2016 OU2 GROUNDWATER INVESTIGATION RE131D1, RE131D2, RE131D3 (VPB165) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP) SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

August 2016

2016 OU2 GROUNDWATER INVESTIGATION RE131D1, RE131D2, RE131D3 (VPB165) INSTALLATION REPORT

> NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

> > Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants A Joint Venture of AECOM & EnSafe 1500 Wells Fargo Building 440 Monticello Avenue Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013 CTO WE15

August 2016

) From Caldwell

Brian Caldwell Contract Task Order Manager

Table of Contents

LIST O	F ACRC	NYMS AND ABBREVIATIONS	iii
1.0	PROJE	CT BACKGROUND	1
	1.1 1.2 1.3	Scope and Objectives Site History Geology and Hydrogeology	1
2.0	FIELD	PROGRAM	4
	2.1 2.2 2.3	Drilling and Well Construction	4
	2.3 2.4 2.5	Decontamination and Investigation Derived Waste (IDW)	5
3.0		ENCES	

Tables

- Table 1
 Monitoring Well Construction Summary
- Table 2
 Monitoring Well Development Summary
- Table 3Analytical Data Summary
- Table 4Stabilized Field Parameters

Figures

- Figure 1 General Location Map
- Figure 2 RE131D1, RE131D2, and RE131D3 Location Map

Appendices

Appendix A – RE131D1, RE131D2, RE131D3

Section 1 Boring Logs

Section 2 Monitoring Well Construction Logs

Section 3 Groundwater Sample Log Sheets

Section 4 Analytical Data Validation

Section 5 Survey

List of Acronyms and Abbreviations

AOC	Area of Concern
bgs COR	below ground surface
EPA	Continuously Operating Reference
	Environmental Protection Agency, United States
ft	feet
GOCO	Government-Owned Contractor-Operated
GPS	Global Positioning System
IDW	Investigation Derived Waste
IR	Installation Restoration
Katahdin	Katahdin Analytical Services
NAD	North American Datum
NAVD	North American Vertical Datum
NAVFAC	Naval Facilities Engineering Command
NG	Northrop Grumman
NTU	nephelometric turbidity units
NWIRP	Naval Weapons Industrial Reserve Plant
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
OU	Operable Unit
PCBs	Polychlorinated Biphenyls
POTW	Publicly Owned Treatment Works
PPE	Personal Protective Equipment
PVC	Polyvinylchloride
SAP	Sampling and Analysis Plan
SVOC	Semivolatile Organic Compounds
TCE	Trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
ТОС	Total Organic Carbon
UFP	United Federal Programs
US	United States
VOC	Volatile Organic Compounds
VPB	Vertical Profile Boring
	5

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of three monitoring wells and one initial groundwater monitoring event (specifically at the Vertical Profile Boring [VPB] 165 location) in 2016 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE131D1, RE131D2 and RE131D3. The purpose of this investigation was to ascertain contaminant levels and depths, and the western extent of the offsite plume north of Hempstead Turnpike and west of North Wantagh Avenue. The locations of RE131D1, RE131D2 and RE131D3, as well as other VPBs and monitoring well locations are shown in Figure 2.

The field investigation included completing three monitoring wells, well development, soil/groundwater analysis, groundwater grab samples, and surveying. Field tasks were conducted in 2016 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

1

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1990); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1,000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at the RE131 locations, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 893 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

2.0 FIELD PROGRAM

Three monitoring wells were installed in the vicinity of VPB165 between January 2016 and March 2016. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE131D1, RE131D2 and RE131D3 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE131D1, RE131D2 and RE131D3 were 455 ft, 595 ft and 685 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in the Appendix A. *2015-2016 OU2 Groundwater Investigation VPB165* (Resolution Consultants, 2016) documents the installation of this VPB including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length.

Prior to installing each monitoring well, the results of the groundwater samples, the geophysical logs, lithology and field data from the vertical profile borings were analyzed. Screen intervals were determined based on this analysis: intervals with the highest VOC concentrations as measured in the hydropunch samples, and coincident intervals with the highest apparent permeability based on the gamma logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4-dioxane via Method 8270D SIM by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE131D1, RE131D2 and RE131D3 were sampled by Resolution Consultants on April 21, 2016. Analytical results and stabilized field parameters for these data are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A. These monitoring wells will be included in quarterly sampling as part of the Navy's ongoing Environmental Restoration Program.

2.4 Decontamination and Investigation Derived Waste (IDW)

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable Teflon or polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Luminox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) NY. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical

control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September 1994.

Resolution Consultants, 2013a. United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York. April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol*. November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December 2013.

Resolution Consultants, 2016. 2015-2016 OU2 Groundwater Investigation VPB165, Bethpage, NY. June 2016.

Smolensky, D., and Feldman, S., 1990. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

August 2016

Tables

RE131D1, RE131D2, RE131D3 (VPB165) Installation Report NWIRP Bethpage, NY

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE131D1	2/19/2016	86.33	85.94	455	54	430 - 450	450 - 455	467
RE131D2	2/3/2016	86.25	85.72	595	54	565 - 590	590 - 595	607
RE131D3	3/7/2016	86.22	85.90	685	53	660 - 680	680 - 685	697

MSL - mean sea level

ft bgs - feet below ground surface

RE131D1, RE131D2, RE131D3 (VPB165) Installation Report NWIRP Bethpage, NY

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PUN	1P DEVELOPME	APPROX. TOTAL	FINAL		
MONITORING WELL	APPROX. DATE VOLUME (GAL)		DATE	FINAL PUMPAPPROX.DEPTH (FTVOLUMEBGS)(GAL)		DEVELOPMENT VOLUME (GAL)	TURBIDITY (NTUs)	
RE131D1	3/22/2016	5,000	3/25/2016	430-450	6,000	11,000	1.34	
RE131D2	3/21/16, 3/22/16	5,500	3/24/2016	565-590	6,000	11,500	7.02	
RE131D3	3/23/2016	5,500	3/28/2016	660-680	4,100	9,600	1.07	

GAL - gallon FT BGS - feet below ground surface NTUs - Nephelometric Turbidity Units

TABLE 3. ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Location		RE131D1	RE131D1	RE131D2	RE131D3
Sample Date	NYSDEC Groundwater	4/21/2016	4/21/2016	4/21/2016	4/21/2016
Sample ID	Guidance or Standard Value	RE131D1-GW- 042116	DUPLICATE- 042116	RE131D2-GW- 042116	RE131D3-GW- 042116
Sample type code	(Note 1)	N	FD	N	N
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1,2,2-TETRACHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1.1.2-TRICHLORO-1.2.2-TRIFLUOROETHANE	5	4.4	4.2	<1.0 U	91
1.1.2-TRICHLOROETHANE	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,1-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1.1-DICHLOROETHENE	5	0.71 J	0.56 J	<0.50 U	0.54 J
1,2,4-TRICHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DIBROMO-3-CHLOROPROPANE	0.04	<0.75 U	<0.75 U	<0.75 U	<0.75 U
1,2-DIBROMOETHANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,2-DICHLOROETHENE, TOTAL	5	4.1	3.4	3.8	0.24 J
1,2-DICHLOROPROPANE	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1.3-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1.4-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	<0.50 U
1,4-DIOXANE (Method 8270D_SIM)	NL	<0.30 U 8.7	10	8.2	1.1
2-BUTANONE	50	<2.5 U	<2.5 U	<2.5 U	<2.5 U
2-HEXANONE	50	<2.5 U	<2.5 U	<2.5 U	<2.5 U
4-METHYL-2-PENTANONE	NL	<2.5 U	<2.5 U	<2.5 U	<2.5 U
	-	-			
	50	<2.5 UJ	<2.5 UJ	<2.5 UJ	<2.5 UJ
	1	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMODICHLOROMETHANE	50	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMOFORM	50	<0.50 U	<0.50 U	<0.50 U	<0.50 U
BROMOMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
	60	<0.50 U	<0.50 U	<0.50 U	<0.50 U
	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CHLOROETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
CHLOROFORM	7	3.5	3.5	<0.50 U	<0.50 U
CHLOROMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
CIS-1,2-DICHLOROETHENE	5	4.1	3.4	3.8	0.24 J
CIS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	<0.50 U
CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
DIBROMOCHLOROMETHANE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
	5	<1.0 UJ	<1.0 UJ	<1.0 UJ	<1.0 UJ
ETHYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
ISOPROPYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
M- AND P-XYLENE	NL	<1.0 U	<1.0 U	<1.0 U	<1.0 U
	NL	<0.75 U	<0.75 U	<0.75 U	<0.75 U
METHYL CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
METHYL TERT-BUTYL ETHER	10	<0.50 U	<0.50 U	<0.50 U	<0.50 U
	5	<2.5 U	<2.5 U	<2.5 U	<2.5 U
O-XYLENE	NL	<0.50 U	<0.50 U	<0.50 U	<0.50 U
STYRENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TETRACHLOROETHENE	5	7.6	6.5	6.0	1.5
TOLUENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRANS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRANS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	<0.50 U
TRICHLOROETHENE	5	88	79	41	3.8
TRICHLOROFLUOROMETHANE	5	<1.0 U	<1.0 U	<1.0 U	<1.0 U
VINYL CHLORIDE	2	<1.0 U	<1.0 U	<1.0 U	<1.0 U
XYLENES, TOTAL	5	<1.5 U	<1.5 U	<1.5 U	<1.5 U

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)

Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed **Bold =** Detected; **Bold and Italics**=Not detected exceeds NYS Groundwater Standards or guidance value

Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

RE131D1, RE131D2, RE131D3 (*VPB165*) *Installation Report NWIRP Bethpage, NY*

TABLE 4 STABILIZED FIELD PARAMETERS 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
RE131D1	4/21/2016	15.98	5.50	0.134	2.72	248.5	23.1	76.62	500
RE131D2	4/21/2016	14.87	5.53	84	4.86	163.2	118	37.32	700
RE131D3	4/21/2016	17.12	5.03	0.042	6.29	304.4	2.59	37.74	350

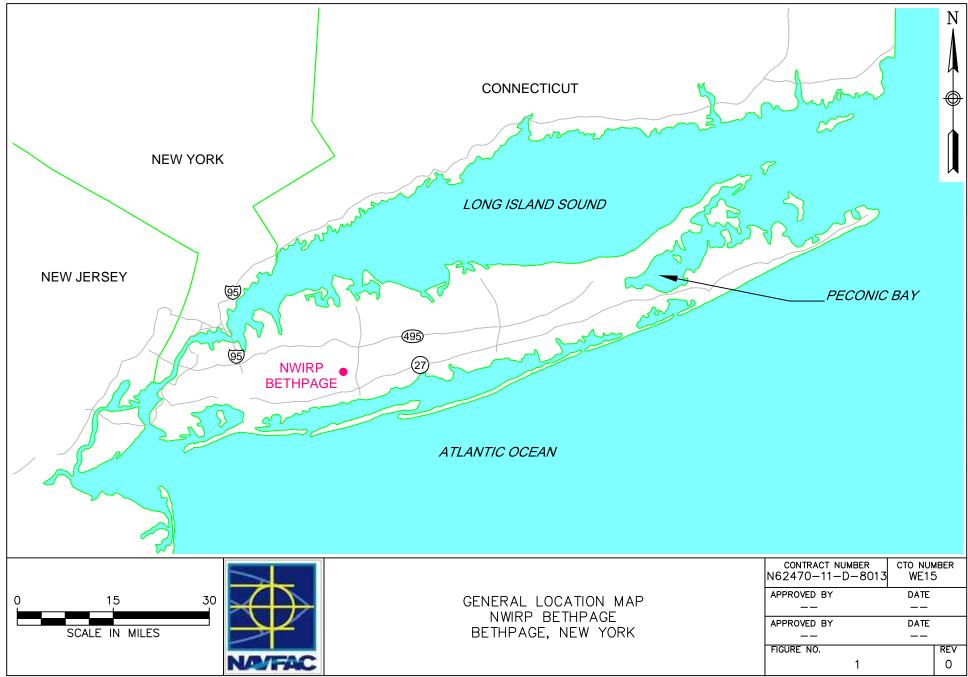
°C - degrees Celsius

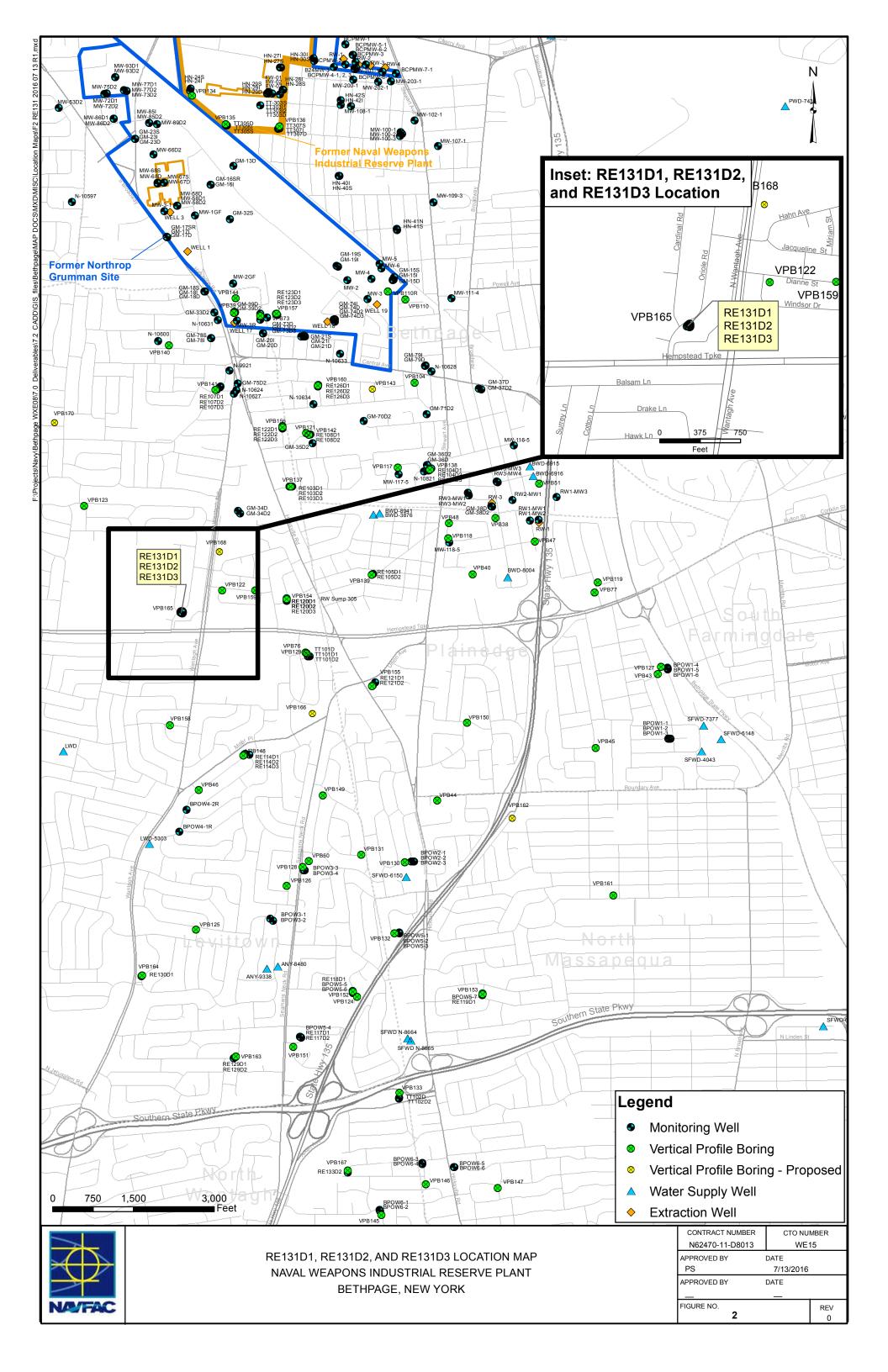
µS/cm - Microsiemens per Centimeter

mg/L - milligrams per liter

mV - Millivolts

NTU - Nephelometric Turbidity Unit


ft bgs - feet below ground surface


ml/min - mililiters per minute

August 2016

Figures

112G00622\0510\112G00622CM01.DWG 08/02/10 MKB

August 2016

Appendices

August 2016

Appendix A

RE131D1, RE131D2, RE131D3

Section 1

Boring Logs

Boring Log

BORING #: RE131D1 Sheet 1 of 2

Cons	suita	1115					•	Sheet 1 OF 2	
Client: Dep	partment of	the Navy,	Naval Facil	ities Enginee	ring Command, Mid-Atlantic	Logged By:			
Location: O		dinal Rd, L	evittown, N					Well & Pump	
Project #:					Elevation (msl): 86.33	Well Screen Interval (ft): 430-450			
Start Date:				-	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level			
Finish Date:	2/19/201	16		Northin	ng: 204367.45 Easting: 1123114.27	Total Depth	(ft): 467.0		
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction	
50					0-433 ft bgs: See VPB 165 for Descriptions			[—] 10" Diameter Steel Casing	
100								— Bentonite Grout	
150									
200									
250								- 4" Diameter Schedule	
300								80 PVC Riser	

Boring Log

BORING #: **RE131D1** Sheet 2 of 2

B Q Q Q Q Q Q Pameter Schedule 80 PVC Rise (Continued) 1000	CUISUITATIES												
Project #: 60240733 Ground Elevation (ms): 86.33 Well Screen Interval (ft): 430-450 Start Date: 2102016 Drilling Method: Auger (A50 big) Mait Reaary (50 big) Water Level (ft): Finish Date: 2102016 Northing: 204367.45 Easing: 1123114.27 Total Depth (ft): 467.0 #E G	Client: Dep	partment of	the Navy,	Naval Facili	ties Enginee	ring Command, Mid-Atlantic	Logged By	: V. Varricchio					
Start Date: 2/10/2016 Drilling Method: Auger (0.59 bigs) Must Return (500 bigs) Water Level (ft): Finish Date: 2/19/2016 Northing: 204367.45 Easting: 11/23114.27 Total Depth (ft): 467.0 #	Location: O	riole & Car	dinal Rd, L	evittown, N	۲		Drilling Co	mpany: Delta V	Vell & Pump				
Finish Date: 2/19/2016 Northing: 2043/87.45 Easting: 11/23114.27 Total Depth (ft): 487.0 # GO G	Project #: 6	60240739			Ground	Elevation (msl): 86.33	Well Scree	n Interval (ft):	430-450				
Head Image: Seg of the second secon	Start Date:	2/10/2016	;		Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	el (ft):					
Head Image: Seg of the second secon	Finish Date:	2/19/201	6		Northin	g: 204367.45 Easting: 1123114.27	Total Dept	h (ft): 467.0					
20 20					1		L •	· · ·					
20 20													
372 374 374 375 374 375 375 376 3	DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction				
274 Image: I						0-433 ft bgs: See VPB 165 for Descriptions (continu	ied)						
33 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND #1 Filter Sand 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND, the Silt #1 Filter Sand 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND, the Silt #1 Filter Sand 50 SN SD Light gray (10YR 7/2) poorly graded fine SAND, the Silt #1 Sand to Bottom 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND, the Silt #1 Sand to Bottom									Schedule 80 PVC Riser (continued)				
30 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND. 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND. 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND. 40 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND. 40 0.0 SP SP 41 0.0 SP Light gray (10YR 7/2) poorly graded fine SAND. 42 0.0 SP SP SP 43 0.0 SP SP SP 44 0.0 SP SP SP 45 SP SP SP SP 46 SP Light gray (10YR 7/2) poorly graded fine SAND, Itrite Sit SP 47 SP SP SP SP 48 SP SP SP SP 49 SP Light gray (10YR 7/2) poorly graded fine SAND, Itrite Sit SP 49 SP SP SP SP 40 SP SP									• /				
382													
384 Image: Stress of the s													
383 Image: Second s													
393 394 394 395 394 396 396 396 396 396 396 396 396 396 396													
392 394 396 396 396 396 396 396 396 396 396 396													
394 396 396 404 404 406 406 406 406 406 406 406 40													
388 10 10 #00 Filter Sand 410 10 110 111 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 1111 1111 111 111													
400 400 400 400 400 400 400 400 400 400									<u>-</u> .				
402 404 406 406 406 406 406 406 406 406 406									#00 Filter Sand				
466 466 47 47 111 411 412 414 414 414 414 414													
488 Image: Second s													
410 410 412 414 414 416 414 416 4													
414 416 4													
416 416 418 418 418 418 418 418 418 418 418 418 418 414 4	412												
418 419 419 419 419 419 410 418 418 418 418 418 418 419 4													
420 422 424 424 426 428 428									#1 Filter Sand				
424 424 426 428 428 428 430 0.0 433 0.0 434 0.0 438 0.0 440 1 444 0.0 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, few Silt 444 0.0 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, few Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, little Silt 446 10.5 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5H 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5H 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5H 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 4466 1.1ight gray (10YR 7/2) poor													
426 428 430													
428 430													
432													
434 0.0 436 - 438 0.0 438 0.0 440 0.0 442 - 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 446 - 448 0.0 5P Light gray (10YR 7/2) poorly graded fine SAND, few Silt 5P Light gray (10YR 7/2) poorly graded fine SAND, little Silt 5P Light gray (10YR 7/2) poorly graded fine SAND, trace Silt 448 - 450 - 451 - 452 - 454 - 456 - 460 - 460 - 466 - 466 -													
436 0.0 438 0.0 440 0.0 442 1 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 444 0.0 446 1 448 0.0 5P Light gray (10YR 7/1) poorly graded fine SAND, little Silt 450 SP 452 SP 454 SP 456 SP 466 SP <t< td=""><td></td><td>0.0</td><td></td><td></td><td></td><td>Light gray (10YR 7/2) poorly graded fine SAND</td><td></td><td></td><td></td></t<>		0.0				Light gray (10YR 7/2) poorly graded fine SAND							
440 0.0 442 0.0 444 0.0 446 1 446 1 446 1 446 1 448 0.0 5P-SM 1 Light gray (10YR 7/1) poorly graded fine SAND, little Silt 10 Slot Well Screen (430-450 ft bgs) SP 1 450 1 452 1 453 1 456 1 460 1 460 1 464 1 466 1	- N			SP 🗄									
440 440 440 441 442 441 442 441 441 441 441 441 441 10 10 Standard Stan		0.0				Light gray (10YR 7/2) poorly graded fine SAND, few	Silt		-				
444 0.0 446 0.0 446 0.0 446 0.0 448 0.0 450 0.0 452 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 452 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 454 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5P 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 5V 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 460 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 460 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 460 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt 460 1.1ight gray (10YR 7/2) poorly graded fine SAND, trace Silt <				SP-SM									
446 1 SM SM 1 <td></td> <td>0.0</td> <td></td> <td></td> <td></td> <td>Light gray (10YR 7/1) poorly graded fine SAND, little</td> <td>e Silt</td> <td></td> <td>10 Slot Well Screen</td>		0.0				Light gray (10YR 7/1) poorly graded fine SAND, little	e Silt		10 Slot Well Screen				
450 0.0 SP Light gray (10111 1/2) poonly graded line GAND, trace Git Sump 452 454 456 456 456 456 456 460 460 464 466				SM					(430-430 IL DGS)				
452 Sump 454 Sump 456 #1 Sand to Bottom 460 #1 Sand to Bottom		0.0		SP		Light gray (10YR 7/2) poorly graded fine SAND, trac	ce Silt						
454 456 460 462 466 466									- Cump				
458 460 462 464 466									Sump				
460 462 464 466													
462 464 466 466									_				
466									#1 Sand to Bottom				
End of boring at 467.0 ft. bgS.	466					End of boring at 467.0 ft. bgs.		na ta Asfana ta Asf					

Boring Log

BORING #: RE131D2 Sheet 1 of 2

COILS	Sulta	1115					Sheet 1 of 2		
Client: Dep	artment of	the Navy,	Naval Facili	ties Enginee	ering Command, Mid-Atlantic	Logged By: V. Varricch	io		
Location: O		dinal Rd, L	evittown, N			Drilling Company: Delta			
Project #: 6				Ground	d Elevation (msl): 86.25	Well Screen Interval (ft): 565-590			
Start Date:					Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):			
Finish Date:	2/3/2016	6		Northin	ng: 204359.42 Easting: 1123099.42	Total Depth (ft): 607.0)		
E_	(Ē	ion				tion			
DEPTH (ft)	PID (ppm)	Formation	USCS	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction		
0					0-568 ft bgs: See VPB 165 for Descriptions				
50							— 10" Diameter Steel Casing		
100									
150									
250							Bentonite Grout		
300									
350									
400									
450						-	4" Diameter Schedul 80 PVC Riser		

Boring Log

BORING #: **RE131D2** Sheet 2 of 2

	suita					1		
		-		-	ing Command, Mid-Atlantic		y: V. Varricchio	
Location: O		dinal Rd, L	_evittown, I			-	ompany: Delta W	
Project #:					Elevation (msl): 86.25		en Interval (ft):	565-590
Start Date:					Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Lev		
Finish Date:	2/3/2016	6		Northing	g: 204359.42 Easting: 1123099.42	Total Dept	th (ft): 607.0	
DEPTH (ft)	PID (ppm)	Formation	uscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction
	-	-						
490 492 494 494 500 502 502 504 506 508 510 512 514 516 518 518 520 522					0-568 ft bgs: See VPB 165 for Descriptions (contin	ued)		4" Diameter Schedule 80 PVC Riser <i>(continued)</i> #00 Filter Sand
522 524 526 528 530 532 534 534 536 538 538 540 542 544 546								
548 550 552 554 556 558 560 562 564 566 566 568 570	0.0		SW		Very pale brown (10YR 8/5), well graded fine to m SAND, trace Silt	edium		#1 Filter Sand
572	0.0		SVV	A	Pale brown (2.5Y 7/4), poorly graded medium SAN	ID		
576			24		Light gray (10YR 7/1), poorly graded fine SAND			4" Diameter
580 582	0.0		SP		Light gray (1011 (11), poorly graded line SAND			Schedule 80 PVC, 10 Slot Well Screen (565-590 ft bgs)
584 586	0.0			 	No Recovery			(500 500 h bys)
588	0.0		SW	<u>.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	Light gray (10YR 7/1), well graded fine to medium	SAND		
592 594 596								Sump
598 600 602 604								#1 Sand to Bottom
606				<u> </u>	End of boring at 607.0 ft. bgs.			

Boring Log

BORING #: RE131D3 Sheet 1 of 2

Lons						1	Sheet 1 OF 2		
					ring Command, Mid-Atlantic	Logged By: V. Varricch			
Location: O		dinal Rd, L	evittown, N			Drilling Company: Delt			
Project #:					Elevation (msl): 86.22	Well Screen Interval (ft): 660-680			
Start Date:				-	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):			
Finish Date:	3/7/2016	6		Northin	ng: 204350.99 Easting: 1123115.19	Total Depth (ft): 697.)		
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction		
50					0-663 ft bgs: See VPB 165 for Descriptions		[—] 10" Diameter Steel Casing		
150									
200						-	Bentonite Grout		
300									
350									
400									
450									
500						-	4" Diameter Schedul 80 PVC Riser		
550									

Boring Log

BORING #: **RE131D3** Sheet 2 of 2

Client: Department of the Navy, Naval Facilities Engineering Command, Mid-Atlantic Logged By: V. Varricchio												
Client: Dep	partment of	the Navy,	Naval Facili	ities Enginee	ring Command, Mid-Atlantic	Logged By	: V. Varricchio					
Location: O	riole & Car	dinal Rd, L	_evittown, N	Y		Drilling Co	mpany: Delta V	Vell & Pump				
Project #:	60240739			Ground	Elevation (msl): 86.22	Well Scree	n Interval (ft):	660-680				
Start Date:	2/25/2016	6		Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	Vater Level (ft):					
Finish Date:	3/7/2016	6		Northin	g: 204350.99 Easting: 1123115.19	Total Dept	h (ft): 697.0					
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction				
_ 598					0-663 ft bgs: See VPB 165 for Descriptions (continu	ed)		4" Diameter				
$ \begin{array}{c} 600 \\ 602 \\ 604 \\ 606 \\ 608 \\ 610 \\ 612 \\ 614 \\ 616 \\ 618 \\ 620 \\ 622 \\ 624 \\ \end{array} $								Schedule 80 PVC Riser (continued)				
$ \begin{array}{c} - & 626 \\ - & 628 \\ - & 630 \\ - & 632 \\ - & 634 \\ - & 636 \\ - & 638 \\ - & 640 \\ - & 642 \\ - & 644 \\ - & 646 \\ \end{array} $								#00 Filter Sand				
648 650 652 654 656 660 662								#1 Filter Sand				
664	0.0		SP		White (10YR 8/1), poorly graded fine SAND							
666 668					Light Gray (10YR 7/2), well graded fine to coarse							
670	0.0		GW		subangular GRAVEL with some well graded mediur coarse subangular Sand	n to		4" Diameter				
672	0.0		F		Light gray (10YR 7/1), poorly graded fine SAND with	some		Schedule 80 PVC, 10 Slot Well Screen				
676			SM		Silt			(660-680 ft bgs)				
678	0.0		SM		Light gray (10YR 7/2) SILT with little fine Sand							
682								Sump				
684								Camp				
686 688												
690								#1 Sand to Bottom				
692 694								#1 Sand to Bottom				
696												
					End of boring at 697.0 ft. bgs.							

Section 2

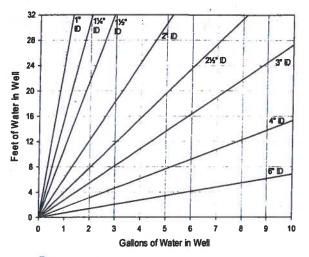
Monitoring Well Construction Logs

	Client:			60266526	<i>WELL ID: RE131D1</i>		
	Site Locat					0/10/2016	0/10/2016#
	Well Loca		l Rd, Levittown, NY		Date Installed:		2/19/2016 *
RESOLUTION CONSULTANTS	Method: Coords:	MUD ROTARY Northing: 204367.45	Easting: 1123114.2	7	Inspector: Contractor:	V. Varricch	ELL & PUMP
	Coords:				•	DELIA WI	ELL & PUMP
		MONITORIN	NG WELL CONS	STRUCTION E	DETAIL		
* Casing installed with Au	iger rig 1/18	5/16 - 1/19/16		De	epth from G.S. (feet)		Elevation(feet) Datum
		Ground Surface (G.S.)			0.00	_	86.33
		Top of 12 inch diamete	r Steel Curb Box				
Measuring Point for surveying &		Top of Riser Pipe fit wit	th locking j-plug		0.39	_	85.94
measuring water levels Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		Riser Pipe: Length Inside Diameter (II Type of Material	430 D) 4 inch PVC				
% Bentonite		Bottom of 10 inch diam	eter Steel Surface Casin	a	54		32.3
% Native Materials						-	
		Bottom of Bentonite Gr	out		390	-	-303.7
		Bottom of #00 Filter Sa	nd/Top of #1 Filter Sand		405	-	-318.7
		Top of Screen			430	-	-343.7
		Stabilized Water L	evel			-	
		Screen: Length	20				
		Inside Diameter (II Slot Size Type of Material				-	
		Type/Size of Sand Sand Pack Thickness	#1 62				
		Bottom of Screen			450	-	-363.7
		Bottom of Sump:			455	-	-368.7
		Bottom of Borehole			467	-	-380.7
	le Diameter:	<u>10 inch</u> Appro	ved:				
Describe Measuring Point:		Signat	ture	Da	te		
Ground Surface							

	Client:	Client: NAVFAC Project Number: 60266526			WELL ID: RE131D2			
	Site Location: NWIRP BETHPAGE, NY							
	Well Location: Oriole & Cardinal Rd, Levittown, NY				Date Installed:		- 2/3/2016 *	
RESOLUTION	Method: MUD ROTARY				Inspector:	V Varricchio		
CONSULTANTS Coords:		Northing: 204359.42	Easting: 1123099.4	42	Contractor:	DELTA WELL & PUMP		
		MONITORIN	G WELL CONS	STRUCTION I	DETAIL			
				Do	pth from G.S. (feet)		Elevation(feet)	
* Casing installed with Au	ıger rig 1/14	16 - 1/15/16					Datum	
		Ground Surface (G.S.)			0.00		86.25	
	î	Top of 12 inch diameter	-		0.00		80.23	
Measuring Point for		Top of Riser Pipe fit with			0.53		85.72	
surveying & measuring water								
levels								
Cement, Bentonite, Bentonite Slurry		Riser Pipe:	565					
Grout, or Native ——— Materials		Length Inside Diameter (ID						
% Cement		Type of Material	PVC					
% Bentonite								
		Bottom of 10 inch diame	eter Steel Surface Casi	ing	54		32.3	
% Native								
Materials								
		Bottom of Bentonite Gro	out		510		-423.8	
					500		440.0	
		Bottom of #00 Filter Sar	nd/I op of #1 Filter San	d	530		-443.8	
		Top of Screen			565		-478.8	
		▲ Stabilized Water Le	vel					
		Screen:						
		Length	25			-		
		Inside Diameter (ID						
		Slot Size Type of Material	10 PVC					
		Type of Material						
		Type/Size of Sand Sand Pack Thickness	#1					
		Gand Fack Thickness	77					
		Bottom of Screen			590		-503.8	
		Bottom of Sump:			595		-508.8	
		Bottom of Borehole			607		-520.8	
	la Diarra di	10 in at	a di					
	le Diameter:	10 inch Approv	ea:					
Describe Measuring Point:	Describe Measuring Point:		re	Dat	te			
Ground Surface								

	Client:	lient: NAVFAC Project Number: 60266526			WELL ID: RE131D3			
	Site Location: NWIRP BETHPAGE, NY							
	Well Location: Oriole & Cardinal Rd, Levittown, NY				Date Installed:	2/25/2016 - 3/7/2016 *		
RESOLUTION	Method: MUD ROTARY				Inspector:	V. Varricchio		
CONSULTANTS	Coords:	Northing: 204350.99	Easting: 1123115.1	19	Contractor:	DELTA WELL & PUMP		
		MONITORIN	G WELL CONS	STRUCTION D	ETAIL			
* Casing installed with Au	ıger rig 2/22	/16 - 2/23/16		Dep	oth from G.S. (feet)		Elevation(feet) Datum	
·		Ground Surface (G.S.)	_		0.00		86.22	
		Top of 12 inch diameter	Steel Curb Box					
Measuring Point for surveying &		Top of Riser Pipe fit with	n locking j-plug		0.32		85.90	
measuring water levels Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		Riser Pipe: Length Inside Diameter (ID Type of Material	660 4 inch PVC					
% Bentonite		Bottom of 10 inch diame	eter Steel Surface Cas	ing	53		33.2	
Materials		Bottom of Bentonite Gro	put		618		-531.8	
		Bottom of #00 Filter Sar	nd/Top of #1 Filter San	d	635		-548.8	
		Top of Screen			660		-573.8	
		▲ Stabilized Water Le	vel					
		Screen:						
		Length	20			_		
		Inside Diameter (ID						
		Slot Size Type of Material	10 PVC					
		Type of Material						
		Type/Size of Sand Sand Pack Thickness	#1 62					
		Bottom of Screen			680		-593.8	
		Bottom of Sump:			685		-598.8	
		Bottom of Borehole			697		-610.8	
Borehol	le Diameter:	10 inch Approve	ed:					
Describe Measuring Point:		Signatu	re	Dat	e			
Ground Surface				Dai	~			

Section 3


Groundwater Sample Log Sheets

Low Flow Ground Water Sample Collection Record

Well ID: RE13101

Client:		NW	IRP - Be		C	Date:4	.21.16	Tir	ne: Start /Z	
Project No: 60266526 Site Location:									Finish /	<u>130</u> am/pr
						1.7	1 2			
Weather	Conds:	Sun	ng 10		(Collector(s):			<u></u>
1. WATE	ER LEVEL	DATA:	(meas	ured from Top				а а 1	Casing Diam	eter/Material
			1990	c. Length of					4"	
2. WELL	. PURGE D rge Method		(17	d. Calculated	J System V	/olume (see	раск)			
	-			(see workplan))				11.20	
- Tem	perature	3%	6	-D.O.	10%	31				
- pH				- ORP	<u>+</u> 10m	١V				
- Sp. (Cond.	3%	6	- Drawdown	< 0.3'					
c. Fie	ld Testing E	Equipm	ent use	d: Ma YSi	ake		Model			Number
				Manny		1.2.5. 1.56	MPS 556		06	5715X
	Volume			Manna			- 1.1/2			
Time (24hr)	Removed (Liters)	Temp. (°C)	pH -	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
1300	(Eltoro)		1		(119/12)	1		500	(1001)	ON
1315	1	1657	5.22	0.141	6.26	260.9		500		0-1
1320			5,39	0.131	5.62	262.1	32.8	500	36-60	Chenr
1325			5.42	0.134	5.74	200.1	13.3	500	76.60	clear
1330		COLUMN ACCOUNTS	5-41	0.133	4.26	259.7	14.1	500	36.60	11
1345	5 out	16,10	5.45	0.137	7.54	253.3	17.8	500	76.60	11
1350			5.47	0,173	7.41	253.7	20.2	500	36.60	10
	ceptance c				Yes No	D N/A	1			(continued on back
	s required									
	s required			eached						
Ha	ve parame									
	If no or N/	A - Exp	plain bel	ow.						
	_		1.1							
B. SAMP	LE COLLE		N: 1	Method: Bla	udder pro	мр				_
Sample II	D Co D(-Gw-a		Туре	No. of Conta	iners	Prese	vation	Analysi	s Req.	Time 14 30
the second s	and the second se		-	2		Нс		VO	lissene	the second s
LEINID	1-un-01	1016	yonu			MC	0	10	(5	1470
1)UPLIC	H1 (DULLE	60	HE	RE		<u>. 1</u>	1530
Comment	ts <u>Pun</u>	ng h,	t both	cm						
Signature						/		Date _	4/21/1	1F
			L		C					
							Y			

Volume /	Linear F	t. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

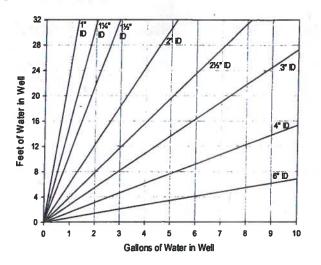
1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Well ID: REI31D(

(continued from front) Volume

Time (24 hr)	Volume Removed (Liters)	Temp (°C)	pН	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
(755		16.23	5.48	6.134	3.23	252.5	16.9	500	36.60	clear Inom
1400		16.23	5.49	0-174	3.44	252.5	18.7	600	76.60	10
1405	10 991	16.22	5.50	0.134	7.20	251.7	17.4	500	76.00	ц
1410		16.05	5.50	0.135	3.00	250.8	19.1	500	76.60	4
1415		15.90	5,51	0.134	2.89	249.3	22.2	500	36.60	ч
1420		15.85	5.51	0.133	2.85	247.3	22.0	500	76.61	4
1425	B.S you	15.98	5.50	0.134	2.72	248.5	23.1	500	76.62	<u>//</u>
								1		
	t									
					·	1				
-+									- 1	
			-							
										1


LowFlow-GW June 2015 Purge Logs

Well ID:RE13102

Low Flow Ground Water Sample Collection Record

Client: Project N			56526	1.	ete: 4	-21-16	Ti	me: Start _ Finish_	
Site Loca Weather		Municapal Sunny	Parking 17	<u></u> (Collector(s): <u>FB</u>			
		DATA: (measu							motor/Matorial
		ngth <u>580</u>							meter/Material
2. WELI	L PURGE I	100 Contract (100 Contract)		d System V	olume (see	e back)			
		Low flor			dia dia				
		Criteria defined (
	perature	3%	-D.O.	10%					
- pH - Sp.	Cond.	<u>+</u> 1.0 unit 3%	- ORP - Drawdown	<u>+</u> 10m < 0.3'	v See or				
c. Fie	d Testing	Equipment used		ake		Model			I Number
		· · · · · · ·	YS	I		556		644	40
	Volume					1			
Time (24hr)	Removed (Liters)	Temp. pH	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (feet)	Color/Odor
320	Hart		(µo/all)	(mg/L)				37.22	1
925	19.51	1550 5.34	75	9.80	180.5	23.9	600	37.07	Clean
330	-	15.20 5.10	74	8.92	178.9	-	700	37.24	Clea.
335	-	15.25.03	74	8.62	182.7	10.6	700	37.27	Conc.
3:40	-	15,20 5.46	81	2.89	167.6		-	Star	can
3-45	5Gal	5.00 5.40	80	F. OF	174.0	140	700	37-30	In
3 50	-	15005.40	80	6,83	176.4		700	37.27	- 12.32
Ha Ha	as required as required ave parame	priteria pass/fail volume been re turbidity been re eters stabilized /A - Explain belo	moved eached	Yes №			12	44	(continued on back
. SAMF		ECTION: Montainer Type	lethod:	iners	Prese	rvation	Analysi	s Ren	 Time
DW		intainer Type			11000	ration	7 dialysi	o noy.	1450
the second se	2-1-1-0	42116 (3)VC	A HCL		VOC				_ 400
		42116 (2) 1	2 A ruber	- 1	H-Di	mane			
10.00				1				No. 1	
ommen	ts <u>25 '</u>	Screen	de la construcción de la constru						Same and
Signature	Fe	rrell Bell	/				Date	4/24	-116
						¥			

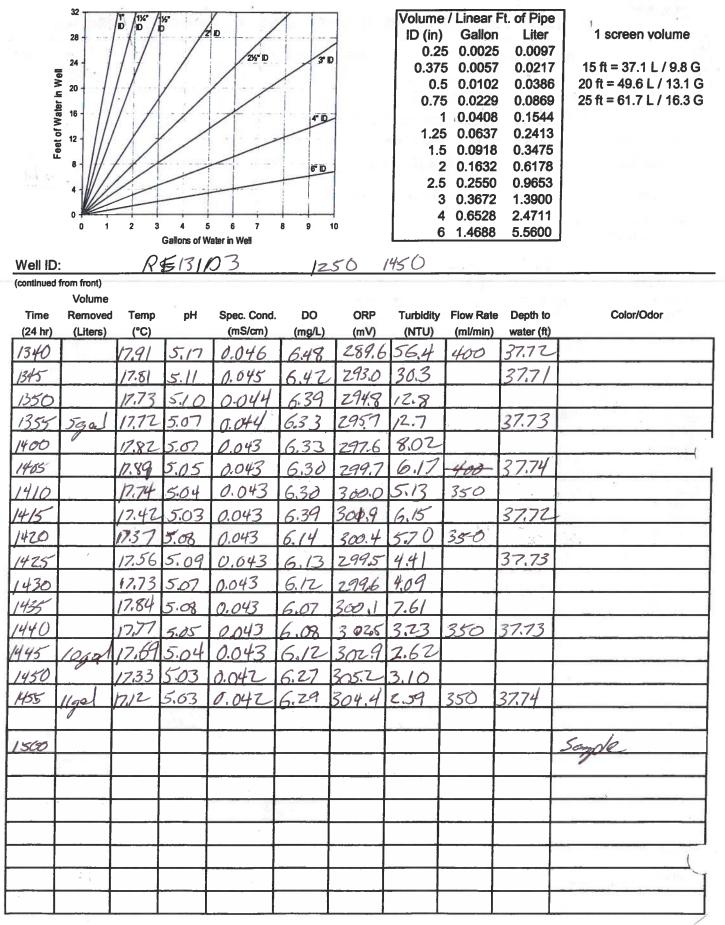
Volume /	Linear F	t. of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

1 screen volume

15 ft = 37.1 L / 9.8 G 20 ft = 49.6 L / 13.1 G 25 ft = 61.7 L / 16.3 G

Time (24 hr)	Volume Removed (Liters)	Temp (°C)	рH	Spec. Cond. (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
400			5.42	81	6.35	176.6		FOO	37.30	Claught
405	10Ged	14.96	5.43	82	6.32	176.8	176	700	37.29	
410		14.92	5.44	81	6.24	176.8	170	700	37.30	1 . In
415	-	141,87	5,46	82	5.80	176.0	· ·	700	37:30	
1420	_	14.88	5.48	82	5.62	175.3	158	700		
425		14.90	5.49	84	5.44	174.4	14/10	700	37.27	
12/30		14.92	5.32	84	5.20	169.8	133	700	37.31	
1135	15G.J	14.93	5.50	84	5,50	168.2	128	700	37,30	
440		121.92	5.53	84	21.25	165.8		700		
14-15	17 Jal	14.87	5.53	8-1	4.86	163.2	118	700	37.32	
14 50	Δh	\sim	le	12	-e_					
						-				1011-7-10-000-01-0-0
										1.50 - 1.50 - 1.10
	in ver									
			$ \rightarrow $							
~										

LowFlow-GW June 2015 Purge Logs


1

Well ID: RE 13/03

Low Flow Ground Water Sample Collection Record

Client: NWIRP - Bethpage					C	Date: 4	-21-16	<u> </u>	me: Start /	
Project No: 60266526 Site Location: <u>Municopal Parking Job</u> Weather Conds: Summer 70°					Finish_ <u>/537</u> _ar					
				Parting 10	₫ <u></u>	0-11				
vveatner		50	inny	700 0		Collector(s)):			
1. WATI	ER LEVEL	DATA:	(meas	ured from Toj	o of Casin	g)				
			START IN	c. Length of						eter/Material
b. Wa	ater Table D	Depth _	37.62	d. Calculated	d System \	/olume (see	back)	13.1 gal	-	
	PURGE D			108.0			4			
				(see workplan))					
	perature	3%		-D.O.	10%					
- pH		_	I.O unit		<u>+</u> 10m	١V				
- Sp. (Cond.	3%	þ	- Drawdown	< 0.3'					
c. Fie	ld Testing f	Equipm	ent use		ake		Model			Number
			145		57		556	,	ux	325321
	Volume		-	fla	nna	and such to	98763		M 63	704X1
Time (24hr)	Removed (Liters)	Temp. (°C)	<u>- Hq</u>	Spec. Cond. (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Drawdown (teet)	Color/Odor
1250				(LO/OIII)	((400	(1001)	OH
1300		17,78	5.41	0.053	7.38	2800		1	37.65	- 11
1315		18.16	5.22	0.051	6.52	291.2		200 - Y .		1.23
1320		1850	5.34	0.051	6.36	284.7		1571 - B	37.67	1.6.91
1325		A.01	5.54	0.051	6.33	28.0	46.6			
1330		1276	5.30	0.050	6.62	287.5		400	37.69	
1335		17.95	5.23	0.048	6.52	289.5			31232	. 1. 9. 20
Ha Ha	ceptance c s required s required ve parame If no or N/	volume turbidity ters sta	been re y been r abilized blain belo	eached				flow,	rate about	(continued on back) e_350 kc/
. SAMP	LE COLLE	CTION	l: 1	Method:			-			
Sample II	D Co	ntainer	Type	No. of Conta	iners	Preser	vation	Analysi	s Rea.	Time
	03-610.					HC		VO		1500
	1 1-24-0	211-11		ranhor 2	-	No			scare	1500
·										
	_									
Comment	ts							4		
									- <u>11</u>	
										,
lanation			1	el Kais	4			Deta	1/-1	11
Signature			" al	a lall	· l.			Date	TIE1	16
							1421			

Purge Volume Calculation

LowFlow-GW June 2015 Purge Logs

Section 4

Analytical Data Validation

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage					
Laboratory:	Katahdin Analytical					
Sample Delivery Group:	SJ2726					
Analyses/Method:	Volatile Organic Compounds by U.S. EPA SW-846 Method 8260C 1,4-Dioxane by U.S. EPA SW-846 Method 8270D via Selective Ion Monitoring (SIM)					
Validation Level:	3					
Project Number:	0888812477.SA.DV					
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 05/31/2016				
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ2726_8260C_8270D				

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage Site on 21 April 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants, April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants, November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants, August 2014).

Sample ID	Matrix/Sample Type	Analysis
DUPLICATE-042116	Duplicate of RE131D1-GW-042116	8260C, 8270D_SIM
FB03-042116	Field Blank	8260C, 8270D_SIM
RE126D1-GW-042116	Groundwater	8260C, 8270D_SIM
RE126D2-GW-042116	Groundwater	8260C, 8270D_SIM
RE126D3-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D1-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D2-GW-042116	Groundwater	8260C, 8270D_SIM
RE131D3-GW-042116	Groundwater	8260C, 8270D_SIM
TRIP BLANK 042116	Trip Blank	8260C

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 8260C, Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (United States Environmental Protection Agency [U.S. EPA] 2006), *SW-846 Method 8270D, Semi volatile Organic Compounds by Gas Chromatography/Mass Spectrometry* (U.S. EPA] 2006), *SW-846 Method 8270D, Semi volatile Organic Compounds by Gas Chromatograph/Mass Spectrometry* (U.S. EPA 2007), *U.S. Environmental Protection Agency Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review* (U.S. EPA, June 2008), and *Department of Defense Quality Systems Manual for Environmental Laboratories*, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements, and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody) / sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- X Initial calibration (ICAL) / initial calibration verification (ICV) / continuing calibration verification (CCV)
- X Laboratory blanks / trip blanks / field blanks
- ✓ Surrogate spike recoveries
- X Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- ✓ Field duplicates
- ✓ Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

RESULTS

Initial Calibration / Initial Calibration Verification / Continuing Calibration Verification

The ICAL is evaluated to ensure that the instrument was capable of producing acceptable quantitative data prior to the analysis of environmental samples. The ICV is evaluated to assess the accuracy of the ICAL standards. The CCV is evaluated to determine whether the instrument was within acceptable calibration throughout the period in which samples were analyzed.

Calibration data were reviewed for conformance with the QC acceptance criteria to ensure that:

- The ICAL percent relative standard deviation, correlation coefficient/coefficient of determination, and/or response factor method acceptance criteria were met
- The ICV standard percent recovery acceptance criteria were met
- The CCV method percent difference or percent drift and response factor acceptance criteria were met
- The retention time method acceptance criteria were met

Data qualification to the analytes associated with the specific ICAL was as follows:

ICAL Linearity Non-conformance:

Critoria	Actions				
Criteria	Detected Results	Non-detected Results			
%RSD >15% and quantitation based on mean response factor	J	UJ			

Notes:

%RSD	=	Relative standard deviation
J	=	Estimated
UJ	=	Undetected and estimated

Data qualification to the analytes associated with the specific ICV was as follows:

ICV Recovery Non-conformance:

Critoria	Actions				
Criteria	Detected Results	Non-detected Results			
Recovery >120%	J	UJ			
Recovery < 80%	J	UJ			

Notes:		
J	=	Estimated
UJ	=	Undetected and estimated

Data qualification to the analytes associated with the specific CCV was as follows:

CCV Linearity Non-conformance:

Criteria	Actions				
Cinteria	Detected Results	Non-detected Results			
%Difference or %Drift > 20%	J	UJ			

Notes:

J	=	Estimated
UJ	=	Undetected and estimated

ICV non-conformances are summarized in Attachment A in Table A-1.

Laboratory Blanks / Trip Blanks / Field Blanks

Blanks are assessed to determine the existence and magnitude of contamination of contamination problems and measure of the representativeness of the analytical process. Laboratory blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. Trip blanks and field blanks help determine how much, if any, contamination was introduced in the field and laboratory activities. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Samples were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank type	Blank type Blank result Sam		Action for samples
Method,	Detects	Not detected	No qualification
Storage, Trip,		< 2x LOQ	Report sample LOQ value with a U
Field, or Equipment ≤ 2x LOQ	2x LOQ and < 4x the LOQ	Report the sample result with a U**	
		<u>></u> 4x the LOQ	No qualifications
		< LOD	Report sample LOD value with a U**
		<u>></u> LOD and < 2x LOQ	Report sample LOQ value with a U
	> 2x LOQ	2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R
		2x LOQ and blank contamination	If the result is $\leq 2x$ blank result, report the sample result U.** If the result is > 2x blank result, no qualification is required.**

Blank Non-conformance Charts:

Notes:

10105.		
LOQ	=	Limit of quantitation
LOD	=	Limit of detection
U	=	Undetected
R	=	Rejected

Lab blank, trip blank, and field blank non-conformances are summarized in Attachment A in Table A-2.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results

MS/MSDs are generated to provide information about the effect of each sample matrix on the sample preparation and the measurement methodology. MS/MSD percent recoveries (%Rs) assess the effect of the sample matrix on the accuracy of the analytical results and %Rs above the laboratory control limit could indicate a potential high result bias while %Rs below QC limits could indicate a potential low result bias. The relative percent differences (RPDs) between the MS and MSD results are evaluated to assess sample precision. The MS/MSD %Rs and RPDs were reviewed for conformance with the QC acceptance criteria. Data qualification to the analytes associated with the specific MS/MSD non-conformances were as follows:

MS/MSD Non-conformances Chart:

Criteria	Action				
Criteria	Detected Compounds	Non-detected Compounds			
%R>Upper Limit	J	No qualification			
20% <u><</u> %R < Lower Limit	J	UJ			
%R <20%	J	Rejected			

Notes:

%R	=	Percent recovery
RPD	=	Relative percent difference
J	=	Estimated
UJ	=	Undetected and estimated

MS/MSD non-conformances are summarized in Attachment A in Table A-3.

Qualifications Actions

The data were reviewed independently from the laboratory to assess data quality. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Data not qualified during data review are considered usable by the project. Any sample that was analyzed at a dilution because of high concentrations of target or non-target analytes was checked to confirm that the results and/or sample-specific limit of quantitation and limit of detections were adjusted accordingly by the laboratory. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department

of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B and Attachment C. Attachment D provides final results after data review.

ATTACHMENTS

- Attachment A: Non-Conformance Summary Tables
- Attachment B: Qualifier Codes and Explanations
- Attachment C: Reason Codes and Explanations
- Attachment D: Final Results after Data Review

Attachment A Non-Conformance Summary Table

Table A-1									
Initial Calibration Verification Non-Conformance									
				Associated					
Analyte	ICV ID	%R	Limit	Samples	Lab ID	Qualifier			
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE126D1-GW-042116	SJ2726-2	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE126D2-GW-042116	SJ2726-3	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	FB03-042116	SJ2726-5	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE131D1-GW-042116	SJ2726-6	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	P5447A	73.49	80-120	RE131D2-GW-042116	SJ2726-7	Non-detects: UJ			
ACETONE	P5447A	128.63	80-120	RE126D1-GW-042116	SJ2726-2	Non-detects: UJ			
ACETONE	P5447A	128.63	80-120	RE126D2-GW-042116	SJ2726-3	Non-detects: UJ			
ACETONE	P5447A	128.63	80-120	FB03-042116	SJ2726-5	Detects: J			
ACETONE	P5447A	128.63	80-120	RE131D1-GW-042116	SJ2726-6	Detects: J			
ACETONE	P5447A	128.63	80-120	RE131D2-GW-042116	SJ2726-7	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	TRIP BLANK 042116	SJ2726-1	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	DUPLICATE-042116	SJ2726-9	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	RE126D3-GW-042116	SJ2726-4RA	Non-detects: UJ			
DICHLORODIFLUOROMETHANE	T7138A	78.07	80-120	RE131D3-GW-042116	SJ2726-8RA	Non-detects: UJ			
ACETONE	T7138A	152.32	80-120	TRIP BLANK 042116	SJ2726-1	Detects: J			
ACETONE	T7138A	152.32	80-120	DUPLICATE-042116	SJ2726-9	Non-detect: UJ			
ACETONE	T7138A	152.32	80-120	RE126D3-GW-042116	SJ2726-4RA	Non-detects: UJ			
ACETONE	T7138A	152.32	80-120	RE131D3-GW-042116	SJ2726-8RA	Non-detects: UJ			

Notes:

ICV ID	=	Initial calibration verification identification
%R	=	Percent recovery
UJ	=	Qualified non-detect and estimated
J	=	Detected analytes qualified estimated

Table A-2 Blank Non-Conformance							
Blank ID	Analyte	Blank Result (UG_L)	LOQ	Detected Associated Sample	Qualifier		
WG182433-9	METHYLENE CHLORIDE	1.9	5.0	FB03-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	DUPLICATE-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	RE126D1-GW-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	RE126D2-GW-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	RE126D3-GW-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	RE131D2-GW-042116	UJ		
FB03-042116	ACETONE	6.0	5.0	RE131D3-GW-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	DUPLICATE-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D1-GW-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D2-GW-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	RE126D3-GW-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	RE131D2-GW-042116	UJ		
TRIP BLANK 042116	ACETONE	7.6	5.0	RE131D3-GW-042116	UJ		

Notes:UG_L=Micrograms per literLOQ=Limit of quantitationUJ=Analyte qualified as non-detect and estimated due to blank contamination.

Table A-3 Matrix Spike/Matrix Spike Duplicate Non-Conformance							
Spiked Sample	Analyte	Sample Result (UG_L)	Spike Added	MS %R	MSD %R	%R Limits	Qualifier
RE126D2-GW-042116	1,4-DIOXANE	3.7	2.10	68.9	106*	10 – 90	J
RE126D2-GW-042116	CARBON TETRACHLORIDE	< 0.50	50.0	66.6	61.2*	65 - 140	UJ

Notes:

UG_L Micrograms per liter =

MS = Matrix spike

Matrix spike duplicate MSD =

%R Percent recovery =

Bold* Percent recovery not within control limit =

J =

Detected analyte in associated sample qualified as estimated because the MSD %R is greater than the control limit. Analyte in associated sample qualified non-detect and estimated "UJ" because the MSD %R is lower than the control limit. UJ =

Attachment B Qualifier Codes and Explanations

Qualifier	Explanation		
J The analyte was positively identified; the associated numerical value approximate concentration of the analyte in the sample.			
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.		
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.		

Attachment C Reason Codes and Explanations

Reason Code	Explanation
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bm	Missing blank information
bt	Trip blank contamination
С	Calibration issue
cr	Chromatographic resolution
d	Reporting limit raised due to chromatographic interference
dt	Dissolved result > total over limit
е	Ether interference
ej	Above calibration range; result estimated.
f	Presumed contamination from FB or ER.
fd	Field duplicate RPDs
h	Holding times
hs	Headspace greater than 6mm in all sample vials
i	Internal standard areas
ii	Injection internal standard area or retention time exceedance
it	Instrument tune
k	Estimated maximum possible concentrations (EMPC)
I	LCS recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs
lp	Laboratory control sample/laboratory control sample duplicate RPDs
m	Matrix spike recovery
mc	Deviation from the method
md	MS/MSD RPDs
nb	Negative laboratory blank contamination
р	Chemical preservation issue
p-h	Uncertainty near detection limit (< Reporting Limit), historical reason code applied.
ре	Post Extraction Spike
q	Quantitation issue
r	Dual column RPD
rt	SIM ions not within + 2 seconds
S	Surrogate recovery
sp	Sample preparation issue
su	Evidence of ion suppression
t	Temperature Preservation Issue
Х	Low % solids
у	Serial dilution results
Z	ICS results

Attachment D Final Results after Data Review

		Sample Deli	very Group		SJ2726	
			Lab ID	S	J2726-1	
	Sample ID		TRIP B	BLANK 04211	6	
		Sample Date		4/21/2016		
		Si	ample Type	Т	rip Blank	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG L	7.6	J	С
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	Ŭ	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	Ŭ	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG L	0.5	U	
8260C	TOLUENE	108-88-3	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U	
	1,4-DIOXANE	123-91-1	UG_L	NA	- U	

Notes:

UG_L

NA

Qual

			SJ2726			
			Lab ID	S	J2726-2	
		Sample ID Sample Date		e 4/21/2016		
		S	ample Type	Gro	oundwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,bt,c
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	3.6		
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	33		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIN	1,4-DIOXANE	123-91-1	UG_L	4.8		

Notes:

UG_L

NA

Qual

		SJ2726					
			Lab ID		J2726-3		
		Sample ID		RE126D	RE126D2-GW-042116		
			ample Date				
		S	ample Type	Gro	oundwater		
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.9	J		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.38	J		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	2			
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	2.2			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,bt,c	
8260C	BENZENE	71-43-2	UG_L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U		
8260C	BROMOFORM	75-25-2	UG_L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG_L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	UJ	m	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	2.2			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	L	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U		
8260C	STYRENE	100-42-5	UG_L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG_L	3.4			
8260C	TOLUENE	108-88-3	UG_L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	ļ	
8260C	TRICHLOROETHENE	79-01-6	UG_L	500			
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	L	
8270D_SIN	1,4-DIOXANE	123-91-1	UG_L	3.7	J	m	

Notes:

UG_L

NA

Qual

	Sample Delivery Group							
			Lab ID		SJ2726-4RA			
		Sample ID		RE126D	RE126D3-GW-042116			
			ample Date	4/21/2016				
		S	ample Type	Gro	oundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC		
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U			
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U			
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	0.84	J			
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U			
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U			
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.38	J			
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	U			
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG L	0.75	U			
8260C	1,2-DIBROMOETHANE	106-93-4	UG L	0.5	U			
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U			
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U			
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG L	0.5	U			
8260C	1,3-DICHLOROBENZENE	541-73-1	UG L	0.5	U	1		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U	1		
8260C	2-BUTANONE	78-93-3	UG L	2.5	U			
8260C	2-HEXANONE	591-78-6	UG L	2.5	U			
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U			
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,bt,c		
8260C	BENZENE	71-43-2	UG L	0.5	U	21/20/0		
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U			
8260C	BROMOFORM	75-25-2	UG L	0.5	U			
8260C	BROMOMETHANE	74-83-9	UG L	1	Ŭ			
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U			
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	Ŭ			
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U			
8260C	CHLOROETHANE	75-00-3	UG_L	1	U			
8260C	CHLOROFORM	67-66-3	UG L	0.5	U			
8260C	CHLOROMETHANE	74-87-3	UG L	1	U			
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U			
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U			
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U			
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С		
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	, č		
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U			
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	1		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U			
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U			
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L UG_L	0.5	U			
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U			
8260C	O-XYLENE	95-47-6	UG L	0.5	U	1		
8260C	STYRENE	100-42-5	UG_L	0.5	U			
8260C	TETRACHLOROETHENE	127-18-4	UG L	2.8				
8260C	TOLUENE	108-88-3	UG_L UG_L	0.5	U			
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U			
8260C	TRANS-1,2-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U			
8260C	TRANS-1,S-DICHLOROPROPENE	79-01-6	UG_L UG_L	4.6		1		
8260C	TRICHLOROFLUOROMETHANE	79-01-8	UG_L	<u>4.0</u> 1	U			
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U			
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	<u> </u>		
	1,4-DIOXANE	123-91-1	UG_L UG_L	1.6				

Notes:

UG_L

NA

Qual

		Sample Deli	very Group		SJ2726	
		-	Lab ID		J2726-5	
			Sample ID	FBC	03-042116	
		S	ample Date	4/	/21/2016	
		S	ample Type	Fi	eld Blank	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	6	J	С
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG_L	1	U	
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	UJ	bl
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIN	1,4-DIOXANE	123-91-1	UG_L	0.2		

Notes:

UG_L

NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual

RC

		Sample Deli	very Group		SJ2726	
		-	Lab ID		J2726-6	
	Sample ID Sample Date		RE131D	01-GW-0421	16	
				4/21/2016		
		S	ample Type	Gro	oundwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	4.4		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.71	J	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	4.1		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U	
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U	
8260C	BROMOFORM	75-25-2	UG L	0.5	Ŭ	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ŭ	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U	
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG L	3.5		
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	4.1	-	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	Ŭ	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	÷
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	Ŭ	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	7.6	Ĭ	
8260C	TOLUENE	108-88-3	UG L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG L	88	0	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L UG_L	1.5	U	
	1,4-DIOXANE	123-91-1	UG_L UG_L	8.7	U U	

Notes:

UG_L

NA

Qual

			SJ2726			
			Lab ID	S	J2726-7	
		Sample ID		RE131D	02-GW-0421	16
			Sample Date		/21/2016	
			ample Type	Gro	oundwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	1	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	3.8		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	UU	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5		
8260C 8260C	2-BUTANONE	78-93-3 591-78-6	UG_L UG L	2.5 2.5	UU	
8260C 8260C					U	
8260C 8260C	4-METHYL-2-PENTANONE ACETONE	108-10-1 67-64-1	UG_L UG L	2.5 2.5	UJ	hf ht c
8260C 8260C	BENZENE	71-43-2	UG_L UG L	0.5	U	bf,bt,c
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L UG L	0.5	U	
8260C	BROMOFORM	75-27-4	UG_L UG_L	0.5	U	
8260C	BROMORETHANE	74-83-9	UG_L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U	
8260C	CARBON DISOLITIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	U	
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG L	1	U	
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	3.8	Ű	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	6		
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	41		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIN	1,4-DIOXANE	123-91-1	UG_L	8.2		

Notes:

UG_L

NA

Qual

			SJ2726					
		•	Lab ID	SJ	2726-8RA			
		Sample ID		RE131D	RE131D3-GW-042116			
			ample Date	4/	21/2016			
		S	ample Type	Gro	oundwater			
Method	Analyte	CAS No	Units	Result	Qual	RC		
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U			
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U			
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	91				
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U			
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U			
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.54	J			
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U			
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U			
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U			
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U			
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U			
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	0.24	J			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U			
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U			
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U			
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U			
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U			
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U			
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	bf,bt,c		
8260C	BENZENE	71-43-2	UG_L	0.5	U			
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U			
8260C	BROMOFORM	75-25-2	UG_L	0.5	U			
8260C	BROMOMETHANE	74-83-9	UG_L	1	U			
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U			
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U			
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U			
8260C	CHLOROETHANE	75-00-3	UG_L	1	U			
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U			
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U			
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.24	J			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U			
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U			
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U			
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С		
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U			
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U			
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U			
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U			
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U			
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U			
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U			
8260C	O-XYLENE	95-47-6	UG_L	0.5	U			
8260C	STYRENE	100-42-5	UG_L	0.5	U			
8260C	TETRACHLOROETHENE	127-18-4	UG_L	1.5				
8260C	TOLUENE	108-88-3	UG_L	0.5	U			
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U			
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U			
8260C	TRICHLOROETHENE	79-01-6	UG_L	3.8				
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U			
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U			
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U			
	1,4-DIOXANE	123-91-1	UG_L	1.1				

Notes:

UG_L

NA

Qual

		Sample Deli	very Group		SJ2726		
			Lab ID	S	SJ2726-9		
			Sample ID		DUPLICATE-042116 4/21/2016		
		S	4.				
		Si	ample Type	Fiel	d Duplicate		
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	4.2			
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.56	J		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	3.4			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,bt,c	
8260C	BENZENE	71-43-2	UG L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U		
8260C	BROMOFORM	75-25-2	UG L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG L	1	U		
8260C	CHLOROFORM	67-66-3	UG L	3.5			
8260C	CHLOROMETHANE	74-87-3	UG L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	3.4			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U		
8260C	O-XYLENE	95-47-6	UG_L	0.5	U		
8260C	STYRENE	100-42-5	UG_L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG L	6.5	-		
8260C	TOLUENE	108-88-3	UG L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	l	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG L	0.5	U	1	
8260C	TRICHLOROETHENE	79-01-6	UG L	79	Ť		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG L	1	U	1	
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U	1	
	1,4-DIOXANE	123-91-1	UG_L	10	Ť Ť	İ	

Notes:

UG_L

NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual

RC

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage			
Laboratory:	Katahdin Analytical			
Sample Delivery Groups:	SJ0752			
Analyses/Method:	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion			
Validation Level:	2			
Project Number:	0888812477.SA.DV			
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 03/04/2016		
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ0691_ 9060A_5310B		

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 29 January 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NW/IRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE131D2-SOIL-012916-568-570	SJ0752-1	Soil	9060A, 2540G
RE131D2-EB-012916	SJ0752-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1 Final Results after Data Review Regional Groundwater Investigation NWIRP Bethpage

	Sample Delivery Group			SJ0752	SJ0752
	Lab ID		SJ0752-1	SJ0752-2	
	Sample ID		RE131D2-SOIL-012916-568-570	RE131D2-EB-012916	
	Sample Date		1/29/2016	1/29/2016	
	Sample Type		Soil	Equipment Blank	
Method	Analyte	CAS No	Units	Result	Result
2540G	TOTAL SOLIDS	-29	РСТ	88	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.15 J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	240 J	NA

Notes:

entification

PCT = Percent

MG_L = Milligrams per liter

Micrograms per gram

UG_G = NA = Not analyzed

Estimated value – value was below the limit of quantitation. J =

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Groups:	SJ1198		
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion	
Validation Level:	2		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 03/30/2016	
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ1198_ 9060A_5310B	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 16 February 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE131D1-SOIL-021616-433-435	SJ1198-1	Soil	9060A, 2540G
RE131D1-EB-021616	SJ1198-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1 Final Results after Data Review Regional Groundwater Investigation NWIRP Bethpage

		Sample Del	SJ1198	SJ1198	
			Lab ID	SJ1198-1	SJ1198-2
			RE131D1-SOIL-021616-433-435	RE131D1-EB-021616	
		S	2/16/2016	2/16/2016	
		S	Soil	Equipment Blank	
Method	Analyte	CAS No Units		Result	Result
2540G	2540G TOTAL SOLIDS -29 PCT		84	NA	
5310B	5310B TOTAL ORGANIC CARBON -28 MG_L		NA	0.22 J	
9060A	TOTAL ORGANIC CARBON	-28			NA

Notes:

entification

PCT = Percent

MG_L = Milligrams per liter

Micrograms per gram

UG_G = NA = Not analyzed

Estimated value – value was below the limit of quantitation. J =

DATA VALIDATION REPORT

Project:	Regional Groundwater Inves	stigation — NWIRP Bethpage
Laboratory:	Katahdin Analytical	
Sample Delivery Groups:	SJ1554	
Analyses/Method:		by U.S. EPA SW-846 Method 9060A and Standard anic Carbon by High-Temperature Combustion
Validation Level:	2	
Project Number:	0888812477.SA.DV	
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 04/26/2016
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ1554_ 9060A_5310B

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 2 March 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NW/IRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis	
RE131D3-SOIL-030216-663-665	SJ1554-1	Soil	9060A, 2540G	
RE131D3-EB-030216	SJ1554-2	Equipment Blank	5310B	

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further. The symbol (x) indicates that a QC non-conformance resulted in the qualification of data. Any QC non-conformance that resulted in the qualification of data is discussed below.

Laboratory Blanks/Equipment Blanks

Laboratory blanks and equipment blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Samples were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

	For common lab contaminants (methylene chloride, acetone, 2-butanone):								
Blank type	Blank result	Sample result	Action for samples						
Method,	Detects	Not detected	No qualification						
Storage, Trip,		< 2x LOQ	Report sample LOQ value with a U						
Field, or Equipment	≤ 2x LOQ	≥ 2x LOQ and ≤ 4x the LOQ	Report the sample result with a U**						
		<u>></u> 4x the LOQ	No qualifications						
		< LOD	Report sample LOD value with a U**						
		<u>></u> LOD and < 2x LOQ	Report sample LOQ value with a U						
	> 2x LOQ	2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R						
		2x LOQ and blank contamination	If the result is $\leq 2x$ blank result, report the sample result U.** If the result is > 2x blank result, no qualification is required.**						
**Based on Res	olution Consult	ants professional judg	ment						

	For all other compounds:									
Blank type	Blank result	Sample result	Action for samples							
	Detects	Not detected	No qualification							
	< 2x LOQ	< 2x LOQ	Report sample LOQ value with a U							
	< 28 LOQ	<u>></u> 2x LOQ	Use professional judgment							
		< 2x LOQ	Report sample LOQ value with a U							
		2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R							
Method, Storage, Trip, Field, or Equipment	> 2x LOQ	2x LOQ and <u>></u> blank contamination	If the result is <2x blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.							
		< 2x LOQ	Report sample LOQ value with a U							
	= 2x LOQ	<u>></u> 2x LOQ	Use professional judgment							
	Gross contamination	Detects	Qualify results as unusable R							

Notes: LOQ

=	Limit of	quantitation
---	----------	--------------

LOD = Limit of detection

U = Undetected

R = Rejected

TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. Lab blank non-conformances are summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. One sample was qualified as non-detect and estimated due to lab blank contamination. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. Data not qualified during data review are considered usable by the project for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final results after data review are provided in Attachment B.

ATTACHMENTS

Attachment A: Non-Conformance Summary Table Attachment B: Table B-1, Final Results after Data Review Attachment A Non-Conformance Summary Table

Table A-1 Lab Blank Non-Conformance

				Blank Result			Detected Associated Sample Result		
Blank	Batches	Method		(MG_L)	LOQ	Associated Samples	(MG_L)	LOQ	Qualifier
WG180357-1	WG180357	5310B	TOTAL ORGANIC CARBON	0.13	1.0	RE131D3-EB-030216	0.17	1.0	UJ

Notes:

MG_L =

Milligrams per liter Limit of quantitation LOQ =

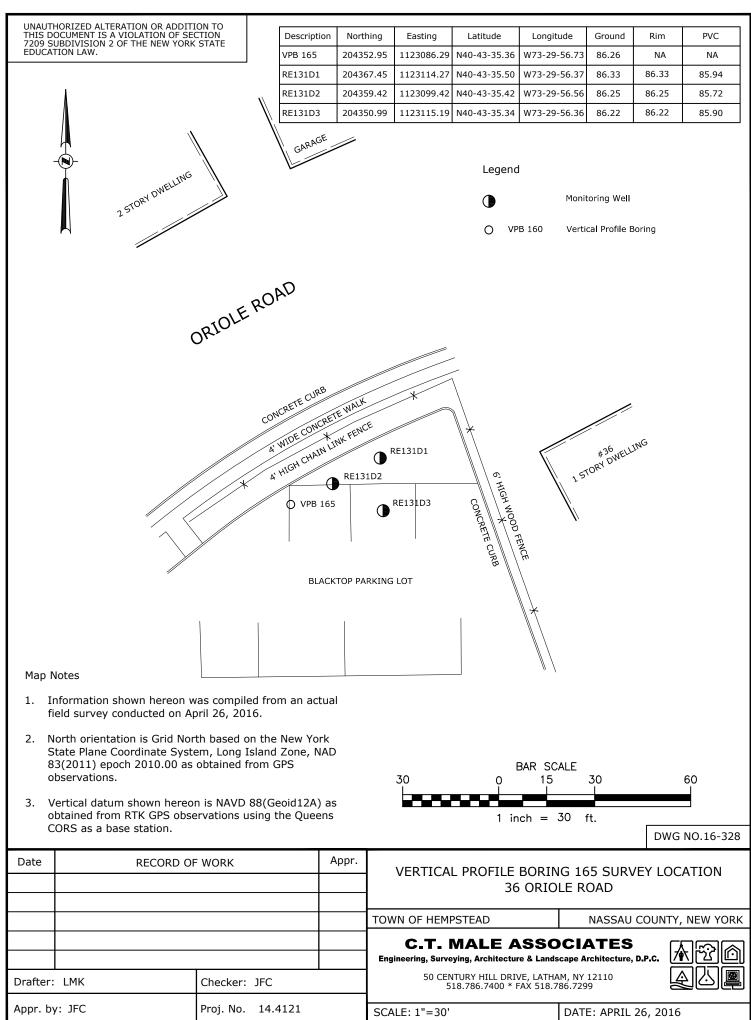
UJ The analyte was found in a sample at a concentration less than five times the blank concentration and qualified non-detect and estimated. =

Attachment B Final Results after Data Review

Table B-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group Lab ID					SJ1554 SJ1554-1			SJ1554 SJ1554-2		
Sample ID			RE131D3-SOIL-030216-663-665		RE131D3-EB-030216					
Sample Date			3/2/2016			3/2/2016				
Sample Type			Soil			Equipment Blank				
Method	Analyte	CAS No	Units	Result	Qual	RC	Result	Qual	RC	
2540G	TOTAL SOLIDS	-29	PCT	85			NA			
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA			0.5	UJ	bl	
9060A	TOTAL ORGANIC CARBON	-28	UG_G	220	J		NA			

Notes:


- ID = Identification
- Qual = Final interpreted qualifier
- RC = Validator reason code (See definition below)
- PCT = Percent
- MG_L = Milligrams per liter
- UG_G = Micrograms per gram
- NA = Not analyzed
- UJ = Non-detect and estimated value
- J = Estimated value; the reported value is greater than or equal to the laboratory method limit but less than the quantitation limit.

Reason Code

bl = Flagged non-detect and estimated due to lab blank contamination.

Section 5

Survey

