2019 Annual Operations Report

Groundwater Treatment Plant GM-38 Area Groundwater Remediation Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. 0005

March 2020

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton, Pennsylvania 19341 (610) 363-3000

2019 Annual Operations Report

Groundwater Treatment Plant GM-38 Area Groundwater Remediation Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. 0005

March 2020

Prepared for:

Naval Facilities Engineering Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

fature Schule	3/12/2020
Patrick Schauble	Date
Program Manager	
Robert & Linguage	2/12/2020
100000000000000000000000000000000000000	3/12/2020
Robert Gregory	Date
Project Manager	

0 1

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1-1
		ackground	
	1.2 G	WTP Overview	1-2
2.0	GWT	P OPERATIONS AND MAINTENANCE	2-1
	2.1 Ro	outine Maintenance Activities	2-1
	2.2 No	on-routine Maintenance / Site Activities	2-1
3.0	GWT	P MONITORING	3-1
	3.1 Pr	ocess Water Quality Monitoring	3-1
	3.1.1	Fourth Quarter 2019 Summary	
	3.1.2	2019 Annual Summary	
	3.2 At 3.2.1	ir Quality MonitoringFourth Quarter 2019 Summary	
	3.2.2	2019 Annual Summary	
		roundwater Quality Monitoring	
	3.3.1	Groundwater Quality Results	
	3.3.2	Groundwater Concentration Trends	
4.0	CON	CLUSIONS AND RECOMMENDATIONS	4-1
5.0	REFE	CRENCES	5-1
FIC	NUDEC		
	<u>SURES</u>		
	URE 1	Site Map	
FIG	URE 2	Process Flow Diagram	
FIG	URE 3	GM-38 Area Site Map	
FIG	URE 4	2019 Groundwater Analytical Map – Select VOC Concentrations	
FIG	URE 5	Groundwater Concentrations Trends of Select VOCs – RW-1	
FIG	URE 6a	Groundwater Concentrations Trends of Select VOCs – RW-3 (PCE, TCE, cis-1,2-December 2015)	CE)
FIG	URE 6b	Groundwater Concentrations Trends of Select VOCs – RW-3 (PCE, cis-1,2-DCE)	
FIG	URE 7	Groundwater Concentrations Trends of Select VOCs - RW1-MW1	
FIG	URE 8	Groundwater Concentrations Trends of Select VOCs - RW1-MW3	
FIG	URE 9	Groundwater Concentrations Trends of Select VOCs - RW2-MW1	
FIG	URE 10	Groundwater Concentrations Trends of Select VOCs - RW3-MW1	
FIG	URE 11	Groundwater Concentrations Trends of Select VOCs – RW3-MW2	
FIG	URE 12	Groundwater Concentrations Trends of Select VOCs – RW3-MW3	
FIG	URE 13	Groundwater Concentrations Trends of Select VOCs – RW3-MW4	
FIG	URE 14	Groundwater Concentrations Trends of Select VOCs - TP-01	

TABLES

TABLE 1	Discharge Monitoring Results – Fourth Quarter 2019
TABLE 2	2019 Annual Flow Summary
TABLE 3	2019 Mass Removal Summary
TABLE 4	Air Sampling Results – Fourth Quarter 2019
TABLE 5	Stack Emissions – Fourth Quarter 2019
TABLE 6	2019 Air Emission Summary
TABLE 7	Groundwater Level Measurements – Fourth Quarter 2019
TABLE 8	Summary of Historical Groundwater Analytical Results through Fourth Quarter 2019

APPENDICES

- APPENDIX A NYSDEC Effluent Limitations and Monitoring Requirements and October 2019 December 2019 DMRs
- APPENDIX B NYSDEC Air Discharge Limit Documentation
- APPENDIX C Field Logs Fourth Quarter 2019

Acronyms and Abbreviations

AOP Advanced Oxidation Process

ARAR Applicable or Relevant and Appropriate Requirement

AS air stripper

ASE air stripper effluent
BFE bag filter effluent
bgs below ground surface

CERCLA Comprehensive Environmental Response Compensation and Liability Act

DAR Division of Air Resources

DCA dichloroethane
DCE dichloroethene

DMR Discharge Monitoring Report

DO dissolved oxygen

DoD Department of Defense

DTW depth to water

ECL Environmental Conservation Law

EB equipment rinsate blank

ELAP Environmental Laboratory Accreditation Program

GOCO Government Owned Contractor Operated

gpm gallon per minute

GWTP groundwater treatment plant

KGS KOMAN Government Solutions, LLC

HMI human-machine interface

IRP Installation Restoration Program

L liter

LGAC liquid-phase granular activated carbon

LTM Long Term Monitoring

MS/MSD matrix spike/matrix spike duplicate

NAVFAC Naval Facilities Engineering Command Mid-Atlantic

Navy United States Department of the Navy

NELAC National Environmental Accreditation Conference

NG Northrop Grumman

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation and Maintenance
ORP oxidation reduction potential

OU operable unit
PCE tetrachloroethene

PLC programmable logic controller
QA/QC quality assurance / quality control

ROD Record of Decision

RPD relative percent difference

SC specific conductance

SCADA Supervisory Control and Data Acquisition

scfm standard cubic feet per minute

SPDES Storm Pollution Discharge Elimination System

TB trip blank

TCE trichloroethene
TE treated effluent

TIC tentatively identified compound

TSS total suspended solids
TtEC Tetra Tech EC, Inc.

USEPA United States Environmental Protection Agency

VC vinyl chloride

VGAC vapor–phase granular activated carbon

VOC volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this Annual Operations Report for the GM-38 Area Groundwater Treatment Plant (GWTP) at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the United States Department of the Navy (Navy), Naval Facilities Engineering Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-16-D-2288, Contract Task Order No. 0005. This 2019 Annual Operations Report summarizes activities that occurred during 2019, and also further details activities that occurred during the Fourth Quarter 2019 (October 2019 through December 2019). Data were collected and operational activities were performed by KGS in accordance with the following documents:

- Final Operation, Maintenance & Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), UFP-SAP for Operations, Maintenance, and Monitoring of the Groundwater Treatment Plant, GM-38 Area, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by TtEC in 2010.

The following quarterly reports, along with data collected during the Fourth Quarter (October through December), are used as a basis for this 2019 Annual Operations Report:

- Quarterly Operations Report, First Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in October 2019.
- Quarterly Operations Report, Second Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in October 2019.
- Quarterly Operations Report, Third Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in November 2019.

1.1 Background

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City (**Figure 1**) and is currently listed by New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B). In the late 1990s, the Navy's property totaled approximately 109.5 acres and was a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood.

The GM-38 Area refers to a cluster of monitoring wells installed in the 1990s by NG. The GM-38 Area

is approximately 8,500 feet south, southeast and hydraulically downgradient of NWIRP Bethpage. The GWTP is located within a utility easement with a street address of 100 Broadway, Bethpage, NY.

The "hot spot" cleanup remedy for the GM-38 Area groundwater was originally set forth in Record of Decision (ROD) documents for Operable Unit (OU) 2. Groundwater for the NG and NWIRP Sites (New York State Registry Site Numbers 1-30-003A & 1-30-003B, respectively) issued by NYSDEC Division of Environmental Remediation in March 2001 and for the NWIRP Bethpage Site by NAVFAC in April 2003 (Revision 1). The selected remedy was chosen in accordance with the New York State Environmental Conservation Law (ECL) and the Navy's Installation Restoration Program (IRP). It is also consistent with the Comprehensive Environmental Response Compensation and Liability Act (CERCLA), as amended, 42 U.S.C. §§ 9601-9675.

1.2 GWTP Overview

Currently, groundwater is extracted from recovery wells RW-1 and RW-3 (pumping at RW-3 was suspended from July 2015 to June 2018 as described below) and treated in the GWTP. The treatment process consists of flow equalization, air stripping and vapor-phase carbon treatment, bag filtration, and liquid-phase carbon treatment. Though the GWTP was originally equipped with a pH adjustment system utilizing sodium hydroxide, it has since been determined that pH adjustment is not necessary, and the equipment has been taken off-line and sodium hydroxide sent off site for beneficial reuse. A process flow diagram is presented as **Figure 2**. The treated water is either re-injected into injection well IW-1 or discharged into the Nassau County Recharge Basin #495. Under CERCLA, the Navy is required to meet the effluent requirement in the NYSDEC's Storm Pollution Discharge Elimination System (SPDES) Permit Equivalent Application as an Applicable or Relevant and Appropriate Requirement (ARAR).

The GWTP was designed to operate at an average flow rate of 1,100 gallons per minute (gpm) (800 gpm from RW-1 and 300 gpm from RW-3), as measured by the average discharge flow rate. It was determined that this flow rate would be necessary to effectively contain the higher concentration of contamination in the GM-38 Area groundwater. Volatile Organic Compounds (VOCs) in the influent groundwater consist of trichloroethene (TCE), tetrachloroethene (PCE), vinyl chloride (VC), cis-1,2-dichloroethene (DCE), 1,2-dichloroethane (DCA), benzene, toluene, and total xylenes.

The air stripper (AS) is a structural aluminum tower that is packed with 3.5-inch diameter polypropylene Jaeger Tripack. Groundwater is pumped to the AS distribution port and sprayed over the column of Jaeger Tripack at a flow rate of approximately 1,100 gpm. Previously, 100 gpm of recirculated water was also rerouted through the AS, but as of October 2010, recirculation was no longer deemed necessary to the operation of the system. An induced draft countercurrent flow of air enters the AS below the base of the packing material at a rate of 8,000 standard cubic feet per minute (scfm). The large surface area of the packing material allows for a mass transfer of the VOCs from the groundwater into the air stream. The VOCs in the off-gas, except for VC, are removed via two 20,000-pound (lb) vapor phase granular activated carbon (VGAC) units (VGAC-1 and VGAC-2). VC is oxidized into potassium chloride and carbon dioxide via treatment in a 20,000-lb vessel (VGAC-3) containing zeolite impregnated with potassium permanganate. The potassium chloride remains in the pore structure of the zeolite substrate. The treated off-gas is discharged from the stack.

Water treated by the AS is subsequently processed through three 8,000-lb liquid-phase granular activated carbon (LGAC) units in parallel prior to discharge in the recovery basin (or injection well, if necessary).

The GWTP is controlled by a programmable logic controller (PLC)-based digital and analog control system, with instrumentation that monitors pH, pressure, tank level, flow and differential pressure transmitters, water level in recovery wells, and motor operational status. The information in the PLC is made available to an operator via a human-machine interface (HMI) program. By using this program, the status of the GWTP can be displayed in real time and adjusted, if necessary, by the operator.

A 2014 evaluation of the GM-38 Area, conducted in order to better determine the capture zone of the recovery wells, recommended that use of recovery well RW-3 be discontinued ("Capture Zone Evaluation and Path Forward, GM-38 Area Groundwater Treatment Plant" [Tetra Tech, 2014]). The report was sent to NYSDEC in March 2014 and recommended ceasing operation of recovery well RW-3 and increasing the pumping rate of recovery well RW-1. These system modifications would maintain the existing GWTP pumping rate of 1,000 to 1,100 gpm while maintaining the desired capture zone of the GWTP (Tetra Tech, 2014). NYSDEC concurred with the implementation of this path forward and associated system modifications on 20 April 2015. On 1 July 2015, in accordance with the approved path forward, recovery well RW-3 was taken off-line. The flowrate of recovery well RW-1 was increased from approximately 800 gpm to approximately 1,000 gpm. Pumping at RW-3 was once again resumed in June 2018 to address persistent VOC concentrations at this well. Pumping rates were adjusted so that approximately 80% of the total groundwater extracted is from RW-1 with the remaining 20% extracted from RW-3.

2.0 GWTP OPERATIONS AND MAINTENANCE

While designed to run autonomously, the GWTP requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The GWTP is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the GWTP were performed during the operator's visits. These activities include general site inspections, collection of operational data (water and vapor flowrates, differential pressures across the AS, carbon units, bag filter units and blower discharge pressures, tank levels and totalizer readings), measurement of water levels in the recovery wells, adjustment of pump signal settings, collection of vapor and process water samples, changing out of bag filters, switching of lead/lag pump assignments, and preventive maintenance of system equipment.

In addition, the following maintenance tasks were also performed during 2019:

- On 5 February, the annual backflow preventer inspection was performed. Results were submitted
 to the Bethpage Water District and the New York State Department of Health (NYSDOH), as
 required.
- On 11 February, 8 May, 11, 30, and 31 October, the Operator backwashed the LGAC vessels.
- On 6 August, the semi-annual fire alarm inspection was performed.

2.2 Non-routine Maintenance / Site Activities

The following non-routine activities occurred at the GWTP during 2019:

- On 8 January, KGS staff attended an onsite training of the updated Supervisory Control and Data Acquisition (SCADA) system and remote access.
- On 18 January, the Advanced Oxidation Process (AOP) experimental treatment unit for 1,4-dioxane was delivered on site and installation was subsequently completed by others.
- On 31 March, the GWTP was down for 8.5 hours from a high sump alarm caused by a leaking pressure gauge inside the plant on influent pump 3A. The pressure gauge was replaced, and the plant was placed back online on 1 April.
- On 17 April, the system was down for approximately 6 hours because of a power outage.
- On 21 May, F&M Mechanical was onsite to troubleshoot the inoperative plant sump pump. The
 check valve was disassembled, and the impeller was cleared of debris. The pump was operating
 properly after cleaning.
- On 3 July, a Hayes Pump representative was on site to assess the AS transfer pumps.
- On 8 July, Veolia picked up spent carbon from the 1,000 lbs VGAC vessels as well as four drums of investigation derived waste (IDW).

- On 22 July, the system was offline because of a local power outage.
- On 27 August, effluent pump 4B was removed and transported off-site to the Hayes Pump facility to be evaluated.
- On 8 October, the system was offline for 8.7 hours because of a power outage.
- On 9 October, the system was offline for 1.4 hours because of a power outage.
- On 28 October, the plant sump pump stopped working; the operator manually pumped water from the floor sump.
- On 6 December, effluent pump 4B was reinstalled by Hayes Pump.

3.0 GWTP MONITORING

The intent of the GWTP is to remove contaminant mass and reduce elevated VOC levels to levels similar to those in the surrounding aquifer. It is anticipated that GWTP operation will minimize contaminant impacts on water supply wells and currently unaffected portions of the groundwater aquifer. The GWTP is not intended to remediate groundwater contamination in the local aquifer to non-detectable levels (TtEC, 2010. Various process samples (water and vapor are collected on a monthly basis to monitor GWTP efficiency and to ensure compliance with Federal and State effluent discharge and air emission requirements. In addition, groundwater samples are collected semi-annually to monitor water quality and determine the effectiveness of the remediation activities and monitor the hydraulic containment and capture of impacted groundwater by the recovery wells.

3.1 Process Water Quality Monitoring

Processed groundwater is analyzed to comply with calculations submitted by the Navy and documented in the NYSDEC Water Division SPDES Equivalent Application for the effluent limitations and monitoring requirements. These results are also submitted to NYSDEC on a monthly basis in the form of a Discharge Monitoring Report (DMR. A copy of the current NYSDEC effluent limitations, monitoring constituents, and the reporting forms are included in **Appendix A**.

Monthly aqueous samples are collected from the active recovery wells (RW-1 and RW-3), and the treated effluent (TE) discharge line. In addition, various intermediary process system samples are collected monthly, consisting of air stripper effluent (ASE), bag filter effluent (BFE), and effluent of each of the three LGAC units (LC1, LC2, and LC3).

3.1.1 Fourth Quarter 2019 Summary

The analytical results of monthly process water samples collected during the Fourth Quarter are presented in **Table 1**. The data demonstrate that all permitted constituents were in compliance with regulatory requirements. **Table 1** also summarizes the average monthly flowrates along with the total volume of water processed during each month of the Fourth Quarter. Monthly DMRs for the Fourth Quarter

(October – December 2019) are included in **Appendix A**. DMRs for January – September 2019 are included in previously submitted quarterly operations reports, as outlined in Section 1.0.

Based on NYSDEC's interest with several non-VOC parameters in groundwater near Bethpage Water District Plant 4, the Navy has agreed to sample and analyze groundwater for 1,4-dioxane, using United States Environmental Protection Agency (USEPA) Method 8270D, on a monthly basis from the system's treated effluent. Analytical results for 1,4-dioxane are also provided in **Table 1**.

3.1.2 2019 Annual Summary

Flow Totals

Annual flow volumes and system operation for 2019 are summarized in **Table 2**. The total volume of groundwater treated in 2019 based on effluent flow totals was 451,736,001 gallons. During 2019, GM-38 operated with and average uptime of 99% at an average effluent flowrate of 869 gpm.

Mass Removal

Mass removal was calculated based on monthly influent concentrations combined with monthly influent flow totals. During 2019, approximately 369.5 lbs of VOCs were removed by the GWTP, for an average monthly mass removal rate of approximately 30.8 lbs per month. Mass removal calculations are presented in **Table 3**.

3.2 Air Quality Monitoring

Treated off-gas discharged at the stack of the GWTP is subject to emissions limitations. Original discharge goals were derived from calculations submitted by the Navy and approved by the NYSDEC Division of Air Resources (DAR) in July 2009. In November 2011, the Navy submitted an evaluation proposing revised discharge goals, which NYSDEC approved in October 2013. A copy of this documentation is included as **Appendix B**.

3.2.1 Fourth Quarter 2019 Summary

While only sampling of the stack emissions is required for NYSDEC compliance, process vapor samples are also collected using 6-L summa canisters at various locations to monitor for breakthrough of the VGAC units. The analytical results of monthly influent and effluent vapor samples as well as midfluent samples (VC12 and VC13) collected during the Fourth Quarter are presented in **Table 4**. Air emissions calculations using the stack vapor concentrations along with discharge flowrates are presented in **Table 5**. The calculations demonstrate that all constituents were within the regulatory requirements during the Fourth Quarter based on the calculated emission rates.

3.2.2 2019 Annual Summary

Table 6 summarizes annual air emissions based on monthly emissions during the 12-month period. During 2019, total air emissions of permitted constituents consisted of 0.54 lbs of TCE, 0.07 lbs of VC, 20.12 lbs of 1,2-DCE, and 0.06 lbs of PCE, well below the discharge goals approved by NYSDEC in October 2013.

3.3 Groundwater Quality Monitoring

The groundwater monitoring well system at the GM-38 Groundwater Remediation Area consists of 14 monitoring wells, three recovery wells (RW-1, RW-2, RW-3) and one injection well (IW-1). Groundwater level measurements were collected and are summarized in **Table 7**. Although RW-2 was installed in 2005, a pump was never installed in this well and the well is not operated as a recovery well because of concerns expressed by the Bethpage Water District. As mentioned above, pumping at RW-3 was suspended between July 2015 and June 2018. RW-3 was reactivated on 1 June 2018 to address persistent VOC concentrations at this location. Well locations are depicted on **Figure 3**.

Depth to water (DTW) measurements are collected from 12 of the monitoring wells on a quarterly basis. Prior to 2014, water quality samples were collected from eight of the monitoring wells on a quarterly basis; beginning in 2014, the sample collection frequency was reduced to semi-annually, with sample collection generally in the March and September time-frame. The monitoring network includes well

clusters located near the recovery and injection wells as described below and as shown on **Figure 3**. In addition, two wells, GM-38D and GM-38D2, located at the corner of Arthur Avenue and Broadway, are monitored by others.

Semi-annual groundwater samples are collected from eight monitoring wells (RW1-MW1, RW1-MW3, RW2-MW1, RW3-MW1, RW3-MW2, RW3-MW3, RW3-MW4, and TP-01) and from two recovery wells (RW-1 and RW-3). Samples are collected from monitoring wells using bladder pumps in accordance with USEPA low-flow sampling methodologies. Samples are collected from recovery wells RW-1 and RW-3 using the dedicated extraction pump as it is normally done during routine O&M sampling. Results of the groundwater sampling for the Fourth Quarter are presented in Section 3.3.1 below, and descriptions of monitoring well locations are as follows:

Recovery Well 1 (RW-1) Monitoring Wells

The RW-1 cluster consists of three monitoring wells screened between 395 and 435 feet below ground surface (bgs). RW1-MW1 is located approximately 140 feet northwest of RW-1 and RW1-MW2 is located approximately 50 feet north of RW-1. RW1-MW3 is located approximately 400 feet northeast of RW-1, on the eastern side of Seaford Oyster Bay Expressway. All three wells are hydraulically monitored while only RW1-MW1 and RW1-MW3 are also monitored for water quality.

Recovery Well 2 (RW-2) Monitoring Wells

The RW-2 cluster consists of three monitoring wells screened between 470 and 510 feet bgs. RW2-MW1 is located approximately 60 feet northwest of RW-2, RW2-MW2 is located approximately 20 feet west of RW-2, and RW2-MW3 is located approximately 100 feet west of RW-2. All three wells are hydraulically monitored while only RW2-MW1 is monitored for water quality.

Recovery Well 3 (RW-3) Monitoring Wells

The RW-3 cluster consists of four monitoring wells. RW3-MW2 and RW3-MW4 are screened between 475 and 495 feet bgs. RW3-MW1 and RW3-MW3 are screened between 330 and 350 feet bgs and 320 and 340 feet bgs, respectively. RW3-MW1 and RW3-MW2 are located approximately 500 feet west of the GM-38 cluster, at the intersection of Arthur Avenue and Leroy Avenue. RW3-MW3 and RW3-MW4 are located approximately 400 feet north of the intersection of Arthur Avenue and Broadway. All four wells are both hydraulically monitored and monitored for water quality.

TP-01

TP-01 is screened between 450 and 470 feet bgs and is located approximately 25 feet north of the GWTP building, inside the fenced area. It is hydraulically monitored to observe the change in water levels associated with the influence from the pumping rates at the neighboring public water supply well field adjacent to the hot spot area and is also monitored for water quality.

Injection Well 1 (IW-1) Monitoring Well

There is one monitoring well associated with injection well IW-1. IW1-MW1 is screened between 20 and 150 feet bgs, is located approximately 20 feet south of IW-1, and is only hydraulically monitored on a quarterly basis.

3.3.1 Groundwater Quality Results

Groundwater samples were collected monthly from monitoring wells RW-1 and RW-3 during the Fourth Quarter 2019. Analytical results are summarized in **Table 1**.

Quarterly groundwater level monitoring of the 12 monitoring wells was performed on 24 December 2019. Results are summarized in **Table 7**. A copy of the field log is included in **Appendix C**.

3.3.2 Groundwater Concentration Trends

Historical groundwater analytical results through the Fourth Quarter are presented in **Table 8**. As previously mentioned, no monitoring wells were sampled in the Fourth Quarter, as sampling occurs on a semi-annual basis. Groundwater analytical results of select VOCs (cis-1,2-DCE, PCE, TCE, and VC) for 2019 monitoring events are presented graphically as **Figure 4**. Additionally, concentration trends of select VOCs (cis-1,2-DCE, TCE, and PCE, as well as VC) over time for each recovery well and the eight monitoring wells sampled during the 2019 semi-annual monitoring events are presented in **Figures 5 through 14** and discussed below.

Figure 5 presents concentrations measured at recovery well RW-1. Concentrations of TCE have decreased from initial concentrations in early 2010 (747 μg/L detected in April 2010), remaining below 300 μg/L since the latter half of 2012, decreasing to a low of 58.6 μg/L in November 2019, and increasing to 73.2 μg/L in December 2019. Concentrations of cis-1,2-DCE have followed a similar trend, decreasing from a high of 160 μg/L in February 2010 to a low of 3.92 μg/L in November 2019 before increasing to 4.86 μg/L in December 2019. PCE concentrations have also exhibited decreasing trends over time, with concentrations decreasing from 180 μg/L in February 2010 to a low of 15.2 μg/L in November 2019 before increasing to 18.5 μg/L in December 2019. Concentrations of VC have decreased below initial concentrations in 2010. After reaching a maximum concentration of 61 μg/L in February 2010, VC concentrations have remained below 5.0 μg/L since the final quarter of 2011 and below 1.0 μg/L since June 2013. VC was not detected during the Fourth Quarter 2019.

Figure 6a and Figure 6b presents concentrations measured at recovery well RW-3, with the most recent data collected in the Fourth Quarter 2019. Concentrations of TCE have decreased from initial concentrations in February 2010 (660 μg/L), remaining below 300 μg/L from the latter half of 2012 through the Third Quarter 2015. RW-3 was temporarily taken off-line between July 2015 and June 2018, which may have contributed to the increase to 371 μg/L in March 2016. However, since March 2016, TCE concentrations have decreased from 371 μg/L to a low of 120 μg/L detected in March 2018. The TCE concentrations for the Fourth Quarter 2019 (139 μg/L, 134 μg/L, and 159 μg/L in October, November, and December, respectively) were similar on average to those detected in the Third Quarter 2019. Concentrations of cis-1,2-DCE have remained consistently below 4.0 μg/L, and below 2.0 μg/L since September 2013, although the concentration increased slightly to 2.5 μg/L in June 2016, then decreased again below 2.0 μg/L during September 2016 and March 2017. Cis-1,2-DCE remained below 1.3 μg/L during the Fourth Quarter 2019. PCE has only been detected infrequently at this location, with the most recent detection of 0.260 J μg/L in December 2019. VC has not been detected during any sampling event.

Figure 7 presents concentrations measured at RW1-MW1, with the most recent data collected in the Third Quarter 2019. Concentrations of TCE at this location have varied widely since the initial sampling in May 2005 (53.6 μ g/L). The concentration of TCE in September 2019 (95 μ g/L) was higher than the initial concentration reported in May 2005, but less than the highest concentration observed to date (175 μ g/L in September 2013). The concentration of cis-1,2-DCE in September 2019 (4.7 J μ g/L) increased from concentrations observed in March 2019 but remains well below the initial concentration observed in May 2005 (78.6 μ g/L). Concentrations of PCE have remained consistently below 1.0 μ g/L.

Figure 8 presents concentrations measured at RW1-MW3, with the most recent data collected in the Third Quarter 2019. Concentrations of cis-1,2-DCE and PCE have consistently remained below 1.0 μ g/L. Concentrations of TCE have also remained consistently low with a reported concentration of 3.34 J μ g/L in September 2019.

Figure 9 presents concentrations measured at RW2-MW1, with the most recent data collected in the Third Quarter 2019. The concentration of TCE in the Third Quarter 2019 (15.7 μ g/L) was below the March 2016 concentration (43.9 μ g/L), which was the highest TCE concentration observed to date. The concentration of cis-1,2-DCE observed in the Third Quarter 2019 (7.18 μ g/L) was above initial concentrations observed in May 2005 (non-detect) but below the maximum concentration observed in the March 2016 (15.3 μ g/L). PCE has not been detected during any sampling events.

Figure 10 presents concentrations measured at RW3-MW1, with the most recent data collected in the Third Quarter 2019. The concentration of TCE in September 2019 (21.1 μ g/L) was below the initial concentration observed in January 2010 (35.0 μ g/L) and approached the lowest concentration detected to date (19.0 μ g/L in March 2018). Cis-1,2-DCE has not been detected since September 2014. Concentrations of PCE have remained consistently near or below 2.0 μ g/L, with a concentration of 1.69 J μ g/L in September 2019.

Figure 11 presents concentrations measured at RW3-MW2, with the most recent data collected in the Third Quarter 2019. The TCE concentration observed in September 2019 (131 μg/L) was below the initial concentration observed in January 2010 (160 μg/L), and below the maximum concentration observed in April 2010 (211 μg/L). Concentrations of cis-1,2-DCE at this location have consistently remained below 2.0 μg/L. PCE has only been detected infrequently at this location, with concentrations ranging from 0.28 J μg/L in August 2012 to 0.66 J μg/L in March 2016.

Figure 12 presents concentrations measured at RW3-MW3, with the most recent data collected in the Third Quarter 2019. The TCE concentration observed in September 2019 (176 μ g/L) was less than initial concentrations observed in January 2010 (350 μ g/L) and the highest concentration measured in June 2013 (410 μ g/L) and approached the lowest concentration detected to date (100 μ g/L in September 2017). Concentrations of cis-1,2-DCE have remained near or below 2.0 μ g/L since March 2012. PCE has remained below 1.0 μ g/L for all events.

Figure 13 presents concentrations measured at RW3-MW4, with the most recent data collected in the Third Quarter 2019. TCE concentrations have decreased since the initial sampling event in January 2010 (21 μ g/L), with the lowest concentration of 1.3 J μ g/L observed in the Third Quarter 2019. PCE was

detected for the first time in the Third Quarter 2015 at a concentration of 0.31 J $\mu g/L$ but has not been detected since the March 2016 sampling event. Cis-1,2-DCE has been detected infrequently since the initial sampling event in January 2010 (0.46 $\mu g/L$), and was measured in September 2019 at a concentration of 0.48 J $\mu g/L$.

Figure 14 presents concentrations measured at TP-01, with the most recent data collected in the Third Quarter 2019. The TCE concentration observed in September 2019 (14.4 μ g/L) was below the initial concentration observed in January 2010 (65 μ g/L) which was also the maximum concentration observed to date. Concentrations of cis-1,2-DCE have generally decreased from an initial value of 190 μ g/L in January 2010 to the lowest concentration measured in September 2019 of 3.75 J μ g/L. PCE concentrations have remained below 1.0 μ g/L since September 2013 and have not been detected since March 2017.

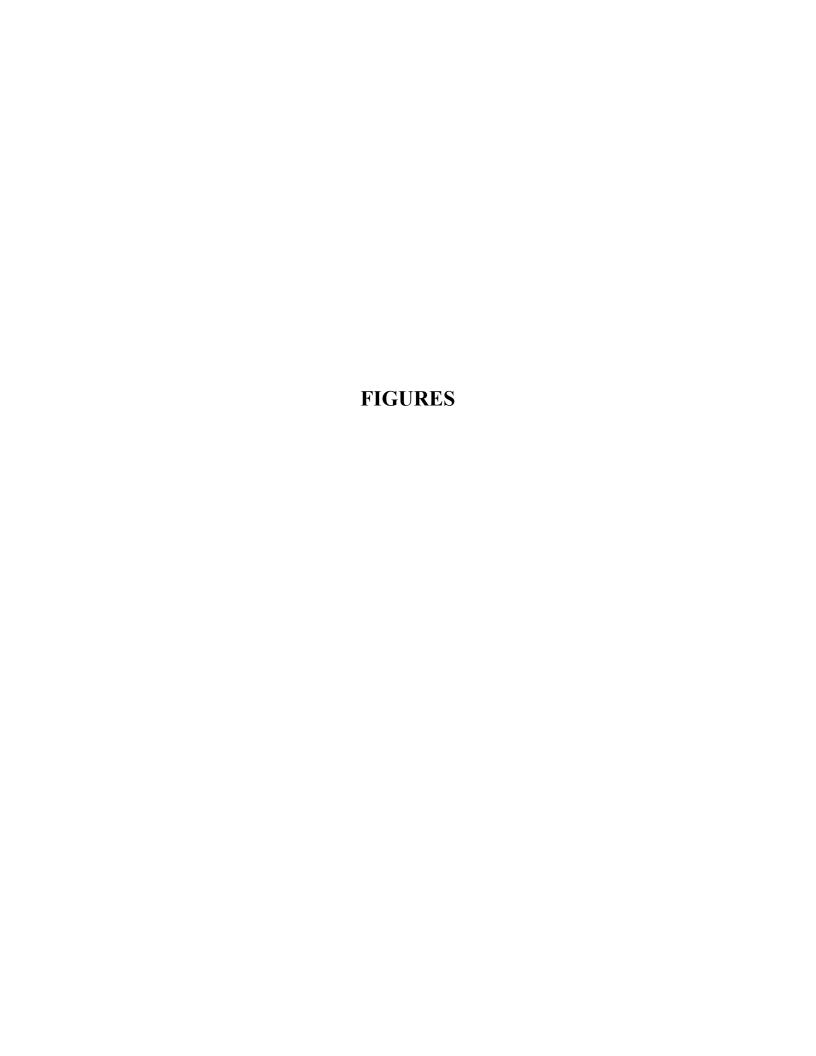
4.0 CONCLUSIONS AND RECOMMENDATIONS

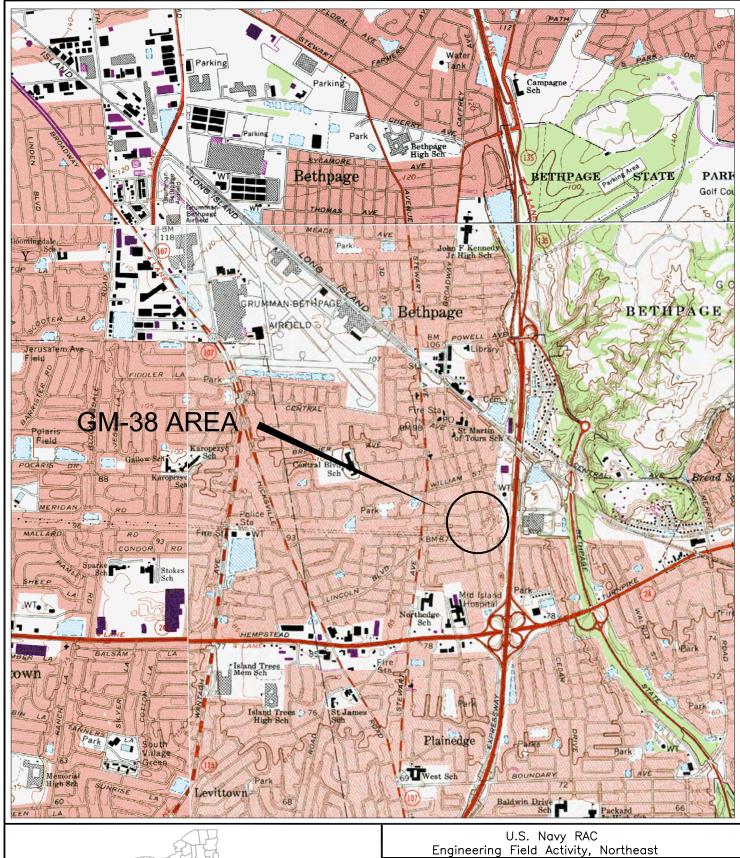
The intent of the groundwater treatment system at GM-38 is to remove contaminant mass and reduce elevated VOC concentrations to levels similar to those in the surrounding aquifer, and in doing so minimize the impacts on downgradient water supply wells and currently unaffected portions of the aquifer. Based on the removal of VOCs by the GWTP and decreasing contaminant concentration trends observed in the recovery wells and several of the monitoring wells, progress toward these goals is apparent. Based on the concentrations in the groundwater wells, the GWTP should continue to be operated. In accordance with the O&M Manual, the groundwater sampling frequency for the eight monitoring wells has been reduced to semi-annually. Water levels for the 14 monitoring wells will continue to be monitored on a quarterly basis.

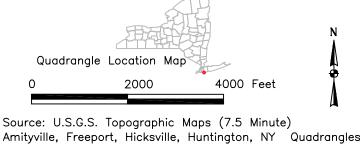
5.0 REFERENCES

KOMAN Government Solutions, LLC. (KGS). Quarterly Operations Report, First Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. October.

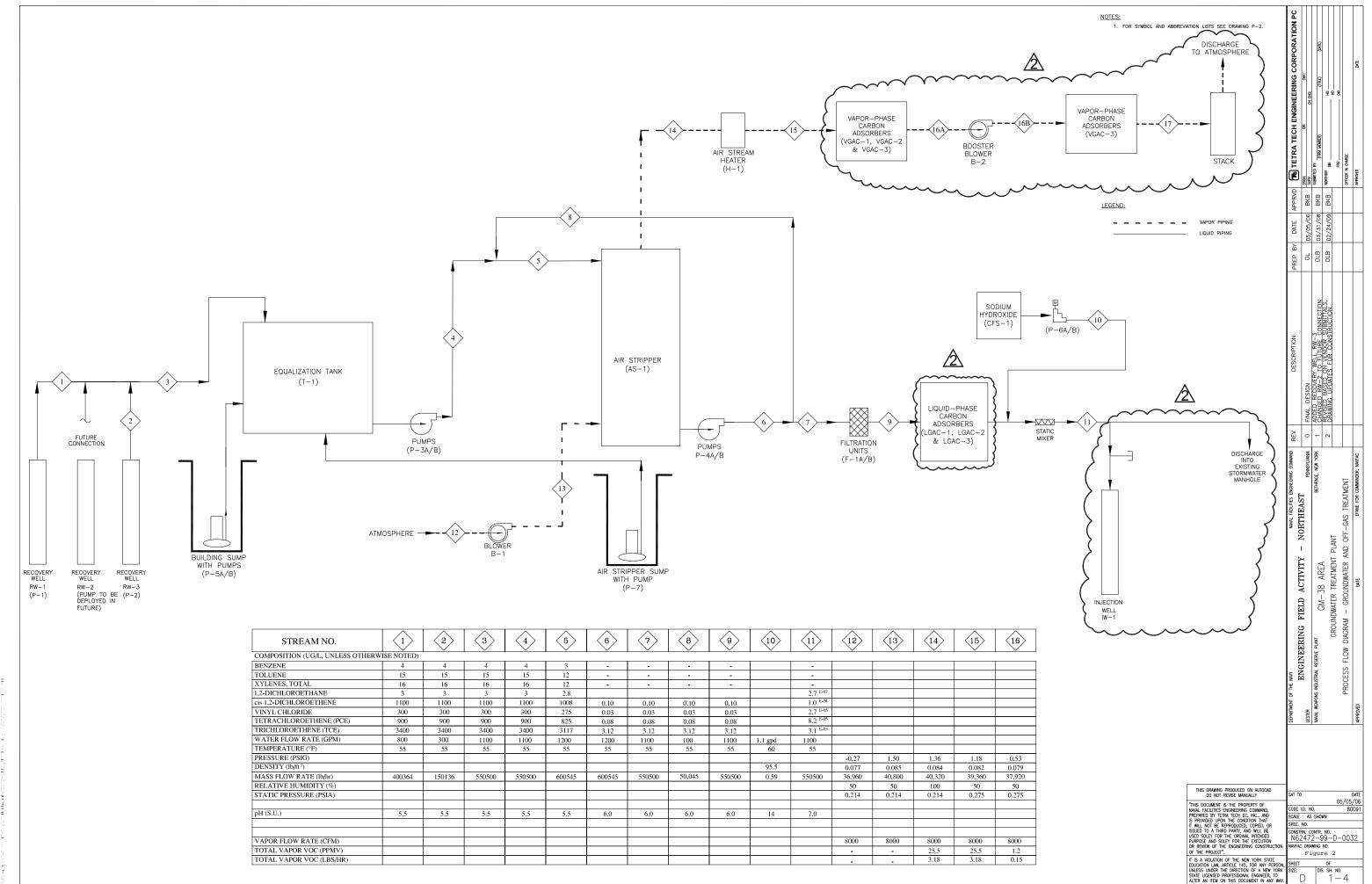
KGS. Quarterly Operations Report, Second Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. October.

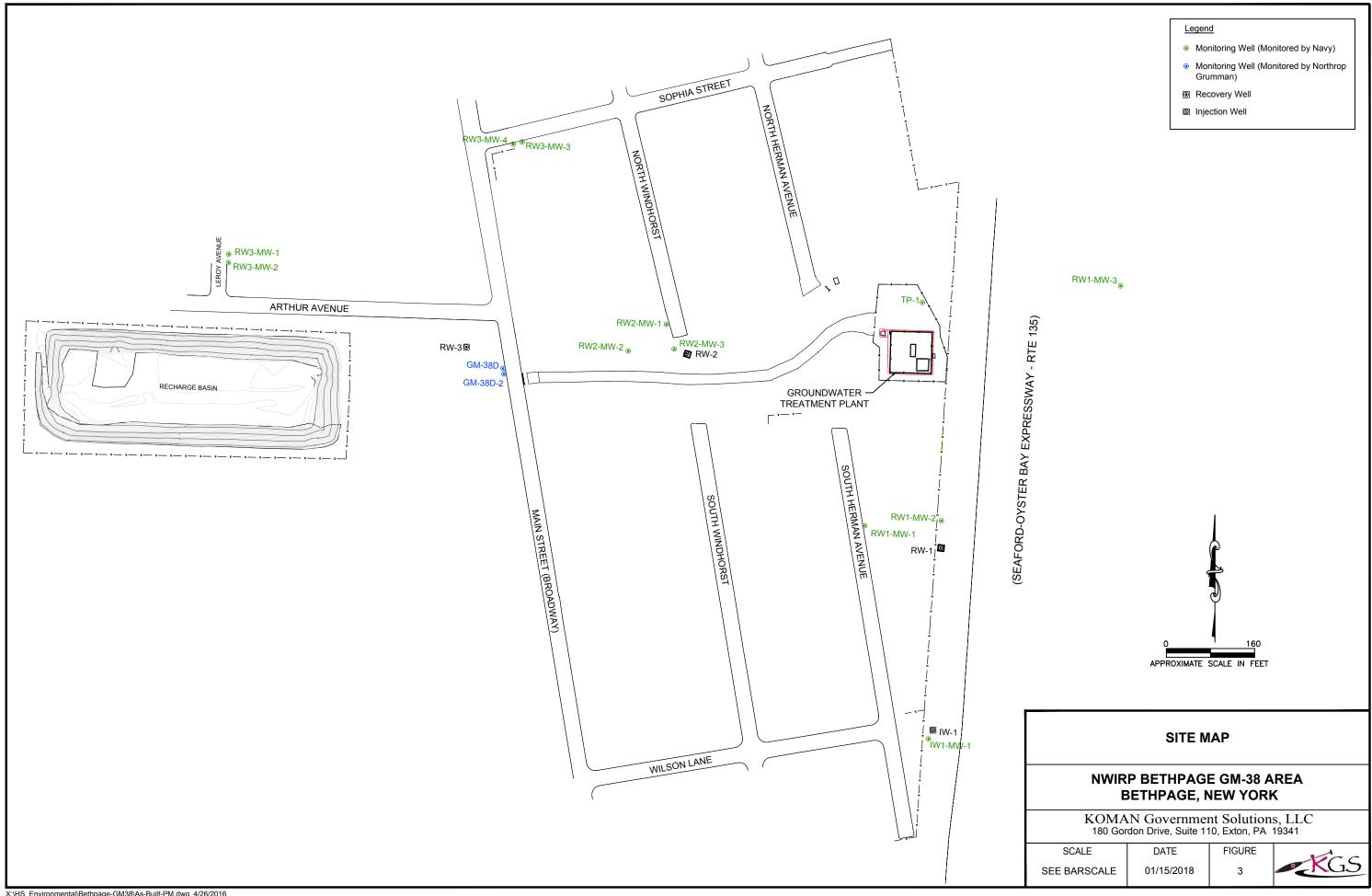

KGS. Quarterly Operations Report, Third Quarter 2019, Groundwater Treatment Plant, GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. November.


Tetra Tech, Inc. (Tetra Tech). 2014. Capture Zone Evaluation and Path Forward, GM-38 Area Groundwater Treatment Plant, Naval Weapons Industrial Reserve Plant, Bethpage, New York. March.


Tetra Tech EC, Inc. (TtEC). 2010. Final Operation, Maintenance & Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation, Naval Weapons Industrial Reserve Plant, Bethpage, New York. April.

Tetra Tech EC, Inc. (TtEC). 2010a. Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), UFP-SAP for Operations, Maintenance, and Monitoring of the Groundwater Treatment Plant, GM-38 Area, Naval Weapons Industrial Reserve Plant, Bethpage, New York. September.





U.S. Navy RAC
Engineering Field Activity, Northeast
GM-38 Area (Offsite)
NWIRP Bethpage
Bethpage, NY

Figure 1 Site Location Map

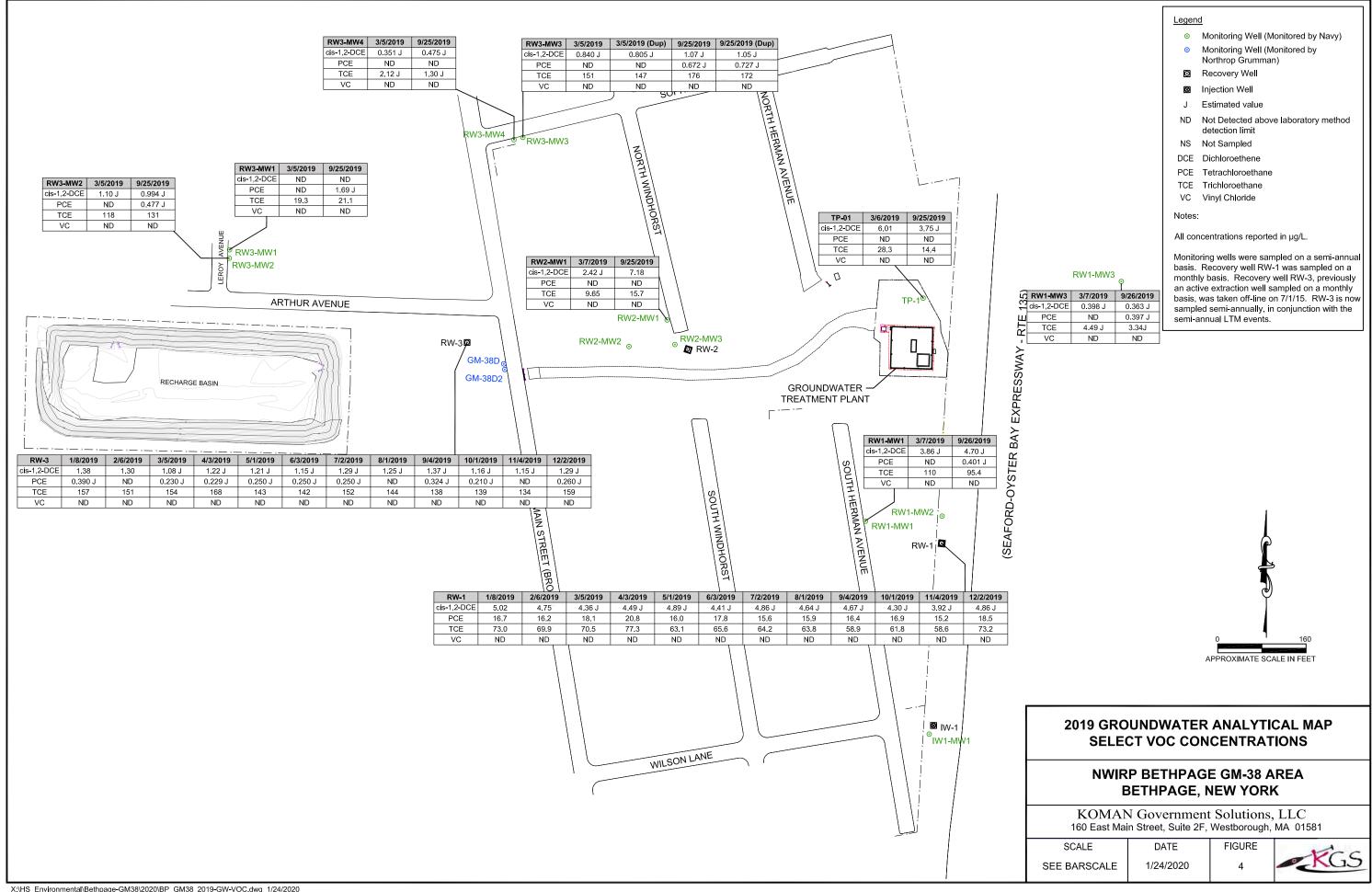


Figure 5
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW1

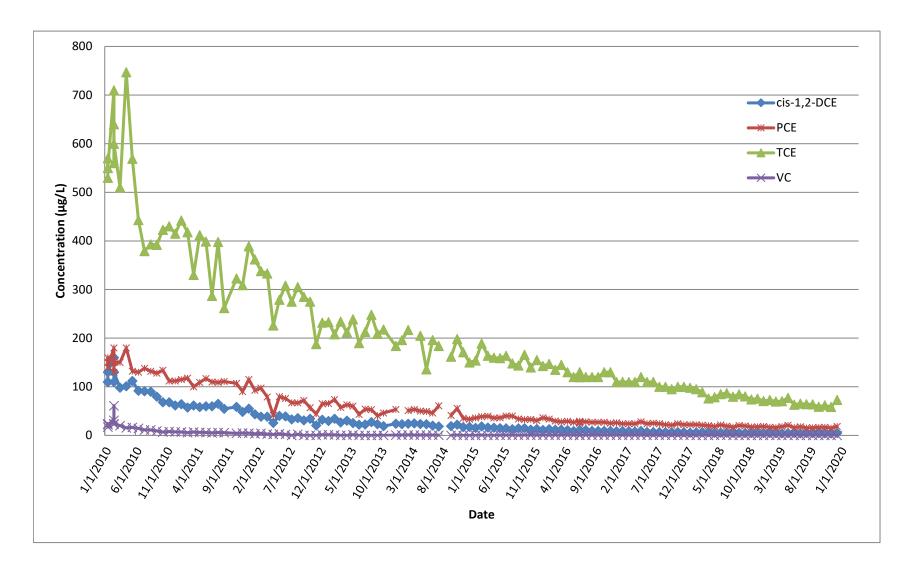


Figure 6a
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW3

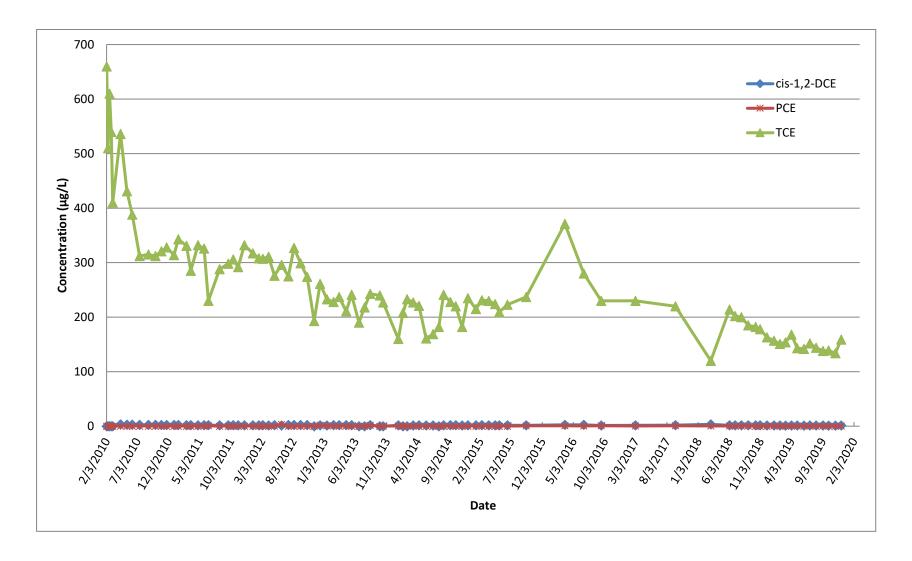


Figure 6b
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW3

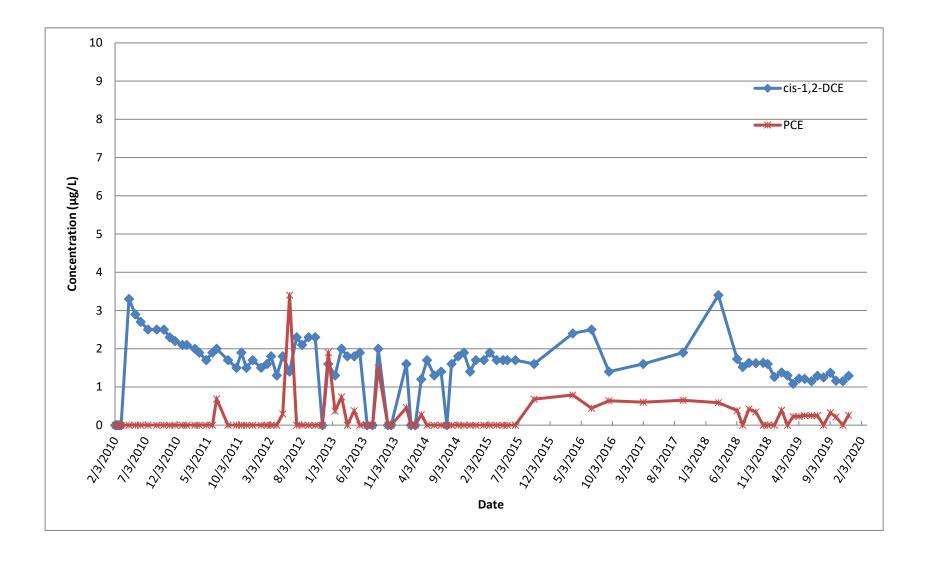


Figure 7
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW1-MW1

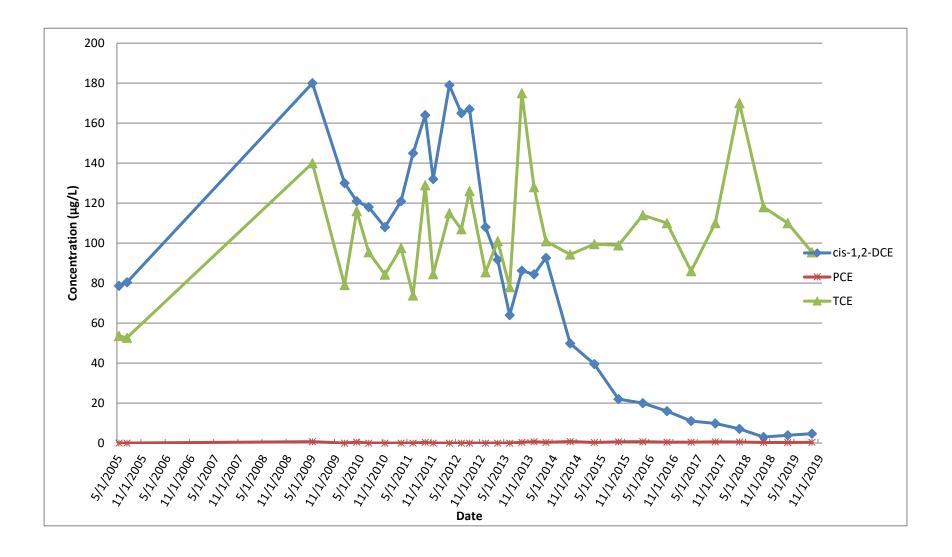


Figure 8
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW1-MW3

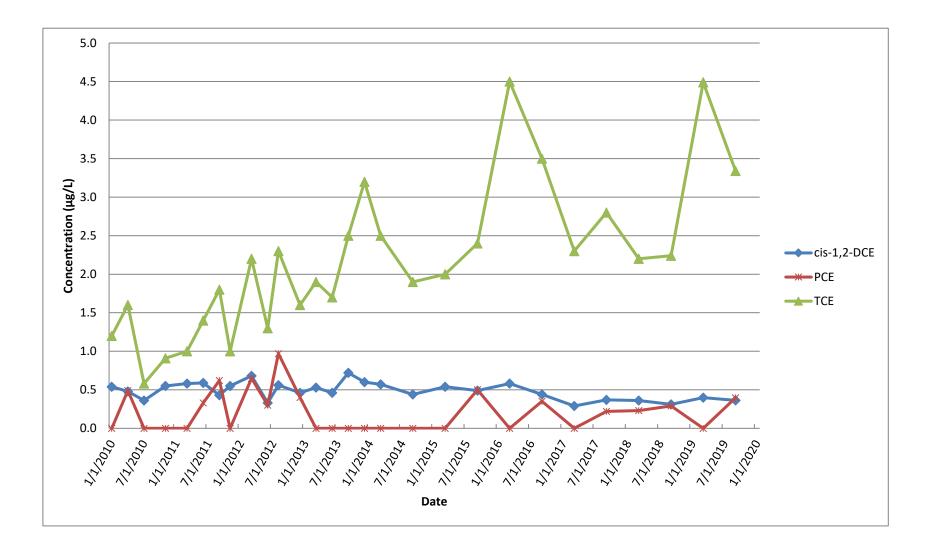


Figure 9
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

RW2-MW1

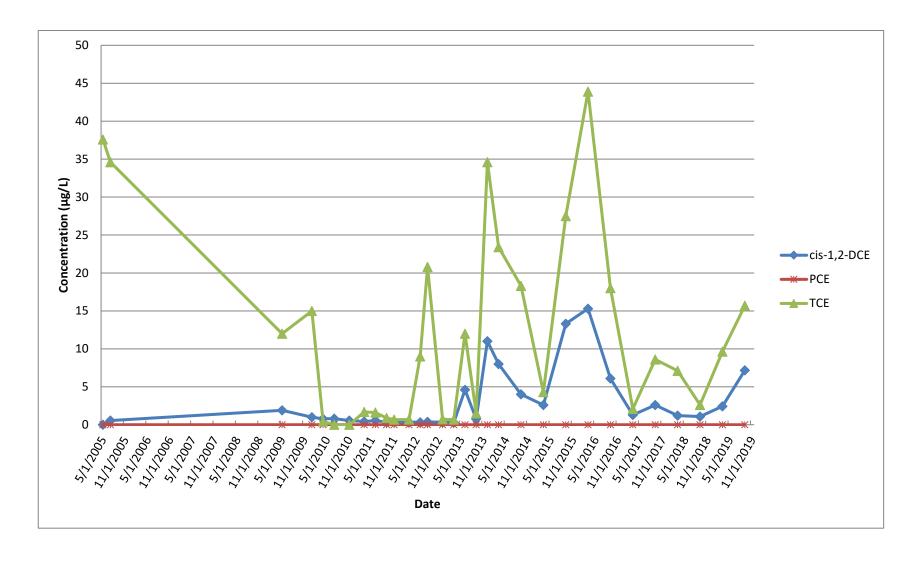


Figure 10
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

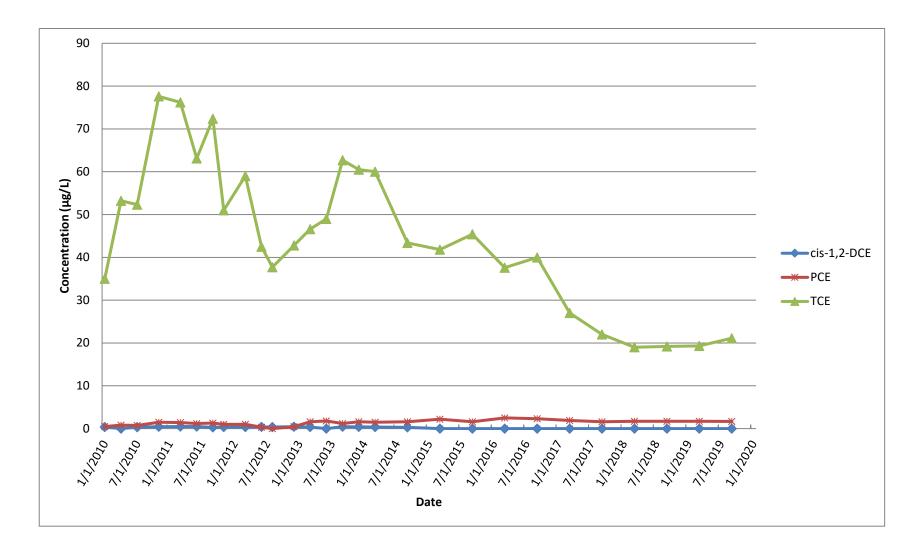


Figure 11
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

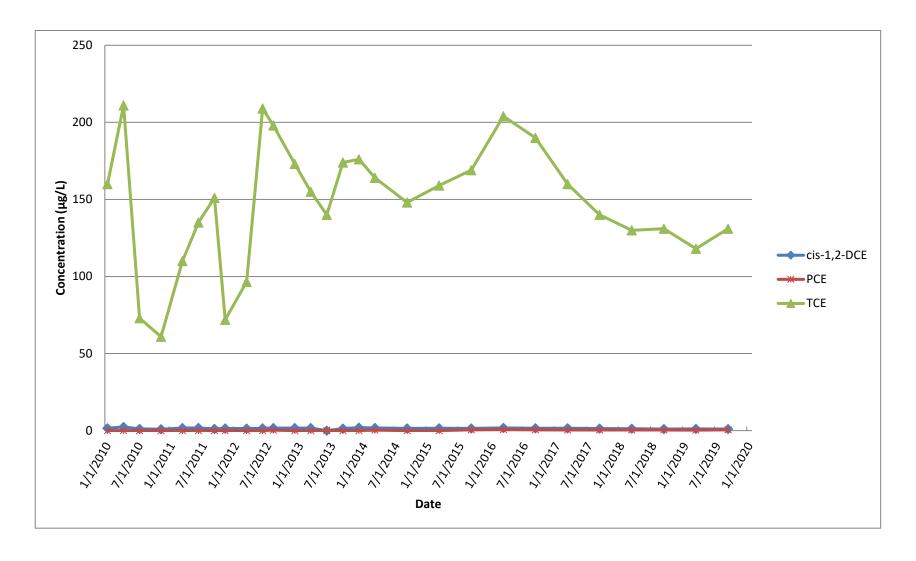


Figure 12
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

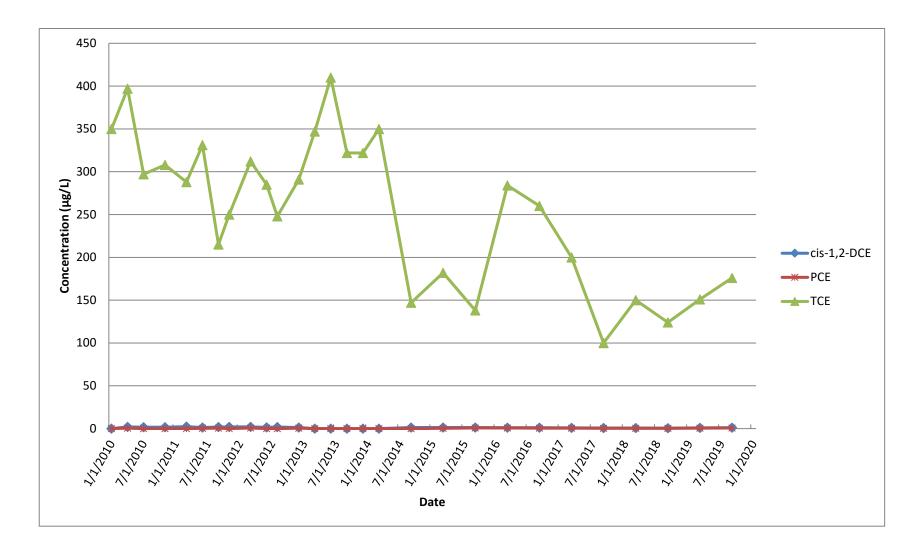
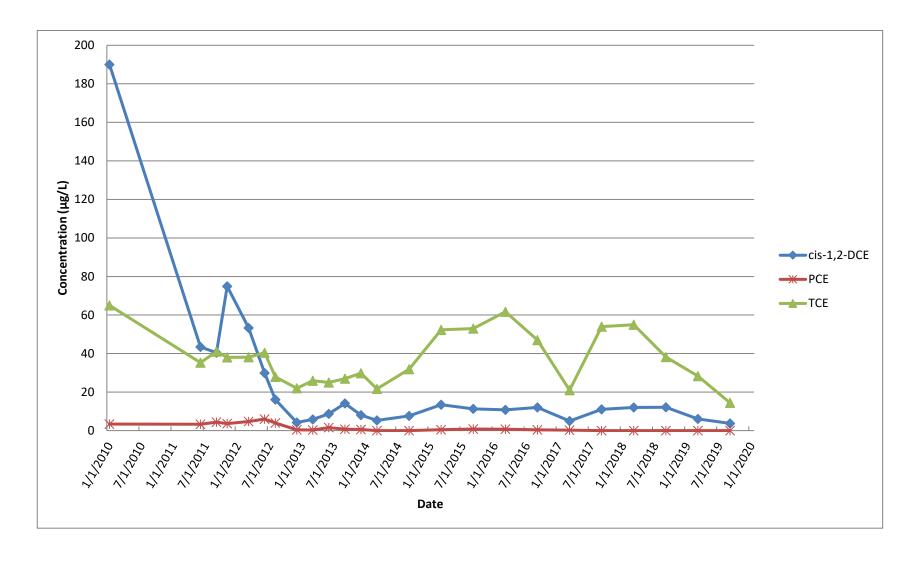



Figure 13
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

Figure 14
GM-38 Area Groundwater Remediation
Naval Weapons Industrial Reserve Plant - Bethpage, NY
Groundwater Concentration Trends of Select VOCs

TP-01

GM-38 Area Groundwater Remediation Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Results Fourth Quarter 2019

SPDES Parameters	Daily Maximum Goal	m Units October 2019										
Process Stream			RW-1	RW-3	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)
Well Depth		ft	445	530	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Screened Interval		ft	335-395 410-430	392-412 442-504	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sampling Date							10/1/2	2019 ⁽²⁾				•
Average Flowrate	1100	GPM	636	169	805	856	NR	NR	814	NR	NR	NR
Total Flow		gallons	28,409,000	7,543,700	35,952,700	38,208,800	NR	NR	36,348,700	NR	NR	NR
pH	5.5 - 8.5	SU	5.14	5.43	5.20	6.43	6.44	6.38	6.40	6.42	6.43	6.43
Chloroform	NA	μg/L	0.347 J	0.356 J	0.35 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.27 J	2.01 J	1.43 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.676 J	0.944 J	0.732 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	4.30 J	1.16 J	3.64 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	16.9	0.210 J	13.40	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.410 J	0.540 J	0.437 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	μg/L	61.8	139	78.0	0.270 J	0.277 J	0.964 J	0.782 J	ND (1.0)	ND (1.0)	ND (1.0)
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.617 J	0.13 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane		μg/L	2.4	6.2	3.2	NS	NS	NS	NS	NS	NS	NS
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)
Total Suspended Solids (TSS)	NA	mg/L	ND (1.0)	1.0	0.2	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY

Discharge Monitoring Results Fourth Quarter 2019

SPDES Parameters	Daily Maximum Goal	Units	nits November 2019										
Process Stream			RW-1	RW-3	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)	
Well Depth		ft	445	530	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Screened Interval		ft	335-395 410-430	392-412 442-504	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Sampling Date				•			11/4/2	2019 ⁽³⁾			•	•	
Average Flowrate	1100	GPM	613	161	775	821	NR	NR	786	NR	NR	NR	
Total Flow		gallons	26,494,234	6,965,796	33,460,030	35,459,550	NR	NR	33,976,110	NR	NR	NR	
pН	5.5 - 8.5	SU	5.09	5.35	5.14	6.12	6.11	5.91	5.94	6.04	6.06	6.02	
Chloroform	NA	μg/L	0.257 J	0.295 J	0.26 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
1,1-Dichloroethane	5	μg/L	1.27 J	2.08 J	1.44 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
1,1-Dichloroethene	5	μg/L	0.687 J	0.954 J	0.743 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
cis 1,2-Dichloroethene	5	μg/L	3.92 J	1.15 J	3.34 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
Tetrachloroethene	5	μg/L	15.2	ND (1.0)	12.04	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
1,1,1-Trichloroethane	5	μg/L	0.459 J	0.482 J	0.464 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
Trichloroethene	5	μg/L	58.6	134	74.3	0.226 J	0.213 J	0.817 J	0.770 J	ND (1.0)	ND (1.0)	ND (1.0)	
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.570 J	0.12 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	
1,4-Dioxane		μg/L	2.6	6.1	3.3	NS	NS	NS	NS	NS	NS	NS	
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	
Total Suspended Solids (TSS)	NA	mg/L	ND (1.0)	7.3	1.5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Results Fourth Quarter 2019

SPDES Parameters	Daily Maximum Goal	Units					Decemb	per 2019				
Process Stream			RW-1	RW-3	Combined Influent	Treated Effluent	Treated Effluent DUPLICATE	Air Stripper Effluent (ASE)	Bag Filter Effluent (BFE)	Liquid Carbon 1 Effluent (LC1)	Liquid Carbon 2 Effluent (LC2)	Liquid Carbon 3 Effluent (LC3)
Well Depth		ft	445	530	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Screened Interval		ft	335-395 410-430	392-412 442-504	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sampling Date					•	•	12/	2/19	•			
Average Flowrate	1100	GPM	616	159.5	776	832	NR	NR	785	NR	NR	NR
Total Flow		gallons	27,514,266	7,121,604	34,635,870	37,137,950	NR	NR	35,023,590	NR	NR	NR
pH	5.5 - 8.5	SU	5.04	5.37	5.11	6.45	6.44	6.37	6.39	6.40	6.42	6.44
Chloroform	NA	μg/L	0.300 J	0.320 J	0.30 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.34 J	2.50 J	1.58 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.920 J	1.22 J	0.982 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	4.86 J	1.29 J	4.13 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	18.5	0.260 J	14.7	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.550 J	0.590 J	0.558 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trichloroethene	5	μg/L	73.2	159	90.8	ND (1.0)	0.300 J	1.11 J	1.17 J	ND (1.0)	0.220 J	ND (1.0)
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.650 J	0.13 J	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane		μg/L	2.2	5.4	2.9	NS	NS	NS	NS	NS	NS	NS
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)
Total Suspended Solids (TSS)	NA	mg/L	ND (1.0)	8.4	1.7	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)

Notes:

J - Estimated result between laboratory method detection limit and reporting limit

NA - Not Applicable

ND - Not detected above laboratory method detection limit. Limit of detection (LOD) given in parentheses.

NR - Not Recorded

gpm - gallons per minute

(1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.

(2) 1,4-Dioxane was collected on 7 October 2019.

(3) pH reading for well RW-3 was collected on 18 November 2019.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY 2019 Annual Flow Summary

Monthly Flow Totals		
	Total GWTP	Total GWTP
	Influent Flow	Effluent Flow
Month	(gal)	(gal)
Jan-19	37,299,300	39,585,100
Feb-19	33,549,100	35,553,500
Mar-19	35,195,966	37,299,439
Apr-19	35,447,734	37,628,461
May-19	36,845,000	39,069,200
Jun-19	36,670,454	38,359,733
Jul-19	35,452,746	38,303,667
Aug-19	35,837,267	37,880,288
Sep-19	34,783,733	37,250,313
Oct-19	35,952,700	38,208,800
Nov-19	33,460,030	35,459,550
Dec-19	34,635,870	37,137,950
Annual Flow Summary		
	GWTP	GWTP
	Influent	Effluent
2019 Total (gal)	425,129,900	451,736,001
2019 Monthly Average (gal)	35,427,492	37,644,667
2019 Effective Flowrate (gpm)	809	859
2019 Average Flowrate (gpm)	817	869

Notes:

gpm = gallons per minute

Effective Flowrate = total flow volume (gal) / total time period (min)

Average Flowrate = total flow volume (gal) / total system run time (min)

Table 3 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY 2019 Mass Removal Summary

		Total Flow (gal	1)		CCI₄			1,1-DCA			1,2-DCA			1,1-DCE		cis-1,2-DCE		
						2019			2019			2019			2019			2019
						Cumulative			Cumulative			Cumulative			Cumulative			Cumulative
			2019	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass
	GWTP	GWTP	Cumulative	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal
Month	Effluent	Influent	Influent	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)
Jan-19	39,585,100	37,299,300	37,299,300	0.00	0.0000	0.0000	1.48	0.4606	0.4606	0.181	0.0563	0.0563	0.930	0.2895	0.2895	4.24	1.3197	1.3197
Feb-19	35,553,500	33,549,100	70,848,400	0.00	0.0000	0.0000	1.47	0.4115	0.8722	0.000	0.0000	0.0563	0.830	0.2324	0.5218	4.30	1.2038	2.5235
Mar-19	37,299,439	35,195,966	106,044,366	0.00	0.0000	0.0000	1.37	0.4024	1.2745	0.170	0.0499	0.1063	0.760	0.2232	0.7450	3.68	1.0808	3.6042
Apr-19	37,628,461	35,447,734	141,492,100	0.00	0.0000	0.0000	1.25	0.3697	1.6443	0.000	0.0000	0.1063	0.899	0.2659	1.0109	3.80	1.1240	4.7283
May-19	39,069,200	36,845,000	178,337,100	0.00	0.0000	0.0000	1.59	0.4888	2.1331	0.000	0.0000	0.1063	0.927	0.2850	1.2959	4.14	1.2729	6.0011
Jun-19	38,359,733	36,670,454	215,007,554	0.00	0.0000	0.0000	1.55	0.4743	2.6074	0.170	0.0520	0.1583	0.864	0.2644	1.5603	3.68	1.1261	7.1272
Jul-19	38,303,667	35,452,746	250,460,300	0.00	0.0000	0.0000	1.57	0.4645	3.0719	0.216	0.0639	0.2222	0.930	0.2751	1.8355	4.14	1.2248	8.3519
Aug-19	37,880,288	35,837,267	286,297,567	0.00	0.0000	0.0000	1.50	0.4486	3.5204	0.166	0.0496	0.2718	0.900	0.2691	2.1046	3.93	1.1752	9.5272
Sep-19	37,250,313	34,783,733	321,081,300	0.00	0.0000	0.0000	1.74	0.5050	4.0255	0.000	0.0000	0.2718	0.967	0.2807	2.3853	4.00	1.1610	10.6882
Oct-19	38,208,800	35,952,700	357,034,000	0.00	0.0000	0.0000	1.43	0.4290	4.4545	0.000	0.0000	0.2718	0.732	0.2196	2.6049	3.64	1.0920	11.7802
Nov-19	35,459,550	33,460,030	390,494,030	0.00	0.0000	0.0000	1.44	0.4021	4.8565	0.000	0.0000	0.2718	0.743	0.2075	2.8123	3.34	0.9326	12.7128
Dec-19	37,137,950	34,635,870	425,129,900	0.00	0.0000	0.0000	1.58	0.4566	5.3132	0.000	0.0000	0.2718	0.982	0.2838	3.0961	4.13	1.1936	13.9064
·	-			-		· ·	•		· · · · · · · · · · · · · · · · · · ·			· ·	-		· · · · · · · · · · · · · · · · · · ·	•		· · · · · · · · · · · · · · · · · · ·
2019 Totals	451,736,001	425,129,900			0.0000			5.3132			0.2718			3.0961			13.9064	

		Total Flow (gal)	tra	ns-1,2-DCE			PCE		1	,1,1-TCA			TCE			VC	
						2019			2019			2019			2019			2019
						Cumulative			Cumulative			Cumulative			Cumulative			Cumulative
			2019	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass	Influent	Mass	Mass
	GWTP	GWTP	Cumulative	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal	Concentration	Removal	Removal
Month	Effluent	Influent	Influent	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)	(μg/l)	(lb)	(lb)
Jan-19	39,585,100	37,299,300	37,299,300	0.00	0.0000	0.0000	13.22	4.1146	4.1146	0.647	0.2014	0.2014	90.9	28.2920	28.2920	0.00	0.0000	0.0000
Feb-19	35,553,500	33,549,100	70,848,400	0.00	0.0000	0.0000	12.81	3.5862	7.7008	0.546	0.1529	0.3542	86.9	24.3277	52.6197	0.00	0.0000	0.0000
Mar-19	37,299,439	35,195,966	106,044,366	0.00	0.0000	0.0000	14.39	4.2262	11.9270	0.545	0.1601	0.5143	87.8	25.7862	78.4059	0.00	0.0000	0.0000
Apr-19	37,628,461	35,447,734	141,492,100	0.00	0.0000	0.0000	16.49	4.8776	16.8047	0.570	0.1686	0.6829	96.3	28.4849	106.8908	0.00	0.0000	0.0000
May-19	39,069,200	36,845,000	178,337,100	0.00	0.0000	0.0000	12.80	3.9354	20.7401	0.598	0.1839	0.8667	79.3	24.3810	131.2717	0.00	0.0000	0.0000
Jun-19	38,359,733	36,670,454	215,007,554	0.00	0.0000	0.0000	13.86	4.2411	24.9812	0.541	0.1655	1.0323	82.7	25.3059	156.5776	0.00	0.0000	0.0000
Jul-19	38,303,667	35,452,746	250,460,300	0.00	0.0000	0.0000	12.50	3.6979	28.6791	0.640	0.1893	1.2216	81.9	24.2289	180.8065	0.00	0.0000	0.0000
Aug-19	37,880,288	35,837,267	286,297,567	0.00	0.0000	0.0000	12.58	3.7620	32.4411	0.587	0.1755	1.3972	80.6	24.1029	204.9094	0.00	0.0000	0.0000
Sep-19	37,250,313	34,783,733	321,081,300	0.00	0.0000	0.0000	13.12	3.8081	36.2492	0.469	0.1361	1.5333	75.0	21.7689	226.6784	0.00	0.0000	0.0000
Oct-19	38,208,800	35,952,700	357,034,000	0.00	0.0000	0.0000	13.40	4.0201	40.2693	0.437	0.1311	1.6644	78.0	23.4005	250.0789	0.00	0.0000	0.0000
Nov-19	35,459,550	33,460,030	390,494,030	0.00	0.0000	0.0000	12.04	3.3616	43.6309	0.464	0.1296	1.7939	74.3	20.7451	270.8239	0.00	0.0000	0.0000
Dec-19	37,137,950	34,635,870	425,129,900	0.00	0.0000	0.0000	14.75	4.2630	47.8939	0.558	0.1613	1.9552	90.8	26.2429	297.0668	0.00	0.0000	0.0000

2019 Totals 451,736,001 425,129,900 0.0000 47.8939 1.9552 297.0668 0.0000

2019 Cumulative Mass (VOCs) Removed (lbs)

369.50 30.79

2019 Average Monthly Mass (VOCs) Removed (lbs)

Notes:

CCI₄ = carbon tetrachloride DCA = dichloroethane
TCA = trichloroethane DCE = dichloroethene
TCE = trichloroethene PCE = tetrachloroethene

Mass removal (lb) = Influent Concentration (ug/L) * Influent Flow (gal) * (2.20462 lb/kg) * (3.785 L/gal) * (10^9 ug/kg)

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY

Air Sampling Results Fourth Quarter 2019

DAR Parameters	Discharge Goal ⁽³⁾	Units	Units October 2019									
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23					
Sampling Date					10/1/19		•					
Average Flowrate		CFM	NR	9,079	NR	NR	NR					
Total Flow ⁽¹⁾		ft ³	NR	405,270,608	NR	NR	NR					
Total Flow ⁽²⁾		m ³	NR	11,475,986	NR	NR	NR					
1,2-Dichloroethane	NA	μg/m³	ND	ND	ND	ND	ND					
cis 1,2-Dichloroethene	(4)	μg/m³	42	73	72	46	64					
trans 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	μg/m³	ND	ND	ND	ND	ND					
1,2-Dichloroethene (total)	≤ 100,000	μg/m³	42	73	72	46	64					
Toluene	N/A	μg/m³	ND	ND	ND	ND	1.8 J					
Total Xylene	N/A	μg/m³	ND	ND	ND	ND	ND					
1,1,2-Trichloroethane	N/A	μg/m³	ND	ND	ND	ND	ND					
Trichloroethene	≤ 2600	μg/m³	980	ND	ND	1100	98					
Vinyl Chloride	≤ 560	μg/m³	ND	ND	ND	ND	ND					
Tetrachloroethene	≤ 5100	μg/m³	150	ND	3.4 J	8	16					

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

NS - Not sampled

SGC - Short-term Guideline Concentration

μg/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

- (1) Total Flow (ft^3) = avg flowrate (cfm) * operational time (min)
- (2) Total Flow (m^3) = total flow (ft^3) * (0.3048^3) m^3/ft^3
- (3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.
- (4) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY

Air Sampling Results Fourth Quarter 2019

DAR Parameters	Discharge Goal ⁽³⁾	Units	November 2019								
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23				
Sampling Date					11/4/19						
Average Flowrate		CFM	NR	9,070	NR	NR	NR				
Total Flow ⁽¹⁾		ft ³	NR	391,828,943	NR	NR	NR				
Total Flow ⁽²⁾		m ³	NR	11,095,360	NR	NR	NR				
1,2-Dichloroethane	NA	μg/m³	1.9 J	ND	ND	ND	ND				
cis 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	μg/m³	48	63	63	48	71				
trans 1,2-Dichloroethene	≤ 100,000	$\mu g/m^3$	ND	ND	ND	ND	ND				
1,2-Dichloroethene (total)	≤ 100,000	μg/m³	48	63	63	48	71				
Toluene	N/A	μg/m³	ND	ND	ND	ND	ND				
Total Xylene	N/A	μg/m³	ND	ND	ND	ND	ND				
1,1,2-Trichloroethane	N/A	μg/m³	ND	ND	ND	ND	ND				
Trichloroethene	≤ 2600	μg/m³	1200	ND	ND	1100	8.9				
Vinyl Chloride	≤ 560	μg/m³	ND	ND	ND	ND	ND				
Tetrachloroethene	≤ 5100	μg/m³	160	ND	ND	11	ND				

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

NS - Not sampled

SGC - Short-term Guideline Concentration

μg/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

- (1) Total Flow (ft^3) = avg flowrate (cfm) * operational time (min)
- (2) Total Flow (m^3) = total flow (ft^3) * (0.3048^3) m^3/ft^3
- (3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.
- (4) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY

Air Sampling Results Fourth Quarter 2019

DAR Parameters	Discharge Goal ⁽³⁾	Units		C	December 2019		
Process Stream			Influent (VCI1)	Effluent	Effluent Duplicate	VC12	VC23
Sampling Date					12/2/19		
Average Flowrate		CFM	NR	8,911	NR	NR	NR
Total Flow ⁽¹⁾		ft ³	NR	378,259,821	NR	NR	NR
Total Flow ⁽²⁾		m ³	NR	10,711,125	NR	NR	NR
1,2-Dichloroethane	NA	μg/m³	1.6 J	1.4 J	1.2 J	1.7 J	1.6 J
cis 1,2-Dichloroethene		μg/m³	42	62	60	38	66
trans 1,2-Dichloroethene	≤ 100,000 ⁽⁴⁾	μg/m³	0.8 J	1.2 J	1.2 J	ND	1.5 J
1,2-Dichloroethene (total)	≤ 100,000	μg/m³	43	64	61	38	68
Toluene	N/A	μg/m³	0.35 J	ND	ND	ND	ND
Total Xylene	N/A	μg/m³	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	N/A	μg/m³	1.5 J	ND	ND	ND	ND
Trichloroethene	≤ 2600	μg/m³	920	1.0 J	0.61 J	900	1.4 J
Vinyl Chloride	≤ 560	μg/m³	ND	ND	ND	ND	ND
Tetrachloroethene	≤ 5100	μg/m³	150	ND	ND	ND	1.0 J

Notes:

NA - Not applicable

ND - Not detected

NR - Not recorded

NS - Not sampled

SGC - Short-term Guideline Concentration

μg/m³ - micrograms per cubic meter

CFM - cubic feet per minute

DAR - Division of Air Rescources

- (1) Total Flow (ft^3) = avg flowrate (cfm) * operational time (min)
- (2) Total Flow (m³) = total flow (ft³) * $(0.3048^{\circ}3)$ m³/ft³
- (3) Disharge goal approved by NYSDEC's letter dated 10/31/2013.
- (4) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation

Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Stack Emissions

Fourth Quarter 2019

DAR Parameters	Discharge Goal ⁽¹⁾	Units	October 2019	November 2019	December 2019
Sampling Date			10/1/19	11/4/19	12/2/19
Average Flowrate	N/A	CFM	9,079	9,070	8,911
Total Flow	N/A	ft ³	405,270,608	391,828,943	378,259,821
Total Flow	N/A	m ³	11,475,986	11,095,360	10,711,125
Trichloroethene	≤ 0.09	lb/hr	0.00000	0.000000	0.00003
Vinyl Chloride	≤ 0.02	lb/hr	0.00000	0.00000	0.0000
1,2 Dichloroethene	≤ 11	lb/hr	0.00248	0.00214	0.00203
1,2-Dichloroethane	N/A	lb/hr	0.00000	0.00000	0.00004
Toluene	N/A	lb/hr	0.00000	0.00000	0.0000
Total Xylene	N/A	lb/hr	0.00000	0.00000	0.0000
1,1,2-Trichloroethane	N/A	lb/hr	0.00000	0.00000	0.00000
Tetrachloroethene	≤ 0.18	lb/hr	0.00000	0.00000	0.00000

Notes:

NA - Not applicable

lb/hr - pounds per hour

DAR - Divison of Air Resources

CFM - Cubic feet per minute

Stack Emissions (lb/hr) = average flowrate (cfm) * $(0.3048^{^3})$ m³/ft³ * conc.(ug/m³) * 1 lb/453592370 ug * 60 min/hr

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY 2019 Air Emission Summary

	TCE Eff Emission		VC Eff Emissio		1,2-DCE E Emission		PCE Eff Emissio	
Month	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo
Jan-19	0.00023	0.171120	0.00000	0.000000	0.00168	1.249920	0.00000	0.000000
Feb-19	0.00000	0.000000	0.00000	0.000000	0.00211	1.417920	0.00000	0.000000
Mar-19	0.00004	0.029760	0.00002	0.014880	0.00195	1.450800	0.00000	0.000000
Apr-19	0.00002	0.014400	0.00000	0.000000	0.00244	1.756800	0.00000	0.000000
May-19	0.00004	0.029760	0.00003	0.022320	0.00265	1.971600	0.00000	0.000000
Jun-19	0.00027	0.194400	0.00003	0.021600	0.00262	1.886400	0.00000	0.000000
Jul-19	0.00006	0.044640	0.00000	0.000000	0.00248	1.845120	0.00008	0.059520
Aug-19	0.00005	0.037200	0.00002	0.014880	0.00220	1.636800	0.00000	0.000000
Sep-19	0.00000	0.000000	0.00000	0.000000	0.00279	2.008800	0.00000	0.000000
Oct-19	0.00000	0.000000	0.00000	0.000000	0.00248	1.845120	0.00000	0.000000
Nov-19	0.00000	0.000000	0.00000	0.000000	0.00214	1.540800	0.00000	0.000000
Dec-19	0.00003	0.023614	0.00000	0.000000	0.00203	1.511295	0.00000	0.000000

	<u>TCE</u>	<u>VC</u>	<u>1,2-DCE</u>	<u>PCE</u>
Discharge Goal (lb/yr)	770	170	98,000	1,500
2019 Total Emissions (lb/yr)	0.54	0.07	20.12	0.06

Notes:

lb/hr = pounds per hour

lb/mo = pounds per month

lb/yr = pounds per year

DCE = dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

VC = vinyl chloride

Emissions = average flowrate (cfm) * $(0.3048^{^3})$ m³/ft³ * conc.(mg/m³) * 0.000001 g/mg * 0.002205 lbs/g * 60 min/hr * operational time (hr)

Table 7 GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY

Groundwater Level Measurements Fourth Quarter 2019

Monitoring Well ID	Date	Well Elevation (ft amsl)	Total Depth (ft)	Screen Interval (ft)	Depth to Water (ft)	Groundwater Elevation (ft amsl)
RW1-MW1	12/24/2019	85.86	435	395-435	32.19	53.67
RW1-MW2	12/24/2019	87.35	435	395-435	35.49	51.86
RW1-MW3	12/24/2019	80.34	435	395-435	25.14	55.20
RW2-MW1	12/24/2019	90.75	510	470-510	35.47	55.28
RW2-MW2	12/24/2019	90.15	510	470-510	35.86	54.29
RW2-MW3	12/24/2019	89.75	510	470-510	34.97	54.78
RW3-MW1	12/24/2019	92.22	350	330-350	36.97	55.25
RW3-MW2	12/24/2019	91.98	495	475-495	36.52	55.46
RW3-MW3	12/24/2019	92.98	340	320-340	38.04	54.94
RW3-MW4	12/24/2019	92.92	495	475-495	37.24	55.68
TP-01	12/24/2019	85.91	470	450-470	32.61	53.30
IW1-MW1	12/24/2019	89.41	150	20-150	36.41	53.00
RW-1	NA	91.37	340	320-340	NA	NA
RW-3	NA	91.57	495	475-495	NA	NA

Notes:

amsl - above mean sea level

ft - feet

NA - Not Applicable

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

																	RW1.I																	_
Sample ID																																		
Sample Date	5/4/2005	7/22/2005	5/27/2009	1/21/2010	4/21/2010	7/28/2010	11/10/2010	3/25/2011			9/28/2011	11/30/2011	3/8/2012	6/6/2012			12/4/2012	3/13/2013	6/19/2013	9/17/2013	12/16/2013				3/25/2015	9/15/2015	3/22/2016	9/14/2016	3/1/2017	9/12/2017	3/5/2018	9/11/2018	3/7/2019	9/26/2019
Comments				1						Duplicate					Duplicate		<u> </u>						Duplicate				1							-
Well Depth (Ft)																	43																	-
Screened Interval (Ft)																	395-	135																
VOCS (EPA 624) ug/L (II)																																		
Acrolein	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	30 R	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR
Acrylonitrile	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone	R	R	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
carbon disulfide	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Carbon tetrachloride	ND	ND	0.32J	ND	ND	ND	0.17J	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NR	NR	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	2.0 R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR
Chloroform	ND	0.7J	1.1	ND	0.70J	0.65J	0.56J	0.5SJ	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55 J	0.39 J	ND	ND	0.48 J	0.48 J	0.50 J	0.58 J	0.55 J	0.500 J	0.573 J	ND
Chloromethane	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cyclohexane	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NB	NR	NR.	NR	NR	NR	NR	NB	NR	NB	NR	NR
1,2-dibromo-3-chloro-propane	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NB	NR	NR.	NR	NR	NR	NR	NB	NR	NB	NR	NR
1,2-dibromomethane	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NB	NR	NR.	NR	NR	NR	NR	NB	NR	NB	NR	NR
1.2-dichlorobenzene	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND
1.3-dichlorobenzene	NR NR	NB	ND	NR	NB	NR	NB	NR.	NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-dichlorobenzene	NR NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	ND ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dichlorodifluoromethane	NB	NB.	ND	NR	NB	NR	NB	NR	NB.	NR	NB NB	NB	NR.	NB	NB.	NB	NB	NB	ND	NR.	NB	NR.	NB	NR	NB.	NR.	NB	NB	NR.	NB	NB	NB	NB	NR.
1,1-dichloroethane	0.74J	0.791	3.3	2.9J	2.8	2.8	3.0	3.6	1.6 J	4.2 J	4.0 J	4.1	5.2	4.8	4.3	5.3	4.9	5.3	4.8 J	4.71	5.2	5.3	5.3	4.1J	5.1	5.1	6.5	7.0	6.6	7.7	7.5	7.67	7.89	6.30
1,2-dichloroethane	ND	ND	0.29J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35 J	0.26 J	0.220 J	ND	0.227 J
1,1-dichloroethene	1.3	2.8	3.1	1.71	1.9	1.7	1.7	1.9	0.85 J	2.1 J	2.3 J	2.1	2.7	2.5	2.3	2.8	2.0	2.8	ND	2.5	2.6	2.8	2.7	2.2.1	2.2 J	1.9	2.2	1.8	1.6	2.1	2.4	2.16	2.19 J	1.79 J
cis-1,2-dichloroethene	78.6	80.4	180D	130	121	118	108	121	55.8 J	145 J	164	132	179	165	145	167	108	91.7	64	86.2 J	84.4	92.61	94.2	49.8	39.5	22.0	20.0	16	11	9.8	7.1	3.00	3.86 J	4.70 J
trans-1,2-dichloroethene	2.0	1.3J	2.8	41	2.9	2.1	1.3	4.2	0.71 J	2.0 J	2.0 J	1.7	3.0	3.7	2.6	2.4	1.8	1.7	ND	ND	1.4	1.4	1.4	1.0	0.79 J	0.50 J	0.51 J	0.42 J	0.26 J	0.35 J	0.20 J	ND	ND	ND
1,2-dichloropropane	ND	ND	ND	NR	ND	ND	ND	ND	NB	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	ND.	ND	ND	NR	ND	ND	ND	ND	NR NR	NR	ND	ND	ND	ND.	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
trans-1.3-dichloropropene	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-dioxane	1.75J	NB	NB	NR	NB	NR	NB	NR.	NB.	NR	NR	NR	NR	NR.	NR	NB	NR NR	NB	NB	NR	NR	NR	NB	NR	NR	NR	NB	NR	NR	ND	NR	NR	NR	NR
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	NR NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	ND ND	ND ND	ND ND	NR NR	ND.	ND ND	ND ND	ND.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NB NB	NR NR	NR NR	ND ND	NR NR	NR.	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
isopropylbenzene	NR NR	NB NB	ND ND	NR.	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR.	NR.	NR NR	NR.	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR.	NR NR	NR NR	NR NR	NR NR	NR.	NR.
methyl acetate	NR.	NR.	ND ND	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR NR	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR NR	NR.	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR.	NR NR	NR NR	NR NR	NR NR	NR.	NR NR
Methylene chloride	ND ND	ND.	ND ND	NR.	ND.	ND.	ND.	ND.	NR NR	NR NR	ND.	ND	ND.	ND.	ND.	ND	ND.	ND	ND.	ND.	ND.	ND.	ND	ND.	ND ND	ND.	ND	ND.	ND.	ND	ND.	ND.	ND.	ND ND
4-methyl-2-pentanone	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	ND ND	NR NR	NR NR	NR NR	NB NB	NB NB	NR NR	NR NR	NB NB	NR NR	ND ND	NB NB	NR NR	NR NR	NR NR	NB NB
styrene	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	NR NR	NR NR	NR.	NR.	NR.	NR.	NR.	NR.	NR NR	NR.	ND ND	NR.	NR NR	NR.	NR.	NR.	NR NR	NR NR	NR.	NR NR	NR.	NR.	NR NR	NR.	NR NR	NR NR
1.1.2.2-tetrachloroethane	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	NR NR	NR NR	ND ND	ND	ND.	ND.	ND ND	ND	ND	ND	ND	ND.	ND ND	ND ND	ND.	ND	ND ND	ND.	ND	ND.	ND.	ND	ND ND	ND.	ND ND	ND ND
1.2.4-trichlorobenzene	NB NB	NB.	ND ND	NR.	NR NR	NR NR	NB NB	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NB NB	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
Tetrachloroethene	ND ND	ND.	0.721	ND ND	0.42J	ND ND	ND.	ND ND	ND ND	ND ND	0.36 J	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND.	ND ND	0.35 J	0.67 J	0.33 J	0.37 J	0.76 J	0.301	0.62 J	0.67 J	0.45 J	0.46 J	0.59 J	0.50 J	0.300 J	ND.	0.401 J
Toluene	ND ND	0.331	0.723	ND ND	ND.	ND ND	ND ND	ND ND	NR NR	NB NB	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND.	ND.	ND ND	ND ND	ND	0.43 J	ND ND	ND ND	ND.	ND	ND ND	ND
1.1.1-trichloroethane	ND ND	ND	0.71	ND ND	0.52J	0.43J	0.53J	0.79J	ND ND	0.63 J	1.1 J	0.66 J	0.96 J	0.98 J	0.891	0.99 J	0.88.1	1.1	ND ND	1.2	1.5	ND ND	ND ND	ND ND	ND ND	ND	ND ND	1.0	0.941	-4D	1.2	0.920 J	1.16 J	0.988 J
1.1.2-trichloroethane	ND ND	ND ND	0.711	NB NB	ND	ND ND	ND	0.793 ND	NB NB	NR	ND ND	0.86 J	0.96 J	U.98 J	U.89 J	0.99 J	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.94 J ND	ND.	ND ND	0.920 J	1.16 J	0.988 J
1,1,2-trichioroethane Trichloroethene	53.6	52.7	140.0	79.0	116	95.4	84.2	97.6	26.6 J	73.8 J	129	84.5	115	107	102	126	ND 85	101	78	175	128	101	103	94.3	99.5	98.9	114	110	ND 86	110	170	118	110	95.4
	53.6 ND	52.7 ND	140.0	79.0 ND	116 ND	95.4 ND	84.2 0.17J	97.6 ND	26.6 J ND	73.8 J 0.38 J	0.29 J	84.5 ND	115 ND	107 ND	102 ND	126 ND	ND ND	101 ND	78 ND	175 ND	128 ND	101 ND	103 ND	94.3 ND	99.5 ND	98.9 ND	114 ND	110 ND	ND ND	110 ND	170 ND	118 ND	110 ND	95.4 ND
Vinyl chloride xylenes (total)	ND ND	ND ND	1.6 ND	ND ND	ND ND	ND ND	0.17J ND	ND ND	ND NB	0.38 J NR	0.29 J NR	ND NB	ND NR	ND NB	ND NR	ND NR	ND NR	ND NR	ND NB	ND NR	ND NB	ND NR	ND NB	ND NR	ND NR	ND NB	ND NB	ND NB	ND NR	ND NR	ND NR	ND NR	ND NB	ND NB
Mercury (EPA 245.1) ug/L	NB NB	NB NB	ND ND	0.20	<0.20	<0.20	<0.20	<0.20	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NK ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND
Mercury (EPA 245.1) ug/L TSS (SM20 25400) mg/l	NR NR	NR NR	ND 2.8	0.20	<0.20	<0.20	<0.20	<0.20	ND ND	NU	ND ND	ND 11	ND 16	NU	NU	ND	ND ND	ND ND	ND ND	ND ND	ND 11	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
155 (5MZ0 Z540D) mg/L	NR	NR	2.8	2.8	6.0	4.0	4.0	4.0	ND	- 6	ND	11	16	9	5	- 6	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

		RW1-I																	-MW3													
Sample ID				- Ou																												
Sample Date	5/4/2005	7/22/2005	5/28/2009	6/18/2013	1/20/2010	4/21/2010	7/29/2010	11/10/2010	3/25/2011	6/14/2011	9/28/2011	11/30/2011	3/8/2012	6/7/2012	8/22/2012	12/7/2012	3/14/2013	6/19/2013	9/17/2013	12/17/2013	3/25/2014	9/23/2014	3/25/2015	9/14/2015	3/21/2016	9/14/2016	3/1/2017	9/13/2017	3/5/2018	9/12/2018	3/7/2019	9/26/2019
Comments															1					l												
Well Depth (Ft)		43																	35													
Screened Interval (Ft)		395-	435															395	-435													
VOCS (EPA 624) ug/L (4)																																
Acrolein	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	30 R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR
Acrylonitrile	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone	R	R	ND	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
carbon disulfide	ND	ND	ND	NR	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.41 J	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NR	NR	ND	ND	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	NR	NR
Chloroform	ND	1.4	ND	ND	0.671	0.80J	0.471	0.69J	0.73J	NR	0.97 J	ND	0.73 J	0.64 J	ND	1.2 J	ND	0.82	ND	ND	0.74 J	0.67 J	0.79 J	ND	0.79 J	0.80 J	0.61 J	0.69 J	0.67 J	0.720 J	0.725 J	ND
Chloromethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.29 J	ND	ND	ND	ND	ND	ND	D	ND	ND
cyclohexane	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-dibromo-3-chloro-propane	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,2-dibromomethane	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1.2-dichlorobenzene	NR	NB	ND	NR	NR	NB	NB	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.3-dichlorobenzene	NR	NB	ND	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-dichlorobenzene	NR	NB	ND	NR	NR	NB	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dichlorodifluoromethane	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1-dichloroethane	4.6	5.5	3.4	3.9	2.4	4.6	1.5	2.3	2.4	9.3	10.1 J	2.1	8.4	5.7	9.4	9.3	8.5	10	9.7 J	8.1	8.6	6.1 J	8.1	7.7	7.4	7.0	4.5	4.4	4.1	3.47	4.14 J	2.86 J
1.2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-dichloroethene	3.2	12.3	ND	ND	0.421	1.10	ND	0.28J	ND	1.8	2.21	ND	1.8	0.86 J	2.4	2.2	1.7	1.8	1.6	1.9	2.1	1.6 J	2.3 J	2.3	2.5	1.7	1.1	1.2	0.97 J	0.950 J	1.08 J	0.888 J
cis-1.2-dichloroethene	181.0	47.6	160.0	120	0.54J	0.483	0.36J	0.55J	0.58J	0.59 J	0.43 J	0.55 J	0.68 J	0.33 J	0.56 J	0.46 J	0.53 J	0.46 J	0.72 J	0.60 J	0.57 J	0.44 J	0.54 J	0.49 J	0.58 J	0.44 J	0.29 J	0.37 J	0.36 J	0.310 J	0.398 J	0.363 J
trans-1.2-dichloroethene	2.5	7.6	2.5	1.9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	ND	ND ND	ND	ND	NR	ND	ND	ND	ND	NR	ND ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.3-dichloropropene	ND	ND ND	ND	ND	NR	ND	ND	ND	ND	NR	ND ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1.3-dichloropropene	ND	ND	ND	ND	NR.	ND	ND	ND	ND	NR	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-dioxane	4.01	NB	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	ND	NR	NR	NR	NR
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND
2-hexanone	ND	ND	ND	ND	NR.	ND	ND	ND	ND	NR	NB	NR	NB	NR	NB.	NB.	NR	ND	NR	NB	NR	NB	NR	NB	NR	NB.	NB	NR	NR	NB.	NB	NB
isopropylbenzene	NB	NB	ND	NB	NR.	NB	NR	NR	NB	NR	NB	NR	NB	NR	NR.	NR	NR	NB	NR	NB	NR	NB	NR	NB	NR	NR.	NB	NR	NR	NB.	NB	NB
methyl acetate	NR	NR	ND	NB	NR	NB	NR	NR	NR	NR	NR NR	NR	NB	NR	NR	NR	NR	NR	NR	NB	NR	NB	NR	NR NR	NR	NR	NR	NR	NR	NR NR	NR	NB
Methylene chloride	1.0	ND.	ND	ND	NR	ND	ND	ND	ND	NR	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone	ND	ND ND	ND	ND	NR	NB	NR NR	NR	NR	NR	NR NR	NR	NB	NR	NR	NR NR	NB	ND	NR	NR	NR	NB	NR	NR NR	NR	NB	NR	NR	NR	NR NR	NR	NR
styrene	ND.	ND ND	ND.	NR.	NR	ND.	ND.	ND.	ND.	NR NR	NR NR	NR	NR.	NR.	NR.	NR NR	NR NR	NR NR	NR.	NR.	NR	NR.	NR.	NR NR	NR.	NR.	NR.	NR NR	NR.	NR NR	NR.	NR NR
1.1.2.2-tetrachloroethane	ND ND	ND ND	ND ND	ND ND	NR.	ND	ND ND	ND ND	ND ND	NR.	ND ND	ND	ND	0.23 J	ND.	ND ND	ND	0.20 J	ND.	ND	ND	ND.	ND	ND.	0.25 J	ND	ND.	ND ND	ND.	ND ND	ND	ND ND
1.2.4-trichlorobenzene	NR NR	NR	ND	NR	NR	NB	NR NR	NR	NR	NR	NR NR	NR	NB	NR	NR	NR NR	NB	NR	NR	NR	NR	NB	NR	NR NR	NR	NB	NR	NR	NR	NR	NR	NR
Tetrachloroethene	ND.	134.0	19.0	5.9	ND.	049J	ND.	ND.	ND.	0.331	0.62.1	ND.	0.65.1	0.301	0.971	0.401	ND	ND.	ND.	ND.	ND.	ND	ND.	0.50 J	ND.	0.35 I	ND.	0.221	0.23.1	0.290.1	ND.	0.397 J
Toluene	0.321	ND.	ND.	ND	ND ND	ND	ND ND	ND ND	ND.	NR NR	ND.	ND ND	ND.	ND.	ND.	ND.	ND	ND ND	ND.	ND.	ND ND	ND ND	ND ND	ND.	ND.	ND.	ND ND	ND.	ND.	ND.	ND ND	ND
1.1.1-trichloroethane	1.3	1.0	ND.	ND ND	0.411	0.981	ND ND	0.261	0.331	1.6	271	ND ND	ND.	111	1.9	1.7	1.4	1.8	1.5	2.0	1.7	121	1.5	1.6	2.1	1.6	1	1.1	0.871	0.810.1	1 27 1	0.711 J
1.1.2-trichloroethane	ND ND	0.651	ND ND	ND ND	0.41	0.601	0.36J	0.260	0.41	NR	0.571	0.63 J	0.70 J	0.611	0.561	0.54 J	0.61 J	0.46 J	ND	0.55 J	0.46 J	0.46 J	0.43 J	0.44 J	0.47 J	0.41 J	0.51.1	0.351	0.871	0.8101	0.296 J	0.7111 0.284 J
Trichloroethene	158.0	198.0	200.0	64	1.2	1.6	0.58J	0.91J	1.0	1.4	1.8 J	1.0 J	2.2	1.3	2.3	1.6	1.9	1.7	2.5	3.2	2.5	1.9	2.0	2.4	4.5	3.5	2.3	2.8	2.2	2.24	4.49 J	3.34 J
Vinvl chloride	12.9	187.0	4.1	ND ND	ND	ND ND	ND.	0.91J	ND.	ND ND	ND ND	ND.	ND.	ND ND	ND	ND	ND.	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	3.34 J ND
xvienes (total)	ND ND	187.U ND	ND ND	NB NB	ND ND	ND ND	ND ND	ND ND	ND ND	NB NB	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NB NB	NB NB	NB NB	NB NB	NR NR	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB
Mercury (EPA 245.1) ug/L	NR NR	NR NR	0.20	NR NR	NR NR	<0.20	<0.20	<0.20	<0.20	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
TSS (SM20 25400) mg/l	NR NR	NR NR	4.0	NR NR	NR NR	8.0	<4.0	<4.0	<4.0	ND ND	ND ND	ND ND	WD.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	, AD	ND ND	ND ND	ND ND	ND ND	1.8	2 1	5.6	7.1	2.7	8.6	2 2
155 (5MZU 254UU) mg/L	NR	NR.	4.0	NR	n/R	8.0	<4.0	<4.0	<4.0	ND	ND	ND	5	ND	ND ND	ND	ND	ND	ND ND	ND	5	ΝD	ND	ND	ND	1.8	2.1	5.6	/.1	2.7	8.6	2.2

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

Comments Well Depth (Ft)	/4/2005	foo foos															RW2-MW1																		RW2-MW2	
Comments Well Depth (Ft)				1/19/2010	4/21/2010	7/29/2010	11/2/2010	2/24/2011	6/14/2011	9/27/2011	11/20/2011	2/7/2012	6/6/2012	9/21/2012	12/7/2012	2/12/2012		9/17/2012	12/17/2012	12/17/2012	2/25/2014	9/22/2014	2/26/2015	9/14/2015	2/21/2016	2/21/2016	9/15/2016	2/1/2017	9/12/2017	2/5/2019	9/11/2019	2/7/2019	9/25/2019	5/4/2005		
Well Depth (Ft)		/20/2003	3/2//2003	1/10/1010	4/21/2010	7/20/2020	12/3/2020	3/14/1011	0/14/2011	3/21/2022	11/23/2011	3/1/2012	0/0/2022	0/22/2012	11///1011	3/13/2013	0/1//2013	3/11/1013		Duplicate	3/13/1014	3/23/2014	3/20/2023	3/14/1013	3/21/2010	Dunlicate	3/13/2010	3/1/101/	3/13/101/	3/3/2020	3/11/2010	3/1/2023	3/23/2023	3/4/2003	7/22/2003	0/1//2015
					1												510			Dupincare						Dupilcate									510	
Screened Interval (Ft)																	470-510																		470-510	
VOCS (EPA 624) ug/L (4)					1	1											470-310																		470-310	
	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	30 B	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR
	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	NR.	NR NR	NR.
	ND ND	ND ND	ND.	NR NR	ND.	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	ND ND	ND ND	ND.
	ND	ND	ND	ND ND	0.151	0.691	0.581	0.301	NR NR	0.22.1	0.271	0.22 J	ND ND	ND ND	0.68.1	0.541	ND ND	0.59.1	ND.	ND ND	0.21 J	0.21 J	0.56.1	ND.	ND ND	0.181	ND ND	0.51.1	ND.	ND ND	0.250 I	ND ND	ND ND	ND ND	ND ND	ND ND
	ND	ND ND	ND ND	NB NB	ND	ND	ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.230 J	ND ND	ND ND	ND ND	ND ND	ND ND
	ND	ND	ND ND	NR.	ND	ND ND	ND ND	ND ND	NR.	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	ND	ND	ND	NR NR	ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.8 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND					
	R	D	ND ND	NR.	ND ND	ND ND	ND ND	ND ND	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NP	ND ND	NR NR	ND ND	NR NR	NR.	NR NR	NR NR	ND ND	NP	NP	NR NR	NR NR	NR NR	NR NR	NR NR	NP	ND			ND.
	ND	ND	ND ND	NR.	ND.	ND ND	ND ND	ND ND	NR	NR NR	NR NR	NR NR	NR NR	NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	ND.	ND.	NR NR
	ND	ND	ND ND	ND	ND.	ND ND	ND ND	ND ND	NR	ND.	ND.	ND.	ND.	ND	ND.	ND.	ND.	ND.	ND.	ND.	ND	ND ND	ND.	ND.	ND.	ND.	ND.	ND.	ND.	ND ND	ND	ND.	ND.	ND.	ND.	ND.
	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	7.01	1.6 J	ND ND	ND ND								
	NR NR	NR NR	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NB.	NR NR	ND ND
	ND.	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND
	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NB NB	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.0.8	208	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	NR NR	NR NR	NR NR	NR NR	NR NR
	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NR.	ND ND	ND ND	ND ND	0.38 J	ND ND	ND ND	ND.	2.9	ND ND	ND ND	ND ND	2.8 J	1.5	0.46 J	2.2	3.4	3.5	2.4	0.25 J	2	1.0	0.550 J	2.03 J	ND ND	ND ND	ND ND	0.55
	ND	ND	ND	NB.	ND.	ND ND	ND ND	ND ND	NR.	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	0.68 J	ND ND	ND	ND.	ND ND	ND.	ND ND	ND ND	ND	ND ND	ND.	ND ND	ND ND	ND.	ND	ND.
	NB.	NR	ND	NR	NR	NR	NR	NB.	NR	NR	NR	NR	NB	NR	NR NR	NR	NR	NR NR	NR	NB	NR	NB	NR	NB	NR	NR NR	NB	NB	NR	NR NR	NB	NR NR	NR	NR	NB	NR
	ND	ND	ND	NR	NR	NR	NR	NB.	NR	NR	NR	NR	NR	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR NR	NR	NR NR	NR	ND	ND	NR
	ND	ND	ND	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NB	NR	NR	NR	NR	NB	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR NR	NB	NR NR	NR	ND.	ND	NR
	NR	NR	ND	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND.	ND	NR	ND	ND	ND.	ND	ND ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR NR	NR	NR
	NR	NR	ND	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND.	ND	NR	ND	ND.	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND.	ND	ND	ND	ND	ND	ND	NR	NR	NR
	NB	NR	ND	NR	NR	NB	NR	NB.	NR	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	NR	NB	NR
	NB	NR	ND	NB	NR	NR	NR	NB.	NR.	NR NR	NB	NB.	NB.	NB	NB.	NR	NB.	NB NB	NB.	NB NB	NR	NB NB	NR.	NB	NR.	NB.	NB.	NR NR	NB	NB NB	NB.	NB NB	NR.	NR	NB	NR
1.1-dichloroethane 0	0.53J	0.93J	1.2J	0.82J	0.601		0.421	ND	0.61 J	0.64 J	ND	0.50 J	4.2	4.8	0.58 J	0.52 J	7.0	ND	5.8	6.4	5.1	ND	2.1	6.3	8.7	8.5	6.4	1.7	6.6	6.5	2.75	7.81	6.03	ND	0.78J	4.9
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	ND	1.9 J	1.7 J	1.3	0.69 J	0.41 J	1.4	1.4	1.3	0.93 J	ND	0.71 J	0.39 J	0.330 J	0.552 J	0.627 J	ND	ND	0.32 J
	ND	0.58J	0.55J	0.63J	ND	ND	0.55 J	0.95 J	0.19 J	ND	1.9	ND	2.6	2.6	1.8	1.3 J	0.61 J	2.6	3.7	3.4	1.6	0.27 J	1.3	1.5	0.470 J	1.67 J	1.87 J	ND	0.41J	0.72						
cis-1,2-dichloroethene	ND	0.55J	1.9	1.0	0.78J	0.80J	0.55J	0.43J	0.56 J	0.32 J	0.39 J	0.34 J	0.32 J	0.39 J	0.33 J	0.29 J	7.7	0.77 J	11.0 J	11.1 J	8.0	4.0	2.6	13.3	15.3	15.0	6.1	1.3	2.6	1.2	1.09	2.42 J	7.18	0.33J	0.41J	4.6
trans-1,2-dichloroethene	ND	ND	DN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2-dichloropropane	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	DN	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dioxane	5.34	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	7.45J	NR	NR
	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND
	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR							
	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR							
Methylene chloride	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND
	ND	ND	ND	NR	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR
	ND	ND	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	NR	NR	ND	NR	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	0.85J	1.0	ND	0.52J	0.491	0.50J	ND	NR	0.24 J	0.29 J	0.19 J	ND	ND	0.27 J	ND	ND	0.31 J	ND	ND	ND	ND	0.26 J	ND	0.20 J	ND	ND	ND	ND	ND	ND	ND	ND	0.33J	0.53J	ND
	ND	0.371	ND	ND	ND	0.33 J	ND	ND	0.84	ND	0.94 J	0.94 J	ND	0.39 J	ND	ND	ND	ND	0.56 J	ND	0.49 J	0.43 J	ND	0.761 J	0.712 J	ND	ND	0.34 J								
	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	D	ND	ND
	37.6	34.6	12.0	15.0	0.421	ND	ND	1.7	1.6	0.89 J	0.67 J	0.67 J	9.0	20.8	0.73 J	0.67 J	14	1.5	34.6	33.5	23.4	18.3	4.3	27.5	43.9	44.2	18	2.1	8.6	7.1	2.61	9.65	15.7	7.8	13.8	12
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	ND	1.4J	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR
	NR	NR	0.05J	NR	< 0.20	<0.20	<0.20	< 0.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR
TSS (SM20 2540D) mg/L	NR	NR	2260.0	NR	58.0	<4.0	<4.0	<4.0	181	5	36	6	25	12	10	ND	13	12	30	24	12	6	17	11	24	26	3.8	13.8	8.7	12.1	7.6	24.2	14	NR	NR	NR

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

Sample ID		PW/2	-MW3																	RW3-MW1															
Sample Date	5/3/2005			e ten tenenili	. / /					0.000.0000		a fan faas s			0.000000		0.000.0000		0.00.00000		e tan tanani	0.0000000		a tan taan .		3/25/2015 9/15				0.00.000.00	0 (10 (2001	2000000	0.000.0000	0/0/0000	0.000.0000
	5/3/2005	7/20/2005	5/28/2009	6/18/2013	1/19/2010	4/22/2010	7/29/2010	11/9/2010	3/25/2011	Duplicate	6/14/2011	9/2//2011	11/30/2011	Duplicate	3///2012	6///2012	8/22/2012	12/6/2012	3/14/2013	6/20/2013	Duplicate		12/1//2013	3/25/2014	9/23/2014	3/25/2015 9/15	/2015 3/22/	2016	9/14/2016	3/2/201/	9/12/2017	3/6/2018	9/11/2018	3/5/2019	9/25/2019
Comments										Duplicate				Duplicate							Dupitcate														_
Well Depth (Ft) Screened Interval (Ft)			10																	350 330,350															
		4/0	-510	_		_	_	_	_	_	_			_	_	_		_		330-350													_		_
VOCS (EPA 624) ug/L [4]																																			
Acrolein	NR	NR	30 R	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	30 R	ND	ND	NR	NR	ND	ND	ND	ND		ND NE		ND	ND	ND	ND	ND	NR	NR
Acrylonitrile	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
Acetone	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR		NR NI		NR	NR	NR	NR	NR	NR	NR
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	NR	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
2-butanone	R	R	ND	ND	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR	NR	NR	NR	NR I	NR NI	t .	NR	NR	NR	NR	NR	NR	NR
carbon disulfide	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR I	NR NI	t	NR	NR	NR	NR	NR	NR	NR
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	0.19J	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI)	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI	,	ND	ND	ND	ND	DN	ND	ND
Dibromochloromethane	NR	NB	ND	ND	NB	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND N	,	ND	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI)	ND	NR	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	NR	NB	NR	NR	NR	NB	NR.	NR	NR	NR	NB	ND	ND	ND	ND	ND	ND	ND	ND	NB	NR	ND ND	ND	ND	ND	ND I	ND NI		ND	NR	ND	ND ND	ND	NB NB	NB.
Chloroform	ND	ND	ND	ND	ND	ND	ND	0.20J	ND	ND	NB	ND	ND	ND	ND	ND	ND	0.63 J	ND	ND	ND	ND ND	ND	ND	ND		ND NI	,	ND	ND	ND	ND	ND	ND	ND
Chloromethane	ND	ND	ND	ND	NR.	ND	ND	ND	ND.	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND ND	ND	ND ND	ND
cyclohexane	NR	NB	ND	NR	NR	NB	NR.	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR NR	NR	NR	NB		VR N		NR	NR	NR	NR NR	NR	NB NB	NB
1.2-dibromo-3-chloro-propane	ND	ND.	ND	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NP	NR	NR	NR	NR I	VR N		MP	NR	MP	NR NR	NR	NR NR	NR
1,2-dibromomethane	ND ND	ND.	ND ND	NR NR	NR.	NR.	NR.	NR NR	NR NR	NR.	NR NR	NR NR	NP	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR.	NR.	NR NR	NR NR	NR NR	NR.		VR N		NR NR	NR NR	NR.	NR NR	NR.	NR NR	NR NR
1.2-dichlorobenzene	NR NR	NB.	ND ND	NR NR	NR.	NR.	NR.	NR NR	NR NR	NR.	NR NR	ND.	ND.	ND.	ND.	ND.	ND.	ND.	ND.	NR.	NR.	ND.	ND ND	ND.	ND.		ND NI		ND	ND	ND.	ND.	ND.	ND ND	ND.
1,3-dichlorobenzene	NR NR	NR.	ND ND	NR.	NR NR	NR.	NR.		NR NR	NR.	NR.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NR.	ND ND	ND ND	ND ND	ND ND		ND NI		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.4-dichlorobenzene	NR NR	NR NR	ND ND	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND		ND NI		ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND
dichlorodifluoromethane	NR NR	NR.	ND ND	NR.	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR.	NR.	NB.	NB NB	NB.	NB NB	NR.	NB NB	NR NR	NR.	NR NR	NB.	NB NB	NR.	NB NB		NR N		NB.	NR NR	NB.	NB NB	NR.	NB NB	NB.
1.1-dichloroethane	0.68J	0.311	1.4	7.4	16	1.5	1.7	1.4	13	1.3	1.1	101	0.961	0.931	0.90.1	0.801	0.871	0.98.1	1.2	ND ND	ND ND	121	1.2	1.1	0.69.1		761 0.4		0.33.1	ND ND	ND.	ND ND	ND ND	ND ND	ND ND
1.2-dichloroethane	ND	ND.	ND	ND	0.271	ND ND	ND.	ND	ND ND	ND ND	ND.	0.57 1	0.96.1	ND ND	0.43 J	ND ND	ND	0.50 (ND	ND ND	ND ND	ND.	ND ND	ND.	U.09 J		VD NI		ND.	ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-dichloroethane 1.1-dichloroethene	ND ND	ND ND	0.42J	ND ND	1.2	1.3	1.2	1.2	1.2	1.1	0.85 J	0.57 J	0.64 J	0.66 J	0.43 J	0.19 J	0.54 J	0.50 J	0.68 J	ND ND	ND ND	0.57 J	0.69 J	0.74 J	0.43 J		41 J 0.2		0.21 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	0.401	0.66J	2.3	ND ND		ND	0.32J	0.45J	0.471	0.45J	0.85 J	0.65 J	0.36 J	0.661	0.47 J	0.19 J	0.36 J	0.44 J	0.88 J	ND ND	ND ND	0.57 J	0.69 J	0.74 J	0.43 J		41 U.Z		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,2-dichloroethene trans-1,2-dichloroethene	0.40J	ND.	ND	ND ND	0.37J ND	ND ND	0.32J ND	U.45J ND	0.473 ND	0.45J ND	U.48 J ND	U.31 J	U.36 J	U.43 J ND	U.37 J	U.39 J	U.36 J	ND ND	U.38 J	ND ND	ND ND	U.43 J ND	0.413 ND	U.38 J	U.SU J		ND NI		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ND ND		ND ND		ND NR			ND ND	ND ND	ND ND	NB NB	ND ND	ND ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND		ND ND		ND ND		ND NI		ND ND	ND ND	ND ND		ND ND	ND ND	
1,2-dichloropropane		ND		ND		ND	ND								ND		ND					ND		ND								ND			ND
cis-1,3-dichloropropene	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
1,4-dioxane	7.421	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR NI		NR	NR	ND	NR	NR	NR	NR
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NE		ND	NR	ND	ND	ND	ND	ND
2-hexanone	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR	NR	NR	NR		NR NI		NR	NR	NR	NR	NR	NR	NR
isopropylbenzene	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR NI		NR	NR	NR	NR	NR	NR	NR
methyl acetate	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR NI		NR	NR	NR	NR	NR	NR	NR
Methylene chloride	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR	NR	NR	NR	NR I	NR NI	1	NR	NR	NR	NR	NR	NR	NR
styrene	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR NI		NR	NR	NR	NR	NR	NR	NR
1,1,2,2-tetrachloroethane	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR I	NR NI	t .	NR	NR	NR	NR	NR	NR	NR
Tetrachloroethene	ND	ND	ND	ND	0.491	0.81J	0.73J	1.5	1.4	1.6	1.2	1.3 J	1.0	1.1	1.0	0.33 J	ND	0.44 J	1.6	1.8 J	1.7 J	1.2	1.6	1.5	1.6	2.2	1.6 2.5	5	2.3	1.9	1.6	1.7	1.71	ND	1.69 J
Toluene	ND	0.50J	0.39J	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	0.26 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND I	ND NI	, T	ND	ND	ND	ND	DN	ND	ND
1,1,1-trichloroethane	ND	ND	ND	ND	ND	0.98J	0.84J	1.2	1.1	1.1	0.78 J	1.0 J	0.59 J	0.63 J	0.58 J	0.54 J	0.42 J	0.34 J	0.49 J	ND	ND	0.61 J	0.66 J	0.66 J	0.39 J	0.35 J 0.	36 J 0.3) J	0.21 J	ND	ND	ND	ND	ND	ND
1.1.2-trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND NI		ND	ND	ND	ND	ND	ND	ND
Trichloroethene	16.2	20.6	18.0	60	35.0	53.2	52.3	77.6	76.2	77.9	63.1	72.4 J	51.0	55.2	59.0	42.5	37.7	42.8	46.6	49	48	62.7	60.5	60.0	43.4	41.8 4	5.4 37.	6	40	27	22	19	19.2	19.3	21.1
Vinyl chloride	ND.	ND.	ND.	ND	ND.	ND	ND.	ND.	ND.	ND.	ND.	ND ND	ND.	ND.	ND.	ND.	ND.	ND.	ND.	ND ND	ND ND	ND.	ND ND	ND	ND ND		ND NI		ND ND	ND	ND	ND ND	ND.	ND.	ND
xylenes (total)	ND ND	ND ND	ND ND	NB NB	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NB NB	NR NR	NR NR	NR NR	NB.	NB NB	NR.	NB NB	NR NR	NB NB	NB NB	NR NR	NR NR	NR.	NB NB		VR N		NB NB	NR NR	NB NB	NB NB	NR.	NB NB	NB.
Mercury (EPA 245.1) ug/L	NR NR	NR NR	ND ND	NR NR	NR NR	<0.20	< 0.20	<0.20	<0.20	<0.20	ND	ND ND	ND	ND.	ND	ND.	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND		04 J NI		ND	ND	ND.	ND ND	ND ND	ND ND	ND
TSS (SM20 2540D) mg/L	NR NR	NR NR	14.8	NR NR	NR NR	<4.0			<4.0	<4.0	5160	ND ND	ND ND	ND ND	NB NB	17	ND ND	ND ND	16	ND ND	951	ND ND	15	14	9		VD NI		ND ND	3.3	2.9	1.3	3.3	16.4	16
133 JAMEU ZOMUDJ HIK/L	IND.	nn.	14.0	I IND		1 N4.U																													

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

Sample ID																		RW3-MW2																	
Sample Date	1/19/2010			7/29/2010			3/25/2011	6/14/2011	9/27/2011	11/30/2011	3/8/2012	6/7/2012	8/22/2012				3/14/2013	6/20/2013	9/17/2013	12/17/2013	3/25/2014			3/25/2015	9/14/2015	3/22/2016 9	7/14/2016		3/2/2017		9/12/2017	3/6/2018	9/11/2018	3/5/2019	9/25/2019
Comments	-	Duplicate	1	l	Duplicate	l	1	1	-1	L	L			Duplicate	-	Duplicate	l	1	L	l			Duplicate		ll			Duplicate		Duplicate	L				-
Well Depth (Ft)																		495																-	
Screened Interval (Ft)															_			475-495																-	
VOCS (EPA 624) ug/L (4)																																			
Acrolein	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	30 R	30 R	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR
Acrylonitrile	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Benzene	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
carbon disulfide	NR	NB	ND	ND	ND	ND	ND	NR	NR	NR	NB	NR	NR.	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NB	NR	NR	NR	NR	NR	NR	NB.	NR	NR	NR	NB
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND.	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND
Chloroethane	NR NR	NR.	ND ND	ND ND	ND ND	ND ND	ND ND	NR.	ND ND	ND ND	ND ND	ND ND	ND.	ND.	ND.	ND.	ND.	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND.	ND.	ND ND	ND ND	ND.	ND ND	ND.
2-chloroethylvinyl ether	NR NR	NR.	NB NB	NB.	NR NR	NR	NR NR	NR.	ND ND	ND	ND.	ND ND	ND	ND.	ND ND	ND.	ND ND	NR NR	ND ND	ND	ND ND	ND ND	ND ND	ND		ND ND	ND	ND ND	NB NB	NR NR	ND ND	ND ND	ND ND	NR NR	NB NB
Chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	0.23 J	ND ND	ND ND	0.62 1	0.641	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND			0.241	0.231	0.26.1	0.24 J	0.24 J	0.23 J	ND ND	ND ND	ND.
Chloromethane	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR.	ND ND	ND ND	ND ND	ND	ND.	ND.	ND.	ND.	ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND		ND ND	ND.	ND	ND.	ND	ND.	ND.	ND.	ND ND	ND.
cyclohexane	NR NR	NR.	NR.	NB NB	NR NR	NB.	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	NB NB	NR NR	NB NB	NR NR	NR.	NB NB	NR NR	NR NR	NB NB	NR.	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	ND ND	NR NR	NR NR	NR NR	NB NB
1,2-dibromo-3-chloro-propane	NR NR	NR.	NR.	NR.	NR NR	NR.	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR.	NR.	NR.	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR.	NR.	NR.
	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
1,2-dibromomethane	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR NR	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND	NK ND	ND ND	NK ND	NR ND
1,2-dichlorobenzene																																			
1,3-dichlorobenzene	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
dichlorodifluoromethane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
1,1-dichloroethane	ND	ND	0.54J	ND	ND	ND	ND	0.52 J	0.37 J	ND	0.41 J	0.66 J	0.74 J	0.73 J	0.69 J	0.71 J	0.68 J	ND	0.65 J	0.59 J	0.62 J	0.51 J	0.51 J	0.56 J	0.47 J	0.52 J	0.39 J	0.34 J	0.39 J	0.47 J	0.36 J	0.29 J	0.290 J	0.364 J	ND
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	ND	ND	1.2	ND	ND	ND	ND	0.57 J	0.45 J		0.27 J	0.36 J	0.49 J	0.49 J	0.40 J	0.43 J	0.53 J	ND	0.29 J	0.45 J	0.44 J	0.38 J	0.33 J	0.33 J			0.31 J	0.37 J	0.25 J	ND	0.26 J	ND	ND	0.256 J	ND
cis-1,2-dichloroethene	1.5J	1.6J	2.4	1.1	0.92J	0.921	1.6	1.7	1.1	1.4	1.3	1.5	1.6	1.5	1.6	1.6	1.6	ND	1.3 J	1.9	1.7	1.4	1.3	1.5	1.4	1.7	1.5	1.5	1.5	1.3	1.3	1.2	0.990 J	1.10 J	0.994 J
trans-1,2-dichloroethene	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-dichloropropane	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	0.69 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dioxane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND
2-hexanone	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
isopropylbenzene	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
methyl acetate	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Methylene chloride	NR	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
styrene	NR	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	NR	NR NR	NR
1.1.2.2-tetrachloroethane	NR.	NR.	ND ND	ND ND	ND ND	ND.	ND ND	NR.	ND.	ND	ND.	ND ND	ND	ND	ND.	ND.	ND	ND.	ND.	ND.	ND ND	ND.	ND.	ND	ND ND	ND ND	ND	ND.	ND	ND.	ND	ND.	ND ND	ND.	ND.
1.2.4-trichlorobenzene	NR	NR	NR	NR	NR NR	NR	NR NR	NR	NR	NR	NB	NR	NB	NR	NB NB	NR	NR	NB	NR	NR	NR	NR NR	NR NR	NR	NR NR	NR	NR	NR NR	NR	NR	NB	NR NR	NR	NR NR	NB
Tetrachloroethene	ND ND	ND.	ND.	ND ND	ND.	ND	ND ND	ND	ND.	ND.	ND.	ND.	0.281	ND.	ND.	ND.	ND	ND.	ND.	ND.	0.291	ND ND	ND.	ND	0.52.1	0.661	0.481	0.54.1	0.441	0.381	0.43 I	0.381	0.4301	ND.	0.477.1
Toluene	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	NR.	ND ND	ND ND	ND.	ND ND	ND.	ND.	ND.	ND ND	ND.	ND.	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND.	ND.	ND.	ND.	ND.	ND.	ND.	ND ND	ND.
1,1,1-trichloroethane	ND ND	ND ND	0.58J	ND ND	ND ND	ND ND	ND ND	0.39 J	0.43 J	ND	ND ND	0.54 J	0.52 J	0.49 J	0.42 J	0.43 J	0.41 J	ND ND	0.47 J	0.50 J	0.43 J	0.36 J	0.39 J	0.38 J	0.41 J	0.47 J	0.44 J	0.47 J	0.411	0.34 J	0.261	0.33 J	ND ND	ND	ND ND
1,1,1-trichioroethane	ND ND	ND ND	U.58J	ND ND	0.25 J	0.271	ND ND			0.32 J	0.32 J	U.54 J ND	U.52 J	0.49 J ND	0.42 J ND	U.43 J ND	ND ND	ND ND	ND ND	U.50 J	U.43 J ND	U.36 J	U.39 J	U.38 J			0.44 J	0.47 J	0.411	0.34 J	0.261	U.33 J ND	ND ND	0.240 J	0.204 J
Trichloroethene	160	170	211	73	58.2	60.9	110	135	151	71.9	96.5	209	198	192	173 J	171	155	140	174	176	164	148	151	159	169	204	190	190	160	150	140	130	131	118	131
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
xylenes (total)	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Mercury (EPA 245.1) ug/L	NR	NR	<0.20	< 0.20	<0.20	<0.20	< 0.20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TSS (SM20 2540D) mg/L	NR	NR	5.0	6.0	ND	10.0	10.0	7	6	ND	8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

Sample ID																		RW3-N	1W3																	
Sample Date	1/20/2010	4/22/2010	4/22/2010	7/28/2010	11/3/2010	3/25/2011	6/15/2011	1 9/28/2011	1 11/29/201	1 3/7/2012	3/7/2012	6/7/2012	8/22/2012	12/4/2012	3/14/2013	6/21/2013	9/18/2013	12/17/2013	3/26/2014	9/23/2014	3/25/2015	3/25/2015	9/15/2015	3/21/2016	9/15/2016	3/2/2017	9/12/2017	9/12/2017	3/6/2018	3/6/2018	9/12/2018	9/12/2018	3/5/2019	3/5/2019 9	9/25/2019 9	25/2019
Comments			Duplicate								Duplicate											Duplicate						Duplicate		Duplicate		Duplicate		Duplicate		plicate
Well Depth (Ft)																		340)																	
Screened Interval (Ft)																		320-3	40																	
VOCS (EPA 624) ug/L (4)																																				
Acrolein	NR.	NR	NR	NB.	NR	NR	NR	ND	ND	ND	ND	ND	150 R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR
Acrylonitrile	NR	NR	NR	NB.	NR	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Renzene	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND
Bromodichloromethane	NR.	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NR.	ND ND	ND ND	ND.	ND ND	ND.	NR.	ND.	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND.	ND ND	ND ND	ND ND	ND.	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND		ND
Bromomethane	NR.	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-butanone	NR	ND	ND	ND	ND	ND	NR	NR	NR.	NR	NR	NR	NB		NR	ND	NB	NR NR	NR	NR	NR	NB	NR	NR NR	NR	NR	NR NR	NR	NR	NR	NR	NR NR	NR	NR		NB
carbon disulfide	NR.	ND ND	ND	ND.	ND ND	ND ND	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR.	NR NR	NR.	NR.	NR.	NR.	NR.	NR.	NR NR	NR	NR NR	MP	NR	NR.	NR.	NR.	NR NR	NR NR	NR NR	NR
Carbon tetrachloride	ND.	ND ND	ND ND	ND.	ND ND	ND.	NR.	ND.	ND ND	ND.	ND.	ND.	ND.	ND	ND	ND.	ND.	ND.	ND.	ND.	ND	ND ND	ND	ND ND	ND.	ND	ND.	ND.	ND	ND	ND	ND.	ND ND	ND		ND
Chlorobenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND
	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND
Dibromochloromethane	NR NR	NB NB	NB NB	NB NB	NB NB	NB NB	NR NR	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND
Chloroethane	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2.0 R	ND ND	ND ND	ND ND	ND ND	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NR	ND NR	ND NR	NB.						
2-chloroethylvinyl ether Chloroform	NR ND	NR ND	0.40J	0.46J		0.33J	NR NR	0.48 J		0.42 J	0.42 J		ND ND				ND ND	ND 3.4 J	ND ND	0.27 J	2.0 R 0.40 J	0.33 J	ND ND	ND ND	ND 0.48 J	0.45 J		0.27 J	0.33 J	0.37 J	0.400 J		0.420 J			NR ND
	ND NR	ND ND	ND ND	U.46J	ND ND	U.33J	NR ND	0.48 J ND	ND ND	0.42 J	0.42 J ND	ND ND	ND ND	U.88 J	ND ND	ND ND	ND ND	3.4 J	ND ND	ND ND	0.40 J	ND	ND ND	ND ND	U.48 J ND	0.45 J ND	U.35 J	0.27 J	U.33 J	U.37 J	0.400 J	0.400 J ND	0.420 J	U.37U J	ND ND	ND
Chloromethane																																				
cyclohexane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR							
1,2-dibromo-3-chloro-propane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR							
1,2-dibromomethane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR							
1,2-dichlorobenzene	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND						
1,3-dichlorobenzene	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND						
1,4-dichlorobenzene	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
dichlorodifluoromethane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR							
1,1-dichloroethane	ND	1.6	1.6	2.3		1.5	7.1	3.2 J	1.5	3.3	3.3	2.6 J	ND		4.5 J	ND	ND	3.7 J	4.9 J	1.3 J	1.8	1.8	1.2	4.0	3.5	2.9	2.5	2.2	2.0	2.3	2.08	2.24	2.21 J			1.80 J
1,2-dichloroethane	ND	0.52J	0.54J	ND	ND	ND	0.37 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30 J	ND	ND	ND	ND	ND	ND	ND	ND		0.255 J	ND
1,1-dichloroethene	ND	1.1	1.3	1.2	ND	0.96J	2.6	1.8 J	0.96 J	1.9	1.9	1.7 J	1.4 J	1.9	2.1 J	ND	ND	ND	2.4 J	0.94 J	1.5 J	1.4 J	1.1	2.4	2.0	1.3	ND	0.78 J	1.1	1.2	1.00	1.14				1.36 J
cis-1,2-dichloroethene	ND	2.1	2.1	1.7	ND	2.3	1.2	1.9	2.1	2.1	2.1	1.4 J	1.8 J	1.2	ND	ND	ND	ND	ND	1.2	1.3	1.3	1.3	1.1	1.1	0.83 J	0.8 J	0.76 J	0.63 J	0.59 J	0.590 J	0.640 J				1.05 J
trans-1,2-dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND							
1,2-dichloropropane	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-dichloropropene	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-dichloropropene	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-dioxane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR							
Ethylbenzene	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-hexanone	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
isopropylbenzene	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR							
methyl acetate	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR		NR							
Methylene chloride	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	3.2 J	ND	6.2 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-methyl-2-pentanone	NR	ND	ND	ND	ND	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
styrene	NR	ND	ND	ND	ND	ND	NR	NB	NR	NR	NR	NR	NB	NR	NR	NB	NR	NB	NR	NR	NR	NB	NR	NR.	NB	NR	NR	NR	NR	NR	NR	NR	NR	NB	NB	NR
1,1,2,2-tetrachloroethane	NR	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2.4-trichlorobenzene	NR	NR	NR	NB.	NR	NR	NB	NR	NR	NR	NB	NR	NB	NB	NR	NB	NR	NB	NR	NR	NR	NB	NR	NR.	NB	NR	NR	NR	NR	NR	NB.	NR	NR	NB	NB	NR
Tetrachloroethene	ND	0.45J	0.49J	ND	ND	ND	0.40 J	0.50 J	ND	0.72 J	0.69 J	ND	ND	0.43 J	ND	ND	ND	ND	ND	ND	0.36 J	0.37 J	0.77 J	0.71 J	0.58 J	0.43 J	0.31 J	0.44 J	0.36 J	0.32 J	0.390 J	0.390 J	ND	ND	0.672 J	0.727 J
Toluene	ND	ND	ND	ND	ND	ND	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.1-trichloroethane	ND ND	0.951	1.01	0.721	ND.	0.621	1.3	1.0.1	0.49 J	0.84 J	0.87 J	ND ND	ND ND	0.85 J	ND	ND.	ND.	ND ND	ND ND	0.40 J	0.48 J	0.45 J	0.361	1.1	0.75 J	0.69 J	0.46 J	0.38 J	0.61 J	0.57.1	0.550 J	0.530.1	0.594 J			0.467 J
1.1.2-trichloroethane	ND ND	ND.	ND.	ND.	ND.	ND.	NR.	ND.	ND.	ND.	ND.	ND ND	ND ND	ND	ND.	ND ND	ND.	ND ND	ND	ND ND	ND.	ND.	ND ND	ND ND	ND ND	ND.	ND ND	ND.	ND.	ND.	ND	ND.	ND ND	ND.		ND
Trichloroethene	350	397	382	297	85	200	221	215 J	250	312	325	285	248	291	347	410	322	322	350	147	182	184	138	284	260	200	100	95	150	160	124	155	151	147		172
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND		ND.
vinyi chioride xvienes (total)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NB NB	NB NB	NB NB	NR NR	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	ND NR	NB NB	NR NR	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB NB	NB.	NB NB	NB.
xylenes (total) Mercury (EPA 245.1) ug/L	NB NB	<0.20	<0.20	<0.20		ND ND	NR ND	NR ND	NR ND	NK ND	NK ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND		0.122 J		ND ND
	NR NR	4.0		<4.0				ND ND	ND ND	ND ND	ND ND	ND 13	10	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.1	2.4	n/D	1.9	4.7 J	2.8 J	5.7	6.0		1.6 J		1.7
TSS (SM20 2540D) mg/L	NK	4.0	5.0	<4.0	<4.t)	<4.0	NU	ND	ND	NU	NU	15	10		ND	NU	ND	NU	ND	NU	NU	ND.	NU	ND	1.1	2.4	3	1.9	4./J	Z.8 J	5.7	b.U	5.1 J	1.b J	2.b J	1./

Table 8
GM-38 Area Groundwater Remediation
Groundwater Treatment Plant
Naval Weapons industrial Reserve Plant - Bethpage, NY
Summary of Historical Groundwater Analytical Results
Through Fourth Quarter 2019

Sample ID															RW3-MW4														
Sample Date	1/20/2010	4/33/3010	7/20/2010	7/30/3010	11 (2 (2010 [1]	202400011	6/15/2011	0/30/3011	11/20/2011	2/7/2012	667/2012	0/22/2012	12/4/2012	2/14/2012		0/17/2012	12/17/2013	2/26/2014	0/22/2014	2/25/2015	0/15/2015	201/2016	0/15/2016	2/2/2017	0/13/3017	2/6/2010	0/13/3018	2/5/2010	0/25/2010
Comments	1/20/2010	4/22/2010	7/28/2010	Duplicate		3/24/2011	0/15/2011	3/20/2011	11/25/2011	3/1/2012	0/1/2012	0/22/2012	12/4/2012	3/14/2013	0/21/2015	3/17/2013	12/17/2013	3/20/2014	3/23/2014	3/23/2013	3/13/2013	3/21/2010	3/13/2016	3/2/2017	5/12/2017	3/0/2018	3/12/2018	3/3/2013	3/23/2013
Well Depth (Ft)				Dupiicate		-	-								495														
Screened Interval (Ft)															475-495														
VOCS (EPA 624) ug/L (4)															473-433														_
Acrolein	NR.	NR	NR	NR	NR	NR	NR	ND	ND	ND	ND	30 B	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR
Acrylonitrile	NR.	NR.	NR.	NR NR	NR.	NR.	NR.	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND.	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acetone	NR NR	NR ND	NR ND	NR ND	NR ND	NR ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR ND	ND NR	ND NR	NR NR	ND NR	ND NR	NB NB	ND NR	NB NB	ND NR	NB NB	ND NR	ND NR	NB NB	ND NR
Acetone Renzene	NR ND	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NR ND
Bromodichloromethane	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromodicniorometnane	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NB NB	NB NB	NR NR	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NB NB
2-butanone carbon disulfide	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.
Carbon disultide Carbon tetrachloride	NR ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND	NK ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NR ND
Chlorohenzene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	NR NR	ND NR	ND NR	ND NR	NB NB	ND NR	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroethane 2-chloroethylvinyl ether	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NR	ND ND	ND ND	ND ND	ND NR	ND NR
2-chloroethylvinyl ether Chloroform	NR ND	NR ND	NR ND	NR ND	0.32J	NR ND	NR NR	0.87 J	ND ND	0.38 J	ND ND	ND ND	0.71 J	ND ND	1.2	ND ND	ND ND	ND 1.2 J	0.38 J	ND 1.2	ND ND	ND 0.64 J	ND ND	NR ND	0.21 J	0.47 J	ND ND	0.996 J	NR ND
Chloromethane	NB NB	ND ND	ND ND	ND ND	ND	ND ND	NK NR	0.87 J ND	ND ND	0.38 J ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	0.38 J ND	ND	ND ND	U.64 J ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.996 J	ND ND
cyclohexane	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NB NB	NB NB	NR NR	NR NR	NR NR	NB NB	NR NR	NB NB	NR NR	NB NB	NR NR	NR NR	NR NR	NB NB	NB NB	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR
1.2-dibromo-3-chloro-propane	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR.
1.2-dibromo-3-chioro-propane 1.2-dibromomethane	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
1.2-dichlorobenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NK NR	NR ND	NR ND	ND ND	NR ND	NR ND	NR ND	NK ND	NR NR	NR ND	NR ND	NR ND	NR ND	NR ND	ND ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NR ND
1,2-dichlorobenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-dichlorobenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
dichlorodifluoromethane	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NK NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	NR NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	NB NB
	2.5	0.6	0.54J	0.501	1.8	0.81	0.78 J	5.4 J	0.84 J	1.8	0.50 J	ND ND	1.2	3.8	4.6	2.9	4.9	5.5	2.7 J	6.9	0.88 J	4.9	2.0	15	2.6	3.9	1.47	6.22	5.72
1,1-dichloroethane	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND.	ND	ND.	ND	ND ND	ND	ND.	0.23 J	ND	ND ND	0.37 J	ND ND	ND	ND ND	ND ND	ND ND	ND	ND.	ND	ND	0.235 J	0.253 J
1,2-dichloroethane 1.1-dichloroethene	1.0	ND ND	ND ND	ND ND	0.86J	ND ND	0.20 J	0.53 J	ND ND	0.21 J	ND ND	ND ND	0.19 J	0.38 J	0.42 J	ND ND	0.39 J	0.37 J	0.37 J	1.3 J	0.21 J	0.85 J	0.40 J	0.27 J	0.41 J	0.70 J	0.340 J	0.235 J 0.981 J	1.37 J
cis-1.2-dichloroethene	0.461	ND	ND ND	ND ND	1.6	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND 1.51	ND ND	ND ND	ND ND	ND.	0.41 J	ND ND	0.340 J	0.351 J	0.475 J
trans-1.2-dichloroethene	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
1.2-dichloropropane	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1.3-dichloropropene	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,3-dichloropropene	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.4-dioxane	NR NR	NR NR	NB NB	NB NB	NB NB	NB NB	NR NR	NB.	NB NB	NB.	NR NR	NB.	NR NR	NR NR	NB NB	NR NR	NB NB	NB NB	NB.	NR NR	NB NB	NB NB	NR NR	NB.	ND ND	NR NR	NB.	NR NR	NB NB
Ethylbenzene	ND ND	ND.	ND.	ND ND	ND ND	ND ND	NR NR	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	ND ND	ND ND	ND ND	ND.	ND ND
2-hexanone	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NB NB	NB NB	NR NR	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
isopropylbenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.
methyl acetate	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NK NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
Methylene chloride	NR NR	ND.	ND.	ND ND	ND ND	ND ND	NR NR	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND.	ND ND	ND ND	0.431	ND ND	ND.	ND ND	ND ND	ND.	ND.	ND ND
4-methyl-2-pentanone	NR NR	ND	ND ND	ND ND	ND ND	ND ND	NR NR	NB NB	NB NB	NR NR	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	NR NR	NR NR	NB.	NR NR	NB NB	0.43 J NR	NR NR	NR NR	NR.	NR NR	NR.	NR NR	NR NR
4-metnyi-2-pentanone styrene	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NK NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	ND NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR
1,1,2,2-tetrachloroethane	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NK ND	NR ND	ND ND	NR ND	NR ND	NR ND	NK ND	NK ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NK ND	NK ND	NR ND	NR ND	NR ND	NK ND
1,2,4-trichlorobenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NB NB	NR.	NB.	NB.	NR NR	NR NR	NB.	NB NB	NR NR	NB NB	NR NR	NB NB	NB NB	NB.	NR NR	NB NB	NB NB	NR NR	NB.	NR NR	NR NR	NR NR	NR NR	NB NB
Tetrachloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.31 J	0.46 J	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	ND ND	ND	ND ND	ND ND	ND ND	ND ND	NR.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1.1-trichloroethane	ND ND	ND ND	ND ND	ND ND	0.671	ND ND	NK ND	0.66 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.29 J	ND ND	0.39 I	0.48 J	ND ND	0.60 J	ND ND	0.48 J	0.24 J	ND ND	0.26 J	0.40 J	ND ND	0.481 J	0.668 J
1,1,1-trichloroethane	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND NR	U.66 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	U.29 J	ND ND	0.39 J	U.48 J ND	ND ND	ND ND	ND ND	U.48 J ND	ND ND	ND ND	U.26 J	0.40 J ND	ND ND	U.481 J ND	0.668 J
		11	7.5	8.0	308	7.7	6.7	3 4 I	5.6	4.6	5.4	ND 5.5	4 S	2.3	1.8	5.0	4.4	3.3	2.5	2 7	4 1	2.9	4.3	4 1	ND 5.4	1.5	2 66	2.12 J	1,30 J
Trichloroethene	21 ND	ND ND	7.5 ND	8.0 ND	308 ND	7.7 ND	6.7 ND	3.4 J ND	5.6 ND	4.6 ND	5.4 ND		4.5 ND	2.3 ND	1.8 ND	5.0 ND	4.4 ND	3.3 ND	2.5 ND	Z.7 ND	4.1 ND	2.9 ND	4.3 ND	4.1 ND	5.4 ND	1.5 ND	2.66 ND		1.30 J ND
Vinyl chloride xylenes (total)	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR	ND NB	ND NR	ND NB	ND NR	ND NR	ND NR	ND NR	ND NB	ND ND	ND NR	ND NR	ND NR	ND NR	ND NR	ND NR
xylenes (total) Mercury (EPA 245.1) ug/L	NB NB	<0.20	<0.20	<0.20	<0.20	<0.20	NR ND	NR ND	NR ND	ND ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NK ND	NR ND	NR ND	NR ND	NR ND
TSS (SM20 2540D) mg/L	NR NR	16.0	<4.0	<4.0	<4.0	<4.0	ND ND	ND 11	ND 6	ND c	ND ND	ND ND	ND ND	22 22	ND ND	ND ND	ND ND	ND 0	ND c	ND E	ND ND	ND ND	1.4	ND ND	1.3	ND ND	ND ND	1 3	2.7
133 (3WIZU Z34UU) MR/L	n/K	10.0	N4.U	\4.U	\4.U	V4.U	ND	- 41	ь	- 5	ND	, AD	ND	22	ND	ND	nD nD	9	3		nD.	NU	1.4	MD	1.5	ND	ND	1.5	2.1

Table 8 GM-38 Area Groundwater Remediation Groundwater Testment Plant Naval Weapons industrial Reserve Plant - Bethpage, NY Summary of Historical Groundwater Analytical Results Through Fourth Quarter 2019

Sample ID														TP.	01														IW-1 M	W-1	IW-1			RW,3 (1)		
Sample Date	1/21/2010	6/15/2011	9/27/2011	9/27/2011	11/20/2011	2/9/2012	6/6/2012	9/22/2012	12/4/2012	2/12/2012	2/12/2012	6/17/2012[2]	9/17/2012	9/17/2012	12/16/2012	2/25/2014	9/22/2014	2/25/2015	9/14/2015	9/14/2015	2/21/2016	9/14/2016 3	1/2017	9/12/2017	2/5/2019	0/11/2019	2/6/2019	9/25/2019			5/27/2009	0/15/2015	2/22/2016		3/2/2017	9/12/2017
Comments	1/21/2010	6/15/2011	5/27/2011	Duplicate	11/30/2011	3/8/2012	0/0/2012	0/22/2012	12/4/2012	3/13/2013	Duplicate	6/17/2013	3/11/2013	Duplicate	12/10/2015	3/23/2014	3/22/2014	3/23/2013	3/14/2013	Duplicate	3/21/2016	3/14/2010 3	1/201/	3/13/2017	3/3/2018	3/11/2010	3/0/2019	3/23/2013	3/3/2003 6	0/10/2015	3/2//2005	3/13/2013	3/22/2010	5/15/2016	3/2/2017	5/15/2017
Well Depth (Ft)				Dupiicate					-		Dupiicate			47	2					Dupiicate									150		230			530	_	
Screened Interval (Ft)	1													450-															20-15		200-230			392-412	-	
VOCS (EPA 624) ug/L (4)				1					1					7,50	1,0								- 1								200-230			332-412	$\overline{}$	_
Accolain	NR	NR	ND	ND	ND	ND	ND	30 B	ND	ND	ND	MP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	NR	NR	MP	ND	ND	ND	ND	ND
Acrylonitrile	NR.	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	NR NR	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR.	NR NR	NR.	ND ND	ND ND	ND ND	ND ND	ND ND
Acetone	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	ND ND	ND.	ND.	ND ND	ND ND	ND ND	NB NB	NR.
Renzene	ND ND	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.	ND.	ND ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND.
Bromodichloromethane	NB NB	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.34 J	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.53 J	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromoform	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	0.33 J	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	NR NR	NR NR	ND.	ND.	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND		ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND
2-butanone	NR NR	NR NR	NR NR	ND	NR NR	NB.	NR NR	NR NR	NR NR	ND ND	NR NR	ND ND	ND	NB NB	NR NR	NR NR	NB NB	NR NR	ND	NB NB	NR NR	NR	NR NR	NR NR	P.	ND ND	ND	ND ND	NR NR	NR NR	NR NR	NR NR				
carbon disulfide	NR NR	NR NR	NR.	NR NR	NR.	NR NR	NR NR	NR.	NR NR	NP	NR NR	NR NR	NR.	NR NR	NP	NR NR	NR NR	NR NR	NR NR	NR NR	NR	NR NR	NR	NR NR	NR NR	NR	NR NR	NR NR	ND ND	NB NB	ND.	NR NR	NP	NR NR	NR NR	NR
Carbon tetrachloride	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND ND	NR	ND	ND ND	ND ND	ND.	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
Dibromochloromethane	NB NB	NR	ND	ND ND	ND ND	ND.	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	NR NR	ND	ND	ND ND	ND	ND ND	ND ND	ND ND
Chloroethane	NR	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-chloroethylvinyl ether	NR	NR	ND	ND	ND	ND	ND	ND	ND	2.0 R	2.0 R	NR	ND	ND	ND	ND	ND	ND	2.0 R	ND	ND	ND	NR	ND	ND	ND	NR	NR	NR	NR	NR	ND	ND	ND	NR	ND
Chloroform	ND	NR	0.68 J	0.74 J	ND	0.74 J	0.82 J	ND	2.5 J	1.2	1.1	11	5.2 J	ND	7.4	6.8 J	1.9	2.6	1.3	1.3	1.7	1.6	1.2	6.3	2.0	1.08	0.684 J	ND	0.94J	ND	0.98J	ND	0.46 J	0.26 J	ND	0.28 J
Chloromethane	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND
cyclohexane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR
1,2-dibromo-3-chloro-propane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	ND	NR	NR	NR	NR	NR
1,2-dibromomethane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	ND	NR	NR	NR	NR	NR
1,2-dichlorobenzene	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND
1,3-dichlorobenzene	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND
1,4-dichlorobenzene	NR	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	ND	ND	ND	ND	ND	ND
dichlorodifluoromethane	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR
1,1-dichloroethane	3.6J	5.0	3.7	3.7	2.9	3.7	3.7	3.4	1.1	1.5	1.4	3.2	2.1 J	2.8	1.5	ND	1.3 J	2.5	2.1	2.0	1.8		0.78 J	1.3	1.2	1.24	0.717 J	0.381 J	0.391	0.51	0.221	1.9	2.1	1.8	1.4 J	1.5
1,2-dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	0.35 J	0.36 J	0.37 J	0.30 J	ND	ND	ND	ND	0.67 J	0.88 J	0.82 J	0.82 J	0.86 J		0.45 J	0.79	0.79 J	0.650 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-dichloroethene	ND	1.7	1.1	1.0	1.0	1.2	1.4	1.1	0.23 J	0.44 J	0.42 J	0.77	0.66 J	0.74 J	0.33 J	0.22 J	0.47 J	1.2 J	0.77 J	0.83 J	0.75 J	0.68 J	0.23 J	0.36 J	0.46 J	0.420 J	ND	ND	ND	ND	ND	1.9	2.5	1.5	1.3 J	1.4
cis-1,2-dichloroethene	190 3.01	43.4	40.4	40.2	74.9	53.3	29.9	16.1	4.2 ND	5.8 ND	5.8 ND	8.7 ND	14.1 J	14.7 ND	8.0 ND	5.3 ND	7.6 ND	13.4 ND	11.3 ND	11.6 ND	10.8 ND	12 ND	ND ND	ND ND	12 ND	12.1 ND	6.01 ND	3.75 J	ND ND	ND ND	ND ND	1.6 ND	0.231	1.4 ND	1.6 J	1.9 ND
trans-1,2-dichloroethene			1.0 J	0.92 J	1.1 ND	0.87 J	0.79 J ND	0.35 J	ND ND				ND ND	ND ND				ND ND					ND ND	ND ND			ND ND				ND ND	ND ND	0.23 J ND			ND ND
1,2-dichloropropane	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-dichloropropene	NR NR	NR NR	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1,3-dichloropropene 1,4-dioxane	NR.	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NB NB	NR NR	NR NR	ND ND	NB NB	NB NB	NR NR	NB NB	NR NR	NR NR	NR NR	NB NB	NB NB	ND ND	ND ND	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	ND	NB NB	NR NR	NR NR	NB NB	ND ND
Ethylbenzene	ND ND	NR NR	ND.	ND ND	ND ND	ND.	ND ND	ND.	ND ND	ND ND	ND ND	ND.	ND.	ND ND	ND ND	ND ND	ND.	ND ND	ND ND	ND ND	ND.	ND ND	NR.	ND ND	ND ND	ND.	ND ND	ND.	ND ND	ND.	ND.	ND ND	ND.	ND ND	NR NR	ND ND
2-hexanone	NR NR	NR NR	NR NR	NR NR	NR NR	NB.	NR NR	NR NR	NR NR	NB NB	NR NR	ND ND	NR NR	NB NB	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR	NB NB	NR NR	NR	NR NR	NR NR	ND ND	ND ND	ND.	NR NR	NR NR	NR NR	NR NR	NR NR
isopropylbenzene	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR NR	NR.	NR NR	NR.	NR.	NR NR	NR.	NR NR	NR NR	NR NR	NB NB	ND ND	NR NR	NR NR	NR NR	NR NR	NR.
methyl acetate	NR.	NR	NR.	NR NR	NR.	NR NR	NR.	NR NR	NR NR	NR NR	NR NR	NR.	NR.	NR NR	NR.	NR.	NR.	NR NR	NR.	NR NR	NR.	NR NR	NR	NR NR	NR NR	NR	NR NR	NR NR	NR NR	NR.	ND.	NR NR	NR NR	NR.	NR NR	NR
Methylene chloride	NR NR	NR NR	ND.	ND.	ND ND	ND.	ND ND	ND	ND.	ND.	ND.	ND.	ND	ND.	ND.	ND ND	ND.	ND.	ND	ND.	0.371	ND ND	ND	ND.	ND ND	ND	ND.	ND ND	ND ND	ND.	ND.	ND ND	0.641	ND.	ND.	ND.
4-methyl-2-pentanone	NR.	NR	NR.	NB NB	NR.	NB.	NR NR	NB.	NR NR	NB NB	NR NR	ND ND	NB	NR.	NR NR	NR.	NR.	NR NR	NB.	NB NB	NR.	NB NB	NR.	NB.	NR NR	NR	NB NB	NB.	ND ND	ND	ND	NB.	NR.	NB.	NB NB	NR.
styrene	NR.	NR.	NR.	NR NR	NR.	NR	NR.	NR.	NR.	NR.	NR.	NR NR	NR	NR.	NR.	NR.	NR.	NR NR	NR.	NR NR	NR.	NR NR	NR.	NR.	NR NR	NR	NR NR	NR.	ND ND	NB.	ND	NR.	NR.	NR.	NR NR	NR.
1,1,2,2-tetrachloroethane	NB	NB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-trichlorobenzene	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	NR	NR	NR	NR
Tetrachloroethene	3.4J	3.3	4.4	4.4	3.6	4.7	6.0	4.0	0.42 J	0.34 J	0.32 J	1.6	0.77 J	1.5 J	0.57 J	ND	ND	0.48 J	0.82 J	0.88 J	0.72 J	0.37 J	0.22 J	ND	ND	ND	ND	ND	ND	0.55	ND	0.68 J	0.79 J	0.64 J	0.60 J	0.65 J
Toluene	ND	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19J	ND	ND	ND	ND	ND
1,1,1-trichloroethane	ND	0.63 J	0.73 J	0.76 J	0.29 J	0.57 J	1.1 J	0.86 J	ND	0.35 J	0.35 J	0.62	0.66 J	0.66 J	0.50 J	ND	ND	ND	ND	ND	ND	0.49 J	0.25 J	0.29 J	0.27 J	ND	ND	ND	0.47	0.92	0.491	0.96 J	1.3	0.95 J	ND	0.83 J
1,1,2-trichloroethane	ND	NR	0.31 J	0.31 J	0.32 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30 J	0.49 J	0.29 J	ND	0.45 J
Trichloroethene	65	35.3	41.0	39.6	38.0	38.1	40.4	27.9	22.0	25.9	25.4	25	27.0	26.7	29.8	21.7	31.9	52.3	53.0	53.9	61.7	47	21	54	55	38.2	28.3	14.4	ND	ND	0.17J	237	371	230	230	220
Vinyl chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
xylenes (total)	ND	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	ND	NR	ND	NR	NR	NR	NR	NR
Mercury (EPA 245.1) ug/L	NR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NR	NR	0.20	ND	ND	ND	ND	ND
TSS (SM20 2540D) mg/L	NR	63	18	NR	ND	7	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	NR	NR	2.4	ND	ND	ND	2.4	8.1
TSS (SM20 2540D) mg/L	NR	63	18	NR	ND	7	6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	NR	NR	2.4	ND	ND	ND	2.4	8.1

Note:
VIOC analysis changed from SW846 82608 to EPA Method 624 in January 2010.
D = Distrion
J = estimated value
No = not extend / required
No = not reported / required
R = not reported / required

(1) Analytical results presented above for samples collected from RW3-MW3 and RW3-MW4 in November 2010 are not consistent with historical trends, indicating samples may have been switched. For trend analysis, concentrations for RW3-MW3 were used for RW3-MW4 for November 2010 and view or the result of RW3-WW4 for November 2010 and view or the result of RW3-WW4 for November 2010 and view or the RW3-WW4 for RW3-WW4 for November 2010 and view or the RW3-WW4 for RW4-WW4 for RW3-WW4 for RW4-W4 for R

Data prior to June 2011 were collected by others.

APPENDIX A

NYSDEC EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS AND MONTHLY DMRS

JUN

Bureau of Water Permits, 4th Floor 625 Broadway, Albany, New York 12233-3505 Phone: (518) 402-8111 • FAX: (518) 402-9029

Website: www.dec.state.ny.us

MEMORANDUM

TO:

Steven Scharf, DER

FROM:

Jean Occidental, DOW, Bureau of Water Permits

SUBJECT:

Naval Weapons Industrial Reserve Plant (NWIRP); DER Site # 1-01-001

DRAINAGE BASIN: na

DATE:

June 6, 2008

In response to your request and the permittee's SPDES Permit Equivalent Application dated April 27, 2008, attached is the effluent criteria for the above noted groundwater remediation discharge.

The Division of Water does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. The Division of Environmental Remediation will be responsible for ensuring compliance with the attached effluent criteria and approval of all engineering submissions. Additional Condition (1) identifies the contact to send all effluent results, engineering submissions, and modification requests. The Regional Water Engineer should be kept appraised of the status of these discharges and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call me at (518) 402-8116.

Attachment

cc: (w/att)

RWE, Region 1

C. Webber

BWP Permit Coordinator

Naval Weapons Industrial Reserve Plant

Jun 09 08 02:52p

DER site # 1-01-001 Page 1 of 2

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period begin	ing: April 1, 2009
and lasting until:	April 1, 2014
the discharges from the	entment facility to Groundwater shall be limited and monitored by the operator

the discharges from the treatment facility to Groundwater shall be limited and monitored by the operator as specified below:

	Limite	utions		I .	Monitoring rements
Outfall and Parameters	Daily Avg.	Daily Max.	Units	Measurement Frequency	Sample Type
Treated Groundwater Remediation	n Discharge from:	Recovery Wells 1	, 2, and 3		
Flow	Monitor	1100	GPM	Continuous	Recorder
pH (range)	5.5 -	8.5	SU	Weekly	Grab
1,1-Dichloroethane	NA	5	µg/l	Monthly 1	Grab
1,2-Dichloroethane	NA	0.6	µg/l	Monthly 1	Grab
1,1-Dichloroethene	NA	5	µg/l	Monthly 1	Grab
cis-1,2-Dichloroethene	NA	5	µg/l	Monthly 1	Grab
trans-1,2-Dichloroethene	NA	5	µg/l	Monthly 1	Grab
Tetrachloroethene	NA	5	µg/l	Monthly 1	Grab
1,1,1-Trichloroethane	NA	5	µg/l	Monthly ¹	Grab
Trichloroethene	NA	5	µg/l	Monthly ¹	Grab
Vinyl chloride	NA	2	µg/l	Monthly 1	Grab
Mercury	NA	0.25	hâ∖l	Monthly ¹	Grab

Footnotes:

(1) The minimum measurement frequency shall be monthly following a period of 24 consecutive weekly sampling events showing no exceedances of the stated discharge limitations.

Naval Weapons Industrial Reserve Plant

Bura

DER site # 1-01-001 Page 1 of 2

Additional Conditions:

(1) Discharge is not authorized until such time as an engineering submission showing the method of treatment is approved by the Department. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Steven Scharf
Division of Environmental Remediation
NYSDEC, 625 Broadway
Albany, NY 12233-7015
Phone: (518) 402-9620

With a copy sent to:

Regional Water Engineer NYSDEC - Region 1 Building 40, SUNY Campus Stony Brook, New York 11790-2356 Phone: (631) 444-0354

- (2) Only site generated wastewater is authorized for treatment and discharge.
- Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- (4) Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- (5) This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau D 625 Broadway, 12th Floor, Albany, NY 12233-7013 P: (518) 402-9676 I F: (518) 402-9773 www.dec.ny.gov

August 31, 2017

Ms. Lora Fly Remedial Project Manager Naval Facilities Engineering Command 9324 Virginia Ave. Bldg. Z-144, Code OPTE3-6 Norfolk, VA 23511

> Re: SPDES Permit Equivalent Application, Naval Weapons Industrial Reserve Plant Site (NWIRP), Bethpage. NYSDEC Site No 130003B

Lora:

The Department of the Navy (Navy) has requested to renew the State Pollutant Discharge Elimination System (SPDES) effluent for the GM-38 groundwater extraction and treatment system. The New York State Department Environmental Conservation (NYSDEC) has reviewed this request and has established discharge limits for the GM-38 system. These discharge limits, and associated reporting requirements, are detailed in the attached memorandum from the NYSDEC Division of Water.

Thanks and please do not hesitate to contact me at (518) 402-9478 or <u>jason.pelton@dec.ny.gov</u> with any questions.

Sincerely,

Jason M. Pelton
Project Manager
Remedial Section B, Remedial Bureau D
Division of Environmental Remediation

ec: B. Caldwell, EnSafe/Resolution Consultants

S. Edwards, NYSDEC

D. Hesler, NYSDEC

C. Haas, NYSDEC Region 1

W. Parish, NYSDEC Region 1

S. Karpinski, NYSDOH

J. DeFranco/J. Lovejoy, NCDOH

L. Thantu, USEPA Region 2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Water, Bureau of Permits 625 Broadway, Albany, New York 12233-3505 P: (518) 402-8111 | F: (518) 402-9029 www.dec.ny.gov

MEMORANDUM

TO: Jason Pelton, DER

FROM: Robert Wither, Chief, South Permits Section, DOW

SUBJECT: Naval Weapons Industrial Reserve Plant, DER Site #1-30-003B

DATE: August 18, 2017

In response to your request received July 13, 2017, attached please find effluent limitations and monitoring requirements for the above noted remediation discharge.

The DOW does not have any regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. DER will be responsible for ensuring compliance with the attached effluent limitations and monitoring requirements, and approval of all engineering submissions. Footnote 1 identifies the appropriate DER contact as the place to send all effluent results, engineering submissions, and modification requests. The Regional Water Engineer should be kept appraised of the status of this discharge and, in accordance with the attached criteria, receive a copy of the effluent results for informational purposes.

If you have any questions, please call me at 518-402-8123.

Attachment (Effluent Limitations and Monitoring Requirements)

cc: Cathy Haas, RWE, Region 1

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

During the period beginning **September 1, 2017** and lasting until **August 31, 2027** the discharges from the wastewater treatment facility to groundwater, Class GA shall be limited and monitored by the operator as specified below:

Outfall Number and	Discharge L	imitations	11.7.	Minimum Mo Requirem	
Parameter	Monthly Avg.	Daily Max	Units	Measurement Frequency	Sample Type
Outfall 001 - Treated Remedia	tion Discharge	e :			
Flow	Monitor	1100	GPM	Continuous	Recorder
pH (range)	5.5 -	8.5	SU	Monthly	Grab
1,1-Dichloroethanrie	NA	5	μg/l	Monthly	Grab
1,2-Dichloroethane	NA	0.6	μg/l	Monthly	Grab
1,1-Dichloroethene	NA	5	μg/l	Monthly	Grab
cis-1,2-Dichloroethene	NA	5	μg/l	Monthly	Grab
trans-1,2-Dichloroethene	NA	5	μg/l	Monthly	Grab
Tetrachloroethene	NA	5	μg/l	Monthly	Grab
1,1,1-Trichloroethane	NA	5	μg/1	Monthly	Grab
Trichloroethene	NA	5	μg/l	Monthly	Grab
Vinyl Chloride	NA	2	μg/l	Monthly	Grab
Mercury	NA	0.25	μg/l	Monthly	Grab
Chloroform	NA	5	μg/l	Monthly	Grab
Trichlorotrifluoroethane (Freon 113)	NA	5	μg/l	Monthly	Grab
1,4 Dioxane	NA	Monitor	μg/l	Monthly	Grab

Additional Conditions:

1. The discharge rate may not exceed the effective or design treatment system capacity. All monitoring data, engineering submissions and modification requests must be submitted to:

Jason Pelton
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233- 7015
518-402-9870

With a copy sent to:

Regional Water Engineer, Region 1 NYSDEC SUNY @ Stony Brook 50 Circle Road Stony Brook, NY 11790-3409

- 2. Only site generated wastewater is authorized for treatment and discharge.
- 3. Authorization to discharge is valid only for the period noted above but may be renewed if appropriate. A request for renewal must be received 6 months prior to the expiration date to allow for a review of monitoring data and reassessment of monitoring requirements.
- 4. Both concentration (mg/l or μg/l) and mass loadings (lbs/day) must be reported to the Department for all parameters except flow and pH.
- Any use of corrosion/scale inhibitors, biocidal-type compounds, or other water treatment chemicals used in the treatment process must be approved by the department prior to use.
- 6. This discharge and administration of this discharge must comply with the substantive requirements of 6NYCRR Part 750.

11 November 2019

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT

GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2

OCTOBER 2019 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 October to 31 October 2019 are presented in Attachment A. In the October reporting period, the GWTP was offline for approximately 12.4 hours. The plant was offline from the evening of 7 October until the morning of 8 October as the result of a regional power outage. A shorter power outage occurred in the morning of 9 October. The plant was offline on 11 Oct during the backwash effort for the LGACs.

As indicated in Attachment A, all SPDES permitted constituents are in compliance with regulatory guidelines during this reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

alut & Dryng

Robert Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results from October 2019

Cc: S. Edwards, NYSDEC D. Hesler, NYSDEC

- C. Haas, NYSDEC Region 1
- W. Parish, NYSDEC Region 1
- R. Wither, NYSDEC Division of Water
- J. Pilewski, NYSDEC Region 1 Water Engineer
- S. Karpinski, NYSDOH
- J. Lovejoy, NCDH
- C. Stein, USEPA Region 2
- G. Ennis, Nassau County Department of Public Works
- S. Urban, Nassau County Department of Public Works
- T. Licata, Town of Oyster Bay
- M. Russo, Town of Oyster Bay
- L. Fly, NAVFAC Mid-Atlantic
- B. Murray, NAVFAC Mid-Atlantic RPM
- G. Pearman, NWIRP Bethpage
- P. Schauble, KGS
- GM-38 Copy

ATTACHMENT A GROUNDWATER AND AIR SAMPLING RESULTS OCTOBER 2019

GM-38 Area Groundwater Remediation Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report October 2019

SPDES Parameters			October 2019 (1)			
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3 ⁽²⁾	Combined Influent (3) (RW-1 + RW-3)	Treated Effluent
Well Depth	N/A	ft	445	530	N/A	N/A
Screened Interval	N/A	ft bgs	335-395 410-430	392-412 442-504	N/A	N/A
Sampling Date	N/A		10/1/2019 (4)			
Effective Flowrate	1100	GPM	636	169	805	856
Total Flow	N/A	gallons	28,409,000	7,543,700	35,952,700	38,208,800
рН	5.5 - 8.5	SU	5.14	5.43	5.20	6.43
Chloroform	5	μg/L	0.347 J	0.356 J	0.35 J	ND (1.0)
1,1-Dichloroethane	5	μg/L	1.27 J	2.01 J	1.43 J	ND (1.0)
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	5	μg/L	0.676 J	0.944 J	0.732 J	ND (1.0)
cis 1,2-Dichloroethene	5	μg/L	4.30 J	1.16 J	3.64 J	ND (1.0)
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Tetrachloroethene	5	μg/L	16.9	0.210 J	13.40	ND (1.0)
1,1,1-Trichloroethane	5	μg/L	0.410 J	0.540 J	0.437 J	ND (1.0)
Trichloroethene	5	μg/L	61.8	139	78.0	0.270 J
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.617 J	0.13 J	ND (1.0)
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,4-Dioxane		μg/L	2.4	6.2	3.2	NS
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	1.0	0.2	ND (1.0)

Notes:

- J Estimated result between laboratory method detection limit and reporting limit
- D Concentration is a result of a dilution.
- ND Not detected above laboratory method detection limit. Reporting Limit (RL) given in parentheses.
- NR Not Recorded
- N/A Not Applicable
- NS Not Sampled
- (1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.
- (2) Well RW-3 was placed back in operation on 1 June, 2018.
- (3) Influent concentrations presented are the weighted average concentrations of RW-1 and RW-3.
- (4) 1,4-Dioxane was collected on 7 October 2019.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results October 2019

DAR Parameters	October 2019			
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent
Sampling Date			10/1/19	
Average Flowrate	CFM	N/A	NR	9,079
Total Flow	ft ³	N/A	NR	405,270,608
Total Flow	m ³	N/A	NR	11,475,986
1,2-Dichloroethane	μg/m³	N/A	ND	ND
cis 1,2-Dichloroethene	μg/m³	≤ 100,000 ⁽²⁾	42	73
trans 1,2-Dichloroethene	μg/m³	≤ 100,000 ` ′	ND	ND
1,2-Dichloroethene (total)	μg/m³	≤ 100,000	42	73
Toluene	μg/m³	N/A	ND	ND
Total Xylene	μg/m³	N/A	ND	ND
1,1,2-Trichloroethane	μg/m³	N/A	ND	ND
Trichloroethene	μg/m³	≤ 2600	980	ND
Vinyl Chloride	μg/m³	≤ 560	ND	ND
Tetrachloroethene	μg/m³	≤ 5100	150	ND

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

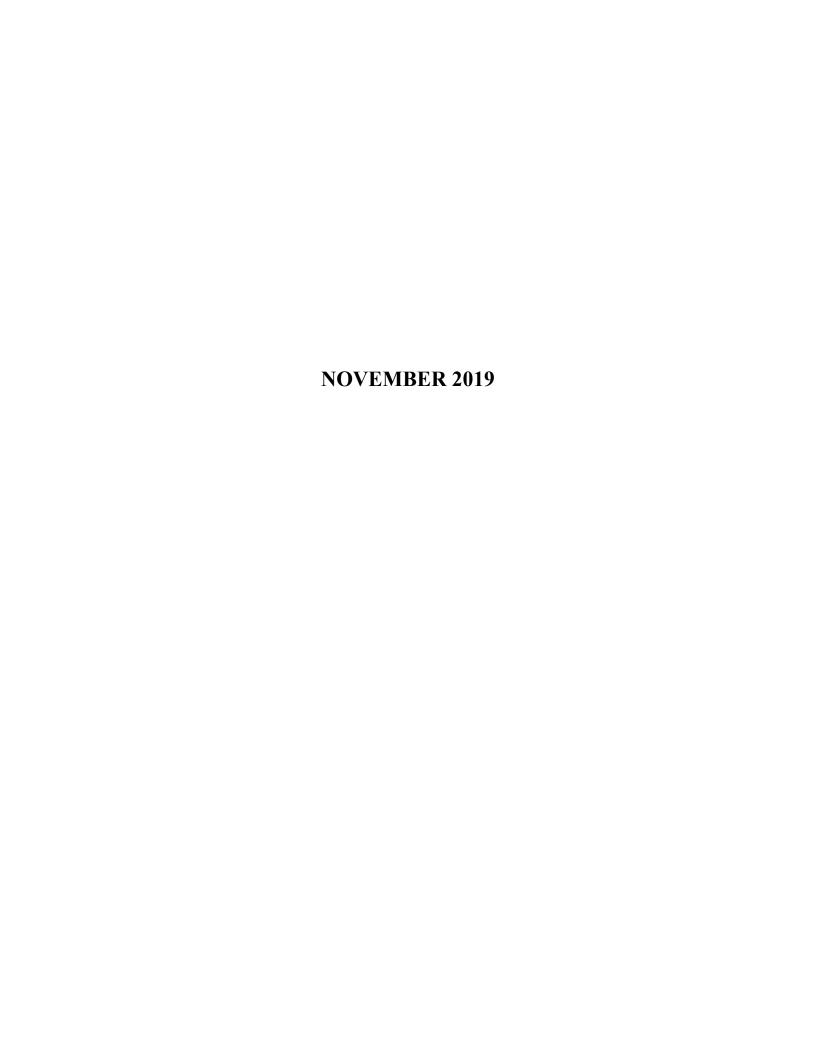
N/A - Not Applicable

NR - Not recorded

- (1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.
- (2) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions October 2019

DAR Parameters	Units	Discharge Goal ⁽¹⁾	October 2019
Sampling Date			10/1/19
Average Flowrate	CFM	N/A	9,079
Total Flow	ft ³	N/A	405,270,608
Total Flow	m ³	N/A	11,475,986
Trichloroethene	lb/hr	≤ 0.09	0.00000
Vinyl Chloride	lb/hr	≤ 0.02	0.00000
1,2 Dichloroethene	lb/hr	≤ 11	0.00248
1,2-Dichloroethane	lb/hr	N/A	0.00000
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000


Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

13 December 2019

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT

GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2

NOVEMBER 2019 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 November to 30 November 2019 are presented in Attachment A. No downtime was reporting during the reporting period.

As indicated in Attachment A, all SPDES permitted constituents are in compliance with regulatory guidelines during this reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

olut & Dryng

Robert Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results from November 2019

Cc: S. Edwards, NYSDEC

D. Hesler, NYSDEC

C. Haas, NYSDEC Region 1 W. Parish, NYSDEC Region 1

R. Wither, NYSDEC Division of Water

- J. Pilewski, NYSDEC Region 1 Water Engineer
- S. Karpinski, NYSDOH
- J. Lovejoy, NCDH
- C. Stein, USEPA Region 2
- G. Ennis, Nassau County Department of Public Works
- S. Urban, Nassau County Department of Public Works
- T. Licata, Town of Oyster Bay
- M. Russo, Town of Oyster Bay
- L. Fly, NAVFAC Mid-Atlantic
- B. Murray, NAVFAC Mid-Atlantic RPM
- G. Pearman, NWIRP Bethpage
- P. Schauble, KGS
- GM-38 Copy

ATTACHMENT A GROUNDWATER AND AIR SAMPLING RESULTS NOVEMBER 2019

GM-38 Area Groundwater Remediation Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report November 2019

SPDES Parameters			November 2019 ⁽¹⁾						
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3 ⁽²⁾	Combined Influent (3) (RW-1 + RW-3)	Treated Effluent			
Well Depth	N/A	ft	445	530	N/A	N/A			
Screened Interval	N/A	ft bgs	335-395 392-412 N/A 410-430 442-504		N/A				
Sampling Date	N/A		11/4/19						
Effective Flowrate	1100	GPM	613	161	775	821			
Total Flow	N/A	gallons	26,494,234	6,965,796	33,460,030	35,459,550			
рН	5.5 - 8.5	SU	5.09	5.35	5.14	6.12			
Chloroform	5	μg/L	0.257 J	0.295 J	0.26 J	ND (1.0)			
1,1-Dichloroethane	5	μg/L	1.27 J	2.08 J	1.44 J	ND (1.0)			
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)			
1,1-Dichloroethene	5	μg/L	0.687 J	0.954 J	0.743 J	ND (1.0)			
cis 1,2-Dichloroethene	5	μg/L	3.92 J	1.15 J	3.34 J	ND (1.0)			
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)			
Tetrachloroethene	5	μg/L	15.2	ND (1.0)	12.04	ND (1.0)			
1,1,1-Trichloroethane	5	μg/L	0.459 J	0.482 J	0.464 J	ND (1.0)			
Trichloroethene	5	μg/L	58.6	134	74.3	0.226 J			
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.570 J	0.12 J	ND (1.0)			
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)			
1,4-Dioxane		μg/L	2.6	6.1	3.3	NS			
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)			
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	7.3	1.5	ND (1.0)			

Notes:

- J Estimated result between laboratory method detection limit and reporting limit
- D Concentration is a result of a dilution.
- ND Not detected above laboratory method detection limit. Reporting Limit (RL) given in parentheses.
- NR Not Recorded
- N/A Not Applicable
- NS Not Sampled
- (1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.
- (2) Well RW-3 was placed back in operation on 1 June, 2018.
- (3) Influent concentrations presented are the weighted average concentrations of RW-1 and RW-3.
- (4) pH reading was collected on 18 November 2019.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results November 2019

DAR Parameters			Noven	November 2019		
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent		
Sampling Date			11	/4/19		
Average Flowrate	CFM	N/A	NR	9,070		
Total Flow	ft ³	N/A	NR	391,828,943		
Total Flow	m ³	N/A	NR	11,095,360		
1,2-Dichloroethane	μg/m³	N/A	1.9 J	ND		
cis 1,2-Dichloroethene	μg/m³	1 100 000 (2)	48	63		
trans 1,2-Dichloroethene	μg/m³	≤ 100,000 ⁽²⁾	ND	ND		
1,2-Dichloroethene (total)	μg/m³	≤ 100,000	48	63		
Toluene	μg/m³	N/A	ND	ND		
Total Xylene	μg/m³	N/A	ND	ND		
1,1,2-Trichloroethane	μg/m³	N/A	ND	ND		
Trichloroethene	μg/m³	≤ 2600	1200	ND		
Vinyl Chloride	μg/m³	≤ 560	ND	ND		
Tetrachloroethene	μg/m³	≤ 5100	160	ND		

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

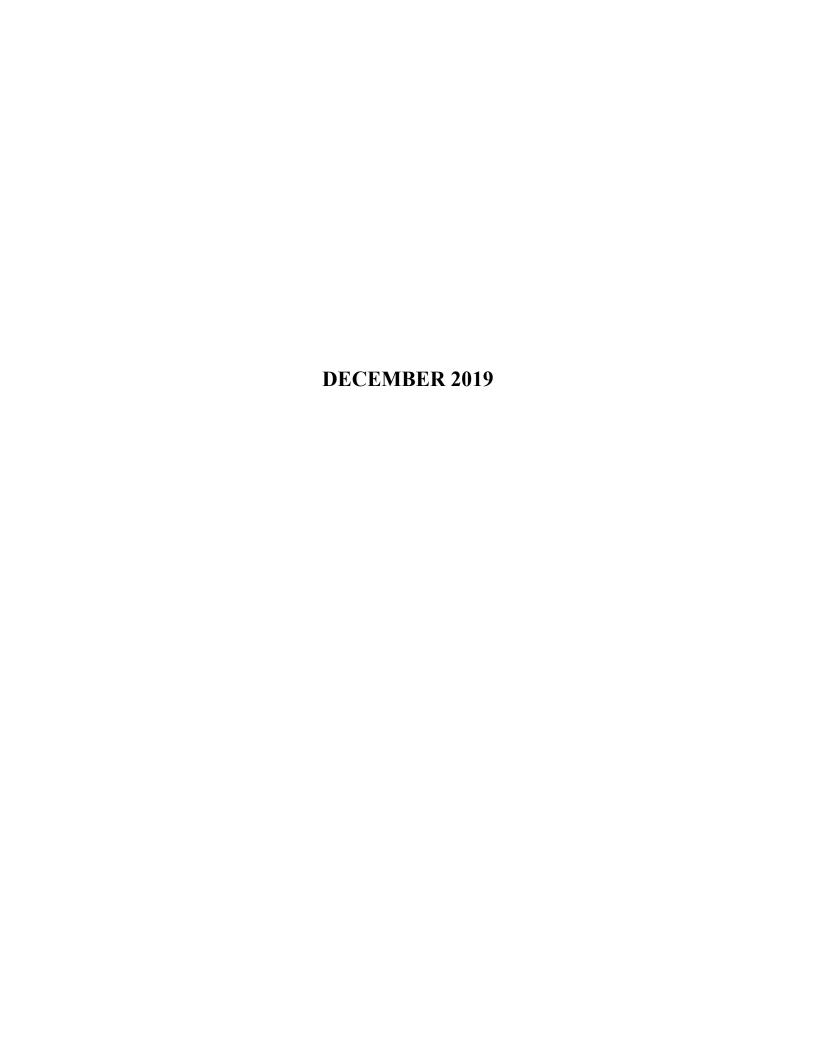
N/A - Not Applicable

NR - Not recorded

- (1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.
- (2) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions November 2019

DAR Parameters	Units	Discharge Goal ⁽¹⁾	November 2019
Sampling Date			11/4/19
Average Flowrate	CFM	N/A	9,070
Total Flow	ft ³	N/A	391,828,943
Total Flow	m ³	N/A	11,095,360
Trichloroethene	lb/hr	≤ 0.09	0.00000
Vinyl Chloride	lb/hr	≤ 0.02	0.00000
1,2 Dichloroethene	lb/hr	≤ 11	0.00214
1,2-Dichloroethane	lb/hr	N/A	0.00000
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000


Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

17 January 2020

Mr. Jason Pelton New York State Department of Environmental Conservation Division of Solid & Hazardous Materials 625 Broadway Albany, NY 12233-7252

Subject: GROUNDWATER DISCHARGE MONITORING/AIR EMISSION REPORT

GM-38 AREA, NWIRP BETHPAGE, NY; DER SITE # 1-30-003B-OU 2

DECEMBER 2019 REPORTING PERIOD

Dear Mr. Pelton:

KOMAN Government Solutions, LLC (KGS) is submitting this monthly monitoring report of the groundwater discharge and air emission results for the Groundwater Treatment Plant (GWTP) located at the Former Naval Weapons Industrial Reserve Plant (NWIRP), Bethpage, NY, GM-38 Area. This report was prepared in accordance with GWTP operational requirements for DER Site # 1-30-003B-OU 2, and the SPDES Permit Equivalent # 13003B.

GWTP operational data from 1 December to 31 December 2019 are presented in Attachment A. The plant was down for approximately 36.5 hours over the course of the reporting period because of the installation of pump 4B and from various backwashing events.

As indicated in Attachment A, all SPDES permitted constituents are in compliance with regulatory guidelines during this reporting period.

Please contact me at 610-400-0636 with any questions or concerns you may have regarding this report.

Sincerely,

KOMAN Government Solutions, LLC

Kolut & Dryng

Robert Gregory Project Manager

Attachment A: Groundwater and Air Sampling Results from December 2019

Cc: S. Edwards, NYSDEC

D. Hesler, NYSDEC

C. Haas, NYSDEC Region 1 W. Parish, NYSDEC Region 1

R. Wither, NYSDEC Division of Water

- J. Pilewski, NYSDEC Region 1 Water Engineer
- S. Karpinski, NYSDOH
- J. Lovejoy, NCDH
- C. Stein, USEPA Region 2
- G. Ennis, Nassau County Department of Public Works
- S. Urban, Nassau County Department of Public Works
- T. Licata, Town of Oyster Bay
- M. Russo, Town of Oyster Bay
- L. Fly, NAVFAC Mid-Atlantic
- B. Murray, NAVFAC Mid-Atlantic RPM
- G. Pearman, NWIRP Bethpage
- P. Schauble, KGS
- GM-38 Copy

ATTACHMENT A GROUNDWATER AND AIR SAMPLING RESULTS DECEMBER 2019

GM-38 Area Groundwater Remediation Groundwater Treatment Plant

Naval Weapons Industrial Reserve Plant - Bethpage, NY Discharge Monitoring Report December 2019

SPDES Parameters			December 2019 ⁽¹⁾					
Process Stream	Daily Treated Effluent Maximum ⁽¹⁾	Units	RW-1	RW-3 ⁽²⁾	Combined Influent (3) (RW-1 + RW-3)	Treated Effluent		
Well Depth	N/A	ft	445	530	N/A	N/A		
Screened Interval	N/A	ft bgs	335-395 410-430	392-412 442-504	N/A	N/A		
Sampling Date	N/A			12/	2/19			
Effective Flowrate	1100	GPM	616	160	776	832		
Total Flow	N/A	gallons	27,514,266	7,121,604	34,635,870	37,137,950		
рН	5.5 - 8.5	SU	5.04	5.37	5.11	6.45		
Chloroform	5	μg/L	0.300 J	0.320 J	0.30 J	ND (1.0)		
1,1-Dichloroethane	5	μg/L	1.34 J	2.50 J	1.58 J	ND (1.0)		
1,2-Dichloroethane	0.6	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
1,1-Dichloroethene	5	μg/L	0.920 J	1.22 J	0.982 J	ND (1.0)		
cis 1,2-Dichloroethene	5	μg/L	4.86 J	1.29 J	4.13 J	ND (1.0)		
trans 1,2-Dichloroethene	5	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
Tetrachloroethene	5	μg/L	18.5	0.260 J	14.75	ND (1.0)		
1,1,1-Trichloroethane	5	μg/L	0.550 J	0.590 J	0.558 J	ND (1.0)		
Trichloroethene	5	μg/L	73.2	159	90.8	ND (1.0)		
1,1,2-Trichlorotrifluoroethane	5	μg/L	ND (1.0)	0.650 J	0.13 J	ND (1.0)		
Vinyl Chloride	2	μg/L	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)		
1,4-Dioxane		μg/L	2.2	5.4	2.9	NS		
Mercury	0.00025	mg/L	ND (0.00010)	ND (0.00010)	ND (0.00010)	ND (0.00010)		
Total Suspended Solids (TSS)	N/A	mg/L	ND (1.0)	8.4	1.7	ND (1.0)		

Notes:

- J Estimated result between laboratory method detection limit and reporting limit
- D Concentration is a result of a dilution.
- ND Not detected above laboratory method detection limit. Reporting Limit (RL) given in parentheses.
- NR Not Recorded
- N/A Not Applicable
- NS Not Sampled
- (1) Wastewater discharge equivalence permit renewed on 18 August 2017. Discharge limits established for 10 years. Chloroform, 1,4-dioxane and 1,1,2-trichlorotrifluoroethane are now monitored under the new permit.
- (2) Well RW-3 was placed back in operation on 1 June, 2018.
- (3) Influent concentrations presented are the weighted average concentrations of RW-1 and RW-3.
- (4) pH reading was collected on 18 November 2019.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Air Sampling Results December 2019

DAR Parameters			Decen	nber 2019
Process Stream	Units	Discharge Goal ⁽¹⁾	Influent	Effluent
Sampling Date			12	/2/19
Average Flowrate	CFM	N/A	NR	8,911
Total Flow	ft ³	N/A	NR	378,259,821
Total Flow	m ³	N/A	NR	10,711,125
1,2-Dichloroethane	μg/m³	N/A	1.6 J	1.4 J
cis 1,2-Dichloroethene	μg/m³	≤ 100,000 ⁽²⁾	42	62
trans 1,2-Dichloroethene	μg/m³	≤ 100,000 ` ′	0.81 J	1.2 J
1,2-Dichloroethene (total)	μg/m³	≤ 100,000	43	64
Toluene	μg/m³	N/A	0.35 J	ND
Total Xylene	μg/m³	N/A	ND	ND
1,1,2-Trichloroethane	μg/m³	N/A	1.5 J	ND
Trichloroethene	μg/m³	≤ 2600	920	1.0 J
Vinyl Chloride	μg/m³	≤ 560	ND	ND
Tetrachloroethene	μg/m³	≤ 5100	150	ND

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

J - Estimated result between laboratory method detection limit and reporting limit

N/A - Not Applicable

NR - Not recorded

- (1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.
- (2) Discharge goal is for total 1,2-Dichloroethene.

GM-38 Area Groundwater Remediation Groundwater Treatment Plant Naval Weapons Industrial Reserve Plant - Bethpage, NY Controlled Stack Emissions December 2019

DAR Parameters	Units	Discharge Goal ⁽¹⁾	December 2019
Sampling Date			12/2/19
Average Flowrate	CFM	N/A	8,911
Total Flow	ft ³	N/A	378,259,821
Total Flow	m ³	N/A	10,711,125
Trichloroethene	lb/hr	≤ 0.09	0.00003
Vinyl Chloride	lb/hr	≤ 0.02	0.00000
1,2 Dichloroethene	lb/hr	≤ 11	0.00203
1,2-Dichloroethane	lb/hr	N/A	0.00004
Toluene	lb/hr	N/A	0.00000
Total Xylene	lb/hr	N/A	0.00000
1,1,2-Trichloroethane	lb/hr	N/A	0.00000
Tetrachloroethene	lb/hr	≤ 0.18	0.00000

Notes:

CFM - cubic feet per minute

DAR - Division of Air Resources

N/A - Not Applicable

(1) Discharge goal as approved by NYSDEC's letter dated 31 October 2013.

APPENDIX B NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

New York State Department of Environmental Conservation

Division of Environmental Remediation Remedial Action Bureau A, 12th Floor

625 Broadway, Albany, New York 12233-7015 Phone: (518) 402-9620 FAX: (518) 402-9022

Joseph Martens Commissioner

October 31, 2013

Lora Fly Remedial Program Manager NAVFAC Mid-Atlantic Northeast IPT 9742 Maryland Avenue Norfolk, VA, 23511-3095

RE: Northrop Grumman, Naval Weapons Industrial Reserve Plant (NWIRP) and Grumman Steel Los Sites, NYSDEC Site No.'s 1-30-003 A & B.

Dear Ms. Fly:

Tetra Tech NUS Inc., on behalf of the Department of the Navy NAVFAC Midlantic, has submitted an application to remove the GM 38 Area Groundwater Extraction and Treatment system impregnated Xeolitetm resin from the air discharge treatment system. Currently, the air treatment system uses a combined activated carbon with permanganate impregnated resin treatment train. The New York State Department of Environmental Conservation (NYSDEC) has reviewed the Department of the Navy application and concurs with the findings presented.

The routine monitoring, as detailed in Table 1, clearly indicates that vinyl chloride, one of the main contaminants of concern, has diminished to almost non-detect, and discharge concentrations have dropped to below the limit to require air treatment for the other contaminants as well. However, NAVFAC Midlantic is still proposing activated carbon to reduce the other discharge contaminant levels. Therefore, the NYSDEC hereby approves the proposed changes to the GM 38 Area air treatment. The Xeolitetm resin beds will remain in place should reactivation, based on routine monitoring, be required.

If you have any questions in the interim, please contact me at (518)402-9620.

Sincerely,

Steven M. Scharf, P.E.

Project Engineer

Remedial Action Bureau A

Division of Environmental Remediation

EC: J. Swartwout

S. Scharf

W. Parish, Region 1

S. Karpinski, NYSDOH

E. Hannon, NGC

D. Stern, Arcadis

D. Brayack, TTNUS

NOR-01264

November 21, 2011

Mr. Stephen Scharf New York Department of Environmental Conservation Division of Environmental Remediation Bureau of Remedial Action A 625 Broadway, 11th Floor Albany, New York 12233-7015

Reference: CLEAN Contract No. N62470-08-D-1001

Contract Task Order WE06

Subject: Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds (VOCs)

for Air Stripping Tower

GM-38 Offsite Groundwater Treatment Plant,

NWIRP Bethpage, New York

Dear Mr. Scharf:

On behalf of the Navy, please find enclosed a copy of the subject document. This document presents an evaluation of current concentrations of off gas VOCs from the GM-38 groundwater treatment plant air-stripping tower (prior to treatment with granular activated carbon). Maximum emission rates were reevaluated due to decreasing maximum concentrations of target VOCs in un-treated air stripper AS-1 off gas. In addition, breakthrough of target contaminants (e.g., cis-1,2-dichloroethene) is beginning to occur in the granular activated carbon bed. Maximum emission rates were re-evaluated to provide a determination if breakthrough of contaminants would trigger the need for a replacement of the granular activated carbon bed.

Existing Discharge Goals were established in the "Final Operation, Maintenance and Monitoring Plan for Groundwater Treatment Plant GM-38 Area Groundwater Remediation" prepared by Tetra Tech EC (April 2010). Existing goals were based on emission estimates for a 95% reduction (see Attachment A), instead of being based on the original DAR-1 analysis of air stripper off gas. Emission estimates were calculated using the air stripper design flow rate of 8,000 cubic feet per minute (cfm), and previous contaminant discharge rates in pounds per hour (lb/hr). Original emission estimates are provided in Attachment B.

Proposed Revised Discharge Goals were calculated using an average flow rate of 9,200 cfm, January to March 2011 VOC loading rates (taken from the Quarterly Operations Report First Quarter 2011 from ECOR Federal Services), and the Actual Annual % of Annual Guideline Concentrations (AGCs), taken from the revised DAR-1 Model Output. The revised DAR-1 Model Output is provided in Attachment C. Existing Discharge Goals and Proposed Revised Discharge Goals are compared in tabular format in the first page of the attachment. Proposed Revised Discharge Goals for trichloroethene (TCE) are the same as previous. The proposed limit for tetrachloroethene (PCE) is approximately 10 times the previous limit, and vinyl chloride is approximately 2 times the previous limit. Revised Discharge Goals for 1,2-dichloroethene (goals are the same for cis-1,2-dichloroethene) are 100 times greater than previously established limits. It is recommended that these revised limits replace previous discharge goals, and treatment of air stripper off gas by granular activated carbon is recommended to continue for TCE and PCE, with no treatment required for vinyl chloride and 1,2-dichloroethene.

NOR-01264

Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds (VOCs) NWIRP Bethpage 11-21-11 - Page 2

If you have any questions please contact Ms. Lora Fly, NAVFAC Mid-LANT, at (757) 341-2012.

Sincerely,

David D. Brayack, P.E.

Project Manager

Enclosure:

(1) Proposed Modification to Discharge Limits for Off Gas Volatile Organic Compounds

(VOCs) for Air Stripping Tower

GM-38 Offsite Groundwater Treatment Plant

Distribution:

Mid-Lant, Lora Fly NYSDEC (Albany), Henry Wilkie NYSDOH (Troy), Steve Karpinski NAVAIR, Richard Smith USEPA, Carol Stein NGC, Kent Smith Tetra Tech NUS, Dave Brayack ECOR Solutions, Al Taormina Administrative Record Public Repository Project File

TABLE 1
COMPARISON OF EXISTING DISCHARGE GOALS WITH ACTUAL EMISSIONS AND PROPOSED DISCHARGE GOALS
AIR STRIPPING TOWER GM-38 OFFSITE GROUNDWATER TREATMENT PLANT
NWIRP BETHPAGE, NEW YORK

	Existing Dis	charge Goal	Actual January to N (Pre-Off Gas	March 2011 Values Treatment)	Proposed Revised Discharge Goals based on DAR-1 Analysis		
Chemical	Existing Discharge Loading Rate (pounds (lbs)/hour) ⁽¹⁾	Equivalent Existing Discharge Goals (µg/m³) ⁽²⁾	Actual Jan-Mar 2011 Concentration (μg/m³) ⁽³⁾	Actual VOC Loading Pre-Off Gas Treatment (lbs/hour) ⁽⁴⁾	Proposed Discharge Loading Rate (lbs/hour) ⁽⁵⁾	Equivalent Proposed Discharge Goal (µg/m³) ⁽⁵⁾	
TCE	0.09	2,600	10,000	0.345	0.09	2,600	
PCE	0.02	580	6,800	0.234	0.18	5,100	
Vinyl Chloride	0.01	290	76	0.003	0.02	560	
1,2-Dichloroethene (total)	0.03	870	750	0.026	11	greater than 100,000	

Notes:

⁽¹⁾ Existing Discharge Goals are based on the design flow rate of 8,000 cfm. Existing Discharge Goals were taken from the Final Operations and Maintenance Plan for GM-38 Area Groundwater Remediation from Tetra Tech EC. Existing goals were based on emission estimates for a 95% reduction, and not the previous DAR-1 Analysis. Attachment B (provided at the end of this package) provides the original emission estimates.

⁽²⁾ Existing Discharge Goals were calculated using the actual flow rate of 9,200 cfm and the existing discharge loading rate in pounds per hour (lb/hr).

⁽³⁾Values were taken from the Quarterly Operations Report First Quarter 2011 from ECOR Federal Services. Values were the maximum effluent concentration in off gas from air stripper stack AS-1 prior to treatment with vapor phase granular activated carbon (GAC), for the months of January, February and March 2011.

⁽⁴⁾Actual VOC Loading was calculated using an average flow rate of 9,200 cfm and the January-March 2011 concentrations. Existing off gas treatment consists of two stage vapor phase GAC followed by potassium permanganate zeolite media to provide additional treatment for vinyl chloride.

⁽⁵⁾ Values were calculated using an average flow rate of 9,200 cfm, and the Actual Annual % of the AGCs from the 2011 DAR-1 Model Output to achieve air quality requirements.

ATTACHMENT A 2008 AIR PERMIT SUBMITTAL

DEC ID A	APPLICATION ID	7		OFFICE USE ONLY	
	l - Certificatio	n			
	V Certification				
l certify under penalty of law that this document and all attachments were prep that qualified personnel properly gather and evaluate the information submitte	ted. Based on my inqui	iry of the person	or persons directly	responsible for gathering the	
information [required pursuant to 6 NYCRR 201-6.3(d)] I believe the informat submitting false information, including the possibility of fines and imprisonmen			am aware that there) are significant penalties for	
Responsible Official		Title	е		
Signature		Dat	te <u>/</u>	1	
	cility Certification				
I certify that this facility will be operated in conformance with all prov	visions of existing reg				
Responsible Official		Title			
Signature		Date	ie <u>/</u>		
Section II - Iden	ntification Info	rmation			
Title ∨ Facility Permit N/A □ New □ Significant Modification □ Administrative A	mandmant	Stat	te Facility Permit	N/A □ Modification	
☐ New ☐ Significant Modification ☐ Administrative Ai ☐ Renewal ☐ Minor Modification ☐ General Permit Title			vew neral Permit Title:	U Modification	
☐ Application involves construction of new facility	☐ Application	involves const	truction of new em	nission unit(s)	
	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
	wner/Firm				
Name US Navy/NAVFAC Midlant					
Street Address 9742 Maryland Ave, Bldg Z-144	1			- 22511 2005	
City Norfolk Owner Classification ⋈ Federal	State VA	Cou Municipal	•	Zip 23511-3095 Taxpayer ID	
Corporation/Partnership	☐ Individual	— 10.00			
	Facility			🗅 Confidential	
Name Naval Weapons Industrial Reserve Plant (N	WIRP) GM-38	Area			
Location Address Bethpage					
□ City / XI Town / □ Village Oyster Bay, New York				^{Zip} 11714	
Project	ct Description			☐ Continuation Sheet(s)	
Air stripping of groundwater to remove VOCs					
Owner/Firm Co	ontact Mailing Ad	ddress			
Name (Last, First, Middle Initial) Fly, Lora			_	757)444-0781	
Affiliation Department of the Navy	Title Remedial	PM	Fax No.()		
Street Address 9742 Maryland Ave. Bldg Z-144					
City Norfolk	State VA		JS	Zip 23511-3095	
	tact Mailing Add	ress			
Name (Last, First, Middle Initial) Same	Ţ		Phone No. ()		
Affiliation	Title		Fax No.()		
Street Address					
ICity I	State	Country		Zip	

12/21/01 PAGE 1

New York State Department of Environmental Conservation

Air Pe	ermit Ap	plicatio	n										
T. I	DEC IE	<u> </u>	\Box										
	Section III - Facility Information Classification												
Hosp	□ Hospital □ Residential □ Educational/Institutional □ Commercial ☑ Industrial □ Utility												
- 1100p	itai _	Neside III.		loadona	Sulduona	<u> </u>	TCIAI	uuşiria.	-				
	Affected States (Title V Only) N/A												
☐ Verm		☐ Massad		☐ Rhod ☐ New J		⊒ Pennsylvania ⊒ Ohio							
T New	Hampshire	G Connec		I NEW 0									
	SIC Codes												
9999	Т		Т	-T	Sic codes		-T T	Τ.					
9990	+ +												
					acility Descrip				nuation Sheet(s)				
Gr	roundwater	Remedia	tion by Air S	tripping fo	ollowed by Va	por-Phase (GAC for emiss	sion contro)l				
 													
				ompliance	Statements	(Title V Only) N/A						
i certif	ly that as of th	e date of this				<u> </u>	uirements: 🖸 YES	S D NO					
••			•	•			s at the time of sig on page 8 of this fo						
plan in	nformation req						e with all applicable						
follow	This facilit	•	•				compliance for the	duration of the	ne permit, except				
					on of Section IV on uirements that w		n. ive during the term	n of the perm	it, this facility will				
	meet all s	uch requireme	ents on a timely	basis.			rill certify complian						
	-		ethod used to d						1100000110 0001				
				 _	cable Federa			_	nuation Sheet(s)				
Title	Туре	Part		Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause				
 	CERCLA	A Jali Si	ubstantive	requirer	nents								
				_	, , , , , , , , , , , , , , , , , , , ,								

	Facility Applicable Federal Requirements N/A ☐ Continuation Sheet								
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Ctause	Sub Clause
	CERCLA	all su	bstantive	requirer	nents				
			_						
									_

		☐ Continuation Sheet(s)							
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
	_								
	, , , , , , , , , , , , , , , , , , , ,								_

12/21/01 PAGE 2

DEC ID										
Π-	Т				1					

Section III - Facility Information (continued)

			Fac	ility Complia	nce Certific	ation N/A	<u> </u>	ontinuati	on Sheet(s)
_				Rule (Citation				
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
Applicable	Federal Requirement	C	CA	AS No.		Cor	ntaminant Name		
State Only	Requirement	Capping							
				Monitoring	Information				
☐ Ambient	Air Monitoring	☐ Work P	ractice Inv	olving Specifi	Operations	□ Reco	rd Keeping/Maint	enance F	Procedures
				Desc	ription				
			_						
Work Prac	ctice		Process	Material			Reference T	est Meth	nd
Туре	Code			Description			. Reference i	———	
		Para	<u>meter</u>				Manufacturer Na	ame/Mod	el No
	Code			Description	_				
	Limit					Limi	t Units		
	Upper	Lo	wer	Code			Description		
	Averaging Method			Monitoring I	requency	Reporting Requirements			nts
Code	Descript	ion	Code		Description	Co	de	Descripti	ion

	Facility Emissions Summary		☐ Continu	ation Sheet(s)
CAS No.	Contaminant Name	PTE (lbs/yr)	Range	Actual (lbs/yr)
NY075 - 00 - 5	PM-10	(1000)	Code	
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXIDES OF NITROGEN			
630 - 08 - 0	CARBON MONOXIDE			
7439 - 92 - 1	LEAD			
NY998 - 00 - 0	VOC	117		
NY100 - 00 - 0	HAP	110		
0079 - 01 - 6	Trichloroethylene	99		
00075 - 01 - 4	Vinyl Chloride	3.7		
00540 - 59 - 0	1,2-Dichloroethylene	7.3		

7

PAGE 3

12/21/01

)E(, II	DEC ID													
П	-			<u> </u>														

Section IV - Emission Unit Information

Emission Unit Description	☐ Continuation Sheet(s)
EMISSION UNIT 0 - 0 0 E U 1	
Air Stripper AS-1 for groundwater remediation, provided with activated carbon for	emission control.
The emission point is stack 00ST-1. The 2-stage VGAC is followed by a 3r	rd vessel containing
a potassium permanganate zeolite media for increased VC capacity.	

Building Continu												
Building	Building Name	Length (ft)	Width (ft)	Orientation								
BLDG-1	Treatment Plant	75	75	0								

			Emission Poir	nt	☐ Cont	inuation Sheet(s)
EMISSION PT.	oos⊤1					
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
90	40	15	36	80		
Exit Velocity _(FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
19	8020			BLDG-1	50	
EMISSION PT.						
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	Section
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal

				Emission	Sourc	e/Control		☐ Continuation Sheet(s)		
Emission	Source	Date of	Date of	Date of		Control Type	Manu	facturer's Name/Model		
ID	Туре	Construction	Operation	Removal	Code Description			No		
AS-1	1				048	Granular Act. Carbon	Air St	ripping Column		
Design		Design Ca	pacity Units			Waste Feed	Waste Type			
Capacity	Code	[Description		Code	Description	Code	Description		
				_						
Emission	Source	Date of	Date of	Date of	Control Type		Manu	facturer's Name/Model		
ID	Type	Construction	uction Operation Removal		Code	Description	No.			
Design		Design Ca	pacity Units			Waste Feed		Waste Type		
Capacity	Code		Description		Code	Description	Code	Description		

12/21/01 PAGE 4

	DEC ID													
ГТ	- 1					-								

Section IV - Emission Unit Information (continued)

							Pro	cess Ir	nformation			□ Contin	uation	She	eet(s)
EMISSION UN	ΙΤ	0 -	00	E	U	1						PROCE	SS	РΙ	R 1
								Descr	ription						
The rem	nec	lial s	vstem	is a	air s	strippir	ng. usi	ng a pa	acked column	n at a ground	water	flow rat	te of		
1,100 g	pm	ı (plu	ıs 100	gpr	m r	ecycle	, for a	total o	f 1,200 gpm)	Vapor phas	e trea	tment in	nclud	es	
the use	of	3 ve	ssels,	a 2	-sta	age G/	AC uni	t, follov	ved by a 3rd	vessel contai	ning a	potass	ium		
perman	ga	nate	impre	gna	ted	zeolit	e for ir	ncrease	ed VC capaci	ity. Prior to e	nterin	g the va	por-p	ha	se
GAC ad	sor	ption	syster	n, th	e h	umidity	of the	air strip	oper exhaust is	s reduced to a	pproxi	mately			
							_		vapor-phase (
Air	Str	ipper	· AS-1:	Exis	stin	g. Typ	e: Ver	tical, Cy	ylindrical Con	struction: Alun	ninum				
Pac	kin	g: 2 5	-foot J	aege	er T	ripack	Dime	nsions:	10.0 ft. Dia x	47 ft. H					
Source Cla			n			Total T	hruput			Thruput Qu	uantity (Jnits			
Code	(SC	(C)		Qι	uant	ity/Hr	Quan	tity/Yr	Code		Des	cription			
										<u> </u>				_	
	☐ Confidential ☐ Confidential ☐ Operating Schedule ☐ Building ☐ Floor/Location														
	_		Maximum Capacity Hrs/Day Days/Yr Significant Emissions 24 365 BLDG-1 Main												
		_				Eı		_	Control Identifier			Mair			
AS-1						_									
EMISSION UN	ΙΤ	Π-			`							PROCE	ESS		
								Descr	ription						
									<u> </u>						
												_			
Source Cla			n			Total T	hruput			Thruput Qu	uantity (Jnits			
Code	(SC	(C)		Qı	uant	ity/Hr	Quan	tity/Yr	Code		Des	cription			
														_	
☐ Confider ☐ Operatin			imum C	2020	itv				Schedule	Building		Floor/L	ocatio	n	
☐ Operation	_			•	-	ıs	FILS	/Day	Days/Yr						
						E	mission	Source/0	Control Identifier	r(s)	•				
_						_	\$		_						

	DEC ID												
-	T	П			-								

Section IV - Emission Unit Information (continued)

Emission E	Emission		ss Emission		Emission Unit Applicable Federal Requirements										
Unit	Point		Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause		
-															
-															
-															
-															

Emission	Emission	mission Process Sour				ssior	Unit State	e Only R	equirements		□ Cc	ntinuat	ion Sheet(s)
Unit	Point	Process	Source		Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-													
-													
-													
-													

				Emissio	n Unit Co	mplian	ce C	ertification	_	ūc	ontinuati	on Sheet(s)
					Rule	Citatio	n					
Title		Туре	Part	Sub Part	Section	Sub Div	ision	Paragraph	Sub F	Paragraph	Clause	Sub Clause
6	NY	′CRR	212									
X App	olicable	e Federal R	equiremen	: <u> </u>	State Only I	Requirem	ent	☐ Capping				
Emission	Unit	Emission Point	Process	Emission Source	CA	AS No.			Co	ntaminant N	ame ·	
0-00El	J1	00ST1	PR1	AS-1	00079 -	01	- 6	Trichlo	roethy	/lene		
					Monitorir	ng Infor	matic	on				
⊠ inte	ermitte	us Emissior nt Emissior ir Monitorin)	□ Work	Practice I	nvolvir	s or Control De ng Specific Op ntenance Proc	eration	s	as Surro	gate
					Des	scriptio	า					
$Monthly\ grab\ samples\ analyzed\ for\ VOCs\ from\ the\ vapor\ phase\ treatment\ system\ influent, effluent\ and\ two\ intermediate\ locations.$												
											_	
		_										
Work Pra	ctice			Process	Material				Re	ference Te	est Metho	d
Туре		Code			Description				110	—	- St WIGHT	u
	Parameter Manufacturer Name/Mode							al No				
	Code				Description				Mulla			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
23			Con	centration	<u> </u>							
		Lim	it					Limit	Units			
	Upper		L	.ower	Code	Code Description						
	3,125				255 micrograms			rams per cu	ams per cubic meter			
	Avera	ging Metho	d		Monitoring Frequency				Reporting Requirements			ts
Code		Descri	otion	Code		Descript	on	Cod			Descripti	
01								10		Upon	Reques	it

12/21/01 PAGE 6

		EC) [)		
_			-			

Section IV - Emission Unit Information (continued)

							pplica	bility	(Title	V Only	<u>')</u>	N/A	□ Con	tinuat	ion Sh	eet(s)
						Rule	Citatio	n		_		-				
Title	Туре		Part	Sub	Part	Section	Sub Divi	sion	Par	agraph	Sub	Paragrap	oh Cla	ause	Sub (Clause
Emission	n Unit	Emiss	ion Point	Proc	ess	Emission	Source			oplicable F			ment			
									U 50	ate Only R	equire	ment				
			,			Desc	ription	_								
													_			
							-									
	_					Rule	Citatio	า								_
Title	Туре		Part	Sub	Part		Sub Divi		Par	agraph	Sub	Paragrap	oh Cla	ause	Sub (Clause
Emission	n Unit	Emiss	sion Point	Proc	ess	Emission	Source			oplicable F			ment			
									□ St	ate Only R	Require	ment		_		
						Desc	ription									
	_															
							_									
		_									_					
										_	_					
		_			Pr	ocess Emis	sions S	Sumn	nary				□ Cont	tinuat	ion Sh	eet(s)
EMISSI	ON UNIT	0	- 0 0	ΕU	1								PROC	ESS	P	R 1
CA	S No.			Contan	ninant N	Name			6	%		%	ERP		ERP	
		_						Inn	uput	Capture		ontrol	(lbs/hr	- +	Deten	ninea
0079	<u>- 01 - 6</u>		<u>Trichloroe</u>	thyler	n <u>e</u>		т					95	1.8		02	
			PTE		-		-	andar			PTE How				ctual , , ,	
(lb:	s/hr)		(lbs/yr)		(sta	ndard units)		Units			ermin	ea	(lbs/hi	r)	(lbs	/yr)
0.	.09	Ц.,	99							02	2				-	
EMISSI	ON UNIT	0	- 00	E U	1								PROC	ESS	P	R 1
CA	S No.			Contarr	ninant N	Name			6	%		% ontrol	ERP (lba/br	٠	ERP Deterr	
00075	. 01 4	1 1/2	I Chilani	: .1 .		_		Inn	uput	Capture	+		(lbs/hr			riirieu
00075	- 01 - 4	VI	nyl Chlor	iae			Т	<u> </u>				95	0.17		03	
			PTE		, .		-	andar Units	ď	1	E Hov ermin		/11. "	Act		()
<u>`</u>	(lbs/hr) (lbs/yr) (standard units				ndard units)	-	-				-	(lbs/hi	r)	(lbs	/yr)	
	0.01 3.7 EMISSION UNIT 0 - 0 0 E U 1								02				To T	5 L 4		
EMISSI	ON UNIT	이	- 0 0 1	t U	1						_		PROC	ESS	Р	
CAS	S No.			Contan	ninant N	Name			6 uput	% Capture		% ontrol	ERP (lbs/hr	,	ERP Deterr	
000540	0540 - 59 - 0 1,2-Dichloroethylene				1111	apar	Supture	+			<i>'</i>					
000540				1 .	<u> </u>				95	0.6	L Act	<u>0</u>				
	- /l- =\		PTE (the first) (extended distribution)			-	andar Units	d		E Hov		/lh = /h :	_		(ver)	
	s/hr)	+	(lbs/yr)		(sta	ndard units)	<u> </u>					-	(lbs/hı)	(lbs	/ y r)
0	.03		7.3								02					

			Е	EC) IE			
\Box	-							

Section IV - Emission Unit Information (continued)

EMISSION UNIT 0 - 0 0 E U 1	Emiss	ion Unit Emissions	Summary	☐ Continuation Sheet(s)									
CAS No.		Contami	nant Name										
00107- 06 - 2	1,2-Dichloroethane												
555 (II. /)	PTE Em	nissions	Acti	ual									
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)									
13.4	Below Reporting Th	reshold BRT											
CAS No.		Contami	nant Name										
00108 - 88 - 3	Toluene												
ERP (îbs/ÿr)	PTE Em	nissions	Acti	ual									
ERP (IDS/yr)	(lbs/hr)												
72.7	BRT												
CAS No.		Contami	nant Name										
01330-20 -7	Xylene												
ERP (lbs/yr)	PTE Em	nissions	Actu	ual									
ERP (IDS/yl)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)									
77.1	BRT	BRT											
CAS No.		Contami	nant Name										
	1,1,2-Trichloroethane												
ERP (lbs/yr)	PTE Em	nissions	Actu	ıal									
EINF (IDS/yl)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)									
	BRT	BRT .											

					Сс	mpliano	ce Plar	1		Co	ntinuati	on Sheet(s)					
For any emis	sion units	s which ar	e <u>not in c</u>	ompliand	<u>ce</u> at th	e time of p	ermit ap	plication, the	applica	nt shall comp	lete the	following					
Consent Ord	er		Certifie	d progre	ss rep	orts are to	be subm	nitted every 6	months	beginning_	1						
Emission		Emission					Applicabl	e Federal Requ	irement								
Unit	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.								
-	- Date																
		_															
			·		_												
		_				_											
						_											
			<u> </u>														

		EC) IE)		
-			-			

Section IV - Emission Unit Information (continued)

		Requ	uest for Emiss	sion Red	duc	tion	Cre	dits	<u> </u>			2 Cor	ntinua	tion S	Sheet(s)
EMISSION UNIT	_														
			Emission Rec	luction E	Des	crip	tion				_				
								_							
_					_			_				_			
					_		_	_							
<u></u>		Con	taminant Emi	ssion R	edı	uctio	on Da	ata				J 4.		_	
Baseline Period	. ,	,	to /	,				\vdash		Date	Ked	ductio		ethod	1
Daseline Period			10			- .		┢		1		T			_
CAS No.			Contaminant	Nama	_	_		t			ERC	(lbs/			
CAS NO.	_		Contaminant	Naiile	_			₽		Vetting		F	(Offset	
					_			╀				╄			•
	-	_			_			╀		_	· ·	╄			
	-			F	<u> </u>	-l	4:	_			_	<u> </u>	-		
Name			acility to Use	ruture	Ι	auc	uon	_		APPLIC	ATION	חו			
Ivanie						<u>-</u>		Τ	<u> </u>	AFFEIG	TI	ŬΙ	1		T-1.
Location Address															
☐ City / ☐ Town / ☐ V	/illage				St	ate					Zip				
		U:	se of Emissio	n Reduc	tio	n Ci	redit	s S				l Cor	- ntinua	tion S	heet(s)
EMISSION UNIT	T- T			_											
		<u> </u>	Proposed Pr	oject De	esc	ripti	on	_		_					
			-												
		Cor	ntaminant Em	issions I	nc	reas	e Da	at <u>a</u>			_				
CAS No.	·		Contaminan	t Name							PEI	P (lbs	s/yr)		
	-													_	
			Statement	of Com	plia	nce									
All facilities under th including any compli schedule of a conser	iance certifica	f this "ownership/ tion requirements	firm" are operating s under Section 11	g <u>in compli</u> 14(a)(3) of	ianc the	e wit Clea	h all a n Air A	appli Act A	cable Amend	requiren ments o	nents ar of 1990,	nd stat	te regu e meet	lation ing the	s
		Source	of Emission F	Reductio	n (Crec	lit - F	ac	ility						
Name										PEF	rmit id				
I a and a make the same					L_	-			-	<u> </u>			/		
Location Address						_					1_:				
☐ City / ☐ Town / ☐ V					Sta		_		1		Zip	C (lbs	s/vr)		
Emission Unit	CA	S No.	Cont	aminant l	Nar	ne				Netti			- y i)	Offse	et
-															
-															
+		-													
							_					_	_		

PAGE 9

	_		ν) IC	_		
Π-	Г			-	Г		

Supporting Documentation	
🖫 P.E. Certification (form attached)	
☐ List of Exempt Activities (form attached)	
🔯 Plot Plan	
☐ Methods Used to Determine Compliance (form attached)	
🖾 Calculations	
☐ Air Quality Model (/)	
☐ Confidentiality Justification	
☐ Ambient Air Monitoring Plan (/)	
☐ Stack Test Protocols/Reports (/)	
☐ Continuous Emissions Monitoring Plans/QA/QC(//)	
☐ MACT Demonstration(/)	
☐ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols	
☐ Title IV: Application/Registration	
☐ ERC Quantification (form attached)	
☐ Use of ERC(s) (form attached)	
☐ Baseline Period Demonstration	
☐ Analysis of Contemporaneous Emission Increase/Decrease	
☐ LAER Demonstration(/)	
☐ BACT Demonstration(/)	
☐ Other Document(s):(/ /)
)
)
·)
	— <u> </u>
(/ /)
)
)
)
)

PAGE 10

ATTACHMENT B 2008 EMISSION ESTIMATES BASED ON 95% REMOVAL

ATTACHMENT 1 **Emission Estimate**

POTENTIAL EMISSION ESTIMATES, USED TO DEVELOP 95%, REDUCTION OF EMISSION VALUES AS BASED ON INFLUENT GROUNDWATER CONCENTRATIONS (95%, REDUCTION OF EMISSION

· Feed Water Flow 1,100 gpm: max or normal

250 m³/hr

Water Flow Including Recycle 1,200 gpm: max or normal

273 m³/hr

Air Flow 8,000 cfm

13.592 m³/hr

50 A/W vol ratio

EXAMPLE EMISSION CALC: Vinyl Chloride

4.8 $ug/L \times 1000 L/m^3 \times 250 m^3 \text{ water}/13,623 m^3 \text{ air} = 88 ug/m^3 VALUES ARE PROVIDED$

ON PAGE 7 OF THE 2008 AIR PERMIT APPLICATION PROCESS EMISSIONS SUMMARY)

					GW Co	nc.1	Effluent	Conc ¹			Unc	ontrolled	Stripper Ex	khaust		
`	CAS	Toxicity:			Max	Avg	Max	Avg	Max	Avg	Max	Avg	Max	Avg	Max	Avg
Name	Number	H/M/L ²	VOC³	HAP⁴_	ug/L	ug/L	ug/L	ug/L	lb/day	lb/day	lb/hr	lb/hr	gm/sec	gm/sec	ug/m ³	ug/m ³
1,1,1-Trichloroethane (Methyl Chloroform)	00071-55-6	L	No	Yes	3	3.0			0.04	0.04	0.00	0.00	2.08E-04	2.08E-04	55	55
1,1,2-Trichloroethane	00079-00-5	M	Yes	Yes	3.5	0.3			0.05	0.00	0.00	0.00	2.43E-04	2.08E-05	64	6
1,1-Dichloroethane	00075-34-3	L	Yes	Yes	4	0.7			0.05	0.01	0.00	0.00	2.77E-04	4.85E-05	74	13
1,2-Dichloroethane	00107-06-2	M	Yes	Yes	3	1.0	0.3	0.1	0.04	0.01	0.00	0.00	1.87E-04	6.24E-05	55	18
1,1-Dichloroethylene (Vinylidene Chloride)	00075-35-4	M	Yes	Yes	9	1.6			0.12	0.02	0.00	0.00	6.24E-04	1.11E-04	165	29
1,2-Dichloroethylene	00540-59-0	M	Yes	No	1,100	31,5	1.3	0.0	14.51	0.42	0.60	0.02	7.62E-02	~2.18E-03	20,219	579
Benzene	00071-43-2	Н	Yes	Yes	4	0.1			0.05	0.00	0.00	0.00	2.77E-04	6.94E-06	74	2
Carbon Tetrachloride	00056-23-5	Н	Yes	Yes	4	0.1	•		0.05	0.00	0,00	0.00	2.77E-04	6.94E-06	74	2
Chlorobenzene (Monochlorobenzene)	00108-90-7	M	Yes	Yes	1	0.1			0.01	0.00	0.00	0.00	6.94E-05	6.94E-06	18	2
Chloroform	00067-66-3	M	Yes	Yes	2	0.8			0.03	0.01	0.00	0.00	1.39E-04	5.55E-05	37	15
Methyl Tert Butyl Ether	01634-04-4	M	Yes	Yes	2	0.1			0.03	0.00	0.00	0.00	1.39E-04	6.94E-06	37	2
Tetrachloroethylene	00127-18-4	M	Yes	Yes	900	.33.8	0.9	0.0	11.88	0.45	0.49	0.02	6.24E-02	2.34E-03	16,543	621
Toluene	00108-88-3	L	Yes	Yes ·	15	0.7			0.20	0.01	0.01	0.00	1.04E-03	4.85E-05	276	13
Trichloroethylene	00079-01-6	M	Yes	Yes	3,400	411.5	4.5	0.5	44.86	5.43	1.87	0.23	2.35E-01	2.85E-02	62,494	7,564
Vinyl chloride	00075-01-4	Н	Yes	Yes	300	4.8	0.0	0.0	3.96	0.06	0.17	0.00	2.08E-02	3.33E-04	5,514	88
Xylenes	01330-20-7	M	Yes	Yes	16	0.2			0.21	0.00	0.01	0.00	1.11E-03	1.39E-05	294	4
Total VOCs					5,764	487.3	7.0	0.6	76.05	6.43	3.17	0.27				
Total HAPs					4,667	458.8	5.7	0.6	61.57	6.05	2.57	0.25				*

Total Uncontrolled VOC 2,347 lb/yr Total Uncontrolled HAP 2,209 lb/yr

1. Source: "GM-38 Groundwater Remedy Analysis Report", February 2003

2. Source: DAR-1 AGC/SGC Tables, NYSDEC Division of Air Resources, Air Toxics Section, September 10, 2007.

3. Source: 6 NYCRR Part 200 1(cg)

4. Source: 6 NYCRR Part 200.1(ag)

ATTACHMENT 1 Emission Estimate

Total Controlled VOC

Total Controlled HAP

117 lb/yr 110 lb/yr

Feed Water Flow 1,100 gpm: max or normal

250 m³/hr

Water Flow Including Recycle 1,200 gpm: max or normal

273 m³/hr

Air Flow 8,000 cfm

13,592 m³/hr

A/W vol ratio 50

							Co	ntrolled Stri	pper Exhau
	CAS	Toxicity:			Control by	Max	Avg	Max	Avg
Name	Number	$H/M/L^2$	VOC3	HAP ⁴	GAC	lb/day	lb/day	gm/sec	gm/sec
1,1,1-Trichloroethane (Methyl Chloroform)	00071-55-6	L	No	Yes	95%	0.00	0.00	1.04E-05	1.04E-05
1,1,2-Trichloroethane	00079-00-5	M	Yes	Yes	95%	0.00	0.00	1.21E-05	1.04E-06
1,1-Dichloroethane	00075-34-3	L	Yes	Yes	95%	0.00	0.00	1.39E-05	2.43E-06
1,2-Dichloroethane	00107-06-2	M	Yes	Yes	95%	0.00	0.00	9.36E-06	3.12E-06
1,1-Dichloroethylene (Vinylidene Chloride)	00075-35-4	M	Yes	Yes	95%	0.01	0.00	3.12E-05	5.55E-06
1,2-Dichloroethylene	00540-59-0	M	Yes	No	95%	0.73	0.02	3.81E-03	1.09E-04
Benzene	00071-43-2	Н	Yes	Yes	95%	0.00	0.00	1.39E-05	3.47E-07
Carbon Tetrachloride	00056-23-5	Н	Yes	Yes	95%	0.00	0.00	1.39E-05	3.47E-07
Chlorobenzene (Monochlorobenzene)	00108-90-7	M	Yes	Yes	95%	0.00	0.00	3.47E-06	3.47E-07
Chloroform	00067-66-3	M	Yes	Yes	95%	0.00	0.00	6.94E-06	2.77E-06
Methyl Tert Butyl Ether	01634-04-4	M	Yes	Yes	95%	0.00	0.00	6.94E-06	3.47E-07
Tetrachloroethylene	00127-18-4	M	Yes	Yes	95%	0.59	0.02	3.12E-03	1.17E-04
Toluene	00108-88-3	L	Yes	Yes	95%	0.01	0.00	5.20E-05	2.43E-06
Trichloroethylene	00079-01-6	M	Yes	Yes	95%	2.24	0.27	1.18E-02	1.43E-03
Vinyl chloride	00075-01-4	Н	Yes	Yes	95%	0.20	0.00	1.04E-03	1.66E-05
Xylenes	01330-20-7	M	Yes	Yes	95%	0.01	0.00	5.55E-05	6.94E-07
Total VOCs						3.80	0.32		
Total HAPs						3.08	0.30		

Source: "GM-38 Groundwater Remedy Analysis Report", February 2003
 Source: DAR-1 AGC/SGC Tables, NYSDEC Division of Air Resources, Air Tox

3. Source: 6 NYCRR Part 200.1(cg) 4. Source: 6 NYCRR Part 200.1(ag)

ATTACHMENT C 2011 DISCHARGE GOALS AND 2011 DAR-1 ANALYSIS

Tetra Tech NUS		STANDARD CALCULATION SHEET		
CLIENT: US CLEAN	FILE No:	BY:	PAGE: 1 of 1	
SUBJECT: Calculation of Current Discharge Goals GM-38 Area NWIRP Bethpage, New York		CHECKED BY:	DATE: 9/7/2011	

1. Purpose:

To calculate current discharge goals for Trichloroethene (TCE), Tetrachloroethene (PCE), Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total), for treatment of off-gas from the air stripper stack AS-1.

2. Approach:

From the Contaminant Assessment Summary of the DAR-1 Model output for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total) (see DAR-1 output for analysis inputs), use the Actual Annual % of the Annual Guideline Concentration (AGC), a current average flow rate of 9,200 cubic feet per minute (cfm), and influent chemical emission rates in pounds per hour (lb/hour) and pounds per year (lb/year) to back calculate current discharge goals.

3. Calculation of Current Discharge Goals:

Chemical	Current Actual Annual % of AGC ⁽¹⁾	Current Maximum Concentration (µg/m³) ⁽²⁾	Current Chemical Emission Rate Prior to Treatment (lb/hour) ⁽³⁾	Current Chemical Emission Rate Prior to Treatment (lb/year) ⁽³⁾	Calculated Discharge Goal (lb/hr) ⁽⁴⁾	Calculated Discharge Goal (lb/year) ⁽⁴⁾	Maximum Allowable Concentration (μg/m³) ⁽⁴⁾
TCE	390.6	10,000	0.3446	3,019	0.0882	770	2,600
PCE	132.8	6,800	0.2344	2,053	0.1764	1,500	5,100
Vinyl Chloride	13.49	76	0.0026	22.94	0.0194	170	560
cis 1,2- Dichloroethene	0.2322	750	0.0258	226.4	11.13	98,000	320,000
1,2- Dichloroethene (total)	0.2322	750	0.0258	226.4	11.13	98,000	320,000

Notes:

⁽¹⁾ Actual Annual % of the AGCs is from the attached DAR-1 Model Output.

⁽²⁾Values were taken from the Quarterly Operations Report First Quarter 2011 (June 2011) from ECOR Federal Services. Values were the maximum effluent concentration in off gas from air stripper stack AS-1 for the months of January, February, and March 2011.

⁽³⁾Chemical Emission Rates were calculated from maximum concentrations and an average flow rate of 9,200 cfm.

⁽⁴⁾Discharge Goals are based on a flow of 9,200 cfm, and calculated from the Actual Annual % of the AGCs from the DAR-1 Model Output to achieve air quality requirements. The summary of additional inputs for this model run is provided in the DAR-1 Model Output. Stack height is 40 feet, and the property line was evaluated at a distance of 50 feet.

BETHPAGE SITE GM-38 OFF-SITE GROUNDWATER AIR STRIPPER STACK EMISSIONS DAR-1 MODEL OUTPUT, POINT SOURCE (STACK EMISSIONS) TYPE INCLUDES ISCLT MODELING SUMMARY

I. Summary of Inputs for Model Run to Nearest Property Line (50 feet), worst case scenario (highest contaminant concentrations seen in first quarter 2011 in untreated effluent from Air Stripper AS-1 prior to treatment with granular activated carbon (GAC))

Chemical	CAS No. 00079-01- 6 (TCE)	CAS No. 00127-18- 4 (PCE)	CAS No. 00075-01-4 (Vinyl Chloride)	CAS No. 00156-59-2 (cis 1,2- Dichloroethene)	CAS No. 00540-59-0 (1,2- Dichloroethene, total)
Emission Rate Prior to Treatment ⁽¹⁾ (lb/hour)	0.3444	0.2342	0.0026	0.0258	0.0258
Emission Rate Prior to Treatment ⁽¹⁾ (lb/year)	3,017	2,052	22.93	226.0	226.0
Maximum Concentration of Untreated Off Gas (μg/m³) ⁽¹⁾	10,000	6,800	76	750	750
Annual Guideline Concentration (AGC) (µg/m³)	0.5	1.0	0.11	63	63
Short-term Guideline Concentration (SGC) (µg/m³)	14,000	1,000	180,000		

НА	Height Above stack/ maximum height of plume (HA, feet)	15
SH	Stack Height/Treatment Building Air Stack (SH, feet)	40
D	Stack Diameter (D, inches)	36
Т	Stack Exit Temperature (T, degrees Fahrenheit)	80
V	Stack Exit Velocity (V, ft/sec)	21.69
Q ⁽²⁾	Stack Exit Flow Rate [Q, Actual Cubic Feet per Minute (ACFM)]	9,200
Dpl	Shortest Distance from Source Building (Treatment Building) to Property Line (Dpl, feet) for point sources	50
BW	Building Width (BW, feet) of Source Building (Treatment Building) for point sources	75
BL	Building Length (BL, feet) of Source Building (Treatment Building)	75
Q	Actual Hourly Emission Rate (lbs/hour) for source contaminant	Chemical specific, see above
Qa	Actual Annual Emission Rate (lbs/year) for source contaminant	Chemical specific, see above

⁽¹⁾ Emission rates and maximum concentration values were taken from the Quarterly Operations Report First Quarter (June 2011) as provided by ECOR Services, using January, February, and March 2011 maximum rates of untreated off gas from Air Stripper AS-1 in the

GM-38 Treatment Building. Emission rates are based on continuous operation 24 hours per day, 7 days a week, 52 weeks a year, or approximately 8,760 hours of operation. ⁽²⁾ "Q" is an average value of January and February 2011 monthly flow rates. Effective water and vapor flow rates were reduced during the reporting period of March due to a shutdown of the Treatment Plant on March 23, 2011.

II. Contaminant Assessment Summary of TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

	CONTRIBUNANT	ASSESSMENT SU	MMARY OF DAR-	ANALYSIS	9/ 8/11 Page 1
		SHORT-TERM	CULLIA	POINT or R	REA SOURCE
	ngo	HOSIMUM (Cav.Pt.Asea)	OCTUBL ONNIOT	POTENTIAL ONNUAL	OCTURL OWNERS
CAS NUMBER	µg/n3	≥ OF SGC	% OF AGC	% OF AGC	% OF AGC
00075-01-4 00079-01-6 00127-18-4	0.11000000 0.50000000 1.00000000	0.0005 0.7757 7.3852	0.0000 0.0000 0.0000	13.3889 390.1734 132.6635	13.4948 398.6266 132.8415
00156-59-2 00540-59-0	63.00000000 63.00000000	0.0000 0.0000	0.0000 0.0000	0.2320 0.2320	0.2322 0.2322
SUMMARY I	OTALS	8.1614	0.0000	536.6897	537.4274

III. Contaminant Impact Summary of TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

	CONTRACT	MAT IMPACT SUM	MARY OF DAR-A	OMOTASTS.	9/ 8/11 Page 1
		SHORT-TERM	CAULTY	POINT or fi	REA SOURCE
CAS NUMBER	ndo xg ≥n3	MOXIMUM (Gao, Pt.Ares) ug∕m3	ngTünl NMHUAL ug∕m3	POTENTIAL ONWOOD US/m3	AGTUAL AMMUAL ug∕m3
00075-01-4 00079-01-6 00127-18-4 00156-59-2 00540-59-0	0.11000000 0.50000000 1.00000000 63.00000000 63.00000000	0.81988204 108.60282900 73.85244750 8.13575172 8.13575172	0.0000000.0 0.0000000.0 0.0000000.0 0.000000	0.01472780 1.95086694 1.32663476 0.14614509 0.14614509	0.01484433 1.05313256 1.32843564 0.14630693 0.14630693

IV. Contaminant Impact Summary Step by Step Menu for TCE:

III.A.3.

III.A.4.a.

```
NVIRP BETHPAGE GM-38 AREA
                                               BETHPAGE
                                                                                              OYSTER BAY, NEW
EMISSION POINT =
                                        TOTAL CAS NUMBER = 00079-01-6
                                                                                                 SIC =
                                                                                                              0
    AGC =
                             0.5000000000 ug/m3
                                                                   SGC =
                                                                                     14000.000000 ug/m3
                         15., SH= 40., D= 36., T= 80., V= 21.69, q= 50., BW= 75., BL= 75., xCONTROL= 0.0000
    STACK: HA=
                                                                                                          9200.00
BUILDING: Dpl=
** Reported Hourly Emission Rate (Q) is equal to
                                                                                     0.344400000 lbs/hour.
** Reported Annual Emission Rate (Qa) is equal to 3017.000000 lbs/year.
II.B. REFINED CAUITY IMPACT METHOD (DAR-1. APPENDIX B).
                   Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
II.B.1.
                   The largest building dimension ( 75. feet ) is greater than or equal to the building height ( 25. feet ). Therefore, the computer will NOT redefine the cavity length.
II.B.2.
                   Stack height ( 40. feet ) is greater than cavity height ( 38. feet ). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAVITY Annual Impact equals 0.00 ug/m3.
II.B.3.
II.C.
            CAUITY Annual Impact (
                                                     0.000 ug/m3 ) is less than AGC
                      0.500 ug/m3 ).
III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
III.A.1.b.
                           Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.
                           Effective stack height, he, is equal to 51.001 feet.
                   STANDARD POINT SOURCE Actual Annual Impact is equal to 2.604 ug/m3 for 8760. hours/year of operation.
III.A.2.
```

STANDARD POINT SOURCE Potential Annual Impact is equal

2.601 ug/m3 assuming 8,760 hours/year of operation.

Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

III.A.5	. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
111.0.	STRNDORD POINT SOURCE Actual Annual Impact (1.953 ug/m3) is greater than AGE (5.500 ug/m3).
	**** Befor to DNR-1 Section FILD.1. A refined site **** specific modeling analyte may be required.
III.D.	STANDARD POINT SOURCE Potential Annual Impact (1.951 ug/m3) is greater than AGC (0.500 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8760. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94.
2.2	CAUITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
II.C.	CAUITY Short-Term Impact (0.000 ug/m3) is less than SGC (14000.000 ug/m3).

2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (GSTP) is equal to 38.826 ug/m3, for hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 129.908 ug/m3, for: hs/hb = 1.60 and ESH = 51, feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 108.603 ug/m3, for: RF = 0.84
III.D.	Maximum non-cavity Short-Term Impact (CST: 108.603 ug/m3) is less than the SGC (14000.000 ug/m3) for the point source.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 108.603 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (14000.000 ug/m3).

V. Contaminant Impact Summary Step by Step Menu for PCE:

III.A.2.

III.A.3.

```
MWIRP BETHPAGE GM-38 AREA BETHPAGE
                                                                                     OYSTER BAY, NEW
EMISSION POINT =
                                    TOTAL CAS NUMBER = 00127-18-4
                                                                                        SIC =
                                                                                                  Ø
                          1.000000000 ug/m3 SGC =
    AGC =
                                                                              1000.000000 ug/m3
                       15., SH= 40., D= 36., T= 80., U= 21.69, q= 50., BW= 75., BL= 75., xCONTROL= 0.0000
STACK: HA=
BUILDING: Dpl=
                                                                                                9200.00
** Reported Hourly Emission Rate (Q) is equal to
                                                                             0.234200000 1bs/hour.
** Reported Annual Emission Rate (Qa) is equal to 2052.000000 lbs/year.
II.B. REFINED CAUITY IMPACT METHOD (DAR-1, APPENDIX B).
                 Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
II.B.1.
                 The largest building dimension ( 75. feet ) is greater than or equal to the building height ( 25. feet ). Therefore, the computer will NOT redefine the cavity length.
II.B.2.
                 Stack height ( 40. feet ) is greater than cavity height ( 38. feet ). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAUITY Annual Impact equals 0.00 ug/m3.
II.B.3.
II.C.
          CAUITY Annual Impact (
( 1.000 ug/m3).
                                                0.000 ug/m3 ) is less than AGC
III.A. STANDARD POINT SOURCE METHOD (DAR-1. APPENDIX B).
III.A.1.b.
                        Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.
                        Effective stack height, he, is equal to
                                                                                 51.001 feet.
```

STANDARD POINT SOURCE Actual Annual Impact is equal to 1.771 ug/m3 for 8762. hours/year of operation.

STANDARD POINT SOURCE Potential Annual Impact is equal to 1.769 ug/m3 assuming 8,760 hours/year of operation.

III.A.5	STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
111.0.	STONDORD FOINT SOURCE Noticel Roman Linguist (1.328 og/m3) is greater than AGC (1.660 og/m3).
	esse Buffer to DRB-1 Section III.D.J. R sefined site
111.D.	STANDARD POINT SOURCE Potential Annual Impact (1.327 ug/m3) is greater than AGC (1.000 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** operation instead of reported 8762. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program. Wade/Sedefian.' 1/11/94.
2.2	CAUITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
11.C.	CAUITY Short-Term Impact (0.000 ug/m3) is less than SGC (1000.000 ug/m3).

2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 73.852 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (1000.000 ug/m3).
III.D.	Maximum non-cavity Short-Term Impact (CST: 73.852 ug/m3) is less than the SGC (1000.000 ug/m3) for the point source.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 73.852 ug/m3, for: RF = 0.84
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 88.340 ug/m3, for: hs/hb = 1.60 and ESH = 51, feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 26.483 ug/m3, for hs/hb = 1.60
2.3	Effective stack height, he, is equal to 51.001 feet.
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).

VI. Contaminant Impact Summary Step by Step Menu for Vinyl Chloride:

```
NVIRP BETHPAGE GM-38 AREA
                                           BETHPAGE
                                                                                       OYSTER BAY, NEW
                                     TOTAL CAS NUMBER = 00075-01-4
EMISSION POINT =
                                                                                          SIC =
                                                                                                       0
                           AGC =
                       15., SH= 40., D= 36., T= 80., U= 50., BW= 75., BL= 75., ×CONTROL=
STACK: HA=
BUILDING: Dpl=
                                                                                21.69, q=
0.0000
                                                                                                   9200.00
** Reported Hourly Emission Rate (Q) is equal to
                                                                               0.002600000 1bs/hour.
** Reported Annual Emission Rate (Qa) is equal to
                                                                               22.930000 lbs/year.
II.B.
         REFINED CAUITY IMPACT METHOD (DAR-1, APPENDIX B).
                 Shortest Distance from building to Property Line ( 50. feet ) is less than or equal to the cavity length, or 3 building heights ( 75. feet ). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
II.B.1.
                 The largest building dimension ( 75. feet ) is greater than or equal to the building height ( 25. feet ). Therefore, the computer will NOT redefine the cavity length.
II.B.2.
                 Stack height ( 40. feet ) is greater than cavity height ( 38. feet ). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAUITY Annual Impact equals 0.00 ug/m3.
II.B.3.
          CAUITY Annual Impact (
( 0.110 ug/m3 ).
                                                0.000 ug/m3 ) is less than AGC
II.C.
III.A. STANDARD POINT SOURCE METHOD (DAR-1. APPENDIX B).
III.A.1.b.
                        Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.
                        Effective stack height, he, is equal to 51.001 feet.
III.A.2.
                 STANDARD POINT SOURCE Actual Annual Impact is equal
                             0.020 ug/m3 for 8819. hours/year of operation.
                 STANDARD POINT SOURCE Potential Annual Impact is equal to 0.020 ug/m3 assuming 8,760 hours/year of operation.
III.A.3.
                        Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.
III.A.4.a.
```

111.A.S.	STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
III.D.	STANDARD POINT SOURCE Actual Annual Impact (0.015 ug/m3) is less than AGC (0.110 ug/m3).
III.D.	STANDARD POINT SOURCE Potential Annual Impact (0.015 ug/m3) is less than AGC (0.110 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** operation instead of reported 8819. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Vade/Sedefian,' 1/11/94.
2.2	CAUITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
11.C.	CAUITY Short-Term Impact (0.000 ug/m3) is less than SGC (180000.000 ug/m3).
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 0.293 ug/m3, for hs/bb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 0.981 ug/m3, for: bs/bb = 1.60 and ESH = 51. feet.
2.6	Adjusted maximum downwash Short-Term (CSTD) is equal to 0.820 ug/m3. For: RF = 0.84
111.D.	Maximum non-cavity Short-Term Impact (CST: 0.820 ug/m3) is less than the SGC (180000.000 ug/m3) for the point source.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 0.820 ug/m3 and is reported in the ANALYSIS MENU. This value is less than the SGC (180000.000 ug/m3).

VII. Contaminant Impact Summary Step by Step Menu for cis 1,2-Dichloroethene:

```
NVIRP BETHPAGE GM-38 AREA
                                             BETHPAGE
                                                                                         OYSTER BAY, NEW
EMISSION POINT =
                                      TOTAL CAS NUMBER = 00156-59-2
                                                                                            SIC = 0
    AGC =
                          63.000000000 ug/m3
                                                               SGC =
                                                                                      0.000000 ug/m3
                       15., SH= 40., D= 36., T= 80., V= 21.69, q= 50., BW= 75., BL= 75., ×CONTROL= 0.0000
    STACK: HA=
                                                                                                    9200.00
BUILDING: Dol=
** Reported Hourly Emission Rate (Q) is equal to
                                                                                0.025800000 lbs/hour.
** Reported Annual Emission Rate (Qa) is equal to
                                                                             226.000000 lbs/year.
           REFINED CAUITY IMPACT METHOD (DAR-1, APPENDIX B).
II.B.
                  Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property.
II.B.1.
                  The largest building dimension ( 75. feet ) is greater than or equal to the building height ( 25. feet ). Therefore, the computer will NOT redefine the cavity length.
II.B.2.
                  Stack height ( 40. feet ) is greater than cavity height ( 38. feet ). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAUITY Annual Impact equals 0.00 ug/m3.
II.B.3.
           CAUITY Annual Impact ( 0.000 ug/m3 ) is less than AGC ( 63.000 ug/m3 ).
II.C.
III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
III.A.1.b.
                         Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
III.A.1.b.
                         Effective stack height, he, is equal to
                                                                                      51.001 feet.
                  STANDARD POINT SOURCE Actual Annual Impact is equal to 0.195 ug/m3 for 8760. hours/year of operation.
III.A.2.
III.A.3.
                  STANDARD POINT SOURCE Potential Annual Impact is equal
                             0.195 ug/m3 assuming 8,760 hours/year of operation.
                  to
                         Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.
III.A.4.a.
```

111.A.S	. STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD.
III.D.	STANDARD POINT SOURCE Actual Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
III.D.	STANDARD POINT SOURCE Potential Annual Impact (0.146 ug/m3) is less than AGC (63.000 ug/m3).
	**** Potential Annual Impact is based upon 8760 hours/year **** **** operation instead of reported 8760. hours/year. ****
2.0	DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program. Vade/Sedefian.' 1/11/94.
2.2	CAUITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet).
II.C.	CAUITY Short-Term Impact is equal to 0.000 ug/m3. There is no SGC for this contaminant.
2.3	Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
2.3	Effective stack height, he, is equal to 51.001 feet.
2.4	Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 2.909 ug/m3. for hs/hb = 1.60
2.5	Maximum downwash Short-Term Impact (CSTD) is equal to 9.732 ug/m3. For: hs/hb = 1.60 and ESH = 51. feet.
2-6	Adjusted maximum downwash Short-Term (CSTD) is equal to 8.136 ug/m3. for: RF = 0.84
III.D.	Maximum non-cavity Short-Term Impact (CST) equals 8.136 ug/m3 for the point source. There is no SGC for this contaminant.
2.7	Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 8.136 ug/m3 and is reported in the ANALYSIS MENU.

VIII. Contaminant Impact Summary Step by Step Menu for 1,2-Dichloroethene (total):

NVIRP BETHPAGE GM-38 AREA OYSTER BAY, NEW BETHPAGE EMISSION POINT = CAS NUMBER = 00540-59-0 TOTAL SIC = 0 AGC = 63.0000000000 ug/m3 SGC = 0.000000 ug/m3 15., SH= 40., D= 36., T= 80., V= 50., BW= 75., BL= 75., *CONTROL= STACK: HA= 21.69, q= 0.0000 9200.00 BUILDING: Dpl= ** Reported Hourly Emission Rate (Q) is equal to 0.025800000 lbs/hour. ** Reported Annual Emission Rate (Qa) is equal to 226.000000 lbs/year. II.B. REFINED CAUITY IMPACT METHOD (DAR-1, APPENDIX B). Shortest Distance from building to Property Line (50. feet) is less than or equal to the cavity length, or 3 building heights (75. feet). Therefore, this building will have cavity impacts (if they occur) at receptors off plant property. II.B.1. The largest building dimension (75. feet) is greater than or equal to the building height (25. feet). Therefore, the computer will NOT redefine the cavity length. II_B_2_

- II.B.3. Stack height (40. feet) is greater than cavity height (38. feet). Therefore, this source does not contribute to the buildings cavity impact. The Computer will assume the CAUITY Annual Impact equals 0.00 ug/m3.

 II.C. CAUITY Annual Impact (0.000 ug/m3.) is less than AGC
- II.C. CAVITY Annual Impact (0.000 ug/m3) is less than AGC (63.000 ug/m3).
- III.A. STANDARD POINT SOURCE METHOD (DAR-1, APPENDIX B).
- III.A.1.b. Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2).
- III.A.1.b. Effective stack height, he, is equal to 51.001 feet.
- III.A.2. STANDARD POINT SOURCE Actual Annual Impact is equal to 0.195 ug/m3 for 8760. hours/year of operation.
- III.A.3. STANDARD POINT SOURCE Potential Annual Impact is equal to 0.195 ug/m3 assuming 8,760 hours/year of operation.
- III.A.4.a. Stack height to building height ratio is greater than 1.5, but less than 2.5. Computer will multiply actual annual & potential annual impacts by 0.75 factor.

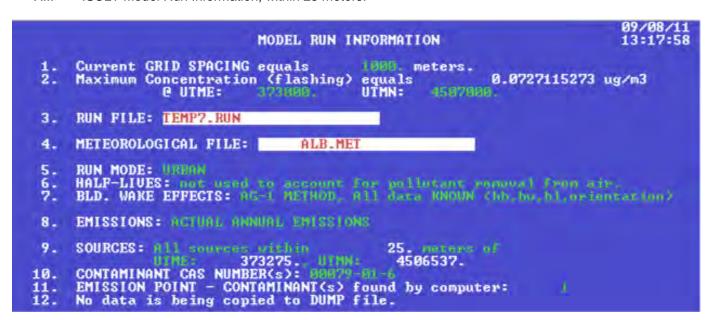
- STANDARD POINT SOURCE Short-Term Impact is calculated below using the DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. III.A.5. STANDARD POINT SOURCE Actual Annual Impact (less than AGC (63.000 ug/m3). III.D. 0.146 ug/m3) is III.D. STANDARD POINT SOURCE Potential Annual Impact (0.146 ug/m3 > is less than AGC (63.000 ug/m3). **** Potential Annual Impact is based upon 8760 hours/year **** operation instead of reported 8760. hours/year. *** **** DAR-1 SOFTWARE PROGRAM SHORT-TERM METHOD. See "Technical Reference for the Screening Procedures of the DAR-1 Software Program, Wade/Sedefian,' 1/11/94. 2.0 CAVITY Short-Term Impact is equal to 0.00 ug/m3 as the plume escaped the cavity region: hs(40. feet) > hc(26. feet). 2.2 II.C. CAUITY Short-Term Impact is equal to 0.000 ug/m3. There is no SGC for this contaminant. 1.3 Momentum flux, Fm, is equal to 1000.331 ft(4)/sec(2). Effective stack height, he, is equal to 51.001 feet. 2.3 Maximum non-downwash GEP stack Short-Term Impact (CSTP) is equal to 2.909 ug/m3. for hs/hb = 1.60 2.4 Maximum downwash Short-Term Impact (CSTD) is equal to 9.732 ug/m3, for: hs/hb = 1.60 and ESH = 51. Feet. 2.5 2.6 Adjusted maximum downwash Short-Term (CSTD) is equal 8_136 ug/m3, for: RF = Maximum non-cavity Short-Term Impact (CST) equals 8.1 for the point source. There is no SGC for this contaminant. III.D. 8.136 ug/m3
 - IX. AGCs and SGCs for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):

2.7

Maximum Short-Term cavity, point, or area source impact (SHORT-TERM MAXIMUM, (Cav.Pt.Area)) equals 8.136 and is reported in the ANALYSIS MENU.

8.136 ug/m3

X. Contaminant Emissions Summary for TCE, PCE, Vinyl Chloride, cis 1,2-Dichloroethene, and 1,2-Dichloroethene (total):


	CONTAI	9/ 8/11 Page 1		
ORS NUMBER	CONTRIVENANT NAME	NUM. OF EPS PER CONTAM.	EMISSIONS (lbs/hour)	EMISSIONS (1bs/year)
00075-01-4 00079-01-6	UINYL CHLORIDE TRICHEOROGYHYLENE	1	0.0026000 0.3444000	22.93000 3017.00000
00156-59-2 00540-59-0	DICHLOROETHYLENE, ci	s 1 2 1	0.2342000 0.0258000 0.0258000	226 - 00000 226 - 00000
SUMMARY	TOTALS	5	0.6328000	5543.93000

XI. Meter Grid Modeling Results for Maximum Annual Concentrations of TCE, within 25 meters:

	CONCENT	RATION AGC		18		g/m3) 00000		00079 /m3	-01-6				/08/11 :17:58
UTIVE	967888. * 966	96! 1000.	7886. 371	97: 8666.	1886. 37	37: 2000.	9886. 37	37! 4886.	5000. 37	37 5000.	7000. 371	979 1666.	1000.
UTMN #	0.04	0.06	0.08	0.14	0.23	0.32	0.41	0.30	0.14	0.10	0.08	0.06	0.05
4510000.	0.03	0.05	0.08	0.13	0.25	0.43	0.60	0.40	0.17	0.12	0.09	0.07	0.06
45090000.	0.02	0.03	0.06	0.11	0.24	0.58	1.01	0.52	0.22	0.14	0.11	0.08	0.06
45060000.	0.02	0.03	0.04	0.06	0.18	0.62	2.16	0.64	0.31	0.19	0.13	0.11	0.09
4507000.	0.02	0.03	0.04	0.06	0.11	0.26	7.27	1.43	0.60	0.34	0.22	0.15	0.12
45060000.	0.03	0.03	0.05	0.07	0.13	0.33	2.58	2.99	1.12	0.51	0.30	0.20	0.14
4505000.	0.03	0.04	0.05	0.08	0.20	0.45	0.94	0.81	0.60	0.45	0.33	0.23	0.16
4584888.	0.03	0.04	0.07	0.12	0.20	0.22	0.47	0.43	0.33	0.27	0.24	0.20	0.16

	TRIBUTORS TO	MAXIMUM (-01-6	09/08/11 13:17:58
Enission Point	Facility No		ened)	EP	Distance to Max.(m)	.DMOD Edvgu	Percent of Max.
TOTAL	NWIRP BETHE			SSE	539.	0.727E-01	100.000
TOTAL OF ALL 1	CONTRIBUTOR	RS				0.727E-01	100.000

XII. ISCLT Model Run Information, within 25 meters:

APPENDIX C FIELD LOGS

Groundwater L

level Measurement Sheet

Project Site: NWIRP Bethpage - GM-38

Location: Bethpage, NY

Field Crew: R.H

Water Level Meter: Solinst

Weather: 41 , Sonny, 30.14" Hs 13 mph N

Time of Low Tide: N/A

Time of High Tide: N/A

Well ID	Time	Depth to Water (ft.)	Well / Screed	PID (ppm)	Comments
RW1-MW1	9:10	32.19"	Interval (ft.)		
RW1-MW2	8:20		435 / 395-435		
RW1-MW3	91	35 49 "	435 / 395-435		
RW2-MW1	10:20	25 14 "	435 / 395-435		
RW2-MW2	9:22	35.47"	510 / 470-510		
RW2-MW3	9:30	35.86 "	510 / 470-510		
RW3-MW1	9:35	34.97'	510 / 470-510		
RW3-MW2	9:40	36,97 1	350 / 330-350		
RW3-MW3	10:00	36.52 "	495 / 475-495		
RW3-MW4	9:05	38.04 4	340 / 320-340		
	8:50	37.84 1	495 / 475-495		
TP1	8:16	32.61"	470 / 450-470		
W1-MW1	8:30	36.41	470 / 450-470		
RW-1			Open vault and che	ok into suit.	
RW-3			open vault and the	ck integrity of pip	oing, etc.
			Open vault and chee	ck integrity of pip	
					oing, etc.

Date: 18-24-2019