QUARTERLY DATA SUMMARY REPORT INDOOR AIR AND SSD MONITORING (AUGUST, SEPTEMBER, AND OCTOBER 2009)

NWIRP BETHPAGE Bethpage, New York

Naval Facilities Engineering Command Mid-Atlantic

Contract No. N62470-08-D-1001 Contract Task Order WE06

DECEMBER 2009

QUARTERLY DATA SUMMARY REPORT INDOOR AIR AND SSD MONITORING

(AUGUST, SEPTEMBER, AND OCTOBER 2009)

NAVAL FACILITIES ENGINEERING COMMAND MID-ATLANTIC

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to: Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, Virginia 23511-3095

Prepared and Submitted by: Tetra Tech NUS, Inc. 234 Mall Boulevard, Suite 260 King of Prussia, Pennsylvania 19406

Contract No. N62470-08-D-1001 Contract Task Order WE06

December 2009

PREPARED UNDER THE DIRECTION OF:

1

DAVE BRAYACK // PROJECT MANAGER TETRA TECH NUS, INC. NORFOLK, VIRGINIA

APPROVED FOR SUBMISSION BY: WIT au

JOHN J. TREPANOWSKI, P.E. PRÓGRAM MANAGER TETRA TECH NUS, INC. KING OF PRUSSIA, PENNSYLVANIA

NOTICE PAGE

The enclosed report is a "public use" version of a Data Summary Report generated for the Navy by Tetra Tech NUS. To protect the personal privacy of homeowners whose residences are the subject of this report, personal information such as names and home addresses have been redacted by the Navy from this version of the report.

TABLE OF CONTENTS

<u>SECTI</u>	<u>ON</u>	PAGE
ACRO	NYMS	A-1
1.0	INTRODUCTION	1-1
2.0	FIELD AND SAMPLING ACTIVITIES	2-1
3.0	ANALYTICAL DATA	3-1

APPENDICES

** (SEE ATTACHED CD) **

- А Air Sampling Log Sheets
- В Chain of Custody Records
- С Data Analytical Reports
- D Data Validation Summaries

TABLES

NUMBER

- 2-1 Sample Summary
- 3-1 Analytical Summary – Home #2
- Analytical Summary Home #3 3-2
- 3-3 Analytical Summary - Home #4
- 3-4
- 3-5
- Analytical Summary Home #6 Analytical Summary Home #13 Analytical Summary Home #14 3-6
- 3-7 Analytical Summary - Outdoor Air Sampling
- Analytical Summary Outdoor Air Evaluation 3-8

NUMBER

FIGURES

- 1 General Location Map
- 2 Site Location Map
- 3 Outdoor Air Evaluation - Sample Location Map

ACRONYMS

1, 1-DCA	1, 1-dichloroethane
1, 1-DCE	1, 1-dichloroethene
APU	air purification unit
AS/SVE	air sparging/soil vapor extraction
bgs	below ground surface
CLEAN	Comprehensive Long-Term Environmental Action Navy
COC	chain of custody
СТО	contract task order
EPA	United States Environmental Protection Agency
°F	degrees Fahrenheit
IND	indoor air sample
INDB	basement indoor air sample
INDL	Living space indoor air sample
Mph	miles per hour
ND	non-detect
NWIRP	Naval Weapons Industrial Reserve Plant
NYSDOH	New York State Department of Health
PCE	tetrachloroethene
PID	photoionization detector
PSSD	Post Sub-Slab Depressurization
PVC	poly-vinyl chloride
SSB	sub-slab vapor sample
SSD	sub-slab depressurization system
TCA	1,1,1-trichloroethane
TCE	trichloroethene
Tetra Tech	Tetra Tech NUS, Inc.
VOC	volatile organic compound
µg/m³	micrograms per cubic meter

1.0 INTRODUCTION

This Quarterly Data Summary Report was prepared by Tetra Tech NUS Inc. (Tetra Tech) under Contract Task Order (CTO) WE06 for the Naval Facilities Engineering Command Mid-Atlantic under the Comprehensive Long-Term Environmental Action Navy (CLEAN) contract number N62470-08-D-1001. This Report summarizes field activities conducted in August, September, and October 2009, and includes indoor air, outdoor air, and sub-slab depressurization (SSD) system and stack monitoring activities that took place in August 2009 in the residential neighborhood east of Site 1 at Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage, Long Island, New York (Figures 1 and 2). Site 1 - Former Drum Marshalling Area was identified as having been impacted by the historic releases of chlorinated solvents and was remediated via an air sparging/soil vapor extraction (AS/SVE) system between 1998 and 2002. The treatment and remedial goals were based on protection of groundwater. Soil gas testing conducted in January 2008 indicated elevated concentrations of VOCs existing along the eastern boundary of Site 1 that may affect the adjacent residential neighborhood (Tetra Tech, 2008a). Additional soil gas testing was conducted in the Town of Oyster Bay right-of-ways from October 2008 through January 2009 to evaluate the potential migration of contaminated soil vapor off-site (Tetra Tech, 2009a). Based on evaluation of this soil gas data, indoor air, outdoor air, and sub-slab soil vapor sampling was recommended to evaluate potential vapor intrusion into residential homes.

From January through April 2009, soil vapor intrusion samples were collected in the residential neighborhood located east and adjacent to Site 1. A total of 18 residential homes were sampled during investigation activities (Draft Data Summary Report, Tetra Tech, 2009b). As an interim measure, air purification units (APUs) were placed into homes to treat vapors that may have entered the homes. Based on the sample results, six homes did not require further sampling/remediation. Due to the sub-slab soil vapor sampling results, SSDs were installed in six residential homes in May 2009. A total of 10 homes were sampled in June 2009 to monitor and evaluate mitigation measures established in these homes. Post SSD system startup indoor air and stack sampling activities were conducted at these six homes in June 2009, and indoor air sampling was also conducted in four homes that relied solely on continual air purification unit (APU) operation.

In August 2009, a second post SSD system startup sampling event was conducted. The sampling focused on the collection of indoor air, outdoor air, and SSD system stack samples at the six homes with SSD systems in operation. The August sampling event also included an outdoor air evaluation in and around the neighborhood. The outdoor air evaluation was conducted to evaluate outdoor air conditions that may affect indoor air conditions.

CTO- WE06

Air and vapor samples were analyzed for volatile organic compounds (VOCs) via United States Environmental Protection Agency (EPA) TO-15 method. This work was conducted in accordance with the New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006).

2.0 FIELD AND SAMPLING ACTIVITIES

Between August, September, and October 2009, monitoring activities were conducted at six residential homes located in the neighborhood adjacent to Site 1. Indoor air and SSD system stack samples were collected from these homes that were equipped with SSD systems and APUs. Outdoor air samples were also collected in and around the neighborhood during this sampling event to evaluate the potential influence of outdoor air on indoor air quality. The general field activities for sampling are summarized as follows:

- 1. Schedule sampling with homeowners
- 2. Mobilization to neighborhood
- 3. Re-establish previous sampling locations
- 4. Collect indoor air, outdoor air samples, and SSD stack samples
- 5. Ship and analyzed samples for the modified TO-15 VOCs

Homeowners were contacted to schedule and coordinate field sampling activities. Indoor air, SSD stack and outdoor air samples were collected using SUMMA[®] canisters (6 liter) with pre-set regulators. Indoor air sample locations were collected from the same locations that were previously sampled (Draft Data Summary Report, August 2009). During the indoor air sampling, outdoor air samples were placed in an upwind direction (at the start of the sampling period) approximately 50 to 200 feet from the associated indoor air sampling locations, at a height of approximately 3 feet above grade. Some of the outdoor air samples were used in evaluating more than one home given the proximity of the homes being sampled at that time.

Weather conditions the week prior to sampling was warm (average 80°F) and dry (approximately 0.01 inches of precipitation). During the week of sampling, August 24 through August 28, 2009, a minor amount of rain was recorded (approximately 0.32 inches) and temperatures ranged from 64°F at night to 90°F during the day. Wind direction and speed was variable, averaging 0-8 miles per hour during the sampling event.

The indoor and outdoor air samples were obtained over a 24-hour time period. SSD system stack samples were obtained over a 30-minute time period. Prior to sampling the SSD system stack, a photoionization detector (PID) reading was collected from the SSD system stack sampling port. PID readings were recorded on the air sampling log sheets (Appendix A). The SSD system stack samples were collected through polyethylene tubing which was secured to a brass nipple fitting threaded into the SSD system exhaust sampling port. Once the sample was collected, the SSD system exhaust sampling port was sealed using a brass plug. The air and vapor samples were shipped to Air Toxics Ltd. in

Folsom, CA via overnight carrier (Federal Express) for the modified TO-15 analysis list that was approved by NYSDOH and NYSDEC. The sampling procedures for indoor air, SSD system exhaust stack samples and outdoor air were in accordance with NYSDOH Guidance for Evaluating Soil Vapor Intrusion (NYSDOH, 2006).

A separate outdoor air evaluation was conducted during the August 2009 air sampling activities. This evaluation included the collection of two rounds of outdoor air samples (total of ten samples) which targeted both lower and higher wind scenarios. During each round, four outdoor air samples were placed along the perimeter of the residential block bounded by Eleventh Street, Sycamore Avenue, Tenth Street, and Maple Avenue and one outdoor air sample was placed in a central location within this residential block. These outdoor air samples were collected at four hour time intervals. Further details on this outdoor air evaluation and discussion of analytical results are presented in Section 3.7.

The field sampling team maintained air sampling log sheets and a field logbook that summarized the following information:

- sample identification
- date and time of sample collection
- sample location description
- identity of samplers
- sampling methods and devices (including canister and regulator ID numbers)
- vacuum before and after samples were collected
- wind speed and direction (for outdoor air sampling)
- ambient temperature (for outdoor air sampling)

Table 2-1 presents a sample summary of the indoor air, outdoor air, and SSD system stack samples collected, corresponding sample nomenclature, date collected, sample type, and event type. Sample date corresponds to the end of the sample collection period (i.e., 24-hour for indoor air; 30-minute for SSD stack samples; and 4-hour for the outdoor air evaluation). Sample containers were labeled with a unique sample identifier as presented on Table 2-1.

Additional information regarding sample identification and sample collection was recorded in the field logbook and/or on the corresponding sample log sheets. Sample log sheets were completed for each sample collected and are provided as Appendix A. Chain of Custody (COC) Forms are provided in Appendix B.

3.0 ANALYTICAL RESULTS

This section summarizes the analytical results from the post SSD system and post APU startup sampling event conducted in August 2009. The SSD systems and APUs were operating during the testing. Based on previous sampling results, it was determined that trichloroethylene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) represented the primary chemicals of concern. Therefore, the analytical results for TCE, PCE, and TCA are the focus of the analytical discussions in this section. Sample results for each of the homes are summarized in Tables 3-1 through 3-6. Details for each of the air samples collected from the homes are presented on the air sample log sheets provided in Appendix A. CoC Forms and the laboratory analytical reports can be found in Appendix B and C, respectively. Data validation summaries are presented in Appendix D.

Analytical results from the indoor air sampling conducted in residential homes are compared to the air guideline values presented in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006). The air guideline values used for evaluation of indoor air are summarized in the table below.

Air Guideline Values for Indoor Air

Chemical	Air Guideline Value (µg/m³)
Tetrachloroethene	100
Trichloroethane	5
1,1,1-Trichloroethane	100*

* = value derived from NYSDOH guidance (2006), Table 3.3 (Matrix 2) μ g/m³ = micrograms per cubic meter of air

During this quarterly monitoring event, the following six homes were sampled in August 2009:

- Home #2
- Home #3
- Home #4
- Home #6
- Home #13
- Home #14

3.1 Home #2

The home was initially sampled on January 21, 2009. After sampling, an APU was installed in the basement of Home #2 as an interim mitigation measure. The sewer utility sump in the basement was

also sealed to reduce a potential pathway for soil vapor to enter the home. Based on first floor living space VOC results, a second APU was installed on the first floor on March 10, 2009. Since the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 19, 2009 as a supplemental mitigation measure.

The post-SSD system sampling event was conducted on August 24 and 25, 2009. The sampling results indicated basement air concentrations of TCE at 41 μ g/m³, PCE at 1.6 μ g/m³ and TCA at 4.2 μ g/m³, first floor living space air concentrations of TCE at 3.4 μ g/m³, PCE at 0.41 J μ g/m³ and TCA at 0.87 μ g/m³, and SSD system stack sample concentrations of TCE at 12,000 μ g/m³, PCE at 500 μ g/m³ and TCA at 5,400 μ g/m³. The indoor air results indicated basement air concentrations of TCE above the NYSDOH air guideline value of 5 μ g/m³. SSD system stack concentrations have not changed significantly since startup.

As of August 2009, TCE concentrations have decreased by approximately 71% in basement air and 97% in the living space air since the initial sampling in January 2009. Sample results from each event are summarized on Table 3-1. The SSD system and the APUs installed in the basement and first floor of Home #2 remain in operation.

3.2 Home #3

The home was initially sampled on January 22, 2009. After sampling, an APU was installed in the basement of Home #3 as an interim mitigation measure. The sewer utility sump and observable cracks in the basement floor and walls were sealed at this time to reduce these potential pathways for soil vapor to enter the home. Based on the indoor air results, a second APU was installed on the first floor on February 26, 2009. Since the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 19, 2009 as a supplemental mitigation measure.

The post-SSD system sampling event was conducted on August 25 and 26, 2009. The sampling results indicated basement air concentrations of TCE at 27 μ g/m³, PCE at 1.3 μ g/m³ and TCA at 4 μ g/m³, first floor living space air concentrations of TCE at 10 μ g/m³, PCE at 0.43 J μ g/m³ and TCA at 5.2 μ g/m³, and SSD stack concentrations of TCE at 10,000 μ g/m³, PCE at 170 μ g/m³ and TCA at 4,200 μ g/m³. As of August 2009, TCE concentrations decreased by approximately 85% in basement air and 91% in the living space since the initial sampling in January 2009. SSD system stack concentrations have not changed significantly since startup. Sample results from each event are summarized on Table 3-2. The SSD system and the APUs installed in the basement and first floor of Home #3 remain in operation.

3.3 Home #4

The home was initially sampled on January 21, 2009. After sampling, an APU was installed in the southern portion of the basement in Home #4 as an interim mitigation measure. The sewer utility sump, also located in this southern portion of the basement, was sealed to reduce this potential pathway for soil vapor to enter the home. Since the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 20, 2009 as a supplemental mitigation measure.

The post-SSD system sampling event was conducted on August 25 and 26, 2009. The sampling results indicated basement air concentrations of TCE at $1.5 \,\mu\text{g/m}^3$ and TCA at $0.55 \,\mu\text{g/m}^3$, PCE was not detected in basement air. The indoor air concentrations are below the NYSDOH air guideline values. SSD system stack results included concentrations of TCE at 360 $\mu\text{g/m}^3$, PCE at 31 $\mu\text{g/m}^3$ and TCA at 210 $\mu\text{g/m}^3$. Comparing the SSD system stack results to the initial sub-slab vapor sample results in January 2009, TCE concentrations have decreased by approximately 75%. Sample results from each event are summarized on Table 3-3. The SSD system and the APU installed in the basement remain in operation.

3.4 Home #6

The home was initially sampled on February 19, 2009. After sampling, as an interim mitigation measure for potential exposure to soil vapor intrusion, an APU was installed in the basement of Home #6. Since the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 20, 2009 as a supplemental mitigation measure.

The post SSD system sampling event was conducted on August 26 and 27, 2009. The sampling results indicated basement air concentrations of TCE at 14 μ g/m³, PCE at 7.7 μ g/m³ and TCA at 2.8 μ g/m³, and SSD system stack concentrations of TCE at 720 μ g/m³, PCE at 1,600 μ g/m³ and TCA at 550 μ g/m³. The indoor air results indicate TCE concentrations above the NYSDOH air guideline value of 5 μ g/m³. SSD system stack concentrations have not changed significantly since startup. As of August 2009, TCE concentrations decreased by approximately 70% in basement air since the initial sampling in January 2009. Sample results from each event are summarized on Table 3-4. The SSD system and the APU installed in the basement remain in operation.

3.5 Home #13

The home was initially sampled on February 26, 2009. After sampling, as an interim mitigation measure for potential exposure to soil vapor intrusion, an APU was installed in the basement of Home #13. Since

the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 20, 2009 as a supplemental mitigation measure.

The post-SSD system sampling event was conducted on August 25 and 26, 2009. The sampling results indicated basement air concentrations of TCE at 0.67 μ g/m³ and PCE at 0.43 J μ g/m³, TCA was not detected in basement air. The indoor air concentrations are below the respective NYSDOH air guideline values. SSD system stack results included concentrations of TCE at 48 μ g/m³, PCE at 8.6 μ g/m³ and TCA at 58 μ g/m³. Comparing the August 2009 SSD system stack sample results to the initial sub-slab vapor sample results in January 2009, TCE concentrations decreased by approximately 81%. Sample results from each event are summarized on Table 3-5. The SSD system and the APU installed in the basement remain in operation.

3.6 Home #14

The home was initially sampled on March 11, 2009. After sampling, as an interim mitigation measure for potential exposure to soil vapor intrusion, an APU was installed in the basement of Home #14. Since the sub-slab concentrations were above the NYSDOH guidelines, an SSD system was installed on May 20, 2009 as a supplemental mitigation measure.

A post-SSD system sampling event was conducted on August 26, 2009. Because of an access issue, only an SSD system stack sample was collected. The sample results indicated SSD system stack concentrations of TCE at $30 \ \mu g/m^3$, PCE at $10 \ \mu g/m^3$ and TCA at $43 \ \mu g/m^3$. Comparing the SSD system stack sample results to the initial sub-slab vapor sample results in March 2009, TCE concentrations have decreased by approximately 90%. Sample results from each event are summarized on Table 3-6. The SSD system and the APU installed in the basement remains in operation.

3.7 Outdoor Air Sampling Summary

Outdoor air samples were collected to:

- Evaluate ambient VOC concentrations during the indoor air sampling
- Determine whether the operation of the SSD systems was affecting downwind air quality

During each of the post-APU and SSD system sampling events, outdoor air samples were collected to evaluate potential influence of outdoor air on indoor air quality. The outdoor air samples were collected to represent upwind ambient air data at the time of indoor air sampling in individual homes. For some

samples, a single upwind outdoor air sample was used to evaluate multiple homes. Table 3-7 provides an analytical summary of the outdoor air sampling conducted during indoor air sampling in August 2009.

The August 2009 results from outdoor air samples associated with homes #2, #3, #4, #6, and #13 showed concentrations of TCE ranging from non-detect to $0.73 \ \mu g/m^3$, PCE ranging from 0.31 J to 0.39 J $\ \mu g/m^3$, and TCA ranging from non-detect to 0.39 J $\ \mu g/m^3$. None of the other site related compounds VOCs were detected in outdoor air samples. Outdoor air concentrations observed during this sampling event were below the respective NYSDOH Air Guideline Values.

To evaluate the potential influence from SSD system stack discharges to outdoor air, a separate outdoor air evaluation was conducted on August 25 and 26, 2009. This evaluation included two rounds of outdoor air sampling targeting a lower and higher wind speed scenario in the neighborhood. Each of the two sampling rounds was conducted over a 4-hour time period and consisted of five outdoor air samples during each event. The first round of sampling targeted a low wind speed or calm conditions on the morning of August 25, 2009, where the average wind speed ranged from 0 to 3.5 mph and average temperature was approximately 68°F. The second round of sampling targeted a windier condition on the afternoon of August 26, 2009, where the average wind speed was 7.6 mph (with gusts up to approximately 20 mph) and an average temperature of approximately 76°F. The sample locations for the outdoor air evaluation are presented on Figure 3.

During this evaluation, four of the nine site-specific VOCs were detected. The four compounds included TCA, PCE, TCE, and 1,2-dichloroethane. PCE was most frequently detected compound (nine of the ten samples) with concentrations ranging from 0.3 to 7.7 μ g/m³. TCA, TCE, and 1,2-dichloroethane were detected in only one of ten samples with the maximum concentrations of TCE at 14 μ g/m³, TCA at 2.8 μ g/m³, and 1,2-dichloroethane at 0.97 μ g/m³. The highest detections of PCE, TCE, and TCA were observed in sample BPS1-ODA109 during the higher wind evaluation. This sample was collected from the approximate center of the residential block (see Figure 3). Wind direction was from the southwest and discharge from SSD systems installed at home #2 and #3 would have been directly upgradient of this sample location. With the exception of TCE detected in this sample, outdoor air concentrations observed during the evaluation were below the respective NYSDOH Air Guideline Values.

REFERENCES

New York State Department of Health (NYSDOH), 2006. Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

Tetra Tech NUS, Inc. (Tetra Tech), 2008a. Site 1-Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. April.

Tetra Tech NUS, Inc. (Tetra Tech), 2008b. Letter Work Plan-Site 1-Phase II Soil Vapor Investigation. Naval Weapons Industrial Reserve Plant, Bethpage, New York. September.

Tetra Tech NUS, Inc. (Tetra Tech), 2009a. Letter Work Plan-Site 1-Indoor Air Sampling. Naval Weapons Industrial Reserve Plant, Bethpage, New York. December.

Tetra Tech NUS, Inc. (Tetra Tech), 2009b. Draft Data Summary Report Soil Vapor Intrusion Investigation, Site 1 – Former Drum Marshalling Area. Naval Weapons Industrial Reserve Plant, Bethpage, New York. August.

United States Environmental Protection Agency (USEPA), 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air Second Edition Compendium Method TO-15 Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially- Prepared Canisters And Analyzed By Gas Chromatography/ Mass Spectrometry (GC/MS). January.

TABLES

Table 2-1Sample SummaryIndoor/Outdoor/SSD System Stack Sampling - August 2009NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type
BPS1-AR002-INDL-02	8/26/2009	Living Space	PSSD
BPS1-AR002-INDB-02	8/26/2009	Basement	PSSD
BPS1-AR002-ST02	8/25/2009	SSD Stack	PSSD
BPS1-AR002-ST02 DUP	8/25/2009	SSD Stack	PSSD
BPS1-AR003-ST02	8/25/2009	SSD Stack	PSSD
BPS1-AR003-INDL-02	8/26/2009	Living Space	PSSD
BPS1-AR003-INDB-02	8/26/2009	Basement	PSSD
BPS1-AR003-SSB2	8/26/2009	Subslab	PSSD
BPS1-AR004-INDB-02	8/26/2009	Basement	PSSD
BPS1-AR004-ST02	8/25/2009	SSD Stack	PSSD
BPS1-AR006-INDB-02	8/27/2009	Basement	PSSD
BPS1-AR006-INDB-02 DUP	8/27/2009	Basement	PSSD
BPS1-AR006-ST02	8/26/2009	SSD Stack	PSSD
BPS1-AR013-INDB-02	8/26/2009	Basement	PSSD
BPS1-AR013-ST02	8/25/2009	SSD Stack	PSSD
BPS1-AR014-ST02	8/26/2009	SSD Stack	PSSD

Notes:

DUP = Duplicate Sample

INDB = Basement Indoor Air

INDL = Living Space Indoor Air

ODA = Outdoor Air

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

SSD = Sub-slab Depressurization System

ST = SSD system stack sample

Table 3-1Analytical Summary - Home #2NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m ³)	PCE (µg/m³)	TCA (µg/m³)	
INDOOR AIR SAMPLES		NYSDOH Air Gui	deline Value	5	100	100*	
BPS1-AR002-IND2	2/19/2009	Living Space	IS	100	4.9	73	
BPS1-AR002-IND4	3/24/2009	Living Space	PUS	3.1	0.91	4.8	
BPS1-AR002-INDL	6/23/2009	Living Space	PSSD	9.2	0.34 J	25	
BPS1-AR002-INDL-02	8/26/2009	Living Space	PSSD	3.4	0.41 J	0.87	
BPS1-AR002-IND	1/21/2009	Basement	IS	140	7.6	92	
BPS1-AR002-IND3	2/24/2009	Basement	PUS	46	2.1	42	
BPS1-AR002-IND5	3/24/2009	Basement	PUS	4.2	ND	11	
BPS1-AR002-INDB	6/23/2009	Basement	PSSD	61	0.96	77	
BPS1-AR002-INDB-02	8/26/2009	Basement	PSSD	41	1.6	4.2	
SUB-SLAB SOIL VAPOR SAM	IPLES	NYSDOH Sub-Slab Guideline Value		250*	1,000*	1,000*	
BPS1-AR002-SSB	1/21/2009	Subslab	IS	16,000	310	15,000	
SSD STACK SAMPLES							
BPS1-AR002-ST01	6/22/2009	SSD Stack	PSSD	11,000	280	5,900	
BPS1-AR002-ST02	8/25/2009	SSD Stack	PSSD	12,000	460	5,300	
BPS1-AR002-ST02 DUP	8/25/2009	SSD Stack	PSSD	12,000	500	5,400	

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

SSB = Sub-slab Sample

ST = SSD system stack sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

Table 3-2 Analytical Summary - Home #3 NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m ³)	PCE (µg/m³)	TCA (µg/m³)
INDOOR AIR SAMPLES		NYSDOH Air Guid	leline Value	5	100	100*
BPS1-AR003-IND2	2/18/2009	Living Space	IS	110	3.1	74
BPS1-AR003-IND5	3/12/2009	Living Space	PUS	2.8	ND	5.2
BPS1-AR003-IND5 DUP	3/12/2009	Living Space	PUS	3.0	ND	5.5
BPS1-AR003-INDL-01	6/23/2009	Living Space	PSSD	16	2.40	30
BPS1-AR003-INDL-02	8/26/2009	Living Space	PSSD	10	0.43 J	5.2
BPS1-AR003-IND	1/22/2009	Basement	IS	180	4.3	95
BPS1-AR003-IND DUP	1/22/2009	Basement	IS	180	4.2	98
BPS1-AR003-IND3	2/26/2009	Basement	PUS	34	0.75	27
BPS1-AR003-IND3 DUP	2/26/2009	Basement	PUS	31	0.72	27
BPS1-AR003-IND4	3/12/2009	Basement	PUS	32	0.49 J	41
BPS1-AR003-INDB	4/30/2009	Basement	PUS	52	0.38 J	65
BPS1-AR003-INDB DUP	4/30/2009	Basement	PUS	50	0.54	64
BPS1-AR003-INDB-01	6/23/2009	Basement	PSSD	79	1.1	19
BPS1-AR003-INDB-02	8/26/2009	Basement	PSSD	27	1.3	4
SUB-SLAB SOIL VAPOR SAM	PLES	NYSDOH Sub-Slab Guideline Value		250*	1,000*	1,000*
BPS1-AR003-SSB	1/22/2009	Subslab	IS	13,000	130	10,000
BPS1-AR003-SSB2 ⁽¹⁾	8/26/2009	Subslab	PSSD	260	3.7	38
SSD STACK SAMPLES						
BPS1-AR003-ST01	6/22/2009	SSD Stack	PSSD	7,700	92	3,600
BPS1-AR003-ST02	8/25/2009	SSD Stack	PSSD	10,000	170	4,200

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

ST = SSD system stack sample

SSB = Sub-slab Sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

* Value derived from Table 3.3 (Matrix 1 and 2), NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006)

(1) = Sub-slab sample result is questionable, SSD system was in operation

Table 3-3 Analytical Summary - Home #4 NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m ³)	PCE (µg/m ³)	TCA (µg/m³)	
INDOOR AIR SAMPLES		NYSDOH Air Guid	deline Value	5	100	100*	
BPS1-AR004-IND2	1/21/2009	Basement-APT	IS	2.9	2.2	2.7	
BPS1-AR004-IND3	2/18/2009	Living Space	IS	6.1	0.82 J	6.2	
BPS1-AR004-IND5	3/24/2009	Living Space	PUS	1.1	ND	1.2	
BPS1-AR004-IND	1/21/2009	Basement	IS	6.8	ND	6.4	
BPS1-AR004-IND4	2/26/2009	Basement	PUS	1.2	ND	1.6	
BPS1-AR004-INDB-01	6/26/2009	Basement	PSSD	3	0.43 J	4.3	
BPS1-AR004-INDB-01 DUP	6/26/2009	Basement	PSSD	3.3	ND	4.7	
BPS1-AR004-INDB-02	8/26/2009	Basement	PSSD	1.5	ND	0.55	
SUB-SLAB SOIL VAPOR SAM	PLES	NYSDOH Sub-Slab Guideline Value		250*	1,000*	1,000*	
BPS1-AR004-SSB	1/21/2009	Subslab	IS	1,400	42	2,100	
SSD STACK SAMPLES							
BPS1-AR004-ST01	6/25/2009	SSD Stack	PSSD	160	2	190	
BPS1-AR004-ST01 DUP	6/25/2009	SSD Stack	PSSD	160	1.7	180	
BPS1-AR004-ST02	8/25/2009	SSD Stack	PSSD	360	31	210	

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

ST = SSD system stack sample

SSB = Sub-slab Sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

Table 3-4 Analytical Summary - Home #6 NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m³)	PCE (µg/m³)	TCA (µg/m³)	
INDOOR AIR SAMPLES		NYSDOH Air Guid	leline Value	5	100	100*	
BPS1-AR006-IND2	2/19/2009	Living Space	IS	6.6	8.8	8.8	
BPS1-AR006-IND4	3/24/2009	Living Space	PUS	1.2	1.6	7.0	
BPS1-AR006-IND	2/19/2009	Basement	IS	43	56	40	
BPS1-AR006-IND3	2/26/2009	Basement	PUS	2.1	2.4	2.4	
BPS1-AR006-INDB-01	6/25/2009	Basement	PSSD	13	2.7	50	
BPS1-AR006-INDB-02	8/27/2009	Basement	PSSD	13	6.8	2.6	
BPS1-AR006-INDB-02 DUP	8/27/2009	Basement	PSSD	14	7.7	2.8	
SUB-SLAB SOIL VAPOR SAM	PLES	NYSDOH Sub-Slab	Guideline Value	250*	1,000*	1,000*	
BPS1-AR006-SSB	2/19/2009	Subslab	IS	740	650	1,600	
SSD STACK SAMPLES							
BPS1-AR006-ST01	6/24/2009	SSD Stack	PSSD	600	890	490	
BPS1-AR006-ST02	8/26/2009	SSD Stack	PSSD	720	1,600	550	

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

ST = SSD system stack sample

SSB = Sub-slab Sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

Table 3-5 Analytical Summary - Home #13 NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m³)	PCE (µg/m³)	TCA (µg/m³)	
INDOOR AIR SAMPLES		NYSDOH Air Guid	deline Value	5	100	100*	
BPS1-AR013-IND2	2/26/2009	Living Space	IS	ND	0.58 J	0.9 J	
BPS1-AR013-IND	2/26/2009	Basement	IS	1.5	0.56	2.3	
BPS1-AR013-IND3	3/24/2009	Basement	PUS	0.50	ND	1.2	
BPS1-AR013-INDB-01	6/25/2009	Basement	PSSD	1.9	0.28 J	0.32 J	
BPS1-AR013-INDB-02	8/26/2009	Basement	PSSD	0.67	0.43 J	ND	
SUB-SLAB SOIL VAPOR SAM	PLES	NYSDOH Sub-Slab Guideline Value		250*	1,000*	1,000*	
BPS1-AR013-SSB	2/26/2009	Subslab	IS	230	11	420	
BPS1-AR013-SSB DUP	2/26/2009	Subslab	IS	250	12	440	
SSD STACK SAMPLES							
BPS1-AR013-ST01	6/24/2009	SSD Stack	PSSD	70	68	84	
BPS1-AR013-ST02	8/25/2009	SSD Stack	PSSD	48	8.6	58	

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

ST = SSD system stack sample

SSB = Sub-slab Sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

Table 3-6 Analytical Summary - Home #14 NWIRP Bethpage, New York

Sample ID	Date Collected	Sample Type	Event Type	TCE (µg/m³)	PCE (µg/m³)	TCA (µg/m³)
INDOOR AIR SAMPLES		NYSDOH Air Guid	eline Value	5	100	100*
BPS1-AR014-IND2	3/11/2009	Living Space	IS	0.73	0.36 J	1.3
BPS1-AR014-IND	3/11/2009	Basement	IS	1.9	0.46 J	2.6
BPS1-AR014-IND3	3/25/2009	Basement	PUS	ND	ND	0.41 J
SUB-SLAB SOIL VAPOR SAMPLES		NYSDOH Sub-Slab Guideline Value		250*	1,000*	1,000*
BPS1-AR014-SSB	3/11/2009	Subslab	IS	290	15	970
SSD STACK SAMPLES						
BPS1-AR014-ST01	6/24/2009	SSD Stack	PSSD	88	13	110
BPS1-AR014-ST02	8/26/2009	SSD Stack	PSSD	30	10	43

Notes:

TCE = Trichloroethene

PCE = Tetrachloroethene

TCA = 1,1,1-Trichloroethane

INDB = Basement indoor air sample

INDL = Living Space indoor air sample

IS = Initial Sampling

PUS : Post Air Purification Unit Startup Sampling

PSSD = Post SSD System Startup Sampling

ST = SSD system stack sample

SSB = Sub-slab Sample

µg/m³ : micrograms per cubic meter

J : Estimated Value

BOLD = Concentration exceeds NYSDOH Guideline value

Table 3-7 Analytical Summary - Outdoor Air Sampling NWIRP Bethpage, New York

Sample ID	BPS1-AR002-ODA2	BPS1-AR013-ODA2	BPS1-AR003-ODA2	BPS1-AR006-ODA3	Frequency of	Range of
Sample Collection Date	20090826	20090826	20090826	20090827	Detections	Detections
Volatile Organics (ug/m ³)						
1,1,1-TRICHLOROETHANE	0.39 J	0.47 U	0.37 J	0.55 U	2 of 4	ND - 0.39 J
1,1-DICHLOROETHANE	0.74 U	0.69 U	0.77 U	0.81 U	0 of 4	ND
1,1-DICHLOROETHENE	0.72 U	0.68 U	0.76 U	0.8 U	0 of 4	ND
1,2-DICHLOROETHANE	0.74 U	0.69 U	0.77 U	0.81 U	0 of 4	ND
CIS-1,2-DICHLOROETHENE	0.72 U	0.68 U	0.76 U	0.8 U	0 of 4	ND
TETRACHLOROETHENE	0.37 J	0.33 J	0.31 J	0.39 J	4 of 4	0.31 J - 0.39 J
TRANS-1,2-DICHLOROETHENE	0.72 U	0.68 U	0.76 U	0.8 U	0 of 4	ND
TRICHLOROETHENE	0.73	0.46 U	0.4 J	0.31 J	3 of 4	ND - 0.73
VINYL CHLORIDE	0.47 U	0.44 U	0.49 U	0.51 U	0 of 4	ND

NOTES:

Sample collection date indicates the day of collection. Samples were collected over a 24 hour period and represent up-wind outdoor air quality to support indoor air testing. µg/m³ = micrograms per cubic meter of air

U : Compound Analyzed for but not detected above the reporting limit.

J : Estimated Value

Table 3-8 Outdoor Air Evaluation NWIRP Bethpage, New York Page 1 of 2

Sample ID	BPS1-OD	A100	BPS1-OD	A101	BPS1-OD	A102	BPS1-OD	A103	BPS1-OD	A104	BPS1-O	DA105
Sample Collection Date	200908	25	200908	325	200908	25	200908	325	200908	325	20090	826
Volatile Organics (µg/m ³)												
1,1,1-TRICHLOROETHANE	0.49	U	0.5	U	0.49	U	0.48	U	0.48	U	0.	5 U
1,1-DICHLOROETHANE	0.72	U	0.74	U	0.72	U	0.71	U	0.71	U	0.74	4 U
1,1-DICHLOROETHENE	0.71	U	0.72	U	0.71	U	0.69	U	0.69	U	0.72	2 U
1,2-DICHLOROETHANE	0.72	U	0.74	U	0.72	U	0.71	U	0.71	U	0.74	4 U
CIS-1,2-DICHLOROETHENE	0.71	U	0.72	U	0.71	U	0.69	U	0.69	U	0.72	2 U
TETRACHLOROETHENE	0.3	J	0.35	J	6.9		0.37	J	0.36	J	0.6	2 U
TRANS-1,2-DICHLOROETHENE	0.71	U	0.72	U	0.71	U	0.69	U	0.69	U	0.72	2 U
TRICHLOROETHENE	0.48	U	0.49	U	0.48	U	0.47	U	0.47	U	0.4	ЭU
VINYL CHLORIDE	0.46	U	0.47	U	0.46	U	0.45	U	0.45	U	0.4	7 U
Meterological Conditions												
Prominent Wind Direction	North/Calm		North/Calm		North/Calm		North/Calm		North/Calm		SW	
Average Wind Speed	0 - 3.5 mph		0 - 3.5 mph		0 - 3.5 mph		0 - 3.5 mph		0 - 3.5 mph		7.6 mph	
Average Temperature	68.6 °F		68.6 °F		68.6 °F		68.6 °F		68.6 °F		76.1 °F	
	Corner of Sy	camore	Corner of Ma	aple	Corner of Ma	ple	Corner of Sy	camore	Center of res	sidential	Corner of S	ycamore
Sample Location	Avenue and	10th	Avenue and	10th	Avenue and	11th	Avenue and	11th	neighborhoo	d	Avenue and	l 10th
	Street		Street		Street		Street		-		Street	

Notes

Sample collection date indicates the day of collection. Samples were collected over a 4 hour period.

µg/m³ : micrograms per cubic meter of air

U: Compound Analyzed for but not detected above the reporting limit.

J : Estimated Value

August 25, 2009: Wind direction ranged from north/northwest to northeast and had a speed that ranged from calm to 3.5 mph

August 25, 2009: Temperature ranged from 66 to 71.1°F

August 26, 2009: Wind direction ranged from west/southwest to south/southwest and had a speed that ranged from 6.9 to 9.2 mph

August 26, 2009: Temperature ranged from 71.6 to 80.1°F

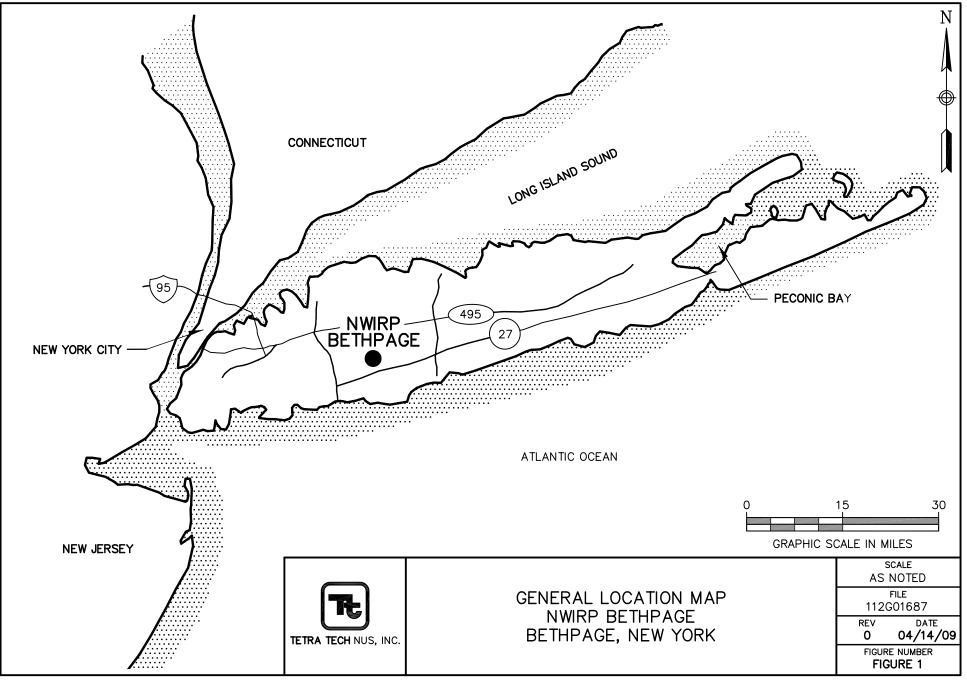
Table 3-8 Outdoor Air Evaluation NWIRP Bethpage, New York Page 2 of 2

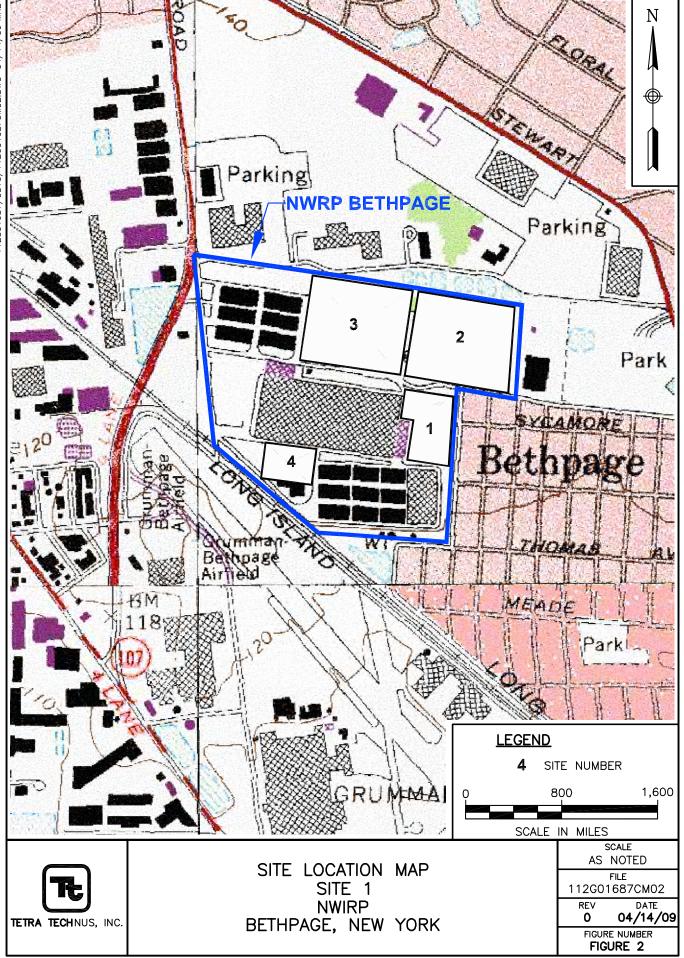
Sample ID	BPS1-OD	A106	BPS1-OD	A107	BPS1-OD	A108	BPS1-OD	A109	Frequency of	Range of
Sample Collection Date	200908	26	200908	326	20090826		20090826		Detections	Detections
Volatile Organics (µg/m ³)										
1,1,1-TRICHLOROETHANE	0.5	U	0.51	U	0.51	U	2.8		1 of 10	ND - 2.8
1,1-DICHLOROETHANE	0.74	U	0.76	U	0.76	U	0.83	U	0 of 10	ND
1,1-DICHLOROETHENE	0.72	U	0.74	U	0.74	U	0.82	U	0 of 10	ND
1,2-DICHLOROETHANE	0.74	U	0.97		0.76	U	0.83	U	1 of 10	ND - 0.97
CIS-1,2-DICHLOROETHENE	0.72	U	0.74	U	0.74	U	0.82	U	0 of 10	ND
TETRACHLOROETHENE	0.3	J	1.0		0.45	J	7.7		9 of 10	ND - 7.7
TRANS-1,2-DICHLOROETHENE	0.72	U	0.74	U	0.74	U	0.82	U	0 of 10	ND
TRICHLOROETHENE	0.49	U	0.5	U	0.5	U	14		1 of 10	ND - 14
VINYL CHLORIDE	0.47	U	0.48	U	0.48	U	0.53	U	0 of 10	ND
Meterological Conditions										
Prominent Wind Direction	SW		SW		SW		SW			
Average Wind Speed	7.6 mph		7.6 mph		7.6 mph		7.6 mph			
Average Temperature	76.1 °F		76.1 °F		76.1 °F		76.1 °F			
	Corner of Ma	ple	Corner of Ma	aple	Corner of Sy	camore	Center of res	idential		
Sample Location	Avenue and	10th	Avenue and	11th	Avenue and	11th	neighborhoo	d		
	Street		Street		Street					

Notes

Sample collection date indicates the $\mu g/m^3$: micrograms per cubic meter U : Compound Analyzed for but not

J : Estimated Value


August 25, 2009: Wind direction rar


August 25, 2009: Temperature ranc

August 26, 2009: Wind direction rar

August 26, 2009: Temperature ranç

FIGURES

APPENDIX A

AIR SAMPLING LOG SHEETS

•

``

.

2

÷

							Page_1_ of
Project Site Name:	N	WIRP Bethpa	age	Sample ID No	.:	BPS1-AR	002-INDB-
Project No.:		112G02019		Sample Locat	tion:	Homesta	Basement
C.O.C. No.:				Sampled By:		Runs	
SAMPLING DATA:							
Date: 8/25/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0935		(Visual)	(S.U.)	(°C)	(e)	(%)	
Method: Sonna		0-5 mph	South	75°F	30	69	
		· · · · ·		·			
Summa Canister #	356	38					
Filter Type/Rate	2441						
	Time	Date					
Start Time Vacuum			-77	in Hg			
End Time Vacuum	0940	8/25/09	-33 -9,0	in Hg			
End Time Vacuum	000	8/26/09	1,0	ming	1		
He check	Start	Stop	Reading]			
A/A			$ \rightarrow $	Ĺ			
Purge Data	Start	Stop					
NA							
PID Readings	ppm	Volume					
NA							
Notes:							1
* First same	sle collei	ted aft	er APL	h was mal	ed into	more cen	stral

location in basement

							Page_1	_ of1_
Project Site Name:	N	WIRP Bethpa	-	Sample ID No		BP52 - AROOD - INOL -02 In Hom # 2 Living Space		
Project No.:		112G02019	t 	Sample Locat	lion:	th Hom 7	C L Loui	hg pace
C.O.C. No.:				Sampled By:		<u>Ens</u>		1
SAMPLING DATA:			74471	A I . I		Deletive	1	
Date: 8/25/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 0938		(Visual)	(S.U.)	(°C)		(%)		-
Method: Summe		0-5mph	South	75°F	30	69		
Summa Canister #	5633	3						
Filter Type/Rate	24hr							
	Time	Date	1					
				in Ua	1) a alacad
Start Time Vacuum	0938	8/25/09	-30	in Hg		01	138 1	20.phaed 1 (LS) · Orouge
End Time Vacuum	0936	8/28/09	-9	in Hg	l	~	API	1(15)
				7				
He check	Start	Stop	Reading	-		l	Light	· aronge
NA			<u> </u>			-	٠ <u>ر</u> ٠	Û
Purge Data	Start	Stop						
N'A			\rightarrow					
PID Readings	ppm	Volume						
NA								
		\rightarrow						
Notes:								

•

							Page1	of 1	
Project Site Name:	N	NIRP Bethpa	age	Sample ID No).:	BPS1-A			
Project No.:		112G02019	-	Sample Locat		Home#2			
C.O.C. No.:		· · · · · · · · · · · · · · · · · · ·		Sampled By:		RUNG/VA	5		
SAMPLING DATA:						ţ			
Date: 8/25/89		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other		
Time: 0942		(Visual)	(S.U.)	(°C)	_ (c)	(%)			
Method: Summa		0-5 mph	South	75°F	30	69			
		i	Puplic	iate				•	
Summa Canister #	#1580	6	#5609	7					
Filter Type/Rate	30mi	5			. (X		-	
	Time	Date			Puplicate - 34	BPS	<u>2-Di</u>	1P-10	1) ime: 2400
Start Time Vacuum	0942	8/25/09	-31	in Hg	- 34			Ŧ	ime: 2400
End Time Vacuum	1027	8/25/09	- 11	in Hg	-6				
				_	•				
He check	Start	Stop	Reading						
NA									i . Ni
Purge Data	Start	Stop		_	6	7 KW HS	s on s	SP syst	tem vionbtar PU
NA					0	· .	۱.		DI
PID Readings	ppm	Volume			20	9 KWHS	on base	meust Al	FUL
Stack	2.3								
Notes:								1	

•

							Page1_ of1_
Project Site Name:	N	WIRP Bethpa	age	Sample ID No	b.:	BPSZ-AR	003-INDB-02
Project No.:		112G02019		_Sample Locat	tion:	Home#2	
C.O.C. No.:				Sampled By:		Rms/U	AS
SAMPLING DATA:							
Date: 8/26/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1728		(Visual)	(S.U.)	(⁰ C)	fer	(%)	
Method: Summa	***********	5-10 Mph	West	85° F	30	40	
		•					
Summa Canister #	3604	5					
Filter Type/Rate	24h	٢					
	Time	Date					
Start Time Vacuum	1830	8/25/09	-31	in Hg			
End Time Vacuum	1728	8/26/09	-8	in Hg			
		-			-		
He check	Start	Stop	Reading				
NA			$ \rightarrow $				
Purge Data	Start	Stop					
NA							
PID Readings	ppm	Volume					
NA							

Notes:

ł

.

à.

•

End Time Vacuum

Tetra Tech NUS, Inc. INDOOR AIR SAMPLING LOG SHEET

-9

Project Site Name: Project No.: C.O.C. No.:	Ν	WIRP Bethpa 112G02019	•	Sample ID No Sample Locat Sampled By:		BP51-A Home#3 Rms/V	Page_1_ of ੴ∞3-∰01 3 A-5	"1_ 0L-C
SAMPLING DATA:								
Date: 8/24/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1732		(Visual)	(S.U.)	(°C)	<u></u> Cer	(%)		
Method: Lumma		5-10mph	West	85°F	32	40		
······································								
Summa Canister #	335	31						
Filter Type/Rate	244	J						
	Time	Date	ŀ					
Start Time Vacuum	1820	8/25/09	-33	in Hg				

in Hg

He check	Start	Stop	Reading
NA			>
Purge Data	Start	Stop	_
N'A			3
PID Readings	ppm	Volume	
NA -			_
		\rightarrow	

1732 8/26/09

Notes:

. . .

9

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpa 112G02019	-	Sample ID No Sample Locat Sampled By:		BPSZ-A Home#2 RUS/VA	same as	5B-02
SAMPLING DATA:			•				
Date: 8/26/69	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1730	(Visual)	(S.U.)	(°C)	(⁰ C)	(%)		
Method: Samma	A DESCRIPTION	·	·				

. . . .

Summa Canister # Filter Type/Rate	170	158 hv		
	Time	Date	I	
Start Time Vacuum	1839	8/25/09	-29,5	in Hg
End Time Vacuum	1730	8/26/09	-85	in Hg

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA		\rightarrow	
PID Readings	ppm	Volume	
GOMI ourge	8,9	1	
120ml purge	0,4	<u> 2</u>	
180ml DWGC	0.8	3	

Notes:

-4

Project Site Name:	NWIRP Bethpa	¥	Sample ID No		BPSI-A		
Project No.: C.O.C. No.:	<u>112G02019</u>	<u></u>	Sample Locat Sampled By:	ion:	Hame. VAS	<u>#3</u>	
SAMPLING DATA:							
Date: 8-25-09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1745	(Visual)	(S.U.)	(⁰ C)	(C E)	(%)		
Method: Summa	O-Smph	SSW	82°F	30	45		

Summa Canister #	3402	29		
Filter Type/Rate	30 mi.	nute		
	Time	Date		
Start Time Vacuum	1748	8-25-09	-34.0	in Hg
End Time Vacuum	1820	8-25-09	-8.5	in Hg

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
Stack	2.0		
			_

2

124 Kw (sub slab system)

.

÷

•

,

						00-0	Page_1_ of +2004 - INOB
Project Site Name:	NWIRP Bethpag		age	Sample ID No		pr>-1-A	-2004 - INDO
Project No.:		112G02019)	Sample Locat	tion:	Basemen	+ Home #4
C.O.C. No.:				Sampled By:		RM5/VA	5
SAMPLING DATA:						*	
Date: 8/26/69		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1523		(Visual)	(S.U.)	(⁰ C)	Cer	(%)	
Method: Summa Ga	Anister	5-15 mph	West	88° F	30	30	
			-				
Summa Canister #	244	79					
Filter Type/Rate	2440						
	Time	Date					
Start Time Vacuum	1538	8/25/09	-32	in Hg			
End Time Vacuum	1523	8/24/09	- 7.5	in Hg			
				_			
He check	Start	Stop	Reading]			
NA			\rightarrow]			
Purge Data	Start	Stop		-			
NA							
PID Readings	ppm	Volume					
NA							
		1					

Notes:

SAME LOCATION AS OTHER INDOOR AIR SAMPLES (Resenced)

*

, **•**

.

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpa 112G02019	ge Sample ID No.: Sample Location: Sampled By:			BPSI-A Home VAS/	of1_ ST c.z_	
SAMPLING DATA:							
Date: 8-みら-09 Time: 1548	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure ([°] C)	Relative Humidity (%)	Other	
Method: Sunnar	5-10 mph	South	84°F	30	42		

.

*

. . . .

Summa Canister #	35975	
Filter Type/Rate	30 Min	
	Timo	

	Time	Date			
Start Time Vacuum	1548	8-28-09	- 33.0	in Hg	
End Time Vacuum	1638	8-25-09	- 9.0	in Hg	

He check	Start	Stop	Reading
NA		>	
Purge Data	Start	Stop	
NA			
PID Readings	ppm	Volume	
Stack	0.0		

.

Tetra Tech NUS, Inc. INDOOR AIR SAMPLING LOG SHEET

	/IRP Bethpa 112G02019	+	Sample ID No Sample Locat		BPS2-A		INDB-02
			Sampled By:	ion:	Home #G		ant
I							
	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure (⁰ C)	Relative Humidity (%)	Other	
	(VISUEI)						
		MADIE	atip				1
12343 24hr		#33	923				
me	Date			Austicat	e B	P51-	DUP-16
303	8/26/09	-32	in Hg in Hg	1303	-31		ſ
			-		* Homed	gunes	requests
art	Stop	Reading			- JAMOL	W/ P	SAIM
art	Stop				10.00		011° C
om	Volume						
	24hr me 303 3930 art art	スイトノ me Date 303 8/26/09 3930 8/27/09 art Stop art Stop	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24}$ $\frac{12343}{24}$ $\frac{12343}{23}$ $\frac{1233923}{11}$ $\frac{1233932}{11}$	$\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{12343}{24h}$ $\frac{1233}{3923}$ $\frac{1303}{1303}$ $\frac{1303}{5930}$ $\frac{5}{27}\frac{109}{-12.5}$ in Hg $\frac{1303}{0980}$ $\frac{1303}{-12.5}$ in Hg $\frac{1303}{0980}$ $\frac{1303}{-12.5}$ in Hg $\frac{1303}{-12.5}$ in Hg $\frac{1303}{-12.5}$ $\frac{1303}{-12.5}$ in Hg $\frac{1303}{-12.5}$ $\frac{1303}{-12$	$\frac{12343}{24hx}$ $\frac{12343}{24hx}$ $\frac{12343}{4733923}$ $\frac{12343}{24hx}$ $\frac{12343}{4733923}$ $\frac{1303}{1303} - 31$ $\frac{1303}{130} - 31$ $\frac{1303}{1303} - 31$ $\frac{1303}{1303} - 31$ \frac	$\frac{12343}{24hr} = \frac{12343}{4733926}$ $\frac{12343}{24hr} = \frac{1233926}{4733926}$ $\frac{12343}{24hr} = \frac{1363}{1363} - \frac{31}{1363} - 3$

- •

Project Site Name: Project No.:	NWIRP Bethpa 112G02019	Sample Location:		BP57-1 Home#	Page_1 A R006- 6		
C.O.C. No.: SAMPLING DATA:			Sampled By:		RMS/V	AS	1
Date: <i>8/26/69</i> Time: 1335	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure	Relative Humidity _(%)	Other	
Method: Summa	5-15 mph	いて	87°F	30	35%		

Ģ.

Summa Canister #	33869
Filter Type/Rate	30min

	Time	Date			
Start Time Vacuum	1300	8/26/09	-34	in Hg	
End Time Vacuum	1335	8/26/69	-9	in Hg	

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA			
PID Readings	ppm	Volume	7
btack	0.7		

						Page1_	_ of1_
Project Site Name:	NWIRP Bethpa	ige	Sample ID No).:	_BP52-	AROI3.	- IND 8-02
Project No.:	112G02019		Sample Locat	tion:	Bisamend	ofton	e#13
C.O.C. No.:			Sampled By:		RMSIUX		
SAMPLING DATA:					/		
- 1 1-0		Wind	Ambient	Barometric	Relative		
Date: 8/26/09	Wind speed	Direction	temperature	Pressure	Humidity	Other	
Time: / 14'54	(Visual)	(S.U.)	(⁰ C)	Let	(%)		
Method: Summa	5-15 mph	West	89°F	30	30		

Summa Canister #	948
Filter Type/Rate	24hr

	Time	Date			
Start Time Vacuum	1454	3/25/09	-30	in Hg	
End Time Vacuum	1455	3/26/09	-7	in Hg	

He check	Start	Stop	Reading
NA			>
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
NA -			

Notes:

.

7

							Page_1_	_of1_
Project Site Name:	N۱	WIRP Bethpa	age	Sample ID No).:	BPSZ-A	RO13-51	TOZ
Project No.:		112G02019		Sample Locat	tion:	Home #1		<u> </u>
C.O.C. No.:				Sampled By:		Rms/VA	ડ	
SAMPLING DATA:						î		
Date: 8/25/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1620'		(Visual)	(S.U.)	(⁰ C)	fer	(%)		
Method: Summa Ca	innister	5-10 nph	South	34°/	30	41		
		Had Swar	a New Gun	ma_				
Summa Canister #	245:	7-1- Sum	#12003					
Filter Type/Rate	30mi	Baci	•					
·	Time	Date	>BAD G	junna Re	Time free 1620 - 3	source Date		
Start Time Vacuum	++++5=	325/09	-34	in Hg	1620 -3	2 8be	5/69	
End Time Vacuum	1652	81/25/09	- 8.0	in Hg			e.	
					-			

5

.

He check	Start	Stop	Reading
NA			>
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
Stack	0.0		

Project Site Name: Project No.: C.O.C. No.:	N	WIRP Bethpa 112G02019	•	Sample ID No Sample Locat Sampled By:		BPSJ-At Hone# KmS/Us	77 2
SAMPLING DATA:		.	Minal	Ambiont	Baramatria	Deletive	
Date: 8/26/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1421		(Visual)	(S.U.)	(⁰ C)	fer	(%)	
Method: Summa		5-10 mph	$\leq \omega$	81°F	30	53	
,.							
Summa Canister #	567						
Filter Type/Rate	4hs						
	Time	Date					
Start Time Vacuum	1010	8/26/09	-32	in Hg			
End Time Vacuum	1421	8/26/09	- 8	in Hg			

ŵ

.

He check	Start	Stop	Reading
NA		>	
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
Stack	6.0		

							Page1_ of
Project Site Name:	N	WIRP Bethpa	age	Sample ID No		B457-A	Page_1_of_
Project No.:		112G02019		Sample Locat	ion:	Home#2,	North central b
C.O.C. No.:				Sampled By:		Rms/Vf	HS
SAMPLING DATA:							
Date: 8/25/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0923		(Visual)	(S.U.)	(°C)	for	(%)	
Method: Suma Car	niste/	0-5 mph	NW	76°F	30	7040	
Summa Canister #	3387	7					
Filter Type/Rate	24h1	<u> </u>					
	Time	Date					
Start Time Vacuum	Dg23	5/25/09	- 34	in Hg			
End Time Vacuum	0934	8/26/09	-8,5	in Hg			
		0/04/01	0,0	9			
He check	Start	Stop	Reading	1			
NA			>				
Purge Data	Start	Stop		-			
NA		·>					
PID Readings	ppm	Volume					
NA							

÷ .

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpa 112G02019	÷	Sample ID No _Sample Locat Sampled By:		BPS2-AR Home #= Rms/VH	3	
SAMPLING DATA:							
Date: 8/26/69	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other	
Time: 1719	(Visual)	(S.U.)	(⁰ C)	<u></u>	(%)		
Method: Sunna	O-5mph	South	81°F	30	45%		

*

.

Summa Canister #	94305
Filter Type/Rate	Zynv

	Time	Date		
Start Time Vacuum	1810	8/25/09	-32	in Hg
End Time Vacuum	1719	8/26/09	-9	in Hg

He check	Start	Stop	Reading
NA			\rightarrow
Purge Data	Start	Stop	
NA			
PID Readings	ppm	Volume	
NA 🔨			

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpa 112G02019	•		Page_1_of <u>BP57-AR006-0k</u> <u>Home#6</u> <u>Rm51WA5</u>		
SAMPLING DATA:						
Date: 8/27/09	Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 0945	(Visual)	(S.U.)	(°C)	(°E)	(%)	Outer
Method: <umma< td=""><td>5-10 mph</td><td>ŚW</td><td>87°F</td><td>30</td><td>35%</td><td></td></umma<>	5-10 mph	ŚW	87°F	30	35%	

÷

	Time	Date			
Start Time Vacuum	1312	8/26/09	-31	in Hg	
End Time Vacuum	0945	8/27/09	-10,5	in Hg	

He check	Start	Stop	Reading
NA			
Purge Dața	Start	Stop	
NA			
PID Readings	ppm	Volume	
MA			
1 • 1 •			

.

Project Site Name: Project No.: C.O.C. No.:	N	WIRP Bethpa 112G02019	-	Sample ID No Sample Locat Sampled By:		BPS2-At	Page_1_of
SAMPLING DATA: Date: 8 - 26 - 09 Time: 1454 Method: Service	,	Wind speed (Visual) ≲いりひ-5w๗	Wind Direction (S.U.) ∠ ∠ √	Ambient temperature (°C) \$74°F	Barometric Pressure (PC)	Relative Humidity (%) 40%	Other
Summa Canister # Filter Type/Rate Start Time Vacuum End Time Vacuum	915 24hj Time 1514 1454	Date 8/25/89 8/26/09	-31	in Hg in Hg			
He check NA Purge Data NA PID Readings NA	Start Start ppm		Reading	24			

÷

.

Notes:

1

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpa 112G02019	•	Sample ID No Sample Locat Sampled By:		NECOMEN RUS/V	r of block
SAMPLING DATA:					¢	
Date: 8/25/09 Time: 1305	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (⁰ C)	Barometric Pressure (⅔≪)	Relative Humidity (%)	Other
Method: Summa Cannister	0-5mph	NNE	72°F	30	80%3	
Summa Canister # 5 <i>5</i> 8 Filter Type/Rate 4	3					

?

.

	Time	Date		
Start Time Vacuum	0859	8/25/09	-29	in Hg
End Time Vacuum	1805	8/25/09	-6	in Hg
	- /			

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA		`	7
PID Readings	ppm	Volume	
$\wedge / /$			
ΛH			

Project Site Name: Project No.: C.O.C. No.:	NWIRP Bethpage Sample ID N <u>112G02019</u> Sample Loca Sampled By:				BPS2-00 SEGINES RMIS/	1 of block	
SAMPLING DATA:	a second contraction of the second						
Date: 8/25/09 Time: \368	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure	Relative Humidity (%)	Other	
Method: Summa	0-5 mph	NNW	72°F	30	30%		
	1779 hr						
Time	e Date						

	Time	Date			
Start Time Vacuum	0905	8/25/09	-33	in Hg	
End Time Vacuum	1308	5/25/09	-815	in Hg	

He check	Start	Stop	Reading
NA -			>
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
NA .			

							Page_1_ of1_
Project Site Name:	N	IWIRP Bethpa	age	Sample ID No).:	BP51-0	
Project No.:		112G02019	•	Sample Location:			er of block
C.O.C. No.:				Sampled By:		RUNS /UA	
SAMPLING DATA:	·						
Date: 8/25/09		Wind speed	Wind Direction	Ambient temperature	Barometric Pressure	Relative Humidity	Other
Time: 1310		(Visual)	(S.U.)	(⁰ C)	Ler	(%)	
Method: Gunna cau	nnister	O-5 mph	NNW	72°F	30	80%	
			<u> </u>				
Summa Canister #	127	.09	1				
Filter Type/Rate	421	/					
	Time	Date					
Start Time Vacuum	0909	8)25/09	-32	in Hg	ĺ		
End Time Vacuum	1310	8/25/09	-7	in Hg			
		· · ·					
He check	Start	Stop	Reading]			
NA		>					
Purge Data	Start	Stop		-			
NA		>					
PID Readings	ppm	Volume					
NA							
			_				
			1				
Notes:			·····				

•

							Page1_ of	
Project Site Name:	N	NWIRP Bethpag		Sample ID No.:		BP52-00A103		
Project No.:		112G02019	-	Sample Locat	tion:	NW corner of block		
C.O.C. No.:		••••		Sampled By:		Rm5/1/		
SAMPLING DATA:						Ĺ		
Date: 8/25/09 Time: 13\2		Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure	Relative Humidity	Other	
Method: Summa		0-5 mph	NNW	7-2°F	30	80%		
Summa Canister # Filter Type/Rate	1487 445 Time	Date						
Start Time Vacuum	0914	8/25/09	-34	in Hg				
End Time Vacuum	1312	8/25/09	-8,5	in Hg				
He check	Start	Stop	Reading]				
NA			\rightarrow					
Purge Data	Start	Stop						
NA		<u> </u>						
PID Readings	ppm	Volume						

٠

÷

PID Readings	ppm	volume
NA		

Project Site Name: Project No.:	NWIRP Bethpa 112G02019	•	Sample ID No Sample Locat		BPS1-1 NE back	Page_1_of_ DOA-104 (yord off Ho	,
C.O.C. No.: SAMPLING DATA:			Sampled By:		Rms/VA		
Date: 8/25/8う Time: 0925	Wind speed (Visual)	Wind Direction (S.U.)	Ambient temperature (°C)	Barometric Pressure 	Relative Humidity (%)	Other	
Method: Summa	O-5mph	NNW	72°F	30 30	80%		

4

.

d.

Summa Canister #	24482
Filter Type/Rate	461

	Time	Date			
Start Time Vacuum	0925	8/25/09	-34	in Hg	
End Time Vacuum	1313	8/25/69	, ,	in Hg	

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA			2
PID Readings	ppm	Volume	
NA			

							Page1_ of1_
Project Site Name:	N	WIRP Bethpa	age	Sample ID No.:		BP51-00)A105
Project No.:		112G02019		Sample Location:			of block
C.O.C. No.:				Sampled By:		RMS/V,	
SAMPLING DATA:						· · · · · · · · · · · · · · · · · · ·	
			Wind	Ambient	Barometric	Relative	
Date: 8/26/09		Wind speed	Direction	temperature	Pressure	Humidity	Other
Time: 1634		(Visual)	(S.U.)	(⁰ C)		(%)	
Method: Sunna		5-10mph	$_\omega$	86°F	30	40%	
		1					
Summa Canister #	2526	,5					
Filter Type/Rate	4hr						
	Time	Date	1				
Start Time Vacuum	1243	8/26/09	- 34	in Hg	l		
End Time Vacuum	1634	x 4	-9,5	in Hg			
Ling time vacuum	1071	8/26/09	<u></u>	ming			
He check	Start	Stop	Reading	1			
NA				*			
Purge Data	Start	Stop		3			
NA		>					
PID Readings	ppm	Volume					
NA	1-1	1					
1014		-					
Notes:			l				
SE Corner o	f 10th o	ind Sycar	nove Au	e			
		/					

Project Site Name: Project No.: C.O.C. No.: SAMPLING DATA:	112G02019 Sample Location: No.: Sampled By:			Page_1_of_1_ BP51-OBA106 SE comer of block Rms/VAS				
Date: 8)26/09 Time: 1636 Method: Summa		Wind speed (Visual) 5-10 Mph	Wind Direction (S.U.) (Ambient temperature (°C) 86° F	Barometric Pressure (Per) 30	Relative Humidity (%) 4 0%	Other	
Summa Canister # Filter Type/Rate	9948 4ks Time	Date						

ž.

	TIME	Date	i		
Start Time Vacuum	1246	8/26/09	-32	in Hg	
End Time Vacuum	1636	8/26/09	-8	in Hg	
		, , , , , , , , , , , , , , , , , , , ,			

He check	Start	Stop	Reading
NA			
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
NA			

Notes:

NW corner of 10th and maple Ave

•

*

.

Project Site Name: Project No.: C.O.C. No.: SAMPLING DATA:	N	WIRP Bethp 112G02019	-	Sample ID No Sample Loca Sampled By:		BPSZ-	Page_1_of _1_ 00A-107 er of block VAS
Date: 8/26/69 Time: 1639 Method: Sunna	······································	Wind speed (Visual) 5-10 mph	(S.U.)	Ambient temperature (⁰ C) 86°F	Barometric Pressure 30	Relative Humidity (%)	Other
Summa Canister # Filter Type/Rate	94) 4w	4 Date					
Start Time Vacuum End Time Vacuum	1249 1639	8/26/09 8/26/09	- 32 -9	in Hg in Hg			
He check	Start	Stop	Reading				
Purge Data NA PID Readings	Start	Stop Volume		I			

Notes:

NA -

Project Site Name: Project No.: C.O.C. No.: SAMPLING DATA:	N	WIRP Bethp 112G02019	•	Sample ID No Sample Loca Sampled By:				
Date: 8/26/09 Time: 1641 Method: 500009		Wind speed (Visual) 5-10 mph	Wind Direction (S.U.)	Ambient temperature (°C) 86°F	Barometric Pressure Jet 30	Relative Humidity (%) 40%	Other	
Summa Canister # Filter Type/Rate	343 4h/	64						
Start Time Vacuum End Time Vacuum	Time 25 641	Date 8/26/09 8/26/09	- 34 - 6	in Hg in Hg				
He check NA	Start	Stop	Reading					

*

.

NH			
Purge Data	Start	Stop	
NA		>	
PID Readings	ppm	Volume	
NA			

							Page_1_o	f1_
Project Site Name:	N	WIRP Bethpa	age	Sample ID No) .:		00A-109	
Project No.:		112G02019		Sample Locat	tion:	Home #6,	SE corner	of backy
C.O.C. No.:				Sampled By:		Rms/VA	5	,
SAMPLING DATA:						J		
Date: 8/26/09			Wind	Ambient	Barometric	Relative	01	
		Wind speed	Direction	temperature	Pressure	Humidity	Other	
Time: 1707		(Visual)	(S.U.)	(°C)	fer	(%) 40%		
Method: Jumma		5-10 mph	W	86°F	30	700		
Cumma Caniatar #	20/							
Summa Canister # Filter Type/Rate	336							
Filler Type/Hale	4hr							
	Time	Date						
Start Time Vacuum	1310	8/26/09	-32	in Hg				
End Time Vacuum	1644	8/26/09	- 14,5	in Hg 🛛 🗕	15			
	1789		-13	_	. /			
He check	Start		Reading]				
NA			~~>					
Purge Data	Start	Stop		-				
NA		├ ───>						
PID Readings	ppm	Volume						
NA								
	· · · ·	<u> </u>						
Notes:								

÷

.

APPENDIX B

CHAIN OF CUSTODY RECORDS

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local. State, Federal, retional, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnity Air Toxics Limited against any claim, domand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hotine (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page / of 3

Collected b	Inager <u>Dave Bravack</u> Ny: (Print and sign) <u>Robert Sok</u> Fetra Tech <u>NUS Inc</u> Email <u>rob.s</u>	oketete te	÷ ≕	Proje P.O. #	ct Info:			Around me: omal	Lat Visc Press Date:	urized by	
Address <u>57</u>	57)446-4904 Fax	ate VA zip <u>8.3.</u>	\$02		st # <u>CTO-</u> st Name <u>BeH</u> w	<u>WE86</u> Resesit <u>e 2 svi</u>		ush day ^{waiy}	· · · ·	urization N _e H	
Lab I.D.	Field Sample I.D. (Location)	Can #		a te lection	Time of Collection	Analyses Reques	ted	Canis Initial	ter Pres	Sure/Vac	1
014	BP51-AR002 - 5TØ2	1586	3h	\$109	1027	*10-15 -> 5H	e	-31	$-\eta$		
··· · · · · · · · · · · · · · · · · ·	8P51-00A190	5583	8/2	5/09	1305	Shortlist a		-29	-6	·	
	BP51-00A101	10779	8/2	<u>5/09</u>	1308	Nine compou	inds	133	-8,5		· .
	<u>BP52-DUP-101</u>	5609	<u> </u>	1	2400			-34	-6		
	BP52-00A 102	12709		5 <u>/09</u>	1310			-32	-7		<u>}</u> .
	BP52-00A 103	14872		· · ·	1312			-34	-8,5	· · ·	
	BPSI-ODA 104	24482			1313	·		-34	-8	111 112 112 112 112 112 112 112 112 112	
	BP52 - AR004 - STO2 BP51 - AR013 - STO2	35975	<u> </u>	15/09 -1-0	1638	.		- 33	-9		. .
	BP51 - AROO3 - STO2	<u>12003</u> 34029		5/09 < 1.9				-32	-8 -8,5	· · · ·	
Relinquish	ed by: (sonatice) Date/Time Ro: 8/27/09 !100	caived by: (signat	ture) 🗍	ate/Tin	1820 Sen AIL	Bilioq 915	i	-34	01)	<u> </u>	<u> </u>
Relinquish		ceived by: (signal				Cusiddy Se	als: Inta	act2	 Work ()nder#	
Use Only	Ted 8x		M		Good	Yes No				908	66

Sample Transportation Notice Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local. State. Federal, national, and international taws. regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold barmless, defend, and indexuite Air Toxics Limited assumes to take the same and ordinances of these samples. Relinquishing signature also indicates agreement to hold barmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, or any kind, related to the collection, handling, or shipping of samples, D.O.T. Ectine (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020 Page 2 of 3

	ager <u>Dave Bowack</u>		≥ [Proje	ct Info:				Around me:	L	only urized by	:.
	: (Print and Sign) Robert S2K		<u> </u>	P.O. #					ormal	Date:		· · · ·
1		eV <u>/4</u> _zip		Projec	t#_ <u></u>	WEOD		X RI	,	Press	urization	Gas:
Phone <u>757</u>	-466-4904 Fax			Рюјес	: Name <u> ВоН</u> и	page Site 2 :	<u>suc</u>		<u>day</u> . moty	÷ .	N _≥ H	le :
Lab I.D.	Field Sample I.D. (Location)	Can #	Da of Coll		Time			- 1)	ssure/Vac	
		+	Di Con	ection	of Collection	Analyses F	leques	sted	(nitial	Final	Receipt	Final
IIA C	3P52-AR002-00A2	<u>33879</u> '	8/20	6/09		*TO-15	_57+	e	-34	-8,5		
	1951-AR002-INDB-02	35638	8/26	<u>/09</u>	0935	Shortli	\$10	آ	-33	-9		1.
	P51-AR002-INDL-02	5633	8/2	0/09	0936	nine or	you	nds	-30	9	î	
<u>114</u> B	151-AR006-STO2	33864	8/2	409			•		-34	-9	1 1 4 	
	151 - ARO14 - STOZ	5671	8/24	6/09	1421				-32	-8		1
LA B	152 - ARO13 - 00A2	915	<u> </u>	109	1454				-31	-6	· · · · · · · · · · · · · · · · · · ·	
17A B	<u>PS2 - AROI3 - INDB-02</u>	948	8/26	109	1455	•			-30	-7		
18# B	181 - AROOM - IND8-02	24479	ช/ม	0109	1523	:			-32	-7.5	· · · · · · · · · · · ·	
	5851 - 010A 105	25265	8/26	109				-	- 34	-9.5		
2014 C	3PS1 - 00A 106		8/26		1636			~	-32	-8		
Relinquished	by: (signature) Date/Time Rece	ived by: (signatu	ure) D	ate (In	<u>en An</u> e	Notes	15	· • · • · •				· <u>·····</u> ···
Lab Use T	Shipper Name	-) : 7	Condition	Custo				<u> </u>	Drder #	
	20. VX	N	H	16	<u>toox</u>	(Yes)	No	No	ne	0	908	<u>662</u>
10												

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local. State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxos Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold hamiless, defend, and indomnify Air Toxos Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Holline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Page <u>3</u> of <u>3</u>

Collected by:	ager <u>Lave</u> Brayacke (Frin: and Sgn)_Robert <u>Sxk</u> Ha Tech Mus Inc Email			Projec	et info:			Around <u>me:</u> ormal	Lab Use Pressi Date:	urized by	•
Address	City <u>Ab Folk</u> _stat City <u>Ab Folk</u> _stat <u>7-466-4904</u> Fax	e <u>VA</u> zip			* LT <u>D-</u> Name <u>Reth</u> e	WE06 1985-17515	⊠ Ru _ <u>7-</u> ⁄	ish <u>day</u> recity	Pressi	urization	
Lab I.D.	Field Sample I.D. (Location)	Can #	-	ate llection	Time of Collection	Analyses Reques	sted	Canis Initial	ter Pres Final	sure/Vac	
DIA B	P57-00A 107	9414	3/2	6/69	1639	* 10-15 50	2	-32	-9		(ps
	PS1-00A 108	34364	<u> </u>		1641	shortlist of		-34	-6	· · · ·	· ·
23A B	PS2-010A-109	33653	8/2	6/09	1704	nine composi		_ '	-13	t e tra	
24A B	PS1 - DUP102			•	2400	•		-31	-12	1	
25A B	132 - AROO3-00A2	94305			1719			-32	-9		· ·
ant B	P52 - AR003-INDB-02	36045	8/2	6/09	1728			-31	-8	:	 · .
27A B	R51-AR003-5582	17958	8/8	16/09	1730			-29,5	-8.5		<
28A B	151 - AROO3 - INDL-02	33531	8/8	26/09	1732			~ 33	-9		
29A B	PS2 - AROD6 - TNDB-02	12343	8/0	1/09	6930			-32	-12.5		- <u>-</u>
30A A	PS2-AR006-00A3	20998	8/3	17/09	0945				-10.5		
Relinquished	by: (signature) Date/Time Rec	eived by: (signat	 ture)	Date/Tim Date/Tim	n <u>AR</u> o	Custody Se				Dicker #	

APPENDIX C

DATA ANALYTICAL REPORTS

Client Sample ID: BPS1-AR002-INDB-02 Lab ID#: 0908662A-12A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090709 1.83	Date of Collection: 8/26/09 9:35:00 AM Date of Analysis: 9/7/09 02:12 PM				
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
1,1,1-Trichloroethane	0.092	0.77	0.50	4.2		
Trichloroethene	0.092	7.6	0.49	41		
Tetrachloroethene	0.092	0.23	0.62	1.6		
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected		
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected		
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected		
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected		
1,2-Dichloroethane	0.18	Not Detected	0.74	Not Detected		
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected		

	, ,	Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	108	70-130
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	97	70-130

Client Sample ID: BPS1-AR002-INDL-02 Lab ID#: 0908662A-13A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090710 1.91	Date of Collection: 8/26/09 9:36:00 AM Date of Analysis: 9/7/09 02:53 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
1,1,1-Trichloroethane	0.096	0.16	0.52	0.87		
Trichloroethene	0.096	0.63	0.51	3.4		
Tetrachloroethene	0.096	0.061 J	0.65	0.41 J		
Vinyl Chloride	0.19	Not Detected	0.49	Not Detected		
1,1-Dichloroethene	0.19	Not Detected	0.76	Not Detected		
1,1-Dichloroethane	0.19	Not Detected	0.77	Not Detected		
cis-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected		
1,2-Dichloroethane	0.19	Not Detected	0.77	Not Detected		
trans-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected		

J = Estimated value.

	,	Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	106	70-130	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	78	70-130	

Client Sample ID: BPS1-AR002-ST02 Lab ID#: 0908662A-01A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	d090720 22.3	Date of Collection: 8/25/09 10 Date of Analysis: 9/7/09 08:11		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	11	Not Detected	28	Not Detected
1,1-Dichloroethene	11	14	44	54
1,1-Dichloroethane	11	14	45	56
cis-1,2-Dichloroethene	11	Not Detected	44	Not Detected
1,1,1-Trichloroethane	11	970	61	5300
Trichloroethene		2300	60	12000
trans-1,2-Dichloroethene	11	Not Detected	44	Not Detected
1,2-Dichloroethane	11	Not Detected	45	Not Detected
Tetrachloroethene	11	68	76	460

Surrogates	%Recovery	Method Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	91	70-130

Client Sample ID: BPS1-DUP-101 Lab ID#: 0908662A-04A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:			e of Collection: 8/25/09 12:00:00 PM e of Analysis: 9/7/09 08:40 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	8.0	Not Detected	20	Not Detected
1,1-Dichloroethene	8.0	14	32	56
1,1-Dichloroethane	8.0	13	32	54
cis-1,2-Dichloroethene	8.0	Not Detected	32	Not Detected
1,1,1-Trichloroethane	8.0	980	44	5400
Trichloroethene	8.0	2300	43	12000
trans-1,2-Dichloroethene	8.0	Not Detected	32	Not Detected
1,2-Dichloroethane	8.0	Not Detected	32	Not Detected
Tetrachloroethene	8.0	73	55	500

	,	Method
Surrogates	%Recovery	Limits
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	108	70-130
4-Bromofluorobenzene	92	70-130

Client Sample ID: BPS1-AR003-SSB2 Lab ID#: 0908662B-27A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090411 1.83			lection: 8/26/09 5:30:00 PM alysis: 9/4/09 08:31 PM	
Compound	Rpt. Limit Amount (ppbv) (ppbv)		Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.092	7.0	0.50	38	
Trichloroethene	0.092	49	0.49	260	
Tetrachloroethene	0.092	0.55	0.62	3.7	
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,1-Dichloroethane	0.18	0.13 J	0.74	0.51 J	
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,2-Dichloroethane	0.18	1.0	0.74	4.2	
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	110	70-130

Client Sample ID: BPS1-AR003-INDB-02 Lab ID#: 0908662B-26A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090324 1.79				
Compound	Rɒt. Limit Amount (ppbv) (ppbv)		Rpt. Limit Am (ug/m3) (ug		
1,1,1-Trichloroethane	0.090	0.72	0.49	4.0	
Trichloroethene	0.090	5.1	0.48	27	
Tetrachloroethene	0.090	0.19	0.61	1.3	
Vinyl Chloride	0.18	Not Detected	0.46	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.71	Not Detected	
1,1-Dichloroethane	0.18	Not Detected	0.72	Not Detected	
cis-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected	
1,2-Dichloroethane	0.18	2.1	0.72	8.5	
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected	

		Method Limits
Surrogates	%Recovery	
4-Bromofluorobenzene	97	70-130
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	94	70-130

Client Sample ID: BPS1-AR003-INDL-02 Lab ID#: 0908662B-28A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090413 1.79	Date of Collection: 8/26/09 5:32 Date of Analysis: 9/4/09 09:41 F		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.090	0.95	0.49	5.2
Trichloroethene	0.090	1.8	0.48	9.9
Tetrachloroethene	0.090	0.063 J	0.61	0.43 J
Vinyl Chloride	0.18	Not Detected	0.46	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.71	Not Detected
1,1-Dichloroethane	0.18	Not Detected	0.72	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected
1,2-Dichloroethane	0.18	0.19	0.72	0.79
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected

J = Estimated value.

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	104	70-130	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	95	70-130	

Client Sample ID: BPS1-AR003-ST02 Lab ID#: 0908662A-10A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 8/25/09 6:20:00 PM of Analysis: 9/7/09 09:13 PM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Vinyl Chloride	5.7	Not Detected	14	Not Detected
1,1-Dichloroethene	5.7	11	23	44
1,1-Dichloroethane	5.7	11	23	44
cis-1,2-Dichloroethene	5.7	Not Detected	22	Not Detected
1,1,1-Trichloroethane	5.7	760	31	4200
Trichloroethene	5.7	1900	31	10000
trans-1,2-Dichloroethene	5.7	Not Detected	22	Not Detected
1,2-Dichloroethane	5.7	Not Detected	23	Not Detected
Tetrachloroethene	5.7	26	39	170

Container Type: 6 Liter Summa Canister (100% Certified)

	%Recovery	Method Limits
Surrogates		
Toluene-d8	107	70-130
1,2-Dichloroethane-d4	107	70-130
4-Bromofluorobenzene	91	70-130

.

Client Sample ID: BPS1-AR004-INDB-02 Lab ID#: 0908662A-18A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090714 1.71			f Collection: 8/26/09 3:23:00 PM f Analysis: 9/7/09 05:45 PM	
Compound	Rɒt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.086	0.10	0.47	0.55	
Trichloroethene	0.086	0.27	0.46	1.5	
Tetrachloroethene	0.086	Not Detected	0.58	Not Detected	
Vinyl Chloride	0.17	Not Detected	0.44	Not Detected	
1,1-Dichloroethene	0.17	Not Detected	0.68	Not Detected	
1,1-Dichloroethane	0.17	Not Detected	0.69	Not Detected	
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected	
1,2-Dichloroethane	0.17	0.29	0.69	1.2	
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected	

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	103	70-130
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	90	70-130

Client Sample ID: BPS1-AR004-ST02 Lab ID#: 0908662A-08A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:			of Collection: 8/25/09 4:38:00 PM of Analysis: 9/8/09 10:52 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.092	38	0.50	210
Trichloroethene	0.092	67	0.49	360
Tetrachloroethene	0.092	4.6	0.62	31
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected
1,1-Dichloroethene	0.18	0.41	0.72	1.6
1,1-Dichloroethane	0.18	0.34	0.74	1.4
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
1,2-Dichloroethane	0.18	5.8	0.74	24
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected

Surrogates	%Recoverv	Method Limits
Juniyales	/orcecovery	Linius
4-Bromofluorobenzene	109	70-130
1,2-Dichloroethane-d4	111	70-130
Toluene-d8	79	70-130

Client Sample ID: BPS1-AR006-ST02 Lab ID#: 0908662A-14A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			Date of Collection: 8/26/09 1:35:00 PM Date of Analysis: 9/8/09 11:23 AM Rpt. Limit Amount (ug/m3) (ug/m3)	
Compound				
1,1,1-Trichloroethane	0.44	100	2.4	550
Trichloroethene	0.44	130	2.4	720
Tetrachloroethene	0.44	230	3.0	1600
Vinyl Chloride	0.88	Not Detected	2.2	Not Detected
1,1-Dichloroethene	0.88	1.7	3.5	6.8
1,1-Dichloroethane	0.88	1.3	3.5	5.3
cis-1,2-Dichloroethene	0.88	2.9	3.5	12
1,2-Dichloroethane	0.88	Not Detected	3.5	Not Detected
trans-1,2-Dichloroethene	0.88	0.62 J	3.5	2.5 J

J = Estimated value.

Surrogates	%Recoverv	Method Limits
4-Bromofluorobenzene	107	70-130
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	95	70-130

Client Sample ID: BPS1-AR013-INDB-02 Lab ID#: 0908662A-17A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	0000110		Date of Collection: 8/26/09 2:55:00 PM Date of Analysis: 9/7/09 05:06 PM	
Compound	Rot. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.088	Not Detected	0.48	Not Detected
Trichloroethene	0.088	0.12	0.47	0.67
Tetrachloroethene	0.088	0.063 J	0.59	0.43 J
Vinyl Chloride	0.18	Not Detected	0.45	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.69	Not Detected
1,1-Dichloroethane	0.18	Not Detected	0.71	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected
1,2-Dichloroethane	0.18	0.27	0.71	1.1
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected

J = Estimated value.

,		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	103	70-130
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	103	70-130

Client Sample ID: BPS1-AR013-ST02 Lab ID#: 0908662A-09A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:			of Collection: 8/25/09 4:52:00 PM of Analysis: 9/7/09 12:08 PM	
Compound			Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.092	11	0.50	58
Trichloroethene	0.092	9.0	0.49	48
Tetrachloroethene	0.092	1.3	0.62	8.6
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected
1,1-Dichloroethene	0.18	0.18	0.72	0.72
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
1,2-Dichloroethane	0.18	0.068 J	0.74	0.27 J
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Limits
4-Bromofluorobenzene	106	70-130
1,2-Dichloroethane-d4	113	70-130
Toluene-d8	96	70-130

Client Sample ID: BPS1-AR014-ST02 Lab ID#: 0908662A-15A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	s090711 1.71			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.086	7.9	0.47	43
Trichloroethene	0.086	5.6	0.46	30
Tetrachloroethene	0.086	1.5	0.58	10
Vinyl Chloride	0.17	Not Detected	0.44	Not Detected
1,1-Dichloroethene	0.17	0.094 J	0.68	0.37 J
1,1-Dichloroethane	0.17	Not Detected	0.69	Not Detected
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected
1,2-Dichloroethane	0.17	0.076 J	0.69	0.31 J
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected

J = Estimated value.

Surrogates	%Recoverv	Method Limits
Surrogates	Altecovery	
4-Bromofluorobenzene	104	70-130
1,2-Dichloroethane-d4	115	70-130
Toluene-d8	99	70-130

Client Sample ID: BPS1-AR006-INDB-02 Lab ID#: 0908662B-29A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090414 2.01	Date of Analysis: 9/4/09 10:36 Limit Amount Rpt. Limit		
Compound	Rpt. Limit (ppbv)			Amount (ug/m3)
1,1,1-Trichloroethane	0.10	0.48	0.55	2.6
Trichloroethene	0.10	2.4	0.54	13
Tetrachloroethene	0.10	1.0	0.68	6.8
Vinyl Chloride	0.20	Not Detected	0.51	Not Detected
1,1-Dichloroethene	0.20	Not Detected	0.80	Not Detected
1,1-Dichloroethane	0.20	Not Detected	0.81	Not Detected
cis-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected
1,2-Dichloroethane	0.20	Not Detected	0.81	Not Detected
trans-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected

	,	Method Limits	
Surrogates	%Recovery		
4-Bromofluorobenzene	99	70-130	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	97	70-130	

Client Sample ID: BPS1-DUP102 Lab ID#: 0908662B-24A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090322 2.06			
Compound	Rpt. Limit (ppbv)			Amount (ug/m3)
1,1,1-Trichloroethane	0.10	0.51	0.56	2.8
Trichloroethene	0.10	2.6	0.55	14
Tetrachloroethene	0.10	1.1	0.70	7.7
Vinyl Chloride	0.21	Not Detected	0.53	Not Detected
1,1-Dichloroethene	0.21	Not Detected	0.82	Not Detected
1,1-Dichloroethane	0.21	Not Detected	0.83	Not Detected
cis-1,2-Dichloroethene	0.21	Not Detected	0.82	Not Detected
1,2-Dichloroethane	0.21	Not Detected	0.83	Not Detected
trans-1,2-Dichloroethene	0.21	Not Detected	0.82	Not Detected

		Method	
Surrogates	%Recovery	Limits	
4-Bromofluorobenzene	102	70-130	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	90	70-130	

Client Sample ID: BPS1-0DA100 Lab ID#: 0908662A-02A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090506 1.79			
Compound	Rɒt. Limit (ppbv)			Amount (ug/m3)
1,1,1-Trichloroethane	0.090	Not Detected	0.49	Not Detected
Trichloroethene	0.090	Not Detected	0.48	Not Detected
Tetrachloroethene	0.090	0.044 J	0.61	0.30 J
Vinyl Chloride	0.18	Not Detected	0.46	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.71	Not Detected
1,1-Dichloroethane	0.18	Not Detected	0.72	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected
1,2-Dichloroethane	0.18	Not Detected	0.72	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected

J = Estimated value.

	ŕ	Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	106	70-130
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	98	70-130

Client Sample ID: BPS1-0DA101 Lab ID#: 0908662A-03A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: DII. Factor:	s090507 <u>1.83</u>	Date of Collection: 8/25/09 1:08:0 Date of Analysis: 9/5/09 12:51 PM			
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)	
1,1,1-Trichloroethane	0.092	Not Detected	0.50	Not Detected	
Trichloroethene	0.092	Not Detected	0.49	Not Detected	
Tetrachloroethene	0.092	0.051 J	0.62	0.35 J	
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected	
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,2-Dichloroethane	0.18	Not Detected	0.74	Not Detected	
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	

J = Estimated value.

Surrogates	, %Recovery	Method Limits
4-Bromofluorobenzene	107	70-130
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	104	70-130

Client Sample ID: BPS1-ODA102 Lab ID#: 0908662A-05A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090508 1.79	Date of Collection: 8/25/09 1:10:00 Date of Analysis: 9/5/09 01:32 PM			
Compound	Rpt. Limit (ppbv)	Amount Rpt. Limit (ppbv) (ug/m3)		Amount (ug/m3)	
1,1,1-Trichloroethane	0.090	Not Detected	0.49	Not Detected	
Trichloroethene	0.090	Not Detected	0.48	Not Detected	
Tetrachloroethene	0.090	1.0	0.61	6.9	
Vinyl Chloride	0.18	Not Detected	0.46	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.71	Not Detected	
1,1-Dichloroethane	0.18	Not Detected	0.72	Not Detected	
cis-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected	
1,2-Dichloroethane	0.18	Not Detected	0.72	Not Detected	
trans-1,2-Dichloroethene	0.18	Not Detected	0.71	Not Detected	

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	104	70-130
1,2-Dichloroethane-d4	112	70-130
Toluene-d8	93	70-130

Client Sample ID: BPS1-0DA103 Lab ID#: 0908662A-06A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090509 1.75	Date of Collection: 8/25/09 1:12 Date of Analysis: 9/5/09 02:38 P		
Compound	Rɒt. Limit (ppbv)			Amount (ug/m3)
1,1,1-Trichloroethane	0.088	Not Detected	0.48	Not Detected
Trichloroethene	0.088	Not Detected	0.47	Not Detected
Tetrachloroethene	0.088	0.054 J	0.59	0.37 J
Vinyl Chloride	0.18	Not Detected	0.45	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.69	Not Detected
1,1-Dichloroethane	0.18	Not Detected	0.71	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected
1,2-Dichloroethane	0.18	Not Detected	0.71	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected

J = Estimated value.

· · · · · · · · · · · · · · · · · · ·	Method Limits	
%Recovery		
110	70-130	
114	70-130	
97	70-130	
	%Recovery 110 114	

Client Sample ID: BPS1-0DA104 Lab ID#: 0908662A-07A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

. . . .

File Name: Dil. Factor:				ollection: 8/25/09 1:13:00 PM nalysis: 9/5/09 03:20 PM	
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.088	Not Detected	0.48	Not Detected	
Trichloroethene	0.088	Not Detected	0.47	Not Detected	
Tetrachloroethene	0.088	0.054 J	0.59	0.36 J	
Vinyl Chloride	0.18	Not Detected	0.45	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.69	Not Detected	
1,1-Dichloroethane	0.18	Not Detected	0.71	Not Detected	
cis-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected	
1,2-Dichloroethane	0.18	Not Detected	0.71	Not Detected	
trans-1,2-Dichloroethene	0.18	Not Detected	0.69	Not Detected	

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	110	70-130
1,2-Dichloroethane-d4	117	70-130
Toluene-d8	96	70-130

Client Sample ID: BPS1-0DA105 Lab ID#: 0908662A-19A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:				Collection: 8/26/09 4:34:00 PM Analysis: 9/7/09 06:22 PM	
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.092	Not Detected	0.50	Not Detected	
Trichloroethene	0.092	Not Detected	0.49	Not Detected	
Tetrachloroethene	0.092	Not Detected	0.62	Not Detected	
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected	
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected	
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	
1,2-Dichloroethane	0.18	Not Detected	0.74	Not Detected	
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected	

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	104	70-130
1,2-Dichloroethane-d4	114	70-130
Toluene-d8	94	70-130

Client Sample ID: BPS1-0DA106 Lab ID#: 0908662A-20A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 8/26/09 4:36:00 PM of Analysis: 9/7/09 07:02 PM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.092	Not Detected	0.50	Not Detected
Trichloroethene	0.092	Not Detected	0.49	Not Detected
Tetrachloroethene	0.092	0.044 J	0.62	0.30 J
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected
1,2-Dichloroethane	0.18	Not Detected	0.74	Not Detected
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	105	70-130
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	90	70-130

Client Sample ID: BPS1-0DA107 Lab ID#: 0908662B-21A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	z090319 1.87			n: 8/26/09 4:39:00 PM 9/4/09 05:52 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
1,1,1-Trichloroethane	0.094	Not Detected	0.51	Not Detected	
Trichloroethene	0.094	Not Detected	0.50	Not Detected	
Tetrachloroethene	0.094	0.15	0.63	1.0	
Vinyl Chloride	0.19	Not Detected	0.48	Not Detected	
1,1-Dichloroethene	0.19	Not Detected	0.74	Not Detected	
1,1-Dichloroethane	0.19	Not Detected	0.76	Not Detected	
cis-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected	
1,2-Dichloroethane	0.19	0.24	0.76	0.97	
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected	

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	100	70-130
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	94	70-130

Client Sample ID: BPS1-0DA108 Lab ID#: 0908662B-22A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 8/26/09 4:41:00 PM of Analysis: 9/4/09 06:27 AM	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.094	Not Detected	0.51	Not Detected
Trichloroethene	0.094	Not Detected	0.50	Not Detected
Tetrachloroethene	0.094	0.066 J	0.63	0.45 J
Vinyl Chloride	0.19	Not Detected	0.48	Not Detected
1,1-Dichloroethene	0.19	Not Detected	0.74	Not Detected
1,1-Dichloroethane	0.19	Not Detected	0.76	Not Detected
cis-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected
1,2-Dichloroethane	0.19	Not Detected	0.76	Not Detected
trans-1,2-Dichloroethene	0.19	Not Detected	0.74	Not Detected

J = Estimated value.

	,	Method Limits
Surrogates	%Recovery	
4-Bromofluorobenzene	104	70-130
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	89	70-130

Client Sample ID: BPS1-0DA109 Lab ID#: 0908662B-23A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:			of Collection: 8/20 of Analysis: 9/4/09	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
1,1,1-Trichloroethane	0.11	Not Detected	0.61	Not Detected
Trichloroethene	0.11	0.058 J	0.60	0.31 J
Tetrachloroethene	0.11	Not Detected	0.76	Not Detected
Vinyl Chloride	0.22	Not Detected	0.57	Not Detected
1,1-Dichloroethene	0.22	Not Detected	0.88	Not Detected
1,1-Dichloroethane	0.22	Not Detected	0.90	Not Detected
cis-1,2-Dichloroethene	0.22	Not Detected	0.88	Not Detected
1,2-Dichloroethane	0.22	Not Detected	0.90	Not Detected
trans-1,2-Dichloroethene	0.22	Not Detected	0.88	Not Detected

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	103	70-130
1,2-Dichloroethane-d4	99	70-130
Toluene-d8	94	70-130

Client Sample ID: BPS1-AR002-0DA2 Lab ID#: 0908662A-11A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	s090705 1.83	Date of Collection: 8/26/09 9:34:00 AM Date of Analysis: 9/7/09 11:31 AM						
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
1,1,1-Trichloroethane	0.092	0.072 J	0.50	0.39 J				
Trichloroethene	0.092	0.14	0.49	0.73				
Tetrachloroethene	0.092	0.054 J	0.62	0.37 J				
Vinyl Chloride	0.18	Not Detected	0.47	Not Detected				
1,1-Dichloroethene	0.18	Not Detected	0.72	Not Detected				
1,1-Dichloroethane	0.18	Not Detected	0.74	Not Detected				
cis-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected				
1,2-Dichloroethane	0.18	Not Detected	0.74	Not Detected				
trans-1,2-Dichloroethene	0.18	Not Detected	0.72	Not Detected				

J = Estimated value.

Surrogates	%Recovery	Method Limits		
4-Bromofluorobenzene	106	70-130		
1,2-Dichloroethane-d4	109	70-130		
Toluene-d8	90	70-130		

Client Sample ID: BPS1-AR003-0DA2 Lab ID#: 0908662B-25A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

1

File Name: Dil. Factor:	z090323 1.91	Date of Collection: 8/26/09 5:19:00 PM Date of Analysis: 9/4/09 08:37 AM						
Compound	Røt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
1,1,1-Trichloroethane	0.096	0.067 J	0.52	0.37 J				
Trichloroethene	0.096	0.075 J	0.51	0.40 J				
Tetrachloroethene	0.096	0.045 J	0.65	0.31 J				
Vinyl Chloride	0.19	Not Detected	0.49	Not Detected				
1,1-Dichloroethene	0.19	Not Detected	0.76	Not Detected				
1,1-Dichloroethane	0.19	Not Detected	0.77	Not Detected				
cis-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected				
1,2-Dichloroethane	0.19	Not Detected	0.77	Not Detected				
trans-1,2-Dichloroethene	0.19	Not Detected	0.76	Not Detected				

J = Estimated value.

Surrogates	%Recovery	Method Limits
4-Bromofluorobenzene	100	70-130
1,2-Dichloroethane-d4	105	70-130
Toluene-d8	90	70-130

Client Sample ID: BPS1-AR006-0DA3 Lab ID#: 0908662B-30A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	z090415 2.01	Date of Collection: 8/27/09 9:45:00 AM Date of Analysis: 9/4/09 11:10 PM						
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
1,1,1-Trichloroethane	0.10	Not Detected	0.55	Not Detected				
Trichloroethene	0.10	0.058 J	0.54	0.31 J				
Tetrachloroethene	0.10	0.057 J	0.68	0.39 J				
Vinyl Chloride	0.20	Not Detected	0.51	Not Detected				
1,1-Dichloroethene	0.20	Not Detected	0.80	Not Detected				
1,1-Dichloroethane	0.20	Not Detected	0.81	Not Detected				
cis-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected				
1,2-Dichloroethane	0.20	Not Detected	0.81	Not Detected				
trans-1,2-Dichloroethene	0.20	Not Detected	0.80	Not Detected				

J = Estimated value.

		Method
Surrogates	%Recovery	Limits
4-Bromofluorobenzene	100	70-130
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	90	70-130

Client Sample ID: BPS1-AR013-0DA2 Lab ID#: 0908662A-16A MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

٦

File Name: Dil. Factor:	s090712 1.71	Date of Collection: 8/26/09 2:54:00 PM Date of Analysis: 9/7/09 03:59 PM						
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
1,1,1-Trichloroethane	0.086	Not Detected	0.47	Not Detected				
Trichloroethene	0.086	Not Detected	0.46	Not Detected				
Tetrachloroethene	0.086	0.048 J	0.58	0.33 J				
Vinyl Chloride	0.17	Not Detected	0.44	Not Detected				
1,1-Dichloroethene	0.17	Not Detected	0.68	Not Detected				
1,1-Dichloroethane	0.17	Not Detected	0.69	Not Detected				
cis-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected				
1,2-Dichloroethane	0.17	Not Detected	0.69	Not Detected				
trans-1,2-Dichloroethene	0.17	Not Detected	0.68	Not Detected				

J = Estimated value.

* * Pacovory	Method Limits		
	Links		
104	70-130		
112	70-130		
97	70-130		
	112		

APPENDIX D

DATA VALIDATION SUMMARIES

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO:	D. BRAYACK	DATE:	OCTOBER 5, 2009
FROM:	JOSEPH KALINYAK	COPIES:	DV FILE
SUBJECT:	ORGANIC DATA VALIDATION – VOC NWIRP BETHPAGE CTO WE06		

SAMPLES: 20 / Air / VOC

BPS1-AR002-INDB-02 BPS1-AR002-ST02 BPS1-AR004-ST02 BPS1-AR013-ODA2 BPS1-DUP-101 BPS1-ODA102 BPS1-ODA105

SDG 0908662A

BPS1-AR002-INDL-02 BPS1-AR003-ST02 BPS1-AR006-ST02 BPS1-AR013-ST02 BPS1-ODA100 BPS1-ODA103 BPS1-ODA106 BPS1-AR002-ODA2 BPS1-AR004-INDB-02 BPS1-AR013-INDB-02 BPS1-AR014-ST02 BPS1-ODA101 BPS1-ODA104

<u>Overview</u>

The sample set for NWIRP Bethpage SDG 0908662A consists of twenty (20) air environmental samples. The air samples were analyzed for volatile organic compounds (VOC). There was one field duplicate pair associated with this sample delivery group (SDG); BPS1-DUP-101 / BPS1-AR002-ST02.

The samples were collected by Tetra Tech on August 25 and 26, 2009 and analyzed by Air Toxics LTD. The analysis was conducted in accordance with EPA Method TO-15 analytical and reporting protocols. The data contained in this SDG was validated with regard to the following parameters:

- * Data completeness
- * Hold times
- * GCMS System Tuning and Performance
- Initial/continuing calibrations
- Laboratory Control Sample Recoveries
- Laboratory Method Blank Results
- Surrogate Spike Recoveries
- Internal Standard Recoveries
- Laboratory Duplicate Precision
- Compound Identification
- Compound Quantitation
- Field Duplicate Precision
- Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

<u>Volatile</u>

The following compound was detected in the associated method blank #0908662A-21C at the maximum concentration as indicated below affecting samples BPS1-AR002-ST02, BPS1-AR003-ST02, and BPS1-DUP-101:

	<u>Maximum</u>	Action
<u>Compound</u>	<u>Conc. (µg/m³)</u>	Level (µg/m ³)
Tetrachloroethene	1.1	5.5

An action level of 5X the maximum contaminant concentration for volatile compounds was established to evaluate laboratory contamination for the aforementioned compounds. Dilution factors and sample aliquots were taken into consideration during the application of all action levels. The affected samples were not qualified due to method blank contamination.

Additional Comments

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The laboratory reported the VOC air result concentrations in units of both ppbv and μ g/m3 on the sample forms. The results in the database and the qualified analytical result concentrations are reported as μ g/m3 only.

Per the laboratory, the chain of custody (COC) information for samples BPS1-AR002-INDB-02 and BPS1-AR004-INDB-02 did not match the information on the canister with regard to canister identification. The information on the canister was used to process and report the samples.

Per the laboratory, the COC information for sample BPS1-AR002-INDB-02 did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Per the laboratory, the COC information for samples BPS1-AR004-ST02, BPS1-AR002-ODA2, and BPS1-AR002-INDL-02 did not match the entries on the sample tags with regard to the dates of collection. Therefore the dates on the COC were used to calculate the sample holding time.

EXECUTIVE SUMMARY

Laboratory Performance Issues: There were no major or minor issues which resulted in data qualification.

Other Factors Affecting Data Quality: Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

TO: D. BRAYACK SDG: 0908662A PAGE: 3

The data for these analyses were reviewed with reference to the "Volatile Organic Analysis of Ambient Air In Canister By Method TO-15" EPA Region II SOP #HW-31 Revision #4 October 2006 and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

TetraTech NUS Joseph Kalinyak Chemist/Data Validator

mon TetraTech NUS

Joseph A. Samchuck Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation

Appendix A

Qualified Analytical Results

Value Qualifier Key (Val Qual)

J - Positive result is considered estimated, "J", as a result of technical non-compliances.

- UJ Non-detected result is considered estimated, "UJ", as a result of technical non-compliances.
- U Value is a non-detect as reported by the laboratory.

UR - Non-detected result is considered rejected, (UR), as a result of technical non-compliances.

DATA QUALIFICATION CODE (QUAL CODE)

- A = Lab Blank Contemination
- B = Field Blank Contamination
- C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, ARFs, etc.)
- CO1 GC/MS Tuning Noncompliance
- D = MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = ICP Serial Dilution Noncompliance
- J = GFAA PDS GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance
- K = ICP Interference includes ICS % R Noncompliance
- L Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- NO1 Internal Standard Recovery Noncompliance Dioxins
- NO2 Recovery Standard Noncompliance Dioxins
- NO3 = Clean-up Standard Noncompliance Dioxins
- O = Poor Instrument Performance (e.g. base-line drilting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DDT and Endrin
- U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995</p>
- W = EMPC result
- X Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02019	NSAMPLE	BPS1-AR002-INDB-02			BPS1-AR002									
SDG: 0908662A	LAB_ID	0908662A-12	0908662A-12A			0908662A-13A			-ODA2		BPS1-AR002-ST02			
FRACTION: OV	SAMP_DATE	8/26/2009			8/26/2009	A		0908662A-11	A		0908662A-01A			
MEDIA: AIR	QC TYPE	NM						8/26/2009			8/25/2009			
	UNITS	UG/M3			NM			NM			NM			
	PCT_SOLIDS	199.0		<u> </u>	UG/M3			UG/M3			UG/M3			
	DUP OF	199.0	<u>-</u>		199.0	199.0			199.0			199.0		
PARAMETER		RESULT									1133.0			
1,1,1-TRICHLOROETHAN		·	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT		1	
1,1-DICHLOROETHANE		4.2			0.87		1	0.39		D		VQL	QLCD	
1,1-DICHLOROETHENE		0.74	-		0.77	U	1	0.74		<u> </u>	5300		· ·	
,2-DICHLOROETHANE		0.72	U		0.76	U	+	0.74			56	<u> </u>		
		0.74	U		0.77	U U					54			
CIS-1,2-DICHLOROETHE		0.72	U	1	0.76	_	+	0.74		<u> </u>	45	U		
ETRACHLOROETHENE		1.6			0.41		P	0.72			44	U		
RANS-1,2-DICHLOROET	HENE	0.72	U		0.41		P	0.37	J	Р	460			
RICHLOROETHENE		41	<u></u>	<u> </u>		<u> </u>	<u> </u>	0.72	U		44	U	1	
INYL CHLORIDE		0.47		<u> </u>	3.4		L	0.73			12000		<u> </u>	
				L	0.49	U	1	0.47	U	†———	28		├───	

PROJ_NO: 02019	NSAMPLE	BPS1-AR003-	ST02	<u>-</u>	BPS1-AR004		12	BPS1-AR004	0700				<u> </u>	
SDG: 0908662A	LAB_ID	0908662A-10A		<u> </u>	0908662A-18						BPS1-AR006			
FRACTION: OV	SAMP_DATE	8/25/2009	·			~			0908662A-08A			0908662A-14A		
MEDIA: AIR	QC TYPE	NM		·······	8/26/2009	<u></u> .		8/25/2009			8/26/2009			
				NM			NM			NM				
	UNITS	UG/M3			UG/M3			UG/M3		••	UG/M3			
	PCT_SOLIDS	199.0			199.0			199.0	••••••		199.0		• <u> </u>	
	DUP_OF					-								
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	DECLUT	11/01		
1,1,1-TRICHLOROETHAN	E	4200			0.55					QLOD	RESULT	VQL	QLCD	
1,1-DICHLOROETHANE		44	<u> </u>		0.69			210			550	<u> </u>		
1,1-DICHLOROETHENE	· · · · · · · · · · · · · · · · · · ·	44				-		1.4			5.3			
1,2-DICHLOROETHANE		23			0.68	U		1.6			6.8			
CIS-1,2-DICHLOROETHE					1.2			24			3.5	U		
TETRACHLOROETHENE		22	0	<u> </u>	0.68	U		0.72	U		12			
		170			0.58	U		31		1	1600			
FRANS-1,2-DICHLOROET	HENE	22	U		0.68	U		0.72	11		2.5		P	
FRICHLOROETHENE		10000			1.5	·		360		-}			<u>۲</u>	
VINYL CHLORIDE		14	U		0.44	11				<u> </u>	720		_	
		L	-	1	0.44	<u> </u>		0.47	U		2.2	U		

PROJ_NO: 02019	NSAMPLE	BPS1-AR013-	BPS1-AR013-INDB-02			BPS1-AR013-ODA2			ST02		BPS1-AR014-ST02			
SDG: 0908662A	LAB_ID	0908662A-17A	0908662A-17A (0908662A-16A			0908662A-09A			0908662A-15A		
FRACTION: OV	SAMP_DATE	8/26/2009	8/26/2009			8/26/2009					8/26/2009			
MEDIA: AIR QC_TYPE		NM			NM			NM			NM			
	UNITS	UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			
F	PCT_SOLIDS													
DUP_OF														
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHA	NE	0.48	U		0.47	U		58			43			
1,1-DICHLOROETHANE		0.71	U		0.69	U		0.74	U		0.69	U		
1,1-DICHLOROETHENE		0.69	U		0.68	U	1	0.72		1	0.37	J	P	
1,2-DICHLOROETHANE		1.1			0.69	U		0.27	J	P	0.31	J	P	
CIS-1,2-DICHLOROETHI	ENE	0.69	U		0.68	U		0.72	υ		0.68	U		
TETRACHLOROETHENE		0.43	J	Р	0.33	J	P	8.6		1	10			
TRANS-1,2-DICHLOROETHENE		0.69	U		0.68	U	1	0.72	U		0.68	U	-	
TRICHLOROETHENE		0.67		Ì	0.46	U	1	48		1	30	· ·		
VINYL CHLORIDE		0.45	U		0.44	U		0.47	U		0.44	U		

PROJ_NO: 02019	NSAMPLE	BPS1-DUP-10	BPS1-DUP-101)		BPS1-ODA10	1		BPS1-ODA102	2		
SDG: 0908662A	LAB_ID	0908662A-04A	0908662A-04A C			0908662A-02A			0908662A-03A			0908662A-05A		
FRACTION: OV	SAMP_DATE	8/25/2009	8/25/2009 8					8/25/2009			8/25/2009			
MEDIA: AIR QC_TYPE		NM			NM			NM			NM			
	UNITS	UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			
	PCT_SOLIDS													
	DUP_OF	BPS1-AR002-ST02												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHANE	<u> </u>	5400			0.49	U		0.5	U		0.49	υ		
1,1-DICHLOROETHANE		54			0.72	U		0.74	υ		0.72	U		
1,1-DICHLOROETHENE		56			0.71	U		0.72	υ		0.71	U		
1,2-DICHLOROETHANE		32 U			0.72 U			0.74 U			0.72 U			
CIS-1,2-DICHLOROETHEN	IE	32	U		0.71	U		0.72	U		0.71	U		
TETRACHLOROETHENE		500			0.3	J	P	0.35	J	Р	6.9			
TRANS-1,2-DICHLOROETHENE		32 U		0.71	U	1	0.72	U	<u> </u>	0.71	U			
TRICHLOROETHENE 12000				0.48	U	<u> </u>	0.49	U		0.48	U			
VINYL CHLORIDE		20	U		0.46	U		0.47	U		0.46	U		

4 of 5

PROJ_NO: 02019	NSAMPLE	BPS1-ODA103	BPS1-ODA103			BPS1-ODA104			05		BPS1-ODA106			
SDG: 0908662A	LAB_ID	0908662A-06A	0908662A-06A			0908662A-07A			0908662A-19A			0908662A-20A		
FRACTION: OV	SAMP_DATE	8/25/2009	8/25/2009			8/25/2009			8/26/2009			8/26/2009		
MEDIA: AIR	QC_TYPE	NM			NM			NM			NM	NM		
	UNITS	UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			
	PCT_SOLIDS													
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD										
1,1,1-TRICHLOROETHAN	Ξ	0.48	υ		0.48	U		0.	5 U		0.5	U		
1,1-DICHLOROETHANE		0.71	υ		0.71	U		0.7	4 U		0.74	U		
1,1-DICHLOROETHENE		0.69	υ		0.69	U		0.7	2 U		0.72	U		
1,2-DICHLOROETHANE		0.71	U		0.71	U		0.7	4 U		0.74	U		
CIS-1,2-DICHLOROETHEN	NE	0.69	U		0.69	U		0.7	2 U		0.72	U		
TETRACHLOROETHENE		0.37	J	Р	0.36	J	Ρ	0.6	2 U	1	0.3	J	P	
TRANS-1,2-DICHLOROETHENE		0.69	U		0.69	U	1	0.7	2 U		0.72	U		
TRICHLOROETHENE		0.47	U	Ì	0.47	U	1	0.4	9 U	j	0.49	U		
VINYL CHLORIDE		0.45	U		0.45	υ	1	0.4	7 U		0.47	U	1	

.

.

Tetra Tech NUS

INTERNAL CORRESPONDENCE

TO: D. BRAYACK

DATE: OCTOBER 5, 2009

DV FILE

FROM: JOSEPH KALINYAK

SUBJECT: ORGANIC DATA VALIDATION – VOC NWIRP BETHPAGE CTO WE06 SDG 0908662B

SAMPLES: 10 / Air / VOC

BPS1-AR003-INDB-02 BPS1-AR003-SSB2 BPS1-DUP102 BPS1-ODA109 BPS1-AR003-INDL-02 BPS1-AR006-INDB-02 BPS1-ODA107

COPIES:

BPS1-AR003-ODA2 BPS1-AR006-ODA3 BPS1-ODA108

Overview

The sample set for NWIRP Bethpage SDG 0908662B consists of ten (10) air environmental samples. The air samples were analyzed for volatile organic compounds (VOC). There was one field duplicate pair associated with this sample delivery group (SDG); BPS1-DUP102 / BPS1-AR006-INDB-02.

The samples were collected by Tetra Tech on August 26 and 27, 2009 and analyzed by Air Toxics LTD. The analysis was conducted in accordance with EPA Method TO-15 analytical and reporting protocols. The data contained in this SDG was validated with regard to the following parameters:

- Data completeness
- Hold times
- * GCMS System Tuning and Performance
- * Initial/continuing calibrations
- Laboratory Control Sample Recoveries
- Laboratory Method Blank Results
- Surrogate Spike Recoveries
- Internal Standard Recoveries
- Compound Identification
- Compound Quantitation
- Field Duplicate Precision
- Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, Region II data validation forms are presented in Appendix C, and documentation supporting these findings is presented in Appendix D.

<u>Volatile</u>

No issues were identified.

TO: D. BRAYACK SDG: 0908662B

Additional Comments

Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The laboratory reported the VOC air result concentrations in units of both ppbv and μ g/m3 on the sample forms. The results in the database and the qualified analytical result concentrations are reported as μ g/m3 only.

Per the laboratory, the chain of custody (COC) information for samples BPS1-AR003-INDB-02, BPS1-AR003-SSB2, and BPS1-AR006-ODA3 did not match the entries on the sample tags with regard to sample identification. The information on the COC was used to process and report the samples.

Per the laboratory, the COC information for sample BPS1-AR003-SSB2 did not match the information on the canister with regard to canister identification. The information on the canister was used to process and report the sample.

EXECUTIVE SUMMARY

Laboratory Performance Issues: There were no major issues or minor issues that resulted in data qualification.

Other Factors Affecting Data Quality: Positive results below the Reporting Limit (RL) and above the detection limit were qualified as estimated, (J), due to uncertainty near the detection limit.

The data for these analyses were reviewed with reference to the "Volatile Organic Analysis of Ambient Air In Canister By Method TO-15" EPA Region II SOP #HW-31 Revision #4 October 2006 and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006).

Tetr Torth N

Joseph Kalinyak Chemist/Data Validator

TetraTech NUS

Joseph A. Samchuck U Data Validation Quality Assurance Officer

Attachments:

- 1. Appendix A Qualified Analytical Results
- 2. Appendix B Results as Reported by the Laboratory
- 3. Appendix C Region II Data Validation Forms
- 4. Appendix D Support Documentation

Appendix A

.

Qualified Analytical Results

Value Qualifier Key (Val Qual)

J - Positive result is considered estimated, "J", as a result of technical non-compliances.

- UJ Non-detected result is considered estimated, "UJ", as a result of technical non-compliances.
- U Value is a non-detect as reported by the laboratory.

UR - Non-detected result is considered rejected, (UR), as a result of technical non-compliances.

DATA QUALIFICATION CODE (QUAL CODE)

- A = Lab Blank Contamination
- B = Field Blank Contamination
- C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)
- C01 GC/MS Tuning Noncompliance
- D MS/MSD Recovery Noncompliance
- E = LCS/LCSD Recovery Noncompliance
- F = Lab Duplicate Imprecision
- G = Field Duplicate Imprecision
- H = Holding Time Exceedance
- I = IGP Serial Dilution Noncompliance
- J = GFAA PDS GFAA MSA's r < 0.995 / ICP PDS Recovery Noncompliance
- K = ICP Interference includes ICS % R Noncompliance
- L = Instrument Calibration Range Exceedance
- M = Sample Preservation Noncompliance
- N = Internal Standard Noncompliance
- N01 Internal Standard Recovery Noncompliance Dioxins
- NO2 Recovery Standard Noncompliance Dioxins
- NC3 = Clean-up Standard Noncompliance Dioxins
- O = Poor Instrument Performance (e.g. base-line drifting)
- P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)
- Q = Other problems (can encompass a number of issues; e.g. chromatography, interferences, etc.)
- R = Surrogates Recovery Noncompliance
- S = Pesticide/PCB Resolution
- T = % Breakdown Noncompliance for DOT and Endrin
- U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC
- V = Non-linear calibrations; correlation coefficient r < 0.995</p>
- W = EMPC result
- X Signal to noise response drop
- Y = Percent solids <30%
- Z = Uncertainty at 2 sigma deviation is greater than sample activity

PROJ_NO: 02019	NSAMPLE	BPS1-AR003-INDB-02			BPS1-AR003-	BPS1-AR003-INDL-02			ODA2		BPS1-AR003-SSB2			
SDG: 0908662B	LAB_ID	0908662B-26A	0908662B-26A			0908662B-28A			0908662B-25A			0908662B-27A		
FRACTION: OV	SAMP_DATE	8/26/2009	8/26/2009			8/26/2009					8/26/2009			
l	QC_TYPE	NM			NM			NM			NM			
	UNITS	UG/M3			UG/M3 199.0			UG/M3 199.0			UG/M3 199.0			
	PCT_SOLIDS	199.0												
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHAN	E	4			5.2			0.37	J	Р	38			
1,1-DICHLOROETHANE		0.72	U		0.72	U		0.77	U	1	0.51	J	Р	
1,1-DICHLOROETHENE		0.71	U		0.71	U		0.76	U	1	0.72	U		
1,2-DICHLOROETHANE		8.5			0.79			0.77	U		4.2			
CIS-1,2-DICHLOROETHE	NE	0:71	U		0.71	U		0.76	U	Ì	0.72	U		
TETRACHLOROETHENE		1.3			0.43	J	P	0.31	J	P	3.7			
TRANS-1,2-DICHLOROET	THENE	0.71	U		0.71	U		0.76	U		0.72	U		
TRICHLOROETHENE		27			9.9			0.4	J	P	260	1		
VINYL CHLORIDE		0.46	U		0.46	Ŭ		0.49	U		0.47	U		

PROJ_NO: 02019	NSAMPLE	BPS1-AR006-INDB-02			BPS1-AR006-	BPS1-AR006-ODA3			2		BPS1-ODA107			
SDG: 0908662B	LAB_ID	0908662B-29A	0908662B-29A			0908662B-30A			0908662B-24A			0908662B-21A		
FRACTION: OV	SAMP_DATE	8/27/2009			8/27/2009	· · · · ·		8/27/2009				8/26/2009		
MEDIA: AIR QC_TYPE		NM			NM			NM				NM		
	UNITS	UG/M3 199.0			UG/M3 199.0			UG/M3 199.0 BPS1-AR006-INDB-02			UG/M3 199.0			
	PCT_SOLIDS													
	DUP_OF													
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	
1,1,1-TRICHLOROETHAI	NE	2.6			0.55			2.8		QLOD	0.51			
1,1-DICHLOROETHANE		0.81	U	-	0.81			0.83			0.76			
1,1-DICHLOROETHENE		0.8	U		0.8			0.82			0.78			
1,2-DICHLOROETHANE		0.81	U		0.81			0.83	-		0.74			
CIS-1,2-DICHLOROETHE	INE	0.8	U		0.8		-	0.82			0.97			
TETRACHLOROETHENE		6.8			0.39		P	7.7			- 0.74	0		
TRANS-1,2-DICHLOROE	THENE	0.8	U		0.8			0.82			0,74			
TRICHLOROETHENE		13			0.31	_	P	14	<u> </u>					
VINYL CHLORIDE		0.51	U	<u> </u>	0.51	<u> </u>		0.53			0.5			

PROJ_NO: 02019	NSAMPLE	BPS1-ODA10)8		BPS1 ODA10	BPS1-ODA109					
SDG: 0908662B	LAB_ID	0908662B-22	A		0908662B-23A						
FRACTION: OV	SAMP_DATE	8/26/2009			8/26/2009						
MEDIA: AIR	QC_TYPE	NM			NM		·				
	UNITS	UG/M3			UG/M3		· · · · · · · · · · · · · · · · · · ·				
	PCT_SOLIDS	199.0			199.0						
	DUP_OF		-								
PARAMETER	RESULT	VQL	QLCD	RESULT	VQL						
1,1,1-TRICHLOROETHANE		0.51	U		0.61		QLCD				
1,1-DICHLOROETHANE		0.76	Ū				<u> </u>				
1.1-DICHLOROETHENE		0.74	U		0.9						
1,2-DICHLOROETHANE		0.76			0.88	-					
CIS-1,2-DICHLOROETHEN	E	0.74		+	0.9	-					
TETRACHLOROETHENE	0.45		P	0.88		ļ					
TRANS-1,2-DICHLOROETH	0.74	-		0.76		<u> </u>					
TRICHLOROETHENE	0.5		<u> </u>	0.88							
VINYL CHLORIDE	0.48		<u> </u>	0.31	<u> </u>	P					
		0.46	<u> </u>	<u> </u>	0.57	U					

.