine monitoring event.

4.2.2 Vapor Samples

One (1) routine, compliance monitoring vapor sample was collected for laboratory analysis from the total effluent sample location (VSP-602) during the August 6, 2008 monitoring event. The sample was collected and submitted for laboratory analysis in

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

accordance with the requirements set forth in the SAP (ARCADIS 2008b). The sample was analyzed using USEPA Method TO-15 with the site-specific compound list provided in the SAP (ARCADIS 2008b). As requested by the NYSDEC, Freon 12 was quantified using USEPA Method TO-15 and the top 20TICs were reported. As referenced in previous correspondence to the NYSDEC, the analytical laboratory does not currently have a calibration standard for the compound Freon 22. Accordingly, Freon 22 is scanned for and reported as a TIC. The analytical laboratory anticipates acquiring the Freon 22 calibration standard during the Fall/Winter of 2008.

In addition, a screening level sample was collected and monitored from VSP-602 using a PID.

4.2.3 Condensate Samples

Due to the lack of condensate generation, a compliance monitoring condensate sample was not collected for laboratory analysis during the reporting period.

5. Monitoring Results and Discussion

The following sections summarize and briefly discuss the results for routine performance monitoring and routine compliance monitoring during the current reporting period.

5.1 Routine Performance Monitoring

This following section summarizes the results of the routine system performance monitoring event completed on August 6, 2008.

5.1.1 System Operating Parameters

A summary of the performance monitoring system operating parameters for the August 6, 2008 monitoring event is provided in Table 1. A summary of induced vacuum measurements is provided in Table 2.

As shown in Table 1, the majority of system operating parameters recorded in August 2008 remained generally consistent with operating parameters recorded during July 2008. These data indicate that the system is running as designed and is maintaining a negative pressure curtain along the southern and western property boundaries.

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

Additional key data and observations are as follows:

- Wellhead vacuum and extraction flow rate decreased at Depressurization Wells DW-3S, DW-3D, DW-5D, and DW-4S; however, induced vacuum data for each respective depressurization well indicate the decrease did not result in a reduction of induced vacuum to below the design criteria of -0.1 iwc. The observed wellhead vacuum and extraction flow rate at the remaining depressurization wells are generally consistent when comparing July 7, 2008 to August 6, 2008 monitoring data.
- The average induced vacuum reading at non-compliance monitoring points was approximately-0.320 iwc for all monitoring points measured during the August 2008 monitoring event, which is consistent with data obtained during the July 2008 monitoring event (i.e., -0.317 iwc).

> Condensate water was not generated between July 8, 2008 and August 6, 2008.

- Perched water was not encountered in induced Vacuum Monitoring Wells VMWC-1C or VMWC-5B.
- The heat exchanger influent temperature (98 deg F) remained lower than the design influent temperature of 150 degrees. Accordingly, the heat exchanger was kept on standby between July 8, 2008 and August 6, 2008.

5.1.2 Vapor Samples

A summary of the August 2008 qualitative vapor sample analytical results is provided in Table 1. A summary of the August 2008 total influent vapor sample laboratory analytical results for detected compounds is provided in Table 3. A summary of all vapor sample analytical results (including detected, non-detect, and TICs is provided in Appendix A.

Qualitative vapor analyses (i.e., PID readings) were consistent with previous data and were below the limits of detection for vapor sample location VSP-601. Total influent (VSP-601) laboratory analytical results for the August 6, 2008 monitoring event were generally consistent with analytical results from July 7, 2008. Specifically, TVOC concentrations were 2,630 ug/m3 during the August 2008 monitoring event, and the VC concentration was below the limits of detection. Trichloroethylene (TCE) was detected at a concentration of 1,400 ug/m3.

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

Chlorodifluoromethane and Freon 142 were reported as TICSs by the laboratory during the August 2008 monitoring event. As requested by the NYSDEC, chlorodifluoromethane will be added to the quantitative laboratory compound list during Fall 2008 as soon as the calibration standard is received by the laboratory.

5.2 Routine Compliance Monitoring

This following section summarizes the results of the routine system compliance monitoring event completed on August 6, 2008.

5.2.1 Induced Vacuum Measurements

Induced vacuum measurements collected during the August 6, 2008 monitoring event are summarized in Table 2. As referenced in the 95% Design Report, the soil gas IRM was designed to maintain a negative pressure of -0.1 iwc on a time-weighted rolling average within all monitoring points. Accordingly, the time-weighted rolling average for all induced vacuum monitoring points has been provided in Table 2. As shown on Table 2, the rolling average for all individual monitoring points was greater than -0.1 iwc as of August 6, 2008. In addition, the average induced vacuum for compliance monitoring wells during the August 6, 2008 monitoring event was -0.20 iwc, which indicate that the soil gas IRM is operating as designed. These data are consistent with data from the July 7, 2008 monitoring event.

5.2.2 Vapor Samples

A summary of the August 2008 qualitative vapor sample analytical results is provided in Table 1. A summary of the August 2008 total effluent vapor sample laboratory analytical results for detected compounds is provided in Table 3. A summary of all vapor sample analytical results (including detected, non-detect, and TICs is provided in Appendix A.

Qualitative vapor analyses (i.e., PID readings) for total effluent sample port VSP-602 were consistent with previous data and were below the limits of detection. Total effluent (VSP-602) laboratory analytical results for the August 6, 2008 monitoring event were consistent with analytical results from July 7, 2008. Specifically, the TVOC concentration was 361 ug/m3 during the August 2008 monitoring event. VC was detected at a concentration (4.9 ug/m3) that is slightly above the limits of detection. Similarly, TCE was detected at a concentration (9.2 ug/m3) that is slightly above the limits of detection.

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

compliance with applicable air discharge standards, is discussed in Section 6 of this report.

5.2.3 Condensate Samples

As discussed previously, a condensate sample was not collected from Storage Tank ST-510 for laboratory analysis during the reporting period due to the lack of condensate water generation. Nonetheless, a table that indicates no samples were collected during the reporting period is provided as Table 4. A similar appendix table has been provided in Appendix B.

6. Air Emissions Model

Effluent vapor laboratory analytical results were compared to the NYSDEC Division of Air Resources Air Guide-1 (DAR-1) Short-term Guideline Concentrations (SGCs). In addition, effluent vapor laboratory analytical results were compared to a site-specific modeled annual maximum allowable stack concentration. The annual maximum allowable stack concentration (MASC) was calculated during each monitoring event for individual compounds using the output from a United States Environmental Protection Agency (USEPA) Screen 3 model in conjunction with the NYSDEC DAR-1 Annual Guideline Concentrations (AGCs). Specifically, a scaling factor was calculated using the SCREEN3 model with site-specific physical layout (e.g., building dimension, stack height, terrain, etc.) and operating data (e.g., discharge flow rate, temperature, etc.) inputs for each monitoring event. The scaling factor was then used to adjust (scale) the NYSDEC DAR-1 AGC to a site-specific annual MASC. A summary of the instantaneous percent (e.g., not time-weighted) of the site-specific annual MASC for detected compounds is provided in Table 5. A summary of the cumulative annual percent (i.e., time-weighted) of the site-specific MASC for detected compounds is also provided on Table 5. A summary of the model input, outputs, and backup calculations is provided in Appendix C.

In summary, the soil gas IRM effluent vapor met applicable air discharge criteria based on the following:

The actual concentrations of individual VOCs in the vapor effluent did not exceed their respective SGCs during all monitoring events (Table 3). It should also be noted that all influent (i.e., prior to treatment) individual VOC concentrations were also below their respective SGCs.

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

The actual concentration of individual VOCs in the vapor effluent did not exceed their respective instantaneous MASCs as calculated using the USEPA SCREEN 3 Model (Table 5). Similarly, the time-weighted rolling average for all detected compounds is currently well below the MASCs.

7. Conclusions and Recommendations

7.1 Conclusions

Based on the information provided herein, ARCADIS makes the following conclusions:

- VPGAC effluent data indicate that the VPGAC unit is removing TCE from the influent vapor stream as designed.
- August 2008 compliance monitoring results indicate that the system continues to operate as designed. Specifically, a time-weight average induced vacuum of greater than -0.1 iwc was achieved in all induced vacuum monitoring points.
- The actual concentrations of individual VOCs in the vapor effluent did not exceed their respective SGCs during the reporting period.
- The actual concentration of individual VOCs in the vapor effluent did not exceed their respective MASCs as calculated using the USEPA SCREEN 3 model. In addition, the instantaneous percent of the site-specific annual MASC for all detected compounds was less than 1-percent during the August 2008 monitoring event.

7.2 Recommendations

Based on the information provided herein, ARCADIS makes the following recommendations:

- Continue operating the system in accordance with system operating parameters recorded in July/August 2008.
- Evaluate September 2008 vacuum and flow rate data from depressurization wells DW-3S, DW-3D, DW-5D, and DW-4S in conjunction with each wells respective induced vacuum monitoring points. If flow rates continue to decline,

9

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

consider making system adjustments to increase the flow at the respective location.

Continue to collect system operational data and influent and effluent vapor samples for laboratory analysis on a monthly basis for the next operating month (i.e., September 2008) as requested by the NYSDEC. If data is favorable and continue to indicate a stable trend for all operating parameters and vapor analytical data, perform performance and compliance monitoring on a quarterly basis thereafter.

g:laproject/nor/hrop grumman/superfund/2008/ou3/ny001464.0908 mlrg rpls/om&m reports/august 2008 monlhly report/veport/august_2008

Operable Unit 3 - Interim Operation, Maintenance, and Monitoring Report

July 2008 to August 2008

8. References

- ARCADIS of New York, Inc. 2007. 95% Design Report, Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A September 7, 2007.
- ARCADIS of New York, Inc. 2008a. Operable Unit 3 –Operation, Maintenance, and Monitoring Manual, Operable Unit 3, Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A August 26, 2008.
- ARCADIS of New York, Inc. 2008b. 95% Design Report, Appendix C, Sampling and Analysis Plan, Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A February 8, 2008.
- New York State Department of Environmental Conservation (NYSDEC), 2008, Approval Letter regarding Former Grumman Settling Ponds, NYSDEC Nassau County Site No. 1-30-003A OU3 (Bethpage Community Park), August 1, 2008.
- New York State Department of Environmental Conservation (NYSDEC), 2005, Order on Consent Index #WI-0018-04-01, Site # 1-30-003A, July 4, 2005.
- New York State Department of Environmental Conservation, Division of Air Resources-1 (DAR-1) Guidelines for the Control of Toxic Ambient Air Contaminants dated 1991 and the AGC/SGC Tables dated September 10, 2007.

g.aproject/northrop grumman/superfund/2008/ou3/ny001464.0908 mlrg rpls/orn&m reports/august 2008 monthly report/report/august_2008

		E	xtraction V	Vell DW-7S	Paramete	rs	E	xtraction V	Vell DW-7D	Parameter	s	E	xtraction \	Vell DW-38	6 Paramete	rs	E	xtraction V	Veli DW-3D	Paramete	rs	E	xtraction	Well DW-5S	i Paramete	rs	E	extraction V	Vell DW-50) Parameters
Date		/1			1/2		1		n / n			1			1/1			//	n / no					1/200	1/2			1		
	(actm)	(Wc)	(*F)	(ppmv)	(iwc)	(scfm)	(Iwc)	("F)	(opmv)	(iwc)	(acfm)	(lwc)	(*F)	(ppmv)	(lwc)	(acfm)	()mc)	(*F)	(ppiny).	(iwc)	(scfm)	(iwc)	(*F)	(ppmv)	(iwc)	(actm)	(inec)	(*F)	(ppntv)	(iwc)
02/18/08(1)	58	-3.55	55.7	7.2	-2.0	76	17.2	56.1	29.3	-2.5	80	.73	55.7	2.8	-2.5	113	15.43	53.9	13.3	-4.5	100	-4.8	57.2	0.0	-8.8	52	-18.1	56.8	0.0	-13.5
02/19/08 ⁽¹⁾	53	-3.80	NM	8.7	-2.0	78	-7.4	NM	26.7	-2,5	45	-2.5	NM	6.5	-1.75	108	-16.3	NM	16 4	-3.5	57	-2.5	NM	0,0	-2.0	52	-18	NM	0.0	-13.5
02/25/08 ⁽¹⁾	55	-5.5	NM	4.2	-2.0	74	-13	NM	5.8	-2.7	37	-2.03	NM	2.1	-1.5	71	-26	NM	6.6	-2.7	20	-1.05	NM	0.4	-1.5	56	-24.1	I NM	0.0	-17.5
03/03/08 ⁽¹⁾	53	-6	NM	2.8	-2.0	84	-13.0	NM	0.8	-2.7	45	-2.5	NM	1.2	-1.5	88	-16	NM	1.9	-2.7	20	-1.4	NM	0.8	-1.5	66	-27	NM	0.0	-15.2
03/17/08 ⁽¹⁾	76	-9	NM	2.6	-2.5	50	-8.00	NM	0.4	-2.0	45	-2.8	NM	1.1	-2.0	83	-16	NM	0.1	-2.7	20	-1.5	NM	0.0	-2.5	70	-32	NM	0.0	-25.0
04/16/08	84.97	-10.46	50.3	2.7	NM	41.10	-2	55.4	2.0	NM	15.48	-0.41	58.6	0.6	NM	28.56	-1.07	57.0	4.6	NM	34.44	-0.77	55.0	0,0	NM	33.95	-0.22	57.5	0.6	NM
05/19/08	72.43	-5.0	57.0	5.0	-4.0	19.76	-0.800	62.2	2.1	-1.5	14.98	-0.45	62.2	0.0	-2.0	23.35	-2.0	59.3	3.5	-3.0	77.92	-2.5	59.9	2,5	-2.5	19.73	-14.0	59.0	0.0	-10.5
06/02/08	86.01	-5.8	65.8	0.0	-1.8	23.40	-0.7	72.8	0.0	-0.9	16.09	-0.4	71.0	0.0	-1.1	26.95	-2.0	71.7	0.0	-1.3	86.18	-2.3	65.4	0.0	-2.8	16.56	-14.0	74.3	0.0	-10.0
07/07/08	49.33	-4.4	69.4	4.7	-2.2	18.04	-1.2	76.1	2.6	-1.0	17.56	-0.4	74.1	2.3	-1.2	17.63	-11	77.9	3.1	-2.2	121.21	-2.2	71.0	2.1	-2.7	15.22	-14.2	82.2	2.3	-10
08/06/08 ^(5.8)	78.62	-4.5	76.3	NM	-2.5	19.49	-0.9 ⁽⁹⁾	80.6	NM	-1.7	9.84	-2.0 ⁽⁶⁾	76.8	NM	-1.0	12.84	-11.5	80.0	NM	-1.1	82.68	-2.1	75.1	NM	-2.0	4.62	-14.5	81.6	NM	-0.9

Notes and Abbreviations:

°F - Degrees Fahrenheit DW- Depressurization well ft bmp - Feet below measuring point iwc - Inches of water column NM -Not measured scfm - Standard cubic feet per minute ppmv - Parts per million by volume VMWC - Vapor monitoring well cluster

1. Flow rate at manifold on associated dates quantified using venturi flow meter and associated flow chart. Remaining flow rates measured with a hotwire anemometer and calculated to standard conditions using the formula below,

2 Access point covered by insulation no measurement taken during this round.

3. Blowers BL-200 and BL-400 were taken off-line on April 10th during system rebalancing.

4. Field recording error suspected.

5. Temperature readings are erroneous due to field measurement error. July 7, 2008 temperature readings used for conversion of flow to scfm.

6. Data point is average of readings observed which fluctuated between -0.9 and -3.0 iwc.

7. Original parameter not collected on 8/6/08 or was erroneous, data point reported is second reading taken on 08/07/08.

8. Wellhead vacuum gauges replaced during reporting period with lower range/higher accuracy gauges.

9. Gauge vacuum at 0.0 iwc manometer reading used for table.

10. New gauge range too high to collect measurable reading.

Standard Conditions Calculation;

scfm = Flow rate*Area*(Ts/Tm)*(Pm/Ps)

Flow rate in feet per minute

Area in square feet

Ts - Standard Temperature in Rankine

Tm - Measured Temperature in Rankine

Pm - Measured Pressure in pounds per square inch

Ps - Standard Pressure in pounds per square inch

Page 1 of 4

		E	xtraction V	Vell DW-68	6 Paramet	ers	E	xtraction \	Vell DW-6D	Paramete	rs	E	ctraction V	Vell DW-1S	Parameter	rs	E	xtraction \	Vell DW-1D	Paramete	rs	E	xtraction V	Vell DW-4S	Paramete	rs	E	xtraction V	Vell DW-40) Parameter
Date					1/2			//	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1/2		10			1/2		1			1/2			r/1	-	1/2		1			1/1
	(scfm)	(iwc)	(字).	(ppmv)	(int)	(scfm)	(iwc)	(*F)	(ppmv)	(iwc)	(acfm)	(lwc)	(*F)	(ppmv)	(IWE)	(scfm)	(lwc)	("F)	(ppmiv)	(Iwc)	(scfm)	(lwc)	("F)	(ppmv)	(iwc)	(scfm)	(iwc)	(°F)	(ppitty)	(iwc)
02/18/08(1)	170	-13.1	55.0	0.0	-6 0	44	-16.0	60.2	0.0	-14.0	160	-11.8	54.1	0.0	-5.0	20	-16.8	62.4	0.0	-15.0	173	-12.0	54.6	0.0	-2.0	8	-2.0	60.8	0.0	-5.0
02/19/08 ⁽¹⁾	167	13.6	NM	0.0	-6.0	48	-17.5	NM	0.0	-14.0	235	-19.78	NM	0.0	-8.0	20	-18	NM	0.0	-16.0	155	-13.5	NM	0.0	-5,5	8	-1.95	NM	0.0	-1.5
)2/25/08 ⁽¹⁾	167	-16.0	NM	0.0	-6.0	94	-23.5	NM	0.0	-20.5	228	-25.4	NM	NM	-7,2	28	-24.25	NM	0.0	-25.0	160	-16.0	NM	0.0	-5.5	8	-1.1	NM	0.0	-2.0
03/03/08 ⁽¹⁾	170	-16.0	NM	0.5	-5 5	55	-25.2	NM	0.0	-20	208	-26.79	NM	0.1	-7.0	32	-26.5	NM	0.0	-25.0	160	-16.0	NM	1.1	-5.70	8	-1.0	NM	0.0	-2.0
03/17/08 ⁽¹⁾	185	-22	NM	0.0	-60	65	-31	NM	1.2	-22	208	-29	NM	0.0	-7.5	32	-32.6	NM	0.0	-30	176	-26	NM	0.0	-6.0	8	-1.25	NM	0.0	-175
04/16/08	49.50	-1.44	53.6	0.2	NM	10,55	-1.86	57.5	1.9	NM	89.48	-3,31	52.3	0.0	NM	3.97	-0,79	61.3	0.0	NM	48.16	-1.43	55.5	0.0	NM	9.27	-0.48	60.6	0.0	NM
05/19/08	42.93	-1.2	61.8	2.5	-1.3	11,47	-2.6	60.0	0.0	-2.0	147.62	-10.5	55.5	0.0	-4.5	6,60	-1.8	64.4	0.3	-2.5	32.14	-1.0	61.7	1.7	-2.7	15.01	-1.1	63.3	0.6	-2.2
06/02/08	48.18	-1.2	68.0	0.0	-12	14.88	-2.2	72.5	0.0	-2.5	179.95	-10.3	61.3	0.0	-4.2	8.54	-1.8	74.1	0.0	-5.1	30.98	-0.7	66.2	0.0	-2.1	17.44	-1.2	71.6	0.0	-2.7
07/07/08	52.63	-1.5	71.6	1.2	-2.0	14.89	-2 1	75.2	3.3	-2.2	153.47	-6	68.5	2.3	-3.8	8.71	-1.3	77.3	2.2	-4.7	38.23	-0.2	72.8	1.2	-2.1	18.41	-1.1	73	2.5	-1.8
8/06/08 ^(5.8)	41.38	-1.2	75.4	NM	-10	11.75	-2.1	79.9	NM	-0.9 ⁽⁶⁾	137.92	-6.2	75	NM	-3.0	12 86	-1.2	80.7	NM	-1.1	12.93	-0.8	87	NM	-0.6	12.97	-1.0	80.7	NM	0 ⁽¹⁰⁾

Notes and Abbreviations:

°F - Degrees Fahrenheit DW- Depressurization well ft bmp - Feet below measuring point iwc - Inches of water column NM -Not measured scfm - Standard cubic feet per minute ppmv - Parts per million by volume VMWC - Vapor monitoring well cluster

1. Flow rate at manifold on associated dates quantified using venturi flow meter and associated flow chart. Remaining flow rates measured with a hotwire anemometer and calculated to standard conditions using the formula below.

2. Access point covered by insulation no measurement taken during this round.

3. Blowers BL-200 and BL-400 were taken off-line on April 10th during system rebalancing.

4. Field recording error suspected.

5. Temperature readings are erroneous due to field measurement error. July 7, 2008 temperature readings used for conversion of flow to scfm.

6. Data point is average of readings observed which fluctuated between -0.9 and -3.0 iwc.

7. Original parameter not collected on 8/6/08 or was erroneous, data point reported is second reading taken on 08/07/08.

8. Wellhead vacuum gauges replaced during reporting period with lower range/higher accuracy gauges.

9. Gauge vacuum at 0.0 iwc manometer reading used for table.

10. New gauge range too high to collect measurable reading.

Standard Conditions Calculation:

scfm = flow rate*Area*(Ts/Tm)*(Pm/Ps)

flow rate in feet per minute

Area in square feet

Ts - Standard Temperature in Rankine

Tm - Measured Temperature in Rankine

Pm - Measured Pressure in pounds per square inch

Ps - Standard Pressure in pounds per square inch

G:\APROJECT\Northrop Grumman\Superfund\2008\OU3\NY001464.0908 Mtrg Rpts\OM&M Reports\August 2008 Monthly Report\Tables and Appendices\sgirm table080608 - Table 1

		E	xtraction V	Vell DW-8S	Paramete	rs	E	xtraction	Well DW-9S	6 Paramete	rs	E	xtraction	Well DW-2	S Paramete	ers	E	xtraction V	Veli DW-2D	Paramete	rs	Ex	traction W	ell DW-10S	6 Paramete	rs	Ex	traction V	Vell DW-11	S Parameters
Date		a la		1/100						1/20		- and -		20000	1/2				and and a set			and a second		Section of the sectio	1/1					1/11
	(scfm)	(iwc)	(°F)	(ppmv)	(iwc)	(scim)	(Iwc)	("F)	(ppmv)	(iwc)	(ac/m)	(iwc)	("F)	(ppmv)	(iwc)	(scfm)	(iwc)	(*F)	{ppriv}	(inc)	(actm)	(iwc)	("F)	(ppmv)	(iwc)	(scim)	(iwt:)	(*F)	(ppmv)	(iwc)
02/18/08(1)	135		55.0	0,0	-3.0	72	-10.0	57.3	0.0	-4.5	45	-5,1	61.1	0.0	-2.5	80	-11.9	55.2	-0.0	-7.0	75	-13.5	57.5	0.0	5.0	- 05	-1.5	55.2	0.0	-13.0
02/19/08 ⁽¹⁾	140	-12.0	NM	0.0	-35	72	-10.4	NM	0.0	-4.5	65	-10	NM	0.0	-3.6	82	-12.7	NM	0.0	-8.0	75	-13,7	NM	0.0	-5.2	70	-16.04	NM	0,0	-10
02/25/08 ⁽¹⁾	138	-14.90	NM	0.3	-3.5	72	-12.3	NM	0.4	-4.7	67	-12.2	NM	0.4	-4.0	40	-6.2	NM	0.0	-5.7	75	-16.0	NM	0.4	-5.5	77	-19.5	NM	0.3	-9.0
03/03/08(1)	140	-18.2	NM	0,9	-3.7	76	-13.4	NM	0.1	-5.0	67	-13.85	NM	0.0	-4.5	40	-5.1	NM	0.0	-4.9	78	-17.16	NM	0.2	-5.5	72	-21	NM	0.0	-9.8
03/17/08 ⁽¹⁾	140	-18	NM	0,2	-4.0	76	-12.0	NM	0.1	-5.5	65	-15.2	NM	0.0	-4.5	50	-6	NM	0.0	-5.0	77	-17.6	NM	0.1	-5.5	77	-20	NM	0.0	-9.0
04/16/08	35.32	-2.13	55.4	0.2	NM	28.89	-1.47	56.1	0.2	NM	34.18	-2.2	56.8	0.1	NM	19.24	-0.8	58.6	0.0	NM	24.42	-1.64	57.3	0.0	NM	32.38	-3.14	55.2	0.4	NM
05/19/08	65.68	-9.0	59.1	2.2	-3,5	64.77	-6.8	59.0	0.8	-4.2	33.64	-3.5	61.7	0.8	-1.7	46.61	-4.3	59.3	1.2	-4.0	48.22	-7.2	59.0	0.7	-3.5	42.94	-6.0	59.9	1.1	-3.7
06/02/08	72.85	-9.2	62.0	0.0	-3,9	68.01	-6.8	62.4	0.0	-4.5	34.15	-4.1	67.6	0.0	-1.8	50.56	-4.4	66.3	0.0	-4.1	52.84	-9.0	65.8	0.0	-3.8	46.34	-6.0	66.3	0.0	-3.7
07/07/08	102.21	-9	70.5	2.5	-4.1	87.48	-7.0	70.1	0.7	-4.5	41.33	-3.7	71.7	2.0	-1.8	56.29	-4.4	71.0	2.1	-4.0	68,91	-7.9	70.5	2.1	-2.5	56.39	-6.2	71.2	1.9	-3.8
)8/06/08 ^(5,8)	94.43	-9.0	80.1	NM	-2.7	68.18	-7.1	80.9	NM	-2.5	30.27	-3.1	81.9	NM	-1.9	50.43	-4.5	83.9	NM	-3.0	61.75	-7.8	80.8	NM	-3.5	47.67	-6.4	82.2	NM	-3.5

Notes and Abbreviations:

°F - Degrees Fahrenheit DW- Depressurization well ft bmp - Feet below measuring point iwc - Inches of water column NM -Not measured scfm - Standard cubic feet per minute ppmv - Parts per million by volume VMWC - Vapor monitoring well cluster

1. Flow rate at manifold on associated dates quantified using venturi flow meter and associated flow chart. Remaining flow rates measured with a hotwire anemometer and calculated to standard conditions using the formula below.

2. Access point covered by insulation no measurement taken during this round.

3. Blowers BL-200 and BL-400 were taken off-line on April 10th during system rebalancing.

4. Field recording error suspected.

5. Temperature readings are erroneous due to field measurement error. July 7, 2008 temperature readings used for conversion of flow to scfm.

6. Data point is average of readings observed which fluctuated between -0.9 and -3.0 iwc.

7. Original parameter not collected on 8/6/08 or was erroneous, data point reported is second reading taken on 08/07/08.

8. Wellhead vacuum gauges replaced during reporting period with lower range/higher accuracy gauges.

9. Gauge vacuum at 0.0 iwc manometer reading used for table.

10. New gauge range too high to collect measurable reading.

Standard Conditions Calculation:

scfm = flow rate*Area*(Ts/Tm)*(Pm/Ps)

flow rate in feet per minute

Area in square feet

Ts - Standard Temperature in Rankine

Tm - Measured Temperature in Rankine

Pm - Measured Pressure in pounds per square inch

Ps - Standard Pressure in pounds per square inch

Page 3 of 4

			Vacuum		Tank Paramete	rs fotallizer			Blower Par BL-				Blower Pa BL-	rameters ⁽³⁾ •300			Blower Pa BL·	rameters ⁽³ 400	1)		Combined	l Effluent Pa VSP-601	arameters			ck Parame VSP-602			Wate	er levels in V	Wells
Date	Monte Party	Sea / Sea	and the second	an land	and	Competence Contraction	a la contraction de la contrac	and the second s	1/20	Commission of the second	-	a land	a for a	and the second		Comment of the second	1	Constraint of the second	1	a la alla alla alla alla alla alla all	-	the loss of the lo	Tento Canal		-	1/2	Marine - 10	lance of	Comments	tanic re	Mana Call
	(iwc)	(iwc)	(iwc)	(Gallons)	(Gallons)	(Galions)	(iwt)	(iwc)	(acfm)	(ppmv)	(iwc)	(iwc)	(acfm)	(ppmv)	(inc)	(iwc)	(acfm)	(ppmv)	(scfm)	(ppmv)	(°F)	(iwc)	(9)	(ppmv)	(*8)	(%)	(ft.bntp)	(ft.bmp)	(Riomp)	(fl.tmp)	(ft bmp)
02/18/08 ⁽¹⁾	-17.9	-37.9	-34.8	33.66	9,996,124	35.99	-19.5	6.2	499.50	6.4	-40	\$2.0	594.48	0.0	-38	11.5	643.39	0.0	1963.69	0.0	100	9.6	93	0.0	NM	NM	52.13	Dry	53.75	Dry	Dry
02/19/08 ⁽¹⁾	-19.5	-39.5	-36.0	33.66	9,996,124	35.99	-20.5	9.0	432.20	2.7	-40.6	12.0	841.92	1.6	-38.5	10.0	604.74	1.3	1673.81	NM	95	9.8	84	NM	NM	NM	52.17	Dry	53.77	Dry	Dry
02/25/08 ⁽¹⁾	-27.4	-42.0	-39.8	57.34	9,996,124	35.99	-28.3	8.2	433.60	NM	-42.9	10.4	821,99	NM	-42.1	10.2	653.35	NM	1678.65	2.4	94	9.0	94	0.0	NM [NM	52.19	49.12	53.89	38.20	Dry
03/03/08 ⁽¹⁾	-26.5	-44,0	-42.0	128,57	9,996,124	35.99	-28,5	7.6	391.71	NM	-45.2	10.1	752.16	NM	-43.9	10.0	685.41	NM	1792.84	0.5	104	8.6	94	0.0	NM	NM	Dry	Dry	53.90	Dry	Dry
03/17/08(1)	-33	-43	-41	132.70	9,996,272.5 ⁽⁴⁾	35.99	-34.3	7.6	411.73	NM	-45.4	10.1	717.83	NM	-43.8	10.0	805 36	NM	1773.50	0.0	102.5	8.0	96	0.0	NM	NM	Dry	Dry	53.62	Dry	Dry
04/16/08	0	-32	0	132.67	9,996,202.72	35.94	0	0	0	NM	-35	1:1	641	1.0	0	0	0	NM	NM	1.0	90	0.9	82	0.7	NM	NM	51.55	48.47	53.25	Dry	Dry
05/19/08	0	-18	0	132.67	9,996,202,72	35.94	0	0	NM	NM	-19.5	1.5	666	3.1	0	0	NM	NM	NM ⁽²⁾	4.6	85	1.4	74	1.7	NM	NM	51.53	48.50	53,20	Dry	Dry
06/02/08	0	-15.5	0	132.67	9,996,202.72	35.94	0	0	NM	NM	-19.5	1.2	746	0.0	0	0	NM	NM	NM ⁽²⁾	0.0	85	1.6	85	0.0	NM	NM	51.71	50.55	53.33	Dry	Dry
07/07/08	0	-17	0	132.67	9,996,202.72	35.94	0	0	NM	NM	-19.8	1.5	829	0.9	0	0	NM	NM	NM ⁽²⁾	0.7	85	1.5	90	0.0	NM	NM	52.25	Dry	53,9	Drv	Drv
08/06/08	0	-18	0	132.67	9,996,202.72	35.94	NM	NM	NM	NM	-20.0	1.5	640	NM	NM	NM	NM	NM	NM ⁽²⁾	0.0	98	1.6	95	0.0	NM	NM	52.62 ⁽⁷⁾	Dry ⁽⁷⁾	54.2	Drv	Do

√otes and Abbreviations;

°F - Degrees Fahrenheit DW- Depressurization well ft bmp - Feet below measuring point wc - Inches of water column M -Not measured scfm - Standard cubic feet per minute

ppmv - Parts per million by volume

VMWC - Vapor monitoring well cluster

1. Flow rate at manifold on associated dates quantified using venturi flow meter and associated flow chart. Remaining flow rates measured with a hotwire anemometer and calculated to standard conditions using the formula below.

2. Access point covered by insulation no measurement taken during this round.

3. Blowers BL-200 and BL-400 were taken off-line on April 10th during system rebalancing.

1. Field recording error suspected.

5. Temperature readings are erroneous due to field measurement error. July 7, 2008 temperature readings used for conversion of flow to scfm.

 $\dot{\upsilon}.$ Data point is average of readings observed which fluctuated between -0.9 and -3.0 iwc.

7. Original parameter not collected on 8/6/08 or was erroneous, data point reported is second reading taken on 08/07/08.

3. Wellhead vacuum gauges replaced during reporting period with lower range/higher accuracy gauges.

3. Gauge vacuum at 0.0 iwc manometer reading used for table

10. New gauge range too high to collect measurable reading.

Standard Conditions Calculation:

scfm = flow rate*Area*(Ts/Tm)*(Pm/Ps)

flow rate in feet per minute

Area in square feet

Ts - Standard Temperature in Rankine

Tm - Measured Temperature in Rankine

Pm - Measured Pressure in pounds per square inch

Ps - Standard Pressure in pounds per square inch

Page 4 of 4

Vell ID:		DM	/-7S	DW-7D		DW	-3S			DW-3D		DW	-5S	DW-5D						DW-1S				
Date	Munc. Had a	Millio, Hag	Mill Cito a	Minca	Millicae	Miller - 108	Miller 11B in	Millio III	Mancerio	Marce 12D in	Manuel 164 m	March 168 11	Manuel 150 a	Manuel 14	Minuca	Manucas	Manufacture in	Manuc.18	Minicae	March and	Minecic	Muncac	Million	unicac in
02/18/08	-0.05	-0.26	-0.31	-0.51	-0.67	-0.50	-0.41	-0.57	-0.43	-0.34	-0.52	-0.41	-0.35	-0.12	-0.10	-0.07	-0.07	-0.15	-0.08	-0.08	-0.11	-0.11	-0.09	-0.08
02/19/08	-0.09	-0.27	-0.30	-0.42	-0.53	-0.40	-0.33	-0.48	-0.40	-0.31	-0.30	-0.30	-0.35	-0.74	-0.61	-0.50	-0.42	-0.93	-0.58	-0.42	-0.78	-0.66	-0.61	-0.46
02/25/08	-0.09	-0.26	-0.31	-0.39	-0.49	-0.39	-0.34	-0.44	-0.36	-0.31	-0.23	-0.23	-0.27	-0.70	-0.58	-0.44	-0.40	-0.88	-0.54	-0.42	-0.74	-0.62	-0.55	-0.44
03/03/08	-0.11	-0.28	-0.31	-0.38	-0.44	-0.37	-0.31	-0.41	-0.33	-0.27	-0.19	-0.21	-0.25	-0.62	-0.48	-0.40	-0.32	-0.78	-0.46	-0.38	-0.66	-0.54	-0.49	-0.39
03/17/08	-0.11	-0.28	-0.31	-0.39	-0.50	-0.36	-0.29	-0.39	-0.36	-0.54	-0.25	-0.25	-0.28	-0.70	-0.60	-0.44	-0.38	-0.89	-0.50	-0.40	-0.68	-0.60	-0.52	-0.43
04/16/08	-0.11	-0.16	-0.18	-0.15	-0.17	-0.14	-0.13	-0.14	-0.13	-0.11	-0.09	-0.09	-0.08	-0.20	-0.16	-0.16	-0.11	-0.24	-0.16	-0.11	-0.19	-0.16	-0.16	-0.11
05/19/08	-0.099	-0.143	-0.163	-0.170	-0.199	-1.490	-0.154	-0.083	-0.219	-0.143	-0.159	-0.125	-0.159	-0.425	-0.369	-1.377	-0.221	-0.410	-0.299	-0.283	-0.423	-0.372	-0.333	-0.218
06/02/08	-0.095	-0.146	-0.148	-0.165	-0.171	-0.165	-0.165	-0.142	-0.135	-0.127	-0.150	-0.140	-0.133	-0.437	-0.339	-0.492	-0.200	-0.505	-0.299	-0.213	-0.408	-0.335	-0.313	-0.212
07/07/08	-0.097	-0.146	-0.149	-0.123	-0.135	-0.129	-0.122	-0.131	-0.129	-0.125	-0.127	-0.126	-0.133	-0.303	-0.258	-0.193	-0.152	-0.409	-0.227	-0.160	-0.331	-0.263	-0.219	-0.164
08/06/08	-0.10	-0.15	-0.15	-0.10	-0.16	-0.11	-0.146 ⁽⁵⁾	-0.11	-0.11	-0.11	-0.13	-0.13	-0.11	-0.34	-0.241 ⁽⁵⁾	-0.26	-1.14	-0.39	-0.30	-0.16	-0.32	-0.290 ⁽⁵⁾	-0.29	-0.16
e Weighted																								
ing Average:	-0.102	-0.194	-0.211	-0.233	-0.277	-0.334	-0.199	-0.228	-0.217	-0.225	-0.168	-0.163	-0.176	-0.450	-0.370	-0.428	-0.239	-0.550	-0.328	-0.252	-0.449	-0.379	-0.340	-0.256

Table 2,	Summary of Induced Vacuum Readings, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York. ⁽¹⁾	
----------	---	--

Gross Average Non Compliance points 08/06/08 -0.32 Gross Average Compliance Points 08/06/08 -0.20

Notes and Abbreviations:

- DW Depressurization Well
- NM Not measured due to temporary inaccessibility

VMWC Vapor monitoring well cluster

1. All induced vacuum measurements units in inches of water column (iwc).

2. Data point appears to be erroneous based on vacuum readings at further vapor point greater than that recorded at the closer location.

3. Data point is average of readings taken which fluctuated between -0.22 and -0.29 iwc.

4. Compliance vapor monitoring point.

5. Original parameter collected on 8/6/08 was erroneous, data point reported is second reading taken on 08/07/08.

6. Compliance goal is -0.1 iwc induced vacuum at all compliance montioring points.

Page 1 of 2

Well ID:			DW	/-1D		DW-4D	DW	/-8S				DW	-28						DW	/-2D			DW-11
Date	Millio 10	Name: 20	Munc-40	Milec.20 m	Vanic Tap in	Manuscried in	Martine Jean 10	Innic.es	Minicos	Minicasi	Minuc. 74 10	Munc.38	Municos	Vanices	in Re-Shines	remic-20	Contro of	Minuc.ao	Minuc. 20	Canal Contraction of	March 17D is	Manufic Tay in	Interior Caller in
02/18/08	-1.16	-0.99	-0.16	-0.90	-0.51	-0.04	-0.10	-0.07	-0.04	-0.40	-0.08	-0.10	-0.05	-0.02	-0.03	-1.91	-1.47	-0.03(2)	-1.03	-0.17	-0.39	-0.05	-0.07
02/19/08	-1.31	-1.08	-0.86	-0.96	-0.54	-0.26	-0.26	-0.62	-0.37	-0.29	-0.22	-0.74	-1.73	-0.33	-0.23	-2.19	-0.37 ⁽²⁾	-1.88	-1.4	-0.44	-0.53	-0.25	-0.26 ⁽³⁾
02/25/08	-1.56	-1.23	-0.97	-1.07	-0.39	-0.29	-0.30	-0.70	-0.42	-0.31	-0.28	-0.82	-0.46	-0.35	-0.29	-1.21	-1.09	-0.88	-0.89	-0.39	-0.22	-0.24	-0.3
03/03/08	-1.56	-1.20	-0.90	-0.98	-0.27	-0.26	-0.27	-0.68	-0.40	-0.31	-0.27	-0.83	-0.44	-0.35	-0.30	-0.90	-0.72	-0.65	-0.53	-0.24	-0,16	-0.24	-0.27
03/17/08	-1.72	-1.51	-0.96	-1.15	-0.43	-0.31	-0.35	-0.69	-0.41	-0.33	-0.25	-0.78	-0.42	-0.36	-0.28	-1.15	-0.92	-0.82	-0.65	NM	-0.25	-0.29	-0.34
04/16/08	-0.18	-0.15	-0.18	-0.13	-0.09	-0.08	-0.08	-0.26	-0.14	NM	-0.09	-0.22	-0.15	NM	-0.09	-0.23	-0.21	NM	-0.17	NM	-0.08	-0.08	-0.09
05/19/08	-0.424	-0.391	-0.309	-0.310	-0.147	-0.162	-0.170	-0.328	-0.209	-0.180	-0.157	-0.327	-0.213	-0.156	-0.164	-1.097	-0.879	-0.763	-0.694	-0.223	-0.237	-0.139	-0.163
06/02/08	-0.345	-0.283	-0.253	-0.227	-0.195	-0.159	-0.168	-0.310	-0.190	-0.148	-0.142	-0.311	-0.199	-0.169	-0.141	-1.047	-0.838	-0.730	-0.743	-0.180	NM	-0.129	-0.151
07/07/08	-0.366	-0.269	-0.238	-0.311	-0.170	-0.160	-0.171	-0.310	-0.185	-0.156	-0.136	-0.344	-0.201	-0.170	-0.148	-1.047	-0.846	-0.757	-0.501	-0.189	NM	-0.132	-0.160
08/06/08	-0.32	-0.27	-0.30	-0.22	-0.14	-0.14	-0.16	-0.24	-0.19	-0.19	-0.16	-0.34	-0.20	-0.19	-0.15	-0.95	-0.77	-0.75	-0.55	-0.19	-0.17	-0.13	-0.16
e Weighted																							
ling Average:	-0.757	-0.629	-0.471	-0.521	-0.237	-0.188	-0.201	-0.426	-0.253	-0.247	-0.171	-0.463	-0.315	-0.267	-0.181	-0.956	-0.728	-0.811	-0.585	-0.231	-0.172	-0.168	-0.195

Table 2. Summary of Induced Vacuum Readings, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York. (1)

Notes and Abbreviations:

DW	Depressurization	Well
----	------------------	------

- NM Not measured due to temporary inaccessibility
- VMWC Vapor monitoring well cluster
- 1. All induced vacuum measurements units in inches of water column (iwc).
- 2. Data point appears to be erroneous based on vacuum readings at further vapor point greater than that recorded at the closer location.

3. Data point is average of readings taken which fluctuated between -0.22 and -0.29 iwc.

- 4. Compliance vapor monitoring point.
- 5. Original parameter collected on 8/6/08 was erroneous, data point reported is second reading taken on 08/07/08.
- 6. Compliance goal is -0.1 iwc induced vacuum at all compliance montioring points.

Page 2 of 2

Compound ⁽³⁾ (units in ug/m3)		Location ID: Sample Date:	VSP-601 2/18/2008	VSP-602 2/18/2008	VSP-601 2/19/2008	VSP-602 2/19/2008	VSP-601 2/25/2008	VSP-602 2/25/2008
	CAS No.	SGC						
1,1,1-Trichloroethane	71-55-6	68,000	110	< 0.62	71	< 0.61	35	< 0.63
1,1-Dichloroethane	75-34-3	NS	43	< 0.62	33	< 0.61	45	< 0.63
2-Butanone	78-93-3	13,000	16	< 0.62	< 11	< 0.61	< 25	< 0.63
Acetone	67-64-1	180,000	< 140	< 6.2	< 110	< 6.1	< 250	< 6.3
Benzene	71-43-2	1,300	67	< 0.62	22	< 0.61	< 25	< 0.63
Frichlorofluoromethane (CFC-11)	75-69-4	68,000	< 14	< 0.62	< 11	< 0.61	< 25	< 0.63
Chloroform	67-66-3	150	34	< 0.62	24	< 0.61	< 25	< 0.63
cis-1,2-Dichloroethene	156-59-2	190,000 ⁽¹⁾	5800	< 0.62	4600	< 0.61	2900	< 0.63
Dichlorodifluoromethane (Freon 12)	75-71-8	NS	< 14	< 0.62	< 11	0.71	< 25	5.7
Tetrachloroethene	127-18-4	1,000	340	< 0.62	200	< 0.61	82	< 0.63
Foluene	108-88-3	37,000	92	< 0.62	98	< 0.61	34	< 0.63
rans-1,2-Dichloroethene	156-60-5	NS	120	< 0.62	71	< 0.61	< 25	< 0.63
Frichloroethylene	79-01-6	14,000	14000	< 0.62	9400	< 0.61	5100	< 0.63
/inyl Chloride	75-01-4	180,000	< 14	< 0.62	< 11	< 0.61	< 25	1.1
IVOC			20,622	0.0	14,519	0.71	8,196	6.8

Table 3.	Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3
	Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York. ⁽²⁾

Notes and Abbreviations:

Bold Compound detected above method detection lim

CAS No. Chemical abstracts service list number

D Compound detected at a secondary dilution

NS Guideline concentrations not specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

SGC Short-term guideline concentrations specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

TVOC Total volatile organic compounds

ug/m³ Micrograms per cubic meter

1. An SGC was not provided in the DAR-1 AGC/SGC Tables, dated September 10, 2007. An interim SGC was developed based on in Section IV.A.2.b.1 of guidance provided the New York State DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants, 1991 edition. Specifically for cis-1,2 dichloroethene, which is not defined as a high-toxicity compound, the interim SGC = (smaller of Time Weighted Average [TWA] =- Threshold Limit Value or TWA - Recommended Exposure Limit)/4.2 or 793,000 ug/m3 / 4.2 = 190,000 ug/m3.

 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Simi Valley, CA or Rochester, NY locations) for VOC analyses using USEPA Method TO-15 modified in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period February - August 2008.

3. Table summarizes detected compounds only.

Page 1 of 4

Compound⁽³⁾ Location ID: **VSP-601 VSP-602 VSP-601 VSP-602 VSP-601 VSP-602** (units in ug/m3) 3/3/2008 3/17/2008 Sample Date: 3/3/2008 3/17/2008 4/16/2008 4/16/2008 CAS No. SGC 71-55-6 68,000 1.1.1-Trichloroethane 26 < 0.63 35 <25 < 14 < 15 1.1-Dichloroethane 75-34-3 NS 47 < 0.63 59 < 11 31 < 11 78-93-3 2-Butanone 13,000 < 13 < 0.63 < 16 < 16 < 16 < 16 Acetone 67-64-1 180,000 < 130 < 6.3 < 31 < 31 < 31 < 31 71-43-2 1.300 < 13 Benzene < 0.63 < 8.4 < 8.4 < 8.4 < 8.4 Trichlorofluoromethane (CFC-11) 75-69-4 68.000 < 13 < 0.63 < 15 < 15 < 15 < 15 67-66-3 27 Chloroform 150 < 0.63 35 < 13 <22 < 13 190,000⁽¹⁾ cis-1,2-Dichloroethene 156-59-2 1600 < 0.63 1400 D < 10 1100 78 Dichlorodifluoromethane (Freon 12) 75-71-8 NS 13 8.3 < 26 <46 46 < 26 Tetrachloroethene 127-18-4 1.000 45 < 0.63 39 < 3.6 54 < 3.7 Toluene 108-88-3 37.000 61 < 0.63 140 < 10 37 < 10 trans-1,2-Dichloroethene 156-60-5 NS < 13 < 0.63 10 < 10 <19 < 10 Trichloroethylene 2500 < 0.63 79-01-6 14,000 1500 D < 2.8 1300 < 2.9 Vinyl Chloride 75-01-4 180,000 200 40 980 D 920 D 120 710 TVOC 4.519 48.3 4.244 920 2.642 788

 Table 3.
 Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3

 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽²⁾

Notes and Abbreviations:

Bold Compound detected above method detection limit

CAS No. Chemical abstracts service list number

D Compound detected at a secondary dilution

NS Guideline concentrations not specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

SGC Short-term guideline concentrations specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

TVOC Total volatile organic compounds

ug/m³ Micrograms per cubic meter

1. An SGC was not provided in the DAR-1 AGC/SGC Tables, dated September 10, 2007. An interim SGC was developed based on in Section IV.A.2.b.1 of guidance provided the New York State DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants, 1991 edition. Specifically for cis-1,2 dichloroethene, which is not defined as a high-toxicity compound, the interim SGC = (smaller of Time Weighted Average [TWA] =- Threshold Limit Value or TWA - Recommended Exposure Limit)/4.2 or 793,000 ug/m3 / 4.2 = 190,000 ug/m3.

2. Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Simi Valley, CA or Rochester, NY locations) for VOC analyses using USEPA Method TO-15 modified in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period February - August 2008.

3. Table summarizes detected compounds only.

Page 2 of 4

Compound⁽³⁾ Location ID: **VSP-601 VSP-602 VSP-601** VSP-602 VSP-601 **VSP-602** (units in ua/m3) Sample Date: 5/19/2008 5/19/2008 6/2/2008 6/2/2008 7/7/2008 7/7/2008 CAS No. SGC 71-55-6 68.000 < 2.7 44 < 2.5 < 6.5 1.1.1-Trichloroethane 38 48 1,1-Dichloroethane 75-34-3 NS 25 5.8 27 7.6 28 11 2-Butanone 78-93-3 13.000 < 28 < 2.9 28 < 2.7 27 < 7 Acetone 67-64-1 180,000 < 57 < 5.8 < 55 8.4 < 53 < 14 71-43-2 19 < 15 Benzene 1,300 < 1.6 < 1.5 150 < 3.8 Trichlorofluoromethane (CFC-11) 75-69-4 68.000 < 27 < 2.8 < 26 < 2.6 < 25 < 6.7 Chloroform 67-66-3 150 44 < 2.4 55 3 88 8.4 190.000⁽¹⁾ cis-1.2-Dichloroethene 156-59-2 950 180 930 230 D 1100 350 Dichlorodifluoromethane (Freon 12) 75-71-8 NS < 48 < 4.9 < 45 < 4.5 < 44 < 12 Tetrachloroethene 127-18-4 1.000 42 < 0.67 48 2.2 61 < 1.6 108-88-3 37,000 < 1.8 Toluene < 18 < 17 < 1.7 < 17 < 4.5 156-60-5 NS < 1.9 < 18 trans-1.2-Dichloroethene < 19 2.8 < 18 < 4.7 Trichloroethylene 79-01-6 14.000 1000 5.3 1100 6.5 1500 7.7 Vinvl Chloride 75-01-4 180.000 < 12 65 < 12 13 < 11 5.9 TVOC 2,118 256.1 2.232 273.5 3.002 383

 Table 3.
 Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3

 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽²⁾

Notes and Abbreviations:

Bold Compound detected above method detection limit

CAS No. Chemical abstracts service list number

D Compound detected at a secondary dilution

NS Guideline concentrations not specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

SGC Short-term guideline concentrations specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

TVOC Total volatile organic compounds

ug/m³ Micrograms per cubic meter

1. An SGC was not provided in the DAR-1 AGC/SGC Tables, dated September 10, 2007. An interim SGC was developed based on in Section IV.A.2.b.1 of guidance provided the New York State DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants, 1991 edition. Specifically for cis-1,2 dichloroethene, which is not defined as a high-toxicity compound, the interim SGC = (smaller of Time Weighted Average [TWA] =- Threshold Limit Value or TWA - Recommended Exposure Limit)/4.2 or 793,000 ug/m3 / 4.2 = 190,000 ug/m3.

 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Simi Valley, CA or Rochester, NY locations) for VOC analyses using USEPA Method TO-15 modified in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period February - August 2008.

3. Table summarizes detected compounds only.

Compound ⁽³⁾ (units in ug/m3)		Location ID: Sample Date:	VSP-601 8/6/2008	VSP-602 8/6/2008	
	CAS No.	SGC			
1,1,1-Trichloroethane	71-55-6	68,000	47	< 4.4	
1,1-Dichloroethane	75-34-3	NS	26	9.2	
2-Butanone	78-93-3	13,000	< 32	< 4.7	
Acetone	67-64-1	180,000	< 65	< 9.6	
Benzene	71-43-2	1,300	22	< 2.6	
Trichlorofluoromethane (CFC-11)	75-69-4	68,000	< 31	5.5	
Chloroform	67-66-3	150	89	8.2	
cis-1,2-Dichloroethene	156-59-2	190,000 ⁽¹⁾	990	320 D	
Dichlorodifluoromethane (Freon 12)	75-71-8	NS	< 54	< 8	
Tetrachloroethene	127-18-4	1,000	56	< 1.1	
Toluene	108-88-3	37,000	< 20	< 3	
trans-1,2-Dichloroethene	156-60-5	NS	< 22	3.6	
Trichloroethylene	79-01-6	14,000	1400	9.2	
Vinyl Chloride	75-01-4	180,000	< 14	4.9	
TVOC		V	2,630	361	

 Table 3.
 Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3

 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽²⁾

Notes and Abbreviations:

Bold Compound detected above method detection limit

- CAS No. Chemical abstracts service list number
- D Compound detected at a secondary dilution

NS Guideline concentrations not specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

SGC Short-term guideline concentrations specified in the NYSDEC DAR-1 AGC/SGC tables revised September 10, 2007.

TVOC Total volatile organic compounds

ug/m³ Micrograms per cubic meter

An SGC was not provided in the DAR-1 AGC/SGC Tables, dated September 10, 2007. An interim SGC was developed based on in Section IV.A.2.b.1 of guidance provided the New York State DAR-1 Guidelines for the Control of Toxic Ambient Air Contaminants, 1991 edition. Specifically for cis-1,2 dichloroethene, which is not defined as a high-toxicity compound, the interim SGC = (smaller of Time Weighted Average [TWA] =- Threshold Limit Value or TWA - Recommended Exposure Limit)/4.2 or 793,000 ug/m3 / 4.2 = 190,000 ug/m3.

 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Simi Valley, CA or Rochester, NY locations) for VOC analyses using USEPA Method TO-15 modified in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period February - August 2008.

3. Table summarizes detected compounds only.

Page 4 of 4

 Table 4.
 Summary of Condensate Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure,

 Former Grumman Settling Ponds, Bethpage, New York.
 (2)

	Location ID:		
Compound ⁽³⁾	Sample Date:	NA	
(units in ug/L)			
	CAS No.		
1,1-Dichloroethane	75-34-3		
2-Butanone	78-93-3		
Acetone	67-64-1		
cis-1,2-Dichloroethene	156-59-2	No Sampling Performed	
lsopropylbenzene	98-82-8	During The Report	
Toluene	108-88-3	Period	
trans-1,2-Dichloroethene	156-60-5		
Trichloroethylene	79-01-6		
Vinyl Chloride	75-01-4		
TVOC ⁽¹⁾		NA	

Notes and Abbreviations:

Bold	Compound detected above method detection limit
CAS No.	Chemical abstracts service list number
D	Compound detected at a secondary dilution
TVOC	Total volatile organic compounds
ug/L	Micorgrams per liter
NA	Not applicable

1. Total volatile organic compounds determined by summing individual detections and rounding to the nearest whole number.

 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Rochester, NY) for VOC analyses using Method 8260 in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period July - August 2008.

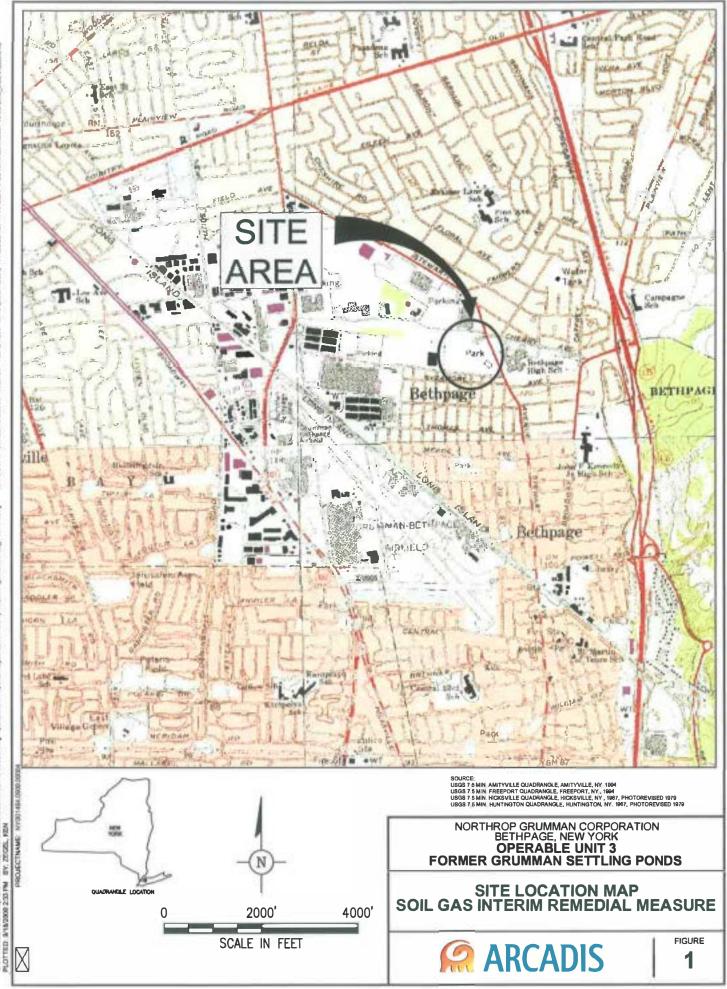
3. Table summarizes detected compounds only.

Table 5. Air Emissions Model Output Summary, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.

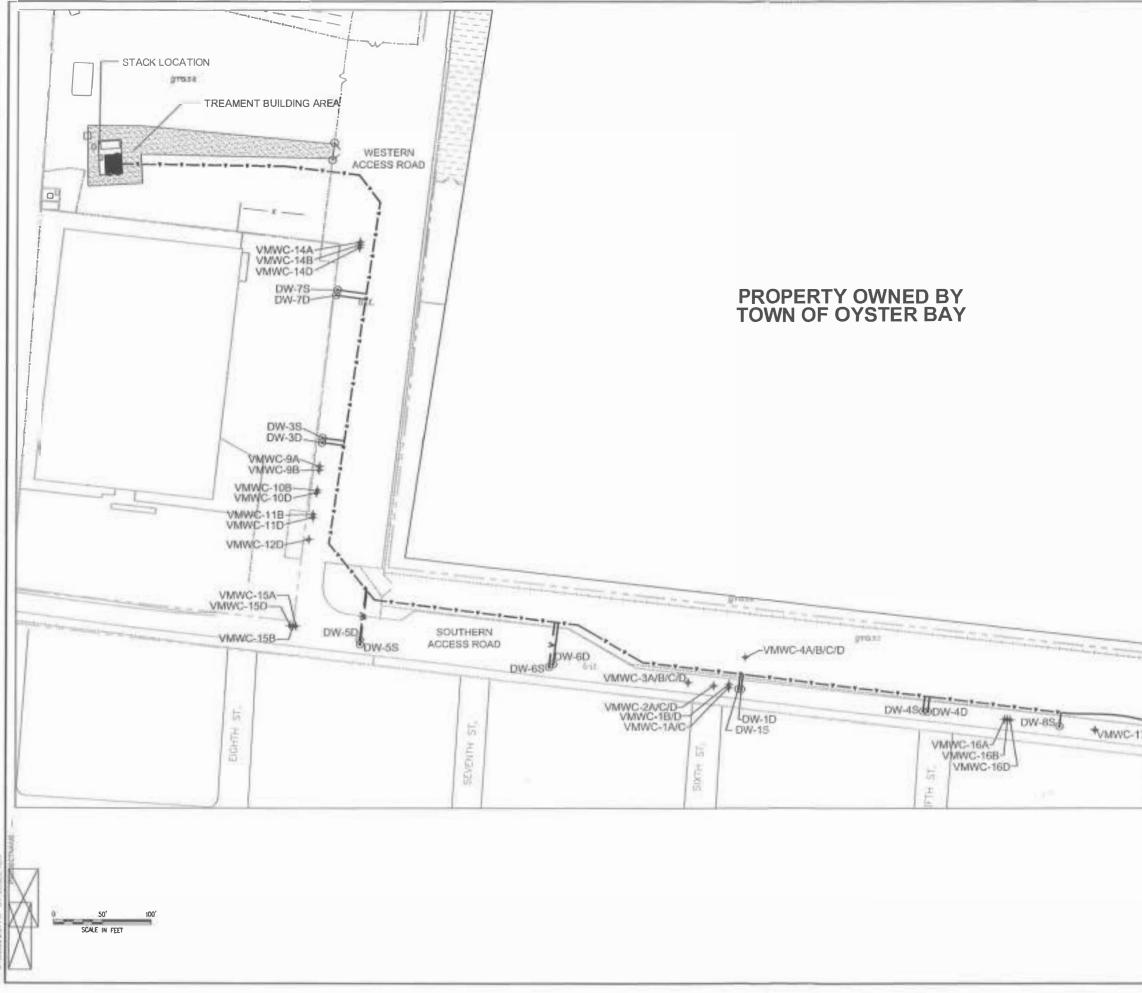
Compound (1)	AGC (2)					Percent of MAS	C Per Event (3)				Cumulative %
	(µg/m ³)	2/18/2008	2/19/2008	2/25/2008	3/3/2008	3/17/2008	4/16/2008	5/19/2008	6/2/2008	7/7/2008	8/6/2008	MASC (4)
Vinyl chloride	0.11	0.00%	0.00%	0.04%	1.60%	36.84%	20.63%	1.91%	0.41%	0.20%	0.14%	6.89%
1,1-Dichloroethane	0.63	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.03%	0.04%	0.06%	0.05%	0.02%
Trichloroethylene	0.5	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.03%	0.05%	0.06%	0.06%	0.03%
Tetrachloroethylene	1	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%
cis-1,2-Dichloroethylene	63	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.02%	0.02%	0.01%
Dichlorodifluoromethane (Freon 12)	12,000	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Acetone	28,000	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Chloroform	0.043	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.24%	0.68%	0.62%	0.20%
trans-1,2-Dichloroethene	63	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Trichlorofluoromethane (Freon 11)	1,000	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%

Notes:

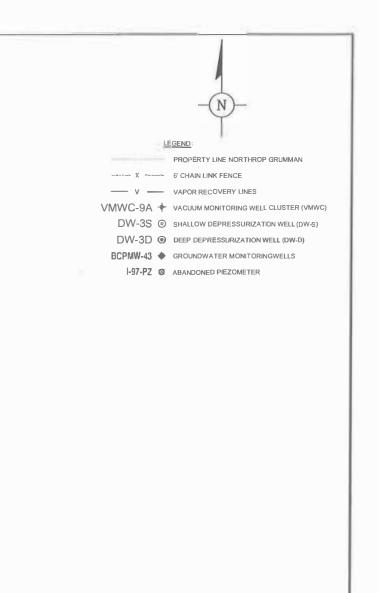
1. Compounds listed include all compounds detected in the system effluent vapor stream.

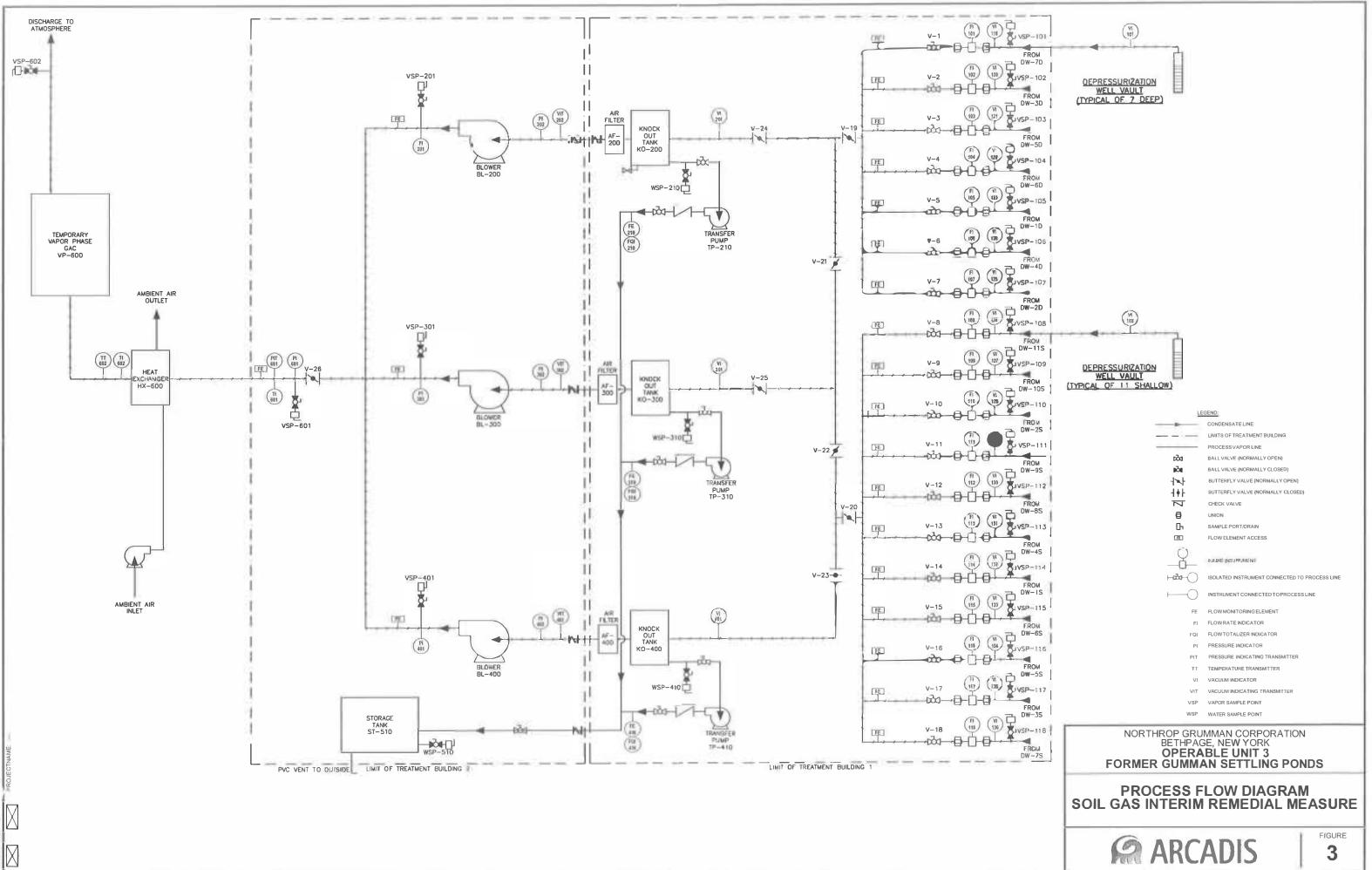

2. AGC refers to the compound-specific annual guideline concentration per the NYSDEC DAR-1 AGC/SGC tables, revised September 10, 2007. NYSDEC DAR-1 AGCs were scaled using the results of a site-specific annual USEPA SCREEN 3 model to calculate the annual maximum allowable stack concentraction (MASC) per monitoring event.

3. Percent of AGC was calculated by dividing the actual effluent concentration by the site-specific annual MASC. Detailed calculations are included in Appendix C.


4. Cumulative percent of the MASC was calculated using a time-weighted average of the percent MASC per event.

µg/m³ - Micrograms per cubic meter.


AGC - Annual guideline concentration.


BIDELIN RANGER SERVICE ALL STATES IS USING THE REAL STATES AND STATES PARENT PA petition 1494 (1.1994) Reporting MN/August 2008 Munichy PMC30 TMKZ LVR.CMC/OFF-182* 001404.0008.MFg RpS/CMEM Reports/Ang ġ 9 DBALS PERC ø COTYMELVILLE

Differitions Dool Read Different 1

	VMWC-8A/B/D	WVC-188-
to tow	DW-20	-
	NORTHROP GRUMMAN CORPORAT BETHPAGE, NEW YORK OPERABLE UNIT 3 FORMER GRUMMAN SETTLING F	
	GENERAL SITE PLAN SOIL GAS INTERIM REMEDIAL	
	ARCADIS	FROURE 2

JECTNorthror BY KEN

an/Superfund/2008/OU3/NY00144

1014

CTB

Appendix A

Summary of Vapor Sample Analytical Results Including Tentatively Identified Compounds

Appendix A-1. Summary of Total Influent and Effluent Vapor Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽¹⁾

Compound (units in ug/m3)	Location ID: Sample Date:	VSP-601 8/6/2008	VSP-602 8/6/2008	
	CAS No.			
1,1,1-Trichloroethane	71-55-6	47	< 4.4	
1,1,2,2-Tetrachloroethane	79-34-5	< 7.5	< 1.1	
1,1,2-Trichloroethane	79-00-5	< 30	< 4.4	
1,1-Dichloroethane	75-34-3	26	9.2	
I,1-Dichloroethene	75-35-4	< 22	< 3.2	
,2-Dichloroethane	107-06-2	< 22	< 3.3	
,2-Dichloropropane	78-87-5	< 25	< 3.7	
,3-Butadiene	106-99-0	< 24	< 3.6	
2-Butanone	78-93-3	< 32	< 4.7	
2-Hexanone	591-78-6	< 22	< 3.3	
-Methyl-2-Pentanone	108-10-1	< 45	< 6.6	
cetone	67-64-1	< 65	< 9.6	
Benzene	71-43-2	22	< 2.6	
Bromodichloromethane	75-27-4	< 7.3	< 1.1	
Bromoform	75-25-2	< 56	< 8.3	
Bromomethane	74-83-9	< 21	< 3.1	
arbon Disulfide	75-15-0	< 17	< 2.5	
arbon Tetrachloride	56-23-5	< 6.8	< 1	
richlorofluoromethane (CFC-11)	75-69-4	< 31	5.5	
hlorobenzene	108-90-7	< 25	< 3.7	
hlorodibromomethane	124-48-1	< 9.3	< 1.4	
Chloroethane	75-00-3	< 29	< 4.2	
chloroform	67-66-3	89	8.2	
Chloromethane	74-87-3	< 22	< 3.3	
is-1,2-Dichloroethene	156-59-2	990	320 D	
is-1,3-Dichloropropene	10061-01-5	< 49	< 7.3	
thylbenzene	100-41-4	< 47	< 7	
richlorotrifluoroethane (Freon 113)	76-13-1	< 8.3	< 1.2	
ichlorodifluoromethane (Freon 12)	75-71-8	< 54	< 8	
lethyl Tert-Butyl Ether	1634-04-4	< 39	< 5.8	
lethylene Chloride	75-09-2	< 19	< 2.8	
tyrene	100-42-5	< 46	< 6.9	
etrachloroethene	127-18-4	56	< 1.1	
oluene	108-88-3	< 20	< 3	
ans-1,2-Dichloroethene	156-60-5	< 22	3.6	
ans-1,3-Dichloropropene	10061-02-6	< 25	< 3.7	
richloroethylene	79-01-6	1400	9.2	
inyl Chloride	75-01-4	< 14	4.9	
ylene-o	95-47-6	< 47	< 7	
ylenes - m,p	NA	< 94	< 14	
JOV		2,630	361	

Notes and Abbreviations on last page.

Appendix A-2. Summary of Total Influent and Effluent Vapor Sample Analytical Results, Tentatively Identified Compounds, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽²⁾

Tentatively Identified Compounds ^(3,4) (units in ppbv)	Location ID: Sample Date:	VSP-601 08/06/08	VSP-602 08/06/08	
Chlorodifluoromethane + Propene + Propane	9	-		
Hexamethylcyclotrisiloxane (1)			÷ .	
2-Ethyl-1-hexanol			-	
n-Nonanal			-	
Chlorodifluoromethane (Freon 22)		170	150	
Ethanol			~	
Acetophenone		-	-	
alpha-Cumyl Alcohol				
Chloroethene			-	
Methylcyclohexane		27		
Propane		**		
Acetaldehyde			34	
Unknown CFC				
3-Methyl-Hexane		+	-	
Heptane				
Unknown cyclic hydrocarbon		-		
1,2,4-trimethylcyclopentane		-		
Unknown aliphatic hydrocarbon		-		
Unknown aliphatic hydrocarbon		-	4	
1,3-dimethyl-cis-cyclohexane			-	
Ethane, 1-chloro-1,1-difluoro (Freon 142) ⁽⁵⁾		200	170	

Notes and Abbreviations:

Bold	Not Reported during this sampling event. Detected
ppbv	Parts per billion by volume.
1.	Possible laboratory artifact.
2.	Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Rochester, NY) for VOC analyses using USEPA Method TO-15 modified in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period July - August 2008.
3.	Tentatively Identified Compounds (TICs) are identified based on review of mass spectrometry results via a comprehensive library search of all organic compounds.
4.	All results are estimated.
5.	Freon 142 was detected for the first time during the July - August 2008 sampling period. It was qualified with J- "estimated" and N-"Presumptive evidence of particular compound".

Appendix B

Summary of Condensate Sample Analytical Results Including Tentatively Identified Compounds

Appendix B-1.

Summary of Condensate Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York. (2)

	Location ID:	NA NA
Compound	Sample Date:	NA
(units in ug/L)		
	CAS No.	
1,1,1-Trichloroethane	71-55-6	
1,1,2,2-Tetrachloroethane	79-34-5	
1,1,2-Trichloroethane	79-00-5	
1,1-Dichloroethane	75-34-3	
1,1-Dichloroethene	75-35-4	
1,2,4-Trichlorobenzene	120-82-1	
1,2-Dibromo-3-Chloropropane (DBCP)	96-12-8	
1,2-Dibromoethane (EDB)	106-93-4	
1,2-Dichlorobenzene	95-50-1	
1,2-Dichloroethane	107-06-2	
1,2-Dichloropropane	78-87-5	
1,4-Dichlorobenzene	106-46-7	
2-Butanone	78-93-3	
2-Hexanone	591-78-6	
4-Methyl-2-Pentanone	108-10-1	
Acetone	67-64-1	
Benzene	71-43-2	
Bromodichloromethane	75-27-4	
Bromoform	75-25-2	
Bromomethane	74-83-9	
Carbon Disulfide	75-15-0	
Carbon Tetrachloride	56-23-5	No Sampling Performed During The Report Period
Trichlorofluoromethane (CFC-11)	75-69-4	No camping ronomod buring the Report offed
Chlorobenzene	108-90-7	
Chlorodibromomethane	124-48-1	
Chloroethane	75-00-3	
Chloroform	67-66-3	
Chloromethane	74-87-3	
cis-1,2-Dichloroethene	156-59-2	
cis-1,3-Dichloropropene	10061-01-5	
Cyclohexane	110-82-7	
	100-41-4	
Ethylbenzene Frichlorotrifluoroethane (Freon 113)	76-13-1	
Dichlorodifluoromethane (Freon 12)	75-71-8	
	98-82-8	
sopropylbenzene n-Dichlorobenzene	541-73-1	
Methyl Acetate	79-20-9	
Methyl tert-butyl ether	1634-04-4	
Methylcylohexane	108-87-2	
Methylene Chloride	75-09-2	
	100-42-5	
Styrene Tetrachloroethene	127-18-4	
oluene	108-88-3	
rans-1,2-Dichloroethene	156-60-5	
rans-1,3-Dichloropropene	10061-02-6	
Frichloroethylene	79-01-6	
/inyl Chloride	75-01-4	
(ylene-o	95-47-6	
(ylenes - m,p	179601-23-1	NA

Notes and abbreviations on next page

G:\APROJECT\Northrop Grumman\Superfund\2008\OU3\NY001464.0908 Mtrg Rpts\OM&M Reports\August 2008 Monthly Report\Tables and Appendices\Table 4 _B-1_B-2 Condensate xism -Appdix B-1

Page 1 of 2

Page 2 of 2

Appendix B-1. Summary of Condensate Sample Analytical Results, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.⁽²⁾

Notes and Abbreviations:

Bold	Compound detected above method detection limit
CAS No.	Chemical abstracts service list number
D	Compound detected at a secondary dilution
TVOC	Total volatile organic compounds
ug/L	Micorgrams per liter
NA	Not applicable

1. Total volatile organic compounds determined by summing individual detections and rounding to the nearest whole number.

 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Rochester, NY) for VOC analyses using Method 8260 in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period July - August 2008.

Appendix B-2. Summary of Condensate Sample Analytical Results, Tentatively Identified Compounds (TICs), Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York. ⁽²⁾

Tentatively Identified Compounds ^(1,3)	Sample ID:	NA	
(units in ug/L)	Date:	NA	
Unknown Ethanol Furan, tetrahydro- Unknown alcohol Cyclohexanone Isoproply Alcohol Butanal Heptanal 1-Hexanol, 2-ethyl-		ampling Performed g The Report Period	

Notes and Abbreviations:

14 C	Not Reported
Bold	Detected
J	Estimated value
Ν	Presumptive evidence of this constituent. Calibrations were not run for these constituents; therefore, the results should be used for qualitative purposes only.
NA	Not applicable
ug/L	Micorgrams per liter

 TICs are identified based on review of mass spectrometry results via a comprehensive library search of all organic compounds.
 Samples were collected by O&M personnel on the dates shown and submitted to Columbia Analytical Services Laboratory (Rochester, NY) for VOC analyses using Method 8260 in accordance with the project Sampling and Analysis Plan (ARCADIS 2008). Data presented in this table corresponds to the period July -August 2008.

3. All results are estimated.

Appendix C

Air Modeling Calculations

Table C-1 Summary of SCREEN3 Model Input and Outputs, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.

Parameter Date S	ampled: 2	2/18/2008	2/19/2008	2/25/2008	3/3/2008	3/17/2008	4/16/2008	5/19/2008	6/2/2008	7/7/2008	8/6/2008
SCREEN3 Model Input											
Source Type		Point	Point	Point	Point	Point	Point	Point	Point	Point	Point
Emission Rate (g/s)		1	1	1	1	1	- 1	1	1	1	1
Stack Height (ft)		33	33	33	33	33	33	33	33	33	33
Stack Height (m)		10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1	10.1
Stack Inside Diameter (m)		0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41
Air Flow Rate (scfm) ⁽¹⁾		1,964	1,674	1,679	1,793	1,774	641	666	746	829	640
Air Flow Rate (acfm @ stack temp) ⁽²⁾		2,048	1,717	1,754	1,873	1,859	655	671	766	860	670
Stack Gas Exit Temperature (K) ⁽¹⁾		307	302	308	308	309	301	296	303	305	308
Ambient Air Temperature (K) ⁽³⁾		283	275	274	275	276	281	284	294	298	299
Receptor Height (m) ⁽⁴⁾		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Urban/Rural		Urban	Urban	Urban	Urban	Urban	Urban	Urban	Urban	Urban	Urban
Building Height (m)		2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
Min Horizontal Bldg Dim (m)		4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9
Max Horizontal Bldg Dim (m)		5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Consider Bldg Downwash?		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Simple/Complex Terrain Above Stack		Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple
Simple/Complex Terrain Above Stack Base		Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple	Simple
Meteorology		Full	Full	Full	Full	Full	Full	Full	Full	Full	Full
Automated Distances Array		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Terrain Height Above Stack Base		0	0	0	0	0	0	0	0	0	0
SCREEN3 Model Output											
1-HR Max		596.3	698.3	638.3	622.9	627.6	1,292	1,278	1,200	1,129	1,279
Annualization Factor ⁽⁶⁾		0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
Average Annual Concentration at Receptor Heigh	it (ug/m ³) ⁽	47.7	55.9	51.1	49.8	50.2	103.4	102.2	96	90.3	102.3
Distance To Max Concentration (m) ⁽⁸⁾	,	66	61	64	64	64	45	45	47	48	45

See notes last page.

G:\APROJECT\Northrop Grumman\Superfund\2008\OU3\NY001464.0908 Mtrg Rpts\OM&M Reports\August 2008 Monthly Report\Air Modeling\OU3 Air Model Results_Aug_2008 xls - Model Input

Table C-1. Summary of SCREEN3 Model Input and Outputs, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.

Notes

- 1. The stack air flow rate (in scfm) and temperature were measured using a handheld thermo-anemometer. Values were measured immediately prior to where the effluent air stream enters the vapor-phase carbon unit.
- 2. The stack air flow rate at the stack temperature (in acfm) was calculated by dividing the stack air flow rate in scfm by the ratio of the standard temperature to the actual stack gas exit temperature.
- 3. The ambient temperature was recorded from the weather.newday.com website for Islip, New York. The mean actual temperature from the website was used in model calculation.
- 4. The receptor height corresponds to the average inhalation level.
- 5. SCREEN3 calculated constituent concentration at listed conditions at the specified inhalation level.
- 6. A USEPA time averaging conversion factor of 1/0.08 was used to convert the 1-hour maximum concentration output to an annual average.
- 7. Average annual constituent concentration at the receptor height was calculated by multiplying the one hour maximum concentration by the annualization factor.
- 8. SCREEN3 calculated distance to the 1-hour maximum concentration.

g/s - Grams per second ft - Feet m - Meters scfm - Standard cubic feet per minute acfm - Actual cubic feet per minute K - Kelvin µg/m³ - Micrograms per cubic meter

Page 1 of 2

 Table
 C-2.
 Summary of Annual Maximum Allowable Stack Concentration Calculations, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure,

 Former Grumman Settling Ponds, Bethpage, New York.

Actual Effluent Concentrations ⁽¹⁾ (µg/m ³)										
2/18/2008	2/19/2008	2/25/2008	3/3/2008	3/17/2008	4/16/2008	5/19/2008	6/2/2008	7/7/2008	8/6/2007	
0	0	1.1	40	920	710	65	13	6	4.9	
0	0	0	0	0	0	5.8	7.6	11	9.2	
0	0	0	0	0	0	5.3	6.5	7.7	9.2	
0	0	0	0	0	0	0	2.2	0	0	
0	0	0	0	0	78	180	230	350	320	
0	0.71	5.7	8.3	0	0	0	0	0	0	
0	0	0	0	0	0	0	8.4	0	0	
0	0	0	0	0	0	0	3	8	8.2	
0	0	0	0	0	0	0	2.8	0	3.6	
0	0	0	0	0	0	0	0	0	5.5	
	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0.71 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/18/2008 2/19/2008 2/25/2008 3/3/2008 0 0 1.1 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.71 5.7 8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2/18/2008 2/19/2008 2/25/2008 3/3/2008 3/17/2008 0 0 1.1 40 920 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.711 5.7 8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2/18/2008 2/19/2008 2/25/2008 3/3/2008 3/17/2008 4/16/2008 0 0 1.1 40 920 710 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.711 5.7 8.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2/18/20082/19/20082/25/20083/3/20083/17/20084/16/20085/19/2008001.140920710650000005.80000005.3000000000000000000000000000000.715.78.300000000000000000000000000000000000000	2/18/20082/19/20082/25/20083/3/20083/17/20084/16/20085/19/20086/2/2008001.14092071065130000005.87.60000005.36.50000002.2000002.200007818023000.715.78.3000000000333000000330000002.83	2/18/20082/19/20082/25/20083/3/20083/17/20084/16/20085/19/20086/2/20087/7/2008001.14092071065136000005.87.611000005.36.57.70000002.20000007818023035000.715.78.3000000000003.8800000003.8800000002.80	

Compound	AGC ⁽²⁾										
	(µg/m³)	2/18/2008	2/19/2008	2/25/2008	3/3/2008	3/17/2008	4/16/2008	5/19/2008	6/2/2008	7/7/2008	8/6/2008
Vinyl chloride	0.11	2.39E+03	2.43E+03	2.60E+03	2.50E+03	2.50E+03	3.44E+03	3.40E+03	3.17E+03	3.00E+03	3.40E+03
1,1-Dichloroethane	0.63	1.37E+04	1.39E+04	1.49E+04	1.43E+04	1.43E+04	1.97E+04	1.95E+04	1.82E+04	1.72E+04	1.95E+04
Trichloroethylene	0.5	1.08E+04	1.10E+04	1.18E+04	1.14E+04	1.14E+04	1.56E+04	1.54E+04	1.44E+04	1.36E+04	1.55E+04
Tetrachloroethylene	1	2.17E+04	2.21E+04	2.36E+04	2.27E+04	2.27E+04	3.13E+04	3.09E+04	2.88E+04	2.73E+04	3.09E+04
cis-1,2-Dichloroethylene	63	1.37E+06	1.39E+06	1.49E+06	1.43E+06	1.43E+06	1.97E+06	1.95E+06	1.82E+06	1.72E+06	1.95E+06
Dichlorodifluoromethane (Freon 12)	12,000	2.60E+08	2.65E+08	2.84E+08	2.73E+08	2.72E+08	3.75E+08	3.71E+08	3.46E+08	3.27E+08	3.71E+08
Acetone	28,000	6.07E+08	6.18E+08	6.62E+08	6.36E+08	6.36E+08	8.76E+08	8.65E+08	8.07E+08	7.64E+08	8.66E+08
Chloroform	0.043	9.33E+02	9.49E+02	1.02E+03	9.77E+02	9.76E+02	1.35E+03	1.33E+03	1.24E+03	1.17E+03	1.33E+03
trans-1,2-Dichloroethene	63	1.37E+06	1.39E+06	1.49E+06	1.43E+06	1.43E+06	1.97E+06	1.95E+06	1.82E+06	1.72E+06	1.95E+06
Trichlorofluoromethane (Freon 11)	1,000	2.17E+07	2.21E+07	2.36E+07	2.27E+07	2.27E+07	3.13E+07	3.09E+07	2.88E+07	2.73E+07	3.09E+07

See notes last page.

Page 2 of 2

Table C-2. Summary of Annual Maximum Allowable Stack Concentration Calculations, Northrop Grumman Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York.

Compound	Percent of Annual Maximum Allowable Stack Concentration (4)										
	2/18/2008	2/19/2008	2/25/2008	3/3/2008	3/17/2008	4/16/2008	5/19/2008	6/2/2008	7/7/2008	8/6/2008	
Vinyl chloride	0.00%	0.00%	0.04%	1.60%	36.84%	20.63%	1.91%	0.41%	0.20%	0.14%	
1,1-Dichloroethane	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.03%	0.04%	0.06%	0.05%	
Trichloroethylene	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.03%	0.05%	0.06%	0.06%	
Tetrachloroethylene	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	
cis-1,2-Dichloroethylene	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.02%	0.02%	
Dichlorodifluoromethane (Freon 12)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Acetone	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Chloroform	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.24%	0.68%	0.62%	
trans-1,2-Dichloroethene	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Trichlorofluoromethane (Freon 11)	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	

Notes:

1. Actual effluent concentrations are analytical results from air samples collected on the dates shown.

2. AGC refers to the compound-specific annual guideline concentration per the NYSDEC DAR-1 AGC/SGC tables, revised September 10, 2007.

3. Annual maximum allowable stack concentrations were calculated by dividing the product of the annual guideline concentration of a compound and the ratio of the SCREEN3 gas emission

rate and the SCREEN 3 average annual concentration at receptor height by the air flow rate at the stack temperature and multiplying by the appropriate conversion factors.

4. Percent of MASC was calculated by dividing the actual effluent concentration by the MASC for a given monitoring event.

µg/m³ - Micrograms per cubic meter

AGC - Annual guideline concentration