

Site 1 Facilitated
Technical Meeting No. 2
Naval Weapons Industrial Reserve Plant
(NWIRP) Bethpage

NYSDEC, Albany, NY February 5, 2008

February 2008

AGENDA

- Meeting Goals / Introductions / Ground Rules (Glenn) 30 minutes
- 2. AOC 22 Proposed Remedial Action (Dave) 30 minutes
- Status of Site 1, Soil Vapor and Groundwater Testing (Dave) – 30 minutes
- 4. GM 38 Construction
- 5. Net Environmental Benefits Analysis (NEBA) (Kathy) 30 minutes
- 6. Next RAB/TAC Meeting (group) 15 minutes
- 7. Additional Items/Issues (Steve) 60 minutes
- 8. Conclusion (group) 15 minutes

GROUND RULES

- 1. Stay on Topic
- 2. Treat Each Other with Respect
- 3. Take Turns Speaking (One at a Time)
- 4. Listen
- 5. Be Honest
- 6. Have an Open Mind
- 7. Participate
- 8. Focus on Issues (Not on People)
- 9. Identify a Problem AND a Possible Solution
- 10.Make Progress/Move Forward

-RAB/TAC meeting -6M75INV. wellhood treatment ONCT

FFSRA-GRUMMA M3 MO mostono

AOC 22/SITE 4 – FORMER USTS SITE HISTORY

- •Three No. 4/6 Fuel Oil Underground Storage Tanks.
- Tanks removed between 1980 and 1984.
- •Northrop Grumman first confirmed presence of soil contamination at the site in 1997.
- ·Primary contaminants are total petroleum hydrocarbons and Polynuclear Aromatic Hydrocarbons (PAHs)
- •Limited free product detected in two area monitoring wells.

AREA OF CONCERN (AOC) 22/SITE 4 – FORMER USTs – SITE HISTORY

- •In-situ enhanced bioremediation pilot-test conducted in 2004 to 2006.
- Test involved surfactants and enhanced aerobic bioremediation of petroleum.
- •Test achieved limited removal of petroleum (17 percent).
- •Groundwater testing shows no organic impact to groundwater.

5

AOC 22/SITE 4 – RESULTS NAVEACE TO THE STATE OF THE STA

AOC 22/SITE 4 INVESTIGATION RESULTS

AOC 22/SITE 4 REMEDIAL ACTIONS

- •Cover, Groundwater, and Use Restriction
- •Cover, Bioventing, Groundwater Monitoring, and Use Restrictions.

SITE 1 HISTORICAL REVIEW

- •Northrop Grumman Operations from 1940s to 1998
- •Navy Caretaker Status from 1998 to present
- •Initial Assessment Study 1986
- •Remedial Investigations 1991 to 1993
- •Feasibility Study 1994
- •OU 1 (Soils) Record of Decision 1995
- •Air Sparing/Soil Vapor Extraction System 1996 to 2001
- •Pre-Remedial Design Soil Investigations 1995 to 2002
- •Navy Re-evaluating Site 1 ROD Implementation 2003 to 2007
- •Soil Vapor Intrusion Concerns 2008

a

SITE 1 LAYOUT

SITE 1 AERIAL

1

SITE 1 SOIL GAS TESTING

•Conducted January 21 to 31, 2008

SITE 1 GROUNDWATER TESTING

•Sampled January 28 and 29, 2008

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
NO ACTION	N/A	N/A	N/A	N/A	N/A
EXISTING CONTROLS	Institutional Controls - Control access of receptors to impacted soils Environmental Monitoring - Provide early warning of potential GW impacts	ALL	Conventional	*Environmental Easement *Zoning / Ordinance *Defined Site Use *Site Mgmt Plan *GW Monitoring *MNA	Applicable

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
Removal	Mechanical Excavation	All	Conventional	Backhoe and Clamshell Excavation Equipment	Applicable – for deep soils, shoring required Deep Saturated Soils-dewatering required
Following Removal - On- Site Treatment and Placement of Treated Material	*Ex-Situ Solid/Stabil	All	Emerging	Pug-mill or Excavator mixing w/Portland, bentonite, fly ash, slag, act carbon, blend	Possibly Applicable (Following Excavation)
	*Biol Trtmt – destroy PCBs w/Fungal / bacterial trtmt in bioreactors / land-farming	PCBs	Emerging	Anaerobic / Aerobic Dechlorination	N/A – emerging ex-situ processes requires time & land area

17

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
Following Removal – On- Site Treatment and Placement of Treated Material	Chemical Treatment – destroy PCBs in soil	PCBs	Emerging	Oxidation – H2O2/Fenton's/Permanganate (KMnO4) Base Catalyzed Decomposition (BCA)	N/A - low effectiveness Possibly Applicable (Following Excavation)
Following Removal – On- Site Treatment and Placement of Treated Material	Chemical Treatment – destroy PCBs in soil	PCBs	Experimental Discontinued	Mechanical- Chemical Treatment	N/A – experimental N/A – low effectiveness because of volatilization

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
Following Removal – On- Site Treatment and Placement of Treated Material	Physical Treatment - Concentration of PCBs, Cadmium, Chromium to allow volume reduction	All	Experimental	Soil flushing / Surfactant Solvent Washing & Recovery	N/A – experimental; low effectiveness
Following Removal – On- Site Treatment and Placement of Treated Material	Combined Treatment - destroy PCBs in soil	PCBs	Experimental	Chemical Oxidation / Biological Treatment	N/A – experimental; low effectiveness
viateriai.				Surfactant Washing / Chemical Treatment	

19

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
Off-Site Treatment / Disposal	Off-Site Treatment / Disposal in Permitted Facility	All	Conventional	Permitted Treatment and Disposal Facilities	Applicable (Following Excavation and Transport)
<u>In-Situ</u> <u>Treatment</u>	In-situ (Cadmium / Chromium	Emerging / Experimental for depths > 50 feet	Auger Rig Mixed w/ Portland Cement, bentonite, fly ash, stag, activated carbon, blend	No benefit because PCBs tightly sorbed
	•Possibly Cad/Chromium •PCBs tightly sorbed to soil, little benefit			Pressure / Jet Grout w/ Portland Cement, bentonite, fly ash, slag, activated carbon, blend	No benefit because PCBs tightly sorbed-app to areas w/obstructions; beneath bldgs not advised because of damage

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
In-Situ Treatment (con't)	In-situ Solidification Prevents contact between sat soils and GW Possibly	Cadmium / Chromium	Emerging	Bucket / Blender Mixed – Portland, bentonite, fly ash, slag, activated carbon, blend	No benefit because PCBs tightly sorbed; applicable to surface soils only; low mixing effectiveness for deeper soils
*	Cad/Chromium PCBs tightly sorbed to soil, little benefit		Experimental	Chemical Fixation with Polymer	Not applicable – too experimental
In-Situ Treatment (con't)	In-situ Thermal Treatment – Removal of PCBs	PCBs	Experimental	Steam Stripping, Contained Removal of Wastes (CROW)	Not applicable – experimental for PCBs, low effectiveness

21

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
In-Situ Treatment (con't)	Biological Treatment - destroy PCBs in sat soil using fungal or bacterial treatment	PCBs	Emerging	Sequential Amerobic / Aerobic Dechlorination	Not Applicable – emerging ex-situ processes, low effectiveness

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
In-Situ Treatment (con't)	Chemical Treatment of Saturated Soil	All	Experimental	Oxidation – H2O2 / Fenton's / Permanganate (KMnO4) Soil Flushing / Surfactant Solvent Washing & Recovery	N/A – low effectiveness N/A – experimental; insufficient hydraulic control
In-Situ Treatment (con't)	Chemical Treatment of Saturated Soil	All	Experimental	Chemical Fix / Stabilization	N/A - Experimental & Impracticable

23

INNOVATIVE TECHNOLOGY SCREENING

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
In-Situ Treatment (con*t)	Combined Treatment – destruction of PCBs in Saturated Soil	PCBs	Experimental	Chemical Oxidation / Biological Treatment Surfactant Washing / Chemical Treatment	Not applicable – experimental, low effectiveness
Containment – Soil	Capping •Physical barrier to direct contact •Decrease surface water infiltration to deeper soils	All	Conventional	Asphalt Cap Gravel Clay Cap RCRA Landfill Cap	Applicable

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
<u>Containment –</u> <u>GW</u>	Containment Cell Bottom – In combo w/ vertical barriers; prevents contact between sat soils and GW	All	Experimental	Pressure Grouting w/ Portland, Bentonite or Blend; Cell bottom, placed in combo w/ vertical barriers and impermeable cap	Not applicable – not a proven technology at depths below 30 ft. N/A if cap is perm, due to "bathtub effect"
Containment - GW	Shirry Wall In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone	All	Conventional	Pumped – Portland, Bentonite or Blend	No GW benefit without impermeable cap and cell bottom

25

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
<u>Containment – GW</u>	Grout Curtain In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone	All	Conventional	In-situ Solidification – Portland, Bentonite or Blend	No GW benefit without impermeable cap and cell bottom
Containment – GW	Sheet Pile Wall In combo w/ cell bottom & impermeable cap, prevents contact between sat soils and GW; prevents vapor migration in vadose zone	AR	Conventional	Steel	No GW benefit without impermeable cap and cell bottom N/A - HDPE only better than steel in low pH GW; also required depth

Response	Technology/ Objective	Contaminant Class App	Technology Status	Representative Process	Applicability
Containment – GW	Hydraulic Curtain – prevents potential migration of impacted GW	All	Conventional	Downgradient Pump & Treat Capture Zone	N/A to Surface Soil

27

SITE 1 ALTERNATIVES

- •Implement ROD.
- •Risk-based Cleanup (375-6 Remedial Program Soil Cleanup Objective) Including Cover, Partial Excavation, Groundwater Monitoring, Use Restrictions.
- •Risk-based Cleanup (375-6) with Innovative In-situ Treatment.

AOC 22/Site 4 – Former Underground Storage Tanks Update

NWIRP Bethpage February 1, 2007

2/1/2007

1

-

Site History

- Underground storage tanks active in 1940s to 1960s.
- Contained No. 6 Fuel Oil.
- Tanks were removed at an unknown time, probably early 1980s.

2/1/2007

Environmental Concerns

- Gross petroleum contamination (total petroleum hydrocarbons).
- Polynuclear aromatic hydrocarbons (PAHs)
- Majority of contamination is near the water table (60 feet below ground surface)
- · Limited impact to groundwater.

2/1/2007

Closed Loop Bioremediation System

- Goal: Provide 90 percent reduction in TPH concentration.
- Treat through the use of surfactants and aeration.
- System operated from fall 2004 to spring 2006.
- · System demobilized from site in August 2006.

2/1/2007

December 2006 Preliminary Results

- · Potential 22% removal of hydrocarbons.
- · Shallow soil contamination moved deeper.
- Tar layer present in MW-01 and -02.
- No evidence of groundwater impacts.

2/1/2007

Next Steps

- Data report in spring 2007.
- No significant change to the February 2002 RFA/FFS.

2/1/2007