2016 OU2 GROUNDWATER INVESTIGATION RE106D1, RE106D2, RE106D3 (VPB140) INSTALLATION REPORT

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP) SITE 1 OU2 BETHPAGE, NY

Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

August 2017

2016 OU2 GROUNDWATER INVESTIGATION

RE106D1, RE106D2, RE106D3 (VPB140) INSTALLATION REPORT

> NWIRP BETHPAGE SITE 1 OU2 BETHPAGE, NY

> > Prepared for:

Department of the Navy Naval Facilities Engineering Command, Atlantic 9324 Virginia Avenue Building Z-144 Norfolk, Virginia 23511

Prepared by:

Resolution Consultants A Joint Venture of AECOM & EnSafe 1500 Wells Fargo Building 440 Monticello Avenue Norfolk, Virginia 23510

Contract Number: N62470-11-D-8013 CTO WE15

August 2017

Brim Caldwell

Brian Caldwell Contract Task Order Manager

Table of Contents

LIST C	OF ACR	ONYMS AND ABBREVIATIONS	11
1.0	PROJE	ECT BACKGROUND	. 1
	1.1 1.2 1.3	Scope and Objectives Site History Geology and Hydrogeology	.1
2.0	FIELD	PROGRAM	. 4
	2.1 2.2 2.3 2.4 2.5	Drilling and Well Construction Well Development Sampling Decontamination and Investigation Derived Waste (IDW) Surveying	.4 .5 .5
3.0	REFEF	RENCES	. 8

Tables

Table 1	Monitoring Well Construction Su	immary
---------	---------------------------------	--------

- Table 2Monitoring Well Development Summary
- Table 3Analytical Data Summary
- Table 4Stabilized Field Parameters

Figures

- Figure 1 General Location Map
- Figure 2 RE106D1, RE106D2 and RE106D3 Location Map

Appendices

Appendix A – RE106D1, RE106D2, RE106D3

Section 1 Boring Logs

Section 2 VPB140 Gamma and TCE/PCE Plot

Section 3 Monitoring Well Construction Logs

Section 4 Groundwater Sample Log Sheets

Section 5 Analytical Data Validation

Section 6 Survey

Appendix B – Geologic Cross Sections derived from Environmental Sequence Stratigraphy (ESS)

List of Acronyms and Abbreviations

AOC bgs CSM COR EPA ESS ft GOCO GPS IDW IR Katahdin NAD NAVD NAVFAC NG NTU NWIRP NYS NYSDEC ONCT OU PCBS PCE POTW PPE PVC SAP SVOC TCE TCL TCLP TOC	Area of Concern below ground surface Conceptual Site Model Continuously Operating Reference Environmental Protection Agency, United States Environmental Sequence Stratigraphy feet Government-Owned Contractor-Operated Global Positioning System Investigation Derived Waste Installation Restoration Katahdin Analytical Services North American Datum North American Vertical Datum Naval Facilities Engineering Command Northrop Grumman nephelometric turbidity units Naval Weapons Industrial Reserve Plant New York State New York State Department of Environmental Conservation On-site Containment Treatment System Operable Unit Polychlorinated Biphenyls Tetrachloroethene Publicly Owned Treatment Works Personal Protective Equipment Polyvinylchloride Sampling and Analysis Plan Semivolatile Organic Compounds Trichloroethene Target Compound List Toxicity Characteristic Leaching Procedure Total Organic Carbon
TCL	Target Compound List
UFP	United Federal Programs
US	United States
VOC	Volatile Organic Compounds
VPB	Vertical Profile Boring

1.0 PROJECT BACKGROUND

Resolution Consultants has prepared this Data Summary Report for the Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic under contract task order WE15 Contract N62470-11-D-8013. This report describes the installation of three monitoring wells and one initial groundwater monitoring event in 2017 for the Naval Weapons Industrial Reserve Plant (NWIRP) Bethpage Operable Unit (OU) 2 Site 1 offsite plume. NWIRP Bethpage is located in east-central Nassau County, Long Island, New York, approximately 30 miles east of New York City (Figure 1).

1.1 Scope and Objectives

This report provides information on the installation of RE106D1, RE106D2 and RE106D3 monitoring wells associated with Vertical Profile Boring (VPB) 140. The purpose of this investigation was to ascertain contaminant levels and depths south of the On-site Containment Treatment system (ONCT), west of Wantagh Avenue and northwest of the RE108 Hot Spot, to provide information on the effectiveness of the ONCT, and to evaluate the possibility of contaminant influx to the RE108 hotspot from the northwest. The locations of RE106D1, RE106D2 and RE106D3, as well as other VPBs and monitoring well locations, are shown in Figure 2.

The field investigation included completing three monitoring wells, well development, soil/groundwater analysis, groundwater samples, and surveying. Field tasks were conducted in 2016 in accordance with the *United Federal Programs Sampling and Analysis Plan (UFP SAP)*, Bethpage, New York (Resolution, 2013a). In addition, the work adhered to the following UFP SAP Addendums: *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b) and *Installation of Vertical Profile Borings and Monitoring Wells* (Resolution Consultants, 2013c).

Documentation of these activities is included in Appendix A of this report.

1.2 Site History

NWIRP Bethpage is in the Hamlet of Bethpage, Town of Oyster Bay, New York. Since its inception in 1941, the plant's primary mission was the research, prototyping, testing, design, engineering, fabrication, and primary assembly of military aircraft. The facilities at NWIRP included four plants used for assembly and prototype testing, a group of quality control laboratories, two warehouse complexes (north and south), a salvage storage area, water recharge basins, the Industrial Wastewater Treatment Plant, and several smaller support buildings.

The Navy's property originally totaled 109.5 acres and was formerly a Government-Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. Prior to 2002, the NWIRP property was bordered on the north, west, and south by current or former NG facilities, and on the east by a residential neighborhood. By March 2008, approximately 100 acres of NWIRP property were transferred to Nassau County in three separate actions. The remaining 9 acres and access easements were retained by the Navy to continue remedial efforts at Installation Restoration (IR) Site 1 – Former Drum Marshalling Area and Site 4 – Former Underground Storage Tanks (Area of Concern [AOC] 22). A parcel of land connecting the two sites was also retained. Currently, the 9-acre parcel of NWIRP is bordered on the east by the residential neighborhood and on the north, south, and west by Steel Equities; however, a small portion is still owned by Nassau County. Access to the NWIRP is from South Oyster Bay Road.

1.3 Geology and Hydrogeology

Overburden at the site consists of well over 1,000 feet (ft) of unconsolidated deposits overlying crystalline bedrock of the Hartland Formation. Overburden is divided into four geologic units: the upper Pleistocene deposits, the Magothy Formation, the clay member of the Raritan Formation ("Raritan Clay") and the Lloyd Sand member of the Raritan Formation ("Lloyd Sand") (Geraghty and Miller, 1994).

The upper Pleistocene ranges in thickness from approximately 50 to 100 ft and consists of till and outwash deposits of medium to coarse sand and gravel with lenses of fine sand, silt and clay (Smolensky and Feldman, 1988); these deposits form the Upper Glacial Aquifer. Directly underlying this unit is the Magothy Formation with a thickness of 650 to 900 ft and lower extent of 700 to 1,000 ft below ground surface (bgs), as observed at the former NWIRP and extending southeast to areas south of Southern State Parkway. Locally at VPB140, the bottom of the Magothy (top of the Raritan Clay) is encountered at approximately 861 feet bgs. The Magothy is characterized by fine to medium sands and silts interbedded with zones of clays, silty sands and sandy clays. Sand and gravel lenses are found in some areas between depths of 600 and 880 ft bgs; these deposits form the main producing zones of the Magothy Aquifer.

Investigations performed by the Navy since 2012 indicate that the bottom of the Magothy (top of the Raritan Clay) can extend to depths of 700 to greater than 1,000 ft bgs. The top of the Raritan Clay deepens to the south-southeast, as evidenced by clay depths of 1,000 ft bgs (or more) in borings installed offsite. The Raritan Clay Unit is of continental origin and consists of clay, silty clay, clayey silt, and fine silty sand. This member acts as a confining layer over the Lloyd Sand Unit. The Lloyd Sand Unit is also of continental origin, having been deposited in a large fresh water lacustrine

environment. The material consists of fine to coarse-grained sands, gravel, inter-bedded clay, and silty sand. These deposits form the Lloyd Aquifer.

The Upper Glacial Aquifer and the Magothy Aquifer comprise the aquifers of interest at the NWIRP. Regionally, these formations are generally considered to form a common, interconnected aquifer as the coarse nature of each unit near their contact and the lack of any regionally confining clay unit allows for the unrestricted flow of groundwater between the formations.

The Magothy Aquifer is the major source of public water in Nassau County. The most productive water bearing zones are the discontinuous lenses of sand and gravel that occur within the siltier matrix. The major water-bearing zones are coarse sand and gravel lenses located in the lower portion of the Magothy. The Magothy Aquifer is commonly regarded to function overall as an unconfined aquifer at shallow depths and a confined aquifer at deeper depths. The drilling program at the NWIRP has revealed that clay zones beneath the facility are common but laterally discontinuous. No confining clay units of facility-wide extent have been encountered. This is also the case for borings installed offsite.

Groundwater is encountered at a depth of approximately 50 ft bgs at the facility. Historically, because of pumping and recharge at the facility, groundwater depths have been measured to range from 40 to 60 ft bgs. The groundwater flow in the area is to the south-southeast.

Resolution Consultants reviewed the geologic data and regional literature and developed four representative base-wide cross sections to support development of a Conceptual Site Model (CSM). A description of the application of Environmental Sequence Stratigraphy (ESS) and the results are provided in Appendix B.

2.0

Three monitoring wells were installed in the vicinity of VPB140 between September 2016 and November 2016. Field investigation activities consisted of drilling, well installation, well development, sampling, soil/groundwater analysis, and surveying. Drilling during this investigation was performed by Delta Well and Pump Company of Ronkonkoma, New York. A description of these tasks is provided below.

2.1 Drilling and Well Construction

Monitoring wells RE106D1, RE106D2 and RE106D3 were installed using mud rotary drilling techniques (Figure 2). Depths of monitoring wells RE106D1, RE106D2 and RE106D3 were 462 ft, 492 ft and 535 ft respectively. Well construction details are summarized in Table 1. Boring logs with lithologic descriptions of the well screen interval are included in Appendix A. *2014 OU2 Groundwater Investigation VPB140* (Resolution Consultants, 2014) documents the installation of this VPB including detailed lithologic descriptions, continuous gamma plot and multiple Volatile Organic Compounds (VOC) sample results over the entire boring length. The gamma and trichloroethene (TCE) tetrachloroethene (PCE) plot for VPB140 along with the well screen intervals at RE106D1, RE106D2 and RE106D3 are included in Appendix A.

Prior to installing each monitoring well, screen intervals were determined based on intervals with the highest VOC concentrations as measured in the VPB140 hydropunch samples and coincident intervals with the highest apparent permeability based on the VPB140 gamma logs and geologist logs. During the monitoring well installation, split spoon samples were collected every 5 ft in the screen interval. One soil sample per monitoring well was analyzed for Total Organic Carbon (TOC) via United States (US) Environmental Protection Agency (EPA) series SW-846 method 9060A by Katahdin Analytical Services (Katahdin). Data validation of TOC data was performed by Resolution Consultants. Data validation packages and analytical data tables are included in Appendix A.

Wells were constructed of 4-inch diameter, Schedule 80, National Sanitation Foundation-approved polyvinylchloride (PVC) riser pipe and 0.010-slot well screen. Wells were completed at the surface with a 12-inch diameter steel curb box. Well risers were set below grade and fit with lockable J plugs. Detailed monitoring well construction diagrams are included in Appendix A.

2.2 Well Development

Following installation, all monitoring wells were developed to evacuate silts and other fine-grained materials and to establish the filter pack to promote a hydraulic connection between the well and

the surrounding aquifer. Well development was not initiated until at least 24 hours after well installation.

Monitoring well screens were developed using a combination of air lifting, manual surging, and pumping with a submersible pump. Turbidity was monitored during development to determine stabilization. In compliance with New York State Department of Environmental Conservation (NYSDEC) policy, wells were developed until turbidity was less than 50 nephelometric turbidity units (NTUs) if possible. Table 2 summarizes total pumped volume from air and pump development and final turbidity. Well development logs are included in Appendix A.

2.3 Sampling

Following development, wells were allowed to stabilize for at least 2 weeks prior to groundwater sampling in accordance with low flow sampling procedures. Wells were purged using a bladder pump with a drop tube intake placed at the approximate midpoint of the screened interval. The following water quality parameters were continuously measured: water temperature, pH, conductivity, oxidation-reduction potential, dissolved oxygen and turbidity. Groundwater analytical samples were collected when water quality parameters stabilized. Samples were analyzed for VOCs via method 8260C and 1,4-dioxane via Method 8270D SIM by Katahdin. The flow rate for sample collection was 200 mL/minute. All development and purge water was managed as investigation derived waste (IDW). Groundwater sample logs and data validation packages are included in Appendix A.

Monitoring wells RE106D1, RE106D2 and RE106D3 were sampled by Resolution Consultants on March 8, 2017. Analytical results and stabilized field parameters for these monitoring wells are summarized in Table 3 and 4, respectively. Data validation is documented in Appendix A. These monitoring wells will be included in quarterly sampling as part of the Navy's ongoing Environmental Restoration Program.

2.4 Decontamination and Investigation Derived Waste

Resolution Consultants utilized dedicated and disposable sampling equipment when possible to avoid the potential for cross-contamination of samples. The sampling equipment included dedicated plastic scoops, disposable polyethylene tubing, disposable gloves, and laboratory supplied sample bottles. Hand held equipment and split spoons were decontaminated using Luminox and water wash, a potable water rinse, followed by a distilled water rinse. Water was collected in 5-gallon pails or 55-gallon drums. Non dedicated sampling equipment was decontaminated as outlined in

the UFP SAP Addendum - *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol* (Resolution Consultants, 2013b).

As part of the IDW management practices and in accordance with the SAP, the investigation waste (consisting of soil cuttings, drilling muds, IDW fluids, and personal protective equipment [PPE]) generated during the groundwater monitoring well installation and sampling was containerized and staged at NWIRP Bethpage.

IDW solids were containerized in roll offs. Representative samples from each roll off were submitted to Katahdin for analysis of:

- Target Compound List (TCL) VOCs
- TCL Semi-volatile Organic Compounds (SVOCs)
- Toxicity Characteristic Leaching Procedure (TCLP) Metals
- Polychlorinated Biphenyls (PCBs)
- Total petroleum hydrocarbons
- Corrosivity
- Ignitability
- Reactive Cyanide
- Reactive Sulfide
- Paint Filter

IDW fluid generated during well development and purging was containerized in frac tanks and stored at NWIRP Bethpage for characterization and ultimate disposal to the Publicly Owned Treatment Works (POTW), in accordance with the facilities existing discharge permit. A representative water sample was collected from each frac tank and submitted to Katahdin for analysis of VOCs via Method SW 624, pH via Method SW 9040B, PCBs via Method 8082 and Total Metals via Method SW 846. All analytical criteria were met for disposal of water.

2.5 Surveying

A survey of the monitoring well locations was conducted at the end of fieldwork by C. T. Male, Inc., of Latham, NY, under the direct supervision of Resolution Consultants. The locations were tied into the existing base map developed for this investigation. The survey elevation is referenced to the North American Vertical Datum (NAVD) 1988 and has a vertical accuracy of 0.01 foot. Vertical

control is based on observations of the Continuously Operating Reference (COR) Stations Queens and Central Islip. The horizontal location is referenced to the North American Datum (NAD) 1983 (2011) NY. Long Island Zone 3104 and has an accuracy of 0.1 foot. Local horizontal and vertical control is based on Global Positioning System (GPS) observations using the NYSNet Real Time Network.

A table of survey data (latitude/longitude, northing/easting, elevations of ground, rim and PVC) and a survey map is included in Appendix A.

3.0

Geraghty and Miller, Inc., 1994. *Remedial Investigation Report, Grumman Aerospace Corporation, Bethpage, New York*. Revised September 1994.

Resolution Consultants, 2013a. United Federal Programs Sampling and Analysis Plan, Site OU-2 Offsite Trichloroethene (TCE) Groundwater Plume Investigation, Bethpage, New York. April 2013.

Resolution Consultants, 2013b. UFP SAP Addendum, *Groundwater Sampling Using Low Stress (Low Flow) Purging and Sampling Protocol*. November 2013.

Resolution Consultants, 2013c. UFP SAP Addendum, *Installation of Vertical Profile Borings and Monitoring Wells.* December 2013.

Resolution Consultants, 2014. *2014 OU2 Groundwater Investigation VPB140, Bethpage, NY.* November 2014.

Smolensky, D., and Feldman, S., 1988. *Geohydrology of the Bethpage-Hicksville-Levittown Area, Long Island, New York, U.S.* Geological Survey Water-Resourced Investigations Report 88-4135, 25 pp.

August 2017

Tables

RE106D1, RE106D2, RE106D3 (VPB140) Installation Report NWIRP Bethpage, NY

TABLE 1MONITORING WELL CONSTRUCTION SUMMARY2016 OU2 GROUNDWATER INVESTIGATIONNWIRP BETHPAGE, NY

MONITORING WELL	WELL COMPLETION DATE	GROUND ELEVATION (MSL)	PVC ELEVATION (INNER CASING) (MSL)	WELL DEPTH (ft bgs)	SURFACE CASING DEPTH (ft bgs)	SCREEN INTERVAL (ft bgs)	SUMP DEPTH INTERVAL (ft bgs)	BORING DEPTH (ft bgs)
RE106D1	10/27/2016	101.66	101.19	462	53.5	440 - 460	460 - 462	466
RE106D2	11/17/2016	101.76	101.37	492	53.6	480 - 490	490 - 492	496
RE106D3	10/12/2016	101.71	101.34	535	52.7	510 - 530	530 - 535	547

MSL - mean sea level

ft bgs - feet below ground surface

RE106D1, RE106D2, RE106D3 (VPB140) Installation Report NWIRP Bethpage, NY

TABLE 2MONITORING WELL DEVELOPMENT SUMMARY2016 OU2 GROUNDWATER INVESTIGATIONNWIRP BETHPAGE, NY

	AIR DEVEL	OPMENT	PUM	IP DEVELOPME	APPROX. TOTAL	FINAL TURBIDITY (NTUs)	
MONITORING WELL	DATE	APPROX. DATE VOLUME (GAL)		FINAL PUMP DEPTH (FT BGS)	APPROX. VOLUME (GAL)		
RE106D1	12/5/2016	5,800	12/08/2016, 12/09/2016	440-460	3000, 2500	11,300	13.15
RE106D2	12/6/2016	1,000	12/09/2016,12 /12/2016	480-490	1000, 2500	4,500	8.29
RE106D3	11/28/2016	2,000	12/7/2016	510-530	4,600	6,600	16.33

GAL - gallon FT BGS - feet below ground surface NTUs - Nephelometric Turbidity Units

TABLE 3 ANALYTICAL DATA SUMMARY 2016 OU2 GROUNDWATER INVESTIGATION NWIRP BETHPAGE, NY

Commis Data					
Sample Date	NYSDEC Groundwater	3/8/2017	3/8/2017	3/8/2017	
Sample ID	Guidance or Standard Value	RE106D1-GW- 030817	RE106D2-GW- 030817	RE106D3-GW 030817	
Sample type code	(Note 1)	Ν	N	N	
VOC 8260C (ug/L)					
I,1,1-TRICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
I,1,2,2-TETRACHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
I,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	5	1.3	12	71	
1,1,2-TRICHLOROETHANE	1	<0.50 U	<0.50 U	<0.50 U	
I,1-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
I,1-DICHLOROETHENE	5	<0.50 U	<0.50 U	0.71 J	
1,2,4-TRICHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
1,2-DIBROMO-3-CHLOROPROPANE	0.04	<0.75 U	<0.75 U	<0.75 U	
I,2-DIBROMOETHANE	NL	<0.50 U	<0.50 U	<0.50 U	
I,2-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
I,2-DICHLOROETHANE	5	<0.50 U	<0.50 U	<0.50 U	
I,2-DICHLOROETHENE, TOTAL	5	<1.0 U	0.97 J	2	
I,2-DICHLOROPROPANE	1	<0.50 U	<0.50 U	<0.50 U	
I,3-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
I,4-DICHLOROBENZENE	3	<0.50 U	<0.50 U	<0.50 U	
I,4-DIOXANE (Method 8270D_SIM)	NL	11 J	14 J	14 J	
2-BUTANONE	50	<2.5 U	<2.5 U	<2.5 U	
2-HEXANONE	50	<2.5 U	<2.5 U	<2.5 U	
4-METHYL-2-PENTANONE	NL	<2.5 U	<2.5 U	<2.5 U	
ACETONE	50	<2.5 UJ	<2.5 UJ	<2.5 U	
BENZENE	1	<0.50 U	<0.50 U	<0.50 U	
BROMODICHLOROMETHANE	50	<0.50 U	<0.50 U	<0.50 U	
BROMOFORM	50	<0.50 U	<0.50 U	<0.50 U	
BROMOMETHANE	5	<1.0 U	<1.0 U	<1.0 U	
CARBON DISULFIDE	60	<0.50 U	<0.50 U	<0.50 U	
CARBON TETRACHLORIDE	5	<0.50 U	<0.50 U	<0.50 U	
CHLOROBENZENE	5	<0.50 U	<0.50 U	<0.50 U	
CHLOROETHANE	5	<1.0 U	<1.0 U	<1.0 U	
CHLOROFORM	7	<0.50 U	<0.50 U	<0.50 U	
CHLOROMETHANE	5	<1.0 U	<0.50 U	<0.30 U	
CIS-1,2-DICHLOROETHENE	5	<0.50 U	0.97 J	2	
CIS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.57 J		
		<0.50 U		<0.50 U	
	NL		<0.50 U	<0.50 U	
DIBROMOCHLOROMETHANE	5	<0.50 U <1.0 UJ	<0.50 U	<0.50 U	
	5		<1.0 UJ	<1.0 UJ	
	5	<0.50 U	<0.50 U	<0.50 U	
	5	<0.50 U	<0.50 U	<0.50 U	
	NL	<1.0 U	<1.0 U	<1.0 U	
	NL	<0.75 U	<0.75 U	<0.75 U	
	NL 10	<0.50 U	<0.50 U	<0.50 U	
	10	<0.50 U	<0.50 U	<0.50 U	
	5	<2.5 U	<2.5 U	<2.5 U	
D-XYLENE	NL	<0.50 U	<0.50 U	<0.50 U	
	5	<0.50 U	<0.50 U	<0.50 U	
	5	0.68 J	8.1	35	
	5	<0.50 U	<0.50 U	<0.50 U	
FRANS-1,2-DICHLOROETHENE	5	<0.50 U	<0.50 U	<0.50 U	
FRANS-1,3-DICHLOROPROPENE	0.4	<0.50 U	<0.50 U	<0.50 U	
TRICHLOROETHENE	5	7.4	46	84	
TRICHLOROFLUOROMETHANE	5	<1.0 U	<1.0 U	<1.0 U	
/INYL CHLORIDE	2	<1.0 U	<1.0 U	<1.0 U	

Notes:

1 New York State Department of Environmental Conservation Division of Water Technical and Operation Guidance series (6 NYCRR 700-706, Part 703.5 summarized in TOGS 1.1.1) Ambient water quality standards and groundwater effluent limitations, class GA; NL = Not Listed

Bold = Detected; **Bold and Italics** =Not detected exceeds NYS Groundwater Standards or guidance value Yellow highlighted values exceed Groundwater Standards or guidance value

Sample type codes: N - normal environmental sample, FD - field duplicate

U = Nondetected result. The analyte was analyzed for, but was not detected above the reported sample quantitation limit.

UJ = The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is

approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte.

J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.

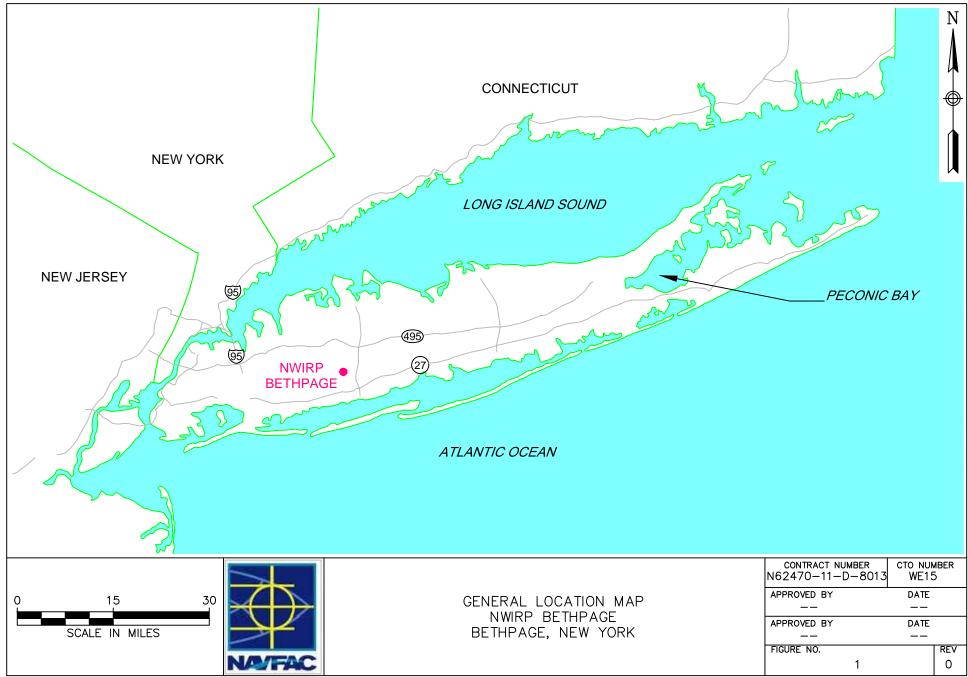
M = the matrix spike or matrix spike duplicate did not meet recovery or precision requirements.

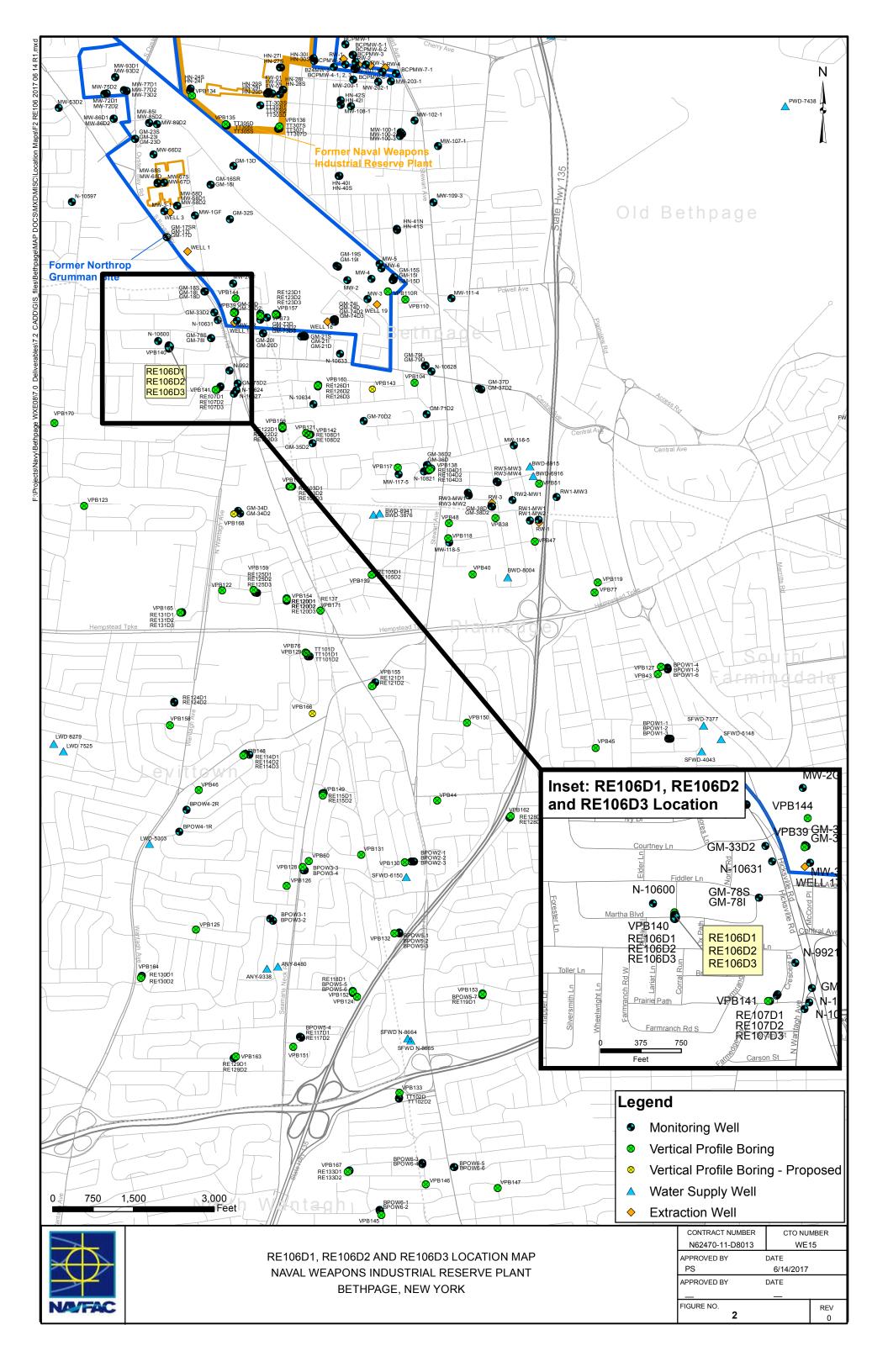
RE106D1, RE106D2, RE106D3 (VPB140) Installation Report NWIRP Bethpage, NY

TABLE 4STABILIZED FIELD PARAMETERS2017 OU2 GROUNDWATER INVESTIGATION

NWIRP BETHPAGE, NY

Well	Date	Temperature (°C)	рН	Specific Conductance (µS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Depth to water (ft bgs)	Purge Flow rate (ml/min)
RE106D1	3/8/2017	15.77	6.46	0.12	5.09	152	6.5	44.95	600
RE106D2	3/8/2017	15.10	6.39	0.135	4.52	107.1	113	45.82	600
RE106D3	3/8/2017	14.45	5.94	0.279	4.07	-46.3	88.1	45.69	500


°C - degrees Celsius


μS/cm - Microsiemens per Centimeter mg/L - milligrams per liter mV - Millivolts NTU - Nephelometric Turbidity Unit ft bgs - feet below ground surface ml/min - mililiters per minute NM - not measured

August 2017

Figures

112G00622\0510\112G00622CM01.DWG 08/02/10 MKB

August 2017

Appendices

August 2017

Appendix A

RE106D1, RE106D2, RE106D3

Section 1

Boring Logs

Boring Log

BORING #: RE106D1 Sheet 1 of 2

Cons	sulta	nts			Dornig Log		Sheet 1 of 2
Client: Dep	artment of	the Navy,	Logged By: V. Thayer				
_ocation: Ar	randale Ro	and Marth	na Blvd, Bet			Drilling Company: Del	
Project #: 60266526 Ground Elevation (msl): 101.66						Well Screen Interval (f	t): 440-460
Start Date: 10/19/2016 Drilling Method: Auger (0-50' bgs) Mud Rotary (>50' bgs) Water Level (ft):							
Finish Date:	10/27/20	016		Northi	ng: 209374.84 Easting: 1122873.48	Total Depth (ft): 466.	0
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well Completion	Well Construction
50 100 150 200 250					0-443 ft bgs: See VPB140 for Descriptions		Bentonite Grout
300							
400						•	4" Diameter Schedu 80 PVC Riser

Boring Log

BORING #: RE106D1 Sheet 2 of 2

	build	IIII				I		
Client: Department of the Navy, Naval Facilities Engineering Command, Mid-Atlantic Logged E								
							mpany: Delta V	· · · · · · · · · · · · · · · · · · ·
Project #: 6	60266526			Ground	Elevation (msl): 101.66	Well Scree	n Interval (ft):	440-460
Start Date:	10/19/201	16		-	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve		
Finish Date:	10/27/20	016		Northin	g: 209374.84 Easting: 1122873.48	Total Dept	h (ft): 466.0	
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction
410					0-443 ft bgs: See VPB140 for Descriptions (continu	ed)		4" Diameter
412								Schedule 80 PVC Riser (continued)
-								
414								
416								
418								
420								
422								
424								#00 Filter Sand
426								
428								
430								
-								
- 432								
434								#1 Filter Sand
436								
438								
440								
442								
444	0		SP		Light gray (10YR 7/2) poorly graded SAND, subang medium Sand	ular		
446								
448					No Recovery			
450								4" Diameter
452								4" Diameter Schedule 80 PVC, 10 Slot Well Screen
	0		SP		Reddish yellow (7.5 YR 6/6) poorly graded SAND,	/		(440-460 ft bgs)
454	U		SP-SM SP		subangular medium Sand, 2 iron nodules Very pale brown (10YR 7/3) poorly graded SAND w	ith Silt.		
456				l l	subangular medium Sand, 10% silt Light gray (10YR 7/2) poorly graded SAND, subang	//		
458	0		SP		Light gray (10 R 7/2) poorly graded SAND, subang medium Sand Light gray (10 R 7/2) Poorly graded SAND, subang	/		
460				·····	medium Sand			
462								Sump
464								#1 Sand to Bottom
466					End of boring at 466.0 ft. bgs.			
					Lind of boring at 400.0 it. bgS.			

L

Boring Log

BORING #: **RE106D2** Sheet 1 of 2

Cons	suita	INUS					Sheet 1 of 2			
Client: Dep	artment of	the Navy,	Logged By: V. Thayer							
Location: A	randale Ro	d and Marth	na Blvd, Bet	thpage, NY		Drilling Company: Del	ta Well & Pump			
Project #: 6	60266526			Ground	I Elevation (msl): 101.76	Well Screen Interval (ft): 480-490				
Start Date:	11/7/2016	3		Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):				
Finish Date:	11/17/20	016		Northin	g: 209390.49 Easting: 1122872.97	Total Depth (ft): 496.	0			
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well	Well Construction			
0					0-478 ft bgs: See VPB140 for Descriptions					
50							^{—,} 10" Diameter Steel Casing			
100										
150							Bentonite Grout			
250										
300										
350										
400						-	4" Diameter Schedul 80 PVC Riser			

Boring Log

BORING #: **RE106D2** Sheet 2 of 2

	suita	1112			3 5		0.		
Client: Dep	partment of	the Navy	, Naval Faci	lities Engineer	ing Command, Mid-Atlantic	Logged By	V. Thayer		
Location: A	rrandale Ro	d and Mar	tha Blvd, Be	thpage, NY		Drilling Co	Drilling Company: Delta Well & Pump		
Project #:	60266526			Ground	Elevation (msl): 101.76	Well Scree	/ell Screen Interval (ft): 480-490		
Start Date:	11/7/2016	Water Leve	el (ft):						
Finish Date:	: 11/17/20	016		Northing	g: 209390.49 Easting: 1122872.97	Total Dept	h (ft): 496.0		
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction	
420					0-478 ft bgs: See VPB140 for Descriptions (continue	d)		4" Diameter	
$ \begin{array}{c} 422 \\ 424 \\ 426 \\ 428 \\ 430 \\ 432 \\ 434 \\ 436 \\ 438 \\ 436 \\ 438 \\ 440 \\ 442 \\ 444 \\ 444 \\ 446 \\ 448 \\ 446 \\ 448 \\ 450 \\ 452 \\ 455 \\ 456 \\ 458 \\ 456 \\ 458 \\ 460 \\ 462 \\ 464 \\ 466 \\ 468 \\ 468 \\ 470 \\ 470 \\ 470 \\ 470 \\ 470 \\ 422 \\ 424 \\ 436 \\ 438 \\ 440 \\ 444 \\ 444 \\ 444 \\ 446 \\ 446 \\ 446 \\ 466 \\ 466 \\ 468 \\ 468 \\ 470 \\ 470 \\ 470 \\ 470 \\ 470 \\ 421 \\ 421 \\ 434 \\ 436 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 446 \\ 446 \\ 446 \\ 466 \\ 466 \\ 466 \\ 466 \\ 468 \\ 470 \\ 470 \\ 470 \\ 470 \\ 470 \\ 421 \\ 421 \\ 422 \\ 421 \\ 421 \\ 421 \\ 421 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 446 \\ 446 \\ 446 \\ 466 \\ 466 \\ 466 \\ 466 \\ 468 \\ 470 \\ 470 \\ 470 \\ 470 \\ 470 \\ 470 \\ 421 \\ 421 \\ 421 \\ 421 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 446 \\ 446 \\ 466 $								Schedule 80 PVC Riser (continued)	
472 474 474 476							-	#00 Filter Sand	
478	0				No Recovery				
480								#1 Filter Sand	
482					Light yellowish brown (10YR 6/4) Silty SAND, fine to				
484	0		SM	·····	medium Sand, trace coarse sand, 15-20% Silt			4" Diameter	
486	0		SP-SM		Light yellowish brown (10YR 6/4) poorly graded SAN Silt, fine to medium sand, 10% silt	ID with		Schedule 80 PVC, 10 Slot Well Screen (480-490 ft bgs)	
490								Sump	
492 494								#1 Sand to Bottom	
496					End of boring at 496.0 ft. bgs.		<u></u>		

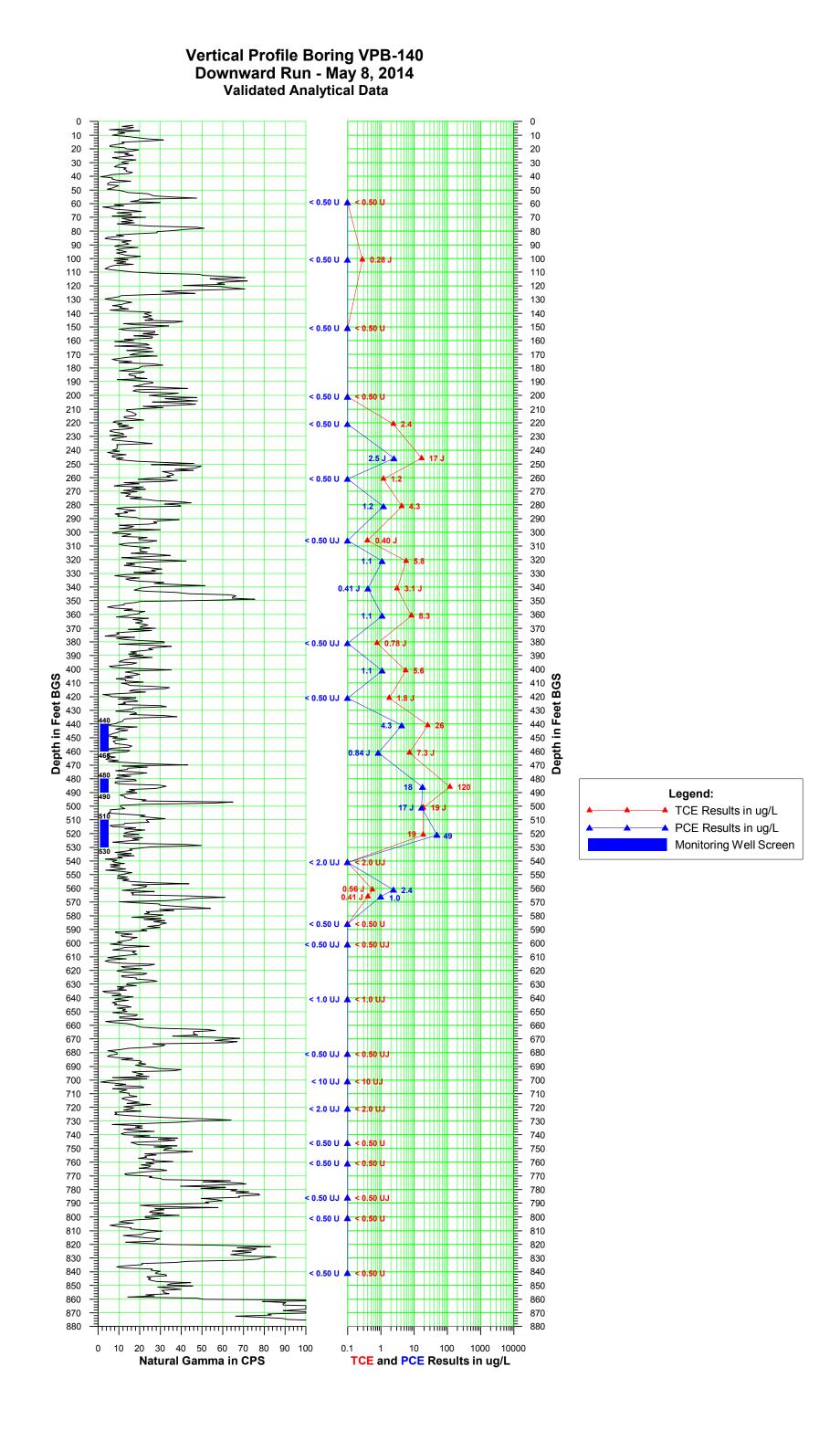
L

Boring Log

BORING #: RE106D3 Sheet 1 of 2

Cons	<u>uita</u>	<u>nts</u>			201119209		Sheet 1 of 2
Client: Dep	artment of	the Navy,	Naval Facili	ities Enginee	ering Command, Mid-Atlantic	Logged By: V. Thayer	
Location: Ar						Drilling Company: Delt	a Well & Pump
Project #: 6				d Elevation (msl): 101.71	Well Screen Interval (ft		
Start Date:	9/30/2016			Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Level (ft):	
Finish Date:	10/12/20	16		Northir	ng: 209340.07 Easting: 1122872.12	Total Depth (ft): 547.)
DEPTH (ft)	PID (ppm)	Formation	nscs	GRAPHIC LOG	MATERIAL DESCRIPTION	Well Completion	Well Construction
0					0-510 ft bgs: See VPB140 for Descriptions		
50							— 10" Diameter Steel Casing
100							
150						-	Bentonite Grout
200							
250							
300							
350						-	- 4" Diameter Schedule
400							80 PVC Riser
450							

L


Boring Log

BORING #: RE106D3 Sheet 2 of 2

00110	sulta	1112			201119209		5N	
Client: Dep	partment of	the Navy,	Naval Facilit	ties Enginee	ring Command, Mid-Atlantic	Logged By	y: V. Thayer	
Location: Arrandale Rd and Martha Blvd, Bethpage, NY					Drilling Company: Delta Well & Pump			
Project #: 60266526 Ground Elevation (msl): 101.71					Well Screen Interval (ft): 510-530			
Start Date:	9/30/2016	i		Drilling	Method: Auger (0-50' bgs) Mud Rotary (>50' bgs)	Water Leve	el (ft):	
Finish Date:	: 10/12/20)16		Northin	ng: 209340.07 Easting: 1122872.12	Total Depth (ft): 547.0		
DEPTH (ft)	PID (ppm)	Formation	nscs	GR APHIC LOG	MATERIAL DESCRIPTION		Well Completion	Well Construction
470 472 474 474 476 476 478 480 482					0-510 ft bgs: See VPB140 for Descriptions (continu	ied)		4" Diameter Schedule 80 PVC Riser <i>(continued)</i>
484 486 488 488 - 490 - 492 - 492 - 494 - 496							-	#00 Filter Sand
498 	0		ML SP-ML SP		Light gray (7.5YR 7/1) Clayey SILT, laminated Very pale brown (10YR 8/3) poorly graded SAND, subangular medium sand interbedded with clayey seams, several reddish yellow sand seams	silt		#1 Filter Sand
- 516 - 518 - 520 - 522 - 522 - 524 - 526 - 528 - 528 - 530	0		SP SP SP SP SP SM SP SP		Very pale yellow (10YR 8/3) and bands of yellow (1 poorly graded SAND, subangular medium Sand, tr sand, 1 micro lamination of lignite and silty sand Very pale brown (10YR 7/2) and reddish yellow (10 poorly graded SAND, subangular medium Sand, or band of reddish yellow sand in middle of sample Very pale brown (10YR 7/4) poorly graded SAND, subangular medium Sand Very pale brown (10YR 7/4) with 1 inch band of red yellow and band of yellowish brown (10YR 5/6) poor graded SAND, angular medium Sand Multicolored Clayey SAND micro laminated with se lignite, sandy reddish yellow (10YR 6/8) clay and y	Acce fine (MYR 7/8) (MYR 7/8) (Mish orly) (Mish orly)		4" Diameter Schedule 80 PVC, 10 Slot Well Screen (510-530 ft bgs)
532 534 536 538 540 542 544					medium sand Very pale brown (10YR 7/4) poorly graded SAND Pinkish brown (7.5yr 6/2) Silty SAND, medium San Very pale brown (10YR 7/4) with reddish yellow ba poorly graded SAND, medium sand	d		Sump #1 Sand to Bottom
546			1 1					

Section 2

VPB140 Gamma and TCE/PCE Plot

Section 3

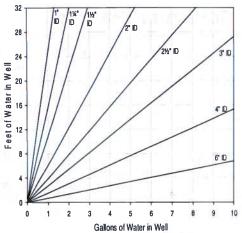
Monitoring Well Construction Logs

	Client:	NAVFAC Project Number: 60266526			WELL ID: RE106D1		
	Site Location: NWIRP BETHPAGE, NY						
	Well Loca		artha Blvd, Bethpage	e, NY	Date Installed:	10/19-10/2	7/2016
RESOLUTION CONSULTANTS	Method:	MUD ROTARY			Inspector:	V. Thayer	
CONSULIANIS	Coords:	Northing: 209374.84	Easting: 1122873.4	18	Contractor:	DELTA W	ELL & PUMP
		MONITORING	G WELL CONS	STRUCTION	DETAIL		
* Casing installed with Au	uger rig 9/20)/16 - 9/21/16.		Ľ	epth from G.S. (feet)		Elevation(feet) Datum
, , , , , , , , , , , , , , , , , , ,	0 0						2010111
·		Ground Surface (G.S.)	-	_	0.00	-	101.66
Measuring Point for		Top of 12 inch diameter S					
surveying & measuring water		Top of Riser Pipe fit with	locking j-plug	_	0.47	-	101.19
levels							
Cement, Bentonite, Bentonite Slurry		Riser Pipe:					
Grout, or Native Materials		Length Inside Diameter (ID)	440 4 inch				
% Cement		Type of Material	PVC				
		21					
% Bentonite							
% Native	-	Bottom of 10 inch diamet	er Steel Surface Casi	ing	53.5	-	48.16
Materials							
		Bottom of Bentonite Grou	ıt		418.0		-316.34
				_	410.0	-	-310.34
		Bottom of #00 Filter Sand	d/Top of #1 Filter San	id	428	-	-326.34
		Top of Screen			440		-338.34
				—	440	-	-330.34
		▲ Stabilized Water Lev	el	_		-	
		Screen:					
		Length	20			-	
		Inside Diameter (ID) Slot Size	4 inch 10				
		Type of Material	PVC				
		Type/Size of Sand	#1				
		Sand Pack Thickness	38				
		Bottom of Screen		_	460	-	-358.34
		Bottom of Sump:			462		-360.34
					102	-	500.0 T
		Bottom of Borehole			466	_	-364.34
Boreho	le Diameter:	10 inch Approve	d:				
Describe Measuring Point:		Val	erie Thayer		10/31/2016		
Ground Surface)	Signatur	e	D	ate		

	Client: NAVFAC Project Number: 60266526			60266526	WELL ID: RE106D2		
	Site Location: NWIRP BETHPAGE, NY						
	Well Loca		rtha Blvd, Bethpage	e, NY	Date Installed:	11/7-11/17/2016	
RESOLUTION CONSULTANTS	Method:	MUD ROTARY			Inspector:	V. Thayer	
CONSULIANIS	Coords:	Northing: 209390.49	Easting: 1122872.9	07	Contractor:	DELTA WELL & PUMP	
		MONITORING	WELL CONS	STRUCTION	DETAIL		
					epth from G.S. (feet)	Elevation(feet)	
* Casing installed with A	uger rig 9/22	/16 - 9/23/16.		D	eptil nom G.S. (leet)	Datum	
•======		Ground Surface (G.S.)	-		0.00	101.76	
Measuring Point for		Top of 12 inch diameter S Top of Riser Pipe fit with			0.39	101.37	
surveying & measuring water			locking j-plug		0.00	101.07	
levels							
Cement, Bentonite, Bentonite Slurry	-	Riser Pipe:	100				
Grout, or Native ——— Materials		Length Inside Diameter (ID)	480 4 inch				
% Cement		Type of Material	PVC				
% Bentonite							
		Bottom of 10 inch diamet	er Steel Surface Casi	ing	53.6	48.16	
% Native Materials							
Waterials							
		Bottom of Bentonite Grou	it		469.0	-367.24	
		Bottom of #00 Filter Sand	d/Top of #1 Filter San	d	479	-377.24	
		Top of Screen		_	480	-378.24	
		▲ Stabilized Water Lev	el				
		Screen:					
		Length	10				
		Inside Diameter (ID)	4 inch			-	
		Slot Size	10				
		Type of Material	PVC				
		Type/Size of Sand	#1				
		Sand Pack Thickness	17				
		.					
		Bottom of Screen		—	490	-388.24	
		Bottom of Sump:			492	-390.24	
		Bottom of Borehole		—	496	-394.24	
Boreho	ole Diameter:	10 inch Approved	d:				
Describe Measuring Point:	:	Val	erie Thayer	— .	11/17/2016		
Ground Surface	e	Signature	C .	D	ate		

	Client:	NAVFAC	Project Number:	60266526	WELL	ID: RE100	5D3
	Site Locati						
	Well Locat		rtha Blvd, Bethpage	e, NY	Date Installed:	9/30-10/12/1	6
RESOLUTION CONSULTANTS	Method:	MUD ROTARY			Inspector:	V. Thayer	
CONSULIANIS	Coords:	Northing: 209340.07	Easting: 1122872.1	.2	Contractor:	DELTA WEI	LL & PUMP
		MONITORING	WELL CONS	STRUCTION	DETAIL		
					epth from G.S. (feet)		Elevation(feet)
* Casing installed with Au	uger rig 9/16	/16 - 9/19/16.					Datum
		Ground Surface (G.S.)			0.00		101.71
		Top of 12 inch diameter S	• Steel Curb Box	—			
Measuring Point for surveying &		Top of Riser Pipe fit with			0.37		101.34
measuring water levels				_			
levels							
		Riser Pipe:					
Cement, Bentonite, Bentonite Slurry		Length	510				
Grout, or Native ——— Materials		Inside Diameter (ID)	4 inch				
% Cement		Type of Material	PVC				
% Bentonite		Bottom of 10 inch diamet	or Staal Surface Cool	ing	52.7		49.01
% Native					52.1		49.01
Materials							
		Bottom of Bentonite Grou	ıt		475.0		-373.29
			-	—			-575.29
		Bottom of #00 Filter Sanc	I/Top of #1 Filter San	d	499		-397.29
					- 40		100.00
		Top of Screen		—	510		-408.29
		▲ Stabilized Water Lev	el	_			
		Screen:					
		Length	20			_	
		Inside Diameter (ID)	4 inch				
		Slot Size Type of Material	10				
		Type of Material	PVC				
		Type/Size of Sand Sand Pack Thickness	#1				
		Cand Fack Thickness	48				
		Bottom of Screen			530		-428.29
				_	000		- 20.23
		Bottom of Sump:		_	535	_	-433.29
		Bottom of Borehole		_	547		-445.29
Borebo	ble Diameter:	10 inch Approved	d.				
			erie Thayer		10/13/2016		
Describe Measuring Point:		Signature	e	D	10/13/2016 ate		
Ground Surface	9	_					

Section 4

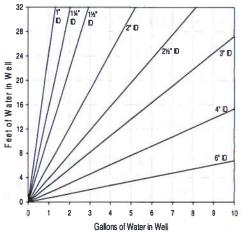

Groundwater Sample Log Sheets

Low Flow Ground Water Sample Collection Record

Client:	Navy N	IWIRP Be	thpage	NINI MA		Date: 3	108 1	17	Time: Start	· · ·
Project N		6026652	6						Finish	am/pi
Site Loca Weather		uter la can		the and		Col	lector(s):			A.
1.d.ler	TENAL DEL		topli sta	Section 200					1.1	
	ER LEVEL tal Well Ler					-		ft (a-b)	Casing Dia 4-inch PVC	meter/Material
b. Wa	ater Table [Depth 4	4.86 ft	d. Calcu	lated Syste	em Volun	1e (see back) /3.4		screen length (
2. WELL	. PURGE [ATA								
a. Pu	rge Method	:	Geotech b	oladder pu	ump with d	rop tube a	assembly			
- Te		± 3% ± 0.1 ur			- Turbidity - ORP	± 10mV				ues >0.5 mg/L) screen volume
- C	onductivity	± 3%		Gin	Drawdown	< 0.3'	1 LTC			
c. Fie	ld Testing I	Equipmen	t used:		Make		Model		Serial Num	ber
				1	YSI La Mothe		556 2020		53258	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
									00100	
-	Volume	- 1 I				0.00	T 1 · · · ·	-	Durtha	0.1
Time (24hr)	Removed (gallons)	Temp. (°C)	Conduct. (mS/cm)	DO (mg/L)	рН	ORP (mV)	(NTU)	Flow Rate (mL/min)	Depth to water (ft)	Color/Odor
1220	(guillette)						(Start pu
1225	ini, en a	15-61	0-108	9.30	5.93	195.5	7.27	450	44.95	
1230		15.60	0.109	748	5.91	1898		600		This sale
1235		15-68	0-120	5.70	6.44	171.4	5-28	600	44.95	
1240		15-67	0.121	5.56	6.44	170-2				
245	561	15.73	0-121	5.33	6-43	165-7	4.78	600	44.95	
	ceptance o				Yes	No	N/A			(continued on back)
Ha	as required as required ave parame If no or N	turbidity b ters stabi	been reach ilized							
3. SAMI		ECTION:		Method:	Geotech	bladder p	oump with o	drop tube a	ssembly	
Sample I) 03081	-	ner Type L vials	No. of Co 3	ontainers		ervation HCI		is Req. Time Cs <u>1330</u>
18901		30817		mber	2			one		oxane 1331
Commer	nts			1				11		
	×	1		_		_				
		1	, det	12				110-16-0		
										03/08/17

Purge Volume Calculation

Volume / L	inear Ft. o	of Pipe	1 1. 1977 AC. 1
ID (in)	Gallon	Liter	One screen volume
0.25	0.0025	0.0097	(4-inch well)
0.375	0.0057	0.0217	
0.5-	0.0102	0.0386	15 ft = 37.1 L / 9.8 G
0.75	0.0229	0.0869	20 ft = 49.4 L / 13.1 G
1	0.0408	0.1544	25 ft = 61.8 L / 16.3 G
1.25	0.0637	0.2413	30 ft = 74.3 L / 19.6 G
1.5	0.0918	0.3475	40 ft = 99.2 L / 26.1 G
2	0.1632	0.6178	50 ft = 123.6 L / 32.6 G
2.5	0.2550	0.9653	
3	0.3672	1.3900	- 104 - 15a - 17
4	0.6528	2.4711	
6	1.4688	5.5600	the grant site of

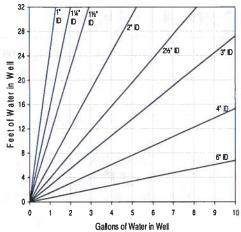

Well ID:

(continue)	d from front)					1			3 - 31 - 32	31	
Continue	Volume						at a star	Flow	3 S	254	
Time	Removed	Temp	Conduct.	DO	pН	ORP	Turbidity	Rate	Depth to	Color/	Odor
(24 hr)	(gallons)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(mL/min)	water (ft)	а. С	
1250		15-70	0.12	5-13	6.45	158-)	3.2	600	44.95	dear	to o do
1300		15.75	012	5.03	6.48	155					
1305		15.79	0.12	5.09	6.45	154				-	
1310	100	15-78		5-11	6.46	153	7.8	600	44.95		
1315		15-77	0.12	5.07	6.47	152					
1320		15.79	0.12	5.07	6.45	153	6.5	600	44.95		
1325		15.77	0.12	5.09	6.46	152		1			
*											- Parties
	1010			000							
Sar	ple	fin	-1	330				200			
	ļ										
		e		8							
					,					1	
										,	
											· · · · · · · · · · · · · · · · · · ·
					2		,				
								· · · .			
	<u> </u>										
100		·									
				L		L	I				

- Conductivity ± 3% - Drawdown < 0.3' c. Field Testing Equipment used: Make Model YSI 556 Uadathe 2020 Volume	ft (a-b) Casing Diameter/Material <u>4-inch PVC</u> ack) <u>4.5</u> gal. <u>70</u> screen length ly - D.O. ± 10% (values >0.5 mg/L) Remove a minimum 1 screen volume
1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length 492 ft c. Length of Water Column b. Water Table Depth 45.36 ft d. Calculated System Volume (see b 2. WELL PURGE DATA a. Purge Method: Geotech bladder pump with drop tube assemb b. Acceptance Criteria defined (see workplan) - Turbidity ± 10% - pH ± 0.1 unit - ORP ± 10mV - Conductivity ± 3% - Drawdown < 0.3' c. Field Testing Equipment used: Make Model Yolume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L)	$\frac{4 - \operatorname{inch} PVC}{\operatorname{gal.} / \mathcal{O}} \text{ screen length}$ $\frac{4 - \operatorname{inch} PVC}{\operatorname{gal.} / \mathcal{O}} \text{ screen length}$ $\frac{1}{\sqrt{2}}$ $- D.O. \pm 10\% \text{ (values > 0.5 mg/L)}$ $\operatorname{Remove a minimum 1 screen volume}$ $\frac{1}{\sqrt{2}} \text{ Serial Number}$ $\frac{83946}{65727}$
2. WELL PURGE DATA a. Purge Method: Geotech bladder pump with drop tube assemb b. Acceptance Criteria defined (see workplan) - Temperature ± 3% - Turbidity ± 10% - pH ± 0.1 unit - ORP ± 10mV - Conductivity ± 3% - Drawdown < 0.3' c. Field Testing Equipment used: Make Model YSI 556 Usedet 2020 Volume Time Removed Temp. Conduct. DO pH ORP Turbid Yahr) (gallons) (°C) (mS/cm) (mg/L) (mV) (NTU	pack) 4.5 gal. 10 screen length ly - D.O. $\pm 10\%$ (values >0.5 mg/L) Remove a minimum 1 screen volume Serial Number 83946 65727
a. Purge Method: Geotech bladder pump with drop tube assemb b. Acceptance Criteria defined (see workplan) - Temperature ± 3% - pH ± 0.1 unit - Conductivity ± 3% c. Field Testing Equipment used: Make Model YSI 556 Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L) (mV) (NTU	- D.O. ± 10% (values >0.5 mg/L) Remove a minimum 1 screen volume Serial Number 83946 657777
b. Acceptance Criteria defined (see workplan) - Temperature ± 3% - pH ± 0.1 unit - Conductivity ± 3% c. Field Testing Equipment used: Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L)	- D.O. ± 10% (values >0.5 mg/L) Remove a minimum 1 screen volume Serial Number 83946 657227
- Temperature ± 3% - pH ± 0.1 unit - Conductivity ± 3% c. Field Testing Equipment used: Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L)	Serial Number 83946 65722
Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L) (mV) (NTU	83946 65722
Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L) (mV) (NTU	65722
Volume Time Removed Temp. Conduct. DO pH ORP Turbid (24hr) (gallons) (°C) (mS/cm) (mg/L) (mV) (NTU	
TimeRemovedTemp.Conduct.DOpHORPTurbid(24hr)(gallons)(°C)(mS/cm)(mg/L)(mV)(NTU	lity Flow Rate Depth to Color/Odo
17.12	J) (mL/min) water (ft)
1-0	GN
	pup pup
1406	resport
1405 15:11 0.110 8.82 3.69 143.8	600 45.83
1410 15.11 0.108 8.02 5.67 1423 29.1	
1415 3ga 15.15 0.123 7.56 6.13 131.1 136 d. Acceptance criteria pass/fail Yes No N/A	(continued on back)
Has required volume been removed Has required turbidity been reached Have parameters stabilized If no or N/A - Explain below.	
3. SAMPLE COLLECTION: Method: Geotech bladder pump with	In Grop lube assembly
	eservation Analysis Req. Tim
<u>REI06 DZ-64) -030817</u> 40-mL vials 3 1-L amber 2	HCI VOCs //5 none 1,4-Dioxane
Comments problems with the pure pulled the silt in the tubing group screen was silt londerd at 5 ft shall and too	e entine pund faul 30ft
Signature Paul Kurth	Date 3/8/17

owFlow-GWa - Mar 2017.x	sx
-------------------------	----

Purge Volume Calculation


Volume / L	inear Ft. o	of Pipe	
ID (in)	Gallon	Liter	One screen volume
0.25	0.0025	0.0097	(4-inch well)
0.375	0.0057	0.0217	
0.5	0.0102	0.0386	15 ft = 37.1 L / 9.8 G
0.75	0.0229	0.0869	20 ft = 49.4 L / 13.1 G
1	0.0408	0.1544	25 ft = 61.8 L / 16.3 G
1.25	0.0637	0.2413	30 ft = 74.3 L / 19.6 G
1.5	0.0918	0.3475	40 ft = 99.2 L / 26.1 G
2	0.1632	0.6178	50 ft = 123.6 L / 32.6 G
2.5	0.2550	0.9653	
3	0.3672	1.3900	the second se
4	0.6528	2.4711	
6	1.4688	5.5600	アメニア・イトモア・

		n's u	1/ 22	0 14 0						
Well ID:	d from front)	RE IC	1602	D 140	2					
(continue)	Volume	596) - 59						Flow		
Time	Removed	Temp	Conduct.	DO	pН	ORP	Turbidity	Rate	Depth to	Color/Odor
(24 hr)	(gallons)	(°C)	(mS/cm)	(mg/L)		(mV)	(NTU)	(mL/min)	water (ft)	
1420		15.05	0:142	6.81	6.37	125.8	162			
1425		15.09	0140	6.33	637	124.1	# 170		45.84	
1430	5gal	15.08	0.139	5.84	6.37	120,5	163		,	
1435		15.09	0.137	5.52	6.37	116.9	150	600		
1450	6.5gel	15.05	0.136	5.30	637	114.2	127		45.83	
1445	/	15.09	0.136	5.08	6.39	113.4	17.9			
1450		15.09	0.136	4.94	6.39	111.6	109109			
1455	10 qu	1492	0.136	4.81	6.39	109.2	103	600	45.82	
1500		15.09	0.136	460	638	109.4	//1			
1505	11.5	15.10	0.135	4.52	6.39	107.1	113			
										2
1510								150		Sanda
	teg	nd	lost for	unth	atter	Sent	in		- J	
	00	ι,	6ft a	to d	hale					
					-					
								,		
							t			
										-

C								Well ID:	REIDED	3
Site Location: Weather Conds: Collector(s): Sc 1. WATER LEVEL DATA: (measured from Top of Casing) a. Total Well Length	ord									
Client:	Navy N	WIRP Be	ethpage			Date: 3	181	17	Time: Start	/200 am/m
		6026652	6	and in					Finish	1455 am/200
		Curical and		36 G G	0	Col	loctor(c):	JC.		
vveatrier	Conus.		10111111111111111111111111111111111111		1		iector(s).		_	
							_	ft (a-b)		
b. Wa	ater Table [Depth 4	S.COft	d. Calcu	lated Syste	em Volun	1e (see back) 13.1	-	
								,		
a. Pu	rge Method	l:	Geotech I	oladder pu	ump with d	rop tube a	assembly			
- Te - C	emperature - pH Conductivity	± 3% ± 0.1 ur ± 3%	nit	613 54 688	- Turbidity - ORP Drawdown	± 10mV			minimum 1	screen volume
c. Fie	eld Testing	Equipmer	it used:							
										10.0
	Maluma			-		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		303	184	
	Removed				pН				the second se	Color/Odor
	(galions)	· · · ·	T	-	5.60					slight for 1 min
	Constantine -				-	_		500		11
				-	-		5.95	-	45.65	(j.
					-			500	-	()
	1	14.28						-	45.69	
	A			0	/		65.0	540		the second second second
d. Ad Hi Hi	as required as required ave parame	volume b turbidity t ters stabi /A - Expla	een remov been reach ilized in below.	led	内 日 図					(continued on back)
3. SAM	PLE COLL	ECTION:		Method:	Geotech	bladder p	ump with a	lrop tube a	ssembly	
Sample	ID 3-GW-030	7180	40-m	ner Type L vials	No. of Co 3	ontainers		ervation	VC	is Req. Time OCs <u>(347)</u>
RE106 D3	5-9W-03	0817	1-L a	mber	2		n	one	1,4-D	oxane
	nts	Wate	r @ 12	10			dur			
Comme		1500 -13	to trank	le Shooting	RELOGD	2				

LowFlow-GWa - Mar 2017.xlsx

Purge Volume Calculation

Volume / L	inear Ft. o	of Pipe	the state of the second second
ID (in)	Gallon	Liter	One screen volume
0.25	0.0025	0.0097	(4-inch well)
0.375	0.0057	0.0217	
0.5	0.0102	0.0386	15 ft = 37.1 L / 9.8 G
0.75	0.0229	0.0869	20 ft = 49.4 L / 13.1 G
1	0.0408	0.1544	25 ft = 61.8 L / 16.3 G
1.25	0.0637	0.2413	30 ft = 74.3 L / 19.6 G
1.5	0.0918	0.3475	40 ft = 99.2 L / 26.1 G
2	0.1632	0.6178	50 ft = 123.6 L / 32.6 G
2.5	0.2550	0.9653	
3	0.3672	1.3900	Page 1 (1997)
4	0.6528	2.4711	
6	1.4688	5.5600	suggester and the

Well ID: REIOG D3

(continue Time (24 hr)	d from front) Volume Removed (gallons)	(°C)	Conduct. (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Flow Rate (mL/min)	Depth to water (ft)	Color/Odor
1245	Sam	14.32	0.273	5.37	50.0	-38.2	85.5	500	45.67	Fogsy Inone
12.50	and the second	14.53	0.274	4.98	6.03	-39.9	-	200	45.69	11
1255		14-32	0.275	4.85	6.04	- 42.1		500		15
300	Con le	14-32	0.275	u.86	6.04	-42.3	4	where a		
1305		(-		(-	C	1	-	THE PERSON AND A DESCRIPTION OF A DESCRI
1310			1					1	(
1315					-	-	Constant and		-	
1320	The second	14 44	0279	4.13	6.02	-44-1			- Contraction	
1325	-S. lini	14.44	0.279	4.12	5.98	-46.4	81.3	500	45-69	fogny / non
1330		14.46	0.279	4.10	6.92	-46-3	86.2	500	45.69	t,
1335	14901	14.45	0.279	4.07	5.94	-46.3	88.1	500	45.61	11
1	Real Agency		1. 6.0			1.00				
		10		1117	100			- 6 F F F		
	San	ple	time	134	p		P 14-	200	n <u>– E</u> –	
		-					11			
		·								
					2				$(1, 2, 2) \rightarrow (1, 2, 2)$	E parties - minutes
			i - L				1 N N .	101		
					방법 전 문	"				1. Mc
		selle un		. Kerne i						
f" de s	2	8 V		1				10000		61 State 87
a	<u>6</u> 2 7							0 - Q - J		
	i				· · · · · · ·			·		
			- 76						101.000	2010 L
						- 15-1		11. 12.		
21. J.	1 200			d stand						
			a — — =			1.				

LowFlow-GWa - Mar 2017.xlsx

Section 5

Analytical Data Validation

[The Data Validation report included here contains only result tables for RE106D1, RE106D2 and RE106D3; for the complete March 2017 Quarterly Sampling Data Validation, see *March 2017 Groundwater Sampling Data Summary Report, Bethpage, NY*, Resolution Consultants, 2017.]

March 2017 Final Results after Data Review NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sample E	Delivery Group Lab ID Sample ID Sample Date Sample Type	SK1820-13 RE106D1-GW-030817 3/8/2017			
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	Ŭ		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	1.3	-		
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	1	U		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	U		
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,c	
8260C	BENZENE	71-43-2	UG L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U		
8260C	BROMOFORM	75-25-2	UG L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	0.5	U		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG_L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG_L	2.5	U		
8260C	O-XYLENE	95-47-6	UG_L	0.5	U		
8260C	STYRENE	100-42-5	UG_L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG_L	0.68	J		
8260C	TOLUENE	108-88-3	UG_L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG_L	0.5	U		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U		
8260C	TRICHLOROETHENE	79-01-6	UG_L	7.4			
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG_L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U		
	1,4-DIOXANE	123-91-1	UG_L	11	J	I	

Notes:

UG_L

NA Qual

Micrograms per liter
Not applicable
Final qualifiers (See Attachment A)
Reason codes (See Attachment B) RC

March 2017 Final Results after Data Review NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sample Delivery Grou Lab I Sample I Sample Dat					
			Sample Type	Gr	oundwater	-	
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG L	12			
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG L	0.5	U		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	0.97	J		
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG L	2.5	Ŭ		
8260C	ACETONE	67-64-1	UG L	2.5	UJ	bf,c	
8260C	BENZENE	71-43-2	UG L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG L	0.5	U		
8260C	BROMOFORM	75-25-2	UG L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG L	0.5	Ŭ		
8260C	CARBON TETRACHLORIDE	56-23-5	UG L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG L	0.5	Ŭ		
8260C	CHLOROETHANE	75-00-3	UG L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG L	0.97	J		
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U		
	O-XYLENE	95-47-6	UG L	0.5	U		
8260C	STYRENE	100-42-5	UG_L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG L	8.1			
8260C	TOLUENE	108-88-3	UG_L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	U		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U		
8260C	TRICHLOROETHENE	79-01-6	UG_L	46			
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U		
	1,4-DIOXANE	123-91-1	UG_L	1.5	J	I	

Notes:

UG_L

NA Qual

Micrograms per liter
Not applicable
Final qualifiers (See Attachment A)
Reason codes (See Attachment B) RC

March 2017 Final Results after Data Review NWIRP Bethpage OU 2 Regional Groundwater Investigation

		Sample Delivery Group Lab II Sample II Sample Date					
	-	•	Sample Type		oundwater		
Method	Analyte	CAS No	Units	Result	Qual	RC	
8260C	1,1,1-TRICHLOROETHANE	71-55-6	UG_L	0.5	U		
8260C	1,1,2,2-TETRACHLOROETHANE	79-34-5	UG_L	0.5	U		
8260C	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	76-13-1	UG_L	71			
8260C	1,1,2-TRICHLOROETHANE	79-00-5	UG_L	0.5	U		
8260C	1,1-DICHLOROETHANE	75-34-3	UG_L	0.5	U		
8260C	1,1-DICHLOROETHENE	75-35-4	UG_L	0.71	J		
8260C	1,2,4-TRICHLOROBENZENE	120-82-1	UG_L	0.5	U		
8260C	1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	UG_L	0.75	U		
8260C	1,2-DIBROMOETHANE	106-93-4	UG_L	0.5	U		
8260C	1,2-DICHLOROBENZENE	95-50-1	UG_L	0.5	U		
8260C	1,2-DICHLOROETHANE	107-06-2	UG_L	0.5	U		
8260C	1,2-DICHLOROETHENE, TOTAL	540-59-0	UG_L	2			
8260C	1,2-DICHLOROPROPANE	78-87-5	UG_L	0.5	U		
8260C	1,3-DICHLOROBENZENE	541-73-1	UG_L	0.5	U		
8260C	1,4-DICHLOROBENZENE	106-46-7	UG_L	0.5	U		
8260C	2-BUTANONE	78-93-3	UG_L	2.5	U		
8260C	2-HEXANONE	591-78-6	UG_L	2.5	U		
8260C	4-METHYL-2-PENTANONE	108-10-1	UG_L	2.5	U		
8260C	ACETONE	67-64-1	UG_L	2.5	U	bf	
8260C	BENZENE	71-43-2	UG_L	0.5	U		
8260C	BROMODICHLOROMETHANE	75-27-4	UG_L	0.5	U		
8260C	BROMOFORM	75-25-2	UG_L	0.5	U		
8260C	BROMOMETHANE	74-83-9	UG_L	1	U		
8260C	CARBON DISULFIDE	75-15-0	UG_L	0.5	U		
8260C	CARBON TETRACHLORIDE	56-23-5	UG_L	0.5	U		
8260C	CHLOROBENZENE	108-90-7	UG_L	0.5	U		
8260C	CHLOROETHANE	75-00-3	UG_L	1	U		
8260C	CHLOROFORM	67-66-3	UG_L	0.5	U		
8260C	CHLOROMETHANE	74-87-3	UG_L	1	U		
8260C	CIS-1,2-DICHLOROETHENE	156-59-2	UG_L	2			
8260C	CIS-1,3-DICHLOROPROPENE	10061-01-5	UG_L	0.5	U		
8260C	CYCLOHEXANE	110-82-7	UG_L	0.5	U		
8260C	DIBROMOCHLOROMETHANE	124-48-1	UG_L	0.5	U		
8260C	DICHLORODIFLUOROMETHANE	75-71-8	UG_L	1	UJ	С	
8260C	ETHYLBENZENE	100-41-4	UG L	0.5	U		
8260C	ISOPROPYLBENZENE	98-82-8	UG L	0.5	U		
8260C	M- AND P-XYLENE	108-38-3/106-42	UG_L	1	U		
8260C	METHYL ACETATE	79-20-9	UG_L	0.75	U		
8260C	METHYL CYCLOHEXANE	108-87-2	UG_L	0.5	U		
8260C	METHYL TERT-BUTYL ETHER	1634-04-4	UG_L	0.5	U		
8260C	METHYLENE CHLORIDE	75-09-2	UG L	2.5	U		
	O-XYLENE	95-47-6	UG L	0.5	U		
8260C	STYRENE	100-42-5	UG L	0.5	U		
8260C	TETRACHLOROETHENE	127-18-4	UG L	35			
8260C	TOLUENE	108-88-3	UG_L	0.5	U		
8260C	TRANS-1,2-DICHLOROETHENE	156-60-5	UG L	0.5	Ŭ		
8260C	TRANS-1,3-DICHLOROPROPENE	10061-02-6	UG_L	0.5	U		
8260C	TRICHLOROETHENE	79-01-6	UG_L	84	- J		
8260C	TRICHLOROFLUOROMETHANE	75-69-4	UG L	1	U		
8260C	VINYL CHLORIDE	75-01-4	UG_L	1	U		
8260C	XYLENES, TOTAL	1330-20-7	UG L	1.5	U		
	1,4-DIOXANE	123-91-1	UG_L	1.5	J	I	

Notes:

UG_L

NA Qual

Micrograms per liter
Not applicable
Final qualifiers (See Attachment A)
Reason codes (See Attachment B) RC

Attachment A Final Qualifier Codes and Explanations

Qualifier	Explanation						
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.						
LU	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual quantitation limit necessary to accurately and precisely measure the analyte in the sample.						
U	The analyte was analyzed for, but was not detected above the reported sample quantitation limit.						

Attachment B				
Reason Codes and Explanations				

Reason Code	Explanation					
be	Equipment blank contamination					
bf	Field blank contamination					
bl	Laboratory blank contamination					
bm	Missing Blank Information					
bt	Trip blank contamination					
C	Calibration issue					
cr	Chromatographic resolution					
d	Reporting limit raised due to chromatographic interference					
dt	Dissolved result > total over limit					
е	Ether interference					
ej	Above calibration range; result estimated.					
f	Presumed contamination from FB or ER.					
fd	Field duplicate RPDs					
h	Holding times					
hs	Headspace greater than 6mm in all sample vials					
i	Internal standard areas					
ii	Injection internal standard area or retention time exceedance					
it	Instrument Tune					
k	Estimated Maximum Possible Concentrations (EMPC)					
I	LCS recoveries					
lc	Labeled compound recovery					
ld	Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD)					
lp	Laboratory control sample/laboratory control sample duplicate RPDs					
m	Matrix spike recovery					
mc	Deviation from the method					
md	MS/MSD precision					
nb	Negative laboratory blank contamination					
р	Chemical preservation issue					
p-h	Uncertainty near detection limit (< Reporting Limit), historical reason code applied.					
ре	Post Extraction Spike					
q	Quantitation issue					
r	Dual column RPD					
rt	SIM ions not within + 2 seconds					
S	Surrogate recovery					
sp	Sample preparation issue					
su	Evidence of ion suppression					
t	Temperature Preservation Issue					
х	Low % solids					
у	Serial dilution results					
Z	ICS results					

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage						
Laboratory:	Katahdin Analytical	Katahdin Analytical					
Sample Delivery Groups:	SJ8312						
Analyses/Method:	Total Organic Carbon (TOC)	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A					
Validation Level:	2						
Project Number:	0888812477.SA.DV						
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 11/30/2016					
Reviewed by:	Tina Clemmey/Resolution Consultants	File Name: SJ8312_9060A					

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 6 October 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE106D3-EB-100616	SJ8312-1	Equipment Blank	9060A
RE106D3-SOIL-101616-510-512	SJ8312-2	Soil	9060A, 2540G

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- \checkmark Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

RESULTS

Laboratory Blanks/ Equipment Blanks

Field blanks help determine how much, if any, contamination was introduced in the field. Laboratory blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Because blank samples may not be prepared using the same sample weight, volume, or dilution, those variables were considered when using the blank criteria. All field and laboratory blanks were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

Blank type	Blank result	Sample result	Action for samples
	Detects	Not detected	No qualification
	< 2×100	< 2x LOQ	Report sample LOQ value with a U
	< 2x LOQ	<u>></u> 2x LOQ	Use professional judgment
		< 2x LOQ	Report sample LOQ value with a U
Method, Storage,	> 2x LOQ	\geq 2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R
Trip, Field, or Equipment	2 ZX LOQ	\geq 2x LOQ and \geq blank contamination	If the result is $\leq 2x$ blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.
	= 2x LOQ	< 2x LOQ	Report sample LOQ value with a U
	- 2X LOQ	<u>></u> 2x LOQ	Use professional judgment
	Gross contamination	Detects	Qualify results as unusable R

Notes:

LOQ	=	Limit of quantitation	LOD	=	Limit of detection
U		Undetected	R		Rejected

The laboratory blank non-conformance is summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B, Table B-1.

ATTACHMENTS

Attachment A: Table A-1, Non-Conformance Summary Tables Attachment B: Table B-1, Final Results after Data Review Attachment A Non-Conformance Summary Table

Table A-1 Laboratory Blank Non-Conformance Regional Groundwater Investigation NWIRP Bethpage

Blank ID	Batches	Method	Analyte	Blank Result (MG_L)	LOQ	Detected Associated Samples	Qualifier
WG193179-1	WG193179	9060A	Total Organic Carbon	0.21	1	RE106D3-EB-100616	U

Notes:

= Identification ID

MG_L = Milligrams per liter

 Limit of quantitation
 Undetected value loq

U

Attachment B Final Results after Data Review

Table B-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group Lab ID Sample ID			SJ8312 SJ8312-1 RE106D3-EB-1000616			SJ8312 SJ8312-2 RE106D3-SOIL-1001616-510-512			
Method	Sample Date Sample Type		Equip	10/6/2016 Equipment Blank			10/6/2016 Soil		
2540G	Analyte TOTAL SOLIDS	-29	Units PCT	Result NA	Qual	RC	Result 83	Qual	RC
9060A	TOTAL ORGANIC CARBON	-28	MG_L	0.5	U	bl	NA		
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA			130	J	

Notes:

- ID = Identification
- Qual = Final qualifier
- RC = Reason code
- PCT = Percent

MG_L = Milligrams per liter

UG_G = Micrograms per gram

NA = Not analyzed

Final Qualifier:

- U = **Undetected** The analyte was qualified as undetected during data review due to blank artifacts.
- J = **Estimated Value** –The analyte concentration was less than the limit of quantitation.

Reason Code:

bl = Qualified undetected and estimated due to lab blank contamination.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage						
Laboratory:	Katahdin Analytical	Katahdin Analytical					
Sample Delivery Groups:	SJ8892						
Analyses/Method:	Total Organic Carbon (TOC)	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A					
Validation Level:	2						
Project Number:	0888812477.SA.DV						
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 11/30/2016					
Reviewed by:	Tina Clemmey/Resolution Consultants	File Name: SJ8892_9060A					

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 24 October 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE106D1-EB-102416	SJ8892-1	Equipment Blank	9060A
RE106D1-SOIL-102416-443-445	SJ8892-2	Soil	9060A, 2540G
RE106D1-FD-SOIL-102416	SJ8892-3	Soil	9060A, 2540G

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- \checkmark Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

RESULTS

Laboratory Blanks/ Equipment Blanks

Field blanks help determine how much, if any, contamination was introduced in the field. Laboratory blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Because blank samples may not be prepared using the same sample weight, volume, or dilution, those variables were considered when using the blank criteria. All field and laboratory blanks were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

Blank type	Blank result	Sample result	Action for samples
	Detects	Not detected	No qualification
	< 2x LOQ	< 2x LOQ	Report sample LOQ value with a U
	< 2X LOQ	<u>></u> 2x LOQ	Use professional judgment
		< 2x LOQ	Report sample LOQ value with a U
Method, Storage,	> 2x LOQ	\geq 2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R
Trip, Field, or Equipment		\geq 2x LOQ and \geq blank contamination	If the result is $\leq 2x$ blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.
	= 2x LOQ	< 2x LOQ	Report sample LOQ value with a U
	- 2X LOQ	<u>></u> 2x LOQ	Use professional judgment
	Gross contamination	Detects	Qualify results as unusable R

Notes:

LOQ	=	Limit of quantitation	LOD	=	Limit of detection
U	=	Undetected	R	=	Rejected

The laboratory blank non-conformance is summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B, Table B-1.

ATTACHMENTS

Attachment A: Table A-1, Non-Conformance Summary Tables Attachment B: Table B-1, Final Results after Data Review Attachment A Non-Conformance Summary Table

Table A-1 Laboratory Blank Non-Conformance Regional Groundwater Investigation NWIRP Bethpage

Blank ID	Batches	Method	Analyte	Blank Result (MG_L)	LOQ	Detected Associated Samples	Qualifier
WG194632-1	WG194632	9060A	Total Organic Carbon	0.2	1	RE106D1-EB-102416	U

Notes:

= Identification ID

MG_L = Milligrams per liter

 Limit of quantitation
 Undetected value loq

U

Attachment B Final Results after Data Review

Table B-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group			9	538892		SJ8892			
Lab ID			SJ8892-1			SJ8892-2			
Sample ID			RE106D1-EB-102416			RE106D1-SOIL-102416-443-445			
	Sample Date		10/24/2016			10/24/2016			
	Sample Type		Equipment Blank			Soil			
Method	Analyte	CAS No	Units	Result	Qual	RC	Result	Qual	RC
2540G	TOTAL SOLIDS	-29	PCT	NA			84		
9060A	TOTAL ORGANIC CARBON	-28	MG_L	0.5	U	bl	NA		
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA			180	J	

		SJ8892					
		SJ8892-3					
		RE106D1-FD-SOIL-102416					
		10/24/2016					
	Sample Type				Field Duplicate		
Method	Analyte	CAS No	Units	Result	Qual	RC	
2540G	TOTAL SOLIDS	-29	PCT	82			
9060A	TOTAL ORGANIC CARBON	-28	MG_L	NA			
9060A	TOTAL ORGANIC CARBON	-28	UG_G	160	J		

Notes:

- ID = Identification
- Qual = Final qualifier
- RC = Reason code
- PCT = Percent
- MG_L = Milligrams per liter
- UG_G = Micrograms per gram
- NA = Not analyzed

Final Qualifier:

- U = **Undetected** The analyte was qualified as undetected during data review due to blank artifacts.
- J = **Estimated Value** The analyte concentration was less than the limit of quantitation.

Reason Code:

bl = Qualified undetected and estimated due to lab blank contamination.

DATA VALIDATION REPORT

Project:	Regional Groundwater Investigation — NWIRP Bethpage					
Laboratory:	Katahdin Analytical					
Sample Delivery Groups:	SJ9762					
Analyses/Method:	Total Organic Carbon (TOC)	Total Organic Carbon (TOC) by U.S. EPA SW-846 Method 9060A				
Validation Level:	2					
Project Number:	0888812477.SA.DV					
Prepared by:	Dana Miller/Resolution Consultants	Completed on: 11/30/2016				
Reviewed by:	Tina Clemmey/Resolution Consultants	File Name: SJ9762_9060A				

SUMMARY

This report summarizes data review findings for samples listed below, collected by Resolution Consultants from the Regional Groundwater Investigation — NWIRP Bethpage site on 14 November 2016 in accordance with the following Sampling and Analysis Plans:

- Sampling and Analysis Plan, Bethpage, New York. (Resolution Consultants April 2013).
- UFP SAP Addendum, Installation of Vertical Profile Borings and Monitoring Wells, Operable Unit 2, NWIRP Bethpage, New York. (Resolution Consultants November 2013).
- UFP SAP Addendum, Inclusion of Additional Target Analytes for Volatile Organics Analyses, NWIRP Bethpage OU2, Bethpage, New York. (Resolution Consultants August 2014).

Sample ID	Lab ID	Matrix/Sample Type	Analysis
RE106D2-EB-111416	SJ9762-1	Equipment Blank	9060A
RE106D2-SOIL-111416-483-485	SJ9762-2	Soil	9060A, 2540G

Data validation activities were conducted using the following guidance documents: *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846, specifically Method 9060A, Total Organic Carbon* (U.S. EPA, 1996), *U.S. Environmental Protection Agency (U.S. EPA) Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review* (NFG, January 2010, and Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 4.2 (October 2010). In the absence of method-specific information, laboratory quality control (QC) limits, project-specific requirements and/or professional judgment were used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody)/sample integrity
- \checkmark Holding times and sample preservation
- NA Gas chromatography/Mass spectrometer performance checks
- NA Initial calibration/continuing calibration verification
- X Laboratory blanks/equipment blanks
- NA Surrogate spike recoveries
- NA Matrix spike and/or matrix spike duplicate results
- ✓ Laboratory control sample / laboratory control sample duplicate results
- NA Field duplicates
- NA Internal standards
- ✓ Sample results/reporting issues

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. NA indicates that the parameter was not included as part of this data set or was not applicable to this validation and therefore not reviewed. The symbol (X) indicates that a QC non-conformance resulted in the qualification of data. Acceptable data parameters for which all criteria were met and no qualification was performed, and non-conformance or other issues that were noted during validation, but did not result in qualification of data are not discussed further.

RESULTS

Laboratory Blanks/ Equipment Blanks

Field blanks help determine how much, if any, contamination was introduced in the field. Laboratory blanks were analyzed with samples to assess contamination imparted by sample preparation and/or analysis. All results associated with a particular blank were evaluated to determine whether there was an inherent variability in the data, or if a problem was an isolated occurrence that did not affect the data. Because blank samples may not be prepared using the same sample weight, volume, or dilution, those variables were considered when using the blank criteria. All field and laboratory blanks were flagged in accordance with *Functional Guidelines* (shown below) where detections were not believed to be site-related.

Blank Non-conformance Charts:

Blank type	Blank result	Sample result	Action for samples	
	Detects	Not detected	No qualification	
	< 2×100	< 2x LOQ	Report sample LOQ value with a U	
	< 2x LOQ	<u>></u> 2x LOQ	Use professional judgment	
		< 2x LOQ	Report sample LOQ value with a U	
Method, Storage,	> 2x LOQ	\geq 2x LOQ and < blank contamination	Report the blank result with a U or reject the sample result as unusable R	
Trip, Field, or Equipment		\geq 2x LOQ and \geq blank contamination	If the result is $\leq 2x$ blank result, report the sample result U. If the result is > 2x blank result, no qualification is required.	
	= 2x LOQ	< 2x LOQ	Report sample LOQ value with a U	
	– 2X LOQ	<u>></u> 2x LOQ	Use professional judgment	
	Gross contamination	Detects	Qualify results as unusable R	

Notes:

LOQ	=	Limit of quantitation	LOD	=	Limit of detection
U		Undetected	R		Rejected

The laboratory blank non-conformance is summarized in Attachment A in Table A-1.

Qualifications Actions

The data was reviewed independently from the laboratory to assess data quality. TOC was detected in the equipment blank but professional judgement was used not to qualify the associated sample as undetected. All analytes detected at concentrations less than the limit of quantitation but greater than the method detection limit were qualified by the laboratory as estimated (J). This "J" qualifier was retained during data validation.

No results were rejected; therefore, analytical completeness was calculated to be 100 percent. Data not qualified during data review are considered usable by the project. The remaining results qualified as estimated may be high or low, but the data are usable for their intended purpose, according to U.S. EPA and Department of Defense guidelines. Final data review qualifiers used to describe results and how they should be interpreted by the end data user are provided in Attachment B, Table B-1.

ATTACHMENTS

Attachment A: Table A-1, Non-Conformance Summary Tables Attachment B: Table B-1, Final Results after Data Review Attachment A Non-Conformance Summary Table

Table A-1 Laboratory Blank Non-Conformance Regional Groundwater Investigation NWIRP Bethpage

Blank ID	Batches	Method	Analyte	Blank Result (MG L)	LOO	Detected Associated Samples	Qualifier
				\ /			U
WG195806-1	WG195806	9060A	Total Organic Carbon	0.41	1	RE106D2-EB-111416	U
110155000 1	110190000	50001	rotal organic carbon	0111	-	ILLIGOBE EB IIIIIO	5

Notes:

= Identification ID

MG_L = Milligrams per liter

 Limit of quantitation
 Undetected value loq

U

Attachment B Final Results after Data Review

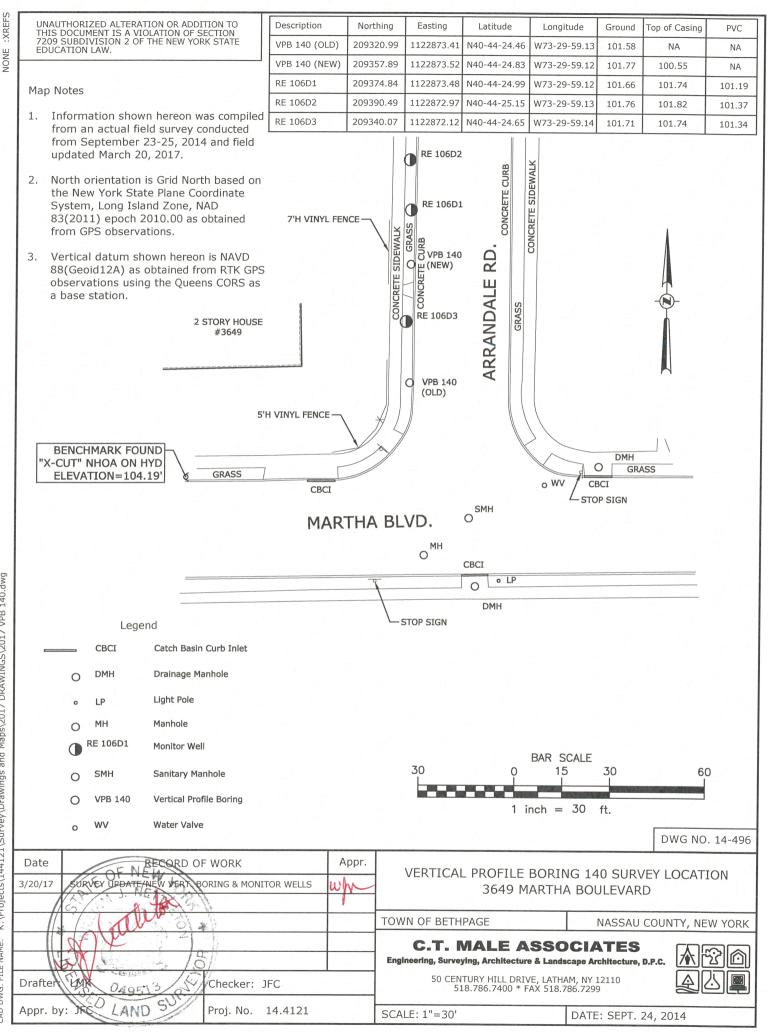
Table B-1Final Results after Data ReviewRegional Groundwater Investigation NWIRP Bethpage

Sample Delivery Group Lab ID Sample ID				SJ9762 SJ9762-1 RE106D2-EB-111416 11/14/2016			SJ9762 SJ9762-2 RE106D2-SOIL-111416-483-485			
Method	Sample Date Sample Type Method Analyte CAS No Units			•	Equipment Blank			11/14/2016 Soil Result Qual RC		
2540G	TOTAL SOLIDS	-29	PCT	NA			83			
9060A	TOTAL ORGANIC CARBON	-28	MG_L	0.5	U	bl	NA			
9060A	TOTAL ORGANIC CARBON	-28	UG_G	NA			260	J		

Notes:

- ID = Identification
- Qual = Final qualifier
- RC = Reason code
- PCT = Percent
- MG_L = Milligrams per liter
- UG_G = Micrograms per gram
- NA = Not analyzed

Final Qualifier:


- U = **Undetected** The analyte was qualified as undetected during data review due to blank artifacts.
- J = **Estimated Value** –The analyte concentration was less than the limit of quantitation.

Reason Code:

bl = Qualified undetected and estimated due to lab blank contamination.

Section 6

Survey

CAD DWG. FILE NAME: K:\Projects\144121\Survey\Drawings and Maps\2017 DRAWINGS\2017 VPB 140.dwg

August 2017

Appendix B

Geologic Cross Sections derived from

Environmental Sequence Stratigraphy (ESS)

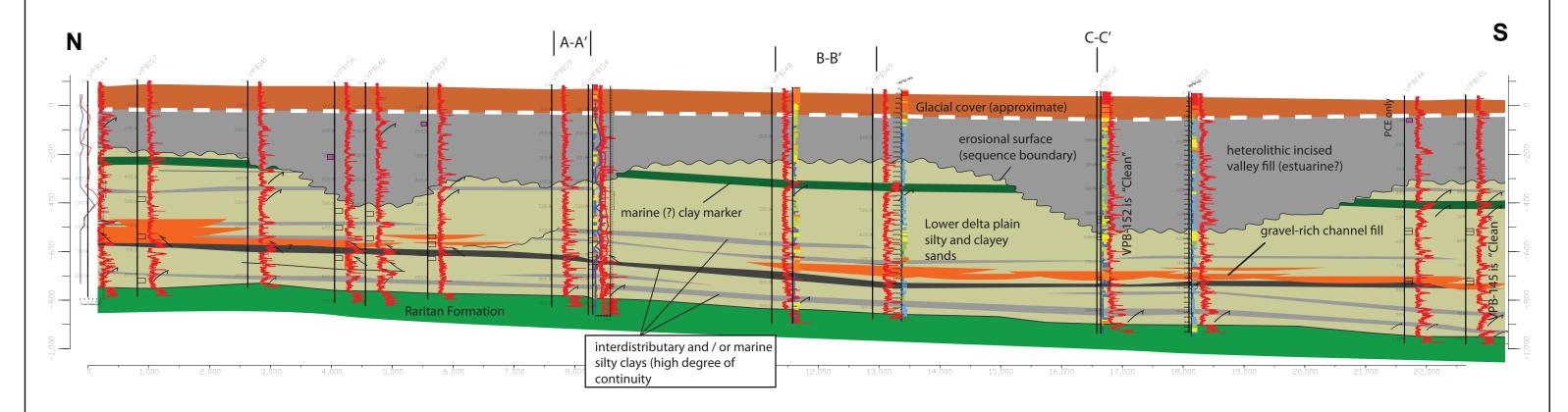
Appendix B. Geologic Cross Sections derived from

Environmental Sequence Stratigraphy

Resolution Consultants reviewed the geologic data and regional literature at the Naval Weapons Industrial Reserve Plant at Bethpage, New York and developed four representative base-wide cross sections to support development of a CSM. The cross sections are presented in Figure 1 -Figure 4. The cross sections provide geologic context for groundwater and analytical data and can be used as the framework upon which new and existing datasets (groundwater, analytical chemistry, geophysical data, etc.) can be analyzed to better understand groundwater flowpaths and contaminant transport and storage zones. As such, these sections are an integral component of an effective CSM.

The cross sections were developed using ESS. The ESS approach examines subsurface data in the context of the depositional environments and petroleum industry best practices of sequence stratigraphy and facies models. Shown for each boring included in the stratigraphic analysis are a vertical series of colored blocks which correspond to boring log lithology and a continuous data curve (in red or as a scan of a paper document, which corresponds to the gamma log). These colored blocks represent vertical grain size distribution and are the basis for the correlations between the data points.

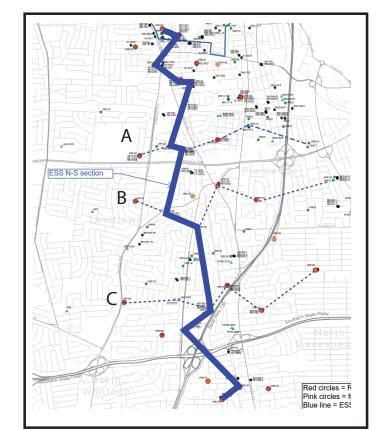
The color coded blocks correspond to the graphic grainsize scale as shown in the cross-sections' keys. The width of the block increases with relative grainsize. Block color indicates the textural classification of the sediment (e.g., yellow for sand, green for silt, blue for clay) as written in the field notes of the core logging geologist (see the cross section keys for further definition).

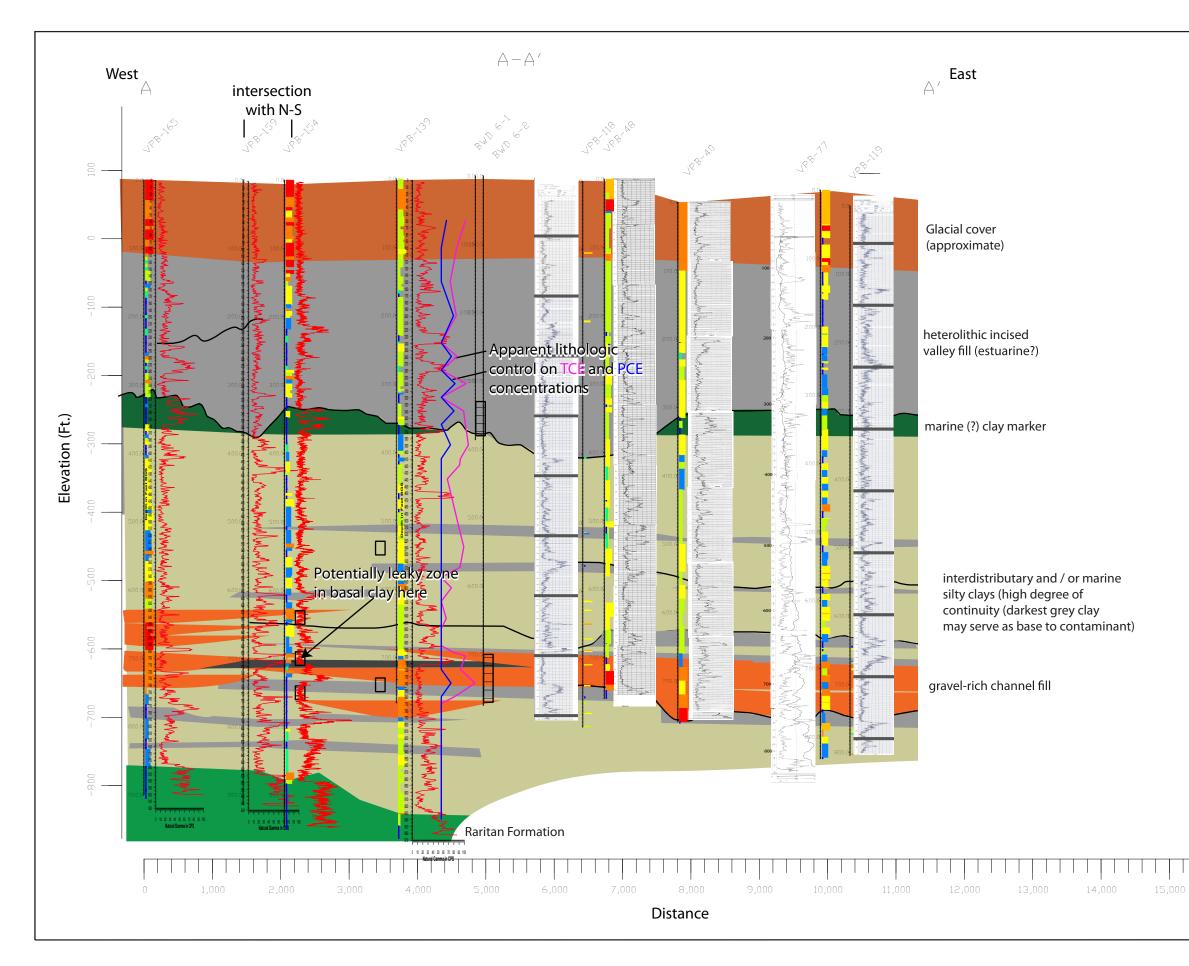

Logs of natural gamma emissions are a common proxy for grainsize. They typically are used as a correlation aide because repetitive spatially extensive trends in grainsize are easily identified visually when curves are examined along a given section. In non-granitic aquifer material, the chemistry of minerals found in clays result in higher concentrations of gamma emitting anions as opposed to the quartz, heavy minerals, and lithic fragments that generally predominate the coarser size fractions. Thus, peaks in the gamma logs can be indicative of clay layers and in general as gamma count per second increases, the grainsize decreases. Gamma logs should always be "calibrated" by comparing side by side with a lithologic log at representative locations. Good agreement between gamma logs and lithology logs were noted in the data points used for the ESS sections at Bethpage.

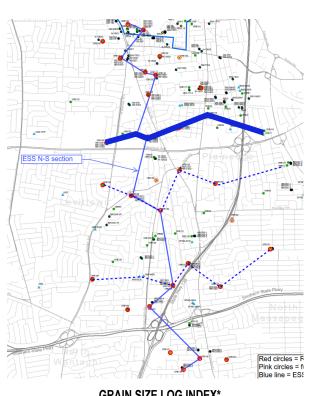
The previously established general hydrostratigraphy at Bethpage consists of the basal Raritan confining unit, the Magothy aquifer, and the shallow glacial aquifer. The stratigraphy shown in the sections presented in this technical memo is consistent with this general model but additionally shows the Magothy to consist of basal zone gravel-rich channel fills (orange in sections); extensive, planar marine clays (thin units shown in grey and dark green); and silty sands of inter-distributary and delta front origins (shown in tan). Additionally, an erosional incision into the lower delta plain sediments is observed throughout the site (portrayed in sections as a wavy solid black line). Above this, the Magothy sediments are more likely estuarine "incised valley fill" as indicated by the more heterogeneous gamma ray character. In some locations, such as VPB139 on section A-A', there appears to be clear lithologic control on contaminant distribution within the estuarine facies where the higher TCE and PCE concentrations occur in the coarser lithologic zones.

The depositional axis of the incised valley fill likely trends north-south/southeast. The incision is clearly indicated on all sections via the correlation of a prominent clay layer shown in sections in dark green. Where this clay is missing in the gamma logs, it is likely that it was eroded during a lowstand of sea level. Additionally, while relatively planar in their geometry, the major units dip gently south-south east. This is an important geologic characteristic to consider when comparing analytical results because hydrologic zones separated by thin confining layers within the Magothy may be accessed by screens of similar depth.

One of the most important benefits of the ESS approach is to develop and refine the CSM. ESS facilitates an understanding of the geology governing groundwater occurrence and movement, and provides an element for refining the approaches for assessment and remediation. The ESS results from this effort suggest that a modern analog (a modern geological setting that allows an understanding of the ancient environment) for the Magothy depositional environments is the Mackenzie River Delta, shown in Figure 5. Basal gravel zones are represented by the braided river deposits of the Toklat River, Alaska, in Figure 6.

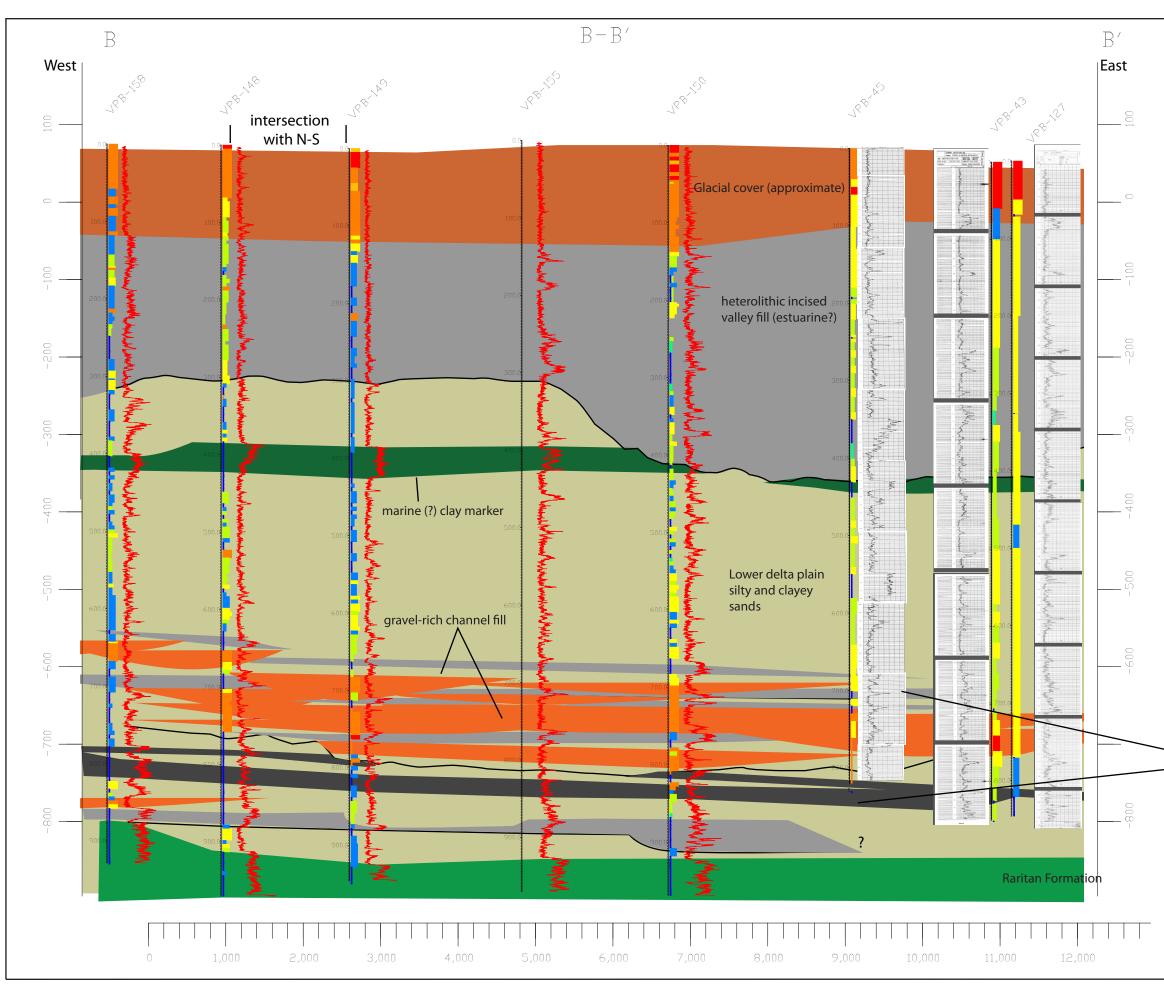

Environmental Sequence Stratigraphy Cross Section

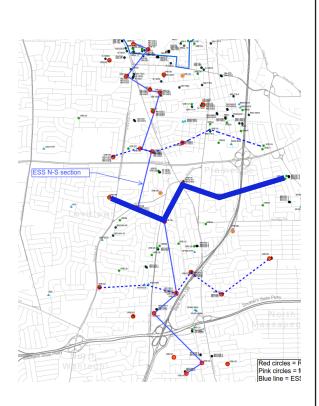

GRAIN SIZE LOG INDEX*


* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, silts,and fine to medium sand)

- Clay Clay with 10% Sand Clay with 20% Sand -Clav with 30% Sand Clay with 40% Sand Clay with Fine Gravel Clay with Medium Gravel Clay with Coarse Gravel Silt Silt with 10% Sand Silt with 20% Sand Sandy Silt Silty Sand Clayey Sand Silty Sand (Fine Sand with 40% Fines) Clayey Sand (Fine Sand with 40% Fines) Silty Sand (Fine Sand with 30% Fines) Clavey Sand (Fine Sand with 30% Fines) Silty Sand (Fine Sand with 10-20% Fines) Clayey Sand (Fine Sand with 10-20% Fines) Gravelly Silt (Silt with Fine Gravel) Gravelly Silt (Silt with Medium Gravel) Gravelly Silt (Silt with Coarse Gravel) Fine Sand Silty Sand (Medium Sand with 50% Fines) -Clayey Sand (Medium Sand with 50% Fines) Silty Sand (Medium Sand with 40% Fines) Clayey Sand (Medium Sand with 40% Fines) Silty Sand (Medium Sand with 30% Fines) Clayey Sand (Medium Sand with 30% Fines)
- -Silty Sand (Medium Sand with 10-20% Fines) -Clayey Sand (Medium Sand with 10-20% Fines) Fine Sand with Fine Gravel Fine Sand with Medium Gravel Fine Sand with Coarse Gravel Medium Sand -Silty Sand (Coarse Sand with 50% Fines) Clavey Sand (Coarse Sand with 50% Fines) Silty Sand (Coarse Sand with 40% Fines) Clayey Sand (Coarse Sand with 40% Fines) -Silty Sand (Coarse Sand with 30% Fines) -Clavey Sand (Coarse Sand with 30% Fines) Silty Sand (Coarse Sand with 10-20% Fines) Clayey Sand (Coarse Sand with 10-20% Fines) Medium Sand with Fine Gravel Medium Sand with Medium Gravel Medium Sand with Coarse Gravel - Coarse Sand - Coarse Sand with Fine Gravel Coarse Sand with Medium Gravel Coarse Sand with Coarse Gravel -Clayey/Silty Gravel (Fine gravel with clay/silt) Clayey/Silty Gravel (Medium gravel with clay/silt) Clayey/Silty Gravel (Coarse gravel with clay/silt) -Sandy Gravel (Fine Gravel with Sand) -Sandy Gravel (Medium Gravel with Sand) Sandy Gravel (Coarse Gravel with Sand) Fine Gravel Medium Grave
 - Coarse Gravel

Figure 1. Cross Section N-S



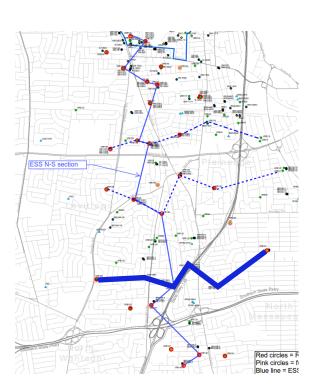

GRAIN SIZE LOG INDEX*

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, silts,and fine to medium sand)

Clay	Silty Sand (Medium Sand with 10-20% Fines)		
Clay with 10% Sand	Clayey Sand (Medium Sand with 10-20% Fines)		
Clay with 20% Sand	Fine Sand with Fine Gravel		
Clay with 30% Sand	Fine Sand with Medium Gravel		
Clay with 40% Sand	Fine Sand with Coarse Gravel		
Clay with Fine Gravel	Medium Sand		
Clay with Medium Gravel	Silty Sand (Coarse Sand with 50% Fines)		
Clay with Coarse Gravel	Clayey Sand (Coarse Sand with 50% Fines)		
Silt			
Silt with 10% Sand	Clayey Sand (Coarse Sand with 40% Fines)		
Silt with 20% Sand	Silty Sand (Coarse Sand with 30% Fines)		
Sandy Silt	Clayey Sand (Coarse Sand with 30% Fines)		
Silty Sand	Silty Sand (Coarse Sand with 10-20% Fines)		
Clayey Sand	Clayey Sand (Coarse Sand with 10-20% Fines)		
Silty Sand (Fine Sand with 40% Fines)	Medium Sand with Fine Gravel		
Clayey Sand (Fine Sand with 40% Fines)	Medium Sand with Medium Gravel		
Silty Sand (Fine Sand with 30% Fines)	Medium Sand with Coarse Gravel		
Clayey Sand (Fine Sand with 30% Fines)	Coarse Sand		
Silty Sand (Fine Sand with 10-20% Fines)	Coarse Sand with Fine Gravel		
Clayey Sand (Fine Sand with 10-20% Fines)	Coarse Sand with Medium Gravel		
Gravelly Silt (Silt with Fine Gravel)	Coarse Sand with Coarse Gravel		
Gravelly Silt (Silt with Medium Gravel)	Clayey/Silty Gravel (Fine gravel with clay/silt)		
Gravelly Silt (Silt with Coarse Gravel)	Clayey/Silty Gravel (Medium gravel with clay/silt		
Fine Sand	Clayey/Silty Gravel (Coarse gravel with clay/silt)		
Silty Sand (Medium Sand with 50% Fines)	-Sandy Gravel (Fine Gravel with Sand)		
Clayey Sand (Medium Sand with 50% Fines)	-Sandy Gravel (Medium Gravel with Sand)		
Silty Sand (Medium Sand with 40% Fines)	-Sandy Gravel (Coarse Gravel with Sand)		
Clayey Sand (Medium Sand with 40% Fines)	Fine Gravel		
Silty Sand (Medium Sand with 30% Fines)	Medium Gravel		
Clayey Sand (Medium Sand with 30% Fines)	Coarse Gravel		

Figure 2. Cross Section A-A'

GRAIN SIZE LOG INDEX*

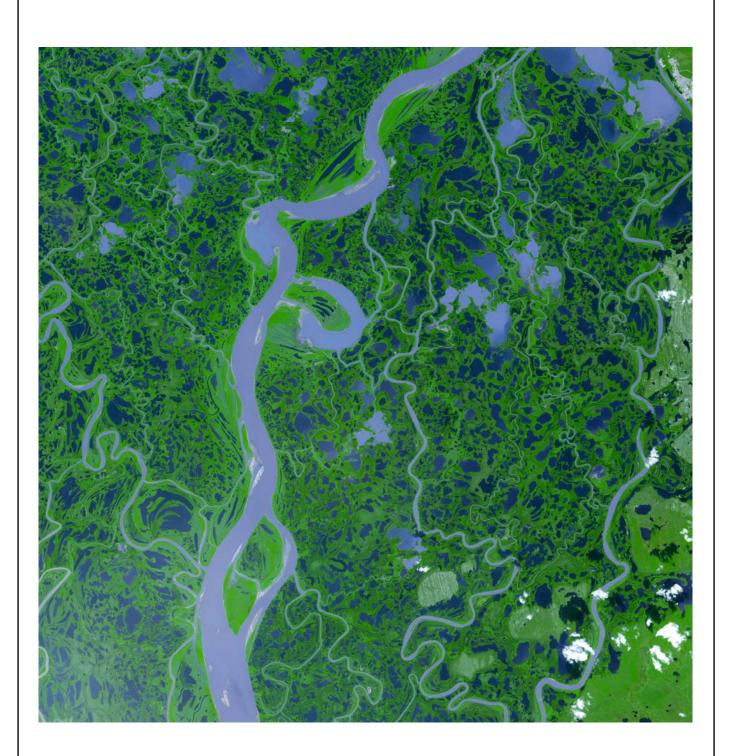

* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, sitts, and fine to medium sand)

Clay		Silty Sand (Medium Sand with 10-20% Fines)
Clay with 10% Sand		Clayey Sand (Medium Sand with 10-20% Fines)
Clay with 20% Sand		Fine Sand with Fine Gravel
Clay with 30% Sand		Fine Sand with Medium Gravel
Clay with 40% Sand		Fine Sand with Coarse Gravel
Clay with Fine Gravel		Medium Sand
Clay with Medium Gravel		Silty Sand (Coarse Sand with 50% Fines)
Clay with Coarse Gravel		Clayey Sand (Coarse Sand with 50% Fines)
Silt		Silty Sand (Coarse Sand with 40% Fines)
Silt with 10% Sand		Clayey Sand (Coarse Sand with 40% Fines)
Silt with 20% Sand		Silty Sand (Coarse Sand with 30% Fines)
Sandy Silt		Clayey Sand (Coarse Sand with 30% Fines)
Silty Sand		Silty Sand (Coarse Sand with 10-20% Fines)
Clayey Sand		Clayey Sand (Coarse Sand with 10-20% Fines)
Silty Sand (Fine Sand with 40% Fines)		Medium Sand with Fine Gravel
Clayey Sand (Fine Sand with 40% Fines)		Medium Sand with Medium Gravel
Silty Sand (Fine Sand with 30% Fines)		Medium Sand with Coarse Gravel
Clayey Sand (Fine Sand with 30% Fines)	_	Coarse Sand
Silty Sand (Fine Sand with 10-20% Fines)		- Coarse Sand with Fine Gravel
Clayey Sand (Fine Sand with 10-20% Fines)		Coarse Sand with Medium Gravel
Gravelly Silt (Silt with Fine Gravel)		- Coarse Sand with Coarse Gravel
Gravelly Silt (Silt with Medium Gravel)		Clayey/Silty Gravel (Fine gravel with clay/silt)
Gravelly Silt (Silt with Coarse Gravel)		Clayey/Silty Gravel (Medium gravel with clay/silt)
Fine Sand		Clayey/Silty Gravel (Coarse gravel with clay/silt)
Silty Sand (Medium Sand with 50% Fines)		-Sandy Gravel (Fine Gravel with Sand)
Clayey Sand (Medium Sand with 50% Fines)		-Sandy Gravel (Medium Gravel with Sand)
Silty Sand (Medium Sand with 40% Fines)		-Sandy Gravel (Coarse Gravel with Sand)
Clayey Sand (Medium Sand with 40% Fines)		-Fine Gravel
Silty Sand (Medium Sand with 30% Fines)		Medium Gravel
Clayey Sand (Medium Sand with 30% Fines)		Coarse Gravel

interdistributary and / or marine silty clays (high degree of continuity (darkest grey clay may serve as base to contaminant)

Figure 3. Cross Section B-B'

GRAIN SIZE LOG INDEX*


* not all grainsize categories shown in the comprehensive key are present at the site. Site sediments are predominatly fine (clays, sandy clays, sitts,and fine to medium sand)

	Clay
	Clay with 10% Sand
	Clay with 20% Sand
	Clay with 30% Sand
Ì.	Clay with 40% Sand
1	Clay with Fine Gravel
	Clay with Medium Gravel
	Clay with Coarse Gravel
	Silt
	Silt with 10% Sand
ľ	Silt with 20% Sand
	Sandy Silt
	Silty Sand
	Clayey Sand
	Silty Sand (Fine Sand with 40% Fines)
	Clayey Sand (Fine Sand with 40% Fines)
	Silty Sand (Fine Sand with 30% Fines)
	Clayey Sand (Fine Sand with 30% Fines)
	Silty Sand (Fine Sand with 10-20% Fines)
	Clayey Sand (Fine Sand with 10-20% Fines)
	Gravelly Silt (Silt with Fine Gravel)
	Gravelly Silt (Silt with Medium Gravel)
	Gravelly Silt (Silt with Coarse Gravel)
	Fine Sand
	Silty Sand (Medium Sand with 50% Fines)
	Clayey Sand (Medium Sand with 50% Fines)
	Silty Sand (Medium Sand with 40% Fines)
	Clayey Sand (Medium Sand with 40% Fines)
	Silty Sand (Medium Sand with 30% Fines)
	Clayey Sand (Medium Sand with 30% Fines)

Silty Sand (Medium Sand with 10-20% Fines)			
Clayey Sand (Medium Sand with 10-20% Fines)			
Fine Sand with Fine Gravel			
Fine Sand with Medium Gravel			
Fine Sand with Coarse Gravel			
Medium Sand			
 Silty Sand (Coarse Sand with 50% Fines) 			
Clayey Sand (Coarse Sand with 50% Fines)			
Silty Sand (Coarse Sand with 40% Fines)			
Clayey Sand (Coarse Sand with 40% Fines)			
 Silty Sand (Coarse Sand with 30% Fines) 			
 Clayey Sand (Coarse Sand with 30% Fines) 			
 Silty Sand (Coarse Sand with 10-20% Fines) 			
Clayey Sand (Coarse Sand with 10-20% Fines)			
Medium Sand with Fine Gravel			
Medium Sand with Medium Gravel			
Medium Sand with Coarse Gravel			
Coarse Sand			
Coarse Sand with Fine Gravel			
- Coarse Sand with Medium Gravel			
 Coarse Sand with Coarse Gravel 			
 Clayey/Silty Gravel (Fine gravel with clay/silt) 			
Clayey/Silty Gravel (Medium gravel with clay/silt)			
Clayey/Silty Gravel (Coarse gravel with clay/silt)			
-Sandy Gravel (Fine Gravel with Sand)			
-Sandy Gravel (Medium Gravel with Sand)			
-Sandy Gravel (Coarse Gravel with Sand)			
-Fine Gravel			
-Medium Gravel			
Coarse Gravel			

Silty Sand (Medium Sand with 10-20% Fines

Figure 4. Cross Section C-C'

Figure 5. Mackenzie River Delta Depositional Environment

Source: Thermal Emission and Reflection Radiometer image from NASA's TERRA satellite, August 4, 2005, Mackenzie River, Canada. Image from GSFC/METI/ERSDAC/JAROS and the US/Japan ASTER Science Team. <u>http://earthobservatory.nasa.gov/IOTD/view.php?id=8320</u>

Figure 6. Braided River Depositional Environment

Source: East Fork Toklat River, Alaska Range, Denali National Park <u>https://pubs.usgs.gov/of/2004/1216/b/b.html</u>