Operable Unit 2 Groundwater Remedial System Hydraulic Effectiveness Evaluation

Northrop Grumman Corporation and NWIRP Bethpage NYSDEC Site #'s 1-30-003A and B

David E. Stern

Project Hydrogeologist

Conto San Guranni

Carlo San Giovanni Project Manager

Michael F. Wolfer Project Director Operable Unit 2 Groundwater Remedial System Hydraulic Effectiveness Evaluation

Northrop Grumman Corporation and NWIRP Bethpage (NYSDEC Site #'s 1-30-003A and B)

Prepared for:
Northrop Grumman Corporation

Prepared by: ARCADIS G&M, Inc. 88 Duryea Road Melville New York 11747 Tel 631 249 7600 Fax 631 249 7610

Our Ref.: NY001348.0013.00004

Date: 6 May 2003

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

1.	Intro	oduction	1
2.		nmary of OU2 Groundwater Remedial System and OM&M vities	2
3.	Tech	nnical Approach to OU2 Hydraulic Effectiveness Evaluation	3
	3.1	Physical Setting	3
	3.2	Hydraulic Data	4
		3.2.1 Recharge	4
		3.2.2 Pumpage	5
		3.2.3 Data	5
	3.3	Groundwater Quality Data	6
	3.4	Potential Data Gaps	7
4.	Hyd	raulic Effectiveness Evaluation Data Collection	8
	4.1	Hydraulic Data	8
	4.2	Groundwater Quality Data	8
5.	Hyd	raulic Data Evaluation	10
	5.1	Shallow Zone	10
	5.2	Intermediate Zone	11
	5.3	Deep Zone	12
	5.4	D2 Zone	13
	5.5	Summary of Groundwater Flow Conditions	13
5.	Gro	undwater Quality Data Evaluation	14
	6.1	Vertical Profile Borings	14
	6.2	Monitoring Wells	15
7.	Con	clusions	15
3.	Refe	erences	17

Table of Contents

Tables

- 1 Water-Level Measurement Data, November 2002 and January 2003, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.
- 2 Comparison of November 2002 Observed Vertical Gradients to Model Predictions, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.
- 3 Comparison of January 2003 Observed Vertical Gradients to Model Predictions, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.
- 4 Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.
- 5 Concentrations of Volatile Organic Compounds in Monitoring Wells, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.

Figures

- 1 Location of OU2 Groundwater Remedy and Wells, Northrop Grumman Corporation, Bethpage, New York.
- Water-Table Configuration and Horizontal Groundwater Flow Directions in the Shallow Zone, January 29, 2003, Northrop Grumman Corporation, Bethpage, New York.
- Potentiometric Surface Elevation and Groundwater Flow Directions in the Intermediate Zone, January 29, 2003, Northrop Grumman Corporation, Bethpage, New York.
- 4 Potentiometric Surface Elevation and Groundwater Flow Directions in the D2 Zone, November 22, 2002, Northrop Grumman Corporation, Bethpage, New York.
- Potentiometric Surface Elevation and Groundwater Flow Directions in the D2 Zone, January 29, 2003, Northrop Grumman Corporation, Bethpage, New York.
- 6 Hydrogeologic Cross Section E-E', Northrop Grumman Corporation, Bethpage, New York.

Appendix

A ARCADIS Water-Level Measurement and Sample Collection Logs

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

1. Introduction

On behalf of Northrop Grumman Corporation (NGC), ARCADIS has prepared this Groundwater Remedial System Hydraulic Effectiveness Evaluation Report to satisfy one of the requirements of the March 2001 Record of Decision (ROD) that was issued by the New York State Department of Environmental Conservation (NYSDEC) for Operable Unit 2 (OU2) for the NGC and Naval Weapons Industrial Reserve Plant (NWIRP) sites, in Bethpage, New York (NYSDEC 2001). Specifically, this report was produced to evaluate the data collected by Tetra Tech NUS, Inc. (TTNUS) on behalf of the Navy and by ARCADIS on behalf of NGC to address the portion of Section 8 of the ROD requiring an independent study to evaluate the hydraulic effectiveness of the on-site portion of the OU2 Groundwater Remedy (see details below). Between August 2002 and January 2003, the OU2 Hydraulic Effectiveness field investigation was conducted pursuant to the June 2002 NYSDEC-approved work plans (ARCADIS G&M, Inc. 2002a and U.S Navy 2002a). In general, the field investigation consisted of drilling and collection of soil and groundwater samples from vertical profile borings (VPBs) and the drilling, installation, development and sampling of permanent monitoring wells. In November 2002, the Navy issued the GM-39 and GM-73 Vertical Profile Boring and Monitoring Well Summary Report to document the data collected during the field investigation (U.S. Navy 2002b). After completion of the Navy portion of the investigation, ARCADIS (on behalf of NGC) collected additional hydraulic and groundwater quality data and has prepared this interpretive report, in accordance with a NYSDEC-approved work plan, dated June 28, 2002 (ARCADIS G&M, Inc. 2002).

In addition to the ROD requirement satisfied by this report, ARCADIS continues to collect quarterly hydraulic and groundwater quality data in accordance with the NYSDEC-approved groundwater monitoring plan (ARCADIS G&M, Inc., 2001) and produce quarterly groundwater monitoring reports that provide an evaluation of the environmental effectiveness and performance of the OU2 Groundwater Remedy.

This report is organized as follows:

- Section 2 summarizes OU2 groundwater remediation and OM&M activities.
- Section 3 describes the technical approach of the OU2 Hydraulic Effectiveness Evaluation.

Operable Unit 2 Groundwater Remedial System Hydraulic Effectiveness Evaluation

Northrop Grumman Corporation

- Section 4 summarizes the Navy portion of the field investigation and the methods and procedures used by ARCADIS for collection of hydraulic and groundwater quality data.
- Section 5 includes the detailed evaluation of the hydraulic data collected by ARCADIS.
- Section 6 includes the detailed evaluation of the groundwater quality data collected by the Navy (VPBs) and ARCADIS (monitoring and remedial wells).
- Sections 7 and 8 provide the conclusions and list of references, respectively.

Field records prepared by ARCADIS are provided in Appendix A.

2. Summary of OU2 Groundwater Remedial System and OM&M Activities

The site plan showing the OU2 groundwater remediation system and well locations is provided on Figure 1. Initially, the OU2 Groundwater Remedy was installed as an Interim Remedial Measure (IRM). Installation of IRM Remedial Wells ONCT-1, ONCT-2, and ONCT-3 was completed by NGC in June 1997. The IRM remedial system treating groundwater pumped from the ONCT remedial wells was completed by NGC in November 1997. Full-time OU2 IRM remedial system operation began in September 1998. Additionally, Remedial Well GP-1, initially installed by NGC for on-site industrial supply purposes, along with the associated treatment system, were incorporated into the IRM groundwater remedy in 1998, which consists of:

- Remedial Wells ONCT-1, ONCT-2, and ONCT-3 and the Plant 5E remedial treatment system (also known as the ONCT Remedial Treatment System or the 102 Tower). Treated effluent from the ONCT remedial system is discharged to the South Recharge Basins.
- Remedial Well GP-1 and the Plant 5 remedial treatment system (also known as the GP-1 Remedial Treatment System or the Tower 96 system). Treated effluent from the GP-1 remedial system is discharged to the Plant 5 and South Recharge Basins.

Using the groundwater model developed by ARCADIS on behalf of NGC, it was determined that a combined pumping rate for the OU2 remedial wells of 3,375 gallons per minute (gpm) was required to achieve the IRM goal of preventing volatile organic compound (VOC)-impacted groundwater from migrating south from the NGC site. To

Operable Unit 2 Groundwater Remedial System Hydraulic Effectiveness Evaluation

Northrop Grumman Corporation

achieve the total design pumping rate, the following design pumping rates for the individual remedial wells were used: Well GP-1 (1,075 gpm), ONCT-1 (1,000 gpm), ONCT-2 (600 gpm), and ONCT-3 (700 gpm) (ARCADIS Geraghty & Miller, Inc. 2000). In addition to the remedial pumping rates described above, Industrial Supply Well GP-3 is also pumped to the GP-1 Remedial Treatment System with the effluent discharged to the recharge basins mentioned above (NGC voluntarily operates Well GP-3 at a current rate of approximately 425 gpm).

In March 2001, the ROD incorporated the IRM (consisting of Remedial Wells GP-1, ONCT-1, ONCT-2, and ONCT-3, the GP-1 and ONCT Remedial Treatment Systems, the South Recharge Basins, and Plant 5 Recharge Basins) as the on-site portion of the final OU2 Groundwater Remedy (referred to in this report as the OU2 Groundwater Remedy).

The field investigation discussed herein was conducted while the OU2 remedial system operated at greater than 90 percent up-time with the OU2 remedial wells operating at or close to the design pumping rates (given above) and associated treated water discharged to the South Recharge Basins/Plant 5 Recharge Basins consistent with the rates specified by the model to prevent the off-site migration of VOCs. Operation of the remedial wells at these rates before and during the field investigation has produced conditions that are representative of the planned long-term operation of the OU2 Groundwater Remedy and serve as the most appropriate basis for the required OU2 Hydraulic Effectiveness Evaluation.

3. Technical Approach to OU2 Hydraulic Effectiveness Evaluation

This section describes the physical setting as well as the approach used to evaluate the effect of the OU2 Groundwater Remedy on groundwater flow (hydraulics) and groundwater quality. This approach was developed based on the ongoing evaluation of the quarterly groundwater monitoring data and conditions predicted in The Groundwater Flow and Contaminant Transport Simulation Report (ARCADIS Geraghty & Miller, 2000, Appendix B).

3.1 Physical Setting

The two aquifer systems relevant to the OU2 Groundwater Remedy and the Hydraulic Effectiveness Evaluation are the Upper Glacial aquifer and the Magothy aquifer. For the purposes of evaluating groundwater flow and groundwater quality in the model,

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

four hydrogeologic zones within the Upper Glacial and Magothy aquifers were defined, as follows:

- The shallow zone, which extends from the water table (approximately +50 feet [ft] relative to mean sea level [msl]) to +40 ft msl.
- The intermediate zone, which extends from +40 ft msl to -50 ft msl.
- The deep zone, which extends from -50 ft msl to -365 ft msl.
- The Deep2 (D2), zone, which extends from -365 ft msl to -530 ft msl.

For the purposes of this report, the D3 zone has been defined as the basal zone of the Magothy aquifer, which extends from approximately -530 ft msl to -550 ft msl (estimated elevation of the top of the Raritan Confining Unit at the NGC southern boundary).

3.2 Hydraulic Data

The purpose of the OU2 Groundwater Remedy is to prevent the off-site migration of VOC-impacted groundwater through hydraulic control created by a combination of deep pumpage (from the four OU2 remedial wells) and shallow recharge (via the Plant 5 Recharge Basins and South Recharge Basins). The groundwater flow model predicted that, over the long-term, operation of the OU2 Groundwater Remedy will affect groundwater flow in the southern portion of the NGC site and in off-site areas immediately south of the NGC site, establishing a new steady-state condition that will prevent flow of impacted groundwater off-site. The hydraulic containment aspect of the OU2 Groundwater Remedy is described in detail below.

3.2.1 Recharge

Based on groundwater modeling conducted, the effect on groundwater flow of recharging the treated water pumped from the OU2 remedial wells will be seen as groundwater mounds at the Plant 5 Recharge Basins and South Recharge Basins. The purpose of the groundwater mounding created by the OU2 Groundwater Remedy is twofold: (1) to hydraulically contain shallow groundwater and prevent it from moving off-site, and (2) to increase vertical hydraulic gradients and force groundwater downward toward the D2 zone where it will be extracted by the remedial wells for subsequent treatment (see Section 3.2.2 below). As a result of the groundwater mounds, groundwater flow will, locally, be redirected radially away from the basins and downward vertical hydraulic gradients will increase. Based on this scenario, the

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

data collection and evaluation focused on identifying the presence and extent of localized groundwater mounding and evaluating vertical hydraulic gradients. A key indication that the OU2 Groundwater Remedy, through discharge of treated water to the shallow zone (as recharge to the water table), has created an effective hydraulic barrier to off-site groundwater flow in the shallow and intermediate zones is vertical hydraulic gradients that are close to or greater than those predicted by the groundwater modeling conducted.

3.2.2 Pumpage

The effects of pumping the OU2 remedial wells has been expected to be (and has been) most clearly seen in the D2 zone (i.e., the zone in which the remedial wells are screened) and appear as a zone of capture (i.e., an area of lowered water levels within which all groundwater moves toward and is eventually removed by pumping wells) centered on the OU2 Remedial Wells; ONCT-1, ONCT-2, ONCT-3, and GP-1 (while in operation, Well GP-3 induces a similar effect). The purpose of the remedial well pumpage is to operate in concert with the treated water recharge to the water table (see Section 3.2.1) to hydraulically contain on-site groundwater and prevent it from moving off-site. The D2 zone pumping is expected to result (and has resulted) in the formation of a groundwater divide in the D2 zone south of the NGC site and the OU2 remedial wells. Groundwater south of the divide flows with the regional gradient to the south/southeast while groundwater north of the divide moves toward and is captured by the OU2 remedial wells. The effect of remedial well pumpage in the D2 zone, in combination with shallow local recharge at the basins described above, is expected to be (and has been) an increase in downward vertical hydraulic gradients throughout the vertical thickness of the aquifer system at the NGC site southern boundary, with the groundwater flow oriented downward toward the zone of pumpage. For these reasons. the data collection and evaluation effort also focused on identifying the presence and extent of the composite capture zone created and mapping the potentiometric surfaces in the various aquifer horizons. The occurrence of vertical groundwater migration through the aquifer horizons to the sufficiently-sized composite capture zone around the remedial wells is a key indication that, through pumpage of the remedial wells in the D2 zone, the OU2 Groundwater Remedy has created an effective hydraulic barrier to off-site groundwater flow.

3.2.3 Data

Based on the above discussion, the effect of the on-site OU2 Groundwater Remedy on the groundwater flow system can be shown by: mapping the potentiometric surface of

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

the various hydrogeologic zones identified above and evaluating water-level data by calculating vertical hydraulic gradients for key well clusters near the OU2 remedial wells and recharge basins and comparing the gradients with the data developed by the groundwater flow model. Hydraulic measurements were collected in November 2002 and January 2003. The November 2002 event focused on obtaining measurements from selected shallow, intermediate, and deep wells to provide an indication of groundwater elevations relative to previous rounds and to calculate vertical hydraulic gradients in key well pairs near the NGC site southern boundary. In addition, measurements were obtained from D2 zone wells to map the potentiometric surface elevations and horizontal groundwater flow directions (illustrating the degree and extent of the composite capture zone created by the OU2 Groundwater Remedy), and determine vertical hydraulic gradients in the deep/D2 zones. The January 2003 event incorporated additional wells (Table 1) which provided sufficient coverage to map the water-table configuration (shallow zone) and potentiometric surface elevations (intermediate zone and D2 zone), as well as determine horizontal groundwater flow directions and vertical hydraulic gradients throughout the various aguifer horizons.

3.3 Groundwater Quality Data

The goal of the on-site OU2 Groundwater Remedy is to capture, remove, and treat groundwater from the on-site portion of the VOC plume and, thereby prevent VOC-impacted groundwater from moving off-site. The operation of the on-site portion of the OU2 Groundwater Remedy is expected to (and current data indicate this is occurring) cause the plume to bifurcate into an on-site portion and an off-site portion. As treated groundwater and precipitation continue to recharge the aquifer, a "clean zone" will develop between the on- and off-site portions of the bifurcated plume, within which VOC impacts will not occur or will be minimal. This clean zone will increase in size as VOC-impacted groundwater downgradient (south) and beyond the capture zone of the OU2 remedial wells continues to migrate through the aquifer in the regional direction of groundwater flow to the south-southeast. The continued growth of this clean zone depends on maintaining the hydraulic barrier created by the OU2 Groundwater Remedy. The rate of growth will largely depend on the regional groundwater velocity in the Magothy aquifer, which is generally less than one foot per day.

Based on the above considerations, groundwater samples collected from wells immediately south (off-site) of the OU2 remedial wells will be the first to show water quality improvement (i.e., a decreasing long-term trend in VOC concentrations over time) although the improvement, due to the natural slow groundwater velocity, will be

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

slow to occur. Monitoring wells located further downgradient will take a longer time to show an improvement in groundwater quality, as compared to wells immediately south of the OU2 remedial wells, due to the relatively slow groundwater velocity and greater distance from the remedial wells. VOC-impacted groundwater that migrated off-site prior to the implementation of the OU2 Groundwater Remedy would have to migrate past off-site monitoring wells before the wells would show groundwater quality improvement related to operation of the on-site portion of the OU2 Groundwater Remedy. Depending on VOC concentrations and heterogeneity of the off-site groundwater, monitored water quality in off-site wells may show several trend changes before long-term trends associated with the operation of the OU2 Groundwater Remedy are revealed. Depending on the location of the well, water quality in on-site wells may increase, decrease, or stay the same over the short to midterm, but over the long term a general decrease in VOC concentrations will be observed. It is for these reasons that the evaluation of groundwater quality data has been included in this hydraulic effectiveness evaluation.

3.4 Potential Data Gaps

Based on the information obtained during the remedial investigation at the site, it was concluded that pumpage of on-site industrial supply wells (which in general, are screened in the deep or D2 zones) was the primary mechanism that resulted in the accelerated vertical migration of VOCs in on-site groundwater. Therefore, it was reasonable to expect that VOC impacts below the depths of the deepest of these wells would not occur, or would be minimal. Since the OU2 remedial wells were installed to depths slightly greater than the screen intervals of any of the on-site industrial supply wells, VOC impacts below the well screen zones of the OU2 remedial wells were also not expected. However, as stated in the ROD, discrete groundwater quality data had not been collected from the lower portion of the D2 zone/D3 zone (includes the interval below the total depth of the ONCT wells) to support this conclusion.

Since current VPB methods can provide a complete profile of groundwater quality to such depths, the technology was used to vertically delineate VOC impacts along the NGC southern boundary to the top of the Raritan Confining Unit. Based on the results of the VPB groundwater sampling, the vertical extent of VOC impacts throughout the vertical thickness of aquifer was determined. Subsequently, permanent wells were installed to: better quantify the VOC concentrations obtained from the VPBs, provide permanent locations to collect hydraulic data to determine the vertical extent of the capture zone along the NGC site southern boundary, allow for the determination of

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

vertical hydraulic gradients, and to monitor long term trends in groundwater quality in zones of interest within the aquifer system.

4. Hydraulic Effectiveness Evaluation Data Collection

The following sections describe the methods for collection of hydraulic and groundwater quality data by the Navy and ARCADIS, and provide the basis for the selection of the screen zones of monitoring wells installed as part of the hydraulic effectiveness evaluation. Sections 5 and 6 of this report discuss the results of hydraulic measurements and the VPB and monitoring well groundwater sample collection, respectively.

4.1 Hydraulic Data

In accordance with the NYSDEC-approved work plan (ARCADIS G&M, Inc. 2002a), two rounds of groundwater-level (hydraulic) measurements were collected by ARCADIS, as follows: the first round was carried out on November 22, 2002 shortly after installation of the new monitoring wells was completed (see Section 4.2 below), followed by the second round on January 29, 2003. Collection of water-level measurements and calculation of water-level elevations were performed consistent with the methods described in the work plan and the quarterly groundwater monitoring reports (ARCADIS Geraghty & Miller, Inc., 2002b). The wells monitored in the November 2002 round consisted of selected wells located around the NGC site southern boundary. The wells monitored in the January 2003 round consisted of wells measured during the quarterly hydraulic measurement rounds and included the wells monitored in November 2002 plus additional wells. The data are discussed in Section 5 of this report.

4.2 Groundwater Quality Data

The locations of, installation of, and sample collection from VPB-39 and VPB-73 (Figure 1) were in accordance with the NYSDEC-approved work plan (ARCADIS G&M, Inc. 2002a). TTNUS supervised the drilling of the VPBs from August to September 2002 using methods consistent with the NYSDEC-approved work plan (U.S. Navy 2002a). The Navy documented the results of the field investigation in the GM-39 and GM-73 Vertical Profile Boring and Monitoring Well Summary Report (U.S. Navy 2002b). During VPB drilling, groundwater samples were collected generally at 20-foot intervals and submitted for laboratory analysis of VOCs. The

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

VPBs were drilled to the top of the Raritan Confining Unit (estimated to be encountered at 660 feet below land surface [ft bls] at VPB-39 and VPB-73).

TTNUS supervised the installation of Monitoring Wells GM-39D, GM-39D2, and GM-73D at the corresponding VPB locations from September to October 2002 (Figure 1). Screen intervals for Wells GM-39D, GM-39D2, and GM-73D were selected by ARCADIS based on the following factors:

- 1. Consideration was given to the goals of the hydraulic effectiveness evaluation (see Item 2 below) as well as the nature of the formation material. Positioning well screens within reasonably permeable formation material is important as it ensures that the wells can be properly developed and therefore be open and responsive to water level changes in the formation so that hydraulic (water-level) measurements and representative groundwater samples can be obtained. Split-spoon soil samples and geophysical logs (natural gamma) were therefore obtained at each VPB to determine the precise depth and thickness of both highly permeable deposits (i.e., sands) and comparatively poorly permeable deposits (i.e., silts and clays). The well screen intervals for Wells GM-39D, GM-39D2, and GM-73D were positioned within reasonably permeable deposits while also meeting the goals of the hydraulic effectiveness evaluation.
- 2. The Magothy aquifer is generally known to be hydraulically connected throughout its vertical thickness, which implies downward groundwater movement where there is a downward hydraulic gradient (i.e., lower water-level elevations with depth). Based on this consideration, the vertical hydraulic gradient obtained from a well couplet comprised of one well screened close to the upper limit of the VOC plume and a second deeper well screened near the screened interval of an OU2 remedial well that is close to or greater than model predictions (see Section 3.2) would provide conclusive evidence that the groundwater flow direction is oriented downward throughout the VOC-impacted segment of aquifer at this location and that operation of the OU2 Groundwater Remedy has created a hydraulic barrier that is effective in preventing the off-site migration of VOC-impacted groundwater. Therefore, Monitoring Wells GM-39D and GM-73D were screened at depths corresponding to the shallowest VOC concentrations in groundwater that exceeded NYSDEC Standards, Criteria, and Guidance values (SCGs) and were coupled with deeper Wells GM-39D2 and GM-73D2, respectively. Vertical hydraulic gradients obtained from Well Clusters GM-39D/GM-39D2 and GM-73D/GM-73D2 that are close to or greater than the model-predicted gradients

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

would provide strong evidence attesting to the effectiveness of the hydraulic barrier in these areas.

3. Monitoring Well GM-39D2 was screened at an interval that met the first two objectives and also to monitor the interval that exhibited the highest total VOC concentration in groundwater that was detected in VPB-39.

Following well installation and development, ARCADIS collected two rounds of groundwater samples, in November 2002 and January 2003. These rounds consisted of collecting samples from new Monitoring Wells GM-39D, GM-39D2, and GM-73D, along with existing Monitoring Well GM-73D2. The monitoring wells were purged and sampled using methods consistent with the NYSDEC-approved groundwater monitoring, (ARCADIS G&M, Inc., 2001). The samples were analyzed for the Target Compound List (TCL) of VOCs. These data are discussed in Section 6 of this report.

5. Hydraulic Data Evaluation

This section provides an evaluation of the hydraulic data collected as part of the OU2 Hydraulic Effectiveness Evaluation. Water-level measurement data are provided in Table 1. Vertical gradients (observed and predicted) from the November 2002 and January 2003 events are provided in Tables 2 and 3, respectively.

5.1 Shallow Zone

Figure 2 shows the water-table configuration and horizontal groundwater flow directions in the shallow zone on January 29, 2003. The effects of the OU2 Groundwater Remedy treatment system discharges and stormwater runoff (as recharge to the South Recharge Basins and the Plant 5 Recharge Basins) on shallow groundwater flow during the hydraulic effectiveness evaluation are described below. The following sections also describe the calculated vertical hydraulic gradients for shallow/intermediate well pairs and compare these gradients to the simulated steady-state vertical gradients predicted by the groundwater flow model under the scenario where the OU2 remedial wells are preventing the off-site movement of VOC-impacted groundwater.

In general, Figure 2 shows groundwater mounding beneath the NGC site around the South Recharge Basins. Upgradient of the South Recharge Basins, which includes areas on the NGC and NWIRP sites, the horizontal direction of shallow groundwater flow is to the southeast. Specifically, the maximum elevation of the mound beneath

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

and around the South Recharge Basins is greater than 65 ft msl, and the mound extends across the width of the southern boundary of the site. The regional southeast shallow groundwater flow direction is locally modified by the mounding with the result that the horizontal direction of shallow groundwater flow in the vicinity of the South Recharge Basins is radially to the north, south, west, and east away from the basins, thereby creating a hydraulic barrier that prevents on-site, VOC-impacted groundwater in this area from moving off-site in the shallow zone. The mounding around the South Recharge Basins also increases the vertical hydraulic gradient in the vicinity of the basins, resulting in a downward vertical groundwater flow component from the shallow zone to the intermediate zone. Water-level data collected for this investigation from the shallow-intermediate well pairs near the South Recharge Basins (GM-19S/GM-19I; GM-21S/GM-21I; GM-78S/GM-78I, and GM-79S/GM-79I) show that the vertical hydraulic gradients are oriented downward (Tables 2 and 3).

Vertical gradients calculated from groundwater elevation data (from well pairs) that are close to or greater than vertical hydraulic gradients simulated by the groundwater flow model are a key indication that the OU2 Groundwater Remedy, through pumpage of remedial wells from the D2 zone and recharge to the shallow zone, has created an effective hydraulic barrier to off-site groundwater flow. Vertical gradients at the monitoring well clusters located in the vicinity of the basins (i.e., GM-19S/GM-19I; GM-21S/GM-21I; and GM-79S/GM-79I) are oriented downward and are greater than gradients predicted by the groundwater flow model, while the vertical gradients at Well Clusters GM-16SR/GM-16I, GM-17SR/GM-17I, and GM-78S/GM-78I are also oriented downward and are close to model predictions. These data indicate that in the vicinity of the Plant 5 and South Recharge Basins, there is a strong downward vertical component of groundwater flow from the shallow zone toward the intermediate zone.

In conclusion, the radial horizontal flow components near the South Recharge Basins coupled with the downward vertical gradients near the Plant 5 and South Basins collectively create a hydraulic barrier that prevents on-site, VOC-impacted groundwater from migrating off-site in the shallow zone.

5.2 Intermediate Zone

The intermediate zone potentiometric surface configuration and horizontal groundwater flow directions on January 29, 2003 are shown on Figure 3. The configuration of the potentiometric surface in the intermediate zone is similar to the water-level configuration observed in the shallow zone, with mounding centered beneath and around the South Recharge Basins (maximum water-level elevation at the

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

South Recharge Basins is greater than 62 ft msl). This indicates that the OU2 Groundwater Remedy treatment system discharge and stormwater runoff are substantially affecting groundwater flow in the intermediate zone, with the horizontal component of flow near the South Recharge Basins oriented radially away from the basins. The resultant vertical gradients in monitoring well clusters near the basins (i.e., GM-15I/GM-15D, GM-17I/GM-17D, GM-18I/GM-18D, GM-20I/GM-20D, GM-21I/GM-21D; GM-74I/GM-74D, and GM-79I/GM-79D) are oriented downward and are greater than or close to those predicted by the model.

Collectively, these data indicate that the hydraulic barrier to groundwater flow extends vertically downward to the intermediate zone and is similar in extent to that observed in the shallow zone, is effective in preventing the off-site migration of VOC-impacted groundwater in the intermediate zone.

5.3 Deep Zone

As a result of remedial well pumpage from the underlying zone (D2 zone) and recharge affecting the overlying zones (shallow and intermediate zones), groundwater in the deep zone is expected to be flowing in a predominantly vertical (downward) direction in the general vicinity of the OU2 remedial wells and the Plant 5 and South Recharge Basins. Therefore, the analysis of the hydraulic effectiveness of the OU2 Groundwater Remedy at achieving the goals in the deep zone is conducted using vertical hydraulic gradients calculations for deep/D2 well pairs. Tables 2 and 3 provide the vertical hydraulic gradients calculated from data collected from well clusters in the deep/D2 zones and compares them to model-predicted gradients.

The vertical gradients in on-site/near site Well Clusters GM-15D/GM-15D2 (northeast of the South Basins), GM-39D/GM-39D2, GM-73D/GM-73D2 and GM-74D/GM-74D2 (at the South Basins), and GM-18D/GM-33D2 (west of the South Basins) are oriented downward as expected, and are close to or greater than model predictions.

In conclusion, vertical hydraulic gradients calculated from deep/D2 monitoring well clusters are oriented downward and are close to or greater than vertical hydraulic gradients predicted by the groundwater flow model. Furthermore, vertical hydraulic gradients in well clusters near the NGC site boundary indicate that the mounding of the water table coupled with pumpage from the OU2 remedial wells in the D2 zone is forcing on-site groundwater downward through the deep zone, toward the pumpage in the D2 zone, and prevents on-site VOC-impacted groundwater from flowing off-site in the deep zone.

Operable Unit 2 Groundwater Remedial System Hydraulic Effectiveness Evaluation

Northrop Grumman Corporation

5.4 D2 Zone

Figures 4 and 5 depict the D2 zone potentiometric surface configuration and horizontal groundwater flow directions under pumping conditions during the November 22, 2002 and January 29, 2003 events, respectively. As shown on Figures 4 and 5, the result of pumping the OU2 remedial wells and Well GP-3 is the formation of cones of depression (i.e., area of depressed water levels) in the D2 zone that are centered on each well. These individual cones of depression for each well have coalesced into one large zone of capture that extends along the entire NGC southern property boundary and also extends northwest along a portion of the NGC site western boundary. Although a water level cannot currently be measured in Well GP-3, it is reasonable to assume that the cone of depression around this pumping well causes the cumulative capture zone to extend farther to the northwest than is currently shown on Figures 4 and 5. At its farthest downgradient extent the capture zone in November 2002 and January 2003 is approximately 700 ft south of the NGC site boundary. Within the capture zone (upgradient and as far as 700 ft downgradient of the OU2 remedial wells). groundwater flow directions are oriented toward the centers of pumping; indicating that groundwater in this area is fully contained and captured by the OU2 Groundwater Remedy. Beyond the downgradient extent of the capture zone, groundwater continues to flow downgradient until it is influenced by the pumping of nearby public supply wells or continues to flow south-southeast in the direction of regional groundwater flow (Figure 5).

In conclusion, the data from the D2 zone indicate that the pumpage of the OU2 remedial wells and Well GP-3 has created a hydraulic barrier in this zone, thereby preventing the off-site migration of VOC-impacted groundwater in this zone.

5.5 Summary of Groundwater Flow Conditions

In summary, the hydraulic data presented and discussed in Sections 5.1 to 5.4 indicate that operation of the OU2 Groundwater Remedy has created an effective hydraulic barrier throughout the shallow, intermediate, deep, and D2 zones, achieving the ROD-required goal of the OU2 Groundwater Remedy, which is to prevent the off-site migration of on-site, VOC-impacted groundwater. To help summarize the hydraulic data (and groundwater quality data discussed in Section 6 of this report) collected for the hydraulic effectiveness evaluation, ARCADIS has prepared a hydrogeologic cross section (Figure 6) for the area of the NGC southern boundary. This cross section depicts the vertical distribution of water levels with respect to site features, wells, and

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

groundwater sample results (Section 6), and illustrates the substantial decrease in potentiometric surface elevation with depth across the NGC southern boundary.

Furthermore, in accordance with the ROD, site-wide, quarterly hydraulic monitoring and data evaluation is currently being conducted by ARCADIS. This monitoring will continue to assess monitoring well and remedial well data to evaluate and document the effectiveness of the OU2 Groundwater Remedy at achieving remedial goals.

6. Groundwater Quality Data Evaluation

This section discusses the results of the VPB and permanent monitoring well groundwater sample analysis and compares the data to NYSDEC Standards, Criteria, and Guidance Values (SCGs) and, where available, previous rounds of data.

6.1 Vertical Profile Borings

The complete analytical results of groundwater sampling at VPB-39 and VPB-73 are provided in Table 4. Total VOC concentrations versus depth below land surface are depicted on Cross Section E-E' (Figure 6) along with wells that are located at or near the NGC site southern boundary. As stated in Section 3.4 of this report, VPBs are a useful tool to collect water quality data throughout a vertical section of an aquifer horizon(s). However, it is important to realize that water quality samples collected via the VPB technique may not exactly correlate to water quality data collected from nearby monitoring wells. For this reason, the VPB technique was used as a "screening tool" in this hydraulic effectiveness evaluation and, where necessary, permanent monitoring wells (i.e., GM-39 cluster and Well GM-73D) were installed.

Overall, the VPB groundwater data are generally consistent with the information obtained from the quarterly VOC groundwater monitoring program in that the results indicate no SCG exceedences in the shallow and intermediate zones, and the upper portion (generally above –300 ft msl) of the deep zone. Furthermore, total VOC concentrations in the basal portions of the deep zone and the D2 zone range from less than 1 microgram per liter (ug/L) to 789 ug/L. Trichloroethene (TCE) was the compound most frequently detected and, with the exception of one detection of tetrachloroethene (PCE) (9 ug/L), was the only constituent detected at concentrations exceeding SCGs. In addition, only trace (less than 5 ug/L) concentrations of VOCs were detected in VPB samples in the basal portion of the D2 zone and the D3 zone (i.e., deeper than –460 ft msl and generally below the ONCT screen zones).

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

In summary, correlation of compounds detected in VPBs with data from nearby monitoring wells (below) and VPB data that shows trace VOC concentrations in the basal D2 zone and D3 zone (i.e., below the screened intervals of the ONCT remedial wells) provide a complete and accurate profile of groundwater quality at the NGC site southern boundary and support the conclusion that the TVOC plume delineation along the NGC site southern boundary is complete.

Based on these findings, ARCADIS concludes that a D3 zone monitoring well(s) is not required.

6.2 Monitoring Wells

The complete analytical results of groundwater sampling at Wells GM-39D, GM-39D2, GM-73D, and GM-73D2 from the November 2002 and January 2003 sampling events are provided in Table 5 and total VOC concentrations versus depth below land surface are depicted on Cross Section E-E' (Figure 6). Total VOC concentrations in wells sampled during the hydraulic effectiveness evaluation generally agree with the current understanding of the VOC plume configuration which depicts the highest concentrations within the on-site portion of the TVOC plume at elevations that are close to or within the screened intervals of the ONCT remedial wells (i.e., the deep zone and upper portion of the D2 zone). The analytical results provide good agreement with the VPB results in that TCE was the constituent most frequently detected and, with the exception of sporadic exceedences of PCE, was the only constituent detected at concentrations exceeding the SCG.

Furthermore, site-wide quarterly groundwater monitoring and data evaluation are currently being conducted by ARCADIS in accordance with ROD requirements. This monitoring program will serve to monitor and document the continued environmental effectiveness of the OU2 Groundwater Remedy at achieving remedial goals established in the ROD.

7. Conclusions

Based on the collective data obtained by the Navy and ARCADIS, for the OU2 Groundwater Remedial System Hydraulic Effectiveness Evaluation, ARCADIS concludes the following:

1. The hydraulic data is consistent with the model-predicted data which indicates that operation of the OU2 Groundwater Remedy has created an effective hydraulic

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

barrier throughout the shallow, intermediate, deep, and D2 zones that prevents the off-site migration of on-site, VOC-impacted groundwater.

- 2. Groundwater quality from VPBs exhibit only trace concentrations of VOCs with no SCG exceedences below the ONCT remedial wells (i.e., in the D3 zone). Groundwater quality data from monitoring wells along the site southern boundary is essentially similar to the VPB data in that it indicates similar compounds detected and SCG exceedences. Based on the collective groundwater quality data obtained, the delineation of the VOC plume at the NGC site southern boundary is accurate and complete and supports Conclusion 1 above, that the OU2 Groundwater Remedy prevents the off-site migration of on-site VOC-impacted groundwater. Further, the data show that a D3 zone monitoring well(s) is not required.
- 3. OU2 quarterly groundwater monitoring/data evaluation will continue to be performed to monitor and document the continued effectiveness of the OU2 Groundwater Remedy. Depending on VOC concentrations and heterogeneity of the off-site groundwater quality, monitored water quality in off-site wells is anticipated to show several short-term trend changes before long-term trends associated with the operation of the OU2 Groundwater Remedy are revealed.

Operable Unit 2
Groundwater Remedial
System Hydraulic
Effectiveness Evaluation

Northrop Grumman Corporation

8. References

- ARCADIS, G&M, Inc., 2002a. Hydraulic Effectiveness Evaluation Work Plan for the Operable Unit 2 On-site Containment System, Northrop Grumman and NWIRP Site, Bethpage, New York. NYSDEC Sites # 1-30-003A and B. June 28, 2002.
- ARCADIS G&M, Inc., 2002b. 2001 Annual Groundwater Monitoring Report, Northrop Grumman Corporation, Bethpage, New York. June 25, 2002.
- ARCADIS G&M, Inc. 2001. Draft-Final Groundwater Monitoring Plan, Northrop Grumman Corporation /Naval Weapons Industrial Reserve Plant (NWIRP) Sites, Bethpage, New York. (NYSDEC Site IDs: #130003A & B). May 11, 2001.
- ARCADIS Geraghty & Miller, Inc. 2000. Final Groundwater Feasibility Study, Grumman Aerospace Bethpage, New York Site (#130003A) and Naval Weapons Industrial Reserve Plant, Bethpage, New York Site (#130003B). October 16, 2000.
- New York State Department of Environmental Conservation (NYSDEC). 2001.

 Record of Decision, Northrop Grumman Corporation /Naval Weapons Industrial Reserve Plant (NWIRP) Sites, Bethpage, New York. (NYSDEC Site IDs: #130003A & B). March 29, 2001.
- U.S. Navy 2002a. Work Plan Addendum for Installation of Supplemental Monitoring Wells On-Site Containment System Hydraulic Effectiveness Evaluation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. June 2002. Prepared by TetraTech NUS, Inc. under Contract No. N62467-94-D-0888, Contract Task Order No. 812.
- U.S. Navy 2002b. GM-39 and GM-73 Vertical Profile Boring and Monitoring Well Summary Report, Naval Weapons Industrial Reserve Plant, Bethpage, New York. November 2002. Prepared by Tetra Tech NUS, Inc. under Contract No. N62467-94-D-0888, Contract Task Order No. 812.

Page 1 of 2

Table 1. Water-Level Measurement Data, November 2002 and January 2003, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.

Well Identification	Measuring Point Elevation (ft msl)	Depth to Water November 22, 2002 (ft bmp)	Water-Level Elevation November 22, 2002 (ft msl)	Depth to Water January 29, 2003 (ft bmp)	Water-Level Elevatior January 29, 2003 (ft msl)
Shallow Wells					
FW-03	124.30			1)	1)
N-9921	94.23			37.94	56.29
N-10597	109.85			45.59	64.26
N-10600	102.41			45.20	57.21
N-10631	103.47	45.12	58.35	44.53	58.94
N-10633	103.80			43.70	60.10
N-10634	101.20			44.94	56.26
N-10821	91.58		-	39.60	51.98
GM-15S	109.44	51.43	58.01	50.74	58.70
GM-16SR	115.86			54.90	60.96
GM-17SR	115.79		••	55.19	60.60
GM-18S	107.60			47.58	60.02
GM-19S	109.86			48.38	61.48
GM-21S	105.81	40.80	65.01	40.11	65.70
GM-78S	104.94			47.05	57.89
GM-79S (N-10628)	100.88			45.12	55.76
HN-40S	116.35	-		55.54	60.81
HN-42S	120.32		-	58.27	62.05
MW-3R	101.45			40.36	61.09
Intermediate Wells					
N-10624	93.61	_		2)	2)
GM-15I	109.25	51.1	58.15	50.29	58.96
GM-16I	115.81			55.02	60.79
3M-17I	115.83			55.36	60.47
3M-17I 3M-18I	109.03			48.97	60.06
3M-19I	109.86			53.80	56.06
	103.88	42.06	61.82	41.34	62.54
GM-20I					
GM-211	105.72	42.94	62.78	42.55	63.17
3M-74I	107.42	44.99	62.43	44.22	63.20
GM-78I	105.06	•••		47.33 45.40	57.73 55.20
GM-79I	100.88			45.49	55.39
-1N-241	125.80			62.98	62.82
HN-29I	116.42		**	53.88	62.54
-IN-40I	115.91	**		55.33	60.58
⊣N-42I	119.61			57.56	62.05

Page 2 of 2

Water-Level Measurement Data, November 2002 and January 2003, Operable Unit 2 Hydraulic Effectiveness Evaluation, Table 1. Northrop Grumman Corporation, Bethpage, New York.

Well Identification	Measuring Point Elevation (ft msl)	Depth to Water November 22, 2002 (ft bmp)	Water-Level Elevation November 22, 2002 (ft msl)	Depth to Water January 29, 2003 (ft bmp)	Water-Level Elevation January 29, 2003 (ft msl)
Deep Wells			-	-	
N-10627	93.70	38.55	55.15	37.87	55.83
GM-13D	113.97	**		53.17	60.80
GM-15D	109.84	53.73	56.11	52.84	57.00
GM-17D	115.68			56.84	58.84
GM-18D	108.88			51.77	57.11
GM-20D	103.92	44.2	59.72	43.50	60.42
GM-21D	105.66	49.08	56.58	48.33	57.33
GM-34D	71.19			19.58	51.61
GM-36D	91.63			39.85	51.78
GM-37D	97.26			44.25	53.01
GM-38D	91.75			42.60	49.15
GM-39D	102.23	45.42	56.81	44.69	57.54
GM-73D	104.87	50.54	54.33	49.90	54.97
GM-74D	107.43	51.35	56.08	50.58	56.85
GM-79D	101.25	-		46.83	54.42
Deep2 Wells					
GM-15D2	109.78			55.50	54.28
GM-33D2	106.85	56.63	50.22	55.78	51.07
GM-34D2	71.19			21.05	50.14
GM-35D2	96.28			44.50	51.78
GM-36D2	91.60			41.80	49.80
GM-37D2	97.17			44.84	52.33
GM-38D2	91.56			44.84	46.72
GM-39D2	102.08	48.46	53.62	47.80	54.28
GM-70D2	99.58			45.98	53.60
GM-71D2	98.45			46.36	52.09
GM-73D2	104.62	52.66	51.96	52.13	52.49
GM-74D2	107.36	57.52	49.84	57.28	50.08
GM-75D2	93.63	41.56	52.07	40.95	52.68
GP-1 3)	116.78	97	19.78	96.00	20.78
ONCT-1	104.10	75.35	28.75	72.30	31.80
ONCT-2	110.00	69.36	40.64	71.11	38.89
ONCT-3	108.70	71.12	37.58	71.20	37.50

¹⁾ Wells FW-03, 10634, GM-34D, GM-34D2 were not accessible for measurement this round.

ft msl feet relative to mean sea level feet below measuring point ft bmp

Not Measured

²⁾ Water-level measurements collected from Well N-10624 are considered anomalous

due to silt in the well screen.

³⁾ Water-levels were measured by inflating airline set at 120 ft bmp (gauge at wellhead) and subtracting the reading on the gauge from 120 to obtain the depth to water in feet.

Table 2. Comparison of November 2002 Observed Hydraulic Data and Vertical Gradients to Model Predictions, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.

Well Pairing ID	Measuring Point Elevation (ft msl)	Well Screen Midpoint Elevation (ft msl)	11/22/2002 Water-Level Elevation (ft msl)	11/22/2002 Vertical Gradient (ft/ft) * 10 ⁻³	Model-Predicted, OU2 Steady-State Vertical Gradient (ft/ft) * 10 ⁻³	Increase Compared to Model-Predicted, Steady-State Vertical Gradient	
Shallow-Intermo	ediate Wells					-	
GM-15S	109.35	34.53	58.01				
GM-15I	109.13	9.29	58.15	-5.5 5	4.20	-9.75	
GM-21S	105.81	40.81	65.01				
GM-21I	105.72	-29.28	62.78	31.82	18.44	13.37	
Shallow-Deep2	Wells						
10631	103.47	38.47	58.35				
GM-33D2	106.85	-403.15	50.22	18.41	16.83	1.58	
Intermediate-De	ep Wells						
GM-20I	103.88	3.88	61.82				
GM-20D	103.92	-117.08	59.72	17.36	18.22	-0.86	
GM-211	105.72	-29.28	62.78				
GM-21D	105.66	-177.34	56.58	41.87	43.97	-2.10	
GM-74I	107.42	8.42	62.43				
GM-74D	107.43	-192.57	56.08	31.59	20.17	11.42	
Deep-Deep 2 We	ells						
GM-39D	102.23	-169.77	56.81				
GM-39D2	102.08	-312.92	53.62	22.28	13.46	8.82	
GM-73D	104.87	-301.13	54.33				
GM-73D2	104.62	-437.38	51.96	17.39	18.78	-1.39	
GM-74D	107.43	-192.57	56.08				
GM-74D2	107.36	-444.64	49.84	24.76	28.26	-3.50	
10627	93.70	-198.80	55.15				
GM-75D2	93.63	-421.37	52.07	13.84	2.25	11.59	

Vertical hydraulic gradients are calculated as follows:

(Water-Level Elevation₁ - Water-Level Elevation₂)

(Screen Midpoint Elevation, - Screen Midpoint Elevation,)

A positive "+" gradient value indicates a downward hydraulic gradient.

A negative "-" gradient value indicates an upward hydraulic gradient.

ft msl

feet relative to mean sea level

ft

feet

^{1 -} Shallower well of pairing

^{2 -} Deeper well of pairing

Table 3. Comparison of January 2003 Observed Vertical Hydraulic Gradients to Model Predictions,
Operable Unit 2 Hydraulic Effectuiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.

Well Pairing ID	Measuring Point Elevation (ft msl)	Well Screen Midpoint Elevation (ft msl)	1/29/2003 Water-Level Elevation (ft msl)	1/29/2003 Vertical Gradient (ft/ft) * 10 ⁻³	Model-Predicted, OU2 Steady-State Vertical Gradient (ft/ft) * 10 ⁻³	Increase Compared to Model-Predicted, Steady-State Vertical Gradient
Shallow-Interm	ediate Wells			-		
GM-15S	109.35	34.53	58.61			
GM-15I	109.13	9.29	58.84	-9.11	4.20	-13.31
GM-16SR	115.77	66.77	60.96			
GM-16l	115.81	-24.19	60.79	1.87	1.11	0.76
GM-17SR	115.79	50.79	60.60			
GM-17I	115.83	5.83	60.47	2.89	4.50	-1.61
GM-18S	107.60	42.60	60.02			
GM-18I	109.03	9.03	60.06	-1.19	1.78	-2.97
GM-19S	109.86	64.36	61.48			
GM-19I	109.86	-25.14	56.06	60.56	2.44	58.11
GM-21S	105.81	40.81	65.70			
GM-211	105.72	-29.28	63.17	36.10	18.44	17.65
GM-78S	104.94	39.94	57.89			
GM-78I	105.06	5.56	57.73	4.65	8.73	-4.07
GM-79S	100.88	35.88	55.76			
GM-79I	101.09	-73.91	55.60	1.46	0.91	0.55
Intermediate-De	eep Wells					
GM-15I	109.29	9.29	58.84			
GM-15D	109.66	-227.34	56.82	8.54	6.52	2.01
GM-17I	115.83	5.83	60.47			
GM-17D	115.68	-172.32	58.84	9.15	7.86	1.29
GM-18I	109.03	9.03	60.06			
GM-18D	108.88	-186.12	57.11	15.12	7.74	7.38
GM-20I	103.88	3.88	62.54			
GM-20D	103.92	-117.08	60.42	17.53	18.22	-0.70
GM-21I	105.72	-29.28	63.17			
GM-21D	105.66	-177.34	57.33	39.44	43.97	-4.53
GM-741	107.42	8.42	63.20			
GM-74D	107.43	-192.57	56.85	31.59	20.17	11.42
GM-79I	101.09	-73.91	55.60			
GM-79D	101.25	-183.75	54.42	10.74	15.48	-4.73

Page 2 of 2

Table 3. Comparison of January 2003 Observed Vertical Hydraulic Gradients to Model Predictions,
Operable Unit 2 Hydraulic Effectuiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York.

Well Pairing ID	Measuring Point Elevation (ft msl)	Well Screen Midpoint Elevation (ft msl)	1/29/2003 Water-Level Elevation (ft msl)	1/29/2003 Vertical Gradient (ft/ft) * 10 ⁻³	Model-Predicted, OU2 Steady-State Vertical Gradient (ft/ft) * 10 ⁻³	Increase Compared to Model-Predicted, Steady-State Vertical Gradient
Deep-Deep 2 V	Velis					
GM-15D	109.66	-227.34	56.82			
GM-15D2	109.59	-436.41	54.09	13.06	14.19	-1.13
GM-18D	108.88	-186.12	57.11			
GM-33D2	106.85	-403.15	51.07	27.83	12.30	15.53
GM-34D	71.19	-242.81	51.61			
GM-34D2	71.19	-443.81	50.14	7.31	2.33	4.98
GM-36D	91.63	-117.37	51.78			
GM-36D2	91.60	-443.40	49.80	6.07	2.75	3.32
GM-37D	97.26	-154.74	53.01			
GM-37D2	97.17	-282.83	52.33	5.31	3.88	1.43
GM-38D	91.75	-238.25	49.15			
GM-38D2	91.56	-393.44	46.72	15.66	6.08	9.57
GM-39D	102.23	-169.77	57.54			
GM-39D2	102.08	-312.92	54.28	22.77	13.46	9.31
GM-73D	104.87	-301.13	54.97			
GM-73D2	104.62	-437.38	52.49	18.20	18.78	-0.58
GM-74D	107.43	-192.57	56.85			
GM-74D2	107.36	-444.64	50.08	26.86	28.26	-1.40
N-10627	93.70	-198.80	55.83			
GM-75D2	93.63	-421.37	52.68	14.15	2.25	11.91

Vertical hydraulic gradients are calculated as follows:

(Water-Level Elevation₁ - Water-Level Elevation₂)

(Screen Midpoint Elevation₁ - Screen Midpoint Elevation₂)

A positive "+" gradient value indicates a downward hydraulic gradient. A negative "-" gradient value indicates an upward hydraulic gradient.

ft msl

feet relative to mean sea level

ft

feet

^{1 -} Shallower well of pairing

^{2 -} Deeper well of pairing

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT	NYSDEC Standards Criteria and	Site ID: Sample Interval ⁽³⁾ :	VPB-39 62-63	VPB-39 82-83	VPB-39 DUP1	VPB-39 102-103	
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	9/23/02	9/24/02	9/24/02	9/24/02	
Chloromethane	5		< 1	< 1	< 1	< 1	
Bromomethane	5		< 1	< 1	< 1	< 1	
Vinyl Chloride	2		< 1	< 1	< 1	< 1	
Chloroethane	5		< 1	< 1	< 1	< 1	
Methylene Chloride	5		< 1	< 1	< 1	< 1	
Acetone	50		< 10	< 10	< 10	< 10	
Carbon disulfide	50		< 1	< 1	< 1	< 1	
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1	
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1	
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2	
Chloroform	7		< 1	< 1	< 1	< 1	
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1	
2-Butanone	50		< 10	< 10	< 10	< 10	
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1	
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1	
Bromodichloromethane	50		< 1	< 1	< 1	< 1	
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1	
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1	
Trichloroethene	5		< 1	< 1	1	1	
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1	
Benzene	0.7		< 1	< 1	< 1	< 1	
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1	
Bromoform	50		< 1	< 1	< 1	< 1	
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10	
2-Hexanone	50		< 10	< 10	< 10	< 10	
Tetrachloroethene	5		< 1	< 1	< 1	< 1	
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1	
Toluene	5		< 1	< 1	< 1	< 1	
Chlorobenzene	5		< 1	< 1	< 1	< 1	
Ethyl Benzene	5		< 1	< 1	< 1	< 1	
Styrene	5		< 1	< 1	< 1	< 1	
m+p Xylene	5		< 2	< 2	< 2	< 2	
o-Xylene	5		< 1	< 1	< 1	< 1	
Xylene	5		< 1	< 1	< 1	< 1	
Freon 113	5		< 1	< 1	< 1	< 1	
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1	
ter.Butylmethylether	5		< 1	< 1	< 1	< 1	
Trichlorofluomethane	5		< 3	< 3	< 3	< 3	
Total VOCs			0	0	1	1	

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ :	VPB-39 122-123 9/24/02	VPB-39 142-143 9/24/02	VPB-39 162-163 9/25/02	VPB-39 DUP-2 9/25/02	
(units in ug/L)	Guidance values	Sample Date:	9/24/02	9/24/02	9/23/02		
Chloromethane	5		< 1	< 1	< 1	< 1	
Bromomethane	5		< 1	< 1	< 1	< 1	
Vinyl Chloride	2		< 1	< 1	< 1	< 1	
Chloroethane	5		< 1	< 1	< 1	< 1	
Methylene Chloride	5		< 1	< 1	< 1	< 1	
Acetone	50		< 10	< 10	< 10	< 10	
Carbon disulfide	50		< 1	< 1	< 1	< 1	
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1	
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1	
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2	
Chloroform	7		< 1	< 1	< 1	< 1	
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1	
2-Butanone	50		< 10	< 10	< 10	< 10	
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1	
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1	
Bromodichloromethane	50		< 1	< 1	< 1	< 1	
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1	
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1	
Trichloroethene	5		< 1	< 1	3	< 1	
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1	
Benzene	0.7		< 1	< 1	< 1	< 1	
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1	
Bromoform	50		< 1	< 1	< 1	< 1	
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10	
2-Hexanone	50		< 10	< 10	< 10	< 10	
Tetrachloroethene	5		< 1	< 1	< 1	< 1	
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1	
Toluene	5		< 1	< 1	< 1	< 1	
Chlorobenzene	5		< 1	< 1	< 1	< 1	
Ethyl Benzene	5		< 1	< 1	< 1	< 1	
Styrene	5		< 1	< 1	< 1	< 1	
n+p Xylene	5		< 2	< 2	< 2	< 2	
o-Xylene	5		< 1	< 1	< 1	< 1	
Kylene	5		< 1	< 1	· < 1	< 1	
Freon 113	5		< 1	· < 1	< 1	< 1	
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1	
er.Butylmethylether	5		< 1	< 1	< 1	< 1	
Frichlorofluomethane	5		< 3	< 3	< 3	< 3	
Fotal VOCs			0	0	3	0	

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	VPB-39	VPB-39	VPB-39	VPB-39
CONSTITUENT	Criteria and	Sample Interval (3):	182-183	202-203	222-223	262-263
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	9/25/02	9/25/02	9/25/02	9/25/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	· < 1	· < 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	· < 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		< 1	25	2	120
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
ter.Butylmethylether	5		< 1	< 1	< 1	< 1
Trichlorofluomethane	5		< 3	< 3	< 3	< 3
Total VOCs			0	25	2	120

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	VPB-39	VPB-39	VPB-39	VPB-39
CONSTITUENT	Criteria and	Sample Interval (3):	302-303	DM320	322-323	342-343
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	9/26/02	9/26/02	9/26/02	9/26/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		22	10	11	5
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
ter.Butylmethylether	5		< 1	< 1	< 1	< 1
Trichlorofluomethane	5		< 3	< 3	< 3	< 3
Total VOCs			22	10	11	5

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	VPB-39	VPB-39	VPB-39	VPB-39
CONSTITUENT	Criteria and	Sample Interval (3):	362-363	DUP3	382-383	402-403
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	9/26/02	9/27/02	9/27/02	9/27/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	2
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
3romodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
richloroethene	5		22	140	140	780
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
rans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
I-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
etrachloroethene	5		< 1	1	1	5
,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
oluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
n+p Xylene	5		< 2	< 2	< 2	< 2
-Xylene	5		< 1	< 1	< 1	< 1
ylene	5		< 1	< 1	< 1	< 1
reon 113	5		< 1	< 1	< 1	< 1
ichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	< 1	< 1
richlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			22	141	141	789

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	VPB-39	VPB-39	VPB-39	VPB-39
CONSTITUENT	Criteria and	Sample Interval (3):	421-422	442-443	492-493	502-503
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	9/30/02	9/30/02	10/1/02	10/1/02
			-			
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		14	49	4	< 1
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	4	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	· < 1	· < 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	
Dichlorodifluomethane	5					-
ter.Butylmethylether	5 5			< 1	< 1	< 1
Trichlorofluomethane	5 5		< 1	< 1	< 1	< 1
manoronuomediane	ວ		< 3	< 3	< 3	< 3
Total VOCs			14	53	4	0

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-39 522-523 10/1/02	VPB-39 542-543 10/1/02	VPB-39 562-563 10/2/02	VPB-39 582-583 10/2/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		3	44	23	< 1
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	9	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
n+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
(ylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	< 1	< 1
richlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			3	44	32	0

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-39 DM580 10/3/02	VPB-39 602-603 10/3/02	VPB-39 622-623 10/3/02	VPB-39 642-643 10/3/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		< 1	4	2	2
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
ter.Butylmethylether	5		< 1	< 1	< 1	< 1
Trichlorofluomethane	5		< 3	< 3	< 3	< 3
Total VOCs			0	4	2	2

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-73 22-23 8/20/02	42-43	VPB-73 DUP1 8/20/02	VPB-73 72-73 8/21/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		16	< 10	< 10	12
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Foluene Foluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
n+p Xylene	5		< 2	< 2	< 2	< 2
-Xylene	5		< 1	< 1	< 1	< 1
(ylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	< 1	< 1
richlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			16	0	0	12

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-73 82-83 8/21/02	VPB-73 102-103 8/21/02	VPB-73 122-123 8/21/02	VPB-73 142-143 8/21/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachioroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
ter.Butylmethylether	5		< 1	< 1	< 1	< 1
Trichlorofluomethane	5		< 3	< 3	< 3	< 3
Total VOCs			0	0	0	0

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	10	/PB-73 62-163 6/22/02	1	/PB-73 82-183 8/22/02	{	/PB-73 DUP-2 J/22/02	2	/PB-73 202-203 3/22/02
Chloromethane	5		<	1	<	1	<	1	<	1
Bromomethane	5		<	1	<	1	<	1	<	1
Vinyl Chloride	2		<	1	<	1	<	1	<	1
Chloroethane	5		<	1	<	1	<	1	<	1
Methylene Chloride	5		<	1	<	1	<	1	<	1
Acetone	50		<	10	<	10	<	10	<	10
Carbon disulfide	50		<	1	<	1	<	1	<	1
1,1-Dichloroethene	5		<	1	<	1	<	1	<	1
1,1-Dichloroethane	5		<	1	<	1	<	1	<	1
1,2-Dichloroethene (total)	5		<	2	<	2	<	2	<	2
Chloroform	7		<	1	<	1	<	1	<	1
1,2-Dichloroethane	5		<	1	<	1	<	1	<	1
2-Butanone	50		<	10	<	10	<	10	<	10
1,1,1-Trichloroethane	5		<	1	<	1	<	1	<	1
Carbon Tetrachloride	5		<	1	<	1	<	1	<	1
Bromodichloromethane	50		<	1	<	1	<	1	<	1
1,2-Dichloropropane	5		<	1	<	1	<	1	<	1
cis-1,3-Dichloropropene	5		<	1	<	1	<	1	<	1
Trichloroethene	5		<	1	<	1	<	1	<	1
1,1,2-Trichloroethane	5		<	1	<	1	<	1	<	1
Benzene	0.7		<	1	<	1	<	1	<	1
rans-1,3-Dichloropropene	5		<	1	<	1	<	1	<	1
3romoform	50		<	1	<	1	<	1	<	1
1-Methyl-2-pentanone	50		<	10	<	10	<	10	<	10
2-Hexanone	50		<	10	<	10	<	10	<	10
Tetrachloroethene	5		<	1	<	1	<	1	<	1
1,1,2,2-Tetrachloroethane	5		<	1	<	1	<	1	<	1
Toluene	5		<	1	<	1	<	1	<	1
Chlorobenzene	5		<	1	<	1	<	1	<	1
Ethyl Benzene	5		<	1	<	1	<	1	<	1
Styrene	5		<	1	<	1	<	1	<	1
n+p Xylene	5		<	2	<	2	<	2	<	2
-Xylene	5		<	1	<	1	<	1	<	1
(ylene	5		<	1	<	1	<	1	<	1
reon 113	5		<	1	<	1	<	1	<	1
Dichlorodifluomethane	5		<	1	<	1	<	1	<	1
er.Butylmethylether	5		<	2	<	2	<	2	<	1
richlorofluomethane	5		<	3	<	3	<	3	<	3
otal VOCs				0		0		0		0

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-73 222-223 8/22/02	VPB-73 242-243 8/22/02	VPB-73 262-263 8/22/02	VPB-73 282-283 8/26/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	· < 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
n+p Xylene	5		< 2	< 2	< 2	< 2
p-Xylene	5		< 1	< 1	< 1	< 1
(ylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	< 1	< 1
Frichlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			0	0	0	0

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	V	/PB-73	1	/PB-73	١	/PB-73	. 1	/PB-73
CONSTITUENT	Criteria and	Sample Interval (3):		DUP3	3	02-303	3	22-323	3	62-363
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	8	3/26/02		3/26/02		3/26/02		3/27/02
Chloromethane	5		<	1	<	1	<	1	<	1
Bromomethane	5		<	1	<	1	<	1	<	1
Vinyl Chloride	2		<	1	<	1	<	1	<	1
Chloroethane	5		<	1	<	1	<	1	<	1
Methylene Chloride	5		<	1	<	1	<	1	<	1
Acetone	50		<	10	<	10	<	10	<	10
Carbon disulfide	50		<	1	<	1	<	1	<	1
1,1-Dichloroethene	5		<	1	<	1	<	1	<	1
1,1-Dichloroethane	5		<	1	<	1	<	1	<	1
1,2-Dichloroethene (total)	5		<	2	<	2	<	2	<	2
Chloroform	7		<	1	<	1	<	1	<	1
1,2-Dichloroethane	5		<	1	<	1	<	1	<	1
2-Butanone	50		<	10	<	10	<	10	<	10
1,1,1-Trichloroethane	5		<	1	<	1	<	1	<	1
Carbon Tetrachloride	5		<	1	<	1	<	1	<	1
Bromodichloromethane	50		<	1	<	1	<	1	<	1
1,2-Dichloropropane	5		<	1	<	1	<	1	<	1
cis-1,3-Dichloropropene	5		<	1	<	1	<	1	<	1
Trichloroethene	5		<	1	<	1	<	1		3
1,1,2-Trichloroethane	5		<	1	<	1	<	1	<	1
Benzene	0.7		<	1	<	1	<	1	<	1
rans-1,3-Dichloropropene	5		<	1	<	1	<	1	<	10
Bromoform	50		<	1	<	1	<	1	<	1
I-Methyl-2-pentanone	50		<	10	<	10	<	10	<	10
2-Hexanone	50		<	10	<	10	<	10	<	10
Tetrachloroethene	5		<	1	<	1	<	1		3
1,1,2,2-Tetrachloroethane	5		<	1	<	1	<	1	<	1
l'oluene	5		<	1	<	1	<	1	<	1
Chlorobenzene	5		<	1	<	1	<	1	<	1
Ethyl Benzene	5		<	1	<	1	<	1	<	1
Styrene	5		<	1	<	1	<	1	<	1
n+p Xylene	5		<	2	<	2	<	2	<	1
-Xylene	5		<	1	<	1	<	1	<	1
(ylene	5		<	1	<	1	<	1	<	1
reon 113	5		<	1	<	1	<	1	<	1
ichlorodifluomethane	5		<	1	<	1	<	1	<	1
er.Butylmethylether	5		<	1	<	1	<	1	<	1
richlorofluomethane	5		<	3	<	3	<	3	<	10
otal VOCs				0		0		0		6

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	Site ID:	VPB-73	VPB-73	VPB-73	VPB-73
CONSTITUENT	Criteria and	Sample Interval (3):	382-383	402-403	422-423	441-442
(units in ug/L)	Guidance Values ⁽²⁾	Sample Date:	8/27/02	8/27/02	8/27/02	8/27/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		9	40	420	13
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 10	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		< 1	3	5	2
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Foluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
n+p Xylene	5		< 2	< 2	< 2	< 2
-Xylene	5		< 1	< 1	< 1	< 1
(ylene	5		< 1	< 1	< 1	< 1
reon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	· < 1	< 1
richlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			9	43	427	15

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-73 461-462 8/28/02	VPB-73 482-483 8/28/02	VPB-73 502-503 8/28/02	VPB-73 522-523 8/28/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	< 1	< 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1_	< 1	< 1	< 1
Trichloroethene	5		370	14	33	330
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
4-Methyl-2-pentanone	50		< 10	< 10	< 10	< 10
2-Hexanone	50		< 10	< 10	< 10	< 10
Tetrachloroethene	5		4	5	2	< 1
1,1,2,2-Tetrachloroethane	5		< 1	< 1	< 1	< 1
Toluene	5		< 1	< 1	< 1	< 1
Chlorobenzene	5		< 1	< 1	< 1	< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
Styrene	5		< 1	< 1	< 1	< 1
m+p Xylene	5		< 2	< 2	< 2	< 2
o-Xylene	5		< 1	< 1	< 1	< 1
Xylene	5		< 1	< 1	< 1	< 1
Freon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
ter.Butylmethylether	5		< 1	< 1	< 1	< 1
Trichlorofluomethane	5		< 3	< 3	< 3	< 3
Total VOCs			374	19	35	334

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	VPB-73 542-543 8/28/02	VPB-73 DUP4 8/28/02	VPB-73 562-563 8/30/02	VPB-73 592-593 9/3/02
Chloromethane	5		< 1	< 1	< 1	< 1
Bromomethane	5		< 1	< 1	< 1	< 1
Vinyl Chloride	2		< 1	< 1	< 1	< 1
Chloroethane	5		< 1	< 1	< 1	< 1
Methylene Chloride	5		< 1	· < 1	· < 1	< 1
Acetone	50		< 10	< 10	< 10	< 10
Carbon disulfide	50		< 1	< 1	< 1	< 1
1,1-Dichloroethene	5		< 1	< 1	< 1	< 1
1,1-Dichloroethane	5		< 1	< 1	< 1	< 1
1,2-Dichloroethene (total)	5		< 2	< 2	< 2	< 2
Chloroform	7		< 1	< 1	< 1	< 1
1,2-Dichloroethane	5		< 1	< 1	< 1	< 1
2-Butanone	50		< 10	< 10	< 10	< 10
1,1,1-Trichloroethane	5		< 1	< 1	< 1	< 1
Carbon Tetrachloride	5		< 1	< 1	< 1	< 1
Bromodichloromethane	50		< 1	< 1	< 1	< 1
1,2-Dichloropropane	5		< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Trichloroethene	5		60	58	11	2
1,1,2-Trichloroethane	5		< 1	< 1	< 1	< 1
Benzene	0.7		< 1	< 1	< 1	< 1
rans-1,3-Dichloropropene	5		< 1	< 1	< 1	< 1
Bromoform	50		< 1	< 1	< 1	< 1
1-Methyl-2-pentanone	50					
2-Hexanone	50 50		< 10 < 10	< 10 < 10	< 10 < 10	< 10
Fetrachloroethene	5		2	· ·		< 10
				2	2	3
1,1,2,2-Tetrachloroethane Foluene	5 5		< 1	< 1	< 1	< 1
Chlorobenzene	5 5		< 1	< 1 < 1	< 1 < 1	< 1
			•	·		< 1
Ethyl Benzene	5		< 1	< 1	< 1	< 1
styrene	5		< 1	< 1	< 1	< 1
n+p Xylene Xylene	5 5		< 2	< 2	< 2	< 2
			< 1	< 1	< 1	< 1
(ylene	5		< 1	< 1	< 1	< 1
reon 113	5		< 1	< 1	< 1	< 1
Dichlorodifluomethane	5		< 1	< 1	< 1	< 1
er.Butylmethylether	5		< 1	< 1	< 1	< 1
richlorofluomethane	5		< 3	< 3	< 3	< 3
otal VOCs			62	60	13	5

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

CONSTITUENT (units in ug/L)	NYSDEC Standards Criteria and Guidance Values ⁽²⁾	Site ID: Sample Interval ⁽³⁾ : Sample Date:	60	PB-73 02-603 0/4/02	ε	/PB-73 622-623 9/4/02	6	/PB-73 642-643 9/4/02		/PB-73 DUP5 9/4/02
Chloromethane	5		<	1	<	1	<	1	<	1
Bromomethane	5		<	1	<	1	<	1	<	1
Vinyl Chloride	2		<	1	<	1	<	1	<	1
Chloroethane	5		<	1	<	1	<	1	<	1
Methylene Chloride	5		<	1	<	1	<	1	<	1
Acetone	50		<	10	<	10	<	10	<	10
Carbon disulfide	50		<	1	<	1	<	1	<	1
1,1-Dichloroethene	5		<	1	<	1	<	1	<	1
1,1-Dichloroethane	5		<	1	<	1	<	1	<	1
1,2-Dichloroethene (total)	5		<	2	<	2	<	2	<	2
Chloroform	7		<	1	<	1	<	1	<	1
1,2-Dichloroethane	5		<	1	<	1	<	1	<	1
2-Butanone	50		<	10	<	10	<	10	<	10
1,1,1-Trichloroethane	5		<	1	<	1	<	1	<	1
Carbon Tetrachloride	5		<	1	<	1	<	1	<	1
Bromodichloromethane	50		<	1	<	1	<	1	<	1
1,2-Dichloropropane	5		<	1	<	1	<	1	<	1
cis-1,3-Dichloropropene	5		<	1	<	1	<	1	<	1
Trichloroethene	5		<	1	<	1	<	1	<	1
1,1,2-Trichloroethane	5		<	1	<	1	<	1	<	1
Benzene	0.7		<	1	<	1	<	1	<	1
trans-1,3-Dichloropropene	5		<	1	<	1	<	1	<	1
Bromoform	50		<	1	<	1	<	1	<	1
4-Methyl-2-pentanone	50		<	10	<	10	<	10	<	10
2-Hexanone	50		<	10	<	10	<	10	<	10
Tetrachloroethene	5			2		1		1		1
1,1,2,2-Tetrachloroethane	5		<	1	<	1	<	1	<	1
Toluene	5		<	1	<	1	<	1	<	1
Chlorobenzene	5		<	1	<	1	<	1	<	1
Ethyl Benzene	5		<	1	<	1	<	1	<	1
Styrene	5		<	1	<	1	<	1	<	1
m+p Xylene	5		<	2	<	2	<	2	<	2
o-Xylene	5		<	1	<	1	<	1	<	1
Xylene	5		<	1	<	1	<	1	<	1
Freon 113	5		<	1	<	1	<	1	<	1
Dichlorodifluomethane	5		<	1	<	1	<	1	<	1
ter.Butylmethylether	5		<	1	<	1	<	1	<	1
Trichlorofluomethane	5		<	3	<	3	<	3	<	3
Total VOCs				2		1		1		0

ARCADIS

Page 18 of 18

Table 4. Concentrations of Volatile Organic Compounds in Vertical Profile Borings, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

Notes:	
(1)	Data collected by Tetratech NUS, Inc. on behalf of the U.S. Navy.
(2)	Standards, Criteria, and Guidance (SCG) values based on documents referenced in the
	Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 2000); most stringent value listed.
(3)	Sampling intervals in feet below land surface.
VOCs	Volatile Organic Compounds
ug/L	Micrograms per liter
DM	Drilling Mud
DUP	Field Duplicate
NYSDEC	New York State Department of Environmental Conservation
	Value exceeds associated SCG value.

Freon 113 also known as 1,1,1-Trichloro-2,2,2-trifluoroethane.

Bold value indicates a detection.

Table 5. Concentrations of Volatile Organic Compounds in Monitoring Wells, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	SITE ID:	GM-39D	GM-39D	GM-39D2	GM-39D2
CONSTITUENT	Criteria and	SAMPLE ID:	GM-39D	GM-39D	GM-39D2	GM-39D-2
(Units in ug/L)	Guidance Values (2)	SAMPLE DATE:	11/26/02	01/07/03	11/25/02	01/07/03
Chloromethane	5		<5 J	<5	<5	<5
Bromomethane	5		<5	<5	<5	< 5
Vinyl Chloride	2		<2	<2	<2	<2
Chloroethane	5		<5 J	<5	<5	<5
Methylene chloride	5		<5 J	<5	<5	<5
Acetone	50		<10 J	<10	<10 J	<10
Carbon disulfide	50		<5	<5	<5	<5
1,1-Dichloroethene	5		<5	<5	<5	<5
1,1-Dichloroethane	5		<5	<5	<5	<5
cis-1,2-Dichloroethene	5		<5	<5	<5	0.6 J
trans-1,2-Dichloroethene	5		<5	<5	<5	<5
Chloroform	7		<5	<5	<5	<5
1,2-Dichloroethane	5		<5	<5	<5	<5
2-Butanone	50		<10 J	<10	<10	<10
1,1,1-Trichloroethane	5		<5	<5	<5	<5
Carbon tetrachloride	5		<5	<5	<5	<5
Bromodichloromethane	50		<5	<5	<5	<5
1,2-Dichloropropane	5		<5	<5	<5	<5
cis-1,3-Dichloropropene	5	_	<5	<5	<5	<5
Trichloroethene	5		23	21	110	110
Dibromochloromethane	5		<5	<5	<5	<5
1,1,2-Trichloroethane	5		<5	<5	<5	<5
Benzene	0.7		<0.7	<0.7	<0.7	<0.7
rans-1,3-Dichloropropene	5		<5	<5	<5	<5
Bromoform	50		<5	<5	<5	<5
1-Methyl-2-pentanone	50		<10	<10	<10	<10
2-Hexanone	50		<10	<10	<10	<10
Tetrachloroethene	5		<5	<5	<5	0.4 J
1,1,2,2-Tetrachloroethane	5		<5	<5	<5	<5
Toluene	5		<5	<5	<5	<5
Chlorobenzene	5		<5	<5	<5	<5
Ethylbenzene	5		<5	<5	<5	<5
Styrene	5		<5	<5	<5	<5
(ylene (total)	5		<5	<5	<5	<5
/inyl Acetate	NE		<5	<5	<5	<5
Freon-113	5		<5	<5	<5	<5
Total VOCs			23	21	110	111

Table 5. Concentrations of Volatile Organic Compounds in Monitoring Wells, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

	NYSDEC Standards	SITE ID:	GM-73D	GM-73D	GM-73D	GM-73D	GM-73D2
CONSTITUENT	Criteria and	SAMPLE ID:	GM-73D	GM-73D	REP-1	73D	GM-73D2
(Units in ug/L)	Guidance Values (2)	SAMPLE DATE:	10/18/02	11/25/02	11/25/02	01/15/03	06/19/02
Chloromethane	5		<25	<5	<5	<25	<25
Bromomethane	5		<25	<5	<5	<25 J	<25
Vinyl Chloride	2		<10	<2	<2	<10	<10
Chloroethane	5		<25	<5	<5	<25	<25
Methylene chloride	5		<25	<5	<5	<25	<25
Acetone	50		<50	<10	<10	<50 J	<50 J
Carbon disulfide	50		<25	<5	<5	<25	<25
1,1-Dichloroethene	5		<25	<5	<5	<25	<25
1,1-Dichloroethane	5		<25	<5	<5	<25	<25
cis-1,2-Dichloroethene	5		<25	<5	<5	<25	3 J
trans-1,2-Dichloroethene	5		<25	<5	<5	<25	<25
Chloroform	7		<25	<5	<5	<25	<25
1,2-Dichloroethane	5		<25	<5	<5	<25	<25
2-Butanone	50		<50	<10	<10	<50 J	<50
1,1,1-Trichloroethane	5		<25	<5	<5	<25	<25
Carbon tetrachloride	5		<25	<5	<5	<25	<25
Bromodichloromethane	50		<25	<5	<5	<25	<25
1,2-Dichloropropane	5		<25	<5	<5	<25	<25
cis-1,3-Dichloropropene	5		<25	<5	<5	<25	<25
Trichloroethene	5	[780	510	490	680	840
Dibromochloromethane	5	_	<25	<5	<5	<25	<25
1,1,2-Trichloroethane	5		<25	<5	<5	<25	<25
Benzene	0.7		<4	<0.7	<0.7	<4	<4
trans-1,3-Dichloropropene	5		<25	<5	<5	<25	<25
Bromoform	50		<25	<5	<5	<25	<25
4-Methyl-2-pentanone	50		<50	<10	<10	<50	<50
2-Hexanone	50		<50	<10	<10	<50 J	<50
Tetrachloroethene	5		<25	<5	<5	2 J	<25
1,1,2,2-Tetrachloroethane	5		<25	<5	<5	<25	<25
Toluene	5		<25	<5	<5	<25	<25
Chlorobenzene	5		<25	<5	<5	<25	<25
Ethylbenzene	5		<25	<5	<5	<25	<25
Styrene	5		<25	<5	<5	<25	<25
Xylene (total)	5		<25	<5	<5	<25	<25
√inyl Acetate	NE		<25 J	<5	<5	<25	<25
Freon-113	5		<25	<5	< 5	<25	<25
Total VOCs			780	510	490	682	843

Table 5. Concentrations of Volatile Organic Compounds in Monitoring Wells, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

				
	NYSDEC Standards	SITE ID:	GM-73D2	GM-73D2
CONSTITUENT	Criteria and	SAMPLE ID:		GM-73D-2
(Units in ug/L)	Guidance Values (2)	SAMPLE DATE:		01/13/03
	_	·		
Chloromethane	5		<5	<50
Bromomethane	5		<5	<50 J
Vinyl Chloride	2		<2	<20
Chloroethane	5		<5	<50
Methylene chloride	5		<5	<50
Acetone	50		<10	<100
Carbon disulfide	50		<5	<50
1,1-Dichloroethene	5		<5	<50
1,1-Dichloroethane	5		<5	<50
cis-1,2-Dichloroethene	5		<5	<50
trans-1,2-Dichloroethene	5		<5	<50
Chloroform	7		<5	<50
1,2-Dichloroethane	5		<5	<50
2-Butanone	50		<10	<100
1,1,1-Trichloroethane	5		<5	<50
Carbon tetrachloride	5		<5	<50
Bromodichloromethane	50		<5	<50
1,2-Dichloropropane	5		<5	<50
cis-1,3-Dichloropropene	5		<5	<50
Trichloroethene	5		1200	1100
Dibromochloromethane	5	_	< 5	<50
1,1,2-Trichloroethane	5		<5	<50
Benzene	0.7		<0.7	<7
trans-1,3-Dichloropropene	5		<5	<50
Bromoform	50		<5	<50
4-Methyl-2-pentanone	50		<10	<100 J
2-Hexanone	50		<10	<100 3
Tetrachloroethene	5		4	5 J
1,1,2,2-Tetrachloroethane	5		< 5	< 50
Toluene	5		<5	<50 <50
Chlorobenzene	5		<5	<50 <50
Ethylbenzene	_		_	
Styrene	5		<5	<50 <50
Xylene (total)	5		<5 -5	<50
Vinyl Acetate	5 NE		<5	<50
•	NE C		<5	<50 J
Freon-113	5		<5	<50
Total VOCs			1204	1105

ARCADIS

Page 4 of 4

Table 5. Concentrations of Volatile Organic Compounds in Monitoring Wells, Operable Unit 2 Hydraulic Effectiveness Evaluation, Northrop Grumman Corporation, Bethpage, New York. (1)

Notes

Groundwater sampling data collected by ARCADIS G&M, Inc. on behalf of Northrop Grumman Corporation.

(2)

Standards, Criteria, and Guidance (SCG) values based on documents referenced in the

Groundwater Feasibility Study Report (ARCADIS Geraghty & Miller 2000); most stringent value listed.

VOCs

Volatile organic compounds

ug/L

Micrograms per liter

Estimated value

New York State Department of Environmental Conservation

Freon 113 also known as 1,1,1-Trichloro-2,2,2-trifluoroethane.

Value exceeds associated SCG value.

NE

NYSDEC

No SCG established

Bold value indicates a detection.

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

PROPERTY BOUNDARY OF THE U.S. NAVY SITE

RECHARGE BASIN

LOCATION AND DESIGNATION OF SHALLOW MONITORING WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

LOCATION AND DESIGNATION OF BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

LOCATION AND DESIGNATION OF ADDITIONAL WELL

LOCATION AND DESIGNATION OF GRUMMAN INDUSTRIAL SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

ONCT-1 LOCATION AND DESIGNATION OF ON-SITE OU2 REMEDIAL WELL (SHOWN FOR REFERENCE ONLY)

HORIZONTAL COMPONENT OF GROUNDWATER FLOW

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

OU2 OPERABLE UNIT 2

BETHPAGE WATER DISTRICT

USGS UNITED STATES GEOLOGICAL SURVEY

NOTES:

- THIS FIGURE INCLUDES LOCATIONS OF MONITORING WELLS AND PUBLIC SUPPLY WELLS AS OF SEPTEMBER 25, 2001.
- 2. OU2 WELLS ONCT-1, ONCT-2, ONCT-3, AND GP-1 ARE SCREENED IN THE D2 ZONE.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.
- 5. BASIN LOCATIONS OBTAINED FROM USGS TOPOGRAPHIC MAPS (HICKSVILLE, AMITYVILLE, HUNTINGTION, AND FREEPORT QUADRANGLES), AND INFORMATION PROVIDED BY NORTHROP GRUMMAN.

0 800 FT

ARCADIS G&M

88 Duryea Road Melville, New York 11747 Tel: 631/249-7600 Fax: 631/249-7610

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

WATER-TABLE CONFIGURATION AND HORIZONTAL GROUNDWATER FLOW DIRECTIONS IN THE SHALLOW ZONE JANUARY 29, 2003

DATE 3/27/03

PROJECT MANAGER DEPARTMENT MANAGER CSG LEAD DESIGN PROF. CHECKED PROJECT NUMBER DRAWING NUMBER NY001348.0013

GRUMMAN\CADD\SHALLOV

CILORBON

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

PROPERTY BOUNDARY OF THE U.S. NAVY SITE

RECHARGE BASIN

LOCATION AND DESIGNATION OF INTERMEDIATE MONITORING WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

LOCATION AND DESIGNATION OF BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

LOCATION AND DESIGNATION OF ADDITIONAL WELL

LOCATION AND DESIGNATION OF GRUMMAN INDUSTRIAL SUPPLY WELL (SHOWN FOR REFERENCE ONLY)

LOCATION AND DESIGNATION OF ON-SITE OU2 REMEDIAL WELL (SHOWN FOR REFERENCE ONLY)

HORIZONTAL COMPONENT OF GROUNDWATER FLOW

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

OPERABLE UNIT 2

BETHPAGE WATER DISTRICT

UNITED STATES GEOLOGICAL SURVEY

NOTES:

- 1. THIS FIGURE INCLUDES LOCATIONS OF MONITORING WELLS AND PUBLIC SUPPLY WELLS AS OF SEPTEMBER 25, 2001.
- 2. OU2 WELLS ONCT-1, ONCT-2, ONCT-3, AND GP-1 ARE SCREENED IN THE D2 ZONE.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.

PROJECT MANAGER

5. BASIN LOCATIONS OBTAINED FROM USGS TOPOGRAPHIC MAPS (HICKSVILLE, AMITYVILLE, HUNTINGTION, AND FREEPORT QUADRANGLES), AND INFORMATION PROVIDED BY NORTHROP GRUMMAN.

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

POTENTIOMETRIC SURFACE ELEVATION AND GROUNDWATER FLOW DIRECTIONS IN THE INTERMEDIATE ZONE JANUARY 29, 2003

ΑG

DATE 3/27/03

CSG

LEAD DESIGN PROF. CHECKED PROJECT NUMBER DRAWING NUMBER NY001348.006

DEPARTMENT MANAGER

0 800 FT

ARCADIS G&M

88 Duryea Road Melville, New York 11747 Tel: 631/249-7600 Fax: 631/249-7610

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

RECHARGE BASIN

LOCATION AND DESIGNATION OF DEEP2 MONITORING WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL.

> LOCATION AND DESIGNATION OF BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL

LOCATION AND DESIGNATION OF ADDITIONAL WELL

LOCATION AND DESIGNATION OF GRUMMAN INDUSTRIAL SUPPLY WELL

ONCT-3 (37.58) ● LOCATION AND DESIGNATION OF ON-SITE OU2 REMEDIAL WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

HORIZONTAL COMPONENT OF GROUNDWATER FLOW

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

LINE OF EQUAL WATER-LEVEL ELEVATION DENOTING A DECREASE IN POTENTIOMETRIC SURFACE ELEVATION IN FT. MSL.

OU2 OPERABLE UNIT 2

GPM GALLONS PER MINUTE

BWD BETHPAGE WATER DISTRICT

USGS UNITED STATES GEOLOGICAL SURVEY

NOTES:

- 1. THIS FIGURE INCLUDES LOCATIONS OF MONITORING WELLS AND PUBLIC SUPPLY WELLS AS OF SEPTEMBER 25, 2001.
- 2. OU2 REMEDIAL WELLS GP-1, ONCT-1, ONCT-2, AND ONCT-3 ARE SCREENED IN THE D2 ZONE AND WERE PUMPING AT 1,100 GPM, 870 GPM, 725 GPM, AND 569 GPM, RESPECTIVELY AT THE TIME OF WATER LEVEL MEASUREMENT.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.
- 5. INDUSTRIAL SUPPLY WELL GP-3 IS SCREENED IN THE D2 ZONE AND WAS PUMPING AT A RATE OF 450 GPM AT THE TIME OF WATER LEVEL MEASUREMENT.
- 6. BASIN LOCATIONS OBTAINED FROM USGS TOPOGRAPHIC MAPS (HICKSVILLE, AMITYVILLE, HUNTINGTION, AND FREEPORT QUADRANGLES). AND INFORMATION PROVIDED BY NORTHROP GRUMMAN.

PROJECT MANAGER

0 800 FT

ARCADIS G&M

Tel: 631/249-7600 Fax: 631/249-7610

88 Duryea Road

Melville, New York 11747

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

POTENTIOMETRIC SURFACE ELEVATION AND GROUNDWATER FLOW DIRECTIONS IN THE D2 ZONE NOVEMBER 22, 2002

DATE

3/27/03

DRAWN

AG

CGS LEAD DESIGN PROF. CHECKED DES PROJECT NUMBER DRAWING NUMBER NY001348.006

MW

DEPARTMENT MANAGER

DATE GRUMMAN\CADD\DEEP N G:\APROJECT\NORTHROP

04/10/2003 04:31:36PM

PROPERTY BOUNDARY OF FORMER GRUMMAN AEROSPACE CORPORATION

RECHARGE BASIN

(48.72) LOCATION AND DESIGNATION OF D2 (VERY DEEP)
MONITORING WELL AND WATER-LEVEL ELEVATION
IN FEET RELATIVE TO MEAN SEA LEVEL.

1876 LOCATION AND DESIGNATION OF ■ BETHPAGE WATER DISTRICT PUBLIC SUPPLY WELL

BE63 LOCATION AND DESIGNATION OF ADDITIONAL WELL

LOCATION AND DESIGNATION OF GRUMMAN INDUSTRIAL SUPPLY

ONCT-3
(37.50)

LOCATION AND DESIGNATION OF ON-SITE OUZ REMEDIAL WELL AND WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

→ HORIZONTAL COMPONENT OF GROUNDWATER FLOW

LINE OF EQUAL WATER-LEVEL ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL (DASHED WHERE APPROXIMATE)

LINE OF EQUAL WATER-LEVEL ELEVATION DENOTING A DECREASE IN POTENTIOMETRIC SURFACE ELEVATION IN FT. MSL.

OU2 OPERABLE UNIT 2

GPM GALLONS PER MINUTE

BWD BETHPAGE WATER DISTRICT

USGS UNITED STATES GEOLOGICAL SURVEY

NOTES:

- 1. THIS FIGURE INCLUDES LOCATIONS OF MONITORING WELLS AND PUBLIC SUPPLY WELLS AS OF SEPTEMBER 25, 2001.
- OU2 REMEDIAL WELLS GP-1, ONCT-1, ONCT-2, AND ONCT-3 ARE SCREENED IN THE D2 ZONE AND WERE PUMPING AT 1,100 GPM, 900 GPM, 650 GPM, AND 450 GPM, RESPECTIVELY AT THE TIME OF WATER LEVEL MEASUREMENT.
- 3. BWD WELL 3876 IS SCREENED IN THE DEEP ZONE.
- 4. BWD WELLS 6915, 6916, 8004, AND 8941 ARE SCREENED IN THE D2 ZONE.
- 5. INDUSTRIAL SUPPLY WELL GP-3 IS SCREENED IN THE D2 ZONE AND WAS PUMPING AT A RATE OF 450 GPM AT THE TIME OF WATER LEVEL MEASUREMENT.
- 6. BASIN LOCATIONS OBTAINED FROM USGS TOPOGRAPHIC MAPS (HICKSVILLE, AMITYVILLE, HUNTINGTION, AND FREEPORT QUADRANGLES), AND INFORMATION PROVIDED BY NORTHROP GRUMMAN.

PROJECT MANAGER

0 800 FT

ARCADIS G&M

Tel: 631/249-7600 Fax: 631/249-7610

88 Durvea Road

Melville, New York 11747

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

POTENTIOMETRIC SURFACE ELEVATION
AND HORIZONTAL GROUNDWATER
FLOW DIRECTIONS IN THE D2 ZONE
JANUARY 29, 2002

DATE

3/27/03

DRAWN

AG

LEAD DESIGN PROF. CHECKED DES

PROJECT NUMBER DRAWING NUMBER

NY001348.006 5

DEPARTMENT MANAGER

FILE: G:\APROJECT\NORTHROP GRUMMAN\CADD\DEEP-4Q-02.DWG, DATE: 04/15/2003

copyright © 20<u>01</u> PROPERTY BOUNDARY OF THE FORMER
GRUMMAN AEROSPACE SITE - - PROPERTY BOUNDARY OF U.S. NAVY DENOTES NORTHROP GRUMMAN OWNED PROPERTY BASINS 6781 ▲ INDUSTRIAL WELL 747 PUBLIC SUPPLY WELL 9918 OBSERVATION, MONITORING WELL 8799 🛊 IRRIGATION WELL 6035 ♥ UNKNOWN USE OF WELL

P-4 ♥ NORTHROP GRUMMAN OR NAVY
PRODUCTION OR EXTRACTION WELL INTERMEDIATE WELLS DEEP WELLS SFWD SOUTH FARMINGDALE WATER DISTRICT LWD LEVITTOWN WATER DISTRICT NYWS NEW YORK WATER SERVICE BWD BETHPAGE WATER DISTRICT TOH TOWN OF HEMPSTEAD WATER DISTRICT HWD HICKSVILLE WATER DISTRICT VOF VILLAGE OF FARMINGDALE WATER DISTR VPB VERTICAL PROFILE BORING ABANDONED OR DESTROYED WELL EXISTING VPB LOCATION

VPB-51 AND DESIGNATION IN THIS FIGURE INCLUDES LOCATIONS OF MONITORING WELLS AND PUBLIC SUPPLY WELLS AS OF SEPTEMBER 25, 2001. 2. ALL VPB LOCATIONS ARE APPROXIMATE. IO. DATE REVISION DESCRIPTION HYDROGEOLOGIC CROSS-SECTION E-E'

> NORTHROP GRUMMAN BETHPAGE, NEW YORK

PROJECT MANAGER

DEPARTMENT MANAGER

LEAD DESIGN PROF.

CHECKED

DRAWN

DATE
12/20/02

PROJECT NUMBER

NY001348.0004

G

ARCADIS

Appendix A

ARCADIS Water-Level Measurement and Sample Collection Logs

ARCADIS GERAGHTY & MILLER

Water L	evel/Pu	mping	Test l	Record						Page	of	
Project	NYC	4348.0	006. C	2 coo		Well		-	_Site	Made	rop Grunn	معم
Screen Setting				uring Point			····	·		Above d Surface	1	
Static Water Level	-	~	Meas	ured With					_ Date/Ti	me	11/22/02	
Drawdown			Start (of Test					_Pumpir Well	ng Mac	+ 173/	P-
Recovery			End o	f Test				 -,	-	عدين	1	<u> </u>
Distance From Measured To Well®			;	Discharge Rate				<u>,</u>	_Orifice			
Date & Time	Well Or t (mins)	Held (ft)	Wet (ft)	Depth to Water (ft)	s (ft)	Dew. 1) Corr. (ft)	Art. 2) s' (ft)		Q (gpm)	Mano- meter (in)	Remarks 3)	
11/22/0	∤			 		- 	 		 	 		4
Oncat - 2				69.36							725.4 Spin	1
out-1				75.35						ļ	1870.4 gan	
CN39-D		 		45.42			 	<u> </u>	 	 	No locc	
GN31-05		 	 	71.12	 	+	 			1	relect 568.8 gpm	
OUCT-3	 	 	 	51.10					 	+	werds now loc	Į k
GM15.S			1	51.43			1-+	1			neds var se	ton
CMIS-07				56.24] '
M 15-D		\$		53.73]
LM 33-00		2		56.63								_
5M31-D				49.09	ļ					<u> </u>		1
SM 21-I	;	ļ	<u> </u>	42.94		<u> </u>	<u> </u>	<u> </u>		ļ		4
-W ントラー			<u> </u>	40.80			ļ	ļ	ļ	<u> </u>		4
Q-06-W			ļ	4430	·		<u> </u>			 		
m-20-I		TAK.	<u> </u>	42.06		<u> </u>		 	 -	 	1 z.v.	
H 20 D M-20 I M-74 I M-74-D			<u> </u>			4	ļ	 		 	crows fel	4
M-74-0		ļ		51.35		<u> </u>			ļ	 	<u> </u>	-
M'74-3		ļ		51.52			 		ļ	 	1/4	*
M-730 M-7302 GR-1				50.4					<u> </u>		A	-
2M-7307		<u> </u>	<u> </u>	52.66			ļ		L		Meers New 20	teal
G-8-2				97.00							1100 gpm	1
							` \ ,					1
		L	N Southerle	nt Adorino Draw	down		<u> </u>	Cood To	me Mest	har Sand Tu	didity etc	.i

ARCADIS GERAGHTY&MILLER	Labor	atory Task O	rder No./	P.O. No.		CH	IAIN-O	F-CUST(DDY RE	CORD	Page	1	of
Project Number/Name 📈	001348	ගාරේ , එපල	2			· · · · · · · · · · · · · · · · · · ·	ANALYSIS	/ METHO) / SI7F				·
Project Location 13- 14	J. C	4/1			4	. /	/	/	7	7			
Laboratory STL	, 1												
Project Manager <u>Licu</u>	i A	Stan	_			7 /					/		
Sampler(s)/Affiliation		45			20 2								
Joinpier(3)/Armation	1			N.	12 1								
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	18	\$						Remarks		Total
CM - 391	1	11/26/62		7									7
TB 11/26/02	L	1	<u> </u>	Z					·				7
FB 1176/67	1_	1		7			<u> </u>	 					2
17							1						
											- <u>-</u>		
Sample Matrix: L = Liqui	d; S =	Solid; A	= Air		٨						Total No. of Cor	Bottles/ Itainers	6
Relinquished by:	MWM)	deluz	Organi	zation:	Arco	is Gol	<i>w</i>	Date 1/1	20100	Time			ntact?
Received by:			Organi	zation:_				Date/		_ Time			o N/A
Relinquished by:				zation: _ zation: _				Date/_ Date/_		_ Time _ _ Time _			ntact? lo N/A
Special Instructions/Remarks:			J										
	 .												
		1				1		—					
Delivery Method:	In Per	son $=$	Comm	on Ca	rrier <u>* : C</u>	SDECIEV		☐ Lab C	ourier	□Ot	ner		

ARCADIS GERAGHTY& MILLER	Laborato	ry Task Order	No./P.O. No	·		_ CH	AIN-OF	-custo	DY REC	ORD	Page	L 0	f_ <u>l</u>
Project Number/Name			<u>೦</u> ೦೦೦		-		ANALYSIS /	METHOD	/ SIZE				
Project Location Beth	pace	NY	<u></u>			7	7		7	7	7		
Laboratory	<u>(,)</u>			2		/	/	/	/	/			
Project Manager	nd 3	Stern		*-	\$/								
Sampler(s)/Affiliation	HIB	<u>H</u>	_ /	\$ 2 X	4								
	/	ate/Time	The state of the s	, of									
Sample ID/Location			ab ID	3	/	/				/	Remarks		Total
OET 110	4	125/08	2										2
GM 39 DZ			6	4-11	nsl	N30\							6
REP-1			Ž										2
TB 11/25/62			Z										7
FB1/25/102	V .	Y											2
/ /	•												
				_									
							ļ						
													
						- <u>-</u>			<u> </u>	<u> </u>			
Sample Matrix: L = Liquid	; S = 50	lid; , A = A	ir	l		_					Total No. of E Con	Bottles/ tainers	14
Relinquished by:	mm /		rganization: rganization:					ate <u>//</u>	25102	Time		Seal Ir Yes No	
Relinquished by:			rganization:				D	ate	1	Time		Seal Ir	ntact?
Received by:		0	rganization:				D	ate/_		Time		Yes N	o N/A
Special Instructions/Remarks: _								- 1000	. .		. <u>. </u>		
A Please	VSC	GM	39 52		िं		W	5 / /VIS	72				
777	In Person	d)Co	ommon Ca	rrier <u>+</u>	<u>e</u> <u>A</u>	TX.		□ Lab Co	urier	□Oth	ner		

ARCADIS GERAGHTY&MILLER	Laborat	tory Task Or	der No./	P.O. No		(:HAIN-O	F-CUST(DDY RE	CORD	Page		of
Project Number/Name NV	001348	,0006.0	2000	2		~	ANAIYSI	S / METHO) / SI7F				
Project Location Be th	Deg e	NY			*	1	/	/	/	7	 /		
Laboratory STL	1				ن ∞گر	F)							
Project Manager	·d ≤ H / £	STEFA			K S S	/					/		
Sample ID/Location		Date/Time	1-1-15		3						Daniel I		-
6M-73DZ	Matrix	Sampled	Lab ID	2			-{	-{		/	Remarks		Total
TB 11/22/02	L	1273		Z									2
					-	-						-	
Sample Matrix: L = Liquid	; S = S	iolid: A =	: Air								Total No. of	Bottles/	Ц
Relinquished by:		Jealy	Organia		Arcad	ک کا	3 AM	Date <u>//</u> /	22100	Time		1	ntact?
Relinquished by: Received by:		0	Organi	zation:				Date/		_ Time _ _ Time _		Seal I	ntact?
Special Instructions/Remarks:	4	40		biv		۲-۸							
Delivery Method:	In Perso	n 🕇	Comm	on Carr	ier F	D-E	X	□ Lab Co	ourier	□Ot	her		

Project N	umber:	NYGO	1347.	000b	Task:		0000	> _	Well ID:	6M-3	412	
Date:		<u> :11</u>	26/02		Samp	led By:	SH	1KS				
Sampling	Time:		3-1		 Recor	ded By:	SHI	<u> </u>				_
Weather:		Lle	er S	50°	Code	d Replicate No.	:7	None				
					_				_			
	e nt Identif Jality Meter		41	ade	u.	- 27.		Serial #:		00946		
water Qu	ianty Meter	(3).	104	TOA	Ct.		_	Sellal #.		U) I I		_
Purging I	Informatio	on		_					_ ,		K 11	
Casing M	aterial:		<u>Puk</u>	<u> </u>		Purge Method	i :	LOW F	tow 1	Kn Ded	<u>Rladde</u>	_
Casing Dia	ameter:		4"		_	Screen Interva	ıl (ft bmp):	Top	21	Bottom	282	_
Sounded I	Depth (ft b	mp):	78	2	_ _	Pump Intake (Depth (ft bm	np):	277	,		
Depth to	Water (ft b	mp):	45	37		Purge time	Start:	1150		Finish:	:	
Field Para			Beter	re Wish	hal. of	bont ?				_		
Time	Minutes	Rate	Volume	Temp	PH	Conductivity	REDOX	T po	Turbidity	Depth to Water	<u> </u>	-
	£lapsed	(mL/min)	Purged	(°C)	(SI Units)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	Comments	
1153	Liapsed	1 0112111111	, siges	14.3	5.80	121	190	8.55	2.7	(10 dinp)		_
1200		<u> </u>	L	M3	80.4	,094	183	8.73	374	44,55'		_
1205				MO	5.73	,093	204	8.83	220			Ė
1210				13.9	5.73	.693	255	8.83	710	-		_
1215				14.1	5.76	09.3	218	5.79	302	-		_
15.50			-	MZ	5.77	.093	221	8.79	354			
1225				14.2	5:72	09.5	221	8.85	407	44.72		_
1236				13.8	577b	1093	227	8.86	465			_
1235				13.8	5772	043	226	3.80	413	-		_
/Z****				14.0	5.75	.697	227	8.85	283			
1295				13.9	5.75	,694	227	8.77	246			_
1230				14.1	5.77	,094	228	7.80	204	4344.84	(Fig.)	
1253				14.0	5.15	.094	228	8,54	148	··· •		
									31,0	- Cicone	d Rollon	
						<u> </u>			OF 1	fow (ci)	- Scama	•
									hed d	62010	out of	
									ann	alt w	ater	
		l									L	
Sample Co	ditio-		Color:	Nere		Odor:	None_	Annasca	n.co.	Turb.d	•	
Sample Co		,	COIO1.	IVE		Odor.	we.	Appeara	nce.	1 mb. a		-
Parameter:				Container				No.			Preşervative:	
vec			_	40 M	L VeA	MAL		_ ~_			dere	
			_									
	·		-									_
up p = 4:	_	-										
ID Reading)						ě					
omments		A	Z	<u>စု ၊</u>	Sor	ech 1	₩					
								··		·		

Project Nu	umber:		13485.0		_ Task:		000		ell ID:	6M	3402
Date:			25/0	<u> </u>	Sample	ed By:		8#			
Sampling	Time:	146			Record	led By:		₿ <i>₩</i>			
Weather:		Cle	<u></u>	50	Coded	Replicate No.:		bn e	_		
	nt Identif		Mu	H. /	TaH	use Eq.	Ment)	Serial #:	•	-	
Puraina l	Informatio	on				V	l			_	
Casing Ma			Puc	<u>,</u>		Purge Method	:	LOW A	cu / N.	n-bed.	Bhdder
Casing Dia			4"		-	Screen Interva	l (ft bmp):	Top 41	0/	Bottom	420
Sounded (mp):	420	3		Pump Intake D	epth (ft bm)	o):	115		
Depth to \	Water (ft b	mp):	485	<u> </u>	-	Purge time	Start:	1425	•	_ Finish:	1535
Field Para	meter Me	asureme	ents Takei	n During P	urging						
Time	Minutes	Rate	Volume	Temp	рН	Conductivity	REDOX	DO	Turbidity	Depth to Water	
	Elapsed	(mL/min)	Purged	(°C)	(SI Units)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft bmp)	Comments
3:35				14.6	712	<u> </u>	223	1.80		43.50	
2:30				144	C.85	309	231	1.94		1.2	
2:35				14.3	6.77	240	253	1.95		47.15	
J: HU			-	14.4	6.49	379	240	1.99		45.13	
2: 40				14.4	6.13	364	360	2.09		77.73	
2:50				14.4	5.77	375	272	2.00			
3: 00		i		143	7:37	393	279	2.06			
3:05				14 2	274	3/3	780	2.04		45.63	
3: 10				142	53	299	287	2.04			
3: 15				142	5 3	পূৰ্ব	237	2.00			
3:20				142	552	397	285	1.49			
3:24				14.7	5.52	394	286	1.97	267		
Sample Co	ondition	<u>l</u>	Color:	Clec	l	Odor:	None	Appearan	ce:	Virbid.	
Sample Co								••			0
Parameter:				Container:		LVIAL		No. 2 —			Preservative:
7000				40 M	_ 0	H V 1-4E	-				NO.C
			•							· ·	
PID Reading	g			-	_						
Comments		4	DO 1	Neter	_ Na	4_ Wa	vkne	Proper h	1	Will	bc
		_h2e	6	to	Show	Stabi	Lita)	Net #	er G	ran dwet	be Poranetes Recodings
							1				Rec dup

Date 10 3 5 - 15 15 Sampled By: Recorded By	Project Nur	mher:	NIO	12 47 . R	non4.000	13 2task:		7_	v	Vell ID:	フジレ	
Sampling Time: 1038 1515	•						led Bv:	RH				
		ime.			TIC .	-	-	AU		 		
Instrument Identification Water Quality Meter(s): Horis N - ZZ		mic.		<u> </u>	53-0	_	-					
Water Quality Meter(s): Hors Description Serial #: Ordflo	weather.		1_104	7	<u> </u>	-		`		_		
Purging Information Casing Material: Casing Diameter: Sounded Oepth (ft bmp): Purge time Start: Sounded Oepth (ft bmp): Sounde				1,1			っフ				- 041/	
Screen Interval (ft bmp): Top Bottom For Sounded Depth (ft bmp): Sounded Depth (ft b	Water Qua	lity Meter	(s):	_Hu	-1 D a	u	- 22	-	Serial #:		00796	
Screen Interval (ft bmp): Top Bottom For Sounded Depth (ft bmp): Sounded Depth (ft b			on 🤟	R	γC		Purge Metho	d:	Dedice	u+rd	biodder	r Pump /
Sounded Depth (ft bmp): Depth to Water (ft bmp): Field Parameter Manufes Rate Volume Iremp Purget time Start: Minufes Rate Volume Temp PH Conductivity REDOX (mg/L) (m				- 2/11	· · · · · · · · · · · · · · · · · · ·	-	_		Тор		Bottom	
Depth to Water (if bmp): S	_		mp):			-			p):		_	
Field Parameter Measurements Taken During Purging Time Minutes Rate Volume Temp pH Conductivity REDOX (my) DO Turbidity Depth to Water (my) Purged (C) (Si Units) (my) (my) (my) (my) (my) (my) (my) (my			•	<>	.66	_	· ·	-	1720	,	Finish:	1500
Time	•					<u>.</u>	DUNY ON	12:20			_	
							Conductivity	PEDOX	T 100	Turbidity	Death to Water	<u> </u>
	lime		1			-	1 , '	•	•		1	Comments
	72130	Elapsed	(mL/min)	Purged	1	(SI Units)			1 1			Continents
12:30					177 6	5-70					1,00	
					//						075	
	12:39							7 7 7			10.()	
(C) 1	(F: 3)				1				911			
	(2.4.5)				12 3	-			2 21	5.7		
	12150				1675	233			955	Z.4		
	12:25				16 1X	5.19		365	437	123		
1:05 1:05 1:05 1:06 1:00 1:00 1:00 1:00 1:00 1:00 1:00	1200				16.19	(2)	-		 	53	らん.プト	
1:10 1:17 1:17 1:18 1:19 1:19 1:19 1:19 1:19 1:19 1:19					11, 19	5.20		1372		4.4	1.1.1.1	
					17.19	₹10		373		7.3		
130					<		1	1			Com Lorses	cs
						3 11						
					11.14	571	-115	394	71.13	4.1		
					16-21	4.14			R.56	21.3	57.72	
16.17 5.10 115 394 809 327 145 52.10 145 55 55 55 55 55 55 5					16.21		.114	288				
					16.17			392		6.7		
Sample Condition Sample Collection Parameter: Container: Contain	40		· · · · · · ·		1622	5.10	1115	394	809			
Sample Collection Parameter: Container: Wo ML VOB VTAL Preservative: No. Preservative:	455		•			5.00		315	7.19		52.70	-
Parameter: Container: Contai	Sample Co	ndition	,	Color:			Odor:	Maga	Appearan	ice:	(180)	
PID Reading OO Comments	-	lection						IN E	No		C . ==	Preservative:
PID Reading O.O	Parameter:						IATEM _					41
Comments	<u>u</u>			,	<u> </u>	AOR	V 24102	-			_	
Comments								-			- .	
Comments			<u> </u>	<u>ئ</u>				=			_ 	
	PID Reading											
	Comments										•	
												· ·

Project No	umber:	NYO	1348 C	2026	Task:		0000	<u>Z</u> ,	Well ID:	CM - 7	30
Date:		11/2	5/02		Samp	led By:	≤H	- <i>IBH</i>			
Sampling	Time:	10 3	- 130	<u> </u>	— Recor	ded By:	SH	184			
Weather:		Clear	- 600		— Code	d Replicate No.		D - I			
-			,		_				_		
	ent Identif		W. H	· H	ميدا	· End.	m-4)	Serial #:	_		
water Qu	ality Meter	(3).	tira i	<u> </u>	1602	e Egup	2001	Jenai #.			
Purging I	Informatio	on	0.0					,	 .	11/ A C	D. 11
Casing Ma			TYC		_	Purge Method				Ma Acd	Bedde
Casing Dia			4'		_	Screen Interva		· — -	01 /	_ Bottom	411
	Depth (ft b		$-\frac{q_{II}}{2}$		= 6	Pump Intake (•		406		
Depth to \	Water (ft b	mp):	50.	45	5 (30)	Purge time	Start:	11.30		_ Finish: _	1240
Field Para	meter Me	easureme	ents Take	n Durina I	Puraina						
Time	Minutes	Rate	Volume	Temp	рН	Conductivity	REDOX	DO	Turbidity	Depth to Water	
	Elapsed	(mUmin)	Purged	· (°C)	(SI Units)	(mS/cm)	(mV)	(mg/L)	(NTU)	(ft.bmp)	Comments
11:30				13.4	7.65	459	125			50.3645	(SF)
11:35			1	14.4	6.94	381	209			1	
11:40				13.9	626	301	246	136			
11:45				13.9	5.93	354	257	1.40			
11:50				14.0	5.92	352	260	140			
11:55				14.0	5.86	359	260	1:40			
12:00				74.2	5.83	354	262	1.34		50.43	
12:05				14.3	5.70	355	264	1.38		1	
12:10				14.3	5.63	345	271	1.38			
12:15				14.3	54	346	275	1.37			
13:30				14.3	5.60	344	278	1.34			
17:35				14.4	5.इम	345	280	1.35			······································
12:30				14.4	5.56	333	231	1.34	247	5045	
				N.		. 1	N	_	•	ر ۱- سه	
Sample Co		'	Color:	IVanc		Odor:	Vac	Appeara	nce:	Tirbic	<u> </u>
S <mark>ample Co</mark> Parameter:	llection			Container:				No.		c	Preservative:
VOC.				40 A	ic ve	HEYL A	_	70.		•	A1 _
			-			1, 02-1	•				New
			-				•			· -	
				<u>-</u>			-		· · · · · · · · · · · · · · · · · · ·		
PID Reading	l				_						
		1	No	Mede	_ ^.	at w	0-K	Dos -	٠	1.1.11	r Nerd
Comments				Wester			orking	Repo	7	Will 6	VIES C
		40)\V	154	Sho	<u> </u>	da bih	# #	ار		
			()	•				7			

ARCADIS GERAGHTY&MILLER	Laboratory 1	ask Order N	o./P.O. No.		CI	AIN-OF	-CUST	DDY RE	CORD	Page _	of
Project Number/Name <u>📈 👓</u>						ANALYSIS	/ METHOI	D / SIZE			
Project Location B. 105	c : NY			4.		7		7	7		
Laboratory ST	<u> </u>			£ 6	7	/ ,					
Project Manager <u>Lic vii</u>	à 54.	. Λ	Ź	- 27					,		
Sampler(s)/Affiliation	1/KS		Mr.	The state of the s							
Sample ID/Location	Date Matrix Sam		ר יא פ	\$7						Remarks	Total
CM - 391		5/02	7								7
TB 11/26/62	4		Z					1			7
FB 1/26/62	4		2								2
								 	-	 	
								<u> </u>	-		
								 	-		
						 		 	 	 	
								 			
											
									 		
ample Matrix: L = Liquid;	S = Solid;	A = Air		Λ .	<u></u>	<u> </u>				Total No. of	Bottles/ ntainers
Relinquished by:	um bear		nization: nization:	Acco No	5 Gd/		ate <u>// /</u> ate	2100	Time _ _ Time _		Seal Intact? Yes No N/A
Relinquished by:	- 4	~	nization:				ate/		Time		Seal Intact?
Received by:		-				D	ate/_		_ Time _		Yes No N/A
pecial Instructions/Remarks:											
				- - 	/						
elivery Method:	n Person	Com	mon Carr	ier <u> </u>	SPECIFY		Lab Co	ourier	□Ot	her	

~ N										4.4	a common agra-		
RCADIS GERAGHTY&MILLER	Labor	atory Task Or	der No./	P.O. No		CH	IAIN-O	F-CUSTO	DDY RE	CORD	Page	1	of_!
oject Number/Name <u>N</u>	40013	48,0006	<u> </u>	Z	-		ΔΝΔΙΥ	S / METHOD) / SI7F	-			
oject Location BeH	1895	e NY			7-	7	/	7	/	7			
boratory_STL	1	7			* *	57		/ ,	/				
oject Manager <u>be</u>	or d	Ster	- 1	7	5 1		/	′ /			/		
mpler(s)/Affiliation	711	BH		Š	ON THE PERSON OF								
•	1			The state of									
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	N.							Remarks		Total
055 M	4	11/25/08		7									7
M 39 DZ				64	H-/ms	Mán	1	 					,
REP-1				7	1	/			 	 			2
TB 11/25/02				Z		 		 		 			
FB 1/25/102				7	 	 		 					2
5 / 5 / 6 2	Y	•		 		 							-
				 						 			
				 	-	-							
				 	_								
				-		 							
								<u> </u>					
						ļ							
		_											
						 		 					
ple Matrix: L = Liquid	i; S =	Solid; A =	Air	i	- L			L	<u> </u>	1	otal No. of Cor	Bottles/ ntainers	14
elinquished by:	MAY!	Skalus	Organiz	ation:	read.	5 64	Υ [Date 11 12	25102	Time			ntact?
eceived by:							r	Date		. Time			lo N/A
elinquished by:			Organiz	ation:				Date/_		Time		Seal I	ntact?
eceived by:			Organiz	ation:				Date		Time		1	lo N/A
ecial Instructions/Remarks:													
DIC.	11 =	GM	20₁	\>	+0	A	M	s /MS				 ,	
- Please	<u>VISC</u>		107	<u> </u>	<u>-</u>	+-		7.15					
livery Method: \Box	In Pers	on all	Comm	on Carri	er <u>+e</u>	SPECIFY		☐ Lab Co	urier	□Oth	er		

DCADIC	Labor	ratory Task Oi	rder No./f	2.O. No.		C	HAIN-O	F-CUST	TODY RE	CORD	Page		of
RCADIS GERAGHTY&MILLER											raye –		UI
roject Number/Name <u>Ny</u>			2	•		\(\)	ANALYSI	S / METH	OD / SIZE				
roject Location <u>Re #</u> w		<u>e</u> 141			K,	4							
aboratory STL				,		7							
roject Manager <u>be v</u>	بنط	St=1		Z.	22.5	/	′ /	, /	/ /	,	/		
ampler(s)/Affiliation <u>\$</u>	4/	BH		A.	SAN								
Sample ID/Location	Matrix	Date/Time Sampled	Lab ID	*	7						Remarks		Total
SM-73DZ	L	11/22/11		7									2
TB 11/22/02	L	141		Z									2
													
													ļ
										 			
													
					 	1	 	 		- 			<u> </u>
					 	-		-		+			
				 		<u> </u>				 	<u> </u>		ļ <u>.</u>
	<u> </u>		 		 			+		_			
					+	-		+					
						<u> </u>							
						 							
						<u> </u>	ļ						
										<u>. </u>			
mple Matrix: L = Liquid	d; S =	Splid; A =	= Air		٨						Total No. o	f Bottles/ ontainers	4
elinquished by:	MM	Washing.	Organiz	ation:]	treed	15 6	3 4/M	Date //	12210	Z Time _			Intact?
eceived by:		-1	Organiz					Date		_ Time _		_ Yes N	No N/A
elinquished by:		<i>U</i>	Organiz					Date	1 1	_ Time _		I	Intact?
eceived by:			Organiz	ation:				Date		Time _		_ Yes N	No N/A
pecial Instructions/Remarks:		40	Da	bin	24.	τΛ							
<u> </u>													