2015 OU2 GROUNDWATER INVESTIGATION BPOW5-4, RE117D1, RE117D2 (VPB151) BPOW5-5, BPOW5-6, RE118D1 (VPB152) BPOW5-7, RE119D1 (VPB153) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP)

SITE 1 OU2

BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

January 2016

2015 OU2 GROUNDWATER INVESTIGATION BPOW5-4, RE117D1, RE117D2 (VPB151) BPOW5-5, BPOW5-6, RE118D1 (VPB152) BPOW5-7, RE119D1 (VPB153) INSTALLATION REPORT

> NWIRP SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants A Joint Venture of AECOM & EnSafe 1500 Wells Fargo Building 440 Monticello Avenue Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013

CTO WE15

January 2016

Brian Caldwell

Contract Task Order Manager

Brim Caldwell

Table of Contents

LIST O	F ACRO	NYMS AND ABBREVIATIONS	ii
1.0	PROJE	CT BACKGROUND	. 1
2.0	1.1 1.2 1.3 FIELD	Scope and Objectives	. 1
	2.1 2.2 2.3 2.4 2.5	Drilling and Well Construction Well Development Sampling Decontamination and Investigation Derived Waste (IDW) Surveying	.5
3.0	REFERI	ENCES	
		Tables	
Table 1	L	Monitoring Well Construction Summary	
Table 2	2	Monitoring Well Development Summary	
Table 3	3	Analytical Data Summary	
Table 4	ŀ	Stabilized Field Parameters	
		Figures	
Figure	1	General Location Map	
Figure	2	BPOW5-4, 5-5, 5-6, 5-7, RE117D1, RE117D2, RE118D1, and RE119D1 Location Maj	p

Appendices

Appendix A – *BPOW5-4, BPOW5-5, BPOW5-6, BPOW5-7, RE117D1, RE117D2, RE118D1, RE119D1*

Section 1 Boring Logs

Section 2 Monitoring Well Construction Logs

Section 3 Groundwater Sample Log Sheets

Section 4 Analytical Data Validation

Section 5 Survey

January 2016

List of Acronyms and Abbreviations

AOC Area of Concern bgs below ground surface

COR Continuously Operating Reference

EPA Environmental Protection Agency, United States

ft feet

GOCO Government-Owned Contractor-Operated

GPS Global Positioning System **IDW Investigation Derived Waste** ΙR **Installation Restoration** Katahdin **Katahdin Analytical Services** MCL Maximum Contaminant Level

NAD North American Datum

NAVD North American Vertical Datum

NAVFAC Naval Facilities Engineering Command

NG Northrop Grumman

NTU nephlometric turbidity units

NWIRP Naval Weapons Industrial Reserve Plant

New York State Department of Environmental Conservation NYSDEC

OU Operable Unit

PCBs Polychlorinated Biphenyls

POTW Publicly Owned Treatment Works

ppb parts per billion

PPE Personal Protective Equipment

PVC Polyvinylchloride

SAP Sampling and Analysis Plan **SFWD** South Farmingdale Water District **SVOC** Semivolatile Organic Compounds

TCE Trichloroethene

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC **Total Organic Carbon** UFP **United Federal Programs**

US **United States**

VOC Volatile Organic Compounds

VPB Vertical Profile Boring

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of eight monitoring wells (specifically at the Vertical Profile Boring [VPB] 151, 152 and 153 locations), three sampling events and one quarterly groundwater monitoring event in 2015 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of BPOW5-4, BPOW5-5, BPOW5-6, BPOW5-7, RE117D1, RE117D2, RE118D1 and RE119D1. The purpose of the monitoring wells is to ascertain subsurface conditions and contaminant levels upgradient of South Farmingdale Water District (SFWD) wells N-8664 and N-8665. The purpose of outpost wells BPOW5-4, BPOW5-5, BPOW5-6, and BPOW5-7 is to provide early warning of plume migration toward the SFWD wellfield. The locations of BPOW5-4, BPOW5-5, BPOW5-6, BPOW5-7, RE117D1, RE117D2, RE118D1, RE119D1, VPBs and monitoring well locations are shown in Figure 2.

The field investigation included completing eight monitoring wells, well development, soil/groundwater analysis, groundwater grab sampling, and surveying. Field tasks were conducted in 2015 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution Consultants, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse

complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1990); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1000 ft below ground surface (bgs) observed onsite. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay,

clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

2.0 FIELD PROGRAM

Eight monitoring wells were installed in the vicinity of VPB 151, VPB 152 and VPB 153 between February and June 2015. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells BPOW5-4, BPOW5-5, BPOW5-6, BPOW5-7, RE117D1, RE117D2, RE118D1 and RE119D1 were installed using mud rotary drilling techniques. Well locations are shown on Figure 2 and construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in the Appendix A. Data Summary Reports for VPB151 (Resolution Consultants, 2015a), VPB152 (Resolution Consultants, 2014) and adjacent VPB153 (Resolution Consultants, 2015b) document the installation of these VPBs including detailed lithologic descriptions, continuous gamma plots and multiple Volatile Organic Compound (VOC) samples over the entire boring length.

Prior to installing each monitoring well, the results of the groundwater samples, the geophysical logs, lithology and field data from the vertical profile borings were analyzed. Screen intervals of outpost wells were determined based on this analysis and also to coincide with the screened intervals for SFWD wells N-8664 and N-8665. Screen intervals of monitoring wells were selected to target intervals with the highest VOC concentrations as measured in the hydropunch grab samples, and coincident intervals with the highest apparent permeability based on the gamma logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephlometric turbidity units (NTUs), if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260B and 1,4-dioxane via Method 8270C by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs, data validation packages are included in Appendix A.

Monitoring wells BPOW5-4, RE117D1 and RE117D2 were sampled on May 20, 2015. Due to a detection of TCE above the maximum contaminant level (MCL) of 5 ug/L in monitoring well RE117D1, the well was re-sampled on June 9, 2015 and June 25, 2015. Results confirmed that TCE concentrations were just above the MCL. TCE concentration ranged from 7.6 to 8.4 ug/L. Monitoring wells BPOW5-5, BPOW5-6, RE117D1 and RE118D1 were included in the June quarterly sampling event as part of the Navy's ongoing Environmental Restoration Program. Monitoring wells BPOW5-7 and RE119D1 were sampled on August 12, 2015.

All monitoring results are included in Table 3. Stabilized field parameters are summarized in Table 4.

2.4 Decontamination and Investigation Derived Waste (IDW)

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable Teflon or polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Liquinox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the *UFP SAP Addendum - Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned

Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The location was tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) N.Y. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0 REFERENCES

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September 1994.

Naval Facilities Engineering Command (NAVFAC), 2003. *Record of Decision Naval Weapons Industrial Reserve Plant Bethpage, New York, Operable Unit 2 – Groundwater*, NYS Registry: 1-30-003B. April.

Resolution Consultants, 2013a. *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, *Site OU-2 Offsite Trichloroethylene (TCE) Groundwater Plume Investigation,* Bethpage, New York. April.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling* Protocol. November.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December.

Resolution Consultants, 2014. 2014 OU2 Groundwater Investigation VPB 152, Bethpage, NY. December.

Resolution Consultants, 2015a. 2014 OU2 Groundwater Investigation VPB 151, Bethpage, NY. February.

Resolution Consultants, 2015b. 2014 OU2 Groundwater Investigation VPB 153, Bethpage, NY. April.

Smolensky, D., and Feldman, S., 1990. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

Tables

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (msl)	PVC (INNER CASING) (msl)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
BPOW5-4	4/10/2015	54.49	53.88	575	54	545 - 570	570 - 575	587
BPOW5-5	4/6/2015	57.97	57.58	545	54	515 - 540	540 - 545	560.5
BPOW5-6	5/7/2015	58.21	57.72	615	53	585 - 610	610 - 615	628
BPOW5-7	6/22/2015	56.20	55.92	555	53	525 - 550	550 - 555	570
RE117D1	3/27/2015	54.24	53.81	760	54	730 - 755	755 - 760	772
RE117D2	3/12/2015	54.11	53.59	810	57	780 - 805	805 - 810	822
RE118D1	4/21/2015	57.99	57.61	795	52	765 - 790	790 - 795	808
RE119D1	6/5/2015	56.13	55.61	745	53.6	715 - 740	740 - 745	755

MSL - mean sea level

ft bgs - feet below ground surface

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PU	MP DEVELOPME	NT	APPROX. TOTAL	FINAL
MONITORING WELL	DATE	APPROX. VOLUME (GAL)	DATE	FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)	DEVELOPMENT VOLUME (GAL)	TURBIDITY (NTUs)
BPOW5-4	4/16/15	5,000	4/21/15 & 4/22/15	545-570	6,000	11,000	4.41
BPOW5-5	5/14/2015	6,000	5/19/2015	515-540	6,000	12,000	0.37
BPOW5-6	5/18/15	6,000	5/22/2015, 5/27/2015	585-610	6,000	12,000	0.19
BPOW5-7	6/26/2015	7,000	6/29/2015	525-550	7,000	14,000	58.28
RE117D1	4/16/15- 4/17/15	5,000	4/23/15- 4/24/15	730 - 755	6,000	11,000	46.91
RE117D2	4/20/2015	7,000	4/29/15 - 4/30/15	780-805	9,000	16,000	27.31
RE118D1	5/15/15	6,500	5/20/15 - 5/21/15	765-790	8,000	14,500	41.75
RE119D1	6/25/2015	6,000	6/30/15- 7/1/15	715-740	8,500	14,500	27.13

GAL - gallon

FT BGS - feet below ground surface

NTUs - Nephelometric Turbidity Units

Location	NYSDEC	BPOW5-4	RE117D1	RE117D1	RE117D2
Sample Date	Groundwater	5/20/2015	5/20/2015	5/20/2015	5/20/2015
Sample ID	Guidance or Standard Value	BPOW5-4-GW- 052015	RE117DI-GW- 052015	DUP-GW-052015	RE117D2-GW- 052015
Sample type code	(Note 1)	N	N	FD	N
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2,2-TETRACHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2-TRICHLOROETHANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2,4-TRICHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DIBROMO-3-CHLOROPROPANE	0.04	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 U
1,2-DIBROMOETHANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROETHENE, TOTAL	5	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U
1,2-DICHLOROPROPANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,3-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-DIOXANE (Method 8270D SIM)	NL	0.68	< 0.18 U	< 0.17 U	< 0.17 U
2-BUTANONE	50	1.4 J	< 2.5 U	< 2.5 U	1.4 J
2-HEXANONE	50	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
4-METHYL-2-PENTANONE	NL	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
ACETONE	50	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
BENZENE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMODICHLOROMETHANE	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMOFORM	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMOMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
CARBON DISULFIDE	60	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CARBON TETRACHLORIDE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CHLOROETHANE	5	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
CHLOROFORM	7	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CHLOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
CIS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CIS-1,2-DICHLOROPROPENE				+	
	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CYCLOHEXANE	NL -	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
DIBROMOCHLOROMETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U UR
DICHLORODIFLUOROMETHANE	_	0.5011	< 1.0 U	< 1.0 U	
ETHYLBENZENE ICORDODY, BENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
ISOPROPYLBENZENE	5 NI	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
M- AND P-XYLENE	NL NI	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
METHYL ACETATE	NL NI	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 U
METHYL CYCLOHEXANE	NL 10	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
METHYL TERT-BUTYL ETHER	10	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
METHYLENE CHLORIDE	5	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
O-XYLENE	NL -	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
STYRENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TETRACHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TOLUENE	5	3.4	3.5	3.4	5.1
TRANS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TRANS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TRICHLOROETHENE	5	< 0.50 U	8.4	8.7	< 0.50 U
TRICHLOROFLUOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
VINYL CHLORIDE	2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
XYLENES, TOTAL	5	< 1.5 UJ	< 1.5 U	< 1.5 U	< 1.5 U

Location	NYSDEC	RE117D1	RE118D1	BPOW5-5	BPOW5-6
Sample Date	Groundwater	6/9/2015	6/24/2015	6/24/2015	6/24/2015
Sample ID	Guidance or Standard Value	RE117DI-GW- 060915	RE118D1-GW- 062415	BPOW5-5-GW- 062415	BPOW5-6-GW- 062415
Sample type code	(Note 1)	N	N	N	N
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2,2-TETRACHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2-TRICHLOROETHANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2,4-TRICHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DIBROMO-3-CHLOROPROPANE	0.04	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 U
1,2-DIBROMOETHANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,2-DICHLOROETHENE, TOTAL	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
1,2-DICHLOROPROPANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,3-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,4-DIOXANE (Method 8270D SIM)	NL	< 0.17 U	< 0.18 U	< 0.18 U	< 0.17 U
2-BUTANONE	50	< 2.5 U	< 2.5 U	< 2.5 U	12
2-HEXANONE	50	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
4-METHYL-2-PENTANONE	NL NL	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
ACETONE	50	< 2.5 U	2.7 J	8.0	< 2.5 U
BENZENE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMODICHLOROMETHANE	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMOFORM	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
BROMOMETHANE	5		< 1.0 U	< 1.0 U	< 1.0 U
		< 1.0 U		< 0.50 U	-
CARBON DISULFIDE CARBON TETRACHLORIDE	60	< 0.50 U	< 0.50 U < 0.50 U	< 0.50 U	< 0.50 U < 0.50 U
CHLOROBENZENE	5	< 0.50 U < 0.50 U			-
	5		< 0.50 U	< 0.50 U	< 0.50 U
CHLOROETHANE	5	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ	< 1.0 UJ
CHLOROFORM	7	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CHLOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U < 0.50 U	< 1.0 U
CIS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U		< 0.50 U
CIS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
CYCLOHEXANE	NL -	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
DIBROMOCHLOROMETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
DICHLORODIFLUOROMETHANE	5	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 U
ETHYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
ISOPROPYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
M- AND P-XYLENE	NL 	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
METHYL ACETATE	NL NI	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 U
METHYL CYCLOHEXANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
METHYL TERT-BUTYL ETHER	10	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
METHYLENE CHLORIDE	5	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
O-XYLENE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
STYRENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TETRACHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TOLUENE	5	1.3	0.38 J	< 0.50 U	0.74 J
TRANS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TRANS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
TRICHLOROETHENE	5	7.6	< 0.50 U	< 0.50 U	0.45 J
TRICHLOROFLUOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
VINYL CHLORIDE	2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
XYLENES, TOTAL	5	< 1.5 U	< 1.5 U	< 1.5 U	< 1.5 U

Location	NYSDEC	RE117D1	BPOW5-7	BPOW5-7	RE119D1
Sample Date	Groundwater	6/25/2015	8/12/2015	8/12/2015	8/12/2015
Sample ID	Guidance or Standard Value	RE117D1-GW- 062515	BPOW5-7-GW- 081215	GW-DUP-081215	RE119D1-GW- 081215
Sample type code	(Note 1)	N	N	FD	N
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,1,2,2-TETRACHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U
1,1,2-TRICHLOROETHANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,1-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,1-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,2,4-TRICHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,2-DIBROMO-3-CHLOROPROPANE	0.04	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 UJ
1,2-DIBROMOETHANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,2-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,2-DICHLOROETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,2-DICHLOROETHENE, TOTAL	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ
1,2-DICHLOROPROPANE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,3-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,4-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
1,4-DIOXANE (Method 8270D_SIM)	NL	< 0.17 U	< 0.17 U	< 0.18 U	< 0.17 U
2-BUTANONE	50	2.1 J	3.6 J	< 2.5 U	< 2.5 U
2-HEXANONE	50	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 UJ
4-METHYL-2-PENTANONE	NL	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 UJ
ACETONE	50	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 U
BENZENE	1	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
BROMODICHLOROMETHANE	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
BROMOFORM	50	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
BROMOMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
CARBON DISULFIDE	60	< 0.50 U	< 0.50 UJ	< 0.50 UJ	< 0.50 UJ
CARBON TETRACHLORIDE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
CHLOROBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
CHLOROETHANE	5	< 1.0 UJ	< 1.0 U	< 1.0 U	< 1.0 UJ
CHLOROFORM	7	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
CHLOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
CIS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
CIS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
CYCLOHEXANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
DIBROMOCHLOROMETHANE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
DICHLORODIFLUOROMETHANE	5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
ETHYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
ISOPROPYLBENZENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
M- AND P-XYLENE	NL	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ
METHYL ACETATE	NL	< 0.75 U	< 0.75 U	< 0.75 U	< 0.75 UJ
METHYL CYCLOHEXANE	NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.75 U
METHYL TERT-BUTYL ETHER	10	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
METHYLENE CHLORIDE	5	< 2.5 U	< 2.5 U	< 2.5 U	< 2.5 UJ
O-XYLENE	NL NL	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
STYRENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
TETRACHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
TOLUENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
TRANS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
TRANS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 UJ
TRICHLOROETHENE TRICHLOROETHENE	5			 	
TRIOTICOROL THEINE	ບ	7.8	< 0.50 U	< 0.50 U	< 0.50 UJ
TRICHLOPOELLIOPOMETHANE	E	~ 1 O I I	~ 1 O I I	~ 1 O I I	~ 1 O I I I
TRICHLOROFLUOROMETHANE VINYL CHLORIDE	5 2	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 UJ < 1.0 UJ

BPOW5-4, RE117D1, RE117D2 (VPB151) BPOW5-5, BPOW5-6, RE118D1 (VPB152) BPOW5-7, RE119D1 (VPB153) Installation Report

TABLE 3. ANALYTICAL DATA SUMMARY 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

January 2016

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)

Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; **Bold and Italics**=Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.

UR = The analyte was not detected above the reported sample quantitation limit. However, the sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria.

The presence or absence of the analyte cannot be verified.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

January 2016

TABLE 4. STABILIZED FIELD PARAMETERS 2015 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
BPOW5-4	5/20/2015	15.77	4.69	0.167	3.64	104.8	1.09	23.58	525
BPOW5-5	6/24/2015	16.00	4.14	0.319	2.49	218.6	3.94	27.30	775
BPOW5-6	6/24/2015	20.92	5.09	0.115	1.39	220.2	37.6	28.00	200
BPOW5-7	8/12/2015	19.28	5.27	0.043	0.18	155.2	98.3	24.89	400
RE117D1	5/20/2015	16.52	5.01	0.023	2.71	206.9	46.4	23.65	500
RE117D1	6/9/2015	19.1	4.83	0.031	2.75	130.1	10.5	24.4	500
RE117D1	6/25/2015	16.67	3.27	0.029	3.11	450.6	7.46	25.14	800
RE117D2	5/20/2015	16.31	4.44	0.025	0.53	250.9	10	22.45	600
RE118D1	6/24/2015	15.61	7.90	0.036	1.63	378.7	10.1	27.53	600
RE119D1	8/12/2015	15.71	4.64	0.025	0.52	108.8	48.8	25.57	600

°C - degrees Celsius

 $\mu S/cm$ - Microsiemens per Centimeter

mg/L - milligrams per liter

mV - Millivolts

NTU - Nephelometric Turbidity Unit

ft bgs - feet below ground surface

ml/min - mililiters per minute

January 2016

Figures

Appendix A

BPOW5-4, BPOW5-5, BPOW5-6, BPOW5-7,

RE117D1, RE117D2, RE118D1, RE119D1

Section 1

Boring Logs

Boring Log

BORING #: BPOW5-4
Sheet 1 of 2

Client: Department of the Navy, Naval Facili	Logged By: V. Varricchio	
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: DELTA WELL AND PUMP COMPANY	
Project #: 60266526	Ground Elevation (msl): 54.49	Well Screen Interval (ft): 545-570
Start Date: 4/3/2015	Water Level (ft):	
Finish Date: 4/10/2015	Northing: 196471.55 Easting: 1125307.44	Total Depth (ft): 587.0

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-548 ft bgs: See VPB151 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200							Bentonite Grout
250							Some Ground
300							
350							
400							
450						-	4" Diameter Schedule 80 PVC Riser
500							33. 73.1351

Boring Log

BORING #: BPOW5-4 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Varricchio					
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: DELTA WELL AND PUMP COMPANY					
Project #: 60266526	Ground Elevation (msl): 54.49	Well Screen Interval (ft): 545-570				
Start Date: 4/3/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):				
Finish Date: 4/10/2015	ish Date: 4/10/2015					

DEРТН (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
500 502 504 506					0-548 ft bgs: See VPB151 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
508 510 512 514 516 518						4	#0 Filter Sand
520 522 524 526 528 530 532 534 536 538 540 542 544 546							#1 Filter Sand
548 550 552 554	0		SP		Grey (10YR 5/1) poorly graded medium SAND Grey (10YR 5/1) interbedded well graded medium SAND and lean Clay with trace silt		
556 558 560	0		SP-CL SP		Grey (10YR 5/1) poorly graded medium SAND		4" Diameter Schedule 80 PVC, 10 Slot Well Screen
562 564 566	0		SP		Grey (10YR 6/1) poorly graded medium SAND		(545-570 ft bgs)
568 570 572			SP		Grey (10YR 5/1) poorly graded medium SAND		Sump
574 576 578 580 582 584							#1 Sand to bottom
586					End of boring at 587.0 ft. bgs.		

Boring Log

BORING #: BPOW5-5 Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer				
Location: Pineneck Road, Seaford, NY		Drilling Company: DELTA WELL AND PUMP COMPANY			
Project #: 60266526	Project # : 60266526				
Start Date: 3/26/2015	Water Level (ft):				
Finish Date: 4/6/2015	Northing: 197284.98 Easting: 1126291.45	Total Depth (ft): 560.5			

ДЕРТН (ft)	PID (ppm)	Formation	USCS	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-518 ft bgs: See VPB152 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200							Bentonite Grout
250							Denionite Glout
300							
350							
400							
450						-	4" Diameter Schedule 80 PVC Riser

Boring Log

BORING #: BPOW5-5 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer							
Location: Pineneck Road, Seaford, NY	Drilling Company: Delta Well and PUMP COMPANY							
Project #: 60266526	Ground Elevation (msl): 57.97	Well Screen Interval (ft): 515-540						
Start Date: 3/26/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):						
Finish Date: 4/6/2015	Northing: 197284.98 Easting: 1126291.45	Total Depth (ft): 560.5						

SM/CL SM	Construction	Completion	Well	MATERIAL DESCRIPTION	GRAPHIC LOG	nscs	Formation	PID (ppm)	DEPTH (ft)
#1 Filter Sar #492 #494 #496 #500 #600 #60	lule 80 PVC		00000000	0-518 ft bgs: See VPB152 for Descriptions (continued)					484
Solid Soli	er Sand	<u> </u>							492
SM SM SIR (20%) Silt (20%)	er Sand								500 502 504 506 508 510 512
Schedule 80 Slot Well Sc (515-540 ft I SM) SM SM/CL Signature (7.5 TR 6/1) SILTY SAND interbedded with laminated Lignite, clay Schedule 80 Slot Well Sc (515-540 ft I SM) Light grey (7.5 TR 6/1) SILTY SAND, fine to medium Sand, muscovite flakes, one layer of lignite SM Schedule 80 Slot Well Sc (515-540 ft I SM) Light grey (7.5 TR 6/1) SILTY SAND, fine to medium Sand, one pale black band of lignite, and 0.5 inch band of friable lignite, silt (20%), 1 pyrite concretion Sump #1 Sand to be a superior of the same o				silt (20%) Black LIGNITE, laminated, friable interbedded with microlaminated fine Sand; bottom 2 inches composed of					520 522 524
SM SM SM Light grey (7.5yr 5/1) SILTY SAND, fine to medium Sand, one pale black band of lignite, and 0.5 inch band of friable lignite, silt (20%), 1 pyrite concretion Sump Sump #1 Sand to be a silt of the same of the	fule 80 PVC, 10 Vell Screen			Grey SILTY SAND interbedded with laminated Lignite, clay				0.1	530
540 542 544 546 548 550 552 552 554 555 555 555 555 556 557 558 558 550 550 552 558 550 550 550 550 550 550 550 550 550				muscovite flakes, one layer of lignite		SM		0	536
544 546 548 550 552 #1 Sand to t			_	Light grey (7.5yr 5/1) SILTY SAND, fine to medium Sand, one pale black band of lignite, and 0.5 inch band of friable lignite, silt (20%), 1 pyrite concretion	1,,,,,,,	SM		0.1	540
552 #1 Sand to I									546
556	nd to bottom								552
558 560									

Boring Log

BORING #: BPOW5-6
Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer		
Location: Pineneck Road, Seaford, NY	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Well Screen Interval (ft): 585-610		
Start Date: 5/1/2015	Water Level (ft):		
Finish Date: 5/7/2015	Northing: 197327.15 Easting: 1126285.56	Total Depth (ft): 628.0	

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-588 ft bgs; See VPB152 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200							
250							Bentonite Grout
300							
350							
400							
450							
500						-	4" Diameter Schedule 80 PVC Riser
500							
550							

Boring Log

BORING #: BPOW5-6 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer			
Location: Pineneck Road, Seaford, NY	Drilling Company: Delta Well and PUMP COMPANY			
Project #: 60266526	Ground Elevation (msl): 58.21	Well Screen Interval (ft): 585-610		
Start Date: 5/1/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):		
Finish Date: 5/7/2015	Northing: 197327.15 Easting: 1126285.56	Total Depth (ft): 628.0		

			I				
DEPTH (ft)	PID (ppm)	Formation	SOSU	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
566					0-588 ft bgs; See VPB152 for Descriptions (continued)		4" Diameter Schedule 80 PVC
568							Riser (continued)
570							
572							#0 Filter Sand
574							
576							
578							
580							#4 Filton Com
582							#1 Filter Sand
584							
586							
588	0.1				Grey (10YR 6/1) poorly graded SAND, medium Sand, little coarse sand, one inch layer of microlaminated lignite		
590			SP		coarse sarid, one mornayer of microlaminated lightee		
592					Grey (10YR 6/5) poorly graded SAND, medium Sand		
594	0		SP		city (10111 dispersity graded of alle, median cand		
596							4ll Diamenton
598	0				Grey (10YR 6/5) SILTY SAND, fine to medium Sand, muscovite flakes, two microlayers fo black friable lignite		4" Diameter Schedule 80 PVC, 10 Slot Well Screen
600			SM				(585-610 ft bgs)
602	0				Grey (10YR 6/5) poorly graded SAND with Silt, medium sand		
604	0		SP-SM				
606							
610	0.1		SP-SM		Grey (10YR 6/5) poorly graded SAND with Silt, medium sand		
612							
614							Sump
616							
618							
620							
622							#1 Sand to bottom
624							
626							
628					End of boring at 628.0 ft. bgs.		
					End of borning at ozono it. bgo.		
						•	

Boring Log

BORING #: BPOW5-7
Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer			
Location: Joseph Road and William Road, Ma	Drilling Company: DELTA WELL AND PUMP COMPANY			
Project #: 60266526	Ground Elevation (msl): 56.20	Well Screen Interval (ft): 525-550		
Start Date: 6/17/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):		
Finish Date: 6/22/2015	Northing: 197274.15 Easting: 1128702.39	Total Depth (ft): 570.0		

DEPTH (ft)	PID (ppm)	Formation	SOSN	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-528 ft bgs: See VPB153 for Descriptions		
50							— 10" Diameter Steel Casing
100							
150							
200							
							Bentonite Grout
250							
300							
350							
400							
450						•	4" Diameter Schedule 80 PVC Riser
500							

Boring Log

BORING #: BPOW5-7 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer				
Location: Joseph Road and William Road, Ma	Drilling Company: DELTA WELL AND PUMP COMPANY				
Project #: 60266526	Well Screen Interval (ft): 525-550				
Start Date: 6/17/2015	te: 6/17/2015 Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)				
Finish Date: 6/22/2015	Northing: 197274.15 Easting: 1128702.39	Total Depth (ft): 570.0			

ОЕРТН (ft)	PID (ppm)	Formation	SSO	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
500 502 504 506					0-528 ft bgs: See VPB153 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
508 510 512 514						-	#0 Filter Sand
516 518 520 522 524 526							#1 Filter Sand
528 530 532	0		SM CL		Grey (7.5YR 5/1) SILTY SAND, fine to medium Sand, 30% silt Grey (7.5YR 5/1) lean CLAY, interbedded Sand and Clay layers, clay layers up to 1/2 inch thick		
534	0		SM CL		Grey (7.5YR 5/1) SILTY SAND, fine to medium Sand, little silt (20%) Grey (7.5YR 5/1) lean CLAY, interbedded with Lignite	7	
538 540 542	0		SP-SM		Grey poorly graded SAND with Silt, few silt		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (525-550 ft bgs)
544	0		SM OH		Grey (7.5YR 5/1) SILTY SAND, medium Sand, pyrite concretions, little silt (20%) Black LIGNITE, friable, interbedded with medium to coarse Sand		
548 ————————————————————————————————————	0		SP		Grey (7.5YR 5/1) poorly graded SAND, medium Sand		
554 556							Sump
558							
560 562 564 566 568							#1 Sand to bottom
570					End of boring at 570.0 ft. bgs.	Nice display di	

Boring Log

BORING #: RE117D1 Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Varricchio		
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Ground Elevation (msl): 54.24	Well Screen Interval (ft): 730-755	
Start Date: 3/19/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 3/27/2015	Northing: 196462.44 Easting: 1125318.92	Total Depth (ft): 772.0	

DЕРТН (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-730 ft bgs, See VPB151 for Descriptions		10" Diameter Steel Casing
50							Submig
100							
150							
200							Bentonite Grout
250							Bentonite Grout
300							
350							
400							
450							
500							
550						-	4" Diameter Schedule 80 PVC Riser
600							
650							

Boring Log

BORING #: RE117D1 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Varricchio						
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: Delta Well and PUMP COMPANY						
Project #: 60266526	Ground Elevation (msl): 54.24	Well Screen Interval (ft): 730-755					
Start Date: 3/19/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):					
Finish Date: 3/27/2015	Northing: 196462.44 Easting: 1125318.92	Total Depth (ft): 772.0					

670 672 674 676 676 678	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION 0-730 ft bgs, See VPB151 for Descriptions (continued)	Well	Well Construction 4" Diameter Schedule 80 PVC Riser (continued)
680 682 684 686 688 690 692						-	#0 Filter Sand
696 698 700 702 704 706 708 710 712							#1 Filter Sand
716 718 720 722 724 726 728 730 732	0,		SW	<u> </u>	Grey (10YR 6/1) fine to coarse well graded SAND, trace fine subrounded Gravel		
734	0				Grey (10YR 6/1) fine to coarse well graded SAND, few fine		
738 740 742	0	-	SW		subrounded Gravel Light grey (10YR 7/2) well graded fine to coarse subrounded GRAVEL with some well graded fine to coarse Sand		
742 744 746	0		GW GW		Gravel with some well graded fine to coarse Sand Grey (10YR 6/1) fine to coarse well graded subrounded GRAVEL and fine to coarse well graded Sand		4" Diameter Schedule 80 PVC, 10 Slot Well Screen
748 750 752	0	-	GW-SW GW		Grey (10YR 6/1) fine to coarse well graded subrounded GRAVEL with some well graded fine to coarse Sand		(730-755 ft bgs)
754 756 758 760			GW		2.1.12 como non gradad into la codica cana		Sump
762 764 766 768 770							#1 Sand to bottom
772					End of boring at 772.0 ft. bgs.		

Boring Log

BORING #: RE117D2 Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Varricchio			
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: DELTA WELL AND PUMP COMPANY			
Project #: 60266526	Ground Elevation (msl): 54.11	Well Screen Interval (ft): 780-805		
Start Date: 2/26/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):		
Finish Date: 3/12/2015	Northing: 196455.23 Easting: 1125332.7	Total Depth (ft): 822.0		

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-783 ft bgs: See VPB151 for Descriptions		10" Diameter Steel Casing
50							Casing
100							
150							
200							Bentonite Grout
250							
300							
350							
400							
450							
500							
550						-	4" Diameter Schedule 80 PVC Riser
600							
650							
700							

Boring Log

BORING #: RE117D2 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Varricchio		
Location: Lawrence Road and Susan Ct, Sea	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Well Screen Interval (ft): 780-805		
Start Date: 2/26/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 3/12/2015	Northing: 196455.23 Easting: 1125332.7	Total Depth (ft): 822.0	

790 773 774 775 776 777 778 778 778 778 778 778 778 778	DEPTH (ft)	PID (ppm)	Formation	SOSN	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
742 744 746 748 749 749 750 752 754 758 760 760 760 760 770 777 774 776 778 788 0 SC Gray (10YR 5/1) fine SAND with some fat Clay, little medium to coarse subangular sand and fine subangular gravel White (10YR 8/1) poorly graded fine SAND with few Clay SP-SC White (10YR 8/1) poorly graded fine SAND with few Clay SP-SC White (10YR 8/1) poorly graded fine SAND with few Clay Sp-SC CH Dark grey (10YR 4/1) poorly sorted fine sandy fat CLAY Dark grey (10YR 4/1) poorly sorted fine sandy fat CLAY Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Sump Sump #1 Sand to bottom #1 Sand to bottom	732 734 736 738					0-783 ft bgs: See VPB151 for Descriptions (continued)		Schedule 80 PVC
758 760 766 768 776 776 776 778 778 778 778 778	742 744 746 748 750						-	#0 Filter Sand
Tell Color of the	758 760 762 764 766 768 770 772 774 776 778							#1 Filter Sand
SP-SC Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Schedule 80 PVC, 10 Slot Well Screen (780-805 ft bgs) Sump Sump #1 Sand to bottom #1 Sand to bottom	784 786 788 790					White (10YR 8/1) poorly graded fine SAND with few Clay		4" Diameter
806 808 810 812 814 816 818 820	796 798 800 802	0		CH SC		Dark grey (10YR 4/1) poorly sorted fine sandy fat CLAY Dark grey (10YR 4/1) poorly sorted fine clayey SAND		Schedule 80 PVC, 10 Slot Well Screen
816 818 820 #1 Sand to bottom	806 808 810 812	<u> </u>		3 r				Sump
	816					End of boring at 822.0 ft. bgs.		#1 Sand to bottom

Boring Log

BORING #: RE118D1
Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer		
Location: Pineneck Road, Seaford, NY	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Ground Elevation (msl): 57.99	Well Screen Interval (ft): 765-790	
Start Date: 4/6/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 4/21/2015	Northing: 197298.81 Easting: 1126290.8	Total Depth (ft): 808.0	

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-773 ft bgs; See VPB152 for Descriptions		10" Diameter Steel Casing
50							Casing
100							
150							
200							
250							
300						*	Bentonite Grout
350							
400							
450							
500							
550							
600							
650						-	4" Diameter Schedule 80 PVC Riser
700							

Boring Log

BORING #: RE118D1 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer			
Location: Pineneck Road, Seaford, NY	Drilling Company: DELTA WELL AND PUMP COMPANY			
Project #: 60266526	Ground Elevation (msl): 57.99	Well Screen Interval (ft): 765-790		
Start Date: 4/6/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):		
Finish Date: 4/21/2015	Northing: 197298.81 Easting: 1126290.8	Total Depth (ft): 808.0		

DEPTH (ft)	PID (ppm)	Formation	SSSN	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
740 742 744 746					0-773 ft bgs; See VPB152 for Descriptions (continued)		4" Diameter Schedule 80 PVC Riser (continued)
748 750 752 754						-	#0 Filter Sand
756 758 760 762 764							#1 Filter Sand
766 768 770 772 774 776	0		GP SP-SC		White (10YR 8/1) poorly graded fine GRAVEL White (10YR 8/1) poorly graded SAND with Clay, medium sand, little fine sand, four bands (0.25 inches) orange sand; 15% fines.		
778 780 782	0.1		SC		Light grey (10YR 7/1) CLAYEY SAND; fine to medium Sand, laminated		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (765-790 ft bgs)
784	0.2		GP SC		White (10YR 8/1) poorly graded GRAVEL, subrounded to subangular fine Gravel Light grey (10YR 7/1) CLAYEY SAND; subangular fine to coarse Sand, medium sand ~60%, 20% clay (fines)		
788 790 792	0.1		SC		Light grey (10YR 7/1) CLAYEY SAND, medium Sand, little fine sand, 20% clay (fines)		Sump
794 796 798 800 802 804	0.1		СН		White (10YR 8/1), light grey (10YR 7/1), and dark grey (10YR 4/1) fat CLAY; laminated; multi-colored bands		#1 Sand to bottom
804					End of boring at 808.0 ft. bgs.		

Boring Log

BORING #: RE119D1 Sheet 1 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer		
Location: Joseph Road and William Road, Ma	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Well Screen Interval (ft): 715-740		
Start Date: 6/3/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 6/5/2015	Northing: 197245.89 Easting: 1128694.84	Total Depth (ft): 755.0	

ОЕРТН (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-718 ft bgs: See VPB153 for Descriptions	-	10" Diameter Steel Casing
50							j
100							
150							
200							
250							
300						1	Bentonite Grout
350							
400							
450							
500							
550							
600						-	4" Diameter Schedule 80 PVC Riser
650							80 PVC RISEF

Boring Log

BORING #: RE119D1 Sheet 2 of 2

Client: Department of the Navy, Naval Facilit	Logged By: V. Thayer		
Location: Joseph Road and William Road, Ma	Drilling Company: DELTA WELL AND PUMP COMPANY		
Project #: 60266526	Well Screen Interval (ft): 715-740		
Start Date: 6/3/2015	Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date: 6/5/2015	Northing: 197245.89	Total Depth (ft): 755.0	

DEPTH (ft)	PID (ppm)	Formation	SOSO	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
- 690					0-718 ft bgs: See VPB153 for Descriptions (continued)		4" Diameter Schedule 80 PVC
692							Riser (continued)
694							
698							
700							#0 Filter Sand
702							no i ilici cana
704							
706							
708							
710							#1 Filter Sand
712							
714							
716				///////	0(7.5)(5).1.0)		
720	0		CII		Grey (7.5YR) Fat Clay		
722			CH				
724	0				Grey (7.5YR) Fat Clay		
726			CH				
728	0				Grey (7.5YR) SANDY CLAY, little medium Sand		4" Diameter Schedule 80 PVC, 10
730			СН				Slot Well Screen (715-740 ft bgs)
732	_		SM		Grey (7.5YR 5/1) SILTY SAND, fine to medium Sand		, ,
734	0/				Dark grey (7.5YR 4/1) fat CLAY		
736			СН		7 T T T T T T T T T T T T T T T T T T T		
738	0		СН		Grey (7.5YR) fat CLAY, micro-laminated, Lignite layer		
742							
744							Sump
746							
748							
750							#1 Sand to bottom
752							
754					End of boring at 755.0 ft. bgs.		

Section 2

Monitoring Well Construction Logs

Client:	NAVFAC	Project Number:	60266526	WELL	ID: BPOW5-4
Site Locatio	n: NWIRP BETHPAC	E, NY			
Well Locati	on: Lawrence Rd and Sus	an Ct, Seaford, NY		Date Installed:	4/3/2015 - 4/10/2015
Method:	MUD ROTARY			Inspector:	V. VARRICCHIO
Coords:	Northing: 196471 55	Fasting: 1125307.44	1	Contractor	DELTA WELL & PLIMP

Client:	NAVFAC	Project Number:	60266526	WELL ID: BPOW5-5		
Site Location	on: NWIRP BETHPAC	GE, NY				
Well Location: Pineneck Rd., Seaford, NY Date Installed: 4/1/2015 - 4/6/2015						
Method:	MUD ROTARY			Inspector: V. THAYER		
Coords:	Northing: 197284.98	Easting: 1126291.4	5	Contractor: DELTA WELL & PUMP		

Client:	NAVFAC	Project Number:	60266526	WELL ID: BPOW5-6
Site Locati	on: NWIRP BETHPAC	GE, NY		.,
Well Locat	tion: Pineneck Rd., Seafor	d, NY		Date Installed: 5/6/2015 - 5/7/2015
Method:	MUD ROTARY			Inspector: V. THAYER
Coords:	Northing: 197327.15	Easting: 1126285.5	6	Contractor: DELTA WELL & PUMP

Client:	NAVFAC	Project Number:	60266526	WELL ID: BPOW5-7
Site Location	on: NWIRP BETHPAC	E, NY		
Well Locati	on: Joseph Rd and Willia	n Rd, Massapequa, N	NY	Date Installed: 6/17/2015 - 6/22/2015
Method:	MUD ROTARY			Inspector: V. THAYER
Coords:	Northing: 197274.15	Easting: 1128702.39	9	Contractor: DELTA WELL & PUMP

Client:	NAVFAC	Project Number:	60266526	WELL ID: RE117D1		
Site Location	on: NWIRP BETHPAC	GE, NY				
Well Location: Lawrence Rd and Susan Ct, Seaford, NY Date Installed: 3/19/2015 - 3/27/2015						
Method:	MUD ROTARY			Inspector: V. VARRICCHIO		
Coords:	Northing: 196462.44	Easting: 1125318.92	2	Contractor: DELTA WELL & PUMP		

Client:	NAVFAC	Project Number:	60266526	WELL ID: RE117D2
Site Location	on: NWIRP BETHPAC	E, NY		
Well Locat	ion: Lawrence Rd and Sus	an Ct, Seaford, NY		Date Installed: 2/26/2015 - 3/12/2015
Method:	MUD ROTARY			Inspector: V. VARRICCHIO
Coords:	Northing: 196455.23	Easting: 1125332.7		Contractor: DELTA WELL & PUMP

Client:	NAVFAC	Project Number:	60266526	WELL ID: RE118D1
Site Location	on: NWIRP BETHPAC	GE, NY		
Well Locat	ion: Pineneck Rd., Seafor	d, NY		Date Installed: 4/6/2015 - 4/21/2015
Method:	MUD ROTARY			Inspector: V. THAYER
Coords:	Northing: 197298.81	Easting: 1126290.8		Contractor: DELTA WELL & PUMP

Client:	NAVFAC	Project Number:	60266526	WELL ID: RE119D1			
Site Location	on: NWIRP BETHPAC	SE, NY		,,			
Well Locat	ion: Joseph Rd and Willia	m Rd, Massapequa, l	NY	Date Installed: 6/3/2015 - 6/5/2015			
Method:	MUD ROTARY			Inspector: V. THAYER			
Coords:	Northing: 197245.89	Easting: 1128694.8	4	Contractor: DELTA WELL & PUMP			

Section 3

Groundwater Sample Log Sheets

Well ID: RE	117	01	
_	Pg	cif	2

		4									1
Client:	Navy NWI	RP Bet		0500	Da	te:5/	20/1	5Tim	ne: Start <u>9</u>		
Project No Site Loca	tion:	<11.e.	C	6526						350 am/pm	
Weather	Conds: ~(o5°F,	most	y cloudy, b	reozef Co	ollector(s):	Paul	Karck,	Tessica	Eh/in_	
				red from Top	,			,			
a. Tot	al Well Len	gth_Z	60	c. Length of V	Vater Colu	mn	(a-b)		•	eter/Material	
				d. Calculated				F-C1		163al	
			<u> 5.40</u>	u. Calculateu	System ve	Julile (see i		-S TT SOME	EN - 002	10 isgan	
	PURGE D ge Method		otech bla	adder pump w	ith drop tub	e assembl	y				
b. Acc	eptance Ci	riteria d	efined (s	see workplan)							
- Tem	perature		% .1 unit			(values >0.	.5 mg/L)	Turbidi	ty ± 10%)	
- pH - Sp. (Cond.	± 0 ± 3		- ORP / - Drawdown	± 10m\ < 0.3'	/	Re	move a mir	nimum 1 scre	en volume	
-	ld Testing E				ıko		Model		Serial	Number	
C. FIE	id resumg i	-quipirii	-	VS.			556 M		135100	663 10618	774
	G 1		_	Hann		1	I 987	33	08021	130	∃ i, ′
<u>Time</u>	Volume Removed	Temp.	р <u>Н</u>	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor	
(24hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	Т.	1
1135		<u> </u>		e The second		. (M) A		***************************************		Start pu	
1140	~2.5	16.27	5.58	0.034	4.50	109.0	113	500	23.69	clary none	=
1145	~5		5.56		3.47	100.8	125	500	23.70	11 11	-
1150	~7.5		5,54	0.031	3.3	99.7	114	500	23.70	11 11	-
1155	~10	$\overline{}$	5.58	0.031	3.14	101.6		400	23.70	11 11	-
500		-	5.62		2.96	167.0		500	23.70	11 11	-
1205	~14.5 cceptance c		5.39		3. <i>6</i> ス Yes No	119.6 N/A		500	23.70	(continued on back)	_
	as required						•			(oonange en basily	
	as required		-	eached							(U
Ha	ave parame If no or N			ow.		Ш					
3. SAME	PLE COLLI	ECTIO	N: 1	Method: Geo	tech bladd	er pump w	ith drop tu	be assemb	oly		
Sample I	ID		(Container Type	e No. of	Containers	Prese	rvation	Analysis Re	q. Time	
RENT	DI-GW-		15	40-mL vial		3	НС		VOCs	1345	—
REIIT	DI-GW	-0520	15	1-L amber		2	no	ne	1,4-Dioxane	1345	_
Commer	nts -	bit 1	Ala	e 208+	to line	-					=======================================
DUP	- GW -0	2901	5 W	as collec		this lo	ocation	Samp	led @ S	ame time,	 -
Lur	ve 1	15 0	3/1/a	bels & Chai	N				1		-
Signatur	e(LE		4				Date	5/2	10/15	_
	1	1						Lov	Flow-GWa - rev	/ March 2015.xls	

RE11701

,14	V.	19 20f
Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

(continued	from front)											
	Volume											
Time	Removed	Temp	рН	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Co	olor/Odor	
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)			
1210	~17	15.70	5.13	0.023	3.19	137.8		500	23.70	cloudy	Inon	e
1215		15.38	4.97	0.073	3.13	157.2	68.4	500	23.70	cloul		
1220	~22	15.43	5.06	0.023	3.09	158.3		500	23.70	11	lι	
1225	~24.5	15.35	5.02	0.023	3.62	165.3		500	73.70	1)	10	
1230	~27	15.26	5.01	6.023	3.00	170.7	86.1	500	23.70	14	- 1	1
1235	~29.5	15.26	5.00	0.022	2.96	174.2		500	23.70	1(Ĺ	-(
1240	~32	12:38	5.03	0.022	2.93	177.2	60.8	500	23.67	Slightly	clady	Inon
1245	~34.5	15.50	5.08	0.022	2.81	178.6		500	23.65	AT	ц 1	11
1250	~37	15.44	5.03	0.022	2.79	184.8		500	23.65	H	1L	t _f
1,255	139.5	15.39	5.02	0.022	2.81	187.9	54.4	500	23.65	1c	1,0	Li
1300	~42	15.71	5.04	0.022	2.75	189.9		500	23.65	11	-1(1/
1305	~44.5	15.87	5.03	0.022	2.75	192.7	505	500	23.65	11	Ιι	ft
1315	~49.5	16.64	5.08	0.023	2.73	194.3	47.5	500	23.65	IC	11	10
1320	~52	16.69	5.07		2.71	198.1	52.0	500	١ι	1(ιι	1(
1325	~54.5	16.53	5.03	l1	2.72	201.7		н	11	11	H	11
1330	~57	16.52	5.02	L)	2.73	203.5	44.1	1(11	i ()t	11
1335	~59.5	1	5.01	0.022	2.71	206.2	45.2	1(IL	11	К	- ((
1340	~62	Ц	11	0.023	н	206.9	46.4	Ц	Ц	- ti	- I t	17
				2.								
				_							-	
												-

Well ID: על דון	2
ρ	210/2

Client: Project No Site Locati				6526	D:	ate:5	20/1	5 Tim	ne: Start <u>4</u> Finish <u>1</u>	45 (am/pm 7-25 am/pm
Weather C		part by			ildy C	Collector(s):	JESS!	caceh/,	1. Paul Kar	esh
a. Tota	ıl Well Len	gth_&	25	red from Top c. Length of \ d. Calculated	Water Colu	ımn			Casing Diam 4-inc	h PVC
2. WELL	PURGE D	ATA	·	adder pump w	,					
b. Acceptance Criteria defined (see workplan) - Temperature ± 3% - D.O. ± 10% (values >0.5 mg/L) Turbidity ± 10% - pH ± 0.1 unit - ORP ± 10mV - Sp. Cond. ± 3% - Drawdown < 0.3' Remove a minimum 1 screen volume										
c. Field	d Testing E	Equipme	ent used	t: Ma	ake T		Model M		Serial	Number
			=	Han			HI 98	703	U80	211 X
<u>Time</u> (24hr)	Volume Removed (Liters)	Temp.	_ На	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1430	(2.0.0)				(3/			\rightarrow	22,25	start pump
1435	~2.5	19.81	8.21	0.031	8.30	148.9	91.8	500	22.40	clady Inone
1440	~5	19.63	5.02	0,029	7.13	163.0		500	22.35	I I
1500	~10	19.91	4.89	0.627	2.91	192.1	109	200	22.35	tt II
1600	NDO	Trau	ble w	ith flow r	cte on	rump, re	placed l	ledder &	Sterled	ogain
1610	ぃろゔ		4.40	0.024	1.12	228.7	577	400	22.35	acity/none
1615	~25	16.10	4.28	0.023	0.94	235.0	222	600	22.45	11 / 11
Ha: Ha:	ceptance of serequired serequired ve parameter If no or N	volume turbidity ters sta	been re / been r bilized	eached	Yes No					(continued on back)
3. SAMP	LE COLLI	ECTION	l: 1	Method: <u>Geo</u>	otech blade	der pump w	vith drop tu	be assemb	oly	
Sample II)		(Container Type 40-mL vial 1-L amber	e No. of	Containers 3	Н		Analysis Red VOCs 1,4-Dioxane	7. Time 1720 1720
				i-L amber			110	TIG	i,7-Dioxane	1120
Commen	ts								14	
Signature	4	54	\$ to	long				Date	5/20	// J

RE117D2 pg 20f2

Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711

6 1.4688 5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

(continued											
•	Volume										
Time	Removed	Temp	pН	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Co	olor/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)		
1620	~27.5	16.04	4.30	0.023	0.71	2388		500	22.45	clary/	hon &
1625	v30.5	15.84	4.28	0.023	0.63	244.2	99.0	600	22.45	11 1	LL
1630	~33.5	15.66	4.18	0.024	1.09	251.2	45.1	600	22.45	Stehtly	clady/none
1635		15.81	4.31	0.024	1.25	247.6	28.6	600	22.45	dear	Inone
1640	~39.5	15.72	4.33	0.024	1.01	249.4	26.8	600	§ 11	11	Н
1645	~ 42.5	15.64	4.34	0.024	0.84	250.3	21.9	600	1)	1(1(
1650	~45.5	15.73	4.35	0.024	0.74	250.9	23.0	600	ι	l l	11
1655	~48.5	15.92	4.41	0.025	0.66	249.3	17.3	600	11	1(١(
1700	~51.5	16.08	4.43	[]	0.64	249.1	14.6	11	Ιt	- 11	· 11
1705	254.5	15.96	4.38	11	0.60	253.9	13.1	11	- 17	((h
1710	~57.5	16.20	4.42	11	0.56	251.8	11.8	11	f L	լլ	11
1715	260.5	16.31		11	0.53	250.9	10.0	11	11	11	11
										·	,
										-	
						- v					
					-						
			1								a =
				-				7.			
					-				-		-
		-		_							

Client:	Navy NW	IRP Be	thpage		Da	ate: 5/	20 11	5 Tin	ne: Start 7,	am/pm
Project No Site Locat Weather (tion:		6026 u Cou			ollector(s):	Daul	Kavetle	Finish 13	30 am/pm
1. WATE	R LEVEL	DATA:	(measu	red from Top c. Length of \	of Casing	1)		7,007	Casing Diame	eter/Material
b. Wat	ter Table D	epth z	J.85	d. Calculated	System Vo	olume (see	back) <u>23</u>	Ascree	n = 62 L/	
	PURGE D ge Method		otech bl	adder pump w	ith drop tul	oe assemb	ly	,		
b. Acc - Tem - pH		riteria c ± 3	lefined (% .1 unit	see workplan) - D.O. - ORP - Drawdown	± 10% ± 10m\	(values >0	.5 mg/L)	Turbidi move a mi	ty ± 10%	en volume
c. Field Testing Equipment used: Make Model Serial Num										
			-		I		556	242	75.4	158
	Volume		_	Han	in a		#1987			
<u>Time</u> (24hr)	Removed (Liters)	Temp. (°C)	pН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1105										
1(40	19450	16:45	1.69	0.163	7.75	145.8	3.16	525	23.67	
1145	10	15.56	4.89	0.165	7.37	138.1				
1150			4.70	0.166	6.92	129.8	1.64	525	23.65	
1155		16.20	4.70	0.167	6.43	125.4				
1260		16.17		a168	5.92	1223	1.71			
1205		15.89	4.70	0.167	5.43	120.2		525	23.66	
Ha Ha	ceptance of sequired sequired ve parame	volume turbidit eters sta	e been re y been r abilized olain bel	emoved eached	Yes No	N/A				(continued on back)
3. SAMP	LE COLLI	ECTION	N : 1	Method: <u>Geo</u>	otech bladd	er pump w	vith drop tu	be assemb	bly	_
	-4-6W-			Container Type 40-mL vial	e No. of	Containers	НС		Analysis Req.	1310 1
BPOWS-	4-6W-C	154015		1-L amber		2	no	ne	1,4-Dioxane	1316
Commen	ts <i>h</i>	it k	other	- ~40 ft	extus t	using				
Signature)							Date		·

1=		
Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

BPOW5-4 2 11:05

(continued from front)

	Volume									
Time	Removed	Temp	рН	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
1210	3187	15,73	4.69	0.167	5.27	119.7				
1215		15,50	4.69	0.166	4.95	118.8	6.74			
1220		15.53	4.69	0.165	4.44	119.5		525	43,63	
1225		15.29	4.68	0.167	3.83	115.3				
1230		15.20	4.68	0.166	3,33	117.9	1.00			
1235		15,24	468	0.166	4.17	121.2				
1240		15-38	4.69	0.166	4.44	128,2				
1245	1500	1453	4.70	0.16	4.70	129.3	6.73	5 25	23.59	
1250	- 6	15.46	4.69	0.166	4.46	1198				
1255	16,594	15.47	4.69	0.167	4.18	111.5		525	23.60	
1300		15.5%	4.69	0.166	3.95	1.08,2				
1305	1830	15.77	4.69	0.167	3.64	104.8	1,09		23.58	1310 Sande
	9			72	C-20					13105male
								,		7
							OK.			
										_

Well ID: RE 117-D1

							- 1			
Client:	Navy NW	IRP Be		20506	Da	ate: 6	09 /1	5 Ti		900 (am/pm
Project N				66526					rinisn	1300 am(pm
Site Loca	_	JOSAN		,		ollector(s)	. /11	Sw		
	Conds:						100			
1. WATE	R LEVEL	DATA:	(measu	c. Length of	of Casing) <i>[</i>	-> LE	NOTH OF	e	
a. Tota	al Well Ler	ngth_7	60	c. Length of	Water Colu	mn_ <i>2</i> 5	(a-b) ³	Cleen	Casing Diam	neter/Material
										ch PVC
b. Wa	ter Table L	Depth 2	סכ, ד	d. Calculated	System V	olume (see	back)	16 GALL	5 p. 5	
	PURGE D									
a. Pur	ge Method	:Ge	otech b	adder pump w	ith drop tul	be assemb	oly			
b. Acc	eptance C			see workplan)						
	perature	± 3		- D.O.		(values >0	.5 mg/L)	Turbid	ity ± 10%	6
- pH - Sn. (Cond.	± 0 ± 3	.1 unit %	ORPDrawdown	± 10m\ < 0.3'	200	Re	move a mi	nimum 1 scre	en volume
c. Fiel	d Testing	Equipm	ent used	d: Ma	ake	,	Model 556mP	5		Number ろルメ
			_		TURB N	1ETER	H198-	703		275311X
	Volume		-							
<u>Time</u>	Removed		<u>pH</u>	Spec. Cond.	DO (70.07/L)	ORP	And the second s	Flow Rate	di di anno di a	Color/Odor
(24hr)	(Liters)	(°C)	مرد م	·(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	/ .
0920			5.55		8,60	83,2	114	500	24.55	CLOUDY / NO
0930	. 5		5.34		4.41	105.2	125	450	24.40	15 11
0940	8	17.40	5.54	0.040	3,58	8 9.6	98,8	450	24.38	
0950	12	17.42	5.47	0,037	3.36	84.5	59.2	450	24,38	SL. CLOUSY/1
1000	16	18,02	4.81	0.031	3.25	113.2	23.7	450	24-38	CLEAR/NON
1010	20	17.95	4.73	0.032	3,08	118,3	21,2	400	24.40	11 (1
1020	24	17,24	4.73	0,032	2,85	128.2	16.2	400	24,40	
	ceptance c				Yes No					(continued on back)
	s required									
	s required ve parame			cacheu		H				
	If no or N			ow.						
					Harris .					
3 SAMP	LE COLLE	CTION		леthod: Geo	tech bladd	er numn w	ith drop tu	he assemb	nlv	
o. OAIIII	LL OOLLI	-011011	• "	nethod. Occ	TCOIT BIAGG	or parity ii	itir drop ta	<u> </u>		
Sample II			(Container Type	No. of	Containers		rvation	Analysis Red	
<u> </u>	6W-060	915		40-mL vial	A CONTRACTOR OF THE CONTRACTOR	2	HC		VOCs	1225
and the second	and the state of		and a second	1-L amber			no	ne	1,4-Dioxane	1225
Common								40		
Comment	lo	2	1				1,59/15	- Walter		The same of the sa
-	M)		43	l alex				24 (4.20)
Signature	M	1	/	>				Date	6-09-	15
	— (Z				7	195				- May 2015.xls
	_	1/								

Volume /	Linear F	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume (4" DAM) 15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

(continued f				9:						
Time	Volume Removed	Temp	pН	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)	Pi	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	90.00.00
1030	28	17.01	4.67	0.031	2.74	131.5	14.1	500	24.45	Clear / none
1040	32	16.99	4.66	0,031	2.73	131.6	14.3	500	24.45	, (,
1050	37	17,12	4.68		2,68	129.4	12.3	500	24.35	/ W
1100		of c								
1130	38	21.29	4.84	0.031	2.34	151.0	12.4	500	24,20	W W
1140	45	-(8.32	4.78	0-031	3.26	153.6	11.0	550	24.15	ч
1150	52	83.8)	4.74	6.031	2.66	152.3	0.75	550	24.40	14
1200	57	18.89	4.80	0.031	2.71	x41.2	9.75	500	24.40	^
1210	62	19.10	4.83	0.031	2.75	130.1	10,5	500	24,40	As -
							120			
9. 1	Jen en								·	1
			-						7-8i	1
										To Many
V 2000				5 11		2				
								,		
									1,432	
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	See a		that is					No.
							-			
TA P					- 114.00		1 2 2			
				W	- 2					
	200	8-			11.5%	3 30				
		C CONTRACT								

LowFlow-GWa - May 2015.xls

Client: Project N		/IRP Beth 6026652				Date:	6/2	/ 1 /15	Time:	Start853 Finishlo45	am/pm am/pm
Site Loca	ation:	Piner	reck t	Peters		_					
Weather	Conds:	80	SF	clear		С	ollector(s)		5c		
1 WAT	FR I FVFI	DATA: (measure	d from To	of Casine			17-95			
			-	ft ft		of Water C			t Ca	sing Diameter/ _4-inch P	
		Table De	pth: <u>27.0</u>	≥≤ ft	d. Calcula	ated Syster	n Volume	(see back)	16	.J 9a1	
2. WELI	L PURGE a. Purge		Geotech	bladder pu	mp with dr	op tube ass	sembly				
	- Tempe - pH ± 0	rature ±	3%	ed (see wo - D.O. ± - ORP ± - Drawdo	10% (value 10mV	es >0.5 mg/	L)	- Turbidit - Remove	•	ım 1 screen vo	lume
	c. Field T	esting Eq	uipment u	ısed:	Make		Model			Serial Number	r
Time	Volume Removed	Temp		0 0 1		000	-				
(24hr)	(liters)	(°C)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color / Oc	tor
905	(,	16.10	4.20	0.132	9.72	759.6	-	800	27.12		non
915		15.85	4.16	0.148	7-17	237.7	736	775	27-14	-	rond
925		15.69	418	0.326	5.96	168.0	49.3	775	27.18	11	conv
930	5941	15.68	409	0.774	5.06	785.6	70.1	785	27.72	L(
940		15.81	4.09	0.318	4.10	288.3	8.71	775	27.76	cléaren	· Ingin
950	10941	15.43	4.10	0-318	47.19	1.822	3.14	775	27.27	1,	
1000		15.95	4.15	0.319	3.71	215.7	3.01	775	27.79	ve	
-	d. Accep		eria pass/			Yes	No	N/A		(continued on back)	
12	Has re Have		rbidity bee								
3. SAMF	PLE COLL	ECTION:	12	Method:	Geotech b	oladder pum	np with dro	p tube ass	embly		
	(#)				-						
	5-6W-06				tainer type 0-mL vials	3		<u>Preser</u> HCl		nalysis Req. VOCs	Time
RPOWS-S	5-6W-06	242615			1-L amber	2		none		1,4-Dioxane	1028
Commen	ts	7.5941	1 60	ten w	ish to	ubing					
	1				1	/					
Signature	•										

Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

BPOW 5-5

(00)11111000 11	rom front) Volume									
Time (24 hr)	Removed (Liters)	Temp (°C)	рН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1010	15 741	15.95	4.16	0-719	7.57	715.4	_	7775	27.36	i/
1015		16,02	4.15	0.319	7.56	214.8	3.94	775	27.70	71
1070	17971	6.00	4.14	0.319	2.49	218.6	_	775	77.30	Sungla
1075						-				Sungla
								-		
				i i						
			8							
			2							
							V 5			
						_				
			5.							.04

Well ID:	BPOW56

Client:		/IRP Beth				Date:	6/2	/15		Start <u>6830</u>	
Project N		6026652		Brows	~ (- //			F	Finish 1100	_am/pm
Site Loca Weather		DCIN	page !	1510000	3	- Co	ollector(s):				
	- 1		<i>y</i> , ,	1	-				> SCREE	'A.I	
1. WATI		•		d from Top	-					,~	
		Well Lengt		_	c. Length	of Water Co	olumn: 5	<u>87. </u>	Ca	sing Diameter 4-inch F	
	b. Water	Table De	pth: <u>27,6</u>	<u>9</u> ft	d. Calcula	ated System	n Volume (see back)		3 GALLON	5
2. WELI	L PURGE										
	a. Purge	Method:	Geotech	bladder pu	mp with dro	op tube ass	embly				
	b. Acceptance Criteria defined (see workpla - Temperature ± 3% - D.O. ± 10% - pH ± 0.1 unit - ORP ± 10m - Sp. Cond. ± 3% - Drawdown					s >0.5 mg/l	_)	- Turbidit - Remove		m 1 screen vo	olume
	c. Field T	esting Eq	uipment u	sed:	Make		Model SS6 m			Serial Number	
					HAD	INA	(+)	98703		63982	
Time	Volume	Tomp		C-	- 50	ODD	Translation	Flor Pote	D. 11.1		
Time (24hr)	Removed (liters)	Temp (°C)	pН	Sp. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color / C)dor
0045	1	18.06	7	0.136	13,27	200.2	2.31	300	27.69	CLEAR/A	
0855	2		5.19		5.25	246.4		300	27.69	4	,
0900		15.71	4.63	0.175	2.19	769.9	3.15	400	77.82	k _t	
1910		14.81	481	661.0	3.84	254.6	2.68	450	27.89	/+	
1920		15.18	5.41	0.164	1.69	221.4	916	300	27 93	turoidno	n.
8940		22.22	6.85	0.447	2.37	121.8	>1,100		27.94	(104091	
(1950		31.69	6.92	0.477	0.13	106.0	>1,100		27.96	a	
		tance crit	•	fail		Yes	No	N/A		(continued on back)
		•		n removed en reached							
				_				K			
	lf i	paramete no or N/A	- Explain	below.	purge ti	ne of ¿) hours	Par	The SF	P) reac	hod
3. SAMF	PLE COLL	ECTION:		Method:	Geotech b	ladder pum	p with dro	p tube ass	embly		-
Sample I	D 15-6-6	w - 0630	1)5		tainer type 0-mL vials		containers	<u>Preser</u> HCI		nalysis Req. VOCs	Time
RASUS	-6-6w	- 0639	15		1-L amber			none		1,4-Dioxane	1100
						-					
Commen	nts										
			5/1	1				-			
Signature	e (1//	19								

Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID: BPOW 5-6

(continued										-
Time (24 hr)	Removed (Liters)	Temp (°C)	pН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1000		18.50	6.60	W.213	2.61	(570	>1,160		27.97	Cloudy non1
Control of the Contro	pop no	1/24	5.34	0.155	1.07	161.5	960	600	28.00	1(
1020	10. 30	20.88	8.14	Q. 116	322	223.3	685	900	98,00	
1030		51.05		0.114	2172	221.5	51.6	400	94.00	4
1040		2191	5.08	0.114	318.2	219.1	49.1	200	28.00	(1
(650		91.64	5.07	Q.115	217.0	318.8	46.9	200.	24.01	· ·
100	33	20.92	5.04	0-115	1.39	2303	37.6	200	28.00	Clear I non
22.2	13			17 1	3				- C - C - C - C - C - C - C - C - C - C	
			Fi							r .
									5%	
								7.11		
				,						
				П						
	.0									93
										П
						-				

Well ID: RE/18D/

Client: Project N		/IRP Beth 6026652				Date:	6/2	4 /15		Start <u>0870</u> Finish_1030	
Site Loca		PINEN				-				111311_1030	ampin
Weather	Conds:		SONNY			C	ollector(s):	<u> </u>	WR16H	7	
1 WATI	ER LEVEL	DATA: (measure	d from Top	of Casino		5-796				
		Vell Lengt		-	_	of Water Co			•	sing Diamete	r/Matorial
										4-inch	
		Table De	otn: <u>67,5</u>	<u>υ</u> π	d. Calcula	ated Systen	n volume (see back)		BEALL	
2. WELI	PURGE a. Purge		Geotech	bladder pu	mp with dro	op tube ass	embly				
	- Tempe - pH ± 0	rature ± 3		ed (see wor - D.O. ± - ORP ± - Drawdov	10% (value 10mV	s >0.5 mg/l	L)	- Turbidit - Remove		m 1 screen vo	olume
	c. Field T	esting Eq	uipment u	ised:	Make		Model			Serial Number	er
	Volume					× .					
Time (24hr)	Removed (liters)	Temp (°C)	рН	Sp. Cond. (mS/cm)	DO (mg/L)	ORP (m)()	Turbidity	Flow Rate	Depth to	Color / C) de a
0820	(iiters)	19.37	6.72	0.055	(mg/L) 5,92	(mV)	(NTU)	(ml/min) 400	water (ft)	Color / C	7
0830		16,88	7.01	0,045	3,66	307.1	105	400	27.30	CLO DY	/ NONE
0840			8,10		2,40	3866	97.7		27.30	35	,,
0850		16.21		0.039	2.03	434.8	85,4	400	27.30	65	(1)
0900		16,80	8.00	0,036	7.02	401.0	66.4	400	27.30		
0910	5 (MI	15,49		0.036		425.6	50.0	500		10	~1
0920	JOHU	15.57	8.04		3,15		27.0		27.30	cicial	
0120	d. Accen	tance crite		0,036 fail	3,13	407.3 Yes	No	600 N/A	27.40	(continued on back	
	Has re Has re Have	equired vo	lume bee bidity bee s stabilize	n removed en reached ed						in the second se	,
3. SAMP	LE COLL	ECTION:		Method:	Geotech b	ladder pum	p with dro	p tube ass	embly		
Sample II		062420	15		tainer type 0-mL vials	No. of 0	containers	Preser HCI		nalysis Req. VOCs	Time jo30
.3	18	6.0			1-L amber	2		none		1,4-Dioxane	1030
Commen	ts						×			-	
		1	12								
Signature	<	1	K								

RE118D1 2 of 2

Volume /	Linear Ft	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
- 0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

RE118 DI

(continued f	continued from front) Volume										
Time (24 hr)	Removed (Liters)	Temp (°C)	рН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor	
0930			7.96	0.036	5.06	381.5	24.5	600	27.50	CLEAR/NONE	
0940	9 GALL			0.036	2.29	387.2	20.2	600	27.50		
0950		15.66	7.93		1,99	381.4	16.5	600	27.50	(' ''	
1000		15.70	7.40	0.036	1-76	375-1	16.2	600	27.52	a H	
1010		15.69	7.91	0.036	1.64	376.7	14.8	600	27.52	a h	
1070		15.67	7.90	0.036	[.63	376.9	10.1	600	27.52	in the	
1025		15.61	7.90	0.0%	1.63	378-7	1	600	77.53	le ve	
1070		3								Sangh 1!	
									1		
		-						ă.			
							-	= 5:			
										*	
	-,										
	12]	
	L		L								

Well ID:	RE 11701
----------	----------

Client:		/IRP Beth 6026652				Date:	6/ 2	/15	Time:	Start /2/5	
Project N Site Loca Weather	ation:	Sus	om Cl 80°Fs		oudy	- - - c	ollector(s):	JC	/GH	Finish	am/pm
1. WAT	ER LEVEI	_ DATA: (measure	d from Top	o of Casing	g)		12			
	a. Total \	Well Lengt	h: \$7 3	≤_ ft	c. Length	of Water C	olumn: <u>S</u>	49.82 f	t Ca	asing Diamete	er/Material
	b. Water	Table De	oth: <u>25</u> -	<u>18</u> ft	d. Calcula	ated Syster	n Volume (see back)]6.	_4-inch	<u>PVC</u>
2. WELI	L PURGE a. Purge		Geotech	bladder pu	ımp with dr	op tube ass	sembly				
	Tempe - pH ± 0	rature ± 3	3%	ed (see wo - D.O. ± - ORP ± - Drawdo	10% (value 10mV	es >0.5 mg/	L)	- Turbidit - Remov	-	um 1 screen v	olume/
	c. Field T	esting Eq	uipment ι	ısed:	Make		Model			Serial Numb	er
	Volume								4		
Time	Removed	Temp		Sp. Cond.	DO	ORP	Turbidity	Flow Rate	Depth to		
(24hr)	(liters)	(°C)	рН	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	Color /	Odor
1222		17.16	3-61	0.041	4.61	395-0	155	600	75.25	cloudy	Inom
1235		17-77	3.35	0.079	2.82	416.8	152	600	25.74	Le	
1245	¥	17.17	2.41	0.030	3.08	471.6	68.3	600	25.19	h	
1255	Sgallons	17.10	2.14	6.030	3.14	494.5	46.9	600	25.18	li li	*
1305		17.39	3.35	6.030	3.03	493.9	32.9	600	25.18	1)	
1315		17.78	3.06	0.050	7.89	4615	24.7	900	25.18	А	
1325	10 941	17.75	3.17	0.030	7,00	454.5	15.0	900	75,19	(1	
	Has re Has re Have	•	lume bee bidity bees s stabilize	n removed en reached ed		Yes	No	N/A		(continued on bac	k)
3. SAMP	LE COLL	ECTION:		Method:	Geotech b	ladder pum	ıp with dro	p tube ass	embly	Þ	
Sample I	D -61W-062	57015			itainer type I0-mL vials	No. of 6	containers	<u>Preser</u> HCI	vation A	nalysis Req. VOCs	Time / <u>///o</u>
RE11701	-GW.06	252015			1-L amber 2 none				1,4-Dioxane	1418	
Commen	ts							+			
Signature	, I.										

Volume /	Linear F	. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID:

(continued	from front) Volume									
Time (24 hr)	Removed (Liters)	Temp (°C)	pН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1335		16.97	3.10	0.030			14.0	800	25.15	Clear/hom
1345 1356 1405			2.91	0.079	7.12	467,2	9.57	800	25.15	ય
1356	15 an	16.71	3.21	0-078	3.08	448.	8-82	800	75,15	le
1405		16.47	7.27	0.029	7.11	450.6	7.46	800	25.14	Sample
1410										Sumple
			9	20						
										74
	1:		II XXV.		4.7					
					-					
									-	
							-			
					-					
									-	
									-	

Well ID:	REL	19 -	Di
			. sade

Project No):	6026652		A (Mas	sa pequa)	_ Date: _	81	7 115	Time:	Finish 145	
Site Locati Veather C		Joseph	Asilin. I	(1.(v)	super say		collector(s):_((Hid	S	_
a	a. Total W	Vell Lengt	h:		c. Length	g) of Water C ated Syster			ft C	asing Diameter 4-inch F	
. WELL			Geotech	bladder pu	mp with di	rop tube as:	sembly				
t	o. Accept - Temper - pH ± 0	ance Crit	eria define 3%	ed (see wo	rkplan) 10% (value 10mV	es >0.5 mg/			ty ± 10% re a minim	um 1 screen vo	olume
(c. Field T	esting Eq	uipment u	ised:	Make	**	Mode 556	hes		Serial Numbe	г
				e * .	- 41	ANN.A	H198			986362	
Time	Volume Removed	Temp	10 Juli-	Sp. Cond.	DO ,	ORP	Turbidity	Flow Rate	Depth to		
(24hr)	(liters)	(°C)	рН	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	Color / Od	or
1015	1	15.88	5.01	0.038	2.73	- 113.9		650	25.57	Stightly C	and of he
1020	- 5	15.69	5,09	.035	1,95	117.2		700	25.57	Singhely C	budy
025		19.64	4,98	,032	1.60	116.2		650	25,67	Stightle	
030		15.53	4.76	530	1.28	115.8	1	650	25.57	Slight 4 doudt	
10:35		15,57	10 11	.029	97	115.5		700		Stight, clean	
	200	15.63		.028	. 85	115.4	391	650	25.57	Slight cloud	y Shepe
1:40		15.45		,027	,80	114.9	300	500	25.57	Slightly Cloud	
0:45	d Accep	- 12	eria pass/		700		No	N/A	7.31	(continued on back)	-(7)///
	Has re Has re Have	equired vo equired tu paramete	olume bee	n removed en reached ed						4.0	
s. SAMP	LE COLL	ECTION		Method:	Geotech b	oladder pum	p with dro	p tube ass	embly		
Sample IC	101-0	3W-0			tainer type 0-mL vials	3	containers	HCI		vocs	Time 1(45
REI	-	MSMSD . C	081315		1-L amber			none	•	1,4-Dioxane	1/45
KE1190 KE11	901-GW	- WM20-	081215		MONLU			tte		VOCs_	(14)
			20	1							
سسند	_	1	19	15	7						_
signature		X	_								

/olume /	Linear Ft	. of Pipe		
ID (in)	Gallon	Liter		
0.25	0.0025	0.0097		
0.375	0.0057	0.0217		
0.5	0.0102	0.0386		
0.75	0.0229	0.0869		
1	0.0408	0.1544		
1.25	0.0637	0.2413		
1.5	0.0918	0.3475		
2	0.1632	0.6178		
2.5	0.2550	0.9653		
3	0.3672	1.3900		
4	0.6528	2.4711		
6	1.4688	5.5600		

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Wel	IID.
VVEI	III.

Time	Volume Removed	Temp	pН	Spec. Cond.	DO	ORP	Turbidity			Color/Odor
(24 hr)	(Liters)	(°C)	11.110	(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	[at 1]
0:50		15.5	4.42	.027	.74	114.60	256	700		Bling hty cloudy Ishimme
1:00		15.11	4.4	,026	,70	114.4	169	750	25.57	Slightle loub / shimm
1:05		15.54	U1412	.026	.79	115.8	176	700	25.57	Stight + Cloudy shown
1:10	$t \in \mathcal{G}$	15.5	4.47	1026	.67	174.8	122	700	25.57	Klightli Cloudelshit
1:15		15.5	4.52	.024	-63	112.1	90	700 mL	25.57	Stant Cloud / shimmer
1:20	- 10	15.62	4.49	.025	,59	112.5	73.3	600	4333	25.59 6 (13hx)+Cloudes
1:25	-		4.48	.025	.56	112.1	64.2	650	25.57	Stand+ Close Shim
:30		15.62		· D25	.58	m. 5	65.9	650	25.57	Signof Clouded Ishin
:35			4.56	·025	.60	111.2	58.5	600	25.57	more clear
1:40		15.6	4.59	,025	. 58	110.7	60.1	600	25-57	mocecloax
:45	1800)	15.71	W.64	.025	,52	108.8	48.8	6000	25.57	more clear clear a 1211 cloudy
.00	15001	111	101	.000	7001	100.5	10-0	(200	0037	THE CHARLE
			_				75		-	
	-									
									-	
						-				200
								T. A. T		
	-									
					-					
-										

	0	
R	ESOLUTIO	N
	ONCH TRAM	-

t: ect

the A Well ID: BPON5-7

Client		WIRP Bethpage	e		Dat			on Ke		
	ct No:	60266526			_ Date	e: 6/1	Z /15	Time:	Start_// .:2	am/p
	ocation:	BPOWS	-7		-				Finish	am/p
vveat	her Conds:	Junny 8	40F. Slice	ht wind	8-4	Collector(s)		42.0		
1. W	ATER LEVE	EL DATA: (mas	9	To rom	- WINN	Collector(s)	FIS	c/		
	a Total	EL DATA: (mea	sured from T	op of Casi	ng)					
		Well Length: S		c. Lengt	n of Water	Column: _		ft C	asing Diam	eter/Materi
	b. Wate	r Table Depth:	25.10ft	d. Calcu	lated Syste	m Volume	(see back)		_4-Inc	ch PVC
2. WE	LL PURGE	DATA					(_	
	a. Purge	Method: Geo	tech bladder	oump with d	rop tube as	sembly				
	b. Accep	otance Criteria	defined (see w	(orkolon)		Comply			- 6	
	- Temp	erature ± 3%	- D.O. :	± 10% (valu	es >0 5 ma	n s	T. Jakoba		-	
	- pH ±	0.1 unit	- ORP	± 10mV	cs -0.5 mg	/L)	- Turbiai	ty ± 10%		
	- Sp. Co	ond. ± 3%	- Drawd	own <0.3'			- Kelllov	e a minim	um 1 screer	volume
	c. Field	esting Equipme	ent used:	Make		Madel			1	
		7.00	20. 20.00	Hann		Model	dan		Serial Num	
				LISI		HI 98 556 M	705		7863	
Time	Volume	4				236 N	13		14C.100	1555
Time lite _(24hr)	Removed	Temp	Sp. Cond.		ORP	Turbidity	Flow Rate	Depth to		
7.7	(liters)	(°C) ph	, , , , ,	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	Color	Odor
11:2		19.25 5.	40 ,051	5,85	160,	19.7	£350	25,10	Clear	/ m
11:35	-	19.59 5.	28 ,049	2.70	147,5		350	25,10	Digney	(1)
1140	_	19.25 5.8	30 2085		1/3.0	>1100	and the second			y/No
11:48		19.14 5:				17 1 17 2 11	475	25.08	milado	/ Don
					124.8	71100	450	25.09	Very Clou	Ry/N
11:00		19.31 5.		.78	1274	> 1100	450	25.00	Macy cloud	W opale
11:58	-	18.96 5.	35,055	. 68	135,0	-1100	450	25.08	Yery m.	boy
12:00		9.09 5.3	2 .53	663	139,2	71100		5,05		learing
	d. Accept	ance criteria pa	ss/fail		Yes		N/A	8)100	(continued on ba	ck) ///
		quired volume b						1 0		100
		quired turbidity t								
- '		arameters stabi			EX .					
	11 110	o or N/A - Expla	Turbiat	2 Chable	after .	3hrr +	1000	~	~1	
				72403 /	ATTO .		(300	un Va		
SAMP	LE COLLE	CTION:	Method:	Geotech bl	adder pum	p with drop	tube asse	embly	5100	
اا مامسم	_				-b		2.000	ald v	-turis Bog	Timo
RPO.		-512180 M		tainer type 0-mL vials	No. of c	ontainers	Preserv		nalysis Req. VOCs	Time
_		-MO31218		1-L amber	2		HCI none		1,4-Dioxane	14:38
- W-	Dune -	081215		O-ml vi			HCL		VOCS	14:35
	200 -	081512		-Lamb			1	1	, 4 Diox	one /
GW-)	1110				4		1 on	0.		

Linear F	t. of Pipe
Gallon	Liter
0.0025	0.0097
0.0057	0.0217
0.0102	0.0386
0.0229	0.0869
0.0408	0.1544
0.0637	0.2413
0.0918	0.3475
0.1632	0.6178
0.2550	0.9653
0.3672	1.3900
0.6528	2.4711
1.4688	5.5600
	Gallon 0.0025 0.0057 0.0102 0.0229 0.0408 0.0637 0.0918 0.1632 0.2550 0.3672 0.6528

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

(continued f	Volume Removed (Liters)	Temp (°C)	рН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
12.05	5 GAL	19,33	5.28	.051	,59	1434	366	500	-	Gerring Cleanersitt
12:15	_	17.96	5.16	6047	065	1000	317	650	25,06	Silver Light/Non
12:20	-	18.01	5.23	:047	.49	1502	297	656	28.05	Cloudy Siltsized
12:28	_	17.87	5.25	.046	644	149.3	269	675	25.07	particles / None
12:30	-	18009	5.06	0045	,39	120.0	210	525	-	No visible part cake
12:35	10 GAL	18.14	5.20	1045	134	1512	215	650	25.02	Very fow Sized pacticular
13:20	-	18.19	524	0045	133	150.7	224	625	25.02	Mary small visable part of
12:25	_	1820	523	-045	,30	1530	229	4.7	28.00	very fine ptable part
12:80		1826	5.26	1045	,26	1526	210	675		very fine payricules
13:00		18.49	5.24	0044	198	122.8	202	750	25.00	Cloudy no visable
> 13:08	-		5128	.045	128	152.6	204	500	25.00	Cloudy No VISODIE
3 13:10		19,00	5.07	045	.31	154.6	142	500	25,00	Cloudy No trouble
13:25		19140	5138	1048	.35	154.7	105	500	-	Slightly cloudy
0 13:30	_		5.27	1045	.34	55.3	140	500	24.95	Slighely Cloudy/
314		19,55		045	.28	153.8	132	450	24.95	Slightly Cloudy 1
13:48		19,45	5.29	1045	,24	152.6	126	450	341.94	Slighty fourly
13:58	670 GN		5,23	, 043	e21	58.0	118	400	24.95	Sightly Cloudy 1
14:00		19,34	1.0	044	.19	1545	97.7	450	24.90	1. ght youdy 1
14.05	~	18.90	5.25		.19	156.8	109.	450	24.98	light Cloudy for
14:10		19,37	5.30	.044	81.	153.6	120	400	21.90	Slightly Cloudy !
14/2	- 1	19.58	-			~	107	-		-
14:00	28GAL	10.37	17 / 17 / 17 /	0044	.18	153,2	97.8	400	1-	of gluy cloudy
7	00.	1828	5,27	-043	. 18	185.2	983	400	24.89	A race

Section 4

Analytical Data Validation

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage				
Laboratory:	Katahdin Analytical				
Sample Delivery Group:	SI3416				
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)				
Validation Level:	3				
Project Number:	0888812477.SA.DV				
Prepared by:	Dana Miller/Resolution Consultants Completed on: 07/17/2015				
Reviewed by:	Tina Cantwell/Resolution File Name: SI3416_8260C_8270D Consultants				

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 20 to 21 May 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants, April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants, November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants, August 2014).

Sample ID	Matrix/Sample Type	Analysis
BPOW5-4-GW-052015	Groundwater	8260C/8270D_SIM
TRIPBLANK 1-052115	Trip Blank	8260C
RE117D1-GW-052015	Groundwater	8260C/8270D_SIM
DUP-GW-052015	Field Duplicate	8260C/8270D_SIM
RE117D2-GW-052015	Groundwater	8260C/8270D_SIM

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (United States Environmental Protection Agency [U.S. EPA] 2006), *SW-846 Method 8270D, Semivolatile Organic*

Compounds by Gas Chromatograph/Mass Spectrometry (U.S. EPA 2007), U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (U.S. EPA, June 2008), and Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements, and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration (ICAL)/continuing calibration verification (CCV)
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- X Matrix spike (MS) and/or matrix spike duplicate (MSD) results
- X Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) results
- ✓ Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- The ICAL percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met
- The initial calibration verification standard percent recovery acceptance criteria were met
- The CCV method percent difference or percent drift and response factor acceptance criteria were met
- The retention time method acceptance criteria were met

Data qualification to the analytes associated with the specific calibration verification was as follows:

ICAL Linearity Non-conformance:

Criteria	Actions			
Criteria	Detected Results	Non-detected Results		
%RSD >15% and quantitation based on mean response factor (RF)	J	UJ		

Notes:

RSD = Relative standard deviation

J = Estimated

UJ = Undetected and estimated

CCV Linearity Non-conformance:

Cuitouis	Actions			
Criteria	Detected Results	Non-detected Results		
%Difference or %Drift > 20%	J	UJ		

Notes:

J = Estimated

UJ = Undetected and estimated

ICAL and CCV non-conformances are summarized in Attachment A in Tables A-1 and A-2.

Matrix Spike/Matrix Spike Duplicate Results

MS/MSDs are generated to provide information about the effect of each sample matrix on the sample preparation and the measurement methodology. MS/MSD percent recoveries (%Rs) assess the effect of the sample matrix on the accuracy of the analytical results and %Rs above the recovery control limits could indicate a potential high result bias while %Rs below the recovery QC limits could indicate a potential low result bias. The relative percent differences between the MS and MSD results are evaluated to assess sample precision. The MS/MSD %Rs and relative percent differences were reviewed for conformance with the QC acceptance criteria. Non-conformances are summarized in Attachment A in Table A-3. Data qualification to the analytes associated with the specific MS/MSD non-conformances were as follows:

MS/MSD Non-conformances:

Cuitouin	Action			
Criteria	Detected Compounds	Non-detected Compounds		
%R>Upper Limit	J	No qualification		
20% <u><</u> %R < Lower Limit	J	UJ		
%R <20%	J	Rejected		

The MS/MSD recovery control limits do not apply for the MS/MSD performed on sample locations where the analyte concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Notes:

%R = Percent recovery

RPD = Relative percent difference

J = Estimated

UJ = Undetected and estimated

Laboratory Control Samples / Laboratory Control Sample Duplicate

LCS %Rs is used to monitor the overall accuracy and performance of each step during analysis, including sample preparation. The laboratory analyzed LCSs in duplicate when MS/MSDs were not reported in individual SDGs. In these instances, the laboratory determined precision between the duplicated values. Non-conformances are summarized in Attachment A in Table A-4. Data qualification to the analytes associated with the specific LCS / LCS duplicate was as follows:

Laboratory Control Sample / Laboratory Control Sample Duplicate Non-conformance:

Cuitouia	Action		
Criteria	Detected Compounds	Non-detected Compounds	
%R or RPD > UL	J	No qualification	
%R < LL	J	UJ	
%R < 20%	J	Rejected	

Notes:

%R = Percent recovery

RPD = Relative percent difference

UL = Upper limit LL = Lower limit J = Estimated

UJ = Undetected and estimated

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

Two dichlorodifluoromethane non-detect results were rejected in associated samples BPOW5-4-GW-052015 and RE117D2-GW-052015 due to %R < 20% in the LCS. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Laboratory analysis for this project had a completeness goal greater than 95% to account for unanticipated results that may be rejected during data validation. A total of 329 measurements were analyzed. Of this total, 327 measurements were considered valid and 2 measurements were rejected (flagged "R"). Analytical completeness was calculated to be 99.4%. Therefore, the analytical data met the project analytical completeness goal of 95%. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A
Non-Conformance Summary Tables

		Initial Calibrati	Table A-1 on Linearity	Non-Confori	mance	
Method	Analyte	ICAL ID	%RSD	Limit	Associated Samples	Qualifier
8260C	Chloroethane	GCMS	32.49915	≤15%	BPOW5-4-GW-052015	UJ
8260C	Chloroethane	GCMS	32.49915	≤15%	TRIPBLANK 1-052115	UJ
8260C	Chloroethane	GCMS	32.49915	≤15%	RE117D1-GW-052015	UJ
8260C	Chloroethane	GCMS	32.49915	≤15%	DUP-GW-052015	UJ
8260C	Chloroethane	GCMS	32.49915	≤15%	RE117D2-GW-052015	UJ

Notes:

ICAL ID Initial calibration identification %RSD Relative standard deviation

GCMS

Gas chromatography/mass spectrometer Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias UJ

	Table A-2 Continuing Calibration Verification Non-Conformance					
Method	Analyte	CCV ID	%D	Limit	Associated Samples	Qualifier
8260B	Chloroethane	P1061.D	20.84107	20	TRIPBLANK 1-052115	UJ
8260B	Chloroethane	P1061.D	20.84107	20	RE117D1-GW-052015	UJ
8260B	Chloroethane	P1061.D	20.84107	20	DUP-GW-052015	UJ
8260B	Chloroethane	P1107.D	20.74386	20	BPOW5-4-GW-052015	UJ
8260B	Chloroethane	P1107.D	20.74386	20	RE117D2-GW-052015	UJ

Notes:

CCV ID Continuing calibration verification identification

Percent difference %D =

UJ Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias

Table A-3 Matrix Spike/Matrix Spike Duplicate Non-Conformance							
Spiked Sample	Analyte	Sample Result (µg/L)	Spike Added	MS %R	MSD %R	%R Limits	Qualifier
BPOW5-4-GW-052015	Xylenes, total	1.5 U	150	79.3*	107	89-116	UJ
BPOW5-4-GW-052015	1,2-Dichloroethene, total	1.0 U	100	83*	109	84-121	UJ

Notes:

Micrograms per liter μg/L Matrix spike MS =

Matrix spike duplicate MSD %R Percent recovery

Bold* Percent recovery less than lower control limit =

U

UJ Non-detected analyte in associated sample qualified estimated "UJ"

Table A-4 Laboratory Control Sample / Laboratory Control Sample Duplicate Non-Conformance						
Associated Sample	Analyte	Batch	Sample Results (µg/L)	%R	Limits	Qualifier
BPOW5-4-GW-052015	Dichlorodifluoromethane	WG163531	1.0 U	18.2*	30-155	UR
RE117D2-GW-052015	Dichlorodifluoromethane	WG163531	1.0 U	18.2*	30-155	UR

Notes:

μg/L = %R = **Bold*** = UR =

Micrograms per liter Percent recovery Percent recovery less than lower control limit Non-detected analyte in associated sample qualified rejected "UR"

Attachment B Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

Attachment C
Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
lc	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
х	Percent solids
У	Serial dilution results
Z	Interference check sample results (metals)

Attachment D
Final Results after Data Review

Sample Delivery Group Lab ID Sample ID Sample Date Sample Type

SI3416 SI3416-1RA2 BPOW5-4-GW-052015 5/20/2015 Groundwater

			Sample Date Sample Type		20/2015 undwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1.1.1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	- KC
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U	+
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	+
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	+
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U	+
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U	+
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	+
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	+
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.75	U	+
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	+
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U	+
8260C	1,2-DICHLOROETHANE 1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	UJ	-
8260C	, ,	78-87-5	UG_L	0.5	U	m
	1,2-DICHLOROPROPANE				U	+
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5		+
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	1.4	J	4
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	_
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UR	1
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	1
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	1
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	1
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	1
8260C	O-XYLENE	95-47-6	UG L	0.5	U	1
8260C	STYRENE	100-42-5	UG L	0.5	U	1
8260C	TETRACHLOROETHENE	127-18-4	UG L	0.5	Ü	1
8260C	TOLUENE	108-88-3	UG L	3.4		\top
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U	\top
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	Ü	\top
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	+
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	+
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	+
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	UJ	m
8270D_SIM	1.4-DIOXANE	123-91-1	UG_L	0.68	00	+'''-

Sample Delivery Group Lab ID Sample ID Sample Date SI3416 SI3416-2 TRIP BLANK 1-052115 5/21/2015 Trip Blank

			Sample Date Sample Type	5/21/2015 Trin Blank		
Method	Analyte	CAS No	Units	Result		RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	V	1
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5		1
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	_	1
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	Ü	1
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	Ü	1
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5		1
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5		1
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	Ü	1
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	1
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	Ü	1
8260C	1,2-DICHLOROPROPANE	78-87-5	UG L	0.5		1
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5		1
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5		1
8260C	2-BUTANONE	78-93-3	UG L	2.5	Ü	1
8260C	2-HEXANONE	591-78-6	UG L	2.5		1
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5		+
8260C	ACETONE	67-64-1	UG L	2.5		+
8260C	BENZENE	71-43-2	UG L	0.5		+
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5		+
8260C	BROMOFORM	75-25-2	UG L	0.5	_	+
8260C	BROMOMETHANE	74-83-9	UG L	1		+
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5		+
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5		+
8260C	CHLOROBENZENE	108-90-7	UG L	0.5		+
8260C	CHLOROETHANE	75-00-3	UG L	1		С
8260C	CHLOROFORM	67-66-3	UG L	0.5		+-
8260C	CHLOROMETHANE	74-87-3	UG L	1	_	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5		1
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	Ü	1
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	_	+
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	_	1
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	Ü	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5		1
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	_	1
8260C	M- AND P-XYLENE	108-38-3/106-42		1	_	1
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	Ü	1
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5		1
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	Ü	1
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	Ü	1
8260C	O-XYLENE	95-47-6	UG_L	0.5		1
8260C	STYRENE	100-42-5	UG_L	0.5	Ü	1
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	_	1
8260C	TOLUENE	108-88-3	UG L	0.5		1
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	_	1
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5		1
8260C	TRICHLOROETHENE	79-01-6	UG L	0.5		1
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1		1
8260C	VINYL CHLORIDE	75-01-4	UG L	1		1
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	1
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	NA		+
0_, 0D_OIN		120 71 1		1 1/ 1	I .	

Sample Delivery Group Lab ID Sample ID Sample Date SI3416 SI3416-3 RE117DI-GW-052015 5/20/2015 Groundwater

			mple Type	•	Qual	
Method	Analyte	CAS No	Units	Result		RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	U	
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	Ü	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	İ
8260C	TOLUENE	108-88-3	UG_L	3.5		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	İ
8260C	TRICHLOROETHENE	79-01-6	UG L	8.4		1
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	Ü	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	Ü	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.18	Ü	

Sample Delivery Group Lab ID Sample ID Sample Date SI3416 SI3416-4 DUP-GW-052015 5/20/2015 Field Duplicate

	Sample Type Field Duplicate			U U U U U U U U U U U U U U U U U U U		
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	Ü	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1		
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	Ü	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	Ü	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	Ü	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG L	0.5	Ü	
8260C	STYRENE	100-42-5	UG L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	3.4		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	8.7		1
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	Ü	1
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	Ü	
8270D SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	Ü	

		Sa	Sample Delivery Group Lab ID Sample ID Sample Date Sample Type			SI3416 SI3416-5RA2 RE117D2-GW-052015 5/20/2015 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC			
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	Ū				
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U				
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	U				
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U				
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U				
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U				
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U				
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	U				
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U				
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U				
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U				
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U				
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U				
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U				
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U				
8260C	2-BUTANONE	78-93-3	UG L	1.4	J				
8260C	2-HEXANONE	591-78-6	UG_L	2.5	Ü				
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U				
8260C	ACETONE	67-64-1	UG_L	2.5	U				
8260C	BENZENE	71-43-2	UG L	0.5	U				
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U				
8260C	BROMOFORM	75-25-2	UG_L	0.5	U				
8260C	BROMOMETHANE	74-83-9	UG L	1	U				
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U				
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U				
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U				
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С			
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U				
8260C	CHLOROMETHANE	74-87-3	UG L	1	U				
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U				
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U				
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U				
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	Ü				
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UR	1			
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	<u> </u>			
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U				
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U				
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U				
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U				
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U				
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U				
8260C	O-XYLENE	95-47-6	UG L	0.5	Ü	†			
8260C	STYRENE	100-42-5	UG L	0.5	U				
8260C	TETRACHLOROETHENE	127-18-4	UG L	0.5	U				
8260C	TOLUENE	108-88-3	UG_L	5.1	-				
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U				
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U				
8260C	TRICHLOROETHENE	79-01-6	UG L	0.5	U	†			
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	Ü	†			
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	†			
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U				
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U				
02,00_011	1/ 1 010/0 1145	120 01 1	00_L	V. 17)	1			

Notes: UG_L = NA = Qual = RC = Micrograms per liter Not analyzed Final qualifier (Refer to Attachment B) Reason code (Refer to Attachment C)

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation —	NWIRP Bethpage
Laboratory:	Katahdin Analytical	
Sample Delivery Group:	SI4556	
Analyses/Method:	Volatile Organic Compounds by U.S. EF 1,4-Dioxane by U.S. EPA SW-846 Methor (SIM)	
Validation Level:	3	
Project Number:	0888812477.SA.DV	
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 07/30/2015
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI4556_8260C_8270D

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage Site on 24 and 25 June 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants, April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants, November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants, August 2014).

Sample ID	Matrix/Sample Type	Analysis
BPOW5-6-GW-062415	Groundwater	8260C/8270D_SIM
BPOW5-5-GW-062415	Groundwater	8260C/8270D_SIM
RE118D1-GW-062415	Groundwater	8260C/8270D_SIM
RE108D1-GW-062415	Groundwater	8260C/8270D_SIM
RE108D2-GW-062415	Groundwater	8260C/8270D_SIM
BPOW6-5-GW-062515	Groundwater	8260C/8270D_SIM
BPOW6-6-GW-062515	Field Duplicate	8260C/8270D_SIM
RE117D1-GW-062515	Groundwater	8260C/8270D_SIM
TRIPBLANK-062515	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (United States Environmental Protection Agency [U.S. EPA] 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA 2007), *U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, June 2008), and *Department of Defense Quality Systems Manual for Environmental Laboratories*, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements, and/or professional judgment were used as appropriate.

REVIEW FLEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration verification (ICV)/continuing calibration verification (CCV)
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample/laboratory control sample duplicate results
- NA Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Any OC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- The initial calibration percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met
- The ICV standard percent recovery acceptance criteria were met
- The CCV method percent difference or percent drift and response factor acceptance criteria were met
- The retention time method acceptance criteria were met

Data qualification to the analytes associated with the specific calibration verification was as follows:

ICV Recovery Non-conformance:

Critoria	Actions				
Criteria	Detected Results	Non-detected Results			
Recovery >120%	J	UJ			
Recovery < 80%	J	UJ			

Notes:

J = Estimated

UJ = Undetected and estimated

ICV non-conformances are summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

	Table A-1 Initial Calibration Verification Non-Conformance						
Method	Analyte	ICVID	%R	Limit	Associated Samples	Qualifier	
8260C	Chloroethane	P1539A	127.5	80-120	BPOW5-6-GW-062415	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	BPOW5-5-GW-062415	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	RE118D1-GW-062415	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	RE108D1-GW-062415	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	RE108D2-GW-062415	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	BPOW6-5-GW-062515	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	BPOW6-6-GW-062515	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	RE117D1-GW-062515	UJ	
8260C	Chloroethane	P1539A	127.5	80-120	TRIPBLANK-062515	UJ	

Notes: ICV ID Initial calibration verification identification =

%R Percent recovery =

Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias UJ

Attachment B

Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
lc	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
Х	Percent solids
у	Serial dilution results
Z	Interference check sample results (metals)

Attachment D Final Results after Data Review

		Sa	very Group Lab ID Sample ID mple Date mple Type	SI BPOW5-6 6/2	14556 4556-1 6-GW-0624 4/2015 Indwater	115
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1.1.1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	Ü	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	Ü	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	Ü	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG L	12		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	Ü	
8260C	BENZENE	71-43-2	UG L	0.5	Ü	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.74	J	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.45	J	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U	

	Sample II Sample Dat Sample Typ		Lab ID Sample ID mple Date	SI 4556-2 BPOW5-5-GW-062415 6/24/2015 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG_L	8			
8260C	BENZENE	71-43-2	UG_L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U		
8260C	BROMOFORM	75-25-2	UG_L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG_L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U		
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL CYCLOUEYANE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C 8260C	METHYLENE CHLORIDE O-XYLENE	75-09-2 95-47-6	UG_L UG_L	2.5 0.5	U		
8260C		100-42-5	UG_L	0.5	U		
8260C	STYRENE TETRACHLOROETHENE	127-18-4	UG_L	0.5	U		
8260C 8260C	TOLUENE	108-88-3	UG_L UG L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	-	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	1	
8260C	TRICHLOROETHENE	79-01-6	UG L	0.5	U	+	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U		
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.18	U		

		Sa	very Group Lab ID Sample ID mple Date mple Type	SI4556-3 RE118D1-GW-062 6/24/2015			
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG_L	2.7	J		
8260C	BENZENE	71-43-2	UG_L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U		
8260C	BROMOFORM	75-25-2	UG_L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG_L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	11	U		
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1 . 75	U		
8260C	METHYL CYCLOUEYANE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE O-XYLENE	75-09-2 95-47-6	UG_L	2.5	U		
8260C 8260C		100-42-5	UG_L UG L	0.5 0.5	U		
8260C	STYRENE TETRACHLOROETHENE	127-18-4	UG_L	0.5	U		
					_		
8260C 8260C	TOLUENE TRANS-1,2-DICHLOROETHENE	108-88-3 156-60-5	UG_L UG_L	0.38 0.5	J U	1	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U		
8260C 8260C	TRICHLOROETHENE TRICHLOROETHENE	79-01-6	UG_L UG L	0.5	U		
8260C 8260C	TRICHLOROFLUOROMETHANE	79-01-6	UG_L UG L	1	U		
8260C 8260C	VINYL CHLORIDE	75-69-4 75-01-4	UG_L	1	U		
8260C 8260C	XYLENES, TOTAL	1330-20-7	UG_L UG L	1.5	U		
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.18	U		

		Sa	Lab ID Sample ID mple Date mple Type	SI 4556 SI 4556-4 RE108D1-GW-062415 6/24/2015 Groundwater		
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	Ü	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	1		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	Ü	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	Ü	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	0.34	j	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	Ü	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	Ü	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	Ü	
8260C	2-HEXANONE	591-78-6	UG L	2.5	Ü	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	Ü	
8260C	ACETONE	67-64-1	UG L	2.5	Ü	
8260C	BENZENE	71-43-2	UG_L	0.5	Ü	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.34	J	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG L	1.4		
8260C	TOLUENE	108-88-3	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	110	J	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D SIM	1,4-DIOXANE	123-91-1	UG_L	5.2	U	

		Sample Deliv Sa Sa Sa	SI4556 SI4556-5 RE108D2-GW-062415 6/24/2015 Groundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.98	J	- 110
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	+
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	6.8	U	+
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	1.8		+
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	4.6		+
	1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	75-34-3 75-35-4				-
8260C	,		UG_L	6.6		-
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U U	+
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	· ·	+
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	+
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	+
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	_
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	8.1		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	_
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	_
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	1.5		1
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	+
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	3.5	- 03	Ť
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	+
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	8.1		+
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	+
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	+-
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	-
8260C	DICHLORODIFLUOROMETHANE		UG_L		U	-
	ETHYLBENZENE	75-71-8 100-41-4	UG_L UG L	1	U	-
8260C				0.5	U	-
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5		-
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	+
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	-
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	_
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	_
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	2.2		1
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	3900		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
3270D_SIM	1,4-DIOXANE	123-91-1	UG_L	6.1		

		Sample Delivery Group Lab I D Sample I D Sample Date Sample Type		SI 4556 SI 4556-6RA BPOW6-5-GW-062515 6/25/2015 Groundwater		
	Γ					T = 0
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	<u> </u>
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	—
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	<u> </u>
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	<u> </u>
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	<u> </u>
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	<u> </u>
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	<u> </u>
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	-
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	+
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	₩
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	4
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	<u> </u>
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	<u> </u>
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	11	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	1
8260C	TOLUENE	108-88-3	UG_L	0.76	J	1
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U	

		Sample De	elivery Group Lab ID		4556 556-7RA	
			Sample ID Sample Date	BPOW6-6		515
			Sample Type		ndwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	1	<u></u>	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U	

		Sample De	elivery Group		4556	
			Lab ID Sample ID	S14 RE117D1	1556-8 -GW-0621	515
			Sample Date		5/2015	313
			Sample Type		ndwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	110
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	Ü	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	Ü	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	Ü	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	Ü	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	Ü	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	Ü	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	Ü	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	Ü	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	Ü	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	Ü	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	Ü	
8260C	2-BUTANONE	78-93-3	UG_L	2.1	J	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	Ü	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	Ü	
8260C	ACETONE	67-64-1	UG_L	2.5	Ü	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	Ü	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	Ü	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	Ü	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	Ü	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	Ü	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	Ü	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	Ü	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	Ü	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	Ü	
8260C	O-XYLENE	95-47-6	UG_L	0.5	Ü	
8260C	STYRENE	100-42-5	UG_L	0.5	Ü	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	Ü	
8260C	TRICHLOROETHENE	79-01-6	UG_L	7.8		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	Ü	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	Ü	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	Ü	
	1					1

		Sample De	elivery Group Lab ID		4556 1556-9	
			Sample ID Sample Date	TRIPBLA	4/2015 4/2015	15
			Sample Type		Blank	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	<u> </u>
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	<u> </u>
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	11	U	<u> </u>
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	NA		

Notes: UG_L = NA = Qual = RC = Micrograms per liter Not analyzed Final qualifier (Refer to Attachment B) Reason code (Refer to Attachment C)

DATA VALIDATION REPORT

Regional Groundwater Investigation — NWIRP Bethpage			
Katahdin Analytical			
SI1453			
	by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion		
3			
0888812477.SA.DV			
Dana Miller/Resolution Consultants	Completed on: 04/31/2015		
Tina Cantwell/Resolution Consultants	File Name: SI1453_9060A_5310B		
	Katahdin Analytical SI1453 Total Organic Carbon (TOC) Method 5310B for Total Orga 3 0888812477.SA.DV Dana Miller/Resolution Consultants Tina Cantwell/Resolution		

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 9 March 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE117D2-SOIL-030915-788-790	SI1453-1	Soil	9060A
RE117D2-EB-030915	SI1453-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Katahdin Analytical discovered a QC error in Total Organic Carbon calculations, informed us, and has implemented corrective action provided in Attachment A. Attachment B provides final results after data review.

ATTACHMENTS

Attachment A: Katahdin Analytical Corrective Action Report

Attachment B: Final Results after Data Review

Attachment A Katahdin Analytical Corrective Action Report

KATAHDIN ANALYTICAL SERVICES, INC. - CORRECTIVE ACTION REPORT

Problem Identification	on (Person initiating CAR) N	Vame:	Leslie Dimond	Date: 08/28/2015
Discovered by Lab	oratory X	Discov	ered by Client (Compl	aint) Other
Details of Problem:				
by a factor of ten. Ger Calculations are set us method name, LOQ, process chains). This sample results, adjus was not adjusting LOT The lab had felt that to the lab decided to cha LOQ/LOD/MDL adjust	orge Brewer looked into the up to be performed automati LOD, MDL, limits and a spe is process chain contains all ted LOQs, LODs and MDLs Qs, LODs and/or MDLs for there wasn't really a standar ange this and use 500 mg a	matter ically in cific pro of the control of the control of the same of weights the street of the st	and found that their sa KIMS. Each product of cess chain for reporting alculations associated sults for QC samples. ple amount used, but of at amount, so this was andard and to incorports and and to incorports	nt the results for their samples seemed to be off mple results were calculated incorrectly. ode for a test contains information such as the g to the either the LOQ, LOD or MDL (i.e. three with a test including separate calculations for In October of 2014, a client asked why the laborally for an instrument dilution and total solids. not incorporated. After numerous discussions, ate any different amount into the cur Laboratory Information System (KIMS). The tion was wrong.
The formula was: AD)J. LOQ/LOD/MDL = LOQ/L	OD/MD	L * DF * (Sample amo	unt / 1000) * (100/TS).
calculations. Sample 2014, a data reviewe	results are checked in this	manner d limits v	, but adjusted limits are were not correct. This	ire checked at a frequency of 10% of all a not necessarily checked. In December of issue was reviewed with MIS, and it was changed to:
ADJ. LOQ/LOD/MDL	= LOQ/LOD/MDL * DF * (50	00 / Sar	nple Amount) * (100/T	6) (where 500 is the standard sample amount).
At the time this chang needed to be corrected		er the in	npression that the sam	ple calculation was also incorrect and also
The formula for the sa	ample result was: Results (ι		= <u>Total carbon</u> * sample amount / 1000	(100/TS) (where 1000 is a conversion factor)
This was incorrectly of	changed to: Results (ug/g)		<u>ll carbon</u> * TS Sample Amount)	
problem was not add during data review ar	ressed with the MIS departr	nent. H	owever, there were se	ing data review and manually corrected. The veral cases where this error was not caught s issue was brought to the attention of MIS and
	otal carbon * (100/TS ple amount / 1000)	3) (whe	ere 1000 is a conversio	n factor)
solids is not used in t		and MS	S/MSD samples are als	ated using different calculations since total o not affected because they use different
Associated Non-Co	nformances: List logbook	and pa	age numbers	
There are no non-cor	nformances associated with	this cor	rective action.	
Root Cause Investig	gation & Determination (To	be cor	npleted by Department	Manager, Operations Manager and/or QA
	elow and investigate to dete	rmine w	hether one of them, or	more than one, could be the cause of the
Possible Causes		- 1	Details	

KATAHDIN ANALYTICAL SERVICES, INC. - CORRECTIVE ACTION REPORT

Machine (Instrument)	KIMS – incorrect formulas were entered into the process chains for TOC in soil.
Method (or Process)	Katahdin's policy for data review: From the QAM: "For data that are reduced via computer, calculations are checked by the analyst (or designee) assigned to this task at a frequency designed to assure that the final data generation is valid." From SOP SD-904, Data Reduction, Review and Reporting: "All manual integrations, calculations and transcriptions are checked and 10% of all spreadsheet calculations are checked. The remainder of spreadsheet calculations is spot checked for potential anomalies."
,	Katahdin does not have a formal process for handling calculation changes to process changes in KIMS. A verbal request is made to MIS and the change is made. Although the KIMS system does have an audit trail to track dates of changes and calculation changes, the request for these is not documented.
Materials	Not Applicable
Maintenance (Is something not working correctly?)	Not Applicable
Man (training, human error)	All personnel involved with data review are aware of the requirement to hand check 10% of the sample results. In some cases this appears to have been done and when the results did not calculate correctly, they were corrected in KIMS. There was no communication that the error may affect other batches of samples. In other sample batches, the 10% hand check must not have occurred.
Mother Nature (accidents, power issues, beyond our control)	Not Applicable

Corrective Action Plan: Name: Leslie Dimond

Date: 08/28/2015

Details of Corrective Action Plan -

Querries were run through KIMS to generate lists for TOC in soil data entered into KIMS between two timeframes:

10/23/14 to 12/29/14 (incorrect LOQ/LOD/MDL adjustment) - 14 Work Orders were found in this timeframe

12/29/14 and 4/13/15 (incorrect sample calculation) - 16 Work Orders were found in this timeframe

The lab has reviewed all TOC in soil data from these time periods for accuracy. Some inaccurate data was found (as expected from the incorrect formulas). Some data was found to be correct. In these cases, MIS was able to determine, through the KIMS audit trail, that the data had been manually corrected.

A new form has been created for personnel to fill out when requesting calculation changes in KIMS. This form will ensure that MIS is clear on exactly what needs to be changed in KIMS. Through KIMS we are currently able to track formula changes (ie. the formula before and after the change) and when the change occurred. This new form will allow Katahdin to track the changes made by person requesting the change and why the change was necessary. Supervisor and QA/Management approval are required on these forms.

There also will be a mandatory retraining for all employees on Katahdin's policy for data review, stressing that 10% of all results generated from KIMS and spreadsheets need to be confirmed. Also, this retraining will stress the need for communication. If a problem is discovered with one batch of samples, then it might also be affecting other batches.

Additionally, when calculation changes are made, Katahdin must establish a time frame of 30 days or 10 workorders where

KATAHDIN ANALYTICAL SERVICES, INC. – CORRECTIVE ACTION REPORT

senior management or the Quality Assurance Officer must also check the new calculations.							
Review & Approval of Corrective Action Plan							
Supervisor Approval:	SIGN,		Date: 99.11.15				
Operations Manager Approval:	total J. had	eau	Date: 9:1/15				
Quality Assurance Officer: Luseic T	_U		Date: 09-11-15				
Monitoring of Corrective Action (To be	completed by QA Officer	and/or Operations	Manager): List details of follow-up				
Corrective Action Effective	Return to Control –	Yes No	Further Monitoring Needed/Additional Corrective Action				
QA Approval:			Date:				
Additional Information:							
Additional information.							

Attachment B Final Results after Data Review

		SI1453			
		SI1453-1	_		
		RE117D2-SOIL-0309	15-788-790		
		3/9/2015	,		
		Soil			
Method	Analyte	CAS No	Units	Result	Qual
9060A	TOTAL ORGANIC CARBON	-28	UG_G	110	J

Notes:

IdentificationMicrograms per gramFinal qualifierEstimated value ID UG_G Qual J

		SI1453			
		SI1453-2	2		
		RE117D2-EB-0	30915		
		3/9/2015	5		
		Equipment E	Blank		
Method	Analyte	CAS No	Units	Result	Qual
5310B	TOTAL ORGANIC CARBON	-28	MG_L	0.34	J

Notes: ID MG_L Qual J IdentificationMilligrams per literFinal qualifierEstimated value

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	Regional Groundwater Investigation — NWIRP Bethpage			
Laboratory:	Katahdin Analytical				
Sample Delivery Groups:	SI1951				
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion			
Validation Level:	3				
Project Number:	0888812477.SA.DV				
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 05/12/2015 Revised on: 10/27/2015			
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI1951_9060A_5310B			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 25 March 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE117D1-SOIL-032515-740-742	SI1951-1	Soil	9060A
RE117D1-EB-032515	SI1951-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Katahdin Analytical discovered a QC error in Total Organic Carbon calculations, informed us, and has implemented corrective action provided in Attachment A. Attachment B provides final results after data review.

ATTACHMENTS

Attachment A: Katahdin Analytical Corrective Action Report

Attachment B: Final Results after Data Review

Attachment A Katahdin Analytical Corrective Action Report

KATAHDIN ANALYTICAL SERVICES, INC. - CORRECTIVE ACTION REPORT

Problem Identification	on (Person initiating CAR) N	Vame:	Leslie Dimond	Date: 08/28/2015
Discovered by Lab	oratory X	Discov	ered by Client (Compl	aint) Other
Details of Problem:				
by a factor of ten. Ger Calculations are set us method name, LOQ, process chains). This sample results, adjus was not adjusting LOT The lab had felt that to the lab decided to cha LOQ/LOD/MDL adjust	orge Brewer looked into the up to be performed automati LOD, MDL, limits and a spe is process chain contains all ted LOQs, LODs and MDLs Qs, LODs and/or MDLs for there wasn't really a standar ange this and use 500 mg a	matter ically in cific pro of the control of the control of the same of weights the street of the st	and found that their sa KIMS. Each product of cess chain for reporting alculations associated sults for QC samples. ple amount used, but of at amount, so this was andard and to incorports and and to incorports	nt the results for their samples seemed to be off mple results were calculated incorrectly. ode for a test contains information such as the g to the either the LOQ, LOD or MDL (i.e. three with a test including separate calculations for In October of 2014, a client asked why the laborally for an instrument dilution and total solids. not incorporated. After numerous discussions, ate any different amount into the cur Laboratory Information System (KIMS). The tion was wrong.
The formula was: AD)J. LOQ/LOD/MDL = LOQ/L	OD/MD	L * DF * (Sample amo	unt / 1000) * (100/TS).
calculations. Sample 2014, a data reviewe	results are checked in this	manner d limits v	, but adjusted limits are were not correct. This	ire checked at a frequency of 10% of all a not necessarily checked. In December of issue was reviewed with MIS, and it was changed to:
ADJ. LOQ/LOD/MDL	= LOQ/LOD/MDL * DF * (50	00 / Sar	nple Amount) * (100/T	6) (where 500 is the standard sample amount).
At the time this chang needed to be corrected		er the in	npression that the sam	ple calculation was also incorrect and also
The formula for the sa	ample result was: Results (ι		= <u>Total carbon</u> * sample amount / 1000	(100/TS) (where 1000 is a conversion factor)
This was incorrectly of	changed to: Results (ug/g)		<u>ll carbon</u> * TS Sample Amount)	
problem was not add during data review ar	ressed with the MIS departr	nent. H	owever, there were se	ing data review and manually corrected. The veral cases where this error was not caught s issue was brought to the attention of MIS and
	otal carbon * (100/TS ple amount / 1000)	3) (whe	ere 1000 is a conversio	n factor)
solids is not used in t		and MS	S/MSD samples are als	ated using different calculations since total o not affected because they use different
Associated Non-Co	nformances: List logbook	and pa	age numbers	
There are no non-cor	nformances associated with	this cor	rective action.	
Root Cause Investig	gation & Determination (To	be cor	npleted by Department	Manager, Operations Manager and/or QA
	elow and investigate to dete	rmine w	hether one of them, or	more than one, could be the cause of the
Possible Causes		- 1	Details	

KATAHDIN ANALYTICAL SERVICES, INC. - CORRECTIVE ACTION REPORT

Machine (Instrument)	KIMS – incorrect formulas were entered into the process chains for TOC in soil.
Method (or Process)	Katahdin's policy for data review: From the QAM: "For data that are reduced via computer, calculations are checked by the analyst (or designee) assigned to this task at a frequency designed to assure that the final data generation is valid." From SOP SD-904, Data Reduction, Review and Reporting: "All manual integrations, calculations and transcriptions are checked and 10% of all spreadsheet calculations are checked. The remainder of spreadsheet calculations is spot checked for potential anomalies."
,	Katahdin does not have a formal process for handling calculation changes to process changes in KIMS. A verbal request is made to MIS and the change is made. Although the KIMS system does have an audit trail to track dates of changes and calculation changes, the request for these is not documented.
Materials	Not Applicable
Maintenance (Is something not working correctly?)	Not Applicable
Man (training, human error)	All personnel involved with data review are aware of the requirement to hand check 10% of the sample results. In some cases this appears to have been done and when the results did not calculate correctly, they were corrected in KIMS. There was no communication that the error may affect other batches of samples. In other sample batches, the 10% hand check must not have occurred.
Mother Nature (accidents, power issues, beyond our control)	Not Applicable

Corrective Action Plan: Name: Leslie Dimond

Date: 08/28/2015

Details of Corrective Action Plan -

Querries were run through KIMS to generate lists for TOC in soil data entered into KIMS between two timeframes:

10/23/14 to 12/29/14 (incorrect LOQ/LOD/MDL adjustment) - 14 Work Orders were found in this timeframe

12/29/14 and 4/13/15 (incorrect sample calculation) - 16 Work Orders were found in this timeframe

The lab has reviewed all TOC in soil data from these time periods for accuracy. Some inaccurate data was found (as expected from the incorrect formulas). Some data was found to be correct. In these cases, MIS was able to determine, through the KIMS audit trail, that the data had been manually corrected.

A new form has been created for personnel to fill out when requesting calculation changes in KIMS. This form will ensure that MIS is clear on exactly what needs to be changed in KIMS. Through KIMS we are currently able to track formula changes (ie. the formula before and after the change) and when the change occurred. This new form will allow Katahdin to track the changes made by person requesting the change and why the change was necessary. Supervisor and QA/Management approval are required on these forms.

There also will be a mandatory retraining for all employees on Katahdin's policy for data review, stressing that 10% of all results generated from KIMS and spreadsheets need to be confirmed. Also, this retraining will stress the need for communication. If a problem is discovered with one batch of samples, then it might also be affecting other batches.

Additionally, when calculation changes are made, Katahdin must establish a time frame of 30 days or 10 workorders where

KATAHDIN ANALYTICAL SERVICES, INC. – CORRECTIVE ACTION REPORT

senior management or the Quality Assurance Officer must also check the new calculations.				
Review & Approval of Corrective Action	n Plan			
Supervisor Approval:	SIGN,		Date: 99.11.15	
Operations Manager Approval:	total J. had	eau	Date: 9:1/15	
Quality Assurance Officer: Luseic T	_U		Date: 09-11-15	
Monitoring of Corrective Action (To be	completed by QA Officer	and/or Operations	Manager): List details of follow-up	
Corrective Action Effective	Return to Control –	Yes No	Further Monitoring Needed/Additional Corrective Action	
QA Approval:			Date:	
Additional Information:				
Additional information.				

Attachment B Final Results after Data Review

		SI195	1		
		SI1951	-1		
		RE117D1-SOIL-032	2515-740-742		
		3/25/20	15		
		Soil			
Method	Analyte	CAS No	Units	Result	Qual
9060A	TOTAL ORGANIC CARBON	-28	UG_G	290	J

Notes:

Micrograms per gram Final qualifier UG_G

Qual J

Laboratory qualifier — The analyte concentration was less than the laboratory's quantitation limit. =

		S	ample Delivery Group	SI1951	
		3	Lab ID	SI1951-2	
			Sample ID	RE117D1-EB-0	32515
		3/25/201	5		
			Sample Type	Equipment B	Blank
Method	Analyte	CAS No	Units	Result	Qual
5310B	TOTAL ORGANIC CARBON	-28	MG L	0.38	J

Notes: ID MG_L Qual J IdentificationMilligrams per literFinal qualifierEstimated value

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	tigation — NWIRP Bethpage
Laboratory:	Katahdin Analytical	
Sample Delivery Groups:	SI2158	
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion
Validation Level:	3	
Project Number:	0888812477.SA.DV	
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 05/24/2015
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI2158_9060A_5310B

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 31 March 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
BPOW5-5-SOIL-033115-518-520	SI2158-1	Soil	9060A
BPOW5-5-SOIL-D-033115	SI2158-2	Field Duplicate	9060A
BPOW5-5-ERB-033115	SI2158-3	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense

(DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- ✓ Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

	Sample Delivery Group			SI215	8	SI215	i8	SI215	58
	Lab ID				3-1	SI2158	3-2	SI2158	3-3
	Sample ID			BPOW7-2-SOIL-03	3115-518-520	BPOW7-2-SOIL	-D-033115	BPOW5-5-ER	B-033115
	Sample Date			3/31/20)15	3/31/20	015	3/31/20	015
	Sample Type			Soil		Field Dup	licate	Equipment	t Blank
Method	Analyte	CAS No	Units	Result	Qual	Result	Qual	Result	Qual
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA		NA		0.32	J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	2100		2300		NA	

Notes:

ID MG_L UG_G = Identification Milligrams per liter
 Micrograms per gram
 Not analyzed
 Final qualifier

NA_ Qual

Final Qualifier: J The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Regional Groundwater Invest	tigation — NWIRP Bethpage
Katahdin Analytical	
SI2243	
	by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion
3	
0888812477.SA.DV	
Dana Miller/Resolution Consultants	Completed on: 06/17/2015
Tina Cantwell/Resolution Consultants	File Name: SI2243_9060A_5310B
	Total Organic Carbon (TOC) Method 5310B for Total Orga 3 0888812477.SA.DV Dana Miller/Resolution Consultants Tina Cantwell/Resolution

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 8 April 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
BPOW5-4-040815-553-555	SI2243-1	Soil	9060A
BPOW5-4-EB-040815	SI2243-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

	Sample Delivery Group			SI2243		SI2243	
	Lab ID			SI2243-	SI2243-1		-2
			Sample ID	BPOW5-4-04081	5-553-555	BPOW5-4-EB-	040815
	Sample Date			4/8/201	.5	4/8/201	.5
	Sample Type		Soil		Equipment	Blank	
Method	Analyte	CAS No	Units	Result	Qual	Result	Qual
2540G	TS	-29	PCT	80		NA	
5310B	TOC	-28	MG_L	NA		0.33	J
9060	TOC	-28	UG_G	5600		NA	

Notes:

TS = Total solids

TOC = Total organic carbon

PCT = Percent

 $MG_L = Milligrams per liter \\ UG_G = Micrograms per gram$

Qual = Final qualifier NA = Not analyzed

Final Qualifier:

The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	tigation — NWIRP Bethpage
Laboratory:	Katahdin Analytical	
Sample Delivery Groups:	SI2602	
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion
Validation Level:	3	
Project Number:	0888812477.SA.DV	
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 06/24/2015
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI2602_9060A_5310B

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 20 April 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
118D1-SOIL-042015-773-775	SI2602-1	Soil	9060A
118D1-SOIL-D-042015	SI2602-2	Field Duplicate	9060A
118D1-ERB-042015	SI2602-3	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense

(DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- ✓ Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense quidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

	Sample Delivery Group			SI2602		SI2602		SI2602				
	Lab ID			SI2602-1		SI2602-2		SI2602-3				
	Sample ID			118D1-S	OIL-042015	-773-775	118D1-SOIL-D-042015		118D1-ERB-042015			
	Sample Date				4/20/2015 4/20/2015			4/20/2015				
	Sample Type			Soil		Fi	ield Duplicat	e	Eq	uipment Bla	nk	
Method	Analyte	CAS No.	Units	Result	Qual	RC	Result	Qual	RC	Result	Qual	RC
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA			NA			0.5	J	
9060A	TOTAL ORGANIC CARBON	-28	UG_G	140	J		210	J	·	NA		

Notes:

PCT = Percent

MG_L = Milligrams per liter
UG_G = Micrograms per gram
NA = Not analyzed

NA = Not analyzed Qual = Final qualifier RC = Reason code

Final Qualifiers:

J = The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	Regional Groundwater Investigation — NWIRP Bethpage					
Laboratory:	Katahdin Analytical	Katahdin Analytical					
Sample Delivery Groups:	SI2994						
Analyses/Method:	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion						
Validation Level:	3						
Project Number:	0888812477.SA.DV						
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 06/30/2015					
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI2994_9060A_5310B					

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 5 May 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
BPOW5-6-SOIL-050515-603-605	SI2994-2	Soil	9060A
BPOW5-6-FD-SOIL-050515-603-605	SI2994-3	Field Duplicate	9060A
BPOW5-6-EB-050515	SI2994-1	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense

(DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- ✓ Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A provides final results after data review.

ATTACHMENTS

Attachment A: Final Results after Data Review

Attachment A Final Results after Data Review

Sample Delivery Group		SI2994		SI2994		SI2994			
Lab ID		SI2994-1		SI2994-2		SI2994-3			
Sample ID		BP0W5-6-EB-050515		BPOW5-6-SOIL-050515-603-605		BPOW5-6-FD-SOIL-050515-603-605			
	Sample Date		5/5/201	L5	5/5/2015		5/5/2015		
	Sample Type		Equipment	Blank	Soil		Field Duplicate		
		CAS							
Method	Analyte	No.	Units	Result	Qual	Result	Qual	Result	Qual
5310B	TOTAL ORGANIC CARBON	-28	MG_L	0.25	J	NA		NA	
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA		860		1000	

Notes:

ID = Identification MG_L = Milligrams per liter UG_G = Micrograms per gram

NA = Not analyzed Qual = Final qualifier

Final Qualifier: J

= The analyte was positively identified. The numerical value is the estimated concentration of the analyte in the sample.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage				
Laboratory:	Katahdin Analytical				
Sample Delivery Group:	SI4000				
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)				
Validation Level:	3				
Project Number:	0888812477.SA.DV				
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 07/21/2015			
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI4000_8260C_8270D			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 9 June 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Matrix/Sample Type	Analysis
RE117D1-GW-060915	Groundwater	8260C / 8270D_SIM
RE117D1-TB-060915	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA, 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA, 2007), *U.S. Environmental Protection Agency* (U.S. EPA) *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (June 2008), and Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.2 (October

2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample/laboratory control sample duplicate results
- NA Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- the initial calibration percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met;
- the initial calibration verification standard percent recovery acceptance criteria were met;
- the continuing calibration verification (CCV) standard method percent difference or percent drift and response factor acceptance criteria were met; and

• the retention time method acceptance criteria were met.

Data qualification to the analytes associated with the specific initial calibration (ICAL) was as

ICAL Linearity Non-conformance:

Cuitorio	Actions				
Criteria	Detected Results	Non-detected Results			
%RSD >15% and quantitation based on mean response factor	J	UJ			

Notes:

%RSD = Relative standard deviation

J = Estimated

UJ = Undetected and estimated

Data qualification to the analytes associated with the specific CCV was as follows:

CCV Non-conformance:

Criteria	Actions				
Criteria	Detected Results	Non-detected Results			
%Difference or %Drift > 20%	J	UJ			

Notes:

J = Estimated

UJ = Undetected and estimated

ICAL and CCV non-conformances are summarized in Attachment A in Table's A-1 and A-2.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data

user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

Table A-1 Initial Calibration Linearity Non-Conformance						
Method	Analyte	Instrument ID / Date	%RSD	Limit	Associated Samples	Qualifier
8260C	Chloroethane	GCMS-T 06/11/2015	28.31610	≤15%	RE117D1-GW-060915 RE117D1-TB-060915	UJ

Notes: RSD = Relative standard deviation

Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias

Table A-2 Continuing Calibration Verification Non-Conformance						
Method	Analyte	Calibration ID	%D	%D Limit	Associated Samples	Qualifier
8260C	Dichlorodifluoromethane	T3830.D	-21.1533	20	RE117D1-GW-060915 RE117D1-TB-060915	UJ

Notes:

%D = Percent difference

Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias UJ =

Attachment B Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
lc	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
х	Percent solids
У	Serial dilution results
Z	Interference check sample results (metals)

Attachment D Final Results after Data Review

			Delivery Group Lab ID Sample ID Sample Date Sample Type	SI40 RE117DI 6/9	(4000)00-1RA -GW-0609 9/2015 ndwater	15
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	Ü	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	Ü	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	Ü	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	1
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	Ü	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	Ü	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	Ü	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	Ü	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	Ü	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	Ü	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	J	
8260C	TOLUENE	108-88-3	UG_L	1.3		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	7.6		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U	

	Sample Delivery Group Lab ID Sample ID Sample Date Sample Type			SI4000 SI4000-2RA RE117DI-TB-060915 6/9/2015 Trip Blank		
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	1
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	1
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	Ü	1
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	Ü	1
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	U	†
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	Ü	†
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	+
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	+
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	+
8260C	ACETONE	67-64-1	UG_L	2.5	Ü	1
8260C	BENZENE	71-43-2	UG_L	0.5	U	+
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	+
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	+
8260C	BROMOMETHANE	74-83-9	UG L	1	U	+
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	+
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	+
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	+
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	- C
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	+
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	+
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	+
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	+
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	+
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	+
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	С
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	+
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	+
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	+
8260C	-	108-87-2	_		U	+
8260C 8260C	METHYL CYCLOHEXANE METHYL TERT-BUTYL ETHER	1634-04-4	UG_L UG L	0.5 0.5	U	+
8260C	1	75-09-2	UG L		U	+
8260C 8260C	METHYLENE CHLORIDE O-XYLENE	95-47-6	UG_L	2.5 0.5	U	+
8260C 8260C	STYRENE	100-42-5	UG_L UG_L	0.5	U	+
8260C 8260C	TETRACHLOROETHENE	127-18-4	UG_L UG_L	0.5	U	+
					_	+
8260C	TOLUENE TRANS-1,2-DICHLOROETHENE	108-88-3	UG_L	0.5	U	+
8260C		156-60-5 10061-02-6	UG_L	0.5		+
8260C	TRANS-1,3-DICHLOROPROPENE		UG_L	0.5	U	+
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	+
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	+
8260C	VINYL CHLORIDE	75-01-4	UG_L	11	U	+
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	+
8270D_SIM	1,4-DIOXANE	123-91-1	UG_L	NA		

Notes: UG_L NA

Micrograms per liter Not analyzed Final qualifier (Refer to Attachment B) Reason code (Refer to Attachment C) Qual RC =

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Group:	SI6082		
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)		
Validation Level:	3		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/04/2015	
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI6082_8260C_8270D	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 12 August 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Matrix/Sample Type	Analysis
GW-DUP-081215	Field Duplicate	8260C / 8270D_SIM
BPOW5-7-GW-081215	Groundwater	8260C / 8270D_SIM
BPOW5-7-TB-081215	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA, 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA, 2007), *U.S. Environmental Protection Agency* (U.S. EPA) *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (June 2008), and Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.2 (October

2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample/laboratory control sample duplicate results
- ✓ Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- the initial calibration percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met;
- the initial calibration verification (ICV) standard percent recovery acceptance criteria were met;
- the continuing calibration verification standard method percent difference or percent drift and response factor acceptance criteria were met; and

the retention time method acceptance criteria were met.

Data qualification to the analytes associated with the specific ICV was as follows:

ICV Recovery Non-conformance:

Critoria	Actions			
Criteria	Detected Results	Non-detected Results		
Recovery >120%	J	UJ		
Recovery < 80%	J	UJ		

Notes:

J = Estimated

UJ = Undetected and estimated

ICV non-conformances are summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

Table A-1 Initial Calibration Verification Non-Conformance						
Method	Analyte	ICVID	%R	Limit	Associated Samples	Qualifier
8260C	Carbon Disulfide	WG168597-7	122.47	80-120	BPOW5-7-TB-081215 BPOW5-7-GW-08215 GW-DUP-081215	UJ

Notes: %R = UJ = Percent recovery Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias

Attachment B Qualifier Codes and Explanations

Qualifier	Explanation		
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.		
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.		
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.		

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
lc	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
х	Percent solids
У	Serial dilution results
Z	Interference check sample results (metals)

Attachment D Final Results after Data Review

		·	Elivery Group Lab ID Sample ID Sample Date Sample Type	SI60 BPOW5-7 8/1	16082 182-1RA 1'-GW-0812 2/2015 ndwater	215
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	3.6	J	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	Ü	
8260C	ACETONE	67-64-1	UG L	2.5	Ü	
8260C	BENZENE	71-43-2	UG_L	0.5	Ü	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG L	0.5	Ü	
8260C	CHLOROMETHANE	74-87-3	UG L	1	Ü	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	Ü	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	Ü	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	Ü	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	Ü	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	Ü	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	Ü	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	Ü	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	Ü	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	Ü	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	Ü	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	Ü	
8260C	O-XYLENE	95-47-6	UG_L	0.5	Ü	
8260C	STYRENE	100-42-5	UG_L	0.5	Ü	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	Ü	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	Ü	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270C_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	Ü	

	Sample Delivery Group Lab I D Sample I D			SI6 GW-DL	16082 5082-2 JP-081215	
			Sample Date Sample Type		2/2015 Duplicate	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	Ū	
8260C	BROMOFORM	75-25-2	UG_L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG_L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	Ü	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	Ü	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270C_SIM	1,4-DIOXANE	123-91-1	UG_L	0.18	U	

	Sample Delivery Group Lab I D Sample I D Sample Date Sample Type			SI6 BPOW5-1 8/1	I6082 5082-3 7-TB-0812 2/2015 p Blank	15
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	Ü	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	Ü	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	Ü	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	Ü	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	1
8260C	1.4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	11	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	-
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	<u> </u>
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	1
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	1
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	-
8260C	O-XYLENE CTAPENE	95-47-6	UG_L	0.5	U	-
8260C	STYRENE	100-42-5	UG_L	0.5	U	<u> </u>
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	1
8260C	TOLUENE TRANS 1.2 DIGHI ORDETHENE	108-88-3	UG_L	0.5	U	1
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	-
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	<u> </u>
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	-
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	11	U	-
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	<u> </u>
8270C_SIM	1,4-DIOXANE	123-91-1	UG_L	NA		

Notes: UG_L NA

Micrograms per Liter Not analyzed Final qualifier (Refer to Attachment B) Reason code (Refer to Attachment C) Qual RC =

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Group:	SI6083		
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)		
Validation Level:	3		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/04/2015	
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SI6082_8260C_8270D	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 12 August 2015 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Matrix/Sample Type	Analysis	
RE119D1-GW-081215	Groundwater	8260C / 8270D_SIM	
RE119D1-TB-081215	Trip Blank	8260C	

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA, 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA, 2007), *U.S. Environmental Protection Agency* (U.S. EPA) *Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (June 2008), and Department of Defense Quality Systems Manual for Environmental Laboratories, Version 4.2 (October

2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample/laboratory control sample duplicate results
- NA Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- the initial calibration percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met;
- the initial calibration verification (ICV) standard percent recovery acceptance criteria were met;

- the continuing calibration verification standard method percent difference or percent drift and response factor acceptance criteria were met; and
- the retention time method acceptance criteria were met.

Data qualification to the analytes associated with the specific ICV was as follows:

ICV Recovery Non-conformance:

Cuitouin	Actions				
Criteria	Detected Results	Non-detected Results			
Recovery >120%	J	UJ			
Recovery < 80%	J	UJ			

Notes:

I = Estimated

UJ = Undetected and estimated

ICV non-conformances are summarized in Attachment A in Table A-1.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

MS/MSDs are generated to provide information about the effect of each sample matrix on the sample preparation and the measurement methodology. MS/MSD percent recoveries (%Rs) assess the effect of the sample matrix on the accuracy of the analytical results and %Rs above the laboratory control limit could indicate a potential high result bias while %Rs below QC limits could indicate a potential low result bias. The relative percent differences (RPDs) between the MS and MSD results are evaluated to assess sample precision. The MS/MSD %Rs and RPDs were reviewed for conformance with the QC acceptance criteria. Non-conformances are summarized in Attachment A in Table A-2. Data qualification to the analytes associated with the specific MS/MSD non-conformances were as follows:

MS/MSD Non-conformances Chart:

Criteria	Action			
Criteria	Detected Compounds	Non-detected Compounds		
%R>Upper Limit	J	No qualification		
20% <u><</u> %R < Lower Limit	J	UJ		
%R <20%	J	Rejected		

Notes:

%R = Percent recovery

RPD = Relative percent difference

J = Estimated

UJ = Undetected and estimated

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

Attachment A: Non-Conformance Summary Tables
Attachment B: Qualifier Codes and Explanations
Attachment C: Reason Codes and Explanations
Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

Table A-1 Initial Calibration Verification Non-Conformance						
Method	Analyte	ICV ID	%R	Limit	Associated Samples	Qualifier
8260C	CARBON DISULFIDE	WG168597-7	122.47	80-120	RE119D1-GW-081215 RE119D1-TB-081215	UJ

Notes: %R = UJ = Percent recovery Non-detected analyte in associated sample qualified estimated "UJ" due to potential bias

Table A-2 Matrix Spike / Matrix Spike Duplicate Non-Conformance							
Spiked Sample	Analyte	Sample Result (µg/L)	Spike Added (µg/L)	MS %R	MSD %R	%R Limits	Qualifier
RE119D1-GW-081215	ETHYLBENZENE	0.50	50.0	41.2	107	75-125	UJ
RE119D1-GW-081215	STYRENE	0.50	50.0	43	115	65-135	UJ
RE119D1-GW-081215	CIS-1,3-DICHLOROPROPENE	0.50	50.0	39.8	107	70-130	UJ
RE119D1-GW-081215	TRANS-1,3-DICHLOROPROPENE	0.50	50.0	42.2	110	55-140	UJ
RE119D1-GW-081215	1,4-DICHLOROBENZENE	0.50	50.0	38.4	102	75-125	UJ
RE119D1-GW-081215	1,2-DIBROMOETHANE	0.50	50.0	40.8	103	82-120	UJ
RE119D1-GW-081215	1,2-DICHLOROETHANE	0.50	50.0	45	105	70-130	UJ
RE119D1-GW-081215	4-METHYL-2-PENTANONE	2.5	50.0	37.6	107	60-135	UJ
RE119D1-GW-081215	M- AND P-XYLENE	1.0	100	42.9	112	75-130	UJ
RE119D1-GW-081215	TOLUENE	0.50	50.0	42	110	75-120	UJ
RE119D1-GW-081215	CHLOROBENZENE	0.50	50.0	43.2	108	80-120	UJ
RE119D1-GW-081215	CYCLOHEXANE	0.50	50.0	43.4	112	71-133	UJ
RE119D1-GW-081215	1,2,4-TRICHLOROBENZENE	0.50	50.0	37	102	65-135	UJ
RE119D1-GW-081215	DIBROMOCHLOROMETHANE	0.50	50.0	43.4	107	60-135	UJ
RE119D1-GW-081215	TETRACHLOROETHENE	0.50	50.0	41.8	100	45-150	UJ
RE119D1-GW-081215	XYLENES, TOTAL	1.5	150	42.1	112	89-116	UJ
RE119D1-GW-081215	CIS-1,2-DICHLOROETHENE	0.50	50.0	41.8	100	70-125	UJ
RE119D1-GW-081215	TRANS-1,2-DICHLOROETHENE	0.50	50.0	49.2	114	60-140	UJ
RE119D1-GW-081215	METHYL TERT-BUTYL ETHER	0.50	100	54	106	65-125	UJ
RE119D1-GW-081215	1,2-DICHLOROETHENE, TOTAL	1.0	100	45.4	107	84-121	UJ
RE119D1-GW-081215	1,3-DICHLOROBENZENE	0.50	50.0	39.8	105	75-125	UJ
RE119D1-GW-081215	CARBON TETRACHLORIDE	0.50	50.0	43.8	112	65-140	UJ
RE119D1-GW-081215	2-HEXANONE	2.5	50.0	36.4	104	55-130	UJ
RE119D1-GW-081215	CHLOROFORM	0.50	50.0	43.2	105	65-130	UJ
RE119D1-GW-081215	BENZENE	0.50	50.0	43.6	109	80-120	UJ
RE119D1-GW-081215	1,1,1-TRICHLOROETHANE	0.50	50.0	42.6	108	65-130	UJ
RE119D1-GW-081215	CHLOROETHANE	1.0	50.0	39.6	99.2	60-135	UJ
RE119D1-GW-081215	VINYL CHLORIDE	1.0	50.0	42.8	92.4	50-145	UJ
RE119D1-GW-081215	METHYLENE CHLORIDE	2.5	50.0	42	95.8	55-140	UJ
RE119D1-GW-081215	BROMOFORM	0.50	50.0	42.2	115	70-130	UJ
RE119D1-GW-081215	BROMODICHLOROMETHANE	0.50	50.0	41.6	108	75-120	UJ
RE119D1-GW-081215	1,1-DICHLOROETHANE	0.50	50.0	47.6	111	70-135	UJ
RE119D1-GW-081215	1,1-DICHLOROETHENE	0.50	50.0	44.4	105	70-130	UJ
RE119D1-GW-081215	TRICHLOROFLUOROMETHANE	1.0	50.0	42	100	60-145	UJ
RE119D1-GW-081215	1,2-DICHLOROPROPANE	0.50	50.0	39.6	103	75-125	UJ
RE119D1-GW-081215	1,1,2-TRICHLOROETHANE	0.50	50.0	40.4	103	75-125	UJ

Table A-2 Matrix Spike / Matrix Spike Duplicate Non-Conformance							
Spiked Sample	Analyte	Sample Result (µg/L)	Spike Added (µg/L)	MS %R	MSD %R	%R Limits	Qualifier
RE119D1-GW-081215	TRICHLOROETHENE	0.50	50.0	41.6	106	70-125	UJ
RE119D1-GW-081215	METHYL ACETATE	0.75	50.0	64	91.4	70-132	UJ
RE119D1-GW-081215	1,1,2,2-TETRACHLOROETHANE	0.50	50.0	41.6	100	65-130	UJ
RE119D1-GW-081215	O-XYLENE	0.50	50.0	40.4	112	80-120	UJ
RE119D1-GW-081215	1,2-DICHLOROBENZENE	0.50	50.0	39.6	105	70-120	UJ
RE119D1-GW-081215	1,2-DIBROMO-3-CHLOROPROPANE	0.75	50.0	41.6	107	50-130	UJ
RE119D1-GW-081215	ISOPROPYLBENZENE	0.50	50.0	42.8	115	75-125	UJ

Notes:

Micrograms per liter Matrix spike Matrix spike duplicate Percent recovery Non-detected and estimated μg/L MS MSD %R = =

UJ

Attachment B Qualifier Codes and Explanations

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bt	Trip blank contamination
С	Calibration issue
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate relative percent difference
h	Holding times
i	Internal standard areas
k	Estimated Maximum Possible Concentration
I	Laboratory control sample
lc	Labeled compound recovery
ld	Laboratory duplicate relative percent difference
lp	Laboratory control sample/laboratory control sample duplicate relative percent difference
m	Matrix spike recovery
mc	Method compliance non-conformance
md	Matrix spike/matrix spike duplicate relative percent difference
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column relative percent difference
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
х	Percent solids
У	Serial dilution results
Z	Interference check sample results (metals)

Attachment D
Final Results after Data Review

		Sample Delivery Group Lab I D Sample I D Sample Date Matrix			16083 5083-1 -GW-0812 2/2015 ndwater	15
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	UJ	m
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	UJ	m
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	UJ	m
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	UJ	m
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	UJ	m
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	UJ	m
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	UJ	m
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	UJ	m
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	UJ	m
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	UJ	m
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	UJ	m
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	UJ	m
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	UJ	m
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	UJ	m
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	UJ	m
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	UJ	m
8260C	ACETONE	67-64-1	UG_L	2.5	U	
8260C	BENZENE	71-43-2	UG_L	0.5	UJ	m
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	UJ	m
8260C	BROMOFORM	75-25-2	UG_L	0.5	UJ	m
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	UJ	m
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	UJ	m
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	m
8260C	CHLOROFORM	67-66-3	UG_L	0.5	UJ	m
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	UJ	m
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	UJ	m
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	UJ	m
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	UJ	m
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	UJ	m
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	UJ	m
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	UJ	m
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	UJ	m
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	UJ	m
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	UJ	m
8260C	O-XYLENE	95-47-6	UG_L	0.5	UJ	m
8260C	STYRENE	100-42-5	UG_L	0.5	UJ	m
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	UJ	m
8260C	TOLUENE	108-88-3	UG_L	0.5	UJ	m
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	UJ	m
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	UJ	m
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	UJ	m
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	UJ	m
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	UJ	m
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	UJ	m
8270C_SIM	1,4-DIOXANE	123-91-1	UG_L	0.17	U	

		·	livery Group Lab ID Sample ID Sample Date Matrix	SI6083-3 RE119D1-TB-081215 8/12/2015 Trip Blank		
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	Ü	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	Ü	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	Ü	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	Ü	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG L	1	Ü	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	Ü	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	Ü	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	Ü	
8260C	2-BUTANONE	78-93-3	UG L	2.5	Ü	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	Ü	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	Ü	
8260C	ACETONE	67-64-1	UG_L	2.5	Ü	
8260C	BENZENE	71-43-2	UG_L	0.5	Ü	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG L	0.5	U	
8260C	STYRENE	100-42-5	UG L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG L	0.5	U	1
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	1
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270C_SIM	1,4-DIOXANE	123-91-1	UG L	NA		
02/00_311/1	TI I DIOWIIL	145 71 1	UU_L	11/	1	1

Notes: UG_L NA

Micrograms per liter Not analyzed Final qualifier (Refer to Attachment B) Reason code (Refer to Attachment C) Qual RC =

Section 5

Survey

Map Notes

Appr. by: JFC

- Information shown hereon was compiled from an actual field survey conducted from September 23-25, 2014.
- North orientation is Grid North based on the New York State Plane Coordinate System, Long Island Zone, NAD 83 as obtained from GPS observations.
- Vertical datum shown hereon is NAVD 88 as obtained from GPS observations.

	В	AR SCAL	Ε	
30	ọ	15	30	60
	1 inc	:h = 30	ft.	
		SE	IEET 2 OF 2	DWG NO. 14-503

VERTICAL PROFILE BORING 151 SURVEY LOCATION 3832 HARRIAD DRIVE WEST

	Date	RECORD OF	WORK	Аррг.	
	7-7-15	ADDES SHEET 2	ADDES SHEET 2		
,					
					-
					ĺ
	Drafter:	LMK	Checker: JFC		

Proj. No.

14.4121

TOWN OF SEAFORD NASSAU COUNTY, NEW YORK

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture & Landscape Architecture, D.P.C.

50 CENTURY HILL DRIVE, LATHAM, NY 12110

518.786.7400 * FAX 518.786.7299

SCALE: 1"=30' DATE: SEPT. 24, 2014 EDUCATION LAW.

UNAUTHORIZED ALTERATION OR ADDITION TO THIS DOCUMENT IS A VIOLATION OF SECTION 7209 SUBDIVISION 2 OF THE NEW YORK STATE

Description

VPB 152

BPOW5-6

RE118D1

BPOW5-5

Northing

197311.98

197327.15

197298.81

197284 98

Easting

1126289.12

1126285.56

1126290.80

1126291.45

имн ⊕

Latitude

N40-42-25.60

N40-42-25.75

N40-42-25.47

N40-42-25.34

Longitude

W73-29-15.67

W73-29-15.71

W73-29-15.65

W73-29-15.64

Rim

NA

58.27

58.00

57.96

Ground

58.16

58.21

57.99

57.97

PVC

NA

57.72

57.61

57.58

Drafter: LMK

Appr. by: JFC

Checker: JFC

Proj. No.

14.4121

518.786.7400 * FAX 518.786.7299

DATE: MARCH 26, 2015

SCALE: 1"=40'