Scanned & eDoced

Quarterly Operations Report Second Quarter 2014

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-10-D-9409 Contract Task Order No. 0005

> > October 2014

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, VA 23511

Prepared by:

H&S Environmental, Inc. 160 East Main Street, Suite 2F Westborough, Massachusetts 01581 (508) 366-7442

Quarterly Operations Report Second Quarter 2014

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

> Contract No. N40085-10-D-9409 Contract Task Order No. 0005

> > October 2014

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9742 Maryland Avenue Norfolk, VA 23511

10/27/14
Date
Date

Jennifer Good Date
Project Manager

TABLE OF CONTENTS

1.0	INT	RODUCTION	1- 1
	1.1	Site Location	1-1
	1.2	Background	
	1.3	Project Overview and Objective	
2.0		ECS OPERATION AND MAINTENANCE	
	2.1	Routine Maintenance Activities	2-1
	2.2	Non-routine Maintenance / Site Activities	
3.0	SVI	ECS MONITORING	3-1
	3.1	Monthly Air Quality Monitoring.	
	3.2	Quarterly Air Quality Monitoring of SVEWs	
	3.3 3.4	Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs Annual Vapor Quality Monitoring of Off-site SVPMs	
	3.5	Soil Vapor Quality Concentration Trends	
4.0		NCLUSIONS AND RECOMMENDATIONS	
5.0	REI	FERENCES	5-1
TAI	BLES		
TAB	BLE 1	Monthly Vapor Analytical Results - April 2014	
TAE	BLE 2	Monthly Vapor Analytical Results - May 2014	
TAE	BLE 3	Monthly Vapor Analytical Results – June 2014	
TAE	BLE 4	Quarterly Vapor Analytical Results of SVE Wells - Second Quarter 2014	
TAE	BLE 5	Quarterly Vapor Analytical Results of SVE Wells through Second Quarter 2014	
TAE	BLE 6	Quarterly Off-site Soil Vapor Monitoring Results of SVPMs - Second Quarter 20	14
TAB	BLE 7	Quarterly Off-site Soil Vapor Monitoring Results of SVPMs through Second Quar 2014	rter
<u>FIG</u>	URES		
FIGI	URE !	Site Location Map	
FIG	URE 2	Site Area and Vicinity	
FIGI	URE 3	Site Plan – Existing SVECS Layout	
FIG	URE 4	System Layout Plan	
FIGI	JRE 5	Second Quarter 2014 Vapor Analytical Map - Select VOC Concentrations - SVEV	W s
FIGU	JRE 6	Second Quarter 2014 Vacuum Readings – SVPMs	

APPENDICES

APPENDIX A NYSDEC Air Discharge Limit Documentation

APPENDIX B Vapor Concentration Trend Graphs of Select VOCs

Acronyms and Abbreviations

bgs below ground surface

CTO Contract Task Order

DAR Division of Air Resources

DCA dichloroethane
DCE dichloroethene

DoD Department of Defense

ELAP Environmental Laboratory Accreditation Program

FMS Flow Monitoring Station

G●C● Government ●wned Contractor Operated

H&S Environmental, Inc. i.w. inches of water column

NAVFAC Naval Facilities Engineering Command Mid-Atlantic
NELAC National Environmental Accreditation Conference

NG Northrop Grumman

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

M peration and MaintenancePCB polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

scfm standard cubic feet per minute

SVECS soil vapor extraction containment system

SVEW soil vapor extraction well

SVOC semi-volatile organic compound

SVPM soil vapor pressure monitor

TCA trichloroethane
TCE trichloroethene

TCL target compound list
TtEC Tetra Tech EC, Inc.
TtNUS Tetra Tech NUS, Inc.

VGAC vapor–phase granular activated carbon

VOC

volatile organic compound

VC

vinyl chloride

1.0 INTRODUCTION

H&S Environmental, Inc. (H&S) has prepared this Quarterly Operations Report for the Second Quarter 2014 for the Soil Vapor Extraction Containment System (SVECS) at Site 1, Former Drum Marshalling Area, at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the U.S. Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-10-D-9409, Contract Task Order (CTO) No. 0005. This Second Quarter 2014 Operations Report details activities that occurred from April 2014 to June 2014. Data was collected and operational activities were performed by H&S in accordance with the following documents:

- Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech NUS, Inc. (TtNUS) in 2012.

1.1 Site Location

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City. In the late 1990s, the Navy's property totaled approximately 109.5 acres and was formerly a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood. The Navy currently retains approximately nine acres of the former NWIRP, including Site 1, which lies within the fenced area of NWIRP Bethpage and is located east of Plant No. 3, west of 11th Street, and north of Plant 17 South (Figures 1 and 2).

1.2 Background

NWIRP Bethpage was established in 1943. Since inception, the primary mission of the facility has been the research, prototyping, testing, design engineering, fabrication, and primary assembly of military aircraft. Historical operations that resulted in hazardous material generation at the facility included metal finishing processes, maintenance operations, painting of aircraft and components, and other activities that involve aircraft manufacturing. Wastes generated by plant operations were disposed of directly into drainage sumps, dry wells, and/or on the ground surface, resulting in the disposal of a number of hazardous wastes, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and inorganic analytes (chromium and cadmium) at the site. Some of these contaminants have migrated from the source area to surrounding areas, including the soils at these sites and the groundwater beneath and downgradient of the NWIRP Bethpage property. NWIRP Bethpage is currently listed by the New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B).

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. A clay unit is present near the groundwater table (50 feet below ground surface [bgs]) at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of off-site VOCs in soil vapor (TtEC 2010).

Chlorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 µg/m³ (micrograms per cubic meter) of soil vapor have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYSDOH) for sub-slab soil vapor concentrations. Of these compounds, TCE is the primary VOC of concern. Mitigation of TCE contamination in accordance with NYSDOH guidance is expected to remediate other VOCs associated with the site. PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals has been detected in the central portion of Site 1 and will be addressed via a separate remediation (TtEC 2010).

Prior to implementation of the SVECS, the mean concentrations of VOCs in soil gas samples collected along the eastern fence-line were 41,128 μ g/m³ of TCE, 381 μ g/m³ of PCE, and 20,634 μ g/m³ of I,1,1-TCA. The maximum concentrations of VOCs in the soil gas samples were 180,000 μ g/m³ of TCE, 1,200 μ g/m³ of PCE, and 90,000 μ g/m³ of 1,1,1-TCA (TtEC 2010).

1.3 Project Overview and Objective

The remedial objective for this project is to use an on-site soil vapor extraction system to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture contaminated soil vapor with a TCE concentration greater than $250 \,\mu\text{g/m}^3$. A secondary objective of this project is to address soil vapor with a TCE concentration greater than $5 \,\mu\text{g/m}^3$. The SVECS is an interim action intended to address migration of VOCs in contaminated soil vapors. It is expected to operate continuously 24 hours/day, seven days/week, with the exception of maintenance and adjustment periods until the remedial objectives are met (TtEC 2010).

1.4 SVECS Overview

The SVECS consists of soil vapor extraction, soil vapor monitoring, and soil vapor treatment. Twelve SVE wells (SVEWs) are located along the eastern boundary of Site 1 in six clusters, each consisting of one intermediate well and one deep well. Intermediate wells SVE-1011, SVE-1021, SVE-1031, SVE-1041, SVE-1051, and SVE-1061 have a screened interval between 25 and 35 ft bgs. Deep wells SVE-101D, SVE-102D, SVE-103D, SVE-104D, SVE-105D, and SVE-106D have a screened interval between 40 and 60 ft bgs. The groundwater table fluctuates between approximately 50 and 55 feet bgs. Each SVEW is operated at a flow rate such that the combined total flow rate is approximately 400 standard cubic feet per minute (scfin) of soil vapor. Each intermediate depth SVEW requires an approximate vacuum of 4 inches of water column (i.w.) and each deep SVEW requires an approximate vacuum of 10 to 20 i.w. in order to extract the targeted flow rates. These twelve SVEWs have been piped below the ground to the Flow Monitoring Station (FMS), where flow, vacuum, and vapor quality are monitored. Within the FMS, the

discharges from the individual SVEWs have been equipped with a 2-inch flow control butterfly valve, a vacuum gauge, and a sampling port. The sampling port is utilized to measure the flow rate from an individual well using a portable velocity meter and to collect vapor samples. All the SVE lines collect into a single manifold within the FMS and from this location a single underground pipeline has been routed approximately 1,400 linear feet to the Treatment Building (Building 03-35). Five additional SVEWs (SV-107D, SV-108D, SV-109D, SV-110D, and SV-111D) were installed in October 2011 to address potential VOCs under Plant No. 3 and the South Warehouse. A site plan depicting well locations is included as Figure 3.

The SVECS is housed within the Treatment Building, an existing and unoccupied building also known as Building 03-35. The treatment system consists of a moisture separator, two SVE blowers, and a 5,000-lb vapor-phase granular activated carbon (VGAC) unit for removal of chlorinated VOCs from the off-gas. Soil vapor that enters the Treatment Building first passes through the moisture separator tank where any condensate is separated. To date, no condensate has formed in this tank. The vapor is then passed through an air filter and SVE blower and then treated in the VGAC unit. The treated vapor is discharged from the VGAC via an exhaust stack. The SVECS has a control panel comprised of mechanical interlocks and relays for local operation. A System Layout Plan is presented in Figure 4, which also illustrates the design flow rates through the soil vapor extraction and treatment process.

The off-gas from the SVECS is monitored for chlorinated VOCs as identified in the NYSDEC Division of Air Resources (DAR) permit equivalent effluent limitations and updated approval documentation (Appendix A) and monitoring requirements (TtEC 2010). Samples are submitted to a National Environmental Laboratory Accreditation Conference (NELAC)-accredited, Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory, Air Toxics, Inc. located in Folsom, CA, for analysis of VOCs by modified method TO-15. Prior to January 2014, samples were analyzed for target compound list (TCL) VOCs. As of January 2014, upon approval by NYSDEC and NYSDOH, samples are analyzed for site-specific VOCs. The site-specific VOCs are: 1,1,1-TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis-1,2-DCE, PCE, trans-1,2-DCE, TCE, and vinyl chloride (VC).

A total of 18 soil vapor pressure monitor (SVPM) / soil gas monitoring points have been installed in the neighborhood east of Site 1 at NWIRP Bethpage (Figure 3). These off-site monitoring points consist of eight previously existing SVPMs as well as 10 SVPMs installed in September 2012. Pressure readings from the SVPMs are collected quarterly and used to evaluate the SVECS vacuum field. In addition, analytical results of vapor samples collected annually from these locations and the pressure readings are used to further evaluate the SVECS operation and the potential for vapor intrusion.

2.0 SVECS OPERATION AND MAINTENANCE

While designed to run autonomously, the SVECS requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The SVECS is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the SVECS were performed during the operator's weekly visits during this reporting period. These activities include general site inspections (of the grounds, buildings, doors and locks), collection of operational data (vapor flowrates, pressures, vacuums, temperature and photoionization detector [PID] readings), adjustment of system valves, collection of vapor samples (on a monthly and quarterly basis), collection/disposal of condensate if needed, cleaning of filters, switching of lead/lag blower assignments, and preventive maintenance of system equipment.

2.2 Non-routine Maintenance / Site Activities

No non-routine activities or repair items of note were performed during this quarterly reporting period.

3.0 SVECS MONITORING

Several process vapor samples are collected on a monthly basis to monitor the SVECS operation. These samples consist of an influent sample (as well as a duplicate sample), located immediately prior to the VGAC unit, and an effluent sample, located after the VGAC unit and before the exhaust stack. Vapor samples are also collected from the 12 original SVEWs on a quarterly basis to monitor the capture of the contaminated soil vapor by the SVEWs. In addition, quarterly pressure measurements are collected from the SVEWs and SVPMs to monitor the SVECS vacuum field, and soil gas sampling for SVPMs is conducted annually (generally in the winter time-frame) to evaluate the effectiveness of the SVECS.

3.1 Monthly Air Quality Monitoring

Analysis of influent and effluent vapor sample locations is performed to evaluate VOC mass removal and the effectiveness of the VGAC adsorption unit. Time-integrated vapor samples are collected using 6-L summa canisters with 30-minute flow regulators.

Treated off-gas discharged at the exhaust stack is subject to emissions limitations. Initially, discharge goals were derived from calculations submitted by the Navy and approved by the NYSDEC DAR in February 2010. In September 2011, the Navy submitted an evaluation proposing revised discharge goals (TtNUS 2011), which NYSDEC approved in October 2011. A copy of this documentation is included as **Appendix A**.

A summary of monthly vapor sampling results collected in April, May, and June (Second Quarter) is presented in Tables 1, 2, and 3, respectively. Emission rate calculations for both the influent stream (prior to VGAC treatment) and effluent stream (following VGAC treatment) and estimated monthly mass recoveries are also presented. Emission rates of the influent stream are calculated to monitor progress and determine when influent concentrations have reached levels at which vapor treatment via carbon adsorption is no longer required. The data presented in Tables 1, 2, and 3 demonstrate that all constituents were within the effluent emission rates (Appendix A). Raw analytical data is provided under a separate cover.

3.2 Quarterly Air Quality Monitoring of SVEWs

Time-integrated vapor samples are collected quarterly using 6-L summa canisters with 30-minute flow regulators at six intermediate and six deep SVE wells. The samples are collected for the purpose of tracking and documenting the performance of the SVECS (TtEC 2010).

Quarterly vapor samples were collected on 10 April from the 12 SVEWs. A summary of detected compounds is included as **Table 4**. Analytical results of select VOCs (1,1,1-TCA, PCE, and TCE) detected at the 12 SVEWs during the Second Quarter monitoring event are presented graphically as **Figure 5**. Raw analytical data is provided under a separate cover. Historical analytical results of quarterly vapor samples collected from December 2009 through the Second Quarter 2014 are presented in **Table 5**.

3.3 Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs

Pressure readings are collected quarterly from the 12 SVEWs and 18 SVPMs in order to monitor the SVECS vacuum field. Valve positions of the SVEWs are also recorded at this time. Pressure readings from the 18 SVPMs were collected on 10 April. Results of the Second Quarter vapor monitoring are presented in **Table 6**. Negative pressure readings for the individual SVEWs provide an indication that a vacuum is being established along the fence line. In January 2014, the recorded measurements were (-) 5.6 i.w.to greater than (-) 10 i.w.

As indicated in **Table 6**, vacuum/soil vapor pressure measurements of the SVPMs ranged from (+) 0.02 to (-) 0.18 i.w. during the Second Quarter monitoring event. These measurements indicate that a vacuum field continues to be mainmined in the residential neighborhood adjacent to Site 1. The slight positive pressure of (+) 0.02 or (+) 0.01 noted in several SVPMs during the Second Quarter monitoring event is not of concern since a low pressure weather system moving through the area can cause a temporary reversal of the pressure gradients. Pressure readings from the 18 SVPMs are presented graphically as **Figure 6**.

Historical results of quarterly vapor monitoring from Third Quarter 2012 through Second Quarter 2014 are presented in **Table 7**.

3.4 Annual Vapor Quality Monitoring of Off-site SVPMs

Time-integrated vapor samples are collected annually using 6-L summa canisters with 30-minute flow regulators at 18 SVPM locations. As stated previously, annual soil gas sampling for SVPMs is performed in the winter time-frame; therefore, no soil gas samples were collected from the SVPMs during the Second Quarter. The next annual sample collection is scheduled to occur in January 2015.

3.5 Soil Vapor Quality Concentration Trends

Historical vapor analytical results for the 12 SVEWs through the Second Quarter are presented in **Table** 5. In addition, concentration trends of select VOCs over time for the SVECS combined influent (1,1,1-TCA, PCE, TCE, and total VOCs) and each of the 12 SVEWs (1,1,1-TCA, PCE, and TCE) are presented in **Appendix B**.

Concentration trends observed in the 12 SVEWs through the Second Quarter are discussed below. In general, unless otherwise indicated, concentrations of 1,1,1-TCA, PCE, and TCE exhibited similar trends at each given location.

• Combined Influent: Overall VOC concentrations in the combined influent remained relatively stable throughout the Second Quarter, with total VOC concentrations of 1,719 μg/m³, 2,059 μg/m³, and 1,988 μg/m³ in April, May, and June, respectively. Overall concentrations remain below baseline concentrations observed in December 2009 when a total VOC concentration of 63,650 μg/m³ was observed.

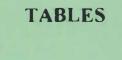
- SV-1011: Concentrations observed at this location decreased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 3,300 μg/m³ TCE, 34 μg/m³ PCE, and 1,200 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (180,000 μg/m³ TCE, 1,700 μg/m³ PCE, and 51,000 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-101D: Concentrations observed at this location decreased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 330 μg/m³ TCE, 270 μg/m³ PCE, and 12 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (100,000 μg/m³ TCE, 3,200 μg/m³ PCE, and 26,000 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-102I: Concentrations observed at this location remained similar in the Second Quarter to those concentrations observed in the First Quarter, with a concentrations of 8.0 μg/m³ TCE, non-detectable levels of PCE, and 0.95 J μg/m³ 1,1,1-TCA. The Second Quarter TCE and 1,1,1-TCA concentrations are above baseline concentrations observed in December 2009 (5.6 μg/m³ TCE, 2.4 μg/m³ PCE, and non-detectable 1,1,1-TCA); however, the concentrations are below the peak concentrations observed in June 2010 (300 μg/m³ TCE, 17 μg/m³ PCE, and 13 μg/m³ 1,1,1-TCA).
- SV-102D: Concentrations observed at this location increased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 39 μg/m³ TCE, 9.6 μg/m³ PCE, and 1.6 J μg/m³ 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (440 μg/m³ TCE, 10 μg/m³ PCE, and 130 μg/m³ 1,1,1-TCA), and also below concentrations observed in October 2011 (39 μg/m³ PCE).
- SV-1031: Concentrations observed at this location decreased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 20 μg/m³ TCE, 40 μg/m³ PCE, and non-detectable levels of 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (900 μg/m³ TCE, 580 μg/m³ PCE, and 900 μg/m³ 1,1,1-TCA), and also below concentrations observed in October 2011 (590 μg/m³ PCE).
- SV-103D: Concentrations observed at this location decreased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 900 μg/m³ TCE, 8,600 μg/m³ PCE, and 400 μg/m³ 1,1,1-TCA. Concentrations remain below baseline concentrations observed in December 2009 (3,100 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,000 μg/m³ 1,1,1-TCA), and also below concentrations observed in March 2010 (28,000 μg/m³ PCE).
- SV-104I: Concentrations observed at this location increased in the Second Quarter from concentrations observed in the First Quarter, with concentrations of 39 μg/m³ TCE, 69 μg/m³ PCE, and 9.6 μg/m³ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (710 μg/m³ TCE, 3,100 μg/m³ PCE, and 730 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-104D: Concentrations observed at this location in the Second Quarter decreased from those observed in the First Quarter, with concentrations of 430 μg/m³ TCE, 780 μg/m³ PCE, and 84

 $\mu g/m^3$ 1,1,1-TCA. All concentrations remain below baseline concentrations observed in December 2009 (4,600 $\mu g/m^3$ TCE, 20,000 $\mu g/m^3$ PCE, and 3,600 $\mu g/m^3$ 1,1,1-TCA) and also below concentrations observed March 2010 (6,000 $\mu g/m^3$ TCE and 39,000 $\mu g/m^3$ PCE).

- SV-1051: Concentrations observed at this location in the Second Quarter generally decreased or remained similar to those observed in the First Quarter, with concentrations of 190 μg/m³ TCE, 48 μg/m³ PCE, and 26 μg/m³ 1,1,1-TCA. Though these concentrations are above baseline concentrations observed in December 2009 for TCE and 1,1,1-TCA (76 μg/m³ TCE, 70 μg/m³ PCE, and 9.9 μg/m³ 1,1,1-TCA), they are below the peak concentrations observed in June 2010 (370 μg/m³ TCE, 240 μg/m³ PCE, and 29 μg/m³ 1,1,1-TCA).
- SV-105D: Concentrations observed at this location in the Second Quarter decreased from concentrations observed in the First Quarter, with concentrations of 8.5 μg/m³ TCE and non-detectable levels of PCE and 1,1,1-TCA. These concentrations are below baseline concentrations observed in December 2009 (1,700 μg/m³ TCE, 2,100 μg/m³ PCE and 550 μg/m³ 1,1,1-TCA), and also below concentrations observed in September 2010 (1,000 μg/m³ 1,1,1-TCA) and December 2011 (7,000 μg/m³ TCE).
- SV-106I: Concentrations observed at this location in the Second Quarter increased from concentrations observed in the First Quarter, with concentrations of 70 μg/m³ TCE, 6.2 μg/m³ PCE, and 3.8 J μg/m³ 1,1,1-TCA. These concentrations are below baseline concentrations observed in December 2009 (1, 900 μg/m³ TCE, 390 μg/m³ PCE, and 220 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.
- SV-106D: Concentrations observed at this location in the Second Quarter generally decreased from concentrations observed in the First Quarter, with concentrations of 84 μg/m³ TCE, 17 μg/m³ PCE, and 6.3 μg/m³ 1,1,1-TCA. These concentrations are below baseline concentrations observed in December 2009 (3,400 μg/m³ TCE, 720 μg/m³ PCE, and 340 μg/m³ 1,1,1-TCA), which were also peak concentrations observed to date.

4.0 CONCLUSIONS AND RECOMMENDATIONS

As stated previously, the intent of the Site 1 SVECS is to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture soil vapor with elevated TCE concentrations. Based on the presence of a vacuum field and the reduction of VOC concentrations to less than the screening values in the off-property area, the SVECS is functioning as designed. Influent vapor analytical data with concentrations of TCE consistently greater than 250 µg/L indicate that the SVECS should continue to be operated on a full-time basis to achieve continued capture of contaminated soil vapor. Monthly monitoring of the combined influent and effluent as well as quarterly monitoring of individual SVEWs should continue. Quarterly and annual monitoring of the SVPMs should also continue in order to ensure that a measurable vacuum field is being established and that the area is being effectively treated. Ongoing optimization activities should be performed in order to improve system performance.


5.0 REFERENCES

Tetra Tech EC, Inc. (TtEC). 2010. Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.

Tetra Tech NUS, Inc. (TtNUS). 2011. Modification to Existing Soil Vapor Extraction Containment System at Site 1 – Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -111D, NWIRP Bethpage, Bethpage, New York. September.

TtNUS. 2012. Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results April 2014

	C. C.	Concent	ration			Emission	Rate (1),(2)		Monthly Mass
1,1-Dichloroethane		(ugfn	n ³)		Prior to Tr	ealment	Following T	reatment	Recovery (3)
	Influent#1	hifluent #2	Average	Effluent	(lbe/hr)	(BEALL	(lbs/hr)	(lbs/yr)	(lbs)
1.1.1-Trichloroethane	170	130	150	60	0.0002	1 7085	0.0001	0.6834	0.1396
1.1-Dichloroethane	11	9.0	10	15	0.0000	0.1139	0.0000	0.1709	0.0093
1.1-Dichloroethene	1.6 J	1:4 J	1.5 J	2.5 J	0.0000	0.0171	0.0000	0.0285	0.0014
1.2-Dichlorgethane	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
-,	200	150	175	210	0.0002	1.9933	0.0003	2.3919	0.1629
	970	780	875	0	0.0011	9.9663	0.0000	0.0000	0.8146
	2.4 J	1.9 J	2.2 J	2.2 J	0.0000	0.0245	0,0000	0.0251	0.0020
	560	450	505	40	0.0007	5.7520	0,0001	0.4556	0.4701
	0	0	0	0	0,0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1915	1522	1719	330	0.0022	19.5756	0.0004	3.7563	1.6000

Notes:

All samples were analyzed for sitespecific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) =	100
Average Monthly Flowrate (cfm) =	369
Average Monthly Flowrate (scfm) =	347
Operational Hours for the month =	716

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour) (2) Emissions (lbs/hr) = Emissions (lbs/hrour)*(8760hours/yr) (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/lir * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY **Vapor Monitoring Results** May 2014

The state of the state of		Concent	ration		and the same	Emission	Rate (1)(2)	4	Monthly Mass
, 1-Dichloroethane I,1-Dichloroethene I,2-Dichloroethane cis-1,2-Dichloroethene		(ug/n	π ³)		Prior to Tr		Following T	reatment	Recovery (3)
	Influent #1	Influent #2	Average	Effluent	(ibs/hr)	(los/yr)	(lbs/hr)	(IDS/Vr)	(lbs)
1,1,1-Trichloroethane	140	190	165	130	0.0002	1.9061	0 0002	1.5018	0.1619
1,1-Dichloroethane	12	15	14	20	0.0000	0.1560	0.0000	0.2310	0.0132
1.1-Dichloroethene	1:4 J	1.8 J	1.6 J	3.9	0.0000	0.0185	0.0000	0.0451	0.0016
1,2-Dicfiloroethane	0.84 J	0.75 J	0.80 J	0	0.0000	0.0092	0.0000	0.0000	8000.0
cis-1,2-Dichloroethene	220	280	260	300	0.0003	2.8881	0.0004	3.4657	0.2453
Tetrachloroethene	980	1200	1090	3.4	0.0014	12.5919	0.0000	0.0393	1.0694
rans-1,2Dichloroelhene	2.4 J	3.2 J	2.8 J	3.7	0.0000	0.0323	0.0000	0.0427	0.0027
Trichloroethene	490	580	535	100	0.0007	6.1804	0.0001	1.1552	0.5249
Vinyl Chloride	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1847	2271	2059	561	0.0027	23.7825	0.0007	6.4808	2,0199

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = Average Monthly Flowrate (cfm) = Average Monthly Flowrate (scfm) = 108 379 352 Operational Hours for the month = 744

- (1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)
 (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
 (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/4540000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results

June 2014

	The same of	Concent	ration			Emission	Rate (1),(2)		Monthly Mass
Compound		(ua/j	n ³)	I	Prior to Tr	eatment	Following T	resiment	Recovery (3)
	influent #1	Influent #2	Average	Effluent	(lbs/hr)	{los/vri	(Iba/hr)	(lba/yr)	(9xe)
1.1.1-Trichtoroethane	180	190	185	310	0.0002	2.1121	0.0004	3.5391	0.1736
1.1-Dichleroethane	13	13	13	37	0.0000	0.1484	0.0000	0.4224	0.0122
1.1-Dichloroethene	1.5 J	1.2 J	1,4 J	7.3	0.0000	0.01 54	0.0000	0.0833	0.0013
1.2-Dichloroethane	0.80 J	0.93 J	0.87 J	1.1 J	0.0000	0.0099	0.0000	0,0126	800 0.0
cis-1.2-Dichloroethene	220	220	220	560	0.0003	2,5116	0.0007	6.3933	0.2064
Telrachloigethene	1000	1000	1000	0	0.0013	11.4166	0 0000	0.0000	0,9383
trans-1,2-Dichloroethene	2.8 J	2.3 J	2.6 J	6.9	0.0000	0.0291	0.0000	0.0788	0.0024
Trichloroethene	570	560	565	200	00007	6.4504	0.0003	2.2833	0.5302
Vinyl Chleride	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1988	1987	1988	1122	0,0026	22.6935	0.0015	12.8128	1,8652

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly VaporTemp (°F) = Average Monthly Flowrale (cfm) = Average Monthly Flowrale (scfm) = 115 379 348 Operational Hours for the month = 720

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)
(2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
(3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/4540000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soll Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Second Quarter 2014 Vapor Analytical Results Summary of SVE Wells

Semple ID	SVE 1011	SVE 101D	SVE 1021	SVE 102D	SVE 1034	SVE 103D	SVE 1041	SVE 1040	SVE 1051	SVE 105D	SVE 1061	5VE 106D
Sample Date	04/10/14	04/10/14	04/10/14	04/24/14	04/10/14	04/10/14	04/24/14	04/10/14	04/10/14	04/10/14	04/10/14	04/10/14
Analysis by TO-15 (µg/m³)												
1,1.1-1 richloroethane	1200	12	0.95 J	1.6 J	ND	400	9.6	84	26	ND	3.81	6.3
1,1-Dichloroethane	22	1.21	ND	U.44 J	ND	48	7.4	22	6.8	ND	17	3.3
1,1-Dichloroethene	7.91	ND	ND	ND	- ND	ND	ND	1.0 J	ND	ND	ND	ND
1,2-Dichloroethane	4.4.1	ND										
cls-1,2-Dichloroethene	4.21	3.5	ND	2.8 J	3.4	1800	94	460	6.2	ND	23	3.9
Tetrachloroethene	34	270	ND	9.6	40	8600	69	780	48	ND	6.2	17
trans-1,2-Dichloroethene	NO	ND	NO	ND	ND	18	ND	3.5	ND	ND	NO	ND
Trichlornethene	3300	330	8.0	39	20	900	39	430	190	8.5	70	84
Vlayl Chloride	ND	ND	ND	ND	ND	2.6 J	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

µg/m³ = micrograms per cubic meter

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID	No. of Lot, House, St. Lot, Ho		1 13 - 15		Time of M		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 11 10		SVE 1011	Bern	12	W. Brah				A COURT		
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (μg/m³)		***************************************												1.17,16					
1,1,1Trichloroethane	51000	3900	2600	450	850	300	1	0.71	0.7 J	1500	1500	3200	4400	3400	1900	2200	2900	2600	1200
1,1-Dichloroethane	1200	65	34	14	31	5	0.8 J	0.4 J	0.4 J	28	28	61	76	62	35	36	57	50	22
1,1-Dichloroethene	250	ND	ND	4	8	ND	0.7 J	0.4 J	0.51	7.6 J	10	ND	15 J	ND	12 J	8.9 J	16 J	11]	7.9 J
1,2-Dichloroethane	NR	30	ND	4	8	ND	0.9	0.5 J	0.5 J	6.9 J	6.4 J	111	14 J	12 J	10 J	8.6 J	9.2 J	7.5 J	4.4 J
cis-1,2-Dichloroethene	480	59	ND	9	15	3	0.7 J	ND	0.4 J	7.1 J	7.4 J	20 J	22 J	14 J	6.2 J	11 J	22 J	12 J	4.2 J
Tetrachloroethene	1700	410	260	36	63	10	1	ND	2	48	46	93	120	80	49	79	100	80	34
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7 J	0.4 J	0.4 J	ND									
Trichloroethene	180000	18000	14000	1200	2400	560	1	0.61	0.6 J	4200	4300	7200	12000	8100	5200	5400	8900	7100	3300
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.5 J	0.3 J	0.3 J	ND	NO	ND							

Notes

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded NA = Data not available

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID			1000000		And the		2 3 3 3	THE W		SVE 101D			Planton B	12/100					
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)																			
1,1,1-Trichloroethane	26000	130	53	ND	ND	ND	3	8	0.8 J	ND	3.1 J	9.9	11	ND	ND	5.6	16	14	12
1,1-Dichloroethane	660	3.9	ND	ND	ND	ND	2	0.9 J	0.5 J	ND	ND	1.0 J	1.1 J	1.1 J	ND	ND	1.5 J	1.4 J	1.2 J
1,1-Dichloroethene	180	2	ND	ND	ND	ND	ND	0.7 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	1.0 J	0.75 J	ND
1,2-Dichloroethane	NR	0.5	ND	ND	ND	ND	2	0.5 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
c i s-1,2-Dichloroethene	220	8.5	7.5	ND	3	ND	2	2	0.5 J	ND	ND	2.1 J	3.2	ND	ND	ND	3.0 J	4.5	3.5
Tetrachloroethene	3200	1200	1200	ND	4	ND	26	210	2	ND	79	150	170	130	0.92 J	73	330	340	270
trans1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	2	0.6 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	100000	1600	310	3	1	ND	3	120	11	ND	200	400	350	120	ND	56	540	680	330
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1	0.4 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID	Contract		No.	N-Uto a		S. R. D. Lake				SVE 1021				1 7 3 3 3 3			4 1 4 7 1	1115-113	
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	02/05/14	04/10/14
Analysis by TO-15 (µg/m³)																			
1,1,1-Trichloroethane	ND	ND	13	3	ND	NA	2	3	2	ND	0.60 J	3.31	ND	ND	ND	1.6 J	ND	ND	0.95 J
1,1-Dichloroethane	ND	ND	ND	ND	ND	NA	0.8 J	0.5 J	0.5 J	ND	NO	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	0.8	0.4 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	NO	ND	ND
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.5 J	0.5 J	ND	ND	ND _	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	2.4	1.4	17	6	NR	NA	3	6	6	ND	1.6 J	6.4	1.5 J	2.4 J	1.4 J	3.3 J	2.6 J	ND	ND
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5.6	3.8	300	88	3	NA	34	76	52	10	26	99	10	10	15	49	21	7.6	8.0
Vinyl Chloride	ND	ND	ND	ND	ND	NA	0-5 J	0.4 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table 5 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID										SVE 102D									
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14
Analysis by TO-15 (μg/m³)																		5/5 1	
1,1.1-Trichloroethane	130	53	14	7	2	2	6	4	5	1.4 J	1.2 J	3.9 J	ND	ND	ND	2.3 J	3.1 J	ND	1.6 J
1,1-Dichloroethane	ND	2.7	ND	ND	ND	ND	1	0.61	0.7 J	ND	ND	0.51 J	0.95 J	ND	ND	ND	0.69 J	ND	0.44 J
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.6 J	0.6 J	ND									
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.9	0.5 J	0.5 J	ND									
cis1,2-Dichloroethene	ND	1.4	ND	ND	0.9	ND	1	0.5 J	0.9	ND	ND	1.1 J	4.1	ND	ND	ND	3.4	ND	2.8 J
Tetrachloroethene	10	31	31	19	3	9	25	23	39	5.9	6.5	24	25	0.96 J	1.43	14	28	2.6 J	9.6
trans1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.5 J	0.5 J	ND									
Trichloroethene	440	390	190	110	17	21	89	81	87	34	58	170	140	6.5	ND	88	160	3.91	39
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.6	0.4 J	0.3 J	ND									

Notes:

All samples were analyzed for site specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID	CALL DATE OF	200	Parana	No. of Co.	S. B. C. S. C.		- 17-17	140 110	100	SVE 1031	5-12	1000		30-37 Table	- GRE.		1049		
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)						75.5										110			
1,1,1-Trichloroethane	900	ND	ND	ND	ND	ND	0.9 J	6	6	ND	1.6 J	9.2	ND	ND	1.4 J	4.7 J	2.8 J	0.92 J	ND
1,1-Dichloroethane	26	ND	ND	ND	ND	ND	0.6 J	2	2	ND	0.75 J	1.5 J	0.77 J	ND	ND	1.5 J	1.3 J	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	58	ND	ND	1	ND	1	0.5 J	16	12	18	16	19	6.0	2.4 J	5.0	11	15	6.9	3.4
Tetrachloroethene	580	ND	ND	ND	ND	2	13	420	590	140	200	430	120	40	78	220	200	97	40
trans-1,2-Dichloroethene	580	ND	ND	ND	ND	ND	0.6 J	1	1	ND	ND	ND	ND	ND	ND	ND	0.85 J	ND	ND
Trichloroethene	900	0.9	ND	ND	ND	ND	0.9 J	100	97	29	47	130	48	16	35	95	78	46	20
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

Table 5 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample 1D	200	70 000	The same		ALC: HE HAVE	DESCRIPTION OF THE PERSON OF T		No.		SVE 103D		De Tale							
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)													17		1 110	170	200	550	400
1,1,1-Trichloroethane	3000	1100	230	ND	13	ND	2 J	20	31	7.4 J	6.9 J	22	190	ND	150	170		50	48
1,1-Dichloroethane	82	69	ND	ND	2	2	1J	4	9	1.6 J	1.5 J	1.9 J	10 J	ND	10	10 J	20 J		
	ND.	ND	ND	ND	ND	ND	1]	2	61	ND									
1,1-Dichloroethene				ND	ND	ND	1 1	1 11	6.1	ND									
1,2-Dichloroethane	NR	ND	ND	ND	IND		11	7.50	160	290	230	300	750	ND	T 550	700	2600	2100	1800
cis-1,2-Dichloroethene	420	1500	370	ND	92	ND	13	360	160					1.63	3300	4900	17000	15000	8600
Tetrachloroethene	20000	28000	16000	9	1500	ND	3	3600	6700	3800	3200	4700	4600				18 J	32	18
trans-1.2-Dichloroethene	ND	24	ND	ND	1	ND	11	3	7 J	ND	ND	ND	8.8 J	ND	5.7 J	8.8 J			-
	3100	1600	640	7	92	ND	2.1	290	240	180	200	480	440	6.0	360	660	2100	1400	900
Trichloroethene	3100	1000		ND	32	ND	0.81	Δ	5.1	ND	ND	ND	ND	ND	1.9J	ND	14 J	ND	2.6 J
Vinyl Chloride	ND ND	5.9	ND	ם או	1 4	IAD	0.01		3,										

Notes

All samples were analyzed for sitespecific VOCs, as opposed to full list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID						THE STATE		Marie Contract	Contract of	SVE 1041	-	1 × 1	1000	1000	The same	PHYS T			WHITE THE PERSON NAMED IN
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14
Analysis by TO-15 (µg/m³)																			
1,1,1Trichloroethane	730	4.2	ND	4	NR	NA	1 J	4	2	ND	ND	8.3	ND	ND	ND	3.1 J	2.6 J	ND	9.6
1,1-Dichloroethane	24	0.54	ND	ND	ND	NA	1 J	0.6 J	0.5 J	ND	7.4								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	110	14	ND	2	0.8	NA	0.9 J	2	3	0.90 J	ND	5.0	ND	2.7]	ND	3.3	5.3	ND	94
Tetrachloroethene	3100	210	68	96	16	NA	2 J	54	33	12	ND	86	1.6 J	4.8 J	2.3 J	30	36	ND	69
trans1,2Dichloroethene	15	ND	ND	ND	ND	NA	1 J	0.5 J	0.4 3	ND									
Trichloroethene	710	44	60	72	12	NA	2 J	44	25	9.6	ND	73	ND	3.13	ND	30	31	ND	39
Vinyl Chloride	ND	0.47	ND	ND	ND	NA	0.7 J	0.3 J	0.3 J	ND									

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID								7 11 100		SVE 104D					No. of Concession, Name of Street, or other party of the Concession, Name of Street, or other pa	1-0-0	THE PARTY OF	I S I S I	
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)														00,00,00	05/10/25	50/21/25	11/00/12	02/30/24	04/10/14
1,1,1-Trichloroethane	3600	3000	860	ND	270	ND	370	620	440	520	580	620	920	820	0.89 J	500	600	340	0.4
1,1-Dichloroethane	290	350	140	ND	66	ND	56	110	77	87	95	100	190	160	ND.	95	130	540	84
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	3	71	7	3.0 J	5.0 J	ND	11 J	ND				56	22
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1.	51	5.1	ND	ND ND	ND	ND	ND	ND	ND	ND	4.3 J	1.0 J
cis-1,2-Dichloroethene	2400	6600	3500	ND	1200	ND	1000	3600	2100	2200	2800 J	2200			ND	ND	ND	ND	ND
Tetrachloroethene	20000	39000	21000	ND	2400	ND	1400	5800	6300				4200	3700	8.6	2000	3200	1600	460
trans-1,2-Dichloroethene	130	32000	30	ND	12					3800	4300	4600	4500	4200	69	2600	3900	2500	780
		70			15	ND	14	25	22	26	31	27	55	40	ND	24	40	15	3.5
Trichloroethene	4600	6000	2400	ND	470	ND	420	1600	1300	1400	1400	1700	2300	2100	14	1200	1600	1100	430
Vinyl Chloride	ND	12	ND	ND	ND	ND	2	5	5.)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

Table 5 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID										SVE 1051									3 85
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)	V.E.																		
1,1,1-Trichloroethane	9.9	11	29	ND	24	1	1 J	21	31	11	13	26	22	22	11	24	18	32	26
1,1-Dichloroethane	ND	5.7	13	ND	6	ND	0.6 J	5	7	4.2	5.6	5.6	10	12	8.8	8.0	7.4	24	6.8
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	0.5 J	. ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.6 J	0.5 J	ND									
cis-1,2-Dichloroethene	ND	6.6	20	ND	ND	ND	1	10	16	8.1	9.7	13	16	13	14	14	7.4	17	6.2
Tetrachloroethene	70	9.1	240	ND	55	5	2	95	100	31	43	100	77	66	38	91	57	77	48
trans-1,2-Dichloroethene	ND	ND	1.6	ND	ND	ND	0.5 J	1	1	ND	ND	1.5 J	ND	ND	ND	ND	1.0 J	1.6 J	ND
Trichloroethene	76	6.3	370	ND	120	7	1	170	200	110	140	260	180	160	94	220	140	180	190
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND	ND	ND	ND .	ND	ND	ND .	ND	ND	ND

Notes

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded NA = Data not available

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID					100		No. of Contract of		D	SVE 1050	9 10 10 10	The same of	Service Control	A CONTRACTOR	100000				
Sample Date	12/21/09	03/31/10	06/09/10	09/15/10	12/08/10	03/30/11	06/28/11	09/06/11	12/02/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	04/20/14	04/40/44
Analysis by TO-15 (µg/m³)												00/11/11	12,00,12	01/13/13	03/10/13	06/2//13	11/08/13	01/30/14	04/10/14
1,1,1-Trichloroethane	550	47	320	1000	590	ND	13	490	930	350	320	270	380	430	160	110	1 420	1 120	7
1,1-Dichloroethane	300	28	270	250	ND	ND	0.6 J	74	150	69	79	72	110			110	120	190	ND
1.1-Dichloroethene	3.9	ND	ND	2	4	4	0.6 J	C 1	ND	ND ND	70	1/2		110	46	45	70	46	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.01	61			ND	ND	ND	ND	ND	ND	1.5 J	ND	ND
cis-1,2Dichloroethene	£1	36	85	300			0.7.1	21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	21.00	30			ND	ND	0.7 J	150	380	190	220	150	210	200	73	76	85	46	ND
	2100	1.1	650	270	420	ND	2	240	330	140	220	270	350	330	100	140	260	300	ND
trans-1,2-Dichloroethene	19	1.1	3.1	3	ND	ND	0.61	7.1	3 J	ND	ND	ND	ND	ND	1.4 J	2.4 」	İ		
Trichloroethene	1700	68	200	1100	1400	1	2	3000	7000	3600	4500			2000			3.6	1.3 J	ND
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.41	3000	NID			2200	3800	3800	1400	900	1200	1900	8.5
	110	.,,0	140	140	NU	IND	0.4 J	4.	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND

All samples were analyzed for sitespecific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

 $\mu g/m^3$ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

Table 5 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID		The later of	325-170	Carlot Harry		100	NAC STATE			SVE 1061	Top He all		STATISTICS.	THE RES					
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO-15 (µg/m³)																			- 81
1,1,1-Trichloroethane	220	8.6	ND	4	ND	NA	6	3	7	1.0 J	2.2 J	11	ND	ND	ND	ND	18	1.4 J	3.8 J
1,1-Dichloroethane	120	ND	ND	1	ND	NA	1	0.5 J	1	0.62 J	0.70 J	1.6 J	2.5 J	1.9 J	ND	ND	3.8	ND	17
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.6 J	2	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	NR	ND	ND	0.8	ND	NA NA	0.6 J	0.5)	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	46	ND	ND	4	ND	I NA	6	0.5 J	4	1.6 J	2.3 J	7.5	5.4	3.7	ND	ND	8.3	ND	23
Tetrachloroethene	390	35	ND	15	ND	NA	15	7	19	4.3 J	7.2	27	14	7.0	0.73 J	ND ND	19	4.2]	6.2
trans-1,2-Dichloroethene	7.9	ND	3.1	0.9	ND	NA	0.8	0.5 J	0.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	1900	41	ND	140	10	l NA	210	92	190	69	110	260	180	110	5.5	ND	210	28	70
Vinyl Chloride	ND	ND	ND	0.5	ND	NA	0.4 J	0.3 3	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

All samples were analyzed for sitespecific VOCs, as opposed to fulllist VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

μg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

Table S

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Second Quarter 2014

Sample ID										SVE 106D									
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14
Analysis by TO15 (µg/m³)																			
1,1,1-Trichloroethane	340	32	30	20	12	9	20	23	29	ND	11	26	18	ND	ND	27	25	5.8	6.3
1,1-Dichloroethane	250	6.3	ND	5	2	5	4	3	3	ND	3.0	4.3	5.8	ND	ND	4.9	11	3.7	3.3
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5 J	0.7 J	0.8	ND									
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	ND	0.6 J	0.7 J	ND	2.5 J	ND	ND						
cis-1,2-Dichloroethene	79	13	11	13	2	11	11	5	4	ND	4.1	7.1	8.2	ND	ND	10	15	2.8 J	3.9
Tetrachloroethene	720	65	70	ND	13	19	41	8	66	ND	28	62	48	ND	1.3 J	50	58	16	17
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	ND	0.6 J	0.8	0.9	ND	1.1 J	ND	ND						
Trichloroethene	3400	600	900	230	130	170	210	260	320	ND	180	380	300	ND	ND	460	440	160	84
Vinyl Chloride	ND	1.6	ND	ND	ND	ND	ND	0.4 J	0.5 J	ND									

Notes:

All samples were analyzed for site-specific VOCs, as opposed to full-list VOCs, beginning in First Quarter 2014, upon approval by NYSDEC and NYSDOH on 1/16/14.

µg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Second Quarter 2014 Off-site Soil Vapor Monitoring of SVPMs

SVPM/ SVEW Location	Vacuum Reading (i.w.)	Valve Position (% open)
Monitoring Date:	4/10/14	4/10/14
BPS1-SVPM2001S	*0.02	
BPS1-SVPM2001I	0.12	27
BPS1-SVPM2001D	*0.01	
BPS1-SVPM2002S	0.10	
BPS1-SVPM2002I	0.18	
BPS1-SVPM2002D	*0.02	
BPS1-SVPM2003S	*0.01	
BPS1-SVPM2003	0.04	-
BPS1-SVPM2003D	0.04	
BPS1-SVPM2004S	0.04	
BPS1-SVPM2004I	0.04	-
BPS1-SVPM2004D	0.02	
BPS1-SVPM2006S	0.02	-
BPS1-SVPM2006I	0.01	
BPS1-SVPM2006D	0.01	
BPS1-SVPM2007S	0.00	-
BPS1-SVPM2007I	*0.01	
BPS1-SVPM2007D	*0.01	-×
SV-101I	7.1	40
SV-101D	22.5	50
SV-102I	8.7	50
SV-102D	26.0	70
SV-103I	5.6	40
SV-103D	24.5	40
SV-104I	10.0+	40
SV-104D	11.5	40
SV-105I	8.2	40
S V-105D	30	40
SV-106I	10.0+	40
SV-106D	16.0	40

Notes:

i.w. = inches of water column

SVEW = soil vapor extraction well

SVPM = soil vapor pressure monitor

Vacuum readings for the SVPMs were measured using a portable Magnehelic® Differential Pressure Gauge 2000-0, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line pressure gauges.

^{*} Indicates a positive pressure reading was measured as opposed to a negative pressure (vacuum) reading.

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

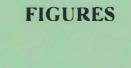
Naval Weapons Industrial Reserve Plant - Bethpage, NY

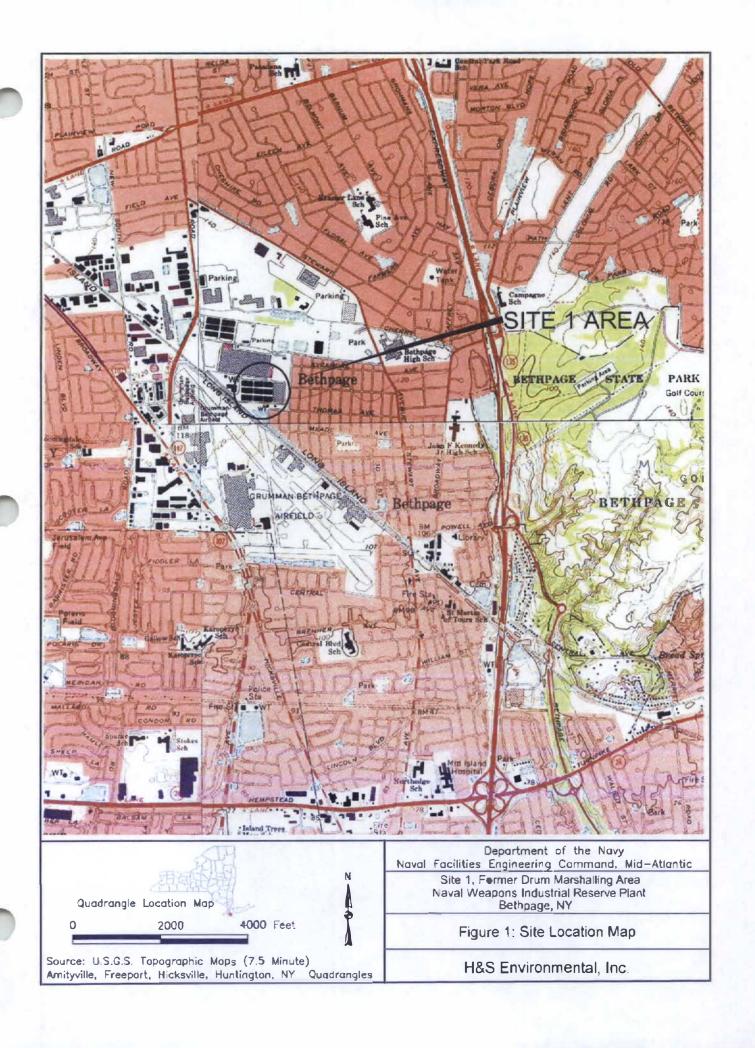
Historical Quarterly Off-site Soil Vapor Monitoring of SVPMs

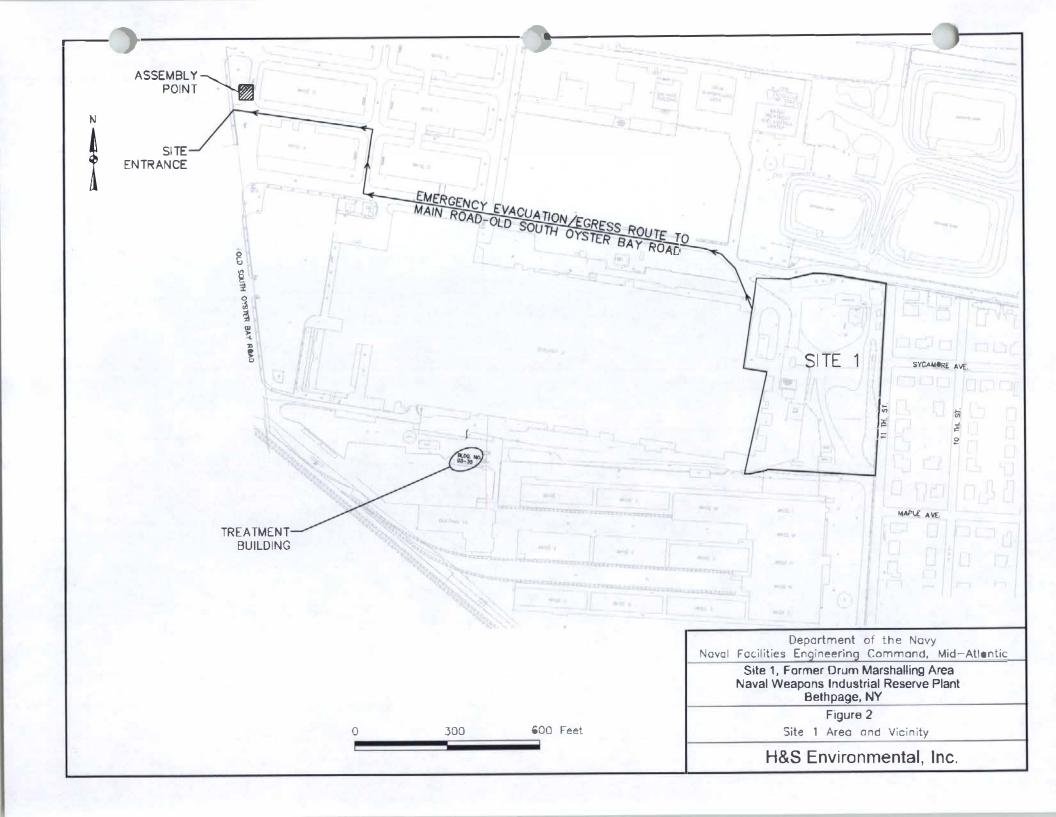
Through Second Quarter 2014

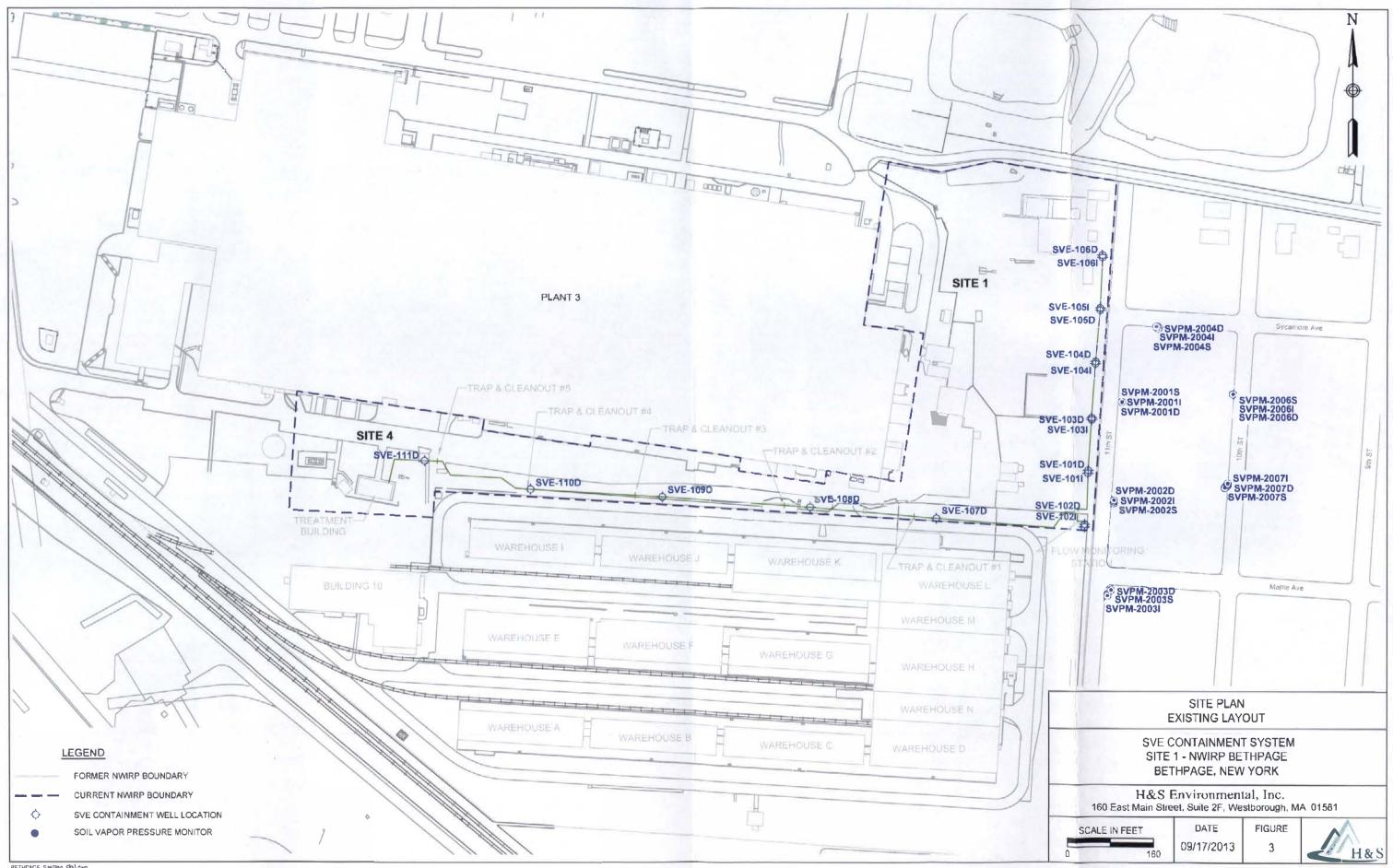
	Third Quarter 2012	Fourth Quarter 2012	First Qua	rter 2013	Second Quarter 2013	Third Quarter 2013	Fourth Quarter 2013	First Que	rter 2014	Second Quarter 2014
SVPM/ SVEW Location	Vacuum Reading (i.w.)	Vacuum Reading (i.w.)	Vacuum Reading (i.w.) Pre- Vapor Sample Collection	Vacuum ReadIng (i.w.) Post- Vapor Sample Collection	Vacuum Reading (i.w.)	Vacuum Reading (i.w.)	Vacuum Reading (i.w.)	Vacuum Reading (i.w.) Pre- Vapor Sample Collection	Vacuum Reading (i.w.) Post- Vapor Sample Collection	Vacuum Reading (i.w.)
Monitoring Date:	10/10/2012	12/6/2012	1/15/13	1/16/13	5/29/13	8/27/13	11/8/13	1/29/14	1/30/14	4/10/14
BP\$1-SVPM2001S	0.01	0.02	0.01	0.01	0.02	0.08	0.06	0.01	0.02	*0.02
BPS1-SVPM2001I	0.01	0.02	0.02	0.01	0.10	0.12	0.10	0.04	0.04	0.12
BPS1-SVPM2001D	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.01	*0.01	*0.01
BPS1SVPM2002S	0.02	0.01	0.02	0.02	0.06	0.12	0.10	0.08	0.03	0.10
BPS1-SVPM2002I	0.11	0.10	0.01	0.02	0.10	0.18	0.16	0.06	0.08	0.18
BPS1-SVPM2002D	0.12	0.10	0.01	0.01	0.10	0.18	0.16	0.01	*0.01	*0.02
BPS1-SVPM2003S	0.01	0.01	0.03	0.02	0.04	*0.02	0.02	0.06	*0.01	*0.01
BPS1-SVPM2003I	0.04	0.02	0.03	0.04	0.10	0.04	0.04	0.02	0.02	0.04
BPS1-SVPM2003D	0.04	0.02	0.01	0.04	0.05	0.04	0.04	0.02	*0.01	0.04
BPS1-SVPM2004S	0.04	0.04	0.03	0.02	0.03	0.04	0.02	0.04	0.00	0.04
BPS1-SVPM2004I	0.04	0.04	0.02	0.01	0.04	0.04	0.02	0.02	*0.01	0.04
BPS1-SVPM2004D	0.06	0.04	0.03	0.01	0.04	0.04	0.04	0.02	0.04	0.02
BPS1-SVPM2006S	0.01	0.01	0.01	0.01	0.02	0.00	0.00	0.00	*0.01	0.02
BPS1-SVPM2006I	0.01	0.01	0.01	0.01	0.01	*0.01	*0.01	0.00	*0.01	0.01
BPS1-SVPM2006D	0.02	0.02	0.01	0.01	0.02	*0.01	0.00	0.01	0.01	0.01
BPS1-SVPM2007\$	0.01	0.01	0.01	0.01	0.04	0.00	*0.01	0.01	0.02	0.00
BPS1SVPM2007	0.01	0.01	0.01	0.01	0.04	*0.01	*0.02	0.02	0.01	*0.01
BPS1-SVPM2007D	0.01	0.01	0.01	0.01	0.02	*0.01	0.04	0.02	0.02	*0.01
SV-101I	5	7	10		6.0	5.1	4.8	5.0		7.1
SV-101D	10	16	16		16.0	23.5	24.5	17.0		22.5
SV-1021	5	3	16	++	3.0	6.9	6.5	4.4		8.7
S V-1020	10	18	10	-	22.0	26.6	22.3	15.0		26.0
SV-103I	5	2	20		4.0	3.5	3.1	6.6		5.6
SV-103D	8	24	10		24.2	27.7	20.8	15.0	**	24.5
5 V-104I	8	6	20		4.0	3.5	3.1	10.0+	**	10.0+
S V-104D	11	10	10		10.0	9.0	8.0	10.0		11.5
SV-105I	5	9	16		7.5	4.3	3.6	5.0		8.2
SV-105D	8	7	8		8.0	5,0	4.0	15.5	-#	30
SV-106	5	8	16	**	8.0	4.0	3.6	10.0+		10.0+
SV-106D	8	12	10		11.0	7.0	6.0	6.5		16.0

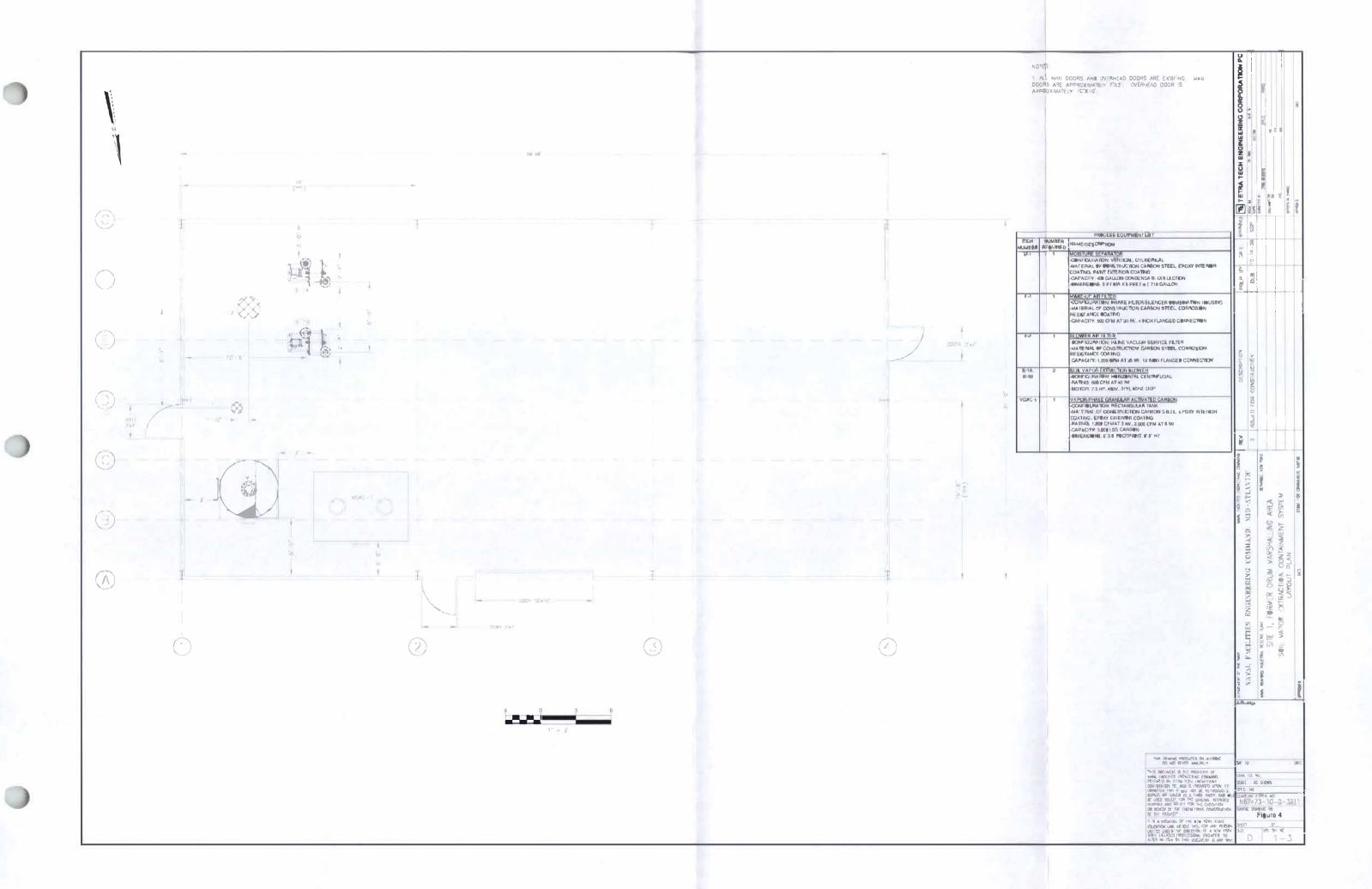
Notes:

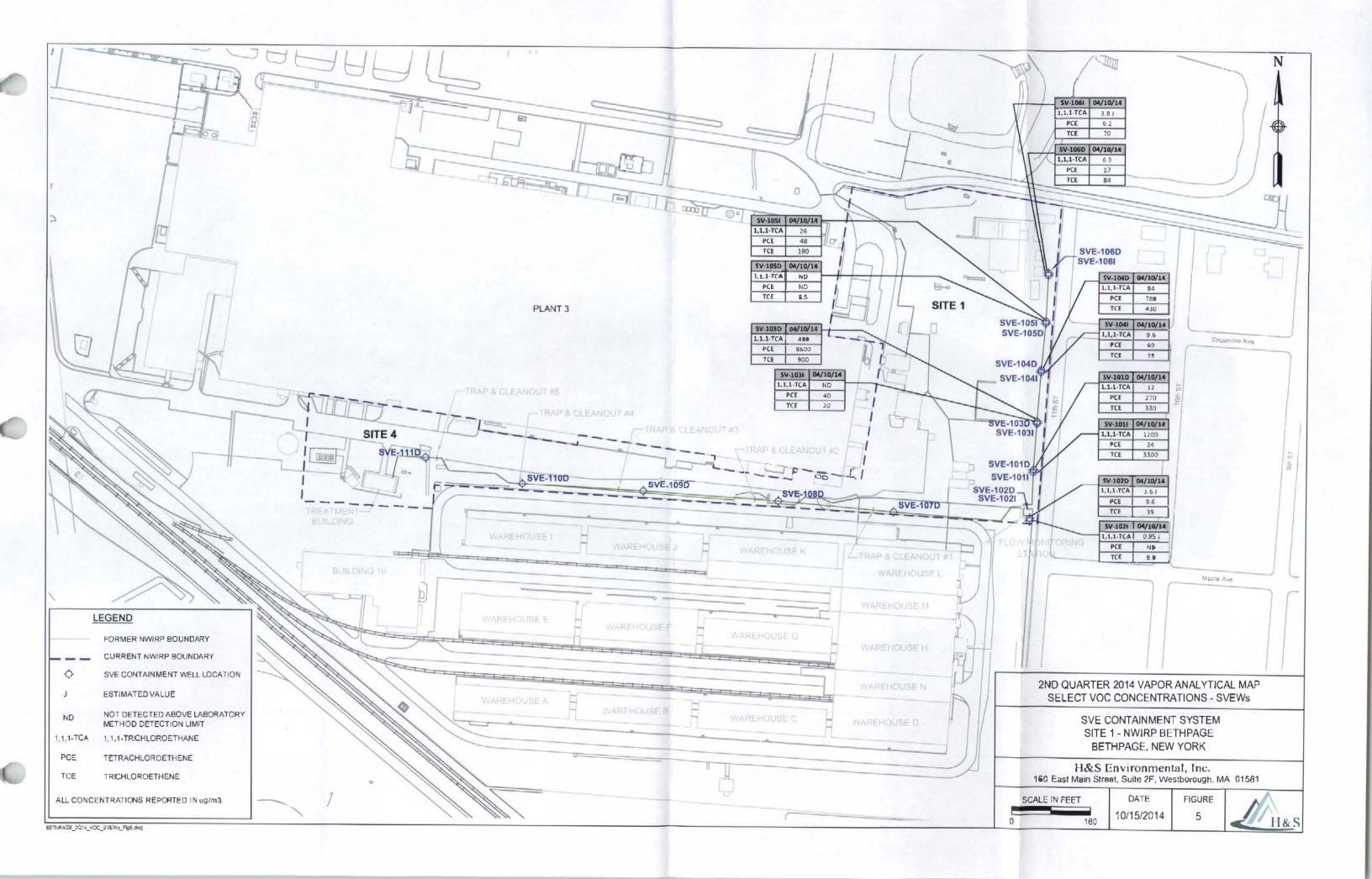

i.w. = inches of water column

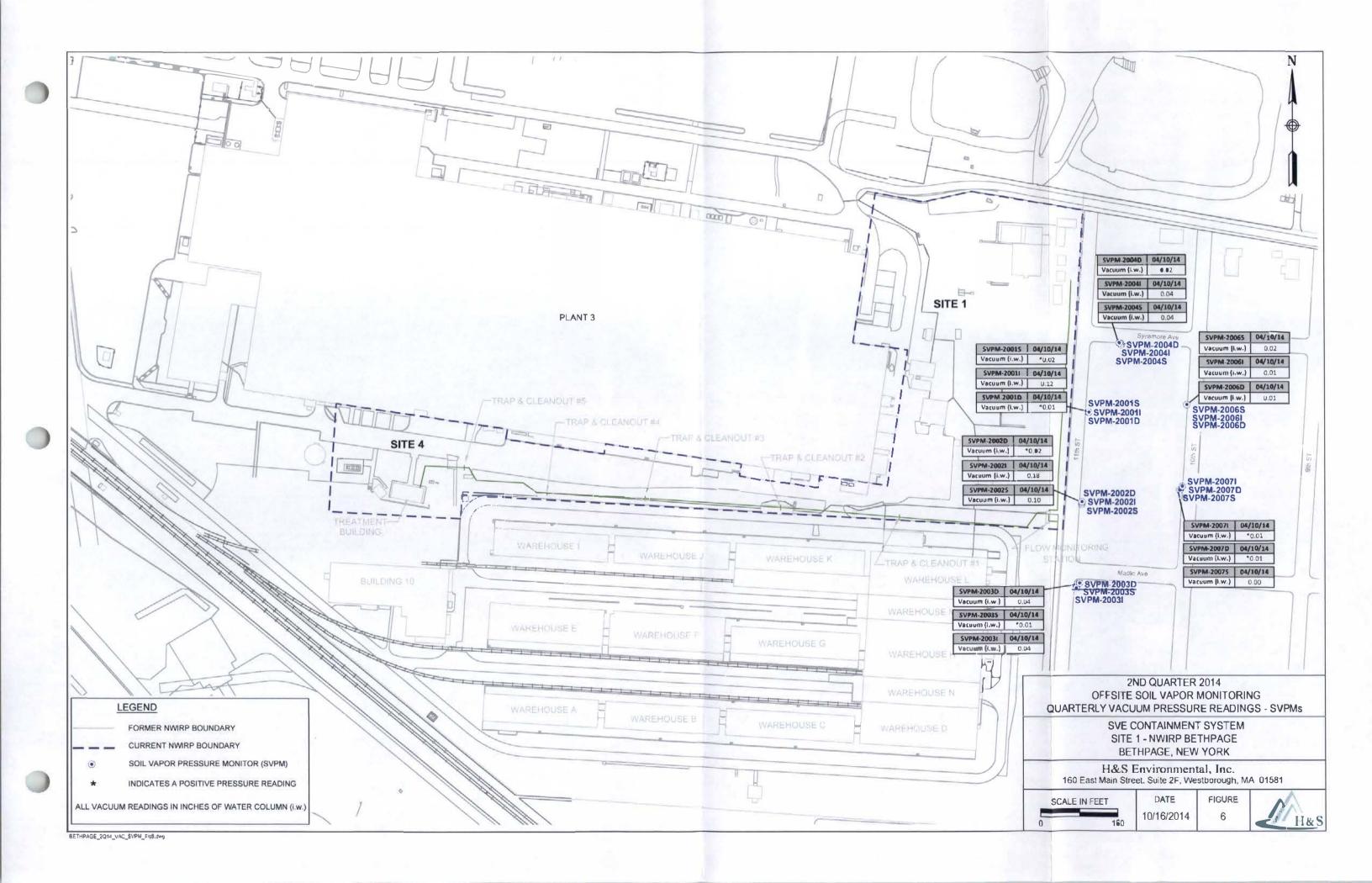

SVEW = soil vapor extraction well


SVPM = soil vapor pressure monitor


* Indicates a positive pressure reading was measured as opposed to a negative pressure (vacuum) reading.


Vacuum readings for the SVPMs were measured using a portable Magnehelic® Differential Pressure Gauge 20000, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line vacuum gauges.





APPENDIX A

NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

From: Steven Scharf [mailto:sxscharf@gw.dec.state.ny.us]

Sent: Thursday, October 06, 2011 11:57 AM To: Fly, Lora B CIV NAVFAC MIDLANT, IPTNE

Cc: John Swaitwout; Walter Parish; Steven Karpinski; John cofman; klumpe@steelequities.com;

David.Brayack@ttnus.com

Subject: NWIRP Plant 3 Site 1 SVE Modification Plan

Lora,

The New York State Department of Environmental Conservation (NYSDEC), in conjunction with the New York State Department of Health (NYSDOH), have reviewed the Navy Submittal entitled:

"Modification to existing Soil vapor Extraction (SVE) Containment System At Site 1-Former Drum Marshaling Area, Installation of Soil Vapor Extraction Wells SVE-107D to 111D, NWIRP Bethpage, September 2011."

Based on this Departmental review, and the follow up October 6, 2011 tele-conference, this modification work plan is acceptable and can be used for immediate implementation. The NWIRP Site 1 SVE system has redundant blowers and overcapacity, even with the additional SVE wells being added. should the Navy and the new property owner, Steel Equities Inc., for the former Plant 3 complex come to agreement to add SVE piping from the former Plant 3, this would be acceptable. Appropriate plans, consistent with the covenants and restrictions to the deed, should be submitted accordingly.

A letter will not follow this e-mail. If you have any questions, please contact me directly.

Electronic Documentation Information NWIRP Bethpage 130003B-OU1-OMM FOllable Region 1, Nassau (C), Oyster Bay (T)

Thanks,

Steven M. Scharf, P.E.
Project Engineer
New York State Department of
Environmental Conservation
Division of Environmental Remediation
Remedial Action, Bureau A
625 Broadway
Albany, NY 12233-7015
(518)402-9620
Fax: (518)402-9022

4.0 PROPOSED REVISIONS TO VAPOR DISCHARGE GOALS

To determine the continued need for off gas treatment, the quality of the influent vapor stream was initially estimated based on soil gas results and compared to discharge goals. Vapor phase treatment was initially installed for the system based on projected relatively high concentrations of several chemicals including 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). Since the December 2009 startup, VOC concentrations in the extracted vapors have decreased by approximately 98.3 percent and it is uncertain as to whether vapor phase treatment is still required. Presented below are the December 2009 and March 2011 influent (untreated) VOC concentrations and loadings and current discharge goals.

	December 2009 I	nfluent VOCs	March 2011 Inf (µg/m	•	Current
Parameter	Concentration (µg/m³) 1	Loading (pound/ hour) ¹	Concentration (µg/m³)	Loading (pound/ hour) ⁽²⁾	Discharge Goal (pound/hour) ⁽³⁾
TCA	13,000	0.074	150	0.00023	0.13
TCE	42,000	0.26	460	0.00069	0.07
PCE	7,900	0.029	440	0.00066	0.0009

⁽¹⁾ Initial VOC Loading Rates are from baseline data taken in December 2009. The flow meter was not yet installed when this data was taken, so a value of 385 CFM (flow rate in January 2010) was used to estimate system loading.

A DAR-1 Model Analysis was then conducted using the August 2010 influent vapor concentrations of TCA, TCE, and PCE at a flow rate of 500 CFM. The calculated results were then used to back calculate proposed discharge goals based on an allowance of 100% of the annual guideline concentrations (see Appendix E). The following table provides a summary of the proposed discharge goals.

	August 2010 Ir (370 CFM		Percent AGC	Proposed Discharge Goals		
Parameter	Concentration (µg/m³)	Loading (pounds/ hour)	Using August 2010 Data	Concentration at 500 CFM (µg/m³)	Loading (pounds/ hour)	
TCA	868	0.0009	0.0004	None ¹	225	
TCE	4,170	0.0039	19.4	11,000	0.02	
PCE	5.780	0.0057	14.2	22,000	0.04	

⁽¹⁾ Greater than 100,000 µg/m³. AGC - Annual Guideline Concentration

⁽²⁾ Calculated using a flow rate of 400 CFM.

⁽³⁾ Current discharge goals were based on calculated VOC concentrations using soil gas data from the fence line investigation, a flow rate of 600 CFM, and an assumed treatment efficiency for each VOC of 80 to 90 percent. Based on this evaluation, the existing treatment is no longer required to meet discharge goals.

New York State Department of Environmental Conservation

Division of Environmental Remediation

Bureau of Remedial Action A 625 Broadway, 11th Floor

Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9022

Website: www.dec.state.ny.us

February 5, 2010

Lora Fly, Project Manager Naval Facilities Engineering Command-Midlant 9742 Maryland Avenue Norfolk, VA 23511-3095

> RE: Naval Weapons Industrial Research Plant(NWIRP) Site-Bethpage, NYSDEC No. 1-30-003B.

Dear Ms. Fly:

Tetra Tech FW, on behalf of the Department of the Navy (Navy), has submitted the enclosed New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources (DAR) Air Permit Application as a permit equivalent. This DAR Air permit equivalent is for the soil vapor extraction system at Site 1 of Plant 3 of the former Naval Weapons Industrial Reserve Plant (NWIRP) site in Bethpage, NY. The NYSDEC Division of Environmental Remediation (DER) has reviewed the permit equivalent and by means of this letter approves the Site 1 remedy air discharge for immediate operation.

The NWIRP Site 1 SVE system utilizes the reasonably available control technology (RACT) with activated carbon. The air discharge will be periodically monitored at start up and will be added for routine monitoring in the operation, maintenance and monitoring (OMM) plan, to be submitted shortly for Departmental review.

If you have any questions, please contact me at your earliest convenience at (518)402-9620.

Sincerely,

Steven M. Scharf, P.E.

Project Engineer

Division of Environmental Remediation

Bureau of Remedial Action A

Enclosure

ec/w/enc J Swartwout/S Scharf/File

W. Parish, Region 1 NYSDEC

A. J. Shah, Region I NYSDEC

S. Patselos, Tetra Tech FW

J. Cofman, Northrop Chumman

does Region I. Nassau, Oyster Bay (T) NWIRP Bethpage 130003B-Cit LOMM

DEC ID	APPLICATION ID			OFFICE USE ONLY
	on I - Certificat	tion		
	lle V Certification			
certify under pendify of law that this document and all attaching all were that qualified personnel property gather and evaluate the information information (required pursuant to 5 NYCRR 2016.2(d)) I believe the integration, including the possibility of fines and imprison.	brilled Based on my in	quiry of the person	or persons directly	responsible for gathering the
Responsible Official		Title		
Signature		Date	B	
Slate	Facility Certificati	ion		
certify that this facility will be operated in conformance with all	provisions of existing	regulations		
Responsible Official		Title		
Signature		Date	e	1
Section II - I	dentification In	formation		
Title V Facility Pomilit N/A D New D Significant Modification D Administrati	ve Amendment	State	E Facility Permit	K/A Modification
☐ New ☐ Significant Modification ☐ Administration ☐ Renewal ☐ Minor Modification ☐ General Permi			eral Permit Titto:_	MICHIGATION
Application involves construction of new facility	☐ Application	on involves constr	uction of new en	nission unit(s)
			_	
	Owner/Firm			
Name US Navy / NAVFAC Midlant				
Street Address 4743 Mary and Ave Blde				
City Nor talk	State VA	Cou	intry U.S	Zlp./3511 - 3095
Owner Classification 3 Federal Corporation/Partnership	☐ State ☐ Individual	☐ Municipal		Taxoayer D
	Facility			C) Confident al
Name Naval Librarias Industrial Reserve	Plant (NWI	RP) Site 1		
Location Address Beth page				
City / Town / Village Oush B. V New Y	cv k			Zip 11.714
Pr	oject Description			☐ Commuten Sheet(s)
Manual and the same of the sam		West 5	the start of	
Vapor phase granular activated earth	10 lenois	VIA	an source	1.2
Owner/Firm	Contact Mailing	Address		
Name (Last. First, Midole Initial)			Phone No. 1	157 444 - 078 1
Affiliation Department of the Navy	Title Rumedi	al PM	Fax No ()	
	2-144			
City No. 9. 1k	State VA	Country U	5	Zip 3511-3095
	ontact Mailing Ad			3,77
Name (Last, First, Middle Initial)			Phone No. ()
Affiliation	Title		Fax No.()	
Street Address		11775		
City	State	Country		Zip

	DE	CID			
-		TT	_	1 1	-

		Section III - Facility	y Information		
		Classifica	ton		
☐ Hospital ☐	Residential U E	ducational/Institutional	□ Commercial	* Industrial	□ Utility
		Affected States (1	itle V Only) M/A		
Vermont New Hampshire	☐ Massachusetts ☐ Connecticut	Rhode Island New Jersey	Pennsylvania Ohio	Tribal Land: Tribal Land:	
		SIC Cod	es		
9319					
	1 1_		444		
		Facility Desc	ription	D Con	tinualion Shee
Soil vapor	remediation b	y SVE followed	by vapor ph	ase GAC	

Compliance Statements (Title V Only) N/A

I certify that as of the date of this application the facility is in compliance with all applicable requirements. □ YES □ NO

If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signing this application (the 'NO' box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this form along with the compliance plan information required. For all emission units at this facility that are operating in compliance with all applicable requirements complete the following:

- This facility will continue to be operated and maintained in such a manner as to assure compliance for the duration of the permit, except those units referenced in the compliance plan portion of Section IV of this application.
- For all emission units, subject to any applicable requirements that will become effective during the term of the permit, this facility will meet all such requirements on a timely basis.
- Compliance certification reports will be submitted at least once a year. Each report will certify compliance status with respect to each requirement, and the method used to determine the status.

			Fac	ility Appli	cable Federa	Requiremen	its N/A	Contin	uation Sheet(s
Title	Type	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
	1 4								
						1			

				Facility S	tate Only Re	quirements		□ Continuation Sheet(s	
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause

DEC ID											
	4					-					

Section III - Facility Information (continued)

			Faci	lity Compli	ance Certifica	ation Jy/A	00	Continuation Sheel(s)
				Rule	Citation			
Title	Type	Part	Sub Parl	Section	Sub Division	Paragraph	Sub Paragraph	Clause Sub Clause
Applicable I	Federal Requirement Requirement	Cabbas	CA	S No.		Со	ntaminant Name	
				Monitoring	Information			
☐ Ambient	Air Monitoring	U Work F	Practice Invo	olving Specif	ic Operations	□ Reco	ord Keeping/Main	tenance Procedures
				Desc	cription			
				oraci II				
			The second				1.74-78-1	
Work Plac			Process Material				Reference T	est Method
Туре	Code			Description		-		
		P						
	Code	Par	ameter	Description			Manufacturer Na	ame/Model No.
		İ						
	Limit					Limi	1 Units	
	Upper	L	ower	Code			Description	
			_					
	Averaging Method		1 000	Monitoring		1 0	Reporting Re	
Code	Descrip	tion	Code		Description	Co	de	Description

	Facility Emissions Summary		Continua	ation Sheel(s)
		[Pri		Actual
CAS No.	Contaminant Name	(lbs/yr)	Riange	(lbs/yr)
NY075 - 00 = 5	PM-1 0			
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXIDES OF NITROGEN			
630 - 08 - 0	CARSON MONOXIDE			
7439 - 92 = 1	LEAD			
NY998 - 00 = 0	VOC	1300		
NY100 - 00 - 0	НАР	1.813		
nocizi - 55 - 6	1,11- Trichlowethene (Methyl Chloroform)	591		
	Tetrahloroethylene	3		
nectificate	Trichlorcethylene	1151		
	1-1- Pichlowethane			
	11-Dichloriethylene (Vinyldin (hloride)	16		

PAGE 3

	DEC	10	
	UEL		
 -	Mary Mary		-

	Section III - Facility Inform	nation		
	Facility Emissions Summary (c	ontinuation)		
		PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
CO540 59 · O	CIS-1.3-Dichlargethene	5		
10107106 Ta	1.2-Dishlorcethane	0		
00156 60 5	trans-1,2-Dichlocathene Vinyl Chlocide	0		
30075-01-4	Vinul Chloride	0		
-				
- J.F				
	THE RESERVE TO A LEGISLA	The state of the s		
4 (90)				
. (9)				
- (+)			i	
. 9			ii	
			1 1	
- 19			i	
			1 1	- 7 -
	A THE RESERVE AND A SECOND	i	ii	
	The STEP CONTRACTOR OF THE STEP		1 1	-
			1 1	

	_		_			_			
			- 0)E(C EE				
_	-	-	-	-	DHE	-	_	 _	_
 - 1	-	100	1000	111710	12				

Section IV - Emission Unit Information

		Emission Unit Description	☐ Continuation Sheet(s)
EMISSION UNIT	1-00 E U	1 Etitlecot from first soil vapor	extraction blower
(BL-1)			
Vapor Phas	e Granular A	ctivated Carhon Unit. The emiss	ion Dointis
stack cos	ST-a		

D. Hatter	Building			nuation Sheet
Building	Building Name	Length (ft)	Width (ft)	Orientation
03-35	Treatment Building	(oC	40	0_

			Emission Poin	t	Conti	nuation Sheet
EMISSION PT	CCST2	1-11/2				
Ground Elev	Height	Height Above	Inside Diameter	Exil Temp	Cross S	ection
(ft)	(প্র)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
	36	6	8	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
	1,000			C/3-35	1001	
EMISSION PT						
Ground Elev	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection
(作)	(R)	Structure (ft)	(in)	(*F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (II)	Date of Removal

				Emission	Source	ce/Control	2	Continuation Sheet(
Emission	Source	Date of Construction	Date of Operation	Date of Removal	Code	Control Type Description	Manufa	cturer's Name/Model		
84 1/3				CH8 Granular Act Carbo		Tetrasolv Fillrati				
Design		Design Ca	pacity Units			Waste Feed	1	Waste Type		
	Code		Description		Cade	Description	Code	Description		
Emission	ssion Source Date of Date of Da		Date of		Control Type		cturer's Name/Model			
ID _	Туре	Construction	Operation			Description	1	No.		
Design		Design Ca	pacity Units			Waste Feed		Waste Type		
	Code Description					Description	I Code I	Description		

	DE	CID		_	_	
T	1	-	T	П	Т	

		Process !	nformation		☐ Continuation Sheet(s
EMISSION UNIT 1 - 0	OEUI				PROCESS 5 VE
		Desc	ription		
The Sal Vame Exten	ction System	a will cons	st of 12	SVE wells (12 intermediate and
(edeca) a maister					
Blad which hoth	vent lo av	por phase	grandar 3	etivated ea	then unit for
treatment accor to	discharge S	Firm Stack	COSTA	The VGAC	unit will be a
Sierce pound unit	Silled but	h Telman	V Kuniu (arbon. The	VGAC unt has
Diev Gaziever to	specate no	णाण्याप्ते वर	lacc cylli	Luth a ma	NIMUM OF LCCOCEM
Sauce Classification	Total 1	Thruput		Thruput Qua	ntity I loits
Source Classification Code (SCC)	Quantity/Hr	Quantity/Yr	Code	1	Description
☐ Confidential		Operating	Schedule	Duiteton	Floor/Location
A Operating at Maximum		Hrs/Day	Days/Yr	Building	
☐ Activity with Insignificar		94	165	03-35	Main
	E	mission Source/	Control Identifie	r(S)	
BL 1 BL 3					
EMISSION UNIT .					PROCESS
		Desc	ription		
					Rus .
					District .
	_				
Source Classification		hruput		Thrupul Qua	
Code (SCC)	Quantity/Hr	Quantity/Yr	Code		Description
		Onnealing	Schedule		
☐ Confidential ☐ Operating at Maximum 6	Capacity	Hrs/Day	Days/Yr	Building	Floor/Location
Activity with Insignifican		THISTURY	Maine		
	E	mission Source/(Control Identilier	(s)	
	11/2 11/2				

	DEC	מו			
 	T-1		-	-	-
		•			

Emission	Emission		Fmiasion	Emission Unit Applicable Federat Requirements					ntinuati	ion Sheet(s			
Unit	Point	Process	Source	Title	Турю	barı	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Bub Clausi
-													
-													
-													
-													

Emission	Emission		Emission		Emi	ssion	Unit Sta	te Only R	e Only Requirements			Continuation Sheet(s)		
Unit			Source	Title	Туре	bart	Sub Part	Section	Sub Division	Parag	Sub Parag	Clause	Sub Clause	
-														
_														
-														
_														

			Emissio	n Unit Co	mpliance C	ertification	3(Continuat	ion Sheet(s)		
				Rule	Citation						
Title	Type	Part	Sul Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause		
Co	NYCRR	313									
□ App	licable Federal	Requiremen	nt CI	State Only R	equirement	☐ Capping	Capping				
Emission	Jinit Point	Process	Source Source	CA	S No.		Contaminant I	Vame			
1-00E	u 1 costa	SVE		00079-01 - 6 Trichloroethylene							
D				Monitoring	g Information	on					
2 Inter	tinuous Emissio mittent Emissio lent Air Monitori	n Testing	g	□ Work F	oning of Proces Practice Involvi & Keeping/Mair	ng Specific Op		s as Surre	ogate		
				Des	cription						
Mont)	ly gob s	ingles :	walasty.	For VCC	s from 1	Le VGAC	unit incluse	t and o	Fluent		
Work Prac	Code	_	Process	Material Description			Reference Test Method				
Abe	Code			Description							
		Pa	rameter				Manufacturer Na	me/Mod	el No		
	Code			Description							
	23	Co	ncentrat	ion							
	Lin	nit				Limit	Units				
	Upper Lower		Lower	Code			Description				
36	.000	_[355	micio	grams pe	r cubic me	ter			
	Averaging Meth	od		Monitoring !	Frequency		Reporting Re	quiremer	nts		
Code	Desci	iption	Code	_	Description	Coc	1	Descripti			
01	Instantan	enus	05	Mon	this	FC	Upon	Reque	-1		

			EC	10)		
	T	T					Г

r e		eterminati	ion of Non-Ap				N/A	☐ Continua	tion Sheet(s)
			Rule C				N.I./		
Title Type_	Part	Sub Part		Division	Parag	paph S	Sub Paragrap	h Clause	Sub Clause
Emission Unit	Emission Poirit	Process	Emission	Source		licable Fed a Only Red	deral Requirer	nent	
			Descr	intion	1				
	100			pron					
					1111				
			Rule C	itation					
Title Type	Part	Sub Part		nib Division	Parag	ranh S	Sub Paragrap	h Clause	Sub Clause
Emission Unit	Emission Point	Process	Emission	Source		licable Fed e Only Rec	teral Requirer	nent	
-			Docce	inting	2 31010	e Oley No.	ACTION OF		
			Descr	ption					
	7777	-11-1		11 11				7.77	T. F.
								The Line	
	NETT	Fi	rocess Emiss	ions Sumn	nary			M Continua	tion Sheet(s)
EMISSION UNIT	1-00	Eul1						PROCESS	SVE
CAS No.		Contaminant it	Name		Ya .	Caphian	% Control	ERP (he)	ERP How Determined
) 1		1100	Uplit	Capture	Control	(lbs/hr)	Oli
000171 55 6	PTE	A CENE I	בחתם	Ola da		DAL	80		tual
(lbs/hr)	(lbs/yr)	Ista	ndard units)	Standar Units	d	PTE		(lbs/hr)	(lbs/yr)
0.07	591	(363	iluaiu biitis)			06		(1031.17)	(103.)1/
EMISSION UNIT	11-00	= 11 1						PROCESS	ISIVISI
		2 :		9	X ₆	%	1 %	5RP	ERP How
CAS No.	10,-10,-	Contaminant N	Vame	Thr	uput	Capture	Control	(lbs/hr)	Determined
00127-18 -4	Tetrachiler	cethyle	מכ				30	0.00	01
	PTE			Standar	d	PTE		Ac	tual
(lbs/hr)	(rbs/yr)	(State	ndard units)	Units		Deterr	mined	(lbs/hr)	(lbs/yr)
SHE BRT						0:	3		
	8	1				613	3		
EMISSION UNIT	1-008	Eu 1						PROCESS	SVE
EMISSION UNIT	1-008	E U 1	vame		% Lout	%	%	ERP	ERP How
CAS No.	1-008	Conteminant N					% Control	(lbs/hr)	ERP How Determined
	1-008	Conteminant N		Thn	uput	% Capture	% Control	(ibs/hr)	ERP How
CAS No.	Trachloro	Contaminant N			uput	%	% Control YO How	(ibs/hr)	ERP How Determined

	D	ECID			
 	-	2012	_	_	_
	$\Gamma^{-}\Gamma$			\mathbf{T}	
		1 - 1			

EMISSION UNIT	Emiss	sion Unit Emissions	Summary	Continuation Sheet(s		
CAS No.		Contami	nant Name			
00075- 34-3	11-Dichlorget	hane	health and the			
		nissions	Act	ual		
ERP (lbs/yr)	(1bs/hr)	(Ibs/yr)	(lbs/hr)	(lbs/yr)		
	327	11				
CAS No.		Contamir	nant Name			
		VIENE (VICIOLIUM)	Actual			
ERP (lbs/yr)	(tbs/hr)	(lbs/yr)	(ibs/hr)	(lbs/yr)		
	827	l (e				
CAS No.		Contamir	nant Name			
00540 59 - 0	cis-12-Dichle	proethene	2-1-5-5-1			
		nissions	Actual			
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)		
	BRT	5				
CAS No		Contamir	nani Name			
00101-06-2	1, 2 - Michigrath	ane				
		nissions	Act	ual		
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(ibs/hr)	(lbs/yr)		
	BRT	BRI				

					Co	omplian	ce Plar	N/A		⊒ C	ontinuatio	on Sheet(s)
For any em	ission units	s which ar	e <u>not in c</u>	omplian	ce at th	ne time of	permit ap	plication. the	applica	nt shall comp	lete the	following
Consent Or	der		Certifie	ed progra	ess rep	orts are to	be subm	nitted every 5	months	beginning_	1	
Emission	1	Emission		51.5			Applicabi	e Federal Requ	irement			
Unit	Process		Titia	Туре	Part	Sub Part	Section	Sub Division	Parag	Sub Parag	Ctause	Sub Clause
_												
		Remedi	al Measu	ire / Inte	rmedia	te Milesto	nes			R/I		Date heduled
											1	400
											-	
					_			10000			1	
			_									
				_							1	

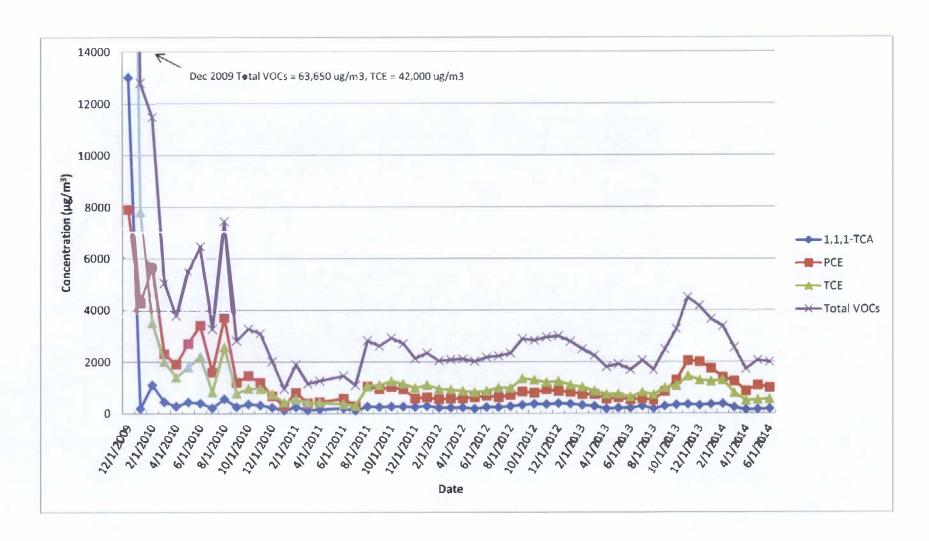
_	_
Tal	

Section IV - Emission Unit Information

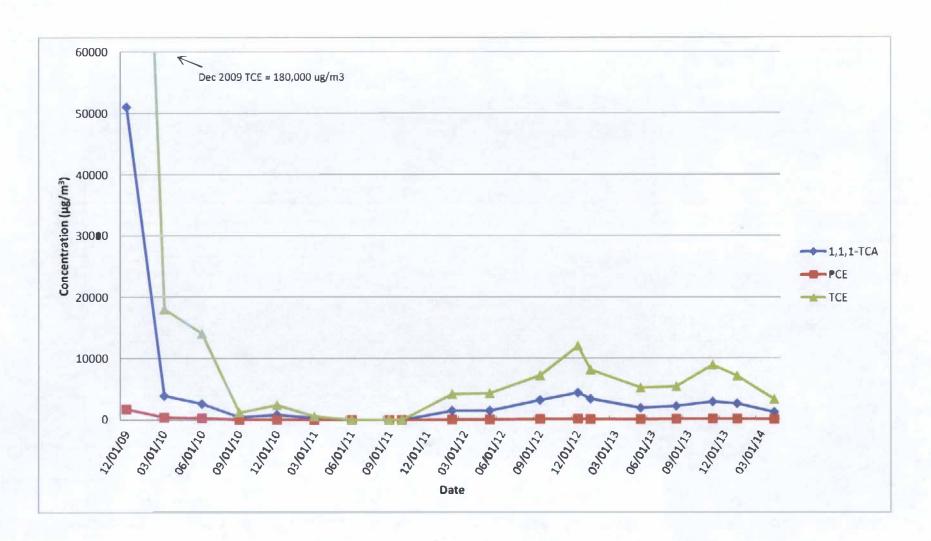
EMISSION UNIT		in their Federales	C (continue	42 -1
I O E U 1	Em	ssion Unit Emissions	Summary (continua	BLIOTI)
CAS No.		Contamir	at Name	
00156- 60 - 5	trans-12-Dich	locorthene		
ERP (lbs/yr)	PTEE	missions	Ac	tual
LIN (WON)1)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	BRT		
CAS No.			nant Name	
recis of -4			I Ao	1
ERP (lbs/yr)		(lbe/us)	(ibs/hr)	(ibs/yr)
1	(Ibs/hr)	(lbs/yr)	(109/17)	(IDS/yr)
CAS No.	BRT	RRT	ant Name	
		Concre	Gre real C	
	DIE 6	missions	l Ac	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lositar)	(lbs/yr)
	(IDS.III)	10077	[103,14]	(100.31)
CAS No.		Contamin	ant Name	
	- TO		DITT CHILD	
	PTE 6	missions	Ac	luał
ERP (lbs/yr)	(lbs/hr)	(ibs/yr)	(lbs/hr)	(lbs/yr)
CACAL		Contage		
CAS No.		CONSTITUTION	ant Name	
	शह ह	rnissions	Ac	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	(100)	(100-)-)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(100.71)
CAS No.		Contario	ant Name	
	PTE &	ryzzione	Aci	tual
ERP (lbs/yr)	(ibs/hr)	(lbs/yr)	(lbs/hr)	(!bs/yr)
			AAT BALL	
CAS No.		Contamin	ant Name	
577 17 ()	PIEE	rissions	Act	ual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS No.		Contamin	ant Name	
eng were	PTE E	nessons	Act	ual
ERP (lbs/yr)	(lbs/hr)	(tbs/yr)	(fbs/hr)	(fbs/yr)

		D	EC	: 10)		
	П	П		-			Г

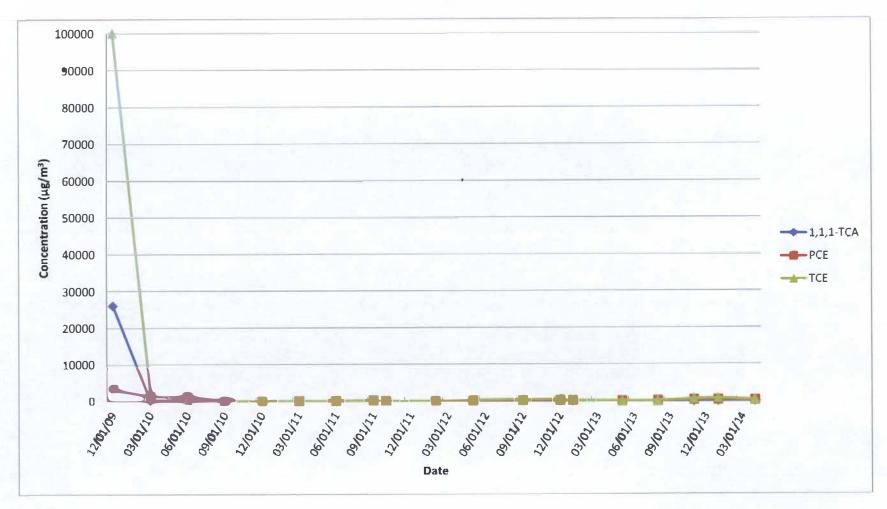
	Reque	est for Emission Reduction Cr	edits D	Continuation Sheet(s			
EMISSION UNIT							
	Eı	mission Reduction Description		2002			
	Conta	aminant Emission Reduction D	Data				
				oction			
Baseline Period		to	Date /	Melhod			
CAS No.	Total Trans	Contaminant Name	ERC (lbs/yr)				
CAS NO		Containmant Name	Netting	Offsel			
-							
4							
	Fa	cility to Use Future Reduction	7				
Name	34,444.35		APPLICATION I	D			
Loopting Address							
Location Address ☐ City / ☐ Town / ☐ Vi	llage	State	Zip				
J City / 3 TOWIT / 3 VI	Ilvaile	3600	ISIA				
		Proposed Project Description					
	Conta	aminant Emissions Increase D	ata				
CAS No.		Conteminant Name	PEP	PEP (lbs/yr)			
-							
		Statement of Compliance					
All facilities under the including any complia schedule of a consent	order	m are operating in compliance with all neter Section 114(a)(3) of the Sean Air		state regulations are meeting the			
	Source o	Emission Reduction Credit -					
Vame			TTTTTTT	7/17/17			
ocation Address	5) 3 130						
City / D Town / D Vil	lage	State	Zip				
Emission Unit	CAS No.	Contaminant Name		(lbs/yr)			
Emission unit	CACINO	O O THE THE THE THE		1 0"			
		Od Harming Herraria	Netting	Offset			
-		O SWIED IN COLUMN Netting	Offset				

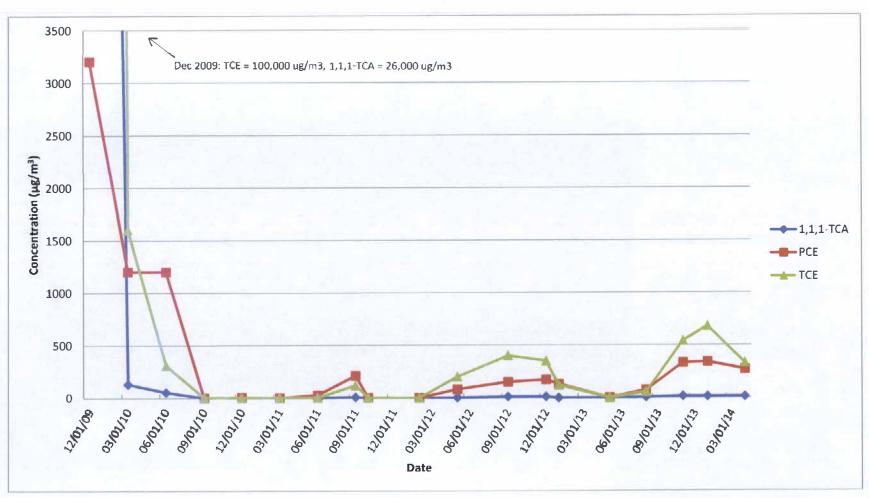


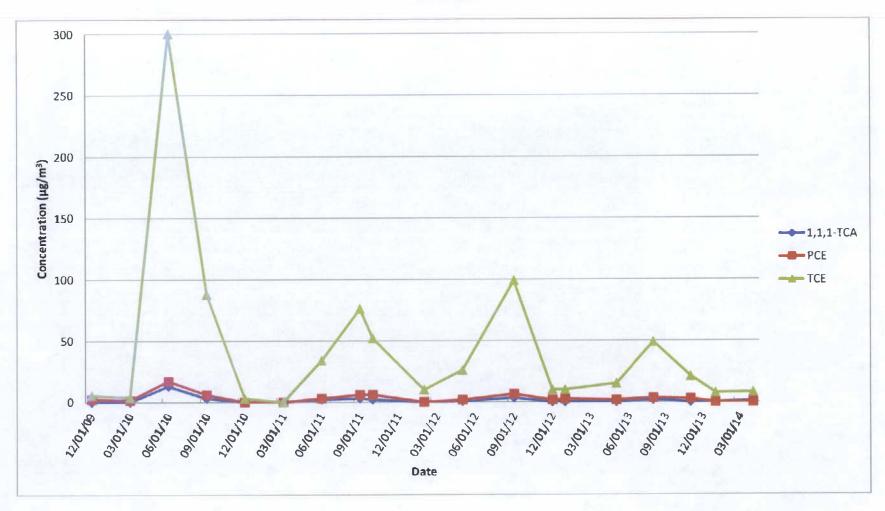
		- [EC	10)		
-				-			Г

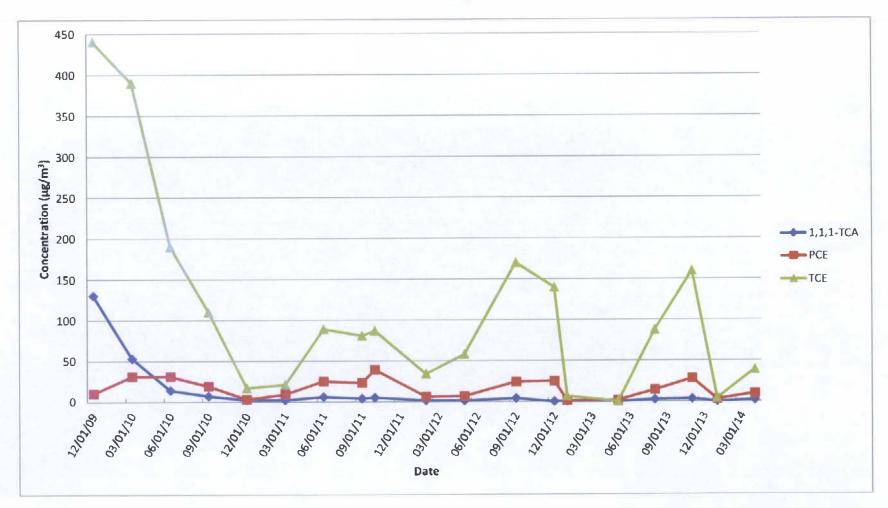

□ P.E. Certification (form attached)			
List of Exempt Activities (form attached)			
☐ Plot Plan			
Methods Used to Determine Compliance (form attached)			
☑ Calculations			
Air Quality Model (/ /)			
☐ Confidentiality Justification			
Ambient Air Moniloring Plan (//)			
Stack Test Protocols/Reports (/)			
Continuous Emissions Monitoring Plans/QA/QC (/ /)			
MACT Demonstration (/)			
Operational Flexibility: Description of Alternative Operating Scenarios and Pr	rotocols		
Title IV: Application/Registration			
☐ ERC Quantification (form attached)			
Use of ERC(s) (form attached)			
☐ Baseline Period Demonstration			
☐ Analysis of Contemporaneous Emission Increase/Decrease			
D LAER Demonstration (/ /)			
BACT Demonstration (/)			
Other Document(s)		- 1	* <u>L</u>
			1
		- 1	
		1	
		1	
			1
		<u>-</u>	
	(1	1

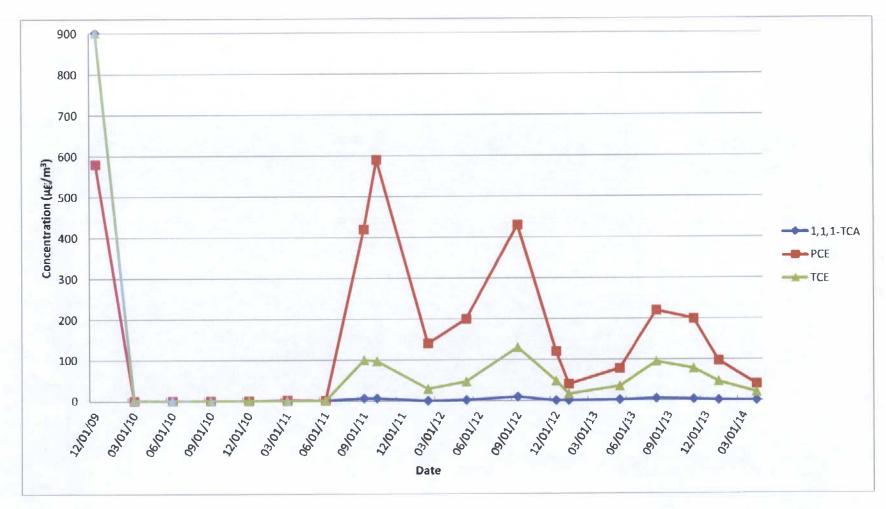
APPENDIX B VAPOR CONCENTRATION TREND GRAPHS

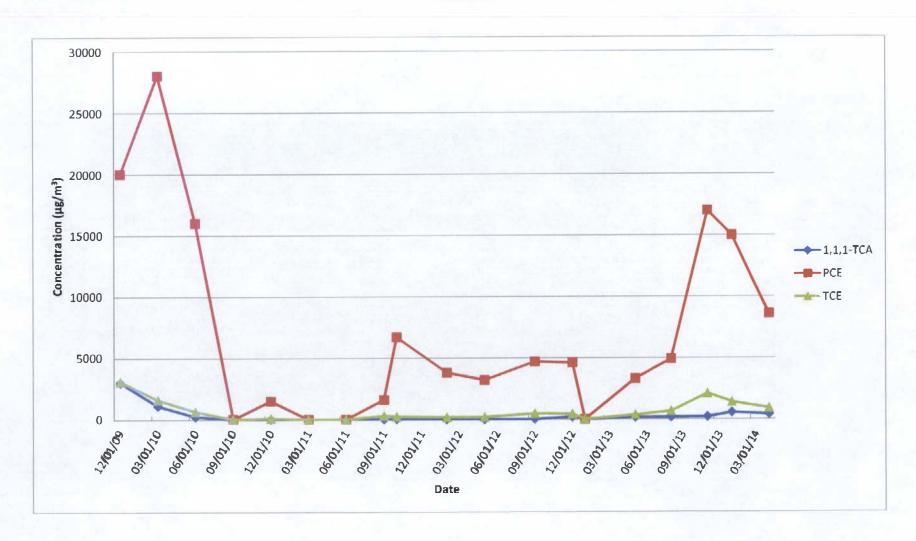

COMBINED INFLUENT

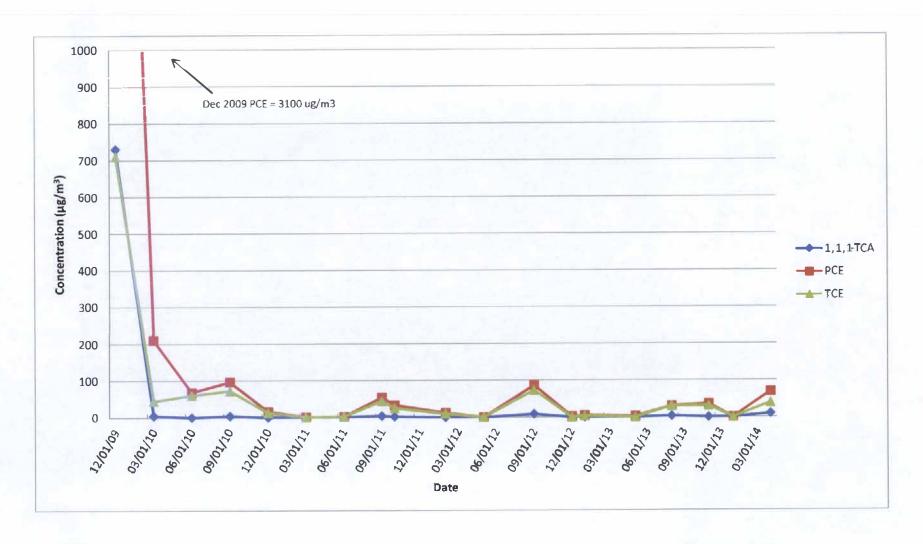

SV-1011

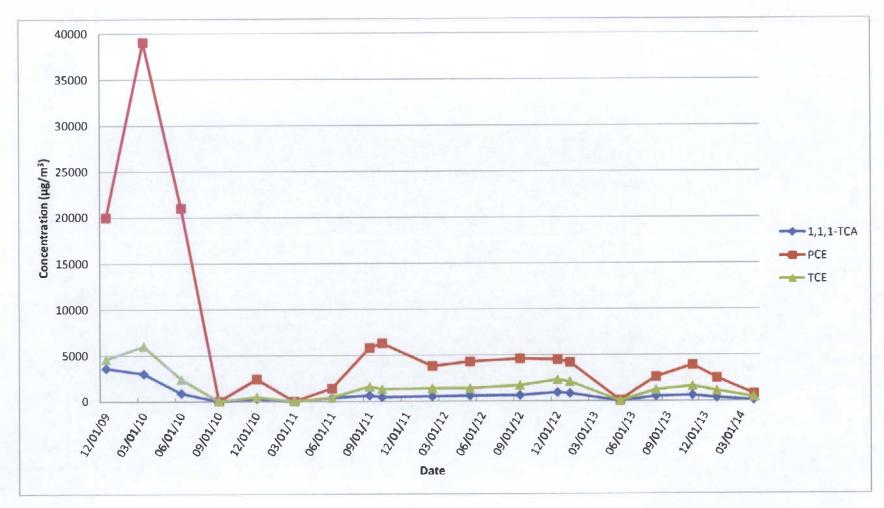

SV-101D

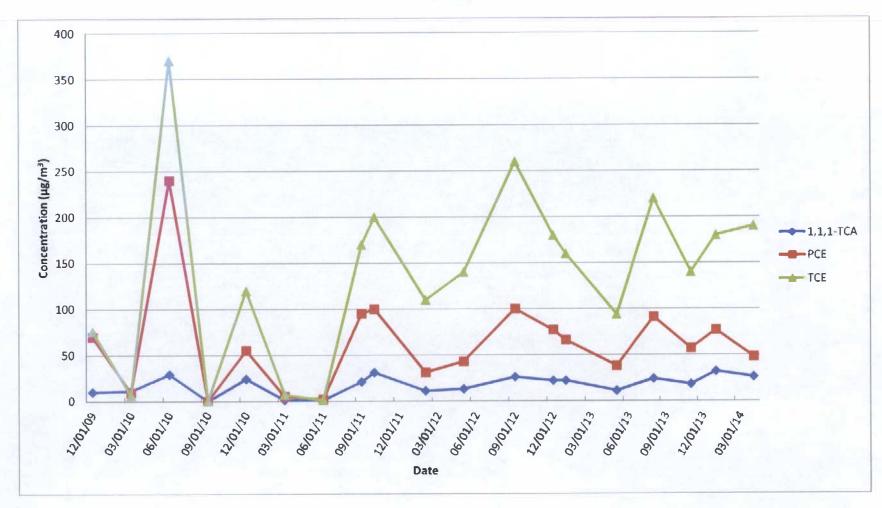

SV-101D (smaller scale)

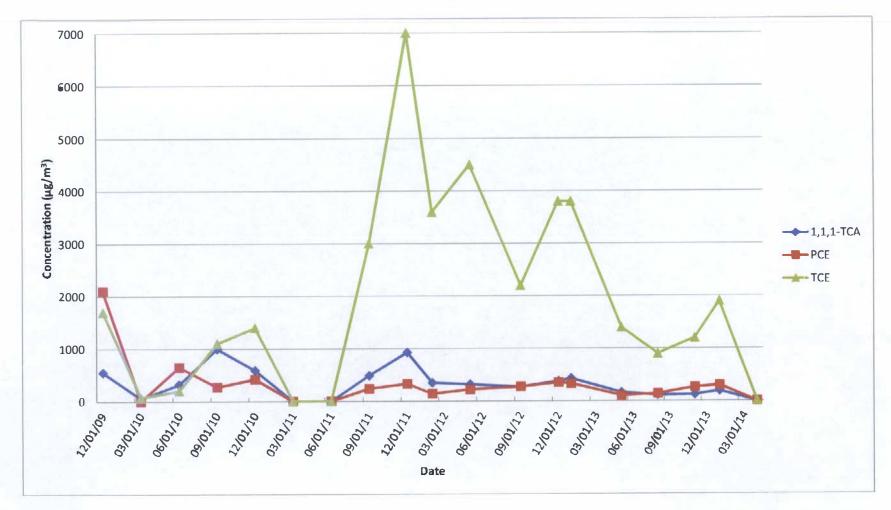

SV1021

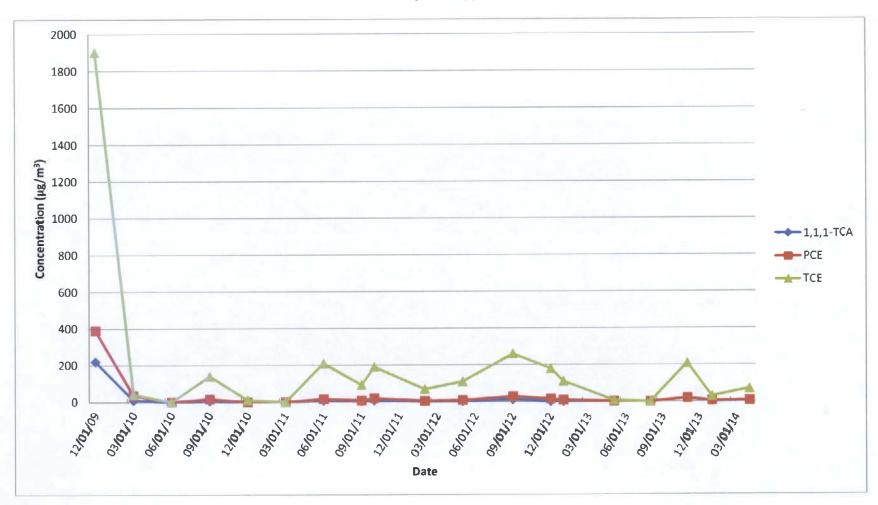

SV-102D

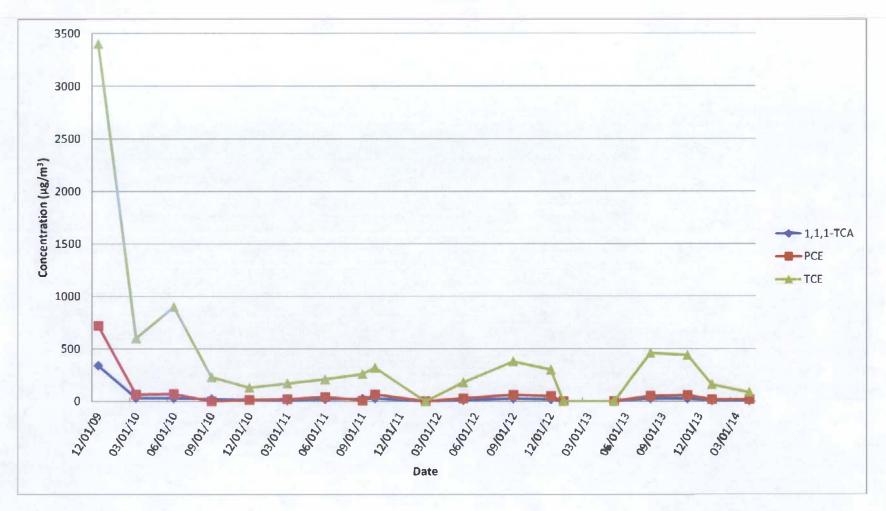

SV-1031


SV103D


SV1041


SV-104D


SV-1051


SV-105D

SV-106I

SV-106D

