

Mr. Steven Scharf, P.E. New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation 625 Broadway Albany, New York 12233-7015

Subject:

Results of First Quarter 2011 Groundwater Monitoring, Operable Unit 2, Northrop Grumman Systems Corporation and Naval Weapons Industrial Reserve Plant (NWIRP) Sites, Bethpage, New York. (NYSDEC Site #s 1-30-003A and B)

Dear Mr. Scharf:

On behalf of Northrop Grumman Systems Corporation (Northrop Grumman), ARCADIS is providing the NYSDEC with the validated results of Operable Unit 2 (OU2) groundwater monitoring, performed in accordance with the approved groundwater monitoring plan (ARCADIS G&M, Inc. 2006) and the Public Water Supply Contingency Plan (PWSCP) (ARCADIS G&M, Inc. 2003). Table 1 provides OU2 remedial system performance operational data and water balance. Tables 2 and 3 provide the validated analytical results of monitoring for this period. Figure 1 shows the site plan with well locations.

Please contact us if you have any questions or comments.

Sincerely,

ARCADIS of New York, Inc.

David E. Stern Senior Hydrogeologist

701 GLOVONM Carlo San Giovanni

Project Manager

Enclosures

ARCADIS of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631.249.7600 Fax 631.249.7610 www.arcadis-us.com

#### ENVIRONMENT

Date: June 30, 2011

Contact: David Stern

Phone: 631-391-5284

Email: david.stern@arcadis-us.cc

Our ref: NY001496.0311.GWMI4

#### Imagine the result

Copies:

John Cofman – Northrop Grumman Kent Smith – Northrop Grumman Ed Hannon – Northrop Grumman Carol Henry, EMAGIN Walter Parish - NYSDEC Region 1 Bill Spitz - NYSDEC Region 1 Steven Karpinski - New York State Department of Health Michael Alarcon - Nassau County Department of Health Joseph DeFranco - Nassau County Department of Health Lora Fly – NAVFAC Midlant Environmental David Brayack - TetraTech NUS, Inc. Jeffrey Kogut – Glenn Springs Holdings, Inc. Kevin Lumpe – Steel Equities Thomas Taccone – USEPA Matthew Russo - Town of Oyster Bay Anthony J. Sabino Frank Flood – Massapequa Water District Matthew Snyder – Aqua New York William Bier – South Farmingdale Water District John Reinhardt – Town of Hempstead Water District Michael Boufis – Bethpage Water District Lois Lovisolo – Bethpage Public Library (Public Repository) File

Table 1. Operational Summary for the On-Site Portion of the Operable Unit 2 Groundwater Remedy, First Quarter 2011, Northrop Grumman Systems Corporation, Bethpage, New York.

|                                |                                  | Current Actual   |                       |                       | Current          |                       |                   | 1st Quarter            |  |  |  |
|--------------------------------|----------------------------------|------------------|-----------------------|-----------------------|------------------|-----------------------|-------------------|------------------------|--|--|--|
|                                | Design                           | Average          | Design                | Current Actual        | Percent of       | Current               | Current           | 2011                   |  |  |  |
|                                | Pumping/                         | Pumping/Recharge | Total                 | Total                 | Design           | TCE                   | TVOC              | VOC Mass               |  |  |  |
|                                | Recharge Rate (a)                | Rate (b)         | Pumpage/Recharge      | Pumpage/Recharge      | Pumpage/         | Concentration         | Concentration (c) | Removed <sup>(d)</sup> |  |  |  |
| dentification                  | (gpm)                            | (gpm)            | (MG)                  | (MG)                  | Recharge         | (ug/L)                | (ug/L)            | (lbs)                  |  |  |  |
| Remedial Wells                 | Groundwater Removed from Aquifer |                  |                       |                       |                  |                       |                   |                        |  |  |  |
| Well 1                         | 800                              | 801              | 96.8                  | 15.7                  | 16%              | 540                   | 623               | 81                     |  |  |  |
| Vell 3                         | 700                              | 622              | 84.7                  | 46.9                  | 55%              | 2,300                 | 2,614             | 1,021                  |  |  |  |
| Well 17 1,000                  |                                  | 1,006            | 121.0                 | 118.0                 | 98%              | 240                   | 284               | 279                    |  |  |  |
| Nell 18                        | 600                              | 678              | 72.6                  | 75.5                  | 104%             | 81                    | 104               | 65                     |  |  |  |
| Vell 19                        | 700                              | 767              | 84.7                  | 90.9                  | 107%             | 180                   | 211               | 160                    |  |  |  |
| Rounded Totals:                | 3,800                            | 3,874            | 460                   | 347                   | 75%              |                       |                   | 1,606                  |  |  |  |
| Recharge Basins <sup>(a)</sup> |                                  | Treated          | Water Recharged to    | Aquifer               |                  |                       |                   |                        |  |  |  |
| West Recharge Basins           | 0                                | 1,400            | 0                     | 59.3                  |                  |                       |                   |                        |  |  |  |
| South Recharge Basins          | 2,231                            | 2,345            | 269.9                 | 283.7                 | 105%             |                       |                   |                        |  |  |  |
| Rounded Totals:                | 2,231                            | 3,745            | 270                   | 343                   |                  |                       |                   |                        |  |  |  |
| Freated Water Sent to C        | alpine                           |                  |                       |                       |                  |                       |                   |                        |  |  |  |
| Calpine Demand                 | 100-400                          | 22               | 12 - 48               | 2.7                   |                  |                       |                   |                        |  |  |  |
| Treatment Efficiencies         |                                  | Ave              | erage SPDES Outfall T | VOC Concentrations Fi | rst Quarter 2011 | 'ug/L) <sup>(f)</sup> |                   |                        |  |  |  |
| Tower 96 System Efficien       | су <sup>(e)</sup> .              | >99.9%           |                       | <0.5                  |                  |                       |                   |                        |  |  |  |
|                                |                                  |                  |                       |                       |                  |                       |                   |                        |  |  |  |

see footnotes on last page

Table 1. Operational Summary for the On-Site Portion of the Operable Unit 2 Groundwater Remedy, First Quarter 2011, Northrop Grumman Systems Corporation, Bethpage, New York.

| (a)   | well pumpage (minus Calpine demand, Oxy biosparge system<br>Current average recharge rates have been determined using<br>pumping rates, which account for varying amounts of downtim<br>have been determined by using the average current percent of | pumping and recharge r<br>n demand, incidental irrig<br>the entire 84-day span o<br>ne, as indicated below. T<br>of design for Wells 1 and | nc. 2003c). Acceptable design recharge rates based<br>ates were modified in April, 2005. Recharge includes remedial<br>jation use, and pipe loss), plus incidental runoff from precipitation.<br>f time for the South Recharge Basin as opposed to current average<br>he current average recharge rates for the West Recharge Basins<br>3. Well 1 not operational due to maintenance during part of this period.<br>iirs, which accounts for lower than normal up-time for Wells 1 and 3. |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| (b)   | - OU2 wells were operational during the First Quarter 2011, at t and Well-19 (98%). The Actual Average Pumping Rates and                                                                                                                             | ••••••                                                                                                                                     | s: Well-1 (16.2%), Well-3 (62.3%); Well-17 (97%), Well-18 (92%),<br>It to Calpine are for when the wells are pumping.                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| (c)   | - The TVOC concentration for each well was calculated based                                                                                                                                                                                          | on First Quarter 2011 gro                                                                                                                  | oundwater monitoring data (Table 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| (d)   | - TVOC mass removed is based on the TVOC data given abov                                                                                                                                                                                             | e and the following form                                                                                                                   | ula:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|       | (TVOC concentration in ug/L) X (gallons pumped) X (3.785 L/gal) X (1 x $10^{-6}$ g/ug) X (2.2 x $10^{-3}$ lb/g)                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (e)   | Air Stripping Efficiency calculated from values above-using the                                                                                                                                                                                      | following formula:                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|       | Average SP                                                                                                                                                                                                                                           | DES TVOC Concentration<br>$Q_{Well 1}$ + (TVOC <sub>Well 3</sub> X<br>( $Q_{Well 1}$ + $Q_{Well 3}$ etc)                                   | (Q <sub>Well 3</sub> ) etc]                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|       | -When non-detectable levels of VOCs are found in the effluent                                                                                                                                                                                        | , a value of zero is used                                                                                                                  | to estimate the efficiency of the air stripper.                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (f)   | -Towers 102 and 96 outfalls are identified as Outfalls 005 and 0<br>Basins, respectively). Complete SPDES reporting provided to                                                                                                                      |                                                                                                                                            | only known as the South Recharge Basins and Plant 5 Recharge<br>r separate cover.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| (g)   | - Well 1 was off line during the First Quarter sampling event, Fourth Quarter 2010 TCE and TVOC concentrations were used for the current time period.                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|       | Not Available or Not Applicable                                                                                                                                                                                                                      | lb/g                                                                                                                                       | pounds per kilogram                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| TCE   | Trichloroethelyene                                                                                                                                                                                                                                   | lbs                                                                                                                                        | pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| TVOC  | Total Volatile Organic Compounds                                                                                                                                                                                                                     | MG                                                                                                                                         | million gallons                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| g/ug  | grams per microgram                                                                                                                                                                                                                                  | ug/L                                                                                                                                       | micrograms per liter                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| gpm   | gallons per minute                                                                                                                                                                                                                                   | OU2                                                                                                                                        | Operable Unit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| L/gal | Liters per gallon                                                                                                                                                                                                                                    | Q                                                                                                                                          | pumping rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

 Table 2. Concentrations of Volatile Organic Compounds Detected in Groundwater Remedial Wells,

 First Quarter 2011, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York.

| Well:       CONSTITUENT     Sample ID:       (Units in ug/L)     Date: | -                     | 96 EFFLUENT<br>T96 EFF.<br>2/14/2011 | WELL 17              | WELL 18<br>WELL 18<br>2/14/2011 | WELL 19          | WELL 19 (REP)<br>REP 021411<br>2/14/2011 | 102 EFFLUENT<br>T102 EFF.<br>2/14/2011 |
|------------------------------------------------------------------------|-----------------------|--------------------------------------|----------------------|---------------------------------|------------------|------------------------------------------|----------------------------------------|
| 1,1,1-Trichloroethane                                                  | < 100                 | < 5                                  | < 10                 | 1.2 J                           | 0.62 J           | 0.74 J                                   | < 5                                    |
| 1,1,2,2-Tetrachloroethane                                              | < 100                 | < 5                                  | < 10<br>< 10         | < 5                             | < 5              | < 5                                      | < 5                                    |
| 1,1,2-Trichloroethane                                                  | < 100                 | < 5                                  | < 10<br>< 10         | < 5                             | < 5              | < 5                                      | < 5                                    |
| 1.1-Dichloroethane                                                     | < 100                 | < 5                                  | 1.1 J                | 1.1 J                           | 0.91 J           | 0.91 J                                   | < 5                                    |
| 1,1-Dichloroethene                                                     | 14 J                  | < 5                                  | 2.9 J                | 4.2 J                           | 1.6 J            | 1.7 J                                    | < 5                                    |
| 1,2-Dichloroethane                                                     | < 100                 | < 5                                  | < 10                 | < 5                             | 0.65 J           | 0.59 J                                   | < 5                                    |
| 1,2-Dichloropropane                                                    | < 100                 | < 5                                  | < 10<br>< 10         | < 5                             | < 5              | < 5                                      | < 5                                    |
| 2-Butanone                                                             | < 1000                | < 50                                 | < 100                | < 50                            | < 50             | < 50                                     | < 50                                   |
| 2-Hexanone                                                             | < 1000                | < 50<br>< 50                         | < 100                | < 50                            | < 50             | < 50<br>< 50                             | < 50<br>< 50                           |
| 4-methyl-2-pentanone                                                   | < 1000                | < 50<br>< 50                         | < 100                | < 50                            | < 50             | < 50<br>< 50                             | < 50<br>< 50                           |
| Acetone                                                                | < 1000                | < 50<br>< 50                         | < 100                | < 50                            | < 50             | < 50<br>< 50                             | < 50<br>< 50                           |
| Benzene                                                                | < 14                  | < 0.7                                | < 1.4                | < 0.7                           | < 0.7            | < 0.7                                    | < 0.7                                  |
| Bromodichloromethane                                                   | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Bromoform                                                              | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Bromomethane                                                           | < 100                 | < 5                                  | < 10<br>< 10         | < 5                             | < 5              | < 5                                      | < 5                                    |
| Carbon Disulfide                                                       | < 100                 | < 5                                  | < 10<br>< 10         | < 5                             | < 5              | < 5                                      | < 5                                    |
| Carbon tetrachloride                                                   | < 100<br>< 100        | < 5                                  | < 10<br>< 10         | < 5<br>< 5                      | < 5              | < 5                                      | < 5                                    |
| Chlorobenzene                                                          | < 100<br>< 100        | < 5<br>< 5                           | < 10<br>< 10         | < 5<br>< 5                      | < 5<br>< 5       | < 5<br>< 5                               | < 5<br>< 5                             |
|                                                                        | < 100<br>< 100        | < 5                                  | < 10<br>< 10         | < 5<br>0.42 J                   | < 5<br>0.43 J    | < 5<br>0.4 J                             | < 5                                    |
| Chlorodifluoromethane (Freon 22)<br>Chloroethane                       | < 100<br>8.4 J        | < 5<br>< 5                           | < 10<br>< 10         | <b>0.42 J</b><br>< 5            | 0.43 J<br>< 5    | <b>0.4 J</b><br>< 5                      | < 5<br>< 5                             |
| Chloroform                                                             | <b>6.4 J</b><br>< 100 | < 5                                  | < 10<br>< 10         | < 5<br>< 5                      | < 5<br>0.59 J    | <b>0.63 J</b>                            | < 5                                    |
|                                                                        | < 100<br>< 100        | < 5<br>< 5                           | -                    | < 5<br>< 5                      |                  | 0.03 J<br>< 5                            | < 5<br>< 5                             |
| Chloromethane                                                          | < 100<br>13 J         | < 5<br>< 5                           | < 10<br><b>3.9 J</b> | < 5<br>1.5 J                    | < 5<br><b>18</b> | < 5<br>18                                | < 5<br>< 5                             |
| cis-1,2-dichloroethene                                                 | < 100                 | < 5<br>< 5                           | <b>3.9 J</b><br>< 10 | 1.5 J<br>< 5                    | < 5              | <b>10</b><br>< 5                         | < 5<br>< 5                             |
| cis-1,3-dichloropropene                                                | < 100<br>< 100        | < 5<br>< 5                           | < 10<br>< 10         | < 5<br>< 5                      | < 5<br>< 5       | < 5<br>< 5                               | < 5<br>< 5                             |
| Dibromochloromethane                                                   |                       | -                                    | -                    |                                 |                  | -                                        | -                                      |
| Dichlorodifluoromethane (Freon 12)                                     | < 100                 | < 5                                  | < 10                 | < 5<br>< 5                      | < 5<br>< 5       | < 5                                      | < 5                                    |
| Ethylbenzene<br>Mathulana Chlarida                                     | < 100                 | < 5                                  | < 10                 | -                               | -                | < 5                                      | < 5                                    |
| Methylene Chloride                                                     | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Styrene                                                                | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Tetrachloroethene                                                      | 69 J                  | < 5                                  | 29                   | 13                              | 6.9              | 7.7                                      | < 5                                    |
| Toluene                                                                | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| trans-1,2-dichloroethene                                               | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| trans-1,3-dichloropropene                                              | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Trichloroethylene                                                      | 2300                  | < 5                                  | 240                  | 81                              | 180 D            | 200                                      | < 5                                    |
| Trichlorotrifluoroethane (Freon 113)                                   | 9.6 J                 | < 5                                  | 6.6 J                | 1.5 J                           | 0.93 J           | 0.91 J                                   | < 5                                    |
| Vinyl Chloride                                                         | 200                   | < 2                                  | < 4                  | < 2                             | < 2              | < 2                                      | < 2                                    |
| Xylene-o                                                               | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Xylenes - m,p                                                          | < 100                 | < 5                                  | < 10                 | < 5                             | < 5              | < 5                                      | < 5                                    |
| Total VOCs                                                             | 2614                  | 0                                    | 284                  | 104                             | 211              | 232                                      | 0                                      |

Note: Well 1 was not operational due to maintenance during this sampling event.

Bold Constituent detected

VOCs Volatile Organic Compounds

ug/L Micrograms per liter

J Constituent value is estimated

REP Replicate Sample

 Table 3.
 Concentrations of Site-Related Volatile Organic Compounds Detected in Outpost Wells, First Quarter 2011, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York.

|                                 |           | BPOW 1-1 (3) |          | REP BPOW 1-2 <sup>(3)</sup> |          | BPOW 2-1  | BPOW 2-2  | BPOW 3-1  | BPOW 3-2  | BPOW 4-1  | BPOW 4-2  |
|---------------------------------|-----------|--------------|----------|-----------------------------|----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CONSTITUENT S                   | ample ID: | BPOW 1-1     | BPOW 1-2 | REP02082011                 | BPOW 1-3 | BPOW 2-1  | BPOW 2-2  | BPOW 3-1  | BPOW 3-2  | BPOW 4-1  | BPOW 4-2  |
| (Units in ug/L)                 | Date:     | 2/9/2011     | 2/8/2011 | 2/8/2011                    | 2/9/2011 | 2/10/2011 | 2/10/2011 | 2/11/2011 | 2/11/2011 | 2/15/2011 | 2/14/2011 |
| 1,1,1-Trichloroethane           |           | 0.36 J       | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| 1,1,2,2-Tetrachloroethane       |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| 1,1,2-Trichloroethane           |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| 1,1-Dichloroethane              |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | 0.71      | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| 1,1-Dichloroethene              |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | 0.36 J    | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| 1,2-Dichloroethane              |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Carbon Tetrachloride            |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Chlorobenzene                   |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Chloroform                      |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| cis-1,2-Dichloroethene          |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Trichlorotrifluoroethane (Freor | า 113)    | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | 0.93      | 0.28 J    |
| Tetrachloroethene               |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| trans-1,2-Dichloroethene        |           | < 0.5        | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Trichloroethene                 |           | 1.1          | < 0.5    | < 0.5                       | < 0.5    | < 0.5     | 0.85      | < 0.5     | < 0.5     | < 0.5     | < 0.5     |
| Total Site-Related VOCs (1) :   |           | 1.46         | 0        | 0                           | 0        | 0         | 1.92      | 0         | 0         | 0.93      | 0.28      |
| TVOC Trigger Value (2):         |           | 0.6          | 0.6      | 0.6                         | 0.6      | NE        | NE        | 1.5       | 1.5       | 1.5       | 1.5       |

#### Note:

<sup>(1)</sup> Site-related VOCs were established in the Public Water Supply Contingency Plan (PWSCP) (ARCADIS G&M, Inc. 2003).

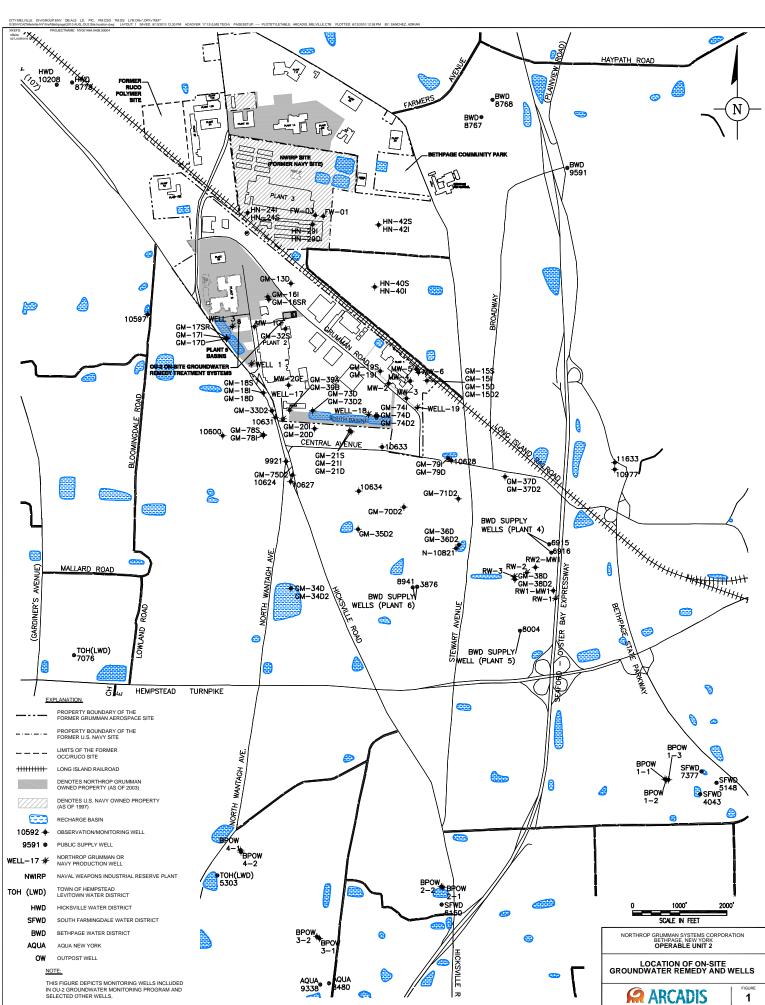
<sup>(2)</sup> TVOC Trigger Values were established in the PWSCP (ARCADIS G&M, Inc. 2003).

<sup>(3)</sup> The TVOC Trigger Value for Cluster 1 was initially exceeded on April 23, 2004; confirmatory sampling and reporting was conducted as per the PWSCP (ARCADIS G&M, Inc. 2003).

<sup>(5)</sup> Benzene and Methyl tert-butyl ether (MTBE), which are not site-related VOCs, were detected in Outpost Well OW 2-1 on 3/7/07 at 130 ug/L and 10 ug/L, respectively.

NE Not established

ug/L Micrograms per liter


Bold Constituent detected

TVOC Total Volatile Organic Compounds

J Constituent value is estimated

REP Replicate sample



