DESIGN ANALYSIS REPORT

for

SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM AT SITE 1 – FORMER DRUM MARSHALLING AREA

NWIRP BETHPAGE Bethpage, New York

Naval Facilities Engineering Command Mid-Atlantic

Contract No. N62472-03-D-0057 Contract Task Order 002

APRIL 2009

DESIGN ANALYSIS REPORT SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM

NAVAL FACILITIES ENGINEERING COMMAND MID-ATLANTIC

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to: Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, Virginia 23511-3095

Prepared and Submitted by: Tetra Tech NUS, Inc. 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406-1433

> Contract No. N62472-03-D-0057 Contract Task Order 002

> > April 2009

PREPARED UNDER THE DIRECTION OF:

DAVID D. BRAYACK, P.E. PROJECT MANAGÉR TETRA TECH NUS, INC. NORFOLK, VIRGINIA APPROVED FOR SUBMISSION BY

AT

JOHŃ J. TREPANOWSKI, 华.E. PRÓGRAM MANAGER TÉTRA TECH NUS, INC. KING OF PRUSSIA, PENNSYLVANIA

CTO-002

SECT	ION	PAGE
ACRO	DNYMS	A-1
1.0	INTRODUCTION 1.1 AUTHORIZATION 1.2 BACKGROUND 1.3 REMEDIAL OBJECTIVES 1.4 SOIL VAPOR EXTRACTION PILOT-SCALE TEST 1.5 REPORT FORMAT	1-1 1-1 1-3 1-3 1-3
2.0	REMEDIAL SYSTEM DESCRIPTION	2-1 2-1 2-1 2-4 2-5 2-6 2-8 2-9 2-10
3.0	PERMITTING REQUIREMENTS	3-1
4.0	SCHEDULING	4-1
REFE	RENCES	R-1

TABLE OF CONTENTS

APPENDICES

А	SITE PHOTOS
В	SOIL BORING LOGS
С	REFERENCED ANALYTICAL DATA
D	PILOT-SCALE TEST RESULTS
E	CATALOG CUTS
F	AIR PERMITTING CALCULATIONS

TABLE OF CONTENTS

TABLES

NUMBER

- 1-1 SOIL VAPOR CONCENTRATIONS
- 1-2 RESULTS OF JANUARY 2009 SOIL VAPOR EXTRACTION PILOT-SCALE TESTING

FIGURES

NUMBER

- 1 GENERAL LOCATION MAP
- 2 SITE LOCATION MAP
- 3 FACILITY LAYOUT SVE CONTAINMENT SYSTEM
- 4 SOIL GAS SAMPLING RESULTS
- 5 TCE ISOCONCENTRATION CONTOURS AND CROSS-SECTION LOCATION MAP
- 6 GEOLOGICAL CROSS SECTION A-A' AND B-B'
- 7 PROCESS FLOW SCHEMATIC
- 8 PROPOSED SVE CONTAINMENT WELL LOCATION MAP
- 9 PROPOSED SVE CONTAINMENT WELLS
- 10 PIPING LAYOUT
- 11 TREATMENT BUILDING LAYOUT
- 12 WELL AND PRESSURE MONITOR DETAILS

ACRONYMS

AS/SVE	air sparging/soil vapor extraction
bgs	below ground surface
CFM	cubic feet per minute
CLEAN	Comprehensive Long-Term Environmental Action Navy
СТО	contract task order
HS	Hand Switch
IR	Installation Restoration
lb/yr	pounds per year
MS	Moisture Switch
ND	Not Detected
NWIRP	Naval Weapons Industrial Reserve Plant
NYSDOH	New York State Department of Health
PCE	tetrachloroethene
PCB	Polychlorinated biphenyls
PS	Pressure Switch
PVC	Polyvinyl chloride
ROD	Record of Decision
SVE	Soil Vapor Extraction
SVPM	Soil Vapor Pressure Monitor
ТСА	1,1,1-trichloroethane
TCE	trichloroethene
VOC	volatile organic compound
WC	water column
µg/m³	micrograms per cubic meter of air

1.0 INTRODUCTION

1.1 AUTHORIZATION

This Design Analysis Report has been prepared for Naval Facilities Engineering Command Mid-Atlantic under the Comprehensive Long-Term Environmental Action Navy (CLEAN) contract number N62472-03-D-0057, Contract Task Order (CTO) 002. This Report presents the results of pilot-scale testing of a soil vapor extraction (SVE) system conducted in January 2009 and the design basis for a full-scale SVE containment system to address volatile organic compound (VOC) contaminants east of Installation Restoration (IR) Program Site 1 – Former Drum Marshalling Area at the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Long Island, New York (Figures 1 and 2).

1.2 BACKGROUND

Remedial Investigations conducted in the early 1990s identified VOC-contaminated soils and shallow groundwater at Site 1 that were contributing to a regional groundwater plume [Halliburton NUS (HNUS) 1993]. To address this contamination, a 1995 Record of Decision (ROD) was prepared that included in-situ treatment of VOCs, excavation and offsite disposal of soils contaminated with polychlorinated biphenyls (PCBs), and placement of a permeable cover to address other residual contaminants including cadmium, chromium, and VOCs.

The in-situ treatment consisted of an air sparging/soil vapor extraction (AS/SVE) system that started operation in 1998. Remedial goals for this system were based on protection of groundwater and minimization of solvent emissions during a planned subsequent soil excavation to address the PCBs. The operation of the in-situ system achieved these goals and was shutdown in 2002 [Foster Wheeler Environmental Corporation (FWEC, 2003)]. Final actions to address cadmium-, chromium-, and PCB-contaminated soils, including excavation and capping are being evaluated by the Navy. Based on the distribution of other site contaminants, the area to be addressed by excavation and cover is anticipated to be most of Site 1 except for a 50-foot strip to the north and east of Site 1. Site photos are presented in Appendix A and Figure 3 shows the layout of Site 1 at the NWIRP Bethpage.

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. The unconsolidated sediments consist of four distinct geologic units that in descending order are the Upper Glacial Formation, the Magothy Formation, the Raritan Clay, and the Lloyd Formation.

The Upper Glacial Formation, which is about 30 to 45 feet thick, consists chiefly of coarse sands and gravels. The Upper Magothy Formation consists chiefly of coarse sands to a depth of about 100 feet, below which finer sands, silts, and clay predominate. The clay is fairly common but laterally discontinuous; no individual clay horizon of regional extent underlies the NWIRP.

The Raritan Clay underlies the Magothy Formation at a depth of about 700 feet beneath the NWIRP and is reportedly 100 to 150 feet thick. The underlying Lloyd Sand Formation is reportedly about 300 feet thick.

For Site 1, a clay unit is present near the groundwater table [50 feet below ground surface (bgs)] at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of offsite VOCs in soil vapor. Log sheets for soil borings installed along the fence line and into the residential neighborhood are presented in Appendix B.

Chorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 µg/m³ (micrograms per cubic meter of air) have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYDOH) for subslab soil vapor concentrations. Of these chemicals, TCE is the primary VOC of concern. Addressing TCE contamination in accordance with DOH guidance should address the other VOCs associated with the site (NYSDOH, 2006). Positively detected VOCs for onsite and offsite soil gas are presented on Figure 4 (Tetra Tech NUS, Inc. [TtNUS], 2008 and TtNUS, 2009). Anticipated initial concentrations of extracted soil vapors are presented in Table 1-1 and are based on the mean chemical concentrations of the intermediate-depth and deep soil gas samples collected along the eastern fence line.

PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals have been detected in the central portion of Site 1. Based on limited data, these chemicals are not expected to be present along the fence line at environmentally significant concentrations (i.e., trigger handling as hazardous water). Available analytical data for these soils is presented in Appendix C. This data consists of information collected from the Remedial Investigation of the Site in 1991 to 1994 and soil cores obtained during the January 2008 soil gas testing for disposal purposes (HNUS, 1993).

1.3 REMEDIAL OBJECTIVES

The remedial objectives for this project are as follows.

- Use an onsite soil vapor extraction system to prevent further offsite migration of VOCcontaminated soil vapor, and
- To the extent practical, capture contaminated soil gas that has migrated off site, with the primary goal being to capture soil gas with TCE at concentrations greater than 250 μ g/m³. A secondary goal is to address soil gas with TCE at a concentration greater than 5 μ g/m³.

Based on evaluation of offsite soil gas and subslab soil vapor test results, the extent of the 250 μ g/m³ TCE isoconcentration contour extends a maximum distance of approximately 270 feet in the deep soil gas (40 to 50 feet bgs) and 170 feet in the intermediate-depth soil gas (20 to 40 feet bgs). The extent of the 5 μ g/m³ TCE isoconcentration contour extends to a maximum distance of approximately 390 and 430 feet in the intermediate-depth and deep soil gas, respectively. For the secondary goal, natural attenuation factors including dispersion and scrubbing of the soil gas via precipitation infiltration may be required. Also, the effects of operating up to eight subslab depressurization units in the offsite area must be considered during the operation and evaluation of a soil vapor containment system. Plan view and cross sections of estimated TCE isoconcentration contours and subsurface lithology are presented in Figures 5 and 6.

1.4 SOIL VAPOR EXTRACTION PILOT-SCALE TEST

In January 2009, Tetra Tech conducted a pilot-scale test using two new soil vapor extraction wells located in the southeast corner of Site 1 (SVE1001-I and –D), a blower, and vapor phase carbon for off gas treatment. For monitoring, seven soil vapor pressure monitors (SVPM-2002-S, -I, and –D, SVPM-2003-I and –D, and SVPM-2007-I and –D) were installed east of Site 1 using direct push technology. Also, existing onsite monitoring points were also used as soil vapor pressure monitors and included soil vapor pressure monitors SVPM-11S, SVPM-11, SVPM-12S, and SVPM-12, and soil vapor extraction wells EW-1 and EW-5. Boring logs and well construction sheets for the new and existing wells are presented in Appendix B.

Four tests were conducted over a one-week period. The tests were conducted under conditions in which the ground surface was partially frozen and/or covered with snow. Also, during the week, a series of high and low pressure systems moved across the area, and residual pressure

gradients from these system were noted in several of the monitoring points. Test conditions are summarized as follows.

	SVE-1001I (25 to 35 feet bgs)		SVE-1001D (40 to 60 feet bgs)		
Test No	Flow Rate (CFM)	Well Pressure (Inches WC)	Flow Rate (CFM)	Well Pressure (Inches WC)	
1	0	0	20	Not measured	
2	0	0	51	-22	
3	20	Not measured	51	-20	
4	44	-4	52	-20	

WC- water column. A "-" indicates a vacuum. CFM- cubic feet per minute.

Tables and graphs developed from the field tests are presented in Table 1-2 and Appendix D. Based on these test results, the design basis for the soil vapor extraction system has been established as follows.

- 1. Install soil vapor extraction wells in clusters of two, one screened from 25 to 35 feet bgs and a second one screened from 40 to 60 feet bgs. Based on pilot scale testing, the effectiveness of deep soil vapor extraction wells located at the southeast corner of Site 1 may be affected by local geology and the use of an intermediate-depth soil vapor extraction well is required to ensure effective capture zones. The deep soil vapor extraction wells may also be used as a monitoring well.
- 2. Install well clusters along the eastern boundary of Site 1 on 100-foot intervals to establish an effective containment system. Six well clusters, for a total of 12 wells will be required.
- 3. Operate each well at a design flow rate of 50 cubic feet per minute (CFM) for a total design flow rate of 600 CFM. Provide additional blower capacity in the event that higher than anticipated extraction rates are required to provide adequate capture.
- 4. To achieve the design soil vapor extraction rate, a vacuum of approximately 20 inches of water column are expected to be required for the 2 or 3 deep soil vapor extraction wells located along the southern portion of the extraction system and 4 inches of water column are required for the intermediate-depth extraction wells and remainder of the deep extraction wells.
- 5. Electrical power is available in an existing Navy-owned building approximately 1,300 feet west of the fence line. The building is large enough to house the anticipated blowers

and treatment equipment. No power is available at Site 1. Lighting, heating, and ventilation of the building will need to be upgraded.

1.5 REPORT FORMAT

This report is divided into four sections. Section 1.0 is this Introduction. A description of the remedial system is provided in Section 2.0. Permitting Requirements are presented in Section 3.0. The Schedule is provided in Section 4.0.

2.0 REMEDIAL SYSTEM DESCRIPTION

2.1 SUMMARY

The SVE Containment System will consist of the following elements:

- Soil vapor extraction wells;
- Moisture separator;
- Soil vapor extraction blowers;
- Interim vapor phase granular activated carbon off gas treatment; and
- Soil vapor pressure monitors.

The process flow schematic for the system is presented in Figure 7.

The soil vapor extraction wells are to be located along the eastern boundary of Site 1 (Figure 8). These wells are to be screened at depths of 25 to 35 feet (intermediate-depth wells) and 40 to 60 feet (deep wells)(Figure 9). The individual wells will discharge to the Flow Monitoring Station, located at the southeast corner of the Navy property where flow, vacuum, and soil gas quality can be measured (Figure 10). The flow will be combined at this location and discharged to the Treatment Building, located approximately 1,300 feet west. Within the Treatment Building (Figure 11), the extracted soil vapor with flow through a 1,000 gallon Moisture Separator to remove condensate. Two blowers (one operating and one auxiliary), each rated for 600 cubic feet per minute (CFM) will be used to convey the extracted soil vapor. The discharge from the blowers will be conveyed to a single stage 5,000 granular activated carbon unit and be vented to the atmosphere via a discharge stack. Use of granular activated carbon for off gas treatment is anticipated to be required for the first year of operation. After one year of operation, the granular activated carbon unit may be removed. The effectiveness of the soil vapor extraction system in containing contaminated soil vapor and remediating contaminated soil vapor location east of Site 1 will be evaluated by soil vapor pressure monitors located in the residential neighborhood (Figure 8).

2.2 SOIL VAPOR EXTRACTION WELLS AND FLOW MONITORING STATION

Reference: Figures 7 – Process Flow Schematic, Figure 8 – Proposed SVE Containment Well Location Map, Figure 9 – Proposed SVE Containment Wells Cross Section, and Figure 12 – Well Details.

Design Basis

The design basis for the extraction wells was developed using the pilot scale testing conducted in January 2009, see Section 1.4 and Appendix D. The system will be designed for continuous operation for up to four years.

Description

Twelve soil vapor extraction wells (SVE-101I and -101D to -106I and -106D) will be used to extract soil vapors from screen depths of 25 to 35 feet bgs (intermediate-depth) to 40 to 60 feet bgs (deep). Groundwater is present at a depth of approximately 50 feet bgs; therefore, the deep soil vapor extraction wells can also function as groundwater monitoring wells. Soil vapor extraction wells SVE-101I and 101D were installed in January 2009, but have not been completed or developed. The other soil vapor extraction wells will be installed as part of this project.

Construction and operation details for the soil vapor extraction wells are summarized as follows.

Parameter	Intermediate-Depth Wells	Deep Wells
Number	6, including one existing	6, including one existing
Vacuum	4 inches water column	4 to 20 inches water column
Flow Rate	50 CFM	50 CFM
Well Depth	35 feet bgs	60 feet bgs
Screening Interval	25 to 35 feet bgs	40 to 60 bgs
Screen	2 inch, 20 slot, PVC	2 inch, 20 slot, PVC
Riser	2 inch, schedule 40 PVC	2 inch, schedule 40 PVC
Sand Pack	No. 2 sand, to one foot above	No. 2 sand, to one foot above
	the well screen. A fine sand	the well screen. A fine sand
	layer may also be placed above layer may also be place	
	the sand and below the seal	the sand and below the seal
Bentonite Seal	Minimum 2 feet	Minimum 2 feet
Boring Grout	Bentonite/cement to 4 feet bgs	Bentonite/cement to 4 feet bgs
Well finish	Leak tight threaded well cap	Leak tight threaded well cap
	and lockable stick up steel	and lockable stick up steel
	casing, grouted to 4 feet bgs	casing, grouted to 4 feet bgs

bgs - below ground surface

PVC – polyvinyl chloride

Each well will include a dedicated 2-inch buried schedule 40 PVC pipe to convey extracted soil vapors to the Flow Monitoring Station to be located in the southeast corner of NWIRP Property, approximately 20 feet south of Site 1.

Within the Flow Monitoring Station, the individual wells discharges will be equipped with a flow control valve and flow and vacuum monitoring port. Discharges from the individual soil vapor extraction wells will be combined into a 10-inch schedule 40 PVC header for flow conveyance to the Treatment Building located at Site 4. Flow and vacuum measurements will be conducted with a portable flow meter and vacuum gauge. Once the individual extraction well flow rates are established, only minor modifications are anticipated during operation. The 10-inch header will be equipped with a 10-inch air bleed line to allow flushing of condensate that may accumulate in the conveyance line to the Treatment Building.

The Flow Monitoring Station is anticipated to be a small unheated pre-fabricated metal shed with limited ventilation and located on a concrete slab and footer. 2-Inch piping from the SVE wells will enter the shed from the north and a 10-inch pipe will exit the building to the west. Above ground piping shall be insulated. If required during winter operation, a portable propane heater may be used to prevent condensate in the interior piping from freezing. The 10-inch pipe will be buried below the frost line. The exact route will be determined in the field based on utilities, but is be maintained a minimum of 4 feet on Navy property. A fence is currently located on top of the anticipated route. This fence will not have to be replaced.

The piping will be buried below the frost line, approximately 4 feet deep bgs. The piping shall be placed in a well graded sand from an off site source. Excavated soils from the trench may be considered for reuse for the remainder of excavation. Chemical test results from soils in the area along the eastern border of Site 1 are provided in Appendix C. The quality of the soil from the Flow Monitoring Station to the Treatment Building is unknown, but there have been no identified releases of hazardous materials in this area. Unless there is evidence of contamination during excavation of the piping trench (i.e., elevated photoioniziation detector readings, odors, staining, or debris, excess soil from the excavation can be used to regrade the area.

Operation and Controls

During the initial startup of the SVE Containment System, the control valves and flow ports located at the Flow Monitoring Station will be used to establish the flow rates for each well. After the initial startup, the flow rates will be measured quarterly, and adjusted as needed to maintain target flow rates. Individual well flow rates may also be modified as needed to enhance vacuums in the area east of Site 1 (e.g., provide more flow from the southeast corner of Site 1). Based on the pilot scale testing in January 2009 and historical operation of the full scale AS/SVE system most of the intermediate-depth and deep soil vapor extraction wells are anticipated to yield 50 CFM at a vacuum of approximately 4 inches of water column. Deep extraction wells located near

the southeast corner of Site 1 may require approximately 20 inches of water column to achieve this flow rate.

The flow ports can also be used to collect soil vapor samples and measure vacuums at each well. Sampling of the soil vapors is anticipated to be quarterly for the first year and then annually for the duration of the operation.

2.3 1000-GALLON MOISTURE SEPARATOR

Reference: Figures 7 – Process Flow Schematic, Figure 10 – Piping Layout, and Figure 11 – Treatment Building Layout.

Design Basis

A Moisture Separator will be installed in the Treatment Building to remove free water that may be collected by the soil vapor extraction wells or form in the conveyance piping. Since most of the piping will be buried, the formation of condensate in the piping is not expected to be significant, with less than 100 gallons collected on a monthly basis from December to April. During other months, and in particular during the summer and fall when the ambient air temperature is typically greater than the soil and groundwater temperature, there is expected to be a net evaporation of water from the piping and Moisture Separator. If required, condensate will be removed on a periodic basis, tested, and disposed off site.

Description

One 1,000-gallon Moisture Separator tank will be installed in the Treatment Building. This tank will be anchored to the existing floor. Approximate tank dimensions are 5 feet in diameter and 7 feet high. It will be constructed of carbon steel and have interior and exterior coating to control corrosion. The soil vapor inlet to the tank will be at an angle to create a vortex within the tank to promote knockout of free water. The discharge from the tank will be from the top center. The tank will also be equipped with a top mounted, gasketed, inspection port, two-inch bottom sidewall drain, and a sight glass to indicate water level. The tank will normally operate under a maximum vacuum of 40 inches of water gauge. A vacuum relief valve located on the suction piping to the blowers will be used to control excessive vacuum on the tank.

Operation and Controls

Under normal operation, the Moisture Separator will operate as a flow through vessel. A sight glass will be used to allow visual determination of the buildup of condensate in the tank. In addition, a moisture switch will be located in the tank and interlocked to the blower to stop system operation in the event that a high condensate level occurs in the tank. If the tank requires to be drained, a portable pump will be lowered into the tank and the condensate pumped into either 55-gallon drums for temporary storage or directly into a truck for off site transportation and disposal. Under normal operation, it is expected that condensate will accumulate during winter operation and evaporate during summer operation. If off site disposal of the condensate is required, VOCs in the condensate can be purged by closing the valves to the SVE wells and opening the air bleed valve in the Flow Monitoring Station for a period of time before sampling and transfer (e.g., overnight).

2.4 BLOWERS

Reference: Figures 7 – Process Flow Schematic, Figure 10 – Piping Layout, and Figure 11 – Treatment Building Layout.

Design Basis

One blower will normally be used to extract a total of 600 CFM, with a suction vacuum and discharge pressure of 29 and 5 inches of water column, respectively. The 600 CFM is based on the 12 operating extraction wells each producing an average of 50 CFM. The pressure requirements are based on a sum of pressure losses as follows.

SVE Well operating vacuum:	4 to 20 inches water column
2-inch SVE piping to Monitoring Station:	1 to 5 inches water column
10-inch Header to Treatment Building:	2 inches water column
Moisture Separator:	2 inches water column
Vapor Phase Carbon Unit:	3 inches water column
8-inch Discharge Piping	2 inches water column
Total net pressure across blower:	34 inches water column

A second blower will be provided to supplement the first blower in the event that a higher flow (up to 1,000 CFM) is required to achieve the targeted capture zone. If required, the second blower would likely need to operate during hot and dry conditions in the summer during which surface infiltration will be the greatest.

Description

Two radial bladed pressure steel blowers will be procured and installed to extract contaminated soil vapors from the Soil Vapor Extraction wells. Under normal operation, the blower will transfer 600 CFM of soil vapor under a vacuum of 29 inches water column and a temperature of 60 degrees Fahrenheit and a discharge pressure of 5 inches of water column. The motor will be a 480 volt, 3-phase, and 7.5 horsepower. The Blowers will be located in the Treatment Building and anchored to the existing floor with adequate vibration suppression.

The blowers shall be equipped with a general coarse filter to prevent debris and sand from entering the blowers and Vapor Phase Carbon Unit.

Operation and Controls

Each blower will operate via an On-Off switch Hand Switch (HS). In the On position, the blower will be interlocked with the flowing sensors.

- MS Moisture switch located in the Moisture Separator to stop blower operation in the event of high water level.
- PS Pressure switch located on the discharge to the Blowers to stop blower operation in the event of a high discharge pressure, indicating blockage of the Vapor Phase Carbon Unit.
- A pressure relief valve will be located on the suction to the blower to allow air flow in the event that the suction piping or filter become restricted.
- A flow totalizer will be located on the blower discharge to measure and record total soil vapor flow through the system.

2.5 VAPOR PHASE CARBON UNIT

Reference: Figures 7 – Process Flow Schematic, Figure 10 – Piping Layout, and Figure 11 – Treatment Building Layout.

<u>Design Basis</u>

Vapor phase granular activated carbon will be used to treat extracted soil gas prior to discharge to the atmosphere, see Section 3.0 – Permitting Requirements. The vapor phase treatment is designed to handle an average flow rate of 600 CFM with a pressure drop of 3 inches of water column and a maximum flow rate of 1,000 CFM with a pressure drop of 5 inches of water column,

see Appendix D for a typical pressure drop curve for Vapor Phase Carbon Unit. In addition, if needed, the vapor phase treatment system should contain sufficient carbon to allow reasonable time between change outs (greater than 6 months).

During the first year, approximately 809 pounds of TCE and 406 pounds of TCA are estimated to be extracted from the soil vapor extraction wells. The adsorption efficiency of the carbon is dependent on the vapor phase concentration. At the estimated initial concentration for TCE and TCA, the calculated carbon usage rates are 5.5 to 1 and 4.8 to 1 (pounds of carbon per pound of chemical), respectively. Based on these estimates, the 3,200 pounds of carbon would be used in the first six months of operation. Therefore, provide a 5,000-pound single-stage Vapor Phase Carbon Unit. Treatment may be required for approximately one year of operation, after which, the influent VOC concentrations may decrease to a level in which treatment is no longer required, see Section 3.0.

In calculating carbon usage rates, there are several offsetting factors to be considered. One factor is that the carbon to chemical adsorption ratios are based on air at 40 percent relatively humidity and 77 degrees Fahrenheit. The actual temperature of the gas is expected to be less than 77 degrees, which will increase the carbon adsorption efficiency. However, the actual relative humidity of the soil gas will be greater than 40 percent and may approach 100 percent during winter operation, and decrease the carbon adsorption efficiency. The second factor is that the concentrations of VOCs in the extracted soil vapors are expected to decrease over time. The decrease in VOC concentrations will correspond to decreased carbon consumption.

Description

A single 5,000-pound vapor phase granular activated Vapor Phase Carbon Unit will be used to treat the off gas prior to discharge. Approximate dimensions of this unit are 6 feet in diameter by 8 feet high.

Operation and Controls

Under normal operation the unit will operate as a flow through unit. A pressure switch located between the blowers and Vapor Phase Carbon Unit will be used to stop operation of the blowers in the event that flow through the Vapor Phase Carbon Unit becomes restricted. Sample ports are to be located on the inlet and outlet of the unit to allow sample collection for chemical analysis. On a monthly basis, the efficiency of the Vapor Phase Carbon Unit should be evaluated

using a photoionization detector. On a quarterly basis for the first year and then annually thereafter, samples should be collected and analyzed for TO-15 VOCs.

Based on photoionization detector readings, if the influent VOC concentration is greater than 10 parts per million, the Vapor Phase Carbon Unit should achieve a minimum removal efficiency of 80 percent. Based on TO-15 analysis, if TCE, PCE, or TCA concentrations in the influent exceed 10,000 μ g/m³, the Vapor Phase Carbon Unit should achieve a minimum removal efficiency of 90 percent or 1,000 μ g/m³ for that chemical, which ever is greater. For chemicals at concentrations less than 1,000 μ g/m³, removal is not required. Additional detail is provided in Section 3.0 – Permitting Requirements.

Change out of the carbon should be considered when the removal efficiency decreases to 80 or 90 percent as described above, especially if carbon saturation is achieved in less than 6 months. When carbon saturation does occur, the concentration of untreated soil vapors should be evaluated using the DAR-1 procedure (Appendix E) and a determination made as to whether continuing treatment of the extracted soil vapors is required.

2.6 SOIL VAPOR PRESSURE MONITORS

Reference: Figures 7 – Process Flow Schematic, Figure 8 – Proposed SVE Containment Well Location Map, Figure 9 – Proposed SVE Containment Wells Cross Section, and Figure 12 – Well Details.

Design Basis

The purpose of the soil vapor pressure monitors is to confirm the capture of contaminated soil vapors in the area east of Site 1. The soil vapor pressure monitors are located near the boundary of the estimated isoconcentration contour of 250 μ g/m³ for TCE. The monitors will be installed to a total depth of approximately 10 feet, 25 feet, and 42 feet, with two-foot screen intervals. These depths correspond to the approximate depths of basement slabs within houses, the intermediate-depth soil vapor extraction wells, and the deep soil vapor extraction wells, respectively.

Description

Twelve soil vapor pressure monitors (SVPM-2002-S, I, and D, -2003S and I, -2004I and D, and -2007I and D, and SVPM 11S, 12, and 12S) will be used to monitor vacuums in the area east of Site 1 and along the Site 1 fence line. The soil vapor pressure monitors are screened at depths of 8 to 10 feet bgs (shallow), 23 to 25 feet bgs (intermediate-depth), and approximately 40 to 50

feet bgs. Groundwater is present at a depth of approximately 50 feet bgs. Soil vapor pressure monitors SVPM-2002S, I, and D, -2003S and I, and -2007I and D were installed in January 2009 using a direct push technology and temporary abandoned in February 2009 by filling the well with No. 2 sand, capping the well, and covering the monitor with soil. These monitors can be re-developed by removing the sand and installing a permanent flush mount casing. Soil vapor pressure monitors SVPM-2004I and D will need to be installed. The new wells can be installed using either a hollow stem auger and finishing them similar to a SVE well or direct push and finishing them similar to the existing monitors. The monitors will include a sealed cap, valve, and threaded sample port to measure pressure.

Operation and Monitoring

Pressure readings will be obtained using a portable pressure gauge accurate to 0.01 inches of water column. A sustained vacuum of 0.01 inch of water column or greater is a positive indication of soil vapor capture at that point. In addition, since under an operating SVE system, the source of the soil vapor is the atmosphere at ground surface, a confirmed vacuum at the intermediate-depth can be used as an indication that shallower soil vapors are being captured, even if the capture cannot be confirmed with a pressure meter.

Soil vapor pressure monitor readings will be obtained during startup and monthly during operation. The data will be used to ensure capture, and if needed, adjust of flow rates from the SVE wells to optimize capture of contaminated soil vapor.

The effects of winter operation (frozen ground and snow cover) and the residential subslab depressurization systems conditions must be considered in evaluating the data. In particular, the schedule estimate for achieving the Remedial Objectives (two years) was in part based on the need to operate the system through two winters in order to fully purge the offsite soil vapors. Winter conditions, by acting as a low permeable cap will extend the influence of SVE wells. Also, the subslab depressurization systems may cause measureable vacuums in the off site pressure monitors.

2.7 SOIL VAPOR EXTRACTION SYSTEM COMPLETION

The soil vapor containment system will be shut down when the following conditions have been achieved.

- Under non-operating, winter conditions, offsite subslab and soil vapor pressure monitor concentrations are less than 50 µg/m³ for TCA and PCE and 25 µg/m³ for TCE. Measurements should be conducted when the SVE Containment System has been off for a period of at least one week.
- 2. Under non-operating, winter conditions, onsite soil vapor pressure monitor concentrations are less than 500 μ g/m³ for TCA and PCE and 125 μ g/m³ for TCE. Measurements should be conducted when the SVE Containment System has been off for a period of at least one week.
- 3. If conditions 1 and 2 are achieved, the system may operate longer with reduced monitoring if more than one pound per day of total VOCs are being removed

2.8 OTHER CONSIDERATIONS

General construction practices and other factors to be considered during construction and operation of the SVE Containment System are as follows.

- 1. Electrical power is only available at the NWIRP Bethpage in the area of the proposed Treatment Building. This power was installed in 2008 and is believed to be adequate to supply the needs of this project. The adequacy of the existing power supply needs to be determined. There is no power available in the area of Site 1. The components of the system at and near Site 1 should be constructed to operate without electrical power.
- 2. The proposed Treatment Building is unheated and lacks sufficient lighting. Building heat and an upgrade of the existing lighting is required.
- 3. The building does not have ventilation. The building should be modified to include mechanical ventilation to remove excess heat from operation of the blowers.

3.0 PERMITTING REQUIREMENTS

The system construction and operation are being conducted under the State Inactive Hazardous Waste Program. As such, permits are not required for onsite activities. However, the substantive requirements of an air discharge permit must be complied with and a letter from the state approving the action and operation of the system is required. A screening level evaluation to satisfy the substantive requirement of an air discharge permit is presented in Appendix E and summarized below.

Parameter	Initial Concentration of Extracted Soil Vapor (µg/m ³)	Estimated Discharge Requirement (μg/m ³) ¹
Trichloroethene	41,100	8,900
Tetrachloroethene	381	17,000
1,1,1-Trichloroethane	20,600	Greater than 20,000

^{1.} Concentration is based on a flow of 600 CFM, with estimated discharge requirements calculated from the inputted initial concentration of extracted soil vapor data to achieve air quality requirements, see Appendix E. Stack height is 30 feet and the property line is assumed to be 100 feet.

Town of Oyster Bay road opening permits, including fees, will be required for installing and redeveloping soil vapor pressure monitors in the area east of Site 1.

During construction, soil trenches and soil borings will generate some waste. Based on existing data, none of the excavated soil is expected to be classified as a hazardous waste. Excavated soil can be screened as indicated in Section 2.2 and handled appropriately. Offsite soils must be brought on site, characterized, and disposed of off site. Condensate, if generated, should be handled as indicated in Section 2.3.

4.0 SCHEDULE

The estimated construction and startup schedule is presented as follows.

Activity	Schedule
Removal Action Work Plan	05/15 to 06/30/09
Construction	08/15 to 11/15/09
Startup	11/15 to 12/30/09

The schedule assumes an award date of May 15, 2009 and that a courtesy copy of the Removal Action Work Plan will be submitted to New York State Department of Environmental Conservation. The state will be provided with a 30-day review period.

REFERENCES

New York State Department of Health (NYSDOH), 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October.

Tetra Tech NUS, Inc. (TtNUS), 2008. Soil Vapor Investigation, NWIRP Bethpage, New York, March.

Tetra Tech NUS, Inc. (TtNUS0, 2009. Site 1 – Phase II Soil Vapor Testing Letter Report, NWIRP Bethpage, New York, January.

Halliburton NUS (HNUS), 1993. Phase 2 Remedial Investigation Report, for Naval Weapons Indusgtrial Reserve Plant, Bethpage NY, October.

Foster Wheeler Environmental Corporation (FWEC), 2003. Final Close-Out Report, Construction of a Soil Vapor Extraction/Air Sparging System at Naval Weapons Industrial Reserve Plant Bethpage, NY, December.

TABLES

TABLE 1-1 SOIL VAPOR CONCENTRATIONS SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM SITE 1 - FORMER DRUM MARSHALLING AREA NWIRP BETHPAGE, NEW YORK

Chemical of Concern	Concentration Range (µg/m ³) ¹		Mean	Mass Loading -
	Minimum	Maximum	Concentration (µg/m³)	Initial (lb/yr)
Trichloroethene	ND	180,000	41,128	809
Tetrachloroethene	ND	1,200	381	8
1,1,1-Trichloroethene	ND	90,000	20,634	406

^{1.} BPS1-SG1001 to -SG1004 (Depths of 20 and 45 feet), SVPM12, and SVPM12S (TtNUS, 2008 and 2009) ND - Not detected

µg/m³ - micrograms per cubic meter

lb/yr - pounds per year

TABLE 1-2 RESULTS OF JANUARY 2009 SOIL VAPOR EXTRACTION PILOT-SCALE TESTING SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM SITE 1 – FORMER DRUM MARSHALLING AREA NWIRP BETHPAGE, NEW YORK

	Pressure	Maximum	Estimated Capt	ture Zone (feet) ¹
Test No/ Well Flow Rate (CFM)	At SVPM 2002 (In WC) ²	Measured Effect (feet) ³	Intermediate- Depth ⁴	Deep⁴
1. SVE1001I (0), SVE1001D (20)	-0.02	82	82	48
2. SVE1001I (0) SVE1001D (51)	-0.04	82	82	82
3. SVE1001I (20) SVE1001D (51)	-0.06	238	161	238
4. SVE1001I (44) SVE1001D (52)	-0.13	238	230	300

^{1.} For Tests 1, 2, and 3, there was not enough data points demonstrating confirmed measurable vacuums to calculate the capture zone. As a result, the most distant soil vapor pressure monitor that had a demonstrated measurable vacuum (0.01 Inches WC) was used to establish the estimated capture zone.

^{2.} SVPM 2002 is located 82 feet east of the soil vapor extraction wells in the residential neighborhood and is located within approximately 30 feet of one of the houses targeted for subslab depressurization. Vacuums achieved at this location provide an indication of the effects that the SVE Containment System will have on the subslab depressurization units. The subslab depressurization units are being sized to obtain a minimum vacuum of 0.025 inches water column under the basement slab at a depth of approximately 6 feet bgs. "-" indicates a vacuum.

^{3.} The maximum measured effect corresponds to the distance in which a vacuum could be confirmed. A soil vapor pressure monitor at a distance of 270 feet showed evidence of a measurable vacuum under Test 4, but because of the short duration of the test and a series of weather systems that moved through the area, a vacuum could not be confirmed.

^{4.} Intermediate-depth and deep zones correspond to approximately average depths of approximately 25 and 45 feet bgs, respectively.

FIGURES

112CN0845/3110/112CN9845CM16.DWC 03/23/09 MKB

	ch nus, II	NC.	
PROCESS FLOW SCHEMATIC SVE CONTAINMENT SYSTEM NWIRP BETHPAGE BETHPAGE, NEW YORK			
FILE 112GN9845CF02	SCALE AS NOTED		
FIGURE NUMBER	REV O	DATE 04/07/09	

NWIRP BETH BETHPAGE, NE	PAGE W YORH	<
FILE 112GN9845CF01	AS	scale S NOTED
FIGURE NUMBER FIGURE 12	rev O	DATE 03/30/09

TŁ TETRA TECH NUS, INC. WELL AND PRESSURE MONITOR DETAILS SVE CONTAINMENT SYSTEM

-20-SLOT WELL SCREEN

STEEL CASING \vee \times \times \times \times -CEMENT GROUT -SAND PACK

- FLUSH MOUNT PROTECTIVE

APPENDIX A

SITE PHOTOS

Site 1 - Eastern Fence Line, looking southeast - Location of SVE Wells

Site 1 - Eastern Fence Line, looking southeast – Location of SVE Wells

Site 1 - Eastern Fence Line, looking southeast – Location of SVE Wells

Site 1 - Windrow and Fence Line in Background, looking east.

Site 1 – Southeast Corner of Site in left middle, looking east

Site 4 -Proposed Treatment Building, looking south

Site 4 - Proposed Treatment Building, looking northwest

APPENDIX B

SOIL BORING LOGS

		Æ	Tetra	Tech I	NUS, Inc).	BC	DRING LOG		Pag	ie _	1	of _	2
	PRC	JEC	Γ ΝΑΜ	F:	NUL	2P Rott	2 0 2 -	BORING N	o.:	BPS1 - 56/00	51			
	PRC	JECT	Γ NUM	BER:		10-121	12	DATE:		1-24-08				
	DRIL	LING	G COM	PANY:	2	ebra-		GEOLOGIS	ST:	Vince Shicks	rA			
	DRIL	LING	RIG:		G	coprobe	2	DRILLER:		Luke Reiss				
		1				N	IATE	RIAL DESCRIPTION			PID/FI	D Rea	ding (ppm)
	Sample No. and Type of RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistency or Rock Hardness	Color	• Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
0920	<_1	1					ÐK	Sandy Silt with Trace		ninet		0	0	2
012-	5-1						RW	hiegred (HII.)			Ē	$\overline{}$	\dashv	
			<u> </u>								\vdash	\square		
		3												
0925		5	\square	48". 160"			Brn	FER to CER Sont ond Fine to course ground Thoco Silt		mõist	6	0	0	0
	5-2		۷.,								'			
		7												
		a					BM	Sandy Silt - Trace Fine		÷ 1	,			
		7	\angle	1-1-1-1			Ery	growel and clay		MOIST	<u> </u>	0	6	<u> </u>
0932				5760"										
	5-3	11					613 A 20	FGR to CORSENLENE		maist	D	0	0	r N
							014	Tizce silt					$\overline{}$	
												 		
		13												
					[519	Same as above.		maist	0		0	
		100		45"/			631-74	00000000000						
0938		12		160"	-							Н		
	54											Ш		
		17					Bra	Same as above.		MEIST	0	0	0	0
					f		-							
					ľ						<u> </u>			~~
:		19		2.00	ļ							\square		
m944				46"/66"			Br	Same as above		Moist	0	0	0	0
0,,,	5-5	71			Γ									
	5-5	~ (ŀ									
														
:		23	/						1					
							59	Stre ac about		mont	0	0	0	Ð
				447	-		<u>v~</u>	00/10 03 000/20				-		-
1005		<u> </u>		/60"										
	 vynen ** inclue 	rock co le monii	nng, enter or reading	in 6 foot	intervals @	borehole. In	crease	reading frequency if elevated reponse re	ad.	Drillin	g A	rea		
	Rema	arks:	Geor	robe	DPT-	2"x5	Mecs	2-core discreet Interval	/	Background	(pp	m):[٢	
		-	Send	- · ·	, ML A	cetate.	slee	ves		_				
	Conv	erted	to Wel	l: ``	Yes			No Well I.D	. #:					
	JUIN	51000		**						· · · · · · · · · · · · · · · · · · ·				

			7 		NONT	0 P D	<u> </u>		Jo ·	DDS1 - SAL	201			
	PRO		i naivii NUM	=: BER:	NOL C	TD-12	The	DATE:	NU	1-24-08	<u> </u>			
	DRIL	LING	COM	PANY:		Zebra		GEOLOGI	ST:	Vince Shick	'orf	ļ		
	DRIL	LING	RIG:		6	Feopre	be	DRILLER:		Luke Reis	5			
				[Ī	Ň	IATE	RIAL DESCRIPTION	T		PID/FI	D Rea	ding	(ppm
e	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	5-6						019	FGR to CGR Sond and Fix to coupe at we		moist	0	0	0	6
		ッユ					12.1	Trace Silt			1			Γ
		4T												-
							019							_
		29	\angle				Brn	Some as above	ļ	Moist	0	0	U	0
>			\langle	45										
	5-7	31												
							80	FGA to MGR Send with Trace CGR Send - Growed-		noiet	0	5	0	6
		77						Silt						
		<u> </u>	\sim				~	Real was c i m		· _L				
		~	\leq	51 "/			Ura Ten	CGR Send - Silt		Moist	<u> </u>	-	_	
İ		35	\leq	/65"	· · · ·					······································		0	0	Ø
	5-8						ora	FCO L CER SAND AND						
		9 7	\leq				Bri	fire to cause gravel	ļ	Moist	0	0	0	6
			\square					Trace Silf.						
		39	\square											
8					ſ									
ľ	Ť	41			FAR									
		<u> </u>	$ \rightarrow $							Mannetan, ,				
		21-3			ŀ						-			
		73	$ \rightarrow $.	r _17								
					ŀ									
		45	\leq											
			\leq					· · · · · · · · · · · · · · · · · · ·			<u> </u>			
		47	\square											
	İ				Γ									
		49		[F									
ł			-/		ŀ						1			
	1 Wheel			mok beek	enece						1	l		
	* Includ	e monite	nıy, enter or reading	in 6 foot	intervals @	borehole. In	crease	reading frequency if elevated reponse r	ead.	Drillir	ng A	rea		
	Rema	irks:	150	e. D 30	. 1) Hit	refi	used of ~ 37 Retal	k-	Background	(pp	m):	2	5

		Æ	Tetra	Tech N	NUS, Inc		BC	DRING LOG		Pag	e _	L	of _	2
	PRC	JECT	- NAM	E:	NWI	2P Bet	f pa	See BORING N	o.:	BP51-5610	<u>ر م</u>	2		
	PRO	JECT	NUM	BER:	<u> </u>	10-12	4	DATE:	\	1-23-08		_		
	DRIL	LING		PANY:	Z	ebra-			51:	VINCE Shick	<u>; o[</u> ,	4		
		LING	HIG:			5017810e				LONE NEW	>		allus a. (
	Sample	Depth	Blows /	Sample	Lithology	VI Lans (1954) et al	IATE	TIAL DESCHIPTION	u		107FB	э неа	aing (ppm)
	No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Semple	Sampler BZ	Borehole**	Driller BZ**
Time	5-1	1					DK Bra	Sendy silt with		maist	0	Ö	Ö	0
0821							<u>Unr</u>	Some fine gravel (crass + roufs)						
		۲												
		~					ørg	FGR to CGR Sand and		t.		0	~	6
		Z	\sim	42″/ "			BLU	Trace Silf		MOISS			-	<u> </u>
0839	e 2	2	\sim	765										
	5-2	7					0	Charles I.		da Trat		~	~	
							סרת	Jame 25 above		MOIS		0	<u> </u>	9
		9												
			>				0.	Charles I.		1 +		<i></i>		
0843	<		>	50"			50	Jane 25 above		MOIS		0	0	9
	5-5			160		[Gry	C I		- <i>t</i> -		_		
			$ \rightarrow $		ŀ		Och	(more Silt)		Mots	<u> </u>	-	0	0
		13	$ \rightarrow $											
				51%	F		୍ଦ୍ୟୁ	Carl (4			
0847	(l	15		16."			Bra	Jene 25 above		MOIST		0	0	
	5-4	<u>, </u>	$ \rightarrow $										\neg	
		17	$ \rightarrow $				519			- 1				
		1	$ \rightarrow $				Bri	Jane 25 2000e		Moist		6	<u></u>	6
		19	$ \rightarrow $	41%									-	
0948			$ \rightarrow $	<u>/60</u>		••••	0[9	<i>с</i> і		~ <i>[_</i>				-
	5-5		$ \rightarrow $		ŀ		Bra	Same as above		Moist	0	0	<u> </u>	9
			$ \rightarrow $		ŀ						-			
		3	$ \rightarrow $		┝									
		70	$ \rightarrow $	47"/ "	-		015	<i>c</i> i		~	•			
1010	When	rock cor	ing, enter	rock brok	eness.		bril	Jame 25 2bove		MOIS	0	0	0	<u> </u>
	" Includ Rema	e monito	or reading	in 6 foot i	intervals @ DPT- He Ac	borehole. In <u>2"X 5</u> ctc-fe_3	crease MZ Slee	reading frequency if elevated reponse re <u>cro-core</u> <u>disciplet</u> <u>Inte</u> uses	ad. er∕a	Drillin ∠/ Background	g Aı (ppr	rea n):[2	2
	Conve	erted	o Well	: `	Yes _			No Well I.D.	. #:					

L	IC	Tetra	Tech I	NUS, Inc	D.	<u>B(</u>	DRING LOG		Pa	ge _	<u>~</u>	of _	d
PR(PR(DRI DRI	DJEC DJEC LLIN(T NAM T NUM G COM G RIG:	E: BER: PANY:	NWIR CTO Ze Be	P Bett D-121 -612_ -pnobe	-peg	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	BPS1-SG10 1-23-08 Vince Shick Luke Reis	007 8 01 5	• •		
			0	1.145-1	N	IATE	RIAL DESCRIPTION			PID/FI	D Rea	ding	(pr
Sampi No. and Type c RQD	e Depin (Ft.) or Run No.	810WS / 6".or RQD (%)	Sample Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sample	Sampler BZ	Borehole**	
5-6		\square				org Orn	Same 25 above		mõist	C	0	٥	
	27					R _C a	FER to MERSent						
	29					TRA	Trace CORSEND- SIH		Moist		G	ð	
8		\square											
5-7	31	\leq				Arn Yez	Sane as above		Moist	6	0	٥	
	33	$\langle \rangle$											ł
		\square				Bra	Same as above		moist	0	0	0	ļ
	35	\angle					(more time gravel)			-			l
5-8	77	$\langle \rangle$				arg	Silly CGR Send in the						
	ST					Brn	Trace FGA to MCR Sad				0	2	
	39	\square				011							
						Rea	Same as above		Moist	Ь	C)	0	I
5-7	41	\langle				721 (567	FGR to MGR Sand		moist	0	0	0	
	43	\square											
	(1)	\triangleleft			·"	turk-	Some as above		Moist	0	Ø	ΰ	
\vdash	45			EOB									
	47	\square											
		\triangleleft											
	77	\square		ŀ	<u> </u>								
* Wher ** Inclu Rem	i rock cc de moni arks:	ring, enter tor reading	r rock brok g in 6 foot i	intervals @	borehole. In) ドイ	icrease	reading frequency if elevated reponse m کرد (24 مر 43 مر س	ead.	Drilli Background	ng A I (pp	rea m):	2	
nem	ains. -	<u>ری</u> مادید	ee po	sampl	/ HTA	10 40 5	o' interval		. Duongroune	· (pp			

		FL	Tetra	Tech I	NUS, Ind).	BC	DRING LOG		Pag	e _		of _	2
	PRO	JECT	NAM	E: N	NIRF	Beth	020	BORING N	lo.:	BP51-5614) م	3		
	PRO	JECT	NUM	BER:	<u>г</u> ъ	0-12	J	DATE:		1-21-08				
	DRIL	LING	COM	PANY:	<u> </u>	brd		GEOLOGI	ST:	Vince Shic	<u>Kor</u>	A		
	DRIL	LING	RIG:		Geop	robe		DRILLER:		Luke Reis	<u>s</u>			<u> </u>
		1		I	[`	N	IATE	RIAL DESCRIPTION			기D/FII) Rea	ding (ppm)
~ ~ 3	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller B2++
1005	<u>C-1</u>	1					-DK Bra	Sandy Silt with grass		moist	0	C	0	0
10-0					,									
		3	\leq				Bra	Clayer Silt with some Sand + Fine groved		moist	٥	٥	0	0
1015		5	\geq	37%."			Brn	Silty FER to CERSUL some fic gravel		mzist	0	0	0	0
	5-2		\leq					~						
		7	\langle				Bra Gry	Cleyey Silt		moist	0	0	0	0
		9	\square											
1020			\langle	#1%c"										
•	5-3	11					Brn	FER to CER Sond Trace silt + Fine gravel		mõist	٥	0	0	0
		13	\leq				Bra	Same as abeve		mõist	0	9	0	0
1025		15		43"/60"	• •		Bra	MER to CER Sand Trace Silt + Fire graved		moist	0	0	¢	0
,	5-4		\square					The second second						
		17					Br <u>n</u> Ten	For to course gravel Trace so it		Moist	0	0	Ċ	<u> </u>
		19	\square	liair,		n and i								
1030	5-5	21		77/60			Bra Tza	Same as above		moist	0	0	0	ο
			\triangleleft		F									
		23	\geq											
1040		25		44". 60"			Bra Ten	Same as above		moist	0	c	υ	0
	* When i ** Include Rema	rock cor e monito rks:	ing, enter or reading Geop(Sanol	rock brok y in 6 foot i کار ک	intervals @ PT-2 FE Ac	borehole. In $\frac{x \cdot 5}{x \cdot 5}$	icrease Nacra	reading frequency if elevated reponse re s-core discreet Inter ue	ead. Vel	Drillin Background	g Aı (ppi	rea n):[E	2
	Conve	erted 1	o Wel	: ``	Yes			No Well I.D). #:					

		Æ	Tetra	Tech N	NUS, Inc).	BC	ORING LOG		Pag	je _	<u>2</u> ,	of _	<u>3</u> _
	PRC	JEC	r nami	E: (NWIR	P Beth	Page	BORING N	o.:	BPS1-56100	3			
	PRO	JECT		BER:		10-12	_1		ът.	<u> </u>				
				PANT		enra_			21.	V. SHICKELH				
						prese								
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	IV Soli Density/ Consistency or Rock	Color	Material Classification	U S C S *	Remarks	Sample	ampler BZ	Borehole**	Jrliler BZ** 3
Tune:						naroness								
1	5-6		\leq											
		27	\leq				Bra Tza	Same as about		méist	0	0	0	0
		29	\leq					FER to MGR Send						
1048							19-1	Trece Silt + fine grevel		MOIST	0	<u> </u>	$\hat{}$	0
	<u>>~+</u>	31					Tza	Some as above		mist	0	0	0	0
		33												
		55					Bra Tes	FERSENC with some silt - Trace Fine gravel		maist	C	٥	0	0
1100		35	\angle					0						
·	5-8		\leq				Rec	Fred to CER Send and						
		37					Ten	Fine to course gread		maist	0	٥	0	0
		74	$\langle \rangle$							<u></u>				\square
		<u>3</u>]					вгл	Sin de dhave		meist	0	0	0	0
 120	5-9	41					(27							
			\square							· · · · · · · · · · · · · · · · · · ·				
		43					0-							
						~~~~	1560 157	Same as above		maist	D	0	<u> </u>	0
1150		45	$\langle \rangle$		EnA				_					
	5-18	47	$ \rightarrow $		refuse			:						
		49	$\square$											$\Box$
		ĺ	$\square$											
	* When ** incluc Rema	rock co ie moni arks: _	ring, enter tor reading	r rock brok g in 6 foot Ωさ	intervals @ <u>5e 1</u>	borehole. In	crease	reading frequency if elevated reponse re	ead.	Drillir Background	ig Al (ppi	rea n):	<u></u>	>
	Conv	- erted	to Wel	l: `	Yes			No Well I.D	). #:					

	Π	FL	Tetra	Tech I	NUS, Inc	<b>)</b> .	B	DRING LOG		Pag	e	1	of _	<u></u>
	PRO	JECT		E:	NWI	RP Be	tha	BORING N	o.:	BPS1-SGI	00	4		
	PRO	JECT	NUM	BER:		CT0-1	21	DATE:		1-21-08	>			
	DRIL	LING		PANY:	7	<u>ebra</u>		GEOLOGIS	ST:	Vince Shick	501	A		<u></u>
	DRIL	LING	i RIG:		<u></u>	oprobe		DRILLER:		Luke Keis	<u>د.</u>			
						N	IATE	RIAL DESCRIPTION			가D/FIC	) Rea	ding (j	ppm)
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistency or Rock Hardness	Color	Material Classification	0 S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller B2**
Time						an ann an ann an ann an an an an an an a	DK	Sady Silt with Some		· · ·	24 QI	J:0316	1993.1	443) -
1400	5-1	1	Ζ,				Brn	gravel (Fill)		Moist	0	0	<u> </u>	0
								· ·						
		3												
							вел	FGR to CGR Sand with		anist	6	~		
		6	$\sim$	391/			0.1	Trace Silf.		7.0.31			Ť	
1403				760"										
	5-2													
		7												
							BM	Clayey Silt with		Noist	0	6	0	0
		a	$\sim$				<u> </u>	well send in the			_			
				51%								$\square$	<u> </u>	
1407				<u></u>			এন্ব	ECR to CER Send and				$\square$		
	<i>s</i> -3	11	$\langle$				<u>82</u>	fire to course gravel		moist	0	0	<u> </u>	٥
								sit v						
		13					-							
										······································				
		<del>.  </del>		29 "			BCa			~ <u>L</u>				
1412		15	$\langle \rangle$	160"			TZA	Jone 28 above	_	MOIST	0	0	읙	0
	5-4													
a de la		17			ſ									
		<del>` /</del>					Brn	Shun an about		a int				
					ŀ	·	157	[ Aore Silt 16' to 18' ]	-	marst	<u> </u>		$\rightarrow$	<u> </u>
	1	<u>19</u>		1.94.	ŀ			V · · · · · · · · · · · · · · · · · · ·	_				-+	
1416	:		$\langle \rangle$	1/66"	L							⊢		
	8-5	21	$\square$				Bra	Same as aboves		Moist	0	0	٥	0
					ŀ									
			$ \rightarrow $			·	~	Prod Arcoc 1		~ +				
		23					Burn	rek to Mek Jend		moist	0	0	<u> </u>	0
-			$\langle  $				157	IFECE SITT + THAC gieves						
1427		25		45"/1.0"										
, , <u> </u>	' When	rock col	ring, enter	rock brok	eness.					<b>D</b>				_
	Includ	e monit	or reading	in 6 foot	intervals @	borehole. Ir	icrease بر	reading frequency if elevated reponse re	ad.	/ Background	g Al (nni	rea س۱۰۲	<del></del>	2
	нета	Irks:	Geop	ler "	ויין <u>~</u> גוּדר א	2 X 3 Feetate	<u>mza</u> , sla	eves	rve		(hhi	יי <i>י</i> ין		<u> </u>
	<b>A</b> .								<i>4</i> .					
	Conve	erred	to vvel		res _			vveli I.D.	• #• .					

			Æ	Tetra	Tech I	NUS, Inc	D.	<u>B(</u>	DRING LOG		Paç	je _	2	of 🛓	2
		PRC PRC DRII	JEC JEC LING	T NAM T NUM G COM G RIG:	E: BER: PANY:		RP Be To-12 Zebra Eoprobe	<u>thp</u> - 2	BORING N DATE: GEOLOGIS DRILLER:	o.: ST:	BP51-561 1-21-08 V. Shickor L. Reiss	00 >7 A	4	: 2 ~	<u>6</u> 27
	Ture	Sample No. and Type of RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	N Soll Density/ Consistency or Rock Hardness	Color	RIAL DESCRIPTION	U S C S	Remarks	PID/FI	Sampler BZ	Borehole** ) buip	Driller BZ**
1	1	5-6	27	$\leq$				Brn T23	FGR to COR Send and Fire to Course gravel Trace Silt.		moist	4	0	٥	0
Į.	441		29		45". 60"			Bra Ten	FGR to MGR Send Trace CGR Send + Frie gravel Trace silt		<i>m</i> öist-	0	0	0	0
	•	5-7	31					Brn	Some as above		mõist	0	0	0	٥
1º	509	5-8	35	$\langle$	42″ /65″			Вгл	Same as above		moist	0	0	G	0
			37 39					Brn Ter	FOR to COR Sond some Fine gravel-Trace Sitt		moist	0	0	0	0
· * *	540		41		467.1			Brn Ten	Some as above		Moist	0	0	0	0
1.21.0	602		43 45		47%."		· -:*	Bra Tea	FGR to MGR Sand Trece CGR sand + Frice graved		mõist	0	් ර	0	0
50-22-1	7.57		47					Brn Tan	Some as above		Moist	0	0	٥	0
v o	748		49			Εοβ		ወጣ	Sandy Silt-Trace clay + Fix graved		ménst	0	0	Ċ	Ω
		* When ** Includ Rema	rock coi e monit Irks:	ring, enter or reading	rock brok 1 in 6 foot ee	intervals @ ) 2 Se	borehole. In	crease	reading frequency if elevated reponse re	ad.	Drillir Background	ig Ai (ppi	rea m):[	Ċ	}
		Conve	erted	to Wel	: `	Yes			No Well I.D	. #:					

		PŁ	Tetra	Tech I	NUS, Inc	).	<u>B(</u>	DRING LOG		Pag	e	<u> </u>	of _	2
	PRC PRC DRIL	JEC1 JEC1 LING	F NAMI F NUM G COM	e: Ber: Pany:	NWIA CT Ze	2P Bet D-121 -652	<u>4 p 2</u>	BORING N DATE: GEOLOGIS	Io.: ST:	BPS1-56-100 1-23-08 Vince Shickor	5 <u>5</u> 74			
	DRIL	LING	i RIG:			oprob	2_	DRILLER:		Luke Reiss				
	Sample	Depth	Blows /	Sample	Lithology	N Sector		RIAL DESCRIPTION	U	I	PID/FII	) Rea	ding (	ppm)
Time	and Type or RQD	or Aun No.	(%)	/ Sample Length	(Depth/Ft.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sampla	Sampler BZ	Borehole**	Driller BZ**
1350	S-l	J	$\langle$				gra Bra	Sondy Silt with some file gravel		Very moist	6	ى	0	9
		3	$\square$				ok Bry	Some as above		very moist	0	٥	0	٥
1355		5	$\geq$	49","										
	८-२	7	$\langle$				org Bra	For to COK Send one Fire to medium cravel Trace Silt J		moist	٥	٥	٥	0
							017 8~	Same as above		Moist	0	0	8	3
1359			$\square$	4 <del>1</del> "(6"	• • • • •		org Ery Bra	Sendy Silt with fire Tomedium graval		moist	0	Ċ	8	0
	5-3	<u>11</u>	$\geq$				0							
		13			•		019	FGR to CGR Sand and Fine to course cravel		Moist	ø	0	ø	α
1404	e_4	15		48%_60"				Trace Silt J						
	<u> </u>	17	$\square$		-		δΓα					-		
:		19	$\square$			1 <b>- 1</b>	Brn	Same as a bove		Moist	0	<u></u>	<u>د</u>	<b>()</b>
1411	5-5	21		50"/60"			e ¹ 0	Same as above		mist	0	_	_	
			$\triangleleft$		ŀ									
				574/	-		srg Br	Same as above		mõist	۵	0	œ	0
1422	' When I	rock cor e monite	ing, enter	rock brok	eness. ntervals @	borehole. In	crease	reading frequency if elevated reponse re	ead.	Drillin	g Ar	rea		
	nema Conve		U-eor Inter	1500 100 100 100 100 100 100 100 100 100	- 1111 	- z x - wite	<u>5</u> Ac	Macro - core discret etate steeves No WellID	#.	Dackground	(hhi	[		<u> </u>
	JUIN	alcu i		•					• "•-					

	٦	RL	Tetra	Tech I	NUS, Ind	<b>).</b>	<u>B(</u>	DRING LOG		Paç	je _	2	of _	2,
	PRC	JECT		E:	NWI	RP Bet	that	BORING N	lo.:	BPS1-SG1	٥c	5		
	PRO	JECT	I NUM	BER:	CT	0-121	1	DATE:		1-23-08				
	DRIL	LING	COM	PANY:	<u> </u>	ebra_		GEOLOGI	ST:	V. ShickorA				<u> </u>
	DRIL	LING	i RIG:		Ge	oprobe	۰	DRILLER:		L. Reiss				
		1				N	1ATEI	RIAL DESCRIPTION			PID/FI	D Rea	ding (	(ppm)
- Je-	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
1000	5-6						019	Same as about		maist	G	6	0	6
	<u> </u>	07	$\sim$		1		DIM	<u></u>		746131	Ť	Ť	$\overline{}$	Ť
		27			1							$\vdash$		
			$\angle$											
		29					619 8 19	Same as above		morst	0	0	0	0
41				40%65										
1430	5-7	31								5				
	- /		$\sim$				613	0		۰ ۲				
							ß∾	Jame as above		MOIST		6	<u>e</u>	0
		33												
			$\leq$									Щ		
1453		35		41/65			Bri	Same as above		moist	0	0	Ø	0
102	5-8													$\square$
		72					610	FGR to CGR Send and						
		37					551	Fine grevel - Trace silt BAD Medium gravel		IMDIS		P	<u> </u>	0
								~			<b> </b>			
		39												
1524				44%"			org on	Some as above		ment	6	c	G	6
10-1		41			ľ									
		+			ľ									
			$\leq$				nra							
		<u>43</u>			-		٥č	Some as above		Moist	6	9	<u> </u>	C
						·		· · · · · · · · · · · · · · · · · · ·				Ľ		
1546		45		46%										
1					EOB									
		41												
												$\square$		
					-									<b></b>
		49			-		<u> </u>					-		
	* When	rock cor	ing, enter	rock brok	intoniclo @	harabala la	<b>a</b> racac	roading frequency if alcusted ranges of	hed	Drillin	nα Δι	rea		
	enclud Rema	e monite arks:	or reading	111101000 care0	nnervals @	Raf.	ciease e a l	it 41'BES between	zau.	Background	יה פי וממ)	 ກ):ໂ	Č	
			40' to	45'5	shok	te brb	-l=nf	thing 45' to 50' sempl	<u> </u>		u p.			الجمعية. محججت
	Conve	erted	to Well	:	Yes			No Well I.D	. #:			······	<u> </u>	
				-	· • •									

		FL,	Tetra	Tech I	NUS, Ind	<b>)</b> .	B	DRING LOG		Pa	ge _	<u> </u>	of _	<u>L</u>
	PRC PRC DRII DRII	JECT JECT LING	TNAMI NUMI COMI RIG:	E: BER: PANY:	NW3 CT Ze	CRP B D-121 6H2. Oprobe	eth _l	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	BPS1-5610 1-25-08 Vince Shi Luke Rei	06 Ke	.rA		
T.R.	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	N Soll Density/ Consistency or Rock Hardness	Color	RIAL DESCRIPTION	U S C S	Remarks	PID/FI	D Rea Sampler BZ	ding ( Borehole**	Driller BZ**
0900	5-1	·	$\langle$				ОК Вгл	Sendy Silt write some ground (fill)		məist	6	0	0	0
		3	$\langle$				org Bra	FGR to CGR Sind and Fric to course ground Trace Silf.		mõist	0	0	0	0
0908	5-2	5		5 ³ "/6"		:	org Brz	Same as above		Mõist	0	0	0	0
		7			برمید مید.		013 BM	Same as above		meist	0	0	\$	0
0912		9		51"			вт 6гу	Sendy Silt with Fine To medium grevel There clay		Mõist	0	0	0	0
	5-3	11 13					079 Bri	FGR to CGR Sand and Fire to course graved Trace Sill		moist	0	0	0	0
6917	5-4	15		19". (60"			org Bra-	Same as above.		Moist	0	0	0	0
		17 19		at 17 p			679 67	Same as above		moist	0	0	0	6
0937	5-5	21		65			ory Bri	Same as above		moist	6	0	6	0
^955		23 25		18"/ Ju			ary Bra	Some 25 above		Mõist	0	0	0	0
	When I Include Rema	rock cori e monito rks:	ing, enter or reading Geor Semple	rock brok in 6 foot i රැකුළ ලංකා	eness. ntervals @ ①PT~ K_Acce	borehole. In 2″XS	crease i nu	reading frequency if elevated reponse re SCFA - COFC JISCFEET	ad. Tez	Drillir Background	ıg Aı (ppr	rea n):[	٤	5
i	Conve	erted t	o Well	: )	/es		ĺ	No Well I.D	. #:					

										ang ang ang ang ang ang ang ang ang ang				
	П	Æ	Tetra	Tech N	IUS, Inc		BC			Pag	je	<u>z</u> (	of _	2_
	PRO	JECT	, ' NAME	<b>-</b>	NWIRI			Bettere BORINGN	lo.:	BPS1-SG10	06			
	PRO	JECT		BER:	112G0	0903		DATE:	от.	1-25-08 Vince Shiekers				
		LING	i COlvir i RIG:	ANT	C.C.	espi	<u>5</u>	GEOLOGI	51.	Loke Reiss				<u> </u>
						N N	IATE	RIAL DESCRIPTION	Ι		PID/FI	) Read	ting (	ppm)
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
Times	5-6	26					org	FGR to CGR Sand and	1	moist	Ø	0	0	9
	Š	27					12101	Trace Sill						
		20								· · · · · · · · · · · · · · · · · · ·				
		20	$\sim$				6 ¹ 9	Silve ac shere				0	_	
1.44		30		<i>49"/_</i> "			12.10	<u> </u>		MOISI			_	
1001	5-7	31		740									-	
	· ·	32						NR=						
		33	$\sim$				org	Some as above		moist	0	0	6	0
		34					1)170						_	
2029		35		48''/	*		059	FGR to CGR Sond 272 Bix and - The case H		mout		~		
1021	C-9	36	$\sim$	160			01.0	and medium gravel		JAC (S)				
	<i>4 0</i>	37												
		38												
		39					e g	Same as observe		mist	6	~	~	~
1049		40		46"/"										
•		41	$\square$											
		42	$\square$				org BOL	Sere a shore		moist	0	0	0	6
		43	$\square$					(Less CGRS end.)						
		44	$\square$									<b></b> .		
1172		45	$\square$	45"/60"			Brz	Some as above		mõist	0	0	0	0
11.6		45			EOB									$\square$
		47	$\square$											
		48	$\square$		1				1					
		49	$\square$						1					
		50	$\square$											
	Whe	n rock c	oring, ent	er rock bro	okeness.	2 hat1-		-		٦٠		rea		
	Rem	arks:	$- \frac{1}{2}$	ng in 6 too යුදු වය	Sal 1	Refusal	at 4	H BGS between 40 to	read. 45	Background	iy A l (pp	m):	۲_	5
			م دينې	ال ذ	1 2 2 1	enpting	45	to so' Sample						
	Con	verteo	d to We	ell:	Yes			No Well I.I	D. #:					

ŝ

WELL NO .: SYPM-11





WELL NO .: SVPM-12



WELL NO .: SVPM-12S



WELL NO .: SYPM-11





WELL NO .: SVPM-12



WELL NO .: SVPM-12S



ŦŁ	Tetra Tech NUS, Inc.
----	----------------------

Page	c	of	~
------	---	----	---

PRC PRC DRIL DRIL	JEC JEC LING	F NAM F NUM G COM G RIG:	E: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpa 1687 Soil Gas	ge II	BORING DATE: GEOLOG DRILLER	No.: AIST:	SG200'1 10 28 08 Conti EICHLER				
					N	IATE	RIAL DESCRIPTION			PID/FII	) Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	0		1		M	VEIIP	in du topsoil						
					DÉLEE.	BRA	SILTY SAND-SOME	, SN	AWAQ	0			
5-1							OKAVEL ROOTS.	_	1" O GRAVEL				
0930		$\angle$	NA							0			
	IJ									0			
					DENSE	BRN	F/C SAND-SOME	SW	DAMD				
5-2							GRANSI		11/2" O GRAVEL	0			
e			3.32	â		- 		-	TO	$\sim$			
1100		$\sim$				BR.	0	+	SUB ANG.				
	. ``					""N		<b>-</b>		0	-	-	-
	10												_
						YEL	DW SAME	SW	DAMP	0			
53			2/			PRN			34" O GRAVEL				
1127			9/5				· · · · · · · · · · · · · · · · · · ·		SUB ANG.	O			
	15	$\square$								0			
							SAME	SN	DAMP				
5-4 e									1 PC 134"0	0			
1132			3.1/2						SUB ROUND	~~/			
									JUD MILD.	$\cap$		$\neg$	
	20									$\sim$		$\neg$	
							<i>P</i> ²² A				+		_
c 0			281				SAME	SW	DAMP	0	_		
000	f		<u>~75</u>								_	_	
1138		$\langle \rangle$								0			
				ļ									
	25								·	0			
* When ** Includ Rema	rock co le monit arks:	ring, ente tor reading	r rock broł g in 6 foot <u>F RIE</u> ADVI	keness. intervals @ <u>TRA</u> ANCE	borehole. In CK MT BORING	D -	reading frequency if elevated reponse DUAL TUBE SYSTEM	os read.	SAMPUE Drillin Background	g Ar (ppn	ea า):[	0	

Ŧł	Tetra	Tech N	IUS, Inc	<u>.</u> <u>B</u>	<u>ORI</u>	<u>NG LO</u>	G		
OJEC OJEC ILLIN	T NAM T NUM G COM G RIG:	E: BER: PANY:	NWIRP 112G0 ⁻ Zebra DPT-S	Bethpage II 1687 oil Gas			BORING N DATE: GEOLOGIS DRILLER:	o.: ST:	SG20 10[2 Conti
ole Depi . (Ft.) d or	h Blows / 6" or RQD	Sample Recovery /	Lithology Change (Depth/Ft.)	MATE Soil Density/	ERIAL	DESCRIPT	<u>ION</u>	U S C	

DRIL	LING	RIG:		DPT-S	oil Gas		DRILLER:		EICHLER				
Sampla	Donth	Blowe /	Sampla	Lithology	N	1ATEI	RIAL DESCRIPTION	┥		PID/FII	) Rea	ding (	ppm
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	Decelor Apple				DENGE	YELL	E/CSAND-TRER.	SW	DAMP	0			
5-6					- Fileret	4.440	10						
0145			3.2/15	± 28'					GRADATION AL	Õ			
					AN AN		F/M SAND TR.	SW	DAMP				
	30						(LESS GRAVEL @ 28'	5	3/4" 0	Õ			
		$\square$					<u>`</u>		sub Round Sub Ang	ı			
57		$\square$	-				SAME	SW	DAMP	0			
152		$\square$	3.75						SAME				
		$\square$						_		Õ			
	35			addate antice exce kate	*			· · ·					
		$\square$			DERSE	92 22	IF/C SAND-TR	SU	DAMP	0			<b> </b>
56		$\angle$				To	to some bravel	_	MORE C.SAND				<b></b>
1205			3.7/5			282 882			THAN	0			<u> </u>
						10			3/4" O SUB				
	40					282 V			SUB ANG.	0			
1.5			0				F/C SAND-TR	SW	DAMP				<b> </b>
00			<u>%</u>			6	FINE GRAVEL			0			
1215						KE)							<u> </u>
								_		0			
	45				No. 10	VEIL	717						
C-10			<u>с</u> в.		DENSE	资	F/C SAND-TR	SW	DAMP	0			
500		/	x:75				F, OIAVCL						
1:557		<u> </u>								0			
				۲									
	50								CALLER F	0			
** Inclu	i rock co de mon	itor readir	n rock pro a in 6 fooi	rkeness. t intervals @	⊗ horehole I	ncrease	reading frequency if elevated reponse	read.	) sa sample 2 Drillir	na A	n 14 rea	2	

Converted to Well:

Yes

No _____ Well I.D. #: _____

Page	 of	2
~		

Pro Pro Dril Dril	JECT JECT LING LING	NAMI NUM COMI RIG:	E: BER: PANY:	NWIRP 112G0 ⁻ Zebra DPT-S	Bethpag 1687 oil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2002 10-29-08 Conti EICHLER				
					N	IATE	RIAL DESCRIPTION			PID/FIC	) Rea	ding (	(ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DENSE	BRN	6" TOPEOL	SW	DAMP	$\cap$		1999 N.	
G					- Heavy	TO	TIC CA IN COME	20000	N/all & called				
993 993	)	$\square$	NA			YELL	SCOF/C SAND-SOME GRAVEL		SUB ROUND SUB ANG.	0			
	M									0			
					RANE	YEU	POSAME.	SW	DAMP				
5-2			3.1/5						SAME.	0			
୍ ଡାଏଠ				0									
										0			
	10												
					DENKE		SAME	SN	DAMP	0			
53			4/5						1" & GRAVEL				
1015			- water						SUB ROUND SUB ANG.	0			
	10									0			
							SAME	sw	DAMP				
5-4- C			2.5/5						SAME.	0			
1023													
			·							0			
	20			0		VEU	640						
					DENSE	BRA	SAME	SW	DAMP	0			
ine Sie					:			·	SAME.				
1030	-		³ /5							0			
		$\square$										~ 1	
	25									0			
* When ** Inclu Rem	de mon arks:	itor readir	er rock brong in 6 foo	t intervals (	Dorehole.	ncrease	Preading frequency if elevated reponse	ייי איז איז איז איז איז איז איז איז איז	SOIL GAS SAMPU DEPTHS Drillir Background	ng Al (ppi	rea m):	C	>

## **BORING LOG**

PRO PRO DRIL DRIL	JECT JECT LING	NAMI NUMI COMI RIG:	E: BER: PANY:	NWIRP 112G0 Zebra DPT-S	Bethpag 1687 Ioil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2002 10129108 Conti EICHLER				
					M	1ATEI	RIAL DESCRIPTION		F	PID/FIC	Read	ding (I	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		$\angle$			DENSE	TO	F/C SAND- TR		DAMP	0			
5-6					7	BRN	W TO SOME GRAVEL		3/4" O GRAVEL				
ICHC	•		35/5						SUB ANG TO SUB KOUND	0			<u> </u>
	30	/								0			
					Pense	1	SAME	Sw	AWA	)			
57									SAME	0			
1047			3.8/5										
										0			
	an SS							~ .					
	<i>6</i> .0				VERY		SANE	SIA	NAMA	$\frown$			
e.Q		$\sim$			(Based	To			SAME	$\sim$			
1059			3/5		Drilling)	10			SL COLOR CHG	0			
						REP	SH-		G 38'-VERY DENSE DRILLING				
	40					5			(36-40)	0			
							SAME	SIA	DAMP	-1400			
s-9 C			4/5				- V-0039		SAME.	0			
1117-													
			44-	6						0			
	45			45									
				Ac +	STIFF	RED	CLAYEN SAND	SC.	DAMP	$\circ$			
5-10			3.5/5		DEASE	RED		SIN		~~~			
e 1145				47.5		1000 (tr-6 46)	······································	Cheer of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		0			
2				TD									
	50	$\square$					TD e 47.5						
* Wher ** Inclu Rem	de mon arks:	oring, ente itor readir	er rock bro ng in 6 foo	okeness. t intervals @	borehole. I	ncrease	reading frequency if elevated reponse r	ead.	Drillin Background	ıg Aı (ppr	rea n):[	C	>

Converted to Well: Yes

.....

Well I.D. #:

1 marsh

No

PRO PRO DRIL DRIL	JECT JECT LING	TNAMI NUMI COMI RIG:	E: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING DATE: GEOLOG DRILLER:	No.: IST: :	SG2003 10/29/08 Conti EICHIER				
					N	1ATEI	RIAL DESCRIPTION			PID/FI	) Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	0				New-	B2.1	G" TOPED IL		<b></b>		5253 		
_ 1					2012	To	F/C SAND- SOME GRAVEL	<u>_&gt;w</u>	DAMP	0			
<u>5</u> 2						oran	6						
1310			NR	-		BON		_		0			
<u> </u>				1						~			
	5								A150~	0			
					DENSE		SAME	SW	DAMP				
<u>5-2</u>			<b></b>						SUB ANG	0			
1325	ġ	/	75	0	-				GRAVEL				
										0			
	10					ora	G	· ~ . ~					
					DENSE	RFN	SAME	SW	DAMP	O			
53		$\angle$						_	SAME.				
1345	)	$\square$	3/5			đ	•			O			
		$\square$			X	SCI Ello	2 						
	15									Ô			
					DENSE		SAME	SW	DAMP				
54			2.8/g						1 /4.1	0			
1351									SAME				
										0			
	20			0									
					DENSE		SAME	SW	DAMP	0			
55			2.5/E										
1400			teantra							0			
	15									0			
* Wher ** Inclu Rem	i rock co de mon arks:	oring, ente itor readir	L er rock bro ng in 6 foo	L okeness. t intervals @	Devenole. I	ncrease	reading frequency if elevated reponse	read.	L Dril Backgroun	ling A	rea m):	C	
1000							· · · · · · · · · · · · · · · · · · ·		- Baokgroun	·~ \PP		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	<u>_</u>
Conv	rted	to We	ll:	Yes			No V Well I.	D. #:					

**BORING LOG** 

PRO PRO DRIL DRIL	JECT JECT LING LING	NAME NUMI COMI RIG:	∃: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2003 10129108 Conti EICHLER				
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	N Soil Density/ Consistency or Rock Hardness	IATEI Color	RIAL DESCRIPTION	U S C S *	Remarks	Sample Sample	Sampler BZ	Borehole**	Driller BZ**
50 C			3-55		DENSE	YEL	JE/C SAND- Some Gravel	SN	DAMP 11211 O SUB ANG TO SUB ROUND	0 p			
57	S				DENE		F/C SAND-TR. TO SOME GRAVEL	SW	DAMP	0 0			
1413			3.Y5						SUB ROUND NOT AS MUCH GRAVEL AS S-6.	0 (			
500	2~3		4/5		DENER	GRAN ORAN BRAN	F/C SAND - TR F. GRAVEL	SN	DAMP 14" GRAVEL	0			
	40			39-8		JRAN BRAI	6 TR CLAY C 39.8'		NAVAS D	0 0			
N ST SC SC		$\square$	4/5	415	DENSE	GRA	SAND (F/C)	DC SM	VERY DENSE DRILLING 41-45	0			
	45				DENSE	R S S S S S	SAND (F/C)	SM	DAMP	0 0			
50 Balan			4/5			1488 		/Sw		0			
* When ** Inclu Rem	trock co de mon arks:	oring, ente	er rock bro	keness. t intervals (	Dorehole. I	ncrease	reading frequency if elevated reponse	read.	Drillin Background	g Ai (ppi	rea n):[	2	>

Converted to Well: Yes

Well I.D. #:

No

PRO PRO DRIL DRIL	JECT JECT LING LING	NAME NUME COME RIG:	E: BER: PANY:	NWIRP 112G0 Zebra DPT-S	Bethpag 1687 Joil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2004 10127108 Conti EICHLER				
					N	IATEI	RIAL DESCRIPTION			PID/FIC	) Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	USCS*	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		$\nearrow$			DENSE	asn	G"TOPSOIL F/C SAND-SOME	5h	DAMP	0			
5-1					Call Provide	TO	GRAVEL-TR						
6			NA			1/5110	ROOTS		1/2" GRAVEL	0			
1110		/				POLAC POLAC			SUB ANG.				
						DI-IN				0			
					DENSE		E/C SAND- SANE	SW	DANAD				
6.0							GRAVEL	12023 1914	I" MAX	~			
0~2			3.1/2	pro-					TO SUB ANG	$\square$			
1140			12	۲					GRADEL.	0			
	In							s					
	V 800				DENSE		SAME	SW	DAMP	0			
53									1110				
e 1:145			3/5							0			
		$\square$	17						LESS GRAVEL				
	ū		-						LAST 11 OF SAMPLE	0			
					DENSE		SAME	Sw	DAMP				
5-4			3.45						SUB ROUND	0			
1200									SUB ANG GRAVEL				
						1				0			
	20			6									
					DENSE		SAME	SN	DAMP	Õ			
5-5									34" MAX				
1202			2/5							0			
	25									0			
* When ** Inclu Rem	de mon arks:	itor readir	er rock brong in 6 foo	t intervals (	borehole.	ncrease	No Well I	read.	Drilli Background	ng A I (ppi	rea m):	Ć	>
**BORING LOG** 

PRO PRO DRIL DRIL	JECT JECT LING LING	NAMI NUMI COMI RIG:	E: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpaç 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2004 1012708 Conti EICHUER				
					M	IATEI	RIAL DESCRIPTION		F	PID/FID	Read	ling (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	บ ร ร ะ	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DENSE	BRA	I FIM SAND-SOME	SW	DAMP	0			
5-6							GEAVEL		34" MAX				
0			3.5/_						ANG GRAVEL				
1215			/5						NOT AS MUCH	$\bigcirc$			
								<u> </u>	C.SAND AS				
	30								1 from t t an on an	0			
		$\angle$			DENSE		SAME	<u>SW</u>	SAME				
57										0			
1230			3.8/5										
f an other rise			40000										
-	25												
	39				P.F.		FIC CAUD SOME	SIL	Quar	~			
		$\sim$			-255		GRAVEL	VVer	3/ UNV				
<u>58</u>			3.5/						ROUND TO				—
1238		/	- 5					<u> </u>	SUB ANG	$\bigcirc$			
									OKAVCO				
	40									Ò			
					DENSE		SAME	SW	DAMP				
59			3/5						SUR ROUND	0			
- Dec									TO SUB ANG				
102	p	$\sim$							GRAVEL	~			
	100	$\sim$							·				
	45				D								
					TENSE		SAME	SW	DAMP->MOIST	0			
5-10	)		00						SAME.	ļ			
Iža	)		3.75							$\bigcirc$			
				۲									
	50			тр			TD 2 50'			0			
* Wher ** Inclu Rem	de mon arks:	oring, ente itor readir	er rock bro	okeness. t intervals (	@ borehole. 1	Increase	reading frequency if elevated reponse	read.	50 IL GAS SAMPLE Drillir Background	ng A (pp	rea m):	6	2

Converted to Well: Yes

-----

Well I.D. #:

No

## **BORING LOG**

PRO PRO DRIL DRIL	PROJECT NAME: PROJECT NUMBE RILLING COMPA RILLING RIG: mple Depth Blows / Si vo. (Ft.) 6" or Re			NWIRP 112G0 Zebra DPT-S	Bethpag 1687 Joil Gas	ge II	BORING DATE: GEOLOG DRILLER	No.: AIST:	: <u>SG2005</u> 10/24/08 : <u>Conti</u> EICHLER					
					N	IATEI	RIAL DESCRIPTION	Ī		PID/FIC	) Rea	ding (I	ppm)	
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	USCS*	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	
					NEIRE	CRON 1	4" TOPSOIL	2	HAND AUGER	0				
						PSC 101	GRAVEL		TQ 5's			•••		
5-1 1030		$\square$	NA							0				
		$\square$												
	D.	$\square$			-					0				
					DENGE	BRN	F/C SAND-TR	SW	DAMP					
s-2							to some gravel		"≩q" MAX	0				
ll B		$\nearrow$	3/50	۲					SUB ROUND					
		$\square$								0				
	10					VGM	ao							
					DENSE	BRA	F/C SAND-SOME	SW	DAMP	6				
5-3			2.8/2			B. (64) B.	GRAVEL		XAM QUI					
110										0				
									· · ·					
	1 Care									0				
	12	$\frown$			DEAR		SANCE	G.		Vurd"				
5-4		$\sim$	29.		-142%		DANK		DAIVE	~				
<u>e</u> Nic			5.5		·				SHIVIE			_		
										0				
	20	$\nearrow$		6		TAN								
					DENSE	BRA	SAME	SW	DAMP	0				
5-5			3/5						SAME					
1122														
	25			1										
* Wher ** Inclu Rem	rock co de mon arks:	itor readir	er rock broom for the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of the foct of	t intervals (	borehole. I	ncrease	Preading frequency if elevated repons	e read.	Drill Backgroun	ing A d (pp	rea m):	C	>	

1	
Tetra Tech NUS, Inc.	<b>BORING LOG</b>

Fł.

Page	2	of	2
------	---	----	---

PRO PRO DRIL DRIL	ROJECT NAME: ROJECT NUMBER: RILLING COMPANY RILLING RIG: mple Depth Blows / Sample (Ft.) 6" or Recover			NWIRP 112G0 ⁻ Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING DATE: GEOLO DRILLE	G No.: OGIST: :R:	SG2005 10124108 Conti EICHLER						
					N	<b>IATEI</b>	RIAL DESCRIPTION			PID/FIE	Read	ling (p	opm)		
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**		
	25					- T. 6							22		
		$\angle$		-	FENSE	BRAJ	F/C SAND-SOME	<u>sv</u>	DAMP	0					
56			4/5				GRAVEL		SUB ROUND						
1129									sub ang	0					
	30					TAN				$\cap$					
	- Bin. or the			ana na ka-as	NELVE	1 1	E/M SANN-TRA	ne caa	DANAP						
e_7			3.2/~				GRAVEL	Kin	VOUMAN	$\langle$					
8		$\sim$			· · ·				12 MITA	0					
1135										Á					
	an, 2000									$\circ$			_		
	3				<b>b</b> ~										
		/	25		- NOR		SAME.			$\odot$	<u> </u>				
5-8			~75	-	····.										
1200	)	Ζ,								O					
		$\square$													
	40			TD						0					
				e40'					STOP AT 40'						
		$\square$							HAD TO PULL						
									DUE TO LINER						
				•					ROD.		-				
		$\sim$		-											
				1			nn 1801.					_			
<u></u>					-		·····					_			
				۲											
	7.	$\angle$		J					and the set of the set						
* Wher ** Inclu Rem	n rock co de mon arks:	oring, ente itor readir	er rock brong in 6 foc	okeness. ot intervals @	borehole.	increase	reading frequency if elevated report	nse read.	SOIL GAS SAM Drillir Background	ig Ai (ppi	 rea m):[	C	2		
Con	/erted	l to We	ell:	Yes			No Wel	I I.D. #:							

# **BORING LOG**

PRO PRO DRIL DRIL	PROJECT NAME: PROJECT NUMBER: PRILLING COMPANY: RILLING RIG:			NWIRP 112G0 ⁻ Zebra DPT-S	Bethpag 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	:: <u>SG2006</u> 10/23/08 T: <u>Conti</u> EICHLER						
					N	1ATE	RIAL DESCRIPTION	Ι		PID/FIC	) Read	ding (j	ppm)		
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**		
	<u> </u>				DEAFE	REN	6" TOPSOIL		HAND AUGER	0					
GI					V	TO	D. SAND-SOME	.Sw/	DS'						
e B4C	)		AN			BRN	GRAVEL			0					
		$\angle$													
	5	$\square$				YEU	DW			0					
					DENSE	BRN	F/C SAND - SOME	SW	DAMP-> MOIST	,					
5-2							GRAVEL		SUB BOUND TO	0					
1400			4/5						sub ang						
				6						0					
	Ol							~ ~							
					DENSE		SAME	5w	SAME	0					
5-3			3/5				P		DAMP						
1410										0					
-10									-						
	1000			-						0					
	1.5	$\frown$			DENSE		CANC		DAMO	$\square$			$\square$		
5.4		$\sim$	3.3/					SN	12"OMAX						
e 1422			- 5	-					SUB KOUND TO						
									GRAVEL	0					
	20			]											
					BENGE		SAME	SW	DAMP	0					
5-5 P			2.3/5						14" MAX						
1427				1					SAME AS ABV.	0					
			/												
	25		,							0			$\square$		
* Wher ** Inclu Rem	de mon arks:	oring, ente	er rock bro ng in 6 foo TRAC DUAL	okeness. ot intervals of <u>KMT</u> UE	© borehole. D DP E ⊤ C	Increase	e reading frequency if elevated reponse GEOPROBE RIG) VANCE BORING	read.	Drilli Background	ng Al	rea m):	Ĉ	2		
Conv	vertec	to We	ell:	Yes			No Well I.	D. #:							

B-31

BORING LOG

1.24

PRO PRO DRIL DRIL	JECT JECT LING LING	⁻ NAMI NUMI COMI RIG:	E: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	No.: ST:	SG2006 10/23/08 Conti EICHLER				
					M	IATEI	RIAL DESCRIPTION			PID/FI	) Read	ting (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	~ ~			North Tops, Tops, Tops	DEILO	YEU	PW. CAND-	SIA A	DANAD	6	i stati	a de la	e (7,6)
			3 = .			ISKN	SOME GRAVEL	-200	UKAIL WAY A	2			
Ste		$\leftarrow$						+	SUBANG TO				
1430	)						· · · · · · · · · · · · · · · · · · ·	+	SUBROUND	0			
							4						
	30				6		· · · · · · · · · · · · · · · · · · ·			Ø			
		$\angle$			DENSE		SAME	<u>Sw</u>	DAMP	ļ			
5-7		$\square$	3.%							0			
14392													
										0			
	้เรา												
				19933 <b>6 693 723</b>	PENSE		F/C SAND-TR TO	)	DAMP	0			
5-8		$\square$	2.5	1			SOME GRAVEL		34" MAX P				
R LUUL						· · · · ·			SUB ANG.	0			
	40	$\sim$								0			
	19			ಕೆಯ ಮನ ಎಂಡ	DENCE		E/M CAND TR TO		SANS				
5-9		$\sim$	3/-		- Conditions		SOME GRAVEL		- STORE				
1450		$\sim$	13					-					
- 50		$\sim$											
·	وسم ۵												
	45				DE	Bo.,			S				-
5-10	)		2.51		-NSE	KN	SAME		DAMP	0			
		/	~~E	-		To		<u> </u>	SAME				
1910				-		"Ets				Ô			
		/		۲						<b> </b>			
	50					ļ				0			
* Wher ** Inclu Rem	e rock ce de mon arks:	itor readir	er rock brong in 6 foc	bkeness. ti intervals (	borehole. I	ncrease	Preading frequency if elevated reponse	read.	Drillin Background	ng A I (pp	rea m):	C	>
Conv	/ertec	to We	ell:	Yes		-	NO Well I.	U. #:					

FL	Tetra Tech NUS, Inc.	
----	----------------------	--

**BORING LOG** 

PRO PRO DRIL DRIL	PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG:		NWIRP 112G0 ⁻ Zebra DPT-S	Bethpag 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG200 7 10(23)08 Conti EICHLER					
					N	IATEI	RIAL DESCRIPTION		1	PID/FIC	) Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					LOCCE	PPN	GU TOPSOIL	S.A.	WAND ANGO	$\sim$			1.11.11
					- Since	SACN -	JEVAJO		TO 5'	0			
S-T			NA			10							
8		/ /	1.012		M DENSE	OKA BA	1 2 TO 3'			~			
10	~~									0			
	2				D	<b>A</b> SQ	NGE	· · · ·	Alma ha i shinka ka				
					TANGE	ISRN 	SIUTY F/C SAND	$\mathbb{N}$	DAMP 1/5"MAX	4			
<u>s-2</u> e			<b>4</b> 1	,		ТО	SOME GRAVEL		SUB ANG TO	$\circ$			
<u>)</u> a		/	75	۲		УЕи	DW						
145	)					BRN			×	0			
	0				D-			<u> </u>					
		/			-ENSE		SAME	52	DAMP I"MAX	0			
<u>5-3</u> Q			3.2/	•					<u>SUB ROUND TO</u> SUB ANG				
<u>0955</u>			- '5				(			0			
		/											
	15				D-				BOWLDER PC	0			
					ENSE		F/C SAND-SOME	<u>Sw</u>	STUCK IN DRIVE				
<u>5-4</u>			a,						DUALTUBE HAD	Ø			
1050			95						TO CLEAR.				
									MAXGRAVEL	Ô			
	20	$\angle$		۲	~	ORAN	36		SUB ANG TO				
		$\geq$			ENSE	BRN	SAME	SN	9MAQ '	0			
5-5			~ ~										
1057		$\square$	5/6							0			
		$\square$				TAN AN			LESS GRAVEL BOTM 1 ET				
	25									0			
* When ** Inclue Rema	rock co de moni arks: rerted	to We	er rock bro ig in 6 foo VCK   SE 7 II:	keness. t intervals @ MTD 3 TO AD Yes	borehole. I DPT R NANCE		reading frequency if elevated reponse r <u>GEOPROBE</u> DUAL <u>RING</u> No Well I.E	ead.	Soil GAS SAW Drillir Background	ายน ig Ai (ppi	rea m):	Sep C	

卍

**BORING LOG** 

Pro Pro Dril Dril	ROJECT NAME: ROJECT NUMBER: RILLING COMPANY: RILLING RIG: mple Depth Blows / Sample (Ft.) 6" or Recovery		NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge li	BORING DATE: GEOLOG DRILLER:	No.: IST: :	SG2007 10123108 Conti EICHLER					
					N	1ATE	RIAL DESCRIPTION			PID/FIC	) Read	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DENCE	YEU	AND CANNE TO TO	EIA1	DAND	6			
0.1					Teat Calena	_BKV	SOME GRAVEL		3/" MAX SIZE	$\bigcirc$			
200			3.5/					_	SOR KOOND				
1105			'5						SUBANG.	Р		_	
	30	$\square$								0			
2					DENSE	tan Brn	F/C SAND - SOME	SW	9MAD				
54							GRANEL		1" MAX D	0			
1115			4/=						SUB ROUND				
									SUIS ANG.	~			
							аналастана <u>и</u> алантана <u>и</u>						<b>—</b>
	35					TAN	<b>V</b> I)	<u> </u>		<u> </u>			
					- CHEE	ASE	F/C SAND - TR	SW	DAMP	0			
5-8		$\angle$					TO SOME GRAVEL		3/4" MAX SIZE				
(128			3/5						SUB ROUND	0			
	-												
	40									0			
	1.00				PEAK-	TAN	C 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Eu :	CALLE				
0.0					400	BKN	JAME		SAME	9		_	
100			3.3/				· · · · · · · · · · · · · · · · · · ·	_					
- 25			- /5				····			0			
	45	$\angle$				YEU	LUX CUX			$\bigcirc$			
					DENSE	ÉRN	SAME	SW	SAME				
S-IC	,		3.8/5							0			
NULC.													
11 0				<i></i>						0			
	pus						~ 50' BOTTOM						
* W/boo	DO L		ar rock bro	TD	۱ ۲		OF SAMPLE						
** Inclu Rem	de mon arks:	itor readir	in 6 foo	t intervals	9 borehole. I 2 S	ncrease	reading frequency if elevated reponse	read.	Drillir Background	ng Ai (ppi	rea m): <b>[</b>	С	$\sum$

Converted to Well: Yes

No _____ Well I.D. #: _____

_____

Tł	Tetra Tech NUS, Inc.
----	----------------------

**BORING LOG** 

	DRIL	LING LING	COMI RIG:	PANY:	Zebra DPT-S	oil Gas		GEOLOG DRILLEF	alST: I:	EICHLER				
						M	1ATE	RIAL DESCRIPTION			PID/FII	D Rea	ding	(pr
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	
20			/			TAN BRN	na kasang nin	GU TOPSOIL SILTY SAND-SOM	line gang Torang	HAND AUGER	C			
1	5-1				é	TR		GRAVEL	-	705'				Γ
	e 1545		$\square$	-		ORANG BRZ		SOME CLAY 2703		DAMP,	0			Ī
								SAND-SOME GRAVI	ia en la entre en				<b> </b>	
		5	$\angle$								0			
, t						DENSE	BRN	SUTY F/C SAND	SW	DAMP				
~121	SZ C							SOME GRAVEL		1"O MAX	$\bigcirc$		<u> </u>	
	1315			45						SUB ROUND SUB ANG				
										GRAVEL	0		·	
- 100		0.							ů .					I
						1	ORAN BRN	NG SAME	Sh	DAMP	0			Ī
	5-3		/							SAME AS				Ī
	1330			3/5						5-2.	6			İ
			/											İ
		15									6			Ì
							YEU	OW	84	DAND				ľ
	s-4			3.5/			DEr	1 -2-01/1		144"GRAVEL	5			t
	1335									SAME AS				ł
											0			I
		20												
								SAME	SW	AMAD	0			I
	S-5			2.8/5						:				Ī
	1340	)									0			Ī
														T
2		25									0			Ī
	* When	rock co de moni	oring, ente tor readir	er rock bro	keness. t intervals @	) borehole. I	ncrease	reading frequency if elevated repons	e read.	Drilli	na A	rea		
	Rema	arks:		TRAC	C MTT	700 /	16	ENTINE ( MAN TURE		Background	aa) b	m):	C	ŝ

	Æ	Tetra	Tech N	NUS, Inc	).	BC	DRING LOG	Ĺ	Р	age 🚄	2,	of _	2
PROJECT NAME:NWIRP Bethpage IIBORING No.:SG200%PROJECT NUMBER:112G01687DATE:IOI ZII (CDRILLING COMPANY:ZebraGEOLOGIST:ContiDRILLING RIG:DPT-Soil GasDRILLER:EI CHLE													
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	N Soil Density/ Consistency or Rock Hardness	Color	Material Classific	NUS stionS *	Remarks	Sample Sample	Sampler BZ	) gnib Borehole**	Driller BZ** (udd
5-6 01350	>		3/5			\$N 	F/M SAND- Some Gravel	TR TO SM	DAMP I''GRAVEL SUB ANG TO SUB TROUND	0 0			
\$ ⁷	2						SAME	.SM	DAMP SAME AS 5-6	0			
₽ ₽	25		3.2/5		Nexe	7		1.e-		0			
а- 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		/	4/5				<u>F/CSANDS</u> GRAVEL	DHE SM	DAMP 1"OGRAVEL SUB ROUND SUB ANG.	0			
s-9	40	>					SAME	.54	DAMP 3/110 CDNG	0			
C HIZ	<del>4</del> 5		3/5			YEL	040			0			
5 0 29 1420			3/	·	PENSE	PAZ Z	F/M SAND-T GRAVEL	RACE SM	9 MAG	0			
* When	SO rock co	pring, ente	er rock bro	TD keness. @	. 50/		TR CLAY~ 49	-50	NO SIGN H2C ENDE 50'				

** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks:__________Background (ppm):

No

Converted to Well: Yes

Ì

Well I.D. #:

### **BORING LOG**

PRO PRO DRIL DRIL	JECT JECT LING LING	⁻ NAMI - NUMI i COMI i RIG:	∃: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING N DATE: GEOLOGI DRILLER:	lo.: ST:	SG2009 1012010 8 Conti			<u> </u>	
					N	1ATEI	RIAL DESCRIPTION			PID/FIE	D Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		$\square$			LOOSE	tan Brai	SILTY SAND - SOME	SM	HAND AUGER TO	0			
5-1							GRAVEL		5'.				
C 1230		$\square$	N/A						DRY > DAMP	0			
	L L						······			0			
	-		,		INNE	YEW	XQ	SW	DAD				
	· · · · · · · · · · · · · · · · · · ·				Vise /	ASR	GRAVEL	Svv	PAMP	$\sim$			$\square$
<u>5-2</u> C		$ \sim$	3/	-	M	OT		<u> </u>		0			
1250			15						· · · · · · · · · · · · · · · · · · ·				$\left  - \right $
						BRN			- -	0			
	10												
		$\square$			м	YELL	OW F/C. SAND-	SW	DAMP	0			
					DENSE	BRN	Some GRAVEL	'	GRAVEL				
S ^{-M} e			3/5						I"MAX O	0			
1300									sub ang				
	15			1			· · · · ·						
				1	M		5000	SAA	Dago	0			
		$\sim$	2 9		DENDE		->nME		No" A LAND				
5-4 0315			5.2	-					SUB ROUND GRAVEL TO	0			
									sub Ang				
	20	$\square$								0			
					м		SAME	SIA	amaa				
5-5			3.1		DENSE				SAME AS ARM.	0			
1320			15	]									
		$\mathbb{Z}$								0			
	25												
* When ** Inclu <b>Rem</b>	i rock co de mon <b>arks:</b>	oring, ente itor readir	er rock brong in 6 foo	okeness. ot intervals of KMTD	borehole.	ncrease (G	reading frequency if elevated reponse	read.	Drillir Background	ng A (pp	rea m):	C	>

Converted to Well: Yes

s

Well I.D. #:

No

**BORING LOG** 

PRO PRO DRIL DRIL	JECT JECT LING LING	NAMI NUMI COMI RIG:	∃: BER: PANY:	NWIRF 112G0 Zebra DPT-S	9 Bethpag 1687 Soil Gas	ge II	BORING DATE: GEOLOG DRILLER	No.: IST: :	SG200 9 10120 108 Conti PETE EICH	LEF	2		
					N	1ATEI	RIAL DESCRIPTION			PID/FIC	) Rea	ding (	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		$\angle$	60 EL 4		N DENSE	TAN BRN	F/M SAND - TR	SM	DAMP	0			
56			*·*/5						PA RINCOLL				
1324									SUB ANG	6			
	30						· · · · · · · · · · · · · · · · · · ·			0			
s-7				32±									
e 1330		$\square$	∛5	1999- Ban dar 19 - 4	M DENSE	oran Brn	G F/C SAND-SOME	SN	DAMP	0			
							GRAVEL		SUB RND				
	35							~ .	SUB ANG.	0			
						YEUS	NO SAME	SIN	DAMP				
5-8			81			10001 10							
1332 1332		$\square$	15										
									LESS GRAVEL	0			
	40												
	<u>s 900</u>				M	TAN	SUTY SAND EN	SM	DANOD	0			
ร-ูๆ			25		Carling Construct	<u>OKN</u>	TR GRAVEL		3/4" GRAVEL				
1345		$\geq$	3,15						SUB ROUND SUB ANG	0			
									MORE GRAVE				
	45								AT BOTM	Ġ			
	1 60				М	ORA	NGE SILTY E/M SAND	CU					
S-10 C		$\square$	4.5/5		DENSE		TR TO SOME GRAVE		DAMPSMOIST	0			
1356													
		$\angle$						V					
	50							Sw		0			
* When ** Inclue Rema	rock co de moni arks:	oring, ente itor readin	er rock bro	keness. t intervals @	Ø borehole. I	ncrease	reading frequency if elevated reponse	read.	Drillir Background	ng Ai (ppi	rea n):[		

Converted to Well: Yes

3 _____

No _____ Well I.D. #:

retra recri NUS, inc.	Tetra	Tech	NUS,	Inc.
-----------------------	-------	------	------	------

# **BORING LOG**

PRC PRC DRIL	JECI JECI LING	NAMI NUM COM	E: BER: PANY:	NWIRP 112G0 Zebra	Bethpag 1687	ge ll	BOI DA ⁻ GE0	RING No.: FE: OLOGIST:	<u>SG2009</u> <u>10 20 08</u> Conti				
DRIL	LING	RIG:		DPT-S	oil Gas		DRI	LLER:	P. EICHLER				
Sample No. and Type of RQD	e Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	N Soil Density/ Consistency or Rock Hardness	Color	RIAL DESCRIPTION	on S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ** dd
	30				M	ASP	16		A 102		1843) -		
		$\sim$	•	4	DENSE	BRN	SILTY FIM SAI	ng al	MOISI	$\Box$			
571 ©		$\sim$	3.5	-					<u>v</u>				
1430	<u>}</u>		-5	-						$ \circ $			
	20	$\geq$		V		PINK BRN	<b>`</b>		WET IN	0			
				ΤÞ					DRIVE SHOE				
							BOTH e 55'						
								5	SLIGHT CHAN	3			
	-					-	-		AT 55 L BUT	45			·
		$\nearrow$							WAS WET.				
		$\square$											
				1									
		$\sim$											
				1						+			
		$\sim$											
* Wher ** Inclu Rem	n rock co ude mon arks:	oring, ente	I er rock bro ng in 6 foo	L okeness. it intervals @	l Ø borehole.	Increase	reading frequency if elevated	I reponse read.	Drilli Background	ng A d (pp	rea m):	C	<u> </u>
Conv	vertec	to We	ell:	Yes			No 🗸	Well I.D. #	1 1				

T	Tetra Tech NUS, Inc. BORING LOG Page 3 of 3												
PRO. PRO. DRILL	PROJECT NAME:  BETHPALC  N W REP    PROJECT NUMBER:  DATE:  1/L ( U)    PRILLING COMPANY:  JNI-TECH  GEOLOGIST:    PRILLING RIG:  CME  H54												
Sample	Depth	Blows /	Sample	Lithology	M	ATEF	RIAL DESCRIPTION	U		PID/FI	D Rea	ding (	opm)
No. and Type or RQD	(Ft.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
i445.	41.5	29	7640		luije	TAN	SêA Zanarêkê (curê	らい	MUIST				
		10 9			Locht	E.T Bilsons	41/ FIND LOAND CORAVEL TRACE SILT	57	A 0151		+		$\vdash$
A15-	48:5	9	07 10			Gay	48.0 - 48.25 - 6.24				<u> </u>		$\left  \right $
119.5-	50.5	9	2.0%	+	<u> </u>		SHATY CLAY, MED PASTICA		- MUIST				$\Box$
76:7		9 il			LOSE	إمددوه	VF-M SAND, 40 BOUNDED SCHE SILT, THACE CLAY	<u> </u>	WET		_		ļ
50:5 -	52.5	58	100070	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ESPI GINY	LONG F C. UVEL, ROIND		WET		╀		┝╌┦
<u> </u>		12/16		4		13:20-00	SUNE CLAY ENAMINATIONS	S.M	<i><i><i><i>L</i>E7</i></i></i>		┢	<u> </u>	
52.5 -	54.5	23	2010		TILMT	ond	CUAY 15 COLLAY MED	ći	MUIST		$\uparrow$	†—	
54.5 -	51.6	6/1			1,1276	300,00	VF-C GAND BUBCOUNDE DJEGAN	SM	WET				
<u>,,,,</u>	100	14/17					WITH LI" LONAY CAY LAYERS THRUSCHES				_		
2.5-	50.3	23 40			Loose	ET Baon	F-C 5-3:201 NDED GAND	-	W87		+	_	┟─┤
·	<u> </u>	4 44		4			SCARE & GILL JUDINDERS				+	+	+-
58.5-	59.5	11	┾	4		+-	Guid 15 HEAVING	<u> </u>			+	$\frac{1}{1}$	╋╍┥
		$\vdash$		-		+-	CIEP DANCING MULE TO	65	305				
	<u> </u>	$\checkmark$										╞	$\downarrow$
											+		+
				_				+-	 		┿		+-
		$\downarrow$									╈	+-	┼─
		$\left  \right $		-				Ť			+	+	╀╴
	+	$\vdash$	+-	-		-	+						T
	+		$\top$										
* Wh ** Inc Rer	en rock clude m marks	coring, e onitor rea $3: \frac{2''}{70}$	nter rock t ding in 6 f well 36 3 7 f	brokeness. oot intervals T (2 5 BENTO	s @ borehole. 9 3335 NITE T	Increa Dici Dici S	se reading frequency if elevated reponse い ^{じ */} CALEEN TO 35 ¹ 年2 1865, (このマエコン 2 ¹ 86	e read.	් Backgro	Drilling ound (p	Are	a):	
Coi	nverte	ed to W	Vell:	Yes	X		No Well I	.D. #	SVE IOLD				
	544100 2" WELL SET & 35' B65, 10' 0.020 SCAPEN												

		, - NIA 841	<b>z</b> .	2.711.20	1.F.			lo ·	SUE 1017				
PRO	JECT	NUMI	=. BER:	170 1 171 -10	n N	<u>w</u>	DATE:		1/0/09				
DRIL	LING	COM	PANY:	Gin - TO	SCH		GEOLOGI	ST:	CHARLIE WAR	<u>د د</u>			
DRIL	LING	RIG:		CME	H54		DRILLER:		DAN E				
					N	IATE	RIAL DESCRIPTION	Γ		PID/FII	D Rea	ding (	ppm
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
		$\geq$				· · ·				-	<u> </u>		
<i>c</i> -	25												
							<u>.</u>						┝
24.5-	26.5	49	<u>-50%</u>		Loifé	LT Billings	F-L SAND, SUBPORNDED,	5i²	MOIST				
		10 7					W/F-M COAVEL - SUB ZUINDED				<u> </u>		
26.5	28.5	913	75%		LUNIE	LT.	F-M SIND, SUBPOINDED	500	MU.ST	-			_
っぷくー	30.6	6	- Chin		10090	1	F-L SAND GUBCOMDED	6.7	M.0151				
	2010	12 11	75/0				W/ F-A C. LAVEL - SUB DED						
30.5-	32.5	11/12	15%							-			
32,5-	341.5	4 3	1640				······································						
745-	71 5	12 13 10											┝
5 ///	, S	10 13	-75%		Larie	TAN	F-M SAND SUBRANNED	50	MUIST				
36.15-	38,5	10/2	<u>99"10</u>		land	T.an	F-L SANDISUBROUNDED D	57	MOIST	<u> </u> .			_
38.5-	40.5	10/15	-75 90		lai're	12m/ 6.241	VF-M SAUR SUBROWNDED	50	MUIST				
		1818		attan i Arthonia a									_
40,5-	42.5	14 19	-Ke				SiA Some Rusting	ulie.		+	-		┢
42.5-	44.5	15 21	75.Ÿ¢										F
* Wher ** Inclu Rem	rock c de mor arks:	oring, ent	er rock brong in 6 foo	bkeness. t intervals (	Dorehole.		reading frequency if elevated reponse	read.	Drilli Background	ing A	rea		

Converted	to Well:	
-----------	----------	--

Yes

No

Well I.D. #:



### OVERBURDEN MONITORING WELL SHEET FLUSH - MOUNT



B-42

	Tetra Tech NUS, Inc. BORING LOG Page of														
PRO	JECT		E:	NWIRP	BETH	PACÉ			BORING N	۱o.:	SVE 101				
			BER:		Tout 1					٩т٠	<u>  1 08</u>				
DRIL	LING	RIG:		/ME	HSA					01.	DEN E				
	-				l N			SCRIP		<b>T</b>		DIF	/EID 8	oodine	(000)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Ma	terial Clas	ssification	U S C S *	Remarks		Sample	Borehole**	Driller BZ**
													╈		
		$\square$					Sél	BORI	~6 LOG						
							FOR	SVE	1013		·				
							FOR	LTTHO	1069						
							35'	B65	END OF						
									BORING						
														Τ	
														Τ	
					,								Τ		
											<u> </u>				
									<u>-</u>						
													T		
	Ĩ														
				ľ							·····		$\top$		
	ľ														
	Ť										· · · · · · · · · · · · · · · · · · ·		$\uparrow$		
* When	rock co	ring, ente	r rock broł	keness.								<u>_</u>		_	السب
** Includ Rems	ie monit arks:	or reading	g in 6 foot ມະນຸ 🗸	intervals @	borehole. In	crease	reading frec	uency if el	evated reponse reponse $r_{2}$	ead.	D Backgrou	rilling . und (p	Area	a • [	
	-	#2 9	SAND 7	0 23'	BGS BE	NONT	E TO J	BG.	GROUT TO	5 3	365			·L	
Conve	Converted to Well: Yes X No Well I.D. #: Sve IOI														

Comer ...

WELL NO .: _ SVE 101



### OVERBURDEN MONITORING WELL SHEET FLUSH - MOUNT

Tetra Tech NUS, inc.



APPENDIX C

REFERENCED ANALYTICAL DATA

#### KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: CTO 449 & 450 NWIRP Calverton PO No: Sample Date: 02/19/08 Received Date: 02/21/08 Extraction Date: Analysis Date: 21-FEB-2008 17:58 Report Date: 03/05/2008 Matrix: SOIL % Solids: 95.4

Bellpy

Lab ID: SB0889-3 Client ID: BP-IDW-01 SDG: SB0889 Extracted by: Extraction Method: SW846 5035 Analyst: SKT Analysis Method: SW846 8260B Lab Prep Batch: WG48623 Units: ug/Kgdrywt

CAS#	Compound	Flags	Results	DF	PQL	Adj.POL	Adi.MDL
75-71-8	Dichlorodifluoromethane	υ	5	1.0	5	5	0.9
74-87-3	Chloromethane	U	5	1.0	5	5	2
75-01-4	Vinyl chloride	σ	5	1.0	5	5	2
74-83-9	Bromomethane	ប	5	1.0	5	5	2
75-00-3	Chloroethane	υ	5	1.0	5	5	2
75-69-4	Trichlorofluoromethane	U	5	1.0	5	5	1.0
75-35-4	1,1-Dichloroethene	υ	5	1.0	5	5	1
76-13-1	Freon-113	U	5	J.0	5	5	2
67-64-1	Acetone	υ	26	1.0	25	26	8
75-15-0	Carbon Disulfide	U	5	1.0	5	5	3
79-20-9	Methyl Acetate	U	5	1.0	5	5	2
75-09-2	Methylene Chloride	υ	26	1.0	25	26	2
156-60-5	trans-1,2-Dichloroethene	U	5	1.0		5	- 1
1634-04-4	Methyl tert-butyl ether	υ	5	1.0	5	5	2
75-34-3	1,1-Dichloroethane	υ	5	1.0	5	5	2
156-59-2	cis-1,2-Dichloroethene	υ	S	1.0	5	5	1
540-59-0	1,2-Dichloroethylene (total)	ប	10	1.0	70	70	1
78-93-3	2-Butanone	Ū	26	1.0	25	26	л. 5
67-66-3	Chloroform	Ū		3.0	5	5	ດັງ
71-55-6	1,1,1-Trichloroethane	U	5	1 0	5	5	1
1735-17-7	Cyclohexane	ប	- 5	1 0	5	5	1
56-23-5	Carbon Tetrachloride	Ū	5	3.0	5	c c	2
71-43-2	Benzene	σ	5	1.0	~ 5	5	2
107-06-2	1,2-Dichloroethane	ΰ	5	1.0	5	ŝ	<u>م</u>
79-01-6	Trichloroethene	ភ	3	1.0	5	5	2
108-87-2	Methylcvclohexane	Ū	5	1 0	5	5	- 1
78-87-5	1,2-Dichloropropane	υ	5	1.0	5	5	1
75-27~4	Bromodichloromethane	Ū	- 5	1 0	5	5	- ٦
10061-01-5	cis-1,3-dichloropropene	Ū	5	1.0	Ę	5	-
108-10-1	4-methyl-2-pentanone	ΰ	26	1.0	25	26	
108-88-3	Toluene	ΰ	5	1.0		5	Ś
10061-02-6	trans-1,3-Dichloropropene	υ	5	7.0	5	 E	1
79-00-5	1,1,2-Trichloroethane	U	5	7.0	5	5	1
127-18-4	Tetrachloroethene	υ υ	5	1 0	5	5	л Э
591-78-6	2-Hexanone	ΰ	26	3.0	25	26	5
124-48-1	Dibromochloromethane	ប	5	1 0	5	5	00
106-93-4	1,2-Dibromoethane		5	5 D	5	5	0.9
108-90-7	Chlorobenzene	TY	5	1 0	5	5	0.0
100-41-4	Ethylbenzene	Ť	5	1 0	5	5	"
	m+p-Xvlenes	- U	10	1 0	10	ר חר	7
95-47-6	o-Xvlene	- U		1.0 1.0	× ۲۰	۲. ۲.	ט ז
1330-20-7	Xvlenes (total)	U	14	1 A	יי זר	ر ۱۲	
100-42-5	Styrene	ΰ	5	1.0	- 5	5	1

Page 01 of 02

.

M6336.D

#### KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: CTO 449 & 450 NWIRP Calverton PO No: Sample Date: 02/19/08 Received Date: 02/21/08 Extraction Date: Analysis Date: 21-FEB-2008 17:58 Report Date: 03/05/2008 Matrix: SOIL % Solids: 96.4 Lab ID: SB0889-3 Client ID: BP-IDW-01 SDG: SB0889 Extracted by: Extraction Method: SW846 5035 Analyst: SKT Analysis Method: SW846 8260B Lab Prep Batch: WG48623 Units: ug/Kgdrywt

CAS#	Compound	Flags	Results	DF	PQL	Adj.POL	Adj.MDL
75-25-2	Bromoform	σ	5	1.0	5	5	0.9
98-82-8	Isopropylbenzene	υ	5	1.0	5	5	1
79-34-5	1,1,2,2-Tetrachloroethane	υ	5	1.0	5	5	0.9
541-73-1	1,3-Dichlorobenzene	υ	5	1.0	5	5	0.9
106-46-7	1,4-Dichlorobenzene	υ	5	1.0	5	5	0.9
95-50-1	1,2-Dichlorobenzene	U	5	1.0	5	5	1
96-12-8	1,2-Dibromo-3-Chloropropane	υ	5	1.0	5	S	1
120-82-1	1,2,4-Trichlorobenzene	υ	5	1.0	5	5	2
1868-53-7	Dibromofluoromethane		76%			_	_
17060-07-0	1,2-Dichloroethane-D4		88%				
2037-26-5	Toluene-D8		72%				
460-00-4	P-Bromofluorobenzene		65%				
•	Page 02	of 02	M6336.D				

Sample Data Summary A0000011

#### FORM 1 VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CLIENT SAMPLE ID

	BP-IDW-01
Lab Name: KATAHDIN ANALYTICAL SERVICES	Lab Code: KAS
Project: CTO 449 & 450 NWIRP CALVERTON	SDG No.: SB0889
Matrix: (soil/water) SOIL	Lab Sample ID: SB0889-3
Sample wt/vol: 4.970(g/mL) G	Lab File ID: M6336
Level: (low/med) LOW	Date Received: 02/21/08
% Moisture: not dec. 4	Date Analyzed: 02/21/08
GC Column: RTX-VMS ID: 0.18 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(mL)	Soil Aliquot Volume:(uL)

Number TICs found: 0

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kgdrywt

1.  .    2.  .    3.  .    4.  .    5.  .    6.  .    7	
3.	
3-	······
5.	
5,	
7	
	. <u></u>
26	
27	
28	
29	
30	

FORM I VOA-TIC

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Matrix: WATER Percent Solids: 0.00 Client Field ID: BP-IDW-01 SDG Name: SB0889 Lab Sample ID: SB0889-003T

٠

#### **Concentration Units : ug/L**

CAS No.	Analyte	Concentration	С	Q	М	DF	Adjusted PQL	Adjusted IDL
7440-38-2	ARSENIC, TCLP	8.50	U		P	5	40	8.50
7440-39-3	BARIUM, TCLP	143			Р	5	25	1.40
7440-43-9	CADMIUM, TCLP	1.2	В		P	5	50	0.50
7440-47-3	CHROMIUM, TCLP	11.4	В		Р	5	75	1.90
7439-92-1	LEAD, TCLP	7.8	В		Р	5	25	7.00
7439-97-6	MERCURY, TCLP	0.02	U		CV	1	0.20	0.02
7782-49-2	SELENIUM, TCLP	11.00	U		P	5	50	11.00
7440-22-4	SILVER, TCLP	2.70	U		Р	5	75	. 2.70

**Comments:** 

Bottle ID: B

.

#### KATAHDIN ANALYTICAL SERVICES Report of Analytical Results

Client: Tetra Tech NUS, Inc Project: CTO 449 & 450 NWIRP Calverton PO No: Sample Date: 02/19/08 Received Date: 02/21/08 Extraction Date: 02/25/08 Analysis Date: 29-FEB-2008 17:01 Report Date: 03/04/2008 Matrix: SOIL % Solids: 96.4 Lab ID: SB0809-3 Client ID: BP-IDW-01 SDG: SB0889 Extracted by: KM Extraction Method: SW846 3545 Analyst: SJC Analysis Method: SW846 8082 Lab Prep Batch: WG48682 Units: ug/Kgdrywt

CAS#	Compound	Flags	Results	DF	PQL	Adj.PQL	Adj.MDL
12674-11-2	Aroclor-1016	υ	18	1.0	17	18	17
11104-28-2	Aroclor-1221	σ	18	1.0	17	1.8	12
11141-16-5	Aroclor-1232	υ	18	1.0	17	18	5.5
53469-21-9	Aroclor-1242	υ	18	1.0	17	18	7.0
12672-29-6	Aroclor-1248		52	1.0	17	18	5.9
11097-69-1	Aroclor-1254	U	18	1.0	17	1.8	13
11096-82-5	Aroclor-1260	υ	18	1.0	17	18	14
877-09-8	Tetrachloro-m-xylene		95%				
2051-24-3	Decachlorobiphenyl		84%				

01 of 01

Page

6BB5015.d





FORM CADD NO. SDIV-BH.DWG - REV 1 - 9/10/98



FORM CADD NO. SDIV-BH.DWG - REV 1 - 9/10/98





FORM CADD NO. SDIV-BH.DWG - REV 1 - 9/10/98





FORM CADD NO. SDIV-BH.DWG - REV 1 - 9/10/98



/2810/112GN 02 PILOT-SCALE TEST RESULTS

APPENDIX D

		Intermediate								
	Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
	SVPM 12S	48	0	-0.01	0	0	-0.005			
	BPS1-PZ2002I	82	0.02	0.01	0.02	0.02	0.015			
	SVPM 11S	161	0.02	0.01	-0.01	-0.01	0			
	BPS1-PZ2003I	238	-0.01	-0.02	0	0	-0.01			
	BPS1-PZ2007I	270	0.01		0					
				Deep						
	Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
	EW-1	44	0.03	0.02	0.01	0.01	0.015			
	SVPM 12	48	0.07	0.06	0	0	0.03			
Ā	BPS1-PZ2002D	82	0.01	0.03	0	0	0.015			
÷	BPS1-MW1	92	0.02	0.02	0	0	0.01			
	EW-5	119	0	-0.01	0	0	-0.005			
	SVPM 11	161	0	-0.01	0	0	-0.005			
	BPS1-PZ2003D	238	-0.02	-0.03	0	0	-0.015			
	BPS1-PZ2007D	270	0.01		0					

Test No. 1 Flow Rate BPS1-SVE101D: 20 CFM

Notes:

Vacuum values showed as positive number

	Intermediate								
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
BPS1-PZ2002I	93	0.02	0.01	0.02	0.02	0.015			
SVPM 11S	161	0.02	0.01	-0.01	-0.01	0			
BPS1-PZ2007I	270	0.01		0					
			Deep						
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
EW-1	44	0.03	0.02	0.01	0.01	0.015			
SVPM 12	48	0.07	0.06	0	0	0.03			
BPS1-PZ2002D	82	0.01	0	0	0	0			
			0.04	0	0	0.005			
DF31-IVIVVI	92	0.02	0.01	0	0	0.005			

Adjusted Test No. 1 Flow Rate BPS1-SVE101D: 20 CFM

D-2

Notes:

Vacuum values showed as positive number



D-3

Intermediate									
	Well ID	Distance from BPS1-SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)		
	SVPM 12S	48	-0.01	0.01	0.01	0.01	0.01		
	BPS1-PZ2002I	82	0	0.02	0.04	0.04	0.03		
	SVPM 11S	161	-0.02	0	0	0	0		
	BPS1-PZ2003I	238	-0.03	-0.01	-0.02	-0.02	-0.015		
	BPS1-PZ2007I	270	-0.02		0				
	Deep								
	Well ID	Distance from BPS1-SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)		
Þ	EW-1	44	0	0.03	0.03	0.03	0.03		
4	SVPM 12	48	-0.01	0.02	0	0	0.01		
	BPS1-PZ2002D	82	0.01	0.05	0.03	0.04	0.045		
	BPS1-MW1	92	-0.06	-0.06	-0.03	-0.03	-0.045		
	EW-5	119	-0.08	-0.05	-0.01	-0.01	-0.03		
	SVPM 11	161	0	0.03	0	0	0.015		
	BPS1-PZ2003D	238	-0.04	-0.01	-0.01	-0.01	-0.01		
	BPS1-PZ2007D	270	-0.03		0				

Test No. 2 Flow Rate BPS1-SVE101D: 41-61 CFM

Notes:

Vacuum values showed as positive number

Intermediate								
Well ID	Distance from BPS1-SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)		
SVPM 12S	48	-0.01	0.01	0.01	0.01	0.01		
BPS1-PZ2002I	82	0	0.02	0.04	0.04	0.03		
BPS1-PZ2007I	270	-0.02		0				
Deep								
Well ID	Distance from BPS1-SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)		
EW-1	44	0	0.03	0.03	0.03	0.03		
SVPM 12	48	-0.01	0.02	0	0	0.01		
BPS1-PZ2002D	82	0.01	0.04	0.03	0.03	0.035		
SVPM 11	161	0	0.03	0	0	0.015		
BPS1-PZ2007D	270	-0.03		0				

Adjusted Test No. 2 Flow Rate BPS1-SVE101D: 41-61 CFM

Notes:

Vacuum values showed as positive number



D-6

			Intermediate						
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
SVPM 12S	48	0	-0.01	0.02	0.03	0.01			
BPS1-PZ2002I	82	0.03	0.02	0.06	0.07	0.045			
SVPM 11S	161	0.01	0	0	0.01	0.005			
BPS1-PZ2003I	238	0.01	0	-0.03	-0.02	-0.01			
BPS1-PZ2007I	270	0.01		-0.01					
	Deep								
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)			
EW-1	44	0.07	0.06	0.07	0.09	0.075			
SVPM 12	48	0.03	0.02	0.04	0.06	0.04			
BPS1-PZ2002D	82	0.04	0.02	0.05	0.02	0.02			
BPS1-MW1	92	-0.01	-0.01	0	0	-0.005			
EW-5	119	0.05	0.04	0.02	0.04	0.04			
SVPM 11	161	0	-0.01	0	0.02	0.005			
BPS1-PZ2003D	238	0.02	0.01	0.03	0.05	0.03			
BPS1-PZ2007D	270	0.01		-0.02					

#### Test No. 3 Flow Rate BPS1-SVE101D: 41-61 CFM Flow Rate BPS1-SVE101I: 20 CFM

Notes:

Vacuum values showed as positive number
## Adjusted Test No. 3 Flow Rate BPS1-SVE101D: 41-61 CFM Flow Rate BPS1-SVE101I: 20 CFM

	Intermediate						
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)	
SVPM 12S	48	0	-0.01	0.02	0.03	0.01	
BPS1-PZ2002I	82	0.03	0.02	0.06	0.07	0.045	
SVPM 11S	161	0.01	0	0	0.01	0.005	
BPS1-PZ2007I	270	0.01		-0.01			
			Deep				
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)	
EW-1	44	0.07	0.06	0.07	0.09	0.075	
SVPM 12	48	0.03	0.02	0.04	0.06	0.04	
BPS1-PZ2002D	82	0.04	0.03	0.05	0.07	0.05	
EW-5	119	0.05	0.04	0.02	0.04	0.04	
SVPM 11	161	0	-0.01	0	0.02	0.005	
BPS1-PZ2003D	238	0.02	0.01	0.03	0.05	0.03	
BPS1-PZ2007D	270	0.01		-0.02			

Notes:

Vacuum values showed as positive number



D-9

Test No. 4
Flow Rate BPS1-SVE101D: 13-44 CFM
Flow Rate BPS1-SVE101I: 48-55 CFM

	Intermediate						
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)	
SVPM 12S	48	0.1	0.1	0.09	0.08	0.09	
BPS1-PZ2002I	82	0.04	0.04	0.06	0.05	0.045	
SVPM 11S	161	0.02	0.02	0.02	0.01	0.015	
BPS1-PZ2003I	238	0.02	0.02	0.02	0.01	0.015	
BPS1-PZ2007I	270	0		0.01			
	Deep						
Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)	
EW-1	44	0.14	0.13	0.11	0.11	0.12	
5 SVPM 12	48	0.13	0.12	0.12	0.12	0.12	
BPS1-PZ2002D	82	0.04	0.03	0.06	0.01	0.02	
BPS1-MW1	92	0.08	0.08	0.07	0.07	0.075	
EW-5	119	0.05	0.04	0.05	0.05	0.045	
SVPM 11	161	0	-0.01	0	0	-0.005	
BPS1-PZ2003D	238	0.01	0	0.02	0.02	0.01	
BPS1-PZ2007D	270	0.01		0			

Notes:

Vacuum values showed as positive number

## AdjustedTest No. 4 Flow Rate BPS1-SVE101D: 13-44 CFM Flow Rate BPS1-SVE101I: 48-55 CFM

	Intermediate						
	Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)
	SVPM 12S	48	0.1	0.1	0.09	0.08	0.09
	BPS1-PZ2002I	82	0.04	0.04	0.06	0.05	0.045
	SVPM 11S	161	0.02	0.02	0.02	0.01	0.015
	BPS1-PZ2003I	238	0.02	0.02	0.02	0.01	0.015
[	BPS1-PZ2007I	270	0		0.01		
	Deep						
	Well ID	Distance from BPS1- SVE 101 (ft)	1st Vacuum Reading (in. of H20)	1st Adjusted Vacuum Reading (in. of H20)	2nd Vacuum Reading (in. of H20)	2nd Adjusted Vacuum Reading (in. of H20)	Average Vacuum Reading (in. of H20)
	EW-1	44	0.14	0.13	0.11	0.11	0.12
	SVPM 12	48	0.13	0.12	0.12	0.12	0.12
7	BPS1-PZ2002D	82	0.04	0.03	0.06	0.06	0.045
-	BPS1-MW1	92	0.08	0.07	0.07	0.07	0.07
	EW-5	119	0.05	0.04	0.05	0.05	0.045
	BPS1-PZ2003D	238	0.01	0	0.02	0.02	0.01
	BPS1-PZ2007D	270	0.01		0		

Notes:

Vacuum values showed as positive number



Flow Rate (CFM)	Int, 48 feet	Int, 82 feet	Int, 161 feet	Int, 238 feet	Int, 270 feet	Deep, 44 feet	Deep, 48 feet	Deep, 82 feet	Deep, 92 fee	Deep, 119 fee	Deep, 238 feet	Deep, 270 feet
Test 1 - 20 CFM, Deep only	0.00	0.01	0.01	0.00	0.00	0.02	0.02	0.00	0.00	0.00	0.00	0.00
Test 2 - 51 CFM, Deep only	0.01	0.04	0.00	0.00	0.00	0.03	0.01	0.03	0.00	0.00	0.00	0.00
Test 3 - 71 CFM, Deep & Int	0.03	0.04	0.00	0.00	0.00	0.09	0.06	0.07	0.00	0.04	0.02	0
Test 4 - 96 CFM, Deep & Int	0.10	0.05	0.02	0.01	0.00	0.13	0.12	0.06	0.07	0.05	0.02	0



Flow Rate (CFM)	Int, 48 feet	Int, 82 feet	Int, 161 feet	Int, 238 feet	Int, 270 feet
	48	82	161	238	270
Test 1 - 20 CFM, Deep only	0.00	0.01	0.00	0.00	0.00
Test 2 - 51 CFM, Deep only	0.01	0.04	0.00	0.00	0.00
Test 3 - 71 CFM, Deep & Int	0.03	0.04	0.00	0.00	0.00
Test 4 - 96 CFM, Deep & Int	0.10	0.05	0.02	0.01	0.00



Flow Rate (CFM)	Deep, 44 feet	Deep, 48 feet	Deep, 82 feet	Deep, 119 fee	Deep, 238 feet	Deep, 270 feet
	44	48	82	119	238	270
Test 1 - 20 CFM, Deep only	0.02	0.02	0.00	0.00	0.00	
Test 2 - 51 CFM, Deep only	0.03	0.01	0.03	0.00	0.00	
Test 3 - 71 CFM, Deep & Int	0.09	0.06	0.07	0.04	0.02	
Test 4 - 96 CFM, Deep & Int	0.13	0.12	0.06	0.05	0.02	



Test 4 - 96 CFM, Deep & Int					
Flow Rate (CFM)	Int, 48 feet	Int, 82 feet	Int, 161 feet	Int, 238 feet	Int, 270 feet
Distance	48	82	161	238	270
Actual - 96 CFM	-1.00	-1.30	-1.70	-2.00	
Forecast - 96 CFM	-1.07	-1.24	-1.65	-2.04	
Actual - 51 CFM					
Forecast - 51 CFM					
	48	82	161	238	230
Actual - 96 CFM	0.10	0.05	0.02	0.01	0.00
Forecast - 96 CFM	0.0853	0.0572	0.0225	0.0091	0.0100
Actual - 51 CFM					
Forecast - 51 CFM					



Flow Rate (CFM)	Deep, 44 feet	Deep, 48 feet	Deep, 82 feet	Deep, 119 fee	Deep, 238 feet	
Distance	44	48	82	119	238	303
Actual - 96 CFM	-0.89	-0.92	-1.22	-1.30	-1.70	
Forecast - 96 CFM	-0.95	-0.97	-1.11	-1.26	-1.74	-2.00
Actual - 51 CFM						
Forecast - 51 CFM						
	44	48	82	119	238	303
Actual - 96 CFM	0.13	0.12	0.06	0.05	0.02	
Forecast - 96 CFM	0.111	0.107	0.078	0.055	0.018	0.010
Actual - 51 CFM						
Forecast - 51 CFM						



APPENDIX E

CATALOG CUTS





# HP SERIES II

HIGH PRESSURE BLOWERS

7697 Snider Road, Mason, OH 45040-9135

**Telephone: 513-573-0600** Visit us at www.cincinnatifan.com for more information.

> Cat. No. HP-II-908 Supersedes HP-II-1104



(00 (FM

9

E-2

## **Protect[®] VS Series** Vapor Phase Adsorbers



#### Description

The PROTECT[™] VS series vessels are portable, low pressure vapor adsorbers that are easily put into service. These vessels hold from 2,000 to 8,000 pounds of activated carbon and are designed to operate at a maximum pressure of 5 psi, and maximum vacuum of 5" of mercury, with an operating temperature up to 150°F.

#### Features

- Durable carbon steel construction
- Upper and lower open-air plenum area for efficient carbon
   usage
- · Rust-prohibitive exterior epoxy urethane coating
- 16" round inspection manway
- Condensate drain plug
- Forklift guides
- · Lifting lugs to facilitate moving
- Fitting for sample port or Protect™ Carbon Saturation Indicator
- All models available to rent

#### Pressure Drop



#### Safety Message

Wet activated carbon preferentially removes oxygen from air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate sampling and work procedures for potentially low oxygen spaces should be followed, including all applicable Federal and State requirements.

#### Specifications

Model ft ³	GAC lbs.*	Recommende Flow Ra	ed Maximum Ite, cfm	Weigh (Empty / O	t, lbs. (perating)
VS-4 72	2,000	1,1	00	1,760 /	3,760
VS-6 180	5,000	2,5	00	3,340 /	8,340
VS-8 265	8,000	4,5	00	4,900 /	12,900

*Weight estimated based on vessel volume.

# **Protect[™] VS Series** Vapor Phase Adsorbers



Olutions'

#### **Vessel Dimensions**

Model Cross-Sectional Side Inl Area, ft ² Shell (A)	let/Outlet Forklift Overall Overall Overall (B) Guides (C) Width (D) Height (E) Length (F)
VS-4 16 72" 6'	"150# flg
VS-6 36 96″ 8′	" 150# flg 48" 73" 土 103" 土 77" 土
VS-8 64 96" 12	2" 150# flg 48" 97"土 103"土 101"土





PARTIAL PRESSURE, PSIA

APPENDIX F

AIR PERMITTING CALCULATION

3/28/9 CONTAMINANT ASSESSMENT SUMMARY OF DAR-1 ANALYSIS Page SHORT-TERM CAVITY

POINT or AREA SOURCE

% OF SGC % OF AGC % OF AGC % OF AGC MAXIMUM ACTUAL POTENTIAL ACTUAL ANNUAL ANNUAL (Cav,Pt,Area) ANNUAL ug/m3 CAS NUMBER AGC

0.0000 460.9793 463.2948 1.0517 SUMMARY TOTALS

3/28/9 CONTAMINANT IMPACT SUMMARY OF DAR-1 ANALYSIS POINT or AREA SOURCE Page SHORT-TERM CAVITY

ANNUAL ACTUAL ug/m3 MAXIMUM ACTUAL POTENTIAL ug/m3 ug/m3 ANNUAL (Cav,Pt,Area) ANNUAL ug/m3 ug/m3 AGC CAS NUMBER

00071-55-6 1000.0000000 59.37670900 0.00000000 1.14655352 1.15652355 0.50000000 118.75341800 0.00000000 2.29310703 2.30450135 1.00000000 1.16171813 0.00000000 0.02243257 0.02278864 00079-01-6 00127-18-4

EMISSION POINT = CAS NUMBER = 00079-01-6 SIC = 0

AGC = 0.5000000 ug/m SGC = 14000.00000 ug/m

STACK: HA= 6., SH= 30., D= 8., T= 55., V= 28.00, q= 600.00 BUILDING: Dpl= 100., BW= 40., BL= 60., %CONTROL= 0.0000

- ** Reported Hourly Emission Rate (Q) is equal to 0.092000000 lbs/hour.
- ** Reported Annual Emission Rate (Qa) is equal to 809.000000 lbs/year.
- II.B. REFINED CAVITY IMPACT METHOD (DAR-1, APPENDIX B).
- II.B.1. Shortest Distance from building to Property Line (100. feet) exceeds the cavity length, or 3 times the building height (72. feet). Therefore, this buildings cavity impacts (if they occur) are confined to on site receptors. Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
- II.C. CAVITY Annual Impact ( 0.000 ug/m3 ) is less than AGC ( 0.500 ug/m3 ).
- III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
- III.A.1.a. Plume rise should not be considered (hs/hb < 1.5). Computer will assume: he = hs.
- III.A.2. STANDARD POINT SOURCE Actual Annual Impact is equal to 2.305 ug/m3 for 8793. hours/year of operation.
- III.A.3. STANDARD POINT SOURCE Potential Annual Impact is equal

- to 2.293 ug/m3 assuming 8,760 hours/year of operation.
- III.A.4. Stack height to building height ratio is less than 1.5. Computer will not reduce impacts.
- III.A.5. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
- III.D. STANDARD POINT SOURCE Actual Annual Impact (2.305 ug/m3) is 0.500 ug/m3 ). greater than AGC (

**** Refer to DAR-1 Section III.D.1. A refined site ****
**** specific modeling analyis may be required. ****

2.293 ug/m3) III.D. STANDARD POINT SOURCE Potential Annual Impact ( 0.500 ug/m3 ). is greater than AGC (

**** Potential Annual Impact is based upon 8760 hours/year ****
**** operation instead of reported 8793. hours/year. ****

- DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94.
- 2.2 CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs( 30. feet) > hc( 28. feet).
- II.C. CAVITY Short-Term Impact ( 0.000 ug/m3 ) is less than SGC ( 14000.000 ug/m3 ).
- 2.3 Plume rise should not be considered (hs/hb < 1.5).</li>Computer will assume: he = hs.

- Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal 29.644 ug/m, for hs/hb = 1.252 2.4
- 2.5 Maximum downwash Short-Term Impact (CSTD) is equal to 122.111 ug/m3, for: hs/hb = 1.25 and ESH = 30. feet.
- 2.6 Adjusted maximum downwash Short-Term (CSTD) is equal to 118.753 ug/m3, for: RF = 0.97
- III.D. Maximum non-cavity Short-Term Impact (CST: 118.753 ug/m3 ) is less than the SGC ( 14000.000 ug/m3 ) for the point source.
- (SHORT-TERM MAXIMUM, (Cav,Pt,Area)) equals 118.753 ug/m3 and is reported in the ANALYSIS MENU. This value is less than Maximum Short-Term cavity, point, or area source impact the SGC ( 14000.000 ug/m3 ). 2.7

EMISSION POINT = CAS NUMBER = 00127-18-4 SIC = 0

AGC = 1.00000000 ug/m3 SGC = 1000.00000 ug/m3

STACK: HA= 6., SH= 30., D= 8., T= 55., V= 28.00, q= 600.00 BUILDING: Dpl= 100., BW= 40., BL= 60., %CONTROL= 0.0000 ** Reported Hourly Emission Rate (Q) is equal to 0.000900000 lbs/hour.

** Reported Annual Emission Rate (Qa) is equal to 8.000000 lbs/year.

F-4

II.B. REFINED CAVITY IMPACT METHOD (DAR-1, APPENDIX B).

- II.B.1. Shortest Distance from building to Property Line (100. feet) exceeds the cavity length, or 3 times the building height (72. feet). Therefore, this buildings cavity impacts (if they occur) are confined to on site receptors. Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
- II.C. CAVITY Annual Impact (0.000 ug/m3) is less than AGC (1.000 ug/m3).

III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).

- III.A.1.a. Plume rise should not be considered (hs/hb < 1.5). Computer will assume: he = hs.
- III.A.2. STANDARD POINT SOURCE Actual Annual Impact is equal to 0.023 ug/m3 for 8889. hours/year of operation.

F-5

- III.A.3. STANDARD POINT SOURCE Potential Annual Impact is equal to 0.022 ug/m3 assuming 8,760 hours/year of operation.
- III.A.4. Stack height to building height ratio is less than 1.5. Computer will not reduce impacts.
- III.A.5. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD
- III.D. STANDARD POINT SOURCE Actual Annual Impact ( 0.023 ug/m3 ) is less than AGC (1.000 ug/m3).

III.D. STANDARD POINT SOURCE Potential Annual Impact ( 0.022 ug/m3)

is less than AGC ( 1.000 ug/m3 ).

**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8889. hours/year. ****

- 2.0 DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94.
- 2.2 CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs( 30. feet) > hc( 28. feet).
- II.C. CAVITY Short-Term Impact (0.000 ug/m3) is less than SGC (1000.000 ug/m3).
- H2.3Plume rise should not be considered ( hs/hb < 1.5 ).</th>OComputer will assume: he = hs.
- Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal 0.290 ug/m3, for hs/hb = 1.255 2.4
- 2.5 Maximum downwash Short-Term Impact (CSTD) is equal to 1.195 ug/m3, for: hs/hb = 1.25 and ESH = 30. feet.
- 2.6 Adjusted maximum downwash Short-Term (CSTD) is equal to 1.162 ug/m3, for: RF = 0.97
- III.D. Maximum non-cavity Short-Term Impact (CST: 1.162 ug/m3 ) is less than the SGC ( 1000.000 ug/m3 ) for the point source.
- 2.7 Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav,Pt,Area)) equals 1.162 ug/m3

and is reported in the ANALYSIS MENU. This value is less than the SGC (  $1000.000~{\rm ug}{\rm m3}$  ).

EMISSION POINT = CAS NUMBER = 00071-55-6 SIC = 0

AGC = 1000.0000000 ug/m SGC = 68000.00000 ug/m

STACK: HA= 6., SH= 30., D= 8., T= 55., V= 28.00, q= 600.00 BUILDING: DpI= 100., BW= 40., BL= 60., %CONTROL= 0.0000 ** Reported Hourly Emission Rate (Q) is equal to 0.046000000 lbs/hour.

** Reported Annual Emission Rate (Qa) is equal to 406.000000 lbs/year.

F-7

II.B. REFINED CAVITY IMPACT METHOD (DAR-1, APPENDIX B).

- II.B.1. Shortest Distance from building to Property Line (100. feet) exceeds the cavity length, or 3 times the building height (72. feet). Therefore, this buildings cavity impacts (if they occur) are confined to on site receptors. Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
- II.C. CAVITY Annual Impact (0.000 ug/m3) is less than AGC (1000.000 ug/m3).

III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).

III.A.1.a. Plume rise should not be considered ( hs/hb < 1.5 ).

Computer will assume: he = hs.

- III.A.2. STANDARD POINT SOURCE Actual Annual Impact is equal to 1.157 ug/m3 for 8826. hours/year of operation.
- III.A.3. STANDARD POINT SOURCE Potential Annual Impact is equal to 1.147 ug/m3 assuming 8,760 hours/year of operation.
- III.A.4. Stack height to building height ratio is less than 1.5. Computer will not reduce impacts.
- III.A.5. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
- III.D. STANDARD POINT SOURCE Actual Annual Impact ( 1.157 ug/m3 ) is less than AGC ( 1000.000 ug/m3 ).
- III.D. STANDARD POINT SOURCE Potential Annual Impact ( 1.147 ug/m3 ) is less than AGC ( 1000.000 ug/m3 ).

**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8826. hours/year. ****

- 2.0 DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94.
- 2.2 CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs( 30. feet) > hc( 28. feet).
- II.C. CAVITY Short-Term Impact (0.000 ug/m3) is less than SGC (68000.000 ug/m3).

- 2.3 Plume rise should not be considered ( hs/hb < 1.5 ). Computer will assume: he = hs.
- Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal 14.822 ug/m3, for hs/hb = 1.25t0 2.4

1.725

- 2.5 Maximum downwash Short-Term Impact (CSTD) is equal to 61.056 ug/m3, for: hs/hb = 1.25 and ESH = 30. feet.
- 2.6 Adjusted maximum downwash Short-Term (CSTD) is equal to 59.377 ug/m3, for: RF = 0.97
- III.D. Maximum non-cavity Short-Term Impact (CST: 59.377 ug/m3 ) is less than the SGC ( 68000.000 ug/m3 ) for the point source.
- 2.7 Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav,Pt,Area)) equals 59.377 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (68000.000 ug/m3).