

24 March 2021

Mr. Scott Sokolowski Remedial Project Manager Naval Facilities Engineering Command, Mid Atlantic 9324 Virginia Avenue, Building Z-144 Norfolk, VA 23511-3095

Subject: US NAVY CONTRACT NO. N40085-16-D-2288

CONTRACT TASK ORDER NO. 4042

2020 ANNUAL SVECS OPERATIONS SUMMARY - SITE 1

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT, BETHPAGE, NY

Dear Mr. Sokolowski:

An electronic copy of the 2020 Annual Operations Report, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York, has been submitted to your attention.

Please contact me at <u>rgregory@komangs.com</u> or 610.400.0636 if you have any questions or comments regarding this submittal.

Sincerely,

KOMAN Government Solutions, LLC (KGS)

Robert G. Gregory Project Manager

Cc: Mr. Brian Murray (NAVFAC) – 1 Electronic Copy

Mr. Vin Varricchio (NWIRP Bethpage Facility Management) – 2 hard copies, 2 CDs

Mr. Jason Pelton (NYSDEC) – 1 Electronic Copy

Mr. William Cords (NAVAIR) – 1 Electronic Copy

Mr. James Sullivan (NYSDOH) – 1 Electronic Copy

Ms. Monica Marrow (Jacobs - NIRIS) – 1 hard copy, DDS Form, 1 CD

Mr. David Brayack (Tetra Tech) – 1 Electronic Copy

2020 Annual Operations Report

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

March 2021

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton PA, 19341 (610) 363-3000

2020 Annual Operations Report

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

March 2021

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Sature Schuler	03/08/2021
Patrick Schauble	Date
Program Manager	
Robert & Snam	03/08/2021
Robert Gregory \ \(\)	Date
Project Manager	

TABLE OF CONTENTS

1.0	INT	RODUCTION	1-1
		Site Location	
		Background	
		Project Overview and ObjectiveSVECS Overview	
2.0	SVE	CS OPERATION AND MAINTENANCE	2-1
		Routine Maintenance Activities	
		Non-routine Maintenance / Site Activities	
3.0	SVE	CS MONITORING	3-1
		Monthly Air Quality Monitoring	
		Quarterly Air Quality Monitoring of SVEWs	
		Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs Annual Vapor Quality Monitoring of Off-site SVPMs	
		Soil Vapor Quality Concentration Trends	
4.0		ICLUSIONS AND RECOMMENDATIONS	
5.0	REF	ERENCES	5-1
FIG	<u>URES</u>		
FIG	URE 1	Site Location Map	
FIG	URE 2	Site Area and Vicinity	
FIG	URE 3	Site Plan – Existing SVECS Layout	
FIG	URE 4	System Layout Plan	
FIG	URE 5	2020 Vapor Analytical Map – Select VOC Concentrations – SVEWs	
FIG	URE 6	2020 Off-site Soil Vapor Pressure Readings - SVPMs	
TA]	BLES		
TAI	BLE 1	Monthly Vapor Analytical Results – October 2020	
TAI	BLE 2	Monthly Vapor Analytical Results - November 2020	
TAI	BLE 3	Monthly Vapor Analytical Results – December 2020	
TAI	BLE 4	2020 Air Emissions and Mass Recovery Summary	
TAI	BLE 5	Quarterly Vapor Analytical Results of SVE Wells – Fourth Quarter 2020	
TAI	BLE 6	Quarterly Vapor Analytical Results of SVE Wells through Fourth Quarter 2	2020

TABLE 7	Quarterly Off-Site Soil Vapor Monitoring Results of SVPMs – Fourth Quarter 2020
TABLE 8	Annual Off-Site Soil Vapor Analytical Results of SVPMs – February 2020
TABLE 9	Historical Off-Site Soil Vapor Analytical Results of SVPMs through February 2020

APPENDICES

APPENDIX A	NYSDEC Air Discharge Limit Documentation
APPENDIX B	Vapor Concentration Trend Graphs of Select VOCs – SVPMs
APPENDIX C	Vapor Concentration Trend Graphs of Select VOCs – SVEWs
APPENDIX D	Data Validation Reports and Validated Data Summary – SVPMs

Acronyms and Abbreviations

bgs below ground surface
CTO Contract Task Order
DAR Division of Air Resources

DCA dichloroethane DCE dichloroethene

DoD Department of Defense

ELAP Environmental Laboratory Accreditation Program

FMS Flow Monitoring Station

GOCO Government Owned Contractor Operated

i.w. inches of water column

lbs pounds

KGS KOMAN Government Solutions, LLC

NAVFAC Naval Facilities Engineering Systems Command

Navy United States Department of the Navy

NELAC National Environmental Accreditation Conference

NG Northrop Grumman

NWIRP Naval Weapons Industrial Reserve Plant

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

O&M Operation and Maintenance PCB polychlorinated biphenyls

PCE tetrachloroethene

PID photoionization detector

QA/QC quality assurance / quality control scfm standard cubic feet per minute

SVE soil vapor extraction

SVECS soil vapor extraction containment system

SVEW soil vapor extraction well

SVOC semi-volatile organic compound SVPM soil vapor pressure monitor

TCA trichloroethane
TCE trichloroethene

TCL target compound list
TtEC Tetra Tech EC, Inc.
TtNUS Tetra Tech NUS, Inc.

μg/m3 micrograms per cubic meter

VC vinyl chloride

VGAC vapor–phase granular activated carbon

VOC volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this 2020 Annual Operations Report for the Soil Vapor Extraction Containment System (SVECS) at Site 1, Former Drum Marshalling Area, at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the United States Department of the Navy (Navy), Naval Facilities Engineering Systems Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-16-D-2288, Contract Task Order (CTO) No. N4008517F4042. This 2020 Annual Operations Report summarizes operations performed in 2020 and details activities that occurred during the Fourth Quarter from October 2020 to December 2020. Data was collected, and operational activities were performed by KGS in accordance with the following documents:

- Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech NUS, Inc. (TtNUS) in 2012.

The following quarterly reports, along with data collected during the Fourth Quarter (October through December), are used as a basis for this 2020 Annual Operations Report:

- Quarterly Operations Report, First Quarter 2020, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in June 2020.
- Quarterly Operations Report, Second Quarter 2020, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in August 2020.
- Quarterly Operations Report, Third Quarter 2020, Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by KGS in November 2020.

1.1 Site Location

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City. In the late 1990s, the Navy's property totaled approximately 109.5 acres and was formerly a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood. The Navy currently retains approximately nine acres of the former NWIRP, including Site 1, which lies within the fenced area of NWIRP Bethpage and is located east of Plant No. 3, west of 11th Street, and north of Plant 17 South (**Figures 1 and 2**).

1.2 Background

NWIRP Bethpage was established in 1943. Since inception, the primary mission of the facility was the research, prototyping, testing, design engineering, fabrication, and primary assembly of military aircraft. Historical operations that resulted in hazardous material generation at the facility included metal finishing processes, maintenance operations, painting of aircraft and components, and other activities that involve aircraft manufacturing. Wastes generated by plant operations were disposed of directly into drainage sumps, dry wells, and/or on the ground surface, resulting in the disposal of a number of hazardous wastes, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and inorganic analytes (chromium and cadmium) at the site. Some of these contaminants have migrated from the source area to surrounding areas, including the soils at these sites and the groundwater beneath and downgradient of the NWIRP Bethpage property. NWIRP Bethpage is currently listed by the New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B).

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. A clay unit is present near the groundwater table (50 feet below ground surface [bgs]) at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of off-site VOCs in soil vapor (TtEC, 2010).

Chlorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 micrograms per cubic meter (µg/m³) of soil vapor have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYSDOH) for sub-slab soil vapor concentrations at the time. Of these compounds, TCE is the primary VOC of concern. Mitigation of TCE contamination in accordance with NYSDOH guidance is expected to remediate other VOCs associated with the site. PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals have been detected in the central portion of Site 1 and will be addressed via a separate remediation (TtEC, 2010).

Prior to implementation of the SVECS, the mean concentrations of VOCs in soil gas samples collected along the eastern fence-line were 41,128 μ g/m³ of TCE, 381 μ g/m³ of PCE, and 20,634 μ g/m³ of 1,1,1-TCA. The maximum concentrations of VOCs in the soil gas samples were 180,000 μ g/m³ of TCE, 1,200 μ g/m³ of PCE, and 90,000 μ g/m³ of 1,1,1-TCA (TtEC, 2010).

1.3 Project Overview and Objective

The remedial objective for this project is to use an on-site soil vapor extraction (SVE) system to prevent further off-site migration of VOC-contaminated soil vapor and to the extent practical, capture contaminated soil vapor with a TCE concentration greater than 250 $\mu g/m^3$. A secondary objective of this project is to address soil vapor with a TCE concentration greater than 5 $\mu g/m^3$. The SVECS is an interim action intended to address migration of VOCs in contaminated soil vapors. It is expected to operate continuously 24 hours/day, seven days/week, with the exception of maintenance and adjustment periods, until the remedial objectives are met (TtEC, 2010).

1.4 SVECS Overview

The SVECS consists of soil vapor extraction, soil vapor monitoring, and soil vapor treatment. Twelve SVE wells (SVEWs) are located along the eastern boundary of Site 1 in six clusters, each consisting of one intermediate well and one deep well. Intermediate wells SVE-101I, SVE-102I, SVE-103I, SVE-104I, SVE-105I, and SVE-106I have a screened interval between 25 and 35 feet bgs. Deep wells SVE-101D, SVE-102D, SVE-103D, SVE-104D, SVE-105D, and SVE-106D have a screened interval between 40 and 60 feet bgs. The groundwater table fluctuates between approximately 50 and 55 feet bgs. Each SVEW is operated at a flow rate such that the combined total flow rate is approximately 300-400 standard cubic feet per minute (scfm) of soil vapor. Each intermediate depth SVEW requires an approximate vacuum of 4 inches of water column (i.w.) and each deep SVEW requires a vacuum of up to 20 i.w. in order to extract the targeted flow rates. These 12 SVEWs have been piped below the ground to the Flow Monitoring Station (FMS), where flow, vacuum, and vapor quality are monitored. Within the FMS, the discharges from the individual SVEWs have been equipped with a 2-inch flow control butterfly valve, a vacuum gauge, and a sampling port. The sampling port is utilized to measure the flow rate from an individual well using a portable velocity meter and to collect vapor samples. All the SVE lines collect into a single manifold within the FMS and from this location a single underground pipeline has been routed approximately 1,400 linear feet to the Treatment Building (Building 03-35). Five additional SVEWs (SV-107D, SV-108D, SV-109D, SV-110D, and SV-111D) were installed in October 2011 to address potential VOCs under Plant No. 3 and the South Warehouse. A site plan depicting well locations is included as Figure 3.

The SVECS is housed within the Treatment Building, an existing and unoccupied building also known as Building 03-35. The treatment system consists of a moisture separator, two SVE blowers, and a 5,000-pound vapor-phase granular activated carbon (VGAC) unit for removal of chlorinated VOCs from the offgas. Soil vapor that enters the Treatment Building first passes through the moisture separator tank where any condensate is separated. To date, no condensate has formed in this tank. The vapor is then passed through an air filter and SVE blower and then treated in the VGAC unit. The treated vapor is discharged from the VGAC via an exhaust stack. The SVECS has a control panel comprised of mechanical interlocks and relays for local operation. A System Layout Plan is presented in **Figure 4**, which also illustrates the design flow rates through the soil vapor extraction and treatment process.

The off-gas from the SVECS is monitored for chlorinated VOCs as identified in the NYSDEC Division of Air Resources (DAR) permit equivalent effluent limitations and updated approval documentation (**Appendix A**) and monitoring requirements (TtEC 2010). Samples are submitted to a National Environmental Laboratory Accreditation Conference (NELAC)-accredited, Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)-accredited laboratory, Eurofins Air Toxics, LLC. located in Folsom, California, for analysis of VOCs by modified method TO-15. Prior to January 2014, samples were analyzed for target compound list (TCL) VOCs. As of January 2014, upon approval by NYSDEC and NYSDOH, samples are analyzed for site-specific VOCs. The site-specific VOCs are: 1,1,1-TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis-1,2-DCE, PCE, trans-1,2-DCE, TCE, and vinyl chloride (VC).

A total of 18 soil vapor pressure monitor (SVPM) / soil gas monitoring points have been installed in the residential neighborhood east of Site 1 at NWIRP Bethpage (**Figure 3**). These off-site monitoring points consist of eight previously existing SVPMs as well as 10 SVPMs installed in September 2012. Soil vapor pressure readings from the SVPMs are collected quarterly and used to evaluate the SVECS vacuum field. In addition, analytical results of vapor samples collected annually from these locations and the soil vapor pressure readings are used to further evaluate the SVECS operation and the potential for vapor intrusion.

2.0 SVECS OPERATION AND MAINTENANCE

While designed to run autonomously, the SVECS requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The SVECS is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the SVECS were performed during the operator's weekly visits during this reporting period. These activities include general site inspections (of the grounds, buildings, doors and locks), collection of operational data (vapor flowrates, pressures, vacuums, temperature and photoionization detector [PID] readings), adjustment of system valves, collection of vapor samples (on a monthly and quarterly basis), collection/disposal of condensate if needed, cleaning of filters, switching of lead/lag blower assignments, and preventive maintenance of system equipment.

2.2 Non-routine Maintenance / Site Activities

The following non-routine activities / repair activities occurred at the SVECS during the 2020 reporting period:

2020 First Quarter

- On 17 January, the heating unit on the north side of the treatment building interior was not operating. The boiler associated with the steam-enhanced product recovery system being conducted under a separate contract was also not operating, resulting in the inside temperature of the treatment building being unacceptably low. The thermostat controlling the heating unit was found to be non-functional and was subsequently replaced on 27 January.
- On 23 January, the system was found to be offline, attributed to an overnight power failure.
- On 20 March, the operator drained the condensation from the well lines.
- The system documentation notes that the boiler located within the treatment building operates intermittently.

2020 Second Quarter

- No non-routine activities in the Second Quarter.
- Boiler was noted as operating intermittently.

2020 Third Quarter

- The VGAC media were replaced on 9 October.
- Boiler was noted as operating intermittently.

2020 Fourth Quarter

- No non-routine activities in the Fourth Quarter.
- Boiler was noted as operating intermittently.

3.0 SVECS MONITORING

Several process vapor samples are collected on a monthly basis to monitor the SVECS operation. These samples consist of an influent sample (as well as a duplicate sample), located immediately prior to the VGAC unit, and an effluent sample, located after the VGAC unit and before the exhaust stack. Vapor samples are also collected from the 12 original SVEWs on a quarterly basis to monitor the capture of the contaminated soil vapor by the SVEWs. In addition, quarterly pressure measurements are collected from the 12 SVEWs and the 18 SVPMs to monitor the SVECS vacuum field, and soil gas sampling from the 18 SVPMs is conducted annually (generally in the winter time-frame) to evaluate the effectiveness of the SVECS. The first annual soil gas sampling event was conducted in the winter 2012-2013. The eighth annual sampling event was conducted in February 2020.

3.1 Monthly Air Quality Monitoring

Analysis of influent and effluent vapor sample locations is performed to evaluate VOC mass removal and the effectiveness of the VGAC adsorption unit. Time-integrated vapor samples are collected using 6-liter summa canisters with 30-minute flow regulators.

Treated off-gas discharged at the exhaust stack is subject to emissions limitations. Initially, discharge goals were derived from calculations submitted by the Navy and accepted by the NYSDEC in the February 2010 DAR permit equivalent application. In September 2011, the Navy submitted an evaluation proposing revised discharge goals (TtNUS, 2011), which NYSDEC agreed to in October 2011. A copy of this documentation is included as **Appendix A**.

A summary of monthly vapor sampling results collected in October, November, and December (Fourth Quarter) is presented in **Tables 1, 2, and 3**, respectively. Emission rate calculations for both the influent stream (prior to VGAC treatment) and effluent stream (following VGAC treatment) and the computed monthly mass recoveries are also presented. Emission rates of the influent stream as well as mass recovery are calculated to monitor progress and determine when influent concentrations have reached levels at which vapor treatment via carbon adsorption is no longer required. The data presented in **Tables 1, 2, and 3** demonstrate that all constituents were within the effluent emission rate guidelines (**Appendix A**). Raw analytical data are provided under a separate cover.

Monthly emission rate calculations for January – September 2020 are included in previously submitted quarterly operations reports as indicated in Section 1.0. Pressure readings from the 18 SVPMs are presented graphically in **Figure 6**.

3.1.1 2020 Annual Summary

Emissions

Table 4 summarizes annual air emissions based on monthly emissions during 2020. Approximately 3.72 pounds (lbs) of total VOCs were emitted. Annual emissions of reported constituents were within the discharge guidelines as indicated in **Table 4**.

Mass Recovery

Contaminant mass recovery was calculated based on monthly influent concentrations combined with

monthly influent flow totals. During 2020, approximately 22.19 lbs of VOCs were removed by the SVECS, for an average monthly mass recovery rate of approximately 1.85 lbs per month. Monthly and annual mass recovery calculations for 2020 are summarized in **Table 4**.

3.2 Quarterly Air Quality Monitoring of SVEWs

Time-integrated vapor samples are collected quarterly using 6-liter summa canisters with 30-minute flow regulators at six intermediate and six deep SVEWs. The samples are collected for the purpose of tracking and documenting the performance of the SVECS (TtEC, 2010).

Quarterly vapor samples were collected on 6 November from the 12 SVEWs. A summary of detected compounds is included as **Table 5**. Raw analytical data are provided under a separate cover.

Analytical results of select VOCs (1,1,1-TCA, PCE, and TCE) detected at the 12 SVEWs during the Fourth Quarter monitoring event are presented graphically in **Figure 5**. Historical analytical results of quarterly vapor samples collected from December 2009 through the Fourth Quarter 2020 are presented in **Table 6**.

3.3 Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs

Soil vapor pressure readings are collected quarterly from the 12 SVEWs and 18 SVPMs to monitor the SVECS vacuum field. Soil vapor pressure readings from the 12 SVEWs and 18 SVPMs were collected on 6 November. Results of the Fourth Quarter vapor monitoring are presented in **Table 7**.

The vapor pressure readings collected from the SVEWs ranged between -4.5 to -11.5 i.w. indicating that a vacuum has been established along the fence line. The vapor pressure readings collected from the SVPMs ranged between -0.02 to -0.20 i.w. indicating that a vacuum has been established in the residential neighborhood. Pressure readings from the 18 SVPMs are presented graphically in **Figure 6**.

3.4 Annual Vapor Quality Monitoring of Off-site SVPMs

Time-integrated vapor samples are collected annually using 6-liter summa canisters with 30-minute flow regulators at 18 SVPM locations. The Annual 2020 SVPM samples were collected in February 2020.

3.4.1 2020 Vapor Quality Results

Annual vapor samples were collected 26 February from the 18 SVPM locations. Validated analytical results of samples collected in February 2020 are summarized in **Table 8**; the data validation summary is presented in **Appendix D**.

As shown on **Table 8**, 1,1,1-TCA and PCE were not detected at any of the 18 locations. TCE was detected at 5 of the 18 locations, with concentrations ranging from 11 μ g/m³ at well SVPM-2001S to 34 μ g/m³ at well SVPM-2006D. All detected concentrations were well below the NYSDOH sub-slab screening value of 250 μ g/m³ for TCE, as outlined in the *Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (NYSDOH, 2006).

Results of the quality assurance / quality control (QA/QC) samples, data validation report, and a validated analytical data summary from the February 2020 sampling event is presented **Appendix D**.

3.4.2 Historical Vapor Quality Results

Table 9 presents historical vapor quality analytical results collected from the 18 SVPM locations, beginning in October 2008 and including the most recent results obtained in February 2020, the historical trend graphs showing the SVPM concentrations over time can be found in **Appendix B**. As indicated, concentrations observed in February 2020 have dropped substantially from initial concentrations observed in October 2008, and were generally similar to or less than those observed in February 2019 with the following exceptions:

- The concentration of TCE at SVPM-2001S increased from non-detect to 11 μg/m³.
- The concentration of cis-1,2-DCE and PCE at SVPM-2001D decreased from 1.2 J μg/m³ and 3.3 J μg/m³, respectively, to non-detect for both compounds. The concentration of TCE increased from 4.8 J μg/m³ to 20 μg/m³.
- The concentration of PCE at SVPM-2006D decreased from 1.4 J $\mu g/m^3$ to non-detect while the concentration of TCE at this location increased slightly from 32 $\mu g/m^3$ to 34 $\mu g/m^3$.
- The concentrations of PCE and TCE at SVPM-2007S decreased from 1.1 J $\mu g/m^3$ and 0.76 J $\mu g/m^3$, respectively, to non-detect. The concentration of cis-1,2-DCE increased from non-detect to 8.6 $\mu g/m^3$.
- The concentration of 1,1,1-TCA at SVPM-2007D decreased from 0.81 J $\mu g/m^3$ to non-detect, the concentration of cis-1,2-DCE increased from non-detect to 16 $\mu g/m^3$, and the concentration of TCE increased from 1.0 J $\mu g/m^3$ to 14 $\mu g/m^3$.

In 2008, TCE was detected at all 18 locations, with concentrations ranging from 1.0 μ g/m³ (SVPM-2004S) to 89,000 μ g/m³ (SVPM-2002I); concentrations exceeded the NYSDOH sub-slab screening value of 250 μ g/m³ at nine locations (SVPM-2001S, SVPM-2001I, SVPM-2001D, SVPM-2002S, SVPM-2002I, SVPM-2002D, SVPM-2003D, SVPM-2004I, and SVPM-2004D). In 2013, TCE concentrations ranged from non-detectable levels at 12 locations to 47 μ g/m³ (SVPM-2006I), and no locations exceeded the NYSDOH sub-slab screening value of 250 μ g/m³. Since 2013, TCE has been detected at all 18 locations during at least one event with a maximum concentration of 84 μ g/m³ at SVPM-2006D in 2016, which is well below the NYSDOH sub-slab screening value of 250 μ g/m³. In 2020, TCE was detected at 5 of the 18 locations, with concentrations ranging from 11 μ g/m³ at well SVPM-2001S to 34 μ g/m³ at SVPM-2006D.

In 2008, PCE was detected at all 18 locations, with concentrations ranging from 1.8 μ g/m³ (SVPM-2004S) to 5,000 μ g/m³ (SVPM-2001I); concentrations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³ at two locations (SVPM-2001S and SVPM-2001I). In 2013, PCE concentrations ranged from non-detectable levels at seven locations to 2.3 J μ g/m³ (SVPM-2004D), and no locations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³. Since 2013, PCE has been detected at all 18

locations during at least one event with a maximum concentration of $10~\mu g/m^3$ (SVPM-2001D) in 2016 which is well below the NYSDOH sub-slab screening value of 1,000 $\mu g/m^3$. In 2020, PCE was not detected at any of the 18 locations.

In 2008, 1,1,1-TCA was detected at all 18 locations, with concentrations ranging from 1.4 μ g/m³ (SVPM-2004S) to 52,000 μ g/m³ (SVPM-2002I); concentrations exceeded the NYSDOH sub-slab screening value of 1,000 μ g/m³ at six locations (SVPM-2001S, SVPM-2001I, SVPM-2001D, SVPM-2002S, SVPM-2002I, SVPM-2002D). In 2013, 1,1,1-TCA was detected at only one location (SVPM-2007D) at a concentration of 1.3 J μ g/m³, well below the NYSDOH sub-slab screening value of 1,000 μ g/m³. Since 2013, 1,1,1-TCA has been sporadically detected at two locations (SVPM-2006D and SVPM-2007D) at estimated concentrations below 1.0 μ g/m³, well below the NYSDOH sub-slab screening value of 1,000 μ g/m³. In 2020, 1,1,1-TCA was not detected at any of the 18 locations.

3.5 Soil Vapor Quality Concentration Trends

Historical vapor analytical results for the 12 SVEWs through the Fourth Quarter are presented in **Table 6**. In addition, concentration trends of select VOCs for the SVECS combined influent (1,1,1-TCA, PCE, TCE, and total VOCs) and each of the 12 SVEWs (1,1,1-TCA, PCE, and TCE) are presented in **Appendix C**. Concentration trends observed in the 12 SVEWs through the Fourth Quarter are discussed below.

- Combined Influent: Overall VOC concentrations in the combined influent fluctuated during the Fourth Quarter 2020, with a total VOC concentration of 2,177 μg/m³ in October (**Table 1**), 1,455 μg/m³ in November (**Table 2**), and 987 μg/m³ in December (**Table 3**). Overall, TCE, PCE and 1,1,1-TCA concentrations remain approximately one to three orders of magnitude below baseline concentrations measured in December 2009 (42,000 μg/m³ TCE, 7,900 μg/m³ PCE, and 13,000 μg/m³ 1,1,1-TCA).
- SV-101I: Concentrations of two VOCs measured at this location (7,400 μg/m³ TCE and 88 μg/m³ PCE) increased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 while the concentration of 1,1,1-TCA (1,900 μg/m³) decreased in the Fourth Quarter (**Table 6**). The measured concentrations are consistent with respect to the range in concentration variability noted over the past several years. All concentrations remain below baseline concentrations measured in December 2009 (180,000 μg/m³ TCE, 1,700 μg/m³ PCE, and 51,000 μg/m³ 1,1,1-TCA).
- SV-101D: Concentrations measured at this location (290 μg/m³ TCE, 28 μg/m³ PCE, and 3.5 J μg/m³ 1,1,1-TCA) increased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (Table 6). All concentrations remain below baseline concentrations measured in December 2009 (100,000 μg/m³ TCE, 3,200 μg/m³ PCE, and 26,000 μg/m³ 1,1,1-TCA).
- SV-102I: Concentrations measured at this location (20 μg/m³ TCE, 3.8 J μg/m³ PCE, and 1.0 J μg/m³ 1,1,1-TCA) decreased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). The concentrations in the Fourth Quarter 2020 are above the baseline concentrations measured in December 2009 (5.6 μg/m³ TCE, 2.4 μg/m³ PCE, and non-

detect 1,1,1-TCA) but are below the maximum concentrations measured in June 2010 (300 μ g/m³ TCE, 17 μ g/m³ PCE, and 13 μ g/m³ 1,1,1-TCA).

- SV-102D: Concentrations measured at this location (80 μg/m³ TCE, 16 μg/m³ PCE, 1.9 J μg/m³ 1,1,1-TCA) have decreased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). Concentrations of TCE and 1,1,1-TCA remain below baseline concentrations measured in December 2009 (440 μg/m³ TCE and 130 μg/m³ 1,1,1-TCA) and PCE remains below the maximum concentration measured in September 2016 (51 μg/m³).
- SV-103I: Concentrations of two VOCs measured at this location (38 μg/m³ TCE and 200 μg/m³ PCE) increased slightly in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). The concentration of 1,1,1-TCA (5.9 μg/m³) decreased slightly in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020. All concentrations remain below baseline concentrations measured in December 2009 (900 μg/m³ TCE, 580 μg/m³ PCE, and 900 μg/m³ 1,1,1-TCA).
- SV-103D: Concentrations of two VOCs measured at this location (530 μg/m³ PCE and 15 μg/m³ 1,1,1-TCA) decreased in the Fourth Quarter 2020 relative to the Third Quarter 2020 (**Table 6**) and the concentration of TCE (65 μg/m³) increased during the Fourth Quarter. All concentrations remain below baseline concentrations measured in December 2009 (3,100 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,000 μg/m³ 1,1,1-TCA).
- SV-104I: Concentrations measured at this location (150 μg/m³ TCE, 3,900 μg/m³ PCE, and 25 μg/m³ 1,1,1-TCA) decreased or remained the same in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). Concentrations of TCE and 1,1,1-TCA remain below baseline concentrations measured in December 2009 (710 μg/m³ TCE and 730 μg/m³ 1,1,1-TCA). The concentration of PCE represents the maximum concentration measured to date, as it did in the Third Quarter 2020.
- SV-104D: Concentrations of two VOCs measured at this location (8,700 μg/m³ PCE and 510 μg/m³ 1,1,1-TCA) decreased slightly in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (Table 6). The concentration of TCE (1,1000 μg/m³) slightly increased in the Fourth Quarter. All concentrations remain below baseline concentrations measured in December 2009 (4,600 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,600 μg/m³ 1,1,1-TCA).
- SV-105I: Concentrations measured at this location (38 μg/m³ TCE, 34 μg/m³ PCE, and 15 μg/m³ 1,1,1-TCA) decreased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). Concentrations of TCE and PCE remain below baseline concentrations measured in December 2009 (76 μg/m³ TCE and 70 μg/m³ PCE). The measured concentration of 1,1,1-TCA in the Fourth Quarter 2020 is above the baseline concentration measured in December 2009 (9.9 μg/m³) but below the maximum concentration measured in May 2020 (88 μg/m³).
- SV-105D: Concentrations of two VOCs measured at this location (210 μg/m³ TCE and 52 μg/m³ 1,1,1-TCA) decreased substantially in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). The measured concentration of PCE (45 μg/m³)

increased in the Fourth Quarter. All concentrations remain below baseline concentrations measured in December 2009 (1,700 μ g/m³ TCE, 2,100 μ g/m³ PCE, and 550 μ g/m³ 1,1,1-TCA).

- SV-106I: Concentrations measured at this location (160 μg/m³ TCE, 480 μg/m³ PCE, and 11 μg/m³ 1,1,1-TCA) decreased substantially in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). The concentrations of TCE and 1,1,1-TCA are below the baseline concentrations measured in December 2009 (1,900 μg/m³ TCE and 220 μg/m³ 1,1,1-TCA). The concentration of PCE (480 μg/m³) remained above the baseline concentration (390 μg/m³) but was below the maximum concentration (96,000 μg/m³) measured in February 2020. All Fourth Quarter 2020 concentrations are notably less than the elevated concentrations measured in the First Quarter 2020 that had been attributed to ongoing soil removal operations being conducted at that time.
- SV-106D: Concentrations measured at this location (15 μg/m³ TCE, 26 μg/m³ PCE, and 3.0 J μg/m³ 1,1,1-TCA) decreased in the Fourth Quarter 2020 relative to concentrations measured in the Third Quarter 2020 (**Table 6**). All concentrations remain below baseline concentrations measured in December 2009 (3,400 μg/m³ TCE, 720 μg/m³ PCE, and 340 μg/m³ 1,1,1-TCA). All Fourth Quarter 2020 concentrations are notably less than the elevated concentrations measured in the First Quarter 2020 that had been attributed to ongoing soil removal operations being conducted at that time.

4.0 CONCLUSIONS AND RECOMMENDATIONS

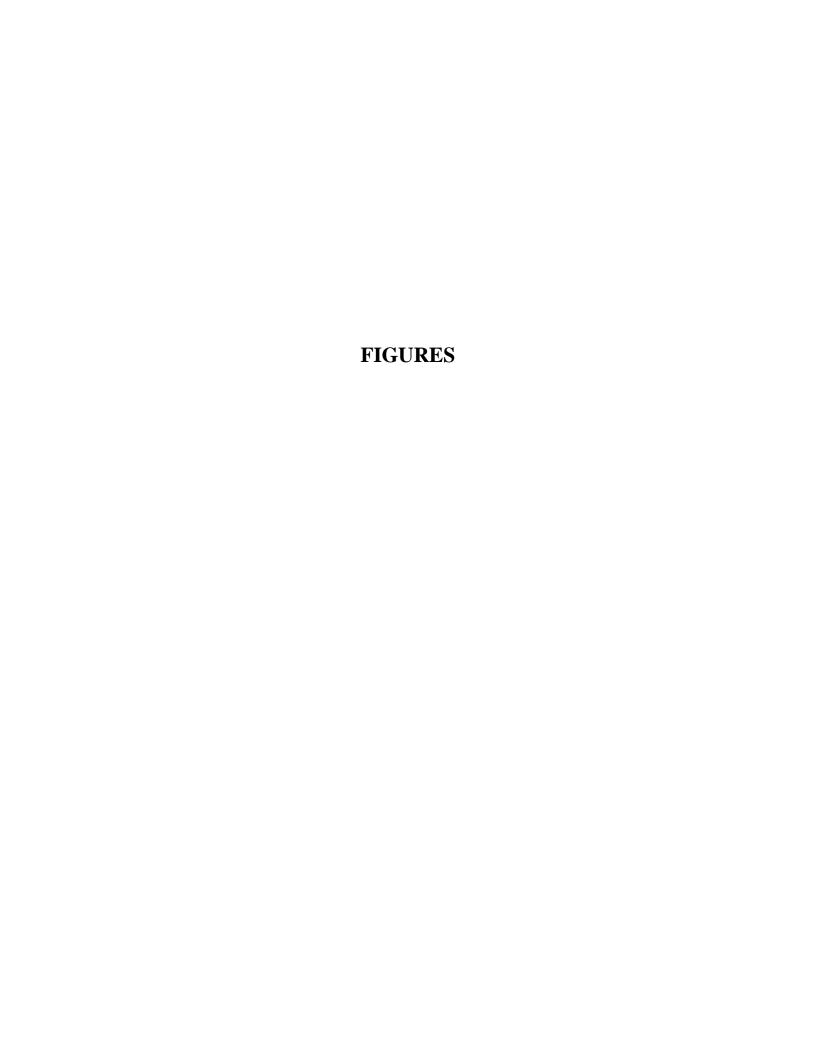
As stated previously, the intent of the Site 1 SVECS is to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture soil vapor with elevated TCE concentrations. Based on the presence of a vacuum field and the reduction of VOC concentrations to less than the screening values in the off-property area, the SVECS is functioning as designed. Influent vapor analytical data with concentrations of TCE above the project action level (greater than 250 μ g/L) indicates that the SVECS should continue to be operated on a full-time basis to achieve continued capture of contaminated soil vapor. Monthly monitoring of the combined influent and effluent as well as quarterly monitoring of individual SVEWs should continue. Quarterly and annual monitoring of the SVPMs should also continue in order to ensure that a measurable vacuum field is being established and that the area is being effectively treated.

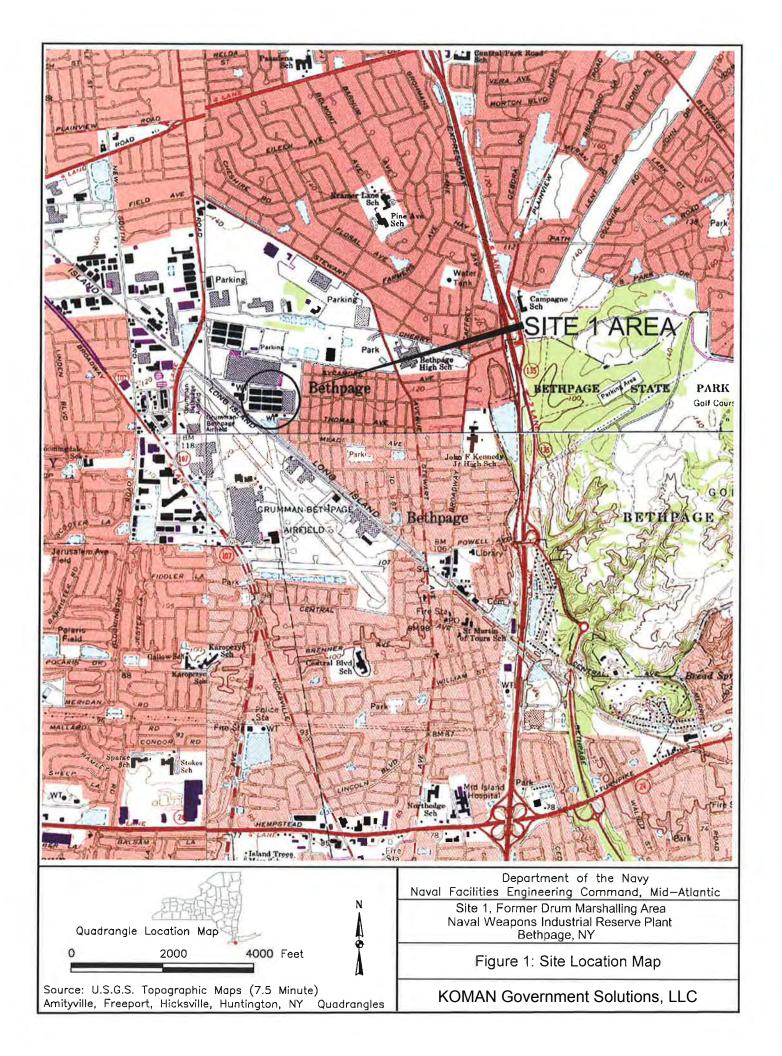
5.0 REFERENCES

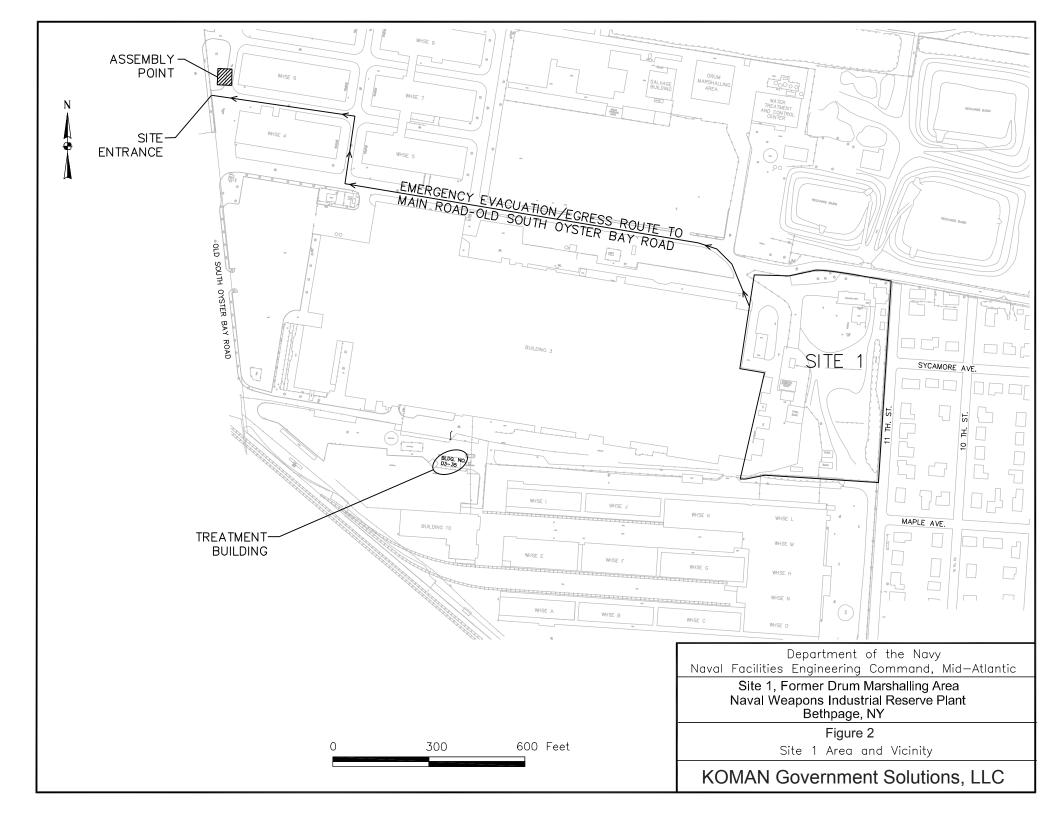
KOMAN Government Solutions, LLC. (KGS). 2020. Quarterly Operations Report, First Quarter 2020, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.

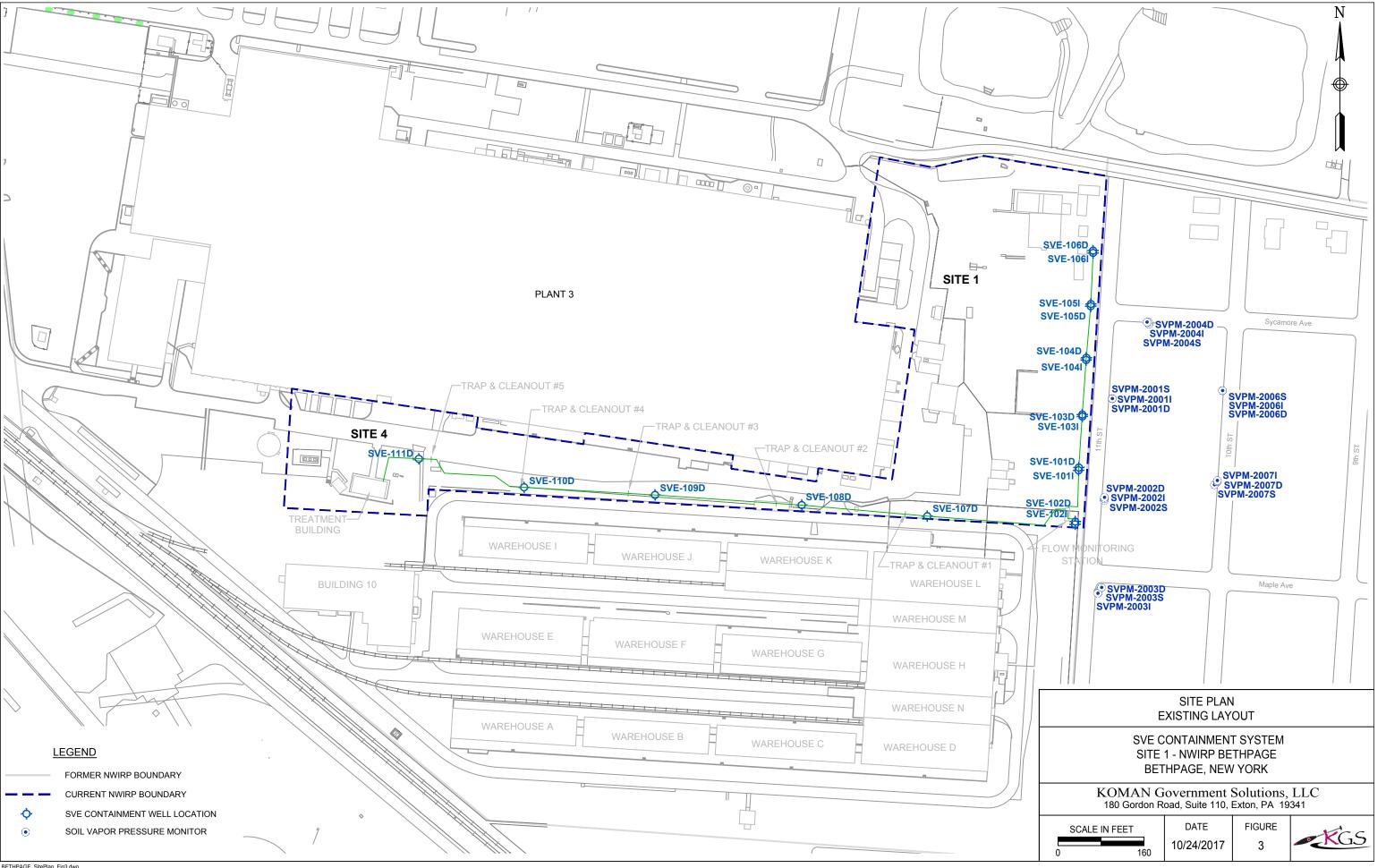
KGS. 2020. Quarterly Operations Report, Second Quarter 2020, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. August.

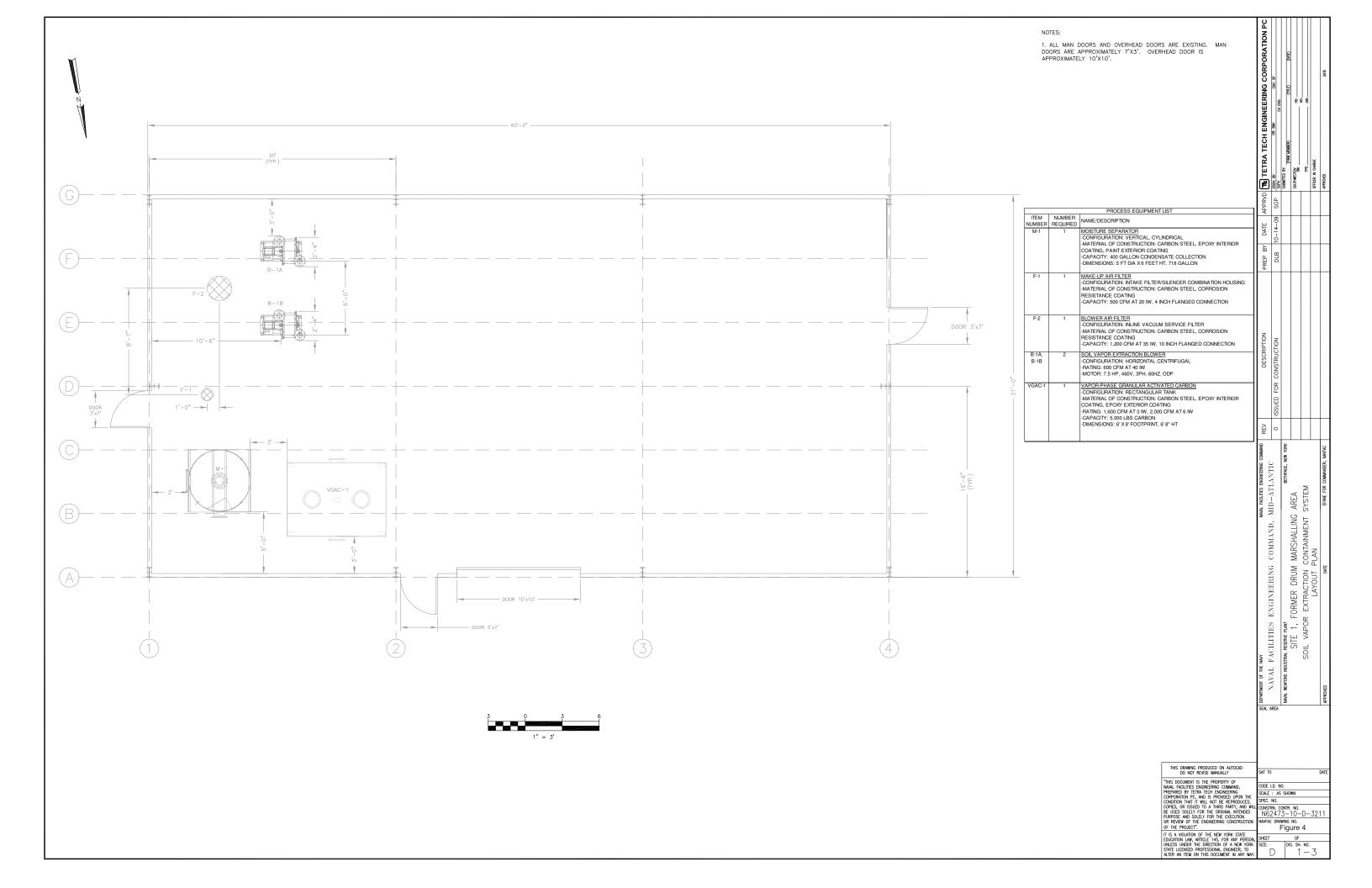
KGS. 2020. Quarterly Operations Report, Third Quarter 2020, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York. November.

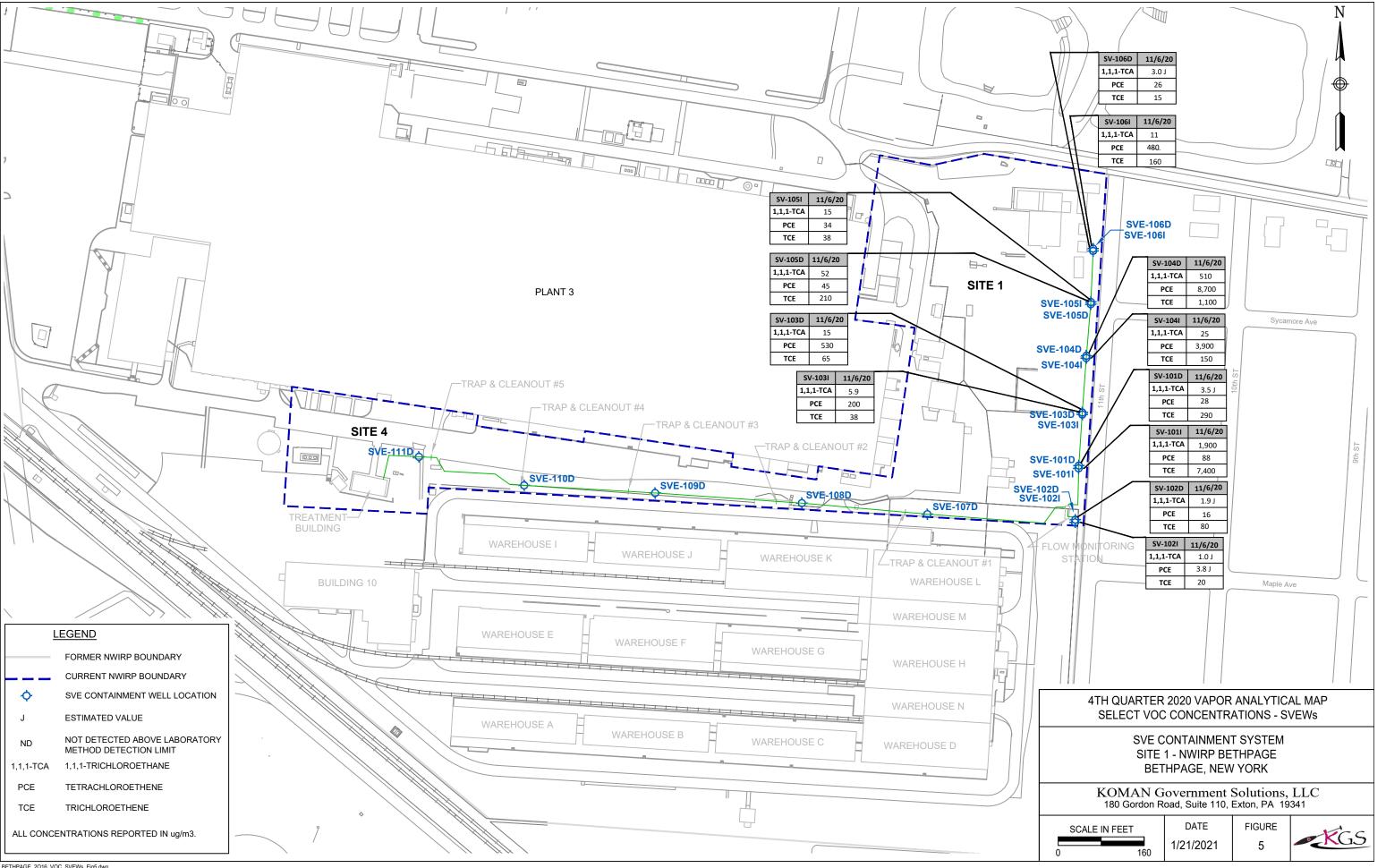

New York State Department of Health (NYSDOH). 2006. Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October.

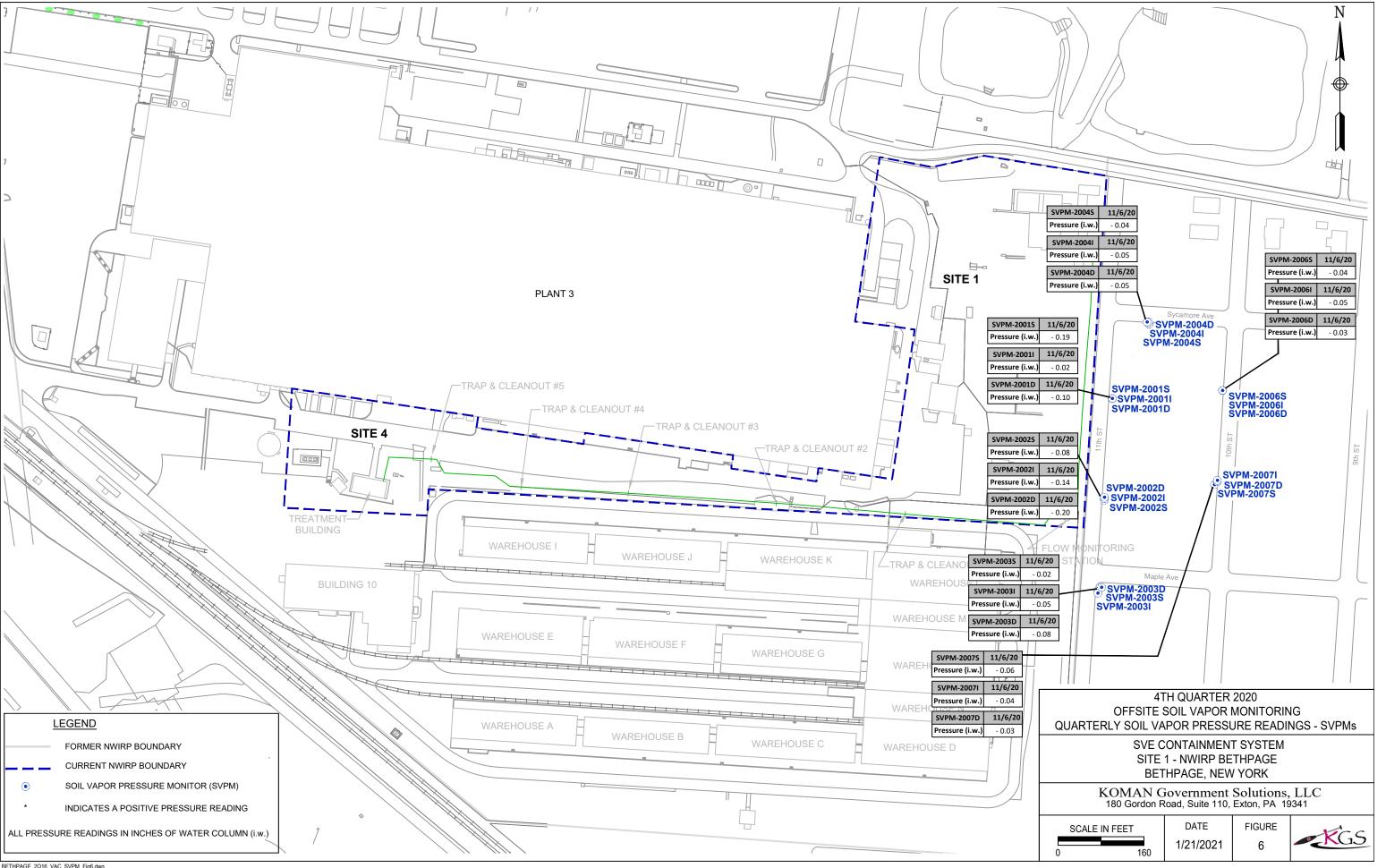

Tetra Tech EC, Inc. (TtEC). 2010. Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.

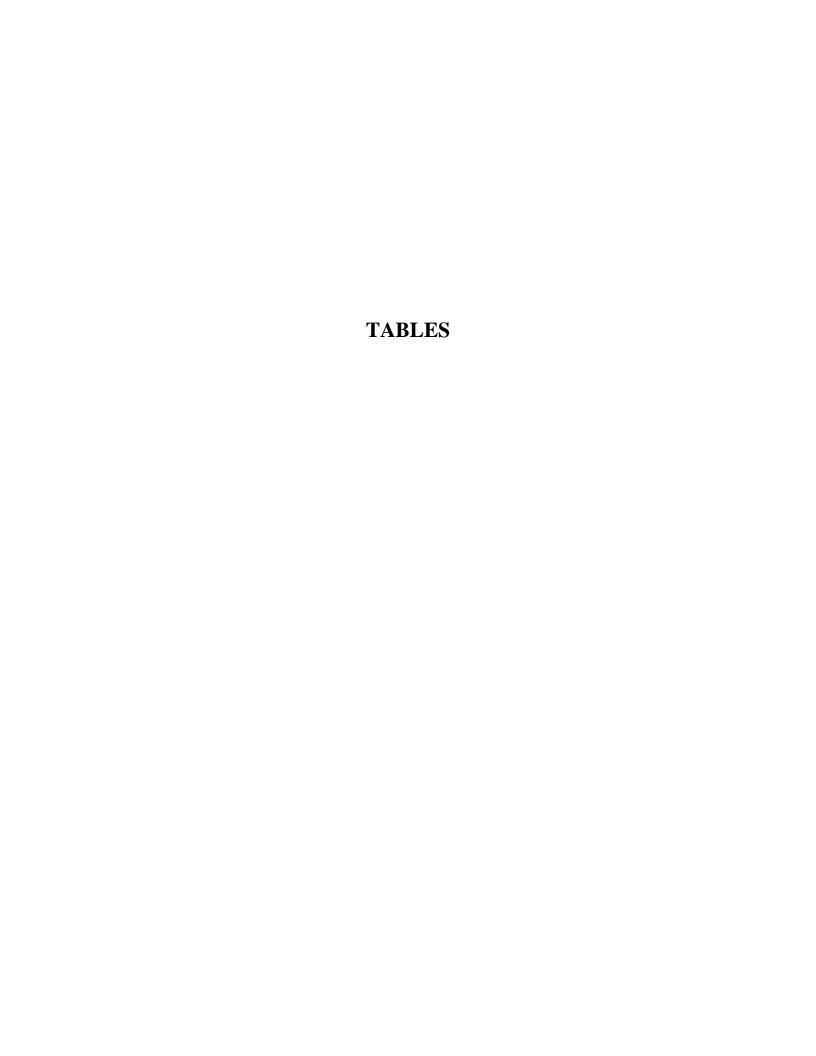

Tetra Tech NUS, Inc. (TtNUS). 2011. Modification to Existing Soil Vapor Extraction Containment System at Site 1 – Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -111D, NWIRP Bethpage, Bethpage, New York. September.


TtNUS. 2012. Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.









Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results October 2020

		Concen	tration			Monthly Mass			
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	Recovery (3)	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	210	220	215	0.0	0.0002	2.0220	0.0000	0.0000	0.1717
1,1-Dichloroethane	13	11	12	0.0	0.0000	0.1129	0.0000	0.0000	0.0096
1,1-Dichloroethene	0.82 J	0.0	0.41	0.0	0.0000	0.0039	0.0000	0.0000	0.0003
1,2-Dichloroethane	0.0	0.67 J	0.335	0.0	0.0000	0.0032	0.0000	0.0000	0.0003
cis-1,2-Dichloroethene	220	230	225	0.0	0.0002	2.1160	0.0000	0.0000	0.1797
Tetrachloroethene	980	1000	990	0.0	0.0011	9.3104	0.0000	0.0000	0.7907
trans-1,2-Dichloroethene	4.5	4.3	4.4	0.0	0.0000	0.0414	0.0000	0.0000	0.0035
Trichloroethene	720	740	730	0.0	0.0008	6.8652	0.0000	0.0000	0.5831
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	2148	2206	2177	0.0	0.0023	20.4748	0.0000	0.0000	1.7390

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = 110

Average Monthly Flowrate (cfm) = 310

Average Monthly Flowrate (scfm) = 287

Operational Hours for the month = 744

- (1) Emissions (lbs/hr) = Concentration $(ug/m^3)*(lb/454000000ug)*(0.3048^3m^3/ft^3)*exhaust flow (scfm)*(60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^{A} 3m 3 /fi 3 * INF AVG CONC (ug/m 3) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

Vapor Monitoring Results November 2020

		Concen	tration			Monthly Mass			
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	Recovery (3)	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	78	210	144	0.0	0.0002	1.3656	0.0000	0.0000	0.1122
1,1-Dichloroethane	3.4	8.2	5.8	0.0	0.0000	0.0550	0.0000	0.0000	0.0045
1,1-Dichloroethene	0.0	1.9 J	0.95	0.0	0.0000	0.0090	0.0000	0.0000	0.0007
1,2-Dichloroethane	0.0	0.86 J	0.43	0.0	0.0000	0.0041	0.0000	0.0000	0.0003
cis-1,2-Dichloroethene	73	200	136.5	0.0	0.0001	1.2944	0.0000	0.0000	0.1064
Tetrachloroethene	370	950	660	0.0	0.0007	6.2589	0.0000	0.0000	0.5144
trans-1,2-Dichloroethene	1.4 J	4.1	2.75	0.0	0.0000	0.0261	0.0000	0.0000	0.0021
Trichloroethene	280	730	505	0.0	0.0005	4.7890	0.0000	0.0000	0.3936
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	806	2105	1455	0.0	0.0016	13.8020	0.0000	0.0000	1.1344

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = 103
Average Monthly Flowrate (cfm) = 309
Average Monthly Flowrate (scfm) = 289
Operational Hours for the month = 720

- $(1) \ Emissions \ (lbs/hr) = \ Concentration \ (ug/m^3)*(lb/454000000ug)*(0.3048^3m^3/ft^3)*exhaust \ flow \ (scfm)*(60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^{A} 3m 3 /ft 3 * INF AVG CONC (ug/m 3) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

Vapor Monitoring Results December 2020

		Concen	tration			Monthly Mass			
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	Recovery (3)	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	11	220	115.5	0.0	0.0001	1.1102	0.0000	0.0000	0.0943
1,1-Dichloroethane	0.0	8.0	4.0	0.0	0.0000	0.0384	0.0000	0.0000	0.0033
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichloroethane	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
cis-1,2-Dichloroethene	8.0	170	89	0.0	0.0001	0.8555	0.0000	0.0000	0.0727
Tetrachloroethene	40	780	410	0.0	0.0004	3.9410	0.0000	0.0000	0.3347
trans-1,2-Dichloroethene	0.0	2.1 J	1.05	0.0	0.0000	0.0101	0.0000	0.0000	0.0009
Trichloroethene	35	700	367.5	0.0	0.0004	3.5325	0.0000	0.0000	0.3000
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	94	1880	987	0.0	0.0011	9.4876	0.0000	0.0000	0.8058

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) = 99

Average Monthly Flowrate (cfm) = 311

Average Monthly Flowrate (scfm) = 293

Operational Hours for the month = 744

- $(1) \ Emissions \ (lbs/hr) = \ Concentration \ (ug/m^3)*(lb/454000000ug)*(0.3048^3m^3/ft^3)*exhaust \ flow \ (scfm)*(60min/hour)$
- (2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)
- (3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^{A} 3m 3 /ft 3 * INF AVG CONC (ug/m 3) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 4 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY

2020 Air Emission and Mass Recovery Summary

	1,1-DCA Effluent Emission Rate		e Emission Rate		cis-1,2-DCE Effluent Emission Rate		-	ffluent on Rate		A Effluent on Rate	TCE Ef Emissio			Cs Effluent on Rate	Mass Recovery (Total VOCs)
Month	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/hr	lb/mo	lb/mo
Jan-20	0.0000	0.0068	0.0000	0.0012	0.0002	0.1238	0.0000	0.0000	0.0001	0.0578	0.0000	0.0363	0.0003	0.2275	1.5395
Feb-20	0.0000	0.0055	0.0000	0.0014	0.0002	0.1078	0.0000	0.0000	0.0001	0.0470	0.0000	0.0308	0.0003	0.1938	3.7198
Mar-20	0.0000	0.0074	0.0000	0.0025	0.0002	0.1133	0.0000	0.0000	0.0001	0.0639	0.0001	0.0485	0.0003	0.2380	6.6027
Apr-20	0.0000	0.0086	0.0000	0.0024	0.0002	0.1406	0.0000	0.0000	0.0001	0.0664	0.0001	0.0484	0.0004	0.2685	2.1721
May-20	0.0000	0.0150	0.0000	0.0024	0.0003	0.2080	0.0000	0.0000	0.0001	0.0782	0.0001	0.0799	0.0005	0.3866	1.2232
Jun-20	0.0000	0.0124	0.0000	0.0023	0.0003	0.2172	0.0000	0.0000	0.0001	0.0853	0.0001	0.0853	0.0006	0.4054	0.7334
Jul-20	0.0000	0.0196	0.0000	0.0052	0.0005	0.3379	0.0000	0.0000	0.0002	0.1493	0.0002	0.1572	0.0009	0.6731	0.9963
Aug-20	0.0000	0.0236	0.0000	0.0060	0.0004	0.3020	0.0000	0.0000	0.0002	0.1641	0.0002	0.1773	0.0009	0.6775	0.6984
Sep-20	0.0000	0.0225	0.0000	0.0042	0.0004	0.3005	0.0000	0.0000	0.0002	0.1577	0.0002	0.1653	0.0009	0.6541	0.8246
Oct-20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.7390
Nov-20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.1344
Dec-20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8058

	1,1-DCA	1,1-DCE	cis-1,2-DCE	<u>PCE</u>	<u>1,1,1-TCA</u>	TCE	Total VOCs	
Discharge Goal (lb/hr) (1)	NA	NA	NA	0.04	225	0.02		
Discharge Goal (lb/yr) (2)	NA	NA	NA	350	1,971,000	175	<u> </u>	
2020 Totals (lb/yr)	0.12	0.03	1.85	0.00	0.87	0.83	3.72 22.19	

Notes:

lb/hr = pounds per hour lb/mo = pounds per month lb/yr = pounds per year PCE = tetrachloroethene TCA = trichloroethane

TCE = trichloroethene NA = Not Applicable

Emission Rate (per hr) = average flowrate (scfm) * (0.3048^3) m³/ft³ * Eff conc (ug/m3) * (lb/454000000ug) * 60 min/hr * operational time (hrs)

 $Monthly\ Mass\ Recovery = average\ flowrate\ (scfm)\ *\ (0.3048^3)m^3/ft^3\ *\ Inf\ avg\ conc\ (ug/m^3)\ *\ (lb/454000000ug)\ *\ 60\ min/hr\ *\ operational\ time\ (hrs)$

(1) Discharge Goal (lb/hr) as presented in the Modification to Existing Soil Vapor Extraction Containment System at Site 1 - Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -11D, NWIRP Bethpage, Bethpage, Bethpage, PV (Tetra Tech NUS, 2011) and approved via email by NYDEC on 6 October 2011.

(2) Discharge Goal (lb/yr) = Discharge Goal (lb/hr) x 8760 hr/yr.

Soil Vapor Extraction Containment System

Site 1, Former Drum Marshalling Yard

Naval Weapons Industrial Reserve Plant - Bethpage, NY Fourth Quarter 2020 Vapor Analytical Results Summary of SVE Wells

Sample ID	SVE 101I	SVE 101D	SVE 102I	SVE 102D	SVE 103I	SVE 103D	SVE 104I	SVE 104D	SVE 105I	SVE 105D	SVE 106I	SVE 106D
Sample Date	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20	11/06/20
Analysis by TO-15 (μg/m³)												
1,1,1-Trichloroethane	1,900	3.5 J	1.0 J	1.9 J	5.9	15	25	510	15	52	11	3.0 J
1,1-Dichloroethane	32	ND	ND	ND	ND	4.1	ND	41	2.3 J	20	0.96 J	0.73 J
1,1-Dichloroethene	ND											
1,2-Dichloroethane	7.4 J	ND										
cis-1,2-Dichloroethene	6.5 J	2.2 J	ND	2.1 J	1.2 J	9.1	10	2,400	ND	7.2	23	ND
Tetrachloroethene	88	28	3.8 J	16	200	530	3,900	8,700	34	45	480	26
trans-1,2-Dichloroethene	ND	38	ND	ND	ND	ND						
Trichloroethene	7,400	290	20	80	38	65	150	1,100	38	210	160	15
Vinyl Chloride	ND											

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

 $\mu g/m^3$ = micrograms per cubic meter

ND = Not detected above method detection limit

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 1011											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	51000	3900	2600	450	850	300	1	0.7 J	0.7 J	1500	1500	3200	4400	3400	1900	2200	2900	2600	1200	1600	2500	2000	720
1,1-Dichloroethane	1200	65	34	14	31	5	0.8 J	0.4 J	0.4 J	28	28	61	76	62	35	36	57	50	22	29	51	39	15
1,1-Dichloroethene	250	ND	ND	4	8	ND	0.7 J	0.4 J	0.5 J	7.6 J	10	ND	15 J	ND	12 J	8.9 J	16 J	11 J	7.9 J	6.2 J	21	11 J	ND
1,2-Dichloroethane	NR	30	ND	4	8	ND	0.9	0.5 J	0.5 J	6.9 J	6.4 J	11 J	14 J	12 J	10 J	8.6 J	9.2 J	7.5 J	4.4 J	9.2 J	12 J	9.8 J	5.2 J
cis-1,2-Dichloroethene	480	59	ND	9	15	3	0.7 J	ND	0.4 J	7.1 J	7.4 J	20 J	22 J	14 J	6.2 J	11 J	22 J	12 J	4.2 J	8.8 J	24	9.4 J	4.6 J
Tetrachloroethene	1700	410	260	36	63	10	1	ND	2	48	46	93	120	80	49	79	100	80	34	67	83	54	31
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7 J	0.4 J	0.4 J	ND													
Trichloroethene	180000	18000	14000	1200	2400	560	1	0.6 J	0.6 J	4200	4300	7200	12000	8100	5200	5400	8900	7100	3300	4400	6900	5300	2500
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.5 J	0.3 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	520	2200	2700	3000	ND	ND	1100	1400	2700	4300	3600	950	1900	2500	1500	920	1400	2000	2000	1100	2000	1900
1,1-Dichloroethane	10	42	45	38	ND	ND	17	22	47	59	43	16	25	35	22	15	21	34	32	16	29	32
1,1-Dichloroethene	ND	ND	ND	6.9 J	ND	ND	4.5 J	6.0 J	8.0 J	ND	8.2 J	ND	ND	ND	ND	ND	ND	10 J	8.0 J	4.7 J	3.8 J	ND
1,2-Dichloroethane	3.8	15	9.0 J	ND	ND	ND	3.1 J	4.2 J	7.0 J	11 J	8.6 J	4.5 J	10.0 J	ND	6.9	7.0 J	5.6 J	7.3 J	8.0 J	4.3 J	8.0 J	7.4 J
cis-1,2-Dichloroethene	3.8	9.2 J	6.0 J	ND	ND	ND	ND	4.0 J	7.0 J	7.0 J	6.6 J	3.2 J	7.0 J	ND	ND	5.0 J	5.1 J	4.4 J	ND	ND	ND	6.5 J
Tetrachloroethene	31	74	83	82	ND	ND	29	41	87	130	100	42	74	91	56	40	60	73	60	31	78	88
trans-1,2-Dichloroethene	ND																					
Trichloroethene	1600	7600	8200	7100	ND	ND	3400	4100	7600	13000	11000	3600	5300	7500	5100	3600	4000	6100	6600	3300	6100	7400
Vinyl Chloride	ND																					

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 101D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	26000	130	53	ND	ND	ND	3	8	0.8 J	ND	3.1 J	9.9	11	ND	ND	5.6	16	14	12	20	19	12	ND
1,1-Dichloroethane	660	3.9	ND	ND	ND	ND	2	0.9 J	0.5 J	ND	ND	1.0 J	1.1 J	1.1 J	ND	ND	1.5 J	1.4 J	1.2 J	0.89 J	1.4 J	ND	ND
1,1-Dichloroethene	180	2	ND	ND	ND	ND	ND	0.7 J	0.4 J	ND	1.0 J	0.75 J	ND	ND	ND	ND	ND						
1,2-Dichloroethane	NR	0.5	ND	ND	ND	ND	2	0.5 J	0.5 J	ND													
cis-1,2-Dichloroethene	220	8.5	7.5	ND	3	ND	2	2	0.5 J	ND	ND	2.1 J	3.2	ND	ND	ND	3.0 J	4.5	3.5	1.5 J	4.1	2.3 J	ND
Tetrachloroethene	3200	1200	1200	ND	4	ND	26	210	2	ND	79	150	170	130	0.92 J	73	330	340	270	240	260	200	1.0 J
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	2	0.6 J	0.4 J	ND													
Trichloroethene	100000	1600	310	3	1	ND	3	120	1 J	ND	200	400	350	120	ND	56	540	680	330	180	410	190	1.7 J
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1	0.4 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	22	22	27	22	ND	20	15	5.0	22	20	12	9.3	ND	9.8	5.9	2.1 J	14	22	6.8	7.8	3.0 J	3.5 J
1,1-Dichloroethane	2.5 J	2.8 J	2.3 J	1.7 J	ND	3.1	2.2 J	0.85 J	3.0 J	2.3 J	2.4 J	1.8 J	ND	0.88 J	0.72 J	ND	ND	4.9	0.83 J	0.72 J	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	0.76 J	0.80 J	ND	ND	ND	0.60 J	ND										
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	3.3	5.9	5.8	6.4	ND	31	21	3.9	14	12	19	4.4	ND	2.5 J	1.6 J	ND	ND	13	2.0 J	0.99 J	3.1 J	2.2 J
Tetrachloroethene	230	250	310	220	ND	300	240	66	250	190	220	190	ND	210	240	51	190	210	220	160	16	28
trans-1,2-Dichloroethene	ND																					
Trichloroethene	450	1000	2200	990	ND	970	760	260	1100	880	900	780	ND	700	270	50	190	240	190	210	180	290
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 102I											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	02/05/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	ND	ND	13	3	ND	NA	2	3	2	ND	0.60 J	3.3 J	ND	ND	ND	1.6 J	ND	ND	0.95 J	10	4.0 J	0.82 J	1.6 J
1,1-Dichloroethane	ND	ND	ND	ND	ND	NA	0.8 J	0.5 J	0.5 J	ND													
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	0.8	0.4 J	0.4 J	ND													
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.5 J	0.5 J	ND													
Tetrachloroethene	2.4	1.4	17	6	NR	NA	3	6	6	ND	1.6 J	6.4	1.5 J	2.4 J	1.4 J	3.3 J	2.6 J	ND	ND	10	4.8 J	1.5 J	2.5 J
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND													
Trichloroethene	5.6	3.8	300	88	3	NA	34	76	52	10	26	99	10	10	15	49	21	7.6	8.0	84	39	8.0	22
Vinyl Chloride	ND	ND	ND	ND	ND	NA	0.5 J	0.4 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	12	2.8 J	0.87 J	ND	1.3 J	1.2 J	0.54 J	ND	6.4	0.95 J	ND	ND	7.4	1.8 J	ND	ND	8.8	ND	ND	ND	7.7	1.0 J
1,1-Dichloroethane	ND																					
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	ND																					
Tetrachloroethene	13	6.6	2.4 J	ND	2.9 J	3.2 J	1.6 J	1.4 J	7.8	2.7 J	1.4 J	1.8 J	8.1	3.4 J	1.5 J	3.8 J	11	ND	1.5 J	ND	9.6	3.8 J
trans-1,2-Dichloroethene	ND																					
Trichloroethene	120	40	12	ND	21	24	8.4	12	74	15	7.9	14	72	24	7.8	15	100	0.75 J	10	11	71	20
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 102D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	130	53	14	7	2	2	6	4	5	1.4 J	1.2 J	3.9 J	ND	ND	ND	2.3 J	3.1 J	ND	1.6 J	4.5	5.1	2.6 J	ND
1,1-Dichloroethane	ND	2.7	ND	ND	ND	ND	1	0.6 J	0.7 J	ND	ND	0.51 J	0.95 J	ND	ND	ND	0.69 J	ND	0.44 J	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.6 J	0.6 J	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.9	0.5 J	0.5 J	ND	0.38 J	ND	ND										
cis-1,2-Dichloroethene	ND	1.4	ND	ND	0.9	ND	1	0.5 J	0.9	ND	ND	1.1 J	4.1	ND	ND	ND	3.4	ND	2.8 J	0.89 J	3.6	1.6 J	ND
Tetrachloroethene	10	31	31	19	3	9	25	23	39	5.9	6.5	24	25	0.96 J	1.4 J	14	28	2.6 J	9.6	16	20	11	3.8 J
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.5 J	0.5 J	ND													
Trichloroethene	440	390	190	110	17	21	89	81	87	34	58	170	140	6.5	ND	88	160	3.9 J	39	79	92	36	20
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.6	0.4 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	5.2	4.9	3.5 J	1.1 J	6.6	3.8 J	2.7 J	1.8 J	3.6 J	1.8 J	1.8 J	ND	2.4 J	2.2 J	1.2 J	ND	3.0 J	1.1 J	1.0 J	ND	3.6 J	1.9 J
1,1-Dichloroethane	ND	1.0 J	0.81 J	ND	0.93 J	0.95 J	0.8 J	0.50 J	ND													
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	0.75 J	ND														
cis-1,2-Dichloroethene	4.2	9.3	8.9	4.4	13	10	5.2	2.6 J	2.2 J	1.3 J	1.8 J	ND	0.86 J	ND	2.3 J	ND	ND	0.92 J	ND	ND	3.0 J	2.1 J
Tetrachloroethene	22	41	42	18	51	37	26	15	17	15	18	6.2	12	13	9.4	2.3 J	13	8.7	7	3.9 J	18	16
trans-1,2-Dichloroethene	ND																					
Trichloroethene	160	180	120	38	150	74	44	48	80	43	61	15	50	54	22	19	79	36	28	17	150	80
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 103I											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	900	ND	ND	ND	ND	ND	0.9 J	6	6	ND	1.6 J	9.2	ND	ND	1.4 J	4.7 J	2.8 J	0.92 J	ND	4.6	4.9	ND	1.3 J
1,1-Dichloroethane	26	ND	ND	ND	ND	ND	0.6 J	2	2	ND	0.75 J	1.5 J	0.77 J	ND	ND	1.5 J	1.3 J	ND	ND	0.89 J	2.0 J	ND	0.68 J
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	ND														
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.5 J	ND														
cis-1,2-Dichloroethene	58	ND	ND	1	ND	1	0.5 J	16	12	18	16	19	6.0	2.4 J	5.0	11	15	6.9	3.4	4.2	6.1	ND	11
Tetrachloroethene	580	ND	ND	ND	ND	2	1 J	420	590	140	200	430	120	40	78	220	200	97	40	150	130	8.6	130
trans-1,2-Dichloroethene	580	ND	ND	ND	ND	ND	0.6 J	1	1	ND	0.85 J	ND	ND	ND	ND	ND	ND						
Trichloroethene	900	0.9	ND	ND	ND	ND	0.9 J	100	97	29	47	130	48	16	35	95	78	46	20	47	50	4.9 J	37
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	6.6	3.6 J	1.2 J	0.76 J	6.0	2.2 J	0.73 J	ND	6.0	0.94 J	0.77 J	ND	5.8	2.4 J	1.0 J	ND	11	5.1	ND	4.8	6.7	5.9
1,1-Dichloroethane	ND	1.4 J	ND	ND	1.9 J	1.1 J	ND	ND	1.8 J	ND	ND	ND	1.5 J	ND	ND	1.0 J	1.8 J	2.7 J	ND	0.67 J	ND	ND
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	9.3	7.3	13	2.7 J	5.2	2.2 J	1.8 J	1.3 J	5.8	0.75 J	1.4 J	1.6 J	3.4	2.9	3.4	2.3 J	5.6	8.6	1.8 J	3.2	1.7 J	1.2 J
Tetrachloroethene	290	210	450	71	200	99	70	36	180	56	56	70	200	120	150	69	510	190	100	1200	190	200
trans-1,2-Dichloroethene	ND	ND	ND	ND	1.3 J	ND	1.2 J	ND														
Trichloroethene	92	74	70	17	67	34	20	9.9	63	21	19	17	54	36	24	18	90	89	23	29	33	38
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 103D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	3000	1100	230	ND	13	ND	2 J	20	31	7.4 J	6.9 J	22	190	ND	150	170	200	550	400	25	38	ND	310
1,1-Dichloroethane	82	69	ND	ND	2	2	1 J	4	9	1.6 J	1.5 J	1.9 J	10 J	ND	10	10 J	20 J	50	48	ND	7.8 J	ND	24
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1 J	2	6 J	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	1 J	6 J	ND													
cis-1,2-Dichloroethene	420	1500	370	ND	92	ND	1 J	360	160	290	230	300	750	ND	550	700	2600	2100	1800	280	490	ND	930
Tetrachloroethene	20000	28000	16000	9	1500	ND	3	1600	6700	3800	3200	4700	4600	1.6 J	3300	4900	17000	15000	8600	6600	8900	ND	5800
trans-1,2-Dichloroethene	ND	24	ND	ND	1	ND	1 J	3	7 J	ND	ND	ND	8.8 J	ND	5.7 J	8.8 J	18 J	32	18	ND	ND	ND	17
Trichloroethene	3100	1600	640	7	92	ND	2 J	290	240	180	200	480	440	6.0	360	660	2100	1400	900	530	680	ND	580
Vinyl Chloride	ND	5.9	ND	ND	2	ND	0.8 J	4	5 J	ND	ND	ND	ND	ND	1.9 J	ND	14 J	ND	2.6 J	ND	ND	ND	ND

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	26	30 J	ND	38	ND	16 J	11 J	23 J	22	8.2 J	63	47	35	33 J	18 J	19	48	48	150	170	29	15
1,1-Dichloroethane	ND	ND	ND	ND	ND	6.2 J	ND	4.3 J	ND	ND	4.5 J	ND	ND	ND	ND	2.7 J	ND	12 J	14 J	15 J	5	4.1
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	310	530	ND	310	ND	340	210	250	180	130	320	210	190	340	200	160	140	330	310	400	120	9.1
Tetrachloroethene	8900	17000	ND	7500	ND	12000	13000	7500	6800	9200	8000	7700	6900	12000	8000	4400	8400	9000	22000	15000	680	530
trans-1,2-Dichloroethene	ND																					
Trichloroethene	640	1200	ND	300	ND	730	620	320	440	420	380	340	340	460	260	180	380	560	420	410	57	65
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 104I											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	730	4.2	ND	4	NR	NA	1 J	4	2	ND	ND	8.3	ND	ND	ND	3.1 J	2.6 J	ND	9.6	17	15	7.0	1.5 J
1,1-Dichloroethane	24	0.54	ND	ND	ND	NA	1 J	0.6 J	0.5 J	ND	7.4	8.7	7.7	6.6	ND								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	1 J	ND															
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	1 J	ND															
cis-1,2-Dichloroethene	110	14	ND	2	0.8	NA	0.9 J	2	3	0.90 J	ND	5.0	ND	2.7 J	ND	3.3	5.3	ND	94	160	160	130	7.3
Tetrachloroethene	3100	210	68	96	16	NA	2 J	54	33	12	ND	86	1.6 J	4.8 J	2.3 J	30	36	ND	69	210	190	91	13
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	NA	1 J	0.5 J	0.4 J	ND	1.8 J	2.1 J	1.4 J	ND									
Trichloroethene	710	44	60	72	12	NA	2 J	44	25	9.6	ND	73	ND	3.1 J	ND	30	31	ND	39	110	120	43	17
Vinyl Chloride	ND	0.47	ND	ND	ND	NA	0.7 J	0.3 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	8.3	4.0 J	4.6	0.48 J	6.9	6.5	ND	1.2 J	7.8	1.7 J	1.3 J	1.4 J	9.1	3.1 J	1.7 J	1.9 J	14	1.2 J	1.3 J	1.8 J	68	25
1,1-Dichloroethane	ND	ND	2.9 J	ND	ND	3.6	ND	ND	1.3 J	ND	ND	ND	1.4 J	ND	6.4 J	ND						
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	4.2	6.6	54	0.92 J	2.1 J	110	ND	4.1	31	6.7	4.6	12	27	20	18	17	28	13	7.4	1.8 J	18	10
Tetrachloroethene	82	66	79	10	80	530	0.68 J	21	190	90	20	34	96	76	46	34	130	20	21	11	3900	3900
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	1.2 J	ND															
Trichloroethene	85	54	35	7.6	83	110	ND	15	87	22	11	15	63	33	14	24	73	13	10	9.3	170	150
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 104D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	3600	3000	860	ND	270	ND	370	620	440	520	580	620	920	820	0.89 J	500	600	340	84	930	880	1.7 J	350
1,1-Dichloroethane	290	350	140	ND	66	ND	56	110	77	87	95	100	190	160	ND	95	130	56	22	120	130	ND	72
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	3	7 J	7 J	3.0 J	5.0 J	ND	11 J	ND	ND	ND	ND	4.3 J	1.0 J	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	5 J	5 J	ND													
cis-1,2-Dichloroethene	2400	6600	3500	ND	1200	ND	1000	3600	2100	2200	2800 J	2200	4200	3700	8.6	2000	3200	1600	460	3300	4400	21	1500
Tetrachloroethene	20000	39000	21000	ND	2400	ND	1400	5800	6300	3800	4300	4600	4500	4200	69	2600	3900	2500	780	8200	8000	120	2200
trans-1,2-Dichloroethene	130	70	30	ND	13	ND	14	25	22	26	31	27	55	40	ND	24	40	15	3.5	34	53	ND	18
Trichloroethene	4600	6000	2400	ND	470	ND	420	1600	1300	1400	1400	1700	2300	2100	14	1200	1600	1100	430	2000	2100	19	1100
Vinyl Chloride	ND	12	ND	ND	ND	ND	2	5	5 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	480	790	760	460	460	710	88	260	390	290	440	520	510	100	480	410	460	360	320	270	630	510
1,1-Dichloroethane	77	120	91	54	73	110	11	31	60	44	67	57	59	15	54	50	47	73	37	18	76	41
1,1-Dichloroethene	ND	ND	ND	ND	ND	7.6 J	1.2 J	2.9 J	3.0 J	ND	4.2 J	ND	5.8 J	ND								
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	2500	3600	3200	1900	2400	3800	400	1000	2200	1600	2500	2200	2300	700	2500	1900	1800	3000	1600	830	3400	2400
Tetrachloroethene	5100	10000	7700	4500	9400	15000	1400	3000	5900	7600	6000	6500	6800	1500	6500	4400	4800	3200	3600	2000	8800	8700
trans-1,2-Dichloroethene	39	49	38	30	38	67	6.5	16	30	22	37	39	37	9.3	43	36	30	45	27	20	36	38
Trichloroethene	1200	2200	1600	750	1400	2200	290	600	980	860	1100	870	870	210	790	740	780	690	600	370	1000	1100
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 105I											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	9.9	11	29	ND	24	1	1 J	21	31	11	13	26	22	22	11	24	18	32	26	17	20	20	25
1,1-Dichloroethane	ND	5.7	13	ND	6	ND	0.6 J	5	7	4.2	5.6	5.6	10	12	8.8	8.0	7.4	24	6.8	7.0	8.2	8.6	22
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	0.5 J	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.6 J	0.5 J	ND													
cis-1,2-Dichloroethene	ND	6.6	20	ND	ND	ND	1	10	16	8.1	9.7	13	16	13	14	14	7.4	17	6.2	9.5	12	7.5	31
Tetrachloroethene	70	9.1	240	ND	55	5	2	95	100	31	43	100	77	66	38	91	57	77	48	73	85	51	43
trans-1,2-Dichloroethene	ND	ND	1.6	ND	ND	ND	0.5 J	1	1	ND	ND	1.5 J	ND	ND	ND	ND	1.0 J	1.6 J	ND	ND	2.8 J	ND	ND
Trichloroethene	76	6.3	370	ND	120	7	1	170	200	110	140	260	180	160	94	220	140	180	190	140	200	130	160
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	29	30	12	5.0	16	11	5.6	4.8	13	5.6	4.9	3.5 J	8.7	10	4.6	3.3 J	21	4.8	2.3 J	88	40	15
1,1-Dichloroethane	15	28	17	1.5 J	2.8	3.4	2.2 J	2.7 J	2.1 J	0.98 J	3.5	0.99 J	1.2 J	1.6 J	1.3 J	4.8	3.4	1.8 J	0.86 J	ND	9.9	2.3 J
1,1-Dichloroethene	ND																					
1,2-Dichloroethane	ND	1.6 J	ND																			
cis-1,2-Dichloroethene	28	23	17	1.8 J	7.9	5.0	2.6 J	4.2	5.1	1.9 J	5.0	2.5 J	1.9 J	3.7	2.1 J	7.5	6.2	3.2	ND	ND	0.98 J	ND
Tetrachloroethene	87	66	44	27	64	46	26	17	50	27	21	17	23	46	20	13	38	15	11	9.3	41	34
trans-1,2-Dichloroethene	ND	2.3 J	ND	ND	0.83 J	ND																
Trichloroethene	290	240	84	39	250	160	50	38	140	58	40	30	60	110	36	32	130	41	17	18	67	38
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 105D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	12/02/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	550	47	320	1000	590	ND	1 J	490	930	350	320	270	380	430	160	110	120	190	ND	92	79	4.3 J	16
1,1-Dichloroethane	300	28	270	250	ND	ND	0.6 J	74	150	69	78	72	110	110	46	45	70	46	ND	36	28	ND	4.7
1,1-Dichloroethene	3.9	ND	ND	2	4	4	0.6 J	6 J	ND	1.5 J	ND	ND	ND	ND	ND	ND							
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	4	5 J	ND														
cis-1,2-Dichloroethene	61	36	85	300	ND	ND	0.7 J	150	380	190	220	150	210	200	73	76	85	46	ND	50	36	ND	3.6
Tetrachloroethene	2100	1.1	650	270	420	ND	2	240	330	140	220	270	350	330	100	140	260	300	ND	140	120	2.1 J	18
trans-1,2-Dichloroethene	19	1.1	3.1	3	ND	ND	0.6 J	7 J	3 J	ND	ND	ND	ND	ND	1.4 J	2.4 J	3.6	1.3 J	ND	1.3 J	1.9 J	ND	ND
Trichloroethene	1700	68	200	1100	1400	1	2	3000	7000	3600	4500	2200	3800	3800	1400	900	1200	1900	8.5	650	520	15	75
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	4 J	ND														

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	35	52	62	68	47	29	23	38	33	24	28	13	ND	27	61	75	54	66	26	15	200	52
1,1-Dichloroethane	12	30	21	15	22	23	19	21	12	14	12	12	ND	14	16	22	20	25	13	3.7	79	20
1,1-Dichloroethene	ND	2.7 J	ND	3.1 J	ND																	
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	16	22	18	26	31	19	19	32	20	13	17	22	ND	18	24	32	36	27	26	4.1	9.3	7.2
Tetrachloroethene	76	130	140	130	150	110	69	70	120	130	97	48	ND	140	140	85	78	100	94	39	31	45
trans-1,2-Dichloroethene	ND	ND	ND	ND	1.8 J	2.0 J	1.2 J	1.6 J	ND	ND	ND	ND	ND	0.88 J	0.92 J	ND	ND	1.7 J	ND	ND	ND	ND
Trichloroethene	250	400	410	350	360	210	140	200	310	170	160	57	ND	140	170	220	190	180	110	83	470	210
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 106I											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	220	8.6	ND	4	ND	NA	6	3	7	1.0 J	2.2 J	11	ND	ND	ND	ND	18	1.4 J	3.8 J	8.9	2.2 J	ND	8.0
1,1-Dichloroethane	120	ND	ND	1	ND	NA	1	0.5 J	1	0.62 J	0.70 J	1.6 J	2.5 J	1.9 J	ND	ND	3.8	ND	17	3.9	1.1 J	ND	18
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.6 J	2	0.6 J	ND													
1,2-Dichloroethane	NR	ND	ND	0.8	ND	NA	0.6 J	0.5 J	0.6 J	ND	1.3 J												
cis-1,2-Dichloroethene	46	ND	ND	4	ND	NA	6	0.5 J	4	1.6 J	2.3 J	7.5	5.4	3.7	ND	ND	8.3	ND	23	11	3.1 J	ND	23
Tetrachloroethene	390	35	ND	15	ND	NA	15	7	19	4.3 J	7.2	27	14	7.0	0.73 J	ND	19	4.2 J	6.2	11	2.9 J	ND	14
trans-1,2-Dichloroethene	7.9	ND	3.1	0.9	ND	NA	0.8	0.5 J	0.7 J	ND													
Trichloroethene	1900	41	ND	140	10	NA	210	92	190	69	110	260	180	110	5.5	ND	210	28	70	110	16	0.87 J	130
Vinyl Chloride	ND	ND	ND	0.5	ND	NA	0.4 J	0.3 J	0.4 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	29	30	2.8 J	1.5 J	12	7.5	5.5	2.0 J	11	4.8	0.91 J	2.0 J	8.8	4.2	0.78 J	1.9 J	14	34	880	7.0 J	27	11
1,1-Dichloroethane	2.6 J	3.4	1.2 J	ND	ND	1.3 J	2.4 J	0.56 J	5.4	1.9 J	ND	1.6 J	0.69 J	ND	1.2 J	ND	ND	5.6	260	ND	3.2 J	0.96 J
1,1-Dichloroethene	ND	55	ND	ND	ND																	
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	6.6	4.9	3.2	0.84 J	3.8	3.1 J	3.2	1.5 J	14	3.9	0.57 J	2.2 J	1.7 J	1.5 J	3.4	1.8 J	1.4 J	5.8	6600	41	86	23
Tetrachloroethene	39	49	11	5.1 J	20	6.7	4.9	3.9 J	16	8.3	2.5 J	4.5 J	12	9.9	3.1 J	3.1 J	20	20	96000	5500	1400	480
trans-1,2-Dichloroethene	ND	33 J	ND	ND	ND																	
Trichloroethene	560	660	200	40	190	71	53	59	170	83	39	45	88	79	43	44	150	100	9300	180	310	160
Vinyl Chloride	ND																					

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Quarterly Vapor Monitoring Results of SVE Wells Through Fourth Quarter 2020

Sample ID												SVE 106D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15
Analysis by TO-15 (μg/m³)																							
1,1,1-Trichloroethane	340	32	30	20	12	9	20	23	29	ND	11	26	18	ND	ND	27	25	5.8	6.3	14	28	ND	26
1,1-Dichloroethane	250	6.3	ND	5	2	5	4	3	3	ND	3.0	4.3	5.8	ND	ND	4.9	11	3.7	3.3	5.1	8.9	ND	2.6 J
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5 J	0.7 J	0.8	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	ND	0.6 J	0.7 J	ND	2.5 J	ND	ND	ND	1.1 J	ND	ND						
cis-1,2-Dichloroethene	79	13	11	13	2	11	11	5	4	ND	4.1	7.1	8.2	ND	ND	10	15	2.8 J	3.9	8.4	15	ND	36
Tetrachloroethene	720	65	70	ND	13	19	41	8	66	ND	28	62	48	ND	1.3 J	50	58	16	17	22	60	ND	110
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	ND	0.6 J	0.8	0.9	ND	1.1 J	ND	ND	ND	ND	ND	ND						
Trichloroethene	3400	600	900	230	130	170	210	260	320	ND	180	380	300	ND	ND	460	440	160	84	170	370	0.56 J	71
Vinyl Chloride	ND	1.6	ND	ND	ND	ND	ND	0.4 J	0.5 J	ND													

Sample Date	08/12/15	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20
Analysis by TO-15 (μg/m³)																						
1,1,1-Trichloroethane	ND	ND	11	7.2	30	14	10	7.6	18	8.3	4.6	2.2 J	14	12	10	8.0	30	250	500	46	7.5	3.0 J
1,1-Dichloroethane	ND	ND	2.7 J	13	6.8	21	17	2.6 J	11	7.1	1.6 J	2.8 J	6.1	7.9	7.3	2.2 J	2.5 J	36	260	12 J	ND	0.73 J
1,1-Dichloroethene	ND	25 J	ND	ND	ND																	
1,2-Dichloroethane	ND																					
cis-1,2-Dichloroethene	ND	ND	3.2	24	14	22	20	5.6	24	13	5.0	4.6	16	21	22	7.5	16	15	3700	240	1.3 J	ND
Tetrachloroethene	ND	1.4 J	33	27	57	33	24	17	44	39	15	9.5	26	37	26	15	37	35	25000	4800	27	26
trans-1,2-Dichloroethene	ND	ND	ND	ND	0.63 J	1.3 J	2.1 J	ND	20 J	ND	ND	ND										
Trichloroethene	1.6 J	ND	280	170	450	210	170	190	300	220	140	89	210	220	170	170	420	290	4400	730	37	15
Vinyl Chloride	ND	0.52 J	ND	ND	ND	ND																

Notes:

μg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Fourth Quarter 2020 Off-site Soil Vapor Monitoring of SVPMs

SVPM/ SVEW Location	Pressure Reading (i.w.)	Valve Position (% open)
Monitoring Date:	11/6/20	11/6/20
BPS1-SVPM2001S	-0.19	
BPS1-SVPM2001I	-0.02	
BPS1-SVPM2001D	-0.10	
BPS1-SVPM2002S	-0.08	
BPS1-SVPM2002I	-0.14	
BPS1-SVPM2002D	-0.20	
BPS1-SVPM2003S	-0.02	
BPS1-SVPM2003I	-0.05	
BPS1-SVPM2003D	-0.08	
BPS1-SVPM2004S	-0.04	
BPS1-SVPM2004I	-0.05	
BPS1-SVPM2004D	-0.05	
BPS1-SVPM2006S	-0.04	
BPS1-SVPM2006I	-0.05	
BPS1-SVPM2006D	-0.03	
BPS1-SVPM2007S	-0.06	
BPS1-SVPM2007I	-0.04	
BPS1-SVPM2007D	-0.03	
SV-101I	-4.5	40
SV-101D	-8.0	50
SV-102I	-6.2	40
SV-102D	-7.0	40
SV-103I	-7.3	40
SV-103D	-8.3	40
SV-104I	-5.5	40
SV-104D	-9.0	40
SV-105I	-5.0	40
SV-105D	-7.5	40
SV-106I	-7.3	40
SV-106D	-11.5	50

Notes:

i.w. = inches of water column SVEW = soil vapor extraction well SVPM = soil vapor pressure monitor

Pressure readings for the SVPMs were measured using a portable Magnehelic® Differential Pressure Gauge 2000-0, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line pressure gauges.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Annual Off-site Vapor Analytical Results Summary of SVPMs February 2020

Sample ID	Screening	SVPM 2001S	SVPN	1 20011	SVPM 2001D	SVPM 2002S	SVPM 2002I	SVPM 2002D	SVPM 2003S	SVPM 2003I	SVPM 2003D	SVPM 2004S	SVPM 2004I	SVPM 2004D	SVPM 2006S	SVPM 2006I	SVPM	2006D	SVPM 2007S	SVPM 2007IR	SVPM 2007D
Sample Date	Value (1)	02/26/20	02/26/20	2/26/2020 Duplicate	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	02/26/20	2/26/2020 Duplicate	02/26/20	02/26/20	02/26/20
Analysis by TO-15 (μg/m³)																					
1,1,1-Trichloroethane	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	66	200	200	8.6	ND	16
Tetrachloroethene	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4 J	ND	ND	ND
Trichloroethene	250	11	ND	ND	20	ND	ND	32	ND	34	34	ND	ND	14							
Vinyl Chloride		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

All samples were analyzed for site-specific VOCs by modified method TO-15. Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(1) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					SVPIV	20015											SVPM 200	011											S	VPM 2001D						
Sample Date	Value (2)	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	1/16/2017 Duplicate	02/05/18	02/04/19	2/4/2019 Duplicate	02/26/20	2/26/2020 Duplicate	Oct 2008	01/15/13	1/15/13 - Duplicate	01/29/14	01/13/15	1/13/15 - Duplicate	01/14/16	09/12/16	9/12/16 - Duplicate	01/16/17	02/05/18	02/04/19	02/26/20
Analysis by TO-15 (μg/m³)																																					
1,1,1-Trichloroethane (1)	1,000	1,300	ND	1,700	ND	ND	ND	ND	ND	ND	1,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
1,1-Dichloroethane (1)		11	ND	29	ND	ND	ND	ND	ND	ND	26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
1,1-Dichloroethene (1)		9.2 J	ND	16	ND	ND	ND	ND	ND	ND	17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND																	
cis-1,2-Dichloroethene (1)		20	ND	94	ND	ND	ND	ND	ND	ND	73	ND	ND	ND	ND	ND	6.3	ND	ND	1.9 J	1.4 J	1.2 J	ND														
Tetrachloroethene ⁽¹⁾	1,000	4,000	ND	1.3 J	ND	ND	1.1 J	ND	ND	ND	ND	5,000	ND	1.9 J	ND	1.2 J	3.6 J	0.78 J	ND	ND	1.2 J	ND	ND	ND	720	ND	ND	0.53 J	ND	ND	10	ND	2.3 J	1.9 J	4.3 J	3.3 J	ND
trans-1,2-Dichloroethene ⁽¹⁾		7.9 J	ND	16	ND	ND	ND	ND	ND	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														
Trichloroethene (1)	250	1,700	ND	ND	ND	ND	1.8 J	ND	ND	ND	11	2,700	ND	ND	ND	ND	5.0	0.87 J	0.78 J	ND	1.6 J	ND	ND	ND	1,500	ND	ND	ND	ND	ND	3.9 J	ND	4.0 J	2.2 J	4.6	4.8 J	20
Vinyl Chloride (1)		NS	ND	NS	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND														

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

- (1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).
- (2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.
- (3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					S	SVPM 2002	s										SVPIV	20021										SVPIV	1 2002D				
Sample Date	Value ⁽²⁾	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	1/14/16 - Duplicate	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/15/13	01/29/14	1/29/14 - Duplicate	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	2/5/2018 Duplicate	02/04/19	02/26/20	Oct 2008	01/15/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20
Analysis by TO-15 (μg/m³)																																		
1,1,1-Trichloroethane (1)	1,000	21,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	52,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27,000	ND								
1,1-Dichloroethane (1)		170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	680	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	490	ND								
1,1-Dichloroethene (1)		220	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	890	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	480	ND								
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene (1)		49 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	170	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	130	ND								
Tetrachloroethene (1)	1,000	420	ND	2.2 J	ND	ND	ND	0.94 J	ND	ND	ND	ND	740	ND	1.8 J	ND	ND	ND	ND	0.67 J	ND	ND	ND	ND	48 J	ND	1.8 J	ND	ND	2.8 J	7.3	1.0 J	1.3 J	ND
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene (1)	250	34,000	ND	1.1 J	ND	ND	ND	2.5 J	ND	ND	ND	ND	89,000	12	1.8 J	1.4 J	ND	ND	ND	2.4 J	4.5	3.4 J	4.1	ND	26,000	ND	ND	ND	ND	28	20	42	51	32
Vinyl Chloride (1)		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND								

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

- (1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).
- (2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.
- (3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					SVPIV	2003S									SVPM	20031									SVPM	2003D				
Sample Date	Value (2)	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20
Analysis by TO-15 (μg/m³)																															
1,1,1-Trichloroethane (1)	1,000	66	ND	170 J	ND	720 J	ND																								
1,1-Dichloroethane (1)		ND	0.49 J	ND	8.6	ND	ND	ND	ND	ND	0.78 J	ND	ND	ND																	
1,1-Dichloroethene (1)		ND	2	ND	23	ND																									
1,2-Dichloroethane (1)		ND																													
cis-1,2-Dichloroethene ⁽¹⁾		ND	1.6	ND																											
Tetrachloroethene (1)	1,000	19	1.6 J	ND	ND	ND	2.7 J	ND	ND	ND	ND	14	0.97 J	1.5 J	ND	0.89 J	5.5	0.59 J	ND	1.0 J	ND	8.9	ND	2.4 J	ND	ND	5.3	ND	ND	ND	ND
trans-1,2-Dichloroethene (1)		ND	2.3 J	ND																											
Trichloroethene ⁽¹⁾	250	20	4.9	ND	ND	ND	4.7	ND	ND	ND	ND	82	ND	0.73 J	ND	ND	10	ND	ND	ND	ND	710	ND	ND	ND	ND	10	ND	0.43 J	ND	ND
Vinyl Chloride (1)		NS	ND	NS	ND	NS	ND																								

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

(3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					SVPM	2004S									SVPM	20041									SVPM	2004D				
Sample Date	Value ⁽²⁾	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/29/14	01/13/15	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20
Analysis by TO-15 (μg/m³)																															
1,1,1-Trichloroethane (1)	1,000	1.4	ND	460	ND	480	ND																								
1,1-Dichloroethane (1)		ND	44	ND	74	ND																									
1,1-Dichloroethene (1)		ND	7.1	ND																											
1,2-Dichloroethane (1)		0.25 J	ND																												
cis-1,2-Dichloroethene ⁽¹⁾		ND	4.6	ND																											
Tetrachloroethene (1)	1,000	1.8	1.0 J	1.3 J	ND	ND	2.2 J	ND	ND	ND	ND	1,000	0.68 J	2.9 J	ND	0.83 J	2.0 J	ND	ND	ND	ND	580	2.3 J	1.5 J	7.1	3.6 J	3.0 J	0.75 J	1.4 J	1.5 J	ND
trans-1,2-Dichloroethene (1)		ND	3.9	ND																											
Trichloroethene ⁽¹⁾	250	1.0	ND	ND	ND	ND	2.5 J	ND	ND	ND	ND	550	ND	3.7 J	ND	ND	6.8	ND	ND	ND	ND	600	ND	0.80 J	1.5 J	ND	6.5	ND	ND	ND	ND
Vinyl Chloride (1)		NS	ND	NS	ND	NS	ND																								

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

- (1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).
- (2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.
- (3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					S	VPM 2006	is									9	SVPM 2006	ı											SVPM 2006	D					
Sample Date	Value (2)	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	09/12/16	01/16/17	1/16/2017 Duplicate	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	1/14/16 - Duplicate	09/12/16	01/16/17	02/06/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/30/14	01/13/15	01/14/16	09/12/16	9/12/16 - Duplicate	01/16/17	02/05/18	2/5/2018 Duplicate	02/04/19	02/26/20	2/26/2020 Duplicate
Analysis by TO-15 (μg/m³)																																				
1,1,1-Trichloroethane (1)	1,000	12	ND	ND	ND	ND	22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	35	ND	ND	ND	ND	ND	0.59 J	ND	ND	ND	ND	ND	ND						
1,1-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1-Dichloroethene (1)		ND	ND	ND	ND	0.62	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
cis-1,2-Dichloroethene (1)		4.1	5.4	ND	ND	3.4	3.4	2.8	2.2 J	1.6 J	ND	ND	45	340	10	ND	260	280	260	260	240	130	66	89	190	22	180	320	320	390	400	310 J	430 J	200	200	200
Tetrachloroethene (1)	1,000	14	1.0 J	1.4 J	ND	ND	3.8 J	0.96 J	0.77 J	ND	ND	ND	29	1.9 J	1.5 J	ND	2.2 J	2.1 J	5.1	1.5 J	ND	1.2 J	ND	11	1.4 J	ND	1.7 J	1.9 J	3.9 J	5.3 J	2.0 J	1.9 J	2.3 J	1.4 J	ND	ND
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	1.4 J	4.6	ND	ND	3.4	3.6	4.0	3.6	2.8 J	1.7 J	ND	2.7	2.2 J	ND	2.0 J	3.3	3.5	4.4	4.7	2.4 J	5.4 J	2.2 J	ND	2.4 J							
Trichloroethene (1)	250	32	ND	0.80 J	ND	1.6 J	8.2	ND	0.99 J	0.93 J	ND	ND	71	47	2.9 J	ND	48	61	57	44	50	28	ND	61	17	2.1 J	30	47	61 J	84 J	59	68	78	32	34	34
Vinyl Chloride (1)		NS	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						

Notes:

 $\mu g/m^3$ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

(1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 – Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).

(2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.

(3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Historical Off-site Vapor Analytical Results Summary of SVPMs Through February 2020

Sample ID	Screening					:	SVPM 2007	s									SI	VPM 2007I/	IR										SVPM	2007D					
Sample Date	Value ⁽²⁾	Oct 2008	01/16/13	01/30/14	01/14/15	1/14/15 - Duplicate	01/14/16	09/12/16	01/16/17	02/05/18	02/04/19	02/26/20	Oct 2008	01/16/13	01/30/14	01/14/15	01/14/16	09/13/16	01/16/17	02/05/18	02/04/19	2/4/2019 Duplicate	02/26/20	Oct 2008	01/16/13	1/16/13 - Duplicate	01/30/14	1/30/14 - Duplicate	01/14/15	01/14/16	09/13/16	01/16/17	02/05/18	02/04/19	02/26/20
Analysis by TO-15 (μg/m³)																																			
1,1,1-Trichloroethane (1)	1,000	150	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	260	ND	ND	ND	ND	ND	ND	ND	ND	0.60 J	ND	870	1.3 J	1.1 J	ND	ND	ND	0.87 J	ND	ND	0.95 J	0.81 J	ND
1,1-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene (1)		0.26 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.69 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene (1)		ND	13	2.0 J	ND	ND	ND	ND	ND	ND	ND	8.6	ND	ND	ND	ND	4.4 J	ND	ND	ND	ND	ND	ND	ND	9.8	11	2.0 J	ND	ND	3.1	ND	ND	ND	ND	16
Tetrachloroethene (1)	1,000	13	1.1 J	1.4 J	ND	ND	0.89 J	6.8	0.81 J	ND	1.1 J	ND	25	1.8 J	ND	2.3 J	2.3 J	ND	1.7 J	2.2 J	1.5 J	2.0 J	ND	5.3 J	2.2 J	1.8 J	1.2 J	ND	ND	2.0 J	ND	0.73 J	1.8 J	ND	ND
trans-1,2-Dichloroethene (1)		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene ⁽¹⁾	250	29	5.0	2.5 J	ND	ND	ND	3.9 J	ND	ND	0.76 J	ND	87	ND	ND	ND	1.9 J	9.8	ND	ND	ND	ND	ND	400	5.5 J	2.9 J	ND	ND	ND	2.7 J	8.2	ND	ND	1.0 J	14
Vinyl Chloride (1)		NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

μg/m³ = micrograms per cubic meter

J = Estimated value

ND = Not detected above laboratory method detection limit (MDL)

NS = Not sampled

SVPM = soil vapor pressure monitor

Bolded value indicates detected analyte.

- (1) Site specific compound specified in the Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System Site 1 Former Drum Marshalling Area, NWIRP Bethpage, New York (Tetra Tech 2012).
- (2) Screening Value is the New York State Department of Health (NYSDOH) air guideline value for subslab.
- (3) October 2008 data taken from Site 1 Phase II Soil Vapor Report (Tetra Tech 2009).

APPENDIX A NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

From: Steven Scharf [mailto:sxscharf@gw.dec.state.ny.us]

Sent: Thursday, October 06, 2011 11:57 AM To: Fly, Lora B CIV NAVFAC MIDLANT, IPTNE

Cc: John Swartwout; Walter Parish; Steven Karpinski; John cofman; klumpe@steelequities.com;

David.Brayack@ttnus.com

Subject: NWIRP Plant 3 Site 1 SVE Modification Plan

Lora,

The New York State Department of Environmental Conservation (NYSDEC), in conjunction with the New York State Department of Health (NYSDOH), have reviewed the Navy Submittal entitled:

" Modification to existing Soil vapor Extraction (SVE) Containment System At Site 1-Former Drum Marshaling Area, Installation of Soil Vapor Extraction Wells SVE-107D to 111D, NWIRP Bethpage, September 2011."

Based on this Departmental review, and the follow up October 6, 2011 tele-conference, this modification work plan is acceptable and can be used for immediate implementation. The NWIRP Site 1 SVE system has redundant blowers and overcapacity, even with the additional SVE wells being added. should the Navy and the new property owner, Steel Equities Inc., for the former Plant 3 complex come to agreement to add SVE piping from the former Plant 3, this would be acceptable. Appropriate plans, consistent with the covenants and restrictions to the deed, should be submitted accordingly.

A letter will not follow this e-mail. If you have any questions, please contact me directly.

Electronic Documentation Information NWIRP Bethpage 130003B-OU1-OMM FOllable Region 1, Nassau (C), Oyster Bay (T)

Thanks,

Steven M. Scharf, P.E.
Project Engineer
New York State Department of
Environmental Conservation
Division of Environmental Remediation
Remedial Action, Bureau A
625 Broadway
Albany, NY 12233-7015
(518)402-9620
Fax: (518)402-9022

4.0 PROPOSED REVISIONS TO VAPOR DISCHARGE GOALS

To determine the continued need for off gas treatment, the quality of the influent vapor stream was initially estimated based on soil gas results and compared to discharge goals. Vapor phase treatment was initially installed for the system based on projected relatively high concentrations of several chemicals including 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). Since the December 2009 startup, VOC concentrations in the extracted vapors have decreased by approximately 98.3 percent and it is uncertain as to whether vapor phase treatment is still required. Presented below are the December 2009 and March 2011 influent (untreated) VOC concentrations and loadings and current discharge goals.

	December 2009 I	nfluent VOCs	March 2011 Inf (µg/m	Current	
Parameter	Concentration (µg/m³)¹	Loading (pound/ hour) ¹	Concentration (µg/m³)	Loading (pound/ hour) ⁽²⁾	Discharge Goal (pound/hour) ⁽³⁾
TCA	13,000	0.074	150	0.00023	0.13
TCE	42,000	0.26	460	0.00069	0.07
PCE	7,900	0.029	440	0.00066	0.0009

⁽¹⁾ Initial VOC Loading Rates are from baseline data taken in December 2009. The flow meter was not yet installed when this data was taken, so a value of 385 CFM (flow rate in January 2010) was used to estimate system loading.

A DAR-1 Model Analysis was then conducted using the August 2010 influent vapor concentrations of TCA, TCE, and PCE at a flow rate of 500 CFM. The calculated results were then used to back calculate proposed discharge goals based on an allowance of 100% of the annual guideline concentrations (see Appendix E). The following table provides a summary of the proposed discharge goals.

	August 2010 Ir (370 CFM		Percent AGC	Proposed Discharge Goals		
Parameter	Concentration (µg/m³)	Loading (pounds/ hour)	Using August 2010 Data	Concentration at 500 CFM (µg/m³)	Loading (pounds/ hour)	
TCA	868	0.0009	0.0004	None ¹	225	
TCE	4,170	0.0039	19.4	11,000	0.02	
PCE	5,780	0.0057	14.2	22,000	0.04	

⁽¹⁾ Greater than 100,000 μg/m³. AGC - Annual Guideline Concentration

4-1 CTO-WE06

⁽²⁾ Calculated using a flow rate of 400 CFM.

⁽³⁾ Current discharge goals were based on calculated VOC concentrations using soil gas data from the fence line investigation, a flow rate of 600 CFM, and an assumed treatment efficiency for each VOC of 80 to 90 percent. Based on this evaluation, the existing treatment is no longer required to meet discharge goals.

New York State Department of Environmental Conservation

Division of Environmental Remediation Bureau of Remedial Action A 625 Broadway, 11th Floor

Albany, New York 12233-7015

Phone: (518) 402-9625 • Fax: (518) 402-9022

Website: www.dec.state.ny.us

February 5, 2010

Lora Fly, Project Manager Naval Facilities Engineering Command-Midlant 9742 Maryland Avenue Norfolk, VA 23511-3095

RE: Naval Weapons Industrial Research Plant(NWIRP) Site-Bethpage, NYSDEC No. 1-30-003B.

Dear Ms. Fly:

Tetra Tech FW, on behalf of the Department of the Navy (Navy), has submitted the enclosed New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources (DAR) Air Permit Application as a permit equivalent. This DAR Air permit equivalent is for the soil vapor extraction system at Site 1 of Plant 3 of the former Naval Weapons Industrial Reserve Plant (NWIRP) site in Bethpage, NY. The NYSDEC Division of Environmental Remediation (DER) has reviewed the permit equivalent and, by means of this letter approves the Site 1 remedy air discharge for immediate operation.

The NWIRP Site 1 SVE system utilizes the reasonably available control technology (RACT) with activated carbon. The air discharge will be periodically monitored at start up and will be added for routine monitoring in the operation, maintenance and monitoring (OMM) plan, to be submitted shortly for Departmental review.

If you have any questions, please contact me at your earliest convenience at (518)402-9620.

Sincerely,

Steven M. Scharf, P.F.

Project Engineer

Division of Environmental Remediation

Bureau of Remedial Action A

Enclosure

ec/w/enc: J. Swartwout/S. Scharf/File

W. Parish, Region 1 NYSDEC

A. J. Shah, Region 1 NYSDEC

S. Patselos, Tetra Tech FW

J. Cofman, Northrop Grumman

E docs: Region 1, Nassau, Oyster Bay (T): NWIRP Bethpage 130003B-OUI-OMM

Zip

DEC ID	APPLICATION ID		OFFICE USE ONLY
	111-111/		
	Section I - Certification	n	
	Title V Certification		
certify under penalty of law that this document and all attach that qualified personnel properly gather and evaluate the info	rmation submitted. Based on my indition	v of the nerson of person	s directly responsible for uninerity is
that qualified personnel properly gatter and evaluate the information [required pursuant to 6 NYCRR 201-6.3(d)] I beliably be a submitting false information, including the possibility of fines a	eve the information is, true, accurate an	d complete. I am aware	that there are significant penalties f
Responsible Official		Title	
Signature		Date _	1 1
	State Facility Certification		
certify that this facility will be operated in conformance	e with all provisions of existing regu	ulations.	
Responsible Official		Title	
Signature		Date	
Section	n II - Identification Info	rmation	
Title V Facility Permit N/Λ □ New □ Significant Modification □ Ac	dministrative Amendment		Permit N/A ☐ Modification
☐ New ☐ Significant Modification ☐ Ac ☐ Renewal ☐ Minor Modification ☐ Gene	☐ New General Perm		
Application involves construction of new facility	☐ Application in	nvolves construction o	f new emission unit(s)
	Owner/Firm		
Name US Navy/NAVFAC Midla	nt		
	Bldg Z-144		
City Norfolk	State VA	Country (Zip J3511 - 3.095 Taxpayer ID
Owner Classification 🏿 Federal 🗅 Corporation/Partnershi		u wunicipai	Taxbayerib
	Facility		☐ Confident
Name Naval Weapons Industrial Re	eserve Plant (NWIRP) Site 1	
Location Address Beth page			
	New York		Zip 11714
× 1111 1111 1111	Project Description		☐ Continuation Shee
Vanor phase granular activated	danka k assaul l	MC Com s	21 1025
Asbue buase desumas activated	Carbon to remove	YIJCA HEM S	8311 (43
Owr	ner/Firm Contact Mailing Ad	dress	
Name (Last, First, Middle Initial) Fly, Lora		Phor	ne No. (75) 444 - 078 1
Affiliation Department of the Navy	Title 'Remedial	- 3 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Street Address 9742 Maryland Ave.	Bide Z-144		
City Norfolk		Country US	Zip 23511-309
	acility Contact Mailing Addre	ess	
Name (Last, First, Middle Initial)			ne No. ()
Affiliation	Title	Fax	No. ()
Street Address			

State

Country

		DE	CID		
T.T	TT	T	1.1	T	Г

Affected States (Title V Only) N/A Vermont	d:d:
Vermont	d:
Vermont	d:
New Hampshire Connecticut New Jersey Ohio Tribal Lan	d:
999	
7999	
Facility Description	
Facility Description	☐ Continuation Sheet
	C.
son vapo semenante de la las longues de la las las las las las las las las las	
Compliance Statements (Title V Only) N/A	
I certify that as of the date of this application the facility is in compliance with all applicable requirements: YES	ON C
If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signi	
box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this for plan information required. For all emission units at this facility that are operating in compliance with all applicable	
following:	requirements complete the
☐ This facility will continue to be operated and maintained in such a manner as to assure compliance for the di	ration of the permit, excep
those units referenced in the compliance plan portion of Section IV of this application. For all emission units, subject to any applicable requirements that will become effective during the term of	f the permit, this facility wil
meet all such requirements on a timely basis.	
☐ Compliance certification reports will be submitted at least once a year. Each report will certify compliance	status with respect to each
requirement, and the method used to determine the status.	
Facility Applicable Federal Requirements N/A	☐ Continuation Sheet
Title Type Part Sub Part Section Sub Division Paragraph Sub Paragraph	Clause Sub Claus
Facility State Only Requirements	☐ Continuation Sheet
itle Type Part Sub Part Section Sub Division Paragraph Sub Paragraph	Clause Sub Claus
	555 5.445

		EC) IE)		
9			-			

Section III - Facility Information (continued)

			Faci	lity Compl	iance Certifica	ation IV/A	ום	Continuation Sheet(s		
				Rule	Citation					
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause Sub Claus		
☐ Applicable Fed	deral Requirement	☐ Capping	CA	S No.		Co	I ntaminant Name			
				Monitoring	Information					
Ambient Ai	r Monitoring	☐ Work F	ractice Invo	olving Speci	fic Operations	□Reco	ord Keeping/Main	tenance Procedures		
				Des	cription					
	- Hilling to Land									
Work Practic	Code	1	Process I	Material Description			Reference Test Method			
Туре	Code			Description						
		Par	ameter				Manufacturar N	lame/Model No.		
C	ode			Description			Manufacturer N	ame/woder No.		
	Limi	- Andrewson - Andr				Limi	it Units			
U	oper	L	ower	Code			Description			
Δ	veraging Method	1		Monitorina	Frequency		Reporting Re	equirements		
Code	Descrip		Code		Description	Co	ode	Description		
	-									

-	Facility Emissions Summary		Continua	ation Sheet(s)
10.00 m	Karanga ang Arma	PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
NY075 - 00 - 5	PM-10			
NY075 - 00 - 0	PARTICULATES			
7446 - 09 - 5	SULFUR DIOXIDE			
NY210 - 00 - 0	OXIDES OF NITROGEN			
630 - 08 - 0	CARBON MONOXIDE			
7439 - 92 - 1	LEAD			
NY998 - 00 - 0	VOC	1.222		
NY100 - 00 - 0	НАР	1,813		
00071 -55 - 6	1,1,1-Trichlorgethane (Methyl Chloroform)	591		
	Tetrachloroethylene	8		
00079 01 6	Trichloroethylene	1,181		
00075 - 34 - 3	1.1 - Dichlosoethane	11		
	1.1-Dichlorgethylene (Vinylidine Chloride)	16		

		DE	CID		
-	T	T	T-T	T	T

Section III - Facility Information

	Facility Emissions Summary (continuation)		
oku.		PTE		Actual
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)
00540-59 - 0	cis-1,2-Dichlorcethene	5		
00107-06-2	1.a-Dichloroethane	0		
00156-60-5	trans-1,2-Dichloroethene	0		
00075-01-4	Vinyl Chloride	0		
14 14			1	
			1	
			1 1	
	-		+	
-				
+ +			-	
and the second s			1	
			1	
-			1	
-:-	-			-
2 1				
14 12				
				•
90.00				
E	6.5			
4.5				
- 2 - 4				
4 4				

	D	EC I	D			
		1.		T		Г

Section IV - Emission Unit Information

		Emission Unit Description	☐ Continuation Sheet(s)
EMISSION UNIT	1-00EU1	Effluent from first soil vapor	extraction blower
(BL-1)		ivated Carton Unit. The emiss	
Vapor Phas	e Granular Act	ivated Carton Unit. The emiss	ion point is
stack 00	ST-2		7

	Building		□ Conti	inuation Sheet(
Building	Building Name	Length (ft)	Width (ft)	Orientation
03-35	Treatment Building	60	40	0

			Emission Poin	t	□ Conti	nuation Sheet
EMISSION PT.	OCSTA					
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
	36	6	8	70		
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
9	1,000			03-35	100+	
EMISSION PT.			N			
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal

				Emission	Source	ce/Control		Continuation Sheet(s			
Emission	Source	Date of	Date of	Date of		Control Type	Manufa	cturer's Name/Model			
ID .	Туре	Construction	Operation	Removal	al Code Description			No.			
BL 1/2	1				048	Granular Act. Carbo	Tetra	solv Filtration			
Design		Design Ca	Design Capacity Units			Waste Feed		Waste Type			
Capacity	Code		Description		Code	Description	Code	Code Description Manufacturer's Name/Mode			
Emission	mission Source Date of Date of		Date of		Control Type	Manufa	cturer's Name/Model				
ID	Туре	Construction			Code	Description	No.				
Design	sign Design Capacity Uni		pacity Units		Waste Feed			Waste Type			
Capacity	Code		Description		Code	Description	Code	Description			

		DE	CID		
1-1	TT	T	1-1	П	T

Description The Soil Vapor Extraction System will consist of 12 SVE wells (Gintermediate and George), a moisture separator, and 2 soil vapor extraction blowers (BL-L and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO CFM, with a maximum of 1,000 cFm. Source Classification Total Thruput Thruput Quantity Units
The Soil Vapor Extraction System will consist of 12 SVE wells (6 intermediate and 6 deep), a moisture separator, and 2 soil vapor extraction blowers (81-1 and 81-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack OOST2. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
(odeep), a moisture separator, and a soil vapor extraction blowers (BL-1 and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
(odeep), a moisture separator, and a soil vapor extraction blowers (BL-1 and BL-2) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
Bi-a) which both vent to a vapor phase granular activated carbon unit for treatment prior to discharge from stack OOSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
treatment prior to discharge from stack COSTA. The VGAC unit will be a 5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at GCO cfm, with a maximum of 1,000 cfm.
5,000 pound unit. Filled with Tetrasolv Virgin Carbon. The VGAC unit has been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
been designed to operate nominally at 600 cfm, with a maximum of 1,000 cfm.
The world Constitution
Course Classification Total Thruput Thruput Quantity Units
Course Classification Total Thruput Thruput Quantity Units
Code (SCC) Quantity/Hr Quantity/Yr Code Description
□ Confidential Operating Schedule Building Floor/Location
A Operating at Maximum Capacity Hrs/Day Days/Yr
□ Activity with Insignificant Emissions 34 365 03-35 Main
Emission Source/Control Identifier(s)
BL-1 BL-2
EMISSION UNIT - PROCESS
Description
Trans. Title
Source Classification Total Thruput Thruput Quantity Units
Code (SCC) Quantity/Hr Quantity/Yr Code Description
☐ Confidential Operating Schedule Building Floor/Location
Operating at Maximum Capacity Hrs/Day Days/Yr
□ Activity with Insignificant Emissions
Emission Source/Control Identifier(s)

		DE	CID	_		_	-
-	_	DL	CID	-	-	-	-
1 ~ 1	1 1	3-7	1-1		100	1	

Emission	Emission		Emission		Em	ission	Unit App	licable F	ederal Requ	iremen	s 🗆 Co	ontinuat	ion Sheet(s)	
Unit	Point	Process	Source	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
				1										
A =														
Ψ,														
-														

Emission	Emission		Emission	Emi	ssion	Unit Stat	e Only R	equirements	3	□ Co	ontinuat	ion Sheet(s)
Unit	n Emission Point	Process	Source	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-	U							1				
-												
-											1 - 1	
-												- (

				Emissio	n Unit Co	mpliance C	ertification	۵(Continuat	ion Sheet(s
					Rule	Citation				
Title		Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
(0	N	ICRR	212	ie e						
□Ap		e Federal R	equiremer	it 🗆	State Only F	Requirement	☐ Capping			-
Emission	n Unit	Emission Point	Process	Emission Source	CA	S No.		Contaminant h	Vame	
1-00	EU1	COSTA	SVE		00079-	01 - 6	Tricht	oroethylen	e	
					Monitorin	g Information	on_			
(A) Int	ermitte	us Emission nt Emission vir Monitorin	Testing	g	□ Work I	oring of Proces Practice Involvi d Keeping/Mair	na Specific Op	evice Parameter erations edures	s as Surro	ogate
					Des	cription				
Mont	thly	grab sa	mples a	inalyzed	For VOC	s from t	he VGAC	unit influer	it and e	EFFluent
Work Pra	ctice			Process				Reference T	est Metho	nd
Туре		Code	+		Description			11010101100 1	out mound	,,,
			Pa	rameter				Manufacturer Na	ama/Mad	ol No
	Code				Description			Manuacturer Na	ame/iviod	ei ivo.
	23		Co	ncentrat	ion					
		Lim					Limit	Units		
	Uppe			Lower	Code			Description		
30	36,000				255	MICTO	grams pe	r cubic me	ter	
	Avera	ging Metho	d		Monitoring	Frequency		Reporting Re	quiremer	nts
Code		Descri		Code		Description	Coc	le	Descripti	on
01	To	stantane	CUS	0.5	Mor	othly	10	Hoon	Regut	ST

		D	EC	ID)			
1.1	T			_			-	

Determination of Non-Applicability (Title Rule Citation		y) X/A		ation Sheet(s
				A.
	aragraph	Sub Paragra	oh Clause	Sub Clause
ne		Federal Require Requirement	ment	
	State Only P	(equirement		
Description				
Rule Citation				
	ragraph	Sub Paragra	h Clause	Sub Clause
		ederal Require	ment	
	State Only R	Requirement		
Description				
Process Emissions Summary			☑ Continua	tion Sheet(s)
EMISSION UNIT 1 - O O E U 1			PROCESS	SVE
CAS No. Contaminant Name %	%	%	ERP	ERP How
CAS No. Contaminant Name Thruput	Capture	e Control	(lbs/hr)	Determined
00071-55-6 1.1.1-Trichloroethane		80	0.34	02
PTE Standard	PT	E How	Ac	tual
(lbs/hr) (lbs/yr) (standard units) Units	Dete	ermined	(lbs/hr)	(lbs/yr)
0.07 591	0	29		
EMISSION UNIT 1 - 0 0 E // 1			PROCESS	SVE
%	%	%	ERP	ERP How
CAS No. Contaminant Name Thruput	Capture	Control	(lbs/hr)	Determined
00127-18 -4 Tetrachloroethylene		80	0.00	03
PTE Standard	PT	E How		tual
(lbs/hr) (lbs/yr) (standard units) Units		ermined	(lbs/hr)	(lbs/yr)
O.OC BRT 8	(92		
EMISSION UNIT 1 - 0 0 E U 1	-		PROCESS	SVE
0/	%	%	ERP	ERP How
CAS No. Contaminant Name Thruput	Capture		(lbs/hr)	Determined
00079-01-6 Trichloroethylene		80	0.67	03
PTE Standard	рт	E How		tual
(lbs/hr) (lbs/yr) (standard units) Units		ermined	(lbs/hr)	(lbs/yr)
0.13 1,181	1	D9	and a state of the	(10 at 11)

		D	EC	ID)		
-				-			Г

EMISSION UNIT	Emiss	☑ Continuation Sheet(s)							
CAS No.		Contamir	ant Name						
00075-34-3	1,1-Dichloroet	hane							
		missions	Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	11							
CAS No.		Contamir	nant Name						
00075-35-4	1.1-Dichloroeth	ylene (Vinylidir	Chloride)						
	PTE Er	missions '		Actual					
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	16							
CAS No.		Contamir	nant Name						
0054059-0	cis-1,2-Dichle	oroethene							
		nissions	Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	5							
CAS No.		Contaminant Name							
00107-06-2	1, 2 - Dichlorothane								
		nissions	Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	BRT							

					Co	omplian	ce Plar	N/A		□ Cd	ontinuati	on Sheet(s)
For any em	ssion units	s which ar	e <u>not in c</u>	complian	ce at th	ne time of	oermit ap	plication, the	applica	nt shall comp	lete the	following
Consent Order		Certifi	Certified progress reports are to be submitted every 6 months beginning//									
Emission		Emission					Applicabl	e Federal Requ	irement			
Unit Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause	
+						15						
		Remedi	al Measi	ure / Inte	rmedia	te Milestor	nes			R/I	Sc	Date heduled
	o _{fe}										00	nodulod
50.												
											-	
				_							-	
						-						
					-							

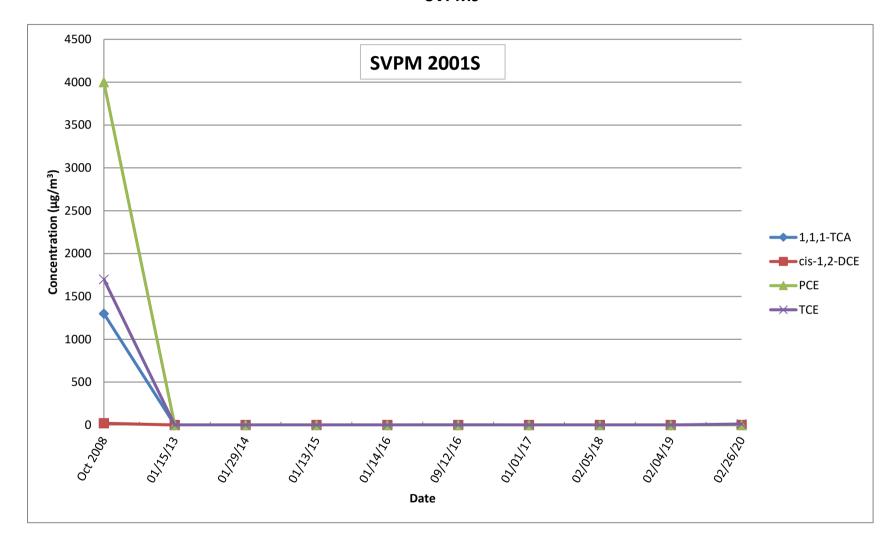
			DE	C	D			
-	П	Т	Т	T-	Т	Т		

Section IV - Emission Unit Information

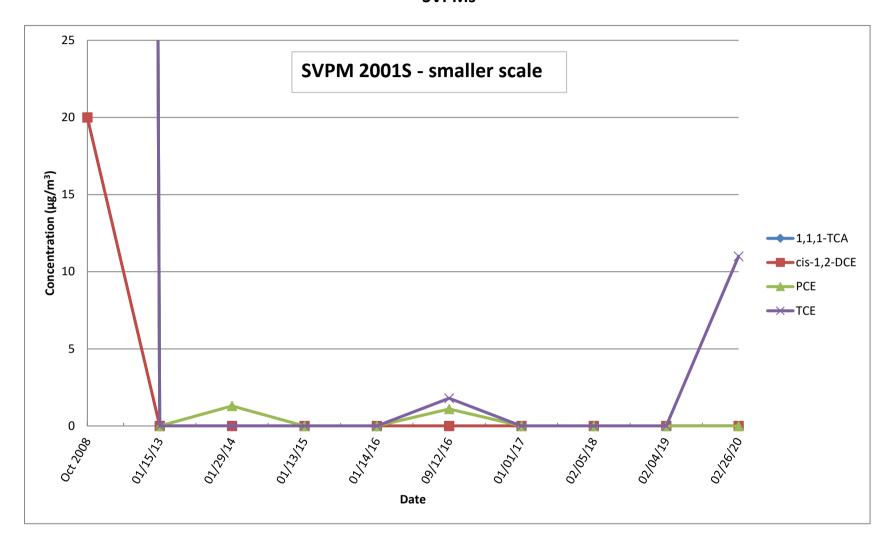
EMISSION UNIT	Emission Unit Emissions Summary (continuation)								
CAS No.		Contamir	nant Name						
00156-60-5	trans -1,2 - Dich								
	PTE E	missions	Actual						
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	BRT							
CAS No.			ant Name						
00075 01 - 4	Vinul Chloride								
ERP (lbs/yr)		missions	Ac	tual					
ERF (IDS/yI)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	BRT	BRT							
CAS No.									
(4 - (4 - 1)		te.							
ERP (lbs/yr)	PTE E	missions	Actual						
(,/,	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
CAS No.		Contamin	ant Name						
ERP (lbs/yr)		missions	Act						
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(łbs/yr)					
CAS No.		Contamin	ant Name						
ERP (lbs/yr)		nissions	Act	The state of the s					
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
04011									
CAS No.		Contamina	ant Name						
	PTE Er	niecione	Act	ual					
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
	(IOS/III)	(losiyi)	(103/111)	(los/yl)					
CAS No.		Contamina	ant Name						
		33/10/10/10							
	PTE En	nissions	Acti	ual					
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					
CAS No.		Contamina	ant Name						
4 -									
CDD (Ib-A-A	PTE En	nissions	Actu	ıal					
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)					

T			D	EC	10)		
T	- 1	T			-			Г

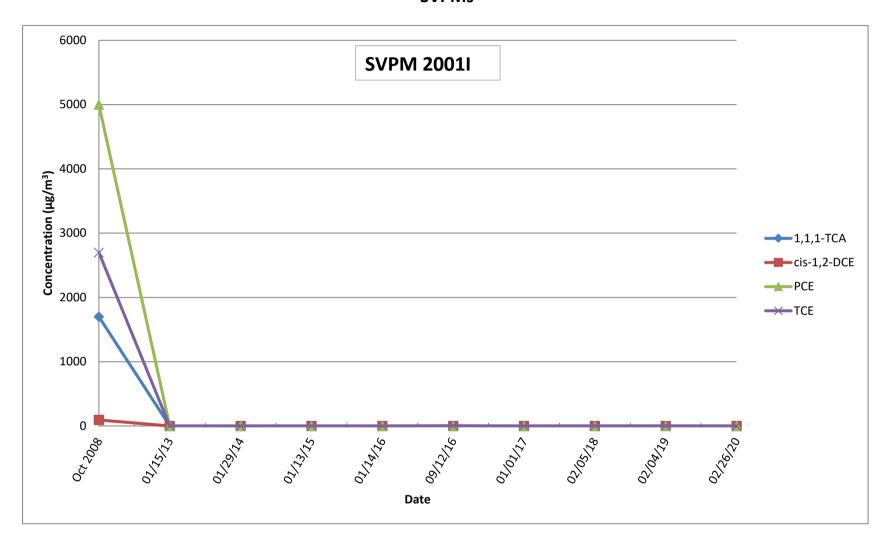
	Reque	st for Emission	Reduction Cred	its	Continuation Sheet(s
EMISSION UNIT -		atestas Dadout	an Description		
	Er	nission Reduction	on Description	-	
	Conta	minant Emissio	n Reduction Dat		
					uction Method
Baseline Period/	1	to/	1		
CAS No.		Contaminant Nam	ie	Netting ERC	(lbs/yr) Offset
		4			
	Fa	cility to Use Fut	ure Reduction	ADDI IOATION	ID
Name			1.111	APPLICATION	10
Location Address					
☐ City / ☐ Town / ☐ Village			State	Zip	
2 ony , 2					
					*Arc_s
	Conta	aminant Emissio	ons Increase Dat	ta	
CAS No.		Contaminant Na			(lbs/yr)
* *					
		Statement of C		30	
All facilities under the ownership including any compliance certific schedule of a consent order.	of this "ownership/fir cation requirements u	m" are operating in c inder Section 114(a)(ompliance with all ap (3) of the Clean Air A	pplicable requirements an ct Amendments of 1990,	d state regulations or are meeting the
	Source of	f Emission Redu	uction Credit - F		11711
Name				PERMIT ID	
Location Address					
□ City / □ Town / □ Village			State	Zip	C (lbs/yr)
	124.5	Contaminant Name		ER(: (Ine/vr)
Emission Unit C	AS No.	Containin	nant Name	Netting	Offset
Emission Unit C	AS No.	Containin	nant Name		
Emission Unit C		Contamin	nant Name		

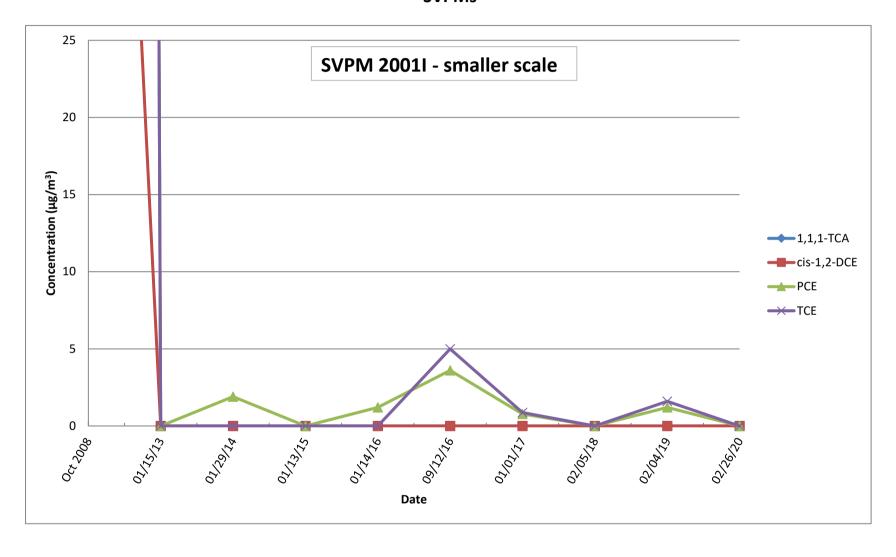

		EC) IE)		
-						Г

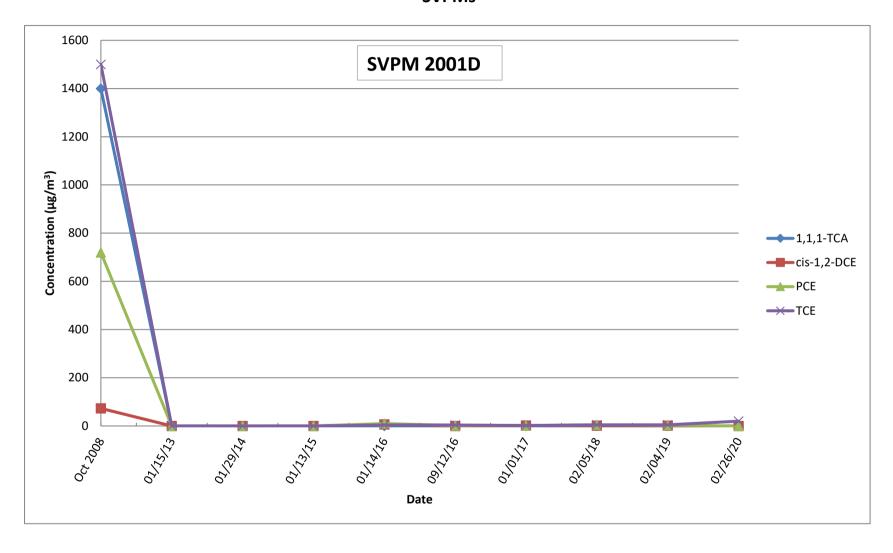
□ P.E. Certification (form attached) □ List of Exempt Activities (form attached) □ Plot Plan □ Methods Used to Determine Compliance (form attached) □ Calculations □ Air Quality Model (/ /) □ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ Other Document(s):	Supporting Docume	entation			
□ List of Exempt Activities (form attached) □ Plot Plan □ Methods Used to Determine Compliance (form attached) □ Calculations □ Air Quality Model (/ /) □ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)	D.B.E. Cartification (form attached)				
□ Plot Plan □ Methods Used to Determine Compliance (form attached) □ Calculations □ Air Quality Model (/ /) □ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)					
□ Methods Used to Determine Compliance (form attached) ☒ Calculations □ Air Quality Model (/ /) □ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)					
☑ Calculations ☐ Air Quality Model (/ /) ☐ Confidentiality Justification ☐ Ambient Air Monitoring Plan (/ /) ☐ Stack Test Protocols/Reports (/ /) ☐ Continuous Emissions Monitoring Plans/QA/QC (/ /) ☐ MACT Demonstration (/ /) ☐ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols ☐ Title IV: Application/Registration ☐ ERC Quantification (form attached) ☐ Use of ERC(s) (form attached) ☐ Baseline Period Demonstration ☐ Analysis of Contemporaneous Emission Increase/Decrease ☐ LAER Demonstration (/ /) ☐ BACT Demonstration (/ /)					
□ Air Quality Model (/ /) □ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)					
□ Confidentiality Justification □ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)	The state of the s				
□ Ambient Air Monitoring Plan (/ /) □ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)					
□ Stack Test Protocols/Reports (/ /) □ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)	(제대) 전 1. 1 전 1				
□ Continuous Emissions Monitoring Plans/QA/QC (/ /) □ MACT Demonstration (/ /) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)					
 □ MACT Demonstration (/) □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /) 		i			
 □ Operational Flexibility: Description of Alternative Operating Scenarios and Protocols □ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /) 					
□ Title IV: Application/Registration □ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)		Commission and Drotocolo			
□ ERC Quantification (form attached) □ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/ /) □ BACT Demonstration (/ /)		Scenarios and Protocois			
□ Use of ERC(s) (form attached) □ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/) □ BACT Demonstration (/)					
□ Baseline Period Demonstration □ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/) □ BACT Demonstration (/)					
□ Analysis of Contemporaneous Emission Increase/Decrease □ LAER Demonstration (/) □ BACT Demonstration (/)					
□ LAER Demonstration (/) □ BACT Demonstration (/)					
□ BACT Demonstration (/)	이 집에 많은 이번에 이번에 이렇게 되었다. 그렇게 되었다. 그렇게 되었다. 얼마나 되었다.				
Other Document(s): (
	☐ Other Document(s):			.]	
			1		
		1	1	1	
		i	1	1	
		· ·	1	1	
			1	1	
			1		
	-	(/	
	*			1	_
	_		1		_
		(1	_

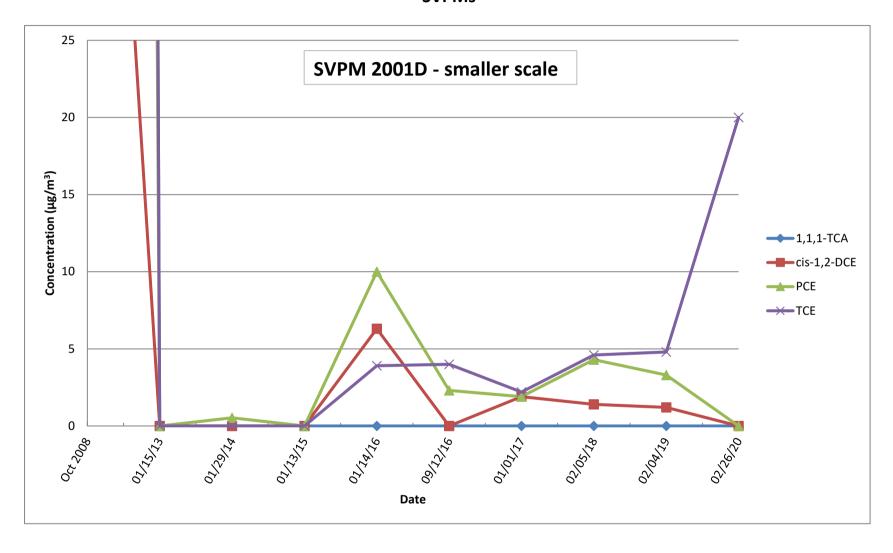

APPENDIX B

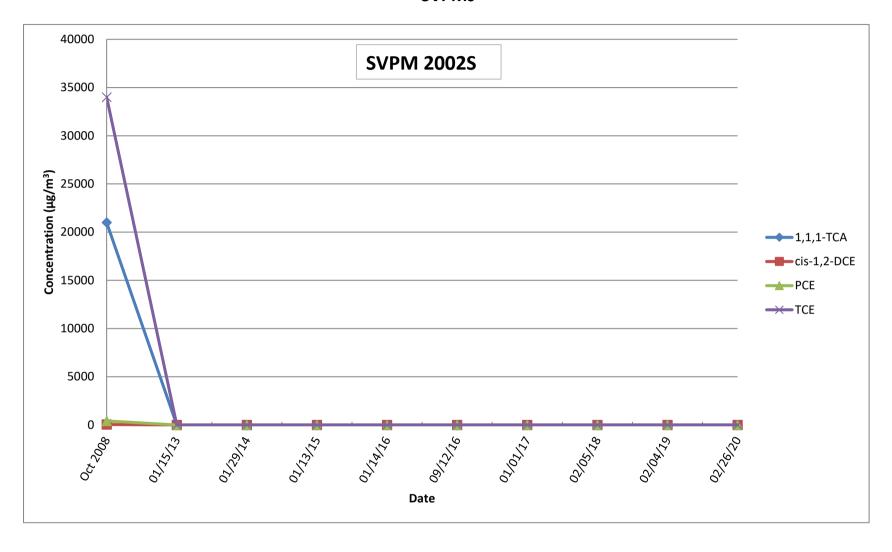
VAPOR CONCENTRATION TREND GRAPHS OF SELECT VOCs SVPMs

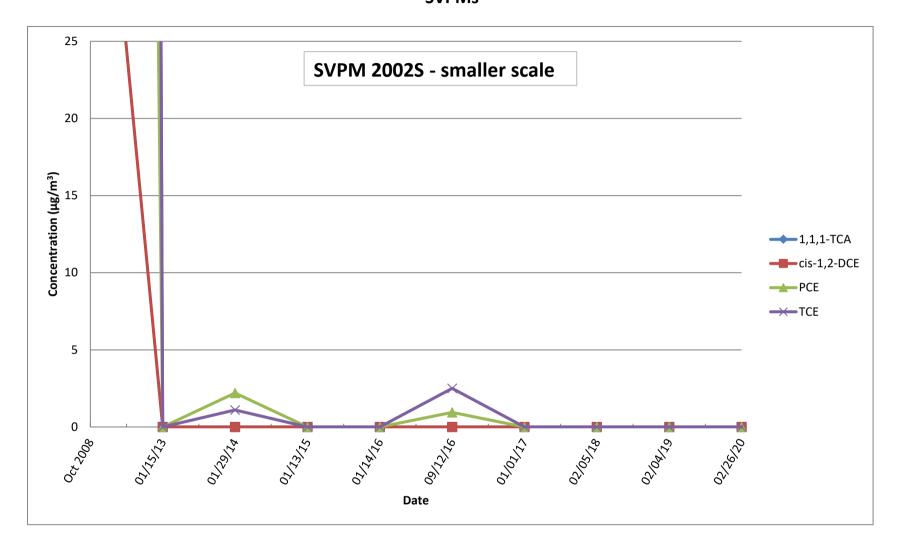

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVPMs

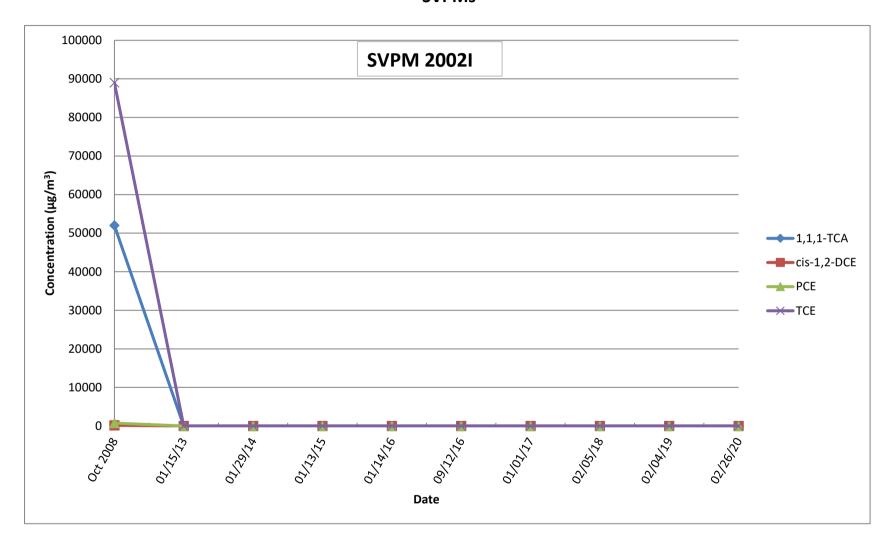


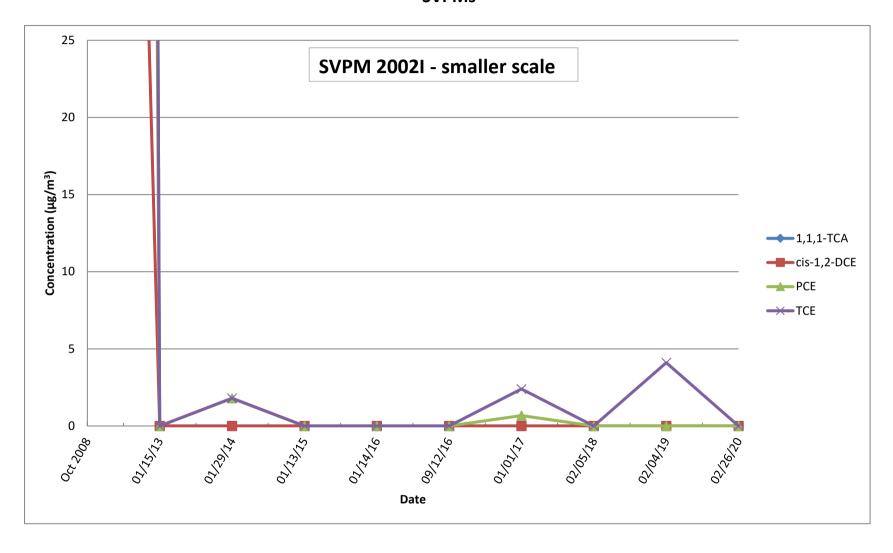

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVPMs

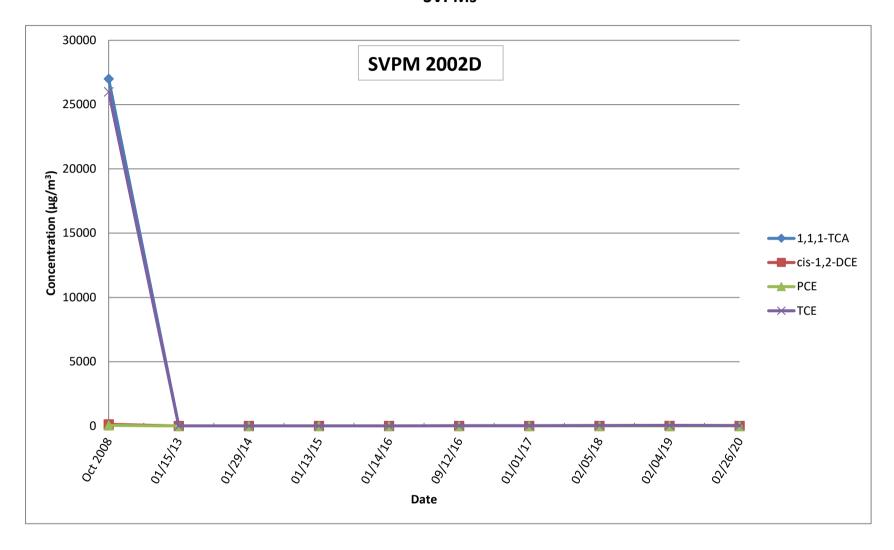


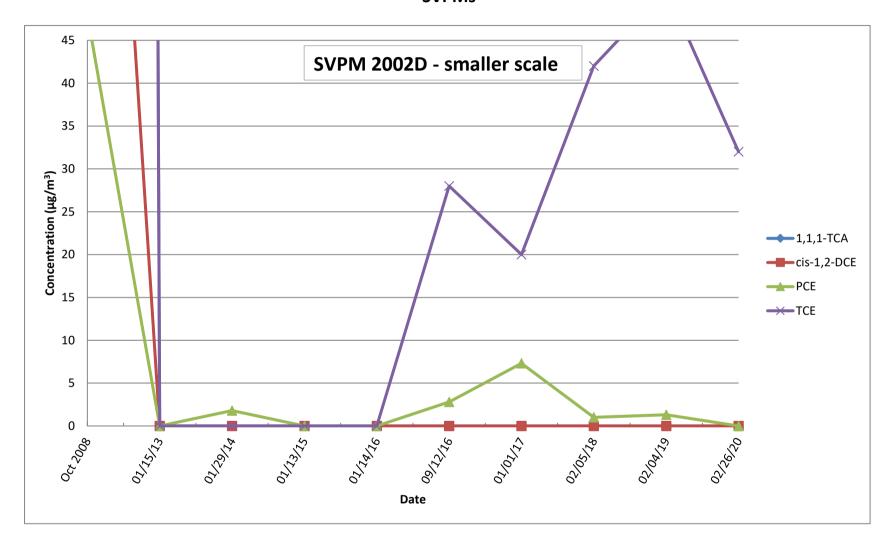

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVPMs

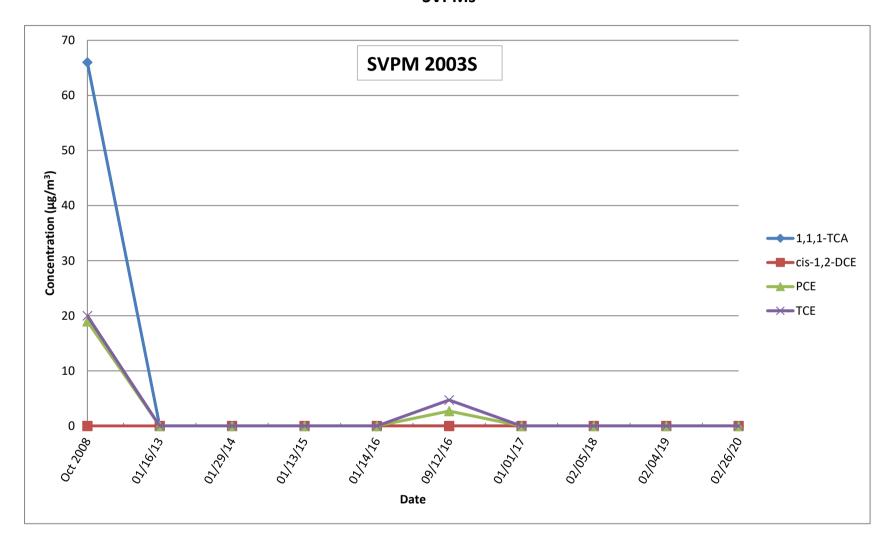


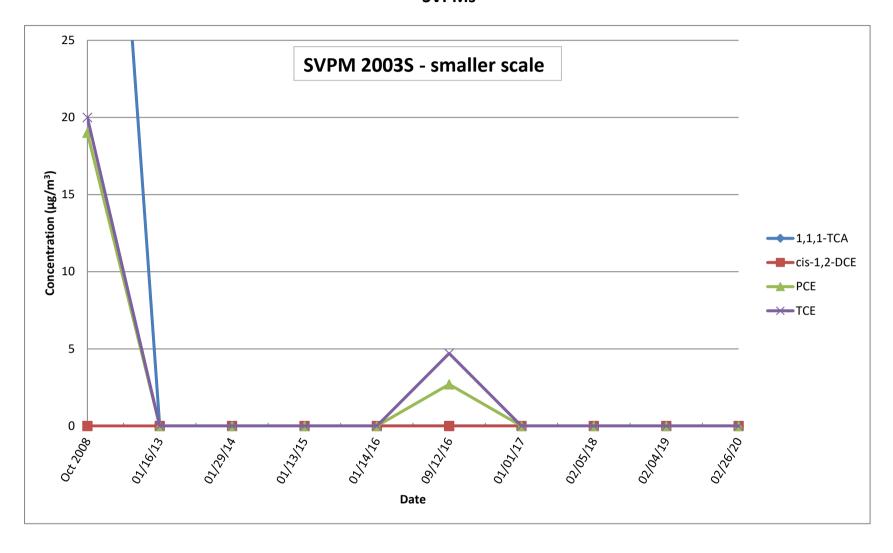


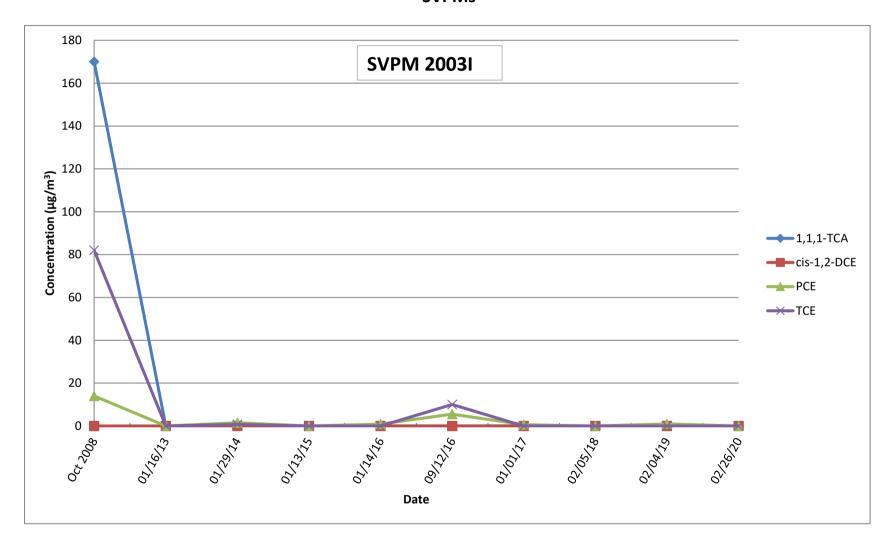


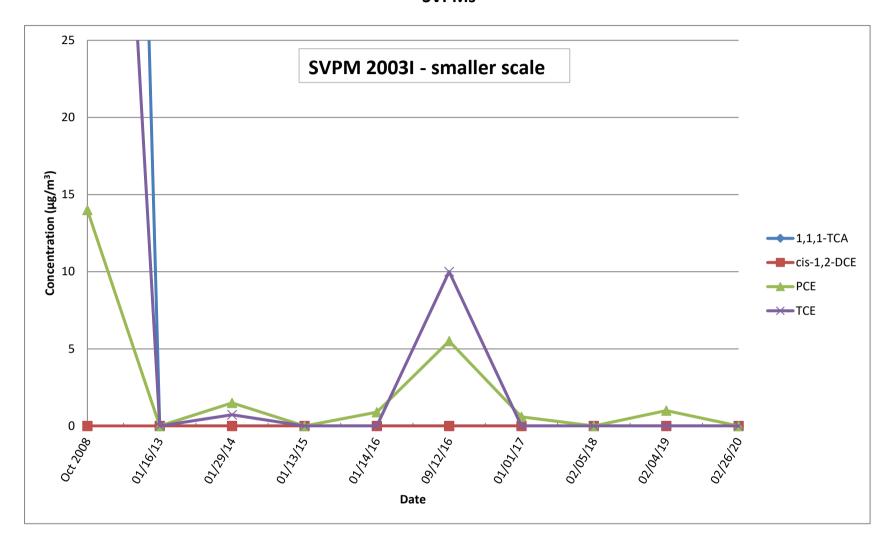


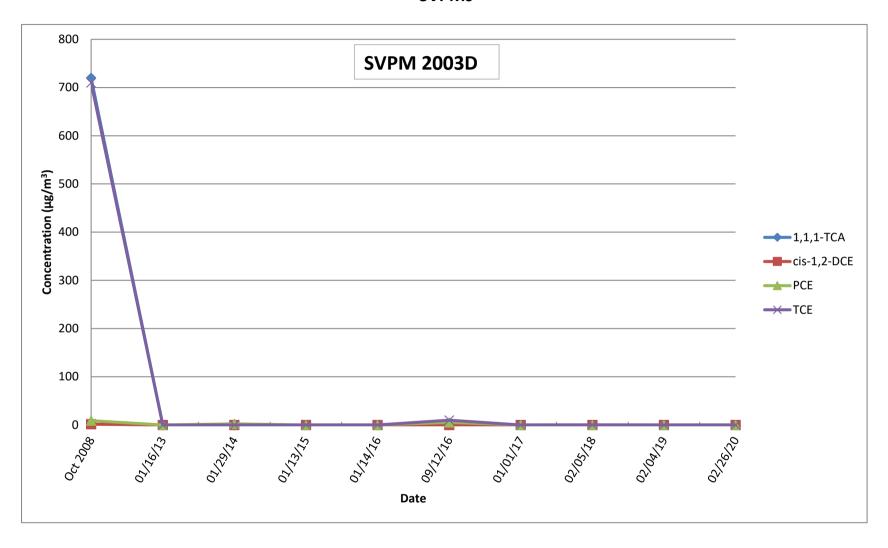


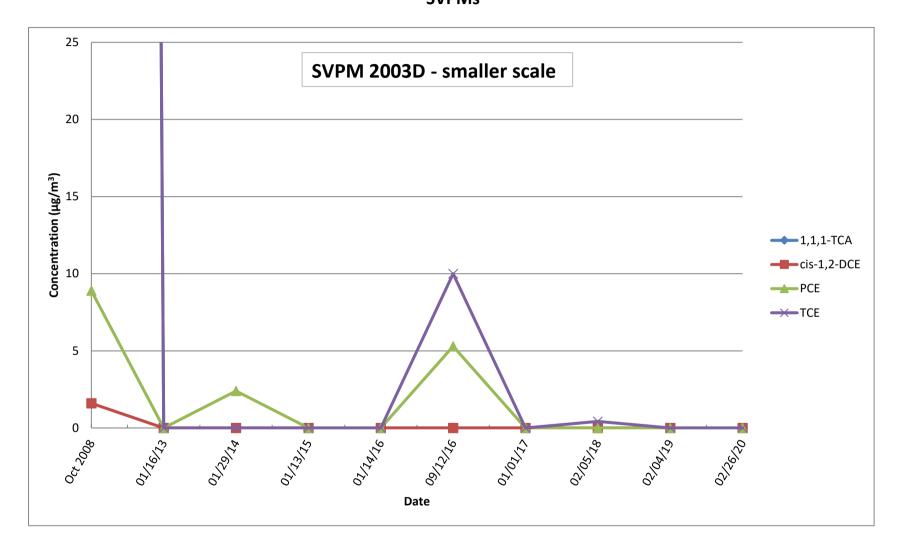


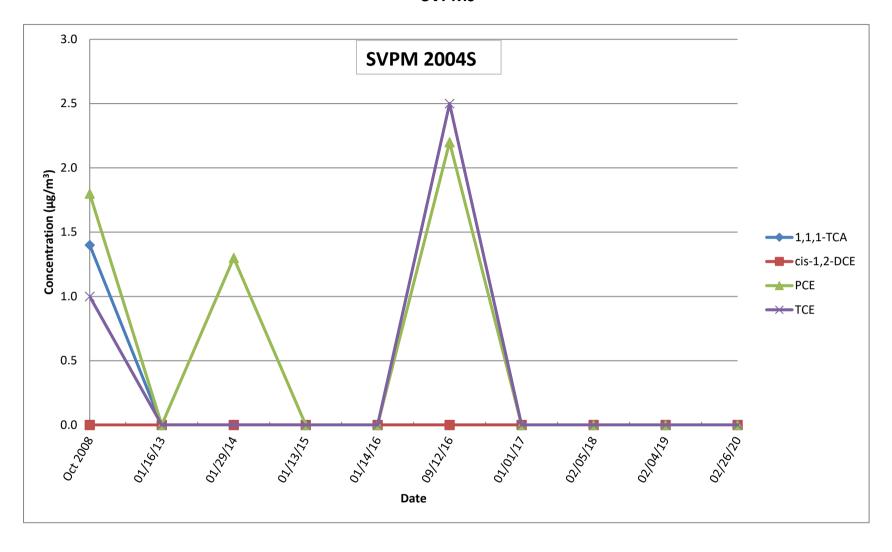


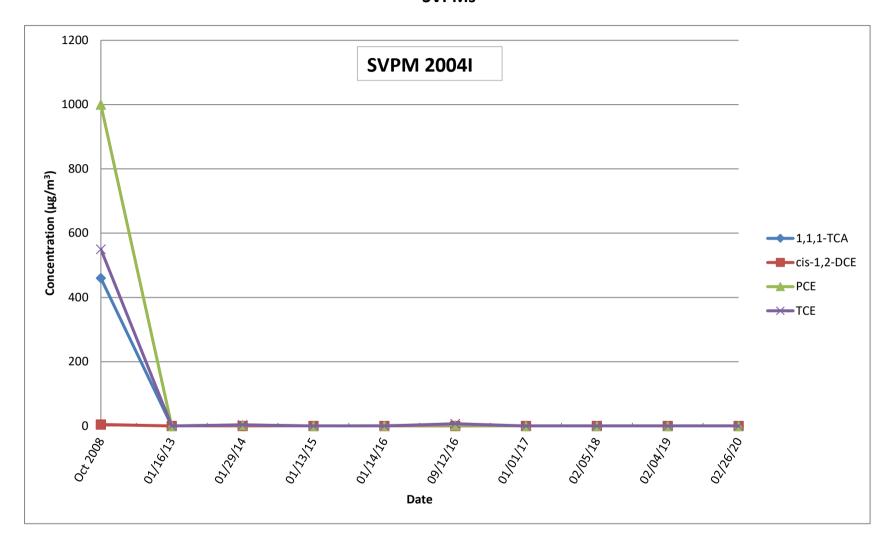


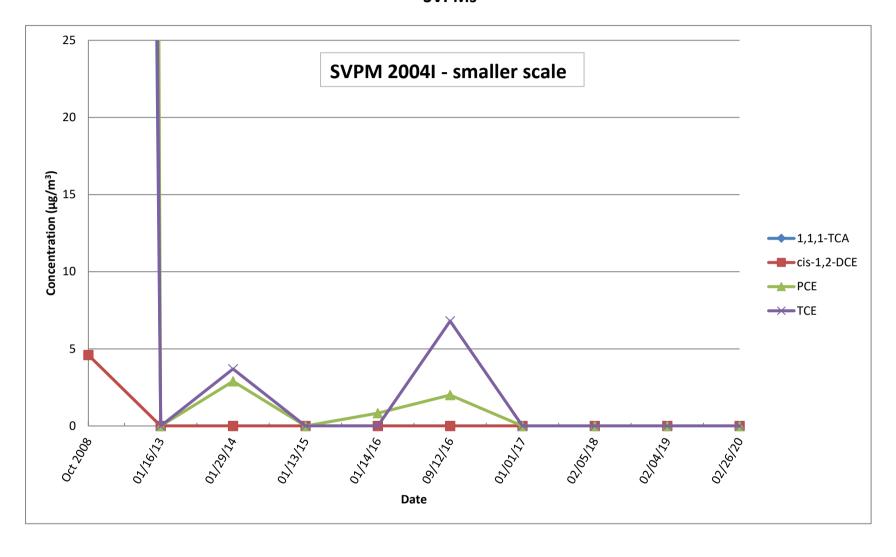


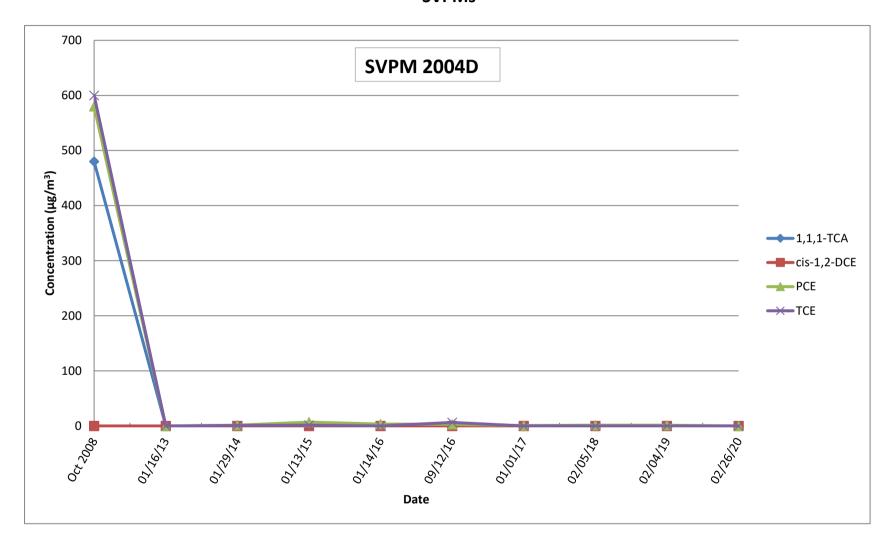


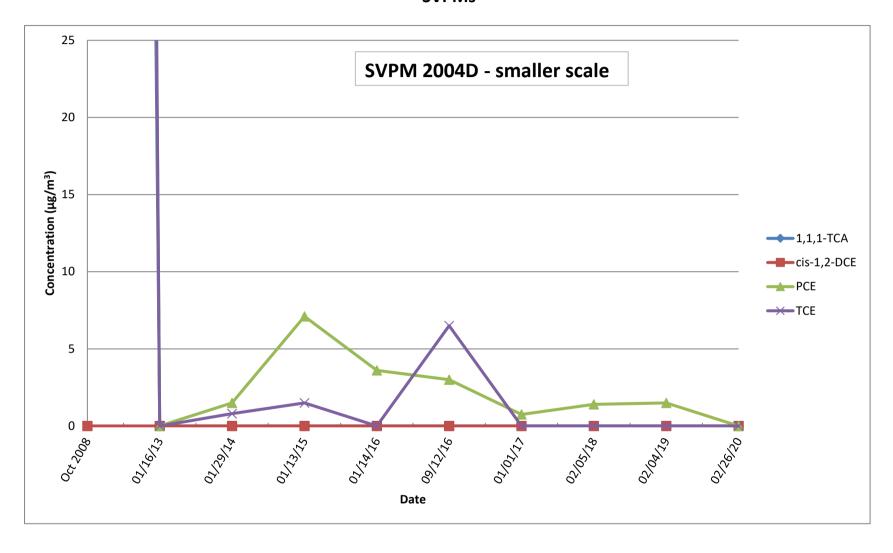


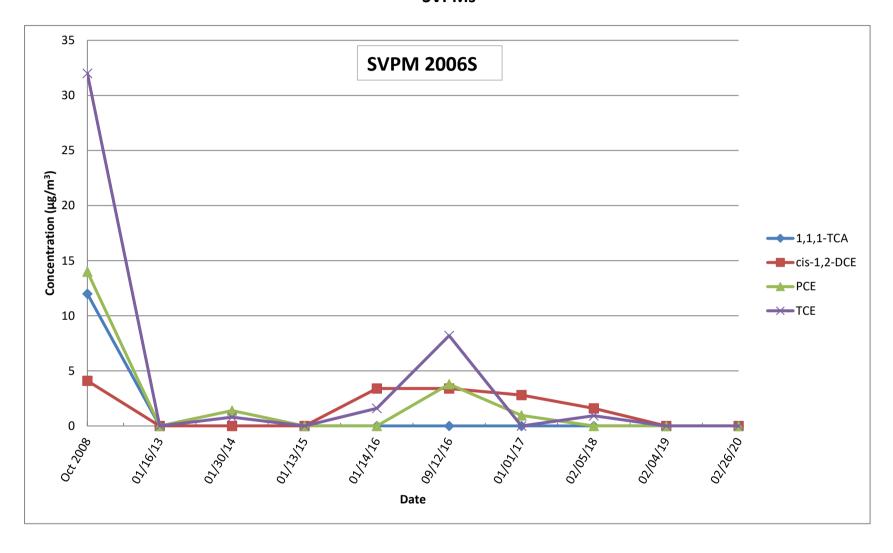


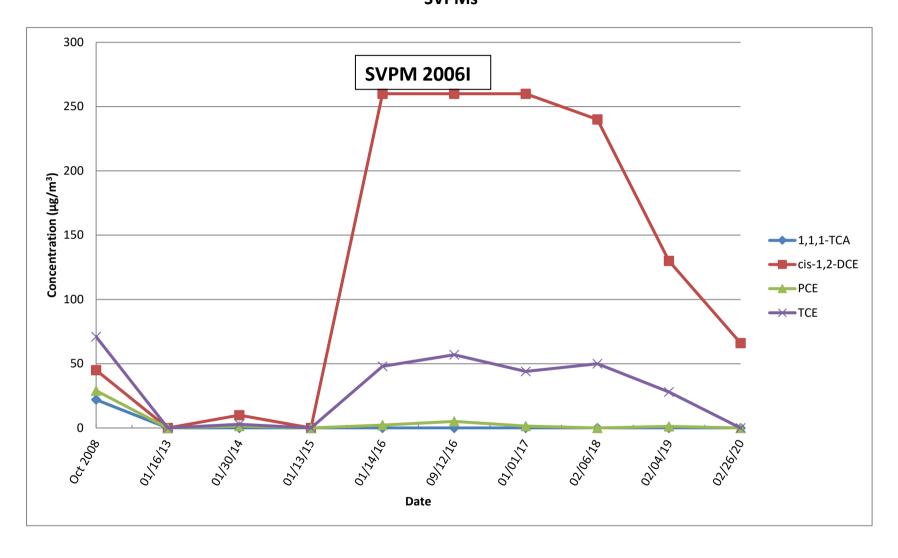


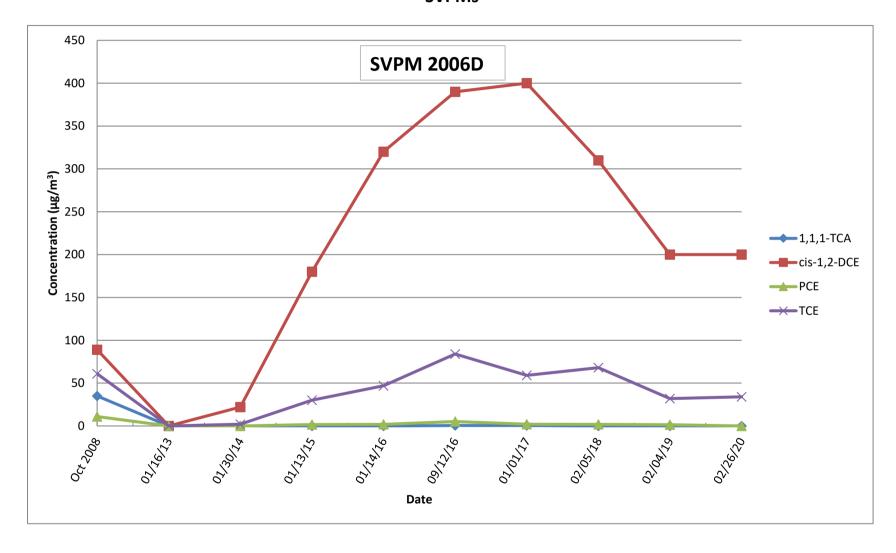


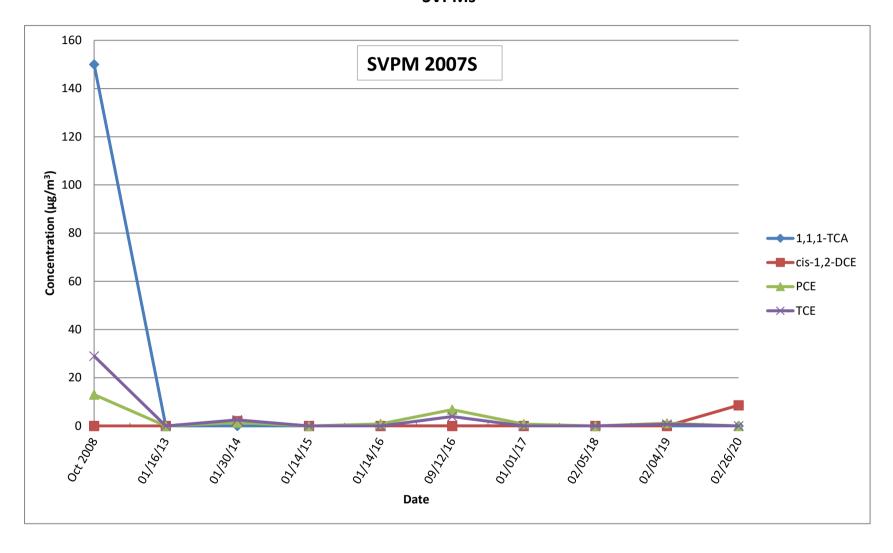


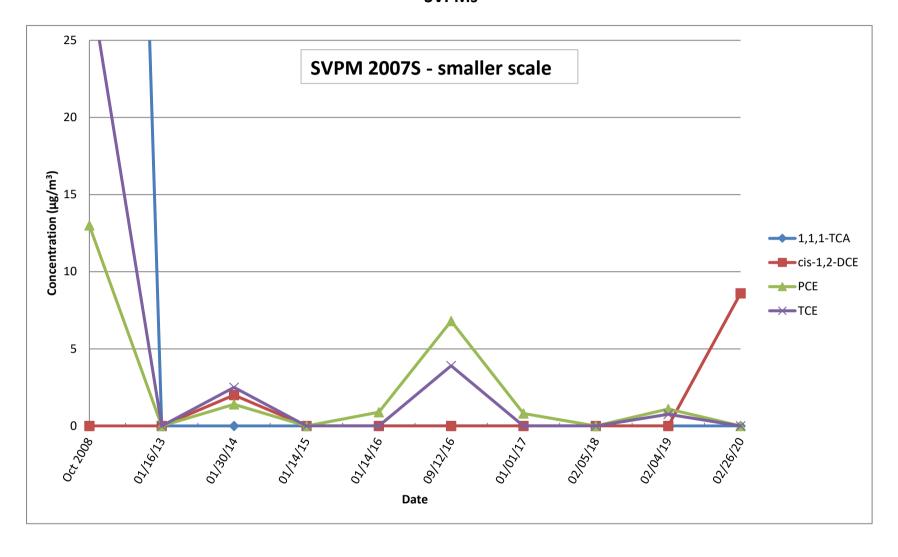


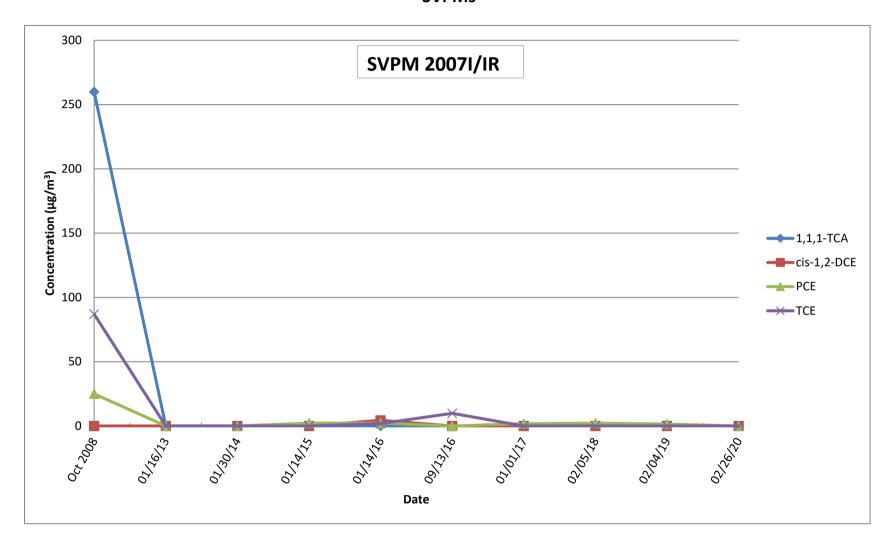


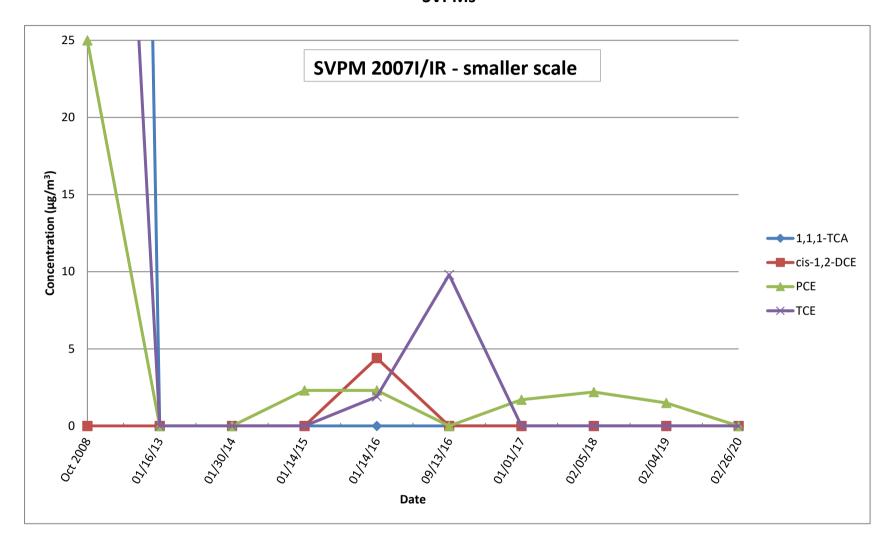


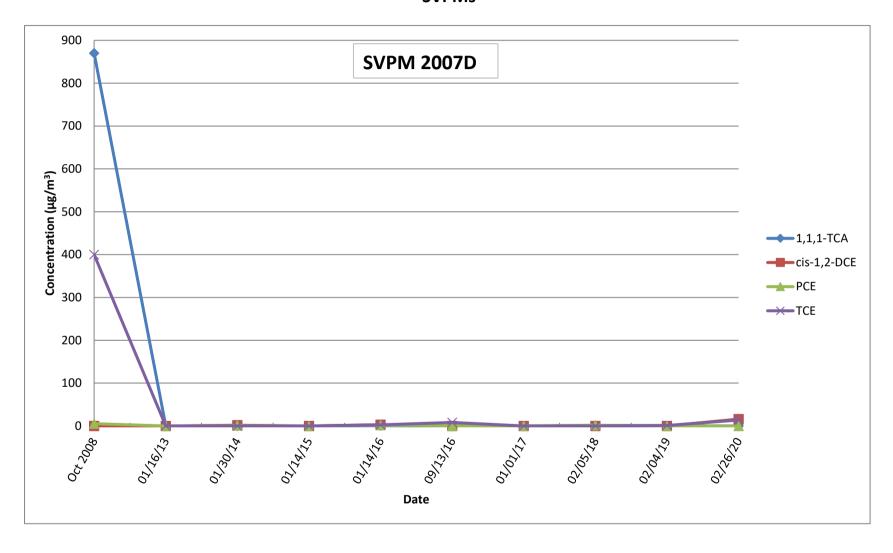


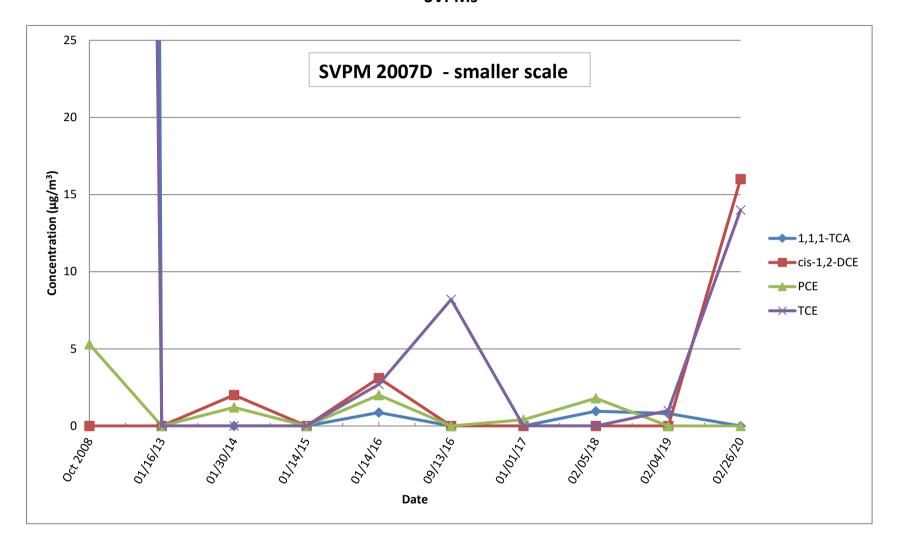


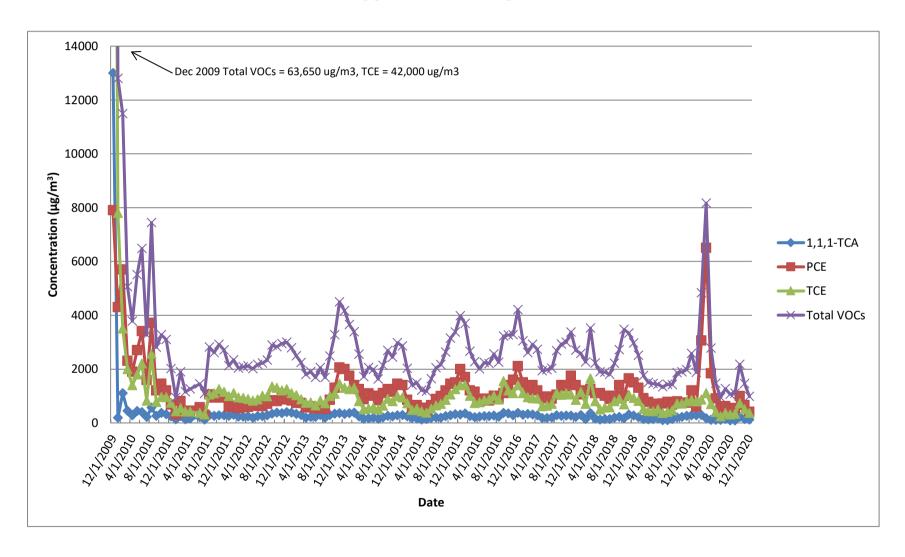


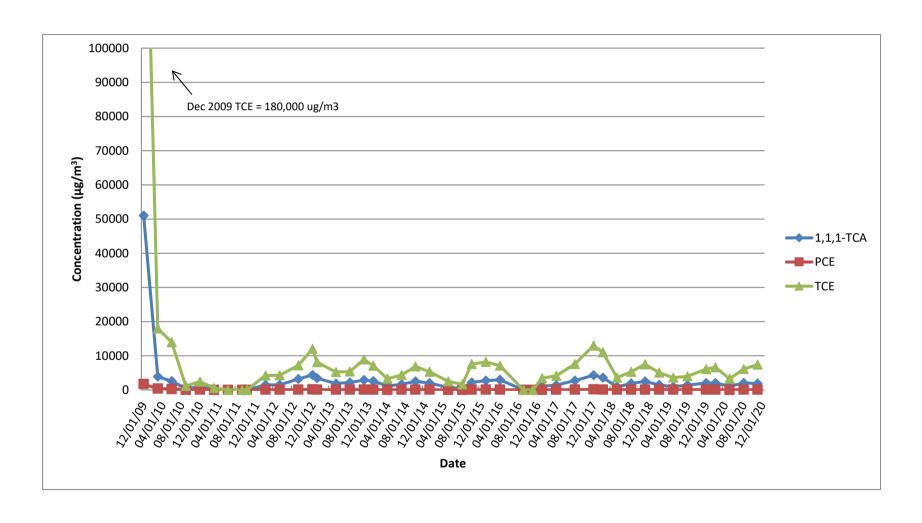




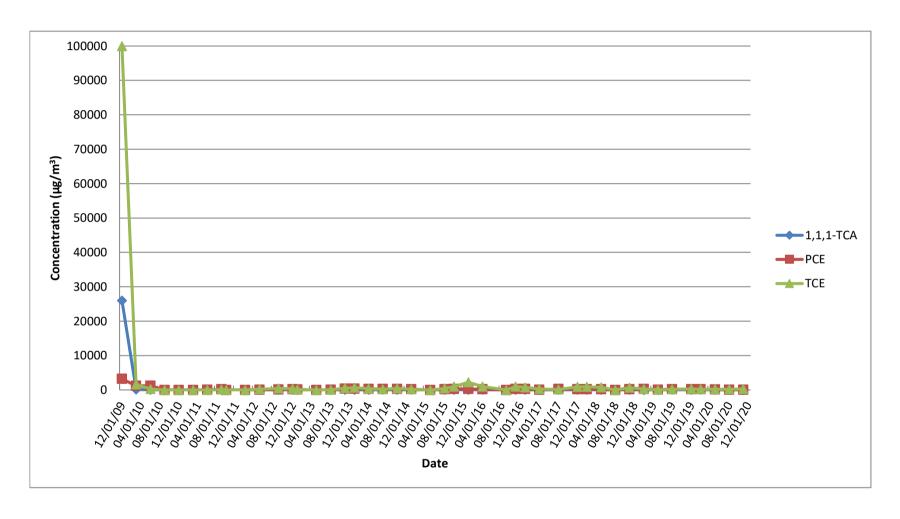


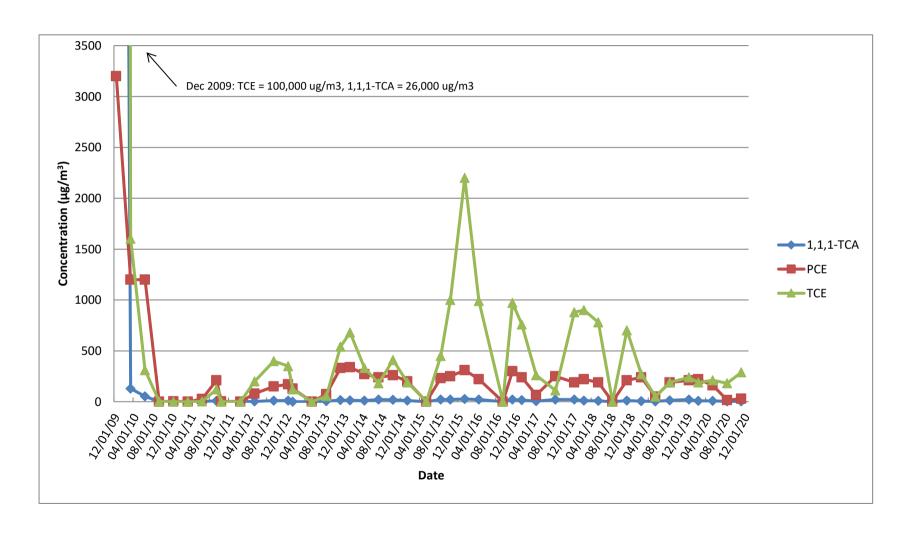


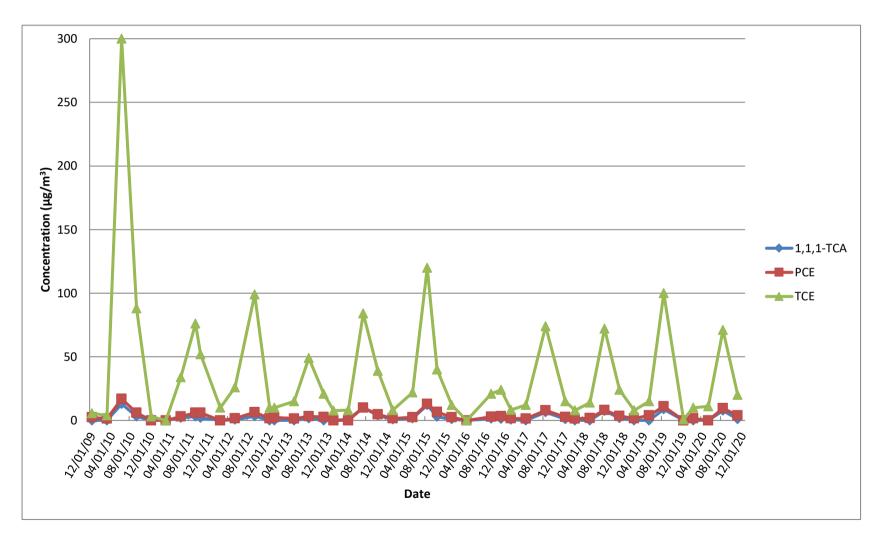


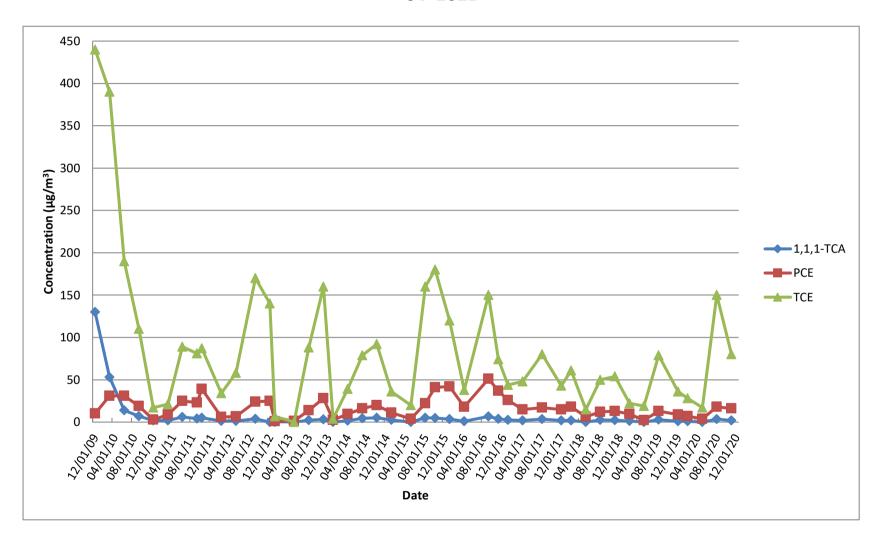

APPENDIX C

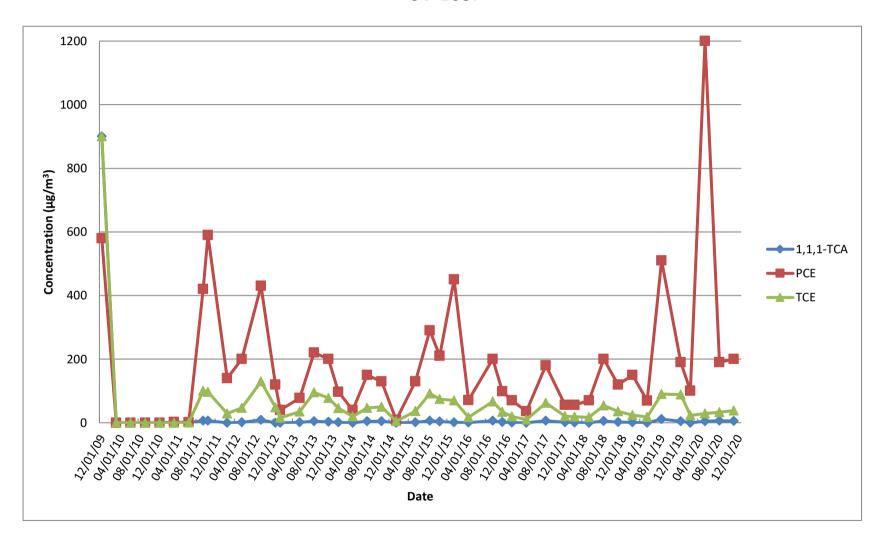
VAPOR CONCENTRATION TREND GRAPHS OF SELECT VOCs SVEWs

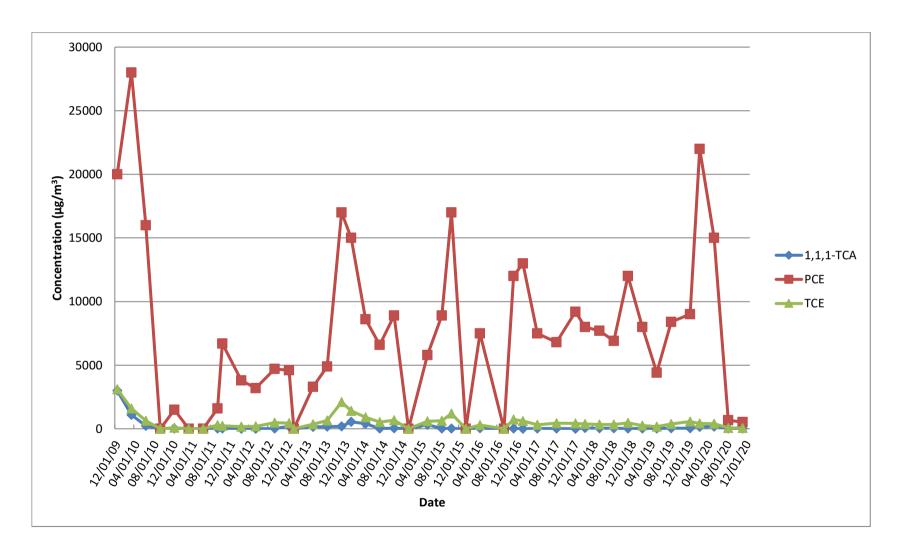

COMBINED INFLUENT

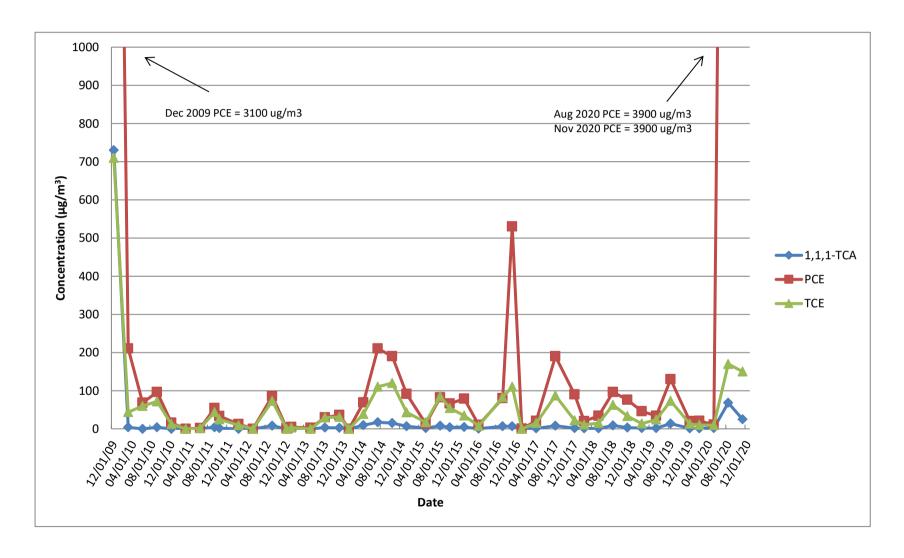

SV-101I

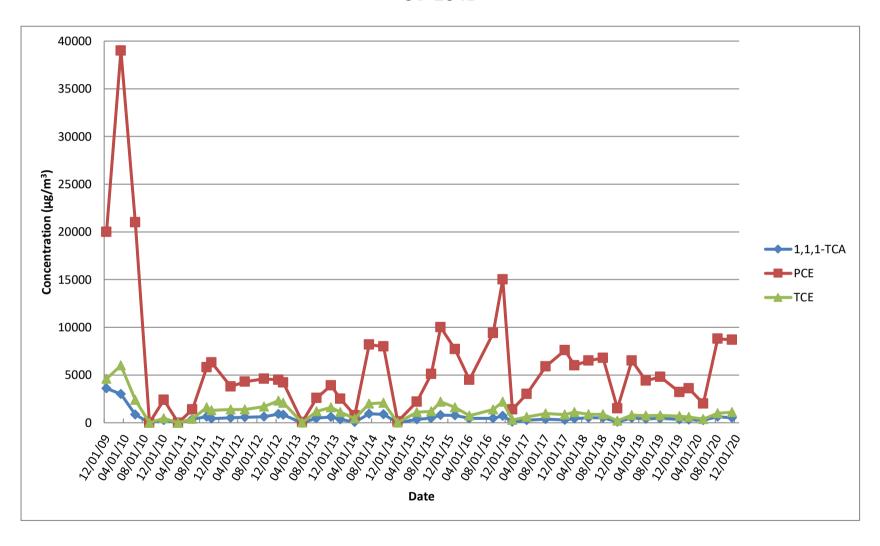

SV-101D

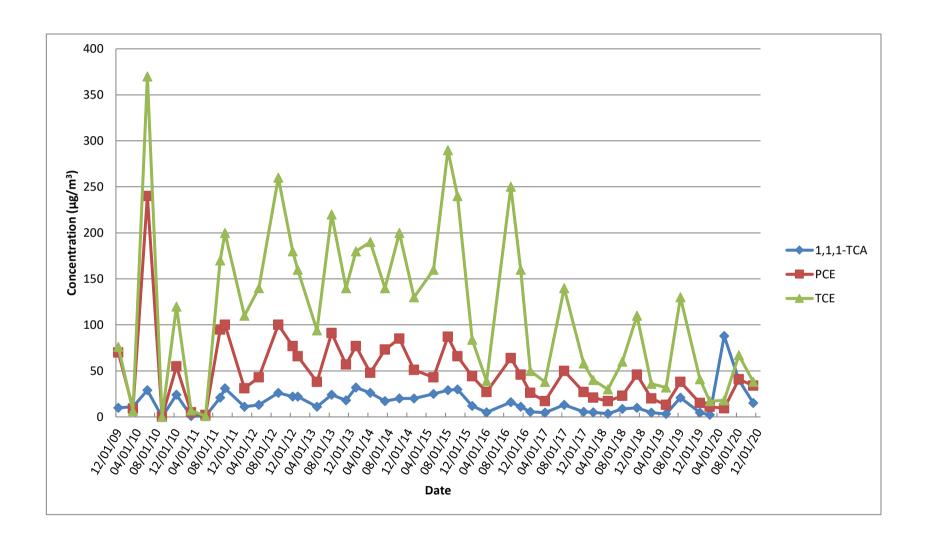

SV-101D (smaller scale)

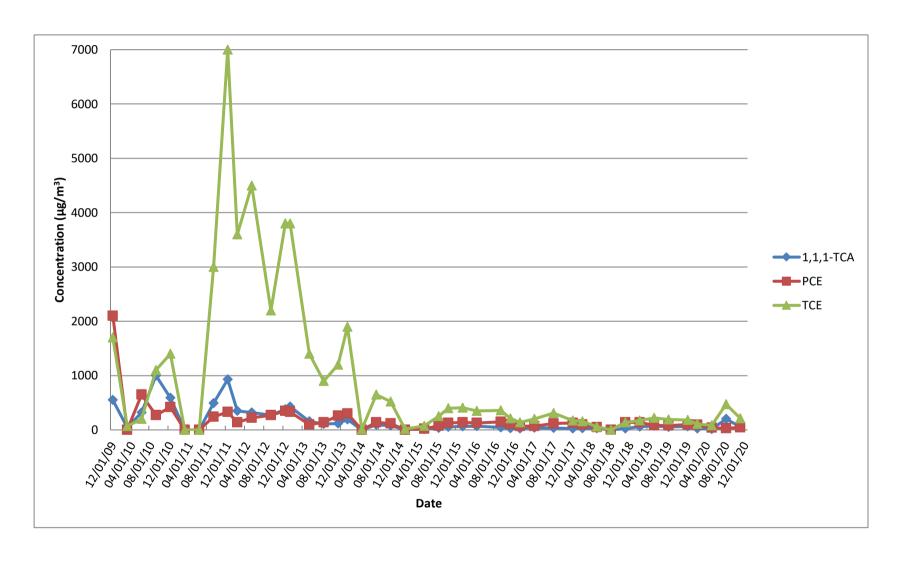

SV102I

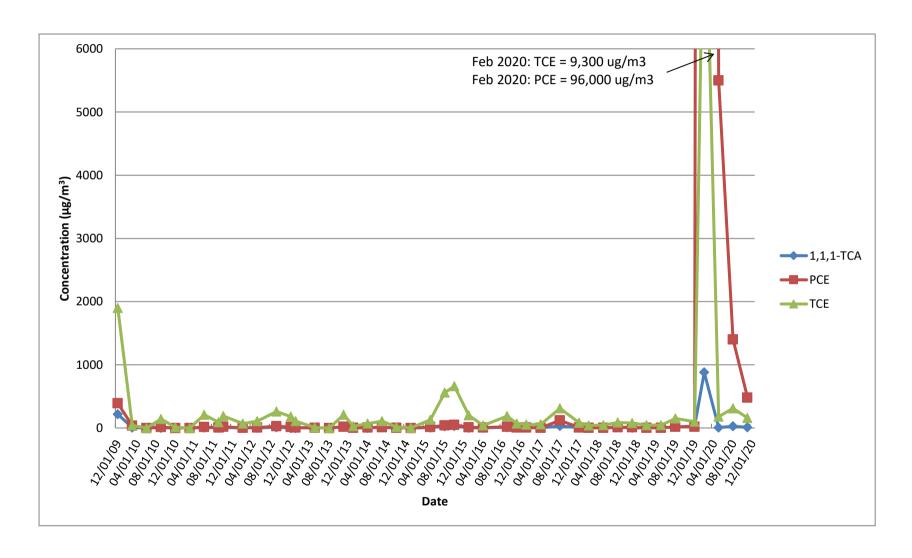

SV-102D

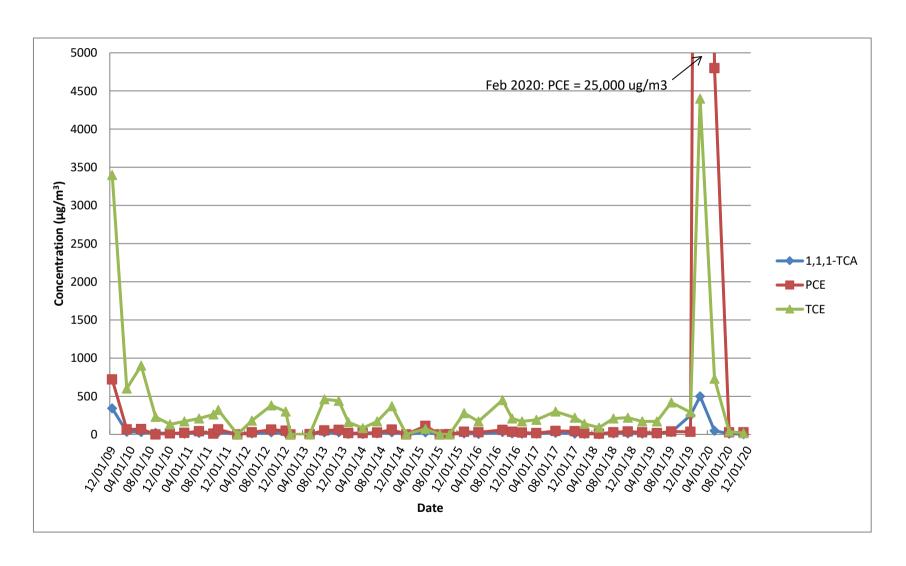

SV-103I

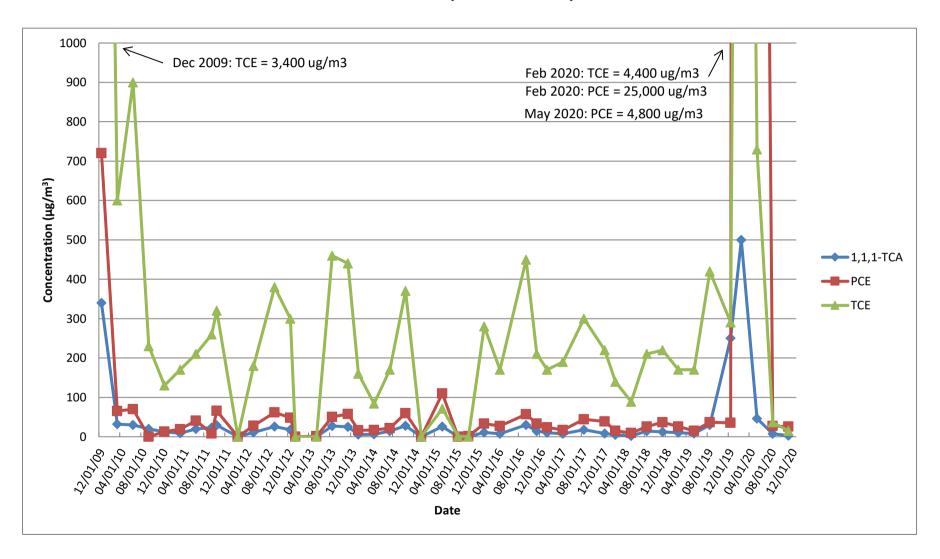

SV103D


SV104I


SV-104D


SV-105I


SV-105D


SV-106I

SV-106D

SV-106D (smaller scale)

APPENDIX D

DATA VALIDATION REPORTS AND VALIDATED DATA SUMMARY – SVPMs

DATA USABILITY SUMMARY REPORT (DUSR) VOLATILE ORGANIC COMPOUNDS

USEPA Region II –Data Validation

Project Name: Naval Weapons Industrial Reserve Plant, Site 1

Location: 999 Oyster Bay Rd, Bethpage, NY

Project Number: 2603-0204

SDG #: 2003057

Client: KOMAN Government Solutions, LLC.

Date: 03/16/2020

Laboratory: Air Toxics Ltd.

Reviewer: Sherri Pullar

Summary:

- 1. Data validation was performed on the data for twenty (20) air samples and one (1) field blank were analyzed for Volatiles by TO-15 in accordance to NYSDEC, Analytical Services Protocol (ASP) Format.
- 2. The samples were collected on 02/26/2020. The samples were submitted to Air Toxics Ltd., Folsom, CA on 03/02/2020 for analysis.
- 3. The USEPA Region-II SOP # HW-31, Revision 6, June 2014, Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15 was used in evaluating the Volatiles data in this summary report.
- 4. In general, the data are valid as reported and may be used for decision making purposes. Selected data points were qualified due to nonconformance of certain Quality Control criteria (see discussion below).

Samples:

The samples included in this review are listed below:

Client Sample ID	Laboratory Sample ID	Collection Date	Analysis	Matrix	Sample Status
BPS1-SVPM2001S-022620	2003057-01A	2/26/2020	VOA	Air	
BPS1-SVPM2001I-022620	2003057-02A	2/26/2020	VOA	Air	
BPS1-SVPM2001D-022620	2003057-03A	2/26/2020	VOA	Air	
BPS1-SVPM2002S-022620*	2003057-04A	2/26/2020	VOA	Air	
BPS1-SVPM2002I-022620	2003057-05A	2/26/2020	VOA	Air	
BPS1-SVPM2002D-022620	2003057-06A	2/26/2020	VOA	Air	
BPS1-SVPM2003S-022620	2003057-07A	2/26/2020	VOA	Air	
BPS1-SVPM2003I-022620	2003057-08A	2/26/2020	VOA	Air	
BPS1-SVPM2003D-022620	2003057-09A	2/26/2020	VOA	Air	
BPS1-SVPM2004S-022620	2003057-10A	2/26/2020	VOA	Air	
BPS1-SVPM2004I-022620	2003057-11A	2/26/2020	VOA	Air	
BPS1-SVPM2004D-022620	2003057-12A	2/26/2020	VOA	Air	
BPS1-SVPM2006S-022620	2003057-13A	2/26/2020	VOA	Air	
BPS1-SVPM2006I-022620	2003057-14A	2/26/2020	VOA	Air	
BPS1-SVPM2006D-022620	2003057-15A	2/26/2020	VOA	Air	
BPS1-SVPM2007S-022620	2003057-16A	2/26/2020	VOA	Air	
BPS1-SVPM2007I-022620	2003057-17A	2/26/2020	VOA	Air	
BPS1-SVPM2007D-022620	2003057-18A	2/26/2020	VOA	Air	
BPS1-DUP-01	2003057-19A	2/26/2020	VOA	Air	Field Duplicate of sample BPS1-SVPM2006D-022620
BPS1-DUP-02	2003057-20A	2/26/2020	VOA	Air	Field Duplicate of sample BPS1-SVPM2001I-022620
BPS1-FB2001-022620	2003057-21A	2/26/2020	VOA	Air	Field Blank
BPS1-FB2002-022720**	2003057-22A	2/27/2020	VOA	Air	Field Blank

Note: *Sample BPS1-SVPM2002S-022620 (2003057-04) was mistakenly logged by the lab as BPS1-SVPM2001S-022620. **Sample BPS1-FB2002-022720 was not associated with the samples in this SDG.

Sample Conditions/Problems:

- 1. The Traffic Reports/Chain-of-Custody Records, Sampling Report and/or Laboratory Case Narrative did not indicate any problems with sample receipt, condition of samples, analytical problems or special circumstances affecting the quality of the data. No qualifications were required.
- 2. The laboratory noted the following in the narrative: "The COC information for samples BPS1-SVPM2001I-022620, BPS1-SVPM2002D-22620, and BPS1-SVPM2004S-022620 did not match the information on the canisters with regard to canister barcode. The samples labeled 6L0847, 6L0340, and XL1476 on the COC is labeled as 6L0877, 6L4034

- and 6L1476 on the canisters. The client was notified of the discrepancy and the information on the canisters was used to process and report the samples."
- 3. The laboratory noted the following in the narrative: "Sample BPS1-SVPM2001D-022620 was received with significant vacuum remaining in the canister. The residual canister vacuum results in elevated reporting limits."

Holding Times:

1. All air samples were analyzed within the method holding time for summa canisters (30 days). No qualifications were required.

Initial Calibration (IC):

1. Initial calibration (IC) curve analyzed on 12/05/2018 (msda.i) exhibited acceptable %RSDs (≤30.0%) for all compounds and average RRF values (≥0.050) for all compounds with the exception of some compounds listed in section 15.5, Page 13 in SOP # HW-31, were ≥0.01. No qualifications were required.

Continuing Calibration Verification (CCV):

- 1. CCV analyzed on 03/05/2020 @ 10:41AM (msda.i) exhibited acceptable %Rs for all compounds. No qualifications were required.
- 2. CCV analyzed on 03/07/2020 @ 11:01AM (msd17.i) exhibited acceptable %Rs for all compounds. No qualifications were required.

Internal Standard (IS) Area Performance:

1. Samples exhibited acceptable area count for all three internal standards within the QC limits. No qualifications were required.

GC/MS Tuning:

1. All of the BFB tunes in the initial and continuing calibrations met the percent relative abundance criteria. No qualifications were required.

Surrogates:

1. All surrogates %REC values for all air samples and associated QC were within the laboratory control limits. No qualifications were required.

Method Blank (MB), Storage Blank (SB), Trip Blank (TB), Field Blank (FB), Rinsate Blank (RB, Equipment Blank (EB) and Canister Certification:

1. Method Blank (2003057-23A) analyzed on 03/05/20 was free of contamination. No qualifications required.

- 2. Method Blank (2003057-23B) analyzed on 03/07/20 was free of contamination. No qualifications required.
- 3. Field Blank (BPS1-FB2001-022620) (2003057-21A) analyzed on 03/07/2020 contained the following:

			Action		
		Result	Level		Action
Sample ID	Compound	(μg/m3)	(μg/m3)	Sample(s) Affected	Action
BPS1-FB2001-022620	Trichloroethene				None
BPS1-FB2001-022620	Trichioroethene	11	11	BPS1-SVPM2001S-022620	
				BPS1-SVPM2001I-022620	U and Reported to LOQ
				BPS1-SVPM2001D-022620	None
				BPS1-SVPM2002S-022620	U
				BPS1-SVPM2002I-022620	U
				BPS1-SVPM2002D-022620	None
				BPS1-SVPM2003S-022620	U
				BPS1-SVPM2003I-022620	U and Reported to LOQ
				BPS1-SVPM2003D-022620	U and Reported to LOQ
				BPS1-SVPM2004S-022620	U
				BPS1-SVPM2004I-022620	U
				BPS1-SVPM2004D-022620	U
				BPS1-SVPM2006S-022620	U and Reported to LOQ
				BPS1-SVPM2006I-022620	U
				BPS1-SVPM2006D-022620	None
				BPS1-SVPM2007S-022620	U
				BPS1-SVPM2007I-022620	U
				BPS1-SVPM2007D-022620	None
				BPS1-DUP01-022620	None
				BPS1-DUP02-022620	U and Reported to LOQ
BPS1-FB2001-022620	Tetrachloroethe	4.4	9	BPS1-SVPM2001S-022620	None
	ne			BPS1-SVPM2001I-022620	U and Reported to LOQ
				BPS1-SVPM2001D-022620	None
				BPS1-SVPM2002S-022620	U and Reported to LOQ
				BPS1-SVPM2002I-022620	U and Reported to LOQ
				BPS1-SVPM2002D-022620	U and Reported to LOQ
				BPS1-SVPM2003S-022620	U and Reported to LOQ
				BPS1-SVPM2003I-022620	U and Reported to LOQ
				BPS1-SVPM2003D-022620	U and Reported to LOQ
				BPS1-SVPM2004S-022620	U and Reported to LOQ
				BPS1-SVPM2004I-022620	None
				BPS1-SVPM2004D-022620	None
				BPS1-SVPM2006S-022620	None
				BPS1-SVPM2006I-022620	None
				BPS1-SVPM2006D-022620	None
				BPS1-SVPM2007S-022620	None
				BPS1-SVPM2007I-022620	None
				BPS1-SVPM2007D-022620	None
				BPS1-DUP01-022620	None
				BPS1-DUP02-022620	None

4. Field Blank (BPS1-FB2002-022720) (2003057-22A) analyzed on 03/07/2020 was not associated with samples from this SDG. No qualifications were required.

<u>Laboratory Control Sample (LCS)/ Laboratory Control Sample Duplicate (LCSD):</u>

- 1. Laboratory Control Samples (2003057-25A/AA) were analyzed on 03/05/2020. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.
- 2. Laboratory Control Samples (2003057-25B/BB) were analyzed on 03/07/2020. All %RECs and RPDs were within the laboratory control limits. No qualifications were required.

Field Duplicate:

1. Sample BPS1-DUP-01 (2003057-19A) was collected as field duplicate for sample BPS1-SVPM2006D-022620 (2003057-15A). RPDs were within the control limits (<30%) with the following exception(s):

		Analytical			Field				
Field Sample	Compound	Method	Result	Units	Duplicate	Result	Units	RPD	Qualifier
BPS1-SVPM2001I-	Cis-1,2-								
022620	Dichloroethene	TO-15	200	$\mu g/m^3$	BPS1-DUP-01	200	$\mu g/m^3$	0	None
BPS1-SVPM2001I-	Trans-1,2-				BPS1-DUP01-				
022620	Dichloroethene	TO-15	ND	$\mu g/m^3$	020419	2.4	$\mu g/m^3$	NC	UJ/J
BPS1-SVPM2001I-					BPS1-DUP01-				
022620	Trichloroethene	TO-15	34	$\mu g/m^3$	020419	34	μg/m³	0	None

2. Sample BPS1-DUP-02 (2003057-20A) was collected as field duplicate for sample BPS1-SVPM2001I-022620 (2003057-02A). Results for the field duplicate pair were non-detect. No qualifications were required.

Sample Duplicate:

- 1. Sample duplicate was performed on sample BPS1-SVPM2001S-022620 (2003057-01A/AA). All RPDs were \leq 30%. No qualifications were required.
- 2. Sample duplicate was performed on sample BPS1-SVPM2004S-022620 (2003057-10A/AA). All RPDs were \leq 30%. No qualifications were required.

Compound Quantitation and Reported Detection Limits:

- 1. All sample results were reported within the linear calibration range. No qualifications were required.
- 2. Manual Calculation:

Concentration ($\mu g/m^3$)= Result (ppbv) x Molecular weight x DF 24 45

BPS1-SVPM2002D-022620 (2003057-06A)

Tetrachloroethene Result (ppbv) = 0.42550 Molecular Weight @ 25° C=165.83 DF = 1.49 Concentration (μ g/m³) $0.42550 \times 165.83 \times 1.49$ = 4.3μ g/m³

	Laboratory	Validation	
Compound	$(\mu g/m^3)$	$(\mu g/m^3)$	%D
Tetrachloroethene	4.3	4.3	0.0

24.45

Comments:

- 1. Volatile data package meet requirement for New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B Deliverables.
- 2. Validation qualifiers (if required) were entered into the EDD for SDG: 2003057.
- 3. Summary of the qualified data are listed in the Qualification Summary Table for SDG: 2003057.
- 4. Summary of all the data are listed in the Data Summary Table for SDG: 2003057.

NWIRP BETHPAGE, BETHPAGE, NY SITE 1 QUALIFICATION SUMMARY TABLE AIR

SDGs: 2003057

		Analytical			Reported	Lab	Validated	DV	Reason
Sample Name	Lab ID	Method	Analyte	Unit	Result	Qualifier	Value	Qualifier	Code
BPS1-SVPM2001I-022620	2003057-02A	TO-15	Tetrachloroethene	UG/M3	0.71	J	5.4	U	FB
BPS1-SVPM2002S-022620	2003057-04A	TO-15	Tetrachloroethene	UG/M3	1.9	J	5.2	U	FB
BPS1-SVPM2002I-022620	2003057-05A	TO-15	Tetrachloroethene	UG/M3	2.4	J	5.0	U	FB
BPS1-SVPM2002D-022620	2003057-06A	TO-15	Tetrachloroethene	UG/M3	4.3	J	5.0	U	FB
BPS1-SVPM2003S-022620	2003057-07A	TO-15	Tetrachloroethene	UG/M3	2.1	J	5.0	U	FB
BPS1-SVPM2003I-0222620	2003057-08A	TO-15	Tetrachloroethene	UG/M3	1.3	J	5.0	U	FB
BPS1-SVPM2003D-022620	2003057-09A	TO-15	Tetrachloroethene	UG/M3	1.6	J	5.0	U	FB
BPS1-SVPM2004S-022620	2003057-10A	TO-15	Tetrachloroethene	UG/M3	1.2	J	5.0	U	FB
BPS1-SVPM2006D-022620	2003057-15A	TO-15	trans-1,2-Dichloroethene	UG/M3	2.9	ND,U	2.9	UJ	FD
BPS1-DUP-01	2003057-19A	TO-15	trans-1,2-Dichloroethene	UG/M3	2.4	J	2.4	J	FD
BPS1-SVPM2001I-022620	2003057-02A	TO-15	Trichloroethene	UG/M3	2.6	J	4.2	U	FB
BPS1-SVPM2002S-022620	2003057-04A	TO-15	Trichloroethene	UG/M3	4.4		4.4	U	FB
BPS1-SVPM2002I-022620	2003057-05A	TO-15	Trichloroethene	UG/M3	6.6		6.6	U	FB
BPS1-SVPM2003S-022620	2003057-07A	TO-15	Trichloroethene	UG/M3	5.8		5.8	U	FB
BPS1-SVPM2003I-0222620	2003057-08A	TO-15	Trichloroethene	UG/M3	2.7	J	4	U	FB
BPS1-SVPM2003D-022620	2003057-09A	TO-15	Trichloroethene	UG/M3	3.6	J	4	U	FB
BPS1-SVPM2004S-022620	2003057-10A	TO-15	Trichloroethene	UG/M3	4.4		4.4	U	FB
BPS1-SVPM2004I-022620	2003057-11A	TO-15	Trichloroethene	UG/M3	11		11	U	FB
BPS1-SVPM2004D-022620	2003057-12A	TO-15	Trichloroethene	UG/M3	5.5		5.5	U	FB
BPS1-SVPM2006S-022620	2003057-13A	TO-15	Trichloroethene	UG/M3	2.4	J	4.1	U	FB
BPS1-SVPM2006I-022620	2003057-14A	TO-15	Trichloroethene	UG/M3	7.8		7.8	U	FB
BPS1-SVPM2007S-022620	2003057-16A	TO-15	Trichloroethene	UG/M3	8.0		8.0	U	FB
BPS1-SVPM2007I-022620	2003057-17A	TO-15	Trichloroethene	UG/M3	4.4		4.4	U	FB
BPS1-DUP-02	2003057-20A	TO-15	Trichloroethene	UG/M3	2.6	J	4	U	FB

NOTE: Only results that had qualifications added after validation are listed in this table.

Reason Codes

FB Qualification due to field blank contamination.

FD Qualification due to exceedance of field duplicate criteria.

			Analytical	Sample					
Sample Name	Lab ID	Analytical Name	Method	Date	Result	Unit	Oualifier	LOD	LOO
BPS1-SVPM2001S-022620	2003057-01A	Vinyl Chloride	TO-15	20200226	2	UG M3	U	1.6	2
BPS1-SVPM2001S-022620	2003057-01A	trans-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.4	3.1
BPS1-SVPM2001S-022620	2003057-01A	cis-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.4	3.1
BPS1-SVPM2001S-022620	2003057-01A	1,2-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2001S-022620	2003057-01A	Tetrachloroethene	TO-15	20200226	5.2	UG M3	U	4.2	5.2
BPS1-SVPM2001S-022620	2003057-01A	1,1-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.4	3.1
BPS1-SVPM2001S-022620	2003057-01A	1.1-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2001S-022620	2003057-01A	1,1,1-Trichloroethane	TO-15	20200226	4.2	UG M3	U	3.4	4.2
BPS1-SVPM2001S-022620	2003057-01A	Trichloroethene	TO-15	20200226	11	UG M3		3.3	4.2
BPS1-SVPM2001I-022620	2003057-02A	Tetrachloroethene	TO-15	20200226	5.4	UG M3	U	4.3	5.4
BPS1-SVPM2001I-022620	2003057-02A	Vinyl Chloride	TO-15	20200226	2	UG M3	U	1.6	2
BPS1-SVPM2001I-022620	2003057-02A	trans-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2001I-022620	2003057-02A	cis-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2001I-022620	2003057-02A	1,2-Dichloroethane	TO-15	20200226	3.2	UG M3	U	2.6	3.2
BPS1-SVPM2001I-022620	2003057-02A	1,1-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2001I-022620	2003057-02A	1,1-Dichloroethane	TO-15	20200226	3.2	UG M3	U	2.6	3.2
BPS1-SVPM2001I-022620	2003057-02A	1,1,1-Trichloroethane	TO-15	20200226	4.3	UG _{M3}	U	3.4	4.3
BPS1-SVPM2001I-022620	2003057-02A	Trichloroethene	TO-15	20200226	4.2	UG M3	U	3.4	4.2
BPS1-SVPM2001D-022620	2003057-03A	Vinyl Chloride	TO-15	20200226	6.8	UG M3	U	5.5	6.8
BPS1-SVPM2001D-022620	2003057-03A	trans-1,2-Dichloroethene	TO-15	20200226	11	UG _{M3}	U	8.5	11
BPS1-SVPM2001D-022620	2003057-03A	cis-1,2-Dichloroethene	TO-15	20200226	11	UG _{M3}	U	8.5	11
BPS1-SVPM2001D-022620	2003057-03A	1,2-Dichloroethane	TO-15	20200226	11	UG _{M3}	U	8.7	11
BPS1-SVPM2001D-022620	2003057-03A	Tetrachloroethene	TO-15	20200226	18	UG _{M3}	U	14	18
BPS1-SVPM2001D-022620	2003057-03A	1,1-Dichloroethene	TO-15	20200226	11	UG _{M3}	U	8.5	11
BPS1-SVPM2001D-022620	2003057-03A	1,1-Dichloroethane	TO-15	20200226	11	UG _{M3}	U	8.7	11
BPS1-SVPM2001D-022620	2003057-03A	1,1,1-Trichloroethane	TO-15	20200226	15	UG _{M3}	U	12	15
BPS1-SVPM2001D-022620	2003057-03A	Trichloroethene	TO-15	20200226	20	UG_M3		12	14
BPS1-SVPM2002S-022620	2003057-04A	Tetrachloroethene	TO-15	20200226	5.2	UG _{M3}	U	4.2	5.2
BPS1-SVPM2002S-022620	2003057-04A	Vinyl Chloride	TO-15	20200226	2	UG_M3	U	1.6	2
BPS1-SVPM2002S-022620	2003057-04A	trans-1,2-Dichloroethene	TO-15	20200226	3.1	UG_M3	U	2.4	3.1
BPS1-SVPM2002S-022620	2003057-04A	cis-1,2-Dichloroethene	TO-15	20200226	3.1	UG_M3	U	2.4	3.1
BPS1-SVPM2002S-022620	2003057-04A	1,2-Dichloroethane	TO-15	20200226	3.1	UG _{M3}	U	2.5	3.1

			Analytical	Sample					
Sample Name	Lab ID	Analytical Name	Method	Date	Result	Unit	Qualifier	LOD	LOQ
BPS1-SVPM2002S-022620	2003057-04A	1,1-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.4	3.1
BPS1-SVPM2002S-022620	2003057-04A	1,1-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2002S-022620	2003057-04A	1,1,1-Trichloroethane	TO-15	20200226	4.2	UG M3	U	3.4	4.2
BPS1-SVPM2002S-022620	2003057-04A	Trichloroethene	TO-15	20200226	4.4	UG M3	U	3.3	4.2
BPS1-SVPM2002I-022620	2003057-05A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2002I-022620	2003057-05A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2002I-022620	2003057-05A	trans-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2002I-022620	2003057-05A	cis-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2002I-022620	2003057-05A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002I-022620	2003057-05A	1,1-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2002I-022620	2003057-05A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002I-022620	2003057-05A	1,1,1-Trichloroethane	TO-15	20200226	4	UG M3	U	3.2	4
BPS1-SVPM2002I-022620	2003057-05A	Trichloroethene	TO-15	20200226	6.6	UG M3	U	3.1	3.9
BPS1-SVPM2002D-022620	2003057-06A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2002D-022620	2003057-06A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2002D-022620	2003057-06A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002D-022620	2003057-06A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002D-022620	2003057-06A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002D-022620	2003057-06A	1,1-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002D-022620	2003057-06A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2002D-022620	2003057-06A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG M3	U	3.2	4.1
BPS1-SVPM2002D-022620	2003057-06A	Trichloroethene	TO-15	20200226	32	UG M3		3.2	4
BPS1-SVPM2003S-022620	2003057-07A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2003S-022620	2003057-07A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2003S-022620	2003057-07A	trans-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2003S-022620	2003057-07A	cis-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2003S-022620	2003057-07A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2003S-022620	2003057-07A	1,1-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2003S-022620	2003057-07A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2003S-022620	2003057-07A	1,1,1-Trichloroethane	TO-15	20200226	4	UG_M3	U	3.2	4
BPS1-SVPM2003S-022620	2003057-07A	Trichloroethene	TO-15	20200226	5.8	UG M3	U	3.1	3.9
BPS1-SVPM2003I-0222620	2003057-08A	Tetrachloroethene	TO-15	20200226	5	UG_M3	U	4	5

			A 14'1	Carralla					
C. I.N.	T 1 TD	4 1 (* 137	Analytical Method	Sample	D 1/	T T •	0 1'6'	LOD	1.00
Sample Name	Lab ID	Analytical Name		Date	Result		Qualifier		
BPS1-SVPM2003I-0222620	2003057-08A	Vinyl Chloride	TO-15	20200226	1.9	UG_M3	U	1.5	1.9
BPS1-SVPM2003I-0222620	2003057-08A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG_M3		2.4	3
BPS1-SVPM2003I-0222620	2003057-08A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003I-0222620	2003057-08A	1,2-Dichloroethane	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003I-0222620	2003057-08A	1,1-Dichloroethene	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003I-0222620	2003057-08A	1,1-Dichloroethane	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003I-0222620	2003057-08A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG_M3	U	3.2	4.1
BPS1-SVPM2003I-0222620	2003057-08A	Trichloroethene	TO-15	20200226	4	UG _{M3}	U	3.2	4
BPS1-SVPM2003D-022620	2003057-09A	Tetrachloroethene	TO-15	20200226	5	UG _{M3}	U	4	5
BPS1-SVPM2003D-022620	2003057-09A	Vinyl Chloride	TO-15	20200226	1.9	UG _{M3}	U	1.5	1.9
BPS1-SVPM2003D-022620	2003057-09A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG _{M3}		2.4	3
BPS1-SVPM2003D-022620	2003057-09A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG _{M3}		2.4	3
BPS1-SVPM2003D-022620	2003057-09A	1,2-Dichloroethane	TO-15	20200226	3	UG _{M3}	U	2.4	3
BPS1-SVPM2003D-022620	2003057-09A	1,1-Dichloroethene	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003D-022620	2003057-09A	1,1-Dichloroethane	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2003D-022620	2003057-09A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG _{M3}	U	3.2	4.1
BPS1-SVPM2003D-022620	2003057-09A	Trichloroethene	TO-15	20200226	4	UG _{M3}	U	3.2	4
BPS1-SVPM2004S-022620	2003057-10A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2004S-022620	2003057-10A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2004S-022620	2003057-10A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004S-022620	2003057-10A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004S-022620	2003057-10A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004S-022620	2003057-10A	1,1-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004S-022620	2003057-10A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004S-022620	2003057-10A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG M3	U	3.2	4.1
BPS1-SVPM2004S-022620	2003057-10A	Trichloroethene	TO-15	20200226	4.4	UG M3	U	3.2	4
BPS1-SVPM2004I-022620	2003057-11A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.6	1.9
BPS1-SVPM2004I-022620	2003057-11A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004I-022620	2003057-11A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004I-022620	2003057-11A	1,2-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2004I-022620	2003057-11A	Tetrachloroethene	TO-15	20200226	5.2	UG M3		4.1	5.2
BPS1-SVPM2004I-022620	2003057-11A	1,1-Dichloroethene	TO-15	20200226	3	UG M3		2.4	3

			Analytical	Sample					
Sample Name	Lab ID	Analytical Name	Method	Date	Result	Unit	Qualifier	LOD	LOQ
BPS1-SVPM2004I-022620	2003057-11A	1,1-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2004I-022620	2003057-11A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG M3	U	3.3	4.1
BPS1-SVPM2004I-022620	2003057-11A	Trichloroethene	TO-15	20200226	11	UG M3	U	3.3	4.1
BPS1-SVPM2004D-022620	2003057-12A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2004D-022620	2003057-12A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004D-022620	2003057-12A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004D-022620	2003057-12A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004D-022620	2003057-12A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2004D-022620	2003057-12A	1,1-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004D-022620	2003057-12A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2004D-022620	2003057-12A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG M3	U	3.2	4.1
BPS1-SVPM2004D-022620	2003057-12A	Trichloroethene	TO-15	20200226	5.5	UG M3	U	3.2	4
BPS1-SVPM2006S-022620	2003057-13A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.6	1.9
BPS1-SVPM2006S-022620	2003057-13A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2006S-022620	2003057-13A	cis-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2006S-022620	2003057-13A	1,2-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2006S-022620	2003057-13A	Tetrachloroethene	TO-15	20200226	5.2	UG _{M3}	U	4.1	5.2
BPS1-SVPM2006S-022620	2003057-13A	1,1-Dichloroethene	TO-15	20200226	3	UG _{M3}	U	2.4	3
BPS1-SVPM2006S-022620	2003057-13A	1,1-Dichloroethane	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2006S-022620	2003057-13A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG _{M3}	U	3.3	4.1
BPS1-SVPM2006S-022620	2003057-13A	Trichloroethene	TO-15	20200226	4.1	UG _{M3}	U	3.3	4.1
BPS1-SVPM2006I-022620	2003057-14A	Vinyl Chloride	TO-15	20200226	1.9	UG _{M3}	U	1.5	1.9
BPS1-SVPM2006I-022620	2003057-14A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG _{M3}	U	2.4	3
BPS1-SVPM2006I-022620	2003057-14A	cis-1,2-Dichloroethene	TO-15	20200226	66	UG _{M3}		2.4	3
BPS1-SVPM2006I-022620	2003057-14A	1,2-Dichloroethane	TO-15	20200226	3	UG _{M3}	U	2.4	3
BPS1-SVPM2006I-022620	2003057-14A	Tetrachloroethene	TO-15	20200226	5	UG _{M3}	U	4	5
BPS1-SVPM2006I-022620	2003057-14A	1,1-Dichloroethene	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2006I-022620	2003057-14A	1,1-Dichloroethane	TO-15	20200226	3	UG_M3	U	2.4	3
BPS1-SVPM2006I-022620	2003057-14A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG_M3	U	3.2	4.1
BPS1-SVPM2006I-022620	2003057-14A	Trichloroethene	TO-15	20200226	7.8	UG_M3	U	3.2	4
BPS1-SVPM2006D-022620	2003057-15A	Vinyl Chloride	TO-15	20200226	1.9	UG _{M3}	U	1.5	1.9
BPS1-SVPM2006D-022620	2003057-15A	trans-1,2-Dichloroethene	TO-15	20200226	2.9	UG _{M3}	UJ	2.3	2.9

			Analytical	Sample					
Sample Name	Lab ID	Analytical Name	Method	Date	Result	Unit	Oualifier	LOD	LOO
BPS1-SVPM2006D-022620	2003057-15A	cis-1,2-Dichloroethene	TO-15	20200226	200	UG M3		2.3	2.9
BPS1-SVPM2006D-022620	2003057-15A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2006D-022620	2003057-15A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-SVPM2006D-022620	2003057-15A	1,1-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-SVPM2006D-022620	2003057-15A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2006D-022620	2003057-15A	1,1,1-Trichloroethane	TO-15	20200226	4	UG M3	U	3.2	4
BPS1-SVPM2006D-022620	2003057-15A	Trichloroethene	TO-15	20200226	34	UG M3		3.2	4
BPS1-SVPM2007S-022620	2003057-16A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-SVPM2007S-022620	2003057-16A	trans-1,2-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2007S-022620	2003057-16A	cis-1,2-Dichloroethene	TO-15	20200226	8.6	UG M3		2.4	3
BPS1-SVPM2007S-022620	2003057-16A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2007S-022620	2003057-16A	Tetrachloroethene	TO-15	20200226	5.1	UG M3	U	4.1	5.1
BPS1-SVPM2007S-022620	2003057-16A	1,1-Dichloroethene	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2007S-022620	2003057-16A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-SVPM2007S-022620	2003057-16A	1,1,1-Trichloroethane	TO-15	20200226	4.1	UG M3	U	3.3	4.1
BPS1-SVPM2007S-022620	2003057-16A	Trichloroethene	TO-15	20200226	8	UG M3	U	3.2	4
BPS1-SVPM2007I-022620	2003057-17A	Vinyl Chloride	TO-15	20200226	2	UG M3	U	1.6	2
BPS1-SVPM2007I-022620	2003057-17A	trans-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2007I-022620	2003057-17A	cis-1,2-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2007I-022620	2003057-17A	1,2-Dichloroethane	TO-15	20200226	3.2	UG M3	U	2.5	3.2
BPS1-SVPM2007I-022620	2003057-17A	Tetrachloroethene	TO-15	20200226	5.3	UG M3	U	4.2	5.3
BPS1-SVPM2007I-022620	2003057-17A	1,1-Dichloroethene	TO-15	20200226	3.1	UG M3	U	2.5	3.1
BPS1-SVPM2007I-022620	2003057-17A	1,1-Dichloroethane	TO-15	20200226	3.2	UG M3	U	2.5	3.2
BPS1-SVPM2007I-022620	2003057-17A	1,1,1-Trichloroethane	TO-15	20200226	4.2	UG M3	U	3.4	4.2
BPS1-SVPM2007I-022620	2003057-17A	Trichloroethene	TO-15	20200226	4.4	UG M3	U	3.4	4.2
BPS1-SVM2007D-022620	2003057-18A	Vinyl Chloride	TO-15	20200226	1.8	UG M3	U	1.4	1.8
BPS1-SVM2007D-022620	2003057-18A	trans-1,2-Dichloroethene	TO-15	20200226	2.8	UG M3	U	2.2	2.8
BPS1-SVM2007D-022620	2003057-18A	cis-1,2-Dichloroethene	TO-15	20200226	16	UG M3		2.2	2.8
BPS1-SVM2007D-022620	2003057-18A	1,2-Dichloroethane	TO-15	20200226	2.8	UG _{M3}	U	2.3	2.8
BPS1-SVM2007D-022620	2003057-18A	Tetrachloroethene	TO-15	20200226	4.8	UG_M3	U	3.8	4.8
BPS1-SVM2007D-022620	2003057-18A	1,1-Dichloroethene	TO-15	20200226	2.8	UG M3	U	2.2	2.8
BPS1-SVM2007D-022620	2003057-18A	1,1-Dichloroethane	TO-15	20200226	2.8	UG_M3	U	2.3	2.8

			Analytical	Sample					
Sample Name	Lab ID	Analytical Name	Method	Date	Result	Unit	Qualifier	LOD	LOQ
BPS1-SVM2007D-022620	2003057-18A	1,1,1-Trichloroethane	TO-15	20200226	3.8	UG _{M3}	U	3.1	3.8
BPS1-SVM2007D-022620	2003057-18A	Trichloroethene	TO-15	20200226	14	UG _{M3}		3	3.8
BPS1-DUP-01	2003057-19A	Vinyl Chloride	TO-15	20200226	1.9	UG_M3	U	1.5	1.9
BPS1-DUP-01	2003057-19A	trans-1,2-Dichloroethene	TO-15	20200226	2.4	UG M3	J	2.3	2.9
BPS1-DUP-01	2003057-19A	cis-1,2-Dichloroethene	TO-15	20200226	200	UG M3		2.3	2.9
BPS1-DUP-01	2003057-19A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-DUP-01	2003057-19A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-DUP-01	2003057-19A	1,1-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-DUP-01	2003057-19A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-DUP-01	2003057-19A	1,1,1-Trichloroethane	TO-15	20200226	4	UG M3	U	3.2	4
BPS1-DUP-01	2003057-19A	Trichloroethene	TO-15	20200226	34	UG M3		3.2	4
BPS1-DUP-02	2003057-20A	Vinyl Chloride	TO-15	20200226	1.9	UG M3	U	1.5	1.9
BPS1-DUP-02	2003057-20A	trans-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-DUP-02	2003057-20A	cis-1,2-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-DUP-02	2003057-20A	1,2-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-DUP-02	2003057-20A	Tetrachloroethene	TO-15	20200226	5	UG M3	U	4	5
BPS1-DUP-02	2003057-20A	1,1-Dichloroethene	TO-15	20200226	2.9	UG M3	U	2.3	2.9
BPS1-DUP-02	2003057-20A	1,1-Dichloroethane	TO-15	20200226	3	UG M3	U	2.4	3
BPS1-DUP-02	2003057-20A	1,1,1-Trichloroethane	TO-15	20200226	4	UG M3	U	3.2	4
BPS1-DUP-02	2003057-20A	Trichloroethene	TO-15	20200226	4	UG M3	U	3.2	4
BPS1-FB2001-022620	2003057-21A	Tetrachloroethene	TO-15	20200226	4.4	UG M3	J	4.4	5.5
BPS1-FB2001-022620	2003057-21A	Vinyl Chloride	TO-15	20200226	2.1	UG M3	U	1.7	2.1
BPS1-FB2001-022620	2003057-21A	trans-1,2-Dichloroethene	TO-15	20200226	3.2	UG M3	U	2.6	3.2
BPS1-FB2001-022620	2003057-21A	cis-1,2-Dichloroethene	TO-15	20200226	3.2	UG M3	U	2.6	3.2
BPS1-FB2001-022620	2003057-21A	1,2-Dichloroethane	TO-15	20200226	3.3	UG M3	U	2.6	3.3
BPS1-FB2001-022620	2003057-21A	Trichloroethene	TO-15	20200226	11	UG M3		3.5	4.4
BPS1-FB2001-022620	2003057-21A	1,1-Dichloroethene	TO-15	20200226	3.2	UG M3	U	2.6	3.2
BPS1-FB2001-022620	2003057-21A	1,1-Dichloroethane	TO-15	20200226	3.3	UG M3	U	2.6	3.3
BPS1-FB2001-022620	2003057-21A	1,1,1-Trichloroethane	TO-15	20200226	4.4	UG_M3	U	3.6	4.4