Site 1 Facilitated Technical Meeting No. 2 Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage NYSDEC, Albany, NY February 5, 2008 February 2008 #### **AGENDA** - Meeting Goals / Introductions / Ground Rules (Glenn) 30 minutes - 2. AOC 22 Proposed Remedial Action (Dave) 30 minutes - Status of Site 1, Soil Vapor and Groundwater Testing (Dave) – 30 minutes - 4. GM 38 Construction - 5. Net Environmental Benefits Analysis (NEBA) (Kathy) 30 minutes - 6. Next RAB/TAC Meeting (group) 15 minutes - 7. Additional Items/Issues (Steve) 60 minutes - 8. Conclusion (group) 15 minutes #### **GROUND RULES** - 1. Stay on Topic - 2. Treat Each Other with Respect - 3. Take Turns Speaking (One at a Time) - 4. Listen - 5. Be Honest - 6. Have an Open Mind - 7. Participate - 8. Focus on Issues (Not on People) - 9. Identify a Problem AND a Possible Solution - 10.Make Progress/Move Forward -RAB/TAC meeting -6M75INV. wellhood treatment ONCT FFSRA-GRUMMA M3 MO mostono **AOC 22/SITE 4 – FORMER USTS** SITE HISTORY - •Three No. 4/6 Fuel Oil Underground Storage Tanks. - Tanks removed between 1980 and 1984. - •Northrop Grumman first confirmed presence of soil contamination at the site in 1997. - ·Primary contaminants are total petroleum hydrocarbons and Polynuclear Aromatic Hydrocarbons (PAHs) - •Limited free product detected in two area monitoring wells. # AREA OF CONCERN (AOC) 22/SITE 4 – FORMER USTs – SITE HISTORY - •In-situ enhanced bioremediation pilot-test conducted in 2004 to 2006. - Test involved surfactants and enhanced aerobic bioremediation of petroleum. - •Test achieved limited removal of petroleum (17 percent). - •Groundwater testing shows no organic impact to groundwater. 5 # AOC 22/SITE 4 – RESULTS NAVEACE TO THE STATE OF STA # AOC 22/SITE 4 INVESTIGATION RESULTS AOC 22/SITE 4 REMEDIAL ACTIONS - •Cover, Groundwater, and Use Restriction - •Cover, Bioventing, Groundwater Monitoring, and Use Restrictions. #### SITE 1 HISTORICAL REVIEW - •Northrop Grumman Operations from 1940s to 1998 - •Navy Caretaker Status from 1998 to present - •Initial Assessment Study 1986 - •Remedial Investigations 1991 to 1993 - •Feasibility Study 1994 - •OU 1 (Soils) Record of Decision 1995 - •Air Sparing/Soil Vapor Extraction System 1996 to 2001 - •Pre-Remedial Design Soil Investigations 1995 to 2002 - •Navy Re-evaluating Site 1 ROD Implementation 2003 to 2007 - •Soil Vapor Intrusion Concerns 2008 a #### SITE 1 LAYOUT #### SITE 1 AERIAL 1 #### SITE 1 SOIL GAS TESTING •Conducted January 21 to 31, 2008 #### SITE 1 GROUNDWATER TESTING •Sampled January 28 and 29, 2008 | Response | Technology/
Objective | Contaminant
Class App | Technology
Status | Representative
Process | Applicability | |----------------------|--|--------------------------|----------------------|--|---------------| | NO
ACTION | N/A | N/A | N/A | N/A | N/A | | EXISTING
CONTROLS | Institutional Controls - Control access of receptors to impacted soils Environmental Monitoring - Provide early warning of potential GW impacts | ALL | Conventional | *Environmental Easement *Zoning / Ordinance *Defined Site Use *Site Mgmt Plan *GW Monitoring *MNA | Applicable | | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |---|--|--------------------------|-------------------|--|---| | Removal | Mechanical
Excavation | All | Conventional | Backhoe and
Clamshell
Excavation
Equipment | Applicable – for
deep soils, shoring
required
Deep Saturated
Soils-dewatering
required | | Following
Removal - On-
Site Treatment
and Placement
of Treated
Material | *Ex-Situ
Solid/Stabil | All | Emerging | Pug-mill or
Excavator
mixing
w/Portland,
bentonite, fly
ash, slag, act
carbon, blend | Possibly
Applicable
(Following
Excavation) | | | *Biol Trtmt –
destroy PCBs
w/Fungal /
bacterial trtmt
in bioreactors /
land-farming | PCBs | Emerging | Anaerobic /
Aerobic
Dechlorination | N/A – emerging
ex-situ
processes
requires time &
land area | 17 | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |---|--|--------------------------|---------------------------|--|---| | Following
Removal – On-
Site Treatment
and Placement
of Treated
Material | Chemical
Treatment –
destroy PCBs in
soil | PCBs | Emerging | Oxidation –
H2O2/Fenton's/Permanganate
(KMnO4)
Base Catalyzed
Decomposition
(BCA) | N/A - low
effectiveness
Possibly
Applicable
(Following
Excavation) | | Following
Removal – On-
Site Treatment
and Placement
of Treated
Material | Chemical
Treatment –
destroy PCBs in
soil | PCBs | Experimental Discontinued | Mechanical-
Chemical
Treatment | N/A – experimental N/A – low effectiveness because of volatilization | | Response | Technology/
Objective | Contaminant Class App | Technology Status | Representative
Process | Applicability | |--|---|-----------------------|-------------------|--|---| | Following Removal – On- Site Treatment and Placement of Treated Material | Physical
Treatment -
Concentration of
PCBs, Cadmium,
Chromium to
allow volume
reduction | All | Experimental | Soil flushing /
Surfactant Solvent
Washing &
Recovery | N/A –
experimental; low
effectiveness | | Following Removal – On- Site Treatment and Placement of Treated Material | Combined
Treatment -
destroy PCBs in
soil | PCBs | Experimental | Chemical
Oxidation /
Biological
Treatment | N/A –
experimental; low
effectiveness | | viateriai. | | | | Surfactant
Washing /
Chemical
Treatment | | 19 | Response | Technology/
Objective | Contaminant Class App | Technology Status | Representative
Process | Applicability | |-------------------------------------|---|-----------------------|---|---|--| | Off-Site
Treatment /
Disposal | Off-Site
Treatment /
Disposal in
Permitted Facility | All | Conventional | Permitted
Treatment and
Disposal Facilities | Applicable
(Following
Excavation and
Transport) | | <u>In-Situ</u>
<u>Treatment</u> | In-situ (| Cadmium /
Chromium | Emerging /
Experimental
for depths > 50
feet | Auger Rig Mixed
w/ Portland
Cement, bentonite,
fly ash, stag,
activated carbon,
blend | No benefit because
PCBs tightly
sorbed | | | •Possibly
Cad/Chromium
•PCBs tightly
sorbed to soil,
little benefit | | | Pressure / Jet
Grout w/ Portland
Cement, bentonite,
fly ash, slag,
activated carbon,
blend | No benefit because
PCBs tightly
sorbed-app to
areas
w/obstructions;
beneath bldgs not
advised because of
damage | | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |------------------------------|---|--------------------------|-------------------|--|---| | In-Situ Treatment
(con't) | In-situ Solidification Prevents contact between sat soils and GW Possibly | Cadmium /
Chromium | Emerging | Bucket / Blender
Mixed – Portland,
bentonite, fly ash,
slag, activated
carbon, blend | No benefit because
PCBs tightly
sorbed; applicable
to surface soils
only; low mixing
effectiveness for
deeper soils | | * | Cad/Chromium PCBs tightly sorbed to soil, little benefit | | Experimental | Chemical Fixation
with Polymer | Not applicable –
too experimental | | In-Situ Treatment
(con't) | In-situ Thermal
Treatment –
Removal of
PCBs | PCBs | Experimental | Steam
Stripping,
Contained
Removal of
Wastes
(CROW) | Not applicable –
experimental
for PCBs, low
effectiveness | 21 | Response | Technology/
Objective | Contaminant
Class App | Technology Status | Representative
Process | Applicability | |---------------------------------|---|--------------------------|-------------------|---|---| | In-Situ
Treatment
(con't) | Biological
Treatment -
destroy PCBs
in sat soil
using fungal or
bacterial
treatment | PCBs | Emerging | Sequential
Amerobic /
Aerobic
Dechlorination | Not Applicable –
emerging ex-situ
processes, low
effectiveness | | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |------------------------------|--|--------------------------|-------------------|---|---| | In-Situ Treatment
(con't) | Chemical
Treatment of
Saturated Soil | All | Experimental | Oxidation – H2O2
/ Fenton's /
Permanganate
(KMnO4)
Soil Flushing /
Surfactant Solvent
Washing &
Recovery | N/A – low
effectiveness
N/A –
experimental;
insufficient
hydraulic control | | In-Situ Treatment
(con't) | Chemical
Treatment of
Saturated Soil | All | Experimental | Chemical Fix /
Stabilization | N/A -
Experimental &
Impracticable | 23 # INNOVATIVE TECHNOLOGY SCREENING | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |------------------------------|--|--------------------------|-------------------|--|---| | In-Situ Treatment
(con*t) | Combined
Treatment –
destruction of
PCBs in
Saturated Soil | PCBs | Experimental | Chemical
Oxidation /
Biological
Treatment
Surfactant
Washing /
Chemical
Treatment | Not applicable –
experimental,
low
effectiveness | | Containment –
Soil | Capping •Physical barrier to direct contact •Decrease surface water infiltration to deeper soils | All | Conventional | Asphalt Cap Gravel Clay Cap RCRA Landfill Cap | Applicable | | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |-----------------------------------|---|--------------------------|-------------------|---|---| | <u>Containment –</u>
<u>GW</u> | Containment Cell
Bottom –
In combo w/
vertical barriers;
prevents contact
between sat soils
and GW | All | Experimental | Pressure Grouting
w/ Portland,
Bentonite or
Blend; Cell
bottom, placed in
combo w/ vertical
barriers and
impermeable cap | Not applicable –
not a proven
technology at
depths below 30 ft.
N/A if cap is perm,
due to "bathtub
effect" | | Containment -
GW | Shirry Wall In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone | All | Conventional | Pumped –
Portland,
Bentonite or Blend | No GW benefit
without
impermeable cap
and cell bottom | 25 | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |-------------------------|---|--------------------------|-------------------|--|--| | <u>Containment – GW</u> | Grout Curtain In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone | All | Conventional | In-situ
Solidification –
Portland,
Bentonite or Blend | No GW benefit
without
impermeable cap
and cell bottom | | Containment –
GW | Sheet Pile Wall In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone | AR | Conventional | Steel | No GW benefit
without
impermeable cap
and cell bottom
N/A - HDPE only
better than steel in
low pH GW; also
required depth | | Response | Technology/
Objective | Contaminant Class
App | Technology Status | Representative
Process | Applicability | |---------------------|---|--------------------------|-------------------|--|------------------------| | Containment –
GW | Hydraulic Curtain – prevents potential migration of impacted GW | All | Conventional | Downgradient
Pump & Treat
Capture Zone | N/A to Surface
Soil | | | | | | | | 27 #### SITE 1 ALTERNATIVES - •Implement ROD. - •Risk-based Cleanup (375-6 Remedial Program Soil Cleanup Objective) Including Cover, Partial Excavation, Groundwater Monitoring, Use Restrictions. - •Risk-based Cleanup (375-6) with Innovative In-situ Treatment. #### AOC 22/Site 4 – Former Underground Storage Tanks Update NWIRP Bethpage February 1, 2007 2/1/2007 1 - ### Site History - Underground storage tanks active in 1940s to 1960s. - Contained No. 6 Fuel Oil. - Tanks were removed at an unknown time, probably early 1980s. 2/1/2007 #### **Environmental Concerns** - Gross petroleum contamination (total petroleum hydrocarbons). - Polynuclear aromatic hydrocarbons (PAHs) - Majority of contamination is near the water table (60 feet below ground surface) - · Limited impact to groundwater. 2/1/2007 #### Closed Loop Bioremediation System - Goal: Provide 90 percent reduction in TPH concentration. - Treat through the use of surfactants and aeration. - System operated from fall 2004 to spring 2006. - · System demobilized from site in August 2006. 2/1/2007 #### December 2006 Preliminary Results - · Potential 22% removal of hydrocarbons. - · Shallow soil contamination moved deeper. - Tar layer present in MW-01 and -02. - No evidence of groundwater impacts. 2/1/2007 ## **Next Steps** - Data report in spring 2007. - No significant change to the February 2002 RFA/FFS. 2/1/2007