NORTHROP GRUMMAN

BETHPAGEFACILITY

PHASE I/II SITE ASSESSMENT STRUCTURAL TEST HANGARS/PLANT 5

OCTOBER 1998

330 Crossways Park Drive, Woodbury, New York, 11797-2015 516-364-9890 • 718-460-3634 • Fax: 516-364-9045 e-mail: db-eng@worldnet.att.net

November 11, 1998

John Cofman, P.E. Lead Engineer Environmental Technology and Compliance Northrop Grumman Corporation Mail Stop: D08-001 Bethpage, NY 11714-3582

Re: Phase I/II Site Assessment Structural Test Hangars/Plant 5 Bethpage, New York D&B 1539

Dear Mr. Cofman:

Enclosed please find ten (10) copies of the document entitled:

"Phase I/II Site Assessment Structural Test Hangars/Plant 5 Bethpage, New York"

If you have any questions and/or comments, please do not hesitate to contact Mr. Errol Kitt or me at (516) 364-9890.

Very truly yours.

Richard M. Walka Vice President

RMW/MPR/ajm,ld Enclosure cc: A. Postyn (NGC) E. Kitt (D&B) +1539\RMW98-15.LTR(R01)

NORTHROP GRUMMAN CORPORATION

PHASE I/II SITE ASSESSMENT

STRUCTURAL TEST HANGARS/PLANT 5 BETHPAGE, NEW YORK

PREPARED BY

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

OCTOBER 1998

+1539\A0313801.doc(R04)

÷

NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT STRUCTURAL TEST HANGARS/PLANT 5 BETHPAGE, NEW YORK

TABLE OF CONTENTS

Section		Title	Page			
1.0	INTH	RODUCTION	1-1			
2.0	PHASE I SITE ASSESSMENT					
	2.1	Site Description	2-1			
		2.1.1 Site Setting	2-1			
		2.1.2 Facility Overview	2-3			
	2.2	Site History	2-17			
		2.2.1 Former Uses and Summary of Prior Assessments	2-18			
		2.2.2 Present Uses	2-31			
	2.3	Regulatory Compliance History	2-31			
	2.4	Phase I Site Assessment Findings	2-40			
		2.4.1 On-site Indicators of Contamination	2-40			
		2.4.2 Potential On-Site Areas of Environmental Concern	2-41			
		2.4.3 Potential Off-Site Sources of Contamination	2-45			
	2.5	Phase I Site Assessment Conclusions and Recommendations	2-45			
3.0	INIT	IAL PHASE II SITE ASSESSMENT	3-1			
	3.1	Field Program	3-1			
		3.1.1 Soil Sampling Program	3-1			
		3.1.2 Flush/Dve Testing	3-6			
	3.2	Findings	3-6			
		3.2.1 Soil Sampling Program	3-7			
		3.2.2 Flush/Dve Testing Activities	3-11			
		3.2.3 Data Validation	3-12			
	3.3	Conclusions and Recommendations	3-13			
		3.3.1 Soil Sampling Program	3-15			
		3.3.2 Flush/Dye Testing Activities	3-19			
4.0	SUPI	PLEMENTAL PHASE II SITE ASSESSMENT	4-1			
	4.1	Field Program	4-1			
		4.1.1 Soil Sampling Program	4-1			

TABLE OF CONTENTS (continued)

Section		Title	Page
	4.2	Findings	. 4-4
		4.2.1 Soil Sampling Program	. 4-4
	4.3	Conclusions and Recommendations 4.3.1 Soil Sampling Program	. 4-6 . 4-7
			•••

List of Appendices

Supplemental Information	A
Boring Logs	B
Laboratory Data	C
References	D

List of Figures

2-1	Site Location Map	
2-2	Structural Test Hangars - First Floor Plan	
2-3	Monitoring Well Location Map	2-29
2-4	Potential Areas of Environmental Concern	
2-5	Structural Test Hangars – Locations of Floor Drains,	
	Slop Sinks, Dry Wells and Pits	
3-1	Structural Test Hangars - Initial Phase II Soil Probe/Boring Location Map	3-2
4-1	Structural Test Hangars - Supplemental Phase II Soil Probe Location Map	4-2

List of Tables

2-1	Potential Areas of Environmental Concern - Interior Areas	2-46
2-2	Potential Areas of Environmental Concern - Exterior Areas	2-48
2-3	Recommended Initial Phase II Site Assessment Field Investigation	
	Activities - Interior Areas	2-50

TABLE OF CONTENTS (continued)

.

List of Tables (c	continued)	Page
2-4	Recommended Initial Phase II Site Assessment Field Investigation Activities - Exterior Areas	2-52
3-1	Initial Phase II Site Assessment Field Investigation Activities - Interior Areas	
3-2	Initial Phase II Site Assessment Field Investigation Activities - Exterior Areas	3-4
3-3	Recommended Supplemental Phase II Site Assessment Field Investigation Activities - Interior and Exterior Areas	3-18
4-1	Supplemental Phase II Site Assessment Field Investigation Activities - Interior and Exterior Areas	4-3

.

1.0 INTRODUCTION

This document presents the findings of a Phase I/II Site Assessment undertaken for the Northrop Grumman Corporation (NGC) property known as the Structural Test Hangars/Plant 5, located on the east side of the South Oyster Bay Road Extension at the intersection with Hicksville Road (Route 107) in Bethpage, New York. Information presented in this report has been compiled based upon site inspections, an evaluation of reasonably obtainable record sources, interviews with representatives of NGC and field investigation work.

Section 2 of this document presents the Phase I Site Assessment, including a description of the site and surrounding areas, an evaluation of the historical uses of the site and surrounding areas, and the regulatory compliance history of the site. Section 2 also presents the findings of the Phase I Site Assessment, identifies potential areas of environmental concern, and provides conclusions and recommendations for further investigation activities.

Section 3 describes the procedures followed throughout the field program and presents the findings, conclusions and recommendations of the initial Phase II Site Assessment.

Section 4 describes the field program and presents the findings, conclusions and recommendations of the Supplemental Phase II Site Assessment.

Supplemental information documenting the review of available files is presented in Appendix A. Boring logs and results of laboratory analyses of soil samples are presented in Appendix B and C, respectively. References are listed in Appendix D.

1-1

.

. .

.

2.0 PHASE I SITE ASSESSMENT

2.1 Site Description

The Structural Test Hangars are a part of a Navy-owned building identified as Plant 5, located on the east side of the South Oyster Bay Road Extension at the intersection with Hicksville Road (Route 107) in Bethpage, New York. The Structural Test Hangars are comprised of a north hangar and a south hangar and are located on the west side of Plant 5. The Structural Test Hangars and exterior areas immediately surrounding the hangars are the subject of this Phase I/II Site Assessment. A separate Phase I Site Assessment for the remainder of the Plant 5 building and surrounding property has also been undertaken.

This subsection presents an overview of the general environmental setting of the property and describes the observations made during site inspections conducted in January 1998.

2.1.1 Site Setting

The Structural Test Hangars are located on tax lot No: Section 46, Block 323, Lot 223. The land comprising the site is currently owned by Northrop Grumman Corporation (NGC) (formerly known as Grumman Aerospace Corporation or Grumman) while the Plant 5 building is owned by the Navy. A site location map is presented on Figure 2-1. The hangars and ancillary facilities are approximately 53,000 square feet. The property is zoned Industrial H. Zoning to the north, east, south and west is also industrial. Zoning further west, south and east is high density residential. Areas of commercial zoning are located along South Broadway and portions of Central Avenue, located to the south of the NGC property.

Land in the vicinity of the Structural Test Hangars/Plant 5 is generally level and appears to be well drained. Ground elevation is approximately 110 feet above mean sea level. The Soil Conservation Service (SCS) classifies soil in the vicinity of the Structural Test Hangars/Plant 5

as Urban Land. Urban Land is defined as an area with at least 85 percent asphalt, concrete or other impervious building material, with most of the remaining small areas of soil being well drained Riverhead, Hempstead or Enfield soils, or excessively drained Udipsaments. Udipsaments (nearly level) are defined as manmade fills or borrow areas, most of which are grassed with 0 to 3 percent slopes, which consist of very deep soils that are excessively drained to well-drained.

Based on measurements obtained from monitoring wells previously installed as part of a delisting petition of the Plant 5 parcel (discussed further in Section 2.2.1), depth to groundwater is approximately 50 feet below grade.

Immediately west of the Structural Test Hangars is NGC Building 23. Other portions of the Plant 5 building are located immediately east and south of the hangars.

The former NGC Plant 2 building, the NGC Central Steam Plant and TBG Cogen Partners steam generation plant are located to the south and southeast of the Plant 5 building. A former NGC runway is located north and east of Plant 5, and directly north is the NGC Plant 25 building.

The TBG Cogen Partners facility provides NGC with electricity and steam under a longterm energy purchase agreement. It is owned by Brooklyn Union Gas and the General Electric Company, and consists of two gas turbines and one steam turbine.

2.1.2 Facility Overview

Overview of Plant 5

Plant 5 has historically been utilized as a "special projects building" for prototype research, engineering and development, and engineering/executive management offices. Based upon a review of available information, the original portion of the Plant 5 building was

constructed in 1944. The majority of the building is two stories, with some mezzanine areas, several hangar areas and a third floor (observation tower). As indicated previously, the North and South Structural Test Hangars are located along the western side of the building.

Plant 5 is supplied by public water and is connected to the Nassau County sewer system. Based upon information on file at the Nassau County Department of Health (NCDH), Plant 5 was connected to the County sewer system prior to 1977. A specific date of sewer connection was not available from the Nassau County Department of Public Works. Before that time, sanitary waste from NGC Plants 1, 2, 4, 5, 10, 12, 17 south and 25 was received and treated at NGC's Central Sewage Treatment Plant, formerly located across South Oyster Bay Road, to the north of Plant 5. Plant 5 initially utilized an on-site sanitary disposal system comprised of settling tanks, wet well, pump station, and 64 leaching pools, which expanded over the years to include approximately 150 leaching pools.

A 1979 diagram of the storm drainage system in the vicinity of Plant 5 was on file at NGC and indicates the two recharge basins south of Plant 5 received storm water runoff from an area encompassing Plant 25 to the north, Plant 5, and a small portion of land to the east of Plant 5, adjacent to the Plant 2 cafeteria building. These recharge basins also receive noncontact cooling water (pursuant to SPDES permit NY0096792) after the cooling water has been treated at a pair of aeration basins located to their east.

Plant 5 currently utilizes steam heat supplied by the adjacent cogeneration plant. Based upon a review of construction drawings dated 1944, Plant 5 initially utilized coal fired boilers located in the south end of the building.

Various above and underground petroleum storage tanks are currently or formerly located on the Plant 5 property, however, none are or were identified as being located within or immediately adjacent to the Structural Test Hangars. A complete inventory of all known former process tanks located within the Structural Test Hangars is provided in Section 2.2.1.

Overview of Structural Test Hangars

The Structural Test Hangars consist of two hangar areas, identified as the North and South Structural Test Hangars separated by offices (located on the first floor and first and second mezzanines), a storage/tool crib, a locker/lunch room and a high pressure hydraulic pump room. Site inspections, including interviews with representatives of NGC, were conducted at the Structural Test Hangars on January 7, 12 through 16, 22, 23 and 26, 1998. A floor plan for the first floor of the Structural Test Hangars is provided on Figure 2-2. An overview of the Structural Test Hangars, based on the results of the site inspection and interviews, is provided below.

South Structural Test Hangar

- Concrete floor with expansion joints and minor staining and oily residue; a few large cracks evident in the central area of the hangar doors (appear to be settlement cracks).
- Concrete floor trenches approximately 2 feet deep by 2.5 feet wide with metal covers painted yellow containing hydraulic lines, electrical conduits and air lines; three dry wells (approximately 5 feet below grade) were located within the floor trenches along the east side of the hangar; no visible cracks observed in floor trenches only oily residue, metal filings and dirt/debris.
- Concrete floor trenches approximately 6 inches deep by 6 inches wide with metal covers painted gray and utilized for test fixture and equipment stabilization; no visible cracks observed in floor trenches only oily residue, metal filings and dirt/debris.
- Electrical/light panels and air conditioning units with condensate drip lines discharging to roof drains located along the north, south, east and west hangar walls.
- Two floor drains located in the vicinity of the hangar doors.
- A small mobile crane/lift.
- Miscellaneous steel beams/columns utilized for test fixture purposes.
- A mechanical lift for testing equipment.

+1539\a0313803.doc(R05)

	ĹĒ	GEND
	(1)	CONDENSATE PIT
	(2)	TRANSFORMER ROOM
	3	LOAD CELL CALIBRATION MACHINE AREA
	•	STRUCTURAL TEST AREA
	6	SOUTH STRUCTURAL TEST HANGAR
	6	MACHINE SHOP AREA
	Ø	FATIGUE TEST AREA
	(8)	FILE STORAGE AREA (UNDER STAIRWELL)
	9	MATERIALS TEST LAB-FATIGUE TEST AREA
	0	MATERIALS TEST LAB-STATIC TEST AREA
	\bigcirc	MATERIALS TEST LAB-STATIC TEST AREA
	0	STORAGE AREA (UPSTAIRS)
	3	HYDRAULIC LABORATORY
	•	VARSOL DEGREASING MACHINE
	6	PUMP ROOM
	6	STORAGE AREA
	Ø	LOCKER/LUNCH ROOM
	0	HYDRAULIC PUMP ROOM
	9	STORAGE ROOM/TOOL CRIB
	0	OFFICE
	Ð	OFFICE
	Q	CONSUMABLE STORAGE ROOM
	G	CONSUMABLES STORAGE (UNDER STAIRWELL)
	Q	LOAD CELL CALIBRATION LAB
	G	HYDRAULIC STORAGE ROOM
	Q	CAGED STORAGE AREA
	ଷ	INSPECTORS WORK STATION
	Q	TOOL STORAGE/WORK STATIONS
	Y	NORTH STRUCTURAL TEST HANGAR
	g	CONTROL CONSOLE
	S.	ELEVATOR PUMP ROOM
	g	
	S.	HTURAULIC CTLINDER/JACK STORAGE AREA
	X	COMPUTER ROOM
	X	COMPUTER ROOM
	X	
	X	
-	×	NAW METAL STURAGE ANEA
	X	
÷.,	X	ELECTRICAL SWITCH CEAR AND UEAT
	Y	ELECTRICAL SWITCH GEAR AND HEAT
	B	
	X	BUTLER BUILDING-STORAGE RUUM
	X	RADIO SHACK
	X	
	۳	
	95.17 1.17	
	1994 N	
		0 30' 60'
. :	23 1911	

FIGURE 2-2

- A large electric motor.
- A portable compressor with "speedy-dry" on the floor in its vicinity.
- Five metal storage cabinets located adjacent to the "fatigue test area" containing type 1, 2, 3, 5 and 6 hazardous chemicals including flammable solvents, chemical coatings, insulation adhesives, paints, naphthalene, motor oil, mineral spirits, cleaners, gasoline, alcohol, grease, varsol (identified by NGC as kerosene), MEK, MIBK, acetone, toluene, xylene, brush alodine, freon, isopropyl alcohol, crystal cut, high-strength adhesive (Black Max), chloroethene, dry lubricant, epoxy adhesives, lacquer thinner and trichloroethene and four 55-gallon DOT drums of miscellaneous metals, bolts and washers.
- Machine shop area with several work benches, tool chests, a finishing machine, small and large band saws and drill presses, a punch/press machine, two small disk sanders, welding equipment and a hydraulic pump (operating) located in the northern half of the hangar.
- A slop sink located in the northwest corner.

In addition, the following areas were identified as part of the South Structural Test Hangar. It should be noted that the numbers in parenthesis below correspond to the numbered areas identified on Figure 2-2:

- Condensate Pit (1)
 - Approximately 7 feet deep, located in the northeast corner of the hangar contains a condensate pump and sump pit (appears to have earthen bottom) located in the southwest corner of the pit under the adjacent Transformer Room; oily residue with metal filings and dirt/debris and surficial staining with numerous cracks observed in the pit floor.
- Transformer Room (2)
 - Partial wood block and concrete floor with two large dry transformer units; no visible cracks and/or staining was observed on visible areas of the floor.
- Load Cell Calibration Machine Area (3)
 - A caged area containing a large load cell calibration machine within an approximate 2 feet deep concrete pit (integrity of pit floor unknown) covered by 3/4-inch oil stained steel plates; storage of miscellaneous metal stock and cabinets

with spare parts and tools; concrete floor surrounding machine with no visible cracks and/or staining observed on visible areas of the floor.

- Structural Test Area (4)
 - Partitioned area located along the east side of the hangar containing approximately eight tool chests, two milling machines, a large lathe, several small grinders and drill presses and approximately 15 to 20 storage cabinets and shelves with miscellaneous metal stock; concrete floor with no visible cracks only minor oil stains observed on visible areas of the floor.
 - Slop sink located in the southeast corner.
- Machine Shop Area (6)
 - Several work benches, tool chests, a finishing machine, small and large band saws and drill presses, a punch/press machine, two small disk sanders, welding equipment and a hydraulic pump (operating) located in the northern half of the hangar; concrete floor with no visible cracks only minor oil stains observed on visible areas of the floor.
- Fatigue Test Area (7)
 - An approximate 20-foot by 40-foot area enclosed by metal fencing with electronic testing equipment, three hydraulic wedge grip machines, miscellaneous office furniture, several rolling carts, tension fatigue testing equipment and a 2-foot diameter manhole cover; concrete floor with no visible cracks only minor oil stains observed on visible areas of the floor.
- File Storage Area (under stairwell) (8)
 - Vestibule and storage area for file cabinets located under stairwell, concrete floor with no visible cracks observed on visible areas of the floor.
- Materials Test Lab Fatigue Test Area (9)
 - Electronic testing equipment, miscellaneous office furniture, tension fatigue testing equipment; linoleum floor with no visible cracks and/or staining observed on visible areas of the floor.
- Materials Test Lab Static Test Area (10, 11)
 - Electronic testing equipment, small drill presses, office furniture, tool chests, storage cabinets with small quantities of flammable liquids, isopropylene, acetone and adhesives, temperature/heat testing equipment and tension fatigue testing equipment; a linoleum floor with no visible cracks and/or staining observed on visible areas of the floor.

- Storage Area (Upstairs) (12)
 - Storage area with bins and cabinets of miscellaneous metal stock; a linoleum floor with no visible cracks and/or staining observed on visible areas of the floor.
- Hydraulic Laboratory (13)
 - Lab utilized for testing and repair of hydraulic jacks and hydraulic lines; lab contains cabinets of O-rings, test bench with grating and drip pan, miscellaneous electronic testing equipment and a 100-pound capacity overhead crane; a linoleum tile floor with no visible cracks but staining and an oily residue was observed on visible areas of the floor; a rectangular metal plate covering a pit beneath the floor was observed in the northern portion of lab.
- Varsol Degreasing Machine (14)
 - Surficial staining and an oily residue was observed on the floor around the machine.
- Pump Room (15)
 - Former chart room and action center (meeting room); currently contains eight, 3,000 psi hydraulic pumps; minor hydraulic oil leaks observed on concrete floor covered with non-slip rubber matting; adsorbent materials on floor around pumps; wall mounted electric panels and an overhead crane.
- Storage Area (16)
 - Currently an open area utilized for the storage of cabinets with drawers containing miscellaneous metal stock, spare parts, supplies and hardware; slightly worn and stained wood block flooring.
- Locker/Lunch Room (17)
 - Area utilized by facility personnel as described with a slightly worn linoleum floor.
- Hydraulic Pump Room (18)
 - Eight 3,000-psi hydraulic pumps (not in operation) typically operating simultaneously; minor hydraulic oil leaks observed onto slightly worn concrete floor surrounding pump 3 and 4; observed hydraulic oil leaks drain into concrete floor trenches which contain absorbent materials and residue/debris; absorbent materials also noted on floor.
 - Concrete floor trenches approximately 2 feet deep by 2 feet wide with metal covers painted gray containing hydraulic lines, electrical conduits and air lines;

absorbent materials in trenches; hydraulic residue and metal filings and debris observed in trenches.

- "Sealed" floor drain observed in pump room.
- Storage Room/Tool Crib (19)
 - Current stockroom/tool crib with storage of miscellaneous metal stock, spare parts and supplies; storage of small quantities of sealant and spray paints; slightly worn and stained wood block flooring in this area.
- Offices (20, 21)
 - A two room office area containing several desks, chairs and computers; linoleum over wood flooring, slightly worn, no cracks and/or stains observed on visible areas of the floor.
- Consumable Storage Room (22)
 - Storage of consumables including caps, drills, coveralls, saw blades, etc.; slightly worn and stained linoleum over wood flooring in this area.
- Consumable Storage (under stairwell) (23)
 - Storage of consumables including "bungy cords," jackets, rubber matting, etc.; slightly worn and stained wood block flooring in this area.
- Load Cell Calibration Lab (24)
 - Perimeter of room contains cabinets with drawers of miscellaneous metal stock; load cell calibration machine located in center of room; slightly worn and stained linoleum over wood flooring.
 - Slop sink located in southwest corner of room; wood floor exposed adjacent to sink appears hollow beneath.
- Hydraulic Storage Room (25)
 - Storage of hydraulic jacks on wood pallets; surficial staining with numerous cracks, pitting and an oily residue noted on the concrete floor in the southeast corner of the room.

North Structural Test Hangar (29)

- Active long-term structural fatigue testing of a C-2 aircraft.
- A concrete floor with expansion joints; an occasional area of oily residue but no large cracks observed on visible areas of the floor.
- Concrete floor trenches approximately 2 feet deep by 2.5 feet wide with metal covers painted yellow containing hydraulic lines, electrical conduits and air lines; suspect floor drains within the floor trenches at the north end of each trench could not be located; no visible cracks observed in floor trenches only oily residue, metal filings and dirt/debris.
- Concrete floor trenches approximately 6 inches deep by 6 inches wide with metal covers painted gray and utilized for test fixture and equipment stabilization; no visible cracks observed in floor trenches only oily residue, metal filings and dirt/debris.
- A slop sink located in the northeast corner.

In addition, the following areas were identified as part of the North Structural Test Hangar:

- Caged Storage Area (26)
 - Former stockroom for proof loading slings; current storage of wire and cable with wall mounted electric panels and a concrete floor with no cracks and/or staining observed in visible areas of the floor; ladder to upper level floor with grating and continued storage of wire and cable.
- Inspectors Work Station (27)
 - A partitioned office area containing desks, chairs, cabinets and small work benches; concrete floor with no cracks and/or staining observed on visible areas of the floor.
- Tool Storage/Work Stations (28)
 - A partitioned aisle area containing desks, chairs, cabinets and small work benches; concrete floor with no cracks and/or staining observed on visible areas of the floor.
 - Slop sink observed in northeast corner.

•1539\a0313803.doc(R05)

- Control Console (30)
 - Large semi-circular table with several computers utilized for long-term structural fatigue testing activities.
- Elevator Pump Room (31)
 - Room accessed from exterior located under stairwell; houses hydraulic pump for adjacent freight elevator; drip pan located under pump; heavy hydraulic oil staining on concrete floor surrounding pump.
- Freight Elevator (32)
 - Freight elevator pit with concrete floor; apparent leakage from oil line and plunger and jack; no cracks but surficial staining and an oily residue was observed on pit floor beneath elevator; perimeter walls indicate 4"-6" former liquid level; no sumps, dry wells and/or floor drains observed on visible areas of the elevator pit floor.
- Hydraulic Cylinder/Jack Storage Area (33)
 - Storage of hydraulic jacks on metal shelves; overhead crane; worn and stained wood block flooring with several areas of wood block removed and displaced exposing concrete floor (integrity of concrete beneath wood block floor unknown).
- Computer Rooms (34, 35)
 - Two room office area containing several desks, chairs and computers associated with ongoing fatigue testing program in the North Structural Test Hangar; raised linoleum computer flooring, slightly worn, no cracks and/or stains observed on visible areas of the floor.
- Machine Shop (36)
 - Tool chests, a band saw, a sander, drill presses and welding equipment; a large, approximately 6-inch diameter cleanout observed in heavily stained wood block flooring (integrity of concrete beneath wood block floor unknown) of this area; metal filings and debris imbedded in wood block flooring; roll-up door located along the southwest wall of this area.
- Weld Shop (37)
 - Tool chests, work benches, canister of argon gas, rack of "C" clamps, three arc welders (portable) and a small drying oven were observed in this area; stained wood block flooring was observed in a portion of this area and a pitted concrete floor with cracks and some minor staining was observed over the remaining areas.

♦1539\a0313803.doc(R05)

- Slop sink observed in the northwest corner.
- Raw Metal Storage Area (38)
 - Several tool chests and cabinets for the storage of metal stock and spare parts; work benches and storage racks containing metal stock; a concrete floor with minor cracks and staining was observed on visible areas of the floor.
 - A floor drain observed in the northeast corner.
- Machine Shop Area (39)
 - Two hydraulic pumps; a large metal cutting band saw machine with a drip pan containing cutting oil and speedy-dry and metal filings observed on the floor underneath and surrounding the machine; a 55-gallon DOT drum of Permasol (metal working fluid); several carts containing hydraulic tubing; concrete floor with minor cracks and staining was observed on visible areas of the floor.
- Generator Room (40)
 - Storage of hydraulic jacks, generator, refrigerator, testing equipment, generator panels and metal stock; concrete floor with minor cracks and staining was observed on visible areas of the floor.
 - A funnel drain observed along the southern wall.

Engineering Mezzanine

The Engineering Mezzanine is located between the North and South Structural Test Hangars and consists primarily of office and computer work stations housing several computer terminals, tape machines and computer monitors. Current activities include programming and computer operations of the C2 Fatigue Testing Activities being conducted in the North Structural Test Hangar. The floor in these areas is primarily "raised" carpeted computer flooring. An active audio/video room is located in the northwest corner of the Engineering Mezzanine. In addition, a men's room and adjacent janitor's closet with slop sink are located at the west end of the Engineering Mezzanine. A former analog room (currently utilized as a tape and computer mainframe storage area) is located along the east end of the Engineering Mezzanine.

First Mezzanine

The First Mezzanine consists primarily of computer/office space, an instrumentation laboratory, a proposal area, vestibules, two janitor's closets, a vibracoustics laboratory and a setup room for the photographic service office. The computer/office spaces and an instrumentation lab are accessed from a central hallway located between the North and South Structural Test Hangars. The computer offices have "raised" carpeted computer flooring. The two room instrumentation lab contains small work benches with bench tools and the storage of electronic wiring and bookcases filled with manuals. The janitor's closets, which house slop sinks, are located in the southwest and northwest corners of the First Mezzanine of the Structural Test Hangars. The vibracoustics laboratory, proposal area and setup room for the photographic services office are also located on the First Mezzanine. Vestibules are located at each stairwell and in front of the elevator located along the west side of the First Mezzanine.

Second Mezzanine

The Second Mezzanine consists primarily of vestibules (located at each stairwell and in front of the elevator), a janitor's closet, a former sonic fatigue testing facility (currently vacant), several storage areas (containing boxes of unknown contents), a photo services office, north and south fan rooms and a proposal management/editorial services/document processing office. The proposal management/editorial services/document processing office, which occupies the central portion of the Second Mezzanine, consists primarily of general office space with office/computer equipment on "raised" carpeted computer flooring. A slop sink and floor drain are located adjacent to the north fan room in the eastern section of this area. A janitor's closet, which contains a slop sink is located in the central area of the Second Mezzanine. In addition, a catwalk, located in the northwest corner of the South Structural Test Hangar, is accessed from the Second Mezzanine and contains air conditioning equipment and a non-contact cooling water condensate drain.

Penthouse

The Penthouse, which occupies a small portion over the Second Mezzanine, was formerly identified as the Antenna Laboratory. This area is currently occupied by the offices of SMS Video Services and contains audio/visual digital equipment, a small video storage room, and a vestibule and elevator. The concrete floor in these areas is overlain with carpet.

Electrical Switch Gear and Heat Exchanger Building (41)

The Electrical Switch Gear and Heat Exchanger Building is a butler-type building attached to the west side of the North Structural Test Hangar. The building is divided into two separate areas. The northern portion of the building contains large heat exchanger units which serve Building 23. The floor is constructed of concrete with some minor surficial staining observed on visible areas of the floor. Access to this portion of the building is through a doorway on north side of building. The southern portion of the building contains electrical switchgear equipment and electrical control panels. The floor in this area is also constructed of concrete with some minor surficial staining observed on visible areas of the floor or building observed on visible areas of the floor in this area is also constructed of concrete with some minor surficial staining observed on visible areas of the floor. Access is through an overhead roll-up door or doorway on the south side of the building.

Butler Building (42, 43)

The Butler Building is a detached building located along the west side of the South Structural Test Hangar. A narrow alley exists between the building and the South Structural Test Hangar and appears to be a former drum storage area. The butler building is divided into two separate areas identified as a storage room (northern portion) and a hydraulic pump room (southern portion). The storage room contains several 55-gallon DOT drums of Varsol, MEK and mineral spirits located in the southwest corner on an elevated concrete pad. The storage room also contains several file cabinets, some plywood, a hydraulic pump and wire. The interior floor of the storage room is constructed of concrete with expansion joints, numerous cracks and surficial staining and, an oily residue was observed on visible areas of the floor. In addition, the floor appears to slope to a floor drain located near the drum storage area. Access to the storage room is through a doorway located in an alley between the building and the South Structural Test Hangar or through an overhead door along the north side of building. The hydraulic pump room (southern portion of the Butler building) contains two active hydraulic pumps (nos. 4 and 8) with drip pans, two 55-gallon DOT drums containing DTE and DelVac 1330, respectively and, several empty storage cabinets. The interior floor of the hydraulic pump room is constructed of concrete, painted gray with some minor surficial staining observed on visible areas of the floor. Access to the hydraulic pump room is through a double door on the south side of the building.

Engineering Office Trailers (45)

The Engineering Office Trailers are semi-detached temporary office trailers located off the southwest corner of the South Structural Test Hangar. There are currently two office trailers which contain carpeted flooring and the storage of miscellaneous file cabinets.

Radio Shack (44)

The Radio Shack is a detached temporary office trailer located along the west side of the Butler Building. The Radio Shack houses former ham radio operations and contains radio components and electronic equipment relocated to this location from Plant 28.

Exterior Areas

Areas immediately exterior of the Structural Test Hangars were also inspected. A summary of these areas is provided as follows:

- Courtyard between North Structural Test Hangar and Plant 5 Cafeteria
 - Location of a former aboveground waste holding tank.

- Surficial staining and cracked and pitted concrete was noted in the vicinity of this former tank.
- Area north of North Structural Test Hangar
 - Material and former aircraft storage area; surficial staining and numerous cracks were observed in the concrete surface of this area.
- Area off northwest corner of North Structural Test Hangar and north of Electrical Switchgear and Heat Exchanger Building
 - Steel and metal storage areas; surficial staining and numerous cracks were observed in the concrete surfaces of these areas.
- Former Storage Area S52 (former drum storage area)
 - Located between the Generator Room (40) and Butler Building-Storage Room (42) in Courtyard Area.
 - Four 55-gallon DOT drums of DTE oil and nine cylinders of nitrogen were observed in this area.
 - "Ring depressions," surficial staining and numerous cracks were observed in the concrete surface of this area.
- Alley between South Structural Test Hangar and Butler Building and area south of the Butler Building
 - Former miscellaneous steel, metal and drum storage areas.
 - "Ring depressions," a 55-gallon drum of DelVac 1330 motor oil, surficial staining and numerous cracks were observed in the concrete surfaces of these areas.

2.2 Site History

This section describes the history of the development of the Structural Test Hangars/Plant 5 and surrounding areas. The information is based upon a review of available aerial photographs dated 1950-1988, available files at Northrop Grumman Corporation (NGC), formerly known as Grumman Aerospace Corporation (GAC) or Grumman, and Nassau County Department of Health (NCDH); interviews with representatives of NGC; as well as the site inspections, conducted in January 1998.

2.2.1 Former Uses and Summary of Prior Assessments

Based upon a review of property record cards and files at the Nassau County Clerk's office, it appears that Lot 223 in Block 323 was owned by Mary T. McGunnigle and sold to Grumman Aircraft Engineering Corporation (GAEC) in November 1943. Other lots comprising the Plant 5 property were also owned by Mary T. McGunnigle and sold to GAEC in either November 1943 or April 1950. Ownership of the lots was transferred to Grumman Aerospace Corporation in 1969. Files at Nassau County indicate that a contract between the United States Navy Department and GAEC was negotiated in 1943 to provide additional plant facilities for the manufacture of supplies required by the Navy "...for the prosecution of the war."

Aerial Photograph Review

Aerial photographs covering the Structural Test Hangars/Plant 5 site were reviewed. Noteworthy findings are provided below.

- <u>1950 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - Plant 5 in existence (South Structural Test Hangar identified on west side of building).
 - Small building (identified as Building 25-03, a.k.a. Former Pilots Reading Room Building) visible in northeast corner of Plant 5 site.
 - Small white dots and square structure visible in grassy area west of Plant 5 building, identified as on-site sanitary disposal system (white dots indicate locations of sanitary leaching pools and square structure indicates location of sewage pump station and settling tanks).
 - Discolored concrete western side adjacent to Plant 5 building.
 - Ballfield/grassy area western side of Plant 5 site.
 - Storage of materials off southwest corner of Plant 5 building.
 - Recharge basins in existence in southern portion of Plant 5 site.

♦1539\a0313803.doc(R05)

- Small building (identified as Building 25-10, a.k.a. Well House No. 6) at end of dirt roadway in northernmost part of Plant 5 site.
- Area of activity/storage of material associated with the Wind Tunnel located northwest of the Structural Test Hangars/Plant 5.
- Plant 2 in existence to southeast of Plant 5 site.
- <u>1955 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - Plant 5 expanded on northern side (currently identified as Old Model Shop Area, Security Cells, Foreign and Military Sales, part of Retiree Area) and western side (North Structural Test Hangar and Shuttle Wing Hangar).
 - Parking lots located north, west, east and south of Plant 5 building.
 - Approximately half of leaching pool area west of the Plant 5 building covered with concrete; other half in use for parking.
 - Aboveground tank (identified as a water tank, currently known as the Fire Protection Storage Tank) and small building (Building 05-05, a.k.a. Fire Protection Pump House) located off southwest corner of Plant 5 building.
 - Storage of materials off southwest corner of Plant 5 building.
 - Runway to the north of Plant 5 has been extended to the west.
 - Ballfields located north of Plant 5.
 - South Oyster Bay Road Extension constructed west of Structural Test Hangars/Plant 5 as a result of runway extension; forms western boundary of Plant 5 site.
 - Small building/office trailers located along western boundary line of Plant 5 site at edge of parking lot.
 - Continued activity/storage associated with Wind Tunnel noted northwest of the Structural Test Hangars/Plant 5.
- <u>1957 Aerial (Approximate Scale of 1"= 200 feet)</u>
 - Storage of materials along South Oyster Bay Road Extension, with discolored areas of concrete.
 - Area of concrete removed west of Structural Test Hangers/Plant 5 building at northern corner.

- Continued storage of materials south of Plant 5 building.
- New addition (identified as western part of the current Facilities Maintenance Area) to south side of Plant 5 building.
- Small building (identified as the Former Maintenance Garage) noted along roadway south of Plant 5.
- Continued activity/storage associated with the Wind Tunnel northwest of the Structural Test Hangars/Plant 5.
- <u>1962 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - Continued storage of materials along South Oyster Bay Road Extension and south of Plant 5 building.
 - Continued activity/storage associated with the Wind Tunnel noted northwest of the Structural Test Hangars/Plant 5.
- <u>1969 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - New building extension (identified as the Engineering Trailers) on west side of South Structural Test Hangar.
 - New addition constructed to southwest corner of Plant 5 building (identified as the High Bay 1 Area and ACE Building).
 - Rows of connected trailers/buildings located south of the South Structural Test Hangar in courtyard area.
 - New Plant 5 building (identified as the Cold Flow Building) constructed north of recharge basins, with several smaller buildings/office trailers located to its north, west and east.
 - New addition (identified as the Wyle Chamber Building) to west side of the Plant 5 Shuttle Wing Hangar.
 - Area southwest of Wind Tunnel (northwest of North Structural Test Hangar) paved and in use for parking.
 - Large aboveground storage tank with secondary containment noted to the east of the recharge basins south of the Plant 5 building.
- <u>1972 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - Storage of materials adjacent to west side of North and South Structural Test Hangars.

- Storage of materials in courtyard south of South Structural Test Hangar and west of Plant 5 Fire Protection Storage Tank.
- Trailers located east of Plant 5 Cold Flow Building removed.
- New "T" shaped building/structure located to the northwest of North Structural Test Hangar (formerly referred to as the Fuselage Fatigue Test Tank and currently identified as the Concrete Foundation of Former Test Platform).
- <u>1976 Aerial (Approximate Scale of 1" = 200 feet)</u>
 - Trailers in courtyard south of South Structural Test Hangar and adjacent to Plant 5 Shuttle Wing Hangar removed.
 - Storage of materials in courtyard south of South Structural Test Hangar, staining/discoloration of concrete noted.
 - "T" shaped structure removed; remaining foundation or footprint is cross-shaped (currently identified as the Concrete Foundation of Former Test Platform).
 - Buildings/office trailers located to west of Plant 5 Cold Flow Building removed.
 - New small storage building/sheds located between Plant 5 Cold Flow Building and Fire Protection Storage Tank.
- <u>1985 Aerial (Approximate Scale of 1" = 30 feet)</u>
 - New extension/trailers identified as Flight Test Trailers added off southwest corner of South Structural Test Hangar.
 - New buildings (identified as Building 23, and several adjacent office trailers) located west of the Structural Test Hangars along western boundary line of Plant 5 site.
 - Drum and material storage noted in courtyard south of South Structural Test Hangar.
 - Plant 5 Cold Flow Building removed.
 - Small storage building/sheds located between Plant 5 Cold Flow Building and Fire Protection Storage Tank removed.
 - Drum/material storage in courtyard located east of Plant 5 ACE Building.
 - Material storage off southeast corner of Plant 5 building, some discolored concrete.

- <u>1988 Aerial (Approximate Scale of 1" = 400 feet)</u>
 - New addition (currently identified as 8,000/8,000 Area) to southwest corner of Plant 5 High Bay 1 Area/ACE Building.

<u>Former Uses</u>

Based upon interviews with representatives of NGC, Plant 5 was constructed in 1944. In addition to the South Structural Test Hangar, earliest uses of the Plant included small machine shops, model shops, and laboratories.

During the 1960s, the Structural Test Hangars/Plant 5 complex was utilized for prototype development, testing and office space.

Construction drawings of Plant 5 and associated buildings/structures were reviewed. Noteworthy findings based upon a review of the construction drawings related to the Structural Test Hangars and adjacent areas is provided below.

Underground and Plot Plan/3-1-44

Based upon a review of this plan, the Plant 5 building was labeled as the "Engineering and Experimental Building" and was comprised of the following areas:

- Test laboratory (South Structural Test Hangar);
- Engineering section;
- Cafeteria and kitchen;
- Assembly areas;
- Hangar;
- Boiler room;
- Mechanical equipment room;
- Mechanical wing.

+1539\a0313803.doc(R05)

Plot Plan/12-15-43

This plot plan indicated that surface drainage was to be managed by a combination of dry wells located north and west of the Plant 5 building, with overflow routed to the two recharge basins south of the Plant 5 building. Catch basins also routed water to the recharge basins and open drainage trenches located west and north of the South Structural Test Hangar (North Structural Test Hangar does not exist at this time) also led to the recharge basins. The concrete area north of the existing North Structural Test Hangar is labeled as a taxiway, which extends to the runway located across old South Oyster Bay Road (east of Plant 5). Settling tanks, a pump station and leaching pools are identified off the west side of the Plant 5 building. A well identified as Well No. 3 (appears to be location of current Well No. 5) is noted north of the existing North Structural Test Hangar.

Plan of First Floor/2-11-44

This plan indicates the presence of a test platform in the Test Laboratory (currently identified as the South Structural Test Hangar). "Electric" and "air pits" are identified in the courtyard area south of the Test Laboratory.

Test Laboratory Plans/2-11-44

This plan indicates the first floor of the Test Laboratory (South Structural Test Hangar) was comprised of the following areas: test platforms, test laboratory, machine shop, electrical laboratory, refrigeration equipment room, test chamber, machine area, instrument room and heat treatment room. The floor in the test laboratory area contained floor drains, service trenches, a test machine pit and condensate pit. A sink was located along the north wall.

The plan shows that the first mezzanine area contained an instruments laboratory, standards room and structural tests area. A slop sink and sink were located on this floor.

The plan indicates that the second mezzanine above the Test Laboratory (South Structural Test Hangar) contained a radio laboratory, rooms for radio tests, equipment storage, dark room, other storage, fan room, office and equipment vault.

Under-floor Plumbing Systems/2-7-44

This plan indicates that plumbing systems (including floor drains, slop sinks, sanitary and roof drains) within the Test Laboratory (South Structural Test Hangar) discharge to the storm drain system or to the sanitary system.

First Floor Plumbing Systems/2-7-44

Locations of floor drains, cleanouts and slop sinks are shown on this plan. In addition, a pit with a line to a dry well is shown located within the Test Laboratory (South Structural Test Hangar) portion of the building.

Second Floor Plumbing Systems/2-7-44

This plan identifies two sinks on the second floor; one located in the Plant 5 Model Shop, the other in the Dark Room located within the Test Laboratory (South Structural Test Hangar).

First Floor Plan Power/2-11-44

This plan indicates condensate pumps in pits in four areas within the Plant 5 building, one of which was located within the Test Laboratory (South Structural Test Hangar), adjacent to a room identified as the Heat Treatment Room.

Heat and Vent System, Roof, Engineering Mezzanine and First Floor Plans Structures Laboratory/6-1-51

This plan shows the expansion of the Test Laboratory (South Structural Test Hangar) to the north (North Structural Test Hangar). Work areas labeled on the first floor included heat treatment room, work space, metallurgical lab, dark room, red room, bench area, electrical testing, machine shop, static test storage, storage area and generator room. Work areas identified on the Engineering Mezzanine were labeled strain recording and test engineering.

Plumbing System First Floor Plan and Diagrams Structures Laboratory - Plant 5/4-20-51

This plan of the Structures Laboratory (North Structural Test Hangar) indicates slop sinks were located in the metallurgical lab and static test storage areas of the laboratory. An existing slop sink shown west of the electrical test room is identified to be relocated on this plan. Locations of floor drains and cleanouts are also shown on this plan.

Mezzanines, Penthouse Floor and Roof Plan, Structures Laboratory/6-1-51

Work areas identified on the First Mezzanine (North Structural Test Hangar) were storage, I.B.M. Room, REAC Room, simulator room, instrument repair and auto pilot (servo lab). Work areas on the Second Mezzanine were blue print room, instrument storage and telemetering. The Penthouse is shown as a radar room.

Proposed Site Plan Pre-Fabricated Metal Building for Slosh Vibrator/10-13-58

The plan shows this building was to be located adjacent to the west side of the South Structural Test Hangar.

L.E.M. Simulator Facility Butler Building Extension/1-31-64

This plan shows an approximate 18-foot by 24-foot addition to a previously existing freestanding building (Butler Building) adjacent to the west side of the South Structural Test Hangar. The plan shows a drain pipe exiting the existing structure and leading to an existing catch basin connected to a storm drainage pipe.

Auxiliary Leaching Chambers Locations and Details/11-20-59

This plan shows four new leaching pools for emergency overflow, as well as approximately 35 other new leaching pools were to be added to the existing on-site sanitary disposal system located west of the Structural Test Hangars.

Air conditioning Lab-Vacuum Pump - Metal Building, New Altitude Chamber/2-9-61

The plan shows the location of this building is in the center of the courtyard between the South Structural Test Hangar and the Plant 5 OAO Hangar. An altitude chamber was being added to the west side of the Plant 5 building.

Based upon a review of Grumman records, various Agency tank records, the Navy Environmental Baseline Survey of Plant 5 completed in January 1998 and the site inspections, the following former and existing storage and process tanks have been identified for the Structural Test Hangars/Plant 5.

			Tank Size	Tank	Tightness		
Location	Tank No.	Type/Use	(gal)	Contents	Testing	Status	Remarks
Hard Chrome	526*	AST/water	120	Dilute chromic	N/A-AST	Removed	To Tank 625
Dept. in		rinse		acid			Removed
Structural							prior to
Test Hangar							10/78
(Dept. 004)							

+1539\a0313803.doc(R05)

	-		Tank Size	Tank	Tightness	<u></u>	
Hard Chrome	<u>1 ank No.</u> 529*	AST/chrome	(gai) 90	Contents	N/A-AST	Removed	Remarks To Tank 625
Dept. in		plate strip		Stripper			Removed
Structural				(cyanide,			prior to
Test Hangar				complex			10/78
(Dept. 004)				phosphates)			
Hard Chrome	992*	AST/hard	600	Chrome plate	N/A-AST	Removed	Removed
Dept. in		chrome plate		(chromic acid,			prior to
Structural				chromates]	10/78
Test Hangar				salts, silica			
(Dept. 004)				fluoride)			
Hard Chrome	623*	AST/hot	2'-4"	Inert wax	N/A-AST	Removed	Wax
Dept. in		maskant wax	dia x				removed by
Structural			4 H				solvents.
Test Hangar							Removed
(Dept. 004)		1					10/78
Hard Chromo	625*	A ST/wasta	6' 2" v	Contaminated	N/A AST	Pamayad	Contants of
Dept in	025	holding	3'H	rinse water and	INA-ASI	Kennoved	tank sent to
Structural		nording		stripper			Plant 2
Test Hangar				solution			IWTP via
(Dent 004)				solution	l		waste acid
]		truck.
	ļ						Removed
							prior to
							10/78
Dept. 004	192	UNK/vapor	82" x	Trichloro-	UNK	UNK	Location
		degreaser	34" x	ethylene			unknown
			35"				
Dept. 046	257	AST/	7'-3" x	Trichloro-	N/A	Removed	Removed
		degreaser	3'-3" x	ethylene			prior to
			5'-4"			<u>-</u>	10/78
Structural	139125**	AST/	4' x 5'	glycerin	N/A-AST	Removed	
Test Hangars		Glycerin		solution	1	ļ	l
		Solution					

* These tanks were identified as formerly being located in the Alodine Room in the Navy Environmental Baseline Survey of Plant 5.

** This tank was identified as being located in the Structural Test Hangars in the Navy Environmental Baseline Survey, based upon a review of an internal environmental audit of Plant 5 completed in 1993.
Summary of Prior Assessments

A Delisting Petition for the Plant 5 property was prepared in February 1993. The Delisting Petition included a field program, which consisted of installation of three monitoring wells and a soil boring, groundwater sampling and soil sampling.

Groundwater samples were collected from the three newly installed wells (P5MW-1, P5MW-2 and P5MW-3) and from two previously existing wells (GM17S and GM23S) and analyzed for volatile organic compounds (VOCs) and inorganic constituents. The groundwater samples were compared to NYS Department of Health Drinking Water Standards. The location of the monitoring wells is provided on Figure 2-3.

One soil sample was collected from each of the monitoring well boreholes in addition to one sample collected at a depth of 24 to 26 feet below grade from a soil boring installed within the boundaries of the former septic system/leaching field. Each soil sample was analyzed for VOCs and total petroleum hydrocarbons (TPHCs) and compared to cleanup objectives as identified in the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) 4046.

With respect to the groundwater samples, trichloroethene was detected at or above the NYS Drinking Water Standard of 5 ug/l in P5MW-2 (7 ug/l), P5MW-3 (5 ug/l) and GM17S (20 ug/l).

Tetrachloroethene was detected at the standard of 5 ug/l in GM17S (5 ug/l). Toluene was also detected in GM17S at a concentration of 8 ug/l, above the standard of 5 ug/l for that compound. However, since toluene was also detected in the method blank, the Delisting Petition stated that its presence in the environmental sample could be attributed to laboratory contamination.

The Delisting Petition indicated that the groundwater samples may have been obtained from the wells at a time when they were within the zone of influence of localized mounding from the two on-site recharge basins (outfall 006), which receive non-contact cooling water. The Delisting Petition noted that the well closest to the recharge basins (GM17S) exhibited the highest concentration of trichloroethene. The Delisting Petition noted that concentrations of trichloroethene detected during the sampling event were not inconsistent with previous laboratory analysis of non-contact cooling water at this location.

The Delisting Petition indicated that the cooling water utilized (influent) was pumped from groundwater in the vicinity of the site that previous sampling had shown to contain trichloroethene. As a result, the Delisting Petition noted that the elevated concentrations of trichloroethene were characteristic of localized ambient groundwater conditions and were not attributable to the non-contact cooling operations at the site.

Inorganic constituents were not detected in concentrations above NYS Drinking Water Standards in the water samples.

With respect to the soil samples, VOCs were not detected above method detection limits, with the exception of methylene chloride, detected at concentrations well below soil cleanup objectives. Since methylene chloride was also detected in the field blank, the Delisting Petition stated that its presence in the environmental samples could be attributed to laboratory contamination.

TPHCs were detected at concentrations ranging from 127 to 183 mg/kg. There is no NYSDEC cleanup objective for TPHCs. To determine if the TPHCs detected were attributable to fuel-related compounds, the samples were also analyzed for fuel-related constituents such as gasoline, lubricating oil, kerosene and fuel oil. Analytical results did not detect the presence of fuel-related constituents above the method detection limit. The Delisting Petition stated that as a result, it appeared the TPHCs detected in the environmental samples were not associated with any fuel-related spills.

A discussion of the Remedial Investigation/Feasibility Study (RI/FS) of the Grumman Bethpage Facility is provided in Section 2.3.

2.2.2 <u>Present Uses</u>

As previously discussed, the Structural Test Hangars currently consist of two hangar areas, identified as the North and South Structural Test Hangars. The hangars are separated by offices, which are located on the first floor and engineering, first and second mezzanines, a storage/tool crib, a locker/lunch room and a high pressure hydraulic pump room.

The South Structural Test Hangar is currently utilized for the construction of test apparatus. In addition, several areas were identified as part of the South Structural Test Hangar including a condensate pit, transformer room, load cell calibration machine and lab, machine shop area, structural and fatigue test areas, file storage areas, materials test and hydraulic laboratory's, hydraulic pump room, locker/lunch room, storage room/tool crib, offices, consumable storage rooms and hydraulic jack storage room.

Active long-term structural fatigue testing activities of a C-2 aircraft are currently being conducted in the North Structural Test Hangar. In addition, several areas were identified as part of the North Structural Test Hangar including a caged storage area, inspectors work station, tool storage/work station, test control console, freight elevator and pump room, hydraulic cylinder/jack storage room, a two room computer area, machine and welding shops, raw metal storage area and a generator room.

2.3 **Regulatory Compliance History**

As part of the Phase I Site Assessment, an investigation of local agency records was undertaken to identify any environmental concerns within the Structural Test Hangars/Plant 5 or immediately adjacent to Plant 5. Please note that Grumman Aerospace Corporation (GAC) and Grumman references in this section pertain to the Bethpage facility currently owned by NGC. The following information was obtained from the Nassau County Department of Health (NCDH).

A review of a 1989 NCDH Article XI Tank and Container Storage Registration Map indicates two storage areas (S51 and S52) were associated with Plant 5 (see Appendix A).

Storage Area S51 was located in the courtyard located between the South Structural Test Hangar and the Plant 5 Shuttle Wing Hangar, and Storage Area S52 was located to the west of the Structural Test Hangars. Based upon a review of 1988 NCDH Article XI application forms, Area S51 was permitted for the storage of:

- freon,
- 1,1,1-trichloroethane,
- methylene chloride,
- CEE BEE 50,
- isopropanol,
- toluene,
- lacquer thinners,
- petroleum naphtha,
- aqua quench (glycols, water),
- oil,
- halogenated solvents,
- paint thinners/solids,
- cutting fluid, and
- methyl ethyl ketone.
- ♦1539\a0313803.doc(R05)

This area was noted to have an impervious dike/berm, impervious floor/pad, a roof, and walls. The application form also noted a floor drain with sump in this area.

Storage area S52 was permitted for the storage of:

- hydraulic oil,
- CEE BEE 50, and
- mineral spirits.

This area was noted to have an impervious concrete floor/pad.

Several storage tanks were noted on the NCDH Article XI map and application form for Plant 5, however, none were identified as being located within or immediately adjacent to the Structural Test Hangars.

Based upon a review of a 1982 GAC SPDES permit on file at NGC, the two recharge basins south of Plant 5 are identified as "outfall 006" under the facility's SPDES permit (NY0096792). According to the permit, outfall 006 was permitted for the discharge of noncontact cooling water and storm water. The discharge was required to be monitored for phenols, toluene, xylene, chloroform, methyl ethyl ketone, vinyl chloride, dichloroethylene, trichloroethylene, 1,1,1-trichloroethane, trichlorotrifluoroethane, tetrachloroethylene and total organics on a monthly basis, for flow on a daily basis, and for pH on a weekly basis.

Two letters dated 1981 from GAC to the NYSDEC, transmitting monthly SPDES discharge monitoring reports were on file at NCDH. The letters indicated non-compliance with respect to phenols in the discharge to outfall 006. The letters stated that the reason for the non-compliance could not be determined.

An undated water flow schematic on file at NGC indicated a 1.05 million gallon per day flow of non-contact cooling water, boiler blowdown and storm water discharged to outfall 006. A 1991 SPDES modification on file at NGC indicated the parameters to be sampled for at outfall 006 were flow, pH, 1,1-dichloroethylene, methylene chloride, tetrachloroethylene, 1,1,1trichloroethane, trichloroethylene, trichlorotrifluoromethane, total nitrogen, vinyl chloride, trans-1,2-dichloroethylene and cis-1,2-dichloroethylene.

A GAC application for a RCRA Part B permit was on file at NCDH. According to the permit application, a station (5-A) was set up in Plant 5 for the collection of waste halogenated and non-halogenated solvents. The application states that collection stations were set up in close proximity to the points of waste solvent generation. A figure included in the permit shows that collection station 5-A was located within the Plant 5 building adjacent to the southeast corner of the South Structural Test Hangar (see Appendix A). No collection stations were identified as being located in the Structural Test Hangars.

According to information on file at the NCDH, the GAC Bethpage Facility was first listed on the State's Registry of Inactive Hazardous Waste Disposal Sites in 1983 as a Class 2a site. In 1988, a Class 2 designation was assigned to the facility. In 1992, the Bethpage Facility was separated into two sites, the Naval Weapons Industrial Reserve Plant (NWIRP) Site and the Grumman Aerospace Bethpage Facility Site.

GAC entered into a consent order with the NYSDEC to conduct an on-site and off-site Remedial Investigation/Feasibility Study (RI/FS) of the Bethpage Facility. A report containing the data collected during the first phase of the RI was submitted to NYSDEC in January 1992, and a final RI report (including the results of the Phase I and Phase II RI's) was submitted in September 1994.

The RI report indicates that the horizontal direction of groundwater flow in the shallow zone of the Upper Glacial (or water table) aquifer is generally to the south and southeast, but is greatly affected by localized groundwater pumpage from Grumman production wells and

2-34

recharge mainly from Grumman recharge basins. Groundwater contour maps for April and August 1993 are included in Appendix A. According to the RI report, pumpage effects (depression of groundwater) are apparent near Plant 15 in the vicinity of Grumman production well GP-13. On the other hand, recharge effects, mounding of groundwater, are evident around the recharge basins near Plant 3 and Plant 5, the southern series of recharge basins, and to a lesser extent around the recharge basins near Plant 12. The RI report also states that mounding is observed along the eastern border of the Ruco Polymer Corporation site (near Plant 115) and is presumably due to recharge occurring on the Ruco site.

The RI report indicates that groundwater sampling conducted during the Phase I RI and the Phase II RI identified two plumes of groundwater contamination (eastern plume and western plume) near the center of the Bethpage Facility. The eastern plume contains trichloroethene (TCE), tetrachloroethene or perchloroethylene (PCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,2-dichloroethene (1,2-DCE), 1,1-dichloroethene (1,1-DCE) and 1,1-dichloroethane (1,1-DCA). The RI report indicates that the eastern plume is defined by monitoring wells GM-14I, GM-16I, GM-19I, GM-22D, HN27S3, and well clusters GM-13 and HN-29. These wells are located northeast, east and southeast of the Structural Test Hangars/Plant 5 site (see maps in Appendix A). The eastern plume of groundwater contamination is not likely to impact the Structural Test Hangars/Plant 5 site. The RI report indicates that it is defined by monitoring wells GM-12I, GM-18S, GM-18I, GM-32S, HN-24S, HN-24I2, and Grumman production wells GP-1 and GP-2 (see maps in Appendix A). These wells are located north, east, southeast and south of the Structural Test Hangar/Plant 5 site. Well GP-2 is located to the east of Plant 5. As a result, it appears the western plume of groundwater contamination for the Structural Test Hangars/Plant 5 site.

Another area of groundwater contamination was identified at the border of the Ruco Polymer Corporation site and the NGC property. The RI report indicates that this area of contamination generally consists of TCE, PCE, 1,1,1-TCA, 1,1-DCE, and vinyl chloride. This area of contamination is defined by monitoring well clusters GM-4, GM-5, GM-10, GM-23, and

2-35

Grumman production wells GP-5, GP-8 and GP-14 (see maps in Appendix A). No discrete plume or plumes are present.

As part of the RI, soil gas sampling was conducted in 1991 and 1992 with a portable gas chromatograph to identify areas at the Bethpage facility that might require further investigation by soil and/or groundwater sampling. Soil gas sampling points were not located in the vicinity of the Structural Test Hangars/Plant 5 site.

The RI report also indicates that contaminants have been detected in groundwater south and southeast, hydraulically downgradient of the NGC property. No discrete plume or plumes are present. Groundwater contamination in these areas will likely not impact the Structural Test Hangars/Plant 5 site.

The RI report identified a TCE storage tank at Plant 2, located to the southeast of the Structural Test Hangar/Plant 5 site, as a source of groundwater contamination. A soil vapor extraction (SVE) system has been installed at the source area and is designed to remove TCE in unsaturated soils in that area, in order to prevent further contamination of the groundwater. Plant 2 is located downgradient of the Structural Test Hangar/Plant 5 site and, therefore, groundwater contamination from the TCE storage tank is not likely to impact the Structural Test Hangar/Plant 5 site.

In addition, the RI report identified Plant 15 (located to the north of the Structural Test Hangars/Plant 5 site) as a possible source of PCE contamination based on the results of a soil-gas survey. A telephone conversation with the NYSDEC project manager during the week of February 23, 1996, indicated that follow-up soil and groundwater sampling showed no significant contamination and failed to locate a source of the vapors. According to the NYSDEC representative, additional sampling was conducted, with similar results. The NYSDEC representative indicated that the area impacted is located adjacent to the Plant 15 loading dock and is approximately 20 feet in radius. Subsequently, under an agreement with NYSDEC, NGC installed and operated an SVE system (originally installed at Plant 2) at the Plant 15 area for

approximately 30 days. The soil vapor extraction program was completed and the system was returned to Plant 2. On May 14, 1996, a letter report documenting the implementation of the SVE system at Plant 15 was submitted to NYSDEC. The report concluded that the Plant 15 site had been effectively remediated by utilizing the SVE system. On May 21, 1996, NYSDEC approved this letter report which concluded the remediation project. Based upon this information, it does not appear likely that the Structural Test Hangars/Plant 5 site will be impacted.

The RI report contained a summary of the findings of a Phase 1 and Phase 2 RI of the NWIRP site completed in May 1992 and October 1993, respectively. The NWIRP site is located to the north-northeast of the Structural Test Hangars/Plant 5 site and may be upgradient with respect to the direction of groundwater flow for at least a portion of the year.

The NWIRP Phase 1 RI consisted of a soil gas survey, soil sampling, surface water and sediment sampling, and monitoring well and groundwater sampling. The soil gas survey indicated the presence of solvents near a former drum marshaling area with the detection of PCE and TCE. Soil samples from a recharge basin and from a salvage storage area contained volatile organic compounds (VOCs). In addition, soil samples from the former drum marshaling area contained elevated concentrations of polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs), pesticides and inorganics. VOCs (including TCE, PCE, 1,1,1-TCA, 1,1-DCA, 1,1-DCE and 1,2-DCE) were detected in groundwater samples obtained from wells near the former drum marshaling area. Groundwater downgradient of the salvage storage area contained elevated levels of TCE and lesser concentrations of PCE and 1,1,1-TCA. Groundwater samples from wells near recharge basins contained TCE. Surface water in the recharge basins contained TCE and PCE.

The NWIRP Phase 2 RI included a soil gas survey, soil sampling, monitoring well installation and groundwater sampling. The soil gas survey indicated several areas at Plant 3 that had high levels of VOCs (including PCE, TCE and 1,1,1-TCA). Lower concentrations of these compounds were also detected at the drum storage area. Soil samples collected from the former drum marshaling area, salvage storage area and the recharge basin area contained PCBs, and soil

sampling near monitoring well cluster HN-24 reported levels of TCE and toluene. Groundwater samples obtained from wells near the former drum marshaling area contained PCE, TCE, 1,1,1-TCA, 1,1-DCA and 1,2-DCE. Groundwater near Plant 3 contained elevated concentrations of TCE.

The RI report indicated that specific sources of contamination have not been fully delineated on the NWIRP site or Ruco Polymer Corporation property; however, the groundwater flow and quality data compiled from the previous investigations indicate that contamination likely originated from one or more sources on the NWIRP and Ruco sites and from at least one source on the Grumman Bethpage Facility property.

A copy of a Proposed Remedial Action Plan (PRAP) for the remediation of on-site soil and shallow groundwater contamination at the NWIRP was on file at NCDH. The PRAP was developed upon finalization of the Feasibility Study (FS) in March 1994. The PRAP contained a figure which indicated that the estimated areal extent of "On-site/Near Site NWIRP - Derived Groundwater Contamination" was located eastward of the Structural Test Hangars/Plant 5 site (see Appendix A).

In addition to the aforementioned groundwater quality information, the USGS conducted an investigation of groundwater quality over a wide area that encompassed the Structural Test Hangars/Plant 5 site. Beginning in 1985, the USGS conducted an investigation of the hydrogeology and groundwater quality of the Bethpage-Hicksville-Levittown area. The study area included the Ruco Polymer Corporation, U.S. Navy (NWIRP/Plant 3) and Grumman Bethpage Facility sites (including the Structural Test Hangars/Plant 5 site). The results of this study were summarized in three reports, the second of which was entitled, "Ground-Water Quality in the Bethpage-Hicksville-Levittown Area, Long Island, New York, With Emphasis on Volatile Organic Compounds." This report summarized groundwater quality in the study area based on the analysis of groundwater samples collected from monitoring wells and industrial wells in the Spring and Fall of 1986 and 1987. The findings of this report identified the presence of a plume of groundwater contamination primarily consisting of several volatile organic compounds including TCE, PCE, 1,1,1-TCA, 1,2-DCE, 1,1-DCA and vinyl chloride. This plume was described as being present beneath and extending southward from the Ruco Polymer, Navy (NWIRP/Plant 3) and Grumman Bethpage Facility sites. The plume in 1987 was reported to be approximately 5,700 feet wide, 12,000 feet long and greater than 500 feet thick. Isoconcentration contour maps presented in the USGS study delineated the areal extent of the plume and indicated that the portion of the plume present beneath the Structural Test Hangars/Plant 5 site contained 1,1,1-TCA, vinyl chloride and 1,2-DCE.

A delisting petition entitled, "New York State Site Registry Delisting Petition Plant 5, Hicksville, New York" was prepared and submitted to the NYSDEC in February 1993 to modify the boundary lines of the Grumman Aerospace Corporation site as identified in the Registry of Inactive Hazardous Waste Disposal Sites. Additional information was supplied to the NYSDEC in two letter reports dated June 23, 1994 and January 24, 1995. The delisting petition for Plant 5 was approved on February 24, 1995 (see Appendix A). The Plant 5 parcel is one of several parcels that have been "delisted" (i.e., formally removed from within the site boundary lines). It should be noted that former Plant 2, located immediately to the southeast and east of the Plant 5 parcel, remains within the boundary lines, as does the series of recharge basins located along the southern boundary line of the NGC Bethpage facility.

Information on two spills that have been identified as occurring at Plant 5 are discussed below:

Spill Number: 96-06777 Spill Date: 8/27/96 Material Class: Petroleum Spill Cause: Other Resource Affected: On land Quantity Spilled: 10 gallons

According to NGC representatives, a 10-gallon spill occurred at Plant 5 in August 1996. A NYSDEC Spill Number, 96-06777, was assigned to the incident. The spill report obtained from NGC representatives (see Appendix A) indicates that a surge in the Plant 5 emergency generator day tank caused Tank 05-05-1 to overfill. The product spilled from the tank vent onto the asphalt parking area and to a storm drain catch basin. The spill was cleaned from the catch basin and asphalt area with speedy-dry. The spill report noted that the Plant 5 recharge basin was not affected and no contaminated soil was generated. Based upon the quantity that was released, and the cleanup actions that were undertaken by NGC personnel, it does not appear that this spill resulted in a significant impact to the Structural Test Hangars or Plant 5 property.

Spill Number: 92-13848 Spill Date: 3/17/93 Material Class: Petroleum Spill Cause: Other Resource Affected: On land

According to available information, the fuel tank on a vehicle ruptured and spilled on the ground. The Navy Environmental Baseline Survey indicated that the 40-gallon spill occurred just outside the sliding door to the North Structural Test Hangar and was effectively contained on the concrete. The spill was closed by the NYSDEC on February 19, 1997. As a result, it does not appear that this spill resulted in a significant impact to the Structural Test Hangars or Plant 5 property.

2.4 Phase I Site Assessment Findings

The findings of the Phase I Site Assessment and identification of potential areas of environmental concern are presented below.

2.4.1 On-Site Indicators of Contamination

Various locations within the Structural Test Hangars were noted to have stained flooring, or flooring that was stained in combination with cracks and/or pitted areas. Hydraulic oil,

absorbent materials and residue were found in pipe trenches. In addition, there was apparent leakage from the oil line and plunger and jack, and oil staining on the pit floor beneath the freight elevator (previously identified on Figure 2-2 as Area 32).

Several areas exterior of the Structural Test Hangars were also noted to have stained concrete or stained concrete in combination with cracks. The locations in which these indicators of contamination were found are included as potential area of environmental concern discussed in Section 2.4.2, below.

2.4.2 Potential On-Site Areas of Environmental Concern

Based upon the findings of the Phase I Site Assessment, potential areas of environmental concern include the following:

<u>Interior</u>

- Sump in Condensate Pit
- Pit Beneath Load Cell Calibration Machine
- Slop Sink in Structural Test Area
- Slop Sink in South Structural Test Hangar
- Floor Drains in South Structural Test Hangar
- Dry Wells in Pipe Trenches in South Structural Test Hangar
- Dry Well Beneath Fatigue Test Area
- Pit in Hydraulic Laboratory
- Degreasing Machine Area
- Pipe Trenches in Hydraulic Pump Room
- Floor Drain in Hydraulic Pump Room
- Slop Sink in Load Calibration Lab
- Hydraulic Storage Room
- Slop Sink in North Structural Test Hangar
- Floor Drains in Pipe Trenches in North Structural Test Hangar

^{•1539\}a0313803.doc(R05)

- Elevator Pump Room
- Freight Elevator Between North and South Structural Test Hangars
- Hydraulic Cylinder/Jack Storage Area
- Machine Shop
- Weld Shop
- Slop Sink in Weld Shop
- Floor Drain in Raw Metal Storage Area
- Funnel Drain in Generator Room
- Drum Storage Area in Butler Building
- Floor Drain in Butler Building
- Wood Block Floor, Various Locations Throughout North and South Structural Test Hangars
- Pipe/Utility Trenches in North and South Structural Test Hangars
- Slop Sink in Engineering Mezzanine
- Slop Sinks in First Mezzanine-
- Slop Sinks and Floor Drain in Second Mezzanine

The locations of the interior potential areas of environmental concern are illustrated on Figure 2-4. The locations of interior floor drains, slop sinks, dry wells and pits are shown on Figure 2-5.

<u>Exterior</u>

- Area of Former Waste Holding Tank Tank No. 625
- Area North of North Structural Test Hangar
- Area at Northwest Corner of North Structural Test Hangar
- Area North of Electrical Switch Gear and Heat Exchanger Building.
- Storage Area S52
- Alley Between Butler Building and South Structural Test Hangar
- Area South of Butler Building

LEGEND

INTERIOR AREAS

(I-1) SUMP IN CONDENSATE PIT (I-2) PIT BENEATH LOAD CELL CALIBRATION MACHINE AREA (I-3) SLOP SINK IN STRUCTURAL TEST AREA (1-4) SLOP SINK IN SOUTH STRUCTURAL TEST HANGAR 1-5 FLOOR DRAINS IN SOUTH STRUCTURAL TEST HANGAR 1-6 DRY WELLS IN PIPE TRENCHES IN SOUTH STRUCTURAL TEST HANGAR 1-7 DRY WELL BENEATH FATIGUE TEST AREA (1-8) PIT IN HYDRAULIC LABORATORY (I-9) DEGREASING MACHINE AREA 1-10 PIPE TRENCHES IN HYDRAULIC PUMP ROOM (I-1) FLOOR DRAIN IN HYDRAULIC PUMP ROOM (I-12) SLOP SINK IN LOAD CELL CALIBRATION LAB (1-13) HYDRAULIC STORAGE ROOM (1-14) SLOP SINK IN NORTH STRUCTURAL TEST HANGAR (1-15) FLOOR DRAINS IN PIPE TRENCHES IN NORTH STRUCTURAL TEST HANGAR (1-16) ELEVATOR PUMP ROOM (I-17) FREIGHT ELEVATOR BETWEEN NORTH AND SOUTH STRUCTURAL TEST HANGARS (I-18) HYDRAULIC CYLINDER/JACK STORAGE AREA (I-19) MACHINE SHOP (1-20) WELD SHOP (I-21) SLOP SINK IN WELD SHOP (1-22) FLOOR DRAIN IN RAW METAL STORAGE AREA (1-23) FUNNEL DRAIN IN GENERATOR ROOM (1-24) DRUM STORAGE AREA IN BUTLER BUILDING 1-25 FLOOR DRAIN IN BUTLER BUILDING (1-26) WOOD BLOCK FLOOR AT LOCATIONS THROUGHOUT NORTH AND SOUTH STRUCTURAL TEST HANGARS (1-27) PIPE/UTILITY TRENCHES IN NORTH AND SOUTH STRUCTURAL TEST HANGARS

(1-28) SLOP SINK IN ENGINEERING MEZZANINE (1-29) SLOP SINKS IN FIRST MEZZANINE (I-30) SLOP SINKS AND FLOOR DRAIN IN SECOND MEZZANINE

EXTERIOR AREAS

E-1 AREA OF FORMER WASTE HOLDING TANK-TANK NO. 625

E-2) AREA NORTH OF NORTH STRUCTURAL TEST HANGAR

E-3 AREA AT NORTHWEST CORNER OF NORTH STRUCTURAL TEST HANGAR

(E-4) AREA NORTH OF ELECTRICAL SWITCH GEAR AND HEAT EXCHANGER BUILDING

(E-5) STORAGE AREA S52

Langthere -

(E-6) ALLEY BETWEEN BUTLER BUILDING AND SOUTH STRUCTURAL TEST HANGAR

(E-7) AREA SOUTH OF BUTLER BUILDING

FIGURE 2-4

000 401 EB01

E BERN

100 100

Sh. col

1. N. 18.

a de		
- 5 4		
1.F	TCEND	
()	CONDENSATE DIT	
X		1
8	IRANSFORMER ROOM	
8	LOAD CELL CALIBRATION MACHINE AREA	
e (tel second se	STRUCTURAL TEST AREA	
୍ର	SOUTH STRUCTURAL TEST HANGAR	
G	MACHINE SHOP AREA	
Q	FATIGUE TEST AREA	
8	FILE STORAGE AREA (UNDER STAIRWELL)	
9	MATERIALS TEST LAB-FATIGUE TEST AREA	
0	MATERIALS TEST LAB-STATIC TEST AREA	
0	MATERIALS TEST LAB-STATIC TEST AREA	
(2	STORAGE AREA (UPSTAIRS)	
(3	HYDRAULIC LABORATORY	
()	VARSOL DEGREASING MACHINE	
(15)	PUNP ROOM	
ă	STORAGE AREA	
X	LOCKER/LUNCH ROOM	
Xa	HYDRAULIC PUNP ROOM	
ä	STORACE ROOM TOOL CRIP	
8	OFFICE	
8	OFFICE	
5	CONSUMABLE STORACE BOOM	
X	CONSUMABLE STORAGE RUOM	
g	CONSUMABLES STORAGE (UNDER STAIRWELL)	
. 5	LOAD CELL CALIBRATION LAB	
29	HYDRAULIC STORAGE ROOM	
g	CAGED STORAGE AREA	
୍ୟ	INSPECTORS WORK STATION	2
28	TOOL STORAGE/WORK STATIONS	
છ	NORTH STRUCTURAL TEST HANGAR	
ଡ	CONTROL CONSOLE	
3)	ELEVATOR PUMP ROOM	
62	FREIGHT ELEVATOR	
3	HYDRAULIC CYLINDER/JACK STORAGE AREA	
- 34	COMPUTER ROOM	
3	COMPUTER ROOM	
60	MACHINE SHOP	
67)	WELD SHOP	
ක්	RAW METAL STORAGE AREA	
	MACHINE SHOP AREA	
	GENERATOR ROOM	
8	FLECTRICAL SWITCH CEAR AND HEAT	
9	ELECTRICAL SWITCH GEAR AND HEAT	
(3)	PUT FR BUILDING STORAGE BOOM	
X	BUTLER BUILDING-STORAGE ROOM	
8	BUTLER BUILDING-HYDRAULIC PUMP ROOM	
*	KADIO SHACK	
45	ENGINEERING OFFICE TRAILERS	
- FD		
0,0	FUNNEL DRAIN	
-		
G FD	FLOOR DRAIN	
U		
DW	DEXIMEN	
•	URIWELL	
22		
Δ^{33}	SLOP SINK	

- CP CONDENSATE PIT
- P PIT (MISCELLANEOUS)

NOTES:

- 1. SYMBOLS SHOWN ARE NOT TO SCALE AND ARE INTENDED TO REPRESENT APPROXIMATE LOCATIONS ONLY.
- 2. LOCATIONS OF FLOOR DRAINS, SLOP SINKS, DRYWELLS AND PITS ARE BASED ON INSPECTIONS OF VISUALLY UNOBSTRUCTED AREAS PERFORMED AS PART OF THE PHASE I SITE ASSESSMENT ACTIVITIES DURING JANUARY 1998.

FIGURE 2-5

ANT ALL ADDRESS PRIMARY SOL

The location of the exterior potential areas of environmental concern is also illustrated on Figure 2-4.

Tables 2-1 and 2-2 provide details on the former and current uses of interior and exterior potential areas of environmental concern, respectively, and summarize the environmental concerns associated with each area.

2.4.3 Potential Off-Site Sources of Contamination

Based upon a review of available information, the site and surrounding areas have historically been associated with industrial activity. Degradation of groundwater in the area has been documented. As discussed in Section 2.3, potential off-site sources of groundwater contamination include the Ruco Polymer Corporation site located to the northwest of the Structural Test Hangar/Plant 5 site and the NWIRP located to the north-northeast.

In addition, as discussed in Section 2.3, the USGS report summarizing the investigation of groundwater quality in the Bethpage-Hicksville Levittown area identified the presence of a plume of groundwater contamination beneath and extending southward from the Ruco Polymer Corporation, NWIRP and Grumman Bethpage Facility sites. Maps delineating the areal extent of the plume indicate that the plume was present beneath the Structural Test Hangars/Plant 5 site in 1987. Therefore, groundwater quality on-site is a potential area of environmental concern.

2.5 Phase I Site Assessment Conclusions and Recommendations

This subsection provides recommendations for additional investigative activities (Phase II Site Assessment) based on the findings of the Phase I Site Assessment. As discussed above, Tables 2-1 and 2-2 identify the potential areas of environmental concern at the site.

2-45

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN - INTERIOR AREAS

	POTENTIAL AREA			
AOC*	OF ENVIRONMENTAL			ENVIRONMENTAL CONCERN(S)
No.	CONCERN	FORMER USE(S)	CURRENT USE(S)	PATY INVESTIGATION FOR CONTRACTOR
J-1	Sump in Condensate Pit	Condensate Pit	Condensate Pit	Surficial staining with mimerous cracks in concrete floor, oily residue on floor, sump an southwest corner of pit (under Transformer Room) appeared to be partially earthen
I-2	Pit Beneath Load Cell Calibration Machine	Machine Pit, Engineering Structures Laboratory Testing Machine Pit	Load Cell Calibration Machine Area	Pit located beneath load cell calibration machine; oil staining at base of machine and on metal plates covering pit, pit may contain oil, integrity of pit floor unknown
1-3	Slop Sink in Structural Test Area	Test Laboratory, Engineering Structures Laboratory	Structural Test Area	Location of existing slop sink, potential discharges of constituents of concern to slop sink which may have discharged to dry well, sanitary sewer system or stormwater sewer system.
1-4	Slop Sink in South Structural Test Hangar	Testing Areas/Platforms in South Structural Test Hangar	Testing Areas Platforms in South Structural Test Hangar	Slop sink located in northwest corner of Hangar, potential discharges of constituents of concern to slop sink which may have discharged to dry well, sanitary sewer system or stormwater sewer system.
I-5	Floor Drains in South Structural Test Hangar	Testing Areas/Platforms in South Structural Test Hangar	Testing Areas Platforms in South Structural Test Hangar	Two existing floor drams near Hangar door along south side of Hangar, one former floor drain removed, potential spills and discharges of constituents of concern to floor drains which may have discharged to dry well, samilary sewer system or stormwater sewer system.
I-6	Dry Wells in Pipe Trenches in South Structural Test Hangar	Testing Areas/Platforms in South Structural Test Hangar	Testing Areas Platforms in South Structural Test Hangar	Three existing dry wells located at east end of each pipe trench in Hangar, potential discharges of constituents of concern to dry wells
 I-7	Dry Well Beneath Fatigue Test Area	Testing Area/Platform in Hangar Area; Space Simulation Engineering Laboratory	Fatigue Test Area	Existing manhole in floor and possible location of former dry well and condensate drip pit: potential spills and discharges of constituents of concern to dry well and pit beneath floor or to sanitary sewer system or stornwater sewer system
I-8	Pit in Hydraulic Laboratory	Electrical Laboratory, Space Simulation Engineering Laboratory	Hydraulic Laboratory	Surficial staming with only residue on linoleum tile floor and surrounding metal plate covering pit beneath floor, use and integrity of pit unknown, former floor drain in northeast corner of lab removed and replaced by pipe trench
I-9	Degreasing Machine Area	Varsol Degreasing Machine, suspected to be Tank No. 192 - Trichloroethene Vapor Degreaser	Varsol Degreasing Machine	Varsol Degreasing Machine located in northwest corner of South Structural Test Hangar suspected to be former trichloroethene vapor degreaser, surficial staming around machine and oily residue on floor surrounding the machine
1-10	Pipe Trenches in Hydraulic Punp Room	Machine Area, Electrical Testing, Static and Fatigue Test, Pump Room	Hydrauhe Pump Room	Hydraulic oil, absorbent materials and residue in pipe trenches; integrity of trench floor unknown
I-11	Floor Drain in Hydraulic Punip Room	Machine Area, Electrical Testing, Static and Fatigue Test, Pump Room	Hydrauhe Pump Room	Floor drain located in Pump Room, potential discharges of constituents of concern to floor drain which may have discharged to dry well, sanitary sewer system or stormwater sewer system.
I-12	Slop Sink in Load Cell Calibration Lab	Instrument Room, Metallurgical Lab, Dark Room/Office Area	Load Cell Cabbration Lab	Slop sink located in southwest corner of room, potential discharges of constituents of concern to slop sink which may have discharged to dry well, sanitary sewer system or stormwater sewer system, wood floor exposed adjacent to sink appeared to be hollow beneath.
I-13	Hydraulic Storage Room	Heat Treatment Room, Chrome Plating Area	Hydraulic Storage Roem	Surficial staining with numerous cracks and pitting in concrete floor, oily residue on floor, locations of former Tank (ASTs) Nos. 526, 529, 623 and 992 which contained chrome plating, stripping and ruise solutions and unchrome wax.
I-14	Slop Sink in North Structural Test Hangar	Testing Areas/Platforms in North Structural Test Hangar	Festing Areas/Flatforms in North Structural Test Hangar	Slop sink located in northeast corner of Hangar, potential discharges of constituents of concern to slop sink which may have discharged to dry well, samtary sewer system or stonnwater sewer system
I-15	Floor Drains in Pipe Trenches in North Structural Test Hangar	Testing Areas/Platforms in North Structural Test Hangar	Testing Areas/Platforms in North Structural Test Hangar	I ocation of two floor drams at end of west and east pipe trenches unknown (possibly removed), potential discharges of constituents of concern to these floor drams which may have discharged to dry well, sanitary sewer system or stormwater sewer system

TABLE 2-1 (continued) NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 POTENTIAL AREAS OF ENVIRONMENTAL CONCERN - INTERIOR AREAS

AOC *	POTENTIAL AREA OF ENVIRONMENTAL CONCERN	FORMER USE(S)	CURRENT USE(S)	ENVIRONMENTAL CONCERN(S)
I-16	Elevator Pump Room	Elevator Pump Room	Elevator Pump Room	Contains hydraulic pump and controls for elevator, heavy surficial oil staining around pump with drip pan, oily residue on floor surrounding pump
1-17	Freight Elevator Between North and South Structural Test Hangars	Freight Elevator	Freight Elevator	Hydraulic driven elevator, apparent leakage from oil line and plunger and pack, surficial oil staining on pit floor beneath elevator, potential oil leakage from jack casing beneath pit floor.
I-18	Hydraulic Cylinder/Jack Storage Area	Machune Shop	Hydrautic Cylinder/Jack Storage Area	Wood block floor stained with wood blocks removed and displaced in several areas, integrity of concrete floor beneath wood block floor unknown
1-19	Machine Shop	Machine Shop	Machine Shop Area	Wood block floor heavily stained, integrity of concrete floor beneath wood block floor maknown
I-20	Weld Shop	Machine Shop	Welding Area	Cracks and pitting of concrete floor.
1-21	Slop Sink in Weld Shop	Static Test Storage, Machine Shop	Welding Area	Slop sink located in northwest corner of Welding Area, potential discharges of constituents of concern to slop sink which may have discharged to dry well, samtary sewer system or stormwater sewer system
I-22	Floor Drain in Raw Metal Storage Area	Storage Area, Hydraulic Equipment and Repair, Raw Metal Storage Area	Raw Metal Storage Area	Existing floor drain located near northeast corner of room, potential spills and discharges of constituents of concern to floor drain which may have discharged to dry well, samtary sewer system or stormwater sewer system
1-23	Funnel Drain in Generator Room	Generator Room	Generator Room	Potential discharges of constituents of concern to funnel dram which may have discharged to dry well, sanitary sewer system or stormwater sewer system
1-24	Drum Storage Area in Butler Building	Butler Building - Slosh Vibrator and Test Chamber	Butler Building - Storage Room	Drum storage area for oils and solvents in southwest comer of storage room, surficial staining with numerous cracks in concrete floor, oily residue on floor
1-25	Floor Drain in Butler Building	Butler Building - Slosh Vibrator and Test Chamber	Butler Building - Storage Room	Existing floor drain located near drum storage area, potential spills and discharges of constituents of concern which may have discharged to dry well, sanitary sewer system or stormwater sewer system.
I-26	Wood Block Floor at Locations Throughout North and South Structural	Wood block floor at locations throughout North and South Structural Test Hangars	Wood block floor at locations throughout North and South Structural Test Hangars	Spills of constituents of concern and metal filings/cuttings to wood block floor. In the future, if wood block is to be removed, waste characterization sampling should be conducted.
I-27	Pipe/Unity Trenches in North and South	Pipe/Utility Trenches in North and South Structural Test Hangars	Pipe/Utility Trenches in North and South Structural Test Hangars	Hydraulic oil, absorbent materials and residue in pipe trenches; integrity of trench floor unknown.
I-28	Slop Sink in Engineering Mezzanine	Slop sink	Slop sink	Existing slop sink located in jamtors closet, potential discharges of constituents of concern which may have discharged to dry well, sanitary sewer system or stormwater sewer system.
1-29	Slop Sinks in First Mezzanine	Stop sinks	.Stop sinks	Two existing slop sucks located in janitors closets, potential discharges of constituents of concern which may have discharged to dry well, sanitary sewer system or stormwater sewer system
 1-30	Slop Sinks and Floor Drain in Second Mezzanine	Slop sinks and floor dram	Slep sinks and floor drain	Two existing slop sinks located in janifors closets and one floor drain located adjacent to the Fan Room, potential discharges of constituents of concern which may have discharged to dry well, samilary sewer system or stormwater sewer system

Notes:

+ : Refer to Figure 2-4 for location of AOCs.

TABLE 2-2NORTHROP GRUMMAN CORPORATIONPHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5POTENTIAL AREAS OF ENVIRONMENTAL CONCERN - EXTERIOR AREAS

	POTENTIAL AREA			
AOC*	OF ENVIRONMENTAL			
No.	CONCERN	FORMER USE(S)	CURRENT USE(S)	ENVIRONMENTAL CONCERN(S)
E-1	Area of Former Waste Holding Tank - Tank No. 625	Location of aboveground storage tank (AST), Waste Holding Tank - Tank No. 625; AST was used for holding industrial wastewater from the former Chrome Plating Area in the Structural Test Hangar.	Tank No. 625 was removed; area is an alley between North Structural Test Hangar and Plant 5.	Potential releases of contaminants of concern; former location of Tank No. 625 which was used to store industrial wastewater including chrome plating, stripping and rinse solutions; surficial staining and cracked and pitted concrete in the vicinity of this former AST.
E-2	Area North of North Structural Test Hangar	Material and aircraft storage and staging; entrance apron to North Structural Test Hangar	Entrance apron to North Structural Test Hangar; steel and metal storage	Potential releases of contaminants of concern; surficial staining with numerous cracks observed in concrete surface.
E-3	Area at Northwest Corner of North Structural Test Hangar	Storage area	Steel and metal storage	Potential releases of contaminants of concern; evidence of former drum storage area; surficial staining with numerous cracks observed in concrete surface.
E-4	Area North of Electrical Switch Gear and Heat Exchanger Building	Storage area	Steel and metal storage	Potential releases of contaminants of concern; evidence of former drum storage area; surficial staining with numerous cracks observed in concrete surface.
E-5	Storage Area S52	Storage area S52 used for storage of hydraulic and lubricating oils, mineral spirits, etc.	Storage of drums containing DTE oil and nitrogen gas cylinders	Potential releases of contaminants of concern; drum storage area; surficial staining with numerous cracks observed in concrete surface.
E-6	Alley Between Butler Building and South Structural Test Hangar	Storage area	Storage of paints, sealants and adhesives	Potential releases of contaminants of concern; evidence of former drum storage area; existing container storage area; surficial staining
E-7	Area South of Butler Building	Storage area	Storage of drums containing DelVac 1330 motor oil	Potential releases of contaminants of concern; evidence of former drum storage area; existing drum storage area; surficial staining

Notes:

*: Refer to Figure 2-4 for location of AOCs.

-

-

Based upon the findings described in Section 2.4, recommendations for Phase II activities in each of the interior and exterior identified potential areas of environmental concern is provided in Tables 2-3 and 2-4, respectively. Tables 2-3 and 2-4 indicates the number of borings, number of samples and sampling intervals, and recommended analyses (target constituents) for each identified potential area of concern, or additional investigation activities recommended to be performed.

It should be noted that although groundwater quality remains an environmental concern, specific recommendations regarding groundwater are not included as part of this site assessment, since groundwater quality concerns are being addressed as part of the Plant 5 Phase I Site Assessment.

.

TABLE 2-3NORTHROP GRUMMAN CORPORATIONPHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5RECOMMENDED INITIAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIESINTERIOR AREAS

		RECOMMENDED INITIAL PHASE II INVESTIGATION FIELD ACTIVI											TIES
			Soil	Borings								Γ	Constr. Dwg.
	POTENTIAL AREA		Ŋ										Review &
AOC*	OF ENVIRONMENTAL	No. of	No. of	Sampling	Samples	R	ecomr	nende	ed Ar	nalys	ses**		Flush/Dye
No.	CONCERN	Borings	Samples	Intervals	for Analysis	1	2	3	4	5	5	6	Testing
I-1	Sump in Condensate Pit	1	2	8'-10' and 10'-12'	2	•	· · · · · · · · · · · · · · · · · · ·		•		•		
I-2	Pit Beneath Load Cell Calibration Machine	1	2	5'-7' and 7'-9'	2	•			· •	; •	••		
1-3	Slop Sink in Structural Test Area			·			-	. 			!		
I-4	Slop Sink in South Structural Test Hangar	-				-		; +			-		•
1-5	Floor Drains in South Structural Test Hangar					_		-					R
I-6	Dry Wells in Pipe Trenches in South Structural Test Hangar	3	6	5'-7' and 7'-9'	6		•						
I-7	Dry Well Beneath Fatigue Test Area	1	2	5'-7' and 7'-9'	2	•						- [
1-8	Pit in Hydraulic Laboratory	1	2	2'-4' and 4'-6'	2	•			•				
1-9	Degreasing Machine Area	1	2	0-2' and 2'-4'	2			•	•			-	-
I-10	Pipe Trenches in Hydraulic Pump Room	1	2	2'-4' and 4'-6'	2	-			•				-
I-11	Floor Drain in Hydraulic Pump Room	-			/ 	-					-	-	
I-12	Slop Sink in Load Cell Calibration Lab	-				-		-			-		
I-13	Hydraulic Storage Room	1	2	0-2' and 2'-4'	2	•				•	-		
I-14	Slop Sink in North Structural Test Hangar					-		-	-	-	-		■
I-15	Floor Drains in Pipe Trenches in North Structural Test Hangar	-				-		-	-	-	-	-	TBD
I-16	Elevator Pump Room	1	2	0-2' and 2'-4'	2						-	-	
I-17	Freight Elevator Between North and South Structural Test Hangars	2	4	6'-8', 8'-10' ar 46'-48', 48'-50	ndi 4	-				•	-	-	-

TABLE 2-3 (continued) NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 RECOMMENDED INITIAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES INTERIOR AREAS

		RECOMMENDED INITIAL PHASE II INVESTIGATION FIELD ACTIV											
			Soil	Borings								Constr. Dwg.	
	POTENTIAL AREA				No. of							Review &	
AOC*	OF ENVIRONMENTAL	No. of	No. of	Sampling	Samples	R	ecom	nende	ed Ana	alyses	**	Flush/Dye	
No.	CONCERN	Borings	Samples	Intervals	for Analysis	1	2	3	4	5	6	Testing	
I-18	Hydraulic Cylinder Jack Storage Area	1	2	0-2' and 2'-4'	2								
I-19	Machine Shop	1	2	0-2' and 2'-4'	2	•	8						
1-20	Weld Shop	1	2	0-2' and 2'-4'	2	•							
I-21	Slop Sink in Weld Shop							-			_		
1-22	Floor Drain in Raw Metal Storage Area						-		-	-		•	
1-23	Funnel Drain in Generator Room					-	-	-	-			•	
1-24	Drum Storage Area in Butler Building	1	2	0-2' and 2'-4'	2					-			
1-25	Floor Drain in Butler Building					-	-		- - -	·		•	
I-26	Wood Block Floor at Locations Throughout North and South Structural Test Hangars	TBA	TBA	TBA	ТВА						-		
1-27	Pipe Utility Trenches in North and South Structural Test Hangars	TBD	TBD	TBD	TBD						-		
I-28	Slop Sink in Engineering Mezzanine	-									-	•	
I-29	Slop Sinks in First Mezzanine							-	-			•	
I-30	Slop Sinks and Floor Drain in Second Mezzanine					-						•	
	TOTALS	17	34		34								

**Target Constituents and Analytical Methods

1. Priority Pollutant Metals (Methods 6010/7471)

2. VOCs (Method 8240) incl. those listed in STARS

3. SVOCs (Method 8270) incl. those listed in STARS

4. STARS Table 2 VOCs and SVOCs by TCLP 5. PCBs (Method 8080) 6. Cyanide (Method 9010)

Notes:

TBA : To be addressed by NGC at a later date, if necessary.

TBD : To be determined based upon further inspection of pipe/utility trenches.

* : Refer to Figure 2-4 for location of AOCs.

TABLE 2-4 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 **RECOMMENDED INITIAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES EXTERIOR AREAS**

		RECOMMENDED INITIAL PHASE II INVESTIGATION FIELD ACTIVITIES												
			Soil B	orings									Constr. Dwg.	
	POTENTIAL ARÉA				No. of								Review &	
AOC*	OF ENVIRONMENTAL	No. of	No. of	Sampling	Samples		Reco	mme		Flush/Dye				
No.	CONCERN	Borings	Samples	Intervals	for Analysis	1	2	3	4	5	6	7	Testing	
E-1	Area of Former Waste Holding Tank - Tank No. 625	1	2	0-2' and 2'-4'	2	-		•	•					
E-2	Area North of North Structural Test Hangar	2	4	0-2' and 2'-4'	4	•		Þ				-		
E-3	Area at Northwest Corner of North Structural Test Hangar	2	4	0-2' and 2'-4'	4	•	•							
E-4	Area North of Electrical Switch Gear and Heat Exchanger Building	1	2	0-2' and 2'-4'	2	•					~-		-	
E-5	Sto rage Area S52	2	4	0-2' and 2'-4'	4	•								
E-6	Alley Between Butler Building and South Structural Test Hangar	1	2	0-2' and 2'-4'	2	•			•			-		
E- 7	Area South of Butler Building	1	2	0-2' and 2'-4'	2	•						-		
L	TOTALS	10	20	-	20		<u></u>							

**Target Constituents and Analytical Methods

Priority Pollutant Metals (Methods 6010/7471)
 VOCs (Method 8240) incl. those listed in STARS

3. SVOCs (Method 8270) incl. those listed in STARS

4. STARS Table 2 VOCs and SVOCs by TCLP

5. PCBs (Method 8080)
 6. Select Glycols (Method 8015)
 7. Cyanide (Method 9010)

Notes:

* : Refer to Figure 2-4 for location of AOCs.

.

.

. .

3.0 INITIAL PHASE II SITE ASSESSMENT

This section provides a description of the field program activities conducted as part of the Initial Phase II Site Assessment at the Structural Test Hangars. A dedicated bound field log book, which is available in the project file, provides documentation of the field program activities which included air monitoring, installation of soil probes and a soil boring, collection of soil samples for laboratory analysis, and flush and dye testing activities conducted at the site during the field program.

3.1 Field Program

3.1.1 Soil Sampling Program

Twenty-three soil probes, identified on Figure 3-1 as B-1 through B-19 and B-21 through B-24, and one soil boring, identified on Figure 3-1 as B-20, were advanced as described on Tables 3-1 and 3-2.

Soil probes were advanced manually utilizing Geoprobe tooling and an electric hammerdrill. The electric hammer-drill was equipped with Geoprobe tooling which consisted of a 1.5inch outside diameter by 2-foot long soil probe sampler and drill rods. A 1-inch diameter clear PETG sample tube liner, dedicated to each soil probe sample, was utilized to secure the sample within the soil probe sampler. Each soil probe was advanced utilizing the electric hammer-drill by driving the soil probe sampler, sample tube liner and drill rods to the desired depth. The soil probe sampler was then mechanically lifted to the surface by a mechanical floor jack.

During advancement of the soil probes, monitoring for volatile organic vapors was conducted in the workers' breathing zone and at the probehole utilizing a photoionization detector (PID). Air monitoring results are documented in the project log book. Prior to use, the PID was calibrated utilizing a 100 ppm concentration of isobutylene gas. Equipment calibration was also documented in the project log book.

TABLE 3-1 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 INITIAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES **INTERIOR AREAS**

				INII	IAL PHASE I	INVESTI	GAT	ION I	TELI	D AC	TIVIT	IES	
				Soil	Borings								Construction
						No. of							Dwg. Review
AOC	BORING	LOCATION	No. of	No. of	Sampling	Samples	A	nalyt	ical P	aram	eters		& Flush/Dye
NO.	NO. *	DESCRIPTION	Borings	Samples	Intervals	Analyzed	1	2	3	4	5	6	Testing
I-1	B-16	Sump in Condensate Pit	1	2	7-9' and 9'-11'	2	•	•	•	•	•		
I-3		Slop Sink in Structural Test Area			~	~~							•
I-4		Slop Sink in South Structural Test Hangar								-			•
I-5		Floor Drains in South Structural Test Hangar								·			
1-6	B-11, B-12 and B-13	Dry Wells in Pipe Trenches in South Structural Test Hangar	3	0	@B-11, 5'- " & "-9', @B-12 & B-13, 4'-6' & 6'-8'	0	•	•	•		8		
I-7	B-15	Dry Well Beneath Fatigue Test Area	1	. 1	6'-7' I	1	•			•			
1-8	B-19	Pit in Hydraulic Laboratory	1	1	2'-4'	I	•			•	·		
I-9	B-14	Degreasing Machine Area	1	2	0-2 and 2'-4'	2	•	•		•			
I-11		Floor Drain in Hydraulic Pump Room										;	•
I-12		Slop Sink in Load Cell Calibration Lab		·									•
I-13	B-17	Hydraulic Storage Room	1	2	0-2' and 2'-4'	2	•	•	•	: •		•	
I-14		Slop Sink in North Structural Test Hangar											•
I-16	B-22	Elevator Pump Room	1	2	0-2' and 2'-4'	2		; .	•				
I-17	B-20	Freight Elevator Between North and South Structural Test Hangars	1	2	46'-48' and 48'-50'	2	-		: •	: =			
I-18	B-24	Hydraulic Cylinder/Jack Storage Area	1	: 1	0-2'	1	•	•	•	•			
I-19	B-21	Machine Shop	1	2	0-2' and 2'-4'	2	-		: ■			·	
1-20	B-18	Weld Shop	1	3	0-2' and 2'-4'	2	•	•		•			
I-21		Slop Sınk ın Weld Shop						·	·	: 		·	•
I-22		Floor Drain in Raw Metal Storage Area				-	-						•
I-23		Funnel Drain in Generator Room					-	·	·				•
I-24	B-23	Drum Storage Area in Butler Building	1	2	0-2' and 2'-4'	2		•					
1-25		Floor Drain in Butler Building					-					·	
I-28		Slop Sink in Engineering Mezzanine					-		-				•
1-29		Slop Sinks in First Mezzanine				-	-		-				•
I-30		Slop Sinks and Floor Drain in Second Mezzanine					-		-		-		•
		TOTALS	14	25	-	25							

	**Targ	et Constituents and Analytical Methods		
	 Priority Pollutant Metals (Methods 6010/7471) VOCs (Method 8240) - incl. those listed in STARS 	 3 SVOCs (Method 8270) - incl. those listed in STARS 4 STARS Table 2 VOCs and SVOCs by TCLP 	5. PCBs (Method 8080) 6. Cyanide (Method 9010)	
i	2. VOCs (Method 8240) - incl. those listed in STARS	4 STARS Table 2 VOCs and SVOCs by TCLP	6. Cyanide (Method 9010)	

Notes:

Refer to Figure 3-1 for location of borings
 Only the shallow soil sample was obtained due to subsurface obstructions

TABLE 3-2 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 INITIAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES **EXTERIOR AREAS**

			INITIAL PHASE II INVESTIGATION FIELD ACTIVITIES												
				Soil B	orings										
						No. of									
AOC	BORING	LOCATION	No. of	No. of	Sampling	Samples		Ana	lytica	l Pars	mete	rs**			
NO.	NO. *	DESCRIPTION	Borings	Samples	Intervals	Analyzed	1	2	3	4	5	6	7		
E-1	B-5	Area of Former Waste Holding Tank - Tank No. 625	1	2	0-2' and 2'-4'	2	•	 ■	; ; ;	-					
E-2	B-3 and B-4	Area North of North Structural Test Hangar	2	4	0-2' and 2'-4'	4		-				-			
E-3	B-1 and B-2	Area at Northwest Corner of North Structural Test Hangar	2	4	0-2' and 2'-4'	4	•	•	•	=					
E-4	B-10	Area North of Electrical Switch Gear and Heat Exchanger Building	1	2	0-2' and 2'-4'	2		•	•						
E-5	B-7 and B-8	Storage Area S52	2	4	0-2' and 2'-4'	4	•				•	•	_		
E-6	B-6	Alley Between Butler Building and South Structural Test Hangar	l	2	0-2' and 2'-4'	2				 		 !			
E-7	B-9	Area South of Butler Building	I	2	0-2' and 2'-4'	2	-			-		-			
		TOTALS	10	20	-	20									

**Target Constituents and Analytical Methods 4 STARS Table 2 VOCs and SVOCs

by TCLP

Priority Pollutant Metals (Methods 6010/7471)
 VOCs (Method 8240) - incl. those listed in STARS
 SVOCs (Method 8270) - incl. those listed in STARS

5. PCBs (Method 8080)

6. Select Glycols (Method 8015)

7. Cyanide (Method 9010)

Notes:

* Refer to Figure 3-1 for locations of borings.

All soil probe samples collected utilizing the electric hammer-drill were physically and visually characterized and inspected for the presence of staining, discoloration or odors and were screened for volatile organic vapors utilizing the PID. This information is presented on soil boring logs presented in Appendix B. All sampling equipment, excluding the PETG sample tube liners which were dedicated to each soil probe sample, was decontaminated between each sample location. Decontamination procedures consisted of an external alconox wash and tap water rinse, followed by a distilled/deionized water rinse.

One soil boring was advanced utilizing a drilling rig equipped with 6-1/4 inch hollow stem augers. Two soil samples were collected at this soil boring location at 2-foot intervals. Each sample was collected utilizing a 24-inch long stainless steel split spoon sampler which was driven into the soil with a 140 lb. safety hammer. The sampler was retrieved from the borehole and opened to remove the soil sample for physical and visual characterization, inspection for the presence of staining, discoloration or odors, screening for volatile organic vapors utilizing a PID, and retention for laboratory analysis.

All soil samples collected utilizing the 24-inch stainless steel split spoon sampler were physically and visually characterized and inspected for the presence of staining, discoloration or odors and were screened for volatile organic vapors utilizing the PID. This information is presented on soil boring logs presented in Appendix B. All soil boring sampling equipment was decontaminated prior to use. Decontamination procedures consisted of an external alconox wash and tap water rinse, followed by a distilled/deionized water rinse.

Due to active aircraft testing programs being conducted in the North and South Structural Test Hangars during the time of the investigation, inspections of pit/trench floors were hindered and could not be conducted until after the testing programs were completed. In addition, some areas could not be accessed due to the tests. Based upon the inspection of visible areas of the Pit Beneath Load Cell Calibration Machine, Pipe Trenches in Hydraulic Pump Room and Pipe/Utility Trenches in North and South Structural Test Hangars, it appeared that the integrity of the pit/trench floors were not compromised (i.e., no cracks were noted). As a result, soil probes were not advanced in these areas during the Initial Phase II Site Assessment field program.

Also, based upon further inspection of the end of the west and east pipe trenches in the North Structural Test Hangar, suspected floor drains were not present. Therefore, construction drawing reviews and/or flush/dye testing activities were not conducted in these areas during the Initial Phase II Site Assessment field program. In addition, as directed by NGC, waste characterization sampling of the wood block floor at locations throughout the North and South Structural Test Hangars was not conducted during the Initial Phase II Site Assessment field program. According to NGC personnel, if in the future the wood block floor is to be removed, waste characterization sampling will be conducted at that time.

In addition, based upon further inspection of the pit floor beneath the Freight Elevator between the North and South Structural Test Hangars, the integrity of the pit floor did not appear to be compromised (i.e., no cracks were noted in the pit floor). As a result, soil samples from the 6 to 8-foot and 8 to 10-foot intervals (or 0 to 2 feet and 2 to 4 feet below the pit floor) were not collected during the Initial Phase II Site Assessment field program.

3.1.2 Flush/Dye Testing Activities

As described in Section 2, a review of construction drawings and flush/dye testing activities were conducted on floor drains, slop sinks and a funnel drain at the Structural Test Hangars in order to confirm connection/discharge to dry wells, sanitary sewer system or storm water sewer system. The construction drawing reviews and flush/dye testing activities were conducted as described on Table 3-1.

3.2 Findings

This section presents the findings of the Initial Phase II Site Assessment including a summary of the analytical results of the soil samples obtained during the Initial Phase II Site

Assessment field investigation. Soil sample results are compared to the criteria included in Appendix A of the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 (referred to in this document as "NYSDEC TAGM criteria"), as well as the typical Eastern USA background soil contaminant concentration ranges included in the TAGM (referred to in this document as "Eastern USA background levels"). Those samples analyzed for VOCs and SVOCs listed in Tables 1 and 2 of Appendix B in NYSDEC's Spill Technology and Remediation Series (STARS) Memo #1 by Toxicity Characteristic Leaching Procedure (TCLP) were compared to the STARS Tables 1 and 2 TCLP Extraction guidance values.

In addition to the criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg and the criterion for *total* CaPAHs of 10,000 ug/kg, as presented in the TAGM, were utilized.

Although there are no NYSDEC TAGM criteria for glycols (i.e., ethylene glycol and propylene glycol), discussions with NYSDEC representatives indicate that a level of 50,000 ug/kg has been utilized. In addition, the NYSDEC TAGM criteria for cyanide is identified as "SB" (site background) and there are no Eastern USA background concentration levels for cyanide. Therefore, a NYSDEC "Contained-In" action level of 1,600 mg/kg for total cyanide has been utilized.

3.2.1 Soil Sampling Program

As previously stated, a total of twenty-three soil probes (B-1 through B-19 and B-21 through B-24) and one soil boring (B-20) were advanced with 45 subsurface soil samples collected and analyzed for the analytical parameters shown on Tables 3-1 and 3-2 during the Initial Phase II Site Assessment field investigation.

The analytical results for the soil samples collected and analyzed for volatile organic compounds (Method 8240), semivolatile organic compounds (Method 8270), STARS volatile

and semivolatile organic compounds by TCLP, select glycols (Method 8015), polychlorinated biphenyls (Method 8080) and priority pollutant metals (Method 6010/7471) and cyanide (Method 9010) are shown on Tables C-1 through C-6 in Appendix C, respectively, and are summarized as follows:

Volatile Organic Compounds

The analytical results for the soil samples collected and analyzed for volatile organic compounds are shown on Table C-1 in Appendix C and are summarized as follows:

• VOCs were not detected at concentrations exceeding NYSDEC TAGM criteria.

Semivolatile Organic Compounds

The analytical results for the soil samples collected and analyzed for semivolatile organic compounds are shown on Table C-2 in Appendix C and are summarized as follows:

- Phenol was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-13 (6'-8'), B-14 (0-2' and 2'-4') and B-16 (7'-9').
- Benzo(a)anthracene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-1 (0-2'), B-2 (0-2'), B-3 (0-2'), B-9 (0-2'), B-10 (0-2' and 2'-4'), B-16 (7'-9') and B-22 (0-2').
- Chrysene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-1 (0-2'), B-2 (0-2'), B-10 (0-2' and 2'-4') and B-16 (7'-9').
- Benzo(b)fluoranthene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-10 (0-2' and 2'-4') and B-16 (7'-9').
- Benzo(k)fluoranthene was detected at a concentration which exceeded NYSDEC TAGM criteria in soil sample B-10 (2'-4')
- Benzo(a)pyrene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-1 (0-2'), B-2 (0-2'), B-3 (0-2'), B-4 (0-2'), B-5 (0-2'), B-8 (0-2'), B-9 (0-2'), B-10 (0-2' and 2'-4'), B-16 (7'-9'), B-22 (0-2' and 2'-4') and B-23 (0-2').

- Indeno(1,2,3-cd)pyrene was detected at a concentration which exceeded NYSDEC TAGM criteria in soil sample B-10 (2'-4').
- Dibenzo(a,h)anthracene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-1 (0-2'), B-2 (0-2'), B-3 (0-2'), B-9 (0-2'), B-10 (0-2' and 2'-4'), B-16 (7'-9') and B-22 (0-2').

As indicated above, although there were several SVOCs detected at concentrations that exceeded the NYSDEC TAGM criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg was not exceeded. However, the criterion for *total* CaPAHs of 10,000 ug/kg was exceeded in soil sample B-10 (2'-4').

STARS Tables 1 and 2 Volatile and Semivolatile Organic Compounds - TCLP Analysis

The analytical results for the soil samples collected and analyzed for STARS Tables 1 and 2 volatile and semivolatile organic compounds - TCLP analysis are shown on Table C-3 in Appendix C and are summarized as follows:

• STARS VOCs and SVOCs by TCLP were not detected at concentrations exceeding STARS Tables 1 and 2 TCLP Extraction guidance values.

<u>Select Glycols</u>

The analytical results for the soil samples collected and analyzed for select glycols are shown on Table C-4 in Appendix C and are summarized as follows:

• Ethylene glycol was found at a concentration of 4,780 ug/kg in soil sample B-4 (2'-4'), which is below the detection limit. Therefore, the value is estimated.

Although there are no NYSDEC TAGM criteria for glycols (i.e., ethylene glycol and propylene glycol), discussions with NYSDEC representatives indicate that a level of 50,000 ug/kg has been utilized.

Polychlorinated Biphenyls (PCBs)

The analytical results for the soil samples collected and analyzed for polychlorinated biphenyls (PCBs) are shown on Table C-5 in Appendix C and are summarized as follows:

• Aroclor 1254 and Aroclor 1248 were detected at concentrations of 84 ug/kg and 200 ug/kg in soil samples B-7 (0-2') and B-16 (7'-9'), respectively, which are well below the NYSDEC criteria of 10,000 ug/kg for total PCBs.

Priority Pollutant Metals and Cyanide

The analytical results for the soil samples collected and analyzed for priority pollutant metals and cyanide are shown on Table C-6 in Appendix C and are summarized as follows:

- Chromium was detected at a concentration of 64.9 mg/kg in soil sample B-10 (0-2') which is above the Eastern USA background level of 50 mg/kg for this constituent.
- Copper was detected at concentrations of 66.0 mg/kg and 105 mg/kg in soil samples B-13 (6'-8') and B-16 (7'-9'), respectively, which are above the Eastern USA background level of 50 mg/kg for this constituent.
- Mercury was detected at concentrations of 0.21 mg/kg, 0.23 mg/kg, 0.35 mg/kg, 0.73 mg/kg and 0.21 mg/kg in soil samples B-13 (4'-6'), B-13 (6'-8'), B-16 (7'-9'), B-19 (2'-4') and B-19 (4'-6'), respectively, which are above the Eastern USA background level of 0.20 mg/kg for this constituent.
- Zinc was detected at concentrations of 163 mg/kg, 103 mg/kg, 111 mg/kg, 70.8 mg/kg and 319 mg/kg in soil samples B-11 (5'-7'), B-12 (4'-6'), B-12 (6'-8'), B-13 (6'-8') and B-16 (7'-9'), respectively, which are above the Eastern USA background level of 50 mg/kg for this constituent.

In addition, cyanide was not detected in soil samples B-5 (0-2' and 2'-4') and B-17 (0-2' and 2'-4').
3.2.2 Flush/Dye Testing Activities

As described in Section 3.1.2, construction drawings were reviewed and flush/dye testing activities were conducted on floor drains, slop sinks and a funnel drain at the Structural Test Hangars in order to confirm connection/discharge to dry wells, sanitary sewer system or storm water sewer system.

Based upon the results of the construction drawing reviews and flush/dye testing activities, the following floor drains, slops sinks and funnel drain confirm discharge to the sanitary sewer system:

- Slop Sink in Structural Test Area
- Floor Drain in Hydraulic Pump Room
- Slop Sink in Load Cell Calibration Lab
- Slop Sink in Weld Shop
- Floor Drain in Raw Metal Storage
- Funnel Drain in Generator Room
- Slop Sink in Engineering Mezzanine
- Slop Sinks in First Mezzanine
- Slop Sinks in Second Mezzanine

However, the following floor drains and slops sinks confirm discharge to the storm water sewer system:

- Slop Sink in South Structural Test Hangar
- Floor Drains in South Structural Test Hangar
- Slop Sink in North Structural Test Hangar
- Floor Drain in Butler Building

Also, it was determined that the floor drain located on the Second Mezzanine adjacent to the Fan Room discharges to a pipe which is capped on the First Mezzanine below.

3.2.3 Data Validation

Soil samples were collected from the Northrop Grumman Structural Test Hangars in support of a Phase II field investigation. The samples were analyzed for VOCs, SVOCs, STARS Table 2 constituents by TCLP, priority pollutant metals, select glycols and cyanide. The analyses were performed in accordance with USEPA SW846 methodologies and NYSDEC Quality Assurance/Quality Control (QA/QC) requirements by Envirotech Research, Inc., a subcontractor to Dvirka and Bartilucci Consulting Engineers. Twenty percent of the sample results in the data packages submitted by Envirotech Research have been reviewed in accordance with NYSDEC QA/QC requirements yielding a "20% validation."

All sample analysis was performed within the method specified holding times and all QA/QC measures were met (i.e., surrogate recoveries, blanks, calibrations, etc.).

All methylene chloride results have been qualified as non-detect due to laboratory contamination. That is, the method blanks associated with the samples also contained methylene chloride and the sample concentrations were less than five times the concentration found in the blank.

The soil boring samples were analyzed for the STARS Table 2 constituents. The analysis of the volatile fraction was performed by two different methods: Method 8240 and Method 8010 for the TCLP analysis. The two methods differ in that Method 8240 is run on a gas chromatograph (GC)/mass spectra (MS) and Method 8010 is run on a GC. The GC/MS identifies peaks (compounds) by using retention times and mass spectra (ions) while the GC only utilizes retention times, therefore, rendering the GC/MS results slightly more reliable. In several of the samples analyzed by TCLP by Method 8010, trace amounts of volatile compounds were detected that were not detected in the Method 8240 analysis for that sample. This occurred in the

following samples: B-4 (2'-4'), B-7 (0-2'), B-12 (6'-8'), B-17 (0-2') and B-24 (0-2'). These compounds have been flagged non-detect in the TCLP analysis and attributed to interferences from the TCLP extraction solvents.

Isopropyl-benzene was detected in several samples analyzed by TCLP by Method 8010 but not by Method 8240. This occurred in the following samples: B-5 (0-2' and 2'-4'), B-6 (0-2'), B-12 (6'-8') and B-18 (0-2'). Based upon a review of the Method 8240 chromatographs, a peak was indicated at the same retention time as isopropyl-benzene; however, the mass spectra (MS) does not match that of isopropyl-benzene but rather an unidentified compound. Therefore, isopropyl-benzene was not reported by Method 8240. In addition, the data for the TCLP analysis by Method 8010 (run by GC) also indicates a peak of an unidentified compound at the same retention time as the unidentified compound found by the Method 8240 MS. Therefore, isopropyl-benzene has been qualified as non-detect.

No other problems were found with the results and all data is deemed valid and usable for environmental assessment purposes as qualified above.

3.3 Conclusions and Recommendations

Based upon the findings of the Initial Phase II Site Assessment field investigation discussed in Section 3.2, conclusions and recommendations are presented in this section regarding the need for further investigation activities and any remedial actions, if necessary, at the Structural Test Hangars site.

In support of providing conclusions and technical recommendations with regard to the level and degree to which remediation is required, we have relied on the Technical and Administrative Guidance Memorandum (TAGM) No. 4046 - Determination of Soil Cleanup Objectives and Cleanup Levels dated January 24, 1994 published by the New York State Department of Environmental Conservation (NYSDEC).

3-13

As discussed in the introduction of the TAGM, the document is designed to provide a basis and procedure for NYSDEC Project Managers at "...individual Federal Superfund, State Superfund, 1986 EQBA Title 3 and Responsible Party (RP) sites..." to determine soil cleanup levels. The TAGM provide a number of methods to determine the degree to which these sites are cleaned up including recommended soil cleanup objectives (NYSDEC TAGM criteria) and Eastern USA background concentrations.

The Structural Test Hangar site is not a Federal Superfund or State Superfund site nor is it an RP or 1986 EQBA Title 3 property. However, we believe it is reasonable to establish the NYSDEC TAGM criteria for VOCs, SVOCs and total PCBs and the Eastern USA background levels for metals, as presented in the TAGM, as the levels of cleanup for the Structural Test Hangar site. In addition, the proposed revised NYSDEC TAGM criteria for cadmium and chromium were established as the levels of cleanup at the Structural Test Hangars site for these metals. Also, the TCLP Extraction guidance values listed in Tables 1 and 2, "Guidance Values for Fuel Oil Contaminated Soil," of Appendix B of NYSDEC's STARS Memo #1 were utilized for soil cleanup levels at the Structural Test Hangars site.

In addition to the criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg and the criterion for *total* CaPAHs of 10,000 ug/kg, as presented in the TAGM, were utilized.

Although there are no NYSDEC TAGM criteria for glycols (i.e., ethylene glycol and propylene glycol), discussions with NYSDEC representatives indicate that a level of 50,000 ug/kg has been utilized. In addition, the NYSDEC TAGM criteria for cyanide is identified as "SB" (site background) and there are no Eastern USA background concentration levels for cyanide.

3.3.1 Soil Sampling Program

Conclusions

As discussed in Section 3.2.1, a total of 45 subsurface soil samples were collected at twenty-three soil probe and one soil boring locations and analyzed for volatile organic compounds (Method 8240), semivolatile organic compounds (Method 8270), STARS volatile and semivolatile organic compounds by TCLP, select glycols (Method 8015), polychlorinated biphenyls (Method 8080) and priority pollutant metals (Method 6010/7471) and cyanide (Method 9010) during the Initial Phase II Site Assessment field investigation.

Based upon the analytical results, VOCs were not detected at concentrations exceeding NYSDEC TAGM criteria. In addition, although there were several SVOCs detected at concentrations that exceeded the NYSDEC TAGM criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg was not exceeded. However, the criterion for *total* CaPAHs of 10,000 ug/kg was exceeded in the 2'-4' soil sample collected at soil probe B-10 located at the Area North of Electrical Switch Gear and Heat Exchanger Building. As a result, it appears that further investigation at this location is warranted.

The STARS VOCs and SVOCs by TCLP were not detected at concentrations which exceeded STARS Tables 1 and 2 TCLP Extraction guidance values.

In addition, ethylene glycol, was detected at a low level (i.e., < 50,000 ug/kg) in the 2'-4' soil sample collected at soil probe B-4 located in the Area North of the North Structural Test Hangar and PCBs were detected at low levels (i.e., < 10,000 ug/kg for total PCBs) in the 0-2' and 7'-9' soil samples collected at soil probes B-7 and B-16 located at the Area South of the Butler Building and the Sump in Condensate Pit, respectively.

Copper and zinc were detected in several soil samples at concentrations which exceeded Eastern USA background level of 50 mg/kg for these constituents. However, it is important to note that neither copper nor zinc are classified as RCRA metals, that is, metals which in elevated concentrations could classify a waste as a hazardous waste. In addition, neither elemental copper nor zinc are identified as hazardous constituents in Appendix 23 of the NYSDEC's regulations found at 6 NYCRR Part 371. As a result, copper and zinc do not appear to warrant further investigation.

However, chromium was detected in the 0-2' soil sample collected at soil probe B-10 located at the Area North of Electrical Switch Gear and Heat Exchanger Building at a concentration which exceeded the Eastern USA background level of 50 mg/kg for this constituent. In addition, mercury was detected in the 4'-6' and 6'-8' soil samples collected at soil probe B-13; the 7'-9' soil sample collected at soil probe B-16 and; the 2'-4' and 4'-6' soil samples collected at soil probe B-19 located at the Dry Well in Pipe Trench in South Structural Test Hangar, Sump in Condensate Pit and at the Pit in Hydraulic Laboratory, respectively, at concentrations which exceeded the Eastern USA background level of 0.20 mg/kg for this constituent. It should be noted that mercury was undetected in the deeper (i.e., 9'-11') soil sample collected at soil probe B-16 located in the Sump in Condensate Pit. As a result, it appears that further investigation at soil probe locations B-10, B-13 and B-19 is warranted and remediation of the soil in the vicinity of soil probe B-16 is warranted.

Also, cyanide was undetected in the soil samples collected at soil probes B-5 and B-17 located in the Area of Former Waste Holding Tank No. 625 and the Hydraulic Storage Room, respectively.

Recommendations

Based upon the findings of the Initial Phase II Site Assessment field investigation, further investigation is warranted at soil probes B-10, B-13 and B-19 located in the Area North of Electrical Switch Gear and Heat Exchanger Building, Dry Well in Pipe Trench in South Structural Test Hangar and Pit in Hydraulic Laboratory, respectively.

Further investigation is warranted in the Area North of Electrical Switch Gear and Heat Exchanger Building due to elevated levels of SVOCs (i.e., *total* CaPAHs > 10,000 ug/kg) and chromium (i.e., > 50 mg/kg) detected in the 2'-4' and 0-2' soil samples, respectively, collected at soil probe B-10. In addition, further investigation is warranted at the Dry Well in Pipe Trench in South Structural Test Hangar and Pit in Hydraulic Laboratory due to the elevated levels of mercury (i.e., > 0.20 mg/kg) detected in the 4'-6' and 6'-8' soil samples collected at soil probe B-13 and the 2'-4' and 4'-6' soil samples collected at soil probe B-19, respectively.

Accordingly, Table 3-3 presents the recommended Supplemental Phase II Site Assessment field investigation activities for the Area North of Electrical Switch Gear and Heat Exchanger Building, Dry Well in Pipe Trench in South Structural Test Hangar and Pit in Hydraulic Laboratory.

In addition, as part of site remediation activities to be conducted subsequent to the recommended Supplemental Phase II Site Assessment field investigation activities discussed above, it is recommended that a minimum of approximately 2 feet of soil be excavated from within the Sump in Condensate Pit in the vicinity of soil probe B-16 due to the elevated level of mercury and zinc detected in the 7'-9' soil sample collected at soil probe B-16 during the Initial Phase II Site Assessment field investigation activities. In addition, the excavated material should be properly containerized, transported and disposed of off-site. Subsequent to the removal of the contaminated soil, the excavation should be backfilled with clean sand backfill material.

Also, although zinc was observed at elevated levels in soil samples B-11 (5'-7'), B-12 (4'-6' and 6'-8') and B-13 (6'-8') collected at soil probes B-11, B-12 and B-13 located in the Dry Wells in Pipe Trench in South Structural Test Hangar during the Initial Phase II Site Assessment field investigation activities, it is more important to note that due to the potential discharge of contaminants of concern to these dry wells, remediation and closure of these dry wells in accordance with the USEPA UIC program is required.

TABLE 3-3 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 RECOMMENDED SUPPLEMENTAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES INTERIOR AND EXTERIOR AREAS

		INITIAL			So	oil Borings						
	AREA OF	PHASE II					No. of					
AOC	ENVIRONMENTAL	BORING	RECOMMENDED SUPPLEMENTAL	No. of	No. of	Sampling	Samples	Re	comme	nded A	nalyses	**
NO.	CONCERN	ID. *	PHASE II INVESTIGATION ACTIVITIES	Borings	Samples	Intervals	for Analysis	1	2	3	4	5
1-5	Dry Well in Pipe Trench in South Structural Test Hangar	B-13	Advance one boring adjacent to B-13 to a depth of 12 feet and collect soil samples at 8'-10' and 10'-12' for laboratory analysis in order to determine the vertical extent of mercury impacted soil.	1	2	8'-10' and 10'-12'	2					
1-8	Pit in Hydraulic Laboratory	B-19	Advance one boring adjacent to B-19 to a depth of 8 feet and collect soil samples at 4'-6' and 6'-8' for laboratory analysis in order to determine the vertical extent of mercury impacted soil.	1	2	4'-6' and 6'-8'	2					
E-4	Area North of Electrical Switch Gear and Heat Exchanger Building	B-10	Advance one boring adjacent to B-10 to a depth of 10 feet and collect soil samples at 4'-6', 6'-8' and 8'-10' for laboratory analysis in order to determine the vertical extent of SVOC impacted soil at B-10.	1	3	4'-6', 6'-8' and 8'-10'	3					
			Advance four borings north, south, east and west of B-10 to a depth of 10 feet and collect soil samples at 0-2', 2'-4', 4'-6', 6'-8' and 8'-10' for laboratory analysis in order to determine the horizontal and vertical extent of SVOC and chromium impacted soil surrounding B-10.	4	8	0-2' and 2'-4'	8					
					12	4'-6', 6'-8' and 8'-10'	12					
L		•	TOTALS	7	27		27					

 **Target Constituents and Analytical Methods

 1. VOCs (Method 8240) including those listed in STARS
 4. Chromium (Method 6010)

 2. SVOCs (Method 8270) including those listed in STARS
 5. Mercury (Method 7471)

 3. Phenols (Method 8270)
 5. Mercury (Method 7471)

Notes: •: Refer to Figure 3-1 for locations of borings.

3.3.2 Flush/Dye Testing Activities

Conclusions

As discussed in Section 3.1.2, construction drawings were reviewed and flush/dye testing activities were conducted on floor drains, slop sinks and a funnel drain at the Structural Test Hangars in order to confirm connection/discharge to dry wells, sanitary sewer system or storm water sewer system.

Based upon the findings of the construction drawing reviews and flush/dye testing activities, the following floor drains, slops sinks and funnel drain confirm discharge to the sanitary sewer system:

- Slop Sink in Structural Test Area
- Floor Drain in Hydraulic Pump Room
- Slop Sink in Load Cell Calibration Lab
- Slop Sink in Weld Shop
- Floor Drain in Raw Metal Storage
- Funnel Drain in Generator Room
- Slop Sink in Engineering Mezzanine
- Slop Sinks in First Mezzanine
- Slop Sinks in Second Mezzanine

However, the following floor drains and slops sinks confirm discharge to the storm water sewer system:

- Slop Sink in South Structural Test Hangar
- Floor Drains in South Structural Test Hangar
- Slop Sink in North Structural Test Hangar
- Floor Drain in Butler Building

Also, it was determined that the floor drain located on the Second Mezzanine adjacent to the Fan Room discharges to a pipe which is capped on the First Mezzanine below.

Recommendations

Based upon the results of the construction drawing reviews and flush/dye testing activities, no further investigation and/or remediation activities are warranted at the following floor drains, slops sinks and funnel drain which confirm discharge to the sanitary sewer system:

- Slop Sink in Structural Test Area
- Floor Drain in Hydraulic Pump Room
- Slop Sink in Load Cell Calibration Lab
- Slop Sink in Weld Shop
- Floor Drain in Raw Metal Storage
- Funnel Drain in Generator Room
- Slop Sink in Engineering Mezzanine
- Slop Sinks in First Mezzanine
- Slop Sinks in Second Mezzanine

Also, it was determined that the floor drain located on the Second Mezzanine adjacent to the Fan Room discharges to a pipe which is capped on the First Mezzanine below.

NGC's State Pollutant Discharge Elimination System (SPDES) Permit No. NY-009 6792 permits the discharge of "Non-Contact Cooling Water and Stormwater" from Plant 5 to a recharge basin identified as discharge point "Outfall 006". In addition, in accordance with the United States Environmental Protection Agency (USEPA) and Nassau County Heath Department (NCDH) Underground Injection Control (UIC) program, an injection well is defined as "any bored, drilled or driven shaft, or a dug hole whose depth is greater than its largest surface dimension."

Based on the above, it is recommended that the following floor drains and slops sinks, which are not specifically identified in the Plant 5 SPDES Permit and/or a USEPA/NCDH UIC program, be reconfigured so they discharge to the sanitary sewer system:

- Slop Sink in South Structural Test Hangar
- Floor Drains in South Structural Test Hangar
- Slop Sink in North Structural Test Hangar
- Floor Drain in Butler Building

-

4.0 SUPPLEMENTAL PHASE II SITE ASSESSMENT

This section provides a description of the field program activities conducted as part of the Supplemental Phase II Site Assessment at the Structural Test Hangars. A dedicated bound field log book, which includes the field program activities of the Initial Phase II Site Assessment, is available in the project file and provides documentation of the Supplemental Phase II Site Assessment field program activities, which included air monitoring, installation of soil probes and collection of soil samples for laboratory analysis.

4.1 Field Program

4.1.1 Soil Sampling Program

Six soil probes, identified on Figure 4-1 as B-10A, B-10N, B-10S, B-10E, B-19 and B-13 were advanced as described on Table 4-1.

Soil probes were advanced manually utilizing Geoprobe tooling and an electric hammerdrill. The electric hammer-drill was equipped with Geoprobe tooling which consisted of a 1.5inch outside diameter by 2-foot long soil probe sampler and drill rods. A 1-inch diameter clear PETG sample tube liner, dedicated to each soil probe sample, was utilized to secure the sample within the soil probe sampler. Each soil probe was advanced utilizing the electric hammer-drill by driving the soil probe sampler, sample tube liner and drill rods to the desired depth. The soil probe sampler was then mechanically lifted to the surface by a mechanical floor jack.

During advancement of the soil probes, monitoring for volatile organic vapors was conducted in the workers' breathing zone and at the probehole utilizing a photoionization detector (PID). Air monitoring results are documented in the project log book. Prior to use, the PID was calibrated utilizing a 100 ppm concentration of isobutylene gas. Equipment calibration was also documented in the project log book.

TABLE 4-1 NORTHROP GRUMMAN CORPORATION PHASE I/II SITE ASSESSMENT - STRUCTURAL TEST HANGARS/PLANT 5 SUPPLEMENTAL PHASE II SITE ASSESSMENT FIELD INVESTIGATION ACTIVITIES **INTERIOR AND EXTERIOR AREAS**

				Soil B	orings						
AOC	BORING	LOCATION	No. of	No. of	Sampling	No. of Samples	An	lytica	l Para	ameter	rs**
NO.	ID. *	DESCRIPTION	Borings	Samples	Intervals	Analyzed	1	2	3	4	5
I-5	B-13	Dry Well in Pipe Trench in South Structural Test Hangar	l	1	8'-10'	1	~	-			
I-8	B-19	Pit in Hydraulic Laboratory	1	2	4'-6' and 6'-8'	2	~	-		-	
E-4	B-10A	Area North of Electrical Switch Gear and Heat Exchanger Building	1	3	4'-6', 6'-8' and 8'-10'	3	-		-	-	-
	B-10N, B-10S and B-10E		3	15	0-2', 4'-6', 6'-8' and 8'-10'	15	-			0-2' and 2'-4' only	
		TOTALS	6	21		21]				

**Target Constituents and Analytical Methods

4. Chromium (Method 6010)

- 1. VOCs (Method 8240) including those listed in STARS 2. SVOCs (Method 8270) including those listed in STARS 3. Phenols (Method 8270)
- 5. Mercury (Method 7471)

Notes:

*: Refer to Figure 3-1 for locations of borings.

All soil probe samples collected utilizing the electric hammer-drill were physically and visually characterized and inspected for the presence of staining, discoloration or odors and were screened for volatile organic vapors utilizing the PID. This information is presented on soil boring logs presented in Appendix B. All sampling equipment, excluding the PETG sample tube liners which were dedicated to each soil probe sample, was decontaminated between each sample location. Decontamination procedures consisted of an external alconox wash and tap water rinse, followed by a distilled/deionized water rinse.

4.2 Findings

This section presents the findings of the Supplemental Phase II Site Assessment including a summary of the analytical results of the soil samples obtained during the Supplemental Phase II Site Assessment field investigation. Soil sample results are compared to the criteria included in Appendix A of the New York State Department of Environmental Conservation (NYSDEC) Technical and Administrative Guidance Memorandum (TAGM) No. 4046 (referred to in this document as "NYSDEC TAGM criteria"), as well as the typical Eastern USA background soil contaminant concentration ranges included in the TAGM (referred to in this document as "Eastern USA background levels").

In addition to the criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg and the criterion for *total* CaPAHs of 10,000 ug/kg, as presented in the TAGM, were utilized.

4.2.1 Soil Sampling Program

As previously stated, a total of six soil probes (B-10A, B-10N, B-10S, B-10E, B-19 and B-13) were advanced with 21 subsurface soil samples collected and analyzed for the analytical parameters shown on Tables 4-1 during the Supplemental Phase II Site Assessment field investigation.

4-4

The analytical results for the soil samples collected and analyzed for semivolatile organic compounds (Method 8270) and chromium and mercury (Methods 6010 and 7471, respectively) are shown on Tables C-2 and C-6 in Appendix C, respectively and are summarized as follows:

Semivolatile Organic Compounds

The analytical results for the soil samples collected and analyzed for semivolatile organic compounds are shown on Table C-2 in Appendix C and are summarized as follows:

- Phenanthrene, fluoranthene, pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene were detected at concentrations which exceeded NYSDEC TAGM criteria in soil sample B-10E (0-2').
- Benzo(a)anthracene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-10S (0-2') and B-10E (0-2', 2'-4' and 6'-8').
- Chrysene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-10S (0-2') and B-10E (0-2', 2'-4' and 6'-8').
- Benzo(a)pyrene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-10N (0-2' and 4'-6'), B-10S (0-2' and 2'-4') and B-10E (0-2', 2'-4' and 6'-8').
- Dibenzo(a,h)anthracene was detected at concentrations which exceeded NYSDEC TAGM criteria in soil samples B-10N (4'-6'), B-10S (0-2') and B-10E (0-2', 2'-4' and 6'-8').

As indicated above, although there were several SVOCs detected at concentrations that exceeded the NYSDEC TAGM criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg was not exceeded. However, the criterion for *total* CaPAHs of 10,000 ug/kg was exceeded in soil sample B-10E (0-2').

Chromium and Mercury

The analytical results for the soil samples collected and analyzed for chromium and mercury are shown on Table C-6 in Appendix C and are summarized as follows:

• Mercury was detected at a concentration of 0.21 mg/kg in soil sample B-19 (4'-6') which is above the Eastern USA background level of 0.20 mg/kg for this constituent.

4.3 Conclusions and Recommendations

Based upon the findings of the Supplemental Phase II Site Assessment field investigation discussed in Section 4.2, conclusions and recommendations are presented in this section regarding the need for further investigation activities and any remedial actions, if necessary, at the Structural Test Hangars site.

In support of providing conclusions and technical recommendations with regard to the level and degree to which remediation is required, we have relied on the Technical and Administrative Guidance Memorandum (TAGM) No. 4046 - Determination of Soil Cleanup Objectives and Cleanup Levels dated January 24, 1994 published by the New York State Department of Environmental Conservation (NYSDEC).

As discussed in the introduction of the TAGM, the document is designed to provide a basis and procedure for NYSDEC Project Managers at "...individual Federal Superfund, State Superfund, 1986 EQBA Title 3 and Responsible Party (RP) sites..." to determine soil cleanup levels. The TAGM provide a number of methods to determine the degree to which these sites are cleaned up including recommended soil cleanup objectives (NYSDEC TAGM criteria) and Eastern USA background concentrations.

The Structural Test Hangar site is not a Federal Superfund or State Superfund site nor is it an RP or 1986 EQBA Title 3 property. However, we believe it is reasonable to establish the NYSDEC TAGM criteria for SVOCs and the Eastern USA background level for mercury, as presented in the TAGM, as the levels of cleanup for the Structural Test Hangar site. In addition, the proposed revised NYSDEC TAGM criteria for chromium was established as the level of cleanup at the Structural Test Hangars site for this metal.

In addition to the criteria for *individual* compounds, the criterion for *total* SVOCs of 500,000 ug/kg and the criterion for *total* CaPAHs of 10,000 ug/kg, as presented in the TAGM, were utilized.

4.3.1 Soil Sampling Program

Conclusions

As discussed in Section 4.2.1, a total of 21 subsurface soil samples were collected at six soil probe locations and analyzed for semivolatile organic compounds (Method 8270) and chromium and mercury (Method 6010 and 7471, respectively) during the Supplemental Phase II Site Assessment field investigation.

Based upon the analytical results, several SVOCs were detected at concentrations that exceeded the NYSDEC TAGM criteria for *individual* compounds but the criterion for *total* SVOCs of 500,000 ug/kg was not exceeded. However, the criterion for *total* CaPAHs of 10,000 ug/kg was exceeded in the 0-2' soil sample collected at soil probe B-10E located at the Area North of Electrical Switch Gear and Heat Exchanger Building. As a result, it appears that remediation of the soil in the vicinity of soil probe B-10E is warranted.

Mercury was detected at 0.73 mg/kg and 0.21 mg/kg in the 2'-4' and 4'-6' soil samples, respectively, collected at soil probe B-19 located at the Pit in Hydraulic Laboratory a concentration which exceeded the Eastern USA background level of 0.20 mg/kg for this constituent. As a result, it appears that remediation of the soil in the vicinity of soil probe B-19 is warranted.

4-7

In addition, elevated levels of SVOCs (i.e. *total* CaPAHs > 10,000 ug/kg) were detected in the 2'-4' soil sample collected at soil probe B-10 during the Initial Phase II Site Assessment field investigation activities. As a result, during the Supplemental Phase II Site Assessment field activities, soil probe B-10A was advanced immediately adjacent to soil probe B-10. However, as the analytical results of the Supplemental Phase II Site Assessment field activities indicate, SVOCs were not detected at elevated levels in the 4'-6', 6'-8' and 8'-10' soil samples collected at soil probe B-10A. Therefore, it appears that remediation of the soil in the vicinity of soil probe B-10 is warranted due to the elevated level of *total* CaPAHs in the 2'-4' soil sample collected at soil probe B-10 during the Initial Phase II Site Assessment field investigation.

Also, mercury was detected at elevated levels in the 4'-6' and 6'-8' soil samples collected at soil probe B-13 during the Initial Phase II Site Assessment field investigation activities. As a result, during the Supplemental Phase II Site Assessment field activities, an 8'-10' soil sample was collected at soil probe location B-13. However, as the analytical results of the Supplemental Phase II Site Assessment field activities indicate, mercury was undetected in the 8'-10' soil sample collected at soil probe B-13. Therefore, it appears that remediation of the soil in the vicinity of soil probe B-13 is warranted due to the elevated level of mercury detected in the 4'-6' and 6'-8' soil samples collected at soil probe B-13 during the Initial Phase II Site Assessment field investigation.

Recommendations

Based upon the findings of the Supplemental Phase II Site Assessment field investigation, it is recommended that the soil in the vicinity of soil probe B-10E be excavated to a minimum depth of approximately two feet below grade across an area of approximately 5 feet (width) by 5 feet (length). In addition, the excavated material should be properly containerized, transported and disposed of off-site. Subsequent to the removal of the contaminated soil, the excavation should be backfilled to grade with clean sand backfill material and resurfaced with concrete, as necessary.

In addition, based upon the findings of the Supplemental Phase II Site Assessment field investigation, it is recommended that a minimum of approximately 4 feet of soil be excavated from the Pit in Hydraulic Laboratory in the vicinity of soil probe B-19 due to the elevated level of mercury detected in the 2'-4' and 4'-6' soil samples collected at this soil probe during the Initial Phase II Site Assessment field investigation activities. In addition, the excavated material should be properly containerized, transported and disposed of off-site. Subsequent to the removal of the contaminated soil, the excavation should be backfilled with clean sand backfill material.

Also, due to elevated levels of SVOCs (i.e. *total* CaPAHs > 10,000 ug/kg) detected in the 2'-4' soil sample collected at soil probe B-10 during the Initial Phase II Site Assessment field investigation activities, it is recommended that the soil in the vicinity of soil probe B-10 be excavated to a minimum depth of approximately four feet below grade across an area of approximately 5 feet (width) by 5 feet (length). In addition, the excavated material should be properly containerized, transported and disposed of off-site. Subsequent to the removal of the contaminated soil, the excavation should be backfilled to grade with clean sand backfill material and resurfaced with concrete, as necessary.

Mercury was detected at elevated levels in the 4'-6' and 6'-8' soil samples collected at soil probe B-13 (February 12, 1998) located in the Dry Well in Pipe Trench in South Structural Test Hangar during the Initial Phase II Site Assessment. However, mercury was undetected in the 8'-10' soil sample collected at soil probe B-13 (March 13, 1998) during the Supplemental Phase II Site Assessment. Accordingly, remediation of the soil within the dry well at soil probe B-13 at a depth of 4' to 8' is recommended.

It is important to note that due to the manner in which discharges were conveyed to this dry well, remediation and closure of the dry well in accordance with the USEPA UIC program is required.

Appendix A

APPENDIX A

SUPPLEMENTAL INFORMATION

part Y of the first part, and <u>GRUMIAN AIECEAFT ENGINEEFING COEPORATION</u>, domestic corporation havin; its rincipal place of business at Bethpuge, Nassau County, New York,

MARY T. MCGUNNIGLE, widow of <u>Stephen A. McGunnigle</u>, <u>d</u>eceased, residing at Broadway (no street number), Hicksville, Nassau County,

• • • ABVIN WIGOD DOCUMENTARY

S.

. } ņ

Ż

N. S. S. S. M.

3.0

TICLING

C.C.L

, part y of the second part,

WITNESSETH, that the part Y of the first part, in consideration of

GRE (J1.00)

Dollars,

lawful money of the United States, and other valuable considerations,

paid by the part y of the second part, do es hereby grant and release unto the part y of the

second part, its successors

hoirs and assigns forever,

New York,

those certain tracts or parcels of land, situate, lying and being between Hicksville and Bathpage, (formerly Central Fark), in the Town of Cyster Bay, County of Nassal and State of New York. bounded and described as follows:

of Cycler Mar, Commy of marked that State of New York. Sounded and described as follows: The T Parcel: South the at the corner formed by the intersection of the control of State of Hear of the westerly side of South Cyster Day Joy, the following theme along the westerly side of South Cyster Day Joy, the following theme along the westerly side of South Cyster Day Joy, the following theme along the westerly side of South Cyster Day Joy, the following the south side of south Cyster Day Joy, the following the south side of south Cyster Day Joy, the following the south side of south Cyster Day Joy, the following the south side of south Cyster Day Joy, the following the south side of south (1800) for the set of the south south of the south side of south Cyster Day Joy, the following the south side of the direct of the state (1996) for the the south south of the south side of the south decomposite to the south south of the south side of the south of the decomposite of the theory of the south of the direct of the south decomposite of the south could be south of the direct of the south of the decomposite of the south could be south of the direct of the south of the decomposite of the south could be south of the direct of the south of the decomposite of the south could be south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of the south of the decomposite of the south of the south of the south of th

来 殿空 ふ 45

DEED 2664 PHE 48

southerly side of Hazle Street; thence along the southerly side of Hazle Street the following two courses and distances: (1) South eighty-five degrees, no minutes, no seconds East (S.85°00'00"E.) five hundred thirty-two and forty-seven one-hundredths (532.47) feet to a monument; (2) South eighty-five degrees, two minutes, ten seconds East (S.85°02'10"E.) five hundred fifty-three and seventy-five one-hundredths (553.75) feet to the corner, at the point or place of beginning.

SECOND PARCET: BEGINNING at the corner formed by the intersection of the northerly side of Hazle Street with the westerly side of South Oyster Bay koad; running thence along the northerly side of Hazle Street North eighty-five degrees, two minutes, ten seconds West (N.85°02'10'W.) five hundred fifty-two and thirty-one one-hundredths seconds East (N.5°15'30'E.) five degrees, fifteen minutes, thirty hundredths (508.98) feet to an old stone monument; thence South eightyhundred eighty-three and eighty-six one-hundredths(483.86) feet to the southwesterly side of land of the Long Island Railroad Co.; thence seconds East (S.38°36'6)'E.) eighty-three and twenty-six minutes, thirty (S3.26) feet to the westerly side of South Oyster Bay hoad; thence fifty-three minutes, four seconds East (S.8°53'04'E.) four southwesterly side of South Oyster Bay hoad; thence seconds East (S.38°36'6)'E.) eighty-three and twenty-six one-hundredths along the westerly side of South Oyster Bay hoad; South three degrees, forty-nine and twenty-seven one-hundredths (480.27) feet to the corner at the point or place of beginning.

the first part in the highways adjacent to the regises above lescribed.

Said courses and distances being taken from a survey of the and caid presides containing according to said survey the following area:

	\sim 1 \sim $ m F$	Ilean	DIFCE		ie in	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- (· · · · · · · ·			12 • OVZ	leres
5.0	+ 2 - 2	<u>de la d</u>	. T		6.247	Serae
220	same same	nore	or Ce	232		40 A G D

SUBJECT to zoning regulations affecting the gravises adopted by easements which may exist for the minimum and of telephine poles and wires and electric light poles and wires, and subject to right of Invin Krakover and Muriel G. Helbofer, doing buniness as Long Island Check accused February 20, 1953, and the right of said presises, said premises the building erected by them thereor.

DEED 2664 FIGE 49 Together with the appurtenances and all the estate and rights of the part y of the first part, in and to said premises. To have and to hold the premises herein granted unto the part y of the second part, its successors Keirs and assigns forever. And said part y of the first part covenants as follows: FIRST. That the part y of the first part 1.5 seized of said premises in fee simple, and ha S good right to convey the same; subject as aforesaid. Second. That the part y of the second part shall quietly enjoy the said premises; THIRD. That the said premises are free from incumbrances; except as aforesaid. FOURTH. That the part Y of the first part will execute or procure any further necessary assurance of the title to said premises; FIFTH. That the part y of the first part will forever warrant the title to said premises; SIXTH. The part y of the first part, in compliance with Section 13 of the Lien Law, covenants that S he will receive the consideration for this conveyance as a trust fund to be applied first for the purpose of paying the cost of the improvement and that is he will apply the same first to the payment of the cost of the improvement before using any part of the total of the same for any other purpose. In Witness Whereof, the part y of the first part has hereunic set he hand and seal the day and year first above written. IN PRESENCE OF Camil Wederbell; mary J. M. Sunnigle STATE OF NEW YORK, TY OF NEW YORK COUNTY OF Kings On the November, day of handred and forty-three, , before me came 7. HAGENNIGLE to me known to be the individual described in and who executed the foregoing instrument, and she duly acknowledged that he executed the same. 12 1 1

ЬŦ

- 0

NEW YORK,

SS. :

nineteen hundred

by me duly sworn, did depose and say that he resides at ; that he is the knows the scal of the said the corporation described in and which executed the above instrument; that he

day of

, before me personally came

corporation; that the seal affixed to said instrument is such corporate seal; that it was so affixed by order of the Board of said corporation, and that signed his name thereto by like order. ĥc

STATE OF NEW YORK, City of New York, County of 5S. :

b of

, nineteen day of On the hundred and , before me came , the subscribing witness to the foregoing instrument, with whom I am personally acquainted, who, being by me duly sworn, did depose , in and say that he resides at ; that he knows to be the individual described in and who executed

the foregoing instrument; and he, said subscribing witness, was present and saw name as witness thereto. execute the same; and that he, said witness, at the same time subscribed h

A State State Trueman Aircraft Engineering sry T. McGunnigle, widow of Stephen A. McGunnigle, deces The land affected by the within ient lies in Section 4 💪 , in Block the Land Map of the County o NOV 22 1945 23455 10 **THUNKING** 01° . E--1 A. DY

LERN'S OFFICE 11 16 AN 43 L'N XINDO New York State Department of Environmental Conservation 50 Wolf Road, Albany, New York 12233 - 7010

Langdon Marsh Commissioner

FEB 24 1995

Mr. John Ohlmann Director Corporate Environmental Technology & Compliance Grumman Aerospace Corp. Mail Stop: D08-GHQ ~ Bethpage, New York 11714-3580

> Re: Petition to modify portion of Grumman Aerospace Corporation Site No. 130003A Plant 5, Hicksville, NY 11801

Dear Mr. Ohlmann:

Commissioner Marsh has asked me to respond to your repetition of January 24, 1995 requesting that the boundary of the subject site be modified to exclude the Plant 5 area [Section 46, Block 323, Lots 72, 222 (partial), 223 (partial), and 224 (partial)], at Hicksville, New York in the Registry of Inactive Hazardous Waste Disposal Sites in New York State (The Registry).

The Plant 5 area was originally petitioned for exclusion on February 23, 1993 and denied on September 29, 1993. Additional information was submitted on June 23, 1994 and the petition was again denied on September 30, 1994. Upon review of the latest information submitted, we agree that the Plant 5 area can, indeed, be removed from consideration as part of Site No. 130003A. This letter is official notification that the Registry database will be modified to reflect this.

If we may be of further assistance regarding this matter, please contact Mr. Robert Marino, of my staff, at (518) 457-0747.

Sincerely,

Michael J. O'Toole, Jr. Director Division of Hazardous Waste Remediation

cc: Commissioner Marsh

J. CHIMANY

FEB 28 1995

4

EXPLANATION

S222 1	DETECTED COMPOUNDS
2	1: 1, 1, 1 - TRICHLOROETHANE
1 2	2: VINYL CHLORIDE
	3: 1,2 · DICHLOROETHYLENE
1, 2, 3	4: 1, 1 - DICHLOROETHANE

Figure 14B.--Distribution of four frequently detected contaminants in the middle zone of the Magothy aquifer (75 to 275 feet below water table), fall 1987.

Deat 4200 Kdu.4 UR

and the second Listin original and supro ______

HARD CHROME MASTES PLT 05 DEPT WG. NO. LI

. .

	Operating_	Name of	Chaminal Makana	Dump Frequency	Average Yearly	Date	PM No.	Remarks
<u>k No.</u> 26	<u>Capacity (gal)</u> 17ウ	Solution Datir Russe (Chrome flice Ichierom	the price and the sup	<u>AS production spray</u> 15 min/day)	17,502 991	2/21/7.2		To PH 0.2 day How You To Y holding to Y
31	20	<u>Chiame Ilite</u> Strip	20 oz Unichrome 80 per jallon at estilie Usa hrome 80 centaire 12% Erce cymide, complex ficephates	Dumped about suce syrar wher colution is containingled	180 16. Unichrow. 80	3/21/72		Punted to 113: holding tank 6 Taken to 11: C Acid House vie waste acid Truck
20		Hard Chrome Plate	30 32 CR-110/91/of Calution, CR-119 Contains by vit: > 10% chronic in also chronites inorganic cults and calicofluoride	Normally net dearped	0	3/21/22		No. dumps :n - pit year
623			TOAT, Michael # 221. Unichrome # 321 is on inert Wax insolutile in water.	Physical 2 not claim poid		3/37/23		hy colvents
6			contominated lines which can take could and strift solution (when dumped)	Dump volu hy other t	ind covers d	3/21/22		To lit Co A House via was wid truck
5AC 2792			FOR INTERNAL	NON-RECURRING	USE ONLY			

PRODUCTION TANK OPERATIONAL RECORD

D.

).

IANK NUMBER	PLANT NUMBER	
142	05	004
SOLUTION	VAPOR Degreaser	
COMPOSITION	TRICHLOROETHYLENE	182-192°F
OPTIMUM CONDITIONS		
ADDITION FACTOR		
CAPACITY - GALLONS		
GALLONS/INCH		
TANK CONSTRUCTION	STEEL Size 82")	(34' X 35'
POWER SUPPLY	None	
EXHAUST	Yes	
SPECIFICATION	GSS 7010A	
PREVENTATIVE MAINTENANCE	FREQUENCY CO	DE
SOLUTION MAKE-UP		

*GAC 425A REV.4 4-71 500

้บ
1	1	i i	i	i i	÷	4	i
1015:-	Roproduc	.	uen ori	حسنو	Land	L ro pi	0
	erder to	- porate	Eorm:	s Co	rtr a l	Pla	nt 30.

DETAILS AND ASCEMBLES PLT 05 DEPT 046

DWG. N2. A-BP 0003

..p

ik No	Operating	Name of		Dump Frequency	Average Yearly	<u> </u>	0.14	· · · · · · · · · · · · · · · · · · ·
1. 190.	Capacity 1949	Solution	Chemical Wake-up	or over tion (gpm)	Dump	Pate.	PM No.	Kemarks
<u> </u>	<u></u>	Desterre Leve	1.2 2 11.00 112 C 17 11 11	Nor Mally not	<u> </u>	3/21/22		1, 00 gal added
	<u> </u>			dumpe'd				t trink per
		· · · · · · · · · · · · · · · · · · ·						VC gr
								,
							······································	
								······
					······		· · · · · · · · · · · · · · · · · · ·	
				· ······				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							· · · · · · · · · · · · · · · · · · ·
				· · · · · · · · · · · · · · · · · · ·				·
								a alabada a salara a
							••••••	
		· · · · · · · · · · · · · · · · · · ·						
		· ····································			······································			
				······································			• • • • • • •	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·						
				······	·····			
		·						
		·						
		· · · · · · · · · · · · · · · · · · ·			····			
		•						
						~	····	<u></u>
					· · · · · · · · · · · · · · · · · · ·			
•		,						
	······································							
				· · · · · · · · · · · · · · · · · · ·				
								· · · · · · · · · · · · · · · · · · ·
······································								
GAC 2792				ION DECUDDING				
11-69	1	I	ι ευτιντεπΝΑΕΩ	NUN-RECURRING U	ISE UNLT	}	1	

_____

		51 5 5 5 5 5		đ		<u>}</u>
						19
				Adv. The second		
			1			
	624					C.
					a series and the	
			the set from			
						20
	i Sector Andrea					
			(K)			
			Man Kine			
				TANIZ	CALITI	
ANK N	IANK S	ILL ANI	N UWGEN*	MAINA DESCRIPTION	JUEU1.I	
624	17'-4-8'	2'H	DWG	DEACTIV	JING SO	LUTIO
NOTES	THIS SOLUT!	ON IS NOT C	OVERED BY	ANY SPEC		
				and the second		
· Salesand						
			ALL STORES	7-2-5-718-11		
DRAWN BY	HEMIENE P	ROCESSE	CILITIES	THE REPORT	ED BY - DAT	· Per
I.D.	TAI	NK LOCATIONS	E NE CHAT	CALE	KOIIIA V	na se co
3-23-72	PA	NT SHOP DE	PT 05044	5.5 3%	= 1× 0" PL	T. 05
CHECKED BY				DRAWI	NG NO.	· · · · · · · · · · · · · · · · · · ·
M.J.Z.	GRUMMAN		CORPORA	non .	3P 000	13
DATE		ACILITIES DEPA	RTMENT		0	
3-29-72		494 June 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · ·	M	O or Z	REV.

<u></u> c:d	er to Compate For	ms Control, Plant 30,			·····			
			INDUS	TRIAL WAS	TES		PLT DWE	DE DEPT 040
Nc.	Operating Capacity (gal)	Name of Solution	Chemical Make-up	Dump Frequency or Over flow (ypm)	Average Yearly Dump	Date	PM No.	Remarks
		Salution	Klarifiant contains: Klarifiant contains: HOH, wetting agent: solvents, silicates, Ca(OH)@					
							,	
AG 2792 - 69			FOR INTERNAL A	ION-RECURRING U	SE ONLY			

î

÷

ĺ

İ

**Grumman Aurospece Corporation** 

A Subsidiary of Northrop Grumman

South Oyster Bay Road Bethpage, New York 11714

Electronics & Systems Integration Division

### -Spill Report-

NORTHROP MILINIAN

Date: 8/27/96

Time:

Product Spilled: Dissel Fiel

Amount Spilled: 10 Gallohs

Is NYSDEC Notification Required ?

### No _____ Proceed with clean-up and corrective action

Yes_X_ Contact NYSDBC Hotline (1-800-457-7362), obtain Spill Number and proceed with clean-up and corrective action

NYSDEC Spill Number 96-06777

### **Description of Spill**

A surge in a Plant 5 emergency generator day tank caused tank 05-01-1 to overfill. The product spilled from the tank vent, over an asphalt paved area in the Plant 5 maintenance parking area, to a storm drain each basin.

### Affocted Areas (Ground, Recharge Basin, Leaching Pool, Etc.)

Catch basin and parking area.

#### Clean-Up Activity

Environmental Operations cleaned the spilled material with speedy dry from the catch basin and pavement. The Plant 5 recharge basin was not affected. No contaminated soil was generated.

### Root Cause and Corrective Action

It was determined that the tank was recently topped-off with product for tank testing. Approximately 30 gallons of product was removed from the tank after testing to eliminate overfilling by expansion. It is possible that this tank requires additional product removal after testing. Therefore facilities engineering will require at least 50 gallons of product to be removed from this tank after testing.

Person completing this form: John Selva

🛞 - theory clored pages







NAS Appi Fori See	SAU COUNTY DEPARTMENT CH HEALTH LICATION FOR A TO TO DE HAZARDOU 3 - BULK AND C MINER STORAGE INSTRUCTION SHELTS	IS MATERIALS STORAGE FACILITY PERMIT REGISTRATION		Date Applicati Received Reviewed	On	Facilit Date Re	y 1.D.	
Faci	GRUMMAN COPP	ORATION-PLANT 5		By Action:	D Not Re	ng'd. No.of I	Months	
Faci:	RETHRAGE NY 117			Approved	Disap	proved		
Adti	on: X Register Existing Are	a 🗌 Add Area 🗌 Remove Area	Modi	fy Area	Area No.	5 51	υ'	
Láca	tion: Indoors Bulk Stor	age C	Containe	r Max.No. <u>3</u>	<u>0 Ma</u>	x.Vol. <u>1500</u>		
Seco	ndary	Impervious Roof Nalls	Floor	Drain & N	one 🛛 (	ther FLOO	R DRMN	
Cons	truction Material (Check all	S Concrete S Steel Other	Stora		Se	curity	es .	
 .	ike E Pad that Apply)	Padthat_Apply) [2] Concrete [2] Steel [1] (Specify):		Amount St	ored	Storage Method		
Гурс	NCDH Number	Material Name	ical State	Average Quantity	Units	Average Number	Туре	
	04062	FREON		150		3	1	
	09122	1.1.1-TRICHLORDETHANE	1	100	1	2	1	
1		METHYLENE CHLORIDE	١	50	1	1		
I	01032	CEE BEE C-50 (ONTAINS METHYLENE CHLORIDE)		50		l	)	
	04771	ISOPRUPANOL	1	100	).	2	1	
1	08941	TOLUENE		50		<u> </u>		
		LACQUER THINNERS	1	250	)	5		
	05951	PETROLEYM NAPTHA		50		1		
1	09021	AQUA QUENCH/GLYCOLS, WATER		200		4		
2	09611	OIL A		50				
2	08340	HALOGENATED SOLVENTS 11	2/1	50				
2	06651	PAINT THINNERS/SOLIDS	1	110		12	1	
		6188	45	A 84			• ••	
<b>.</b>	WH X5V		- rage	20 01 70		1 0.1	Ρ.	
<u>.</u>			− - South the South the track		·····			
			12.e					

NAS: Appi Porj See	SAU COUNTE DEPAR CONTINUES HEALTH LICATION FOR A TO C OR HAZARDOU 3 - BULK AND C MAINER STORAGE INSTRUCTION SHE	US MATERIALS STORAGE FACILITY PERMIT E REGISTRATION		Di Ri Ri	ate Application eceived eviewed		Facilit Date R	y 1.D.
Faci	GRUMMAN COPPOR	ATION - PLANT 5		^	yCtion: [	] Not Re	q'd. No.of	Months
Faci	RETUDACE NY IT	14			Approved L	- ] Disapp	proved	
Actio	on: Register Existing Area	a Add Area Remove Area		L Modif	Y Area A	rea No.	dei	
Lóca	tion: Indoors Bulk Stor	age	Cont	ainer	Max.No. 30	Ma	x.Vol. 1500	
Seco	Mdary Max.Quant	Talmpervious El Roof Salwalls		age oor D			ther FLOOR	DRAIN
<u>Cont</u> Cons	dindent: <u>Beru/Dike</u> truction Material (Check all	R Concrete R Steel Othe	r <u>u st</u> e	orage	Tank		pecify): W/S	ies ·
al p	ike E Padthat Apply)		:ify): □	bye	Amount Stor	per . red .	Storage Met	ko :hod
ype	NCDH Number	Material Name	i S	cal tate	Average Quantity	Units	Average Number	Туре
2	06451	SYNTHETIC CUTTING FLUID		1	50	1.	1	1
1		MÉK		1	100	1	2	1
	······································	EN						
		<u>↓</u> · · · · · · · · · · · · · · · · · · ·				-		
		· · · · · · · · · · · · · · · · · · ·				1		
	······································							
						+		
			<u> </u>		-		<u> </u>	
	· · · · · · · · · ·							
		1/4/4		16	D 84			
		Ø 0 1 0		10.	0		- und	
<u>ـ</u> ــ				Re Z	DOI 40	_		

MASS Appl Porp See	AU COUNTY DEPARTY OF CHEALTH ICATION FOR A THE COR HAZARDOU 3 - BULK AND CHEAINER STORAGE INSTRUCTION SHEET	S MATERIALS STORAGE FACILITY PERMIT REGISTRATION	Da Re Re	te Application acceived		Date Re	y
Facil	ity Name GRUMMAN CORPOR, Ity Address	ATION-RANT 5	Ac	tion:	Not Re	q'd. No.of I	Months
	BETHPAGE NY 117	14		Approved L	Disapp	roved	
A4tio	m: Register Existing Area	a 🗌 Add Area 👘 Remove Area	🗍 Modify	y Area Al	rea No.	\$52	+
Loca	ion: Indoors Buik Stor	age	Container Storage	Max.No.6	Max	Vol. <u>300</u>	
Seco	Mary max.quant.	Malls	Floor D	rain & None		her	
<u>Cont</u> Cons	truction Material (Cherk all	GFloor/Pad Other	- Storage	Tank		Ø Y	es ·
of p	that Apply)	Steel (Speci	£x):	Amount Stor	ed be	Storage Met	hod
урс	NCDH Number	Material Name	Phys- ical State	Average Quantity	Units	Average Number	Туре
	06461	HYDRAULIC OIL		250	1.	5	
	MUSI	CEE DEE C50		50	1		1
1	R911	MINERAL SPIRITS	1	50	(	/	_/_
		A					
		· )]. U					
					1		
	<u></u>				-		
					-		
					1		
		6188	47	·f 84	¹ <del></del>	-L	
•	HH NAM BUTH			000 -10			P.

. J

FORM 2 - TANK REGISTRAL SFE INSTRUCTION SHEETS

~

SE	E INSIK		UN SHEETS											TH BY							ł	
Fa	cility	Name	GRUM	1 <u>A</u> 1	C	OR	POI	RA7	<u>101</u>	U-PLANTS	5			Action:		C	Not	t R	eq'	d.	No.of M	onths
Fa	cility	Addı	ess	000		V	11	าเป						C Approv	ved	<u></u>	Di	sap	pro	ved	ļ	
			BEIHP	AGE	The second	Ţ.	Ϊ.	Ţ	Ζ	Material C	Cur	crently or Last Stored		Tank					13er		/ Additi Informa for Abai	onal tion doned
Iction	Tank		Gallons				Pitters 1	Surar	_   قر	NCOH Numbe	r/	Name	Star	/Installati Date (Month/yr)					ut all		Tanks ate Last Used	ndi.
	/ `	11	1	Fi	Į (		1		1		1		1		<u> </u>	1-	1		[	<u>/ (m</u>	mth/yr)	10-
7	1239		900	1	2	4	1	1		09021	1	AQUA QUENCH 251.	1	1984	5	5	1	2	1			
	1191	18	) 900	8	2	4	8	2		00043		DEOKIDIZEP, PIDOLENE)	ᅫ	1981	5	1	1	2		_─		
	11918	12	QOD ISCO	14 2 8	2	4	8	2		04021	V	NASTE LAQUA QUENCH	1	1981	5	<u>}</u>	1	2	₽,			
	- 81	1	180	8	2	4	8	1	07.	180 \$ 07043		DETERGENT	/	1976	5	$\frac{1}{2}$	2	2	<u> /</u>	┨		
	11114	17	185	8	2	4	8	7		66143		NHERTE ALL	/	1976	5	14	2	2	4			
$\frac{1}{\sqrt{1}}$	1106	1/	185	2	2	4	8	1	0	00043		ALODINE	$\square$	1976	5	1/	2	12	¥_,	, <b> </b>		<b>_</b>
<i>√</i> /	1107	ťł	125	2	$\frac{1}{2}$	4	8	Ī		54573		RINSE.	/	1976	5	14	2	$\frac{12}{12}$	1/	<u> </u>		
$\frac{1}{\sqrt{1}}$	1191		170	8	2	4	8	17	1	961+3 745 73		KITTE ALID	/	1976	2	1/	12	12	1/			<b>_</b>
	1110			10	f	+-		†														
	<u> </u>	╺┼╌╿		+-	+		1	-	+									1	1			
		-					1-	1-	-									1_	1_			
				+	+-	+	1-	+	-										_			
	*	+		+	+-	+-	+-	+	+		-											
~~~	1		l									1100	6	26.5	4	2					П.	Ρ.
	EH 854	3	4/86						Ða	ite Submitte	d		Pa ∽	ige <u>26</u> or _	Z						<u>ل</u>	
								~ 1		235												
														Sector States					na P	sign of		
n Differen	·																			e liger		
		-		· · ·			•				100		_	· · ·								
					4 .					2					نیسی مندست			-				
										· · · · · · · · · · · · · · · · · · ·	-											
														-		-				-		

AN AF PUBLED DET DOLLEUN DDODMOR ON TO DET

		:				
		TAE	BLE A-1	1	She	et 3 of b
		· · ·		Callong		Ano of
		:	Gallons	Above	Material of	Tank (Yr)
Tank No.	Location/Use	Contents	Buried	Ground	Construction	<u>As of 1985</u>
05-01-1	Plant 5 - Generator	Diesel	1,000		Steel-Asphalt Coating	41
05-05-1	Fire Pump House	Gasoline	250		Steel-Asphalt Coating	32
		i-1				
12-02-1	Maintenance Facilities-Fueling	Diesel	· · · · · · · · · · · · · · · · · · ·	275	Steel	5
12-03-1	Boiler House - Boiler	6	15,000		Steel-Asphalt Coating	19
12-03-2	Boiler House - Boiler	4	15,000		Steel-Asphalt Coating	19
12-03-3	Boiler House - Generator	Diesel		275	Steel	40
12-03-4	Boiler House - Generator	Diesel		275	Steel	40
/12-05-1	Environmental Operations - Boiler	2	1,000		Steel-Asphalt Coating	17
128-1	Maintenance Warehouse - Boiler	4	10,000		Steel-Asphalt Coating	14
					and a state of the	
14-01-1	Electrical Systems Center-Boiler	6	10,000		Steel-Asphalt Coating	25
14-01-2	Electrical Systems Center - Boiler	6	10,000		Steel-Asphalt Coating	25
14-01-3	Electrical Systems Center-Generator	Diesel	275	1	Steel-Asphalt Coating	25
14-01-4	Electrical Systems Center-Generator	Diesel	550	· · · ·	Fiberglass	١
					$\left\{ \left\{ \left\{ 1, \dots, n_{n} \right\} \right\} \right\} \in \left\{ 1, \dots, n_{n} \right\} \right\}$	
15-01-1	Engineering Building - Boiler	2	10,000	· · · · · · · · · · · · · · · · · · ·	Steel-Asphalt Coating	27
15-01-2	Engineering Building - Boiler	2	, sat dian Ng at T≣nas	550	Steel	27.
15-01-3	Engineering Building - Boiler	2	1.11.11.11	275	Steel	1
15-01-4	Engineering Building - Generator	Diesel		275	Steel	7
· ;						
1						
		en de la companya de La companya de la comp				
		: <u> </u>		· · · · · · · · · · · · · · · · · · ·		

TABLE A-1

i.

Sheet 5 of 6

١

•

ank No.	Location/Use	Contents	Gallons Buried	Gallons Above Ground	Material of Construction	Age of Tank (Yr) <u>As of 1985</u>
4-01-1	Receiving & Inspection - Boiler	4	10,000		Steel-Asphalt Coating	19
4-01-2	Receiving & Inspection - Waste Oil Storage	Misc.0il	2,000		Steel-Asphalt Coating	19
<u> '5-01-1</u>	Space & Missile Center - Boiler	6	20,000		Steel-Asphalt Coating	22
(5 -01-2	Space & Missile Center - Boiler	6	20,000		Steel-Asphalt Coating	2.2
5-01-3	Space & Missile Center - Generator	Diesel	550		Steel-Asphalt Coating	22
·5-03-1	Guard House - Boiler	2		275	Steel	40
'5 -05-1	Well #5 - Pump	Gasoline	. 275		Steel-Asphalt Coating	40
25-08-1	Record Center - Boiler	2	2,000		Fiberglass	3
26-01-1	Research Lab - Boiler		20,000		Fiberglass	L
·6 -01-2	Research Lab - Generator	Diesel	550		Fiberglass	0
2 <u>8-01-1</u>	Office Bldg. – Boiler	2	4,000		Steel-Asphalt Coating	21
28 A-01-1	Recreation Bldg.	2	5,000		Steel-Asphalt Coating	21
30-01-1	Office Building - Boiler	6	15,000		Steel-Asphalt Coating	21.
30 -01-2	Office Building - Boiler	· 6	15,000		Steel-Asphalt Coating	21
30-01-3	Office Building - Generator	Diesel	550	·	Steel-Asphalt Coating	21
31-01-1	Air Testing Facility - Boiler	2	• 12,000		Fiberglass	0

مم.

FIGURE 2-2 RUMMAN AEROSPACE CORPORATION BETHPAGE COMPLEX GROUNDWATER PROTECTION PLAN SITE MAP

18-20-18	(2/90)	9#
----------	--------	----

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

MAJOR PETROLEUM FACILITY LICENSE

Page _1___ of _3___ Tank Listing For License Number: _____1-128() DATE INSTALLED **PRODUCT STORED** TANK TYPE CAPACITY (Gallons) TANK LOCATION TANK NUMBER (Month/Year) Nos. 1,2, or 4 Fuel Oil Steel/Carbon Steel 10,000 12**B**-1 12/71 Underground 275 Diesel Steel/Carbon Steel 12/83 Aboveground on rack 01-01-1 2.500 Other Steel/Carbon Steel 12/57 Underground 01-01-2 Steel/Carbon Steel 275 Diesel 12/83 Aboveground on rack 01-01-3 Diesel Aboveground on rack Steel/Carbon Steel 275 12/85 01-04-2 275 Diesel Steel/Carbon Steel 02-01-5 12/76 Aboveground on rack Diesel Aboveground on rack Steel/Carbon Steel 275 12/41 02-01-7 FRP 550 Diesel 12/86 02-01-8 Underground 275 Diesel Steel/Carbon Steel 12/88 Aboveground on rack 02-04-1 Nos. 5 or 6 Fuel Oil Steel/Carbon Steel 556,000 Aboveground 12/68 02-29-1 Nos. 1,2, or 4 Fuel Oil. Diesel 10,000 Underground Steel/Carbon Steel 12/78 02-35-1 550 Steel/Carbon Steel 12/77 Underground 03-01-4 Other 2,500 FRP 12/80 Underground 03-01-6 Diesel Steel/Carbon Steel 275 12/77 Aboveground on rack 03-01-7 Steel/Carbon Steel 275 Diesel Aboveground on rack 12/43 03-01-8 Diesel Steel/Carbon Steel 550 12/74 Underground 03-03-1 Diesel Nos. 1,2; or 4 Fuel Oil 550 Underground FRP 12/82 03-34-2 2,000 FRP 03-34-3 Underground 12/82 4,000 Other FRP 12/82 Underground 03-34-4 Nos. 1,2, or 4 Fuel Oil 2,000 Steel/Carbon Steel 12/65 Underground 04-03-1 Diesel 275 12/85 Steel/Carbon Steel Aboveground on rack 04-04-1 Leaded Gasoline Leaded Gasoline Diesel 275 Steel/Carbon Steel 04-04-2 04-04-3 12/43 Underground 275 Steel/Carbon Steel Underground 12/43 1.000 Steel/Carbon Steel 12/44 Underground Aboveground on rack Diesel Steel/Carbon Steel 275 12/85 \$05-05-1 Diesel 06/89 550 FRP Underground 275 Diesel Steel/Carbon Steel 12/80 Aboveground on rack 12-02-1 Nos. 1,2, or 4 Fuel Nos. 1,2, of 4 Fuel 15,000 Steel/Carbon Steel 12/66 Underground 4 Fuel Oi 12-03-1 Steel/Carbon Steel 15.000 12/66 Underground 12-03-2 Diesel Steel/Carbon Steel Aboveground on rack 275 12-03-3

8 20-14 (2/90)-- 9a

7

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION MAJOR PETROLEUM FACILITY LICENSE

Tank Listing For License Number: ____1-1280

Page _2__ ol _3__

. . . .

.

4

TANK NUMBER	DATE INSTALLED (Month/Year)	TANK LOCATION	TANK TYPE	CAPACITY (Gallons)	PRODUCT STORED
12-03-4	12/45	Aboveground on rack	Steel/Carbon Steel	275	Diesel Nos 12 or 4 Fuel Oil
12-05-1	12/60	Underground	Steel/Carbon Steel	10,000	Nos. 5 or 6 Fuel Oil
14-01-2	12/60	Underground	Steel/Carbon Steel	10,000	Nos. 5 or 6 Fuel Oil
14-01-3	12/60	Underground	Steel/Carbon Steel	275	Diesel
14-01-4	12/84	Underground	FRP	550	Diesel and Fuel Oil
15-01-1	12/58	Underground	Steel/Carbon Steel	10,000	Nos. 1,2, 01 4 Fuel Oil
15-01-2	12/58	Aboveground on rack	Steel/Carbon Steel	220 275	Diecel
15-01-4	12/78	Aboveground on rack	Steel/Carbon Steel	15 000	Nos 12 or 4 Fuel Oil
	12/44	Aboverround on rack	Steel/Carbon Steel	275	Diesel
	12/0/		FRP	6.000	Diesell
20-01-2	12/77	Underground	FRP	4,000	Unleaded Gasoline
20-01-3	12/77	Underground	FRP	6,000	Unleaded, Gasoline
20-01-6	12/43	Aboveground on rack	Steel/Carbon Steel	275	Nos. 1,2, or 4 Fuel Oil
20-01-7	12/68	Underground	Steel/Carbon Steel	2,000	Other
20,01-8	12/68	Aboveground on rack	Steel/Carbon Steel	275	Others an article art
20-01-9	12/68	Underground	Steel/Carbon Steel		Nos 12 or 4 Eucl Oil
24-01-1	12/66	Underground	Steel/Carbon Steel	10,000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	12/66	Underground	Fiberalass Costed Ste	el 10.000	Nos 5 or 6 Fuel Oil
	12/00		Fiberalass Coated Ste	el 10,000	Nos 500 62 Eucl Oil
25:01-2	12/00 12.	Underground	Steel/Carbon Steel	550	Diesel
	12/45	Aboveground on rack	Steel/Carbon Steel	275	Nos. 12, or 4 Fuel Oil.
25-05-2	09/90	Underground	FRP	550	Diesel
25-08-1	12/82	Underground	FRP	2,000	Nos. 1,2, or 4 Fuel Oil
26-01-1	12/84	Underground	FRP	20,000	Nos. 1,2, of 4 Fuel OII
26-01-2	. 12/85	ut ut Underground	FRP	550	
128-01-1	12/64	Underground	Steel/Carbon Steel	4,000	Nos 5 heres Enal-Ciller
··30-01-1	12/64	se sunderground	sieel/Caloon Sieel	Lə,UUU	Contraction of the second of t
					9
I					

20·1a (2/90)9a	NEW	YORK STATE DEPARTMI MAJOR PETRO	ENT OF ENVIRONMENT	AL CONSERVATION	N '.
	ан Саба Дага — Дага — Сала	Tank Listing For Li	cense Number:1-1280		Page <u>3</u> of <u>3</u>
TANK NUMBER	DATE INSTALLED (Month/Year)	TANK LOCATION	TANK TYPE	CAPACITY (Gallons)	PRODUCT STORED
30-01-2 30-01-3 31-01-1 35-01-2 35-01-2 35-01-3 35-04-1 111-01-1 111-01-2 111-01-2 111-01-4 20-01-10 20-01-11 20-01-12 20-01-13 20-01-14 20-01-15 20-01-15 20-01-20 20-01-21	12/64 12/64 12/85 12/66 12/66 12/74 12/70 12/70 12/70 12/70 12/70 12/79 12/79 12/79 12/79 12/79 12/79 12/79 12/79 12/79 12/79 12/68 12/68	Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground Underground On rack Aboveground on rack Aboveground on rack	Steel/Carbon Steel Steel/Carbon Steel FRP Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel FRP FRP FRP FRP FRP FRP FRP Steel/Carbon Steel Steel/Carbon Steel Steel/Carbon Steel	15,000 550 12,000 15,000 550 3,000 4,000 4,000 1,000 275 550 20,000 20,000 20,000 10,000 6,000 1,000 550 275 275 275 275 275 275	Nos. 5 or 6 Fuel Oil Diesel Nos. 1,2, or 4 Fuel Oil Nos. 5 or 6 Fuel Oil Diesel Nos. 1,2, or 4 Fuel Oil Nos. 1,2, or 4 Fuel Oil Nos. 1,2, or 4 Fuel Oil Diesel Diesel Leaded Gasoline Diesel Nos. 1,2 or 4 Fuel Oil Nos. 1,2 or 4 Fuel Oil

- - - - - - -

· · · · · _ · · · · ·

APTLICATION FOR RENEWAL OF A T	OXIU OR HALAKUDUS MAREKIALU	140 <u>-</u> 18/01/93
IVISION OF ENVIRONMENTAL HEAL	тн	
WASSAU COUNTY DEPARTMENT OF HE	ALTH	NEW YORK STATE
ACTINTY TO NUMBER : 000001	APPLICATION DUE : 08/01/93	TAX EXEMPT? MUNICIPALITY
ACTELLA ID HOHDER - OUDOOL		() YES () NO
ATTENTION: RENEWAL APPLICATI	ONTPAST DUE SECTION 6(A)	IE YES, INDICATE
IREQUIRES THAT THIS FACILITY	HAVE A VALID OPERATING	AND ENCLOSE COPY
PERMIT. OPERATION WITHOUT A	VALID PERMIT WILL SUBJECT	OF CERTIFICATE
FACILITY OWNER/OPERATOR TO L	EGAL ACTION.	(FORM SI-119.1) CERTIEICATE
GRUMMAN AEROSPACE CO	RP. NOV 9 1993	NUMBER :
STEWART AVE. MS DO8-	GHQ	
BETHPAGE NY 1	1,714 NCOH-BEM NCOH-BEM	
)
ACILITY NAME	STREET ADDRESS	ACILITY PHONE
RUMMAN AEROSPACE CORP. Sethpage ny 11714	STEWART AVE	510-575-2307
	CONTACT TITLE	CONTACT PHONE
JOAN URLMANN	DIR• ENV• PRUI•	210-212-2202
ACILITY DWNER	STREET ADDRES	OWNER PHONE
RUMMAN AEROSPACE CORP.	STEWART AVE.	516-575-2385
ROPERTY OWNER	STREET ADDRESS	PROPERTY PHONE
GRUMMAN AERUSPACE CURP. Gethpage ny 11714	STEWART AVE.	516-575-2385
-ERMITTEE NAME	STREET ADDRESS	PERMITTEE PHONE
ETHPAGE NY 11714	STEWART AVE.	
PERMITTEE"S RELATIONSHIP X SAN	ME OPERATOR OF FACILITY	OJHER SPECIFY
ID FACILITY OWNER		
TANK/STORAGE CAPACITY STATUS	LOCATION TYPE OF MATERIAL	STORED
0010 TANK 4000 INSERV 0011 TANK 4000 INSERV	E UUFABUVE IRICHLUKUETHYLEN COHTABOVE TRICHIOROFTHYLEN	
DO28 TANK 338 INSERV	G INABOVES ALODINE	
0036 TANK 390 INSERV	G-INABOVES DAKITE, #160	
0040 TANK 270 INSERV 0044 TANK 400 INSERV	C INABUVES HYDRUCHLURIC ACI C INABOVES RINSEWATER• AFKA	LINE
0047 TANK 1465 INSERV	C INABOVEG RIDOLENE 53	/ =

→0051 TANK 180 INSERVC INABOVEG RIDULENE 55 →0051 TANK 180 INSERVC INABOVEG SURFACTANTS 0069 TANK 400 INSERVC INABOVEG BASIC DEACTIVATING SOLUTION 0086 TANK 250 INSERVC INABOVEG RINSEWATER, ACID

F THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED BOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: CAPACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS OF THE TANK OR AREA.

I HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT	NA	ME
-------	----	----

J. Ohlmann

SAIGNATURE	TITLE	DATE
4 Ohlman	Dir. Corp. Env. and Compl.	Tech. 11/24/93

-

08/01/93

TORAGE FACILITY PERMIT //ISION OF ENVIRONMENTAL HEALTH /#SSAU COUNTY DEPARTMENT OF HEALTH

CPPLICAS IN FUR RENEMAL OF A SUALU

מררכיייי

MAV

. JILITY ID NUMBER : 000001

PPLICATION DUE : 08/01/93

1203-624

4 1003

					;;
TANK/	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL STORED
)109	TANK	400	INSERVE-	INABOVES	BASIC DEACTIVATING SOLUTION
)116	TANK	1000	INSERVC-	I-NABOVEG	ALKALINE SOLUTIONS, NOS
0117	TANK	800	INSERVE-	INABOVEG	ACIDS, NOS
0131	TANK	760	INSERVC	INABOVEG	RINSEWATER, ACID
0132	TANK	619	INSERVC	INABOVEG	ZYGLO PENETRANT
0137	TANK	400	INSERVC	INABOVEG	BASIC DEACTIVATING SOLUTION
0138	TANK	560	INSERVC	INABOVEG	ZYGLO PENETRANT
0139	TANK	400	INSE RV C	INABOVEG	BASIC DEACTIVATING SOLUTION
0140	TANK	160	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
0141	TANK	670	INSERVC	INABOVEG	CHROMIC ACID
0142	TANK	760	INSERVC	INABOVEG	RINSEWATER, ACID
)143	TANK	670	INSERVC	INABOVEG	SULPHURIC ACID
0144	TANK	760	INSERVC	INABOVEG	RINSEWATER, ACID
0 152	TANK	400	INSERVC	INABOVEG	BASIC DEACTIVATING SOLUTION
)166	TANK	50	I NSERVG	- INABOVEG	TRICHLOROETHANE, 1,1,1-
)167	TANK	560	INSERVC	INABOVEG	ZYGLO PENETRANT
0168	TANK	50	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-
)170	TANK	400	INSERVC	INABOVEG	BASIC DEACTIVATING SOLUTION
)206	TANK	470	INSERVC-	INABOVEG	NITRIC & HYDROFLUORIC ACID MIX
J207	TANK	650	I-NSERVG	INABOVEG	RINSEWATER, ALKALINE
0208	TANK	470	INSERVC	INABOVEG	RINSEWATER, ACID
)209	TANK	650	INSERVG-	-INABOVEG	SODIUM HYDROXIDE
)210	TANK	55	INSERVC	INABOVEG	TRICHLOROETHYLENE
0211	TANK	2 50	INSERVC	INABOVEG	RINSEWATER, ACID
)213	TANK	190	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
)214	TANK	250	INSERVC	INABOVEG	TANK, WATER RINSE
J215	TANK	350	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
0215	TANK	350	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
)228	TANK	4800	INSERVC	INABOVEG	RIDOLENE 53
0229	TANK	4300	INSERVC	INABOVEG	RINSEWATER, ALKALINE
0230	TANK	5000	INSERVC	INABOVEG	RINSEWATER, ACID
0231	TANK	5600	INSERVC	INABOVEG	ALODINE
J232	TANK	6000	INSERVC	INABOVEG	TANK, WATER RINSE
J256	TANK	2 50	INSERVC	INABOVEG	TRICHLOROETHYLENE
0259	TANK	50	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-
J261	TANK	760	INSERVC	INABOVEG	RINSEWATER, ACID
J262	TANK	760	INSERVC	INABOVEG	RINSEWATER, ALKALINE
0285	TANK	50	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-

- THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED 33JVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: 2 PACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS THE TANK OR AREA.

1 HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON 1 IS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT 10 THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE

DATE

123AJE FACILITY NEWLO SECTION OF ENVIRONMENTAL HEALTH .43SAU COUNTY DEPARTMENT DF HEALTH .43SAU COUNTY DEPARTMENT DF HEALTH .43SAU COUNTY DEPARTMENT DF HEALTH .CILITY ID NUMBER : 000001 APPLICATION DUE : 08/01/93 TANK/STDRAGE CAPACITY STATUS LOCATION 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0325 TANK 300 INSERVC INABOVEG TRICHURGETHAME, 1:1.1- 0350 TANK 50 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0350 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0360 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0361 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0361 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0361 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0371 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0372 TANK 451 INSERVC INABOVEG RINSEWATER, ALKALINE 03731 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0374 TANK 1250 INSERVC INABOVEG RINSEWATER, ALKALINE 0372 TANK 41B INSERVC INABOVEG RINSEWATER, ALKALINE 0374 TANK 1550 INSERVC INABOVEG RINSEWATER, ALKALINE 0375 TANK 1630 INSERVC INABOVEG RINSEWATER, ALKALINE 0374 TANK 1570 INSERVC INABOVE						_	
USIGID OF EVVILONMENTAL HEALTH ASSAU COUNTY DEPARTMENT OF HEALTH ASSAU COUNTY DEPARTMENT OF HEALTH ASSAU COUNTY DEPARTMENT OF HEALTH NUM 29 194 CILITY ID NUMBER: 000001 APPLICATION DUE : 08/01/93 TANK/STDRAGE CAPACITY STATUS LOCATION TYPE OF MATERIAL STORED 0304 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 50 INSERVC INABOVEG TRICHLOROSTHAME, 1+1,1- 0350 TANK 50 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG RINSEMATER, ALKALINE 0361 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALINE 0362 TANK 9800 INSERVC INABOVEG RINSEMATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALINE 0366 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALINE 0368 TANK 10500 INSERVC INABOVEG SOLUM HYDRONIDE 0400 TANK 4418 INSERVC INABOVEG SOLUM HYDRONIDE 0400 TANK 4418 INSERVC INABOVEG GUYCOL 0400 TANK 4418 INSERVC INABOVEG GUYCOL 0400 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0401 TANK 1250 INSERVC INABOVEG RINSEMATER, ALCID 0402 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0403 TANK 2800 INSERVC INABOVEG RINSEMATER, ALCID 0404 TANK 1570 INSERVC INABOVEG RINSEMATER, ALCID 0405 TANK 6120 INSERVC INABOVEG RINSEMATER, ALCID 0407 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0408 TANK 4120 INSERVC INABOVEG RINSEMATER, ALCID 0409 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0409 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0401 TANK 2200 INSERVC INABOVEG RINSEMATER, ALCID 0402 TANK 4120 INSERVC INABOVEG RINSEMATER, ALCID 0401 TANK 4200 INSERVC INABOVEG RINSEMATER, ALCID 0402	STORAGE	ΓΙΟΝ ΡΟΙ ΕΔΟΤΙΤ΄	N STREMAL Ty Permit		ILL LA FALM	NUCUU MANUKIALU	08/01/93
ASSAU COUNTY DEPARTMENT OF HEALTH CILITY ID NUMBER : 000001 APPLICATION DUE : 08/01/93 TANK/STDRAGE CAPACITY STATUS LOCATION TANK/STDRAGE CAPACITY STATUS LOCATION TANK/STDRAGE CAPACITY STATUS LOCATION TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0325 TANK 50 INSERVC INABOVEG TRICHLOROETHANE, 1,1,1- 0350 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG RINSEMATER, ALKALNE 0362 TANK 14000 INSERVC INABOVEG RINSEMATER, ALKALNE 0362 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0362 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0365 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0366 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0378 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0366 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0378 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0378 TANK 10500 INSERVC INABOVEG RINSEMATER, ALKALNE 0378 TANK 10500 INSERVC INABOVEG SUFACTANTS 0378 TANK 10500 INSERVC INABOVEG SUFACTANTS 0379 TANK 441B INSERVC INABOVEG SUFUCIANTS 0374 TANK 11570 INSERVC INABOVEG SUFUCIANTS 0375 TANK 4158 INSERVC INABOVEG TURCO MASKANT 0376 TANK 4158 INSERVC INABOVEG TURCO MASKANT 0377 TANK 4150 INSERVC INABOVEG TURCO MASKANT 0378 TANK 1570 INSERVC INABOVEG TURCO MASKANT 0447 TANK 1570 INSERVC INABOVEG TURCO MASKANT 0455 TANK 6120 INSERVC INABOVEG RINSEMATER, ALKALINE 0460 TANK 4418 INSERVC INABOVEG RINSEMATER, ALCID 0461 TANK 6120 INSERVC INABOVEG RINSEMATER, ALCID 0463 TANK 6120 INSERVC INABOVEG RINSEMATER, ALCID 0464 TANK 6120 INSERVC INABOVEG RINSEMATER, ALCID 0464 TANK 6120 INSERVC INABOVEG RINSEMATER, ALCID 0469 TANK 41200 INSERVC INABOVEG RINSEMATER, ALCID 0460 TANK 2200 INSERVC INABOVEG RINSEMATER, ALCID 0461 TANK 6120 INSERVC INABOVEG		A DE ENV	VIRINMENT		1		
CILITY ID NUMBER : 000001 APPLICATION DUE : 08/01/93 TANK/STORAGE CAPACITY STATUS LOCATION TYPE OF MATERIAL STORED 0304 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0325 TANK 50 INSERVC INABOVEG TRICHCROETHANE, 1.1.1-1 0350 TANK 50 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 1000 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 1000 INSERVC INABOVEG RINSEWATER, ALKALINE 0361 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0362 TANK 9800 INSERVC INABOVEG RINSEWATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RIDOLENE 73 0371 TANK 10500 INSERVC INABOVEG SUFACTANTS 0372 TANK 418 INSERVC INABOVEG SUFACTANTS 0378 TANK 10500 INSERVC INABOVEG SUFACTANTS 0379 TANK 4418 INSERVC INABOVEG SUFACTANTS 0379 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0400 TANK 4418 INSERVC INABOVEG GLVCDL 0403 TANK 1570 INSERVC INABOVEG GLVCDL 0403 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0404 TANK 1570 INSERVC INABOVEG GLVCDL 0403 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0404 TANK 1570 INSERVC INABOVEG RINSEWATER, ACID 0405 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0406 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0407 TANK 412630 INSERVC INABOVEG RINSEWATER, ACID 0408 TANK 412630 INSERVC INABOVEG RINSEWATER, ACID 0409 TANK 4100 INSERVC INABOVEG SUDIUM HYDROXIDE 0400 TANK 4418 INSERVC INABOVEG SUDIUM HYDROXIDE 0400 TANK 41200 INSERVC INABOVEG SUDIUM HYDROXIDE 0404 TANK 6120 INSERVC INABOVEG SUDIUM OICHROMATE 04051 TANK 6120 INSERVC INABOVEG SUDIUM OICHROMATE 04	ASSAU (COUNTY (DEPARTMEN	T DE HEAL	ТН		
CILITY ID NUMBER : 000001 PPLICATION DUE : 08/01/93 TANK/STORAGE CAPACITY STATUS LOCATION TYPE OF MATERIAL STORED 0304 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0325 TANK 50 INSERVC INABOVEG TRICHLOROFTHANE, 1.1.1- 0350 TANK 50 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 10500 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0360 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0362 TANK 900 INSERVC INABOVEG RINSEWATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0366 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0372 TANK 10500 INSERVC INABOVEG RIDOLENE 73 0371 TANK 10500 INSERVC INABOVEG SUFFACTANTS 0388 TANK 1570 INSERVC INABOVEG SUFFACTANTS 0388 TANK 1570 INSERVC INABOVEG SUDIUM HYDROXIDE 0400 TANK 4418 INSERVC INABOVEG SUDIUM HYDROXIDE 0400 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0403 TANK 2800 INSERVC INABOVEG RINSEWATER, ACID 0404 TANK 1570 INSERVC INABOVEG RINSEWATER, ACID 0405 TANK 6120 INSERVC INABOVEG RINSEWATER, ALKALINE 0406 TANK 4418 INSERVC INABOVEG RINSEWATER, ALKALINE 0451 TANK 6120 INSERVC INABOVEG RINSEWATER, ALKALINE 0452 TANK 6120 INSERVC INABOVEG RINSEWATER, ALKALINE 0453 TANK 6120 INSERVC INABOVEG RINSEWATER, ALKALINE 0454 TANK 6120 INSERVC INABOVEG RINSEWATER, ALKALINE 0455 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0454 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0455 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0451 TANK 6120 INSERVC INABOVEG 0400 TANK 4120 I						NOV 0 9 194	
APPLICATION DUE : 08/01/93 TANK/STORAGE CAPACITY STATUS LOCATION TYPE OF MATERIAL STORED 0304 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 300 INSERVC INABOVEG PAINT, MISC 0305 TANK 50 INSERVC INABOVEG TRICHLORDETHANE, 1,1,1-1 0350 TANK 50 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0357 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0359 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0350 TANK 450 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION 0351 TANK 450 INSERVC INABOVEG POTASSIUM HYDROXIDE & NITRATE 0361 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0362 TANK 900 INSERVC INABOVEG RINSEWATER, ALKALINE 0363 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0364 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0365 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0366 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0367 TANK 4508 INSERVC INABOVEG RINSEWATER, ALKALINE 0368 TANK 10500 INSERVC INABOVEG RINSEWATER, ALKALINE 0369 TANK 410500 INSERVC INABOVEG RIDOLENE 73 0371 TANK 10500 INSERVC INABOVEG SUFACTANTS 0378 TANK 618 INSERVC INABOVEG SUFACTANTS 0378 TANK 418 INSERVC INABOVEG SODIUM HYDROXIDE 0400 TANK 4418 INSERVC INABOVEG SODIUM HYDROXIDE 0400 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0401 TANK 4418 INSERVC INABOVEG RINSEWATER, ACID 0402 TANK 2800 INSERVC INABOVEG RINSEWATER, ACID 0403 TANK 1570 INSERVC INABOVEG RINSEWATER, ACID 0404 TANK 1570 INSERVC INABOVEG RINSEWATER, ACID 0405 TANK 4618 INSERVC INABOVEG RINSEWATER, ACID 0406 TANK 4618 INSERVC INABOVEG RINSEWATER, ACID 0407 TANK 4618 INSERVC INABOVEG RINSEWATER, ACID 0408 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0409 TANK 4618 INSERVC INABOVEG RINSEWATER, ACID 0409 TANK 4618 INSERVC INABOVEG RINSEWATER, ACID 0409 TANK 4610 INSERVC INABOVEG RINSEWATER, ACID 0451 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0451 TANK 6120 INSERVC INABOVEG RINSEWATER, ACID 0451 TANK 6120 INSERVC INABOVEG TANK, WATER RINSE 0452 TANK 6120 INSERVC INABOVEG TANK, WATER RINSE 0453 TANK 6120 INSERVC INABOV	ACILITY	ID NUN	ABER : 00	0001			
APPLICATION DUE: 08/01/93TANK/STORAGE CAPACITY STATUSLOCAMIONTYPE OF MATERIAL STORED0304TANK300INSERVCINABOVEG0315TANK300INSERVCINABOVEG0325TANK50INSERVCINABOVEG0326TANK50INSERVCINABOVEG0357TANK50INSERVCINABOVEG0357TANK50INSERVCINABOVEG0357TANK450INSERVCINABOVEG0357TANK450INSERVCINABOVEG0360TANK14000INSERVCINABOVEG0361TANK10500INSERVCINABOVEG0362TANK10500INSERVCINABOVEG0363TANK10500INSERVCINABOVEG0364TANK10500INSERVCINABOVEG0371TANK10500INSERVCINABOVEG0372TANK10500INSERVCINABOVEG0373TANK10500INSERVCINABOVEG0374TANK10500INSERVCINABOVEG0375TANK10500INSERVCINABOVEG0376TANK10500INSERVCINABOVEG0377TANK10500INSERVCINABOVEG0378TANK115INSERVC0389TANK115INSERVC0399TANK418INSERVC0399TANK1570INSERVC0400<						WOULPER	
TANK/STORAGE CAPACITY STATUSLOCATIONTYPE OF MATERIAL STORED0304TANK300INSERVCINABOVEGPAINT, MISC0305TANK300INSERVCINABOVEGPAINT, MISC0325TANK50INSERVCINABOVEGTRICHLOROETHANE, 1,1,1-0350TANK50INSERVCINABOVEGTRICHLOROETHANE, 1,1,1-0355TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRIDUENE0365TANK10500INSERVCINABOVEGRIDUENE0371TANK10500INSERVCINABOVEGSULTIONS, NOS0372TANK10500INSERVCINABOVEGSULTIONS, NOS0373TANK1150INSERVCINABOVEGSULUTIONS, NOS0374TANK1250INSERVCINABOVEGSULUTIONS, NOS0374TANK1250INSERVCINABOVEGSULUTIONS, NOS	APPLICAT	LON DUE	E : 08,	/01/93		NUUN-BLIN	1
TANK/STORAGE CAPACITY STATUSLOCATIONTYPE OF MATERIAL STORED0304TANK300INSERVCINABOVEGPAINT, MISC0305TANK300INSERVCINABOVEGPAINT, MISC0325TANK50INSERVCINABOVEGTRICHLORDETHANE, 1,1,1-0357TANK50INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0359TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGPOTASSIUM HYDROXIDE & NITRATE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRIDUENE 730371TANK10500INSERVCINABOVEGSULFACTANTS0372TANK10500INSERVCINABOVEGSULTIONS, NOS03732TANK10500INSERVCINABOVEGSULTIONS, NOS0374TANK10500INSERVCINABOVEGSULTIONS, NOS0374TANK10500INSERVCINABOVEGSULTIONS, NOS0375TANK10500INSERVCINABOVEGSULTIONS, NOS0376TANK10500INSERVCINABOVEGSULUTIONS, NOS <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>i i</td>					1		i i
TANK/STDRAGE CAPACITY STATUSLOCALOCATYPE OF MATERIALSTORED0304TANK300INSERVCINABOVEGPAINT, MISC0305TANK300INSERVCINABOVEGPAINT, MISC0325TANK50INSERVCINABOVEGTRICHLOROETHANE, 1,1,1-0350TANK50INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0359TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGRINSEMATER, ALKALINE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0376TANK10500INSERVCINABOVEGZVGLO PENETRANT0371TANK10500INSERVCINABOVEGSUDITIONS, NOS0372TANK115INSERVCINABOVEGSUDIUTION0384TANK115INSERVCINABOVEGSUDIUTION0399TANK418INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSUDIUM HYDROXIDE0401TANK1570INSERVCINABOVEGSUDI							Ų.
0304TANK300INSERVCINABOVEGPAINT, MISC0305TANK50INSERVCINABOVEGTAICHLORGETHANE, 1,1,1-0350TANK50INSERVCINABOVEGTRICHLORGETHANE, 1,1,1-0355TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0361TANK14000INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0378TANK10500INSERVCINABOVEGRIDOLENE 730371TANK10500INSERVCINABOVEGRUDORIC ACID MIX0378TANK10500INSERVCINABOVEGRUDORIC ACID MIX0384TANK1570INSERVCINABOVEGGLODINE0399TANK418INSERVCINABOVEGGLODINE0400TANK2800INSERVCINABOVEG	TANK/S	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL	STORED
0305TANK300INSERVCINABOVEGPAINT, MISC0326TANK50INSERVCINABOVEGTRICHLOROETHANE, 1,1,1-0350TANK50INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRIDOLENE 730371TANK10500INSERVCINABOVEGZYGLD PENETRANT0384TANK115INSERVCINABOVEGSUDUTION0399TANK418INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGUYCOL0403TANK1570INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGUYCOL0401TANK1570INSERVCINABOVEGGUYCOL0403TANK4500INSERVCINABOVEGGUYCOL04	0304	TANK	300	INSERVE	INABOVEG	PAINT, MISC	
0325TANK50INSERVCINABOVEGTRICHLORGETHANE, 1,1,1-0350TANK50INSERVCINABOVEGTRICHLORGETHANE, 1,1,1-0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK9800INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0366TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0371TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0384TANK10500INSERVCINABOVEGZIGLO PENETRANT0388TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0400TANK418INSERVCINABOVEGSODIUM HYDROXIDE0401TANK2800INSERVCINABOVEGGLYCOL0402TANK418INSERVCINABOVEGGLYCOL0403TANK418INSERVC	0305	TANK	300	INSERVC	INABOVEG	PAINT, MISC	
0350TANK50INSERVCINABOVEGTRICHLORDETHANE, 1,1,1-0355TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0359TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0361TANK1000INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK9800INSERVCINABOVEGNITRIC & HYDROFLUORIC ACID MIX0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRIDOLENE 730371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOS0372TANK10500INSERVCINABOVEGSUFACTANTS0388TANK15INSERVCINABOVEGSUFOFLUORIC ACID MIX0384TANK15INSERVCINABOVEGSUJUM HYDROXIDE0400TANK4418INSERVCINABOVEGSUJUM HYDROXIDE0400TANK4418INSERVCINABOVEGRIDOLENE 530456TANK1570INSERVCINABOVEGRINSEWATER, ACID0457TANK6120INSERVCINABOVEGRIDUENE0456TANK6300INSERVCINABOVEGRIDUENE0457TANK6120INSERVCINABOVEGRI	0325	TANK	50	INSER-VC	INABOVEG	TRICHLOROETHANE,	1,1,1-
0355TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGPOTASSIUM HYDROXIDE & NITRIE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK9800INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCUIABOVEGRIDOLENE 730371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOS0372TANK618INSERVCINABOVEGSURFACTANTS0384TANK115INSERVCINABOVEGSUDIUM HYDROXIDE0397TANK418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGLYCOL0401TANK1570INSERVCINABOVEGGLYCOL0402TANK4418INSERVCINABOVEGGLYCOL0403TANK4500INSERVCINABOVEGRINSEWATER, ACID0404TANK1570INSERVCINABOVEGRINSEWATER, ACID<	0350	TANK	50	I NSERV C	INABOVEC	TRICHLOROETHANE,	1+1+1-
0357TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0359TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGPOTASSIUM HYDROXIDE & NITRATE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0366TANK10500INSERVCINABOVEGRIDUENE 730371TANK10500INSERVCUTABOVEGRIDUENE 730371TANK10500INSERVCINABOVEGRIDUTIONS, NOS0378TANK10500INSERVCINABOVEGZYGLO PENETRANT0384TANK115INSERVCINABOVEGSODIUM HYDROXIDE0399TANK4418INSERVCINABOVEGGLYCOL0400TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0404TANK12630INSERVCINABOVEGRIDUENE 530456TANK6120INSERVCINABOVEGRIDUENE 530456TANK6120INSERVCINABOVEGRINSEWATER, ACID0451TANK6120INSERVCINABOVEGRIDUENE 530456TANK </td <td>0355</td> <td>TANK</td> <td>450</td> <td>INSERVC</td> <td>INABOVEG</td> <td>CHROME DEACTIVATI</td> <td>NG SOLUTION</td>	0355	TANK	450	INSERVC	INABOVEG	CHROME DEACTIVATI	NG SOLUTION
0359TANK450INSERVCINABOVEGCHROME DEACTIVATING SOLUTION0360TANK14000INSERVCINABOVEGPOTASSIUM HYDROXIDE & NITRATE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0364TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0366TANK10500INSERVCINABOVEGRIDOLENE 730371TANK10500INSERVCOUTABOVEALKALINE0372TANK618INSERVCINABOVEGSUFACTANTS0378TANK618INSERVCINABOVEGSUFACTANTS0388TANK1570INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGLYCOL0401TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0451TANK1250INSERVCINABOVEGRINSEWATER, ALKALINE0455TANK1250INSERVCINABOVEGRIDOLNM0451TANK1260INSERVCINABOVEGRIDOLNE0455TANK6120INSERVCINABOVEGRIDOLNE0455TANK6120INSERVCINABOVEGRIDOLNE0456TANK6120INSERVCINA	0357	TANK	450	INSERVC	INABOVEG	CHROME DEACTIVATI	ING SOLUTION
0360TANK14000INSERVCINABOVEGPOTASSIUM HYDROXIDE & NITRATE0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0366TANK10500INSERVCINABOVEGRIDOLENE 730371TANK10500INSERVCOUTABOVEALKALINE0364TANK10500INSERVCOUTABOVEALKALINE0372TANK10500INSERVCDUABOVEALKALINE0374TANK115INSERVCINABOVEGSURFACTANTS0384TANK115INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSUDIUM HYDROXIDE0400TANK2800INSERVCINABOVEGGUYCOL0403TANK2800INSERVCINABOVEGGUYCOL0403TANK2800INSERVCINABOVEGRIDOLENE 530456TANK6120INSERVCINABOVEGRIDOLENE 530456TANK6120INSERVCINABOVEGRUNEWATER, ALKALINE0457TANK6120INSERVCINABOVEGRUDOINE0458TANK6120INSERVCINABOVEGRUDOINE0456TANK6120INSERVCINABOVEGRUDOINE0457TANK6120INSERVCINABOVEGRU	0359	TANK	450	INSERVC	INABOVEG	CHROME DEACTIVATI	ING SOLUTION
0361TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0362TANK9800INSERVCINABOVEGRINSEWATER, ALKALINE0363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0366TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE0371TANK10500INSERVCOUTABOVEGALKALINE0372TANK10500INSERVCOUTABOVEGALKALINE0373TANK10500INSERVCINABOVEGZYGLO PENETRANT0378TANK618INSERVCINABOVEGALDDINE0384TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGLYCOL0401TANK2800INSERVCINABOVEGRINSEWATER, ACID0402TANK2800INSERVCINABOVEGRINSEWATER, ACID0442TANK12530INSERVCINABOVEGRINSEWATER, ALKALINE0451TANK12630INSERVCINABOVEGRINSEWATER, ALKALINE0455TANK6120 INSERVCINABOVEG RINSEWATER, ALKALINE0456TANK6300 INSERVCINABOVEG RINSEWATER, ACID0458TANK6300INSERVCINABOVEGALDOINE0459TA	0360	TANK	14000	INSERVC	INABOVEG	POTASSIUM HYDROXI	IDE & NITRATE
3362TANK9800INSERVCINABOVEGNITRIC & HYDROFLUORIC ACID MIX3363TANK10500INSERVCINABOVEGRINSEWATER, ACID3365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE3364TANK10500INSERVCUTABOVEALKALINE SOLUTIONS, NOS371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOS372TANK10500INSERVCDELOWGNITRIC & HYDROFLUORIC ACID MIX0378TANK618INSERVCINABOVEGSUFACTANTS0384TANK115INSERVCINABOVEGSUFACTANTS0388TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRINSEWATER, ALKALINE0455TANK6120HNSERVCINABOVEGRINSEWATER, ACID0457TANK6120HNSERVCINABOVEGRINSEWATER, ACID0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6885INSERVCINABOVEGSULPHURIC ACID0458TANK6885INSERVCINABOVEGRINSEWATER, ACID0	0361	TANK	10500	INSERVC	INABOVEG	RINSEWATER, ALKAL	INE
3363TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE3365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINE3365TANK10500INSERVCINABOVEGRIDOLENE 733371TANK10500INSERVCBELOWGNITRIC & HYDROFLUORIC ACID MIX3372TANK10500INSERVCBELOWGNITRIC & HYDROFLUORIC ACID MIX3373TANK618INSERVCINABOVEGSURFACTANTS3384TANK115INSERVCINABOVEGSURFACTANTS3384TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0443TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530456TANK6120HNSERVCINABOVEGRINSEWATER, ACID0457TANK6180INSERVCINABOVEGSULPHURIC ACID0458TANK6300INSERVCINABOVEGSULPHURIC ACID0459TANK6895INSERVCINABOVEGSULPHURIC ACID0454TANK6120INSERVCINABOVEGSULPHURIC ACID0458TANK6120 <td< td=""><td>0362</td><td>TANK</td><td>9800</td><td>INSERVC</td><td>INABOVEG</td><td>NITRIC & HYDROFLL</td><td>JORIC ACID MIX</td></td<>	0362	TANK	9800	INSERVC	INABOVEG	NITRIC & HYDROFLL	JORIC ACID MIX
D365TANK10500INSERVCINABOVEGRINSEWATER, ALKALINED366TANK10500INSERVCINABOVEGRIDOLENE 73D371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOSD372TANK10500INSERVCBELOWGNITRIC & HYDROFLUORIC ACID MIXD378TANK618INSERVCINABOVEGZYGLO PENETRANTD384TANK115INSERVCINABOVEGSUFFACTANTSD388TANK1570INSERVCINABOVEGSUFFACTANTSD388TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0401TANK2800INSERVCINABOVEGGLYCOL0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0404TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK1570INSERVCINABOVEGRINSEWATER, ACID0455TANK6120INSERVCINABOVEGRINSEWATER, ALKALINE0456TANK6120INSERVCINABOVEGRINSEWATER, ACID0457TANK6120INSERVCINABOVEGSULPHURIC ACID0458TANK6300INSERVCINABOVEGSULPHURIC ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0458TANK6300	0363	TANK	10500	INSERVC	INABOVEG	RINSEWATER, ACID	
D366TANK10500INSERVCINABOVEGRIDOLENE 73D371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOSD372TANK10500INSERVCBELONGNITRIC & HYDROFLUORIC ACID MIXD378TANK618INSERVCINABOVEGZYGLO PENETRANTD384TANK115INSERVCINABOVEGSURFACTANTSD388TANK115INSERVCINABOVEGSURFACTANTSD388TANK1570INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0401TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0403TANK12630INSERVCINABOVEGRIDOLENE 530451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120INSERVCINABOVEGRINSEWATER, ACID0457TANK6120INSERVCINABOVEGRINSEWATER, ACID0458TANK6300INSERVCINABOVEGSUDHUNIC ACID0461TANK6120INSERVCINABOVEGSUDHUNIC0459TANK6120INSERVCINABOVEGRINSEWATER, ACID0459TANK6120INSERVCINABOVEGSUDHUNIC0461TANK6120INSERVCINABOVEGSODIUM0461TANK6120INSERVCINABOVEG <t< td=""><td>0365</td><td>TANK</td><td>10500</td><td>INSERVC</td><td>INABOVEG</td><td>RINSEWATER, ALKAL</td><td>INE</td></t<>	0365	TANK	10500	INSERVC	INABOVEG	RINSEWATER, ALKAL	INE
D371TANK10500INSERVCOUTABOVEALKALINE SOLUTIONS, NOSD372TANK10500INSERVCBELOWGNITRIC & HYDROFLUORIC ACID MIXD378TANK618INSERVCINABOVEGZYGLO PENETRANTD384TANK115INSERVCINABOVEGSURFACTANTSD388TANK1570INSERVCINABOVEGALODINED399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0443TANK12630INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120 INSERVCINABOVEG RINSEWATER, ALKALINE0457TANK6120 INSERVCINABOVEG RINSEWATER, ACID0458TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSULPHURIC ACID0461TANK6120INSERVCINABOVEGSULPHURIC ACID0462TANK6300INSERVCINABOVEGSODIUM0461TANK6120INSERVCINABOVEGSODIUM0462TANK6120INSERVCINABOVEG	0366	TANK	10500	INSERVC	INABOVEG	RIDOLENE 73	
D372TANK10500INSERVCBELOWGNITRIC & HYDROFLUORIC ACID MIX0378TANK618INSERVCINABOVEGZYGLO PENETRANT0384TANK115INSERVCINABOVEGSURFACTANTS0388TANK1570INSERVCINABOVEGALODINE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0443TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRINSEWATER, ACID0455TANK6120INSERVCINABOVEGRIDOLENE 530456TANK6120INSERVCINABOVEGRINSEWATER, ALKALINE0457TANK6120INSERVCINABOVEGRINSEWATER, ACID0458TANK6300INSERVCINABOVEGSULPHURIC ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6120INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6120INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGTANK, WATER RINSE0462TANK6120I	0371	TANK	10500	INSERVC	OUTABOVE	ALKALINE SOLUTION	IS + NOS
0378TANK618INSERVCINABOVEGZYGLOPENETRANT0384TANK115INSERVCINABOVEGSURFACTANTS0388TANK1570INSERVCINABOVEGALODINE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0404TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120INSERVCINABOVEGRINSEWATER, ALKALINE0457TANK6120INSERVCINABOVEGRINSEWATER, ACID0457TANK6300INSERVCINABOVEGRINSEWATER, ACID0458TANK6300INSERVCINABOVEGSODIUM DICHROMATE0459TANK6300INSERVCINABOVEGSODIUM DICHROMATE0460TANK6120INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6160INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO0461TANK6120INSERVC	0372	TANK	10500	INSERVC	BELOWG	NITRIC & HYDROFLU	JORIC ACID MIX
0334TANK115INSERVCINABOVEGSURFACTANTS0388TANK1570INSERVCINABOVEGALODINE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0404TANK1570INSERVCINABOVEGGLYCOL0447TANK12630INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120INSERVCINABOVEGRINSEWATER, ALKALINE0457TANK6300INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0493TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS0503TANK115INSERVCINABOVEGALKALIN	0378	TANK	618	INSERVC	INABOVEG	ZYGLO PENETRANT	
0388TANK1570INSERVCINABOVEGALUDINE0399TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0400TANK4418INSERVCINABOVEGSODIUM HYDROXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0447TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE0455TANK6120INSERVCINABOVEGRINSEWATER, ALKALINE0456TANK6300INSERVCINABOVEGALODINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGALODINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGZYGLO PENETRANT0490TANK2700INSERVCINABOVEGZYGLO PENETRANT0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINE0493TANK6750INSERVCINABOVEGALKALINE0503	0384	TANK	115	INSERVC	INABOVEG	SURFACTANTS	
0399TANK4418INSERVCINABOVEGSUDIUMHYDRUXIDE0400TANK4418INSERVCINABOVEGSUDIUMHYDRUXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0447TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120INSERVCINABOVEGRIDOLENE 530456TANK6300INSERVCINABOVEGALDDINE0457TANK6120INSERVCINABOVEGALDDINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6100INSERVCINABOVEGSODIUM DICHROMATE0461TANK6100INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0490TANK2700INSERVCINABOVEGMAGNAFLUX0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGGLACALINE SOLUTIONS, NOS0504TANK115INSERVCINABOVEG </td <td>0388</td> <td>TANK</td> <td>1570</td> <td>INSERVC</td> <td>INABOVEG</td> <td>ALUDINE</td> <td></td>	0388	TANK	1570	INSERVC	INABOVEG	ALUDINE	
0400TANK4418INSERVCINABOVEGSUDIUMHYDRUXIDE0402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0447TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGTURCO0455TANK6120INSERVCINABOVEGRIDOLENE0456TANK6300INSERVCINABOVEGALODINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6300INSERVCINABOVEGRINSEWATER, ACID0460TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0490TANK2700INSERVCINABOVEGMAGNAFLUX0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINE0503TANK115INSERVCINABOVEGALKALINE0503TANK115INSERVCINABOVEGALKALINE0503TANK115INSERVCINABOVEGALKALINE0503 <td>0399</td> <td>TANK</td> <td>4418</td> <td>INSERVC</td> <td>INABUVEG</td> <td>SUDIUM HYDRUXIDE</td> <td></td>	0399	TANK	4418	INSERVC	INABUVEG	SUDIUM HYDRUXIDE	
5402TANK2800INSERVCINABOVEGGLYCOL0403TANK2800INSERVCINABOVEGGLYCOL0447TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGRIDOLENE 530455TANK6120INSERVCINABOVEGRIDOLENE 530456TANK6300INSERVCINABOVEGALODINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSODIUM DICHROMATE0460TANK6120INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0490TANK2700INSERVCINABOVEGMAGNAFLUX0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINE SOLUTIONS, NOS0503TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS	0400	TANK	4418	INSERVC	INABUVEG	SUDIUM HYDRUXIDE	
0403TANK2800INSERVCINABOVEGGLYCUL0447TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGTURCO0455TANK6120INSERVCINABOVEGRIDOLENE0456TANK6300INSERVCINABOVEGRINSEWATER, ALKALINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGALODINE0459TANK6300INSERVCINABOVEGRINSEWATER, ACID0460TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0490TANK2700INSERVCINABOVEGZYGLO PENETRANT0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINE0503TANK115INSERVCINABOVEGCUNATION	0402	TANK	2800	INSERVC	INABUVEG	GLYCUL	
0449TANK1570INSERVCINABOVEGRINSEWATER, ACID0451TANK12630INSERVCINABOVEGTURCOMASKANT0455TANK6120 INSERVCINABOVEG RIDULENE530456TANK6300 INSERVCINABOVEG RINSEWATER, ALKALINE0457TANK6120 INSERVCINABOVEG ALODINE0458TANK6300 INSERVCINABOVEG RINSEWATER, ACID0459TANK6300INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLOPENETRANT0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINESOLUTIONS, NOS0503TANK115INSERVCINABOVEGALKALINESOLUTIONS, NOS	0403	TANK	2800	INSERVC	INABUVEG	GLYCUL	
0451TANK12630INSERVCINABOVEGTURED MASKANT0455TANK6120INSERVCINABOVEGRIDOLENE 530456TANK6300INSERVCINABOVEGRINSEWATER, ALKALINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6885INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGZYGLO PENETRANT0469TANK2700INSERVCINABOVEGZYGLO PENETRANT0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGALKALINE SOLUTIONS, NOS0503TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS	0447	TANK	1570	INSERVC	INABUVEG	RINSEWATER, ALIU	
J455TANKS120INSERVCINABOVESRIDULENE 530456TANK6300INSERVCINABOVESRINSEWATER, ALKALINE0457TANK6120INSERVCINABOVESALODINE0458TANK6300INSERVCINABOVESRINSEWATER, ACID0459TANK6885INSERVCINABOVESSULPHURIC ACID0460TANK6300INSERVCINABOVESRINSEWATER, ACID0461TANK6120INSERVCINABOVESSODIUM DICHROMATE0462TANK6100INSERVCINABOVESTANK, WATER RINSE0490TANK2700INSERVCINABOVESZYGLO PENETRANT0491TANK2200INSERVCINABOVESMAGNAFLUX0493TANK6750INSERVCINABOVESALKALINE SOLUTIONS, NOS0503TANK115INSERVCINABOVESALKALINE SOLUTIONS, NOS	0451	TANK	12630	INSERVU	INABUVEG	IURLU MASKANI	
0456TANK0500INSERVCINABOVEGALDDINE0457TANK6120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6885INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLO0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS0504TANK100INSERVCINABOVEGALKALINE SOLUTIONS, NOS	J455 0454		6120	INSERVC-	INABOVEC		TALE
0457TANK0120INSERVCINABOVEGALODINE0458TANK6300INSERVCINABOVEGRINSEWATER, ACID0459TANK6885INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLO0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS0504IANK1200INSERVCINABOVEGALKALINE SOLUTIONS, NOS	0450		6300	INCERVE		ALODINE	.1110
0438TANK0300INSERVCINABOVEGRINSEWATERV ACID0459TANK6885INSERVCINABOVEGSULPHURIC ACID0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLO0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGALKALINE SOLUTIONS, NOS0504TANK1200INSERVCINABOVEGALKALINE SOLUTIONS, NOS	0457		6120	TNSERVC	INABOVEC	ALUDINE DINSEWATER, ACID	
0460TANK0889INSERVCINABOVEGSOLPHORICACIO0460TANK6300INSERVCINABOVEGRINSEWATER, ACID0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLO0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGALKALINE0504TANK1200INSERVCINABOVEGCURDARE	0420		6300	TNSERVC	TNADOVEC	SUL DEURIC ACTO	
0400TANK0500INSERVCINABOVEGKINSERATERV ACTO0461TANK6120INSERVCINABOVEGSODIUM DICHROMATE0462TANK6100INSERVCINABOVEGTANK, WATER RINSE0490TANK2700INSERVCINABOVEGZYGLO0491TANK2200INSERVCINABOVEGMAGNAFLUX0493TANK6750INSERVCINABOVEGMAGNAFLUX0503TANK115INSERVCINABOVEGALKALINE0504TANK115INSERVCINABOVEGALKALINE	0459	TANK	6300	INSERVC	INABOVEG	PINSEWATER, ACID	
0462 TANK 6100 INSERVC INABOVEG SUBTOR DICHROMATE 0462 TANK 6100 INSERVC INABOVEG TANK, WATER RINSE 0490 TANK 2700 INSERVC INABOVEG ZYGLO PENETRANT 0491 TANK 2200 INSERVC INABOVEG MAGNAFLUX 0493 TANK 6750 INSERVC INABOVEG MAGNAFLUX 0503 TANK 115 INSERVC INABOVEG ALKALINE SOLUTIONS, NOS	0480	TANK	6120	INSERVC	INABOVEC	SODTIM DICHPOMATE	:
0490 TANK 2700 INSERVC INABOVEG ZYGLO PENETRANT 0491 TANK 2200 INSERVC INABOVEG MAGNAFLUX 0493 TANK 6750 INSERVC INABOVEG MAGNAFLUX 0503 TANK 115 INSERVC INABOVEG ALKALINE SOLUTIONS, NOS	0461	TANK	6120	INSERVC	INABOVEG	TANK - WATER DING	
0491 TANK 2200 INSERVC INABOVEG MAGNAFLUX 0493 TANK 6750 INSERVC INABOVEG MAGNAFLUX 0503 TANK 115 INSERVC INABOVEG ALKALINE SOLUTIONS, NOS	0402		2700	INCEDUC	TNAROVEC	TYGI O DENETDANT	-
0493 TANK 6750 INSERVC INABOVEG MAGNAFLUX 0503 TANK 115 INSERVC INABOVEG ALKALINE SOLUTIONS, NOS	0490		2200	INSERVC	INABOVEC	MAGNAFLIIY	
0503 TANK 115 INSERVC INABOVEG ALKALINE SOLUTIONS, NOS	0491	TANK	6750	INSERVC	INABOVEC	MAGNAFILIY	
DECK TANK I I TREEVE THADAVE CONCERNENCE OF TATTAL SOUNTION	0503	TANK	115	INSERVC	INAROVEG		S. NOS
UNUD LANK ISUU INNEKVI INABUVEL IERUME DEALTIVATUNG NUTITUM	0506	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVATI	
0508 TANK 1300 INSERVC INABOVEG CHROME DEACTIVATING SOLUTION	0508	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVAT	ING SOLUTION

THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED ABOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: APACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS F THE TANK OR AREA.

'HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON HIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT J THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

IGNATURE, Ohm

TITLE DATE Dir., Corp. Env. Tech. & Comp. 12/24/93

J. OHLMANN

STORAGE FACILITY PERMIT VISION OF ENVIRONMENTAL HEALTH SSAU COUNTY DEPARTMENT OF HEALTH . (8/01/93

CILITY ID NUMBER : 000001

RECEINED

jela openio. N

NOV 29 1093

APPLICATION DUE : 08/01/93

NCOH-BEM

					A
TANK/	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL STORED
0520	TANK	4670	INSERVC	INABOVEG	ALODINE
0594	TANK	3200	INSERVC	INABOVEG	SODIUM NITRATE
0601	TANK	650	INSERVC	INABOVEG	BASIC DEACTIVATING SOLUTION
0602	TANK	550	INSER-VC	INABOVEG	CHROME DEACTIVATING SOLUTION
0603	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVATING SOLUTION
0604	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVATING SOLUTION
0605	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVATING SOLUTION
3606	TANK	1300	INSERVC	INABOVEG	CHROME DEACTIVATING SOLUTION
06 07	TANK	290	INSERVC	INABOVE6	TANK, WATER RINSE
0644	TANK	2350	INSERVC	INABOVEG	NITRIC ACID & SODIUM SULFATE
0645	TANK	2350	INSERVC	INABOVEG	RINSEWATER, ACID
0697	TANK	1800	INSER₩C	INABOVEG	TURCO MASKANT
)740	TANK	185	INSERVC	INABOVEG	PHOSPHORIC ACID
780	TANK	748	INSERVC	INABOVEG	CAUSTICS
0793	TANK	3600	INSERVC	OUTABOVE	PAINT, MISC
0794	TANK	3500	INSERVC	JUTABOVE	PAINT, MISC
0815	TANK	3600	INSERVC	OUTABOVE	ALODINE
2885	TANK	4000	INSERVC-	- JUTABOVE	TRICHLOROETHYLENE
2930	TANK	50	INSERVC	INABOVEG	FREON
0934	TANK	675	I-NSERVC-	INABOVEC	NITRIC ACID
0935	TANK	675	I NSERVC	- INABOVEC	RINSEWATER, ACID
2939	TANK	1570	INSERVC	INABOVEG	RINSEWATER, ALKALINE
)941	TANK	500	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-
0947	TANK	470	INSERVC	INABOVEG	NITRIC & HYDROFLUORIC ACID MIX
0956	TANK	6100	INSERVC	INABOVEG	RIDOLENE 53
2957	TANK	6100	INSERVC	INABOVEG	RINSEWATER, ALKALINE
0958	TANK	6100	INSERVC	INABOVEG	ALODINE
0959	TANK	6100	INSERVC	INABOVEG	RINSEWATER, ACID
)984	TANK	50	I NSER∀C	- INABOVEC	TRICHLOROETHANE, 1,1,1-
1021	TANK	1465	INSERVC	INABOVEG	SULFURIC & OXALIC ACID MIX
1022	TANK	1465	INSERVC	INABOVEG	RINSEWATER, ACID
1023	TANK	1465	INSERVC	INABOVEG	ALODINE
1024	TANK	1465	INSERVC	INABOVEG	TANK, WATER RINSE
1039	TANK	330	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
1052	TANK	157	INSERVC	INABOVEG	TANK, WATER RINSE
. 053	TANK	157	INSERVC	INABOVEG	SURFACTANTS
.054	TANK	157	INSERVC	INABOVEG	TANK, WATER RINSE
1055	TANK	157	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-

THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED 30VE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: "ACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS THE TANK OR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON .S FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT . THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME J. OHLMANN

SIGNATURE

DATE 24

APPLICATION FOR RENEWAL OF A TOXIC OR HAZARDOUS MATERIALS TORAGE FACILITY PERMIT IVISION OF ENVIRONMENTAL HEALTH

HASSAU COUNTY DEPARTMENT OF HEALTH

PAGE 5 08/01/93

jį.

RECEIVED

ACILITY ID NUMBER : 000001

APPLICATION DUE : 08/01/93

NOV 2 9 1003

NCOIL-BER

TANK/	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL STORED
1056	TANK	45	INSERVC	INABOVEG	NITRIC & HYDROFLUORIC ACID MIX
1057	TANK	23	INSERVC	INABOVEG	TANK, WATER RINSE
1058	TANK	45	INSERVC	INABOVEG	NITRIC & HYDROFLUORIC ACID MIX
1059	TANK	2 7 0	INSERVC	INABOVEG	TANK, WATER RINSE
1063	TANK	157	INSERVC	INABOVEG	ISOPROPYL ALCOHOL
1068	TANK	1570	INSERVC	INABOVEG	RIDOLENE 53
1069	TANK	1570	INSERVC	INABOVEG	RINSEWATER, ALKALINE
1071	TANK	630	INSERVC	INABOVEG	ACIDS, NOS
1092	TANK	5000	INSERVC	BELOWG	DYES/PIGMENTS, N.O.S.
1093	TANK	5000	INSERVC	BELOWG	DYES/PIGMENTS, N.D.S.
- +1104	TANK	185	INSERVC	INABOVEG	TANK, WATER RINSE
- #1106	TANK	185	INSERVC	INABOVEG	ALODINE
→1107	TANK	185	INSERVC	INABOVEG	TANK, WATER RINSE
- 1111	TANK	2160	INSERVC-	-OUTABOVE	WATER, WASTE-ORGANIC
1112	TANK	9975	INSERVC	INABOVEG	RINSEWATER, ACID
1120	TANK	9743	INSERVC	INABOVEG	SODIUM HYDROXIDE
1121	TANK	9743	INSERVC	INABOVEG	SODIUM HYDROXIDE
1122	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ALKALINE
1123	TANK	9743	INSERVC	INABOVEG	NITRIC ACID
1124	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ACID
1125	TANK	9743	INSERVC	INABOVEG	SODIUM HYDROXIDE
1126	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ALKALINE
1127	TANK	9743	INSERVC	INABOVEG	HYDROFLUORIC ACID
1128	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ACID
1129	TANK	9743	INSERVC	INABOVEG	NITRIC ACID
1130	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ACID
1131	TANK	9743	INSERVC	OUTABOVE	SODIUM HYDROXIDE
1132	TANK	9743	INSERVC	OUTABOVE	WATER, MISC. INDUSTRIAL WASTES
1133	TANK	9743	INSERVC	JUTABOVE	NITRIC ACID
1134	TANK	9743	INSERVC	OUTABOVE	NITRIC ACID
1137	TANK	7700	INSERVC	INABOVEG	TRICHLOROETHANE, 1,1,1-
1138	TANK	9200	INSERVC	INABOVEG	RIDOLENE 57
1139	TANK	17400	INSERVC	INABOVEG	RINSEWATER. ALKALINE
1140	TANK	9200	INSERVC	INABOVEG	SODIUM HYDROXIDE
1141	TANK	9200	INSERVC	INABOVEG	ALODINE
1142	TANK	17400	INSERVC	INABOVEG	RINSEWATER, ACID
1144	TANK	9200	INSERVC	INABOVEG	CHROMIC ACID
1145	TANK	17400	INSERVC	INABOVEG	RINSEWATER, ACID

IF THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED ABOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: APACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS JF THE TANK OR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON HIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE

DATE

APPLICATION FOR RENEWAL OF A COALO DA FORAGE FACILITY PERMIT

VISION OF ENVIRONMENTAL HEALTH

- CILITY ID NUMBER : 000001

APPLICATION DUE : 08/01/93

200 08/01/93

RFRFIVED

درد

NOV 2 9 1993

NCOH-BEM

TANK/	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL STORED
1150	TANK	9200	INSERVC	OUTABOVE	LACIDS, NOS
1151	TANK	9200	INSERVC	OUTABOVE	JACIDS, NOS
1152	TANK	9200	INSERVC	OUTABOVE	ACIDS, NOS
1156	TANK	517	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
1157	TANK	517	INSERVC	INABOVEG	EMPTY/AUXILARY TANK
1184	TANK	10300	INSERVC	OUTABOVE	NITRIC & HYDROFLUORIC ACID MIX
→1190	TANK	170	INSERVC	INABOVEG	NITRIC ACID
⇒1191	TANK	1800	INSERVC	DUTABOVE	TRADE NAME, ORGANIC
1193	TANK	3700	INSERVC	OUTABOVE	ACIDS, NOS
1194	TANK	3700	INSERVC	OUTABOVE	ACIDS, NOS
1196	TANK	2000	INSERVC	BELOWG	ACIDS, NOS
1199	TANK	750	INSERVC	- OUTABOVE	HYDROFLUORIC ACID
1200	TANK	5000	INSERVC-	-BUTABOVE	HYDROFLUORIC ACID
1201	TANK	1000	INSERVC	INABOVEG	TURCO MASKANT
1204	TANK	1000	INSERVC	BELOWG	OIL, FUEL #2
1207	TANK	10000	INSERVC	JUTABOVE	TETRACHLOROETHYLENE
1214	TANK	1850	INSERVC	INABOVEG	ORGANICS, MISC
1215	TANK	1850	INSERVC	INABOVEG	TRADE NAME, ORGANIC HALOGENATED
1221	TANK	2500	INSERVC	INABOVEG	TRICHLOROETHYLENE
1222	TANK	8800	INSERVC	INABOVEG	RIDOLENE 57
1223	TANK	17400	INSERVC	INABOVEG	TANK, WATER RINSE
1224	TANK	8800	INSERVC	INABOVEG	NITRIC ACID
1225	TANK	8800	INSERVC	INABOVEG	NITRIC ACID
1226	TANK	17400	INSERVC	INABOVEG	TANK, WATER RINSE
1228	TANK	8800	INSERVC	INABOVEG	ALODINE
1229	TANK	17400	INSERVC	INABOVEG	TANK, WATER RINSE
1230	TANK	8800	INSERVC	INABOVEG	SULPHURIC ACID
1231	TANK	17400	INSERVC	INABOVEG	TANK, WATER RINSE
1232	TANK	8800	INSERVC	INABOVEG	SODIUM DICHROMATE
1233	TANK	17400	INSERVC	INABOVEG	TANK, WATER RINSE
≯ 1239	TANK	900	INSERVC	INABOVEG	GLYCOL
1251	TANK	365	INSERVC	INABOVEG	TRICHLOROETHYLENE
1252	TANK	38430	INSERVC	INABOVEG	SILICATES, NOS
1253	TANK	38430	INSERVC	INABOVEG	TANK, WATER RINSE
1254	TANK	6000	INSERVC	OUTABOVE	METHANOL
1263	TANK	1600	INSERVC	INABOVEG	POTASSIUM NITRATE
1264	TANK	2700	INSERVC	INABOVEG	SODIUM NITRITE
1265	TANK	375	INSERVC	INABOVEG	LEAD

THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED 330VE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: PACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS THE TANK OR AREA.

I HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON I IS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT FO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE

DATE 11/24/93

PLICA	TION FO	R RENEWAL TY PERMIT	OF A TOX	IC OR HAZAR	DOUS MATERIALS	PAGE 7 08/01/93
IVISIO	N OF EN	VIRONMENT	AL HEALTH	i i		
NSSAU	COUNTY	DEPARTMEN	I OF HEAL	TH	Kr. G. P. S. S. S.	
CILIT	Y ID NUI	MBER : 000	0001		NON 29 1993	
PLICA	TION DU	E : 08,	/01/93			
						1
						TOPTO
TANK/	STORAGE	CAPACITY	STATUS	LUCATION	TYPE OF MATERIAL S	
1266	IANK	250	INSERVC		ZINC STUME ENGLOS MODE	
1267	TANK	5300	INSERVC	INABUVEG	EINYLENE GLYCUL	F
1272	LANK	700	INSERVC	INABUVEG	TELEACHLURUEIHTLEN	E
1273	TANK	2958	INSERVC	INABUVEG	TANK WATER RINSE	
1274	TANK	1525	INSERVC	INABUVEG	TANK NATED DINSE	
1275	TANK	1525	INSERVU	INABUVEG	TANK WATER RINSE	
1276	TANK	1960	INSERVC		SUUTUM NITRATE	1 - 1 -
1303	TANK	600	INSERVC			+ 1 + 1 -
1304	TANK	500	INSERVU		AMMUNIA, ANHIUKUUS	
1405	TANK	3000	INSERVE	DELUNG	PHUTU CHEMICALS IN	
1404	TANK	2500	INSERVU		WASTE OT	0.5
2004	TANK	550	INSERVE		NASIE UIL Duoto chemicais, N	0.5
2602		1000	INSERVC		WASTE OTI	03
2 402	TANK	175	INSERVC		OPCANTOS - MISC	
5000 5008	TANK	175	INSERVC	INABOVEG	WASTEWATED TREATME	NT CHEMICALS. NOS
2002	TANK	4800	INSERVC	INABOVEG	EDEON	IT CHEMICKEDY HOD
9001	TANK	1000	INSERVC	INABOVEG	WATER, MISC, INDUS	TRIAL WASTES
3002	TANK	11000	INSERVC	INABOVEG	WATER, MISC, INDUS	TRIAL WASTES
2003	TANK	11000	INSERVC	INABOVEG	WATER. MISC. INDUS	TRIAL WASTES
2004	TANK	11000	INSERVC	INABOVEG	WATER, MISC, INDUS	TRIAL WASTES
2005	TANK	15000	INSERVC	INABOVEG	WATER MISC INDUS	TRIAL WASTES
3006	ΤΔΝΚ	15000	INSERVC	INABOVEG	WATER MISC - INDUS	TRIAL WASTES
7007	TANK	15000	INSERVC	INABOVEG	WATER MISC - INDUS	TRIAL WASTES
9008	TANK	15000	INSERVC	INABOVEG	WATER MISC . INDUS	TRIAL WASTES
9009	TANK	15000	INSERVC	INABOVEG	WATER. MISC. INDUS	TRIAL WASTES
7 010	TANK	4700	INSERVC	INABOVEG	SLUDGE WASTES, IND	RGANIC
9011	TANK	4700	INSERVC	INABOVEG	SLUDGE WASTES, IND	RGANIC
7 012	TANK	2000	INSERVC	INABOVEG	INDRGANICS, MISC	
9013	TANK	300	INSERVC	INABOVEG	CALCIUM CARBONATE	
9014	TANK	300	INSERVC	INABOVEG	CALCIUM CARBONATE	
9301	TANK	65000	INSERVC	BELOWG	TANK, WASTE TREATM	ENT
9302	TANK	40000	INSERVC	BELOWG	TANK, WASTE TREATM	ENT
7303	TANK	3800	INSERVC	INABOVEG	TANK, WASTE TREATM	ENT
7304	TANK	65000	INSERVC	BELOWG	TANK, WASTE TREATM	ENT
9305	TANK	103000	INSERVC	BELOWG	TANK, WASTE TREATM	ENT
7305	TANK	11770	INSERVC	BELOWG	TANK, WASTE TREATM	ENT
9307	TANK	16000	INSERVC	INABOVEG	TANK, WASTE TREATM	ENT

= THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED OVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: PACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS JE THE TANK OR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON "HIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE TITLE J. Chlum Tech. & Compliance

DATE 11/24/93

OPLIC	ATION FO	R RENEWAL Ty permit	OF A TOX	IC OR HAZAN	RDOUS MATERIALS	⁵ PAGE · 08/01/	8 (93		
ASSAU	ON OF EN COUNTY I	VIRONMENTA DEPARTMENT	AL HEALTH T of heal	і (. ТН	асьсіясь				
CILII	TY ID NU	MBER : 000	0001		MAN 2 9 1993				
PLIC	ATION DU	E : 08,	/01/93		1197H-9EM				
						ĥ			
ΤΔΝΚ		CAPACITY	STATUS		TYPE DE MATERIAL	STORED			
	TANK	16000	INSERVC	BELOWG V	TANK. WASTE TREAT	MENT			
7309	TANK	16000	INSERVC	INABOVEĞ	TANK. WASTE TREAT	MENT			
9310	TANK	20600	INSERVC	OUTABOVE	ACIDS, NOS				
7 311	TANK	12690	INSERVC	JUTABOVE	CHARACTERISTIC OF	CORROSI	VITY		
7312	TANK	16900	INSERVC	INABOVEG	NITRIC ACID				
7313	TANK	10000	INSERVC	DUTABOVE	SULPHURIC ACID				
9316	TANK	16000	INSERVC	INABOVEG	ORGANICS, MISC				
7317	TANK	4000	INSERVC	INABOVEG	WATER TANK				
9318	TANK	40	INSERVC	INABOVEG	ORGANICS, MISC				
7320	TANK	7000	INSERVC	OUTABOVE	HYDROGEN PEROXIDE				
7322	TANK	2000	INSERVC	INABOVEG	AMMONIUM NITRATE				
7323	TANK	980	INSERVC	INABOVEG	ORGANICS, MISC				
7328	TANK	11800	INSERVC	BELOWG	INDRGANICS, MISC				
7329	TANK	8000	INSERVC	JUTABOVE	SODIUM HYDROXIDE				
9330	TANK	11800	INSERVC	OUTABOVE	HYDROFLUORIC ACID				
7331	TANK	11800	INSERVC	BELOWG	FLUORIDE				
+332	IANK	5800	INSERVL	OUTABOVE	WATER LANK				
7333	TANK	5800	INSERVU	JULABUVE	WATER TANK				
7334	TANK	600	INSERVC	BELOWG	INURGANIUS, MISC				
7337	TANK	10000	INSERVC	BELUNG	SLUDGE, NUS				
7338	TANK	10000	INSERVC	BELUWG	SLUDGE, NUS		TAI	א וווס	AD 5 A
2012	BULK	100	INSERVE		MULTIPLE CHEMICAL	S STORED	L IN T NI	DULK	AREA
2012	BULK	1150	INSERVE		MULTIPLE CHEMICAL	S STORED	1. IN T A1	OULK OIN V	AREA
2020		1600	TNSERVC	LNOGOD	MULTIPLE CHEMICAL	S STORED	T N	DULK	ANCA
0020		1000	INSERVE	INDOOR	MULTIPLE CHEMICAL	S STORED	TN		
1020	BULK	370	INSERVC	INDOOR	MULTIPLE CHEMICAL	S STORED	TN	BULK	
1021	BULK	600	INSERVC	LNDOOR		S STORED	TN	BULK	
0022	BULK	1310	INSERVC	INDOOR	MULTIPLE CHEMICAL	S STORED	TN	BULK	
0025	BULK	100	INSERVC	INDOOR	EREON	5 STORED	7.14	DOCK	
0025	BHLK	3885	INSERVC	INDOOR INDOOR	MULTIPLE CHEMICAL	S STORED	τN	вшк	AREA
0027	BULK	575	INSERVC	LNDOOR		S STORED	TN	BULK	
0028	BULK	500	INSERVC	INDOGR	MULTIPLE CHEMICAL	S STORED	ĪN	BULK	AREA
2029	BULK	500	INSERVE	INDOGR	OIL MISC				
0031	BULK	2000	INSERVC	INDOOR	MULTIPLE CHEMICAL	S STORED	IN	BULK	ARFA
0032	BULK	400	INSERVC	INDOOR	MULTIPLE CHEMICAL	S STORED	IN	BULK	AREA
0034	BULK	100	INSERVE	INDER	TRICHLOROETHANE.	1+1+1-			
0035	BULK	200	INSERVC	INDOGR	MULTIPLE CHEMICAL	S STORED	IN	BULK	AREA

THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED OVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: PACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS F THE TANK OR AREA.

: HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

DATE 11/24/93

JOPTICATION FOR RENEWAL OF A TOXIC OR HAZARDOUS MATERIALS DRAGE FACILITY PERMIT VISION OF ENVIRONMENTAL HEALTH 77051451 ASSAU COUNTY DEPARTMENT OF HEALTH

PAGE 9 08/01/93

4

CILITY ID NUMBER : 000001

PPLICATION DUE : 08/01/93

10V 29 1993

1'07/1_9FH

TANK/S	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL S	TORED			
0037	BULK	1800	INSERVE	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0038	BULK	25650	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0038	BULK	5300	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0039	BULK	270	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0041	BULK	1500	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0042	BULK	500	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0051	BULK	1500	INSERVC	JUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0052	BULK	300	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0053	BULK	400	INSERVC	JUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0061	BULK	440	INSERVC	INDOOR	OIL, MISC				
0081	BULK	45000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AR EA
J082	BULK	47000	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0091	BULK	800	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0101	BULK	350	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0102	BULK	435	INSERV C	BUTDOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0111	BULK	1050	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0112	BULK	750	INSER∀ C	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0113	BULK	300	INSERVC	RODGTUC	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0121	BULK	550	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
J122	BULK	350	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0123	BULK	150	INSERVC	JUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AR EA
0124	BULK	250	INSER∀ C	outdoo r	WASTE DIL				
0125	BULK	2000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0126	BULK	1535	INSERVE	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0127	BULK	5050	INSERV C	INDOGR	MULTIPLE CHEMICALS	STORED	IN	BULK	AR EA
0141	BULK	500	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0142	BULK	500	INSERVC	JUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0151	BULK	250	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0201	BULK	2840	INSERVC	autooo r	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0211	BULK	6000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0211	BULK	12000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0241	BULK	150	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0242	BULK	250	INSERVC	OUTDOOR	WASTE OIL				
0261	BULK	500	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0301	BULK	18000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0301	BULK	500	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	ΙN	BULK	AREA
0351	BULK	250	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA
0371	BULK	10600	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED	IN	BULK	AREA

.= THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED BOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: APACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS JE THE TANK OR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON HIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE

TITLE	DATE
Dir., Copr. Env.	
Tech: & Compliance]][24]

93

APPLICA TORAGE VISIC MASSAU	(IIJN FU) FACILI N OF EN COUNTY (R RENEWAL TY PERMIT VIRONMENT, DEPARTMEN	UH A TUX AL HEALTH T OF HEAL	IU UK HAZA. Th	インしいひ デネトロオティー	03/01/93	
- CILIT	Y ID NUI	MBER : 00	0001		NV > 9 1993		
PPLICA	TION DUE	E : 08,	/01/93			44	
TANK/	STORAGE	CAPACITY	STATUS	LOCATION N	J TYPE OF MATERIAL S	TORED	
J372	BULK	1125	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
3911	BULK	410	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0912	BULK	550	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0913	BULK	350	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0920	BULK	100	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
3920	BULK	2025	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0921	BULK	2500	INSER∀ C	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0922	BULK	86000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
2923	BULK	4000	INSERVC	INDOOR	POTASSIUM NITRATE		
3930	BULK	55000	INSERVC	JUTDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0931	BULK	10000	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
0931	BULK	3500	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
J932	BULK	800	INSERVC	OUTDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA
2933	BULK	600000	INSERVC	INDOOR	SODIUM CHLORIDE		
0934	BULK	700	INSERVC	INDOOR	MULTIPLE CHEMICALS	STORED IN BU	LK AREA

THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED -BOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: PACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS THE TANK OR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON IS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT 13 THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

J. OHLMANN

SIGNATURE Ohln

TITLE DATE Dir., Corp. Env. Tech. & Compliance ///24/93

NORTHROP GRUMMAN

Electronics & Systems Integration Division Northrop Grumman Corporation South Oyster Bay Road Bethpage, New York 11714-3580

1

597

F D

August 13, 1997 ETC97-181

Mike Sekreta Nassau County Department of Health 240 Old Country Road Mineola, NY 11501-4250

Toxic or Hazardous Materials Storage Permit Renewal Application-Subject: Facility ID Number: 000001, Bethpage Complex

Enclosures: (1) Renewal Application

- (2) Form 2 Tank Registration for Removed Tanks Only
- (3) Form 3 Bulk and Container Storage Registration for Removed Areas Only

Dear Mr. Sekreta,

Please find the above enclosures necessary for the subject permit renewal.

Tanks and container storage areas that have been removed are shown with a line drawn through the listing on the renewal application. In addition, each removed tank or area is identified on a Nassau County Department of Health Form 2 or Form 3 as required.

If you have any questions please contact me at (516) 575-2333 or J. Selva of this office at (516) 575-8176.

Very truly yours,

NORTHROP GRUMMAN CORPORATION

oupon an

Larry Eskovian, Manager Environmental Health, Safety & Medical Services M/S: D08-001

APPLICATION FOR RENEWAL OF A TO TORAGE FACILITY PERMIT IVISION OF ENVIRONMENTAL HEALT VASSAU COUNTY DEPARTMENT OF HEA	NIC UR HAZARDOUS MATERIALS H LTH	PAGE 1 06/01/97 NEW YURK STATE TAX EXEMPT?
ACILITY ID NUMBER : 000001	F D	MUNICIPALITY
APPLICATION DUE : 08/01/1997	; ; ; ;997	() YES () NO IF YES, INDICATE TAX EXEMPT NUMBER AND ENCLOSE COPY OF CERTIFICATE (FORM ST-119.1) CERTIFICATE
NJRTHRUP GRUMMAN STEWART AVE. MS DO8-0 BETHPAGE NY 11	001 1714	NUMBER:
ACILITY NAME FORTHRUP GRUMMAN BETHPAGE NY 11714	STREET ADDRESS STEWART AVE•	FACILITY PHONE 510-575-2385
UN TACT PERSUN JOHN COFMAN	CUNTACT TITLE ENV TECH & COMM	CONTACT PHONE 516-575-2385
ACILITY UWNER ADRTHRUP GRUMMAN CORP. BETHPAGE NY 11714	STREET ADDRES STEWART AVE.	0WNER PHONE 516-575-2385
RUPERTY JWNER Núrthrup GRumman Curp. -Ethpage ny 11714	STREET ADDRESS STEWART AVE.	PROPERTY PHONE 516-575-2305
PERMITTEE NAME Nürthrup Grumman Corp. Hethpage ny 11714	STREET ADDRESS STEWART AVE.	PERMITTEE PHONE
PERMITTEE''S RELATIONSHIP X SAN TJ FACILITY OWNER	ME OPERATOR OF FACILITY	GTHER SPECIFY
TANK/STURAGE CAPACITY STATUS 004.7 TANK 1465 INSERV	LOCATION TYPE OF MATERIAL C-INABOVEC KIDOLENE 53	STCRED
0131 IANK 760 INSERV	U INABUVEG RINSEWATERV ACID C INABOVEG EMPTY∕AUXILARY T	ANK
		ANK
-0141 TANK 670 INSERVI	C INABOVEG CHROMIC ACID	
	C. INADUVLO - DULTHOKIC ACIO C. INADUVEC - DINCEMATED ACIO	
	C INABOVEC ENPTY/AUXILARY T	ANK
	- INABOVEG - TANK, WATER RINS	ε

F THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED ABJVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: CAPACITY, LUCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS OF THE TANK OR AREA.

I HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE EEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME	SIGNATURE	TITLE	DATE

PLICA JRAGE JIVISIJI	TION FOR FACILIT N OF ENV	RENEWAL Y PERMIT IR ONMENTA	ÚF A TÚX Al health I úg heal	IC OR HAZAF	RDUUS MATERIALS	PAGE 2 U6/01/97	
	Y ID NUM	BER : 000	0001	11			F
PLICA	TION DUE	: 08,	/01/1997				!9 97
TANKZ:	STORAGE	CAPACITY	STATUS	LÜCATION	TYPE OF MATERIAL	STORED	
0215	TANK		-INSERVC-	-INABOVEG-	EHPTY/AUXILARY TA	INK	
	TANK		INSERVC	INABOVEG	EMPTY/AUXILAKY TA	INK	
-256-			-INSERVC-	- IN AB OVEG	- TRICHLORGETHYLEN		
- 3259	TANK-	<u>5</u>0	-INSERVC	-INAB BYEG	-TRICHLORGETHANE .	-1+1+1-	
-9251	— — TANK— —		-INSERVC	- IN AB OVEG	-RINSEWATER, ACID		
-9585-	TANK		INSERVC	- IN ABOVEC	- RINSEWATER, ALKAL		
0285-	<u> </u>		-INSERVC-	-INAB OVEG-	- TRICHLORDETHANE -	-1,1,1 -	
3360 -	TANK		-INSERVE-	IN AB SV EG	- PETASSIUM HYDRUX	HOE & HITRATE	
3361 -			-INSERVC	IN AB GV EG		. INE	
- 3303 -			- I NS ER VC-	- IN ABOVEC-			
3365-	TANK	10500	-I-NSERVE-	- INABBVEG-	- RINSEWATERy ALKA	INE	
7300	TANK	10500-	-INSERVC-	INAD GV EG	- RIDGLENE 73		
-0371-			INSERVC	- OU TA BO VE-	- ALKALINE SOLUTIO	HOS - HOS	
- 3372-			-I-NSERVC	BELOWG		JORIC ACID MIX	
-0384 -	T-A-NK		-I-NSERVC-	INAB SVEG			
-3388	TANK	1570- -	INSERVE	- IN ABOVEC	- ALODINE		
0399	TANK	4418	INSERVC	IN ABOVEG	SODIUM HYDROXIDE		
0400	TANK	4418	INSERVC	IN ABOVEG	SODIUM HYDROXIDE		
-044-)	- TANK-		-INSERVC-	- IN AB OVEG			
-0451			-INSERVC-	IN Ad OV EG			
• 0490		2700-	- INSERVE	IN AB OVEG	- ZYGLU PENETRANT		
<u>2491</u>	- TANK	2200	INSERVC	IN ABOVEC	MAGNAELUX		
			-INSERVC	-IN AD GV EG-	- MAGNAFLUX		
-)503 -			-INSERVE	IN AB OVEG-	- ALKALINE SULUTIO	VSy NUS	
	TANK	<u> </u>	-INSERVC	INABOVEG-		ING SOLUTION	
3500	- TANK		INSERVE-	-INAJOVEG-	- CHROME DEACTIVAT	ING SELUTION	
. 3594 -			INSERVC	-INAD BYEG	- SEDIUM NI TRATE		
	- TANK		INSERVC-	- INABBVEG-	-BASIC-DEACTIVATI	VG SULUTION	
JODZ	TANK	1300	-INSERVC	-INAB GVEG-	- CHRUME DEACTIVAT	ING SOLUTION	
		<u> </u>	-INSERVC	- INABBYEG	- CHREME DEACTIVAT	ING SELUTION	
			- INSERVC		CHROME DEACTIVAT	ING SCLUTION	
-2605-		<u> </u>	INSERVE	- INASOVEC	CHREME DEAGTLVAT	INC SOLUTION	
2666	TANK	2350	INSERVC.	-INABOVEC	NITRIC ACID & SO	TUN-SUIFATE	
2045	TANK	2350	-INSERVE-	INABOVEG	- RINSEWATER-ACTR		
		<u>195</u> -	-INSFAUC	- INAROVEC			
			-INSERVE				
			TNS ER VC				
			-INCERVE		- PAINT - HIGC		
					·		

LE THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NUT LISTED BOVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: -APACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS JE THE TANK UR AREA.

HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FURM AND ON ANY ATTACHED FURMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

_ _ _ _ _ _ _ _

TITLE

DATE

D

2

ě.

TPPLICATION FOR RENEWAL OF A TUXIC OR HAZARDOUS MATERIALS PAGE 3 TORAGE FACILITY PERMIT 06/01/97 DIVISION OF ENVIRONMENTAL HEALTH TASSAU COUNTY DEPARTMENT OF HEALTH

ACILITY ID NUMBER : 000001

PPLICATION DUE : 08/01/1997

· _	TANK/	STORAGE	CAPACITY	STATUS	LOCATION	TYPE OF MATERIAL STORED
-			5000	TNSERVE		
	0900	TANK		INSERVC	INADUYEG	
÷	2023		1570	INSERVE	THADUVED	-KINSEWAILK, ALKALINE
				INSERVE	IN ABUYEG	- IKIGHLUKUEIHANE, i,i,i,i
				- INSERVC	INAJUVE6	-KIUULENE-53
				INSERVE	INABUVEG	RINSEWATER, ALKALINE
			0100	INSERVE	INABUVEG	ALUDINE
н 1 Д				-INSERVC	INADEVEG	RINSEWATER, AGIO
	1021			-INSERVC	-INADEVEG	-SULFURIC & GXALIC ACID MIX
⁻	-1-022		1465	-INSERVC	-INABEVEG-	RINSEWATER, ACID
	1023	- TANK-	1465	INSERVC	- IN AB DV EC-	- ALODINE
	1 -024-	TANK	1465-	-INSERVE	-INABBVEG	- TANK, WATER RINSE
<u></u>	1039	TA NK-		INSERVC	-INABOVEG	EMPTY/AUXILARY TANK
	1052	TANK		-INSERVC	-INABEVEC-	TANK, WATER RINSE
	1-053	- TANK		-INSERVC-	-INABOVEG-	
	1054			- INSERVE-	-INABEVEG	TANKY WATER RINSE
5	1-055	TANK -	- 157	- I NS ER VC-	- INABEVEG -	TRICHLORGETHANE, 1,1,1
	1 056	TANK		-INSERVC-	- INABEVEG-	- NITRIG & HYDROFLUGKIC ACID MIX
	1 057	TANK-		I NS ER VC	- IN ABOVEG	- TANK, WATER RINSE-
	1058	T <u>A NK</u>		INSERVG-	-INABOVEC	NITRIC & HYDROFLUGRIC ACID-MIX
:	1059	TANK	270	INSERVG	- IN AB GY EG-	TANKY WATER RINSE
Ē.	1063	TANK	15.7.	-INSERVG	- IN AB GVEC	- ISOPROPYL ALCOHOL
	1 -063	TANK	1570	INSERVC	- IN ABOVEC	RIDOLENE 53
• •	1062	TANK	1570-	-INSERVC-	-INAB GVEG-	— - K INSEWATER, ALKAL IN E
Ī	1071-	- TANK		-INSERVC	- IN AB OVEG	ACIDS, NOS
-	1104	- TANK		1+ISERVE-	-INABEVEG-	TANK, WATER RINSE
	1100			-INSERVC		- ALODINE
4	1107-	- TANK		-INSERVC-	-INABEVEG	TANK, WATER-RINSE
	1112			INSERVC		- RINSEWATER, ACID
	1120	TANK	9743	INSERVC	IN AB OV EG	SODIUM HYDROXIDE
	1121	TANK	9743	INSERVC	IN ABOVEG	SODIUM HYDROXIDE
:	1122	TANK	18200	INSERVC	INABOVEG	RINSEWATER, ALKALINE
	1123	TANK	9743	INSERVC	INABOVEG	NITRIC ACID
	1124	TANK	18200	INSERVC	IN AB CV EG	RINSEWATER, ACID
	1125	TANK	9743	INSERVC	INAUGVEG	SCDIUM HYDROXIDE
	1126	TANK	18200	INSERVC	INABGVEG	RINSEWATER. ALKALINE
	1127	TANK	9743	I NS ER VC	INABOVEG	HYDROFLUORIC ACID
	1128	TANK	14200	INSERVO	INABOVEC	RINSEWATER. ACID
-	TICO	1400	10200		THADUTED	NINJERAJENT AVID

LE THERE IS ANY TANK(S) OR STURAGE AREA(S), AT YOUR FACILITY WHICH ARE NOT LISTED BUVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: "JAPACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS OF THE TANK OR AREA.

FIREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FURM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

PRINT NAME

____ S IGNA TURE

TITLE

DATE

" E D 1997

, PLICA S DRAGE DIVISION	TION FUR Facilii N OF E.N	K RENEWAL TY PERMIT /IRONMENT/	UF A TUX	IC UR HAZAR	DOUS MATERIALS	PAGE 4 06/01/97
NASSAU (COUNTY (DEPARTMENT	I JF HEAL	.TH		r ŋ
FACILITY	NUN CI Y	15ER : 000	001			1007
PLICAT	TION DUE	E : 08,	/01/1997			1791
TANK/S	STURAGE	CAPACITY	S Τ Δ ΤΗ S		TYPE HE MATERIAL	STOPEN
1129	TANK	9743	INSERVC	INABOVEG	NITRIC ACID	JIURED
1130	TANK	13200	INSERVC	INABOVEG	RINSEWATER, ACID	
1131	TANK	9743	INSERVC	JU TA BO VE	SODIUM HYDROXIDE	
1132	TANK	9743	I NS ER VC	UU TA BO VE	WATER, MISC. INDU	STRIAL WASTES
1133	TANK	9743	I NS ER VC	OU TA BO VE	NITRIC ACID	
1134	TANK	9743	INSERVC	OU TA BO VE	NITRIC ACID	
1137	Tank		-INSERVC-	-INAB GV EG-		1,, 1,, 1, +
,1130 -	- TANK		INSER VC	- INAD OVEG	RIDOLENE 57-	
~~~	TANK	<u> </u>	INSERVC-	-INAB-BVEG	R INSEWATERy-ALKAL	-HN E
- 1140_	TANK	9200	INSERVC	IN ABOVEC		
-1-1+1			<b>INSERVC</b>	IN AB CV EG	ALDDINE	
<u>-1142</u>	<u> </u>	<u> </u>	-I-NSER-VC-	- INAB OVEG	-RINSEWATER, ACID	
-144	TANK	9200	INSERVC	IN ABOVEC		
4-145			-INSERVC-	-INAB GVEG-	- RINSEWATERY ACT	
++50			INSERVE	UUTABOVE	ACID3, NOS	
-1151	TANK	9200	INSERVE	OUTABOVE-	ACIDS, NOS	
1152	TANK		INSERVE	- UUTABOVE	- ACIDS, NBS	
1156	TANK		-INSERVC-	IN ABOVEC	- EMPTY/AUXILARY TA	NK
1157	TANK		INSERVC	-INABOVEC-	EMPTY/AUXILARY TA	-NK
1184	- TANK		INSERVC	- OU TA BO VE	- NITRIC-S-HYDRUFLU	ORIC ACID MIX
- 1190-		<u> </u>	-INSERVC	IN AD GV EG	- NITRIC ACID	
-, <del>1191</del>	- TANK	<u> </u>	-INSERVC	- OUTABOVE	TRADE NAME, ORGAN	IC
1-19-3	- T <u>ank</u>	3700-	INSERVC	- OUTABOVE	ACIUS, NOS	
1194	TANK	3700	INSERVE	<del>- OU TA BO VE</del> -	ACIOS, NGS	
1207	TANK	<del>13000</del>	INSERVC	<del>OUTABOVE</del>	- TETRACHLORUETHYLE	₩E
-1-221	- <del>TANK</del> -	<del>~~~2500~</del>	-INSERVC	INABOVEG	- TRICHLORDETHYLENE	
*1-2-2-2	- TANK -		-INSERVC	INABOVLG	RIDOLENE 57	
+223-	<del>TÁ Nr.</del>		I NS ER VC	IN AB OV EC	TANK WATER RINSE	
-1224	<u>TANK</u>		INSERVC	INABOVEC	NITRIC ACID	
1225	<del>TANK</del>	<del></del>	-INSERVC-	-INABBVEG	- NITRIC ACID	
1226		<del></del>	-INSERVE	IN AB GV EG		
-1-228			INSERVC-	-INABOVEG-	- ALODINE	
+1550	- TANK-	<del>17400</del>	INSERVC	- INAB OVEG-	- TANKY WATER RINSE	
1230	TANK		INSERVC	IN ABOVEG	SULPHURIC ACLO	
1231	- TANK	17400	INSERVC	IN AB BV EG		
<u>~1-2≠2</u>	TANK		INSERVC	INABOVEG	- SEDIUH DICHRUMATE	
1233	- TANK	17400	INSERVC	IN ABOVEG		
- 1239			-INSERVC-	INABOVEC	CEYCOL	

IF THERE IS ANY TANK(S) OR STORAGE AREA(S), AT YOUR FACILITY WHICH ARE NUT LISTED FOUVE PLEASE PROVIDE US WITH THE FOLLOWING INFORMATION ABOUT EACH TANK OR AREA: CAPACITY, LOCATION, TYPE OF MATERIAL STORED IN THE TANK OR AREA, AND THE STATUS OF THE TANK OR AREA.

: HEREBY AFFIRM UNDER PENALTY OF PERJURY, THAT ALL THE INFORMATION PROVIDED ON THIS FORM AND ON ANY ATTACHED FORMS, STATEMENTS AND EXHIBITS IS TRUE AND CORRECT TO THE BEST OF MY KNUWLEDGE AND BELIEF.

_____

ΡŔ	IN	E N	Α	ME
----	----	-----	---	----

TITLE

_____

DATE






	and the second designment of the second design			
7	14	3	all the second se	<b>10</b> -





Appendix B

! !

i

}

i

**APPENDIX B** 

	BORING LOG											
d		VIRKA ND ARTILU(	CCI	Project No Project Na	0.: <u>15</u> 1999 - 15 1997 -	$3q-00$ Well/Boring No.: $\dot{D} = 1$ $C = Structural$ Sheet 1 of $1$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ $T = 10 - 15$ $D_{10} = 10 - 15$ <						
Drillir Driller Drill F Sampl Date S	ng Con r: <u>W</u> Rig: H le Spoo Started	tractor: R = 1 q n $c_1 + q b_2$ on I.D.: 2 - 13 - 9	Emin d Hilte d 8	gton E Geolog (Drilling Drive F Date Co	Method: Iammer Wt. pompleted:	ental <u>D. Obradovich</u> <u>Geoprobe</u> Portuble <u>NA</u> <u>J-10-98</u> <u>Borehole</u> Completion Depth: <u>4</u> <u>Borehole</u> Diameter: <u>2</u> <u>Ground</u> Surface El.:						
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION Below Concrete						
-0-	1	2-2'	191	-	00	(0.2') 0-6" DK. br blk. silt,						
-1-						some t-m sand, little brick & F-m gravel, moist						
-2-	2	2-4'	24"	-	0. O	+ clay, tr. F-m gravel, v moist						
-3-						(2-4') <u>0-5"</u> Br orange f-m SAND,						
-4-						5-15" Br. F-C SHND, I. He F-C						
-5-						15-24" Br. 7- C SAND, 11the						
-6-						for a gravel, tr. silt, V. moist						
-7-						# 5° concrete @ surface						
-8-						* E0B-						
-9-			÷									
-10												
Remar	Remarks:     Water Level Measurement     Date       * submitted 0-2 + 2-4' samples     Date        for Laboratory Analysis     Date											

d	DVIRKA AND BARTILUCCI			Project No Project Na	0.:15 mme:NG Test	39-00Well/Boring No.: <u>B-2</u> C - StructuralSheet 1 ofC - StructuralBy: <u>D.0</u> T Hangars / Plant 5By: <u>D.0</u> Date: <u>L-10-(18)</u> Chk'd: Date:				
Drillin Drille Drill I Sampi Date S	ng Con r: <u>iv</u> Rig: <u>/</u> le Spoo Started	$\frac{\text{tractor:}}{\text{Koland}}$	Emin Daill No Is	gton E _ Geologi _ Drilling _ Drive H _ Date Co	NUIVORM. ist: 3 Method: Iammer Wt.: completed:	ental D. Obradovich Borehole Completion Depth: 4' Geographic Port. Drill NA 2-10-98 Borehole Diameter: 2'' Ground Surface El.:				
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION Fact below Factorizete				
-0-	1	0-2	21"	-	0 . ن	(0-2') 0-8" DK. br 61K F-m SAND				
-1-						1. Hle F-c gravel + si H, tr. clay, moist 8-22" Red-br. F-M SAND, little F-c				
-2-	2	2-4	20'	-	0 . C	gravel + silt, tr. cobble, v. moist, si impact				
-3-						(2-4') C-6" Tan- a unge F-i sANDA 1. He sold a clay, tr. Fy. uvel, v moist-				
-4-						Wet 6-20" Orange-grey F-Vic shiND, some F-C gravel, tr., it t				
6						v ha				
-0-						+ 4" (oncrete surface + 2R -				
-7-						-E0D				
-8-										
-9-										
-10										
Remar S	Remarks:     Water Level Measurement     Date       Submitted 0-2 + 2-4' samples     Date        For laboratory Analysis     Date									

	BORING LOG											
d		VIRKA ND ARTILU(	CCI	Project No Project Na	n: <u>15</u> me: <u>NG</u> <u>Tes</u>	39-00 C - Structural Hangars/Plant5	Well/Boring No.: <u>B-3</u> Sheet <u>of</u> <u>J</u> By: <u>D.D.</u> Date: <u>2-10-98</u> Chk'd: <u>Date:</u> <u>Date:</u>					
Drillir Driller Drill F Sampl Date S	ng Con r: <u>W</u> Lig: _ le Spoo Started	tractor: . foland for Table F on I.D.:	Emin htte Dav NA 10-95	gton E Geolog Drilling Drive F Date Co	NU(YOMM ist:	ental <u>D. Obrudovich</u> <u>Geoprobefort. Drill</u> <u>NA</u> <u>2-10-98</u>	Borehole Completion Depth: Borehole Diameter: Ground Surface El.:					
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	Feet D Below Concrete	SAMPLE ESCRIPTION					
-0-	1	0-2	23"	-	0.0	(0-2') <u>0-12"</u>	Gey-br. red f. m SAND,					
-1-						12-23" Cran	ye - sl. br. SILT, some					
-2-	×	2-4	19"	-	0,0	cluy, little v	F. sund , v. moist , tr. f. grave 1					
-3-		: : :				(2-4) Tan-gn f-m gran v. muist	cy f-c SAND, Little some el, little silt, tr. c. gravel,					
4						- E0B -						
-5-						* 3" concrete	e curface					
-6-												
-7-												
-8-												
-10												
<b>Rema</b> * 5.	des: 1 b m (4 0 r uv	ted 0-	-2' %	2-4' 51	mgles	Water Level Measure	Date             Date             Date             Date					

BL

÷

, T

÷

_____

	BORING LOG											
d		VIRKA ND ARTILU(	CCI	Project No Project Na	0.: <u>15</u> ume: <u>NG</u> _Tes	39-00 C - Structural t Hangars/Plant5	Well/Boring No: <u>B-4</u> Sheet 1 of <u>1</u> By: <u>D.O.</u> Date: <u>2-10-18</u> Chk'd: <u>Date:</u>					
Drillin Drille Drill Samp Date S	ng Cor r: Rig: _ le Spo Started	htractor: N, Rolane for a bk H on I.D.: I:	Emin 1 116 DAL	gton E Geolog Drilling Drive F Date Co	ist: Method: Hammer Wt.: completed:	ental D. Obradovich George Hammer NA DAN 2-10-78	Borehole Completion Depth: <u>4'</u> Borehole Diameter: <u>2</u> Ground Surface El.:					
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	Foet Below Concrete	SAMPLE DESCRIPTION					
-0-	1	0-2'	24"	~	0.0	(0.2') - 4''	BIK SILT & SAND					
-1-						1 ittle conc. in V.t-m signal, 1 ciny, must 1	$\frac{f-c}{2-24''} = \frac{4-12''}{2-24''} = \frac{4-12''}{2-24''} = \frac{4-12''}{2-24''} = \frac{4-12''}{2-24''} = \frac{4-12}{2-24} = \frac{1}{2-24} = \frac{1}{2-$					
-2-	2	2-4'	9"	-	ن, ن	SILT & CLAY SI Flustic,	, tr. t. sand + t. gravel, muist					
-3-						(2-4') br-re	elf-c SAND little (7)					
-4-						fich sand) Stack sand) SILT Y CL	1, tr. sitt (some ivon ), v. moist (0-2 red-crange 14, 1. Hk & sand)					
-5-						- E03-	,					
-6-						¥3" concrete	(à surface					
-7-						Injinetrabl grude - cor	le surface @ 4' below nc.?					
-8-												
-9-												
-10												
Remar	<u>ks</u> :	<u> </u>		1	<u>.</u>	Water Level Measu	urement Date					
4	sub for	mitted anuly	0-2' ses	* 2-4	' sample	د ک	Date Date Date					

BORING LOG										
d		VIRKA ND ARTILU	CCI	Project No Project Na	o.: <u>15</u> ame: <u>NG</u> <u>Tes</u>	39-00Well/Boring No.: $B-5$ Sheet 1 ofSheet 1 oft Hangars / Plan + 5By: $P.0$ . Date: $2-10-98$ Chk'd: Date: $2-70-98$				
Drillin Drille Drill I Sampi Date S	ng Cor r: <u>W</u> Rig: <u>/</u> le Spoo Started	tractor: . <i>Reland</i> v. Fable 1 on I.D.: :	Emin 27:11 NA 10-18	gton E Geolog Drilling Drive F Date Co	st: Method: A fammer Wt.	ental <u>D. Obrudovich</u> Borehole Completion Depth: <u>4'</u> <u>Borehole Diameter: 2"</u> <u>NA</u> <u>3-/2-78</u> Ground Surface EL:				
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE Feet DESCRIPTION Below Concrete				
-0-	1	v-2'	/3 "	-	0.0	(0-2') Brred F- c SAND, 11H/e(+)				
-1-						f- C gravel, Tr. silt, moist				
-2-	1	2-4'	14"	-	0.0	(2-4') Oringe-br. F-c SAND, little F-m gavel, little silt, tr. clay				
-3-						V C. graver, Moist				
-4-						- EON-				
-5-						*5" concrete @ surface				
-6-										
-7-										
-8-										
-9-										
-10										
<b>Remar</b> در 4	ks: bmitt or u	ed D- nalysi	2' ¥ 2 s	2-4'50	mfles	Water Level Measurement Date Date Date Date				

					B(	JRING LUG
d	DVIRKA AND BARTILUCCI			Project No Project Na	.: <u>15</u> ime: <u>NG</u> _Tes	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Drilli Drille Drill Samp Date	ng Cor r: Rig: 7 le Spo Started	iractor: W. Rola i. mble 1 on I.D.: 1: 2-10-	Emin nd NA 28	gton E Geolog Drilling Drive F Date Co	Method: ammer Wt.	ental D. Obradovich Groupobe Drill NA Hammer -10-98 Borehole Completion Depth: 4' Borehole Diameter: 1.5" Ground Surface El.:
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION Feet Below Concrete
-0-	1	0-2'	24"	-	0,0	(0-2') Br-red f-c SAND, little
-1-						15-24" Red- uranez - Gr. SILT
-2-	2	2-4	(6''	_	0.0	U. moist
-3-						(2-4') Tan - br. f-c SAND, little f-m gravel, tr. silt, sl. moist
-4-						-E0B-
-5-						1 1 Compete a surface
-6-						* 12" of concret
-7-						
-8-						
-9-						
-10						
Remar	ts: * Si fo	sh mitte	iel 0-7 lyses	· 12.	.4' samp	Water Level Measurement Date Date Date Date

.

	BORING LOG										
∎∩				Project No	p.: <u>15</u>	39-00 Well/Boring No.: <u>B-7</u>					
		VIRKA ND		Project Na	ame: <u>NG</u> <u>Tes</u>	t Hangars/Plants By: D.O. Date: 2-10-92					
		ARTILU	cci			Chk'd: Date:					
Drilli			Fruit	aton F	NULCOMM	ental					
Drille	r: ₩	<u>Kolano</u>		Geolog	ist:	D. Obradovich Borehole Completion Depth: 4					
Drill Samp	Rig: fa le Spo	<u>rhabk U</u> on I.D.: _	NA	<u>Mei</u> /Drilling Drive H	g Method: fammer Wt.:	: NA Doll Ground Surface El.;					
Date	Started	: _2-1	0-98	_ Date C	ompleted:	2-14-98					
	ð		2		E						
E	Х Э	<b>NAL</b>	ERY	/0	S¥ €						
TH	IPL	ER	000	SMO	Ndd	SAMPLE					
DEF	SAN	NAS	REC	BLO	HEA	East helow concret					
-0-	1	0-2'				(0,21) Po for AND 14410 for					
			15+ 1, 24	Ī		Gravel, fr. sitt moist					
-1-			4 yemp	ł		+ clay					
2		7 -4	0"/22	21 	0.0	(2-4') No recovery					
-2-	6				0,0	Terminated Biring-moved 1'2' east					
-3-						* 2nd attempt					
						(0-2') same as O-2' above					
-4-						(2-4') Orange - br. f - m SAND,					
-5-						little f-c gravel, v. moist					
~		:				-EOB-					
-0-						7" concrete @ surface					
-7-											
-8-											
-9-											
-10											
Remar	<u>(3</u> :				1	Water Level Measurement Date Date					
45-	bmit	ted 0-	·2' + 2	-4' Sa	nples	Date					
	1.01	unaly	ز از			Date					

	BORING LOG											
d		VIRKA ND BARTILU	CCI	Project No Project Na	0.: <u>15</u> Inne: <u>NG</u> Test	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Drilli Drille Drill Samp Date S	ng Cor r: Rig: { le Spo Started	N. <u>Rola</u> N. <u>Rola</u> Joy <u>Jabu</u> on I.D.: I:	Emin nd Doll NA 0-98	gton E Geolog Drilling Drive F Date Co	MUIYCAM ist: 5 Method: Iammer Wt.: completed:	ental D. Obrudovich Geophose Unner NB Drill 2-14-98 Borehole Completion Depth: <u>4'</u> Borehole Diameter: <u>2'</u> Ground Surface El.:						
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE Feet Below DESCRIPTION Concrete						
-0-	1	0-2'	13 ''	-	0.0	(0-2') Red br. f-m SAND,						
-1-						1. Hu F-c gravel + 11/7; moist						
-2-	2	2-4'	ιι''	-	0.0	(2-4) hed - br. + - c SATND, some f-c gravel, tr. s. It, moust						
-3-						- EOB -						
-4-												
-5-												
-6-						*8" concrete @ surface						
-7-												
-8-												
-9-												
-10												
Remar ≯ ≶	ts: Jbm for	itted o analys	-2' +	2 - 4'	samples	Water Level Measurement Date Date Date Date						

					BC						
DVTRKA			-	Project No	o.:5 ame: NG	Vell/Boring No.: <u>3</u> -4					
		ND		110,000114	Tes-	t Hangars/Plants By: DO Date: 2-11-98					
	9 8	ARTILU	CCI			Chk'd: Date: 2-11-98					
Drilli Drille	ng Cor	ntractor: V - Rolan	Emih	gton E _ Geolog	nutromm	D. Obradovich Borehole Completion Depth: 4'					
	Rig: <u>f</u> le Spo	on I.D.:	NA	Drilling	g Method: _ fammer Wt.:	NA Ground Surface El.:					
Date	Started	:	1-98	Date C	ompleted: _	2-11-98					
	T		1								
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION Feet Below					
-0-	1	0-2	24"	~	0.0	(0-2') Ead-by fridant with					
						for gravel, the sitt + clay					
-1-						moist					
-2-	2	2-4'	16"	-	0,0	(2-4) Red-br. F-c SAND, With					
-3-						4-c gravel, tr. sitt, moist- V. maist (red-br. cLAY + SILT from 21/2-31/4 )->1 plastic					
-4-						* 8 " concrete @ surface					
-5-											
						EOB					
-6-											
-7-											
-8-											
-9-											
10											
-10											
Remar					i,	Water Level Measurement Date					
	<b>⊀</b> _S	u)mitter	1 0-2'	42-4	' sample	S Date					
	ťv	r unal	yses			Date					

BL

	BORING LOG										
d		VIRKA ND ARTILU	ссі	Project No Project Na	o.: <u>15</u> ame: <u>NG</u> <u>Test</u>	9-00 Well/Bo <u>C - Structural</u> Sheet <u>Hangars/Plant5</u> By: _ Chk'd:	Dring No.: $\underline{\beta} \sim 10$ 1 of $\underline{1}$ $\underline{\beta} \circ 0$ , Date: $\underline{2 - 11 - 78}$ Date: $\underline{11}$				
Drilli Drille Drill Samp Date	ng Cor r: <u>ia</u> Rig: ^P a le Spo Started	ntractor: . Roland . Humi on I.D.: 	Emin J Ma 11-98	gton E Geolog Drilling Drive F Date C	ist: g Method: Hammer Wt.: ompleted:	ntal D. Obradovich Geoprote Hanner Na Pril Z -11-98 Ground Surf	ameter: <u>2''</u>				
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPL Feet Below DESCRIPT Concrete	,E ION				
-0-	ĺ	U-2	20"		0. D	(0-21) Drunge - red - little f. snavel + V. moist	br. f-m SAND, silt, tr. cley,				
-2-	2	2-4	19''	-	00	(2-4) Red-br. f-m SAND, little f-m gravel, tr. silt + klay					
-3-						(Red-br. CLAY, from 2.6-3.2	(itta-some sibt				
-5-						* 5 " concrete @	s., fuee				
-6-											
-7-											
-8-											
-9-											
-10											
Remar ⊁ ≲∖	les: Upmi ^r For	Hed OF	<b>-</b> 2' 4 es	2-4' sc	imples	Water Level Measurement	Date Date Date Date				



Driller _ Inspecto Rig Type Drilling M Drive Ha	VG CONTI Eming- or e Method ammer We	hactor ma h Probe direct	ρ <i>μ</i> <u>ς</u>	DRILLING LOG PROJECT NAME <u>N6 Plant 5</u> PROJECT # <u>1539 00</u> Location/Address <u>Bethonge NY</u>	BORING NUMBER Sheetof Boring Location						
GROUN Water Li Time	IDWATER evel	OBSER		Weather <u>COLD - Windy</u> <u>30's</u>  Date/Time Start	Plot Plan						
Date				Date/Time Finish							
Sample	Sample	SPT	PID/FID		WELL SCH		COMMENTS				
Depth	Number		Reading								
1 2 3 4 5 6 7 7 7 7 7 1 0 7 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1				NO Sampling from 0-4' 4-6 br. or tan fruc qtz SAND, little for Gravel, tr. S.1t. Dono- no occurs 6-8' br-tan fruc qtz SAND, little for Gravel, trlittle S.1t. moist-wete?' 8-10 br-tan fruc qtz SAND, little for Gravel, tr. little S.1t. mait/wet <u>S.1t.</u> 10 End of Boring C 10'			no estocions observed from Sampus				
				Soll Stratigraphy Summary							
SPT = STA	NDARD PE	ENETRATI	ON TEST								

DRILLING CONTRACTOR     DRILLING LOG     BORING       Driller     Emington Env.     PROJECT NAME     N 6 Plant 5     Sheet       inspector     Ema     Boring L       Rig Type     Earth Prote     PROJECT # 1539 60     Boring L       Drilling Method     Divert PHSY     Location/Address     But the Mark NY	BORING NUMBERB-10_N Sheetot Boring Location					
Drive Hammer Weight						
GROUNDWATER OBSERVATIONS Weather COLD - Windy 30'S Plot Plan	Plot Plan					
Water Level						
Time Date/Time Start						
Date Date/Time Finish						
	CHEMATIC	COMMENTS				
Depth Number Reading						
0-4" Cimcrete						
NA 4"-2' DEAM: C-red b- Car						
Z SAND LHE GUIDE THE		IND Odors				
3 I'm a' 1'm brave fr. S.H		ond rec ing				
2-4 Or br. fmc SAND little		Southas				
4 the Grave, tr. S.It. Damp						
5 NA 4-10 Bive to for Caro						
tut little for Car Chat Ittle						
7 NA 6-8 Br-tow frue Btz Sono						
By little & Granel, tr S.It.						
9 NA WIND 1 C CHARLE						
8-10 Br. tau Inc COE SAND	i.					
10 1 little + Graves, tr Silt.						
ID ID						
zuo of Boringe 10'						
		1				
		l				



Driller Inspect Rig Typ Drilling Drive H	Method _C	hactor ma h Prote durect	ри <u>54</u>	- PROJECT NAME <u>N6 Plant 5</u> - PROJECT # <u>1539 00</u> - LocationvAddress <u>Bethonge NY</u>						
GROU	NOWATER	OBSER	ATIONS	Weather <u>COLD - Windy</u> 30's	Plot Plan					
Time				Date/Time Start						
Date				Date/Time Finish						
Casing	Depth									
Sample Depth	Sample Number	SPT	PID/FID Reading	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMA	ATIC COMMENTS				
				0-4" Concrete						
			NA	4'-2' Grange-ved, br. fmc		noodors				
2	1		1.0	gtz SAND, little f. Gravel		observed in				
3			NA	144 S.It. Dawp.		Sonples				
1			NA	2-4 orange, br. red fmc qt2						
<u> </u>			Arb.	SAND, little f. Gravel, little Suit.						
5				4-6 brow-annue fricate						
7			NA	SAND little for Gravel, little S.It.						
<u> </u>	1		ND	10.8 ho h. C. ah Rain						
7				114 C A C La C La Mailuit						
<del>ç</del>			NA	little the Braves, tr. S.M. Moinfuler						
	1		ND	8-10 br. tan fruc gt SAND,						
4			N/A	little for Grave, tr. S. 1+, Moist-						
ΙŨ				ie ie						
. <u></u>				Ens of Boring & 10'						
				Soli Stratignativ Suggest						
SPT = ST		NETRATI	ON TEST							



DRILLING CONTRACTOR Driller <u>Emingtom Env.</u> Inspector <u>Ema</u> Rig Type <u>Earth Prote</u> Drilling Method <u>direct pusy</u> Drive Hammer Weight <u>—</u>	DRILLING LOG PROJECT NAME <u>N6 Plant 5</u> PROJECT # <u>1539</u> 00 Location/Address <u>Bethonge NY</u>	BORING NUMBER       13-10 E         Sheet				
GROUNDWATER OBSERVATIONS Water Level Time	Weather <u>COLD - Windy</u> <u>30's</u> Date/Time Start	Plot Plan				
Date Casing Depth	Date/Time Finish					
Sample Sample SPT PID/FID Depth Number Reading	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC COMMENTS				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D-24" Concrete 4"-2' Or rd-br fine gite SANO, 1. Hle fin Gravel, tr S. 14. 2-4' Or-br fine gite SANO 1. Hle fin Gravel, tr S. 14 Daws 4-6' Br. on tan fine gite SANO 1. Hle fin Gravel, 1. Hle S. 14 1. Hle for fine gite SANO 1. Hle f Gravel, 1. Hle S. 14 Monst-well Find of Boring C 10' Soll Strattgraphy Summary	no adors observed firm Sauples				
SPT . STANDARD PENETRATION TEST	Son Stratigraphy Summary					

	BORING LOG									
d		VIRKA ND ARTILU	ССІ	Project No Project Na	0.: <u>15</u> ime: <u>NG</u> <u>Test</u>	39-00       Well/Boring No.: B-4         .C - Structural       Sheet 1 of 1         T Hangars/Plant5       By: D.0. Date: 2-11-28         Chk'd: Date: V				
Drillin Drille Drill I Samp Date S	ng Cor r: Rig: { le Spo Started	the second seco	Emily and mmer D NA -98	gton E Geolog Drilling Drive F Date Co	ist: g Method: Hammer Wt.: ompleted:	ental D. Obrudovich Geographic Hammer Ma DrM Ground Surface El.: 2-11-98				
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION				
-0-						0-2' Mench				
-1-						2-5' Void - Hendspace above Earth				
-2-						5-7' Orange - br f-c SAND,				
-3-						moist sl. paint, oder (greasy-oily)				
-4-						7-9' Bright orange-red iron				
-5-	1	5-7'	16''	-	0.0	grevel, little silt, tr. c. gravel moist, v. sl. paint? oder				
-6-						-EOB-				
-7-	2	7-9'	20"	-	0,0	Cross section at time-h				
-8-						Steel plate ==				
-9-						2- Wood				
-10						Earthen Btm.				
Remar	ks.		L	l		Water Level Measurement Date				
*	subn	nitted	5-7' es	+ 7-9	' sampl	دي Date Date				
			-							

BL

	BORING LOG									
En	1			Project N	p.: _ 15	39-00	Well/Boring No.: B-12			
DVIRKA				Project Na	ame: <u>NG</u>	C - Structural	Sheet 1 of			
	$\bigcirc$	ND LAPTTI II	CCT		les	t Hangars/ rlants	By: $1.0.$ Date: $2-11-48$			
	$\sim$ .	DARTILU					Chk d Date:			
Drill Drill Drill Samp Date	ing Col er: <u>b</u> Rig: F States	ntractor: J. Rola, J. t.bk F on I.D.:	Emin d NA DA	<u>gton</u> E <u>Geolog</u> <u>Drilling</u> Drive F	ist: Method: Iammer Wt.:	ental D. Obrudovich Garrobe Hammer NA Drill 2-11-98	Borehole Completion Depth: Borehole Diameter: Ground Surface El.:			
					mpreted					
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	D	SAMPLE ESCRIPTION			
-0-						A 21 Transl				
						0-2 reach				
-1-										
-2-						2 - 4' (2 - 3')	conc. Trench			
						(3-4')	Void - Headsprie			
-3-			ļ				below trench (conc.)			
2							-			
-4-	Ι,	1. 1	> ~ "			(4-6') 0-5"	Red-br-blk. f-c SAND,			
·	1	7-6	20	-	0,0	some n	- c gravel, tr. sitt - u.ly			
5						1.41.	fre sname tr. silt, majst			
- 5-						oil-p	aint odor			
6		1 6'		_		(6-8') Red-b	r. F.C. SAND. Little			
-0-	2	6-8	31		0.0	f-cq	vavel, tr. silt, oil-paint			
-							odor			
-/-						-t0b-	C .			
•						Cross Se	ction at Trench			
-8-							steerpare			
~										
-9-		(				The	ncity			
-10						a aire				
						ring	Btm			
Remar	<u> </u>	1				Water Level Mesen	rement Date			
		11-1-1	+_L'.	1 01	t		Date			
* >	-bm	intred	1:0 <b>1</b> : '1:	6-8	sample	٤.	Date			
1		inaryse	. •							

	BORING LOG									
<b>8</b> 0				Project N	o.:15	39-00 Well/Boring No.:B-13				
		VTRKA		Project N	ame: <u>NG</u>	C - Structural Sheet 1 of 1				
			CCT			Chk'd: Date:				
Drilli	ng Co	atractor	Fmile	aton F	nuiroinm	ental				
Drille	er: Jo	1. foland		Geolog	pist:	D. Obradovich Borehole Completion Depth;				
Drill	Rig: fi	ort. Hun	<u>mer Dri</u>		g Method:	Geoproje Hammer Borehole Diameter: 2"				
Date	Started	l: <u>-</u> 2-1	11-98	Drive I	ompleted: _	2-11-98				
	T	<u> </u>	T	<del></del>	- T					
	0		2		E					
E	N S S S S S S S S S S S S S S S S S S S	NIN IN	ER		V.					
H	L	LI N	No.	NS.	ISQ	SAMPLE				
EP	W	WĘ		0	EA I	DESCRIPTION				
Ā	S	S H	2	BI	E					
-0-										
						0-2 liench				
-1-										
			1							
-2-						2-4 (2-3) (one trench				
						(3-4) Void below conc.				
-3-						trench construction				
	ł									
-4-	1,	4-1'	244	-	620	(4-6') <u>0-1</u> " Bik. silt + 1 grevel <u>1-1/2</u>				
		( 6			280	Tan- orange F-c SAND, little office				
-5-			1		22	il s'a l'ant and some fingravel				
						$\frac{1}{(3_{a-1}-1)} = \frac{1}{2} + \frac{1}$				
-6-	2	$L = 8^{T}$	10"			Strang paint uder				
Ū	*	0 0		-	61	(1 ci)e to controlitte (-) f-m gravel				
-7-						6-8 ) Dr. T-C SHILD; THE MOIST				
						Cross Section of Trench				
<u>_8_</u>				ł						
						steel plates				
<b>_o</b> _						Trench 1/2F-11				
- 7-						conc.				
.10						4				
-10						Furthern I				
						Błm				
Remar					<b>_</b>	Water Level Measurement Date				
	¥ Su	, bm, He	ed 4-	-6' 4	6-8' SAN	neles Date				
	f	or Ana	lyses			Date				

d	()             	VIRK. ND ARTII								
DRILLI	NG CO	NTR/	ACTOR		DBILLINGLOG	BORING NUMBER B-13				
Driller	Emir	rste	n En	<u>v.</u>	PROJECT NAME N& Plant 5	Sheet 1 of 1				
Inspect	or	En	$\gamma \alpha$			Boring Local	ion			
	e Ea	rth	Prote		PROJECT # 1539 00					
Drilfing	Method	d	ret	push	Location Address BI thmar NY					
Drive H	ammer	Weig	- i ht	_						
GROUM	INWAT		BSER		Northan OLD - Wind 30'S	Plot Plan				
Water	avai		J			i iotriali				
			-		Date/Time Start	1				
Date					Date/Time Start					
Casing	Denth									
	Same		SPT			WEILCH	MATIC	COMMENTS		
Depth	Numb	Her	JE I	Reading	FIELD IDENTIFICATION OF MATERIAL			COMMENTS		
							1			
					0-2 VOID					
2					NO Samples Collected from	1				
-2	1				2'-9'					
	 				2 - 5.					
4			-							
5										
6										
7										
		+-								
6	1			NA	Br. forc gt SAND, 1. He for					
					Gow C LIR. Cil du a					
4					Chance, little Site Clamp		ł			
1D					no odors					
<u> </u>		Ī			Ful C Dut			Attempt to		
					- of Doring E 10'					
.1					Č			Sample trinn		
14	·							10-12 tailed		
13		+						due to		
								N. Gruit Call		
17								Summer Supro		
10										
		+								
		+-								
					Soli Strattgranhu Cummon		1			
SPT = ST	ANDAR	D PEN	ETRATI	ON TEST						

	BORING LOG									
∎n				Project N	o.:15	539-00 Well/Boring No.: B-14				
		<b>VIRKA</b>	-	Project N	ame: <u>NG</u>	GC - Structural Sheet 1 of				
			CCT		les	ST Hangars / rian + 5 By: <u>10</u> Date: <u>27298</u> Chir'd: Date: 4				
Drilli	ng Co	ntractor:	Emin	aton E	nuironm	nental				
Drille	er: \	N. Kolar	<u>لم</u>	Geolog	rist:	D. Obradovich Borehole Completion Depth:				
Samp	Kig: T le Spo	on I.D.:	NA NA	Drillin	g Method: Hammer Wt.	t: NB Driv Ground Surface EL:				
Date	Started	<b>t:</b> _2~!	2-95	Date C	ompleted: _	2-12-98				
		1		1	1					
Î	Ň.	04	X		CE					
E E	E	N'N	E	S/6"	Y A					
Ē	Idy	API E.R.	00	M	SON					
DEI	SAN	NAS IN	REC H	BLC	HE	(encrete				
-0-			<u> </u>	<u>                                     </u>						
		0-2	13"	-	3.9	(0-2') Br. 4-C SAND, 15the #) 4-C				
-1-						gravel + silt, The clay compact				
						he oder, mass				
-2-		2-4	1211		20	(3-4) Brred - bik. f-c'SAND				
				]		little f-convert + S. H (61K)				
-3-						tr clay, no odor must,				
						compact				
-4-						$C \cap P =$				
						-EOD				
-5-										
						* 6" concrete & surface				
-6-										
-7-										
-8-										
-9-										
-10										
Remark						Water ( evel Measurement Date				
	<b>ς</b> μ		0.01	47-41	s	Date				
• d	for		0 = <u>r</u> . ∕ (	1 4 - 1	sumpus	Date				
		unalys								

d		VIRKA ND ARTILU(	CCI	Project No Project Na	0.:15 me:NG Test	39-00 C - Structural t Hangars/Plant5	Well/Boring No.:       B - 15         Sheet 1 of       1         By:       D.0.         Date:       2 - 13 - 9.8         Chk'd:       Date:
Drillin Drille Drill I Samp Date S	ng Cor r: <u>b</u> Rig: <u>f</u> le Spo Started	utractor: . Relaive on I.D.: :	Emin Hamme: NA Dri -98	<u>gton</u> E <u>Geolog</u> Drilling Drive F Date Co	nuironm ist: ; Method: Iammer Wt.: pompleted:	ental D. Obradovich Hammer Drill NA 2-13-98	Borehole Completion Depth: Borehole Diameter:" Ground Surface El.:
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	Feet Below D Grade	SAMPLE ESCRIPTION
-0- -1- -2- -3- -4- -5- -6- -7- -8- -9- -9- -10	1	<b>5</b> -7 5 ⁻¹ 2-8	18" ' 22"		(ک, ت ن ا	(O-5') Void Vell Vell Vell (5-7') Br. f- gravel 2nd (5-7') Br. f- gravel 2nd (5-7') Br. f- gravel 2nd (5-7') Tan- sitt, little f come. powder -EOB- Cross	Headspace of Dry (Former Dry well) s, boards & a 4/2-5' rade c SAND, little f-c t sitt, dry (21/3/48) br. f-c SAND, some -c gravel, dry (1:44 ) section Dry Well wood. boards, conc chunks
Remar ¥	<b>ks</b> : Σνι αι	mitted valysis	5-7'	sample	for	Water Level Measu	Date             Date             Date             Date

	BORING LOG									
d		VIRKA ND ARTILU	ссі	Project N Project N	o.: <u>15</u> ame: <u>NG</u> _Tes ⁻	39-00     Well/Boring No.:     B-15A       ac - Structural     Sheet 1 of 1       t Hangars / Plant 5     By:     D.0       Chk'd:     Date:     1				
Drilli Drille Drill Samp Date	ng Cor er: <u></u> Rig: ⁷⁰ ele Spo Started	$\frac{1}{12} \frac{1}{12} \frac$	Emin nd ner Dri NA -98	gton E Geolog Drillin Drive I Date C	nutromm ist: g Method: Hammer Wt. ompleted:	ental <u>D. Obrudovich</u> Borehole Completion Depth: <u>4</u> Borehole Diameter: <u>11</u> <u>12-12-98</u> Borehole Completion Depth: <u>4</u> Borehole Diameter: <u>11</u> <u>12-12-98</u>				
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE DESCRIPTION				
-0-						0-1' Void - headspace in dry well				
-1-	1	1-3	24"		0.0	(1-3') Orange F-m SAND, little c. sand, th silt, dry-sl mist				
-2-						(overlap))				
-3-	2	3 - 4	12"	-	0.0	(2-4) Tan f-m SAND, little c. sand, tr. silt, dry				
-4-						-EOB-				
-5-										
-6-										
-7-						Cross Section				
-8-						Grade steel plate conc. Condensate				
-9-		:				piping 0 Pit? (Solid bottom)				
-10						4.				
Remar	ts: Submi	Hed 2 types (	-4 si Hold perfi	ample antit B	for -15-is D.0-	Water Level Measurement Date Date Date Date				

	BORING LOG										
				Project N	o.: 15	39-00		Well/Boring No.: B-16			
		VIRKA		Project N	ame: NG	C- St	ructural	Sheet 1 of			
					Tes	t Hangai	rs/Plan+5	By: <u>P.O.</u> Date: <u>2-12-18</u>			
	9 I	BARTILU	CCI					Chk'd: Date:			
Drilli Drille Drill Samp Date	ng Co er: \ Rig: 7 ele Spo Starteo	ntractor: N Ro ia ort Haw on I.D.: 1: _2-11	Emil nd mer Dru NA 2-98	<u>gton</u> E <u>Geolog</u> <u>II</u> Drillin <u>Drive</u> I <u>Drive</u> I	g Method: Hammer Wt.	ental D. Obro 	udovich Hanner Dritt 18	Borehole Completion Depth: Borehole Diameter: Ground Surface El.:			
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)		I	SAMPLE DESCRIPTION			
-0-								metal Gratchy			
							(s ragle				
-1-	ļ		}				Condense	ite pit I ladder			
							( cons s	ration)			
-2-											
-3-								B-16			
							conc. Flow				
-4-								cone.			
-5-								earthan brin			
-6-						(7 - 9)	') <u>0-3</u> "	Bik - dk grey SILT			
-	i	- 01	111	-	6.8		w/ Care	depris + matted matil			
-/-	l	7-9	16		0.0	3'-	thers - ha	d f=r SAND little f-c			
- 8-						5	ruvel, tr.	silt, no odor			
-0-								R I I I I I I I I I I I I I I I I I I I			
-9-	5	9-11'	20"	-	0.2	(9-11	') ked- f-c g	br. F-C SAND, 1. The ravel & silt, V. moist			
							-, 2 -				
-10						- 6	0 12				
11											
Remar	<u>८इ</u> :		<u></u>			Wa	ter Level Measu	irement Date			
* ;	<i>ssp</i> m	itted	7-9' 1	9-11'	sample	٤		Date			
4-	61 0	malyse	25					Date			

		OVIRKA ND BARTILU	Emin	Project No Project Na	.: <u>15</u> ime: <u>NG</u> <u>Tes</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Drille Drill Samp Date	r: W Rig: fi le Spo Started	on I.D.: 1 1: 2-12	ammer D 1A -98	Geolog <u>Al</u> Drilling Drive H Date Co	ist: Method: Iammer Wt. pmpleted:	D. Obradovich Geoprobe Drill Hammer Borehole Completion Depth: <u>4'</u> : <u>NA</u> Ground Surface El.: <u>2"</u> : <u>NA</u>
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	SAMPLE Feet Below DESCRIPTION Concrete
-0-	1	0-2'	8 ''	-	00	(0-2') Br. f-C SAND, little f-m gravel + silt (Orange-br. CLAY, little silt from 6-8"), moist
-2-	T	2-4'	l¶"	~	0.0	(Doned-br. fiburous SILT? from 2-2"") (2-4') Br. f-c SAND, little f-c gravel (0-5") 5-13" Orange-
-3-						1. He for the for the formely silt, moist
-4-						-E0B-
-5-						* " concrete & Surfree
-6-						
-7 <b>-</b>						
-8-					:	
-9-						
-10						
Remark * Su	bmi r u	Hed 0-	2' + 2 \$	-4' sar	Water Level Measurement       Date          Date          Date          Date          Date	

BORING LOG								
DVIRKA AND BARTILUCCI				Project No	n: <u>15</u>	39-00	Well/Boring No.: <u>B~18</u>	
				Project Na	ame: <u>NG</u> Tes-	t Hangars/ Plants		
						<del></del>	Chk'd: Date: 2 13 -28	
Drilli Drille	ng Con r: \//	itractor: Loland	Emih	gton E Geolog	ist:	ental D. Obrudovich	Borehole Completion Depth:	
Drill I Samp	Rig: P	Y-L HAM	mer Dri	Drilling	g Method:	N A	Borehole Diameter:'	
Date S	Started	: <u>-2-13</u>	5-98	Date C	ompleted: _	2-13-98		
			1			1		
DEPTH (FT.)	SAMPLE NO	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	Feet Below I Concrete	SAMPLE DESCRIPTION	
-0-	1	0-2'	71"	-	290			
-						(U-L) Urang- f-c g	ravel, tr. silt, moist,	
-1-						no c	dur	
-2-	2	2-4'	7"	-	0.0	(2-4') Orange	- br. f- i sAND, H. f- m gravel + 11/t	
-3-						moist		
-4-						* 10" concrete @ surface		
-5-						- EOB -		
-6-								
_								
-7-								
-8-								
-9-								
-10								
Rema			<u> </u>			Water I evel Mean	prement Date	
	Ci	ا منازمه	0-7 '	and 7	u cam	~ ies	Date	
*	JUN fre	analy	ies -		1 34		Date	





DRILLING CONTRACTOR Driller Emington Env. Inspector Ema Rig Type Earth Prote Drilling Method Drive Hammer Weight GROUNDWATER OBSERVATION: Water Level Time Date Casing Depth	DRILLING LOG PROJECT NAME <u>N6 Plant 5</u> PROJECT # <u>1539 00</u> Location/Address <u>Bethpage NY</u> Weather <u>COLD - Windy 30'S</u> Date/Time Start Date/Time Finish	BORING NUMBER Sheet of Boring Location Plot Plan			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4-6' Red-br. orange forc SAND little for branch trt-little S.Lt. Damp no odors 6-8 red, tan. br forc qt2 Sano little ( )				
	Hrt-1. He S. H. Danp. no odors End of Bonny C 8'				
SPT = STANDARD PENETRATION TEST	Soll Stratigraphy Summary				



ORILL	ING CO	NTRACT	OR	DRILLING LOG	BER <u>B-20</u>		
Driller	Emiha	<u>yton En</u>	v'tal	PROJECT NAME NGC - Structural Test	of		
Inspec	tor	Obr	adovich	Hangars / Plant 5	Boring Location West of		
Flig Ty	pe	4E - 7	5.11	PBOJECT # 1539-00	Freight Elevator		
Dritting	7 Method	<u> </u>	et Hs	A Location/Address NGC, Bethrage NY.			
Drive I	Hammer	Weight _	140 ibs,				
GBOL					Olet Dies	( ) T + Hereen	
Water	Lovet		ENVATIONS	Weather M SUNNA	PROCEMENT ST	Netural lest ranger	
The						Freight	
Dete				Date/Time Start 3-13-98	butside " + O	Elevator	
				Date/Time Finish _2-13-48	conc.	6	
Casing	Vepth						
Sample	Samp	SPT	PIO/FIO	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMA	TIC COMMENTS	
	IVUITIO	er	rieading	L			
		_	0.0				
				0-6" Concrete			
<u> </u>				111 54 0 0			
				0-0 Dr. F-C. SAND, little			
<u> </u>	+	+	0.0	+- c gravel + silt, u mois	+		
	<u> </u>	+	10/3-	2'-20' D In C			
				c = 20 Urange - 1. F-C Still			
				1"-le f-c. gravel, tr.			
				silt y cobble, moist			
			0.0	20-22' Oringe - br, m-c			
				GRAVEL, 1146 for sud			
				tr. silt, roist			
		+		22- Drung br. f-1 can			
		+		30 17th f m are pl to cliff			
		+	0.0	4 c. grave muist			
			+	) ,,			
				1. (46-48') Tan-orange ut-m SANE			
		1	0,0	To occussional - some orange sitt	/		
		ļ		layers (some iron strend), moist			
110				(HE-ED') Some as HE-48'			
Pac	1	14,16	0.0	except for white -grey CLAY		+ Submitted	
18-50	<u></u>	11.13		50 some silt from 8-10") moist		46-48 sample	
Rec.	16	13.17	10.0			for analysis	
0-52	3	12,12	0.0	(30-52) <u>D-16</u> " Grey SILT and			
Kec	19"	13,13		orange-grey iron-stained wif		* Submitted	
				Sand Y SI 14 moist 10-19" Tan-		48-50' sumple	
				60 Orunge vf-m SAND w/		for analysis	
			<u>                                     </u>	occussional grey sift layers,			
			┼┤	moist			
			<del>  </del>				
			┼───┤	END OF BORING AT 52 65			
			<u>├</u> ───┤	Ŭ			
				Soll Stratigraphy Summary			
T = STAN	IDARD P	ENETRAT	ON TEST				

-

.

1

BORING LOG									
			Project No	.: <u>15</u>	39-00	Well/Boring No.: <u>B-21</u>			
		ND	0.07	Project Na	Tes	t Hangars / Plant 5	By: <u>D.O.</u> Date: <u>2-13-98</u>		
	B								
Drilling Contractor: Emilyton Environmental									
Drill	r: <u>//</u> Rig: /	ort. Hum	ner Dvil	<u> </u>	st:	Generate Hummer Bon	ehole Diameter: _2 ¹		
Date :	ie Spo Started	on I.D.: _ $\frac{2}{12}$	-98	Drive F Date Co	ammer Wt. ompleted: _	2-(3-98	und Surface El.:		
					[v]				
(FT	N	NG /	ERY						
HL	IPLI	ERL	No No No No	SW	ISO	S.	AMPLE		
DEI	SAN	SAN	REC	BLO	HEV	Concrete & wood			
-0-	1	0-21	20"	-	0.0	(a) Br-red	f-c SAND, little (+)		
						fic graved	, little silt, compact,		
-1-						moist			
-2-	2	2-41	15"	-	0.0.	(2-4') same a	s 0-2'		
2									
-3-			1				C		
-4-						+ 3-4" Wood	tloor wy st		
5						(@ \$	vitace)		
- )-									
-6-						-E0B-			
7									
-/-									
-8-									
-0-									
<u>-</u>									
-10									
Remar	<u>cs</u> :			I		Water Level Measureme	ent Date Date		
*	subn f	aitted	0-Z' >	12-41	samples		Date		
	102	unaly	515						

DVIRKA AND BARTILUCCI				Project No.: 1539-00 Project Name: NGC - Structural Test Hangars/Plants			Well/Boring No.:       B-22_         Sheet 1 of       By:         By:       Po         Date:       Po         Chk'd:       Date:
Drilling Contractor: Emin Driller: <u>N. Roland</u> Drill Rig: <u>Fort</u> Hammer D Sample Spoon I.D.: <u>NA</u> Date Started: <u>397788</u>				gton E Geolog U Drilling Drive F Date Co	NUITOIAM ist: ; Method: Hammer Wt. completed:	ental D. Obradovich Compose Hammer NA Dnill	Borehole Completion Depth: Borehole Diameter:2. ¹¹ Ground Surface El.:
DEPTH (FT.)	SAMPLE NO.	SAMPLING INTERVAL	RECOVERY/ RQD	BLOWS/6"	HEADSPACE (PPM)	Feet Below I Concrete	SAMPLE DESCRIPTION
-0-	(	0-2	12"		0,0	(0-2') fed- f-c g	br. f-c SAND, little wavely silt, moist
-2-	<b>ڊ</b>	2-41	10	-	0-0	$ \begin{pmatrix} 2-4' \end{pmatrix} \xrightarrow{0-5'} \\ f-m gvw \\ f-c sA $	"Tan f-c SAND, some rel, mist 5"-11" Br ND, little f-m gravel, red
-4-						+ 6" conc. Q	surface
-5- -6-						-E0B-	
-7-							
-8-							
-9-							
-10							
Remar *	KS: SUI For	omitted unaly	-ر- در در	' and	Water Level Measu	Date            Date            Date            Date            Date	

	BORING LOG												
ШП	-			Project No	p.: 15	39-00	Well/Boring No.: <u>B-23</u>						
d		ND		Project Na	Tes	t Hangars / Plants	By: $\frac{1}{2.0}$ Date: $\frac{2.17-98}{2.17-98}$						
BARTILUCCI						-	Chk'd: Date:Ψ						
Drilli	Drilling Contractor: Eminaton Environmental												
Drille Drill	er: <u>/</u> Rig: }	V Rolano	d nmer Dr	Geolog	ist: z Method: _	D. Obradovich Generobeitammer	Borehole Completion Depth: Borehole Diameter:						
Samp Date	ie Spo Starteo	on I.D.:	NA 7-98	Drive H	fammer Wt.:	2-17-98	Ground Surface El.:						
	T		1			T							
H	0 Ž	UH	1X	_	CE								
H (F	LE	RVA	D	9/S/	W)		SAMPLE						
EPT	AMP	<b>MP</b>	B B C C C C C C	LOV	EAD (PF	Feet Below 1	DESCRIPTION						
	š	3 II	2	<u>a</u>	H	Concrete							
-0-	1	0-2'	/3 "	-	0,0	(0-2') Br	f-c SAND, little f-e						
-1-						Jiave	1, the silt + cubble, moist						
						0.10	(						
-2-	2	2-4	15"	-	0,0	(2-4') Tun-	Br red f- c SHND,						
-3-						little ;	Le gravel + silt, moist						
						F-m	13 TAN FECSATION F						
-4-						- EUR-							
-5-													
						★ 6-8" (0	nc. a suitre						
-6-													
-7-													
<b>y</b> -													
-8-													
_0													
- 7-													
-10													
Remar		]				Water Level Meas	urement Date						
¥	Subr	nitted	0-2	and 2-4	sanpi	23	Date Date						
	for	inalys	e s				Date						
	BORING LOG												
------------------	--------------------	-----------------------------	---------------	-------------------------	-----------------------	-------------------	----------------------------	--	--	--	--	--	--
II.				Project N	o.: <u>15</u>	39-00	Well/Boring No.:B-24						
	$\bigcirc$	VIRKA		Project N	ame: <u>NG</u> Tes	t Hangars/ Plant5							
UL		ARTILU	ССІ			<del></del>	Chk'd: Date:						
			F	: -		1- I							
Drilli Drille	ing Col er: 1/2	Labund	Emin	<u>gton</u> E Geolog	ist:	D. Obradovich	Borehole Completion Depth:						
Drill	Rig:	Pirt Har	nmer pr.		g Method:	George Hammer	Borehole Diameter:						
Date	Startec	$\frac{1}{2} = \frac{1}{2}$	17-98	Drive I	ompleted: _	2-17-98							
	Τ.		Г	1	1	I							
Î.	NON	U J	RY	=	CE								
H (I	LE	R V I		/S/6	M)		SAMPLE						
L	MP	MP	NO N	MO	DAD GA	Feet Below D	DESCRIPTION						
DE	SA	N SA	RE	BL	H	Cinciete							
-0-	1	0-2'	13"	-	0.0	(0-71) Red-6	r. F-C SAND, 11H10						
						fin grave	1, tr. silt + c. gravel,						
-1-						moist	,						
-7-			~!'										
- 2-	2	2-4	U	-	-	(2-4') No M	e covery						
-3-						Refusal	@ 4' below grade due						
						to meta							
-4-						3 11 wood	1 ¥						
						¥ 5 " concr	ete ce surface						
-5-						-EAB-							
-6-													
·													
-7-													
-8-													
0													
-9-													
-10													
-													
Remar	<u>ks</u> :	SI 1 ~		mala		Water Level Measu	rement Date Date						
* 5	v bm	itted 0	⊷Z' 5a ce×	mpik			Date						
	LDA	unary	1~1										

Appendix C

**APPENDIX C** 

# LABORATORY DATA

<b>PROBE/BORING IDENTIFICATION</b>	В-	1	B	2	B-	3		
SAMPLE IDENTIFICATION	B-1 (0-2')	B-1 (2'-4')	B-2 (0-2')	B-2 (2'-4')	B-3 (0-2')	B-3 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' 2'	2' 4'	0' - 2'	2'-4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	10	1.0	10	10	10	LIMITS	CRITERIA
UNITS	(ua/ka)	(ua/ka)	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	(99/19/	Yttarmar	7.22.221	100	1001			
Chloromethane	U	U	U	U	U	U	10	
Bromomethane	ū	ū	U	U	U	U	10	
Migul Chlorido	Ŭ.	ŭ	Ū	υ	U	U	10	200
Chloroothane	ü l	Ŭ	Ū	Ū	U	U	10	1,900
Methoden Chlorido	10 18	11 IB	1 2 .IB	0.8 JB	1 1 JB	U	10	100
Metryiene Chioride	1.0.00	11 00		U 1	Ū.	Ū	10	200
Acelone Ostar Disulfida	U U	11	Ŭ	ŭ	ū	Ū	10	2,700
Carbon Disulide	0	Ŭ	Ŭ	ŭ	- ū	Ű	10	400
		0	Ŭ	ŭ	ŭ	ŭ	10	200
1,1-Dichloroethane	0	ŭ	U	ŭ	ŭ	ũ	10	300
trans-1,2-Dichloroethene	0	0	U U	U U	ŭ	ŭ	10	250 *
cis-1,2-Dichloroethene	U U	0	0	U U	ŭ	Ű	10	300
Chloroform		0	0	i i	U U	0	10	100
1,2-Dichloroethane	U	0	U .	, , , , , , , , , , , , , , , , , , ,	0		10	300
2-Butanone	U	0	U	0	0	0	10	800
1,1,1-Trichloroethane	U	U	U	0	0		10	600
Carbon Tetrachloride	U	U	U	U	U	0	10	000
Bromodichloromethane	Ų	U	U	U	0	0	10	
1,2-Dichloropropane	U	U	U	U	U	U	10	
cis-1,3-Dichloropropene	U	U	U	U	0	0	10	700
Trichloroethene	U	U	U	U	0	U	10	100
Dibromochloromethane	U	U	U	U	U	U	10	
1,1,2-Trichloroethane	U	U	U	U		U	10	60
Benzene	U	U	U	U	U	0	10	60
trans-1,3-Dichloropropene	U	U	U	U	U	0	10	
Bromoform	U	U	U	U	U	U	10	4 000
4-Methyl-2-pentanone	U	U	U	U	U	U	10	1000
2-Hexanone	U	U	U	U	U	U	10	1 400
Tetrachloroethene	U	U	U	U	U	U	10	1,400
1,1,2,2-Tetrachloroethane	U	U	U	U	U	U	10	1 500
Toluene	U	U	U	U	U	U	10	1,500
Chiorobenzene	U	U	U	U	U	U	10	5.500
Ethylbenzene	U	U	U	U	U	U	10	5,500
Styrene	U	U	U	U	U	0	10	1 000
Xylene (total)	U	U	U	U	U	0	10	1,200
MTBE	U	U	U	U	U	U	10	4 200
Naphthalene	U	U	U	U	U	0	10	1300
Isopropylbenzene	U	U	U	U	U	0	10	
n-Propylbenzene	U	U	U	U	U	U	10	
1,3,5-Trimethylbenzene	U	U	U	U	U	U	10	
tert-Butylbenzene	U	U	U	U	U	0	10	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	10	
sec-Butylbenzene	U	U	U	U	U	U	10	
p-Isopropyltoluene	U	U	U	U	U	U	10	
n-Butylbenzene	U	U	U	U	U	U	10	
1,2,3-Trichlorobenzene	U	U	U	U	U	Ų	10	
							ļ	10.000
TOTAL VOCs	1	11	1.2	08	11	U	I	10,000

Qualifiers:

U: Compound analyzed for but not detected. J: Compound found at a concentration below the detection limit.

B: Compound found in the method blank as well as the sample

Notes

---- Not established

* : Proposed revised criteria

PROBE/BORING IDENTIFICATION	B-	-4	B	5	B-	6		
SAMPLE IDENTIFICATION	B-4 (0-2')	B-4 (2'-4')	B-5 (0-2')	B-5 (2'-4')	B-6 (0-2')	B-6 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2'-4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	10	10	10	10	10	LIMITS	CRITERIA
UNITO	(ug/kg)	(ua/ka)	(ug/kg)	(un/kn)	(uo/ka)	(uo/ka)	(ua/ka)	(ua/ka)
	(ug/kg)	<u>[ug/ng]</u>	. rođuat	. (egregi	(dgring)	(49/19/	(agrig)	1991.91
Chloromethano	11		11			υ	10	
Chloromethana	U U	U U	Ŭ	Ŭ	Ū.	ŭ	10	
Bromomethane	0	U U	ŭ	11	ŭ	й	10	200
Vinyi Chionde	0	0	ŭ	Ŭ	U U	ŭ	10	1 900
Chioroethane	10		120	0.9 10	10 18	118	10	100
Methylene Chloride	1.0 B	07 36	1.2 D	0036	10 30		10	200
Acetone	0	0	U	0	U	0	10	2 700
Carbon Disulfide	U	0	U	U	U	U U	10	2,700
1,1-Dichloroethene	U	U	U	U	U	U I	10	400
1,1-Dichloroethane	U	U	U	U	U	U	10	200
trans-1,2-Dichloroethene	U	U	U	U	U	U	10	300
cis-1,2-Dichloroethene	U	U	U	U	U	U	10	250 *
Chioroform	U	U	U	U	U	U	10	300
1,2-Dichloroethane	U	U	U	υį	U	U	10	100
2-Butanone	U	U	U	U	U	U	10	300
1 1 1 Trichloroethane	U	U	U	U j	U	U	10	800
Carbon Tetrachloride	U	U	U	U	U	U	10	600
Bromodichloromethane	U	U	υ	U	U	U	10	
1 2 Dichloropropage	ū	U	U	U	U	U	10	
cis-1 3-Dicbloropropene	ū	U	U	U	U	U	10	
Trichloroethene	ŭ	Ū.	U	U	17	U	10	700
Dibromochloramethana	. ŭ	Ū.	U	U	U	υ	10	
1 1 2 Trichloroethane		ŭ	ŭ	Ū.	Ū	U	10	
Papapa	Ŭ	й	ů	Ū	ü	U	10	60
belizerie		U U	Ű	ŭl	ŭ	Ū	10	
Bromoform	U U	ц Ц	ŭ	Ŭ I	ŭ	ū	10	
A Mathul 2 contenens	Н	U U	Ŭ	ů l	ū	Ū	10	1.000
4-Methyl-2-pentarione	U	U U	Ŭ	ŭ	ŭ	Ū	10	
Z-nexarione	0	U U	Ŭ	ŭ	ũ.	ũ	10	1 400
1 etrachioroethene	0		U U	U 1	0	ŭ	10	600
1,1,2,2-1etrachioroethane	U	0	0			ŭ	10	1,500
Toluene	U U	0	0	Ŭ I	U U	ŭ	10	1 700
Chlorobenzene	0	0			Ŭ I	ŭ	10	5,500
Etnyidenzene	0	0	0	U U	U U	Ŭ	10	0,000
Styrene	0	U	0				10	1 200
Xylene (total)	0	0	0	0	0	Ŭ.	10	1,200
MTBE	0	0	0	0	0	0	10	1 300
Naphthalene	U	0	0	0	0	0	10	1,000
Isopropylbenzene	U	0	0	U		0	10	
n-Propylbenzene	U	U	U	U	U	0	10	
1,3,5-Trimethylbenzene	U	U	U	U	U	0	10	
tert-Butylbenzene	U	U	U	U	U	U	10	
1,2,4-Trimethylbenzene	U	U	U	U	U	U	10	
sec-Butylbenzene	U	U	U	U	U	U	10	
p-Isopropyltoluene	U	U	U	U	U	U	10	
n-Butylbenzene	U	U U	U	U	U	U	10	
1,2,3-Trichlorobenzene	U	U	U	U	U	U	10	
						2.5		40.000
TOTAL VOCs	16	07	1 2	08	27	11		10,000

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit

B: Compound found in the method blank as well as the sample.

Notes

---- Not established

Proposed revised criteria

listed in TAGM 4046 Appendix A

------

. ...

PROBE/BORING IDENTIFICATION	B	7	В	-8	B	9		
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B 9 (0 2')	B-9 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILLITION FACTOR	10	1.0	10	1.0	10	1.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ua/kā)	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	(033)	7-557	1701.002		19.21			10.0/
Chloromethane	11	U	υ	U	υ	U	10	
Bromomethane	ŭ	Ū.	Ú	U	U	υ	10	
Viovi Chloride	ц. Ц	Ū.	ū	U	U	U	10	200
Chlorosthane	Ŭ	ŭ	ŭ	Ц	Ū	Ū	10	1,900
Mothulana Chlorida	ŭ	07.IB	10.IB	08.18	0.7 JB	08.JB	10	100
Applano	1		1.0 01	11	47	11	10	200
Carbon Disulfido	Ц	U U	u u	ŭ	υ	บั	10	2 700
Carbon Disulide	U U	U U	U U	u u	, ii	Ŭ,	10	400
1, 1-Dichlosothene	U U	U U	Ŭ	U U	U U	Ŭ Ŭ	10	200
1,1-Dichioroethane	U	0	U U	0	U U	U U	10	300
trans-1,2-Dicnioroetnene	U	0		0		L ŭ	10	250 *
cis-1,2-Dichloroethene	U	U					10	200
Chloroform	U	U		0	0	0	10	100
1,2-Dichloroethane	U	U	U	U	12		10	200
2-Butanone	U	U	U	0	12		10	300
1,1,1-Trichloroethane	U	0	U	0	U	0	10	600
Carbon Tetrachloride	U	U	U	U	U	0	10	600
Bromodichloromethane	U	U	U	U	U	U	10	
1,2-Dichloropropane	U	U	U	U	U	U	10	
cis-1,3-Dichloropropene	U	U	U	U	U	U	10	
Trichloroethene	U	U	U	U	U	U	10	700
Dibromochloromethane	U	U	U	U	U	U	10	
1,1,2-Trichloroethane	U	U	U	U	U	U	10	
Benzene	U	U	U	U	U	U U	10	60
trans-1,3-Dichloropropene	U	U	U	U	U	U	10	
Bromoform	U	U	U	U	U	U	10	
4-Methyl-2-pentanone	U	U	U	U	U	U	10	1,000
2-Hexanone	U	υ	U	U	U	U	10	
Tetrachloroethene	U	U	U	U	U	U	10	1,400
1 1 2 2-Tetrachloroethane	U	U	U	U U	U	υ	10	600
Toluene	U	υ	U	U U	U	U	10	1,500
Chlorobenzene	Ú	U	U	U	U	U	10	1,700
Ethylpenzene	Ú	U	U	U	U	U	10	5,500
Styrene	U	U	U	U	U	U	10	
Xvlene (total)	Ū	υ	U	U	U	U	10	1,200
MTBE	Ū.	Ū	U	U U	U	U	10	
Nanhthalene	ũ	Ū	U	U	U	U	10	1,300
Isopronylbenzene	ŭ	Ū	Ū	U	U	U	10	
n-Propylbenzene	ū	Ū.	Ŭ	U	U	U	10	
1 3 5 Trimethylbenzene	ŭ	ū	Ū	Ŭ	υ	U	10	
tert Bub/benzene	ŭ	ū	Ū	Ū	U	U	10	
1 2 4 Trimethylbenzene	U U	U	ŭ	Ŭ	Ũ	Ū	10	
eec.Bub/benzene	Ŭ I	11	ŭ		ũ	ū	10	
a Isoproputaluana			ŭ	i ii	ů.	ŭ	10	
p-racpropylicidene		Ц	П	ŭ	ц Ц	Ű	10	
1-Dulyidenze/le	0	U U	U U	i ii	ŭ	Ŭ Ŭ	10	
1,2,3- HICHIORODENZERE	0	0	0		U	Ū		
TOTAL VOCs	0	07	1 0	08	59 7	08		10,000

#### Qualifiers:

U. Compound analyzed for but not detected.

J. Compound found at a concentration below the detection limit.

B. Compound found in the method blank as well as the sample.

Notes

---- Not established

* Proposed revised criteria

listed in TAGM 4046 Appendix A

-

PROBE/BORING IDENTIFICATION	В-	10	B-	11	B-	12	1	
SAMPLE IDENTIFICATION	B-10 (0-2')	B-10 (2'-4')	B-11 (5'-7')	B-11 (7'-9')	B-12 (4'-6')	B-12 (6'-8')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	5' - 7'	7'-9'	4'-6'	6' 8'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILLITION FACTOR	10	10	10	10	10	1.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)
	. Yearial		1997-97	. 1921-27	1-3-37	1-3-32/	1731134	1.21.22
Chioromethane	υ	υ	U	U	U	υ	10	
Bromomethane	Ū	U	U U	υ	U	U	10	
Vinvl Chloride	Ū	Ú	U	U	υ	U	10	200
Chloroethane	Ū	Ū	U U	U	U	U	10	1,900
Methylene Chloride	BL 60	1.3 B	15 B	0.8 JB	10 JB	12 B	10	100
Acetone	13	υ	U	U	U	U	10	200
Carbon Disulfide	U	U	U	U	U	U	10	2,700
1 1-Dichloroethene	U	i u	U	U	U	U	10	400
1 1-Dichloroethane	Ū	υ	U	U	υ	U	10	200
trans-1 2-Dichloroethene	U	υ	U	U	U	U	10	300
cis-1 2-Dichloroethene	U	υ	U	U	U	U	10	250 *
Chloroform	U	υ υ	U	U	U	U	10	300
1 2-Dichloroethane	U	U	U	U	U	U	10	100
2-Butanone	υ	U	υ	U	· U	U	10	300
1.1 1-Trichloroethane	υ	U	U	U	U	U	10	800
Carbon Tetrachloride	U	U	U	U	U	U	10	600
Bromodichloromethane	U	U	U	U	U	U	10	
1.2-Dichloropropane	U	U	U	U	U	U	10	
cis-1,3-Dichloropropene	U	U	U	U	U	U	10	
Trichloroethene	11	09 J	U	U	U	U	10	700
Dibromochloromethane	U	U	U	U	U	U	10	
1,1,2-Trichloroethane	U	U	U	υ	U	U U	10	•
Benzene	U	U	U	U	U	U	10	60
trans-1,3-Dichloroproperie	U	U	U	U	U	U	10	
Bromoform	U	U	U	U	U	U	10	
4-Methyl-2-pentanone	U	U	U	U	U	U	10	1,000
2-Hexanone	U	U	U	U	U	U	10	
Tetrachloroethene	U	U	0	U	U	U	10	1,400
1,1,2,2-Tetrachloroethane	U	U	1 U		U	0	10	1 500
Toluene	U	U	1.0	Z.1	0	U	10	1,300
Chlorobenzene	U	Ŭ	U	07.1	Ų	U	10	5 500
Ethylbenzene	U	0	0	10/ J	0	U	10	3,300
Styrene	U	0	15	10.5	U U	U	10	1 200
Xylene (total)	0		1.0	41	U L	0	10	1,200
MIBE	0	0	11	0		U U	10	1 300
Inaprimalene	U U	ŭ		U U	U U	ŭ	10	1,000
n Brogulbonzeno	0	U U	ů i	1 3 0	U U	U U	10	
1.2.5 Trimethylbenzono	U U	U U	U U	3.8	ŭ	U U	10	
tort Bubibenzene	U U	ŭ	ŭ	<b>0</b> 011	ŭ	ŭ	10	
1 2 4 Trimethylbenzene	ŭ	ŭ	ŭ	40	06	11	10	
sec_Butylbenzene	ŭ	ŭ	ŭ	U I	Ŭ	U	10	
p-isopropyltoluene	ม	ŭ	Ū Ū	υĪ	ũ	Ū	10	
n-Butylbenzene	ŭ	Ŭ	Ŭ	Ū I	υl	Ū	10	
1 2 3-Trichlorobenzene	Ŭ	Ŭ	Ū	Ŭ	Ū	Ū	10	
	-				1			
TOTAL VOCs	15	2 2	5.7	171	16	23		10,000

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit

B: Compound found in the method blank as well as the sample

- -

Notes

Not established
Proposed revised (

Proposed revised criteria

listed in TAGM 4046 Appendix A

------

03/26/98

					0.16	D 16		
PROBE/BORING IDENTIFICATION	B-10 (IL OIL	13	B-	14 D 1 4 / 2' 4')	D-10 D-15 (6' 7')	D 16 (7' 0')	CONTRACT	NYSDEC
SAMPLE IDENTIFICATION	B-13 (4-6)	B-13 (0-8)	B-14 (0.2)	D-14 (2-4)	D-13(0-7)	7' 0'	PEOLIPED	TAGM 4046
SAMPLE DEPTH	4 - 6	08.	0.2	2 - 4	0 - 7	02/12/09	DETECTION	
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/12/98	02/13/98	10	DETECTION	
DILUTION FACTOR	10	1.0	10	1.0	10	10		GRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(uð\kĝ)	(ug/kg)	(ug/kg)	(ug/kg)
Chloromethane	U	υ	υ	U	U	U	10	
Bromomethane	U	U	υ	U	U	U	10	
Vinvi Chloride	Ű	U	υ	U	U	U	10	200
Chloroethane	Ū	υ	U	U	U	U	10	1,900
Methylene Chloride	93 B	98 B	24 B	48 B	50 B	4.2 B	10	100
Acetone	Ū	U	U	U	16	U	10	200
Carbon Disulfide	ū	Ū	U	U	U	U	10	2,700
1 1-Dichloroethene	ū	Ū	U	U	U	U	10	400
1 1-Dichloroethane	ū	Ū	U	U	U	U	10	200
trans-1 2-Dichloroethene	ū	U	U	U	U	U	10	300
cis-1 2-Dichloroethene	ū	Ū	U	U	υ	U	10	250 *
Chloroform	ŭ	Ū	U	U	U	U	10	300
1.2 Dichloroethane	ŭ	ū	U	U	U	U U	10	100
2 Butanone	ŭ	ŭ	Ū	Ū	U	U	10	300
1 1 1 Trichloroethane	Ű	ŭ	Ū	υ	60	U	10	800
Carbon Tetrachloride	U U	ŭ	Ū	Ŭ	U	U	10	600
Bramadiablaramethana	Ŭ	ŭ	ū	Ū	U	U	10	
1.2 Disblerepropage	U U	Ű	ŭ	ū	Ū	U	10	
n, 2-Dichioropropane	U U	Ű.	ŭ	Ŭ	Ū	U	10	
Trichleroethere	U U	ŭ	ŭ	ŭ	22	U	10	700
Dibromochleromothano	U U	Ű	ŭ	ŭ	 U	Ū	10	
1 1 2 Trichloronthane	U U	U U	ŭ	Ŭ	Ū	Ū	10	
Penzene	ŭ	ŭ	ũ	U	U	U	10	60
trans 1.3 Dichloropropene	ŭ	ŭ	Ŭ	Ū	U	U	10	
Bromoform	Ű	ŭ	ū	U	U	U	10	
A Mathyl 2 paptapope	Ű	ũ	ū	Ū	31 J	U	10	1,000
2 Heyapope	Ŭ Ŭ	l ű	ŭ	Ū	U	U	10	
Tatrachioroethene	Ŭ Ŭ	ŭ	ū	Ū	90	U	10	1,400
1 1 2 2 Tetrachloroethane	1	l ŭ	Ū	Ū	U	U	10	600
Toluene	ŭ	Ū	υ	U	1.2	U	10	1,500
Chlorobenzene	ŭ	Ū	υ	U	U	U	10	1,700
Ethylbenzene	ū	Ū	υ	U	U	U	10	5,500
Styrene	U	U	υ	U	U	U	10	
Xvlene (total)	Ū	U	υ	U	07 J	U	10	1,200
MTBE	Ū	U	U	U	U	U	10	
Naphthalene	υ	U	Ų	U	U	U	10	1,300
Isopropylbenzene	υ	U	υ	U	U	U	10	
n-Propylbenzene	U	U	υ	U	U	U	10	
1 3 5-Trimethylbenzene	U	U	υ	U	U	U	10	
tert-Butylbenzene	U U	U U	U	U	U U	U	10	
1.2.4-Trimethylbenzene	U U	U U	U	U	07 J	U	10	
sec-Butvibenzene	U U	U U	υ	U	U	U	10	
p-Isopropyitoluene	U U	U	U	U	U	U	10	
n-Butvibenzene	ບ	U	U	U	U	U	10	
1,2,3-Trichlorobenzene	υ	U	U	U	U	U	10	
TOTAL VOCs	93	98	2.4	48	637	42		10,000
1011-1009		Ale and a second and the second		· · · · · · · · · · · · · · · · · · ·			-	

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

B: Compound found in the method blank as well as the sample.

Notes

---- Not established

Proposed revised criteria

	B.16	B-	17	B	18	B-19	ļ.	
SAMPLE IDENTIFICATION	B-16 (9-11)	B-17 (0-2')	B-17 (2'-4')	B-18 (0-2')	B-18 (2'-4')	B-19 (2-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	9'- 11'	0' - 2'	2'-4'	0' - 2'	2' 4'	2'-4'	REQUIRED	TAGM 4046
	02/12/98	02/12/98	02/12/98	02/13/98	02/13/98	02/13/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	10	10	10	10	10	LIMITS	CRITERIA
LINITS	(un/kn)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)	(ua/ka)
	loging/	(99.19/	rearian	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	(	1-231	///	1 1:52.57
Chloromethane	U	υ	U	U	U	U	10	
Bromomethane	U	υ	U	U	U	U	10	
Vinvl Chloride	U	U	U	U	U	U	10	200
Chloroethane	Ū	U	U	U	U	U	10	1,900
Methylene Chloride	2.7 B	8.8 B	36 B	52 B	32 B	38 B	10	100
Acetone	U	U	U	U	U	U	10	200
Carbon Disulfide	U	U	U	U	U	U	10	2,700
1.1-Dichloroethene	U	U	U	U	U	U	10	400
1.1-Dichloroethane	U	U	υ	U	U	U	10	200
trans-1.2-Dichloroethene	U	U	U	U	U	U	10	300
cis-1,2-Dichloroethene	U	U	U	U	U	U	10	250 *
Chloroform	U	U	U	U	U	U	10	300
1,2-Dichloroethane	U	U	U	υ	U	U	10	100
2-Butanone	U	U	U	U	U	U	10	300
1,1,1-Trichloroethane	U	υ	U	U	U	U	10	800
Carbon Tetrachloride	U	U	U	U	U	U	10	600
Bromodichloromethane	U	U U	U U	U	U	U	10	
1,2-Dichloropropane	U	U	U	U	U	U	10	
cis-1,3-Dichloropropene	U	U	U	U	U	U	10	
Trichloroethene	U	U	U	U	U	U	10	700
Dibromochloromethane	U	U	U	U	U	U	10	
1,1,2-Trichloroethane	U	U	U	U	U	U	10	
Benzene	U	U	U	U	U	U	10	60
trans-1,3-Dichloropropene	U	U	U	U	U	U	10	
Bromoform	U	U	U	U	U	U	10	4 000
4-Methyl-2-pentanone	U	U	U	0	U	U	10	1,000
2-Hexanone	U	U	U	0	U	0	10	1 400
Tetrachloroethene	U	U	U	0	U	U	10	1,400
1,1,2,2-Tetrachloroethane	U	U	0	0	U	U	10	1.500
Toluene	U	U	U	0	U	U U	10	1,300
Chlorobenzene	U	U	U	0	0	U U	10	5 500
Etnyibenzene	0	0	0	0	Ŭ	Ц	10	0,000
Styrene Midaaa (tatal)	0	0			U U	1	10	1 200
Aviene (total)	0	U U	U U	U U	ŭ	ŭ	10	1,200
MIDE	U U	U	U U	и 	Ŭ	Ŭ	10	1 300
Isopropulbenzene	U U	ŭ	U U	ŭ	ŭ	Ŭ	10	
n. Pronylbenzene	ŭ	ŭ	ū	ū	Ũ	U	10	
1 3 5 Trimethylbenzene	Ŭ	ŭ	ŭ	Ū Ū	Ū	U	10	
tert-Butylbenzene	Ŭ	Ŭ	Ű	Ŭ	Ŭ	Ū	10	
1 2 4-Trimethylbenzene	ŭ	ŭ	ŭ	Ū	Ū	Ū	10	
sec-Butylbenzene	ŭ	Ŭ	Ũ	Ū	Ũ	U	10	
p-isopropyltoluene	Ŭ	Ū	Ū	Ū	υ	U	10	
n-Butvibenzene	ũ	Ū	Ú	υ	U	U	10	
1 2 3-Trichlorobenzene	Ŭ	Ū	Ū	U	U	U	10	
	_							
TOTAL VOCs	27	88	36	52	3.2	38		10,000

Qualifiers:

U: Compound analyzed for but not detected

B: Compound found in the method blank as well as the sample.

Notes

Not established

* Proposed revised criteria

PROBE/BORING IDENTIFICATION	B-	20	B-	21	B	22	İ	
SAMPLE IDENTIFICATION	B-20 (46'-48')	B-20 (48'-50')	B-21 (0-2')	B-21 (2'-4')	B 2? (0 2')	B-22 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	46' - 48'	48' - 50'	0' - 2'	2'-4'	0' - 2'	2'-4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/13/98	02/13/98	02/13/98	02/13/98	02/17/98	02/17/98	DETECTION	APPENDIX A
DILLITION FACTOR	10	10	1.0	10	10	1.0	LIMITS	CRITERIA
INITS	(ua/ka)	(ua/ka)	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	199797	1-31-31	1.2.24			1 0		
Chloromethane	l u	u	υ	U U	υ	U	10	
Bromomethane	l ũ	Ū	U	U	U	U	10	
Vind Chloride	l ŭ	Ū	U	U	U	U	10	200
Chloroethane	Ū	Ū	υ	U	U	U	10	1,900
Methylene Chloride	33 B	41 B	38 B	39 B	53 B	39 B	10	100
Acetone	Ū	U	υ	U	U	U	10	200
Carbon Disulfide	l ũ	Ū	U	U	U	U	10	2,700
1 1-Dichloroethene	Ū	Ū	υ	U U	U	U	10	400
1 1-Dichloroethane	ŭ	Ū	Ú	υ	υ	U	10	200
trans 1.2 Dichloroethene	l ũ	ū	U	υ υ	υ	U	10	300
cis-1 2-Dichloroethene	ŭ	Ū	Ŭ	υ υ	U	U	10	250 *
Chioroform	l ŭ	Ū	Ū	Ú	U	U	10	300
1.2 Dichloroethane	l ŭ	ū	Ū	Ι υ	υ	U	10	100
2 Butanone	ŭ	ů.	Ŭ	Ū	Ū	U	10	300
1 1 1 Trichloroethane	Ŭ Ŭ	ц Ц	Ū	Ū	Ú	U	10	800
Carbon Totrachloride	Ŭ Ŭ	U U	Ŭ.	ŭ	Ū	υ	10	600
Bromodichloromethane	U U	U U	Ŭ	Ŭ	Ū	Ú	10	
1.2 Dichloropropape	U U	ι υ	Ŭ	ů ů	Ū	U	10	
cis 1.3 Dichloropropene	i ü	Ŭ	Ŭ	Ũ	Ū	Ū	10	
Trichloroetheoe	Ŭ Ŭ	L U	Ū	Ū	U	U	10	700
Dibromochloromethane	Ŭ Ŭ	U U	Ū Ū	Ū	U	U	10	
1 1 2 Trichloroethane	i ii	Ú Ú	Ŭ.	Ŭ	Ū	Ū	10	
Ronzone	Ŭ Ŭ	U U	Ū	Ū	U U	i u	10	60
trans 1.3 Dichloropropene	Ŭ Ŭ	U U	Ŭ	Ũ	Ū	U	10	
Bromoform	U U	U U	Ū	Ū	Ŭ	U	10	
4 Methyd 2 pontanope	l ű	Ŭ Ŭ	Ŭ	l ū	ū	U	10	1,000
2 Hovapope	Ŭ Ŭ	ц Ц	Ŭ	Ŭ	Ū	U	10	
Tetrachloroethene	ŭ	ū	Ū	Ú	U	U	10	1,400
1 1 2 2 Tetrachloroethane	ц Ц	i ŭ	Ū	υ υ	U	U	10	600
Toluene	ŭ	Ū.	Ū	U	U	U	10	1,500
Chlorobenzene	ŭ	Ū.	Ū	l ú	U	U	10	1,700
Ethylbenzene	l ŭ	Ū	Ū	l Ū	υ (	U	10	5,500
Styrene	ŭ	Ū	Ū	υ υ	U	U	10	
Yvlene (total)	ŭ	ŭ	Ū	υ	υ	υ	10	1,200
MTRE	ŭ	Ū	U	U	U	U U	10	
Nanhthalene	Ū	Ū	U	U	U	U	10	1,300
Isopropyibenzene	U U	U	U	U	U	U	10	
n-Propylbenzene	υ	U	U U	U	U	U	10	
1.3.5-Trimethylbenzene	Ū	υ	υ	U	U	U	10	
tert-Butvihenzene	ί υ	υ	U	U	U	U	j 10	
1 2 4-Trimethylbenzene	υ υ	υ	υ	υ	U	U	10	
sec-Butytbenzene	Ū	Ū	U	U	U	U U	10	
p-isopropyitoluene	Ū	U	U	υ	U	U	10	
n-Butylbenzene	Ū	U	U	U	U	U	10	
1 2 3-Trichlorobenzene	Ū	Ū	Ú	U	U	U	10	
	-							1
TOTAL VOCs	33	41	38	39	53	39		10,000

Qualifiers:

U: Compound analyzed for but not detected.

B' Compound found in the method blank as well as the sample

Notes

---- Not established.

* Proposed revised criteria

	 B-1	73	B-24					
SAMPLE IDENTIFICATION	B-23 (0-2')	 	B-24 (0-2')	FB-1	FB 2		CONTRACT	NYSDEC
SAMPLE DEPTH	D'-2'	2 4	0' - 2'				REQUIRED	TAGM 4046
DATE OF COLLECTION	02/17/98	02/17/98	02/17/98	02/11/98	02/13/98		DETECTION	APPENDIX A
DILUTION FACTOR	10	10	10	10	10		LIMITS	CRITERIA
UNITS	(ug/kg)	(ua/ka)	(ua/ka)	(ua/L)	(ug/L)		(ug/kg)	(ug/kg)
	(agrage in the		1-2:22	······································				1
Chloromethane	u l	U	U	U	U		10	
Bromomothane	ŭ	ŭ	ũ	Ū	U		10	
Diomoniane View Chlorida	Ŭ	ŭ	ŭ	Ū	Ŭ		10	200
Chiprosthane	ŭ	ŭ	Ũ	Ū	U		10	1,900
Mothylopa Chlorida	40 B	39 B	52 B	15	06 J		10	100
Asstand	100	Û Û	Ū	31	33		10	200
Carbon Disutfide	Ŭ	Ŭ	ŭ	 U	U		10	2,700
d d Disblesesthere	Ŭ	ŭ	Ŭ.	- ū	U		10	400
1, 1-Dichloroethane	U U	Ű	ŭ	Ũ	Ũ		10	200
trans 1.2 Dichloroothopo	U U	ŭ	ŭ	ū	Ŭ		10	300
ais 1.2 Disblaroothoro	U U	Ŭ.	Ŭ.	ū	Ū		10	250 *
Cis-1,2-Dichloroethene	U U		ŭ	Ū	Ū		10	300
1.2 Disblorosthana	ŭ	ŭ	Ū.	Ū	U		10	100
1,2-Dichiorderhane	U U	U U	Ŭ	ŭ	Ũ		10	300
2-Dularione	U U	U U	U U	Ŭ	Ŭ		10	800
Cashan Tatrashlarida	Ŭ	U U	Î Î	ŭ	Ū		10	600
Carbon retractionde	Ŭ	ŭ	u u	ŭ	Ū		10	
1.2 Dieblerenronano	U U	u U	u ü	ŭ	Ū		10	
1,2-Dichloropropane	U 11	Ŭ Ŭ	ŭ	Ű	Ū		10	
Triable reathered	U U	ů	ŭ	Ū Ū	Ū		10	700
Disconcelliene	U	U U	11	ŭ	Ū		10	
1.1.2 Trichlerothana	U U	ŭ	l ŭ	Ŭ	Ū		10	
Represe	U U	Ŭ Ŭ	u u	ũ	Ū		10	60
Berizerie	Ŭ	ŭ	ц Ц	Ŭ	Ū		10	
Bromoform	U U	ŭ	Ü Ü	Ŭ	Ū		10	
A Mathul 2 pantanana	U U	U U	Ŭ Ŭ	l ŭ	Ū		10	1,000
2 Hovapone	U U	ŭ	Ŭ	Ŭ	U		10	
Totrachioroethene	Ű	ŭ	Ū	Ū	U U		10	1,400
1 1 2 2 Tetrachioroethane	Ŭ	ŭ	Ŭ	Ū	U		10	600
Tohono	Ű	ů ů	Ŭ	Ū	U		10	1,500
Chlorobenzene	Ŭ	Ū	Ū	U	U		10	1,700
Ethylbenzene	ŭ	ŭ	Ū	U	U		10	5,500
Shirene	ŭ	Ū	Ū	υ	U		10	
Xvlene (total)	Ű	Ū	Ú	U	U		10	1,200
MTBE	Ū	Ŭ	U	U	U		10	
Nachtbalene	Ū	U	U	U	U		10	1,300
Isopropyibenzene	U	U	U	U	Ų		10	
n-Propylbenzene	Ŭ	U	υ	U	U		10	
1.3.5-Trimethylbenzene	Ū	U	U	U	U		10	
tert-Butylbenzene	Ŭ	Ū	U	U	U		10	
1 2 4-Trimethylbenzene	Ū	U	U	U	U		10	
sec-Butylbenzene	Ű	Ú	U	U	U		10	
p-isopropyltoluene	Ū	U	U	U	U		10	
n-Butylbenzene	Ū	U	U	U	U		10	
1.2.3-Trichlorobenzene	U	U	U	U	U		10	
						_		
TOTAL VOCs	40	39	52	32 5	33.6			10,000

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit

B: Compound found in the method blank as well as the sample.

. .

. ....

Notes

---- Not established

* : Proposed revised criteria

listed in TAGM 4046 Appendix A

03/26/98

# TABLE C-2

### NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

PROBE/BORING IDENTIFICATION	B-	1	B	-2	B-	-3		
SAMPLE IDENTIFICATION	B-1 (0-2')	B-1 (2'-4')	B-2 (0-2')	B-2 (2'-4')	B-3 (0-2')	B-3 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	U	U	U	U	330	900
2-Nitrophenol	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U .	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	800	100
2,4-Dinitrophenol	U	U	U	U	54 J	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4.6-Dinitro-2-methylphenol	U	U	9 J	U	U	U	800	
Pentachlorophenol	U	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	330	
1.3-Dichlorobenzene	U	U	U	U	U	U	330	1,600
1.4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330	3,400
Naphthalene	U	U	U	U	U	U	330	13,000
4-Chloroaniline	U	U	υ	U	U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methylnaphthalene	U	U	U	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	800	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	28	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	330	1,000

PROBE/BORING IDENTIFICATION	В-	1	B	-2	B	-3		
SAMPLE IDENTIFICATION	B-1 (0-2')	B-1 (2'-4')	B-2 (0-2')	B-2 (2'-4')	B-3 (0-2')	B-3 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	U	800	500 or MDL
Acenaphthene	32	U	29	U	U	U	330	50,000
Dibenzofuran	16 J	U	8.3 J	U	U	U	330	6,200
2.4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethvlphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	
Fluorene	44	U	18 J	U	U	U	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenylamine	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	330	410
Phenanthrene	470	U	310	U	110	U	330	50,000
Anthracene	110	U	85	U	24	U	330	50,000
Carbazole	40 J	U	35 J	U	U	U	330	
Di-n-butylphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	1,000	U	1,200	U	450	U	330	50,000
Pyrene	970	U	1,200	U	420	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	480	U	790	U	280	18	330	224 or MDL
Chrysene	470	U	780	U	320	9.3 J	330	400
bis(2-Ethylhexyl)phthalate	U	U	U	U	U	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	920	U	950	U	390	U	330	1,100
Benzo(k)fluoranthene	320	U	380	U	140	U	330	1,100
Benzo(a)pyrene	750	U	740	U	270	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	730	U	430	U	170	U	330	3,200
Dibenzo(a,h)anthracene	140	U	120	U	52	U	330	14 or MDL
Benzo(g,h,i)perylene	800	U	450	U	200	U	330	50,000
TOTAL CaPAHs	3,810	0	4,190	0	1,622	27.3	· _ · · · · · · · · · · · · · · · · · ·	10,000*
TOTAL SVOCs	7,320	0	7,534.3	0	2,880	27.3		500,000

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

----: Not established.

: Value exceeds TAGM 4046 Appendix A Criteria

* Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

PROBE/BORING IDENTIFICATION	B-	-4	8	-5	B	-6		
SAMPLE IDENTIFICATION	B-4 (0-2')	B-4 (2'-4')	B-5 (0-2')	B-5 (2'-4')	B-6 (0-2')	B-6 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	U	U	U	U	330	900
2-Nitrophenol	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	800	100
2,4-Dinitrophenol	U	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	U	U	U	U	U	, U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	330	
1,3-Dichlorobenzene	U	U	U	U	U	U	330	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330	3,400
Naphthalene	U	U	U	U	U	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methylnaphthalene	42 J	U	U	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	800	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	U	330	1,000

-- .

PROBE/BORING IDENTIFICATION	B-	4	B	-5	В-	6		
SAMPLE IDENTIFICATION	B-4 (0-2')	B-4 (2'-4')	B-5 (0-2')	B-5 (2'-4')	B-6 (0-2')	B-6 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	υ	800	500 or MDL
Acenaphthene	U	U	11 J	8.3 J	U	U	330	50,000
Dibenzofuran	U	U	U	U	U	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethylphthalate	U	υ	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	****
Fluorene	U	U	U	U	U	U	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenylamine	U	U	U	U	U	U	330	B
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	330	410
Phenanthrene	130	U	110	110	55	U	330	50,000
Anthracene	U	U	27	26	14 J	U	330	50,000
Carbazole	U	U	14 J	12 J	U	U	330	
Di-n-butylphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	85 J	U	260	160	68	U	330	50,000
Pyrene	120	U	240	140	54	U	330	50,000
Butylbenzylphthalate	υ	210 J	U	U	U	บ	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	86 J	U	150	82	44	U	330	224 or MDL
Chrysene	41 J	U	160	78	31	U	330	400
bis(2-Ethylhexyl)phthalate	U	U	100 J	U	U	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	84 J	U	180	77	38	U	330	1,100
Benzo(k)fluoranthene	U	U	72	44	16 J	U	330	1,100
Benzo(a)pyrene	63 J	U	110	60	29	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	130	U [	74	37	U	U	330	3,200
Dibenzo(a,h)anthracene	U	U	υ	U	U	U	330	14 or MDL
Benzo(g,h,i)perylene	160	U	77	35	U	U	330	50,000
TOTAL CaPAHs	404	0	746	378	158	0	· · · · · · · · ·	10,000*
TOTAL SVOCs	941	210	1,585	869.3	349	0		500,000

# Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

.....

# Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria • Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

. . .

PROBE/BORING IDENTIFICATION	B-	7	B	-8	В	-9		
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B-9 (0-2')	B-9 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	1.0	1.0	5.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	υ	13 J	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	11 J	U	23 J	U	330	900
2-Nitrophenol	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	330	
2,4-Dichlorophenol	U	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	800	100
2,4-Dinitrophenol	U	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4.6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	U	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U U	U	U	U	U	U	330	
1,3-Dichlorobenzene	U U	U	U	U	U U	U	330	1,600
1.4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	υ	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330	3,400
Naphthalene	U	U	U	U	U	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methylnaphthalene	U	U	U	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	υ	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	800	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	Ŭ	U	U	330	1,000

PROBE/BORING IDENTIFICATION	В-	7	B-	-8	В-	9		
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B-9 (0-2')	B-9 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	1.0	1.0	5.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U -	U	U	U	U	800	500 or MDL
Acenaphthene	U	U	U	U	33	U	330	50,000
Dibenzofuran	U	U	U	U	13 J	U	330	6,200
2 4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethylphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	
Fluorene	U	U	U	U	18	U	330	50,000
4-Nitroaniline	U	U	U	U.	U	U	800	
N-Nitrosodiphenylamine	υ	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	330	410
Phenanthrene	44 J	14 J	22	U	230	46	330	50,000
Anthracene	U	U	12 J	U	54	U	330	50,000
Carbazole	U	U	U	U	31 J	U	330	
Di-n-butylphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	U	51	51	U	450	78	330	50,000
Pyrene	U	U	50	U	430	71	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	35	51	U	230	50	330	224 or MDL
Chrysene	U,	18	68	U	240	38	330	400
bis(2-Ethylhexyl)phthalate	U	U	400	U	U	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	U	35	110	U	450	44	330	1,100
Benzo(k)fluoranthene	U	14 J	29	U	200	20 J	330	1,100
Benzo(a)pyrene	58 J	U	69	U	370	51	330	61 or MDL
Indeno(1,2,3-cd)pyrene	85 J	U	150	U	300	41	330	3,200
Dibenzo(a,h)anthracene	U	U	U	U	57	U	330	14 or MDL
Benzo(g,h,i)perylene	120	U	210	U	340	38	330	50,000
TOTAL CaPAHs	143	102	477	0	1,847	244		10,000*
TOTAL SVOCs	307	180	1,233	0	3,469	477		500,000

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

---- : Not established.

: Value exceeds TAGM 4046 Appendix A Criteria : Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A .

PROBE/BORING IDENTIFICATION			B-	10				t 1
	B-10 (0-2')	B-10 (2'-4')	B-10A (4'-6')	B-10A (6'-8')	B-10A (8'-10')	B-10N (0-2')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	4' - 6'	6' - 8'	8'- 10'	0 - 2'	REQUIRED	1AGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	5.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
			l					
Phenol	U	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MUL
4-Methviphenol	U	U	U	U	U	U	330	900
2-Nitrophenol	U	U	U	U	U	U	330	330 or MDL
2 4-Dimethylphenol	U	U	U	U	U	U	330	
2 4-Dichlorophenol	U	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MUL
2 4 6-Trichlorophenol	U	U	U	U	U	U	330	
2 4 5-Trichlorophenol	U	U	U	U	U	U	800	100
2 4-Dinitrophenol	υ	U	U	U	U	U	800	200 or MUL
4-Nitrophenol	U	U U	U	U	, U	U	800	100 or MDL
4.6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	U U	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U U	U	U	U	U	U	330	
1 3-Dichlorobenzene	U	U	U	U	U	U	330	1,600
1 4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1 2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	0	330	
Hexachloroethane	U	U	U	U	U		330	
Nitrobenzene	U	U	U	U	U	U	330	200 OF MUL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	) U	U	U	U	U	U	330	2.400
1.2.4-Trichlorobenzene	U U	U U	U	, U	U	U	330	3,400
Naphthalene	U U	460	U	U	U	0	330	13,000
4-Chloroaniline	U U	U U	U	U	0	0	330	220 OF MUL
Hexachlorobutadiene	U	U	U	U	U	0	330	26 400
2-Methylnaphthalene	υ	320 J	U	, U	U	0	330	30,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	420 ar MD
2-Nitroaniline	U	U	U	U	0	U	800	430 OF MDL
Dimethylphthalate	U	U	U	, U	U U	U	330	2,000
Acenaphthylene	U	U	U	U	U	0	330	41,000
2,6-Dinitrotoluene	<u> </u>	U	<u> </u>	U		l	330	1,000

. ... .. . . . . . . . . . . . .

· _ ·

_ ·

- - -

PROBE/BORING IDENTIFICATION			B-	10				
SAMPLE IDENTIFICATION	B-10 (0-2')	B-10 (2'-4')	B-10A (4'-6')	B-10A (6'-8')	B-10A (8'-10')	B-10N (0-2')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	4' - 6'	6' - 8'	8'- 10'	0 - 2'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	5.0	5.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	Ű	U	U	U	U	800	500 or MDL
Acenaphthene	210	2,400	U	29 J	U	31 J	330	50,000
Dibenzofuran	61 J	1,400 J	U	13 J	U	13 J	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethylphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	
Fluorene	160	2,400	U U	25 J	U	26 J	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenylamine	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	330	410
Phenanthrene	1,800	19,000	Ų	220 J	51 J	280 J	330	50,000
Anthracene	400	3,600	U	54 J	10 J	65 J	330	50,000
Carbazole	190 J	2,500	U	29 J	U	94 J	330	
Di-n-butylphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	3,400	18,000	U	230 J	57 J	350 J	330	50,000
Pyrene	3,200	15,000	U	190 J	48 J	320 J	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	1,800	7,400	U	98	34	170	330	224 or MDL
Chrysene	2,000	7,200	U	85 J	22 J	180 J	330	400
bis(2-Ethylhexyl)phthalate	U	Ü	U	U	U	U	330	50,000
Di-n-octylphthalate	U	<u>U</u>	U	U	U	U	330	50,000
Benzo(b)fluoranthene	2,100	7,800	U	84	U	150	330	1,100
Benzo(k)fluoranthene	840	3,000	U	34	U	65	330	1,100
Benzo(a)pyrene	1,600	6,000	U	58	U	120	330	61 or MDL
Indeno(1,2,3-cd)pyrene	1,000	3,500	U	45	U	87	330	3,200
Dibenzo(a,h)anthracene	290	880	U	U	U	13 J	330	14 or MDL
Benzo(g,h,i)perylene	1,000	3,700	U	50 J	U	70 J	330	50,000
TOTAL CaPAHs	9,630	35,780	0	404	56	785		10,000*
TOTAL SVOCs	20,051	104,560	0	1,244	222	2,034		500,000

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

PROBE/BORING IDENTIFICATION			B-	10				
SAMPLE IDENTIFICATION	B-10N (2'-4')	B-10N (4'-6')	B-10N (6'-8')	B-10N (8'-10')	B-10S (0-2')	B-10S (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	2' - 4'	4' - 6'	6' - 8'	8' - 10'	0 - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	ц	U	U	U	U	U	330	30 or MDL
2 Chlorophenol	U U	Ŭ	Ū	υ	υ	U	330	800
2-Methylohenol	Ū.	Ū	Ŭ	U	U	U	330	100 or MDL
	Û Û	Ū	Ū	υ	U	U	330	900
2-Nitronbenol	U U	Ū	Ū	U	U	U	330	330 or MDL
2.4-Dimethylobenol	Ŭ	l Ū	Ű	υ	U	U	330	
2.4-Dimensiphenol	Ű	Ū	Ŭ	U	U	U U	330	400
A Chloro-3-methylphenol	U U	Ŭ	Ū	U	U	U	330	240 or MDL
2.4.6-Trichlorophenol	U U	Ŭ	Ū	U	U	U	330	
2.4.5 Trichlorophenol	Ŭ	ŭ	Ū	U	U	U	800	100
2.4.0-minitrophenol	Ű	Ū	Ū	U	U	U	800	200 or MDL
A Nitranhenol	Ű	Ū Ū	Ū	U	U	U	800	100 or MDL
4.6 Dinitro 2-methylphenol	U U	Ű	Ũ	Ŭ	U	U	800	
Pontachiaranhenal	11	Ů Ů	Ŭ	Ŭ	U	U	800	1,000 or MDL
his (2-Chloroethyl) ether	U U	Ū Ū	Ŭ	Ū	U	U	330	
1.3 Dichlorohenzene	Ŭ	Ū	Ŭ	U	U	U	330	1,600
1.4 Dichlorobenzene	Ű	Ŭ	Ū	Ŭ	υ	U	330	8,500
1.2 Dichlorobenzene	Ŭ.	Ű	Ŭ	U	U	U U	330	7,900
his/2 chloroisopropyl)ether	Ű	Ŭ	Ū	U	U	i u	330	
N-Nitroso-di-p-propylamine	Ŭ	Ŭ	Ŭ	U	U	U U	330	
Heyachloroethane	Ŭ	Ŭ	Ū	U	U	U	330	
Nitrobenzene	Ū.	Ū	Ū	U	U	U	330	200 or MDL
Isopharane	Ū.	Ū	Ū	U U	U	U	330	4,400
his(2-Chloroethow)methane	Ŭ	Ŭ	U	U	U	U U	330	
1.2 A-Trichlorobenzene	ŭ	Ū	U	U	U	U	330	3,400
Nanhthalene	Ű	Ū	Ŭ	U	31 J	U	330	13,000
	Ū	Ū	U	U	U	U	330	220 or MDL
Heyachlorobutadiene	Ū	Ū	U	U	U	U	330	
2-Methylnanhthalene	ŭ	Ū	U	U	21 J	U	330	36,400
Hexachlorocyclopentadiene	Ŭ	Ū	Ŭ	U	U	U U	330	
2 Chioronanhthalene	Ŭ	Ŭ	Ŭ	U	U	U	330	
2-Nitroaniline	ů ů	U U	Ū.	Ū	U	U U	800	430 or MDL
Dimethylopthalate	ů ů	U U	Ū.	Ū	U	U U	330	2,000
	u u	U U	Ŭ	Ū	U	U U	330	41,000
2,6-Dinitrotoluene	Ŭ	<u> </u>	Ū	Ū	U	U	330	1,000

.......

PROBE/BORING IDENTIFICATION			B	-10				ri
SAMPLE IDENTIFICATION	B-10N (2'-4')	B-10N (4'-6')	B-10N (6'-8')	B-10N (8'-10')	B-10S (0-2')	B-10S (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	2' - 4'	4' - 6'	6' - 8'	8' - 10'	0 - 2'	2' - 4'	REQUIRED	1AGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	U	800	500 or MDL
Acenaphthene	υ	35 J	U U	U	170 J	46 J	330	50,000
Dibenzofuran	U	12 J	U	U	90 J	21 J	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	330	7 400
Diethylphthalate	U U	U	U U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U U	U	U U	U	U	U	330	
Fluorene	U	37 J	U	U	170 J	U	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenylamine	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	410
Hexachlorobenzene	U U	U	U	U	U	100 1	330	410
Phenanthrene	U	330 J	18 J	U	1,800	400 J	330	50,000
Anthracene	U U	96 J	U	U	340 J	78 J	330	50,000
Carbazole	U	17 J	U	U	240 J	48 J	330	9 100
Di-n-butylphthalate	U	U	U	U	0		330	50,000
Fluoranthene	U	510	48 J	U	2,200	380 J	330	50,000
Pyrene	U	430	44 J	U	1,700	320 J	330	50,000
Butylbenzylphthalate	U	U	U	U	U	0	330	50,000
3,3'-Dichlorobenzidine	U	U	0	U	0	100	330	224 or MDI
Benzo(a)anthracene	U	210	23	U	860	180 1	330	400
Chrysene	U	200 J	26 J		000	100 5	330	50,000
bis(2-Ethylhexyl)phthalate	U	U U	0	0	U U	U U	330	50,000
Di-n-octylphthalate	0	200	0	0	860	140	330	1 100
Benzo(b)fluoranthene	0	200	0	· U	350	61	330	1 100
Benzo(k)fluoranthene	0	90	1		670	110	330	61 or MDL
Benzo(a)pyrene		160			400	60	330	3.200
Indeno(1,2,3-cd)pyrene	0	90	<b>1</b> II		100	1 1	330	14 or MDL
Dibenzo(a,h)anthracene	0	100 1			450	65.1	330	50,000
Benzo(g,h,i)perylene	U	100 J	0	0				
TOTAL CaPAHs	0	970	49	0	4,120	731	L	10,000*
TOTAL SVOCs	0	2,537	159	0	11,332	2,089		500,000

### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria

Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

PROBE/BORING IDENTIFICATION			B-	10				,
	B-10S (4'-6')	B-10S (6'-8')	B-10S (8'-10')	B-10E (0-2')	B-10E (2'-4')	B-10E (4'-6')	CONTRACT	NYSDEC
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	0 - 2'	2' - 4'	4' - 6'	REQUIRED	TAGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILLUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	· · · · · · · · · · · · · · · · · · ·							
Phenol	U	U (	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	) U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U U	U	U	U	U	U	330	900
2-Nitrophenol	U U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	U	U	330	400
2,4-Dichlorophenol	U	U	U	U.	U	U	330	
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	U	U U	U	U	0	0	330	100
2,4,5-Trichlorophenol	U	U	U	U U	U	U	800	200 at MDI
2,4-Dinitrophenol	U	U	U	U	0	0	800	
4-Nitrophenol	U	U	U	U	U	U	800	
4 6-Dinitro-2-methylphenol	U	U	U	U	0	U	800	1.000 or MDI
Pentachlorophenol	U	ļ U	U	U	0	0	800	
bis(2-Chloroethyl)ether	U	U	υ	U	0	U U	330	1 600
1,3-Dichlorobenzene	U U	U U	U	U	0	0	330	1,000
1,4-Dichlorobenzene	U	U U	U	U	0	0	330	7,000
1,2-Dichlorobenzene	U	U	U	U	U	0	330	7,300
bis(2-chloroisopropyl)ether	U	U	U	U	U	0	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	0	330	
Hexachloroethane	U	U	U	U	0		330	200 or MDI
Nitrobenzene	U	U	U	U	0	0	330	200 01 WIDE
Isophorone	U	U	U	U			330	4,400
bis(2-Chloroethoxy)methane	U	U	U	· U	0		330	3,400
1,2,4-Trichlorobenzene	U	U	U	U	0	0	330	13,000
Naphthalene	U	U	U	770 J	0		330	220 or MDI
4-Chloroaniline	U	U	0	U U	0		330	
Hexachlorobutadiene.	U	U	U				330	36 400
2-Methylnaphthalene	U	U	0	830 J		U U	330	
Hexachlorocyclopentadiene	U			0			330	
2-Chloronaphthalene	U		0		U U	U U	800	430 or MDI
2-Nitroaniline	U		0	. U	0	U U	330	2,000
Dimethylphthalate	U	U		460 /		U U	330	41,000
Acenaphthylene	U	U	0	400 J		U U	330	1.000
2,6-Dinitrotoluene	<u> </u>	U	U	<u> </u>	J		1	1

PROBE/BORING IDENTIFICATION			В-	10				
SAMPLE IDENTIFICATION	B-10S (4'-6')	B-10S (6'-8')	B-10S (8'-10')	B-10E (0-2')	B-10E (2'-4')	B-10E (4'-6')	CONTRACT	NYSDEC
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	0 - 2'	2' - 4'	4' - 6'	REQUIRED	TAGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	3/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	U	800	500 or MDL
Acenaphthene	U	U	U	7,700	78 J	U	330	50,000
Dibenzofuran	U	U	U	3,300 J	38 J	υ	330	6,200
2 4-Dinitrotoluene	U	U	U U	U	U	U	330	
Diethylphthalate	U	U	υ	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U U	U	U	U	U	330	
Fluorene	U	U	U	8,200	93 J	U	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenvlamine	U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U U	U	U	330	
Hexachlorobenzene	U	U	U	<u>U</u>	U	U	330	410
Phenanthrene	U	U	U	62,000	600	U	330	50,000
Anthracene	U	U	U U	16,000	180 J	U	330	50,000
Carbazole	U	U	U	3,800 J	44 J	U	330	
Di-n-butviphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	U	U	U	96,000	1,000	U	330	50,000
Pyrene	U	U	U	68,000	860	U U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U U	U	<u> </u>	U	U	330	
Benzo(a)anthracene	U	U	U	30,000	420	U	330	224 or MDL
Chrysene	U	U	U	36,000	510	U	330	400
bis(2-Ethylhexyl)phthalate	U	U	U	υ	υ	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	U	U	U	29,000	380	U	330	1,100
Benzo(k)fluoranthene	U	U U	U	11,000	<u>18</u> 0	U	330	1,100
Benzo(a)pyrene	U	U	U	22,000	300	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	U	U	12,000	180	U	330	3,200
Dibenzo(a,h)anthracene	U	U	U	3,200	49	U	330	14 or MUL
Benzo(g,h,i)perylene	U	U	U	13,000	190 J	U	330	50,000
TOTAL CaPAHs	0	0	0	143,200	2,019	0	· · · · · · · · · · · · · · · · · · ·	10,000*
TOTAL SVOCs	0	0	0	423,260	5,102	0		500,000

### Qualifiers:

. .. .. . . .. . ..

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

......

___ .

Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria * Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

	B	-10	B-1	1	B-	12		
	B-10F (6'-8')	B-10E (8'-10')	B-11 (5'-7')	B-11 (7'-9')	B-12 (4'-6')	B-12 (6'-8')	CONTRACT	NYSDEC
SAMPLE DEPTH	6' - 8'	8' - 10'	5' - 7'	7' - 9'	4' - 6'	6' - 8'	REQUIRED	TAGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
	1.0	1.0	25.0	25.0	20.0	25.0	LIMITS	CRITERIA
	(ug/kg)	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
	(~3,3)	<u></u>	5¥¥( · · ·					
Phonol	U U	U	U	U	U	U	330	30 or MDL
2 Chlorophenol	Ŭ	U	U	U	U	U U	330	800
2 Mathudahanal	ū	U	U	U	U	U	330	100 or MDL
	Ŭ Ŭ	Ū	υ	U	υ	U	330	900
4-Methylphenol	U U	Ŭ	Ŭ	U	U	U	330	330 or MDL
2-Nitrophenor	U U	Ŭ	Ŭ	U	U	U	330	
2,4-Dimethylphenol	U U	l ŭ	Ū	U	υ	U	330	400
		ů ů	Ū	U	υ	U	330	240 or MDL
4-Chloro-3-methylphenol		i ii	ŭ	Ū	U U	U	330	
2,4,6-Trichlorophenol	U U	U U	. u	Ū	U U	U	800	100
2,4,5-Trichlorophenol	0		U U	Ű	U	U	800	200 or MDL
2,4-Dinitrophenol	0		U U	Ű	Ū	U	800	100 or MDL
4-Nitrophenol	0	0	н с і н і	Ű	Ű	U	800	
4,6-Dinitro-2-methylphenol	0	0	U U	Ű	U U	U	800	1,000 or MDL
Pentachlorophenol	U			11	U U	Ū	330	
bis(2-Chloroethyl)ether	0	0	. U	U	U	Ū.	330	1,600
1,3-Dichlorobenzene	0	0	0	U U	U U	U U	330	8,500
1,4-Dichlorobenzene	U	0		U U	U U	U U	330	7,900
1,2-Dichlorobenzene	U	0	0	0	U U	U U	330	
bis(2-chloroisopropyl)ether	U	0	0	U U			330	
N-Nitroso-di-n-propylamine		0	0	0	U U	U U	330	
Hexachloroethane	U	U	0	U U	U U		330	200 or MDL
Nitrobenzene	U	U	U	0			330	4 400
Isophorone	U	U	0	0	U U	U U	330	
bis(2-Chloroethoxy)methane	U	U	0	U	0		330	3 400
1,2,4-Trichlorobenzene	U	U	0	0	0		330	13 000
Naphthalene	U	U	0	0		U U	330	220 or MDI
4-Chloroaniline	U	U	0	0		U U	330	
Hexachlorobutadiene	U	U	U	U			330	36.400
2-Methylnaphthalene	U	U	U	U		0	330	00,400
Hexachlorocyclopentadiene	U	U	U	U	0	0	330	
2-Chloronaphthalene	U U	U	U	U			800	430 or MDI
2-Nitroaniline	U	U	U	U		0	330	2 000
Dimethylphthalate	U	U	U	U	0	0	330	41 000
Acenaphthylene	U	U	U	U	U		330	1 000
2,6-Dinitrotoluene	<u> </u>	U	<u> </u>	<u> </u>	<u> </u>	i <u>U</u>	550	1,000

.........

- - - -

------

PROBE/BORING IDENTIFICATION	B-	10	В-	11	B-	12		
	B-10E (6'-8')	B-10E (8'-10')	B-11 (5'-7')	B-11 (7'-9')	B-12 (4'-6')	B-12 (6'-8')	CONTRACT	NYSDEC
SAMPLE DEPTH	6' - 8'	8' - 10'	5' - 7'	7' - 9'	4' - 6'	6' - 8'	REQUIRED	TAGM 4046
DATE OF COLLECTION	3/12/98	3/12/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILLITION FACTOR	1.0	1.0	25.0	25.0	20.0	25.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	Ŭ T	· · · · · ·	Ú	U	U	U	800	500 or MDL
Acenanbthene	71 J	U	U	U	U	U	330	50,000
Dibenzofuran	30 J	U	U	U	U	U	330	6,200
2 4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethylphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	υ υ	U U	U	U	U	U	330	
Fluorene	81 J	U U	U	U	U	U	330	50,000
4-Nitroaniline	U U	U U	U	U	U	U	800	
N-Nitrosodiphenvlamine	υ	U U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	υ	U	U	U	U	U	330	410
Phenanthrene	590	) U	U	U	140 J	U	330	50,000
Anthracene	160 J	U	U	U	U	U	330	50,000
Carbazole	35 J	U	U	U	U	U	330	
Di-n-butylphthalate	U	U	4,600 J	2,800 J	3,400 J	4,100 J	330	8,100
Eluoranthene	910	U	U	U	U	U	330	50,000
Pyrene	730	U	U	U	U	U	330	50,000
Butylbenzylphthalate	υ	U	U	U	U	U	330	50,000
3 3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	380	) U	U	U	U	U	330	224 or MDL
Chrysene	410	U	U	U	U	U	330	400
bis(2-Ethylhexyl)phthalate	U	U	8,300 J	4,300 J	8,200	9,800	330	50,000
Di-n-octylphthalate	U U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	330	U	U	U	U	U	330	1,100
Benzo(k)fluoranthene	140	U	U U	i U	U	U	330	
Benzo(a)pyrene	260	) U	U	U	U	U	330	
Indeno(1,2,3-cd)pyrene	160	U U	U	· U	U	U	330	3,200
Dibenzo(a,h)anthracene	40	U	U	U	U		330	14 OF MUL
Benzo(g,h,i)perylene	180 J	υ	U	U	U	U	330	50,000
TOTAL CaPAHs	1,720	0	D	0	0	0		10,000*
TOTAL SVOCs	4,507	0	12,900	7,100	11,740	13,900	1	500,000

# Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

---

# Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria * : Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

-----

PROBE/BORING IDENTIFICATION	В-	13	B-	14	B-15	B-16		
SAMPLE IDENTIFICATION	B-13 (4'-6')	B-13 (6'-8')	B-14 (0-2')	B-14 (2'-4')	B-15 (6'-7')	B-16 (7'-9')	CONTRACT	NYSDEC
SAMPLE DEPTH	4' - 6'	6' - 8'	0' - 2'	2' - 4'	6' - 7'	7' - 9'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/12/98	02/13/98	02/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	20.0	5.0	2.0	2.0	1.0	2.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	50 J	45 J	47 J	U	120 J	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	190 J	150 J	150 J	41 J	U	U	330	900
2-Nitrophenol	U	U	U	U	U	U	330	330 or MDL
2,4-Dimethylphenol	U	U	U	U	0	U	330	400
2,4-Dichlorophenol	U	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2,4,6-Trichlorophenol	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U	U	800	100
2,4-Dinitrophenol	U	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4,6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	U	U	U	U	U	81 J	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	330	
1,3-Dichlorobenzene	U	U	U	U	U	U	330	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330	3,400
Naphthalene	U	65 J	U	U	16 J	26 J	330	13,000
4-Chloroaniline	U	U	U	U	U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methylnaphthalene	U	160 J	U	U	11 J	26 J	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	U	800	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	25 J	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U	<u>U</u>	330	1,000

PROBE/BORING IDENTIFICATION	B-1	13	B-	14	B-15	B-16		
SAMPLE IDENTIFICATION	B-13 (4'-6')	B-13 (6'-8')	B-14 (0-2')	B-14 (2'-4')	B-15 (6'-7')	B-16 (7'-9')	CONTRACT	NYSDEC
SAMPLE DEPTH	4' - 6'	6' - 8'	0' - 2'	2' - 4'	6' - 7'	7' - 9'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/12/98	02/13/98	02/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	20.0	5.0	2.0	2.0	1.0	2.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	. U j	U	U	U	800	500 or MDL
Acenaphthene	U	U	U	U	U	46	330	50,000
Dibenzofuran	220 J	200 J	U	U	U	33 J	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U (	U	330	
Diethylphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	
Fluorene	270 J	270	U	U	U	32 J	330	50,000
4-Nitroaniline	U	U	U	U .	U	U	800	
N-Nitrosodiphenylamine	U	U	U	U	U	27 J	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U U	U	330	410
Phenanthrene	320 J	290	23 J	U	U	1,100	330	50,000
Anthracene	U	35 J	U	U	U	180	330	50,000
Carbazole	U	U	U	U	U U	180 J	330	
Di-n-butylphthalate	U	610 J	U	U	U	880	330	8,100
Fluoranthene	U	52 J	38	16 J	8.4 J	2,600	330	50,000
Pyrene	U	55 J	54	23 J	62	1,900	330	50,000
Butylbenzylphthalate	U	U	U	U	U	4,100	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	****
Benzo(a)anthracene	180 J	U	23	U	U	840	330	224 or MDL
Chrysene	U	U	100	U	48	2,000	330	400
bis(2-Ethylhexyl)phthalate	U	1,800	340 J	160 J	U	13,000	330	50,000
Di-n-octylphthalate	U	U	U	U	U	<u>360 J</u>	330	50,000
Benzo(b)fluoranthene	U	U	53	22 J	U	<u>2,700</u>	330	1,100
Benzo(k)fluoranthene	U	U	13 J -	U	U	860	330	1,100
Benzo(a)pyrene	U	U	21	U	21	660	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	U	20	U	14 J	830	330	3,200
Dibenzo(a,h)anthracene	U	U	9.6 J	U	U	180	330	14 or MDL
Benzo(g,h,i)perylene	U	U	43	U	27	690	330	50,000
TOTAL CaPAHs	180	0	239.6	22	83	8,070		10,000*
TOTAL SVOCs	1,180	3,737	932.6	309	207.4	33,476		500,000

# Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

# Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

-----

Page 16 of 22

PROBE/BORING IDENTIFICATION	B-16	B-17		В-	18	B-19		, ., <u>., .</u>
SAMPLE IDENTIFICATION	B-16 (9'-11')	B-17 (0-2')	B-17 (2'-4')	B-18 (0-2')	B-18 (2'-4')	B-19 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	9' - 11'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/13/98	02/13/98	02/13/98	DETECTION	APPENDIX A
DII UTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Phenol	U	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	U	330	800
2-Methylphenol	υ υ	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	U	U	U	U	330	900
2-Nitrophenol	U U	U	U	U	U	U	330	330 or MDL
2.4-Dimethylphenol	U	U	U	U	U	U	330	
2.4-Dichlorophenol	U	U	U	' U	U U	U	3 <b>30</b>	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2.4.6-Trichlorophenol	U	U	U	U	U	U	330	
2,4,5-Trichlorophenol	U	U	U	U	U U	U	800	100
2.4-Dinitrophenol	U	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4.6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	13 J	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	330	
1.3-Dichlorobenzene	U	U	U	U	U	U	330	1,600
1,4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1,2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U U	· U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U U	, U	U	U	330	200 or MDL
Isophorone	U	U	U	U	17 J	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U U	i U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U	U	330	3,400
Naphthalene	U	U	U	U	U	U	330	13,000
4-Chloroaniline	U	U	U	U	U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methylnaphthalene	U	U	U	: U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	400 MDI
2-Nitroaniline	U	U	U	U	U	U	800	430 or MUL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	U .	U	330	1,000

. .. .. . . .. ..

PROBE/BORING IDENTIFICATION	B-16	B-	17	8-	18	B-19		
SAMPLE IDENTIFICATION	B-16 (9'-11')	B-17 (0-2')	B-17 (2'-4')	B-18 (0-2')	B-18 (2'-4')	B-19 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	9' - 11'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/13/98	02/13/98	02/13/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	U	800	500 or MDL
Acenaphthene	U	U	U	U	7.5 J	U	330	50,000
Dibenzofuran	U	U	U	U	22 J	U	330	6,200
2,4-Dinitrotoluene	U	U	U	U	U	U	330	
Diethylphthalate	U	U	U	U	U	U	330	7,100
4-Chlorophenyl-phenylether	U	U	U	U	U	U	330	
Fluorene	U	U	U	U	U	U	330	50,000
4-Nitroaniline	U	U	U	U	U	U	800	
N-Nitrosodiphenylamine	U	U	U.	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	U	330	410
Phenanthrene	U	U	U	56	200	U	330	50,000
Anthracene	U	U	U	U	U	U	330	50,000
Carbazole	U	U	U	U	8.4 J	U	330	
Di-n-butylphthalate	U	U	U	U	78 J	U	330	8,100
Fluoranthene	7.6 J	U	U	47	150	U	330	50,000
Pyrene	7.4 J	U	U	34	110	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	9.8 J	U	U	20	38	U	330	224 or MDL
Chrysene	5.7 J	U	U	15 J	42	U	330	400
bis(2-Ethylhexyl)phthalate	U	U	U	U	84 J	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	7.8 J	U	U	18	40	U	330	1,100
Benzo(k)fluoranthene	U	U	U	7 J	18	U	330	1,100
Benzo(a)pyrene	U	U	U	7.7 J	15 J	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	U	U	U	8 J	16 J	U	330	3,200
Dibenzo(a,h)anthracene	U	U	U	U	U	U	330	14 or MDL
Benzo(g,h,i)perylene	U	U	U	7.1 J	13 J	U	330	50,000
TOTAL CaPAHs	23.3	0	0	75.7	169	0	la , , , , , , , , , , , , , , , , , , ,	10,000*
TOTAL SVOCs	51.3	0	0	219.8	858.9	0	1 11 10 10 10 1	500,000

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

---- : Not established.

. .

* Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

. .

	p	20	D /	21	B-	22		
PROBE/BORING IDENTIFICATION	D 20 (46' 49')	20	ם ויכם P 21 /0-2ין	B-21 (2'-4')	B-22 (0-2')	B-22 (2'-4')	CONTRACT	NYSDEC
SAMPLE IDENTIFICATION	B-20 (40-40)	D-20 (40-30)	$D^{-2} (0^{-2})$	2'-4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
SAMPLE DEPTH	40 - 40	40 - 30	02/13/08	02/13/98	02/17/98	02/17/98	DETECTION	APPENDIX A
	1.0	1.0	10	1.0	10	1.0	LIMITS	CRITERIA
	(ua/ka)	(ua/ka)	(ua/ka)	(uo/ka)	(ug/kg)	(ua/ka)	(ua/ka)	(ua/ka)
	(ug/kg)		(dg/kg)	(dana)	(~9/~9/			
Phenol	U	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U U	U .	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	U	U	U	U	330	900
2-Nitrophenol	U	U	U.	U	) U	U	330	330 or MDL
2.4-Dimethylphenol	U	U	U '	U	U	U	330	
2.4-Dichlorophenol	U	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	U	330	240 or MDL
2.4.6-Trichlorophenol	U	U	U	U	U	U	330	
2.4.5-Trichlorophenol	U	U	U	U	U	U	800	100
2.4-Dinitrophenol	U	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	U	800	100 or MDL
4 6-Dinitro-2-methylphenol	U	U	U	U	U	U	800	
Pentachlorophenol	υ	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	U	330	
1 3-Dichlorobenzene	U	U	U	U	U U	U	330	1,600
1 4-Dichlorobenzene	U	U	U	U	U	U	330	8,500
1 2-Dichlorobenzene	U	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	U	U	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U	U	U	U	U U	U	330	3,400
Naphthalene	U	U	U	U	U U	U	330	13,000
4-Chloroaniline	U	U	U	U	U U	U	330	220 or MDL
Hexachlorobutadiene	U	U	U	U	U	U	330	
2-Methyinaphthalene	U	U	U	U	U U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U	U	U	330	
2-Chloronaphthalene	U	U	U	U	U	U	330	
2-Nitroaniline	U	U U	U	U	U	U	800	430 or MDL
Dimethylphthalate	U	U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	U	U	U	U	LU	<u> </u>	330	1,000

PROBE/BORING IDENTIFICATION	B-20		B-:	21	B-2	22		
SAMPLE IDENTIFICATION	B-20 (46'-48')	B-20 (48'-50')	B-21 (0-2')	B-21 (2'-4')	B-22 (0-2')	B-22 (2'-4')	CONTRACT	NYSDEC
SAMPLE DEPTH	46' - 48'	48' - 50'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/13/98	02/13/98	02/13/98	02/13/98	02/17/98	02/17/98	DETECTION	APPENDIX A
DILLITION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ua/ka)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
3-Nitroaniline	U	U 1		<b>``</b> U	U	U	800	500 or MDL
Acenaphthene	Ū	U	U	U	28	28	330	50,000
Dibenzofuran	υ	U	U	U	13 J	16 J	330	6,200
2 4-Dinitrotoluene	υ υ	υ	U	U	U	U	330	
Diethylphthalate	υ	U	U	U	U	U	330	7,100
4-Chlorophenvl-phenvlether	U U	U	U	U	U	U	330	
Fluorene	U	U	U	U	26	33	330	50,000
4-Nitroaniline	U U	U	U -	U	U	U	800	
N-Nitrosodiphenylamine	U U	U	U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	U	330	
Hexachlorobenzene	U U	υ	U	U	U	U	330	410
Phenanthrene	U	U	17 J	U	350	330	330	50,000
Anthracene	U	U	U	U	79	72	330	50,000
Carbazole	U	U	U	U	44 J	43 J	330	
Di-n-butylphthalate	U	U	U	U	U	U	330	8,100
Fluoranthene	U	U	23	17 J	520	400	330	50,000
Pyrene	U	U	20	16 J	430	320	330	50,000
Butylbenzylphthalate	U U	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	U	330	
Benzo(a)anthracene	U	8.4 J	17 J	18 J	260	180	330	224 or MDL
Chrysene	U	U	10 J	11 J	280	180	330	400
bis(2-Ethylhexyl)phthalate	U	U	U	U	0	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	100	330	50,000
Benzo(b)fluoranthene	U	U	15 J	16 J	320	190	330	1,100
Benzo(k)fluoranthene	0	U	U	0	120	59	330	
Benzo(a)pyrene	U U	U	9.1 J	10 J	240	140	330	3 200
Indeno(1,2,3-cd)pyrene	U	U	U	U 11	100	0/	330	
Dibenzo(a,h)anthracene		U	U	0		0 01	330	50,000
Benzo(g,h,i)perylene	U U	U	U	U	140	01	220	50,000
TOTAL CaPAHs	0	8.4	51.1	55	1,408	836	· <u> </u>	10,000*
TOTAL SVOCs	0	8.4	111.1	88	3,038	2,159		500,000

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria
Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

PROBE/BORING IDENTIFICATION	B-	23	B-24				
SAMPLE IDENTIFICATION	B-23 (0-2')	B-23 (2'-4')	B-24 (0-2')	FB-1	FB-2	CONTRACT	NYSDEC
SAMPLE DEPTH	D' - 2'	2' - 4'	0' - 2'			REQUIRED	TAGM 4046
DATE OF COLLECTION	02/17/98	02/17/98	02/17/98	02/11/98	02/13/98	DETECTION	APPENDIX A
DILLITION FACTOR	2.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ua/ka)	(ua/ka)	(ug/kg)	(ug/L)	(ug/L)	 (ug/kg)	(ug/kg)
		_ <b>_</b>	1				
Phenol	U	U	U	U	U	330	30 or MDL
2-Chlorophenol	U	U	U	U	U	330	800
2-Methylphenol	U	U	U	U	U	330	100 or MDL
4-Methylphenol	U	U	U	U	U	330	900
2-Nitrophenol	U	U	U	U	U	330	330 or MDL
2.4-Dimethylphenol	U	U	U	U	U	330	
2.4-Dichlorophenol	U	U	U	U	U	330	400
4-Chloro-3-methylphenol	U	U	U	U	U	330	240 or MDL
2.4.6-Trichlorophenol	υ	U	U	U	U	330	
2.4.5-Trichlorophenol	U	U	U	U	U	800	100
2.4-Dinitrophenol	U	U	U	U	U	800	200 or MDL
4-Nitrophenol	U	U	U	U	U	800	100 or MDL
4.6-Dinitro-2-methylphenol	U	U	U	U	U	800	
Pentachlorophenol	U	U	U	U	U	800	1,000 or MDL
bis(2-Chloroethyl)ether	U	U	U	U	U	330	
1.3-Dichlorobenzene	U	U	U	U	U	330	1,600
1.4-Dichlorobenzene	υ	U	U	U	U	330	8,500
1.2-Dichlorobenzene	U	U	U	U	U	330	7,900
bis(2-chloroisopropyl)ether	U	U	U	U	U	330	
N-Nitroso-di-n-propylamine	υ	U	U	U	U	330	
Hexachloroethane	U	U	U	U	U	330	
Nitrobenzene	U	U	U	U	U	330	200 or MDL
Isophorone	U	U	U	U	U	330	4,400
bis(2-Chloroethoxy)methane	U	U	U	U	U	330	
1,2,4-Trichlorobenzene	U U	U	U U	, U	U	330	3,400
Naphthalene	U	U	U	U	U	330	13,000
4-Chloroaniline	U U	U	U	; U	U	330	220 or MDL
Hexachlorobutadiene	U U	U	U	U	U	330	
2-Methylnaphthalene	U U	U	U	U	U	330	36,400
Hexachlorocyclopentadiene	U	U	U	U U	U	330	
2-Chloronaphthalene	U	U U	U	U	U	330	
2-Nitroaniline	U	U	U	U	U	800	430 or MUL
Dimethylphthalate	U U	U	U	U	U	330	2,000
Acenaphthylene	U	U	U	U	U	330	41,000
2,6-Dinitrotoluene	UU	U	U	U	U	 330	1,000

-

PROBE/BORING IDENTIFICATION	B-	23	B-24				
SAMPLE IDENTIFICATION	B-23 (0-2')	B-23 (2'-4')	B-24 (0-2')	FB-1	FB-2	 CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'			REQUIRED	TAGM 4046
DATE OF COLLECTION	02/17/98	02/17/98	02/17/98	02/11/98	02/13/98	DETECTION	APPENDIX A
DILUTION FACTOR	2.0	1.0	1.0	1.0	1.0	 LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/L)	(ug/L)	 (ug/kg)	(ug/kg)
3-Nitroaniline	U	U	U	U	U	800	500 or MDL
Acenaphthene	U	U	U !	U	U	330	50,000
Dibenzofuran	U	U	U	U	U	330	6,200
2.4-Dinitrotoluene	U	U	U	U	U	3 <b>30</b>	
Diethylphthalate	U	U U	U	U	U	330	7,100
4-Chlorophenyi-phenylether	U	U	U	U	U	330	
Fluorene	U	U	U	U	U	330	50,000
4-Nitroaniline	U	U U	U (	U	U	800	
N-Nitrosodiphenylamine	U	U U	U	U	U	330	
4-Bromophenyl-phenylether	U	U	U	U	U	330	
Hexachlorobenzene	U	U	U	U	U	330	410
Phenanthrene	110	U	130	U	U	330	50,000
Anthracene	30 J	U	29	U	U	330	50,000
Carbazole	U	U	15 J	U	U	330	
Di-n-butylphthalate	U	U	U	U	U	330	8,100
Fluoranthene	160	U U	170	U	U	330	50,000
Pyrene	160	U	150	U	U	330	50,000
Butylbenzylphthalate	U	U	U	U	U	330	50,000
3,3'-Dichlorobenzidine	U	U	U	U	U	330	
Benzo(a)anthracene	98	U	90	U	U	330	224 or MUL
Chrysene	91	U	77	0	U	330	400
bis(2-Ethylhexyl)phthalate	U	U	U	2.7	U	330	50,000
Di-n-octylphthalate	U	U	U	U	U	330	50,000
Benzo(b)fluoranthene	120	U	U	U	U	330	1,100
Benzo(k)fluoranthene	51	U	U	U	U	330	
Benzo(a)pyrene	100	U	U	U	U	330	61 or MDL
Indeno(1,2,3-cd)pyrene	93	U	42	U	U	330	3,200 14 ar MDI
Dibenzo(a,h)anthracene	U	U	U	U	U	330	
Benzo(g,h,i)perylene	100	U	32	U	U	330	50,000
TOTAL CaPAHs	553	0	209	0	0	 	10,000*
TOTAL SVOCs	1,113	0	735	2.7	0	 	ວບບ,ບບບ

#### Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

.....

# Notes:

---- : Not established.

Value exceeds TAGM 4046 Appendix A Criteria * Proposed revised criteria for total CaPAHs in NYSDEC TAGM 4046 Appendix A

#### TABLE C-3

#### NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS STARS VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS - TCLP ANALYSIS

PROBE/BORING IDENTIFICATION	B	.1	B	-2	B-	3	
SAMPLE IDENTIFICATION	B-1 (0-2')	B-1 (2'-4')	B-2 (0-2')	B-2 (2'-4')	B-3 (0-2')	B-3 (2'-4')	STARS TABLES 1 and 2
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	TCLP EXTRACTION
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	5
n-Propylbenzene	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U	U	U	U	U	U	5
p-Isopropyltoluene	U	U	U	U	U	U	5
n-Butylbenzene	U	U	U	U	U	U	5
MTBE	U	U	U	U	U	U	50
Xylene (total)	U	U	U	U	U	U	5
			4				
SEMIVOLATILE COMPOUNDS							10
Naphthalene	U	U	U	U	U	U	10
Acenaphthene	U	U	U	U	U	U	20
Fluorene	U	U	U	0	U	U	50
Phenanthrene	U	U	U	U	U	U	50
Anthracene	U	U	U	0	U	U	50
Fluoranthene	U	U	U	0	U	U	50
Pyrene	U	U	U	0	0	U	0.002
Benzo(a)anthracene	U	U	, U	U	0	0	0.002
Chrysene	U	U	0	0	U	0	0.002
Benzo(b)fluoranthene	U	U	0	0	U	0	0.002
Benzo(k)fluoranthene	U 	U	0	U	0	0	0.002
Benzo(a)pyrene	U	U	0	0	U	0	0.002
Indeno(1,2,3-cd)pyrene	U	U	U		U	U	50
Dibenzo(a,h)anthracene	U	U	U	U	U	0	
Benzo(g,h,i)perylene	U	U	U	U	U	U	0.002
	L			t l	I I		1

#### Qualifiers:

.. .... .... ....

U: Compound analyzed for but not detected.

.....

#### TABLE C-3 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS STARS VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS - TCLP ANALYSIS

PROBE/BORING IDENTIFICATION	B-	4	B	-5	B-	6	
SAMPLE IDENTIFICATION	B-4 (0-2')	B-4 (2'-4')	B-5 (0-2')	B-5 (2'-4')	B-6 (0-2)	B-6 (2'-4')	STARS TABLES 1 and 2
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	TCLP EXTRACTION
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	1						
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U**	U**	U**	U	5
n-Propylbenzene	U	U*	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U* (	U	U	U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U	U	U	U	U	U	5
p-Isopropyltoluene	U	U	U	U	U	U	5
n-Butylbenzene	U	U	U	U	U	U	5
MTBÉ	U	U	U	U	U	U	50
Xylene (total)	U	U	U	U	U	U	5
Nanhthalene	U I	U	U	U	U	U	10
Acenaphthene	ŭ	Ū	Ū	U	U	U	20
Eluoropa	ŭ	Ŭ	Ū	U	U	U	50
Phenanthrene	ŭ	Ū	U	U	U	U	50
Anthracene	Ŭ	Ū	Ŭ	U	U	U	50
Fluoranthene	Ū	Ū	U	U	U	U	50
Pyrene	Ŭ	Ŭ	U	U	U	U	50
Benzo(a)anthracene	Ū	Ŭ	U	υ	U	U	0.002
Chrysene	Ū	U	U	U	U	U	0.002
Benzo(h)fluoranthene	Ū	U	U	U	U	U	0.002
Benzo(k)fluoranthene	U	U	U	U	U	U	0.002
Benzo(a)pyrene	Ū	U	U	υ	υ	U	0.002
Indeno(1,2,3-cd)pyrene	Ū	Ŭ	U	U	U	U	0.002
Dibenzo(a h)anthracene	Ū	Ŭ	U	U	U	U	50
Benzo(a h i)perviene	Ū	Ū	U	U	U	U	0.002
Derize(g, r, i)per yier ie							
the second second second second second second second second second second second second second second second se							

Qualifiers:

U: Compound analyzed for but not detected.

U*: Result has been qualified as not detected due to interferences from the TCLP extraction solvents since the Method 8240 analysis did not contain this compound.

U**: Peak existed in the Method 8240 analysis at the same retention time as isopropylbenzene; however, the mass spectra did not match that of isopropylbenzene.

This peak is not believed to be isopropylbenzene but related to the GC/MS peak described above.

#### TABLE C-3 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS STARS VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS - TCLP ANALYSIS

PROBE/BORING IDENTIFICATION	B-	7	B	-8	B-	9	
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B-9 (0-2')	B-9 (2'-4')	STARS TABLES 1 and 2
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	TCLP EXTRACTION
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	5
n-Propylbenzene	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U	U	U	U	U	U	5
p-Isopropyltoluene	U	U	U	U	U	U	5
n-Butylbenzene	U	U	U	U	U	U	5
MTBÉ	U	U	U	U	U	U	50
Xylene (total)	U*	U	U	U	U	U	5
SEMIVOLATILE COMPOUNDS							
Naphthalene	U⁺	U	U	U	U	U	10
Acenaphthene	U	U	U	U	U	U	20
Fluorene	U	U	U	U	U	U	50
Phenanthrene	U	U	U	U	U	U	50
Anthracene	U	U	U	U	U	U	50
Fluoranthene	U	U	U	U	U	U	50
Pyrene	U	U	U	U	U	U	50
Benzo(a)anthracene	U	U	U	U	U	U	0.002
Chrysene	U	U	U	U	U	U	0.002
Benzo(b)fluoranthene	U	U	U	U	U	U	0.002
Benzo(k)fluoranthene	U	U	U	U	U	U	0.002
Benzo(a)pyrene	U	U	U	U	U	U	0.002
Indeno(1,2,3-cd)pyrene	U	U	U	U	U	U	0.002
Dibenzo(a,h)anthracene	U	U	U	U	U	U	50
Benzo(g,h,i)perylene	U	U	U	U	U	U	0.002
				,			l

Qualifiers:

U: Compound analyzed for but not detected.

U*: Result has been qualified as not detected due to interferences from the TCLP extraction solvents since the Method 8240 analysis did not contain this compound.

____

-----
# TABLE C-3 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS STARS VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS - TCLP ANALYSIS

PROBE/BORING IDENTIFICATION	В-	10	В-	11	B-	12	
SAMPLE IDENTIFICATION	B-10 (0-2')	B-10 (2'-4')	B-11 (5'-7')	B-11 (7'-9')	B-12 (4'-6')	B-12 (6'-8')	STARS TABLES 1 and 2
SAMPLE DEPTH	0' - 2'	2' - 4'	5' - 7'	7' - 9'	4' - 6'	6' - 8'	TCLP EXTRACTION
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	1 <b>v</b>						
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U U	U U	U	U	5
Ethylbenzene	U	U	U U	U U	U	U	5
Isopropylbenzene	U	U	U	U	U	U*	5
n-Propylbenzene	U	U	U U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	5
tert-Butylbenzene	U	U	U U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U U	U	U	U	5
sec-Butylbenzene	U	U	U U	U	U	U	5
p-Isopropyltoluene	U	U	U U	U	U	U	5
n-Butylbenzene	U	U	U U	U	U	U	5
MTBE	U	U	U	U	U	U	50
Xylene (total)	U	U	U	U	U	U	5
SEMIVOLATILE COMPOUNDS							10
Naphthalene	U	U	U	U	U	U	10
Acenaphthene	U	U	U	U	U	U	20
Fluorene	U	U	U	U	U	U	50
Phenanthrene	U	U	U	U	U	U	50
Anthracene	U	U	U	U	U	U	50
Fluoranthene	U .	U	U	U	U	U	50
Pyrene	U	U	U	U	U	U	50
Benzo(a)anthracene	U	U	U	U	U	U	0.002
Chrysene	U	U	U	U	U	0	0.002
Benzo(b)fluoranthene	U	U	U.	U	U	U	0.002
Benzo(k)fluoranthene	U	U	U	U	U	U	0.002
Benzo(a)pyrene	U	U	U	U	U	U	0.002
Indeno(1,2,3-cd)pyrene	U	U	U	U	U	U	0.002
Dibenzo(a,h)anthracene	U	U	U	U	U	U	50
Benzo(g,h,i)perylene	U	U	U	U	U	U	0.002
						L	L.,,, i

Qualifiers:

U: Compound analyzed for but not detected.

U*: Result has been qualified as not detected due to interferences from the TCLP extraction solvents since the Method 8240 analysis did not contain this compound.

____

PROBE/BORING IDENTIFICATION	B-'	13	B-	14	B-15	B-16	
SAMPLE IDENTIFICATION	B-13 (4'-6')	B-13 (6'-8')	B-14 (0-2')	B-14 (2'-4')	B-15 (6'-7')	B-16 (7'-9')	STARS TABLES 1 and 2
SAMPLE DEPTH	4' - 6'	6' - 8'	0' - 2'	2' - 4'	6' - 7'	7' - 9'	TCLP EXTRACTION
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/12/98	02/13/98	02/12/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE COMPOUNDS							27
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	j U	5
n-Propylbenzene	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U	U	U	U	U	U	5
p-Isopropyltoluene	U	U	U	U	U	U	5
n-Butylbenzene	U	U	U	U	U	U	5
MTBE	U	U	U	U	U	U	50
Xylene (total)	U	U	U	U	U	U	5
SEMIVOLATILE COMPOUNDS							
Naphthalene	υ	U	U	U	U	4.4 J	10
Acenaphthene	U	U	U	U	U	U	20
Fluorene	U	U	U	U	U	U	50
Phenanthrene	U	U	U	U	U	U	50
Anthracene	υ	U	U	U	U	U	50
Fluoranthene	U	U	U	U	U	U	50
Pyrene	U	U	U	U	U	U	50
Benzo(a)anthracene	U	U	U	U	U	U	0.002
Chrysene	U	U	U	U	U	U	0.002
Benzo(b)fluoranthene	U	U	U	U	U	U	0.002
Benzo(k)fluoranthene	U	U	U	U	U	U	0.002
Benzo(a)pyrene	U	U	U	υ	U	U	0.002
Indeno(1,2,3-cd)pyrene	U	U	U	U	U	U U	0.002
Dibenzo(a,h)anthracene	U	U	U	U	U	U	50
Benzo(g,h,i)perylene	U	U	U	U	U	U	0.002
							l

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

· -

-----

PROBE/BORING IDENTIFICATION	B-16	В-	17	В-	18	B-19	]
SAMPLE IDENTIFICATION	B-16 (9'-11')	B-17 (0-2')	B-17 (2'-4')	B-18 (0-2')	B-18 (2'-4')	B-19 (2'-4')	STARS TABLES 1 and 2
SAMPLE DEPTH	9' - 11'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	2' - 4'	TCLP EXTRACTION
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/13/98	02/13/98	02/13/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U*	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U**	U	U	5
n-Propylbenzene	U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U	U	U	U	U	U	5
p-Isopropyltoluene	U	U	U	U	U	U	5
n-Butylbenzene	U	U	U	U	U	U	5
MTBE	U	U	U	U	U	U	50
Xylene (total)	U	U	U	U	U	U	5
Naphthalana	11		11	11		U	10
Asonophthono		U U	U U	Ŭ	ŭ	Ű	20
Elverene		U U	Ŭ	U U	Ŭ I	Ű	50
Phononthropo		0	U U	10.	38.	U U	50
Anthracana	ц – С –	Ŭ	Ŭ Ŭ	1.00	0.00	Ű	50
Fluoranthane		Ŭ	Ŭ	Ŭ Ŭ	11.	Ű	50
Pyrepe	u U	Ŭ I	Ű	ŭ	ŭ	Ŭ	50
Renzo(a)anthracene	Ŭ	ŭ	ŭ	Ŭ	Ŭ	Ŭ	0.002
Chrysene	ŭ	ŭ	Ŭ	Ŭ	Ŭ	Ũ	0.002
Benzo/b)fluoranthene	Ŭ	U U	Ŭ	Ŭ	Ŭ	ŭ	0.002
Benzo(k)fluoranthene	ŭ	Ŭ	U U	Ŭ	ŭ	ũ	0.002
	U U	U U	U U	U U	Ŭ	ŭ	0.002
Indeno(1.2.3-cd)nyrene	U U	U 1		П	Ц	ŭ	0.002
Dibonto(a,2,3-00)pyrene	U U	U 1	i l	П	U U	ŭ	50
Banzo(a, hi)pervlene	U U	Ц		U 11	U U	U U	0.002
Denzo(g,n,i)peryiene	0	0	0	0	U	0	0.002
		. 1			1 <u></u>		har seesse waar ist anaalt

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

U*: Result has been qualified as not detected due to interferences from the TCLP extraction solvents since the Method 8240 analysis did not contain this compound.

U**: Peak existed in the Method 8240 analysis at the same retention time as isopropylbenzene; however, the mass spectra did not match that of isopropylbenzene.

This peak is not believed to be isopropylbenzene but related to the GC/MS peak described above.

-----

PROBE/BORING IDENTIFICATION	В-	20	B-	21	B-	22	
SAMPLE IDENTIFICATION	B-20 (46'-48')	B-20 (48'-50')	B-21 (0-2')	B-21 (2'-4')	B-22 (0-2')	B-22 (2'-4')	STARS TABLES 1 and 2
SAMPLE DEPTH	46' - 48'	48' - 50'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	TCLP EXTRACTION
DATE OF COLLECTION	02/13/98	02/13/98	02/13/98	02/13/98	02/17/98	02/17/98	GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
VOLATILE COMPOUNDS							
Benzene	U	U	U	U	U	U	0.7
Toluene	U	U	U	U	U	U U	5
Ethylbenzene	U U	U	U	U	U	U	5
Isopropylbenzene	U	U	U	U	U	U	5
n-Propylbenzene	U U	U	U	U	U	U	5
1,3,5-Trimethylbenzene	U	U	U	U	U	U	5
tert-Butylbenzene	U	U	U	U	U	U	5
1,2,4-Trimethylbenzene	U	U	U	U	U	U	5
sec-Butylbenzene	U U	U	U	U	U	U	5
p-Isopropyltoluene	) U	U	U	U	U	U	5
n-Butylbenzene	U U	U	U	U	U	U	5
MTBÉ	U	U	U	U	U	U	50
Xylene (lotal)	U	U	U	U	U	U	5
SEMIVOLATILE COMPOUNDS							
Naphthalene	U	U	U	U	U	U	10
Acenaphthene	Ū	U	U	U	U	U	20
Fluorene	U	U	U	U	U	U	50
Phenanthrene	υ	U	U	υ	U	U	50
Anthracene	U	U	U	U	U	U	50
Fluoranthene	υ	U	U	U	U	U	50
Pyrene	U	U	U	U	U	U	50
Benzo(a)anthracene	U	U	U	U	U	U	0.002
Chrysene	U U	U	U	U	U	U	0.002
Benzo(b)fluoranthene	U U	U	U	U	U	U	0.002
Benzo(k)fluoranthene	U U	U	U	U	U	U	0.002
Benzo(a)pyrene	U U	U	U	U	U	U	0.002
Indeno(1,2,3-cd)pyrene	U	U	U	U	U	U	0.002
Dibenzo(a,h)anthracene	U	U	U	U	U	U	50
Benzo(g.h,i)perylene	U U	U	U	U	U	U	0.002
	<u> </u>						l

#### Qualifiers:

U: Compound analyzed for but not detected.

PROBE/BORING IDENTIFICATION	B-	23	B-24			
SAMPLE IDENTIFICATION	B-23 (0-2')	B-23 (2'-4')	B-24 (0-2')			STARS TABLES 1 and 2
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'			TCLP EXTRACTION
DATE OF COLLECTION	02/17/98	02/17/98	02/17/98			GUIDANCE
DILUTION FACTOR	1.0	1.0	1.0			VALUES
UNITS	(ug/L)	(ug/L)	(ug/L)			(ug/L)
VOLATILE COMPOUNDS						27
Benzene	U	U	U			0.7
Toluene	U	U	U*			5
Ethylbenzene	U	U	U			5
Isopropylbenzene	U	U	U			5
n-Propylbenzene	U U	U	U			5
1,3,5-Trimethylbenzene	U U	U	U			5
tert-Butylbenzene	υ	υ	U			5
1,2,4-Trimethylbenzene	U	U	U			5 E
sec-Butylbenzene	U	U	U			5 E
p-Isopropyltoluene	U	U	U			5 E
n-Butylbenzene	U	U	U			5
МТВЕ	U U	U	U			50
Xylene (total)	U U	U	U			5
SEMIVOLATILE COMPOUNDS						10
Naphthalene	0*	U	U			20
Acenaphthene	0	U				50
Fluorene	0	U				50
Phenanthrene	U	U	0			50
Anthracene	0		0			50
Fluoranthene	0	0	0			50
Pyrene		0	U U			0.002
Benzo(a)anthracene		U U	0			0.002
Chrysene	0	0	0			0.002
Benzo(b)fluoranthene		0	0			0.002
Benzo(k)fluoranthene			U U			0.002
Benzo(a)pyrene	0	0	0	ļ		0.002
Indeno(1,2,3-cd)pyrene	U	U U	0			50
Dibenzo(a,h)anthracene	U		0			0.002
Benzo(g,h,i)perylene	U	U	0			
	]	1	1	]	1	I

#### Qualifiers:

U: Compound analyzed for but not detected.

U*: Result has been qualified as not detected due to interferences from the TCLP extraction solvents since the Method 8240 analysis did not contain this compound.

......

# TABLE C-4 NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS SELECT GLYCOLS

PROBE/BORING IDENTIFICATION	B-3		B-	-4	B-		
SAMPLE IDENTIFICATION	B-3 (0-2')	B-3 (2'-4')	B-4 (0-2')	B-4 (2'-4')	B-7 (0-2')	B-7 (2'- <b>4</b> ')	INSTRUMENT
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	DETECTION
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/11/98	02/11/98	LIMITS
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Ethylene Glycol	υ	U	U	4,780 J	U	U	5000
Propylene Glycol	U	U	U	U	U	U	5000
		I					

Qualifiers:

U: Compound analyzed for but not detected.

J: Compound found at a concentration below the detection limit.

# TABLE C-4 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS SELECT GLYCOLS

PROBE/BORING IDENTIFICATION	B-	8				
SAMPLE IDENTIFICATION	B-8 (0-2')	B-8 (2'-4')	FB-1			INSTRUMENT
SAMPLE DEPTH	0' - 2'	2' - 4'		-		DETECTION
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98			LIMITS
DILUTION FACTOR	1.0	1.0	1.0			
UNITS	(ug/kg)	(ug/kg)	(ug/L)	 •		(ug/kg)
Ethylene Glycol	U	U	U			5000
Propylene Glycol	U	U	U			5000
					+ 	

Qualifiers:

U: Compound analyzed for but not detected.

e deserves and the second second

# TABLE C-5

## NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PROBE/BORING IDENTIFICATION	B-	7	B-	8	B-	11		
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B-11 (5'-7')	B-11 (7'-9')	CONTRACT	NYSDEC
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	5' - 7'	7' - 9'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Aroclor-1016	U	U	U	U	U	U	33	
Aroclor-1221	U	U	U	U	U	U	67	
Aroclor-1232	U	U	U	U	U	U	33	
Aroclor-1242	U	U	U	U	U	U	33	
Aroclor-1248	U	U	U	U	U	U	33	
Aroclor-1254	84	U	U	U	U	U	33	
Aroclor-1260	U	U	U	U	U	U	33	
TOTAL PCBs	84	0	0	0	0	0	· · · · · · · · · · · · · · · · · · ·	10,000*

#### Qualifiers:

U: Compound analyzed for but not detected.

Notes:

---- : Not established.

* : Criteria is for total PCBs in subsurface soils.

# TABLE C-5 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

PROBE/BORING IDENTIFICATION	В-	12	B-	13	B-	16		
SAMPLE IDENTIFICATION	B-12 (4'-6')	B-12 (6'-8')	B-13 (4'-6')	B-13 (6'-8')	B-16 (7'-9')	B-16 (9'-11)	CONTRACT	NYSDEC
SAMPLE DEPTH	4' - 6'	6' - 8'	4' - 6'	6' - 8'	7' - 9'	9' - 11'	REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/11/98	02/12/98	02/12/98	02/12/98	02/12/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)
Aroclor-1016	U	U	U	U	U	U	33	
Aroclor-1221	U	U	U	U	U	U	67	
Aroclor-1232	U	U	U	U	U	U	33	
Aroclor-1242	U	U	U	U	U	U	33	
Aroclor-1248	U	U	U	U	200	U	33	
Aroclor-1254	U	U	U	U	U	U	33	
Aroclor-1260	U	U	U	U	U	U	33	
TOTAL PCBs	0	0	0	0	200	0		10,000*

Qualifiers:

U: Compound analyzed for but not detected.

#### Notes:

---- : Not established.

* : Criteria is for total PCBs in subsurface soils.

TABLE C-5 (continued) NORTHROP GRUMMAN CORPORATION STRUCTURAL TEST HANGARS/PLANT 5 PHASE I/II SITE ASSESSMENT SOIL SAMPLING RESULTS POLYCHLORINATED BIPHENYLS (PCBs)

SAMPLE IDENTIFICATION	FB-1	FB-2	CONTRACT	NYSDEC
SAMPLE DEPTH			REQUIRED	TAGM 4046
DATE OF COLLECTION	02/11/98	02/13/98	DETECTION	APPENDIX A
DILUTION FACTOR	1.0	1.0	LIMITS	CRITERIA
UNITS	(ug/L)	(ug/L)	(ug/kg)	(ug/kg)
Aroclor-1016	U	U	33	
Aroclor-1221	U	U	67	
Aroclor-1232	U	U	33	
Aroclor-1242	U	U	33	**
Aroclor-1248	U	U	33	
Aroclor-1254	U	U	33	
Aroclor-1260	U	U	33	
TOTAL PCBs	0	0		10,000*

#### Qualifiers:

U: Compound analyzed for but not detected.

Notes:

---- : Not established.

* : Criteria is for total PCBs in subsurface soils.

0-2') B· 2'	-1 (2'-4') 2' - 4'	B-2 (0-2')	B-2 (2'-4')	B-3 (0-2')	B-3 (2'-4')	INICTOLIMENT	EASTEDN
2'	2'-4'		$=$ $=$ $\lambda$	00(02)	D=3 (2 )	INSTRUMENT	EASTERN
	4 1	0' - 2'	2' - 4'	0' - 2'	2' - 4'	DETECTION	USA
0/98 0	2/10/98	02/10/98	02/10/98	02/10/98	02/10/98	LIMITS	BACKGROUND
0	1.0	1.0	1.0	1.0	1.0		LEVELS
/kg) (	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
U	U	U	U	U	U	0.310	
4.9	U	3.1	U	4.1	U	0.380	3 - 12*
.50	0.22 B	0.34 B	0.13 B	0.46 B	0.14 B	0.030	0 - 1.75
.85 B	U	U	U	0.56 B	U	0.060	0.1 - 1, (10***)
7.2	4.1	11.1	3.1	16.9	4.6	0.160	1.5 - 40*, (50***)
0.0	3.4 B	6.1	2.5 B	10.4	2.3 B	0.270	1 - 50
2.0	1.8	5.8	1.1	16.9	2.1	0.240	200 - 500**
U	U	U	U	U	U	0.017	0.001 - 0.2
9.2	2.9 B	7.6 B	1.9 B	10.4	2.1 B	0.190	0.5 - 25
U	U	U	U	U	U	0.490	0.1 - 3.9
U	U	U	U	U	U	0.120	
U	U	U	U	U	U	0.440	
0.3	7.0	18.6	5.1 B	26.7	5.3 B	0.390	9 - 50
NA	NA	NA	NA	NA	NA	0.5	
	2 0/98 0 /kg) 4.9 0.50 0.85 B 7.2 0.0 2.0 U 9.2 U U 0.3 NA	2'       2' - 4'         0/98       02/10/98         0       1.0         /kg)       (mg/kg)         U       U         4.9       U         0.50       0.22 B         0.85 B       U         17.2       4.1         0.0       3.4 B         2.0       1.8         U       U         9.2       2.9 B         U       U         U       U         0.33       7.0         NA       NA	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2' $2' - 4'$ $0' - 2'$ $2' - 4'$ $0'98$ $02/10/98$ $02/10/98$ $02/10/98$ $0$ $1.0$ $1.0$ $1.0$ $/kg)$ (mg/kg)       (mg/kg)       (mg/kg) $U$ $U$ $U$ $U$ $4.9$ $U$ $3.1$ $U$ $0.50$ $0.22 B$ $0.34 B$ $0.13 B$ $0.85 B$ $U$ $U$ $U$ $0.72$ $4.1$ $11.1$ $3.1$ $0.0$ $3.4 B$ $6.1$ $2.5 B$ $2.0$ $1.8$ $5.8$ $1.1$ $0.0$ $3.4 B$ $6.1$ $2.5 B$ $2.0$ $1.8$ $5.8$ $1.1$ $0$ $U$ $U$ $U$ $U$ $0.29 B$ $7.6 B$ $1.9 B$ $0.29 B$ $0.3$ $7.0$ $18.6$ $5.1 B$ $0.3$ $7.0$ $18.6$ $5.1 B$	2' $2' - 4'$ $0' - 2'$ $2' - 4'$ $0' - 2'$ $0'98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $0$ $1.0$ $1.0$ $1.0$ $1.0$ $1kg$ (mg/kg)(mg/kg)(mg/kg)(mg/kg) $U$ $U$ $U$ $U$ $U$ $4.9$ $U$ $3.1$ $U$ $4.1$ $0.50$ $0.22 B$ $0.34 B$ $0.13 B$ $0.46 B$ $0.85 B$ $U$ $U$ $U$ $U$ $0.0$ $3.4 B$ $6.1$ $2.5 B$ $10.0$ $3.4 B$ $6.1$ $2.5 B$ $10.0$ $3.4 B$ $6.1$ $2.5 B$ $0.0$ $3.4 B$ $6.1$ $2.5 B$ $0.0$ $1.8$ $5.8$ $1.1$ $10.0$ $0$ $U$ $U$ $0$ $U$ $U$ $U$ $0$ $U$ $U$ $U$ $0$ $U$ $U$ $U$ $0.34 B$ $7.6 B$ $1.9 B$ $10.4$ $U$ $U$ $U$ $0.29 B$ $7.6 B$ $1.9 B$ $10.4$ $U$ $0.33$ $7.0$ $18.6$ $5.1 B$ $26.7$ $NA$ $NA$ $NA$	2' $2'-4'$ $0'-2'$ $2'-4'$ $0'-2'$ $2'-4'$ $0'98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $1.0$ $V$ $U$ $U$ $U$ $U$ $U$ $U$ $U$ $U$ $4.9$ $U$ $3.1$ $U$ $4.1$ $U$ $U$ $0.50$ $0.22$ B $0.34$ B $0.13$ B $0.46$ B $0.14$ B $0.85$ B $U$ $U$ $U$ $U$ $U$ $U$ $U$ $U$ $0.72$ $4.1$ $11.1$ $3.1$ $16.9$ $4.6$ $0.14$ B $0.56$ B $U$ $0.20$ $1.8$ $5.8$ $1.1$ $16.9$ $2.1$ $U$	2' $2'-4'$ $0'-2'$ $2'-4'$ $0'-2'$ $2'-4'$ $0'-2'$ $2'-4'$ $0ETECTION$ $0'98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $02/10/98$ $00/98$ $00/98$ $00/98$ $00/98$ $00/98$ $00/98$ $00.30$ $0.46 B$ $0.14 B$ $0.300$ $0.202$ $0.98 B$ $0.66 0$ $160$ $0.00$ $0.100$ $0.100$ $0.100$ $0.100$ $0.210$ $0.240$ $0.210$ $0.240$ $0.00$ $0.00$ $0.000$ $0.000$ $0.98$ $0.990$ $0.900$ $0.900$ $0.900$ $0.00$ <

Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

#### Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas. *** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

PROBE/BORING IDENTIFICATION	B	-4	B	-5	В	-6		
SAMPLE IDENTIFICATION	B-4 (0-2')	B-4 (2'-4')	B-5 (0-2')	B-5 (2'-4')	B-6 (0-2')	B-6 (2'-4')	INSTRUMENT	EASTERN
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	DETECTION	USA
DATE OF COLLECTION	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	02/10/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	U	U	U	U	U	U	0.310	
Arsenic	3.8	2.0	1.9	1.4	4.4	1.4	0.380	3 - 12*
Beryllium	0.34 B	0.24 B	0.14 B	0.13 B	0.41 B	0.06 B	0.030	0 - 1.75
Cadmium	1.1 B	U	0.61 B	0.15 B	0.36 B	U	0.060	0.1 - 1, (10***)
Chromium	12.6	8.9	20.4	18.5	15.3	2.2	0.160	1.5 - 40*, (50***)
Copper	9.2	6.1	8.3	5.0 B	9.3	2.2 B	0.270	1 - 50
Lead	17.0	3.9	4.9	2.6	8.5	U	0.240	200 - 500**
Mercury	0.02 B	U	0.02 B	U	0.02 B	U	0.017	0.001 - 0.2
Nickel	9.3 B	6.2 B	4.0 B	3.6 B	9.8	1.4 B	0.190	0.5 - 25
Selenium	U	U	U	U	U	U	0.490	0.1 - 3.9
Silver	U	U	U	U	U	U	0.120	
Thallium	U	U	U	U	U	U	0.440	
Zinc	29.3	14.8	15.8	10.3	36.2	4.8 B	0.390	9 - 50
Cyanide	NA	NA	U	U	NA	NA	0.5	
	I							

# Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

#### Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

PROBE/BORING IDENTIFICATION	B	-7	B-	-8	B-9			
SAMPLE IDENTIFICATION	B-7 (0-2')	B-7 (2'-4')	B-8 (0-2')	B-8 (2'-4')	B-9 (0-2')	B-9 (2'-4')	INSTRUMENT	EASTERN
SAMPLE DEPTH	0' - 2'	2' - 4'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	DETECTION	USA
DATE OF COLLECTION	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	02/11/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1,0	1.0	1.0	1.0	1	LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	U	U	U	U	U	U	0.310	
Arsenic	3.1	1.5	2.9	1.4	2.9	5.2	0.380	3 - 12*
Beryllium	0.22 B	0.11 B	0.16 B	0.11 B	0.20 B	0.32 B	0.030	0 - 1.75
Cadmium	1.6	0.19 B	1.4	0.16 B	1.4	0.36 B	0.060	0.1 - 1, (10***)
Chromium	12.0	5.1	7.2	4.3	7.8	11.8	0.160	1.5 - 40*, (50***)
Copper	15.4	4.8 B	16.3	3.6 B	7.2	9.2	0.270	1 - 50
Lead	17.1	4.3	18.2	6.3	5.4	7.4	0.240	200 - 500**
Mercury	0.11	0.02 B	0.11	U	U	0.02 B	0.017	0.001 - 0.2
Nickel	8.2 B	3.0 B	6.0 B	2.0 B	4.8 B	7.0 B	0.190	0.5 - 25
Selenium	U	U	U	U	U	U	0.490	0.1 - 3.9
Silver	U	U	U	U	U	U	0.120	
Thallium	U	U	U	U	U	U	0.440	
Zinc	44.8	11.1	34.9	7.6	37.6	25.6	0.390	9 - 50
Cyanide	NA	NA	NA	NA	NA	NA	0.5	
							1	1

#### Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

. . . .

#### Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

. . . . . .

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

- - -

PROBE/BORING IDENTIFICATION			B-	-10				
SAMPLE IDENTIFICATION	B-10 (0-2')	B-10 (2'-4')	B-10N (0-2')	B-10N (2'-4')	B-10S (0-2')	B-10S (2'-4')	INSTRUMENT	EASTERN
SAMPLE DEPTH	0' - 2'	2' - 4'	0 - 2'	2' - 4'	0 - 2'	2' - 4'	DETECTION	USA
DATE OF COLLECTION	02/11/98	02/11/98	3/12/98	3/12/98	3/12/98	3/12/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/k <u>g)</u>	(mg/kg)	(mg/kg)
Antimony	U	U	NA	NA	NA	NA	0.310	
Arsenic	4.7	4.0	NA	NA	NA	NA	0.380	3 - 12*
Beryllium	0.31 B	0.29 B	NA	NA	NA	NA	0.030	0 - 1.75
Cadmium	0.51 B	0.81 B	NA	NA	NA	NA	0.060	0.1 - 1, (10***)
Chromium	64.9	17.6	7.8	5.1	6.1	6.5	0.160	1.5 - 40*, (50***)
Copper	14.5	12.1	NA	NA	NA	NA	0.270	1 - 50
Lead	13.7	22.3	NA	NA	NA	NA	0.240	200 - 500**
Mercury	0.08	0.05	NA	NA	NA	NA	0.017	0.001 - 0.2
Nickel	7.7 B	10.8	NA	NA	NA	NA	0.190	0.5 - 25
Selenium	U	U	NA	NA	NA	NA	0.490	0.1 - 3.9
Silver	U	U	NA	NA	NA	NA	0.120	
Thallium	U	U	NA	NA	NA	NA	0.440	
Zinc	27.0	35.9	NA	NA	NA	NA	0.390	9 - 50
Cyanide	NA	NA	NA	NA	NA	NA	0.5	
1	1		]	L		t .	1	

# Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

# Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

Eastern USA Background Level

Value exceeds TAGM 4046 Appendix A Criteria and

PROBE/BORING IDENTIFICATION	B-	10	B-	11	B-'	12		
SAMPLE IDENTIFICATION	B-10E (0-2')	B-10E (2' - 4')	B-11 (5'-7')	B-11 (7'-9')	B-12 (4'-6')	B-12 (6'-8')	INSTRUMENT	EASTERN
SAMPLE DEPTH	0 - 2'	2' - 4'	5' - 7'	7' - 9'	4' - 6'	6' - 8'	DETECTION	USA
DATE OF COLLECTION	3/12/98	3/12/98	02/11/98	02/11/98	02/11/98	02/11/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	NA	NA	U	U	U	U	0.310	
Arsenic	NA	NA	1.9	U	U	1.1	0.380	3 - 12*
Beryllium	NA	NA	0.14 B	0.05 B	0.08 B	0.16 B	0.030	0 - 1.75
Cadmium	NA	NA	1.6	0.18 B	1.2	0.82 B	0.060	0.1 - 1, (10***)
Chromium	10.9	1.6 B	6.8	2.6	14.5	9.1	0.160	1.5 - 40*, (50***)
Copper	NA	NA	10.4	4.0 B	7.9	5.8	0.270	1 - 50
Lead	NA	NA	7.5	1.0	38.0	17.0	0.240	200 - 500**
Mercury	NA	NA	0.02 B	U	0.11	0.05	0.017	0.001 - 0.2
Nickel	NA	NA	5.2 B	1.4 B	2.9 B	3.3 B	0.190	0.5 - 25
Selenium	NA	NA	U	U	U	U	0.490	0.1 - 3.9
Silver	NA	NA	U	U	U	U	0.120	
Thallium	NA	NA	U	U	U	U	0.440	
Zinc	NA	NA	163	7.3	103	111	0.390	9 - 50
Cyanide	NA	NA	NA	NA	NA	NA	0.5	

Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

## Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

Eastern USA Background Level.

Value exceeds TAGM 4046 Appendix A Criteria and

PROBE/BORING IDENTIFICATION		B-13		В-	14	B-15		
SAMPLE IDENTIFICATION	B-13 (4'-6')	B-13 (6'-8')	B-13 (8'-10')	B-14 (0-2')	B-14 (2'-4')	B-15 (6'-7')	INSTRUMENT	EASTERN
SAMPLE DEPTH	4' - 6'	6' - 8'	8' - 10'	0' - 2'	2' - 4'	6' - 7'	DETECTION	USA
DATE OF COLLECTION	02/12/98	02/12/98	3/13/98	02/12/98	02/12/98	02/13/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	U	U	NA	U	U	U	0.310	
Arsenic	U	2.4	NA	4.7	2.4	1.9	0.380	3 - 12*
Beryllium	U	U	NA	0.37 B	0.22 B	0.14 B	0.030	0 - 1.75
Cadmium	2.9	5.7	NA	U	U	U	0.060	0.1 - 1, (10***)
Chromium	8.5	20.1	NA	15.0	11.4	4.7	0.160	1.5 - 40*, (50***)
Copper	18.5	66.0	NA	10.9	6.1	3.8 B	0.270	1 - 50
Lead	15.2	57.0	NA	8.7	7.5	2.8	0.240	200 - 500**
Mercury	0.21	0.23	U	0.03 B	0.02 B	U	0.017	0.001 - 0.2
Nickel	8.7	18.4	NA	8.7 B	5.7 B	2.6 B	0.190	0.5 - 25
Selenium	U	U	NA	U	U	U	0.490	0.1 - 3.9
Silver	U	U	NA	U	U	U	0.120	
Thallium	U	U	NA	U	U	U	0.440	
Zinc	43.9	70.8	NA	36.2	18.7	10.1	0.390	9 - 50
Cyanide	NA	NA	NA	NA	NA	NA	0.5	

#### Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

#### Notes:

----- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

: Value exceeds TAGM 4046 Appendix A Criteria and Eastern USA Background Level.

PROBE/BORING IDENTIFICATION	В-	16	B-	17	B-	18		
SAMPLE IDENTIFICATION	B-16 (7'-9')	B-16 (9'-11')	B-17 (0-2')	B-17 (2'-4')	B-18 (0-2')	B-18 (2'-4')	INSTRUMENT	EASTERN
SAMPLE DEPTH	7' - 9'	9' - 11'	0' - 2'	2' - 4'	0' - 2'	2' - 4'	DETECTION	USA
DATE OF COLLECTION	02/12/98	02/12/98	02/12/98	02/12/98	02/13/98	02/13/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	0.77 B	U	U	U	U	U	0.310	
Arsenic	U	U	2.9	2.6	0.84 B	0.80 B	0.380	3 - 12*
Beryllium	U	U	0.21 B	0.40 B	U	U	0.030	0 - 1.75
Cadmium	7.3	U	U	U	U	U	0.060	0.1 - 1, (10***)
Chromium	38.0	3.3	18.3	15.8	4.0	4.3	0.160	1.5 - 40*, (50***)
Copper	105	2.9 B	4.6 B	5.8	3.0 B	2.9 B	0.270	1 - 50
Lead	129	2.0	5.3	5.4	14.8	8.2	0.240	200 - 500**
Mercury	0.35	U	U	U	U	U	0.017	0.001 - 0.2
Nickel	22.2	1.3 B	4.6 B	5.7 B	2.1 B	2.1 B	0.190	0.5 - 25
Selenium	U	U	U	U	U	U	0.490	0.1 - 3.9
Silver	1.2 B	U	0.38 B	0.29 B	0.26 B	0. <b>43</b> B	0.120	
Thatlium	U	U	U	U	U	U	0.440	
Zinc	319	7.3	12.7	18.1	8.2	6.3	0.390	9 - 50
Cyanide	NA	NA	U	U	NA	NA	0.5	

## Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

#### Notes:

---- : Not established.

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

: Value exceeds TAGM 4046 Appendix A Criteria and Eastern USA Background Level.

PROBE/BORING IDENTIFICATION		B-19		B-	21	B-24		
SAMPLE IDENTIFICATION	B-19 (2'-4')	B-19 (4'-6')	B-19 (6'-8')	B-21 (0-2')	B-21 (2'-4')	B-24 (0-2')	INSTRUMENT	EASTERN
SAMPLE DEPTH	2' - 4'	4' - 6'	6' - 8'	0' - 2'	2' - 4'	0' - 2'	DETECTION	USA
DATE OF COLLECTION	02/13/98	3/12/98	3/12/98	02/13/98	02/13/98	02/17/98	LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0		LEVELS
UNITS	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	U	NA	NA	U	U	U	0.310	
Arsenic	1.3	NA	NA	1.9	2.2	2.7	0.380	3 - 12*
Beryllium	0.22 B	NA	NA	0.22 B	0.31 B	0.30 B	0.030	0 - 1.75
Cadmium	U	NA	NA	U	U	U	0.060	0.1 - 1, (10***)
Chromium	7.3	NA	NA	8.3	16.2	11.3	0.160	1.5 - 40*, (50***)
Copper	4.4 B	NA	NA	3.7 B	5.4 B	6.1	0.270	1 - 50
Lead	16.4	NA	NA	4.6	8.3	5.4	0.240	200 - 500**
Mercury	0.73	0.21	0.12	U	U	0.02 B	0.017	0.001 - 0.2
Nickel	4.7 B	NA	NA	4.5 B	6.3 B	7.1 B	0.190	0.5 - 25
Selenium	U	NA	NA	U	U	U	0.490	0.1 - 3.9
Silver	U	NA	NA	U	U	U	0.120	
Thallium	U	NA	NA	U	U	U	0.440	
Zinc	12.5	NA	NA	11.5	17.7	40.6	0.390	9 - 50
Cyanide	NA	NA	NA	NA	NA	NA	0.5	
			1		1			

#### Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

--- - -

#### Notes:

---- : Not established.

-- : Not applicable

NA : Constituent not analyzed for

* : New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

: Value exceeds TAGM 4046 Appendix A Criteria and Eastern USA Background Level.

. . .............

SAMPLE IDENTIFICATION	FB-1	FB-2					INSTRUMENT	EASTERN
SAMPLE DEPTH							DETECTION	USA
DATE OF COLLECTION	02/11/98	02/13/98					LIMITS	BACKGROUND
DILUTION FACTOR	1.0	1.0						LEVELS
UNITS	(mg/l)	(mg/l)	• •				(mg/kg)	(mg/kg)
Antimony	U	υ					0.310	
Arsenic	U	U					0.380	3 - 12*
Beryllium	U	U					0.030	0 - 1.75
Cadmium	U	U					0.060	0.1 - 1, (10***)
Chromium	U	U					0.160	1.5 - 40*, (50***)
Copper	U	U					0.270	1 - 50
Lead	U	U					0.240	200 - 500**
Mercury	U	U					0.017	0.001 - 0.2
Nickel	U	U					0.190	0.5 - 25
Selenium	U	U					0.490	0.1 - 3.9
Silver	U	1.4 B					0.120	
Thallium	U	U					0.440	
Zinc	U	U					0.390	9 - 50
Cyanide	U	U					0.5	
La contra c	t i i i i i i i i i i i i i i i i i i i		1	i i	1	1	1	

Qualifiers:

U: Constituent analyzed for but not detected.

B: Constituent found in the method blank as well as the sample.

#### Notes:

----: Not established.

-- : Not applicable

* New York State Background.

** : Background for metropolitan or suburban areas.

*** : Proposed revised criteria for cadmium and chromium in TAGM 4046 Appendix A.

Appendix D

·

APPENDIX D

REFERENCES

# REFERENCES

CF Braun Engineering Corporation, Final Phase I Environmental Baseline Survey of Naval Weapons Industrial Reserve Plant, Bethpage, New York, January 1998.

Dvirka and Bartilucci Consulting Engineers, New York State Site Registry Delisting Petition Plant 5, Hicksville, New York, February 1993.

Feldman, Steven M., Smolensky, Douglas A. and Masterson, John P., USGS Report 90-4182, Ground-Water Quality in the Bethpage-Hicksville-Levittown Area, Long Island, New York with Emphasis on Volatile Organic Compounds, 1992.

Geraghty and Miller, Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York, September 1994.

LKB Aerial Photographs: April 11, 1950; January 20, 1955; January 24, 1957; March 23, 1962; April 11, 1969; April 18, 1972; March 24, 1976; and March 8, 1988.

Nassau County Planning Commission Composite Zoning Map, 1990.

Northrop Grumman Corporation Aerial Photograph: August 28, 1985.

NYSDEC, Grumman Aerospace - Bethpage Facility Inactive Hazardous Waste Site #130003A, Bethpage, Nassau County Fact Sheet, October 1994.

United States Department of Agriculture, Soil Conservation Service, Soil Survey of Nassau County, New York, February 1987.