

18 October 2021

Mr. Scott Sokolowski Remedial Project Manager Naval Facilities Engineering Command, Mid Atlantic 9324 Virginia Avenue, Building Z-144 Norfolk, VA 23511-3095

Subject: US NAVY CONTRACT NO. N40085-16-D-2288 CONTRACT TASK ORDER NO. 4042 FIRST QUARTER 2021 SVECS OPERATIONS SUMMARY - SITE 1 NAVAL WEAPONS INDUSTRIAL RESERVE PLANT, BETHPAGE, NY

Dear Mr. Sokolowski:

An electronic copy of the Second Quarter 2021 Operations Report, Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard, Naval Weapons Industrial Reserve Plant, Bethpage, New York, has been submitted to your attention.

Please contact me at <u>rgregory@komangs.com</u> or 610.400.0636 if you have any questions or comments regarding this submittal.

Sincerely, KOMAN Government Solutions, LLC (KGS)

& Drun

Robert G. Gregory Project Manager

Cc: Mr. Vin Varricchio (NWIRP Bethpage Facility Management) – 2 hard copies, 2 CDs Mr. Jason Pelton (NYSDEC) – 1 Electronic Copy Mr. William Cords (NAVAIR) – 1 Electronic Copy Mr. James Sullivan (NYSDOH) – 1 Electronic Copy Ms. Monica Marrow (Jacobs - NIRIS) – 1 hard copy, DDS Form, 1 CD Mr. David Brayack (Tetra Tech) – 1 Electronic Copy

Quarterly Operations Report Second Quarter 2021

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

October 2021

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Prepared by:

KOMAN Government Solutions, LLC 180 Gordon Drive, Suite 110 Exton PA, 19341 (610) 363-3000

Quarterly Operations Report Second Quarter 2021

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant Bethpage, New York

Contract No. N40085-16-D-2288 Contract Task Order No. N4008517F4042

October 2021

Prepared for:

Naval Facilities Engineering Systems Command Mid-Atlantic 9324 Virginia Avenue Norfolk, VA 23511

Patrick Schauble Program Manager

Robert Gregory 1 Project Manager

09/30/2021

Date

10/07/2021

Date

TABLE OF CONTENTS

1.0	IN	TRODUCTION	1-1
	1.1	Site Location	
	1.2	Background	1-1
	1.3	Project Overview and Objective	1-2
	1.4	SVECS Overview	1-2
2.0	SV	ECS OPERATION AND MAINTENANCE	2-1
	2.1	Routine Maintenance Activities	2-1
	2.2	Non-routine Maintenance / Site Activities	2-1
• •			
3.0	SV	ECS MONITORING	
3.0	SV 3.1		
3.0		ECS MONITORING Monthly Air Quality Monitoring Quarterly Air Quality Monitoring of SVEWs	3-1
3.0	3.1	Monthly Air Quality Monitoring Quarterly Air Quality Monitoring of SVEWs Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs	3-1 3-1 3-2
3.0	3.1 3.2	Monthly Air Quality Monitoring Quarterly Air Quality Monitoring of SVEWs Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs Annual Vapor Quality Monitoring of Off-site SVPMs	3-1 3-1 3-2 3-2
3.0	3.1 3.2 3.3	Monthly Air Quality Monitoring Quarterly Air Quality Monitoring of SVEWs	3-1 3-1 3-2 3-2
3.0 4.0	3.1 3.2 3.3 3.4 3.5	Monthly Air Quality Monitoring Quarterly Air Quality Monitoring of SVEWs Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs Annual Vapor Quality Monitoring of Off-site SVPMs	3-1 3-1 3-2 3-2 3-2

FIGURES

FIGURE 1	Site Location Map
FIGURE 2	Site 1 Area and Vicinity
FIGURE 3	Site Plan – Existing Layout
FIGURE 4	Soil Vapor Extraction Containment System Layout Plan
FIGURE 5	2 nd Quarter 2021 Vapor Analytical Map – Select VOC Concentrations – SVEWs
FIGURE 6	2 nd Quarter 2021 Offsite Soil Vapor Pressure Readings – SVPMs
TABLES	
TABLE 1	Monthly Vapor Monitoring Results – April 2021
TABLE 2	Monthly Vapor Monitoring Results – May 2021
TABLE 3	Monthly Vapor Monitoring Results – June 2021
TADLE 4	
TABLE 4	Quarterly Vapor Monitoring Results of SVE Wells – Second Quarter 2021

- TABLE 5Quarterly Vapor Monitoring Results of SVE Wells through Second Quarter 2021
- TABLE 6Quarterly Off-Site Soil Vapor Monitoring Results of SVPMs Second Quarter2021

APPENDICES

APPENDIX A	NYSDEC Air Discharge Limit Documentation
APPENDIX B	Vapor Concentration Trend Graphs of Select VOCs – $SVEWs$

Acronyms and Abbreviations

bgs	below ground surface
СТО	Contract Task Order
DAR	Division of Air Resources
DCA	dichloroethane
DCE	dichloroethene
DoD	Department of Defense
ELAP	Environmental Laboratory Accreditation Program
FMS	Flow Monitoring Station
GOCO	Government Owned Contractor Operated
i.w.	inches of water column
KGS	KOMAN Government Solutions, LLC
NAVFAC	Naval Facilities Engineering Systems Command
Navy	United States Department of the Navy
NELAC	National Environmental Accreditation Conference
NG	Northrop Grumman
NWIRP	Naval Weapons Industrial Reserve Plant
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
O&M	Operation and Maintenance
PCB	polychlorinated biphenyls
PCE	tetrachloroethene
PID	photoionization detector
scfm	standard cubic feet per minute
SVE	soil vapor extraction
SVECS	soil vapor extraction containment system
SVEW	soil vapor extraction well
SVOC	semi-volatile organic compound
SVPM	soil vapor pressure monitor
TCA	trichloroethane
TCE	trichloroethene
TCL	target compound list
TtEC	Tetra Tech EC, Inc.
TtNUS	Tetra Tech NUS, Inc.
µg/m3	micrograms per cubic meter
VC	vinyl chloride
VGAC	vapor-phase granular activated carbon
VOC	volatile organic compound

1.0 INTRODUCTION

KOMAN Government Solutions, LLC (KGS) has prepared this Second Quarter 2021 Operations Report for the Soil Vapor Extraction Containment System (SVECS) at Site 1, Former Drum Marshalling Area, at the Naval Weapons Industrial Reserve Plant (NWIRP) in Bethpage, New York. This report has been prepared for the United States Department of the Navy (Navy), Naval Facilities Engineering Systems Command (NAVFAC), Mid-Atlantic, under Contract No. N40085-16-D-2288, Contract Task Order (CTO) No. N4008517F4042. This Second Quarter 2021 Operations Report details activities that occurred from April 2021 to June 2021. Data was collected, and operational activities were performed by KGS in accordance with the following documents:

- Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant Bethpage, New York prepared by Tetra Tech EC, Inc. (TtEC) in 2010, hereafter referred to as the "O&M Manual."
- Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York prepared by Tetra Tech NUS, Inc. (TtNUS) in 2012.

1.1 Site Location

NWIRP Bethpage is located in east central Nassau County, Long Island, New York, approximately 30 miles east of New York City. In the late 1990s, the Navy's property totaled approximately 109.5 acres and was formerly a Government Owned Contractor-Operated (GOCO) facility that was operated by Northrop Grumman (NG) until September 1998. NWIRP Bethpage was bordered on the north, west, and south by property owned, or formerly owned, by NG that covered approximately 550 acres, and on the east by a residential neighborhood. The Navy currently retains approximately nine acres of the former NWIRP, including Site 1, which lies within the fenced area of NWIRP Bethpage and is located east of Plant No. 3, west of 11th Street, and north of Plant 17 South (**Figures 1 and 2**).

1.2 Background

NWIRP Bethpage was established in 1943. Since inception, the primary mission of the facility was the research, prototyping, testing, design engineering, fabrication, and primary assembly of military aircraft. Historical operations that resulted in hazardous material generation at the facility included metal finishing processes, maintenance operations, painting of aircraft and components, and other activities that involve aircraft manufacturing. Wastes generated by plant operations were disposed of directly into drainage sumps, dry wells, and/or on the ground surface, resulting in the disposal of a number of hazardous wastes, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and inorganic analytes (chromium and cadmium) at the site. Some of these contaminants have migrated from the source area to surrounding areas, including the soils at these sites and the groundwater beneath and downgradient of the NWIRP Bethpage property. NWIRP Bethpage is currently listed by the New York State Department of Environmental Conservation (NYSDEC) as an "inactive hazardous waste site" (#1-30-003B).

Soils at Site 1 consist mainly of unconsolidated sediments that overlie crystalline bedrock. A clay unit is present near the groundwater table (50 feet below ground surface [bgs]) at the southeast corner of the site. This clay unit is suspected to be a source of chlorinated solvents that are migrating into the overlying soil gas and the source of off-site VOCs in soil vapor (TtEC, 2010).

Chlorinated solvents including trichloroethene (TCE), tetrachloroethene (PCE), and 1,1,1-trichloroethane (TCA) have been identified as the VOCs of interest in soil gas at the site. Concentrations greater than 1,000 micrograms per cubic meter (μ g/m³) of soil vapor have been directly associated with Site 1 activities and historical environmental data, and based on preliminary screening, exceed guidelines established by the New York State Department of Health (NYSDOH) for sub-slab soil vapor concentrations at the time. Of these compounds, TCE is the primary VOC of concern. Mitigation of TCE contamination in accordance with NYSDOH guidance is expected to remediate other VOCs associated with the site. PCBs, cadmium, and chromium have also been identified in site soils at concentrations requiring remediation. The majority of these chemicals have been detected in the central portion of Site 1 and will be addressed via a separate remediation (TtEC, 2010).

Prior to implementation of the SVECS, the mean concentrations of VOCs in soil gas samples collected along the eastern fence-line were 41,128 μ g/m³ of TCE, 381 μ g/m³ of PCE, and 20,634 μ g/m³ of 1,1,1-TCA. The maximum concentrations of VOCs in the soil gas samples were 180,000 μ g/m³ of TCE, 1,200 μ g/m³ of PCE, and 90,000 μ g/m³ of 1,1,1-TCA (TtEC, 2010).

1.3 Project Overview and Objective

The remedial objective for this project is to use an on-site soil vapor extraction (SVE) system to prevent further off-site migration of VOC-contaminated soil vapor and to the extent practical, capture contaminated soil vapor with a TCE concentration greater than 250 μ g/m³. A secondary objective of this project is to address soil vapor with a TCE concentration greater than 5 μ g/m³. The SVECS is an interim action intended to address migration of VOCs in contaminated soil vapors. It is expected to operate continuously 24 hours/day, seven days/week, with the exception of maintenance and adjustment periods, until the remedial objectives are met (TtEC, 2010).

1.4 SVECS Overview

The SVECS consists of soil vapor extraction, soil vapor monitoring, and soil vapor treatment. Twelve SVE wells (SVEWs) are located along the eastern boundary of Site 1 in six clusters, each consisting of one intermediate well and one deep well. Intermediate wells SVE-101I, SVE-102I, SVE-103I, SVE-104I, SVE-105I, and SVE-106I have a screened interval between 25 and 35 feet bgs. Deep wells SVE-101D, SVE-102D, SVE-103D, SVE-104D, SVE-105D, and SVE-106D have a screened interval between 40 and 60 feet bgs. The groundwater table fluctuates between approximately 50 and 55 feet bgs. Each SVEW is operated at a flow rate such that the combined total flow rate is approximately 300-400 standard cubic feet per minute (scfm) of soil vapor. Each intermediate depth SVEW requires an approximate vacuum of 4 inches of water column (i.w.) and each deep SVEW requires a vacuum of up to 20 i.w. in order to extract the targeted flow rates. These 12 SVEWs have been piped below the ground to the Flow Monitoring Station (FMS), where flow, vacuum, and vapor quality are monitored. Within the FMS, the discharges from the individual SVEWs have been equipped with a 2-inch flow control butterfly valve, a

vacuum gauge, and a sampling port. The sampling port is utilized to measure the flow rate from an individual well using a portable velocity meter and to collect vapor samples. All the SVE lines collect into a single manifold within the FMS and from this location a single underground pipeline has been routed approximately 1,400 linear feet to the Treatment Building (Building 03-35). Five additional SVEWs (SV-107D, SV-108D, SV-109D, SV-110D, and SV-111D) were installed in October 2011 to address potential VOCs under Plant No. 3 and the South Warehouse. A site plan depicting well locations is included as **Figure 3**.

The SVECS is housed within the Treatment Building, an existing and unoccupied building also known as Building 03-35. The treatment system consists of a moisture separator, two SVE blowers, and a 5,000-pound vapor-phase granular activated carbon (VGAC) unit for removal of chlorinated VOCs from the off-gas. Soil vapor that enters the Treatment Building first passes through the moisture separator tank where any condensate is separated. To date, no condensate has formed in this tank. The vapor is then passed through an air filter and SVE blower and then treated in the VGAC unit. The treated vapor is discharged from the VGAC via an exhaust stack. The SVECS has a control panel comprised of mechanical interlocks and relays for local operation. A System Layout Plan is presented in **Figure 4**, which also illustrates the design flow rates through the soil vapor extraction and treatment process.

The off-gas from the SVECS is monitored for chlorinated VOCs as identified in the NYSDEC Division of Air Resources (DAR) permit equivalent effluent limitations and updated approval documentation (**Appendix A**) and monitoring requirements (TtEC 2010). Samples are submitted to a National Environmental Laboratory Accreditation Conference (NELAC)-accredited, Department of Defense (DoD) Environmental Laboratory Accreditation Program (ELAP)-accredited laboratory, Eurofins Air Toxics, LLC. located in Folsom, California, for analysis of VOCs by modified method TO-15. Prior to January 2014, samples were analyzed for target compound list (TCL) VOCs. As of January 2014, upon approval by NYSDEC and NYSDOH, samples are analyzed for site-specific VOCs. The site-specific VOCs are: 1,1,1-TCA, 1,1-dichloroethane (DCA), 1,1-dichloroethene (DCE), 1,2-DCA, cis-1,2-DCE, PCE, trans-1,2-DCE, TCE, and vinyl chloride (VC).

A total of 18 soil vapor pressure monitor (SVPM) / soil gas monitoring points have been installed in the residential neighborhood east of Site 1 at NWIRP Bethpage (**Figure 3**). These off-site monitoring points consist of eight previously existing SVPMs as well as 10 SVPMs installed in September 2012. Soil vapor pressure readings from the SVPMs are collected quarterly and used to evaluate the SVECS vacuum field. In addition, analytical results of vapor samples collected annually from these locations and the soil vapor pressure readings are used to further evaluate the SVECS operation and the potential for vapor intrusion.

2.0 SVECS OPERATION AND MAINTENANCE

While designed to run autonomously, the SVECS requires regular visits by an operator to record and adjust operational parameters and to perform scheduled maintenance. The SVECS is equipped with telemetry that will alert an on-call operator in the event of a plant shutdown.

2.1 Routine Maintenance Activities

Routine maintenance activities at the SVECS were performed during the operator's weekly visits during this reporting period. These activities include general site inspections (of the grounds, buildings, doors and locks), collection of operational data (vapor flowrates, pressures, vacuums, temperature and photoionization detector [PID] readings), adjustment of system valves, collection of vapor samples (on a monthly and quarterly basis), collection/disposal of condensate if needed, cleaning of filters, switching of lead/lag blower assignments, and preventive maintenance of system equipment.

2.2 Non-routine Maintenance / Site Activities

The following non-routine activities / repair activities occurred at the SVECs during the Second Quarter 2021 reporting period:

• No non-routine activities were required during the current reporting period.

3.0 SVECS MONITORING

Several process vapor samples are collected on a monthly basis to monitor the SVECS operation. These samples consist of an influent sample (as well as a duplicate sample), located immediately prior to the VGAC unit, and an effluent sample, located after the VGAC unit and before the exhaust stack. Vapor samples are also collected from the 12 original SVEWs on a quarterly basis to monitor the capture of the contaminated soil vapor by the SVEWs. In addition, quarterly pressure measurements are collected from the 12 SVEWs and the 18 SVPMs to monitor the SVECS vacuum field, and soil gas sampling from the 18 SVPMs is conducted annually (generally in the winter time-frame) to evaluate the effectiveness of the SVECS. The first annual soil gas sampling event was conducted in the winter 2012-2013. The ninth annual sampling event was conducted in March 2021.

3.1 Monthly Air Quality Monitoring

Analysis of influent and effluent vapor sample locations is performed to evaluate VOC mass removal and the effectiveness of the VGAC adsorption unit. Time-integrated vapor samples are collected using 6-liter summa canisters with 30-minute flow regulators.

Treated off-gas discharged at the exhaust stack is subject to emissions limitations. Initially, discharge goals were derived from calculations submitted by the Navy and accepted by the NYSDEC in the February 2010 DAR permit equivalent application. In September 2011, the Navy submitted an evaluation proposing revised discharge goals (TtNUS, 2011), which NYSDEC agreed to in October 2011. A copy of this documentation is included as **Appendix A**.

Summaries of the monthly vapor sampling results collected in April, May, and June (Second Quarter) are presented in **Tables 1, 2, and 3**, respectively. Emission rate calculations for both the influent stream (prior to VGAC treatment) and effluent stream (following VGAC treatment) and the computed monthly mass recoveries are also presented. Emission rates of the influent stream as well as mass recovery are calculated to monitor progress and determine when influent concentrations have reached levels at which vapor treatment via carbon adsorption is no longer required. The data presented in **Tables 1, 2, and 3** demonstrate that all constituents were within the effluent emission rate guidelines (**Appendix A**). Raw analytical data are provided under a separate cover.

3.2 Quarterly Air Quality Monitoring of SVEWs

Time-integrated vapor samples are collected quarterly using 6-liter summa canisters with 30-minute flow regulators at six intermediate and six deep SVEWs. The samples are collected for the purpose of tracking and documenting the performance of the SVECS (TtEC, 2010).

Quarterly vapor samples were collected on 14 May from the 12 SVEWs. A summary of detected compounds is included as **Table 4**. Raw analytical data are provided under a separate cover.

Analytical results of select VOCs (1,1,1-TCA, PCE, and TCE) detected at the 12 SVEWs during the Second Quarter monitoring event are presented graphically in **Figure 5**. Historical analytical results of

quarterly vapor samples collected from December 2009 through the Second Quarter 2021 are presented in **Table 5**.

3.3 Quarterly Soil Vapor Pressure Monitoring of SVEWs and Off-site SVPMs

Soil vapor pressure readings are collected quarterly from the 12 SVEWs and 18 SVPMs to monitor the SVECS vacuum field. Soil vapor pressure readings from the 12 SVEWs and 18 SVPMs were collected on 14 May. Results of the Second Quarter vapor monitoring are presented in **Table 6**.

The vapor pressure readings collected from the SVEWs ranged between -3.0 to -12.0 i.w., indicating that a vacuum has been established along the fence line. The vapor pressure readings collected from the SVPMs ranged between -0.03 to -1.10 i.w., indicating that a vacuum has been established in the residential neighborhood. Pressure readings from the 18 SVPMs are presented graphically in **Figure 6**.

3.4 Annual Vapor Quality Monitoring of Off-site SVPMs

Time-integrated vapor samples are collected annually using 6-liter summa canisters with 30-minute flow regulators at 18 SVPM locations. The Annual 2021 SVPM samples were collected in March 2021. Analytical results for the SVPM monitoring event will be included in the 2021 Annual Operations Report prepared during the Fourth Quarter.

3.5 Soil Vapor Quality Concentration Trends

Historical vapor analytical results for the 12 SVEWs through the Second Quarter are presented in **Table 5**. In addition, concentration trends of select VOCs for the SVECS combined influent (1,1,1-TCA, PCE, TCE, and total VOCs) and each of the 12 SVEWs (1,1,1-TCA, PCE, and TCE) are presented in **Appendix B**. Concentration trends observed in the 12 SVEWs through the Second Quarter 2021 are discussed below.

- Combined Influent: Overall VOC concentrations in the combined influent decreased slightly during the Second Quarter 2021, with a total VOC concentration 1,456 μg/m³ in April (Table 1), 1,471 μg/m³ in May (Table 2), and 1,276 μg/m³ in June (Table 3). Overall, TCE, PCE and 1,1,1-TCA concentrations remain approximately one to three orders of magnitude below baseline concentrations measured in December 2009 (42,000 μg/m³ TCE, 7,900 μg/m³ PCE, and 13,000 μg/m³ 1,1,1-TCA).
- SV-101I: Concentrations measured at this location (4,200 μg/m³ TCE, 39 μg/m³ PCE, and 1,300 μg/m³ 1,1,1-TCA) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (**Table 5**). The measured concentrations are consistent with respect to the range in concentration variability noted over the past several years. All concentrations remain one to two orders of magnitude below baseline concentrations measured in December 2009 (180,000 μg/m³ TCE, 1,700 μg/m³ PCE, and 51,000 μg/m³ 1,1,1-TCA).
- SV-101D: Concentrations measured at this location (180 μg/m³ TCE, 13 μg/m³ PCE, and 2.2 J μg/m³ 1,1,1-TCA) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). All concentrations remain two to four orders of magnitude

below baseline concentrations measured in December 2009 (100,000 μ g/m³ TCE, 3,200 μ g/m³ PCE, and 26,000 μ g/m³ 1,1,1-TCA).

- SV-102I: The concentration of TCE (4.1 μg/m³ TCE) measured in the Second Quarter 2021 increased slightly relative to the concentration measured in the First Quarter 2021 (Table 5). Compounds previously detected most recently in 2020 (1,1,1-TCA and PCE) remained at the non-detect level as they were in the First Quarter 2021. All concentrations remain either at or below the baseline concentrations measured in December 2009 (5.6 μg/m³ TCE, 2.4 μg/m³ PCE, and non-detect 1,1,1-TCA).
- SV-102D: Concentrations of two compounds measured at this location (4.3 J μg/m³ PCE, and non-detect 1,1,1-TCA) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). TCE (22 μg/m³) increased relative to the First Quarter 2021. All concentrations remain below baseline concentrations measured in December 2009 (440 μg/m³ TCE, 10 μg/m³ PCE, and 130 μg/m³ 1,1,1-TCA).
- SV-103I: Concentrations measured at this location (10 μg/m³ TCE, 88 μg/m³ PCE, and 1.5 J μg/m³ 1,1,1-TCA) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). All concentrations remain below baseline concentrations measured in December 2009 (900 μg/m³ TCE, 580 μg/m³ PCE, and 900 μg/m³ 1,1,1-TCA).
- SV-103D: Concentrations of two VOCs measured at this location (460 μg/m³ PCE, and 5.9 μg/m³ 1,1,1-TCA) decreased in the Second Quarter 2021 relative to the First Quarter 2021. The concentration of TCE increased slightly (40 μg/m³) (Table 5) relative to the First Quarter 2021. All concentrations remain below baseline concentrations measured in December 2009 (3,100 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,000 μg/m³ 1,1,1-TCA).
- SV-104I: Concentrations measured at this location (17 μg/m³ TCE, 320 μg/m³ PCE, and 5.3 μg/m³ 1,1,1-TCA) decreased significantly in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). Concentrations remain below baseline concentrations measured in December 2009 (710 μg/m³ TCE, 3,100 μg/m³ PCE, and 730 μg/m³ 1,1,1-TCA).
- SV-104D: Concentrations measured at this location (770 μg/m³ TCE, 4,800 μg/m³ PCE, and 460 μg/m³ PCE) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (**Table 5**). All concentrations remain below baseline concentrations measured in December 2009 (4,600 μg/m³ TCE, 20,000 μg/m³ PCE, and 3,600 μg/m³ 1,1,1-TCA).
- SV-105I: Concentrations measured at this location (12 μg/m³ TCE, 15 μg/m³ PCE, and 4.1 μg/m³ 1,1,1-TCA) increased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). All concentrations remain below baseline concentrations measured in December 2009 (76 μg/m³ TCE, 70 μg/m³ PCE, and 9.9 μg/m³ 1,1,1-TCA).
- SV-105D: Concentrations measured at this location (29 μg/m³ TCE, 18 μg/m³ PCE, and 8.3 μg/m³ 1,1,1-TCA) decreased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). All concentrations remain one to two orders of magnitude

below baseline concentrations measured in December 2009 (1,700 μ g/m³ TCE, 2,100 μ g/m³ PCE, and 550 μ g/m³ 1,1,1-TCA).

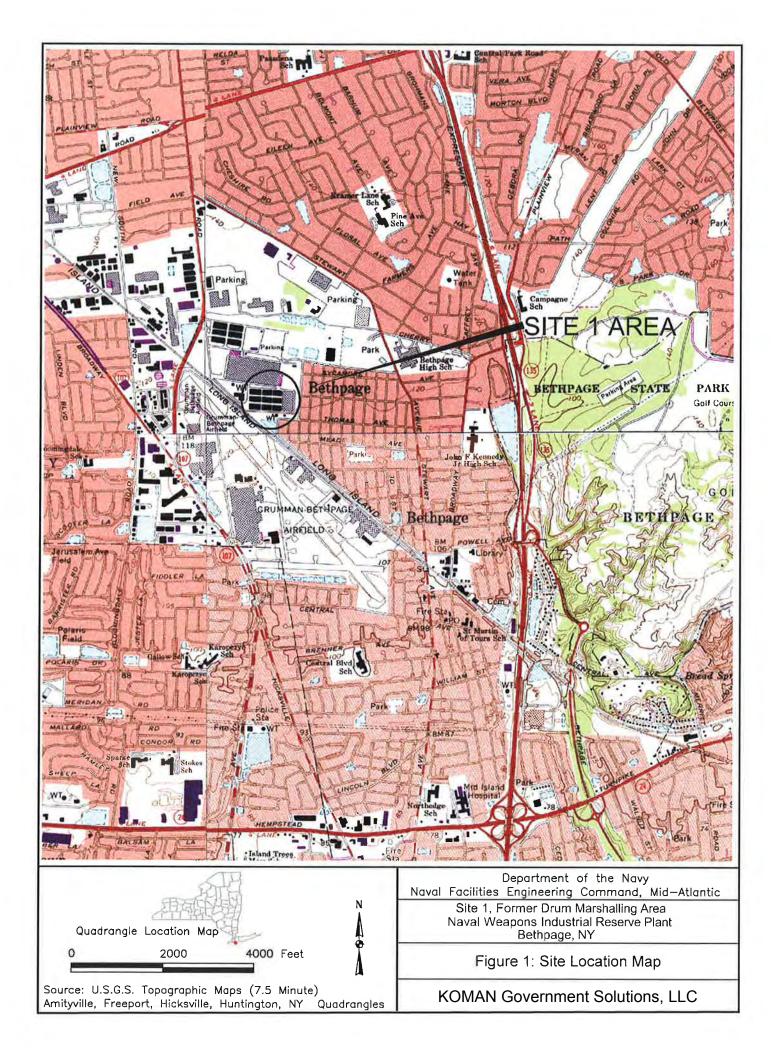
- SV-106I: Concentrations measured at this location (62 μg/m³ TCE, 150 μg/m³ PCE, and 4.0 μg/m³ 1,1,1-TCA) increased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (Table 5). All concentrations remain below baseline concentrations measured in December 2009 (1,900 μg/m³ TCE, 390 μg/m³ PCE, and 220 μg/m³ 1,1,1-TCA).
- SV-106D: Concentrations of two VOCs measured at this location ($12 \ \mu g/m^3$ TCE and $1.2 \ J \ \mu g/m^3$ 1,1,1-TCA) increased in the Second Quarter 2021 relative to concentrations measured in the First Quarter 2021 (**Table 5**). The concentration of PCE remained consistent with the previous quarter ($13 \ \mu g/m^3$). All concentrations remain one to three orders of magnitude below baseline concentrations measured in December 2009 (3,400 $\mu g/m^3$ TCE, 720 $\mu g/m^3$ PCE, and 340 $\mu g/m^3$ 1,1,1-TCA.

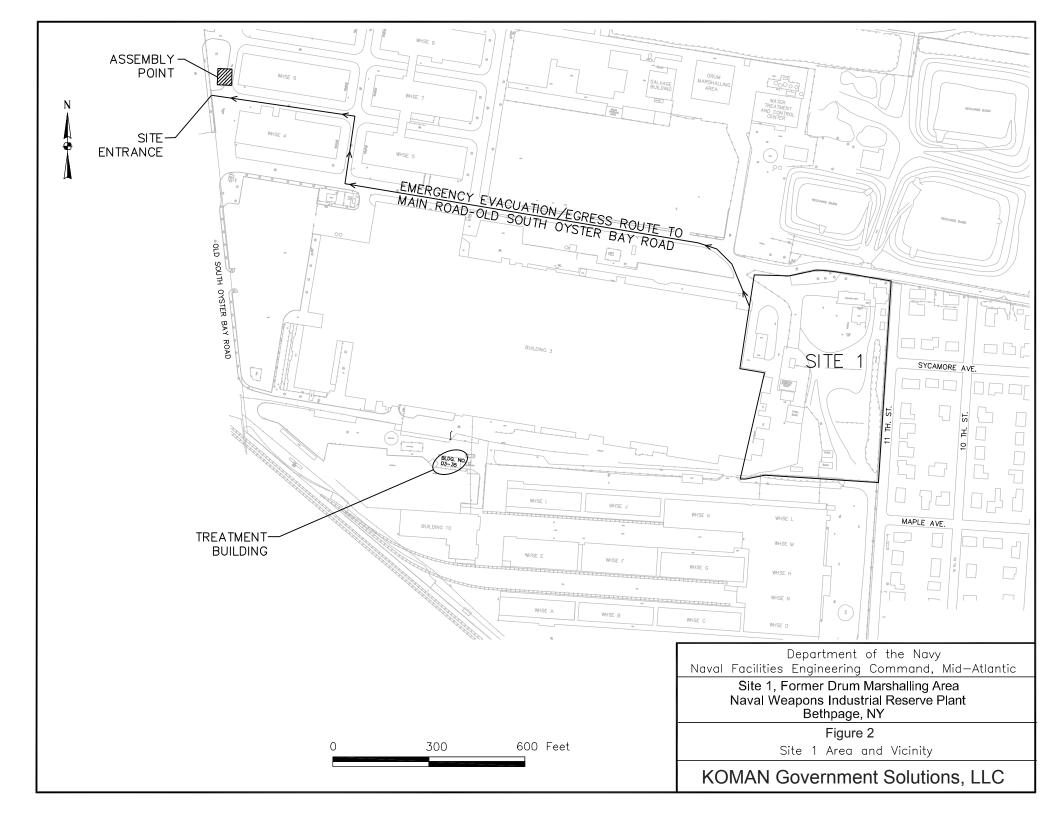
4.0 CONCLUSIONS AND RECOMMENDATIONS

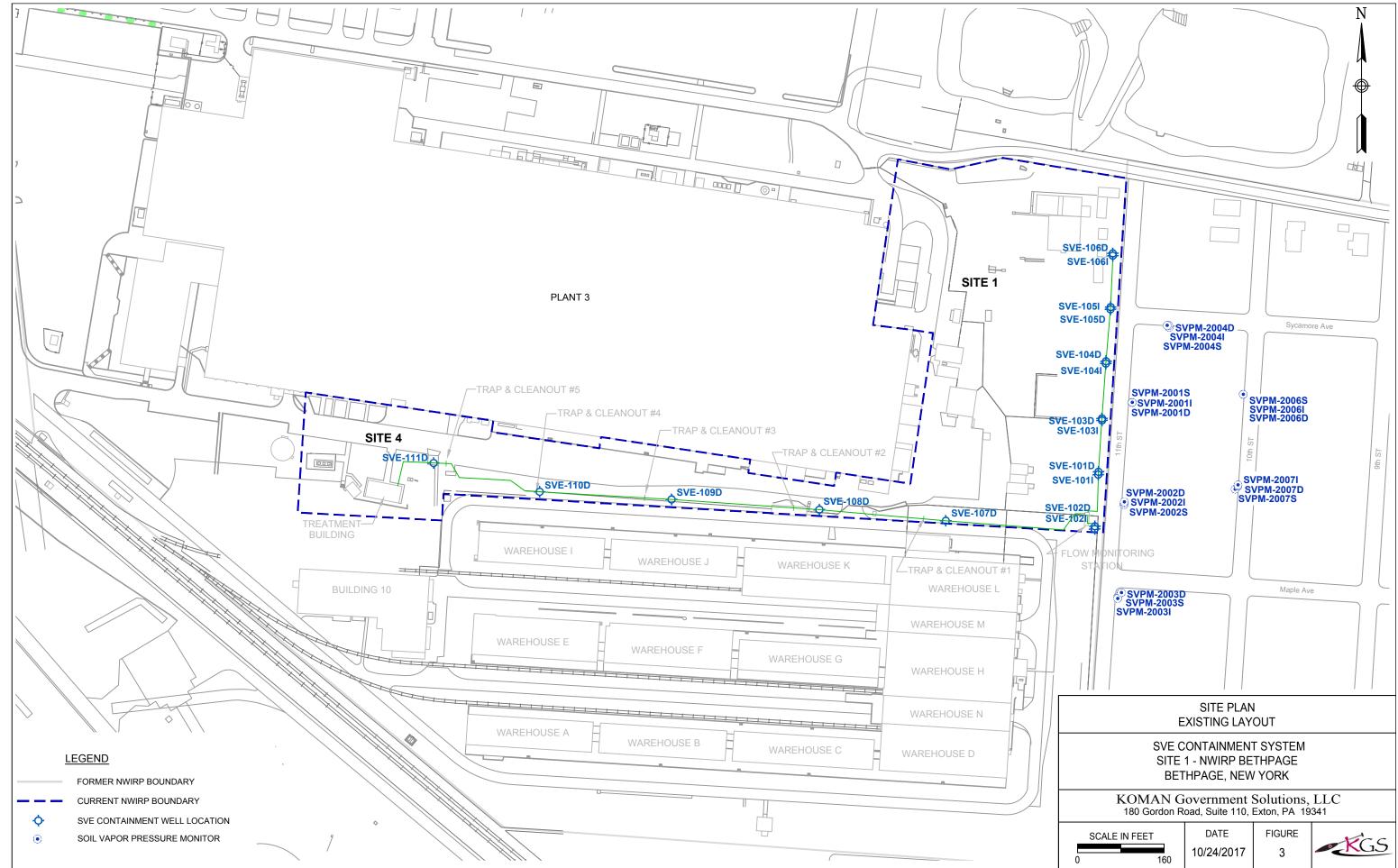
As stated in Section 1.3, the objectives of the Site 1 SVECS are to prevent further off-site migration of VOC contaminated soil vapor and to the extent practical, capture soil vapor with elevated TCE concentrations. Based on the presence of a vacuum field and the reduction of VOC concentrations to less than the screening values in the off-property area, the SVECS is functioning as designed. Influent vapor analytical data with concentrations of TCE above the project action level (greater than 250 μ g/m³) indicate that the SVECS should continue to be operated on a full-time basis to achieve continued capture of contaminated soil vapor. Monthly monitoring of the combined influent and effluent as well as quarterly monitoring of individual SVEWs should continue. Quarterly and annual monitoring of the SVPMs should also continue in order to ensure that a measurable vacuum field is being established and that the area is being effectively treated.

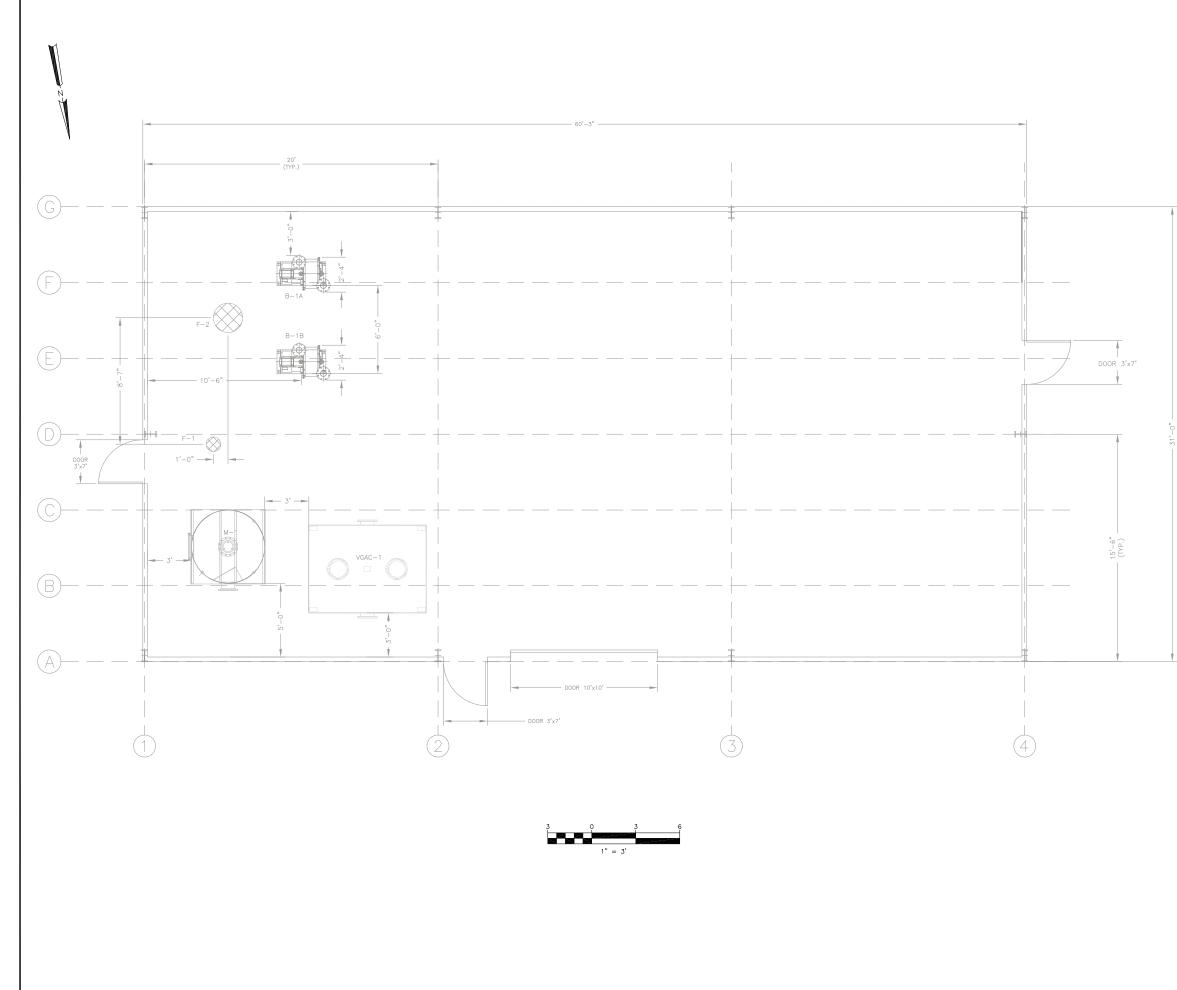
5.0 REFERENCES

New York State Department of Health (NYSDOH). 2006. *Guidance for Evaluating Soil Vapor Intrusion in the State of New York*. October.

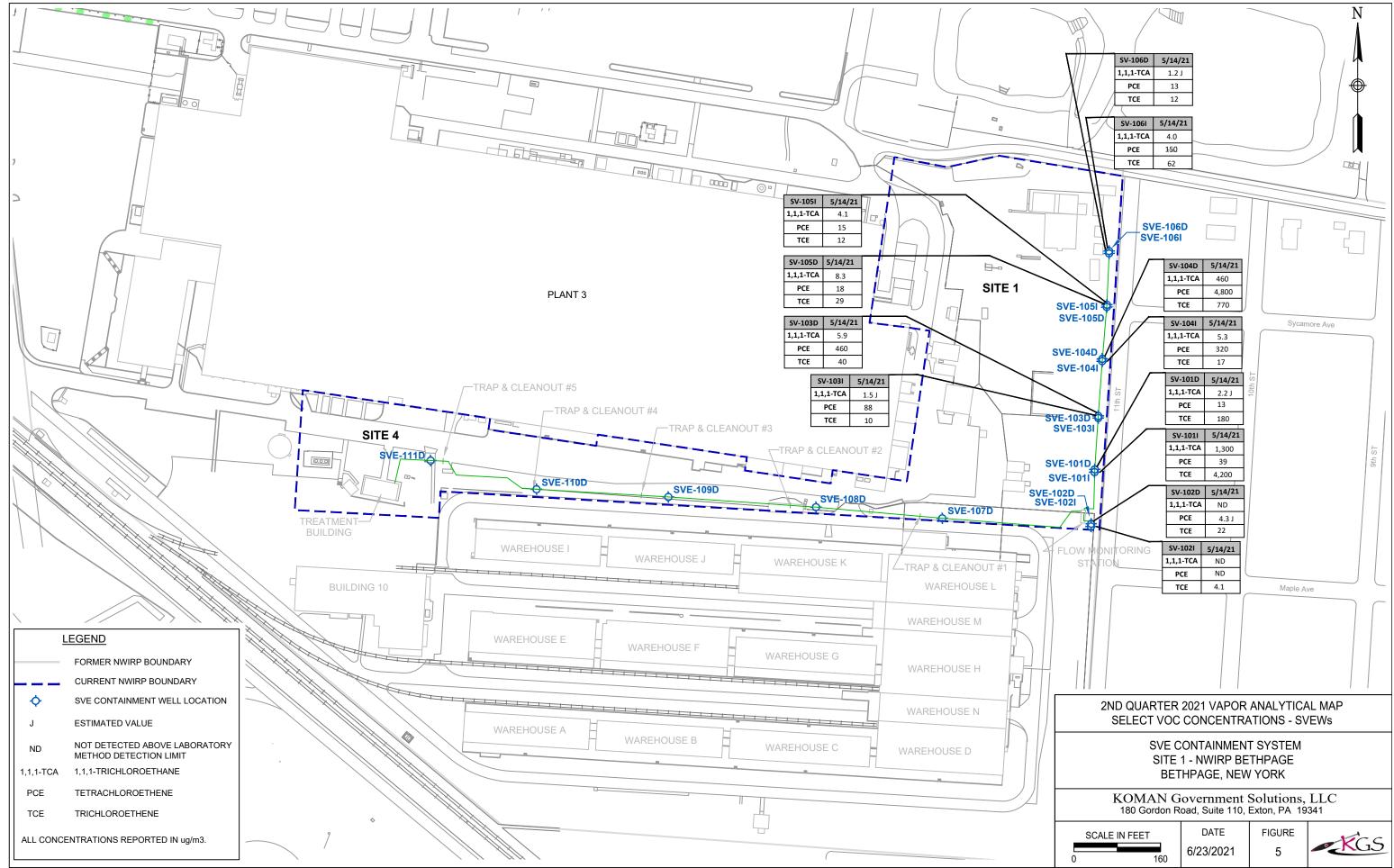

Tetra Tech EC, Inc. (TtEC). 2010. Final Operation & Maintenance Plan for Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. June.


Tetra Tech NUS, Inc. (TtNUS). 2011. Modification to Existing Soil Vapor Extraction Containment System at Site 1 – Former Drum Marshalling Area, Installation of Soil Vapor Extraction Wells SVE-107D to -111D, NWIRP Bethpage, Bethpage, New York. September.


TtNUS. 2012. Final Supplemental Offsite Soil Vapor Intrusion Monitoring Plan for the Soil Vapor Extraction Containment System, Site 1, Former Drum Marshalling Yard at Naval Weapons Industrial Reserve Plant, Bethpage, New York. February.



FIGURES



TTEM NUMBER NAME/DESCRIPTION M-1 1 MOISTURE SEPARATOR -CONFIGURATION: VERTICAL, CYLINDRICAL -MATERIAL OF CONSTRUCTION: CARBON STEEL, EPOXY INTERIOR CARAPCTY: 400 GALLON CONDENSATE COLLECTION -DIMENSIONS: 5 FT DIA X 6 FEET HT, 718 GALLON F-1 1 MAKE-UP AIR FILTER -CONFIGURATION: INTAKE FILTER/SILENCER COMBINATION HOUSING -MATERIAL OF CONSTRUCTION: CARBON STEEL, CORROSION RESISTANCE COATING -CAPACITY: 300 GALLON CONDENSATE COLLECTION -DIMENSIONS: 5 FT DIA X 6 FEET HT, 718 GALLON F-1 1 MAKE-UP AIR FILTER -CONFIGURATION: INTAKE FILTER/SILENCER COMBINATION HOUSING -GAPACITY: 500 CFM AT 20 IW, 4 INCH FLANGED CONNECTION F-2 1 BLOWER AIR FILTER -CONFIGURATION: INLINE VACUUM SERVICE FILTER -MATERIAL OF CONSTRUCTION: CARBON STEEL, CORROSION RESISTANCE COATING -CAPACITY: 1,200 CFM AT 20 IW, 4 INCH FLANGED CONNECTION B-1A, B-1B 2 SOIL VAPOR EXTRACTION BLOWER -RATING: 600 CFM AT 40 IW -MATOR: 7.5 HP, 460V, 3PH, 60HZ, ODP	DO	ORS ARE /	DOORS AND OVERHEAD DOOR: APPROXIMATELY 7'X3'. OVER LY 10'X10'.		APPRVD TETRA TECH ENGINEERING CORPORATION	SGP DSGNE BK DR: BMV CHK: SP CH: SP C	SUBMITTED BY: (FIRM MEMBER) (TITLE) (DATE)	sourinestav Die Ho:	FPEORE	OFFICER IN CHARCE	APPROVED DATE
F-1 1 MATERIAL OF CONSTRUCTION CAREON STEEL, EPOXY INTERIOR CONTING, PART EXTERIOR COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION CONFIGURATION INTRACE THE THE RELEASE COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION CONFIGURATION INTRACE THE THE RELEASE CONTING CAPACITY: 500 CFM AT 20 IW, 4 INCH FLANGED CONNECTION Image: Conting CAPACITY: 500 CFM AT 20 IW, 4 INCH FLANGED CONNECTION F-2 1 ELOWER ARE FLITER CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 20 IW, 4 INCH FLANGED CONNECTION Image: Conting CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION B-1A 2 CONFIGURATION: MORE CONTING CAPACITY: 500 CFM AT 35 IW, 10 INCH FLANGED CONNECTION VGCC1 1 VAPORE TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR CONTING FLOOR AT 40 IW; CONTING FLOOR CONTING FLOOR CONTING THE INCH CONTING FLOOR CONTING FLOOR TRACEON CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING CONTING FLOOR CONTING FLOOR				LIST	-						
F-1 1 MATERIAL OF CONSTRUCTION CAREON STEEL, EPOXY INTERIOR CONTING, PART EXTERIOR COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION CONFIGURATION INTRACE THE THE RELEASE COLLECTION DAMENSIONS. ST DUX STEELS COLLECTION CONFIGURATION INTRACE THE THE RELEASE CONTING CAPACITY: 500 CFM AT 20 IW, 4 INCH FLANGED CONNECTION Image: Conting CAPACITY: 500 CFM AT 20 IW, 4 INCH FLANGED CONNECTION F-2 1 ELOWER ARE FLITER CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 20 IW, 4 INCH FLANGED CONNECTION Image: Conting CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION F-1 2 CONFIGURATION INTRACE CONTING CAPACITY: 120 CFM AT 35 IW, 10 INCH FLANGED CONNECTION B-1A 2 CONFIGURATION: MORE CONTING CAPACITY: 500 CFM AT 35 IW, 10 INCH FLANGED CONNECTION VGCC1 1 VAPORE TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR TRACEONAL CANTON TRACE ON THE INCH CONTING FLOOR CONTING FLOOR AT 40 IW; CONTING FLOOR CONTING FLOOR CONTING THE INCH CONTING FLOOR CONTING FLOOR TRACEON CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING CONTING FLOOR CONTING FLOOR CONTING FLOOR CONTING CONTING FLOOR CONTING FLOOR			MOISTURE SEPARATOR	INDRICAL	DATE	-14-					
F-1 1 CMMERISARIS FT DIX AS DELETIT, 71 SOLENCER COMBINATION HOUSING AMERICA OF CONSTRUCTION: CAREFULTER CONFIGURATION: HARE FLITER CONFIGURATION: HARE FLITER CONFIGUR			-MATERIAL OF CONSTRUCTION: CA COATING, PAINT EXTERIOR COATIN	ARBON STEEL, EPOXY INTERIOR		-				_	
F2 1 BLOWER AIR FLITER CONFIGURATION: HOLDSING CAPACITY: S00 CFM AT 30 W, 4 IRCH FLANGED CONNECTION NUMBER CAPACITY: S00 CFM AT 30 W, 4 IRCH FLANGED CONNECTION F2 1 BLOWER AIR FLITER CONFIGURATION: HOLNE VACUUM SERVICE FLITER CAPACITY: 1300 CFM AT 30 W, 1 IRCH FLANGED CONNECTION NUMBER CAPACITY: 1300 CFM AT 30 W, 4 IRCH FLANGED CONNECTION B1:0 2 CONFIGURATION: HOLNE VACUUM SERVICE FLITER CONFIGURATION: HOLD CONSTRUCTION CARBON STEEL CORROSION RESISTANCE COATING CAPACITY: 1300 CFM AT 30 W, 3 IN (6H FLANGED CONNECTION) NUMBER CONFIGURATION: HOLD CONSTRUCTION CONFIGURATION: HOLD CONSTRUCTION: CARBON STEEL CORROSION RESISTANCE COATING CONFIGURATION: HOLD CONSTRUCTION: CARBON STEEL CORROSION RESISTANCE COATING CONTRUCTION: CARBON STEEL POXY INTERIOR COAFGURATION: HOLD CONSTRUCTION: CARBON STEEL POXY INTERIOR COAFGURATION: HOLD CONSTRUCTION: CARBON STEEL POXY INTERIOR COAFGURATION: SC X 8 FOOTPRINT, 6 8' HT NUMBER VIENCE VALUE VGAC-1 1 CAPACITY: 5,000 LBS CARBON -DIMENSIONS: C X 8 FOOTPRINT, 6 8' HT NUMBER VIENCE VALUE VGAC 1 CANFOLD SC VALUE VIENCE VALUE VIENCE VALUE VIENCE VALUE VIENCE VALUE VIENCE VALUE VIENCE VALUE			-DIMENSIONS: 5 FT DIA X 6 FEET H		PREP	Б					
B-18 -CONFIGURATION: HORD COATING -CAPACITY: 1200 CFM AT 35 W, 10 INCH FLANGED CONNECTION B-18 -CONFIGURATION: HORD COATING -CONFIGURATION: HORD COATING B-18 -CONFIGURATION: HORD COATING -CONFIGURATION: HORD COATING B-18 -CONFIGURATION: HORD COATING -CONFIGURATION: HORD COATING WM TRAILOR - COATING -CONFIGURATION: HORD COATING -CONFIGURATION: HORD COATING VGAC1 -CONFIGURATION: CONDINA CONTINUELIZATION CONDINA TALK -CONFIGURATION: HORD CONTING CONTING VGAC1 -CONTAL CONTINUELIZATION CONDINA TALK -CONFIGURATION: HORD CONTING -CONFIGURATION CONTING VGAC1 -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON VIATURE -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON -MATINA MACHINE DOCTON			-CONFIGURATION: INTAKE FILTER/ -MATERIAL OF CONSTRUCTION: C/ RESISTANCE COATING -CAPACITY: 500 CFM AT 20 IW, 4 IN BLOWER AIR FILTER	ARBON STEEL, CORROSION							
Image: State of the Kink WILD FAILURS WILD FAILURS WILD FAILURS WILD FAILURS Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image:			-MATERIAL OF CONSTRUCTION: C/ RESISTANCE COATING	ARBON STEEL, CORROSION	NO	z					
Image: State of the Kink WILD FAILURS WILD FAILURS WILD FAILURS WILD FAILURS Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image: State of the Kink Image:		2	SOIL VAPOR EXTRACTION BLOWE	R	SCRIPT	RUCTIO					
VGAC1 1 VAPOR-PHASE GRANULAR ACTIVATED CARBON -ONNFIGURATION: RECTANGULAR TANK MATERIAL OF CONSTITUCTION: CREATENIOR COATING COATING, EPOXY EXTERIOR COATING -PATING: 1:00 CFM AT 3 IW. 2000 CFM AT 6 IW -CAPACITY: 5,000 LBS CARBON -DIMENSIONS: 6'X8 FOOTPRINT, 6'8' HT NAVA EVENT SOIL VAPOR: EXTLAYCLION CONTAINENT SOIL VAPOR: EXTLAYCLION CONTAINENT SOIL VAPOR: EXTLAYCLION CONTAINENT SOIL VAPOR: EXTLAYCLION CONTAINENT SOIL VAPOR: EXTLAYCLION CONTAINNENT SOIL VAPOR: STAR	B-1B		-RATING: 600 CFM AT 40 IW		DES	ONSTR					
Image: Solution of the solution	VGAC-1	1	VAPOR-PHASE GRANULAR ACTIV	ATED CARBON							
Image: 1600 CPM AT 3 M/ 2000 CPM AT 9 M/ 2000 CPM AT 9 M/ 2000 CPM AT 9 M/ 2000 CPM AD 2000 CPM			-MATERIAL OF CONSTRUCTION: C/	ARBON STEEL, EPOXY INTERIOR		0					
EPERTMENT OF THE NUM MALE FACILITIES ENGINEERING COMMAND, MID-ATLANTIC MAL FACILITIES ENGINEERING COMMAND, MID-ATLANTIC 0 SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM ERTPAGE, MEN MARSHALLING AREA SOIL VAPOR EXTRACTION CONTAINMENT SYSTEM 0			-RATING: 1,600 CFM AT 3 IW, 2,000			ISSI					
DEPRIMENT OF THE MAY NAVAL FACILITIES ENGINEERING COMMAND, MIL NAVAL FACILITIES ENGINEERING COMMAND, MIL NAVA, REPORT PROFILES ENGINEERING COMMAND, MIL NAVA, REPORT RESERTE PANT SOIL VAPOR EXTRACTION CONTAINMENT SY SOIL VAPOR EXTRACTION CONTAINMENT SY			-DIMENSIONS: 6' X 8' FOOTPRINT, 6	5' 8" HT	REV	0					
					DEPARTMENT OF THE NAVY NAVY DEPARTMENT OF THE NAVY NAVY NAVY NAVY NAVY NAVY NAVY NAVY	NAVAL FAULLILES ENGINEEKING UUMMAND, MID		S A			
				CORPORTION PC, AND IS PROVIDED UPON THE COPED, OR ISSUED TO A THIRD PARTY, AND MU EU USE SOLELY FOR THE ORIGINAL INTENDED PURPOSE AND SOLELY FOR THE CREATING INTENDED PURPOSE AND SOLELY FOR THE CREATING CONSTRUCTION OF THE PROJECT. IT IS A VOLATION OF THE NEW YORK STATE EDUCATION LWM, ARTICLE 14S, FOR ANY PRESON, UNLESS UNDER THE DRECTION OF ANY PRESON.	SPEC. CONST NAVFA	rn. c 247 c dra	WING	. NO. 10– NO. ure 0F		321	1.

BETHPAGE_2Q16_VOC_SVEWs_Fig5.dwg

BETHPAGE_2Q16_VAC_SVPM_Fig6.dwg

TABLES

Table 1 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results April 2021

		Concer	itration			Monthly Mass			
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	reatment	Recovery ⁽³⁾
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	190	180	185	0.0	0.0002	1.7342	0.0000	0.0000	0.1425
1,1-Dichloroethane	6.6	6.4	6.5	0.0	0.0000	0.0609	0.0000	0.0000	0.0050
1,1-Dichloroethene	1.0 J	0.92 J	1.0	0.0	0.0000	0.0090	0.0000	0.0000	0.0007
1,2-Dichloroethane	0.0	0.43 J	0.2	0.0	0.0000	0.0020	0.0000	0.0000	0.0002
cis-1,2-Dichloroethene	200	180	190	0.0	0.0002	1.7811	0.0000	0.0000	0.1464
Tetrachloroethene	590	550	570	0.78 J	0.0006	5.3433	0.0000	0.0073	0.4392
trans-1,2-Dichloroethene	3.7	3.4	3.55	0.0	0.0000	0.0333	0.0000	0.0000	0.0027
Trichloroethene	520	480	500	0.0	0.0005	4.6871	0.0000	0.0000	0.3852
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1511	1401	1456	0.8	0.0016	13.6510	0.0000	0.0073	1.1220

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) =	103
Average Monthly Flowrate (cfm) =	305
Average Monthly Flowrate (scfm) =	286
Operational Hours for the month =	720

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/45400000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)

(2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)

(3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 2 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results May 2021

		Concer	itration			Monthly Mass			
Compound		(ug/	'm ³)		Prior to Tr	eatment	Following T	Recovery ⁽³⁾	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	190	180	185	1.3 J	0.0002	1.7378	0.0000	0.0122	0.1476
1,1-Dichloroethane	6.4	5.7	6.05	0.92 J	0.0000	0.0568	0.0000	0.0086	0.0048
1,1-Dichloroethene	0.88 J	0.91 J	0.9	1.2 J	0.0000	0.0084	0.0000	0.0113	0.0007
1,2-Dichloroethane	0.66 J	0.40 J	0.5	0.96 J	0.0000	0.0050	0.0000	0.0090	0.0004
cis-1,2-Dichloroethene	190	170	180	1.1 J	0.0002	1.6908	0.0000	0.0103	0.1436
Tetrachloroethene	590	550	570	2.1 J	0.0006	5.3542	0.0000	0.0197	0.4547
trans-1,2-Dichloroethene	3.5	2.7	3.1	1.1 J	0.0000	0.0291	0.0000	0.0103	0.0025
Trichloroethene	550	500	525	1.7 J	0.0006	4.9315	0.0000	0.0160	0.4188
Vinyl Chloride	0.33 J	0.0	0.2	1.0 J	0.0000	0.0015	0.0000	0.0094	0.0001
Total VOCs	1532	1410	1471	11.4	0.0016	13.8153	0.0000	0.1069	1.1734

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) =	108
Average Monthly Flowrate (cfm) =	308
Average Monthly Flowrate (scfm) =	287
Operational Hours for the month =	744

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/45400000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)

(2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)

(3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 3 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Monitoring Results June 2021

		Concer	tration			Monthly Mass			
Compound		(ug/	m ³)		Prior to Tr	eatment	Following T	Recovery ⁽³⁾	
	Influent #1	Influent #2	Average	Effluent	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs)
1,1,1-Trichloroethane	200	180	190	0.0	0.0002	1.7736	0.0000	0.0000	0.1458
1,1-Dichloroethane	5.8	5.2	5.5	0.0	0.0000	0.0513	0.0000	0.0000	0.0042
1,1-Dichloroethene	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
1,2-Dichloroethane	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
cis-1,2-Dichloroethene	97	90	93.5	0.0	0.0001	0.8728	0.0000	0.0000	0.0717
Tetrachloroethene	390	360	375	0.0	0.0004	3.5005	0.0000	0.0000	0.2877
trans-1,2-Dichloroethene	1.8 J	1.7 J	1.75	0.0	0.0000	0.0163	0.0000	0.0000	0.0013
Trichloroethene	640	580	610	0.0	0.0007	5.6941	0.0000	0.0000	0.4680
Vinyl Chloride	0.0	0.0	0.0	0.0	0.0000	0.0000	0.0000	0.0000	0.0000
Total VOCs	1335	1217	1276	0.0	0.0014	11.9087	0.0000	0.0000	0.9788

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

Average Monthly Vapor Temp (°F) =	117
Average Monthly Flowrate (cfm) =	311
Average Monthly Flowrate (scfm) =	285
Operational Hours for the month =	720

(1) Emissions (lbs/hr) = Concentration (ug/m³)*(lb/454000000ug)*(0.3048^3m³/ft³)*exhaust flow (scfm)*(60min/hour)

(2) Emissions (lbs/yr) = Emissions (lbs/hour)*(8760hours/yr)

(3) Monthly Mass Removal = AVERAGE FLOWRATE (scfm) * 0.3048^3m³/ft³ * INF AVG CONC (ug/m³) * (lb/454000000ug) * 60 min/hr * OPERATIONAL TIME (hr)

Table 4 Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Second Quarter 2021 Vapor Monitoring Results Summary of SVE Wells

Sample ID	SVE 1011	SVE 101D	SVE 102I	SVE 102D	SVE 103I	SVE 103D	SVE 104I	SVE 104D	SVE 1051	SVE 105D	SVE 106I	SVE 106D
Sample Date	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21	05/14/21
Analysis by TO-15 (μg/m³)												
1,1,1-Trichloroethane	1,300	2.2 J	ND	ND	1.5 J	5.9	5.3	460	4.1	8.3	4.0	1.2 J
1,1-Dichloroethane	26	ND	ND	ND	ND	2.5 J	ND	34	0.54 J	4.9	ND	ND
1,1-Dichloroethene	4.5 J	ND										
1,2-Dichloroethane	3.3 J	ND										
cis-1,2-Dichloroethene	ND	3.0	ND	ND	1.1 J	16	8.0	2,200	ND	2.5 J	11	ND
Tetrachloroethene	39	13	ND	4.3 J	88	460	320	4,800	15	18	150	13
trans-1,2-Dichloroethene	ND	33	ND	ND	ND	ND						
Trichloroethene	4,200	180	4.1	22	10	40	17	770	12	29	62	12
Vinyl Chloride	ND											

Notes:

All samples were analyzed for site-specific VOCs by modified method TO-15.

 $\mu g/m^3$ = micrograms per cubic meter

ND = Not detected above method detection limit

Sample ID												SVE :	1011											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	51000	3900	2600	450	850	300	1	0.7 J	0.7 J	1500	1500	3200	4400	3400	1900	2200	2900	2600	1200	1600	2500	2000	720	520
1,1-Dichloroethane	1200	65	34	14	31	5	0.8 J	0.4 J	0.4 J	28	28	61	76	62	35	36	57	50	22	29	51	39	15	10
1,1-Dichloroethene	250	ND	ND	4	8	ND	0.7 J	0.4 J	0.5 J	7.6 J	10	ND	15 J	ND	12 J	8.9 J	16 J	11 J	7.9 J	6.2 J	21	11 J	ND	ND
1,2-Dichloroethane	NR	30	ND	4	8	ND	0.9	0.5 J	0.5 J	6.9 J	6.4 J	11 J	14 J	12 J	10 J	8.6 J	9.2 J	7.5 J	4.4 J	9.2 J	12 J	9.8 J	5.2 J	3.8
cis-1,2-Dichloroethene	480	59	ND	9	15	3	0.7 J	ND	0.4 J	7.1 J	7.4 J	20 J	22 J	14 J	6.2 J	11 J	22 J	12 J	4.2 J	8.8 J	24	9.4 J	4.6 J	3.8
Tetrachloroethene	1700	410	260	36	63	10	1	ND	2	48	46	93	120	80	49	79	100	80	34	67	83	54	31	31
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	0.7 J	0.4 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	180000	18000	14000	1200	2400	560	1	0.6 J	0.6 J	4200	4300	7200	12000	8100	5200	5400	8900	7100	3300	4400	6900	5300	2500	1600
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.5 J	0.3 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sample Date	10/29/15	01/12/10	04/21/10	00/12/10	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/05/10	05 /02 /10	08/02/18	11/05/10	02/05/19	05/02/10	09/12/10	12/20/10	02/27/20	05 /07 /20	08/12/20	11/05/20	03/05/21	05/14/21	1
· · ·	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/1//1/	04/26/17	08/15/17	12/11/1/	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	1
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	2200	2700	3000	ND	ND	1100	1400	2700	4300	3600	950	1900	2500	1500	920	1400	2000	2000	1100	2000	1900	1700	1300	4
1,1-Dichloroethane	42	45	38	ND	ND	17	22	47	59	43	16	25	35	22	15	21	34	32	16	29	32	25	26	-
1,1-Dichloroethene	ND	ND	6.9 J	ND	ND	4.5 J	6.0 J	8.0 J	ND	8.2 J	ND	ND	ND	ND	ND	ND	10 J	8.0 J	4.7 J	3.8 J	ND	4.4 J	4.5 J	
1,2-Dichloroethane	15	9.0 J	ND	ND	ND	3.1 J	4.2 J	7.0 J	11 J	8.6 J	4.5 J	10.0 J	ND	6.9	7.0 J	5.6 J	7.3 J	8.0 J	4.3 J	8.0 J	7.4 J	6.1 J	3.3 J	
cis-1,2-Dichloroethene	9.2 J	6.0 J	ND	ND	ND	ND	4.0 J	7.0 J	7.0 J	6.6 J	3.2 J	7.0 J	ND	ND	5.0 J	5.1 J	4.4 J	ND	ND	ND	6.5 J	3.9 J	ND	
Tetrachloroethene	74	83	82	ND	ND	29	41	87	130	100	42	74	91	56	40	60	73	60	31	78	88	48	39	
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND											
Trichloroethene	7600	8200	7100	ND	ND	3400	4100	7600	13000	11000	3600	5300	7500	5100	3600	4000	6100	6600	3300	6100	7400	4700	4200	
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND]										

Notes:

μg/m³ = micrograms per cubic meter NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE :	101D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	26000	130	53	ND	ND	ND	3	8	0.8 J	ND	3.1 J	9.9	11	ND	ND	5.6	16	14	12	20	19	12	ND	22
1,1-Dichloroethane	660	3.9	ND	ND	ND	ND	2	0.9 J	0.5 J	ND	ND	1.0 J	1.1 J	1.1 J	ND	ND	1.5 J	1.4 J	1.2 J	0.89 J	1.4 J	ND	ND	2.5 J
1,1-Dichloroethene	180	2	ND	ND	ND	ND	ND	0.7 J	0.4 J	ND	1.0 J	0.75 J	ND	ND	ND	ND	ND	ND						
1,2-Dichloroethane	NR	0.5	ND	ND	ND	ND	2	0.5 J	0.5 J	ND														
cis-1,2-Dichloroethene	220	8.5	7.5	ND	3	ND	2	2	0.5 J	ND	ND	2.1 J	3.2	ND	ND	ND	3.0 J	4.5	3.5	1.5 J	4.1	2.3 J	ND	3.3
Tetrachloroethene	3200	1200	1200	ND	4	ND	26	210	2	ND	79	150	170	130	0.92 J	73	330	340	270	240	260	200	1.0 J	230
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	2	0.6 J	0.4 J	ND														
Trichloroethene	100000	1600	310	3	1	ND	3	120	1 J	ND	200	400	350	120	ND	56	540	680	330	180	410	190	1.7 J	450
Vinyl Chloride	ND	ND	ND	ND	ND	ND	1	0.4 J	0.3 J	ND														
																								1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	1
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	22	27	22	ND	20	15	5.0	22	20	12	9.3	ND	9.8	5.9	2.1 J	14	22	6.8	7.8	3.0 J	3.5 J	3.2 J	2.2 J	
1,1-Dichloroethane	2.8 J	2.3 J	1.7 J	ND	3.1	2.2 J	0.85 J	3.0 J	2.3 J	2.4 J	1.8 J	ND	0.88 J	0.72 J	ND	ND	4.9	0.83 J	0.72 J	ND	ND	ND	ND	
1,1-Dichloroethene	ND	ND	ND	ND	0.76 J	0.80 J	ND	ND	ND	0.60 J	ND													
1,2-Dichloroethane	ND																							
cis-1,2-Dichloroethene	5.9	5.8	6.4	ND	31	21	3.9	14	12	19	4.4	ND	2.5 J	1.6 J	ND	ND	13	2.0 J	0.99 J	3.1 J	2.2 J	3.3	3.0	_
Tetrachloroethene	250	310	220	ND	300	240	66	250	190	220	190	ND	210	240	51	190	210	220	160	16	28	22	13	
trans-1,2-Dichloroethene	ND																							
Trichloroethene	1000	2200	990	ND	970	760	260	1100	880	900	780	ND	700	270	50	190	240	190	210	180	290	240	180	
Vinyl Chloride	ND																							

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	1021											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	02/05/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	ND	ND	13	3	ND	NA	2	3	2	ND	0.60 J	3.3 J	ND	ND	ND	1.6 J	ND	ND	0.95 J	10	4.0 J	0.82 J	1.6 J	12
1,1-Dichloroethane	ND	ND	ND	ND	ND	NA	0.8 J	0.5 J	0.5 J	ND														
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND														
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	0.8	0.4 J	0.4 J	ND														
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.5 J	0.5 J	ND														
Tetrachloroethene	2.4	1.4	17	6	NR	NA	3	6	6	ND	1.6 J	6.4	1.5 J	2.4 J	1.4 J	3.3 J	2.6 J	ND	ND	10	4.8 J	1.5 J	2.5 J	13
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	NA	0.7 J	0.4 J	0.4 J	ND														
Trichloroethene	5.6	3.8	300	88	3	NA	34	76	52	10	26	99	10	10	15	49	21	7.6	8.0	84	39	8.0	22	120
Vinyl Chloride	ND	ND	ND	ND	ND	NA	0.5 J	0.4 J	0.3 J	ND														
																								1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	4
Analysis by TO-15 (µg/m³)																								-
1,1,1-Trichloroethane	2.8 J	0.87 J	ND	1.3 J	1.2 J	0.54 J	ND	6.4	0.95 J	ND	ND	7.4	1.8 J	ND	ND	8.8	ND	ND	ND	7.7	1.0 J	ND	ND	
1,1-Dichloroethane	ND	-																						
1,1-Dichloroethene	ND																							
1,2-Dichloroethane	ND																							
cis-1,2-Dichloroethene	ND																							
Tetrachloroethene	6.6	2.4 J	ND	2.9 J	3.2 J	1.6 J	1.4 J	7.8	2.7 J	1.4 J	1.8 J	8.1	3.4 J	1.5 J	3.8 J	11	ND	1.5 J	ND	9.6	3.8 J	ND	ND	
trans-1,2-Dichloroethene	ND																							
Trichloroethene	40	12	ND	21	24	8.4	12	74	15	7.9	14	72	24	7.8	15	100	0.75 J	10	11	71	20	2.4 J	4.1	
Vinyl Chloride	ND]																						

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE :	102D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	130	53	14	7	2	2	6	4	5	1.4 J	1.2 J	3.9 J	ND	ND	ND	2.3 J	3.1 J	ND	1.6 J	4.5	5.1	2.6 J	ND	5.2
1,1-Dichloroethane	ND	2.7	ND	ND	ND	ND	1	0.6 J	0.7 J	ND	ND	0.51 J	0.95 J	ND	ND	ND	0.69 J	ND	0.44 J	ND	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.6 J	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.9	0.5 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.38 J	ND	ND	ND
cis-1,2-Dichloroethene	ND	1.4	ND	ND	0.9	ND	1	0.5 J	0.9	ND	ND	1.1 J	4.1	ND	ND	ND	3.4	ND	2.8 J	0.89 J	3.6	1.6 J	ND	4.2
Tetrachloroethene	10	31	31	19	3	9	25	23	39	5.9	6.5	24	25	0.96 J	1.4 J	14	28	2.6 J	9.6	16	20	11	3.8 J	22
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	1	0.5 J	0.5 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	440	390	190	110	17	21	89	81	87	34	58	170	140	6.5	ND	88	160	3.9 J	39	79	92	36	20	160
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.6	0.4 J	0.3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Council Data	10/29/15	01/13/16	04/24/45	00/00/00	an las las	04/47/47	04/05/47	00/45/47	42/44/47	02/05/40	05 (00 (40	00/02/40	44 105 140	02/05/40	05/02/40	00/42/40	42/20/40	00/07/00	05 (07 (20	00/40/20	44/05/20	00/05/04	05/44/24	1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/1//1/	04/26/17	08/15/17	12/11/1/	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/2//20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	4
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	4.9	3.5 J	1.1 J	6.6	3.8 J	2.7 J	1.8 J	3.6 J	1.8 J	1.8 J	ND	2.4 J	2.2 J	1.2 J	ND	3.0 J	1.1 J	1.0 J	ND	3.6 J	1.9 J	0.85 J	ND	4
1,1-Dichloroethane	1.0 J	0.81 J	ND	0.93 J	0.95 J	0.8 J	0.50 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
1,2-Dichloroethane	ND	ND	ND	ND	ND	0.75 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethene	9.3	8.9	4.4	13	10	5.2	2.6 J	2.2 J	1.3 J	1.8 J	ND	0.86 J	ND	2.3 J	ND	ND	0.92 J	ND	ND	3.0 J	2.1 J	ND	ND	
Tetrachloroethene	41	42	18	51	37	26	15	17	15	18	6.2	12	13	9.4	2.3 J	13	8.7	7	3.9 J	18	16	5.1	4.3 J	
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Trichloroethene	180	120	38	150	74	44	48	80	43	61	15	50	54	22	19	79	36	28	17	150	80	12	22	

Notes:

µg/m³= micrograms per cubic meter

ND

NR = Not Recorded

Vinyl Chloride

NA = Data not available

ND = Not detected above method

Sample ID												SVE	1031											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	900	ND	ND	ND	ND	ND	0.9 J	6	6	ND	1.6 J	9.2	ND	ND	1.4 J	4.7 J	2.8 J	0.92 J	ND	4.6	4.9	ND	1.3 J	6.6
1,1-Dichloroethane	26	ND	ND	ND	ND	ND	0.6 J	2	2	ND	0.75 J	1.5 J	0.77 J	ND	ND	1.5 J	1.3 J	ND	ND	0.89 J	2.0 J	ND	0.68 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	ND															
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.5 J	ND															
cis-1,2-Dichloroethene	58	ND	ND	1	ND	1	0.5 J	16	12	18	16	19	6.0	2.4 J	5.0	11	15	6.9	3.4	4.2	6.1	ND	11	9.3
Tetrachloroethene	580	ND	ND	ND	ND	2	1 J	420	590	140	200	430	120	40	78	220	200	97	40	150	130	8.6	130	290
trans-1,2-Dichloroethene	580	ND	ND	ND	ND	ND	0.6 J	1	1	ND	0.85 J	ND												
Trichloroethene	900	0.9	ND	ND	ND	ND	0.9 J	100	97	29	47	130	48	16	35	95	78	46	20	47	50	4.9 J	37	92
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND														
Sample Date	10/29/15	01/13/16	04/21/10	09/13/16	11/10/10	01/17/17	04/20/117	00/15/17	12/11/17	02/05/12	05/02/10	00/02/10	11/05/10	02/05/19	05/02/10	09/12/10	12/20/19	02/27/20	05/07/20	08/12/20	11/05/20	02/05/21	05/14/21	1
	10/29/15	01/13/16	04/21/16	09/13/16	11/10/10	01/1//1/	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/2//20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	3.6 J	1.2 J	0.76 J	6.0	2.2 J	0.73 J	ND	6.0	0.94 J	0.77 J	ND	5.8	2.4 J	1.0 J	ND	11	5.1	ND	4.8	6.7	5.9	2.3 J	1.5 J	
1,1-Dichloroethane	1.4 J	ND	ND	1.9 J	1.1 J	ND	ND	1.8 J	ND	ND	ND	1.5 J	ND	ND	1.0 J	1.8 J	2.7 J	ND	0.67 J	ND	ND	ND	ND	
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-						
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-						
cis-1,2-Dichloroethene	7.3	13	2.7 J	5.2	2.2 J	1.8 J	1.3 J	5.8	0.75 J	1.4 J	1.6 J	3.4	2.9	3.4	2.3 J	5.6	8.6	1.8 J	3.2	1.7 J	1.2 J	ND	1.1 J	-
Tetrachloroethene	210	450	71	200	99	70	36	180	56	56	70	200	120	150	69	510	190	100	1200	190	200	140	88	
trans-1,2-Dichloroethene	ND	ND	ND	1.3 J	ND	ND	ND	ND	ND	ND	ND	1.2 J	ND											
Trichloroethene	74	70	17	67	34	20	9.9	63	21	19	17	54	36	24	18	90	89	23	29	33	38	16	10	
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	103D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	3000	1100	230	ND	13	ND	2 J	20	31	7.4 J	6.9 J	22	190	ND	150	170	200	550	400	25	38	ND	310	26
1,1-Dichloroethane	82	69	ND	ND	2	2	1 J	4	9	1.6 J	1.5 J	1.9 J	10 J	ND	10	10 J	20 J	50	48	ND	7.8 J	ND	24	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	1 J	2	6 J	ND														
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	1 J	6 J	ND														
cis-1,2-Dichloroethene	420	1500	370	ND	92	ND	1 J	360	160	290	230	300	750	ND	550	700	2600	2100	1800	280	490	ND	930	310
Tetrachloroethene	20000	28000	16000	9	1500	ND	3	1600	6700	3800	3200	4700	4600	1.6 J	3300	4900	17000	15000	8600	6600	8900	ND	5800	8900
trans-1,2-Dichloroethene	ND	24	ND	ND	1	ND	1 J	3	7 J	ND	ND	ND	8.8 J	ND	5.7 J	8.8 J	18 J	32	18	ND	ND	ND	17	ND
Trichloroethene	3100	1600	640	7	92	ND	2 J	290	240	180	200	480	440	6.0	360	660	2100	1400	900	530	680	ND	580	640
Vinyl Chloride	ND	5.9	ND	ND	2	ND	0.8 J	4	5 J	ND	ND	ND	ND	ND	1.9 J	ND	14 J	ND	2.6 J	ND	ND	ND	ND	ND
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	
Analysis by TO-15 (μg/m ³)												,,					,,							
1,1,1-Trichloroethane	30 J	ND	38	ND	16 J	11 J	23 J	22	8.2 J	63	47	35	33 J	18 J	19	48	48	150	170	29	15	8.8	5.9	
1,1-Dichloroethane	ND	ND	ND	ND	6.2 J	ND	4.3 J	ND	ND	4.5 J	ND	ND	ND	ND	2.7 J	ND	12 J	14 J	15 J	5	4.1	2.7 J	2.5 J	
1,1-Dichloroethene	ND]																						
1,2-Dichloroethane	ND	1																						
cis-1,2-Dichloroethene	530	ND	310	ND	340	210	250	180	130	320	210	190	340	200	160	140	330	310	400	120	9.1	10	16	
Tetrachloroethene	17000	ND	7500	ND	12000	13000	7500	6800	9200	8000	7700	6900	12000	8000	4400	8400	9000	22000	15000	680	530	530	460	l
trans-1,2-Dichloroethene	ND																							
Trichloroethene	1200	ND	300	ND	730	620	320	440	420	380	340	340	460	260	180	380	560	420	410	57	65	38	40	
Vinyl Chloride	ND	j																						

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	1041											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/24/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	730	4.2	ND	4	NR	NA	1 J	4	2	ND	ND	8.3	ND	ND	ND	3.1 J	2.6 J	ND	9.6	17	15	7.0	1.5 J	8.3
1,1-Dichloroethane	24	0.54	ND	ND	ND	NA	1 J	0.6 J	0.5 J	ND	7.4	8.7	7.7	6.6	ND	ND								
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	1 J	ND																
1,2-Dichloroethane	NR	ND	ND	ND	ND	NA	1 J	ND																
cis-1,2-Dichloroethene	110	14	ND	2	0.8	NA	0.9 J	2	3	0.90 J	ND	5.0	ND	2.7 J	ND	3.3	5.3	ND	94	160	160	130	7.3	4.2
Tetrachloroethene	3100	210	68	96	16	NA	2 J	54	33	12	ND	86	1.6 J	4.8 J	2.3 J	30	36	ND	69	210	190	91	13	82
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	NA	1 J	0.5 J	0.4 J	ND	1.8 J	2.1 J	1.4 J	ND	ND									
Trichloroethene	710	44	60	72	12	NA	2 J	44	25	9.6	ND	73	ND	3.1 J	ND	30	31	ND	39	110	120	43	17	85
Vinyl Chloride	ND	0.47	ND	ND	ND	NA	0.7 J	0.3 J	0.3 J	ND														
																								1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/1//1/	04/26/17	08/15/17	12/11/1/	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/2//20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	1
Analysis by TO-15 (μg/m³)						-																		-
1,1,1-Trichloroethane	4.0 J	4.6	0.48 J	6.9	6.5	ND	1.2 J	7.8	1.7 J	1.3 J	1.4 J	9.1	3.1 J	1.7 J	1.9 J	14	1.2 J	1.3 J	1.8 J	68	25	11	5.3	4
1,1-Dichloroethane	ND	2.9 J	ND	ND	3.6	ND	ND	1.3 J	ND	ND	ND	1.4 J	ND	6.4 J	ND	ND	ND	-						
1,1-Dichloroethene	ND																							
1,2-Dichloroethane	ND																							
cis-1,2-Dichloroethene	6.6	54	0.92 J	2.1 J	110	ND	4.1	31	6.7	4.6	12	27	20	18	17	28	13	7.4	1.8 J	18	10	20	8.0	
Tetrachloroethene	66	79	10	80	530	0.68 J	21	190	90	20	34	96	76	46	34	130	20	21	11	3900	3900	1400	320	
trans-1,2-Dichloroethene	ND	ND	ND	ND	1.2 J	ND																		
Trichloroethene	54	35	7.6	83	110	ND	15	87	22	11	15	63	33	14	24	73	13	10	9.3	170	150	42	17	
Vinyl Chloride	ND																							

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	104D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/22/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	3600	3000	860	ND	270	ND	370	620	440	520	580	620	920	820	0.89 J	500	600	340	84	930	880	1.7 J	350	480
1,1-Dichloroethane	290	350	140	ND	66	ND	56	110	77	87	95	100	190	160	ND	95	130	56	22	120	130	ND	72	77
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	3	7 J	7 J	3.0 J	5.0 J	ND	11 J	ND	ND	ND	ND	4.3 J	1.0 J	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	1 J	5 J	5 J	ND														
cis-1,2-Dichloroethene	2400	6600	3500	ND	1200	ND	1000	3600	2100	2200	2800 J	2200	4200	3700	8.6	2000	3200	1600	460	3300	4400	21	1500	2500
Tetrachloroethene	20000	39000	21000	ND	2400	ND	1400	5800	6300	3800	4300	4600	4500	4200	69	2600	3900	2500	780	8200	8000	120	2200	5100
trans-1,2-Dichloroethene	130	70	30	ND	13	ND	14	25	22	26	31	27	55	40	ND	24	40	15	3.5	34	53	ND	18	39
Trichloroethene	4600	6000	2400	ND	470	ND	420	1600	1300	1400	1400	1700	2300	2100	14	1200	1600	1100	430	2000	2100	19	1100	1200
Vinyl Chloride	ND	12	ND	ND	ND	ND	2	5	5 J	ND														
Sample Date	10/20/15	01/12/16	04/21/16	00/12/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/10	12/20/10	02/27/20	05/07/20	08/12/20	11/06/20	02/05/21	05/14/21	
Analysis by TO-15 (µg/m ³)	10/23/13	01/13/10	04/21/10	03/13/10	11/10/10	01/1//1/	04/20/17	08/15/17	12/11/1/	02/00/18	03/03/18	08/02/18	11/03/18	02/03/15	05/02/15	08/12/19	12/20/19	02/2//20	05/07/20	00/12/20	11/00/20	03/03/21	03/14/21	
1,1,1-Trichloroethane	790	760	460	460	710	88	260	390	290	440	520	510	100	480	410	460	360	320	270	630	510	750	460	
1,1-Dichloroethane	120	91	54	73	110	11	31	60	44	67	57	59	15	54	50	47	73	37	18	76	41	36	34	I
1,1-Dichloroethene	ND	ND	ND	ND	7.6 J	1.2 J	2.9 J	3.0 J	ND	4.2 J	ND	5.8 J	ND	ND	ND	I								
1,2-Dichloroethane	ND	I																						
cis-1,2-Dichloroethene	3600	3200	1900	2400	3800	400	1000	2200	1600	2500	2200	2300	700	2500	1900	1800	3000	1600	830	3400	2400	2300	2200	
Tetrachloroethene	10000	7700	4500	9400	15000	1400	3000	5900	7600	6000	6500	6800	1500	6500	4400	4800	3200	3600	2000	8800	8700	7700	4800	
trans-1,2-Dichloroethene	49	38	30	38	67	6.5	16	30	22	37	39	37	9.3	43	36	30	45	27	20	36	38	50	33	
Trichloroethene	2200	1600	750	1400	2200	290	600	980	860	1100	870	870	210	790	740	780	690	600	370	1000	1100	1000	770	
Vinyl Chloride	ND	I																						

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	1051											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	9.9	11	29	ND	24	1	1 J	21	31	11	13	26	22	22	11	24	18	32	26	17	20	20	25	29
1,1-Dichloroethane	ND	5.7	13	ND	6	ND	0.6 J	5	7	4.2	5.6	5.6	10	12	8.8	8.0	7.4	24	6.8	7.0	8.2	8.6	22	15
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.6 J	0.6 J	0.5 J	ND														
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	0.7 J	0.6 J	0.5 J	ND														
cis-1,2-Dichloroethene	ND	6.6	20	ND	ND	ND	1	10	16	8.1	9.7	13	16	13	14	14	7.4	17	6.2	9.5	12	7.5	31	28
Tetrachloroethene	70	9.1	240	ND	55	5	2	95	100	31	43	100	77	66	38	91	57	77	48	73	85	51	43	87
trans-1,2-Dichloroethene	ND	ND	1.6	ND	ND	ND	0.5 J	1	1	ND	ND	1.5 J	ND	ND	ND	ND	1.0 J	1.6 J	ND	ND	2.8 J	ND	ND	ND
Trichloroethene	76	6.3	370	ND	120	7	1	170	200	110	140	260	180	160	94	220	140	180	190	140	200	130	160	290
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	0.4 J	0.3 J	ND														
																								1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/1//1/	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	1
Analysis by TO-15 (μg/m³)					-	-																		
1,1,1-Trichloroethane	30	12	5.0	16	11	5.6	4.8	13	5.6	4.9	3.5 J	8.7	10	4.6	3.3 J	21	4.8	2.3 J	88	40	15	3.4 J	4.1	1
1,1-Dichloroethane	28	17	1.5 J	2.8	3.4	2.2 J	2.7 J	2.1 J	0.98 J	3.5	0.99 J	1.2 J	1.6 J	1.3 J	4.8	3.4	1.8 J	0.86 J	ND	9.9	2.3 J	0.79 J	0.54 J	_
1,1-Dichloroethene	ND																							
1,2-Dichloroethane	ND	1.6 J	ND																					
cis-1,2-Dichloroethene	23	17	1.8 J	7.9	5.0	2.6 J	4.2	5.1	1.9 J	5.0	2.5 J	1.9 J	3.7	2.1 J	7.5	6.2	3.2	ND	ND	0.98 J	ND	ND	ND	
Tetrachloroethene	66	44	27	64	46	26	17	50	27	21	17	23	46	20	13	38	15	11	9.3	41	34	10	15	
trans-1,2-Dichloroethene	2.3 J	ND	ND	0.83 J	ND																			
Trichloroethene	240	84	39	250	160	50	38	140	58	40	30	60	110	36	32	130	41	17	18	67	38	9.8	12	
Vinyl Chloride	ND																							

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	105D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	12/02/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (µg/m³)																								
1,1,1-Trichloroethane	550	47	320	1000	590	ND	1 J	490	930	350	320	270	380	430	160	110	120	190	ND	92	79	4.3 J	16	35
1,1-Dichloroethane	300	28	270	250	ND	ND	0.6 J	74	150	69	78	72	110	110	46	45	70	46	ND	36	28	ND	4.7	12
1,1-Dichloroethene	3.9	ND	ND	2	4	4	0.6 J	6 J	ND	1.5 J	ND													
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	4	5 J	ND															
cis-1,2-Dichloroethene	61	36	85	300	ND	ND	0.7 J	150	380	190	220	150	210	200	73	76	85	46	ND	50	36	ND	3.6	16
Tetrachloroethene	2100	1.1	650	270	420	ND	2	240	330	140	220	270	350	330	100	140	260	300	ND	140	120	2.1 J	18	76
trans-1,2-Dichloroethene	19	1.1	3.1	3	ND	ND	0.6 J	7 J	3 J	ND	ND	ND	ND	ND	1.4 J	2.4 J	3.6	1.3 J	ND	1.3 J	1.9 J	ND	ND	ND
Trichloroethene	1700	68	200	1100	1400	1	2	3000	7000	3600	4500	2200	3800	3800	1400	900	1200	1900	8.5	650	520	15	75	250
Vinyl Chloride	ND	ND	ND	ND	ND	ND	0.4 J	4 J	ND															
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	52	62	68	47	29	23	38	33	24	28	13	ND	27	61	75	54	66	26	15	200	52	11	8.3	
1,1-Dichloroethane	30	21	15	22	23	19	21	12	14	12	12	ND	14	16	22	20	25	13	3.7	79	20	8.4	4.9	
1,1-Dichloroethene	ND	2.7 J	ND	3.1 J	ND	ND	ND	1																
1,2-Dichloroethane	ND	l																						
cis-1,2-Dichloroethene	22	18	26	31	19	19	32	20	13	17	22	ND	18	24	32	36	27	26	4.1	9.3	7.2	3.8	2.5 J	l
Tetrachloroethene	130	140	130	150	110	69	70	120	130	97	48	ND	140	140	85	78	100	94	39	31	45	20	18	
trans-1,2-Dichloroethene	ND	ND	ND	1.8 J	2.0 J	1.2 J	1.6 J	ND	ND	ND	ND	ND	0.88 J	0.92 J	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND	
Trichloroethene	400	410	350	360	210	140	200	310	170	160	57	ND	140	170	220	190	180	110	83	470	210	48	29	4
Vinyl Chloride	ND	J																						

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	1061											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	220	8.6	ND	4	ND	NA	6	3	7	1.0 J	2.2 J	11	ND	ND	ND	ND	18	1.4 J	3.8 J	8.9	2.2 J	ND	8.0	29
1,1-Dichloroethane	120	ND	ND	1	ND	NA	1	0.5 J	1	0.62 J	0.70 J	1.6 J	2.5 J	1.9 J	ND	ND	3.8	ND	17	3.9	1.1 J	ND	18	2.6 J
1,1-Dichloroethene	ND	ND	ND	ND	ND	NA	0.6 J	2	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	NR	ND	ND	0.8	ND	NA	0.6 J	0.5 J	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3 J	ND
cis-1,2-Dichloroethene	46	ND	ND	4	ND	NA	6	0.5 J	4	1.6 J	2.3 J	7.5	5.4	3.7	ND	ND	8.3	ND	23	11	3.1 J	ND	23	6.6
Tetrachloroethene	390	35	ND	15	ND	NA	15	7	19	4.3 J	7.2	27	14	7.0	0.73 J	ND	19	4.2 J	6.2	11	2.9 J	ND	14	39
trans-1,2-Dichloroethene	7.9	ND	3.1	0.9	ND	NA	0.8	0.5 J	0.7 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	1900	41	ND	140	10	NA	210	92	190	69	110	260	180	110	5.5	ND	210	28	70	110	16	0.87 J	130	560
Vinyl Chloride	ND	ND	ND	0.5	ND	NA	0.4 J	0.3 J	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sample Date	10/29/15	01/13/16	04/21/10	00/12/10	11/16/16	01/17/17	04/20/117	08/15/17	12/11/17	02/05/119	05/02/10	09/02/19	11/05/110	02/05/10	05/02/10	00/12/10	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	02/05/21	05/14/21	1
Analysis by TO-15 (μg/m ³)	10/29/15	01/13/16	04/21/16	09/13/16	11/10/10	01/1//1/	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/2//20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	4
																								1
1,1,1-Trichloroethane	30	2.8 J	1.5 J	12	7.5	5.5	2.0 J	11	4.8	0.91 J	2.0 J	8.8	4.2	0.78 J	1.9 J	14	34	880	7.0 J	27	11	2.5 J	4.0	1
1,1-Dichloroethane	3.4	1.2 J	ND	ND	1.3 J	2.4 J	0.56 J	5.4	1.9 J	ND	1.6 J	0.69 J	ND	1.2 J	ND	ND	5.6	260	ND	3.2 J	0.96 J	ND	ND	1
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	55	ND	ND	ND	ND	ND	1						
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1						
cis-1,2-Dichloroethene	4.9	3.2	0.84 J	3.8	3.1 J	3.2	1.5 J	14	3.9	0.57 J	2.2 J	1.7 J	1.5 J	3.4	1.8 J	1.4 J	5.8	6600	41	86	23	7	11	
Tetrachloroethene	49	11	5.1 J	20	6.7	4.9	3.9 J	16	8.3	2.5 J	4.5 J	12	9.9	3.1 J	3.1 J	20	20	96000	5500	1400	480	100	150	4
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	33 J	ND	ND	ND	ND	ND	1						
Trichloroethene	660	200	40	190	71	53	59	170	83	39	45	88	79	43	44	150	100	9300	180	310	160	45	62	4
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND]						

Notes:

µg/m³= micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Sample ID												SVE	106D											
Sample Date	12/21/09	03/31/10	06/09/10	09/16/10	12/08/10	03/30/11	06/28/11	09/06/11	10/14/11	02/10/12	05/11/12	09/11/12	12/05/12	01/15/13	05/16/13	08/27/13	11/08/13	01/30/14	04/10/14	07/29/14	10/02/14	01/12/15	05/07/15	08/12/15
Analysis by TO-15 (μg/m³)																								
1,1,1-Trichloroethane	340	32	30	20	12	9	20	23	29	ND	11	26	18	ND	ND	27	25	5.8	6.3	14	28	ND	26	ND
1,1-Dichloroethane	250	6.3	ND	5	2	5	4	3	3	ND	3.0	4.3	5.8	ND	ND	4.9	11	3.7	3.3	5.1	8.9	ND	2.6 J	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND	0.5 J	0.7 J	0.8	ND														
1,2-Dichloroethane	NR	ND	ND	ND	ND	ND	ND	0.6 J	0.7 J	ND	2.5 J	ND	ND	ND	1.1 J	ND	ND	ND						
cis-1,2-Dichloroethene	79	13	11	13	2	11	11	5	4	ND	4.1	7.1	8.2	ND	ND	10	15	2.8 J	3.9	8.4	15	ND	36	ND
Tetrachloroethene	720	65	70	ND	13	19	41	8	66	ND	28	62	48	ND	1.3 J	50	58	16	17	22	60	ND	110	ND
trans-1,2-Dichloroethene	15	ND	ND	ND	ND	ND	0.6 J	0.8	0.9	ND	1.1 J	ND												
Trichloroethene	3400	600	900	230	130	170	210	260	320	ND	180	380	300	ND	ND	460	440	160	84	170	370	0.56 J	71	1.6 J
Vinyl Chloride	ND	1.6	ND	ND	ND	ND	ND	0.4 J	0.5 J	ND														
	[[1
Sample Date	10/29/15	01/13/16	04/21/16	09/13/16	11/16/16	01/17/17	04/26/17	08/15/17	12/11/17	02/06/18	05/03/18	08/02/18	11/05/18	02/05/19	05/02/19	08/12/19	12/20/19	02/27/20	05/07/20	08/12/20	11/06/20	03/05/21	05/14/21	I
Analysis by TO-15 (μg/m³)																								I
1,1,1-Trichloroethane	ND	11	7.2	30	14	10	7.6	18	8.3	4.6	2.2 J	14	12	10	8.0	30	250	500	46	7.5	3.0 J	0.92 J	1.2 J	I
1,1-Dichloroethane	ND	2.7 J	13	6.8	21	17	2.6 J	11	7.1	1.6 J	2.8 J	6.1	7.9	7.3	2.2 J	2.5 J	36	260	12 J	ND	0.73 J	ND	ND	I
1,1-Dichloroethene	ND	25 J	ND	ND	ND	ND	ND	I																
1,2-Dichloroethane	ND	4																						
cis-1,2-Dichloroethene	ND	3.2	24	14	22	20	5.6	24	13	5.0	4.6	16	21	22	7.5	16	15	3700	240	1.3 J	ND	ND	ND	ł
Tetrachloroethene	1.4 J	33	27	57	33	24	17	44	39	15	9.5	26	37	26	15	37	35	25000	4800	27	26	13	13	I
trans-1,2-Dichloroethene	ND	ND	ND	0.63 J	1.3 J	2.1 J	ND	20 J	ND	ND	ND	ND	ND	I										
Trichloroethene	ND	280	170	450	210	170	190	300	220	140	89	210	220	170	170	420	290	4400	730	37	15	6.4	12	1
Vinyl Chloride	ND	0.52 J	ND	ND	ND	ND	ND	ND	J															

Notes:

µg/m³ = micrograms per cubic meter

NR = Not Recorded

NA = Data not available

ND = Not detected above method

Table 6

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Second Quarter 2021 Off-site Soil Vapor Monitoring of SVPMs

SVPM/ SVEW Location	Pressure Reading (i.w.)	Valve Position (% open)
Monitoring Date:	5/14/21	5/14/21
BPS1-SVPM2001S	-0.26	
BPS1-SVPM2001I	-0.15	
BPS1-SVPM2001D	-0.15	
BPS1-SVPM2002S	-0.10	
BPS1-SVPM2002I	-0.17	
BPS1-SVPM2002D	-0.20	
BPS1-SVPM2003S	-0.05	
BPS1-SVPM2003I	-0.07	
BPS1-SVPM2003D	-0.08	
BPS1-SVPM2004S	-0.03	
BPS1-SVPM2004I	-0.07	
BPS1-SVPM2004D	-1.10	
BPS1-SVPM2006S	-0.06	
BPS1-SVPM2006I	-0.05	
BPS1-SVPM2006D	-0.04	
BPS1-SVPM2007S	-0.06	
BPS1-SVPM2007I	-0.05	
BPS1-SVPM2007D	-0.06	
SV-101I	-5.0	40
SV-101D	-12.0	50
SV-102I	-3.5	40
SV-102D	-10.0	40
SV-103I	-6.0	40
SV-103D	-9.0	40
SV-104I	-3.0	40
SV-104D	-6.0	40
SV-105I	-7.0	40
SV-105D	-8.0	50
SV-106I	-5.5	40
SV-106D	-11.0	40

Notes:

i.w. = inches of water columnSVEW = soil vapor extraction wellSVPM = soil vapor pressure monitor

Pressure readings for the SVPMs were measured using a portable Magnehelic[®] Differential Pressure Gauge 2000-0, with a range of 0-0.50 i.w. Vacuum readings for SVEWs were recorded from dedicated in-line pressure gauges.

APPENDIX A

NYSDEC AIR DISCHARGE LIMIT DOCUMENTATION

From: Steven Scharf [<u>mailto:sxscharf@gw.dec.state.ny.us</u>] Sent: Thursday, October 06, 2011 11:57 AM To: Fly, Lora B CIV NAVFAC MIDLANT, IPTNE Cc: John Swartwout; Walter Parish; Steven Karpinski; John cofman; <u>klumpe@steelequities.com</u>; <u>David.Brayack@ttnus.com</u> Subject: NWIRP Plant 3 Site 1 SVE Modification Plan

Lora,

The New York State Department of Environmental Conservation (NYSDEC), in conjunction with the New York State Department of Health (NYSDOH), have reviewed the Navy Submittal entitled:

" Modification to existing Soil vapor Extraction (SVE) Containment System At Site 1-Former Drum Marshaling Area, Installation of Soil Vapor Extraction Wells SVE-107D to 111D, NWIRP Bethpage, September 2011."

Based on this Departmental review, and the follow up October 6, 2011 tele-conference, this modification work plan is acceptable and can be used for immediate implementation. The NWIRP Site 1 SVE system has redundant blowers and overcapacity, even with the additional SVE wells being added. should the Navy and the new property owner, Steel Equities Inc., for the former Plant 3 complex come to agreement to add SVE piping from the former Plant 3, this would be acceptable. Appropriate plans, consistent with the covenants and restrictions to the deed, should be submitted accordingly.

A letter will not follow this e-mail. If you have any questions, please contact me directly.

Electronic Documentation Information NWIRP Bethpage 130003B-OU1-OMM FOIlable Region 1, Nassau (C), Oyster Bay (T)

Thanks,

Steven M. Scharf, P.E. Project Engineer New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Action, Bureau A 625 Broadway Albany, NY 12233-7015 (518)402-9620 Fax: (518)402-9022

4.0 PROPOSED REVISIONS TO VAPOR DISCHARGE GOALS

To determine the continued need for off gas treatment, the quality of the influent vapor stream was initially estimated based on soil gas results and compared to discharge goals. Vapor phase treatment was initially installed for the system based on projected relatively high concentrations of several chemicals including 1,1,1-trichloroethane (TCA), trichloroethene (TCE), and tetrachloroethene (PCE). Since the December 2009 startup, VOC concentrations in the extracted vapors have decreased by approximately 98.3 percent and it is uncertain as to whether vapor phase treatment is still required. Presented below are the December 2009 and March 2011 influent (untreated) VOC concentrations and loadings and current discharge goals.

	December 2009 I	nfluent VOCs	March 2011 Inf (µg/m	•	Current
Parameter	Concentration (µg/m ³) ¹	Loading (pound/ hour) ¹	Concentration (µg/m ³)	Loading (pound/ hour) ⁽²⁾	Discharge Goal (pound/hour) ⁽³⁾
ТСА	13,000	0.074	150	0.00023	0.13
TCE	42,000	0.26	460	0.00069	0.07
PCE	7,900	0.029	440	0.00066	0.0009

⁽¹⁾ Initial VOC Loading Rates are from baseline data taken in December 2009. The flow meter was not yet installed when this data was taken, so a value of 385 CFM (flow rate in January 2010) was used to estimate system loading.

⁽²⁾ Calculated using a flow rate of 400 CFM.

⁽³⁾ Current discharge goals were based on calculated VOC concentrations using soil gas data from the fence line investigation, a flow rate of 600 CFM, and an assumed treatment efficiency for each VOC of 80 to 90 percent. Based on this evaluation, the existing treatment is no longer required to meet discharge goals.

A DAR-1 Model Analysis was then conducted using the August 2010 influent vapor concentrations of TCA, TCE, and PCE at a flow rate of 500 CFM. The calculated results were then used to back calculate proposed discharge goals based on an allowance of 100% of the annual guideline concentrations (see Appendix E). The following table provides a summary of the proposed discharge goals.

	August 2010 Ir (370 CFM		Percent AGC	Proposed Discharge Goals				
Parameter	Concentration (µg/m ³)	Loading (pounds/ hour)	Using August 2010 Data	Concentration at 500 CFM (µg/m ³)	Loading (pounds/ hour)			
ТСА	868	0.0009	0.0004	None ¹	225			
TCE	4,170	0.0039	19.4	11,000	0.02			
PCE	5,780	0.0057	14.2	22,000	0.04			

⁽¹⁾ Greater than 100,000 μ g/m³.

AGC - Annual Guideline Concentration

New York State Department of Environmental Conservation Division of Environmental Remediation Bureau of Remedial Action A 625 Broadway, 11th Floor Albany, New York 12233-7015 Phone: (518) 402-9625 • Fax: (518) 402-9022

Website: www.dec.state.ny.us

February 5, 2010

Lora Fly, Project Manager Naval Facilities Engineering Command-Midlant 9742 Maryland Avenue Norfolk, VA 23511-3095

RE: Naval Weapons Industrial Research Plant(NWIRP) Site-Bethpage, NYSDEC No. 1-30-003B.

Dear Ms. Fly:

Tetra Tech FW, on behalf of the Department of the Navy (Navy), has submitted the enclosed New York State Department of Environmental Conservation (NYSDEC) Division of Air Resources (DAR) Air Permit Application as a permit equivalent. This DAR Air permit equivalent is for the soil vapor extraction system at Site 1 of Plant 3 of the former Naval Weapons Industrial Reserve Plant (NWIRP) site in Bethpage, NY. The NYSDEC Division of Environmental Remediation (DER) has reviewed the permit equivalent and, by means of this letter approves the Site 1 remedy air discharge for immediate operation.

The NWIRP Site 1 SVE system utilizes the reasonably available control technology (RACT) with activated carbon. The air discharge will be periodically monitored at start up and will be added for routine monitoring in the operation, maintenance and monitoring (OMM) plan, to be submitted shortly for Departmental review.

If you have any questions, please contact me at your earliest convenience at (518)402-9620.

Sincerely,

Steven M. Scharf, P.E. Project Engineer Division of Environmental Remediation Bureau of Remedial Action A

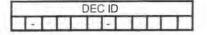
Enclosure

ec/w/enc: J. Swartwout/S. Scharf/File

W. Parish, Region 1 NYSDECA. J. Shah, Region 1 NYSDECS. Patselos, Tetra Tech FW

J. Cofman, Northrop Grumman

E docs: Region 1, Nassau, Oyster Bay (T): NWIRP Bethpage 130003B-OUI-OMM



DEC ID	APPLICATION ID	OFFICE USE ONLY
	Section I - Certification	

	Title V Certification		
Lecrtify under penalty of law that this document and all attachments that qualified personnel properly gather and evaluate the informatio information [required pursuant to 6 NYCRR 201-6.3(d)] believe th submitting false information, including the possibility of fines and im	on submitted. Based on my inquiry on the information is, true, accurate and	of the nerson or persons direc	the responsible for dathering in
Responsible Official		Title	
Signature		Date	1
St	ate Facility Certification		
I certify that this facility will be operated in conformance with	h all provisions of existing regula	ations.	
Responsible Official		Title	
Signature		Date	1
Section II	- Identification Inform	nation	
	strative Amendment ?emit Title:	State Facility Perm New General Permit Title	Modification
Application involves construction of new facility	C Application inv	olves construction of new	emission unit(s)
	G Application in		
	Owner/Firm		
Name US Navy/NAVFAC Midlant	Owner/Firm		
Name US Navy/NAVFAC Midlant	Owner/Firm	Country US	Zip J3511 - 3095
Name US Navy/NAVFAC Midlant Street Address 9742 Maryland Ave, Bld	Owner/Firm		
Name US Navy/NAVFAC Midlant Street Address 9740 Maryland Ave, Bid City Norfolk Owner Classification & Federal	Owner/Firm	Country US	Zip J3511 - 3.095
Name US Navy / NAVFAC Midlant Street Address 9743 Maryland Ave, Bld City Norfolk Owner Classification Ø Federal Corporation/Partnership	Owner/Firm	Country US Municipal	Zip J3511 - 3095 Taxpayer ID
Name US Navy/NAVFAC Midlant Street Address 9743 Maryland Ave, Bld City NorFolk Owner Classification & Federal Corporation/Partnership Name Naval Weapons Industrial Reser	Owner/Firm	Country US Municipal	Zip J3511 - 3095 Taxpayer ID
Name US Navy/NAVFAC Midlant Street Address 9740 Maryland Ave, Bid City NorFolk Owner Classification & Federal Corporation/Partnership Name Naval Weapons Industrial Reser Location Address Beth page	Owner/Firm	Country US Municipal	Zip J3511 - 3095 Taxpayer ID

Owner/Fit	m Contact Mailing	Address		
Name (Last, First, Middle Initial) Fly, Lora			Phone No	(75) 444-0781
Affiliation Department of the Navy	Title Remed	ial PM	Fax No. ()
Street Address 9742 Maryland Ave, Bldg	Z-144			
City Norfolk	State VA	Country U	S	Zip23511-3095
	Contact Mailing A	ddress		
Name (Last, First, Middle Initial)			Phone No.	. ()
Affiliation	Title		Fax No. ()
Street Address				
City	State	Country		Zip

Section III - Facility Information

		Classifica	ition		
🗅 Hospital	Residential	Educational/Institutional	Commercial	≱ Industrial	D Utility
		Affected States (Title V Only) N/A		
□ Vermont □ New Hampshi	Massachusett: Connecticut	Rhode Island	 Pennsylvania Ohio 	Tribal Land: Tribal Land:	
		SIC Cod	es		
9999					
		Facility Desc	ription	🗆 Con	tinuation Shee
Sailuana	r remediation	by SVE followed	I by vapor ph	ase GAC	

Compliance Statements (Title V Only) N/A

I certify that as of the date of this application the facility is in compliance with all applicable requirements: \Box YES \Box NO If one or more emission units at the facility are not in compliance with all applicable requirements at the time of signing this application (the 'NO' box must be checked), the noncomplying units must be identified in the "Compliance Plan" block on page 8 of this form along with the compliance plan information required. For all emission units at this facility that are operating <u>in compliance</u> with all applicable requirements complete the following:

This facility will continue to be operated and maintained in such a manner as to assure compliance for the duration of the permit, except those units referenced in the compliance plan portion of Section IV of this application.

For all emission units, subject to any applicable requirements that will become effective during the term of the permit, this facility will meet all such requirements on a timely basis.

Compliance certification reports will be submitted at least once year. Each report will certify compliance status with respect to each requirement, and the method used to determine the status.

			Fac	cility Applie	cable Federa	Requiremen	nts N/A	Contin	uation Sheet(s
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
					4				
		-			1				

Facility State Only Requirements									uation Sheet(s
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
		1.1		1	· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·	
	1	1 1.11							
	1000								

1.00		DE	CID		
1-1	TI		-	T	T

Section III - Facility Information (continued)

			1 au	ney compi	ance Certifica	ation IV/A		Continual	
				Rule	Citation				
Title	Туре	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragra	ph Clause	Sub Claus
Applicable Feder	al Requirement		CA	S No.		Col	ntaminant Na	ne	
State Only Requ		Capping	1.4						
				Monitoring	Information				
Ambient Air M	Ionitoring	U Work F	Practice Invo	lving Specif	ic Operations	Reco	ord Keeping/M	aintenance	Procedures
				Des	cription				
	d No.								
L L L L BANK AL L L L L L L L L L L L L L L L L L L	Code		Process M	Material Description		-	Reference	e Test Meth	od
Work Practice Type	Code						Referenc	e Test Meth	od
		Par	ameter	Description			Referenc		
CLUSTER BOARD STOLEN STOLEN		Par	ameter						
Туре			ameter	Description		Limi			
Туре	e Limi	t	ameter	Description		Limi	Manufacture		
Type Cod Upp	e Limi	t L	ameter	Description Description Code	Frequency	Limi	Manufacture t Units Description		lel No.

	Facility Emissions Summary			tion Sheet(s	
	Onderstand Name	РП		Actual	
CAS No.	Contaminant Name	(lbs/yr)	Range Code	(lbs/yr)	
NY075 - 00 - 5	PM-10				
NY075 - 00 - 0	PARTICULATES				
7446 - 09 - 5	SULFUR DIOXIDE				
NY210 - 00 - 0	OXIDES OF NITROGEN		A		
630 - 08 - 0	CARBON MONOXIDE				
7439 - 92 - 1	LEAD				
NY998 - 00 - 0	VOC	1.222			
NY100 - 00 - 0	НАР	1,813			
00071 - 55 - 6	1,1,1-Trichlorgethane (Methyl Chloroform)	591			
	Tetrachloroethylene	8			
00079 01 6	Trichlorgethylene	1,181			
00075 - 34 - 3	1.1 - Dichloroethane	11			
	1.1-Dichlorgethylene (Vinylidine Chloride)	16			

	 DE	CID		-	
-		-	TI		

Section III - Facility Information

	Facility Emissions Summary (conunuation)		
CAS No.	Contaminant Name	PTE (lbs/yr)	Range Code	Actual (lbs/yr)
00540-59-0	cis-1,2-Dichloroethene	5		
	1,2-Dichloroethane	O		
00156-60-5	trans-1,2-Dichloroethene	0		
00075-01-4	Vinyl Chloride	0		
				_
(, , ,				
	~			
- ÷				
1.				
			1.4.1.1	
				_
i de la composición d				
5 A A				
÷ +				

CONTINUATION SHEET __ OF __

	D	DEC ID	
-		-	

Section IV - Emission Unit Information

		Emission Unit Description	Continuation Sheet(s
EMISSION UNIT	1-00EU1	Effluent from first soil vapo	r extraction blower
(BL-1)			
Vapor Phas	se Granular Ac	tivated Carhon Unit. The emis	ssion point is
stack 00	ST-2		

	Building	Continuation Sheet(s)			
Building	Building Name	Length (ft)	Width (ft)	Orientation	
03-35	Treatment Building	60	40	0	

100 C			Emission Poin	t	🗆 Conti	nuation Sheet(s
EMISSION PT.	OCST2					
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
1990 A.	36	6	প্র	70	1.1	
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal
¢	1,000			03-35	100+	1.1.1
EMISSION PT.			8			
Ground Elev.	Height	Height Above	Inside Diameter	Exit Temp.	Cross S	ection
(ft)	(ft)	Structure (ft)	(in)	(°F)	Length (in)	Width (in)
Exit Velocity (FPS)	Exit Flow (ACFM)	NYTM (E) (KM)	NYTM (N) (KM)	Building	Distance to Property Line (ft)	Date of Removal

			1	Emission	Sourc	e/Control		Continuation Sheet(s
Emission	Source	Date of	Date of	Date of	Control Type		Manufa	cturer's Name/Model
ID	Туре	Construction	Operation Removal		Code	Code Description		No.
BL 1/2	1		1.1.1	-	048 Granular Act. Carbon		Tetra	solv Filtration
Design	gn Design Capacity Units		Waste Feed			Waste Type		
Capacity	Code	Code Description				Description	Code	Description
Emission Source		Date of Date of Date of			Control Type		Manufacturer's Name/Model	
ID	Туре	Construction	Operation	Removal	Code	Description		No.
Design Capacity		Design Ca	pacity Units		Waste Feed		Waste Type	
	Code Description				Code	Description	Code	Description

DEC ID

		Process Ir	nformation		Continuation Sheet
EMISSION UNIT 1 - 0	OEUI				PROCESS S V
		Desci	ription		
The Soil Vapor Extra	tion System	a will consi	st of 12	SVE wells (12 intermediate and
(deep), a moistur	e senarator	and a se	ul varor e	xtraction b	lowers (BL-1 and
BL-2) which both	vent to ava	nor phase	aranular a	ctivated ca	chon unit for
treatment prior to	discharge S	from stark	DOSTA.	The VGAC	unit will be a
5,000 pound unit.	filled wit	h Tetrasol	Virain C	arbon. The	VGAC unit has
neen designed to c	operate no	minally at	GCO cfm.	with a ma	ximum of 1,000 cfm
and the second second	pro ans in	and a copy of	- china de la calacita de p		
Source Classification	Total	Thruput		Thruput Qua	intity Units
Code (SCC)	Quantity/Hr	Quantity/Yr	Code		Description
	1				
Confidential		Operating	Schedule	Building	Floor/Location
Operating at Maximum		Hrs/Day	Days/Yr	Building	a second prove
Activity with Insignifican	CENTRE AND AND	24	365	03-35	Main
	E	mission Source/C	Control Identifier	r(s)	
BL-1 BL-2					
	1			1	
MISSION UNIT -					PROCESS
		Descr	ription		
	-				
Source Classification	Total	hruput		Thruput Qua	ntity Units
Code (SCC)	Quantity/Hr	Quantity/Yr	Code	I	Description
			-		
□ Confidential	1	Operating	Schedule	0.00	F ()
□ Operating at Maximum		Hrs/Day	Days/Yr	Building	Floor/Location
Activity with Insignifican	t Emissions				
	E	mission Source/C	Control Identifier	(s)	
	1	1			
	1	(Concert)	1	/	

0.000		DEC ID)	
-	TT	-		

Emission	Emission		Emission		Emi	ssion	n Unit App	licable F	ederal Requ	irement	s 🗆 Co	ontinuat	on Sheet(s)
Unit	Point	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
-				1									
				1.1			1	1.772		1.1	F		
÷			1	1				1.1					1
-													

Unit	Point	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
4	1		1	1.1			1					1.13	
-			1										
			<u> </u>				1			1		1	
-		1				100					1.000		1.11

					n Unit Com	ipilarioo o	ormound		Continuat	
					Rule (Citation				
Title	Ty	ype	Part	Sub Part	Section	Sub Division	Paragraph	Sub Paragraph	Clause	Sub Clause
6	NYO	CRR	212	-		_	S			
D Apr	plicable	Federal R	equiremer	it 🛛	State Only Re	quirement	Capping			
Emission	unit.	Emission Point	Process	Emission Source	CAS	No.	1	Contaminant N	lame	
1-00E	EU1 I	COSTA	SVE		00079- (01 - 6	Trichle	oroethylen	e	
				1	Monitoring	Informatio		1		
AInte	ermittent	Emissior Emissior Monitorin		g	U Work Pr	actice Involvin	s or Control Dong Specific Op Intenance Proc		s as Surro	ogate
Mont	hly a	rah sa	moles a	nalvzed		ription from t	he VGAC	unit influen	t and e	ffluent
	1 1	rab sa	mples a		for VCCs		he VGAC	unit inFluen	t and e	FFluent
	ctice	rab sa Code	mples a	Process I	for VCCs		he VGAC	unit inFluen Reference T		
Work Pra	ctice			Process I	For VOCs Material		he VGAC			
Work Pra	ctice			Process f	For VOCs Material Description				est Metho	od
Work Pra	ctice		Pa	Process f	<u>For VOCs</u> Material Description			Reference T	est Metho	od
Work Pra	ctice	Code	Pe Co	Process f	<u>For VOCs</u> Material Description			Reference Tr Manufacturer Na	est Metho	od
Work Pra	ctice Code		Pa Co	Process f	<u>For VOCs</u> Material Description		Limit	Reference Tr Manufacturer Na Units	est Metho	od
Work Pra Type	Code	Code	Pa Co	Process f irameter ncentrat	For VOCs Material Description	From t	Limit	Reference Tr Manufacturer Na Units Description	est Metho ame/Mode	od
Work Pra Type	Code 23 Upper	Code Limi	Pa C.o.	Process f irameter ncentrat	Sor VOCs Material Description	From t	Limit	Reference Tr Manufacturer Na Units Description r Cubic Mé	est Metho ame/Mode ter	od el No.
Work Pra Type	Code 23 Upper	Code	Pa C.O.	Process f irameter ncentrat	Sor VOCS Material Description	From t	Limit	Reference Tr Manufacturer Na Units Description r Cubic me Reporting Re	est Metho ame/Mode ter	od el No. ts

		DEC ID		1.0
-	TT	-	TT	

		[Determinat	ion of Nor	I-Applicabi	lity (Titl	e V Only) N/A	Continua Continua	tion Sheet(
1000				and in famous and in the local division of the local dintere division of the local division of the local divis	e Citation					
Title	Туре	Part	Sub Part	Section	Sub Divisio	n Pa	ragraph	Sub Paragra	ph Clause	Sub Clause
Emission (Jnit E	mission Point	Process	Emiss	ion Source			ederal Require	ement	-
				De	scription	_				
					011					
Title	Time	Part	Sub Part	Section	e Citation Sub Divisio	n Da	ragraph	Sub Paragra	oh Clause	Sub Clause
Title	Туре	Fait	Sub Part	Section	SUD DIVISIO	I Fai	Tagraph	Subraidyia	UII CIAUSE	Sub Clause
Emission L	Jnit E	mission Point	Process	Emiss	ion Source			ederal Require	ment	
-						US	tate Only R	equirement		
				De	scription	-	_			
	_									
			Pr	ocess Em	issions Su	mmary			🖾 Continua	tion Sheet(s
EMISSIO	N UNIT	1-00	EU1						PROCESS	SVE
CAS	No.		Contaminant N	Name		% Thruput	% Capture	% Control	ERP (Ibs/hr)	ERP How Determined
00071 -	55 - 6	1,1,1-Trie	chloroet	bane				80	0.34	02
		PTE		_	Stan			E How		tual
(lbs/h		(lbs/yr)	(sta	ndard units) Un	its		rmined	(lbs/hr)	(lbs/yr)
C.O EMISSION		591	E U A				0	12	PROCESS	Ichili
			EUL		1	%	%	%	ERP	ERP How
CAS	No.		Contaminant N	Name	1	Thruput	Capture	Control	(lbs/hr)	Determined
00127-	18 - 4	Tetrachlor	oethyle	ne	1			80	0.00	02
		PTE			Stand		and the second sec	EHow	Ac	
(lbs/h		(lbs/yr)	(sta	ndard units) Uni	its		rmined	(lbs/hr)	(lbs/yr)
	⇒ BRT	8				-	<u> </u>	92	DDOOFOO	Lab.I-
EMISSION		1-00	EU1			%	%	%	PROCESS	S V E
CAS	No.	13	Contaminant N	lame	1	% Thruput	70 Capture	Control	(lbs/hr)	Determined
20079-	01-6	Trichloro	ethylen	e.			-	80	0.67	07
	(PTE			Stand			How	Act	
(Ibs/h	nr)	(lbs/yr)	(star	ndard units) Uni	ts	Dete	rmined	(lbs/hr)	(lbs/yr)
0.13		1,181								

	[DEC ID	_	
-	TL	11-1		

EMISSION UNIT	Emiss	sion Unit Emissions S	Summary	Continuation Sheet(s)
CAS No.		Contamir	nant Name	
00075-34-3	1,1-Dichloroet	hane		
	,	nissions	Ac	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	11		
CAS No.		Contamir	hant Name	
00075-35 - 4	11-Dichloroett	ylene (Vinylidu	ne Chloride)	
		nissions	Ac	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	16		
CAS No.		Contamir	nant Name	
00540 59-0	cis-1.2-Dichl	oroethene		
		nissions	Act	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	5		
CAS No.		Contamir	nant Name	
00107-06-2	1.2 - Dichloroeth	ane		
		nissions	Act	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	BRT		

-					Co	omplian	ce Plar	N/A			ontinuati	on Sheet(s
For any emi	ission units	which ar	e <u>not in c</u>	complian	ce at th	ne time of	permit ap	plication, the	applica	nt shall comp	olete the	following
Consent Or	der		Certifi	ed progre	ess rep	orts are to	be subm	nitted every 6	months	beginning_	1	1
Emission		Emission					Applicabl	e Federal Requ	irement	1222		
Unit	Process	Source	Title	Туре	Part	Sub Part	Section	Sub Division	Parag.	Sub Parag.	Clause	Sub Clause
÷		1. The second se										
	1	Remedi	al Measu	ure / Inte	rmedia	te Milestor	nes		1	R/I	Sc	Date heduled
	96											nequieu
1-00-					-							
1	-								1			
· · · · · · · · · · · · · · · · · · ·												
										6. S. J		
						_					-	
												_

	 DE	EC ID		1
-		-		

Section IV - Emission Unit Information

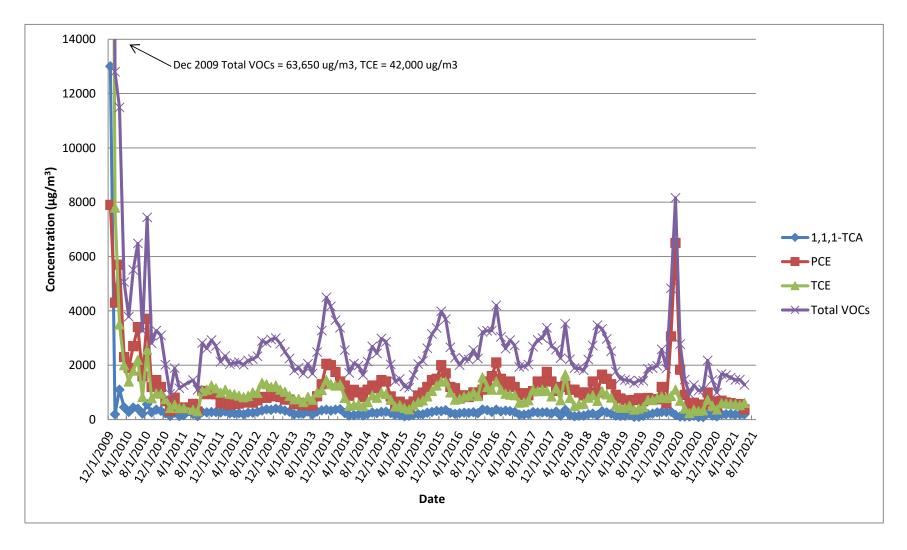
	Em	ission Unit Emissions	s Summary (continua	ition)
CAS No.		Contami	nant Name	
30156-60-5	trans -1,2 - Dich	loroethene		
		missions	Ac	tual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	BRT	BRT		
CAS No.			nant Name	
0075 01 - 4	Vinyl Chloride			111-11
EDD (lba(s))		missions	Ac	tual
ERP (lbs/yr)	(lbs/hr)	(łbs/yr)	(lbs/hr)	(ibs/yr)
	BRT	BRT		
CAS No.			nant Name	
		10. (10. (10. (10. (10. (10. (10. (10. (
	PTE E	missions	Ac	tual
ERP (lbs/yr)	(Ibs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS No.	-	Contamir	nant Name	
14. (4.)				
1.1	PTE E	missions	Act	ual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(Ibs/hr)	(łbs/yr)
	(((and the first second s	(200, 17)
CAS No.		Contamin	ant Name	
÷ ÷.	PTF F	missions	Act	ual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
	(isonit)	(ibbiyi)	(103/11)	(103/91)
CAS No.		Contamin	ant Name	
	PTE E	missions	Act	ual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS No.		Contamin	ant Name	and a second second
aller an our	PTE Er	missions	Act	ual
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
				,
CAS No.		Contamin	ant Name	
÷ -				
ERP (lbs/yr)	PTE Er	nissions	Acti	lar

CONTINUATION SHEET __ OF __

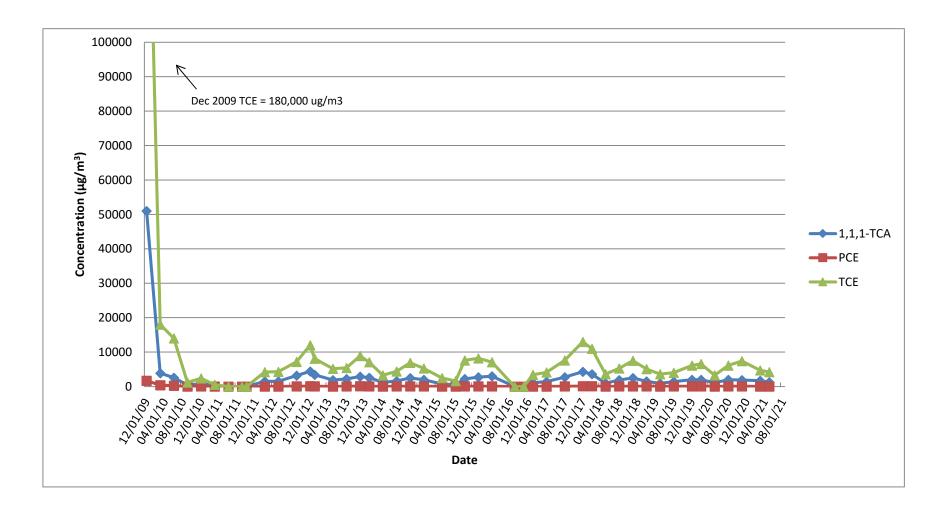
DEC ID

MISSION UNIT -		Emission Reduct	ion Description		
		Contaminant Emissio	on Poduction Da	ata	0.0
		Jontaminant Emissic	SIT Reduction De		luction
Baseline Period	1 1	to/	<u> </u>	Date	Method
CAS No.		Contaminant Nar	ne	ERC Netting	(lbs/yr) Offset
· ·	•				
	-	Facility to Use Fu	iture Reduction		
ame		radinty to obe ru		APPLICATION	ID
	-				1
ocation Address				11-00	
City / D Town / D Villag	00		Chain	Zip	
		Use of Emission R Proposed Proje			Continuation Shee
			eduction Credits		Continuation Shee
			eduction Credits	3	Continuation Shee
		Proposed Proje	eduction Credits ct Description ons Increase Da	ata	Continuation Shee
MISSION UNIT		Proposed Proje Contaminant Emissi	eduction Credits ct Description ons Increase Da	ata	
MISSION UNIT		Proposed Proje Contaminant Emissi Contaminant Na Statement of	eduction Credits ct Description ons Increase Da ame Compliance	ata	P (lbs/yr)
MISSION UNIT	wnership of this "owner	Proposed Proje Contaminant Emissi Contaminant Na	eduction Credits ct Description ons Increase Da ame Compliance	ata	P (lbs/yr)
CAS No.	wnership of this "owner e certification requiren rder.	Proposed Proje Contaminant Emissi Contaminant Na Statement of	eduction Credits ct Description ons Increase Da ame Compliance compliance with all a)(3) of the Clean Air A	ata pplicable requirements an Act Amendments of 1990, Facility	P (lbs/yr)
MISSION UNIT	wnership of this "owner e certification requiren rder.	Proposed Project Contaminant Emissi Contaminant Na Statement of for ship/firm [*] are operating in nents under Section 114(a)	eduction Credits ct Description ons Increase Da ame Compliance compliance with all a)(3) of the Clean Air A	ata pplicable requirements an Act Amendments of 1990,	P (lbs/yr)
MISSION UNIT	wnership of this "owner re certification requiren rder. Sou	Proposed Project Contaminant Emissi Contaminant Na Statement of for ship/firm [*] are operating in nents under Section 114(a)	eduction Credits ct Description ons Increase Da ame Compliance compliance compliance compliance compliance compliance compliance compliance compliance	ata PER pplicable requirements an Act Amendments of 1990. Facility PERMITID	P (lbs/yr)
MISSION UNIT	wnership of this "owner re certification requiren rder. Sou	Proposed Project Contaminant Emissi Contaminant National Statement of Contaminant National Statement of Contaminant State	eduction Credits ct Description ons Increase Da ame Compliance compliance with all a)(3) of the Clean Air A luction Credit - F	ata PER pplicable requirements an Act Amendments of 1990. Facility PERMIT ID T	P (lbs/yr)
MISSION UNIT	wnership of this "owner re certification requiren rder. Sou	Proposed Project Contaminant Emissi Contaminant National Statement of Contaminant National Statement of Contaminant State	eduction Credits ct Description ons Increase Da ame Compliance compliance compliance compliance compliance compliance compliance compliance compliance compliance	ata PER pplicable requirements an Act Amendments of 1990. Facility PERMIT ID T	P (lbs/yr)
MISSION UNIT	wnership of this "owner re certification requiren rder. Sou	Proposed Project Contaminant Emissi Contaminant National Statement of Contaminant National Statement of Contaminant State	eduction Credits ct Description ons Increase Da ame Compliance compliance with all a)(3) of the Clean Air A luction Credit - F	ata PEF pplicable requirements ar Act Amendments of 1990, Facility PERMITID LILLI	P (lbs/yr) nd state regulations or are meeting the C (lbs/yr)

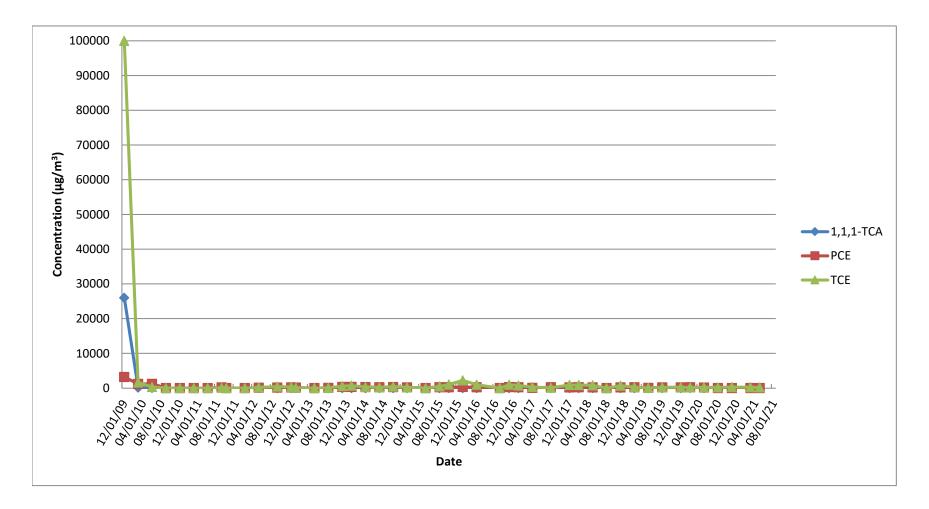
		D)EC	CIE)		
-	1			I			

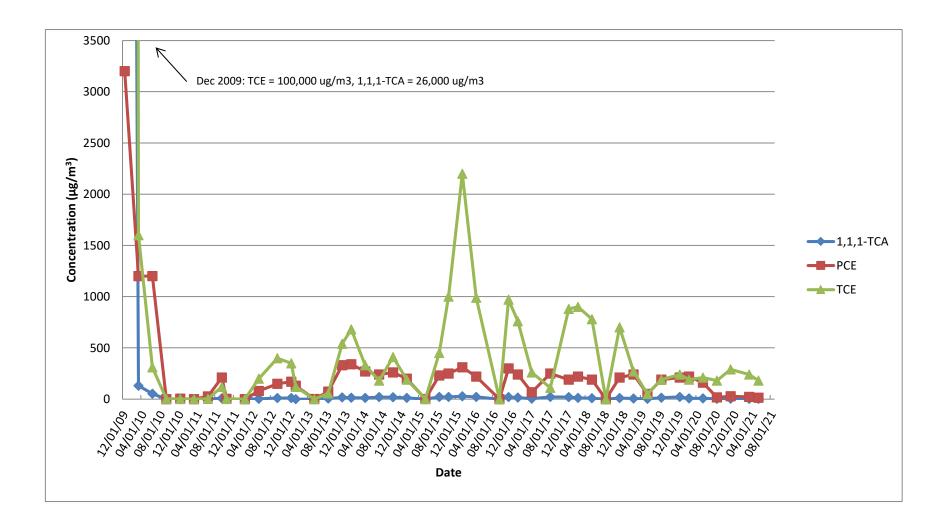

Supporting Documentation				
D.D.E. Continentian (form attached)				
P.E. Certification (form attached)				
List of Exempt Activities (form attached)				
Plot Plan				
Methods Used to Determine Compliance (form attached)				
Calculations				
□ Air Quality Model (/)				
Confidentiality Justification				
Ambient Air Monitoring Plan (/)				
Stack Test Protocols/Reports (/)				
Continuous Emissions Monitoring Plans/QA/QC (/)				
MACT Demonstration (/)				
Operational Flexibility: Description of Alternative Operating Scenarios and Pr	otocols			
Title IV: Application/Registration				
ERC Quantification (form attached)				
Use of ERC(s) (form attached)				
Baseline Period Demonstration				
Analysis of Contemporaneous Emission Increase/Decrease				
□ LAER Demonstration (/)				
□ BACT Demonstration (/)				_
	(1	. /	
□ BACT Demonstration (/)	(1	• 1	-
□ BACT Demonstration (/)	((1 	· 1 1 1	
□ BACT Demonstration (/)	(((· / / / /	
□ BACT Demonstration (/)		 	· / / / / /	
□ BACT Demonstration (/)		 	· / / / / / / /	
□ BACT Demonstration (/)		 	· / / / / / / / /	
□ BACT Demonstration (/)		 	· / / / / / / / /	
□ BACT Demonstration (/)		 	· / / / / / / / / / / / / /	
□ BACT Demonstration (/)			· / / / / / / / / / / / / /	
□ BACT Demonstration (/)			· / / / / / / / / / /	

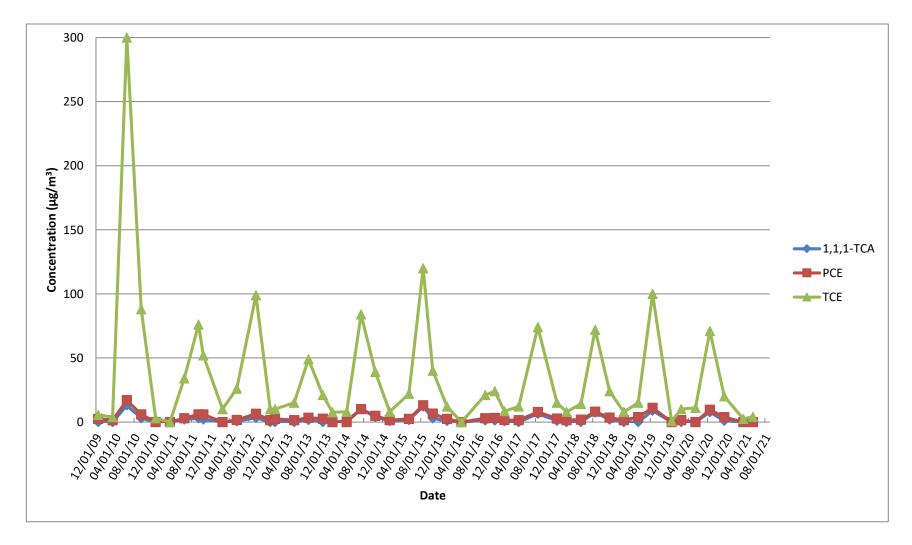
APPENDIX B

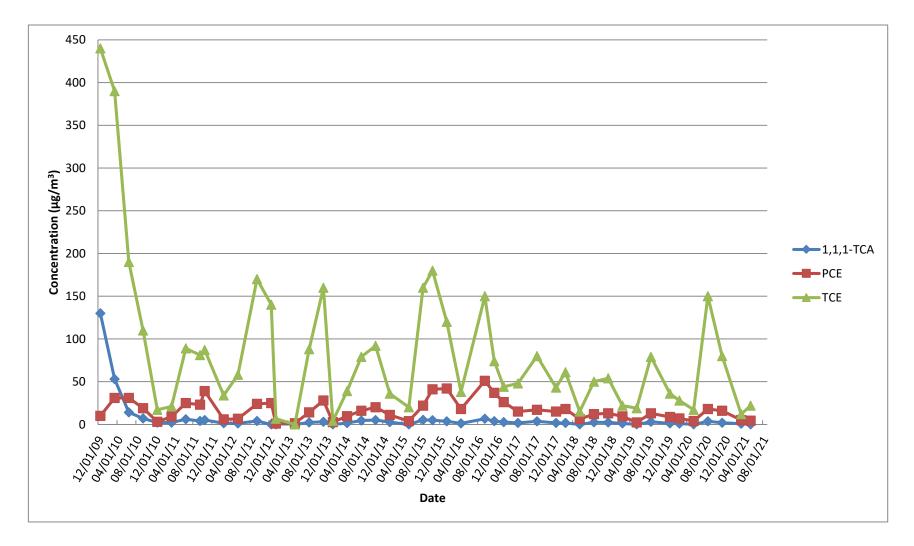

VAPOR CONCENTRATION TREND GRAPHS OF SELECT VOCs – SVEWs

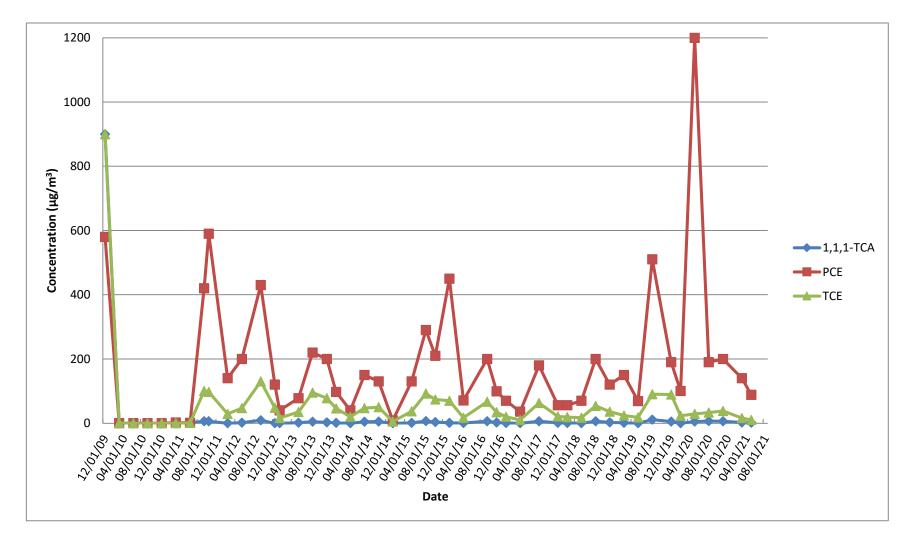
Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Vapor Concentration Trends of Select and Total VOCs

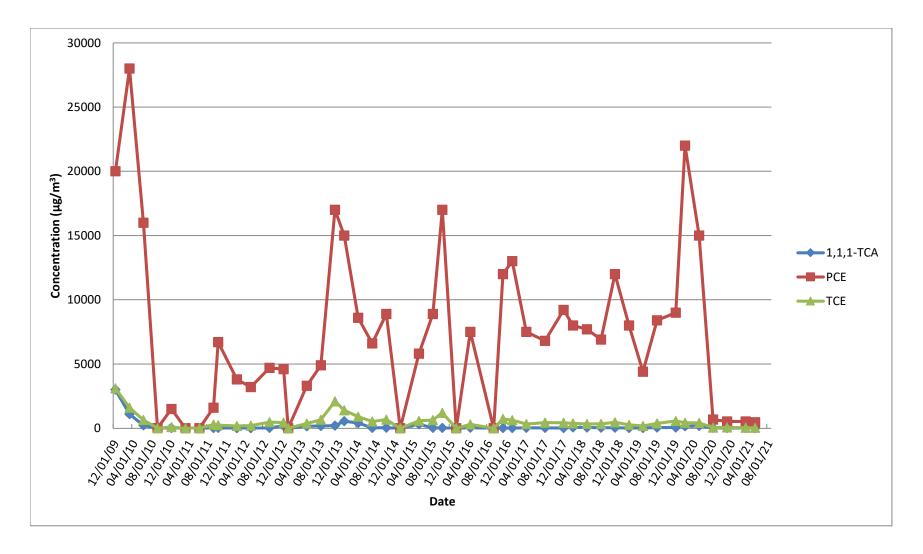

COMBINED INFLUENT

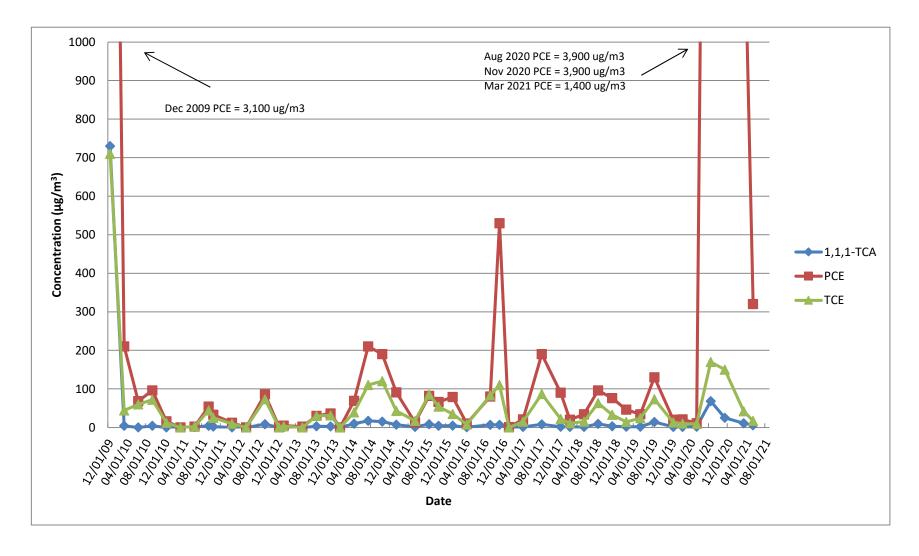

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-1011

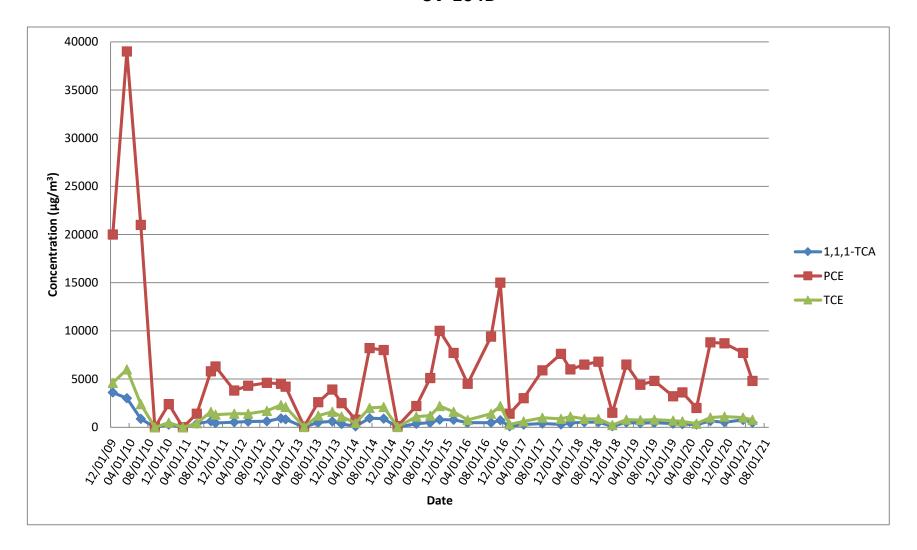

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-101D

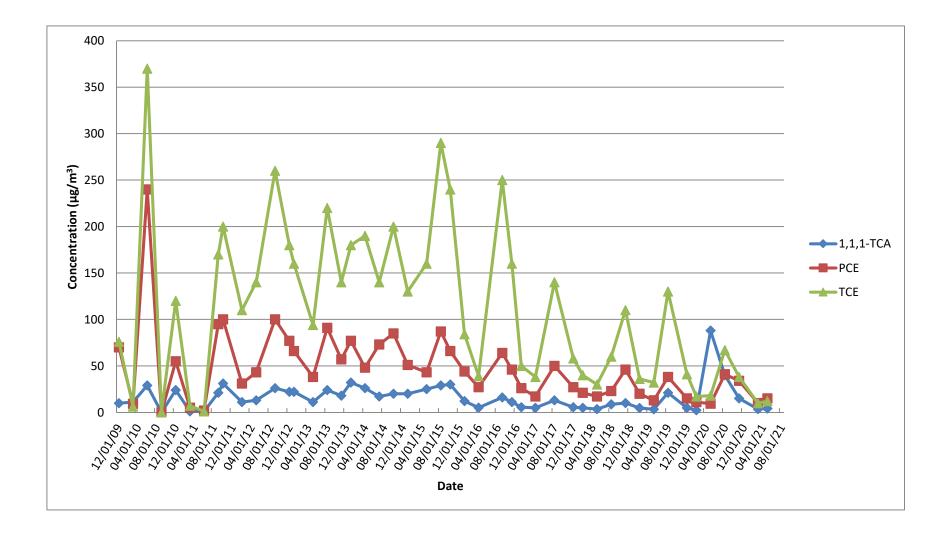

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-101D (smaller scale)

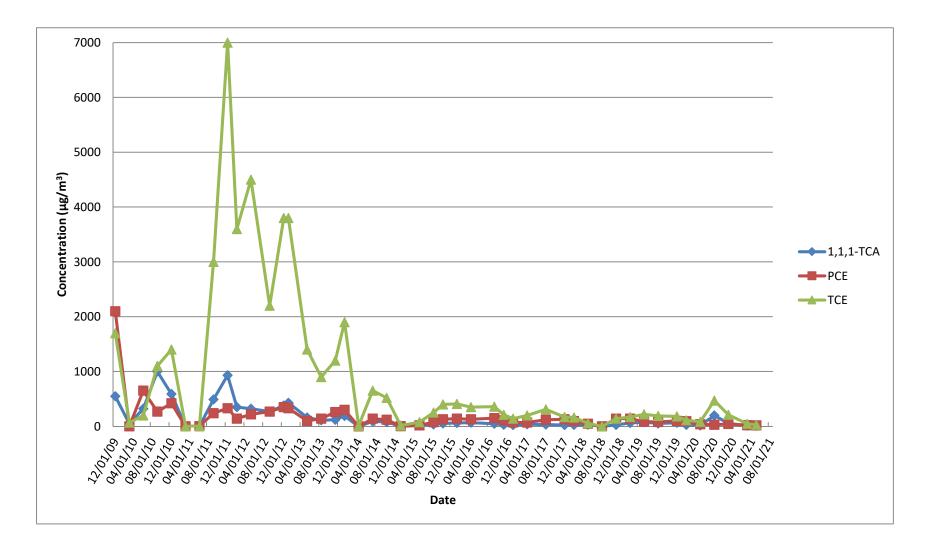

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV1021

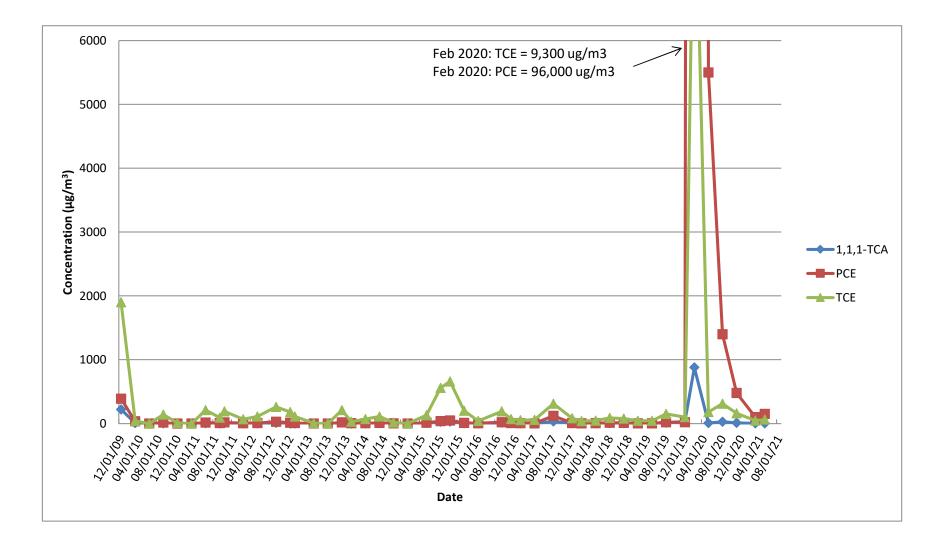

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-102D

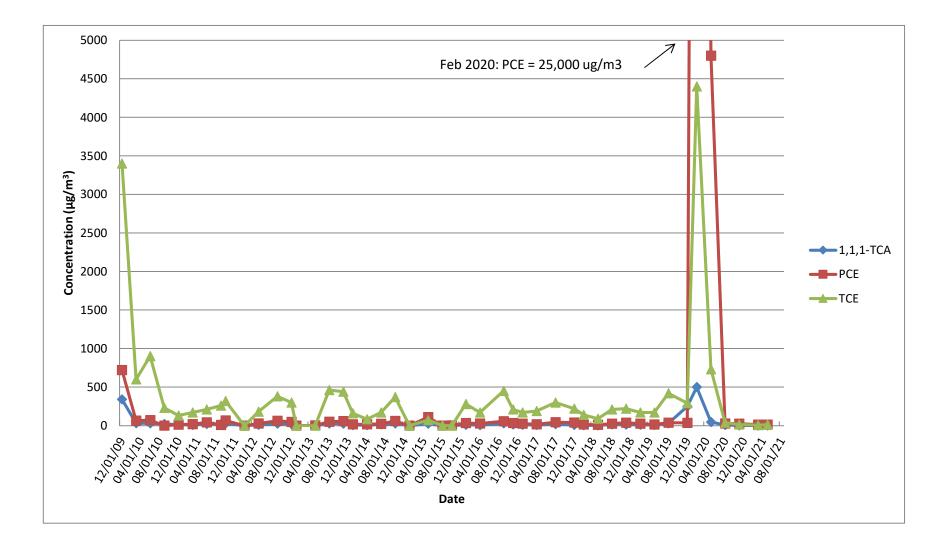

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-103I

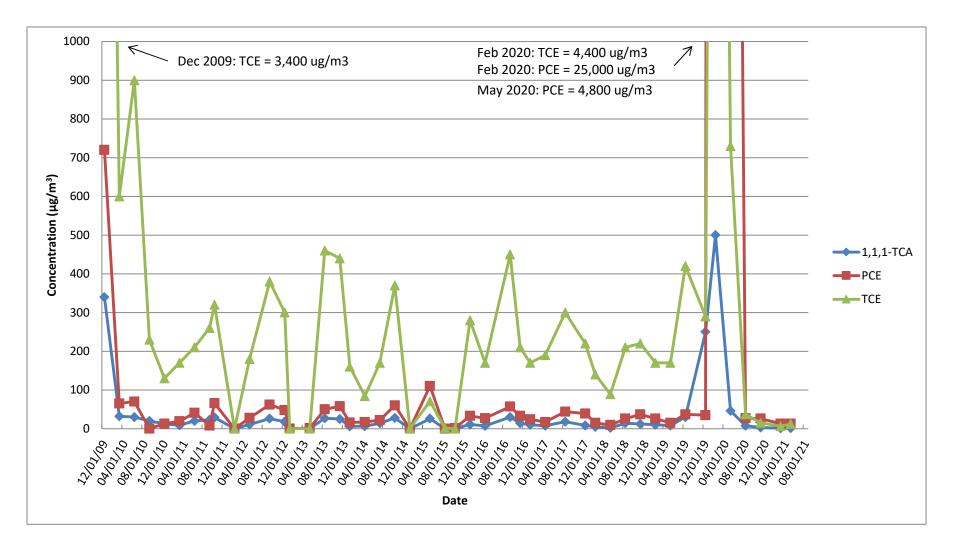

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV103D


Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV104I


Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-104D


Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-105I


Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-105D


Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-106I

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-106D

Soil Vapor Extraction Containment System Site 1, Former Drum Marshalling Yard Naval Weapons Industrial Reserve Plant - Bethpage, NY Concentration Trends of Select VOCs SVEWs SV-106D (smaller scale)

