2016 OU2 GROUNDWATER INVESTIGATION RE127D1, RE127D2 (VPB161) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP) SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

May 2017

2016 OU2 GROUNDWATER INVESTIGATION RE127D1, RE127D2 (VPB161) INSTALLATION REPORT

> NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

> > Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants A Joint Venture of AECOM & EnSafe 1500 Wells Fargo Building 440 Monticello Avenue Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013 CTO WE15

May 2017

Brim Caldwell

Brian Caldwell Contract Task Order Manager

Table of Contents

LIST (OF ACR	ONYMS AND ABBREVIATIONS	
1.0	PROJ	ECT BACKGROUND	1
	1.1 1.2 1.3	Scope and Objectives Site History Geology and Hydrogeology	1 1 2
2.0	FIELD	D PROGRAM	4
	2.1 2.2 2.3 2.4 2.5	Drilling and Well Construction Well Development Sampling Decontamination and Investigation Derived Waste (IDW) Surveying	4 5 5 6
	DFFF	RENAED	•

Tables

Table 1 Monitoring Well Co	onstruction Summary
----------------------------	---------------------

- Table 2Monitoring Well Development Summary
- Table 3Analytical Data Summary
- Table 4Stabilized Field Parameters

Figures

- Figure 1 General Location Map
- Figure 2 RE127D1 and RE127D2 Location Map

Appendices

Appendix A – RE127D1, RE127D2

Section 1 Boring Logs

Section 2 VPB161 Gamma and TCE/PCE Plot

Section 3 Monitoring Well Construction Logs

Section 4 Groundwater Sample Log Sheets

Section 5 Analytical Data Validation

Section 6 Survey

Appendix B – Geologic Cross Sections derived from Environmental Sequence Stratigraphy (ESS)

List of Acronyms and Abbreviations

AOC	Area of Concern
bgs	below ground surface
CCM	Conceptual Site Model
COR	Continuously Operating Reference
DOD	Department of Defense
EPA	Environmental Protection Agency, United States
ESS	Environmental Sequence Stratigraphy
ft	feet
GOCO	Government-Owned Contractor-Operated
GPS	Global Positioning System
IDW	Investigation Derived Waste
IR	Installation Restoration
Katahdin	Katahdin Analytical Services
NAD	North American Datum
NAVD	North American Vertical Datum
NAVFAC	Naval Facilities Engineering Command
NG	Northrop Grumman
NTU	nephelometric turbidity units
NWIRP	Naval Weapons Industrial Reserve Plant
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
OU	Operable Unit
PCBs	Polychlorinated Biphenyls
POTW	Publicly Owned Treatment Works
PPE	Personal Protective Equipment
PVC	Polyvinylchloride
SAP	Sampling and Analysis Plan
SVOC	Semivolatile Organic Compounds
TCE	Trichloroethene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TOC	Total Organic Carbon
UFP	United Federal Programs
US	United States
VOC	Volatile Organic Compounds
VPB	Vertical Profile Boring

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of two monitoring wells and one initial groundwater monitoring event (specifically at the Vertical Profile Boring [VPB] 161 location) in 2016 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE127D1 and RE127D2, monitoring wells associated with VPB161. The purpose of this investigation was to ascertain subsurface conditions and contaminant levels and the downgradient extent of the offsite plume southeast of Route 135. The locations of RE127D1 and RE127D2, as well as other VPBs and monitoring well locations, are shown in Figure 2.

The field investigation included completing two monitoring wells, well development, soil/groundwater analysis, groundwater grab samples, and surveying. Field tasks were conducted in 2016 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

1

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1988); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1,000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at the RE127 locations, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 988 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

Resolution Consultants reviewed the geologic data and regional literature and developed four representative base-wide cross sections to support development of a Conceptual Site Model (CSM). A description of the application of Environmental Sequence Stratigraphy (ESS) and the results are provided in Appendix B.

2.0 FIELD PROGRAM

Two monitoring wells were installed in the vicinity of VPB161 between July 2016 and August 2016. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE127D1 and RE127D2 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE127D1 and RE127D2 were 685 ft and 780 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in the Appendix A. *2016 OU2 Groundwater Investigation VPB161* (Resolution Consultants, 2017) documents the installation of this VPB including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length. The gamma and TCE/PCE plot for VPB161 along with the well screen intervals at RE127D1 and RE127D2 is included in Appendix A.

Prior to installing each monitoring well, the results of the groundwater samples, the geophysical logs, lithology and field data from the vertical profile borings were analyzed (*2016 OU2 Groundwater Investigation VPB161*, Resolution Consultants, 2017). Screen intervals were determined based on intervals with the highest VOC concentrations as measured in the hydropunch samples and coincident intervals with the highest apparent permeability based on the gamma logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4-dioxane via Method 8270D SIM by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE127D1 and RE127D2 were sampled by Resolution Consultants on September 23, 2016. Analytical results and stabilized field parameters for these monitoring wells are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A. These monitoring wells will be included in quarterly sampling as part of the Navy's ongoing Environmental Restoration Program.

2.4 Decontamination and Investigation Derived Waste

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Luminox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) NY. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical

control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0 **REFERENCES**

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September 1994.

Resolution Consultants, 2013a. United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York. April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol*. November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December 2013.

Resolution Consultants, 2017. 2016 OU2 Groundwater Investigation VPB161, Bethpage, NY. May 2017.

Smolensky, D., and Feldman, S., 1988. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

Tables

RE127D1, RE127D2 (VPB161) Installation Report NWIRP Bethpage, NY

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE127D1	8/17/2016	61.58	61.13	685	53	660 - 680	680 - 685	698
RE127D2	7/20/2016	61.48	60.96	780	53	755 - 775	775 - 780	793

MSL - mean sea level

ft bgs - feet below ground surface

May 2017

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PUN	IP DEVELOPME	ΔΡΡΡΟΥ ΤΟΤΔΙ	FINAL		
MONITORING WELL	DATE	APPROX. VOLUME (GAL)	DATE	FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)	DEVELOPMENT VOLUME (GAL)	TURBIDITY (NTUs)	
RE127D1	8/25/2016	5,500	8/30/2016	660-680	4,200	9,700	18.32	
RE127D2	8/24/2016	6,000	8/26/2016; 8/29/2016	755-775	6,000	12,000	17.99	

GAL - gallon

FT BGS - feet below ground surface

NTUs - Nephelometric Turbidity Units

TABLE 3. ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRG BETHPAGE, NY

			5540750
Location	NYSDEC	RE127D1	RE127D2
Sample Date	Groundwater	9/23/2016	9/23/2016
Sample ID	Standard Value	092316	092316
Sample type code		Groundwater	Groundwater
VOC 8260C (ug/L)			
1,1,1-TRICHLOROETHANE	5	<0.50 U	<0.50 U
1,1,2,2-TETRACHLOROETHANE	5	<0.50 U	<0.50 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	<0.50 U	<0.50 U
1,1,2-TRICHLOROETHANE	1	<0.50 U	<0.50 U
1,1-DICHLOROETHANE	5	<0.50 U	<0.50 U
1.1-DICHLOROETHENE	5	<0.50 U	<0.50 U
1 2 4-TRICHLOROBENZENE	5	<0.50 U	<0.50 U
1.2-DIBROMO-3-CHLOROPROPANE	0.04	<0.75 U	<0.75 U
1 2-DIBROMOETHANE	NI	<0.50 U	<0.50 U
	3	<0.50 U	<0.50 U
	5	<0.50 U	<0.50 U
	5	<0.30 0	<0.30 0
	5	<1.00	<1.00
	1	<0.50 U	<0.50 U
	3	<0.50 U	<0.50 U
1,4-DICHLOROBENZENE	3	<0.50 U	<0.50 U
1,4-DIOXANE (Method 8270D_SIM)	NL	<0.17 U	<0.18 U
2-BUTANONE	50	<2.5 U	<2.5 U
2-HEXANONE	50	<2.5 U	<2.5 U
4-METHYL-2-PENTANONE	NL	<2.5 U	<2.5 U
ACETONE	50	<2.5 UJ	<2.5 UJ
BENZENE	1	<0.50 U	<0.50 U
BROMODICHLOROMETHANE	50	<0.50 U	<0.50 U
BROMOFORM	50	<0.50 U	<0.50 U
BROMOMETHANE	5	<1.0 U	<1.0 U
CARBON DISULFIDE	60	<0.50 U	<0.50 U
CARBON TETRACHLORIDE	5	<0.50 U	<0.50 U
CHLOROBENZENE	5	<0.50 U	<0.50 U
CHLOROETHANE	5	<1.0 U	<1.0 U
CHLOROFORM	7	<0.50 U	<0.50 U
CHLOROMETHANE	5	<1.0 U	<1.0 U
CIS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U
CIS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U
CYCLOHEXANE	NL	<0.50 U	<0.50 U
DIBROMOCHLOROMETHANE	5	<0.50 U	<0.50 U
DICHLORODIFLUOROMETHANE	5	<1.0 UJ	<1.0 UJ
ETHYLBENZENE	5	<0.50 U	<0.50 U
ISOPROPYLBENZENE	5	<0.50 U	<0.50 U
M- AND P-XYLENE	NL	<1.0 U	<1.0 U
METHYL ACETATE	NL	<0.75 U	<0.75 U
METHYL CYCLOHEXANE	NL	<0.50 U	<0.50 U
METHYL TERT-BUTYL ETHER	10	<0.50 U	<0.50 U
METHYLENE CHLORIDE	5	<2.5 U	<2.5 U
O-XYLENE	NL	<0.50 U	<0.50 U
STYRENE	5	<0.50 U	<0.50 U
TETRACHLOROETHENE	5	<0.50 U	<0.50 U
TOLUENE	5	<0.50 U	<0.50 U
TRANS-1.2-DICHI OROFTHENE	5	<0.50 U	<0.50 U
TRANS-1 3-DICHLOROPROPENIE	0.4	<0.50 U	<0.50 U
	5.4	<0.50 U	<0.50 U
	5	<1.011	<1.011
	2	<1.00	<1.00
	ے ج	~1.00	<1.00
1 4 DIOVANE (Method 522)	5 N!	NIA	NIA
1,4-DIOAAINE (IVIELIIOO 522)	INL	INA	NA

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1) Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; *Bold and Italics* =Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit. UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample. M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

RE127D1, RE127D2 (VPB161) Installation Report NWIRP Bethpage, NY

TABLE 4 STABILIZED FIELD PARAMETERS 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
RE127D1	9/23/2016	17.58	4.80	0.026	0.31	7.400	41.0	28.68	600
RE127D2	9/23/2016	16.68	4.00	0.020	3.54	220.7	17.2	29.47	500

°C - degrees Celsius

 $\mu\text{S/cm}$ - Microsiemens per Centimeter

mg/L - milligrams per liter

mV - Millivolts

NTU - Nephelometric Turbidity Unit

ft bgs - feet below ground surface

ml/min - mililiters per minute

May 2017

Figures

112G00622\0510\112G00622CM01.DWG 08/02/10 MKB

Appendix A

RE127D1, RE127D2

Boring Logs

Boring Log

BORING #: RE127D1 Sheet 1 of 2

	Suita	11115						
Client: Dep	partment of	f the Navy,	Naval Facili	ties Engine	ering Command, Mid-Atlantic	Logged I	By: G. Hicks	
Location: N	. Woodwar	rd Dr & N. I	Michigan Av	e, Massape	equa, NY	Drilling C	Company: Delta	a Well & Pump
Project #:	60266526			Groun	d Elevation (msl): 61.58	Well Scre	een Interval (ft	
Start Date:	8/8/2016			Drilling	g Method: Auger (0-50' bgs) Mud Rotarv (>50' bgs)	Water Le	evel (ft):	·
Finish Date	· 8/17/20	16		Northi	ng: 199120.06 Fasting : 1131245.10	Total De	nth (ft): 698 ()
	. 0/11/20	10		North	lig. 100120.00 Lusting. 1101240.10	l'otal De	ptil (it). 000.0	
		1	1					
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction
0					0-663 ft bgs: See VPB161 for Descriptions			
50					0-003 it bigs. See VPB to Fior Descriptions			— 10" Diameter Steel Casing
100								
150								
200								Bentonite Grout
250								
300								
350								
400								
450								
500								4" Diameter Schedule 80 PVC Riser
550								

Boring Log

BORING #: RE127D1 Sheet 2 of 2

Client: Department of the Navy, Navel Taolities Engineering Comman, Mid-Altonic Logged By: G. Hicks Logged By: G. Hicks Concurrent View Mark Measures and State Data State Dat									
Location: N. Wockward Dr. & N. Michigen Ave, Massapeque, N.Y. Dilling Company: Delived Received Interval (N): 680-880 Finds Date: 802016 Dilling Method: Naye (0.57 togs) Mod Receive (450 togs) Well Screen Interval (N): 680-880 Finds Date: 81772016 Northing: 199120.06 Easting: 1131245.10 Total Depth (N): 698.0 Finds Date: 81772016 Northing: 199120.06 Easting: 1131245.10 Total Depth (N): 698.0 Finds Date: 81772016 99 99 99 99 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 99 4" Demostruction 0.663 fi bgs: See VPB161 for Descriptions (scontured) 90 80 0.663 fi bgs: See VPB161 for Descriptions (scontured) 90 80 <	Client: Dep	partment of	f the Navy,	Naval Fac	ilities Enginee	ering Command, Mid-Atlantic	Logged By	: G. Hicks	
Project #: 6028626 Ground Elevation (ms]: 61.88 Well Screen Interval (t): 660-680 Bart Date: 872/16 Drilling Method: Auger (1-sort (1-sor	Location: N	. Woodwa	rd Dr & N. I	Michigan A	ve, Massape	qua, NY	Drilling Co	mpany: Delta	Vell & Pump
Start Date: Bitling Method: Augur (U-SU bga) Mud Reary (SU bga) Water Level (ft): Finish Date: B17/2016 Northing: 199120.06 Easting: 1191245.10 Total Depth (ft): 08.0 Finish Date: B17/2016 Northing: 199120.06 Easting: 1191245.10 Total Depth (ft): 08.0 Finish Date: B17/2016 Sg Sg </th <th>Project #:</th> <th>60266526</th> <th></th> <th></th> <th>Ground</th> <th>d Elevation (msl): 61.58</th> <th>Well Scree</th> <th>n Interval (ft):</th> <th>660-680</th>	Project #:	60266526			Ground	d Elevation (msl): 61.58	Well Scree	n Interval (ft):	660-680
Finish Date: B/17/2016 Northing: 199120.06 Easting: 1131245.10 Total Depth (ti): 698.0 E <th>Start Date:</th> <th>8/8/2016</th> <th></th> <th></th> <th>Drilling</th> <th>Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)</th> <th>Water Leve</th> <th>el (ft):</th> <th></th>	Start Date:	8/8/2016			Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	el (ft):	
Homework Description By Solution By Solution Homework Solution Solution Solution Solution Homework Solution Solution Solution Solution Solution Solution <t< th=""><th>Finish Date</th><th>8/17/20</th><th>16</th><th></th><th>Northi</th><th>ng: 199120.06 Easting: 1131245.10</th><th>Total Dept</th><th>h (ft): 698.0</th><th></th></t<>	Finish Date	8/17/20	16		Northi	ng: 199120.06 Easting : 1131245.10	Total Dept	h (ft): 698.0	
Head State State State October PVC Bible (continued) State Control (continued) State State Control (continued) State State Control (continued) State State Control (continued) State									
Egg Egg Sg Sg Sg Sg MATERIAL DESCRIPTION Sg Mell Construction 75 0									
0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-663 ft bgs: See VPB161 for Descriptions (continued) 4* Diameter Schedule 80 PVC Riser (continued) 0-664 ft bgs: See VPB161 ft prov (GLEY1 7N) poorly graded metium subrounded SAND. trace muscovite. 4* Diameter Schedule 80 PVC Riser (continued) 0 SW 22:222 Light gray (GLEY1 7N) poorly graded fine to medium subrounded SAND. trace muscovite. 0 SW 22:222 Light gray (GLEY1 7N) poorly graded fine to medium subrounded SAND. trace muscovite. <th>DEPTH (ft)</th> <th>PID (ppm)</th> <th>Formation</th> <th>nscs</th> <th>GRAPHIC LOG</th> <th>MATERIAL DESCRIPTION</th> <th></th> <th>Well Completion</th> <th>Well Construction</th>	DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction
684 686 688 690 692 694 694 694 694	$\begin{array}{c} 576 \\ 578 \\ 580 \\ 588 \\ 588 \\ 588 \\ 588 \\ 588 \\ 599 \\ 599 \\ 599 \\ 599 \\ 599 \\ 599 \\ 599 \\ 600 \\$			SP SW SW		0-663 ft bgs: See VPB161 for Descriptions (continue Light gray (GLEY1 7/N) poorly graded medium subro SAND, 1-cm-thick layer of Lignite, trace muscovite. Light gray (GLEY1 7/N) well graded fine to coarse subrounded SAND, trace Silt, trace lignite, trace musc Light gray (GLEY1 7/N) poorly graded fine subrounde SAND, trace Lignite, trace muscovite. Light gray (GLEY1 7/N) well graded fine to medium subrounded SAND, trace Lignite, trace muscovite.	d) punded scovite. ed		4" Diameter Schedule 80 PVC Riser (continued) #00 Filter Sand #1 Filter Sand #1 Filter Sand 4" Diameter Schedule 80 PVC, 10 Slot Well Screen (660-680 ft bgs)
698 End of boring at 698.0 ft. bos	684 686 688 690 692 694 694 696 698					End of boring at 698.0 ft bos			sump #1 Sand to Bottom

Boring Log

BORING #: RE127D2 Sheet 1 of 2

	June	into							
Client: Dep	partment of	f the Navy,	Naval Facili	ties Engine	ering Command, Mid-Atlantic	Logged I	By: G. Hicks		
Location: N	I. Woodwai	rd Dr & N. I	Michigan Av	e, Massape	qua, NY	Drilling C	company: Delta	Well & Pump	
Project #:	60266526			Groun	d Elevation (msl): 61.48	Well Screen Interval (ft): 755-775			
Start Date:	7/5/2016			Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Le	vel (ft):		
Finish Date	7/20/20	16		Northi	ng: 199105.31 Easting: 1131245.65	Total De	pth (ft): 793.0		
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction	
0					0-760 ft bgs: See VPB161 for Descriptions				
								- 10" Diameter Steel	
F0								Casing	
50 100 150 200 250 300								— Bentonite Grout	
350									
400									
450									
500									
550								4" Diameter Schedule 80 PVC Riser	
600									
650									

Boring Log

BORING #: **RE127D2** Sheet 2 of 2

Client: Depar	tment of	the Navy,	Naval Fac	ilities Enginee	ering Command, Mid-Atlantic	Logged By	: G. Hicks		
Location: N. W	Voodwar	d Dr & N. I	Michigan A	ve, Massape	qua, NY	Drilling Co	illing Company: Delta Well & Pump		
Project #: 602	266526			Ground	d Elevation (msl): 61.48	Well Screen Interval (ft): 755-775			
Start Date: 7/	/5/2016			Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	el (ft):		
Finish Date:	7/20/201	16		Northi	ng: 199105.31 Easting: 1131245.65	Total Dept	h (ft): 793.0		
						· ·			
			1						
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction	
			SP-SM SP-SM SP-SC SP		O-760 ft bgs: See VPB161 for Descriptions (continue Pale brown (2.5Y 8/2) poorly graded fine SAND with trace iron Pale brown (2.5Y 8/2) poorly graded fine SAND with fine subrounded gravel Light gray (5Y 7/2) poorly graded fine SAND with so Clay and fine subrounded gravel Light gray (5Y 7/2) poorly graded medium subangul with fine to coarse subrounded Gravel	ed) I Silt, I Silt and It fat ar SAND		4" Diameter Schedule 80 PVC Riser (continued) #00 Filter Sand #1 Filter Sand 4" Diameter Schedule 80 PVC, 10 Slot Well Screen (755-775 ft bgs) Sump #1 Sand to Bottom	
790 792									
					End of boring at 793.0 ft. bgs.				

VPB161 Gamma and TCE/PCE Plot

Monitoring Well Construction Logs

	Client:	NAVFAC	Project Number:	60266526	WELL	ID: RE127D1
	Site Locatio	on: NWIRP BETHPAC	JE, NY			
	Well Locati	on: N. Woodward Dr &	N. Michigan Ave, Mass	apequa, NY	Date Installed:	8/8/2016 - 8/17/2016*
RESOLUTION	Method:	MUD ROTARY			Inspector:	G. Hicks
CONSULTANTS	Coords:	Northing: 199120.06	Easting: 1131245.1	0	Contractor:	DELTA WELL & PUMP
		MONITORING	G WELL CONS	STRUCTION E	DETAIL	
				Dej	oth from G.S. (feet)	Elevation(feet)
* Casing installed with Au	uger rig 7/29/	16 - 8/1/16				Datum
· <i></i>		Ground Surface (G.S.)			0.00	61.58
Moosuring Boint for		Top of 12 inch diameter S	Steel Curb Box			
surveying &		_Top of Riser Pipe fit with	locking j-plug		0.45	61.13
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials % Cement		_Riser Pipe: Length Inside Diameter (ID) Type of Material	660 4 inch PVC			
% Native Materials		_Bottom of 10 inch diamet	er Steel Surface Casi	ng	53.0	8.6
		Bottom of Bentonite Grou	ıt		600.0	-538.4
		Bottom of #00 Filter Sand	d/Top of #1 Filter San	d	625	-563.4
		Top of Screen			660	-598.4
		 Stabilized Water Lev	el			
		Screen:				
		Length	20			_
		Inside Diameter (ID)	4 inch			
		Slot Size	 PVC			
		i jpe el material				
		Type/Size of Sand Sand Pack Thickness	<u>#1</u> 73			
		_Bottom of Screen			680	-618.4
		Bottom of Sump:			685	-623.4
		Bottom of Borehole			698	-636.4
Boreho	le Diameter:	10 inch Approve	d:			
Describe Measuring Point:		Go	rdon Hicks		8/16/2016	_
Ground Surface	•		6	Dai	6	

	Client:	NAVFAC	Project Number:	60266526	WELL ID: RE127D2					
	Site Locatio	on: NWIRP BETHPAG	JE, INY	NX	Data Installadı	7/5/2016	7/20/2016*			
DECOLUTION	Method:	MUD ROTARY	N. Michigan Ave, Mass	apequa, NY	Inspector:	G Hicks	//20/2016*			
CONSULTANTS	Coords:	Northing: 199105 31	Fasting: 1131245 6	5	Contractor:	DFLTA W	FIL& PUMP			
	coords.	Ttortunig. 177105.51	Lusting. 11512-5.0		Confidential.	DEEIM				
	MONITORING WELL CONSTRUCTION DETAIL									
* Casing installed with Au	uger rig 6/21,	/16 - 6/22/16		D	epth from G.S. (feet)		Elevation(feet) Datum			
		Ground Surface (G.S.)			0.00		61.48			
		Top of 12 inch diameter S	Steel Curb Box							
Measuring Point for surveying &		Top of Riser Pipe fit with	locking j-plug		0.52		60.96			
Cement, Bentonite, Bentonite Slurry Grout, or Native Materials% Cement		_Riser Pipe: Length Inside Diameter (ID) Type of Material	755 4 inch PVC							
% Benionite		Bottom of 10 inch diamet	er Steel Surface Casi	ng	53.0		8.5			
% Native		_		·						
Materials		Bottom of Bentonite Grou	ıt	_	720.0		-658.5			
		Bottom of #00 Filter Sand	d/Top of #1 Filter Sand	d	730		-668.5			
		Top of Screen		_	755		-693.5			
		Stabilized Water Lev	el							
		Screen: Length Inside Diameter (ID) Slot Size Type of Material	20 4 inch 10 PVC			-				
		Type/Size of Sand Sand Pack Thickness	#1 63							
		Bottom of Screen		_	775		-713.5			
		Bottom of Sump:		_	780		-718.5			
		Bottom of Borehole		_	793		-731.5			
Boreho	ble Diameter:	10 inch Approve	d:							
Describe Measuring Point:		Go: Signature	rdon Hicks e	Da	7/19/2016 ate	-				
Ground Surface	9									

Groundwater Sample Log Sheets

6								Well ID:	REIZT	10/	
RESOLU	UTION TANTS	Low I	Flow G	iroun	d Wate	er Sar	nple C	ollecti	on Rec	ord	
Client: Project N Site Loca Weather	Navy N o: tion: Conds:	WIRP Be 60266520 Wood 80	thpage 3 wave t	Michig	en	Date: <u>9</u> Col	/ 2-3 / lector(s):	16	Time: Start Finish	1120	_am/pm _am/pm
1. WATE a. Tot	R LEVEL al Well Ler	DATA: (m	neasured 1 98.ft	rom Top c. Lengt	of Casing h of Wate	g) r Column	a	(a-b)	Casing Dia 4-inch PVC	ameter/Ma	terial
b. Wa 2. WELL a. Pur	iter Table [. PURGE [rge Methoo	Depth DATA I:	<u>Geotech b</u>	d. Calcu bladder pu	lated Syst	em Volun rop tube a	1e (see back assembly) <u>[]3,]</u>	gal. <u>20</u>	screen le	ength (ft
b. Acc - Te - Co c. Fie	ceptance C mperature - pH onductivity Id Testing	Criteria def ± 3% ± 0.1 un ± 3% Equipmen	ined (see v it t used:	vorkplan) - E	• Turbidity - ORP)rawdown Make	± 10% ± 10mV < 0.3'	Model	- D.O. Remove a	± 10% (val minimum 1 Serial Num	lues >0.5 r screen vo	ng/L) Ilume
	j			La	YSI		556 2020		7318	91	
Time (24hr)	Volume Removed (gallons)	Temp. (°C)	Conduct.	DO (ma/L)	рН	ORP (mV)	Turbidity (NTU)	Flow Rate	Depth to water (ft)	Color/	Odor
1200	(guilette)		((ÓXI	
205		17.96	0:031	427	3.98	33.9	213-	600	1.36-51	Clow	ly
46		17.61	0,031	1.72	205	587		08 La 1	FL SOR!	Sec.	
1213		17.77	0.030	1.25	28	54.3			28,28		
1220		18,09	0.029	1.98	4.34	41.3		600	4		
1225	5gal	18.32	0.028	0.77	4.53	40.5	389		1		
d. Ac Ha Ha Ha	cceptance of as required as required ave parame If no or N	volume b turbidity b eters stabi /A - Expla	ss/tail een remov eeen reach lized in below.	ed ed	Yes					(continued on	back)
3. SAMP	PLE COLL	ECTION:		Method:	Geotech	bladder p	ump with o	drop tube as	ssembly		
Sample I	D		Contain 40-ml 1-L a	er Type _ vials mber	No. of Co 3 2	ontainers	Prese I	ervation ICI one	Analys VC 1,4-Di	is Req.)Cs ioxane	Time 325 325
Commen	its	hi	botto	a ushil	e mst	slling ,	new 1	Warig			
Signature)	Pau	l Kare	16					Date	9/23/	16

		•
LowFlow-GWa	- Sept	2016.xlsx

Purge Volume Calculation

Volume / Linear Ft. of Pipe			
ID (in)	Gallon	Liter	One screen volume
0.25	0.0025	0.0097	(4-inch well)
0.375	0.0057	0.0217	
0.5	0.0102	0.0386	15 ft = 37.1 L / 9.8 G
0.75	0.0229	0.0869	20 ft = 49.4 L / 13.1 G
1	0.0408	0.1544	25 ft = 61.8 L / 16.3 G
1.25	0.0637	0.2413	30 ft = 74.3 L / 19.6 G
1.5	0.0918	0.3475	40 ft = 99.2 L / 26.1 G
2	0.1632	0.6178	50 ft = 123.6 L / 32.6 G
2.5	0.2550	0.9653	
3	0.3672	1.3900	der State in der
4	0.6528	2.4711	VG
6	1.4688	5.5600	and the state of the second

Well ID:

(continued fro	om front)	9		a. 10		8				
22.2	Volume	121-10			1.1			Flow		A State of the second sec
Time	Removed	Temp	pН	Conduct.	DO	ORP	Turbidity	Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	in the second second
1230	foot	17-84	4.68	6.027	0.43	36.		600	28.72	Cloudy
1235		17.91	468	0.026	0.42.	33.6				5
1240	11.124.9	17.95	470	0.227	0.42	32.1	34.4		28.72	
1245		17.84	4.71	0.026	0.40	26.0				
1250		17.71	4.64	0.026	6035	18.6				
K57	10gg)	17.33	4.55	1.026	0.026	014.1	38.6		- 19 A	
1300		17.69	4.79	0,026	8500	10,0	36.4	-F		-
1305		17.68	4.77	0.02B	0.31	8.7	38.8	600		
1310		17.52	476	0.026	0.30	7.9	40,1		28.68	
1315	139a)	17.58	4.80	0026	0.31	7.4	41.0			1 SA 1
	0	•	•						9 V	
									9	
1325							1 - 1 - X -	200	2 E 10	Sauple
							1			
										-
	in april 19									
								ŵ		
					8. N				· · · · · · · · · · · · · · · · · · ·	

							Well ID:	REIZT	02
RESOLUTION	Low	Flow G	iroun	d Wat	er San	nple C	ollecti	on Rec	ord
Client: <u>Navy</u> Project No: Site Location:	NWIRP Be 6026652	ethpage 6	d Rd	, REIZ	Date: <u>9</u> - - 	123	<u>′ 16</u>	Time: Start Finish	<u> // ての</u> am/pm am/pm
Weather Conds:	34M	my 300	light 1		Coll	ector(s):	F. Del	٤	
1. WATER LEVE	L DATA: (n ength7	$\frac{93}{2}$	rom Top c. Lengt	of Casing h of Wate	g) r Column		_ (a-b)	Casing Dia 4-inch PV	ameter/Material C
b. Water Table	Depth 2	9.55	d. Calcu	lated Syst	tem Volum	IE (see back	1 <u>3.1</u>	gal. 20	screen length (ft)
2. WELL PURGE a. Purge Metho	DATA	Geotech b	oladder pu	ump with d	lrop tube a	issembly	-1.V 1-1.1		
b. Acceptance - Temperatur - pl - Conductivit	Criteria def e $\pm 3\%$ H ± 0.1 ur ty $\pm 3\%$	fined (see v nit	vorkplan) - [- Turbidity - ORP Drawdown	± 10% ± 10mV < 0.3'		- D.O. Remove a	± 10% (va minimum 1	lues >0.5 mg/L) screen volume
c. Field Testing	g Equipmer	nt used:		Make		Model		Serial Nun	nber
				YSI	102 5	556 7 07 ()		RFWZ4	671
Volume Time Remove (24hr) (gallons	d Temp.) (°C)	Conduct. (mS/cm)	DO (mg/L.)	рН	ORP (mV)	Turbidity (NTU)	Flow Rate (ml/min)	Depth to water (ft)	Color/Odor
1205			211	1-1-1	~ ~ 1		600	29.54	ON
1210	18.69	0.028	1.66	3,11	74.4			4 125 mil	
1215	14.13	0.024	10.06	3.09	200.9			- 1-11	1981 IN 1995 A
1420	17:86	0.024	10.05	3.43	191.5		600	273C	·····
1225	18.11	0.023	8.72	3.53	199.2	1000	1		
d. Acceptance Has require Has require Have param If no or	d volume b d volume b d turbidity t neters stabi N/A - Expla	<u>e II</u> ss/fall een remov been reach liized in below.	ed ed	Yes I	No I I I I I I I I I I I I I		acen)	1+	(continued on back)
3. SAMPLE COL	LECTION:		Method:	Geotech	bladder p	ump with	drop tube a	ssembly	
Sample ID <u> </u>	-090	Contain	er Type . vials mber	No. of Co 3	ontainers	Prese I	ervation HCI one	Analys VC 1,4-Di	is Req. Time DCs <u>1535</u> ioxane <u>555</u>
Comments	hit	holten	- wh	ile ms	kalling.	new-	tubing		
Signature	-5	H	<					Date	9-23-16

LowFlow-GWa - Sept 2016.xlsx

Purge Volume Calculation

Volume /	Linear Ft.	of Pipe	
ID (in)	Gallon	Liter	One screen volume
0.25	0.0025	0.0097	(4-inch well)
0.375	0.0057	0.0217	
0.5	0.0102	0.0386	15 ft = 37.1 L / 9.8 G
0.75	0.0229	0.0869	20 ft = 49.4 L / 13.1 G
1	0.0408	0.1544	25 ft = 61.8 L / 16.3 G
1.25	0.0637	0.2413	30 ft = 74.3 L / 19.6 G
1.5	0.0918	0.3475	40 ft = 99.2 L / 26.1 G
2	0.1632	0.6178	50 ft = 123.6 L / 32.6 G
2.5	0.2550	0.9653	
3	0.3672	1.3900	
4	0.6528	2.4711	
6	1.4688	5.5600	1 24 m 1 4

Well ID:

(continued fro	om front)									
5.0	Volume					221		Flow	C	
Time	Removed	Temp	рН	Conduct.	DO	ORP	Turbidity	Rate	Depth to	Color/Odor
(24 hr)	(Liters)	(°C)		(mS/cm)	(mg/L)	(mV)	(NTU)	(ml/min)	water (ft)	
1240		~				~				
12-15	5Gal	17.81	41.72	0.021	3.76	158.9	The P	700	09.11F	С
1250	-	17.32	2.70	0.021	3.50	261.9	. .	700	29.48	
1255		17.47	2.95	0.021	3.45	218.4	1	700	29.210	
1300	ţ	17.37	3.70	0.021	3.38	215,6	ļ	700	29.49	
1305	10 Gal	17.07	3.40	0.021	3.74	218.7	17.9	FOC	29.416	
1310	~	1720	3.66	0.021	3.47	224.1	-	700	29.47	
13 15	_	16.99	4.03	0.020	3.45	208.1	17.6	500	29.46	
1370		16.87	4.02	0.000	3.52	214.7	17.4	500	29.46	
1325	13.5	16.68	400	0.020	3.54	220.7	17.2	500	29.47	
		1. 1940								
0								277	1	
An	a pla	0 ×	Ino	133	5		с. н.),	200	н то ¹	
		7		/	11-1					4.04. 642
						1				
										in Martin
					eed 7 - 1					
								_		
										a
									100000000	A REAL PROPERTY AND A REAL
					-					
							1			
							"	b b		
	L									···

Analytical Data Validation

[The Data Validation report included here contains only result tables for RE127D1 and RE127D2; for the complete September-October 2016 Quarterly Sampling Data Validation report with all well results tables, see Sept-Oct (3Q) *2016 Groundwater Sampling Data Summary Report, Bethpage, NY*, Resolution Consultants, 2017.]

September 2016 Final Results after Data Review NWIRP Bethpage OU 2 Regional Groundwater Investigation

		erv Group	BET	HPAGE-7		
		SI	7877-5			
		c		5J DE107D1	CN/ 00221	6
		Sor	malo Dato	KL12/D	2/2014	0
		9/2 Croi	undwator			
Mathad	Analyta		nple Type	Deput	Qual	DC
Nethod			Units	Result	Qual	RU
82600		71-55-0		0.5	0	
82600		79-34-5		0.5	0	
82600		70-13-1		0.5	0	
82600		79-00-5		0.5	0	
82600		75-34-3		0.5	0	
82600				0.5	0	
82600		120-82-1		0.5	0	
82600		90-12-0 106.02.4		0.75	0	
8260C		05 50 1		0.5	0	
8260C		90-00-1		0.5	0	
8260C		T07-00-2		0.0	0	
8260C		340-39-0 70.07 E			0	
82600		/0-0/-0 E/1 72 1		0.5	0	
82600		104 44 7		0.5	0	
82600		70 02 2		0.0		
82600		F01 70 6		2.5	0	
82600		100 10 1		2.5	0	
82600		67.64.1		2.5		C
8260C		71 42 2		2.0	UJ	ι
8260C		71-43-2		0.5	0	
8260C		75-27-4		0.5	0	
82600		73-23-2		0.0	0	
82600		74-03-9		0.5	U U	
82600		56-23-5		0.5	0	
82600		109 00 7		0.5	0	
82600		75.00.2		0.0	0	
82600		67.66.2		0.5	0	
82600		71-87-3		1	U	
82600		156_50_2		0.5	U	
82600		10061-01-5		0.5		
82600		110-82-7		0.5		
82600		124_48_1		0.5	0	
82600		75-71-8		1		C
82600	FTHVI BENZENE	100-/11-/		0.5	11	C
82600		98-82-8		0.5	U	
82600	M- AND P-XYI FNF	108-38-3/106-42		1	11	
82600	METHYL ACETATE	79_20_9		0.75	11	
82600		108-87-2		0.5		
82600	METHYL TERT-BUTYL ETHER	1634-04-4		0.5		
82600		75-09-2		2.5	11	
82600	O-XYI FNF	95-47-6	UG I	0.5		
82600	STYRENE	100-42-5		0.5		
82600	TETRACHI OROFTHENE	127-18-4	UG I	0.5		
82600	TOLUENE	108-88-3	UG I	0.5		
82600	TRANS-1.2-DICHLOROFTHENE	156-60-5	UG I	0.5	U U	
82600	TRANS-1,3-DICHLOROPROPENE	10061-02-6		0.5	11	
82600		79-01-6		0.5		
82600		75-69-4		1	1	
82600	VINYI CHI ORIDE	75-01-4	UG I	1		
82600	XYLENES, TOTAL	1330-20-7	UG I	1.5	U U	
8270D SIM	1,4-DIOXANE	123-91-1	UG L	0.17	Ŭ	

Notes:

UG_L

NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual

RC

September 2016 Final Results after Data Review NWIRP Bethpage OU 2 Regional Groundwater Investigation

		erv Group	BFT	HPAGE-7		
		oumpie Bent		SI	7877-6	
		c	Sample ID	RF127D2	2-GW-09231	6
		- Sar	nnle Date	Q/2	2/2016	
		Sar	nple Type	Groundwater		
Method	Analyte	CAS No	Units	Result	Oual	RC
82600	1 1 1-TRICHLOROFTHANE	71-55-6	UGL	0.5	IJ	NO
82600	1 1 2 2-TETRACHI OROETHANE	79-34-5		0.5	Ŭ	
82600	1 1 2-TRICHI ORO-1 2 2-TRIFLUOROFTHANE	76-13-1		0.5	Ŭ	
82600	1 1 2-TRICHLOROFTHANE	79-00-5		0.5	Ŭ	
82600	1 1-DICHLOROFTHANE	75-34-3		0.5	Ŭ	
82600	1 1-DICHLOROETHENE	75-35-4	UG I	0.5	Ŭ	
82600	1 2 4-TRICHLOROBENZENE	120-82-1	UG I	0.5	Ŭ	
8260C	1.2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG I	0.75	Ŭ	
82600	1 2-DIBROMOETHANE	106-93-4		0.5	Ŭ	
82600	1 2-DICHLOROBENZENE	95-50-1		0.5	Ŭ	
82600	1 2-DICHLOROFTHANE	107-06-2		0.5	Ŭ	
82600		540-59-0		1	Ŭ	
82600	1 2-DICHLOROPROPANE	78-87-5		0.5	Ŭ	
82600	1 3-DICHLOROBENZENE	541-73-1	UG I	0.5	Ŭ	
82600		106-46-7		0.5	11	
82600	2-BLITANONE	78-93-3		2.5	U	
82600	2-HEXANONE	591-78-6		2.5	Ŭ	
82600		108-10-1		2.5	<u> </u>	
82600	ACETONE	67-64-1		2.5		C
82600	BENZENE	71-43-2		0.5	11	U U
82600		75-27-4		0.5	11	
82600	BROMOEOPM	75-25-2		0.5	<u> </u>	
82600	BROMOMETHANE	71-83-9		1	U	
82600		75-15-0		0.5	U	
82600		56-23-5		0.5	11	
82600		108-90-7		0.5	U	
82600		75-00-3		1	U	
82600	CHLOROFORM	67-66-3		0.5	U	
82600		74-87-3		1	U U	
82600		156-59-2		0.5	11	
82600		10061-01-5		0.5	U	
82600		110-82-7		0.5	U	
82600		124-48-1		0.5	11	
82600		75-71-8		1		C
82600	FTHYI BENZENE	100-41-4		0.5	11	U
82600		98-82-8		0.5	U	
82600	M- AND P-XYI ENE	108-38-3/106-42		1	U	
82600	METHYL ACETATE	79-20-9	UG I	0.75		
82600		108-87-2		0.5		
82600	METHYL TERT-BUTYL ETHER	1634-04-4		0.5		
82600	METHYLENE CHLORIDE	75-09-2		2.5	1	
82600	O-XYI FNF	95-47-6	UG I	0.5		
82600	STYRENE	100-42-5	UG I	0.5		
82600	TETRACHLOROFTHENE	127-18-4	UG I	0.5		
82600	TOLUENE	108-88-3	UG I	0.5		
82600	TRANS-1.2-DICHLOROFTHENE	156-60-5	UG I	0.5	U I	
82600	TRANS-1 3-DICHI OROPROPENE	10061-02-6		0.5		
82600		79-01-6		0.5		
82600		75-69-4		1	U U	
82600	VINYL CHLORIDE	75-01-4		1		
82600	XYLENES TOTAL	1330-20-7		15	11	
8270D SIM	1.4-DIOXANE	123-91-1	UG I	0.18	U U	

Notes:

UG_L

NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual

RC

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage				
Laboratory:	Katahdin Analytical				
Sample Delivery Groups:	SJ5406				
Analyses/Method:	Total Organic Carbon (TOC)	by U.S. EPA SW-846 Method 9060A			
Validation Level:	2				
Project Number:	0888812477.SA.DV				
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/12/2016			
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ5406_9060A			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 15 July 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis	
RE127D2-SOIL-071516-768-770	SJ5406-1	Soil	9060A, 2540G	
RE127D2-EB-071516	SJ5406-2	Equipment Blank	9060A	

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific

1

information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

		Sample Del	ivery Group	SJ5406	SJ5406
Lab ID		SJ5406-1	SJ5406-2		
Sample ID		RE127D2-SOIL-071516-768-770	RE127D2-EB-071516		
Sample Date		7/15/2016	7/15/2016		
Sample Type		Soil	Equipment Blank		
Method	Analyte	CAS No	Units	Result	Result
2540G	TOTAL SOLIDS	-29	PCT	79	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.24
9060A	TOTAL ORGANIC CARBON	-28	UG_G	1000	NA

Notes:

ID = Identification

PCT = Percent

MG_L = Milligrams per liter

UG_G = Micrograms per gram

NA = Not analyzed

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage		
Laboratory:	Katahdin Analytical		
Sample Delivery Groups:	SJ6337		
Analyses/Method:	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A		
Validation Level:	2		
Project Number:	0888812477.SA.DV		
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 09/12/2016	
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ6337_9060A	

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 12 July 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE127D1-SOIL-081216-678-680	SJ6337-1	Soil	9060A, 2540G
RE127D1-EB-081216	SJ6337-2	Equipment Blank	9060A

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific

1

information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. No results were qualified during this review and are considered usable by the project for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1, Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

		Sample Del	ivery Group	SJ6337	SJ6337
Lab ID		SJ6337-1	SJ6337-2		
Sample ID		RE127D1-SOIL-081216-678-680	RE127D1-EB-081216		
Sample Date		8/12/2016	8/12/2016		
Sample Type		Soil	Equipment Blank		
Method	Analyte	CAS No	Units	Result	Result
2540G	TOTAL SOLIDS	-29	PCT	84	NA
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA	0.52
9060A	TOTAL ORGANIC CARBON	-28	UG_G	1900	NA

Notes:

ID = Identification

PCT = Percent

MG_L = Milligrams per liter

UG_G = Micrograms per gram

NA = Not analyzed

Survey

Appendix B

Geologic Cross Sections derived from

Environmental Sequence Stratigraphy (ESS)

Appendix B. Geologic Cross Sections derived from

Environmental Sequence Stratigraphy

Resolution Consultants reviewed the geologic data and regional literature at the Naval Weapons Industrial Reserve Plant at Bethpage, New York and developed four representative base-wide cross sections to support development of a CSM. The cross sections are presented in Figure 1 -Figure 4. The cross sections provide geologic context for groundwater and analytical data and can be used as the framework upon which new and existing datasets (groundwater, analytical chemistry, geophysical data, etc.) can be analyzed to better understand groundwater flowpaths and contaminant transport and storage zones. As such, these sections are an integral component of an effective CSM.

The cross sections were developed using ESS. The ESS approach examines subsurface data in the context of the depositional environments and petroleum industry best practices of sequence stratigraphy and facies models. Shown for each boring included in the stratigraphic analysis are a vertical series of colored blocks which correspond to boring log lithology and a continuous data curve (in red or as a scan of a paper document, which corresponds to the gamma log). These colored blocks represent vertical grain size distribution and are the basis for the correlations between the data points.

The color coded blocks correspond to the graphic grainsize scale as shown in the cross-sections' keys. The width of the block increases with relative grainsize. Block color indicates the textural classification of the sediment (e.g., yellow for sand, green for silt, blue for clay) as written in the field notes of the core logging geologist (see the cross section keys for further definition).

Logs of natural gamma emissions are a common proxy for grainsize. They typically are used as a correlation aide because repetitive spatially extensive trends in grainsize are easily identified visually when curves are examined along a given section. In non-granitic aquifer material, the chemistry of minerals found in clays result in higher concentrations of gamma emitting anions as opposed to the quartz, heavy minerals, and lithic fragments that generally predominate the coarser size fractions. Thus, peaks in the gamma logs can be indicative of clay layers and in general as gamma count per second increases, the grainsize decreases. Gamma logs should always be "calibrated" by comparing side by side with a lithologic log at representative locations. Good agreement between gamma logs and lithology logs were noted in the data points used for the ESS sections at Bethpage.

The previously established general hydrostratigraphy at Bethpage consists of the basal Raritan confining unit, the Magothy aquifer, and the shallow glacial aquifer. The stratigraphy shown in the sections presented in this technical memo is consistent with this general model but additionally shows the Magothy to consist of basal zone gravel-rich channel fills (orange in sections); extensive, planar marine clays (thin units shown in grey and dark green); and silty sands of inter-distributary and delta front origins (shown in tan). Additionally, an erosional incision into the lower delta plain sediments is observed throughout the site (portrayed in sections as a wavy solid black line). Above this, the Magothy sediments are more likely estuarine "incised valley fill" as indicated by the more heterogeneous gamma ray character. In some locations, such as VPB139 on section A-A', there appears to be clear lithologic control on contaminant distribution within the estuarine facies where the higher TCE and PCE concentrations occur in the coarser lithologic zones.

The depositional axis of the incised valley fill likely trends north-south/southeast. The incision is clearly indicated on all sections via the correlation of a prominent clay layer shown in sections in dark green. Where this clay is missing in the gamma logs, it is likely that it was eroded during a lowstand of sea level. Additionally, while relatively planar in their geometry, the major units dip gently south-south east. This is an important geologic characteristic to consider when comparing analytical results because hydrologic zones separated by thin confining layers within the Magothy may be accessed by screens of similar depth.

One of the most important benefits of the ESS approach is to develop and refine the CSM. ESS facilitates an understanding of the geology governing groundwater occurrence and movement, and provides an element for refining the approaches for assessment and remediation. The ESS results from this effort suggest that a modern analog (a modern geological setting that allows an understanding of the ancient environment) for the Magothy depositional environments is the Mackenzie River Delta, shown in Figure 5. Basal gravel zones are represented by the braided river deposits of the Toklat River, Alaska, in Figure 6.

Environmental Sequence Stratigraphy Cross Section

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, silts,and fine to medium sand)

- Clay Clay with 10% Sand Clay with 20% Sand -Clav with 30% Sand Clay with 40% Sand Clay with Fine Gravel Clay with Medium Gravel Clay with Coarse Gravel Silt Silt with 10% Sand Silt with 20% Sand Sandy Silt Silty Sand Clayey Sand Silty Sand (Fine Sand with 40% Fines) Clayey Sand (Fine Sand with 40% Fines) Silty Sand (Fine Sand with 30% Fines) Clavey Sand (Fine Sand with 30% Fines) Silty Sand (Fine Sand with 10-20% Fines) Clayey Sand (Fine Sand with 10-20% Fines) Gravelly Silt (Silt with Fine Gravel) Gravelly Silt (Silt with Medium Gravel) Gravelly Silt (Silt with Coarse Gravel) Fine Sand Silty Sand (Medium Sand with 50% Fines) -Clayey Sand (Medium Sand with 50% Fines) Silty Sand (Medium Sand with 40% Fines) Clayey Sand (Medium Sand with 40% Fines) Silty Sand (Medium Sand with 30% Fines) Clayey Sand (Medium Sand with 30% Fines)
- -Silty Sand (Medium Sand with 10-20% Fines) -Clayey Sand (Medium Sand with 10-20% Fines) Fine Sand with Fine Gravel Fine Sand with Medium Gravel Fine Sand with Coarse Gravel Medium Sand -Silty Sand (Coarse Sand with 50% Fines) Clavey Sand (Coarse Sand with 50% Fines) Silty Sand (Coarse Sand with 40% Fines) Clayey Sand (Coarse Sand with 40% Fines) -Silty Sand (Coarse Sand with 30% Fines) -Clavey Sand (Coarse Sand with 30% Fines) Silty Sand (Coarse Sand with 10-20% Fines) Clayey Sand (Coarse Sand with 10-20% Fines) Medium Sand with Fine Gravel Medium Sand with Medium Gravel Medium Sand with Coarse Gravel - Coarse Sand - Coarse Sand with Fine Gravel Coarse Sand with Medium Gravel Coarse Sand with Coarse Gravel -Clayey/Silty Gravel (Fine gravel with clay/silt) Clayey/Silty Gravel (Medium gravel with clay/silt) Clayey/Silty Gravel (Coarse gravel with clay/silt) -Sandy Gravel (Fine Gravel with Sand) -Sandy Gravel (Medium Gravel with Sand) Sandy Gravel (Coarse Gravel with Sand) Fine Gravel Medium Grave
 - Coarse Gravel

Figure 1. Cross Section N-S

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, silts,and fine to medium sand)

Clay	Silty Sand (Medium Sand with 10-20% Fines)
Clay with 10% Sand	Clayey Sand (Medium Sand with 10-20% Fines)
Clay with 20% Sand	Fine Sand with Fine Gravel
Clay with 30% Sand	Fine Sand with Medium Gravel
Clay with 40% Sand	Fine Sand with Coarse Gravel
Clay with Fine Gravel	Medium Sand
Clay with Medium Gravel	Silty Sand (Coarse Sand with 50% Fines)
Clay with Coarse Gravel	Clayey Sand (Coarse Sand with 50% Fines)
Silt	
Silt with 10% Sand	Clayey Sand (Coarse Sand with 40% Fines)
Silt with 20% Sand	Silty Sand (Coarse Sand with 30% Fines)
Sandy Silt	Clayey Sand (Coarse Sand with 30% Fines)
Silty Sand	Silty Sand (Coarse Sand with 10-20% Fines)
Clayey Sand	Clayey Sand (Coarse Sand with 10-20% Fines)
Silty Sand (Fine Sand with 40% Fines)	Medium Sand with Fine Gravel
Clayey Sand (Fine Sand with 40% Fines)	Medium Sand with Medium Gravel
Silty Sand (Fine Sand with 30% Fines)	Medium Sand with Coarse Gravel
Clayey Sand (Fine Sand with 30% Fines)	Coarse Sand
Silty Sand (Fine Sand with 10-20% Fines)	Coarse Sand with Fine Gravel
Clayey Sand (Fine Sand with 10-20% Fines)	Coarse Sand with Medium Gravel
Gravelly Silt (Silt with Fine Gravel)	Coarse Sand with Coarse Gravel
Gravelly Silt (Silt with Medium Gravel)	Clayey/Silty Gravel (Fine gravel with clay/silt)
Gravelly Silt (Silt with Coarse Gravel)	Clayey/Silty Gravel (Medium gravel with clay/silt)
Fine Sand	Clayey/Silty Gravel (Coarse gravel with clay/silt)
Silty Sand (Medium Sand with 50% Fines)	-Sandy Gravel (Fine Gravel with Sand)
Clayey Sand (Medium Sand with 50% Fines)	-Sandy Gravel (Medium Gravel with Sand)
Silty Sand (Medium Sand with 40% Fines)	Sandy Gravel (Coarse Gravel with Sand)
Clayey Sand (Medium Sand with 40% Fines)	- Fine Gravel
Silty Sand (Medium Sand with 30% Fines)	Medium Gravel
Clayey Sand (Medium Sand with 30% Fines)	Coarse Gravel

Figure 2. Cross Section A-A'

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, sitts, and fine to medium sand)

Clay		Silty Sand (Medium Sand with 10-20% Fines)
Clay with 10% Sand		Clayey Sand (Medium Sand with 10-20% Fines)
Clay with 20% Sand	-	Fine Sand with Fine Gravel
Clay with 30% Sand	-	Fine Sand with Medium Gravel
Clay with 40% Sand		Fine Sand with Coarse Gravel
Clay with Fine Gravel	_	Medium Sand
Clay with Medium Gravel		Silty Sand (Coarse Sand with 50% Fines)
Clay with Coarse Gravel		Clayey Sand (Coarse Sand with 50% Fines)
Silt		Silty Sand (Coarse Sand with 40% Fines)
Silt with 10% Sand		Clayey Sand (Coarse Sand with 40% Fines)
Silt with 20% Sand		Silty Sand (Coarse Sand with 30% Fines)
Sandy Silt		Clayey Sand (Coarse Sand with 30% Fines)
Silty Sand		Silty Sand (Coarse Sand with 10-20% Fines)
Clayey Sand		Clayey Sand (Coarse Sand with 10-20% Fines)
Silty Sand (Fine Sand with 40% Fines)		Medium Sand with Fine Gravel
Clayey Sand (Fine Sand with 40% Fines)		Medium Sand with Medium Gravel
Silty Sand (Fine Sand with 30% Fines)		Medium Sand with Coarse Gravel
Clayey Sand (Fine Sand with 30% Fines)		Coarse Sand
Silty Sand (Fine Sand with 10-20% Fines)		- Coarse Sand with Fine Gravel
Clayey Sand (Fine Sand with 10-20% Fines)		Coarse Sand with Medium Gravel
Gravelly Silt (Silt with Fine Gravel)		Coarse Sand with Coarse Gravel
Gravelly Silt (Silt with Medium Gravel)		 Clayey/Silty Gravel (Fine gravel with clay/silt)
Gravelly Silt (Silt with Coarse Gravel)		Clayey/Silty Gravel (Medium gravel with clay/silt)
Fine Sand		 Clayey/Silty Gravel (Coarse gravel with clay/silt)
Silty Sand (Medium Sand with 50% Fines)		- Sandy Gravel (Fine Gravel with Sand)
Clayey Sand (Medium Sand with 50% Fines)		- Sandy Gravel (Medium Gravel with Sand)
Silty Sand (Medium Sand with 40% Fines)		Sandy Gravel (Coarse Gravel with Sand)
Clayey Sand (Medium Sand with 40% Fines)		-Fine Gravel
Silty Sand (Medium Sand with 30% Fines)		Medium Gravel
Clayey Sand (Medium Sand with 30% Fines)		Coarse Gravel

interdistributary and / or marine silty clays (high degree of continuity (darkest grey clay may serve as base to contaminant)

Figure 3. Cross Section B-B'

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, sitts,and fine to medium sand)

Ciay
Clay with 10% Sand
Clay with 20% Sand
Clay with 30% Sand
Clay with 40% Sand
Clay with Fine Gravel
Clay with Medium Gravel
Clay with Coarse Gravel
Silt
Silt with 10% Sand
Silt with 20% Sand
Sandy Silt
Silty Sand
Clayey Sand
Silty Sand (Fine Sand with 40% Fines)
Clayey Sand (Fine Sand with 40% Fines)
Silty Sand (Fine Sand with 30% Fines)
Clayey Sand (Fine Sand with 30% Fines)
Silty Sand (Fine Sand with 10-20% Fines)
Clayey Sand (Fine Sand with 10-20% Fines)
Gravelly Silt (Silt with Fine Gravel)
Gravelly Silt (Silt with Medium Gravel)
Gravelly Silt (Silt with Coarse Gravel)
Fine Sand
Silty Sand (Medium Sand with 50% Fines)
Clayey Sand (Medium Sand with 50% Fines)
Silty Sand (Medium Sand with 40% Fines)
Clayey Sand (Medium Sand with 40% Fines)
Silty Sand (Medium Sand with 30% Fines)
Clayey Sand (Medium Sand with 30% Fines)

city cana (modulari cana mar re 20% r moo)
Clayey Sand (Medium Sand with 10-20% Fines)
Fine Sand with Fine Gravel
Fine Sand with Medium Gravel
Fine Sand with Coarse Gravel
Medium Sand
— Silty Sand (Coarse Sand with 50% Fines)
 Clayey Sand (Coarse Sand with 50% Fines)
 Silty Sand (Coarse Sand with 40% Fines)
Clayey Sand (Coarse Sand with 40% Fines)
 — Silty Sand (Coarse Sand with 30% Fines)
 Clayey Sand (Coarse Sand with 30% Fines)
 — Silty Sand (Coarse Sand with 10-20% Fines)
Medium Sand with Fine Gravel
Medium Sand with Medium Gravel
 Medium Sand with Coarse Gravel
Coarse Sand
Coarse Sand with Fine Gravel
 Coarse Sand with Medium Gravel
 Coarse Sand with Coarse Gravel
 Clayey/Silty Gravel (Fine gravel with clay/silt)
Clayey/Silty Gravel (Medium gravel with clay/silt)
Clayey/Silty Gravel (Coarse gravel with clay/silt)
-Sandy Gravel (Fine Gravel with Sand)
-Sandy Gravel (Medium Gravel with Sand)
-Sandy Gravel (Coarse Gravel with Sand)
-Fine Gravel
-Medium Gravel
Coarse Gravel

Silty Sand (Medium Sand with 10-20% Fines

Figure 4. Cross Section C-C'

Figure 5. Mackenzie River Delta Depositional Environment

Source: Thermal Emission and Reflection Radiometer image from NASA's TERRA satellite, August 4, 2005, Mackenzie River, Canada. Image from GSFC/METI/ERSDAC/JAROS and the US/Japan ASTER Science Team. <u>http://earthobservatory.nasa.gov/IOTD/view.php?id=8320</u>

Figure 6. Braided River Depositional Environment

Source: East Fork Toklat River, Alaska Range, Denali National Park <u>https://pubs.usgs.gov/of/2004/1216/b/b.html</u>