

Mr. Steven M. Scharf, P.E. Project Engineer New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Remedial Action, Bureau A 625 Broadway Albany, New York 12233-7015

Subject:

Results of Pre-Closure Groundwater Sampling, Major Petroleum Facility License (MPFL) Permit No. 01-1280, Northrop Grumman Systems Corporation, Bethpage, New York.

Dear Steve:

This Pre-Closure Work Report (Report) was prepared by ARCADIS of New York, Inc. (ARCADIS) on behalf of Northrop Grumman Systems Corporation (Northrop Grumman) for closure of monitoring wells associated the with the MPFL Permit No. 01-1280 for the Northrop Grumman, Bethpage, New York Site (Site). This Report was prepared in accordance with the Monitoring Well Closure Work Plan (Work Plan), dated November 18, 2013, which was approved by NYSDEC on November 25, 2013. **Figure 1** depicts the Site with MPFL monitoring well locations. This Report presents the results of pre-closure groundwater samples from MPFL monitoring wells, conclusions and recommendations. **Attachment A** provides field records. **Attachment B** provides NYSDEC Category B analytical results of the groundwater sampling effort as well as data validation reports.

In accordance with the protocols set forth in the Work Plan, groundwater samples were collected from Monitoring Wells P-3, P-4 and P-6. Groundwater samples were submitted to ALS Environmental for analysis of volatile organic compounds (VOCs) plus Tentatively Identified Compounds (TICs) using NYSDEC Analytical Services Protocol (ASP) 2000 OLM4.3.

The validated analytical results are presented in **Table 1**. Results of quality assurance/quality control samples (i.e., field blanks and trip blanks) are provided in **Table 2**. The analytical results were compared to and compared to NYSDEC's Technical & Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. The analytical results indicated no detections of VOCs in two of the three wells with no

ARCADIS of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631 249 7600 Fax 631 249 7610 www.arcadis-us.com

ENVIRONMENT

Date: January 20, 2014

Contact: David Stern

Phone: 631-391-5284

Email: david.stern@arcadis-us.com

Our ref: NY001496.0612.MSFJ6

Imagine the result

Mr. Steven Scharf NYSDEC January 20, 2014

exceedances of NYSDEC TOGs in all three wells. Additionally, TICs were not detected in the samples collected from the three wells.

Based on the analytical results provided in this Report, ARCADIS concludes that the criteria established by the NYSDEC for decommissioning the five MPFL wells have been satisfied, as per the Monitoring Well Closure Work Plan. Therefore, ARCADIS recommends that NYSDEC approve the plan for decommissioning MPFL Monitoring Wells P-1, P-2, P-3, P-4, and P-6. Decommissioning and follow-up reporting will be performed as stated in the Work Plan.

Please contact us with any questions or comments.

Sincerely,

ARCADIS of New York, Inc.

David E. Stern Senior Hydrogeologist

Enclosures

^{Copies:} Carlo San Giovanni, ARCADIS Ed Hannon, Northrop Grumman Fred Weber, Northrop Grumman File

G:APROJECT/Northrop Grumman/Superfund/2013/OU2/NY001496.0312 OM&M/Correspondence/MPFL Well Closure \Closure Report\GW Sampling Pre-Closure

 Table 1.
 Concentrations of Volatile Organic Compounds in Groundwater Samples, MPFL Permit #01-1280, Northrop Grumman, Bethpage, New York.

Constituent in ug/L	Well ID: Sample ID: Sample Date:	P-3 P-3 12/4/2013	P-4 P-4 12/4/2013	P-6 P-6 12/4/2013	P-6 REP120413 12/4/2013
1,1,1-Trichloroethane (TCA)	NYSDEC SCGs 5	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	5	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0 < 5.0
1,1,2-Trichloroethane	1	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0 < 5.0
1,1-Dichloroethane (1,1-DCA)	5	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene (1,1-DCE)	5	< 5.0 J	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	0.6	< 5.0	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	1	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0 < 5.0
2-Butanone (MEK)	50	< 50	< 50	< 50	< 50
2-Hexanone	50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50
Acetone	50 50	< 50 < 50	< 50 < 50	< 50 < 50	< 50 < 50
Benzene	1	< 0.7 J	< 0.7	< 0.7	< 0.7
Bromodichloromethane	50	< 5.0	< 5.0	< 5.0	< 5.0
Bromoform	50	< 5.0	< 5.0	< 5.0	< 5.0
Bromomethane	5	< 5.0	< 5.0	< 5.0	< 5.0
Carbon Disulfide	60	< 5.0	< 5.0	< 5.0	< 5.0
Carbon Tetrachloride	5	< 5.0	< 5.0	< 5.0	< 5.0
Chlorobenzene	5	< 5.0 J	< 5.0	< 5.0	< 5.0
Chloroethane	5	< 5.0	< 5.0	< 5.0	< 5.0
Chloroform	7	< 5.0	< 5.0	0.25 J	0.34 J
Chloromethane	5	< 5.0	< 5.0	< 5.0	< 5.0
Dibromochloromethane	50	< 5.0	< 5.0	< 5.0	< 5.0
Dichlorodifluoromethane (CFC 12)	5	< 5.0	< 5.0	< 5.0	< 5.0
Dichloromethane	5	< 5.0	< 5.0	< 5.0	< 5.0
Ethylbenzene	5	< 5.0	< 5.0	< 5.0	< 5.0
Methyl tert-Butyl Ether	5	< 5.0	< 5.0	< 5.0	< 5.0
Styrene	5	< 5.0	< 5.0	< 5.0	< 5.0
Tetrachloroethene (PCE)	5	< 5.0	< 5.0	< 5.0	< 5.0
Toluene	5	< 5.0 J	< 5.0	< 5.0	< 5.0
Trichloroethene (TCE)	5	< 5.0 J	< 5.0	0.60 J	0.59 J
Trichlorofluoromethane (CFC 11)	5	< 5.0	< 5.0	< 5.0	< 5.0
√inyl Chloride	2	< 2.0	< 2.0	< 2.0	< 2.0
cis-1,2-Dichloroethene	5	< 5.0	< 5.0	1.3 J	1.1 J
cis-1,3-Dichloropropene	0.4	< 5.0	< 5.0	< 5.0	< 5.0
rans-1,2-Dichloroethene	5	< 5.0	< 5.0	< 5.0	< 5.0
rans-1,3-Dichloropropene	0.4	< 5.0	< 5.0	< 5.0	< 5.0
o-Xylene	5	< 5.0	< 5.0	< 5.0	< 5.0
n,p-Xylenes	5	< 5.0	< 5.0	< 5.0	< 5.0
Chlorodifluoromethane (CFC 22)	5	< 5.0	< 5.0	< 5.0	< 5.0
1,1,2-Trichlorotrifluoroethane (CFC113)	5	< 5.0	< 5.0	< 5.0	< 5.0
4-Methyl-2-pentanone (MIBK)	50	< 50	< 50	< 50	< 50
TVOCs		0	0	2.2	2.1

Table 1. Concentrations of Volatile Organic Compounds in Groundwater Samples, MPFL Permit #01-1280, Northrop Grumman, Bethpage, New York.

Notes and Abbreviations:

(1) Samples were analyzed for the TCL VOCs using NYSDEC ASP 2000 Method OLM4.3. Data were validated in accordance with USEPA National Functional Guidelines of October 1999.

Bold value indicates a detection.

TVOCs values are rounded to two significant figures.

- MPFL Major Petroleum Facility License
- NYSDEC New York State Department of Environmental Conservation.
- TCL Target compound list.
- VOC Volatile Organic Compound
- TVOCs Total Volatile Organic Compounds
- ASP Analytical services protocol
- SCGs Standards, criteria, and guidance values
- ug/L Micrograms per liter
- NE Not established
- J Value is estimated
- < 5 Compound not detected above its laboratory quantification limit

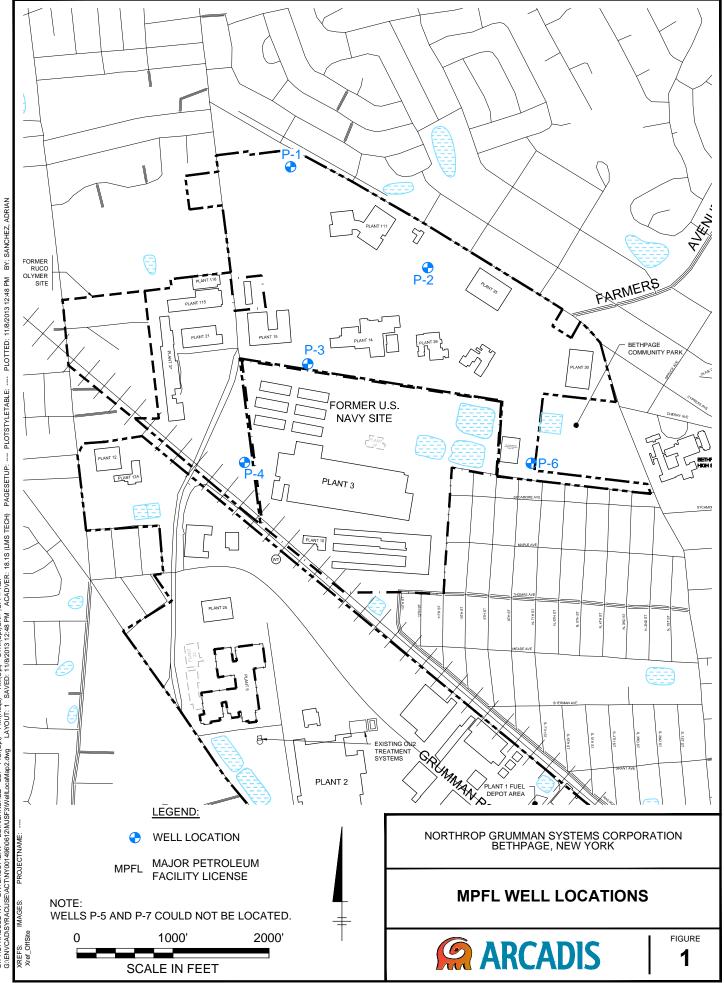
 Table 2.
 Concentrations of Volatile Organic Compounds in QA/QC Samples, MPFL Permit #01-1280, Northrop Grumman, Bethpage, New York.

Constituent in ug/L	Location ID: Sample ID: Sample Date:	Trip Blank TB120413 12/4/2013	Field Blank FB120413 12/4/2013	
1.1.1 Trichlargethang (TCA)		5.0	.5.0	
1,1,1-Trichloroethane (TCA)		< 5.0	< 5.0	
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		< 5.0	< 5.0	
		< 5.0	< 5.0	
1,1-Dichloroethane (1,1-DCA)		< 5.0	< 5.0	
1,1-Dichloroethene (1,1-DCE)		< 5.0	< 5.0	
1,2-Dichloroethane		< 5.0	< 5.0	
1,2-Dichloropropane		< 5.0	< 5.0	
2-Butanone (MEK)		< 50	< 50	
2-Hexanone		< 50	< 50	
Acetone		< 50	< 50	
Benzene		< 0.7	< 0.7	
Bromodichloromethane		< 5.0	< 5.0	
Bromoform		< 5.0	< 5.0	
Bromomethane		< 5.0	< 5.0	
Carbon Disulfide		< 5.0	< 5.0	
Carbon Tetrachloride		< 5.0	< 5.0	
Chlorobenzene		< 5.0	< 5.0	
Chloroethane		< 5.0	< 5.0	
Chloroform		< 5.0	< 5.0	
Chloromethane		< 5.0	< 5.0	
Dibromochloromethane		< 5.0	< 5.0	
Dichlorodifluoromethane (CFC 12)		< 5.0	< 5.0	
Dichloromethane		< 5.0	< 5.0	
Ethylbenzene		< 5.0	< 5.0	
Methyl tert-Butyl Ether		< 5.0	< 5.0	
Styrene		< 5.0	< 5.0	
Tetrachloroethene (PCE)		< 5.0	< 5.0	
Toluene		< 5.0	< 5.0	
Trichloroethene (TCE)		< 5.0	< 5.0	
Trichlorofluoromethane (CFC 11)		< 5.0	< 5.0	
Vinyl Chloride		< 2.0	< 2.0	
cis-1,2-Dichloroethene		< 5.0	< 5.0	
cis-1,3-Dichloropropene		< 5.0	< 5.0	
trans-1,2-Dichloroethene		< 5.0	< 5.0	
trans-1,3-Dichloropropene		< 5.0	< 5.0	
o-Xylene		< 5.0	< 5.0	
m,p-Xylenes		< 5.0	< 5.0	
Chlorodifluoromethane (CFC 22)		< 5.0	< 5.0	
1,1,2-Trichlorotrifluoroethane (CFC113)		< 5.0	< 5.0	
4-Methyl-2-pentanone (MIBK)		< 50	< 50	
TVOCs		0	0	

 Table 2.
 Concentrations of Volatile Organic Compounds in QA/QC Samples, MPFL Permit #01-1280, Northrop Grumman, Bethpage, New York.

	Location ID: Sample ID:	Trip Blank TB120413	Field Blank FB120413	
	Sample Date:	12/4/2013	12/4/2013	
Constituent in ug/L				

Notes and Abbreviations:


(1) Samples were analyzed for the TCL VOCs using NYSDEC ASP 2000 Method OLM4.3. Data were validated in accordance with USEPA National Functional Guidelines of October 1999.

Bold value indicates a detection.

TVOCs values are rounded to two significant figures.

MPFL Major Petroleum Facility License

- QA/QC Quality Assurance/Quality Control
- TCL Target compound list
- VOC Volatile Organic Compound
- TVOCs Total Volatile Organic Compounds
- ASP Analytical services protocol
- ug/L Micrograms per liter
- < 5 Compound not detected above its laboratory quantification limit

PLOTTED: 11/8/2013 12:48 PM PM:(Redd) TM:(Opt) LYR:(Opt)ON=*,0FF=*REF* LAYOUT: 1 SAVED: 11/8/2013 12:48 PM ACADVER: 18.1S (LMS TECH) PIC:(Opt) LD: aMar CITY:SYRACUSE-NY DIV/GROUP:ENV DB:A.SANCHEZ G:\ENVCAD/SYRACUSE/ACT/NY001496/0612/MJSF3\WeilLo

Attachment A

6 ADCADIC		1	Page _/	_of/
ARCADIS		A	mue: 12	48
Infrastructure, environment, facilities	Sompling Log	6	xit: 14	-05
	Sampling Log			
Project NGC OUZ ATTATR GW Sampling	Project No. NY cold	+96.061	2. MSF.	T3
Site Location Betlipage, NY		12	104/13	
Well No. <u>P-3</u> Replicate N	No. $Ms/MsD *$ Weat		Sunny,	45°F
Cary Williams	17.0-	partle	clardy/or End	revcost n
Sampling Personn <u>er Karla Mirando</u> Sampling T	Time: Begin <u>1345</u>	_ /	End	1351
Purge Data	Field Parameters	io lorless	,	
Measuring Point (describe) Toc	Color ORANGE	1.	colorless	Color
Sounded Well Depth (ft bmp) 77.21	Odor Øodov	Jodor	Dodor	Ø
Depth to Water (ft bmp) 60,60	Appearance cloudy;	clear	clear	clea
Depth to Packer (ft bmp)	aparifice			
Water Column in Well (ft) 16.61		1V	2V	3V
Casing Diameter 4"(0,65)	pH (s.u.) 6.06	6.07	5.91	6.00
Gallons in Well 10,80	Conductivity			
Gallons Purged X 3	(mS/cm) or	_	-	-
Prior to Sampling 32.4 gal	(µmhos/cm) ¹⁾ 256	701	699	709
Pump Intake	Ms/an			. ,
Setting (ft bmp) $\sim 62 - 63 \# bm$	p Temperature (°C) 13.9	14.8	15,8	15.6
Packer Pressure (psi)				
Pumping Rate (gpm) ~ 1 gpm	DO (mg/L)		-	-
Evacuation Method Non dedicated Red How	<u>ORP (m∀)</u>	arr		
Sampling Method <u>360V</u>	Turbidity (NTU) ≥ 100 Time 1308	9.35	2.64	116/
Purge Time Begin <u>1308</u> End <u>1351</u>		1319	1330	1344
	DTW (ft bmp)	<u> </u>		<u>.</u>
		aramete	ns ev. ~11	gal;
<u>~ MS = "P-3 MS" ; MS</u>	5D = "P-3 MSD"			. /
Demonstration		in the second		· .
Parameter Container * See Charry of Chetody	No.	1	Preservative	
<u></u>		- -		
		-		
PID Reading				,
Well Casing Volumes Gal./Ft. 1 ^{1/4} " = 0.06 2" = 0.16 3" = 0.37	AII - 0.65			
Gal./Ft. $1^{1/4"} = 0.06$ $2" = 0.16$ $3" = 0.37$ (1) $1^{1/2"} = 0.09$ $2 \cdot 1/2" = 0.26$ $3 \cdot 1/2" = 0.50$	4" = 0.65 6" = 1.47	0		
1) Circle one unit type	Att	See		
	17	1:1	American	

				Page	_of/_
ARCADIS			A	ive: 14	50
Infrastructure, environment, facilities				t ; 15	
	Sampling Lo	a		1, 13	70
		-			
Project NGC OUZ 4TH QTR GW Samplin Site Location Betlipage, NY	9 Project No.	NYODIL	196.061;	2. MSFJ	3
Site Location Betupage, NY	<u>)</u>	Date	/ /2	104/13	
Well No. P-4 Replicate N	lo/A	Weath	er Over	reast, 4	5°F
Sampling Personnel Karla Miranda Sampling T	ïme: Begin	1528		End	1530
Purge Data	Field Paramete	rs			
Measuring Point (describe)	Color	Colorless	Colorless	ce Corless	colorless
Sounded Well Depth (ft bmp) 75.3	Odor	Podor		Dodor	Dodar
Depth to Water (ft bmp) 56.82	Appearance	clear	clear	dear	clear
Depth to Packer (ft bmp)					
Water Column in Well (ft) 18.49		i	1V	2V	3V
Casing Diameter 4"(0,65)	pH (s.u.)	5,66	5,39	5.44	5.49
Gallons in Well 12.02	Conductivity	1 1			/
Gallons Purged X 3	(mS/cm) or	-	-	-	-
Prior to Sampling 36	(µmhos/cm)	1)471	590	577	553
Pump Intake	(us/cm				
Setting (ft bmp) 59-60 ft 6m	PTemperature (°C) 1418	14.8	15.0	15,1
Packer Pressure (psi)					
Pumping Rate (gpm) 44 1.5 2	- DO (mg/L)	-	-	-	-
Evacuation Method Non-dealicated Realift	wORP (mV)	-	-	-	
Sampling Method	Turbidity (NTU)	11.61	33.60	11.70	5.02
Purge Time Begin 1505 End	Time	15.07	1513	1520	1528
	DTW (ft bmp)			-	· · · · · · · · · · · · · · · · · · ·
Remarks: Volume measureding	55 gallida	m ' '	param	tex er	ND col.
· Sample cellected 152					· · · · /
<i>P</i>		- <i>p</i> = = =		1	·
Parameter Container	No.			Preservative	
/	_		-		
PID Reading	-	H	Blaston	. 0	· · · · · · · · · · · · · · · · · · ·
Well Casing VolumesGal./Ft. $1^{1/4}$ = 0.06 2 = 0.16 3 = 0.37 $1^{1/2}$ = 0.09 2 - $\frac{1}{2}$ = 0.26 3 - $\frac{1}{2}$ = 0.50	4" = 0.65 6" = 1.47	12	HW-		
1) Circle one unit type					

ARCADIS		C	Page /	
Infrastructure, environment, facilities		7	EX4 :	
Water	Sampling Log			,
Project NGC DUZ ATH QTR ON Sampling	Project No. NY00149	6.0612.	MSFJ2	
Project NGC DUZ ATH QTR ON Sampling Site Location <u>Bethpage</u> , NY	Date	12,	104/13	
Well No. <u>P-6</u> Replicate N	Io. REP120413 Weat	her	Sunny	
bory Williams				/
Sampling Personner Karla Miranda Sampling T	ime: Begin <u>1157</u>	-	End	1201
Purge Data	Field Parameters	1		
Measuring Point (describe)	Color Colorless	Colorless	lo al valas	Colorless
Sounded Well Depth (ft bmp) 75.33	Odor Øodor			Øodor
Depth to Water (ft bmp) 57.23	Appearance clean		clear	clear
Depth to Packer (ft bmp)				
Water Column in Well (ft) 16.60	1	1V	2V	3V
Casing Diameter 4"(0.65)	pH (s.u.) 4,73	5.35	5,31	5.33
Gallons in Well 10,79 Gallons Purged X 3	Conductivity			
Gallons Purged X 3	(mS/cm) or	-		-
Prior to Sampling $= 32.37$ gal	(µmhos/cm) 1) 554	569	648	670
Pump Intake	(MS lan)			
Setting (ft bmp) $\sim 63-64$	Temperature (°C) <u>13-9</u>	15.6	14.8	15.4
Packer Pressure (psi)				
Pumping Rate (gpm)	DO (mg/L)		-	_
Evacuation Method Non dedicated Rediflow		~	-	~
Sampling Method 3wV	Turbidity (NTU) 7,23	1.0,25	13.1	9.79
Purge Time Begin 1124 End 1201	Time <u>1124</u>	1134	1144	1157
	DTW (ft bmp)		_	-
Remarks: Virlume measurealin 55	gel/lim; : par	uneters a	w~11g	al;
			0	
			 	-
Parameter Container	No.		Preservative	
		-		
		-		
PID Reading				
Well Casing Volumes	1			
Gal./Ft. $1^{1/4}$ = 0.06 $2" = 0.16$ $3" = 0.37$ $1^{1/2}$ = 0.09 $2^{-1/2}$ = 0.26 $3^{-1/2}$ = 0.50	.4" = 0.65 6" = 1.47	0-	Marriellaw Lawland, Classic Blands & Classic Constants of	
1) Circle one unit type		Ala.	1	Marana an an Indonesia Marana di mananana
	Mark	allia	do	

Пессиал Воловно станит Воловно станит Пессиал Пессиал<	(N.C.(D).1.) (m. d. 2) (M.C.(D).1.) (M.C.(D).1.) <th>ARCADIS Infrastructure, environment, buildings</th> <th></th> <th>CHA</th> <th>ANA ANA</th> <th></th> <th>REG</th> <th>Y & L DUES</th> <th>CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM</th> <th></th> <th>Page / o</th> <th>of</th> <th>Lab Work Order #</th> <th></th>	ARCADIS Infrastructure, environment, buildings		CHA	ANA ANA		REG	Y & L DUES	CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM		Page / o	of	Lab Work Order #	
Original Line B (1) U (1) Manual Line	Control Contro Control Control <th< th=""><th></th><th>Telephone:</th><th>3-7600</th><th></th><th>Preservative</th><th>2</th><th>R</th><th></th><th></th><th></th><th></th><th>X</th><th>-</th></th<>		Telephone:	3-7600		Preservative	2	R					X	-
Mark Ball Out Desire Even	Openant 63.0.4.7 10.0 0.000			222		# of Containers	1	0				A		
m. Total Contract PRAMETER ANVISIS & METHOD Form <	m. field indication FARMETER ANVISIS & METHOD Form	1210 anoning	63124	7-761	0	Container	0-	- 4					ю, 4 ,	-
Month Month Cont 0 Cont Co	MULLINAL Control Contro Control Control	Zip	E-mail Address:	cadis.	. 511-		PAR	AMETI	ER ANALYSI	õ	TOD		ώ. Ω	
A. B. B. M. D. M. D. M. M. D. M.	0 0		XUAN. XUC	Com		/	/				/ /	0		
Markan Separation Separatinteret	Marcine	R/Bethp		1496.01	-	587\$	1º	18	/	/ /	/	+	9.	
D Collection Type (T) Mark And the constant of the consta	D Collection Type (T) Mark Collection Type (T) 28 12-04-10 1 1 1 1 1 38 12-04-10 1 1 1 1 1 41.3 12-04-10 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1 1 12-04-10 1 1 1 1 1	·Da !	2	n lo	1	2	/	th	/ /	/	/	N 00	SE - Sediment	
Dia Tire Orig Edit Mail	Date True Correr Color Mail 23 10-00 100 100 100 100 100 33 10-00 100 100 100 100 100 100 33 10-00 100 100 100 100 100 100 10-00 100 100 100 100 100 100 100 10-00 10	6	1	(v)	Maderic	4701	~		/ /	/	/	T	SL - Sludge A - Air	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 12-049 10	2	Time		Matrix	24	1	.	/ /	/	/	N 8	EMARKS	1
3 D.0.41 UV W V M </td <td>3 10.041 - W W V M<td></td><td></td><td>2</td><td>M</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td>	3 10.041 - W W V M <td></td> <td></td> <td>2</td> <td>M</td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>			2	M	7								-
H13 D.0401 H<	H13 Dots H-1 M<	3	-	7	M	7								-
12043 157 1 W V </td <td>10:04:03 11:04:03 12:04:03 <th< td=""><td></td><td>- Sihoci</td><td>2</td><td>N</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<></td>	10:04:03 11:04:03 12:04:03 <th< td=""><td></td><td>- Sihoci</td><td>2</td><td>N</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>		- Sihoci	2	N	>								-
12.949 13.45 1 M <thm< td=""><td>2049/345 W<</td><td>-</td><td>120413 1157</td><td>1</td><td>M</td><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></thm<>	2049/345 W<	-	120413 1157	1	M	7								-
I 20003 I 2000 M <t< td=""><td>I</td><td></td><td></td><td>7</td><td>N</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>US</td><td>For MS/M</td><td>-</td></t<>	I			7	N		1					US	For MS/M	-
Image: Second	Image: Second			>	M	>							a state at	-
Image: Normal Sector Image: No	Image: Note of the state o													-
Image: Simple in the state	Image: Note of the state o													-
Image: Signature Image: Signature Signature Signature Signature Image: Signature Signature <td>Image: Second Second</td> <td></td> <td>-</td>	Image: Second													-
Image: Normation of the state of the st	Image: Section of the section of th													-
Image: Second	Image: Normal line Image: No													-
Image: Normal Second	Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Aboratory Information and Receipt Cooler Custody Seal (v) Printed Name: Printed Name: Aboratory Information and Receipt Printed Name: Printed Name: Printed Name: Aboratory Information and Receipt Printed Name: Printed Name: Printed Name: Aboratory Information and Receipt Printed Name: Printed Name: Printed Name: Aboratory Information Printed Name: Printed Name: Printed Name: Aboratory Information Printed Name: Printed Name: Printed Name: Aboratory Signature: Signature: Printed Name: Aboratory Printed Name: Printed Name: Printed Name: Aboratory Printed Name: Printe		~											-
Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation and Receipt Image: Normation and Receipt Image: Normation and Receipt Image: Normation And Ame: Normation And Ame: Normation and Receipt Im	Aboratory Information and Receipt Image: Cooler Custody Seal (v) Im							at .						
Special QAOC Instructions(*): aboratory Information and Racept Relinquished By Relinquished By Received By Relinquished Cooler Custody Seal (*) Printed Name: Printed Name: Printed Name: Printed Name: Intact Intact Not Intact Signature: Signature: Signature: A.V. Sample Receipt: Frim: Printed Name: Binature: Signature: A.V. Sample Receipt: Date/Time: Date/Time: Date/Time: Date/Time:	Special QAQC Instructions(*): Booratory Information and Receipt Relinquished By Relinquish Relinquished By Reli													
Instruction Instruction Relinquished By Relinquished By Relinquished By Relinquished By Printed Name: Cooler Custody Seal (v) Printed Name: Printed Name: Printed Name: Printed Name: Printed Name: Intact Intact Not Intact Signature: Signature: Signature: Signature: Sample Receipt: Firm: Firm: Emrit/Courier: Firm:/Courier: Firm:/Courier: Condition/Cooler Temp: Date/Time: Date/Time: Date/Time: Date/Time: Date/Time:	nation and Receipt Relinquished By Received By Relinquished By Relinquished By Cooler Custody Seal (r) Prined Name: Prined Name: Prined Name: Prined Name: Prined Name: Intact Intact Not Intact Signature: Signature: Signature: Prined Name: Sample Receipt: Firm: Firm: Firm: Date/Time: Date/Time: Patrine: Distribution: MITE - Laboratory returns with results MITE - Laboratory returns with results YELLOW - Lab copy								Special QA/QC Inst	tructions(V):	ple	= .	for galac Us Insb.	
Cooler Custody Seal (v) Printed Name: Printed Name: Printed Name: Printed Name: Intact Intact Not Intact Signature: Signature: Signature: Signature: Signature: Firm:Courier: Signature: Signature: Signature: Signature: Firm:Courier: Em: Diate: Signature: Signature: Condition/Cooler Temp: Date/Time: Date/Time: Date/Time: Date/Time:	Cooler Custody Seal (v) Printed Name: Printed Name: Printed Name: Intact Not Intact Not Intact Signature: Si	Laboratory Information	and Receipt			Relinqui	shed By		Received	I By	Reli	nquished By	Laboratory Received By	
Intact Not Intact Signature: Signature: Signature: Firm: Signature: Signature: Sample Receipt: Firm: Firm:Courier: Firm:Courier: Condition/Cooler Temp: Date/Time: Date/Time: Date/Time:	Intact Intact Signature: <		Cooler Custody Seal (✓)		Printed Na		wand	de		1 th 0	Printed Name:		Printed Name:	
Sample Receipt: Firm: Firm:Counter: Firm/Counter: Condition/Cooler Temp: Date/Time: Date/Time: Date/Time:	Sample Receipt. Firm. Condition/Cooler Temp: Pate/Time: Date/Time: Date/Time:			lot Intact	Signature:	alla	Una	9	ignature:		Signature:		Signature:	
Date/Time: Date/Time: Date/Time: Date/Time:	Date/Time: Date/Time: Date/Time:		ample Receipt:		Firm:	FREA	515		irm/Courier:		Firm/Counier:		Firm:	
	WHITE – Laboratory returns with results YELLOW – Lab copy	0	condition/Cooler Temp:		Date/Time:	4/2	170		ate/Time:		Date/Time:		Date/Time:	

Attachment B

Imagine the result

Northrop Grumman Corporation-Operable Unit 2

Data Usability Summary Report

BETHPAGE, NEW YORK

Volatile Analysis

SDG #R1309135

Analyses Performed By: ALS Rochester, New York

Report #20864R Review Level: Tier III Project #NY001496.0612.MSFJ3

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #R1309135 for samples collected in association with the Northrop Grumman-Bethpage Site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis	6	
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	svoc	РСВ	MET	MISC
TB120413	R1309135-001	Water	12/4/2013		Х				
FB120413	R1309135-002	Water	12/4/2013		Х				
REP120413	R1309135-003	Water	12/4/2013	P-6	Х				
P-6	R1309135-004	Water	12/4/2013		Х				
P-3	R1309135-005	Water	12/4/2013		Х				
P-4	R1309135-006	Water	12/4/2013		Х				

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location P-3.

ANALYTICAL DATA PACKAGE DOCUMENTATION

GENERAL INFORMATION

	Rep	orted		rmance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Collection Technique (grab, composite, etc.)		Х		Х	
Methods of analysis		Х		Х	
Reporting limits		Х		Х	
Sample collection date		Х		Х	
Laboratory sample received date		Х		Х	
Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
Fully executed Chain-of-Custody (COC) form completed		Х		Х	
Narrative summary of QA or sample problems provided		Х		Х	
Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

VOLATILE ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA), Contract Laboratory Program (CLP), and Statement of Work (SOW) Method OLM04.3. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- · Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
OLM04.3	Water	10 days from validated time of sample receipt to analysis	Cool to <6°C; preserved to a pH of less than 2 s.u.

s.u. Standard units

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL and/or were non-detect. No qualification of the sample results was required.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (25%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TB1200413 FB120413		Bromoform	+55.3%
REP120413 P-6	CCV %D	Carbon tetrachloride	+27.6%
P-3 P-4		Dibromochloromethane	+36.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.03 01 KKF 20.01	Detect	NO ACION
	%RSD > 30% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
	%RSD >90%	Detect	J
	9/D > 259/ (increases in consitivity)	Non-detect	No Action
	%D >25% (increase in sensitivity)	Detect	J
Continuing Colibration	V/D > 25% (decrease in consistivity)	Non-detect	UJ
Continuing Calibration	%D >25% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery	
	Benzene			
P-6	Chlorobenzene		d but a 100/	
P-0	Toluene	AC	<ll but="">10%</ll>	
	Trichloroethene			

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification		
> the upper control limit (UL)	Non-detect	No Action		
	Detect	J		
\sim the lower control limit (11) but $\sim 10\%$	Non-detect	UJ		
< the lower control limit (LL) but > 10%	Detect	J		
< 10%	Non-detect	R		
< 10%	Detect	J		
Parent sample concentration > four times the MS/MSD	Detect	No Action		
spiking solution concentration.	Non-detect	NU ACIION		

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
	1,1-Dichloroethene
P-3	Benzene
F-3	Chlorobenzene
	Toluene

Sample Locations	Compound
	Trichloroethene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification	
. 10	Non-detect	UJ	
> UL	Detect	J	

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 50% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/ Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
P-6/	Chloroform	0.25 J	0.34 J	AC
REP120413	Trichloroethene	0.60 J	0.59 J	AO

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. System Performance and Overall Assessment

Tentatively identified compounds (TICs) were not detected in any of the sample locations.

Overall system performance was noted by the laboratory in the case narrative as acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

VOCs: OLM04.3	Rep	orted		mance ptable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks				1	1
A. Method blanks		X	Х		
B. Equipment blanks		X		X	
C. Trip blanks		X		X	
Laboratory Control Sample (LCS)		Х		Х	
Laboratory Control Sample Duplicate(LCSD)					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS)					Х
Matrix Spike Duplicate(MSD)		Х		Х	
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					•
A.Reconstructed ion chromatograms		Х		Х	
B.Quantitation Reports		Х		Х	
C.RT of sample compounds within the established RT windows		Х		Х	
D.Transcription/calculation errors present		Х		Х	
E.Reporting limits adjusted to reflect sample dilutions		Х		Х	

DATA VALIDATION CHECKLIST FOR VOCs

%RSD Relative standard deviation

Percent recovery Relative percent difference Percent difference %R RPD

%D

SAMPLE COMPLIANCE REPORT

SAMPLE COMPLIANCE REPORT

Sample						(Compliancy ¹		Noncompliance											
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	SVOC	PCB/PEST /HERB	MET	MISC	Noncompliance										
			TB1200413	Water	Yes															
														FB120413	Water	Yes				
R1309135	12/4/2013	OLM04.3	REP120413	Water	Yes															
R1309135	12/4/2013	3 OLIVI04.3	OLIVI04.3	OLIVI04.3	OLIVI04.5	P-6	Water	Yes												
			P-3	Water	No					VOC-MSD & RPD										
			P-4	Water	Yes															

1 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.

VALIDATION PERFORMED BY: Lisa Horton

Lion Hoston SIGNATURE:

DATE: December 13, 2013

PEER REVIEW BY: Todd Church

DATE: December 13, 2013

CHAIN OF CUSTODY/LABORATORY QUALIFIER DEFINITIONS/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

.

	ID#:
--	------

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM Page 1 of 1

Lab Work Order #

- .

						1	ري ا				r			r		·····
ie XUQUXU/ARCADis XUQUXU/ARCADis Address: 2 Huntington Quadrong Suite 1510 Chy State Medvide NY 11747 Probert Marcadorono (City State)		6312	49-	760	0	Preservative Filtered (-/)	<u> </u>	B						Preservation		er Information Key:
² ³⁰ ⁴¹ 	Fax:				-	# of Container	· 2	9	-		-	+	<u> </u>	A. H.SO. B. HCL	1,40 m 2,1 L/	Amber
a Suite ISID	re .	631::	249	-761	0	Container	+7	1				1	<u> </u>	C. HNO, D. NaOH	4. 500	ml Plastic ml Plastic
Chy Sinte Zip	E-mail Addres	15:	arc	a <i>d</i> is	-us.		PAF	RAMET	ER ANA	LYSIS 8	METH	ÓD		E. None F. Other:	5. Enci 6. 2 oz	. Glass
" Melville NY 11747	Xuan	·Xul	<u>v</u>	Com		7	/	/	7	/	/	/ /	/ /	G. Other:		. Glass
NGCOU247H-OTR/BCHUM	Project #:	1 NY	10014	96.0	0612.W	SFT	_m/	m/			. /			H. Other:	9. Othe 10.Othe	
Project Nemor Location (City, States): NGC 6424777-07R/Bcthp Semondres Printed Name: Larla Miranda		real	lia	De		1 /v	100 × 3	*/						Matrix Key: SO - Sell	SE - Sediment	NL - NAPL/OI
Gary Williams Sample ID	ZA	chon	Туре		1	100	1 2 ×	5/	/		/			W - Water T - Tissue	SL - Sludge A - Air	SW - Sample Wipe Other:
/ / Sample ID /	Date	Time	Comp	Grab	Matrix	1/20	1 0	/ ·	/	/	/	/	/	REMARK	S	
TB120413	120413	1000		~	W					í í		[(<u></u>	
FB120413	120413	1045	-	~	W	~							-			
REP120413	120413			1	W	~										
P-6	120413	1157		/	W	-									· · · · · · · · · · · · · · · · · · ·	
P-3	12043	1345		~	W		~						×U:	sctor	Ms/msl)
P-4	1	1530		~	Ŵ								· · ·			· · · · ·
									[ł	1	•		
					<u> </u>											
						1 1										
	<u> </u>					1 1										
														-		
Special Instructions/Comments:	J	I	I	L	1				Special Q	A/QC Instruc	tions(√):	ـــــــــــــــــــــــــــــــــــــ				1
									please	euse	Sau	uple "	P-3	"for qu	Hac Us	MSD.
Laboratory Informati	on and Rec	elpt		-			ulshed By			Received By		+	elinguished			Received By
BUS Environmental	Cooler Co	ustody Sea	al (~)		Printer	arlah	Liran	la	Printed Name:			Printed Name		P	vinted Name:	
Cooler packed with ice (1)	🗆 Inta	ct		ot Intact	Signat		Ileio	~	Signature /	m		Signatura:		s	lignaturo:	
Specify: Turnaround Requirements: 24 hr. T.A.T.	Sample F	Receipt:			Firm:	South			Firm: Courier:			Firm/Courier;			200125	5
Shipping Tracking #:	Condition				Date/T	ime: 1	idis	•	ALS Date/Tinge: 1			Date/Tone:	. <u> </u>		309135 DIS of New York, Inc OU2 Quarterly Syst	èm
	Condition	/Cooler Te			<u>אן</u>	104/13	//	00	12 51		39	ļ	•			
20730526 CofC AR Form 01,12,2007		Dis	tribution	:	WHITE?	- Laboratory	returns w	ith results		`	FELLOW -	Lab copy		<u> (</u>) (111)	11 0 101 1100 0 1111 0 01	

Environmental

REPORT QUALIFIERS AND DEFINITIONS

+

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits. Under the "Notes" column of the Form I, this qualifier denotes analysis was performed out of Holding Time.
- H Analysis was performed out of hold time for tests that have an "immediate" hold time criteria.
- # Spike was diluted out.

- Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.
- MRL Method Reporting Limit. Also known as:
- LOQ Limit of Quantitation (LOQ) The lowest concentration at which the method analyte may be reliably quantified under the method conditions.
- MDL Method Detection Limit. A statistical value derived from a study designed to provide the lowest concentration that will be detected 99% of the time. Values between the MDL and MRL are estimated (see J qualifier).
- LOD Limit of Detection. A value at or above the MDL which has been verified to be detectable.
- ND Non-Detect. Analyte was not detected at the concentration listed. Same as U qualifier.

Rochester Lab ID # for State Certifications¹

NELAP Accredited	Maine ID #NY0032	New Hampshire ID #
Connecticut ID # PH0556	Nebraska Accredited	294100 A/B
Delaware Accredited	Nevada ID # NY-00032	North Carolina #676
DoD ELAP #65817	New Jersey ID # NY004	Pennsylvania ID# 68-786
Florida ID # E87674	New York ID # 10145	Rhode Island ID # 158
Illinois ID #200047		Virginia #460167

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state or agency requirements. The test results meet requirements of the current NELAP/TNI standards or state or agency requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to

http://www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads/North-America-Downloads

RIGHT SOLUTIONS | RIGHT PARTNER

P:\INTRANET\QAQC\Forms Controlled\QUALIF_ routine rev 2.DOC

5/13/13 00005

Analytical Report

Client:	ARCADIS of New York, Inc.	Service Request:
Project:	NGC - OU2 Quarterly System/NY001496.0612.WSFJ3	Date Collected:
Sample Matrix:	Water	Date Received:
F		Data Analyzed:

 Service Request:
 R1309135

 Date Collected:
 12/4/131000

 Date Received:
 12/5/13

 Date Analyzed:
 12/10/1314:33

Units: µg/L

Basis: NA

 Sample Name:
 TB120413

 Lab Code:
 R1309135-001

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2137.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

71-55-6 1,1,1-Trichloroethane (TCA) 5.0 U 5.0 0.20 79-34-5 1,1,2,2-Tetrachloroethane 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75-35-4 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 78-37-5 1,2-Dichloroethane 5.0 U 5.0 0.20 78-87-5 1,2-Dichloroethane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.2 67-64-1 Acetone 50 U 5.0 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromomorethane 5.0 U 5.0 0.20 75-25-2 Bromomorethane 5.0 U 5.0 0.20 75-25-2 Bromomorethane 5.0 U 5.0 0.20 75-25-2 Carbon Disulfide 5.0 U 5.0 0.20 74-33-9 Bromomethane	CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
79-00-5 1,1,2-Trichloroethane S.0 U S.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCA) S.0 U S.0 0.20 75-35-4 1,1-Dichloroethane (1,1-DCE) S.0 U S.0 0.20 78-35-4 1,2-Dichloroethane S.0 U S.0 0.20 78-37-3 2-Butanone (MEK) S0 U S0 1.2 67-64-1 Acetone S0 U S0 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane S.0 U S.0 0.20 75-25-2 Bromorethane S.0 U S.0 0.20 75-25-2 Bromorethane S.0 U S.0 0.20 75-25-2 Bromorethane S.0 U S.0 0.20 75-25-2 Carbon Tetrachloride S.0 U S.0 0.20 75-15-0 Carbon Tetrachloride S.0 U S.0 0.20 75-00-3 Chloroethane S.0 <td< td=""><td>71-55-6</td><td>1,1,1-Trichloroethane (TCA)</td><td>5.0</td><td>U</td><td>5.0</td><td>0.20</td><td>•</td></td<>	71-55-6	1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.20	•
75:34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75:35-4 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 107:06-2 1,2-Dichloroethane 5.0 U 5.0 0.20 78:87:5 1,2-Dichloropropane 5.0 U 5.0 0.20 78:87:5 2-Dichloropropane 50 U 50 1.3 591:78:6 2-Hexanone 50 U 50 1.4 71:43:-2 Benzene 0.70 U 0.20 75:27:4 Bromodichloromethane 5.0 U 5.0 0.20 75:25:2 Bromomethane 5.0 U 5.0 0.20 75:25:4 Bromomethane 5.0 U 5.0 0.20 75:43:5 Carbon Tetrachloride 5.0 U 5.0 0.20 75:0-3 Chloroethane 5.0 U 5.0 0.23 75:0-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75:0-7 Chloroethane 5.0 U <td< td=""><td>79-34-5</td><td>1,1,2,2-Tetrachloroethane</td><td>5.0</td><td>U</td><td>5.0</td><td></td><td></td></td<>	79-34-5	1,1,2,2-Tetrachloroethane	5.0	U	5.0		
75-35-4 1,1-Dichloroethane 5.0 U 5.0 0.20 107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromodern 5.0 U 5.0 0.20 75-27-4 Bromodern 5.0 U 5.0 0.20 75-27-5 Bromodern 5.0 U 5.0 0.20 75-35 Carbon Tetrachloride 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-0-3 Chloroethane 5.0 U 5.0 0.20 75-7-8 Dichloroethane 5.0 U 5.0 0.20 <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>5.0</td> <td>U</td> <td>5.0</td> <td>0.20</td> <td></td>	79-00-5	1,1,2-Trichloroethane	5.0	U	5.0	0.20	
107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-26-3 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.20 74-87-3 Chloroform 5.0 U 5.0 0.20	75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0	U	5.0	0.20	
78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 67-64-1 Acetone 50 U 5.0 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-03 Chlorobenzene 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane (CFC 12) 5.0 U 5.0 0.20 104-14 Ethylbenzene 5.0 U 5.0	75-35-4	1,1-Dichloroethene (1,1-DCE)					
78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromodethane 5.0 U 5.0 0.20 75-25-2 Bromodethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.23 75-00-3 Chlorobenzene 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-487-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20	107-06-2	1,2-Dichloroethane	5.0	U	5.0	0.21	
591-78-6 2-Hexanone 50 U 50 1.2 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-3 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.22 67-66-3 Chlorobenzene 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 10-41-4 Ethylbenzene 5.0 U 5.0 0.20	78-87-5	1,2-Dichloropropane	5.0	U	5.0	0.20	
67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 57-60-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethyl tert-Butyl Ether 5.0 U 5.0	78-93-3	2-Butanone (MEK)	50	U	50	1.3	
71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromorethane 5.0 U 5.0 0.20 74-83-9 Bromorethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane (CFC 12) 5.0 U 5.0 0.20 75-9-2 Dichloromethane 5.0 U 5.0 0.20 104-41-4 Ethylbenzene 5.0 U 5.0 0.20 107-18-4 Tetrachloroethene (PCE) 5.0 U 5	591-78-6	2-Hexanone	50	U	50	1.2	
75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromorethane 5.0 U 5.0 0.20 74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.23 75-00-3 Chlorobenzene 5.0 U 5.0 0.20 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane (CFC 12) 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0	67-64-1	Acetone	50	U	50	1.4	
75-25-2Bromoform 5.0 U 5.0 0.20 74-83-9Bromomethane 5.0 U 5.0 0.49 75-15-0Carbon Disulfide 5.0 U 5.0 0.20 56-23-5Carbon Tetrachloride 5.0 U 5.0 0.23 57-00-3Chlorobenzene 5.0 U 5.0 0.22 67-66-3Chloroform 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 75-71-8Dichlorodifluoromethane 5.0 U 5.0 0.20 75-92-2Dichloromethane 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 128-83Toluene 5.0 U 5.0 0.20 <t< td=""><td>71-43-2</td><td>Benzene</td><td>0.70</td><td>U</td><td>0.70</td><td></td><td></td></t<>	71-43-2	Benzene	0.70	U	0.70		
74-83-9 Bromonethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.23 67-66-3 Chloroform 5.0 U 5.0 0.22 67-66-3 Chloromethane 5.0 U 5.0 0.22 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dibromochloromethane 5.0 U 5.0 0.20 75-09-2 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 104-42-5 Styrene 5.0 U 5.0 0.20 104-42-5 Styrene 5.0 U 5.0 0.20 107-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 107-18-4 Toluene 5.0 U <td>75-27-4</td> <td>Bromodichloromethane</td> <td>5.0</td> <td>U</td> <td>5.0</td> <td>0.20</td> <td></td>	75-27-4	Bromodichloromethane	5.0	U	5.0	0.20	
74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.23 75-00-3 Chloroethane 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.22 67-66-3 Chloronethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 106-42-5 Styrene 5.0 U 5.0 0.20 107-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U	75-25-2	Bromoform	5.0	U	5.0	0.20	
56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.23 75-00-3 Chloroftane 5.0 U 5.0 0.22 67-66-3 Chloroftane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-09-2 Dichlorodifluoromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 104-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroftuoromethane (CFC 11) 5.0 U 5.0 0.20 75-69-4 Trichloroftuoromethane (CFC 11)			5.0	U	5.0	0.49	
108-90-7Chlorobenzene 5.0 U 5.0 0.23 $75-00-3$ Chloroethane 5.0 U 5.0 0.22 $67-66-3$ Chloroform 5.0 U 5.0 0.20 $74-87-3$ Chloromethane 5.0 U 5.0 0.20 $124-48-1$ Dibromochloromethane 5.0 U 5.0 0.20 $124-48-1$ Dichlorodifluoromethane 5.0 U 5.0 0.20 $75-71-8$ Dichlorodifluoromethane 5.0 U 5.0 0.20 $75-09-2$ Dichloromethane 5.0 U 5.0 0.20 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $75-69-4$ Trichloroethene (TCE) 5.0 U 5.0 0.20 $75-69-4$ Trichlorofluoromethane 2.0 U 2.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,3-Dichloroethene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.20	75-15-0	Carbon Disulfide	5.0	U	5.0	0.20	
108-90-7Chlorobenzene 5.0 U 5.0 0.23 $75-00-3$ Chloroethane 5.0 U 5.0 0.22 $67-66-3$ Chloroform 5.0 U 5.0 0.20 $74-87-3$ Chloromethane 5.0 U 5.0 0.20 $124-48-1$ Dibromochloromethane 5.0 U 5.0 0.20 $124-48-1$ Dichlorodifluoromethane 5.0 U 5.0 0.20 $75-71-8$ Dichlorodifluoromethane 5.0 U 5.0 0.20 $75-09-2$ Dichloromethane 5.0 U 5.0 0.20 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $104-88-3$ Toluene 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $75-69-4$ Trichloroethene (TCE) 5.0 U 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	56-23-5	Carbon Tetrachloride	5.0	U	5.0	0.20	
67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2		Chlorobenzene	5.0	U	5.0	0.23	
74-87-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.26 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroethene (TCE) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropthene	75-00-3	Chloroethane	5.0	U	5.0	0.22	
124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.26 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroftuoromethane (CFC 11) 5.0 U 5.0 0.20 75-69-4 Trichloroftuoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 5.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropenpene 5.0 U 5.0 0.20 156-60-5	67-66-3	Chloroform	5.0	U	5.0	0.20	
75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.26 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroethene (TCE) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene	74-87-3	Chloromethane	5.0	U	5.0	0.20	
75-09-2Dichloromethane 5.0 U 5.0 0.26 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $1634-04-4$ Methyl tert-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $79-01-6$ Trichloroethene (TCE) 5.0 U 5.0 0.20 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 5.0 U 5.0 0.20 $10061-01-5$ cis-1,3-Dichloropropene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	124-48-1	Dibromochloromethane	5.0	U	5.0	0.20	
100-41-4Ethylbenzene5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.20100-42-5Styrene5.0U5.00.20127-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2079-01-6Trichloroethene (TCE)5.0U5.00.2775-69-4Trichlorofluoromethane (CFC 11)5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-71-8	Dichlorodifluoromethane (CFC 12)	5.0	U	5.0	0.20	
1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-09-2	Dichloromethane	5.0	U	5.0	0.26	
100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	100-41-4	Ethylbenzene	5.0	U	5.0	0.20	
100-42-5Styrene5.0U5.00.20127-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2079-01-6Trichloroethene (TCE)5.0U5.00.2775-69-4Trichlorofluoromethane (CFC 11)5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,2-Dichloroethene5.0U5.00.2010061-01-5cis-1,3-Dichloropropene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	1634-04-4	Methyl tert-Butyl Ether	5.0	U	5.0	0.20	
108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	100-42-5	• •	5.0	U	5.0	0.20	
79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	127-18-4	Tetrachloroethene (PCE)	5.0	U	5.0	0.20	· ·
79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	108-88-3	Toluene	5.0	U	5.0	0.20	
75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20		Trichloroethene (TCE)	5.0	U	5.0	0.27	
156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20		· ·	5.0	U	5.0	0.20	
156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-01-4	Vinvl Chloride	2.0	U	2.0	0.20	
10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22		•			5.0		
					5.0	0.20	
	156-60-5	trans-1.2-Dichloroethene	5.0	U	5.0	0.22	
	10061-02-6	trans-1,3-Dichloropropene			5.0	0.20	

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1000 12/ 5/13
Sample Name:	TB120413	Units:	
Lab Code:	R1309135-001	Basis:	

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2137.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
95-47-6	o-Xylene	5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
1,2-Dichloroethane-d4	101	76-114	12/10/13 14:33	
4-Bromofluorobenzene	97	86-115	12/10/13 14:33	
Toluene-d8	100	88-110	12/10/13 14:33	

Form 1A

\\alprews001\starlims\$\LIMSReps\AnalyticalReport.rpt

		Anal	ytical Report		
Client:	ARCADIS of New Yor	k, Inc.		Service Request:	R1309135
Project:	NGC - OU2 Quarterly	System/NY001496.	0612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water			Date Received:	12/5/13
·				Date Analyzed:	12/10/13 1433
		•	tified Compounds (TIC) Compounds by GC/MS		
Sample Name:	TB120413			Units:	μg/L
Lab Code:	R1309135-001			Basis:	NA
Analytical Method	: CLP-VOA OLM04.3				
CAS# An	alyte Name	RT	Result Q		

No Tentatively Identified Compounds Detected.

~

Comments:

Analytical Report

Client:	ARCADIS of New York, Inc.
Project:	NGC - OU2 Quarterly System/NY001496.0612.WSFJ3
Sample Matrix:	Water

Service Request: R1309135 Date Collected: 12/4/13 1045 Date Received: 12/5/13 Date Analyzed: 12/10/13 15:00

Units: µg/L

Basis: NA

FB120413 R1309135-002

Sample Name:

Lab Code:

Volatile Organic Compounds by GC/MS

 Analytical Method:
 CLP-VOA OLM04.3

 Data File Name:
 I:\ACQUDATA\MSVOA6\DATA\121013\L2138.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.20	
79-34-5	1,1,2,2-Tetrachloroethane	5.0	U	5.0	0.20	
79-00-5	1,1,2-Trichloroethane	5.0	U	5.0	0.20	
75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0	U	5.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	5.0	U	5.0	0.20	
107-06-2	1,2-Dichloroethane	5.0	U	5.0	0.21	
78-87-5	1,2-Dichloropropane	5.0	U	5.0	0.20	
78-93-3	2-Butanone (MEK)	50	U	50	1.3	
591-78-6	2-Hexanone	50	U	50	1.2	
67-64-1	Acetone	50	U	50	1.4	
71-43-2	Benzene	0.70	U	0.70	0.20	
75-27-4	Bromodichloromethane	5.0	U	5.0	0.20	
75-25-2	Bromoform	5.0	U	5.0	0.20	
74-83-9	Bromomethane	5.0	U	5.0	0.49	
75-15-0	Carbon Disulfide	5.0	U	5.0	0.20	
56-23-5	Carbon Tetrachloride	5.0	U	5.0	0.20	
108-90-7	Chlorobenzene	5.0	U	5.0	0.23	
75-00-3	Chloroethane	5.0	U	5.0	0.22	
67-66-3	Chloroform	5.0	U	5.0	0.20	
74-87-3	Chloromethane	5.0	U	5.0	0.20	
124-48-1	Dibromochloromethane	5.0	U	5.0	0.20	
75-71-8	Dichlorodifluoromethane (CFC 12)	5.0	Ū	5.0	0.20	
75-09-2	Dichloromethane	5.0	U	5.0	0.26	
100-41-4	Ethylbenzene	5.0	U	5.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	5.0	U	5.0	0.20	
100-42-5	Styrene	5.0	U	5.0	0.20	
127-18-4	Tetrachloroethene (PCE)	5.0	U	5.0	0.20	
108-88-3	Toluene	5.0	U	5.0	0.20	
79-01-6	Trichloroethene (TCE)	5.0	U	5.0	0.27	
75-69-4	Trichlorofluoromethane (CFC 11)	5.0	U	5.0	0.20	
75-01-4	Vinyl Chloride	2.0	U	2.0	0.20	
156-59-2	cis-1,2-Dichloroethene	5.0	U	5.0	0.20	
10061-01-5	cis-1,3-Dichloropropene	5.0	U	5.0	0.20	
156-60-5	trans-1,2-Dichloroethene	5.0	U	5.0	0.22	
10061-02-6	trans-1,3-Dichloropropene	5.0		5.0	0.20	

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1045 12/ 5/13
C	ED 100412	Unite	uali

Units: μg/L Basis: NA

 Sample Name:
 FB120413

 Lab Code:
 R1309135-002

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2138.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Anaiyte Name	Result Q	MRL	MDL	Note
95-47-6	o-Xylene	. 5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
1,2-Dichloroethane-d4		76-114	12/10/13 15:00	
4-Bromofluorobenzene	95	86-115	12/10/13 15:00	
Toluene-d8	98	88-110	12/10/13 15:00	

.

4

		Ana	lytical Report		
Client:	ARCADIS of New You	rk, Inc.		Service Request:	R1309135
Project:	NGC - OU2 Quarterly	System/NY001496	.0612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water			Date Received:	12/5/13
•				Date Analyzed:	12/10/13 1500
		•	tified Compounds (TIC) Compounds by GC/MS		
Sample Name:	FB120413			Units:	μg/L
Lab Code:	R1309135-002	·		Basis:	NA
Analytical Method:	CLP-VOA OLM04.3				
CAS # Ana	llyte Name	RŤ	Result Q		

No Tentatively Identified Compounds Detected.

Comments:

Analytical Report

Client:	ARCADIS of New York, Inc.	Service Request: R1309135
Project:	NGC - OU2 Quarterly System/NY001496.0612.WSFJ3	Date Collected: 12/4/13
Sample Matrix:	Water	Date Received: 12/5/13
•		Date Analyzed: 12/10/13 15:30

Sample Name:REP120413Lab Code:R1309135-003

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2139.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

Units: µg/L

Basis: NA

CAS No.	Analyte Name	Result	Q	MRL	MDL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	5.0	U	5.0	0.20	
79-34-5	1,1,2,2-Tetrachloroethane	5.0		5.0	0.20	
79-00-5	1,1,2-Trichloroethane	5.0	U	5.0	0.20	
75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0	U	5.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	5.0	U	5.0	0.20	
107-06-2	1,2-Dichloroethane	5.0	U	5.0	0.21	
78-87-5	1,2-Dichloropropane	5.0	U	5.0	0.20	
78-93-3	2-Butanone (MEK)	50	U	50	1.3	
591-78-6	2-Hexanone	50	U	50	1.2	
67-64-1	Acetone	50	U	50	1.4	
71-43-2	Benzene	0.70	U	0.70	0.20	
75-27-4	Bromodichloromethane	5.0	U	5.0	0.20	
75-25-2	Bromoform	5.0	U	5.0	0.20	
74-83-9	Bromomethane	5.0	U	5.0	0.49	
75-15-0	Carbon Disulfide	5.0	U	5.0	0.20	
56-23-5	Carbon Tetrachloride	5.0	U	5.0	0.20	
108-90-7	Chlorobenzene	5.0	U	5.0	0.23	
75-00-3	Chloroethane	5.0	U	5.0	0.22	
67-66-3	Chloroform	0.34	J	5.0	0.20	
74-87-3	Chloromethane	5.0	U	5.0	0.20	
124-48-1	Dibromochloromethane	5.0	U	5.0	0.20	
75-71-8	Dichlorodifluoromethanc (CFC 12)	5.0	U	5.0	0.20	· · · · · · · · · · · · · · · · · · ·
75-09-2	Dichloromethane	5.0	U	5.0	0.26	
100-41-4	Ethylbenzene	5.0	U	5.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	5.0	U	5.0	0.20	
100-42-5	Styrene	5.0	U	5.0	0.20	
127-18-4	Tetrachloroethene (PCE)	5.0	U	5.0	0.20	
108-88-3	Toluene	5.0	U	5.0	0.20	
79-01-6	Trichloroethene (TCE)	0.59	J	5.0	0.27	
75-69-4	Trichlorofluoromethane (CFC 11)	5.0	U	5.0	0.20	
75-01-4	Vinyl Chloride	2.0	U	2.0	0.20	
156-59-2	cis-1,2-Dichloroethene	1.1	J	5.0	0.20	
10061-01-5	cis-1,3-Dichloropropene	5.0	U	5.0	0.20	
156-60-5	trans-1,2-Dichloroethene	5.0	U	5.0	0.22	
10061-02-6	trans-1,3-Dichloropropene	5.0		5.0	0.20	

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: R1309135 Date Collected: 12/4/13 Date Received: 12/5/13 Date Analyzed: 12/10/13 15:30
Sample Name:	REP120413	Units: μg/L
Lab Code:	R1309135-003	Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2139.D\

.

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
95-47-6	o-Xylene	5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
1,2-Dichloroethane-d4	101	76-114	12/10/13 15:30	
4-Bromofluorobenzene	· 96	86-115	12/10/13 15:30	
Toluene-d8	97	88-110	12/10/13 15:30	

ì

1

		Anal	ytical Report		
Client:	ARCADIS of New York,	, Inc.		Service Request:	R1309135
Project:	NGC - OU2 Quarterly Sy	stem/NY001496.	0612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water			Date Received:	12/5/13
•				Date Analyzed:	12/10/13 1530
		•	tified Compounds (TIC) Compounds by GC/MS		
Sample Name:	REP120413			Units:	μg/L
Lab Code:	R1309135-003			Basis:	NA
Analytical Method:	CLP-VOA OLM04.3				
CAS # Analy	rte Name	RT	Result Q		

No Tentatively Identified Compounds Detected.

-

Comments:

\alprews001\starlims\$\LIMSReps\AnalyticalTICReport.rpt

.

Analytical Report

Client:	ARCADIS of New York, Inc.
Project:	NGC - OU2 Quarterly System/NY001496.0612.WSFJ3
Sample Matrix:	Water

Service Request: R1309135 Date Collected: 12/4/13 1157 Date Received: 12/5/13 Date Analyzed: 12/10/13 15:57

Units: µg/L

Basis: NA

Sample Name: Lab Code:

P-6 R1309135-004

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2140.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

71-55-6 1,1.1-Trichloroethane (TCA) 5.0 U 5.0 0.20 79-34-5 1,1.2.2-Terichloroethane 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 75-35-3 1,2-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.20 78-75-3 2-Butanone (MEK) 50 U 50 1.2 78-74 Acetone 50 U 50 0.20 75-25-2 Bromoferm 5.0 U 5.0 0.20 75-27-4 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-30-3 Chloroethane 5.0	CAS No.	Analyte Name	Result Q	MRL	MDL	Note
79.34.5 1,1,2.2-Trichloroethane 5.0 U 5.0 0.20 $79.00.5$ 1,1,2-Trichloroethane 5.0 U 5.0 0.20 $75.34.3$ 1,1-Dichloroethane $1.10.70.70.70.70.70.70.70.70.70.70.70.70.70$	71-55-6		5.0 U	5.0	0.20	······································
79-00-5 1,1,2-Trichloroethane 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75-35-4 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 75-35-4 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloroethane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.2 67-64-1 Acetone 50 U 5.0 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-30 Carbon Tetrachloride 5.0 U 5.0 0.20 75-09-2 Chloroethane 5.0 U						
75-35-4 1,1-Dichloroethane 5.0 U 5.0 0.20 107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-3 Bromoform 5.0 U 5.0 0.20 75-25-4 Bromomethane 5.0 U 5.0 0.20 75-25-5 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-00-3 Chloroform 0.25 J 5.0 0.20 75-04-3 Chloroform 0.25 J 5.0			5.0 U	5.0	0.20	
107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-83-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromodorm 5.0 U 5.0 0.20 75-25-2 Bromodorm 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-10 Carbon Tsuffide 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.20 108-90-7 Chlorobentane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 </td <td>75-34-3</td> <td>1,1-Dichloroethane (1,1-DCA)</td> <td>5.0 U</td> <td>5.0</td> <td>0.20</td> <td></td>	75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	0.20	
78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-00-3 Chlorobenzene 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane CFC 12) 5.0 0.20 2.6 100-41-4 Ethylbenzene 5.0 U 5.0	75-35-4	1,1-Dichloroethene (1,1-DCE)	5.0 U	5.0	0.20	
78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 5.0 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 76-03 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroothane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20	107-06-2	1,2-Dichloroethane	5.0 U	5.0	0.21	
591-78-62-Hexanone50U501.267-64-1Acetone50U501.471-43-2Benzene0.70U0.700.2075-27-4Bromodichloromethane5.0U5.00.2075-25-2Bromoform5.0U5.00.2074-83-9Bromomethane5.0U5.00.2075-25-2Carbon Disulfide5.0U5.00.2056-23-5Carbon Disulfide5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.2375-00-3Chlorobenzene5.0U5.00.2267-66-3Chloroform0.25J5.00.2074-87-3Chloromethane5.0U5.00.2075-71-8Dichlorodifluoromethane5.0U5.00.2075-71-8Dichloromethane5.0U5.00.2075-71-8Dichloromethane5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.2017-18-4Tetrachloroethene (PCE)5.0U5.00.20100-41-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-610-7richloroe	78-87-5	1,2-Dichloropropane	5.0 U	5.0	0.20	
67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromoferm 5.0 U 5.0 0.20 75-27-4 Bromoferm 5.0 U 5.0 0.20 75-27-4 Bromoferm 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroffrm 0.25 J 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane (CFC 12) 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 <	78-93-3	2-Butanone (MEK)	50 U	50	1.3	
71-43-2Benzene0.70U0.700.2075-27-4Bromodichloromethane5.0U5.00.2075-27-4Bromodichloromethane5.0U5.00.2075-25-2Bromoform5.0U5.00.2074-83-9Bromomethane5.0U5.00.4975-15-0Carbon Disulfide5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.2375-00-3Chlorobenzene5.0U5.00.2267-66-3Chloroform0.25J5.00.2074-87-3Chloromethane5.0U5.00.2075-71-8Dichloromethane5.0U5.00.2075-71-8Dichloromethane5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.20100-41-4Ethylbenzene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20100-42-5Styrene5.0U5.00.20156-80-4Trichloroethene (TCE)0.	591-78-6	2-Hexanone	50 U	50	1.2	
75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.23 75-00-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 0.25 J 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 102-42-5 Styrene 5.0 U 5.0 0.20 </td <td>67-64-1</td> <td>Acetone</td> <td>50 U</td> <td>50</td> <td>1.4</td> <td></td>	67-64-1	Acetone	50 U	50	1.4	
75-25-2Bromoform 5.0 U 5.0 0.20 74-83-9Bromomethane 5.0 U 5.0 0.49 75-15-0Carbon Disulfide 5.0 U 5.0 0.20 56-23-5Carbon Tetrachloride 5.0 U 5.0 0.20 56-0-3Chlorobenzene 5.0 U 5.0 0.22 67-66-3Chloromethane 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 75-71-8Dichloromethane 5.0 U 5.0 0.20 75-92-2Dichloromethane 5.0 U 5.0 0.20 100-41-4Ethylbenzene 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 156-92-2cis-1,2-Dichloroethene (CFC 11) 5.0 0.20 156-92-2cis-1,2-Dichloroptene 5.0 U 5.0 0.20	71-43-2	Benzene	0.70 U	0.70		
74-83-9Bromomethane5.0U5.00.4975-15-0Carbon Disulfide5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.20108-90-7Chlorobenzene5.0U5.00.2375-00-3Chloroothane5.0U5.00.2267-66-3Chloroform0.25J5.00.2074-87-3Chloromethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.2075-71-8Dichlorodifluoromethane (CFC 12)5.0U5.00.2075-09-2Dichloromethane5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.20100-41-5Styrene5.0U5.00.20107-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2075-69-4Trichlorofluoromethane (CFC 11)5.00.200.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,2-Dichloroethene1.3J5.00.201061-01-5cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-27-4	Bromodichloromethane	5.0 U	5.0	0.20	
75-15-0Carbon Disulfide5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.20108-90-7Chlorobenzene5.0U5.00.2375-00-3Chloroethane5.0U5.00.2267-66-3Chloroomethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.2075-71-8Dichlorofiluoromethane (CFC 12)5.0U5.00.2075-09-2Dichloromethane (CFC 12)5.0U5.00.20100-41-4Ethylbenzene5.0U5.00.201034-04-4Methyl tert-Butyl Ether5.0U5.00.20104-12-5Styrene5.0U5.00.20127-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2075-69-4Trichlorofuloromethane (CFC 11)5.0U5.00.2075-69-4Trichlorofuloromethane (CFC 11)5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-25-2	Bromoform	5.0 U	5.0	0.20	
56-23-5Carbon Tetrachloride 5.0 U 5.0 0.20 $108-90-7$ Chlorobenzene 5.0 U 5.0 0.23 $75-00-3$ Chloroftane 5.0 U 5.0 0.22 $67-66-3$ Chloroftane 5.0 U 5.0 0.20 $74-87-3$ Chloromethane 5.0 U 5.0 0.20 $124-48-1$ Dibromochloromethane 5.0 U 5.0 0.20 $124-48-1$ Dichlorodifluoromethane 5.0 U 5.0 0.20 $75-71-8$ Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 $75-09-2$ Dichloromethane 5.0 U 5.0 0.20 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $1034-04-4$ Methyl tetr-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $10-88-3$ Toluene 5.0 U 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 1.3 J 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	74-83-9	Bromomethane	5.0 U	5.0	0.49	
108-90-7Chlorobenzene5.0U5.00.2375-00-3Chloroethane5.0U5.00.2267-66-3Chloroform0.25J5.00.2074-87-3Chloromethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.2075-71-8Dichlorodifluoromethane (CFC 12)5.0U5.00.2075-09-2Dichloromethane5.0U5.00.20100-41-4Ethylbenzene5.0U5.00.20100-42-5Styrene5.0U5.00.20127-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,3-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-15-0	Carbon Disulfide	5.0 U	5.0	0.20	
75-00-3Chloroethane 5.0 U 5.0 0.22 67-66-3Chloroform 0.25 J 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 124-48-1Dibromochloromethane 5.0 U 5.0 0.20 75-71-8Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2Dichloromethane 5.0 U 5.0 0.20 100-41-4Ethylbenzene 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 75-69-4Trichlorofluoromethane (CFC 11) 5.0 0.20 75-01-4Vinyl Chloride 2.0 U 2.0 0.20 156-59-2cis-1,2-Dichloroethene 1.3 J 5.0 0.20 1061-01-5cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 U 5.0 0.22	56-23-5	Carbon Tetrachloride	5.0 U	5.0	0.20	
67-66-3Chloroform 0.25 J 5.0 0.20 $74-87-3$ Chloromethane 5.0 U 5.0 0.20 $124-48-1$ Dibromochloromethane 5.0 U 5.0 0.20 $75-71-8$ Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 $75-71-8$ Dichloromethane 5.0 U 5.0 0.20 $75-09-2$ Dichloromethane 5.0 U 5.0 0.20 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $1634-04-4$ Methyl tert-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $75-69-4$ Trichloroethene (TCE) 0.60 J 5.0 0.20 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 0.20 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 1.3 J 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	108-90-7	Chlorobenzene				
74-87-3Chloromethane 5.0 U 5.0 0.20 124-48-1Dibromochloromethane 5.0 U 5.0 0.20 75-71-8Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2Dichloromethane 5.0 U 5.0 0.26 100-41-4Ethylbenzene 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 75-69-4Trichloroethene (TCE) 0.60 J 5.0 0.20 75-69-4Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-69-4Vinyl Chloride 2.0 U 2.0 0.20 156-59-2cis-1,2-Dichloroethene 1.3 J 5.0 0.20 1061-01-5cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-00-3	Chloroethane	5.0 U	5.0	0.22	
124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene <td>67-66-3</td> <td>Chloroform</td> <td>0.25 J</td> <td>5.0</td> <td>0.20</td> <td></td>	67-66-3	Chloroform	0.25 J	5.0	0.20	
75-71-8Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2Dichloromethane 5.0 U 5.0 0.26 100-41-4Ethylbenzene 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 79-01-6Trichloroethene (TCE) 0.60 J 5.0 0.20 75-69-4Trichlorofluoromethane (CFC 11) 5.0 0.20 75-01-4Vinyl Chloride 2.0 U 2.0 0.20 156-59-2cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 U 5.0 0.22	74-87-3	Chloromethane	5.0 U	5.0	0.20	
75-09-2Dichloromethane 5.0 U 5.0 0.26 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $1634-04-4$ Methyl tert-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $79-01-6$ Trichloroethene (TCE) 0.60 J 5.0 0.20 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 1.3 J 5.0 0.20 $10061-01-5$ cis-1,3-Dichloropropene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.20	124-48-1	Dibromochloromethane	5.0 U	5.0	0.20	
100-41-4Ethylbenzene 5.0 U 5.0 0.20 $1634-04-4$ Methyl tert-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $79-01-6$ Trichloroethene (TCE) 0.60 J 5.0 0.27 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 1.3 J 5.0 0.20 $1061-01-5$ cis-1,3-Dichloroptopene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-71-8	Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	0.20	
1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 0.60 J 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-09-2	Dichloromethane	5.0 U	5.0	0.26	
100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 0.60 J 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	100-41-4	Ethylbenzene	5.0 U	5.0	0.20	
127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 0.60 J 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	1634-04-4	Methyl tert-Butyl Ether	5.0 U			
108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 0.60 J 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	100-42-5	Styrene				
79-01-6 Trichloroethene (TCE) 0.60 J 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	127-18-4	Tetrachloroethene (PCE)	5.0 U	5.0	0.20	
75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	108-88-3	Toluene	5.0 U	5.0	0.20	
75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 1.3 J 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	79-01-6		0.60 J	5.0		
156-59-2cis-1,2-Dichloroethene1.3J5.00.2010061-01-5cis-1,3-Dichloropropene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.22	75-69-4	Trichlorofluoromethane (CFC 11)	5.0 U	5.0	0.20	
10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-01-4	Vinyl Chloride	2.0 U	2.0	0.20	
156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22	156-59-2	•	1.3 J	5.0	0.20	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0	0.20	
	156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0	0.22	
		trans-1,3-Dichloropropene				

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1157 12/ 5/13
Sample Name:	P-6	Units:	
Lab Code:	R1309135-004	Basis:	

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	1:\ACQUDATA\MSVOA6\DATA\121013\L2140.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL N	Note
95-47-6	o-Xylene	5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
1,2-Dichloroethane-d4	98	76-114	12/10/13 15:57	
4-Bromofluorobenzene	96	86-115	12/10/13 15:57	
Toluene-d8	100	88-110	12/10/13 15:57	

.

		Analy	tical Report		
Client:	ARCADIS of New York, Inc			Service Request:	R1309135
Project:	NGC - OU2 Quarterly System	n/NY001496.0	612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water			Date Received:	12/5/13
•				Date Analyzed:	12/10/13 1557
		•	fied Compounds (TIC) Compounds by GC/MS		
Sample Name:	P-6			Units:	μg/L
Lab Code:	R1309135-004			Basis:	NA
Analytical Method:	CLP-VOA OLM04.3				
CAS# Analy	te Name	RT	Result Q		

No Tentatively Identified Compounds Detected.

Comments:

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1345 12/ 5/13
		Date Analyzed.	12/10/19 10:27

Units: µg/L Basis: NA

Sample Name:P-3Lab Code:R1309135-005

.

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2141.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
71-55-6	1,1,1-Trichloroethane (TCA)	5.0 U	5.0	0.20	
79-34-5	1,1,2,2-Tetrachloroethane	5.0 U	5.0	0.20	
79-00-5	1,1,2-Trichloroethane	5.0 U	5.0	0.20	
75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	0.20	
75-35-4	1,1-Dichloroethene (1,1-DCE)	5.0 U J	5.0	0.20	
107-06-2	1,2-Dichloroethane	5.0 U	5.0	0.21	
78-87-5	1,2-Dichloropropane	5.0 U	5.0	0.20	
78-93-3	2-Butanone (MEK)	50 U	50	1.3	
591-78 - 6	2-Hexanone	50 U	50	1.2	
67-64-1	Acetone	50 U	50	1.4	
71-43-2	Benzene	0.70 U J	0.70	0.20	
75-27-4	Bromodichloromethane	5.0 U	5.0	0.20	
75-25-2	Bromoform	5.0 U	5.0	0.20	
74-83-9	Bromomethane	5.0 U	5.0	0.49	
75-15-0	Carbon Disulfide	5.0 U	5.0	0.20	
56-23-5	Carbon Tetrachloride	5.0 U	5.0	0.20	
108-90-7	Chlorobenzene	5.0 U J	5.0	0.23	
75-00-3	Chloroethane	5.0 U	5.0	0.22	
67-66-3	Chloroform	5.0 U	5.0	0.20	
74-87-3	Chloromethane	5.0 U	5.0	0.20	
124-48-1	Dibromochloromethane	5.0 U	5.0	0.20	
75-71-8	Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	0.20	
75-09-2	Dichloromethane	5.0 U	5.0	0.26	
100-41-4	Ethylbenzene	5.0 U	5.0	0.20	
1634-04-4	Methyl tert-Butyl Ether	5.0 U	5.0	0.20	
100-42-5	Styrene	5.0 U	5.0	0.20	
127-18-4	Tetrachloroethene (PCE)	5.0 U	5.0	0.20	
108-88-3	Toluene	5.0 U J	5.0	0.20	
79-01-6	Trichloroethene (TCE)	5.0 U	J 5.0	0.27	
75-69-4	Trichlorofluoromethane (CFC 11)	5.0 U	5.0	0.20	
75-01-4	Vinyl Chloride	2.0 U	2.0	0.20	in the second
156-59-2	cis-1,2-Dichloroethene	5.0 U	5.0	0.20	
10061-01-5	cis-1,3-Dichloropropene	5.0 U	5.0	0.20	
156-60-5	trans-1,2-Dichloroethene	5.0 U	5.0	0.22	
10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0	0.20	

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1345 12/ 5/13
Sample Name:	P-3	Units:	
Lab Code:	R1309135-005	Basis:	

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	1:\ACQUDATA\MSVOA6\DATA\121013\L2141.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

CAS No.	Analyte Name	Result Q	MRL	MDL Note	
95-47-6	o-Xylene	5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	
1,2-Dichloroethane-d4	100	76-114	12/10/13 16:24	
4-Bromofluorobenzene	97	86-115	12/10/13 16:24	
Toluene-d8	97	88-110	12/10/13 16:24	

1

		An	alytical Report		
Client:	ARCADIS of New York		•	Service Request:	R1309135
Project:	NGC - OU2 Quarterly Sy	stem/NY001496	5.0612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water			Date Received:	12/5/13
				Date Analyzed:	12/10/13 1624
		Tentatively Ide	ntified Compounds (TIC)		
		Volatile Organi	c Compounds by GC/MS		
Sample Name:	P-3			Units:	μg/L
Lab Code:	R1309135-005			Basis:	NA
Analytical Method:	CLP-VOA OLM04.3				
CAS# Anal	yte Name	RT	Result Q		

.

No Tentatively Identified Compounds Detected.

Comments:

.

Analytical Report

Client:	ARCADIS of New York, Inc.
Project:	NGC - OU2 Quarterly System/NY001496.0612.WSFJ3
Sample Matrix:	Water

 Service Request:
 R1309135

 Date Collected:
 12/4/131530

 Date Received:
 12/5/13

 Date Analyzed:
 12/10/1316:51

Units: µg/L

Basis: NA

Sample Name:P-4Lab Code:R1309135-006

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\MSVOA6\DATA\121013\L2142.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

71-55-6 1,1,1-Trichloroethane (TCA) 5.0 U 5.0 0.20 73-34-5 1,1,2,2-Tetrachloroethane 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75-34-3 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 75-35-4 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloroethane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.2 67-64-1 Acetone 50 U 5.0 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromodorm 5.0 U 5.0 0.20 75-25-2 Bromonorethane 5.0 U 5.0 0.20 75-25-2 Bromonorethane 5.0 U 5.0 0.20 75-25-2 Bromonorethane 5.0 U 5.0 0.20 75-30-3 Chiorobenzene	CAS No.	Analyte Name	Result Q	MRL	MDL	Note
79.00-5 1,1,2-Trichloroethane 5.0 U 5.0 0.20 75:34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75:35-4 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.21 78:87-5 1,2-Dichloroethane 5.0 U 5.0 0.21 78:93-3 2-Butanone (MEK) 50 U 50 1.2 67:64-1 Acetone 50 U 50 1.2 67:64-1 Acetone 50 U 5.0 0.20 75:25-2 Bromodichloromethane 5.0 U 5.0 0.20 75:25-2 Bromoform 5.0 U 5.0 0.20 75:25-2 Bromomorthane 5.0 U 5.0 0.20 75:25-2 Bromorthane 5.0 U 5.0 0.20 75:25-2 Carbon Disulfide 5.0 U 5.0 0.20 75:05-0 Carbon Disulfide 5.0 U 5.0 0.20 76:03 Chlorobenzene 5.0 U <	71-55-6	1,1,1-Trichloroethane (TCA)	5.0 U	5.0	0.20	
75-34-3 1,1-Dichloroethane (1,1-DCA) 5.0 U 5.0 0.20 75-35-4 1,1-Dichloroethane (1,1-DCE) 5.0 U 5.0 0.20 107-06-2 1,2-Dichloropropane 5.0 U 5.0 0.20 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzne 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 75-0-3 Chlorobernzene 5.0 U 5.0 0.20 75-0-5 Carbon Tetrachloride 5.0	79-34-5	1,1,2,2-Tetrachloroethane	5.0 U			
75.35.4 1,1-Dichloroethane 5.0 U 5.0 0.20 107.06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-97-5 1,2-Dichloropropane 5.0 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromoderm 5.0 U 5.0 0.20 75-27-4 Bromoderm 5.0 U 5.0 0.20 75-27-4 Bromoderm 5.0 U 5.0 0.20 75-25-2 Bromoderm 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 75-0-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 <td>79-00-5</td> <td>1,1,2-Trichloroethane</td> <td>5.0 U</td> <td>5.0</td> <td>0.20</td> <td></td>	79-00-5	1,1,2-Trichloroethane	5.0 U	5.0	0.20	
107-06-2 1,2-Dichloroethane 5.0 U 5.0 0.21 78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorooform 5.0 U 5.0 0.20 108-90-7 Chloroomethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U <td< td=""><td>75-34-3</td><td>1,1-Dichloroethane (1,1-DCA)</td><td>5.0 U</td><td>5.0</td><td>0.20</td><td></td></td<>	75-34-3	1,1-Dichloroethane (1,1-DCA)	5.0 U	5.0	0.20	
78-87-5 1,2-Dichloropropane 5.0 U 5.0 0.20 78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.4 67-64-1 Acctone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-03 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20	75-35-4	1,1-Dichloroethene (1,1-DCE)				
78-93-3 2-Butanone (MEK) 50 U 50 1.3 591-78-6 2-Hexanone 50 U 50 1.2 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 75-66-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20	107-06-2	1,2-Dichloroethane	5.0 U	5.0	0.21	
591-78-6 2-Hexanone 50 U 50 1.2 67-64-1 Acetone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.20 75-25-3 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Dertrachloride 5.0 U 5.0 0.22 67-66-3 Chlorobenzene 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane 5.0 U 5.0 0.20 75-70-2 Dichloromethane 5.0 U 5.0	78-87-5	1,2-Dichloropropane	5.0 U	5.0	0.20	
67-64-1 Acctone 50 U 50 1.4 71-43-2 Benzene 0.70 U 0.70 0.20 75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-27-4 Bromoform 5.0 U 5.0 0.20 75-25-2 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 56-63 Chlorobenzene 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-09-2 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 104-4 Ethyl tert-Butyl Ether 5.0 U 5.0 0.20 104-4 Methyl tert-Butyl Ether 5.0 U	78-93-3	2-Butanone (MEK)	50 U			
71-43-2Benzene 0.70 U 0.70 0.20 75-27-4Bromodichloromethane 5.0 U 5.0 0.20 75-25-2Bromoform 5.0 U 5.0 0.20 74-83-9Bromomethane 5.0 U 5.0 0.49 75-15-0Carbon Disulfide 5.0 U 5.0 0.20 56-23-5Carbon Disulfide 5.0 U 5.0 0.20 108-90-7Chlorobenzene 5.0 U 5.0 0.22 67-66-3Chloroform 5.0 U 5.0 0.22 74-87-3Chloromethane 5.0 U 5.0 0.20 75-71-8Dichloromethane 5.0 U 5.0 0.20 75-71-8Dichloromethane 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-41-4Ethylbenzene 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 127-18-4Tetrachlorotehene (PCE) 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 75-01-6Trichloroduharomethane (CFC 11) 5.0 0.20 75-01-4Vinyl Chloride 2.0 0.20 156-59-2cis-1,2-Dichloroethene 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 5.0 0.20	591-78-6	2-Hexanone	50 U	50	1.2	
75-27-4 Bromodichloromethane 5.0 U 5.0 0.20 75-25-2 Bromoform 5.0 U 5.0 0.20 74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.23 75-00-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.22 75-0-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE)	67-64-1	Acetone	50 U	50	1.4	
75-25-2 Bromoform 5.0 U 5.0 0.20 74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.23 57-00-3 Chlorobenzene 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.22 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0	71-43-2	Benzene	0.70 U	0.70		
74-83-9 Bromomethane 5.0 U 5.0 0.49 75-15-0 Carbon Disulfide 5.0 U 5.0 0.20 56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.23 75-00-3 Chloroothane 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-71-8 Dichloromethane 5.0 U 5.0 0.20 104-1-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 107-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 107-18-4 Methyl tert-Butyl Ether	75-27-4	Bromodichloromethane	5.0 U	5.0	0.20	
75.15.0Carbon Disulfide5.0U5.00.2056-23-5Carbon Tetrachloride5.0U5.00.20108-90-7Chlorobenzene5.0U5.00.2375-00-3Chloroethane5.0U5.00.2267-66-3Chloroform5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.2075-71-8Dichlorodifluoromethane (CFC 12)5.0U5.00.2075-09-2Dichloromethane5.0U5.00.20100-41-4Ethylbenzene5.0U5.00.201034-04-4Methyl tert-Butyl Ether5.0U5.00.20104-12-5Styrene5.0U5.00.20107-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2075-69-4Trichlorofuroomethane (CFC 11)5.0U5.00.2075-69-4Trichlorofuroomethane (CFC 11)5.0U5.00.20156-59-2cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-25-2	Bromoform	5.0 U	5.0	0.20	
56-23-5 Carbon Tetrachloride 5.0 U 5.0 0.20 108-90-7 Chlorobenzene 5.0 U 5.0 0.23 75-00-3 Chlorotenane 5.0 U 5.0 0.22 67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 1034-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 104-44 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 107-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-01-4 Trichloroethene (TCE) <	74-83-9	Bromomethane	5.0 U	5.0	0.49	
108-90-7Chlorobenzene5.0U5.00.2375-00-3Chloroethane5.0U5.00.2267-66-3Chloroform5.0U5.00.2074-87-3Chloromethane5.0U5.00.20124-48-1Dibromochloromethane5.0U5.00.2075-71-8Dichlorodifluoromethane (CFC 12)5.0U5.00.2075-09-2Dichloromethane5.0U5.00.26100-41-4Ethylbenzene5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.20100-42-5Styrene5.0U5.00.20104-25Styrene5.0U5.00.20108-88-3Toluene5.0U5.00.2075-01-4Vinyl Chlorothene (TCE)5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.20156-59-2cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-15-0	Carbon Disulfide	5.0 U	5.0	0.20	
75-00-3Chloroethane 5.0 U 5.0 0.22 67-66-3Chloroform 5.0 U 5.0 0.20 74-87-3Chloromethane 5.0 U 5.0 0.20 124-48-1Dibromochloromethane 5.0 U 5.0 0.20 75-71-8Dichlorodifluoromethane 5.0 U 5.0 0.20 75-72Dichloromethane 5.0 U 5.0 0.20 100-41-4Ethylbenzene 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 75-69-4Trichlorofluoromethane (CFC 11) 5.0 0.20 75-01-4Vinyl Chloride 2.0 U 2.0 0.20 156-59-2cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5cis-1,3-Dichloropropene 5.0 U 5.0 0.22 156-60-5trans-1,2-Dichloroethene 5.0 U 5.0 0.22	56-23-5	Carbon Tetrachloride	5.0 U	5.0	0.20	
67-66-3 Chloroform 5.0 U 5.0 0.20 74-87-3 Chloromethane 5.0 U 5.0 0.20 124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.20 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 0.20 0.20 75-01-4 Vinyl Chloride 2.0 <t< td=""><td>108-90-7</td><td>Chlorobenzene</td><td>5.0 U</td><td>5.0</td><td>0.23</td><td></td></t<>	108-90-7	Chlorobenzene	5.0 U	5.0	0.23	
74-87-3Chloromethane 5.0 U 5.0 0.20 124-48-1Dibromochloromethane 5.0 U 5.0 0.20 75-71-8Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2Dichloromethane 5.0 U 5.0 0.26 100-41-4Ethylbenzene 5.0 U 5.0 0.20 1634-04-4Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 100-42-5Styrene 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 108-88-3Toluene 5.0 U 5.0 0.20 75-69-4Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4Vinyl Chloride 2.0 U 2.0 0.20 156-59-2cis-1,2-Dichloroethene 5.0 U 5.0 0.20 1061-01-5cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 U 5.0 0.22	75-00-3	Chloroethane	5.0 U	5.0	0.22	
124-48-1 Dibromochloromethane 5.0 U 5.0 0.20 75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.26 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroethene (TCE) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	67-66-3	Chloroform	5.0 U	5.0	0.20	
75-71-8 Dichlorodifluoromethane (CFC 12) 5.0 U 5.0 0.20 75-09-2 Dichloromethane 5.0 U 5.0 0.26 100-41-4 Ethylbenzene 5.0 U 5.0 0.20 1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 75-69-4 Trichloroethene (TCE) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene	74-87-3	Chloromethane	5.0 U	5.0	0.20	
75-09-2Dichloromethane 5.0 U 5.0 0.26 $100-41-4$ Ethylbenzene 5.0 U 5.0 0.20 $1634-04-4$ Methyl tert-Butyl Ether 5.0 U 5.0 0.20 $100-42-5$ Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $79-01-6$ Trichloroethene (TCE) 5.0 U 5.0 0.20 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 5.0 U 5.0 0.20 $10061-01-5$ cis-1,3-Dichloropropene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	124-48-1	Dibromochloromethane	5.0 U	5.0	0.20	
75-09-2Dichloromethane5.0U5.00.26100-41-4Ethylbenzene5.0U5.00.201634-04-4Methyl tert-Butyl Ether5.0U5.00.20100-42-5Styrene5.0U5.00.20127-18-4Tetrachloroethene (PCE)5.0U5.00.20108-88-3Toluene5.0U5.00.2079-01-6Trichloroethene (TCE)5.0U5.00.2775-69-4Trichlorofluoromethane (CFC 11)5.0U5.00.2075-01-4Vinyl Chloride2.0U2.00.201061-01-5cis-1,2-Dichloroethene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.20	75-71-8	Dichlorodifluoromethane (CFC 12)	5.0 U	5.0	0.20	
1634-04-4 Methyl tert-Butyl Ether 5.0 U 5.0 0.20 100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.20 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20		Dichloromethane	5.0 U	5.0	0.26	
100-42-5 Styrene 5.0 U 5.0 0.20 127-18-4 Tetrachloroethene (PCE) 5.0 U 5.0 0.20 108-88-3 Toluene 5.0 U 5.0 0.20 79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	100-41-4	Ethylbenzene	5.0 U	· 5.0	0.20	
100-42-5Styrene 5.0 U 5.0 0.20 $127-18-4$ Tetrachloroethene (PCE) 5.0 U 5.0 0.20 $108-88-3$ Toluene 5.0 U 5.0 0.20 $79-01-6$ Trichloroethene (TCE) 5.0 U 5.0 0.27 $75-69-4$ Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 $75-01-4$ Vinyl Chloride 2.0 U 2.0 0.20 $156-59-2$ cis-1,2-Dichloroethene 5.0 U 5.0 0.20 $10061-01-5$ cis-1,3-Dichloropropene 5.0 U 5.0 0.20 $156-60-5$ trans-1,2-Dichloroethene 5.0 U 5.0 0.22	1634-04-4	Methyl tert-Butyl Ether	5.0 U	5.0	0.20	
127-18-4Tetrachloroethene (PCE) 5.0 0.20 108-88-3Toluene 5.0 0.20 79-01-6Trichloroethene (TCE) 5.0 0.27 75-69-4Trichlorofluoromethane (CFC 11) 5.0 0.20 75-01-4Vinyl Chloride 2.0 2.0 0.20 156-59-2cis-1,2-Dichloroethene 5.0 0.20 10061-01-5cis-1,3-Dichloropropene 5.0 0.20 156-60-5trans-1,2-Dichloroethene 5.0 0.20			5.0 U	5.0	0.20	
79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20		•	5.0 U	5.0	0.20	
79-01-6 Trichloroethene (TCE) 5.0 U 5.0 0.27 75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20	108-88-3	Toluene	5.0 U	5.0	0.20	
75-69-4 Trichlorofluoromethane (CFC 11) 5.0 U 5.0 0.20 75-01-4 Vinyl Chloride 2.0 U 2.0 0.20 156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.20			5.0 U	5.0	0.27	
156-59-2 cis-1,2-Dichloroethene 5.0 U 5.0 0.20 10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22			5.0 U	5.0	0.20	
156-59-2cis-1,2-Dichloroethene5.0U5.00.2010061-01-5cis-1,3-Dichloropropene5.0U5.00.20156-60-5trans-1,2-Dichloroethene5.0U5.00.22	75-01-4	Vinyl Chloride	2.0 U	2.0	0.20	
10061-01-5 cis-1,3-Dichloropropene 5.0 U 5.0 0.20 156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22		•			0.20	
156-60-5 trans-1,2-Dichloroethene 5.0 U 5.0 0.22		•				
			5.0 U	5.0	0.22	
	10061-02-6	trans-1,3-Dichloropropene	5.0 U	5.0	0.20	

Analytical Report

Client: Project: Sample Matrix:	ARCADIS of New York, Inc. NGC - OU2 Quarterly System/NY001496.0612.WSFJ3 Water	Service Request: Date Collected: Date Received: Date Analyzed:	12/ 4/13 1530 12/ 5/13
Sample Name:	P-4	Units:	
Lab Code:	R1309135-006	Basis:	

Volatile Organic Compounds by GC/MS

Analytical Method:	CLP-VOA OLM04.3
Data File Name:	I:\ACQUDATA\M\$VOA6\DATA\121013\L2142.D\

Analysis Lot: 372055 Instrument Name: R-MS-06 Dilution Factor: 1

•

CAS No.	Analyte Name	Result Q	MRL	MDL	Note
95-47-6	o-Xylene	5.0 U	5.0	0.20	
179601-23-1	m,p-Xylenes	5.0 U	5.0	0.22	
75-45-6	Chlorodifluoromethane (CFC 22)	5.0 U	5.0	0.20	
76-13-1	1,1,2-Trichlorotrifluoroethane (CFC 113)	5.0 U	5.0	0.29	
108-10-1	4-Methyl-2-pentanone (MIBK)	50 U	50	0.78	

		Control	Date
Surrogate Name	%Rec	Limits	Analyzed Q
1,2-Dichloroethane-d4	100	76-114	12/10/13 16:51
4-Bromofluorobenzene	97	86-115	12/10/13 16:51
Toluene-d8	100	88-110	12/10/13 16:51

		Anal	ytical Report		
Client:	ARCADIS of New York	c, Inc.		Service Request:	R1309135
Project:	NGC - OU2 Quarterly S	ystem/NY001496.	0612.WSFJ3	Date Collected:	12/4/13
Sample Matrix:	Water	-		Date Received:	12/5/13
•				Date Analyzed:	12/10/13 1651
		•	ified Compounds (TIC)		
		Volatile Organic	Compounds by GC/MS		
Sample Name:	P-4			Units:	μg/L
Lab Code:	R1309135-006			Basis:	NA
Analytical Method:	CLP-VOA OLM04.3				
CAS # Analy	yte Name	RT	Result Q		
	No Tentatively Ide	entified Compounds	Detected.		

Comments:

\\alprews001\starlims\$\LIMSReps\AnalyticalTICReport.rpt

SuperSet Reference: