SITE 1 PHASE II SOIL VAPOR REPORT

NWIRP BETHPAGE

Bethpage, New York

Naval Facilities Engineering Command Mid-Atlantic

Contract No. N62472-03-D-0057 Contract Task Order 147

JUNE 2009

SITE 1 PHASE II SOIL VAPOR REPORT

NAVAL FACILITIES ENGINEERING COMMAND MID-ATLANTIC

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command
Mid-Atlantic
9742 Maryland Avenue
Norfolk, Virginia 23511-3095

Prepared and Submitted by: Tetra Tech NUS, Inc. 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406-1433

> Contract No. N62472-03-D-0057 Contract Task Order 147

> > June 2009

PREPARED UNDER THE DIRECTION OF:

ROBERT SOK P.G. PROJECT MANAGER TETRA TECH NUS, INC. NORFOLK, VIRGINIA APPROVED FOR SUBMISSION BY:

JOHN J. TREPANOWSKI, P.E. PROGRAM MANAGER TETRA TECH NUS, INC.

KING OF PRUSSIA, PENNSYLVANIA

TABLE OF CONTENTS

SECTION	ON PAG	ЭE
ACRO	NYMSA-	.1
1.0	INTRODUCTION1-	.1
2.0	FIELD AND SAMPLING ACTIVITIES2-	-1
3.0	SOIL GAS ANALYTICAL3-	.1
4.0	CONCLUSIONS AND RECOMMENDATIONS4-	-1
REFER	ENCES	∙1
	A Site Photos B Soil Boring Logs C Soil Gas Sampling Log Sheets D Chain of Custody Records E Data Analytical Reports F Data Validation Summaries TABLES	
NUMB	ER	
1 2 3	Field Investigation Summary Ambient Air Sampling Analytical Summary of Detections Soil Gas Sampling Analytical Summary of Detections	
	FIGURES	

NUMBER

- General Location Map Site Location Map Soil Gas Results 1
- 2

ACRONYMS

1, 1-DCA1, 1-dichloroethane1, 1-DCE1, 1-dichloroethene

AS/SVE air sparging/soil vapor extraction

bgs below ground surface

CLEAN Comprehensive Long-Term Environmental Action Navy

COC chain of custody
CTO contract task order
DPT direct-push technology

ELAP Environmental Laboratory Approval Program

NWIRP Naval Weapons Industrial Reserve Plant

NYSDOH New York State Department of Health

PCE tetrachloroethene

PID photoionization detector
RBC Risk Based Concentration
SVPM Soil Vapor Pressure Monitor

TCA 1, 1, 1-trichloroethene

TCE trichloroethene

VOC volatile organic compound

USEPA United States Environmental Protection Agency

μg/m³ micrograms per cubic meter

A-1 CTO-147

1.0 INTRODUCTION

This Data Summary Report was prepared by Tetra Tech NUS (TtNUS) under Contract Task Order (CTO) 147 for the Naval Facilities Engineering Command Mid-Atlantic under the Comprehensive Long-Term Environmental Action Navy (CLEAN) contract number N62472-03-D-0057. This Data Summary Report presents the soil vapor investigation activities that took place from October 2008 through January 2009 along the Town of Oyster Bay right-of-ways to the east of Site 1 - Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Long Island, New York (Figures 1 and 2). Site 1 was impacted by historic releases of chlorinated solvents and was remediated via an air sparging/soil vapor extraction (AS/SVE) system between 1998 and 2002. The treatment was focused on groundwater protection.

Soil vapor testing was conducted along the eastern boundary of Site 1 in January 2008. Based on the soil gas analytical results from this sampling event, the maximum TCE, PCE, and TCA concentrations observed at Site 1 were 180,000 micrograms per cubic meter of air (µg/m³), 5,300 µg/m³, and 90,000 µg/m³, respectively. These maximum concentrations were located in the south portion of Site 1 along the eastern boundary. Details regarding the sampling conducted in January 2008 can be found in the Site 1 Soil Vapor Investigation Report (TtNUSa, 2008). Based on this sampling data from January 2008, further investigation was needed to delineate the potential migration of contaminated soil vapor into the adjacent residential neighborhood.

This work was conducted in accordance with the letter work plan (TtNUSb, 2008) and New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006).

1-1 CTO-147

2.0 FIELD AND SAMPLING ACTIVITIES

From October 2008 through January 2009, 11 soil borings and 33 temporary soil gas points were installed. Soil gas samples were collected from each of the temporary soil gas points (Figure 3).

In October 2008, nine soil gas borings and 27 temporary soil gas points were installed and soil gas samples were collected along the Town of Oyster Bay right-of-ways in the neighborhood adjacent to Site 1. At each of the nine locations, a continuous soil boring/core was advanced to approximately 50 feet below ground surface (bgs) to evaluate the subsurface lithology. Three soil gas sampling points were then installed at each location using direct-push technology (DPT). The depths of the actual sampling points were modified in the field as necessary to avoid any silt or clay units encountered in the subsurface (see Table 1 for actual sample depths). Site photos are presented in Appendix A.

Based on the soil gas sampling results from October 2008, two additional soil gas sampling locations were selected to further delineate the extent of contaminated soil gas in the residential neighborhood. These additional locations are depicted on Figure 3 (BPS1-SG2010 and BPS1-SG2011) and the same procedures described in the previous paragraph were followed for these two locations.

Soils from the ground surface to the bottom of the borings were generally characterized as fine to coarse sands, with varying amounts of silt and gravel. Soil boring log sheets are presented in Appendix B. Thin clay lenses were encountered in only three borings along 11th Street (BPS1-SG2002, BPS1-SG2003, and BPS1-SG2010). These lenses were observed at approximately 40 to 46 feet bgs and ranged from 0.5 inches to 2 feet thick. Soil gas points were installed at depths to avoid these lenses. Soil cuttings from the borings were containerized in a 55 gallon drum for characterization and disposal.

Soil gas points were installed in separate borings, approximately 2 to 3 feet away from the soil boring and other soil gas points. The soil gas points were installed using DPT to approximate depths of 8 ft, 20 ft and 49 feet. Boring numbers, sample identification numbers, and actual sample depths are presented in Table 1.

During sampling, several steps were taken to ensure the representativeness of the soil gas sample. For each soil gas point, the sampling point was pushed to the target sample depth and the sample screen below the rods was exposed. A tube with a threaded o-ring seal connection was lowered from the surface and screwed into a paired sample screen port. The ground surface was covered with plastic and a 5-gallon container was placed over the equipment. Rods

2-1 CTO-147

and tubing penetrating through the bucket were sealed with bentonite and the container was filled with helium.

Sample collection consisted of first purging the well screen and sample tubing with a positive displacement pump. Purge and sample rates varied from 0.12 to 0.25 liters per minute. During purging, helium detector and photoionization detector (PID) readings of the purged air were obtained and recorded. The helium readings were used to determine potential leakage of air from the surface to the sample point. PID readings were collected to support data evaluation. During the purge process, helium concentrations ranged from 0 to 2350 ppm; which were well below the 10% criteria of 100,000 ppm and indicating that outdoor air infiltration or leakage was negligible during the soil gas sampling. PID readings ranged from 0 to 9.2 parts per million. Details for each soil gas sample can be found on the Sample Log Sheets presented in Appendix C.

Following purging, SUMMA® canisters were utilized for collecting all soil gas samples. Each of the SUMMA® canisters were setup with regulators calibrated for a 30 minute sample collection under ambient conditions. Actual sample collection times ranged from approximately 40 to 60 minutes due to resistance encountered from subsurface conditions. After sample collection, SUMMA® canisters were shipped to a fixed-based laboratory via overnight carrier (e.g., Federal Express) for analysis and the temporary soil gas monitoring points were abandoned by removing the drive rods, and filling the resulting hole with clean No. 1 sand.

Ambient air samples were collected during soil gas sample collection to evaluate potential chemicals in the local ambient air. The SUMMA[®] canisters were positioned approximately 30 to 50 feet upwind of each soil gas sample location and at a height to 2 to 3 feet above grade. The ambient air sample was obtained over an eight-hour period that corresponded to the soil vapor collection activities. During the eight-hour collection period, SUMMA[®] canisters were moved during sampling activities as necessary, to remain upwind of each sample location. Sample log sheets for the ambient air samples collected during the investigation are presented in Appendix C and the analytical results are presented on Table 2.

The soil gas samples were analyzed according to United States Environmental Protection Agency (USEPA) Method TO-15 volatile organic compounds (VOCs) by Air Toxics Ltd. Folsom, California, an Environmental Laboratory Approval Program (ELAP) certified laboratory (USEPA, 1999).

2-2 CTO-147

3.0 SOIL GAS ANALYTICAL RESULTS

A total of 33 soil gas samples were collected from October 20, 2008 through January 6, 2009. Soil gas samples were collected from three discrete depths at eleven locations along the right-of-ways in the residential neighborhood (see Figure 3). Soil gas samples were collected via SUMMA® canisters calibrated to a collection time of 30 minutes. Details for each soil gas sample collected are presented on sample log sheets presented in Appendix C. Chain of custody forms and the laboratory analytical reports can be found in Appendices D and E, respectively. Data validation summaries are presented in Appendix F.

A summary of analytical results for compounds detected during soil gas sampling is presented in Table 3. For comparison, the USEPA Regional Screening Levels for Residential Air [RSL-RA (USEPA, 2008)], the NYSDOH Air Guideline Values, and the soil gas screening levels/ranges from the work plan (TTNUSa, 2008) were provided in Table 3. The NYSDOH also developed decision matrices for the evaluation of indoor air sampling results, and based on these matrices, sub-slab sampling results above 250 μ g/m³ for TCE and above 1,000 μ g/m³ for PCE or 1,1,1-trichloroethene (TCA) would require some type of mitigation. The decision matrices provided by the NYSDOH are normally used to specifically evaluate sampling results from sub-slab soil vapor and indoor air sampling. However, these values and the indoor air values were considered when evaluating and delineating contaminated soil vapor.

Based on a comparison of the soil gas results and USEPA RSL-RA and NYSDOH SVI guidance, TCE, PCE, and TCA represent the primary site contaminants of concern (COCs) and will be the primary focus of this evaluation. However, it should be noted that other compounds, including 1,1-dichloroethane, 1,1-dichloroethene, benzene, carbon tetrachloride, chloroform, and cis-1,2-dichloroethene were detected at levels exceeding EPA screening levels. These other compounds were detected at lower concentrations then the primary COCs and were also located within the footprint of the elevated TCE, PCE, and TCA results.

The soil gas results for TCE, PCE, and TCA are presented on Figure 3. Sample results from BPS1-SG2002 showed the highest offsite concentrations of TCE and TCA at 20 ft bgs, 89,000 $\mu g/m^3$ and 52,000 $\mu g/m^3$, respectively. This sample location was less then 100 feet from the highest onsite soil gas results for TCE and TCA. Sample results from BPS1-SG2001 showed the highest offsite concentrations of PCE at 20 ft bgs, 5,000 $\mu g/m^3$ and this sample was located approximately 70 feet from the highest onsite concentration of PCE at 5,300 $\mu g/m^3$. In general, the higher detections onsite and offsite are focused around the southeastern corner of Site 1.

3-1 CTO-147

The analytical results from the offsite soil vapor testing show a substantial decrease in soil vapor concentrations from onsite samples (Site 1) compared to the offsite soil gas samples collected in the neighborhood. Continual decreases in soil vapor concentrations were observed over distance away from Site 1. TCE, PCE, and TCA concentrations observed on 10^{th} Street showed a large decrease from maximum onsite concentrations (See Figure 3). Values observed along 10^{th} Street, at approximately 20 ft bgs (BPS1-SG2007), showed TCE at 87 μ g/m³, PCE at 29 μ g/m³ and TCA at 260 μ g/m³. These decreases in soil gas concentrations were over an approximate distance of 250 feet from Site 1 and showed a substantial decreasing trend with distance from the Site.

Based on the sample results from the initial nine sample locations, it was determine that two additional soil gas locations were needed to further delineate soil vapor contamination and verify the observed decreasing trend away from Site 1. One location was placed further east on 9^{th} Street (BPS1-SG2011) and the second was placed further south on 11^{th} Street (BPS1-SG2010). These additional soil gas samples showed a continued decrease in soil vapor concentrations with levels of TCE ranging from $0.14 \, \mu g/m^3$ to $19 \, \mu g/m^3$, PCE ranging from $0.57 \, \mu g/m^3$ to $4.9 \, \mu g/m^3$, and TCA concentrations ranging from $0.5 \, \mu g/m^3$ to $2.2 \, \mu g/m^3$. These soil vapor results confirmed the decreasing trend of soil vapor concentrations with distance and combined with the results from the initial nine locations; provide good delineation of the contaminated soil vapor.

Further evaluation of the analytical results indicated the extent of elevated TCE, PCE, and TCA concentrations in shallow soil vapor seem to be limited to the residential block roughly bounded by Sycamore Avenue to the north, 10^{th} Street to the east, and by Maple Avenue to the south. Soil gas results suggest that this area could potentially exhibit sub-slab soil vapor concentrations above the NYSDOH values of 250 μ g/m³ for TCE and 1,000 μ g/m³ for PCE and TCA.

3-2 CTO-147

4.0 CONCLUSIONS AND RECOMMENDATIONS

- 1. TCE, PCE, and TCA represent the primary site contaminants of concern. Soil gas samples collected along the eastern border of Site 1 (January 2008) indicated maximum TCE, PCE, and TCA concentrations of 180,000 μg/m³, 5,300 μg/m³ and 90,000 μg/m³ respectively. Offsite soil gas sampling showed maximum concentrations of TCE at 89,000 μg/m³, PCE at 5,000 μg/m³, and TCA at 52,000 μg/m³.
- 2. The analytical results from the offsite soil vapor testing show a substantial decrease in soil vapor concentrations from onsite samples (Site 1) compared to the offsite soil gas samples collected in the neighborhood. Continual decreases in soil vapor concentrations were observed over distance away from Site 1.
- Observed concentrations of TCE, PCE, and TCA above the NYSDOH sub-slab guideline values in shallow soil vapor seem to be limited to the adjacent residential block, roughly bounded by Sycamore Avenue to the north, 10th Street to the east, and by Maple Avenue to the south.
- 4. Based on the data collected during this offsite soil gas investigation in the residential neighborhood, indoor air and sub-slab soil vapor testing is recommended to determine if soil vapor intrusion is a concern in residential homes.

4-1 CTO-147

REFERENCES

New York State Department of Health (NYSDOH), 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

Tetra Tech NUS, Inc. (TtNUSa), 2008. Site 1-Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. April.

Tetra Tech NUS, Inc. (TtNUSb), 2008. Letter Work Plan-Site 1-Phase II Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. September.

United States Environmental Protection Agency (USEPA), 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). January.

United States Environmental Protection Agency (USEPA), 2008. EPA Regional Screening Levels for Residential Air, Oak Ridge National Laboratory (ORNL), updated September 2008, retrieved from the EPA website, http://www.epa.gov/reg3hwmd/risk/human/rb-concentration-table/index.htm

R-1 CTO-147

TABLE 1 FIELD INVESTIGATION SUMMARY SOIL GAS BORINGS PHASE II SOIL GAS TESTING NWIRP BETHPAGE, NEW YORK

Boring Number	Drilling Method	Total Boring Depth (feet) ¹	Sample Depth (feet)	Continuous Soil Core	Air Sample ID ²
			8	NO	BPS1-SG2001-08
			20	NO	BPS1-SG2001-20
BPS1-SG2001	DPT	50	49	YES	BPS1-SG2001-49
			8	NO	BPS1-SG2002-08
			20	NO	BPS1-SG2002-20
BPS1-SG2002	DPT	47.5	44	YES	BPS1-SG2002-44
			8	NO	BPS1-SG2003-08
			8	NO	BPS1-SG2003-08-DUP
			20	NO	BPS1-SG2003-20
BPS1-SG2003	DPT	50	49	YES	BPS1-SG2003-49
			8	NO	BPS1-SG2004-08
			20	NO	BPS1-SG2004-20
			49	YES	BPS1-SG2004-49
BPS1-SG2004	DPT	50	49	YES	BPS1-SG2004-49-DUP
			8	NO	BPS1-SG2005-08
			20	NO	BPS1-SG2005-20
BPS1-SG2005	DPT	40	49	YES	BPS1-SG2005-49
			8	NO	BPS1-SG2006-08
			20	NO	BPS1-SG2006-20
BPS1-SG2006	DPT	50	49	YES	BPS1-SG2006-49
			8	NO	BPS1-SG2007-08
			20	NO	BPS1-SG2007-20
			20	NO	BPS1-SG2007-20-DUP
BPS1-SG2007	DPT	50	49	YES	BPS1-SG2007-49
			8	NO	BPS1-SG2008-08
			20	NO	BPS1-SG2008-20
BPS1-SG2008	DPT	50	49	YES	BPS1-SG2008-49
			8	NO	BPS1-SG2009-08
			25	NO	BPS1-SG2009-25
BPS1-SG2009	DPT	55	48	YES	BPS1-SG2009-48
			8	NO	BPS1-SG2010-08
			24	NO	BPS1-SG2010-24
BPS1-SG2010	DPT	50	49	YES	BPS1-SG2010-49
			8	NO	BPS1-SG2011-08
			24	NO	BPS1-SG2011-24
BPS1-SG2011	DPT	49	48	YES	BPS1-SG2011-48

^{1 -} Depth below ground surface

DPT - Direct push technology

DUP - Duplicate

^{2 -} Summa canister collection (sample time of 35-120 minutes).

TABLE 2
ANALYTICAL SUMMARY OF DETECTIONS
AMBIENT AIR SAMPLING - OCTOBER 2008 THROUGH JANUARY 2009
NWIRP BETHPAGE, NEW YORK

	BPS1-FB2001-00	BPS1-FB2002-00	BPS1-FB2003-00	BPS1-FB2004-00	BPS1-FB2005-00	BPS1-FB2006-00	BPS1-FB2007-01
Date	10/21/2008	10/23/2008	10/24/2008	10/28/2008	10/30/2008	10/31/2008	1/6/2009
Compound	μg/m³						
Trichloroethene	0.062 J	0.019 J	0.083 J	0.081 J	0.052 J	0.22	0.38
Tetrachloroethene	0.77 J		0.51 J	0.60 J		1.1 J	
1,2,4-Trichlorobenzene				0.76 J			
1,4-Dichlorobenzene				0.31 J		0.90 J	
2-Butanone (Methyl Ethyl Ketone)	2	0.47	2.2	2	1.5	1.4	1
4-Methyl-2-pentanone	0.13 J		0.17 J			0.45 J	
Acetone	12	5.9	56 J	7.6	8.4	9.1	1.9 J
Benzene	0.82	0.33 J	0.94	0.96	0.46 J	2.5	0.91
Bromomethane	0.63	0.73	1.7				
Carbon Disulfide				1.8 J	0.36 J		
Carbon Tetrachloride	0.65 J	0.53 J	0.48 J	0.63 J	0.49 J	0.53 J	0.40 J
Chloromethane	0.69	0.56	0.66	1.2	1.2	1.1	1.2
Ethyl Benzene	0.35 J		0.39 J	0.47 J		1.2	
Freon 11	1.4	1.2	1.2	1.6	1.7	1.6	1.2 J
Freon 113	0.64 J	0.47 J	0.75 J	0.73 J	0.66 J	0.74 J	0.66 J
Freon 12	2.6	2.4	2.2	2.6	3	2.6	2.5
m,p-Xylene	0.74	0.21	1.1	1.1	0.37 J	3.4	0.48 J
Methylene Chloride	0.66 J		0.20 J	0.63 J	0.41 J	1.2 J	
o-Xylene	0.24 J		0.41 J	0.40 J		1.3	0.18 J
Styrene	0.085 J		0.089 J	_		0.27 J	_
Toluene	27	0.63	2.5	6.6	1.1	6.9	1.4

 μ g/m³ = micrograms per cubic meter of air J = estimeated value Blank cells indicate a non-detect value.

TABLE 3 ANALYTICAL SUMMARY OF DETECTIONS SOIL GAS SAMPLING - JANUARY 2008 THROUGH JANUARY 2009 NWIRP BETHPAGE, NEW YORK

	EPA Regional Screening Levels Residential Air ¹	NYSDOH Air Guideline Values ²	Proposed WP Levels	BPS1- SG1001- 07	BPS1- SG1001-20	BPS1- SG1001- 40	BPS1- SG1002- 08	BPS1- SG1002- 08 DUP	BPS1- SG1002- 20	45	BPS1- SG1003- 05.5	20	BPS1- SG1003- 45	05.5	BPS1- SG1004- 22	BPS1- SG1004- 46	BPS1- SG1005- 08	BPS1- SG1005- 20	45	BPS1- SG1006- 07	20	BPS1- SG1006- 45	SVPM11S- 24	49	SVPM12S- 25	50
Date				Jan. 2008	Jan. 2008	2008	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008		Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008		Jan. 2008		Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008
Compound	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
Trichloroethene	1.20	5/250	5	19,000	180,000	1,400	3300 J	4,600	4,400	320	110	590	750	5.2		820	1.5	16	71	1.2	2.0	2.1	7,200	0.29	73,000	150,000
Tetrachloroethene	0.41	100/1000	100	170	1,200	5.9	1,700	2,100	960	20	540J	1,300	250	22		78	15	59	60	19	28	44	5,300			
1,1,1-Trichloroethane	5200.00	NA/1000	5200.00	16,000	90,000	890	740	970	1,900	550	440J	790	780	3.9		430	3.4	11	27			0.95	2,400		36,000	75,000
1,1-Dichloroethane	1.50		5 - 150	130	1,700	14	15		62	16	1.2	19	95			460							63		710	1,400
1,1-Dichloroethene	210.00		210.00	490	2,400	15			20	6.6J	0.94	5.8	8.8			4.1									1,700	4,700
Benzene	0.31		5 - 31			1.1J	5.1J		33	56	3.3	6.2	9.4	7.6	1.4	5.2	7.1	22	8.4	5.1	7.2	23		1	1	
Chloroform	0.11		5 - 11			0.52 J	5.6J		7.3J		1.2	4.9	5.7			2.6J		1.7	1.2	2.4	53	28			1	
cis-1,2-Dichloroethene	NA		36.50	24 J	560J		160	200	800	92J		3.7	8.1			79							860		200J	780
Carbon Tetrachloride	0.16	5/250												0.67	0.47J		0.30J		0.28J	41	130	99		0.75J		
Methylene Chloride	5.20	60/NA				150																				
1,2,4-Trichlorobenzene	NA																									
1,2-Dichlorobenzene	210.00																									
1,2-Dichloroethane	0.09																									
1,2-Dichloropropane	0.24																									
1,3-Dichlorobenzene	NA																									
1,4-Dichlorobenzene	0.22																									
2-Butanone	NA			35					50	230	10	12	22	16	0.87	15	11J	53J	37	26J	21J	50		0.75		
4-Methyl-2-pentanone	NA													2.1	0.11J			1.8		0.66						
Acetone	32000.00			370		14	64	72	1500	2000	95	120	340	330J	230J	470	230J	490 J	740J	110	160J	570J	49J	9.3	320J	500J
Bromomethane	5.20																0.27J									
Carbon Disulfide	730.00						3.5J		3.9J	6.0J	1.1J	2.8J	1.3J	3.6	0.15J	1.6J	2.5	4.6	2.3	3.2	4.7	2.4				
Chlorobenzene	52.00													0.061J												
Chloroethane	NA																									
Chloromethane	1.40									5.2J				0.83	1.1		0.79	0.34	0.18J	0.25J		0.5		1.1		
Ethyl Benzene	0.97								5.9J	8.4J	7.8	12	4.4	9.1	0.53J	2.7J	1.8	6.4	4.7	1.8	3.2	5.2		0.49J		
Freon 11	NA					2.3J	4.4J				1.8	1.4J	2.0J	1.3	1.5	1.7J	1.3	1.6	2.3	1.1	1.7	1.4		1.2		
Freon 113	NA			19 J		2.1J	2200J	2900J	5100J	2400J	790J	1400J	2200J	4J	0.69J	600J	2.4	3	15	0.73J	0.64J	0.70J	4900J	0.79J		
Freon 12	NA					4.1					0.86		2.8J	1.6	1.9		1.8	1.6	1.4	1.6	1.4	1.2		1.8		
m,p-Xylene	730.00								9.1J	20	27	34	14	32	1.9	7.4	5.1	12	13	5	8.4	14	26	1.2	ĺ	
Methyl tert-butyl ether	9.40												8.2												ĺ	
o-Xylene	730.00									7.6J	8.3	11	2.4J	11	0.63	1.6J	1.2	3.2	2.6	1.6	2.2	2.7	12J	0.47J	i	
Styrene	1000.00										0.92	1.0J		0.76	0.084J		0.26J	0.89	0.46J		0.74	0.54J		0.085J	ĺ	
Toluene	5300.00			13 J		2.1J			31	66	25	41	24	32	3.6	15	10	37	30	8.8	18	40	23	2.2		
trans-1,2-Dichloroethene	63.00						22	25	58	92J	0.22J	3.0J	5.6			22							64		1	

¹Residential air criteria from Regional Screening Tables (September 2008), http://www.epa.gov/reg3hwmd/risk/human/rb-

μg/m³ = micrograms per cubic meter of air
NA : Not Available

Bolded values are exceedances of Proposed Work Plan (WP) Levels

(TTNUS, 2008)
Shaded values are exceedances of NYSDOH Air guideline values for Indoor air/Sub-Slab concentrations

J = estimated value

Blank cells indicate a non-detect value.

Note: Initial onsite sampling took place January 2008 and initial offsite sampling took place October 2008 through January 2009

² Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), Air Guideline Values read as Indoor air/sub-slab

TABLE 3 ANALYTICAL SUMMARY OF DETECTIONS SOIL GAS SAMPLING - JANUARY 2008 THROUGH JANUARY 2009 NWIRP BETHPAGE, NEW YORK

	EPA Regional Screening Levels Residential Air ¹	NYSDOH Air Guideline Values ²	Proposed WP Levels	BPS1- SG2001- 08	BPS1- SG2001- 20	BPS1- SG2001- 49	BPS1- SG2002- 08	BPS1- SG2002- 20	BPS1- SG2002- 44	BPS1- SG2003- 08	BPS1- SG2003- 20	BPS1- SG2003- 49	BPS1- SG2004- 08	BPS1- SG2004- 20	BPS1- SG2004- 49	BPS1- SG2005- 08	BPS1- SG2005- 20	BPS1- SG2005- 49	BPS1- SG2006- 08	BPS1- SG2006- 20	BPS1- SG2006- 49
Date				Oct. 2008		Oct. 2008															
Compound	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	µg/m³	μg/m³	µg/m³	µg/m³	μg/m³							
Trichloroethene	1.20	5/250	5	1,700	2,700	1,500	34,000	89,000	26,000	20	82	710	1.0	550	600	0.52	0.8	1.0	32	71	61
Tetrachloroethene	0.41	100/1000	100	4,000	5,000	720	420	740	48 J	19	14	8.9	1.8	1,000	580	16	9.7	3.8	14	29	11
1,1,1-Trichloroethane	5200.00	NA/1000	5200.00	1,300	1,700	1,400	21,000	52,000	27,000	66	170J	720J	1.4	460	480	3.2	3.2	3.2	12	22	35
1,1-Dichloroethane	1.50		5 - 150	11	29	26	170	680	490		0.49 J	8.6		44	74						
1,1-Dichloroethene	210.00		210.00	9.2 J	16	27	220	890	480		2	23		7.1						0.62	1.2
Benzene	0.31		5 - 31	7.8 J	4.7 J	9.1	28 J		11 J	3.5	6.4	8.5	1.1	3.5	15.0	4.5	3.9	5.8	2.5	7	5.4
Chloroform	0.11		5 - 11	110	24	8.2	41 J	32 J	19 J	4.6	3	9.4	0.25 J	25	24.0	5.0	8.7	16	3.0	3.7	6.1
cis-1,2-Dichloroethene	NA		36.50	20	94	73	49 J	170	130			1.6		4.6					4.1	45	89
Carbon Tetrachloride	0.16	5/250				0.13 J							0.55J			110	140	130	0.94J	2.10	2.50
Methylene Chloride	5.20	60/NA																			
1,2,4-Trichlorobenzene	NA																				
1,2-Dichlorobenzene	210.00																				
1,2-Dichloroethane	0.09												0.25J								
1,2-Dichloropropane	0.24												0.59J								
1,3-Dichlorobenzene	NA									0.25J	0.26J										
1,4-Dichlorobenzene	0.22									0.33J	0.31J		0.36J			0.32J	0.27J	0.28J			0.35J
2-Butanone	NA			50	56	65	78		78	19	31	47	4	30	100	60	60	44	68	59	140
4-Methyl-2-pentanone	NA			2.3J						2			0.47J		1.2J	1.10	0.60	0.93	0.47J	1.10	0.80
Acetone	32000.00			470	440	500	300	250	1,200	120	170J	410J	29	240	640	630J	790J	700J	1200J	860J	1100J
Bromomethane	5.20															0.81		1.10	2.30	0.73	
Carbon Disulfide	730.00			3.0J	3.3J					2	3.0	2.5J	1.1	2.2J	3.4J	6.6J	2.7J	1.9J	2.1J	1.5J	2.2
Chlorobenzene	52.00																	0.12J		0.15J	
Chloroethane	NA																	0.25J		0.15J	
Chloromethane	1.40									0.23J	0.13J	0.46J	1			0.22J		0.53		0.27J	0.25J
Ethyl Benzene	0.97			4.7J	4.4J	7.9	170		12J	6	8	7.8	1.0	3.6	7.3	3.1	4.1	4.0	8.8	6.2	6.5
Freon 11	NA			6.5J	6.1J	6.5J				13.0	13.0	40.0	1.5	4.7	3.4J	7.7J	4.7J	2.5J	2.3J	2.3J	2.8J
Freon 113	NA			2,200	2,800	2,500			34J	1	2	4	.79J	1,200	1,300	10J	10J	14J	170J	280J	300J
Freon 12	NA			2.9J	2.8J	2.6J				1.3	1.2	3.9	2.5	3.6	2.9J	1.4	1.3	1.1	2.3	1.2	1.5
m,p-Xylene	730.00			12	14	26	290.0	32J	40J	20.0	25.0	25.0	3.1	12.0	21.0	9.6	13.0	13.0	33.0	20.0	19.0
Methyl tert-butyl ether	9.40													1.7J	11						
o-Xylene	730.00			3.5J	3.4J	9.2	80J		16J	8.4	9.8	10.0	1.2	3.3	5.8	2.2	3.4	2.8	12.0	7.2	5.3
Styrene	1000.00			2.0J	1.8J	17				21.0	26.0	24.0	1.4	2.0J		1.8	1.6	1.90	37.00	21.00	2.10
Toluene	5300.00			33	32	65	500	46J	65J	20	35	63	6.7	24	52	26	38.0	55.0	35	34	60
trans-1,2-Dichloroethene	63.00			7.9J	16.0	11								3.9						1.4J	2.7

¹Residential air criteria from Regional Screening Tables (September 2008), http://www.epa.gov/reg3hwmd/risk/human/rb-

μg/m³ = micrograms per cubic meter of air NA : Not Available

Bolded values are exceedances of Proposed Work Plan (WP) Levels

(TTNUS, 2008)
Shaded values are exceedances of NYSDOH Air guideline values for Indoor air/Sub-Slab concentrations
J = estimated value

Blank cells indicate a non-detect value.

Note: Initial onsite sampling took place January 2008 and initial offsite sampling took place October 2008 through January 2009

² Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), Air Guideline Values read as Indoor air/sub-slab

TABLE 3 ANALYTICAL SUMMARY OF DETECTIONS SOIL GAS SAMPLING - JANUARY 2008 THROUGH JANUARY 2009 NWIRP BETHPAGE, NEW YORK

	EPA Regional Screening Levels	NYSDOH Air Guideline	Proposed WP Levels	BPS1- SG2007-	BPS1- SG2007-	BPS1- SG2007-	BPS1- SG2008-	BPS1- SG2008-	BPS1- SG2008-	BPS1- SG2009-	BPS1- SG2009-	BPS1- SG2009-	BPS1- SG2010-	BPS1- SG2010-	BPS1- SG2010-	BPS1- SG2011-	BPS1- SG2011-	BPS1- SG2011-
	Residential Air ¹	Values ²		08	20	49	80	20	49	08	25	48	08	24	49	80	24	48
Date				Oct. 2008	Jan. 2009													
Compound	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³
Trichloroethene	1.20	5/250	5	29	87	400	4.7	6.8	26.0	0.2	0.23	0.4	2.8	19.0	5.5	0.9	0.14 J	0.34
Tetrachloroethene	0.41	100/1000	100	13	25	5.3 J	12	2.1	7.4	4.8	3.2	2.0	3.7	4.9	2.3	1.6	0.57 J	2.9
1,1,1-Trichloroethane	5200.00	NA/1000	5200.00	150	260	870	52	80	130	1.1	1.6	1.1	1.4	2.2	1.0	1.5	0.50 J	1.0
1,1-Dichloroethane	1.50		5 - 150			3.0 J												
1,1-Dichloroethene	210.00		210.00	0.26 J	0.69 J	13			1									
Benzene	0.31		5 - 31	5.7	5.8	11	5.4	13	9.3	2.9	3.4	19.0	3.5	3.7	7.8	2.8	3.3	19.0
Chloroform	0.11		5 - 11	1	0.72 J	4.1 J	1.2	3.4	9.1	0.92	5.8	6.1	16.0	2.2	0.9	0.29 J	0.46 J	2.7
cis-1,2-Dichloroethene	NA		36.50															
Carbon Tetrachloride	0.16	5/250		0.33J			0.40J	0.52J	0.85					0.32 J	0.56 J		0.45 J	
Methylene Chloride	5.20	60/NA		0.66J									0.58 J				0.56 J	
1,2,4-Trichlorobenzene	NA				0.37J													
1,2-Dichlorobenzene	210.00			0.19J														
1,2-Dichloroethane	0.09												6.9					0.73
1,2-Dichloropropane	0.24												8.3					
1,3-Dichlorobenzene	NA																	0.17 J
1,4-Dichlorobenzene	0.22			0.26J								0.23J		0.38 J				
2-Butanone	NA			58	41	200	44	160	100	20	25	26	25	66	110	50	72	290 E
4-Methyl-2-pentanone	NA			0.62	0.67J	2.0J	1.60	1.60	4.10	1.00	0.82					5.9	3.3	
Acetone	32000.00			850J	630J	3400J	460J	1200J	860J	230J	400J	230J	44	55	130	34	56	240 J
Bromomethane	5.20			0.93	0.78J		0.43J	1.60	1.20	0.51J	0.68	1.10	0.21 J	0.20 J				0.40 J
Carbon Disulfide	730.00			2.7J	2.5J	4.9J	2.8J	3.7J	1.2J	2.1J	2.2J	0.90J	0.96 J	2.10	0.95 J	2.30	1.1 J	2.50
Chlorobenzene	52.00								0.17J									
Chloroethane	NA											0.39						
Chloromethane	1.40			0.11J			0.14J	0.24J	0.46	0.29	0.32	0.83	0.26 J	0.27	1.00	0.26 J	1.00	0.91
Ethyl Benzene	0.97			1.5	2.9	7.3	3.5	2.8	4.4	3.2	4.2	5.6	4.8	5.8	2.5	4.0	2.6	5.0
Freon 11	NA			2.5J	2.7	2.6J	3.9J	4.1J	3.3J	16J	12J	7.3J	14	28	11	5.1	3.6	5.5
Freon 113	NA			11J	16J	41.0	0.94J	1.4J	1.3J	0.65J	0.57J	0.46J	0.69 J	0.81 J	0.66 J	0.39 J	0.81 J	0.72 J
Freon 12	NA			1.1	2.8		1.2	2.1	2.2	3.7	5.6	5.8	1.8	1.4	2.0	1.6	2.2	2.3
m,p-Xylene	730.00			3.6	10.0	27.0	12.0	7.2	13.0	11.0		17.0	13.0	14.0	7.1	11	5.8	15.0
Methyl tert-butyl ether	9.40																	
o-Xylene	730.00			0.60J	2.3	8.4	2.7	1.7	2.8	3.0		4.1	6.1	5.2	2.6	49.0	2.2	5.9
Styrene	1000.00			0.12J	0.84J	2.10	0.91	0.53J	0.95	0.66		0.91	9.60	8.40	2.80	8.20	2.70	0.57
Toluene	5300.00			20	20	65	27	49	57.0	24.0	38	71.0	170.0	170	48.0	100	97.0	52.0
trans-1,2-Dichloroethene	63.00																	

¹Residential air criteria from Regional Screening Tables (September 2008), http://www.epa.gov/reg3hwmd/risk/human/rb-

μg/m³ = micrograms per cubic meter of air

NA : Not Available

Bolded values are exceedances of Proposed Work Plan (WP) Levels (TTNUS, 2008)
Shaded values are exceedances of NYSDOH Air guideline values for Indoor

air/Sub-Slab concentrations

J = estimated value

Blank cells indicate a non-detect value.

Note: Initial onsite sampling took place January 2008 and initial offsite sampling took place October 2008 through January 2009

² Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006), Air Guideline Values read as Indoor air/sub-slab

APPENDIX A
SITE PHOTOS

Photo 1: DPT rig, East of Site 1 positioned at BPSI-SG2008.

Photo 2: BPSI-SG2008 showing typical soil gas sampling setup.

Photo 3: Close up view of DPT rig at BPS1-SG2005.

Photo 4: Looking – at DPT rig positioned at BPS1-SG2005

Photo 5: Close up of BPSI-SG2001 showing soil gas points post-sampling.

Photo 6: BPSI-SG2001 showing location near homes on 11th Street.

Photo 7: Looking SE at DPT rig positioned at BPSI-SG2002.

Photo 8: Looking NW at DPT rig positioned at BPSI-SG2002.

APPENDIX B SOIL BORING LOGS

Converted to Well:

Yes

Page ___ of ____

		ļ		•			THING LOG		_				
					Bethpag	ge II	BORING N	o.:					
				112G01	1687		DATE:		10/28/08				
			PANY:	Zebra			GEOLOGIS	ST:					
DRIL	LING	RIG:		DPT-S	oil Gas		DRILLER:		EICHLER				
					N	1ATE	RIAL DESCRIPTION			PID/FIC	Read	ding (opm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RGD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehofe**	Driller BZ**
	*Tanada				M DENEE.	/EUC	W 4" TOPSON SOME	SW	DAMP	0			
5-1							W 4" TOPSOIL SILTY SAND-SOME GRAVEL - TR ROOTS.		I'D GRAVEL				
<u>५-।</u> ୧୬୫୯			NA							0			
		/							4.5				
	5					PO.1				0			
					DENSE	150 10	F/C SAND-SOME	SW	DAMP				
<u>5-2</u> e							GRAVEL		IV2" O GRAVEL SUB ROUND	0			
<u>S</u> (a			3,8 ₅	(a)		<u>AASO</u>	6		SUB ANG.				
						FRN				0			
	10	/						-					
						YEL	LOW SAME		DAMP	Ó			
5-3						RN BEN		<u> </u>	34" OF GRAVEL SUB ROUND SUB ANG.	<u> </u>			
5-3 リステ			3/ ₅						SUB ANG.	0			
	15									0			
							SAME	SW	DAMP				
54									FC 134"D	0			
1132			3.1/2]					SUB ROUND SUB ANG.				
							A Marines			0			
	20			(
				-			SAME	SW	DAMP	0	<u> </u>		
S-5			2.8/5		***************************************			<u> </u>		<u> </u>			_
1138 1138								<u> </u>		0		_	
				_				-	1000	\vdash	_		_
	25									0			
** Inclu		nitor readi	T RI	ot intervals C		- <i>a</i> 7	reading frequency if elevated reponse	read.	SG SAMPUE Drillin Background				5
		TC	1477	1 HANLE		٠,							

No _____ Well I.D. #:_____

Converted to Well:

Yes

	t	Tetra	Tech N	NUS, Inc).	<u>BC</u>	DRIN	IG LC	<u>)G</u>		Pa	age _2	2 '	of _	2_
PRO DRIL	JECT LING		BER:	112G0 ⁻ Zebra	Bethpag 1687 Soil Gas	ge li			BORING DATE: GEOLOG DRILLER	GIST:	10/28/08				
					N	ATE	RIAL D	ESCRIP	TION			PID/FIE) Rea	ding ((ppm)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	ß	faterial Clas	ssification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	25				DENKE	YELL	٥٣/	SILIN.	- TR GR.	SW	DAMP	0			
61_		$\overline{}$				TACIO	<u>-/</u> C	10	III Cha			1			
5-6 0 1145			3.%	± 28				PVIIVA			GRADATION AL	70			
]	DENGE		F/M	SAND	TR.	\$W	<u> </u>				
	30			1			1150	GRAN	TR. JEL WEL @ 28	:/	3/4" Ф	0			
	ester se						1	JO CORK		<u>, </u>	SUB ROUND SUB ANG				
5-7-							SAM	ı E		Sw	DAMP	0			
<u>5-7</u> 1152			3.5 _{/5}		:						SAME				
												0			
	35														
				-	OFISE	路	1 F/C	AR C	JEVASE JEVASIE	SU	DAMP	0			
58						To	TO S	OME	JSVASIE		MORE C.SANI	١			
<u> </u>			3.9/5	1		RED ESRN					MORE GRAVEL	0			
						O					3,7 à SUB				
	40				-	2 2 8					ROUND SUB ANG.	0			
							F/C	SANI)-TR	SW	DAMP				
<i>5.9</i> 1યાં			3/5			ъ	FIN	E GISAVI	54_			0			
12/5						RED									
						BRN						0			
	45			1											
]	DEVCE	點	ω F/	C SAN	ID-TR	SW	DAMP	0			
Sio			2.5/5]			F. G	JSVASC							
S:10 ಜ್ನು									*			0			
				(a)											
	50											0			
** Inclu		-	er rock brong in 6 foc		Ø borehole.	ncrease	e reading l	frequency if	elevated repon	se read.	SG SAMPUE Dril Backgrour	lling A	rea		

No _

Well I.D. #:_

BORING LOG

Page ___ of _2_

		INAMI NUM		112G0	[,] ветпрас 1687	je II			BORING N DATE:	U.:	<u> 10-29-08</u>			***************************************	
DRIL	LING	COM		Zebra					GEOLOGIS	ST:	Conti				
DRIL	LING	RIG:	1	DPT-S	oil Gas				DRILLER:		EICHLER				
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	-	DESCRIPT		∪ % C % *	Remarks	Sample Sample	2		
					D _{ENSE}	ERN	6"	UICEROT		SW	AMA	0			
<u></u>)		NA		Penny	BRY JETT	JO F	F/C SAN			1/2" DGRAVEL SUB ROUND SUB ANK.	0			
	l m				JEVAE.	YEU	ac AZ	. #S#		6	200	0			
<u>S-2</u> ଷ୍ୟଠ	***************************************		3.1/5	1		国 公	F	/WE		3	Damp Same.	0			
<u> </u>	,			0								0			
C 3	0		4./_		DEVRE		SAI	ΛŒ.		Sw	DAMP L" & GRAVEL	0			
5 <u>-3</u> 1015			4/5								SUB ROUND SUB ANG	0			
	15											0			
5-4- 1023			2.5/5				SAI	ME		SW	DAMP SAME.	0			
	ଥ			©		VEN	0.00					0			
S.S.					PENSE	BRA	j s	AME		SW	DAMP SAME:	0			
1030			³ /5									0			
* When	25 rock co	oring, ente	er rock bro	okeness.	norshele '	norcos	rend!==	frequency if ele))	SOILGAS SAMPU SEPTHS Drillin		ree		
Rem	arks:				outende. I	norease		nequency if ele			Background			C)
Conv	iartar	to We	11.	Yes			Nο	1/	Well I.E) #·					

Converted to Well: Yes

Ľ		,		,		Br	PRING LOG		. 49	<u> </u>		~·	
PRO DRIL	JECT LING		BER:	112G0 Zebra	Bethpao 1687 oil Gas	ge II	BORING N DATE: GEOLOGIS DRILLER:		10129108				
					N	1ATEI	RIAL DESCRIPTION		F	ID/FIC	Rea	ding (p	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Consistency or Rock Hardness	Color	Material Classification	U	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DENSE	To	F/C SAND-TR		DAMP	0			
5-6					У		F/C SAND - TR W TO SOME GRAVEL		34" O 62MEL				
5-6 1040		//	35/5		******				別語学にあ	0			
		\angle					**************************************						
	30				T-S.		<u> </u>			0		_	
		/			DENNE		SAME	SW	DAMP				
S-구 E		_	28.						SAME	0			
F401		_	2.8/ ₅									\dashv	
		$/\!\!-\!\!\!\!-$								Ó		\dashv	
	35	-			WERY								
					VERSY DENSE (Based		SAME	SW	DAMP	0		\dashv	
<u>୍ଟେଞ</u> ।୦ଟୀ		$-\!$	34.		Drilling	TO				2			
1059		-	³∕5			EED	-5H		SL COLOR CHG B 38'-VERY DENSE DRIVING	Ω			
	40	$\overline{}$				BIZNI			(36-40)	~		\dashv	
	40						SAME	C1.	· · · · · · · · · · · · · · · · · · ·	0			
5-9 C			4/5				24WE	<u>Ο</u> Λ,	DAMP SAME.	\circ		\dashv	
<u> </u>		$\overline{}$	7,50						OHIOR.				
`			44.							0		\neg	
	45			45									
				12. +	STIFF	KED	CLAYEY SAND	SC	DAMP	0			
s-10			3.5/5	- 19	DEVZE	RED BRN	and the same of th	SW		425			
0 ।।५5				47.5						0			
				TO									
	50						TD e 47.5						
	de mon	-	er rock bro		borehole. I	ncrease	reading frequency if elevated reponse r	ead.	Drillin Background)

No _____ Well I.D. #: ____

BORING LOG

Page <u>1</u> of <u>2</u>

PRO- DRIL	JECT LING	NAME NUME COME RIG:	BER:	112G0 ⁻ Zebra	Bethpag 1687 oil Gas	ge II	BORING N DATE: GEOLOGIS DRILLER:		SG2003 10/29/08 Conti EICHUER				
					l N	IATE	RIAL DESCRIPTION			PID/FIL	Read	ling (ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	 □ め ∪ め ∗	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	0				<u> </u>	Ð	GITOPSOIL						
					DEVRE	BRN	F/C SAND- SOME GRAVEL	SW	DAMP	0			
5-1						ρ							
<u>Pomo</u>			АИ			oran Zeaj	\$5			0			
				ļ			····				_		
	5									0			
					DEVEE		SAME	bw	DAMP				
5-2									TY2 O SUB ANG				
57 52 132 132 133 133 133 133 133 133 133 13			3/5	0					SUB ROUND GRAVEL				
1045	*			9					GICAVOL	0			
	10					MSSC	1						
	* \2					BPN		CIAI	DAMP	O			
5-3					**************************************	ri)	ONICE	3.0	TYATIO SAME.				
® 1345			³⁄5			To	•		•	O			
					Y	SKI	io.						
	5					6.22.05	33			0			
					DENSE		SAME	SW	DAMP				
c-a			ર.%		3 114-21-25		2 1 - 1 2 0000		1/4"	0			
ड ्4 1351			1.23						SAME				
1001										0			
	20			Θ					,				
					DENSE		SAME.	CILI	DAMP				
香品			2.5/5					SVV	DEME	0			
1400				1									
				-				<u> </u>		O			
	25				·············					0			
** Inclu Rem	rock code mon	itor readir			Ø borehole.	ncrease	reading frequency if elevated reponse		Drilli Background			C	<u></u>

BORING LOG

PROJECT NAME:	NWIRP Bethpage II	BORING No.:	SG2003	
PROJECT NUMBER:	112G01687	DATE:	10129/08	
DRILLING COMPANY:	Zebra	GEOLOGIST:	Conti	
DRILLING RIG:	DPT-Soil Gas	DRILLER:	FICHLER	

				******						*****				
				MATERIAL DESCRIPTION				i	PID/FID Reading (ppm)					
(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness			U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**		
25														
				DENSE.	XEV XEV	DUP/C SAND-	Su	DAMP	0					
		3.55				some gravel		TO DAR BUS	,					
	$\overline{}$							SUB BOOND	0					
3									0					
				DENEE		F/C SAND-TR.	Sw	DAMP						
	$\overline{}$					to some gravel		こんりつかまごう	0					
		3.1/5						はいじ べついいじ						
								GRAVEL AS	0					
35					GRA'	,								
			/	DENER	ORAN	BF/CSAND-TR	Sw	DAMP	0					
		4/5				F. GRAVEL			1					
							Ì	,	0					
40			<u> 39-8</u>		JRAN.	G TR CLAY & 39.8'			0					
			Since State	STIFF	BRN GRA	SANDY CLAY CLAYEY SAND	Sc	DAMP						
		4/5	41.5				NAME OF TAXABLE PARTY.		0					
					GRAY	SAND (F/C)	SM	VERY DENSE						
					·		Su	DAMP NO GEAVEL						
45											-			
				DENSE	RED RON	SAND (F/C)	SM	DAMP	0					
		4/5												
									0					
							ļ							
50									0					
	(E) or RE S (25) (15)	(Ft.) 6" or RQD RUN (%) 25 30 40 45	(Ft.) 6" or Recovery / Run (%) Sample Length 35 3.1/5 37 4/5 47 4/5	(Ft.) 6" or RQD Run No. "Sample Length" Sample Length Interval 33.1/5 33.1/5 440 475 475	Depth (Ft.) 6" or RQD / Sample Length No. Sample Length No. Sample Length Screened Interval Soil Density/ Consistency or Rock Hardness DENSE 3./5 DENSE STIFF A/5 DENSE 4/5 DENSE DENSE	Depth 6" or RQD (%) Sample (Depth/Ft.) or Screened Interval Soil Density/ Consistency or Rack Hardness 3.55 3.75	Depth of o' or Robert of the No. 18 Service of Robert of the No. 18 Service of Robert	Depth Recovery Change Recovery Change Recovery Change (Depth R.) Soil Density Consistency or Rock Hardness DENSE PLACE FIC SAND — SW. 3.75 DENSE FIC SAND — TR. SW. TO SOME GRAVEL DENSE FIC SAND — TR. SW. TO SOME GRAVEL DENSE FOR SAND — TR. SW. TO SOME GRAVEL STIFF GRAVEL 40 38-8 DENSE FRANCE FIC SAND — TR. SW. F. GRAVEL DENSE FOR SANDY CLAYER SAND CLAYER SAND SC. DENSE BRN. SRAV SANDY CLAYER SAND DENSE BRN. SRAV SAND (F/C) SM. DENSE BRN. SRAV SAND (F/C) SM. DENSE BRN. SRAV SAND (F/C) SM. DENSE BRN. SRAV SAND (F/C) SM.	Depth Blown (%) Sample (12) Change (12) Change (13) Change (14) Ch	Depth (Pro) or ROD (Pro) or ROD (Depth Pro) or Longth (Depth Pro) or Screened Interval (Depth Pro) or Screened (De	Depth (Fr) or Rock (Depth/FI) of Length (No. 12) are the large of Rock (Depth/FI) or Rock	Depth Grand Sample (hepthful) of Receivery (hepthful) of Sample (hepthful) of Receivery (hepthful) of Consistency or Rock Hardiness DENSE (Depthful) of Consis		

When rock coring, enter include monitor reading Remarks:		@ borehole.	rehole. Increase reading frequency if elevated reponse r			Drilling Area Background (ppm):
Converted to Well:	Yes		No	V	Well I.D. #:	Daonground (ppm).

Page ___ of ___ Tetra Tech NUS, Inc. **BORING LOG NWIRP Bethpage II** BORING No.: SG2004 PROJECT NAME: PROJECT NUMBER: 112G01687 801F6101 DATE: GEOLOGIST: Conti DRILLING COMPANY: Zebra **DPT-Soil Gas** DRILLER: DRILLING RIG: EICHLER MATERIAL DESCRIPTION PID/FID Reading (ppm) U Sample Depth Blows / Sample Lithology No. (Ft.) 6" or Recovery Change S Soil Density/ Borehole** Sampler BZ or RQD (Depth/Ft.) BZ** and С Consistency Remarks Sample Run (%) Гуре о or Color **Material Classification** s Driller Screened or Length RQD Nα. Rock Interval Hardness G"TOPSOIL F/C SAND - SOME DENSE DAMP **छाड**ल GRAVEL-TR 5-1 IVOU GRAVEL SUB ROUND SUB ANG. **TROUTS** 6 AN **VELLUND** IIIO BRN 5 F/C SAND - SOME SWIDAMP DEVDE SUB ROUND GRAVEL TO SUB ANG BINAUEL . 3./50 1125 10 GMAG WE DENSE SAME 1110 53 e 1145 3/5 LESS GRAVEL LAST 11 OF SAMPLE. 15 DENSE DAMP SAME IN MAX SUB ROUND SUB ANG GRAVEL 3.6/5 0 1200 0 20 (e) SMDAMP DENSE SAME 34" MAX 5-5 0 3/5 1903

* When rock coring, enter rock to the control of th	vated reponse read.	Drilling Area Background (ppm):				
Converted to Well:	Yes	***************************************	No _	<u> </u>	Well I.D. #:	

BORING LOG

Page <u>2</u> of <u>2</u>

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG:			NWIRP Bethpage II 112G01687 Zebra DPT-Soil Gas			DATE: GEOLOG	GEOLOGIST:			1012708				
					M	IATEI	RIAL DESCRIPTION			PID/FIE	Read	ding (J	ppm)	
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**	
	25				VERY	VE1	aua aua							
					Dense	BICA	JEVM SAND-SOMI GRAVEL	<u> </u>	DAMP	0				
56							GRAVEL		SUB ROUND!					
1215			3.5/5						ANG GRAVEL					
Idio			/ mail					\top	NOT AS MUCH C. SAND AS					
								+	C. SAND HS			-		
	30	/						<u> </u>	L. Marie Co.	0	_			
					DENSE		SAME	SW	SAME					
S-7										0				
S-7- 1230			3.8/5											
1200								<u> </u>		$\overline{}$				
		$-\!$						<u> </u>						
	35	-			7			-						
					DEVRE		F/C SAND-SOME	SW	DAMP	0				
58							GRAVEL		型" MAX					
<u>578</u> (238			3.5 5						ROUND TO SUB ANG	0				
									GRAVEL					
	40	$\overline{}$						1		Ó				
					DENSE		SAME	SN	DAMP					
5-9		-	3/5	1	<u></u>	<u> </u>		 •••		_				
100 m		_	15	-		<u> </u>		+	SUB ROUND	0				
125C							*	+	TO SUB ANG I" MAX GRAVEL					
								ļ	ORAVEC	0				
	45													
					DENSE		SAME	Sw	DAMP->MOIST	0				
5-10)			1					SAME.					
<u>e</u>			3.25							~				
)		/3	(6)				+						
	50			TO			TDE 50'	+		\cap				
* When	1 40-0-	oring, ente	er rock bro	1	I		1 10 4 60	(6)	SOIL GAS SAMPUR		_		<u></u>	
** Inclu	de mon				borehole.	Increase	e reading frequency if elevated reponse		Drillir	ng A			_	
Hem	arks:							•	- Background	(pp	m):	_ (<u>ر</u>	
Con	/ertec	to We	.II·	Yes			No 1/ Well I	D #						

Tŧ	Tetra Tech NUS, Inc.
----	----------------------

BORING LOG

Page <u>1</u> of <u>2</u>

_		•											
		NAM			Bethpag	ge II	BORING N	lo.:					
		NUM		112G0	1687		DATE:		10124108				
			PANY:	Zebra			GEOLOGI	ST:					
DHIL	LING	RIG:		DP1-S	oil Gas		DRILLER:		EICHLER				
					N	IATE	RIAL DESCRIPTION			PID/FIE) Read	ding (p	ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DEVE	SPAI	4" TOPSOIL SILTY SAND -SOME GRAVEL		HAND AUGER	0			
C_ (İ	Control Control		GRAVEL		12 S/A				
<u>S-1</u>		-	NA						DKIATA				
0 <u>5</u> 01		-	1414			l				<u> </u>		-	
		_											$\vdash\vdash$
	5									O			
					DENSE	BEN	F/C SAND-TR TO SOME GRAVEL	SW	DAMP				
5-2							to some gravel		₹q." MAX	0			
5-2 @ 1100			3/5	©					SUB ANG				
3, ~~~	,							 		0			
 	10			1		100 12	~ ~			\vdash	\Box		
	الساا	-			DENSE	6.	0.0		2000				
			28.4			₹5K	F/C SAND-SOME GRAVEL	<u> </u>	IND WHX DHMH	0			
S-3		/_	2.8/5				STATE OF THE STATE						İ
lito		/_,								0			
	15									0			
					DENEE.	Ì	SAME	SW)	DAMP				
5-4 @			3.3/	1					SAME	0			
III S			5	-					SRIT IE.				
<u> </u>			<u> </u>		*****			 	1	0			
	en				•			 		\vdash			
├─	20	-		0		TAN.				 			
	<u> </u>				DENSE	BEN	SAME	<u>5w</u>	DAMP	<u>Q</u>			
5-5 C			3/5						SAME	<u> </u>			
122													
	25			1			(
** Inclu Rem	rock o de mon arks:	itor readii		t intervals (Ø borehole.	Increase	e reading frequency if elevated reponse		Drillin Background			C	<u> </u>
Conv	ertec	l to We	ell:	Yes			No Well I.[). #:				***************************************	

Converted to Well:

Yes

	t	Tetra	Tech N	NUS, Ind	÷.	BC	DRING LOG		Pa	ge 🚣	<u>2</u> (of _	2
PRO DRIL	JECT LING		BER:	112G0 Zebra	Bethpaç 1687 oil Gas	ge II	BORING N DATE: GEOLOGIS DRILLER:	ST:	10/24/08				
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval		Color	RIAL DESCRIPTION Material Classification	U S C S *	Remarks	Sample Sample	Sampler BZ BB		Driller BZ** 3
50 P S	7		4/5		DE-NSE	TAU BRAS	F/C SAND-SOME GRAVEL	SW	DAMP I"O MAX SUB ROUND SUB ANG	0			
	30		3.2 _{/5}		DENSE	hat	F/M SAND-TRACE GRAVEL	2V	DAMP	0			
25.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	130		/5					-2V	72 MAX	0			
5 <u>-8</u> 12∞			a.5 _{/5}	Assistance of the second	A WAR		SAME			0			
	40			TD 640'					STOP AT-40 '	0			
-									HAD TO PULL ALL RODS DUE TO LINER STUCK IN BOTH ROD.				
				(- A CANADA A					
** Inclu		_	er rock brong in 6 foo		borehole. I	ncrease	e reading frequency if elevated reponse r		Soil GAS SAN Drilli Backgroups	ng A	rea		

Well I.D. #:

No

Æ	Tetra Tech NUS, Inc.
---	----------------------

Page 1 of 2

PRO DRIL	PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG:			112G0 ⁻ Zebra	Bethpag 1687 oil Gas	ge II	BORING I DATE: GEOLOG DRILLER:	IST:	10 23 08				
					M	1ATE	RIAL DESCRIPTION		F	ID/FIE	Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	\sim	$\overline{}$					6" TOPSOIL	╅		-			
<u> </u>				-	DEVISE	77			HAND AUGER	O	_		\vdash
<u>S-1</u>					<u>Y</u>	Evic	W SAND-SOME GRAVEL	SW	705				
@ 1340)		NA			ERN	GRAVEL			\bigcirc			
				1									
	_			1		. //- /	O 1		· · · · · · · · · · · · · · · · · · ·	Ô			
ļ	5			1	DEV SE	A CY	OW .	 	~				
-						DICIN	F/C SAND - SOME GRAVEL	SW	DAMP > MUIST				
5-Z						ļ	GI-ALV SEE	<u> </u>	SUB POUND TO	Ó			
1400			4/5						SOR 400				
				9						0			
								1.	**************************************				
	Õ	-			DENSE			<u> </u>		_			
C_2			9.	1			.5AME	<u>\$w</u>		<u>0</u>			
S-3		/_	3/5					_	DAMP				
1410										0			
]									
	15			1						\circ			
-	13			1	DENEE				TAMO	<u>\</u>			
5-4		-	23/	-			SAME	SW	DAMP 1/2"OMAX				
0			33/5	<u> </u>				-	· ·	0			
1422]					SUB KOUND TO				
									GRAVEL	\bigcirc			
	20			0									
	الربية مسرو				PENSE.	-	PA A JEM	e	2000	0			
5-5		-	2.%	1	ANDE.		SAME	SW	11				\vdash
0		-	7.7 <u>s</u>	1				_	1/4" MAX				
1427]					SAME AS ABV.	0			
<u> </u>	25									0			
	rock c		er rock bro		1	1	1		3				
			-				e reading frequency if elevated reponse	read.	Drillir Booksmannd				
Hem	arks:		TRAC JUAL	K MT			GEOPROBE RIG) .		Background	ζpp	m):	LC	<u> </u>
Com	rartac	to We		Yes			No V Well I.	D #·		,			

Page <u>2</u> of <u>2</u>

	PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY:			NWIRP	Bethpag 1687	ge II	BORING DATE:	∃ No.:	SG2006 10/23/08				
DRIL	.LING	COMI		Zebra			GEOLO						
DRIL	LING	RIG:		DPT-S	oil Gas		DRILLE	R:	EICHUER				
			_		N	IATEI	RIAL DESCRIPTION			PID/FIE) Rea	ding (ppm)
Sample No. and Type or ROD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ	Boreĥole**	Driller BZ**
	25			a	Device	ΧĒ'n	DW. CALLO	S)a		0			
		-	2	!		BKN	DW E/M SAND - SOMEGRAVEL	134	DAMP				
<u>5</u> -⁄∞		-	3.5						114" MAX P BUB RNG TB				<u> </u>
1430)		ב					_	SUB ROUND	O			
	30)			0			
					DENSE		SAME	S۷	DAMP				
5-7		\angle	3.8/							0			
e 1439		/											
										0			
	35												
					PENSE		F/C SAND-TRT SOME GRAVEL	ro	DAMP	0			
5.8		$\overline{}$	2.5				SOME GPAVEL		34" MAX P-				
1445		$\overline{}$			[-	SUB ANG.	0			
<u> </u>								***************************************		-			
	40								-	0			
				222-12 528 128	DENGE		F/M SAND TRTO		SAME	,			
5-9		$\overline{}$	3/5				F/M SAND TRTO SOME GRAVEL		- P Voggger	\bigcirc			
1450													
										0			
	45	$\overline{}$											
					DENSE	BRN	SAME		DAMP	0			
Solo	3		2.55	1		Τo			SAME				
1510						REAL	J			C			
													
	50									0			
			er rock bro					,	D.:BE	.a. ^			
	^{de mon} arks:	itor readir	ng in 6 foc	t intervals (g borehole. I	ncrease	reading frequency if elevated repor	nse read.	Drillin Background			C	<u> </u>
Conv	erted	to We	 ell:	Yes	*****	·····	No Well	l I.D. #					

Page <u>1</u> of <u>2</u>

		NAME			Bethpag	ge II	BORING N	0.:					
				112G0 ⁻ Zebra	1087		DATE: GEOLOGIS	ςт.	10(23(08 Conti	—	—		
		RIG:	AIVI.		oil Gas		DRILLER:	٠١٠	EICHLER	A			
					N/	ΙΔΤΕΙ	RIAL DESCRIPTION	<u> </u>		PID/FID) Read	dina (ı	DDM)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness			U S C S *	Remarks			Borehole**	Driller BZ**
	0	_			<u>ر</u>	7 3 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	G" TOPSOIL	<u> </u>					
						TSN T	SAND-SOME GRAVEL	\simeq	HAND AUGER	0	\square	\vdash	\vdash
						<u>To</u>			TO 5'				
P _d			NA		м	ORA	NG TROUBY FROM						
810		$\overline{}$			DENSE					0			
	5	_			····	<u> </u>							П
	2			ļ	<u> </u>	ASIO	UGE .		_		-		
<u> </u>					PER SE	ERN)	SIGY F/C SAND .	SW	DAMP		\square		
<u>5-2</u>				,		To	SOME GRAVEL		SUB ANG TO	0			
6			4/5						SUB ROUND				
925				0		YEU	മധ			0			
405	Ō					2001/11/1							
	0	-			D	 		<u></u>			\dashv		
					DEVEE		SAME.	DM	DAMP I"MAX	$\overline{\mathcal{O}}$			-
<u>5-3</u>		/_	0.27			ļ			SUB ROUND TO	\square	\square		
5-3 & 855			3.3/5						SUB ANG	\circ			
		/	:				•						
	15	$\overline{}$								0			
					DENSE			_	BOULDER PC				
\vdash		-			775E		F/C SAND - SOME GRAVEL	<u>PW</u>	SHOE OF	i I			
<u>s-4</u>		/_	Э.				01570		DUALTUBE HAS	Q	$\vdash \vdash$		\vdash
<u>5</u>			3/5						TO POU RODS TO CLEAR.				
									DAMP- BAII MAX GRAVEL	0			
	20				****	ORA	16		MAX GRAVEL SUB ROUND TO SUB ANG				
				©	DE SE	Ben	SAME	27	DAMP	0			
<u> </u>					1/2/2		SAME		DUME		\vdash		
S-5		-	2.52										
10 5 7			2.5/5			T-A			IFEE CANSEL	0			
		\angle				TAN M			LESS GRAVEL BOTH I ET				
	25									0			
			er rock bro						@ SOIL GAS SAW	1PG	= 0	ΣEP.	TH
							reading frequency if elevated reponse r	ead.	Drillin Background				$\overline{}$
1 (5111	arno.				NANCE				- Daonground	יאאי	1.1.1		
Conv	erted	to We		Yes			No Well I.E). #:					

	Ł	Tetra	Tech N	NUS, Inc	> .	BC	DRIN	G LC	<u>G</u>		Pa	وً_ ge	<u>Q_</u>	of _	2_
PRO DRIL	JECT LING	NAMI NUMI COMI RIG:	BER:	112G0 ⁻ Zebra	P Bethpag 1687 Soil Gas	ge II			BORING I DATE: GEOLOG DRILLER:	IST:	SG2007 10123108 Conti EICHLER				
					M	IATEI	RIAL DE	SCRIP	TION			PID/FII	D Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Ma	aterial Clas	sification	∪ s c s *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					DENSE	YEU	<u> </u>	cy rip.	- TO TA	KINI	DAMP	T			
				-	45/=	DEV	SOUE	GEAU	-TR.TO	4500	34" MAX SIZE	1	l		H
<u>5-6</u>			3-5/5	-	· · ·					 	SOR ISOOND	0	-	_	\vdash
1105		/_	<u>'5</u>	-	-					┼	SUB ANG:	4		_	⊢
				-						-					┡
	30			ŀ								0			
					DENZE	NAT NSS	F/C S	- QNAZ	- SOME	Sw	PMAG				
5-7 e			*********	1				PAVEL			I" MAX D	0			Г
1115			4/5	1		<u> </u>					SUB ROUND	1			
			1.5								SUB ANG.				
										_		_			_
	<u>35</u>	/_		1	N==	TAN VEUVO				<u> </u>		-			
				_	DENEE		F/C	, SAN	D-TR	SW	DAMP	0	ļ		<u> </u>
<u>5-8</u>		\angle					70 S	OME (SAVEL	ļ	3/4" MAX SIZE		ļ		
5-8 ७ (128			₹5					•			SUB ROUND SUB ANG.	0			
	40											0			Г
)			1	PENSE	TAN	SAN	1E		SW	SAME	T			
59															
59 1135			3.3/5									0			
	` ·			1					**	 					
<u> </u>	A 14			1							····	0		\vdash	H
	45	-		-	DENSE	YELL	xv			 					_
_		_	387	1	DENSE	EKN	MAZ			2//	SAME	_			-
5-10	•	/_	3.8/5			ļ				-		0	<u> </u>		<u> </u>
1145													ļ	<u> </u>	<u> </u>
				Ø			VISL	TRC	LAYe			0		<u> </u>	
	50			TD			≈ 50°	BOTTO	MAMPLE						
	rock c			okeness. 🗜							P.:01	line ^	-		
	^{de mon} arks:				® borehole. ↓ ⊂ §			equency if e 👍 📿	levated reponse	read.	Drii Backgroun	ling A d (pp			
	NO:			~~) ***		3 9				~ 100	···/·	<u> </u>	_
Conv	ertec	to We	ell:	Yes		_	No	V	Well I.	D. #:					

Tetra Tech NUS, Inc.

Page <u>1</u> of <u>2</u>

					N	1ATE	RIAL DESCRIPTION			PID/FII	Rea	ding
Sample No. and Type o RQD	(Ft.) or	Blows / 6" or HQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**
ÌП					TAN BRN		GII TOPSOIL SILTY SAND-SOME	:	HAND AUGER	Comes of		
S-1					TR		GRAVEL		HAND AUGER TO 5'	3		
@ 1545			_		DSANG,		SOME CLAY 2-103'		. 9mac			
							SAND-SOME GRAVE					
.L_	5									0		
					DENSE	BEN	SUTY F/C SAND	\$w	DAMP			
52							SOME GRAVEL		XAM O"I	O		
1315			45						SUB ROUND SUB ANG			
									GRAVEL	0		
	Ű.							4 .				
					1	ORAI BRN		SW	DAMP	0		
S-3							11-11-11-11-11-11-11-11-11-11-11-11-11-		SAME AS			
1330)		³ /5				1 1 1 1111		S-2.	0		
	15				,					0		
						XEU	DW SMAE	5W	DAMP			
5-4 e			3.5/ ₅			San Park	Manager 12 of Street	T	14"GRAVEL	0		
/33 <u>E</u>			<u> </u>					<u> </u>	SAME AS			
										0		
	20											
		\angle	60 A 3			ļ	SAME	SW	PMAG	0		
5-5 e			2.8/5									
1341	-									0		
										<u> </u>		
	25									0		

	Tetra Tech NUS, Inc. BORING LOG												2	of _	<u>.2</u>
PRO DRIL	JECT LING	NAMI NUMI COMI RIG:	BER:	112G0 ⁻ Zebra	P Bethpag 1687 Soil Gas	ze II			BORING N DATE: GEOLOGIS DRILLER:		10/21/08				
					N.	1ATE	RIAL	DESCRIP	TION			PID/FI	D Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	w	Material Cla	ssification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	2550				PENSE				\~TP 70	511/	NAMP				
5-6			3/5	1		144	Sol	IE GRAI)-112 70.	Ý	INGENEL T				
ම 1350		-	1.5				<u> </u>			 	SUB ANG TO				\vdash
عطيا)	$-\!$		1											\vdash
	30	$-\!$		-						<u> </u>		0			
	applicant.	-		1			c N	ME		E /	DAMP	$\stackrel{\sim}{-}$			\vdash
5-7		-		1			3	IV 1	· · · · · · · · · · · · · · · · · · ·	۷۷۷	SAME AS S-	60		 	
0		-	33/5	-							3~EN33	90	\vdash		
400		-							1.0						
	35	-											-	<u> </u>	
	es element	$-\!$		ļ	DENSE		1-10	CAUD	ENIE	SW	DAMP	~	 		
		$-\!$					GS.A	WEL	SWE	V	1" O GRAVEL		Н		
<u>5-8</u>		-	4/5								SUB ROUND SUB ANG	0			
1405		_	1-								SUBANG.		H		
	40	-													
				1			~ A	ME		Su	DAMP				
5-0		-		1		1	<u>Un</u>	<u>NE</u>		עייבן	34" O ERAVE	10			
5-9 0 1412			3/5	1		<u> </u>					74 0 00000				\vdash
1412			19	1										-	
	ei see	-		1								0			-
	45	-		1	D=		an		equal & Asses		101.10		\vdash	\vdash	
5-10		-	2,	-	CNGE	-KN	F/1 GR4	<u>U SAND</u> WEL	- TRACE	NZ	NAMP.		\vdash		

1420		. 5			,					0	\perp	\perp
									NO SIGN HZO			
,	50		TD		TIZ C	1A9~	49-50		END(50'	0		
	rock coring, ente de monitor readin arks:			Drillii Background	ng Are d (ppm		<u> </u>					
		×		 	No		Well I		-			

Page <u>|</u> of <u>3</u>

PROJECT NAME: NWIRP Bethpage II BORING No.: SG2009
PROJECT NUMBER: 112G01687 DATE: 1012010 8
DRILLING COMPANY: Zebra GEOLOGIST: Conti

Dill	LIIVO	HIG:		טווט	on Gas		DRILLER:						
					M	ATE	RIAL DESCRIPTION		!	PID/FIC	Read	ding (ppm)
Sample No. and Type or RQD	Depth (Ft.) or fluin No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U & C & *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
					ර්ණු	TAN	SUTE SAID - STIE	SAA	House Aug 50 77	\overline{C}			
Cul			***************************************		Bhyd	Chr.v.	SICTY SAND - SOME GRAVEL		5'.				
S-1 0 1230			N/A						DRY > DAMP	0			
			····										
	Ŋ									0			
			•		Loos _E	XB Z Z Z Z Z	OK SIUTY SAND - SOME GRAVEL	SW	DAMP				
<u>5-2</u>					M	<u>0</u>	GRAVEL.			0			
5-2 C 1250			3/5		DENSE								
		\angle				BRN		<u> </u>		0			
	0	\angle		-				ļ -					
					M	yeu	OU F/C. SAND — SOME GRAVEL	SW	GMAC	0			
		\angle			DENSE	BRN	some gravel		SUB ROUND GRAVEL				
S-3		\angle	3/5						TI MAX O TO SUB ANG	0			
1300				•					200 UNG				
	15	//						ļ					
		\angle			DENCE.		SAME		DAMP	0			
S-4		\angle	3.2					ļ	I'S'-MAX O				
e 35		\angle	5						GRAVEL TO SUB ANG	0			
		\angle							30B ANG				
	20							ļ		0			
6.7					M		SAME	Sw	DAMP	<u> </u>			
5.5			3.1		DENSE			_	SAME AS ABV.	0			
1320			12										Щ
<u></u>								<u> </u>		0			\sqcup
	25									<u> </u>			

	<u> </u>		1 1											-
When rock coring	g, enter rock b	rokeness.												
** Include monitor										Drillin	_			
Remarks:	TRAC	ik MTD	DPT	(GE	SPO	re) 1	UTLAN	e::	-	Background	(ppm	ı):[0	
			INDA DO											_
_														_
Converted to	Well:	Yes		l	No	1/	. Well I.I	D. #:						_

		Tetra	Tech N	NUS, Inc).	<u>BC</u>	RING LOG		Pag	je <u>-</u> 2	<u>)</u> (of 🔇	<u>3</u> _
PRO DRIL	JECT LING	NUM	BER:	112G0 ⁻ Zebra	Bethpaç 1687 Soil Gas	ge II	BORING N DATE: GEOLOGIS DRILLER:		10/20/08	LEP			
					N	ATE	RIAL DESCRIPTION			PID/FIE		ding (ı	ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval		Color	Material Classification	∪ s c s *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	25				1.4	TX x 1	:				\dashv	\dashv	
		\angle			DB/RE	TAN BRN	F/M SAND-TR GRAVEL	SM	DAMP 34" MAX SIZE	\circ			
<u>১</u> -6			2.8/5				GRAVEL						
<u>८-८</u> ७ ।३२५									SUB ROUND/ SUB ANG GRAVEL.	0			
i Gran									GRAVEL.				
							AAAAAN AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAA			0	\dashv		
	3 0		,						-				
		-						 					
<u>S-7</u> ट		/-	37	32±	М	ORAN	^			<u> </u>			<u> </u>
1330			³/ ₅		DENSE	12.8.7.	FIC SAND-SOME	3~		0			<u> </u>
							GRAVEL		I"GRAVEL SUB RND				
	35]					SUB ANG.	0			
				1		YELL BRA	SAME	SW	DAMP				
5-8						DIN	JAME_	0,0	PHOP.				
5-8 133 ₆		-	3.l 5							0	\vdash		
133 ₆		-	رة.						LESS GRAVEL		$\vdash \vdash \vdash$		<u> </u>
									LAST 2 PF.	0			
	40												
					DENSE.	TAN	SILTY SAND FIM	SM	DAMP	0			
s-9			3.5				SILTY SAND F/M TR GRAVEL		3/4" GRAVEL				
1345			5	1					SUB ROUND	0			Г
245		-	5					ļ	SUB ANG				
					, <u></u>		•	ļ	MORE GRAVE AT BOTM				_
	45	/_						ļ		0			
					М	DRA IBRA	UGE SLUTY F/M SAND	SM					
5-10 e			45/5		DENZE	I	TR TO SOME GRAVE	1	DAMPSMOIST	0			
1356													
								V					
	50			1				Sw		0			
	rock c		er rock bro			<u> </u>						<u></u>	<u></u>
** inclu	ide mon	itor readir	ng in 6 foo	t intervals	borehole. 1	ncrease	reading frequency if elevated reponse	read.	Drilli	ng A	rea		

* When rock coring, enter rock ** Include monitor reading in 6 Remarks:		rease reading	frequency if ele	vated reponse read.	Drilling Area Background (ppm):
nemarks.					background (ppm).
Converted to Well:	Yes	 No _	<u> </u>	Well I.D. #:	

PRO DRIL	JECT LING	NAMI NUMI COMI RIG:	BER:	112G0 Zebra	Bethpa 1687 oil Gas	ge II		• • •		DATI GEO			SG2009 10120108 Conti P. EICHLER				
					N	/ATE	RIAL	DES	CRIP	ΓΙΟΝ				PID/FIC) Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness		-	Materi	al Clas	sificatio	n	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
È	<u>50</u>		<u> </u>		lw.	ASSE	15										
					DEVEE M	BRN	SI	CTY !	E/M	SAN	<u>a</u>	SM	MOIST	\bigcirc			\vdash
5-11		/	2 5				"						Ψ				<u> </u>
@ 1430			3.5											0			
	55			8		PINE	/						WET IN	0			
				TO									WET IN DRIVE SHOE				
							12	STM	0 5	· · ·							
							//dates		New Agent	المستداد							
		-															
		-											SLIGHT CHANG TO" PINK AT 55' & BUT	kc.			
		-											WAS WEX.	1			
		/_											001425 00 026 .				
						ļ											
]													
											İ						
				1													
				1													
				1													П
		$\overline{}$		-		-											\vdash
		-		-	*****									H			_
		-												-			
		_				-											
** Inclu		itor readir		t intervals (levated r	reponse re	ead.	Drillir Background			C	<u> </u>
	,													***************************************			
Conv	/erted	I to We	ıll•	Yes			No	ŀ		V	Vell LD	# .					

Page / of 2

			NAM		NWIRP 112G0	Bethpag	ge II	BORING N DATE:	lo.:	<u>sg200 ଅଠାଠ</u> ।/ଜାତମ				
					Zebra	1001		GEOLOGI	ST:	Conti				
			RIG:			oil Gas		DRILLER:		FUAN MORAL	ていら	•		
			,			IV	ATE	RIAL DESCRIPTION					ding (p	opm)
1/=	Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	ប ១ ១ ១ ១ ១ ១	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
1/5		0				M	OPAL Deal	CLAYEY SAND	SC	HAND AUGER	0			
	5-1							TR-TO SOME GRAVEL		TO 5' (1-5:09)				
	@ 1535	,							70		0			
1/6		5							SW		0			
						DENSE	YEM BRN	W F/C SAND-SOME	SW	DAMP				
	<i>5</i> -2						70	GRAVEL		14" GRAVEL	0			
	@ 0940			4/5						SUB RND ANG				
	0,10						ORAN Bra	iG			0			
		Õ												
							BEN VEIT	w same	SW	SAME	0			
	S-3				ĺ									
	0945			4.5/5							0			
		15									0			
								SAME	SW	SAME.				
	5-4										0			
	ূ গৈ50			3.5/5										
											0			
		20]									
						DENCE		SAME	Sh	SAME	0			
	S-5			3.5										:
	<u> ७</u> १९५२										0			
					ļ				ļ					
		25					<u> </u>				0			
	** inclu	ide mor	itor readi		t intervals			e reading frequency if elevated reponse	read.	Drillin Background				<u> </u>
	I/GII	ιαι Νδ.		ST R	.1(_5· ,					. packyrounu	/hh	111/-	<u> </u>	_
	Conv	verted	to We	-ii.	Yes			No Well I.I) #:		··			

Converted to Well:

Yes

		1		, , , , , , , ,		<u> </u>	<u> IRING LOG</u>		, ug	<u> </u>	<u> </u>	<u></u>	
PRO	JECT	NAM	E:	NWIRP	Bethpag	ge II	BORING N	lo.:	SG200 2010				
				112G0	1687		DATE:		1/6/09				
			PANY:	Zebra	oil Gas		GEOLOGI	SI:	•				
ואט	LING	RIG:	r	DP 1-3			DRILLER:	1	EVAN MORAIT				
	Danish	Diama I	G1-	1 242-1	N	IATE	RIAL DESCRIPTION	۱	F	PID/FID) Rea	ding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery I Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	22				DENSE	YEM	5% E/C 67 12 - 601 E	L	21.10				
		$-\!$		1	DENSOR	BICN	F/C SAND - SOME. GRAVEL	<u>pw</u>	3/4" GRAVEL	9	\vdash		 -
<u>5-6</u>			0 5						SUB RND TO				ļ <u>.</u>
Ø55			2.5/5						ii ANG	0			
			•										
	30			30±						0			
				LESS			E/AL SAND -TRACE	SIA	D0000				
s-7-				GRAVEL			F/M SAND - TRACE GRAVEL	ľ	3/4" GRAVEL	0			
Q			3.%			<u> </u>			74 GKAVEL	\bowtie			
O57			3.9/S			<u> </u>		<u> </u>			\vdash		<u> </u>
						<u> </u>				0			_
	35					ļ							
					DENSE.		SAME	EW.	SAME	0			
5-8 e				1				Ì					
1000			4.3/5	-				 		0			<u> </u>
100			,3	1				\vdash		V			<u> </u>
			<u></u>				SL TK	<u> </u>	GRAY SAND				-
	40			<u> </u>		GPAY		₽√	e 39.5	0			
							FIM SAND -TRACE		LWAHD GISAY SAND				
5-9 e			4/5			TO	GRAVEL WY 7 VITHIN		DAMP > MOET	0			
1005							~ 42 AND 43- BUT						
ا ا				1		MASIC	G V. THIN			0			<u> </u>
 -	4			1		TERM		\vdash		\vdash			-
<u></u>	45			-				-	<u> </u>	igwdap	H		\vdash
<u> </u>				46±	7	To		<u> </u>					
5-10 e	1		4/5]	DENSE	CASPA	F/M SAND	<u>sm</u>	MOIST	0			
1010									NO CLAY OBSERVED-NO				
									GRAVEL.	0			
	50					 		1					┢
* When		oring, ent	er rock br	okeness.	<u> </u>	<u> </u>		<u> </u>	<u> 1</u>			<u> </u>	<u></u>
** Inclu	ide mon	•			@ borehole.	Increase	e reading frequency if elevated reponse	read.	Drillin				
Rem	arks:								Background	(ppi	m):	LS	2

No V

Well I.D. #:

Page ___ of _2_

PROJECT NAME:	NWIRP Bethpage II	BORING No.:	SG200 201	
PROJECT NUMBER:	112G01687	DATE:	115109	
DRILLING COMPANY:	Zebra	GEOLOGIST:	Conti	
DRILLING RIG:	DPT-Soil Gas	DRILLER:		

בו ווי													
					M	ATEF	RIAL DESCRIPTION		i i	'ID/FIE	Rea	ding (ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	ມ	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
							SAND AND CLAY		HAND AUGER	0			
							To		TO 5'				
5-1 छाड			HA				то 5'			0			
1315													
	5									0			
					М.	ORAN BRN	SANDY CLAY-	SC	MOIST				
5-2					STIFF		SANDY CLAY- CLAYEY SAND TR GRAVEL			0			
@ 1340			4/5		M DENSE	ו אייביען			MOIST				
							SILTY SAND SOME GRAVEL			O			
	10												
					M DENSE	YEU ORA	aw <u>VG BRN F/M SAND.</u> SOME GRAVEL	5W	DAMP	0			
5-3 ©			4/5				SOME GRAVEL		المسمع كالسائل واحتراق المساوي المساوي				
<i>ଭ</i> କ୍ଷ			,						GRAVEL MAX 1"P	0			
	נו									0			
					DENSE	YEU Brn	SAME.	<u> </u>	SAME	0			
5-4 e													
1400	>		5/5					<u> </u>		0			
	20									0			
					DEVEE		SAME	SW	SAME.				
5-5 @ 14 ₀₌			4/5							0			
140													
										0			
	25												

When rock cori Include monito Remarks:	or reading in 6		borehole. Increase readir	ng frequency	rif elevated reponse read.	Drilling Area Background (ppm):
 Converted t	to Well:	Yes	No		Well I.D. #:	

-			
PROJECT NAME:	NWIRP Bethpage II	BORING No.:	SG200 2011
PROJECT NUMBER:	112G01687	DATE:	1/5/09
DRILLING COMPANY:	Zebra	GEOLOGIST:	Conti
DRILLING RIG	DPT-Soil Gas	DRILLER:	

					B. A	ATE	RIAL DESCRIPTION			ייייייייייייייייייייייייייייייייייייייי) Dor	dina '	
Sample	Depth	Blows /	Sample	Lithology	IV		TIAL DESCRIPTION	U		PID/FIC	, Kea	ung (hbw)
No.	(Ft.)	6" or	Recovery		Soil Density/			S			N		ŧ
and Type or	or Run	RQD (%)	/ Sample	(Depth/Ft.) or	Consistency			С	Remarks	Be	Sampler BZ	Borehole**	Driller BZ**
ROD	No.		Length	Screened Interval	or Rock	Color	Material Classification	S		Sample	du	oreh	iller
				177107 7 11.	Hardness						ŝ	Ď.	ā
	25			25									
					DEVRE	TAN	F/M SAND-TR	ğΜ	DAMP	0			
56			4.1/5			BRN	GRAVEL	SI	34" GRAVEL				
F 0 4									- · · · - · · · · · · · · · · ·	0			
1													
	30			20									
				30_		VEU		-		_	_		
					DENSE	<u> </u>	RN F/C SAND - SOME GRAVEL	BW	DAMP				
5-7							20WE DICHARC		34" (PA) EL	0			
1415			4.3/5						ਤਪਤੇ ਕੋਹਪਮਹ ਤਪਲੇ ਕੈਪਨ ਤਪਲੇ ਕੈਪਨ				Π
										0			
	35												
					DENSE		Cha.z-	S. (SAME.	0			
<u>s</u> -ි		-					SAME	-2VV	DAME.	\sim			
1420			3.8/5							0			
<u> </u>			/5										H
	40									0			\vdash
					DENSE		· /		2				
						 	F/C SAND-TR GRAVEL	<u>DW</u>	DAMP - NOT				
5-9 E 1425		/					OICT/ET	ļ	DAMP - NOT AS MUCH GRAVEL	0			_
1425									34" MAX				
									SUB (R)	0			
	4												
					DEVE	AEF	DW SAME	SW	DAMA	0			
5-10													
143C	>					ТО				0			
				49'	DENEE	BRN			COLOR & 48'±				
	50				REFE		1		•	^			

When rock coring, enter rock It Include monitor reading in 6 Remarks:		@ borehole. Incre	ease reading	frequency if e	elevated reponse read.	Drilling Area Background (ppm):
Converted to Well:	Yes		No	V	Well I.D. #:	

APPENDIX C SOIL GAS SAMPLING LOG SHEETS

Project Site Name:

C.O.C. No.:

NWIRP Bethpage Site 1

Sample ID No.:

Project No.:

112G01687

Sample Location: Sampled By:

Site 1

CAMPIING DATA.

SAMPLING DATA:						
Date: 10/29/08	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1335	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Conister	windy	55 €	450=	29,48	47	

10-15

Summa Canister #	33678
Filter Type	24M 0:5 hour

Start Time Vacuum	1335	in Hg -عن	PSE
		in Hg - 410	
Regulator on	ly west	+0 -2,5	not 0

+42 reason for -4,0 PSI

He check	Start	Stop	Reading	
Background 75 ppm	13.25	1334	0.0	PP.M
Purge Data	Start	Stop		
·	1325	1334		

Readings:

Liters/minute

1548 @ 1325

154.2 @ 1327

1538 @ 1329

Notes: 1543 13 3 2

sunny windy with high clouds cool mid 40 F showers occur 1415-1445

Soil Gas PID: 1.5 pp.m at 1325 Enitial

1,5 ppm at 1327 Val 1 115 ppm at 1329 VO1 2

114 ppm at 1332 VOI 3

1,2 ppm at 1453 Final reading after sample Collection

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562008-20

Project No.: C.O.C. No.:

112G01687

Sample Location: Sampled By:

Site 1

SAMPLING DATA:

Date: <i>j0[2q 06</i> Time: /2/0	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure (⁰ C)	Relative Humidity (%)	Other
Method: Summa Canistal	B:6624	5S €	450 F	29.76	73	

5-10

Summa Canister #	5585
Filter Type	2UM O,5hour

Start Time Vacuum	1210	in Hg -₃ <i>o</i>	PSE
End Time Vacuum	1305	in Hg - 2,5	PSE

He check	Start	Stop	Reading
Background 375 ppa	1155	1210	0,0,0
Purge Data	Start	Stop	
	1155	1210	

Readings:

Liters/minute

154.3 @ 1155

15212 @ 1159

152,7 @ 1203 Notes: 153,6 44 1207 Rain showers occurred during purging cleared for sample activities

Soil Gas PID: 0.8 ppm at 1155 Entral

0.9 ppm at 1159 voll

1.0 ppm at 1203 volz

1.0 ppm at 1207 vol3

1.1 ppm at 1307 After sample coilection

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562001-49

Page 1 of 1

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:

		Wind	Ambient	Barometric	Relative	
Date: /0/30/06	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 6954	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canster	Lt Brecze	35 E	42°F	30.10	5 3	

O-5

Summa Canister #	5736
Filter Type	24M DISHOUT

Start Time Vacuum	0954	in Hg -30
End Time Vacuum	1036	in Hg -3,5

PSE Regulator Stopped at -2 PSE rather than at 0 will stop sample at -35 PSE rather than -2.5 PSE

He check	Start	Stop	Reading]
Buckground 15 um	,0933	0953	010	medy
Purge Data ''	Start	Stop		
	0933	0953		

Readings:

Liters/minute

15513 @ 0933

151.6 @ 0938

157,1 @ 0943

Notes: 157.2 at 0948

Soil Gas PID: 3:5 ppm at 0933 Enitial
2:6 ppm at 0938 Vol 1
1:8 ppm at 0943 Vol 2
1:5 ppm at 0948 Vol 3

115 PPM at 1040 After sampling was completed

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP51-56-002-08

Page__1_ of __1_

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLI	NGI	JA	Α,

Date: 10 30 05 Time: 1253	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Method: Summa Canister	V	(3.0.) 5'5'	45°=	30,25	(%) 5~3	

5-10

Summa Canister #	35154
Filter Type	2 UM 0.5 hour

Start Time Vacuum	1253 in Hg -30 PSI	Regulator	stuek	at	- 3 PS.E	will stop	ecirly
End Time Vacuum	1355 in Hg -40 FSI						

He check	Start	Stop	Reading	
Buckyround 50 ppm	1242	1252	010	Lew de
Purge Data	Start	Stop		
	1247	1250		

Readings:

Liters/minute

147.4 @ 1244

148.8 @ 1246

Notes: 148.6 1250

Soil Gas PID: 418 ppm at 1242 5-1141 5,9 pm at 1244 517 ppm at 1246

512 ppm at 1250

44 ppm at 1557 Alter sampling complete

Page_ 1_ of _ 1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-56-2002-20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

May Aller

ı	SAN	MPL.	ING	D/	AT.	Α:

		Wind	Ambient	Barometric	Relative	
Date: 10/30/05	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: //26	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canista	Breezy	3 <i>5 E</i>	450=	30,21	5-3	

5-10

Summa Canister #	34021
Filter Type	24M 0.5 hour

Start Time Vacuum	112.6	in Hg 30
End Time Vacuum	1225	in Hg - ス・5

PSI requiator went to 0,5 PSI not 0 will cut

He check	Start	Stop	Reading]
Background 75 pp.	1113	1125	0.0	מיי מכן
Purge Data	Start	Stop		-
	1113	1125		

Readings:

Liters/minute

153,4 @ 1113

153.0 @ 1116

153,0 @ 1119

Notes: 152,9 at 1124

Soil Gas PID: 1,4 ppm at 1113 Initial
2,6 ppm at 1116 voil
4,7 ppm at 1119 voil
6,8 ppm at 1124 voil
in 124 ppm at 1229 completion of sampling

Project Site Name:

NWIRP Bethpage Site 1

Page__1_ of __1_

Project No.:

112G01687

Sample ID No.: Sample Location:

BPS1-56-002-44

Site 1

C.O.C. No.:

Sampled By:

SA	MF	L	ING	DA.	TA:

Date: 10 30 08 Time: 1347	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure (°C)	Relative Humidity (%)	Other
Method: Summa Canistac	Breczy	55 E	47° =	30,25	5 3	

5-10

Summa Canister #	33884
Filter Type	20 M 0,5 hour

Start Time Vacuum	1347	in Hg -30	PST
End Time Vacuum	1600	<i>اما</i> ۔ in Hg	PSI

He check	Start	Stop	Reading	7
Buckerowald 15 por	1328	1346	00	21000
Purge Data	Start	Stop		_
	1328	1346		

Readings:

Liters/minute

150.9 @ 1328

15216 @ 1333

153,4 @ 1338 Notes: 154.2 at 1345

Soil Gas PID: 2.8 ppm at 1328

218 ppm at 1333

319 ppn 41 1338

1345 6:4 ppm at

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

Page__1_ of __1_ BFS: - 56 2003-08

Project No.: C.O.C. No.:

112G01687

Sample Location: Sampled By:

Site 1

SAMPLING DATA:

Date: 10131128 Time: 1122	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (⁰ C)	Barometric Pressure (°C)	Relative Humidity (%)	Other
Method: Souma Cunister	B1 CCZ 4	SSE	50 °F	30,35	55	

5-10

Summa Canister #	33904
Filter Type	20M DISTHOUR

	Start Time Vacuum	1122	in Hg -عت	PSI
İ	End Time Vacuum	1216	in Hg -2,5	PSI

He check	Start	Stop	Reading	7
Bast-ground 200 pp	1110	1119	0.0	13171
Purge Data	Start	Stop		<u></u>
	1150	1119		

Readings:

Liters/minute

147.9 @ 1110

143.4 @ 1113

144.7 @ 1116

Notes: 150,2 at 1119

Duplicate Sample BPSI-Dup-03
assigned time 0000 Soil Gas PID: 1.4 ppn at 1110 Instial. 113 PPM at 1113 voil VO1 2 1.5 ppm at 1116 V513 1.3 ppm 41 1119 at 1219 After sampling complete

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BFS1- DUD-03

Page__1_ of __1_

Project No.: C.O.C. No.:

112G01687

Sample Location:
Sampled By:

Site 1

SAMPLING DATA:

SAMIFLING DATA.						İ
Date: 10/3/108	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0000	(Visual)	(S.U.)	(°C)	(°C)	(%)	011101
Method: Summa Canister	Breeze	60E	51 Q-	7070	<u> </u>	

5-10

Summa Canister #	10776
Filter Type	2 UM 015 HOUR

Start Time Vacuum	0000	in Hg-30
End Time Vacuum	0000	in Hg 3,5

He check	Start	Stop	Reading	7
Background 200 ppm	1110	1119	0.0	1794
Purge Data	Start	Stop		_
	1110	1119		

Readings:

Liters/minute

147,9 @ 1110

148,9 @ 1113

149,7 @ 1116

Notes: 15012 at 1119

Duplicate Sample BPS1-56-2003-08

Soil Gas PID: 1,4 ppm at 1110 Enitial

113 ppm at 1116 vol 2

1,3 pp = a+1(19 Vol3

019 ppm at 1119 After Sampling Complete

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

Page__1_ of __1_ _*BPS1~S&003~2.0*

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:

Method: SUMME Canister		(0.0.)	470=	(0 /	(70)	
Date: 10/3/108 Time: 1023	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure (°C)	Relative Humidity (%)	Other

5-10

Summa Canister #	5633
Filter Type	24M 0.5 hour

Start Time Vacuum	1023	in Hg - 30	125 E
End Time Vacuum	1122	in Hg - 210	rst.

He check	Start	Stop	Reading	7
Background 15 pra	1007	1020	0.0	1200
Purge Data	Start	Stop		
	1007	1020	7	

Readings:

Liters/minute

149.1 @ 1007

1047 @ 1010

14917 @ 1013

Notes:

1020

Soil Gas PID: 1:3 pp.m at 1007 Initial

1:1 pp.m at 1000 voil

1:0 pp.m at 1070 voil

1:0 pp.m at 1070 voil

0:9 pp.m at 1125 After potters complete

Project Site Name:

NWIRP Bethpage Site 1

Page__1_ of __1_

Project No.:

SAMPLING DATA.

112G01687

Sample ID No.: Sample Location:

BPS1-56-003-49

C.O.C. No.:

Sampled By:

Site 1

53

SAMPLING DATA:				•		
Date: 10/31/09 Time: 0440	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure (°C)	Relative Humidity (%)	Other
Method: Summa Canistei	calm	8 S Œ	45.05	30,35	5-2	

Summa Canister #	35243
Filter Type	24H O.5 hour

Start Time Vacuum	0440 in Hg -30	PSE	Regulator	stuck at	IPSE	will stop at 215	FST
End Time Vacuum	10 45 in Hg - 215	PSE	•		•	3.07	. •

30.35

He check	Start	Stop	Reading	7
Buckground 75 pps	12921	0439	0.0	121719
Purge Data	Start	Stop		
	0921	0939		

Readings:

Liters/minute

150,4 at 0431

1511 @ 0926

150,6 @ 0431

Very tight from 40-45 feet went to 49 fect to see if locser Notes: Soil Gas PID: 117 ppm at 19921 Instict 105 ppm at 0926 V21 1 1,5 ppm at 0931 voiz 115 ppm at 0936 voi 3 112 ppm at 1043 Actor sampling complete

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP51-56-2004-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

					_
0.00		INIO	D /	T A .	
ICAM	וע	ING	116	A I A	

SAMPLING DATA:		Wind	Ambient	Barometric	Relative	
Date: 10/28/05	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1308	(Visual)	(S.U.)	(°C)	(₀ C)	(%)	
Method: Summa Lanister	Breezy	NNE	42° =	29.45	93	

5-- 10 mph

Summa Canister #	34280
Filter Type	24M 0,5 HOUR

Start Time Vacuum	1308	in Hg <i>-30</i>	125E
End Time Vacuum	1410	in Hg -216	PSI

He check	Start	Stop	Reading	_
Buckground 75 Him	1255	1307	0:0	سرماط
Purge Data	Start	Stop		
	1255	1307		

Readings:

Liters/minute

100:7 @ 1255

101.5 @ 1301

Notes: 102,1 at 1305

slight rain showers comming back

Soil Gas PID: OIL ppm at 1259 Initial
013 ppm at 1259 Voll
014 ppm at 1301 Vol2
013 ppm at 1305 Vol3

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562004-20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:						
Date: 10/28/05	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1150	(Visual)	(S.U.)	(°C)	(₀ C)	(%)	<u> </u>
Method: 5 umma Canis for	windy	NNE	4501=	29,51	90	<u> </u>

10-20

Summa Canister #	5572
Filter Type	ZUM 015 HOUR

Start Time Vacuum	1150	in Hg - <i>30</i>	PS E
End Time Vacuum	1247	in Hg -2.5	PSI

He check	Start	Stop	Reading	
Background 100 pp	1136	1148	0.0	12120
Purge Data	Start	Stop		
	1136	1148		

Readings:

Liters/minute

144.4 @ 1136

151.4 @ 1134

152.6 @ 1142

weather appears to be clearing rain has stopped for

the time being cloudy and windy Notes: 1527 at 1146

Soil Gas PID: 0.5 ppm at 1136 Entral OIL PAM AT 1139 IVOI 016 ppm at 1142 2 Voi 016 ppm at 1146 3 vo)

0.5 ppm at 1248 After Sampling Complete

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562004-44

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

	MP			

SAMI LING DATA.		Wind	Ambient	Barometric	Relative	
Date: 10124109	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 0955	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	Breezy	W	4202	29.85	55	

5-10

Summa Canister #	33675
Filter Type	2UM 0,5 hour

Start Time Vacuum	0955	ە3- in Hg	PSE
End Time Vacuum	1053	ک.3 - in Hg	PST

He check	Start	Stop	Reading	
Buckground 150 ppm	0935	0954	0:0	سه مزدغ
Purge Data	Start	Stop		
	0930	0954		

Readings:

Liters/minute

152,4 @ 0935

152.2 @ 0940

152,4 @ 0945

Duplicate Sample BPSI-Dup 02 was collected 0000

Notes: 15/17 at 0950

Soil Gas PID: 8,4 ppm at 0935 Enitial
215 ppm at 0940 voil
210 ppm at 0945 voil
118 ppm at 0950 vois

1.3 ppm at 1055 Final after sampling complete

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPSI - DUD -OZ

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

	سومو_

SAMPLING DATA:						
Date: 10/29/08	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0000	(Visual)	(S.U.)	(°C)	(₀ C)	(%)	
Method: Summa Canister	Brecty	w	420=	29,85	55	

5-10

Summa Canister #	14871
Filter Type	2 UM 0:5 hour

Start Time Vacuum	0955	ن ہے۔ in Hg	i25 i
End Time Vacuum	1053	in Hg - z 10	PSI

He check	Start	Stop	Reading	
Buckground 150 ppm	0935	0954	010	سرط وا
Purge Data	Start	Stop		
	0935	0954		

Readings:

Liters/minute

152.4 @ <u>0935</u>

152,2 @ 0940

152.4 @ 0945

Notes: 151.7 at 0950

Duplicate of BPS1-562004-49 at 0955

Soil Gas PID: 8,4 ppm at 0935 Enitial

215 ppm at 0940 Vol 1

210 ppm at 0945 Vol 2

118 ppm at 0450 Vol 3

113 ppm at 1055 Final after Sampling complete

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-SGZ005-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAN		

SAMPLING DATA:	1	Wind	Ambient	Barometric	Relative	
Date: 10/27/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: /240	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canistil	calm	55 E	62°F	31:10		

0-5

Summa Canister #	339	21	
Filter Type	ZUM	0.5	hour

Start Time Vacuum	1240	in Hg -30	PS I
End Time Vacuum	1337	in Hg - 2,0	PS I

He check	Start	Stop	Reading
Buckground 150 Dum	1232	1239	010 pp.
Purge Data	Start	Stop	
	1232	1239	

Readings:

Liters/minute

155.8 @ 1232

156,4 @ 1234

156.4 @ 1236

Notes: 156.6 at 1238

Enitial Soil Gas PID: 1,4 ppn at 1232 112 Ppm at 1234 1,2 ppm at 1236 111 ppm at 1238 111 ppm at 1240 Final after sample collection

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-SG2005-20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

I	SA	MP	LING	DA'	TA:

OAM ENG DITT		Wind	Ambient	Barometric	Relative	
Date: /0/27/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1117	(Visual)	(S.U.)	(₀ C)	(°C)	(%)	
Method: Summa canister	calm	55 É	56°F	31,10		

0-5

Summa Canister #	13999
Filter Type	2 UM 0.5 hour

Start Time Vacuum	11 17	in Hg -29.5	PSI
End Time Vacuum	1214	in Hg -2.0	PSI

He check	Start	Stop	Reading
Bugkground 100 pp	1104	1116	0:0 pp
Purge Data	Start	Stop	
	1104	1116	

Readings:

Mili Liters/minute

154,3 @ 1104

155.6 @ 1107

156.4 @ 1110

Notes: 157,5 at 1114

```
Soil Gas PID: 1.5 ppm at 1104 Initial
1.0 ppm at 1107 100(
019 ppm at 1110 200)
017 ppm at 1114 3001
0.7 ppm at 1214 Final after Sumple collection
```


Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.: Sample Location:

BPS6-562005-49

Project No.: C.O.C. No.: 112G01687

Sampled By:

Site 1

SAMP	LING	DAT	Ά:

SAMPLING DATA:		Wind	Ambient	Barometric	Relative	
Date: 10/27/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: /039	(Visual)	(S.U.)	(°C)	(₀ C)	(%)	
Method: Summa (unistel	Calm	SSE	56° F	31.10		

0-5

Summa Canister #	9944
Filter Type	2 VM DIS HOUR

Start Time Vacuum	1039	in Hg - <i>28</i> .	PSI
End Time Vacuum	1134	in Hg - 2	125L

He check	Start	Stop	Reading
Background 100 ppm	1020	1037	0.0 99
Purge Data	Start	Stop	
	1020	1037	

Readings:

Liters/minute

16(4 @ 1020

155,7 @ 1025

155,9 @ 1030

Notes: 1562 at 1035

Soil Gas PID: 0,0 ppm at 1020 Enitial

0,0 ppm at 1025 I vol

0,0 ppm at 1030 2 vol

0,0 ppm at 1035 3 vol

0,8 ppm at 1134 Final after Sample

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPSI-5G2006-08

Project No.: C.O.C. No.: 112G01687

Breczy

Sample Location:

Site 1

Method: Summa Canister

Sampled By:

SAMPLING DATA:						
		Wind	Ambient	Barometric	Relative	
Date: 10/24/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1244	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Comme Commenter	BORREY	SSE	550F	31,70		

SSE

5-10

Summa Canister # 10912 Filter Type 2 UM 0,5 hour

Start Time Vacuum	1244	in Hg -30	PSI
End Time Vacuum	1420	in Hg - 3, <i>5</i>	PST

He check	Start	Stop	Reading
Background 150 DAM	1236	1243	0.0
Purge Data	Start	Stop	
	1236	1243	

Readings:

Liters/minute

1503 @ 1236 Saitial

15016 @ 1238

152,5 @ 1240

Notes:

1242 152,8

Soil Gas PID: 0,4 ppm Enifiel 018 ppm at 1238 019 ppm at 1240 110 ppm at 1242 Oldopa Final reading

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-56-2006-20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPL	_ING	DA"	ΓΑ:

SAMI LING DATA.		Wind	Ambient	Barometric	Relative	
Date: 10/24/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: // 2.7	(Visual)	(S.U.)	(₀ C)	(°C)	(%)	
Method: Summa Canister	calm	55 E	55°1=	31,70		

0-5

Summa Canister #	4236
Filter Type	24M 015 hour

Start Time Vacuum	1127	in Hg -30	PSI
End Time Vacuum	12.17	in Hg <i>- 215</i>	PSI

He check	Start	Stop	Reading
Buckgrovaci = 50pm	1115	1125	0.0 pp
Purge Data	Start	Stop	
	1115	1125	

Readings:

Liters/minute

1567 @ 1115

156.1 @ 1120

155.4 @ 1125

Notes:

Soil Gas PID: 2, 2 ppm 1115 : Entral

2,3 ppm 1120

213 ppm 1125

Tie Ppm 1227 : Final

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPSI-562006-49

Project No.:

112G01687

Sample Location:

Site 1

73

C.O.C. No.:

Method: Summa canister

Sampled By:

45°F

29.59

SAMPLING DATA:						
Date: 10/28/08	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1003	(Visual)	(S.U.)	(°C)	(°C)	(%)	

NNE

wendy

Summa Canister #	5555
Filter Type	2 um 0,5 hour

Start Time Vacuum	1003	in Hg 24,5	PSI
End Time Vacuum	1100	in Hg 2.0	PSI

Rainy and u	sindy al	1 day	
Started raining	ig Last n	ugat at	
2330 rained	turorgh	the night	2.
this morings	weather	had 1 to	1.5
already .			

He check	Start	Stop	Readin
Backeyround 0:0	0945	1002	0:0
Purge Data	Start	Stop	
	0945	1002	

Readings:

Liters/minute

151.6 @ 0945

150.8 @ 0950

15012 @ 0955

Notes: 149,9 at 1000

Soil Gas PID: 2:2 ppm at 0945 During sampling raining windy cold

1:2 ppm at 0950 all day windy with rain

1:0 ppm at 0955

0:9 ppm at 1000

0:8 ppm at 1004 a fter sampling completed

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562007-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

ı	SAMF	PLING	DATA:
1			

Date: /0/23/08	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1507	(Visual)	(S.U.)	(⁰ C)	(°C)	(%)	
Method: Summa Canister	Breezy	NNE	5 [~] 7 ⊨	31.75		

5-10

Summa Canister #	03788
Filter Type	2 UMK-1MIN 0:5 HOUR

Start Time Vacuum	1507	in Hg - 30	PSI
End Time Vacuum	1615	in Hg -4,0	125 E

He check	Start	Stop	Reading
Backgroomed 2425	1458	1506	2350
Purge Data	Start	Stop	
	1458	1506	

Readings:

Liters/minute

125.0 @ 1458

125,7 @ 1400

125,9 @ 1506

Notes:

Soil Gas PID: 0,0 ppm at 1458 010 ppm at 1500 0,0 ppm at 1506

0.8 ppm at 1617

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1 "562007 - 20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:	•					
		Wind	Ambient	Barometric Pressure	Relative Humidity	Other
Date: /0/23/08	Wind speed	Direction	temperature		1	Other
Time: 1400	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	13100324	NNE	57 ° F	31.75		

5-10

Summa Canister #	34730
Filter Type	2 U/ML MIN 0,5 4001

Start Time Vacuum	1400	in Hg <i>₌.30</i>	PSI
End Time Vacuum	1453	in Hg -2,5	PSI

He check	Start	Stop	Reading
Background 300	13 48	1400	275
Purge Data	Start	Stop	
	1348	1400	

Readings:

Liters/minute

1563 @ 1348

15 4,6 @ 1353

154.7@ 1358

Notes:

Soil Gas PID:	1,4 ppm	at 1348	Duplicate Sample
	0.8 210	at 1354	3PS1-DUP-01
	0,8 ppm	4+ i358	TIML = 0000
	1,6 ppm	at 1454	

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

13PSI- DO GIVOL

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:					is.	
Date: 10 2 3 0 8	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0000	(Visual)	(S.U.)	(ºC)	(₀ C)	(%)	
Method: Symma Canistic	Breezy	ルルミ	57	31.75		

5-10

Summa Canister #	33789
Filter Type	2 4/11/MIN 015 hour

Start Time Vacuum	0000	in Hg <i>-30</i>	125I
End Time Vacuum	0000	in Hg -2,65	PS I

He check	Start	Stop	Reading	
Buckground 300 ppm	1348	1400	275	Midal
Purge Data	Start	Stop		_
	1348	1400		

Readings:

Liters/minute

156,3 @ 1348

1546 @ 1353

154.7 @ 1358

Notes:

Soil Gas PID: 1.4 ppm at 1348 018 ppm at 1353 018 ppm at 1358 Duplicate 50 mp/c BPS1-562007-20 TMC 1400

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP51-562007-49

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

	LIN		

O/AIII EIIAO D/AI/AI		Wind	Ambient	Barometric	Relative	
Date: 10 1 2 4 108	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 0945	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	LE Breeze	ととは	55°F	31.70		

0-5

Summa Canister #	04589
Filter Type	2UM DIS hour

Start Time Vacuum	0945	ە3- in Hg	PSI
End Time Vacuum	1040	in Hg - 215	PSI

He check	Start	Stop	Reading
Buckground 125 ppg	0924	0944	0.0
Purge Data	Start	Stop	
	0928	0944	

Readings:

Liters/minute

151,9 @ 0928

1547 @ 0933

155,3 @ 0938

Notes: 156.4 at 0943

Soil Gas PID: 4.2 ppm at 0928 Initial reading
2:4 ppm at 0933
1:4 ppm at 0938
1:4 ppm at 0943

117 Ppm at 1043 Final

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562008-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:							
Date: /0;22/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1415	(Visual)	(S.U.)	(² e7(1= ²)	(°C)	(%)		
Method: Summa Canster	81=82-1	7	5 F	31,40			

10 "15 MY"

Summa Canister #	252634
Filter Type	2 4/10/1/2011

Start Time Vacuum	4415	in Hg - 30	آ کون
End Time Vacuum	1455	زرz - in Hg	PSI

He check	Start	Stop	Reading
Buckground 1325 ppm	1405	1415	950
Purge Data	Start	Stop	
	1405	1415	1

Readings:

Liters/minute

151.6 @ 1405

147.2 @ 1410

144,9 @ 1415

Notes:

Soil Gas PID: 2.17 ppm at 1405 1.6 ppm at 1415 117 ppm at 1455

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562008-20

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SA	MPL	IN	IG	D	AΤ	A:	

Date: 10122108	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1530	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	Breezy	NNE	4501	30,21		

5-10 MPH

Summa Canister #	25263
Filter Type	24M 015 hours

Start Time Vacuum	1530	in Hg -30	175 F
End Time Vacuum	1730	in Hg -10	175 I

He check	Start	Stop	Reading	
Background 125 pp	1513	1525	010	א קקי
Purge Data	Start	Stop		_
	1513	1525		

Readings:

Liters/minute

160.3 @ 1513

147,5 @ 1520

144.7 @ 1525

Notes:

Soil Gas PID: 2,2 ppm a+ 15/3

1,6 ppm at 1520

117 ppm at 1525

112 ppm at 1532

1

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP51-56-2008 -

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

l	SAMP	L	I١	١G	D/	١T	A:

		Wind	Ambient	Barometric	Relative	
Date: 10123108	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: O 943	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	Bicczy	NNE	450 =	30.15		

5-10

Summa Canister #	33560	
Filter Type	2 Umilmin	Ois Hour

Start Time Vacuum	0443	in Hg - 30	PSI
End Time Vacuum	10 38	in Hg -2,5	PSI

He check 500 pp4	Start	Stop	Reading	
BKAW PPM	0925	0941	240 1700	Ĉ
Purge Data	Start	Stop		•
	0925	0941		

0940

Readings:

Liters/minute

14416 @ 0925

151.7 @ 0930

152,4 @ 0940

Notes:

Soil Gas PID: 1,4 ppm at 0925

0.5 ppm at 0 930

110 PPM at 0940

5.4 ppm at 1038

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPSI-562009-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SA	MP	LI	NG	D/	AT.	A:
	SA	SAMP	SAMPLI	SAMPLING	SAMPLING DA	SAMPLING DAT

SAMI ENGUATA.		Wind	Ambient	Barometric	Relative	
Date: 10/21/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1107	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa Canister	Breczy	ころに	60° =	31:10		

5-10

Summa Canister #	24485
Filter Type	2vg 0:5 hour

Start Time Vacuum	1107	in Hg - <i>30</i>	PSE
End Time Vacuum	1155	in Hg -z,s	PSI

He check	Start	Stop	Reading	
Background 1,750 ppm	1055	1105	1450	wall
Purge Data	Start	Stop		
	1055	1105		

Readings:

Liters/minute

149,5 @ 1055

15111 @ 1100

14913 @ 1105

Notes:

Soil Gas PID: 111 10pm Time 1105

Page__1_ of __1_

Project Site Name:

C.O.C. No.:

NWIRP Bethpage Site 1

Sample ID No.: Sample Location: BPSI-56-2009-25

delegan som som and a second

Project No.:

112G01687

Sampled By:

Site 1

SAMPLING DATA:

SAWIFLING DATA.						
		Wind	Ambient	Barometric	Relative Humidity	Othor
Date: 10/21/08	Wind speed	Direction	temperature	Pressure	Hullilaity	Other
Time: / 228	(Visual)	(S.U.)	(⁰ C)	(⁰ C)	(%)	
Method: Summe Conister	Breezy	NNE	60° F	31,10		

5-10

Summa Canister #	12943
Filter Type 🕡	0.5 hour 200

Start Time Vacuum	1228	in Hg - 30
End Time Vacuum	1345	in Hg

He check	Start	Stop	Reading	
Background 75 ppm	1215	1227	سطو ٥	
Purge Data	Start	Stop		
	1215	1227		

Readings:

Liters/minute

125,7 @ 1215

130,3 @ 1219

132,5 @ 1225

Notes:

Soil Gas PID: 1,2 ppm = 1226

35.28:13 + 61,025113 = 0578

15 min = 600ml 150; 3

10 min = 300ml

5 min = 150ml

M (01252) = 0:049 × 60' = 72011

35,28 113

1 mm = 0.061 in3

1113 = 16,387 LU CENIMETERS

1941 = 231 in3 = 3.785 liters

1 Liter = 61,025112

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

13PS1-56-2009-48

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

SAMPLING DATA:						
Date: 10121108	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1025	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summer Canister	calm 5	NNE	12	31,10		

Summa Canister #	34717
Filter Type	2019 0.5 hours

Start Time Vacuum	1025	<i>1</i> 0 - in Hg	PSE
End Time Vacuum	1125	in Hg - 2, <i>5</i>	125 E

He check	Start	Stop	Reading
Backyround 1057 ppm	1007	1025	600 ppm
Purge Data	Start	Stop	
	1007	1025	1

Readings:

Liters/minute

195,7 @ 1007

18611 @ 1015

177.9 @ 1025

Notes:

Soil Gas PID: 0.8 ppm Fime = 1025

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP52-562010-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

Robert Sok

SAMPLING DATA:						
Date: 1/6/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1505	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa						

Summa Canister #	10801	
Filter Type	2.m/	0.5hr

Start Time Vacuum	1510/-28	in Hg
End Time Vacuum	1557 1.2.5	in Hg

He check	Start	Stop	Reading
BKG=0.0	15 05	1509	0,0
Purge Data	Start	Stop	
	1565	1509	

Readings:

Liters/minute

40.5 @ 150b

40.5 @ 1507

70.5 @ 1508 Notes: Klow meter fully a

Soil Gas PID:

0.2 pp. @ 1506 0.1 ppm@ 1507 0.0 ppm@ 1508

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS2-562010-24

Project No.:

SAMPLING DATA:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Summa

Sampled By:

Robert Sok

SAIWFLING DATA.		Wind	Ambient	Barometric	Relative	04-
Date: 1/6/09	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1448	(Visual)	(S.U.)	(ºC)	(°C)	(%)	
Method: <						

Summa Canister #	20946
Filter Type	2um / 0.5hr

Start Time Vacuum	1455/-30	in Hg
End Time Vacuum	1545-25	in Hg

He check	Start	Stop	Reading
BKG 0.6	1450	1454	6.0
Purge Data	Start	Stop	
	1450	1454	

Readings:

Liters/minute

Notes:

Soil Gas PID:

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS1-562010-49

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

Robert Sok

ISAMPLIN	G DATA:

OAIIII LIIIO DATA.						
Date: 1/6/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1359	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Swama	Slightbield	NNE	~ 340F			

Summa Canister #	36048
Filter Type	2 mm o.shi

Start Time Vacuum	1438/- 30	in Hg
End Time Vacuum	1525/-25	in Hg

He check	Start	Stop	Reading
ere- 0.0	1430	1438	0.0
Purge Data	Start	Stop	
	1430	1438	

Readings:

Liters/minute

Soil Gas PID:

105 @ 1434

Summat 13865 Start line UAC 1438 [-30]-2.5 Opplicate BPSI-DUP-64

Notes:

1434

1436

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP51-562011-08

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

Robert Sok

Date: 1/6/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1052	(Visual)	(S.U.)	(⁰ C)	(°C)	(%)	

Summa Canister#	4167
Filter Type	24 M

Start Time Vacuum	1057	in Hg >-3ه	PS۱
End Time Vacuum	1145	in Hg - 2.5	P5 \

He check	Start	Stop	Reading	
BKE O.O gom	1053	1657	0.0	Ppm
Purge Data	Start	Stop		_
	1053	1057		

Readings:

Liters/minute

0.52 @ 1057

Notes:

Soil Gas PID: 3.0 pm@ 1054 26 11 1055 2.4 11 1056 2.1 11 1057

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BP\$2-562011-24

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

Robert Sok

SAMPLING DATA:						
Date: 1/6/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1006	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summa	breez-1	NNE	37°F			

Summa Canister #	34007	
Filter Type	du M	1/2 hi

Start Time Vacuum	1015	in Hg -30	P\$1
End Time Vacuum	1040	in Hg つん	

He check	Start	Stop	Reading	7
BKG-(0-26600m)	1007	1010	0.0	ppm
Purge Data	Start	Stop		_ , ,
	1007	1016		

Readings:

Liters/minute

0.52 @ 1007 0.53 @ toll

0.51 @ 1008

? Sample time shorter than 30min

Notes:

Soil Gas PID: 2.3 /m @ 1007 3.0 /pm@ 1008 2.6 ppm@ 1010 2.4 ppm@ 1011

Page__1_ of __1_

Project Site Name:

NWIRP Bethpage Site 1

Sample ID No.:

BPS 7 - 56 2011 - 48

Project No.:

112G01687

Sample Location:

Site 1

C.O.C. No.:

Sampled By:

Robertsok

SAMPLING DATA:	
----------------	--

O, 1111 2111 O D, 11711						
1 ./ ~		Wind	Ambient	Barometric	Relative	
Date: 1/6/08	Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 09'15	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Somma	H breesy	NNE				

Summa Canister #	34318	
Filter Type	2uM	1/2 hour

Start Time Vacuum	0935/30051	in Hg
End Time Vacuum	1037/-25	in Hg

He check	Start	Stop	Reading
Background 0-200 gpm			
Purge Data	Start	Stop	
	0920	0935	

Readings:

Liters/minute

0.56 @ 0935

0.55 @ 0920 0.57 @ 0925

0.57 @ 0936

Notes:

Soil Gas PID: 2.5 @ 0935

Project Site Name: Project No.: C.O.C. No.: SAMPLING DATA:	NWI	RP Bethpage 112G0168		Sample II Sample L Sampled	ocati		<i>BPS1</i> Site	- FB	age1 <u>201 - 2</u>		1_	
Date: 10/21/08 Time: 0935 Method: 50mma	Canister	Wind speed (Visual)	Wind Direction (S.U.)	Ambien temperatu (⁰ C)		Barometric Pressure (°C) 31.10	Relat Humic (%)	lity	Other			
Summa Canister # Filter Type Start Time Vacuum End Time Vacuum	3449 244 8 1 0935 1735		1	0121108 c122105	133	5 = -24.5 5 = -20.5 5 = -14.5 10/22/0 30 = -14.5	001 110 5 5 100	PEU	Dabo Dabo	16 12 10 10 10	0,07	ימיבאט נפיבא ב נפיבא
He check Purge Data	Start Start	Stop Stop	Reading			0 = - 915 0 = - 615						
Readings: Liters/minute@ @ Notes:												
Soil Gas PID:	"											

Page__1_ of __1_

Project Site Name: Project No.: C.O.C. No.:	NWIF	RP Bethpage 112G01687		Sample ID No. Sample Locati Sampled By:		BPSI-FE Site 1		-00
SAMPLING DATA:			······					
Date: 0 23 05 Time: טַיְיָטָטַ Method: בּיַשְׁמִיּם בּיִּ	and few	Wind speed (Visual)	Wind Direction (S.U.) ルルご	Ambient temperature (°C)	Barometric Pressure (°C)	Relative Humidity (%)	Other	
30 mm2 C	(),, 2 , 2 .	5-10 Mp	ħ					-
Summa Canister # Filter Type	UMIfore	1 8 hour						
Start Time Vacuum End Time Vacuum	0900	in Hg ~30 in Hg ~6,5	PST PST	1100 = -25 1300 = -16.5 1500 = -10:0	PSI NO	PED al	bove o	10 10
He check	Start	Stop	Reading	1730 - 615	PSI NO	PID a	bove o	0,0
Purge Data	Start	Stop		j				
Readings: Liters/minute@@ Notes:					<u>,, ., ., ., ., ., ., ., ., ., ., ., ., .</u>			
Soil Gas PID:								

Project Site Name: Project No.: C.O.C. No.:	NWIR	P Bethpage 112G01687		Sample ID No.: Sample Location Sampled By:		Site 1	F13 2.003		
SAMPLING DATA:									
Date: 10/24/05 Time: 0900	>	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure (⁰ C)	Relative Humidity (%)	Other		
Method: Summer	(is a set ex	it Breeze	BSW	50°F	31.70				
	Cerminie	0-5 pm	1						
Summa Canister # Filter Type	34434 244 8							127/08 PSIHG 00 - 17:5	NO PED
Start Time Vacuum End Time Vacuum	0900	in Hg -30 in Hg -17.5	4	· 23 PST 11 00 · 17:5 PST 1300	No PID a No PID	bauc 010 abouc 010	12	00 - 11.5	
He check	Start	Stop	Reading]					
Purge Data	Start	Stop		-					
Readings: Liters/minute@ @ Notes: Soil Gas PID:									
Juli Gas Fib.									

Page__1_ of __1_

Project Site Name:	NWI	RP Bethpage		Sample ID No		***************************************	132004-	00	
Project No.:		112G01687		Sample Loca	tion:	Site 1			
C.O.C. No.:				Sampled By:					
SAMPLING DATA:						I Balatina			
Date: 10/28/08		Wind speed	1	Ambient temperature	Barometric Pressure	Relative Humidity	Other		
Time: 0930		(Visual)	(S.U.)	(°C)	(°C)	(%)			
Method: Summa C	anistus	Windy	NNE	4205	29.59	43			
10129108	···	brice 37	w 1	420E	29,85	55			
Summa Canister #	2525								
Filter Type	ZUM 0	15 hour			<i>t</i>		:2 ~ 13	e e da a cam	0.000
			_	- 22	psI at	1130	NO PLU	46002	Cioppia
Start Time Vacuum	0930	in Hg-30	PSĪ	-16,5	pst at	1330 P	JO PE D	abouc	0:00
End Time Vacuum	1510	in Hg - 4.0	PST	_ (0/29/09				
He check	Start	Stop	Reading	-16,5	-PSI at	0430	NO PIO	above	وطرم فان
Purge Data	Start	Stop			PSI at			about	010 1000
			J	<i>₹ 575</i> °	PSE at	1330	NO FIF		
Readings:				1					
Liters/minute									
@									
@									
<u> </u>									
Notes:									
Soil Gas PID:									
							·		

Page__1_ of __1_

Page_1_	of1_
Project Site Name: NWIRP Bethpage Site 1 Sample ID No.: BPSI-FB005	
COC No:	
SAMPLING DATA:	
Date: 10/20/06 Wind speed Discotion 4	
Time: Agide Office Offi	
Method: 50mma Lanister Lt Breeze - 55 E 42-50 30110 5-3	
0.3	
Summa Canister # 33896 1145 7-20 PSE NO PID readings about	0:0 ppm
Filter Type 3 244 0,5 400r 1345 = - 14 195 1 No PID readings above	OUD DOM
1545 2-915 PSI NO PID Madings above	0.0 00-
Start Time Vacuum 0845 in Hg -30 PSI	
End Time Vacuum 1845 in Hg -8 PST	
He check Start Stop Reading	
Todamig Notating	
Purge Data Start Stop	
Readings:	
Liters/minute	
@	
Notes:	
Soil Gas PID:	
	4

Page	1	of	1
1 490		•	

Project	Site	Name:
Project	No.:	

NWIRP Bethpage Site 1

Sample ID No.:

BP31-FB2006-00 Site 1

112G01687

Sample Location:

C.O.C. No.:

Sampled By:

SAMPLING DATA:						
Date: 10/3/108	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0900	(Visual)	(S.U.)	(°C)	(°C)	(%)	
Method: Summe Constitut	calm	55E	38-55	30.35	5-3	

0-5 Mph

Summa Canister #	11026
Filter Type	2 UM 0.5 HOUT

22.5 PSI at 1000 No PID above Oic ppm 17,0 PST at 1200 NO PID about 0.0 PPM

Start Time Vacuum	0800	in Hg -30	PSE
End Time Vacuum	1345	in Hg ~/2,5	PS I

Start	Stop	Reading
Start	Stop	
	Start	Start Stop

Readings:	
Liters/minute	
@	_
@	_
@	_
Mataga	

140	JLt	:5.	
_			

Soil Gas PID:			

							age1_or_
Project Site Name:	NWIR	P Bethpage		Sample ID No			 <i>E F</i> B B B B B B B B B B
Project No.:		112G01687		Sample Locat	_	Site 1	
C.O.C. No.:				Sampled By:	Robert	Sok	
SAMPLING DATA:					•		
1./ 0			Wind	Ambient	Barometric	Relative	0.11
Date: 1/6/09		Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 0905		(Visual)	(S.U.)	(°C)	(ºC)	(%)	
Method: Samma	Connister	preezy	NNE	~ 38°F			
		· · · · · · · · · · · · · · · · · · ·		_			
Summa Canister#	10979		Res. 1097	8			
Filter Type	2amf	: Iter	(8hr)				
	0 945						
Start Time Vacuum	Ø-30+	in Hg					
End Time Vacuum		in Hg					
	I Programme						
He check	Start	Stop	Reading	1			
				1			•
Purge Data	Start	Stop		•			
				0945 8 -30	8 4		
		-		1643 10 -2	6.5	^ -	200
Readings:					6 2011 1	148 0 "	Fet.
-			51	introduce C	125	20 - 22	.,0
			5	tart up @362	15	100-17	.5
					10	6 A - 14	5
					16	M.C. I.	
Readings: Liters/minute @			ું ક	0945 @ -36 1643 @ -2 nut down @ 5 tart up @ 5626	6.5 62011 1 510 135 151 160	148 @ - 20 @ - 17 20 @ - 14	.5 .5 .22.0

APPENDIX D CHAIN OF CUSTODY RECORDS

757 461 4148 Sampler Chuck Mayer 610 909

0810745

CHAIN OF CUSTODY RECORD

Tetra Tech NUS Twin Oaks I Suite 309 5700 Loke Wright Drive

•	PROJECTN	٥.			160	E NAME:	Nor-Fulk VA 2	1		7			7.7		7	/ 		
ľ		G-0)	657	,			acthpage Site !			8	J	/.	X	⅓	12/6	,		-
ŀ	SAMPLERS							NO.		Æ.	У.	/)	XV.	p_{ia}	/ 3 }/			
l	250	and the same	1			•		OF CON- TAINERS	1 /	3.4	' /	`{∧	g_{N}	\r <u>\</u>	3/		REMARKS	
ŀ	NO.			COMP	•		STATION LOCATION	I AIMERS	N.	4			V	"	Lan	#	Canister Endial	
	5 G-	io B al go	0954	X		8P51-	562001-49	1	ı			d	1.04	4	573		-30	-3.5
	56	⁶ /38/03	1126	×		8751-	56 2 002-20	#	j			0	101	h	3407	21	-30	- 2,5
L	56	14 34 ₄₈	1253	×	<u> </u>	BP51 :	562002-08		ŕ		1	0	101	Ha	3515	4	-30	-4,0
	56	1436/05	/347	×		BPSI 4	56-2002-44	1	l		*		8,5	The state of	3 388	4	- 30	- 10
											-19:4			1				
Γ																		
ľ																		
ľ									ļ									
Γ																	į	
Γ																		
ŗ																		
ľ		·						CUSTOE N NO	Y SE/	LIN	AGT?							
ľ		· • · ·						N NC			771							<u> </u>
								-		7								
ſ	RELINQUIS		-	_		ATE / TIME:	RECEIVED BY (SIGNATURE):				•	TURE):		DAT	E/TIME:	RECEIV	ED BY{SIGNAT(JR£):
ŀ	HELIMQUIS											TURE):		DAT	E/TIME:	HECEIA	ED BY(SIGNATI	JRE):
ŀ	RELINQUIS	HED 8Y	(SIGNA	TURE):	1	DATE / TIME:	RÉCEIVED FOR LABORATORY BY (SIGNATURE):	D#	TE / TII	AE: R	ЕМАЯК	(5: <i>54</i>	. I P P	red	VIA	Fede	CIAL EX	01655

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local. State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Holling (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page_1_of_t

Project Manager Robert Sok	-		Project Info	Turn Aro	Turn Around Lab Use Only				
Collected by: (Print and Sign) Charles Mayer	Projectimo	Time		Pressurized by:					
•	P.O. #		⊠ Norma	al ŀ	Date:				
Company <u>Tatra Tech NUS</u> Email _ Twin Daks ISU:te 309 Address <u>Lake Wright Drive</u> City <u>Nor Follo</u>	Project # //	2601687	🗀 Rush		Pressurization Gas:				
Phone 757 466 4904 Fax 757	Project Name	NWIRP Beth page	sp∋ciń,	;		N ₂ H	? :		
	Date	Time		C	aniste	er Pres	sure/Vac	ะนยาต	
Lab I.D. Field Sample I.D. (Location)	Can#	of Collection	' ' '	Analyses Requested	In	ital	Final	Receipt	linal psi
OAB BPS1- FB2005-00	33896	10130108	0845		- ! - ;	30	-8:0		
0290 BPS1-562003-49	35263	10/31/08	0940		+3	30	کرون		: : }
03AB BPSI-S62003-20	5633	10)31108	10,23		+3	\$0	2.0		: .
0496 RPSI-562003-08	33904	10131108	1122		, ,	30	-2:5		
0586 BPSI-FBD06-00	11026	10/31/08	1800		-1	30 -	-12:5	<u>·:</u>	
06A6 BPS1-DUP-03	70776	10/31/08	0000		;	30 -	-3.€	: :	
				•			;		
Marine Committee								٠. ٠	
and the					:		·		
* *				—			<u>:</u>	• • • • • • •	
Refinguished by: (signature) Date/Time ### ### ############################	o Mo			PTL 11308 Expres: 52	s Air	bil	رنم ا	9	ral
Refinquished by: (signature) Da;e/Time	Received b	y: (signature)	Date/Time						
Lab Shipper Name Air Bill	#	: Temp (°C) C	ondition Oustody Se	els Intact?	}	Work C	Order #	
Use Led Ex			J (50	Yes Nic	None	1	U81	101	g

Project Manager Rob SOK

Tetra Tech NUS Twin Dales | Suite 309 5700 Lake Wright Drive

Telephone 757 461 4148

				Tair	NorFoik VA	2356	72		. ,				,,,	0 8107	กา
PROJECT N		87	,		ename: Site i WIRP Bethpage			Į.	1						
SAMPLERS (SIGNATURE):				NO.	1	183	9	Ι.	/ /	/	/ /				
a	Testes	<u>, i</u>				OF CON- TAINERS	. /	14						REMARKS Constant	2000
STATION NO.	l .		COMP	GRAB	STATION LOCATION			2_	\angle	_	_	\angle	can #	Intral	Fin
FB	19186	0 F30	X		BPSI- FB2004 - 00	i	١						25254	+30	- 4
SG	10/38/4	<i>10</i> 03	×		BP\$1- S62006-49	ı	i						5555	- 24,5	-2
	10/28/2				BP SI- 56 2004 - 20	i	ı	ļ					5570	- 30	-2
56	4/2/4	1308	×		BPS1- 56 2004- 08	1	1						34280	-30	-2
56	4 20/4	0955	Х		BPS1-562004-49	į	ı						33675	- 30	~ 3,
SG	to j _{žejlog}	izic	Х		8PS1 - SG 2003- 20	ì	ſ	$oxed{oxed}$					5585	-30	-2
56	is 34 29	1335°	X		1 . m is in indicated a second	ì	1	<u> </u>					33678	- 30	-4
56	scizylag	<i>ọ</i> cco	X		8P\$1- 8UP -02	1	ì				<u> </u>		14871	-30	<u>ہ</u> ۔ اِ
										<u> </u>					<u> </u>
							<u> </u>		<u> </u>						<u> </u>
						ļ	<u> </u>	<u> </u>	<u> </u>						1
				Į	JACON CEA	SUVACT	<u>,</u>	ĺ			1				ĺ
					Note 15										Ī
		.=			Teche	*									Ţ
RELINQUIS					ATE / TIME: RECEIVED BY (SIGNATURE):		NQUISI					DA	TE / TIME: REC	EIVED BY(SIGNATUR	E);
likar	Gr. 1.	Hyp	7	10%	Morrica Gre	\$98ML ≠	FIL "	130	08	ા	[
RELINQUIS				_	ATE / TIME: RECEIVED BY (SIGNATURE):		NQUISH					DAT	TE / TIME: REC	EIVED BY(SIGNATUR	E):
RELINQUIS	HED BY	(SIGNA	TURE):		ATE / TIME: RECEIVED FOR LABORATORY BY	Di	ATE / TH	VIE: R	EMARK	(S: 5)	ور ز دا	مع	1 VIA FE	du Expre	# #

CHAIN OF CUSTODY RECORD

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being snipped in compliance with all applicable local. State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any Kind, related to the collection, handling, or shipping of samples. D.O.T. Hotling (\$00) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

•	'	•			
	Page_	ì	of_	1	_

Project Manager <u>Rob Sok</u>		Project Info	p:	Turn Around	Lab Use Only		
Collected by: (Print and Sign) Charles Meyer	Marke Mayon	P.O. #		Time:	Pressurized by: Date:		
Company <u>Tetra Tech NUS</u> Email	<u>&</u> State <u>V ∧</u> Zip <u>23.502</u>	Project#	126-01687 Site1	☐ Rush	Pressu	Pressurization Gast	
Phone 15 7 466 4964	461 4148	Project Name	NWIRP BLHAPAGE	\$290ify	. ;	N _ε He	
	Date	Time		Canis		sure/Vacuum	
Lab I.D. Field Sample I.D. (Location)	Can # of Collection	of Collection	Analyses Requested	Initial	Final	Receipt Final	
MAB . BPSI-FBA 003-00	34434 10/14/08	0900	TO-15 VOL'S	-30	-6,5		
02AB BPSI-562007-49	04589 10/24/08	0945	TO-15 VOC'S	-30	-2,5	. , i	
63/43 BPSI- 56-2006 - 20	4236 10(24)08	1127	TO-15 VOC'S	-3 <i>0</i>	"2,5"	Ì	
04KB: BPS1-56-2006- 08	10912 10/24/08	1244	To-15 VOC'S	- 30	-3.5		
8051 562006 49	12/27/05	<u> </u>	70-15 Voc'a	- 30	CM	10[27[08	
05N6 BPSI-562005-49	9944 10/27/08	1039	FO-15 VOL'S	- 28	-210		
OLAR BPSI-SG 2005- 20	13499 10/27/08		TO-15 VOC'S	-29,5	- 2:0		
OMG BPS1-56 2005-08	33421 10/27/08		TO-15 VOL'S		-218		
		<u>:</u> [<u> </u>			·	
Relinquished by: (signature) Date/Time	Received by: (signature)			ipped Vi		deral	
Relinquished by: (signature) Date/Time	Received by: (signature)	, -, , , , , , , , , ,	ALCONO.	5 Aubili 1967 03			
Relinquished by: (signature) Date/Time	Received by: (signature)	Date/Time					
Lab Shipper Name Air Bill	# Temp (°C)	ondition Custody Se	als intact?	Work O	order #	
Use Ped Ex	MA	G_{ϵ}	Od (Yes) No	None	08	10643	

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State. Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, detend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.1. Hotine (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (918) 985-1000 FAX (916) 985-1020

Page / of Z

Project Ma	anager Robert Solk			Project Info		Turn Around	Lab Use	Ordy 1		
	by: (Print and Sign) Charles May		I. Ble.	Frojection	J:	Time:		Pressurized by:		
	•	<u> </u>	ee grages	P.O. #		■ Normal	Date:		!	
12	<u>TCFru Tech NUS</u> Email DUS DAKS i SUITE 309 1000 GAKE UNIGHT <u>DOU</u> CHY <u>NOI FOI</u> K	<u>×</u> State <u>v A</u>	Froject# M	WIRP Bethpage	☐ Rush	ļ. — ——·	Pressurization Gas:			
Phone	57 466 4904 Fax 75	7 461 410	Project Name	NWERP Bethpage Site	specify		N₂ Hə			
	Date					Canis	ter Pressure/Vacuum			
Lab 1.D.	Field Sample I.D. (Location)	Can #	of Collection	Time of Collection	Analyses Requested	nitial	Fina	Receipt	· Final	
AJO.	BPS1-562009 - 48	34717	10/21/08	1025	TO-15 VOC'S	> 30	~ 2,5			
しゃのん・1	BPS1-S6-2009 - 08	24485	10/21/05	1107	TO-15 VOC'S	7-30	Z,5		:.	
03A	BPS1-SG 2009 - 25	12934	10/21/08	1228	TO-15 VOL'S	- 30	-2,5			
OHA	BPS1-FB 2001 - 00	344 <u>9</u> 3	10 121 108	1000	ro-15 vac's	- 30	- 215-	:		
05A ₁	BPS) - SG 2008 - 08	25264	10 jzzj0\$	1415	TO-15 VOG'S	- 30	+ Z15	: '		
06A	BPS1-562008 - 20	25263	16 22 08	1730	TO-IS VOC'S	> -30	9.5			
оπА	BPS1- 56-2008 - 49	3 3 560	10 25 05	0943	TO-15 VOL'S	- 30	- Z.5			
08A	BPS1-562407 - 20	34730	10/23/08	1400	TO-15 VOL'S	-30	2,5	:		
094	BP51-56-2007-08	03788	10 123/08	1507	TO-15 VOC'S		-4,0			
	8951-009-01	93 789	10/23/08	0000	TO-15 VOL'S		-215	· · · · · · · · · · · · · · · · · · ·	•	
	ed by: (signature) Date/Time	1 /7/1.	1110	Date/Time	Notes: 54	world v.	7. E.		•	
	10/22/05 1800	(rica talé	2 233 lan <i>1</i>	ATT 1404 Express	Airbill I	NO			
Relinquisa	ed by: (sigr.ature) Dato/Timo	Received b	y: (signature)	one/Time		888 018				
Relinquish	ed by: (signature) Date/Time	Received by	y: (signature)	Datc/Time						
Lab	Shipper Name Air Bill	F# 110000000	Témp (*	• දා ිර	oncition Custody Se	als Intact?	Work C	Order#	• •	
Use Only	Fed Ex		MA-	Good	Yes No	None ()	810	584		
Ciny			· —	•						

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hot ine (800) 487-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page I of

Project M	arager <u>Kobest Sok</u>		-	Project Info	> :		Turn Around Time:			\Box
	by: (Print are Sign) Robert Sol	P.O. #			Mormal	Date:	urized by:			
		1726.56K@		Crainet # /	12601687		Rush			_
	700 Lake Wright Bire City Abotolk		Zip <u>23507</u>		_		110511	Press	urization (Gas:
Phone (7	57) 466-4904 Fax A5	<u>1) 461-9</u>	148	Project Name	Phase II 5V7		ερφαίτη	·	N _z He	e.
200			Date	Time			Canis	ter Pres	sure/Vac	:uum
Lab I.D.	Field Sample I.D. (Location)	Can#	of Collection	of Collection	Analyses	Requested	Inițial	Final	Receipt	Final (psi)
NA	BPS1-562011-48	34318	1/6/09	1032	TO-15	(samelist	-30	-2,5		
()24	BF51-562011-24	34607	1/6/09	1040	TO-15		-30	-2.5		
03A	BPS 2 -36-2011 - 08	4167	1/6/09 1	1145	TO-15		-30	-2,5		
644	BPS 2 - 362010 - 49	36048	1/6/09	1525	TO-15		-30	-2,5		٠.
SA	BPS2-5E2010-24	20946	1/6/09	1545	TO-15		-30	-25		,
Obse	BP51-562010-08	10801	1/6/09	1557	TO-15		-28	-2.5		
孙	BP51-DUP-04	13865	1/6/09	1540	TO-15		-30	-2.5	ļ	
υ¥Α	BPS1-FB2007-00	10978	1/6/09	1620	10-15		-30	-14.5	:: ·	
		 -								
			===					L		ļ ļ
	ned by: (signature) Date/Time / / / 09 ned by: (signature) Date/Time	_ YY to	ruea t	Cate/Time 2009/10 Date/Time	ATL HALAGE VISION 410	Eangley r Compound	ise contact regarding d list to a	t Bryo the co use to	r thes	-Ł
	ned by: (signature) Date/Time	Received 5	y: (signature)	Date/Time		samples	•			
	-Shipper Name Air B	0;# : : : : : : : : : : : : : : : : : : :	Temp (°	(c)(c	ondition.	Custody Se	als Intact?		Order#	
Use Only	Tedox		$\mathbb{A}_{\mathcal{A}}$	<u> </u>	XQX	Yes No	None	08	011.	13
	•		•							

PROJECT	NO.:			ŞIT	ENAME:	5:L-	j.		T	7.	*.7	7	$\overline{}$	7	7	7		$\overline{}$
11260	01687	,		۸ ا	I WIRE	Bethpage Site	. 1		l	18.	7			/		/		
SAMPLER	S (SIGNA	TURE):						NO. OF	Ι.	\{3, 7\}	/	/	/ /	/	/ /			
-			100	-				CON- TAINERS		83/		/					REMARKS	
STATION NO.	DATE	TIME	COMP	GRAB		STATION LOCATION			18	<u> </u>	\angle	<u> </u>	<u> </u>	_	kan	200-	Canpres In	Lan Pris F
56 2002	14 24 j	0400		×	BPSI-	-FB2002-00	<u> </u>	i	1						3141	33	-30 PSE	5 م 6,5 –
	" <u>.</u>													_	<u> </u>			
													_		<u> </u>			
														<u> </u>				
•																		
									L					_				
				<u> </u>												<u> </u>		
		- .						Fed E		<i></i> .	.							
	ļ <u>-</u>						CL3			TACT MA					ļ	<u>-</u>	_	
RELINQUI					ATE/TIME:	$I \sim I$		RELIA			(SIGNA) (2)(S	TURE)	:	ĐAT	E/THME:	RECE	VED BY(SIGNATURE	i):
RELINQUI					ATE/TIME:						[SIGNA]	TŲRE)	:	DAT	E/TIME:	RECE	YED BY(SIGNATURE	i):
RELINQUI	SHED BY	(SIGNA	TURE):	E	ATE/TIME:	RECEIVED FOR LABORA (SIGNATURE):	TORY BY	DA	TE / TIP	AE: RI	MARK:	\$; <i>5.</i>	491 A	e e e e	V.a.	F24 \$8:	deral Exp 8 0182	res_s

APPENDIX E DATA ANALYTICAL REPORT

WORK ORDER #: 0810584AR3

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

01/26/2009

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/24/2008 **CONTACT:** Bryanna Langley

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION#	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPSI-SG2009-48	Modified TO-15	1.0 "Hg	5 psi
01B	BPSI-SG2009-48	Modified TO-15	1.0 "Hg	5 psi
02A	BPSI-SG2009-08	Modified TO-15	1.5 "Hg	5 psi
02B	BPSI-SG2009-08	Modified TO-15	1.5 "Hg	5 psi
03A	BPSI-SG2009-25	Modified TO-15	0.0 "Hg	5 psi
03B	BPSI-SG2009-25	Modified TO-15	0.0 "Hg	5 psi
04A	BPSI-FB2001-00	Modified TO-15	4.5 "Hg	5 psi
04AA	BPSI-FB2001-00 Lab Duplicate	Modified TO-15	4.5 "Hg	5 psi
04B	BPSI-FB2001-00	Modified TO-15	4.5 "Hg	5 psi
04BB	BPSI-FB2001-00 Lab Duplicate	Modified TO-15	4.5 "Hg	5 psi
05A	BPSI-SG2008-08	Modified TO-15	0.0 "Hg	5 psi
05B	BPSI-SG2008-08	Modified TO-15	0.0 "Hg	5 psi
06A	BPSI-SG2008-20	Modified TO-15	6.5 "Hg	5 psi
06B	BPSI-SG2008-20	Modified TO-15	6.5 "Hg	5 psi
07A	BPSI-SG2008-49	Modified TO-15	0.0 "Hg	5 psi
07B	BPSI-SG2008-49	Modified TO-15	0.0 "Hg	5 psi
08A	BPSI-SG2007-20	Modified TO-15	1.5 "Hg	5 psi

Continued on next page

WORK ORDER #: 0810584AR3

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

01/26/2009

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/24/2008 CONTACT: Bryanna Langley

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
08B	BPSI-SG2007-20	Modified TO-15	1.5 "Hg	5 psi
09A	BPSI-SG2007-08	Modified TO-15	2.5 "Hg	5 psi
09B	BPSI-SG2007-08	Modified TO-15	2.5 "Hg	5 psi
10A	BPSI-DUP-01	Modified TO-15	1.0 "Hg	5 psi
10B	BPSI-DUP-01	Modified TO-15	1.0 "Hg	5 psi
11A	Lab Blank	Modified TO-15	NA	NA
11B	Lab Blank	Modified TO-15	NA	NA
11C	Lab Blank	Modified TO-15	NA	NA
11D	Lab Blank	Modified TO-15	NA	NA
12A	CCV	Modified TO-15	NA	NA
12B	CCV	Modified TO-15	NA	NA
12C	CCV	Modified TO-15	NA	NA
12D	CCV	Modified TO-15	NA	NA
13A	LCS	Modified TO-15	NA	NA
13B	LCS	Modified TO-15	NA	NA
13C	LCS	Modified TO-15	NA	NA
13D	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Linda d. Fruman

DATE: 01/30/09

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0810584AR3

Ten 6 Liter Summa Canister (100% Certified) samples were received on October 24, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM:
		Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample BPSI-SG2009-25 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Samples BPSI-SG2009-25, BPSI-SG2008-08 and BPSI-SG2007-49 arrived at ambient pressure yet flow

controllers were used for sample collection.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

THE WORK ORDER WAS REISSUED ON NOVEMBER 12, 2008 TO CORRECT IDENTIFICATION OF THE FOLLOWING SAMPLES BPSI-FB2001-00.

THE WORK ORDER WAS REISSUED PER CLIENT REQUEST ON DECEMBER 31, 2008 TO REPORT THE TOP TEN TENTATIVELY IDENTIFIED COMPOUNDS (TICS) FOR EACH SAMPLE.

DUE TO MATRIX INTERFERENCE IN THE TOTAL ION CHROMATOGRAM INTERNAL STANDARDS BROMOCHLOROMETHANE AND CHLOROBENZENE-D5 WERE NOT USED TO CALCULATE THE CONCENTRATION OF TICS IN SAMPLES BPSI-SG2009-48. CHLOROBENZENE-D5 WAS NOT USED TO CALCULATE THE CONCENTRATION OF TICS IN SAMPLES BPSI-SG2009-08, BPSI-SG2009-25, BPSI-SG2008-49 AND BPSI-SG2008-08. 1,4-DIFLUOROBENZENE AND CHLOROBENZENE-D5 WERE NOT USED TO CALCULATE THE CONCENTRATION OF TICS IN SAMPLE BPSI-SG2008-20.

THE WORKORDER WAS REISSUED ON JANUARY 30, 2009 TO CORRECT THE METHOD LIMITS FOR THE SURROGATES IN ALL B FRACTION SAMPLES (i.e. 01B, 02B...) AND THE OC.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

WORK ORDER #: 0810584B

Work Order Summary

CLIENT: Mr. David Brayack BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: (757) 461-3824 **P.O.** #

FAX: (757) 461-4148 **PROJECT** # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/24/2008 CONTACT: Bryanna Langley DATE COMPLETED: 11/06/2008

		RECEIPT	FINAL
<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
BPSI-FB2002-00	Modified TO-15	4.0 "Hg	5 psi
BPSI-FB2002-00	Modified TO-15	4.0 "Hg	5 psi
Lab Blank	Modified TO-15	NA	NA
Lab Blank	Modified TO-15	NA	NA
CCV	Modified TO-15	NA	NA
CCV	Modified TO-15	NA	NA
LCS	Modified TO-15	NA	NA
LCS	Modified TO-15	NA	NA
	BPSI-FB2002-00 BPSI-FB2002-00 Lab Blank Lab Blank CCV CCV	BPSI-FB2002-00 Modified TO-15 BPSI-FB2002-00 Modified TO-15 Lab Blank Modified TO-15 Lab Blank Modified TO-15 CCV Modified TO-15 CCV Modified TO-15 LCS Modified TO-15	NAME TEST VAC./PRES. BPSI-FB2002-00 Modified TO-15 4.0 "Hg BPSI-FB2002-00 Modified TO-15 4.0 "Hg Lab Blank Modified TO-15 NA Lab Blank Modified TO-15 NA CCV Modified TO-15 NA CCV Modified TO-15 NA LCS Modified TO-15 NA

CERTIFIED BY:

Sinda d. Fruman

DATE: <u>11/06/08</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0810584B

One 6 Liter Summa Canister (100% Certified) samples were received on October 24, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10%</td
		of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and</td
Blank and standards	Zero air	narrate outliers Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

WORK ORDER #: 0810643R2

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

01/26/2009

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/28/2008 **CONTACT:** Bryanna Langley

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-FB2003-00	Modified TO-15 /TICs	4.5 "Hg	5 psi
01AA	BPS1-FB2003-00 Lab Duplicate	Modified TO-15 /TICs	4.5 "Hg	5 psi
01B	BPS1-FB2003-00	Modified TO-15 /TICs	4.5 "Hg	5 psi
01BB	BPS1-FB2003-00 Lab Duplicate	Modified TO-15 /TICs	4.5 "Hg	5 psi
02A	BPS1-SG2007-49	Modified TO-15 /TICs	1.5 "Hg	5 psi
02B	BPS1-SG2007-49	Modified TO-15 /TICs	1.5 "Hg	5 psi
03A	BPS1-SG2006-20	Modified TO-15 /TICs	1.5 "Hg	5 psi
03B	BPS1-SG2006-20	Modified TO-15 /TICs	1.5 "Hg	5 psi
04A	BPS1-SG2006-08	Modified TO-15 /TICs	1.5 "Hg	5 psi
04B	BPS1-SG2006-08	Modified TO-15 /TICs	1.5 "Hg	5 psi
05A	BPS1-SG2005-49	Modified TO-15 /TICs	2.5 "Hg	5 psi
05B	BPS1-SG2005-49	Modified TO-15 /TICs	2.5 "Hg	5 psi
06A	BPS1-SG2005-20	Modified TO-15 /TICs	1.5 "Hg	5 psi
06B	BPS1-SG2005-20	Modified TO-15 /TICs	1.5 "Hg	5 psi
07A	BPS1-SG2005-08	Modified TO-15 /TICs	2.0 "Hg	5 psi
07B	BPS1-SG2005-08	Modified TO-15 /TICs	2.0 "Hg	5 psi
08A	Lab Blank	Modified TO-15 /TICs	NA	NA

Continued on next page

WORK ORDER #: 0810643R2

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

> Tetra Tech Tetra Tech EC, Inc. Twin Oaks I, Suite 309 Foster Plaza 7 5700 Lake Wright Drive 661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 P.O. #

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/28/2008 **CONTACT:** Bryanna Langley 01/26/2009

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<u>PRESSURE</u>
08B	Lab Blank	Modified TO-15 /TICs	NA	NA
09A	CCV	Modified TO-15 /TICs	NA	NA
09B	CCV	Modified TO-15 /TICs	NA	NA
10A	LCS	Modified TO-15 /TICs	NA	NA
10B	LCS	Modified TO-15 /TICs	NA	NA

CERTIFIED BY:

Linda d. Fruman

DATE: 01/30/09

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0810643R2

Seven 6 Liter Summa Canister (100% Certified) samples were received on October 28, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD
		For SIM:
		Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

THE WORKORDER WAS REISSUED ON DECEMBER 31, 2008 TO REPORT TOP TEN TICS PER CLIENT'S REQUEST.

DUE TO MATRIX INTERFERENCE IN THE TOTAL ION CHROMATOGRAM INTERNAL STANDARD CHLOROBENZENE-D5 WAS NOT USED TO CALCULATE CONCENTRATION OF TICS IN SAMPLES BPS1-SG2006-20, BPS1-SG2006-08, BPS1-SG2005-49, BPS1-SG2005-20 AND BPS1-SG2005-08.

THE WORKORDER WAS REISSUED ON JANUARY 30, 2009 TO CORRECT THE METHOD LIMITS FOR THE SURROGATES IN ALL B FRACTION SAMPLES (i.e. 01B, 02B...) AND THE OC.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

WORK ORDER #: 0810701R2

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

01/26/2009

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/30/2008 **CONTACT:** Bryanna Langley

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION#	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-FB2004-00	Modified TO-15 /TICs	2.0 "Hg	5 psi
01B	BPS1-FB2004-00	Modified TO-15 /TICs	2.0 "Hg	5 psi
02A	BPS1-SG2006-49	Modified TO-15 /TICs	1.0 "Hg	5 psi
02B	BPS1-SG2006-49	Modified TO-15 /TICs	1.0 "Hg	5 psi
03A	BPS1-SG2004-20	Modified TO-15 /TICs	1.0 "Hg	5 psi
03AA	BPS1-SG2004-20 Lab Duplicate	Modified TO-15 /TICs	1.0 "Hg	5 psi
03B	BPS1-SG2004-20	Modified TO-15 /TICs	1.0 "Hg	5 psi
03BB	BPS1-SG2004-20 Lab Duplicate	Modified TO-15 /TICs	1.0 "Hg	5 psi
04A	BPS1-SG2004-08	Modified TO-15 /TICs	1.0 "Hg	5 psi
04B	BPS1-SG2004-08	Modified TO-15 /TICs	1.0 "Hg	5 psi
05A	BPS1-SG2004-49	Modified TO-15 /TICs	0.5 "Hg	5 psi
05B	BPS1-SG2004-49	Modified TO-15 /TICs	0.5 "Hg	5 psi
06A	BPS1-SG2001-20	Modified TO-15 /TICs	0.0 "Hg	5 psi
07A	BPS1-SG2001-08	Modified TO-15 /TICs	0.0 "Hg	5 psi
08A	BPS1-DUP-02	Modified TO-15 /TICs	1.0 "Hg	5 psi
08B	BPS1-DUP-02	Modified TO-15 /TICs	1.0 "Hg	5 psi
09A	Lab Blank	Modified TO-15 /TICs	NA	NA

Continued on next page

WORK ORDER #: 0810701R2

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech
Tetra Tech EC, Inc.
Twin Oaks I, Suite 309
5700 Lake Wright Drive
Foster Plaza 7
661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

01/26/2009

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/30/2008 CONTACT: Bryanna Langley

DATE REISSUED: 01/30/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
09B	Lab Blank	Modified TO-15 /TICs	NA	NA
09C	Lab Blank	Modified TO-15 /TICs	NA	NA
10A	CCV	Modified TO-15 /TICs	NA	NA
10B	CCV	Modified TO-15 /TICs	NA	NA
10C	CCV	Modified TO-15 /TICs	NA	NA
11A	LCS	Modified TO-15 /TICs	NA	NA
11B	LCS	Modified TO-15 /TICs	NA	NA
11C	LCS	Modified TO-15 /TICs	NA	NA

CERTIFIED BY: Sinda of Fruman

Laboratory Director

DATE: 01/30/09

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0810701R2

Eight 6 Liter Summa Canister (100% Certified) samples were received on October 30, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM:
		Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody (COC) information for sample BPS1-SG2004-20 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information on the canister was used to process and report the sample.

Samples BPS1-SG2001-20 and BPS1-SG2001-08 arrived at ambient pressure yet flow controllers were

used for sample collection.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

THE WORKORDER WAS REISSUED ON 01-06-2009 TO REPORT TOP TEN TICS PER CLIENT'S REQUEST.

DUE TO MATRIX INTERFERENCE IN THE TOTAL ION CHROMATOGRAM INTERNAL STANDARD CHLOROBENZENE-D5 WAS NOT USED TO CALCULATE CONCENTRATION OF TICS IN SAMPLES BPS1-SG2006-49, BPS1-SG2004-49 AND BPS1-DUP-02.

THE MDL VALUES USED TO REPORT THE SAMPLES WERE CORRECTED FOR THE A FRACTIONS (01A, 02A...) FOR ALL SAMPLES. AS A RESULT OF THIS CHANGE SOME VALUES PREVIOUSLY REPORTED BELOW THE REPORTING LIMIT MAY BE NOT DETECTED AND VALUES WHICH WERE PREVIOUSLY REPORTED AS NOT DETECTED MAY NOW SHOW A POSITIVE RESULT. RESULTS ABOVE THE REPORTING LIMIT DID NOT CHANGE.

ALSO AS PART OF THIS REISSUE, 1,1-DICHLOROETHENE AND CIS-1,2-DICHLOROETHENE IN SAMPLES BPS1-SG2004-49 AND BPS1-DUP-02 WERE REPORTED AS POSITIVE RESULTS. IN THE ORIGINAL REPORT THEY HAD BEEN INCORRECTLY REPORTED AS NOT DETECTED. BOTH COMPOUNDS CO-ELUTED WITH OTHER TARGET COMPOUNDS BUT THEIR PRESENCE WAS CONFIRMED USING RETENTION TIME AND ION RATIO MATCHES WITH THE DAILY CCV.

THE WORKORDER WAS REISSUED ON JANUARY 30, 2009 TO ADD THE CORRECT TIC RESULTS IN SAMPLE BPS1-SG2006-49.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.

- Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit.
- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

WORK ORDER #: 0810745

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

FAX: PROJECT # 112G01687 NWIRP Bethpage Site 1

DATE RECEIVED: 10/31/2008 CONTACT: Bryanna Langley DATE COMPLETED: 11/14/2008

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPSI-SG2001-49	Modified TO-15	0.0 "Hg	5 psi
01AA	BPSI-SG2001-49 Lab Duplicate	Modified TO-15	0.0 "Hg	5 psi
02A	BPSI-SG2002-20	Modified TO-15	0.0 "Hg	5 psi
03A	BPSI-SG2002-08	Modified TO-15	0.0 "Hg	5 psi
04A	BPSI-SG2002-44	Modified TO-15	8.5 "Hg	5 psi
05A	Lab Blank	Modified TO-15	NA	NA
05B	Lab Blank	Modified TO-15	NA	NA
06A	CCV	Modified TO-15	NA	NA
06B	CCV	Modified TO-15	NA	NA
07A	LCS	Modified TO-15	NA	NA
07B	LCS	Modified TO-15	NA	NA

CERTIFIED BY:

Linda d. Fruman

DATE: <u>11/14/08</u>

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

LABORATORY NARRATIVE Modified TO-15 Std & Soil Gas Tetra Tech Workorder# 0810745

Four 6 Liter Summa Canister (100% Certified) samples were received on October 31, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan mode. The method involves concentrating up to 1.0 liter of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
Daily CCV	+- 30% Difference	= 30% Difference with two allowed out up to </=40%.; flag and narrate outliers</td
Sample collection media	Summa canister	ATL recommends use of summa canisters to insure data defensibility, but will report results from Tedlar bags at client request
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Samples BPSI-SG2001-49, BPSI-SG2002-20 and BPSI-SG2002-08 arrived at ambient pressure yet flow controllers were used for sample collection.

Analytical Notes

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (0.2 ppbv for compounds reported at 0.5 ppbv and 0.8 ppbv for compounds reported at 2.0 ppbv) may be false positives.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

WORK ORDER #: 0811019R3

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

11/13/2008

FAX: PROJECT # 112G01687 NWIRP Beth Page Site 1

DATE RECEIVED: 11/03/2008 **CONTACT:** Bryanna Langley

DATE REISSUED: 01/23/2009

DATE COMPLETED:

			RECEIPT	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-FB2005-00	Modified TO-15 /TICs	6.0 "Hg	5 psi
01B	BPS1-FB2005-00	Modified TO-15 /TICs	6.0 "Hg	5 psi
02A	BPS1-SG2003-49	Modified TO-15 /TICs	0.0 "Hg	5 psi
03A	BPS1-SG2003-20	Modified TO-15 /TICs	0.0 "Hg	5 psi
03AA	BPS1-SG2003-20 Lab Duplicate	Modified TO-15 /TICs	0.0 "Hg	5 psi
03B	BPS1-SG2003-20	Modified TO-15 /TICs	0.0 "Hg	5 psi
03BB	BPS1-SG2003-20 Lab Duplicate	Modified TO-15 /TICs	0.0 "Hg	5 psi
04A	BPS1-SG2003-08	Modified TO-15 /TICs	1.0 "Hg	5 psi
04B	BPS1-SG2003-08	Modified TO-15 /TICs	1.0 "Hg	5 psi
05A	BPS1-FB2006-00	Modified TO-15 /TICs	10.0 "Hg	5 psi
05B	BPS1-FB2006-00	Modified TO-15 /TICs	10.0 "Hg	5 psi
06A	BPS1-DUP-03	Modified TO-15 /TICs	1.0 "Hg	5 psi
06B	BPS1-DUP-03	Modified TO-15 /TICs	1.0 "Hg	5 psi
07A	Lab Blank	Modified TO-15 /TICs	NA	NA
07B	Lab Blank	Modified TO-15 /TICs	NA	NA
08A	CCV	Modified TO-15 /TICs	NA	NA
08B	CCV	Modified TO-15 /TICs	NA	NA

Continued on next page

WORK ORDER #: 0811019R3

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech
Tetra Tech EC, Inc.
Twin Oaks I, Suite 309
5700 Lake Wright Drive
Foster Plaza 7
661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

11/13/2008

FAX: PROJECT # 112G01687 NWIRP Beth Page Site 1

DATE RECEIVED: 11/03/2008 CONTACT: Bryanna Langley

DATE REISSUED: 01/23/2009

DATE COMPLETED:

FINAL RECEIPT FRACTION# **NAME TEST** VAC./PRES. **PRESSURE** 09A LCS Modified TO-15 /TICs NA NA Modified TO-15 /TICs 09B LCS NA NA

CERTIFIED BY:

Sinda d. Fruman

DATE: 01/23/09

Laboratory Director

Certification numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

Name of Accrediting Agency: NELAP/Florida Department of Health, Scope of Application: Clean Air Act,

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0811019R3

Six 6 Liter Summa Canister (100% Certified) samples were received on November 03, 2008. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM:
		Project specific; default criteria is =30% RSD with 10% of compounds allowed out to < 40% RSD</td
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers</td
		For SIM: Project specific; default criteria is = 30% Difference with 10% of compounds allowed out up to </=40%.; flag and narrate outliers</td
Blank and standards	Zero air	Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

The Chain of Custody was missing method information. ATL proceeded with the analysis as per the original contract or verbal agreement.

The Chain of Custody (COC) information for sample BPS1-DUP-03 did not match the information on the canister with regard to canister identification. The client was notified of the discrepancy and the information

on the canister was used to process and report the sample.

Samples BPS1-SG2003-49 and BPS1-SG2003-20 arrived at ambient pressure yet flow controllers were used for sample collection.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

THE WORKORDER WAS REISSUED ON 01-02-2009 TO REPORT TOP TEN TICS PER CLIENT'S REQUEST.

DUE TO MATRIX INTERFERENCE IN THE TOTAL ION CHROMATOGRAM INTERNAL STANDARD CHLOROBENZENE-D5 WAS NOT USED TO CALCULATE CONCENTRATION OF TICS IN SAMPLES BPS1-SG2003-49, BPS1-SG2003-20, BPS1-SG2003-20 LAB DUPLICATE, BPS1-SG2003-08 AND BPS1-DUP-03.

ALSO, AS PART OF THIS REISSUE, THE MDL VALUES USED TO REPORT THE SAMPLES WERE CORRECTED FOR THE A FRACTIONS (01A, 02A...) FOR ALL SAMPLES. AS A RESULT OF THIS CHANGE SOME VALUES PREVIOUSLY REPORTED BELOW THE REPORTING LIMIT MAY BE NOT DETECTED AND VALUES WHICH WERE PREVIOUSLY REPORTED AS NOT DETECTED MAY NOW SHOW A POSITIVE RESULT. RESULTS ABOVE THE REPORTING LIMIT DID NOT CHANGE.

THE REPORTED RESULTS FOR TIC HETPANE, 3-METHYLENE- MAY BE BIASED HIGH DUE TO CO-ELUTION WITH THE SURROGATE TOLUENE D8 IN SAMPLES BPS1-SG2003-49, BPS1-SG2003-20, BPS1-SG2003-20 DUPLICATE AND BPS1-DUP-03

THE WORKORDER WAS REISSUED ON JANUARY 16, 2009 TO CORRECT THE SURROGATE RECOVERY LIMITS FOR "B" SAMPLES 01B THROUGH 06B AND THE QC.

THE WORK ORDER WAS REISSUED ON JANUARY 23, 2009 TO CORRECTLY INCLUDE THE TRICHLOROETHENE RESULT FOR SAMPLE BPS1-SG2003-49. THE RESULT WAS CORRECTLY REPORTED IN THE ORIGINAL VERSION OF THE REPORT. IN THE SUBSEQUENT REISSUES, THIS RESULT WAS INCORRECTLY OMITTED.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

WORK ORDER #: 0901113

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech Tetra Tech EC, Inc.
Twin Oaks I, Suite 309 Foster Plaza 7
5700 Lake Wright Drive 661 Anderson Drive
Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

FAX: PROJECT # 112G01687 Phase II SVI

DATE RECEIVED: 01/08/2009 **CONTACT:** Bryanna Langley **DATE COMPLETED:** 01/21/2009

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	BPS1-SG2011-48	Modified TO-15/TICs	0.0 "Hg	5 psi
01B	BPS1-SG2011-48	Modified TO-15/TICs	0.0 "Hg	5 psi
02A	BPS1-SG2011-24	Modified TO-15/TICs	0.0 "Hg	5 psi
02B	BPS1-SG2011-24	Modified TO-15/TICs	0.0 "Hg	5 psi
03A	BPS1-SG2011-08	Modified TO-15/TICs	1.5 "Hg	5 psi
03B	BPS1-SG2011-08	Modified TO-15/TICs	1.5 "Hg	5 psi
04A	BPS1-SG2010-49	Modified TO-15/TICs	1.0 "Hg	5 psi
04B	BPS1-SG2010-49	Modified TO-15/TICs	1.0 "Hg	5 psi
05A	BPS1-SG2010-24	Modified TO-15/TICs	0.0 "Hg	5 psi
05AA	BPS1-SG2010-24 Lab Duplicate	Modified TO-15/TICs	0.0 "Hg	5 psi
05B	BPS1-SG2010-24	Modified TO-15/TICs	0.0 "Hg	5 psi
05BB	BPS1-SG2010-24 Lab Duplicate	Modified TO-15/TICs	0.0 "Hg	5 psi
06A	BPS1-SG2010-08	Modified TO-15/TICs	1.5 "Hg	5 psi
06B	BPS1-SG2010-08	Modified TO-15/TICs	1.5 "Hg	5 psi
07A	BPS1-DUP-04	Modified TO-15/TICs	0.2 psi	5 psi
07B	BPS1-DUP-04	Modified TO-15/TICs	0.2 psi	5 psi
08A	BPS1-FB2007-00	Modified TO-15/TICs	12.0 "Hg	5 psi

Continued on next page

WORK ORDER #: 0901113

Work Order Summary

CLIENT: Mr. Robert Sok BILL TO: Accounts Payable/Pittsburg

Tetra Tech
Tetra Tech EC, Inc.
Twin Oaks I, Suite 309
5700 Lake Wright Drive
Foster Plaza 7
661 Anderson Drive

Norfolk, VA 23502 Pittsburgh, PA 15220-2745

PHONE: 757-466-4904 **P.O.** #

FAX: PROJECT # 112G01687 Phase II SVI

DATE RECEIVED: 01/08/2009 **CONTACT:** Bryanna Langley

01/21/2009

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
08B	BPS1-FB2007-00	Modified TO-15/TICs	12.0 "Hg	5 psi
09A	Lab Blank	Modified TO-15/TICs	NA	NA
09B	Lab Blank	Modified TO-15/TICs	NA	NA
10A	CCV	Modified TO-15/TICs	NA	NA
10B	CCV	Modified TO-15/TICs	NA	NA
11A	LCS	Modified TO-15/TICs	NA	NA
11B	LCS	Modified TO-15/TICs	NA	NA

CERTIFIED BY:	Sinda d. Fruman	DATE: 01/21/09	

Laboratory Director

Certfication numbers: CA NELAP - 02110CA, LA NELAP/LELAP- AI 30763, NJ NELAP - CA004 NY NELAP - 11291, UT NELAP - 9166389892, AZ Licensure AZ0719

 $Name\ of\ Accrediting\ Agency:\ NELAP/Florida\ Department\ of\ Health,\ Scope\ of\ Application:\ Clean\ Air\ Act,$

Accreditation number: E87680, Effective date: 07/01/08, Expiration date: 06/30/09

Air Toxics Ltd. certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Air Toxics Ltd.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

LABORATORY NARRATIVE Modified TO-15 Full Scan/SIM Tetra Tech Workorder# 0901113

Eight 6 Liter Summa Canister (100% Certified) samples were received on January 08, 2009. The laboratory performed analysis via modified EPA Method TO-15 using GC/MS in the Full Scan and SIM acquisition modes. The method involves concentrating up to 1.0 liters of air. The concentrated aliquot is then flash vaporized and swept through a water management system to remove water vapor. Following dehumidification, the sample passes directly into the GC/MS for analysis.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Method modifications taken to run these samples are summarized in the table below. Specific project requirements may over-ride the ATL modifications.

Requirement	TO-15	ATL Modifications
ICAL %RSD acceptance criteria	=30% RSD with 2<br compounds allowed out to < 40% RSD	For Full Scan: 30% RSD with 4 compounds allowed out to < 40% RSD For SIM: Project specific; default criteria is =30% RSD with 10%</td
		of compounds allowed out to < 40% RSD
Daily Calibration	+- 30% Difference	For Full Scan: = 30% Difference with four allowed out up to </=40%.; flag and narrate outliers For SIM: Project specific; default criteria is </= 30% Difference with 10% of compounds allowed out up to </=40%.; flag and</td
Blank and standards	Zero air	narrate outliers Nitrogen
Method Detection Limit	Follow 40CFR Pt.136 App. B	The MDL met all relevant requirements in Method TO-15 (statistical MDL less than the LOQ). The concentration of the spiked replicate may have exceeded 10X the calculated MDL in some cases

Receiving Notes

Samples BPS1-SG2011-48, BPS1-SG2011-24, BPS1-SG2010-24 and BPS1-DUP-04 arrived at ambient pressure yet flow controllers were used for sample collection.

Analytical Notes

The results for each sample in this report were acquired from two separate data files originating from the same analytical run. The two data files have the same base file name and are differentiated with a "sim" extension on the SIM data file.

As per project specific client request the laboratory has reported estimated values for target compound hits that are below the Reporting Limit but greater than the Method Detection Limit. Concentrations that are below the level at which the canister was certified (at the Reporting Limit) may be false positives.

All Quality Control Limit failures and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Due to matrix interference in the Total Ion Chromatogram internal standard Chlorobenzene-d5 was not used to calculate concentration of TICs in sample BPS1-SG2011-48, BPS1-SG2010-49, BPS1-SG2010-24 and BPS1-DUP-04.

Due to matrix interference in the Total Ion Chromatogram internal standard 1,4-Difluorobenzene was not used to calculate concentration of TICs in sample BPS1-DUP-04.

Acetone and 2-Butanone (Methyl Ethyl Ketone) were detected at concentrations less than 5 times the reporting limit in sample BPS1-FB2007-00. Because the preceding sample contained concentrations of Acetone and 2-Butanone (Methyl Ethyl Ketone) exceeding the calibration range, the results for these compounds in samples BPS1-FB2007-00 may be biased high.

Definition of Data Qualifying Flags

Eight qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
 - U Compound analyzed for but not detected above the reporting limit.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Client Sample ID: BPS1-SG2001-08 Lab ID#: 0810701-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 7111109
 Date of Collection: 10/29/08

 Dil. Factor:
 5.36
 Date of Analysis: 11/11/08 04:24 PM

		_		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	2.7	0.59 J	13	2.9 J
Chloromethane	11	Not Detected	22	Not Detected
Vinyl Chloride	2.7	Not Detected	6.8	Not Detected
Bromomethane	2.7	Not Detected	10	Not Detected
Chloroethane	2.7	Not Detected	7.1	Not Detected
Freon 11	2.7	1.2 J	15	6.5 J
Freon 113	2.7	280	20	2200
1,1-Dichloroethene	2.7	2.3 J	11	9.2 J
Acetone	11	200	25	470
Carbon Disulfide	2.7	0.97 J	8.3	3.0 J
Methylene Chloride	2.7	Not Detected	9.3	Not Detected
Methyl tert-butyl ether	2.7	Not Detected	9.7	Not Detected
trans-1,2-Dichloroethene	2.7	2.0 J	11	7.9 J
1,1-Dichloroethane	2.7	2.7	11	11
2-Butanone (Methyl Ethyl Ketone)	2.7	17	7.9	50
cis-1,2-Dichloroethene	2.7	5.2	11	20
Chloroform	2.7	23	13	110
1,1,1-Trichloroethane	2.7	230	15	1300
Carbon Tetrachloride	2.7	Not Detected	17	Not Detected
Benzene	2.7	2.5 J	8.6	7.8 J
1,2-Dichloroethane	2.7	Not Detected	11	Not Detected
Trichloroethene	2.7	310	14	1700
1,2-Dichloropropane	2.7	Not Detected	12	Not Detected
Bromodichloromethane	2.7	Not Detected	18	Not Detected
cis-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
4-Methyl-2-pentanone	2.7	0.57 J	11	2.3 J
Toluene	2.7	8.8	10	33
trans-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
1,1,2-Trichloroethane	2.7	Not Detected	15	Not Detected
Tetrachloroethene	2.7	580	18	4000
Dibromochloromethane	2.7	Not Detected	23	Not Detected
1,2-Dibromoethane (EDB)	2.7	Not Detected	20	Not Detected
Chlorobenzene	2.7	Not Detected	12	Not Detected
Ethyl Benzene	2.7	1.1 J	12	4.7 J
m,p-Xylene	2.7	2.7	12	12
o-Xylene	2.7	0.80 J	12	3.5 J
Styrene	2.7	0.48 J	11	2.0 J
Bromoform	2.7	Not Detected	28	Not Detected
1,1,2,2-Tetrachloroethane	2.7	Not Detected	18	Not Detected

Client Sample ID: BPS1-SG2001-08

Lab ID#: 0810701-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	7111109	Date of Collection: 10/29/08
Dil. Factor:	5.36	Date of Analysis: 11/11/08 04:24 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,4-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,2-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,2,4-Trichlorobenzene	11	Not Detected	80	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

-	·	Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	98	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: BPS1-SG2001-20 Lab ID#: 0810701-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	7111108	Date of Collection: 10/29/08
Dil. Factor:	5.36	Date of Analysis: 11/11/08 03:44 PM

Dil. Factor:	5.36		Date of Analysis: 11/11/08 03:44 PM	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	2.7	0.57 J	13	2.8 J
Chloromethane	11	Not Detected	22	Not Detected
Vinyl Chloride	2.7	Not Detected	6.8	Not Detected
Bromomethane	2.7	Not Detected	10	Not Detected
Chloroethane	2.7	Not Detected	7.1	Not Detected
Freon 11	2.7	1.1 J	15	6.1 J
Freon 113	2.7	360	20	2800
1,1-Dichloroethene	2.7	4.2	11	16
Acetone	11	180	25	440
Carbon Disulfide	2.7	1.0 J	8.3	3.3 J
Methylene Chloride	2.7	Not Detected	9.3	Not Detected
Methyl tert-butyl ether	2.7	Not Detected	9.7	Not Detected
trans-1,2-Dichloroethene	2.7	4.0	11	16
1,1-Dichloroethane	2.7	7.1	11	29
2-Butanone (Methyl Ethyl Ketone)	2.7	19	7.9	56
cis-1,2-Dichloroethene	2.7	24	11	94
Chloroform	2.7	5.0	13	24
1,1,1-Trichloroethane	2.7	320	15	1700
Carbon Tetrachloride	2.7	Not Detected	17	Not Detected
Benzene	2.7	1.5 J	8.6	4.7 J
1,2-Dichloroethane	2.7	Not Detected	11	Not Detected
Trichloroethene	2.7	500	14	2700
1,2-Dichloropropane	2.7	Not Detected	12	Not Detected
Bromodichloromethane	2.7	Not Detected	18	Not Detected
cis-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
4-Methyl-2-pentanone	2.7	Not Detected	11	Not Detected
Toluene	2.7	8.4	10	32
trans-1,3-Dichloropropene	2.7	Not Detected	12	Not Detected
1,1,2-Trichloroethane	2.7	Not Detected	15	Not Detected
Tetrachloroethene	2.7	740	18	5000
Dibromochloromethane	2.7	Not Detected	23	Not Detected
1,2-Dibromoethane (EDB)	2.7	Not Detected	20	Not Detected
Chlorobenzene	2.7	Not Detected	12	Not Detected
Ethyl Benzene	2.7	1.0 J	12	4.4 J
m,p-Xylene	2.7	3.2	12	14
o-Xylene	2.7	0.79 J	12	3.4 J
Styrene	2.7	0.41 J	11	1.8 J
Bromoform	2.7	Not Detected	28	Not Detected
1,1,2,2-Tetrachloroethane	2.7	Not Detected	18	Not Detected

Client Sample ID: BPS1-SG2001-20

Lab ID#: 0810701-06A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

7111108	Date of Collection: 10/29/08
5.36	Date of Analysis: 11/11/08 03:44 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,4-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,2-Dichlorobenzene	2.7	Not Detected	16	Not Detected
1,2,4-Trichlorobenzene	11	Not Detected	80	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BPSI-SG2001-49 Lab ID#: 0810745-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 5111122
 Date of Collection: 10/30/08

 Dil. Factor:
 2.68
 Date of Analysis: 11/12/08 02:23 AM

Dil. Factor:	2.68 Date of Analysis: 11/12/08 (
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.3	0.53 J	6.6	2.6 J
Chloromethane	5.4	Not Detected	11	Not Detected
Vinyl Chloride	1.3	Not Detected	3.4	Not Detected
Bromomethane	1.3	Not Detected	5.2	Not Detected
Chloroethane	1.3	Not Detected	3.5	Not Detected
Freon 11	1.3	1.2 J	7.5	6.5 J
Freon 113	1.3	320	10	2500
1,1-Dichloroethene	1.3	6.7	5.3	27
Acetone	5.4	210	13	500
Carbon Disulfide	1.3	0.44 J	4.2	1.4 J
Methylene Chloride	1.3	0.24 J	4.6	0.82 J
Methyl tert-butyl ether	1.3	Not Detected	4.8	Not Detected
trans-1,2-Dichloroethene	1.3	2.9	5.3	11
1,1-Dichloroethane	1.3	6.5	5.4	26
2-Butanone (Methyl Ethyl Ketone)	1.3	22	4.0	65
cis-1,2-Dichloroethene	1.3	18	5.3	73
Chloroform	1.3	1.7	6.5	8.2
1,1,1-Trichloroethane	1.3	260	7.3	1400
Carbon Tetrachloride	1.3	0.13 J	8.4	0.84 J
Benzene	1.3	2.8	4.3	9.1
1,2-Dichloroethane	1.3	Not Detected	5.4	Not Detected
Trichloroethene	1.3	270	7.2	1500
1,2-Dichloropropane	1.3	Not Detected	6.2	Not Detected
Bromodichloromethane	1.3	Not Detected	9.0	Not Detected
cis-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
4-Methyl-2-pentanone	1.3	Not Detected	5.5	Not Detected
Toluene	1.3	17	5.0	65
trans-1,3-Dichloropropene	1.3	Not Detected	6.1	Not Detected
1,1,2-Trichloroethane	1.3	Not Detected	7.3	Not Detected
Tetrachloroethene	1.3	100	9.1	720
Dibromochloromethane	1.3	Not Detected	 11	Not Detected
1,2-Dibromoethane (EDB)	1.3	Not Detected	10	Not Detected
Chlorobenzene	1.3	Not Detected	6.2	Not Detected
Ethyl Benzene	1.3	1.8	5.8	7.9
m,p-Xylene	1.3	6.0	5.8	26
o-Xylene	1.3	2.1	5.8	9.2
Styrene	1.3	4.1	5.7	17
Bromoform	1.3	Not Detected	14	Not Detected
1,1,2,2-Tetrachloroethane	1.3	Not Detected	9.2	Not Detected

Client Sample ID: BPSI-SG2001-49

Lab ID#: 0810745-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5111122	Date of Collection: 10/30/08
Dil. Factor:	2.68	Date of Analysis: 11/12/08 02:23 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
1,4-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
1,2-Dichlorobenzene	1.3	Not Detected	8.0	Not Detected
1,2,4-Trichlorobenzene	5.4	Not Detected	40	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

		wetnoa	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: BPSI-SG2002-08 Lab ID#: 0810745-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 5111124 Date of Collection: 10/30/08
Dil. Factor: 53.6 Date of Analysis: 11/12/08 03:39 AM

Dil. Factor:	53.6 Date of Analysis: 11/12/08 03:			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	27	Not Detected	130	Not Detected
Chloromethane	110	Not Detected	220	Not Detected
Vinyl Chloride	27	Not Detected	68	Not Detected
Bromomethane	27	Not Detected	100	Not Detected
Chloroethane	27	Not Detected	71	Not Detected
Freon 11	27	Not Detected	150	Not Detected
Freon 113	27	Not Detected	200	Not Detected
1,1-Dichloroethene	27	54	110	220
Acetone	110	120	250	300
Carbon Disulfide	27	5.8 J	83	18 J
Methylene Chloride	27	3.8 J	93	13 J
Methyl tert-butyl ether	27	Not Detected	97	Not Detected
trans-1,2-Dichloroethene	27	Not Detected	110	Not Detected
1,1-Dichloroethane	27	42	110	170
2-Butanone (Methyl Ethyl Ketone)	27	27	79	78
cis-1,2-Dichloroethene	27	12 J	110	49 J
Chloroform	27	8.4 J	130	41 J
1,1,1-Trichloroethane	27	3900	150	21000
Carbon Tetrachloride	27	Not Detected	170	Not Detected
Benzene	27	8.8 J	86	28 J
1,2-Dichloroethane	27	Not Detected	110	Not Detected
Trichloroethene	27	6300	140	34000
1,2-Dichloropropane	27	Not Detected	120	Not Detected
Bromodichloromethane	27	Not Detected	180	Not Detected
cis-1,3-Dichloropropene	27	Not Detected	120	Not Detected
4-Methyl-2-pentanone	27	Not Detected	110	Not Detected
Toluene	27	130	100	500
trans-1,3-Dichloropropene	27	Not Detected	120	Not Detected
1,1,2-Trichloroethane	27	Not Detected	150	Not Detected
Tetrachloroethene	27	63	180	420
Dibromochloromethane	27	Not Detected	230	Not Detected
1,2-Dibromoethane (EDB)	27	Not Detected	200	Not Detected
Chlorobenzene	27	Not Detected	120	Not Detected
Ethyl Benzene	27	39	120	170
m,p-Xylene	27	66	120	290
o-Xylene	27	18 J	120	80 J
Styrene	27	7.8 J	110	33 J
Bromoform	27	Not Detected	280	Not Detected
1,1,2,2-Tetrachloroethane	27	Not Detected	180	Not Detected

Client Sample ID: BPSI-SG2002-08

Lab ID#: 0810745-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

5111124	Date of Collection: 10/30/08
53.6	Date of Analysis: 11/12/08 03:39 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,3-Dichlorobenzene	27	Not Detected	160	Not Detected
1,4-Dichlorobenzene	27	Not Detected	160	Not Detected
1,2-Dichlorobenzene	27	Not Detected	160	Not Detected
1,2,4-Trichlorobenzene	110	Not Detected	800	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

	·	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: BPSI-SG2002-20 Lab ID#: 0810745-02A

MODIFIED EPA METHOD TO-15 GC/MS

 File Name:
 w111026
 Date of Collection: 10/30/08

 Dil. Factor:
 4.47
 Date of Analysis: 11/10/08 10:23 PM

Dil. Factor:	4.47	4.47 Date of Analysis: 11/10/08 10:23 F				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)		
Freon 12	22	Not Detected	110	Not Detected		
Chloromethane	89	Not Detected	180	Not Detected		
Vinyl Chloride	22	Not Detected	57	Not Detected		
Bromomethane	22	Not Detected	87	Not Detected		
Chloroethane	22	Not Detected	59	Not Detected		
Freon 11	22	Not Detected	120	Not Detected		
Freon 113	22	Not Detected	170	Not Detected		
1,1-Dichloroethene	22	220	89	890		
Acetone	89	100	210	250		
Carbon Disulfide	22	Not Detected	70	Not Detected		
Methylene Chloride	22	Not Detected	78	Not Detected		
Methyl tert-butyl ether	22	Not Detected	80	Not Detected		
trans-1,2-Dichloroethene	22	Not Detected	89	Not Detected		
1,1-Dichloroethane	22	170	90	680		
2-Butanone (Methyl Ethyl Ketone)	22	Not Detected	66	Not Detected		
cis-1,2-Dichloroethene	22	44	89	170		
Chloroform	22	6.5 J	110	32 J		
1,1,1-Trichloroethane	22	9600	120	52000		
Carbon Tetrachloride	22	Not Detected	140	Not Detected		
Benzene	22	Not Detected	71	Not Detected		
1,2-Dichloroethane	22	Not Detected	90	Not Detected		
Trichloroethene	22	17000	120	89000		
1,2-Dichloropropane	22	Not Detected	100	Not Detected		
Bromodichloromethane	22	Not Detected	150	Not Detected		
cis-1,3-Dichloropropene	22	Not Detected	100	Not Detected		
4-Methyl-2-pentanone	22	Not Detected	92	Not Detected		
Toluene	22	12 J	84	46 J		
trans-1,3-Dichloropropene	22	Not Detected	100	Not Detected		
1,1,2-Trichloroethane	22	Not Detected	120	Not Detected		
Tetrachloroethene	22	110	150	740		
Dibromochloromethane	22	Not Detected	190	Not Detected		
1,2-Dibromoethane (EDB)	22	Not Detected	170	Not Detected		
Chlorobenzene	22	Not Detected	100	Not Detected		
Ethyl Benzene	22	Not Detected	97	Not Detected		
m,p-Xylene	22	7.5 J	97	32 J		
o-Xylene	22	Not Detected	97	Not Detected		
Styrene	22	Not Detected	95	Not Detected		
Bromoform	22	Not Detected	230	Not Detected		
1,1,2,2-Tetrachloroethane	22	Not Detected	150	Not Detected		

Client Sample ID: BPSI-SG2002-20

Lab ID#: 0810745-02A

MODIFIED EPA METHOD TO-15 GC/MS

File Name:	w111026	Date of Collection: 10/30/08
Dil. Factor:	4.47	Date of Analysis: 11/10/08 10:23 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Dichlorobenzene	22	Not Detected	130	Not Detected
1,4-Dichlorobenzene	22	Not Detected	130	Not Detected
1,2-Dichlorobenzene	22	Not Detected	130	Not Detected
1,2,4-Trichlorobenzene	89	Not Detected	660	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: BPSI-SG2002-44 Lab ID#: 0810745-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

 File Name:
 5111125
 Date of Collection: 10/30/08

 Dil. Factor:
 46.8
 Date of Analysis: 11/12/08 04:19 AM

Dil. Factor:	46.8		Date of Analysis: 11/12/08 04:19 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	23	Not Detected	120	Not Detected
Chloromethane	94	Not Detected	190	Not Detected
Vinyl Chloride	23	Not Detected	60	Not Detected
Bromomethane	23	Not Detected	91	Not Detected
Chloroethane	23	Not Detected	62	Not Detected
Freon 11	23	Not Detected	130	Not Detected
Freon 113	23	4.5 J	180	34 J
1,1-Dichloroethene	23	120	93	480
Acetone	94	500	220	1200
Carbon Disulfide	23	Not Detected	73	Not Detected
Methylene Chloride	23	3.1 J	81	11 J
Methyl tert-butyl ether	23	Not Detected	84	Not Detected
trans-1,2-Dichloroethene	23	Not Detected	93	Not Detected
1,1-Dichloroethane	23	120	95	490
2-Butanone (Methyl Ethyl Ketone)	23	27	69	78
cis-1,2-Dichloroethene	23	33	93	130
Chloroform	23	3.9 J	110	19 J
1,1,1-Trichloroethane	23	5000	130	27000
Carbon Tetrachloride	23	Not Detected	150	Not Detected
Benzene	23	3.6 J	75	11 J
1,2-Dichloroethane	23	Not Detected	95	Not Detected
Trichloroethene	23	4800	120	26000
1,2-Dichloropropane	23	Not Detected	110	Not Detected
Bromodichloromethane	23	Not Detected	160	Not Detected
cis-1,3-Dichloropropene	23	Not Detected	110	Not Detected
4-Methyl-2-pentanone	23	Not Detected	96	Not Detected
Toluene	23	17 J	88	65 J
trans-1,3-Dichloropropene	23	Not Detected	110	Not Detected
1,1,2-Trichloroethane	23	Not Detected	130	Not Detected
Tetrachloroethene	23	7.0 J	160	48 J
Dibromochloromethane	23	Not Detected	200	Not Detected
1,2-Dibromoethane (EDB)	23	Not Detected	180	Not Detected
Chlorobenzene	23	Not Detected	110	Not Detected
Ethyl Benzene	23	2.8 J	100	12 J
m,p-Xylene	23	9.3 J	100	40 J
o-Xylene	23	3.8 J	100	16 J
Styrene	23	10 J	100	43 J
Bromoform	23	Not Detected	240	Not Detected
1,1,2,2-Tetrachloroethane	23	Not Detected	160	Not Detected

Client Sample ID: BPSI-SG2002-44

Lab ID#: 0810745-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	5111125	Date of Collection: 10/30/08
Dil. Factor:	46.8	Date of Analysis: 11/12/08 04:19 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,3-Dichlorobenzene	23	Not Detected	140	Not Detected
1,4-Dichlorobenzene	23	Not Detected	140	Not Detected
1,2-Dichlorobenzene	23	Not Detected	140	Not Detected
1,2,4-Trichlorobenzene	94	Not Detected	690	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

	·	Method	
Surrogates	%Recovery	Limits	
Toluene-d8	98	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPS1-SG2003-08

Lab ID#: 0811019-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111124
 Date of Collection: 10/31/08

 Dil. Factor:
 1.39
 Date of Analysis: 11/12/08 04:14 AM

Dil. Factor:	1.39 Date of Analysis: 11/12/08 04:			1/12/08 04:14 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.26	0.69	1.3
Chloromethane	0.14	0.11 J	0.29	0.23 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.54	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	2.3	0.78	13
Freon 113	0.14	0.16	1.1	1.2
1,1-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Acetone	0.70	50	1.6	120
Carbon Disulfide	0.70	0.75	2.2	2.3
Methylene Chloride	0.28	Not Detected	0.96	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	6.4	0.41	19
cis-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Chloroform	0.14	0.93	0.68	4.6
1,1,1-Trichloroethane	0.14	12	0.76	66
Carbon Tetrachloride	0.14	Not Detected	0.87	Not Detected
Benzene	0.14	1.1	0.44	3.5
1,2-Dichloroethane	0.14	Not Detected	0.56	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.64	Not Detected
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	0.37	0.57	1.5
Toluene	0.14	5.4	0.52	20
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	2.8	0.94	19
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	1.4	0.60	5.9
m,p-Xylene	0.14	4.7	0.60	20
o-Xylene	0.14	1.9	0.60	8.4
Styrene	0.14	4.9	0.59	21
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	0.041 J	0.84	0.25 J

Client Sample ID: BPS1-SG2003-08

Lab ID#: 0811019-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111124	Date of Collection: 10/31/08
Dil. Factor:	1.39	Date of Analysis: 11/12/08 04:14 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.054 J	0.84	0.33 J
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

		Wetnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPS1-SG2003-08

Lab ID#: 0811019-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111124sim		Date of Collection:	10/31/08
Dil. Factor:	1.39		Date of Analysis: 11/12/08 04:14	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	3.7	0.15	20

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: BPS1-DUP-03 Lab ID#: 0811019-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111127
 Date of Collection: 10/31/08

 Dil. Factor:
 1.39
 Date of Analysis: 11/12/08 06:33 AM

Dil. Factor:	1.39 Date of Analysis: 11/12/08 06:			1/12/08 06:33 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.24	0.69	1.2
Chloromethane	0.14	0.096 J	0.29	0.20 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.54	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	2.1	0.78	12
Freon 113	0.14	0.14	1.1	1.1
1,1-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Acetone	0.70	50	1.6	120
Carbon Disulfide	0.70	0.78	2.2	2.4
Methylene Chloride	0.28	Not Detected	0.96	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	6.2	0.41	18
cis-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Chloroform	0.14	0.91	0.68	4.4
1,1,1-Trichloroethane	0.14	11	0.76	62
Carbon Tetrachloride	0.14	Not Detected	0.87	Not Detected
Benzene	0.14	1.1	0.44	3.4
1,2-Dichloroethane	0.14	Not Detected	0.56	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.64	Not Detected
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	Not Detected	0.57	Not Detected
Toluene	0.14	5.5	0.52	21
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	2.9	0.94	20
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	1.4	0.60	6.0
m,p-Xylene	0.14	4.8	0.60	21
o-Xylene	0.14	2.0	0.60	8.5
Styrene	0.14	4.8	0.59	21
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	0.045 J	0.84	0.27 J

Client Sample ID: BPS1-DUP-03 Lab ID#: 0811019-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111127	Date of Collection: 10/31/08
Dil. Factor:	1.39	Date of Analysis: 11/12/08 06:33 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.059 J	0.84	0.36 J
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: BPS1-DUP-03 Lab ID#: 0811019-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111127sim		Date of Collection: 1	0/31/08
Dil. Factor:	1.39	1.39 Date of Analysis: 11/12/08 06:33 AM		/12/08 06:33 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

0.028

3.8

0.15

20

Container Type: 6 Liter Summa Canister (100% Certified)

Trichloroethene

(,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: BPS1-SG2003-20 Lab ID#: 0811019-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111126
 Date of Collection: 10/31/08

 Dil. Factor:
 1.34
 Date of Analysis: 11/12/08 05:46 AM

Dil. Factor:	1.34 Date of Analysis: 11/12/08 0			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.13	0.24	0.66	1.2
Chloromethane	0.13	0.064 J	0.28	0.13 J
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected
Bromomethane	0.13	Not Detected	0.52	Not Detected
Chloroethane	0.13	Not Detected	0.35	Not Detected
Freon 11	0.13	2.3	0.75	13
Freon 113	0.13	0.21	1.0	1.6
1,1-Dichloroethene	0.13	0.51	0.53	2.0
Acetone	0.67	73 E	1.6	170 E
Carbon Disulfide	0.67	0.96	2.1	3.0
Methylene Chloride	0.27	Not Detected	0.93	Not Detected
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.13	0.12 J	0.54	0.49 J
2-Butanone (Methyl Ethyl Ketone)	0.13	7.1	0.40	21
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Chloroform	0.13	0.61	0.65	3.0
1,1,1-Trichloroethane	0.13	30	0.73	170
Carbon Tetrachloride	0.13	Not Detected	0.84	Not Detected
Benzene	0.13	2.0	0.43	6.4
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
4-Methyl-2-pentanone	0.13	Not Detected	0.55	Not Detected
Toluene	0.13	9.3	0.50	35
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected
Tetrachloroethene	0.13	2.0	0.91	14
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected
Chlorobenzene	0.13	Not Detected	0.62	Not Detected
Ethyl Benzene	0.13	1.8	0.58	7.7
m,p-Xylene	0.13	5.7	0.58	25
o-Xylene	0.13	2.2	0.58	9.8
Styrene	0.13	6.1	0.57	26
Bromoform	0.13	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.13	0.042 J	0.80	0.26 J

Client Sample ID: BPS1-SG2003-20

Lab ID#: 0811019-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111126	Date of Collection: 10/31/08
Dil. Factor:	1.34	Date of Analysis: 11/12/08 05:46 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	0.051 J	0.80	0.31 J
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected	5.0	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

-	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-SG2003-20

Lab ID#: 0811019-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111126sim		Date of Collection:	10/31/08
Dil. Factor:	1.34	1.34		/12/08 05:46 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.027	15	0.14	82

,	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPS1-SG2003-49 Lab ID#: 0811019-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111121
 Date of Collection: 10/31/08

 Dil. Factor:
 3.83
 Date of Analysis: 11/12/08 01:08 AM

Dil. Factor:	3.83 Date of Analysis: 11/12/08 0			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.38	0.78	1.9	3.9
Chloromethane	0.38	0.22 J	0.79	0.46 J
Vinyl Chloride	0.38	Not Detected	0.98	Not Detected
Bromomethane	0.38	Not Detected	1.5	Not Detected
Chloroethane	0.38	Not Detected	1.0	Not Detected
Freon 11	0.38	7.2	2.2	40
Freon 113	0.38	0.47	2.9	3.6
1,1-Dichloroethene	0.38	5.8	1.5	23
Acetone	1.9	170 E	4.5	410 E
Carbon Disulfide	1.9	0.79 J	6.0	2.5 J
Methylene Chloride	0.77	Not Detected	2.7	Not Detected
Methyl tert-butyl ether	0.38	Not Detected	1.4	Not Detected
trans-1,2-Dichloroethene	0.38	Not Detected	1.5	Not Detected
1,1-Dichloroethane	0.38	2.1	1.6	8.6
2-Butanone (Methyl Ethyl Ketone)	0.38	16	1.1	47
cis-1,2-Dichloroethene	0.38	0.42	1.5	1.6
Chloroform	0.38	1.9	1.9	9.4
1,1,1-Trichloroethane	0.38	130	2.1	720
Carbon Tetrachloride	0.38	Not Detected	2.4	Not Detected
Benzene	0.38	2.6	1.2	8.5
1,2-Dichloroethane	0.38	Not Detected	1.6	Not Detected
1,2-Dichloropropane	0.38	Not Detected	1.8	Not Detected
Bromodichloromethane	0.38	Not Detected	2.6	Not Detected
cis-1,3-Dichloropropene	0.38	Not Detected	1.7	Not Detected
4-Methyl-2-pentanone	0.38	Not Detected	1.6	Not Detected
Toluene	0.38	17	1.4	63
trans-1,3-Dichloropropene	0.38	Not Detected	1.7	Not Detected
1,1,2-Trichloroethane	0.38	Not Detected	2.1	Not Detected
Tetrachloroethene	0.38	1.3	2.6	8.9
Dibromochloromethane	0.38	Not Detected	3.3	Not Detected
1,2-Dibromoethane (EDB)	0.38	Not Detected	2.9	Not Detected
Chlorobenzene	0.38	Not Detected	1.8	Not Detected
Ethyl Benzene	0.38	1.8	1.7	7.8
m,p-Xylene	0.38	5.7	1.7	25
o-Xylene	0.38	2.4	1.7	10
Styrene	0.38	5.6	1.6	24
Bromoform	0.38	Not Detected	4.0	Not Detected
1,1,2,2-Tetrachloroethane	0.38	Not Detected	2.6	Not Detected
1,3-Dichlorobenzene	0.38	Not Detected	2.3	Not Detected

Client Sample ID: BPS1-SG2003-49

Lab ID#: 0811019-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111121	Data of Callection, 40/24/09
	2111121	Date of Collection: 10/31/08
Dil. Factor:	3.83	Date of Analysis: 11/12/08 01:08 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,4-Dichlorobenzene	0.38	Not Detected	2.3	Not Detected
1,2-Dichlorobenzene	0.38	Not Detected	2.3	Not Detected
1,2,4-Trichlorobenzene	1.9	Not Detected	14	Not Detected
Trichloroethene	0.38	130	2.0	710

J = Estimated value.

	·	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	104	70-130	

E = Exceeds instrument calibration range.

${\bf Client\ Sample\ ID:\ BPS1\text{-}SG2004\text{-}08}$

Lab ID#: 0810701-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111010
 Date of Collection: 10/28/08

 Dil. Factor:
 1.39
 Date of Analysis: 11/10/08 05:56 PM

Dil. Factor:	1.39 Date of Analysis: 11/10/08 0			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.51	0.69	2.5
Chloromethane	0.14	0.54	0.29	1.1
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.54	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	0.27	0.78	1.5
Freon 113	0.14	0.10 J	1.1	0.79 J
1,1-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Acetone	0.70	12	1.6	29
Carbon Disulfide	0.70	Not Detected	2.2	Not Detected
Methylene Chloride	0.28	0.32	0.96	1.1
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	1.2	0.41	3.6
cis-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Chloroform	0.14	0.051 J	0.68	0.25 J
1,1,1-Trichloroethane	0.14	0.26	0.76	1.4
Carbon Tetrachloride	0.14	0.087 J	0.87	0.55 J
Benzene	0.14	0.34	0.44	1.1
1,2-Dichloroethane	0.14	0.061 J	0.56	0.25 J
1,2-Dichloropropane	0.14	0.13 J	0.64	0.59 J
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	0.11 J	0.57	0.47 J
Toluene	0.14	1.8	0.52	6.7
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	0.26	0.94	1.8
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	0.24	0.60	1.0
m,p-Xylene	0.14	0.71	0.60	3.1
o-Xylene	0.14	0.27	0.60	1.2
Styrene	0.14	0.32	0.59	1.4
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected

Client Sample ID: BPS1-SG2004-08

Lab ID#: 0810701-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111010	Date of Collection: 10/28/08
Dil. Factor:	1.39	Date of Analysis: 11/10/08 05:56 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.059 J	0.84	0.36 J
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

		ivietnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-SG2004-08

Lab ID#: 0810701-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111010sim		Date of Collection:	10/28/08
Dil. Factor:	1.39 Date of Analysis: 11/10/0		I/10/08 05:56 PM	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	0.19	0.15	1.0

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPS1-SG2004-20

Lab ID#: 0810701-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	z111009 6.95		Date of Collection: Date of Analysis: 1	
_	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.70	0.73	3.4	3.6
Chloromethane	0.70	Not Detected	1.4	Not Detected
Vinyl Chloride	0.70	Not Detected	1.8	Not Detected
Bromomethane	0.70	Not Detected	2.7	Not Detected
Chloroethane	0.70	Not Detected	1.8	Not Detected
Freon 11	0.70	0.84	3.9	4.7
Freon 113	0.70	160	5.3	1200
1,1-Dichloroethene	0.70	1.8	2.8	7.1
Acetone	3.5	99	8.2	240
Carbon Disulfide	3.5	0.72 J	11	2.2 J
Methylene Chloride	1.4	Not Detected	4.8	Not Detected
Methyl tert-butyl ether	0.70	0.46 J	2.5	1.7 J
trans-1,2-Dichloroethene	0.70	0.98	2.8	3.9
1,1-Dichloroethane	0.70	11	2.8	44
2-Butanone (Methyl Ethyl Ketone)	0.70	10	2.0	30
cis-1,2-Dichloroethene	0.70	1.2	2.8	4.6
Chloroform	0.70	5.1	3.4	25
1,1,1-Trichloroethane	0.70	84	3.8	460
Carbon Tetrachloride	0.70	Not Detected	4.4	Not Detected
Benzene	0.70	1.1	2.2	3.5
1,2-Dichloroethane	0.70	Not Detected	2.8	Not Detected
1,2-Dichloropropane	0.70	Not Detected	3.2	Not Detected
Bromodichloromethane	0.70	Not Detected	4.6	Not Detected
cis-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
4-Methyl-2-pentanone	0.70	Not Detected	2.8	Not Detected
Toluene	0.70	6.3	2.6	24
trans-1,3-Dichloropropene	0.70	Not Detected	3.2	Not Detected
1,1,2-Trichloroethane	0.70	Not Detected	3.8	Not Detected
Tetrachloroethene	0.70	150	4.7	1000
Dibromochloromethane	0.70	Not Detected	5.9	Not Detected
1,2-Dibromoethane (EDB)	0.70	Not Detected	5.3	Not Detected
Chlorobenzene	0.70	Not Detected	3.2	Not Detected
Ethyl Benzene	0.70	0.82	3.0	3.6
m,p-Xylene	0.70	2.7	3.0	12
o-Xylene	0.70	0.77	3.0	3.3
Styrene	0.70	0.47 J	3.0	2.0 J
Bromoform	0.70	Not Detected	7.2	Not Detected
1,1,2,2-Tetrachloroethane	0.70	Not Detected	4.8	Not Detected
4.0 D: 11 1	0.70	NICE	4.0	

Not Detected

4.2

Not Detected

0.70

1,3-Dichlorobenzene

Client Sample ID: BPS1-SG2004-20

Lab ID#: 0810701-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111009	Date of Collection: 10/28/08
Dil. Factor:	6.95	Date of Analysis: 11/10/08 04:39 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
1,4-Dichlorobenzene	0.70	Not Detected	4.2	Not Detected
1,2-Dichlorobenzene	0.70	Not Detected	4.2	Not Detected
1,2,4-Trichlorobenzene	3.5	Not Detected	26	Not Detected

J = Estimated value.

		wetnoa	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-SG2004-20

Lab ID#: 0810701-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111009sim 6.95		Date of Collection:	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.14	100	0.75	550

	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPS1-SG2004-49

Lab ID#: 0810701-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	z111016 6.80		Date of Collection: Date of Analysis: 11	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.68	0.58 J	3.4	2.9 J

Client Sample ID: BPS1-SG2004-49

Lab ID#: 0810701-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111016	Date of Collection: 10/29/08
Dil. Factor:	6.80	Date of Analysis: 11/11/08 12:33 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.68	Not Detected	4.1	Not Detected
1,2-Dichlorobenzene	0.68	Not Detected	4.1	Not Detected
1,2,4-Trichlorobenzene	3.4	Not Detected	25	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	103	70-130	

Client Sample ID: BPS1-SG2004-49

Lab ID#: 0810701-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

		Date of Collection: 1 Date of Analysis: 11	ection: 10/29/08 lysis: 11/11/08 12:33 AM	
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit Amou		Amount (uG/m3)
Trichloroethene	0.14	110	0.73	600

	·	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: BPS1-DUP-02 Lab ID#: 0810701-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111019
 Date of Collection: 10/29/08

 Dil. Factor:
 5.56
 Date of Analysis: 11/11/08 02:39 AM

Dil. Factor:	5.56		Date of Analysis: 11/11/08 02:39 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.56	0.62	2.7	3.1
Chloromethane	0.56	Not Detected	1.1	Not Detected
Vinyl Chloride	0.56	Not Detected	1.4	Not Detected
Bromomethane	0.56	Not Detected	2.2	Not Detected
Chloroethane	0.56	Not Detected	1.5	Not Detected
Freon 11	0.56	0.50 J	3.1	2.8 J
Freon 113	0.56	160	4.3	1200
1,1-Dichloroethene	0.56	Not Detected	2.2	Not Detected
Acetone	2.8	260 E	6.6	610 E
Carbon Disulfide	2.8	0.98 J	8.6	3.0 J
Methylene Chloride	1.1	Not Detected	3.9	Not Detected
Methyl tert-butyl ether	0.56	2.8	2.0	10
trans-1,2-Dichloroethene	0.56	1.3	2.2	5.3
1,1-Dichloroethane	0.56	17	2.2	69
2-Butanone (Methyl Ethyl Ketone)	0.56	32	1.6	95
cis-1,2-Dichloroethene	0.56	Not Detected	2.2	Not Detected
Chloroform	0.56	4.9	2.7	24
1,1,1-Trichloroethane	0.56	82	3.0	450
Carbon Tetrachloride	0.56	Not Detected	3.5	Not Detected
Benzene	0.56	4.4	1.8	14
1,2-Dichloroethane	0.56	Not Detected	2.2	Not Detected
1,2-Dichloropropane	0.56	Not Detected	2.6	Not Detected
Bromodichloromethane	0.56	Not Detected	3.7	Not Detected
cis-1,3-Dichloropropene	0.56	Not Detected	2.5	Not Detected
4-Methyl-2-pentanone	0.56	Not Detected	2.3	Not Detected
Toluene	0.56	13	2.1	48
trans-1,3-Dichloropropene	0.56	Not Detected	2.5	Not Detected
1,1,2-Trichloroethane	0.56	Not Detected	3.0	Not Detected
Tetrachloroethene	0.56	86	3.8	580
Dibromochloromethane	0.56	Not Detected	4.7	Not Detected
1,2-Dibromoethane (EDB)	0.56	Not Detected	4.3	Not Detected
Chlorobenzene	0.56	Not Detected	2.6	Not Detected
Ethyl Benzene	0.56	1.7	2.4	7.3
m,p-Xylene	0.56	4.8	2.4	21
o-Xylene	0.56	1.4	2.4	5.9
Styrene	0.56	Not Detected	2.4	Not Detected
Bromoform	0.56	Not Detected	5.7	Not Detected
1,1,2,2-Tetrachloroethane	0.56	Not Detected	3.8	Not Detected
1,3-Dichlorobenzene	0.56	Not Detected	3.3	Not Detected

Client Sample ID: BPS1-DUP-02 Lab ID#: 0810701-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111019	Date of Collection: 10/29/08
Dil. Factor:	5.56	Date of Analysis: 11/11/08 02:39 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.56	Not Detected	3.3	Not Detected
1,2-Dichlorobenzene	0.56	Not Detected	3.3	Not Detected
1,2,4-Trichlorobenzene	2.8	Not Detected	21	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPS1-DUP-02

Lab ID#: 0810701-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111019sim	Date of Collection: 10/29/08		
Dil. Factor:	5.56	Date of Analysis: 11/11/08 02:39		
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.11	110	0.60	590

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: BPS1-SG2005-08

Lab ID#: 0810643-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110419	Date of Collection: 10/27/08
Dil. Factor:	1.44	Date of Analysis: 11/5/08 12:57 AM

Dil. Factor:	1.44		Date of Analysis: 11/5/08 12:57 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	0.14	0.28	0.71	1.4	
Chloromethane	0.14	0.11 J	0.30	0.22 J	
Vinyl Chloride	0.14	Not Detected	0.37	Not Detected	
Bromomethane	0.14	0.21	0.56	0.81	
Chloroethane	0.14	Not Detected	0.38	Not Detected	
Freon 11	0.14	1.4	0.81	7.7	
Freon 113	0.14	1.4	1.1	10	
1,1-Dichloroethene	0.14	Not Detected	0.57	Not Detected	
Acetone	0.72	260 J E	1.7	630 J E	
Carbon Disulfide	0.72	2.1	2.2	6.6	
Methylene Chloride	0.29	Not Detected	1.0	Not Detected	
Methyl tert-butyl ether	0.14	Not Detected	0.52	Not Detected	
trans-1,2-Dichloroethene	0.14	Not Detected	0.57	Not Detected	
1,1-Dichloroethane	0.14	Not Detected	0.58	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.14	20	0.42	60	
cis-1,2-Dichloroethene	0.14	Not Detected	0.57	Not Detected	
Chloroform	0.14	1.0	0.70	5.0	
1,1,1-Trichloroethane	0.14	0.59	0.78	3.2	
Carbon Tetrachloride	0.14	18	0.91	110	
Benzene	0.14	1.4	0.46	4.5	
1,2-Dichloroethane	0.14	Not Detected	0.58	Not Detected	
1,2-Dichloropropane	0.14	Not Detected	0.66	Not Detected	
Bromodichloromethane	0.14	Not Detected	0.96	Not Detected	
cis-1,3-Dichloropropene	0.14	Not Detected	0.65	Not Detected	
4-Methyl-2-pentanone	0.14	0.27	0.59	1.1	
Toluene	0.14	6.8	0.54	26	
trans-1,3-Dichloropropene	0.14	Not Detected	0.65	Not Detected	
1,1,2-Trichloroethane	0.14	Not Detected	0.78	Not Detected	
Tetrachloroethene	0.14	2.4	0.98	16	
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected	
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected	
Chlorobenzene	0.14	Not Detected	0.66	Not Detected	
Ethyl Benzene	0.14	0.72	0.62	3.1	
m,p-Xylene	0.14	2.2	0.62	9.6	
o-Xylene	0.14	0.50	0.62	2.2	
Styrene	0.14	0.41	0.61	1.8	
Bromoform	0.14	Not Detected	1.5	Not Detected	
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.99	Not Detected	
1,3-Dichlorobenzene	0.14	Not Detected	0.86	Not Detected	

Client Sample ID: BPS1-SG2005-08

Lab ID#: 0810643-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

	Rnt Limit	Amount	Rnt Limit	Amount	
Dil. Factor:	1.44	Date of Analysis: 11/5/08 12:57 A		/5/08 12:57 AM	
File Name:	g110419		Date of Collection: 10/27/08		

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.053 J	0.86	0.32 J
1,2-Dichlorobenzene	0.14	Not Detected	0.86	Not Detected
1,2,4-Trichlorobenzene	0.72	Not Detected	5.3	Not Detected

J = Estimated value.

J = Estimated value due to bias in the CCV.

E = Exceeds instrument calibration range.

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	101	70-130	

1,2-Dichloroethane-d4

4-Bromofluorobenzene

Toluene-d8

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: BPS1-SG2005-08

Lab ID#: 0810643-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: g110419sim		Date of Collection: 10/27/08		
Dil. Factor:	1.44		Date of Analysis: 11/5/08 12:57 AM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.029	0.097	0.15	0.52
Container Type: 6 Liter Su	mma Canister (100% Certified)			
_				Method
Surrogates		%Recovery		Limits

118

100

95

70-130

70-130

70-130

Client Sample ID: BPS1-SG2005-20

Lab ID#: 0810643-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110418	Date of Collection: 10/27/08
Dil. Factor:	1.41	Date of Analysis: 11/5/08 12:24 AM

Dil. Factor:	1.41 Date of Analysis: 11/5/08 12:2			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.26	0.70	1.3
Chloromethane	0.14	Not Detected	0.29	Not Detected
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.55	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	0.84	0.79	4.7
Freon 113	0.14	1.4	1.1	10
1,1-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Acetone	0.70	330 J E	1.7	790 J E
Carbon Disulfide	0.70	0.87	2.2	2.7
Methylene Chloride	0.28	Not Detected	0.98	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.51	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	20	0.42	60
cis-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Chloroform	0.14	1.8	0.69	8.7
1,1,1-Trichloroethane	0.14	0.59	0.77	3.2
Carbon Tetrachloride	0.14	22	0.89	140
Benzene	0.14	1.2	0.45	3.9
1,2-Dichloroethane	0.14	Not Detected	0.57	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.65	Not Detected
Bromodichloromethane	0.14	Not Detected	0.94	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
4-Methyl-2-pentanone	0.14	0.15	0.58	0.60
Toluene	0.14	10	0.53	38
trans-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.77	Not Detected
Tetrachloroethene	0.14	1.4	0.96	9.7
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.65	Not Detected
Ethyl Benzene	0.14	0.95	0.61	4.1
m,p-Xylene	0.14	3.1	0.61	13
o-Xylene	0.14	0.79	0.61	3.4
Styrene	0.14	0.38	0.60	1.6
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.97	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected

Client Sample ID: BPS1-SG2005-20

Lab ID#: 0810643-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110418	Date of Collection: 10/27/08
Dil. Factor:	1.41	Date of Analysis: 11/5/08 12:24 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.045 J	0.85	0.27 J
1,2-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value due to bias in the CCV.

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	

E = Exceeds instrument calibration range.

J = Estimated value.

Client Sample ID: BPS1-SG2005-20

Lab ID#: 0810643-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110418sim	•		10/27/08
Dil. Factor:	1.41			/5/08 12:24 AM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	0.14	0.15	0.75

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPS1-SG2005-49

Lab ID#: 0810643-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

	B -4 -1.1 14	A	Dest Lieuts	A 1
Dil. Factor:	1.46		Date of Analysis: 11	/4/08 11:46 PM
File Name:	g110417		Date of Collection: 1	0/27/08

Dil. Factor:	ctor: 1.46 Date of Analysis: 11/4/0		11/4/08 11:46 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.15	0.22	0.72	1.1
Chloromethane	0.15	0.26	0.30	0.53
Vinyl Chloride	0.15	Not Detected	0.37	Not Detected
Bromomethane	0.15	0.28	0.57	1.1
Chloroethane	0.15	0.096 J	0.38	0.25 J
Freon 11	0.15	0.45	0.82	2.5
Freon 113	0.15	1.8	1.1	14
1,1-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Acetone	0.73	290 J E	1.7	700 J E
Carbon Disulfide	0.73	0.61 J	2.3	1.9 J
Methylene Chloride	0.29	Not Detected	1.0	Not Detected
Methyl tert-butyl ether	0.15	Not Detected	0.53	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	Not Detected	0.59	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.15	15	0.43	44
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Chloroform	0.15	3.3	0.71	16
1,1,1-Trichloroethane	0.15	0.59	0.80	3.2
Carbon Tetrachloride	0.15	21	0.92	130
Benzene	0.15	1.8	0.47	5.8
1,2-Dichloroethane	0.15	Not Detected	0.59	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.67	Not Detected
Bromodichloromethane	0.15	Not Detected	0.98	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
4-Methyl-2-pentanone	0.15	0.23	0.60	0.93
Toluene	0.15	15	0.55	55
trans-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.80	Not Detected
Tetrachloroethene	0.15	0.57	0.99	3.8
Dibromochloromethane	0.15	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.1	Not Detected
Chlorobenzene	0.15	0.025 J	0.67	0.12 J
Ethyl Benzene	0.15	0.92	0.63	4.0
m,p-Xylene	0.15	2.9	0.63	13
o-Xylene	0.15	0.64	0.63	2.8
Styrene	0.15	0.44	0.62	1.9
Bromoform	0.15	Not Detected	1.5	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
1,3-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected

Client Sample ID: BPS1-SG2005-49

Lab ID#: 0810643-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110417	g110417 Date of Collection: 10/27/08		10/27/08
Dil. Factor:	1.46	1.46 Date of Analysis: 11/4/		1/4/08 11:46 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
O	(l A	/ I A	/ O / O\	/ O / O\

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.15	0.047 J	0.88	0.28 J
1,2-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected
1,2,4-Trichlorobenzene	0.73	Not Detected	5.4	Not Detected

J = Estimated value.

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	104	70-130	

J = Estimated value due to bias in the CCV.

E = Exceeds instrument calibration range.

Client Sample ID: BPS1-SG2005-49

Lab ID#: 0810643-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110417sim	Date of Collection: 10/27/08		
Dil. Factor:	1.46	Date of Analysis: 11/4/08 11:46		/4/08 11:46 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.029	0.19	0.16	1.0

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	99	70-130	

File Name:

Tetrachloroethene

Chlorobenzene

Ethyl Benzene

m,p-Xylene

Bromoform

o-Xylene

Styrene

Dibromochloromethane

1,2-Dibromoethane (EDB)

1,1,2,2-Tetrachloroethane

1,3-Dichlorobenzene

AN ENVIRONMENTAL ANALYTICAL LABORATORY

g110416

Client Sample ID: BPS1-SG2006-08

Lab ID#: 0810643-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Date of Collection: 10/24/08

14

Not Detected

Not Detected

Not Detected

8.8

33

12

37

Not Detected

Not Detected

Not Detected

1.9

2.4

2.2

1.3

1.2

1.2

1.2

1.2

2.9

1.9

1.7

Dil. Factor:	2.82	Date of Collection: 10/24/08 Date of Analysis: 11/4/08 11:09		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.28	0.47	1.4	2.3
Chloromethane	0.28	Not Detected	0.58	Not Detected
Vinyl Chloride	0.28	Not Detected	0.72	Not Detected
Bromomethane	0.28	0.32	1.1	1.3
Chloroethane	0.28	Not Detected	0.74	Not Detected
Freon 11	0.28	0.41	1.6	2.3
Freon 113	0.28	22	2.2	170
1,1-Dichloroethene	0.28	Not Detected	1.1	Not Detected
Acetone	1.4	520 J E	3.3	1200 J E
Carbon Disulfide	1.4	0.66 J	4.4	2.1 J
Methylene Chloride	0.56	Not Detected	2.0	Not Detected
Methyl tert-butyl ether	0.28	Not Detected	1.0	Not Detected
trans-1,2-Dichloroethene	0.28	Not Detected	1.1	Not Detected
1,1-Dichloroethane	0.28	Not Detected	1.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.28	23	0.83	68
cis-1,2-Dichloroethene	0.28	1.0	1.1	4.1
Chloroform	0.28	0.62	1.4	3.0
1,1,1-Trichloroethane	0.28	2.3	1.5	12
Carbon Tetrachloride	0.28	0.15 J	1.8	0.94 J
Benzene	0.28	0.80	0.90	2.5
1,2-Dichloroethane	0.28	Not Detected	1.1	Not Detected
1,2-Dichloropropane	0.28	Not Detected	1.3	Not Detected
Bromodichloromethane	0.28	Not Detected	1.9	Not Detected
cis-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
4-Methyl-2-pentanone	0.28	0.12 J	1.2	0.47 J
Toluene	0.28	9.4	1.1	35
trans-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
1,1,2-Trichloroethane	0.28	Not Detected	1.5	Not Detected

2.1

Not Detected

Not Detected

Not Detected

2.0

7.6

2.8

8.8

Not Detected

Not Detected

Not Detected

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0.28

0.28

Client Sample ID: BPS1-SG2006-08

Lab ID#: 0810643-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110416	Date of Collection: 10/24/08
Dil. Factor:	2.82	Date of Analysis: 11/4/08 11:05 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2,4-Trichlorobenzene	1.4	Not Detected	10	Not Detected

J = Estimated value due to bias in the CCV.

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	

E = Exceeds instrument calibration range.

J = Estimated value.

Client Sample ID: BPS1-SG2006-08

Lab ID#: 0810643-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110416sim 2.82			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.056	6.0	0.30	32

,	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPS1-SG2006-20 Lab ID#: 0810643-03A

Lub IDII. 0010045 0511

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor: Compound	g110415 1.41	Date of Collection: 10/24/08 Date of Analysis: 11/4/08 10:08 PM		
	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.25	0.70	1.2
Chloromethane	0.14	0.13 J	0.29	0.27 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	0.19	0.55	0.73
Chloroethane	0.14	0.057 J	0.37	0.15 J
Freon 11	0.14	0.40	0.79	2.3
Freon 113	0.14	37	1.1	280
1,1-Dichloroethene	0.14	0.16	0.56	0.62
Acetone	0.70	360 J E	1.7	860 J E
Carbon Disulfide	0.70	0.48 J	2.2	1.5 J
Methylene Chloride	0.28	Not Detected	0.98	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.51	Not Detected
trans-1,2-Dichloroethene	0.14	0.36	0.56	1.4
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	20	0.42	59
cis-1.2-Dichloroethene	0.14	11	0.56	45
Chloroform	0.14	0.75	0.69	3.7
1,1,1-Trichloroethane	0.14	4.1	0.77	22
Carbon Tetrachloride	0.14	0.34	0.89	2.1
Benzene	0.14	2.2	0.45	7.0
1,2-Dichloroethane	0.14	Not Detected	0.57	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.65	Not Detected
Bromodichloromethane	0.14	Not Detected	0.94	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
4-Methyl-2-pentanone	0.14	0.27	0.58	1.1
Toluene	0.14	9.1	0.53	34
trans-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.77	Not Detected
Tetrachloroethene	0.14	4.2	0.96	29
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	0.032 J	0.65	0.15 J
Ethyl Benzene	0.14	1.4	0.61	6.2
m,p-Xylene	0.14	4.6	0.61	20
o-Xylene	0.14	1.6	0.61	7.2
Styrene	0.14	4.9	0.60	21
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.97	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected

Client Sample ID: BPS1-SG2006-20

Lab ID#: 0810643-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Dil. Factor:	1.41 Rpt Limit			/4/08 10:08 PM
Dil. Factor:	1.41	_	Date of Analysis: 11	/4/08 10:08 PM
File Name:	g110415		Date of Collection: 1	10/24/08

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

J = Estimated value due to bias in the CCV.

E = Exceeds instrument calibration range.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPS1-SG2006-20

Lab ID#: 0810643-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	3		· ·	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	13	0.15	71

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: BPS1-SG2006-49

Lab ID#: 0810701-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111007
 Date of Collection: 10/28/08

 Dil. Factor:
 1.39
 Date of Analysis: 11/10/08 03:19 PM

Dil. Factor:	1.39 Date of Analysis: 11/10/0			11/10/08 03:19 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.30	0.69	1.5
Chloromethane	0.14	0.12 J	0.29	0.25 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.54	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	0.49	0.78	2.8
Freon 113	0.14	39	1.1	300
1,1-Dichloroethene	0.14	0.31	0.55	1.2
Acetone	0.70	450 E	1.6	1100 E
Carbon Disulfide	0.70	0.72	2.2	2.2
Methylene Chloride	0.28	Not Detected	0.96	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	0.69	0.55	2.7
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	48	0.41	140
cis-1,2-Dichloroethene	0.14	22	0.55	89
Chloroform	0.14	1.2	0.68	6.1
1,1,1-Trichloroethane	0.14	6.4	0.76	35
Carbon Tetrachloride	0.14	0.39	0.87	2.5
Benzene	0.14	1.7	0.44	5.4
1,2-Dichloroethane	0.14	Not Detected	0.56	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.64	Not Detected
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	0.20	0.57	0.80
Toluene	0.14	16	0.52	60
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	1.6	0.94	11
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	1.5	0.60	6.5
m,p-Xylene	0.14	4.4	0.60	19
o-Xylene	0.14	1.2	0.60	5.3
Styrene	0.14	0.49	0.59	2.1
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected

Client Sample ID: BPS1-SG2006-49

Lab ID#: 0810701-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111007	Date of Collection: 10/28/08
Dil. Factor:	1.39	Date of Analysis: 11/10/08 03:19 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.059 J	0.84	0.35 J
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

-	•	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: BPS1-SG2006-49

Lab ID#: 0810701-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	z111007sim 1.39		Date of Collection: 10/28/08 Date of Analysis: 11/10/08 03:19 I	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.028	11	0.15	61

	•	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	108	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPSI-SG2007-08 Lab ID#: 0810584A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110326	Date of Collection: 10/23/08
Dil. Factor:	1.46	Date of Analysis: 11/4/08 07:41 AM

Dil. Factor:	1.46		Date of Analysis: 11/4/08 07:41 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.15	0.23	0.72	1.1
Chloromethane	0.15	0.052 J	0.30	0.11 J
Vinyl Chloride	0.15	Not Detected	0.37	Not Detected
Bromomethane	0.15	0.24	0.57	0.93
Chloroethane	0.15	Not Detected	0.38	Not Detected
Freon 11	0.15	0.45	0.82	2.5
Freon 113	0.15	1.4	1.1	11
1,1-Dichloroethene	0.15	0.066 J	0.58	0.26 J
Acetone	0.73	360 E	1.7	850 E
Carbon Disulfide	0.73	0.88	2.3	2.7
Methylene Chloride	0.29	Not Detected U J	1.0	Not Detected U J
Methyl tert-butyl ether	0.15	Not Detected	0.53	Not Detected
trans-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
1,1-Dichloroethane	0.15	Not Detected	0.59	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.15	20	0.43	58
cis-1,2-Dichloroethene	0.15	Not Detected	0.58	Not Detected
Chloroform	0.15	0.21	0.71	1.0
1,1,1-Trichloroethane	0.15	28	0.80	150
Carbon Tetrachloride	0.15	0.052 J	0.92	0.33 J
Benzene	0.15	1.8	0.47	5.7
1,2-Dichloroethane	0.15	Not Detected	0.59	Not Detected
1,2-Dichloropropane	0.15	Not Detected	0.67	Not Detected
Bromodichloromethane	0.15	Not Detected	0.98	Not Detected
cis-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
4-Methyl-2-pentanone	0.15	0.15	0.60	0.62
Toluene	0.15	5.2	0.55	20
trans-1,3-Dichloropropene	0.15	Not Detected	0.66	Not Detected
1,1,2-Trichloroethane	0.15	Not Detected	0.80	Not Detected
Tetrachloroethene	0.15	1.9	0.99	13
Dibromochloromethane	0.15	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.1	Not Detected
Chlorobenzene	0.15	Not Detected	0.67	Not Detected
Ethyl Benzene	0.15	0.34	0.63	1.5
m,p-Xylene	0.15	0.83	0.63	3.6
o-Xylene	0.15	0.14 J	0.63	0.60 J
Styrene	0.15	0.028 J	0.62	0.12 J
Bromoform	0.15	Not Detected	1.5	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
1,3-Dichlorobenzene	0.15	Not Detected	0.88	Not Detected

Client Sample ID: BPSI-SG2007-08

Lab ID#: 0810584A-09A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

	B - (11 - 2	A 1	Dest Lieuts	A
Dil. Factor:	1.46		Date of Analysis: 11/	/4/08 07:41 AM
File Name:	g110326		Date of Collection: 1	0/23/08

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.15	0.044 J	0.88	0.26 J
1,2-Dichlorobenzene	0.15	0.031 J	0.88	0.19 J
1,2,4-Trichlorobenzene	0.73	Not Detected	5.4	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

•	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: BPSI-SG2007-08

Lab ID#: 0810584A-09B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110326sim Date of Collection: 10/23/08 1.46 Date of Analysis: 11/4/08 07:41			
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.029	5.4	0.16	29

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPSI-SG2007-20 Lab ID#: 0810584A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110412
 Date of Collection: 10/23/08

 Dil. Factor:
 2.82
 Date of Analysis: 11/4/08 07:07 PM

Dil. Factor:	2.82 Date of Analysis: 11/4/08			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.28	0.57	1.4	2.8
Chloromethane	0.28	Not Detected	0.58	Not Detected
Vinyl Chloride	0.28	Not Detected	0.72	Not Detected
Bromomethane	0.28	0.20 J	1.1	0.78 J
Chloroethane	0.28	Not Detected	0.74	Not Detected
Freon 11	0.28	0.48	1.6	2.7
Freon 113	0.28	2.2	2.2	16
1,1-Dichloroethene	0.28	0.17 J	1.1	0.69 J
Acetone	1.4	260 E	3.3	630 E
Carbon Disulfide	1.4	0.80 J	4.4	2.5 J
Methylene Chloride	0.56	Not Detected	2.0	Not Detected
Methyl tert-butyl ether	0.28	Not Detected	1.0	Not Detected
trans-1,2-Dichloroethene	0.28	Not Detected	1.1	Not Detected
1,1-Dichloroethane	0.28	Not Detected	1.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.28	14	0.83	41
cis-1,2-Dichloroethene	0.28	Not Detected	1.1	Not Detected
Chloroform	0.28	0.15 J	1.4	0.72 J
1,1,1-Trichloroethane	0.28	48	1.5	260
Carbon Tetrachloride	0.28	Not Detected	1.8	Not Detected
Benzene	0.28	1.8	0.90	5.8
1,2-Dichloroethane	0.28	Not Detected	1.1	Not Detected
1,2-Dichloropropane	0.28	Not Detected	1.3	Not Detected
Bromodichloromethane	0.28	Not Detected	1.9	Not Detected
cis-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
4-Methyl-2-pentanone	0.28	0.16 J	1.2	0.67 J
Toluene	0.28	5.3	1.1	20
trans-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
1,1,2-Trichloroethane	0.28	Not Detected	1.5	Not Detected
Tetrachloroethene	0.28	3.7	1.9	25
Dibromochloromethane	0.28	Not Detected	2.4	Not Detected
1,2-Dibromoethane (EDB)	0.28	Not Detected	2.2	Not Detected
Chlorobenzene	0.28	Not Detected	1.3	Not Detected
Ethyl Benzene	0.28	0.66	1.2	2.9
m,p-Xylene	0.28	2.4	1.2	10
o-Xylene	0.28	0.53	1.2	2.3
Styrene	0.28	0.20 J	1.2	0.84 J
Bromoform	0.28	Not Detected	2.9	Not Detected
1,1,2,2-Tetrachloroethane	0.28	Not Detected	1.9	Not Detected
1,3-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected

Client Sample ID: BPSI-SG2007-20 Lab ID#: 0810584A-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110412	Date of Collection: 10/23/08
Dil. Factor:	2.82	Date of Analysis: 11/4/08 07:07 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2,4-Trichlorobenzene	1.4	0.050 J	10	0.37 J

J = Estimated value.

E = Exceeds instrument calibration range.

-	·	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BPSI-SG2007-20

Lab ID#: 0810584A-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110412sim Date of Collection: 10/23/08 2.82 Date of Analysis: 11/4/08 07:0			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.056	16	0.30	87

,	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPSI-DUP-01 Lab ID#: 0810584A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110327
 Date of Collection: 10/23/08

 Dil. Factor:
 2.78
 Date of Analysis: 11/4/08 08:37 AM

Dil. Factor:	2.78 Date of Analysis: 11/4/08 (11/4/08 08:37 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.28	0.49	1.4	2.4
Chloromethane	0.28	0.16 J	0.57	0.33 J
Vinyl Chloride	0.28	Not Detected	0.71	Not Detected
Bromomethane	0.28	Not Detected	1.1	Not Detected
Chloroethane	0.28	Not Detected	0.73	Not Detected
Freon 11	0.28	0.42	1.6	2.4
Freon 113	0.28	2.0	2.1	16
1,1-Dichloroethene	0.28	0.13 J	1.1	0.50 J
Acetone	1.4	250 E	3.3	590 E
Carbon Disulfide	1.4	0.72 J	4.3	2.2 J
Methylene Chloride	0.56	Not Detected U J	1.9	Not Detected U J
Methyl tert-butyl ether	0.28	Not Detected	1.0	Not Detected
trans-1,2-Dichloroethene	0.28	Not Detected	1.1	Not Detected
1,1-Dichloroethane	0.28	Not Detected	1.1	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.28	13	0.82	39
cis-1,2-Dichloroethene	0.28	Not Detected	1.1	Not Detected
Chloroform	0.28	0.18 J	1.4	0.91 J
1,1,1-Trichloroethane	0.28	44	1.5	240
Carbon Tetrachloride	0.28	Not Detected	1.7	Not Detected
Benzene	0.28	1.9	0.89	6.0
1,2-Dichloroethane	0.28	Not Detected	1.1	Not Detected
1,2-Dichloropropane	0.28	Not Detected	1.3	Not Detected
Bromodichloromethane	0.28	Not Detected	1.9	Not Detected
cis-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
4-Methyl-2-pentanone	0.28	0.13 J	1.1	0.54 J
Toluene	0.28	5.4	1.0	20
trans-1,3-Dichloropropene	0.28	Not Detected	1.3	Not Detected
1,1,2-Trichloroethane	0.28	Not Detected	1.5	Not Detected
Tetrachloroethene	0.28	3.8	1.9	26
Dibromochloromethane	0.28	Not Detected	2.4	Not Detected
1,2-Dibromoethane (EDB)	0.28	Not Detected	2.1	Not Detected
Chlorobenzene	0.28	Not Detected	1.3	Not Detected
Ethyl Benzene	0.28	0.66	1.2	2.9
m,p-Xylene	0.28	2.6	1.2	11
o-Xylene	0.28	0.59	1.2	2.6
Styrene	0.28	0.23 J	1.2	0.97 J
Bromoform	0.28	Not Detected	2.9	Not Detected
1,1,2,2-Tetrachloroethane	0.28	Not Detected	1.9	Not Detected
1,3-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected

Client Sample ID: BPSI-DUP-01 Lab ID#: 0810584A-10A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110327	Date of Collection: 10/23/08
Dil. Factor:	2.78	Date of Analysis: 11/4/08 08:37 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2-Dichlorobenzene	0.28	Not Detected	1.7	Not Detected
1,2,4-Trichlorobenzene	1.4	Not Detected	10	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: BPSI-DUP-01 Lab ID#: 0810584A-10B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110327sim		Date of Collection:	10/23/08
Dil. Factor:	2.78	Date of Analysis: 11/4/08 0		/4/08 08:37 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.056	16	0.30	85

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPS1-SG2007-49 Lab ID#: 0810643-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110414
 Date of Collection: 10/24/08

 Dil. Factor:
 14.1
 Date of Analysis: 11/4/08 08:52 PM

Dil. Factor:	14.1 Date of Analysis: 11/4/08 08:52			1/4/08 08:52 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	1.4	Not Detected	7.0	Not Detected
Chloromethane	1.4	Not Detected	2.9	Not Detected
Vinyl Chloride	1.4	Not Detected	3.6	Not Detected
Bromomethane	1.4	Not Detected	5.5	Not Detected
Chloroethane	1.4	Not Detected	3.7	Not Detected
Freon 11	1.4	0.46 J	7.9	2.6 J
Freon 113	1.4	5.3	11	41
1,1-Dichloroethene	1.4	3.4	5.6	13
Acetone	7.0	1400 J E	17	3400 J E
Carbon Disulfide	7.0	1.6 J	22	4.9 J
Methylene Chloride	2.8	Not Detected	9.8	Not Detected
Methyl tert-butyl ether	1.4	Not Detected	5.1	Not Detected
trans-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
1,1-Dichloroethane	1.4	0.75 J	5.7	3.0 J
2-Butanone (Methyl Ethyl Ketone)	1.4	67	4.2	200
cis-1,2-Dichloroethene	1.4	Not Detected	5.6	Not Detected
Chloroform	1.4	0.83 J	6.9	4.1 J
1,1,1-Trichloroethane	1.4	160	7.7	870
Carbon Tetrachloride	1.4	Not Detected	8.9	Not Detected
Benzene	1.4	3.5	4.5	11
1,2-Dichloroethane	1.4	Not Detected	5.7	Not Detected
1,2-Dichloropropane	1.4	Not Detected	6.5	Not Detected
Bromodichloromethane	1.4	Not Detected	9.4	Not Detected
cis-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
4-Methyl-2-pentanone	1.4	0.48 J	5.8	2.0 J
Toluene	1.4	17	5.3	65
trans-1,3-Dichloropropene	1.4	Not Detected	6.4	Not Detected
1,1,2-Trichloroethane	1.4	Not Detected	7.7	Not Detected
Tetrachloroethene	1.4	0.78 J	9.6	5.3 J
Dibromochloromethane	1.4	Not Detected	12	Not Detected
1,2-Dibromoethane (EDB)	1.4	Not Detected	11	Not Detected
Chlorobenzene	1.4	Not Detected	6.5	Not Detected
Ethyl Benzene	1.4	1.7	6.1	7.3
m,p-Xylene	1.4	6.2	6.1	27
o-Xylene	1.4	1.9	6.1	8.4
Styrene	1.4	5.0	6.0	21
Bromoform	1.4	Not Detected	14	Not Detected
1,1,2,2-Tetrachloroethane	1.4	Not Detected	9.7	Not Detected
1,3-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected

Client Sample ID: BPS1-SG2007-49

Lab ID#: 0810643-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110414 14.1	Date of Collection: 10/24/08 Date of Analysis: 11/4/08 08:52 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2-Dichlorobenzene	1.4	Not Detected	8.5	Not Detected
1,2,4-Trichlorobenzene	7.0	Not Detected	52	Not Detected

J = Estimated value.

J = Estimated value due to bias in the CCV.

E = Exceeds instrument calibration range.

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: BPS1-SG2007-49

Lab ID#: 0810643-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110414sim 14.1			
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.28	74	1.5	400

,	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	120	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPSI-SG2008-08 Lab ID#: 0810584A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110321
 Date of Collection: 10/22/08

 Dil. Factor:
 1.34
 Date of Analysis: 11/4/08 04:33 AM

Dil. Factor:	1.34 Date of Analysis: 11/4/08 04:33			11/4/08 04:33 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.13	0.24	0.66	1.2
Chloromethane	0.13	0.070 J	0.28	0.14 J
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected
Bromomethane	0.13	0.11 J	0.52	0.43 J
Chloroethane	0.13	Not Detected	0.35	Not Detected
Freon 11	0.13	0.70	0.75	3.9
Freon 113	0.13	0.12 J	1.0	0.94 J
1,1-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Acetone	0.67	190 E	1.6	460 E
Carbon Disulfide	0.67	0.90	2.1	2.8
Methylene Chloride	0.27	Not Detected U J	0.93	Not Detected U J
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.13	Not Detected	0.54	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.13	15	0.40	44
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Chloroform	0.13	0.25	0.65	1.2
1,1,1-Trichloroethane	0.13	9.6	0.73	52
Carbon Tetrachloride	0.13	0.064 J	0.84	0.40 J
Benzene	0.13	1.7	0.43	5.4
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
4-Methyl-2-pentanone	0.13	0.40	0.55	1.6
Toluene	0.13	7.2	0.50	27
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected
Tetrachloroethene	0.13	1.7	0.91	12
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected
Chlorobenzene	0.13	Not Detected	0.62	Not Detected
Ethyl Benzene	0.13	0.81	0.58	3.5
m,p-Xylene	0.13	2.8	0.58	12
o-Xylene	0.13	0.62	0.58	2.7
Styrene	0.13	0.21	0.57	0.91
Bromoform	0.13	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected

Client Sample ID: BPSI-SG2008-08

Lab ID#: 0810584A-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110321	Date of Collection: 10/22/08
Dil. Factor:	1.34	Date of Analysis: 11/4/08 04:33 AM

•	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected	5.0	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

,	•	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	97	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: BPSI-SG2008-08

Lab ID#: 0810584A-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110321sim	1sim Date of Collection: 10/22/08 1.34 Date of Analysis: 11/4/08 04:33 A		10/22/08
Dil. Factor:	1.34			/4/08 04:33 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.027	0.87	0.14	4.7

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	94	70-130	

Client Sample ID: BPSI-SG2008-20 Lab ID#: 0810584A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110322
 Date of Collection: 10/22/08

 Dil. Factor:
 1.71
 Date of Analysis: 11/4/08 05:12 AM

Dil. Factor:	1.71 Date of Analysis: 11/4/08 05:12			11/4/08 05:12 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.17	0.42	0.84	2.1
Chloromethane	0.17	0.12 J	0.35	0.24 J
Vinyl Chloride	0.17	Not Detected	0.44	Not Detected
Bromomethane	0.17	0.40	0.66	1.6
Chloroethane	0.17	Not Detected	0.45	Not Detected
Freon 11	0.17	0.73	0.96	4.1
Freon 113	0.17	0.18	1.3	1.4
1,1-Dichloroethene	0.17	Not Detected	0.68	Not Detected
Acetone	0.86	520 E	2.0	1200 E
Carbon Disulfide	0.86	1.2	2.7	3.7
Methylene Chloride	0.34	Not Detected U J	1.2	Not Detected U J
Methyl tert-butyl ether	0.17	Not Detected	0.62	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected
1,1-Dichloroethane	0.17	Not Detected	0.69	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.17	55	0.50	160
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected
Chloroform	0.17	0.70	0.83	3.4
1,1,1-Trichloroethane	0.17	15	0.93	80
Carbon Tetrachloride	0.17	0.083 J	1.1	0.52 J
Benzene	0.17	4.2	0.55	13
1,2-Dichloroethane	0.17	Not Detected	0.69	Not Detected
1,2-Dichloropropane	0.17	Not Detected	0.79	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.78	Not Detected
4-Methyl-2-pentanone	0.17	0.39	0.70	1.6
Toluene	0.17	13	0.64	49
trans-1,3-Dichloropropene	0.17	Not Detected	0.78	Not Detected
1,1,2-Trichloroethane	0.17	Not Detected	0.93	Not Detected
Tetrachloroethene	0.17	0.30	1.2	2.1
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected
Chlorobenzene	0.17	Not Detected	0.79	Not Detected
Ethyl Benzene	0.17	0.65	0.74	2.8
m,p-Xylene	0.17	1.6	0.74	7.2
o-Xylene	0.17	0.38	0.74	1.7
Styrene	0.17	0.12 J	0.73	0.53 J
Bromoform	0.17	Not Detected	1.8	Not Detected
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.2	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected

Client Sample ID: BPSI-SG2008-20 Lab ID#: 0810584A-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110322	Date of Collection: 10/22/08
Dil. Factor:	1.71	Date of Analysis: 11/4/08 05:12 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.86	Not Detected	6.3	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: BPSI-SG2008-20

Lab ID#: 0810584A-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110322sim		Date of Collection:	
DII. Factor.	1.71 Rpt. Limit	Amount	Date of Analysis: 11 Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.034	1.3	0.18	6.8

		wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPSI-SG2008-49 Lab ID#: 0810584AR3-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110324R1
 Date of Collection: 10/23/08

 Dil. Factor:
 1.34
 Date of Analysis: 11/4/08 06:21 AM

Dil. Factor:	1.34 Date of Analysis: 11/4/08 06:21 AM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.13	0.45	0.66	2.2
Chloromethane	0.13	0.22	0.28	0.46
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected
Bromomethane	0.13	0.32	0.52	1.2
Chloroethane	0.13	Not Detected	0.35	Not Detected
Freon 11	0.13	0.59	0.75	3.3
Freon 113	0.13	0.17	1.0	1.3
1,1-Dichloroethene	0.13	0.26	0.53	1.0
Acetone	0.67	360 E	1.6	860 E
Carbon Disulfide	0.67	0.40 J	2.1	1.2 J
Methylene Chloride	0.27	Not Detected U J	0.93	Not Detected U J
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.13	Not Detected	0.54	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.13	35	0.40	100
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Chloroform	0.13	1.9	0.65	9.1
1,1,1-Trichloroethane	0.13	24	0.73	130
Carbon Tetrachloride	0.13	0.13	0.84	0.85
Benzene	0.13	2.9	0.43	9.3
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
4-Methyl-2-pentanone	0.13	0.99	0.55	4.1
Toluene	0.13	15	0.50	57
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected
Tetrachloroethene	0.13	1.1	0.91	7.4
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected
Chlorobenzene	0.13	0.038 J	0.62	0.17 J
Ethyl Benzene	0.13	1.0	0.58	4.4
m,p-Xylene	0.13	3.0	0.58	13
o-Xylene	0.13	0.65	0.58	2.8
Styrene	0.13	0.22	0.57	0.95
Bromoform	0.13	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected

Client Sample ID: BPSI-SG2008-49

Lab ID#: 0810584AR3-07A

MODIFIED EPA METHOD	TO-15 GC/MS SIM/FULL SCAN

File Name: g110324R1 Date of Collection: 10/23/08
Dil. Factor: 1.34 Date of Analysis: 11/4/08 06:21 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected	5.0	Not Detected

E = Exceeds instrument calibration range.

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
2-Butene, (E)-	624-64-6	80%	53 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	50%	38 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	90%	120 N J
6-Oxabicyclo[3.1.0]hexane	285-67-6	50%	51 N J
2-Pentene, 5-butoxy-, (E)-	54004-23-8	64%	65 N J
Heptane, 3-methylene-	1632-16-2	78%	42 N J
1-Octene, 3-ethyl-	74630-08-3	91%	120 N J
Unknown	NA	NA	45 J
Decane, 2,3,5-trimethyl-	62238-11-3	59%	36 N J
Tetradecane	629-59-4	64%	41 N J

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BPSI-SG2008-49 Lab ID#: 0810584AR3-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

0.027

File Name:	g110324sim		Date of Collection: 1	10/23/08
Dil. Factor:	1.34	Date of Analysis: 11/4/08 06:21 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

4.9

0.14

26

Container Type: 6 Liter Summa Canister (100% Certified)

Trichloroethene

,	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	119	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPSI-SG2009-08 Lab ID#: 0810584A-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110318
 Date of Collection: 10/21/08

 Dil. Factor:
 1.41
 Date of Analysis: 11/4/08 12:51 AM

Dil. Factor:	1.41 Date of Analysis: 11/4/08 12			11/4/08 12:51 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.75	0.70	3.7
Chloromethane	0.14	0.14	0.29	0.29
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	0.13 J	0.55	0.51 J
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	2.9	0.79	16
Freon 113	0.14	0.084 J	1.1	0.65 J
1,1-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Acetone	0.70	99 E	1.7	230 E
Carbon Disulfide	0.70	0.68 J	2.2	2.1 J
Methylene Chloride	0.28	Not Detected U J	0.98	Not Detected U J
Methyl tert-butyl ether	0.14	Not Detected	0.51	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	6.6	0.42	20
cis-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Chloroform	0.14	0.19	0.69	0.92
1,1,1-Trichloroethane	0.14	0.20	0.77	1.1
Carbon Tetrachloride	0.14	Not Detected	0.89	Not Detected
Benzene	0.14	0.92	0.45	2.9
1,2-Dichloroethane	0.14	Not Detected	0.57	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.65	Not Detected
Bromodichloromethane	0.14	Not Detected	0.94	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
4-Methyl-2-pentanone	0.14	0.25	0.58	1.0
Toluene	0.14	6.2	0.53	24
trans-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.77	Not Detected
Tetrachloroethene	0.14	0.71	0.96	4.8
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.65	Not Detected
Ethyl Benzene	0.14	0.74	0.61	3.2
m,p-Xylene	0.14	2.6	0.61	11
o-Xylene	0.14	0.68	0.61	3.0
Styrene	0.14	0.15	0.60	0.66
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.97	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected

Client Sample ID: BPSI-SG2009-08

Lab ID#: 0810584A-02A MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110318	Date of Collection: 10/21/08
Dil. Factor:	1.41	Date of Analysis: 11/4/08 12:51 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: BPSI-SG2009-08

Lab ID#: 0810584A-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110318sim 1.41	Date of Collection: 10/21/08 Date of Analysis: 11/4/08 12:51 AM			
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Trichloroethene	0.028	0.038	0.15	0.20	

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	104	70-130
4-Bromofluorobenzene	95	70-130

Client Sample ID: BPSI-SG2009-25 Lab ID#: 0810584A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110319
 Date of Collection: 10/21/08

 Dil. Factor:
 1.34
 Date of Analysis: 11/4/08 02:05 AM

Dil. Factor:	1.34		Date of Analysis: 11/4/08 02:05 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	0.13	1.1	0.66	5.6	
Chloromethane	0.13	0.15	0.28	0.32	
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected	
Bromomethane	0.13	0.18	0.52	0.68	
Chloroethane	0.13	Not Detected	0.35	Not Detected	
Freon 11	0.13	2.2	0.75	12	
Freon 113	0.13	0.074 J	1.0	0.57 J	
1,1-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
Acetone	0.67	170 E	1.6	400 E	
Carbon Disulfide	0.67	0.70	2.1	2.2	
Methylene Chloride	0.27	Not Detected U J	0.93	Not Detected U J	
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected	
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
1,1-Dichloroethane	0.13	Not Detected	0.54	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.13	8.4	0.40	25	
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
Chloroform	0.13	1.2	0.65	5.8	
1,1,1-Trichloroethane	0.13	0.30	0.73	1.6	
Carbon Tetrachloride	0.13	Not Detected	0.84	Not Detected	
Benzene	0.13	1.1	0.43	3.4	
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected	
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected	
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected	
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected	
4-Methyl-2-pentanone	0.13	0.20	0.55	0.82	
Toluene	0.13	10	0.50	38	
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected	
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected	
Tetrachloroethene	0.13	0.47	0.91	3.2	
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected	
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected	
Chlorobenzene	0.13	Not Detected	0.62	Not Detected	
Ethyl Benzene	0.13	0.98	0.58	4.2	
m,p-Xylene	0.13	3.6	0.58	16	
o-Xylene	0.13	0.88	0.58	3.8	
Styrene	0.13	0.23	0.57	0.96	
Bromoform	0.13	Not Detected	1.4	Not Detected	
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected	
1,3-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected	

Client Sample ID: BPSI-SG2009-25 Lab ID#: 0810584A-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110319	Date of Collection: 10/21/08
Dil. Factor:	1.34	Date of Analysis: 11/4/08 02:05 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected	5.0	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: BPSI-SG2009-25

Lab ID#: 0810584A-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110319sim 1.34	Date of Collection: 10/21/08 Date of Analysis: 11/4/08 02:05 AM		
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.027	0.043	0.14	0.23

	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	95	70-130	

Client Sample ID: BPSI-SG2009-48 Lab ID#: 0810584A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110317
 Date of Collection: 10/21/08

 Dil. Factor:
 1.39
 Date of Analysis: 11/4/08 12:12 AM

Dil. Factor:	1.39		Date of Analysis:	11/4/08 12:12 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	1.2	0.69	5.8
Chloromethane	0.14	0.40	0.29	0.83
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	0.29	0.54	1.1
Chloroethane	0.14	0.15	0.37	0.39
Freon 11	0.14	1.3	0.78	7.3
Freon 113	0.14	0.060 J	1.1	0.46 J
1,1-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Acetone	0.70	96 E	1.6	230 E
Carbon Disulfide	0.70	0.29 J	2.2	0.90 J
Methylene Chloride	0.28	Not Detected U J	0.96	Not Detected U J
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	8.9	0.41	26
cis-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Chloroform	0.14	1.2	0.68	6.1
1,1,1-Trichloroethane	0.14	0.21	0.76	1.1
Carbon Tetrachloride	0.14	Not Detected	0.87	Not Detected
Benzene	0.14	6.0	0.44	19
1,2-Dichloroethane	0.14	Not Detected	0.56	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.64	Not Detected
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	Not Detected	0.57	Not Detected
Toluene	0.14	19	0.52	71
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	0.29	0.94	2.0
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	1.3	0.60	5.6
m,p-Xylene	0.14	3.9	0.60	17
o-Xylene	0.14	0.94	0.60	4.1
Styrene	0.14	0.21	0.59	0.91
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected

Client Sample ID: BPSI-SG2009-48

Lab ID#: 0810584A-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Dil. Factor:	1.39	Date of Analysis: 11/4/08 12:12 AM
File Name:	g110317	Date of Collection: 10/21/08

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	0.038 J	0.84	0.23 J
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected	5.2	Not Detected

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	89	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: BPSI-SG2009-48

Lab ID#: 0810584A-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110317sim		Date of Collection:	
Dil. Factor:	1.39	Date of Analysis: 11/4/08 12:12		/4/08 12:12 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	0.067	0.15	0.36

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	121	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: BPS1-SG2010-08

Lab ID#: 0901113-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

Ella Nama	.044400	D. () (O. II.) () () () () ()
File Name:	s011420	Date of Collection: 1/6/09
Dil. Factor:	1.41	Date of Analysis: 1/15/09 09:32 AM

Dil. Factor:	1.41		Date of Analysis: 1/15/09 09:32 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.36	0.70	1.8
Chloromethane	0.14	0.13 J	0.29	0.26 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	0.055 J	0.55	0.21 J
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	2.6	0.79	14
Freon 113	0.14	0.090 J	1.1	0.69 J
1,1-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Acetone	0.70	19	1.7	44
Carbon Disulfide	0.70	0.31 J	2.2	0.96 J
Methylene Chloride	0.28	0.16 J	0.98	0.58 J
Methyl tert-butyl ether	0.14	Not Detected	0.51	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	8.6	0.42	25
cis-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Chloroform	0.14	3.4	0.69	16
1,1,1-Trichloroethane	0.14	0.25	0.77	1.4
Carbon Tetrachloride	0.14	Not Detected	0.89	Not Detected
Benzene	0.14	1.1	0.45	3.5
1,2-Dichloroethane	0.14	1.7	0.57	6.9
1,2-Dichloropropane	0.14	1.8	0.65	8.3
Bromodichloromethane	0.14	Not Detected	0.94	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
4-Methyl-2-pentanone	0.14	Not Detected	0.58	Not Detected
Toluene	0.14	45	0.53	170
trans-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.77	Not Detected
Tetrachloroethene	0.14	0.55	0.96	3.7
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.65	Not Detected
Ethyl Benzene	0.14	1.1	0.61	4.8
m,p-Xylene	0.14	3.1	0.61	13
o-Xylene	0.14	1.4	0.61	6.1
Styrene	0.14	2.2	0.60	9.6
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.97	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected

Client Sample ID: BPS1-SG2010-08

Lab ID#: 0901113-06A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011420	Date of Collection: 1/6/09
Dil. Factor:	1.41	Date of Analysis: 1/15/09 09:32 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected U J	5.2	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	((ppbv))
1-Propene	115-07-1	72%	26 N J
Propane, 2-methyl-	75-28-5	72%	14 N J
1-Propene, 2-methyl-	115-11-7	80%	27 N J
Acetaldehyde	75-07-0	9.0%	22 N J
3-Buten-1-ol	627-27-0	38%	27 N J
Pentane	109-66-0	86%	48 N J
2-Pentene, 4,4-dimethyl-	26232-98-4	53%	20 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	90%	15 N J
Heptane, 2,4-dimethyl-	2213-23-2	90%	24 N J
Undecane, 4,7-dimethyl-	17301-32-5	86%	16 N J

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: BPS1-SG2010-08

Lab ID#: 0901113-06B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011420sim		Date of Collection: 1	/6/09
Dil. Factor:	1.41	Date of Analysis: 1/15/09 09:32 AN		15/09 09:32 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	0.52	0.15	2.8

,	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-SG2010-24 Lab ID#: 0901113-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 s011418
 Date of Collection: 1/6/09

 Dil. Factor:
 1.34
 Date of Analysis: 1/15/09 07:49 AM

Dil. Factor:	1.34		Date of Analysis: 1/15/09 07:49 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	0.13	0.29	0.66	1.4	
Chloromethane	0.13	0.13	0.28	0.27	
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected	
Bromomethane	0.13	0.051 J	0.52	0.20 J	
Chloroethane	0.13	Not Detected	0.35	Not Detected	
Freon 11	0.13	5.0	0.75	28	
Freon 113	0.13	0.10 J	1.0	0.81 J	
1,1-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
Acetone	0.67	23	1.6	55	
Carbon Disulfide	0.67	0.67	2.1	2.1	
Methylene Chloride	0.27	Not Detected	0.93	Not Detected	
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected	
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
1,1-Dichloroethane	0.13	Not Detected	0.54	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.13	22	0.40	66	
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected	
Chloroform	0.13	0.46	0.65	2.2	
1,1,1-Trichloroethane	0.13	0.40	0.73	2.2	
Carbon Tetrachloride	0.13	0.052 J	0.84	0.32 J	
Benzene	0.13	1.1	0.43	3.7	
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected	
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected	
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected	
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected	
4-Methyl-2-pentanone	0.13	Not Detected	0.55	Not Detected	
Toluene	0.13	46	0.50	170	
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected	
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected	
Tetrachloroethene	0.13	0.72	0.91	4.9	
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected	
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected	
Chlorobenzene	0.13	Not Detected	0.62	Not Detected	
Ethyl Benzene	0.13	1.3	0.58	5.8	
m,p-Xylene	0.13	3.2	0.58	14	
o-Xylene	0.13	1.2	0.58	5.2	
Styrene	0.13	2.0	0.57	8.4	
Bromoform	0.13	Not Detected	1.4	Not Detected	
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected	
1,3-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected	

Client Sample ID: BPS1-SG2010-24

Lab ID#: 0901113-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011418	Date of Collection: 1/6/09
Dil. Factor:	1.34	Date of Analysis: 1/15/09 07:49 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	0.063 J	0.80	0.38 J
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected U J	5.0	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	((ppbv))
1-Propene	115-07-1	80%	75 N J
1-Propene, 2-methyl-	115-11-7	80%	92 N J
Acetaldehyde	75-07-0	9.0%	57 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	52%	34 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	91%	87 N J
Heptane, 2,4-dimethyl-	2213-23-2	90%	38 N J
4-Nonene, 3-methyl-, (Z)-	63830-69-3	50%	30 N J
Undecane, 6-methyl-	17302-33-9	83%	29 N J
1-Octene, 3-ethyl-	74630-08-3	91%	38 N J
Undecane, 4,7-dimethyl-	17301-32-5	86%	29 N J

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: BPS1-SG2010-24

Lab ID#: 0901113-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	s011418sim 1.34	······································			
Compound	Rpt. Limit			Amount (uG/m3)	
Trichloroethene	0.027	3.6	0.14	19	

,	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: BPS1-SG2010-49 Lab ID#: 0901113-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: \$011417 Date of Collection: 1/6/09
Dil. Factor: 1.39 Date of Analysis: 1/15/09 06:16 AM

Dil. Factor:	1.39 Date of Analysis: 1/15/09 06:			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.40	0.69	2.0
Chloromethane	0.14	0.50	0.29	1.0
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.54	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	2.0	0.78	11
Freon 113	0.14	0.086 J	1.1	0.66 J
1,1-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Acetone	0.70	56	1.6	130
Carbon Disulfide	0.70	0.31 J	2.2	0.95 J
Methylene Chloride	0.28	Not Detected	0.96	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.50	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.56	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	38	0.41	110
cis-1,2-Dichloroethene	0.14	Not Detected	0.55	Not Detected
Chloroform	0.14	0.18	0.68	0.87
1,1,1-Trichloroethane	0.14	0.18	0.76	0.98
Carbon Tetrachloride	0.14	0.090 J	0.87	0.56 J
Benzene	0.14	2.4	0.44	7.8
1,2-Dichloroethane	0.14	Not Detected	0.56	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.64	Not Detected
Bromodichloromethane	0.14	Not Detected	0.93	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
4-Methyl-2-pentanone	0.14	Not Detected	0.57	Not Detected
Toluene	0.14	13	0.52	48
trans-1,3-Dichloropropene	0.14	Not Detected	0.63	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.76	Not Detected
Tetrachloroethene	0.14	0.34	0.94	2.3
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.64	Not Detected
Ethyl Benzene	0.14	0.58	0.60	2.5
m,p-Xylene	0.14	1.6	0.60	7.1
o-Xylene	0.14	0.60	0.60	2.6
Styrene	0.14	0.66	0.59	2.8
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.95	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected

Client Sample ID: BPS1-SG2010-49

Lab ID#: 0901113-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011417	Date of Collection: 1/6/09
Dil. Factor:	1.39	Date of Analysis: 1/15/09 06:16 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2-Dichlorobenzene	0.14	Not Detected	0.84	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected U J	5.2	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene	115-07-1	53%	180 N J
1-Propyne	74-99-7	90%	28 N J
1-Propene, 2-methyl-	115-11-7	80%	170 N J
Acetaldehyde	75-07-0	9.0%	96 N J
1-Pentene	109-67-1	86%	38 N J
Unknown	NA	NA	30 J
3-Penten-1-yne	2206-23-7	87%	31 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	52%	26 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	90%	52 N J
Unknown	NA	NA	61 J

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: BPS1-SG2010-49

Lab ID#: 0901113-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011417sim	Date of Collection: 1/6/09 Date of Analysis: 1/15/09 06:16 AN		
Dil. Factor:	1.39			15/09 06:16 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.028	1.0	0.15	5.5

,	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	106	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: BPS1-DUP-04 Lab ID#: 0901113-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s011421 Date of Collection: 1/6/09
Dil. Factor: 1.32 Date of Analysis: 1/15/09 10:25 AM

Dil. Factor:	1.32		Date of Analysis: 1/15/09 10:25 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.13	0.39	0.65	1.9
Chloromethane	0.13	0.42	0.27	0.86
Vinyl Chloride	0.13	0.042 J	0.34	0.11 J
Bromomethane	0.13	0.11 J	0.51	0.43 J
Chloroethane	0.13	Not Detected	0.35	Not Detected
Freon 11	0.13	5.0	0.74	28
Freon 113	0.13	0.12 J	1.0	0.90 J
1,1-Dichloroethene	0.13	Not Detected	0.52	Not Detected
Acetone	0.66	160 E	1.6	380 E
Carbon Disulfide	0.66	0.88	2.0	2.8
Methylene Chloride	0.26	Not Detected	0.92	Not Detected
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.52	Not Detected
1,1-Dichloroethane	0.13	Not Detected	0.53	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.13	110 E	0.39	320 E
cis-1,2-Dichloroethene	0.13	Not Detected	0.52	Not Detected
Chloroform	0.13	0.51	0.64	2.5
1,1,1-Trichloroethane	0.13	0.48	0.72	2.6
Carbon Tetrachloride	0.13	0.064 J	0.83	0.40 J
Benzene	0.13	6.1	0.42	19
1,2-Dichloroethane	0.13	0.27	0.53	1.1
1,2-Dichloropropane	0.13	Not Detected	0.61	Not Detected
Bromodichloromethane	0.13	Not Detected	0.88	Not Detected
cis-1,3-Dichloropropene	0.13	Not Detected	0.60	Not Detected
4-Methyl-2-pentanone	0.13	Not Detected	0.54	Not Detected
Toluene	0.13	37	0.50	140
trans-1,3-Dichloropropene	0.13	Not Detected	0.60	Not Detected
1,1,2-Trichloroethane	0.13	Not Detected	0.72	Not Detected
Tetrachloroethene	0.13	0.79	0.90	5.4
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected
Chlorobenzene	0.13	Not Detected	0.61	Not Detected
Ethyl Benzene	0.13	1.7	0.57	7.2
m,p-Xylene	0.13	4.6	0.57	20
o-Xylene	0.13	1.5	0.57	6.5
Styrene	0.13	2.0	0.56	8.7
Bromoform	0.13	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.91	Not Detected
1,3-Dichlorobenzene	0.13	Not Detected	0.79	Not Detected

Client Sample ID: BPS1-DUP-04 Lab ID#: 0901113-07A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011421	Date of Collection: 1/6/09
Dil. Factor:	1.32	Date of Analysis: 1/15/09 10:25 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	Not Detected	0.79	Not Detected
1,2-Dichlorobenzene	0.13	Not Detected	0.79	Not Detected
1,2,4-Trichlorobenzene	0.66	Not Detected U J	4.9	Not Detected U J

J = Estimated value.

E = Exceeds instrument calibration range.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	Amount ((ppbv))
1-Propene	115-07-1	53%	480 N J
2-Butene, (Z)-	590-18-1	80%	490 N J
Acetaldehyde	75-07-0	9.0%	280 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	52%	210 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	91%	420 N J
2-Butenal, 3-methyl-	107-86-8	43%	470 N J
4-Nonene, 3-methyl-, (Z)-	63830-69-3	47%	150 N J
3-Heptene, 4-ethyl-	33933-74-3	53%	160 N J
Heptane, 1,1'-oxybis-	629-64-1	42%	170 N J
1-Octene, 3-ethyl-	74630-08-3	91%	200 N J

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	90	70-130

Client Sample ID: BPS1-DUP-04 Lab ID#: 0901113-07B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011421sim		Date of Collection:	1/6/09
Dil. Factor:	1.32 Date of Analysis: 1/15/09 10:2		15/09 10:25 AM	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.026	2.8	0.14	15

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	91	70-130	

Client Sample ID: BPS1-SG2011-08 Lab ID#: 0901113-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 s011416
 Date of Collection: 1/6/09

 Dil. Factor:
 1.41
 Date of Analysis: 1/15/09 05:43 AM

Dil. Factor:	1.41 Date of Analysis: 1/15			/15/09 05:43 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.14	0.32	0.70	1.6
Chloromethane	0.14	0.13 J	0.29	0.26 J
Vinyl Chloride	0.14	Not Detected	0.36	Not Detected
Bromomethane	0.14	Not Detected	0.55	Not Detected
Chloroethane	0.14	Not Detected	0.37	Not Detected
Freon 11	0.14	0.91	0.79	5.1
Freon 113	0.14	0.051 J	1.1	0.39 J
1,1-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Acetone	0.70	14	1.7	34
Carbon Disulfide	0.70	0.74	2.2	2.3
Methylene Chloride	0.28	Not Detected	0.98	Not Detected
Methyl tert-butyl ether	0.14	Not Detected	0.51	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.57	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	17	0.42	50
cis-1,2-Dichloroethene	0.14	Not Detected	0.56	Not Detected
Chloroform	0.14	0.059 J	0.69	0.29 J
1,1,1-Trichloroethane	0.14	0.28	0.77	1.5
Carbon Tetrachloride	0.14	Not Detected	0.89	Not Detected
Benzene	0.14	0.89	0.45	2.8
1,2-Dichloroethane	0.14	Not Detected	0.57	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.65	Not Detected
Bromodichloromethane	0.14	Not Detected	0.94	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
4-Methyl-2-pentanone	0.14	1.4	0.58	5.9
Toluene	0.14	28	0.53	100
trans-1,3-Dichloropropene	0.14	Not Detected	0.64	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.77	Not Detected
Tetrachloroethene	0.14	0.24	0.96	1.6
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.65	Not Detected
Ethyl Benzene	0.14	0.93	0.61	4.0
m,p-Xylene	0.14	2.5	0.61	11
o-Xylene	0.14	1.1	0.61	4.9
Styrene	0.14	1.9	0.60	8.2
Bromoform	0.14	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.97	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected

Client Sample ID: BPS1-SG2011-08

Lab ID#: 0901113-03A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011416	Date of Collection: 1/6/09
Dil. Factor:	1.41	Date of Analysis: 1/15/09 05:43 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2-Dichlorobenzene	0.14	Not Detected	0.85	Not Detected
1,2,4-Trichlorobenzene	0.70	Not Detected U J	5.2	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	((ppbv))
1-Propene	115-07-1	49%	32 N J
2-Butene, (Z)-	590-18-1	80%	39 N J
Acetaldehyde	75-07-0	9.0%	23 N J
1-Pentene	109-67-1	91%	12 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	59%	20 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	90%	18 N J
Octane	111-65-9	78%	28 N J
Acetic acid, 2-ethylhexyl ester	103-09-3	64%	14 N J
Octane, 4-methyl-	2216-34-4	72%	16 N J
Undecane, 5-methyl-	1632-70-8	81%	17 N J

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	

Client Sample ID: BPS1-SG2011-08

Lab ID#: 0901113-03B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	s011416sim 1.41		Date of Collection: 1 Date of Analysis: 1/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Trichloroethene	0.028	0.17	0.15	0.90

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: BPS1-SG2011-24 Lab ID#: 0901113-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 s011415
 Date of Collection: 1/6/09

 Dil. Factor:
 1.34
 Date of Analysis: 1/15/09 05:11 AM

Dil. Factor: 1.34 Date of Analysis: 1/15/09 05			/15/09 05:11 AM	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.13	0.45	0.66	2.2
Chloromethane	0.13	0.50	0.28	1.0
Vinyl Chloride	0.13	Not Detected	0.34	Not Detected
Bromomethane	0.13	Not Detected	0.52	Not Detected
Chloroethane	0.13	Not Detected	0.35	Not Detected
Freon 11	0.13	0.63	0.75	3.6
Freon 113	0.13	0.10 J	1.0	0.81 J
1,1-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Acetone	0.67	23	1.6	56
Carbon Disulfide	0.67	0.36 J	2.1	1.1 J
Methylene Chloride	0.27	0.16 J	0.93	0.56 J
Methyl tert-butyl ether	0.13	Not Detected	0.48	Not Detected
trans-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
1,1-Dichloroethane	0.13	Not Detected	0.54	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.13	24	0.40	72
cis-1,2-Dichloroethene	0.13	Not Detected	0.53	Not Detected
Chloroform	0.13	0.094 J	0.65	0.46 J
1,1,1-Trichloroethane	0.13	0.091 J	0.73	0.50 J
Carbon Tetrachloride	0.13	0.071 J	0.84	0.45 J
Benzene	0.13	1.0	0.43	3.3
1,2-Dichloroethane	0.13	Not Detected	0.54	Not Detected
1,2-Dichloropropane	0.13	Not Detected	0.62	Not Detected
Bromodichloromethane	0.13	Not Detected	0.90	Not Detected
cis-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
4-Methyl-2-pentanone	0.13	0.81	0.55	3.3
Toluene	0.13	26	0.50	97
trans-1,3-Dichloropropene	0.13	Not Detected	0.61	Not Detected
1,1,2-Trichloroethane	0.13	Not Detected	0.73	Not Detected
Tetrachloroethene	0.13	0.084 J	0.91	0.57 J
Dibromochloromethane	0.13	Not Detected	1.1	Not Detected
1,2-Dibromoethane (EDB)	0.13	Not Detected	1.0	Not Detected
Chlorobenzene	0.13	Not Detected	0.62	Not Detected
Ethyl Benzene	0.13	0.59	0.58	2.6
m,p-Xylene	0.13	1.3	0.58	5.8
o-Xylene	0.13	0.50	0.58	2.2
Styrene	0.13	0.64	0.57	2.7
Bromoform	0.13	Not Detected	1.4	Not Detected
1,1,2,2-Tetrachloroethane	0.13	Not Detected	0.92	Not Detected
1,3-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected

Client Sample ID: BPS1-SG2011-24 Lab ID#: 0901113-02A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011415	Date of Collection: 1/6/09

 Dil. Factor:
 1.34
 Date of Analysis: 1/15/09 05:11 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2-Dichlorobenzene	0.13	Not Detected	0.80	Not Detected
1,2,4-Trichlorobenzene	0.67	Not Detected U J	5.0	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

Compound	CAS Number	Match Quality	((ppbv))
1-Propene	115-07-1	72%	54 N J
1-Propyne	74-99-7	90%	8.4 N J
1-Propene, 2-methyl-	115-11-7	80%	63 N J
Acetaldehyde	75-07-0	9.0%	34 N J
1-Pentene	109-67-1	72%	14 N J
Propanal	123-38-6	45%	8.4 N J
Pentane, 3-methylene-	760-21-4	94%	10 N J
1-Pentene, 3-ethyl-2-methyl-	19780-66-6	64%	18 N J
Cyclopropane, 1,1-dimethyl-	1630-94-0	90%	15 N J
Ether, hexyl pentyl	32357-83-8	83%	14 N J

Container Type: 6 Liter Summa Canister (100% Certified)

		wethod
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	100	70-130

Mathad

Client Sample ID: BPS1-SG2011-24

Lab ID#: 0901113-02B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011415sim		Date of Collection: 1/6/09	
Dil. Factor:	1.34		Date of Analysis: 1/15/09 05:11	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.027	0.026 J	0.14	0.14 J

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	107	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: BPSI-FB2001-00 Lab ID#: 0810584AR3-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110320R1
 Date of Collection: 10/21/08

 Dil. Factor:
 1.58
 Date of Analysis: 11/4/08 03:48 AM

Dil. Factor:	1.58		Date of Analysis: 1	e of Analysis: 11/4/08 03:48 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Freon 12	0.16	0.53	0.78	2.6	
Chloromethane	0.16	0.33	0.33	0.69	
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected	
Bromomethane	0.16	0.16	0.61	0.63	
Chloroethane	0.16	Not Detected	0.42	Not Detected	
Freon 11	0.16	0.25	0.89	1.4	
Freon 113	0.16	0.083 J	1.2	0.64 J	
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
Acetone	0.79	5.2	1.9	12	
Carbon Disulfide	0.79	Not Detected	2.5	Not Detected	
Methylene Chloride	0.32	0.19 J	1.1	0.66 J	
Methyl tert-butyl ether	0.16	Not Detected	0.57	Not Detected	
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
1,1-Dichloroethane	0.16	Not Detected	0.64	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.16	0.67	0.46	2.0	
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
Chloroform	0.16	Not Detected	0.77	Not Detected	
1,1,1-Trichloroethane	0.16	Not Detected	0.86	Not Detected	
Carbon Tetrachloride	0.16	0.10 J	0.99	0.65 J	
Benzene	0.16	0.26	0.50	0.82	
1,2-Dichloroethane	0.16	Not Detected	0.64	Not Detected	
1,2-Dichloropropane	0.16	Not Detected	0.73	Not Detected	
Bromodichloromethane	0.16	Not Detected	1.0	Not Detected	
cis-1,3-Dichloropropene	0.16	Not Detected	0.72	Not Detected	
4-Methyl-2-pentanone	0.16	0.031 J	0.65	0.13 J	
Toluene	0.16	7.2	0.60	27	
trans-1,3-Dichloropropene	0.16	Not Detected	0.72	Not Detected	
1,1,2-Trichloroethane	0.16	Not Detected	0.86	Not Detected	
Tetrachloroethene	0.16	0.11 J	1.1	0.77 J	
Dibromochloromethane	0.16	Not Detected	1.3	Not Detected	
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected	
Chlorobenzene	0.16	Not Detected	0.73	Not Detected	
Ethyl Benzene	0.16	0.080 J	0.69	0.35 J	
m,p-Xylene	0.16	0.17	0.69	0.74	
o-Xylene	0.16	0.058 J	0.69	0.25 J	
Styrene	0.16	0.020 J	0.67	0.085 J	
Bromoform	0.16	Not Detected	1.6	Not Detected	
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected	
1,3-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected	

Client Sample ID: BPSI-FB2001-00 Lab ID#: 0810584AR3-04A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110320R1		Date of Collection:	10/21/08	
Dil. Factor:	1.58		Date of Analysis: 11/4/08 03:48 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount	

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2,4-Trichlorobenzene	0.79	Not Detected	5.9	Not Detected

J = Estimated value.

TENTATIVELY IDENTIFIED COMPOUNDS

			Amount
Compound	CAS Number	Match Quality	((ppbv))
1-Hexyn-3-ol	105-31-7	53%	4.0 N J
Hexanal	66-25-1	72%	3.6 N J

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	118	70-130
Toluene-d8	93	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: BPSI-FB2001-00 Lab ID#: 0810584AR3-04B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	q110320sim		Date of Collection: 1	0/21/08
Dil. Factor:	1.58	Date of Analysis: 11/4/08 03:48 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount

	Rbt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.032	0.012 J	0.17	0.062 J

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	96	70-130	

Client Sample ID: BPSI-FB2002-00 Lab ID#: 0810584BR2-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110325R1
 Date of Collection: 10/23/08

 Dil. Factor:
 1.55
 Date of Analysis: 11/4/08 06:54 AM

Dil. Factor:	1.55		Date of Analysis:	11/4/08 06:54 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.16	0.49	0.77	2.4
Chloromethane	0.16	0.27	0.32	0.56
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected
Bromomethane	0.16	0.19	0.60	0.73
Chloroethane	0.16	Not Detected	0.41	Not Detected
Freon 11	0.16	0.22	0.87	1.2
Freon 113	0.16	0.061 J	1.2	0.47 J
1,1-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Acetone	0.78	2.5	1.8	5.9
Carbon Disulfide	0.78	Not Detected	2.4	Not Detected
Methylene Chloride	0.31	Not Detected U J	1.1	Not Detected U J
Methyl tert-butyl ether	0.16	Not Detected	0.56	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.63	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.16	0.16	0.46	0.47
cis-1,2-Dichloroethene	0.16	Not Detected	0.61	Not Detected
Chloroform	0.16	Not Detected	0.76	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.84	Not Detected
Carbon Tetrachloride	0.16	0.084 J	0.98	0.53 J
Benzene	0.16	0.10 J	0.50	0.33 J
1,2-Dichloroethane	0.16	Not Detected	0.63	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.72	Not Detected
Bromodichloromethane	0.16	Not Detected	1.0	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
4-Methyl-2-pentanone	0.16	Not Detected	0.63	Not Detected
Toluene	0.16	0.17	0.58	0.63
trans-1,3-Dichloropropene	0.16	Not Detected	0.70	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.84	Not Detected
Tetrachloroethene	0.16	Not Detected	1.0	Not Detected
Dibromochloromethane	0.16	Not Detected	1.3	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.71	Not Detected
Ethyl Benzene	0.16	Not Detected	0.67	Not Detected
m,p-Xylene	0.16	0.048 J	0.67	0.21 J
o-Xylene	0.16	Not Detected	0.67	Not Detected
Styrene	0.16	Not Detected	0.66	Not Detected
Bromoform	0.16	Not Detected	1.6	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected

Client Sample ID: BPSI-FB2002-00 Lab ID#: 0810584BR2-11A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110325R1	Date of Collection: 10/23/08
Dil. Factor:	1.55	Date of Analysis: 11/4/08 06:54 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.93	Not Detected
1,2,4-Trichlorobenzene	0.78	Not Detected	5.8	Not Detected

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

			Amount	
Compound	CAS Number	Match Quality	((ppbv))	
Acetaldehyde	75-07-0	56%	1.6 N J	
1-Pentene, 2,4,4-trimethyl-	107-39-1	86%	1.9 N J	
Nonanal	124-19-6	64%	2.0 N J	
Container Type: 6 Liter Summa Canister (100% Certified)				

Method

Surrogates	%Recovery

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	94	70-130
4-Bromofluorobenzene	103	70-130

Client Sample ID: BPSI-FB2002-00

Lab ID#: 0810584BR2-11B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	g110325sim	g110325sim [10/23/08
Dil. Factor:	1.55	1.55 Date of Analy		/4/08 06:54 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.031	0.0035 J	0.17	0.019 J

J = Estimated value.

	,	Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: BPS1-FB2003-00

Lab ID#: 0810643-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110413
 Date of Collection: 10/24/08

 Dil. Factor:
 1.58
 Date of Analysis: 11/4/08 08:11 PM

Dil. Factor:	1.58 Date of Analysis: 11/4/08 08			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.16	0.44	0.78	2.2
Chloromethane	0.16	0.32	0.33	0.66
Vinyl Chloride	0.16	Not Detected	0.40	Not Detected
Bromomethane	0.16	0.43	0.61	1.7
Chloroethane	0.16	Not Detected	0.42	Not Detected
Freon 11	0.16	0.22	0.89	1.2
Freon 113	0.16	0.098 J	1.2	0.75 J
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Acetone	0.79	24 J	1.9	56 J
Carbon Disulfide	0.79	Not Detected	2.5	Not Detected
Methylene Chloride	0.32	0.059 J	1.1	0.20 J
Methyl tert-butyl ether	0.16	Not Detected	0.57	Not Detected
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
1,1-Dichloroethane	0.16	Not Detected	0.64	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.16	0.76	0.46	2.2
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected
Chloroform	0.16	Not Detected	0.77	Not Detected
1,1,1-Trichloroethane	0.16	Not Detected	0.86	Not Detected
Carbon Tetrachloride	0.16	0.077 J	0.99	0.48 J
Benzene	0.16	0.30	0.50	0.94
1,2-Dichloroethane	0.16	Not Detected	0.64	Not Detected
1,2-Dichloropropane	0.16	Not Detected	0.73	Not Detected
Bromodichloromethane	0.16	Not Detected	1.0	Not Detected
cis-1,3-Dichloropropene	0.16	Not Detected	0.72	Not Detected
4-Methyl-2-pentanone	0.16	0.041 J	0.65	0.17 J
Toluene	0.16	0.66	0.60	2.5
trans-1,3-Dichloropropene	0.16	Not Detected	0.72	Not Detected
1,1,2-Trichloroethane	0.16	Not Detected	0.86	Not Detected
Tetrachloroethene	0.16	0.075 J	1.1	0.51 J
Dibromochloromethane	0.16	Not Detected	1.3	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.73	Not Detected
Ethyl Benzene	0.16	0.091 J	0.69	0.39 J
m,p-Xylene	0.16	0.25	0.69	1.1
o-Xylene	0.16	0.095 J	0.69	0.41 J
Styrene	0.16	0.021 J	0.67	0.089 J
Bromoform	0.16	Not Detected	1.6	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
1,3-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected

Client Sample ID: BPS1-FB2003-00

Lab ID#: 0810643-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 g110413
 Date of Collection: 10/24/08

 Dil. Factor:
 1.58
 Date of Analysis: 11/4/08 08:11 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.95	Not Detected
1,2,4-Trichlorobenzene	0.79	Not Detected	5.9	Not Detected

J = Estimated value.

	,	Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	106	70-130	

J = Estimated value due to bias in the CCV.

Client Sample ID: BPS1-FB2003-00

Lab ID#: 0810643-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	g110413sim 1.58		Date of Collection: Date of Analysis: 11	
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)

0.032

0.016 J

0.17

0.083 J

J = Estimated value.

Trichloroethene

		Method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: BPS1-FB2004-00

Lab ID#: 0810701-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111006	Date of Collection: 10/28/08
Dil. Factor:	1.44	Date of Analysis: 11/10/08 02:31 PM

Dil. Factor:	1.44		Date of Analysis: 1	1/10/08 02:31 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Freon 12	0.14	0.53	0.71	2.6
Chloromethane	0.14	0.61	0.30	1.2
Vinyl Chloride	0.14	Not Detected	0.37	Not Detected
Bromomethane	0.14	Not Detected	0.56	Not Detected
Chloroethane	0.14	Not Detected	0.38	Not Detected
Freon 11	0.14	0.28	0.81	1.6
Freon 113	0.14	0.096 J	1.1	0.73 J
1,1-Dichloroethene	0.14	Not Detected	0.57	Not Detected
Acetone	0.72	3.2	1.7	7.6
Carbon Disulfide	0.72	0.60 J	2.2	1.8 J
Methylene Chloride	0.29	0.18 J	1.0	0.63 J
Methyl tert-butyl ether	0.14	Not Detected	0.52	Not Detected
trans-1,2-Dichloroethene	0.14	Not Detected	0.57	Not Detected
1,1-Dichloroethane	0.14	Not Detected	0.58	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.14	0.67	0.42	2.0
cis-1,2-Dichloroethene	0.14	Not Detected	0.57	Not Detected
Chloroform	0.14	Not Detected	0.70	Not Detected
1,1,1-Trichloroethane	0.14	Not Detected	0.78	Not Detected
Carbon Tetrachloride	0.14	0.10 J	0.91	0.63 J
Benzene	0.14	0.30	0.46	0.96
1,2-Dichloroethane	0.14	Not Detected	0.58	Not Detected
1,2-Dichloropropane	0.14	Not Detected	0.66	Not Detected
Bromodichloromethane	0.14	Not Detected	0.96	Not Detected
cis-1,3-Dichloropropene	0.14	Not Detected	0.65	Not Detected
4-Methyl-2-pentanone	0.14	Not Detected	0.59	Not Detected
Toluene	0.14	1.8	0.54	6.6
trans-1,3-Dichloropropene	0.14	Not Detected	0.65	Not Detected
1,1,2-Trichloroethane	0.14	Not Detected	0.78	Not Detected
Tetrachloroethene	0.14	0.089 J	0.98	0.60 J
Dibromochloromethane	0.14	Not Detected	1.2	Not Detected
1,2-Dibromoethane (EDB)	0.14	Not Detected	1.1	Not Detected
Chlorobenzene	0.14	Not Detected	0.66	Not Detected
Ethyl Benzene	0.14	0.11 J	0.62	0.47 J
m,p-Xylene	0.14	0.25	0.62	1.1
o-Xylene	0.14	0.091 J	0.62	0.40 J
Styrene	0.14	Not Detected	0.61	Not Detected
Bromoform	0.14	Not Detected	1.5	Not Detected
1,1,2,2-Tetrachloroethane	0.14	Not Detected	0.99	Not Detected
1,3-Dichlorobenzene	0.14	Not Detected	0.86	Not Detected

Client Sample ID: BPS1-FB2004-00

Lab ID#: 0810701-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111006	Date of Collection: 10/28/08
Dil. Factor:	1.44	Date of Analysis: 11/10/08 02:31 PM

	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)	
1,4-Dichlorobenzene	0.14	0.052 J	0.86	0.31 J	
1,2-Dichlorobenzene	0.14	Not Detected	0.86	Not Detected	
1,2,4-Trichlorobenzene	0.72	0.10 J	5.3	0.76 J	

J = Estimated value.

		Wethod	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-FB2004-00

Lab ID#: 0810701-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111006sim		Date of Collection:	10/28/08
Dil. Factor:	1.44		Date of Analysis: 11	I/10/08 02:31 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(nnhy)	(nnhy)	(uG/m3)	(uG/m3)

 Compound
 (ppbv)
 (ppbv)
 (uG/m3)
 (uG/m3)

 Trichloroethene
 0.029
 0.015 J
 0.15
 0.081 J

J = Estimated value.

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	98	70-130	

Client Sample ID: BPS1-FB2005-00 Lab ID#: 0811019-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 z111120
 Date of Collection: 10/30/08

 Dil. Factor:
 1.68
 Date of Analysis: 11/12/08 12:31 AM

Dil. Factor:	1.68		Date of Analysis: 1	1/12/08 12:31 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.17	0.60	0.83	3.0
Chloromethane	0.17	0.61	0.35	1.2
Vinyl Chloride	0.17	Not Detected	0.43	Not Detected
Bromomethane	0.17	Not Detected	0.65	Not Detected
Chloroethane	0.17	Not Detected	0.44	Not Detected
Freon 11	0.17	0.31	0.94	1.7
Freon 113	0.17	0.086 J	1.3	0.66 J
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	3.5	2.0	8.4
Carbon Disulfide	0.84	0.12 J	2.6	0.36 J
Methylene Chloride	0.34	0.12 J	1.2	0.41 J
Methyl tert-butyl ether	0.17	Not Detected	0.60	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
1,1-Dichloroethane	0.17	Not Detected	0.68	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.17	0.50	0.50	1.5
cis-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Carbon Tetrachloride	0.17	0.077 J	1.0	0.49 J
Benzene	0.17	0.14 J	0.54	0.46 J
1,2-Dichloroethane	0.17	Not Detected	0.68	Not Detected
1,2-Dichloropropane	0.17	Not Detected	0.78	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.76	Not Detected
4-Methyl-2-pentanone	0.17	Not Detected	0.69	Not Detected
Toluene	0.17	0.28	0.63	1.1
trans-1,3-Dichloropropene	0.17	Not Detected	0.76	Not Detected
1,1,2-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected
Chlorobenzene	0.17	Not Detected	0.77	Not Detected
Ethyl Benzene	0.17	Not Detected	0.73	Not Detected
m,p-Xylene	0.17	0.085 J	0.73	0.37 J
o-Xylene	0.17	Not Detected	0.73	Not Detected
Styrene	0.17	Not Detected	0.72	Not Detected
Bromoform	0.17	Not Detected	1.7	Not Detected
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.2	Not Detected
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected

Client Sample ID: BPS1-FB2005-00

Lab ID#: 0811019-01A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111120	Date of Collection: 10/30/08
Dil. Factor:	1.68	Date of Analysis: 11/12/08 12:31 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.84	Not Detected	6.2	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	104	70-130

Client Sample ID: BPS1-FB2005-00

Lab ID#: 0811019-01B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111120sim		Date of Collection:	
Dil. Factor:	1.68		Date of Analysis: 11	/12/08 12:31 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.034	0.0098 J	0.18	0.052 J

J = Estimated value.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	126	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	99	70-130	

Client Sample ID: BPS1-FB2006-00

Lab ID#: 0811019-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111125	Date of Collection: 10/31/08
Dil. Factor:	2.01	Date of Analysis: 11/12/08 05:05 AM

	2.01		Date of Affaiysis.	1/ 12/00 03.03 AW
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.20	0.54	0.99	2.6
Chloromethane	0.20	0.55	0.42	1.1
Vinyl Chloride	0.20	Not Detected	0.51	Not Detected
Bromomethane	0.20	Not Detected	0.78	Not Detected
Chloroethane	0.20	Not Detected	0.53	Not Detected
Freon 11	0.20	0.28	1.1	1.6
Freon 113	0.20	0.096 J	1.5	0.74 J
1,1-Dichloroethene	0.20	Not Detected	0.80	Not Detected
Acetone	1.0	3.8	2.4	9.1
Carbon Disulfide	1.0	Not Detected	3.1	Not Detected
Methylene Chloride	0.40	0.36 J	1.4	1.2 J
Methyl tert-butyl ether	0.20	Not Detected	0.72	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected
1,1-Dichloroethane	0.20	Not Detected	0.81	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.20	0.49	0.59	1.4
cis-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected
Chloroform	0.20	Not Detected	0.98	Not Detected
1,1,1-Trichloroethane	0.20	Not Detected	1.1	Not Detected
Carbon Tetrachloride	0.20	0.085 J	1.3	0.53 J
Benzene	0.20	0.77	0.64	2.5
1,2-Dichloroethane	0.20	Not Detected	0.81	Not Detected
1,2-Dichloropropane	0.20	Not Detected	0.93	Not Detected
Bromodichloromethane	0.20	Not Detected	1.3	Not Detected
cis-1,3-Dichloropropene	0.20	Not Detected	0.91	Not Detected
4-Methyl-2-pentanone	0.20	0.11 J	0.82	0.45 J
Toluene	0.20	1.8	0.76	6.9
trans-1,3-Dichloropropene	0.20	Not Detected	0.91	Not Detected
1,1,2-Trichloroethane	0.20	Not Detected	1.1	Not Detected
Tetrachloroethene	0.20	0.17 J	1.4	1.1 J
Dibromochloromethane	0.20	Not Detected	1.7	Not Detected
1,2-Dibromoethane (EDB)	0.20	Not Detected	1.5	Not Detected
Chlorobenzene	0.20	Not Detected	0.92	Not Detected
Ethyl Benzene	0.20	0.27	0.87	1.2
m,p-Xylene	0.20	0.78	0.87	3.4
o-Xylene	0.20	0.30	0.87	1.3
Styrene	0.20	0.062 J	0.86	0.27 J
Bromoform	0.20	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.20	Not Detected	1.4	Not Detected
1,3-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected

Client Sample ID: BPS1-FB2006-00

Lab ID#: 0811019-05A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	z111125	Date of Collection: 10/31/08
Dil. Factor:	2.01	Date of Analysis: 11/12/08 05:05 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.20	0.15 J	1.2	0.90 J
1,2-Dichlorobenzene	0.20	Not Detected	1.2	Not Detected
1,2,4-Trichlorobenzene	1.0	Not Detected	7.4	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: BPS1-FB2006-00

Lab ID#: 0811019-05B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: Dil. Factor:	z111125sim 2.01			Date of Collection: 10/31/08 Date of Analysis: 11/12/08 05:05 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)	
Trichloroethene	0.040	0.040	0.22	0.22	

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: BPS1-FB2007-00

Lab ID#: 0901113-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

 File Name:
 \$011422
 Date of Collection: 1/6/09

 Dil. Factor:
 2.23
 Date of Analysis: 1/15/09 11:15 AM

Compound	2.23		Date of Analysis: 1/15/09 11:15 AM	
	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (uG/m3)	Amount (uG/m3)
Freon 12	0.22	0.50	1.1	2.5
Chloromethane	0.22	0.56	0.46	1.2
Vinyl Chloride	0.22	Not Detected	0.57	Not Detected
Bromomethane	0.22	Not Detected	0.87	Not Detected
Chloroethane	0.22	Not Detected	0.59	Not Detected
Freon 11	0.22	0.21 J	1.2	1.2 J
Freon 113	0.22	0.087 J	1.7	0.66 J
1,1-Dichloroethene	0.22	Not Detected	0.88	Not Detected
Acetone	1.1	0.82 J	2.6	1.9 J
Carbon Disulfide	1.1	Not Detected	3.5	Not Detected
Methylene Chloride	0.45	Not Detected	1.5	Not Detected
Methyl tert-butyl ether	0.22	Not Detected	0.80	Not Detected
trans-1,2-Dichloroethene	0.22	Not Detected	0.88	Not Detected
1,1-Dichloroethane	0.22	Not Detected	0.90	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.22	0.35	0.66	1.0
cis-1,2-Dichloroethene	0.22	Not Detected	0.88	Not Detected
Chloroform	0.22	Not Detected	1.1	Not Detected
1,1,1-Trichloroethane	0.22	Not Detected	1.2	Not Detected
Carbon Tetrachloride	0.22	0.064 J	1.4	0.40 J
Benzene	0.22	0.28	0.71	0.91
1,2-Dichloroethane	0.22	Not Detected	0.90	Not Detected
1,2-Dichloropropane	0.22	Not Detected	1.0	Not Detected
Bromodichloromethane	0.22	Not Detected	1.5	Not Detected
cis-1,3-Dichloropropene	0.22	Not Detected	1.0	Not Detected
4-Methyl-2-pentanone	0.22	Not Detected	0.91	Not Detected
Toluene	0.22	0.37	0.84	1.4
trans-1,3-Dichloropropene	0.22	Not Detected	1.0	Not Detected
1,1,2-Trichloroethane	0.22	Not Detected	1.2	Not Detected
Tetrachloroethene	0.22	Not Detected	1.5	Not Detected
Dibromochloromethane	0.22	Not Detected	1.9	Not Detected
1,2-Dibromoethane (EDB)	0.22	Not Detected	1.7	Not Detected
Chlorobenzene	0.22	Not Detected	1.0	Not Detected
Ethyl Benzene	0.22	Not Detected	0.97	Not Detected
m,p-Xylene	0.22	0.11 J	0.97	0.48 J
o-Xylene	0.22	0.043 J	0.97	0.18 J
Styrene	0.22	Not Detected	0.95	Not Detected
Bromoform	0.22	Not Detected	2.3	Not Detected
1,1,2,2-Tetrachloroethane	0.22	Not Detected	1.5	Not Detected
1,3-Dichlorobenzene	0.22	Not Detected	1.3	Not Detected

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: BPS1-FB2007-00

Lab ID#: 0901113-08A

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name:	s011422	Date of Collection: 1/6/09
Dil. Factor:	2.23	Date of Analysis: 1/15/09 11:15 AM

	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
1,4-Dichlorobenzene	0.22	Not Detected	1.3	Not Detected
1,2-Dichlorobenzene	0.22	Not Detected	1.3	Not Detected
1,2,4-Trichlorobenzene	1.1	Not Detected U J	8.3	Not Detected U J

J = Estimated value.

UJ = Non-detected compound associated with low bias in the CCV

TENTATIVELY IDENTIFIED COMPOUNDS

			Amount
Compound	CAS Number	Match Quality	((ppbv))

None Identified

Container Type: 6 Liter Summa Canister (100% Certified)

	•	Method	
Surrogates	%Recovery	Limits	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	96	70-130	

AN ENVIRONMENTAL ANALYTICAL LABORATORY

Client Sample ID: BPS1-FB2007-00

Lab ID#: 0901113-08B

MODIFIED EPA METHOD TO-15 GC/MS SIM/FULL SCAN

File Name: s011422sim Date of Collection: 1/6/09 Dil. Factor: 2.23 Date of Analysis: 1/15/09 11				
	Rpt. Limit	Rpt. Limit Amount		Amount
Compound	(ppbv)	(ppbv)	(uG/m3)	(uG/m3)
Trichloroethene	0.045	0.071	0.24	0.38

Container Type: 6 Liter Summa Canister (100% Certified)

		Method Limits	
Surrogates	%Recovery		
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	106	70-130	
4-Bromofluorobenzene	99	70-130	

APPENDIX F DATA VALIDATION SUMMARIES

INTERNAL CORRESPONDENCE

TO: **ROB SOK** DATE: **DECEMBER 30, 2008**

FROM: MARK TRAXLER COPIES: FILE

SUBJECT: ORGANIC DATA VALIDATION – VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0810701

SAMPLES: 8/Air/

> BPS1-FB2004-00 BPS1-SG2006-49 BPS1-SG2004-20 BPS1-SG2001-20 BPS1-SG2004-08 BPS1-SG2004-49

BPS1-SG2001-08 BPS1-DUP-02

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0810701, consists of eight (8) 6-liter SUMMA canister (100% certified) air environmental samples (designated BPS1-). One pair of field duplicate samples (BPS1-FB2004-49/BPS1-DUP-02) was included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 28-29, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- **Data Completeness**
- **Holding Times** •
- GC/MS Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
- Laboratory Control Sample Results
- **Laboratory Duplicate Results**
- Internal Standards
- Field Duplicate Precision
- Compound Quantitation
 - Compound Identification
- **Detection Limits**

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Initial/Continuing Calibrations

The initial calibration analyzed on November 6, 2008 exceeded the QC criteria of a Relative Standard Deviation (RSD) of 30 percent (30%) for the following compounds: methylene chloride and 1,1,1-trichloroethane. The positive and non-detected results for these compounds were qualified (J/UJ) as a result of a poor initial calibration.

Laboratory Method/Preparation Blank Analyses

The following contaminants were detected in the laboratory method/preparation blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
Methylene Chloride (1)	0.10 ppbv	1.0 ppbv
Trichloroethene (2)	0.0015 ppbv	0.0075 ppbv
Trans-1,2-dichloroethene (3)	0.073 ppbv	0.365 ppbv
2-Butanone (1)	0.25 ppbv	2.50 ppbv
Trans-1,3-dichloropropene (3)	0.074 ppbv	0.37 ppbv
1,2-Dibromoethane (3)	0.081 ppbv	0.405 ppbv
Styrene (3)	0.062 ppbv	0.31 ppbv
Bromoform (3)	0.078 ppbv	0.39 ppbv
1,3-Dichlorobenzene (3)	0.10 ppbv	0.50 ppbv
1,4-Dichlorobenzene (3)	0.14 ppbv	0.70 ppbv
1,2-Dichlorobenzene (3)	0.13 ppbv	0.65 ppbv
1,2-Dichlorobenzene (2)	0.012 ppbv	0.06 ppbv

ppby - parts per billion by volume

- Concentration of this common laboratory contaminate was present in a laboratory method blank affecting all air samples in this SDG.
- Concentration present in the laboratory method blank analyzed on November 10, 2008 affecting all samples analyzed on that date.
- Concentration present in the laboratory method blank analyzed on November 11, 2008 affecting all samples analyzed on that date.

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (methylene chloride), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. Methylene chloride, 2-butanone, styrene, and trans-1,2-dichloroethene were qualified due to laboratory blank contamination.

Compound Quantitation

Positive results reported below the laboratory's established RL, but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15 were qualified as estimated (J).

Acetone results exceeded the calibration range for several samples. The acetone results for those samples were qualified (J) due to a calibration range exceedance.

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL.

The laboratory noted that the Chain of Custody information for sample BPS1-SG2004-20 did not match the information on the canister with regard to canister identification.

Samples BPS1-SG2001-20 and BPS1-SG2001-08 arrived at ambient pressure. The samples were collected using flow controllers.

Laboratory duplicate results for sample 0810701-03 exceeded the air QC criteria of a Relative Percent Deviation (RPD) of 20 percent (20%) for the following compounds: benzene, methyl tert-butyl ether, styrene, and trans-1,2-dichloroethene. However, since these compounds did not exceed 5X the reporting limit (RL) and the difference between the two values did not exceed the RL, no results were qualified.

EXECUTIVE SUMMARY

Laboratory Performance: Methylene chloride, 2-butanone, styrene, and trans-1,2-dichloroethene were qualified due to laboratory blank contamination. Two (2) target RSDs exceeded the QC criteria for initial calibrations.

Other Factors Affecting Data Quality: VOCs were detected in associated blanks. Acetone results for two samples exceeded the calibration range of the instrument. Peaks that were not identified and reported by the laboratory were observed in the chromatograms of some samples.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Tetra Tech NUS Mark Traxler

Senior Environmental Scientist

Tétra Tech NUS Joseph A. Samchuck Quality Assurance Officer

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Laboratory Analytical Results
- 3. Appendix C Support Documentation

INTERNAL CORRESPONDENCE

TO: ROB SOK DATE: DECEMBER 30, 2008

FROM: MARK TRAXLER COPIES: FILE

SUBJECT: ORGANIC DATA VALIDATION – VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0810745

SAMPLES: 4/Air/

BPS1-SG2001-49 BPS1- SG2002-20 BPS1- SG2002-08

BPS1- SG2002-44

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0810745, consists of four (4) 6-liter SUMMA canister (100% certified) air environmental samples (designated BPS1-). No field duplicate samples were included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 30, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- GC/MS Tuning
- Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
- Laboratory Control Sample Results
- Laboratory Duplicate Results
- Internal Standards
- Compound Quantitation
- Compound Identification
- Detection Limits

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Laboratory Method/Preparation Blank Analyses

The following contaminants were detected in the laboratory method/preparation blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
Acetone (1)	0.13 ppbv	1.3 ppbv
Carbon disulfide (1)	0.048 ppbv	0.24 ppbv
Methylene chloride (1)	0.12 ppbv	1.2 ppbv
1,2-Dichloroethane (1)	0.030 ppbv	0.15 ppbv
Trichloroethene (1)	0.0015 ppbv	0.0075 ppbv
Toluene (1)	0.039 ppbv	0.195 ppbv
Trans-1,3-dichloropropege (1)	0.12 ppbv	0.60 ppbv
Dibromochloromethane (1)	0.024 ppbv	0.12 ppbv
Chlorobenzene (1)	0.053 ppbv	0.165 ppbv
Styrene (1)	0.050 ppbv	0.25 ppbv
1,3-Dichlorobenzene (1)	0.10 ppbv	0.50 ppbv
1,4-Dichlorobenzene (1)	0.14 ppbv	0.70 ppbv
1,2-Dichlorobenzene (1)	0.11 ppbv	0.55 ppbv
1,2,4-Trichlorobenzene (1)	0.20 ppbv	1.0 ppbv

ppbv - parts per billion by volume

Concentration present in the laboratory method blank analyzed on November 11, 2008 affecting all air samples analyzed on November 12, 2008.

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (acetone and methylene chloride), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. Carbon disulfide, methylene chloride, and styrene were qualified due to laboratory blank contamination.

Compound Quantitation

Positive results reported below the laboratory's established reporting limit (RL), but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15 were qualified as estimated (J).

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL. The laboratory may have misidentified "BPS1" as "BPS1" on all samples in this SDG.

The laboratory noted that samples BPSI-SG2001-49, BPSI-SG2002-20, and BPSI-SG2002-08 arrived at ambient pressure yet flow controllers were used for sample collection.

EXECUTIVE SUMMARY

Laboratory Performance: Carbon disulfide, methylene chloride, and styrene were qualified due to laboratory blank contamination.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Mark Traxler

Senior Environmental Scientist

Joseph A. Samchuck

Quality Assurance Officer

- Appendix A Qualified Analytical Results 1.
- Appendix B Laboratory Analytical Results
 Appendix C Support Documentation 2.
- 3.

INTERNAL CORRESPONDENCE

TO:

ROB SOK

DATE:

DECEMBER 30, 2008

FROM:

MARK TRAXLER

COPIES:

FILE

SUBJECT:

ORGANIC DATA VALIDATION – VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0811019

SAMPLES:

6/Air/

BPS1-FB2005-00

BPS1- SG2003-49

BPS1-SG2003-20

BPS1- SG2003-08

BPS1-FB2006-00

BPS1-DUP-03

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0811019, consists of six (6) 6-liter SUMMA canister (100% certified) air environmental samples (designated BPS1-). One pair of field duplicate samples (BPS1-FB2003-08/BPS1-DUP-03) was included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 30-31, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- GC/MS Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
- Laboratory Control Sample Results
- Laboratory Duplicate Results
- Internal Standards
- Field Duplicate Precision
 - Compound Quantitation
- Compound Identification
- Detection Limits

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Initial/Continuing Calibrations

The initial calibration analyzed on November 6, 2008 exceeded the QC criteria of a Relative Standard Deviation (RSD) of 30% for the following compounds: methylene chloride and 1,1,1-trichloroethane. The positive and non-detected results for these compounds were qualified (J/UJ) as a result of a noncompliant initial calibration.

Laboratory Method/Preparation Blank Analyses

The following contaminants were detected in the laboratory method/preparation blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
Analyte	Concentration	<u>Level</u>
Trichloroethene (1)	0.0018 ppbv	0.0090 ppbv

ppbv - parts per billion by volume

(1) Concentration present in a laboratory method blank affecting all air samples in this SDG.

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (methylene chloride), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. Trichloroethene was qualified due to laboratory blank contamination.

Compound Quantitation

Positive results reported below the laboratory's established RL, but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15, were qualified as estimated (J).

Acetone results exceeded the calibration range for the following samples: 0811019-02A and 0811019-03A. The acetone results for these samples were qualified (J) due to an exceeded calibration range.

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL.

The laboratory noted that the Chain of Custody was missing method information, information for sample BPS1-DUP-03 did not match the information on the canister with regard to canister identification, and samples BPS1-SG2003-49 and BPS1-SG2003-20 arrived at ambient pressure yet flow controllers were used for sample collection.

Laboratory duplicate results for sample 0811019-03 exceeded the air QC criteria of a Relative Percent Deviation (RPD) of 20 percent (20%) for the following compounds: 1,3-dichlorobenzene, chloromethane, and Freon 12. However, since these compounds did not exceed two times the reporting limit (2xRL) and the difference between the two values did not exceed the RL, no results were qualified.

EXECUTIVE SUMMARY

Laboratory Performance: Trichloroethene was qualified due to laboratory blank contamination. Two (2) target compounds exceeded the QC criteria for RSDs in initial calibrations. Peaks that were not identified and reported by the laboratory were observed in the chromatograms of some samples.

Other Factors Affecting Data Quality: Acetone results for two samples exceeded the calibration range of the instrument.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Tetra Tech NUS Mark Traxler

Senior Environmental Scientist

Tetra Tech NUS

Joseph A. Samchuck

Quality Assurance Officer

- 1. Appendix A - Qualified Analytical Results
- Appendix B Laboratory Analytical Results
 Appendix C Support Documentation 2.
- 3.

INTERNAL CORRESPONDENCE

TO: ROB SOK DATE: DECEMBER 30, 2008

FROM: MARK TRAXLER COPIES: FILE

SUBJECT: ORGANIC DATA VALIDATION – VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0810643

SAMPLES: 7/Air/

BPS1-FB2003-00 BPS1-SG2007-49 BPS1-SG2006-20 BPS1-SG2006-08 BPS1-SG2005-49 BPS1-SG2005-20

BPS1-SG2005-08

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0810643, consists of seven (7) 6-liter SUMMA canister (100% certified) air environmental samples (designated BPS1-). No field duplicate samples were included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 24th and 27th, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- * Holding Times
- GC/MS Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
- Laboratory Control Sample Results
- Laboratory Duplicate Results
- Internal Standards
- Compound Quantitation
- Compound Identification
- Detection Limits

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Initial/Continuing Calibrations

The initial calibration analyzed on October 22, 2008 exceeded the QC acceptance criteria of a Relative Standard Deviation (RSD) of 30 percent (30%) for the following target compounds: Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane), carbon disulfide, methylene chloride and trans-1,2-dichloroethene. The positive and non-detected results for these compounds were qualified (J/UJ) as a result of an exceedance of initial calibration QC acceptance criteria.

The continuing calibration verification (CCV) analyzed on November 4, 2008 exceeded the QC acceptance criteria of 30 percent difference (30%D) for acetone. Positive acetone results were qualified (J) due to an exceedance in the continuing calibration.

Laboratory Method/Preparation Blank Analyses

The following contaminants were detected in the laboratory method/preparation blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
Acetone (1)	0.13 ppbv	1.3 ppbv
1,2,4-Trichlorobenzene (1)	0.042 ppbv	0.21 ppbv

Concentration present in a laboratory method blank affecting all air samples in this SDG. Ppbv – parts per billion by volume

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (acetone), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. No compound results were qualified due to laboratory blank contamination.

Laboratory Control Sample Results

The laboratory control sample (LCS) analyzed on November 4, 2008 exceeded the QC acceptance criteria of 30%D for Freon 11 (trichlorofluoromethane). Based on professional judgment, positive Freon 11 results were qualified (J) due to an exceedance in the LCS.

Compound Quantitation

Positive results reported below the laboratory's established reporting limit (RL), but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15, were qualified as estimated (J).

Acetone results exceeded the calibration range for all samples except 0810643-01A. The acetone results for these samples were qualified (J) due to a calibration range exceedance.

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data

Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL.

Laboratory duplicate results for sample 0810643-01 exceeded the air QC criteria of 20 Relative Percent Deviation (RPD) for the following compounds: 2-butanone, bromomethane, carbon tetrachloride, and methylene chloride. However, since these compounds did not exceed 5X the RL and the difference between the two values did not exceed the RL, no results were qualified.

EXECUTIVE SUMMARY

Laboratory Performance: Four (4) target compounds exceeded the QC criteria for RSDs in the initial calibration. Acetone exceeded the QC criteria for %D in a continuing calibration. Freon 11 exceeded the QC criteria for %D in a LCS.

Other Factors Affecting Data Quality: Several acetone results exceeded the calibrated range of the instrument. Peaks that were not identified and reported by the laboratory were observed in the chromatograms of some samples.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Tetra Tech NUS Mark Traxler

Senior Environmental Scientist

Tetra Tech NUS

Joseph A. Samchuck Quality Assurance Officer

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Laboratory Analytical Results
- 3. Appendix C Support Documentation

INTERNAL CORRESPONDENCE

TO:

ROB SOK

DATE:

DECEMBER 30, 2008

FROM:

MARK TRAXLER

COPIES:

FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0810584AR1

SAMPLES:

10/Air/

BPS1-SG2009-48 BPS1-SG2009-08 BPS1-FB2001-00 BPS1-SG2008-08 BPS1-SG2008-49 BPS1-SG2007-20

BPS1-SG2009-25 BPS1-SG2008-20

BPS1-SG2007-20 BPS1-SG2007-08

BPS1-DUP-01

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0810584AR1, consists of ten (10) 6-liter SUMMA canister (100% certified) air environmental sample. One field duplicate pair (BPS1-SG2007-20/BPS1-DUP-01) was included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 21st-23rd, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- GC/MŠ Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
 - Laboratory Control Sample Results
- Laboratory Duplicate Results
- Internal Standards
- Field Duplicate Precision
 - Compound Quantitation
- Compound Identification
- Detection Limits

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Initial/Continuing Calibrations

The initial calibration analyzed on October 22, 2008 exceeded the QC acceptance criteria of a Relative Standard Deviation (RSD) of 30 percent (30%) for the following target compounds: Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane), carbon disulfide, methylene chloride and trans-1,2-dichloroethene. The positive and non-detected results for these compounds were qualified (J/UJ) as a result of initial calibration QC acceptance criteria exceedance.

The continuing calibration verification (CCV) analyzed on November 3, 2008 exceeded the QC acceptance criteria of 30 percent difference (30%D) for methylene chloride. Positive methylene chloride results were qualified (J) due to an exceedance in the continuing calibration.

Laboratory Method/Preparation Blank Analyses

The following contaminants were detected in the laboratory method/preparation or field blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	Concentration	<u>Level</u>
Acetone (1)	0.13 ppbv	1.30 ppbv
1,2,4-Trichlorobenzene (1)	0.042 ppbv	0.21 ppbv

⁽¹⁾ Concentration present in the laboratory method blank analyzed on November 4, 2008 affecting all air samples in this SDG.

ppbv - parts per billion by volume

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (acetone), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. 1,2,4-trichlorobenzene was qualified due to laboratory blank contamination.

Laboratory Control Sample Results

The laboratory control samples (LCS) analyzed on November 3rd and 4th, 2008 exceeded the QC acceptance criteria of 30%D for Freon 11 (trichlorofluoromethane). Based on professional judgment, positive Freon 11 results were qualified (J) due to an exceedance in the LCS unless previously qualified due to blank contamination.

Compound Quantitation

Positive results reported below the laboratory's established reporting limit (RL), but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15, were qualified as estimated (J). Acetone results exceeded the calibration range for all of the samples in this SDG, except 0810584AR1-04A. The acetone results for these samples were qualified (J) due to an exceeded calibration range.

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM and reported down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL. The laboratory may have misidentified "BPS1" as "BPSI" on all samples in this SDG. The laboratory noted that the Chain of Custody information for sample BPSI-SG2009-25 did not match the information on the canister with regard to canister identification and samples BPSI-SG2009-25, BPSI-SG2008-08, and BPSI-SG2007-49 arrived at ambient pressure yet flow controllers were used for sample collection.

Laboratory duplicate results for sample 0810584AR1-04 exceeded the air QC criteria of a Relative Percent Deviation (RPD) of 20 percent (20%) for the following compounds: methyl ethyl ketone, bromomethane, and tetrachloroethene. The difference between duplicate results for the aforementioned compounds did not exceed the Contract Required Detection Limit (CRDL) and one or both corresponding duplicate results were less than 5X the CRDL; therefore, no results were qualified.

One field duplicate pair (BPS1-SG2007-20/BPS1-DUP-01) was analyzed with this SDG. Field duplicate results exceeded the air QC criteria of 20% RPD for the following compounds: 1,1-dichloroethene and 1,2,4-trichlorobenzene. No results were qualified due to field duplicate imprecision because these compounds did not exceed two times the reporting limit (2xRL) and the difference between the two values did not exceed the RL.

The laboratory did not provide any leak test information.

EXECUTIVE SUMMARY

Laboratory Performance: Four (4) target compounds exceeded the QC criteria for RSDs in the initial calibration. Methylene chloride exceeded the QC criteria for %D in a continuing calibration. Freon 11 exceeded the QC criteria for %D in a LCS. 1,2,4-trichlorobenzene was qualified due to laboratory blank contamination.

Other Factors Affecting Data Quality: VOCs were detected in associated blanks. Acetone results exceeded the calibration range. Peaks that were not identified and reported by the laboratory were observed in the chromatograms of some samples.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Tetra Tech NUS Mark Traxler

Senior Environmental Scientist

Tetra Tech NÚS Joseph A. Samchuck Quality Assurance Officer

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Laboratory Analytical Results
- 3. Appendix C Support Documentation

INTERNAL CORRESPONDENCE

TO:

ROB SOK

DATE:

DECEMBER 30, 2008

FROM:

MARK TRAXLER

COPIES:

FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOCs by EPA Method TO-15

Contract Task Order (CTO) 147

Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Bethpage, New York

SAMPLE DELIVERY GROUP (SDG) - 0810584B

SAMPLES:

1/Air/

BPS1-FB2002-00

OVERVIEW

The sample set for CTO 147 NWIRP Bethpage, Bethpage, New York, SDG 0810584B, consists of one (1) 6-liter SUMMA canister (100% certified) air environmental sample (designated BPS1-). No field duplicate samples were included in this data set.

All samples were analyzed for a list of 42 Volatile Organic Compounds (VOCs) following a modified EPA Method TO-15 using Gas Chromatography/Mass Spectrometry (GC/MS) in the Full Scan and Selective Ion Monitoring (SIM) acquisition modes.

The samples were collected by Tetra Tech NUS on October 23, 2008 and analyzed by Air Toxics Ltd. of Folsom, California. All analyses were conducted in accordance with Naval Facilities Engineering Services Center (NFESC) Quality Assurance/Quality Control (QA/QC) criteria. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
- Holding Times
- GC/MS Tuning
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Recoveries
 - Laboratory Control Sample Results
- Laboratory Duplicate Results
- Internal Standards
- * Compound Quantitation
- Compound Identification
- Detection Limits

The symbol (*) indicates that QC acceptance criteria were met for this parameter.

Problems affecting data quality are discussed below. Qualified analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B. Documentation supporting these findings is presented in Appendix C.

Initial/Continuing Calibrations

The initial calibration analyzed on October 22, 2008 exceeded the QC acceptance criteria of a Relative Standard Deviation (RSD) of 30 percent (30%) for the following target compounds: Freon 113 (1,1,2-trichloro-1,2,2-trifluoroethane), carbon disulfide, methylene chloride and trans-1,2-dichloroethene. The positive and non-detected results for these compounds were qualified (J/UJ) as a result of initial calibration QC acceptance criteria exceedance.

The continuing calibration verification (CCV) analyzed on November 3, 2008 exceeded the QC acceptance criteria of 30 percent difference (30%D) for methylene chloride. The positive methylene chloride result reported was qualified (J) due to an exceedance in the continuing calibration.

The following contaminants were detected in the laboratory method/preparation blank(s) at the following maximum concentration(s):

	<u>Maximum</u>	<u>Action</u>
<u>Analyte</u>	<u>Concentration</u>	<u>Level</u>
Acetone (1)	0.11 ppbv	1.10 ppbv
Bromomethane (1)	0.070 ppbv	0.35 ppbv
1,2,4-Trichlorobenzene ⁽¹⁾	0.020 ppbv	0.10 ppbv

⁽¹⁾ Concentration present in the laboratory method blank affecting all air samples in this SDG.

ppbv - parts per billion by volume

An action level of five times (5X) the maximum contaminant level has been used to evaluate sample data for blank contamination, except for common laboratory contaminants (acetone), where an action level of 10X the maximum contaminant level has been used. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. Positive results less than the blank action level reported for the above analytes were qualified (U) as a result of laboratory blank contamination. Bromomethane was qualified due to laboratory blank contamination.

Laboratory Control Sample Results

The laboratory control sample (LCS) analyzed on November 3, 2008 exceeded the QC acceptance criteria of 30%D for Freon 11 (trichlorofluoromethane). Based on professional judgment, the positive Freon 11 result was qualified (J) due to an exceedance in the LCS.

Compound Quantitation

Positive results reported below the laboratory's established reporting limit (RL), but above the laboratory's method detection limit (MDL) for VOCs by modified EPA Method TO-15, were qualified as estimated (J).

Compound Identification

The laboratory was contracted to provide a list of 52 target VOCs for the October 2008 soil gas sampling event for this project, but provided reports with only 42 target VOCs, following the list of compounds that they were contracted to provide for this project during the January 2008 sampling event. Due to this error, the laboratory has agreed to add ten (10) Tentatively Identified Compounds (TICs) and provide the results from the TICs search to the Project Manager in the near future. The TICs are not addressed in this Data Validation Report. A separate report summarizing the TIC data for the October 2008 sampling event may be provided to the Project Manager after the data is obtained.

Detection Limits

The laboratory was contracted to provide detection limits of 0.050 ppbv for 17 target VOCs (including trichloroethene), not taking into account sample dilution due to canister pressurization, with detection limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for the remaining target compounds. However, the laboratory provided reporting limits of 0.10 ppbv (or 0.50 ppbv for a select few VOCs) for all target compounds except trichloroethene, which was analyzed by SIM and reported down to 0.020 ppbv. For the other 16 target VOCs, there is a potential for low-level concentrations that may have gone undetected by the laboratory which may be of interest for the project.

NOTES

The laboratory blanks exhibited no contamination for any of the VOC analytes above the RL.

Laboratory duplicate results for sample 0810584AR1-04 (analyzed along with sample 0810584B-01) exceeded the air QC criteria of a Relative Percent Deviation (RPD) of 20 percent (20%) for the following compounds: methyl ethyl ketone, bromomethane, styrene, and tetrachloroethene. The difference between duplicate results for the aforementioned compounds did not exceed the Contract Required Detection Limit (CRDL) and one or both corresponding duplicate results were less than 5X the CRDL; therefore, no results were qualified.

EXECUTIVE SUMMARY

Laboratory Performance: Bromomethane was qualified due to laboratory blank contamination. Four (4) target compounds exceeded the QC criteria for RSDs in the initial calibration. Methylene chloride exceeded the QC criteria for %D in a continuing calibration. Freon 11 exceeded the QC criteria for %D in a LCS.

Other Factors Affecting Data Quality: VOCs were detected in associated blanks.

The data for these analyses were reviewed with reference to the Tetra Tech NUS Standard Operating Procedure DV-02 (8/01) "Data Validation for Non-CLP Organics for Solid Matrices" and EPA "Functional Guidelines for Organic Data Review", as amended for use within EPA Region II following the "USEPA Hazardous Waste Support Branch, Validating Air Samples, Volatile Organic Analysis of Ambient Air in Canister by Method TO-15," SOP #HW-31, Revision 4 (10/06).

The text of this report has been formatted to address only those problem areas affecting data quality.

Tetra Tech NUS Mark Traxler

Senior Environmental Scientist

Joseph A. Samchuck

Quality Assurance Officer

- 1. Appendix A - Qualified Analytical Results
- Appendix B Laboratory Analytical Results Appendix C Support Documentation
- 2. 3.

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:

R. SOK

DATE:

MARCH 20, 2009

FROM:

JOSEPH KALINYAK

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION - VOC

NWIRP BETHPAGE CTO 147

SDG 0901113

SAMPLES:

8/Air/VOC

BPS1-DUP-04

BPS1-FB2007-00

BPS1-SG2010-08

BPS1-SG2010-24

BPS1-SG2010-49

BPS1-SG2011-08

BPS1-SG2011-24

BPS1-SG2011-48

Overview

The sample set for NWIRP Bethpage, SDG 0901113 consists of eight (8) air environmental samples, including one (1) field blank BPS1-FB2007-00. The eight (8) air samples were analyzed for Target Compound List (TCL) volatile organic compounds (VOC). There was one field duplicate associated with this data set BPS1-SG2010-49 / BPS1-DUP-04.

The samples were collected by Tetra Tech on January 6, 2009 and analyzed by Air Toxics LTD. All analyses were conducted in accordance with EPA Method TO-15 analytical and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- Data completeness
 - Hold Times
- GCMS System Tuning and Performance
 - Initial/Continuing Calibrations
 - Laboratory Method Blank Results
- Surrogate Spike Recoveries
 - Internal Standard Recoveries
 - Lab Duplicate Results
 - Field Duplicate Results
- Compound Identification
- Compound Quantitation
- Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

Volatile

The following compound was detected in the associated method blank at the maximum concentration as indicated below:

Compound Benzene (1) Maximum Conc. (ppbv) 0.032 Action Level (ppbv)

0.160

(1) Maximum concentration detected in the method blank #0901113-09A affecting all SDG samples.

Blank Actions

- Value < Reporting Limit (RL); value followed by a U.
- Value > RL and < Action level; report value followed by a U.

An action level of 5X was established to evaluate laboratory contamination for the aforementioned compound. Dilution factors and sample aliquots were taken into consideration during the application of all action levels. There were no positive results less than the action levels for any of the SDG samples and no samples were qualified for blank contamination.

The continuing calibration %D was greater than the 30% quality control limit for 1,2,4-trichlorobenzene for instrument MSDS on 01/14/09 @ 21:44 affecting all SDG samples. The non-detected results for 1,2,4-trichlorobenzene for all SDG samples were qualified estimated, (UJ).

The Laboratory Control Sample (LCS) % recovery was less than the quality control limit (50% vs. limit of 70%) for 1,2,4-trichlorobenzene on instrument MSDS on 01/14/09. The non-detected results for the all the SDG samples were qualified estimated, (UJ).

The field duplicate pair BPS1-SG2010-49 / BPS1-DUP-04 had %RPDs which exceeded the 50% quality control limit for 1,1,1-trichloroethane, 2-butanone, acetone, benzene, chloroform, ethylbenzene, m&p xylenes, o-xylene, styrene, tetrachloroethene, toluene, trichloroethene, and trichlorofluoromethane. The positive and non-detected aforementioned compounds for the sample duplicate pair were qualified estimated, (J) and (UJ), respectively.

The laboratory sample duplicate result %RPD was greater than the quality control limit for bromomethane for sample BPS1-SG2010-24. The positive bromomethane result for the sample was qualified estimated, (J).

Additional Comments

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

Samples BPS1-DUP-04, BPS1-SG2011-48, BPS1-2011-24, and BPS1-2010-24 arrived at the laboratory at ambient pressure yet flow controllers were used for sample collection.

The compounds 1,1,3-trichlorotrifluoroethane, 2-butanone, acetone, benzene, carbon tetrachloride, chloromethane, dichlorodifluoromethane, m&p-xylenes, o-xylene, toluene, trichloroethene, and trichlorofluoromethane were detected in the field blank sample, BPS1-FB2007-00. Per the laboratory narrative, acetone and 2-butanone results in the field blank may be due to carryover from the previous sample which contained concentrations of these compounds which exceeded the calibration range of the instrument.

The acetone and 2-butanone results above the instrument calibration range for sample BPS1-DUP04 were qualified estimated, (J).

EXECUTIVE SUMMARY

Laboratory Performance Issues: Benzene was detected in the method. There was a continuing calibration %D quality control limit exceedance. There were both field duplicate and lab duplicate %RPD quality control limit exceedances.

Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the EPA Functional Guidelines for Organic Data Validation (10/99), USEPA Region II Standard Operating Procedures for the Validation of Organic Data (January 1992), and the NFESC guidelines "Navy IRCDQM" (September 1999).

tetraTech NUS

Joseph Kalinyak

Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck

Data Validation Quality Assurance Officer

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation