2016 OU2 GROUNDWATER INVESTIGATION RE130D1, RE130D2 (VPB164) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP)
SITE 1 OU2
BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

June 2017

2016 OU2 GROUNDWATER INVESTIGATION RE130D1, RE130D2 (VPB164) INSTALLATION REPORT

NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants
A Joint Venture of AECOM & EnSafe
1500 Wells Fargo Building
440 Monticello Avenue
Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013

CTO WE15

June 2017

Brian Caldwell

Contract Task Order Manager

Table of Contents

LIST O	F ACRO	NYMS AND ABBREVIATIONSI	I
1.0	PROJE	CT BACKGROUND	1
	1.1	Scope and Objectives	1
	1.2	Site History	1
	1.3	Geology and Hydrogeology	2
2.0	FIELD	PROGRAM	4
	2.1	Drilling and Well Construction	4
	2.2	Well Development	4
	2.3	Sampling	5
	2.4	Decontamination and Investigation Derived Waste (IDW)	Ę
	2.5	Surveying	6
3.0	REFER	ENCES	8
		Tables	
Table 1	1	Monitoring Well Construction Summary	
Table 2	2	Monitoring Well Development Summary	
Table 3	3	Analytical Data Summary	
Table 4	4	Stabilized Field Parameters	
		Figures	
Figure	1	General Location Map	
Figure	2	RE130D1 and RE130D2 Location Map	

Appendices

Appendix A – RE130D1, RE130D2

Section 1 Boring Logs

Section 2 VPB164 Gamma and TCE/PCE Plot

Section 3 Monitoring Well Construction Logs

Section 4 Groundwater Sample Log Sheets

Section 5 Analytical Data Validation

Section 6 Survey

Appendix B – Geologic Cross Sections derived from Environmental Sequence Stratigraphy (ESS)

List of Acronyms and Abbreviations

AOC Area of Concern
bgs below ground surface
CSM Conceptual Site Model

COR Continuously Operating Reference

EPA Environmental Protection Agency, United States

ESS Environmental Sequence Stratigraphy

ft feet

GOCO Government-Owned Contractor-Operated

GPS Global Positioning System
IDW Investigation Derived Waste
IR Installation Restoration
Katahdin Katahdin Analytical Services
NAD North American Datum

NAVD North American Vertical Datum

NAVFAC Naval Facilities Engineering Command

NG Northrop Grumman

NTU nephelometric turbidity units

NWIRP Naval Weapons Industrial Reserve Plant

NYS New York State

NYSDEC New York State Department of Environmental Conservation

OU Operable Unit

PCBs Polychlorinated Biphenyls

PCE Tetrachloroethene

POTW Publicly Owned Treatment Works
PPE Personal Protective Equipment

PVC Polyvinylchloride

SAP Sampling and Analysis Plan SVOC Semivolatile Organic Compounds

TCE Trichloroethene

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

TOC Total Organic Carbon
UFP United Federal Programs

US United States

VOC Volatile Organic Compounds

VPB Vertical Profile Boring

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of two monitoring wells and one initial groundwater monitoring event (specifically at the Vertical Profile Boring [VPB] 164 location) in 2016 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE130D1 and RE130D2, monitoring wells associated with VPB164. The purpose of this investigation was to ascertain subsurface conditions and contaminant levels and the western extent of the offsite plume south of Hempstead Turnpike and west of Seaman's Neck Road. The locations of RE130D1 and RE130D2, as well as other VPBs and monitoring well locations, are shown in Figure 2.

The field investigation included completing two monitoring wells, well development, soil/groundwater analysis, groundwater sampling, and surveying. Field tasks were conducted in 2016 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1988); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1,000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at the RE130 locations, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 958 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

Resolution Consultants reviewed the geologic data and regional literature and developed four representative base-wide cross sections to support development of a Conceptual Site Model (CSM). A description of the application of Environmental Sequence Stratigraphy (ESS) and the results are provided in Appendix B.

2.0 FIELD PROGRAM

Two monitoring wells were installed in the vicinity of VPB164 between May 2016 and June 2016. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE130D1 and RE130D2 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE130D1 and RE130D2 were 580 ft and 665 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in Appendix A. 2016 OU2 Groundwater Investigation VPB164 (Resolution Consultants, 2017) documents the installation of VPB164 including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length. The gamma and trichloroethene (TCE) tetrachloroethene (PCE) plot for VPB164 along with the well screen intervals at RE130D1 and RE130D2 is included in Appendix A.

Prior to installing each monitoring well, screen intervals were determined based on intervals with the highest VOC concentrations as measured in the VPB164 hydropunch samples and coincident intervals with the highest apparent permeability based on the VPB164 gamma logs and geologist logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and .010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4-dioxane via Method 8270D SIM by Katahdin. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE130D1 and RE130D2 were sampled by Resolution Consultants on October 18, 2016. Analytical results and stabilized field parameters for these monitoring wells are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A. These monitoring wells will be included in quarterly sampling as part of the Navy's ongoing Environmental Restoration Program.

2.4 Decontamination and Investigation Derived Waste

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Luminox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) NY. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical

control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0 REFERENCES

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September 1994.

Resolution Consultants, 2013a. *United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York*. April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol.* November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December 2013.

Resolution Consultants, 2017. 2016 OU2 Groundwater Investigation VPB164, Bethpage, NY. May 2017.

Smolensky, D., and Feldman, S., 1988. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

Tables

June 2017

TABLE 1 MONITORING WELL CONSTRUCTION SUMMARY

2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	SURFACE CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE130D1	5/27/2016	57.87	57.59	580	53	555-575	575-580	592
RE130D2	6/16/2016	57.97	57.72	665	53.5	640-660	660-665	677

MSL - mean sea level

ft bgs - feet below ground surface

June 2017

TABLE 2 MONITORING WELL DEVELOPMENT SUMMARY

2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PUM	IP DEVELOPME			
MONITORING WELL	DATE	APPROX. VOLUME (GAL)	DATE	FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)	APPROX. TOTAL DEVELOPMENT VOLUME (GAL)	FINAL TURBIDITY (NTUs)
RE130D1	6/22/2016	9,000	6/23/2016	555-575	4,500	13,500	1.33
RE130D2	6/21/2016	11,000	6/24/2016	640-660	3,800	14,800	1.03

GAL - gallon

FT BGS - feet below ground surface NTUs - Nephelometric Turbidity Units RE130D1, RE130D2 (VPB164) Installation Report NWIRP, Bethpage, New York

TABLE 3 ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Location	NYSDEC	RE130D1	RE130D2	RE130D2	
Sample Date	Groundwater	10/18/2016	10/18/2016	10/18/2016	
Sample ID	Guidance or Standard Value	RE130D1-GW- 101816	RE130D2-GW- 101816	DUP1-GW-101816	
Sample type code	(Note 1)	Groundwater	Groundwater	FD	
VOC 8260C (ug/L)					
1,1,1-TRICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
1,1,2,2-TETRACHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
1,1,2-TRICHLOROETHANE	1	<0.50 U	<0.50 U	<0.50 U	
1,1-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
1,1-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	
1,2,4-TRICHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
1,2-DIBROMO-3-CHLOROPROPANE	0.04	<0.75 U	<0.75 U	<0.75 U	
1,2-DIBROMOETHANE	NL	<0.50 U	<0.50 U	<0.50 U	
1,2-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
1,2-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
1,2-DICHLOROETHENE, TOTAL	5	<1.0 U	<1.0 U	<1.0 U	
1,2-DICHLOROPROPANE	1	<0.50 U	<0.50 U	<0.50 U	
1,3-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
1.4-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
1,4-DIOXANE (Method 8270D SIM)	NL NL	<0.18 U	<0.17 U	<0.18 U	
2-BUTANONE	50	<2.5 UJ	<2.5 UJ	<2.5 UJ	
2-HEXANONE	50	<2.5 U	<2.5 U	<2.5 U	
	-			+	
4-METHYL-2-PENTANONE ACETONE	NL 50	<2.5 U	<2.5 U	<2.5 U	
	50	<2.5 UJ	<2.5 UJ	<2.5 UJ	
BENZENE	1 50	<0.50 U	<0.50 U	<0.50 U	
BROMODICHLOROMETHANE	50	<0.50 U	<0.50 U	<0.50 U	
BROMOFORM	50	<0.50 U	<0.50 U	<0.50 U	
BROMOMETHANE	5	<1.0 U	<1.0 U	<1.0 U	
CARBON DISULFIDE	60	<0.50 UJ	<0.50 UJ	<0.50 UJ	
CARBON TETRACHLORIDE	5	<0.50 U	<0.50 U	<0.50 U	
CHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
CHLOROETHANE	5	<1.0 UJ	<1.0 UJ	<1.0 UJ	
CHLOROFORM	7	<0.50 U	<0.50 U	<0.50 U	
CHLOROMETHANE	5	<1.0 UJ	<1.0 UJ	<1.0 UJ	
CIS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	
CIS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	
CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	
DIBROMOCHLOROMETHANE	5	<0.50 U	<0.50 U	<0.50 U	
DICHLORODIFLUOROMETHANE	5	<1.0 UJ	<1.0 UJ	<1.0 UJ	
ETHYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
ISOPROPYLBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
M- AND P-XYLENE	NL	<1.0 U	<1.0 U	<1.0 U	
METHYL ACETATE	NL	<0.75 U	<0.75 U	<0.75 U	
METHYL CYCLOHEXANE	NL	<0.50 U	<0.50 U	<0.50 U	
METHYL TERT-BUTYL ETHER	10	<0.50 U	<0.50 U	<0.50 U	
METHYLENE CHLORIDE	5	<2.5 U	<2.5 U	<2.5 U	
O-XYLENE	NL	<0.50 U	<0.50 U	<0.50 U	
STYRENE	5	<0.50 U	<0.50 U	<0.50 U	
TETRACHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	
TOLUENE	E	<0.50 U	<0.50 U	<0.50 U	
	5				
TRANS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	+	<0.50 U <0.50 U	<0.50 U <0.50 U	<0.50 U <0.50 U	
	5				
TRANS-1,3-DICHLOROPROPENE	5 0.4	<0.50 U	<0.50 U	<0.50 U	
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	5 0.4 5	<0.50 U <0.50 U	<0.50 U	<0.50 U	

TABLE 3 ANALYTICAL DATA SUMMARY

2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1)
Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; **Bold and Italics**=Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
 UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.
 J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
 M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

TABLE 4 STABILIZED FIELD PARAMETERS

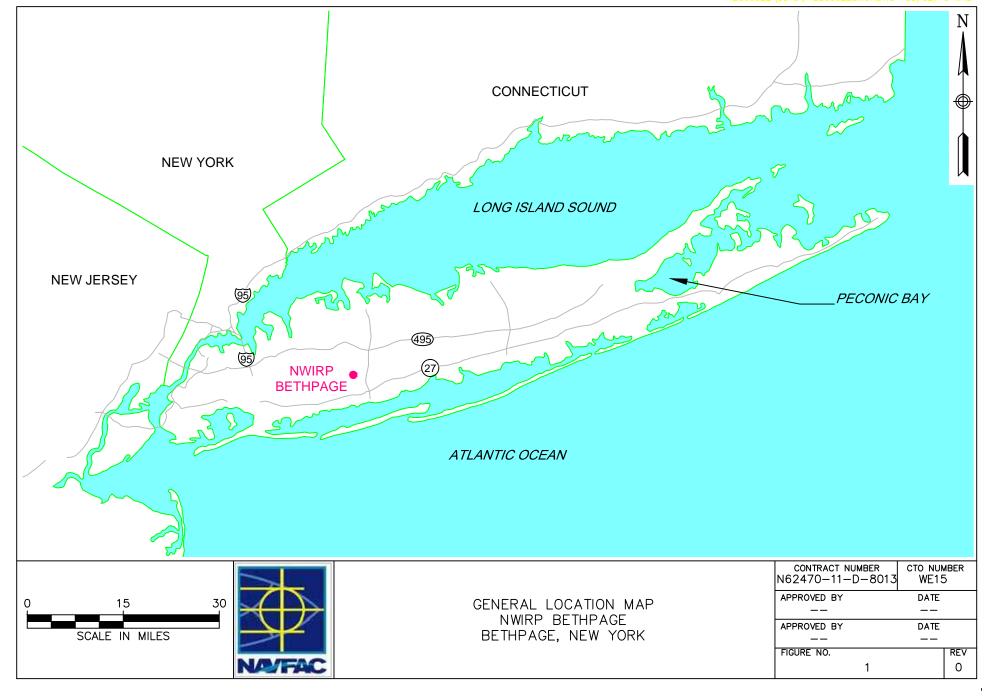
2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

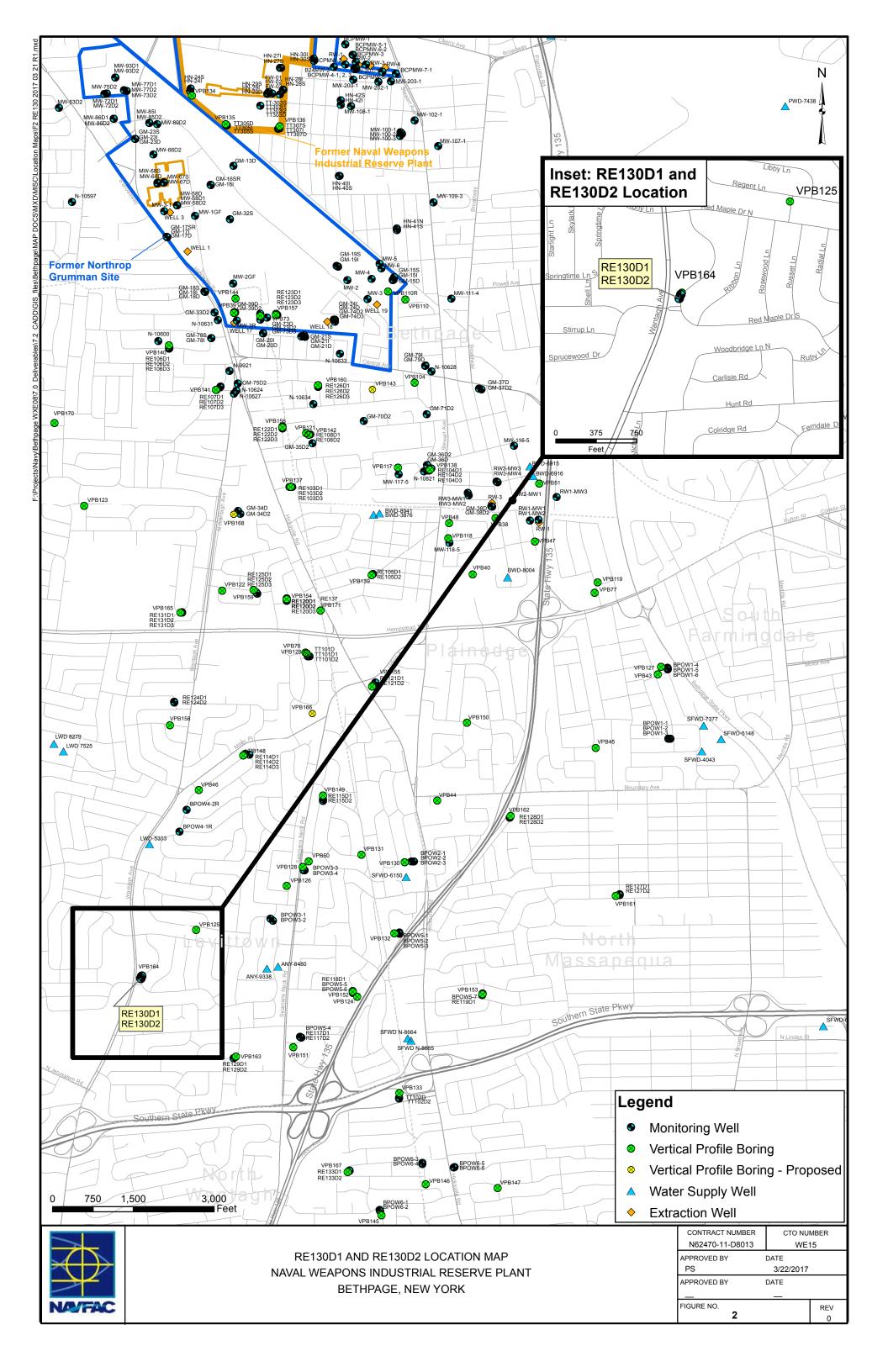
Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Flow rate (ml/min)
RE130D1	10/18/2016	16.73	5.28	0.121	1.53	82.7	10.94	26.84	200
RE130D2	10/18/2016	17.22	2.45	0.072	1.01	-11.9	33.1	26.15	500

°C - degrees Celsius

μS/cm - Microsiemens per Centimeter

mg/L - milligrams per liter


mV - Millivolts


NTU - Nephelometric Turbidity Unit

ft bgs - feet below ground surface

ml/min - mililiters per minute

Figures

Appendices

Appendix A

RE130D1, RE130D2

Section 1

Boring Logs

Boring Log

BORING #: **RE130D1**Sheet 1 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio							
Location: Wantagh Ave & West Red Maple Dr,	Drilling Company: Delta Well & Pump							
Project #: 60266526	Well Screen Interval (ft): 555-575							
Start Date: 5/19/2015 *	Water Level (ft):							
Finish Date: 5/27/2016	Northing: 197584.59	Total Depth (ft): 592.0						

^{*} Casing installed with Auger rig 5/16/16 - 5/17/16.

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well Completion	Well Construction
0					0-558 ft; See VPB164 for Descriptions		10" Diameter Steel Casing
100							
150							
200						\	Bentonite Grout
250							
300							
350							
400						•	4" Diameter Schedule 80 PVC Riser
450							

Boring Log

BORING #: **RE130D1**Sheet 2 of 2

Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Wantagh Ave & West Red Maple Dr,	Drilling Company: Delta Well & Pump	
Project #: 60266526	Well Screen Interval (ft): 555-575	
Start Date: 5/19/2015	Water Level (ft):	
Finish Date: 5/27/2016	Northing: 197584.59 Easting: 1122360.37	Total Depth (ft): 592.0

570 572 572 574 0 SP Gray (10YR 5/1) poorly graded fine SAND SP Sump Sump 588 588 586 #1 Sand to Bottom	DEPTH (ft)	PID (ppm)	Formation	SOSN	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
S26 S28 S38 S30 S32 S34 S36 S38 S38 S40 S40	502 504 506 508 510 512 514 516 518 520					0-558 ft; See VPB164 for Descriptions (continued)		#00 Filter Sand
SW SW SW SAND, trace lignite SAND SP Gray (10YR 6/1) poorly graded fine to medium subrounded SAND SP Gray (10YR 6/1) poorly graded fine SAND SP SP Gray (10YR 6/1) poorly graded fine SAND SP SP SP Gray (10YR 6/1) poorly graded fine SAND SP SP SP SP SP SP SP S	524 526 528 530 532 534 536 538 540 542 544 544 546 548 550 552							#1 Filter Sand
576 578 580 582 584 586	558 560 562 564 566 568 570	0 0		SP SP		Gray (10YR 6/1) poorly graded fine SAND Gray (10YR 6/1) poorly graded fine SAND		Schedule 80 PVC, 10 Slot Well Screen
584	576 578	0		34		C.s., (10111.6.1) poorly graded line 0/112		Sump
590	584 586 588							#1 Sand to Bottom

Boring Log

BORING #: **RE130D2**Sheet 1 of 2

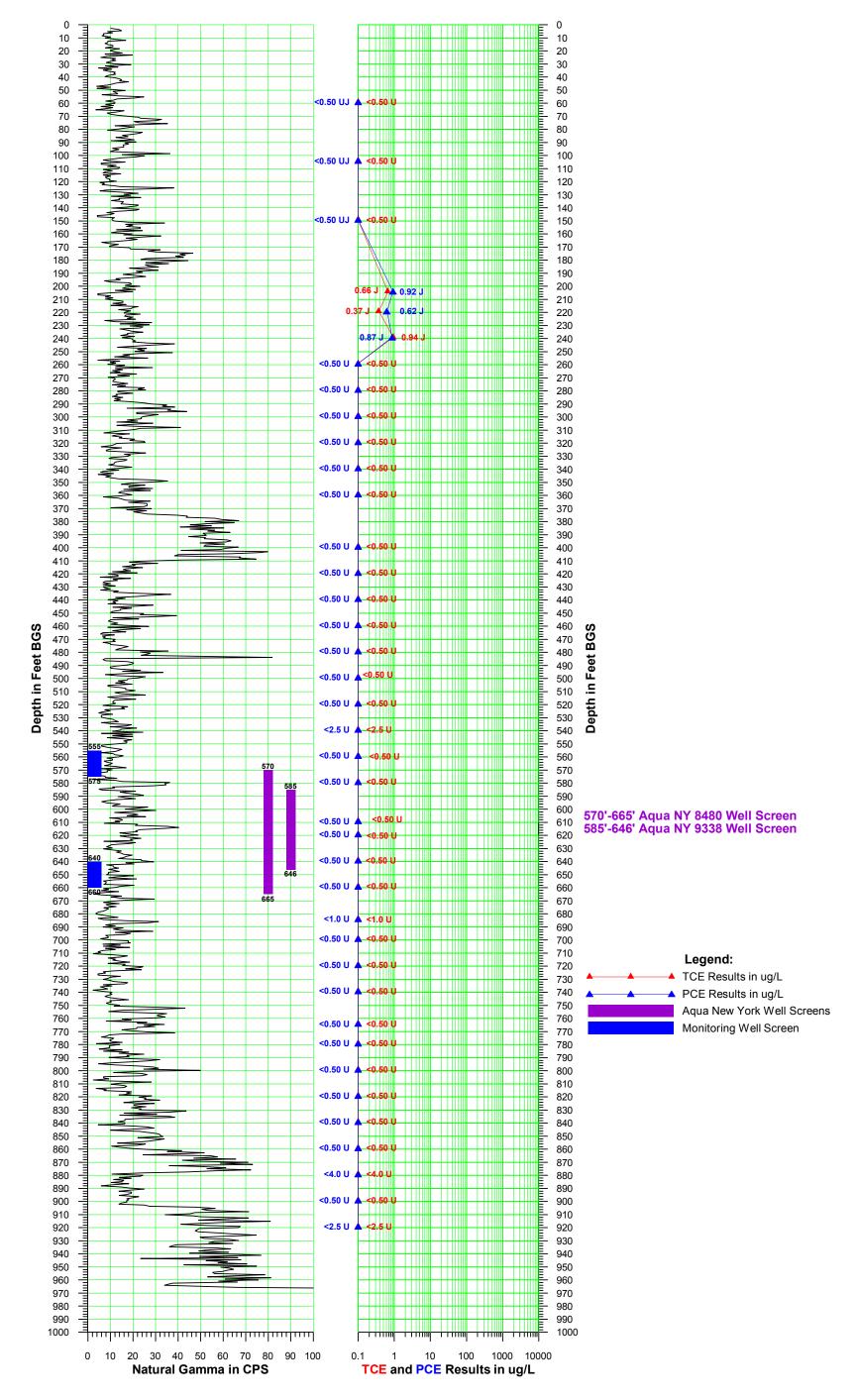
Client: Department of the Navy, Naval Facilitie	Logged By: V. Varricchio						
Location: Wantagh Ave & West Red Maple Dr,	Drilling Company: Delta Well & Pump						
Project #: 60266526	#: 60266526						
Start Date: 6/2/2016 *	Water Level (ft):						
Finish Date: 6/16/2016	Northing: 197604.41 Easting: 1122370.25	Total Depth (ft): 677.0					

^{*} Casing installed with Auger rig 5/12/16 - 5/13/16.

					T		
DEPTH (ft)	PID (ppm)	Formation	SDSU	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction
0					0-643 ft; See VPB164 for Descriptions		10" Diameter Steel Casing
50							
100							
150							
200						4	Bentonite Grout
250							Bonomio Gradi
300							
350							
400							
450							
500							4" Diameter Schedule 80 PVC Riser
550							

Boring Log

BORING #: **RE130D2**Sheet 2 of 2


Client: Department of the Navy, Naval Facilities	Logged By: V. Varricchio	
Location: Wantagh Ave & West Red Maple Dr,	Drilling Company: Delta Well & Pump	
Project #: 60266526	Ground Elevation (msl): 57.97	Well Screen Interval (ft): 640-660
Start Date: 6/2/2016	Water Level (ft):	
Finish Date: 6/16/2016	Northing: 197604.41	Total Depth (ft): 677.0

DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction	
590 592 594 596 598 600 602 604 606 608 610					0-643 ft; See VPB164 for Descriptions (continued)	-	#00 Filter Sand	
612 614 616 618 620 622 624 624 626 630 632 634 636 638 640							#1 Filter Sand	
642 644 646 648 650 652 654 656	0 0		SP SW	£7;£7;	Gray (10YR 6/1) poorly graded medium SAND, trace lignite Gray (10YR 6/1) well graded medium to coarse subrounded SAND Yellow (10YR 7/6) well graded fine to coarse subrounded SAND		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (640-660 ft bgs)	
660 662 664 666	0		SP		Light gray (10 YR 7/2) poorly graded fine SAND, trace silt		Sump	
668 670 672 674 676							#1 Sand to Bottom	

Section 2

VPB164 Gamma and TCE/PCE Plot

Vertical Profile Boring VPB-164 Downward Run - May 2, 2016 Validated Analytical Data

Section 3

Monitoring Well Construction Logs

Client: NAVFAC	Project Number: 60266526	WELL ID: RE130D1				
Site Location: NWIRP BETHE	AGE, NY					
Well Location: Wantagh Ave & W	est Red Maple Dr, Town of Hampstead, NY	Date Installed: 5/19/2016 - 5/27/2016*				
Method: MUD ROTARY Inspector: V. Varricchio						
Coords: Northing: 197584.59	Easting: 1122360.37	Contractor: DELTA WELL & PUMP				

MONITORING WELL CONSTRUCTION DETAIL

Casing installed with Auger rig 5	5/16/16 - 5/17/16	Depth from G.S. (feet)	Elevation(feet) Datum	
	Ground Surface (G.S.)	0.00	57.87	
	Top of 12 inch diameter Steel Curb Box			
leasuring Point for surveying & measuring water levels	Top of Riser Pipe fit with locking j-plug	0.28	57.59	
ement, Bentonite,	Riser Pipe:			
Bentonite Slurry Grout, or Native	Length 555			
Materials	Inside Diameter (ID) 4 inch			
% Cement	Type of Material PVC			
% Bentonite	Bottom of 10 inch diameter Steel Surface Casing	53.0	4.87	
% Native				
	Bottom of Bentonite Grout	500.0	-442.13	
	Bottom of #00 Filter Sand/Top of #1 Filter Sand	520	-462.13	
	Top of Screen	555	-497.13	
	Stabilized Water Level			
	Screen:			
	Length 20	_		
	Inside Diameter (ID) 4 inch			
	Slot Size10			
	Type of Material PVC			
	T (0: 10 l			
	Type/Size of Sand #1 Sand Pack Thickness 72			
	Sand Fack Fillokiloss 72			
	Della sta di Canada	-7-	517.10	
	Bottom of Screen	575	-517.13	
	Bottom of Sump:	580	-522.13	
	Bottom of Borehole	592	-534.13	
Borehole Diame	ter: 10 inch Approved:			
escribe Measuring Point:	V. Varrricchio	5/25/2016		
Ground Surface	Signature	Date		

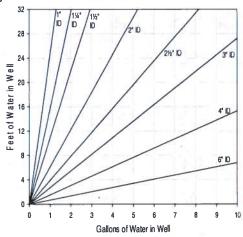
Clien	: NAVFAC	Project Number: 60266526	WELL ID: RE130D2				
Site I	ocation: NWIRP BETHPAC	SE, NY					
Well	Location: Wantagh Ave & West	Red Maple Dr, Town of Hampstead, NY	Date Installed: 6/2/2016 - 6/16/2016*				
Meth	Method: MUD ROTARY Inspector: V. Varricchio						
Coord	s: Northing: 197604.41	Easting: 1122370.25	Contractor: DELTA WELL & PUMP				

MONITORING WELL CONSTRUCTION DETAIL

Casing installed with Auger rig 5/12/16 - 5/	3/16	Depth from G.S. (feet)	Elevation(feet) Datum	
Grou	nd Surface (G.S.)	0.00	57.97	
and the Building	of 12 inch diameter Steel Curb Box of Riser Pipe fit with locking j-plug	0.25	57.72	
surveying &	of Kisel Fipe III with locking J-plug			
	Pipe:			
entonite Slurry rout, or Native	ength640			
Materials	nside Diameter (ID)4 inch			
% Cement	Type of Material PVC			
% BentoniteBotto	m of 10 inch diameter Steel Surface Casing	53.5	4.47	
% Native Materials				
Botto	om of Bentonite Grout	590.0	-532.03	
Botto	m of #00 Filter Sand/Top of #1 Filter Sand	610	-552.03	
_	40	0.40		
I op	of Screen	640	-582.03	
	Stabilized Water Level			
Scre	en:			
L L	ength20			
	nside Diameter (ID) 4 inch			
	Slot Size10			
	Γype of Material PVC			
Type	/Size of Sand #1			
	Pack Thickness 67			
Botto	om of Screen	660	-602.03	
Botto	om of Sump:	665	-607.03	
Botto	m of Borehole	677	-619.03	
Borehole Diameter: 10 in	nch Approved:			
scribe Measuring Point:	V. Varrricchio	6/14/2016		
Ground Surface	Signature	Date		

Section 4

Groundwater Sample Log Sheets



Well ID:	REISOPI	
	10-10-1	- 1

Low Flow Ground Water Sample Collection Record

	The state of	4 14	1111					- 11		
Client:		P Bethpag	· ·	1	18 1	Date:	10.1	8-16	Time: Start	∫ 3 38 am/pn
Project N Site Loca		6026652		/					Finish_	/6/5 am/pn
Site Loca Weather		Swa	Maple A	4.6 T	I I	Col	lector(s)	Paul	Karo H.	
					_			1 aus	arcy	
			neasured f	_						
			80 ft						4-inch PVC	meter/Material
b. Wa	iter Table [Depth Ze	2.07 ft	d. Calcu	lated Syst	em Volun	ne (see back) <u>/3:/</u>	gal. <u>20</u>	screen length (f
	. PURGE (rge Method		Geotech b	oladder pu	ımp with d	rop tube a	assembly		minute	
b. Acc	ceptance C	riteria del	ined (see v	vorkplan)						
	mperature	± 3%	1.0	a il	- Turbidity			- D.O.		ues >0.5 mg/L)
- C	pH - onductivity	± 0.1 ur			- ORP		40 EV	Remove a	minimum 1	screen volume
			aling loigh		Orawdown	< 0,3				
c. Fie	ld Testing	Equipmer	nt used:		Make		Model		Serial Num	
					YSI	. 1000	556 2020		15AL 82080	
						35-1-		- 1	Secre	
4.	Volume				3.8					1000
Time (24hr)	Removed (gallons)	Temp.	Conduct. (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Flow Rate (mL/min)	000 HRVIII	Color/Odor
1405	(ganoria)	(0)	(1110/0111)	(mg/L)	2.74	(1114)	(1410)	(1112/11111)	water (it)	ON
1420		1757	0.114	3.75	5.05	100,4		660		074
1425		17,35	6.117	2.65	5,10	1034	EGL FI	800	26.89	
1430		12.32	0.127	2.45	5.35	94.2			-041	
1435		17.31	0.125	2.24	5.23	97.9				
	- 1	17.24	0.124	2.04			100 7		J200., L	1277
1440	ceptance of			2007	5.22 Yes	94.2 No	IPZ N/A	4-04-00-0		(continued on back)
Ha Ha	as required as required ave parame	volume b turbidity b	een remov been reach ilized		प्रविष्					
3. SAMF	PLE COLL	ECTION:		Method:	Geotech	bladder p	oump with o	drop tube as	ssembly	
Sample I	D		Contain	er Type	No. of Co	ontainers	Prese	ervation	Analysi	s Req. Time
	D1-6W	-101816		_ vials	3			ICI	VO	Cs 1530
				mber	2		n	one	1,4-Di	
							10.11			
Commer	nts	h	it bota	on w	it h two	bires				
				2011					-	
				1.		-+-		·····	+	, ,
Signature	<u> </u>	Paul	Kuce	4					Date	10/18/16

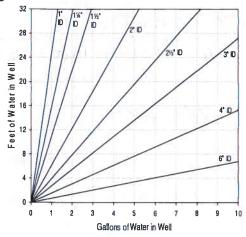
Purge Volume Calculation

Volume / L	inear Ft. d	of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1,3900
4	0.6528	2.4711
6	1.4688	5.5600

One screen volume (4-inch well)

15 ft = 37.1 L / 9.8 G 20 ft = 49.4 L / 13.1 G 25 ft = 61.8 L / 16.3 G 30 ft = 74.3 L / 19.6 G 40 ft = 99.2 L / 26.1 G 50 ft = 123.6 L / 32.6 G

Well ID:		F	RE130 D	1	14:15					
(continue	d from front)		•				, E			
	Volume	_		D.0		000		Flow		0 1 (0)
Time	Removed		Conduct.	DO	рН	ORP	Turbidity	Rate	Depth to	Color/Odor
(24 hr)	(gallons)	(°C)	(mS/cm)	(mg/L)	~ 111	(mV)	(NTU)	(mL/min)	water (ft)	
1445		17.05	0.123	1.84	5.14	98.2	11.0	650	26.98	^
1450		17.11	0.123	1.77	5.19	98.6	14.36			
1455		17.09	0.122	1.82	5.22	99.4	10.70			
1500		17.09	0.123	1.79	5.22	96.6	14.0			
1505	1000	16.98	0.122	1,62	5.23	43,0	12.27	650	26,89	
1510	-	16.77	0.122	1.70	5.24	84.5	20.6			
1515		16.83	0,122	460	5.28	819	11.64			,
1520	Beal	16.84	0.122	1.56	5.29	80.8	11.00		26.84	
1525		16116	6.121	1.53	5.29	81.7	12.79		,	1 1/4
1530	1594	16.77	0.121	1.53	5,28	82.7	10.44			
		,		•			,			
							ı			
1530								200		Sunda
1020					L .			,		544 px 1530. 1545 px 1590
				182						1530.1645 Ox
										The Part of the Pa
-	†									
-										
	 							<u> </u>		
-	ļ									
	-						-			
		,								
									, ,	
										,
									31 1.73	



Well ID:	REBODZ
----------	--------

Low Flow Ground Water Sample Collection Record

Client:		Bethpag		0.31	<i>A</i>	Date:	10-18	16	Time: Start		_am/pm
Project N		6026652		A 1 200					Finish	1615	_am/pm
Site Loca Veather		Ken	Maple N ny 80°	6.1	7 1	Co	llector(s):	Paul	Kazeth	- 1	115
WATE	D I EVEL		neasured f	rom Ton	of Casina	•1					THE STATE
a. Tota	al Well Ler	ngth 6	65 ft	c. Lengt	h of Water	r Column	14		Casing Dia	10.43	
b. Wa	ter Table D	epth <u>26</u>	.45_ft	d. Calcu	lated Syst	em Volur	ne (see back)	13.1	gal. 20	screen	length (ft)
	PURGE D		Geotech b	ladder pu	mp with d	rop tube	assembly		and High		
- Te	mperature	± 3% ± 0.1 ur	ined (see v nit		- Turbidity - ORP Drawdown	± 10m\		- D.O. Remove a	± 10% (val a minimum 1		
c. Fiel	d Testing I	Equipmen	it used:		Make YSI	# E F	Model 556	810	Serial Num	nber	O.S.A.
					a Mobile	0 8	2020	4 800	82040		1 724
Time (24hr)	Volume Removed (gallons)	Temp.	Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Flow Rate			r/Odor
405	(90)	17.86	0.074	1	1.64	59.6		2 2	7 1 1 1 1	Start	purp, a
1435	,	17.68	0.075	3.17	1.68	38.8	01.7	500	7 8 5		l bek
1430	-	17.81	0.683	2.23	2.13	10.5	0 1 2 1	1 15 9	26-10		1 357
1433		17.60	6.080	1.89	2.09	10.9	56	500	7.1		
	561	_						× 1091	Va.	N Paris	
440		17-41	0.073	1.32	1.96	20.1	48	500	26.15	1	
Ha Ha	is required ive parame	volume b turbidity l eters stab	een remov been reach		Yes	No	N/A			(continued o	n back)
3. SAMF	LE COLL	ECTION:	1	Method:	Geotech	bladder	pump with o	drop tube a	assembly		
Sample I	2-GW 10	01816	40-ml	er Type L vials	No. of Co			ervation HCI	VC	is Req. Cs	Time /535
\$130D	2-GW-	101816	1-L a	mber	2		n	one	1,4-D	ioxane	1545
Sales -	GU-101	0/0					- 44	117		1	(3/)
Commen	its			100							
	•								7 11 1		- L'
		-									2

Purge Volume Calculation

Volume / L	inear Ft.	of Pipe
ID (in)	Gallon	Liter
0.25	0.0025	0.0097
0.375	0.0057	0.0217
0.5	0.0102	0.0386
0.75	0.0229	0.0869
1	0.0408	0.1544
1.25	0.0637	0.2413
1.5	0.0918	0.3475
2	0.1632	0.6178
2.5	0.2550	0.9653
3	0.3672	1.3900
4	0.6528	2.4711
6	1.4688	5.5600

One screen volume (4-inch well) 15 ft = 37.1 L / 9.8 G

20 ft = 49.4 L / 13.1 G 25 ft = 61.8 L / 16.3 G 30 ft = 74.3 L / 19.6 G 40 ft = 99.2 L / 26.1 G 50 ft = 123.6 L / 32.6 G

Well ID:

Well ID:	d from front)							21 20 1		
(continue	Volume							Flow		
Time	Removed	Temp	Conduct.	DO	pН	ORP	Turbidity	Rate	Depth to	Color/Odor
(24 hr)	(gallons)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(mL/min)	water (ft)	301017 3 401
1445		17.47	0.013	126	1.99	16.0	49	500	26-15	Glight Cloudy
1450		1752	0.013	1:19	2.20	34	5.00	500	26-15	to oder
1455	T.	17.51	0.073	1-17	2.23	0-7	38			
1500		17.36	0.073	1-10	2.29	-3.6	28.3	500	26.15	
1505	1067	17-20	0-072	1.09	2.36	-9.6	16-1		2	THE PERSON NAMED IN
1510		17.15	8.072	1.03	2.38	-11-9	343	500	26-15	
1515	15	17.25	0-072	1.05	2.45	-13.5	30.5			
1520		17.23	0.072	1.03	2.49	-10.8	35.3	500	26:15	
1525		17.18	0.072	1.05	2.47	-12.5	37.2	27		
1530		1722	0.072	1.01	2.45	-11-9	33.1	500	26-15	
			5	. 3	7	- G	4 6 B	51.		A3L OF
		,				1,1	-	J'		
	Samp	le a	t 153		4		2 1			
	Dup	at	1543							
						198	III		_ =	
					Ţ				8,	
19										· .
E V	= = =	-			3.	,				
		c		. 4	L.		1 -	2 1	7	
			50				· -		net.	Reful - a Don k
									Eq.	46
E-12	5									drag the degree that
						_				
	S 2									

Section 5

Analytical Data Validation

[The Data Validation report included here contains only result tables for RE130D1 and RE130D2; for the complete September 2016 Quarterly Sampling Data Validation, see September 2016 Groundwater Sampling Data Summary Report, Bethpage, NY, Resolution Consultants, 2016.]

September 2016 Final Results after Data Review

NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sar Sar	Lab ID Sample ID mple Date mple Type	SJ RE130D ⁻ 10/	5J8622 8622-5 1-GW-10181 18/2016 undwater	6
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U	
8260C	ACETONE	67-64-1	UG L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	Ü	
8260C	BROMOFORM	75-25-2	UG L	0.5	Ü	
8260C	BROMOMETHANE	74-83-9	UG L	1	Ü	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	C
8260C	CHLOROMETHANE	74-87-3	UG_L	1	UJ	С
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U	<u> </u>
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	С
8260C	ISOPROPYLBENZENE	98-82-8 108-38-3/106-42	UG_L UG L	0.5 1	U U	
8260C	M- AND P-XYLENE				U	
8260C	METHYL CYCLOHEVANE	79-20-9	UG_L	0.75		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	11	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
3270D_SIM	1,4-DIOXANE	123-91-1	UG_L	0.18	U	

Notes:

UG_L NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual RC

September 2016 Final Results after Data Review

NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sar Sar	Lab ID Sample ID mple Date mple Type	SJ RE130D2 10/ Gro	5J8622 8622-6 2-GW-1018 18/2016 undwater	
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	11	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U	
8260C	ACETONE	67-64-1	UG_L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG_L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U	
8260C	BROMOFORM	75-25-2	UG L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ü	
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	
8260C	CHLOROMETHANE	74-87-3	UG_L	1	UJ	С
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.5	U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U	
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	ΩJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	L
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
			UG_L		U	
8260C	M- AND P-XYLENE	108-38-3/106-42		1 0.75	U	
8260C	METHYL CYCLOHEVANE	79-20-9	UG_L			
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	11	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
8270D_SIM	1 1,4-DIOXANE	123-91-1	UG_L	0.17	U	

Notes:

UG_L NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual RC

September 2016 Final Results after Data Review

NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sample Deliv	-		J8622	
			Lab ID	SJ	8622-7	
			Sample ID		GW-101816	5
			mple Date	10/	18/2016	
			mple Type	Duplicate of RE	130D2-GW	/-101 <u>816</u>
Method	Analyte	CAS No	Units	Result	Qual	RC
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U	
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U	
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	0.5	U	
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U	
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U	
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.5	U	
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U	
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U	
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U	
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U	
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U	
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U	
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U	
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U	
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U	
8260C	2-BUTANONE	78-93-3	UG_L	2.5	UJ	С
8260C	2-HEXANONE	591-78-6	UG L	2.5	U	
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	Ü	
8260C	ACETONE	67-64-1	UG L	2.5	UJ	С
8260C	BENZENE	71-43-2	UG L	0.5	U	
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U	
8260C	BROMOFORM	75-25-2	UG_L	0.5	U	
8260C	BROMOMETHANE	74-83-9	UG L	1	U	
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	UJ	С
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U	L L
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U	
8260C	CHLOROETHANE	75-00-3	UG L	1	UJ	С
8260C	CHLOROFORM	67-66-3	UG L	0.5	U	L L
8260C	CHLOROMETHANE	74-87-3	UG_L	0.5 1	UJ	_
						С
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U U	
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U	
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U	
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	11	UJ	С
8260C	ETHYLBENZENE	100-41-4	UG_L	0.5	U	
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U	
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U	
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U	
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U	
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U	
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U	
8260C	O-XYLENE	95-47-6	UG_L	0.5	U	
8260C	STYRENE	100-42-5	UG_L	0.5	U	
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.5	U	
8260C	TOLUENE	108-88-3	UG_L	0.5	U	
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U	
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U	
8260C	TRICHLOROETHENE	79-01-6	UG_L	0.5	U	
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U	
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U	
8260C	XYLENES, TOTAL	1330-20-7	UG_L	1.5	U	
	1,4-DIOXANE	123-91-1	UG_L	0.18	U	

Notes:

UG_L NA

Micrograms per liter
Not applicable
Final qualifiers (See Attachment B)
Reason codes (See Attachment C) Qual RC

Attachment A Final Qualifier Codes and Explanations

Qualifier	Explanation				
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.				
ΩΊ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.				
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.				

Attachment B Reason Codes and Explanations

Reason Code	Explanation Reason Codes and Explanations
be	Equipment blank contamination
bf	Field blank contamination
bl	Laboratory blank contamination
bm	Missing Blank Information
bt	Trip blank contamination
С	Calibration issue
cr	Chromatographic resolution
d	Reporting limit raised due to chromatographic interference
dt	Dissolved result > total over limit
е	Ether interference
ej	Above calibration range; result estimated.
f	Presumed contamination from FB or ER.
fd	Field duplicate RPDs
h	Holding times
hs	Headspace greater than 6mm in all sample vials
i	Internal standard areas
ii	Injection internal standard area or retention time exceedance
it	Instrument Tune
k	Estimated Maximum Possible Concentrations (EMPC)
l	LCS recoveries
lc	Labeled compound recovery
ld	Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD)
lp	Laboratory control sample/laboratory control sample duplicate RPDs
m	Matrix spike recovery
mc	Deviation from the method
md	MS/MSD precision
nb	Negative laboratory blank contamination
р	Chemical preservation issue
p-h	Uncertainty near detection limit (< Reporting Limit), historical reason code applied.
pe	Post Extraction Spike
q	Quantitation issue
r	Dual column RPD
rt	SIM ions not within + 2 seconds
S	Surrogate recovery
sp	Sample preparation issue
su	Evidence of ion suppression
t	Temperature Preservation Issue
Х	Low % solids
У	Serial dilution results
Z	ICS results

DATA VALIDATION REPORT

Regional Groundwater Investigation — NWIRP Bethpage			
Katahdin Analytical			
SJ3645			
Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion			
2			
0888812477.SA.DV			
Dana Miller/Resolution Consultants	Completed on: 6/15/2016		
Tina Cantwell/Resolution Consultants	File Name: SJ3645_9060A_5310B		
	Katahdin Analytical SJ3645 Total Organic Carbon (TOC) Method 5310B for Total Orga 2 0888812477.SA.DV Dana Miller/Resolution Consultants Tina Cantwell/Resolution		

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 24 May 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE130D1-SOIL-052416-558-560	SJ3645-1	Soil	9060A
RE130D1-EB-052416	SJ3645-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data were reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1 Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1
Final Results after Data Review
Regional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group			SJ3645		SJ3645		
	Lab ID		SJ3645-1		SJ3645-2		
	Sample ID		RE130D1-SOIL-052416-558-560		RE130D1-EB-052416		
			Sample Date	5/24/2016		5/24/2016	
			Sample Type	Soil		Equipment Blank	
Method	Analyte	CAS No	Units	Result	Qual	Result	Qual
2540G	TOTAL SOLIDS	-29	PCT	89		NA	
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA		0.21	J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	570		NA	

Notes:

ID = Identification PCT = Percent

MG_L = Milligrams per liter
UG_G = Micrograms per gram
Qual = Final interpreted qualifier

NA = Not analyzed

J = Estimated value – Value was below the limit of quantitation.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage				
Laboratory:	Katahdin Analytical				
Sample Delivery Groups:	SJ4358				
Analyses/Method:	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A and Standard Method 5310B for Total Organic Carbon by High-Temperature Combustion				
Validation Level:	2				
Project Number:	0888812477.SA.DV				
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 10/8/2016			
Reviewed by:	Tina Cantwell/Resolution Consultants	File Name: SJ4358_9060A_5310B			

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 13 June 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE130D2-SOIL-0613-643-645	SJ4358-1	Soil	9060A
RE130D2-EB-061316	SJ4358-2	Equipment Blank	5310B

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *Method SM5310B, Total Organic Carbon by High-Temperature Combustion, U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In

the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- ✓ Holding times and sample preservation
- ✓ Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- ✓ Laboratory blanks/equipment blanks/field blanks/trip blanks
- NA Surrogate spike recoveries
- ✓ Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol () indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

Qualifications Actions

The data were reviewed independently from the laboratory to assess data quality. All compounds detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation. No results were qualified during this review. Analytical completeness was calculated to be 100% and the data are usable for their intended purpose, according to U.S. Environmental Protection Agency and Department of Defense guidelines. Attachment A, Table A-1 provides final results after data review.

ATTACHMENTS

Attachment A: Table A-1 Final Results after Data Review

Attachment A Final Results after Data Review

Table A-1
Final Results after Data Review
Regional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group			SJ4358		SJ4358		
	Lab ID		SJ4358-1		SJ4358-2		
	Sample ID		RE130D2-SOIL-0613-643-645		RE130D2-EB-061316		
			Sample Date	6/13/2016		6/13/2016	
			Sample Type	Soil		Equipment Blank	
Method	Analyte	CAS No	Units	Result	Qual	Result	Qual
2540G	TOTAL SOLIDS	-29	PCT	84		NA	
5310B	TOTAL ORGANIC CARBON	-28	MG_L	NA		0.35	J
9060A	TOTAL ORGANIC CARBON	-28	UG_G	2700		NA	

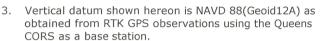
Notes:

ID = Identification PCT = Percent

MG_L = Milligrams per liter
UG_G = Micrograms per gram
Qual = Final interpreted qualifier

NA = Not analyzed

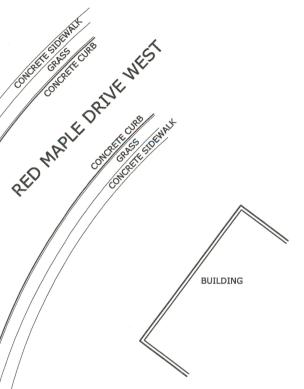
J = Estimated value – Value was below the limit of quantitation.


Section 6

Survey

Description	Northing	Easting	Latitude	Longitude	Ground	Top of Casing	PVC
VPB 164	197562.93	1122351.40	N40-42-28.31	W73-30-06.78	56.79	NA	NA
RE 130D1	197584.59	1122360.37	N40-42-28.52	W73-30-06.66	57.87	57.99	57.59
RE 130D2	197604.41	1122370.25	N40-42-28.72	W73-30-06.53	57.97	57.21	57.72

Map Notes


- Information shown hereon was compiled from an actual field survey conducted on March 20, 2017.
- North orientation is Grid North based on the New York State Plane Coordinate System, Long Island Zone, NAD 83(2011) epoch 2010.00 as obtained from GPS observations.

RE 130D2

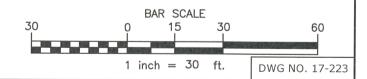
RE 130D1

VPB 164

(RE 130D1

BENCHMARK SET

"X" CUT ON SMH RIM ELEVATION=57.85'


Monitor Well

SMH

Sanitary Manhole

O VPB 140

Vertical Profile Boring

Date	RECORD OF WORK	Appr.	
	E OF NEW		
	P J. J. WILLIAM		L
	2/3 (3/1/2)	1	Ŀ
1 1			
	N/		
Drafter	Checker: MPN		
Appr. by	Proj. No. 14.4121		_

VERTICAL PROFILE BORING 164 SURVEY LOCATION 370 RED MAPLE DRIVE WEST

TOWN OF WANTAGH

NASSAU COUNTY, NEW YORK

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture & Landscape Architecture, D.P.C.

50 CENTURY HILL DRIVE, LATHAM, NY 12110 518.786.7400 * FAX 518.786.7299

SCALE: 1"=30'

DATE:MARCH 20, 2017

CAD DWG. FILE NAME: K:\Projects\144121\Survey\Drawings and Maps\2017 DRAWINGS\2017 VPB 164.dwg

Appendix B

Geologic Cross Sections derived from

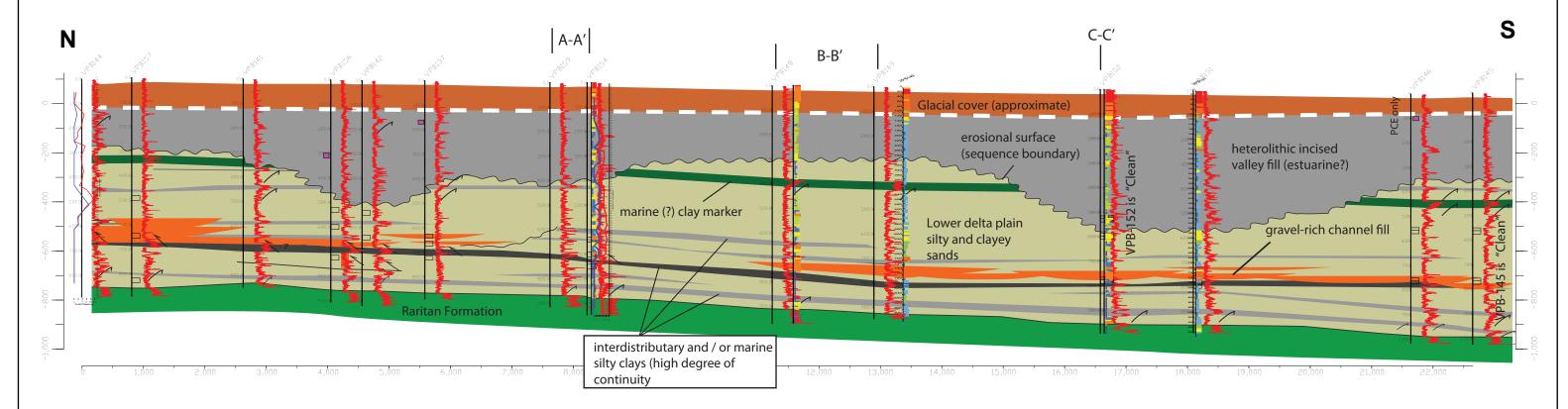
Environmental Sequence Stratigraphy (ESS)

Appendix B. Geologic Cross Sections derived from Environmental Sequence Stratigraphy

Resolution Consultants reviewed the geologic data and regional literature at the Naval Weapons Industrial Reserve Plant at Bethpage, New York and developed four representative base-wide cross sections to support development of a CSM. The cross sections are presented in Figure 1 - Figure 4. The cross sections provide geologic context for groundwater and analytical data and can be used as the framework upon which new and existing datasets (groundwater, analytical chemistry, geophysical data, etc.) can be analyzed to better understand groundwater flow-paths and contaminant transport and storage zones. As such, these sections are an integral component of an effective CSM.

The cross sections were developed using ESS. The ESS approach examines subsurface data in the context of the depositional environments and petroleum industry best practices of sequence stratigraphy and facies models. Shown for each boring included in the stratigraphic analysis are a vertical series of colored blocks which correspond to boring log lithology and a continuous data curve (in red or as a scan of a paper document, which corresponds to the gamma log). These colored blocks represent vertical grain size distribution and are the basis for the correlations between the data points.

The color coded blocks correspond to the graphic grainsize scale as shown in the cross-sections' keys. The width of the block increases with relative grainsize. Block color indicates the textural classification of the sediment (e.g., yellow for sand, green for silt, blue for clay) as written in the field notes of the core logging geologist (see the cross section keys for further definition).


Logs of natural gamma emissions are a common proxy for grainsize. They typically are used as a correlation aide because repetitive spatially extensive trends in grainsize are easily identified visually when curves are examined along a given section. In non-granitic aquifer material, the chemistry of minerals found in clays result in higher concentrations of gamma emitting anions as opposed to the quartz, heavy minerals, and lithic fragments that generally predominate the coarser size fractions. Thus, peaks in the gamma logs can be indicative of clay layers and in general as gamma count per second increases, the grainsize decreases. Gamma logs should always be "calibrated" by comparing side by side with a lithologic log at representative locations. Good agreement between gamma logs and lithology logs were noted in the data points used for the ESS sections at Bethpage.

The previously established general hydrostratigraphy at Bethpage consists of the basal Raritan confining unit, the Magothy aquifer, and the shallow glacial aquifer. The stratigraphy shown in the sections presented in this technical memo is consistent with this general model but additionally shows the Magothy to consist of basal zone gravel-rich channel fills (orange in sections); extensive, planar marine clays (thin units shown in grey and dark green); and silty sands of inter-distributary and delta front origins (shown in tan). Additionally, an erosional incision into the lower delta plain sediments is observed throughout the site (portrayed in sections as a wavy solid black line). Above this, the Magothy sediments are more likely estuarine "incised valley fill" as indicated by the more heterogeneous gamma ray character. In some locations, such as VPB139 on section A-A', there appears to be clear lithologic control on contaminant distribution within the estuarine facies where the higher TCE and PCE concentrations occur in the coarser lithologic zones.

The depositional axis of the incised valley fill likely trends north-south/southeast. The incision is clearly indicated on all sections via the correlation of a prominent clay layer shown in sections in dark green. Where this clay is missing in the gamma logs, it is likely that it was eroded during a lowstand of sea level. Additionally, while relatively planar in their geometry, the major units dip gently south-south east. This is an important geologic characteristic to consider when comparing analytical results because hydrologic zones separated by thin confining layers within the Magothy may be accessed by screens of similar depth.

One of the most important benefits of the ESS approach is to develop and refine the CSM. ESS facilitates an understanding of the geology governing groundwater occurrence and movement, and provides an element for refining the approaches for assessment and remediation. The ESS results from this effort suggest that a modern analog (a modern geological setting that allows an understanding of the ancient environment) for the Magothy depositional environments is the Mackenzie River Delta, shown in Figure 5. Basal gravel zones are represented by the braided river deposits of the Toklat River, Alaska, in Figure 6.

Environmental Sequence Stratigraphy Cross Section

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, silts, and fine to medium sand)

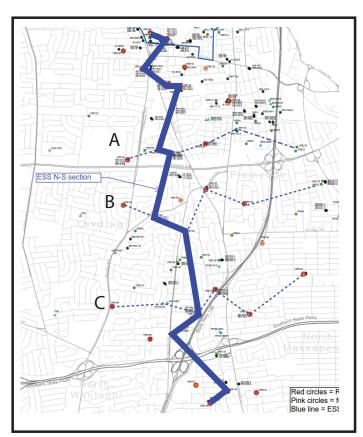
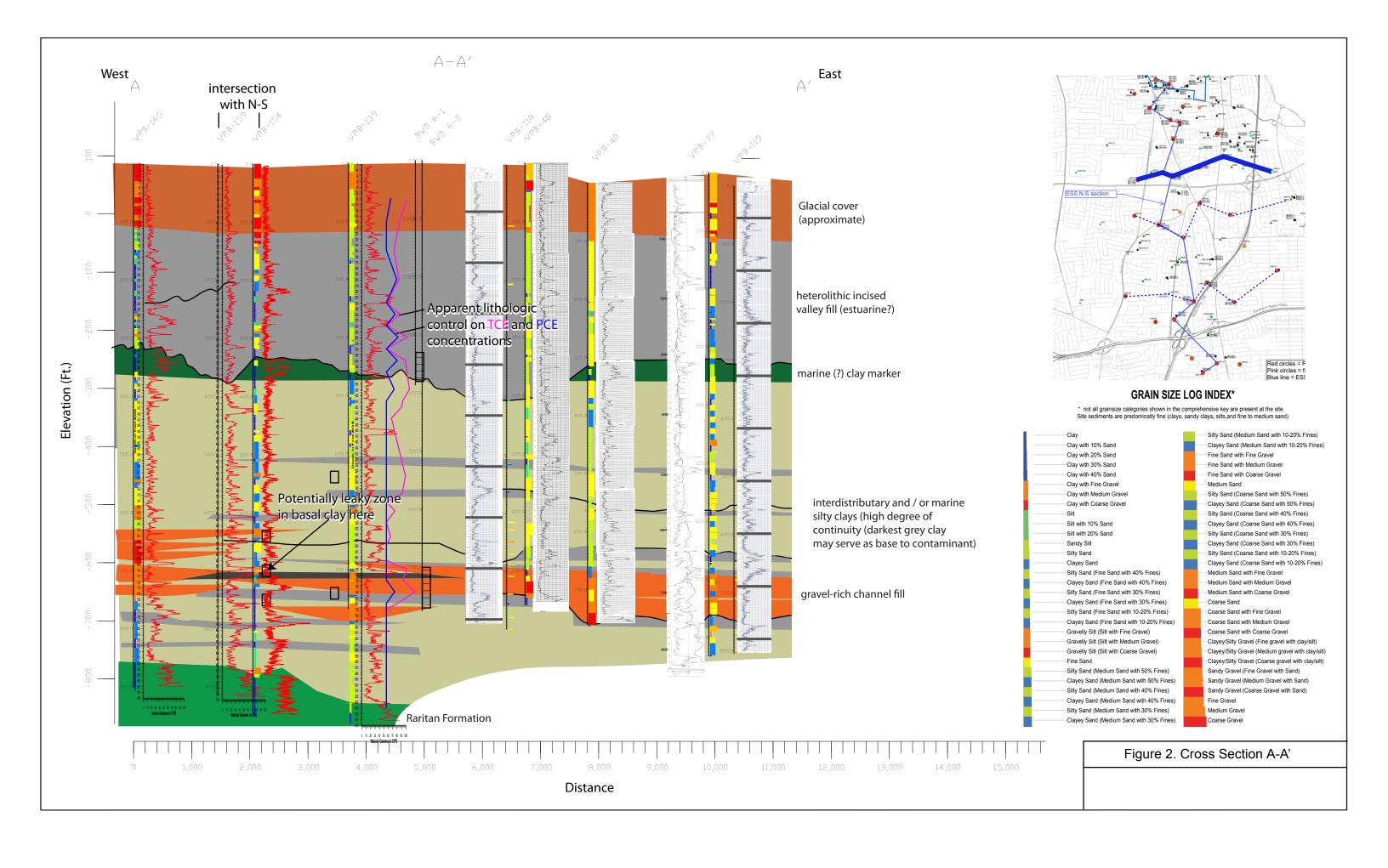
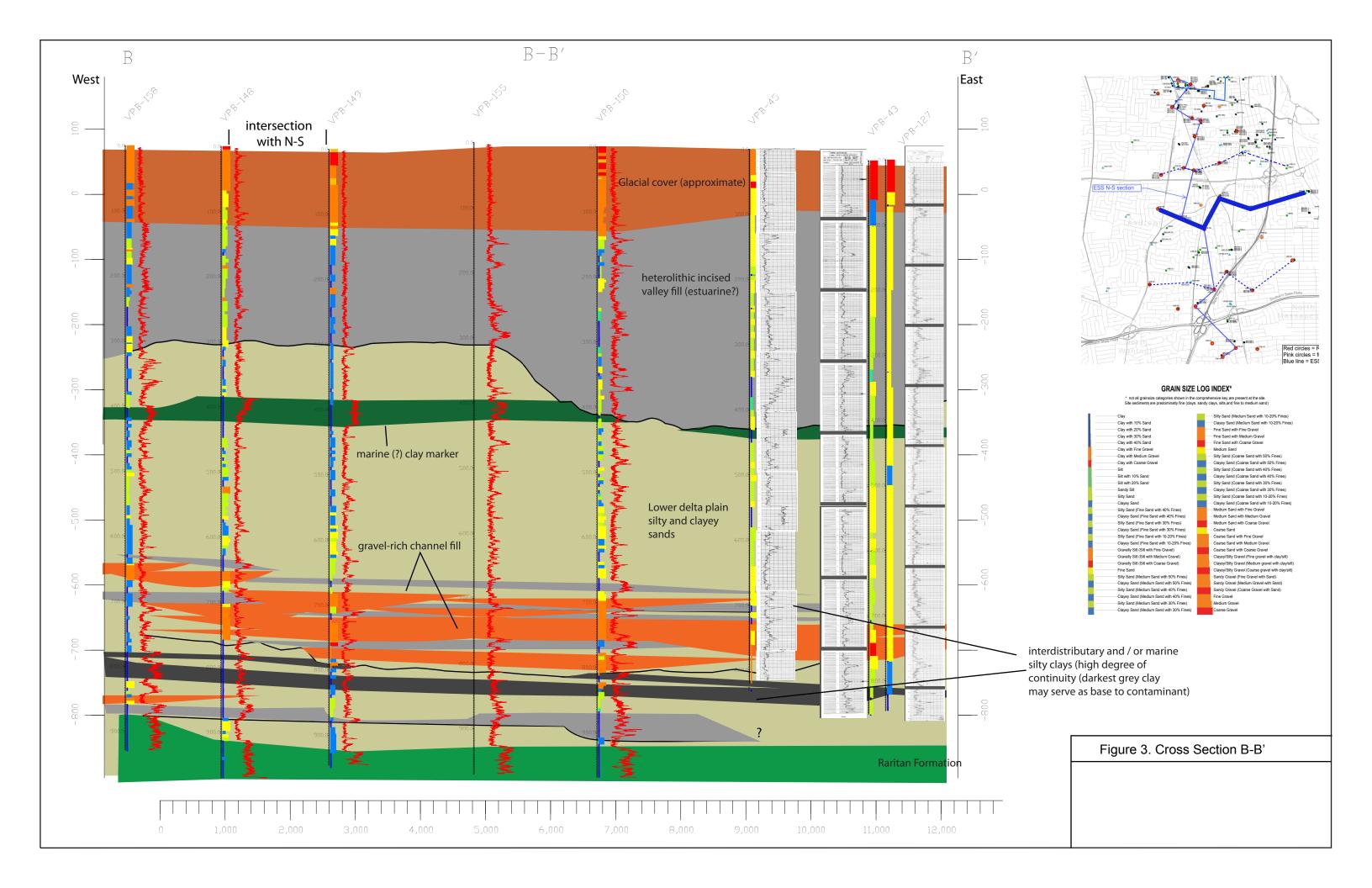
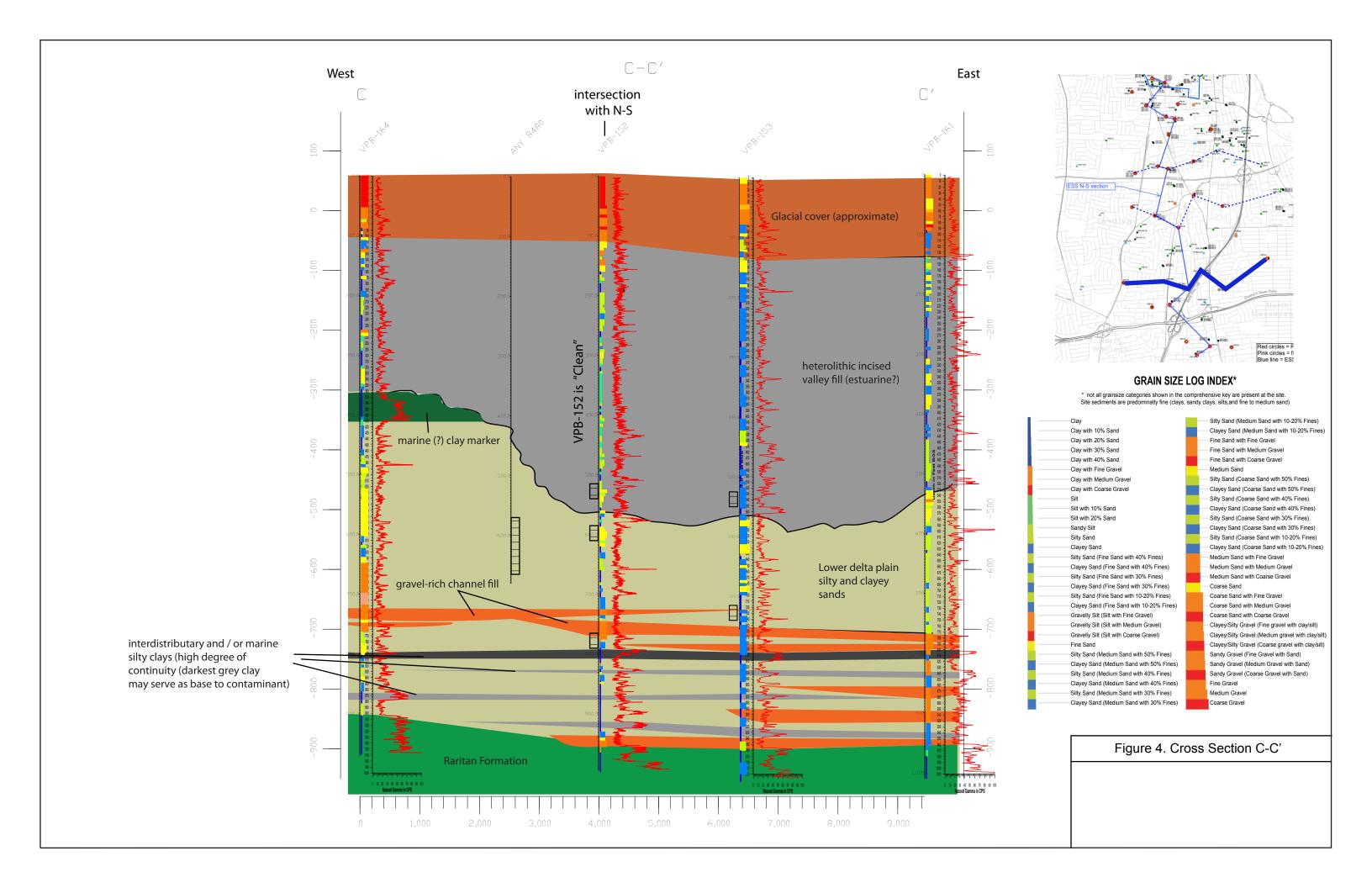





Figure 1. Cross Section N-S

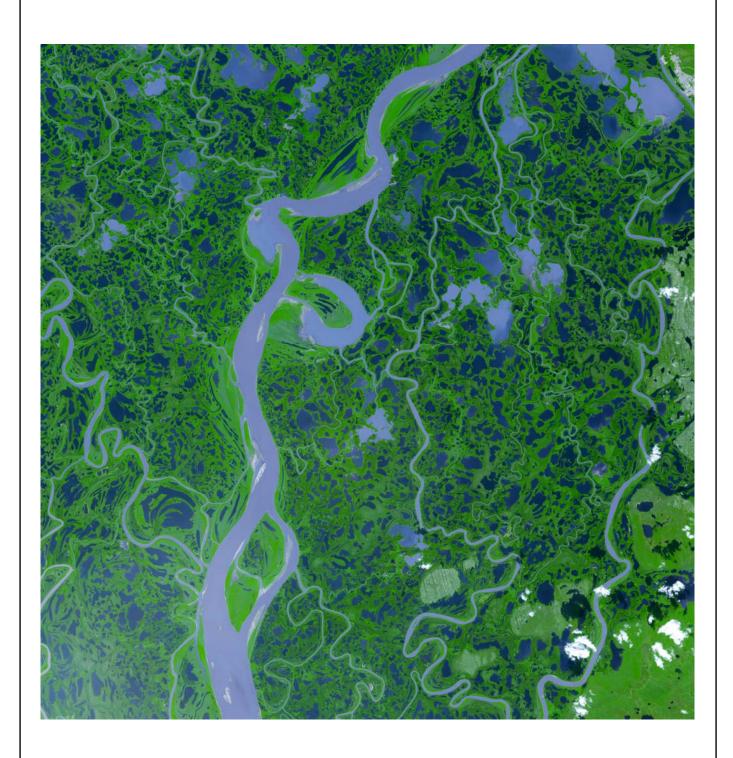


Figure 5. Mackenzie River Delta Depositional Environment

Source: Thermal Emission and Reflection Radiometer image from NASA's TERRA satellite, August 4, 2005, Mackenzie River, Canada. Image from GSFC/METI/ERSDAC/JAROS and the US/Japan ASTER Science Team. http://earthobservatory.nasa.gov/IOTD/view.php?id=8320

Figure 6. Braided River Depositional Environment

Source: East Fork Toklat River, Alaska Range, Denali National Park https://pubs.usgs.gov/of/2004/1216/b/b.html