Scanned & eDoced

Quarterly Operations Report First Quarter 2014

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-10-D-9409 Contract Task Order No. 0005

> > September 2014

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, VA 23511

Prepared by:

H&S Environmental, Inc. 160 East Main Street, Suite 2F Westborough, Massachusetts 01581 (508) 366-7442

Scanned & eDoced

Quarterly Operations Report First Quarter 2014

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-10-D-9409 Contract Task Order No. 0005

> > September 2014

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, VA 23511

000 11	
fatel the	9/25/14
Patrick Schauble, P.E. Program Manager	Date
Togram Manager	

9/25/14
Jennifer Good, P.G.
Date

Project Manager

TABLE OF CONTENTS

1.0	INT	RODUCTION	1-1
	1.1	Site Location	
	1.2	Background	
	1.3	Project Overview and Objective	
2.0		ECS OPERATION AND MAINTENANCE	
	2.1	Routine Maintenance Activities	2-1
	2.2	Non-routine Maintenance / Site Activities	
3.0	SVI	ECS MONITORING	3-1
	3.1	Monthly Air Quality Monitoring	
	3.2	Quarterly Air Quality Monitoring of SVEWs	
	3.3	Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs	
	3.4 3.5	Annual Vapor Quality Monitoring of Off-site SVPMs	
4.0			
4.0	CO.	NCLUSIONS AND RECOMMENDATIONS	4-1
5.0	RE)	FERENCES	5-1
TAI	BLES		
TAE	BLE 1	Monthly Vapor Analytical Results – January 2014	
TAE	BLE 2	Monthly Vapor Analytical Results - February 2014	
TAE	BLE 3	Monthly Vapor Analytical Results - March 2014	
TAE	LE 4	Quarterly Vapor Analytical Results of SVE Wells - First Quarter 2014	
TAB	SLE 5	Quarterly Vapor Analytical Results of SVE Wells through First Quarter 2014	
TAB	SLE 6	Quarterly Off-site Soil Vapor Monitoring Results of SVPMs - First Quarter 2014	
TAB	BLE 7	Quarterly Off-site Soil Vapor Monitoring Results of SVPMs through First Quarter	2014
TAE	BLE 8	Annual Off-site Soil Vapor Analytical Results of SVPMs - January 2014	
FIG	URES		
FIG	URE I	Site Location Map	
FIG	URE 2	Site Area and Vicinity	
FIGI	JRE 3	Site Plan – Existing SVECS Layout	
FIGI	JRE 4	System Layout Plan	
FIG	JRE 5	First Quarter 2014 Vapor Analytical Map – Select VOC Concentrations - SVEWs	

FIGURE 6 First Quarter 2014 Vacuum Readings – SVPMs

APPENDICES

APPENDIX A NYSDEC Air Discharge Limit Documentation

APPENDIX B Data Validation Reports and Validated Data Summary – SVPMs

APPENDIX C Vapor Concentration Trend Graphs of Select VOCs

Acronyms and Abbreviations

bgs below ground surface
CTO Contract Task Order

DAR Division of Air Resources

DCA dichloroethane
DCE dichloroethene

DoD Department of Defense

ELAP Environmental Laboratory Accreditation Program

FMS Flow Monitoring Station

GOCO Government Owned Contractor Operated

H&S H&S Environmental, Inc. i.w. inches of water column

NAVFAC Naval Facilities Engineering Command Mid-Atlantic

NELAC National Environmental Accreditation Conference

NG Northrop Grumman

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

Operation and MaintenancePCB polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

QA/QC quality assurance / quality control

RPD relative percent difference

scfm standard cubic feet per minute

SVECS soil vapor extraction containment system

SVEW soil vapor extraction well

SVOC semi-volatile organic compound

SVPM soil vapor pressure monitor

TCA trichloroethane
TCE trichloroethene

TCL target compound list TtEC Tetra Tech EC, Inc.

TtNUS Tetra Tech NUS, Inc.

VGAC vapor-phase granular activated carbon

VOC volatile organic compound

VC vinyl chloride

1.0 INTRODUCTION

H&S Environmental, Inc. (H&S) has prepared this Quarterly Operations Report for the First Quarter 2014 for the Soil Vapor Extraction Containment System (SVECS) at Site 1, Former Drum Marshalling Area, at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the U.S. Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-10-D-9409, Contract Task Order (CTO) No. 0005. This First Quarter 2014 Operations Report details activities that occurred from January 2014 to March 2014. Data was collected and operational activities were performed by H&S in accordance with the following documents:

- Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech NUS, Inc. (TtNUS) in 2012.

1.1 Site Location

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City. In the late 1990s, the Navy's property totaled approximately 109.5 acres and was formerly a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood. The Navy currently retains approximately nine acres of the former NWIRP, including Site I, which lies within the fenced area of NWIRP Bethpage and is located east of Plant No. 3, west of 1 Ith Street, and north of Plant 17 South (Figures 1 and 2).

1.2 Background

NWIRP Bethpage was established in 1943. Since inception, the primary mission of the facility has been the research, prototyping, testing, design engineering, fabrication, and primary assembly of military aircraft. Historical operations that resulted in hazardous material generation at the facility included metal finishing processes, maintenance operations, painting of aircraft and components, and other activities that involve aircraft manufacturing. Wastes generated by plant operations were disposed of directly into drainage sumps, dry wells, and/or on the ground surface, resulting in the disposal of a number of hazardous wastes, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and inorganic analytes (chromium and cadmium) at the site. Some of these contaminants have migrated from the source area to surrounding areas, including the soits at these sites and the groundwater beneath and downgradient of the NWIRP Bethpage property.

NWIRP Bethpage is currently listed by the New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B).

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. A clay unit is present near the groundwater table (50 feet below ground surface [bgs]) at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of off-site VOCs in soil vapor (TtEC 2010).

Chlorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 µg/m³ (micrograms per cubic meter) of soil vapor have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYSDOH) for sub-slab soil vapor concentrations. Of these compounds, TCE is the primary VOC of concern. Mitigation of TCE contamination in accordance with NYSDOH guidance is expected to remediate other VOCs associated with the site. PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals has been detected in the central portion of Site 1 and will be addressed via a separate remediation (TtEC 2010).

Prior to implementation of the SVECS, the mean concentrations of VOCs in soil gas samples collected along the eastern fence-line were 41,128 μ g/m³ of TCE, 381 μ g/m³ of PCE, and 20,634 μ g/m³ of I,1,1-TCA. The maximum concentrations of VOCs in the soil gas samples were 180,000 μ g/m³ of TCE, 1,200 μ g/m³ of PCE, and 90,000 μ g/m³ of 1,1,1-TCA (TtEC 2010).

1.3 Project Overview and Objective

The remedial objective for this project is to use an on-site soil vapor extraction system to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture contaminated soil vapor with a TCE concentration greater than $250 \,\mu\text{g/m}^3$. A secondary objective of this project is to address soil vapor with a TCE concentration greater than $5 \,\mu\text{g/m}^3$. The SVECS is an interim action intended to address migration of VOCs in contaminated soil vapors. It is expected to operate continuously 24 hours/day, seven days/week, with the exception of maintenance and adjustment periods until the remedial objectives are met (TtEC 2010).

1.4 SVECS Overview

The SVECS consists of soil vapor extraction, soil vapor monitoring, and soil vapor treatment. Twelve SVE wells (SVEWs) are located along the eastern boundary of Site I in six clusters, each consisting of one intermediate well and one deep well. Intermediate wells SVE-1011, SVE-1021, SVE-1031, SVE-1041, SVE-105I, and SVE-106I have a screened interval between 25 and 35 ft bgs. Deep wells SVE-101D, SVE-102D, SVE-103D, SVE-104D, SVE-105D, and SVE-106D have a screened interval between 40 and 60 ft bgs. The groundwater table fluctuates between approximately 50 and 55 feet bgs. Each SVEW is operated at a flow rate such that the combined total flow rate is approximately 400 standard cubic feet per minute (scfm) of soil vapor. Each intermediate depth SVEW requires an approximate vacuum of 4 inches of water column (i.w.) and each deep SVEW requires an approximate vacuum of 10 to 20 i.w. in order to extract the targeted flow rates. These twelve SVEWs have been piped below the ground to the Flow Monitoring Station (FMS), where flow, vacuum, and vapor quality are monitored. Within the FMS, the

discharges from the individual SVEWs have been equipped with a 2-inch flow control butterfly valve, a vacuum gauge, and a sampling port. The sampling port is utilized to measure the flow rate from an individual well using a portable velocity meter and to collect vapor samples. All the SVE lines collect into a single manifold within the FMS and from this location a single underground pipeline has been routed approximately 1,400 linear feet to the Treatment Building (Building 03-35). Five additional SVEWs (SV-107D, SV-108D, SV-109D, SV-110D, and SV-111D) were installed in October 2011 to address potential VOCs under Plant No. 3 and the South Warehouse. A site plan depicting well locations is included as Figure 3.

The SVECS is housed within the Treatment Building, an existing and unoccupied building also known as Building 03-35. The treatment system consists of a moisture separator, two SVE blowers, and a 5,000-lb vapor-phase granular activated carbon (VGAC) unit for removal of chlorinated VOCs from the off-gas. Soil vapor that enters the Treatment Building first passes through the moisture separator tank where any condensate is separated. To date, no condensate has formed in this tank. The vapor is then passed through an air filter and SVE blower and then treated in the VGAC unit. The treated vapor is discharged from the VGAC via an exhaust stack. The SVECS has a control panel comprised of mechanical interlocks and relays for local operation. A System Layout Plan is presented in Figure 4, which also illustrates the design flow rates through the soil vapor extraction and treatment process.

The off-gas from the SVECS is monitored for chlorinated VOCs as identified in the NYSDEC Division of Air Resources (DAR) permit equivalent effluent limitations and updated approval documentation (Appendix A) and monitoring requirements (TtEC 2010). Samples are submitted to a National Environmental Laboratory Accreditation Conference (NELAC)-accredited, Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory, Air Toxics, Inc. located in Folsom, CA, for analysis of VOCs by modified method TO-15. Prior to January 2014, samples were analyzed for target compound list (TCL) VOCs. As of January 2014, upon approval by NYSDEC and NYSDOH, samples are analyzed for site-specific VOCs. The site-specific VOCs are 1,1,1-TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis-1,2-DCE, PCE, trans-1,2-DCE, TCE, and vinyl chloride (VC).

A total of 18 soil vapor pressure monitor (SVPM) / soil gas monitoring points have been installed in the neighborhood east of Site 1 at NWIRP Bethpage (Figure 3). These off-site monitoring points consist of eight previously existing SVPMs as well as 10 SVPMs installed in September 2012. Pressure readings from the SVPMs are collected quarterly and used to evaluate the SVECS vacuum field. In addition, analytical results of vapor samples collected annually from these locations and the pressure readings are used to further evaluate the SVECS operation and the potential for vapor intrusion.

2.0 SVECS OPERATION AND MAINTENANCE

While designed to run autonomously, the SVECS requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The SVECS is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the SVECS were performed during the operator's weekly visits during this reporting period. These activities include general site inspections (of the grounds, buildings, doors and locks), collection of operational data (vapor flowrates, pressures, vacuums, temperature and photoionization detector [PID] readings), adjustment of system valves, collection of vapor samples (on a monthly and quarterly basis), collection/disposal of condensate if needed, cleaning of filters, switching of lead/lag blower assignments, and preventive maintenance of system equipment.

2.2 Non-routine Maintenance / Site Activities

No non-routine activities or repair items of note were performed during this quarterly reporting period.

3.0 SVECS MONITORING

Several process vapor samples are collected on a monthly basis to monitor the SVECS operation. These samples consist of an influent sample (as well as a duplicate sample), located immediately prior to the VGAC unit, and an effluent sample, located after the VGAC unit and before the exhaust stack. Vapor samples are also collected from the 12 original SVEWs on a quarterly basis to monitor the capture of the contaminated soil vapor by the SVEWs. In addition, quarterly pressure measurements are collected from the SVEWs and SVPMs to monitor the SVECS vacuum field, and soil gas sampling for SVPMs is conducted annually (generally in the winter time-frame) to evaluate the effectiveness of the SVECS. The first annual soil gas sampling event was conducted in the winter 2012-2013. The second annual sampling event was conducted in the winter 2013-2014; samples were collected from the 18 SVPMs in January 2014, as discussed in Section 3.4 below.

3.1 Monthly Air Quality Monitoring

Analysis of influent and effluent vapor sample locations is performed to evaluate VOC mass removal and the effectiveness of the VGAC adsorption unit. Time-integrated vapor samples are collected using 6-L summa canisters with 30-minute flow regulators.

Treated off-gas discharged at the exhaust stack is subject to emissions limitations. Initially, discharge goals were derived from calculations submitted by the Navy and approved by the NYSDEC DAR in February 2010. In September 2011, the Navy submitted an evaluation proposing revised discharge goals (TtNUS 2011), which NYSDEC approved in October 2011. A copy of this documentation is included as **Appendix A**.

A summary of monthly vapor sampling results collected in January, February, and March (First Quarter) is presented in **Tables 1**, **2**, and **3**, respectively. Emission rate calculations for both the influent stream (prior to VGAC treatment) and effluent stream (following VGAC treatment) and estimated monthly mass recoveries are also presented. Emission rates of the influent stream are calculated to monitor progress and determine when influent concentrations have reached levels at which vapor treatment via carbon adsorption is no longer required. The data presented in **Tables 1**, **2**, and **3** demonstrate that all constituents were within the effluent emission rates (**Appendix A**). Raw analytical data is provided under a separate cover.

3.2 Quarterly Air Quality Monitoring of SVEWs

Time-integrated vapor samples are collected quarterly using 6-L summa canisters with 30-minute flow regulators at six intermediate and six deep SVE wells. The samples are collected for the purpose of tracking and documenting the performance of the SVECS (TtEC 2010).

Quarterly vapor samples were collected on 30 January from the 12 SVEWs. A summary of detected compounds is included as **Table 4**. Analytical results of select VOCs (1,1,1-TCA, PCE, and TCE) detected at the 12 SVEWs during the First Quarter monitoring event are presented graphically as **Figure**

5. Raw analytical data is provided under a separate cover. Historical analytical results of quarterly vapor samples collected from December 2009 through the First Quarter 2014 are presented in Table 5.

3.3 Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs

Pressure readings are collected quarterly from the 12 SVEWs and 18 SVPMs in order to monitor the SVECS vacuum field. Valve positions of the SVEWs are also recorded at this time. Pressure readings from the 18 SVPMs were collected both before and after the collection of soil gas samples from these locations, on 29 January and 30 January, respectively. Results of the First Quarter vapor monitoring are presented in Table 6. Negative pressure readings for the individual SVEWs provide an indication that a vacuum is being established along the fence line. In January 2014, the measurements were 4.4 i.w.to greater than 10 i.w.

As indicated in Table 6, vacuum/soil vapor pressure measurements of the SVPMs ranged from (+) 0.01 to (-) 0.08 i.w. during the First Quarter monitoring event. These measurements indicate that a vacuum field continues to be maintained in the residential neighborhood adjacent to Site 1. The slight positive pressure of (+) 0.01 noted in several SVPMs during the 30 January 2014 sampling event is not of concern since a low pressure weather system moving through the area can cause a temporary reversal of the pressure gradients. Pressure readings from the 18 SVPMs are presented graphically as Figure 6.

Historical results of quarterly vapor monitoring from Third Quarter 2012 through First Quarter 2014 are presented in **Table 7**.

3.4 Annual Vapor Quality Monitoring of Off-site SVPMs

Time-integrated vapor samples are collected annually using 6-L summa canisters with 30-minute flow regulators at 18 SVPM locations.

3.4.1 Vapor Quality Results

Annual vapor samples were collected on 29-30 January from the 18 SVPM locations. Validated analytical results of samples collected in January 2014 are summarized in **Table 8**. As indicated, 1,1,1-TCA was not detected at any location. PCE was detected at 15 of the 18 locations, with concentrations ranging from 0.53 J μg/m³ at SVPM-2001D to 2.9 J μg/m³ at SVPM-2004I. TCE was detected at nine of the 18 locations, with concentrations ranging from 0.73 J μg/m³ at SVPM-2003I to 3.7 J μg/m3 at SVPM-2004I. All detected concentrations were well below the NYSDOH sub-slab screening values of 1,000 μg/m³ for 1,1,1-TCA, 1,000 μg/m³ for PCE, and 250 μg/m³ for TCE.

Data validation reports and a validated analytical data summary are presented in **Appendix B**. Raw analytical data is provided under separate cover.

3.4.2 Quality Assurance/Quality Control Sampling

Quality assurance/quality control (QA/QC) samples were collected during the annual off-site vapor monitoring event in accordance with the *Final Supplemental Offsite Soil Vapor Intrusion Monitoring*

Plan (TtNUS 2012). These samples consisted of blind field duplicates (collected from SVPM-20021 and SVPM-2007D) and field blanks as ambient air samples.

For field blanks, ambient air samples were collected simultaneously during the soil gas sampling to evaluate potential chemicals in the local ambient air. The 6-L summa canister was positioned at an upwind location at a height of four feet above grade. The ambient air sample was obtained over an eight-hour period for each day that routine samples were collected.

For field duplicate samples, the precision between the original sample and its duplicate is evaluated by calculating the relative percent difference (RPD). RPDs for the First Quarter sampling event are presented in the data validation report in **Appendix B**. As indicated, RPDs for all analytes were below the guideline of 50% when calculated. The overall consistency between the samples and its duplicate verifies that proper sample collection methods were followed.

3.5 Soil Vapor Quality Concentration Trends

Historical vapor analytical results for the 12 SVEWs through the First Quarter are presented in **Table 5**. In addition, concentration trends of select VOCs over time for the SVECS combined influent (1,1,1-TCA, PCE, TCE, and total VOCs) and each of the 12 SVEWs (1,1,1-TCA, PCE, and TCE) are presented in **Appendix C**.

Concentration trends observed in the 12 SVEWs through the First Quarter are discussed below. In general, unless otherwise indicated, concentrations of 1,1,1-TCA, PCE, and TCE exhibited similar trends at each given location.

- Combined Influent: Overall VOC concentrations in the combined influent decreased throughout
 the First Quarter, with total VOC concentrations of 3,656 μg/m³, 3,380 μg/m³, and 2,553 μg/m³ in
 January, February, and March, respectively. Overall concentrations remain below baseline
 concentrations observed in December 2009 when a total VOC concentration of 63,650 μg/m³ was
 observed.
- SV-10II: Concentrations observed at this location decreased in the First Quarter from concentrations observed in the Fourth Quarter, with concentrations of 7,100 μg/m³ TCE, 80 μg/m³ PCE, and 2,600 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (180,000 μg/m³ TCE, 1,700 μg/m³ PCE, and 51,000 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-101D: Concentrations observed at this location generally increased in the First Quarter from concentrations observed in the Fourth Quarter, with concentrations of 680 μg/m³ TCE, 340 μg/m³ PCE, and 14 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (100,000 μg/m³ TCE, 3,200 μg/m³ PCE, and 26,000 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.

- SV-1021: Concentrations observed at this location decreased somewhat in the First Quarter from concentrations observed in the Fourth Quarter, with a concentration of 7.6 μg/m³ TCE and non-detectable levels of PCE and 1,1,1-TCA. The First Quarter TCE concentrations are above baseline concentrations observed in December 2009 (5.6 μg/m³ TCE, 2.4 μg/m³ PCE, and non-detectable 1,1,1-TCA); however, the concentrations are below concentrations observed in June 2010 (300 μg/m³ TCE, 17 μg/m³ PCE, and 13 μg/m³ 1,1,1-TCA).
- SV-102D: Concentrations observed at this location decreased in the First Quarter from concentrations observed in the Fourth Quarter, with concentrations of 3.9 J μg/m³ TCE, 2.6 J μg/m³ PCE, and non-detectable levels of 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (440 μg/m³ TCE, 10 μg/m³ PCE, and 130 μg/m³ 1,1,1-TCA), and also below concentrations observed in October 2011 (39 μg/m³ PCE).
- SV-1031: Concentrations observed at this location decreased in the First Quarter from concentrations observed in the Fourth Quarter, with concentrations of 46 μg/m³ TCE, 97 μg/m³ PCE, and 0.92 J μg/m³ 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (900 μg/m³ TCE, 580 μg/m³ PCE, and 900 μg/m³ 1,1,1-TCA), and also below concentrations observed in October 2011 (590 μg/m3 PCE).
- SV-103D: Concentrations observed at this location generally decreased in the First Quarter from concentrations observed in the Fourth Quarter, with concentrations of 1,400 μg/m³ TCE, 15,000 μg/m³ PCE, and 550 μg/m³ 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (3,100 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,000 μg/m³ 1,1,1-TCA), and also below concentrations observed in March 2010 (28,000 μg/m³ PCE).
- SV-104I: Concentrations observed at this location decreased in the First Quarter from concentrations observed in the Fourth Quarter, with non-detectable levels of TCE, PCE, and 1, 1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (710 μg/m³ TCE, 3,100 μg/m³ PCE, and 730 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-104D: Concentrations observed at this location in the First Quarter decreased from those observed in the Fourth Quarter, with concentrations of 1,100 μg/m³ TCE, 2,500 μg/m³ PCE, and 340 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (4,600 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,600 μg/m³ 1,1,1-TCA) and also below concentrations observed March 2010 (6,000 μg/m³ TCE and 39,000 μg/m³ PCE).
- SV-105I: Concentrations observed at this location in the First Quarter increased from those observed in the Fourth Quarter, with concentrations of 180 μg/m³ TCE, 77 μg/m³ PCE, and 32 μg/m³ 1,1,1-TCA. Though these concentrations are above baseline concentrations observed in December 2009 for TCE and 1,1,1-TCA (76 μg/m³ TCE, 70 μg/m³ PCE, and 9.9 μg/m³ 1,1,1-TCA), they are below concentrations observed in June 2010 (370 μg/m³ TCE, 240 μg/m³ PCE, and 29 μg/m³ 1,1,1-TCA).

- SV-105D: Concentrations observed at this location in the First Quarter increased from concentrations observed in the Fourth Quarter, with concentrations of 1,900 μg/m³ TCE, 300 μg/m³ PCE, and 190 μg/m³ 1,1,1-TCA. These concentrations are above baseline concentrations observed in December 2009 for TCE (1,700 μg/m³ TCE), but below baseline concentrations observed in December 2009 for PCE and 1,1,1-TCA (2,100 μg/m³ PCE and 550 μg/m³ 1,1,1-TCA), and also below concentrations observed in December 2011 (7,000 μg/m³ TCE).
- SV-1061: Concentrations observed at this location in the First Quarter decreased from concentrations observed in the Fourth Quarter, with concentrations of 28 μg/m³ TCE, 4.2 J μg/m³ PCE, and 1.4 J μg/m³ 1,1,1-TCA. These concentrations are below baseline concentrations observed in December 2009 (1,900 μg/m³ TCE, 390 μg/m³ PCE, and 220 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-106D: Concentrations observed at this location in the First Quarter decreased from concentrations observed in the Fourth Quarter, with concentrations of 160 μg/m³ TCE, 16 μg/m³ PCE, and 5.8 μg/m³ 1,1,1-TCA. These concentrations are below baseline concentrations observed in December 2009 (3,400 μg/m³ TCE, 720 μg/m³ PCE, and 340 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date

4.0 CONCLUSIONS AND RECOMMENDATIONS

As stated previously, the intent of the Site 1 SVECS is to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture soil vapor with elevated TCE concentrations. Based on the presence of a vacuum field and the reduction of VOC concentrations to less than the screening values in the off-property area, the SVECS is functioning as designed. Influent vapor analytical data with concentrations of TCE consistently greater than 250 µg/L indicate that the SVECS should continue to be operated on a full-time basis to achieve continued capture of contaminated soil vapor. Monthly monitoring of the combined influent and effluent as well as quarterly monitoring of individual SVEWs should continue. Quarterly and annual monitoring of the SVPMs should also continue in order to ensure that a measurable vacuum field is being established and that the area is being effectively treated. Ongoing optimization activities should be performed in order to improve system performance.

5.0 REFERENCES

Tetra Tech EC, Inc. (TtEC). 2010. Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.

Tetra Tech NUS, Inc. (TtNUS). 2011. Modification to Existing Soil Vapor Extraction Containment System at Site 1 – Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -111D, NWIRP Bethpage, Bethpage, New York. September.

TtNUS. 2012. Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System. Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.

TABLES

Table 1 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results January 2014

CONTRACTOR OF THE PARTY OF THE		Concent	tration			Emission	Rate (1).(2)	THE RESERVE	Monthly Mass
Compound	the land	(ugir	ראו		Prior to Tr		Following T	reatment	Recovery (3)
	Influent #1	Influent #2	Average	Emuant	(lbs/lir)	(DE/M	(lba/hr)	(beyr)	(lbs)
1.1.1-Trichloroethane	350	370	360	65	0.0005	4.1495	0.0001	0.7492	0.3519
1.1-Dichloroethane	14	14	14	8.5	0.0000	0.1614	0.0000	0.0980	0.0137
1.1-Dichloroethene	1.9 J	2.3 J	2.1 J	1,4 J	0.0000	0.0242	0.0000	0.0161	0.0021
1.2-Dichloroelhane	1.5 J	1,2 J	1.4 J	0	0.0000	0.0156	0.0000	0.0000	0.0013
cis-1,2-Dichleroethene	280	270	275	100	0.0004	3.1698	0,0001	1.1526	0.2689
Tetrachloroethene	1700	1800	1750	3.8 J	0.0023	20.1712	0.0000	0.0438	1.7109
trans-1.2-Dichloroethene	30 J	3.5	3.3 ↓	1.0 J	0.0000	0.0375	0.0000	0.0115	0.0032
Trichtoroethene	1200	1300	1250	42	0.0016	14.4080	0.0001	0.4841	1,2220
Vinyl Chloride	0	0	0	0	0.0000	0.0000	0.0000	0.0000	00000.0
Total VOCs	3550	3761	3656	222	8400.0	42.1370	0.0003	2,5554	3.5740

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly VaporTemp(°F) = Average Monthly Flowrate (cfm) = Average Monthly Flowrate (scfm) = 366 352 Operational Hours for the month = 743

(1) Emissions (|bs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/tð³)*exhaust flow (scfm)*(60min/hour)
(2) Emissions (|bs/yr) = Emissions (|bs/hour)*(8760hours/yr)
(3) Monthly Mass Removal = AVÉRAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (|b/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 2 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results February 2014

	1 2000	Concen	tration			Emission	Rate (1) (2)		Monthly Mass
Compound		(ug/i	n³t		Prior to Tr	realtrient	Following T	realment	Recovery (5)
	Influent#1	Influent #2	Average (4)	Effluent	(lba/lir)	(lbs/yr)	(lbs/hr)	(ibs/yr)	(ips)
,1.1-Trichloroethane	140	380	380	36	0.0005	4.3147	0.0000	0.4088	0.3285
, 1-Dichloroethane	B.0	15	15	5.3	0.0000	0.1703	0.0000	0.0602	0.0130
1.1-Dichtorgethene	0	2.1 J	2.1 J	1.2 J	0.0000	0.0238	0.0000	0.0136	0.0018
1,2-Dichloroethane	0	1.2 J	1.2 J	0	0.0000	0.0136	0.0000	0.0000	0.0010
is 1.2Dichloroethene	100	280	280	69	0.0004	3.1793	0.0001	0.7835	0.2421
Tetracilloroethene	470	1400	1400	0	0.0018	15.8963	0.0000	0.0000	1 2104
rans-1,2-Dichloroethene	0.97 J	2.1 J	2.1 J	0	0.0000	0.0238	0.0000	0.0000	0 0018
richloroethene	470	1300	1300	27	0.0017	14.7608	0.0000	03066	1_1239
/inyl Chloride	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Fotal VOCs	1187	3380	3380	139	0.0044	38.3827	0.0002	1.5726	2.9225

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15:

Average Monthly Vapor Temp (°F) = Average Monthly Flowrate (cfm) = 86 358 Average Monthly Flowrate (scfm) = 346 Operational Hours for the month = 667

- (1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)
 (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
 (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)
 (4) Influent #2 concentrations are in line with recently observed historical concentrations, while Influent #1 concentrations are significantly lower. Therefore, only influent #2 concentrations were used to calculate the average influent concentration.

Table 3 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results

March 2014

		Concent	ration		STATE OF	Emission	Rate (11/2)	A STATE OF	Monthly Mass
Compound	11 4 5 6 6 6	(up/g	ת״		Prior to Tr	gatment	Following T	jeatment	Recovery (3)
	Influent #1	influent \$2	Average	Empuent	(lpa/hr)	(ibs/yr)	(lbs/hr)	(Ipa/AL)	(lbs)
1.1.1=Trichloroethane	240	240	240	42	0.0003	2.8187	0.0001	0.4579	0.2215
1.1-Dichloroethane	13	13	13	8.1	0.0000	0.1417	0.0000	0.0883	0.0120
1.1-Dichloroethene	2.0 J	2.2 J	2.1 J	2.1 J	0.0000	0.0229	0.0000	0.0229	0.0019
1.2-Dichloroethane	0	0.80 J	0.40 J	0	0.0000	0.0044	0.0000	0.0000	0.0004
cis-1,2-Dictiloroethene	240	250	245	110	0.0003	2.6712	0:0001	1.1993	0.2261
Tetrachioroethene	1200	1300	1250	0	0.0016	13.6288	0.0000	0.0000	11536
tians 1,2-Dichloroethene	281	2.4 J	2.6 J	1.6 J	0.0000	0.0283	0.0000	0.0174	0.0024
Trichloroethene	790	810	800	27	0.0010	8.7224	0.0000	0.2944	0.7383
Vinyl Chleride	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0 0000
Total VOCs	2488	2618	2553	191	0.0032	27,8366	0.0002	2,0803	2.3563

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = Average Monthly Flowrate (cfm) = Average Monthly Flowrate (scfm) = 93 348 333 741.5 Operational Hours for the month =

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0 3048^3m³/fr²)*exhaust flow (scfin)*(60min/hour) (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr) (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/fr³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY First Quarter 2014 Vapor Analytical Results Summary of SVE Wells

Sample ID	SVE 1011	SVE 101D	SVE 1021	SVE 102D	SVE 1031	SVE 103D	SVE 1041	SVE 104D	SVE 1051	SVE 1050	SVE 1061	SVE 106D
Sample Date	01/30/14	01/30/14	02/05/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14
Analysis by TO-15 (µg/m³)												
1.1.1-Trichloroethane	2600	14	ND	ND	0.921	550	ND	340	32	190	1.4 J	5.8
1.1-Oichloroethane	50	1.4 J	ND	ND	ND	50	ND	56	24	46	ND	3.7
1.1-Dichloroethene	11 J	0.75 J	ND	ND	ND	ND	ND	4.3 J	ND	ND	ND	ND
1.2-Dichloroethanc	7.5 』	ND										
cls-1,2Dichloroethene	12 J	4.5	ND	ND	6.9	2100	ND	1600	17	46	ND	2.8 J
Tetrachlorgethene	80	340	ND	2.61	97	15000	ND	2500	77	300	4.21	16
trans1,2-Dichloroethene	ND	ND	ND	ND	ND	32	ND	15	1.6 J	1.3 J	ND	ND
Trichloroethene	7100	680	7.6	3.9.)	46	1400	ND	1100	180	1900	28	160
Vinyl Chloride	ND											

All samples were analyzed for site-specific VOCs by modified method TO-15.

μg/m³ = micrograms per cubic meter

Sample ID	A Charles								SVE 1	011						1 11		
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)																		
1,1,1-Trichloroethane	51000	3900	2600	450	850	300	1	0.7 J	0.7 J	1500	1500	3200	4400	3400	1900	2200	2900	2600
1,1-Dichloroethane	1200	65	34	14	31	5	0.81	0.4 J	0.4 J	28	28	61	76	62	35	36	57	50
1,1-Dichloroethene	250	ND	ND	4	8	ND	0.7]	0.4 J	0.5 J	7.6 J	10	ND	15 J	ND	12]	8.9 J	16 J	11 J
1.2 Dichloroethane	NR	30	ND	4	8	ND	0.9	0.5 J	0.5 J	6.9 J	6.4 J	11 J	14 J	12 J	10 J	8.6 J	9.21	7.5]
cis-1,2-Dichloroethene	480	59	ND	9	15	3	0.7 J	ND	0.4 J	7.1 J	7.4 J	20 J	22 J	14 J	6.2 J	11 J	22 J	12 J
Tetrachloroethene	1700	410	260	36	63	10	1	ND	2	48	46	93	120	80	49	79	100	80
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7 J	0.4 J	0.4 J	ND								
Trichloroethene	180000	18000	14000	1200	2400	560	1	0.61	0.6 J	4200	4300	7200	12000	8100	5200	5400	8900	7100
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.5 J	0.31	0.3 J	ND								

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Sample ID			100					100	SVE	101D		SA TOP		No. of Concession,	1000	213 A 150	A MINISTER	10-10-25
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (μg/m³)																		
1,1,1-Trichloroethane	26000	130	53	ND	ND	ND	3	8	0.8 J	ND	3.11	9.9	11	ND	ND	5.6	16	14
1,1-Dichloroethane	660	3.9	ND	ND	ND	ND	2	0.9 J	0.5 J	ND	ND	1.0 J	1.1 J	1.1)	ND	ND	1.5 J	1.4 J
1,1-Dichloroethene	180	2	ND	ND	ND	ND	ND	0.7 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	1.0 J	0.75 J
1,2-Dichloroethane	NR	0.5	ND	ND	ND	ND	2	0.5 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	220	8.5	7.5	ND	3	ND	2	2	0.5 J	ND	ND	2.1 J	3.2	ND	ND	ND	3.0 J	4.5
Tetrachloroethene	3200	1200	1200	ND	4	ND	26	210	2	ND	79	150	170	130	0.92 J	73	330	340
trans1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	2	0.6 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	100000	1600	310	3	1	ND	3	120	1,	ND	200	400	350	120	ND	56	540	680
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1	0.4 J	0,3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Sample ID									SVE	1021								
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	02/05/14
Analysis by TO-15 (µg/m³)																		
1,1,1-Trichloroethane	ND	ND	13	3	ND	NA	2	3	2	ND	0.60 J	3.3 J	ND	ND	ND	1.6 J	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	NA	0.8 J	0.5 J	0.51	ND								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4]	0.4 J	ND								
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	0.8	0.4 J	0.4 J	ND								
c is 1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.5 J	0.5 J	ND								
Tetrachloroethene	2.4	1.4	17	6	NR	NA	3	6	6	ND	1.6 J	6.4	1.5 J	2:4 J	1.4 J	3.3]	2.6 J	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND								
Trichloroethene	5.6	3.8	300	88	3	NA	34	76	52	10	26	99	10	10	15	49	21	7.6
Vinyl Chloride	ND	ND	ND	ND	ND	NA	0.5]	0.4 J	0.3 J	ND								

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5
Soil Vapor Extraction Containment System
Site 1, Former Drum Marshalling Yard
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Quarterly Vapor Monitoring Results of SVE Wells
Through First Quarter 2014

Sample 1D	THE STATE OF					111000	Days.		SVE	102D			A WORLD			N WY		
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)																	THE VE	
1,1,1Trichloroethane	130	53	14	7	2	2	6	4	5	1.4 J	1.2 J	3.9 J	ND	ND	ND	2.3 J	3.1 J	ND
1,1-Dichloroethane	ND	2.7	ND	ND	ND	ND	1	0.6 J	0.7 J	ND	ND	0.51 J	0.95 J	ND	ND	ND	0.69 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.6 ;	0.6 J	ND								
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.9	0.5 J	0.5 J	ND								
cis-1,2-Dichloroethene	ND	1.4	ND	ND	0.9	ND	1	0.5 J	0.9	ND	ND	1.1 J	4.1	ND	ND	ND	3.4	ND
Tetrachloroethene	10	31	31	19	3	9	25	23	39	5.9	6.5	24	25	0.96 J	1.4 J	14	28	2.6 J
trans1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.5 J	0.5 J	ND								
Trichloroethene	440	390	190	110	17	21	89	81	87	34	58	170	140	6.5	ND	88	160	3.91
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.6	0.4 J	0.3 J	ND								

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Sample ID									SVE	1031								
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)		E-147																
1,1,1-Trichloroethane	900	ND	ND	ND	ND	ND	0.9 3	6	6	ND	1.6 J	9.2	ND	ND	1.4 J	4.7 J	2.8 J	0.92 J
1,1-Dichloroethane	26	ND	ND	ND	ND	ND	0.6 J	2	2	ND	0.75 J	1.5 J	0.77 J	ND	ND	1.5 J	1.3 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.63	0.61	ND									
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 3	0.5 J	ND									
cis-1,2-Dichloroethene	58	ND	ND	1	ND	1	0.5 J	16	12	18	16	19	6.0	2.4 J	5.0	11	15	6.9
Tetrachloroethene	580	ND	ND	ND	ND	2	1,	420	590	140	200	430	120	40	78	220	200	97
trans-1,2-Dichloroethene	580	ND	ND	ND	ND	ND	0.6 J	1	1	ND	0.85 J	ND						
Trichloroethene	900	0.9	ND	ND	ND	ND	0.9 J	100	97	29	47	130	48	16	35	95	78	46
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND								

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5
Soll Vapor Extraction Containment System
Site 1, Former Drum Marshalling Yard
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Quarterly Vapor Monitoring Results of SVE Wells
Through First Quarter 2014

Sample ID			11/2/10		7-30 30	Aller and the		10-110-11	SVE	1030	A SALE		A. Frank	- 1974		100		
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)								186									T I TALE	
1,1,1-Trichloroethane	3000	1100	230	ND	13	ND	2 J	20	31	7.4 J	6.9 J	22	190	ND	150	170	200	550
1,1-Dichloroethane	82	69	ND	ND	2	2	11	4	9	1.6 J	1.5 J	1.9 J	10 J	ND	10	10 J	20 J	50
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	11	2	61	ND								
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	1 J	61	ND								
cis-1,2-Dichloroethene	420	1500	370	ND	92	ND	11	360	160	290	230	300	750	ND	\$50	700	2600	2100
Tetrachloroethene	20000	28000	16000	9	1500	ND	3	1600	6700	3800	3200	4700	4600	1.6 J	3300	4900	17000	15000
trans1,2-Dichloroethene	ND	24	ND	ND	1	ND	1 J	3	7 ا	ND	ND	ND	8.8 J	ND	5.7 J	8.8 J	18 J	32
Trichloroethene	3100	1600	640	7	92	ND	2,1	290	240	180	200	480	440	6.0	360	660	2100	1400
Vinyl Chloride	ND	5.9	ND	ND	2	ND	0.8 J	4	5 J	ND	ND	ND	ND	ND	1.9 J	ND	14 J	ND

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through First Quarter 2014

Sample ID	EUR BEREITEN								SVE	1041				7.43				
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (μg/m³)				MIT I														
1,1,1-Trichloroethane	730	4.2	ND	4	NR	NA	1)	4	2	ND	ND	8.3	ND	ND	ND	3.1 J	2.61	ND
1,1-Dichloroethane	24	0.54	ND	ND	ND	NA	1J	0.6 J	0.5 J	ND								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	1 J	ND										
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	1J	ND	ND_	ND	ND	ND						
cis-1,2-Dichloroethene	110	14	ND	2	0.8	NA	0.9 J	2	3	0.90 J	ND	5.0	ND	2.7 J	ND	3.3	5.3	ND
Tetrachioroethene	3100	210	68	96	16	NA	2 J	54	33	12	ND	86	1.6 J	4.81	2.3 J	30	36	ND
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	NA	1 J	0.5 J	0.4 J	ND								
Trichloroethene	710	44	60	72	12	NA	21	44	25	9.6	ND	73	ND	3.1 J	ND	30	31	ND
Vinyl Chloride	ND	0.47	ND	ND	ND	NA	0.7 J	0.31	0.3 J	ND								

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Sample ID		200	Contract of the last of the la	7.57	All Marie		THE CASE	1000	SVE	104D	17.107.0	a strict	ALC: A COL			- Barrie	The Control of	Section 6
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (jug/m³)																	- 1	
1,1,1-Trichloroethane	3600	3000	860	ND	270	ND	370	620	440	520	580	620	920	820	0.89 J	500	600	340
1,1-Dichloroethane	290	350	140	ND	66	ND	56	110	77	87	95	100	190	160	ND	95	130	56
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	3	7.1	71	3.0 J	5.0 J	ND	11 J	ND	ND	ND	ND	4.33
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1]	51	5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	2400	6600	3500	ND	1200	ND	1000	3600	2100	2200	2800 J	2200	4200	3700	8.6	2000	3200	1600
Tetrachloroethene	20000	39000	21000	ND	2400	ND	1400	5800	6300	3800	4300	4600	4500	4200	69	2600	3900	2500
trans-1,2-Dichloroethene	130	70	30	ND	13	ND	14	25	22	26	31	27	55	40	ND	24	40	15
Trichloroethene	4600	6000	2400	ND	470	ND	420	1600	1300	1400	1400	1700	2300	2100	14	1200	1600	1100
Vinyl Chloride	ND	12	ND	ND	ND	ND	2	5	51	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter NR = Not Recorded
NA = Data not available
ND = Not detected above method detection limit

Sample ID	28 1000000	No September	10000	N 100 100	Section 1988	THE STATE OF	5 5 00 5		SVE	1051		100000	E 200 1 - 100					111111111111111111111111111111111111111
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)																		
1,1,1-Trichloroethane	9.9	11	29	ND	24	1	1J	21	31	11	13	26	22	22	11	24	18	32
1,1-Dichloroethane	ND	5.7	13	ND	6	ND	0.6 J	5	7	4.2	5.6	5.6	10	12	8.8	8.0	7.4	24
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.6 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	ND	6.6	20	ND	ND	ND	1	10	16	8.1	9.7	13	16	13	14	14	7.4	17
Tetrachloroethene	70	9.1	240	ND	55	5	2	95	100	31	43	100	77	66	38	91	57	77
tran\$1,2-Dichloroethene	ND	ND	1.6	ND	ND	ND	0.5 J	1	1	ND	ND	1.5 J	ND	ND	ND	ND	1.0 J	1.6 J
Trichloroethene	76	6.3	370	ND	120	7	1	170	200	110	140	260	180	160	94	220	140	180
Vinyl Chloride	ND	ND:	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

Sample ID				HI PONT IN					SVE	105D								
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	12/02/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)																	100	100
1,1,1-Trichloroethane	550	47	320	1000	590	ND	11	490	930	350	320	270	380	430	160	110	120	190
1,1-Dichloroethane	300	28	270	250	ND	ND	0.6 J	74	150	69	78	72	110	110	46	45	70	46
				230	1	4	0.6 J	6.1	ND	ND	ND	ND	ND	ND	ND	ND	1.5 J	ND
1, 1-Dichloroethene	3.9	ND	ND		4	4	0.03	01		-		ND						
1,2-Dichloroethane	NR	ND	N	ND	ND	ND	4	5.1	ND	ND	ND_	1				7.0	85	46
cis-1,2-Dichloroethene	61	36	85	300	ND	ND	0.7]	150	380	190	220	150	210	200	73	/6		
Tetrachloroethene	2100	11	650	270	420	ND	2	240	330	140	220	270	350	330	100	140	260	300
		1.1		2		ND	0.6 J	71	31	ND	ND	ND	ND	ND	1.4 J	2.4 j	3.6	1.3 J
trans-1,2-Dichloroethene	19	1.1	3.1	3	ND	ND	0.01	/ 1	3,				3800	3800	1400	900	1200	1900
Trichloroethene	1700	68	200	1100	1400	1	2	3000	7000	3600	4500	2200				ND	ND	ND
Vinyl Chloride	I ND	l ND	ND	ND	ND	ND	0.4 J	4 J	ND	ND	ND	ND	ND	ND	ND	NU	IND	.40

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5
Soil Vapor Extraction Containment System
Site 1, Former Drum Marshalling Yard
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Quarterly Vapor Monitoring Results of SVE Wells
Through First Quarter 2014

Sample ID		1		Alterior A		AS A TELE	10000		SVE	1061	11.05			198	No.			
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)					147.11													
1,1,1-Trichloroethane	220	8.6	ND	4	ND	NA	6	3	7	1.0 J	2.2 J	11	ND	ND	ND	ND	18	1.4 J
1,1-Dichloroethane	120	ND	ND	1	ND	NA	1	0.5 J	1	0.62 J	0.70 J	1.6 J	2.5 J	1.91	ND	ND	3.8	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA NA	0.6 J	2	0.61	ND								
1,2-Dichloroethane	NR	ND	ND	0.8	ND	NA	0.6 J	0.5 J	0.6 J	ND								
cis-1,2-Dichloroethene	46	ND	ND	4	ND	NA	6	0.51	4	1.6 J	2.3 J	7.5	5.4	3.7	ND	ND	8.3	ND
Tetrachloroethene	390	35	ND	15	ND	NA	15	7	19	4.31	7.2	27	14	7.0	0.73 J	NO	19	4.2 J
trans-1,2-Dichloroethene	7.9	ND	3.1	0.9	ND	NA	0.8	0.5 J	0.7 J	ND								
Trichloroethene	1900	41	ND	140	10	NA	210	92	190	69	110	260	180	110	5.5	ND	210	28
Vinyl Chloride	ND	ND	ND	0.5	ND	NA	0.4 J	0.31	0.4 J	ND								

Notes

All samples were analyzed for site specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Sample ID		(Carrier				Charles .	0.00	4 100	SVE	106D	H-18 - JR		1,610-61	1000			PARTY.	
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14
Analysis by TO-15 (µg/m³)	Table .												71 5	RHAIL				
1,1,1-Trichloroethane	340	32	30	20	12	9	20	23	29	l ND	11	26	18	ND	ND	27	25	5.8
1,1-Dichloroethane	250	6.3	ND	5	2	5	4	3	3	ND	3.0	4.3	5.8	ND	ND	4.9	11	3.7
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.51	0.7 J	0.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	ND	0.6 J	0.7 J	ND	ND	ND	ND	ND	ND	ND	2.5 J	ND
cis-1,2-Dichloroethene	79	13	11	13	2	11	11	5	4	ND	4.1	7.1	8.2	ND	ND	10	15	2.8 J
Tetrachloroethene	720	65	70	ND	13	19	41	8	66	ND	28	62	48	ND	1.3 J	50	58	16
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	ND	0.61	0.8	0.9	ND	ND	ND	ND	ND	ND	ND	1.1 J	ND
Trichloroethene	3400	600	900	230	130	170	210	260	320	ND	180	380	300	ND	ND	460	440	160
Vinyl Chloride	ND	1.6	ND	ND	ND	ND	ND	0.4 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

Table 6

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY First Quarter 2014 Off-site Soil Vapor Monitoring of SVPMs

SVPM/ SVEW Location	Vacuum Reading (i.w.) Pre- Vapor Sample Collection	Vacuum Reading (i.w.) Post- Vapor Sample Collection
Monitoring Date:	1/29/14	1/30/14
BPS1-SVPM2001S	0.01	0.02
BPS1-SVPM2001	0.04	0.04
BPS1-SVPM2001D	0.01	*0.01
BPS1-SVPM2002S	0.08	0.03
BPS1-SVPM2002I	0.06	0.08
BPS1-SVPM2002D	0.01	*0.01
BPS1-SVPM2003S	0.06	*0.01
BP51-SVPM2003I	0.02	0.02
BPS1-SVPM2003D	0.02	*0.01
BPS1-SVPM2004S	0.04	0.00
BPS1-SVPM2004I	0.02	*0.01
BPS1-SVPM2004D	0.02	0.04
BPS1-SVPM2006S	0.00	*0.01
BPS1-SVPM2006	0.00	*0.01
BPS1SVPM2006D	0.01	0.01
BPS1-SVPM2007S	0.01	0.02
BPS1-SVPM2007I	0.02	0.01
BPS1-SVPM2007D	0.02	0.02
S V-1011	5.0	+61
SV-101D	17.0	-
S V-102I	4.4	
SV-102D	15.0	
SV-103I	6.6	
SV-103D	15.0	
SV-104I	10.0+	
SV-104D	10.0	
SV-10SI	5.0	-
S V-105D	15.5	**
SV-106I	10.0+	1.1.0-4
SV-106D	6.5	

Notes.

i.w. = inches of water column

SVEW = soil vapor extraction well

SVPM = soil vapor pressure monitor

Vacuum readings for the SVPMs were measured using a portable Magnehelic[®] Differential Pressure Gauge 2000-0, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line pressure gauges.

^{*} Indicates a positive pressure reading was measured as opposed to a negative vacuum reading.

Table

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Quarterly Off-site Soll Vapor Monitoring of SVPMs Through First Quarter 2014

	Third Quarter 2012	Fourth Quarter 2012	First Qua	pter 2013	Second Quarter 2013	Third Quarter 2013	Fourth Quarter 2013	First Qua	rter 2014
SVPM/ SVEW Location	Vacuum Reading (i.w.)	Vecuum Reading (i.w.)	Vectorm Reading (i.w.) Pre- Vapor Sample Collection	Vectorn Reading (I.w.) Post- Vapor Sample Collection	Vacuum Reading (l.w.)	Vacuum Reading (i.w.)	Vacuum Acading (i.w.)	Vecuum Reading (I.w.) Pre- Veper Semple Collection	Vecuum Reeding [i.w.] Post- Vapor Lample Collection
Monitoring Oote:	10/10/2012	12/6/2012	1/15/13	1/16/13	5/29/13	8/27/13	11/8/13	1/29/14	1/30/14
8PS1-5VPM20015	0,01	0,02	0.01	0.01	0.03	0,08	0.06	0,01	0,02
8PS 1-SVP M 2001	0,01	0.02	0,02	0,01	0.10	0.12	0.10	0.04	0,04
BPS1-SVPM2001D	0.01	0.01	0.01	0.01	0.01	0,00	0.00	0.01	*0.01
8PS1-5VPM20025	0.02	0.01	0.02	0.02	0.06	0.12	0.10	0.08	0,03
BP\$1-5VPM2002I	0.11	0.10	0.01	0.02	0.10	0.18	0.16	0.06	0.08
8PS1-5VPM2002D	0.12	0.10	0,01	0.01	0.10	0.18	0.15	0.01	*0,01
BPS1-5VPM20035	0.01	0.01	0.03	0.02	0,04	*0,02	0.02	0.06	*0.01
BPSI-SVPM20031	0.04	0,02	0,03	0,04	0.10	0.04	0,04	0,02	0,02
BPS1-SVPM2003D	0.04	0.02	0,01	0.04	0.05	0,04	0.04	0.02	*0.01
RPS I-SVPM20045	0,04	0.04	0,03	0.02	0.03	0,04	0,02	0.04	0.00
BPS1-5VPM2004I	0.04	0.04	0.02	0.01	0.04	0.04	0,02	0.02	°0.01
BPS1-SVPM2004D	0.06	0,04	0.03	0.01	0.04	0.04	0.04	0.02	0,04
BPS1-SVPM20065	0,01	0.01	0.01	0.01	0.02	0.00	0.00	0.00	*0.01
8PS1-5VPM2006I	0.01	0.01	0.01	0.01	0,01	*0.01	*0.01	0.00	*0.01
8PS1-SVPM2006D	0.02	0.02	0.01	0.01	0,02	*0,01	0,00	0.01	10.01
8PS1-SVPM20075	0.01	0.01	0.01	0.01	0,04	0.00	*0.01	0.01	0,02
BPS1-SVPM2007I	0.01	0.01	0.01	0.01	0.04	"0.01	*0.02	0,02	0.01
8PS1-SVPM2007D	0.01	0,01	0.01	0.01	0.02	*0.01	0.04	0.02	0.02
5V-1011	5	7	10	-	6,0	5,1	4.8	5,0	-
\$V-1010	10	16	16		16,0	23.,5	24,5	17.0	-
5V-102(5	3	16		3.0	6,9	6,5	4.4	-
5V-102D	10	18	10		22.0	26.6	22.3	15.0	-
SV-1031	5	2	20		4,0	3.5	3.1	6.6	
SV-1030	8	24	10		24.2	27,7	20.8	15.0	-
SV-1041	8	6	20	-	4,0	3.5	3.1	10.0+	-
SV-104D	11	10	10	-	10.0	9.0	8,0	10,0	-
SV-10 S1	5	9	16		7.5	4,3	3,6	5.0	
SV-105D	0	7	0	-	8,0	5.0	4,0	15,5	
SV-106I	5	8	16	-	8.0	4.0	3,6	10.0+	
5V-106D	- 8	12	10		11.0	7.0	6.0	6.5	

Notes:

i.w, = inches of water ealumn

SVEW = soil vapor extraction well

SVPM = soil vapor prassure monitor

* Indicates a positive pressure reading was measured as opposed to a negative vacuum

Vacuum readings for the SVP Ms were measured using a portable Magnehelic® Differential Pressure Gauge 2000-0, with a range of 0-0,50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line vacuum gauges.

Table 8

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

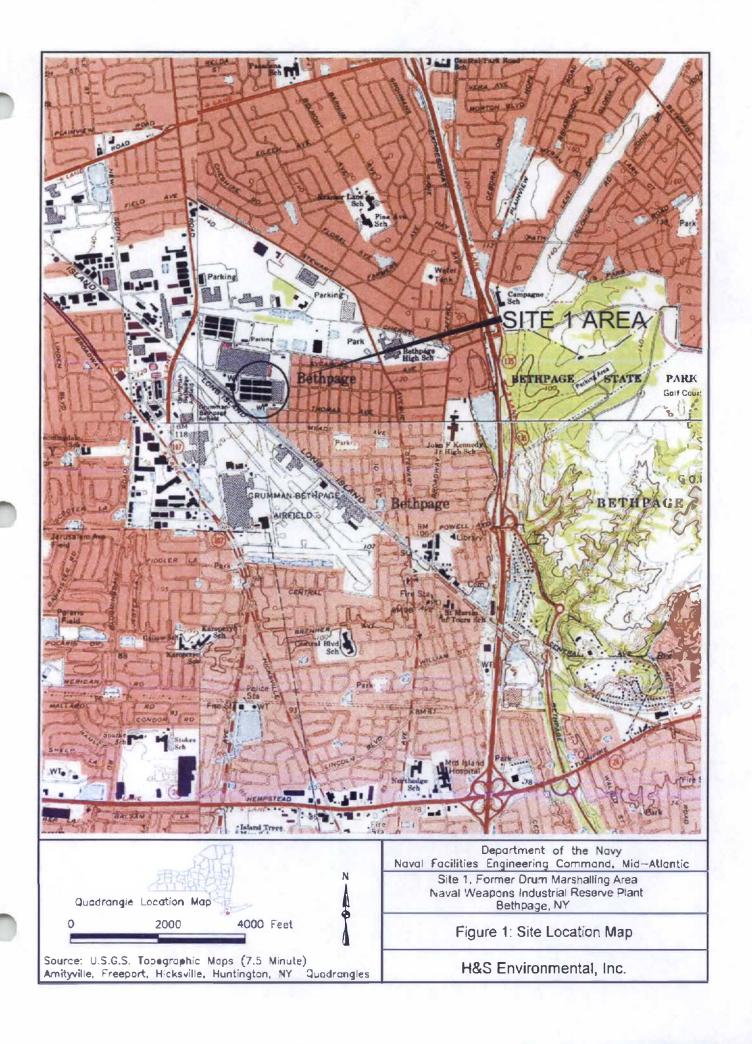
Naval Weapons Industrial Reserve Plant - Bethpage, NY Annual Off-site Vapor Analytical Results Summary of SVPMs January 2014

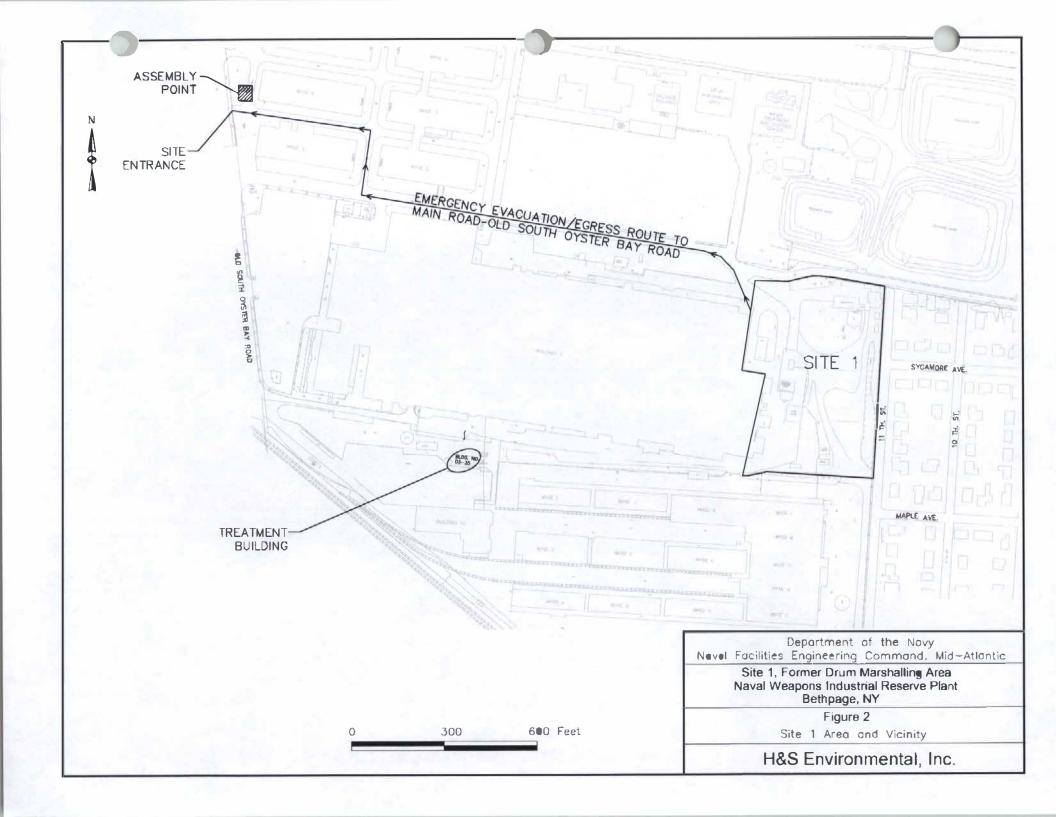
SampleID	Screening	SVPM 20015	SVPM 20011	SVPM 2001D	SVPM 2002S	SVPM	20021	SVPM 2002D	SVPM 2003S	SVPM 20031	SVPM 2003D	SVPM 2004S	SVPM 2004)	SVPM 2004D	SVPM 2006S	SVPM 20061	SVPM 2006D	SVPM 2007S	SVPM 20071	SVPM	1 20070
Sample Date	Value (3)	01/29/14	01/29/14	01/29/14	01/29/14	01/29/14	1/29/14 - Duplicate	01/29/14	01/29/14	01/29/14	01/29/14	01/29/14	01/29/14	01/29/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	01/30/14	1/30/14 - Duplicate
Analysis by TO-15 (µg/m³)								V. III.													
1,1,1-Trichloroethane	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Oichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	22	2.0 J	ND	2.0 J	ND
Tetrachloroethene	1,000	1.3 J	1.9 J	0,53 J	2.2 J	1.8 J	ND	1.8 J	ND	1.5 J	2.4 J	1.3 J	2.9 』	1.5 1	1.4 J	1.5 J	ND	14 1	ND	1.2 J	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	250	ND	ND	ND	1.1 J	1.8 J	1.4 J	ND	ND	0.73 J	ND	ND	3.7 1	0.80 1	0.80 1	2.9 J	2.1 J	2.5 1	ND	ND	ND
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

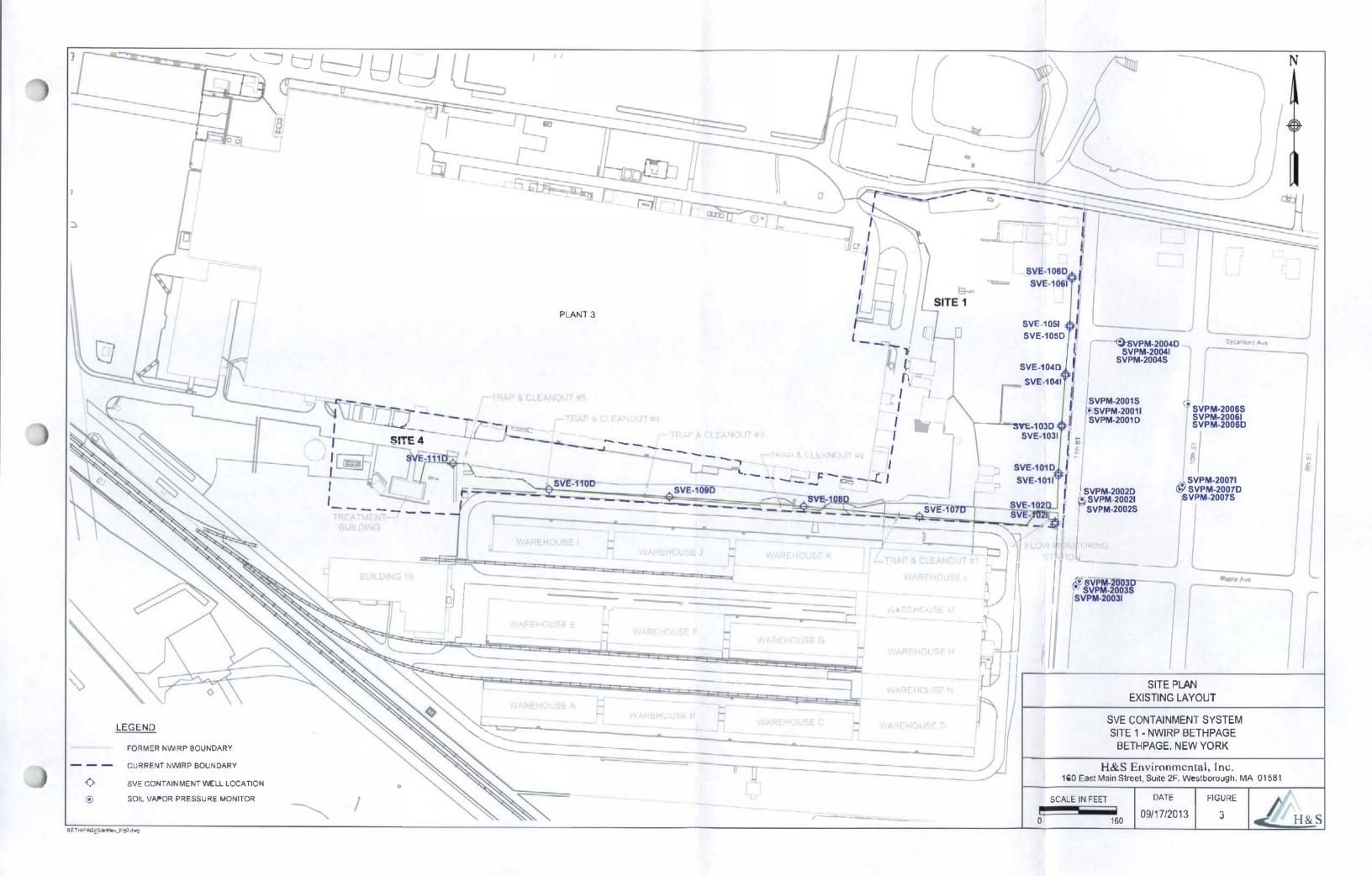
Notes:

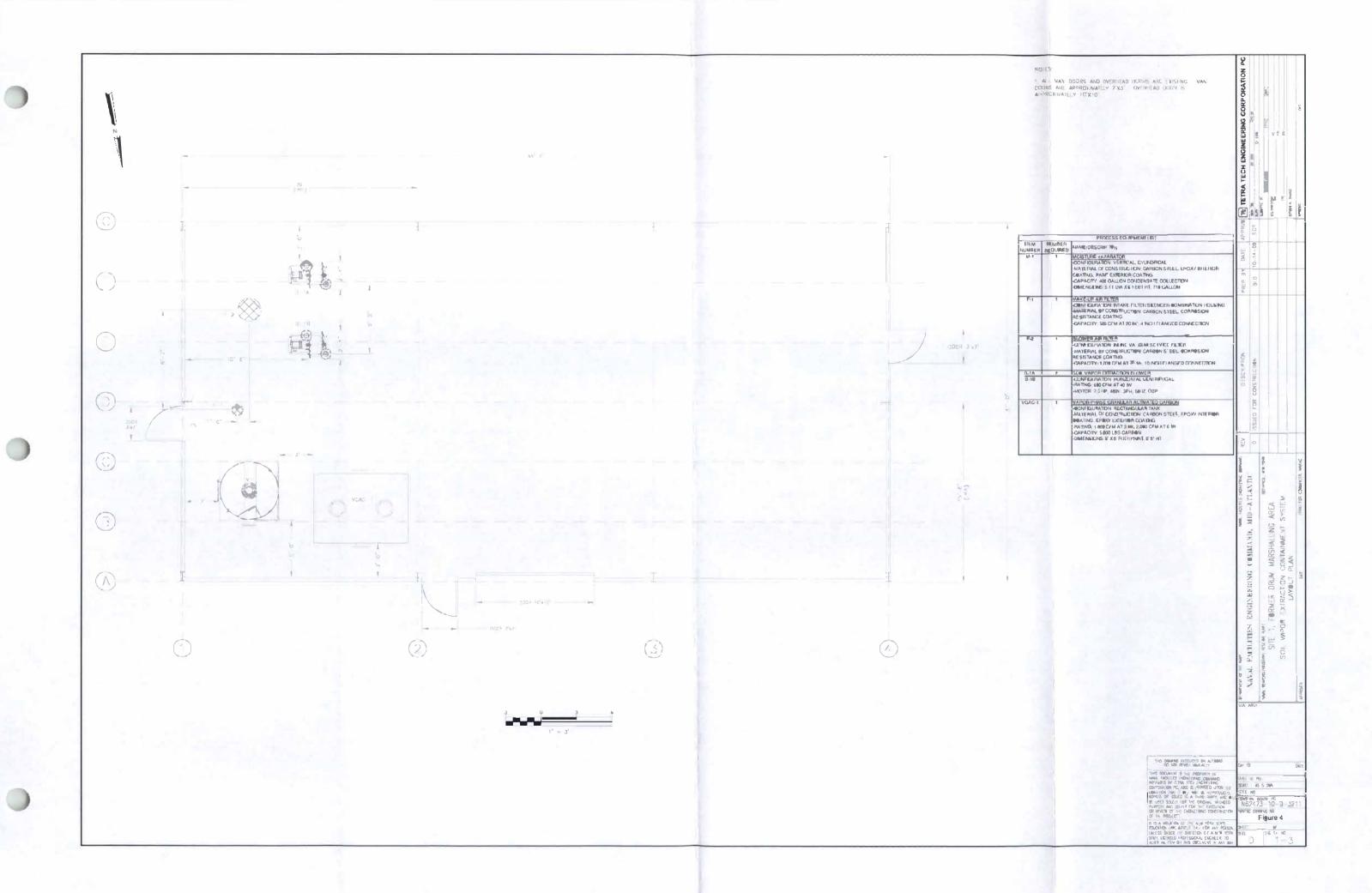
µg/m³ = micrograms per cubic meter

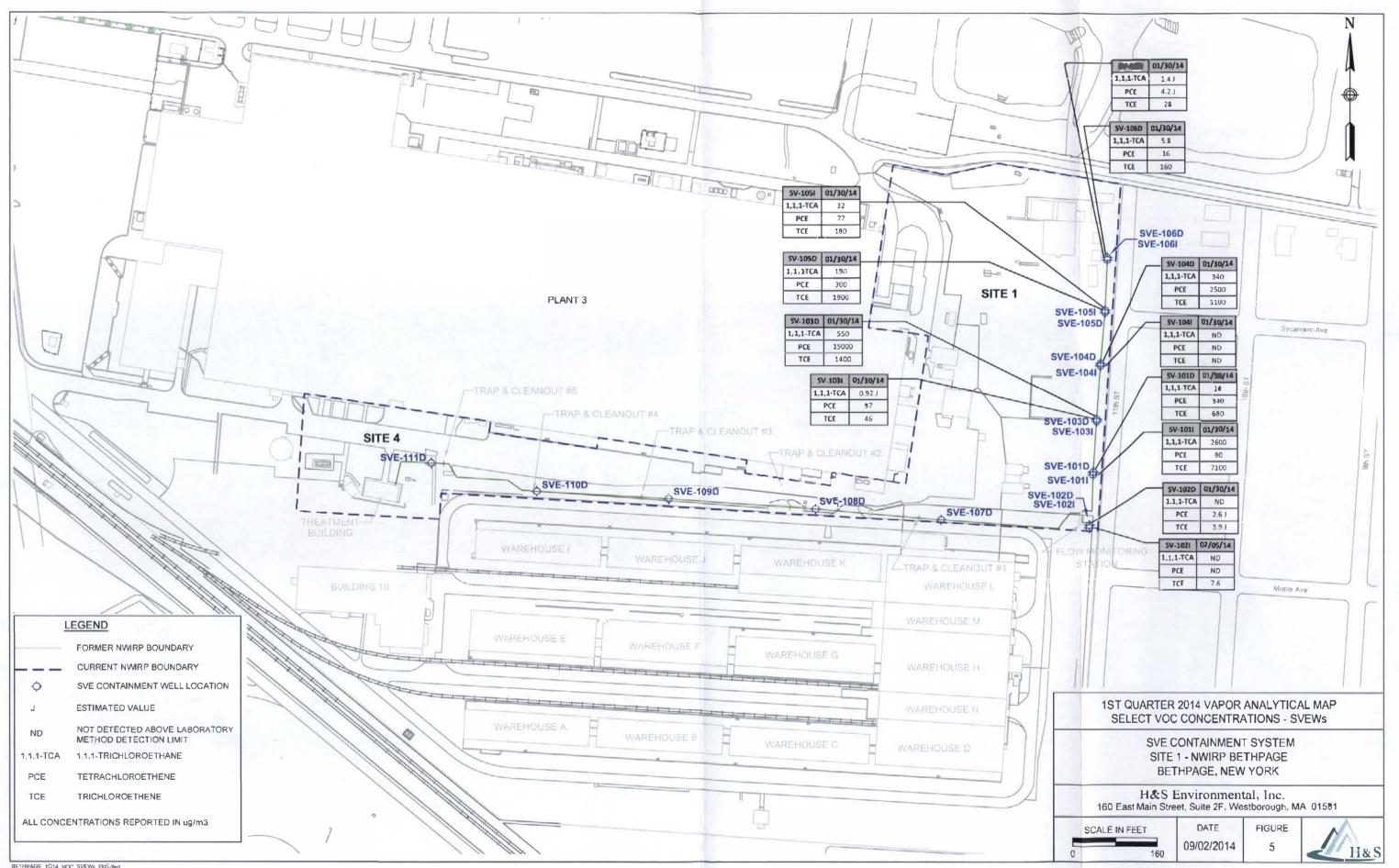
J = Estimated value
ND = Not detected above laboratory method detection limit (MDL)

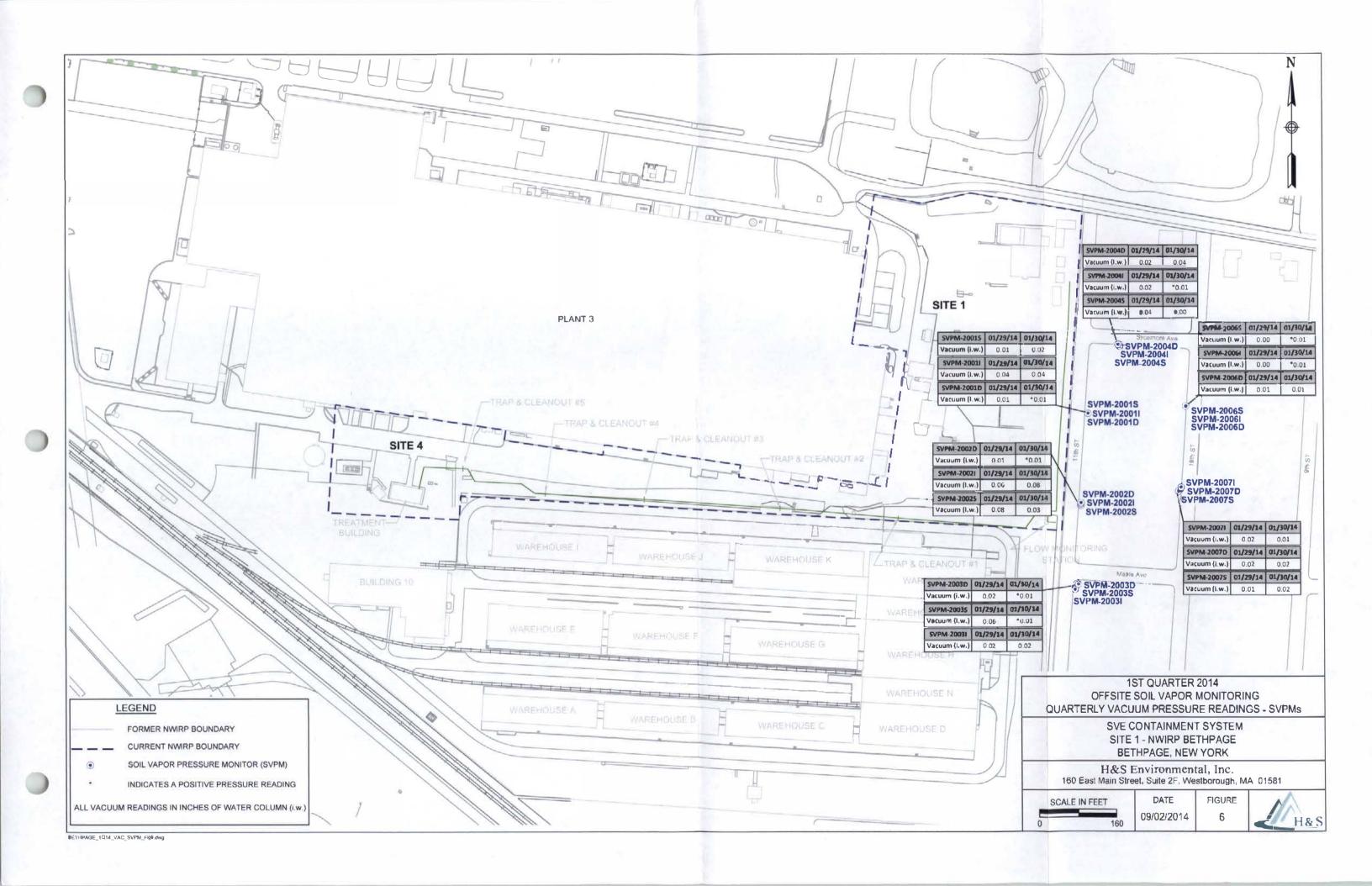

SVPM = soil vapor pressure monitor


Bolded value indicates detected analyte.


All samples were analyzed for site-specific VOCs by modified method TO:15. Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitaring Plan for the Soil Vapor


Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).
(1) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.





APPENDIX A

NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

From: Steven Scharf [mailto:sxscharf@gw.dec.state.ny.us]

Sent: Thursday, October 06, 2011 11:57 AM To: Fly, Lora B CIV NAVFAC MIDLANT, IPTNE

Cc: John Swartwout; Walter Parish; Steven Karpinski; John cofman; klumpe@steeleguities.com;

David.Brayack@ttnus.com

Subject: NWIRP Plant 3 Site 1 SVE Modification Plan

Lora,

The New York State Department of Environmental Conservation (NYSDEC), in conjunction with the New York State Department of Health (NYSDOH), have reviewed the Navy Submittal entitled:

"Modification to existing Soil vapor Extraction (SVE) Containment System At Site 1-Former Drum Marshaling Area, Installation of Soil Vapor Extraction Wells SVE-107D to 111D, NWIRP Bethpage, September 2011."

Based on this Departmental review, and the follow up October 6, 2011 tele-conference, this modification work plan is acceptable and can be used for immediate implementation. The NWIRP Site 1 SVE system has redundant blowers and overcapacity, even with the additional SVE wells being added. should the Navy and the new property owner, Steel Equities Inc., for the former Plant 3 complex come to agreement to add SVE piping from the former Plant 3, this would be acceptable. Appropriate plans, consistent with the covenants and restrictions to the deed, should be submitted accordingly.

A letter will not follow this e-mail. If you have any questions, please contact me directly.

Electronic Documentation Information NWIRP Bethpage 130003B-OU1-OMM FOliable Region 1, Nassau (C), Oyster Bay (T)

Thanks.

Steven M. Scharf, P.E.
Project Engineer
New York State Department of
Environmental Conservation
Division of Environmental Remediation
Remedial Action, Bureau A
625 Broadway
Albany, NY 12233-7015
(518)402-9620
Fax: (518)402-9022

4.0 PROPOSED REVISIONS TO VAPOR DISCHARGE GOALS

To determine the continued need for off gas treatment, the quality of the influent vapor stream was initially estimated based on soil gas results and compared to discharge goals. Vapor phase treatment was initially installed for the system based on projected relatively high concentrations of several chemicals including 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). Since the December 2009 startup, VOC concentrations in the extracted vapors have decreased by approximately 98.3 percent and it is uncertain as to whether vapor phase treatment is still required. Presented below are the December 2009 and March 2011 influent (untreated) VOC concentrations and loadings and current discharge goals.

	December 2009 I	nfluent VOCs	March 2011 Inf (µg/m		Current
Parameter	Concentration (µg/m³)¹	Loading (pound/ hour) ¹	Concentration (µg/m³)	Loading (pound/ hour) ⁽²⁾	Goal (pound/hour) ⁽³⁾
TCA	13,000	0.074	150	0.00023	0.13
TCE	42,000	0.26	460	0.00069	0.07
PCE	7,900	0.029	440	0.00066	0.0009

⁽¹⁾ Initial VOC Loading Rates are from baseline data taken in December 2009. The flow meter was not yet installed when this data was taken, so a value of 385 CFM (flow rate in January 2010) was used to estimate system loading.

A DAR-1 Model Analysis was then conducted using the August 2010 influent vapor concentrations of TCA, TCE, and PCE at a flow rate of 500 CFM. The calculated results were then used to back calculate proposed discharge goals based on an allowance of 100% of the annual guideline concentrations (see Appendix E). The following table provides a summary of the proposed discharge goals.

	August 2010 Ir (370 CFM		Percent AGC	Proposed Discharge Goals		
Parameter	Concentration (µg/m³)	Loading (pounds/ hour)	Using August 2010 Data	Concentration at 500 CFM (µg/m³)	Loading (pounds/ hour)	
TCA	868	0.0009	0.0004	None ¹	225	
TCE	4,170	0.0039	19.4	11,000	0.02	
PCE	5,780	0.0057	14.2	22,000	0.04	

⁽¹⁾ Greater than 100,000 µg/m³. AGC - Annual Guideline Concentration

⁽²⁾ Calculated using a flow rate of 400 CFM.

⁽³⁾ Current discharge goals were based on calculated VOC concentrations using soil gas data from the fence line investigation, a flow rate of 600 CFM, and an assumed treatment efficiency for each VOC of 80 to 90 percent. Based on this evaluation, the existing treatment is no longer required to meet discharge goals.

New York State Department of Environmental Conservation

Division of Environmental Remediation

Bureau of Remedial Action A 625 Broadway, 11th Floor Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9022

Website: www.dec.state.ny.us

February 5, 2010

Lora Fly, Project Manager Naval Facilities Engineering Command-Midlant 9742 Maryland Avenue Norfolk, VA 23511-3095

RE: Naval Weapons Industrial Research Plant(NWIRP) Site-Bethpage, NYSDEC No. 1-30-003B.

Dear Ms. Fly:

Tetra Tech FW, on behalf of the Department of the Navy (Navy), has submitted the enclosed New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources (DAR) Air Permit Application as a permit equivalent. This DAR Air permit equivalent is for the soil vapor extraction system at Site 1 of Plant 3 of the former Naval Weapons Industrial Reserve Plant (NWIRP) site in Bethpage, NY. The NYSDEC Division of Environmental Remediation (DER) has reviewed the permit equivalent and, by means of this letter approves the Site 1 remedy air discharge for immediate operation.

The NWIRP Site 1 SVE system utilizes the reasonably available control technology (RACT) with activated carbon. The air discharge will be periodically monitored at start up and will be added for routine monitoring in the operation, maintenance and monitoring (OMM) plan, to be submitted shortly for Departmental review.

If you have any questions, please contact me at your earliest convenience at (518)402-9620.

Sincerely.

Steven M. Scharf, P.E.

Project Engineer

Division of Environmental Remediation

Bureau of Remedial Action A

Enclosure

ec/w/enc: J. Swartwour/S. Scharf/File

W. Parish, Region 1 NYSDEC A. J. Shah, Region 1 NYSDEC

S. Patselos, Tetra Tech FW

J. Cofman, Northrop Grumman

L. does Region L. Nassau, Oyster Bay (T): MWIRP Bethpage 130003B-0111-0MM

DEC ID	APPLICATIO	N ID		OFFICE USE ONLY
	Section I - Certifi	cation		
	Title V Certifical			
Certify under penalty of law that this gocument and all attachment and all attachment qualified personnel property gather and evaluate the Information (required prinsipal to 6 NYCRR 201-63(d)) I believe submitting talse information, including the possibility of tines an	nation submitted Based on its the information is, true, as	my inquiry of the person courate and complete. I a	or persons directly	y responsible for gathaling the
Responsible Official		Title	В	
Signature		Date	9	1 1
Secretary and the secretary and a secretary	State Facility Certif			
certify that this facility will be operated in conformance Responsible Official	with all provisions of exis	Title		
		Date		1 1
Signature	II - Identification			
	i ii • ideritiiicatioi		- Facile . P	11/4
	maistrative Amendment	DA		3 Modification
☐ Renewal ☐ Minor Modification General Garden General Garden Involves construction of new facility	al Permit Title;	Gen lication involves constr	eral Permit Title	
A representatives considered that their				magarett orintto)
	Owner/Firm			
Name US Navy / NAVFAC Midlan	t	MAY CHAIN		4.
Street Address 1740 Maryland Ave 8				
City Ner talk		/A Cou	intry U.S	Zip 23511 - 3095
Owner Classification 2 Federal Corporation/Partnership	☐ State	II Municipal	TANE	Taxpaver ID
	Facility			O Confidentia
Name Al Alexander T. L. & P.		ITPI) C L.	1	O Connoenta
Name Naval Meaning Todastoral Res	ETH MITTING	VIKT JITE		
City Town / Willage Cucher Ray N				ZIP 11714
Today Today N	Project Descript	ion		☐ Continuation Sheetis
				2 00 111 011 011 011 011
Mapor phase granular activated	carbon to remo	es Villa de	an sinte	<u>a s</u>
Dane	r/Firm Contact Mail	no Address		
	THE COMMON WIGHT	ing riddiess	Tehone No.	(15) 444 - 0731
	Title P. m	edial PM	Fax No (1
42 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1de Z - 184	2013 [[/ [1.00.000	
Street Address 9742 Machinel Ave B	State VA	Country ()	S	Zip 23511-30115
	cility Contact Mailing			1-40,311 3,773
Name (Last, First, Middle Initial)	, oor last walling		Phone No. (()
Alfiliation	Title		Fax No. ()
Street Address				
City	State	Country		Zip

☐ Continuation Sheet(s)

Sub Clause

Clause

		C	NEC	` III	1				
		_	JEU	عا م	,				
_	-	WHITE OF		250	-	-	7	$\overline{}$	_
								- 1	

Section III - Facility Information Classification								
Hospital	☐ Residential	□ Edu	cational/Institutional	2 Comme	rcial A Indu	ustrial	□ Utility	
J Vermont 3 New Hamps	☐ Massach		Affected States CI Rhoide Island CI New Jersey	Title V Only) N © Pennsylvania	a <u>Iribal Lan</u> Tribal Lan			
9919 T		Ţ	SIC Co	des T			I	
	I I							
			Facility Des	cription		□ Contin	uation Sheet(s	
If one or more box must be a plan informatik following: This those Formatik	emission units at the necked), the noncom n required. For all e facility will continue l e units referenced in all emission units, su t all such requiremen	pplication the facility are not a facility are not plying units must mission units at the compliant bject to any aparts on a timely reports will be	submitted at least once	ith all applicable requirement opticable requirement in plant block erating in compliance manner as to assure it V of this application at will become effective	prements: DYES is at the time of the time of this for a with all applicable compliance for the dive during the term of	ng this applied in along with a requirement unation of the permit,	the compliance is complete the permit, except this facility will	
						D.Cantin	uation Sheet(s	
Title 1	ype Part	Sub Part	Section Sub Divisi		Sub Paragraph	Clause	Sub Clause	

Facility State Only Requirements

Paragraph

Sub Paragraph

Sub Division

Section

Sub Part

Part

Tille

Type

		DE	CID			_
TT	11	-	T	-	1	-

Section III - Facility Information (continued)

			Facili	ty Complia	ance Certific	ation IV/A		☐ Con	unuatio	n Sheel(s
			0.3		Citation					
Title	Туре	Part	Sub Part	Section	Sub Division	Paragreph	Sub Paregra	eph C	lause k	Sub Claus
Applicable F	ederal Réquirement	Ü Cappini)	CAS	S No.	1	Cor	staminan: Na	эте		
		•		Monitoring	Information					
3 Ambient	Air Monitoring	□ Work P			c Operations	☐ Reco	rd Keeping/M	Mainten	ance Pi	ocedures
				Desc	ription					
						7 - 2 - 2				
		4								
			Process M				Referen	ce Test	t Metho	1
Work Practi Type	ice Code			aterial Description			Referen	ce Test	t Metho	d
		1	D				Referen	ce Test	t Metho	j
Турв		Para	emeter				Referen			
Турв	Code	Para	emeter	escription						
Турв	Code		emeter	escription		Limi				
Турв	Code		emeter	escription		Limi	Manufacture			
Туре	Code Code		emeter D	Description Code		Limi	Manufacture t Units Description	er Name	e/ Mode	No.
Į.	Code Code		emeter D	Description Code Manitaring	Frequency	Limi	Manufacture t Units	er Name	e/ Mode	l No.

	Facility Emissions Summary		Continua	ation Sheel(s)
		PTE		Actual
CAS No.	Contaminant Name	(fbs/yr)	Range	(ibs/yr)
NY075 - 00 - 5	PM-10			
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXDES OF NITROGEN			
630 - 08 - 0	CARGON MONOXEDE			
7439 - 92 - 1	LEAD			
NY998 - 00 == 0	VOC	1.112		
NY100 - 00 - 0	HAP	1813		
NY 71 -55 - 6	1,1 1- Truck to reath and (Methyl Chlorororm)	541		
CO137 18 4	Teterchlorcethulene	3		
ecc 14 . C1 . 6	Trichloreethylane	1181		
AND 75 - 34 - 4	1.1 - Dublowethane	11		
OCC 15 - 15 - 4	1,1-District Englisher (Vinylitias Chloride)	16		

					_	_	_	_	_	_
_			- 1)F(11	1				-70
(55)			100	1	/ 10	O. Inches			free or	200
P-7		400				-				
		-			-					

Section III - Facility Information

	Facility Emissions Summary (continuation)		
0401:	Contaminant Name	PTE		Actual
CAS No.	Contaminant Name	(ibs/yr)	Range Code	(lbs/yr)
50540 54 - 0	CIS-1-7-Dichlarcethene	5		
0107-06 - 2	1.4-Dichlorgethane	0		
20156.160.2	Vinyl Chloride	C		
X275 - 01 - 4	VinylChloride	0		
		A 100 A		
9 9				
- 10				
	THE RESIDENCE OF THE PARTY OF T		1	
. 3				
			-	
			-	
- 1				
- 141				
3 -				
1 1				

	DE	CID		
TT	T	TIT	П	

Section IV - Emission Unit Information

	Emission Unit Description	☐ Continuation Sheet(s
EMISSION UNIT	1- DOE U1 Errluent from first soil vapor	extraction blower
(BL-1)		
Vapor Phas	Granular Activated Carnon Unit . The emissi	on point is
stack co	17-2	

		Building	
Width (ft) Orientation	Length (ft)	Building Name	Building
<u>40 C</u>	(oC	Treatment Building	03-35
40	(9()	Trestment puriging	03-35

			Emission Poin	t	□ Conti	nuation Sheet
EMISSION PT	ods 112					
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(A)	(n)	Structure (ft)	(in)	(°F)	Length (In)	Width (in)
	36	6	8	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
	1,000			03-35	1001	
EMISSION PT						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp	Cross S	ection
(#)	(R)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E)	NYTM (N)	Building	Distance to Property Line (fit)	Date of Removal

				Emission	Source	e/Control		2 Continuation Street	
Emission	Source	Data of	Date of	Date of		Control Type	Manufa	acturer's Nama/Model	
10	Type	Construction	Operation	Removal	moval Code Description		1	No.	
8-1/1	Design Ca				048	Granular Act Carbon	Tetra	rasolv Filtratio	
Design			pacity Units		Waste Feed		1	Waste Type	
Capacity			Description		Code	Descriotion	Code	Description	
Emission	Source	Date of	Dateot	Date of	Control Type		Manula	cturer's Name/Model	
ID	Type	Construction	Operation	Removal	Code	Description		No.	
Design		Design Ca	pacity Units			Waste Feed		Waste Type	
Capacity	Code		Description		Code	Description	Code	Description	

_		DE	2 10	_	_	_
		DE	CIO			
	LL.				\neg	
 100				_		

Section IV - Emission Unit Information (continued)

			Process II	nformation		☐ Continuation Sheet(s)
EMISSION UN	T 1 - 00	EU1				PROCESS 5 VE
			Desci	ription		
Adesa) Lead est Source Cla	a moisture hich both aciac to itel unit coned to o assistication (SCC)	separatorient la aus discharge S filled wit perate no	and a sr and a sr apor phase iron start In Tetra ch	st of 13 oil vanor e pranular 3 LNC STA V Vogus (Coccerte)	the VGAC	Description
	ntial g at Maximum C	apacity	Hrs/Day	Days/Yr	Building	Floor/Location
	with Insignificant		21	365	03-35	Main
		E	mission Source/C			
BLI	BL B					
EMISSION UNI						PROCESS
			Descr	1ption		
Source Cla Code (Total T	hruput Quantity/Yr	Code	Thruput Qua	Description
	stial g at Maximum Ca with Insignificant I	Emissions	Operating Hrs/Day hission Source/C	Days/Yr	Building (s)	Floor/Location

PAGE 5

1	DEC ID		
11		11	$\overline{}$

Section IV - Emission Unit Information (continued)

Emission	Emission		Fmission		Emi	SSIOI	n Unit App	icable F	ederal Requ	iremen	ts 2 Ca	ntinuati	on Shael(s)
Unit	Point	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clausi
~													
-													
-													
-													

Emission	Emission		Emission		Emi	ssior	Unit Stat	e Only R	equirements	5	□ Co	nlinuat	ion Sheet(s)
Unit	Emission Point	Process	Source	Title	Type	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag	Clau se	Sub Clause
-													
-					N.								
-													
-													

				Emissio	n Unit Cor	mpliance C	ertification		☐ Cont	inuation Sheet			
			-		Rule	Citation							
Title		Type	Pan	Sub Part	Section	Sub Division	Paragraph	Sub Pa	ragraph Cl	ause Sub Clau			
Co	NY	CRR	513					Capping					
	plicable	Federal R	equiremen	nt 🗀	State Only Re	equirement	Capping	11. 9					
Enissia	n lind	Point	Process	Emission Source	CAS	S No.		Con	taniant Name				
1-00	EU1	dost3	SVE		00079-	01 - 6	Trichl	orget	hylene				
				41111	Monitoring	g Information							
2 Inte	ermitte	us Emission nt Emission nir Monitorin	n Testing	ig	U Work P	ning of Proces Practice Involvi d Keeping/Mail	ng Specific Op	erations		Surrogate			
				_		Q Record Keeping/Maintenance Procedures							
					Des	cription							
Most	thiy.	geah sa	mples :	103/42eq		S Firm 1	he YGAC	rent	niluent û	ud el The			
		grah sa	क्ष्मीहर :	Process	For VCC		he VGAC						
Most Work Pra	ectice	grab sa	<u>क्ष्रीटर</u> ः		For VCC		he YGAC		erence Test				
Work Pra	ectice		mples :		Sor VCC		tie Y'GAC						
Work Pra	ectice	Code			Material Description		he YGAC	Ref		Melhod			
Work Pra	Code	Code	Pi	Process	Material Description		tie Y'GAC	Ref	erence Test (Melhod			
Work Pra	ectice	Code	P. Co	Process	Material Description			Ref	erence Test (Melhod			
Work Pra	Code	Code	P. Co	Process	Material Description			Ref	erence Test l	Melhod			
Work Pra Type	Code	Code	P. Co	Process arameter	Material Description	s from t	Limit	Refi Manufa Units Descrip	erence Test I cturer Name	Melhod /Model No.			
Work Pra Type	Code	Code	P: Co	Process arameter	Material Description Description Code	s from t	Limit	Refi Manufa Units Descrip	erence Test l	Melhod /Model No.			
Work Pra Type	Code	Code	P: Co	Process arameter	Material Description Code Code Monitoring	s from t	Limit	Manufa Units Descrip	erence Test of cturer Name	Melhod /Model No.			

DEC IO	
	1111

Section IV - Emission Unit Information (continued)

		De	terminat	ion of Non-A	policability	(Title	e V Only)	NIA	☐ Continu	ation Sheel(s
					Citation					
Title	Type	Parl	Sub Part	Section S	Sub Division	Par	agraph	Sub Paragra	oh Clause	Sub Clause
Emission	Unit i	LINGS ON FORT	Process	Emission	Source		plicable Fed		ment	
-						133	late Only Red	quirement		
				Desci	ription					
						_				
						_				
-										
				Rule C	Citation					
Title	Type	Part	Sub Part	Section S	Sub Division	Par	30130p	Sub Paragra	clause	Sub Clause
Emacion	1.Jnit 6	Inlesion Point	Process	Enission	Source		oplicable Fed		ment	
-						172	ate Only Red	quirement		
				Desci	ription					
						-				
						-				
			_			-	_			
			_			_		_		
			PI	rocess Emiss	ions Sum	mary				ation Sheet(s)
EMISS!	ON UNIT	1 - 00 E	u 1						PROCESS	SVE
CAS	Na.	Ca	जिल्ला हिल्ला	Name		% rupul	% Capture	% Control	(lbs/hr)	Determined
		- 1			110	opui	Capture	-		C 3
00071	<u>- 55 - 6</u>		(CEO 2)	thane		_		10	0.34	
		PTE	1		Standa Units		PTÉ Delen			ctual
(lbs		(lbs/yr)	(sta	ndard units)	Onits				(Ibs/hr)	(fbs/yr)
0.		591				_	08	4		
EMISSIC	ON UNIT	II-OGE	011						PROCESS	
CAS	No.	Co	ontaminant l	Name		w tiput	% Capture	% Control	(lbs/hr)	ERP How Determined
10000			4.4 . f		-	TIPOL	Capialo	1 1		
00127	-18 -4	Tetrachdore	SILAIN	ne				30	0.00	0.7
	<i>t</i> 1	PTE	1	-4-4-4	Standa		PTE			ctual
(lbs	-	(lbs/yr)	(sta	ndard units)	Olitica	-			(lbs/hr)	(lbs/yr)
	= BRT	3				_	0		BBGGGG	
EMISSIC	TINU NC	- 00 6	41						PROCESS	
CAS	No.	Co	ndaminant l	Name		%	Cash a	% Control	(lbs/hr)	ERP How Datermined
		-			1712	upul	Capture	1		- 1
000 79	01 (2		thaten	2				30	0.67	03
	1	PTE	1		Standar		PTE			tual
(lbs		(lbs/yr)	(sta	ndard units)	Units		Deterr		(lbs/hr)	(lbs/yr)
01	3	1,181					0	5		

т		ī	ופו	: 10		_	_	Т
	-	-						
	 			۰	 			

Section IV - Emission Unit Information (continued)

**********	Jednon II - L								
EMISSION UNIT	Emis	sion Unit Emissions	Summary	Continuation Sheet(s					
CAS No.		Contamir	nant Name						
00075: 34:3	1,1-Dichlorgethage								
		missions	Actual						
ERP (ibs/yr)	(las/hr)	(tbs/yr)	(lbs/hr)	(lbs/y1)					
	1 327								
CAS No.		Contaminant Name							
0cc75-35 · 4	11-Dichlorgethylene (Vinylidine Chloride)								
ERP (lbs/yr)		missions		ual					
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(ibs/yr)					
	BRT	16							
CAS No.		Contamir	nant Name						
00540 51-0	CIS-1, 2 - Dichlorgethene								
	PTE E	missions	Adual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	5							
CAS No.		Contamir	ant Name						
CO107 - 06 - 2	1, 2- nichlorath	iane							
		missions	Act	ual					
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	ERT							

					Co	omplian	ce Plar	N/A		II Co	ntinuati	on Sheet(s)		
For any emi	ission unit:	s which ar	e <u>noj in c</u>	omplian	ce at th	e lime of	permit ap	olication, the	applica	nt shall comp	lete the	following		
Consent Ord	Consent Order				Certified progress reports are to be submitted every 6 months beginningi									
Emesion	Emission		Applicable Federal Requirement											
Unit	Process	Source	Tide	Туре	Part	Sub Part	Section	Sut Dividon	Parag	Sub Parag	Clause	Sub Clause		
4								Tara						
		Remedi	al Measi	ire / Inte	rmedia	le Milestor	nes			R/I		Date heduled		
							_							
	_		_		_	_								
					-									
												İ		

DE	CID		
TT	1 1	 TT	\neg

Section IV - Emission Unit Information

EMISSION UNIT	Emi	ssion Unit Emissions	s Summary (continua	tion)				
CAS No.		Contamin	nant Name					
00156: 60 - 5		proofhene	Δ.	tual				
ERP (lbs/yr)	(ibs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)				
	32 T	BRI	(23.11)	(100)				
CAS No.	I		nant Name					
(CO15 01 · 4	Vinul Chlande							
The second second		nissors	Ac	tual				
ERP (lbs/yr)	[lbs/hr)	(Ros/yr)	(lbs/hr)	(ibs/yr)				
	BRI	RRT						
CAS No.	I		Contaminant Name					
I 8	The second second		THE WALLET					
	PTE E	Proiesin	Ac	tual				
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(ibs/hr)	(lbs/yr)				
CAS No.		Contami	nari Name					
	PIEE	missions	Ac	ual				
ERP (lbs/yr)	(Pos/lir)	(ibs/yr)	(lbs/hr)	(lbs/yr)				
			7-11-11-11					
CAS No.		Contame	l	District Control of				
		Contents	- TIESTIC					
1	PIEE	TESUS	Aci	ual				
ERP (fbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)				
1	1			(100) 11				
CAS No.		Contacin	lant Name					
	PIEE	rissions	Act	val				
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/ht)	(ibs/yr)				
CAS No.		Contamin	ant Name					
	PTEE	nusions	Act	ual				
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)				
CAS No	principle.	Contamin	ant Name					
	PTE &	nicsors	Acti	ual				
ERP (las/yr)	(lbs/hr)	(lbs/yr)	(Ibs/hr)	(lbs/yr)				
	V-2000		,					

		OF	CID			
TT	TT	T	T	T	T	

Section IV - Emission Unit Information (continued)

	Requ	est for Emission Re	duction Credit	ds U	Continuation Sheet(s
EMISSION UNIT					
		mission Reduction	Description		
		14			
	0 -1	· · · · · · · · · · · · · · · · · · ·	D- 1 D-1		
	Cont	aminant Emission R	reduction Data	Redu	etion
Baseline Period	1. 1	lo /		Date	Method
		left of the set		1 1	
CAS No.		Contaminant Name		ERC (
				Netting	Offset
•					
•	-				
	C.	acility to Use Future	Peduction		
Name	re	acility to ose rotate	Reduction	APPLICATION I	D
I					
Location Address					
City / D Town / D Villa	age		State	Zip	
	Cont	aminant Emissions	Increase Data		
CAS No.		Contaminant Name			(lbs/yr)
					(100-7-7
		Statement of Com	pliance		
Att facilities under the concluding any complian schedule of a consent of	whership of this "ownership/file ce certification requirements o arder	rm [*] are operating i <u>n comp</u> under Section 114(a)(3 o	ance with all appl the Clean Air Act	icable requirements and Amendments of 1990, or	stale regulations are meeting the
	Source o	f Emission Reduction	on Credit - Fac	cility	
Name	1000	-25		PERMIT D	·
Localion Address			1.		
City / D Town / D Villa	age		State	Zip ERC	(ho/us)
Emission Unit	CAS No.	Contaminant	Name	Netting	(lbs/yr) Offset
-					
4					

PAGE 9

	0.0	_	
DE	CID		
	1-1		

	entation			
D.D.E. Continuation (form attached)				
P.E. Certification (form attached)				
List of Exempt Activities (form attached)				
□ Plot Plan				
☐ Methods Used to Determine Compliance (form attached)				
A Calculations				
☐ Air Quality Model (/ /)				
☐ Confidentiality Justification				
Ambient Air Monitoring Plan (/)				
☐ Stack Test Protocols/Reports (/)				
☐ Continuous Emissions Monitoring Plans/QA/QC (/_				
O MACT Demonstration (/)				
☐ Operational Flexibility: Description of Alternative Operating	Scenarios and Protoc	ols		
☐ Title IV: Application/Registration				
☐ ERC Quantification (form attached)				
Use of ERC(s) (form attached)				
Baseline Period Demonstration				
L3 Dasellie Felici Dellolistration				
☐ Analysis of Contemporaneous Emission Increase/Decrease				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/)				
☐ Analysis of Contemporaneous Emission Increase/Decrease		(1	. /.
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)			1	· 1
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)			1	·
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)			1 1 1 1	
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				
☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/) ☐ BACT Demonstration (/ /)				

APPENDIX B

DATA VALIDATION REPORT AND VALIDATED DATA SUMMARY

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II - Data Validation

Project Name:

Naval Weapons Industrial Reserve Plant, Site 1

Location:

999 Oyster Bay Rd, Bethpage, NY

Project Number:

2034-204

SDG #:

1402011

Client:

H&S Environmental, Inc.

Date:

03/12/2014

Laboratory:

Air Toxics Ltd.

Reviewer:

Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twenty (20) air samples and 2 (two) field blank samples were analyzed for Volatiles by TO-15 in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 01/29-30/2014. The samples were submitted to Air Toxics Ltd., Folsom, CA on 02/03/2014 for analysis.
- 3. The USEPA Region-II SOP # HW-31, Revision 4, October 2006, Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15 was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample I D	Collection Date	Analysis	Matrix	Sample Status
BPS1-SVPM2001S-012914	1402011-01A	1/29/2014	VOA	Air	
BPS1-SVPM20011-012914	1402011-02A	1/29/2014	VOA	Air	Control Composed Co.
BPS1-SVPM2001D-012914	1402011-03A	1/29/2014	VOA	Air	
BPS1-SVPM2002S-012914	1402011-04A	1/29/2014	VOA	Air	Mary Comment of the Comment
BPS1-SVPM2002I-012914	1402011-05A	1/29/2014	VOA	Air	
BPS1-SVPM2002D-012914	1402011-06A	1/29/2014	VOA	Air	TO MANAGEMENT OF THE PARTY OF T
BPS1-SVPM2003S-012914	1402011-07A	1/29/2014	VOA	Air	North and Alley No. 1 Section 1
BPS1-SVPM20031-012914	1402011-08A	1/29/2014	VOA	Air	To see the second second
BPS1-SVPM2003D-012914	1402011-09A	1/29/2014	VOA	Air	
BPS1-SVPM2004S-012914	1402011-10A	1/29/2014	VOA	Air	minutes Links Property Prop
BPS1-SVPM20041-012914	1402011-11A	1/29/2014	VOA	Air	
BPS1-SVPM2004D-012914	1402011-12A	1/29/2014	VOA	Air	THE RESERVE OF THE PARTY OF THE
BPS1-SVPM2006S-013014	1402011-13A	1/30/2014	VOA	Air	
BPS1-SVPM20061-013014	1402011-14A	1/30/2014	VOA	Air	
BPSI-SVPM2006D-013014	1402011-15A	1/30/2014	VOA	Air	
BPS1-SVPM2007S-013014	1402011-16A	1/30/2014	VOA	Air	
BPS1-SVPM20071R-013014	1402011-17A	1/30/2014	VOA	Air	
BPSI-SVPM2007D-013014	1402011-18A	1/30/2014	VOA	Air	***************************************
BPS1-DUP01-012914	1402011-19A	1/29/2014	VOA	Air	Field Duplicate of sample BPS1-SVPM20021-012914
BPSI-DUP02-013014	1402011-20A	1/30/2014	VOA	Air	Field Duplicate of sample BPS1-SVPM2007D-013014
BPS1-FB2001-012914	1402011-21A	1/29/2014	VOA	Air	Field Blank
BPS1-FB2002-013014	1402011-22A	1/30/2014	VOA	Air	Field Blank

Sample Conditions/Problems:

- 1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data with the exception of the following:
 - 1.1 The laboratory noted in the narrative, "Despite the use of flow controllers for sample collection, the final canister vacuums for samples BPS1-SVPM2001S-012914, BPS1-SVPM2001I-012914, and BPS1-SVPM2001D-012914 were measured at ambient pressure. These ambient pressure readings were confirmed by the laboratory upon sample receipt." No qualifications were required.

1.2 The laboratory noted in the narrative, "There was a significant difference (greater than 5.0" Hg) between the measured canister receipt vacuum and that which was reported on the Chain of Custody (COC) OR the canister tag for sample BPS1-SVPM2006S-013014. A leak test indicated that the valve was functioning properly." No qualifications were required.

Holding Times:

1. All air samples were analyzed within the method holding time for summa canisters (30 days). No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Initial Calibration:

1. Initial calibration curve analyzed on 12/18/2013 (msd17.i) exhibited acceptable %RSDs (≤30.0%) for all compounds and average RRF values (≥0.050) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31 were ≥0.01. No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 02/05/2014 @ 08:29AM (msd17.1) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.
- CCV analyzed on 02/66/2014 @ 07:36AM (msd17.1) exhibited acceptable %Ds (≤30.0%) for all compounds. No qualifications were required.

Surrogates:

1. All surrogates %REC values for all water samples and associated QC were within the laboratory control limits. No qualifications were required.

Internal Standard (IS) Area Performance:

1. All samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB, Equipment Blank (EB) and Canister Certification:

- 1. Method Blank (1402011-23B) analyzed on 02/06/14 was free of contamination. No qualifications were required.
- 3. Field Blank (BPS1-FB2001-012914) (1402011-21A) analyzed on 02/06/2014 was free of contamination. No qualifications are required.

Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):

- 1. Laboratory Control Samples (17020503/4) were analyzed on 02/5/2014. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Samples (2020603/4) were analyzed on 02/06/2014. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample BPS1-DUP01-012914 (1402011-19A) was collected as field duplicate for sample BPS1-SVPM2002I-012914 (1402011-05A). All calculated RPDs were ≤50.0%. Tetrachloroethene was detected in the field sample but was non-detect in the field duplicate sample.

Field Sam <u>p</u> le	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
BPS1-SVPM2002I012914	Tetrachloroethene	T 0 -15	1.8	ш <u>е</u> /М³	BPS1-DUP01-012914	ND	µg/M³	NC	J/UJ
BPS1-SVPM20021-012914	Trichlorgethene	TO-15	1.8	ng/M³	BPS1-DUP01-012914	1.4	пв/М3	25	None

2. Sample BPS1-DUP02-013014 (1402011-20A) was collected as field duplicate for sample BPS1-SVPM2007D-013014 (1402011-18A). All results were non-detect with the exception of cis-1,2-dichloroethene and tetrachloroethene in the field sample. Cis-1,2-dichloroethene and tetrachloroethene were detected in the field sample but were non-detect in the field duplicate sample.

Field Sample	Analyte	Analytical Method	Result	Units	Field Duplicate	Result	Units	RPD	Qualifier
BPS1-SVPM2007D-013014	Cis-1,2-Dichloroethene	TO-15	2.0	is M3	BPS1-DUP02-013014	ND	це/М³	NC	J/UJ
BPS1-SVPM2007D-013014	Tetrachloroethene	TO-15	1.2	µg/М³	BPS1-DUP02-013014	ND	цg/M³	NC	J/UJ

Sample Duplicate:

Sample duplicate was performed on sample BPS1-SVPM2001S-012914 (1402011-01A).
 All RPDs were ≤ 30%. No qualifications were required.

Sample ID	Analytical Method			Sample Duplicate			RPD	Qualifier	
BPSI- SVPM2001 S-					BPS1- SVPM2001S 012914 (lab				
012914	TO15	Tetrachieroethere	0.1988	μg/M ³	duplicate)	0.2116	μ <u>e</u> /M ³	6.2	None

2. Sample duplicate was performed on sample BPS1-DUP01-012914 (1402011-19A). All RPDs were ≤ 30%. No qualifications were required.

Sample 1D	Analytical Method	Analyte	Result	Units	Sample Duplicate	Result	Units	RPD	Qualifier
BPSI-					BPS1- DUP01- 012914 (lab				erenne).
012914	TO15	Trichlereethene	0.2514	μg/M³	duplicate)	0.2616	µg/M3	4	None

Target Compound Identification:

- 1. All Relative Retention Times (RRTs) of the reported compounds were within \pm 0.06 RRT units of the standard (opening CCV).
- 2. Sample compound spectra were compared against the laboratory standard spectra.
- 3. No QC deviations were observed.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. Manual Calculation:

Concentration (μ g/m³)= Result (ppbv) x Molecular weight x DF 24.46

BPS1-SVPM2001S-012914 (1402001-01A)

Tetrachloroethene Result (ppbv) = 0.15057 Molecular Weight ② 25°C=166 DF = 1.32 Concentration (μ g/m³) $0.15057 \times 166 \times 1.32$ = 1.349 μ g/m³ 24.46

Compound	Laboratory (µg/m³)	Validation (µg/m³)	%D
Tetrachloroethene	1.3	1.3	0.0

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: 1402011.
- 3. Summary of the qualified data is listed in the Data Summary Table for SDG: 1402011.

NWIRP BETHPAGE, NY SITE I DATA SUMMARY TABLE AIR SDG: 1402011

Sample Name	Lab 1D	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL.
BPS1-SVPM2001S-012914	1402011-01A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	1.7
BPS1-SVPM2001S-012914	1402011-01A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001S-012914	1402011-01A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001S-012914	1402011-01A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.7
BPS1-SVPM2001S-012914	1402011-01A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	3.5
BPS1-SVPM2001S-012914	140201101A	Tetrachloroethene	TO-15	1/29/2014	1.3	UG/M3	J	4.5
BPS1-SVPM2001S-012914	1402011-01A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001S-012914	1402011-01A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.7
BPS1-SVPM2001S-012914	1402011-01A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	3.6
BPS1-SVPM2001I-012914	1402011-02A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	1.7
BPS1-SVPM2001I-012914	1402011-02A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001I-012914	1402011-02A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001I-012914	1402011-02A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001I-012914	1402011-02A	Trichloroethene	TO-15	1/29/2014		UG/M3	NJ	3.5
BPS1-SVPM2001I-012914	1402011-02A	Tetrachloroethene	TO-15	1/29/2014	1.9	UG/M3	J	4.4
BPS1-SVPM2001I-012914	1402011-02A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001I-012914	1402011-02A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001I-012914	1402011-02A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	3.5
BPS1-SVPM2001D-012914	1402011-03A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	1.6
BPS1-SVPM2001D-012914	1402011-03A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.5
BPS1-SVPM2001D-012914	1402011-03A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.5
BPS1-SVPM2001D-012914	1402011-03A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001D-012914	1402011-03A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	3.4
BPS1-SVPM2001D-012914	1402011-03A	Tetrachloroethene	TO-15	1/29/2014	0.53	UG/M3	J	4.3
BPS1-SVPM2001D-012914	1402011-03A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.5
BPS1-SVPM2001D-012914	1402011-03A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	2.6
BPS1-SVPM2001D-012914	140201103A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	3.5
BPS1-SVPM2002S-012914	1402011-04A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.0
BPS1-SVPM2002S-012914	1402011-04A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.1
BPS1-SVPM2002S-012914	1402011-04A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.1
BPS1-SVPM2002S-012914	1402011-04A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2002S-012914	1402011-04A	Trichloroethene	TO-15	1/29/2014	1.1	UG/M3	J	4.2
BPS1-SVPM2002S-012914	1402011-04A	Tetrachloroethene	TO-15	1/29/2014	2.2	UG/M3	J	5.4

NWIRP BETHPAGE, BETHPAGE, NY SITE 1 DATA SUMMARY TABLE AIR

SDG: 1402011

Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL
BPS1-SVPM2002S-012914	1402011-04A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.1
3PS1-SVPM2002S-012914	1402011-04A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2002S-012914	1402011-04A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.3
3PS1-SVPM2002I-012914	1402011-05A	Vinyl Chloride	TO-15	1/29/2014	D.F.L.	UG/M3	U	1.9
3PS1-SVPM2002I-012914	1402011-05A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.0
3PS1-SVPM2002I-012914	1402011-05A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.0
3PS1-SVPM2002I-012914	1402011-05A	1,2-Dichloroethane	T O-15	1/29/2014		UG/M3	U	3.0
3PS1-SVPM2002I-012914	1402011-05A	Trichloroethene	TO-15	1/29/2014	1.8	UG/M3	J	4.0
3PS1-SVPM2002I-012914	1402011-05A	Tetrachloroethene	TO-15	1/29/2014	1.8	UG/M3	J	5.0
3PS1-SVPM2002I-012914	1402011-05A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.0
3PS1-SVPM2002+012914	1402011-05A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.0
3PS1-SVPM2002I-012914	1402011-05A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.1
3PS1-SVPM2002D-012914	1402011-06A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.9
PS1-SVPM2002D-012914	1402011-06A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	4.5
3PS1-SVPM2002D-012914	1402011-06A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	4.5
3PS1-SVPM2002D-012914	1402011-06A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	4.6
PS1-SVPM2002D-012914	1402011-06A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	6.1
3PS1-SVPM2002D-012914	1402011-06A	Tetrachioroethene	TO-15	1/29/2014	1.8	UG/M3	J	7.7
IPS1-SVPM2002D-012914	1402011-06A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	4.5
3PS1-SVPM2002D-012914	1402011-06A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	4.6
PS1-SVPM2002D-012914	1402011-06A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	6.2
PS1-SVPM2003S-012914	1402011-07A	Vinyl Chloride	T O-15	1/29/2014		UG/M3	U	2.3
PS1-SVPM2003S-012914	1402011-07A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.6
PS1-SVPM2003S-012914	1402011-07A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.6
PS1-SVPM2003S-012914	1402011-07A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.7
PS1-SVPM2003S-012914	1402011-07A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	4.9
PS1-SVPM2003S-012914	1402011-07A	Tetrachloroethene	TO-15	1/29/2014		UG/M3	U	6.2
PS1-SVPM2003S-012914	1402011-07A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.6
PS1-SVPM2003S-012914	1402011-07A	1,1-Dichloroethane	TO-15	1/29/2014	1915	UG/M3	U	3.7
PS1-SVPM2003S-012914	1402011-07A	1,1,1-Trichloroethane	TO-15	1/29/2014		%R	U	5.0
PS1-SVPM2003I-012914	1402011-08A	Vinyl Chloride	TO-15	1/29/2014		%R	U	2.0
PS1-SVPM2003I-012914	1402011-08A	trans-1,2-Dichloroethene	TO-15	1/29/2014		%R	U	3.0
PS1-SVPM2003I-012914	1402011-08A	cis1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.0

NWIRP BETHPAGE, NY SITE 1 DATA SUMMARY TABLE

AIR SDG: 1402011

Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL
BPS1-SVPM2003I-012914	1402011-08A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.1
BPS1-SVPM2003I-012914	1402011-08A	Trichloroethene	TO-15	1/29/2014	0.73	UG/M3	J	4.1
BPS1-SVPM2003I-012914	1402011-08A	Tetrachloroethene	TO-15	1/29/2014	1.5	UG/M3	J	5.2
BPS1-SVPM2003I-012914	1402011-08A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.0
BPS1-SVPM2003I-012914	1402011-08A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.1
3PS1-SVPM2003I-012914	1402011-08A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.2
3PS1-SVPM2003D-012914	1402011-09A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.1
BPS1-SVPM2003D-012914	140201109A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2003D-012914	1402011-09A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2003D-012914	1402011-09A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.3
3PS1-SVPM2003D-012914	1402011-09A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	4.4
BPS1-SVPM2003D-012914	1402011-09A	Tetrachloroethene	TO-15	1/29/2014	2.4	UG/M3	J	5.5
BPS1-SVPM2003D-012914	1402011-09A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2003D-012914	1402011-09A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.3
BPS1-SVPM2003D-012914	1402011-09A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.4
BPS1-SVPM2004S-012914	1402011-10A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.1
BPS1-SVPM2004S-012914	1402011-10A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2004S-012914	1402011-10A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2004S-012914	1402011-10A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.3
BPS1-SVPM2004S-012914	1402011-10A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	4.4
BPS1-SVPM2004S-012914	1402011-10A	Tetrachloroethene	TO-15	1/29/2014	1.3	UG/M3	J	5.5
BPS1-SVPM2004S-012914	1402011-10A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2004S-012914	1402011-10A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.3
3PS1-SVPM2004S-012914	1402011-10A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.4
BPS1-SVPM2004I-012914	1402011-11A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.1
BPS1-SVPM2004I-012914	1402011-11A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.3
BPS1-SVPM2004I-012914	1402011-11A	cis-1,2Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.3
BPS1-SVPM2004I-012914	1402011-11A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.4
BPS1-SVPM2004I-012914	1402011-11A	Trichloroethene	TO-15	1/29/2014	3.7	UG/M3	J	4.5
BPS1-SVPM2004I-012914	1402011-11A	Tetrachloroethene	TO-15	1/29/2014	2.9	UG/M3	J	5.7
BPS1-SVPM2004I-012914	1402011-11A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.3
BPS1-SVPM2004I-012914	1402011-11A	1,1-Dichloroethane	TO-15	1/29/2014	10.11	UG/M3	U	3.4
BPS1-SVPM2004I-012914	1402011-11A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.6

NWIRP BETHPAGE, BETHPAGE, NY SITE 1 DATA SUMMARY TABLE AIR

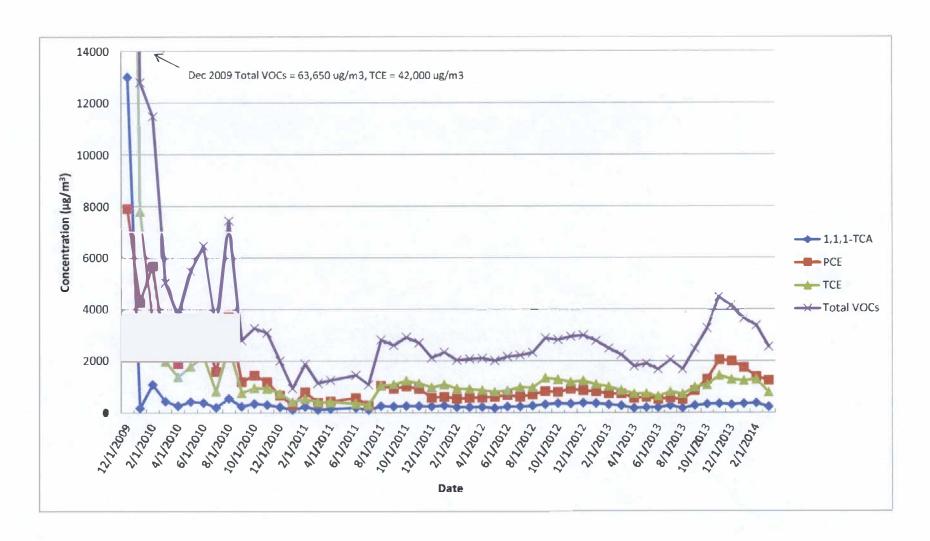
SDG: 1402011

Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL
BPS1-SVPM2004D012914	1402011-12A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.0
BPS1-SVPM2004D-012914	1402011-12A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2004D-012914	1402011-12A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2004D-012914	1402011-12A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2004D-012914	1402011-12A	Trichloroethene	TO-15	1/29/2014	0.80	UG/M3	J	4.3
BPS1-SVPM2004D-012914	1402011-12A	Tetrachioroethene	TO-15	1/29/2014	1.5	UG/M3	J	5.5
BPS1-SVPM2004D-012914	1402011-12A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-SVPM2004D-012914	1402011-12A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
3PS1-SVPM2004D-012914	1402011-12A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.4
3PS1-SVPM2006S-013014	1402011-13A	Viny! Chloride	TO-15	1/30/2014		UG/M3	U	1.8
3PS1-SVPM2006S-013014	1402011-13A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	2.9
BPS1-SVPM2006S-013014	1402011-13A	cis-1,2Dichloroethene	TO-15	1/30/2014		UG/M3	U	2.9
3PS1-SVPM2006S-013014	1402011-13A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	2.9
3PS1-SVPM2006S-013014	1402011-13A	Trichloroethene	TO-15	1/30/2014	0.80	UG/M3	J	3.9
3PS1-SVPM2006S-013014	1402011-13A	Tetrachloroethene	TO-15	1/30/2014	1.4	UG/M3	J	4.9
3PS1SVPM2006S-013014	1402011-13A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	2.9
3PS1-SVPM2006S-013014	1402011-13A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	2.9
3PS1-SVPM2006S-013014	1402011-13A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.0
3PS1-SVPM2006I-013014	1402011-14A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.1
3PS1-SVPM2006I-013014	1402011-14A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.3
3PS1-SVPM2006I-013014	1402011-14A	cis-1,2-Dichloroethene	TO-15	1/30/2014	10	UG/M3		3.3
3PS1-SVPM2006I-013014	1402011-14A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.4
BPS1-SVPM2006I-013014	1402011-14A	Trichloroethene	TO-15	1/30/2014	2.9	UG/M3	J	4.5
3PS1-SVPM2006I-013014	1402011-14A	Tetrachloroethene	TO-15	1/30/2014	1.5	UG/M3	J	5.7
3PS1-SVPM2006I-013014	1402011-14A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.3
3PS1-SVPM2006I-013014	1402011-14A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.4
3PS1-SVPM2006I-013014	1402011-14A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.6
3PS1-SVPM2006D-013014	1402011-15A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.1
3PS1-SVPM2006D-013014	1402011-15A	trans-1,2-Dichloroethene	TO-15	1/30/2014		%R	U	3.2
3PS1-SVPM2006D-013014	1402011-15A	cis-1,2-Dichloroethene	TO-15	1/30/2014	22	%R		3.2
3PS1-SVPM2006D-013014	1402011-15A	1,2-Dichloroethane	TO-15	1/30/2014	7	%R	U	3.3
3PS1-SVPM2006D-013014	1402011-15A	Trichloroethene	TO-15	1/30/2014	2.1	UG/M3	J	4.4
3PS1-SVPM2006D-013014	1402011-15A	Tetrachloroethene	TO-15	1/30/2014		UG/M3	U	5.5

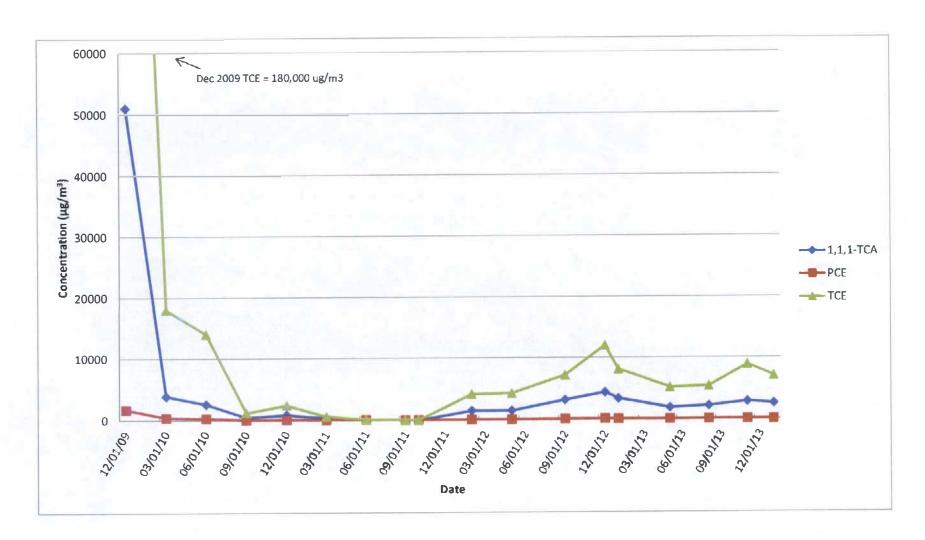
NWIRP BETHPAGE, NY SITE 1 DATA SUMMARY TABLE AIR

SDG: 1402011

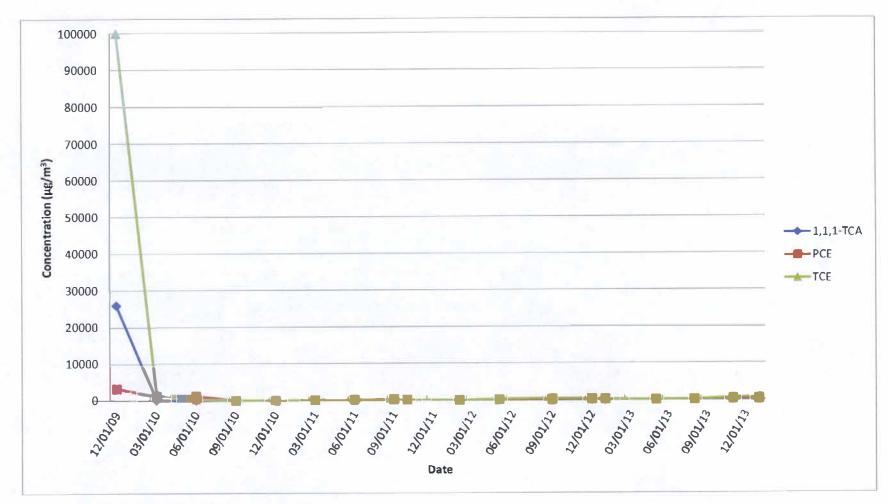
Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL
BPS1-SVPM2006D-013014	1402011-15A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.2
BPS1-SVPM2006D-013014	1402011-15A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.3
BPS1-SVPM2006D-013014	1402011-15A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.4
BPS1-SVPM2007S-013014	1402011-16A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.0
BPS1-SVPM2007S-013014	1402011-16A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.1
BPS1-SVPM2007S-013014	1402011-16A	cis-1,2-Dichloroethene	TO-15	1/30/2014	2.0	UG/M3	J	3.1
BPS1-SVPM2007S-013014	1402011-16A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.2
BPS1-SVPM2007S-013014	1402011-16A	Trichloroethene	TO-15	1/30/2014	2.5	UG/M3	J	4.2
BPS1-SVPM2007S-013014	1402011-16A	Tetrachloroethene	TO-15	1/30/2014	1.4	UG/M3	J	5.3
BPS1-SVPM2007S-013014	1402011-16A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.1
BPS1-SVPM2007S-013014	1402011-16A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.2
BPS1-SVPM2007S-013014	1402011-16A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.2
BPS1-SVPM2007IR-013014	1402011-17A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	1.9
BPS1-SVPM2007IR-013014	1402011-17A	trans-1,2-Dichloroethene	TO-15	1/30/2014	1	UG/M3	U	3.0
BPS1-SVPM2007IR-013014	1402011-17A	cis-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007IR-013014	1402011-17A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007IR-013014	1402011-17A	Trichloroethene	TO-15	1/30/2014		UG/M3	U	4.0
BPS1-SVPM2007IR-013014	1402011-17A	Tetrachloroethene	TO-15	1/30/2014	1	UG/M3	U	5.1
BPS1-SVPM2007IR-013014	1402011-17A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007IR-013014	1402011-17A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007IR-013014	1402011-17A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.1
BPS1-SVPM2007D-013014	1402011-18A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.0
BPS1-SVPM2007D-013014	1402011-18A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007D-013014	1402011-18A	cis-1,2-Dichloroethene	TO-15	1/30/2014	2.0	UG/M3	J	3.0
BPS1-SVPM2007D-013014	1402011-18A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.1
BPS1-SVPM2007D-013014	1402011-18A	Trichloroethene	TO-15	1/30/2014		UG/M3	U	4.1
BPS1-SVPM2007D-013014	1402011-18A	Tetrachloroethene	TO-15	1/30/2014	1.2	UG/M3	J	5.2
BPS1-SVPM2007D-013014	1402011-18A	1,1-Dichloroethene	TO15	1/30/2014		UG/M3	U	3.0
BPS1-SVPM2007D-013014	1402011-18A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.1
BPS1-SVPM2007D-013014	1402011-18A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.2
BPS1-DUP01-012914	1402011-19A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	2.0
BPS1-DUP01-012914	1402011-19A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-DUP01012914	1402011-19A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	l u l	3.2

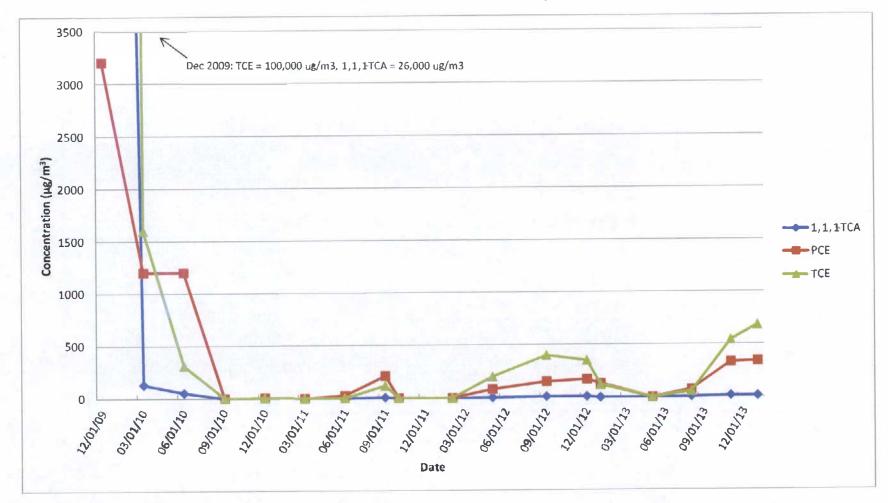

NWIRP BETHPAGE, BETHPAGE, NY SITE 1 DATA SUMMARY TABLE AIR

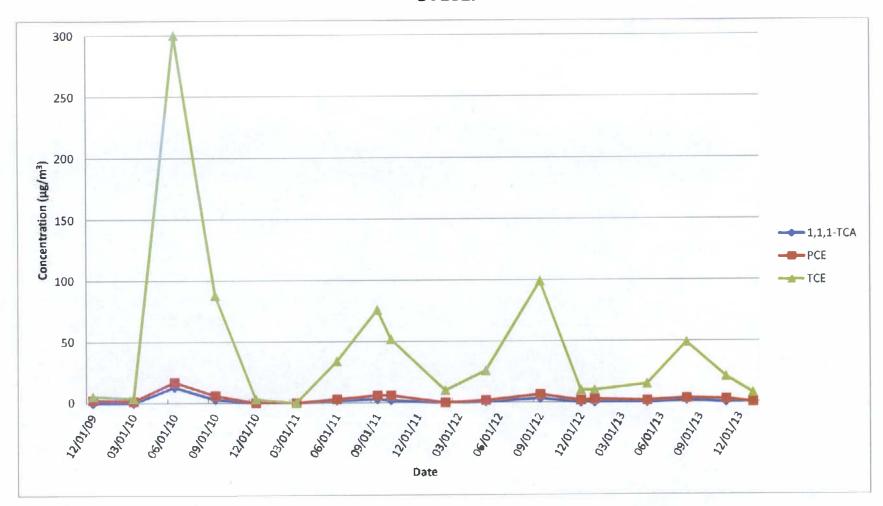
SDG: 1402011

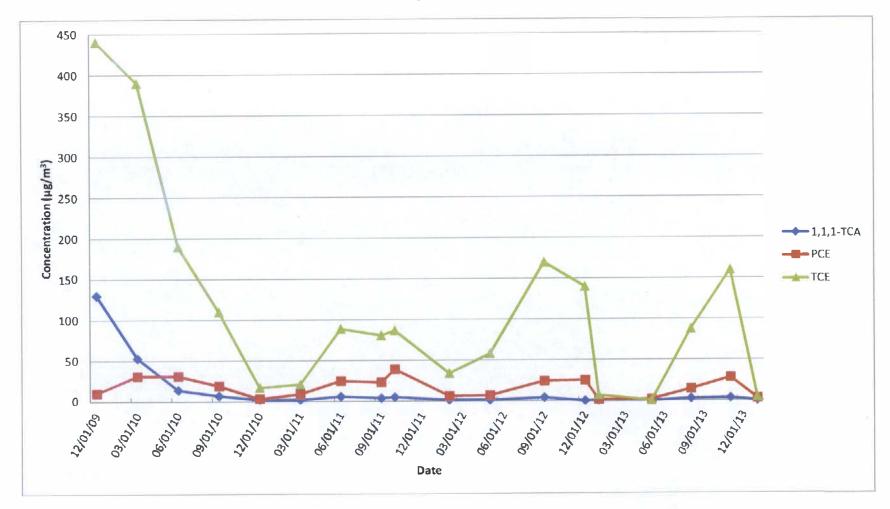

Sample Name	Lab ID	Analytical Name	Analytical Method	Sample Date	Result	Unit	Qualifier	RL
BPS1-DUP01-012914	1402011-19A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-DUP01-012914	1402011-19A	Trichloroethene	TO-15	1/29/2014	1.4	UG/M3	J	4.3
BPS1-DUP01-012914	1402011-19A	Tetrachloroethene	TO-15	1/29/2014		UG/M3	UJ	5.5
BPS1-DUP01-012914	1402011-19A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-DUP01-012914	1402011-19A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.2
BPS1-DUP01-012914	1402011-19A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.4
BPS1-DUP02-013014	1402011-20A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.2
BPS1-DUP02-013014	1402011-20A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.4
BPS1-DUP02-013014	1402011-20A	cis-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	UJ	3.4
BPS1-DUP02-013014	1402011-20A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.5
BPS1-DUP02-013014	1402011-20A	Trichloroethene	TO-15	1/30/2014		UG/M3	U	4.7
BPS1-DUP02-013014	1402011-20A	Tetrachloroethene	TO-15	1/30/2014		UG/M3	UJ	5.9
BPS1-DUP02-013014	1402011-20A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	3.4
BPS1-DUP02-013014	1402011-20A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	3.5
BPS1-DUP02-013014	1402011-20A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	4.7
BPS1-FB2001-012914	1402011-21A	Vinyl Chloride	TO-15	1/29/2014		UG/M3	U	1.9
BPS1-FB2001-012914	1402011-21A	trans-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.9
BPS1-FB2001-012914	1402011-21A	cis-1,2-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.9
BPS1-FB2001-012914	1402011-21A	1,2-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.0
BPS1-FB2001-012914	140201121A	Trichloroethene	TO-15	1/29/2014		UG/M3	U	4.0
BPS1-FB2001-012914	1402011-21A	Tetrachloroethene	TO-15	1/29/2014		UG/M3	U	5.0
BPS1-FB2001-012914	1402011-21A	1,1-Dichloroethene	TO-15	1/29/2014		UG/M3	U	2.9
BPS1-FB2001-012914	1402011-21A	1,1-Dichloroethane	TO-15	1/29/2014		UG/M3	U	3.0
BPS1-FB2001-012914	1402011-21A	1,1,1-Trichloroethane	TO-15	1/29/2014		UG/M3	U	4.0
BPS1-FB2002-013014	1402011-22A	Vinyl Chloride	TO-15	1/30/2014		UG/M3	U	2.9
BPS1-FB2002-013014	1402011-22A	trans-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	4.6
BPS1-FB2002-013014	1402011-22A	cis-1,2-Dichloroethene	TO-15	1/30/2014		UG/M3	U	4.6
BPS1-FB2002-013014	1402011-22A	1,2-Dichloroethane	TO-15	1/30/2014		UG/M3	U	4.6
BPS1-FB2002-013014	1402011-22A	Trichloroethene	TO-15	1/30/2014		UG/M3	U	6.2
BPS1-FB2002-013014	1402011-22A	Tetrachloroethene	TO-15	1/30/2014		UG/M3	U	7.8
BPS1-FB2002-013014	1402011-22A	1,1-Dichloroethene	TO-15	1/30/2014		UG/M3	U	4.6
BPS1-FB2002-013014	1402011-22A	1,1-Dichloroethane	TO-15	1/30/2014		UG/M3	U	4.6
BPS1-FB2002-013014	1402011-22A	1,1,1-Trichloroethane	TO-15	1/30/2014		UG/M3	U	6.3

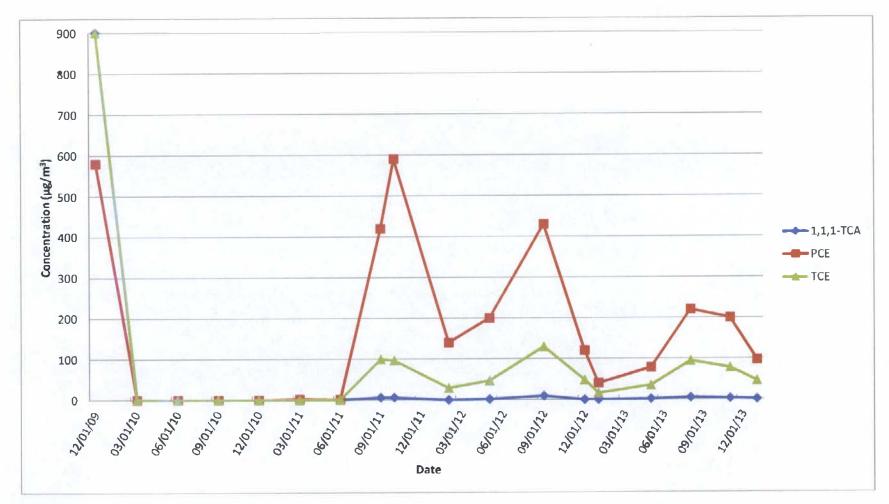
APPENDIX C VAPOR CONCENTRATION TREND GRAPHS

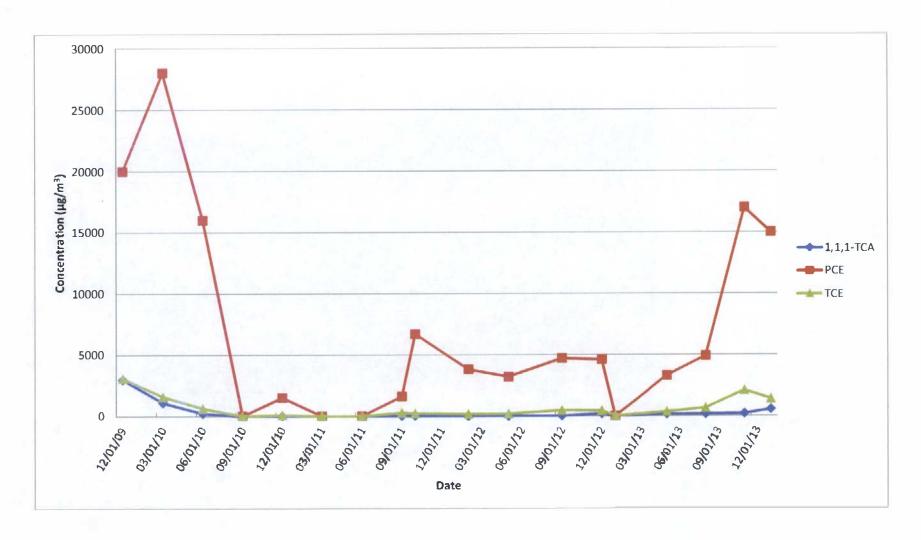

COMBINED INFLUENT

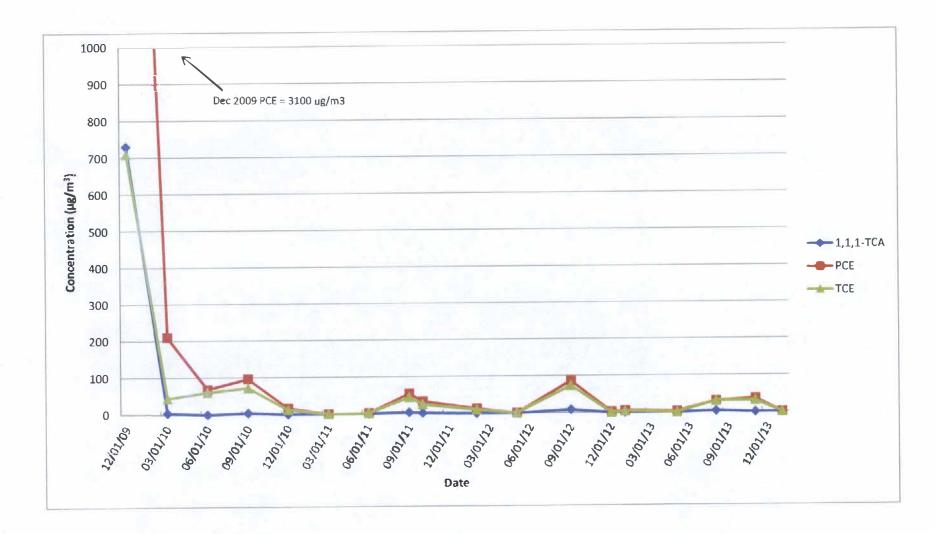



SV-101D

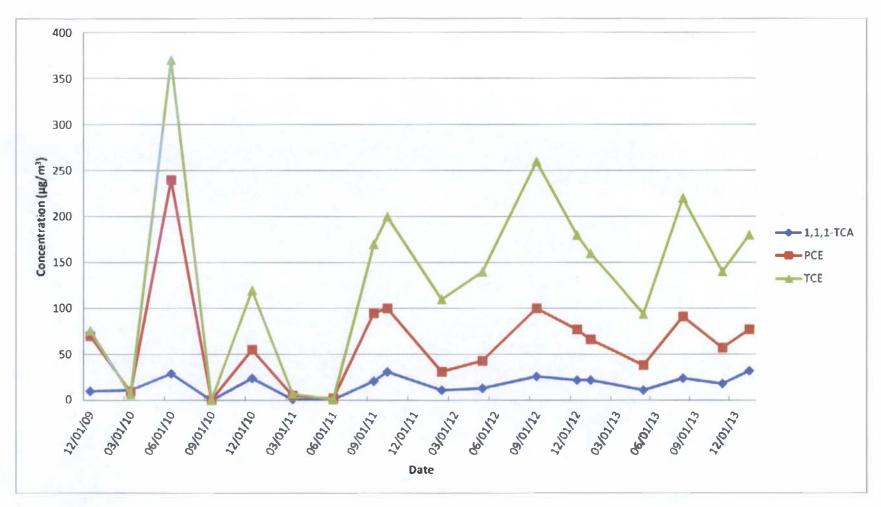

SV-101D (smaller scale)

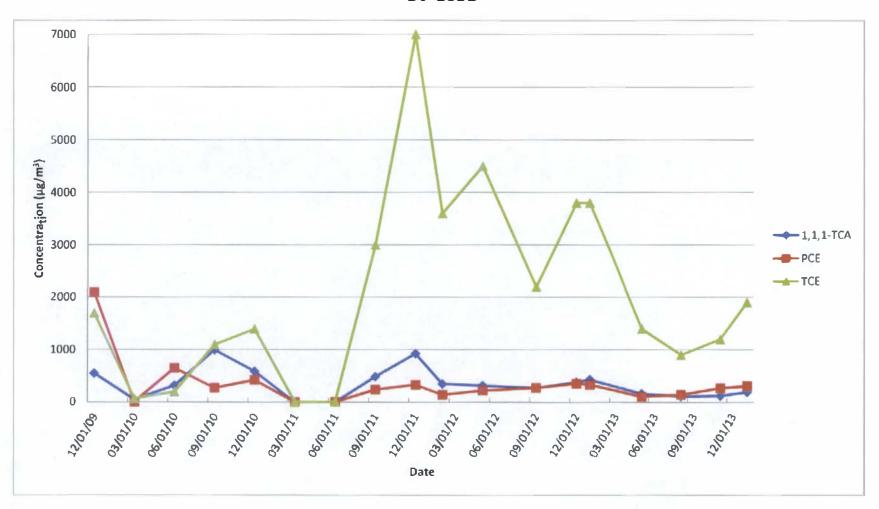

SV102I

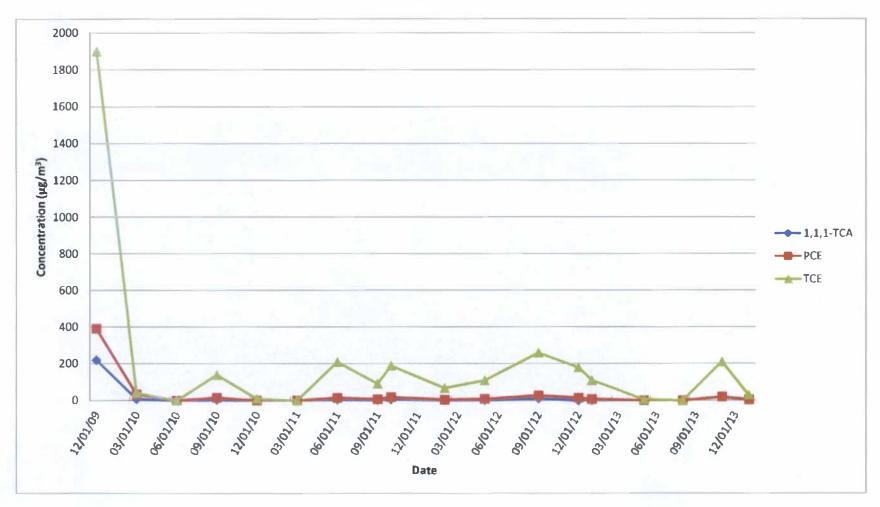

SV-102D

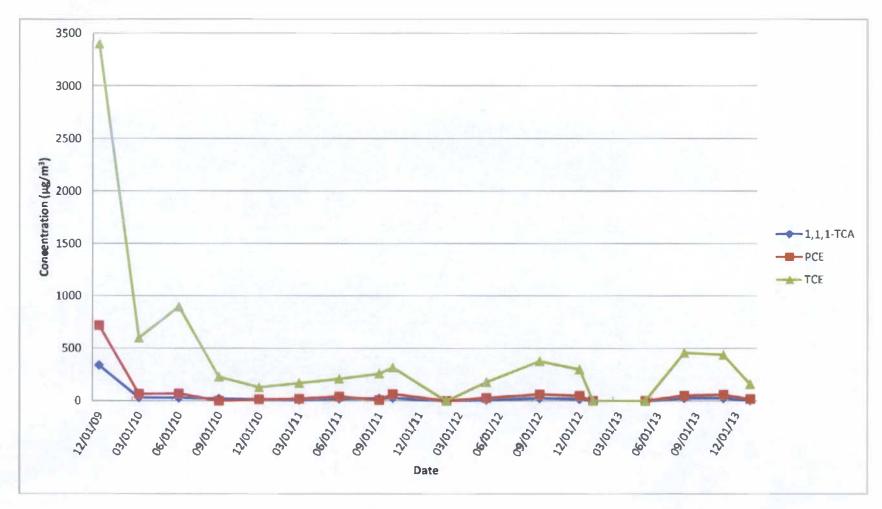

SV-103I

SV103D


SV1041


SV-104D


SV-1051


SV-105D

SV-106l

SV-106D

