2014 OU2 GROUNDWATER INVESTIGATION BPOW4-1R, BPOW4-2R INSTALLATION REPORT BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9742 Maryland Ave. Norfolk, VA 23511-3095

Comprehensive Long-Term Environmental Action Navy Contract Number N62470-11-D-8013

CTO WE15

Prepared by:

Resolution Consultants A Joint Venture of AECOM & EnSafe 1500 Wells Fargo Building 440 Monticello Avenue Norfolk, VA 23510

July 2015

Table of Contents

List of	Acronyr	ns and Abbreviationsi	ii
1.0	PROJE	CT BACKGROUND	1
	1.1 1.2 1.3	Scope and Objectives Site History Geology and Hydrogeology	1 2
2.0	FIELD	PROGRAM	4
	2.1	Integrity testing, attempted rehabilitation and decommissioning of BPOW4-1 and BPOW4-2	4
	2.2	Drilling and Well Construction of Replacement wells BPOW4-1R and BPOW4-2R	5
	2.3	Well Development	
	2.4	Sampling	7
	2.5	Decontamination and IDW	7
	2.6	Surveying	8
3.0	REFER	ENCES 9	

Tables

Table 1	Boring Summary
Table 2	Monitoring Well Construction Summary
Table 3	Monitoring well Development Summary
Table 4	Analytical Data Table
Table 5	Stabilized Field Parameters

Figures

- Figure 1 General Location Map
- Figure 2 BPOW4-1R and BPOW4-2R Location Map

Appendices

Appendix A – BPOW4-1, BPOW4-2 Logs Section 1 Boring and Gamma Logs Section 2 Monitoring Well Construction Logs

Appendix B – BPOW4-1, BPOW4-2 Integrity Testing, Rehabilitation, Decommissioning
Section 1 MEMO: NWIRP Well Integrity Testing Summary, October 4, 2013
Section 2 MEMO: 2014 Rehabilitation of BPOW4-1 and BPOW4-2 (OU2), NWIRP, Bethpage, April 28, 2014
Section 3 MEMO: Well Decommissioning for BPOW4-1 and BPOW4-2, April 30, 2014

Appendix C – BPOW4-1R, BPOW4-2R Installation

Section 1 Boring and Gamma Logs Section 2 Monitoring Well Construction Logs Section 3 Well Development Record Section 4 Groundwater Sample Log Sheets Section 5 Analytical Data Validation Section 6 Survey

List of Acronyms and Abbreviations

AOC	Area of Concern
bgs	below ground surface
COR	Continuously Operating Reference
Delta	Delta Well and Pump
DoD	Department of Defense
ELAP	Environmental Laboratory Accreditation Program
EPA	Environmental Protection Agency, United States
ER	Environmental Restoration
ft	feet
GOCO	Government-Owned Contractor-Operated
GPS	Global Positioning System
IDW	Investigation Derived Waste
Katahdin	Katahdin Analytical Services, Inc
lbs	pounds
NAD	North American Datum
NAVD	North American Vertical Datum
NAVFAC	Naval Facilities Engineering Command
NG	Northrop Grumman
NTU	Nephlometric Turbidity Units
NWIRP	Naval Weapons Industrial Reserve Plant
NYSDEC	New York State Department of Environmental Conservation
OU	Operable Unit
PCBs	Polychlorinated Biphenyls
PID	Photoionization Detector
POTW	Publicly Owned Treatment Works
PVC	Polyvinylchloride
PPE	Personal Protective Equipment
SAP	Sampling and analysis plan
SVOC	Semivolatile Organic Compounds
TCE	Trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TOC	Total Organic Carbon
TOGS	Technical and Operational Guidance Series
TPH	Total Petroleum Hydrocarbons
UFP	United Federal Programs
VOC	Volatile Organic Compounds

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command, Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes installation activities associated with replacement monitoring wells BPOW4-1R and BPOW4-2R in 2014 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of replacement monitoring wells BPOW4-1R and BPOW4-2R. Monitoring wells BPOW4-1 and BPOW4-2 were replaced since both wells failed integrity testing. Wells BPOW4-1R and BPOW4-2R were completed to 697 feet (ft) and 770 ft below ground surface (bgs), respectively. The locations of these wells are shown in Figure 2.

Field tasks were conducted in 2014 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York and the UFP SAP Addendum Installation of Vertical Profile Borings and Monitoring Wells (Resolution Consultants, 2013) and the *Abbreviated Workplan for Outpost Monitoring Well Reinstallation (BPOW4-1R and 4-2R*) (Resolution Consultants 2014). The field investigation included: drilling; geophysical logging; installing two replacement monitoring wells; groundwater sampling; and surveying.

Documentation of these activities is included in the Appendices of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property, totaling 109.5 acres, was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP

property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Environmental Restoration (ER) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Los and Nassau County properties. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 ft of Cretaceous deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The Upper Pleistocene deposits range in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1990); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft bgs observed onsite. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 875 ft bgs; these deposits form the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are course sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The regional groundwater flow in the area is to the south-southeast.

2.0 FIELD PROGRAM

Field investigation activities at BPOW4-1 and BPOW4-2 consisted of integrity testing, attempted rehabilitation and decommissioning. As a result of the failed integrity testing at BPOW4-1 and BPOW4-2, these wells were replaced with BPOW4-1R and BPOW4-2R.

Field investigation activities at BPOW4-1R/BPOW4-2R consisted of drilling, sampling, soil/groundwater analysis, geophysical logging, and surveying. Gamma logging was conducted in the borehole for BPOW4-2R. Drilling during this investigation was performed by Delta Well and Pump Company (Delta) of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Integrity testing, attempted rehabilitation and decommissioning of BPOW4-1 and BPOW4-2

Wells BPOW4-1 and BPOW4-2 were installed in 2003. Appendix A includes boring and gamma logs and well construction diagrams. Analysis of groundwater samples collected from these wells in May 2013 detected concentrations of Freon above the New York State Department of Environmental Conservation Technical and Operational Guidance Series (TOGS) guidance value. In order to determine if the well packers were functioning properly or if cracks had occurred in the well casing, integrity testing was conducted on wells BPOW4-1 and BPOW4-2 in July and September 2013. Appendix B includes a memo describing the integrity testing and results. Both wells failed the integrity testing and it was decided to rehabilitate the wells.

An attempt to install two-inch diameter wells within the existing four-inch wells in February 2014 was unsuccessful. A loss of grout between the inner two-inch and existing outer four-inch casing in BPOW4-2 indicated a possible crack in the original casing where grout was escaping; therefore efforts to rehabilitate BPOW4-2 were abandoned. Retrieval of the packer setup in BPOW4-1 may have resulted in a portion of the well collapsing; therefore efforts to rehabilitate BPOW4-1 were also abandoned. Appendix B includes a Memo describing the rehabilitation attempt.

As a result of the failed integrity testing, wells BPOW4-1 and BPOW4-2 were decommissioned by grouting in place on Sept. 23 and Sept 24, 2014, respectively, consistent with a protocol included in Appendix B. The pre-existing flush mounted curb boxes and surrounding concrete pad were broken apart and removed from the well sites. A mixture of cement, bentonite, and water was pumped through one- inch poly tubing from the bottom to the top of each well. Materials used at the BPOW4-1 well included twenty-four bags of cement (94 pounds [lbs] each) and 100 lbs of

Bentonite. At the BPOW4-2 site, sixteen bags of cement and 65 pounds of bentonite were used to plug the well.

The surface casing was cut approximately 2 feet below ground surface and slip caps were installed over the riser pipes. The well sites were restored with topsoil and seeded.

2.2 Drilling and Well Construction of Replacement wells BPOW4-1R and BPOW4-2R

Replacement monitoring wells BPOW4-1R and BPOW4-2R were installed between August and October 2014. Depths of monitoring wells BPOW4-1R and BPOW4-2R are 697 and 770 feet, respectively. Locations are shown on Figure 2. The wells were installed using mud rotary drilling techniques. Boring and well construction details are summarized in Tables 1 and 2. Boring logs with lithologic descriptions of the well screen interval as well as well construction diagrams are included in Appendix C.

The initial attempt to install BPOW4-1R failed due to the loss of drilling equipment (a portion of the hammer and split spoon sampler). The boring was grouted up to 706 feet bgs. Within this same boring, well BPOW4-1R was re-drilled using a 50K Gefko mud rotary rig by Delta from July 2014 to August 19, 2014 to a depth of 707 ft bgs and was constructed with 53 feet of 10-inch diameter steel surface casing. Monitoring well BPOW4-1R was installed using 4-inch diameter, schedule 80, polyvinylchloride (PVC) riser pipe, 40 feet of 0.010-slot PVC screen (652'-692') and a five-foot sump for a total depth of 697 ft. bgs. Stainless steel centralizers were attached to the bottom of the sump and to the PVC riser pipe located above the screen to stabilize the well inside the borehole. A coarse sand pack was placed beneath the well and in the annular space around the PVC screen. Additional fine sand was installed above the coarse sand to a depth of 602 ft bgs. Bentonite grout was tremied from the top of the filter sand pack to the ground surface.

The initial attempt to install BPOW4-2R failed due to the loss of drilling equipment (drilling rods). As a result, the borehole was grouted to grade. Monitoring well BPOW4-2R was moved approximately 200 feet north of the original BPOW4-2 location and was drilled from September 25 to October 20, 2014. The borehole was advanced to a depth of 785' and a total of 18 split spoon samples were collected from ground surface to the bottom of the boring (Table 1). Samples were logged by the field geologist and screeened for Volatile Organic Compounds (VOCs) utilizing a photoionization detector (PID). Gamma logging was completed on the open borehole by Aqua Terra Geophysics, Inc. A copy of the gamma log report is included in Appendix C.

July 2015

Monitoring well BPOW4-2R was installed using 53 feet of 10-inch diameter steel surface casing, 4inch diameter, schedule 80, PVC riser pipe, 40 feet of 0.010-slot PVC screen (725'-765') and a fivefoot sump for a total depth of 770 ft. bgs. Stainless steel centralizers were attached to the bottom of the sump and to the PVC riser pipe located above the screen to stabilize the well inside the borehole. A coarse sand pack was placed beneath the well and in the annular space around the PVC screen. Additional fine sand was installed above the coarse sand to a depth of 702 ft bgs. Bentonite grout was tremied from the top of the filter sand pack to the ground surface.

Two soil samples were collected for laboratory analysis for total organic carbon (TOC) by Environmental Protection Agency (EPA) series SW-846 method 9060A. During drilling, air sampling was conducted under a Community Air Monitoring Plan. One air sample was collected using Summa canisters and submitted for laboratory analysis by EPA Method TO-15. All analyses were performed or sub-contracted by Katahdin. Data validation of both TOC and air data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix C.

Both wells were completed at the surface with a 12-inch diameter steel curb box, set in a two-foot by two-foot concrete pad. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix C.

2.3 Well Development

Following installation, both monitoring wells were developed to evacuate silts and other finegrained materials and to establish the filter pack to promote a hydraulic connection between the well and the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting and manual surging, followed by pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephlometric turbidity units (NTUs) if possible. Table 3 summarizes total pumped volume from air lifting and pump development and final turbidity. Well development records are included in Appendix C.

2.4 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval (Table 2). The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4 Dioxane via method 8270D SIM by Katahdin Analytical Services, Inc (Katahdin) a Department of Defense (DoD), Environmental Laboratory Accreditation Program (ELAP), and NYSDEC-certified laboratory. All development and purge water was managed as investigation derived waste (IDW). Analytical data is summarized in Table 4 and field parameters are listed in Table 5. Groundwater sample logs and data validation packages are included in Appendix C.

2.5 Decontamination and IDW

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable Teflon or polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment, and split spoons were decontaminated using Liquinox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums.

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment (PPE)) generated during the well installation was containerized and staged at NWIRP Bethpage. IDW solids were characterized and disposed of properly. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons (TPH)

- Total solids
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW water was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846 (all waters). To the extent feasible, soil and water were not mixed. All analytical criteria were met for disposal of soil and water.

2.6 Surveying

A survey of the boring locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevations are referenced to the North American Vertical Datum (NAVD) 1988 and have a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) N.Y. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical control is based on Global Positioning System (GPS) observations using the NYS Net Real Time Network.

A table of survey data (ground, latitude/longitude and northing/easting) and a survey map is included in Appendix C.

3.0 REFERENCES

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September.

Naval Facilities Engineering Command (NAVFAC), 2003. *Record of Decision Naval Weapons Industrial Reserve Plant Bethpage, New York, Operable Unit 2 – Groundwater*, NYS Registry: 1-30-003B. April.

Resolution Consultants, 2013. *United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite TCE Groundwater Plume Investigation,* Bethpage, New York. April.

Resolution Consultants, 2013. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling* Protocol. November.

Resolution Consultants, 2013. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December.

Resolution Consultants, 2014. Abbreviated Work plan –June 2014 Outpost Monitoring well Re installation (BPOW4-1R and BPOW4-2R) June.

Smolensky, D., and Feldman, S., 1990. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

Tables

June 2015

TABLE 1 BORING SUMMARY 2014 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

BORING	BORING START DATE	BORING COMPLETION DATE	GROUND ELEVATION (MSL)	TOTAL DEPTH (ft bgs)	SURFACE CASING SET AT (ft bgs)	NO. OF SPOON SAMPLES	GAMMA LOG (ft bgs)	NO. GW SAMPLES COLLECTED/ ATTEMPTED	TOC SAMPLES	DATE OF AIR SAMPLE
BPOW4-2R	9/25/2014	10/20/2014	66.60	784	53	18	775	none	673 - 675; 738 - 740	9/2/2014

TABLE 2 MONITORING WELL CONSTRUCTION SUMMARY 2014 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
BPOW4-1R	8/19/2014	64.08	697	53	652 - 692	692 - 697	707
BPOW4-2R	10/20/2014	66.60	770	53	725 - 765	765 - 770	784

TABLE 3 MONITORING WELL DEVELOPMENT SUMMARY 2014 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	A IR DEVE	OPMENT	PUN	IP DEVELOPME	INT	APPROX. TOTAL	FINAL
Monitoring Well	DATE	APPROX. Volume (Gal)	DATE	Final pump Depth (FT)	APPROX. Volume (Gal)	Development Volume (Gal)	TURBIDITY (NTUs)
BPOW4-1R	9/17/2014	6,500	9/18/2014- 9/19/2014	652-692	3,000	9,500	4.48
BPOW4-2R	10/21/2014	4025	10/22/14- 10/24/14	770	14,600	18,625	134

June 2015

Location Sample Date Sample ID	NYSDEC Groundwater Guidance or Standard Value	BPOW4-1R 12/30/2014 BP0W4-1R-GW-123014	BPOW4-2R 12/30/2014 BP0W4-2R-GW-123014
Sample type code	(Note 1)	Ν	Ν
VOC 8260C (ug/L)			
1,1,1-TRICHLOROETHANE	5	< 0.50 U	< 0.50 U
1,1,2,2-TETRACHLOROETHANE	5	< 0.50 U	< 0.50 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	8.0	11
1,1,2-TRICHLOROETHANE	1	< 0.50 U	< 0.50 U
1,1-DICHLOROETHANE	5	< 0.50 U	< 0.50 U
1,1-DICHLOROETHENE	5	< 0.50 U	< 0.50 U
1,2,4-TRICHLOROBENZENE	5	< 0.50 U	< 0.50 U
1,2-DIBROMO-3-CHLOROPROPANE	0.04	< 0.75 U	< 0.75 U
1,2-DIBROMOETHANE	NL	< 0.50 U	< 0.50 U
1.2-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U
1,2-DICHLOROETHANE	5	< 0.50 U	< 0.50 U
1,2-DICHLOROETHENE, TOTAL	5	< 1.0 U	< 1.0 U
1,2-DICHLOROPROPANE	1	< 0.50 U	< 0.50 U
1,3-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U
1,4-DICHLOROBENZENE	3	< 0.50 U	< 0.50 U
1,4-DIOXANE (Method 8270D_SIM)	NL	1.2	1.1
2-BUTANONE	50	< 2.5 U	< 2.5 U
2-HEXANONE	50	< 2.5 U	< 2.5 U
4-METHYL-2-PENTANONE	NL	< 2.5 U	< 2.5 U
ACETONE	50	< 2.5 U	< 2.5 U
BENZENE	1	< 0.50 U	< 0.50 U
BROMODICHLOROMETHANE	50	< 0.50 U	< 0.50 U
BROMOFORM	50	< 0.50 U	< 0.50 U
BROMOMETHANE	5	< 1.0 U	< 1.0 U
CARBON DISULFIDE	60	< 0.50 U	< 0.50 U
CARBON TETRACHLORIDE	5	< 0.50 U	< 0.50 U
CHLOROBENZENE	5	< 0.50 U	< 0.50 U
CHLOROETHANE	5	< 1.0 U	< 1.0 U
CHLOROFORM	7	< 0.50 U	< 0.50 U
CHLOROMETHANE	5	< 1.0 U	< 1.0 U
CIS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U
CIS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U
CYCLOHEXANE	NL	< 0.50 U	< 0.50 U
DIBROMOCHLOROMETHANE	5	< 0.50 U	< 0.50 U
DICHLORODIFLUOROMETHANE	5	< 1.0 U	< 1.0 U
ETHYLBENZENE	5	< 0.50 U	< 0.50 U
ISOPROPYLBENZENE	5	< 0.50 U	< 0.50 U
M- AND P-XYLENE	NL	< 1.0 U	< 1.0 U
METHYL ACETATE	NL	< 0.75 U	< 0.75 U
METHYL CYCLOHEXANE	NL	< 0.50 U	< 0.50 U
METHYL TERT-BUTYL ETHER	10	< 0.50 U	< 0.50 U
METHYLENE CHLORIDE	5	< 2.5 U	< 2.5 U
O-XYLENE	NL	< 0.50 U	< 0.50 U
STYRENE	5	< 0.50 U	< 0.50 U
TETRACHLOROETHENE	5	< 0.50 U	< 0.50 U
TOLUENE	5	< 0.50 U	< 0.50 U
TRANS-1,2-DICHLOROETHENE	5	< 0.50 U	< 0.50 U
TRANS-1,3-DICHLOROPROPENE	0.4	< 0.50 U	< 0.50 U
TRICHLOROETHENE	5	0.84 J	0.73 J
TRICHLOROFLUOROMETHANE	5	< 1.0 U	< 1.0 U
VINYL CHLORIDE	2	< 1.0 U	< 1.0 U
XYLENES, TOTAL	5	< 1.5 U	< 1.5 U

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)

Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; **Bold and Italics** =Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

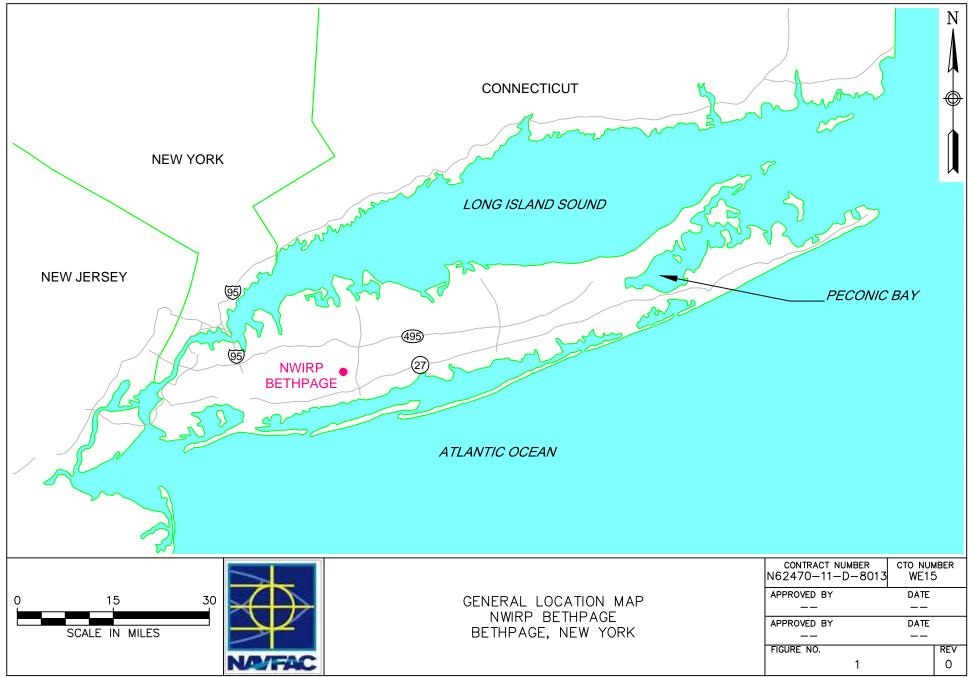
Sample type codes: N - normal environmental sample, FD - field duplicate

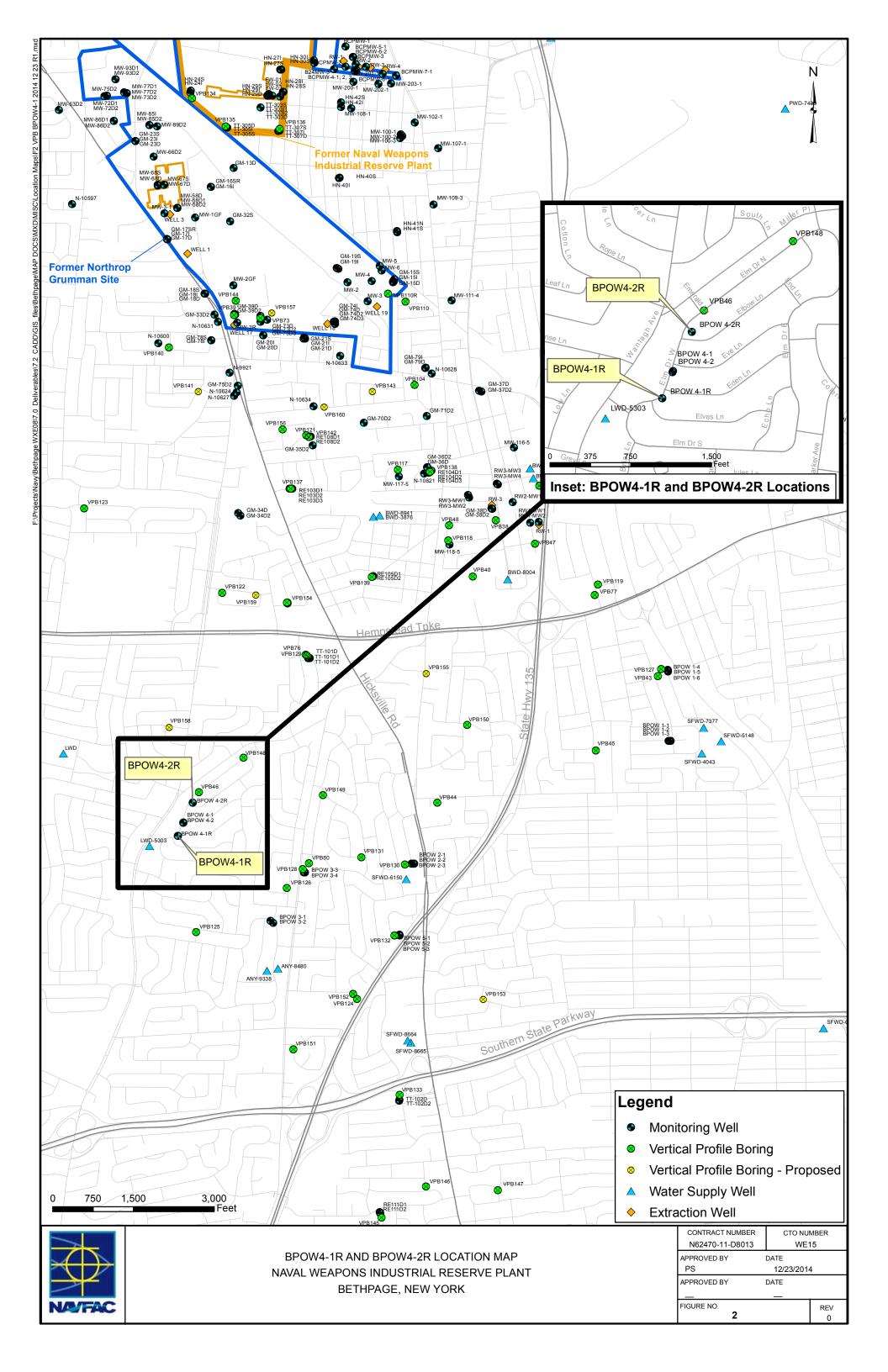
U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit. UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.


Table 5.Stabilized Field Parameters


Well	Date	Temperature (°C)	рН	Specific Conductance (μS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
BPOW4-1R	12/30/2014	12.55	5.54	0.037	4.21	255.7	2.4	22.11	585
BPOW4-2R	12/30/2014	12.42	5	0.035	4.62	241.6	66.3	23.34	400

* Initial water level not equilibrated due to pump installation; drawdown during sampling not determined.

Figures

112G00622\0510\112G00622CM01.DWG 08/02/10 MKB

Appendix A

BPOW4-1, BPOW4-2 Logs

Section 1

Boring and Gamma Logs

PRO. DRIL	JECT LING		BER: PANY:	N4037 Uni-Teo			······································	DA GE	RING No TE: OLOGIS ILLER:	T:	BPOW4-1 7-8-03 Conti / Shicki	rA			
		RIG:		FAILI	150						J BLEMINGS				_
Sample to. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Racovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	N Soil Density/ Consistency or Rock Hardness	Color		SCRIPTION		บ ร ร ร ร	Remarks	PID/FI	D Rea Sampler BZ	Borehole"	
	0						TOP G'	TOPSON	-						Γ
	<u> </u>	\sim						<u>_</u> ,		_		\mathbf{T}			F
		\leftarrow		1								+			t
								<u></u>							┢
	סו	\geq					SAND	AND G	LIJUAS		(FROM CUTTINGS				c
		\square													
				1											Γ
															Г
		\sim		1											T
	20	\sim													C
		\sim													f
		\leftarrow		1								1	1		t
												1			t
															Г
	30	\sim										1.			t
	30	\sim										\uparrow			f
		\sim						· · · · · · · · ·				┼─	\uparrow		t
		\sim						· · · · · ·	-						t
				1											Ţ
	40	\sim		1			SAND	AND GRA	130		1 & SUB ROUND			Γ	le
	<u> </u>	\sim					0				FROM CUTTINGS	·			T
		\square		1											
		\mathbf{r}										Τ	Τ		Γ
	<u> </u>		<u> </u>			 			·			1	1		T
	50	17	1	1								1		T	đ
** Inciu	n rock c Ide moi		ng in 6 foo	ot intervals			TARY	uency if elevate		ad.	Drilli Background				- 2

Ļ

PRO. DRIL	JECT LING		BER:	N4037 Uni-Te			DATE: GEOLOGI	ST:		9-0	3	
DRIL	LING	RIG:		FAIL	ING I		DRILLER:		J BLEMINGS	545 F		
Sample No. and Type or RQD	Depth (FL) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	V Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	D Rea Zampler BZ	
	50				DENEE		SAND AND GRAVEL					
		\square										
	ය											
		\square	1					Τ				
				1				Τ				
		\square									Ī	Γ
				1				1.				Γ
	70			1			- mine	1				
	10	\sim		1								Γ
		\sim		1								Γ
								1				Γ
				1								Γ
	80						SAND					T
		\sim						1				T
		\sim		1			······································	\top			T	T
		\sim	1									T
			1	1							·	T
	90	\sim	1				CLAVEY SAND		$\pm 90'$			Т
		\sim		1					80-90'- STABIL BAR-HAD SAN CLAY/CLAYEYS ENTIRE 10'LEA	IZER	Ť	T
	1	$\mathbf{\nabla}$	1	1					CLAY/CLAYEYS	GTH		T
			1	1.					JAY WILL SET			T
 	†	17	1	1		1		\uparrow				t
	100	17	1	1		1	Sand and Gravel		14 & Sub round	1.	T	t
* Whe		oring, ent	er rock br	okeness.	1					illing /		-

÷

	PRO. DRIL	JECT LING	NAME NUME COMF RIG:	BER:	N4037 Uni-Te	Bethpag ch		DATE:		BPOW4-1 7-11-03/7 Conti / Shickord J BLEMINGS	-/- 4	1-0	3	
ſ					l l			RIAL DESCRIPTION	I		PID/FI	D Ree	ding	(pi
	Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ	Borehole"	
		100	\angle					· · · · · · · · · · · · · · · · · · ·						Į
					1					· · · · ·				ł
			\langle]				┼─					ł
1	1055	110	\geq					Send (Trace gravel)		(from cottings)				
	0925		\angle								_			$\frac{1}{1}$
'			$\langle -$		-						┝			
			\sim		-									1
		120			1			Sond + Gravel		1/2" \$ sub round		ŀ		
			\square									Ŀ		
			\leq		4				<u> </u>			\vdash		-
					-								·····	
	1050	130	\square		4			Sand and Gravel		1 & sup round				
			\square]					from cuttings				
			<		4						-			
			\leftarrow								┢╌		-	-
	1445	140	\sim		-									
7					-		<u> </u>		+		-	-		
			\vdash		-				+		┢			_
	1515	150	$\left \right\rangle$		-			clayey Send + Gieve	1	1" & sub round		\uparrow		
	* Whe ** Inclu	n rock c	oring, ent nitor readi	er rock bi ng in 6 fo	rokeness. ot intervals	@ borehole.	Increase	e reading frequency if elevated reponse			ng A			(

PRO	JECT	NAME NUME COME	BER:	N4037 Uni-Tec	Bethpag		DATE:		BPOW 4-1 7-14-03 Conti / Shickori	A		
		RIG:	,	Faili	ng 15	00	DRILLER		J. Blening	<u>.</u>		
							RIAL DESCRIPTION			PID/FI	D Ree	ding
Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Herdness	Color	Material Classification	U S C S ·	Remarks	Sample	Sempler BZ	Borehole**
┝──	150											
		\square										
1540	160						Send + Gravel		1"\$ Subroord			
										<u> </u>		<u> </u>
								_			 	
										ļ		
	L					ļ				_		<u> </u>
1617	170						Some as above			ļ		
										<u> </u>	ļ	╞
		\square				· · ·		_		_	-	╞
	<u> </u>	\swarrow	ļ	4						-		┢
<u> </u>	<u> </u>		 	4						-		┝
164;	180							+			╀	┼─
 	 	\vdash		-						+	+	╀
 		\vdash	┼──	-						╈	┼──	╋
	+	\vdash		-					•	+	ŀ	╀─
110		\vdash		-						+	+	┼╴
1717	190			-			Same as above	+-		+	╋	╈
	+	\checkmark	<u> </u>	-		-		+		╈	+	┢
\vdash		\checkmark	1			1.				-		+
\vdash	+	1/	1	1		†			1	+-	\top	\uparrow
\vdash	200	\mathbf{k}	1	1	 	1		+-	1	1-	\uparrow	\uparrow
	n rock	coring, en	ter rock bi		1	<u> </u>	L		<u> </u>			
	narks:		ing in 6 fo	ot intervals	@ borehole.	Increas	e reading frequency if elevated repon	se read.	Drill Backgroun			

PRO	JECT		BER:	N4037 Uni-Teo	Bethpag		DATE:		BPOW 4-1 7-15-03					
		RIG:	ANT:		ny 150	<u> </u>	DRILLER:		J. Blenings					
		nia.		<u></u> T			IAL DESCRIPTION	T		PID/FI	D Bee	dina		
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ			
	200	\square					······································							
										ļ				
									-					
0430	210						(Trece grovel)		From cuttings					
							(Trace gravel)	<u> </u>	, ,	ļ	<u> </u>			
				1						 	L			
										<u> </u>	<u> </u>			
								ŀ		<u> </u>	L			
	220									ļ				
				1						 				
												 		
				4						\vdash		 		
	ļ							<u> </u>	F	+				
1005	230	<		4			Sandy Silt + Clay	-	from cuttings	+				
				-						┼─-	-	-		
		\vdash		-	 	<u> </u>				┢	+	┝		
	<u> </u>	$ \leftarrow$		4		 		+		+	+			
		\vdash		-						+	+	┢		
	240	\swarrow	 	4			Some as above	4		┼─	┢	╞─		
	+-	\vdash		-			• 			+	+	+		
	+	\vdash		-				+-	· · · · · · · · · · · · · · · · · · ·	+	┢	+		
┣───		\vdash	┨────	-				╉╌			+	\vdash		
107		\vdash	╂				S. I (True dad	+		┼╴	+	┢		
			er rock b	rokeness	1	<u> </u>	Vend (The clay)	1		1	1	<u> </u>		
* Whe ** Incl		coring, ent nitor readi			Ø borehole.	Increase	Sand (Trice c(ay) reading frequency if elevated reponse	read.	Drill Backgroun					

1	۱	ير)
•		

0

PRO	JECT	NAME NUME COMF	BER:	NWIRP N4037 Uni-Te	Bethpag	je	DATE:		BPOW 4-1 7-15-03 Contr 5612Ko	r A	
		RIG:			ing 15	20	DRILLER:				
							IAL DESCRIPTION		J Blening		D Rea
Sample No. and Type of RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Langth	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ
	250	\leq									
	260		·								
		\square		1							
		\vdash								 	
		\square							F 11		
1054	270					Bhek	Sand (Tirre Sitt/Clay) Some lignite		Froncuttings		
											-
		\square		4							
	280		ļ								
1123	290						Send (some clay)		Fron cuttings		
		[]				<u> </u>				1	
-		\vdash		-							
	300										
		coring, en					reading frequency if elevated reponse r		Drilli		\ror

र के ौ

PRO. DRIL	JECT LING	NAME NUME COMF RIG:	BER:	NWIRP N4037 Uni-Tec Feil	rig 15	60	IL DESCRIF	DATE: GEOLOGIS DRILLER:		BPOW 4-1 7-15-03 Conti ShickorA J-Blenings PID/FID Reading (p					
Sample No. and Type or RQD	e and (Ft.) 6" or RQD Recovery pe or or (%) /		Lithology Change (Depth/FL) or Screened Interval	V Soil Density/ Consistency or Rock Hardness	Color	Material Cla		U S C S	Remarks	Sample	Sampler BZ	Borehoie**	Driller BZ**		
	300	\langle												┝	
		\square								· · · · · · · · · · · · · · · · · · ·				F	
1151	310						Sand (so	me clay)		Fron ettings				c	
		\geq													
		\angle												F	
	320	\mathbb{Z}													
		\square						, , , , , , , , , , , , , , , , , , ,							
		\langle												┢	
1320	33D	\geq					Some as	above		Fron cuttings				2	
		\square												╞	
										· · · · · · · · · · · · · · · · · · ·				┢	
	34D	$\left \right\rangle$												-	
]										F	
191		\mathbb{Z}					<u>ر</u>							<u>+</u> -	
• Whei •• Inclu	350 n rock c ide mor arks:	oring, entention readi	-	ot intervals (Ø borehole.		Same 25 reading frequency if		read.	Fron cottings Drilli Background				0	

.

RO	JECT LING	NAME NUME COMF RIG:	BER:	N4037 Uni-Teo	Bethpag ch		110161	OGIST:	BPOW 4-1 7-15-03 Centi ShickorA J. Blemings					
ample o. and ype or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Ň	ATE	Naterial Classification	U S C S ·			D Reed	Borehole .	(pp	
	350													
	2/0	\leq											╞	
	360	\leq					· · · · · · · · · · · · · · · · · · ·		· · ·					
		\geq											Ī	
123	370	\leq					Sand (Trace Silt)	(clai)	From cuttings					
		\leq											╎	
	380	$\overline{/}$											╞	
		\geq												
455	<u> 390</u>	\leq					Some às above		From cuttings					
	 	\geq		-								· 		
	400													
' Inclu		itor readi	er rock bro ng in 6 foc		Ø borehole.	increase	reading frequency if elevated rep	onse read.	Drillin Background				0	

•

.....

•

PRO	JECT	NAME NUME COMF	BER:	NWIRP N4037 Uni-Te	Bethpag	e	BORING DATE: GEOLOG	BORING No.: BPO DATE: 7-7 GEOLOGIST: Cont						
		RIG:			ing 150	0	DRILLER		J Blemings					
							RIAL DESCRIPTION	-			D Res	×		
Sample No. and Type of RQD		Biows / 6" ar RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ			
	40 0	\angle					······································					ļ		
		\leq										ļ		
		\leq								ļ		ļ		
												l		
1521	410						Same as above		From cuttings			ļ		
									,					
	420	\square										I		
		\square										ĺ		
				1								ĺ		
				1							ŀ	I		
				1								ľ		
1605	430		·····	1			Sondy clay		From cuttings	1		l		
1000		\sim		1			(Trace silf)					I		
		\sim						1				1		
				1			· · · · · · · · · · · · · · · · · · ·							
	1			1				1						
	440	\sim								1		İ		
	1970	\sim		1						\square		1		
		\sim						+		1-	$\left \right $	1		
		\sim		1		•		+		+	┢	-		
		\swarrow		1				+		+	╆──			
1/40	45 0	\checkmark		1			S	+		┼─	┢	1		
		oring, ente	er rock bro	okeness.	L		Some as above	1	l	1	<u> </u>	j		
** Inclu		nitor readir			borehole.	ncrease	reading frequency if elevated reponse	e read.	Drilli Background					

PRC	JECT	NAME	BER:	NWIRP N4037 Uni-Te	Bethpag			DA	TE: OLOGIS		BPOW 4 7- Contir	15.03					
	LLING			Fail		00			ILLER:		Ji RIEMIAS						
							RIAL DES	CRIPTION	1				PID/FID Reading (p				
Sampi No. an Type c RQD	d (FL) r or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Mater	ial Classifica	tion	บ ร เ ร เ ร เ	Re	marks	Sample	Sampler BZ	Borehole**		
┢	450				· ·										1		
		\square															
		\square										_					
	460								-								
												- <u>-</u>					
			<u> </u>			[<u></u>						<u> </u>			
	ļ		 		ļ								_	-			
		<						/ Trace	S(H)		F						
094	0470	$\langle -$					Send	(Trace cm) C dnj L	Tay 1 isnite)		trom.	cuttings	┿	-			
		$\left \right\rangle$						<u> </u>	<u>J </u>			<u></u>	+		-		
-	+	$ \sim$	<u> </u>	4				<u> </u>	<u>.</u>				+				
				1				<u></u>	<u>_ · =</u>				+				
	480		†	1				<u></u>									
			ļ			ļ						· · · · · ·	1				
		$ \mid $		-			<u> </u>						_	 			
100	1490		<u> </u>	1		<u> </u>	Same	25 250	ouc	<u> </u>	tron	esthings	-	+	·		
-	+	\vdash	<u> </u>	1						\vdash			+	+	\vdash		
	+	\checkmark		1	 	\vdash	<u> </u>						┼╌	╋			
	+	\checkmark	1	1		+				\vdash			+	+			
	500	\mathbf{k}	1	1	 		<u> </u>			1		<u> </u>	+	+	\vdash		
•• Ind Rei	en rock o lude mo narks:	coring, ent nitor readi			borehole.	Increase	e reading frequ	ency if elevat			 	Drilli Background					

.

	Ł	Tetra	Tech M	NUS, Inc	•	BC	DRI	NG L	<u>_OG</u>	Ì			Pag	je _[4	of <u> </u>	<u>4</u>
Pro Dril	JECT LING	NAME NUME COMF RIG:	BER:	N4037 Uni-Tee	ing 15	00		• • •	G D	EOLOGIS RILLER:	o.: ST:	BPOW 4 - 1 7-76-0 Conti T Ble	ILK	<u>o ri</u> 155	4		
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soll Density/ Consistency or Rock Hardness	Color		DESCF Material (U S C S *	Remarks		PID/FI ejdwes	Sampler BZ	Borahola*	Driller BZ**
-	500						5e.	me 2	252	bove_		From cutt	1-95				0
1038	510	\square					52.	<u>~d (</u>	r2ce 2 A 2 C	silt)							
	520																
1103	530						5,	MC 25	- 26	ove		Fron (Jth.	• <u>y</u> \$				<u> </u>
	540								•								
* Whe		oring, entr						sne z				Fron Cotto	•				0
Rem	arks:	to We	-	Yes	borehole.	Increase	e readir	ng frequenc	y if eleva	Well I.		Васкді ВРОш 4 ~					<u>></u>

.

•

. .

122

PF DF	ROJ	ECT ING	NAME NUME COMF RIG:	BER:	N4037 Uni-Te	Bethpag ch ०५ <i>।ऽ०</i>			BORING N DATE: GEOLOGIS DRILLER:	o.: ST:	BPOW 4-1 7-16-03 Gonti Shickon J. Blearing	r <u>A</u> 5		
No. Тур	npie and e or 2D	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	N Soli Density/ Consistency or Rock Hardness		NAL DESCRIP	· · · · · · · · · · · · · · · · · · ·	U S C S *	Remarks	ejdweg	ZB Jejdwes	Borehole**
		550	\leq					•						
			\square		4									
-		560		· ·					· · · · · · · ·					
			\square							 				
-														
]			C Tra	ce Fine isuel +liante		From cothings			
13	34	570				· · · · ·		Sand (G	Iovel + lignite		Hon C-Mays			
F			\triangleleft					•						
		580												
					-		<u> </u>			+		-		
14	102	590						Sand (TR	e clay and		From cuttings			
╞					-							$\frac{1}{1}$	+	
							1							
-		600		-						+				
••	Inclu	n rock (coring, en nitor read			@ borehole.	Increas	e reading frequency if	elevated reponse	read.	Drilli Background			
C	200	vorto	d to W	<u></u>	Yes	V		No	Well I	D #	: BPDW 4 - 1			

	1	ລ	З
		×	<u> </u>

PRO DRIL	JECT LING		BER:	N4037 Uni-Teo			DATE: GEOLOGI	ST:	BPOW 4 - 1 7-16-03 Conti- 561cK	<u>s r 4</u>	2	_
DRIL	LING	RIG:		+2111	ng 150		DRILLER:		J. Bleni			-
Sample No. and Type or RQD		Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval		Color	IAL DESCRIPTION	U S C S *	Remarks	PID/FI		I
	600	\geq										
		\nearrow]								
		\nearrow										
1433	610	\nearrow		2			Sand (Trace clay and Lignite)	From cuttings			
								<u> </u>				ļ
												ļ
	620	\leq		l								
							····	<u>_</u>				ļ
		\leq					· · · ·	<u> </u>		L		ļ
			· .	ļ			•	<u> </u>				ł
								+	D			ļ
1508	630		<u> </u>	1			Sand (Trace Clay)	+	From cuttings			ļ
		<						+-				ł
<u> </u>	<u> </u>	<	·	1					Losing Mud To Formation			ł
		<		-	<u> </u>			╋	2+ 2 635 Bes			ł
	(\vdash	1	4			Medium to Course grain Send & Fine Gravel	4_			-	ł
	64 D	$\langle -$		4		 	Din't Fine Grive	+				ł
		\vdash		-				+	To formation		┢╌	ł
	<u> </u>	\vdash		1	<u> </u>			+	16 tormation		╞	ł
	<u> · </u>	\vdash		-		┼──			+	┼─-	┢╌	
1710	650	>	 	1			Sind + Frie Grovel	┼─	<u></u>	┢	\vdash	
* Whe	n rock c	-	er rock bri				reading frequency if elevated reponse	read	Drillin	na A	rea	للہ د

PRC	JECT	" NAME " NUME 1 COMF	BER:	N4037 Uni-Te	P Bethpag		DATE:		BPOW 4 - 1 7-17-03 Conti Shicka	5rA		
DRI	LING	RIG:		Fail			DRILLER		J Blemin	كوا		
Sample No. and Type o RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL or Screened Interval) Soil Density/ Consistency or Rock		RIAL DESCRIPTION	U S C S +	Remarks	Sample	Sampler BZ	
					Hardness							
	650			652						_		
									`			L
							-					L
						Ι	Melia to contra spi					
200	2660	\sim			· · · · ·		Medium to course give Sand (Trace Silt and Clay)	Fron cuttings			Γ
0.000		\checkmark					(time gravel/		The connegs	<u> </u>		t
 	+	\leftarrow								+		ł
<u> </u>		\leftarrow	 				······································				╂──	ł
	<u> </u>	\swarrow			L					┢		ł
		\square								_	┢	ļ
092	670						Same às above		Fron cottings		·	
									,		· ·	
			1	1								Ī
		\checkmark		1 []						1	\uparrow	t
<u> </u>	+	\leftarrow						-		+	┢	t
┝—	-	\vdash									┢	ł
	680	\leftarrow	───							+	+	ł
	_	<									-	
	<u> </u>	\swarrow				ļ					-	4
			ļ			<u> </u>				<u> </u>		
100	5 690		1	1/1			Same as above		From estfrags			
	T			1 -			· ·			Τ	Τ	
		17		42				+		1		1
	1	1>	1		·	+			1	+	+	
	+	\checkmark	+	4						+	╂─	_
-		\leftarrow								╋	+	-
	700			EOB			Some as above					-
** Inc					Ø borehole.	Increase	e reading frequency if elevated repons	e read.	Drilli Background			
Cor	verte	d to We	ell:	Yes		-	No Well	.D. #	: BPOW 4-1			-

l	2	5

	PRO.	JECT	NAME NUME	BER:	NWIRP N4037 Uni-Teo	Bethpag	je		BORING N DATE: GEOLOGI		BPOW4 - 2 6/4/03 → Conti			
	DRIL					NG 19	500	 >	DRILLER:		J. BLEMINGS			-
					1 1 1 1 1 1			RIAL DESCRIF				PID/FI	D Bee	
	Sample No, and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Cla		U	Remarks	Sample	Sampler BZ	
	1130	0				DENSE	BRN	SAND AND	S GRAVEL		LOGGED FROM			ſ
											WITINGS			ſ
	0900										IN BETWEEN SAMPLES			ſ
										T	RODS" CHATTERINK	"		Ī
5		10									FROM O'TO			Ī
											RESTATE NEW			ľ
										\square	LOCATION-2 I'WEST-			ľ
											0-20 = 15 MIN. NO OBSTRUCTION	5		ſ
						<u> </u>					GOOD RETURN OF DRILL CUTTINGS.	Ĩ		ľ
	0915	20				MENGE	E2N	SAND - SC	ME GPNE	Isw				ľ
	2				· ·						MIX MORE MUD			ſ
						<u> </u>								ſ
	<u> </u>		\sim											ſ
					1									Ī
	1030	30			1									ſ
				1	1									
					1					Τ			·	
			\square		1									
			\square		1									
	1100	40	\square		1			SAND ANI	S GRAVEL		(FROM CUTTINGS)			
•			\square											
			\square											
			\square	1	•		·							
		·	\square	1	1									1
	1120	50	\square		1									
	* Wher	n rock c	oring, ent	er rock br	okeness.			e reading frequency i			Drillin		rea	

•.

131	

.

.

		NAME			Bethpag	jè		BORING No DATE:).:	BPOW4-2	~			
RO	JECT	NUME	BER:	N4037	<u> </u>			GEOLOGIS	T۰	6-5-03 / 6-1	7-	03		
			ANT:	Uni-Teo				DRILLER:						
RIL	LING	RIG:		FAILI	NG 150					JBLEMINGS			_	
					N	IATEF	RIAL DESCRIPTION	NC			PID/FI	D Rea	ding ((pp
ample o. and ype or RQD	Depth (Ft.) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classifi	ication	U S C S +	Remarks	Sample	Sempler BZ	Borehole**	
	50													Ļ
2-1	52	10/6"	.5% 5		DENSE	YELL	sand and (SPAVEL	SW	WET	0			k
20		\sim		1						SUBROUND				T
									ú	1" GRAVEL.				┢
										WASH PORTON				
				1			<u></u>			of sample.				Γ
0	60									•				ţ
~~~	00	$\frown$												t
				4							$\square$			t
				4						· · · · ·	-			ł
				-										ł
														1
20	70	$\square$					SAND AND G	PAVEL		LESS GRAVEL				
		$\sim$								= 70' TO 80'				T
		$\leftarrow$		1		<u> </u>					$\square$		·	t
				4							┢			t
•		/ ,	<u> </u>	4										╀
														1
aa	80	$\square$						1						
	00	$\sim$		1	0=0=	700	Current The	CALIN	~~		T			t
				4	DENSE	UNC N	SILTY F/M	DIAAC	SP				-	╉
		$\angle$		4		ļ					-		ļ	ł
		$\square$		]							1			
		$\leftarrow$		1							+			1
<u>330</u>	90			4	<b></b>	1			_		+	┼──		┥
							•				<u> </u>	<b> </b>		_
												1		
			1	1		1					Γ		Γ	1
		$\vdash$	<u> </u>	-								+-	┢──	┥
			<b> </b>	-		<u> </u>				<u> </u>	┼─			-
400	100									<u> </u>				_
		oring, ent			• • • • • • • • • •	leases	reading frequency if ele	unted recent		Drilli	no 4	rea		
							D reading frequency if ele							ζ
			<u>, , , , , , , , , , , , , , , , , , , </u>	5- 58			D' ON 6/17/0	B - AT	2 1	A LOCATION .	11° F	,.	L	-

and Alson A

PRO DRIL	JECT LING	NAME NUME COMF	BER:	N4037 Uni-Te	Bethpag			BORING I DATE: GEOLOGI DRILLER:	IST:	BPOW4 - 2 6 5 0 3 / 6 17 1 Conti J BLEMINGS	203	<i> 6</i>	ß
			1	FAILI			RIAL DESCRIP		-				
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	•	Color			U S C S ·	Remarks	Sample	Sampler BZ	and
	.00				DENSE	BRN	SILTY F/M	SAND	Sm				
							·····		1	· · · · · · · · · · · · · · · · · · ·			
		$\sim$	· ·						+	· · · ·			
1130	110		· ·						+	10"0 SET @ 110			_
110-	<u></u>									AND GROUTED			
										TO MOVE 10'N. NUETO LEAKAGE			
										AROUND CAS. SET ZND CAS TO			
									$\uparrow$	100'ON 6/17/03.			
1230	120								1				
1630	120									· ·			
		$\sim$											
		$\sim$											
	130												
		$\square$	1										
			1										
				1									
		$\square$		1			<u> </u>	·					
	140	$\checkmark$		1			<u> </u>		1				
				1								Π	
			<u> </u>	1					1				
		$\square$		1								Π	
		$\sim$	1	1					1				
1415	150	$\square$	1	1						· · · · · · · · · · · · · · · · · · ·			
* Wher ** Inclu	i rock c de mor	oring, ente hitor readir	ng in 6 foo	t intervals			reading frequency if e	evated reponse	read.	Drillir Background			

PRO DRIL	JECT LING		BER:	N4037 Uni-Te				ST:	BPOW4-2 GII9103 Conti J BLEMINGS			. •
DRIL	LING	RIG:		FAIL	ING 15				J DLEMINGS	DID/F	D Das	ding (p
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval		Color	RIAL DESCRIPTION	U S C S ·	Remarks	Sample		Borehole**
< <u>-</u> 2	150	100	·5/.5		DENSE	BRN	SAND-SOME GRAVEL	ko	1116-	0		
5-2	152	16	/.5	1	DENSE		TTE WHITE CLAY	7		+	$\vdash$	
1440		$\leftarrow$						+	· · · · · ·	+		
		<		-						+	-	
						ļ		+			<b> </b>	
1500	160				L			┿		-		
											<b> </b>	
						<u> </u>					<b>_</b>	
		$\square$										
152	170			1		1						
		$\sim$		1								
	1	$\sim$		1		1						
		$\checkmark$	1	1		1						
	+	$\checkmark$		<b>1</b> .							$\top$	
154	100	$\checkmark$	1	1		-		+		+	+	
1570	180	$\leftarrow$	┼───	4				+			$\uparrow$	†
		$\leftarrow$	┨────	-		+		+-		+		$\vdash$
		$\vdash$		-				+	<u> </u>	+-	+	+
		$\vdash$	┟───	-	ļ			+-		+	+	+
		$\vdash$	┨───	-				_		+	+	
Ka	<u>190</u>		, <b></b>	4						+	+	
	<u> </u>	$\swarrow$	<b></b>	_		<b>_</b>	•	+-	· ·		+	1
	<u> </u>	$\mid$	<u> </u>	_				-+		+	+	-
		$\square$				<u> </u>			·			
			<u> </u>									<b>_</b>
162	200											
** Inc	en rock lude mo n <b>arks</b>		ing in 6 fo	ot intervals	@ borehole.		e reading frequency if elevated repons	e read	Dril Backgrour	lling / nd (p		

1	3	4

						Bethpag		DRING LC		lo.:	BPOW4 - 2		<u></u>		
	DRIL	JECT			N4037 Uni-Teo	ch	<u> </u>		GEOLOGI	ST:	$\frac{6 19 03 \rightarrow 6}{\text{Conti}}$	120	210	3	
	DRIL					NG 150	00		DRILLER:		J. BLEMINGS				-
		- 1					_	RIAL DESCRIP	TION			PID/FI	D Ree	ding (p	ю
	Sample No. and Type or RQD		_Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistency or Rock Hardness	Color	Material Clas	sification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller B2**
			~									-			c
	┠──┤				1										-
	┠──┤				1						·				-
					4			······································			· · · · · · · · · · · · · · · · · · ·		-		
	3-3		52	2/2	4										
·	e Ko40		28 28 32	12		VELSE	BEN TO	F/M SAND-	TRCLAY	SP	WET	0			C
1					1		GRAY	SEAM ~	2111						
					1										-
	1700	220									HT SOME CLAY				P
															~
	┝╌╌┥							<u> </u>							
								<u> </u>				-			
	<b> +</b>				ł '										
6/19	1730	220	$\sim$		1						REACHED 230				0
6/20		-20									NOTICED \$ 230				2
920	┠──┤				{						IN CUTIINGS.				
	┠───┤														-
	┠──┥				{										
					1				<u></u>	┢					-
	୧୯୩୦୦	240			{						(				c
	┠──┤				{					-	· · · · · · · · · · · · · · · · · · ·	-			1
	┠──┤		$\langle - \rangle$		{.					╂──	[	┝			
	┠──┤		$\langle - \rangle$		{	·				┣			┝		
					-										
	୦୩.3୦ When		oring, ente	er rock br	okeness.								L		-
		de mon	-			Dorehole.		reading frequency if e	elevated reponse	read.	Drillir Background				5
	Conv	erted	to We		Yes	V		No	Well I.(	D. #:	BPOW4-	1			-
								13	5						

	-
١	2.5
٠.	

PRO	JECT LING	NAME NUME COMF RIG:	BER:	N4037 Uni-Teo	I DAN	500		DESCRIPT	DATE: GEOLOGIS DRILLER:	ST:	BPOW4-2 G120103 Conti J BLEMINGS	PID/FI	D Ree	ding (	ppm)
iample io. and ype on RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval				Material Class		U S C S •	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
-4 a	<u>800</u>	28	1.5/2.0		DENSE	MOTTL	D SIC	TY FIM	SAND	SM	WET/ MICACEOUS	0			0
945		24				BRN		SOME	SAND CLAY IN "PORTION PLE.			·			
		$\mathbf{r}$		1				OFSAM	PLE.			Τ			
_		$\sim$		1						1		T			
	240	$\sim$		1						1		$\top$			0
		$\checkmark$		1						1		T			Γ
		$\checkmark$								$\top$		+			
		$\vdash$		1					- <u></u> , <u>i</u> <u>i</u> <u>i</u> <u>i</u>			+			┢╴
		$\leftarrow$		1	<u> </u>	<u> </u>				$\uparrow$	· · · · · · · · · · · · · · · · · · ·	+	<u> </u>		┢─
		$\leftarrow$						<u></u>	<u></u>			╉─	┢╌	-	
	270	$\leftarrow$			<b></b>	╂───				{	1	+	┼─	-	0
		$\leftarrow$		-					. <u> </u>	┼──		+	+	╞─	┢──
		< >		4		+								-	┢──
		$\vdash$		-	<u> </u>		<u> </u>			+		+	+	-	┢
		$\leftarrow$		$\frac{1}{2}$		<u> </u>						+-			┢
	<del>X</del> 0	$\leftarrow$	<b>_</b>	4						+		+	┼╌	┝	<u>10</u>
				4		<u> </u>	ļ	<u> </u>			· · · · · · · · · · · · · · · · · · ·		┢	╂—	╂─
		<	<b> </b>	4			<b> </b>	<u></u>	<u></u>				╂		╀╴
	<b> </b>	$\mid$	ļ	4		<b> </b>	<u> </u>				·		+-	┡	╀╴
	L	$\swarrow$	ļ	4		<b>_</b>		<u></u>		<u> </u>	<u> </u>				╂
	20			4			L		<u></u>	+		+	$\downarrow$	-	þ
		$\mid$		1		1	<u> </u>			1	<u> </u>	4	+	1	_
		$\swarrow$								<u> </u>	ļ	$\perp$	_	<b>_</b>	_
										<u> </u>					╞
	kon														0
** Incli	n rock d		ng in 6 fo	ot intervals	@ borehole.			g frequency if e	levated reponse	read.	Drill Backgroun	ing / d (p	Area pm)	1 : [ _ (	5

ر الجمعار

1.

١	36	

PF	OJEC1 OJEC1 IILLING		BER:	NWIRP N4037 Uni-Te	Bethpag	je					BPOW4-2 6/20/03 Conti			
DF	ILLING	a RIG:		FAILI	NG 150	20			DRILLER	:	J BLEMINGS			
Sam No. : Typi RC	ind (FL) or or D Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval		Color	RIAL DE	SCRIPT		U S C S	Remarks		Sampler BZ	Borehole**
	300						· · · · · · · · · · · · · · · · · · ·	-						
114	3 31D 5 311	109	^{.4} /.5		VENSE	Geay				€ <del>P</del>	WET	0		
.3								GRA						
12	0 320													
12:	30330										DRILLER NOTED POSIBLE LLAY.			
									<u> </u>					
13	00340													
E														
-														

V

No ____

Well I.D. #: BPOW 4-2

PRO	JECT	NAME NUME COMF	BER:	NWIRP N4037 Uni-Teo	Bethpaç	je			BPOW4-2 6/23/03 Conti	
		RIG:			NG 15	00	DRILLE	R:	J BLENINGS	
<b></b>							IAL DESCRIPTION			PID/FI
Sample No. and Type or RQD	or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample
5-6	350	50 50	VI		VSTIFF	BRN	SILTY CLAY	- C.		to
5-6		50	1	4	HAPD	GRAY	SILLY CLAT		NERY HARD- WAS DIFFICULT	╞
1345	<b> </b>	$\leftarrow$		ł		<u> </u>			TO PRY LOOSE FROM SPOON	╀╴
	<u> </u>		ļ			<u> </u>			FROM SPOON	┢╌
				4						+
_	360		ļ	4		<u> </u>	·			┢
		$\angle$		1		<u> </u>				-
						L				
			1							
1400	370	$\square$	1	]						
		$\square$		1						
				1						
<u> </u>	$\mathbf{T}$	$\sim$		1	<b></b>					
			<u> </u>	1						
142	3%0	$\left  \right\rangle$	1	1						1
F	1.580			1						T
	†	17	┼──-	1						$\top$
⊢		17	1	1		+				ϯ╴
	+-	$\leftarrow$	┼───	1		+-				+
		$\checkmark$		1		+-				+
150	390	$\leftarrow$		-						┿
<u> </u>	<b> </b>	$\vdash$		-	<u> </u>	┼──			· · · · · · · · · · · · · · · · · · ·	+
<b> </b>		$\vdash$	┨	4		<u>+</u>				+
<u> </u>		$\vdash$		4		╂			. <u> </u>	+
L		$\mid$	<b>_</b>	4	ļ	<u> </u>				+
	400									
			ter rock bi		a borehole.	Increas	reading frequency if elevated repo	nse read	. Drill	ina

•

138
-----

	pro. Dril	JECT LING	NAME NUME COMF RIG:	BER:	N4037 Uni-Teo	Bethpag h			DATE: GEOLOGIS DRILLER:		6123103 Conti J BLEMINGS			
	Sample No. and Type or RQD		Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	N Soll Density/ Consistency or Rock Hardness	Color	RIAL DESCRIF Material Cla		U S C S	Remarks	Sample	ы	ding (p *eloqe Borehole
23103	5-7	410	8	•9/1		V DENSE /STIFF	SRAY	SANDY CLA	Y- STREAKS	5	MOIST	0		
	1600	420						STIL IN S	SOME CILY		(CUTTINISS)			
10N 123 124	1630	430												
UE.					-									
	<u>6900</u>	440			-									
	* Whe	45 en rock ude mo	corina, en	ter rock b	rokeness.	Ø borehole.	Increas	e reading frequency	if elevated reponse	read		Drilling		
		narks verte	:	ell:	Yes			No	Well I.	.D. #	Backgr			):[_S

.

PRO	JECT	NAME NUME COMF	BER:	NWIRP N4037 Uni-Teo	Bethpag	je		η¢.	BORING DATE: GEOLO		BPOW 4 - 2 6124103 Conti			
DRIL	LING	RIG:		FAILI	36 150	20			DRILLE	२:	J BLEMINGS			
					N	IATE	RIAL DE	SCRIP	TION			PID/F	ID Rei	ding
Sample No. and Type or RQD	(FL) or Run No.	Biows / 6" or RQD (%)	/ Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Ma	erial Cla	ssification	U S C S	Remarks	Sample	Sampler BZ	Borehole.*
క్రాకి		100/6	·²/,5		DENSE	GRAY	SILTY	F/M	SAND	SM.	WET	0		Ī
0320		/			Durec					54	MICACEOUS	$\uparrow$	$\square$	t
												$\top$		
														T
0945	460								<u></u>				T	
								<u> </u>						T
								<u> </u>					Γ	Γ
		$\square$												Γ
		$\square$		1						Π.				I
1000	470	$\square$		1										Ī
		$\square$												Ī
		$\square$		1										Γ
														Γ
1030	450													
		$\square$												
-	ļ	$\angle$	ļ		ļ		- — <u></u>			$\square$				Ļ
						<b> </b>		<u> </u>	<u></u>				<u> </u>	
100	490	$\swarrow$		ł									-	
		<											╞	╞
	<u> </u>	<	<b> </b>	ļ	ļ	<u> </u>			, . <u></u>				–	╞
	<b> </b>	$ \prec$	<b> </b>						·					╞
		$ \prec$		4									–	╀
<u> </u>	500	oring, ente									l			

		140

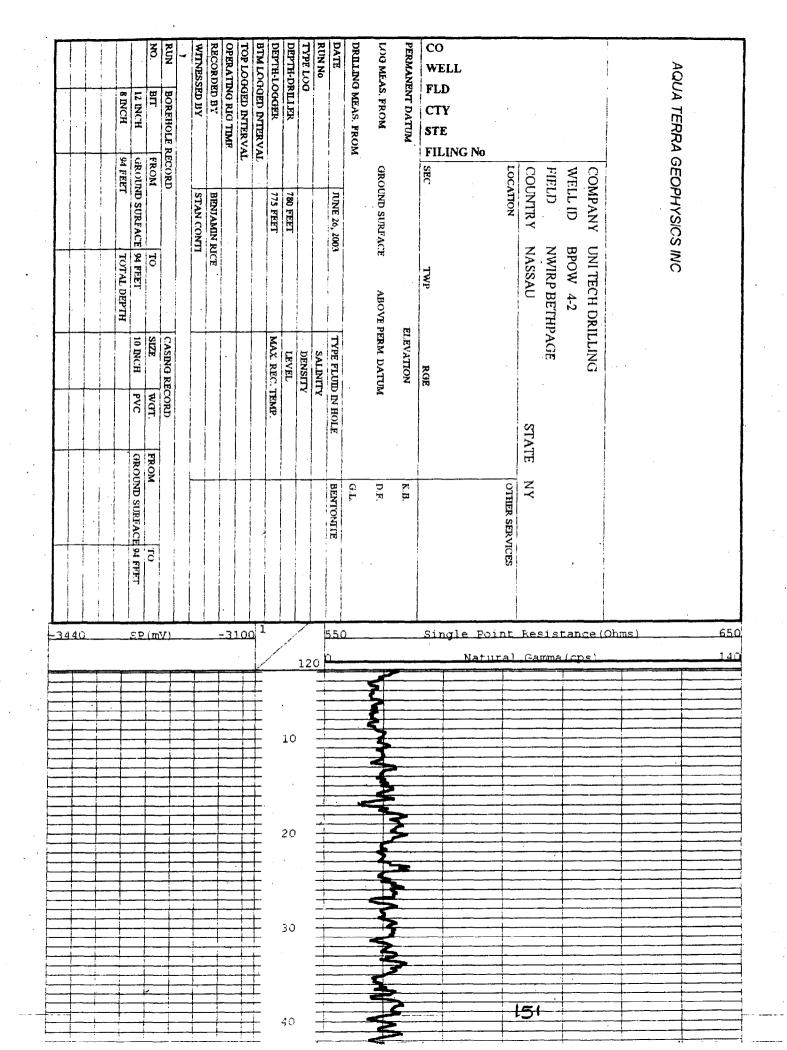
•

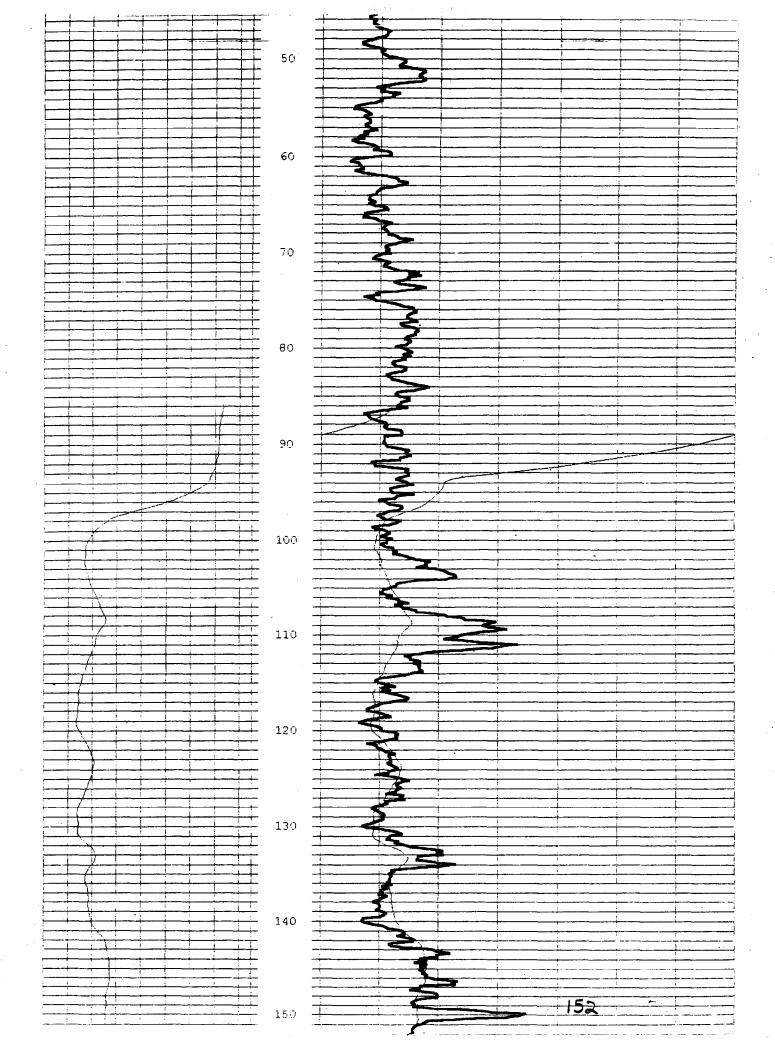
•

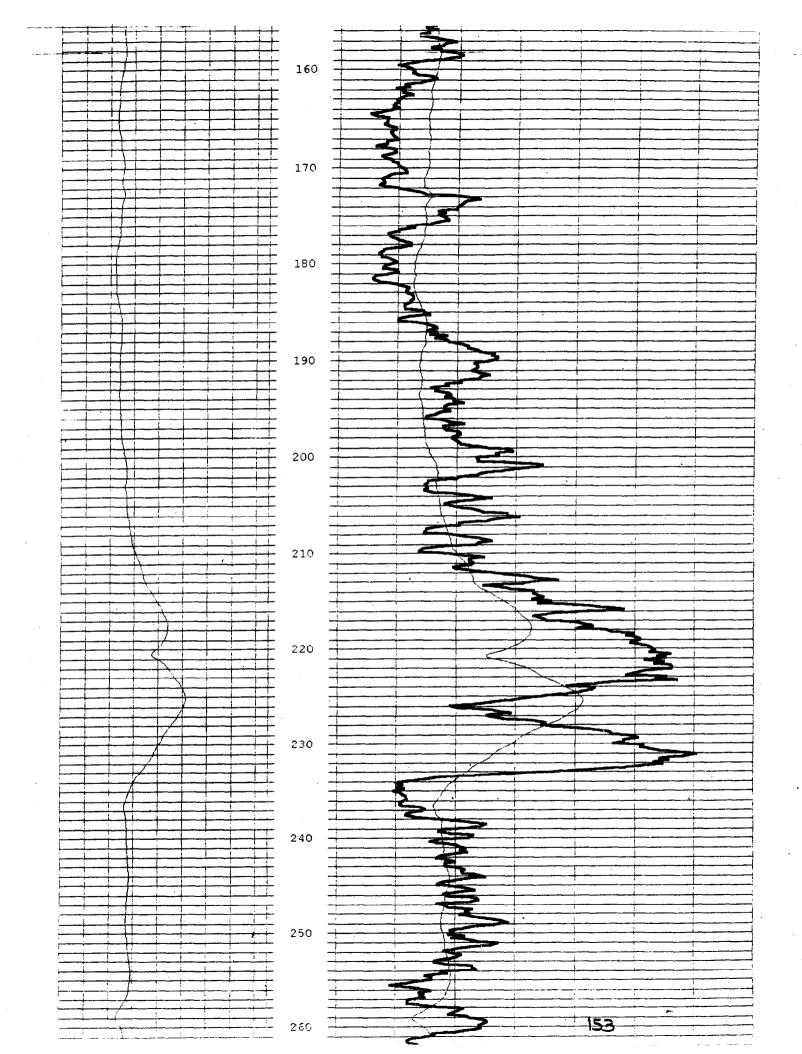
PRO	JECT	NAME NUME COME	BER:	NWIRP N4037 Uni-Teo	Bethpag	je	·	BORING N DATE: GEOLOGIS	io.: ST:	BPOW 4- 2 6/24/03 Conti				
		RIG:			NG 15	00		DRILLER:		J BLEMINGS				
_							RIAL DESCRIF	PTION			PID/FI	D Rea	ding	(PP
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Cla	ssification	U S C S	Remarks	Sample	Samp <del>la</del> r BZ	Borehole**	
														l
				1										f
				1			. <u></u>							t
				1				<u></u>						t
s-9 @	510	10/6			V DENGE	Gar	F/U SANI	S-TRF	SP	WET	0			t
130	511						TP BIACK	STREAKS		MICACEOUS				Ť
			••				(LIGN	<u>S(FCR03</u> ITTE)?						t
								<u>.</u>			+			t
										······································				t
200	520	$\sim$								- <u></u>	1			t
	000	$\sim$								· · · ·				Ť
													_	t
				1		·	·····							t
				1										t
230	530			1							ŀ			1
		$\square$												T
				1										t
														t
				1										T
245	540			1										T
				1			•							T
				1										t
		>		1			·							t
				1										T
300	550	$\nearrow$		Ì										Ţ
When Inclue	rock co	oring, ente			borehole. I	ncrease	reading frequency if	elevated reponse r	ead.	Dri Backgrou	illing A nd (pp			

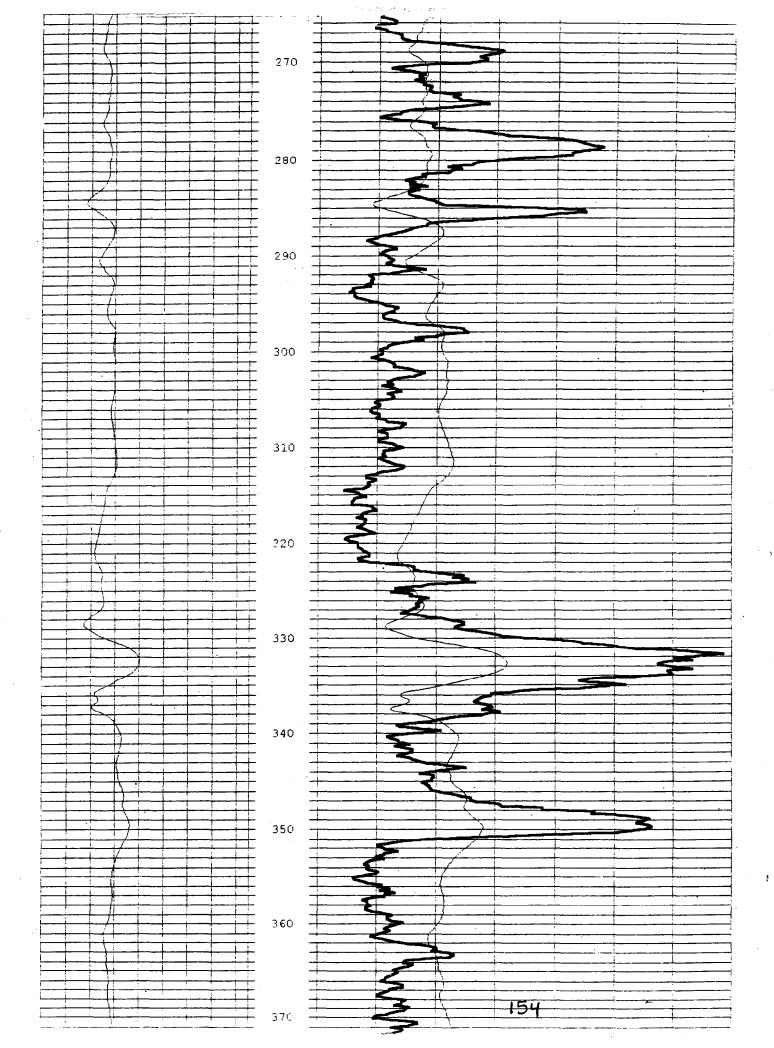
PRC DRI	JECT		BER:	N4037 Uni-Teo	Bethpag		Boring Date: Geolog Driller	SIST:	BPOW4-2 G124103 Conti J BLEMINGS	=			
DRI	LING	HIG:		FAILI	NG 150			·• .	J BLEMINGS	PID/FI	D Ree	dina	(0.0.1
Sampi No. an Type c RQD	d (FL) r or Run No.	Blows / 6* or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ	Borehole"	Ī
5-10	550 651	KOT "	\$1.5		DENSE	GRAY	F/M SAND	sp	WET	0			5
133	2	$\square$		]					MICACEOUS				İ
				1									
	1	$\checkmark$		1									T
-	560							-					6
	1560	$\vdash$	┼───		<b> </b>					+-		<b>†</b> —	f
<u> </u>		< >					······································					┢──	╈
		$\leftarrow$								-+	┢─	-	╉
<b> </b>	<u> </u>			4					[		┢		╀
	<u> </u>		<b></b>			<b> </b>				_	-		╇
	570	$\swarrow$			· .	<u> </u>						<u> </u>	Ł
					[			<u> </u>	·				1
							•		1				
		$\square$		1									
143	550			1									
	1												Τ
	1		1.	1							Γ		T
<b> </b>	+	1/	1	1		1	<u></u>	1		1		1	T
	+	17	1	1		1	<u></u>	-	· · · · · · · · · · · · · · · · · · ·		$\uparrow$	$\uparrow$	╈
$\vdash$			1	1	<b></b>	+			1		+	┢	k
150	590 0	<u>"</u> /~		4				+-			╉╼╸	┼─	╀
$\vdash$	+	$\leftarrow$	+	-		╂──		-+-			╋	╋	+
-	+	$\vdash$	<u>↓</u>	-		╂──			····-	-		╋	+
	-	$\vdash$	╆──	-					· · · · · · · · · · · · · · · · · · ·		+		+
L		$\downarrow$	<u>}</u>	4				_			+	-	-
	kac	$1 \sim$	1	1	1	1			ł	1	1	1	

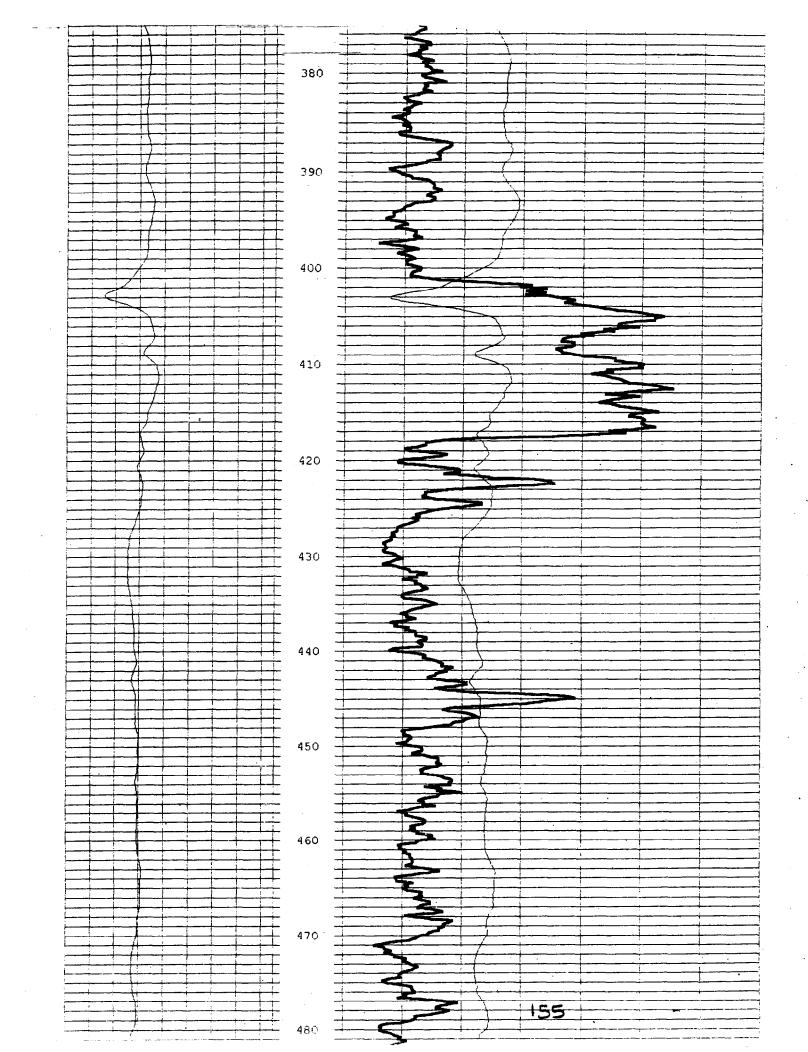
PRO	JECT	NAME NUME	BER:	NWIRP N4037 Uni-Teo	Bethpag	je		BORING N DATE: GEOLOGI	lo.: ST:	BPOW4 - 2 6124103 Conti			
		RIG:			NG 15	00		DRILLER:		J BLEMINGS			<u> </u>
							RIAL DESCRIP		T		PID/F	D Rei	•0
Sample No. and Type or RQD	(FL)	Blows / 6° or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Clas		U S C S ·	Remarks	Sample	Sampler BZ	
1580	600										+	┼──	ł
		$\langle -$									+	╂──	ł
											┥	_	ł
		$\angle$							ļ			<b> </b>	ļ
		$\angle$							·		_	ļ	ļ
Sel	610	top								·		<u> </u>	ļ
1550	611	کل ک	*5/.5		DENSE	GPAY	FIM SAND-	SOME	SV.	WET > MOIST		ļ.	ļ
							F/M SAND- TAN SANDY ( 2" OF SPOD	N	·5M				ļ
										·			ļ
													ļ
	620	$\square$											ł
													I
				1									I
													I
			<b></b>	1							Τ		I
	630											Γ	Ī
		$\sim$	<u> </u>	1		İ					1.	Ī	Ī
		$\sim$		1		[						Ī	1
		$\sim$	<u> </u>	1		<u> </u>		<u> </u>	1		1		1
		K	†	1	<u> </u>		······		1		1-	1	1
<u> </u>	640	$\checkmark$	†	1	<u>├</u>	†		<u> </u>	1		1	1	
	040	$\sim$				<b> </b>	·		$\uparrow$		1		-
┣──		$\vdash$	┼───	1	<u> </u>	<u>├</u> ───			+-		+	$\uparrow$	-
		$\vdash$	<b></b> :		}				1-			1	
┣		K->	┼───	1					+	<b>-</b>		+	-
		< >	┼───	1	<b> </b>				+-		+	+	-
• Whe	65C		er rock bro	okeness.	L	<b></b>			1	<b>I</b>			_
** Inclu		nitor readi	ng in 6 foc	ot intervals (	borehole.		reading frequency if	elevated reponse	read.	Dril Backgrour	ling A Id (pj		

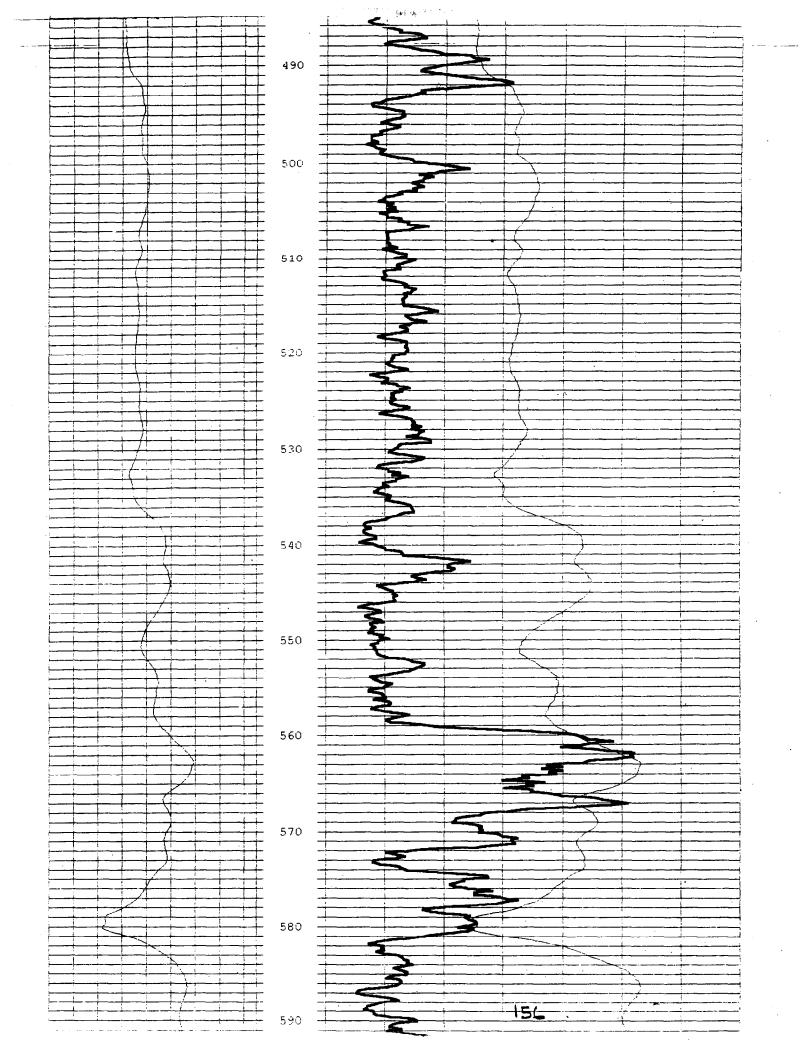

×,

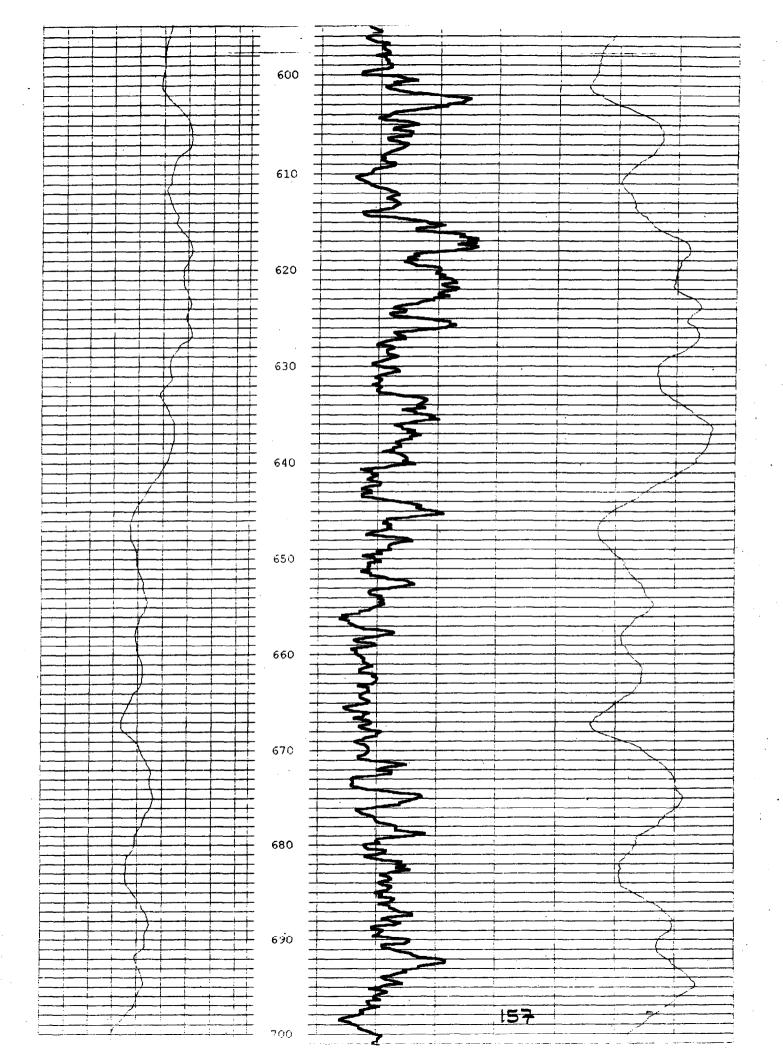

		£	Tetra	Tech N	IUS, Inc	•	<u>BC</u>	RING LOG		P	age <u> </u>	4	of <u>I</u>	6
					NWIRP N4037	Bethpag	je	DATE:		BPOW4-2				
	DRIL	LING	COMF	PANY:	Uni-Teo	ch		GEOLO		Conti				
	DRIL	LING	RIG:		FAIL	ING IS	500	DRILLE	ER:	JBLEMINGS	<u>ک</u>			
								RIAL DESCRIPTION			PID/FI	DRea	ding (	opm)
	Sample No. and Type or RQD	(FL) or Run No.	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color	Material Classification	U S C S	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
6 25			100/	•5⁄.5		V NEW YOR	GRAV	CAUD AND GRAVE	SW	WET	6			0
020	<u>a</u>		<u> </u>			DENSE	1 MAT	SAND AND GRAVEL		× 3/4"& EUB ROUND GRAVEL				$\neg$
	<b>09</b> 35				{			····•		ROUND GRANEL		$\vdash$		
			$\angle$				ļ					$\left  - \right $		
									-					
	1000	Kab D												
				[	1									0
			$\sim$		1							$\square$		
			$\leftarrow$		4					· ·				
	<b></b>				4							+		
				ļ	4		ļ					┢─┤		
		670				L					_ <del>_</del> _	╇┷	ļ	0
												Ļ		
•			$\square$	Τ	]									
		1	$\sim$	<u> </u>	-							T		
			$\sim$		1							Γ	Γ	
			$\checkmark$		-		+				+	+		0
	1015	680	$\langle -$	<u> </u>	-						-+-	┿╍	$\vdash$	М
					4			· · · · · · · · · · · · · · · · · · ·			-+	┼╌		
		ļ		ļ	4					-		┿	╞	
	1020	KA0		1	1									6
					4		1	· ·				Τ		
	-		K /	+	-		+				<u> </u>	+		
			$\vdash$	┨────	- ]							+		
			$\vdash$	┨	-4	<u> </u>	+-					+	┼─	╉
•			$ \downarrow $								$\rightarrow$	+-	+	-
		70	~	<u> </u>				1						0
	** Incli	n rock o ude mo n <b>arks</b> :	nitor read	ter rock b ing in 6 fo	rokeness. tot intervals	e borehole.	Increas	e reading frequency if elevated rep	onse read	D Backgrou	rilling / und (pj			2
	Con	verte	d to W	ell:	Yes		_	No W	ell I.D. #	#: BPOW 4-	- 2			
					· .			١५५						
										• •				

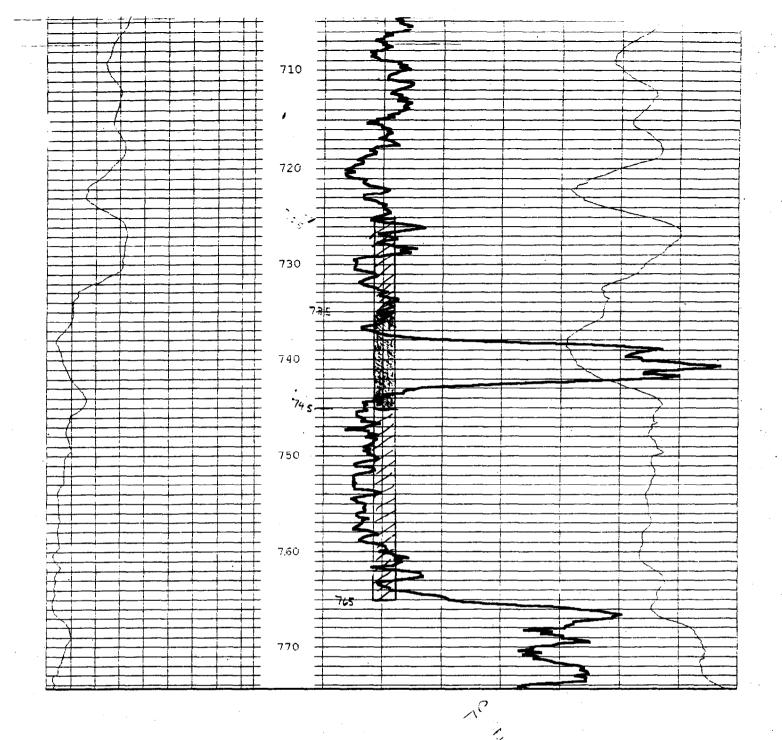

.уч. — «


PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY: DRILLING RIG:			N4037 Uni-Te	Bethpag ch JG 150			DA1 GEC			BPOW4-2 GI25/03 Conti J BLEMINGS					
·					MATERIAL DESCRIPTION PIDIFIC										ng (p
Sample No. and Type or RQD	(FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistency or Rock Hardness	Color		Classificati	on	U S C S *	Remarks		Sample	Sampler BZ	Borenoie
1100	100											-+-	-+		-t
			L										-+		_ <b>K</b>
_															
		$\square$													
		$\sim$											1		1
			· · ·										+	+	+
115	110				DENSE	Gear	COARSE	SAND-	SOME	sP	WET - FROM	4	┥	-	(
							HIN 3				NO SPOON HEP	ε			
											· · · · · · · · · · · · · · · · · · ·		┓		T
		$\leftarrow$										-+-	-+	+	+
_													-+	-+-	+
	720							النف معيد معيد التقر						_	
		$\sim$	<u>.</u>												
		$\leftarrow$		725								+	-	-+-	+
			[										-+		+
							· · · · · · · · · · · · · · · · · · ·						_	4	$\downarrow$
	730			-											
												Τ	Τ		
		$\leftarrow$		-								-+	+	-+-	┥
												-	-		$\dashv$
				B				<u> </u>					_		$\square$
											í ·				
	740		1									Τ		Τ	
	UTU	$\leftarrow$	<u> </u>	A								-+-	┪	$\neg$	Ť
		$\leftarrow$	<b> </b>	N		<u> </u>	SAND				DRILLER NOTED	+	-	-+	+
	742	K_,		K			SOMEVC	LAY e -	142'		SOME CLAY A	۲ .	$\dashv$	_	4
					· · ·	1	NOTED				= 742 w STREW				
		$\square$				1	FTOCS	SAND			10 747.	T	T	Τ	Ţ
IEm	750	17	1	11/1		1							Ť		
* Wher	n rock c	itor readin	-	t intervals	Ø borehole. I		reading frequen	cy if elevated	I reponse re	ad.	Dr Backgrou	rilling und (j			0
Conv	verted	to We	ell:	Yes			No		Well I.D	). #:	BPOW 4-	2			


PRO	JECT	' NAME ' NUME	BER:	N403	7	ethpag	ge	.¢	DATE:		BPOW4-2			
DRILLING COMPAN DRILLING RIG:						. 15			GEOLOGIS					
	LING	HIG:				5 15		RIAL DESCRIP			J BLEMINGS		D Ree	diaa
Sample No. and Type of RQD	(FL)	Biows / 6" or RQD (%)	Sample Recovery / Sample Length	Litholo Chang (Depth/I or Screen Interva	PE FL) Sol Co ed al	l Density/ nsistency or Rock ardness		Material Clas		ม ร ร ร	Remarks	Sample		Borehole**
<b></b>	750				I DE	NGE	6	-10 01				 		
	<b> </b>						TKAY	FIC SAND	<u>&gt;</u>			├	┢─┤	
		$\langle -$									<u> </u>	┝		
		$ < \ $	<u> </u>	'			<b>_</b>				<u> </u>	┣	$\left  - \right $	
<b> </b>	<b> </b>	<		′				······				–	$\left  - \right $	
1540	760	$ \langle                                   $	· ·	11			<b> </b>				ļ	┡	$\left  - \right $	
	<b></b>	$\mid$					ļ	<u> </u>				_	$\square$	_
	L		ļ	1			<b> </b>				· ··· · ·······	┡	$\left  - \right $	
				765							L			
				/ •=	` L									
	TTO			] 							NOTICED SOME			
											CLAY IN CUTTINGS			
				]							DRILLER ALSO			
											= 770'±			
		$\square$			Γ									
	780	$\square$		1								Γ		
			1	1							CAMMA LOC.			
	1	17	1	1			1				GAMMA LOG	1		ſ
	1	1/	1	1								$\uparrow$		T
	†	1/	$\uparrow$	1			1				<u></u>	<u> </u>		ſ
		1/	1	1			1	· · · · · · · · · · · · · · · · · · ·			<u> </u>	t	1	t
		$\checkmark$	<u> </u>	1		· · · ·	+					$\uparrow$	$\top$	F
	+	17	┨───	1	┢		+	·			<u> </u>	+	┥	╞
	+	٢/	1	1	$\vdash$	<del></del>	<u> </u>					+	+	t
	+	1/	+	<b></b>	$\vdash$		+					╉╌	+	┞
	+	K->	┨───	1	┝		+				<del> </del>	+	╀──	┢
• Whe	n rock d	coring, ent	ter rock br	okeness						_			<u> </u>	L
** inc		nitor readi				orehole.	Increase	reading frequency if	elevated reponse re	ad.	Drilli Background			
-	verte			Yes				No		<u> </u>	: BPOW4-2			

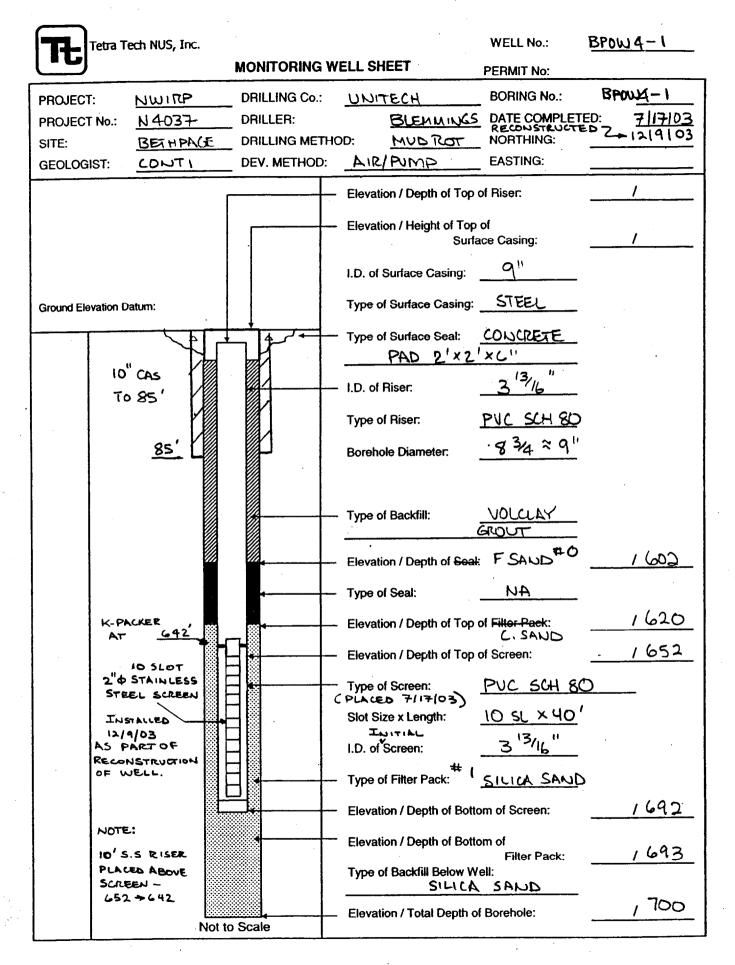











Section 2

Monitoring Well Construction Log



Tetra Tech NUS, Inc.	WELL No .: BPOW 4-2
MONITORING W	ELL SHEET PERMIT No:
PROJECT:NWIRPDRILLING Co.:PROJECT No.:N4037DRILLER:SITE:BETHPAGEDRILLING METHORGEOLOGIST:CONTIDEV. METHOD:	UNITECH BORING No.: BPOW4-2 BUEMINGS DATE COMPLETED: 7/7/03 DD: MUD ROT NORTHING: AIR/PUMP EASTING:
	Elevation / Depth of Top of Riser: / Elevation / Height of Top of Surface Casing: /
	I.D. of Surface Casing: 9"
Ground Elevation Datum:	Type of Surface Casing: STEEL
	Type of Surface Seal: <u>CONCRETE</u> PAD 2'×2'×6"
IO" PUC CAS TO	I.D. of Riser: <u>3'3'16</u> "
100'	Type of Riser: PVC SCH 80
100'	Borehole Diameter: <u>9¹/2</u> ¹
	Type of Backfill: <u>NOLCLAY</u> GROUT
	Elevation / Depth of Seal: F SAND / 690
	Type of Seal: NA
	Elevation / Depth of Top of Fitter Pack: /705
	Elevation / Depth of Top of Screen: /725
	Type of Screen: <u>PVC_SCH &amp;O</u>
	Slot Size x Length: $10 \times 30$ w 10' BLANK I.D. of Screen: $3^{13}$ /16' 735 $\rightarrow$ 745
	Type of Filter Pack:
	Elevation / Depth of Bottom of Screen:
	Elevation / Depth of Bottom of Filter Pack: / 766 Type of Backfill Below Well:
Not to Scale	SILICA SAND         Elevation / Total Depth of Borehole:

Appendix B BPOW4-1, BPOW4-2 Integrity Testing Rehabilitation Decommissioning Section 1

BPOW4-1, BPOW4-2

Integrity Testing

Abbreviated Work Plan BPOW4-1R and 4-2R NWIRP Bethpage, NY



To:Lora Fly, DON, NAVFAC MIDLANTFrom:Brian Caldwell, P.G., Resolution Consultants

Subject: NWIRP Bethpage Well Integrity Test Summary

Date: 4 October 2013

The following is a summary of the well integrity testing performed at the Naval Weapons Industrial Reserve Plant (NWIRP) located in Bethpage, New York. Resolution Consultants (ResCon) and Delta Well and Pump of Ronkonkoma, New York (Delta) conducted well integrity testing activities on Jul y 22, 2013, and September 12-13, 2013. Well integrity testing was performed on off-site wells BPOW4-1 and BPOW4-2. The purpose of the well integrity testing was to assess well performance, determine if well packers are functioning properly, determine if cracks exist in the well casings, and complete any necessary repairs.

On July 22, 2013 ResCon and Delta tested BPOW4-1 and BPOW4-2. Delta utilized a portable nitrogen tank and regulator to inflate the packers in BPOW4-1 and BPOW4-2 to approximately

210 psi. ResCon utilized an EIP to gauge the static water level within each well casing and measure drawdown. Depth to static water in BPOW4-1 was 26.38 ft and depth to static water in BPOW4-2 was 26.08 ft.

Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-1 to pump the well for approximately 70 minutes at approximately 4.5 gpm. No drawdown was observed. The final turbidity was 4.2 NTU. Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-2 to pump the well for approximately 70 minutes at approximately 5 gpm. Final turbidity was 12.2 NTU. Drawdown was approximately 0.03 ft. Both wells were determined to be functioning properly and no additional well development is necessary.

On September 12, 2013 ResCon and Delta re-tested BPOW4-2 because of a concern that there could still be a crack in the casing above the packer assembly. ResCon utilized an EIP to gauge the static water level within the well casing and measure drawdown. Depth to static water in BPOW4-2 was 26.74 ft.

Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-2 to pump the well for approximately 20 minutes at approximately 7 gpm. Drawdown within the well was approximately 13.22 ft. Based on a flow rate of 7 gpm, the specific capacity of BPOW4-2 was calculated to be 0.53 gpm/ft.

Once the water level returned to static, Delta utilized a portable nitrogen tank and regulator to inflate the packer in BPOW4-2 to approximately 300 psi. Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-2 to pump the well for approximately 20 minutes at approximately 7 gpm. The water level in the casing rose from 26.30 ft to 26.00 feet during the 20 minute pump test. Approximately 300 total gallons were pumped from BPOW4-2 and final turbidity was 9.1 NTU.

Upon completion of the pump tests and a return to static water level, ResCon performed a static water test. The packer was inflated to approximately 300 psi and ResCon added 5 gallons of distilled water to the well. Initial depth to water was 17.80 ft. The water level within the well was gauged for 40 minutes. The water level within BPOW4-2 dropped from 17.80 ft to 25.31 ft during the 40 minute test.

On September 13, 2013 ResCon and Delta re-tested BPOW4-1. ResCon utilized an EIP to gauge the static water level within the well casing and measure drawdown. Depth to static water in BPOW4-1 was 26.21 ft.

Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-1 to pump the well for approximately 20 minutes at approximately 6 gpm. Drawdown within the well was approximately 2.16 ft. Based on a flow rate of 6 gpm, the specific capacity of BPOW4-1 was calculated to be 2.78 gpm/ft.

Once the water level returned to static, Delta utilized a portable nitrogen tank and regulator to inflate the packer in BPOW4-1 to approximately 265 psi. Delta utilized the dedicated submersible pump, set below the packer, in BPOW4-1 to pump the well for approximately 20 minutes at approximately 6 gpm. The water level in the casing rose from 26.14 ft to 25.97 ft during the 20 minute pump test. Approximately 225 total gallons were pumped from BPOW4-1 and final turbidity was 7.4 NTU.

Upon completion of the pump tests and a return to static water level, ResCon performed a static water test. The packer was inflated to approximately 265 psi and ResCon added 5 gallons of distilled water to the well. Initial depth to water was 17.70 ft. The water level within the well was gauged for 60 minutes. The water level within BPOW4-1 dropped from 17.70 ft to 24.38 ft during the 60 minute test.

Based on the results of the well integrity testing, BPOW4-1 and BPOW4-2 seem to be losing water from above the packer. Due to the loss of water from water from above the packer, it is recommended that BPO W4-1 and BP OW4-2 be resleeved with 2-inch diameter PVC well screen and well casing.

Section 2

BPOW4-1, BPOW4-2

Rehabilitation

Abbreviated Work Plan BPOW4-1R and 4-2R NWIRP Bethpage, NY



То:	Lora Fly, DON, NAVFAC MIDLANT
From:	Brian Caldwell, P.G., Resolution Consultants
Subject:	2014 Rehabilitation of BPOW4-1 and BPOW4-2 (OU2), NWIRP
	Bethpage

Starting on February 12, 2014 Resolution Consultants (ResCon), and subcontractor Delta Well and Pump Co., Inc. (Delta), was on-site at outpost well locations BPOW4-1 and BPOW4-2 to begin rehabilitation activities on both wells. These wells were constructed of 4-inch Schedule 80 PVC and the rehabilitation would include the installation of a 2" Schedule 80 PVC well within each existing casing. Work was conducted over a period of 10 days.

Initially, records indicated BPOW4-2 was a total depth of 765' below ground surface (bgs), while field gauging indicated it was a total depth of 755' bgs. Attempts using a steel bailer and air lifting to try and remove sediment from the bottom of the well were both unsuccessful. It was determined to set a 2" Schedule 80 PVC well using the field determined depth of 755' bgs. A 40' section of 0.010 slot screen with 715' of riser was placed in the well. The primary and secondary filter packs were installed to a depth of 672' bgs. A high-yield bentonite grout mixture was then installed. Over a period of 5 days, more than 100 gallons of the bentonite grout mixture was added to the well with the level of the grout only rising to approximately 668' bgs. This loss of grout indicated a possible crack in the original casing where grout was escaping; therefore, efforts to rehabilitate BPOW4-2 were abandoned.

Abbreviated Work Plan BPOW4-1R and 4-2R NWIRP Bethpage, NY

Records indicated that well BPOW4-1 was a total depth of 692' bgs. Also, there was a 50' section of 2" stainless steel screen and riser with a k-packer stuck in the bottom of the well. This packer setup needed to be removed in order to set the new well within the 4" casing. Four retrieval attempts were made using two different retrieval tools over a period of 4 days. The packer setup was finally retrieved on February 26, 2014. Following retrieval, depth to bottom of the well was gauged to be 663' bgs, which was 29' shallower than the expected 692' bgs. It was determined that the well possibly collapsed following removal of the packer setup, therefore efforts to rehabilitate BPOW4-1 were also abandoned.

BPOW4-1, BPOW4-2

Decommissioning



То:	Lora Fly, DON, NAVFAC MIDLANT
From:	Brian Caldwell, P.G., Resolution Consultants
Subject:	Well Decommissioning for BPOW4-1 and BPOW4-2

Arcadis performed groundwater sampling at outpost monitoring wells BPOW4-1 and BPOW4-2 in May 2013. Analytical results found concentrations of trichlorotrifluoromethane (Freon 113) above the trigger value. Well integrity testing was performed on both monitoring wells in September 2013 following the procedures outlined in the UFP Sampling and Analysis Plan (SAP) Addendum (August 2013). The testing found both wells were compromised.

Resolution Consultants implemented the Outpost Monitoring Well Rehabilitation Work Plan (Revision date 11/27/13) in February 2014. The objective of the work was to install new 2-inch monitoring wells inside the existing 4-inch monitoring wells. Numerous attempts were made to install the new wells. However, Delta was unable re-sleeve either well.

### Well Decommissioning Proposal:

Resolution Consultants proposes to decommission these two wells in conformance with CP-43: Groundwater Monitoring Well Decommissioning Policy (NYSDEC, November 3, 2009).

The selected method for decommissioning will be grouting in place. The grout mix will follow the guidance in CP-43, Section 6.1. A tremie pipe will be lowered into the well

casing. Grout will be pumped into the well until visible at the ground surface. All groundwater displaced during grouting will be collected and properly disposed as drilling fluids. The grout level will be monitored for settling over several days. Grout will be added to the casings as needed until the level is approximately five feet below grade. Once the grout has hardened, the casings will be cut approximately five feet below grade. A ferrous marker will be embedded in the top of the grout to indicate the location of the former monitoring well. A fabric "utility" marking will be placed one foot above the grout so any future excavation will be alerted to the former monitoring well. The open hole will be backfilled with material similar to the surrounding soils. The site will be restored to match the surrounding conditions in accordance with the Sampling and Analysis Plan.

Appendix C

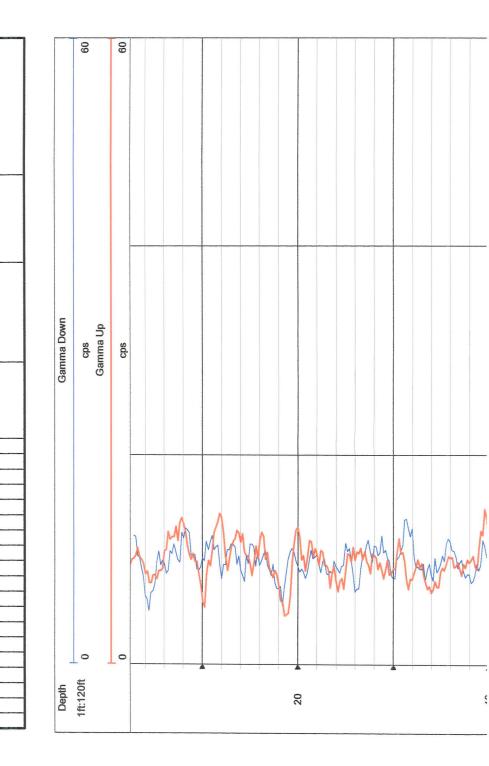
BPOW4-1R, BPOW4-2R Installation

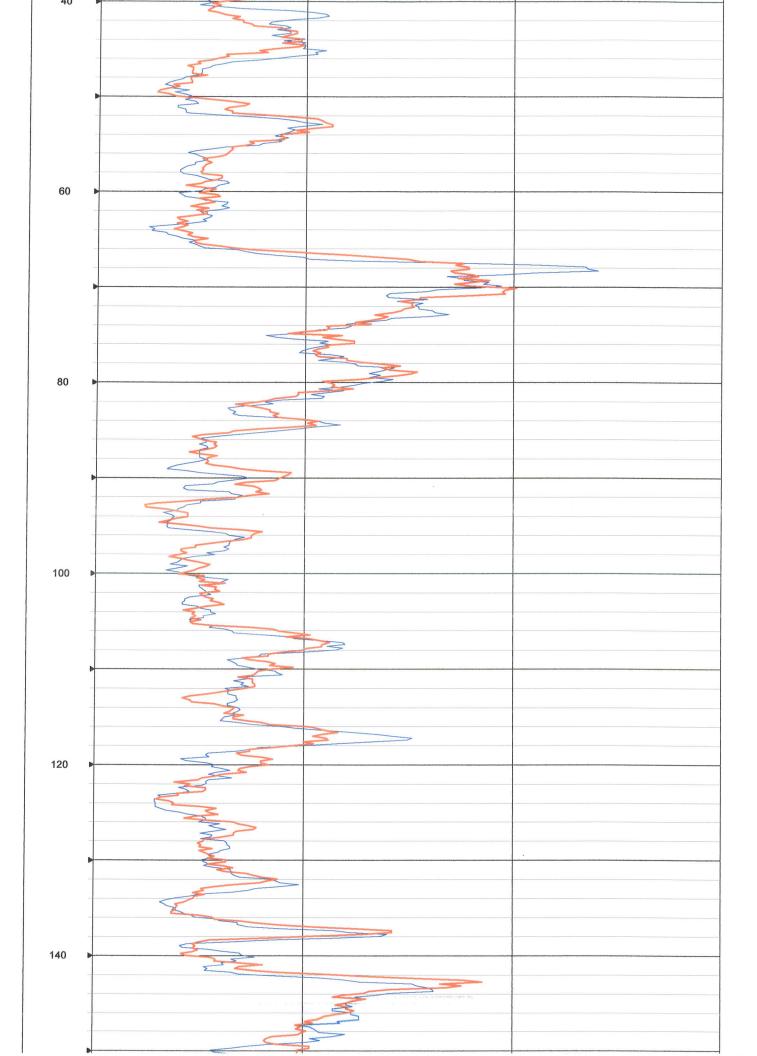
Boring and Gamma Logs

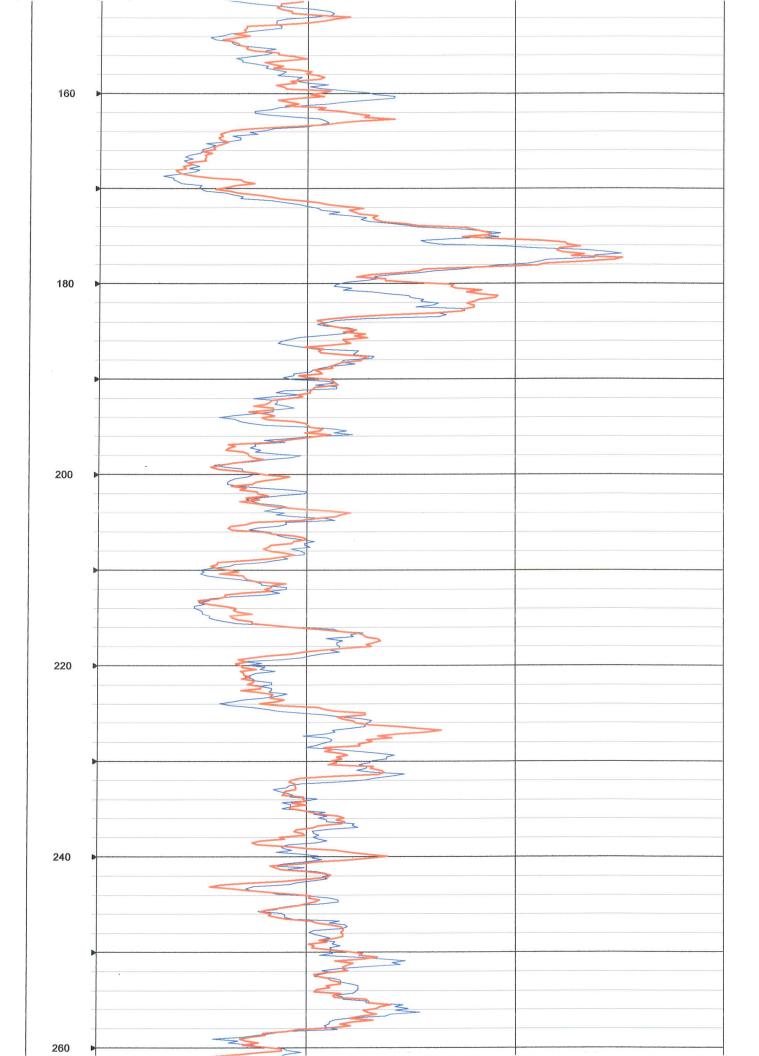
Reso Cons					Boring Log		BORING #: BPOW4-1R Sheet 1 of <b>2</b>
			/, Naval Fa	icilities Enai	neering Command, Mid-Atlantic	Logged By: G. Hicks	
Location: E						Drilling Company: DELT	A WELL AND PUMP COMPANY
Project #:				-	d Elevation (msl): 64.08	Well Screen Interval (ft	
Start Date:					g Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date:	: 8/19/20 ⁻	14			ng: 200281.258 Easting: 1123067.502	Total Depth (ft): 707.0	)
						Ť	
DEPTH (ft)	(mqq) Olq	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well Completion	Well Construction
0					653 - 695 ft bgs: see BPOW4-2R for Descriptions		
50							— 10" Diameter Steel Casing
150						-	4" Diameter Schedule
200							80 PVC Riser
250							
300							
400							
450							
							Bentonite Grout
500							
550							
600			1		1		4

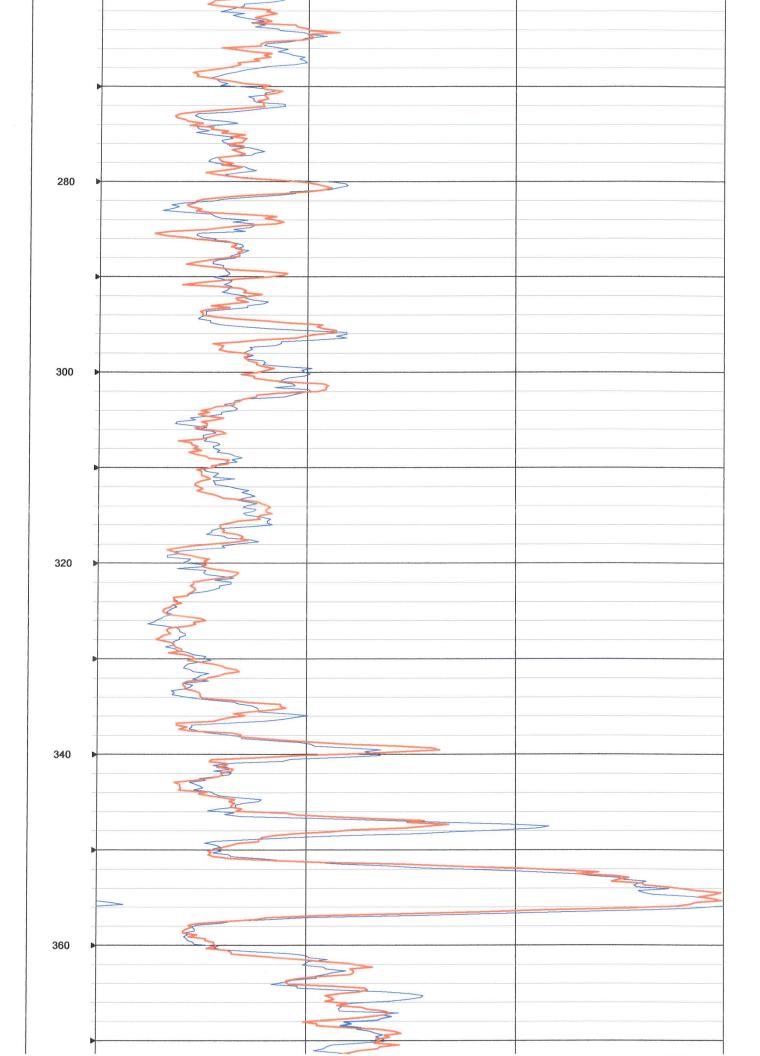
#### **Resolution** BORING #: BPOW4-1R **Boring Log Consultants** Sheet 2 of 2 Client: Department of the Navy, Naval Facilities Engineering Command, Mid-Atlantic Logged By: G. Hicks Location: Elm Dr. W. and Eden Ln. Levittown, NY Drilling Company: DELTA WELL AND PUMP COMPANY Project #: 60266526 Ground Elevation (msl): 64.08 Well Screen Interval (ft): 652-692 Start Date: 8/8/2014 Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs) Water Level (ft): Finish Date: 8/19/2014 Northing: 200281.258 Easting: 1123067.502 Total Depth (ft): 707.0 Well Completion GRAPHIC LOG PID (ppm) Formation uscs DEPTH (ft) MATERIAL DESCRIPTION Well Construction 600 653 - 695 ft bgs: see BPOW4-2R for Descriptions (continued) Bentonite Grout (continued) 602 604 606 608 610 #0 Filter Sand 612 614 616 618 620 622 624 626 628 630 632 634 636 #1 Filter Sand 638 640 642 644 646 648 650 652 654 656 658 660 662 664 666 668 670 672 4" Diameter schedule 80 PVC, 10 Slot Well Screen (652-692 ft 674 676 bqs) 678 680 682 684 686 688 690 692 694 Tail Pipe (692-697 ft 696 bgs) 698 700 702 #1 Sand to bottom of boring 704 706

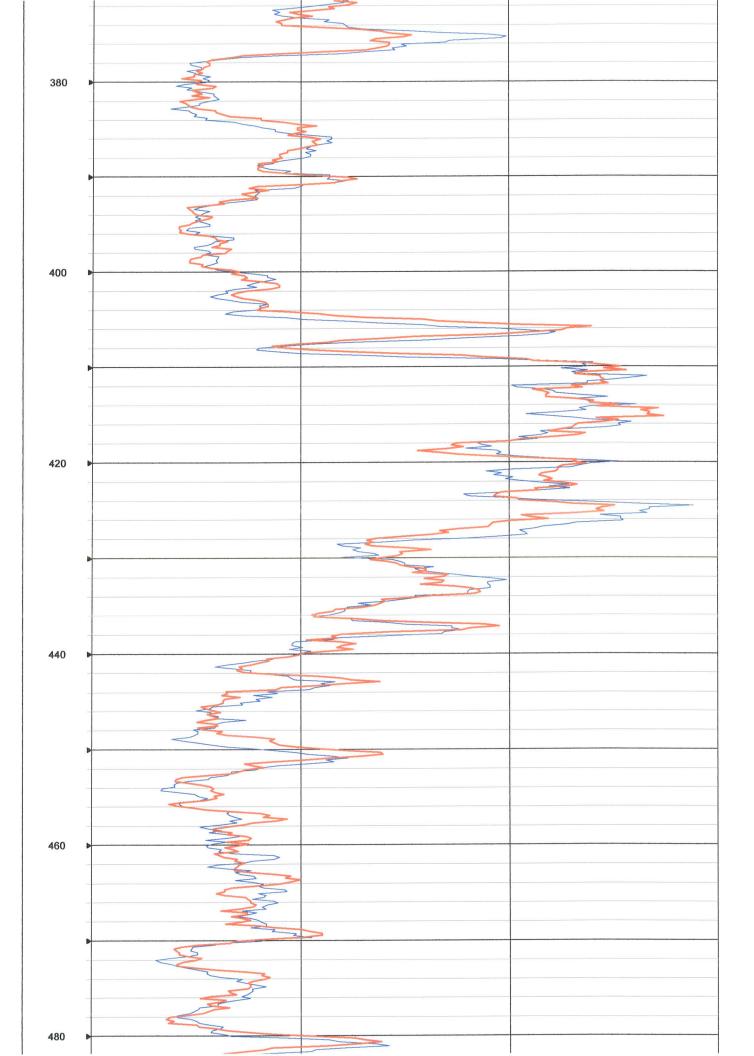
Reso Cons					Boring Log		BORING #: BPOW4-2R Sheet 1 of 2
			, Naval Fa	cilities Engineer	ring Command, Mid-Atlantic	Logged By: P. Kareth	
Location: E						Drilling Company: DELT	
Project #:					evation (msl): 66.6	Well Screen Interval (ft	
Start Date:		14			thod: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	,
Finish Date:					200691.906 <b>Easting:</b> 1123200.043	Total Depth (ft): 784.	0
						·	
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well Completion	Well Construction
50							10" Diameter Steel     Casing
100							4" Diameter Schedule
200							80 PVC Riser
300							
350 400							
450							
500						-	Bentonite Grout
600							
650							

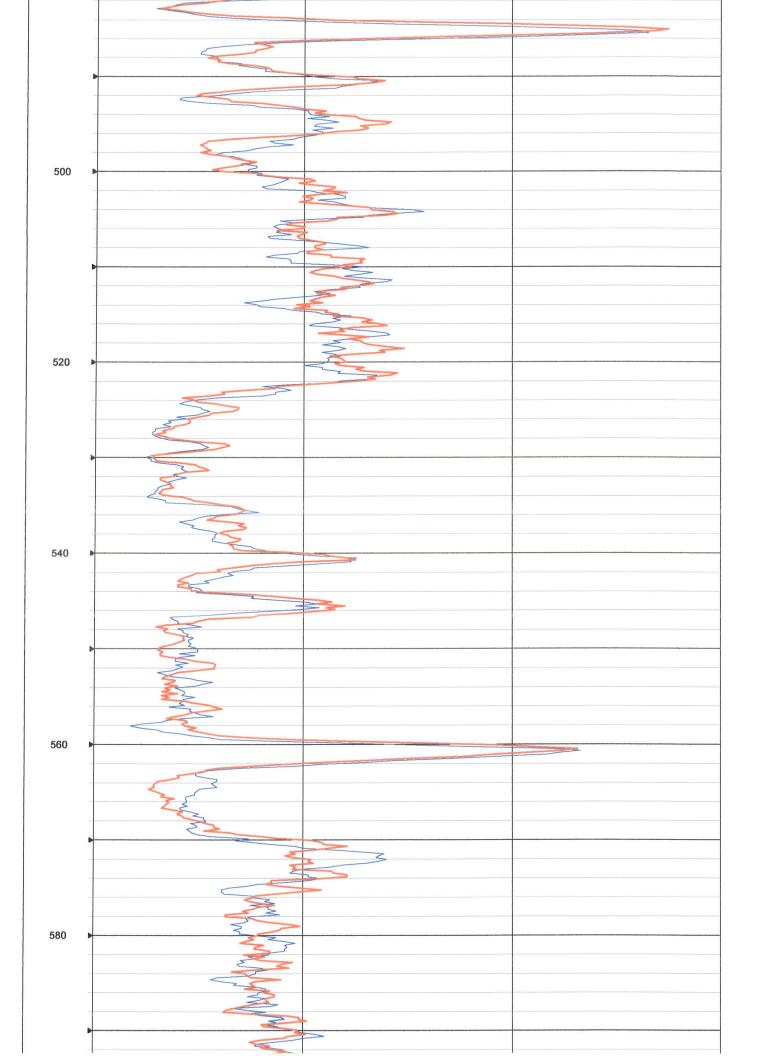

## Resolution Consultants

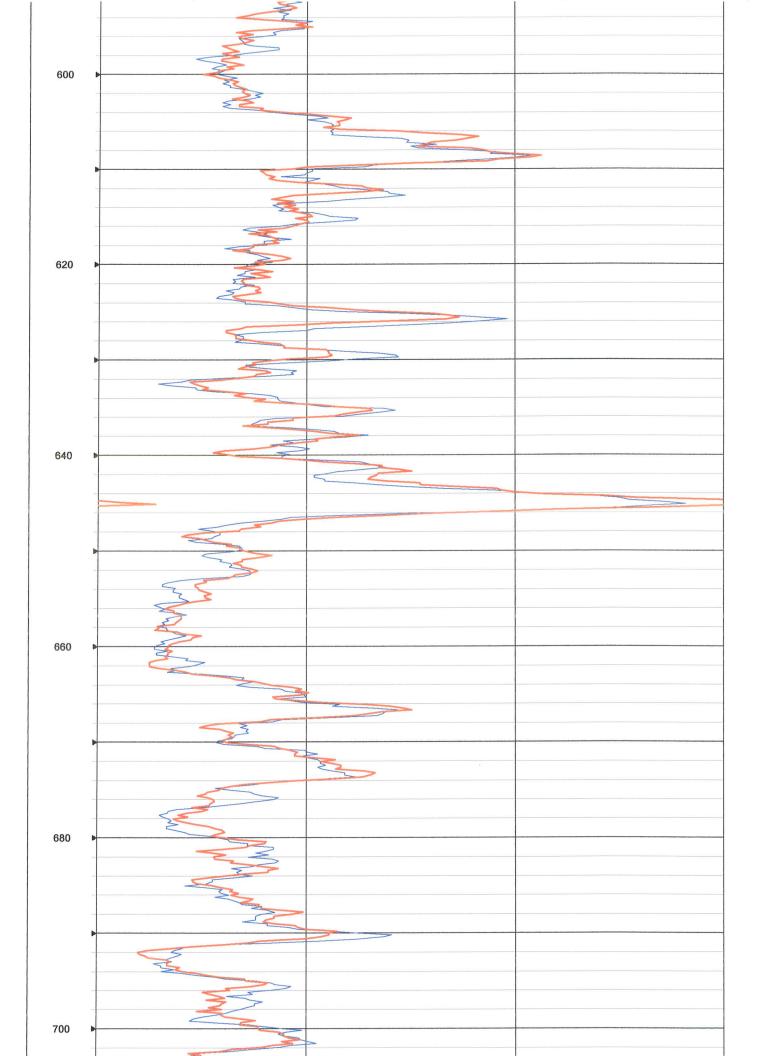

# Boring Log

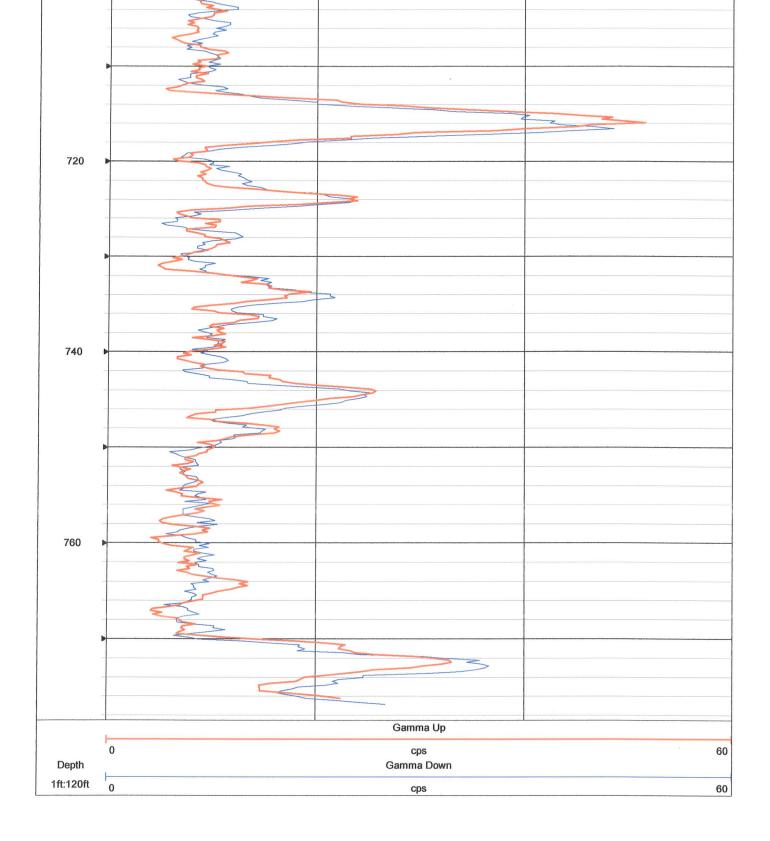

BORING #: BPOW4-2R Sheet 2 of 2


Client: De	partment of	t the Navy	, Naval Faci	lities Engin	eering Command, Mid-Atlantic	Logged By	: P. Kareth			
Location: E	lm Dr. W. a	and Elbow	Ln. Levittov	wn, NY		Drilling Co	mpany: DELTAW	ELL AND PUMP COMPANY		
Project #:	60266526			Ground	Elevation (msl): 66.6	Well Scree	en Interval (ft):	Interval (ft): 725-765		
Start Date:	10/13/201	4		Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	el (ft):			
Finish Date				-	g: 200691.906 Easting: 1123200.043	Total Dept	. ,			
		-								
	۲ ۲	ч		<u>ں</u>			ы			
DEPTH (ft)	(mqq) OIA	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction		
- 650 - 652 - 654					Gray (10 YR 2/1) fine SAND, trace Silt, brown mottlin	a		Bentonite Grout (continued)		
656	0	ŀ	SP/SM							
- 660 - 662	0		SP/SM		Gray (10 YR 7/1) fine SAND, trace Silt, trace coarse fine gravel	ธิลกัน ได้				
664	0		SP/SM		Gray (10 YR 7/1) medium to fine SAND, trace Silt, so brown mottling	me				
668	0.2		7		Gray (10 YR 6/1) clayey coarse to fine SAND, brown	mottling				
672 674			SC //		Gray (10 YR 7/3) silty medium to fine SAND, brown n	nottlina.				
674 676 678	0.1	r	SM .		Clay nodule					
680 682	0.1		SM		Reddish brown (7.5 YR 6/6) silty coarse to fine SANE gray mottling	, some				
684	0		SP/SM		Yellowish gray (10 YR 7/1) medium to fine SAND, tra yellow mottling	ce Silt,				
- 688 - 690	0.2				Yellowish gray (10 YR 8/1) medium to fine SAND, tra	ce Silt				
692 694	<u> </u>		SP/SM SP/SM		Yellowish gray (10 YR 7/1) medium to fine SAND, tra	ce Silt				
696 698	0	Ì			trace coarse sand to fine gravel					
700										
702										
- 706 - 708								#0 Filter Sand		
- 710 - 712										
714										
- 718 - 720								#1 Filter Sand		
722	0	-	SM		Yellowish gray (10 YR 7/1) silty coarse to fine SAND,	clayey				
- 726 - 728	<u> </u>	-	5101		Sand nodule at top of spoon Yellowish gray (10 YR 7/3) silty coarse to fine SAND,	some				
- 730 - 732	0		SM		Clay, trace fine gravel					
- 734 - 736	0		SP/SM		Yellowish gray (10 YR 7/1) coarse to fine SAND, trace Gravel, trace silt	e tine				
- 738 - 740	0		SP/SM		Yellowish gray (10 YR 7/1) coarse to fine SAND, trace	e Silt				
742	0.1		SP/SM		Yellowish gray (10 YR 7/1) coarse to fine SAND, trace	e Silt		4" Diameter schedule		
- 746 - 748 - 750	0.3				Yellowish gray (10 YR 7/1) coarse to fine SAND, trace	e Silt,		80 PVC, 10 Slot Well Screen (725-765 ft		
- 750 - 752 - 754			SP/SM		trace fine gravel Yellowish gray (10 YR 7/1) coarse to fine SAND, trac	e Silt		bgs)		
756	0		SP/SM		trace fine gravel					
- 758 - 760 762	0		SP/SM		Yellowish gray (10 YR 7/1) medium to fine SAND, tra trace fine gravel	ce Silt,				
762	0.3				Yellowish gray (10 YR 7/1) medium to fine SAND, tra	ce Silt,				
- 766 - 768					trace fine gravel			Tail Pipe (765-770 ft		
770			SP/SM					bgs)		
774			57/5101					#4 Opendide better of		
- 778 - 780								#1 Sand to bottom of boring		
- 782 784			<u>::</u> :		End of boring at 784.0 ft. bgs.		<u>ny ny ny ny ny ny ny</u>			


AQUA TERRA GEOPHYSICS INC											
				CO	MPANY	DELTA WELL	& PUMP				
						BPOW4 - 2R					
							DACE				
						NWIRP BETH	PAGE		-		0.7.11
				CO	UNTRY	LEVITTOWN		STA	TE	NEW Y	ORK
			No		ATION OSITE # 37 I	ELM DR. W.				OTHER S	ERVICES
CO WELL	FLD	CTY STE	FILING No	SEC		TWP	RGE				
									1		
		I DAIO	Μ				ELEVATION			K.B.	
		FROM IEAS. FI			UND SURF	ACE ABOVE				K.B. D.F. G.L.	
		FROM			UND SURF	ACE ABOVE	PERM. DATU			D.F.	ITE
DRILLI DATE RUN N	ING M	FROM			OCTOBER	ACE ABOVE	PERM. DATU TYPE FLUI SALINI	JM D IN HOLE TY		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I	ING M	FROM IEAS. FI			OCTOBER	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSIT	JM D IN HOLE TY		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I DEPTH	ING M io LOG I-DRII	FROM IEAS. FI			OCTOBER NATURAI 785 FEET	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSII LEVEL	JM D IN HOLE TY Y		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I DEPTH DEPTH	ING M log I-DRII I-LOG	FROM IEAS. FI	ROM		OCTOBER	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSIT	JM D IN HOLE TY Y		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I DEPTH DEPTH BTM L	ING M log I-DRII I-LOG	FROM IEAS. FI	ROM	L	OCTOBER NATURAI 785 FEET	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSII LEVEL	JM D IN HOLE TY Y		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I DEPTH DEPTH BTM L TOP LO	ING M log l-DRII l-LOG .OGGE	FROM IEAS. FI	ROM	L	OCTOBER NATURAI 785 FEET	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSII LEVEL	JM D IN HOLE TY Y		D.F. G.L.	ITE
DRILL DATE RUN N TYPE I DEPTH BTM L TOP LO OPERA	ING M log l-DRII l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l-LOG l	FROM IEAS. FF LLER GER ED INTE D INTE RIG TI	ROM	L	OCTOBER NATURAI 785 FEET	ACE ABOVE 10, 2014	PERM. DATU TYPE FLUI SALINI DENSII LEVEL	JM D IN HOLE TY Y		D.F. G.L.	ITE
DRILL DATE RUN N TYPE I DEPTH DEPTH BTM L TOP LO OPERA RECOR	ING M log l-DRII l-DRII l-LOG .OGGE OGGE ATING RDED	FROM IEAS. FI GER ED INTE RIG TI BY	ROM	L	OCTOBER NATURAI 785 FEET 778 FEET	ACE ABOVE	PERM. DATU TYPE FLUI SALINI DENSII LEVEL	JM D IN HOLE TY Y		D.F. G.L.	
DRILL DATE RUN N TYPE I DEPTH BTM L TOP LO OPERA RECOR	ING M LOG LOG H-DRII H-LOG OGGE ATING RDED ESSED	FROM IEAS. FI LLER GER ED INTE PRIG TIN BY D BY	ROM RVA RVAI ME	L	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE	PERM. DATU TYPE FLUI SALINT DENSIT LEVEL MAX. REC.	JM D IN HOLE TY 'Y . TEMP.		D.F. G.L.	ITE
DRILLI DATE RUN N TYPE I DEPTH BTM L TOP LO OPERA RECOR WITNE	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED	FROM IEAS. FI LLER GER ED INTE PRIG TIP BY DBY DREHOL	ROM RVA ME	L L	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH	PERM. DATU TYPE FLUI SALINT DENSIT LEVEL MAX. REC.	JM D IN HOLE TY 'Y . TEMP. ECORD		D.F. G.L. BENTONI	
DRILLI DATE RUN N TYPE I DEPTH BTM L TOP LC OPERA RECON	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED BC BI	FROM IEAS. FI LLER GER ED INTE RIG TI BY D BY DREHOL T	ROM RVA RVAI ME	L L ECORI	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH TO	PERM. DATU SALINI DENSII LEVEL MAX. REC.	JM D IN HOLE TY Y . TEMP. ECORD WGT.	FROM	D.F. G.L. BENTONI	ТО
DRILLI DATE RUN N TYPE I DEPTH DEPTH BTM L TOP LO	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED BC BI	FROM IEAS. FI LLER GER ED INTE PRIG TIP BY DBY DREHOL	ROM RVA RVAI ME	L L	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH	PERM. DATU SALINI DENSII LEVEL MAX. REC. CASING RI SIZE 10 INCH	JM D IN HOLE TY 'Y . TEMP. ECORD WGT. STEEL	0 FEE	D.F. G.L. BENTONI	TO 52 FEET
DRILLI DATE RUN N TYPE I DEPTH BTM L TOP LO OPERA RECOR WITNE	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED BC BI	FROM IEAS. FI LLER GER ED INTE RIG TI BY D BY DREHOL T	ROM RVA RVAI ME	L L ECORI	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH TO	PERM. DATU SALINI DENSII LEVEL MAX. REC.	JM D IN HOLE TY Y . TEMP. ECORD WGT.	0 FEE	D.F. G.L. BENTONI	ТО
DRILLI DATE RUN N TYPE I DEPTH BTM L TOP LC OPERA RECON	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED BC BI	FROM IEAS. FI LLER GER ED INTE RIG TI BY D BY DREHOL T	ROM RVA RVAI ME	L L ECORI	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH TO	PERM. DATU SALINI DENSII LEVEL MAX. REC. CASING RI SIZE 10 INCH	JM D IN HOLE TY 'Y . TEMP. ECORD WGT. STEEL	0 FEE	D.F. G.L. BENTONI	TO 52 FEET
DRILLI DATE RUN N TYPE I DEPTH BTM L TOP LO OPERA RECOR WITNE	ING M LOG H-DRII H-LOG OGGE ATING RDED ESSED BC BI	FROM IEAS. FI LLER GER ED INTE RIG TI BY D BY DREHOL T	ROM RVA RVAI ME	L L ECORI	OCTOBER NATURAI 785 FEET 778 FEET BENJAMI PAUL KA	ACE ABOVE 10, 2014 , GAMMA N RICE RETH TO	PERM. DATU SALINI DENSII LEVEL MAX. REC. CASING RI SIZE 10 INCH	JM D IN HOLE TY 'Y . TEMP. ECORD WGT. STEEL	0 FEE	D.F. G.L. BENTONI	TO 52 FEET














Monitoring Well Construction Logs

	Client:	NAVFAC	Project Number:	60266526	WELI	LID: BPO	W4-1R
	Site Loca	tion: NWIRP BETHPAG	E, NY				
	Well Loc	ation: Elm Dr. W. and Eden	Ln., Levittown, NY		Date Installed:	8/19/14	
RESOLUTION	Method:	MUD ROTARY			Inspector:	G. HICKS	
CONSULTANTS	Coords:	Northing: 1123067.502	Easting: 200281	1.258	Contractor:	DELTA WI	ELL & PUMP
		MONITORINO	G WELL CONS	STRUCTION D	ETAIL		
				Dep	oth from G.S. (feet)	)	Elevation(feet) Datum
Г		Top of 12 inch diameter S	Steel Curb Box				64.08
· <i>··</i> -·-·		Ground Surface (G.S.)			0.00		64.08
Measuring Point for surveying & measuring water levels		Top of Riser Pipe fit with I	locking j-plug				63.67
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		Riser Pipe: Length Inside Diameter (ID) Type of Material	652 feet 4 inch PVC				
% Bentonite		Bottom of Steel Surface C	Casing		53		11.1
Materials		Bottom of Bentonite			602.0		-537.9
		Bottom of 0 Filter Sand/To	op of #1 Filter Sand		620		-555.9
		Top of Screen			652		-587.9
		Stabilized Water Leve	el				
		Screen: Length	40 feet				
		Inside Diameter (ID)	40 leet 4 inch			-	
		Slot Size Type of Material	10 PVC				
		Type/Size of Sand Sand Pack Thickness	#1 87 feet				
		Bottom of Screen			692		-627.9
		Bottom of Tail Pipe:			697		-632.9
		Bottom of Borehole			707		-642.9
Borehol	le Diameter	: <u>10 inch</u> Approved	d:				
Describe Measuring Point:		<u>.</u>				_	
Ground Surface		Signature	e	Date	)		

	Client:	NAVFAC	Project Number:	60266526	WELL	ID: BPO	W4-2R
	Site Loca	tion: NWIRP BETHPAG	E, NY				
	Well Loc	ation: Elm Dr. W. and Elbow	/ Ln., Levittown, NY	[	Date Installed:	10/20/14	
RESOLUTION	Method:	MUD ROTARY			Inspector:	V. THAYER	
CONSULTANTS	Coords:	Northing: 200691.906	Easting: 1123200.0	)43	Contractor:	DELTA WE	ELL & PUMP
		MONITORINO	G WELL CONS	STRUCTION I	DETAIL		
				De	epth from G.S. (feet)		Elevation(feet)
							Datum
		Top of 12 inch diameter S	Steel Curb Box	<u> </u>			66.6
·		Ground Surface (G.S.)		_	0.00		66.6
Measuring Point for surveying &	<u> </u>	Top of Riser Pipe fit with I	locking j-plug				66.13
measuring water levels Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		Riser Pipe: Length Inside Diameter (ID) Type of Material	725 feet 4 inch PVC				
% Bentonite		Bottom of Steel Surface C	Casing		53		13.6
% Native Materials		Bottom of Bentonite		_	702.0		-635.4
		Bottom of 0 Filter Sand/To	op of #1 Filter Sand		712		-645.4
		Top of Screen			725		-658.4
		Stabilized Water Leve	el			_	
		Screen:					
		Length Inside Diameter (ID) Slot Size Type of Material	40 feet 4 inch 10 PVC			-	
		Type/Size of Sand Sand Pack Thickness	#1 72 feet				
		Bottom of Screen			765		-698.4
		Bottom of Tail Pipe:			770		-703.4
		Bottom of Borehole		_	784		-717.4
Borehol	le Diameter	r: <u>10 inch</u> Approved	d:				
Describe Measuring Point:							
Ground Surface		Signature	9	Da	ite	-	

Well Development Record

## Well Development Record

Well name/assoc. soil boring #: BPOW4 - IR

Client/project: NWIRP-Bethpage

## Air development

Tubing depth:

Initial water level:

300 31.6 Fbgs

Date/Time	Turbidity (NTU)	Total volume purged (gal.)	Comments (field employee, tubing depth changes, purge rate groundwater appearance/odour)
9-17/0930	>1,100	20gal/min.	Gordon Hicks + delta; water very silty
9-17-14/1200		~2000 gal	
9-17-14/1330	21.49	6,500	

Final water level: 24.5 fbgs

## **Pump development**

Date(s):

9-18-14 - 9-19-14

Initial water level: 28.51

Time	Turbidity (NTU)	Total volume purged (gal.)	Comments (field employee, screen zone depths, tubing depth, purge rate groundwater appearance/odour)				
9-18-14/1100			Dump at 652 flags (top of screen)				
9-18-14/1130			owne at 655				
9-18-14/1200	22.17		662				
1-18-14/1230	17.19		667				
9-18-14/1300	14.13	3000	672				
9-19-14/1230	4.48		692; harbidits stuble				

Final water level: _____ 25.19

#### Well Development Record BPOW4-2R

### Air and Pump Development

Data	Air Development	Pump D	evelopment	Approximate Total	Final Turbidity
Date	Approximate Volume (Gal)	Final Pump Depth (ft)	Pumping Rate (gal/min)	– Development Volume (gal)	(NTUs)
Oct 21 2014	4025				
Oct 22 2014		725'	11 gal/min		151
Oct 22 2014		730'	11 gal/min		172.8
Oct 22 2014		735'	11 gal/min	4000	175.1
Oct 23 2014		735'	11 gal/min		123.6
Oct 23 2014		740'	11 gal/min		121.5
Oct 23 2014		745'	11 gal/min	5600	107.9
Oct 24 2014		750'	11 gal/min		152.6
Oct 24 2014		755'	11 gal/min		145.2
Oct 24 2014		760'	11 gal/min		131.1
Oct 24 2014		765'	11 gal/min	5000	137.4
Oct 24 2014		770'	11 gal/min		134

Approximate Total Development Volume by air lifting and pumping = 18,625 gallons

#### **PH and Conductivity**

Date	Depth (ft bgs)	рН	Conductivity (μS/cm)	Turbidity (NTUs)	Comments
October 23 2014					
14:25	745			133.3	
14:30	745	7.63	38		
14:45				127.4	
October 24 2014					
13:50	765	5.00	29	183.8	
14:10	765	4.77	27		PH meter is not working correctly on YSI
15:00	765	8.30	34	162.5	Replacement YSI
15:05	765	7.89	32	172.5	
15:10	765	7.58	31	148	
15:15	765	7.18	30	140	
15:20	770	7.00	30	134	

Groundwater Sample Log Sheets

Well I	D:	BPOW	4-	IR
--------	----	------	----	----

AECOM

Low Flow Ground Water Sample Collection Record

P	ilient:	o:	607	ethnag 2665	- 76			Date: 17	1 30/14	Tin	ne: Start <u>I</u> Finish <u></u>		am/p
	ite Locat /eather (			WIR ZOF,		Bethpage P 10mph		Collector(s	):C	5H /JC			
1.	WATE	R LEV	'EL C	DATA:	(meas	ured from To	op of Cas	ing)					
					97		Sciern		、 /		Casing Diam	leter/Mat <i>≬√c</i>	teria
	b. Wat	ter Tab	le De	epth 7	1.88	d. Calculate	ed <del>Syster</del> r	n Volume (se	e back)	26991			
2.	a. Purg				G	tech blad	der pum	0	doe hu	be			
		-							<u>    (/0</u> ,    / 0.				
	b. Acc - Temp - pH - Sp. C	peratur	e	3%	.0 unit	(see workpla -D.O. - ORP - Drawdow	10% <u>+</u> 10	)mV					
	c. Field	d Testi	ng E	quipm	ent use	ed: I γSτ	Make		Model 6970		Serial	Number	•
						Hanna			Turbidity	Uniter			
	Time (24hr)	Volui <u>Remo</u> (Liter	ved	Temp. (°C)	<u>рН</u> -	Spec. Cond (µS/cm)	<u>1. DO</u> (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/	/Od
Π	215	-	-/	-			(g.=)				21.88	-	
	220			11.21	5.60	0.053	4.71	733.6	8.2	250	1	Clear	/Λ
-	230			11.75	5.59	0.0 53	4.93	234.1	6.9	-320			_
_	1240				5.53	0.049	5.00	234.0	3.8	350	~	1	
	1250			12.36	5.47	0.047	5.06	237.5	2.6	750	-	1	
⊢	1310					0.045	5.10	239.5	1.4	750	21.93	iv	
_		ceptan			ass/fai			243.) No N/		750	21.15	(continued	ont
	Has Has	s requi s requi ve para	red v red tu amete	olume urbidity ers sta	been r	emoved reached	$\mathbf{X}$		] ]			(continuou	
3.	SAMP	LE CO	LLE	CTION	1:	Method:	Bludder	pump	teFlow	6 laddir	r tubin	<u>'9</u>	
	ample ID			ntainer L Ad		No. of Cor		Prese	ervation	Analysi Diox	s Req. anc 1,4	Time /60	-
_	2-612				VUA		3	ł	101	Voc		160	_
									_				_
C	omment	s_u	- ata	"	R 12	:15							
_			6		$\sum$	0							
Si	ignature					$\square$	$\searrow$			Date	12/30	/14	
				L	$\bigvee$								

# BROW 4-12

### Purge Volume Calculation

Feet of Water in Well	32 28 24 20 16 12 8 4 0 0 1		2 II 4 5 solutions of Water	235° ID	3* ID 4* ID 6* ID 8 9 10		Volume / ID (in) 0.25 0.375 0.5 0.75 1 1.25 1.5 2 2.5 3 4 6	Gallon 0.0025 0.0057 0.0102 0.0229 0.0408 0.0637 0.0918	t. of Pipe Liter 0.0097 0.0217 0.0386 0.0869 0.1544 0.2413 0.3475 0.6178 0.9653 1.3900 2.4711 5.5600	
(continued f										
<del></del> .	Volume	-				0	<b></b>			
Time (24 hr)	Removed (Liters)	Temp (°C)	pН	Spec. Cond. (µS/cm)		ORP	Turbidity		Drawdown	Color/Odor
(24 11)	(Liters)	12.24	5.41	(µ3/cm) 0.04%	(mg/L) 5 ⁻ .14	(mV) [ ጊዛፕ.ር	(NTU) 1.3	(ml/min) 2.So	(ft)	Clear / None
1370	-	12.31	5.41	0.044	5.14	245.1	1.3	250	-	Clear / None
1340	21.25	12.27	5.40	0.044	5.13	248.7	1.5	750	21.91	
1350	-	12.27	5-40	0.039	512	251.9	1.3	250	-	1 e .
1400	-	12.25	5.40	0-034	5.09	251.4	1.3	250	~	11
1410	31.25	12:25	5.39	0.035	5.07	257.3	1.2	250	22.04	3.6
1420	-	12.24	5.39	0.034	4.97	258.9	1.1	575	22.04	(3
1490	42.75	12.25	5.40	0.034	4.91	259.3	0.9	575	-	<u>, 1</u>
1500	~	12.41	5.43	0.034	5-30	261.6	1.1	575	22.11	11
1570	-	12.09	5.49	0.035	4.43	263.1	1.8	575	72.11	13
1545	-	12.00	5.53	0.036	4.24	261.1	2.6	575	22.11	<u></u>
1555		12.45	5.56	0.037	4.15	256.2	1.9	575	22.11	
1600	~99	12.55	5.54	0.037	4.21	255.7	2.4	575	22.11	11
				-						
								1.6		
			1							

Olicet 1	Janes 1	Calle ac	61 .			Date: 12/3	to I u			A0 A.
Client:	Vary (	602665	-		L	Date: 127	507 19	l in	ne: Start <u>Ic</u>	
Site Locat				P. H. Press					Finish 1	50 am/
				C 10 mph		Collector(s)	G.	H/JC		
			•	red from Top			r/			otor/Mataria
				c. Length of	5				Casing Diam	Pik
b. Wat	er Table	Depth 7	3.34	d. Calculated	Sveten	/olume (see	back)	76991	9	110
2. WELL a. Purç	ge Metho		ieo tecl	h bladder 1	pump i	N/ drop	tube			
b. Acc	eptance (	Criteria c	lefined (	(see workplan)	)					
	perature	3%		-D.O.	10%					
- pH	• a a d			- ORP	<u>+</u> 10m	۱V				
- sp. C	ond.	3%	)	- Drawdown	< 0.3					
c. Field	d Testing	Equipm	ent use		ake		Model		Serial	Number
			-	<u></u>		· •	6970	14.0		
	Volume			HANNA		10	rbidity Mu	HF-		
	Removed		<u>рН</u> -	Spec. Cond.	DO	ORP	Turbidity	Flow Rate	Drawdown	Color/Od
(24hr)	(Liters)	(°C)		(µS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	(feet)	
1000	-	11.42	5.45	6.053	4.75	209.2	161.1	~ 775	23.34	Clusty / 1
1120	~	11.90	S.45	6.053	4.29	210.6	167.0	275	-	h h
izio	8 991	12.87	5.07	0.035	5-70	227.1	44.4	250	~	ាត
1240	13 911	17.27	5.06	0.035	5.13	229.1	49.6	500	1	ls le
1310	18 941 20 941	13:29		0.035	4.95	730.8	62.1	307 672		10
	eptance				Yes N			300		(continued on b
	required					] 🛛				
	required			eached						
	e parame If no or N			OW.						
			,me pr				5			
3. SAMPI	E COLL	ECTION	ł: 1	Method:	udder pro	nr, tei	flon bla	ddur + f	ubing	
Sample ID		ontainer	Туре	No. of Conta	ainers	Prese	vation	Analysi	s Req.	Time
4-2R-GW-17		LAG		2					am 1,4	14:50
4-2R-GW-1	25014 4	IOML V	UA	3		I-1C	(	VOC.	٤	1430
Comments	s Wat	er @	1035							
	6	$\frown$		$\cap$						
	/		/		~	-				
	(			X /					1/6/	15

# BPOW 4-2R

## Purge Volume Calculation

Feet of Water in Well	10 10 10 10 10 10 10 10 10 10							Linear Ft Gallon 0.0025 0.0057 0.0102 0.0229 0.0408 0.0637 0.0918 0.1632 0.2550 0.3672 0.6528 1.4688	. of Pipe Liter 0.0097 0.0217 0.0386 0.0869 0.1544 0.2413 0.3475 0.6178 0.9653 1.3900 2.4711 5.5600	
(continued										
Time (24 hr)	Volume Removed (Liters)	Temp (°C)	ρН	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (ft)	Color/Odor
1340	22941	12.66	5.00	0-034	4.75	238.6	68.2	400		14
1400	23.5 441	12.61	5.01	0.034	4.60	238.3	68.4	400	-	6
1410	-	12.43	4.99	0.034	4.55	243.0	64.2	-	2 <b>-</b>	
1430	26 9 41	12.42	5.00	0.035	4.62	241.4	66.3	-	+	ri -

## BPOW4-1R and BPOW4-2R Analytical Data Validation

- Analytical Data Sheets
- Chain of Custody Records
- Validation Letter and Table



## Data Validation Report

Project:	Regional Groundwater Investigation - NWIRP Bethpage				
Laboratory:	Katahdin Analytical				
Service Request:	SH5941				
Analyses/Method	: EPA SW-846 Method 8260B for VOCs ( Total Organic Carbon by High-Tempera				
Validation Level:	3				
AECOM Project Number:	60266526.SA.DV				
Prepared by:	Dawn Brule/RESCON	Completed on: 12/18/2014			
Reviewed by:	Lori Herberich/RESCON	File Name: SH5941_5310B and 8260B			

#### SUMMARY

The samples listed below were collected by Resolution Consultants from the Regional Groundwater Investigation - NWIRP Bethpage site on July 31, 2014.

Sample ID	Matrix/Sample Type		
BP0W4-2R-FB-073114	Field blank		
TRIP BLANK_07312014	Trip Blank		

The samples were analyzed in accordance with:

- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW846, Method 8260B, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (USEPA, 1996).
- Standard Methods for the Examination of Water and Wastewater, Method SM5310B, Total Organic Carbon by High-Temperature Combustion

Data validation activities were conducted with reference to these methods, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010), and Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (DoD, October 2010) where applicable. In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

#### **REVIEW ELEMENTS**

The data were evaluated based on the following review elements (where applicable to the method):

- ✓ Data completeness (chain-of-custody [COC])/sample integrity
- ✓ Holding times and sample preservation
- ✓ GC/MS performance checks
- X Initial calibration/continuing calibration verification

- ✓ Laboratory blanks/equipment blanks/trip blanks
- X Surrogate spike recoveries
- NA Matrix spike (MS) and/or matrix spike duplicate (MSD) results
- ✓ Laboratory control sample (LCS) results
- NA Field duplicate results
- Internal standard results
- ✓ Sample results/reporting issues

The symbol ( $\checkmark$ ) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. The symbol (X) indicates that a QC nonconformance resulted in the qualification of data. Any QC nonconformance that resulted in the qualification of data is discussed below. In addition, nonconformances or other issues that were noted during validation, but did not result in qualification of data, may be discussed for informational purposes only.

The data appear valid as reported and may be used for decision making purposes. Selected data points were estimated due to nonconformances of certain QC criteria (see discussion below). Qualified sample results are presented in Table 1.

#### RESULTS

#### Data Completeness (COC)/Sample Integrity

The data package was reviewed and found to meet acceptance criteria for completeness:

- The COCs were reviewed for completeness of information relevant to the samples and requested analyses, and for signatures indicating transfer of sample custody.
- The laboratory sample login sheet(s) were reviewed for issues potentially affecting sample integrity, including the condition of sample containers upon receipt at the laboratory.
- Completeness of analyses was verified by comparing the reported results to the COC requests.

#### **Holding Times and Sample Preservation**

Sample preservation and preparation/analysis holding times were reviewed for conformance with the QC acceptance criteria. The QC acceptance criteria were met.

#### **GC/MS Performance Checks**

The data were reviewed to ensure that the 4-bromofluorobenzene (BFB) tuning was performed at the correct frequency and that the method acceptance criteria were met. The QC acceptance criteria were met.

#### Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

 the initial calibration (ICAL) percent relative standard deviation (%RSD), correlation coefficient (r)/coefficient of determination (r²), and/or response factor method acceptance criteria were met;

2

- the initial calibration verification (ICV) percent recovery (%R) criteria were met;
- the continuing calibration verification standard (CCV) method percent difference or percent drift (%Ds) and RF acceptance criteria were met; and/or
- the retention time method acceptance criteria were met.

Nonconformances are summarized in Attachment A in Tables A-1 and A-2.

Data qualification to the analytes associated with the specific ICAL and/or CCV was as follows:

#### **ICAL Linearity Nonconformances:**

Nonconformance	Actions			
	Detected Results	Nondetected Results		
%RSD > 15% and quantitation based on mean RF	J	UJ		
r or $r^2 < 0.99$ and quantitation based on linear regression	J*	UJ*		

#### **ICV Recovery Nonconformances:**

Nonconformance	Actions			
Noncomormance	Detected Compounds	Nondetected Compounds		
%R > 120%	J	No gualification		
20% < %R < 80%	J	UJ		
%R <20% (see note)	J	R*		

Notes: Based on NFG 2008 VOC guidance, professional judgment is used to reject (R) nondetects in all associated samples for any analyte with < 20% recovery. Also, professional judgment is used to estimate (UJ) rather the reject (R) sample results previously negated (U) on the basis of blank contamination.

Qualified sample results are shown in Table 1.

#### Laboratory Blanks/Equipment Blanks/Trip Blanks

Laboratory method blanks, equipment rinsate and trip blanks were evaluated as to whether there were contaminants detected above the detection limit (DL). An equipment blank was not submitted with the samples in this data set.

Data validation qualifications for individual samples are based on the maximum contaminant concentration detected in all associated blanks.

Method, field, and trip blank results were reviewed for conformance with the QC acceptance criteria. Detected results in blanks are not discussed in this data validation report if the associated results were nondetect or if qualification of sample results was not required. The QC acceptance criteria were met and/or qualification of the sample results was not required.

#### Surrogate Spike Recoveries

The surrogate recoveries (%Rs) were reviewed for conformance with the QC acceptance criteria.

Nonconformances are summarized in Attachment A in Table A-3.

Data qualification on the basis of surrogate recovery nonconformances was as follows:

	Action				
Nonconformance	Detected Compounds	Nondetected Compounds			
%R > Upper Limit (UL)	J	No qualification			
20% ≤%R < Lower Limit (LL)	J	UJ			
%R < 20%	J	R			

Qualified sample results are shown in Table 1.

#### MS/MSD Results

MS/MSD analyses were not performed on samples reported in this SDG. There were no validation actions taken on this basis.

#### LCS Results

The LCS %Rs were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

#### Field Duplicate Results

There were no field duplicate samples submitted with this data set. No validation actions were taken on this basis.

#### **Internal Standard Results**

The internal standard (IS) recoveries were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

#### Sample Results/Reporting Issues

Compounds that were not detected in the sample are reported as not detected (U) at the Limit of Detection (LOD).

Compounds detected at concentrations less than the LOQ but greater than the detection limit (DL) were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

Any sample that was analyzed at a dilution due to high concentrations of target or non-target compounds or matrix interferences was checked to ensure that the results and/or sample specific LODs and LOQs were adjusted accordingly by the laboratory.

#### **QUALIFICATION ACTIONS**

Sample results qualified as a result of validation actions are summarized in Table 1. All actions are described above.

#### ATTACHMENTS

Attachment A: Nonconformance Summary Tables

Attachment B: Qualifier Codes and Explanations

Attachment C: Reason Codes and Explanations

Sample ID	Matrix	Compound	Result	LOD	Units	Validation Qualifiers	Validation Reason
BP0W4-2R-FB-073114	WQ	1,2-DIBROMO-3-CHLOROPROPANE		0.75	UG/L	UJ	С
BP0W4-2R-FB-073114	WQ	ACETONE		2.5	UG/L	UJ	С
BP0W4-2R-FB-073114	WQ	CHLOROFORM	1.2	0.50	UG/L	J	S
TRIP BLANK_07312014	WQ	1,2-DIBROMO-3-CHLOROPROPANE		0.75	UG/L	UJ	с
TRIP BLANK_07312014	WQ	ACETONE		2.5	UG/L	UJ	с

Table 1 - Data Validation Summary of Qualified Data

### Attachment A

### **Nonconformance Summary Tables**

# Table A-1 - Initial Calibration

Calibration Date/Time	Compound	% RSD	Limits
31-JULY-2014 08:18	ACETONE	23	<u>≤</u> 15%
Associated samples: all samples in SI	DG SH5941		

### Table A-2 - Initial Calibration Verification Standard

ICV ID	Compound	% R	Limits
WG147424-8	1,2-DIBROMO-3-CHLOROPROPANE	79	80-120%
Associated samples: all sam	ples in SDG SH5941		

### Table A-3 - Surrogates

Sample ID	Surrogate	% Recovery	Lower Limit	Upper Limit
BP0W4-2R-FB-073114	1,2-DICHLOROETHANE-D4	131	70	120
BP0W4-2R-FB-073114	DIBROMOFLUOROMETHANE	126	85	115
BP0W4-2R-FB-073114	TOLUENE-D8	122	85	120

### Attachment B

# **Qualifier Codes and Explanations**

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

### Attachment C

# **Reason Codes and Explanations**

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
С	Calibration issue
со	Analyte carryover
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate RPDs
h	Holding times
1	Internal standard areas
k	Estimated Maximum Possible Concentration (EMPC)
	LCS or OPR recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs
lp	Laboratory control sample/laboratory control sample duplicate RPDs
m	Matrix spike recovery
md	Matrix spike/matrix spike duplicate RPDs
nb	Negative laboratory blank contamination
p	Chemical preservation issue
r	Dual column RPD
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
x	Percent solids
У	Serial dilution results
Z	ICS results

	Katahdin Sea	) Technology Way arborough, ME 04074 l: (207) 874-2400 x: (207) 775-4029		×	~~ F.	C	PLEA	N of	RDÓW	N AND	DY	Page	a	of
Cli	Resolution (	consultante	5	Conta	ct Vaud	10 4		Phone #		r yı		ax #		
Ad	dross 100 Red Scho	othouse Rd	City			Ridg		State	NY			ie 109	77	
Pu	rchase Order #		j. Name / I					16026	6576	Katahd	in Quote		<u></u>	×
Bil	l (if different than above)				Idress	, <u> </u>	ļ/:		Serve Lailly-					
Sa	mpler (Print / Sign) Gordon	Hicles /	50						Copi	es To:			a.	
		ER #: 5H5 PROJECT NUMBER_	941	5	Filt.	Filt.	Filt.	Filt.	PRESER Filt.	VATIVE Filt	Filt.	Filt.	Filt.	Filt.
RE	MARKS:				20) 241	1	3	1	ſ	a la baixa b	***		:	2) - +1
	IIPPING INFO: D FED EX			NT	÷	3#	3	# #	8		-	2 12	(m) (m)	I
				INTACT	3	See.	1		8			1	ě.	5
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	VOC	toc	i			1		1 3 4		10 10
	BPOW4-2R.FB-073114	7-31-14/ 1300	w	6	J	J								
	Trip Blank	5-2-10/1500	W	3	J									
		/						3						•
		/												
				- Ge										
		/												
			*		2									
	7		*											
		1	12.444					(i						
		/ -												
COM	IMENTS													
C	11 1	1. N.C.I	ved Byr(S	Signature	) R	lelinguish	ed By: (	Signature	07	te / Tir		eceived I		ature)
Ŕ		1-11 1336 V J te / Time Recei	ved By: (S	Signature	)	lelinquish	ed By: (\$	Signature	) Da	(19) 14 te / Tir	ne R	Fed	l∷ X 3y: (Sign	ature)
		THE TERMS AND	1-	oa	<u>  </u>			UEDEO				00	~ ~ 1	

SERVICES, EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS.



Cert No E87604

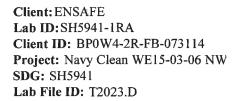
Client: ENSAFE Lab ID: SH5941-1RA Client ID: BP0W4-2R-FB-073114 Project: Navy Clean WE15-03-06 NW SDG: SH5941 Lab File ID: T2023.D

# **Report of Analytical Results**

Sample Date: 31-JUL-14 Received Date: 01-AUG-14 Extract Date: 04-AUG-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG147612 Analysis Date: 04-AUG-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 05-AUG-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	2	2.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Carbon Disulfide	U	0.50	ug/L	1	1	1.0	0.25	0.50
Freon-113	U	0.50	ug/L	1	1	1.0	0.31	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	-t- UJ	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	J	1.2	ug/L	1	1	1.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
2-Butanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	1	1.0	0.31	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	1	1.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	Î	1	1.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.19	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
trans-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Tetrachloroethene	Ū =	0.50	ug/L	1	1	1.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
	D							

Page 1 of


2

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Fulaly





Sample Date: 31-JUL-14 Received Date: 01-AUG-14 Extract Date: 04-AUG-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG147612 Analysis Date: 04-AUG-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 05-AUG-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Xylenes (total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Bromoform	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Methyl Acetate	U	0.75	ug/L	1	1	1.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
M+P-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	2	2.0	0.21	1.0
1,2-Dibromoethane	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,2-Dibromo-3-Chloropropane	-4 45	0.75	ug/L	1	1	1.0	0.50	0.75
P-Bromofluorobenzene		104.	%					
Toluene-d8	*	122.	%					
1,2-Dichloroethane-d4	*	131.	%					
Dibromofluoromethane	*	126.	%					

R12/22/17

Page 2 of 2

http://www.katahdinlab.com

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029



Client: ENSAFE Lab ID: SH5941-2 Client ID: TRIP BLANK Project: Navy Clean WE15-03-06 NW SDG: SH5941 Lab File ID: T2001.D

# **Report of Analytical Results**

Sample Date: 31-JUL-14 Received Date: 01-AUG-14 Extract Date: 01-AUG-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG147482 Analysis Date: 01-AUG-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 05-AUG-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	2	2.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Carbon Disulfide	U	0.50	ug/L	1	1	1.0	0.25	0.50
Freon-113	U	0.50	ug/L	1	1	1.0	0.31	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	4- U J	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
1,1,1-Trichloroethane	$\mathbf{U}$	0.50	ug/L	1	1	1.0	0.20	0.50
2-Butanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	1	1.0	0.31	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	1	1.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.19	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
4-Methyl-2-Pentanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
trans-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	U	2.5	ug/L	1	5	5.0	1.7	2.5
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
	Р	age 1 o	of 2					

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Fisher



Client: ENSAFE Lab ID: SH5941-2 Client ID: TRIP BLANK Project: Navy Clean WE15-03-06 NW SDG: SH5941 Lab File ID: T2001.D

# **Report of Analytical Results**

Sample Date: 31-JUL-14 Received Date: 01-AUG-14 Extract Date: 01-AUG-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG147482

Analysis Date: 01-AUG-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 05-AUG-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Xylenes (total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Bromoform	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Methyl Acetate	U	0.75	ug/L	1	1	1.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
M+P-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	2	2.0	0.21	1.0
1,2-Dibromoethane	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,2-Dibromo-3-Chloropropane	+ UJ	0.75	ug/L	1	1	1.0	0.50	0.75
P-Bromofluorobenzene		89.4	%					
Toluene-d8		105.	%					
1,2-Dichloroethane-d4		110.	%					
Dibromofluoromethane		111.	%υ					8

F12/22/14

Page 2 of 2

http://www.katahdinlab.com

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029







Client: Rick Purdy AECOM 701 Edgewa Wakefield, M	Rick Purdy AECOM 701 Edgewater Drive Wakefield,MA 01880				Lab S Re	Lab Sample ID: SH5941-1 Report Date: 09-AUG-1 Client PO: 16518 Project: Navy Clea SDG: SH5941	b Sample ID: SH5941-1 Report Date: 09-AUG-14 Client PO: 16518 Project: Navy Clean WE15-03-0 SDG: SH5941	3-0		
Sample Description BP0W4-2R-FB-073114	<u>ion</u> 73114					<u>Matrix</u> AQ	Date Sampled 31-JUL-14	1	Date Received 01-AUG-14	
Parameter	Result	Adj LOQ	Ađj MDL	Adj LOD	Adj MDL Adj LOD Anal. Method QC.Batch	QC.Batch	Anal Date	Prep. Method Prep. Date	Prep. Date	Footnotes
Total Organic Carbon	J0.24 mg/L	1.0	0.10	iب	SM5310B	WG147793	WG147793 07-AUG-14 03:20:38	N/A	N/A	



# Data Validation Report

Project:	Regional Groundwater Investigation - I	NWIRP Bethpage
Laboratory:	Test-America, South Burlington, Verme	ont
Service Request:	200-23996	
Analyses/Method:	EPA Method TO-15, VOCs Collected i	n Canisters - GC/MS
Validation Level:	Limited	
RESCON Project Number:	60266526.SA.DV	
Prepared by:	Sheena Blair/RESCON	Completed on: 09/23/2014
Reviewed by:	Lori Herberich/RESCON	File Name: 200-23996_TO-15

### SUMMARY

The sample listed below was collected by Resolution Consultants from the Regional Groundwater Investigation - NWIRP Bethpage site on September 2, 2014.

Sample ID	Matrix/Sample Type
BP0W4-2R-AIR090214	Ambient Air

Data validation activities were conducted with reference to *Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)* (USEPA, Method TO-15) and the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

### **REVIEW ELEMENTS**

The data were evaluated based on the following review elements (where applicable to the method):

- ✓ Data completeness (chain-of-custody [COC])/sample integrity
- ✓ Holding times and sample preservation
- ✓ GC/MS performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks
- NA Matrix duplicate (MD) results
- ✓ Laboratory control sample (LCS) results
- NA Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol ( $\checkmark$ ) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this

validation and therefore not reviewed. The symbol (X) indicates that a QC nonconformance resulted in the qualification of data. Any QC nonconformance that resulted in the qualification of data is discussed below. In addition, nonconformances or other issues that were noted during validation, but did not result in qualification of data, may be discussed for informational purposes only.

The data appear valid as reported and may be used for decision making purposes. There were no data points qualified or rejected on the basis of this data review.

### RESULTS

### **Data Completeness**

The data package was reviewed and found to meet acceptance criteria for completeness:

- The COCs were reviewed for completeness of information relevant to the samples and requested analyses, and for signatures indicating transfer of sample custody.
- The laboratory sample login sheet(s) were reviewed for issues potentially affecting sample integrity, including the condition of sample containers upon receipt at the laboratory.
- Completeness of analyses was verified by comparing the reported results to the COC requests.

### Holding Times/Sample Preservation

Sample preservation and preparation/analysis holding times were reviewed for conformance with the QC acceptance criteria. The QC acceptance criteria were met.

### **GC/MS Performance Checks**

The data were reviewed to ensure that the 4-bromofluorobenzene (BFB) tuning was performed at the correct frequency and that the method acceptance criteria were met. The QC acceptance criteria were met.

### Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- the initial calibration (ICAL) percent relative standard deviation (%RSD), correlation coefficient (r)/coefficient of determination (r²), and/or response factor method acceptance criteria were met;
- the continuing calibration verification standard (CCV) method percent difference or percent drift (%Ds) and RF acceptance criteria were met; and
- the retention time method acceptance criteria were met.

The QC acceptance criteria were met.

### Laboratory Blanks

Laboratory method blanks were evaluated as to whether there were contaminants detected above the detection limit (DL). Blank results were reviewed for conformance with the QC acceptance criteria. Data validation qualifications for individual samples are based on the maximum contaminant concentration detected in all associated blanks.

The QC acceptance criteria were met; qualification of the sample results was not required.

### **MS/MSD Results**

MS/MSD analyses were not performed on samples reported in this SDG. There were no validation actions taken on this basis.

### LCS Results

The LCS recoveries were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

### **Field Duplicate Results**

There were no field duplicate samples submitted with this data set. No validation actions were taken on this basis.

### Internal Standard Results

The internal standard (IS) recoveries were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

### Sample Results/Reporting Issues

Compounds that were not detected in the sample are reported as undetected (U) at the Limit of Detection (LOD).

Compounds detected at concentrations less than the LOQ but greater than the detection limit (DL) were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

Any sample that was analyzed at a dilution due to high concentrations of target or non-target compounds or matrix interferences was checked to ensure that the results and/or sample specific LODs and LOQs were adjusted accordingly by the laboratory.

### **QUALIFICATION ACTIONS**

No sample results were qualified as a result of this data review.

### **ATTACHMENTS**

Attachment A: Nonconformance Summary Tables

Attachment B: Qualifier Codes and Explanations

### Attachment A

# Nonconformance Summary Tables

No nonconformances were identified during this review.

### Attachment B

# **Qualifier Codes and Explanations**

Qualifier	Explanation
	The analyte was positively identified; the associated numerical value is the approximate
J	concentration of the analyte in the sample.
	The analyte was not detected above the reported sample quantitation limit. However, the
UJ	reported quantitation limit is approximate and may or may not represent the actual limit of
	quantitation necessary to accurately and precisely measure the analyte in the sample.
	The analyte was analyzed for, but was not detected above the reported sample
U	quantitation limit.
	The sample results are rejected due to serious deficiencies in the ability to analyze the
R	sample and meet quality control criteria. The presence or absence of the analyte cannot
	be verified.

**TestAmerica Burlington** 30 community Drive

# **Canister Semples Chain of Custody Record**

ŝ

												•			
Cilent Contect Information	Project Manager		leiner	Fleiner Vivador	2	Samples	Samples Collected By:	773	Chris	Christellel.	4	-[	800		
Company: Rescon	Phone: 9		sh-sc	22									ł	ł	ł
	Emuth	eanor.V	Neuda	Elenor, Wrandane accom. com	om.con	6		_					_		
CHISERED CLOSER RIDE, LH 1013									-				-	_	_
Phone: 1- 245- 425-4470	TA Contect:	#										_			
Project Nerres: NULTIRPI NULV - Rethrow - R		Analysis	Analysis Turneround Time	nd Time		-								-	
		Standard (Specify)	Decity	>		_			-		44				
POF		Rent (Standard										-		_	_
				Contrast Viscons in	Configure Vincentian			81	V 3C	V SeC		d/L	tile ineri Ale ineriate	and Rea	
Service Identification	Date(a)	The Bert The Ber	in the			Q.	Canistar IC	or	-#	aR	60 AO		-	+	
BANUT-28 AIROADH		7:51	10:21	-30		2768	2745	Z	_		-	+	+	+	
								_	-			4	+	1	
													-	_	
													-		
												-	_	_	
										-		-	_		
				) and a second second	(Pahembol)										
		<b>Interfect</b>		Aunitions						H I I I I I I I I I I I I I I I I I I I					
	Ling	A 1(	_	22	110										
	1	Z	-	47	10										
			•	E	time of Hg)										
	4	Interder	-	8 D				200-23	5988	200-23996 Chain of Custody	retody				
	I	N/L			29			2							
	8top	Z	_	89,8	5							1			
Special Instructiona/QC Requirements & Comments	2				8.8										
bumpeles Kelaguisher by	DATE/TIMET		9-2-14/16:10	16:10	i. G					2					
TUNTER TW	Deta/Time:		-	-	mpies Re	Samples Received by:				$\vdash$		1	1.		
2	6	hile16	2	11:00			IPON EX			Т					
Surgies Reinguished by:	DeterTime:			<u>~</u>	Received by:										
Removiened by:	Data/Time:	17/6	$\square$	NU R	Received by	1				Г					
		1. 1.	M		S	181									

.

No.

2

CONTRACTOR CONTRACTOR CONTRACTOR

09/15/2014



# **Analytical Data**

### Client: Katahdin Analytical Services

### Client Sample ID: BP0W4-2R-AIR090214

Lab Sample ID: 200-23996-1 Client Matrix: Air Job Number: 200-23996-1 Sdg Number: 200-23996

Date Sampled: 09/02/2014 1601 Date Received: 09/04/2014 1040

Analysis Method:	TO-15	Analysis Batch:	200-77123		Instrument ID:	CHG.i
Prep Method:	Summa Canister	Prep Batch:	N/A		Lab File ID:	9408_011.D
Dilution:	1.0	riop Baton.			Initial Weight/Volume:	298 mL
Analysis Date:	09/11/2014 1935				-	290 mL
•					Final Weight/Volume:	
Prep Date:	09/11/2014 1935				Injection Volume:	200 mL
nalyte		Result (p	pb v/v)	Qualifie	er DL	LOQ
,1,1-Trichloroethar	ne	0.080		U	0.20	0.20
,1,2,2-Tetrachloro	ethane	0.030		U	0.20	0.20
,1,2-Trichloro-1,2,3	2-trifluoroethane	0.030		U	0.20	0.20
,1,2-Trichloroethar	1e	0.030		U	0.20	0.20
,1-Dichloroethane		0.080		U	0.20	0.20
,1-Dichloroethene		0.080		U	0.20	0.20
,2,4-Trichlorobenz	ene	0.080		U	0.50	0.50
,2-Dibromoethane	(EDB)	0.080		υ	0.20	0.20
,2-Dichlorobenzen	e	0.030		U	0.20	0.20
,2-Dichloroethane		0.030		U	0.20	0.20
,2-Dichloropropan	e	0.080		υ	0.20	0.20
cetone		6.6			5.0	5.0
,3-Dichlorobenzen	e	0.030		υ	0.20	0.20
,4-Dichlorobenzen		0.030		U	0.20	0.20
-Butanone (MEK)		0.94			0.50	0.50
-Hexanone		0.20		U	0.50	0.50
-Methyl-2-pentano	ne	0.080		Ŭ	0.50	0.50
Senzene		0.35		-	0.20	0.20
Bromoform		0.030		U	0.20	0.20
romomethane		0.080		Ŭ	0.20	0.20
arbon disulfide		0.20		Ŭ	0.50	0.50
arbon tetrachloride	9	0.080		Ŭ	0.20	0.20
hlorobenzene	5	0.030		Ŭ	0.20	0.20
)ibromochlorometh	200	0.030		U	0.20	0.20
Chloroethane		0.080		υ	0.50	0.50
Chloroform		0.080		υ	0.20	0.20
hloromethane		0.080		0		
	200			TT.	0.50	0.50
is-1,2-Dichloroethe		0.080		U	0.20	0.20
is-1,3-Dichloroprop	Jalia	0.080		U	0.20	0.20
Cyclohexane		0.48		M	0.20	0.20
romodichlorometh		0.030		U	0.20	0.20
ichlorodifluoromet	nane	0.080		U	0.50	0.50
thylbenzene		0.030		U	0.20	0.20
opropylbenzene		0.030		U	0.20	0.20
lethyl tert-butyl eth	er	0.080		U	0.20	0.20
lethylene Chloride		0.20		UМ	0.50	0.50
n,p-Xylene		0.54			0.50	0.50
ylene, o-		0.030		U	0.20	0.20
tyrene		0.030		U	0.20	0.20
etrachloroethene		0.030		U	0.20	0.20
oluene		0.99			0.20	0.20
ans-1,2-Dichloroet	hene	0.080		U	0.20	0.20
ans-1,3-Dichloropr	opene	0.080		U	0.20	0.20
richloroethene		0.080		U	0.20	0.20
richlorofluorometha	апе	0.23			0.20	0.20
inyl chloride		0.080		U	0.20	0.20

# **Analytical Data**

### Client: Katahdin Analytical Services

### Client Sample ID: BP0W4-2R-AIR090214

Lab Sample ID: 200-23996-1 Client Matrix: Air Job Number: 200-23996-1 Sdg Number: 200-23996

Date Sampled: 09/02/2014 1601 Date Received: 09/04/2014 1040

Analysis Method:	TO-15	Analysis Batch:	200-77123	Inst	rument ID:	CHG.i	
Prep Method:	Summa Canister	Prep Batch:	N/A		File ID:	9408_0	011.D
Dilution:	1.0				al Weight/Volume:	298 n	
Analysis Date:	09/11/2014 1935				al Weight/Volume:	200 n	
Prep Date:	09/11/2014 1935				ction Volume:	200 n	
i iep Dale.	00/11/2014 1000			n ije		200 11	
Analyte		Result (p	pb v/v)	Qualifier	DL	LO	DQ
Xylene (total)		0.54			0.20	0.	20
Analyte		Result (u	g/m3)	Qualifier	DL	L	DQ
1,1,1-Trichloroethar	e	0.44		U	1.1	1.	.1
1,1,2,2-Tetrachloroe	ethane	0.21		U	1.4	1.	4
1,1,2-Trichloro-1,2,2	2-trifluoroethane	0.23		U	1.5	÷ 1.	5
1,1,2-Trichloroethar	e	0.16		U	1.1	1.	1
1,1-Dichloroethane		0.32		U	0.81	0.	81
1,1-Dichloroethene		0.32		U	0.79	0.	79
1,2,4-Trichlorobenze	ene	0.59		U	3.7	3.	7
1,2-Dibromoethane	(EDB)	0.61		U	1.5	1.	5
1,2-Dichlorobenzen		0.18		U	1.2	1.	2
1,2-Dichloroethane		0.12		U	0.81	0.	81
1,2-Dichloropropane	•	0.37		U	0.92	0.	92
Acetone		16			12	12	2
1,3-Dichlorobenzen	9	0.18		U	1.2	1.	2
1,4-Dichlorobenzen	9	0.18		U	1.2	1.	2
2-Butanone (MEK)		2.8			1.5	1.	
2-Hexanone		0.82		U	2.0	2.	
4-Methyl-2-pentano	ne	0.33		U	2.0	2.	0
Benzene		1.1			0.64		64
Bromoform		0.31		U	2.1	2.	.1
Bromomethane		0.31		U	0.78	0.	78
Carbon disulfide		0.62		Ŭ	1.6	1.	
Carbon tetrachloride	)	0.50		Ū	1.3	° 1.	
Chlorobenzene		0.14		Ŭ	0.92		92
Dibromochlorometh	ane	0.26		Ŭ	1.7	1.	
Chloroethane		0.21		U	1.3	1.	
Chloroform		0.39		Ŭ	0.98		.98
Chloromethane		1.4			1.0	1.	
cis-1,2-Dichloroethe	ne	0.32		U	0.79		.79
cis-1,3-Dichloroprop		0.36		Ŭ	0.91		.91
Cyclohexane		1.6		M	0.69		69
Bromodichlorometh	ane	0.20		U	1.3	1.	
Dichlorodifluorometi		0.40		Ŭ	2.5	2.	
Ethylbenzene		0.13		U	0.87		.87
Isopropylbenzene		0.15		U	0.98		.98
Methyl tert-butyl eth	er	0.29		Ŭ	0.72		.72
Viethylene Chloride		0.69		ŬМ	1.7	1.	
n,p-Xylene		2.3			2.2	2.	
Xylene, o-		0.13		U	0.87		87
Styrene		0.13		U	0.85		85
Tetrachloroethene		0.13		U	1.4	0. 1.	
Toluene		3.7		0	0.75		4 75
trans-1,2-Dichloroet	hene	0.32		U	0.79		79
	1041103	0.32		0	0.10	υ.	

# **Analytical Data**

### Client: Katahdin Analytical Services

Lab Sample ID:

**Client Matrix:** 

### Client Sample ID: BP0W4-2R-AIR090214

Air

200-23996-1

Job Number: 200-23996-1 Sdg Number: 200-23996

Date Sampled: 09/02/2014 1601 Date Received: 09/04/2014 1040

		TO-15 Volatile Organic	Compounds i	n Ambient Ai	r	
Analysis Method:	TO-15	Analysis Batch:	200-77123		trument ID:	CHG.i
Prep Method:	Summa Canister	Prep Batch:	N/A	Lab	File ID:	9408_011.D
Dilution:	1.0			Initi	al Weight/Volume:	298 mL
Analysis Date:	09/11/2014 1935			Fina	al Weight/Volume:	200 mL
Prep Date:	09/11/2014 1935			Inje	ection Volume:	200 mL
Analyte		Result (u	g/m3)	Qualifier	DL	LOQ
Trichloroethene		0.43		U	1.1	1.1
Trichlorofluorometh	ane	1.3			1.1	1.1
Vinyl chloride		0.20		U	0.51	0.51
Xylene (total)		2.3			0.87	0.87



Resolution Consultants 250 Apollo Drive Chelmsford, MA 01824 978.905.2100 tel 978.905.2101 fax

# Data Validation Report

Project:	Regional Groundwater Investigation - N	WIRP Bethpage
Laboratory:	Katahdin Analytical	
Service Request:	SH8620	
Analyses/Method	TOC in waters and domestic/ industrial	(GC/MS), EPA SW-846 Method 9060A for wastes(Carbonaceous Analyzer) and c Carbon by High-Temperature Combustion
Validation Level:	3	
AECOM Project Number:	60266526.SA.DV	
Prepared by:	Dawn Brule/RESCON	Completed on: 12/08/2014
Reviewed by:	Lori Herberich/RESCON	File Name: SH8620_5310B, 8260B and 9060A

### SUMMARY

The samples listed below were collected by Resolution Consultants from the Regional Groundwater Investigation - NWIRP Bethpage site on October 7 and 8, 2014 and September 15, 2014.

Sample ID	Matrix/Sample Type
BPOW4-2R-EB-10072014	Equipment blank
BPOW4-2R-FB-10072014	Field blank
BPOW4-2R-SOIL-10072014-673-675	Soil
BPOW4-2R-SOIL-10082014-738-740	Soil
BPOW4-2R-TRIP BLANK	Trip Blank

The samples were analyzed in accordance with:

- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, Method 8260B, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (USEPA, 1996).
- Standard Methods for the Examination of Water and Wastewater, Method SM5310B, Total Organic Carbon by High-Temperature Combustion
- Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, Method 9060A, Total Organic Carbon (USEPA, 1996).

Data validation activities were conducted with reference to these methods, USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review (June 2008), USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review (January 2010), and Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (DoD, October 2010) where applicable. In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

### **REVIEW ELEMENTS**

The data were evaluated based on the following review elements (where applicable to the method):

- ✓ Data completeness (chain-of-custody [COC])/sample integrity
- Holding times and sample preservation
- GC/MS performance checks
- X Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks/trip blanks
- ✓ Surrogate spike recoveries
- NA Matrix spike (MS) and/or matrix spike duplicate (MSD) results
- ✓ Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) results
- NA Field duplicate results
- Internal standard results
- ✓ Sample results/reporting issues

The symbol ( $\checkmark$ ) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. The symbol (X) indicates that a QC nonconformance resulted in the qualification of data. Any QC nonconformance that resulted in the qualification of data is discussed below. In addition, nonconformances or other issues that were noted during validation, but did not result in qualification of data, may be discussed for informational purposes only.

The data appear valid as reported and may be used for decision making purposes. Selected data points were estimated and/or negated due to nonconformances of certain QC criteria (see discussion below). Qualified sample results are presented in Table 1.

### RESULTS

### Data Completeness (COC)/Sample Integrity

The data package was reviewed and found to meet acceptance criteria for completeness:

- The COCs were reviewed for completeness of information relevant to the samples and requested analyses, and for signatures indicating transfer of sample custody.
- The laboratory sample login sheet(s) were reviewed for issues potentially affecting sample integrity, including the condition of sample containers upon receipt at the laboratory.
- Completeness of analyses was verified by comparing the reported results to the COC requests.

Due to limitations in the reporting system, the laboratory omitted either part of or the whole "BPOW4-" prefix and truncated "Soil" in the ID for the soil samples in the report. The submitted EDD file reflects the full sample ID.

### Holding Times and Sample Preservation

Sample preservation and preparation/analysis holding times were reviewed for conformance with the QC acceptance criteria. The QC acceptance criteria were met.

### **GC/MS Performance Checks**

The data were reviewed to ensure that the 4-bromofluorobenzene (BFB) tuning was performed at the correct frequency and that the method acceptance criteria were met. The QC acceptance criteria were met.

### Initial Calibration/Continuing Calibration Verification

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that

- the initial calibration (ICAL) percent relative standard deviation (%RSD), correlation coefficient (r)/coefficient of determination (r²), and/or response factor method acceptance criteria were met;
- the initial calibration verification (ICV) percent recovery (%R) criteria were met;
- the continuing calibration verification standard (CCV) method percent difference or percent drift (%Ds) and RF acceptance criteria were met; and/or
- the retention time method acceptance criteria were met.

Nonconformances are summarized in Attachment A in Table A-1.

Data qualification to the analytes associated with the specific ICAL and/or CCV was as follows:

### **ICV Recovery Nonconformances:**

Nonconformance	Ad	ctions
Noncomormance	Detected Compounds	Nondetected Compounds
%R > 120%	J	No qualification
20% < %R < 80%	J	UJ
%R <20% (see note)	J	R*

Notes: Based on NFG 2008 VOC guidance, professional judgment is used to reject (R) nondetects in all associated samples for any analyte with < 20% recovery. Also, professional judgment is used to estimate (UJ) rather the reject (R) sample results previously negated (U) on the basis of blank contamination.

Qualified sample results are shown in Table 1.

### Laboratory Blanks/Equipment Blanks/Trip Blanks

Laboratory method blanks, equipment rinsate and trip blanks were evaluated as to whether there were contaminants detected above the detection limit (DL).

Data validation qualifications for individual samples are based on the maximum contaminant concentration detected in all associated blanks.

Method, equipment rinsate and trip blank results were reviewed for conformance with the QC acceptance criteria. Detected results in blanks are not discussed in this data validation report if the associated results were nondetect or if qualification of sample results was not required.

Nonconformances are summarized in Attachment A in Table A-2,

TOC sample results were qualified as follows:

Blank Type	Blank Result	Sample Result	Action for Samples	
ICB/CCB	≥DL but ≤ LOQ	Nondetect	No action	

Blank Type	Blank Result	Sample Result	Action for Samples
(Positive)		≥DL but ≤LOQ	Qualify as nondetect (U) at the LOQ
		> LOQ	Use professional judgment (see below [1])
		≥DL but ≤LOQ	Qualify as nondetect (U) at the LOQ
		> LOQ but < ICB/CCB	Qualify at level of Blank Result with a "U" or
		Result	Qualify result as unusable
	>LOQ	>ICB/CCB but <10x	
		the ICB/CCB result	Qualify as estimated (J)
		≥10x ICB/CCB	No action is taken based on professional judgmen
		≥DL but ≤ LOQ	Qualify as nondetect (U) at the LOQ
		>LOQ but < 10x Blank	
PB / EB/ FB	> LOQ	Result	Qualify results as unusable
(Positive)		≥10x Blank Result	No action
		Nondetect	No action
	≥DL but ≤LOQ	>DL but <loq< td=""><td>Qualify as nondetect (U) at the LOQ</td></loq<>	Qualify as nondetect (U) at the LOQ
	(1997)	> LOQ	Use professional judgment (see below [1])

[1] Establish an action level (AL) at 5x the blank contamination. If sample result is <AL, qualify the reported result with a U. LOQ - Limit of Quantitation.

Qualified sample results are shown in Table 1.

### Surrogate Spike Recoveries

The surrogate recoveries (%Rs) were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

### MS/MSD Results

MS/MSD analyses were not performed on samples reported in this SDG. There were no validation actions taken on this basis.

### LCS/LCSD Results

The LCS/LCSD %Rs and/or relative percent recoveries (RPDs) were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

### Field Duplicate Results

There were no field duplicate samples submitted with this data set. No validation actions were taken on this basis.

### Internal Standard Results

The internal standard (IS) recoveries were reviewed for conformance with the QC acceptance criteria. All QC acceptance criteria were met.

### Sample Results/Reporting Issues

Compounds that were not detected in the sample are reported as not detected (U) at the Limit of Detection (LOD).

Compounds detected at concentrations less than the LOQ but greater than the detection limit (DL) were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

Any sample that was analyzed at a dilution due to high concentrations of target or non-target compounds or matrix interferences was checked to ensure that the results and/or sample specific LODs and LOQs were adjusted accordingly by the laboratory.

### **QUALIFICATION ACTIONS**

Sample results qualified as a result of validation actions are summarized in Table 1. All actions are described above.

### ATTACHMENTS

Attachment A: Nonconformance Summary Tables

Attachment B: Qualifier Codes and Explanations

Attachment C: Reason Codes and Explanations

Sample ID	Matrix	Compound	Result	LOD	Units	Validation Qualifiers	Validation Reason
BPOW4-2R-FB- 10072014	WQ	2-HEXANONE		2.5	UG/L	UJ	с
BPOW4-2R-FB- 10072014	WQ	4-METHYL-2-PENTANONE		2.5	UG/L	UJ	с
BPOW4-2R-SOIL- 10072014-673- 675	SO	TOTAL ORGANIC CARBON		540*	UG/G	U	bf
BPOW4-2R-SOIL- 10082014-738- 740	SO	TOTAL ORGANIC CARBON		670**	UG/G	U	bf
BPOW4-2R-TRIP BLANK	WQ	2-HEXANONE		2.5	UG/L	UJ	с
BPOW4-2R-TRIP BLANK	WQ	4-METHYL-2-PENTANONE		2.5	UG/L	UJ	С

Table 1 - Data Validation Summary of Qualified Data

*LOQ

**sample result

### Attachment A

# Nonconformance Summary Tables

### Table A-1 - Initial Calibration Verification Standard

ICV ID	Compound	% R	Limits
	CHLOROETHANE	131	80-120%
WG151736-7	4-METHYL-2-PENTANONE	73	80-120%
	2-HEXANONE	78	80-120%
Associated samples: all samples in S	DG SH8620		

### Table A-2 - Field Blanks

Blank ID	Compound	Result	LOD	Units	Associated Samples
BPOW4-2R-FB-10072014	TOTAL ORGANIC CARBON	0.50	0.5		BPOW4-2R-SOIL-10072014-673-675 BPOW4-2R-SOIL-10082014-738-740

### Attachment B

# **Qualifier Codes and Explanations**

Qualifier	Explanation
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

### Attachment C

# **Reason Codes and Explanations**

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
С	Calibration issue
со	Analyte carryover
d	Reporting limit raised due to chromatographic interference
fd	Field duplicate RPDs
h	Holding times
1	Internal standard areas
k	Estimated Maximum Possible Concentration (EMPC)
1	LCS or OPR recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs
lp	Laboratory control sample/laboratory control sample duplicate RPDs
m	Matrix spike recovery
md	Matrix spike/matrix spike duplicate RPDs
nb	Negative laboratory blank contamination
р	Chemical preservation issue
r	Dual column RPD
q	Quantitation issue
S	Surrogate recovery
su	Ion suppression
t	Temperature preservation issue
х	Percent solids
У	Serial dilution results
Z	ICS results

ANALYTECAL SERVICES	20 Technology Way arborough, ME (14074 el: (207) 874-2400 ax: (207) 775-4029			CHAIN O PLEASE BI PRINT LE	EAR DOW	/N AND		e of
ClientResolution	Consultants	Contac VIV	ANDON	Phone (	*)		Fax #	
Address 998 C C	MUNTRY Ro #283 City	PLAIN	NULLE	State	NY	Zi	Ip Code	13
Purchase Order #	Proj. Name	e/No. NU	IRP- Bethy	ag /60	265.21	Katahdin C	1.0	
Bill (if different than above)			dress			- <u>'</u> 91,		
Sampler (Print / Sign)	tiles Al Part 1	wett			Сор	ies To:		
LAB USE ONLY WORK ORD	PROJECT NUMBER	-0			PRESER	CONTAINER VATIVES	Store Durch	
REMARKS:								
		LIENT	1 (2)	1 7 2 1		2 4 7		
AIRBILL NO: TEMP BLAI		OT INTACT	100			8 8	* • E	
* Sample Description	Date / Time Matr	Als of			2 27 12	6 1 1	5. J	
BPOW4-2R-FB-10072	10-7-14/0830 Wind	- 6	1330			*		4 1
BPOW +-2R-EB . 10072	014 0845	3	/					
BPOW4-2R-5012-100 BPOW4-2R-5012-1005	2014-1738-74054	 						
Brow 4-2R TRIPA	MAK / []30 Wit	r 3						
							-	
			5					
						+ 9		
COMMENTS	8							4
Paultmath 10.	te / Time Received/By. 730 9-14	- (	Dell	ed By: (Signatu	10-1	e / Time //7 1500	1 / .	By: (Signature)
Relinguished By: (Signature) Da	te / Time Beceived By	(Signature) 10-10-14 09.10		ed By: (Signatu	re) Dat	e / Time		By: (Signature)
AS-COC1	THE TERMS AND CON SERVICES, EXCEPT	DITIONS ON WHEN A S	THE REVERS	E SIDE HEREC	F SHALL	GOVERN EXISTS.	DOOC	DI4



Client ID: POW4-2R-FB-10072014

Project: Navy Clean WE15-03-06 NW

**Client:** ENSAFE

SDG: SH8620

Lab ID: SH8620-1

Lab File ID: C9445.D



# **Report of Analytical Results**

Sample Date: 07-OCT-14 Received Date: 10-OCT-14 Extract Date: 10-OCT-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG151846 Analysis Date: 10-OCT-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 13-OCT-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	2	2.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Carbon Disulfide	U	0.50	ug/L	1	1	1.0	0.25	0.50
Freon-113	U	0.50	ug/L	1	1	1.0	0.31	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
2-Butanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	1	1.0	0.31	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	1	1.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.19	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
4-Methyl-2-Pentanone	4 12	2.5	ug/L	1	5	5.0	1.3	2.5
trans-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
Dibromochloromethane	U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	-t- UJ	2.5	ug/L	1	5	5.0	1.7	2.5
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
	D							

600 Technology Way

P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

F12/22/14

Page 1 of 2



Client ID: POW4-2R-FB-10072014

Project: Navy Clean WE15-03-06 NW

**Client:** ENSAFE

**SDG:** SH8620

Lab ID: SH8620-1

Lab File ID: C9445.D



# **Report of Analytical Results**

Sample Date: 07-OCT-14 Received Date: 10-OCT-14 Extract Date: 10-OCT-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG151846 Analysis Date: 10-OCT-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 13-OCT-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Xylenes (total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Bromoform	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Methyl Acetate	U	0.75	ug/L	1	1	1.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
M+P-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	2	2.0	0.21	1.0
1,2-Dibromoethane	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,2-Dibromo-3-Chloropropane	U	0.75	ug/L	1	1	1.0	0.50	0.75
P-Bromofluorobenzene		98.2	%					
Toluene-d8		104.	%					
1,2-Dichloroethane-d4		112.	%					
Dibromofluoromethane		108.	%					

Page 2 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029



Client ID: BPOW4-2R-TRIP BLAN

Project: Navy Clean WE15-03-06 NW

**Client: ENSAFE** 

SDG: SH8620

Lab ID: SH8620-5

Lab File ID: C9440.D



# **Report of Analytical Results**

Sample Date: 08-OCT-14 Received Date: 10-OCT-14 Extract Date: 10-OCT-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG151846 Analysis Date: 10-OCT-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 13-OCT-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Dichlorodifluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
Chloromethane	U	1.0	ug/L	1	2	2.0	0.36	1.0
Vinyl Chloride	U	1.0	ug/L	1	2	2.0	0.25	1.0
Bromomethane	U	1.0	ug/L	1	2	2.0	0.49	1.0
Chloroethane	U	1.0	ug/L	1	2	2.0	0.55	1.0
Trichlorofluoromethane	U	1.0	ug/L	1	2	2.0	0.24	1.0
1,1-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.35	0.50
Carbon Disulfide	U	0.50	ug/L	1	1	1.0	0.25	0.50
Freon-113	U	0.50	ug/L	1	1	1.0	0.31	0.50
Methylene Chloride	U	2.5	ug/L	1	5	5.0	1.1	2.5
Acetone	U	2.5	ug/L	1	5	5.0	2.2	2.5
trans-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.25	0.50
Methyl tert-butyl Ether	U	0.50	ug/L	1	1	1.0	0.36	0.50
1,1-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.21	0.50
cis-1,2-Dichloroethene	U	0.50	ug/L	1	1	1.0	0.21	0.50
Chloroform	U	0.50	ug/L	1	1	1.0	0.32	0.50
1,1,1-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
2-Butanone	U	2.5	ug/L	1	5	5.0	1.3	2.5
Cyclohexane	U	0.50	ug/L	1	1	1.0	0.31	0.50
Carbon Tetrachloride	U	0.50	ug/L	1	1	1.0	0.22	0.50
Benzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,2-Dichloroethane	U	0.50	ug/L	1	1	1.0	0.20	0.50
Trichloroethene	U	0.50	ug/L	1	1	1.0	0.28	0.50
1,2-Dichloropropane	U	0.50	ug/L	1	1	1.0	0.25	0.50
Bromodichloromethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
cis-1,3-Dichloropropene	U	0.50	ug/L	1	1	1.0	0.19	0.50
Toluene	U	0.50	ug/L	1	1	1.0	0.27	0.50
4-Methyl-2-Pentanone	40	<b>5</b> 2.5	ug/L	1	5	5.0	1.3	2.5
trans-1,3-Dichloropropene	U	0.50	ug/L	1	<u>8</u> 1	1.0	0.20	0.50
1,1,2-Trichloroethane	U	0.50	ug/L	1	1	1.0	0.33	0.50
Tetrachloroethene	U	0.50	ug/L	1	1	1.0	0.40	0.50
Dibromochloromethane	. U	0.50	ug/L	1	1	1.0	0.30	0.50
2-Hexanone	4	<b>T</b> 2.5	ug/L	1	5	5.0	1.7	2.5
Chlorobenzene	U	0.50	ug/L	1	1	1.0	0.22	0.50
Ethylbenzene	U	0.50	ug/L	1	1	1.0	0.21	0.50
		<b>D</b> 1	<b>6</b> •					

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029

Rizhalin

Page 1 of 2



**Client ID:** BPOW4-2R-TRIP BLAN

Project: Navy Clean WE15-03-06 NW

**Client:** ENSAFE

**SDG:** SH8620

Lab ID: SH8620-5

Lab File ID: C9440.D



# **Report of Analytical Results**

Sample Date: 08-OCT-14 Received Date: 10-OCT-14 Extract Date: 10-OCT-14 Extracted By:REC Extraction Method: SW846 5030 Lab Prep Batch: WG151846 Analysis Date: 10-OCT-14 Analyst: REC Analysis Method: SW846 8260C Matrix: AQ % Solids: NA Report Date: 13-OCT-14

Compound	Qualifier	Result	Units	Dilution	LOQ	ADJ LOQ	ADJ MDL	ADJ LOD
Xylenes (total)	U	1.5	ug/L	1	3	3.0	0.25	1.5
Styrene	U	0.50	ug/L	1	1	1.0	0.23	0.50
Bromoform	U	0.50	ug/L	1	1	1.0	0.23	0.50
Isopropylbenzene	U	0.50	ug/L	1	1	1.0	0.23	0.50
1,1,2,2-Tetrachloroethane	U	0.50	ug/L	1	1	1.0	0.38	0.50
1,3-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.26	0.50
1,4-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.24	0.50
1,2-Dichlorobenzene	U	0.50	ug/L	1	1	1.0	0.15	0.50
1,2,4-Trichlorobenzene	U	0.50	ug/L	1	1	1.0	0.37	0.50
Methyl Acetate	U	0.75	ug/L	1	1	1.0	0.53	0.75
Methylcyclohexane	U	0.50	ug/L	1	1	1.0	0.30	0.50
o-Xylene	U	0.50	ug/L	1	1	1.0	0.25	0.50
M+P-Xylenes	U	1.0	ug/L	1	2	2.0	0.59	1.0
1,2-Dichloroethylene (Total)	U	1.0	ug/L	1	2	2.0	0.21	1.0
1,2-Dibromoethane	U	0.50	ug/L	1	1	1.0	0.22	0.50
1,2-Dibromo-3-Chloropropane	U	0.75	ug/L	1	1	1.0	0.50	0.75
P-Bromofluorobenzene		96.9	%					
Toluene-d8		103.	%					
1,2-Dichloroethane-d4		108.	%					
Dibromofluoromethane		106.	%					

Page 2 of 2

600 Technology Way P.O. Box 540, Scarborough, ME 04070 Tel:(207) 874-2400 Fax:(207) 775-4029





		e Footnotes	
	Date Received 10-OCT-14	Prep. Dat	N/A
3-0		Prep. Method Prep. Date Footnotes	N/A
b Sample ID: SH8620-1 Report Date: 04-NOV-14 Client PO: 16518 Project: Navy Clean WE15-03-0 SDG: SH8620	Date Sampled 07-OCT-14 08:30:00	Anal. Date	WG152063 13-0CT-14 19:32:22
Lab Sample ID: SH8620-1 Report Date: 04-NOV-1 Client PO: 16518 Project: Navy Clea SDG: SH8620	<u>Matrix</u> AQ	QC.Batch	WG152063
Lab S. Rej C		Anal. Method QC.Batch	SM5310B
		LOQ Adj MDL Adj LOD	۰
		Adj MDL	0.10
		QOJ [bA	1.0
Rick Purdy AECOM 701 Edgewater Drive Wakefield,MA 01880	<b>tion</b> 0072014	Result	J0.50 mg/L
Client: Rick Purdy AECOM 701 Edgew Wakefield,	Sample Description POW4-2R-FB-10072014	Parameter	Total Organic Carbon

Ì





Client: Rick Purdy AECOM 701 Edgews Wakefield,	Rick Purdy AECOM 701 Edgewater Drive Wakefield,MA 01880				Lab S. Rej G	Sample ID: SH8620 sport Date: 04-NOV Client PO: 16518 Project: Navy C SDG: SH8620	Lab Sample ID: SH8620-2 Report Date: 04-NOV-14 Client PO: 16518 Project: Navy Clean WE15-03-0 SDG: SH8620	03-0		
<u>Sample Description</u> POW4-2R-EB-10072014	<u>tion</u> 0072014					<u>Matrix</u> AQ	Date Sampled 07-OCT-14 08:45:00		Date Received 10-OCT-14	
Parameter	Result	Adj LOQ	Adj MDL	do.I [bA	Adj MDL Adj LOD Anal Method QC.Batch	QC.Batch	Anal. Date	Prep. Method	Prep. Method Prep. Date Footnotes	Footnotes
Total Organic Carbon	J0.38 mg/L	1.0	0.10	نہ ا	SM5310B	WG152063	WG152063 13-OCT-14 20:11-25	N/A	NIA	

1





		Footnotes		
	Date Received	Prep. Date	N/A	30-OCT-14
3-0		Prep. Method Prep. Date	N/A	SM2540G
b Sample ID: SH8620-3 Report Date: 04-NOV-14 Client PO: 16518 - Project: Navy Cican WE15-03-0 SDG: SH8620	Date Sampled 07-OCT-14 13:40:00	Anal. Date	SW846 9060A WGI52215 15-OCT-14 17:15:49 Mod.	WGI53116 30-OCT-14 09:29:44
Lab Sample ID: SH8620-3 Report Date: 04-NOV-1 Client PO: 16518 Project: Navy Cica SDG: SH8620	<u>Matrix</u> SL	QC.Batch	WG152215	WG153116
Lab S Re	2	Adj MDL Adj LOD Anal. Method QC.Batch	SW846 9060A Mod.	SM2540G
		Adj LOD	410	N/A
		Adj MDL	120	
		Adj LOQ	540	I
Rick Purdy AECOM 701 Edgewater Drive Wakefield,MA 01880	<u></u> -675	Result	SAO U Jaar ug/gdrywr	85. %
Client: Rick Purdy AECOM 701 Edgew Wakefield,1	Sample Description 2R-SL100714-673-675		SA0	
Client:	Sample 2R-SLA	Parameter	TOC In Soil	Total Solids

Cirlu ly

MALYTICAL SERVICES



# **Report of Analytical Results**

		5		
		Footnol		
	Date Received	Prep. Date Footnotes	N/A	30-OCT-14
3-0		Prep. Method	N/A	SM2540G
b Sample ID: SH8620-4 Report Date: 04-NOV-14 Client PO: 16518 Project: Navy Clean WE15-03-0 SDG: SH8620	Date Sampled 08-OCT-14 15:15:00	Anal. Date	SW846 9060A WGI52215 15-OCT-14 17:23:41 Mod.	WGI53116 30-0CT-14:09-29:55
Lab Sample ID: SH8620-4 Report Date: 04-NOV-1 Client PO: 16518 Project: Navy Clea SDG: SH8620	<u>Matrix</u> SL	QC.Batch	WG152215	WG153116
Lab S Re		Adj MDL Adj LOD Anal. Method QC.Batch	SW846 9060A Mod.	SM2540G
		Adj LOD	200	N/A
		Adj MDL	140	
		Adj LOQ	660	
Rick Purdy AECOM 701 Edgewater Drive Wakefield,MA 01880	<b>on</b> 740	Result	670 🗸 ug/gdrywt	84, %
Client: Rick Purdy AECOM 701 Edgews Wakefield,	Sample Description 2R-SL100814-738-740	Parameter	TOC In Soil	Total Solids

10.000

Pilar In



# DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Group:	TH0899		
Analyses/Method:	Volatile Organic Compounds (VOCs) by Semivolatile Organic Compounds (SVO via Selective Ion Monitoring (SIM)	U.S. EPA SW-846 Method 8260C Cs) by U.S. EPA SW-846 Method 8270D	
Validation Level:	3		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 02/06/2015	
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: TH0899_8260C_8270D	
SUMMARY			

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 30 December 2014 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York, April 2013.
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York, August 2014.
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York, November 2013.

Sample ID	Matrix/Sample Type	Analysis
BP0W4-1R-GW-123014	Ground water	8260C/ 8270D_SIM
BP0W4-2R-GW-123014	Ground water	8260C/ 8270D_SIM
TRIP BLANK_12302014	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA, 2006), *SW-846 Method 8270D, Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA, 2007), *U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (NFG, June 2008), and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories,



Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

# **REVIEW ELEMENTS**

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody (COC)/sample integrity
- ✓ Holding times and sample preservation
- ✓ GC/MS performance checks
- ✓ Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/trip blanks
- ✓ Surrogate spike recoveries
- NA Matrix spike (MS) and/or matrix spike duplicate (MSD) results
- ✓ Laboratory control sample (LCS)/laboratory control sample duplicate (LCSD) results
- NA Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol ( $\checkmark$ ) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol ( $\varkappa$ ) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

# **Qualifications Actions**

The data was reviewed independently from the laboratory to assess data quality and no results were qualified during this data review. All compounds detected at concentrations less than the limit of quantitation (LOQ) but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. EPA guidelines and Department of Defense guidelines. Attachment A provides final results after data review.

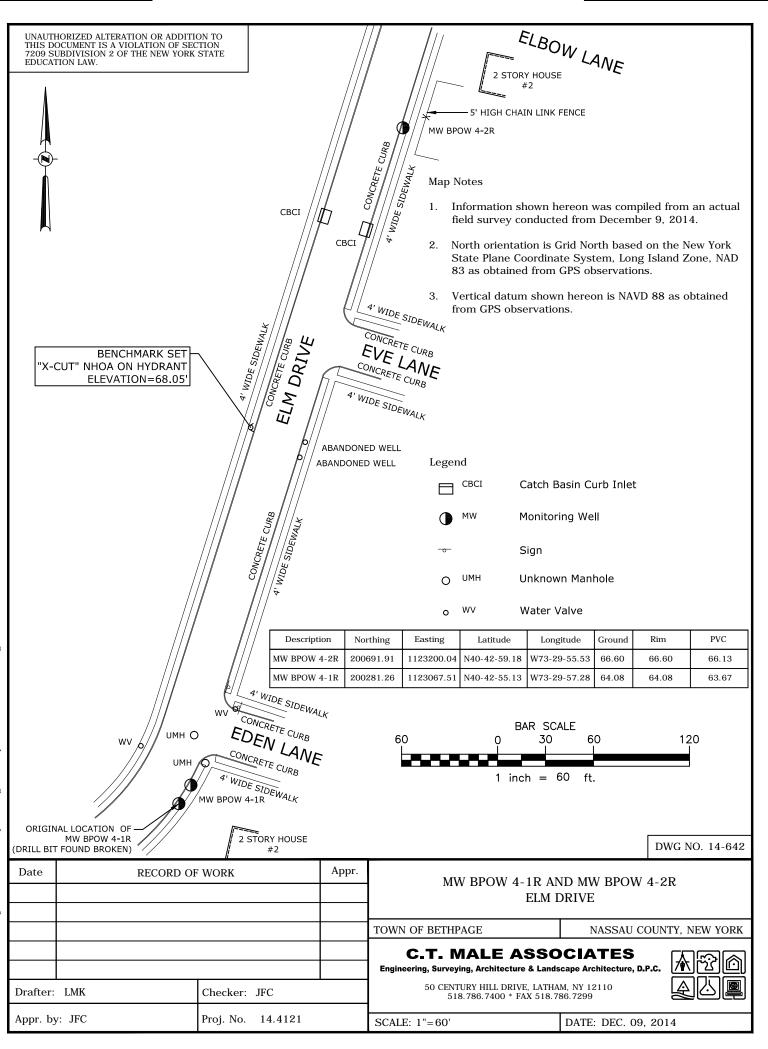


Data Validation Report — Sample Delivery Group TH0899

ATTACHMENTS Attachment A: Final Results after Data Review Attachment A Final Results after Data Review

		Sample Delivery	Group Lab ID	TH0899 TH0899-	
		San	nple ID	BP0W4-2R-GW	
			le Date	12/30/20	14
	1		е Туре	Groundwa	ter
Method	Analyte	CAS No	Units	Result	Qual
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	11	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U
8260C	ACETONE	67-64-1	UG_L	2.5	U
8260C	BENZENE	71-43-2	UG_L	0.5	U
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U
8260C	BROMOFORM	75-25-2	UG_L	0.5	U
8260C	BROMOMETHANE	74-83-9	UG_L	1	U
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U
8260C	CHLOROETHANE	75-00-3	UG L	1	U
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U
8260C	O-XYLENE	95-47-6	UG_L	0.5	U
8260C	STYRENE	100-42-5	UG_L	0.5	U
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U
8260C	TOLUENE	108-88-3	UG_L	0.5	U
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U
8260C	TRANS-1,2-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.73	J
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U U
8260C 8260C	VINYL CHLORIDE	75-09-4	UG_L	1	U
8260C 8260C	XYLENES, TOTAL	1330-20-7	UG_L	<u> </u>	U U
					U
8270D	1,4-DIOXANE	123-91-1	UG_L	1.1	

		Sample Delivery	Group Lab ID	TH0899 TH0899- BP0W4-1R-GW	2
		Samp	ie Date	12/30/20	14
			le Type	Groundwa	
Method		CAS No	Units	Result	Qual
8260C 8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5 0.5	U U
8260C 8260C	1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	79-34-5 76-13-1	UG_L UG_L	8	U
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U
8260C	1,1-DICHLOROETHANE	75-35-4	UG_L	0.5	U
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.75	U
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U
8260C	ACETONE	67-64-1	UG_L	2.5	U
8260C	BENZENE	71-43-2	UG_L	0.5	U
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U
8260C	BROMOFORM	75-25-2	UG_L	0.5	U
8260C	BROMOMETHANE	74-83-9	UG_L	1	U
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U
8260C	CHLOROETHANE	75-00-3	UG_L	1	U
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U
8260C	O-XYLENE	95-47-6	UG_L	0.5	U
8260C	STYRENE	100-42-5	UG_L	0.5	U
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U
8260C	TOLUENE	108-88-3	UG_L	0.5	U
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.84	J
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U
8270D	1,4-DIOXANE	123-91-1	UG_L	1.2	


		Sample Delivery	Lab ID	TH0899 TH0899-	3
			nple ID	TRIP BLANK_12	
			le Date	12/30/20	
			е Туре	Trip Blar	
Method	Analyte	CAS No	Units	Result	Qual
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U
8260C	ACETONE	67-64-1	UG_L	2.5	U
8260C	BENZENE	71-43-2	UG_L	0.5	U
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U
8260C	BROMOFORM	75-25-2	UG_L	0.5	U
8260C	BROMOMETHANE	74-83-9	UG_L	1	U
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U
8260C	CHLOROETHANE	75-00-3	UG_L	1	U
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	U
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U
8260C	O-XYLENE	95-47-6	UG_L	0.5	U
8260C	STYRENE	100-42-5	UG_L	0.5	U
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U
8260C	TOLUENE	108-88-3	UG_L	0.5	U
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	<u> </u>
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U
8270D	1,4-DIOXANE	123-91-1	UG_L	NA	

### Notes:

ID	=	Identification
UG_L	=	Micrograms per liter
Qual	=	Final qualifier
U	=	The analyte was analyzed for, but was not detected above the reported quantitation limit.
J	=	The analyte was positively identified; the associated numerical value is the approximate concentration
		of the analyte in the sample.
NA	=	Analyte not analyzed

Section 6

Survey



CAD DWG. FILE NAME: K:\Projects\144121\Survey\Drawings and Maps\Elm Dr._Elbow Ln.dwg

:XREFS

NONE