

Northrop Grumman Corporation 925 South Oyster Bay Road Bethpage, NY 11714

northropgrumman.com

December 18, 2020

Jason M. Pelton, P.G.
Project Manager
Remedial Section B, Remedial Bureau D
Division of Environmental Remediation
New York State Department of Environmental Conservation
625 Broadway, 12th Floor
Albany, NY 12233-7013

Subject: Request for Modification to the August 21, 2020 Revised Remedial Action Work Plan for

Management of Treated Liquid Effluent

Operable Unit 3, Former Grumman Settling Ponds, Bethpage, New York

Electronic transmission only. Hard copy available upon request.

Dear Mr. Pelton,

On behalf of Northrop Grumman Systems Corporation (Northrop Grumman), REUS Engineers, PC (formerly Environ Engineers of North Carolina, PC), a New York licensed professional corporation, and Environmental Management and Global Innovations, Inc. (EMAGIN) propose a modification to the Remedial Action Work Plan (RAWP) for the Volatile Organic Compound (VOC) Source Area at the Bethpage Community Park (the Park) in Bethpage, New York (Site). The RAWP was last revised on and approved by NYSDEC on August 21, 2020.

The proposed modification relates to the management of treated effluent from the ISTR liquid treatment system, as described in Section 4.4 of the RAWP. The RAWP indicates that the liquid effluent, which is treated by filtration, gravity separation, and granular activated carbon, will meet SPDES or TOGS criteria prior pumping it through the existing OU3 groundwater treatment system for additional polishing treatment by air stripping prior to discharge. Since startup of operations, the ISTR liquid effluent has been batch discharged from a holding tank to the OU3 treatment system approximately every 3 weeks (approximately 15,000 gallons pumped over 4-5 hours per event). The ISTR liquid effluent during a discharge event (60 gpm), however, represents only about 25 percent of the total flow (240 gpm) through the OU3 treatment system. The balance of the flow (180 gpm) originates from OU3 groundwater recovery wells RW-2, -3, and -4. Thus, the ISTR liquid effluent discharge limits identified in the RAWP do not account for the moderating effect of the flow from the OU3 ONCT remedial wells, particularly for iron and manganese, which are present in the subsurface as naturally occurring compounds.

On October 5, 2020, Northrop Grumman submitted a request to DEC to discharge the first batch of ISTR treated liquid effluent (discharge event on October 6, 2020). This batch had an iron concentration of 801 ug/L (see **Attachment A**, sample FRAC1-2949 by Method 200.7), which exceeded the SPDES equivalency daily maximum limit of 600 ug/L. Historical data from 2019 indicated that the combined iron concentration in the flow from the OU3 remedial wells was less than 200 ug/L (see **Attachment B**). Following NYSDEC's approval of Northrop Grumman's request on October 5, 2020 (see **Attachment C**), the ISTR liquid effluent was combined with the flow from the OU3 remedial wells, and the resulting iron concentration in the OU3 treatment system discharge was less than 100 ug/L (see **Attachment D**), which is well below the SPDES criterion.

Attachment E contains proposed revisions (shown in underline/strikeout) to Section 4.4 of the RAWP and Section 4.2.6 of the BOD (Appendix B) for this RAWP modification to properly account for the combined flow from the ISTR liquid treatment system and the OU3 ONCT remedial wells, which is treated at and discharged from the OU3 treatment system.

Feel free to contact us should you have any questions.

Thank you,

Edward J. Hannon Director ESHM 925 South Oyster Bay Road Bethpage, NY 11714 516-575-2333

cc:

Don Hesler, NYSDEC Jim Sullivan, NYSDOH Richard Lenz, TOB Matt Russo, TOB Aaron Gershonowitz, Esq.

Attachments

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Sample Summary

EMAGIN, Inc.

Job No: JD13479

OU3 ISTR Monitoring, Bethpage, NY Project No: 7as301101, phase74

Sample	Collected	d		Matrix	Client
Number	Date	Time By	Received	Code Type	Sample ID

This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL

* JD13479-1 09/22/20 11:30 CM 09/22/20 AQ Influent LGAC-INF-20200922

* JD13479-3 09/22/20 12:00 CM 09/22/20 AQ Water FRAC1-A2949-20200922

Draft: 1 of 21

^{*} The following report applies to these samples only (3 day TAT).

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 2

Client Sample ID: LGAC-INF-20200922

 Lab Sample ID:
 JD13479-1
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Influent
 Date Received:
 09/22/20

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2E164256.D 5 09/24/20 13:49 KC n/a n/a V2E8230

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

Compound	Result	RL	MDL	Units	Q
Acetone	92.4	50	30	ug/l	
Benzene	2.2	2.5	2.1	ug/l	J
Bromochloromethane	ND	5.0	2.4	ug/l	
Bromodichloromethane	ND	5.0	2.3	ug/l	
Bromoform	ND	5.0	3.2	ug/l	
Bromomethane	ND	10	8.2	ug/l	
2-Butanone (MEK)	ND	50	34	ug/l	
Carbon disulfide	ND	10	2.3	ug/l	
Carbon tetrachloride	ND	5.0	2.8	ug/l	
Chlorobenzene	ND	5.0	2.8	ug/l	
Chlorodifluoromethane	ND	25	14	ug/l	
Chloroethane	ND	5.0	3.6	ug/l	
Chloroform	ND	5.0	2.5	ug/l	
Chloromethane	ND	5.0	3.8	ug/l	
Cyclohexane	ND	25	3.9	ug/l	
1,2-Dibromo-3-chloropropane	ND	10	6.0	ug/l	
Dibromochloromethane	ND	5.0	2.8	ug/l	
				ug/l	
				ug/l	
				ug/l	
				-	
				-	
				ug/l	
				ug/l	
				ug/l	
				-	
				-	
				-	
				-	
•				-	
Freon 113	ND	25	9.7	ug/l	
	Acetone Benzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodifluoromethane Chloroform Chloromethane Cyclohexane 1,2-Dibromo-3-chloropropane	Acetone Benzene Benzene Bromochloromethane Bromodichloromethane Bromodichloromethane Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Carbon disulfide ND Carbon disulfide ND Carbon tetrachloride ND Chlorodifluoromethane ND Chlorodifluoromethane ND Chlorodethane ND Chloromethane ND Chloromethane ND Cyclohexane 1,2-Dibromo-3-chloropropane Dibromochloromethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloropropene ND	Acetone Benzene Benzene Bromochloromethane ND Bromodichloromethane ND Bromoform ND Bromoform ND Bromomethane ND Carbon disulfide ND Carbon disulfide ND Carbon tetrachloride ND Carbon tetrachloride ND Chlorodifluoromethane ND Chlorodifluoromethane ND Chloroform ND Chloroform ND Chloromethane ND Cyclohexane ND 1,2-Dibromo-3-chloropropane ND 1,2-Dibromoethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND Dichlorodifluoromethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloroethene ND 1,1-Dichloroethene ND 1,1-Dichloroethene ND 1,2-Dichloropropane ND 5.0 1,3-Dichloropropane	Acetone 92.4 50 30 Benzene 2.2 2.5 2.1 Bromochloromethane ND 5.0 2.4 Bromodichloromethane ND 5.0 3.2 Bromoform ND 5.0 3.2 Bromomethane ND 10 8.2 2-Butanone (MEK) ND 50 34 Carbon disulfide ND 10 2.3 Carbon tetrachloride ND 5.0 2.8 Chlorobenzene ND 5.0 2.8 Chlorodifluoromethane ND 5.0 2.8 Chlorodifluoromethane ND 5.0 3.6 Chloroform ND 5.0 3.6 Chloroform ND 5.0 3.8 Cyclohexane ND 5.0 3.8 Cyclohexane ND 5.0 3.8 Cyclohexane ND 5.0 3.8 1,2-Dibromo-3-chloropropane ND 10 6.0 Dibromochloromethane ND 5.0 2.8 1,2-Dichlorobenzene ND 5.0 2.7 1,3-Dichlorobenzene ND 5.0 2.7 1,4-Dichlorobenzene ND 5.0 2.5 Dichlorodifluoromethane ND 5.0 2.5 Dichlorodifluoromethane ND 5.0 2.7 1,4-Dichlorobenzene ND 5.0 2.5 Dichlorodifluoromethane ND 5.0 3.0 1,1-Dichloroethene ND 5.0 2.5 trans-1,2-Dichloroethene ND 5.0 2.5 trans-1,2-Dichloroethene ND 5.0 2.5 trans-1,2-Dichloropropene ND 5.0 2.5 Ethylbenzene ND 5.0 2.2 Ethylbenzene ND 5.0 2.2	Acetone 92.4 50 30 ug/l Benzene 2.2 2.5 2.1 ug/l Bromochloromethane ND 5.0 2.4 ug/l Bromochloromethane ND 5.0 2.4 ug/l Bromodichloromethane ND 5.0 3.2 ug/l Bromoform ND 5.0 3.2 ug/l Bromomethane ND 5.0 3.2 ug/l Bromomethane ND 10 8.2 ug/l Bromomethane ND 10 8.2 ug/l Carbon disulfide ND 10 2.3 ug/l Carbon disulfide ND 5.0 2.8 ug/l Chlorobenzene ND 5.0 2.8 ug/l Chlorobenzene ND 5.0 2.8 ug/l Chlorodifluoromethane ND 5.0 3.6 ug/l Chlorodifluoromethane ND 5.0 3.6 ug/l Chloroform ND 5.0 3.6 ug/l Chloromethane ND 5.0 3.8 ug/l Chloromethane ND 5.0 3.8 ug/l Chloromethane ND 5.0 2.5 ug/l Chloromethane ND 5.0 2.5 ug/l Chloromethane ND 5.0 3.8 ug/l Cyclohexane ND 5.0 2.8 ug/l 1,2-Dibromo-3-chloropropane ND 10 6.0 ug/l 1,2-Dibromoethane ND 5.0 2.4 ug/l 1,2-Dichlorobenzene ND 5.0 2.7 ug/l 1,3-Dichlorobenzene ND 5.0 2.7 ug/l 1,4-Dichlorobenzene ND 5.0 2.5 ug/l 1,1-Dichlorobenzene ND 5.0 2.5 ug/l 1,1-Dichloroethane ND 5.0 2.5 ug/l 1,1-Dichloroethane ND 5.0 2.5 ug/l 1,1-Dichloroethane ND 5.0 2.5 ug/l 1,2-Dichloroethane ND 5.0 2.5 ug/l 1,2-Dichloroethene ND 5.0 2.5 ug/l 1,2-Dichloroethene ND 5.0 2.5 ug/l 1,2-Dichloroethene ND 5.0 2.5 ug/l trans-1,2-Dichloroethene ND 5.0 2.5 ug/l trans-1,2-Dichloroethene ND 5.0 2.5 ug/l trans-1,2-Dichloropropene ND 5.0 2.5 ug/l trans-1,2-Dichloropropene ND 5.0 2.5 ug/l trans-1,3-Dichloropropene ND 5.0 2.2 ug/l trans-1,3-Dichloropropene ND 5.0 3.0 ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 2 of 2

Client Sample ID: LGAC-INF-20200922

 Lab Sample ID:
 JD13479-1
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Influent
 Date Received:
 09/22/20

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	25	10	ug/l	
98-82-8	Isopropylbenzene	ND	5.0	3.2	ug/l	
79-20-9	Methyl Acetate	ND	25	4.0	ug/l	
108-87-2	Methylcyclohexane	ND	25	3.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	2.5	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	25	9.3	ug/l	
75-09-2	Methylene chloride	ND	10	5.0	ug/l	
100-42-5	Styrene	ND	5.0	2.4	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	5.0	3.3	ug/l	
127-18-4	Tetrachloroethene	ND	5.0	4.5	ug/l	
108-88-3	Toluene	76.6	5.0	2.7	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	5.0	2.7	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	5.0	2.7	ug/l	
79-01-6	Trichloroethene	110	5.0	2.6	ug/l	
75-69-4	Trichlorofluoromethane	ND	10	2.0	ug/l	
75-01-4	Vinyl chloride	45.0	5.0	3.9	ug/l	
	m,p-Xylene	ND	5.0	3.9	ug/l	
95-47-6	o-Xylene	3.6	5.0	3.0	ug/l	J
1330-20-7	Xylene (total)	3.6	5.0	3.0	ug/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	99%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	103%		81-12	24%	
2037-26-5	Toluene-D8	99%		80-12	20%	
460-00-4	4-Bromofluorobenzene	103%		80-12	20%	

⁽a) Dilution required due to high concentration of target compound.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 3

Client Sample ID: LGAC-INF-20200922

Lab Sample ID: JD13479-1 **Date Sampled:** 09/22/20 Matrix: AQ - Influent **Date Received:** 09/22/20 Method: SW846 8270D SW846 3510C **Percent Solids:** n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

File ID DF **Analyzed** By **Prep Date Prep Batch Analytical Batch** Run #1 5P71501.D 1 09/25/20 07:06 CS 09/24/20 17:00 OP29652 E5P3371

Run #2

Final Volume Initial Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	3.7	5.0	2.4	ug/l	J
51-28-5	2,4-Dinitrophenol	ND	5.0	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	2.8	2.0	0.89	ug/l	
	3&4-Methylphenol	3.4	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	0.42	2.0	0.39	ug/l	J
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	0.21	1.0	0.19	ug/l	J
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	1.3	2.0	0.21	ug/l	J
120-12-7	Anthracene	0.51	1.0	0.21	ug/l	J
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 2 of 3

Client Sample ID: LGAC-INF-20200922

Lab Sample ID: JD13479-1 **Date Sampled:** 09/22/20 Matrix: AQ - Influent **Date Received:** 09/22/20 Percent Solids: n/a Method: SW846 8270D SW846 3510C

Project: OU3 ISTR Monitoring, Bethpage, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	1.6	2.0	0.65	ug/l	J
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	0.28	2.0	0.25	ug/l	J
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	1.3	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	0.40	5.0	0.22	ug/l	J
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate ^a	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	2.5	1.0	0.17	ug/l	
86-73-7	Fluorene	0.26	1.0	0.17	ug/l	J
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	0.34	1.0	0.21	ug/l	J
88-74-4	2-Nitroaniline ^a	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	0.42	1.0	0.23	ug/l	J
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	7.3	1.0	0.18	ug/l	
129-00-0	Pyrene	1.9	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

367-12-4 18% 10-73% 2-Fluorophenol

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 3 of 3

Client Sample ID: LGAC-INF-20200922

 Lab Sample ID:
 JD13479-1
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Influent
 Date Received:
 09/22/20

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	13%		10-64%
118-79-6	2,4,6-Tribromophenol	38%		31-130%
4165-60-0	Nitrobenzene-d5	36%		28-126%
321-60-8	2-Fluorobiphenyl	33%		26-114%
1718-51-0	Terphenyl-d14	40%		16-122%

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 6 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: LGAC-INF-20200922

 Lab Sample ID:
 JD13479-1
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Influent
 Date Received:
 09/22/20

 Method:
 SW846 8270D BY SIM
 SW846 3510C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 4P39498.D
 1
 09/26/20 04:42 CS
 09/25/20 08:00 OP29651A
 E4P2107

Run #2

Initial Volume Final Volume
Run #1 1000 ml 1.0 ml
Run #2

CAS No. Compound RLMDL Units Result Q 123-91-1 2.09 0.10 1,4-Dioxane 0.050 ug/1 CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 57% 29-124% 321-60-8 2-Fluorobiphenyl 60% 23-122% 1718-51-0 Terphenyl-d14 60% 22-130%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 7 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: LGAC-INF-20200922

Lab Sample ID: JD13479-1 **Date Sampled:** 09/22/20 Matrix: AQ - Influent **Date Received:** 09/22/20 Method: SW846 8082A SW846 3510C Percent Solids: n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** 09/25/20 01:01 CP 09/24/20 17:00 Run #1 2G197793.D 1 OP29664 G2G5141

Run #2

Final Volume Initial Volume Run #1 980 ml 5.0 ml

Run #2

PCB List

Compound	Result	RL	MDL	Units	Q
Aroclor 1016	ND	0.26	0.10	ug/l	
Aroclor 1221	ND	0.26	0.21	-	
Aroclor 1232	ND	0.26	0.13	-	
Aroclor 1242	ND	0.26	0.12	-	
Aroclor 1248	ND	0.26	0.064	-	
Aroclor 1254	ND	0.26	0.21	-	
Aroclor 1260	ND	0.26	0.078	-	
Aroclor 1268	ND	0.26	0.088	_	
Aroclor 1262	ND	0.26	0.098	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
Tetrachloro-m-xylene	98%		10-15	55%	
Tetrachloro-m-xylene	68%		10-15	55%	
Decachlorobiphenyl	39%		10-15	51%	
Decachlorobiphenyl	41%		10-15	51%	
	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Surrogate Recoveries Run# 1 Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl ND ND Roclor 1268 Run# 1	Aroclor 1016 Aroclor 1221 Aroclor 1222 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Surrogate Recoveries Run# 1 Run# 2 Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl ND 0.26 ND	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1262 Surrogate Recoveries Run# 1 Run# 2 ND 0.26 0.10 0.26 0.21 0.26 0.13 0.26 0.064 0.26 0.064 0.21 0.26 0.078 0.26 0.078 0.26 0.088 0.20 0.26 0.098 Run# 1 Run# 2 Limit Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl 39%	Aroclor 1016 ND 0.26 0.10 ug/l Aroclor 1221 ND 0.26 0.21 ug/l Aroclor 1232 ND 0.26 0.13 ug/l Aroclor 1242 ND 0.26 0.12 ug/l Aroclor 1248 ND 0.26 0.064 ug/l Aroclor 1254 ND 0.26 0.21 ug/l Aroclor 1260 ND 0.26 0.078 ug/l Aroclor 1268 ND 0.26 0.088 ug/l Aroclor 1262 ND 0.26 0.098 ug/l Surrogate Recoveries Run# 1 Run# 2 Limits Tetrachloro-m-xylene 68% 10-155% Decachlorobiphenyl 39% 10-151%

ND = Not detectedMDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: LGAC-INF-20200922

Lab Sample ID:JD13479-1Date Sampled:09/22/20Matrix:AQ - InfluentDate Received:09/22/20Percent Solids:n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Chromium	< 10	10	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Iron	30300	100	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Manganese	905	15	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Mercury	< 0.20	0.20	ug/l	1	09/23/20	09/23/20 LL	SW846 7470A ¹	SW846 7470A ⁴

(1) Instrument QC Batch: MA49340(2) Instrument QC Batch: MA49347(3) Prep QC Batch: MP22873(4) Prep QC Batch: MP22883

RL = Reporting Limit

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: LGAC-INF-20200922

Lab Sample ID:JD13479-1Date Sampled:09/22/20Matrix:AQ - InfluentDate Received:09/22/20Percent Solids:n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate ^a	0.33	0.11	mg/l	1	09/23/20 21:14	EB	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.35	0.10	mg/l	1	09/23/20 21:14	EB	EPA 353.2/LACHAT
Nitrogen, Nitrite	0.021	0.010	mg/l	1	09/22/20 23:15	EB	SM4500NO2 B-11
Nitrogen, Total Kjeldahl	1.3	0.20	mg/l	1	09/25/20 15:10	BM	EPA 351.2/LACHAT

⁽a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Draft: 10 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 2

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Method:
 SW846 8260C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2E164263.D 1 09/24/20 17:18 KC n/a n/a V2E8230

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	6.0	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-45-6	Chlorodifluoromethane	ND	5.0	2.9	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	1.2	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	1.4	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	1.9	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 2 of 2

Client Sample ID: FRAC1-A2949-20200922

Lab Sample ID: JD13479-3 **Date Sampled:** 09/22/20 Matrix: AQ - Water **Date Received:** 09/22/20 Method: SW846 8260C Percent Solids: n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l	
108-88-3	Toluene	ND	1.0	0.53	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	100%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	103%		81-12	24%	
2037-26-5	Toluene-D8	100%		80-12	20%	
460-00-4	4-Bromofluorobenzene	103%		80-12	20%	

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 12 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 3

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 5P71502.D
 1
 09/25/20 07:31
 CS
 09/24/20 17:00
 OP29652
 E5P3371

Run #2

Run #1 1000 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.0	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l	
	3&4-Methylphenol	ND	2.0	0.88	ug/l	
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.39	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.21	ug/l	
1912-24-9	Atrazine	ND	2.0	0.45	ug/l	
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 2 of 3

Client Sample ID: FRAC1-A2949-20200922

Lab Sample ID: **Date Sampled:** 09/22/20 JD13479-3 Matrix: AQ - Water **Date Received:** 09/22/20 Method: Percent Solids: n/a SW846 8270D SW846 3510C

Project: OU3 ISTR Monitoring, Bethpage, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate ^a	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline ^a	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
91-20-3	Naphthalene	ND	1.0	0.23	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	43%		10-73	3%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 14 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 3 of 3

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Method:
 SW846 8270D
 SW846 3510C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	28%		10-64%
118-79-6	2,4,6-Tribromophenol	70%		31-130%
4165-60-0	Nitrobenzene-d5	80%		28-126%
321-60-8	2-Fluorobiphenyl	74%		26-114%
1718-51-0	Terphenyl-d14	82%		16-122%

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Draft: 15 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Method:
 SW846 8270D BY SIM
 SW846 3510C
 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 4M95260.D
 1
 09/25/20 04:24 CS
 09/24/20 17:00 OP29652A
 E4M4412

Run #2

Initial Volume Final Volume
Run #1 1000 ml 1.0 ml
Run #2

CAS No. Compound RLMDL Units Result Q 123-91-1 ND 0.10 1,4-Dioxane 0.050 ug/1 CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 62% 29-124% 321-60-8 2-Fluorobiphenyl 61% 23-122% 1718-51-0 Terphenyl-d14 72% 22-130%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Draft: 16 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: FRAC1-A2949-20200922

Lab Sample ID: JD13479-3 **Date Sampled:** 09/22/20 Matrix: AQ - Water **Date Received:** 09/22/20 Method: SW846 8082A SW846 3510C **Percent Solids:** n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

File ID DF Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 XX2454184.D 1 09/24/20 03:21 CP 09/23/20 18:30 OP29644 GXX7166 Run #2

Final Volume Initial Volume

Run #1 5.0 ml 1000 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016 a	ND	0.25	0.098	ug/l	
11104-28-2	Aroclor 1221	ND	0.25	0.21	ug/l	
11141-16-5	Aroclor 1232	ND	0.25	0.13	ug/l	
53469-21-9	Aroclor 1242	ND	0.25	0.11	ug/l	
12672-29-6	Aroclor 1248	ND	0.25	0.063	ug/l	
11097-69-1	Aroclor 1254	ND	0.25	0.21	ug/l	
11096-82-5	Aroclor 1260 a	ND	0.25	0.076	ug/l	
11100-14-4	Aroclor 1268	ND	0.25	0.087	ug/l	
37324-23-5	Aroclor 1262	ND	0.25	0.097	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
877-09-8	Tetrachloro-m-xylene	106%		10-15	55%	
877-09-8	Tetrachloro-m-xylene	109%		10-15	55%	
2051-24-3	Decachlorobiphenyl	92%		10-15	51%	
2051-24-3	Decachlorobiphenyl	92%		10-15	51%	

⁽a) This compound outside control limits biased high in the associated BSD.

ND = Not detectedMDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Draft: 17 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	< 3.0	3.0	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Chromium	< 10	10	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Iron	759	100	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Manganese	176	15	ug/l	1	09/23/20	09/23/20 ND	SW846 6010D ²	SW846 3010A ³
Mercury	< 0.20	0.20	ug/l	1	09/23/20	09/23/20 LL	SW846 7470A ¹	SW846 7470A ⁴

(1) Instrument QC Batch: MA49340(2) Instrument QC Batch: MA49347(3) Prep QC Batch: MP22873(4) Prep QC Batch: MP22883

RL = Reporting Limit

Draft: 18 of 21

SGS LabLink@11:17 28-Sep-2020 Preliminary Data

Report of Analysis

Page 1 of 1

Client Sample ID: FRAC1-A2949-20200922

 Lab Sample ID:
 JD13479-3
 Date Sampled:
 09/22/20

 Matrix:
 AQ - Water
 Date Received:
 09/22/20

 Percent Solids:
 n/a

Project: OU3 ISTR Monitoring, Bethpage, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Nitrogen, Nitrate ^a	< 0.11	0.11	mg/l	1	09/23/20 21:12	EB	EPA353.2/SM4500NO2B
Nitrogen, Nitrate + Nitrite	0.14	0.10	mg/l	1	09/23/20 21:12	EB	EPA 353.2/LACHAT
Nitrogen, Nitrite	0.066	0.010	mg/l	1	09/22/20 23:23	EB	SM4500NO2 B-11
Nitrogen, Total Kjeldahl	0.31	0.20	mg/l	1	09/25/20 15:10	BM	EPA 351.2/LACHAT

⁽a) Calculated as: (Nitrogen, Nitrate + Nitrite) - (Nitrogen, Nitrite)

Draft: 19 of 21

Turn Around Time (Business Days) Turn Around Ti	Bottle Cycles Control # 91720-118 868 Job # 50 13479				North America Inc Dayton FROUET 130, Dayton, NJ 08810 329-0200 FAX: 732-329-3499/3480 www.sgs.com/ehsusa							35 Rout 32-329-0	22				3 G 3	-								
See Address	Matrix Codes	_		is	nalysi	ted An	Reques	F							4		7911		ition	Informa	Project			formation		70:
Tum Around Time (Business Days)	DW - Drinking Wat GW - Ground Wat WW - Water														À						100000		003 15		toin, inc.	M
	SW - Surface Wate SO - Soil SL- Sludge SED-Sediment OI - Oil					2		8	3	Xo)	Report to	ent from F	n (if differe	ormatio Name	Billing Inf		e comm	Beth pac		Mapledale Blv	71
Field ID / Point of Colection	LIQ - Other Liquic AIR - Air SOL - Other Solic					83			3	401	1	J	Ţ _l						iress	Street Add	1102	DIDI a	Project #	BIACINIA CE	tact E-mail	ect Co
Commercial Tables Comm	WP - Wipe FB - Field Blank	9						31	4	Z	7		Zip		te	St	al.			City	VIUSC-T	Order#	Client Purchase	e ns weng w		
Field D / Point of Collection MECHOT Value Date Time Segretary Date Decision Date Decision Date Decision Date Decision Date Decision Date Decision Deci	EB-Equipment Blar RB - Rinse Blank TB - Trip Blank			0	0	1	7	5	5	7051	2		4 D-stl-		7 B				(4196)	Attention:		is	Project Manage	267 4751349	Name(s)	moler(s
Commercial Tar Results Orly, Commercial Tar Results + CC Summary	LAB USE ONL			2		VMS	TKN	00	NW	00	MBB	ENCORE	8			Π;		Matrix	Grab (G) Comp (C)			18				38
Turn Around Time (Business Days)	FYY			_	-	/	X	-		-							13	MM	G	CM	1130	0122120	THE THE	-20200922	GAC-INF-2	+
Turn Around Time (Business Days Deliverable Commercial Tax* (Level 1) NYASP Category B MA MCP Criteria Substances Days Substances Days Substances Days Full Time (Cevel 2) MA MCP Criteria Substances Days Substances Days Substances Days Full Time (Cevel 2) MA MCP Criteria Cevel 2) MA MCP Criteria Substances Days Subs	A39			_	-			-		H	H	Ш					-	WW	9	CM	1145	9/22/20				
Approved By (BGS PM; / Date: Commercial ** (Level 1)	6-43			3	X	X	X	X	X	X	X	Ш		27	1	3	13	WW	6	CM	1200	9/22/20		9-20200922	RAC1-12949-	i
Approved By (BGS PM; / Date: Commercial ** (Level 1)	V130											Н	_	\perp	Ш							1		27		T
Approved By (508 PM); Oate: Commercial "A" (Level 1) NYASP Category A DOD-QSMS S Business Days Sill Loss of Loss		+	\vdash			- 3						1		\perp	Ш						J.	100				1
Approved By (508 PM); Oate: Commercial "A" (Level 1) NYASP Category A DOD-QSMS S Business Days Sill Loss of Loss			-	-	-							1		\perp	\perp						132					
Approved By (BGS PM; / Date: Commercial ** (Level 1)	-	_	-	-								11		\perp	\perp	\perp										
Approved By (BGS PM; / Date: Commercial ** (Level 1)				+	-		1	- 1	_		-	Н	_	\perp	Н						1013				38	
Approved By (BGS PM; / Date: Commercial ** (Level 1)		_	-	+-	-						-	₩	+	+	\perp	\perp				April 1	1.78				7	
Approved By (BGS PM; / Date: Commercial ** (Level 1)	-	+	-	+-	-		8.4				-	$^{+}$	4	_	\perp	\perp									3(-1)	
Approved By (BGS PM; / Date: Commercial ** (Level 1)	-	+	-	+	-		18				-	\vdash	_	+	\perp	\vdash									1779.51	
10 Business Days	etructions	Special Inc	mente /	Com	_		- 13				1	Ш		l'arant	Щ					15.92						
10 Business Days					I IA B	d a	inst	QSM5	DOD-0			gory A			De	1)	" (Level	mercial "A	7 Com			on Date: / Date:		m Around Time (Bu	Turn An	_
5 Business Days												gory B	P Cate	NYAS	X				_			35 PMJ: 7 Date.	Approved by (5)		10 Business Days	Г
Commercial "C" State Forms 1 Business Days' Didner State Forms 1 Business Days' Didner State Forms 2 Business Days' Didner State Forms 3 Business Days' Didner State Forms 4 Business Days' Didner State Forms 5 Business Days' Didner State Forms 6 Business Days' Didner State Forms 8 Business Days' State Forms 1 Business Days' State Forms 2 Business Days' State Forms 1 Business Days' State Forms 2 Business Days' State Forms 1 Business Days' State Forms 2 Business Days' State Forms 3 Business Days' State Forms 4 Business Days' State Forms 5 Business Days' State Forms 5 Business Days' State Forms 6 Business Days' State Forms 6 Business Days' State Forms 7 Business Days' State Forms 8 Business Days' State Forms 9 Business Days' Stat		100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			OII (_										-	112	G11) (
Southerstoays NJ DKCP EDD Format 1 Studiness Day ' Submiss Day ' Commercial 'A" = Results orly, Commercial 'B" = Results orly, Commercial 'B" = Results orly, Commercial 'B" = Results orly, Commercial 'A" = Results orly, Commercial 'B" = Results orly, Commercial '							1					teria			H						V 0	591001	BILL LOY			
Other Commercial ** - Results octy,							13													-						
All data qualitable via Leblink Approval needed for 1-3 Business Day TAT Commercial "C" = Results + QC Summary + Partial Raw data http://www.sgs.com/et/retrins-data	me and condition	om/on/ton		In 64 m v / / v um					у											-						
Sample Custody must be documented below each time samples change possession, including courier delivery.	IIIs-and-condition	JIIVerinteri	ww.sys.	nttp://w	- 1	115	,-		delivery	courier	cluding	+ Parts	mmary	hange	ples c	ime sar	ommerci w each ti	nted belo	locume	must be d	Custody I	r 1-3 Business I	oval needed fo	· App	il data available via Lablink	
Oute Time: 13/2/20 13/3/1 Latur Lerro 2 Latur Long 9, 12-20 12	utel_	510	7		2	26		Date / Ti)	n	Ro	in	shed By	Refings		T.	0	en	1 1	Rechived By:	120 1335	Date/Tir	sighed by:	Rellin
Date / Time: Received By: Baselived By:				ived By:	Recei 4		198								shed By	Relinqu 4			1			Received By:	0:	Date / Tir	uished by:	Relin
Relinquished by: Date / Time: Received By: Country Seal 5 Country Seal 5 Received by: Country Seal 5 Received by: Country Seal 5 Received by: Therm. ID:	oler Temp. *C	Cool			ID:	e Therm	applicabl	d where	Preserve	. 1			7	6	Seal #	Custod		100			38.1	Received By:	•:	Date / Tis	uished by:	Relin

Label Verification

JD13479: Chain of Custody Page 1 of 2

Job Number: JD134	179 Client:	HSW ENGINEERING	Project: OU3 ISTR MONITOR	RING, BETHPAGE, NY
Date / Time Received: 9/22/2	2020 5:15:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured Cooler Temps (Corrected	, , ,	Cooler 2: (3.8); Cooler 3: (3 Cooler 2: (3.5); Cooler 3: (3	,	
1. Custody Seals Present: 2. Custody Seals Intact:	or N ☐ 3. COC P ☐ 4. Smpl Date		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y or N ✓ □ ✓ □ ✓ □
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	Y or N IR Gun Ice (Bag) Y or N N/A V U U V U V U V U V U V U V U		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N N/A Y O O O O O O O O O
Test Strip Lot #s: pH 1	1-12: 229517	pH 12+:	208717 Other: (Specify)	
Comments				

SM089-03 Rev. Date 12/7/17

JD13479: Chain of Custody

Page 2 of 2

Table 3
Summary of Effluent Water Sample Analytical Results
Bethpage Park Groundwater Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Northrop Grumman
Bethpage, New York

Compound	Discharge Limit ¹ (µg/L)	10/15/19 (μg/L)	11/05/19 (µg/L)	12/04/19 (μg/L)	01/14/20 (μg/L)	02/06/20 (μg/L)	03/03/20 (µg/L)	04/15/20 (μg/L)	05/14/20 (μg/L)	06/04/20 (μg/L)	07/08/20 (μg/L)	08/18/20 (μg/L)	09/02/20 (μg/L)
Project VOCs													
1,1,1-Trichloroethane	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl Chloride	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis 1,2-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans 1,2-Dichloroethene	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Subtotal Project VOCs		0	0	0	0	0	0	0	0	0	0	0	0
Compound	Discharge Limit ¹ (µg/L)	10/15/19 (μg/L)	11/05/19 (μg/L)	12/04/19 (µg/L)	01/14/20 (μg/L)	02/06/20 (μg/L)	03/03/20 (μg/L)	04/15/20 (μg/L)	05/14/20 (μg/L)	06/04/20 (μg/L)	07/08/20 (μg/L)	08/18/20 (μg/L)	09/02/20 (μg/L)
Non-Project VOCs	Ì												
Chloroform	5 ²	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichloromethane	5 ²	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Trichlorotrifluoroethane (Freon 113)	5 ²	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Subtotal Non-Project VOCs		0	0	0	0	0	0	0	0	0	0	0	0
Total VOCs ³		0	0	0	0	0	0	0	0	0	0	0	0
Treatment Efficiency ⁴		> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%	> 99.9%
Compound	Discharge Limit ¹ (µg/L)	10/15/19 (μg/L)	11/05/19 (μg/L)	12/04/19 (μg/L)	01/14/20 (μg/L)	02/06/20 (μg/L)	03/03/20 (μg/L)	04/15/20 (μg/L)	05/14/20 (μg/L)	06/04/20 (μg/L)	07/08/20 (μg/L)	08/18/20 (μg/L)	09/02/20 (μg/L)
Inorganics													
Total Iron	600	201	110	< 100	< 100	< 100	144	< 100	144	113	< 100	< 100	< 100
Total Manganese	600	46.1	47.6	43.1	50.1	49.7	51.9	45.3	44.2	46.5	45.0	47.8	46.0
Nitrate and Nitrite	10,000	2,700	2,700	2,900	2,400	2,900	2,800	2,600	2,800	2,900	2,700	2,700	2,600
Toal Kjeldahl Nitrogen	10,000	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200
Total Nitrogen	10,000	2,700	2,900	3,100	2,400	2,900	2,800	2,600	2,800	2,900	2,700	2,700	2,600
1,4-Dioxane	NE	0.70	0.68	0.87	0.76	1.0	0.79	1.2	1.4	1.3	1.3	1.1	1.2
pH ⁵	5.5-8.5	6.2	6.3	6.8	6.3	6.1	6.1	5.9	6.9	6.5	6.5	6.7	6.6

Notes, Abbreviations, Qualifers, and Units on last page.

From: Pelton, Jason M (DEC)

edward.hannon@ngc.com; Hesler, Donald (DEC); Sullivan, James (HEALTH) To:

Weber, Fred [US] (AS); Kubasky, Lauren [US] (AS); Bill Lais; Joel Balmat; Jose Sananes; Doug Smolensky Cc:

RE: ISTR Liquid Effluent Discharge Planned for Tuesday Oct 6 Subject:

Date: Monday, October 5, 2020 2:01:53 PM

Attachments: image002.png

image003.png

Ed:

Thanks for providing the analytical results for the influent and the frac tank water samples. Based on my review of the analytical results, and in accordance with our telephone conversation on Friday, October 2, 2020, I approve of the water that is being temporarily stored in the frac tank being further treated with the OU3 Groundwater Treatment facility prior to discharge to the nearby recharge basin.

Thanks, Jason

Jason Pelton, P.G.

Project Manager, Division of Environmental Remediation

New York State Department of Environmental Conservation

625 Broadway, Albany, NY 12233

P: (518) 402-9478 <u>C: (518) 669-0424</u> F: (518) 402-9773 <u>jason.pelton@dec.nv.gov</u>

www.dec.ny.gov | 1 1 1 1 1 1

From: Hannon, ED [US] (AS) <Edward.Hannon@ngc.com>

Sent: Monday, October 05, 2020 1:08 PM

To: Pelton, Jason M (DEC) <jason.pelton@dec.ny.gov>; Hesler, Donald (DEC)

<donald.hesler@dec.ny.gov>; Sullivan, James (HEALTH) <James.Sullivan@health.ny.gov>

Cc: Weber, Fred [US] (AS) <fred.weber@ngc.com>; Kubasky, Lauren [US] (AS)

<Lauren.Kubasky@ngc.com>; Bill Lais <wlais@hsweng.com>; jbalmat@hsweng.com;

jsananes@ramboll.com; Doug Smolensky <dsmolensky@emagin-inc.com>

Subject: FW: ISTR Liquid Effluent Discharge Planned for Tuesday Oct 6

ATTENTION: This email came from an external source. Do not open attachments or click on links from

Jason,

Attached for your review are the analytical results of the initial batch (18,000 gallons) of ISTR

liquid effluent we are temporarily holding onsite in a frac tank pending discharge through the OU3 groundwater treatment system per the RAWP. Refer to sample ID in the laboratory report "FRAC1-2949".

As we discussed last Friday, although the iron concentration in this batch (about 800 ug/L) exceeds the SPDES equivalent daily max limit of 600 ug/L, the discharge from the frac tank (at a rate of about 60 gpm) will represent only 25% of the total combined flow through the OU3 system (about 240 gpm total), with the remainder from the OU3 remedial wells. Historical data from 2019 indicates that the combined iron concentrations from the OU3 ONCT remedial wells around 200 ug/L or less, and our estimates indicate that the final system effluent will be substantially lower than 600 ug/L when combining the frac tank discharge with the flow from recovery wells RW-2, 3, and 4 (RW-1 will not be operating during the frac tank discharge).

Our plan is to process the initial batch of ISTR effluent Tuesday October 6. Please let us know if you need further information.

Thank you.
Ed Hannon
Northrop Grumman

Table 1
SPDES Permit Equivalency Monthly Report
OU2 and OU3 On-Site Containment Systems
Northrop Grumman Bethpage Facility Site
NYSDEC Site No. 130003A

OU3 Effluent: Outfall 001 (WSP-7)

OU3 Groundwater Remedy Treatment System - Treated Air Stripper and Soil Gas Containment Condensate Discharge to Nassau County Recharge Basins

Parameter ⁽¹⁾	CAS Number	OUTFALL 001 (WSP-7) 10/6/2020	Discharge Limit ⁽²⁾	Units	Monitoring Frequency	Sample Type	Average Mass Loading ^(3,7)	Units
Daily Average Flow ^(4,9)		0.29	Monitor	MGD	Continuous	SCADA	-	-
Daily Maximum Flow ^(4,9)		0.33	Monitor	MGD	Continuous	SCADA	-	-
Influent pH ⁽⁸⁾		6.1	NS	SU	Monthly (1/31) Days	Grab		
Effluent pH ⁽⁸⁾		6.9	Range: 5.0-8.5	SU	Monthly (1/31) Days	Grab	-	
Total Nitrogen (as N)		2.6	10.0	mg/L	Monthly (1/31) Days	Grab	6.29	lbs/day
Total Iron	7439-89-6	< 100	600	μg/L	Monthly (1/31) Days	Grab		lbs/day
Total Manganese	7439-96-5	51.1	600	μg/L	Monthly (1/31) Days	Grab	0.12	lbs/day
Sum of Total Iron and Manganese		51.1	1000	μg/L	Monthly (1/31) Days	Calculated	0.12	lbs/day
1.1-Dichloroethylene	75-35-4	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Methylene Chloride	75-09-2	< 2.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Tetrachloroethylene	127-18-4	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
1,1,1-Trichloroethane	71-55-6	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Trichloroethylene	79-01-6	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Vinyl Chloride	75-01-4	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
1,2 (trans)-Dichloroethylene	156-60-5	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
1,2-(cis)-Dichloroethylene	156-59-2	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Chloroform	67-66-3	< 1.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
Trichlorotrifluoroethane (Freon 113)	76-13-1	< 5.0	5.0	μg/L	Monthly (1/31) Days	Grab		lbs/day
1,4-Dioxane	123-91-1	1.1	Monitor	μg/L	Monthly (1/31) Days	Grab	2.66E-03	lbs/day

Notes and Abbreviations:

XX Bold value indicates the constituent was detected at or above its laboratory quantification limit.

Compound is not detected above laboratory quantification limit

-- Not Applicable CAS Chemical Abstracts Service

 μ g/L micrograms per liter ND Non Detect lbs/day pounds per day NS None Specified

lb/kg pounds per kilogram NYSDEC New York State Department of Environmental Conservation

MGD million gallons per day SCADA Supervisory Control and Data Acquisition

mg/L milligrams per liter SPDES State Pollution Discharge Elimination System

min minutes TKN Total Kjeldahl Nitrogen SU Standard Units

1. Samples were analyzed for permit equivalency Volatile Organic Compounds (VOCs) using USEPA Method 624 at OU2 system, and USEPA Method 8260 at OU3 system; 1,4-Dioxane using USEPA Method 8270D-SIM-CLLE; Total Nitrogen is calculated as the sum of Nitrogen, (Nitrate+Nitrite) and Total Kjeldahl Nitrogen (TKN), (CAS number: 14797-55-8, 14797-65-0, and 7727-37-9, respectively) by USEPA Methods 353.2 and 351.2, respectively; Total Iron and Manganese using USEPA Method 200.7.

- 2. Discharge limits are per the SPDES permit equivalency, dated October 12, 2017, amended on July 30, 2018 and transmitted by the NYSDEC to Northrop Grumman on August 9, 2018.
- 3. Mass Loading Calculation:

$$Mass \ Loading \ \left(\frac{lb}{day}\right) = Flow \left(\frac{gal}{min}\right) * 1440 \left(\frac{min}{day}\right) * concentration \ \left(\frac{\mu g}{liter}\right) \div 10^9 \left(\frac{\mu g}{kg}\right) * 3.785 \ \left(\frac{liter}{gal}\right) * 2.2046 \ \left(\frac{lb}{kg}\right) * 2.2$$

- 4. Average and daily maximum flow calculated from SCADA reports for the month indicated.
- 5. Field measurement of pH taken by hand held meter on sample date.
- 6. When Total Iron and Total Manganese are below their respective detection limits the Sum Total of Iron and Manganese is reported as "ND".
- $\label{eq:continuous} \textbf{7. Average Mass Loading calculations are based on actual flow rates unless otherwise noted.}$
- 8. pH reported was measured on 10/15/20 during the second ISTR tank discharge.

9. Additional OU3 Groundwater discharge due to ISTR Baker Tank.

Date	Gallons	Duration (Hours)
10/6/2020	19,700	5
10/15/2020	13,191	4.8

10. Effluent pH for Outfall 005 and Outfall 006 could not be obtained due to equipment malfunction.

To properly account for the combined flow from the ISTR liquid treatment system and the OU3 ONCT remedial wells, which is treated at and discharged from the OU3 treatment system, the following revisions (show in redlined/strikeout) are proposed to Section 4.4 of the RAWP and Section 4.2.6 of the BOD (Appendix B):

...If the characterization results indicate that the batch meets (a) the 2018 OU3 groundwater treatment system SPDES equivalency discharge criteria (NYSDEC August 9, 2018), ## and (b) for compounds not included in the equivalency permit, the NYSDEC Groundwater Effluent Limitations (TOGS 1.1.1 for Class GA), the batch will be pumped to the existing OU3 groundwater treatment system at McKay Field for additional polishing treatment by air stripping prior to discharge. If the batch does not meet the OU3 discharge criteria, the contents of the frac tank(s) will be transported off-site for treatment and disposal at a permitted industrial waste treatment facility. If the characterization results indicate that the batch does not meet the OU3 discharge criteria (items a and b above), the contents of the holding tank will either be:

- processed through the OU3 system if a successful demonstration has been made to the State that the combined holding tank discharge and OU3 process flow would meet the OU3 discharge criteria at the outfall; or
- <u>transported for off-site treatment and disposal at a permitted industrial</u> <u>waste treatment facility if a successful demonstration cannot be made to the</u> <u>State that the combined holding tank discharge and OU3 process flow would</u> meet the OU3 discharge criteria at the outfall.

REUS Engineers, PC

Certificate of Authorization #0015655

Russell S. Kemp. P.E.

New York State PE # 079272-1

Date 18 DEC 2020