

Mr. Henry Wilkie Project Manager New York State Department of Environmental Conservation Remedial Bureau A 625 Broadway Albany, New York 12233-7015

Mr. Steven Scharf, P.E. Project Manager New York State Department of Environmental Conservation Remedial Bureau A 625 Broadway Albany, New York 12233-7015

Subject:

2016 Third Quarter Operation Maintenance and Monitoring Report, Operable Unit 2, Northrop Grumman Systems Corporation and Naval Weapons Industrial Reserve Plant (NWIRP) Sites, Bethpage, New York. (NYSDEC Site #s 1-30-003A and B)

Arcadis of New York, Inc. Two Huntington Quadrangle Suite 1S10 Melville New York 11747 Tel 631 249 7600 Fax 631 249 7610 www.arcadis.com

ENVIRONMENT

Date: November 30, 2016

Contact: David E. Stern

Phone: 631.391.5284

Email: david.stern@arcadis.com

Our ref: NY001496.0216.RPTI4

Dear Henry and Steve:

On behalf of Northrop Grumman Systems Corporation (Northrop Grumman), Arcadis is providing the NYSDEC with the 2016 Third Quarter Operation Maintenance and Monitoring Report (Report). This Report was prepared to document the operation, maintenance, and monitoring (OM&M) activities conducted for the on-site portion of the Operable Unit 2 (OU2) groundwater remedy and the results of ongoing volatile organic compound (VOC) and inorganic monitoring in groundwater to meet the remedial objectives set forth in the March 2001 OU2 Record of Decision (ROD).

Table 1 summarizes OU2 remedial system performance operational data and water balance. Tables 2 and 3 provide the analytical results for remedial system water and vapor samples for this period. Tables 4A and 4B provide the air modeling inputs and outputs and resulting analyses, based on vapor samples

Mr. Henry Wilkie Mr. Steven Scharf, P.E. November 30, 2016

collected from the Tower 96 and Tower 102 systems, respectively, for this period. Table 5 provides the validated analytical results of groundwater monitoring for this period. Figures 1 through 4 show the Locations of Wells and Onsite Groundwater Remedy, Locations of Treatment Systems and Discharges, ONCT Groundwater Extraction and Treatment System Site Plan, and the ONCT Groundwater Extraction and Treatment System Schematic, respectively.

Please contact us if you have any questions or comments.

Sincerely,

Arcadis of New York, Inc.

David E. Stern Senior Hydrogeologist

Carlo Son Geovann

Carlo San Giovanni Project Manager

Copies:

Ed Hannon – Northrop Grumman Fred Weber – Northrop Grumman Walter Parish - NYSDEC Region 1 Steven Karpinski - New York State Department of Health Joseph DeFranco - Nassau County Department of Health Lora Fly – NAVFAC Midlant Environmental David Brayack - TetraTech NUS, Inc. Roger Smith - Glenn Springs Holdings, Inc. Manfred Bohms - Steel Equities Mike Negrelli – USEPA Robert Alvey - USEPA Carol Stein-USEPA Matthew Russo - Town of Oyster Bay Stan Carey – Massapequa Water District Matthew Snyder - New York American Water Frank Koch – South Farmingdale Water District John Reinhardt - Town of Hempstead Water District Michael Boufis - Bethpage Water District Lois Lovisolo – Bethpage Public Library (Public Repository) File

Operational Summary for the On-Site Portion of the OU2 Groundwater Remedy, Third Quarter 2016 ⁽¹⁾ Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

	Quarterly Flow Rates (gpm)		C	Quarterly Flow Volumes (I	MG)	Quarterly VOC Co	oncentrations (µg/L)	VOC Mass Removed (Ibs) ⁽⁷⁾	
	Design ⁽²⁾	Average ^(3,4)	Design ⁽²⁾	Actual ^(3,4)	% of Design	TCE ⁽⁵⁾	TVOC ^(5,6)	Quarterly	Cumulative
Influent Groundwater									
Well 1 ^(11,13)	800	827	103.7	104.0	100%	838	880	765	42,920
Well 3R ^(11,13)	700	995	90.7	125.0	138%	579	630	644	88,570
Well 17 ⁽¹³⁾	1,000	1,047	129.6	129.0	100%	132	170	179	52,275
Well 18 ⁽¹³⁾	600	1,001	77.8	122.0	157%	55	79	79	6,091
Well 19 ^(12,13)	700	771	90.7	90.0	99%	150	180	133	7,834
Total ⁽¹⁴⁾	3,800	4,641	493	570	116%			1,800	197,690

Effluent Groundwater ⁽⁸⁾							
Calpine	100 - 400	589		78.0		 	
OXY Biosparge ⁽¹⁰⁾	2 - 42	0		0		 	
West Recharge Basins	1,112 - 1,455	1,574		204.0		 3.0	
South Recharge Basins	2,231	2,222	289.1	288.0	100%	 2.1	
Total ⁽¹⁴⁾		4,385		570			

Additional Flow to South Recharge Basins						
Storm Water Runoff Contributing to South Recharge Basins Flow Volume ⁽¹⁵⁾	 		12.9		 	
Total Flow Volume to South Recharge Basins (15,16)		289	301	104%		

Treatment Efficiencies ⁽⁹⁾	
Tower 96 System:	99.5%
Tower 102 System:	>99.9%

Table 1 Operational Summary for the On-Site Portion of the OU2 Groundwater Remedy, Third Quarter 2016⁽¹⁾ **Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage**, New York

Notes and Abbreviations:

- (1) Quarterly reporting period: July 06, 2016 through October 04, 2016.
- "Design" flow rates were determined for the five remedial wells and for the South Recharge Basins based on computer modeling (ARCADIS G&M, Inc. 2003c, modified in April 2005). Flow rates for Calpine, OXY Biosparge and West Recharge Basins are typical flow rates and are (2) provided for reader information. "Design" flow volumes represent the volume of water that should be pumped/discharged during the reporting period and is calculated by multiplying the design rate by the reporting period duration.
- (3) "Average" flow rates for the remedial wells represent the average actual pumping rates when the pumps are operational and do not take into account the time that a well is not operational. During this guarterly reporting period, the remedial wells operated for the following percentage of the time: Well 1 (97%), Well 3R (97%), Well 17 (95%), Well 18 (94%), and Well 19 (90%), "Actual" volumes are determined via totalizing flow meters. Well 1 and 3R totalizing flow meters were replaced during 3Q 2016. Totalizers for those wells were estimated based on influent totalizing flow meter to Tower 96 air stripper.
- "Average" flow rates for the system discharges represent the average flow rate during the entire reporting period and are determined by dividing the total flow during the reporting period by the reporting period duration. The Calpine and South Recharge Basins flow volumes are (4) determined via totalizing flow meters. The West Recharge Basin flow is calculated by subtracting the cumulative flow to the other discharges from the total influent flow. Actual flow to the recharge basins is greater, as shown, because storm water combines with the plant effluent prior to discharge to the recharge basins.
- The TCE and TVOC concentrations for the remedial wells are from the quarterly sampling event performed during this reporting period on August 17, 2016 (Table 2). (5)
- The TVOC concentration for the two sets of recharge basins are their respective average monthly SPDES concentration for the current quarter. (6)
- TVOC mass removed for the reporting period is calculated by multiplying the TVOC concentration from the guarterly sampling event and the guantity of water pumped during the reporting period. (7)
- There are four discharges for the effluent groundwater: South Recharge Basins, West Recharge Basins, Calpine and OXY Biosparge system. Treated water is continuously discharged to the south and west recharge basins, and is available "on-demand" to both the Calpine Power Plant (8) (Calpine) for use as make-up water, and the biosparge remediation system operated by Occidental Chemical (OXY Biosparge).
- (9) Treatment System Efficiencies are calculated by dividing the difference between the remedial well flow weighted influent and effluent TVOC concentrations by the remedial well flow weighted influent concentration.
- (10) Occidental Chemical reported in May 2016 that the OXY Biosparge system required no water usage in the 1st Quarter of 2016, and no planned usage for the remainder of 2016.
- (11) Wells 1 and 3R were shut down on July 12 and 13, 2016 for Occidental blower repair, VPGAC inspection, and Occidental carbon changeout at Tower 96.
- Well 19 was shut down between July 12 and July 19 due to overheating of the VFD. The issue was remedied by replacing the VFD fan. (12)
- The majority of downtime during Third Quarter 2016 was due to communication failures at both systems, repair of a treated water distribution pipeline that briefly affected both systems, and low compressed air at Tower 102. The low compressed air condition was remedied and a (13) radiofrequency survey was completed for ONCT to investigate the cause of communication failures.
- (14) Total pumpage/recharge rates are accurate to ±15% due to limitations in metering. Flow meter calibration was completed on September 29, 2016.
- Storm Water Runoff Volume is calculated by multiplying the adjusted tributary area and NOAA precipitation data for the reporting periods. The adjusted tributary area is tributary area is tributary area is tributary area is tributary area. (15) The tributary area, runoff coeficient, and adjusted tributary area are from Dvirka and Bartilucci Consulting Engineers' Storm Water Permit Evaluation Report (January, 28, 2010). The NOAA precipitation data are calculated as a sum of NOAA daily precipitation data for the reporting period. NOAA precipitation data are retrieved from Station GHCND:USW00054787 - FARMINGDALE REPUBLIC AIRPORT, NY US.
- (16) Total Flow Volume to South Recharge Basins is estimated as a sum of flow volumes contributed from the Effluent Groundwater to South Recharge Basins and from Storm Water Runoff to South Recharge Basins.

	not applicable	NOAA	National Oceanic and Atmospheric Administration
µg/L	micrograms per liter	SPDES	State Pollution Discharge Elimination System
gpm	gallons per minute	TCE	trichloroethene
lbs	pounds	TVOC	total volatile organic compounds
MG	million gallons	VOC	volatile organic compounds

Concentrations of Constituents in Remedial Wells and Treatment System Effluents, Third Quarter 2016, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Location	n ID: WELL 1	WELL 3R	96 EFFLUENT
Sample	e ID: WELL 1	WELL 3R	T96 EFFLUENT
Constituents (units in µg/L) Sample E	Date: 8/17/2016	8/17/2016	9/26/2016
Volatile Organic Compounds (VOCs) ^(1,2)			
1,1,1-Trichloroethane	0.39 J	0.85 J	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0
1,2-Dichloropropane	4.0	<1.0	<1.0
2-Butanone (MEK)	<10	<10	<10
2-Hexanone (MBK)	<5.0	<5.0	<5.0
4-methyl-2-pentanone (MIK)	<5.0	<5.0	<5.0
Acetone	<10	<10	<10
Benzene	<0.50	<0.50	<0.50
Bromodichloromethane	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0
Bromomethane	<2.0	<2.0	<2.0
Carbon Disulfide	<2.0	<2.0	<2.0
Carbon tetrachloride	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0
Chloroform	0.25 J	<1.0	<1.0
Chloromethane	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	4.5	4.9	<1.0
cis-1,3-dichloropropene	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	<1.0
Methylene Chloride	<2.0	<2.0	<2.0
Styrene	<1.0	<1.0	<1.0
Tetrachloroethene	28.0	33.0	<1.0
Toluene	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	<1.0	<1.0	<1.0
Trichloroethylene	838 D	579 D	3.5
Trichlorotrifluoroethane (Freon 113)	3.8 J	4.1 J	<5.0
Vinyl Chloride	<1.0	5.0	<1.0
Xylene-o	<1.0	<1.0	<1.0
Xylenes - m,p	<1.0	<1.0	<1.0
Total VOCs ⁽³⁾	880	630	3.5
1,4-Dioxane ^(1,2)	3.99	5.33	NA

Concentrations of Constituents in Remedial Wells and Treatment System Effluents, Third Quarter 2016, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Location II): WELL 17	Well 18	WELL 18	WELL 19	102 EFFLUENT
Constituents Sample II): WELL 17	Well 18	REP-081716-KD-1	WELL 19	T102 EFFLUENT
(units in µg/L) Sample Date	e: 8/17/2016	8/17/2016	8/17/2016	8/17/2016	8/17/2016
Volatile Organic Compounds (VOCs) ^(1,2)					
1,1,1-Trichloroethane	0.34 J	0.64 J	0.63 J	0.41 J	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0
2-Butanone (MEK)	<10	<10	<10	<10	<10
2-Hexanone (MBK)	<5.0	<5.0	<5.0	<5.0	<5.0
4-methyl-2-pentanone (MIK)	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	<10	<10	<10	<10	<10
Benzene	<0.50	<0.50	<0.50	<0.50	<0.50
Bromodichloromethane	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	<2.0	<2.0	<2.0	<2.0	<2.0
Carbon Disulfide	<2.0	<2.0	<2.0	<2.0	<2.0
Carbon tetrachloride	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	0.34 J	0.25 J	0.23 J	0.43 J	<1.0
Chloromethane	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-dichloroethene	3.0	2.4	2.4	17	<1.0
cis-1,3-dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	<2.0	<2.0	<2.0	<2.0	<2.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	25.4	14.5	14.4	6.9	<1.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethylene	132	54.7	54	150	<1.0
Trichlorotrifluoroethane (Freon 113)	4.1 J	1.8 J	1.9 J	<5.0	<5.0
Vinyl Chloride	<1.0	<1.0	<1.0	<1.0	<1.0
Xylene-o	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes - m,p	<1.0	<1.0	<1.0	<1.0	<1.0
Total VOCs ⁽³⁾	170	79	79	180	0
1,4-Dioxane ^(1,2)	4.40	2.75	3.51	3.67	4.25

Table 2Concentrations of Constituents in Remedial Wells andTreatment System Effluents, Second Quarter 2016, Operable Unit 2,Northrop Grumman Systems Corporation,Bethpage, New York

Notes and Abbreviations:

- (1) VOC samples analyzed using USEPA Method 8260C. 1,4-Dioxane samples analyzed using USEPA Method 8270 SIM.
- (2) Results for the program are validated at 20% frequency, per protocols specified in OU2 Groundwater Monitoring Plan (Arcadis 2016).
- (3) Total VOC results rounded to two significant figures.

NA Not Analyzed

- 2.4 Bold value indicates the constituent was detected at or above its reporting limit.
- < 5.0 Compound is not detected above its laboratory quantification limit.
- µg/L micrograms per liter
- D Concentration is based on a diluted sample analysis.
- J Constituent value is estimated.
- NYSDEC New York State Department of Conservation
- REP blind replicate sample
- SIM selective ion monitoring
- SPDES State Pollution Discharge Elimination System
- TCE Trichloroethylene
- VOC volatile organic compounds

Vapor Sample Analytical Results for Treatment Systems, Third Quarter 2016, Northrop Grumman Systems Corporation, Operable Unit 2, Bethpage, New York

Location ID:	96 INFLUENT T96	96 MID-EFFLUENT T96	96 EFFLUENT T96	102 INFLUENT T102	102 EFFLUENT T102
Sample ID:	INFLUENT	MIDTRAIN	EFFLUENT	INFLUENT	EFFLUENT
Constituents	(AA)	(AA)	(AA)	(AA)	(AA)
(Units in µg/m ³) Date:	8/17/2016	8/17/2016	8/17/2016	8/17/2016	8/17/2016
Volatile Organic Compounds (VOCs) ⁽¹⁾					
1,1,1-Trichloroethane	19	8.2	<0.55	98	0.65
1,1,2,2-Tetrachloroethane	<14	<5.5	<0.69	<8.9	<0.69
1,1,2-Trichloroethane	<11	<4.4	<0.55	<7.1	<0.55
1,1-Dichloroethane	38	39	2.0	121	10
1,1-Dichloroethylene	111	140	14	271	77
1,2-Dichloroethane	<16	<6.5	<0.81	7.3 J	<0.81
1,2-Dichloropropane	64	14	<0.92	6.9 J	<0.92
Benzene	<13	<5.1	<0.64	<8.0	0.42
Bromodichloromethane	<13	<5.4	<0.67	<8.7	<0.67
Bromoform	<8.3	<3.3	<0.41	<5.3	<0.41
Bromomethane	<16	<6.2	<0.78	<9.7	<0.78
Carbon disulfide	<12	<5.0	<0.62	<7.8	<0.62
Carbon tetrachloride	<5.0	<2.0	<0.25	9.4	<0.25
Chlorobenzene	<18	<7.4	<0.92	<12	<0.92
Chloroethane	<11	5.3	6.3	<6.6	<0.53
Chloroform	<20	6.8 J	<0.98	40	1.5
Chloromethane	<8.3	<3.3	5.0	<5.2	0.89
cis-1,3-Dichloropropene	<18	<7.3	<0.91	<11	<0.91
Dibromochloromethane	<17	<6.8	<0.85	<11	<0.85
Ethylbenzene	<17	<6.9	<0.87	<11	<0.87
Methylene chloride	8.7 J	5.2 J	1.1	<8.7	1.3
Styrene	<17	<6.8	<0.85	<11	<0.85
Tetrachloroethylene	936	37	<0.27	773	0.36
Toluene	<15	<6.0	<0.75	<9.4	<0.75
trans-1,3-Dichloropropene	<18	<7.3	<0.91	<11	<0.91
Trichloroethylene	23,400	3,770	1.6	8,550	13
Trichlorotrifluoroethane (Freon 113)	128	94	<0.77	251	16
Vinyl chloride	83	113	3.6	<1.3	0.54
Xylene-o	<17	<6.9	<0.87	<11	0.56
Xylenes - m,p	<17	<6.9	<0.87	<11	0.42
Total VOCs (2)	24,787	4,232	34	10,128	123

Table 3 Vapor Sample Analytical Results for Treatment Systems, Third Quarter 2016, Northrop Grumman Systems Corporation, Operable Unit 2, Bethpage, New York

Notes and Abbreviations:

Vapor samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per (1) Modified USEPA Method TO-15. (2) "Total VOCs" represents the sum of individual concentrations of compounds detected rounded to the nearest whole number. 19 Bold data indicates that the analyte was detected at or above its reporting limit. ELAP Environmental Laboratory Approval Program Compound detected below its reporting limit; value is estimated. J NYSDOH New York State Department of Health USEPA United States Environmental Protection Agency VOC volatile organic compound

µg/m³ micrograms per cubic meter

Table 4A Summary of AERMOD Air Quality Impact Analysis Tower 96 Treatment System, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Constituent	CAS#	T96 Effluent (ug/m3)	Emission Rate ⁽¹⁾		Scaled Impact - Hourly ⁽²⁾	Annual 🖓 🛛	SGC ⁽³⁾		Modeled Impacts < SGC	
		8/17/2016	lb/yr	lb/hr	g/s	(ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m³)	and AGC (Yes/No)
1,1 - Dichloroethane	00075-34-3	2.0	0.31	3.56E-05	4.49E-06	8.48E-04	2.71E-05		6.30E-01	Yes
1,1 - Dichloroethene	00075-35-4	14	2.18	2.49E-04	3.14E-05	5.94E-03	1.90E-04		200	Yes
Trichloroethene	00079-01-6	1.6	0.25	2.85E-05	3.59E-06	6.79E-04	2.17E-05	20	2.00E-01	Yes
Vinyl Chloride	00075-01-4	3.6	0.56	6.41E-05	8.07E-06	1.53E-03	4.87E-05	180000	1.1E-01	Yes
Chloroethane	00075-00-3	6.3	0.98	1.12E-04	1.41E-05	2.67E-03	8.53E-05		10000	Yes
Chloromethane	00074-87-3	5.0	0.78	8.90E-05	1.12E-05	2.12E-03	6.77E-05	22000	90	Yes
Dichloromethane	00075-09-2	1.1	0.17	1.96E-05	2.47E-06	4.67E-04	1.49E-05	14000	60	Yes

Table 4A Summary of AERMOD Air Quality Impact Analysis Tower 96 Treatment System, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Notes and Abbreviations:

(1) Emission rate calculated based on effluent concentration and a stack air flow rate of 4,720 cfm. The stack air flow rate (in acfm) is taken from the actual stack

air flow rate on the day of sampling.

Trichloroethene (lb/hr) = (1.6 ug/m³) x (4,720 ft³/min) x (1 m³/35 ft³) x (60 min/hr) x (0.000001 g/1 ug) x (0.0022 lb/g)

lb/yr = lb/hr x 8,760 hrs/yr

g/s = lb/hr x 1 hr/3,600 sec x 453.59 g/1 lb

(2) Ambient impact based on AERMOD modeling using noramalized rate of 1 g/s is scaled to the actual emission rate of the pollutant. Modeling was performed using the representative meteorological data from the nearest station (Farmingdale, NY) for the years 2011 through 2015, and a stack which is 55 feet high and 20 inches in diameter. The maximum impact from all the years was used for the calculations.

Scaled hourly impact $(ug/m^3) = AERMOD$ predicted hourly ambient impact at 1 g/s $([ug/m^3]/[g/s]) \times Actual emission rate (g/s)$

Scaled annual impact (ug/m³) = AERMOD predicted annual ambient impact at 1 g/s ([ug/m³]/[g/s]) x Actual emission rate (g/s)

AERMOD Normalized									
Ambient Impact at 1 g/s									
Hourly Annual									
([ug/m ³]/[g/s])	([ug/m ³]/[g/s])								
189.14 6.04									

(3) Short-term and annual guideline concentrations for air toxic pollutants specified in the NYSDEC DAR-1 AGC/SGC tables revised August 10, 2016.

(4) The receptor height corresponds to the average inhalation level.

µg/m³	micrograms per cubic meter
lb/yr	pounds per year
lb/hr	pounds per hour
g/s	grams per second
0.57	bold value indicates a detection
AGC	annual guideline concentration
SGC	short-term guideline concentration
acfm	actual cubic feet per minute
DAR-1	Division of Air Resources-1
NYSDEC	New York State Department of Environmental Conservation

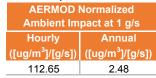
Table 4B Summary of AERMOD Air Quality Impact Analysis Tower 102 Treatment System, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Constituent	CAS#	T102 Effluent (ug/m ³)		Emission Rate ⁽¹⁾			Scaled Impact -Annual ⁽²⁾	SGC ⁽³⁾	AGC ⁽³⁾	Modeled Impacts < SGC
	040#	8/17/2016	lb/yr	lb/hr	g/s	Hourly ⁽²⁾ (ug/m ³)	(ug/m ³)	(ug/m ³)	(ug/m ³)	and AGC (Yes/No)
1,1,1 - Trichloroethane	00071-55-6	0.65	0.17	1.91E-05	2.41E-06	2.71E-04	5.97E-06	9000	5000	Yes
1,1 - Dichloroethane	00075-34-3	10	2.57	2.94E-04	3.70E-05	4.17E-03	9.18E-05		6.30E-01	Yes
1,1 - Dichloroethene	00075-35-4	76.9	19.79	2.26E-03	2.85E-04	3.21E-02	7.06E-04		200	Yes
Tetrachloroethene	00127-18-4	0.36	0.09	1.06E-05	1.33E-06	1.50E-04	3.30E-06	300	4	Yes
Trichloroethene	00079-01-6	13	3.35	3.82E-04	4.81E-05	5.42E-03	1.19E-04	20	2.00E-01	Yes
Vinyl Chloride	00075-01-4	0.54	0.14	1.59E-05	2.00E-06	2.25E-04	4.96E-06	180000	1.1E-01	Yes
Benzene	00071-43-2	0.42	0.11	1.23E-05	1.55E-06	1.75E-04	3.86E-06	1300	1.30E-01	Yes
Total Xylene	01330-20-7	0.98	0.25	2.88E-05	3.63E-06	4.09E-04	9.00E-06	37000	5000	Yes
Chloroform	00067-66-3	1.5	0.39	4.41E-05	5.55E-06	6.25E-04	1.38E-05	150	14.7	Yes
Chloromethane	00074-87-3	0.89	0.23	2.61E-05	3.29E-06	3.71E-04	8.17E-06	22000	90	Yes
Dichloromethane	00075-09-2	1.3	0.33	3.82E-05	4.81E-06	5.42E-04	1.19E-05	14000	60	Yes
Trichlorotrifluoroethane (Freon 113)	00076-13-1	16	4.12	4.70E-04	5.92E-05	6.67E-03	1.47E-04	960000	180000	Yes

Table 4B Summary of AERMOD Air Quality Impact Analysis Tower 102 Treatment System, Operable Unit 2, Northrop Grumman Systems Corporation, Bethpage, New York

Notes and Abbreviations:

(1) Emission rate calculated based on effluent concentration and a stack air flow rate of 7,790 cfm. The stack air flow rate (in acfm) is taken from the actual stack air flow rate on the day of sampling.


Trichloroethene (lb/hr) = (13 ug/m³) x (4,720 ft³/min) x (1 m³/35 ft³) x (60 min/hr) x (0.000001 g/1 ug) x (0.0022 lb/g)

 $lb/yr = lb/hr \times 8,760 hrs/yr$

g/s = lb/hr x 1 hr/3,600 sec x 453.59 g/1 lb

(2) Ambient impact based on AERMOD modeling using noramalized rate of 1 g/s is scaled to the actual emission rate of the pollutant. Modeling was performed using the representative meteorological data from the nearest station (Farmingdale, NY) for the years 2011 through 2015, and a stack which is 69.52 feet high and 24 inches in diameter. The maximum impact from all the years was used for the calculations.

Scaled hourly impact (ug/m³) = AERMOD predicted hourly ambient impact at 1 g/s ([ug/m³]/[g/s]) x Actual emission rate (g/s) Scaled annual impact (ug/m³) = AERMOD predicted annual ambient impact at 1 g/s ([ug/m³]/[g/s]) x Actual emission rate (g/s)

(3) Short-term and annual guideline concentrations for air toxic pollutants specified in the NYSDEC DAR-1 AGC/SGC tables revised August 10, 2016.

(4) The receptor height corresponds to the average inhalation level.

µg/m³	micrograms per cubic meter
lb/yr	pounds per year
lb/hr	pounds per hour
g/s	grams per second
0.57	bold value indicates a detection
AGC	annual guideline concentration
SGC	short-term guideline concentration
acfm	actual cubic feet per minute
DAR-1	Division of Air Resources-1
NYSDEC	New York State Department of Environmental Conservation

Table 5.

Concentrations of Volatile Organic Compounds and 1,4-Dioxane in Monitoring Wells ⁽¹⁾ BPOW 2-1, BPOW 2-2 and BPOW 2-3, Third Quarter 2016 Operable Unit 2 (Groundwater), Bethpage, New York

Well:	BPOW 2-1	BPOW 2-2	BPOW 2-3
Sample ID:	BPOW 2-1	BPOW 2-2	BPOW 2-3
CONSTITUENT Date:	8/12/2016	8/10/2016	8/30/2016
Units (ug/L)			
Volatile Organic Compounds (VOCs) (2)(3)			
1,1,1-Trichloroethane	<0.50	<0.50	<0.50
1,1,2,2-Tetrachloroethane	<0.50	<0.50	<0.50
1,1,2-trichloro-1,2,2-trifluroethane	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<0.50	<0.50	<0.50
1,1-Dichloroethane	<0.50	<0.50	<0.50
1,1-Dichloroethene	<0.50	<0.50	<0.50
1,2-Dichloroethane	<0.50	<0.50	<0.50
1,2-Dichloropropane	<0.50	<0.50	<0.50
2-Butanone (MEK)	<5.0	<5.0	<5.0
2-Hexanone	<2.0	<2.0	<2.0
4-methyl-2-pentanone (MIK)	<2.0	<2.0	<2.0
Acetone	<5.0	<5.0	<5.0
Benzene	0.067 J	<0.50	<0.50
Bromodichloromethane	<0.50	<0.50	<0.50
Bromoform	<0.50	<0.50	<0.50
Bromomethane	<0.50	<0.50	<0.50
Carbon Disulfide	<0.50	<0.50	<0.50
Carbon tetrachloride	<0.50	<0.50	<0.50
Chlorobenzene	<0.50	<0.50	<0.50
Chloroethane	<0.50	<0.50	<0.50
Chloroform	<0.50	<0.50	<0.50
Chloromethane	<0.50	<0.50	<0.50
cis-1,2-dichloroethene	<0.50	<0.50	<0.50
cis-1,3-dichloropropene	<0.50	<0.50	<0.50
Dibromochloromethane	<0.50	<0.50	<0.50
Ethylbenzene	<0.50	<0.50	<0.50
Methylene Chloride	<0.50	<0.50	<0.50
Styrene	<0.50	<0.50	<0.50
Tetrachloroethene	<0.50	<0.50	<0.50
Toluene	<0.50	<0.50	<0.50
trans-1,2-dichloroethene	<0.50	<0.50	<0.50
trans-1,3-dichloropropene	<0.50	<0.50	<0.50
Trichloroethylene	<0.50	<0.50	<0.50
Vinyl Chloride	<0.50	<0.50	<0.50
Xylene-o	<0.50	<0.50	<0.50
Xylenes - m,p	<0.50	<0.50	<0.50
Total VOCs ⁽⁴⁾	0.07	0	0
1,4-Dioxane ^{(2) (3)}	0.547	0.346	3.21
See last page for Notes and Abbreviations.	0.017	0.010	V.2.1

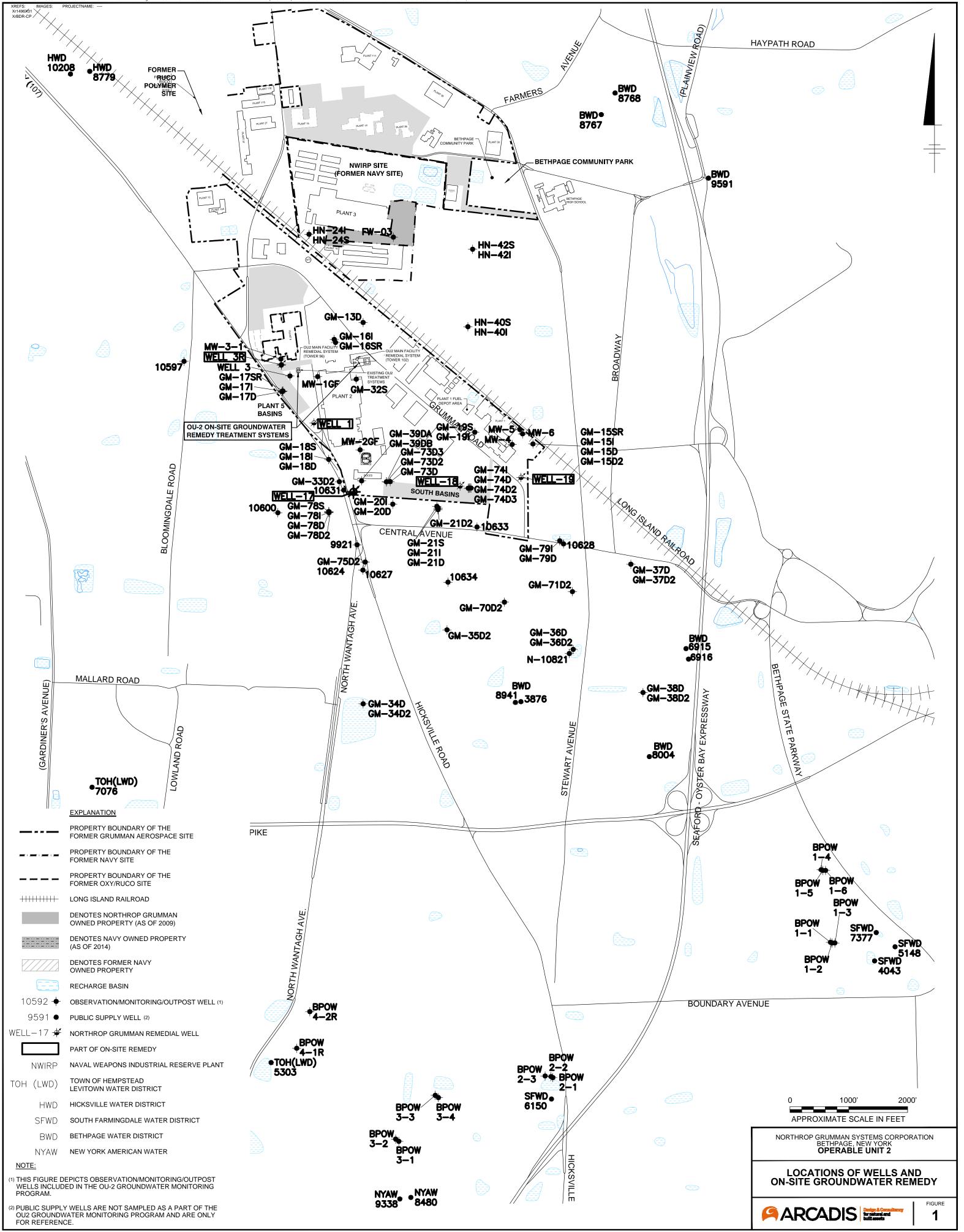
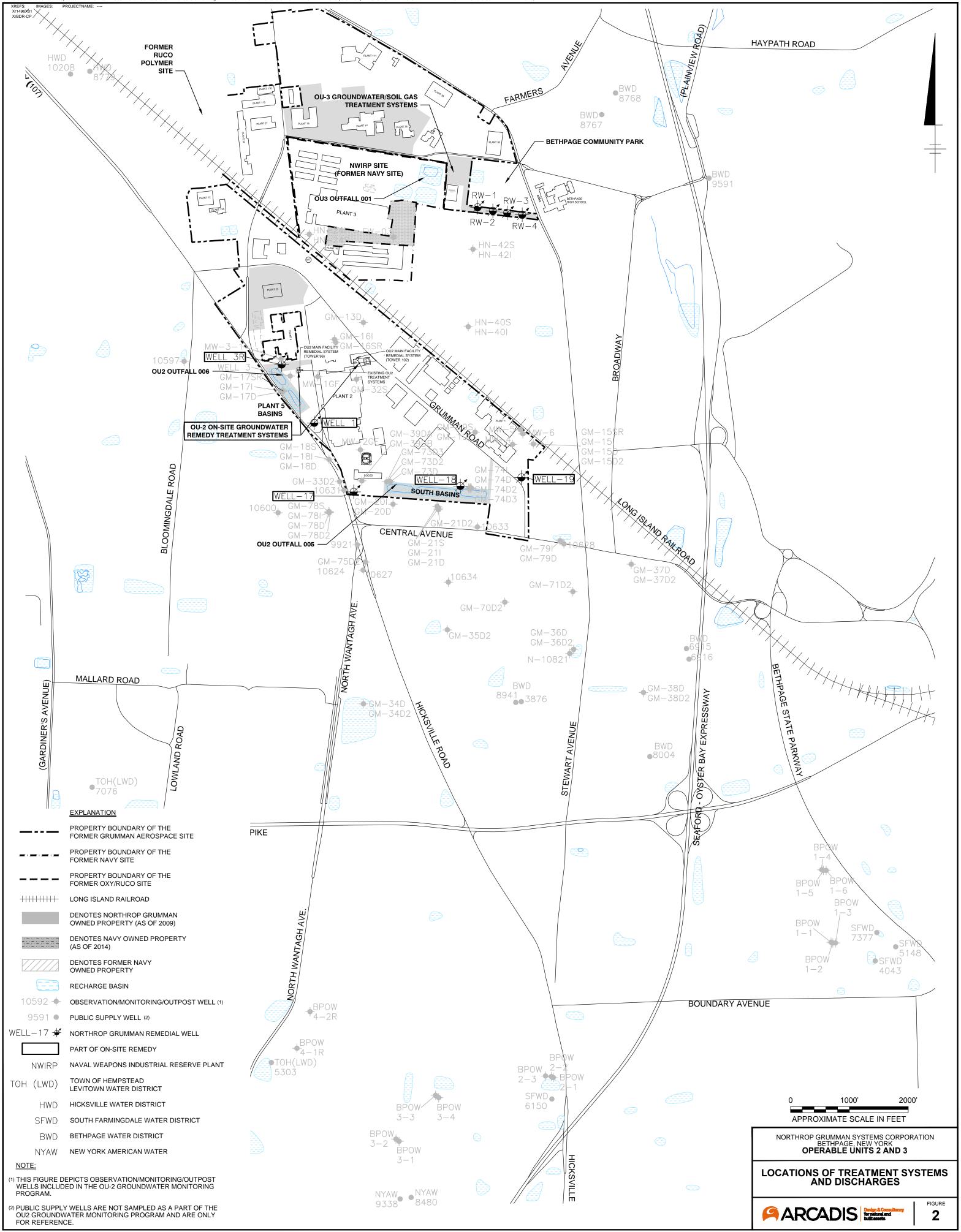
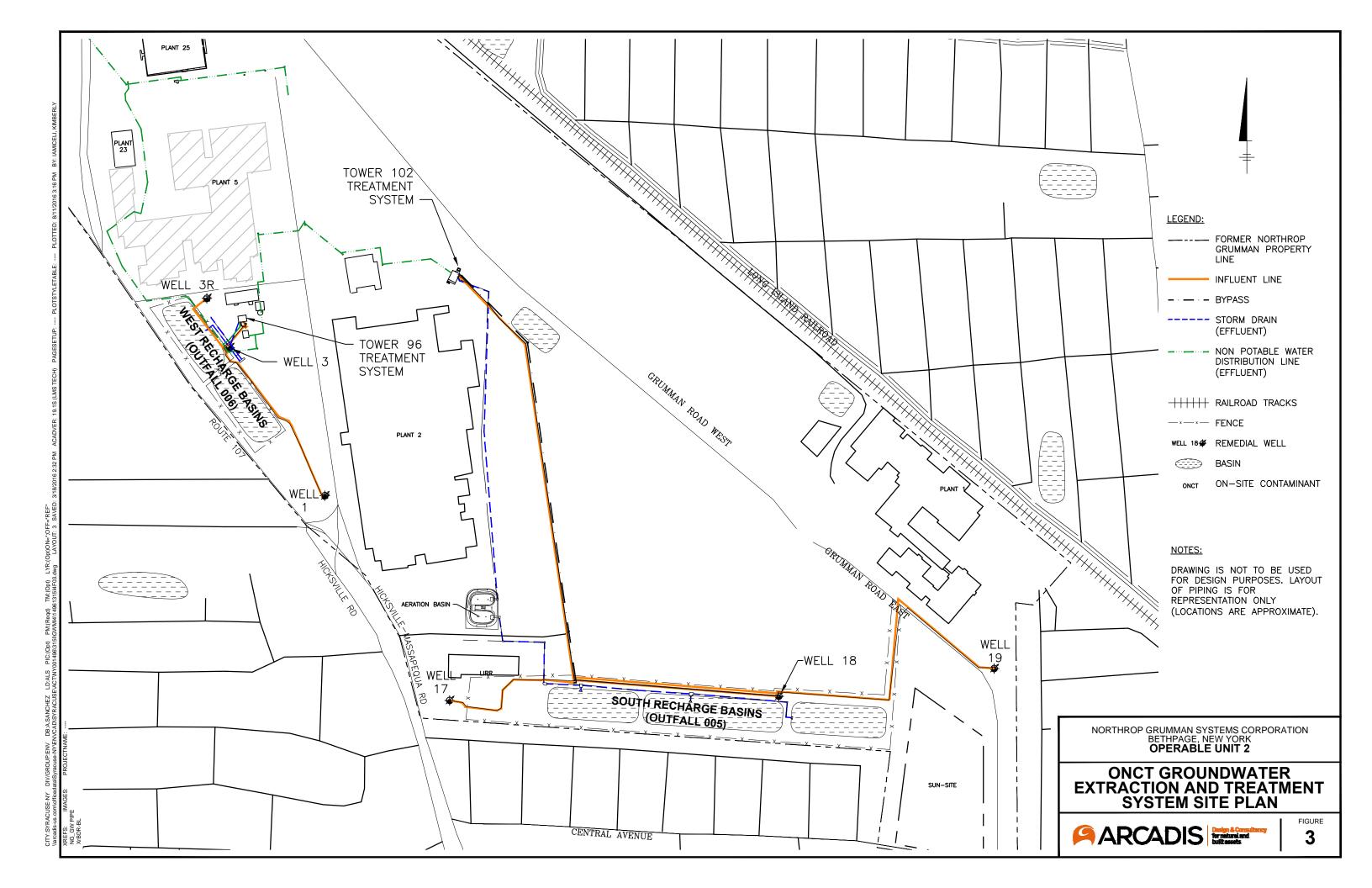
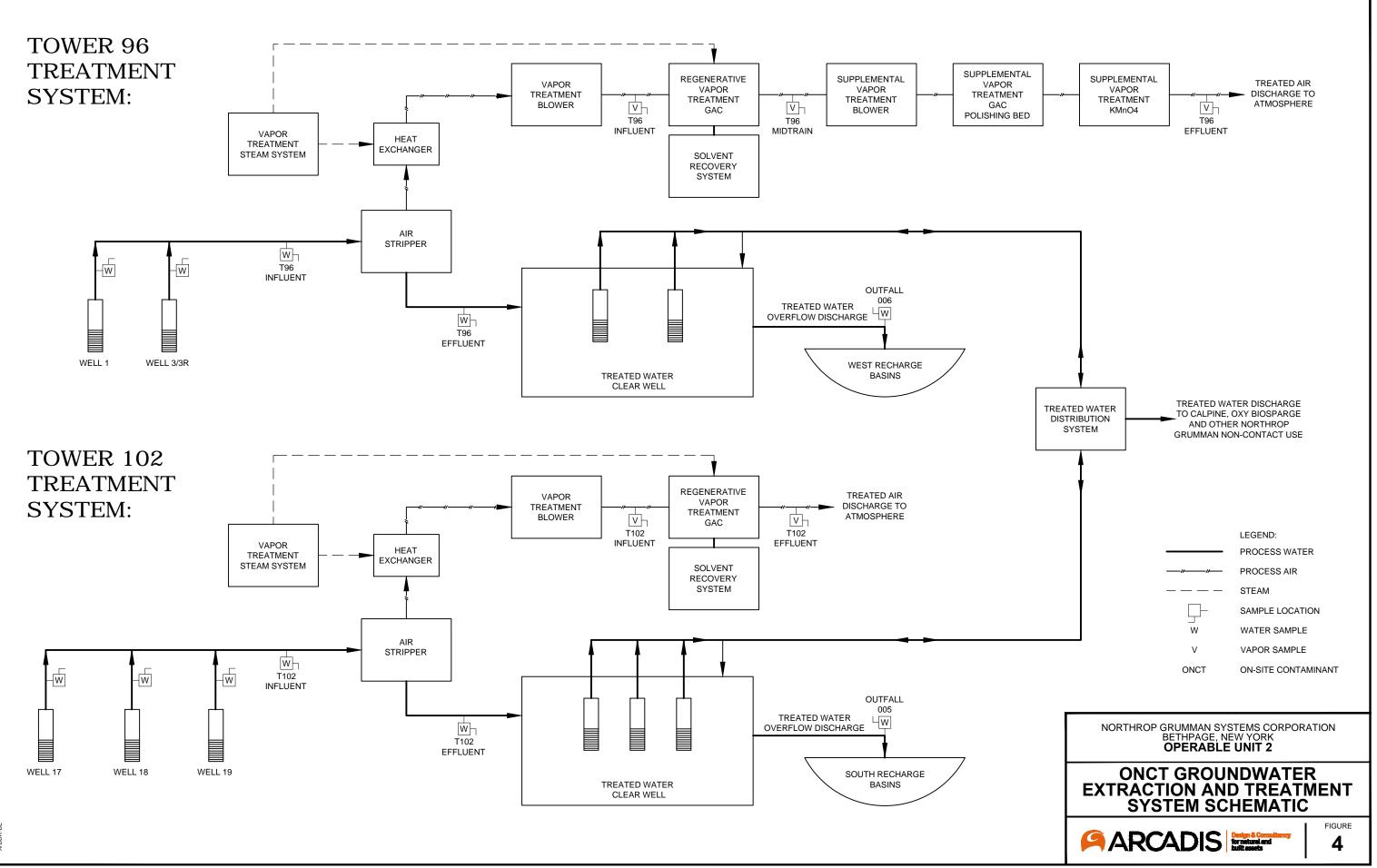

See last page for Notes and Abbreviations.

Table 5. Concentrations of Volatile Organic Compounds and 1,4-Dioxane in Monitoring Wells ⁽¹⁾ BPOW 2-1, BPOW 2-2 and BPOW 2-3, Third Quarter 2016 Operable Unit 2 (Groundwater), Bethpage, New York




Notes and Abbreviations:


(1)	These outpost wells have been recently repurposed for use as plume monitoring wells per the June 2015 Groundwater Monitoring Plan Addendum (ARCADIS of New York, Inc., 2015) as conditionally approved by the
	NYSDEC (August 25, 2015). Therefore, TVOC trigger levels that may have been previously established are no longer shown
(2)	Samples were analyzed for VOCs using USEPA Method 524.2; samples were analyzed for 1,4-Dioxane using USEPA Method 522
(3)	Results for the program are validated at 20% frequency, per protocols specified in OU2 Groundwater Monitoring Plan (Arcadis 2016)
(4)	Total VOCs are rounded to two significant figures
0.547	Bold value indicates constituent detected at or above its reporting limit.
J	Constituent value is estimated
TVOCs	Total Volatile Organic Compounds
VOC	Volatile Organic Compounds
µg/L	micrograms per liter
<0.5	Compound not detected above its laboratory quantification limit.

CITY:(Reqd) DIV/GROUP:(Reqd) DB:(Reqd) DB:(Req

TM:(Opt) LYR:(Opt)ON=*;OFF=*REF* 131514F04.dwg LAYOUT: 4 SAVED PM:(Reqd) T NGWMI4/14961 PIC:(Opt) LD:ALS DB:A.SANCHEZ Š