NORTHROP GRUMMAN

BETHPAGEFACILITY

PHASE II SITE ASSESSMENT - PLANT 1

MAY 2001

PHASE II SITE ASSESSMENT PLANT 1

Prepared For:

NORTHROP GRUMMAN CORPORATION BETHPAGE, NEW YORK

Prepared By:

DVIRKA AND BARTILUCCI CONSULTING ENGINEERS WOODBURY, NEW YORK

MAY 2001

NORTHROP GRUMMAN CORPORATION PHASE II SITE ASSESSMENT PLANT 1 BETHPAGE, NEW YORK

TABLE OF CONTENTS

1.0 INTRODUCTION 1-1 2.0 SCOPE OF WORK AND FIELD ACTIVITIES 2-1 2.1 Scope of Work 2-1 2.2 Field Program 2-1 2.2.1 Geophysical Surveys 2-1 2.2.2 Soil Sampling 2-18 2.2.3 Groundwater Monitoring Well Installation and Sampling 2-19 3.0 FINDINGS 3-1 3.1 Interior Investigation 3-2 3.1.1 Former Paint Spray Room (I02) 3-3 3.1.2 Former Paint Storage Room (I03) 3-4 3.1.3 Former Paint Storage Room (I03) 3-4 3.1.4 Former Pormer Dry Well (I04) 3-4 3.1.5 Former Paint Shop (I06) 3-5 3.1.5 Former Paint Shop (I06) 3-6 3.1.6 Former Paint Tunnel (I07) 3-6 3.1.7 Boiler Room Former Dry Well (I08) 3-7 3.1.8 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.11 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.12 Former Downspout Dry Wells (I13) 3-10 <	Section		<u>Title</u>	Page
2.1 Scope of Work 2-1 2.2 Field Program 2-1 2.2.1 Geophysical Surveys 2-1 2.2.2 Soil Sampling 2-18 2.2.3 Groundwater Monitoring Well Installation and Sampling 2-19 3.0 FINDINGS 3-1 3.1 Interior Investigation 3-2 3.1.1 Former Paint Spray Room (I02) 3-3 3.1.2 Former Paint Storage Room (I03) 3-4 3.1.3 Former Paint Storage Room (I03) 3-4 3.1.4 Former Pory Well Area (I05) 3-5 3.1.5 Former Paint Shop (I06) 3-6 3.1.6 Former Paint Tunnel (I07) 3-6 3.1.7 Boiler Room Former Dry Well (I08) 3-7 3.1.8 Former Hammer Shop (I09) 3-8 3.1.9 Paint Shop Former Dry Well (I10) 3-8 3.1.10 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.11 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.12 Former Downspout Dry Wells (I13) 3-10 3.1.13 Former Heat Treat Room (I16) 3-11	1.0	INTROD	UCTION	1-1
2.2 Field Program 2-1 2.2.1 Geophysical Surveys 2-1 2.2.2 Soil Sampling 2-18 2.2.3 Groundwater Monitoring Well Installation and Sampling 2-19 3.0 FINDINGS 3-1 3.1 Interior Investigation 3-2 3.1.1 Former Paint Spray Room (I02) 3-3 3.1.2 Former Paint Storage Room (I03) 3-4 3.1.3 Former Storage Building Former Dry Wells (I04) 3-4 3.1.4 Former Dry Well Area (I05) 3-5 3.1.5 Former Paint Shop (I06) 3-6 3.1.6 Former Paint Tunnel (I07) 3-6 3.1.7 Boiler Room Former Dry Well (I08) 3-7 3.1.8 Former Hammer Shop (I09) 3-8 3.1.9 Paint Shop Former Dry Well (I10) 3-8 3.1.10 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.11 Former Downspout Dry Wells (I13) 3-10 3.1.12 Former Downspout Dry Wells (I13) 3-10 3.1.13 Former Paint Mixing Room (I17) 3-12 3.1.15 Material Stock Room (I19) </th <th>2.0</th> <th>SCOPE C</th> <th>F WORK AND FIELD ACTIVITIES</th> <th> 2-1</th>	2.0	SCOPE C	F WORK AND FIELD ACTIVITIES	2-1
3.1 Interior Investigation 3-2 3.1.1 Former Paint Spray Room (I02) 3-3 3.1.2 Former Paint Storage Room (I03) 3-4 3.1.3 Former Storage Building Former Dry Wells (I04) 3-4 3.1.4 Former Dry Well Area (I05) 3-5 3.1.5 Former Paint Shop (I06) 3-6 3.1.6 Former Paint Tunnel (I07) 3-6 3.1.7 Boiler Room Former Dry Well (I08) 3-7 3.1.8 Former Hammer Shop (I09) 3-8 3.1.9 Paint Shop Former Dry Well (I10) 3-8 3.1.10 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.11 Former Alodine Room (I12) 3-10 3.1.12 Former Downspout Dry Wells (I13) 3-10 3.1.13 Former Paint Mixing Room (I16) 3-11 3.1.15 Material Stock Room (I19) 3-12 3.1.16 Five Former Machine Pits (I21) 3-13 3.1.17 Pump Station "B" (I23) 3-14 3.1.18 Hallway Adjacent to Former Alodine Room (I26) 3-14		2.2 Fie 2.2 2.2	eld Program 2.1 Geophysical Surveys	2-1 2-1 2-18
3.1.1 Former Paint Spray Room (I02) 3-3 3.1.2 Former Paint Storage Room (I03) 3-4 3.1.3 Former Storage Building Former Dry Wells (I04) 3-4 3.1.4 Former Dry Well Area (I05) 3-5 3.1.5 Former Paint Shop (I06) 3-6 3.1.6 Former Paint Tunnel (I07) 3-6 3.1.7 Boiler Room Former Dry Well (I08) 3-7 3.1.8 Former Hammer Shop (I09) 3-8 3.1.9 Paint Shop Former Dry Well (I10) 3-8 3.1.10 Former Paint Shop Booths and Paint Tunnel (I11) 3-9 3.1.11 Former Alodine Room (I12) 3-10 3.1.12 Former Downspout Dry Wells (I13) 3-10 3.1.13 Former Heat Treat Room (I16) 3-11 3.1.14 Former Paint Mixing Room (I17) 3-12 3.1.15 Material Stock Room (I19) 3-12 3.1.16 Five Former Machine Pits (I21) 3-13 3.1.17 Pump Station "B" (I23) 3-14 3.1.18 Hallway Adjacent to Former Alodine Room (I26) 3-14	3.0	FINDING	S	3-1
3.1.20 Former Storage Building (I30)		3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	1 Former Paint Spray Room (I02) 2 Former Paint Storage Room (I03) 3 Former Storage Building Former Dry Wells (I04) 4 Former Dry Well Area (I05) 5 Former Paint Shop (I06) 6 Former Paint Tunnel (I07) 7 Boiler Room Former Dry Well (I08) 8 Former Hammer Shop (I09) 9 Paint Shop Former Dry Well (I10) 10 Former Paint Shop Booths and Paint Tunnel (I11) 11 Former Alodine Room (I12) 12 Former Downspout Dry Wells (I13) 13 Former Heat Treat Room (I16) 14 Former Paint Mixing Room (I17) 15 Material Stock Room (I19) 16 Five Former Machine Pits (I21) 17 Pump Station "B" (I23) 18 Hallway Adjacent to Former Alodine Room (I26) 19 Air Handling Unit Room (I28) 20 Former Storage Building (I30)	3-3 3-4 3-4 3-5 3-6 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-12 3-13 3-14 3-15 3-15
3.1.22 Hangar 1 (I32)		3.1	.22 Hangar 1 (I32)	3-17

Section			<u>Title</u>	Page
		3.1.24	"Old" Ejection Pits (I34)	3-18
		3.1.25	Transformer Rooms (I35)	. 3-19
		3.1.26	Former Router Room (I36)	. 3-19
		3.1.27	Machine Shop (previously referred to as	
			Former Upholstery Room) (I37)	. 3-20
		3.1.28	Boiler Room (I38)	
		3.1.29	Former Facility Maintenance Area (I39)	. 3-21
		3.1.30	Hangar 2 (I40)	. 3-22
		3.1.31	Random Locations at Historic Manufacturing Operations (I41)	. 3-23
		3.1.32	Paint Shop Dry Well in Former Hammer Shop (I42)	. 3-23
			Dry Wells in Former Carpentry Shop (I43)	
		3.1.34	Canopy Trim Fixture Drain Hole/Sump Pit (I44)	. 3-25
*			Waste Collection Station Adjacent to	
			Canopy Drain/Sump Pit (145)	. 3-25
		3.1.36	Former "Spot Weld Rinse Tank" (In vicinity of	
			Column E6) (I46)	. 3-26
		3.1.37	RHIC Magnet Pumping Units (I47)	
			Pit in Room Adjacent to South Side of	
			Former Carpentry Shop (D17)	. 3-27
	3.2	Exterio	or Investigation	. 3-28
		3.2.1	Former Settling Tanks/Leaching Pools (E01)	. 3-29
		3.2.2	Six Former Leaching Pools (E02)	. 3-29
		3.2.3	Former Heat Treat Drainage Wells (E03)	. 3-30
		3.2.4	Former Dry Well (E04)	
		3.2.5	Leaching Pool Area (E06)	. 3-31
		3.2.6	Nine Leaching Pools (E07)	. 3-32
		3.2.7	Former Leaching Field with Twenty Leaching Pools (E08)	. 3-33
		3.2.8	Former Coal Storage Bin (E09)	. 3-33
		3.2.9	Seven Former Leaching Pools (E10)	. 3-34
		3.2.10	Former Dry Well (E12)	
		3.2.11	Former Drum Storage Area (E13)	. 3-35
			Existing On-site Recharge Basin (E18)	
		3.2.13	Former On-site Recharge Basin (E19)	. 3-36
			Unidentified Pit (E20)	
			Former AST and Salvage Area (E21)	
			Material Storage Area (E22)	
			Former Concrete Sump Pit (E25)	
			Location of Former Trichloroethylene Tank (E27)	
		3.2.19	Pump Station "A" (E30)	. 3-41
			Catch Basins (Vicinity of Pump House/Water Tank) (E32)	
			Former Tank 1111 (Between Hangars 1 and 2) (E33)	

Section		<u>Title</u>	Page
		3.2.22 Courtyard Between Hangars 1 and 2 (E34)	
		3.2.23 Area West of Hangar 1 (E35)	
		3.2.24 Former Drainage Swale (North of Maint. Area) (E36)	
		3.2.25 Former Discoloration (Southeast Parking Area) (E37)	
		3.2.26 Boiler Room Exterior Former Dry Well (E38)	
		3.2.27 Dry Well Outside Former Facility Maintenance Area (E39)	
		3.2.28 Dry Well Outside Former Paint Tunnel (E41)	
		3.2.29 Unidentified Pit Outside Boiler Room (E42)	3-47
		3.2.30 Former 2,000 Gallon Gas USTs (4) South of Refrig./	
		AC Room (E43)	
		3.2.31 Former Gas Pump House South of Refrig./AC Room (E44)	
		3.2.32 Fill Material Within Abandoned Leaching Pools	
		3.2.33 LIPA Pit/Sump (D14)	
	2.2	3.2.34 Square Ejector Pit North of Recharge Basin (D15)	
	3.3	Groundwater Investigation	
	3.4	Data Validation	3-52
4.0	CON	ICLUSIONS AND RECOMMENDATIONS	4-1
	4.1	Interior Investigation	4-1
		4.1.1 Former Paint Spray Room (I02)	
		4.1.2 Former Paint Storage Room (I03)	
		4.1.3 Former Storage Building Former Dry Wells (I04)	4-4
		4.1.4 Former Dry Well Area (I05)	
		4.1.5 Former Paint Shop (I06)	
		4.1.6 Former Paint Tunnel (I07)	4-4
		4.1.7 Boiler Room Former Dry Well (I08)	4-4
		4.1.8 Former Hammer Shop (I09)	
		4.1.9 Paint Shop Former Dry Well (I10)	4-6
		4.1.10 Former Paint Shop Booths and Paint Tunnel (I11)	4-6
		4.1.11 Former Alodine Room (I12)	4-6
		4.1.12 Former Downspout Dry Wells (I13)	4-6
		4.1.13 Former Heat Treat Room (I16)	4-6
		4.1.14 Former Paint Mixing Room (I17)	
		4.1.15 Material Stock Room (I19)	4-7
		4.1.16 Five Former Machine Pits (I21)	
		4.1.17 Pump Station "B" (I23)	
		4.1.18 Hallway Adjacent to Former Alodine Room (I26)	
		4.1.19 Air Handling Unit Room (I28)	
		4.1.20 Former Storage Building (I30)	
		4.1.21 Refrigeration/Air Conditioning Room (I31)	4-8

Section			<u>Title</u>	Page
		4.1.22	Hangar 1 (I32)	. 4-8
			Storage Area in Office Area East of Hangar 2 (133)	
			"Old" Ejection Pits (I34)	
			Transformer Rooms (I35)	
			Former Router Room (I36)	
			Machine Shop (previously referred to as	
			Former Upholstery Room) (I37)	. 4-10
		4.1.28	Boiler Room (I38)	
			Former Facility Maintenance Area (I39)	
			Hangar 2 (I40)	
		4.1.31	Random Locations of Historic Manufacturing Operations (I41)	. 4-11
			Paint Shop Dry Well in Former Hammer Shop (I42)	
			Dry Wells in Former Carpentry Shop (I43)	
			Canopy Trim Fixture Drain Hole/Sump Pit (144)	
			Waste Collection Station Adjacent to Canopy Drain/	
			Sump Pit (I45)	. 4-13
		4.1.36	Former "Spot Weld Rinse Tank" (In vicinity of	
			Column E6) (I46)	4-13
		4.1.37	RHIC Magnet Pumping Units (I47)	
			Pit in Room Adjacent to South Side of Former	
			Carpentry Shop (D17)	. 4-13
	4.2	Exterio	or Investigation	
		4.2.1	Former Settling Tanks/Leaching Pools (E01)	
		4.2.2	Six Former Leaching Pools (E02)	
		4.2.3	Former Heat Treat Drainage Wells (E03)	
		4.2.4	Former Dry Well (E04)	
		4.2.5	Leaching Pool Area (E06)	
		4.2.6	Nine Leaching Pools (E07)	
		4.2.7	Former Leaching Field with Twenty Leaching Pools (E08)	
		4.2.8	Former Coal Storage Bin (E09)	
		4.2.9	Seven Former Leaching Pools (E10)	4-15
		4.2.10	Former Dry Well (E12)	
			Former Drum Storage Area (E13)	
			Existing On-site Recharge Basin (E18)	
			Former On-site Recharge Basin (E19)	
			Unidentified Pit (E20)	
		4.2.15	Former AST and Salvage Area (E21)	4-18
			Material Storage Area (E22)	
			Former Concrete Sump Pit (E25)	
			Location of Former Trichloroethylene Tank (E27)	
			Pump Station "A" (E30)	

Section	<u>Title</u>	Page
	4.2.20 Catch Basins (Vicinity of Pump House/Water Tank) (E32)	4-19
	4.2.21 Former Tank 1111 (Between Hangars 1 and 2) (E33)	
	4.2.22 Courtyard Between Hangars 1 and 2 (E34)	
	4.2.23 Area West of Hangar 1 (E35)	
	4.2.24 Former Drainage Swale (North of Maint. Area) (E36)	
	4.2.25 Former Discoloration (Southeast Parking Area) (E37)	
	4.2.26 Boiler Room Exterior Former Dry Well (E38)	
	4.2.27 Dry Well Outside Former Facility Maintenance Area (E39)	4-20
	4.2.28 Dry Well Outside Former Paint Tunnel (E41)	
	4.2.29 Unidentified Pit Outside Boiler Room (E42)	4-22
	4.2.30 Former 2,000 Gal Gas USTs (4) South of Refrig./	
	AC Room (E43)	
	4.2.31 Former Gas Pump House South of Refrig./AC Room (E44)	4-22
	4.2.32 Fill Material Within Abandoned Leaching Pools	4-22
	4.2.33 LIPA Pit/Sump (D14)	
	4.2.34 Square Ejector Pit North of Recharge Basin (D15)	
4.3	Groundwater Investigation	4-23
List of Appendi	ces	
Geon	hysical Surveys	A
Borin	g Logs	B
Labo	ratory Data	C

List of Figures	
1-1	Site Location Map1-3
1-2	Site Plan 1-4
2-1	Investigated Areas of Environmental Concern - Interior Areas2-2
2-2	Investigated Areas of Environmental Concern - Exterior Areas2-3
2-3	Sample Location Map - Interior Areas
2-4	Sample Location Map - Exterior Areas2-15
2-5	Geophysical Survey Areas2-17
4-1	Areas of Concern Recommended for Additional Investigation or Remediation
4-2	Recommendation for Remediation - Former Paint Tunnel
4-3	Recommendation for Remediation - Former Storage Building
4-4	Recommendation for Remediation - Dry Wells in Former
	Carpentry Shop4-12
4-5	Recommendation for Additional Investigation - Former
	Coal Storage Bin4-16
4-6	Recommendation for Remediation - Former Drum Storage Area 4-17
4-7	Recommendation for Additional Investigation - Former
	Drainage Swale4-21
4-8	Recommendation for Additional Investigation - Square Ejector Pit
	North of Recharge Basin
List of Tables	
2-1	Phase II Field Program Activities - Interior Areas
2-1 2-2	
Z - Z	Phase II Field Program Activities - Exterior Areas2-9
4-1	Summary of Recommendations 4-2

1.0 INTRODUCTION

This document presents the results of the Phase II Site Assessment undertaken for the Northrop Grumman Corporation (NGC) property known as Plant 1, located on the southwest of the Long Island Rail Road (LIRR) tracks and northwest of Sheridan Avenue in Bethpage. in Bethpage, New York. A site location map and site plan are presented on Figures 1-1 and 1-2, respectively. The Plant 1 parcel (Tax I.D. Number: Section 46, Block 323, Lot 15) consists of the irregularly shaped area shown on Figure 1-2. The area is currently owned by NGC and comprises a total of approximately 22.5 acres.

The site is located within an area zoned "Industrial." Areas northwest and west are also zoned "Industrial," while areas immediately northeast, east and southeast are predominantly zoned residential. In 1995, the Town of Oyster Bay rezoned the parcel of land immediately southwest of the Plant 1 property from an "H" Industrial District Zone to "S-2" or Golden Age District. Further southwest, commercial zoning is found along Central Avenue. For the purpose of this report, the property line, which runs parallel to the LIRR tracks, will be referred to as "north" when discussing the location of on-site structures.

The majority of the site is paved and/or occupied by structures. The topography of the site is generally level and is approximately 110 feet above mean sea level with depth to groundwater approximately 45 feet below grade. There are storm water catch basins located throughout the site, and the direction of surface drainage varies with location. The Soil Conservation Service (SCS) classifies the majority of the soils on-site as Urban Land, as shown in the Nassau County Soil Survey (1987 edition). Urban Land is defined as an area with at least 85 percent asphalt, concrete or other impervious building material, with most of the remaining small areas of soil being well drained Riverhead, Hempstead or Enfield soils, or excessively drained Udipsaments. The Nassau County Soil Survey indicates that most areas of Urban Land are nearly level or gently sloping. The remaining portion of the site is identified as Urban Land Riverhead complex, which is a combination of urbanized areas and very deep, well-drained Riverhead soils.

The results of the 1999 Phase I Site Assessment at Plant 1 were used to identify potential areas of environmental concern (AOCs) both inside and outside of the building. The Plant 1 AOCs requiring investigation as part of the United States Environmental Protection Agency (USEPA) Underground Injection Control (UIC) Program are documented under a separate Phase II Site Assessment entitled "UIC Phase II Site Assessment - Plant 1," dated June 2001 which was prepared by Dvirka and Bartilucci Consulting Engineers (D&B). This Phase II Site Assessment documents the investigation activities and findings for AOCs that were determined not to be regulated by the USEPA UIC Program based on the design and status (i.e., previously closed) of the structures associated with each AOC.

This Phase II Site Assessment was conducted in four phases. The results from the first phase of sampling and analysis were used to identify those areas where additional investigation was warranted. The supplemental investigation and delineation sampling and analysis was performed during three subsequent phases of the project.

Section 2 of this document describes the scope of work and field program which was performed during September 2000 through March 2001. The findings of the Phase II Site Assessment, on an AOC-by-AOC basis, are described in Section 3. Section 4 provides conclusions and recommendations regarding the program.

Supporting data related to the Phase II Site Assessment program at Plant 1 are presented in appendices to this document. Geophysical surveys performed as part of the Phase II Site Assessment are included in Appendix A. Logs for the Phase II Site Assessment soil borings are included in Appendix B and tables summarizing the analytical results of samples collected during the Phase II Site Assessment are included in Appendix C.

SITE LOCATION MAP

FIGURE 1-1

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

FRI, MAY 04, 2001 09:19 A LVG F:\1852\1568-P1-1.DWG

FRI, MAY 04, 2001 09:20 A LVG F:\1852\1852

NORTH

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

0 200 SCALE IN FEET

NORTHROP GRUMMAN CORPORATION BETHPAGE NEW YORK PLANT 1

2.0 SCOPE OF WORK AND FIELD ACTIVITIES

2.1 Scope of Work

The results of the Phase I Site Assessment at Plant, were used to identify potential AOCs both within the interior and exterior of the building. As discussed in Section 1, this report addresses only those AOCs that were determined not to be regulated by the USEPA UIC Program. The AOCs investigated as part of this Phase II Site Assessment are shown on Figures 2-1 (interior areas) and 2-2 (exterior areas) and are summarized in Tables 2-1 (interior areas) and 2-2 (exterior areas). The information in these tables includes the AOC designation, the number of borings and samples completed for each AOC, and the analytical parameters for each sample. The interior and exterior programs were conducted concurrently. Interior and exterior sample locations are shown on Figures 2-3 and 2-4, respectively.

2.2 Field Program

This section provides a description of the field activities conducted as part of the Phase II Site Assessment at the Plant 1 site. Work performed during the Phase II Site Assessment included geophysical surveys and collection and analysis of soil and groundwater samples. Descriptions of the procedures used during these activities are included in Sections 2.2.1 (Geophysical Surveys), 2.2.2 (Soil Sampling), and 2.2.3 (Groundwater Monitoring Well Installation and Sampling).

2.2.1 Geophysical Surveys

In order to locate former structures and sample locations at eleven potential AOCs, NAEVA Geophysics Inc. (NAEVA) of Tappan, New York was subcontracted to perform geophysical surveys. Ground penetrating radar (GPR) techniques and an electromagnetic metal-detector were used to perform the geophysical surveys. The areas investigated by NAEVA are summarized below:

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING INTERIOR

-		Soil	Soil Sampling	<u> </u>			1									
AOC No.	Area of Environmental Concern		Interval (depth bgs)		Soil Borings		Soil	Probes			No.	of Samples :	and Analyses*			Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probes	No. of Soil Probe Samples	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	7. Pests/Herbs	
102	Former Paint Spray Room	I02 B01	1' - 3', 3'-5'				1	2	2	2	2					Targered AOC was the room.
103	Former Paint Storage Room	I03 B01	I' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
104	Former Storage Building Former Dry Wells	104 B01	8' -10'			-	1	I	1	1	l		ì			No remaining evidence of pool AOC located directly under a support column. Boring placed within 5' of AOC
· · · · · · · · · · · · · · · · · · ·	`	104 B02							<u></u>					-		No remaining evidence of pool. This pool is shared by 14 and 15. Therefore, this pool was targeted under 105-B01.
105	Former Dry Well Area	I05 B01	8' -10', 20'-22'			-	1	7	2	2	2		2		-	Pool was backfilled This pool is shared by I4 and I5.
		E43 B02	6' - 8', 14'-16'				1	5	2	2	2		2			No remaining evidence of pool. Actually located in an exterior location. This boring was also targeted immediately adjacent E43 B02.
106	Former Paint Shop	106 B01	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
		106 B02	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
107	Former Paint Tunnel	107 B01	3' - 5', 5'-7'				1	2	2	2	2					Targeted AOC was a concrete sump that discharged to an AST
		107 B01N8	3' - 5', 5'-7'	-			1	2	2							Boring 8' N of sump, which formerly discharged to an AST.
		107 B01S8	3' - 5', 5'-7'				1	2	2			-				Boring 8' S of sump. which formerly discharged to an AST
		107 B01W5	3' - 5', 5'-7'				-	2	2							Boring 5' W of sump, which formerly discharged to an AST.
		107 B01E8	5'-7'				1	2	1							Boring 8'E of sump, which formerly discharged to an AST.
		107 B02	1' - 3', 3'-5'				1	2	2	2	2					Target:d AOC was a concrete "tunnel".
		I07 B03	5' - 7', 7'-9'				1	2	2	2	2					Boring added to program based on the identification of a former north-south backfilled concrete trench.
108	Boiler Room Former Dry Well	I08 B01	2' - 4', 9'-11'				1	5	2	2	2		2			No remaining evidence of dry well.
109	Former Hammer Shop	109 B01	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
110	Paint Shop Former Dry Well	110 B01	4' - 6', 10'-12'				1	5	2	2	2		2			No remaining evidence of dry well.
ш	Former Paint Shop Booths and Paint Tunnel	III B01	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
		II1 B02	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
		III B03	1' - 3', 3'-5'			i	1	2	2	2	2					Targeted AOC was the room.
		111 B04	1' - 3', 3'-5'				1	2	2	2	2					Target:d AOC was the room.
		III B05	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
		III B06	0' - 2', 2'-4' (1)				ı	2	2	2	2					Targeted AOC was a concrete pit. Added to program based on the visual identification of this structure as being associated with a train curtain.
		III B07	1.5'-3.5', 3.5'-5 5' (1)				1	2	2	2	2			-		Targeted AOC was a concrete pit.
112	Former Alodine Room	I12 B01	1' - 3', 3'-5'				ı	2	2	2	2					Targeted AOC was the room.
		I12 B02	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.
		I12 B03	1' - 3', 3'-5'				ı	2	2	2	2	-				Targeted AOC was the room.
1		I12 B04	1' - 3', 3'-5'				1	2	2	2	2			_	-	Targeted AOC was the room.
		I12 B05	1' - 3', 3'-5'				1	2	2	2	2					Targeted AOC was the room.

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PLANT 1 PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING INTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Borings		Soil	Probes			No	of Samples a	nd Analyses*			Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probes	No. of Soil Probe Samples	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	7. Pests/Herbs	
113	Former Downspout Dry Wells	113 B01	2' - 4', 8'-9'	_			1	4	2	2	2		2			No remaining evidence of dry well. Located in cafeteria
		113 B02	2' - 4', 6'-7'				1	5	2	2	2		2			No remaining evidence of dry well.
114	Five Former Leaching Pools	B01														Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
		B02														Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
		B03														Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
1		B04														Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
		B05														Located under PROM building. Not technically feasible due targeted depth Removed from sampling program.
115	Expansion of Leaching Pools at AOC 115	В01	••	-												Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
		B02					~-									Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
		В03														Located under PROM building Not technically feasible due targeted depth. Removed from sampling program.
		B04												-		Located under PROM building. Not technically feasible due targeted depth. Removed from sampling program.
116	Former Heat Treat Room	116 B01														Refusal - could not collect samples. Also targeted with 116-B
		116 B02	1'-3', 3 5'-5.5', 5.5'- 7 5' (1)				l	3	3	3	3		3			Targeted AOC was a concrete pit. Refusal encountered at 3' the during first attempt. Second attempt was made where sample were collected below pit bottom.
J17	Former Paint Mixing Room	117 B01	1' - 3', 3'-5'			-	1	2	2	2	2					Targeted AOC was the room.
		117 B02	1' - 3', 3'-5'				1	2	2	2	2				-	Targeted AOC was the room.
118	RHIC Magnet Utility Trenches					-										Inspection did not reveal compromised integrity. No samples collected.
119	Material Stock Room	119 B01	1' - 3', 3'-5'				ı	2	2	2	2					Targeted AOC was the room.
121	Five Former Machine Pits	121 B01	2' -4', 4'-6'				2	4	2	2	2					Targeted AOC was a previously backfilled concrete pit.
		121 B02	1' - 3', 3'-5'			••	1	2	2	2	2					Targeted AOC was a previously backfilled concrete pit.
		I21 B03	5' - 7', 7'-9'				2	2	2	2	2					Targeted AOC was a previously backfilled concrete pit.
		121 B04	1' - 3', 3'-5'			<u></u>	1	2	2	2	2					Targeted AOC was a previously backfilled concrete pit.
		I21 B05	1' - 3', 3'-5'		_		1	2	2	2	2		-	-		Targeted AOC was a previously backfilled concrete pit.
122	Former Tanks in Former RHIC Magnet Area	B01														According to NGC, USTs never existed in this area. Boring eliminated in consultation w/ NGC.
		B02					_							-		According to NGC, USTs never existed in this area. Boring eliminated in consultation w/ NGC.
		B03						-								According to NGC, USTs never existed in this area. Boring eliminated in consultation w/ NGC.
I23	Pump Station "B"	I23 B01	0'-2, 2'-4' (1)				ı	2	2	2	2					Targeted AOC was a sump with a concrete bottom. Required removal of standing water.
124	Floor Drains, Slop Sınks, Trench Drains and Pits/Sumps													-		The discharge point of drainage features are documented in a separate report entitled "Discharge Determination Report - P 1", dated May 2001.

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING INTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Borings		Soil	Probes			No	of Samples	and Analyses*			Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probes	No. of Soil Probe Samples	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	7. Pests/Herbs	
125	Wood Block Flooring											-	-			
126	Hallway Adjacent to Former Alodine Room	126 B01	1' - 3', 3'-5'				1	2	2	2	2		2		-	Targeted AOC was a concrete trench (solid bottom).
		I26 B02	1.5'-3.5', 3.5'-5.5'				1	2	2	2	2		2		-	Targeted AOC was a concrete trench (solid bottom).
128	Air Handling Unit Room	I28 B01	2' -4', 4'-6'				1	2	2	2	2					Targeted AOC was a solid bottom sump within a concrete pit.
130	Former Storage Building	I30 B01	1' - 3', 3'-5'				1	2	2	2	2		2			Targeted AOC was a room.
		130 B02	1' - 3', 3'-5'				I	2	2	2	2	-	2			Targeted AOC was a room.
		130 B03	1' - 3', 3'-5'				ı	4	2	2	2		2			Targeted AOC was a room.
		I30 B03N8	1'-3', 3'-5'				1	2		-	2					Boring located 8' N of initial boring.
		130 B03S8	1'-3', 3'-5'				ı	2		-	2					Boring located 8' S of initial boring.
		I30 B03W8	1'-3', 3'-5'				1	2			2					Boring located 8' W of initial boring.
		I30 B03E8	1'-3', 3'-5'				ī	2			2					Boring located 8' E of initial boring.
		I30 B03S12	0'-2', 4'-6', 8'-10'				Ī	5			3					Borring located 12' S of initial borring.
		I30 B03W12	0'-2', 4'-6', 8'-10'				1	5			3					Boring located 12' W of mittal boring.
		I30 B03E12	0'-2', 4'-6', 8'-10'				1	5			3					Boring located 12' E of initial boring.
		I30 B04	1'-3', 3'-5'				1	2	2	2	2	-	2			Targeted AOC was a room.
		J30 B05	6'-8', 8'-10'				2	22	2	2	2		2			Targeted AOC was a room.
		130 B06	1'-3', 3'-5'				l	2	2	2	2	-	2			Targeted AOC was a room.
		I30 B07	0' - 2', 2'-4'				1	2	2	2	2		2			Targeted AOC was area potentially subject to former surface releases. Added to program based on discovery of machine shop slop sink discharge to grade.
131	Refrigeration/Air Conditioning Room	131 B01	1'-3', 3'-5'				l l	2	2	2	2					Targeted AOC was a room
		I31 B02	2' - 4', 4'-6'				1	2	2	2	2		-		-	Targeted AOC was a room.
I32	Hangar 1	I32 B01	1'-3', 3'-5'				2	2	2	2	2		2	2	2	Targeted AOC was a room.
		132 B02	1'-3', 3'-5'				1	2	2	2	2		2	2	2	Targeted AOC was a room.
		I32 B03	1'-3', 3'-5'				1	2	2	2	2	-	2	2	2	Targeted AOC was a room.
		I32 B04	1'-3', 3'-5'	-			1	2	2	2	2		2	2	2	Targeted AOC was a room.
133	Storage Area in Office Area East of Hangar 2	I33 B01	1'-3', 3'-5'				ì	2	2	2	2					Targeted AOC was a room.
I34	"Old" Ejection Pits	I34 B01	4' - 6', 6'-8'	-		-	1	2	2	2	2		2			Targeted AOC was a concrete pit (solid bottom) in a weight roo
		134 B02	2' - 6'			-	1	2	2	2	2		2			Targeted AOC was a concrete pit (solid bottom) in a utility roor
		134 B03						-							-	Boring removed from program - deemed unnecessary (AOC was an aboveground "tub"). This boring was transferred to 138.
I35	Transformer Rooms	I35 B01	1'-3', 3'-5'				1	2					2			Targeted AOC was a room.
		I35 B02	1'-3', 3'-5'				ı	2					2			Targeted AOC was a room.

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PLANT 1 PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING INTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Borings		Soil	Probes			No		Comments			
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probes	No. of Soil Probe Samples	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	7. Pests/Herbs	
136	Former Router Room	136 B01	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
		I36 B02	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
137	Machine Shop (previously referred to as Former Upholstery Room)	137 B01	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
137	Machine Shop (previously referred to as Former Upholstery Room) (continued)	I37 B02	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
138	Boiler Room	138 B01	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
		I38 B02	1'-3', 3'-5'		-		ı	2	2	2	2		-			Targeted AOC was a room.
139	Former Facility Maintenance Area	139 B01	1'-3', 3'-5'				1	2	2	2	2					Targeted AOC was a room.
		I39 B02	V-3', 3'-5'				2	2	2	2	2					Targeted AOC was a room.
[40	Hangar 2	140 B01	2' - 4', 4'-6'				2	2	2	2	2		2	2		Targeted AOC was a room.
		I40 B02							-							Targeted AOC was a room. Could not penetrate concrete w/portable equipment (inaccessible w/truck). Technically not practical.
		I40 B03	1'-3', 3'-5'			-	1	2	2	2	2		2	2		Targeted AOC was a room.
		140 B04	1'-3', 3'-5'				Ī	2	2	2	2		2	2		Targeted AOC was a room.
		140 B05	1'-3', 3'-5'				1	2	2	2	2		2	2		Targeted AOC was a room.
		I40 B06	1'-3', 3'-5'				1	2	2	2	2		2	2	-	Targeted AOC was a room.
141	Random Locations of Historic Manufacturing Operations	I41 B01	0' - 2', 2'-4'	-			1	2	2	2	2		2			Targeted AOC was a room Placed in location of former "Hydraulics" area (in vicinity of column H3 and H4).
		I41 B02	1'-3', 3'-5'				-	2	2	2	2		2			Targeted AOC was a room. Placed in location of former "Drivmatic and Brake/Press Dept" (in vicinity of column E16).
		I41 B03	1'-3', 3'-5'				4	4	2	2	2		2			Targeted AOC was a room. Placed in location of former "Drivmatic and Brake/Press Dept" (in vicinity of column E17).
		I41 B04	1'-3', 3'-5'				l	2	2	2	2		2			Targeted AOC was a room. Placed in location of former "Shear, Saw and Router Dept" (in vicinity of column E26).
		J41 B05	1'-3', 3'-5'			-	1	2	2	2	2		2			Targeted AOC was a room. Placed in location of former "Bench/Layout Area Dept" (in vicinity of column E30 and E31).
[]		I41 B06		-		-										No additional areas appeared to warrant further investigation.
:		141 B07														No additional areas appeared to warrant further investigation.
		I41 B08			-				_				-			No additional areas appeared to warrant further investigation.
1		141 B09						_						_		No additional areas appeared to warrant further investigation.
		I41 B10													-	No additional areas appeared to warrant further investigation
142	Paint Shop Dry Well in Former Hammer Shop	I42 B01	8' - 10'		-		1	2	2	2	2	_	2			No remaining evidence of dry well.

TABLE 2-1 NORTHROP GRUMMAN CORPORATION PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING INTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Borings		Soil	Soil Probes No. of Samples and Analyses*						Comments		
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probes	No. of Soil Probe Samples	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	7. Pests/Herbs	
I43	Dry Wells in Former Carpentry Shop	143 B01	8' - 10', 14'-16'				1	2	2	2	2					Targeted AOC was a backfilled dry well.
		I43 B01A	10'-12', 12'-14'		-		1	2	2							Boring advanced within AOC (backfilled drywell).
		143 B02	11'-13, 13'-15'				1	2	2	2	2					Targeted AOC was a backfilled dry well (void encountered 8'-11').
143	Dry Wells in Former Carpentry Shop (continued)	I43 B02A	15'-17'. 17'-19', 19'- 21'				1	3			3					Boring advanced within AOC (backfilled drywell).
144	Canopy Trım Fixture Draın Hole/Sump Pit	I44 B01	4' - 6', 6'-8'				ı	2	2	2	2					Targeted AOC was a concrete pit (solid floor). Pit floor is 4'3" deep.
143	Waste Collection Station Adjacent to Canopy Drain/Sump Pit	I45 B01	0' - 2', 2'-4'				1	2	2	2	2		2		·	Targeted AOC had a solid bottom.
146	Former "Spot Weld Rinse Tank" (In vicinity of column E6)	146 B01	0' - 2', 2'-4'				1	2	2	2	2					
147	RHIC Magnet Pumping Units	I47 B01	0' - 2', 2'-4'				1	2	2	2	2					-
		147 B02	0' - 2', 2'-4'				ı	2	2	2	2					_
D17	Pit in Room Adjacent to South Side of Former Carpentry Shop	D17 B01	0'-2', 2'-4', 4'-6'				l	3	3		3					

* Target Constituents/Analytical Methods

- 1. RCRA Metals (Method 6010/7471)
- 2 Volatile Organic Compounds (Method 8260) incl. those listed in STARS
- 3 Semivolatile Organic Compounds (Method 8270) incl. those listed in STARS

- 4 STARS Table 2 VOCs and SVOCs by TCLP
- 5 Polychlorinated Biphenyls (PCBs) (Method 8082)
- 6 Select Glycols (Method 8015)

7 Pesticides and Herbicides (Methods 8081/8151)

Notes:

- (1) Below bottom of sump, pit or trench
- --: Not applicable

TABLE 2-2 NORTHROP GRUMMAN CORPORATION PLANT 1 PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING EXTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Boring	gs	Soil Probes No. of Samples and Analyses*									Comments
			i	No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probe Setups	No. of Soil Probes	I. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols		
E01	Former Settling Tanks/Leaching Pools	E01 B01	14'-16', 20'-22'				I	5	2	2	2		2		•	Targeted AOC was a backfilled pool. AOC was located on and/or adjacent to LIPA markout. Closest "clear" adjacent area within 10' of AOC was targeted.
		E02 B02	12'-14', 20'-22'				1	5	2	2	2	-	2		•	Targeted AOC was a backfilled pool.
	:	E01 B03	12'-14', 20'-22'				1	5	2	2	2		2		•	Targeted AOC was a backfilled pool.
		E01 B04	12'-14', 20'-22'		-	_	l	5	2	2	2		2		=	Targeted AOC was a backfilled pool.
		E01 B05	12'-14', 18'-20'				1	5	2	2	2		2		•	Targeted AOC was a backfilled pool.
		E01 B06	12'-14', 20'-22'	1	6	22			2	2	2		2		•	Targeted AOC was a former Imhoff tank (solid bottom).
		E01 B07	12'-14', 20'-22'	1	6	22	-		2	2	2	-	2		•	Targeted AOC was a former Imhoff tank (solid bottom). Encountered refusal during first attempt with Geoprobe.
		E01 B08	18'-20', 24'-26'	1	6	26			2	2	2		2		•	Targeted AOC was a former Imhoff tank (solid bottom).
		E01 B09	16'-18', 24'-26'	1	5	26			2	2	2		2			Targ∉ted AOC was a former Imhoff tank (solid bottom).
		E01 B10	_													Added to program based on GPR findings. Located on and/or adjacent to LIPA markout. Could not locate any "clear" areas within 10' of AOC Deemed not technically practical.
		E01 B11	12'-14', 20'-22'				1	5	2	2	2		2			Targeted AOC was a backfilled pool. Added to program based on GPR findings
		E01 B12	12'-14', 20'-22'				1	5	2	2	2		2		-	Tarygred AOC was a backfilled pool. Added to program based on GPR findings.
		E01 B13	12'-14', 20'-22'				1	5	2	2	2	-	2			Targeted AOC was a backfilled pool Added to program based on GPR findings.
		E01 B14	12'-14', 18'-20'	-			ı	5	2	2	2		2	-	•	Targeted AOC was a backfilled pool. Added to program based on GPR findings.
E02	Six Former Leaching Pools	E02 B01	12'-14', 20'-22'	1	6	22			2	2	2			-		Targeted AOC was a backfilled pool.
	·	E02 B02	6' - 8', 14'-16'	I	5	16			2	2	2	-			•	Targeted AOC was a backfilled pool.
		E02 B03	12'-14', 20'-22'	1	6	22	-		2	2	2			_	•	Targyted AOC was a backfilled pool.
		E02 B04	12'-14', 24'-26'	1	9	26	-		2	2	2	_			•	Targyted AOC was a backfilled pool.
		E02 B05	-			-			-	-					•	Located on and/or adjacent to LIPA markout. Could not locate any "clear" areas within 10' of AOC. Deemed not technically practical.
		E02 B06	-						-							Located on and/or adjacent to LIPA markout. Could not locate any "clear" areas within 10' of AOC. Deemed not technically practical.
E03	Former Heat Treat Drainage Wells	E03 B01	16' - 18', 22'-24'		-	-	2	9	2	2	2	-	2		•	Targeted AOC was a backfilled pool.
		E03 B02	14' - 16', 20'-22'			-	1	8	2	2	2		2	-		Targeted AOC was a backfilled pool.
E04	Former Dry Well	E04 B01	8' - 10', 18'-20'				t	6	2	2	2				•	GPR inconclusive. No remaining evidence of pool.
E06	Leaching Pool Area	E06 B01	10' -12', 20'-22'	ı	7	22	-		2	2	2		-		•	No remaining evidence of pool.
		E06 B02	10' -12', 20'-22'	1	7	22		~	2	2	2				•	No remaining evidence of pool.
		E06 B03	10' -12', 20'-22'	ı	7	22			2	2	2				•	No remaining evidence of pool.
		E06 B04	10' -12', 20'-22'	1	7	22	-		2	2	2	-		-	•	No temaining evidence of pool.
		E06 B05	3'-5', 12'-14'	1	6	16		-	2	2	2	-			•	Targeted AOC was backfilled (suspected distribution box).

TABLE 2-2

NORTHROP GRUMMAN CORPORATION
PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES
BUILDING EXTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Boring	gs	Soil Pi	robes			No. of Samples	and Analyses	*		GPR Survey	Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probe Setups	No. of Soil Probes	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols		
E06	Leaching Pool Area (continued)	E06 B06	8' - 10', 16'-18'		-		1	5	2	2	2					Targeted AOC was backfilled (suspected distribution box).
		E06 B09	10' -12', 20'-22'				ı	7	2	2	2				•	No remaining evidence of pool. Targeted AOC located inside building.
		E06 B10			-			-	-						•	Not technically feasible due to targeted depth, located inside building
		E06 B11	<u>.</u>							-					•	Not technically feasible due to targeted depth, located inside building.
		E06 B12						-							•	Not technically feasible due to targeted depth, located inside building.
		E06 B13									,					Not technically feasible due to targeted depth, located inside building.
E07	Nine Leaching Pools	E07 B01	14' -16', 18'-20'	l	5	20			2	2	2				•	Targeted AOC was a backfilled pool
		E07 B02	12' -14', 16'-18'	ŧ	5	20			2	2	2			-	•	Targeted AOC was a backfilled pool.
		E07 B03	11' -13', 19'-21'	1	5	21			2	2	2					Targeted AOC was a backfilled pool.
		E07 B04	11' -13', 19'-21'	1	5	21		-	2	2	2				•	Targeted AOC was a backfilled pool.
		E07 B05	15' -17', 19'-21'	1	5	21		-	2	2	2				•	Targeted AOC was a backfilled pool.
		E07 B06	11' -13', 19'-21'	1	5	21		-	2	2	2	-			•	Targeted AOC was a backfilled pool.
		E07 B07	11' -13', 19'-21'	1	5	21		-	2	2	2					Targeted AOC was a backfilled pool.
		E07 B09	11' -13', 19'-21'	1	5	21			2	2	2					Targeted AOC was a backfilled pool.
		E07 B10	11' -13', 19'-21'	1	5	21			2	2	2		-	-		Targeted AOC was a backfilled pool Added to program based on GPI findings.
		E07 B11	11' -13', 19'-21'	1	5	21			2	2	2			-	•	Targeted AOC was a backfilled pool. Added to program based on GPI findings.
}		E07 B12	11' -13', 19'-21'	ı	5	21	-	-	2	2	2			-	•	Targeted AOC was a backfilled pool. Added to program based on GP findings.
		E07 B13	11' -13', 19'-21'	1	5	21	-	-	2	2	2	-		-	•	Targeted AOC was a backfilled pool. Added to program based on GP findings
}		E07 B14	9' - 11', 18'-20'	ı	5	15	-	-	2	2	2	-	-	-	•	Targeted AOC was a suspected distribution box (previously backfilled Added to program based on GPR findings.
E08	Former Leaching Field with Twenty Leaching Pools	E08 B01	6' - 8', 14'-16'	ı	5	16	-	-	2	2	2	_		-	•	No remaining evidence of pool.
		E08 B02	6' - 8', 14'-16'	ı	5	16	-	-	2	2	2	-			•	No remaining evidence of pool.
		E08 B03	8' - 10', 14'-16'	1	5	16	-	-	2	2	2	-	-		•	No temaining evidence of pool.
		E08 B04	10' - 12', 14'-16'	ı	5	16			2	2	2	-		-	•	Targeted AOC was a backfilled pool.
		E08 B05	14' - 16', 22'-24'	ı	7	24			2	2	2	_	-	-	•	Targeted AOC was a backfilled pool.
		E08 B06	8' - 10', 14'-16'	1	5	16			2	2	2	-		-	•	Targeted AOC was a backfilled pool.
		E08 B07	8' - 10', 14'-16'	1	5	16		-	2	2	2	-		-	•	No remaining evidence of pool.
		E08 B08	10' - 12', 20'-22'				1	8	2	2	2			-	•	No remaining evidence of pool.
		E08 B09	10' - 12', 20'-22'	-	-	-	1	8	2	2	2		-	-	•	Targeted AOC was a backfilled pool.
		E08 B10	8' ~ 10', 16'-18'				i	6	2	2	2				•	Targeted AOC was a backfilled pool.
		E08 B11	6' - 8', 14'-16'	-	<u> </u>		1	5	2	2	2			 	-	Targeted AOC was a backfilled pool.

TABLE 2-2

NORTHROP GRUMMAN CORPORATION PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING EXTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Boring	gs	Soil P	robes			No. of Samples	and Analyses	*		GPR Survey	Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probe Setups	No. of Soil Probes	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols		
E08	Former Leaching Field with Twenty Leaching Pools (continued)	E08 B12	12' - 14', 18'-20'				1	7	2	2	2				-	Targeted AOC was a backfilled pool.
		E08 B14	8' - 10', 16'-18'				l	6	2	2	2					Targeted AOC was a backfilled pool.
		E08 B15						-				-				Not technically feasible, located in office area.
		E08 B16														Not technically feasible, located in office area.
		E08 B17			-				-	_	-				-	Not technically feasible, located in office area.
·		E08 B18									-				•	Not technically feasible, located in office area.
		E08 B19	_									-			•	Not technically feasible, located in office area.
		E08 B20													•	No. technically feasible, located in office area.
E09	Former Coal Storage Bin	E09 B01	0' - 2', 6'-8'				l	4	2		2					
E10	Seven Former Leaching Pools	E10 B01	13' - 15', 21'-23'	1	5	23			2	2	2				•	No remaining evidence of pool. Initially attempted with Geoprobe, bu
		E10 B02	11' - 13', 19'-21'	1	5	21			2	2	2				-	No remaining evidence of pool. Initially attempted with Geoprobe, be encountered refusal.
		E10 B03	12' - 14', 20'-22'				1	7	2	2	2				•	No remaining evidence of pool.
		E10 B04	11' - 13', 19'-21'				1	5	2	2	2				*	No remaining evidence of pool.
		E10 B05	10' - 12', 16'-18'				1	6	2	2	2				•	No remaining evidence of pool.
		E10 B06	10' - 12', 16'-18'	-			1	6	2	2	2					No remaining evidence of pool.
		E10 B08	6' - 10', 14'-16'				1	5	2	2	2				•	Targeted AOC was a backfilled pool. Added to program based on GF findings. Encountered refusal in first attempt.
E12	Former Dry Well	E12 B01	10' - 12', 18'-20'				1	5	2	2	2					No remaining evidence of pool GPR inconclusive
E13	Former Drum Storage Area	E13 B01	l' - 3', 3'-5'				1	2	2	2	2		2			
		E13 B02	0' - 2', 2'-4'				1	2	2	2	2		2			
		E13B02N5	0' - 2', 2'-4'	_		-	1	2			2					Probe located 5' N of initial boring.
		E13B02S5	0' - 2', 2'-4'		_		1	2			2					Probe located 5' S of initial boring.
		E13B02W8	0' - 2', 2'-4'				1	2			2	-	-			Probe located 8' W of initial boring.
		E13B02E8	0' ~ 2', 2'-4'				1	2		-	2	-				Probe located 8' E of initial boring.
		E13B02NE10	0' - 2', 2'-4'				1	2			2	-			-	Probe located 10' NE of initial boring.
		E13B02NE20	0' - 2', 2'-4'				1	2			2		_			Probe located 20' S of initial boring.
		E13B02W12	0' - 2', 2'-4'				1	2			2					Probe located 12' W of initial boring.
		E13B02E12	0' - 2', 2'-4'				1	2	-		2		2			Probe located 12' E of initial boring.
E17	Ejector Pit															This area was investigated as part of AOC D15.
E18	Existing On-site Recharge Basin	E18 B01	0' - 2', 2'-4' (1)		-		1	2	2	2	2	-+	2		-	
		E18 B02	0' - 2', 2'-4' (1)				1	2	2	2	2		2			

TABLE 2-2

NORTHROP GRUMMAN CORPORATION

PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING EXTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Boring	gs	Soit P	robes			No. of Samples	s and Analyses	*		GPR Survey	Comments
	22222			No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probe Setups	No. of Soil Probes	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols		
E19	Former On-site Recharge Basin	E19 B01	8' - 10', 18'-20'				1	7	2	2	2		2			
E20	Unidentified Pit	E20 B01	2' - 4', 4'-6'				1	2	2	2	2		2	-		Targeted AOC was a concrete pit (solid bottom).
E21	Former AST and Salvage Area	E21 B01	0' - 2', 2'-4'				1	2		2	-					
		E21 B02	0' - 2', 2'-4'	_	-		1	2	2	2	2		2		-	-
		E21 B03	0' - 2', 2'-4'				l	2	2	2	2		2			-
		E21 B04	0' - 2', 2'-4'				1	2	2	2	2		2			-
		E21 B05	0' - 2', 2'-4'				1	2	2	2	2		2			
E22	Material Storage Area	E22 B01	0' - 2', 2'-4'				1	2	2	2	2		2	2		
		E22 B02	0' - 2', 2'-4'				1	2	2	2	2		2	2		
		E22 B03	0' - 2', 2'-4'				1	2	2	2	2		2	2		
	·	E22 B04	0' - 2', 2'-4'				1	2	2	2	2		2	2		
E23	Grated Dry Well	E23 B01		-							-					Targeted AOC was actually a trench (solid bottom). Encountered refusal. Could not achieve required depth of sampling intervals.
E25	Former Concrete Sump Pit	E25 B01	5'-7', 7'-9'				1	5	2	2	2		2	2	=	GPR inconclusive.
E26	Former Flight Fuel Depot							-		-		-				NGC is addressing this AOC under a separate program.
E27	Location of Former Trichloroethylene Tank	E27 B01	1'-3', 3'-5'				1	2		2	-		-			
E28	Boiler Room UST				-			-							•	GPR inconclusive (no need for UST closure program)
E29	Floor Drains Outside Former Facility Maint Area and Inside Pump House								-	1			-			The discharge point of drainage features are documented in a separate report entitled "Discharge Determination Report - Plant 1", dated May 2001
E30	Pump Station "A"	E30 B01	13'-15', 15'-17'				ı	3	2	2	2					Targeted AOC was a backfilled sump beneath pedestrian bridge. Encountered refusal during first attempt at 13' bgs. Targeted adjacent location.
E32	Catch Basins (Vicinity of Pump House/Water Tank)	E32 B01	6' - 8', 8'-10'	-			1	2	2	2	2					Targeted AOC was an active structure with solid bottom. Targeted adjacent location.
		E32 B02	6' - 8', 8'-10'				l	2	2	2	2					Targeted AOC was an active structure with solid bottom. Targeted adjacent location.
E33	Former Tank 1111 (Between Hangars 1 and 2)	E33 B01	1' - 3', 3'-5'		-	-	1	2	2	2	2					-
E34	Courtyard Between Hangars 1 and 2	E34 B01	1' - 3', 3'-5'				1	2	2	2	2		2	2		Targeted AOC was an area, as opposed to a structure.
		E34 B02	1' - 3', 3'-5'		-		1	2	2	2	2		2	2		Targeted AOC was an area, as opposed to a structure.
		E34 B03	0' - 2', 2'-4'		-		1	2	2	2	2		2	2		Targeted AOC was an area, as opposed to a structure.
		E34 B04	0' - 2', 2'-4'				1	2	2	2	2		2	2		Targeted AOC was an area, as opposed to a structure.
E35	Area West of Hangar 1	E35 B01	0' - 2', 2'-4'				1	2	2	2	2		2			Targeted AOC was an area, as opposed to a structure.
		E35 B02	0' - 2', 2'-4'				1	2	2	2	2	-	2			Targeted AOC was an area, as opposed to a structure.
E36	Former Drainage Swale (N of Maint. Area)	E36 B01	1' - 3', 3'-5'				1	2	2	2	2		2			Targeted AOC was an area, as opposed to a structure.

TABLE 2-2

NORTHROP GRUMMAN CORPORATION

PLANT 1

PHASE II SITE ASSESSMENT FIELD ACTIVITIES BUILDING EXTERIOR

AOC No.	Area of Environmental Concern	Soil Boring/Probe ID No.	Soil Sampling Interval (depth bgs)		Soil Boring	s	Soil P	robes			No. of Samples	and Analyses	*		GPR Survey	Comments
				No. of HSA Borings	No. of Split Spoon Soil Samples	Total Footage	No. of Soil Probe Setups	No. of Soil Probes	1. RCRA Metals	2. VOCs	3. SVOCs	4. TCLP STARS	5. PCBs	6. Glycols	•	
E36	Former Drainage Swale (N of Maint. Area) (continued)	E36 B02	1' - 3', 3'-5'				1	2	2	2	2		2			Targeted AOC was an area, as opposed to a structure
E37	Former Discoloration (SE Parking Area)	E37 B01	0' - 2', 2'-4'				1	2	2	2	2		2			Targeted AOC was an area, as opposed to a structure.
		E37 B02	0' - 2', 2'-4'				1	2	2	2	2	-	2			Targeted AOC was an area, as opposed to a structure.
E38	Boiler Room Exterior Former Dry Well	E38 B01	10' - 12', 20'-22'				ì	7	2	2	2		2			No remaining evidence of pool.
E39	Dry Well Outside Former Facility Maintenance Area	E39 B01	8' - 10', 20'-22'				ı	5	2	2	2		2			No remaining evidence of pool.
E40	Distribution Pit in Transformer Area	E40 B01					_	_					_			Visual inspection of pit did not reveal presence of compromised integrity.
E41 :	Dry Well Outside Former Paint Tunnel	E41 B01	8' - 10', 18'-20'				Î	7	2	2	2		2			No remaining evidence of pool.
E42	Unidentified Pit Outside Boiler Room	E42 B01	3' - 5', 5'-7'				1	2	2	. 2	2		2			Targeted AOC was a concrete pit (solid bottom).
E43	Former 2,000 Gal Gas USTs (4) South of Refrig/AC Room	E43 B01	6' - 8', 14'-16'				l	5	2	2	2					
		E43 B02	-			-	-	_								AOC targeted under 15 E43B02 due to close proximity.
E44	Former Gas Pump House S of Refrig/AC Room	E44 B01	0' - 2', 2'-4'				t	2	2	2	2					-
E45	UST Outside Former Boıler Room Near Former Coal Storage Bin	E45 B01	-													Encountered refusal, could not collect samples at appropriate depth
	Fill Material Within Abandoned Leaching Pools	E01 B05	5'-7'				1	t				**	1			Added to program at NGC's request.
		E07 B11	5'-7'				1	1					1			Added to program at NGC's request.
		E08 B09	6'-7'				1	1				-	1	-		Added to program at NGC's request.
D12	Dry Well Northwest of the Boiler Room	D12 B01	-				-	-		- <u>-</u> -						No samples collected due to metal at bottom of drainage feature.
D14	LIPA Pit/Sump	D14 B01	5'-7', 7'-9', 9'-11'				1	3	3		3					Boring advanced within AOC.
D15	Square Ejector P1t North of Recharge Basin	D15 B01	6'-8', 10'-12', 14'- 16', 17'-19', 19'-21'				ı	5	5		5		<u></u>	-		Soil boring was advanced immediately adjacent to the ejector pit off northeast corner.
	Groundwater Sampling								6	5	5		5			

* Target Constituents/Analytical Methods

- 1. RCRA Metals (Method 6010/7471)
- 2. Volatile Organic Compounds (Method 8260) incl. those listed in STARS
- 3. Semivolatile Organic Compounds (Method 8270) incl those listed in STARS

- 4. STARS Table 2 VOCs and SVOCs by TCLP
- 5 Polychlorinated Biphenyls (PCBs) (Method 8082)
- 6. Select Glycols (Method 8015)

Notes:

- (1) Below bottom of chamber, dry well, pit, catch basin or recharge basin
- -: Not applicable

- E1 Former Settling Tanks/Leaching Pools;
- E2 Six Former Leaching Pools;
- E3 Former Heat Treat Drainage Wells;
- E4 Former Dry Well;
- E6 Leaching Pool Area;
- E7 Nine Leaching Pools;
- E8 Former Leaching Field with Twenty Leaching Pools;
- E10 Seven Former Leaching Pools;
- E12 Former Dry Well;
- E25 Former Concrete Sump Pit; and
- E28 Boiler Room UST

The locations of these areas are shown on Figure 2-5.

Each AOC that was not paved with reinforced concrete was initially investigated utilizing a Fisher TW-6 Pipe and Cable Locator (electromagnetic metal-detector). The instrument was carried over the areas in a series of closely spaced parallel traverses. A GPR survey was then conducted in those areas that exhibited metal-detector anomalies. GPR data was collected along traverses centered over the anomalies. GPR data profiles were collected over a grid of parallel lines spaced 3 to 5 feet apart for AOCs which did not exhibit any metal-detector anomalies or AOCs paved with reinforced concrete. The data profiles were then examined for evidence of reflections that could be associated with subsurface features. This data were used to locate soil borings that were advanced in these areas. A more detailed description of the methods and instruments used during the geophysical survey is included in the report from NAEVA, in Appendix A.

2.2.2 Soil Sampling

This section provides a description of the procedures used to collect soil samples during the Phase II Site Assessment at Plant 1. Dedicated field books, which are available in the project file, provide documentation of the daily field activities conducted at the site during the field program.

The interior soil probes were advanced utilizing Geoprobe tooling and either an electric hammer-drill or, where access allowed, truck-mounted Simco 200 Earthprobe. At exterior locations, soil samples were collected utilizing a truck-mounted hollow stem auger drill rig (CME 55 or CME 75) with Geoprobe tooling, a truck-mounted Simco 200 Earthprobe with Geoprobe tooling or manual advancement of Geoprobe tooling using an electric hammer-drill.

The Geoprobe tooling consisted of drill rods and either a 1.5-inch outside diameter by 2-foot long or a 2-inch outside diameter by 4-foot long soil probe sampler. A clear polyethylene terephthalate-G (PETG) sample tube liner, dedicated to each soil probe sample, was used to contain the sample within the sampler. Each soil probe was advanced utilizing the hammer-drill, Earthprobe or drill rig's 140-pound hammer to drive the soil probe sampler, sample tube liner and drill rods to the desired depth. The soil probe sampler was retrieved using a mechanical floor jack, the Earthprobe or the drill rig.

All soil samples collected were geologically characterized, inspected for staining, discoloration or odors, and screened for volatile organic compounds (VOCs) using an organic vapor analyzer equipped with a photoionization detector (PID). This information is included on the soil boring logs in Appendix B.

During the advancing of soil probes, a PID was used to monitor VOCs in the workers' breathing zone and at the boreholes. Air monitoring results are documented in the project field books. The PID was calibrated on at least a daily basis, using isobutylene gas at a concentration of 100 parts per million in air. Equipment calibration was documented in the project field books.

Material to be sent for laboratory analysis was placed in laboratory-supplied sample bottles, which were immediately stored in an iced cooler for subsequent transport to the laboratory under Chain of Custody procedures. Any excess sample material not required for analysis was returned to the borehole from which it came. The remainder of the borehole was filled with clean sand and/or bentonite pellets. Each borehole was restored at grade with the same material that was originally in place. That is, asphalt areas were restored with asphalt, concrete areas were restored with concrete and grass covered areas were restored with soil or sand. Where manholes were encountered, the covers were replaced after sampling had been completed.

All non-dedicated sampling equipment was decontaminated between sample locations. Decontamination procedures consisted of:

- External wash with a solution of non-phosphate detergent and potable water;
- Potable water rinse; and
- Distilled/deionized water rinse.

Decontamination fluids were contained for proper off-site transportation and disposal by NGC.

2.2.3 Groundwater Monitoring Well Installation and Sampling

Four groundwater monitoring wells were installed at the Plant 1 site to assess potential impact to groundwater. The approximate locations of the groundwater monitoring wells are shown on Figure 2-4.

The monitoring wells were installed utilizing a CME-55 rotary drill rig equipped with 4 1/4-inch hollow stem augers. All equipment, including the 4 1/4-inch hollow stem augers, was decontaminated utilizing a high-pressure steam cleaner. All decontamination water was contained in 55-gallon DOT drums for proper disposal. Each monitoring well was installed to a depth of approximately 55 feet below grade. Well construction logs are presented in Appendix B. Fifteen feet of 2-inch diameter 0.010 slot schedule 40 flush joint threaded PVC screen and 2-inch

diameter Schedule 40 flush joint thread PVC riser pipe was utilized for the well construction. All drill cuttings and well development water were contained in 55-gallon DOT drums for proper off-site transportation and disposal by NGC. Number 1 Morie well gravel was utilized for the well screen annulus. The remainder of the annular void was filled with hydrated bentonite pellets and a cement and bentonite grout mix was installed as a seal. Subsequent well development activities reduced the turbidity of the well water to less than 50 NTU's, with the exception of monitoring wells PLT1MW-01 and PLT1GM-14. As a result, the laboratory filtered and conducted dissolved metals analysis for groundwater samples collected from monitoring wells PLT1MW-01 and PLT1GM-14.

In addition, two existing groundwater monitoring wells (PLT1GM-14 and PIT-INFFTMWD) located at the Plant 1 site (see Figure 2-4) were sampled along with the newly installed wells.

3.0 FINDINGS

As previously described, the Phase II Site Assessment consisted of sampling at 37 interior AOCs and 35 exterior AOCs. The samples collected as part of the interior and exterior investigations are summarized on Tables 2-1 and 2-2, respectively. Sample locations are shown on Figures 2-3 (interior locations), and 2-4 (exterior locations).

Analytical results for all samples analyzed during the Phase II Site Assessment are summarized in tables included in Appendix C. Analytical results were screened against site-specific criteria for the Plant 1 site. These guidance values were approved by the NYSDEC and utilized for other investigation programs conducted at NGC Plants 5 and 12. The site-specific guidance values developed and utilized for the Plants 5 and 12 investigation/remediation programs consisted of a combination of USEPA Soil Screening Levels (SSLs), Technical and Administrative Guidance Memorandum (TAGM) 4046 criteria and other guidance selected for major technical, environmental and land use considerations. The technical rationale for the development and implementation of the Plant 1 site-specific criteria is summarized in a document entitled "Non-UIC Remediation Plan - Plant 1," dated May 2001. The Plant 1 site-specific criteria is listed below:

Constituent of Concern	Comparison Value	
SVOCs (ug/kg or ppb)		
Total CaPAHs	10,000	
Total PAHs	100,000	}
Total SVOCs	500,000	
Metals (mg/kg or ppm)		
Arsenic	20	
Barium	5,500	
Cadmium	78	,
Cadmium (total)	390	checking
Chromium (hexavalent)	390	
Mercury	23	[
Lead	400	

Constituent of Concern	Comparison Value
Selenium	390
Silver	390
PCBs (ug/kg or ppb)	
Total PCBs (subsurface soil)	10,000

Although there are no NYSDEC TAGM criteria for glycols (i.e., ethylene glycol and propylene glycol), discussions with NYSDEC representatives indicate that a level of 50,000 ug/kg has been utilized. Analytical results for pesticides/herbicides were screened against the NYSDEC criteria provided in Appendix A of TAGM 4046. In addition, groundwater results were compared to the NYSDEC Class GA groundwater standards.

3.1 Interior Investigation

As previously discussed, the Phase II Site Assessment interior investigation activities were conducted at the following areas at the site:

- Former Paint Spray Room (I02)
- Former Paint Storage Room (I03)
- Former Storage Building Former Dry Wells (I04)
- Former Dry Well Area (I05)
- Former Paint Shop (I06)
- Former Paint Tunnel (I07)
- Boiler Room Former Dry Well (108)
- Former Hammer Shop (I09)
- Paint Shop Former Dry Well (I10)
- Former Paint Shop Booths and Paint Tunnel (I11)
- Former Alodine Room (I12)
- Former Downspout Dry Wells (I13)
- Former Heat Treat Room (I16)
- Former Paint Mixing Room (I17)
- Material Stock Room (I19)
- Five Former Machine Pits (I21)
- Pump Station "B" (I23)
- Hallway Adjacent to Former Alodine Room (I26)
- Air Handling Unit Room (I28)

- Former Storage Building (I30)
- Refrigeration/Air Conditioning Room (I31)
- Hangar 1 (I32)
- Storage Area in Office Area East of Hangar 2 (I33)
- "Old" Ejection Pits (I34)
- Transformer Rooms (I35)
- Former Router Room (I36)
- Machine Shop (previously referred to as Former Upholstery Room) (I37)
- Boiler Room (I38)
- Former Facility Maintenance Area (I39)
- Hangar 2 (I40)
- Random Locations of Historic Manufacturing Operations (I41)
- Paint Shop Dry Well in Former Hammer Shop (I42)
- Dry Wells in Former Carpentry Shop (I43)
- Canopy Trim Fixture Drain Hole/Sump Pit (I44)
- Waste Collection Station Adjacent to Canopy Drain/Sump Pit (I45)
- Former "Spot Weld Rinse Tank" (In vicinity of column E6) (I46)
- RHIC Magnet Pumping Units (I47)
- Pit in Room Adjacent to South Site of former Carpentry Shop (D17)

An area-by-area discussion of the Initial Phase II Site Assessment interior investigation activity findings is presented below.

3.1.1 Former Paint Spray Room (I02)

Two soil samples were collected at soil boring location I02B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for total carcinogenic polycyclic aromatic hydrocarbons (CaPAHs), total polycyclic aromatic hydrocarbons (PAHs) and total semivolatile organic compounds (SVOCs) of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.2 Former Paint Storage Room (I03)

Two soil samples were collected at soil boring location I03B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.3 Former Storage Building Former Dry Wells (I04)

One soil sample was collected at soil boring location I04B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.4 Former Dry Well Area (I05)

Four soil samples were collected at soil boring locations I05B01 and E43B02, during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.5 Former Paint Shop (I06)

Four soil samples were collected at soil boring locations I06B01 and I06B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.6 Former Paint Tunnel (I07)

Thirteen soil samples were collected at soil boring locations I07B01, I07B01N8, I07B01S8, I07B01W5, I07B01E8, I07B02, I07B03 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are

presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 Chromium and lead were detected in soil sample I07B01 (3'-5') at concentrations of 2,370 mg/kg and 613 mg/kg, respectively, which exceeded the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

 The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.7 Boiler Room Former Dry Well (I08)

Two soil samples were collected at soil boring location I08B01 the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.8 Former Hammer Shop (I09)

Two soil samples were collected at soil boring location I09B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.9 Paint Shop Former Dry Well (I10)

Two soil samples were collected at soil boring location I10B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.10 Former Paint Shop Booths and Paint Tunnel (I11)

Fourteen soil samples were collected at soil boring locations I11B01, I11B02, I11B03, I11B04, I11B05, I11B06 and I11B07 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.11 Former Alodine Room (I12)

Ten soil samples were collected at soil boring locations I12B01, I12B02, I12B03, I12B04 and I12B05 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.12 Former Downspout Dry Wells (I13)

Four soil samples were collected at soil boring locations I13B01 and I13B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.13 Former Heat Treat Room (I16)

Three soil samples were collected at soil boring location I16B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.14 Former Paint Mixing Room (I17)

Four soil samples were collected at soil boring locations I17B01 and I17B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.15 Material Stock Room (I19)

Two soil samples were collected at soil boring location I19B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3, Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.16 Five Former Machine Pits (I21)

Ten soil samples were collected at soil boring locations I21B01, I21B02, I21B03, I21B04, and I21B05 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.17 **Pump Station "B" (I23)**

Two soil samples were collected at soil boring location I23B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.18 Hallway Adjacent to Former Alodine Room (I26)

Four soil samples were collected at soil boring locations I26B01 and I26B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.19 Air Handling Unit Room (I28)

Two soil samples were collected at soil boring location I28B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.20 Former Storage Building (I30)

Thirty-one soil samples were collected at soil boring locations I30B01, I30B02, I30B03, I30B03N8, I30B03S8, I30B03W8, I30B03E8, I30B03S12, I30B03W12, I30B03E12, I30B04, I30B05, I30B06 and I30B07 during the Phase II Site Assessment field investigation. Soil

samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- Total CaPAHs and total PAHs were detected in soil sample I30B03 (1'-3') at concentrations of 83,820 ug/kg and 186,120 ug/kg, respectively, which exceeded the Plant 1 site-specific criteria. Total CaPAHs, total PAHs and total SVOCs were detected in soil sample I30B03S8 (1'-3') at concentrations of 320,900 ug/kg, 712,300 ug/kg and 712, 460 ug/kg, respectively, which exceeded the Plant 1 site-specific criteria. Total CaPAHs were detected in soil sample I30B03E8 (1'-3') at a concentration of 25,650 ug/kg which exceeded the Plant 1 site-specific criteria.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.21 Refrigeration/Air Conditioning Room (I31)

Four soil samples were collected at soil boring locations I31B01 and I31B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.22 Hangar 1 (I32)

Eight soil samples were collected at soil boring locations I32B01, I32B02, I32B03 and I32B04 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3, C-4, C-5, and C-6 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

• RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

- Glycols
 - Elevated levels of glycols were not detected.
- Pesticides/Herbicides
 - Elevated levels of pesticides/herbicides were not detected.

3.1.23 Storage Area in Office Area East of Hangar 2 (I33)

Two soil samples were collected at soil boring location I33B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.24 "Old" Ejection Pits (I34)

Four soil samples were collected at soil boring locations I34B01 and I34B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.25 Transformer Rooms (I35)

Four soil samples were collected at soil boring locations I35B01 and I35B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Table C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.26 Former Router Room (I36)

Four soil samples were collected at soil boring locations I36B01 and I36B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table

2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.27 <u>Machine Shop (previously referred to as Former Upholstery Room) (137)</u>

Four soil samples were collected at soil boring locations I37B01 and I37B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.28 Boiler Room (I38)

Four soil samples were collected at soil boring locations I38B01 and I38B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.29 Former Facility Maintenance Area (I39)

Four soil samples were collected at soil boring locations I39B01 and I39B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.30 Hangar 2 (I40)

Ten soil samples were collected at soil boring locations I40B01, I40B03, I40B04, I40B05 and I40B06 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3, C-4 and C-5 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Glycols

Elevated levels of glycols were not detected.

3.1.31 Random Locations at Historic Manufacturing Operations (I41)

Ten soil samples were collected at soil boring locations I41B01, I41B02, I41B03, I41B04 and I41B05 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.32 Paint Shop Dry Well in Former Hammer Shop (I42)

Two soil samples were collected at soil boring location I42B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.33 Dry Wells in Former Carpentry Shop (I43)

Nine soil samples were collected at soil boring locations I43B01, I43B01A, I43B02 and I43B02A during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 Chromium and lead were detected in soil sample I43B01 (8'-10') at concentrations of 1,060 mg/kg and 1,470 mg/kg, respectively, which exceeded the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- Total CaPAHs were detected in soil sample I43B02 (13'-15') at a concentration of 10,064 ug/kg which exceeded the Plant 1 site-specific criteria.

3.1.34 Canopy Trim Fixture Drain Hole/Sump Pit (I44)

Two soil samples were collected at soil boring location I44B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.35 Waste Collection Station Adjacent to Canopy Drain/Sump Pit (I45)

Two soil samples were collected at soil boring location I45B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2, C-3 and C-4 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.1.36 Former "Spot Weld Rinse Tank" (In vicinity of column E6) (I46)

Two soil samples were collected at soil boring location I46B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.37 RHIC Magnet Pumping Units (I47)

Four soil samples were collected at soil boring locations I47B01 and I47B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table

2-1. The analytical results are presented on Tables C-1, C-2 and C-3 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.1.38 Pit in Room Adjacent to South Side of Former Carpentry Shop (D17)

Three soil samples were collected at soil boring location D17B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2 Exterior Investigation

As previously discussed, the Phase II Site Assessment exterior investigation activities were conducted at the following areas at the site:

- Former Settling Tanks/Leaching Pools (E01)
- Six Former Leaching Pools (E02)
- Former Heat Treat Drainage Wells (E03)
- Former Dry Well (E04)
- Leaching Pool Area (E06)
- Nine Leaching Pools (E07)
- Former Leaching Field with Twenty Leaching Pools (E08)
- Former Coal Storage Bin (E09)
- Seven Former Leaching Pools (E10)
- Former Dry Well (E12)
- Former Drum Storage Area (E13)
- Existing On-site Recharge Basin (E18)
- Former On-site Recharge Basin (E19)
- Unidentified Pit (E20)
- Former AST and Salvage Area (E21)
- Material Storage Area (E22)
- Former Concrete Sump Pit (E25)
- Location of Former Trichloroethylene Tank (E27)
- Pump Station "A" (E30)
- Catch Basins (Vicinity of Pump House/Water Tank) (E32)
- Former Tank 1111 (Between Hangars 1 and 2) (E33)
- Courtyard Between Hangars 1 and 2 (E34)
- Area West of Hangar 1 (E35)
- Former Drainage Swale (North of Maint. Area) (E36)
- Former Discoloration (Southeast Parking Area) (E37)
- Boiler Room Exterior Former Dry Well (E38)
- Dry Well Outside Former Facility Maintenance Area (E39)
- Dry Well Outside Former Paint Tunnel (E41)
- Unidentified Pit Outside Boiler Room (E42)
- Former 2,000 Gal Gas USTs (4) South of Refrig./AC Room (E43)
- Former Gas Pump House South of Refrig./AC Room (E44)
- Fill Material Within Abandoned Leaching Pools
- LIPA Pit/Sump (D14)
- Square Ejector Pit North of Recharge Basin (D15)

An area-by-area discussion of the Phase II Site Assessment exterior investigation activity findings is presented below.

3.2.1 Former Settling Tanks/Leaching Pools (E01)

Twenty-six soil samples were collected at soil boring locations E01B01, E01B02, E01B03, E01B04, E01B05, E01B06, E01B07, E01B08, E01B09, E01B11, E01B12, E01B13 and E01B14 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.2 Six Former Leaching Pools (E02)

Eight soil samples were collected at soil boring locations E02B01, E02B02, E02B03 and E02B04 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.3 Former Heat Treat Drainage Wells (E03)

Four soil samples were collected at soil boring locations E03B01 and E01B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.4 Former Dry Well (E04)

Two soil samples were collected at soil boring location E04B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.5 <u>Leaching Pool Area (E06)</u>

Fourteen soil samples were collected at soil boring locations E06B01, E06B02, E06B03, E06B04, E06B05, E06B06 and E06B09 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.6 Nine Leaching Pools (E07)

Twenty-six soil samples were collected at soil boring locations E07B01, E07B02, E07B03, E07B04, E07B05, E07B06, E07B07, E07B09, E07B10, E07B11, E07B12, E07B13 and E07B14 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.7 Former Leaching Field with Twenty Leaching Pools (E08)

Twenty-six soil samples were collected at soil boring locations E08B01, E08B02, E08B03, E08B04, E08B05, E08B06, E08B07, E08B08, E08B09, E08B10, E08B11, E08B12 and E08B14 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.8 Former Coal Storage Bin (E09)

Two soil samples were collected at soil boring location E09B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- Lead was detected in soil sample E09B01 (0'-2') at a concentration of 834 mg/kg which exceeded the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.9 Seven Former Leaching Pools (E10)

Fourteen soil samples were collected at soil boring locations E10B01, E10B02, E10B03, E10B04, E10B05, E10B06 and E10B07 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.10 Former Dry Well (E12)

Two soil samples were collected at soil boring location E12B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.11 Former Drum Storage Area (E13)

Twenty soil samples were collected at soil boring locations E13B01, E13B02, E13B02N5, E13B02S5, E13B02W8, E13B02E8, E13B02NE10, E13B02NE20, E13B02W12 and E13B02E12 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- Total CaPAHs were detected in soil sample E13B02 (0'-2') at a concentration of 30,420 ug/kg which exceeded the Plant 1 site-specific criteria.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.12 Existing On-site Recharge Basin (E18)

Four soil samples were collected at soil boring locations E18B01 and E18B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.13 Former On-site Recharge Basin (E19)

Two soil samples were collected at soil boring location E19B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.14 Unidentified Pit (E20)

Two soil samples were collected at soil boring location E20B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.15 Former AST and Salvage Area (E21)

Ten soil samples were collected at soil boring locations E21B01, E21B02, E21B03, E21B04 and E21B05 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.16 Material Storage Area (E22)

Eight soil samples were collected at soil boring locations E22B01, E22B02, E22B03 and E22B04 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9, C-10 and C-11 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Glycols

Elevated levels of glycols were not detected.

3.2.17 Former Concrete Sump Pit (E25)

Two soil samples were collected at soil boring location E25B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9, C-10 and C-11 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Glycols

- Elevated levels of glycols were not detected.

3.2.18 Location of Former Trichloroethylene Tank (E27)

Two soil samples were collected at soil boring location E27B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Table C-8 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.19 Pump Station "A" (E30)

Two soil samples were collected at soil boring location E30B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.20 Catch Basins (Vicinity of Pump House/Water Tank) (E32)

Four soil samples were collected at soil boring locations E32B01 and E32B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.21 Former Tank 1111 (Between Hangars 1 and 2) (E33)

Two soil samples were collected at soil boring location E33B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Volatile Organic Compounds
 - VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.22 Courtyard Between Hangars 1 and 2 (E34)

Eight soil samples were collected at soil boring locations E34B01, E34B02, E34B03 and E34B04 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9, C-10 and C-11 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Glycols

Elevated levels of glycols were not detected.

3.2.23 Area West of Hangar 1 (E35)

Four soil samples were collected at soil boring locations E35B01 and E35B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.24 Former Drainage Swale (North of Maint. Area) (E36)

Four soil samples were collected at soil boring locations E36B01 and E36B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- Total PCBs were detected at a concentration of 13,000 ug/kg in soil sample E36B02 (3'-5') which exceeded the Plant 1 site-specific criteria.

3.2.25 Former Discoloration (Southeast Parking Area) (E37)

Four soil samples were collected at soil boring locations E37B01 and E37B02 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.26 Boiler Room Exterior Former Dry Well (E38)

Two soil samples were collected at soil boring location E38B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.27 Dry Well Outside Former Facility Maintenance Area (E39)

Two soil samples were collected at soil boring location E39B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.28 Dry Well Outside Former Paint Tunnel (E41)

Two soil samples were collected at soil boring location E41B01 the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.29 Unidentified Pit Outside Boiler Room (E42)

Two soil samples were collected at soil boring location E42B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8, C-9 and C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

- VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

PCBs

 PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.30 Former 2,000 Gallon Gas USTs (4) South of Refrig./AC Room (E43)

Two soil samples were collected at soil boring location E43B01 the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.31 Former Gas Pump House South of Refrig./AC Room (E44)

Two soil samples were collected at soil boring location E44B01 the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7, C-8 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

 RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.

Volatile Organic Compounds

 VOCs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

• Semivolatile Organic Compounds

- The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.32 Fill Material Within Abandoned Leaching Pools

Three soil samples were collected at soil boring locations E01B05, E07B11 and E08B09 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Table C-10 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

PCBs

- PCBs were not detected at concentrations exceeding the Plant 1 site-specific criteria.

3.2.33 LIPA Pit/Sump (D14)

Three soil samples were collected at soil boring location D14B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- RCRA metals were not detected at concentrations exceeding the Plant 1 sitespecific criteria.
- Semivolatile Organic Compounds
 - The Plant 1 site-specific criteria for *total* CaPAHs, *total* PAHs and *total* SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.2.34 Square Ejector Pit North of Recharge Basin (D15)

Five soil samples were collected at soil boring location D15B01 during the Phase II Site Assessment field investigation. Soil samples were analyzed as described on Table 2-2. The analytical results are presented on Tables C-7 and C-9 in Appendix C. Exceedances of the Plant 1 site-specific criteria are summarized below:

RCRA Metals

- Chromium was detected at a concentration of 584 mg/kg in soil sample D15B01 (19'-21') which exceeded the Plant 1 site-specific criteria.

Semivolatile Organic Compounds

The Plant 1 site-specific criteria for total CaPAHs, total PAHs and total SVOCs of 10,000 ug/kg, 100,000 ug/kg and 500,000 ug/kg were not exceeded.

3.3 Groundwater Investigation

As previously discussed in Section 2, four shallow groundwater monitoring wells (PLT1MW-01, 02, 03, and 04) were installed at the Plant 1 site to determine whether shallow groundwater has been impacted. In addition, groundwater samples were collected from two existing monitoring wells (PLT1GM-14 and PIT-INFFTMWD) and analyzed as part of the Phase II Site Assessment. The groundwater samples listed above were analyzed for RCRA metals (Methods 6010/7471), VOCs (Method 8260), SVOCs (Method 8270), and PCBs (Method 8082). Due to elevated turbidity levels of monitoring wells PLT1MW-01 and PLT1GM-14, the laboratory filtered and conducted dissolved metals analysis for groundwater samples collected from these wells. Groundwater sample PLT1GM-14 was only analyzed for dissolved and undissolved RCRA metals due to the fact that this well had been recently sampled as part of a separate investigation. The analytical results of the groundwater sample are presented on Tables C-12 through C-15 in Appendix C and are summarized as follows:

RCRA Metals

- RCRA metals were not detected above NYSDEC Class GA groundwater standards/guidance values for the dissolved and undissolved analyses.

VOCs

 VOCs were not detected above NYSDEC Class GA groundwater standards/ guidance values.

SVOCs

 SVOCs were not detected above NYSDEC Class GA groundwater standards/ guidance values.

PCBs

 Total PCBs were not detected above NYSDEC Class GA groundwater standards/ guidance values.

3.4 Data Validation

Soil and water samples were collected as part of the site investigation at the Northrop Grumman Plant 1 site. The samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), PCBs, pesticides, glycols and/or RCRA metals, depending on sample location. All sample analyses were performed by Chemtech Consulting Group Inc., a subcontractor Dvirka and Bartilucci Consulting Engineers. Chemtech performed the sample analyses in accordance with USEPA SW-846 – Methodologies and NYSDEC Analytical Services Protocol (ASP) Quality Assurance/Quality Control (QA/QC) requirements.

The data packages submitted by Chemtech have been reviewed for contractual compliance and completeness. Twenty percent of the analytical results have been reviewed for calculation and transcription errors to yield a "20 percent validation" as stipulated in the work plan. The findings of the validation process are summarized below.

All sample analyses were performed within the method specified holding times.

Several samples required reanalysis due to surrogate recoveries and/or internal standard area counts being outside QC limits. Both sets of data were reviewed and the results for the most compliant set were placed on the data summary tables to be used for environmental assessment purposes.

Reanalysis of several samples at secondary dilutions was required due to compound concentrations exceeding the instrument calibration range. The results taken from the diluted runs have been flagged "D" on the data summary tables.

No problems were found with the sample results. All results have been deemed valid and usable for environmental assessment purposes.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based upon the findings of the Phase II Site Assessment field investigation program discussed in Sections 3, conclusions and recommendations are presented in this section regarding the need for further investigation or remediation activities, if necessary, at the Plant 1 property.

As previously stated in Section 3, the analytical results of the Phase II Site Assessment were compared to site-specific criteria that were developed for the Plant 1 site, consistent with previous investigations at Plants 5 and 12. The technical rationale for the development and implementation of the Plant 1 site-specific criteria is summarized in a document entitled "Non-UIC Remediation Plan - Plant 1," dated May 2001.

Conclusions and recommendations for no further action, additional investigation and/or remediation activities at areas of environmental concern are presented in Sections 4.1, 4.2 and 4.3. A summary of recommendations for additional investigation or remediation are shown in Table 4-1. Areas of concern which are recommended for additional investigation or remediation are illustrated in Figure 4-1.

4.1 Interior Investigation

4.1.1 Former Paint Spray Room (I02)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.2 Former Paint Storage Room (I03)

Northrop Grumman Corporation

Plant 1

PHASE II SITE ASSESSMENT SUMMARY OF RECOMMENDATIONS

			Additional Sampling and Analysis			Remediation		
Areas of Concern (AOCs)	Initial Boring Location	Drawing No.	Number of Soil Borings	Number of Soil Samples	Description	Area of Excavation	Depth of Excavation	Endpoint Sample Analysis and Method
Former Paint Tunnel	I07B01	4-2				130 square feet 80 square feet	0 to 3 feet bgs 0 to 5 feet bgs	
Former Storage Building	I30B03	4-3				400 square feet	0 to 3 feet bgs	
Dry Well in Former Carpentry Shop	I43B01	4-4				8 foot diameter	from 8 to 10 feet bgs	
	I43B02	4-4			-	8 foot diameter	from 13 to 15 feet bgs	
Former Coal Storage Bin	E09B01	4-5	4	11	Advance boring adjacent to E09B01 and collect soil samples from 2 to 6 feet bgs for lead analysis Advance 3 borings 5 feet north, east and west to 6 feet bgs. Collect soil samples from 0 to 6 feet bgs for lead analysis.			_
Former Drum Storage Area	E13B02	4-6				144 square feet	0 to 2 feet bgs	
Former Drainage Swale (North of Maintenance Area)	E36B02	4-7	5	33	Advance boring adjacent to E36B02 and collect soil samples from 5 to 15 feet bgs for PCBs analysis. Advance 4 borings 5 feet north, south, east and west to 15 feet bgs. Collect soil samples from 1 to 15 feet bgs for PCBs analysis.			
Square Ejector Pit North of Recharge Basin	D15B01	4-8	8	63	Advance one boring adjacent to boring D15B01 to a depth of 31 feet and collect samples from 21 to 31 feet for chromium analysis. Advance three borings eight feet north, eight feet east and 10 feet northwest of boring D15B01 to a depth of 30 feet and collect samples form 10 to 30 feet for chromium analysis. Advance two borings along west and south pit wall to 30 feet and collect samples from 10 to 30 feet for chromium analysis. Advance two borings within the pit to 8 feet and collect samples for chromium analysis.		<u>-</u> -	

Notes:

bgs: below ground surface.

--: Not applicable.

G \APostyn\NGC\Plant I\Non-UIC Phase II\Non-UIC Summary of Recomm xls

4.1.3 Former Storage Building Former Dry Wells (I04)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.4 Former Dry Well Area (I05)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.5 Former Paint Shop (I06)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.6 Former Paint Tunnel (I07)

As discussed in Section 3, chromium and lead were detected in soil sample I07B01 (3'-5') at concentrations of 2,370 mg/kg and 613 mg/kg, respectively, which exceeded the Plant 1 site-specific criteria. Consequently, remediation is warranted in the vicinity of soil boring location I07B01. The vertical and horizontal extent of soil excavation for proper off-site transportation and disposal is shown on Figure 4-2.

4.1.7 <u>Boiler Room Former Dry Well (I08)</u>

4.1.8 Former Hammer Shop (109)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.9 Paint Shop Former Dry Well (I10)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.10 Former Paint Shop Booths and Paint Tunnel (I11)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.11 Former Alodine Room (I12)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.12 Former Downspout Dry Wells (I13)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.13 Former Heat Treat Room (I16)

4.1.14 Former Paint Mixing Room (I17)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.15 Material Stock Room (I19)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.16 Five Former Machine Pits (I21)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.17 Pump Station "B" (I23)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.18 Hallway Adjacent to Former Alodine Room (I26)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.19 Air Handling Unit Room (I28)

4.1.20 Former Storage Building (I30)

As discussed in Section 3, *total* CaPAHs and *total* PAHs were detected in soil sample I30B03 (1'-3') at concentrations of 83,820 ug/kg and 186,120 ug/kg, respectively which exceeded the Plant 1 site specific criteria. *Total* CaPAHs, *total* PAHs and *total* SVOCs were also detected in soil sample I30B03S8 (1'-3') at concentrations of 320,900 ug/kg, 712,300 ug/kg and 712, 460 ug/kg, respectively which exceeded the Plant 1 site specific criteria. In addition, *total* CaPAHs were detected in soil sample I30B03E8 (1'-3') at a concentration of 25,650 ug/kg which exceeded the Plant 1 site specific criteria. Consequently, remediation is warranted in the vicinity of soil boring locations I30B03, I30B03S8 and I30B03E8. The vertical and horizontal extent of soil excavation for proper off-site transportation and disposal is shown on Figure 4-3.

4.1.21 Refrigeration/Air Conditioning Room (I31)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.22 Hangar 1 (I32)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.23 Storage Area in Office Area East of Hangar 2 (133)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.24 "Old" Ejection Pits (I34)

4.1.25 <u>Transformer Rooms (I35)</u>

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.26 Former Router Room (I36)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.27 <u>Machine Shop (previously referred to as Former Upholstery Room) (I37)</u>

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.28 **Boiler Room (I38)**

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.29 Former Facility Maintenance Area (I39)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.30 Hangar 2 (I40)

4.1.31 Random Locations of Historic Manufacturing Operations (I41)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.32 Paint Shop Dry Well in Former Hammer Shop (I42)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.33 Dry Wells in Former Carpentry Shop (I43)

As discussed in Section 3, chromium and lead were detected in soil sample I43B01 (8'-10') at concentrations of 1,060 mg/kg and 1,470 mg/kg, respectively which exceeded the Plant 1 site-specific criteria. In addition, *total* CaPAHs were detected in soil sample I43B02 (13'-15') at a concentration of 10,064 ug/kg which exceeded the Plant 1 site specific criteria. Consequently, remediation is warranted in the vicinity of soil boring locations I43B01 and I43B02. The vertical and horizontal extent of soil excavation for proper off-site transportation and disposal is shown on Figure 4-4. It should be noted that dry wells I43B01 and I43B02 are backfilled to grade. Therefore, it has been assumed that the overburden material will be excavated and stockpiled for re-use as backfill material. The impacted soil from 8 to 10 feet bgs and 13 to 15 feet for dry wells I43B01 and I43B02, respectively, will be excavated for proper off-site transportation and disposal.

4.1.34 Canopy Trim Fixture Drain Hole/Sump Pit (I44)

. 10

· a,

•

•

· .

4.1.35 Waste Collection Station Adjacent to Canopy Drain/Sump Pit (I45)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.36 Former "Spot Weld Rinse Tank" (In vicinity of column E6) (I46)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.37 RHIC Magnet Pumping Units (I47)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.1.38 Pit in Room Adjacent to South Side of Former Carpentry Shop (D17)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2 Exterior Investigation

4.2.1 Former Settling Tanks/Leaching Pools (E01)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.2 Six Former Leaching Pools (E02)

4.2.3 Former Heat Treat Drainage Wells (E03)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.4 Former Dry Well (E04)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.5 Leaching Pool Area (E06)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.6 Nine Leaching Pools (E07)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.7 Former Leaching Field with Twenty Leaching Pools (E08)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.8 Former Coal Storage Bin (E09)

As discussed in Section 3, lead was detected in soil sample E09B01 (0'-2') at a concentration of 834 mg/kg which exceeded the Plant 1 site-specific criteria. However, the horizontal and vertical extent of impacted soil has not been fully determined. Consequently,

further sampling and analysis is warranted. It is therefore recommended to advance one soil boring immediately adjacent to soil boring E09B01 to a depth of 6 feet below grade. Continuous 2-foot soil samples should be collected from the 2 to 6-foot interval for lead analysis by Method 6010. In addition, it is recommended to advance three soil borings 5 feet north, east and west of soil boring E09B01 to a depth of 6 feet below grade. Continuous 2-foot soil samples should be collected from each these three soil borings for lead analysis by Method 6010. The recommended soil sample locations for AOC E09 are shown on Figure 4-5.

4.2.9 Seven Former Leaching Pools (E10)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.10 Former Dry Well (E12)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.11 Former Drum Storage Area (E13)

As discussed in Section 3, *total* CaPAHs were detected in soil sample E13B02 (0'-2') at a concentration of 30,420 ug/kg which exceeded the Plant 1 site specific criteria. Consequently, remediation is warranted in the vicinity of soil boring location E13B02. The vertical and horizontal extent of soil excavation for proper off-site transportation and disposal is shown on Figure 4-6.

4.2.12 Existing On-site Recharge Basin (E18)

LEGEND

E09B01 ● PHASE II SOIL BORING

E09B01A ◆ RECOMMENDED SOIL BORING

NORTHROP GRUMMAN CORPORATION BETHPAGE NEW YORK PLANT 1

4.2.13 Former On-site Recharge Basin (E19)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.14 Unidentified Pit (E20)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.15 Former AST and Salvage Area (E21)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.16 Material Storage Area (E22)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.17 Former Concrete Sump Pit (E25)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.18 Location of Former Trichloroethylene Tank (E27)

4.2.19 Pump Station "A" (E30)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.20 Catch Basins (Vicinity of Pump House/Water Tank) (E32)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.21 Former Tank 1111 (Between Hangars 1 and 2) (E33)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.22 Courtyard Between Hangars 1 and 2 (E34)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.23 Area West of Hangar 1 (E35)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.24 Former Drainage Swale (North of Maint. Area) (E36)

As discussed in Section 3, *total* PCBs were detected at a concentration of 13,000 ug/kg in soil sample E36B02 (3'-5') which exceeded the Plant 1 site-specific criteria. However, the horizontal and vertical extent of impacted soil has not been fully determined. Consequently, further sampling and analysis is warranted. It is therefore recommended to advance one soil

boring immediately adjacent to soil boring E36B02 to a depth of 15 feet below grade. Continuous 2-foot soil samples should be collected from the 5 to 15-foot interval for PCBs analysis by Method 8082. In addition, it is recommended to advance four soil borings 5 feet north, south, east and west of soil boring E36B02 to a depth of 15 feet below grade. Continuous 2-foot soil samples should be collected from 1 to 15 feet from each these four soil borings for PCBs analysis by Method 8082. The recommended soil sample locations for AOC E36B02 are shown on Figure 4-7.

4.2.25 Former Discoloration (Southeast Parking Area) (E37)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.26 <u>Boiler Room Exterior Former Dry Well (E38)</u>

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.27 Dry Well Outside Former Facility Maintenance Area (E39)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.28 Dry Well Outside Former Paint Tunnel (E41)

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

NORTHROP GRUMMAN CORPORATION
BETHPAGE NEW YORK
PLANT 1

RECOMMENDATION FOR ADDITIONAL INVESTIGATION
FORMER DRAINAGE SWALE

4.2.29 <u>Unidentified Pit Outside Boiler Room (E42)</u>

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.30 Former 2,000 Gal Gas USTs (4) South of Refrig./AC Room (E43)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.31 Former Gas Pump House South of Refrig./AC Room (E44)

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.32 Fill Material Within Abandoned Leaching Pools

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.33 <u>LIPA Pit/Sump (D14)</u>

Based on the results of the Phase II Site Assessment, it appears that further investigation or remediation is not warranted.

4.2.34 Square Ejector Pit North of Recharge Basin (D15)

As discussed in Section 3, chromium was detected at a concentration of 584 mg/kg in soil sample D15B01 (19'-21') which exceeded the Plant 1 site-specific criteria. However, the horizontal and vertical extent of impacted soil has not been fully determined. Consequently, further sampling and analysis is warranted. It is therefore recommended to advance one soil

boring immediately adjacent to soil boring D15B01 to a depth of 31 feet below grade. Continuous 2-foot soil samples should be collected from the 21 to 31-foot interval for chromium analysis by Method 6010. In addition, it is recommended to advance three soil borings 8 feet north, 8 feet east and 10 feet northwest of soil boring E36B02 to a depth of 30 feet below grade. Continuous 2-foot soil samples should be collected from 10 to 30 feet from each these three soil borings for chromium analysis by Method 6010. It is also recommended to advance a soil boring adjacent to the west and south walls of the ejector pit to a depth of 30 feet. Continuous 2-foot soil samples should be collected from 10 to 30 feet from each these soil borings for chromium analysis by Method 6010.

Since soil samples have not been previously collected from beneath the ejector pit, it is recommended to pump out all liquid and sludge from the pit to facilitate sampling. Two soil borings should be advanced through the bottom of the pit, at locations to be determined in the field, to a depth of approximately 8 feet. Continuous 2-foot soil samples should be collected from 0 to 8 feet below the bottom of the pit from each these soil borings for chromium analysis by Method 6010. All recommended soil sample locations for AOC D15B01 are shown on Figure 4-8.

4.3 Groundwater Investigation

As previously discussed in Section 3, four shallow groundwater monitoring wells (PLT1MW-01, 02, 03, and 04) were installed at the Plant 1 site to determine whether shallow groundwater has been impacted. In addition, groundwater samples were collected from two existing monitoring wells (PLT1GM-14 and PIT-INFFTMWD) and analyzed as part of the Phase II Site Assessment. The groundwater samples listed above were analyzed for RCRA metals (Methods 6010/7471), VOCs (Method 8260), SVOCs (Method 8270), and PCBs (Method 8082). Due to elevated turbidity levels of monitoring wells PLT1MW-01 and PLT1GM-14, the laboratory filtered and conducted dissolved metals analysis for groundwater samples collected from these wells. Groundwater sample PLT1GM-14 was analyzed for dissolved and undissolved RCRA metals due to the fact that this well had been recently sampled as part of a separate investigation. The analytical groundwater results presented in Section 3 did not indicate

Dvirka and Bartilucci
Consulting Engineers
A Division of William F. Cosulich Associates, P.C.

NORTHROP GRUMAN CORPORATION
BETHPAGE NEW YORK
PLANT 1
RECOMMENDATION FOR ADDITIONAL INVESTIGATION
SQUARE EJECTOR PIT NORTH OF RECHARGE BASIN

any exceedances of the NYSDEC Class GA groundwater standards/guidance values. As a result, further investigation or remediation with respect to groundwater at the Plant 1 site does not appear to be warranted at this time.

APPENDIX A

GEOPHYSICAL SURVEYS

Subsurface Geophysical Surveys

GPR
MAGNETICS
ELECTROMAGNETICS
SEISMICS
RESISTIVITY
UTILITY LOCATION
BOREHOLE LOGGING
BOREHOLE CAMERA
STAFF SUPPORT

Results of Geophysical Investigation

Portions of a Northrop Grumman Corporation Facility: Plant 1 South Oyster Bay Road Bethpage, New York

Prepared for: Dvirka and Bartilucci Consulting Engineers

Woodbury, New York

Date of Investigation: September 18 through 20, 2000

Prepared by:

Mark E. Weis Project Manager

NAEVA Geophysics, Inc.

50 North Harrison Avenue, Suite 11

Congers, NY 10920

NEW YORK

P.O. Box 576 Tappan New York 10983 (914) 268-1800 (914) 268-1802 Fax

VIRGINIA

P.O. Box 7325 Charlottesville Virginia 22906 (804) 978-3187 (804) 973-9791 Fax

Contents

Introduction	
Methods	
Results	
Figure 1	Areas of Geophysical Investigation at Environmental Areas Of Concern E1, E2, and E3, Northrop Grumman Plant 1, Bethpage New York
Figure 2	Area of Geophysical Investigation at Environmental Area Of Concern E4, Northrop Grumman Plant 1, Bethpage, New York
Figure 3	Area of Geophysical Investigation at Environmental Area Of Concern E6, Northrop Grumman Plant 1, Bethpage, New York
Figure 4	Area of Geophysical Investigation at Environmental Area Of Concern E7, Northrop Grumman Plant 1, Bethpage, New York
Figure 5	Area of Geophysical Investigation at Environmental Area Of Concern E8, Northrop Grumman Plant 1, Bethpage, New York
Figure 6	Area of Geophysical Investigation at Environmental Area Of Concern E10, Northrop Grumman Plant 1, Bethpage, New York
Figure 7	Area of Geophysical Investigation at Environmental Area Of Concern E12, Northrop Grumman Plant 1, Bethpage, New York
Figure 8	Area of Geophysical Investigation at Environmental Area Of Concern E25, Northrop Grumman Plant 1, Bethpage, New York
Figure 9	Area of Geophysical Investigation at Environmental Area Of Concern E28, Northrop Grumman Plant 1, Bethpage, New York

Results of Geophysical Investigation Portions of a Northrop Grumman Facility: Plant 1 South Oyster Bay Road Bethpage, New York

Introduction

On September 18 through 20, 2000, NAEVA Geophysics Inc. conducted geophysical investigations on 11 portions of the Northrop Grumman facility located in Bethpage, New York. The purpose of these investigations was to locate detectable subsurface features such as leaching pools, dry wells, sumps and settling tanks, and underground storage tanks (USTs) that were suspected of being present at the site. The areas of concern and their associated suspected subsurface targets, as outlined by the Dvirka and Bartilucci site representative, are listed below.

- E1 Former settling tanks/leaching pools
- **E2** Six former leaching pools
- E3 Four former heat treat drainage wells
- **E4** Former dry well
- **E6** Leaching pool area
- E7 Nine leaching pools
- E8 Former leaching field with 20 leaching pools
- **E10** Seven former leaching pools
- E12 Former dry well
- E25 Former concrete sump pit
- **E28** Boiler room UST

Methods

The equipment selected for this investigation included: a Fisher TW-6 Pipe and Cable Locator (a type of electromagnetic metal-detector) and a GSSI SIR-3 ground penetrating radar (GPR) system with a 300 MHz antenna.

Each Area of Concern (AOC) that was not paved with reinforced concrete was initially investigated using the TW-6. The instrument was carried over the areas in a series of closely spaced parallel traverses to identify buried metallic objects that could represent metal or reinforced concrete features such as manhole covers, foundations, or the suspected UST.

Surface conditions permitting, GPR was used to investigate each metaldetector anomaly in an attempt to better characterize its source. GPR data was collected along traverses centered over the anomalies. In AOCs where no metal-detector anomalies were found, as well as those areas paved with reinforced concrete (where the metal-detector can not be used), GPR data profiles were collected over a grid of parallel lines spaced 3 to 5 feet apart covering all accessible portions of the AOC. The data profiles were then examined for evidence of reflections that could be interpreted as being caused by the expected targets in each AOC.

Each detected feature was marked-out on the ground using florescent pink spray paint, and in non-paved areas, pin flags. The locations of subsurface features were measured from permanent aboveground features and used to produce scaled site maps for each AOC (see Figures 1 through 9).

Results

The results for each AOC are discussed separately below. In all discussions, compass directions are relative to Site North, which is approximately 45 degrees east of True North. GPR depth of penetration throughout the area of investigation was estimated to be approximately 3 to 4 feet in soil covered and asphalt-paved areas and less than 2 feet in areas paved with reinforced concrete.

E 1 Eight leaching pools and a large approximately 45 by 47-foot former settling tank were identified at this site. Two additional leaching pools, whose expected locations were obscured by metallic surface debris, probably also exist. An 8 by 19-foot rectangular subsurface vault, which may be part of an in-use sewer system, is located east of the former settling tank, outside of the AOC.

The reported system layout for the leaching pools in this AOC was two north/south lines about 30 feet apart, each comprised of five leaching pools. The lids to the southernmost leaching pools of each line (E1-1 and E1-2) are exposed at the surface. Three buried leaching pool covers were delineated, at intervals of approximately 30 feet, north of each of these two exposed covers. The western line of pools is located roughly 3 feet east of the property line fence. A steel plate covers the expected location of the northeastern leaching pool E1-10. A Northrop Grumman employee stated that this plate covers a sinkhole. It is surmised that the sinkhole may represent a collapsed leaching pool. No metal lid was detected at E1-9, the expected location of the northwest leaching pool; however, the site was covered by metal signs and a stack of cast iron catch basin grates, which limited our investigative efforts.

E 2 The apparent lids to four suspected leaching pools were identified beneath the asphalt at this site. Two additional leaching pools may also exist. Three of these buried covers (labeled E2-1 through E2-3 on the site map) are located in an east/west row spaced about 25 feet apart, 5 feet south of the AOC. The fourth suspected lid is in the western portion of the AOC, about 20 feet south of the fence. The GPR data profiles collected over each of these four anomalies showed flat metallic objects within 2 feet of the surface.

A circular blemish in the asphalt surface at location E2-5 correlates to the expected location of a reported leaching pool. The metal-detector gave no indication of a buried manhole cover at this location. The GPR data profile collected over this area showed evidence of a subsurface structure, but gave no conclusive evidence as to its identity.

Anomaly E2-6 correlates to the expected location of a sixth leaching pool. The metal-detector gave a very weak response at this location, however this response may be associated with subsurface electric lines that traverse this site. The GPR data profiles collected over this area detected the electric lines, but showed no evidence of a subsurface structure.

- E 3 One suspected manhole cover was identified beneath the asphalt within the borders of this AOC. In addition, three metal-detector anomalies were identified south of the AOC. The suspected manhole cover (E3-1) is indicated by a circular patch in the asphalt adjacent to the curb line near the center of the AOC. The three metal-detector anomalies (labeled E3-2 through E3-4 on the site map) are located between 5 and 30 feet south of the AOC. The GPR data profiles collected over anomalies E3-2 and E3-3 showed flat metallic objects within 2 feet of the surface. The GPR data profiles collected over E3-3 gave no indications as to the source of this anomaly. This anomaly elicited a much smaller response from the metal-detector than the other anomalies did.
- E 4 NAEVA found no evidence of the former dry well that was suspected to exist at this location. The metal-detector gave no indications of buried metallic dry well covers. The GPR data profiles, which were collected at a 3-foot line spacing across this AOC, showed no anomalous reflective images that could be interpreted as be caused by a dry well.
- E 6 Using GPR, four possible abandoned leaching pools were identified beneath the asphalt at this site. The four anomalies are located, along with two storm drain associated dry wells, in an east/west row

spaced roughly 20 feet apart, approximately 20 feet south of the building. A storm drain line runs across these anomalies and through the two storm drain manholes. This linear arrangement suggests that the two storm drain dry wells may have originally been part of the leaching pool system.

The TW-6 detected buried metal at only the eastern anomaly. The GPR data profiles, which were collected over the AOC at a 5-foot line spacing, confirmed a shallow metallic object at the center of the eastern anomaly and showed evidence of disturbed soil or possible subsurface structures at each of the three western anomalies.

E 7 The apparent lids to 13 suspected leaching pools were identified beneath the asphalt within this AOC. An 8 by 8-foot rectangular metal-detector anomaly that may represent an abandoned settling tank was also identified.

The GPR data profiles collected over the 13 suspected leaching pools showed flat metallic objects believed to be steel leaching pool lids just below the asphalt surface at each location. The GPR data profiles collected over the possible settling tank gave no further information as to the nature of this anomaly. Similarly, the GPR gave no significant insight into the cause of an irregularly shaped metal-detector anomaly located at the northern entrance to the parking lot. Based upon the TW-6's response, it is believed that this anomaly is probably caused by buried metallic debris.

E 8 NAEVA found no evidence of the 20 former leaching pools that were suspected to exist within this AOC. The metal-detector gave no indications of buried metallic dry well covers. The GPR data profiles, which were collected at a 3-foot line spacing in the courtyard portion of this AOC and a 5-foot line spacing in the parking lot portion, showed no anomalous reflective images that could be interpreted as being caused by leaching pools. GPR data was not collected over the active roadway portion of this AOC due to safety concerns.

E 10 This AOC was divided into two portions, one on either side of the elevated walkway that crosses the site. A former septic tank and leach pool were expected in the eastern portion of the AOC and six former leaching pools were expected in the western portion.

Seven metal-detector anomalies were identified beneath the grass within the borders of the eastern portion of this AOC, however, only two of these anomalies, E10-1 and E10-2, coincide with the expected locations of the

suspected former septic tank and leaching pool. The GPR data profiles collected over the seven anomalies showed evidence of buried metallic objects but gave no indications as to the character of the anomalies. Anomaly E10-7 elicited a much smaller response from the metal-detector than the other anomalies did.

No evidence of the six pools suspected to exist in the western portion of the AOC was seen. The TW-6 indicated the presence of one buried metallic object in the northeast corner of this portion of the AOC, but the apparent linear nature of this anomaly is more consistent with buried metallic debris than with a leaching pool. The GPR data profiles, which were collected east/west at a 5-foot line spacing across this area, showed no anomalous reflective images that could be interpreted as be caused by leaching pools.

E 12 NAEVA found no evidence of a former dry well within this AOC. The metal-detector gave no indications of buried metallic dry well covers. The GPR data profiles, which were collected at a 5-foot line spacing across the AOC, showed no anomalous reflective images that could be interpreted as be caused by a dry well. It should be noted that the lid to a dry well is exposed at the surface just outside of the area of investigation, 6 feet north of the AOC's northeast corner.

E 25 NAEVA found no evidence of the concrete sump pit that was suspected to exist at this location, however site conditions severely impacted our investigation. The reinforced concrete pavement prevented the use of the metal-detector and limited the GPR's depth of penetration to less than 1-foot.

E 28 NAEVA found no evidence of an abandoned UST within this AOC. The metal-detector gave no indications of large buried metallic objects. The GPR data profiles, which were collected at a 4-foot line spacing both north/south and east/west across the AOC, showed no hyperbolic reflections typically indicative of an underground storage tank.

Former product and return lines, which were exposed at the base of the generator located inside the boiler room, were traced using a utility locating instrument. These lines both exit the west side of the building above grade. This would tend to indicate that the tank associated with these lines would have been above ground.

A vault and a vent pipe were noted adjacent to the building, about 5 feet east of the AOC, but stored materials blocked access to them. The relatively large diameter of the vent pipe suggests that they may be associated with a sewer system rather than the suspected UST.

Figure 2 - Area of Geophysical Investigation at Environmental Area Of Concern E4,
Northrop Grumman Plant 1,
Bethpage, New York.

BUILDING

Scale: One inch equals approximately ten feet

NAEVA Geophysics Project No. C0009181W Dates of Investigation: September 18 - 20, 2000 Map by Clay McMullen

EXPLANATION

----- Ground Penetrating Radar Data Profiles

Area Of Concern

Figure 3. - Area of Geophysical Investigation at Environmental Area Of Concern E6,
Northrop Grumman Plant 1,
Bethpage, New York.

Scale: One inch equals approximately twenty feet

NAEVA Geophysics Project No. C0009181W Dates of Investigation: September 18 - 20, 2000 Map by Clay McMullen

EXPLANATION

-minimism	Area of concern
	Ground Penetrating Radar Data Profiles
	Guardrail
2	Possible Leaching Pools
	Fire Hydrant
Ħ	Catch Basin and Dry Well
	Manhole to Storm Drain Dry Well

Figure 4. - Area of Geophysical Investigation at Environmental Area Of Concern E7,
Northrop Grumman Plant 1,
Bethpage, New York.

Scale: One inch equals approximately twenty feet

NAEVA Geophysics Project No. C0009181W Dates of Investigation: September 18 - 20, 2000 Map by Clay McMullen

EXPLANATION

- Suspected Leach Pool
- Guardrail

0 10 20 30 ft Scale. One inch equals approximately thirty feet

NAEVA Geophysics Project No. C0009181W Date of Investigation: September 18 - 20th, 2000 Map by Clay McMullen

EXPLANATION

- Fire Hydrant
- Manhole
- Area of Geophysical Investigation

Figure 5 - Area of Geophysical Investigation at Environmental Area Of Concern E8,
Northrop Grumman Plant 1,
Bethpage, New York.

BUILDING

0 10 20 it

NAEVA Geophysics Project No. C0009181W Date of Investigation: September 18 - 20, 2000 Map by Clay McMullen

EXPLANATION

- ----> Ground Penetrating Radar Profiles
- Area of Geophysical Investigation
- Sewer Manhole Cover
- Metal Detector Anomaly
- ☐ Footings for Overhead Walkway

Figure 6 - Area of Geophysical Investigation at Environmental Area Of Concern Area E10, Northrop Grumman Plant 1, Bethpage, New York.

Figure 7 - Area of Geopysical Investigation at Environmental Area Of Concern E12,
Northrop Grumman Plant 1,
Bethpage, New York.

0 5 10 R

Scale: One inch equals approximately ten feet

NAEVA Geophysics Project No. C0009181W Dates of Investigation: September 18 - 20, 2000 Map by Clay McMullen

EXPLANATION

Ground Penetrating Radar Data Profiles

Area of Concern

(

Manhole

Figure 9 - Area of Geophysical Investigation at Environmental Area Of Concern E28,
Northrop Grumman Plant 1,
Bethpage New York.

Subsurface Geophysical Surveys

Scale: One inch equals approximately ten feet

NAEVA Geophysics Project No. C0009181W Dates of Investigation: September 18 - 20, 2000 Map by Clay McMullen

APPENDIX B

BORING LOGS

1852 Bethpage, NY Boring No.: 102B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 19, 2000

Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 19, 2000

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** - ft.

2 in. **Boring Diameter:**

		Soil Sa	ample						
Depth	San	Sample Blows F		Rec.	PID	Lithology Description			
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)				
1-3	1	GP		20	15.0	0-20": Brown-light orange SILT, some fine to			
						medium SAND, trace GRAVEL, well sorted, damp			
3-5	2	GP		20	15-20	0-20": Tan-brown, coarse SAND and fine to medium			
						GRAVEL, poorly sorted, trace FINES, dry			

1-3	1	GP_	 	20	15.0	10-20": Brown-light orange SILT, some tine to
						medium SAND, trace GRAVEL, well sorted, damp
3-5	2	GP		20	15-20	0-20": Tan-brown, coarse SAND and fine to medium
						GRAVEL, poorly sorted, trace FINES, dry
			 		 	
 		 	 	 		
<u> </u>				1		
					<u> </u>	
		<u> </u>				
	-					
-	<u> </u>					
<u> </u>		ļ				
		ļ				
					<u> </u>	
<u> </u>				<u> </u>		
				ļ		
				<u> </u>		
1						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 12" thick concrete at grade

			Dvirl	ka					
	را ال		and			Project No.:	1852	Boring No.: 103B01	
))]	Bart	ilucc	i	Project Location:	Bethpage, NY	Sheet 1 of 1	
		\sim	CONSULT	ING ENGI	NEERS	Project Name:	Plant 1 -	By: MR	
A DIVIS	ION OF W	/ILLIAM F.	COSULICE	I ASSOCIAT	res, p.c.		Phase II Site As	sessment	
Driller	Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe					Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A Boring Completion Depth: 5 Ground Surface Elevation: Boring Diameter: 2			
	-	-	nber 19, 2	2000		Date Completed: Se		Boring Diameter: 2 in.	
	1	Soil S			<u> </u>	Date completed. of			
Depth	Sau	nple	Blows	Rec.	PID		Lithology	Description	
(ft.)	No.	Туре	1						
1-3	1	GP	_	20	1	0.20": Proug SILT to	as fine to madium	CAND for CDAVEL down	
1-3	 ' -	GP .	 -	20	50-100	10-20 . BIOWII SILI, III	ace line to medium	SAND, fine GRAVEL, damp	
<u> </u>	<u> </u>	ļ			 				
3-5	2	GP		_		Light brown-tan, medi	um to coarse SANI	D, some fine subrounded GRAVEL, dry	
		†	 		 				
		ļ	 			-			
	<u> </u>	Į		ļ					
			-			1			
			_	-	 	{			
					<u> </u>				
					ĺ				
			 						
		_							
	 	<u> </u>							
-	<u> </u>	<u> </u>							
		L		ļ					
-									
		l							

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

7" thick concrete at grade

Rain falling outside. Interior background PID readings of 3-5 ppm may be due to high humidity,

1852 Bethpage, NY Boring No.: 104B01

Sheet 1 of 1 By: MR

Project Name:

Plant 1 -Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Date Started: October 17, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 17, 2000

Boring Completion Depth: 10 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 2 in.

	Soil Sample					
Depth	Sample		Blows	Blows Rec. PID		Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
8-10	1	GP	-	24	0.0	0-24": Brown to tan to orange SAND with GRAVEL

(4)	Na	Tuna	(Day CII)	(inches)	(Limiting Decomposition
(ft.)	No.	Type	(Pero)	(inches)	(ppm)	
8-10	1	GP		24	0.0	0-24": Brown to tan to orange SAND with GRAVEL
10.0	 	<u> </u>			0.0	10-24 : Brown to tall to Grange Only B with Ord WEE
	_					
				1		
	<u> </u>					
		.—.				
<u> </u>						
	İ		,			
		_				
1						
	<u> </u>					
					l	
_						
1				1		
ŀ						
					-	
		1		· 7		
				1		
					-	
				ļ		
<u> </u>				I		
) i	1	j	Ì	ì		
]			1	T		
 						
		ł		l	ļ	
 						
1		l	į	J		
	· •	ł				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted to target former dry well. Notes: Manual drilling efforts prohibited deeper sample collection.

1852 Bethpage, NY Boring No.: 105B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz **Drilling Method:** Geoprobe **Drive Hammer Weight: N/A** **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

22 ft. -- ft.

Date Started: October 2, 2000

Date Completed: October 2, 2000

2	in

Date Started: October 2, 2000 Date Completed: October 2, 2000						
Depth			Lithology Description			
(ft.)	No.	Type	(Per 6*)	(inches)	(ppm)	
8-12	1	GP		38_	0.0	0-10": Brown SILT and fine to medium SAND, dry, no odors
						10"-13": Gray-brown SILT and CLAY, trace fine to medium SAND, dry, no odor
						13"-35": Gray-brown to orange SILT and fine to coarse SAND,
		<u> </u>				moist to dry, trace fine to coarse GRAVEL, dry, no odor
						35"-38": Orange-brown, fine to coarse SAND, little
						fine to coarse GRAVEL, trace SILT, dry, no odor
12-16	2	GP		42	0.0	0-42": Orange-brown, fine to coarse SAND, little
						fine to coarse GRAVEL, trace SILT, dry, no odor
16-20	3	GP	-	40	0.0	0-40": Orange-brown, fine to coarse SAND, little
						fine to coarse GRAVEL, trace SILT, dry, no odor
20-22	4	GP			0.0	Orange-brown, fine to coarse SAND, little fine to coarse
						GRAVEL, trace SILT, dry, no odor
	 					
						
	 					
	<u> </u>					
	<u> </u>					
	-					
	<u> </u>					
	 					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted within leaching pool which is "open" to 3' below grade

1852 Bethpage, NY Boring No.: 106B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 21, 2000

Soil Sample

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 21, 2000

Boring Completion Depth: 5 ft.
Ground Surface Elevation: - ft.

Boring Diameter: 2 in.

Lithology Description

Depth	Sample Blows Rec. PID Lithology Description			Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		17	0.0	0-1": Brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odor
						1"-17": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odor
3-5	2	GP	-	20	0.0	0"-20": Orange-brown, fine to coarse SAND, trace SILT,
	*					little fine to coarse GRAVEL, dry, no odor
	_					
						•
						•

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

8" thick concrete at grade

C A DIVISI	ON OF W		ONSULTI	Ka lucc ng engir lassociat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: 106B02 Sheet 1 of 1 By: MR	
Driller: Drill Ri	Driller: W. Rowland Drill Rig: Earthprobe					Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weigl Date Completed: Se	pprobe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. - ft. 2 in.
Depth (ft.)	San No.	Soil Sanple Type	Blows	Rec. (inches)	PID (ppm)		Lithology [Description	
1-3	1	GP		22	0.0	0-10": Brown-black SIL	T and fine to coars	e SAND,	•
			_			trace fine to m	nedium GRAVEL, d	ry, no odor	
						10"-22": Brown SILT, s	ome fine to mediur	n SAND,	
						trace fine to	medium GRAVEL	, dry, no odor	
3-5	2	GP	-	18	0.0	0-10": Orange-brown, f	fine to coarse SAN	D, trace SILT,	
						1	nedium GRAVEL, d		
						10"-18": Gray SILT and			
						I	um GRAVEL, dry, r		
							' 		
-									
						•			
	\dashv								
				\longrightarrow					
-									
									į
Sample	Type:						Notes: 7" thick	concrete at grade	
SS = Sp	lit Spoo			uger GF dropunch		probe	r unor	. Januara di grado	

Project No.:

1852

Boring No.: 107B01

Project Location: E Project Name: F

Bethpage, NY Plant 1 - Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 29, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Date Completed: September 29, 2000

Boring Completion Depth: Ground Surface Elevation:

7 ft. -- ft.

Boring Diameter:

2 in.

		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology i
/G \	NIa	T	(D== 01)	(in about	(

Depth	Sample		Sample Blows		mple Blows		Blows	Blows	Rec.	PID	Lithology Description			
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)		_							
3-5	1	GP		22	0.0	0-15": Brown, fine to coarse SAND and SILT, dry, no odor								
5-7	2	GP		15	0.0	0-2": Brown, fine to coarse SAND and SILT, dry, no odor								
						2"-15": Orange-brown, fine to coarse SAND, trace SILT,								
						trace fine to coarse GRAVEL, dry, no odor								

						2"-15": Orange-brown, fine
						trace fine to coars
						add mile to dear
						1
						-
		 -			-	-
			<u> </u>			
	ļ				ļ	
<u> </u>						
						j
	 					1
				<u> </u>		
<u> </u>						
				<u> </u>		
						
		L		I	t	L

Sample Type:
SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Page 1 of 1

Boring conducted adjacent to a 32" deep pit

through a 6" thick concrete floor

Project No.: 1852 Berling No.: 107801N8 Sheet 1 of 1	<u> </u>									
Drilling: Early to V. Rowland prints (P. Corprobe Date Started: January 2, 2001 Soil Sample (P. Or S)	C A DIVISI	ON OF W		and Barti	IUCC NG ENGII	NEERS	Project Location:	Bethpage, NY Plant 1 -	Sheet 1 of 1 By: MR	
Depth Sample Sample Sample Sample Sample Sample Sample Specific Sample Sample Specific Sample Sample Specific Sample Samp	Driller: Drill R	W. Ro	wland hprobe	_			Drilling Method: Ge Drive Hammer Weig	oprobe pht: N/A	Ground Surface Elevation:	– ft.
3-5 1 GP - 24 1.0 0-24*: Brown to tan SAND and GRAVEL, trace SILT with a hint of green tint, no odor 5-7 2 GP - 24 0.2 0-24*: Brown to tan to orange coarse SAND and GRAVEL, trace SILT with slight green tint GRAVEL, trace SILT with slight			nple	Blows				Lithology	Description	
with a hint of green tint, no odor 5-7 2 GP - 24 0.2 0-24*: Brown to tan to orange coarse SAND and GRAVEL, trace SILT with slight green tint GRAVEL, trace SILT with slight green tint GRAVEL and GRAVEL are site of the si							0-24": Brown to tan S	AND and GRAVEL	trace SILT	
5-7 2 GP - 24 0.2 0-24*: Brown to tan to orange coarse SAND and GRAVEL, trace SILT with slight green tint	3-5	'	GP	_ 	24	1.0	1		, liace SIL1	4
green tint green tint Notes: 3° thick concrete at grade							i			
Sample Type: SS = Split Spoon HA = Hand Auger GP = Geoprobe Notes: 3° thick concrete at grade	5-7	2	GP	_	24	0.2	1	orange coarse SA	ND and GRAVEL, trace SILT with sl	ight
SS = Split Spoon HA = Hand Auger GP = Geoprobe							green tint			
SS = Split Spoon HA = Hand Auger GP = Geoprobe						_				
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe]			
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe							İ			ı
SS = Split Spoon HA = Hand Auger GP = Geoprobe	_									
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe						-				
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										i
SS = Split Spoon HA = Hand Auger GP = Geoprobe			_							
SS = Split Spoon HA = Hand Auger GP = Geoprobe										į
SS = Split Spoon HA = Hand Auger GP = Geoprobe										ı
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										ł
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										ļ
SS = Split Spoon HA = Hand Auger GP = Geoprobe										ŀ
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe						-				
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										- 1
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
SS = Split Spoon HA = Hand Auger GP = Geoprobe										ļ
SS = Split Spoon HA = Hand Auger GP = Geoprobe										
								Notes: 3" thic	k concrete at grade	
							probe			

1852 Bethpage, NY **Boring No.:** 107B01S8 Sheet 1 of 1

Boring Diameter:

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

7 ft. -- ft. 2 in.

Date St	arted:		3, 2001			Date Completed: January 3, 2001				
Ţ		Soil Sa								
Depth		nple	Blows	Rec.	PID	Lithology Description				
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)					
3-5	1	GP		24	0.0	0-24": Brown to tan SAND and GRAVEL, moist, no odor				
5-7	2	GP		24	0.0	0-24": Brown to tan SAND and GRAVEL, some SILTY/CLAYEY material				
						with a slight gray tint, no odor				
						-				
						1				
						1				
						1				
		 								
I										
		<u> </u>		 		4				
		<u> </u>				-				
7										
						1				
		 				†				
-		<u> </u>		-		1				
		<u> </u>				4				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete floor slab

	Dvirka
	and
U	Bartilucci CONSULTING ENGINEERS
A DIVISION	OF WILLIAM F. COSULICH ASSOCIATES, P.C.

1852 Bethpage, NY **Boring No.:** 107B01E8 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: January 3, 2001

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

7 ft. ft.

Date Completed: January 3, 2001

2 in.

		Soil Sa	ample			
Depth	Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(Per 6") (inches)		
5-7	1	GP	-	24	0.2	0-24* Brown to tan SILTY/CLAYEY SAND with a gray tint

(ft.)	No.	Type	(Per 6°)	(inches)	(ppm)	
5-7	1	GP		24	0.2	0-24": Brown to tan SILTY/CLAYEY SAND with a gray tint,
	<u> </u>					trace GRAVEL,moist, no odor
	 	ļ.———				
	 	1	<u> </u>			
	 	 				
<u> </u>	 	-				
<u> </u>						
	ļ .					
				-		
	1					
	<u> </u>					
\vdash						
	 					
	-					
ļ	<u> </u>					
<u></u>	ļ					
				1		
	<u></u>					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted in a backfilled pit which has a 2" thick bottom and is covered by a 3" thick concrete floor slab.

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY **Boring No.:** 107B01W5 Sheet 1 of 1

By: MR

Plant 1 -Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: January 2, 2001

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: January 2, 2001

7 ft. **Boring Completion Depth: Ground Surface Elevation:**

-- ft. 2 in. **Boring Diameter:**

Date S	tarted:		y 2, 2001			Date Completed: January 2, 2001
		Soil S	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре		(inches)	(ppm)	
3-5	1	GP		24	0.2	0-24": Brown to tan SAND and GRAVEL, trace SILT, moist, no odor
5-7	2	GP		24	0.8	0-24": Brown to tan to orange SAND and GRAVEL, trace green tint through a
						SILTY/CLAYEY layer in the 3'-5' sample interval, moist, no odor
	1		ŀ			
*						
	ļ	 				
	<u> </u>					
	ļ	<u> </u>	<u> </u>			
			h			
				!		
		İ.				
	 					
	<u> </u>	ļ				
		ļ				
<u> </u>						
		 				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete at grade

		VILLIAM F.	CONSULTI	IUCC ING ENGII I ASSOCIAT	NEERS	Project No.: Project Location: Project Name: Geologist: Ken Wen	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: 107802 Sheet 1 of 1 By: MR sessment Boring Completion Depth:	5 ft.
Driller: Drill R	: W. Ro ig: Eart	owland hprobe	nber 21, 2			Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Ground Surface Elevation: Boring Diameter:	- ft. 2 in.
Depth (ft.)	Sar No.	Soil Sanple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)		Lithology I	Description	
1-3	1	GP		24	0.0	0-24": Brown to orang			
		ļ				trace fine to I	medium GRAVEL, o	fry, no odor	
3-5	2	GP		16	0.0	0-2": Brown to orange	brown, SILT and fi	ne to coarse SAND,	
						trace fine to r	medium GRAVEL, d	Iry, no odor	
						2"-16": Orange-brown	, fine to coarse SAN	ND, trace SILT,	
						trace fine to r	medium GRAVEL, d	lry, no odor	
_	lit Spoo		= Hand A	uger GF	•	probe	Notes: 2" thick	c concrete at grade	

Project No.:
Project Location:
Project Name:

Geologist: Mark Rauber

1852 Bethpage, NY Boring No.: 107B03 Sheet 1 of 1

Plant 1 -

Bv:

By: MR

ISION OF WILLIAM F. COSULICH ASSOCIATES, P.C. Phase II Site Assessment

Drilling Contractor: Emington
Driller: W. Rowland
Drill Rig: Earthprobe

Rowland Drilling Method: Geoprobe arthprobe Drive Hammer Weight: N/A

Boring Completion Depth: 9 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 2 in.

Date Started: October 17, 2000 Date Completed: October 17, 2000

	ate Otalieu. October 17, 2000					Date Completed. October 17, 2000		
	Soil Sample		Soil Sample		1			
Depth	Sar	mple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Type	(Per 6")	(inches)		Entitional Description		
					•			
5-7	1	GP		24	35.0	0-24": Tan SAND wth gray staining, slight odor		
7-9	2	GP		24	25.0	0-24": Brown to tan to orange SAND with a 3" gray stained layer at 7' below grade		
]			(,,		
-	 	 		 				
	L	L	<u> </u>	<u> </u>	<u>. </u>			
			1]		
	 				<u> </u>			
L	<u></u>		1_ i		<u>.</u>			
			1	(, , , , , , , , , , , , , , , , , , ,]		
	 	1	<u> </u>		<u> </u>			
L	1	[1 1	, l	ŧ ,			
[, <u> </u>	\sqcap	1	1		
<u> </u>	 	\longrightarrow	<u> </u>	!	<u> </u>			
1	1	1	1)	{	1 1			
		\vdash	<u> </u>	r	<u> </u>	1		
		igsquare			·			
1	1	Į J	1	,]				
		 		\longrightarrow	<u> </u>	,		
	L	L	·	·l	<u> </u>	<u> </u>		
<u> </u>		1 7	, –			<u> </u>		
		\leftarrow	-		<u> </u>	Į l		
<u> </u>			·			 		
		, ¬		, –		!		
_		 			·	ļ		
						ļ		
		, 7						
	l	\longrightarrow		·				
L	L	<u> </u>						
	—	1		·				
<u> </u>	 -							
	<u> </u>	<u> </u>				ı İ		
		1						
				\longrightarrow				
						<u> </u>		
		\dashv		\longrightarrow				
	l		1					
				$\overline{}$				
-		'						
		[
				-+				
	_	1	_					
		$\neg \neg$			$\neg \neg$			
						i		
		_ 1		_ 1	ł			
$\neg \neg$		-+						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target beneath a back-filled former 4'-3" deep pit running north-south within the former Paint Tunnnel.

A DIVISI	ON OF W		ONSULTI	(a lucc NG ENGIR ASSOCIAT	NEERS	Project No.: 1852 Boring No.: 108B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	W. Ro	owland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 26, 2000 Boring Completion Depth: 11 ft Ground Surface Elevation:
Depth (ft.)	Soil Sample Blows Rec. PID			Rec.	PID (ppm)	Lithology Description
2-4	1	GP		18	0.0	0-4": Brown SILT and fine to medium SAND, trace fine GRAVEL, dry, no odor
						4"-18": Orange-brown, fine to coarse SAND,
						trace SILT, trace fine GRAVEL, dry, no odor
4-6	2	GP		22	0.0	0-22": Orange-brown, fine to coarse SAND,
						trace SILT, trace fine GRAVEL, dry, no odor
6-8	3	GP	-	20	0.0	0-20": Orange-brown, fine to coarse SAND,
						trace SILT, trace fine GRAVEL, dry, no odor
8-10	4	GP		21	0.0	0-21": Orange-brown, fine to coarse SAND,
						trace SILT, trace fine GRAVEL, dry, no odor
10-11	5	GP	-	10	0.0	0-10": Orange-brown, fine to coarse SAND,
						trace SILT, trace fine GRAVEL, dry, no odor
	-					_
						-
						-
						1
						1
						-
						Internal Control of the Control of t
	lit Spoo			uger Gl		Notes: 6" thick concrete at grade refusal noted at 11' below grade
CC = C	oncrete	Core	HP = Hy	dropunct	1	

Project No.: **Project Location:** Project Name:

1852 Bethpage, NY Boring No.: 109B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Date Started: September 26, 2000

Geologist: Keith Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 26, 2000

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

2 in.

5 ft.

-- ft.

	Soil Sample epth Sample Blows Rec.					
Depth			Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-3	1	GP	-	18	0.00	0-18": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor
3-5	2	GP		22	0.0	0-3": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor 3"-22": Orange-brown, fine to medium SAND, trace SILT, dry, no odor

1-3	1	GP	-	18	0.00	0-18": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor
3-5	2	GP	_	22	0.0	0-3": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor
	<u> </u>	<u> </u>				3"-22": Orange-brown, fine to medium SAND, trace SILT, dry, no odor
	<u> </u>					
					<u> </u>	-
					ļ	
		-		ļ	ļ	
		-		-	<u> </u>	
			<u> </u>			
		-				
	-	-			-	
	 			<u> </u>	 	
				,		
				-		
	-					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete below wood block floor

A DIVISI	ION OF W		Dvirland Barti CONSULTI COSULICH	lucc ng engir	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: I10B01 Sheet 1 of 1 By: MR sessment
Driller Drill R	: W. Ro	wland hprobe	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Wei Date Completed: Se	oprobe ght: N/A	Boring Completion Depth: 12 Ground Surface Elevation: Boring Diameter: 2
Depth (ft.)	· 			PID (ppm)		Lithology	Description	
2-4	1	GP		15	0.0	1		arse SAND, trace SILT, noist, no odors, occasional brick pieces
4-6	2	GP		22	0.0	0-22": Orange-brown trace fine to r	, fine to coarse SAN nedium GRAVEL, n	
6-8	3	GP		22	0.0	0-22": Orange-brown trace fine to r	to tan, fine to coars	
8-10	4	GP		24	0.0	0-24": Orange-brown		se SAND, trace SILT,
10-12	5	GP		24	0.0	0-24": Brown to orang		arse SAND, trace SILT,

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

Notes: 2" thick concrete at grade

CC = Concrete Core HP = Hydropunch

A DIVIS	HON OF W		Dvirland Barti CONSULTI COSULICH	IUCO	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: I11B01 Sheet 1 of 1 By: MR sessment
Driller Drill R	: W. Ro	owland hprobe	Emingto			Geologist: Ken Wei Drilling Method: Ge Drive Hammer Wei Date Completed: S	eoprobe ght: N/A	Boring Completion Depth: 5 Ground Surface Elevation: Boring Diameter: 2
		Soil S						
Depth (ft.)	Sar No.	nple Type	Blows	Rec. (inches)	PID (ppm)		Lithology	Description
				1		O OATS Drover CHT o	and for to made w	CAND
1-3	1	GP		24	0.1	0-24": Brown, SILT, s		
							RAVEL, dry, no odo	
3-5	2	GP		24	0.0	0-2": Brown, SILT, so		
<u> </u>		ļ		ļ		1	AVEL, dry, no odors	
						2"-24": Tan to orange	-brown, fine to coar	se SAND, trace SILT,
					ļ	little fine to	nedium GRAVEL, o	lry, no odors
·								
					l			
l	<u> </u>	l						
	-	 -						
 		<u> </u>						
								
		<u> </u>						
<u> </u>		<u> </u>						
<u> </u>		<u> </u>						
		 	—					

Page 1 of 1

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

A DIVISI	ON OF W		ONSULTI	Ka lucc Ing Engli I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I11B02 Sheet 1 of 1 By: MR sessment			
Driller Drill R	: W. Ro	owland hprobe Septen	Emingto			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in.		
Depth (ft.)	Sar No.	Soil Sanple Type	Blows	Rec.	PID (ppm)	Lithology Description					
1-3	1	GP		24	0.0	0-4": Brown, fine to co	parse SAND, trace S	SILT.			
						1	arse GRAVEL, dry,				
		<u> </u>				4"-20": Brown, SILT a	-				
						1		•			
		 -	<u> </u>			20"-24": Brown, fine to					
			<u> </u>				to coarse GRAVEL,				
3-5	2	GP		24	0.1	0-24": Tan to brown, f	ine to coarse SAND ∞arse GRAVEL, drj				
	olit Spoo			uger Gl	-	probe	Notes: 6" thic	k concrete at grade			

Project Name:

1852 Bethpage, NY Boring No.: I11B03 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 22, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 22, 2000

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft.

2 in. **Boring Diameter:**

	Soil Sample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	0.0	0-17": Brown, SILT and fine to medium SAND, dry, no odors
						17"-20": Brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odors
3-5	2	GP		23	0.1	0-23": Tan to brown, fine to coarse SAND, trace SILT,
					i .	trace fine to medium GRAVEL, dry, no odors
					,	

		ļ				17"-20": Brown, fine to coarse SAND, trace SILT,
	-		ļ		-	trace fine to medium GRAVEL, dry, no odors
3-5	2	GP		23	0.1	0-23": Tan to brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odors
	ļ	<u> </u>		ļ		
		<u> </u>				
	<u> </u>					
		<u> </u>	-		<u> </u>	
						
<u> </u>	-					
-						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

	Dvirk and Barti consultin cosulich	lucc NG ENGIR	NEERS	Project No.: 1852 Project Location: Bethpage, NY Project Name: Plant 1 - Phase II Site As	Boring No.: I11B04 Sheet 1 of 1 By: MR sessment	
Drilling Contractor: Driller: W. Rowland Drill Rig: Earthprobe Date Started: Septer	nber 22, 2			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 22, 2000	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in.
Depth Sample				Lithology	Description	
1-3 1 GP		24	0.0	0-8": Brown, fine to coarse SAND, trace	SILT,	
				trace fine to coarse GRAVEL, dry		
				8"-13": Brown, SILT and fine to medium		
				13"-24": Brown, fine to coarse SAND, tra	-	
				trace fine to coarse GRAVEL	•	
3-5 2 GP		21	0.1	0-21": Brown, fine to coarse SAND, trace		
30 2 0.			<u> </u>	trace fine to coarse GRAVEL, dry		

Project Name:

1852 Bethpage, NY Boring No.: I11B05 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 28, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Boring Completion Depth: 5 ft.
Ground Surface Elevation: -- ft.
Boring Diameter: 2 in.

Date Completed: September 28, 2000

Date S	tarted:		iber 28, 2	2000		Date Completed: September 28, 2000
[Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-3	11	GP		22	0.0	0-12": Brown SILT, trace fine to medium SAND, dry, no odor
					_	12"-22": Brown to tan, fine to coarse SAND, trace SILT,
<u> </u>		ļ				trace fine to medium GRAVEL, dry, no odor
3-5	2	GP		24	0.0	0-24": Brown to tan, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odor
<u></u>						
					·	
 						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 8" thick concrete at grade

Project No.:

1852

Boring No.: 111B06

Boring Diameter:

Project Location: Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Date Started: October 16, 2000

Driller: W. Rowland **Drill Rig:** Earthprobe

Soil Sample

Geologist: Mark Rauber **Drilling Method:** Geoprobe

Boring Completion Depth: Ground Surface Elevation:

4 ft. - ft. 2 in.

Drive Hammer Weight: N/A

Date Completed: October 16, 2000

Lithology	Description

i	Soli Sample		ĺ			
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
	1	T		1		
0-2	1	GP		24	0.0	0-24": Brown to tan, SAND and GRAVEL
	<u> </u>					
2-4	2	GP		12	1.2	0-12": Brown to tan, SAND and GRAVEL
	1]		
	 					
	<u> </u>	L				
ı	1					
L						
ł						
			-			
 						
	t					·
1						
	,					
						
<u> </u>	ļ					
				1		
				T		
 -						
<u> </u>						
		į	- 1	į		
						
		İ		1		
						
ļ						
		1	İ	1		
						
		- 1		ŀ	l	
				t		
			į	ŀ		
	∤					
	ŀ				I	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within a 27" deep pit with a 6" thick concrete bottom. Boring depths are from beneath bottom of pit.

1852

Boring No.: 111B07

Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

-- ft.

Boring Diameter:

5.5 ft. 2 in.

Date St	tarted:	Octobe	r 20, 200	0		Date Completed: October 20, 2000		
		Soil Sa	ample					
Depth	San	mple Blows		Rec.	PID	Lithology Description		
(ft.)	No.	Type		(inches)	(ppm)			
1.5-3.5	1	GP		16	4.5	0-16": Brown/tan SAND and GRAVEL with a slight green tint and resin odor		
			<u> </u>					
3.5-5.5	2	GP		18	4.5	0-18": Dark brown, slightly rust color, stained SAND and GRAVEL, moist, no odd		
					·			
_								
· · · · · · · · · · · · · · · · · · ·								
						1		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring advanced through the bottom of a 17" deep backfilled concrete pit with a 2" thick concrete bottom and a 1" thick concrete floor slab at grade

A DIVISI	ON OF W		ONSULTI	Ka IUCC NG ENGII ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I12B01 Sheet 1 of 1 By: MR sessment	
Driller Drill R	W. Ro	owland hprobe Septem	Emingto			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe ht: N/A	Ground Surface Elevation:	5 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec. (inches)	PID (ppm)		Lithology [Description	
1-3	_ 1	GP	_	22	0.0	0-22": Brown, fine to c	oarse SAND, trace	SILT,	
						little fine to co	parse GRAVEL, dry,	no odors	
3-5	2	GP	1	7	0.0	0-7": Brown, fine to co	arse SAND, trace S	SILT,	
						little fine to co	parse GRAVEL, dry,	no odors	
									į
									l
					-				
									İ
		1							
									l
					$\neg \neg$				
	1			<u></u>					-
			1						- [
1									
1									
	$\neg \neg$								
Sample		n Hv-	: Hand A	uger GF) = Goo-	rohe	Notes: 6" thick	concrete at grade	\neg

CC = Concrete Core HP = Hydropunch

Project Name:

1852 Bethpage, NY **Boring No.:** 112B02 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 21, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 21, 2000

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

-- ft. 2 in.

5 ft.

		Soil S	ample					
Depth	Sample		Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
1-3	1	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,		
						little fine to coarse GRAVEL, dry, no odors		
3-5	2	GP		19	0.0	0-19": Orange-brown, fine to coarse SAND, trace SILT,		
						little fine to coarse GRAVEL, dry, no odors		

1-3	1	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
		ļ				little fine to coarse GRAVEL, dry, no odors
3-5	2	GP		19	0.0	0-19": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odors
			<u> </u>			
					<u> </u>	
	<u> </u>					
<u></u>						
						
ļ						
<u> </u>						
[

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

4" thick concrete at grade

A DIVISI	ION OF W		Dvirk and Barti cosulich	UCC NG ENGII	NEERS	Project No.: 1852 Project Location: Bethpage, Project Name: Plant 1 - Phase II S	Boring No.: I12B03 NY Sheet 1 of 1 By: MR ite Assessment
Driller Drill R	: W. Ro	wland hprobe Septem	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 21,	Boring Completion Depth: 5 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec. (inches)	PID (ppm)	Litho	plogy Description
1-3	1	GP		24	0.0	0-24": Brown, fine to medium SANI	D, some SILT
						trace fine to medium GRA	
3-5	2	GP		18	0.0	0-18": Brown, fine to medium SANI	
"		Ŭ.				trace fine to medium GRA	
							, LE, d.y, 110 00010
ļ							
					,		
L							
	<u> </u>						
					-		
		\dashv					
		\dashv					
<u> </u>						I	0
	olit Spoo		= Hand A HP = Hy				6" thick concrete at grade

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY **Boring No.:** 112B04 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 21, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 21, 2000

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 2 in.

			Soil Sample					
Depth			Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
1-3	1	GP		17	0.0	0-17": Brown to orange-brown, fine to coarse SAND, trace SILT,		
						trace fine to coarse GRAVEL, dry, no odors		
3-5	2	GP		18	0.0	0-18": Brown to orange-brown, fine to coarse SAND, trace SILT,		
						trace fine to coarse GRAVEL, dry, no odors		

trace fine to coarse GRAVEL, dry, no odors 3-5 2 GP - 18 0.0 0-18": Brown to orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odors 1	1-3	1	GP		17	0.0	0-17": Brown to orange-brown, fine to coarse SAND, trace SILT,
trace fine to coarse GRAVEL, dry, no odors							trace fine to coarse GRAVEL, dry, no odors
trace fine to coarse GRAVEL, dry, no odors	3-5	2	GP		18	0.0	0-18": Brown to orange-brown, fine to coarse SAND, trace SILT,
]
		 			<u> </u>		
				<u>. </u>			
			ļ			ļ	
					ļ		

Samp	le	Typ)е	:
------	----	-----	----	---

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

A DIVIS	ION OF W		Dvirk and Barti consulti cosulich	lucc ng engli	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I12B05 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro	wland hprobe	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: Se	eoprobe ght: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in.
Depth	San	Soil Sa nple	Blows	Rec.	PID		Lithology I	Description	
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)				
1-3	1	GP		24	0.1	0-24": Brown SILT an	d fine to medium S.	AND,	
						trace fine to	medium GRAVEL, o	lry, no odors	
3-5	2	GP		20	0.0	0-20": Brown SILT an	d fine to medium S.	AND,	
						trace fine to	medium GRAVEL, o	lry, no odors	
			ļ						
			-						
									l
				·					
Sample	Type:	ŀ	1	I		L	Notes: 6" thic	k concrete at grade	-
SS = Sp	lit Spoo		= Hand A HP = Hy			probe		Ü	

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY

Boring No.: 113B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 17, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 17, 2000

9 ft. **Boring Completion Depth: Ground Surface Elevation:** -- ft.

2 in. **Boring Diameter:**

Date S	started:	Octobe	r 17, 200	0		Date Completed: October 17, 2000
		Soil S	ample			
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
2-4	1	GP		12	5.2	0-12": Brown to tan SANDY soil with CLAYEY/SILTY soil, pieces of broken brick,
						some minor staining, no odor
4-6	2	GP		3	12.2	0-3": Brick and broken concrete, brown to black SILTY material
6-8	3	GP		16	7.2	0-16": Brown to tan SAND with layers of brick, stone and SILT
8-9	4	GP		12	7.0	0-12": Brown to tan SAND
					· · · · · · · · · · · · · · · · · · ·	
				,		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted to target 2' to 12' beneath a backfilled former dry well beneath the existing Cafeteria floor. 5" thick tile and concrete floor at grade.

■ Dvir	ka
and Bart	ilucci
	ING ENGINEERS

1852 Bethpage, NY **Boring No.: 113B02**

Project Name:

Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

-- ft.

Boring Diameter:

2 in.

7 ft.

Date S	itarted:	Octobe	er 20, 200	ю		Date Completed: October 20, 2000
		Soil Sa	ample			
Depth	Sar	Sample		Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
2-4 1 GP			20	0.0	0-20*: Brown/tan/red SAND and GRAVEL, moist, no odors	
					<u> </u>	
4-6	2	GP	_	18	0.0	0-18": Light brown/red SAND and GRAVEL, moist, no odors
6-7	3	GP	_	12	0.0	0-12": Light brown/red SAND and GRAVEL, moist, no odors
			<u> </u>			1

ı					
I					
		l. <u>.</u>			
l				 	
l	·				
ļ				 	
ĺ					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target a former dry well backfilled to grade. Boring conducted manually. Refusal encountered at 7' below grade.

1852 Bethpage, NY Boring No.: 116B02 Sheet 1 of 1

Boring Diameter:

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: October 19, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth:
Ground Surface Elevation:

n: 7.5 ft. n: -- ft. 2 in.

Date Completed: October 19, 2000

Date S	tarted:	Octobe	r 19, 200	0		Date Completed: October 19, 2000		
	Soil Sample							
Depth	Sar			Rec.	PID	Lithology Description		
(ft.)	No.	Type		(inches)		Lithology Description		
(11.)	140.	Type	(Fel 6)	(IIICHES)	(ppm)			
3.5-5.5	1	GP		12	0.5	0-12": Brown-tan, SAND and GRAVEL, trace staining, moist, no odors		
			i i					
5.5-7.5	2	GP		14	0.5	0-14": Brown-tan, SAND and GRAVEL, trace staining, moist, no odors		
						, , , , , , , , , , , , , , , , , , , ,		
					: 			
		 						
l								
I								
		 						
			7					
- 1			ı	 				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring advanced through the bottom of a 2' deep backfilled concrete pit with a 13" thick concrete bottom and a 5" thick concrete floor slab at grade

A DIVISI	ON OF W		ONSULTI	Ka IUCC NG ENGII ASSOCIAT	NEERS	Project No.: 1852 Boring No.: I17B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment	
Driller: Drill R	W. Ro	owland hprobe Septerr	Emingto			Drilling Method: Geoprobe Ground Surface Elevation:	ft. - ft. ! in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)	Lithology Description	
1-3	1	GP		19	0.0	0-19": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor	
3-5	2	GP	-	20	0.0	0-2": Brown SILT, some CLAY, trace fine to medium SAND, dry, no odor 2"-20": Brown, fine to medium SAND, trace SILT, dry, no odor	
							ĺ
							
Sample SS = Sp CC = Co	lit Spoo			uger GF		Notes: 8" thick concrete at grade probe	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" t

6" thick concrete at grade

(ft.) No. Type (Per 6") (inches) (ppm) 1-3 1 GP 24 0.0 0-14": Orange-brown, fine to coarse GRA trace fine to coarse GRA 14"-24": Brown SILT, trace CLAY,	se SAND, trace SILT,
Soil Sample Blows Rec. PID Lither	se SAND, trace SILT,
Depth (ft.) Sample (ft.) Blows (Per 6") Rec. (ppm) PID (ppm) Lither (ppm) 1-3 1 GP 24 0.0 0-14": Orange-brown, fine to coarse trace fine to coarse GRA' 14"-24": Brown SILT, trace CLAY, trace CL	se SAND, trace SILT,
1-3 1 GP 24 0.0 0-14": Orange-brown, fine to coars trace fine to coarse GRA 14"-24": Brown SILT, trace CLAY, 3-5 2 GP 19 0.0 0-2": Brown SILT, trace CLAY, trace	AVEL, dry, no odor
trace fine to coarse GRA 14"-24": Brown SILT, trace CLAY, 3-5 2 GP 19 0.0 0-2": Brown SILT, trace CLAY, trace	AVEL, dry, no odor
14"-24": Brown SILT, trace CLAY, 3-5 2 GP 19 0.0 0-2": Brown SILT, trace CLAY, trace	
3-5 2 GP 19 0.0 0-2": Brown SILT, trace CLAY, trace	
	, trace fine to medium SAND, moist, no odor
2"-10": Orange-brown fine to open	ce fine to medium SAND, moist, no odor
2 - 13 . Orange-blown, line to tual	rse SAND, trace SILT,
little fine to coarse GRAV	VEL, dry, no odor
 	
 	
 	
Sample Type: Notes:	6" thick concrete beneath wood block floor

Page 1 of 1

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Sample Type:

1852 Bethpage, NY **Boring No.:** 121B01

Boring Diameter:

Project Name:

Plant 1 -

By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 4, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: **Ground Surface Elevation:**

6 ft. -- ft.

Date Completed: October 4, 2000

2 in.

		Soil Sample				
Depth	h Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
2-4	1	GP	-	17	0.0	0-17": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
4-6	2	GP	-	24	0.0	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor

	ŀ				little fine to coarse GRAVEL, dry, no odor
4-6	2	GP	 24	0.0	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
					little fine to coarse GRAVEL, dry, no odor
					•
1					
					
			 		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

8" thick concrete floor at grade

8" void below concrete floor

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

6" void beneath concrete

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:**

Project Name:

1852 Bethpage, NY Boring No.: 121B03 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 4, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 4, 2000

Boring Completion Depth: 9 ft. **Ground Surface Elevation:** - ft.

2 in. **Boring Diameter:**

Date S	started:	Octobe	r 4, 2000	·		Date Completed: October 4, 2000		
	Soil Sample							
Depth			Rec.	PID	Lithology Description			
(ft.)	No.	Туре		(inches)				
5-9	1	GP		27	0.0	0-27": Orange-brown, fine to coarse SAND, trace SILT, trace fine to		
				(coarse GRAVEL, occasional concrete pieces, dry, no odor		
	 	 		 	 	Coulde Storver, occasional contracte pieces, dry, no odoi		
	<u> </u>	_		ļ		1		
			<u> </u>	l				
ļ	1	_	ļ - 					
						1		
	 	\vdash	 	ļ	 	1		
	ļ					1		
	L		<u> </u>					
						1		
ļ	 		ļ			1		
		ļ Ì	_		_			
	 					{		
		\I		·				
	$\vdash \dashv$	\vdash						
		- 		-				
				 		İ		
		\longrightarrow						
I	I	I	T	I				
	-			-				
Ì	i		i					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

8" thick concrete at grade

No sample recovery from 1'-5' (sampler advanced by its own weight). Probehole open to 5' below grade

1852 Bethpage, NY Boring No.: 121B04 Sheet 1 of 1

Project Name:

Plant 1 -

Phase II Site Assessment

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Geologist: Ken Wenz

Boring Completion Depth: 5 ft. **Ground Surface Elevation: Boring Diameter:**

-- ft. 2 in.

Date Started: October 4, 2000

Date Completed: October 4, 2000

		Soil Sample				
Depth	Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-5	1	GP	-	28	0.0	0-28": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL, dry, no odor

Sample	Type:					Notes: 4 st thick concrete floor at grade
	 					
		<u></u>				
			<u> </u>		}	
				<u> </u>		
		<u> </u>				
		<u> </u>				
					ļ	
		<u> </u>				
		<u> </u>				
		<u> </u>				
		<u> </u>		<u></u>		<u> </u>

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

3" void below concrete floor

1852 Bethpage, NY Boring No.: 121B05 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 3, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

-- ft. **Boring Diameter:**

Date Completed: October 3, 2000

5 ft.

Date S	tarted:	Octobe	r 3, 2000)		Date Completed: October 3, 2000		
		Soil S	ample		ľ			
Depth	Sar	nple	Blows Rec.		PID	Lithology Description		
(ft.)	No.	Туре		(inches)	(ppm)			
1-5	1	GP		38	0.0	0-31": Brown SILT and fine to medium SAND,		
		ļ				trace fine to medium GRAVEL, dry, no odor		
						31"-38": Tan to orange-brown, fine to coarse SAND, trace SILT,		
						trace fine to coarse GRAVEL, dry, no odor		
					-			
İ								
	-							
					w			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 2" thick concrete at grade

Project No.:

1852

Boring No.: 123B01

Boring Diameter:

Project Location: Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Mark Rauber **Drilling Method: Geoprobe** Drive Hammer Weight: N/A **Boring Completion Depth:** 5 ft. **Ground Surface Elevation:** - ft.

2 in.

Date Completed: October 18, 2000 Date Started: October 18, 2000

		Sample				
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
1-3	1	GP		18	0.0	0-18": Light brown-orange, SAND and GRAVEL,
						slightly moist, no staining, no odors
3-5	2	GP		16	0.0	0-16": Light brown-orange, SAND and GRAVEL,
						slightly moist, no staining, no odors
<u> </u>						
\vdash						
	_	_	-			
						I

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring advanced through the bottom of a 1' deep concrete sump with a 5" thick concrete bottom in the basement of Pump Station "B".

Project Name:

1852 Bethpage, NY Boring No.: 126B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 22, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 22, 2000

Boring Completion Depth: Ground Surface Elevation:

-- ft. 2 in. **Boring Diameter:**

5 ft.

Date \$	tarted:		nber 22, 2	2000		Date Completed: September 22, 2000		
-		Soil S	ample					
Depth	Sai			PID	Lithology Description			
(ft.)	No.	Туре	(Per 6")		(ppm)	J		
1-3	1	GP		20	0.1	0-7": Tan to brown, fine to coarse SAND, trace SILT,		
						trace fine to coarse GRAVEL, dry, no odors		
						7"-20": Brown SILT, fine to medium SAND, dry, no odors		
3-5	2	GP		20	0.0	0"-3": Brown SILT, fine to medium SAND, dry, no odors		
						3"-20": Orange-brown, fine to coarse SAND, trace SILT,		
						little fine to medium GRAVEL, dry, no odors		
				-				
					-			
					,			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted within 12" deep trench Notes: with a 4" thick concrete bottom

Dvirka and Bartilucci consulting engineers A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.	Project No.: 1852 Project Location: Bethpage, NY Project Name: Plant 1 - Phase II Site Ass	Boring No.: 126B02 Sheet 1 of 1 By: MR sessment		
Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe Date Started: September 22, 2000	Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 22, 2000	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:		
Soil Sample Depth Sample Blows Rec. PID	Lithology Description			

Date S	tarted:	Septem	ber 22, 2	2000		Date Completed: September 22, 2000
		Soil Sa	ample			
Depth			Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1.5-3.5	1	GP		14	0.0	0-14": Brown, SILT and fine to medium SAND,
						trace fine to medium GRAVEL, moist, no odors
3.5-5.5	2	GP		24	0.2	0-8": Brown, SILT and fine to medium SAND,
				i		trace fine to medium GRAVEL, moist, no odors
						8"-24": Brown to orange-brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odors
-						
\vdash						
			-			
 			-	\vdash		
\vdash	-					
	-					
\vdash						
 				├		
 						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within 12" deep trench with a 6" thick concrete bottom

5.5 ft. - ft. 2 in.

Page I of I

1852 Bethpage, NY Boring No.: 128B01

By: MR

Sheet 1 of 1

Project Name: Plant 1 -Phase II Site Assessment

Date Completed: September 28, 2000

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 28, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe

Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

6 ft. - ft.

Boring Diameter:

2 in.

Soil Sample					
pth Sample		Blows	Rec.	PID	Lithology Description
No.	Туре	(Per 6")	(inches)	(ppm)	
1	GP		20	0.0	0-8": Brown, fine to medium SAND, little SILT, dry, no odor
					8"-15": Brown SILT, little CLAY, trace fine to medium SAND, dry, no odor
					15"-20": Tan to orange-brown, fine to coarse SAND,
					trace SILT, trace fine to medium GRAVEL, dry, no odor
2	GP		22	0.0	0-22": Tan to orange-brown, fine to coarse SAND,
	No. 1	Sample No. Type 1 GP	Sample Blows No. Type (Per 6") 1 GP	Sample Blows Rec. No. Type (Per 6") (inches) 1 GP 20	Sample Blows Rec. (inches) PID (ppm) 1 GP 20 0.0

8"-15": Brown SILT, little CLAY, trace fine to medium SAND, dry, no odor 15"-20": Tan to orange-brown, fine to coarse SAND, trace SILT, trace fine to medium GRAVEL, dry, no odor 4-6 2 GP - 22 0.0 0-22": Tan to orange-brown, fine to coarse SAND, trace SILT, trace fine to medium GRAVEL, dry, no odor """ Tan to orange-brown, fine to coarse SAND, trace SILT, trace fine to medium GRAVEL, dry, no odor	2-4	1	GP	 20	0.0	0-8": Brown, fine to medium SAND, little SILT, dry, no odor
trace SILT, trace fine to medium GRAVEL, dry, no odor 4-6 2 GP 22 0.0 0-22": Tan to orange-brown, fine to coarse SAND,	<u> </u>	<u> </u>	<u> </u>	 <u> </u>	ļ	8"-15": Brown SILT, little CLAY, trace fine to medium SAND, dry, no odor
4-6 2 GP - 22 0.0 0-22": Tan to orange-brown, fine to coarse SAND,						15"-20": Tan to orange-brown, fine to coarse SAND,
					ļ	trace SILT, trace fine to medium GRAVEL, dry, no odor
trace SiLT, trace fine to medium GRAVEL, dry, no odor	4-6	2	GP	 22	0.0	0-22": Tan to orange-brown, fine to coarse SAND,
						trace SILT, trace fine to medium GRAVEL, dry, no odor
					<u> </u>	
		<u> </u>				
				ļ		
	ļ					
						,
	<u> </u>					
			i			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted adjacent to 2' deep pit

6" thick concrete beneath wood block floor

A DIVISION	ON OF W		ONSULTI	(a lucc ng engin associati	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I30B01 Sheet 1 of 1 By: MR sessment	
Driller: Drill Ri	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Keith Rob Drilling Method: Geo Drive Hammer Weig Date Completed: Se	probe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. – ft. 2 in.
Depth (ft.)	Soil Sample Blows Rec. PID						Lithology (Description	
1-3	1	GP	_	14	5	0-14": Dark brown-ora	nge, fine to medium	SAND, some SILT,	
						little fine GRA	VEL, damp		
3-5	2	GP	-	18	5-10	0-18": Brown-tan, fine	to coarse subround	led and fine to coarse GRAVEL,	
						poorly sorted,	dry		
ļ									
			_						
									i
-					-				
									l
									
					-				
\vdash									
-									İ
]
	-								ı
				1					ł
	lit Spoo			uger GF		probe	Notes: concre	te is 7" thick beneath wood block	floor

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: 130B02 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 19, 2000

Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 5 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

Date Completed: September 19, 2000

			Soil S	ample					
	Depth	Depth Sample (ft.) No. Type		Blows	Rec.	PID	Lithology Description		
į	(ft.)			(Per 6")	(inches)	(ppm)			
	1-3	1	GP		14	15	0-14": Brown-orange, coarse to medium SAND,		
							some crushed subrounded fine GRAVEL, dry		
	3-5	2	GP		20	50	0-20": Brown, coarse to medium SAND,		
				<u> </u>			some crushed fine GRAVEL, poorly sorted, dry		

1-3	1	GP		14	15	0-14": Brown-orange, coarse to medium SAND,
				<u> </u>		some crushed subrounded fine GRAVEL, dry
3-5	2	GP		20	50	0-20": Brown, coarse to medium SAND,
						some crushed fine GRAVEL, poorly sorted, dry
	}					
				<u> </u>		
						
 						
						
Sample	Type:					Notes: concrete is 7" thick beneath wood block floor

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

1852 Bethpage, NY Boring No.: 130B03S12 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

10 ft. -- ft.

2 in. **Boring Diameter:**

	ig: Eart itarted:	•	ber 28, 2	000		Drive Hammer Weight: N/A Boring Diameter: 2 in Date Completed: December 28, 2000
		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-2	1	GP		18	0.0	0-12": Concrete dust and dark brown/black stained SILTY SAND and GRAVEL
						12"-18": Dark brown/black stained SILTY SAND and GRAVEL
2-4	2	GP	<u></u>	20	0.0	0-20": Light brown to orange SAND and GRAVEL, trace SILT, semi-dry, no odors
4-6	3	GP		24	0.0	0-24": Light brown to tan to orange SAND and GRAVEL, dry, no odors
6-8	4	GP		24	0.0	0-24": Light brown to tan to orange SAND and GRAVEL, dry, no odors
8-10	5	GP		24	0.0	0-24": Light brown to orange SAND and GRAVEL, dry, no odors
						-
					-	

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete beneath wood block floor

1852 Bethpage, NY Boring No.: 130B03E12 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

Boring Diameter:

10 ft. -- ft. 2 in.

Date Started: December 28, 2000

Date Completed: December 28, 2000

	Soil Sample					
Depth	th Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-2	1	GP	_	12	0.0	0-4": Concrete dust and dark SILTY SAND and GRAVEL
						4"-12": Dark brown SILTY SAND and GRAVEL, moist, no odor
2-4	2	GP		12	0.0	0-12": Brown to tan to orange SAND and GRAVEL, slightly moist, no odors
4-6	3	GP		24	0.0	0-14": Brown to tan to dark orange SAND and GRAVEL, no odors
						14"-24": Brown to tan slightly gray tinted SILTY CLAYEY material, no odors
6-8	4	GP		20	0.0	0-2": Brown to tan SILTY CLAYEY material, moist, no odors
						2"-20": Light brown to tan SAND and GRAVEL, dry, no odors
8-10	5	GP		20	0.0	0-20": Light brown to tan SAND and GRAVEL,
						little lenses of red tint, dry, no odors
					,	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete beneath wood block floor

Project Name:

1852 Bethpage, NY Boring No.: I30B03W12 Sheet 1 of 1

Boring Diameter:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 10 ft. **Ground Surface Elevation:** -- ft.

Date Started: December 28, 2000 Date Completed: December 28, 2000 2 in.

	Turiou.		DEI 20, 2	.000	г	Date Completed. December 20, 2000		
1_	Soil Sample							
Depth		nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)			
0-2	¥ 1	GP		18	0.3	0-6": Concrete dust and rubble, trace SILT		
						6"-18": Dark brown SAND and GRAVEL, SILTY CLAYEY material, semi-moist		
2-4	2	GP		12	0.0	0-12": Brown to tan SAND and GRAVEL, dry, no odors		
4-6	3	GP		24	0.0	0-24": Light brown to tan SAND and GRAVEL, dry, no odors		
6-8	4	GP		24	0.0	0-24": Light brown to tan SAND and GRAVEL, dry, no odors		
8-10	5	GP		24	0.0	0-24": Light brown to tan SAND and GRAVEL, dry, no odors		
					-			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete beneath wood block floor

A DIVIS	ION OF W		ONSULTI	(a lucc ng engli associat	NEERS	Project No.: 1852 Boring No.: 130B04 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller Drill R	: W. Ro	wland hprobe	Emingto			Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 19, 2000 Boring Completion Depth: 5 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in
		Soil Sa	ample			
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	10-30	0-20": Brown coarse to medium SAND, some GRAVEL, dry, no odor
3-5	2	GP_		20	50-100	0-20": Brown to light orange, coarse to medium SAND,
						some GRAVEL, poorly sorted, dry
		 		 		
		├				
					<u> </u>	
					<u></u>	
			ļ			
		<u> </u>				
	 	 -				
				ļ <u>.</u>	 	
		<u> </u>				
	<u> </u>					
		-				
	 	<u> </u>				
	<u> </u>	<u> </u>				
					ļ 	
					L	
						
	 	-				
	 			ļ	ļ	
	_	 				
		l	l	1	1	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: concrete is 7" thick beneath wood block floor PID readings in borehole: 500-1000 ppm

1852 Bethpage, NY **Boring No.: 130B05** Sheet 1 of 1

Project Name: Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

-- ft. 2 in. **Boring Diameter:**

10 ft.

Date Started: October 3, 2000 Date Completed: October 3, 2000

		Soil S	ample					
Depth	Sample		Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)			
6-8	1	GP		24	0.0	0-24": Tan to orange-brown to tan, fine to coarse SAND, trace SILT		
L						little fine to coarse GRAVEL, dry, no odor		
8-10	2	GP		22	0.0	0-22": Tan to orange-brown to tan, fine to coarse SAND, trace SILT		
						little fine to coarse GRAVEL, dry, no odor		
	I							

<u></u>				}		little fine to coarse GRAVEL, dry, no odor
8-10	2	GP		22	0.0	0-22": Tan to orange-brown to tan, fine to coarse SAND, trace SILT
<u> </u>	<u> </u>		<u> </u>			little fine to coarse GRAVEL, dry, no odor
				 		
ļ	<u> </u>	<u> </u>	-			
			ļ	 		
				ļ		
<u> </u>						
ļ						
<u></u>						
<u> </u>						
$\vdash\vdash\vdash$						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 38" thick concrete below wood block floor

Possible void from 4'-6' below grade

Project Name:

1852 Bethpage, NY

Phase II Site Assessment

Boring No.: 130B06

Boring Diameter:

Plant 1 -

Sheet 1 of 1

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

No.

1

2

Depth

(ft.)

1-3

3-5

Geologist: Ken Wenz **Drilling Method:** Geoprobe **Drive Hammer Weight: N/A**

PID

(ppm)

0.0

0.1 0.1

0.0

Boring Completion Depth: Ground Surface Elevation:

5 ft. ft. 2 in.

Date Started: September 18, 2000

Type

GP

GP

Sample

Soil Sample

Blows

(Per 6")

(inches)

24

18

Date Completed: September 18, 2000

Lithology Description
0-18": Brown SILT, trace fine-medium SAND, dry, no odor
18"-24": Black SILT and fine to medium SAND, dry, no odor
20"-24": Brown SILT, trace fine-medium SAND, dry, no odor
0-3": Brown SILT, trace fine-medium SAND, dry, no odor
3"-18": Tan to orange-brown, fine to coarse SAND, trace SILT,

0.	0 3"-18": Tan to orange-brown, fine to coarse SAND, trace SILT,
	little fine to medium GRAVEL, dry, no odor
	7
	\dashv
	-
	\dashv
 	
	
	_
	7
	7
	7
	-
	-
 	┥
 	\dashv
 	
 	_
	_
Sample Type:	Notes: concrete is 7" thick at grade
SS = Split Spoon HA = Hand Auger GP = (Seoprobe

CC = Concrete Core HP = Hydropunch

		ILLIAM F.	COSULICH	IUCC NG ENGII ASSOCIAT	VEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As		
Driller Drill R	: W. Ro ig : Eartl	wland hprobe Octobe	Emingto r 17, 200			Geologist: Keith Rol Drilling Method: Ge Drive Hammer Weig Date Completed: Od	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft ft 2 in
Depth (ft.)	San No.	Soil Sa ple Type	Blows	Rec.	PID (ppm)		Lithology	Description	
0-2	1	GP		20	2.0	0-20": Dark brown, fin	e to coarse SAND,	fine to medium GRAVEL,	
						trace organic	s, dry to damp		
2-4	2	GP		20	10.0	0-20": Brown to light o	orange, fine to coars	se SAND, little fine GRAVEL,	
						trace brown S	ILT, damp		
				-					
	Type:				i		Notes:		

Page 1 of 1

Project No.:

1852

Boring No.: 131B02 Sheet 1 of 1

Project Location: Project Name:

Bethpage, NY Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 18, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe **Drive Hammer Weight: N/A** **Boring Completion Depth: Ground Surface Elevation:**

ft. 2 in. **Boring Diameter:**

6 ft.

Date Completed: September 18, 2000

Date S	tarted:		nber 18, 2	2000		Date Completed: September 18, 2000			
	Soil Sample								
Depth	San	nple			PID	Lithology Description			
(ft.)	No.	Туре	(Per 6")		(ppm)				
2-4	1	GP		22	0.0	0-22": Brown to orange-brown, fine-coarse SAND, trace SILT, some			
			1	<u> </u>		fine to medium GRAVEL, dry, no odor			
4-6	2	GP		18	0.1	0-18": Brown to orange-brown, fine-coarse SAND, trace SILT, some			
						fine to medium GRAVEL, dry, no odor			
		<u> </u>							
	- 1.01								

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted through bottom of 2' deep pit Notes:

A DIVISI	ON OF W		CONSULTI	Ka ILUCC ING ENGIN I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: 132B01 Sheet 1 of 1 By: MR sessment	
Driller: Drill R	: W. Ro	owland hprobe Septem	nber 19, 2			Geologist: Keith Rol Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe ht: N/A	Boring Completion Depth: 5 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in.	
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)		Lithology Description		
1-3	1	GP	-	24		0-24": Dark brown-ora	inge SILT, trace fine	GRAVEL, damp	
3-5	2	GP	_	12	5-15	0-12": Light-tan SILT,	little fine to medium	SAND, trace fine GRAVEL, damp	
							 		
								,	
Sample								k concrete at grade	
	-			Auger Gl	-	probe	-	e. Interior background PID readings be due to high humidity.	

1852 Bethpage, NY Boring No.: 132B02

Project Name: Plant 1 - By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 19, 2000

Geologist: Keith Robbins Drilling Method: Geoprobe **Drive Hammer Weight: N/A**

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

5 ft. -- ft.

Date Completed: September 19, 2000

2 in.

			Soil S	ample						
D	epth Sample		nple	Blows	Rec.	PID	Lithology Description			
L	(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)				
L	1-3	1	GP		15	5-10	0-15": Dark brown-orange, coarse to fine SAND,			
L							some SILT, fine GRAVEL, poorly sorted, dry			
L	3-5	2	GP		24	3-5	0-12": Brown-tan SILT, trace to little fine to medium			
							SAND, fine GRAVEL, trace CLAY, damp			
				i .						

			<u> </u>			30.110 0.121, 11.110 0.110 (1.121, poorly doi:104, d.ly
3-5	2	GP		24	3-5	0-12": Brown-tan SILT, trace to little fine to medium
						SAND, fine GRAVEL, trace CLAY, damp
						,
			<u> </u>			
<u> </u>	 	<u> </u>				
-		 	<u> </u>		<u> </u>	
				<u> </u>	<u> </u>	
				· · · · · · · · · · · · · · · · · · ·		
		ļ				
		<u> </u>	ļ .			
				<u> </u>		
						,
						,
-						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 8" thick concrete at grade

Rain falling outside. Interior background PID readings of 3 ppm may be due to high humidity,

A DIVIS	ON OF W		Dvirk and Barti cosulich	lucc ng engin	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I30B02N8 Sheet 1 of 1 By: MR sessment			
Driller Drill R	: W. Ro	wland hprobe Decem	Emingto ber 20, 2			Geologist: Mark Rat Drilling Method: Ge Drive Hammer Weig Date Completed: De	oprobe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. – ft. 2 in.		
Depth (ft.)	San No.	Soil Sanple Type	Blows	Rec. (inches)	PID (ppm)		Lithology Description				
1-3	1	GP		24	0.0	0-6": Concrete dust					
<u> </u>		<u> </u>				1	ohtty stained SAND	and GRAVEL, dry, no odor			
						18"-24": Brown to tan		·			
3-5	2	GP		18	0.0	0-18": Brown to tan S					
3-3		- Gr			0.0	10-10 . DIOWIT to tail of	AND AIR OIVAVEL,	diy, no odoi			
						ļ					
						1					
		_									
Se1	T						Notes: 7" thic	ck concrete beneath wood block fi	00r		
	olit Spoc		= Hand A			probe	AOISS: / INK	Y COUCHER DESIGNATION MOOR DIOCK II	~		
CC = C	oncrete	Core	HP = Hy	/dropuncl	h						

1852 Bethpage, NY Boring No.: 130B02S8 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: December 20, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: December 20, 2000

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 2 in.

	Soil Sample					
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре		(inches)		
1-3	1	GP		24	0.0	0-8": Concrete dust
						8"-16": Dark brown to black stained SAND and GRAVEL, dry, no odor
						16"-24": Brown to tan SAND and GRAVEL, dry, no odor
3-5	2	GP		18	0.0	0-18": Brown to tan SAND and GRAVEL, dry, no odor
		<u> </u>		10	0.0	10-10 . Blown to tan SAND and GRAVEE, dry, no odor
	<u> </u>					
						·
]		
						•
				·		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 7" thick concrete beneath wood block floor

Dilling Contractor: Eminglon Dilling Nethod: Geoprobe Dirilling Neth	A DIVISI	ON OF W		ONSULTI	(a lucc ng engin associati	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I30B02E8 Sheet 1 of 1 By: MR sessment	
Depth No. Type (Per 67) (inches) (pin)	Driller Drill R	: W. Ro	wland hprobe	_			Drilling Method: Ge Drive Hammer Weig	oprobe jht: N/A	Ground Surface Elevation:	ft.
1-3 1 GP - 12 0.0 0-6": Concrete dust 6"-12": Brown to tan SANDY SILTY soil , no odor 3-5 2 GP - 24 0.0 0-12": Brown to tan SANDY soil with a slight green tint, dry 12"-24": Brown to tan SAND, trace GRAVEL, dry, no odor		epth Sample Blows Rec.						Lithology I	Description	
8-12": Brown to tan SANDY Soil with a slight green tint, dry 12"-24": Brown to tan SAND, trace GRAVEL, dry, no odor 10" 10		No.		(Per 6")						
3-5 2 GP - 24 0.0 0-12*: Brown to tan SANDY soil with a slight green tint, dry 12*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 12*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 13*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 14*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 15*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 16*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 16*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor	1-3	1	GP		12	0.0	1	SANDY SILTY soil	no odor	
Sample Type: 12*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor 12*-24*: Brown to tan SAND, trace GRAVEL, dry, no odor	2.5	_	CD.		24	0.0				
Sample Type: Notes: 7" thick concrete beneath wood block floor	3-5	2	GP		24	0.0	1			
• • • • • • • • • • • • • • • • • • • •							12"-24": Brown to tan	SAND, trace GRAV	/EL, ary, no odor	
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •				-						
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •]			
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •	-									
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •		_								
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •										
• • • • • • • • • • • • • • • • • • • •	-									
• • • • • • • • • • • • • • • • • • • •				-						
CC = Concrete Core HP = Hydropunch	ss = s	olit Spoc					probe	Notes: 7" thic	ck concrete beneath wood block fl	oor

1852 Bethpage, NY Boring No.: 130B02W8 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: December 20, 2000

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: December 20, 2000

Boring Completion Depth: Ground Surface Elevation:

-- ft. **Boring Diameter:**

2 in.

5 ft.

ł	Soil Sample							
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
1-3	1	GP		24	0.0	0-6": Light brown to tan to orange SAND and GRAVEL, dry, no odor		
						6"-24": Dark brown to tan SANDY soil with trace black staining, dry, no odor		
3-5	2	GP		24	0.0	0-24": Light brown to tan SAND and GRAVEL with a trace green tint, dry, no odor		
•			I			<u> </u>		

L	(IL.)	NO.	Type	(Per 6")	(inches)	(ppm)	
	1-3	1_	GP		24	0.0	0-6": Light brown to tan to orange SAND and GRAVEL, dry, no odor
L							6"-24": Dark brown to tan SANDY soil with trace black staining, dry, no odor
Ł	3-5	2	GP		24	0.0	0-24": Light brown to tan SAND and GRAVEL with a trace green tint, dry, no odor
L		ļ	<u> </u>				
\vdash		<u> </u>					
ŀ		<u> </u>					
ŀ		<u> </u>					
H		 	<u> </u>				
-							
r							
L							
\vdash					-	-	
\vdash							
\vdash							
\vdash							
\vdash							
F							
L							
L							
-							
L							
\vdash							
\vdash							
\vdash			-				
\vdash							

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 7" thick concrete beneath wood block floor

Dvirka Project No.: 1852 Boring No.: I30B03N12 **Project Location:** Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 -By: MR CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C. Phase II Site Assessment **Drilling Contractor:** Emington Geologist: Mark Rauber **Boring Completion Depth: Ground Surface Elevation: Drilling Method:** Geoprobe Driller: W. Rowland **Drive Hammer Weight: N/A Boring Diameter:** Drill Rig: Earthprobe Date Completed: December 28, 2000 Date Started: December 28, 2000

Date S	tarted:	Decem	ber 28, 2	000		Date Completed: December 28, 2000
		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
0-2	1	GP		15	1.1	0-7": Slightty stained SAND and GRAVEL, SILT and concrete dust, moist, no odor
	<u> </u>					7"-15": Dark brown SAND and GRAVEL, dry, no odor
2-4	2	GP		12	0.8	0-12": Light brown to tan to orange SAND and GRAVEL, dry, no odors
4-6	3_	GP		24	1.3	0-24": Light brown to tan SAND and GRAVEL with a 6" layer of gray tinted SILTY
		ļ				CLAY at bottom of sample interval, moist, no odors
6-8	4	GP	<u></u>	24	0.5	0-24": Light brown to tan SAND and GRAVEL with a 4" layer of gray tinted SILTY CLAY at top of sample interval, moist, no odors
		 				
8-10	5	GP		24	0.0	0-24": Very light brown to tan to orange SAND and GRAVEL, dry, no odors
						
						
					-	
ullet				لــــــــا	L	<u> </u>

Sample Type: SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete beneath wood block floor

10 ft.

-- ft.

2 in.

1852 Bethpage, NY Boring No.: 132B03

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 20, 2000

Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 5 ft. Ground Surface Elevation: - ft.

Boring Diameter: 2 in.

Date Completed: September 20, 2000

	Soil Sample					
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	0.0	0-20": Dark brown-orange, fine to medium SAND, little SILT,
						some fine GRAVEL, well sorted, dry to damp
3-5	2	GP		20	0.0	0-10": Tan-brown SILT, damp, fine SAND, trace GRAVEL
						110"-20": Brown-orange, coarse to medium SAND and GRAVEL, dry

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 7" thick concrete at grade

Background PID = 0.0 ppm

A DIVISI	ON OF W		Dvirk and Barti cosulch	LUCC	NEERS	Project No.: 1852 Project Location: Bethpage, Project Name: Plant 1 - Phase II 5	Boring No.: 132B04 , NY Sheet 1 of 1 By: MR Site Assessment
Driller: Drill Ri	: W. Ro	wland hprobe Septem	Emingto			Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 20,	Boring Completion Depth: 5 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec. (inches)	PID (ppm)	Lith	ology Description
1-3	1	GP	-	20	0.0	0-20": Dark brown-orange, mediur	m SAND, some tan-brown SILT, damp
3-5	2	GP		15	0.0	0-15": Orange-brown SILT, some	fine to medium SAND, fine GRAVEL, damp-dry
			-				
				<u> </u>			
-					-		
							!
$\mid - \mid \mid$							
Sample	Type					Notes:	
SS = Sp	lit Spoo		= Hand A HP = Hy				

Project Name:

1852 Bethpage, NY Boring No.: 133B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: Sentember 28, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

5 ft. -- ft.

Date S	Started:	Septen	nber 28, 2	2000		Date Completed: September 28, 2000
		Soil S	ample		Ī	
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		16	0.0	0-16": Brown to tan-brown, fine to medium SAND, trace SILT,
		ļ				little fine to medium GRAVEL, dry, no odor
3-5	2	GP		15	0.0	0-15": Brown to tan-brown, fine to medium SAND, trace SILT,
<u> </u>		<u> </u>				little fine to medium GRAVEL, dry, no odor
		<u></u>				
		1				
	 	 				
		ļ	-			
-						
			-			
-						
					711-11	
				ļ		
			·			
			<u> </u>			
Ī				T		
-						
			i			
İ						
					1	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete floor

		ILLIAM F.	COSULICH	IUCC NG ENGIN ASSOCIAT	NEERS	Project No.: Project Location: Project Name: Geologist: Ken Wen	1852 Bethpage, NY Plant 1 - Phase II Site Ass	
Driller: Drill R	W. Ro	owland hprobe Septem	Emingto			Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Boring Completion Depth: 8 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.
Depth (ft.)	Soil Sample Sample Blows Rec. PID No. Type (Per 6") (inches) (ppm)						Lithology [Description
4-6	1	GP		22	0.0	0-18": Brown, fine to r	nedium SAND, trace	e SILT, trace fine GRAVEL, dry, no odor
						18"-22": Orange-brow	n, fine to coarse SA	ND,
						trace SILT, I	ittle fine to coarse G	SRAVEL, dry, no odors
6-8	2	GP	1	15	0.0	0-15": Orange-brown,	fine to coarse SAN	D,
						trace SILT, I	ittle fine to coarse G	SRAVEL, dry, no odors
	lit Spoc			uger Gl		probe	Notes: Boring	conducted adjacent to a 4' deep pit

1852 Bethpage, NY Boring No.: 134B02

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 29, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

6 ft. -- ft.

Date Completed: September 29, 2000

2 in.

	L	Soil Sample				
Depth	th Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
2-4	1	GP		20	0.0	0-16": Brown SILT, trace fine to medium SAND, dry, no odor
	<u> </u>					
4-6	2	GP		22	0.0	0-2": Brown SILT, trace fine to medium SAND, dry, no odor
						2"-22": Tan to orange-brown, fine to coarse SAND,
	<u> </u>					trace SILT, trace fine to coarse GRAVEL

2-4	1	GP		20	0.0	0-16": Brown SILT, trace fine to medium SAND, dry, no odor
4-6	2	GP		22	0.0	0-2": Brown SILT, trace fine to medium SAND, dry, no odor
		<u> </u>	 			2"-22": Tan to orange-brown, fine to coarse SAND,
						trace SILT, trace fine to coarse GRAVEL
-						4
			<u> </u>		<u> </u>	
ļ		ļ				
	ļ	<u> </u>				
	-		·			
		-				
			<u> </u>			
-	<u>. </u>					
<u> </u>						
}				-		
					<u> </u>	
-						
\vdash						
1					1	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted adjacent (1' east) to

2' deep pit

A DIVISIO	ON OF WI		ONSULTI	(a lucc ng engir associat	NEERS	Project No.: 1852 Boring No.: I35B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	W. Ro g: Earti tarted:	wland nprobe Septem	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 29, 2000 Boring Completion Depth: 5 ff Ground Surface Elevation: - ff Boring Diameter: 2 in
Depth	San		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")		(ppm)	
1-3	1	GP		15	0.0	0-6": Brown, fine to coarse SAND, trace SILT, trace fine GRAVEL, dry, no odor
						6"-13": Brown SILT and CLAY, dry, no odor
ļ						13"-15": Brown, fine to coarse SAND, trace SILT, trace fine GRAVEL,dry,no odo
3-5	2	_GP		18	0.0	0-18": Brown, fine to coarse SAND, trace SILT, trace fine GRAVEL, dry, no odor
						1
					-]
]
						1
						1
-						1
						1
	-					-
					<u>-</u>	-
		_				
ļ	-					
					_]
					:]
						1
						1
						1
						†
				—		1
						1
						-
Sample SS = Sp	lit Spoo	n HA:	= Hand A	uger Gf	P = Geop	Notes: 8" thick concrete at grade probe

Boring No.: 135B02

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Date Started: September 29, 2000

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:**

2 in.

Date Completed: September 29, 2000

Date S	started:		nber 29, 2	2000		Date Completed: September 29, 2000
		Soil S	ample			
Depth	Sai	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")		(ppm)	
1-3	1	GP		16	0.0	0-16": Brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odor
3-5	2	GP		18	0.0	0-18": Brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odor
	-					
	<u> </u>					
						· ·
		\vdash				
-					-	
1						
						,
			İ			
+						
		<u> </u>				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

A DIVISI	ON OF W		ONSULTI	Ka lucc ng engli associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: 136B01 Sheet 1 of 1 By: MR	
Driller: Drill R	W. Ro	wland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weigl Date Completed: Se	probe nt: N/A	Boring Completion Depth: 5 Ground Surface Elevation: Boring Diameter: 2	ft. ft. in.
Depth	San No.		Blows (Per 6")	Rec.	PID		Lithology [Description	
(ft.)		Type GP	-	·	(ppm) 0.0	0-18": Tan to brown, fi	no to modium SANI	D. trace SILT	
1-3	1	GP		18	0.0	1	AVEL, dry, no odor		
	2	GP		18	0.0	0-18": Tan to brown, fil			
3-5		GP		10_	0.0	1	AVEL, dry, no odor		
	-					uace in e Gro	TTEL, dry, NO OUOI		
						1			
						1			
				<u> </u>					
						1			
					_				
.,									
-									
	·			-					
						1			
			_						
					_				
	<u> </u>					<u> </u>	N1-4 27-11-1		
	olit Spoo			Auger G ydropunc		probe	Notes: 6" thic	k concrete at grade	

1852 Bethpage, NY Boring No.: 136B02 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 22, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

5 ft. -- ft.

Date Completed: September 22, 2000

2	in.	

Date S	tarted:	Septen	nber 22, 2	2000		Date Completed: September 22, 2000		
		Soil S	ample					
Depth	San			PID	Lithology Description			
(ft.)	No.	Туре	(Per 6")		(ppm)			
1-3	1	GP		. 24	0.0	0-16": Tan-brown, fine to coarse SAND, trace SILT,		
						little fine to coarse GRAVEL, dry, no odors		
						16"-24": Brown SILT, little to some fine to medium SAND, dry, no odor		
3-5	2	GP		24	0.1	0-12": Brown SILT, little to some fine to medium SAND, dry, no odor		
						12"-24": Tan to orange-brown, fine to coarse SAND, trace SILT,		
						little fine to coarse GRAVEL, dry, no odors		
						•		
					· · · · · · · · · · · · · · · · · · ·			
	-			· · · - · ·				
	.							
<u> </u>								
						·		
ĺ								

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

						y		
		> 6	Dvirk and			Project No.:	1852	Boring No.: 137B01
)) F	Barti	lucc	i	Project Location:	Bethpage, NY	Sheet 1 of 1
		少 ō	ONSULTI	NG ENGIN	NEERS	Project Name:	Plant 1 -	By: MR
A DIVISI	ON OF W	ILLIAM F.	COSULICH	ASSOCIAT	ES, P.C.		Phase II Site Ass	sessment
Driller Drill R	W. Ro	wland hprobe	Emingto			Geologist: Keith We Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe pht: N/A	Boring Completion Depth: 5 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in.
Date	tartou.	Soil Sa					7,011,001,211,2000	
Depth	San	nple	Blows	Rec.	PID		Lithology I	Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
1-3	1	GP		22	0.0	0-4": Brown, fine to co	oarse SAND, trace S	SILT, trace fine GRAVEL, dry, no odor
						4"-12": Brown, fine to	coarse SAND, trace	SILT.
						1	medium GRAVEL,	
						1		
						12"-22": Orange-brow		
							medium GRAVEL,	
3-5	2	GP		18	0.0	0-6": Brown SILT and	fine to medium SA	ND, dry, no odor
						6"-18": Orange-brown	n, fine to coarse SAN	ND, trace SILT,
						some fine to	o medium GRAVEL,	dry, no odor
]		
			-					
						ļ		
						1		
						1		
						1		
	-							
						1		
		_				1		
		L				l	T.:-	
Sample			12	\== C	D - C-		Notes: 6" thic	k concrete below tile floor
				Auger G ydropunc		probe		

A DIVISI	ON OF W		ONSULTI	Ka lucc NG ENGII I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: 137B02 Sheet 1 of 1 By: MR sessment
Driller: Drill Ri	: W. Ro i g: Eartl	wland hprobe	Emingto			Geologist: Keith Wen Drilling Method: Geo Drive Hammer Weigh Date Completed: Sep	probe nt: N/A	Boring Completion Depth: 5 ft Ground Surface Elevation: - ft Boring Diameter: 2 in
Depth (ft.)	San No.	Soil Sanple Type	Blows (Per 6")	Rec.	PID (ppm)		Lithology [Description
1-3	1	GP		24	0.0	0-19": Orange-brown, f	ine to coarse SAN	D. trace SILT.
						1	nedium GRAVEL,	
						19"-24": Brown SILT, tr		
3-5	2	GP		19	0.0	0-19": Brown SILT, trac		
33	2	5		18	0.0	10-19 . Brown SIL1, trac	te line to medium s	SAND, ary, no odors
					-			
					v			
-								
 								
	<u> </u>							
Sample	Time:						Notes: Of the	congrate halow Alls Acco
SS = Spl	lit Spooi			uger GP			Notes: 6" thick	concrete below tile floor

A DIVISION	ON OF W		ONSULTI	Ka lucc ng engir associat	NEERS	Project No.: 1852 Boring No.: 138B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	W. Ro	wland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 26, 2000 Boring Completion Depth: 5 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in
Depth (ft.)	San No.	Soil Sa aple Type	Blows	Rec. (inches)	PID (ppm)	Lithology Description
1-3	1	GP		20	0.0	0-20°: Brown SILT and fine to medium SAND to fine GRAVEL, dry, no odors
3-5	2	GP		24	0.0	0-6": Brown SILT and fine to medium SAND to fine GRAVEL, dry, no odors
						6"-24": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odors
	lit Spoo			uger Gl		Notes: 6" thick concrete at grade probe

1852 Bethpage, NY Boring No.: 138B02 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: September 26, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

5 ft. -- ft. 2 in.

Date Completed: September 26, 2000

						Date Completed: Coptombol 20, 2000
		Soil Sample				
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)		Littlology Description
	110.		(Fel 0)	(IIICHES)	(ppm)	
1-3	1	GP		18	0.0	0-5": Brown SILT and fine to medium SAND, dry, no odors
						5"-13": Brown SILT, little fine to medium SAND, trace fine GRAVEL, dry, no odors
						·
		ļ				13"-18": Orange-brown, fine to coarse SAND, trace SILT,
			_			trace fine to coarse GRAVEL, dry, no odors
3-5	2	GP		20	0.0	0-5": Orange-brown, fine to coarse SAND, trace SILT,
		<u> </u>			0.0	
						trace fine to coarse GRAVEL, dry, no odors
						3"-20": Brown SILT, little CLAY, trace fine to medium SAND, dry, no odors
		l I				
	·					
				ļ		
l						
ļ						
						<u> </u>
	1	l	ŀ			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 8" thick concrete at grade

Driller: W. Rowland Drilling Method: Geoprobe Ground Surface Elevation:	A DIVISI	ION OF W		ONSULTI	(a lucc ng engli associat	NEERS	Project No.: 1852 Boring No.: 139B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Depth (ft.) Sample (ft.) No. Type (Per 6") (inches) (ppm) PiD (inches) (ppm) -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 0.0 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 GP 20 Description -3 1 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 1 1 -3 1 1 1 -3 1 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1 -3 1 1 1	Driller Drill R	: W. Ro ig: Eartl	wland hprobe	_			Drilling Method: Geoprobe Ground Surface Elevation: - ft. Drive Hammer Weight: N/A Boring Diameter: 2 in
	_		nple	Blows			
3.5 2 GP - 15 5.0 0-15". Tan, medium to coarse SAND, some fine GRAVEL, poorly sorted, dry	1-3	1	GP		20	0.0	0-20*: Brown-tan, fine SAND and SILT, trace fine GRAVEL, damp to dry
	3-5	2	GP	_	15	5.0	0-15": Tan, medium to coarse SAND, some fine GRAVEL, poorly sorted, dry
							- -
							- -
							-
]
							1
			_				
Sample Type: Notes: 12" thick concrete at grade	Sample	Type					Notes: 12" thick concrete at grade

1852 Bethpage, NY Boring No.: 139B02 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

-- ft.

5 ft.

Date Started: September 19, 2000

Date Completed: September 19, 2000

Boring Diameter:	2	in.
------------------	---	-----

	Soil Sample					
Depth	h Sample		Blows	Rec.	PID Lithology Description	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-3	1	GP		13	5-15	0-13": Brown-orange, fine SAND, some SILT, fine crushed GRAVEL, dry
3-5	2	GP		20	5-10	0-20": Light brown-tan, coarse to medium SAND, some fine
						subrounded GRAVEL, trace FINES, dry, poorly sorted
		1				

F	1-3	1	GP	 13	5-15	0-13": Brown-orange, fine SAND, some SILT, fine crushed GRAVEL, dry
	3-5	2	GP	 20	5-10	0-20": Light brown-tan, coarse to medium SAND, some fine subrounded GRAVEL, trace FINES, dry, poorly sorted
ļ						Subjourned Gravel, trace i integ, dry, poorly sorted
-						
ļ						
-						
F						
-						
L	-					
H						
F						
L						
-						
F						
-						
\vdash						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 12" thick concrete at grade

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:** 1852 Bethpage, NY **Boring No.:** 140B01

Project Name:

Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 4, 2000

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Date Completed: October 4, 2000

Boring Completion Depth: 6 ft. **Ground Surface Elevation:** - ft.

2 in. **Boring Diameter:**

I Dave o	taitou.	CCIODO	4 4 , 2000			Date Completed: Colocol 1, 2000
	Soil Sample th Sample Blows Rec. PID					
Depth			PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
2-4	1	GP		17	0.0	0-2": Brown SILT, trace fine to medium SAND, dry, no odor
						2"-17": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL, dry, no odor
4-6	2	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL, dry, no odor

2-4	1	GP	 17	0.0	0-2": Brown SILT, trace fine to medium SAND, dry, no odor
					2*-17*: Orange-brown, fine to coarse SAND, trace SILT,
					trace fine to coarse GRAVEL, dry, no odor
4-6	2	GP	 24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
					trace fine to coarse GRAVEL, dry, no odor
		· ·			
-					
					
. ——.			 		
	-			-	
-					
ļ		<u> </u>			
<u> </u>					
<u> </u>		<u> </u>	 		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

8" thick concrete at grade with an 8" thick layer Notes: of dirt/fill beneath then another 8" thick layer of concrete (i.e., an 8" deep backfilled pit)

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: 140B03 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 20, 2000

Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

-- ft. 2 in.

5 ft.

Date Completed: September 20, 2000

	Soil Sample h Sample Blows Rec.		İ			
Depth			Blows	Blows	Rec.	PID
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	0.0	0-20": Dark brown-light orange, coarse to fine SAND, some subrounded
						fine GRAVEL, trace dark brown SILT (<6" thick), dry to damp
3-5	2	GP	+-		0.0	Dark brown-orange, coarse to fine SAND, some
						subrounded GRAVEL, trace grayish SILT
	1					

1-3	1	GP	 20	0.0	0-20": Dark brown-light orange, coarse to fine SAND, some subrounded fine GRAVEL, trace dark brown SILT (<6" thick), dry to damp
3-5	2	GP	 	0.0	Dark brown-orange, coarse to fine SAND, some
	<u> </u>	<u> </u>	 	0.0	subrounded GRAVEL, trace grayish SILT
ļ			 		
				-	
	ļ				
-					
	-				
\vdash			 		
<u></u>			 		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: approx. 12" thick concrete at grade

C A DIVISI	ON OF W		ONSULTI	CA LUCC NG ENGII ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: I40B04 Sheet 1 of 1 By: MR sessment	
Driller: Drill R	: W. Ro	wiand hprobe	Emingto			Geologist: Keith Rol Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple Type	Blows	Rec. (inches)	PID (ppm)		Lithology I	Description	
1-3	1	GP		20	0.0	0-20": Brown-orange,	coarse to fine SAN	D, some subrounded	
						GRAVEL, tra	ce FINES, poorly so	orted, dry	
3-5	2	GP		20	0.0	0-20": Orange-brown,	, coarse to medium	SAND, some fine GRAVEL,	_
						subrounded t	o subangular, poorly	sorted, dry	
	-	<u> </u>	ļ			j			
						1			
						1			
								,	
						ļ			
	-								
						1			
						1			
						1			
				ļ	·				
				ļ		ļ			
Sample	Type:	لـــــا		L		· · · · · · · · · · · · · · · · · · ·	Notes: approx	k. 5" to 7" thick concrete at grade	
SS = Sp	olit Spoo			luger G		probe		•	
CC = C	oncrete	Core	HP = Hy	/dropuncl	h		1		

A DIVISI	ON OF W		ONSULTI	(a lucc ng engli associat	NEERS	Project No.: 1852 Boring No.: I40B05 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment	
Driller: Drill Ri	: W. Ro i g: Eartl	wland hprobe Septem	Emingto			Drilling Method: Geoprobe Ground Surface Elevation: -	5 ft. – ft. 2 in.
Depth	San	Soil Sa	ample Blows	Rec.	PID	Lithology Description	
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	Entitional Description	
1-3	1	GP		20	0.0	12"-24": Dark brown, fine to coarse SAND, trace SILT	
<u> </u>						24"-36": Brown-light brown, coarse to medium SAND,	
						some fine subounded GRAVEL, dry	
3-5	2	GP		24	0.0	0-24": Brown-light orange, medium to coarse SAND, trace to	
						little fine angular GRAVEL, trace FINES, well sorted, dry	
						4	
						-	
						-	
					-	-	
						1	
						-	į
						-	
			-				
	-						
					_		ļ
-							
					——-		
-							
Sample	Type:			}	<u> </u>	Notes:	
SS = Spi	lit Spoor			uger GF dropunch			

C A DIVIS	ION OF W		ONSULTI	KA IUCC ING ENGII I ASSOCIAT	NEERS	Project No.: 1852 Boring No.: I40B06 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller Drill R	: W. Ro	owland hprobe	Emingto		·	Geologist: Keith Robbins Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 20, 2000 Boring Completion Depth: 5 1 Ground Surface Elevation: — 1 Boring Diameter: 2 i
Date	Tarteu.				г -	Date Completed. Ochicinoci 20, 2000
Depth	San	Soil Sa nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
1-3	1	GP	_	20	0.0	0-20": Dark brown-orange, silty SAND, moist, trace coal black fragment
						FILL, some subrounded GRAVEL, trace clay, slightly cohesive
3-5	2	GP		22	0.0	0-22": Tan, coarse to medium SAND and angular fine GRAVEL,
		<u></u>	ļ			trace fine SANDS, poorly sorted, loose, dry
						1
						1
						1
						-
<u> </u>	-	<u> </u>			<u> </u>	
	 	_				
<u> </u>	-					
	ļ	<u> </u>				
						-
	<u> </u>	<u> </u>				
		<u> </u>				1
						1
			-			1
						1
						1
						1
			-			†
	 	\vdash				1
						1
						1
						4
						-
						I and the second

Page 1 of 1

Notes:

approx. 5" to 7" thick concrete at grade

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Sample Type:

1852 Bethpage, NY Boring No.: 141B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland
Drill Rig: Earthprobe

Date Started: October 16, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 4 ft. Ground Surface Elevation: -- ft.

Ground Surface Elevation:
Boring Diameter:

-- ft. 2 in.

Date Completed: October 16, 2000

Date :	otarted	Octobe	er 16, 200)U		Date Completed: October 16, 2000
		Soil S	ample			
Depth	Sa	mple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)		managa basan kasan
	1					
0-2	1	GP		8	2.4	0-8": Light brown to tan, fine SAND, trace GRAVEL
1	1	1			ì	
		 -				
2-4	2	GP		18	3.6	0-18": Light brown to tan, fine SAND, trace GRAVEL
l]		
	1					
	 				ļ	
ł			ł		ţ	
<u> </u>	 	 				
				ł		
	 	 				
L						
	<u> </u>	 				
	ļ	<u></u> _				,
i						
						
Ì	1	1		1		
	ļ					
1						
	 					
ľ	1		, and the second			
	 	 				
		L				
	1			ļ		
			İ	- 1	ļ	
	<u> </u>					
				ļ		
		\vdash				
]]		
			f			
		 				ì
		1				
			T			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 4" thick concrete at grade

A DIVISI	ON OF W		Dvirk and Barti cosulich	UCC NG ENGIN	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: I41B02 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: O	oprobe ght: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	7 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec. (inches)	PID (ppm)		Lithology	Description	
1-3	1	GP		18	0.0	0-18*: Tan, fine to co	arse SAND, trace S	ILT, trace	
						fine to mediu	ım GRAVEL, dry, n	odor	
3-7	2	GP		20	0.0	0-20": Tan to orange-	brown, fine to coars	se SAND, trace	
						SILT, trace	fine to medium GRA	AVEL, dry, no odor	
						_			
]			
						1			
						1			
						1			
						1			
						1			
						1			
					-	1			
						İ			
			-						
	-					1			
						1			
						1			
						†			
						1			
Sample	Type	<u></u>				<u> </u>	Notes: 6" thir	ck concrete at grade	
3S = Sp			= Hand A HP = Hy			probe	Notes: 6" thic	ck concrete at grade	

1852 Bethpage, NY Boring No.: I41B03 Sheet 1 of 1

Project Name: Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: October 13, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 5 ft. Ground Surface Elevation: -- ft.

Boring Diameter: 2 in.

Date Completed: October 13, 2000

Date \$	rarted:		r 13, 200	U		Date Completed: October 13, 2000
	Soil Sample					
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		18	0.0	0-18": Brown, SILT and fine to coarse SAND, trace
						fine to coarse GRAVEL, dry, no odor
4-5	2	GP		4	0.0	0-2": Brown, SILT and fine to coarse SAND, trace
						fine to coarse GRAVEL, dry, no odor
	ļ					2"-3": Brown, SILT and fine to medium SAND, moist, no odor
						3"-4": Creosoted wood
		<u> </u>				
	-					
						•
-						
					-	,

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Void noted during probing from 3'-4' below grade. Three attempts with refusals noted at 5' below grade.

A DIVISI	ON OF W		ONSULTI	(a lucc ng engir associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: I41B04 Sheet 1 of 1 By: MR sessment	
Driller: Drill Ri	Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe Date Started: October 13, 2000					Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: Oc	oprobe jht; N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in
		Soil Sa							
Depth		nple	Blows	Rec.	PID		Lithology	Description	
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)				
1-3	1	GP		24	0.0	0–4": Brown, fine to m	edium SAND, trace	SILT, dry, no odor	
						4"-11": Brown, SILT,	trace fine SAND, dr	y, no odor	
						11"-24": Tan to orang	e-brown, fine to coa	arse SAND, trace SILT,	
						little fine to	medium GAVEL,	dry, no odor	
3-5	2	GP		24	0.0	0-24": Tan to orange-			
3-3		- 61		24	0.0	1	medium GAVEL,		
						inde inte u	mediam GAVEE,		
							•		
			-			1			
						•			
					-				
	Type:						Notes: 5" thic	ck concrete at grade	

5 ft.

Driller Drill R	: W. Ro ig: Eart	owland hprobe	Emingto er 13, 200			Geologist: Ken Wenz Boring Completion Depth: 5 ft
		Soil S			Ī	
Depth (ft.)	Sar No.	nple Type	Blows	Rec. (inches)	PID (ppm)	Lithology Description
1-3	1	GP		24	0.0	0-24": Brown, SILT, little fine to medium SAND,
						occasional fine to medium GRAVEL, dry, no odor
3-5	2	GP		16	0.0	0-9": Brown, SILT, little fine to medium SAND,
						occasional fine to medium GRAVEL, dry, no odor
						9"-16": Brown, SILT and fine SAND, dry, no odor
						1
						,
				_		
	·					
				-		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

Project No.:

1852

Boring No.: 142B01

Project Location: **Project Name:**

Bethpage, NY Plant 1 -

Sheet 1 of 1

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland

Drill Rig: Earthprobe

Date Started: October 19, 2000

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: October 19, 2000

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

10 ft. - ft.

2 in.

	Soil Sample						
Depth	epth Sample		Blows	Rec.	PID	Lithology Description	
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)		
8-10	1	GP		24	0.0	0-24": Light brown-tan-orange, SAND and GRAVEL, no odors	

8-10	1	GP		24	0.0	0-24": Light brown-tan-orange, SAND and GRAVEL, no odors
	٠					
			-			
	<u> </u>					
						
		l				
	 					
	 	 				
			 			1
				<u>. </u>		
						
	 					1
					<u> </u>	
		<u> </u>				1
	 					
	 	 			<u> </u>	1
 						1
<u> </u>	Щ.	Ц				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

4" thick concrete beneath wood block floor. Notes: Boring advanced manually to target beneath former dry well. Refusal encountered at 10' below grade.

1852 Bethpage, NY Boring No.: I43B01 Sheet 1 of 1

Project Name: Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: October 20, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 20, 2000

Boring Completion Depth: 16 ft. Ground Surface Elevation: -- ft. Boring Diameter: 2 in.

5410 0	tai teu.		1 20, 200		·	Date Completed. October 20, 2000				
		Soil Sa								
Depth	San			Rec.		Lithology Description				
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)					
8-10	1	GP		12	0.0	0-7": Dark brown/black SILTY stained SAND and GRAVEL				
						7"-12": Dark brown/tan SAND and GRAVEL, moist, no odor				
10-12	2	GP		6	0.0	0-6": Dark brown/tan SAND and GRAVEL, moist, no odor				
12-14	3	GP			0.0	Dark brown/black stained SAND and GRAVEL, no odor				
14-16	4	GP		18	0.0	0-9": Dark brown stained SAND and GRAVEL				
						9"-18": Brown/tan SAND and GRAVEL				
			<u>.</u>							
				ļ						
		ĺ				,				
- 										

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target a former dry well backfilled to grade.

1852 Bethpage, NY Boring No.: I43B01A Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 14 ft. **Ground Surface Elevation:**

-- ft. 2 in. **Boring Diameter:**

Date Started: December 28, 2000						Drive Hammer Weight: N/A Boring Diameter: 2 in Date Completed: December 28, 2000				
Depth (ft.)						Lithology Description				
10-12	1	GP		6	3.2	0-6": Dark brown with black stained SILTY moist SAND and GRAVEL, no odor				
12-14	2	GP		6	2.8	0-6": Dark brown SAND and GRAVEL, moist, no odor				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted to target a former dry well backfilled to grade. Refer to soil boring I43B01 for other samples (8'-14' continuous) collected at this location.

Project No.:

1852 **Project Location:**

Project Name:

Bethpage, NY

Boring No.: 143B02 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 20, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

- ft. **Boring Diameter:**

15 ft. 2 in.

Date Completed: October 20, 2000

Date :	started:	Octobe	er 20, 200	0		Date Completed: October 20, 2000
		Soil S	ample			
Depth	Sai	mple			PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)		Entroiogy Description
11-13	i i	GP		18	0.5	0-6": Dark brown/black stined SILTY sludge, wet
	1					6"-18": Dark brown/tan SAND and GRAVEL, moist, slight stained black
13-15	2	GP		15	12.0	
13-13	-	GF		15	12.0	0-15": Black SILTY/CLAYEY sludge, moist, petroleum odor
		-		<u> </u>		
	<u> </u>	<u> </u>		<u> </u>	-	
		-				
-						
					-	

		-				
	ļ					
					_	
-						
	_					
		\longrightarrow				
				ŀ	ļ	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target a former dry well backfilled to grade. Void encountered from approx. 8' to 11' below grade. Refusal encountered at 15' below grade.

1852 Bethpage, NY Boring No.: I43B02A Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Geologist: Mark Rauber **Drilling Method: Geoprobe** Drive Hammer Weight: N/A **Boring Completion Depth:** 21 ft. - ft. **Ground Surface Elevation: Boring Diameter:** 2 in.

Date Started: December 27, 2000						Date Completed: December 27, 2000		
		Soil S						
Depth	Sample		Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
15-17	1	GP		14	2.0	0-14": Brown to tan SAND and GRAVEL, moist, no odor		
17-19	2	GP	_	24	1.7	0-24": Brown to tan SAND and GRAVEL, slightly moist, no odor		
]		
19-21	3	GP	-	24	0.0	0-24": Light brown to tan SAND and GRAVEL, no odor		
	-					}		
	•							
		 				1		
		-				1		
		1	i					

		 	 -		
	<u> </u>	<u> </u>	 		
		 		 	
		<u> </u>	 		
			 		
j					
			 		•

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

backfilled to grade. Refer to soil boring I43B02 for shallow samples (11'-13' and 13'-15') collected at this location.

A DIVISI	JON OF W		ONSULT	Ka ilucc Ing Engli I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E43B02/I05B02 Sheet 1 of 1 By: MR	
Driller: Drill R	: W. Ro ig: Eart	owland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weig Date Completed: Oc	probe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	16 ft. – ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec.	PID (ppm)		Lithology	Description	
6-10	1	GP		46	0.0	0-6": Orange-brown, fine to medium SAND, trace SILT, dry, no odor			
						6"-10": Brown, SILT, li	ttle fine to medium	SAND, trace fine to	
						medium GR	AVEL, dry no odor,	occasional asphalt pieces	
						10"-46": Tan to orange	-brown, fine to coa	rse SAND, trace SILT,	
						little fine to	coarse GRAVEL, d	ry, no odor	
10-14	2	GP		38	0.0	0-38": Tan to orange-b	rown, fine to coars	e SAND, trace SILT,	
				-	-	little fine to co	parse GRAVEL, dr	y, no odor	
14-16	3	GP		20	0.0	0-20": Tan to orange-b	rown, fine to coars	e SAND, trace SILT,	
						little fine to co	parse GRAVEL, dr	y, no odor	
					-				
	_								
Sample				_			Notes:		
				uger GF dropunch		robe			

	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring sessment
--	--	---	---------------------------

Boring No.: 144B01 Sheet 1 of 1

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 20, 2000

Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

8 ft.

Date Completed: October 20, 2000

•	-	
	2	in.

	14.100.		r 20, 200	<u> </u>		Date Completed: October 20, 2000
		Soil Sa	mple			·
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type		(inches)	(ppm)	
Ĭ						COARLIGHA become ton common CAND and CDAVEL no odore
4-6	1	GP		18	0.0	0-24": Light brown-tan-orange, SAND and GRAVEL, no odors
6-8	2	GP		16	0.0	0-24": Light brown-tan-orange, SAND and GRAVEL, no odors
0-0		GF		10	0.0	10-24 . Eight drown-tair-change, SAND and GIVAVEE, 110 0003
			,			
, [
İ						
ŀ						
\longrightarrow						
						1
						
Į						
	_					
		-				
\longrightarrow						
					-	
				-		
					_	Neter Daving advanced through the bottom of a

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring advanced through the bottom of a Notes: 2'-3" deep backfilled concrete pit with a 9" thick concrete bottom and a 5" thick concrete floor slab at grade

1852

Boring No.: 145B01

Project Name: Plant 1 -

Bethpage, NY

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 16, 2000

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

4 ft. - ft. 2 in.

Date S	ate Started: October 16, 2000					Date Completed: October 16, 2000
		Soil S	ample			
Depth	Sai	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре				
0-2	1	GP		24	0.0	0-24": Brown to tan SANDY SOIL with GRAVEL
		ļ				
2-4	2	GP		18	1.2	0-18": Brown to tan SANDY SOIL with GRAVEL
					-	
						· ·
						
Sample						Nickers 59 Abiely consults of sunda

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

5" thick concrete at grade

C A DIVISI	ON OF W		Dvirk and Barti cosulich	LUCC	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: I46B01 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro ig: Earti	wland hprobe	Emingto r 16, 200			Geologist: Mark Ra Drilling Method: Ge Drive Hammer Weig Date Completed: O	oprobe jht: N/A	Ground Surface Elevation:	4 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec. (inches)	PID (ppm)		Lithology	Description	
0-2	1	GP		8	7.5	0-6": Light brown to ta	an, fine SAND		
2-4	2	GP	_	24	14.5	0-24": Light brown, fir	e SAND and CLAY	EY/SILTY material, little GRAVEL	
					-				
				_					
				-					
	olit Spoo		= Hand A HP = Hy			probe	Notes: 5" thic	ck concrete at grade	

Project No.:

1852

Boring No.: 147B01

Project Location: Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Mark Rauber Drilling Method: Geoprobe

Drive Hammer Weight: N/A

Boring Completion Depth:

Ground Surface Elevation:

4 ft. -- ft. 2 in.

Boring Diameter:

Date S	te Started: October 16, 2000					Date Completed: October 16, 2000
		Soil Sa	ample			
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-2	1	GP	**	18	1.5	0-18": Brown to tan, SAND and GRAVEL
2-4	2	GP		24	0.0	0-24": Light brown to tan, fine SAND wih GRAVEL
				-		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

6" thick concrete at grade

	g Contr	ILLIAM F.	ONSULTI	LUCC NG ENGIR ASSOCIAT	NEERS	Project No.: Project Location: Project Name: Geologist: Mark Rai		Boring No.: I47B02 Sheet 1 of 1 By: MR sessment Boring Completion Depth: Ground Surface Elevation:	4 ft. ft.
Drill Ri	g: Eartl	hprobe	r 16, 200	0		Drive Hammer Weig Date Completed: Oc	ht: N/A	Boring Diameter:	2 in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)		Lithology	Description	
0-2	1	GP		24	0.0	0-24": Light brown to	tan, very fine SAND), trace GRAVEL	
						with CLAYEY	/SILTY material		
2-4	2	GP		24	2.4	0-24": Light brown to	tan, SAND, little GR	RAVEL	
							<u> </u>		
	-	-							
\vdash		_	_			1			
						1			
						1			
						1			
]			
]			
<u> </u>									
	-								
	-					1			
						1			
			-						
									i
Sample	Type					L	Notes: 6" thic	x concrete at grade	
SS = Sp	lit Spoo			uger Gl		probe		como de at grado	

1852 Bethpage, NY Plant 1 -

Boring No.: E01B01

By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 17, 2000

Geologist: Keith Robins **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

22 ft. - ft.

Date Completed: October 17, 2000

2 in.

		Soil S	ample		1	
Depth	Sar	mple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
12-14	1	GP		24	0.0	0-12": Brown-orange coarse to medium SAND and fine to medium GRAVEL 12"-24": Tan fine to medium well sorted SAND, damp
14-16	2	GP		20	0.0	0-20": Light brown-tan coarse to medium SAND, little GRAVEL, dry
16-18	2	GP		20	0.0	0-20": Brown-light orange coarse SAND and fine to coarse subrounded-subangular GRAVEL, damp
18-20	3	GP		24	0.0	0-6": Brown-orange coarse to medium SAND, little fine GRAVEL 6"-12": Dark brown fine to coarse SAND, trace to little GRAVEL 12"-15": Brown-orange gravelly coarse SAND 15"-24": Tan fine SAND, trace fine GRAVEL
20-22	3	GP		20	0.0	0-20": Brown-tan coarse to medium SAND, little coarse to fine GRAVEL, damp-dry

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target backfilled former leaching pool.

C A DIVISION	ON OF WI		ONSULTI	(a lucc NG ENGIR ASSOCIATI	NEERS	Project No.: 1852 Boring No.: E01B02 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	W. Ro	wland hprobe	Emingto r 9, 2000			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 9, 2000 Boring Completion Depth: 22 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.
Depth (ft.)	San No.	Soil Sa ple Type	Blows	Rec.	PID (ppm)	Lithology Description
12-16	1	GP		46	0.0	0-15": Orange-brown, fine to medium SAND, little SILT,
	-					0-9" moist, 9"-15" wet, no odor
						15"-18": Back SILT and CLAY, moist, no odor
						18"-46": Tan to orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
16-20	2	GP	1	30	0.0	0-30°: Tan to orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
20-22	3	GP	-	23	0.0	0-23": Tan to orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
						1
						1
]
						1
					-]
]
]
]
]
]
]
						1 I
]
Sample	-					Notes: Boring conducted within backfilled former
				luger G dropunc		probe leaching pool which was "open' to 4.5' below grade

Project No.: Project Location: Project Name: 1852 Bethpage, NY Plant 1 - Boring No.: E01B03 Sheet 1 of 1

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Date Started: October 9, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

22 ft.: : -- ft.

Date Completed: October 9, 2000

Boring	Diameter:	2	in.

Date 3	iai ieu.		9, 2000	·		Date Completed: October 9, 2000
		Soil Sa				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
12-16	1	GP		43	0.0	0-4": Gray-brown SILT and fine to medium SAND, wet, no odor
						4"-43": Tan-brown, fine to coarse SAND, trace SILT,
<u></u>						occasional fine to coarse GRAVEL, moist, no odor
16-20	2	GP		41	0.0	0-41": Tan-brown, fine SAND, trace SILT, occasional
						fine to coarse GRAVEL, moist, no odor
20-22	3	GP		22	0.0	0-22": Tan-brown, fine SAND, trace SILT, occasional
						fine to coarse GRAVEL, moist, no odor
				-		
 						
 						
						,
						,

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former leaching pool which was "open' to 3' below grade

1852 Bethpage, NY Boring No.: E01B04 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

22 ft. - ft.

Date Completed: October 9, 2000

2 in.

Date S	e Started: October 9, 2000					Date Completed: October 9, 2000
		Soil S	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6*)	(inches)	(ppm)	
12-16	1	GP		48	0.2	0-9": Orange-brown SILT and fine to medium SAND, dry, no odor
		<u> </u>				9"-15": Black SILT and CLAY, trace fine to medium SAND, dry, no odor
						15"-48": Brown, fine to coarse SAND, trace SILT,
						trace to little fine to coarse GRAVEL, dry, no odor
16-20	2	GP	-	34	0.0	0-34": Brown, fine to coarse SAND, trace SILT,
					_	trace to little fine to coarse GRAVEL, dry, no odor
20-22	3	GP		21	0.0	0-21": Brown, fine to coarse SAND, trace SILT, trace to little
						fine to coarse GRAVEL, moist to very moist, no odor
			-			
			-			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former leaching pool which was "open' to 4' below grade

1852 Bethpage, NY Boring No.: E01B05

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Ken Wenz Drilling Method: Geoprobe **Boring Completion Depth: Ground Surface Elevation:**

Drive Hammer Weight: N/A

-- ft. **Boring Diameter:**

2 in.

22 ft.

	Started:		er 9, 2000)	,	Date Completed: October 9, 2000
		Soil S				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
12-16	1	GP		45	0.0	0-22": Brown to tan-brown SILT and fine to medium, dry to
						moist, trace fine to medium GRAVEL, no odor
						22"-45": Tan, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
16-20	2	GP		48	0.0	0-48": Tan, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
20-22	3	GP		24	0.0	0-24": Tan, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
			-			
-						
		-				
					_	
-						
						•
	1	•			ſ	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former leaching pool which was "open' to 3' below grade

Project No.:
Project Location:
Project Name:

1852 Bethpage, NY

Plant 1 -

Boring No.: E01B06

By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Emington

Date Started: October 11, 2000

Driller: W. Rowland Drill Rig: CME-55 Geologist: Keith Robins

Drilling Method: Hollow Stem Auger **Drive Hammer Weight:** N/A

Boring Completion Depth: 22 ft.
Ground Surface Elevation: – ft.
Boring Diameter: 8 in.

Date Completed: October 11, 2000

		Soil S	ample			
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
12-14	1	SS		6	0.0	0-6": Tan-brown coarse to fine SAND, some fine to coarse GRAVEL, damp
14-16	2	SS		12	0.0	0-12": Tan-light brown fine to coarse SAND, little fine GRAVEL, well sorted, dry
16-18	3	SS		15	0.0	0-15": Tan-brown coarse to medium SAND, some fine to coarse GRAVEL, trace fine SAND, damp-dry
18-20	4	ss	_	18	0.0	0-18": Tan-brown fine to coarse SAND, some fine to coarse GRAVEL, dry-damp, poorly sorted
20-22	5	ss	-	20	0.0	0-20": Tan fine well rounded SAND well sorted, trace SILT, trace GRAVEL, damp

,			
_			
•			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former settling tank.

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: E01B07 Sheet 1 of 1

Plant 1 -

Phase II Site Assessment

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: October 11, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: N/A

Date Completed: October 11, 2000

Boring Completion Depth: Ground Surface Elevation:

22 ft. -- ft.

Boring Diameter: 8 in.

Date	rtui tou.		11,200			Date Completed. October 11, 2000	
		Soil Sa	ample		•		
Depth	600	nple	Blows	Rec.	PID	Lithology Deparintion	
(ft.)	No.	Туре	(Per 6")		1	Lithology Description	
(10)	140.	ype	(1.61.0.)	(inches)	(ppm)		
12-14	1	SS		6	0.0	0-6": Brown-light orange fine to coarse SAND, some fine GRAVEL, dry	
14-16	2	SS		3	0.0	0-3": Brown-orange coarse to medium SAND, some fine to coarse GRAVEL, dry	
16-18	3	SS		12	0.0	0-12": Tan fine to coarse SAND, some fine GRAVEL,	
						trace orange-dark red coarse SAND	
18-20	4	SS				Dark brown-brown coarse to fine SAND, some fine to coarse GRAVEL, damp	
 						·	
20-22	5	ss			-	Tan-light brown fine to medium SAND, trace fine GRAVEL, trace dark very	
	<u> </u>	<u> </u>			_	fine SAND, SILT, damp	
 				 			
$\vdash \vdash \vdash$						1	
L							
		<u> </u>				ſ	
	·					Į i	
<u> </u>							
<u> </u>							
			_	_		ļ i	
						.	
			$\overline{}$				
						.	
		_					
						•	
						·	
				+		·	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted within backfilled former Notes: settling tank.

1852 Bethpage, NY Boring No.: E01B08 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Geologist: Keith Robins **Drilling Method:** Hollow Stem Auger **Boring Completion Depth: Ground Surface Elevation:**

26 ft. - ft. **Boring Diameter:** 8 in.

Drive Hammer Weight: N/A

Date S	tarted:	Octobe	r 10, 200	0		Date Completed: October 10, 2000	
		Soil S	ample				
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description	
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)		
16-18	1	SS		3	0.0	0-3": Dark brown fill	
18-20	2	ss		20	0.0	0-12": Brown coarse SAND and fine to coarse GRAVEL,	
						trace dark brown-red generally SAND	
						12"-20": Tan very fine well sorted SAND, damp	
20-22	3	ss		_	0.0	Tan well sorted fine SAND, little to trace drk brown SILT	
22-24	4	SS	_	20	0.0	0-20": Brown-dark brown fine to medium SAND, some fine	
						GRAVEL, trace SILT, damp, trace coarse SAND	
24-26	5	ss	_	20	0.0	0-20": Tan-light brown fine to medium SAND with dark brown-red horizontal	
						banning of fine SAND (iron), brown-gray very moist SILT at 25.5'-26'	
	I	1	l .	I	I	I and the second	

22-24	4	SS	-	20	0.0	0-20": Brown-dark brown fine to medium SAND, some fine
		<u> </u>				GRAVEL, trace SiLT, damp, trace coarse SAND
24-26	5_	ss	<u> </u>	20	0.0	0-20": Tan-light brown fine to medium SAND with dark brown-red horizontal
						banning of fine SAND (iron), brown-gray very moist SILT at 25.5'-26'
-			-			1
-		<u> </u>	<u> </u>	├	 	1
				 	ļ	
						1
		 				1
-			 	├ ┈──	-	
		<u> </u>			 	
		<u> </u>			ļ <u></u>	
		ļ				
			t			1
		-		 		
				 		
					<u></u>	
Sample	Type:					Notes: Boring conducted within backfilled former

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

settling tank.

1852 Bethpage, NY Boring No.: E01B09

Plant 1 -**Project Name:**

By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: October 10, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: N/A

Date Completed: October 10, 2000

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

26 ft. -- ft. 8 in.

1		Soil S	ample					
Depth	Sar	mple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
16-18	1_	SS		12	0.0	0-12": Brown coarse SAND and fine to coarse GRAVEL,		
			<u> </u>			trace cobbles, poorly sorted, damp		
18-20	2	ss		15	0.0	0-15": Tan-light brown, fine to coarse SAND, little fine to coarse GRAVEL,		
						trace dark brown-red coarse damp SAND at 18.5'		
20-22	3	ss		18	0.0	0-18": Tan-light orange fine to medium SAND, little fine GRAVEL,		
						trace dark brown fine SAND, trace SILT, damp		
22-24	4	SS	ss	SS		20	0.0	0-15": Tan-light brown very fine SAND, little SILT
						15"-20": Brown-gray very fine SAND to SILT, damp		
24-26	5	SS			0.0	Brown-light brown fine SAND, some SILT, trace coarse SAND, damp		

22-24	-	33		20	0.0	10-15 . Tari-right brown very line SAND, hade SILT
						15"-20": Brown-gray very fine SAND to SILT, damp
24-26	5	SS			0.0	Brown-light brown fine SAND, some SILT, trace coarse SAND, damp
						
	-					
	_					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former settling tank.

Sample Type:
SS = Split Spoon HA = Hand Auger GP = Geoprobe
CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former leaching pool which was "open' to 3' below grade

1852 Bethpage, NY Boring No.: E01B12 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: October 13, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Auger

Drive Hammer Weight: N/A

Date Completed: October 13, 2000

Boring Completion Depth:

22 ft. **Ground Surface Elevation:** -- ft.

Boring Diameter: 8 in.

Date 5	tarted:	Octobe	r 13, 200	0		Date Completed: October 13, 2000		
		Soil Sa	ample					
Depth			PID	Lithology Description				
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	2		
12-14	1	ss		24	0-1	0-3": Black SILTY-SLUDGE, slight odor, wet with some GRAVEL		
						3"-24": Tan-orange-brown coarse to medium SAND and		
						angular GRAVEL, poorly sorted, damp		
14-16	2	SS		20	0.0	0-20": Brown medium to fine SAND, trace SILT, trace GRAVEL, wet-moist		
16-18	3	SS		12	0.0	0-12": Brown-tan coarse to medium SAND, very moist, some GRAVEL		
18-20	4	SS		12	0.0	0-12": Brown-orange fine to medium SAND,		
						trace fine GRAVEL, well sorted, damp		
20-22	5	SS		24	0.0	0-24": Tan-brown fine SAND, trace brown-gray SILT, moist		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within former leaching pool which is "open" to 12' below grade.

1852 Bethpage, NY Boring No.: E01B13 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Geologist: Keith Robins **Drilling Method:** Hollow Stem Auger **Boring Completion Depth: Ground Surface Elevation:**

Drive Hammer Weight: N/A

Boring Diameter:

22 ft. -- ft. 8 in.

Date Started: October 13, 2000

Date Completed: October 13, 2000

		Soil S	ample		PID (ppm)	
Depth (ft.)	Sar No.	nple Type	Blows (Per 6")	Rec. (inches)		Lithology Description
12-14	1	SS	_	24	0.0	0-6": Black dark SILT-SLUDGE material, slight unknown odor 6"-24": Brown coarse SAND & abundant medium to coarse GRAVEL, very moist
14-16	2	SS		24	0.0	0-24": Tan-brown coarse to medium SAND, some fine to coarse subangular GRAVEL, trace FINES, poorly sorted
16-18	3	SS	_		0.0	Brown coarse to medium SAND, trace SILT, some fine to medium GRAVEL, moist-wet
18-20	4	SS			0.0	Brown coarse to medium SAND, trace SILT, some fine to medium GRAVEL, moist-wet
20-22	5_	SS	-	20	0.0	0-20": Orange-tan fine to medium well sorted SAND, trace coarse SAND, trace SILT, damp-moist
				1		

Sample	Туре:				Notes: Boring conducted within backfilled forme
		i			
					}
	-		 		
		l —			
			 <u> </u>		
					-
			 		
		-	 		
					trace SILT, damp-moist
20-22	5_	SS	 20	0.0	0-20": Orange-tan fine to medium well sorted SAND, trace coarse SAND,
	_				fine to medium GRAVEL, moist-wet
18-20	4	SS	 	0.0	Brown coarse to medium SAND, trace SILT, some
	•	-	 _		fine to medium GRAVEL, moist-wet
16-18	3	SS	 	0.0	I Brown coarse to medium SAND, trace SILT, some

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

leaching pool.

1852 Bethpage, NY Boring No.: E01B14

Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 9, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 9, 2000

Boring Completion Depth:

Ground Surface Elevation: -- ft.

Boring Diameter:

2 in.

22 ft.

L.						· '
Depth		Soil S	ample		PID (ppm)	
Depth	Sar	mple	Blows	Rec.		Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)		
12-16	1	GP		40	0.0	0-18": Orange-brown, fine to medium SAND, little SILT, dry, no odor
		<u> </u>				18"-20": Gray-brown, fine to medium SAND, little SILT, dry, no odor
						20"-40": Brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
16-20	2	GP		39	0.0	0-39": Brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
20-22	3	GP		24	0.0	0-24": Brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
				"		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled former leaching pool which was "open' to 2' below grade

1852 Bethpage, NY Boring No.: E02B01

Sheet 1 of 1 By: MR

Project Name: Plant 1 -

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Geologist: Keith Robins **Drilling Method: Hollow Stem Augers** **Boring Completion Depth:**

22 ft. **Ground Surface Elevation:** -- ft. 8 in.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Boring Diameter:

Date St	arted: S	Septem	ber 29, 20	000		Date Completed: September 29, 2000
		Soil S	ample			
Depth	San	Sample		Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
10-12	11	SS		12	0.0	0-12": Dark brown coarse to medium SAND, some subangular-subrounded
						GRAVEL, damp-moist, trace SILT
12-14	2	SS		6	0.0	0-6": Tan-brown coarse SAND, some subrounded GRAVEL, very moist
14-16	3	SS		3	0.0	0-3": Brown moist coarse SAND, fine GRAVEL
16-18	4	SS	_	15	0.0	0-12": Tan coarse and abundant fine to medium subrounded GRAVEL, lose
15 15	-					12"-15": Tan fine SAND, trace medium to coarse SAND, dry
18-20	5	SS		18	0.0	0-18": Tan fine to medium SAND, trace fine GRAVEL, well sorted, dry
10-20			-	-'6	J	TO . Tall line to median orate, sace line Grover, well solled, tily
20-22	6	SS		18	0.0	0-18": Tan coarse to medium SAND, some fine GRAVEL-crushed GRAVEL
20-22	U	_33		10	0.0	10-10. Tan coarse to medium onito, some line Gravet-Gushed Gravet
		<u> </u>				
		<u> </u>				
i						
				ļ		
		_				
1						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 9" thick asphalt at grade. Boring conducted within backfilled leaching pool.

1852 Bethpage, NY Boring No.: E02B02

By: MR

Sheet 1 of 1

Project Name:

Plant 1 -Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: September 27, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Augers

Drive Hammer Weight: N/A

Date Completed: September 27, 2000

Boring Completion Depth: Ground Surface Elevation:

Boring Diameter:

8 in.

16 ft.

ft.

		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")		(ppm)	
						A COLD TO THE CAMP TO THE COLD
6-8	1	SS		12	0.0	0-12": Dark brown SAND and GRAVEL, trace asphalt pieces
8-10	2	ss	-	2	0.0	0-2": Dark brown wet coarse SAND
40.40		-			0.0	ON DAVID GO ODAVID A CONTRACTOR
10-12	3	SS		6	0.0	0-6": Dark brown medium to coarse SAND, fine GRAVEL, trace SILT, wet-moist
12-14	4	SS		6	0.0	0-6": Tan-brown coarse to medium SAND and GRAVEL
14-16	5	SS		6	0.0	0-6": Tan-brown coarse to medium SAND and fine GRAVEL
14-10		33		0	0.0	10-0 . Par-brown warse to medium SAND and time SAAVEE
					1	
l						
					•	
-						
- 1	ŀ	- 1				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

5" thick asphalt and 7" stone at grade. Notes: Boring conducted within backfilled leaching pool.

Project Name:

1852

Boring No.: E02B03 Sheet 1 of 1

Boring Diameter:

Bethpage, NY Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins **Drilling Method: Hollow Stem Augers** Drive Hammer Weight: N/A

Boring Completion Depth: Ground Surface Elevation:

22 ft. ft. 8 in.

Drill Rig: CME-55 Date Started: September 29, 2000

12"-18": Brown SILT, some fine SAND, damp

Date Completed: September 29, 2000

		Soil S	ample			
Depth	Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
10-12	1	SS		20	0.0	0-20": Dark brown-light black coarse to medium moist to damp SAND, trace SILT, poorly sorted, some GRAVEL, loose
12-14	2	SS		14	0.0	0-6": Damp-very moist black-dark brown SAND, trace CLAY pieces, fine GRAVEL 6"-14": Brown-light orange SAND, fine GRAVEL, trace iron
14-16	3_	SS		6	0.0	0-6": Brown-tan coarse SAND, some fine GRAVEL, trace dark brown gravelly SAND
16-18	4	SS		20	0.0	0-15": Tan-light brown coarse to medium SAND and fine GRAVEL 15"-20": Tan fine SAND, dry
18-20	5	SS	_	20	0.0	0-20": Tan fine to medium subrounded SAND, trace fine GRAVEL, well sorted, dry-damp
20-22	6	ss	_	18	0.0	0-12": Tan-light brown coarse to medium SAND, some fine GRAVEL

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 12" thick asphalt at grade.

Boring conducted within backfilled leaching pool.

Project Name:

1852

Plant 1 -

Boring No.: E02B04

Bethpage, NY

Sheet 1 of 1

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: September 29, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Augers

Drive Hammer Weight: N/A

Date Completed: September 29, 2000

Boring Completion Depth:

26 ft. **Ground Surface Elevation:** ft.

8 **Boring Diameter:** in.

	T					Date Completed. September 23, 2000
Danth	<u></u>	Soil Sa		T ====	1	1 Western Personation
Depth (ft.)	No.	mple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)	Lithology Description
				1	(ppm)	
6-8	1	SS		6	0.0	0-6": Dark brown medium to coarse SAND, trace fine GRAVEL
8-10	2	SS		0	0.0	No recovery - probably backfill soil material
10-12	3	SS		0	0.0	No recovery - probably backfill soil material
12-14	4	SS		6	0.0	0-6": Tan-light brown coarse SAND and subrounded GRAVEL, poorly sorted, dry
14-16	5	SS		8	0.0	0-8": Tan-light brown coarse SAND and alot fine to medium GRAVEL, poorly sorted, damp
16-18	6	SS		20	0.0	0-6": Brown-light orange coarse to medium SAND and fine to coarse GRAVEL, poorly sorted, trace FINES, dry-damp
18-20	7	SS		15	0.0	0-15": Tan fine to medium well sorted SAND, trace brown SILT at 18', trace fine subrounded GRAVEL
20-22	8	SS		15	0.0	0-15": Tan fine to medium well sorted SAND, trace fine GRAVEL, trace coarse SAND, dry-damp
22-24	9	SS		24	5.0	0-12.5": Tan fine to medium SAND 12.5"-24": Brown-black SILT and very fine SAND
24-26	10	SS		20	5.0	0-10": Tan-brown fine SAND/SILT, trace black SILT, dry 10"-20": Brown-orange-tan fine SAND, trace fine GRAVEL
Cample.	_					Notes: 47" thick conholt at grade

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Sample Type:

17" thick asphalt at grade.

is "open" to 1' below grade.

Boring conducted within backfilled leaching pool which

		\Rightarrow	Dvirk and		_	Project No.: 1852 Boring No.: E03B01 Project Location: Bethpage, NY Sheet 1 of 1					
				lucc	_	Project Name: Plant 1 - By: MR					
A DIVISI	ON OF W			NG ENGIN		Phase II Site Assessment					
Driller Drill R	W. Ro	wland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 10, 2000 Boring Completion Depth: 24 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.					
		Soil Sa	ample		**						
Depth (ft.)	San No.	Type	Biows (Per 6")	Rec. (inches)	PID (ppm)	Lithology Description					
8-12	1	GP	-	19	0.1	0-19": Brown SILT and fine to medium SAND, trace fine GRAVEL, moist, no odor					
12-16	2	GP	_	18	0.1	0-18": Brown SILT and fine to medium SAND, trace fine GRAVEL, moist, no odor					
16-20	3	GP		24	0.1	0-3": Brown SILT and fine to medium SAND, trace fine GRAVEL, moist, no odor					
<u> </u>						3"-9": Black SILT and CLAY, dry, no odor					
						9"-13": Gray-black, fine to coarse SAND, trace SILT,					
						trace fine to medium GRAVEL, dry, no odor					
						13"-24": Tan-brown, fine to coarse SAND, trace SILT,					
						trace fine to medium GRAVEL, dry, no odor					
20-24	4	GP		46	0.1	0-8": Tan-brown, fine to coarse SAND, trace SILT,					
-						trace fine to medium GRAVEL, dry, no odor					
						8"-17": Tan SILT and fine to medium SAND, dry, no odor					
						17"-38": Tan, fine-medium SAND, little SILT, occ. iron banding, dry, no odor					
						38"-46": Tan to orange-brown, fine to coarse SAND, trace SILT,					
						trace fine GRAVEL, dry, no odor					
					<u></u>						
<u> </u>											
	olit Spoo			luger G		probe Notes:					
CC = C	oncrete	Core	HP = Hy	/dropunc	n						

1852 Bethpage, NY Boring No.: E03B02 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 10, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Date Completed: October 10, 2000

Boring Completion Depth: Ground Surface Elevation:

-- ft.

Boring Diameter:

2 in.

24 ft.

		Soil Sa	ample			
Depth	Sar	mple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
8-12	1	GP		22	0.0	0-22": Brown SILT and fine to medium SAND, trace fine GRAVEL, moist, no odor
12-16	2	2 GP 18 0.1 0-3": Bro		0.1	0-3": Brown SILT and fine to medium SAND, trace fine GRAVEL, moist, no odor	
<u> </u> '		<u> </u>	 '		<u> </u>	3"-9": Black SILT and CLAY, moist, no odor
L'	<u></u>	<u></u>	<u> </u>		L	9"-18": Gray-brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odor
16-20	3	GP		31	0.1	0-31": Tan to orange-brown, fine to coarse SAND, trace SILT,
					<u> </u>	little fine to medium GRAVEL, dry, no odor
20-24	4	GP		48	0.1	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
		<u> </u>	<u> </u>		<u> </u>	little fine to medium GRAVEL, dry, no odor
	<u></u>	<u> </u>	<u> </u>		<u></u>	24"-48": Tan, fine to medium SAND, little SILT, dry, no odor
					1	

Sample	Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes:

Former backfilled leaching pool cover located approx. 8" below grade.

A DIVISI	ON OF W		ONSULTI	(a lucc ng engir associat	NEERS	Project No.: 1852 Boring No.: E04B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	W. Ro	wland hprobe	Emingto r 12, 200			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000 Boring Completion Depth: 20 ft Ground Surface Elevation: — ft Boring Diameter: 2 in
Depth (ft.)	San No.	Soil Sanple	mple Blows (Per 6")	Rec. (inches)	PID (ppm)	Lithology Description
8-12	1	GP		46	0.0	0-18": Gray-brown SILT and CLAY, trace fine SAND, dry, no odor
						18"-46": Orange-brown, fine to coarse SAND, trace SILT, some
	-					fine to coarse GRAVEL, dry, no odor
12-16	2	GP	-	40	0.0	0-40": Tan to orange-brown, fine to coarse SAND, trace SILT, some
						fine to coarse GRAVEL, dry, no odor
16-20	3	GP		41	0.0	0-41": Tan to orange-brown, fine to coarse SAND, trace SILT, some fine to coarse GRAVEL, dry, no odor
Sample	Type:					Notes:
				luger G dropunc		probe

Project No.: **Project Location:** Project Name:

1852 Bethpage, NY Boring No.: E06B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:**

Drive Hammer Weight: N/A

ft. **Boring Diameter:** 8 in.

22 ft.

Date Started: October 2, 2000 Date Completed: October 2, 2000

	Soil Sample			=		
						19th all and Branchallan
Depth	Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
8-10	1	SS		15	0.0	0-15": Tan well sorted fine to medium SAND, trace fin GRAVEL, dry-damp
40.40				40	-	O LOT D III L O LAND
10-12	2	SS		12	0.0	0-12": Brown-light orange medium to coarse SAND,
						little fine to medium GRAVEL, dry
12-14	3	SS		12	0.0	0-12": Tan-light brown coarse SAND and abundant fine to
						coarse subrounded GRAVEL, poorly sorted
14-16	4	SS		12	0.0	0-12": Tan-light brown coarse SAND, abundant fine to coarse
						angular-subrounded GRAVEL, poorly sorted, damp
16-18	5	SS		18	0.0	0-18": Tan fine to medium well sorted SAND, little white-rose color fine GRAVEL
10 10		-00		10	0.0	10-10 . Fair line to medium well softed OAND, little white-1036 color line OFAVEE
18-20	6	SS		18	0.0	0-18": Tan-light brown fine to medium SAND, trace fine GRAVEL,
						coarse SAND, well sorted, damp
20-22	7	SS		15	0.0	
20-22		- 33		15	0.0	0-18": Tan-brown fine to medium SAND, trace to little fine to medium GRAVEL,
						trace SILT, trace coarse SAND, well sorted, damp-dry
ŀ						
1						
				l		
		I	1	Ţ		
					i	
						
]		į		ļ	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted to target backfilled leaching pool.

1852 Bethpage, NY Boring No.: E06B02

Project Name:

Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:** 22 ft. ft.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Boring Diameter:

in. 8

Date Started: October 2, 2000

Date Completed: October 2, 2000

						
		Soil Sample				
Depth	Sar	Sample		Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
8-10	1	SS		12	0.0	0-12": Tan-brown-orange coarse to fine SAND, some fine to
						medium subrounded GRAVEL, dry-damp, poorly sorted at 8'-9'
10-12	2	ss		15	0.0	0-3": Crushed rock
			İ		1	3"-5": Dark brown SAND and GRAVEL
						5"-15": Tan fine to coarse SAND, some fine-medium crushed GRAVEL, dry-damp
12-14	3	ss		15	0.0	0-15": Tan-light brown coarse SAND and abundant fine to medium subrounded-
					<u> </u>	subangular GRAVEL, trace FINES, poorty sorted, dry
14-16	4	SS		20	0.0	0-20": Light brown coarse SAND and abundant fine to medium GRAVEL,
						subrounded-subangular, poorly sorted, trace fine-medium SAND, damp-moist
16-18	5	SS		15	0.0	0-15": Light brown coarse to medium SAND, some fine to coarse GRAVEL,
			j			poorly sorted, some crushed white stone, dry-damp, trace fine SAND
18-20	6	ss		6	0.0	0-6": Tan coarse to medium SAND, little white subrounded GRAVEL,
						trace fine SAND at 20'
20-22	7	SS		20	0.0	0-20": Light brown fine SAND, trace to little coarse SAND,
						little fine to medium GRAVEL, damp to moist

		 -	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted to target backfilled leaching pool.

Project Name:

1852 Bethpage, NY Boring No.: E06B03 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

Drill Rig: CME-55

Drive Hammer Weight: N/A

ft. 8 in.

22 ft.

Date Started: October 2, 2000 Date Completed: October 2, 2000

Date St	arteu.	JUIUDEI	2, 2000			Date Completed: October 2, 2000		
		Soil S	ample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")		(ppm)			
8-10	1	SS		12	0.0	0-12": Brown-light orange coarse SAND and fine to coarse GRAVEL		
						angular-subrounded GRAVEL, poorly sorted, trace fine SAND, dry-damp		
10-12	2	SS		15	0.0	0-12": Brown-tan coarse to medium SAND, some fine to coarse subrounded		
						GRAVEL, poorly sorted, dry		
12-14	3	SS		12	0.0	0-12": Tan coarse to fine SAND and fine to coarse GRAVEL, dry		
14-16	4	SS		15	0.0	0-6": Tan-light brown fine to coarse SAND, little to trace GRAVEL		
						6"-15": Lt brown white crushed dry GRAVEL, coarse SAND, poorly sorted, trace fin		
16-18	5	SS		12	0.0	0-12": Tan fine to coarse SAND, some white crushed GRAVEL, dry		
18-20	6	SS		6	0.0	0-6": Tan fine to coarse SAND, trace to little fine to coarse GRAVEL,		
					-	well sorted, damp-dry, contains more GRAVEL at 19'-20'		
20-22	7	SS		20	0.0	0-20": Tan well sorted fine to medium SAND, trace SILT, trace fine GRAVEL		
					· · · ·			
					-			
-								

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted to target backfilled leaching pool.

1852 Bethpage, NY Boring No.: E06B04 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:**

22 ft. - ft.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Boring Diameter:

Date Started: October 5, 2000

Date Completed: October 5, 2000

8 in.

Sample o. Type I SS 2 SS	(Per 6")	Rec. (inches) 6	PID (ppm) 0.0	0-6": Tan-brown medium to coarse SAND, some
ss 2 ss	(Per 6")	6	0.0	,
2 \$\$,
2 SS		15		to little fine subrounded GRAVEL, dry
		15		
<u> </u>			0.0	0-15": Tan-light brown-tan coarse to medium SAND, some fine to coarse
				GRAVEL, trace dark brown-redish fine SAND
S SS		24	0.0	0-24": Tan-brown coarse to medium SAND, little fine to coarse GRAVEL,
				trace dark brown-red very fine SAND, trace SILT at 13.5-14'
ss s	_	15	0.0 0-15": Tan-ligh	0-15": Tan-light brown medium to coarse SAND and fine to coarse
				subrounded GRAVEL, dry-damp
s ss		12	0.0	0-2": Coarse to fine GRAVEL
				2"-10": Tan fine to medium SAND, trace fine to coarse subrounded GRAVEL
				10"-12": Tan fine to medium SAND, dry, trace medium GRAVEL
s ss		12	0.0	0-12": Tan medium to coarse SAND, some to little fine to coarse GRAVEL,
				trace FINES, dry
ss		15	0.0	0-15": Tan-light brown medium to coarse SAND, trace to little
				fine to coarse GRAVEL, trace fine SAND, damp, well sorted
5	SS	SS	SS 12 SS 12	SS 12 0.0 SS 12 0.0

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

<5" thick asphalt at grade.

1852 Bethpage, NY Boring No.: E06B05

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: CME-55

Date Started: October 5, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Augers

Drive Hammer Weight: N/A

Date Completed: October 5, 2000

Boring Completion Depth:

16 ft. **Ground Surface Elevation:** ft.

Boring Diameter: 8 in.

		2.350	-, _000			Date Completed. Colober 0, 2000
	Soil Sample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
3-5	1	SS		15	0.0	0-6": Brown-light black moist SILTY GRAVEL
						6*-15*: Orange-tan coarse to medium SAND, little fine GRAVEL, trace fine SAND
6-8	2	SS		15	0.0	0-15": Brown coarse to medium SAND nd crushed subangular GRAVEL,
 						trace fine SAND, dry, poorly sorted
8-10	3	SS		12	0.0	0-12": Brown-orange coarse to medium SAND
 						and fine subrounded GRAVEL, damp
10-12	4	SS		15	0.0	0-15": Tan-light brown fine to coarse SAND, some fine to medium GRAVEL, more coarse GRAVEL at 11'-12'
12-14	5	SS		10	0.0	0-10": Tan-light brown fine to medium SAND, trace SILT, some to little fine GRAVEL
14-16	6	SS		3	0.0	0-3": Tan coare to medium SAND and fine to coarse GRAVEL, dry, large coarse pink GRAVEL
						g
				-		
			_			
 						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted adjacent to existing distribution chamber to target backfilled leaching pool.

Project Name:

Geologist: Ken Wenz

1852 Bethpage, NY Boring No.: E06B06 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drill Rig: Earthprobe

Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Started: October 10, 2000

Boring Completion Depth: Ground Surface Elevation: Boring Diameter:

18 ft. -- ft.

Date Completed: October 10, 2000

2	in.

Date S	tarted:		r 10, 200	0		Date Completed: October 10, 2000
	Soil Sample					
Depth	Sar	nple	Blows Rec.		PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
8-12	1_	GP		32		0-32": Gray-black to orange-brown, fine to coarse SAND,
						trace SILT, little fine to coarse GRAVEL, moist, no odor
12-16	2	GP		27		0-27*: Tan to orange-brown, fine to coarse SAND, trace
						SILT, little fine to coarse GRAVEL, moist, no odor
16-18	3	GP	-	27		0-27": Tan to orange-brown, fine to coarse SAND, trace
		<u> </u>				SILT, little fine to coarse GRAVEL, moist, no odor
		ļ				
		<u> </u>				
·						
	-	 			<u> </u>	
		<u> </u>				
		<u> </u>				
		<u> </u>				
			-			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Pool determined to have solid bottom. Boring Notes: conducted adjacent to leaching pool which is "open" to 6.5' below grade with approx. 5" water at bottom of pool.

Project No.: **Project Location:** Project Name:

1852 Bethpage, NY Boring No.: E06B09 Sheet 1 of 1

By: MR

Plant 1 -Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 4, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 4, 2000

22 ft. **Boring Completion Depth: Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

Soil Sample Depth Blows Rec. PID Sample **Lithology Description** (ft.) No. Type (Per 6") (inches) (ppm) 6-10 GP 1 33 0.0 0-33": Orange-brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odor 10-14 2 GP 27 0.0 0-13": Orange-brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odor 13"-27": Orange-brown, fine to coarse SAND, trace SILT,

some fine to coarse GRAVEL, dry, no odor 3 GP 43 0.0 0-43": Orange-brown, fine to coarse SAND, trace SILT, some fine to coarse GRAVEL, dry, no odor GP 4 40 0-40": Orange-brown, fine to coarse SAND, trace SILT,

14-18 18-22 0.0 some fine to coarse GRAVEL, dry, no odor

> Boring conducted to target former leaching pool. 8" thick concrete at grade followed by 15" of dirt/fill and 4" thick concrete.

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

G.\RRussell\1852\Bonng Logs\intenor\E06b09

1852 Bethpage, NY Boring No.: E07B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: CME-55

Date Started: September 20, 2000

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:** 20 ft. ft.

Drive Hammer Weight: N/A

Boring Diameter:

8 in.

Date Completed: September 20, 2000

00	

Date St	arted:	Septeml	ber 20, 20	000		Date Completed: September 20, 2000
	Soil Sample					
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6°)	(inches)	(ppm)	
10-12	1	SS	-	18	0.0	0-18": Light brown/orange poorly sorted fine to medium SAND, some SILT
12-14	2	SS		6	0.0	0-4": Light brown/orange poorly sorted fine to medium SAND, some SILT 4"-6": Dark brown/orange poorly sorted fine to medium SAND,
						some SILT, slightly moist
14-16	3	SS		16	0.0	0-16": Dark brown/orange poorty sorted fine to medium SAND, some SILT, slightly moist
16-18	4	SS		14	0.4	0-14": Dark brown/orange poorly sorted fine to medium SAND,
						some SILT, slightly moist
18-20	5	SS		12	0.0	0-12": Dark brown/orange poorly sorted fine to medium SAND,
-		 				some SILT, slightly moist
	:					

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within backfilled leaching pool which is "open" to 1' below grade

1852 Bethpage, NY Boring No.: E07B02 Sheet 1 of 1

Project Name: Plant 1 - By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:**

Boring Diameter:

18 ft. ft. 8 in.

Drive Hammer Weight: N/A Date Started: September 20, 2000 Date Completed: September 20, 2000

Litholog	v Doecrii	otion	

		Soil Sample				
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре		(inches)	(ppm)	
10-12	1	SS		24	0.0	0-12": Light brown/orange moderately sorted fine to medium SAND, trace GRAVEL
						12"-24": Brown/orange fine to medium SAND, some GRAVEL
12-14	2	SS		24	0.0	0-24": Brown/orange fine to medium SAND, some GRAVEL
12-14		- 55		24	0.0	10-24 . Brownwalange line to medium SAND, Some GRAVEL
14-16	3	SS		24	0.0	0-24": Brown/orange fine to medium SAND, some GRAVEL
14-10	ا ا	33		24	0.0	10-24 . Brownfordinge line to medium SAND, some GRAVEL
16-18	4	SS		24	0.0	CAN Links have units a nearly control fine to see you SAND troop to some CDAN/FI
10-10	4	33		24	0.0	0-24": Light brown/beige poorly sorted fine to coarse SAND, trace to some GRAVEL
<u> </u>					_	
					_	
	_					
]				
		Ī				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 8" thick asphalt and 1.5' sand fill at grade. Boring conducted within backfilled leaching pool.

1852 Bethpage, NY Boring No.: E07B03 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers

Drive Hammer Weight: N/A

21 ft. **Boring Completion Depth: Ground Surface Elevation:** -- ft. **Boring Diameter:**

8 in.

Date St	Date Started: September 21, 2000					Date Completed: September 21, 2000	
		Soil Sa					
Depth		npie	Blows	Rec.	PID	Lithology Description	
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)		
11-13	1	SS		6	0.0	0-6": Tan-dark brown coarse SAND, some-little	
						subrounded GRAVEL, poorly sorted, dry	
13-15	2	SS	-	12	0.0	0-12": Tan coarse SAND and subrounded white GRAVEL, poorly sorted-loose, dry	
15-17	3	ss		10	0.0	0-10": Tan coarse to medium SAND, little-some fine GRAVEL (1"-2"), dry	
17-19	4	SS	-	20	0.0	0-20*: Tan medium to coarse SAND and fine subrounded GRAVEL,	
		-				trace fine SAND, poorly sorted, dry	
19-21	5	SS			-	Tan fine to medium SAND, well sorted, little subrounded GRAVEL, dry	
	-						
	_						
	-						
			:				
					•		
					_		
	- 1				1		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 5" thick asphalt and 4'-8" sand fill at grade. Boring conducted within backfilled leaching pool.

1852 Bethpage, NY Boring No.: E07B04 Sheet 1 of 1

Plant 1 -Project Name:

By: MR

Phase II Site Assessment

Drilling Contractor:

Emington

Geologist: Keith Robins

Boring Completion Depth:

Driller: W. Rowland Drill Rig: CME-55

Drilling Method: Hollow Stem Augers Drive Hammer Weight: N/A

21 ft. **Ground Surface Elevation:** ft. **Boring Diameter:** 8 in.

Date Completed: September 21, 2000

Date St	arted: \$	Septem	ber 21, 2	000		Date Completed: September 21, 2000
	Soil Sample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
11-13	1	ss		20	0.0	0-20": Tan coarse to medium subrounded SAND,
						little fine to medium subrounded GRAVEL, dry
13-15	2	ss		22	0.0	0-22": Tan-light brown coarse to medium SAND, some fine to coarse
						subrounded poorly sorted GRAVEL, trace fines. dry
15-17	3	SS		6	0.0	0-6": Crushed white pink stone at top, tan fine to medium SAND,
						little GRAVEL, trace coarse SAND, dry
17-19	4	SS		15	0.0	0-15": Light brown-tan coarse to medium SAND, some fine to coarse GRAVEL,
						crushed, porly sorted, damp. Brown SILT/fine SAND at 18.5'
19-21	5	SS		20	0.0	0-20": Light brown-tan medium to fine SAND well sorted, trace white fine
		<u> </u>				GRAVEL, coarse SAND, damp, trace SILT
 						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

2" thick asphalt at grade. Notes:

Boring conducted within backfilled leaching pool which is "open" to 12" below grade.

Geologist: Keith Robins **Drilling Contractor: Emington Drilling Method:** Hollow Stem Augers Driller: W. Rowland

Boring Completion Depth: 21 ft. **Ground Surface Elevation:**

Drill Rig	-		ber 21, 2	000		Drive Hammer Weight: N/A Boring Diameter: 8 in Date Completed: September 21, 2000			
		Soil S							
Depth (ft.)	San No.	nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)	Lithology Description			
11-13	1	ss		24	0.0	0-24": Tan-light brown medium to coarse SAND,			
	:					little fine to medium GRAVEL, dry-damp			
13-15	2	SS		12	0.0	0-12": Light brown medium to coarse SAND, little fine to coarse GRAVEL, dry-damp			
15-17	3	SS	<u></u>	24	0.0	0-24": Brown-tan medium to coarse SAND, some subrounded GRAVEL, trace dark brown-black SILT and fine SAND at 16.5'			
17-19	4	SS			0.0	Light tan-light brown fine to medium SAND, some subrounded coarse GRAVEL			
19-21	5_	ss	_		0.0	Light tan fine to medium SAND alternating with coarse SAND and fine GRAVEL			
			ļ <u>.</u>			back into tan fine SAND with dark brown fine SAND and SILT, dry-damp			
					•				

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Boring conducted within backfilled leaching pool which is "open" to 2' below grade.

5" thick asphalt at grade.

Notes:

Sample Type:

1852 Bethpage, NY Boring No.: E07B06 Sheet 1 of 1

Project Name: Plant 1 - By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Drive Hammer Weight:** N/A

Boring Completion Depth:

Ground Surface Elevation: Boring Diameter:

21 ft. ft. 8 in.

Drill Rig: CME-55

Date Started: September 22, 2000

Date Completed: September 22, 2000

Date Started: September 22, 2000						Date Completed: September 22, 2000
-	Soil Sample					
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
11-13	1	SS		20	0.0	0-10": Brown-light orange coarse to medium SAND,
						some subrounded GRAVEL, moist
						10"-20": Tan-gray coarse SAND and subrounded GRAVEL with
						dark brown moist SAND/SILT
13-15	2	SS		12	0.0	0-12": Brown-dark brown moist-wet coarse to medium SAND,
						fine to coarse GRAVEL, trace SILT
15-17	3	SS		18	0.0	0-12": Tan coarse SAND and fine to medium subrounded GRAVEL
						12"-18": Tan fine to medium SAND, moist, well sorted
17-19	4	SS		15	0.0	0-15": Tan coarse to medium SAND and fine to coarse subrounded GRAVEL,
						poorly sorted, moist
19-21	5	SS		15	0.0	0-15": Light tan-light brown fine to medium SAND, trace fine GRAVEL, damp
					-	
- 1						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 4" thick asphalt at grade.

Boring conducted within backfilled leaching pool which is "open" to 20" below grade.

Project No.:

1852

Boring No.: E07B07

Project Location: Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers

Drive Hammer Weight: N/A

Boring Completion Depth:

Ground Surface Elevation:

21 ft. - ft.

Drill Rig: CME-55

ring	Diameter:	8	in.

Date St	arted: \$	Septeml	ber 22, 2	000		Date Completed: September 22, 2000		
		Soil Sa	ample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
11-13	1	ss		24	0.0	0-24": Brown-orange medium to coarse well sorted SAND,		
		l —··				some fine to coarse subrounded GRAVEL, dry-damp		
13-15	2	SS	-	22	0.0	0-22": Brown-orange medium to coarse well sorted SAND,		
						some fine to medium subrounded GRAVEL, damp		
15-17	3	SS		6	0.0	0-6": Brown-orange medium to coarse SAND, little fine GRAVEL, damp		
15-17		33		-	0.0	oo . Brown-brange medium ib coarse SAND, inthe line GRAVEL, damp		
17-19	4	SS		6	0.0	0-6": Tan-light brown coarse to medium SAND and subrounded-		
						subangular GRAVEL, poorty sorted, moist		
10.21	5	99		15	0.0	0-15": Tan-light brown medium to fine SAND, trace fine GRAVEL at top 19',		
19-21	3	SS		15	0.0	1		
						brown-orange fine SAND (native) at 20.5', well sorted		
	-							
				ļ				
	-							
				-				
1								
			-					
								
[
Т								

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 2" thick asphalt and 4" thick concrete at grade. Boring conducted within backfilled leaching pool which is "open" to 1' below grade.

1852 Bethpage, NY Boring No.: E07B09 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington Geologist: Keith Robins

Drilling Method: Hollow Stem Augers

Boring Completion Depth: Ground Surface Elevation:

21 ft. ft.

Drill Rig: CME-55

Drive Hammer Weight: N/A Date Completed: September 22, 2000 **Boring Diameter:**

8 ín.

Date Started: September 22, 2000

Date St	arted: 3	septemi	per 22, 2	000		Date Completed: September 22, 2000
		Soil Sa	ample			
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
11-13	1	SS		24	0.0	0-6": Tan-brown coarse SAND
						6"-12": Dark brown-black fine to medium SAND and GRAVEL, moist with
						brown 1" thick SILT
						12"-24": Tan-light brown coarse SAND and crushed fine
						GRAVEL angular, poorly sorted, dry
13-15	2	SS		15	0.0	0-15": Brown-orange medium to coarse SAND, some subrounded GRAVEL,
		·		ļ		dry crushed GRAVEL at top
15-17	3	SS		6	0.0	0-6": Orange-brown coarse SAND and subrounded medium GRAVEL, dry, loose
17-19	4	ss		18	0.0	0-12": Tan-brown medium to coarse SAND, some fine GRAVEL, damp
						12"-18": Tan fine SAND, damp
19-21	5	SS		20	0.0	0-8": Tan fine SAND, trace fine GRAVEL, dry
						8"-20": Tan coarse-medium SAND, dry, some subrounded GRAVEL, poorly sorted

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

2" thick asphalt at grade. Notes:

Boring conducted within backfilled leaching pool which is "open" to 5' below grade.

A DIVISIO	ON OF WIL) a E	Ovirk Ind Bartil DNSULTIN COSULICH /	UCC IG ENGIN	EERS	Project No.: 1852 Boring No.: E07B10 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment		
Drilling Driller: Drill Rig Date St	W. Rov g: CME	vland -55	Emingto			Geologist: Keith Robins Drilling Method: Hollow Stem Augers Drive Hammer Weight: N/A Date Completed: September 22, 2000 Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	21 ff fi 8 i	t.
Depth	San No.	Soil Sa	Blows	Rec.	PID	Lithology Description		
(ft.)		Туре	(Per 6")	(inches)	(ppm)	0-6": Dark brown-black SAND/GRAVEL, moist-damp		1
11-13	1	SS		15	0.0	6"-15": Brown coarse SAND and subrounded crushed GRAVEL, dry, loose		
13-15	2	SS		24	0.0	0-12": Dark brown coarse SAND and GRAVEL	_	1
						12"-24": Tan coarse SAND and crushed white GRAVEL, loose, dry		
15-17	3	ss		12	1.0	0-12": Dark brown-black-gray coarse SAND and		1
						fine GRAVEL, wet, slight septic odor		
17-19	4	ss		20	0.0	0-20": Tan-light brown coarse to medium SAND, some to little fine GRAVE		1
17-13		-00		20	0.0	trace weathered crushed stone, trace FINES and SILT, damp	-,	ı
19-21	5	SS		15	1.0	0-20": Tan-light brown coarse to medium SAND, some to little		1
13-21	,	00		.,	1.0	fine to medium subrounded GRAVEL, damp		
								1
								ı
								ı
·								ı
	, .							1
								١
								ı
								ı
								١
ļ								
						1		١
								ı
-								
-		İ						1
								1
								ı
								١
								ı
						1		
								ı
Sa	Turn					Notes: Boring conducted within backfilled leach	ine ==	-
Sample SS = Spl		n HA=	: Hand Au	uger GP	e Geor		iiig poo	"
CC = Co								L

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY

Plant 1 -

Phase II Site Assessment

Boring No.: E07B11 Sheet 1 of 1

By: MR

Drilling Contractor:

Emington

Geologist: Keith Robins

Boring Completion Depth:

Ground Surface Elevation: Boring Diameter:

21 ft. ft. 8 in.

Driller: W. Rowland Drill Rig: CME-55 Date Started: September 25, 2000

Drive Hammer Weight: N/A

Date Completed: September 25, 2000

Drilling Method: Hollow Stem Augers

	- Court					Date Completed: Copiember 20, 2000		
		Soil S			l			
Depth		nple	Blows	Rec.		Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
5-7	1	SS		24	0.0	0-12.5": Brown-light tan coarse SAND, fine GRAVEL		
						12.5"-24": Light tan-dark brown fine SAND, dry		
11-13	2	SS		18	0.0	0-18": Tan-light brown coarse to medium SAND, some fine GRAVEL, dry		
13-15	3	ss		12	0.0	0-12": Tan coarse SAND and fine to coarse GRAVEL, loose, dry-damp,		
						crushed stone at 15'		
15-17	4	SS		15	0.0	0-15": Tan medium to coarse SAND, some fine subrounded GRAVEL, dry-damp		
17-19	5	SS		3	0.0	0-3": Brown fine to coarse SAND and 2" GRAVEL		
19-21	6	SS		12	0.0	0-12": Tan-orange fine to coarse SAND, some to little fine GRAVEL, damp		
						1		
						1		
		******	-					
Ī								
-								
_								
					-			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: <2" thick asphalt at grade.

Boring conducted within backfilled leaching pool. 5'-7' fill sample collected for waste characterization.

Project No.:

1852

Boring No.: E07B12

Project Location: Project Name:

Bethpage, NY Plant 1 -

By: MR

Sheet 1 of 1

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins
Drilling Method: Hollow Stem Augers

Boring Completion Depth:

21 ft. -- ft.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Ground Surface Elevation: Boring Diameter:

8 in.

Date Started: September 25, 2000

Date Completed: September 25, 2000

Date St	arted: 8		per 25, 20	000		Date Completed: September 25, 2000
		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
11-13	1_	SS		18	0.0	0-3": Black-dark brown SILT, trace CLAY, damp
						3"-18": Tan-brown coarse SAND, fine to coarse subrounded GRAVEL, dry
13-15	2	SS		18	0.0	0-18": Tan-light brown coarse to medium SAND and fine to coarse GRAVEL,
						poorly sorted, trace dark brown fine SAND, damp
15-17	3	SS		10	0.0	0-10": Brown-tan fine to coarse SAND, some coarse subrounded GRAVEL, dry
17-19	4	SS		15	0.0	0-15": Tan-light brown fine to coarse SAND, little fine GRAVEL,
						trace SILT, dry-damp
19-21	5	SS	_	12	0.0	0-12": Tan fine to medium SAND, some to little fine subrounded GRAVEL,
						well sorted, dry-damp, trace SILT
ĺ						
					_	
-					· · · · · · · · · · · · · · · · · · ·	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 4" thick asphalt at grade.

Boring conducted within backfilled leaching pool which is "open" to 42" below grade.

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: E07B13 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Drill Rig: CME-55

Geologist: Keith Robins Emington **Drilling Method:** Hollow Stem Augers

Drive Hammer Weight: N/A

21 ft. **Boring Completion Depth:** ft. **Ground Surface Elevation: Boring Diameter:** 8 in.

Date Started: September 25, 2000 Date Completed: September 25, 2000

		Soil Sa	ample			
Depth	Sar			Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")		(ppm)	
11-13	1	SS		12	0.0	0-12": Tan medium to coarse SAND, some to little white subangular
						GRAVEL, trace SILT, damp, mroe crushed GRAVEL at 12.5" to 24"
13-15	2	SS		12	0.0	0-12": Tan-brown fine to coarse SAND and fine to coarse GRAVEL,
						poorly sorted, dry-damp
15-17	3	SS		15	0.0	0-15": Tan-light brown medium to coarse SAND, some fine to medium GRAVEL,
						trace fine SAND at 12" to 24", dry
17-19	4	SS		15	0.0	0-15": Tan-light brown fine to medium SAND, well sorted, little to trace GRAVEL, trace dark brown-red fine to medium SAND, trace SILT, dry
19-21	5	SS		24	0.0	0-24": Tan fine to coarse SAND, some fine GRAVEL, damp-dry
					·	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

3" thick asphalt at grade. Notes:

Boring conducted within backfilled leaching pool.

Project No.:

1852

Boring No.: E07B14

Project Location: Project Name:

Bethpage, NY Plant 1 - Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers

Boring Completion Depth: 20 ft. Ground Surface Elevation: - ft.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Ground Surface Elevation: -- ft. **Boring Diameter:** 8 in.

Date Started: September 25, 2000

Date Completed: September 25, 2000

Date St	arteu: (per 25, 20			Date Completed: September 25, 2000
		Soil Sa				1,000-1
Depth	Sar No.	nple	Blows	Rec.	PID	Lithology Description
(ft.)		Туре	(Pero)	(inches)	(ppm)	
5-7	1_	SS		15	0.0	0-15": Light orange-light brown medium to coarse SAND,
		ļ				little to some fine GRAVEL, dry
7-9	2	ss		20	0.0	0-20": Brown-orange-tan fine to coarse SAND and alot fine
						subangular GRAVEL, dry, poorly sorted
9-11	3	ss		12	0.0	0-12": Tan fine to medium SAND, trace fine GRAVEL, well sorted,
						trace dark brown fine SAND, trace SILT, dry-damp
11-13	4	ss		15	0.0	0-15": Tan-light brown medium to coarse SAND, well sorted, some fine to coarse
						GRAVEL, crushed angular GRAVEL, dry, more fine GRAVEL at 12'-13'
13-15	5	SS	_	15	0.0	0-6": Brown coarse SAND and fine GRAVEL
	-					 6"-8": Dark brown SAND and GRAVEL
						8"-15": Tan coarse SAND and fine GRAVEL
16-18	6	SS	_		0.0	Brown-dark brown coarse SAND and subangular GRAVEL,
						poorly sorted, little fine to medium SAND, dry-damp
18-20	7	SS			0.0	Brown to tan fine to coarse SAND, some fine SAND, some GRAVEL, dry
10-20	•	- 00			0.0	Some of the bound of the some of the some of the bound of
			1			
\longrightarrow						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 10" thick asphalt at grade.

1852

Boring No.: E08B01

Bethpage, NY Plant 1 -

Sheet 1 of 1

By: MR

Project Name:

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Geologist: Keith Robins

Boring Completion Depth: Ground Surface Elevation: 16 ft. ft.

Drill Rig: CME-55

Drilling Method: Hollow Stem Augers Drive Hammer Weight: N/A

Boring Diameter:

8 in.

Date Started: October 3, 2000

Date St	tarted:	October	3, 2000			Date Completed: October 3, 2000
		Soil S	ample			
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
6-8	1	SS		15	0.0	0-15": Gray-light brown SILT, damp compact trace fine SAND, coarse GRAVEL,
	ļ					very damp-moist
8-10	2	SS		12	0.0	0-12": Gray -light brown SILT, trace GRAVEL
						12"-24": Brown-light orange fine-coarse SAND, some fine to coarse GRAVEL, dry
10-12	3	ss		12	0.0	0-12": Tan-light brown-orange coarse SAND and fine to coarse
						GRAVEL, poorly sorted, dry
12-14 4	4	SS		12	0.0	0-12": Tan-light brown coarse SAND, some fine to coarse GRAVEL,
						trace fine to medium SAND, damp
14-16	5	ss		20	0.0	0-20": Tan-light brown medium to coarse SAND, some fine to coarse GRAVEL,
						subangular, crushed, dry, poorly sorted
	<u> </u>					
		<u> </u>		ļ		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

A DIVISIO	ON OF WIL		ONSULTIN	A LUCC NG ENGIN ASSOCIATE	EERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E08B02 Sheet 1 of 1 By: MR sessment
Driller: Drill Ri	Contra W. Rov g: CME	wland -55 October	Emingto 3, 2000	on		Geologist: Keith Rot Drilling Method: Hol Drive Hammer Weig Date Completed: Oc	low Stem Augers ht: N/A	Boring Completion Depth: 16 ff Ground Surface Elevation: – ff Boring Diameter: 8 in
Depth (ft.)	San No.	Soil Sanple Type	Blows	Rec. (inches)	PID (ppm)		Lithology	Description
6-8	1	SS		22	0.0	0-22": Grayish-brown	SILT, trace CLAY,	compacted
						trace coarse \$	SAND and fine GRA	WEL
8-10	2	ss	-	24	0.0	0-24": Brown-orange of poorty sorted,), some fine to coarse GRAVEL,
10-12	3	SS		24	0.0			abundant fine to coarse
10-12	-				0.0	1	se, poorly sorted, di	
12-14	4	SS	_	20	0.0			SAND, some fine to coarse GRAVEL,
						poorty sorted	l, trace FINES, dam	np
14-16	5	ss		15	0.0	0-15": Tan-light brown	coarse to fine SAN	ID, little to some GRAVEL,
						subrounded,	dry-damp	
Co1-	Tues						Notes	
Sample	ıype:						Notes:	

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:** 1852

Boring No.: E08B03

Project Name:

Bethpage, NY Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor:

Emington

Geologist: Keith Robins

Boring Completion Depth:

Driller: W. Rowland Drill Rig: CME-55

Drilling Method: Hollow Stem Augers Drive Hammer Weight: N/A

Ground Surface Elevation:

Boring Diameter:

16 ft. ft. 8 in.

Date Started: October 3, 2000

Date Completed: October 3, 2000

		Soil Sa	ample			
Depth	Sample Blows Rec.		Rec.	PID	Lithology Description	
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
6-8	1	SS	-	15	0.0	0-22": Brown-orange coarse to fine SAND, some to little
						fine GRAVEL, trace SILT, dry
8-10	2	ss		20	0.0	0-20": Brown-orange medium to coarse SAND, little to some
	!					fine to coarse GRAVEL, dry
10-12	3	SS		15	0.0	0-10": Brown-orange medium to coarse SAND,
						trace GRAVEL, trace dark brown SILT
						10"-15": Tan-light brown coarse to medium SAND and angular white GRAVEL, dry
12-14	4	SS		6	0.0	0-6": Tan-light brown coarse to medium SAND, little fine to coarse GRAVEL
14-16	5	ss		20	0.0	0-20": Tan-light brown coarse SAND and fine to coarse GRAVEL, poorly sorted,
						loose, subangular-subrounded

					trace GRAVEL, trace dark brown SILT
					10"-15": Tan-light brown coarse to medium SAND and angular white GRAVEL, dry
12-14	4	SS	 6	0.0	0-6": Tan-light brown coarse to medium SAND, little fine to coarse GRAVEL
14-16	5	SS	 20	0.0	0-20": Tan-light brown coarse SAND and fine to coarse GRAVEL, poorly sorted, loose, subangular-subrounded
					·
	····				
					INJ. Co.

_			
Sam	nia	1 v/r	ю.
Jaili	DIG	3 Y L	σ.

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes:

A DIVISIO	ON OF WIL		Ovirk Ind Barti ONSULTIN COSULICH	UCC IG ENGIN	EERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E08B04 Sheet 1 of 1 By: MR sessment	
Driller: Drill Ri	Contra W. Rov g: CME	wland -55 October	Emingto 4, 2000	n 		Geologist: Keith Rol Drilling Method: Ho Drive Hammer Weig Date Completed: Od	llow Stem Augers jht: N/A	Boring Completion Depth: 16 Ground Surface Elevation: — Boring Diameter: 8	
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)		Lithology	Description	
6-8	1	SS		0		Soft material, no reco	very		
8-10	2	SS		0		Soft material, no reco	very		
10-12	3	SS		6		0-6": Brown-orange o	parse SAND, very n	noist, poorly sorted with GRAVEL, sof	ft
12-14	4	SS		2	_	0-2": Brown-orange o	parse SAND, fine G	RAVEL	
14-16	5	SS				Tan coarse SAND an	d fine GRAVEL, sub	pangular	
	lit Spoor		Hand Au			robe	Notes: Boring conducted	to target backfilled leaching pool.	

1852 Bethpage, NY Boring No.: E08B05 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins

Boring Completion Depth:

24 ft.

Drill Rig: CME-55

Drilling Method: Hollow Stem Augers Drive Hammer Weight: N/A

Ground Surface Elevation: Boring Diameter:

-- ft.

Date Started: October 4, 2000

Date Completed: October 4, 2000

8 in.

			.,						
		Soil S	ample						
Depth	Sar	nple	Blows	Rec.	OVA	Lithology Description			
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)				
6-8	1	SS		6	0.0	0-6": Brown-gray SILTY SAND, little fine GRAVEL, moist, trace black fine SILT			
8-12	2	SS		0		Void			
12-14	3	SS		6	0.0	0-3": Dark brown soil 3"-6": Brown-orange coarse SAND, fine GRAVEL, dry			
14-16	4	SS	_	20	0.0	0-20": Tan coarse SAND and fine poorly sorted GRAVEL, fine to medium SAND at bottom of sample interval			
16-18	5	SS		6	0.0	0-6": Tan well sorted fine to medium SAND, trace coarse SAND, dry			
18-20	6	SS		16	0.0	0-6": Tan well sorted fine to medium SAND and fine to coarse GRAVEL, poorly sorted, subrounded-subangular, damp			
20-22	7	SS		15	0.0	0-15": Tan coarse to fine SAND, little fine to medium GRAVEL			
22-24	8	SS		18	0.0	0-18": Tan-light brown coarse to fine SAND, little fine to coarse GRAVEL, 3 " trace dark brown CLAY seam at 23.5'			
						1			

		<u></u>

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

A DIVISIO	ON OF WIL) a E	ONSULTIN	a lucci IG ENGIN ASSOCIATE	EERS	Project No.: 1852 Project Location: Bethpage Project Name: Plant 1 - Phase II	Boring No.: E08B06 e, NY Sheet 1 of 1 By: MR Site Assessment
Drilling Driller: Drill Ri	Contra W. Rov g: CME-	ctor: vland -55	Emingto 4, 2000			Geologist: Keith Robins Drilling Method: Hollow Stem A Drive Hammer Weight: N/A Date Completed: October 4, 20	Boring Diameter: 8 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec.	OVA (ppm)	Li	thology Description
6-8	1	SS		3	0.0	0-3": Brown-orange coarse SAN	D and fine GRAVEL
8-10	2	SS		12_	0.0	0-12": Brown-orange coarse to n	nedium SAND, some fine to coarse
10-12	3	SS	-	15	0.0	0-15": Brown-orange coarse SAI	
12-14	4	SS		20	0.0	0-10": Brown-orange coarse SAI 10"-20": Tan coarse SAND, fine	
14-16	5	SS		12	0.0		undant fine to coarse subrounded
						angula Crovez, poor	y contou
		_					
Sample	Type					Notes:	-
-		n HA=	: Hand A	uaer GP	e Geon		onducted to target backfilled leaching pool.

CC = Concrete Core HP = Hydropunch

Project Name:

Project No.: **Project Location:**

1852 Bethpage, NY Boring No.: E08B07

Boring Diameter:

Plant 1 -

Sheet 1 of 1

By: MR

Drilling Contractor: Driller: W. Rowland

Emington

Geologist: Keith Robins **Drilling Method:** Hollow Stem Augers **Boring Completion Depth: Ground Surface Elevation:**

Phase II Site Assessment

16 ft. ft. 8 in.

Drill Rig: CME-55

Drive Hammer Weight: N/A

Date Started: October 5, 2000						Date Completed: October 5, 2000				
		Soil Sa	ample							
Depth			Blows Rec.		ple Blows Rec.				PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)					
6-8	1	SS		12	0.0	0-12": Brown-orange coarse to fine SAND, some fine to coarse subrounded				
						GRAVEL, trace SILT, dry-damp, orange well sorted fine SAND at 7.5'-8'				
8-10	2	SS		20	0.0	0-10": Brown-orange fine to medium SAND, trace SILT, little fine GRAVEL				
						10"-20": Brown-tan coarse to medium SAND, some fine GRAVEL				
10-12	3	SS		15	0.0	0-15": Brown-tan coarse to medium SAND and fine GRAVEL, trace fine SAND				
						poorly sorted, dry				
12-14	4	SS		12	0.0	0-6": Brown-orange medium to coarse SAND, fine to medium GRAVEL 6"-12": Tan coarse SAND in fine GRAVEL				
14-16	5	SS		20	0.0	0-20": Tan-brown coare to medium SAND, damp, some fine to coarse				
14-10	J	- 00		20	0.0	GRAVEL, trace fine SAND				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

<5" thick asphalt at grade. Notes:

Project Name:

1852 Bethpage, NY Boring No.: E08B08 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Date Completed: October 5, 2000

Boring Completion Depth: Ground Surface Elevation:

- ft. **Boring Diameter:** 2 in.

22 ft.

Date Started: October 5, 2000

Soil Sample **Blows** Rec. **Lithology Description** Depth Sample (Per 6") (inches) (ppm) Type (ft.) No. 0-15": Orange-brown, fine to medium SAND, little SILT, 0.0 6-10 **GP** 39 trace fine to coarse GRAVEL, dry, no odor 15"-26": Gray SILT and fine to medium SAND, trace fine to coarse GRAVEL, occasional asphalt and concrete pieces, dry, no odors 26"-28": Orange-brown, fine to medium SAND, little SILT, trace fine to coarse GRAVEL, dry, no odor 28"-39": Gray SILT and fine to medium SAND, trace fine to coarse GRAVEL, occasional asphalt and concrete pieces, dry, no odors GP 19 0.0 0-3": Gray SILT and fine to medium SAND, trace fine to coarse 10-14 2 GRAVEL, occasional asphalt and concrete pieces, dry, no odors 3"-11": Orange-brown, fine to medium SAND, some SILT, trace fine to medium GRAVEL, dry, no odor 11"-14": Asphalt pieces 14"-19": Orange-brown, fine to coarse SAND, trace SILT, little fine to medium GRAVEL, dry, no odor 14-18 3 **GP** 36 0.0 0-36": Orange-brown, fine to coarse SAND, trace SILT, little fine to medium GRAVEL, dry, no odor 18-20 GP 20 0.0 0-20": Orange-brown, fine to coarse SAND, trace SILT, 4 little fine to medium GRAVEL, dry, no odor GP 0.0 20-22 23 0-23": Orange-brown, fine to coarse SAND, trace SILT, 5 little fine to medium GRAVEL, dry, no odor

Sample Type:	Notes:	Boring conducted to target former leaching
SS = Split Spoon HA = Hand Auger GP = Geoprobe		pool
CC = Concrete Core HP = Hydropunch		

1852 Bethpage, NY Boring No.: E08B09 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland
Drill Rig: Earthprobe
Date Started: October 5, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 5, 2000 Boring Completion Depth: 22 ft. Ground Surface Elevation: -- ft.

Boring Diameter:

2 in.

		Soil S	ample			
Depth	Sar	mple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
6-10	1	GP		43	0.0	0-14": Brown SILT and fine to medium SAND,
						trace fine to medium GRAVEL, dry, no odor
						14"-17": Concrete pieces
						17"-43": Brown SILT and fine to medium SAND,
						trace fine to medium GRAVEL, dry, no odor
10-14	2 GP - 30 0.0	0.0	0-18": Brown SILT and fine to medium SAND,			
		<u> </u>				trace fine to medium GRAVEL, dry, no odor
						18"-30": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
14-18	3	GP		46	0.0	0-46": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
18-20	4	GP		23	0.0	0-23": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
20-22	5	GP		24	0.0	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor

Sample Type:	Notes:	Boring conducted to target former leaching
SS = Split Spoon HA = Hand Auger GP = Geoprobe		pool
CC = Concrete Core HP = Hydropunch		

A DIVIS	ION OF W		ONSULTI	(a lucc ng engir associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E08B10 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro	owland hprobe Octobe	Emingto r 5, 2000			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: O	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	18 ft. ft. 2 in.
Depth (ft.)	Sar No.	Soil Sanple	Blows	Rec.	PID (ppm)		Lithology	Description	
6-10	1	GP	_	35	0.0	0-5": Gray-black SILT	and fine to mediun	n SAND,	
						1		ace concrete pieces, dry, no odor	
						1		se SAND, trace SILT,	
					<u>-</u>	1	to coarse GRAVEL		
10.14	2	GP		34	0.0			e to coarse SAND, trace	
10-14		GP	_=	34	0.0	1	*		
						Ī	ine to coarse GRAV		
14-18	3	GP	-	46	0.0	1	_	e to coarse SAND, trace SILT,	
						trace fine to	coarse GRAVEL, d	ry, no odor	
		<u> </u>							
	·								
					-				
					<u>-</u> -				
									
									į
		<u> </u>							
									İ
					-				
	olit Spoo			uger Gl		probe	Notes: Boring pool	g conducted to target former leaching	ng

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:** Project Name:

1852 Bethpage, NY Boring No.: E08B11 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 5, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 16 ft. **Ground Surface Elevation:** - ft. 2 in. **Boring Diameter:**

Date Completed: October 5, 2000

Date S	tarted:	Octobe	r 5, 2000			Date Completed: October 5, 2000
Soil Sample						
Depth	Sar	nple	Blows	ws Rec. PID Lithology Description		Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
6-10	1	GP	<u> </u>	43	0.0	0-8": Brown, fine to medium SAND, some SILT,
··						trace fine to coarse GRAVEL, dry, no odor
						8"-13": Dark brown SILT, trace fine to medium SAND, dry, no odor
						13"-18": Brown, fine to medium SAND, some SILT,
						trace fine to coarse GRAVEL, dry, no odor
						18"-24": Gray-brown, fine SAND and SILT, dry, no odor
-						24"-43": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
10-12	2	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
12-14	3	GP		22	0.0	0-22": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
14-16	4	GP		24	0.0	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
	·					
				-		
	-		i			

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes:

pool

Boring conducted to target former leaching

Sample Type:

A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:** Project Name:

1852 Bethpage, NY Boring No.: E08B14 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe **Drive Hammer Weight: N/A** **Boring Completion Depth:** 18 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

Date S	tarted:		er 11, 200	0		Date Completed: October 11, 2000
		Soil S				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")		(ppm)	
6-10	1	GP		47	0.1	0-16": Orange-brown, fine to coarse SAND, trace SILT,
				ļ		little fine to coarse GRAVEL, dry, no odor
						16"-39": Gray to brown, SILT, some CLAY,
						trace fine to medum GRAVEL, dry, no odor
						39"-47": Orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
10-14	2	GP		48	0.0	0-48": Tan to orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
14-16	3	GP		27	0.0	0-27": Tan to orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
16-18	3	GP		24	0.0	0-24": Tan to orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
			-			
					·· · ·	
		-				
				· !		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring targeted backfilled former leaching pool

A DIVISI	ON OF WI		ONSULTI	(a lucc NG ENGIN ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E09B01 Sheet 1 of 1 By: MR sessment	
Driller: Drill Ri	W. Ro	wland nprobe	Emingto r 2, 2000			Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weig Date Completed: Oc	oprobe ht: N/A	Ground Surface Elevation:	8 ft. ft. 2 in.
Depth (ft.)	Sam No.	Soil Sa ple Type	Blows (Per 6")	Rec.	PID (ppm)		Lithology	Description	
0-4	1	GP	-	32	0.0	0-3": Brown SILT and	fine to medium SA	ND, trace fine GRAVEL, dry, no odd	vr
						1		edium SAND, trace SILT,	
						1	RAVEL, dry, no oc		ļ
					-	1	•	AND, trace fine GRAVEL, moist, no	odor
4-8	2	GP		24	0.0			AND, trace fine GRAVEL, moist, no	
		<u> </u>							
									I
						ł			
\vdash						1			- 1
						-			1
	_								i
									ľ
,									
						1			
						1			
						1			
						1			
									ŀ
$\vdash \vdash \vdash$	+								
\vdash						1			
Sa1-	Trees					<u> </u>	Notes:		
Sample SS = Sp		n HA	= Hand A	luger G	P = Geo	probe	NOTES:		
				/dropunc					

1852 Bethpage, NY Boring No.: E10B01 Sheet 1 of 1

By: MR

Project Name: Plant 1 -

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: October 12, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Auger Drive Hammer Weight: N/A

Date Completed: October 12, 2000

Boring Completion Depth:

Ground Surface Elevation: **Boring Diameter:**

23 ft. - ft. 8 in.

Date 3	tarteu.	Octobe	12, 200	<i>1</i> 0		Date Completed: October 12, 2000		
Depth (ft.) 13-15		Soil S	ample					
	Sample		Blows	Rec.	PID	Lithology Description		
	No.	Туре	(Per 6")	(inches)	(ppm)			
	1	ss		15	0.0	0-15": Brown-tan medium to coarse SAND, little fine to coarse GRAVEL,		
						trace gray SILTY CLAY, damp		
15-17	5-17 2 SS		12	0.0	0-12": Tan coarse to medium SAND and fine to coarse subrounded-			
					subangular GRAVEL, poorly sorted, damp-dry	subangular GRAVEL, poorly sorted, damp-dry		
17-19	3	ss		15	0.0	0-15": Light brown medium to coarse well sorted SAND, trace fine GRAVEL,		
		i				fine SAND, damp		
19-21	4	SS	-	15	0.0	0-15": Light brown-tan fine SAND, trace fine GRAVEL,		
						coarse SAND, well sorted, damp		
21-23	5	SS		18	0.0	0-18": Brown-tan fine to coarse SAND, some		
						to little fine to medium GRAVEL, damp		
			İ			1		
		1	I .	I I	I	1		

					coarse SAND, well sorted, damp
21-23	5	SS	 18	0.0	0-18": Brown-tan fine to coarse SAND, some
					to little fine to medium GRAVEL, damp
					1
				i	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Boring conducted to target backfilled former Notes: leaching pool.

1852 Bethpage, NY Boring No.: E10B02 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: CME-55

Date Started: October 12, 2000

Geologist: Keith Robins

Drilling Method: Hollow Stem Auger Drive Hammer Weight: N/A

Date Completed: October 12, 2000

Boring Completion Depth: 21 ft. -- ft. **Ground Surface Elevation:**

Boring Diameter: 8 in.

Date S	tarted:	Octobe	er 12, 200	U		Date Completed: October 12, 2000		
	Soil Sample							
Depth	Sample		Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
11-13	1	SS	-	15	0.0	0-15": Orange-tan coarse to fine SAND, little fine to medium GRAVEL, damp		
13-15	2	SS		6	0.0	0-6": Tan coarse SAND and fine to coarse subrounded GRAVEL, poorly sorted, damp, trace medium SAND		
15-17	3	SS		12	0.0	0-12": Tan fine to coarse SAND and fine to coarse subrounded pea size GRAVEL, dry-damp		
17-19	4	SS	-	12	1.0	0-6": Brown-tan coarse to medium SAND and fine GRAVEL, trace fine SAND 6"-12": Light tan very fine SAND, trace SILT, damp		
19-21	5	SS		15	0.0	0-15": Tan-light brown fine to coarse SAND, little to some medium GRAVEL damp, well sorted		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target backfilled former leaching pool.

Project Name:

1852 Bethpage, NY

Boring No.: E10B03 Sheet 1 of 1

By: MR

Plant 1 -

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland

Drill Rig: Earthprobe Date Started: October 2, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 22 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

Date Completed: October 2, 2000

Date S	tarted:	Octobe	r 2, 2000			Date Completed: October 2, 2000				
	Soil Sample			•						
Depth	Sar	mple Blows Rec.			PID	Lithology Description				
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)					
12-16	1	GP		34	0.0	0-1": Gray, fine to coarse SAND, trace SILT				
						little fine to coarse GRAVEL, dry, no odor				
	ļ					1"-34": Orange-brown to tan, fine to coarse SAND, trace SILT				
						little fine to coarse GRAVEL, dry, no odor				
16-20	2	GP		39	0.0	0-39": Orange-brown to tan, fine to coarse SAND, trace SILT				
						little fine to coarse GRAVEL, dry, no odor				
20-22	3	GP			0.0	Orange-brown to tan, fine to coarse SAND, trace SILT				
						little fine to coarse GRAVEL, dry, no odor				
	ļ <u>.</u>	 								
		ļ								
	-									
										
	-									
				!						
		-								
		 		<u> </u>						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Void from 8'-12' below grade Boring conducted to target backfilled former leaching pool.

1852 Bethpage, NY Boring No.: E10B04 Sheet 1 of 1

Project Name:

Geologist: Ken Wenz

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig: Earthprobe**

Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation: Boring Diameter:**

21 ft. -- ft. 2 in.

Date Started: October 11, 2000

Date Completed: October 11, 2000

			•			<u>.L</u>				
		Soil Sa	ample							
Depth	Sample		Blows	Rec.	PID	Lithology Description				
(ft.)	No.	No. Type		(inches)	(ppm)					
11-15	1	GP		38	0.0	0-4": Brown-black, SILT and CLAY, dry, no odor				
						4"-38": Orange-brown to tan, fine to coarse SAND, trace SILT,				
						little fine to coarse GRAVEL, dry, no odor				
15-19	2	GP		39	0.0	0-39": Orange-brown to tan, fine to coarse SAND, trace SILT,				
						little fine to coarse GRAVEL, dry, no odor				
19-21	3	GP		24	0.0	0-24": Orange-brown to tan, fine to coarse SAND, trace SILT,				
						little fine to coarse GRAVEL, dry, no odor				
	1									

15-19	2	GP	 39	0.0	0-39": Orange-brown to tan, fine to coarse SAND, trace SILT,
		<u> </u>			little fine to coarse GRAVEL, dry, no odor
19-21	3	GP	 24	0.0	0-24": Orange-brown to tan, fine to coarse SAND, trace SILT,
					little fine to coarse GRAVEL, dry, no odor
İ					
			 		
			 		
			<u> </u>		
			 <u> </u>		
Sample					Notes: 7" thick concrete encountered 5" below grade

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

11' void encountered beneath 7" thick concrete. Boring conducted to target backfilled former leaching pool.

Project No.:
Project Location:
Project Name:

1852 Bethpage, NY Boring No.: E10B05 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland **Drill Rig:** Earthprobe

Geologist: Ken Wenz
Drilling Method: Geoprobe
Drive Hammer Weight: N/A
Date Completed: October 2, 2000

Boring Completion Depth: 18 ft. Ground Surface Elevation: – ft. Boring Diameter: 2 in.

Date Started: October 2, 2000

	Soil Sa	ample				
 _			_			

İ	Soil Sample					
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
6-10	1	GP	<u></u>	24	0.0	0-22": Brown SILT and fine to coarse SAND, trace fine GRAVEL, dry, no odor
					ļ	22"-24": Gray-brown SILT and CLAY, moist, no odor
10-14	2	GP		35	0.0	0-3": Gray-brown SILT and CLAY, moist, no odor
						3"-35": Orange-brown to tan, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
14-18	3	GP		32	0.0	0-32": Orange-brown to tan, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
		<u> </u>				
		_				
 						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Notes:

C A DIVIS	ION OF W		ONSULTI	Ka IUCC ING ENGII I ASSOCIAT	NEERS	Project No.: 1852 Boring No.: E10B06 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment		
Driller Drill R	: W. Ro	owland hprobe	Emingto r 2, 2000			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 2, 2000 Boring Completion Depth: 18 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in.		
Depth	Soil Sample th Sample Blows Rec.				PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")					
6-10	1_	GP	-	12	0.0	0-12": Brown SILT and fine to medium SAND,		
		 				little fine to medium GRAVEL, dry, no odor		
10-14	2	GP		30	0.0	0-4": Brown SILT and fine to medium SAND,		
	ļ <u>.</u>	<u> </u>	<u> </u>			little fine to medium GRAVEL, dry, no odor		
	ļ	ļ		<u> </u>		4"-7": Brown-gray SILT and CLAY, dry, no odor		
ļ	ļ	 				7"-30": Brown to orange-brown, fine to coarse SAND, trace SILT,		
├		 				little fine to medium GRAVEL, dry, no odor		
14-18	3	GP	=	35	0.0	0-35": Tan, fine to coarse SAND, trace SILT,		
<u> </u>	ļ	<u> </u>				little fine to medium GRAVEL, dry, no odor		
	<u> </u>							
		<u> </u>						
	ļ							
		<u> </u>						
		<u> </u>						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target backfilled former leaching pool. No cover found.

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: E10B08 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: October 11, 2000

Boring Completion Depth: 16 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Date Started: October 11, 2000

	Soil Sample						
Depth	San	nple	Blows	Rec.	PID	Lithology Description	
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)		
6-10	1	GP		27	0.1	0-27": Orange-brown, fine to medium SAND, some SILT,	
						occasional fine to medium GRAVEL, dry, no odor	
10-14	2	GP		45	0.0	0-45": Orange-brown, fine to medium SAND, some SILT,	
						occasional fine to medium GRAVEL, dry, no odor	
14-16	3	GP		24	0.0	0-24": Orange-brown, fine to medium SAND, some SILT,	
		ļ				occasional fine to medium GRAVEL, dry, no odor	
		1					

		<u> </u>	·			occasional file to mediam of o tv EE, dry, no occ.
10-14	2	GP		45	0.0	0-45": Orange-brown, fine to medium SAND, some SILT,
						occasional fine to medium GRAVEL, dry, no odor
14-16	3	GP		24	0.0	0-24": Orange-brown, fine to medium SAND, some SILT,
						occasional fine to medium GRAVEL, dry, no odor
-						
-						
					-	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

approx. 2" thick concrete encountered Notes: at 3' below grade. Boring conducted to target backfilled former leaching pool.

A DIVISI	ION OF W		Dvirland Barti Sonsulti cosulich	luco ng engli	NEERS	Project No.: 1852 Boring No.: E12B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller Drill R	: W. Ro	owland hprobe	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 11, 2000 Boring Completion Depth: 20 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in
Date C	lartea.	Soil Sa				Date Completed. Collocal 11, 2000
Depth (ft.)	San No.	nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)	Lithology Description
10-14	1	GP		38	0.0	0-38": Orange-brown, fine to coarse SAND, trace SILT,
44.40		0.0		24		little fine to coarse GRAVEL, dry, no odor
14-16	2	GP		24	0.1	0-24": Orange-brown, fine to coarse SAND, trace SILT, little fine to coarse GRAVEL, dry, no odor
16-18	3	GP	-	20	0.0	0-20": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
18-20	4	GP	-	24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
		ļ				little fine to coarse GRAVEL, dry, no odor
						-
						1
					_	
					·····	
						-
	-					1
					-	
					······································	
Sample			I			Notes:
			= Hand A HP = Hy			probe

1852 Bethpage, NY

Phase II Site Assessment

Boring No.: E13B01 Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Date S	tarted:	Septem	nber 25, 2	2000		Date Completed: September 25, 2000
		Soil Sample			BID	
Depth		Sample Blows		Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	0.0	0-1": Black SILT and CLAY, trace fine to medium SAND, dry, no odor
						2"-19": Brown SILT and CLAY, trace fine to medium SAND, dry, no odor
						19"-20": Brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odor
3-5	2	GP		17	0.0	0-17": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odor
						1
						†
						-
	İ	I .	l I			

Sample Type: Notes: 5" thick concrete at grade SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

A DIVISI	ION OF W		ONSULTI	CA LUCC NG ENGIR ASSOCIAT	NEERS	Project No.: 1852 Project Location: Bethpage, N Project Name: Plant 1 - Phase II Si	Boring No.: E13B02 NY Sheet 1 of 1 By: MR te Assessment
Driller Drill R	: W. Ro	wland nprobe	Emingtonber 25, 2			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 25, 2	Boring Completion Depth: 4 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.
Depth (ft.)	San No.	Soil Sa nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)	Litho	logy Description
0-2	1	GP	-	24	0.0	0-5": Gray to brown, fine to medium 5"-24": Brown SILT and CLAY, fine	
2-4	2	GP	_	18	0.0	0-7": Brown SILT and CLAY, fine to 7"-18": Orange-brown, fine to mediu	medium SAND, moist, no odor
						trace fine to coarse GRAV	/EL, dry, no odor
:							

Sample						Notes:	
				uger Gl dropunch		obe	

1852 Boring No.: E13B02E8 Sheet 1 of 1 Bethpage, NY

Plant 1 -By: MR Phase II Site Assessment

Drill Rig: Earthprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 4 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Pate Started: December 27, 2000	Date Completed: December 27, 2000

Date S	tarted:	Decem	ber 27, 2	000		Date Completed: December 27, 2000
	Soil Sample					
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-2	1	GP		6	0.0	0-6": Dark brown SILTY CLAYEY material with some GRAVEL, moist, no odor
2-4	2	GP		8	0.0	0-8": Dark brown to tan to orange SAND and GRAVEL, moist, no odor
					•	
					-	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete at grade

A DIVISI	ON OF W		ONSULTI	CA LUCC NG ENGIR ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site A	Boring No.: E13B02E12 Sheet 1 of 1 By: MR
Driller: Drill R	W. Ro	owland hprobe Decem	Emingto ber 27, 2			Geologist: Mark Rai Drilling Method: Ge Drive Hammer Weig Date Completed: De	oprobe jht: N/A	Boring Completion Depth: 4 ft. Ground Surface Elevation: - ft. Boring Diameter: 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)		Lithology	y Description
0-2	1	GP		8	0.4	0-8": Brown to tan SIL	TY CLAYEY mate	erial with some staining, moist, no odor
2-4	2	GP		8	0.2	0-8": Dark brown to ta	an to orange SANI	D and GRAVEL, moist, no odor
					_			
						,		
	lit Spoc			uger Gl		probe	Notes: 2" th	ick concrete at grade

Driller: W. Rowland Drilling Method: Geoprobe Ground Surface Elevation:	
Driller: W. Rowland Drill Rig: Earthprobe Date Started: December 27, 2000 Soil Sample Depth Sample (ft.) No. Type (Per 6") (inches) 0-2 1 GP 6 0.0 0-6": Brown to tan SILTY CLAYEY SAND and GRAVEL, moist, no odor	
Soil Sample Somple Blows Rec. PID Lithology Description	
0-2 1 GP 6 0.0 0-6": Brown to tan SILTY CLAYEY SAND and GRAVEL, moist, no odor	
2-4 2 GP 6 0.0 0-6": Brown to tan SILTY CLAYEY SAND and GRAVEL, moist, no odor	

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Sample Type:

Notes:

4" thick concrete at grade

A DIVISI	ON OF W		ONSULTI	Ka lucc ng engir associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E13B02NE10 Sheet 1 of 1 By: MR	
Driller: Drill Ri	W. Ro	wland hprobe	Emingto ber 27, 2			Geologist: Mark Rat Drilling Method: Ge Drive Hammer Weig Date Completed: De	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec.	PID (ppm)		Lithology I	Description	
0-2	1	GP		6	0.4	0-6": Brown to tan SIL	TY SANDY soil with	h GRAVEL, moist, no odor	
2-4	2	GP		7	0.5	0-7": Brown to tan SIL	TY SANDY soil with	h GRAVEL, moist, no odor	
			-						
:									
	-								
	lit Spoc			kuger Gl vdropunch		probe	Notes: 5" thic	k concrete at grade	

C A DIVIS	ION OF W		Dvirk and Barti cosulich	ilucc	NEERS	Project No.: 1852 Boring No.: E13B02NE20 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill Ri	: W. Ro ig: Eartl tarted:	owland hprobe Decem	Emingto			Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: December 27, 2000 Boring Completion Depth: 4 ft. Ground Surface Elevation: ft. Boring Diameter: 2 in.
Depth (ft.)		Soil Sanple Type	Blows	Rec.	PID (ppm)	Lithology Description
0-2	1	GP		8		0-8": Dark brown SAND and GRAVEL with SILTY CLAY, moist, no odor
2-4	2	GP	-	10	0.0	0-10": Brown SAND and GRAVEL, trace SILTY CLAY, moist, no odor
Sample SS = Sc		on HA	= Hand A	Luger G	P = Geo	Notes: 2" thick concrete at grade probe

CC = Concrete Core HP = Hydropunch

A DIVISI	ON OF W		ONSULTI	(a lucc ng engir associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E13B02S5 Sheet 1 of 1 By: MR	
Driller: Drill R	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Mark Rau Drilling Method: Ge Drive Hammer Weig Date Completed: De	oprobe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. – ft. 2 in
Depth (ft.)	San No.	Soil Sanple	Blows (Per 6")	Rec. (inches)	PID (ppm)		Lithology I	Description	
0-2	1	GP		10	0.0	0-6": Brown to tan SA	ND and GRAVEL,	slightly moist, no odor	
2-4	2	GP		8	0.0	0-8": Brown to tan SA	ND and GRAVEL, s	slightly moist, no odor	
			-						
					_				

A DIVIS	ION OF W		Dvirland Barti Consulti Cosulich	lucc NG ENGII	NEERS	Project No.: 1852 Project Location: Bethpage Project Name: Plant 1 Phase I				
Driller Drill R	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Mark Rauber Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: December 2'	Boring Completion Depth: 4 ft Ground Surface Elevation: ft Boring Diameter: 2 in 7, 2000			
		Soil S	ample							
Depth (ft.)	San No.	nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)	Li	ithology Description			
0-2	1	GP		12	0.0	0-12": Brown to tan SAND and GRAVEL, moist, no odor				
2-4	2	GP	-	12	0.0	0-12": Brown to tan SAND and 0	GRAVEL, moist, no odor			
			,							
Sample SS = Sp CC = Co	olit Spoo	n HA	= Hand A HP = Hy	uger Gl	P = Geop	Notes:				

A DIVISI	ON OF W		Dvirk and Barti	LUCC	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E13B02W8 Sheet 1 of 1 By: MR sessment	
Driller: Drill R	W. Ro	owland hprobe	Emingto ber 27, 2			Geologist: Mark Ra Drilling Method: Ge Drive Hammer Weig Date Completed: Do	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. – ft. 2 in.
Depth (ft.)	Sar No.	Soil Sanple	Blows	Rec. (inches)	PID (ppm)		Lithology I	Description	
0-2					0.0	0-12": Light brown to	tan to orange SAND	and GRAVEL, moist, no odor	
2-4	4 2 GP 10 0.0					0-10": Light brown to	an to orange SAND	and GRAVEL, moist, no odor	
									•
						•			
					-				
Sample							Notes: 3" thic	k concrete at grade	
			= Hand A HP = Hy			orobe			

Drilling Contractor: Emington Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: W. Rowland Driller: Weight: IV/A Date Completed: October 5, 2000 Date Started: October 5, 2000 Sample Drilling Method: Geoprobe	Driller: W. Rowland Drill Rig: Earthprobe Date Started: October 5, 2000 Soil Sample Depth Sample (ppm) O-2 1 GP 24 0.0 0-6": Brown SILT and fine to medium SAND, dry, no odor 6"-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	A DIVISI	ON OF W		ONSULTI	Ka IUCC ING ENGII I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E18B01 Sheet 1 of 1 By: MR sessment
Depth (ft.) Sample (ft.) Blows (Per 6") Rec. (inches) PID (ppm) Lithology Description 0-2 1 GP 24 0.0 0-6": Brown SILT and fine to medium SAND, dry, no odor 24 0.0 6"-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	Depth No. Type Per 6" (inches) (ppm)	Driller: Drill R	: W. Ro ig: Eart	wland hprobe Octobe	r 5, 2000			Drilling Method: Ge Drive Hammer Weig	oprobe jht: N/A	Ground Surface Elevation:
0-2 1 GP 24 0.0 0-6": Brown SILT and fine to medium SAND, dry, no odor 6"-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	0-2 1 GP 24 0.0 0-6*: Brown SILT and fine to medium SAND, dry, no odor 6*-24*: Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 24 0.0 0-24*: Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 30 0-24*: Orange-brown, fine to			nple	Blows				Lithology	Description
6"-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	6"-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor							0-6": Brown SILT and	fine to medium SA	ND. drv. no odor
trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	trace fine to coarse GRAVEL, dry, no odor 2-4 2 GP 24 0.0 0-24* Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor							7		
2-4 2 GP 24 0.0 0-24": Orange-brown, fine to coarse SAND, trace SILT,	2.4 2 GP - 24 0.0 0-24*. Orange-brown, fine to coarse SAND, trace SILT, trace fine to coarse GRAVEL, dry, no odor									
	trace fine to coarse GRAVEL, dry, no odor	2-4	2	GP		24	0.0			
		2-7		<u> </u>		24	0.0	1		

A DIVISI	ON OF W		ONSULTI	CA LUCC NG ENGIN ASSOCIATE	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E18B02 Sheet 1 of 1 By: MR	
Driller: Drill R	: W. Ro ig: Eartl	wland nprobe	Emingto r 5, 2000			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Oc	oprobe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sa nple Type	Blows (Per 6")	Rec.	PID (ppm)		Lithology i	Description	
0-2	1	GP	_	19	0.0	0-3": Brown SILT and	fine to medium SAI	ND, dry, no odor	
		<u> </u>				3"-19": Orange-brown		-	
						_	coarse GRAVEL, d		
2-4	2	GP	_	22	0.0	0-22": Orange-brown,			
	_			_=_		1	coarse GRAVEL, d		İ
					-				
					<u> </u>				
					-				
Some's	Type						Notes:		
Sample SS = Sp		n HA	= Hand A	uger Gl	P = Geo	probe	Motes:		
				dropunci			1		l

A DIVIS	ION OF W		CONSULTI	ka ilucc ing engli rassociat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E19B01 Sheet 1 of 1 By: MR sessment			
Driller Drill R	: W. Ro	owland hprobe	Emingto			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Oc	oprobe pht: N/A	Ground Surface Elevation:	22 ft. ft. 2 in		
		Soil S	ample								
Depth (ft.)	Sar No.	nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)		Description				
8-12	1	GP		41	0.0	0-35": Brown SILT, litt	tle fine to medium S	SAND trace fine to	—		
0 12	<u> </u>	01		7'	0.0	1		crete pieces, dry, no odor			
						35"-41": Tan-brown, fi					
							o coarse GRAVEL,				
12-16	2	GP		38	0.0	0-38": Tan-brown, fine			_		
12 10		<u> </u>		30	0.0	little fine to coarse GRAVEL, dry, no odor					
16-20	3	GP		46	0.0	0-46": Tan-brown, fine					
						1	oarse GRAVEL, dr				
20-22	4	GP		24	0.0	0-24": Tan-brown, fine					
							oarse GRAVEL, dr				
-											
											
Sample							Notes:				

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Project No.:

1852 Bethpage, NY Boring No.: E20B01 Sheet 1 of 1

Project Location: **Project Name:**

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe **Drive Hammer Weight: N/A** **Boring Completion Depth: Ground Surface Elevation:**

6 ft. → ft.

Date Started: September 28, 2000 Date Completed: September 28, 2000 **Boring Diameter:**

2 in.

		Soil S	ample			
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6*)	(inches)	(ppm)	
2-4	1	GP		24	0.0	0-11": Brown, fine to medium SAND, trace SILT, moist, no odor
						11"-19": Brown SILT and CLAY, trace fine to medium SAND, moist, no odor
						19"-24": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
4-6	2	2 GP - 19		19	0.0	0-19": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL

						11"-19": Brown SILT and CLAY, trace fine to medium SAND, moist, no odor
						19"-24": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
4-6	2	GP	-	19	0.0	0-19": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to coarse GRAVEL
			.,			
				ļ		
				 		
—				 		
				<u> </u>		
 				 		
 						
Sample	<u> </u>			<u> </u>		Notes: Roying conducted through 9" 10" deep pit

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes:

Boring conducted through 9"-10" deep pit

with a 6" thick concrete bottom

A DIVIS	ION OF W		Dvirland Barti CONSULTI COSULICH	lucc NG ENGI	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E21B01 Sheet 1 of 1 By: MR sessment
Driller Drill R	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe ht: N/A	Boring Completion Depth: 4 Ground Surface Elevation: Boring Diameter: 2
		Soil S					·	
Depth		nple	Blows	Rec.	PID		Lithology [Description
(ft.)	No.	Туре		(inches)	(ppm)	0.407.01.1.1	1.7	OAND
0-4	1	GP		42	0.0	0-42": Black-brown SI		
			-			little fine to me	dium GRAVEL, dry,	, no odor
			<u> </u>		}			
.	ļ		ļ		<u> </u>			
			ļ					
			į					
·								
			·					
				[
							<u> </u>	
Sample							Notes:	
			= Hand A HP = Hy			probe		

A DIVIS	ION OF W		Dvirk and Barti consulti cosulich	LUCC NG ENGII	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E21B02 Sheet 1 of 1 By: MR	
Driller Drill R	: W. Ro ig: Eart	wland hprobe	Emingto			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec. (inches)	PID (ppm)		Lithology I	Description	
0-4	1	GP	_	40	0.0	0-35": Brown SILT an	d fine to medium SA	AND	
"	'	<u> </u>		70	0.0	1	parse GRAVEL, dry		
						35"-40": Orange-brow	-		
						1	medium GRAVEL,		
						iide iiie d	medium GRAVEL,	dry, 110 odor	
						1			
						1			
<u> </u>						1			
						1			
			-						
								,	
								·	
Sample	Type:						Notes:		
SS = Sp	olit Spoo		= Hand A			probe			
CC = C	oncrete	Core	HP = Hy	dropunct	<u> </u>				

C A DIVISIO	ON OF W		ONSULTI	Ka IUCC ING ENGII I ASSOCIAT	NEERS	Project No.: 1852 Boring No.: E21B03 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment	
Driller: Drill Ri	W. Ro	wland hprobe Septem	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 29, 2000 Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft ft 2 in
Depth (ft.)	(ft.) No. Type (Per 6") (inches) (ppm)						
0-4						0-5": Orange-brown, fine to coarse SAND, trace SILT,	
						some fine to coarse GRAVEL, dry, no odor	
						0-36": Brown to black SILT, little fine to medium SAND, trace fine to	
						coarse GRAVEL, dry, slight petroleum odor in 0-15" interval	
						36"-41": Orange-brown, fine to coarse SAND, trace SILT,	
						little fine to coarse GRAVEL, dry, no odor	
						4	
		<u> </u>		<u> </u>		4	
						-	
						-	
						_	
						-	
						-	
						-	
						-	
						┪	
						┪	
						┪	
						-	
						1	
						1	
						7	
						1	
						7	
						1	
			·			1	
						1	
						1	
]	
						7	
						T	
Sample	Type:					Notes:	
SS = Sp	lit Spoo			uger Gl		l l	

A DIVISIO	ON OF WI		Dvirk and Barti cosulch	lucc ng engir	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E21B04 Sheet 1 of 1 By: MR	
Driller: Drill Ri	W. Ro	wland hprobe	Emingto			Drilling Method: Ge Drive Hammer Weig	Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 29, 2000 Boring Completion Dept Ground Surface Elevation Boring Diameter:		4 ft. ft. 2 in.
Depth (ft.)		Soil Sanple	Blows	Rec. (inches)	PID (ppm)		Lithology [Description	
0-4	1	GP		37	0.0	0-29": Brown to black	SILT, trace fine to r	nedium SAND,	
						1	coarse GRAVEL, de		
						29"-37": Orange-brow			
						1	coarse GRAVEL, o		
						1			
						1			
]			
						-			
]								
									;
	olit Spoo		= Hand A HP = Hy			probe	Notes:		

A DIVIS	ION OF W		Dvirland Barti CONSULTI COSULICH	iluco	NEERS	Project No.: 1852 Boring No.: E21B05 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment	
Driller Drill R	: W. Ro t ig: Eart	wland hprobe	Emingtonber 29, 2			Drilling Method: Geoprobe Ground Surface Elevation:	4 ft. - ft. 2 in.
		Soil S					
Depth (ft.)	San No.	nple Type	Blows (Per 6")	Rec. (inches)	PID (ppm)		
0-4	1	GP	-	30	0.0	0-5": Orange-brown, fine to coarse SAND, trace SILT,	
						some fine to coarse GRAVEL, dry, no odor	
						5"-27": Brown to black SILT, little fine to medium GRAVEL,	
						trace fine to medium SAND, dry, no odor	
				ļ		27"-30": Orange-brown, fine to coarse SAND, trace SILT,	
						some fine to coarse GRAVEL, dry, no odor	
						4	
ļ							
<u> </u>							
						·	
						_	
						_	
						4	
				-		_	
						_	
						_	
						-	
						-	
		_				4	
						4	
						4	
						4	
						4	
						4	
						4	
						4	
					:	4	
						4	
						4	
Sa1	T\					Nets:	
	olit Spoo		= Hand A			Notes:	
CC = C	oncrete	Core	HP = Hy	/dropuncl	1		

1852 Bethpage, NY Boring No.: E22B02

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Date Started: September 25, 2000

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 4 ft. - ft. **Ground Surface Elevation: Boring Diameter:**

Date Completed: September 25, 2000

2 in.

	Soil Sample					Date Completed. Ochicinaci 20, 2000
D45					DID	Lithology Description
Depth					PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-4	11	GP		40	0.2	0-27": Gray-black SILT and fine to medium SAND, dry, no odor
						27"-40": Orange-brown, fine to medium SAND, trace SILT
						trace fine to medium GRAVEL, dry, no odor
						{
				-		
					<u>.</u>	
				-		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 2" thick broken concrete at grade

Driller: W. Rowland Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Started: September 25, 2000 Soil Sample Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 25, 2000 Boil Sample	A DIVISE	ON OF W		Dvirk and Barti consulti cosulich	LUCC NG ENGIN	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E22B03 Sheet 1 of 1 By: MR sessment	
Depth Sample Blows Rec. PID Lithology Description (ft.) No. Type (Per 6") (inches) (ppm) 0-4 1 GP - 24 0.1 0-16": Brown SILT, little fine to medium SAND, trace fine GRAVEL, dry, no odors 16"-23": Brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odors 23"-24": Orange-brown, fine to coarse SAND, trace SILT,	Driller: Drill Ri	: W. Ro	wland nprobe Septerr	nber 25, 2			Drilling Method: Geo Drive Hammer Weig	probe ht: N/A	Ground Surface Elevation:	4 ft. ft. 2 in
0-4 1 GP - 24 0.1 0-16": Brown SILT, little fine to medium SAND, trace fine GRAVEL, dry, no odors 16"-23": Brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odors 23"-24": Orange-brown, fine to coarse SAND, trace SILT,	Depth		nple	Blows				Lithology i	Description	
trace fine GRAVEL, dry, no odors 16"-23": Brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odors 23"-24": Orange-brown, fine to coarse SAND, trace SILT,							0-16": Brown Sil T. littl	e fine to medium S	AND	
16"-23": Brown SILT and fine to medium SAND, trace fine to medium GRAVEL, dry, no odors 23"-24": Orange-brown, fine to coarse SAND, trace SILT,		•	<u> </u>			0.1				
trace fine to medium GRAVEL, dry, no odors 23*-24*: Orange-brown, fine to coarse SAND, trace SILT,							1			
23"-24": Orange-brown, fine to coarse SAND, trace SILT,							1			
							1		•	
trace fine to medium GRAVEL, dry, no odors							1			
							trace fine to	medium GRAVEL	, dry, no odors	
		Type:	n HA:	= Hand A	uger Gr	P = Geor	probe	Notes: No con	ncrete at grade	

A DIVISI	ION OF W		CONSULTI	ka ilucc ING ENGII I ASSOCIAT	NEERS	Project No.: 1852 Boring No.: E22B04 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller Drill R	: W. Ro ig: Eartl tarted:	owland hprobe Septem	Emingto			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: September 25, 2000 Boring Completion Depth: 4 ft Ground Surface Elevation: ft Boring Diameter: 2 in
Depth (ft.)		Soil Sanple	Blows (Per 6")	Rec.	PID (ppm)	Lithology Description
0-4		GP		38	0.8	0-8": Brown, SILT and CLAY, moderately plastic, trace fine to medium SAND, moist, no odors 8"-26": Brown, SILT and fine to medium SAND, trace fine GRAVEL, dry, very slight petroleum odor 26"-38": Brown-tan, fine to medium SAND, trace SILT,dry, no odor
	olit Spoo			Auger GF		Notes:

A DIVISI	ON OF W		ONSULTI	(a lucc ng engin associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E25B01 Sheet 1 of 1 By: MR sessment	
Driller Drill R	W. Ro	wland hprobe	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Welg Date Completed: Oc	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	9 ft. ft. 2 in.
		Soil Sa	mple						·_
Depth (ft.)	San No.	nple Type	(Per 6")	Rec. (inches)	PID (ppm)		Lithology	Description	
0-4	1	GP		44	0.0	0-2": Brown, fine to m	edium SAND trace	SUT	
0-4	<u>'</u>	Gr			0.0	1	edum GRAVEL, dr		
						1		fine SAND, dry, no odor	
						1			
						8"-44": Orange-brown			
4.5	2	65		48	0.0	1	coarse GRAVEL, di		
4-8		GP		46	0.0	0-8": Orange-brown, 1			
						1	arse GRAVEL, dry,	TIO OCIOT	
						8"-10": Possible cond	•	AND trace Of T	
						10"-22": Orange-brow			
						1	coarse GRAVEL, d	-	
						22"-30": Gray SILT ar			
						1	trace fine SAND, dr	•	
						30"-48": Orange-brow			
			-				coarse GRAVEL, d		
8-9	3	GP		8	0.0	0-8": Tan to orange, fi			
						inde line to co	arse GRAVEL, dry,	TIO OCIO	
					_	1			
			-						
	-	-							
						1			
Sample	Type						Notes: 6" thic	k concrete at grade	
		n HA	= Hand A	luger Gl	P = Geo	probe		22 510 011 31.000	

1852 Bethpage, NY Boring No.: E27B01 Sheet 1 of 1

Project Name: Plant 1 -

ant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Date Started: September 28, 2000

Driller: W. Rowland **Drill Rig:** Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Boring Completion Depth: 5 ft. Ground Surface Elevation: -- ft. Boring Diameter: 2 in.

Date Completed: September 28, 2000

			10er 28, 2			Date Completed: September 28, 2000
	Soil Sample			r		
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		20	0.0	0-19": Brown SILT, little to some fine to medium SAND,
	ļ					trace fine GRAVEL, dry, no odor
	<u> </u>					19"-20": Brown, fine to coarse SAND, trace SILT,
						some fine to medium GRAVEL, dry, no odor
3-5	2	GP		20	0.0	0-20": Brown, fine to coarse SAND, trace SILT,
						some fine to medium GRAVEL, dry, no odor
					-	
- 1						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

			Ovirl	ка	"	Project No.: 1852 Boring No.: E30B01		
C	NON OF W	ン(and Barti CONSULTI COSULICH	NG ENGII	NEERS	Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment		
Drillin Driller Drill R	g Contr : W. Ro ig: Eart	actor: wland	Emingto	n	<u> </u>	Geologist: Mark Rauber Boring Completion Depth: 17 Drilling Method: Geoprobe Ground Surface Elevation: Drive Hammer Weight: N/A Boring Diameter: 2 Date Completed: October 18, 2000		
		Soil Sa						
Depth	San	nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)			
13-15	1	GP		24	0.0	0-24": Brown to tan SAND with GRAVEL, 1' layer of dark		
			L			stained soil approx. 14' below grade		
15-17	2	GP		24	0.0	0-18": Brown to tan to orange SAND and GRAVEL, moist, no odor		
			<u> </u>					
			<u> </u>					
					<u> </u>			
<u> </u>								
				-				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted to target beneath sump of former Pump Station "A".

1852 Bethpage, NY Boring No.: E32B01

Project Name:

Plant 1 -

Sheet 1 of By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Keith Robins **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 10 ft. **Ground Surface Elevation:** - ft. **Boring Diameter:**

2	in.	

Date S	Date Started: October 16, 2000					Date Completed: October 16, 2000
		Soil S				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
6-8	1	GP		24		0-18": Gray compacted SILT, damp
						18"-24": Brown medium SAND with fine GRAVEL, very moist
8-10	2	GP		20		0-20": Brown-orange coarse to medium SAND, some fine to medium GRAVEL
						trace fine SAND, moist
					-	
						
	-					
	-					
- 1		-				
		l				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring conducted adjacent to catch basin. Notes: Bottom of catch basin at 6' below grade.

Soil Sample

Blows

No. Type (Per 6") (inches)

Rec.

PID

(ppm)

Project No.: **Project Location:**

Project Name:

1852 Bethpage, NY Boring No.: E32B02

Sheet 1 of 1

Plant 1 -

By: MR Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Depth

(ft.)

Date Started: October 16, 2000

Sample

Geologist: Keith Robins **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Date Completed: October 16, 2000

10 ft. **Boring Completion Depth: Ground Surface Elevation:** - ft. **Boring Diameter:** 2 in.

Lithology Description
0-18*: Brown-tan coarse to medium SAND, well sorted,
some fine to medium GRAVEL, dry-damp
0-20*: Brown-light grange well sorted fine to coarse SAND, little GRAVEL damp

(11.)	140.	1,750	(1.61.0.)	(#101100)	(PP.11)	
6-8	1	GP	_	20	0.0	0-18": Brown-tan coarse to medium SAND, well sorted,
						some fine to medium GRAVEL, dry-damp
8-10	2	GP		20	0.0	0-20": Brown-light orange well sorted fine to coarse SAND, little GRAVEL, damp
-						
	<u> </u>	ļ				
-						
 						
					-	
<u> </u>						
			_			
			-			
			-			
1	1	l	1			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted adjacent to catch basin. Bottom of catch basin at 4'-6" below grade.

1852 Bethpage, NY Boring No.: E33B01

Boring Diameter:

Project Name:

Plant 1 -

Sheet 1 of 1

By: MR Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth: Ground Surface Elevation:**

5 ft. -- ft. 2 in.

Date Started: September 28, 2000

Date Completed: September 28, 2000

Date S	te Started: September 28, 2000					Date Completed: September 28, 2000
	į	Soil S	ample			
Depth	Sai	mple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
1-3	1	GP		18	0.0	0-18": Brown, fine to medium SAND, trace SILT,
						trace fine GRAVEL, dry, no odor
3-5	2	GP		20	0.0	0-14": Brown to orange-brown, fine to medium SAND, trace SILT,
						trace fine GRAVEL, dry, no odor
						14"-20": Brown SILT and CLASY, tracefine to medium SAND, moist, no odor
	ļ	ļ				
						
			-			
				 		
-						
		[

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 6" thick concrete at grade

1852 Bethpage, NY Boring No.: E34B02

Project Name:

Plant 1 -

Sheet 1 of 1 By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Date Completed: September 25, 2000

Boring Completion Depth: 5 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Date Started: September 25, 2000

		Soil Sa	ample			
Depth	Depth Sample		Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-5	1	GP		48	0.1	0-21": Brown, fine to medium SAND, some SILT,
						trace fine to medium GRAVEL, dry, no odors
						21"-48": Orange-brown, fine to coarse SAND, trace SILT,
						trace fine to medium GRAVEL, dry, no odors

1-0	1	GP	 48	0.1	10-21": Brown, tine to medium SAND, some SIL1,
					trace fine to medium GRAVEL, dry, no odors
					21"-48": Orange-brown, fine to coarse SAND, trace SILT,
					trace fine to medium GRAVEL, dry, no odors
			<u> </u>		
	_				

+			 		
			 		•
ample					Notes: 4" thick concrete of grade

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

4" thick concrete at grade Notes:

A DIVISI	ON OF W		Dvirk and Barti onsulti cosulich	LUCC	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E34B03 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro	wland hprobe	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: So	eoprobe ght: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth (ft.)	Soil Sample Sample Blows Rec.				PID (ppm)		Lithology i	Description	
0-4	1	GP		48	0.0	0-2": Asphalt			
						2"-18": Brown to brow	vn-black SILT and fir	ne to medium SAND, dry, no odors	
						18"-48": Orange-brow	vn, fine to coarse SA	ND, trace SILT,	
						little fine to	medium GRAVEL,	dry, no odors	
									1
		L							
			_						
	_								
					_				
		<u> </u>							
									
		<u> </u>							
Sample	Type					<u> </u>	Notes: No co	ncrete at grade, only 2" thick aspha	, -
SS = Sp	olit Spoc		= Hand A HP = Hy			probe	140.60	no de at grade, only 2 mich aspila	•

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: E34B04 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 4 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Date Started: September 25, 2000						Date Completed: September 25, 2000
	Soil Sample					
Depth		Sample		Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-4	1	GP		48	0.2	0-2": Asphalt
						2"-22": Brown SILT and fine to medium SAND,
						trace fine to medium GRAVEL, dry, no odors
						22"-48": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to medium GRAVEL, dry, no odors
	<u> </u>					
						
	 					
-						
-						
			-			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: No concrete at grade, only 2" thick asphalt

A DIVISI	ON OF W		ONSULTI	(a lucc ng engin associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E35B01 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro	wland hprobe	Emingto r 10, 200			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: Od	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth		Soil Sa nple	Blows	Rec.	PID		Lithology	Description	
(ft.)	No.	Туре	(Per 6")		(ppm)	0.001 D		NI T Asses As Palls	
0-4	0-4 1 GP - 26 0.1					0-26": Brown, fine to	coarse SAND and S e GRAVEL, dry, no		
						ille to coarse	B GRAVEL, dry, no	Odd .	
						İ			
	-				L				
:									
	-			_					
									Ì
]					
							I		
Sample SS = Sp		n HA:	= Hand A	uger GF	P = Geor	orobe	Notes:		
				dropunch					

	N OF WI	c	ONSULTI	IUCC NG ENGII I ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Asse	Boring No.: E35B02 Sheet 1 of 1 By: MR essment
Driller: Drill Rig	W. Ro Earth	wland probe	Emingto r 10, 200			Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weig Date Completed: Oc	probe ht: N/A	Boring Completion Depth: 4 Ground Surface Elevation: Boring Diameter: 2
Depth (ft.)	Sam No.	Soil Sa ple Type	Blows	Rec.	PID (ppm)		Lithology D	escription
0-4	1	GP		39	0.1	0-35": Orange-brown,	fine to coarse SAND	and fine to medium
						GRAVEL, trad	ce SILT, dry, no odo	r
						35"-39": Brown, SILT a	and fine to medium S	SAND, dry, no odor
<u>. </u>								
_								
<u> </u>		;						
				Ü				
					_			
	 							
					~			
			-		-			
	_					-		
					-			
-								
	$\neg \uparrow$							
							•	
ample T				uger GF	-		Notes:	

A DIVISI	ON OF W		ONSULTI	(a lucc NG ENGIN ASSOCIATI	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E36B01 Sheet 1 of 1 By: MR	
Driller Drill R	: W. Ro	wland hprobe Septem	Emingto			Geologist: Ken Wer Drilling Method: Ge Drive Hammer Weig Date Completed: Se	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	5 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sample Sample Blows Rec. No. Type (Per 6") (inches)			PID (ppm)		Lithology [Description	
1-5	1	GP		39	0.0	0-39": Brown to orang	ge-brown, fine to coa	urse SAND, trace to little SILT,	
						1	fine to medium GRA		
]			
]			
				_					
									ĺ
									
					 .				
Sample	Type:						Notes: 4" thic	k concrete at grade	
SS = S	olit Spoc			luger Gl		probe			
CC = C	oncret <u>e</u>	Core	HP = Hy	/dropuncl	11		.1		

CONSULTING ENGINEERS
A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.

Project No.: **Project Location:** 1852 Bethpage, NY

Phase II Site Assessment

Boring No.: E36B02

Sheet 1 of 1

Project Name:

Plant 1 -

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 5 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

Date S	Started:	Septen	nber 25, 2	2000		Date Completed: September 25, 2000
		Soil S				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Type	(Per 6")	(inches)	(ppm)	
1-5	1	GP		48	0.0	0-20": Brown, fine to coarse SAND, trace SILT, trace
		ļ				fine to medium GRAVEL, dry, no odors
						20"-31": Brown SILT, trace fine to medium SAND, dry, no odor
						31"-48": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor

-						
ı		I	i	l	i	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 4" thick concrete at grade

A DIVIS	ION OF W		ONSULTI	CA LUCC NG ENGII ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: E37B01 Sheet 1 of 1 By: MR	
Driller Drill R	: W. Ro	owland hprobe Septen	Emingto			Geologist: Ken Wenz Drilling Method: Geo Drive Hammer Weig Date Completed: Se	probe ht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. ft. 2 in.
Depth (ft.)	San No.	Soil Sample Sample Blows Rec. No. Type (Per 6") (inches)			PID (ppm)		Description		
0-4						0-48": Brown SILT and	fine to medium SA	AND,	
						trace fine to	coarse GRAVEL, di	y, no odor	
	ļ					-			
	<u> </u>	 -							
	 	 							
<u> </u>	<u> </u>	<u> </u>							
									
]			
	<u> </u>								
ļ	<u> </u>								
	ļ 								
									l
Sam-1	Turner	<u> </u>					Notes: 2" thic	k apphalt at grade	
	olit Spoo			uger G		probe	NOTES: 2 UNC	k asphalt at grade	
				/dropunci					

Project No.: **Project Location: Project Name:**

1852 Bethpage, NY Boring No.: E37B02 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: September 29, 2000

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A

Boring Completion Depth: 4 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

Date Completed: September 29, 2000

Date S	started:		nber 29, 2	2000		Date Completed: September 29, 2000
		Soil Sample				
Depth		nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
0-4	1	GP		38	0.0	0-20": Brown SILT and fine to medium SAND, trace fine GRAVEL, dry, no odor
 						20"-38": Orange-brown, fine to coarse SAND,
						trace SILT, little fine GRAVEL, dry, no odor
	<u>-</u>					
						
	<u> </u>					
<u> </u>						
					-	
		·				

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 2" thick asphalt at grade

Dvirka and Bartilucci CONSULTING ENGINEERS A DIVISION OF WILLIAM F. COSULICH ASSOCIATES, P.C.	Project No.: 1852 Project Location: Bethpage, N Project Name: Plant 1 - Phase II Site	Boring No.: E38B01 Y Sheet 1 of 1 By: MR	
Drilling Contractor: Emington Driller: W. Rowland Drill Rig: Earthprobe Date Started: October 12, 2000	Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000 Boring Completion Dept Ground Surface Elevation Boring Diameter:		
Depth Sample Blows Rec. PID		ogy Description	

22 ft. - ft. 2 in.

Date 3	Soil Sample				T Date Completed. October 12, 2000		
Donah		Soil Sample pple Blows Rec.			PID	Lithology Description	
Depth (ft.)	No.	Type	(Per 6")	(inches)	(ppm)	Lithology Description	
8-12	1	GP	-	48	0.0	0-8": Brown, SILT and fine to medium SAND, dry, no odor	
5-12	•			70	0.0	8"-11": Gray, SILT and fine-medium SAND, occ. asphalt pieces, dry, no odor	
						11"-39": Orange-brown, SILT and fine to medium SAND,	
						1	
						occasional asphalt pieces, dry, no odor	
						39"-48": Orange-brown, fine to coarse SAND and fine to coarse	
						GRAVEL, trace SILT, dry, no odor	
12-16	2	GP		46	0.0	0-46": Orange-brown, fine to coarse SAND and fine to coarse	
						GRAVEL, trace SILT, dry, no odor	
16-18	4	GP		21	0.0	0-21": Orange-brown, fine to coarse SAND and fine to coarse	
						GRAVEL, trace SILT, dry, no odor	
18-20	5	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND and fine to coarse	
						GRAVEL, trace SILT, dry, no odor	
20-22	6	GP	-	24	0.0	0-24": Orange-brown, fine to coarse SAND and fine to coarse	
						GRAVEL, trace SILT, dry, no odor	
					<u>-</u> -		
\longrightarrow							
				\vdash			

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Project Name:

Project No.: **Project Location:** 1852 Bethpage, NY Boring No.: E39B01 Sheet 1 of 1

Plant 1 -

By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 22 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

	iig: Eart Started:		r 12, 200	0		Date Completed: October 12, 2000
		Soil S				
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
8-12	11	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
10-12	2	GP		20	0.0	0-20": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
12-14	3	GP		21	0.0	0-21": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
14-16	4	GP		20	0.0	0-20": Orange-brown, fine to coarse SAND, trace SILT,
	<u> </u>					little fine to coarse GRAVEL, dry, no odor
16-18	5	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,
	<u> </u>					little fine to coarse GRAVEL, dry, no odor
18-20	6	GP			0.0	Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
20-22	7	GP		20	0.0	0-20": Orange-brown, fine to coarse SAND, trace SILT,
						little fine to coarse GRAVEL, dry, no odor
					-	
						,
					•	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: 3" thick concrete at grade

A DIVISI	ON OF WI		Dvirk and Barti cosulch	IUCC	NEERS	Project No.: 1852 Boring No.: E40B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: MR Phase II Site Assessment
Driller: Drill R	: W. Ro ig: Eartl	wland nprobe	Emingto r 12, 200			Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000 Boring Completion Depth: 20 from Surface Elevation: from Surface Elevation: 2 in Surface Elevation: from Surface Elevation:
Depth (ft.)	San No.	Soil Sa ple Type	Blows	Rec. (inches)	PID (ppm)	Lithology Description
8-12	1	GP		46	0.0	0-18": Gray-brown, SILT and CLAY, trace fine SAND, dry, no odor
						18"-46": Orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
12-16	2	GP		40	0.0	0-40": Tan to orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
16-20	3	GP		41	0.0	0-41": Tan to orange-brown, fine to coarse SAND, trace SILT,
						some fine to coarse GRAVEL, dry, no odor
	lit Spoo		= Hand A HP = Hy			Notes:

Project Name:

1852 Bethpage, NY

some fine to coarse GRAVEL, dry, no odor

Phase II Site Assessment

Boring No.: E41B01 Sheet 1 of 1

Plant 1 -

By: MR

Drilling Contractor: Emington Driller: W. Rowland

Drill Rig: Earthprobe

Date Started: October 12, 2000

Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000

Boring Completion Depth: 22 ft. **Ground Surface Elevation:** -- ft. 2 in. **Boring Diameter:**

		Soil S	ample					
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description		
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)			
8-12	1	GP		48	0.0	0-6": Orange-brown, fine to medium SAND, some SILT,		
						trace fine GRAVEL, dry, no odor		
						6"-39": Gray-brown, SILT and CLAY, some fine to medium		
						SAND, trace fine GRAVEL, dry, no odor		
						39"-48": Orange-brown, fine to coarse SAND, trace SILT,		
						some fine to coarse GRAVEL, dry, no odor		
12-14	2	GP		21	0.0	0-21": Orange-brown, fine to coarse SAND, trace SILT,		
						some fine to coarse GRAVEL, dry, no odor		
14-16	3	GP		18	0.0	0-18": Orange-brown, fine to coarse SAND, trace SILT,		
						some fine to coarse GRAVEL, dry, no odor		
16-18	4	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,		
						some fine to coarse GRAVEL, dry, no odor		
18-20	5	GP		24	0.0	0-24": Orange-brown, fine to coarse SAND, trace SILT,		
						some fine to coarse GRAVEL, dry, no odor		
20-22	6	GP	-	23	0.0	0-23": Orange-brown, fine to coarse SAND, trace SILT,		
						1		

			 	
			,	
	<u> </u>			
-		 	 	
ample	Type			Notes: 5" thick concrete at grade

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

1852 Bethpage, NY Boring No.: E42B01 Sheet 1 of 1

Project Name:

Plant 1 -

Phase II Site Assessment

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe

Date Started: October 12, 2000

Geologist: Ken Wenz **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000

7 ft. **Boring Completion Depth:** ft. **Ground Surface Elevation:**

2 in. **Boring Diameter:**

Date S	tarted:		r 12, 200	<u> </u>		Date Completed: October 12, 2000
		Soil S				
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
3-7	1	GP		39		0-21": Gray to brown, SILT and CLAY, trace to little
<u> </u>		<u> </u>				fine to medium SAND, dry, no odor
						21"-39": Orange-brown, fine to coarse SAND, trace SILT,
<u> </u>	<u> </u>					little fine to coarse GRAVEL, dry, no odor
		İ				
<u> </u>	 					
<u> </u>	<u> </u>	<u> </u>				
		<u> </u>				
	<u> </u>					
	<u> </u>					
		<u> </u>				
						
ļ	<u> </u>	 				
		<u> </u>				
-		\vdash				
<u> </u>		<u> </u>				
L		<u> </u>				
			-			
 _		<u> </u>			<u> </u>	

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

As per NGC, boring conducted adjacent to an Notes: active 3' by 3' by 2'-10" deep condensate pit. 6" thick concrete at grade at boring location

C A DIVIS	SION OF W		CONSULTI	ka ilucc ing engli i associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E43B01 Sheet 1 of 1 By: MR sessment				
Driller: Drill R	: W. Ro R ig: Eart	owland hprobe	Emingto er 12, 200			Drive Hammer Weigh	Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: October 12, 2000 Boring Completion Depth: Ground Surface Elevation: Boring Diameter:					
Depth (ft.)	San No.	Soil Sample	Blows		PID (ppm)		Lithology Description					
6-10	1	GP		34	0.0	0-3": Brown, SILT, little	fine to medium S	AND, moist, no odor				
						3"-7": Asphalt and bricl	k pieces, dry, no o	dor				
						7"-34": Tan to orange-l	orown, fine to coar	se SAND, trace SILT,				
						little fine to coarse GRAVEL, dry, no odor						
10-14	2	GP		40	0.0	0-40": Tan to orange-brown, fine to coarse SAND, trace SILT,						
	<u> </u>		<u> </u>	<u> </u>		little fine to coarse GRAVEL, dry, no odor 0-22": Tan to orange-brown, fine to coarse SAND, trace SILT,						
14-16	3	GP	<u> </u>	22	0.0	0-22": Tan to orange-b	rown, fine to coars	se SAND, trace SILT,				
	├─	ļ		 _	—	little fine to o	coarse GRAVEL, d	fry, no odor				
	 	 				<u> </u>						
	 		 	ļ	<u> </u>	-						
					 	-						
			 	 		1						
	 	 	 	ļ!	 	1						
					<u> </u>							
						1						
						1						
						1						
						1						
]						
								1				
												
	<u> </u>				ļ							
			 		<u> </u>							
Ser							Notes:					
Sample SS = Sr		on HA	= Hand /	Auger Gl	P = Geo	probe	Notes:					
				vdropunci		p. 0.00						

A DIVIS	ION OF W		ONSULTI	Ka lucc ng engin associati	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: E44B01 Sheet 1 of 1 By: MR sessment	
Driller Drill R	: W. Ro	owland hprobe	Emingto r 11, 200			Geologist: Ken Wen Drilling Method: Ge Drive Hammer Weig Date Completed: Oc	oprobe jht: N/A	Boring Completion Depth: Ground Surface Elevation: Boring Diameter:	4 ft. – ft. 2 in.
Depth (ft.)	San No.	Soil Sanple	Blows	Rec. (inches)	PID (ppm)		Lithology	Description	
0-4	1_1_	GP		40	0.0	0-40": Brown to orang	je-brown SILT, som	ne fine to coarse SAND,	
						trace fine to	coarse GRAVEL, de	ry, no odor	
]			
						1			
						1			
-									
Sample			·				Notes:		
SS = S	plit Spoo			luger Gl		probe			
CC = C	oncrete	Core	HP = Hy	/dropunct	1		<u> </u>		

1852 Bethpage, NY Boring No.: E45B01 Sheet 1 of 1

Project Name: Plant 1 - By: MR

Phase II Site Assessment

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Geologist: Ken Wenz Drilling Method: Geoprobe Drive Hammer Weight: N/A **Boring Completion Depth:** 8 ft. **Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

	tarted:		r 11, 200	0		Date Completed: October 11, 2000
		Soil S				
Depth	Sar	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре		(inches)		
6-8	1	GP		24	0.0	0-24": Brown, SILT and fine to coarse SAND, wet,
						little fine to coarse GRAVEL, no odor
			· · · · · · · · · · · · · · · · · · ·			
		ļ	ļ			
		ļ				
					-	
			_			
	-					
				,		

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Boring to target area beneath former UST Notes: Refusal at approx. 7.5'-8' below grade.

A DIVIS	LION OF W		ONSULTI	CA LUCC NG ENGII ASSOCIAT	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site Ass	Boring No.: D12B01 Sheet 1 of 1 By: PM sessment				
Driller Drill R	: W. Ro Rig: Eart	wland hprobe	Emingto y 2, 2001			Drilling Method: Ge Drive Hammer Weig	Geologist: John Schafer Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: January 2, 2001 Boring Completion Depth: Ground Surface Elevation: Boring Diameter:					
Depth (ft.)	San No.	Soil Sanple	Blows	Rec.	PID (ppm)	Lithology Description						
8-12	1	GP		0	_	See notes below						
					-							
		-										
		-	-									
					:							

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe

CC = Concrete Core HP = Hydropunch

Notes: Boring conducted within vault which is open to 8' below grade. Vault has solid bottom (metal).

1852 Bethpage, NY

Phase II Site Assessment

Boring No.: D14B01 Sheet 1 of 1

Project Name: Plant 1 -

By: MR

Drilling Contractor: Emington

Driller: W. Rowland Drill Rig: Earthprobe Date Started: January 8, 2001

Geologist: Mark Rauber **Drilling Method:** Geoprobe Drive Hammer Weight: N/A Date Completed: January 8, 2001

11 ft. **Boring Completion Depth: Ground Surface Elevation:** -- ft. **Boring Diameter:** 2 in.

		Soil Sa	ample			
Depth	San	nple	Blows	Rec.	PID	Lithology Description
(ft.)	No.	Туре	(Per 6")	(inches)	(ppm)	
5-7	1	GP		10	0.0	0-10": Dark brown coarse SAND and GRAVEL, moist, no odor
			<u></u>		L	
7-9	-9 2 GP -			12	0.0	0-12": Dark brown coarse SAND and GRAVEL, moist, no odor
			ļ!			
9-11	3	GP		18	0.0	0-18": Light brown to tan, fine to medium SAND, trace GRAVEL, moist, no odor
					i	

					- 0.0	10 12 124111 254111 25411 25411 25411 25411 25411 25411
9-11	3	GP		18	0.0	0-18": Light brown to tan, fine to medium SAND, trace GRAVEL, moist,
			<u> </u>		<u> </u>	
			 	-	<u> </u>	
\dashv					<u> </u>	
_				ļ		
	:					
1						
1						
				<u> </u>		
] 		
_				-		
ļ				<u> </u>		
4						
l						
┪						
7						
+						
+						
ł						
4						

Sample Type:

SS = Split Spoon HA = Hand Auger GP = Geoprobe CC = Concrete Core HP = Hydropunch

Boring conducted immediately adjacent to an Notes: active 5' deep pit

Driller: W. Rowland Drilling Method: Geoprobe Ground Surface Elevation: -	A DIVISION	ON OF W		ONSULTI	Ka lucc ng engli associat	NEERS	Project No.: 1852 Boring No.: D15B01 Project Location: Bethpage, NY Sheet 1 of 1 Project Name: Plant 1 - By: CG Phase II Site Assessment					
Depth (ft.) No. Type (Per 6") (inches) (ppm) 0-4 1 GP 0.2 0-2": Black LOAM, organics 2-4": Brown, coarse SAND, and pebbles throughout 4-8 2 GP 3.0 Mix of coarse SAND, and CLAY, lots of quartz rocks mixed in 8-12 3 GP 2.5 Brown, rock and coarse SAND, some more clay from 8-10" 12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16") 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock	Driller: Drill Ri	W. Ro	wland hprobe	_	n		Drilling Method: GeoprobeGround Surface Elevation:– ftDrive Hammer Weight: N/ABoring Diameter:2 in					
0-4 1 GP 0.2 0-2': Black LOAM, organics 2-4': Brown, coarse SAND, and pebbles throughout 4-8 2 GP 3.0 Mix of coarse SAND, and CLAY, lots of quartz rocks mixed in 8-12 3 GP 2.5 Brown, rock and coarse SAND, some more clay from 8-10' 12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16') 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock			nple	Blows								
2-4': Brown, coarse SAND, and pebbles throughout 4-8 2 GP 3.0 Mix of coarse SAND, and CLAY, lots of quartz rocks mixed in 8-12 3 GP 2.5 Brown, rock and coarse SAND, some more clay from 8-10' 12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16') 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock					(inches)							
8-12 3 GP 2.5 Brown, rock and coarse SAND, some more clay from 8-10' 12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16') 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock	0-4	1	GP		-	0.2	¬					
12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16') 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock	4-8	2	GP			3.0						
12-16 4 GP 0.5 Same as above, with lots of rock and brown staining (14-16') 16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock												
16-20 5 GP 9.0 Brown, med-coarse SAND, pea gravel and rock	8-12	3	GP		_	2.5	Brown, rock and coarse SAND, some more clay from 8-10'					
	12-16	4	GP			0.5	Same as above, with lots of rock and brown staining (14-16')					
20-21 6 GP 6.0 Fine SAND, no rocks	16-20	5	GP			9.0	Brown, med-coarse SAND, pea gravel and rock					
	20-21	6	GP			6.0	Fine SAND, no rocks					
Sample Type: SS = Split Spoon HA = Hand Auger GP = Geoprobe							1					

A DIVISI	ION OF W		CONSULTI	ka ilucc ing engli i associat	NEERS	Project No.: Project Location: Project Name:	1852 Bethpage, NY Plant 1 - Phase II Site As	Boring No.: D17B01 Sheet 1 of 1 By: CG sessment			
Driller Drill R	g Contr : W. Ro lig: Eartl Started:	owland hprobe		n		Drive Hammer Weigl	Geologist: Al Albano Drilling Method: Geoprobe Drive Hammer Weight: N/A Date Completed: April 10, 2001 Boring Completion Depth: 8 Ground Surface Elevation: Boring Diameter: 2				
Depth		Soil Sa		Rec.	PID			Description			
(ft.)	No.	Type	(Per 6")	1	(ppm)						
0-2	1	GP			10.0	"Loose SAND", w/gravel and small rocks, no odor, med to coarse					
2-4	2	GP			1.0	Same as above, slightly more orange					
4-6	3	GP			1.0	Fine SAND, orange co	lor, seems clean				
6-8	4	GP			1.0	Fine SAND, orange co	lor, seems clean				
						-	,				
						-					
	plit Spoo			Auger G		probe	Notes:				

SITE	Northrop	Grumman C	Corp Plant 1		JOB I	NO. <u>18</u>	52	WELL N	0	MW-1
TOTAL DE	PTH .	57'	SURFACE	ELEV.	0		TOP RIS	SER ELE	v	
WATERLE	EVELS (D	EPTH, DAT	E, TIME)	49.4', 10	0/9/00	!	DATE INSTA	LED	10/9/00)
RISER SCREEN PROT CSC	DIA DIA B DIA	2" 2"	MATERIAL MATERIAL MATERIAL	PVC PVC		LENGTH LENGTH LENGTH	41' 15'	SLOT	SIZE	.010"

SITE	Northrop	Grumman C	Corp Plant 1		JOB I	NO. <u>18</u>	352	WELL NO.		MW-2
TOTAL DEF	PTH	58'	SURFACE	ELEV.	0		TOP RIS	SER ELE	v	
WATERLE	VELS (D	EPTH, DAT	E, TIME)	46', 9/26	6/00		DATE INSTA	LLED	9/26/00)
RISER SCREEN	DIA DIA	2"	MATERIAL MATERIAL	PVC PVC		LENGTH LENGTH	41' 15'	SLOT	SIZE	.010"

Northrop Grumman Corp. - Plant 1 JOB NO. 1852 WELL NO. SITE MW-3 61' SURFACE ELEV. 0 TOP RISER ELEV. TOTAL DEPTH WATER LEVELS (DEPTH, DATE, TIME) 45', 9/18/00 DATE INSTALLED 9/18/00 DIA MATERIAL PVC LENGTH 41' RISER LENGTH 15 DIA MATERIAL SLOT SIZE SCREEN .010" PROTICSG DIA **MATERIAL** LENGTH --

SITE N	orthrop	Grumman C	Corp Plant 1		JOB NO. 18	852	WELL NO.	MW-4
TOTAL DEP	гн _	56.5'	SURFACE	ELEV. 0		TOP R	SER ELEV.	
WATER LEV	ELS (D	EPTH, DAT	E, TIME)	46.4', 9/19/	00	DATE INSTA	LLED _9/19)/00
RISER SCREEN PROT CSG	DIA DIA DIA	2" 2"	MATERIAL MATERIAL MATERIAL	PVC PVC	LENGTH LENGTH LENGTH	15'	SLOT SIZE	.010"

APPENDIX C

LABORATORY DATA

				RURA METALS					
Sample Location	Former Pa	int Spray Room	Former Point	Storage Room	Former Storage Building Former Dry Wells		Former Dry Well Area		
						74		T = :: = :: : : : : : : : : : : : : : :	1
Sample ID	12 801 1-3	I2 B01 3-5	I3 B01 1-3	I3 B01 3-5	104 B01 8-10	105 B01 8-10	105 B01 20-22	E43 B02/105 B02 6-8	Comparison Value
Sample Depth (ft)	1-3	3-5	1-3	3-5	8-10	8-10	20-22	6-8	for Areas
Sampling Date	09/19/00	09/19/00	09/19/00	09/19/00	10/17/00	10/02/00	10/02/00	10/12/00	of Concern
Matrix	s	s	s	S	s	s	s	s	
Dilution Factor	1.0	1.0	10	1.0	10	10	1.0	10	1
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	16	0.66	B 37	19	056 U	41	2	79	20
Barium	184	B 88	B 31	46 E	4.1 B	19 B	45 E	3 49 E	5500
Cadmlum	0 04	ປ 0.04 ເ	u[0.05 ∪	004 L	02 U	(005 ป	0.04 L	J 023 L	78
Chromium	6.9	2.3	14 2	4.5	2.6	24.6	53	53	390
Lead	59 4	1	8.5	1.4	22	77 9	47	5	400
Mercury	0.02	B 005	0 04	0 02 E	0.08	0 13	0.02 L	0.05	23
Selenium	0 24	U 024 I	U <mark> 025 ∪</mark>	023 L	039 U	0 91	0.24 t	J∮ 047 L	390
Silver	0 07	uł 0.07 I	ul 007 ∪	006 L	ll 016 U	1 035 BN	0,15 BN	√l 019 i	li 390

										\					
Sample Location	Former Dry Well Area	1			Former	Par	int Shop				Former Paint Tunnel				
Sample ID	E43 B02/105 B02 14-16	7	106 B01 1-3"		106 B01 3-5'	Т	106 B02 1-3'	106 B02 3-5'		107 B01 3-5	107 B01 5-7		107B01N8 3-5	Comparison	Value
Sample Depth (ft)	14-16	- 1	1-3	1	3-5	Т	1-3	3-5		3-5	5-7		3-5	for Area	is
Sampling Date	10/12/00		09/21/00		09/21/00	Т	09/21/00	09/21/00	1	09/29/00	09/29/00		01/02/01	of Conce	ern
Matrix	s		s		s	Т	s	s	1	S	S		s		
Dilution Factor	10	-	10		10	Т	1.0	10		10	10		10		
Units	mg/kg	┸	mg/kg		mg/kg	1	mg/kg	mg/kg		mg/kg	mg/kg		r mg/kg	mg/kg	
						Т	_	_	I			_			
Arsenic	0.8	믜	14	ŀ	2.5	1	5	3	H	12	0 69	В	1.8	20	
Banum	5.1	몍	97	뭐	4.7	В	27	22 1 B	ᅨ	54 9	3 4	В	182	B 5500	
Cadmium	0 23	ų	0.08	ᄖ	0 26	뭐	71	0 68	1	76	0 09	В	0.04	U 78	
Chromium	14.6	- 1	4 5	- 1	4.9	1	22 3	8		2370	15 9		162	390	
Lead	36		21	- 1	0 25	u	54 8	198		613	2.6		38	400	
Mercury	0 04	ᅦ	0 03	В	0 02	В	0 19	0.05		0.16	0 02	U	0 03	U 23	
Selenium	0.46	u	0 63	- 1	0 62		19	13	K	93	0 25	U	0 45	B 390	
Silver	0 18	ul	0 39	В	0 33	В	074 E	016 U	ull	11 B	0 28	В	0 99	B 390	

						L			
Sample Location			······································	Former P	aint Tunnel			· · ·	
Sample ID	I07B01N8 5-7	107B01S8 3-5	107B01S8 5-7	I07B01W5 3-5	I07B01W5 5-7	107B01E8 5-7	107 B02 1-3*	107 B02 3-5'	Comparison Value
Sample Depth (ft)	5-7	3-5	5-7	3-5	5-7	5-7	1-3	3-5	for Areas
Sampling Date	01/02/01	01/05/01	01/03/01	01/02/01	01/02/01	01/03/01	09/21/00	09/21/00	of Concern
Matrix	s	s	s	s	s	s	j s	s	
Dilution Factor	`10	10	10	1.0	10	10	10	1.0	İ
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				T T				1	T '
Arsenic	1.4	061 (J 0.96 E	3 24	26 E	3 17	2	21	20
Banum	71 (B 74 E	s 63 €	3 21.8	95 E	3 103 B	22 7	8.6	5500
Cadmium	004 (J 022 L	J 004 L	J 0.04 U	0.04 \	ı∤ 004 U	038 (B 017 1	3 78
Chromium	4 9	80	36	79	67	194	166	102	390
Lead	20	20 5	1.7	3 15	3.03 (ا آ	102	139	400
Mercury	004 (J 004 U	ار 003 ا	NA L	NA U	J 0.04 U	0 02	B 0.06	23
Selenium	040 (J 084	04 1	J 053B	04 1	J 042 L	0 32	B 057	390
Silver	0.06 (ال 024 ا	3 006 i	J 016B	0.06 t	J 007 L	047	B(041 I	390

Qualifiers

U Constituent was not detected at the indicated concentration

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E. Reported value is estimated due to interference

N. Spiked sample recovery not within control limits

Notes:

Result exceeds Comparison Value for Areas of Conce

Table C-1 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN

				RCRA METALS					
Sample Location		Paint Turinel	Boiler Room Fi	ormer Dry Well	Former Har	mmer Shop	Paint Shop	Former Dry Well	
Sample ID	107 B03 5-7	/ 107 B03 7-0	Ю8 В01 2-4'	108 B01 9-11'	109 B01 1-3'	109 B01 3-5'	110 B01 4-6'	I10 B01 10-12	Comparison Value
Sample Depth (ft)	5-7	7-9	2-4	9-11	1-3	3-5	4-6	10-12	for Areas
Sampling Date	10/17/00	10/17/00	09/26/00	09/26/00	09/26/00	09/26/00	09/25/00	09/25/00	of Concern
Matrix	l s	l s	s	s	s	s	s	s	
Dilution Factor	10	10	10	10	10 1	10	l 10	10	l J
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
					` `				
Arsenic	18	068 8	0 28 U	0.57 E	35	23	13	091	E 20
Barium	145	B 158 B	54 B	65 E	25 2	11.1 B	7	B 12.7	B 5500
Cadmium	12	21	008 U	008 L	l coe ul	0 08 U	034	B 037	Bl 78
Chromium	20.5	171	48	12 9	103	74	478	36 1	390
Lead	103	391	27	33	51	4.4	19	33	400
Mercury	0 05	l 004 ul	003 B	0 03 E	0 02 0	0 02 B	017	0.03	Pl 23
Selenium	1 08	0.46 E	042 B	0 23	ا مُقِمَّ ا	0.56	0 22	U 0.34	B 390
Silver	0 17	U 016 U	0 13 U	013 U	0 15 U	0 13 U	0 12	B 014	B 390

Sample Location						Former P	aint Shop	Boot	hs and Paint Tunnel						 	T	
Sample ID	I11 B01 1-3'		I11 B01 3-5'		I11 B02 1-3	I11 B	2 3-5'	\neg	I11 B03 1-3"		I11 B03 3-5'	Ţ	111 B04 1-3"	7	111 B04 3-5"	Com	parison Value
Sample Depth (ft)	1-3		3-5		1-3		3-5		1-3	- 1	3-5		1-3		3-5		for Areas
Sampling Date	09/22/00		09/22/00		09/22/00	09	/22/00	ŀ	09/22/00		09/22/00		09/22/00	1	09/22/00		f Concern
Matrix	s	- 1	s	- 1	s		S	- 1	S	- 1	S	- 1	S	1	\$	1 1	
Dilution Factor	10	- 1	10	- 1	10		10		10		10	1	10		10		
Units	mg/kg	- 1	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	- 1	mg/kg		mg/kg		mg/kg
	i	_				 		\dashv		_		-		\dashv			
Arsenic	2.7	ı	1.5	1	16		0 86	В	59		0 67	В	36	- 1	0 52	В	20
Barium	17.4	В	8.6	В	9.8	в	39	В	28	- 1	23	B	17.9	a	46	8	5500
Cadmium	0 04	ul	0.04	ui	0.04 (ار	0.04	υÌ	0.05	u	0.04	ū	0.05	- 11	0.04	13	78
Chromium	8.8		5.4	- 1	7.3		2.5	7	15.5	٦	22	٦	103	٦	27	٦	390
Lead	4.8		27	- 1	25		1.4		103		0.73		53		09		400
Mercury	0 02	Bĺ	0 02	ul	0.02 (Ji i	0 02	u	0.05	- 1	0 02	u	0.03	8	0 03	i	23
Selenium	081		0.46	BÌ	0.78		0 22	ū	0 62		0.55	٦	081	٦	0 37	R	390
Silver	0.06	UN	0.08	UN	0 07 UF	4		UN		BN	0.06	UN		UN	006 U	N	390

Sample Location				Former Paint Shop E	ooths and Paint Tunnel				Former	Alodine Room	
Sample ID	I11 B05 1-3"		I11 B05 3-5"	I11 B06 0-2	I11 B06 2-4	I11B07 (1.5-3.5)	111B07 (3.5-5.5)		112 B01 1-3'	i12 801 3-5'	Comparison Value
Sample Depth (ft)	1-3		3-5	0-2	2-4	15-35	3.5-5.5		11	3-5	for Areas
Sampling Date	09/28/00		09/28/00	10/16/00	10/16/00	10/20/00	10/20/00		09/21/00	09/21/00	of Concern
Matrix	l s		s	s	S	S	5		\$	5	3. 33. 33
Dilution Factor	10		1.0	10	10	10	1 10		10	10	1
Units	mg/kg	1	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg
		_									1
Arsenic	48	- 1	0 83 B	1.4	0.65	B 2 20	0.78	В	27	24	20
Barlum	28 9	i	79 B	9.7	33	B 12 30 I	13 30	В	13	B 103	B 5500
Cadmium	0.05	ul	004 1	0.04	004	004 (004	a	0.83	1 12	78
Chromium	15.6	N	2.3 N	61	252	54.20	62.20	1	21.8	24	390
Lead	78	E	13 E	1.7	2.3	2.90	2 50		5.7	78	400
Mercury	0.09	Nº	0.03 BN*	0.03	0.03 (0.03	J 003	1.1	0.04	094	223
Selenium	0.26	ul	0.22 U	0.38	0.38	039	063	1	0.35	B 022	U 390
Silver	0.13	в	0.1 B	01	0.09	B 0.06 (0.11		2.6	5.6	390

Qualifiers

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the instrument Detection Limit

E. Reported value le estimated due to interference

N: Spiked sample recovery not within control limits

Notes:
Result exceeds Competition Value for Areas of Concern

Sample Location			Former Do	wns	pout Dry wells					Former Heat Treat Room	n			Former Paint Mixing Room		
Sample ID	I13 B01 2-4	T	I13 B01 8-9		I13B02(2-4)	T	I13B02 (6-7)	(16 B02 1-3'	Т	I16B02 (3.5-5.5)	1	I16B02 (5.5-7.5)	_	117 B01 1-3'	Companson \	/alue
Sample Depth (ft)	2-4	- 1	8-9	- 1	2-4		6-7	1-3		3 5-5 5	-	5.5-7.5	H	1-3	for Areas	
Sampling Date	10/17/00		10/17/00	- 1	10/20/00		10/20/00	09/21/00		10/19/00	1	10/19/00	H	09/26/00	of Concer	
Matrix	l s	1	s	- 1	S		S	s		S	-	S	H	s	1	"
Dilution Factor	1.0	- 1	1.0	- 1	10		10	1.0		10	1	10		10	1	
Units	i mg/kg	- [mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	1	mg/kg	ß	mg/kg	mg/kg	ļ
		T				T			寸		_		—			
Arsenic	0 63	U	0 65	В	2 10		0.81 E	17		1 40		1,60	ı	3.2	20	
Barium	149	В	9.6	₿	8.20 E	3	4.20 E	81	в	13.50	В	5.40	ell	17.9 E	5500	
Cadmium	0 22	ᅵ	02	U	004 (ار	0 04 L	di 008	υİ	0 04	U	0.04	üll	01 (78	
Chromium	76		16.7	ı	5 70	i	9 80	4.9	- 1	6 80		4.00	1	12 6	390	
Lead	53		27		2.30		5 70	11	- 1	4.70		3.70	- 1	69	400	
Mercury	0 04	u	0 03	υl	0 03 t	ار	0.03 €	0 07	- 1	0.04	υ	0.03	ul	0.05	23	
Selenium	0.44	u	04	u	0.59	1	0 43 E	0.61	- 1	0 40	В	0 42	ᆒ	1	390	
Silver	0 18	u	0 16	u	0 07 E	вĺ	0 06 L	0 27	В	0.06	U	0 06	ül	016 L	390	,

Sample Location		Forme	er Paint Mixing Ro	oom		Material Sto	ck Room		Five Former Machine	Pits		
Sample ID	i17 B01 3-5'		I17 B02 1-3'		117 B02 3-5'	I19 B01 1-3'	I19 B01 3-5'	I21 B01 2-4	I21 B01 4-6		I21 B02 1-3*	Comparison Value
Sample Depth (ft)	3-5	1	1-3	- 1	3-5	1-3	3-5	2-4	4-6		1-3	for Areas
Sampling Date	09/26/00		09/26/00		09/26/00	09/28/00	09/28/00	10/04/00	10/04/00		10/03/00	of Concern
Matrix	s		s		s	l s l	s	s	i s	ŀ	S	1
Dilution Factor	10		1.0		10	10	10	1.0	10	- 1	10	
Units	mg/kg		mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg
		T								-		
Arsenic	18	1	0.29	u	0 27 U	1.2	18	1.4	1.4	- }	1.5	E 20
Barium	65	в	8.9	В	39 B	64 B	109 B	5.6	B 47	В	13 2	B 5500
Cadmium	0.08	ul	0 09	u	0 08 U	0.04 U	0.04 U	0.04	U 0.05	ul	0 08	U 78
Chromium	36		3.8		1.7	3.5 N	4.8 N	5.1	3	- 1	6.9	390
Lead	16		43		1.9	26 ਈ	3.3 E	18	8.2	- 1	3.4	E 400
Mercury	0.03	в	0.06		0 02 B	0.02 UN*	0.04 N°	0.02	U 0 02	В	0.02	U 23
Selenium	0 48	в	0.8		0 22 U	0 22 U	0.34 B	022	U 071	٦	0.22	U 390
Silver	0 13	ul	0 14	ul	0 13 U	0 06 U	0 07 B	014	B 0.09		0 13 U	

Qualifiers

U. Constituent was not detected at the indicated concentration

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E. Reported value is estimated due to interference

N Spiked sample recovery not within control limits

Notes:

Result exceeds Comparison Value for Areas of Concern

Table C-1 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN

Sample Location						F	RCRA METALS ive Former Machine Pits						***************************************		Pump Station "B"		· · · · · · · · · · · · · · · · · · ·
Sample ID	i21 B02 3-5'		121 B03 5-7	\neg	121 B03 7-9	Т	I21 B04 1-3	T	121 B04 3-5	Т	(21 B05 1-3'	ТΤ.	121 B05 3-5'		I23 B01 0-2	╗	omparison Value
Sample Depth (ft)	3-5		5-7	- 1	7-9		1-3		3-5	-	1-3		3-5		0-2		for Areas
Sampling Date	10/03/00		10/04/00	- 1	10/04/00		10/04/00		10/04/00	-	10/03/00	- 1	10/03/00		10/18/00		of Concern
Matrix	s	- 1	S	- 1	S		S		S	-	S	ŀ	S	-	S		
Dilution Factor	10	ı	10	- 1	1.0		1.0		10	-	10	ı	10		10		
Units	mg/kg		mg/kg	1	mg/kg		mg/kg		mg/kg	-	mg/kg		mg/kg		mg/kg		mg/kg
				Т		_				1							
Arsenic	2.2	E	24	- 1	2		13	1	1.4	-	29	티	12	d	18		20
Barlum	122	В	11 9	В	12 8	в	33 E	в	91	В	95	в	94	B	87	в	5500
Cadmium	0 32	В	01	В	0.28	в	0 05 L	,	0 04	ul	01	ū	0.08	- u	0.04	ūl	78
Chromium	12.3	I	5 1	ı	5.2		31	i	3.8	1	53		5		43	٦	390
Lead	5.1	티	47	- 1	4.4		2.5		29	-	62	E	27	ď	33	- 1	400
Mercury	0.02	u	0.02	ul	0.02	ul	0 02 L	,i	0 02	ul	0 02	ū	0 02	- u	0 27	N	23
Selenium	0.23	uì	0 25	ü	0 23	ū	039 E	В	0 23	ŭ	0 57	B	0 23	- J	038	ül	390
Silver	031	BN	0 13	В	0.09	В	0 07 L	1	0.06	ŭ		UN	0 14	110	0.06	ŭ	390

Sample Location	Pump Station "B"		Hallway Adjacent to	Former Alodine Room		Air Handlir	ng Unit Room	Former Storage Building	
Sample ID	123 B01 2-4	126 B01 1-3"	126 B01 3-5"	126 B02 1.5-3.5'	126 B02 3.5-5.5°	128 B01 2-4'	128 B01 4-6'	(30 B01 1-3	Comparison Value
Sample Depth (ft)	2-4	1-3	3-5	15-35	35-55	2-4	4-6	1-3	for Areas
Sampling Date	10/18/00	09/22/00	09/22/00	09/22/00	09/22/00	09/28/00	09/28/00	09/19/00	of Concern
Matrix	l s	s	l s	s	s	s	s	S	
Dilution Factor	1.0	10	10	10	1.0	10	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
			···			1		1	
Arsenic	098 E	3	16	14	0 65	B 44	1 11	32	20
Barlum	43 E	15 E	N 49 E	6	B 21	B 33.6	91 6	114 B	5500
Cadmium	004 L	02 6	si 004 U	015	B 004	U 005 U	J 004 U	005 U	78
Chromium	4.3	23 5	7.4	j 213	28	158	48 1	7.2	390
Lead	14	94.6	13	2 1	1 1	8 1	71 6	37.7	400
Mercury	0.04 N	002 (. d 002 €	0 02	U 002	U 007 N	0 02 BN		23
Selenium	038 (026 (023 (023	U 0.22	0 25	041 E	055 B	390
Silver	0.06 L	0 07	0.06	0.08	Ŭ 006	0 19	014	0 07 U	390

Sample Location							Former Sto	угаре	Building							T
Sample ID	I30 B01 3-5		I30 B02 1-3		130 B02 3-6	Т	130 B03 1-3	Т	130 B03 3-5	Т	130 B04 1-3	T	130 B04 3-5		130 B05 6-8"	Comparison Value
Sample Depth (ft)	3-5		1-3	ı	3-5	- 1	1-3	1	3-5		1-3	- 1	3-5		6-8	for Areas
Sampling Date	09/19/00		09/19/00	- 1	09/19/00	ı	09/18/00	1	09/18/00		09/19/00		09/19/00		10/03/00	of Concern
Matrix	s	- 1	S	- 1	S	ı	s	1	S	- 1	S		S		s	
Dilution Factor	10		10	ļ	10	-	10	1	10	-	10		10		10	
Units	mg/kg		mg/kg		mg/kg		mg/kg	1	mg/kg		mg/kg		mg/kg		mg/kg	mg/kg
		T				Т				┱		7				
Arsenic	27	- 1	3.8	- 1	071	ы	16	1	0 72	ы	37		17		17	E 20
Barium	13.4	В	14 6	В	31	в	28 3	티	4.7	Ė	7.4	В	1.9	В	5.4	B 5500
Cadmium	0.04	ul	0.04	ul	0.04	ul	103	в	13.4	В	0.04	ū	0.04	ū	0.08	78
Chromium	82		7.8	- I	2		0.09	J	0.08	ŭ	54	٦	25	Ĭ	29	390
Lead	81	- 1	4.1	- 1	1.3	- 1	0 02	B	0.04	٦	32	-	12		068	E 400
Mercury	0.03	в	0.04		0.03	В	049	al .	0 22	u	0.05	-	0.06		0 07	23
Selenium	0.52	В	0.85		0 23	ū	034 E	R I	013	ī.	0.6		0 23	- 11	0 22	390
Silver	011	В	0 07	uÌ	0.07	В	5	7	67	٦	0.08	ul	0.06	ŭ	013 U	N 390

Qualiflers

8 Constituent detected below the Contract Required Detection Limit but greater than or equal to the instrument Detection Limit

E. Reported value is estimated due to interference

N' Spiked sample recovery not within control limits

Notes:
Result exceeds Comparison Value for Areas of Concern

		Former Storage Building			l Ken	ngeration/Air Conditioning R	oom	1
130 B05 8-10'	130 B06 1-3	130 B06 3-5	130 B07 0-2	130 B07 2-4	I31 B01 1-3	I31 B01 3-5	I31 B02 2-4	Comparison Value
8-10	1-3	3-5	0-2	2-4				for Areas
10/03/00	09/18/00	09/18/00						of Concern
s l	s	s	s	s	1	50,1000	03/10/00	Oi Concein
10	10	10	1.0	10 1	10	10	10	
mg/kg	mg/kg	mg/kg	mg/kg					mg/kg
		•					i i	1
057 BE	36	` 045 B	25	0.59 ul	2.3	13	53	20
58 B	11 1 E	₄. 2.3 E	12 7 E			5.7 F		5500
0 08 U	24 6					16.1 B		nl 70
4.4	01 U			1			7 72	390
28 €				31			0.07	400
	1 B							3 23
	12.2							390 390
	8-10 10/03/00 S 1 0 mg/kg 0 57 BE 5 8 B 0 08 U	8-10 1-3 09/18/00 S S S 1 0 1 0 mg/kg mg/kg mg/kg	8-10 1-3 3-5 10/03/00 09/18/00 09/18/00 09/18/00 09/18/00 09/18/00 09/18/00 09/18/00 09/18/00 10 10 10 10 10 10 10 10 10 10 10 10 1	8-10 1-3 3-5 0-2 10/03/00 09/18/00 09/18/00 10/17/00 S S S S S S S S S S S S S S S S S S S	8-10 1-3 3-5 0-2 2-4 10/03/00 09/18/00 09/18/00 10/17/00 10/17/00 10/17/00 S S S S S S S S S S S S S S S S S S	8-10 1-3 3-5 0-2 2-4 1-3 10/03/00 09/18/00 09/18/00 10/17/00 10/17/00 09/18/00 09/18/00 5 S S S S S S S S S S S S S S S S S S	8-10 1-3 3-5 0-2 2-4 1-3 3-5 10/10/03/00 09/18/00 09/18/00 10/17/00 10/17/00 09/18/0	8-10 1-3 3-5 0-2 2-4 1-3 3-5 2-4 10/03/00 09/18/00 09/18/00 10/17/00 10/17/00 09/18/

Sample Location	Refrigeration/Air Conditioning Room				Hangar 1				
Sample ID	I31 B02 4-6	132 B01 1-3	132 B01 3-5	I32 B02 1-3	132 B02 3-5	I32 B03 1-3	132 B03 3-5	I32 B04 1-3	Comparison Value
Sample Depth (ft)	4-6	1-3	3-5	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/18/00	09/19/00	09/19/00	09/19/00	09/19/00	09/20/00	09/20/00	09/20/00	of Concern
Matrix	s I	s	s l	s	s	s	S	1 5572555	Or Goracin
Dilution Factor	10	1.0	10	10	1.0	1,0	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
								Î	1
Arsenic	18	38	2.5	25	23	29	24	1 4	20
Barlum	5.5 目	16.9 B	20 7 B	126	3 183 E	127 8	94 1	3 22.5	5500
Cadmium	85 B	0 05 U	004 U	0 04 1	ار 0.05	005 (0.04	0.05	78
Chromium	0 09 U	92	9.9	7.6	7.7	7.5	63	106	390
Lead	0 04 E	26 4	6	76	46	8	33	12 1	400
Mercury	0.25 U	0 07	0 03 В	0 08	0.05	0 07	0 08	0.08	1 700
Selenium	0.4 B	096	0 43 B	0.38	0 25 L	0.59	0 24 (0.57	390
Silver	5.4	0 07 U	0 07 U	0.07	0.07	0.07 L	006 (0 12	390

Sample Location	Hangar 1	Storage Area in Office	Area East of Hangar 2		Old Ejecti	ion Pits		Former Router Room	(
Sample ID	132 B04 3-5	i33 B01 1-3'	I33 B01 3-5'	134 B01 4-6	134 B01 6-8	134 B02 2-4	134 B02 4-6	136 B01 1-3'	Companson Value
Sample Depth (ft)	3-5	1-3	3-5	4-6	6-8	2-4	4-6	1-3	for Areas
Sampling Date	09/20/00	09/28/00	09/28/00	09/29/00	09/29/00	09/29/00	09/29/00	09/22/00	of Concern
Matrix	l s l	s	s	s	S	5	532565	03/22/00	oi concern
Dilution Factor	10	10	10	10	10	10	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
							l l		1
Arsenic	. 34	18	1,9	1.9	16	32	05	B 24	20
Barlum	14.3 B	122 B	204 B	123 B	29 B	30	1 27	B 96 B	5500
Cadmium	0.04 U	004 U	004 U	0.05 U	0 04 U	0 05 L	0 04	ul 004 i	78
Chromium	8 9	5.7 N	71 N	53	33	14.9	51	7 37	390
Lead	49	97 E	48 E	35	1.8	9.1	1 11	54	400
Mercury	01	0 04 NH	0 03 BN	0 02 U	0.02 U	0.04	0 02	U 002 L	23
Selenium	0.62	0 23 U	031 B	0 27 U	0 22 U	0 26 L	0 32	B 042 B	390
Silver	0 15 B	0 06 U	011 B	01 B	0 09 B	0.55 E	0 12	FI 0.06 UN	

Qualifiers

U Constituent was not detected at the indicated concentration

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E. Reported value is estimated due to interference

N Spiked sample recovery not within control limits

Notes:
Result exceeds Comparison Value for Areas of Concern

Table C-1 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN

					R	RAMETAL								·-, · · ·
Sample Location			Former Router Room			Ma	chine Shop (previously	referred	to as Former Upholste	ry Ro	iom)		Boiler Room	1
Sample ID	136 B01 3-5'		136 B02 1-3'	136 B02 3-5'	137	301 1-3'	137 B01 3-5	, T	137 B02 1-3°	$\neg \top$	137 B02 3-5'		I38 B01 1-3'	Comparison Value
Sample Depth (ft)	3-5		1-3	3-5		1-3	3	5	1-3	- 1	3-5		1-3	for Areas
Sampling Date	09/22/00		09/22/00	09/22/00	(9/27/00	09/27/0	o	09/27/00	- 1	09/27/00		09/26/00	of Concern
Matrix	l s		s	S		s	1 :	s I	S	- 1	S		s	
Dilution Factor	10		10	10	1	10	1 1	5	10	- 1	10	ı	10	
Units	mg/kg		mg/kg	mg/kg	l l	mg/kg	mg/k		mg/kg	- 1	mg/kg	- 1	mg/kg	mg/kg
					1					\neg		_		<u> </u>
Arsenic	2.8	- 1	3.1	0 97	al	1.4	2	3	1.1	В	3		2.2	20
Barium	166	8	168 B	61	톄	84	B 21	7 B	11.1	В	25 3		17 3	B 5500
Cadmium	0.04	ᄖ	004 U	0.04	ul	0.04	ul 00	4 U	0.04	ᄖ	0.04	u	0.09	U 78
Chromium	8	F	87	3 1	ł	56	15.	4	56	- 1	31 2		62	390
Lead	43	i i	54	2.5		3.1	5	4	3 2	- 1	5.6	1	53	400
Mercury	0.08		0.04	0.02	u	0 05	0.0	6	0 03	В	0 02	ui	0.05	23
Selenium	0 42	В	0.85	0 46	e	0.41	B 02		0.48	В	0.59	٦	084	390
Silver	0 07	UN	0.06 UN	0 07 (JN	0.06	ul öö		0.06	ū	0.14	R	0.14	U 390

Sample Location			Boiler Room			For	mer Facility Maintenance	Are	oa .	I	Former Facility Maintenance Area		Hangar 2	
Sample ID	138 B01 3-5'	T	138 B02 1-3"	138 B02 3-5"	I39 B01 1-3	Т	I39 B01 3-5	Т	139 802 1-3	Т	139 B02 3-5		I40 B01 2-4	Comparison Value
Sample Depth (ft)	3-5	- 1	1-3	3-5	1-3		3-5	- 1	1-3	- 1	3-5		2-4	for Areas
Sampling Date	09/26/00		09/26/00	09/26/00	09/19/00		09/19/00	-1	09/19/00	- 1	09/19/00		10/04/00	of Concern
Matrix	S		s	s	s		s		S	- 1	S		s	
Dilution Factor	10	- 1	10	10	10		1.0		1.0	- 1	1.0		10	
Units	mg/kg		mg/kg	mg/kg	mg/kg		mg/kg		mg/kg	- 1	mg/kg		mg/kg	mg/kg
		Т				7		╅		7	 	_		
Arsenic	0.41	е	0.68 B	26	13	ı	13		32	- [12		23	20
Barlum	4.6	в	145 B	45.7	5.2	ы	3.5	В	95	в	4.4	В	77	B 5500
Cadmium	0.08	ul	0 08 U	009 (004	ül	0.04	ū	0.04	ŭ	0.04	ū	0.04	U 78
Chromium	26		58	13 1	35	1	41	1	8	1	28	_	52	390
Lead	19		43	7	23		16		3.7	- 1	18		3 1	400
Mercury	0.03	В	0.06	0.04	0 03	В	0 02	ul	0 03	В	0 03	8	0 02	ul 23
Selenium	03	8	0.56	053 (0 29	В	0.22	ŭ	0.23	ŭ	0 22	ū	0 27	B 390
Silver	0 13	ul	014 U	014	0 06	ū	0.06	ū	0.06	ú	0.08	ŭ	13	390

Sample Location							Ha	angar 2			,					1
Sample ID	140 B01 4-6	T	H0 B03 1-3	Т	140 B03 3-5	140 B0	• 1-3	T	H0 B04 3-5	Т	I40 B05 1-3	Т	I40 B05 3-5		140 B06 1-3	Comparison Value
Sample Depth (ft)	4-6	- 1	1-3	- 1	3-5	1	1-3		3-5		1-3	- 1	3-5		1-3	for Areas
Sampling Date	10/04/00	- 1	09/20/00	ı	09/20/00	09/2	:0/00		09/20/00	- 1	09/20/00	- 1	09/20/00		09/20/00	of Concern
Matrix	s	- 1	S		S	1	s		S	- 1	S	- 1	S		l s	
Oilution Factor	10	- 1	1.0		10		10		1.0	- 1	10	- 1	1.0		l 10	
Units	mg/kg		mg/kg		mg/kg	п	ng/kg	1	mg/kg	- 1	mg/kg	- 1	mg/kg		mg/kg	mg/kg
		\neg						\neg						-		
Arsenic	1.5	- 1	15		1.5		23	-1	0 85	В	21		1	В	23	20
Barlum	29	8	82	B	11.5 E	3	106	8	24	е	94	В	2.6	В	14 3	B 5500
Cadmium	0 04	ul	0.11	В	0 04 L	4	0.04	ul	0.04	ü	0.04	Ū	0.04	ū	0.04	U 78
Chromium	9.2		6.7		7.6		5.8	1	2.3	-1	76		2.3	1	83	390
Lead	1.4		7.8		31	ŀ	38		12		3.3	- 1	13		91	400
Mercury	0.02	ul	0 02	u	0.02 L	,	0 02	ul	0.02	uł	0 02	ul	0.02	u	0.02	U 23
Selenium	0.22	ú	0.23	u	023	,	0 22	ül	0 21	ŭ	0 22	ŭ	0 23	Ū	0.35	B 390
Silver	0.06	ú	0.06	ú	0.06	k	0 07	В	0.06	ū	0.08	B	0.06	Ū	0.06	U 390

Qualifiers

U. Constituent was not detected at the indicated concentration

B Constituent detected below the Contract Required Detection Limit but greater then or equal to the instrument Detection Limit

E. Reported value is estimated due to interference

N Spiked sample recovery not within control limits

Notes:

Result exceeds Comparison Value for Areas of Concern

Sample Location	Hangar 2		······································	RCRA META Random L	ocations of Historic Manufacti	uring Operations			
Sample ID	140 B06 3-5	I41 B01 0-2	I41 B01 2-4	I41 B02 1-3	I41 B02 3-5	141 B03 1-3	141 B03 3-5	I41 B04 1-3	Comparison Value
Sample Depth (ft)	3-5	0-2	2-4	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/20/00	10/16/00	10/16/00	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	of Concern
Matrix	s	l s	s	s	s	s	s	S	
Dilution Factor	1.0	10	1.0	10	10	1.0	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
									N. W. C. C. C. C. C. C. C. C. C. C. C. C. C.
Arsenic	0.6	B 21	18	0 64	U 057	U 101	88	25	20
Barrum	24	B 13 1	B 10	B 68	В 33	B 11.4	В 309	32 2	5500
Cadmium	0 04	u 004	U 0.04	ul 023	U 02	U 02	ul 02	U 0.22	J 78
Chromium	23	76	N 6,7	N 88	E 24	E 127	E 94	15	E 390
Lead	1.2	57	5	3 3	E 28	E 197	E 16.2	E 88	E 400
Mercury	0 02	u 008	0.05	0.06	N 0 03 U	N 0.03 U			N 23
Selenium	0.23	B 0.4	U 043	В 077	04	U 0 62	0 39	0 88	390
Silver	0.06	U 012	B 0.08	B 018	U 016	U 016	U 016	U 018	J 390

Sample Location		ocatio	ons of Historic Manufac	turing	Operations	Paint Shop Dry Well in Former Hammer Shop			Dry Wells in Foi	rmer	Carpentry Shop			
Sample ID	I41 B04 3-5		I41 B05 1-3		I41 B05 3-5	I42B01 (8-10)	143	B01 (8-10)	143B01A 10-12	Т	143B01A 12-14		143B01(14-16)	Comparison Value
Sample Depth (ft)	3-5	ı,	1-3		3-5	8-10		8-10	10-12	ļ	12-14		14-16	for Areas
Sampling Date	10/13/00		10/13/00		10/13/00	10/19/00		10/20/00	12/28/00	- 1	12/28/00		10/20/00	of Concern
Matrix	s		S		s	s		S	s	- 1	S		s	
Dilution Factor	1.0		1.0		10	10		10	10		10		10	
Units	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	rng/kg	-	mg/kg		mg/kg	mg/kg
				$\neg \top$						-		T		
Arsenic	0.56	U	1	В	1	1 1		99	3.2	+	15	-	1.70	20
Barium	4.1	В	22 9		22 9	l 56 Bİ		199 B	122	в	62	В	4 00	B 5500
Cadmium	02	U	0 21	ᆝ	021 U	0.041 U		4	0 34	В	0.05	В	0 04	U 78
Chromium	27	티	10 1	E	87 €	16		1060	52 3	- 1	108	- 1	23 50	390
Lead	2 4	E	5.7	Ę	54 E	22		1470	34.7	- 1	4.4		11 00	400
Mercury	0 03	UN	0 04	UN	0 04 UN	0 034 U		0 037 U	01	-	0 04	u	0 03	U 23
Selenium	0.4	U	0 43	ᅵ	045 B	076		25	0 44	U	0 41	U	0 39	J 390
Silver	0 16	U	0 17	ᅵ	017 U	0 061 U		2	0.13	в	0 07	Ū	0 06	390

Sample Location		rmer	Carpentry Shop	Canopy Trim Fixture	e Orain Hole/Sump Pit	Waste Collection Station A	Adj To Canopy Drain/Sump Pit		Weld RinseTank	
Sample ID	143B02 (11-13)	Ì	143B02(13-15)	I44B01 (4-6)	I44B01 (6-8)	145 B01 0-2	I45 B01 2-4	I46 B01 0-2	146 B01 2-4	Companson Value
Sample Depth (ft)	11-13	-	13-15	4-6	6-8	0-2	2-4	0-2	2-4	for Areas
Sampling Date	10/20/00		10/20/00	10/20/00	10/20/00	10/16/00	10/16/00	10/16/00	10/16/00	of Concern
Matrix	s		S	s	s	s	l si	s	s	
Dilution Factor	10		1.0	10	10	10	ll 10 l		1.0	1
Units	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	0 87	В	2 10	0 46	3 044	ul 22	26	42	19	20
Barlum	670	В	31 50	3.80	3 290	B 92 B	159 B	704	20 4	5500
Cadmium	0 04	U	031 B	0.08	si 0.05	ul 019 8	0.04 U	0 05	u 004 i	78
Chromium	20 60		96.00	2.30	2 60	157 N	6.8 N	218	N 68 !	390
Lead	7 30		51 30	1 00	3,10	19	2.8	98	41	400
Mercury	0.04	U	0 05 U	0 03 1	0.04	ul 003 u	0 03 U	0 05	0.04	23
Selenium	0.40	U	1,10	038 (0 45	ul 039 u	d 039 U	0 43	U 042 I	390
Silver	0.28	В	126 00	0.06 (0 07	ul 009 E	0 07 B	0 07	U 0.09	390

Qualiflers

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E. Reported value is estimated due to interference

N Spiked sample recovery not within control limits

Notes:
Result exceeds Comparison Value for Areas of Concern

Table C-1 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN

					_	RCRA ME	TALS				
Sample Location			RHIC Mag	net Pu	umping Units			 1	Ĩ		
Sample ID	I47 B01 0-2		147 B02 2-4	Т	I47 B02 0-2	147 B02 2-4		 · · · · · · · · · · · · · · · · · · ·		1	Comparison Value
Sample Depth (ft)	0-2		2-4	- 1	0-2	2-4	l l			i	for Areas
Sampling Date	10/16/00		10/16/00	- 1	10/16/00	10/16/00	ŀ		1	i	of Concern
Matrix	l s		S	- 1	s	l s	į		1	1	
Dilution Factor	10		10	- 1	10	1 10			1	1	
Units	mg/kg		mg/kg	- 1	mg/kg	mg/kg	1		1		mg/kg
	1	ĭ		-			$\neg \vdash$	 		1	
Arsenic	26		0 96	В	52	0.6	. e		1		20
Barlum	10	В	36	В	26 9	63	. 8	ł	1		5500
Cadmium	0.04	U	0 06	8	0 04	۵۰۰ اد	. ul	I	1		78
Chromium	198	N	11	N	15,3	v 23	. N			İ	390
Lead	19		1.1		7.7	17	- 1	1			400
Mercury	0.04		0 11		0.04	J 004					23
Selenium	0.44	В	0.38	u	11	0.38	, ut		1		390
Silver	1 0.06	- tuk	0.06	116	0.21	al nov	. 14	l .	1		1 300

Qualiflers

8 Constituent detected below the Contract Required Detection Limit but greater than or equal to the instrument Detection Limit

E. Reported value is estimated due to interference

N Spiked sample recovery not within control limits

Notes:
Result exceeds Comperison Value for Areas of Concern

Servet Dot		·			OLATILE ORGANIC COM	CONDS	*****			
Sample Revert 1-1	Sample Location			Former Paint	Storage Room			Former Dry Well Area		
Sampted Dim							Ю5 В01 8-10		E43 B02/105 B02 6-8	Comparison Value
March S										for Areas
Calcon Flower 10										of Concern
Characteristics										{
Charleman										{
Bunnembane \$4 U \$5 U \$2 U \$1 U \$2 U \$5 U \$	Onits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Brownenbase 9.4 U 3.6 U 3.0 U 3.0 U 3.5 U	ľ	4	! !							
Bunnembane \$4 U \$5 U \$2 U \$1 U \$2 U \$5 U \$	Obl	d '	(<u> </u>			()		1		
Vary Changes										-
Calcenterment									5.8 U	
Mary-free Cheese										300
Traisenfuncementary 1										-
11-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-								0.0 0		85000
15-02-incordename										
1000-12-0-Childrenderhere										
Selection Sele										
Clandom										
1.2-Dicherophame										
11.1-Tri-Ordinochame										
Caton Terashorementaries										7000
Bonnechformerhame										
1.5Dichoproproper 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.0 U										
09-13-Dichipropopers										
Technometheme										
Demonstrationmethane										
11,27=Introducemen										58000
Bearsen										14000
1-1,3-Dichopropeem										
2-Chiorophery-Wyne (Elver S4 U S6 U S8 U S2 U S1 U S8 U S5 U S8 U										
Bomonform										4000
Textachlorostheme	Bromoform									
11,22-Tetachknowthare										
Tokene										
Chinoberazere 5.4 U 5.6 U 5.8 U 5.2 U 51 U 5.8 U 5.5 U 5.8 U 5.0 U										
2-01danone										
Emyl Benzene										100000
mp-Xylenes										7900000
Oxylene										
Acetone										
Carbon Disulfide										
Methys-Perlanone										
2-Hexanone										7800000
Symen										
1.3-Dichlorobenzene										
1.4-Dichloroberzene	1,3-Dichlorobenzene	. 54 U	56 U	58 U						1000000
1,2-Dichiorobenzene	1,4-Dichlorobenzene	5,4 U	5.6 U							27000
Dichlorodiffusormethane	1,2-Dichlorobenzene				52 U					
Vary/Acetate 27 U 28 U 29 U 26 U 25 U 29 U 27 U 29 U 78000000 22-OPIchloropropane 5 4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U -1 <t< th=""><th>Dichlorodifluoromethane</th><th>54U</th><th>[56U </th><th></th><th></th><th>51 U</th><th></th><th></th><th></th><th>100000</th></t<>	Dichlorodifluoromethane	54U	[56U			51 U				100000
22-Dichloropropane	Vinyl Acetate	27 U	[28 U	29 U				27 ti		78000000
Bromochioromethane	2,2-Dichloropropane	54 U	j 56∪	58 U	5 2 U	5 1 ป				
1.1-Dichloropropane				58 U	5 2 U	5.1 บ 🛙				ļ <u></u>
1.3-Dichropropane						5.1 U				
1,2-Ditromoethane								55 U		
1.2.3-Trichloropropane						51 U 🖠	58 U	55 ป		
1.1.1.2-fetrachloroethane					52 U		5.8 U	55 U	58 U	
1,1,1,2-fetrachloroethane								5,5 U	58 U	-
Bromobenzene										_
2-Chlorotoluene 54 U 56 U 58 U 52 U 51 U 58 U 5.5 U 58 U 1.3.5-Trimethylbenzene 54 U 56 U 58 U 52 U 51 U 58 U 5.5 U 58 U 1.4-Chlorotoluene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.4-Trichlorobenzene 5.4 U 56 U 58 U 5.8 U 5.2 U 51 U 58 U 5.8 U 1.4-Trichlorobenzene 5.4 U 56 U 5.8 U 5.8 U 5.8 U 5.8 U 5.8 U 1.4-Trichlorobenzene 5.4 U 56 U 5.8 U 5.8 U 5.8 U 5.8 U 1.4-Trichlorobenzene 5.4 U 5.8 U 5.8 U 5.8 U 5.8 U 1.4-Trichlorobenzene 5.4 U 5.8 U 5.8 U 5.8 U 5.8 U									58 U	
1.3.5-Trimethylbenzene 54 U 56 U 5.8 U 52 U 51 U 5.8 U 5.5 U 58 U 4.Chlorotoluene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.4-Trimethylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U p-Isopropylibulene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U 58 U 55 U 58 U 1.2.Dibromorethane 5.4 U 56 U 58 U										
4-Chlorotoluene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — test-Butylbenzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 780000 Naphthalene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 300000 Naphthalene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 5.4 U 56 U 58 U 58 U 58 U 58 U 58 U 58 U 58										
ten-Buty/benzene 5.4 U 56 U 58 U 52 U 5.1 U 58 U 55 U 58 U 1.2,4-Trimethy/benzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U sec-Buty/benzene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U plsopropytroluene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U Dibromomethane 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U n-Buty/benzene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U n-Buty/benzene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1,2-Diromo-3-Chloropropane 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1,2-A-									58 U	
12,4-Trinethylbenzene									58 U	-
1,2,4-Trichforbutadiene									58 U	
p-Isopropytholuene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — Dibromomethane 5.4 U 56 U 5.8 U 52 U 5.1 U 5.8 U 55 U 5.8 U — n-Butylbenzene 5.4 U 56 U 5.8 U 52 U 5.1 U 5.8 U 5.5 U 5.8 U — n-Butylbenzene 5.4 U 56 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U — 1,2-Dibromom-3-Chloropropane 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U — 1,2-Dibromom-3-Chloropropane 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 5.8 U 7.0 U 5.8 U 5.0 U 5.8 U 7.0 U 5.8 U 7.0 U 5.8 U 7.0 U 7										
P-isopropytioluene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — Dibromomethane 5.4 U 5.6 U 5.8 U 52 U 5.1 U 5.8 U 55 U 5.8 U — Dibromomethane 5.4 U 5.6 U 5.8 U 52 U 5.1 U 5.8 U 5.5 U 5.8 U — 1,2-Dibromomethane 5.4 U 5.6 U 5.8 U 52 U 5.1 U 5.8 U 5.5 U 5.8 U — 1,2-Dibromomethane 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U — 1,2-Dibromomethane 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 780000 Hexachlorobutadiene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 780000 Naphthalene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 3100000 Naphthalene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 3100000 Naphthalene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 3100000 Naphthalene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 3100000 Naphthalene 5.4 U 5.6 U 5.8 U 5.2 U 5.1 U 5.8 U 5.5 U 5.8 U 3100000									58 U	-
n-Butylbenzene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U — 1,2-Ditromo-3-Chloropropane 54 U 56 U 58 U 52 U 5.1 U 58 U 55 U 58 U — 1,2-Frichlorobenzene 5.4 U 56 U 58 U 52 U 5.1 U 5.8 U 5.5 U 58 U 780000 Hexachlorobutadiene 5.4 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 8000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 8000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 MTBE 54 U 56 U 5.8 U 5.2 U 51 U 58 U 5.5 U 58 U 3100000 MTBE 5.4 U 56 U 5.8 U 5.2 U 51 U 58 U 5.5 U 58 U 31000000 MTBE 5.4 U 56 U 5.8 U 5.2 U 51 U 58 U 5.5 U 58 U 31000000 MTBE 5.4 U 56 U 5.8 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 5.5 U 58 U 58							58 U	55 U	58 U	
1,2-Difformor-3-Chloropropane 54 U 56 U 58 U 52 U 5.1 U 58 U 55 U 58 U 780000 Hexachlorobutadiene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 780000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 80000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 58 U 55 U 58 U 3100000 Naphthalene 54 U 56 U 58 U 58 U 58 U 58 U 58 U 58 U 58									58 U	-
1.2,4-Trichlorobenzene 5.4 U 56 U 58 U 52 U 51 U 5.8 U 55 U 58 U 780000 Hexachlorobutadiene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 8000 Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 MTBE 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 1,2,3-Trichlorobenzene 5.4 U '56 U 5.8 U 52 U 51 U 58 U 55 U 58 U									58 U	-
Hexachlorobutadiene										
Naphthalene 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 MTBE 54 U 56 U 58 U 52 U 51 U 58 U 55 U 58 U 3100000 1,2,3-Trichlorobenzene 5.4 U '56 U 5.8 U 52 U 51 U 58 U 5.5 U 58 U										
MTBE 54 U 56 U 5.8 U 5.2 U 51 U 58 U 5.5 U 58 U 1,2,3-Trichlorobenzene 5.4 U '56 U 5.8 U 52 U 51 U 58 U 5.5 U 58 U									58 U	8000
1.2.3-Triichlorobenzene 5.4 U 56 U 5.8 U 52 U 51 U 58 U 55 U 58 U										3100000
380 -										
100al Contident Conc. VOAS (5) 3 3 5 4 3 ND ND 6 10000										
	Total Confident Conc. VOAs (s)	<u> 3</u>	3	. 5	4	3	ND	ND	6	10000

Qualifiers

U The compound was not detected at the indicated concentration

J Date indicates the presence of a compound that meets the identification criteria. The result is fees than the quantitation limit but greater than zero. The concentration given is an approximate value.

B. The analytic was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

- Not established ND Not Detected

Table C-2 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1-INTERIOR OF CONCERN VOLATILE ORGANIC COMPOUNDS

Section Sect					OLATILE ORGANIC COMP	700NDS				
Samel David (1)	Sample Location	Former Dry Well Area								
Secretary 10 10 10 10 10 10 10 1										
Second	Sample Depth (R)									
December December										of Concern
Company Comp			-		•	•			_	
The contraction	Units									1000
Section of the company Section of the comp		97.	0,000	орку	- Ugray	Ugrag		- Og/kg	Ugrkg	
Section of the company Section of the comp										1
Prof. Checkeds 3 T U 2 U 3 U 8 U 3										
Telephone 1										_
Methyland Choloris										300
Trickinson/marker 5 7 U 22 U 31 U 8 U 32 U 35 U 30 U 30 U 30 U 30 U 30 U 30 U 30										85000
1.5 Outpromptions	Trichlorofluoromethane	570								
Tree 1-20-Chrosopheme 37 U 52 U 51 U 6 U 6 U 6 U 5 U 5 E U 5	1,1-Dichloroethene	5.7 U	5.2 U	5 1 U	6 U					1000
### 2000 20 27 20 20 20 20 20	1,1-Dichloroethane							58 U		
Charleston STU S2 U S1 U S2 U S1 U S2 U S3 U S7 U S8 U S3 U Common Carbon Francisco S7 U S2 U S1 U S2 U S3 U S7 U S8 U S3 U Carbon Francisco S7 U S2 U S1 U S2 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S3 U S7 U S8 U S8 U S9 U	trans-1,2-Dichloroethene									
13-Officenomename										
1.1.1-Tricknorehare										
Carbon Francisconder 37 U 52 U 51 U 6 U 55 U 500 61 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3										7000
Second Composition										5000
1.2 Deficience 1.2 Per										
18-13-00-15-00-1	1,2-Dichloropropane									
Trichionembers \$7 U \$2 U \$1 U \$0 U \$3 U \$2 U \$5 U \$5000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$5 U \$5000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$2000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$2000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$2000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$2000 Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$8 U Demonstrational \$7 U \$2 U \$1 U \$0 U \$3 U \$7 U \$8 U \$8 U \$8 U Demonstrational \$7 U \$7 U \$7 U \$8 U \$7 U \$8 U \$8 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$8 U \$7 U \$8 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U \$8 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U \$7 U \$7 U \$7 U Demonstrational \$7 U \$7 U	cls-1,3-Dichloropropene	57 U	5.2 U							
1.1.2 Friedrichenshame	Trichioroethene				8 Ŭ					
Bersame			5.2 U	51 U	6 U	63 U	57 U	5.6 U	56 U	_
#1-3-Dichicoproposes #1-3-Dichicoproposes	1,1,2-Trichloroethane	570								
2-Chartener										
Blomother										4000
Tellischioresteries										
11.12.71 feare-hoveshare										
Tokane 57 U 52 U 51 U 6 U 6 J U 57 U 5 6 U 5 6 U 10000000 Zelularonce 57 U 52 U 51 U 6 U 6 J U 57 U 5 6 U 5 6 U 10000000 Zelularonce 29 U 52 U 51 U 6 U 6 J U 57 U 5 8 U 5 6 U 10000000 Zelularonce 29 U 52 U 51 U 6 U 6 J U 6 J U 5 J U 5 S U 5 S U 10000000 Zelularonce 29 U 52 U 51 U 6 U 6 J U	1,1,2,2-Tetrachloroethane									
Chlombanzane	Toluene	57 U	52 U							
Eith Benzene	Chlorobenzene	57 U	5.2 U	51 U	6 Ú			5 B U		
Minor Mino	2-Butanone				6 U		57 U	58 U	56 U	
STU S2 U S1 U S2 U S1 U S2 U S1 U S3 U S3 U S8 U S6 U T0000000										
Aceismone										
Carbon Disulfide										
4-Methyl-2-Pertanone										
2-Hexanone										/80000
Symme	2-Hexanone									
1.1-Dickhordenzare	Styrene									16000000
12-Dichroorbanzane	1,3-Dichlorobenzene			51 U	6 Ú					-
Dichloroshiburomethane S7 U S2 U S1 U S2 U S3 U S3 U S3 U S4					6 U	63 U	57 U	58 U	56 U	27000
Virty Anatale										7000000
22-Dichlospropane										
Second Design										78000000
1.1-Dichloropropere										-
1.3-Dictoropropage	1,1-Dichloropropene									
12-Disromoethane										
SopropyRenzerie S.7 U S.2 U S.1 U S.2 U S.2 U S.3 U S.5 U S.	1,2-Dibromoethane	57 U		51 U						
1,1,1,2-Fetrachloroethane	leopropythenzene					63 U	57 U	58 U	56 U	
Bromoberzene ST U S2 U S1 U S3 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S.8 U S6 U S6 U S7 U S.8 U S6 U S6 U S7 U S.8 U S6 U										1
Proproprietable								0.00		
2-Chiorobluene										
1,3,5-Trimethytherzene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U 4-Chlorobluene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U 1,2,4-Trimethytherzene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U 1,2,4-Trimethytherzene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U 1,2,4-Trimethytherzene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U 1,2,4-Trimethytherzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,4-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 780000 Nephthalene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 780000 Nephthalene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 3100000 Nephthalene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,3-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,3-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,3-Trichloroberzene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,3-Trichloroberzene 5.7 U 5.8 U 5.6 U 1,2,3-Trichloroberzene 5.7 U 5.8 U 5.6 U 5.6 U										
### Discreption of the first of										
#en-Burythenzene										
1.2.4-Trimethytherizene	tert-Butytbenzene									
sec-Bulyberusene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.8 U 5.6 U — p-lacytroyflokuene 5.7 U 5.8 U <th< th=""><th>1,2,4-Trimethylbenzene</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	1,2,4-Trimethylbenzene									
Debromorphane 57 U 52 U 51 U 6 U 63 U 57 U 58 U 56 U — Debromorphane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U — Debromorphane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U — Debromorphane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U — 12. Debromorphane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U — 12. Debromorphane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 56 U 57 U 5.8 U 56 U 56 U 56 U 57 U 5.8 U 56 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U 56 U 56 U 57 U 5.8 U	sec-Butylbenzene									
n-Butyberzene 5.7 U 5.2 U 5.1 U 6.0 6.3 U 57 U 5.8 U 5.6 U	p-laopropyltoluene	57 U		51 U						
1.2-Dibrons-3-Chloropropane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U 700000 1.2.4-Tichlorobenzane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 700000 1.2.4-Tichlorobenzane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U 8000 Naphthalene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3100000 1.7 U 5.8 U 5.6 U 3.0 U 5.7 U 5.8 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5.8 U 5.7 U 5	Dibromomethane					6.3 U			56 U	
1.2.4-Trichlorobenzene 5.7 U 5.2 Ú 5.1 Ú 6.Ú 6.3 Ú 57 Ú 5.8 Ú 780000 Hexachlorobutadiene 5.7 U 5.2 U 5.1 U 8 U 6.3 U 57 U 5.8 U 9.6 U 80000 Hexachlorobutadiene 5.7 U 5.2 U 5.1 U 8 U 6.3 U 57 U 5.8 U 9.6 U 80000 Hexachlorobutadiene 5.7 U 5.2 U 5.1 U 8 U 6.3 U 57 U 5.8 U 3.6 U 3100000 MTBE 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U U 5.6 U 5.0 U 5.6 U 5.0	n-Butylbenzene									-
Hexachlorobutadiene 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 56 U 8000 Naprinsiane 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 58 U 5.6 U 3100000 MTBE 5.7 U 5.2 U 5.1 U 6 U 6.3 U 57 U 5.8 U 5.6 U 1,2,3-Trichlorobenzene 5.7 U 5.2 U 51 U 6 U 63 U 57 U 5.8 U 5.6 U										
Naphthalane 5.7 U 5.2 U 5.1 U 6.0 6.3 Ū 57 Ū 58 Ū 5.6 Ū 3100000 MTBE 5.7 U 5.2 U 5.1 U 6.0 5.7 U 5.8 U 5.6 U U 5.0 U 5.7 U 5.8 U 5.6 U U 5.0 U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U 5.6 U U 5.8 U										
MTBE 5.7 U 5.2 U 5.1 U 6U 63 U 57 U 5.6 U 5.6 U 12,3-Trichlorobenzene 5.7 U 5.2 U 5.1 U 6U 63 U 57 U 5.8 U 5.6 U										
12.3-Trichlorobenzene 5.7 U 5.8 U 5.8 U	MTBE									
Total Confident Conc. VOAs (s) 33 ND ND ND ND ND 708 6 NO 10000	1,2,3-Trichlorobenzene									
	Total Confident Conc. VOAs (s)			ND	ND			6		10000

Osablifiers

U. The compound was not detected at the indicated compound that.

J. Data indicates the presumos of a compound that made the identification.

The compositedon given is an approximate value.

Notes
---: Not established
ND: Not Detected

			V	OLATILE ORGANIC COMP	POUNDS				
Sample Location		Former Paint Tunnel		Boiler Room F			mmer Shop	Paint Shop Former DW	
Sample ID	107 B02 3-5'	107 B03 5-7	107 803 7-9	108 B01 2-4'	I08 B01 9-11	I09 B01 1-3'	109 B01 3-5'	I10 B01 4-6'	Comparison Value
Sample Depth (ft)	3-5	5-7	7-9	2-4	9-11	1-3	3-5	4-6	for Areas
Sampling Date Matrix	09/21/00 S	10/17/00 S	10/17/00	09/26/00	09/26/00	09/26/00	09/26/00	09/25/00	of Concern
Dilution Factor			s	S	S	, S	S	, s	
Units	1 0 ug/kg	1,0 ug/kg	10 ug/kg	10	10	1.0	10	10	
Offits	ug/kg	ug/kg	Ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	i l							İ	
Chloromethane	51 U	5.6 U	5 2 U	51 ป	52 U	58 U	5.2 U	5.2 U	- 1
Bromomethane	5.1 U	56 U	5 2 U	51 U	52 U	58 ป	5.2 U	52 U	
Vinyl Chloride	51 U	5.6 U	52 U	51 U	5.2 U	58 U	5.2 U	52 U	300
Chloroethane Methylene Chlonde	5.1 U 51 U	56 U 4.4 JB	52 U 44 JB	5.1 U	52 U	58 U	5.2 U	52 U	
Trichlorofluoromethane	510	56 U	52 U	5 1 U 5.1 U	6.9 5.2 U	73	6.2	4.5 J	85000
1,1-Dichloroethene	510	5.6 U	52 U	5.1 U	52 U	5.8 U 5 B U	5.2 U 5.2 U	5.2 U 5.2 U	1000
1,1-Dichloroethane	510	5.6 U	52 U	5.1 U	52 U	58 U	5.2 U	5.2 U	7800000
trans-1,2-Dichloroethene	5.1 U	56 U	5.2 U	51 U	52 U	58 U	5.2 U	52 U	1600000
cis-1,2-Dichloroethene	5.1 U	56 U	52 U	51 U	5.2 U	58 U	5.2 U	52 U	780000
Chloroform	5.1 U	56 U	52 U	5.1 Ŭ	52 U	58 U	5.2 U	5.2 Ú	100000
1,2-Dichloroethane	5.1 U	56 U	52 U	5.1 U	5.2 U	5.8 Ū	52 U	52 U	7000
1,1,1-Trichloroethane	5.1 U	5.6 U	52 U	51 U	52 U	58 U	5.2 U	52 U	
Carbon Tetrachlonde	51 U	5 6 U	5.2 U	51 U	5.2 ∪	5.8 U	5.2 U	52 U	5000
Bromodichloromethane	51 U	5.6 U	52 U	51 U	5.2 U	58 ป	52 U	52 U	10000
1,2-Dichloropropane	51 U	5.6 U	52 U	51 U	52 U	58 U	5.2 U	5.2 U	9000
Cis-1,3-Dichloropropene Trichloroethene	51 U	5.6 U	5,2 U	51 U	52 U	58 U	5.2 U	52 U	4000
Dibromochloromethane	51 U 5.1 U	5.6 U	52 U	51 U	52 U	58 U	5.2 U	52 U	58000
1.1,2-Trichloroethane	5.1 U 5.1 U	56 U 56 U	52 U 5.2 U	5,1 U 5 1 U	52 U 52 U	5.8 U 5.8 U	5.2 U	5.2 U	1 -
Benzene	51 U	56 U	5.2 U	51 U	52 U	5.8 U	5.2 U 5.2 U	52 U	11000
t-1,3-Dichloropropene	5.1 U	56 U	52 U	5.1 U	5.2 U	58 U	5.2 U	5.2 U 5.2 U	22000 4000
2-Chloroethyl Vinyl Ether	5.1 U	56 U	5.2 U	5.1 U	52 U	58 U	5.2 U	52 U	1
Bromoform	5.1 U	56 U	5.2 U	51 U	52 Ü	5.8 U	5.2 U	52 U	81000
Tetrachloroethene	51 U	56 U	5 2 U	51 U	5.2 U	58 U	5.2 U	52 U	12000
1,1,2,2-Tetrachloroethane	51 U	56 U	52 ป	51 U	52 U	58 U	52 U	52 U	3000
Toluene	51 U	56 U	5.2 U	51 U	5.2 U	58 U	5.2 U	52 U	16000000
Chlorobenzene	5.1 U	56 U	52 U	5.1 U	52 U	58 U	5.2 U	5.2 U	1600000
2-Butanone	5.1 U	56 U	5.2 U	5.1 U	52 U	5.8 U	5.2 U	52 U	
Ethyl Benzene m/p-Xylenes	51 U 5.1 U	56 U	52 U	51 U	5.2 U	5.8 U	52 U	5.2 U	7800000
o-Xylene	5.1 U	56 U 56 U	72 26 J	5.1 U 5 1 U	5.2 U 5.2 U	5.8 U 5.8 U	5.2 U 5.2 U	5.2 U	160000000
Acetone	51 U	5.6 U	52 U	5.1 U	5.2 U	5.8 U	5.2 U	52 U 5.2 U	160000000 7800000
Carbon Disulfide	5.1 U	5.6 U	5.2 U	5.1 U	52 U	5.8 U	52 U	5.2 U	7800000
4-Methyl-2-Pentanone	5.1 U	56 U	5.2 U	51 U	5.2 U	5.8 U	5.2 U	5.2 U	-
2-Hexanone	510	5.6 U	5.2 U	5.1 U	52 U	5.8 U	5.2 U	5.2 U	_
Styrene	5.1 U	56 U	5.2 U	51 U	52 U	58 U	5.2 U	5.2 U	16000000
1,3-Dichlorobenzene	5.1 U	5.6 U	5.2 U	51 U	52 U	58 U	52 U	5.2 ∪	
1,4-Dichlorobenzene	5.1 U	5.6 U	5.2 U	51 U	52 U	5.8 U	5 2 U	5.2 U	27000
1,2-Dichlorobenzene	51 U	5.6 U	52 U	5.1 U	52 U	58 U	52 U	52 U	7000000
Dichlorodifluoromethane Vinyl Acetate	5,1 U 26 U	5 6 U 28 U	52 U 26 U	5.1 U 26 U	5.2 U	5.8 U	52 U	52 U	7000000
2,2-Dichioropropane	5.1 U	56 U	52 U	20 U 51 U	26 U 5.2 U	29 U 58 U	26 U 5 2 U	26 U 5 2 U	78000000
Bromochloromethane	5.1 U	56 U	52 U	5.1 U	5.2 U	58 U	5.2 U	5.2 U] [
1,1-Dichloropropene	5.1 U	5 6 U	52 U	5.1 U	52 U	5.8 U	52 U	52 U	_
1,3-Dichloropropane	5.1 U	56 U	5.2 U	51 U	5.2 U	58 U	5.2 U	5.2 Ŭ	-
1,2-Dibromoethane	5.1 U	56 U	5.2 U	51 U	5.2 U	58 U	5.2 U	5.2 U	_
Isopropylbenzene	5.1 U	5.6 U	52 U	5.1 U	52 U	5.8 U	5.2 U	52 U	- 1
1,2,3-Trichloropropane	5.1 U	56 U	52 U	51 U	5.2 U	58 U	5.2 U	52 U	-
1,1,1,2-Tetrachloroethane	5.1 U	56 U	5.2 U	51 U	5.2 U	58 U	5 2 U	52 U	-
Bromobenzene	5.1 U	5.6 U	52 U	51 U	52 U	5.8 U	52 U	5.2 U	-
n-propyibenzene 2-Chiorotoluene	5.1 U 51 U	56 U 56 U	5 2 U 5 2 U	51 U	5.2 U	58 U	5.2 U	5.2 U	_
1,3,5-Trimethylbenzene	51 U 5.1 U	5.6 U	52 U 52 U	5.1 U 5 1 U	5 2 U 5 2 U	58 U 58 U	5.2 U 5 2 U	52 U	
4-Chlorotoluene	5.1 U	5.6 U	52 U	51 U 51 U	52 U	58 U	5.2 U	52 U 52 U	
tert-Butylbenzene	5.1 U	5.6 U	5.2 U	510	5.2 U	580	5.2 U	52 U	-
1,2,4-Trimethylbenzene	5.1 U	56 U	5.2 U	510	5.2 U	58 U	520	5.2 U	
sec-Butylbenzene	5.1 U	5.6 U	5.2 U	51 U	5.2 U	58 0	52 U	52 U	1 -
p-isopropyltoluene	51 U	56 U	52 U	51 Ü	5.2 U	5.8 U	5.2 U	5.2 U	
Dibromomethane	5.1 U	56 U	5.2 U	51 U	52 U	5.8 Ú	5.2 U	52 U	}
n-Butylbenzene	51 U	5.6 U	52 U	51 U	52 U	58 Ú	5.2 U	52 U	-
1,2-Dibromo-3-Chloropropane	51 U	56 U	52 U	5.1 U	52 U	58 U	5.2 U	52 U	
1,2,4-Trichlorobenzene	51 U	56 U	52 U	51 U	52 U	58 U	5.2 U	52 U	780000
Hexachlorobutadiene	5.1 U	5.6 U	52 U	51 U	52 U	58 U	52 U	52 U	8000
Naphthalene MTBE	5.1 U 5.1 U	5.6 U	52 U	5.1 U	52 U	5.8 U	5.2 U	52 U	3100000
1,2,3-Trichlorobenzene	5.1 U	56 U 56 U	5 2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	5.8 U 5 8 U	52 U	5.2 U	
Total Confident Conc VOAs (s)	ND ND	4	5,2 U	ND ND	7	7	5.2 U	52 U	10000
ODIROVIN CONTO YORG (3)	, 140			NU NU	·	<u> </u>	ı	<u> </u>	10000

Qualifiers
U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

The concentration given is an approximate value,

8 The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes
--- Not established
ND Not Detected

Table C-2 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1-INTERIOR OF CONCERN VOLATILE ORGANIC COMPOUNDS

			V	OLATILE ORGANIC COMP	POUNDS				
Sample Location	Paint Shop Former DW			Former	Paint Shop Booths and Pair	nt Tunnel			
Sample ID	I10 B01 10-12	I11 B01 1-3'	I11 B01 3-5"	(11 B02 1-3'	I11 B02 3-5	111 B03 1-3'	111 B03 3-5'	f11 B04 1-3'	Comparison Value
Sample Depth (ft)	10-12	1-3	3-5	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/25/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	of Concern
Matrix	, s	S	s	s	s	S	s	S	
Dilution Factor	1.0	10	1.0	10	10	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	1 1]
Chiammathana	1				.	1			
Chloromethane	52 U	53 U	52 U	55 U	51 U	6U	52 U	5 6 U	-
Bromomethane	52 U	53 U	5 2 U	55 U	51 U	6 U	52 U	5 6 U	-
Vinyl Chlonde	5.2 U	53 U	5.2 U	55 U	51 U	60 [5.2 U	5 6 U	300
Chloroethane	5.2 U	5.3 U	52 U	55 U	51 U	60	5.2 U	5 6 U	-
Methylene Chloride	51 J	53 U	52 U	55 U	51 U	6U	5.2 U	5 6 U	85000
Trichlorofluoromethane	5.2 U	53 U	5 2 U	55 U	51 U	6 U	5.2 U	5.6 U	
1,1-Dichloroethane	52 U 52 U	53 U 53 U	5 2 U	55 U	51 U	6 U	52 U	56 U	1000
trans-1,2-Dichloroethene	5.2 U	5.3 U 5.3 U	5.2 U	5.5 U 5.5 U	51 U	6 U	52 U	56 U	7800000
cle-1,2-Dichloroethene	5.2 U	5.3 U	5.2 U 5 2 U	55 U	51 U 51 U	6 U	5.2 U	56 U	1600000
Chloroform	5.2 U	5.3 U	52 U			6 U	5.2 U	56 U	780000
1.2-Dichloroethane	5.2 U	5.3 U		55 U	5.1 U	6 U	5.2 U	56 U	100000
1.1.1-Trichloroethane	52 U	5.3 U	5.2 U	55 U	51 U	6 U	5.2 U	56 U	7000
Carbon Tetrachloride	5.2 U	53 U	52 U 5.2 U	55 U	51 U	6 U	5.2 U	56 U	
Bromodichloromethane	5.2 U	53 U	5.2 U 5.2 U	5.5 U 5.5 U	51 U 5.1 U	6 U	5.2 U	56 U	5000
1,2-Dichloropropane	5.2 U	5.3 U				6 U	5.2 U	56 U	10000
cie-1,3-Dichloropropene	5.2 U	5.3 U	5.2 U	55 U	5.1 U	6 U	5.2 U	56 U	9000
Trichloroethene	5.2 0	5.3 U 53 U	5.2 U	5.5 U	510	6 0	5.2 U	56 U	4000
Dibromochioromethane	5.2 U	5.3 U	5 2 U 5.2 U	55 U 55 U	51 U	6 U	52 U	56 U	58000
1,1,2-Trichloroethane	5.2 0	5.3 U 5.3 U	5.2 U	5.5 U	51 U 51 U	6 U	5.2 U	56 U	
Benzene	5.2 U	5.3 U 6.3 U	5.2 U				5.2 U	56 U	11000
t-1,3-Dichloropropene	5.2 U	5.3 U	5.2 U	55 U 55 U	51 U	6 U	52 U	56 U	22000
2-Chloroethyl Vinyl Ether	5.2 U	5.3 U			5.1 U	6 U	5.2 U	56 U	4000
Bromotorm	520	53 U	5 2 U 5.2 U	5.5 U 5.5 U	5.1 U	6 U	5.2 U	56 U	
Tetrachloroethene	5.2 U	5.3 U	5.2 U	55 U	5.1 U 5.1 U	6 U	5.2 U	56 U	81000
1,1,2,2-Tetrachioroethane	5.2 U	5.3 U	5.2 U	55 U	5.1 U	6 U	5.2 U 5.2 U	5 6 U 5.6 U	12000 3000
Toluene	5.2 U	5.3 U		55 U					
Chlorobenzene	5.2 U	5.3 U	5 2 U 5 2 U	55 U	51 U 51 U	6 U	52 U	56 U	16000000
2-Butanone	52 U	53 U	52 U	55 U	51 11	6 U	5.2 U	56 U	1600000
Ethyl Benzene	5.2 0	5.3 U	5.2 U	55 U	510	"	5.2 U	56 U	7800000
m/p-Xylenes	5.2 U	5.3 U	5.2 U	1 55 U	510		5.2 U	56 U	16000000
o-Xylene	5.2 U	53 U	5.2 U	55 U	510	60	5.2 U	56 U	
Acetone	5.2 U	53 U	52 U	55 U	510	60	5.2 U	56 U	160000000
Carbon Disulfide	52 U	53 U	52 U	55 U	510	6 U	5.2 U	56 U	7800000
4-Methyl-2-Pentanone	5.2 U	53 U	52 U	55 U	51 U	ا ا ا	5.2 U 5.2 U	56 U 56 U	7800000
2-Hexanone	52 U	5.3 U	52 U	55 U	510	80	5.2 U	56 U	-
Styrene	52 U	53 0	52 U	55 U	510	80	5.2 U	56 U	16000000
1,3-Dichlorobenzene	52 U	53 U	5.2 U	55 U	510	ا	52 U		1000000
1,4-Dichlorobenzene	52 0	53 U	5.2 U	55 0	510	80	5.2 U	56 U 56 U	27000
1,2-Dichlorobenzene	5.2 U	53 U	5.2 U	55 U	51 U	80	5.2 U	56 U	7000000
Dichlorodifluoromethane	5.2 U	53 U	5 2 U	55 U	510	80	5.2 U	56 U	/00000
Vinyl Acetale	26 U	26 U	26 U	27 U	25 U	J 30 U	26 U	28 U	78000000
2,2-Dichloropropene	5.2 U	63 U	5 2 U	55 U	51 U	ا تقن	52 U	56 U	7000000
Bromochioromethans	5.2 U	6.3 U	5.2 U	55 U	510	ا نة ا	52 0	56 U	_
1,1-Dichloropropene	5.2 U	5.3 U	5 2 U	5.5 U	510	ا ق	52 U	56 U	_
1,3-Dichloropropane	5.2 U	5.3 U	5.2 U	5.5 U	51 U	ا ق	5.2 U	56 U	_
1,2-Dibromoethane	5.2 U	5.3 U	5.2 U	5.5 U	510	ا قن ا	5.2 U	56 U	l <u> </u>
Isopropylbenzens	5.2 U	53 U	52 U	55 U	510	ا ناه ا	5.2 U	56 Ú	i =
1,2,3-Trichioropropane	5.2 U	53 U	5 2 U	5.5 U	510	ا نَهُ ا	5.2 U	56 U	_
1,1,1,2-Tetrachloroethane	5.2 U	53 U	52 U	5.5 U	510	ا نَّهُ ا	5.2 U	56 U	_
Bromobenzene	5.2 U	53 U	5.2 U	5.5 U	51 0	ا نَّهُ ا	5.2 U	56 U	_
n-propylbenzene	5.2 U	53 U	5.2 U	5.5 U	510	60	5.2 U	56 U	_
2-Chlorotoluene	5.2 U	5.3 U	5.2 U	5.5 U	510	ا نَّهُ ا	5.2 U	5,6 U	_
1,3,5-Trimethylbenzene	5.2 U	53 U	5.2 U	5.5 U	510	ا نَّهُ ا	5.2 U	56 U	_
4-Chiorotoluene	5.2 U	53 U	5.2 U	5.5 U	510	ا مُقَا	5.2 U	56 U	_
tert-Butyfbenzene	5.2 U	53 U	5.2 U	55 U	51 U	6 ŭ	5.2 U	56 U	_
1,2,4-Trimethylbenzene	5.2 U	53 U	5.2 U	55 U	51 U	80	5.2 U	56 U	_
sec-Buly/benzene	5.2 U	53 U	5.2 U	55 Ŭ	510	60	5.2 U	56 U	_
p-Isopropyttoluene	5.2 U	53 U	5.2 U	55 Ŭ	5.1 U	ا ناه ا	5.2 U	56 U	_
Dibromomethane	5.2 U	63 U	52 U	55 U	5,1 0	ا ناه	5.2 U	56 U	
n-Butytbenzene	5.2 U	5.3 Ŭ	5.2 U	5.5 U	5.1 U		5.2 U	56 U	_
1,2-Dibromo-3-Chloropropane	5.2 U	5.3 U	5.2 U	55 U	510	60	5.2 U	5.6 U	_
1,2,4-Trichlorobenzene	5.2 0	53 U	5.2 U	55 U	510	80	5.2 U	5.6 U	780000
Hexachlorobutadiene	52 Ū	5.3 U	52 U	5.5 U	5.1 U	6 U	5.2 U	56 U	8000
Naphthalene	5.2 U	53 U	5.2 U	5.5 U	5.1 U	ا ناه ا	5.2 U	56 U	3100000
MTBE	5.2 U	5.3 U	5.2 U	5.5 U	510	60	5.2 U	56 U	310000
1,2,3-Trichlorobenzene	5.2 U	5.3 U	52 U	5.5 U	5.1 U	ا من	5.2 U	5 6 U	l –
Total Confident Conc. VOAs (s)	10	NO	ND	ND ND	ND ND	ND	NĎ	ND ND	10000

Qualifiers

U The compound was not detected at the indicated concentration.

J Data Indicates the presence of a compound that maste the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

Notes

Hot established
NO Not Detected

Sample Location				Devet Chan Deaths					
			Former	Paint Shop Booths and Pair	nt Tunnel			Former Alodine Room	
Sample ID	I11 B04 3-5'	I11 B05 1-3'	I11 B05 3-5'	I11 B06 0-2	I11 B06 2-4	I11B07 (1.5-3.5)	111807 (3.5-5.5)	I12 B01 1-3'	Companson Value
Sample Depth (ft)	3-5	1-3	3-5	0-2	2-4	15-35	3 5-5 5	1-3	for Areas
Sampling Date	09/22/00	09/28/00	09/28/00	10/16/00	10/16/00	10/20/00	10/20/00	09/21/00	of Concern
Matrix	\$	s	s	s	s	s	s	l s	
Dilution Factor	10	10	10	10	1,0	10	10	1.0	1
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	5.1 U	5.9 U	51 U	51 U	5.1 U	5.1 U	52 U	53 U	
Bromomethane	5 1 U	5 9 U	5 1 U	51 U	510	5.1 U	52 U	53 0	_
Vinyl Chloride	51 U	59 U	51 U	51 U	51 U	5.1 U	5 2 U	53 U	300
Chloroethane	51 U	59 U	51 U	5 1 U	510	51 U	5 2 U	53 U	
Methylene Chloride	51 U	39 J	22 J	51 บั	510	23.1	2 J	53 Ü	85000
Trichlorofluoromethane	51 Ú	5 9 U	5 1 U	51 U	51 U	51 U	52 Ü	53 U	-
1,1-Dichloroethene	5.1 U	5.9 U	5.1 U	51 U	5.1 U	5,1 U	52 U	53 U	1000
1,1-Dichloroethane	51 U	59 U	51 U	51 U	51 U	51 U	5.2 U	53 U	7800000
trans-1,2-Dichloroethene	51 U	59 U	51 U	51 U	514	51 U	52 U	53 U	1600000
cis-1,2-Dichloroethene	51 U	59 U	5.1 U	51 U	5.1 U	5.1 U	52 U	53 U	
Chloroform	5.1 U	5.9 U	51 U	51 U	5.1 U	51 U	52 U	5.3 U	780000 100000
1,2-Dichloroethane	5.1 U	59 U	51 U	51 U					
1,1,1-Trichloroethane	51 U	59 U	51 U	510	51 U 51 U	5,1 U	52 U	53 U	7000
Carbon Tetrachloride	51 U	5.9 U	51 0	51 U 5.1 U	51 U 51 U	51 U	5.2 U	53 U	
Bromodichloromethane	51 U	5.9 U	51 U	5.1 U 51 U	51 U		5.2 U	53 U	5000
1,2-Dichioropropane	510	59 U	5.1 U			5.1 U	52 U	53 U	10000
cis-1,3-Dichloropropene	5.1 U	59 U	5.1 U	5.1 U	51 U	5.1 U	5.2 U	5.3 U	9000
Trichloroethene	5.1 U	59 U		51 U	51 U	51 U	52 U	5.3 U	4000
Dibromochloromethane	5.1 U		51 U	51 U	51 U	5.1 U	52 U	53 U	58000
1.1.2-Trichloroethane	51 U	5.9 U 5.9 U	51 U	51 U	51 U	51 U	52 U	53 U	
Benzene	51 U 1	5.9 U	51 U	51 U	51 U	5.1 U	52 U	53 U	11000
			51 U	5.1 U	5.1 U	51 U	5.2 U	5.3 U	22000
t-1,3-Dichloropropene	5.1 U	5.9 U	5.1 U	5.1 U	5.1 U	51 U	5.2 U	53 U	4000
2-Chloroethyl Vinyl Ether Bromoform	5.1 U	5.9 U	51 U	51 U	51 U	5.1 U	5.2 U	53 U	-
	5.1 U	5.9 U	5.1 U	51 U	510	51 U	5.2 U	53 ∪	81000
Tetrachloroethene	510	59 U	51 U	5.1 U	5.1 U	5.1 U	5 2 U	53 U	12000
1,1,2,2-Tetrachloroethane	51 U	5 9 U	5.1 U	5.1 U	51 U	5.1 U	52 U	53 U	3000
Toluene	51 U	5 9 U	5.1 U	5.1 U	51 U	51 U	52 U	53 U	16000000
Chlorobenzene	5.1 U	5.9 U	5.1 U	5.1 U	510	51 U	5.2 U	5.3 U	1600000
2-Butanone	51 U	5.9 U	5.1 U	5.1 U	5.1 U	51 U	5.2 U	53 U	
Ethyl Benzene	51 U	5 9 U	51 U	51 U	510	5.1 U	5.2 U	, 53 U	7800000
m/p-Xylenes	51 U	59 U	51 U	51 U	510	5.1 U	5.2 U	53 U	160000000
o-Xylene	510	59 U	51 U	51 U	51 U	51 U	5 2 U	53 U	160000000
Acetone	51 U	59 U	51 U	51 U	51 U	51 U	13	53∪	7800000
Carbon Disulfide	51 U	5 9 U	51 U	51 U	510	51 U	52 U	5.3 U	7800000
4-Methyl-2-Pentanone	51 U	59U (51 U	51 U	5.1 U	51 U	5.2 U	53 U	_
2-Hexanone	5.1 U	59 U	5.1 U	5.1 U	5.1 U	51 U	5 2 U	5,3 U	
Styrene	5.1 U	5.9 U	51 U	5,1 U	51 U	51 U	52 U	53 U	16000000
1,3-Dichlorobenzene	51 U	59 U	51 U	5.1 U	5.1 U	5.1 U	5 2 U	53 U	
1,4-Dichlorobenzene	51 U	59 U	5.1 U	5.1 U	5.1 U	51 U	5.2 U	53 U	27000
1,2-Dichlorobenzene	51 U	5.9 U	51 U	5.1 U	5,1 U	51 U	5.2 U	53 U	7000000
Dichlorodifluoromethane	51 U	5.9 U	51 U	51 U	[51 U	51 U	5.2 U	53 U	_
Vinyl Acetate	26 U	29 U	25 U	26 U	26 U	26 U	26 U	26 U	78000000
2,2-Dichloropropane	51 U	5 9 U	5.1 U	51 U	51U	51 U	5.2 ป	53 U	_
Bromochloromethane	51 U	5 9 U	51 U	51 U	51 U	5.1 U	5.2 U	53 U	_
1,1-Dichloropropene	5.1 U	5 9 U	5 1 U	51 ป	5.1 U	51 U	5.2 ป	53 U	_
1,3-Dichloropropane	5.1 U	5.9 U	5.1 U	5.1 U	5.1 U	5 1 U	5.2 U	5.3 U	
1,2-Dibromoethane	5.1 U	5.9 U	51 U	51 U	51 U	51 U	5.2 U	53 ∪	_
Isopropylbenzene	51 U	5 9 U	51 U	51 U	51 U	51 U	5.2 U	53 U	_
1,2,3-Trichloropropane	51 U	59 U	5.1 U	51 U	51 U	5.1 U	52 U	53 Ú	
1,1,1,2-Tetrachloroethane	51 U	59 U	51 U	51 U	51 U	5.1 U	52 U	53 U	
Bromobenzene	51 U	59 U	51 U	51 U	51 U	5.1 U	5.2 U	5.3 U	
n-propylbenzene	5.1 U	5.9 U	5 1 U	5,1 U	51 U	51 U	5.2 U	53 U	
2-Chlorotoluene	51 U	5.9 U	51 U	51 U	51 Ū	5.1 U	52 U	5.3 U	
1,3,5-Trimethylbenzene	5.1 U	5.9 U	5.1 U	5,1 U	5.1 Ū	51 U	5.2 U	5.3 U	
4-Chlorotoluene	5.1 U	5.9 U	5.1 U	5.1 U	51 U	5.1 U	5.2 U	53 U	_
tert-Butylbenzene	5.1 U	59 U	5.1 U	51 U	510	5.1 U	5.2 U	53 U	
1,2,4-Trimethylbenzene	51 U	59 บั	5.1 U	5.1 U	5.1 U	5.1 U	5.2 U	5,3 U	_
sec-Butylbenzene	5.1 U	5.9 U	5.1 U	51 U	51 U	5.1 U	5.2 U	5.3 U	
p-Isopropyltoluene	51 U	59 U	51 U	5.1 U	5.1 U	51 U	5.2 U	53 U	
Dibromomethane	5.1 U	5.9 U	5.1 U	5.1 U	5.1 U	51 U	5.2 U	5.3 U	
n-Butylbenzene	51 U	59 U	5.1 U	51 U	5.1 U	51 U	5.2 U	5.3 U	_
1,2-Dibromo-3-Chloropropane	51 U	5.9 U	51 U	5.1 U	5.1 U	5.1 U	52 U	5.3 U	l =
1,2,4-Trichlorobenzene	5.1 U	59 Ŭ	51 U	51 U	5.1 U	5.1 U	52 U	5.3 U	780000
Hexachlorobutadiene	5.1 U	59 U	5.1 U	510	5.1 U	5.1 U	52 U	5.3 U	8000
Naphthalene	5.1 U	5.9 U	5.1 U	510	5.1 U	5.1 U	5.2 U	5.3 U 5.3 U	3100000
MTBE	5.1 U	5.9 U	5.1 U	5.1 U	51 U	5.1 U	5.2 U	5.3 U	310000
1,2,3-Trichlorobenzene	51 U	59 U	51 U	5.1 U	51 U	5.1 U	5.2 U	5.3 U	ı =
Total Confident Conc VOAs (s)	ND	77	2	ND ND	ND ND	2.3			10000
					i iin	2.3	15	ND ND	10000

Qualifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Sample Location Sample ID	I12 B01 3-6	112 B02 1-3'	I12 B02 3-5	Former Aid 112 B03 1-3*	dine Room	I12 B04 1-3'	112 804 3-5	*** ***	
Sample Depth (ft)	3-5	112 802 1-3	3-5	112 803 1-3	I12 B03 3-5'	112 804 1-3	112 804 3-6	I12 B05 1-3* 1-3	Comparison Value for Areas
Sampling Date	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	of Concern
Matrix	S	S	S	S	S	s	s	S	0
Dilution Factor	10	1.0	10	1.0	1.0	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	υ g/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	5.1 U	5.2 U	5.2 บ	5.2 U	5.2 U	51 U	5.2 U	5.2 U	_
Bromomethane	51 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	l
Vinyl Chloride	51 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	300
Chioroethane	51 U	5.2 U	5.2 U	5.2 U	5.2 U	51 U	5.2 U	5.2 U	-
Methylene Chloride	5.1 U	52 U	5.2 U	77	8.8	5.1 U	5.2 U	5.2 U	85000
Trichloroffuoromethane 1,1-Dichloroethene	5.1 U 5.1 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.1 U 5 1 U	5.2 U 5.2 U	5.2 U 5.2 U	1000
1,1-Dichloroethane	5.10	5.2 U	5.2 U	5.2 U	5.2 U	51U	52 U	5.2 U	7800000
trans-1,2-Dichloroethene	5.1 U	5.2 Ŭ	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	1600000
cis-1,2-Dichloroethens	5.1 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	780000
Chloroform	5.1 U	5.2 U	5.2 U	5.2 U	5.2 U	510	5.2 U	5.2 U	100000
1,2-Dichloroethane	5.1 U	5.2 U	52 U	5.2 U	5.2 U	51 U	5.2 U	52 U	7000
1,1,1-Trichloroethane	510	5.2 U	5.2 U	5.2 U	5.2 U	510	5.2 U	52 U	
Carbon Tetrachloride Bromodichloromethane	5.1 U 5 1 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.1 U 5.1 U	5.2 U 5.2 U	5.2 U 5.2 U	5000 10000
1,2-Dichloropropans	510	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	9000
cis-1,3-Dichloropropene	5.1 U	5.2 Ŭ	5.2 U	5.2 U	5.2 U	51 U	5.2 U	52 U	4000
Trichioroethene	51 U	5.2 Ú	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5 2 U	58000
Dibromochioromethane	5.1 U	5.2 U	5.2 U	5.2 U	5.2 U	510	5.2 U	5.2 U	-
1,1,2-Trichloroethane	51 U	5.2 U	5.2 U	52 U	5.2 U	5.1 U	52 U	5 2 U	11000
Benzene t-1,3-Dichloropropene	5.1 U 5.1 U	5.2 U 5.2 U	52 U 52 U	5.2 U 52 U	5.2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	5.2 U 5.2 U	22000 4000
2-Chloroethyl Vinyl Ether	510	5.2 U	5.2 U	52 U	5.2 U	5.1 U	52 U	52 U	••••
Bromoform	51 U	5.2 U	52 U	5.2 U	5.2 U	5.1 U	52 U	52 U	81000
Tetrachioroethene	5 1 U	5.2 U	5.2 U	5.2 U	52 U	51U	5.2 U	5.2 U	12000
1,1,2,2-Tetrachloroethane	5.1 U	5.2 U	5.2 U	5.2 U	5.2 U	510	5.2 U	5 2 U	3000
Toluene	51 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	52 U	16000000
Chlorobenzene 2-Butanone	5.1 U 5.1 U	5.2 U 5.2 U	52 U 52 U	5.2 U	52 U	5.1 U 5 1 U	5.2 U	52 U	1600000
Ethyl Benzene	5.1 U	5.2 U	52 U	5.2 U 5.2 U	5.2 U 52 U	51 U 5.1 U	5.2 U 5.2 U	52 U 52 U	7800000
m/p-Xylenes	5.1 U	45 J	5.2 U	5.2 U	5.2 U	51 U	52 U	52 U	160000000
o-Xylene	5.1 U	5.2 U	52 U	5.2 U	52 U	5.1 U	5.2 U	5.2 U	160000000
Acetone	5.1 U	5.2 U	5.2 U	5.2 U	52 U	51 U	5.2 U	5.2 U	7800000
Carbon Disulfide	51 U	5.2 U	5 2 U	52 U	5.2 U	51 U	5.2 U	5 2 U	7800000
4-Methyl-2-Pentanone 2-Hexanone	5 1 U 5.1 U	5.2 U	5.2 U	5.2 U	52 U	510	5.2 U	5.2 U	_
Styrene	5.1 U	5.2 U 5.2 U	52 U 52 U	5.2 U 5.2 U	52 U 5.2 U	5.1 U 5 1 U	5.2 U 5.2 U	52 U	16000000
1,3-Dichlorobenzene	51 U	52 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U 5 2 U	1800000
1,4-Dichlorobenzene	5.1 U	5.2 U	52 U	52 U	52 U	510	5.2 U	52 U	27000
1,2-Dichlorobenzene	5.1 U	5.2 U	5 2 U	5.2 U	5.2 Ū	51 U	5.2 U	5.2 U	7000000
Dichlorodifluoromethane	51 U	5.2 U	52 U	5.2 U	52 U	510	5.2 U	5.2 U	_
Vinyl Acetate	26 U	26 U	26 U	26 U	26 U	25 ∪	26 U	26 U	78000000
2,2-Dichloropropene	51 U	5.2 U	5.2 U	5.2 U	5.2 U	510	5.2 U	5.2 U	-
Bromochloromethane 1,1-Dichloropropena	5.1 U 5.1 U	5.2 U 5.2 U	52 U 52 U	5 2 U 5.2 U	5.2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	5 2 U 5 2 U	=
1,3-Dichioropropene	510	5.2 U	52 U	5.2 U	5.2 U	510	52 U	5.2 U	=
1,2-Dibromoethane	51 U	5.2 U	5.2 U	5.2 U	5.2 U	510	52 U	52 U	_
Isopropylbenzene	51 U	5.2 U	5.2 U	52 U	5.2 U	5.1 U	52 U	52 U	_
1,2,3-Trichloropropane	51 U	5.2 U	52 U	52 U	5.2 U	5.1 U	5.2 U	5 2 U	_
1,1,1,2-Tetrachioroethane	51 U	5.2 U	52 U	52 U	52 U	5.1 U	5.2 U	5 2 U	
Bromobenzene n-propylbenzene	5.1 U 5 1 U	5.2 U 5.2 U	5.2 U 52 U	5.2 U 5 2 U	5.2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	5.2 U 5.2 U	_
2-Chlorotoluene	5.1 U	5.2 U	52 U	5.2 U	52 U	510	5.2 U	5.2 U	_
1,3,5-Trimethylbenzene	51 U	5.2 U	52 U	5.2 U	5.2 U	51 U	52 U	5.2 U	-
4-Chiorotoluene	5.1 U	5.2 U	52 Ú	5.2 U	5.2 U	51 U	5.2 U	5.2 U	_
tert-Butylbenzene	5.1 U	5.2 Ū	52 Ü	5.2 U	5.2 U	51 Ü	5.2 U	5.2 U	-
1,2,4-Trimethylbenzene	51 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	52 U	
sec-Butylbenzene	5.1 U 5,1 U	5.2 U	5.2 U	52 U	5.2 U	5.1 U	5.2 U	5.2 U	_
p-isopropyltoluens Dibromomethans	5.1 U	5.2 U 5.2 U	52 U 52 U	5.2 U 5.2 U	5.2 U 5.2 U	5.1 U 5.1 U	5.2 U 5.2 U	5.2 U 5.2 U	=
n-Butylbenzens	5.1 U 5.1 U	5.2 U	5.2 U	5.2 U 5.2 U	5.2 U	5.1 U 5.1 U	52 U	5.2 U 5.2 U	_
1,2-Dibromo-3-Chioropropane	5.1 U	52 U	5.2 U	5.2 U	5.2 U	510	5.2 U	5.2 U	1 =
1,2,4-Trichlorobenzene	5.1 Ú	5.2 U	5.2 U	5.2 U	5.2 U	5.1 Ŭ	5.2 U	5.2 U	780000
Hexachiorobutadiene	5.1 U	5.2 U	5 2 U	52 U	52 U	5.1 U	5.2 U	5.2 U	8000
Naphthalene	5.1 U	5.2 U	52 U	5.2 U	5.2 U	51 U	5.2 U	5.2 U	3100000
MTBE	5.1 U 5.1 U	5.2 U	5.2 U	5.2 U	5.2 U	5.1 U	5.2 U	5.2 U	_
1,2,3-Trichlorobenzene Total Confident Conc. VOAs (s)	NO NO	52 U	52 U ND	5.2 U	52 U	51 U ND	52 U ND	52 U ND	10000
TOWN CONTROPIR CORE. TORE (8)			HD NO	<u> </u>		I NU	- NU	ND.	1000

Citatifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that mosts the identification critaria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

Notes

— Not established

NO: Not Detected

C2				OLATILE ORGANIC COM	POUNDS				
Sample Location	Former Alodine Room		Former Downs	pout Dry Wells			Former Heat Treat Room		Y
Sample ID	I12 B05 3-5	I13 B01 2-4	I13 B01 8-9	I13B02(2-4)	113B02 (6-7)	116 B02 1-3'	I16B02 (3.5-5.5)	I16B02 (5.5-7.5)	Comparison Value
Sample Depth (ft)	3-5	2-4	8-9	2-4	6-7	1-3	3,5-5 5	55-75	for Areas
Sampling Date	09/21/00	10/17/00	10/17/00	10/20/00	10/20/00	09/21/00	10/19/00	10/19/00	of Concern
Matrix	S	S	S	S	S	l s	S	s	Ī
Dilution Factor Units	10	1.0	10	1.0	1.0	10	1 10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
	i								
Chloromothous							i		
Chloromethane	52 U	55 U	5.1 U	5 2 U	5 2 U	52 U	53 ป	52 U	I
Bromomethane	52 U	55 U	51 U	52 U	5.2 U	52 U	53 บ	52 U	1
Vinyl Chlonde	52 U	550	5.1 U	5 2 U	52 U	52 U	5.3 ∪	52 U	300
Chloroethane	5.2 U	5.5 U	51 U	5 2 U	52 U	52 U	53 ∪	52 U	1
Methylene Chloride	8.1	22 JB	3 4 JB	5 2 U	49 J	5.2 U	5.3 ∪	4 J	85000
Trichlorofluoromethane	52 U	55 U	5.1 U	5 2 U	52 U	52 U	53 U	52 U	
1,1-Dichloroethene	52 U	55 U	5 1 U	5 2 U	52 U	52 U	53 U	5 2 U	1000
1,1-Dichloroethane	5.2 U	55 U	5 1 U	5 2 U	52 U	52 U	5.3 U	5 2 U	7800000
trans-1,2-Dichloroethene	52 U	55 U	51 U	5 2 U	52 U	52 U	53 ป	5.2 U	1600000
cis-1,2-Dichloroethene	52 U	5.5 U ∤	5.1 U	5 2 U	52 U	5.2 U	53 Ū	52 U	780000
Chloroform	52 U	550	51 U	5 2 U	5.2 U	52 U	5.3 U	52 U	100000
1,2-Dichloroethane	5.2 U	550	51 U	5 2 U	52 U	52 U	53 U	5.2 U	7000
1,1,1-Trichloroethane	5.2 U	55 U	5 1 U	5.2 U	52 U	52 U	5.3 U	5 2 U	1 -
Carbon Tetrachloride	52 U	55 U	5.1 U	5,2 U	52 U	52 U	5.3 U	52 U	5000
Bromodichloromethane	5.2 U	55 U	5 1 U	5 2 U	5.2 U	52 U	5.3 U	5.2 U	10000
1,2-Dichloropropane	52 U	5.5 U	51 U	5 2 U	52 U	52 U	53 U	52 U	9000
cis-1,3-Dichloropropene	5.2 U	55 U	51 U	5 2 U	52 U	52 U	53 U	52 U	4000
Trichloroethene	į 5.2 U	55 U	5.1 U	5 2 U	52 U	52 U	53 U	52 U	58000
Dibromochioromethane	5.2 U	55 U	51 U	5 2 U	52 U	52 U	5.3 U	52 U	00000
1,1,2-Trichloroethane	52 U	55 U	51 U	5.2 U	52 U	52 U	53 U	52 U	11000
Benzene	520	55 U	51 U	5 2 U	52 U	52 U	53 U	52 U	22000
t-1,3-Dichloropropene	52 U	550	51 U	5 2 U	52 Ū	52 U	53 U	52 U	4000
2-Chloroethyl Vinyl Ether	52 U	5.5 U	5 1 U	5 2 U	52 U	520	53 Ū	5 2 U	1
Bromoform	5.2 ∪	55 U	51 U	5 2 U	5.2 U	52 U	53 Ŭ	5 2 U	81000
Tetrachloroethene	52 U	5.5 U	5.1 U	5 2 U	52 U	52 U	53 U	5.2 U	12000
1,1,2,2-Tetrachloroethane	52 U	55 U	5.1 U	5 2 U	52 U	52 U	5.3 U	5.2 U	3000
Toluene	52 U	55 U	51 U	5.2 U	52 U	52 U	53 U	52 U	16000000
Chlorobenzene	52 U	55U	51 U	5 2 U	52 U	52 U	53 Ū İ	52 U	1600000
2-Butanone	52 U	5.5 U	51 U	5 2 U	52 U	52 U	53 Ū	52 U	
Ethyl Benzene	5.2 U	55 U	5.1 U	5 2 U	52 ∪	5.2 U	53 U	5.2 U	7800000
m/p-Xylenes	52 U	55 U	51 U	5 2 U	52 U	52 U	53 U	5 2 U	160000000
o-Xylene	52 U	5.5 U	51 ปี	5.2 U	52 U	52 U	53 U	52 U	160000000
Acetone	52 U	55 U	51 U	94	52 U	52 U	12	52 U	7800000
Carbon Disulfide	52 U	5.5 U	51 U	5 2 U	5.2 U	52 U	53 U	5 2 U	7800000
4-Methyl-2-Pentanone	5.2 U	55 U	51 U	5 2 U	5.2 U	52 U	5.3 U	5 2 U	-
2-Hexanone	5.2 U	55 U	51 U	5 2 U	52 U	52 U	5.3 U	5 2 U	l –
Styrene	5.2 U	55 U	51 U	5 2 U	52 U	5.2 ∪	53 U	5 2 U	16000000
1,3-Dichlorobenzene 1,4-Dichlorobenzene	52 U	55 U	51 U	5 2 U	52 U	52 ป	53 U	52 U	l
	52 U	55 U	5.1 U	5 2 U	52 U	5.2 U	5 3 U	5 2 U	27000
1,2-Dichlorobenzene	52 U	55 U	51 U	5 2 U	52 U	52 U	5.3 U	5 2 U	7000000
Dichlorodifluoromethane	52 U	55 U	5,1 U	5 2 U	52 U	52 U	53 U	5 2 U	
Vinyl Acetate 2,2-Dichloropropane	26 U	28 U	26 U	26 U	26 U	26 U	26 U	26 U	78000000
	5.2 U	55 U	51 U	5 2 U	5 2 U	52 U	5.3 U	5 2 U	
Bromochloromethane 1,1-Dichloropropene	5.2 U	55 U	51 U	5 2 U	5.2 U	5 2 U	53 U	5 2 U	l –
	52 U	55 U	5.1 U	52 U	52 U	5 2 U	53 U	5 2 U	-
1,3-Dichloropropane 1,2-Dibromoethane	5.2 U	55 U	51 U	5 2 U	52 U	5 2 U	53 U	5.2 U	_
lsopropylbenzene	52 U	55 U	51 U	5 2 U	5,2 U	5 2 U	53 ∪	5.2 U	
1,2,3-Trichloropropane	52 U	5.5 U	51 U	5 2 U	52 U	5.2 U	53 U	5 2 U	l
	5.2 U	55 U	51 U	5 2 U	52 U	52 U	53 U	5 2 U	
1,1,1,2-Tetrachloroethane	52 U	5.5 U	51 U	5 2 U	52 U	52 U	53 U	5 2 U	-
Bromobenzene	52 U	55 U	5.1 U	5 2 U	52 U	52 U	53 ∪	5.2 U	
n-propylbenzene 2-Chlorotoluene	52 U	55 U	5.1 U	5.2 U	5 2 U	52 U	5,3 U	5 2 U	_
4.2.5 Trimothydbassass	52 U	5.5 U	51 U	5 2 U	52 U	52 U	53 ∪	5.2 U	_
1,3,5-Trimethylbenzene	5.2 U	55 U	51 U	5 2 U	52 U	5 2 U	53 ป	5.2 U	l –
4-Chlorotoluene	52 U	55 U	51 U	52 U	5.2 U	52 U	53 U	5 2 U	_
tert-Butylbenzene	52 U	55 U	51 U	5.2 U	52 U	5 2 U	5,3 U	5.2 U	l –
1,2,4-Trimethylbenzene	52 U	55 U	51 U	5 2 U	52 U	5.2 U	53 U	5.2 U	-
sec-Butylbenzene	5.2 U	5.5 U	51 U	5 2 U	5 2 U	5 2 U	53 U	5 2 U	-
p-Isopropyttoluene	5.2 U	55 U	51 U	5 2 U	52 U	52 U	53 U	5.2 U	l –
Dibromomethane	5.2 U	55 U	51 U	5 2 U	52 U	5 2 U	5,3 U	5 2 U	l –
n-Butylbenzene	5.2 U	5.5 U	51 U	5 2 U	5.2 ป	5 2 U	5.3 U	52 U	l
1,2-Dibromo-3-Chioropropane	5.2 U	5.5 U	5.1 U	5.2 ป	5.2 U	5.2 U	53 U	52 U	
1,2,4-Trichlorobenzene	5.2 U	55 U	5.1 U	5 2 U	52 U	5.2 U	5.3 U	52 U	780000
Hexachlorobutadiene	5.2 U	55 U	51 U	5 2 U	52 U	5.2 U	5.3 U	5.2 U	8000
Naphthalene	5.2 U	5.5 U	51 U	5 2 U	5.2 U	5.2 U	53 U	5 2 U	3100000
MTBE	5.2 U	55 U	51 U	5.2 U	5.2 U	5.2 U	53 U	5.2 U	_
1,2,3-Trichlorobenzene Total Confident Conc VOAs (s)	52 U	5.5 U	5,1 U	52 U	52 U	5.2 U	53 U	5 2 U	
TOTAL CAMBORILLONG VUASIS)	8	2	3	94	49	ND	12	4	10000

Otto Inferts

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound has meets the identification criteris. The result is less than the quantification limit but greater than zero The concentration given is an approximate value.

8 The analyte was found in the interactory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes

-- Not established
ND Not Detected

Sample Location		Former Daint	Mixing Room	OLATILE ORGANIC COMP	Material S	ant Dane	Five Former Machine Pits	
Sample ID	117 B01 1-3'	117 B01 3-6	117 B02 1-3'	I17 B02 3-5	119 B01 1-3'	119 B01 3-5'	121 B01 2-4	Comparison Value
Sample Depth (ft)	1-3	3-5	1-3	3-5	1-3	3-5	2-4	for Areas
Sampling Date	09/26/00	09/26/00	09/26/00	09/26/00	09/28/00	09/28/00	10/04/00	of Concern
Matrix	s	s	S	S	s	s	s	0. 00
Dilution Factor	1.0	10	1.0	10	10	10	1.0	
Units	ug/kg	υg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
.	!							
Chloromethane	64 U	51 U	54 U	5 1 U	52 U	53 U	5.1 U	-
Bromomethane	64 U	51 U	54 U	5.1 U	5.2 U	53 U	5.1 U	
Vinyl Chloride Chloroethane	64 U 64 U	5.1 U 5.1 U	54 U	510	52 U	5.3 U	51 U	300
Methylene Chloride	7.3	65	5.4 U 7	5.1 U 6.5	52 U 33 J	53 U 19 J	5 1 U 5.1 U	85000
Trichlorofluoromethane	6.4 U	510	5 4 U	51 U	5.2 U	53 U	5.1 U	85000
1,1-Dichloroethene	84 U	5.1 U	54 U	5.1 U	52 U	53 U	5.1 U	1000
1,1-Dichloroethane	64 0	1 51 U	54 U	5 1 U	5.2 U	53 U	51 U	7800000
trans-1,2-Dichloroethene	64 U	5.1 U	5.4 Ú	5.1 U	5.2 U	รังนั	5,1 Ū	1600000
cle-1,2-Dichloroethene	6.4 U	5.1 U	54 U	51 U	5.2 U	5.3 Ú	5.1 U	780000
Chloroform	64 U	51 U	54 U	5.1 U	5.2 U	53 U	5.1 U	100000
1,2-Dichloroethane	64 U	51 U	5.4 U	51 U	52 U	83 U	5 1 U	7000
1,1,1-Trichloroethane	64 U	51 U	54 U	51 U	52 U	5.3 U	51 U	-
Carbon Tetrachloride Bromodichloromethane	6.4 U 6.4 U	5.1 U	5.4 U	51 U	5.2 U	5.3 U	51 U	5000
1.2-Dichloropropane	840	5.1 U 5 1 U	5.4 U 5.4 U	5 1 U 5.1 U	5.2 U 5.2 U	5.3 U 5.3 U	5 1 U 5.1 U	10000 9000
cis-1.3-Dichloropropene	64 U	51 U	5.4 U	5,1 U 5,1 U	5.2 U	5.3 U 53 U	5.1 U 5 f U	4000
Trichloroethene	64 U	5.1 U	5.4 U	5.1 U	52 U	5,3 U	5.1 U	58000
Dibromochioromethane	6.4 U	8.1 U	5.4 U	51 U	5.2 U	5.3 U	5.1 U	
1,1,2-Trichloroethane	6.4 U	5.1 U	5.4 U	5.1 U	5.2 U	53 Ü	5.1 U	11000
Benzene	64 U	51 U	5.4 U	5.1 U	5.2 Ŭ	5.3 U	5 i Ü	22000
1-1,3-Dichloropropene	6.4 U	5.1 U	5.4 U	51 U	5.2 U	5.3 Ú	5.1 U	4000
2-Chloroethyl Vinyl Ether	6.4 U	51 U	5.4 U	5.1 U	5.2 U	5,3 U	5.1 U	
Bromoform	64 0	5.1 U	5.4 U	51 U	5.2 U	5,3 U	5.1 U	81000
Tetrachioroethene 1,1,2,2-Tetrachioroethane	84 U 84 U	5.1 U 5.1 U	54 U	5.1 U	5.2 U	53 U	5.1 U	12000
Toluene	8.4 U	5.1 U	54 U 54 U	51 U 51 U	5.2 U	53 U	51 U	3000 16000000
Chlorobenzene	84 U	510	5.4 U	510	52 U 5.2 U	5.3 U 3 C C	5.1 U 5.1 U	1600000
2-Butanone	64 U	5.1 U	5.4 U	510	52 U	53 U	5.1 U	10
Ethyl Benzene	64 Ŭ	5.1 U	5.4 U	51 Ŭ	52 U	53 Ú	5.1 U	7800000
m/p-Xylenes	64 Ü	51 U	5.4 U	5.1 U	5.2 U	53 Ú	5.1 U	160000000
o-Xytene	64 U	5.1 U	5.4 U	510	5.2 U	53 U	5.1 U	160000000
Acetone	6.4 U	51 U	54 U	5.1 U	5.2 U	5.3 ∪	5.1 U	7800000
Carbon Disuifide	64 U	5.1 U	54 U	5.1 U	5.2 U	53 U	5.1 U	7800000
4-Methyl-2-Pentanone 2-Hexanone	64 U 64 U	5.1 U 51 U	54 U	5.1 U	5.2 U	5.3 U	51 U	-
Styrene	64 U	5.1 U	5.4 U 54 U	5.1 U 5 1 U	5.2 U	5.3 U 5 3 U	5.1 U	16000000
1,3-Dichlorobenzene	6.4 U	510	5.4 U	51 U	5.2 U 5.2 U	5.3 U	5.1 U 5.1 U	1800000
1,4-Dichlorobenzene	84 U	1 ši u	5.4 U	810	5.2 U	5.3 U	5.1 U	27000
1,2-Dichlorobenzene	6.4 U	51 Ŭ	5.4 U	51 U	5.2 U	53 U	8.1 U	7000000
Dichlorodifluoromethane	6.4 U	51 Ü	5.4 U	5.1 U	5.2 U	53 U	5.1 U	-
Vinyl Acetate	32 U	26 ∪	27 U	26 U	26 U	27 U	26 U	78000000
2,2-Dichloropropane	6.4 U	51 U	54 U	5.1 U	5.2 U	5.3 U	5.1 U	-
Bromochloromethane	64 U	6.1 U	5.4 U	5.1 U	5.2 U	5.3 U	5.1 U	_
1,1-Dichloropropene	6.4 U	5.1 U	5.4 U	61 U	5.2 U	53 U	5.1 U	-
1,3-Dichioropropane 1,2-Dibromoethane	6.4 U 6.4 U	5.1 U 5.1 U	5,4 U 5,4 U	5.1 U 5.1 U	5.2 U	5.3 U	51 U	-
Isopropythenzene	6.4 U	5.1 U	5.4 U	5.1 U	5.2 U 5.2 U	5,3 U 5,3 U	51 U 51 U	=
1.2.3-Trichloropropane	6.4 U	5.1 U	54 U	51 U	5.2 U	5.3 U	5.1 U	
1,1,1,2-Tetrachloroethane	6.4 U	5.1 Ŭ	54 U	510	5.2 U	53 U	5.1 U	=
Bromobenzene	64 U	5.1 U	5.4 U	510	5.2 U	53 U	510] _
n-propytberizene	6.4 U	j 5.1 U	5.4 U	51 U	5.2 U	53 U	5.1 U	_
2-Chlorotoluene	6.4 U	5.1 U	54 U	5.1 U	5.2 U	5.3 Ū	5.1 Ü	<u>-</u>
1,3,5-Trimethylbenzene	6.4 U	5.1 U	54 U	51 U	5.2 U	53 U	5.1 U	_
4-Chlorotoluene	64 U	5.1 U	54 U	5.1 U	5.2 U	5.3 ∪	510	_
tert-Butyfbenzene	6.4 U	5.1 U	5.4 U	5.1 U	52 U	53 U	51 U	-
1,2,4-Trimethythenzene	64 U	5.1 U	54 U	5.1 U	5.2 U	53 U	5.1 U	
sec-Butyfbenzene p-leopropyfloluene	6.4 U 6.4 U	5.1 U 5.1 U	54 U 54 U	5.1 U 5.1 U	5.2 U	53 U	510	-
Dibromomethane	6.4 U	5.1 U	5.4 U	5.1 U 5.1 U	5.2 U 5.2 U	53 U 5.3 U	5.1 U 5.1 U	=
n-Butylbenzene	8.4 U	5.1 U	5.4 U	5.1 U 5.1 U	5.2 U 5.2 U	5,3 U 5,3 U	5.1 U 5.1 U	i =
1,2-Dibromo-3-Chioropropane	1 64 0	5.1 U	5.4 U	5.1 U	5.2 U	5.3 U	5.1 U	I =
1,2,4-Trichlorobenzene	6.4 U	5.1 U	5.4 U	5.1 U	5.2 U	53 U	51 U	780000
Hexachiorobutadiene	6.4 U	5.1 Ū	54 U	5.1 U	5.2 U	5.3 U	5.1 Ŭ	8000
Naphthalene	6.4 U	5.1 U	5.4 U	5.1 U	5.2 U	4.7 J	5.1 U	3100000
MTBE	6.4 U	5.1 U	54 U	5.1 U	5.2 U	5.3 U	5.1 U	-
1,2,3-Trichlorobenzene	64 U	5,1 U	5,4 U	51 U	5.2 U	5.3 U	51 U	
Total Confident Conc. VOAs (s)	7	7	7	7	3	7	ND	10000

The conventration given in a confidence of the indicated concentration.

J Data indicates the presence of a compound that mosts the identification enterts. The result is less than the quantitation limit but greater than zero.

The concentration given is an appreciately value.

			· · · · · · · · · · · · · · · · · · ·	OLATILE ORGANIC COMP					
Sample Location					Machine Pits				
Sample ID Sample Depth (ft)	121 B01 4-6 4-6	121 B02 1-3' 1-3	121 B02 3-5'	I21 B03 5-7	121 B03 7-9	121 804 1-3	121 B04 3-5	121 B05 1-3"	Comparison Value
Sampling Date	10/04/00	10/03/00	3-5 10/03/00	5-7 10/04/00	7-9 10/04/00	1-3 10/04/00	3-5 10/04/00	1-3	for Areas
Matrix	10/04/00 S	10/03/00 S	10/03/00 S	10/04/00 S	10/04/00 S	10/04/00 S	10/04/00 S	10/03/00 S	of Concern
Dilution Factor	10	10	1.0	10	10	10	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Cu									i
Chloromethane Bromomethane	57 U 57 U	5 2 U 5 2 U	5 2 U 5 2 U	5 6 U 5 6 U	52 U	59 U	53 U	6.1 U	-
Vinyl Chionde	5.7 U	5.2 U	52 U	56 U	52 ป 52 ป	59 U 59 U	5.3 U 53 U	6.1 U 6.1 U	-
Chloroethane	5.7 U	5.2 U	52 U	56 U	52 U	590	53 U	6.1 U	300
Methylene Chlonde	57 U	7.1 B	64 B	56 U	52 U	5.9 U	53 U	3.4 J	85000
Trichiorofluoromethane	57 U	52 U	5.2 U	5.6 U	52 U	5.9 U	5.3 U	61 U	_
1,1-Dichloroethene	5.7 ป	5 2 U	52 U	5 6 U	52 U	59 U	53 U	61 Ü	1000
1,1-Dichloroethane	5.7 U	52 U	5 2 U	56 U	5.2 U	5.9 U	53 U	6.1 U	7800000
trans-1,2-Dichloroethene cis-1,2-Dichloroethene	57 U 5.7 U	5.2 U	52 U	5 6 U	5.2 U	5.9 U	5.3 U	61 U	1600000
Chloroform	5.7 U	5.2 U 5.2 U	52 U 52 U	5 6 U 5 6 U	5 2 U 5.2 U	59 U	53 U	61 U	780000
1,2-Dichloroethane	570	5.2 U	52 U	56 U	5.2 U	5 9 U 5.9 U	53 U 53 U	61 U 61 U	100000 7000
1,1,1-Trichloroethane	570	52 U	52 U	56 U	52 U	5.9 U	53 U	61 U	7000
Carbon Tetrachlonde	57U	52 U	52 U	56 Ü	52 U	59 U	53 U	61 U	5000
Bromodichloromethane	5.7 ∪	5.2 U	52 U	5 6 U	52 U	5.9 U	5.3 U	61 U	10000
1,2-Dichloropropane	57 U	5.2 U	52 U	5 6 U	5.2 U	5.9 U	53 U	61 U	9000
cis-1,3-Dichloropropene	5.7 U	52 U	52 U	56 U	52 U	5.9 U	53 U	61 U	4000
Trichioroethene Dibromochioromethane	57 U 5.7 U	5 2 U 5 2 U	52 U	56 U	52 U	5.9 U	53 U	6.1 U	58000
1,1,2-Trichloroethane	5.7 U	52 U	5 2 U 5 2 U	56 U 56 U	5 2 U 5.2 U	59 U	5.3 U	61 U	11000
Benzene	5.7 U	52 U	52 U	56 U	5.2 U	59 U 59 U	5.3 U 53 U	6 1 U 6.1 U	22000
t-1,3-Dichloropropene	57 U	5.2 U	52 U	56 U	52 U	5.9 U	5.3 U	61 U	4000
2-Chioroethyl Vinyl Ether	570	52 U	52 U	56 U	52 U	59 U	53 U	61 U	
Bromoform	570	5.2 U	52 U	5 6 U	52 U	59 U	5.3 U	61 U	81000
Tetrachloroethene	57 U	52 U	25 J	33 J	52 U	59 U	5.3 U	18 J	12000
1,1,2,2-Tetrachioroethane Toluene	57 U	52 U	52 U	56 U	52 U	5.9 U	5.3 U	6.1 U	3000
Chlorobenzene	57 U 57 U	5.2 U 5 2 U	52 U 52 U	5 6 U 5 6 U	5.2 U 5 2 U	5 9 U 5.9 U	5.3 U 53 U	61 U	16000000 1600000
2-Butanone	57 0	52 U	52 U	56 U	52 U	5.9 U	53 U	6.1 U 6 1 U	100000
Ethyl Benzene	57 U	5.2 U	52 U	56 U	52 U	59 U	53 U	61 U	7800000
m/p-Xylenes	5.7 U	5.2 U	5.2 U	56 U	52 Ü	59 U	53 U	61 U	160000000
o-Xylene	57 U	5.2 U	52 U	5.6 U	5.2 U	59 U	5.3 U	61 U	160000000
Acetone	5.7 U	5.2 U	5.2 U	56 U	52 U	5.9 U	5.3 U	21	7800000
Carbon Disulfide 4-Methyl-2-Pentanone	57 U 57 U	5.2 U	52 U	56 U	52 U	59 U	53 U	6.1 U	7800000
2-Hexanone	57 U	5.2 U 5.2 U	5 2 U 5 2 U	5 6 U 5 6 U	5 2 U 5 2 U	59 U 59 U	53 U 5.3 U	61 U 61 U	-
Styrene	5.7 U	5.2 U	5.2 U	56 U	52 U	590	5.3 U	61 U	16000000
1,3-Dichlorobenzene	5.7 U	5 2 U	5.2 U	5 6 U	52 U	59 U	5.3 U	6.1 U	
1,4-Dichlorobenzene	5.7 U	5.2 U	52 U	5 6 U	5.2 U	59 U	53 U	61 U	27000
1,2-Dichlorobenzene	5.7 U	5.2 U	52 U	5 6 U	52 U	59 U	5.3 U	61 U	7000000
Dichlorodifluoromethane Vinyl Acetate	57 U 28 U	5 2 U 26 U	52 U 26 U	5 6 U	5 2 U	5.9 U	53 U	6.1 U	
2,2-Dichloropropane	5.7 U	52 U	26 U 52 U	28 U 5 G U	26 U 5.2 U	29 U 5 9 U	26 U 5 3 U	30 U 61 U	78000000
Bromochloromethane	57 U	5.2 U	52 U	56 U	5.2 U	5.9 U	53 U	6.1 U	
1,1-Dichloropropene	570	52 U	5.2 U	56 U	5.2 U	5.9 U	53 U	61 U	
1,3-Dichloropropane	5.7 U	52 U	5.2 U	56 U	5 2 U	59 U	53 U	61 U	
1,2-Dibromoethane	5.7 U	5.2 U	5 2 U	56 U	52 U	59 U	53 U	61 U	-
Isopropyibenzene	57 U	5.2 U	5.2 U	5 6 U	5.2 U	5.9 U	5.3 U	6.1 U	- 1
1,2,3-Trichloropropane 1,1,1,2-Tetrachloroethane	57 U 57 U	5.2 U 5 2 U	5 2 U 5 2 U	5 6 U 5.6 U	52 U 52 U	59 U 59 U	5.3 U 5.3 U	61 U 6.1 U	- 1
Bromobenzene	57U	52 U	52 U	5.6 U	52 U	59 U	5.3 U 5.3 U	6.1 U	_
n-propylbenzene	5.7 U	5.2 U	5.2 U	5 6 U	52 U	590	5.3 U	6.1 U	_ [
2-Chlorotoluene	570	5.2 U	52 U	5 6 U	5,2 U	59 U	5.3 U	61 U	1 - 1
1,3,5-Trimethylbenzene	57 U	5.2 U	5 2 U	5.6 U	5 2 U	59 U	5.3 U	61 U	. – 1
4-Chlorotoluene	5.7 U	5.2 U	5.2 U	5 6 U	52 U	59 U	53 U	6.1 U	. –
tert-Butylbenzene	5.7 U 5.7 U	52 U	5.2 U	56 U	52 U	59 U	5.3 U	61 U	-
1,2,4-Trimethylbenzene sec-Butylbenzene	5.7 U 5.7 U	5 2 U 5.2 U	5.2 U 5 2 U	5 6 U 5 6 U	52 U	59 U	5.3 U	61 U	- 1
p-Isopropyttoluene	5.7 U	5.2 U	52 U	56 U	5 2 U 5 2 U	59 U 59 U	5.3 U 5 3 U	61 U 61 U	
Dibromomethane	5.7 U	52 U	52 U	56 U	52 U	590	53 U	6.1 U	
n-Butylbenzene	57U	5.2 U	52 U	56 U	52 U	590	53 U	61 U	
1,2-Dibromo-3-Chloropropane	57 U	5 2 U	52 U	5 6 U	5 2 U	59 Ū	5,3 U	61 U	-
1,2,4-Trichlorobenzene	5.7 U	5 2 U	52 U	56 U	52 U	59 U	53 U	61 U	780000
Hexachlorobutadiene Naphthalene	5.7 U	52 U	5.2 U	56 U	5 2 U	59 U	5.3 U	61 U	8000
MTBE	57 U 57 U	5.2 U 5 2 U	52 U 52 U	5.6 U 5 6 U	5 2 U 5 2 U	59 U 59 U	53 U 5.3 U	61 U	3100000
1,2,3-Trichlorobenzene	570	52 U	52 U	56 U	52 U	59 U	5.3 U 5 3 U	61 U 61 U	
Total Confident Conc. VOAs (s)	ND	7	9	3	ND ND	ND ND	ND ND	26	10000
									, ,,,,,,,,

Qualifiers

U The compound was not detected at the indicated concentration

B. The analyte was found in the laboratory blank as well se the sample. This indicates possible laboratory contamination of the environmental sample

Notes
--- Not established
NO Not Detected

A	1 40 - 40 - 10 - 40			OLATILE ORGANIC COMP					
Sample Location Sample ID	Five Former Machine Pits 121 B05 3-5'	Pump S (23 B01 0-2			Hallway Adjacent to F	ormer Alodine Room		Air Handling Unit Room	_
Sample Depth (ft)	3-5	123 BU1 0-2 0-2	123 B01 2-4 2-4	126 B01 1-3'	126 B01 3-5' 3-5	126 B02 1.5-3.5'	126 B02 3.5-5.5'	128 B01 2-4'	Comparison Value
Sampling Date	10/03/00	10/18/00	10/18/00	09/22/00	09/22/00	1.5-3 5 09/22/00	3 5-5 5 09/22/00	2-4 09/28/00	for Areas
Matrix	l susua	ia ia ia	S	08/22/00 S	08/22/00 S	0#22/00 S	08/22/00 S	09/26/00 S	of Concern
Oilution Factor	10	10	10	10	10	10	10	10	
Units	ug∕kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
··· - · · · · · · · · · · · · · · · · ·									
.									
Chloromethane	5.4 U	51 U	51 U	59 U	52 U	53 U	5 2 U	57 U	-
Bromomethane Vinyl Chloride	5.4 U 5.4 U	51 U 51 U	51 U	59 U	52 U	53 U	52 U	57 U	
Chloroethane	54 U	51 U	51 U 51 U	5 9 U 5 9 U	52 U 52 U	53 U 53 U	5.2 U	57 U	300
Methylene Chloride	2.9 1	33 J	52	34 J	22 J	53 U	5.2 U . 27 J	57 U 43 J	85000
Trichlorofluoromethane	5.4 U	51 U	510	59 U	52 U	53 U	52 U	57 U	
1,1-Dichloroethene	54 U	51 U	51 U	59 Ü	52 U	53 U	5.2 U	5.7 U	1000
1,1-Dichloroethane	54 U	51 U	51 U	59 U	5.2 U	53 U	5.2 U	57 U	7800000
trans-1,2-Dichloroethene	54 U	51 U	51 U	5.9 U	5.2 U	53 U	5.2 U	57 U	1600000
cis-1,2-Dichloroethene	5.4 U	5.1 U	51 U	59 U	5,2 U	53 U	5.2 U	57 U	780000
Chloroform 1,2-Dichloroethane	5.4 U 5.4 U	51 U 51 U	5 1 U 5 1 U	59 U	5.2 U	53 U	5.2 U	57 U	100000
1,1,1-Trichioroethane	5.4 U	51 U	51 U	59 U 59 U	52 U	53 U	52 U	57 U	7000
Carbon Tetrachloride	540	5.1 U	51 U	59 U	5.2 U 5.2 U	53 U 53 U	52 U 5.2 U	5.7 U 57 U	5000
Bromodichloromethane	5.4 U	51 U	51 U	590	5.2 U	530	52 U	57 U	10000
1,2-Dichloropropane	54 U	5 i Ŭ	51 U	59 0	5.2 U	530	52 U	57 U	9000
cls-1,3-Dichloropropens	5.4 U	5,1 Ū	51 U	59 U	52 U	53 U	5.2 U	57 U	4000
Trichloroethene	54 U	51 U	51 U	5 9 U	52 U	53 Ú	6.2 U	57 U	58000
Dibromochioromethane	5.4 U	5.1 U	51 U	59 U	52 U	53 U	5.2 U	57 U	-
1,1,2-Trichloroethane Benzene	5.4 U	5.1 U	51 U	59 U	5.2 U	53 U	5 2 U	57 U	11000
t-1,3-Dichloropropens	54 U 5.4 U	5.1 U 5.1 U	5.1 U 5 1 U	59 U 59 U	5.2 U 5.2 U	53 U	5.2 U	57 U	22000
2-Chloroethyl Vinyl Ether	5.4 U	5.1 U	51 U	590	52 U	5.3 U 53 U	5.2 U 5.2 U	57 U 5.7 U	4000
Bromoform	5.4 U	5.1 U	510	590	52 U	530	52 U	57 U	81000
Tetrachloroethene	5.4 U	51 U	5.1 U	59 Ŭ	5.2 U	5.3 U	5.2 U	57 Ŭ	12000
1,1,2,2-Tetrachloroethane	54 U	5.1 U	5.1 U	59 Ü	5.2 U	53 U	5.2 U	57 Ŭ	3000
Toluene	5.4 U	51 U	51 U	59 U	5.2 U	53 U	5.2 U	57 Ū	16000000
Chlorobenzene	54 U	51 U	51 U	59 U	5.2 U	5.3 ∪	5.2 U	57 U	1800000
2-Butanone Ethyl Benzene	54 U 54 U	5.1 U	51 U	5 9 U	5.2 U	53 U	5.2 U	57 U	l -
m/p-Xylenes	540	5 1 U 5.1 U	51 U 51 U	59 U 59 U	5.2 U	53 U	52 U	57 U	7800000
o-Xylene	5.4 U	5.1 U	51 U	59 U	5.2 U 5.2 U	53 U 53 U	5.2 U 5.2 U	57 U 57 U	180000000 180000000
Acetone	27	7.4	51 U	59 U	52 U	53 U	5.2 U	57 U	7800000
Carbon Disulfide	5.4 U	51 U	51 U	5.9 U	52 U	5.3 U	5.2 U	57 Ŭ	7800000
4-Methyl-2-Pentanona	5.4 U	51 U	5.1 U	59 U	5.2 U	รวบ	5.2 U	57 U	-
2-Hexanone	54 U	5.1 U	5 1 U	59 U	5.2 U	53 U	5.2 U	57 U	-
Styrene	5.4 U	5.1 U	5.1 U	59 U	5.2 U	53 U	5.2 U	5.7 U	16000000
1,3-Dichiorobenzene 1,4-Dichiorobenzene	54 U 54 U	5.1 U 5.1 U	5.1 U 5 1 U	5 9 U 5.9 U	5.2 U	53 U	5.2 U	57 U	I
1.2-Dichlorobenzene	5.4 U	5.1 U	51 U	5.9 U	5.2 U 5.2 U	53 U 53 U	5.2 U 5.2 U	57 U 57 U	27000 7000000
Dichlorodifluoromethane	5.4 U	5 1 U	51 U	59 U	52 U	530	5.2 U	57 U	/**************************************
Vinyl Acetale	27 U	25 U	26 U	30 Ŭ	26 U	26 U	26 U	29 U	78000000
2,2-Dichloropropane	54 U	5.1 U	51 U	5 9 U	52 U	53 U	5.2 U	57 Ū	_
Bromochloromethane	54 U	5.1 U	5.1 U	59 U	5.2 U	53 U	5.2 U	57 U	-
1,1-Dichloropropene 1,3-Dichloropropene	5.4 U	51 U	5.1 U	59 U	5.2 U	53 U	5.2 U	57 U	-
1,3-Dichioropropane	5.4 U 5.4 U	51 U 51 U	5 1 U 5.1 U	59 U 59 U	5.2 U 5.2 U	53 U	5.2 U	57 U	-
Isopropylbenzene	5.4 U	5.1 U	5.1 U 5.1 U	5.9 U	5.2 U 5.2 U	53 U 53 U	5.2 U 5.2 U	57 U 57 U	_
1,2,3-Trichloropropane	5.4 U	5.1 U	51 U	5.0 U	52 U	5.3 U	5.2 U	5.7 U	
1,1,1,2-Tetrachioroethane	5.4 U	51 U	51 U	59 U	6.2 U	53 U	5.2 U	57 U	=
Bromobenzene	54 U	51 U	51 U	59 U	5.2 U	5.3 U	5.2 U	57 U	_
n-propyfbenzene	5.4 U	5.1 U	5.1 U	59 U	5.2 U	53 U	5.2 U	57 U	_
2-Chlorotoluene	5.4 U	5.1 U	5.1 U	5.9 U	5.2 U	5.3 U	5.2 U	57 U	-
1,3,5-Trimethylbenzene 4-Chlorotoluene	5.4 U 5.4 U	51 U	5.1 U	59 U	5.2 U	5.3 U	5.2 U	57 U	-
tert-Butythenzene	5.4 U	5.1 U 5 1 U	5.1 U 5.1 U	5.9 U 5 9 U	5.2 U 5.2 U	5.3 ป 5 3 ป	5.2 U 5.2 U	5.7 U	
1,2,4-Trimethylbenzene	5.4 U	5.1 U	5.1 U	5.9 U	5.2 U 5.2 U	5.3 U	52 U	5.7 U 57 U	
sec-Butylbenzene	54 U	5.1 U	5.1 U	5.9 U	52 U	5.3 U	5.2 U	57 U	
p-laopropyfloluene	5.4 U	5.1 Ŭ	5.1 U	5.9 U	52 0	5.3 U	5.2 U	57 U	_
Dibromomethane	5.4 U	5.1 Ú	5.1 Ŭ	5.9 U	5.2 U	5.3 U	5.2 U	5.7 U	_
n-Butytbenzene	5.4 U	5.1 ป	5.1 U	5.9 Ú	5.2 U	5.3 U	5.2 U	5.7 Ū	
1,2-Olbromo-3-Chloropropane	5.4 U	5.1 U	5.1 U	5.9 U	5.2 U	5.3 U	5.2 U	57 U	
1,2,4-Trichlorobenzene	5.4 U	5.1 U	5.1 U	5.9 U	5.2 U	53 U	5.2 U	5.7 U	780000
Hexachlorobutadiene Naphthalene	5.4 U 5.4 U	5.1 U 5.1 U	5.1 U	59 U	5.2 U	5.3 U	5.2 U	5.7 U	8000
MTBE	5.4 U	5.1 U 5.1 U	5.1 U 5.1 U	5.9 U 5.9 U	5.2 U 5.2 U	5.3 U 5.3 U	5.2 U 5.2 U	5.7 U 5.7 U	3100000
1,2,3-Trichlorobenzene	54 U	5.1 U	5.1 U	5.9 U	52 U	5.3 U	5.2 U	5.7 U	i =
Total Confident Conc. VOAs (s)	30	11	5.10	3.80	2	NO NO	3.2 0	9.7 U	10000
									

Catabilians

U The compound was not detected at the indicated concentration.

J. Data indicates the presence of a compound that results the identification criteria. The result is lase than the quantitation shall but greater than zero.

The concentration given is an approximate value.

Counts I seeded	A felian disasting the Comment			OLATILE ORGANIC COMP					
Sample Location Sample ID	Air Handling Unit Room 128 B01 4-6'	I30 B01 1-3	I30 B01 3-5	100 000 4 0	Former Storage Building			· · · · · · · · · · · · · · · · · · ·	
Sample Depth (ft)	4-6	1-3	3-5	130 B02 1-3 1-3	130 B02 3-5 3-5	130 B03 1-3	130 B03 3-5 3-5	I30 B04 1-3	Comparison Value
Sampling Date	09/28/00	09/19/00	09/19/00	09/19/00	09/19/00	1-3 09/18/00	09/18/00	1-3 09/19/00	for Areas
Matnx	s	S S	S S	03/13/00 S	09/19/00 S	S	09/10/00 S	09/19/00 S	of Concern
Dilution Factor	10 1	10	10	10	10	1.0	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
		· · · · · · · · · · · · · · · · · · ·	- ARINA	wyrky	Lg/kg	ug/ng j	Ug/kg	ugrkg	L ug/kg
	1					ŀ	1		
Chloromethane	510	61 U	5 6 U	55 U	53 U	53 U	52 U	53 U	l
Bromomethane	5.1 U	61 Ū	56 Ü	55 U	53 U	53 U	5.2 U	53 U	"
Vinyl Chloride	51 U	61 U	56 U	55 U	53 0	5.3 U	5.2 U	53 U	300
Chloroethane	51 U	6,1 U	5.6 U	55 U	53Ŭ	53 U	5.2 U	5.3 U	"_"
Methylene Chlonde	61	4 3	34 J	37 J	3 1	58	4.2 J	37 J	85000
Trichlorofluoromethane	51 U	6.1 U	56 U	55 U	53 U	5 3 U	5.2 U	5.3 U	
1,1-Dichloroethene	51 U	6.1 U	56 U	55 U	53U	5.3 U	5.2 U	53 U	1000
1,1-Dichloroethane	51 U	610	56 U	55 U	53 U	5 3 U	5 2 U	53 U	7800000
trans-1,2-Dichloroethene	5.1 U	6.1 U	5.6 U	5.5 U	53 U	53 U	5.2 U	53 U	1600000
cis-1,2-Dichloroethene	5.1 U	6.1 U	56 U	5.5 U	53 U	5.3 U	5.2 U	5.3 U	780000
Chloroform	5,1 U	610	5 6 U	55 บ	53 U	53 U	5.2 U	5.3 U	100000
1,2-Dichloroethane	5.1 U	6.1 U	5.6 U	55 ป	53 U	53 U	5 2 U	53 U	7000
1,1,1-Trichloroethane	51 U	61 U	5.6 U	55 U	5.3 U	5.3 U	5.2 U	5 3 U	-
Carbon Tetrachioride	51 U	6.1 U	5.6 U	55 U	53 U	53 U	5.2 U	53 U	5000
Bromodichloromethane 1,2-Dichloropropane	5.1 U 51 U	6.1 U	5.6 U	55 U	53 U	53 U	5.2 U	53 U	10000
CIS-1,3-Dichloropropene	51 U 5.1 U	610	5.6 U	55 U	53 U	5.3 U	5.2 U	5.3 U	9000
Trichloroethene	5.1 U	6.1 U 6.1 U	5 6 U 5.6 U	55 U 55 U	53 U 53 U	5.3 U	5.2 U	53 U	4000
Dibromochloromethane	5.1 U	6.1 U	5.6 U	55 U		5.3 U	5.2 U	53 U	58000
1,1,2-Trichloroethane	51 U	6.1 U	5.6 U	55 U	53 U 53 U	5.3 U 5.3 U	5.2 U	5.3 U	44000
Benzene	5.1 U	61 U	5.6 U	55 U	5.3 U	5.3 U	5.2 U 5.2 U	53 U	11000
t-1,3-Dichloropropene	51 U	6.1 U	5.6 U	5.5 U	5.3 U	5.3 U	5.2 U	53 U 5,3 U	22000 4000
2-Chloroethyl Vinyl Ether	5.1 U	6.1 0	5.6 U	5.5 U	53 U	5.3 U	5.2 U	5.3 U	4000
Bromoform	510	61 0	5.6 U	5.5 U	53 U	53 U	5.2 U	5.3 U	81000
Tetrachloroethene	5.1 ∪	61 U	56 U	55 U	53 U	53 U	5.2 U	53 U	12000
1,1,2,2-Tetrachloroethane	5.1 U	6,1 Ū	5.6 U	5.5 U	53 U	53 U	52 U	5.3 U	3000
Toluene	51 U	6.1 U	56 U	55 U	53 U	53 U	5.2 U	5.3 U	16000000
Chlorobenzene	5.1 U	6.1 U	56 U	55 U	53 U	53 U	5.2 U	53 U	1600000
2-Butanone	51 U	6.1 U	56 U	55 U	53 Ū	53 U	52 U	53 Ü	
Ethyl Benzene	5.1 U	6.1 U	5.6 U	5.5 U	53 U	5.3 U	5.2 U	5.3 U	7800000
m/p-Xylenes	5.1 U	6.1 U	56 U	55 U	53 U	53 U	5.2 U	5.3 U	160000000
o-Xylene	51 U	6.1 U	56 U	55 U	53 ป	53 ป	5.2 U	5.3 ∪	160000000
Acetone	51 U	61 U	5 6 U	55 U	53 U	5.3 ∪	5.2 U	53 ป	7800000
Carbon Disulfide 4-Methyl-2-Pentanone	5.1 U	6.1 U	5 6 U	55 U	53 U	53 U	52 U	53 U	7800000
2-Hexanone	5.1 U 51 U	6.1 U 61 ป	5.6 U	5.5 U	53 U	53 U	5.2 U	5,3 U	-
Styrene	5.1 U	6.1 U	56 U 56 U	55 U	53 U	53 U	5.2 U	53 U	
1,3-Dichlorobenzene	5.1 U	6.1 U	56 U	55 U 55 U	53 U	53 U	5.2 U	53 U	16000000
1,4-Dichlorobenzene	5.1 U 5.1 U	6.1 U	5.6 U		5.3 U	53 U	5.2 U	5 3 U	
1.2-Dichlorobenzene	5.1 U	6.1 U	5.6 U	55 U 55 U	53 U 53 U	5,3 U	5.2 U	53 U	27000
Dichlorodifluoromethane	5.1 U	6.1 U	56 U	55 U	5,3 U	5,3 U 5 3 U	5.2 U (5.2 U	5.3 U 5 3 U	7000000
Vinyl Acetate	26 U	30 U	28 U	27 U	26 U	26 U	26 U	27 U	78000000
2,2-Dichloropropane	5.1 U	6.1 U	56 U	55 U	53 U	53 U	5.2 U	5,3 U	7800000
Bromochloromethane	51 U	61 U	56 U	5.5 U	53 U	53 U	52 U	5.3 U	
1,1-Dichloropropene	51 U	61 U	56 U	55 U	5.3 U	53 U	5.2 U	53 U	
1,3-Dichloropropane	5.1 U	6.1 U	56 U	55 U	53 U	53 U	52 U	53 U	
1,2-Dibromoethane	51 U	61 U	56 U	55 U	53 U	5.3 U	5.2 U	5.3 U	
Isopropylbenzene	5.1 U	6.1 U	5.6 U	5 5 U	53 Ū	53 U	5.2 U	5.3 U	
1,2,3-Trichloropropane	5,1 U	6.1 U	5 6 U	55 U	53 U	53 U	5.2 U	53 U	_
1,1,1,2-Tetrachloroethane	5.1 U	61 U	5 6 U	5 5 U	53 U	53 U	5.2 U	5 3 U	-
Bromobenzene	5.1 U	6.1 U	56 U	5.5 U	53 U	53 U	5 2 U	5 3 U	
n-propylbenzene	51 U	61 U	56 U	55 U	5,3 U	5,3 U	5.2 U	53 U	_
2-Chlorotoluene	51 U	61 U	56 U	55 U	53 U	53 U	52 U	53 U	-
1,3,5-Trimethylbenzene	5.1 U	61 U	5 6 U	55 U	53 U	53 U	52 U	5 3 U	-
4-Chlorotoluene	51 U	61 U	56 U	55 U	53 U	53 U	5.2 U	53 U	-
tert-Butylbenzene	510	61 U	56 U	55 U	53 U	53 U	52 U	53 U	-
1,2,4-Trimethylbenzene	51 U 51 U	61 U	56 U	55 U	5.3 U	53 U	5.2 U	53 U	
sec-Butylbenzene p-Isopropyltoluene	51 U 51 U	6.1 U	56 U	55 U	53 U	5.3 U	5.2 U	53 U	-
Dibromomethane	51 U 51 U	6.1 U	5.6 U	5.5 บ	53 U	53 U	52 U	53 U	-
n-Butylbenzene	51 U	6.1 U 61 U	5 6 U 5 6 U	55 U	5.3 U	53 U	5.2 U	5.3 U	
1,2-Dibromo-3-Chloropropane	5.1 U	6.1 U	56 U	55 U	53 U	53 U	52 U	53 U	_
1,2,4-Trichlorobenzene	5.1 U	61 U	5.6 U	55 ป 55 ช	53 U 53 U	53 U	5.2 U	53 U	700000
Hexachlorobutadiene	5.1 U	6.1 U	5.6 U	55 U	53 U	53 U 53 U	52 U	53 U	780000
Naphthalene	51 U	61 U	5.6 U	55 U	5.3 U	5.3 U	5.2 U 5 2 U	53 U 53 U	8000 3100000
MTBE	510	61 0	5.6 U	5.5 U	5.3 U	5.3 U	52 U	53 U	1
1,2,3-Trichlorobenzene	5,1 Ŭ	6,1 U	5.6 U	5.5 U	53 U	5.3 U	5.2 U	53 U	
Total Confident Conc. VOAs (s)	6		3	4	3	6	3.2 0	330	10000
				•				<u> </u>	1. 10000

Outpilliers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes

-- Not established

ND Not Detected

The concentration given is an approximate value

Section 10	Cample Lagrence				OLATILE ORGANIC COM				,	
Same Depth	Sample Location	100 001 00			Former Storage Building				Refrigeration/AC Room	
American Company Com										Comparison Value
Section Sect										
Pace Pace								10/17/00	09/18/00	of Concern
Company Comp							s	S	S	
Applications						10	10	10	10	
Information	Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	. ug/kg	ug/kg	ug/kg
Information						*				
Information			i			•	1			
Secondarian Secondarian		5.2 U	51 U	52 U	61 U	59 U	540	5.2 U	5.1 U	
The Checked	Bromomethane	5.2 U	1 51 U	5.2 U	61 U	59 U				_
Accordance	Vinyl Chloride	5.2 U	51 U	5.2 U	61 U	5.9 U	1 54 Ŭ l			300
######################################	Chloroethane	5.2 U	l 51 U		61 U					
Miles	Methylene Chloride	3.1 J	55 B							85000
1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Trichlorofluoromethane	5.2 U	51U	52 U	61 U					3333
1-Contrologoparam 12 U 51 U 52 U 51 U 52 U 51 U 7000000 70000000 70000000 70000000 70000000 700000000	1,1-Dichloroethene									1000
Tell Confidentemen	1,1-Dichloroethane	5.2 U	5.1 U							
### 1-20-deconformer	trans-1,2-Dichloroethene									
Decision	cis-1,2-Dichloroethene	5.2 U	510							
2-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Chloroform									
1.1.Tricheoptement										
Section Sect								520		/300
Introduction formation										****
2-01-10-10-10-10-10-10-10-10-10-10-10-10-										
## 1-3-Differencement 52 U 51 U 52 U 61 U 58 U 54 U 52 U 51 U 59 U 50 U										
15000000000000000000000000000000000000										
1,3-Trichrobentume										58000
Internal										I
1,3-Deinospeppen 9,2 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 60000000000000000000000000000000000			, ,,,							
-Choreday Way Elber \$2 U \$1 U \$2 U \$1 U \$2 U \$1 U \$2 U \$1 U \$1 U \$2 U \$1 U \$1 U \$2 U \$1 U \$1 U \$2 U \$1 U \$1 U \$2 U \$1 U \$1 U \$2 U \$1 U \$1 U \$2 U \$										
Nonetherm S2 U S1 U S2										4000
Septembers Sep								5.2 U		_
1,12-1 fereinhorentame										
Okame									5 1 U	
Debastarian								5.2 U	51 U	3000
-Butanone \$2 U \$1 U \$2 U								5.2 U	5 1 U	16000000
Style Benzame	Chlorobenzene				61 U	59 U	540	5.2 U	5 1 U	1500000
Vic-Nylemes S.2 U S.1 U S.2 U S.1 U S.2 U S.3 U S.2 U S.3 U	2-Butanone						540	5.2 U	5 1 U	
Syline S2 U S1 U S2 U					6.1 U	5 9 U	540	5.2 U	5 1 U	7800000
Carbon					61 U	5.9 U	540	5.2 U	5 1 U	160000000
Sampon S	o-Xylene				6.1 U	59 U	540		5 1 U	
Section Desirations Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Section Desiration Desiration Section Desiration Desiration Section Desiration Desiration Desiration Desiration Desiration Section Desiration Desi			10	52 U	61 U	59 U	540	5.2 U	51 Ú	7800000
			[51 U	52 U	61 U	59 U	540		51 U	7800000
Symple				52 U	61 U	59 U	540	5.2 U	51 U	-
3-Dickhordenzere 52 U 51 U 52 U 51			5.1 U	52 U	61 U	59 U	540	52 U	5 1 Ú	_
A-Dichropheraren S2 U S1 U S2 U S1 U S2 U S1 U C700000 C70000000 C700000000 C7000000000 C70000000000	Styrene			52 U	61 U	59 U	540	52 U	5 1 Ù	16000000
A-Dichropheraren S2 U S1 U S2 U S1 U S2 U S1 U C700000 C70000000 C70000000 C70000000 C70000000 C70000000 C7000000000 C70000000000	1,3-Dichiorobenzene	5.2 U	510	52 U	61 U	59 U	540			_
Scholopfisconesthane S2 U S1 U S2 U S1 U S2 U S3 U S2 U S3 U S2 U S3 U S2 U S3 U		5.2 U	5.1 U	52 U	61 U	59 U	540			27000
Schoolshore S2 U S1 U S2 U S2 U S2 U S2 U S3 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S2 U S4 U S4 U S2 U S4 U	1,2-Dichlorobenzene	6.2 U	510	52 U	61 U	59 U	540	5.2 U	51 Ū	7000000
Infractate	Dichlorodifluoromethane	. 52 U	51U	52 U	61 U	59 U	540	5 2 U	510	-
2-Dichropropane	Vinyl Acetate	26 U	26 U	26 U	30 U					78000000
Nomochlame	2,2-Dichloropropane			52 U	61 Ū	59 U				-
1-Dichloropropere	Bromochloromethane			5 2 U	61 Ú	5 9 U	54 0 1		51 ŭ	_
3-Dichropopane 32 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U	1,1-Dichloropropens									-
2-Dibromoethane 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 51 U 52					61 U	5 9 Ú				l -
Second Second	1,2-Dibromoethane	5.2 U	5.1 U	52 U	61 U	59 U				l –
2.3-Tirchforopropane 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U -1.	leopropylbenzene		51 U	52 U] 54 Ű l			
1.1.2-Tertachbrorethane 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 51 U 52 U 51	1,2,3-Trichloropropane		51 U	5.2 U	61 Ū	59 Ü				
Nomobersame	1,1,1,2-Tetrachloroethane	[52 U	51 U							
Proprietable	Bromobenzene									
Chlorobulene 5.2 U 51 U 52 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 51 U 5.2 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 51 U 5.2 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 51 U 5.2 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 61 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U — Chlorobulene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.0 U 5.1 U 5.0 U 5.1 U 5.0 U 5.0 U 5.1 U 5.1 U 5	n-propylbenzene	5.2 U	5.1 U							l <u> </u>
3.5-Timestrybenzene	2-Chiorotoluene	5.2 Ú	51 Ū		61 U					l _
-Chlorobluene 5.2 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U	1,3,5-Trimethythenzene				61 0					
art-Buty/benzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U — 2.4-Trichlorobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 780000 (eachthorobutzeliene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 780000 (eachthorobutzeliene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 780000 (eachthorobutzeliene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 780000 (eachthorobutzeliene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 3000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 31000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 31000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 31000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 31000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 310000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 31000000000 (eachtholene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 310000000000000000000000000000000000	4-Chlorotoluene									
2.4-Trimethylbenzene 5.2 U 5.1 U 5.2 U </th <th>teri-Butylbenzene</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	teri-Butylbenzene									
6c-Bufylbenzene 52 U 5.1 U 52 U 6.1 U 59 U 54 U 52 U 51 U — Hopropylboluene 52 U 5.1 U 5.2 U 6.1 U 5.9 U 54 U 52 U 5.1 U — Hopromomethane 52 U 51 U 52 U 6.1 U 5.9 U 54 U 52 U 5.1 U — Bufylbenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 5.1 U — 2-Polbromo-O-Chloropropane 52 U 51 U 52 U 61 U 59 U 54 U 52 U 5.1 U — 2-Polbromo-O-Chloropropane 52 U 5.1 U 52 U 61 U 59 U 54 U 52 U 5.1 U — 2-Polbromo-O-Chloropropane 52 U 5.1 U 52 U 61 U 59 U 54 U 52 U 51 U — 2-Polbromo-O-Chloropropane 52 U 5.1 U 52 U 61 U 59 U 54 U 52 U 51 U 70 U 70 U <th>1.2.4-Trimethylbenzene</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1.2.4-Trimethylbenzene									
Strong S										
-Butythenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 2-Dibromo-3-Chloropropane 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 2-4-Trichforobenzene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 780000 lexachlorobutadiene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 8000 lexachlorobutadiene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 8000 lexachlorobutadiene 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U 3100000 ITBE 52 U 51 U 52 U 61 U 59 U 54 U 52 U 51 U										
2-Dibromo-3-Chloropropane 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 780000 lexachlorobutadiene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 780000 lexachlorobutadiene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 8000 leachthalene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 3100000 leachthalene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 3100000 leachthalene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 3100000 leachthalene 5.2 U 5.1 U 5.2 U 6.1 U 5.9 U 5.4 U 5.2 U 5.1 U 3.1 U 3.2 U 5.2 U 5.1 U 3.2 U 5.3 U 3										
2,4-Trichlorobenzene										_
exachlorobutadiene										l
Iaphthalene										
TTBE 52 U 51 U 52 U 61 U 5.9 U 54 U 52 U 5.1 U — 2,3-Trichlorobenzene 52 U 5.1 U — 51 U 59 U 54 U 52 U 51 U —										
2,3-Trichlorobenzene 5.2 U 5.1 U 52 U 51 U 52 U 54 U 52 U 51 U —										
	MIDE									_
OUR CONTRIBET CONT. YOURS (S) 3 1 16 6 4 4 4 3 4 10000	Total Confident Coop MOAs (c)							5.2 U		
	TOTAL COMIDER CONC. VOAS (8)	3	16	6	4	4	4 -	3	4	10000

Constituen:

U The compound was not detected at the indicated concentration.

J Data indicates this presence of compound that meets the identification criteria. The result to less than the quantitation limit but greater than zero. The concentration given is on approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contemination of the environmental sample.

Cample Leaster				OLATILE ORGANIC COMP	CONDS				,
Sample Location Sample ID	131 B01 3-5	igeration/Air Conditioning Ro	iom I31 B02 4-6	132 801 1-3	122 BAL 2 F	Hangar 1	132 803 \$ 6	(92 D02 4 4	Companyon V-1
Sample Depth (ft)	3-5	131 BUZ 2-4 2-4	131 B02 4-6 4-6	1-3	132 B01 3-5 3-5	132 B02 1-3 1-3	132 B02 3-5 3-5	132 B03 1-3 1-3	Companson Value for Areas
Sampling Date	09/18/00	09/18/00	09/18/00	09/19/00	09/19/00	09/19/00	09/19/00	09/20/00	of Concern
Matrix	s	s	s	S	S	S	S	S	0,00,00,00
Dilution Factor	10	10	1.0	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	54 U	54 U	5.7 U	6 U	5 6 U	55 U	56 U	5 6 U	_
Bromomethane	54 U	5.4 U	57 U	6 U	5,6 U	55 U	5 6 U	5 6 U	
Vinyl Chloride Chloroethane	54 U 5.4 U	54 U	5.7 U	6 U	5 6 U	55 U	56 U	5 6 U	300
Methylene Chlonde	34.5	54 U 35 J	57 U 37 J	6 U 63	56 U 5 J	55 U 89	5.6 U 46 J	56 U 56 U	85000
Trichlorofluoromethane	54 U	54 U	57 U	6 u	5 6 U	55 U	56 U	5.6 U	83000
1,1-Dichloroethene	54 U	54 U	57 U	6 U	56 U	55 U	56 U	5.6 U	1000
1,1-Dichloroethane	54 U	5.4 U	57 Ü	6 U	56 U	55 U	56 U	5.6 U	7800000
trans-1,2-Dichloroethene	54 U	5.4 U	57 U	6 U	56 U	55 U	56 U	56 U	1600000
cis-1,2-Dichloroethene	54 U	54 U	57 U	6 U	56 U	55 U	56 U	5 6 U	780000
Chloroform	54 U	5.4 U	57 U	6 U	56 U	55 U	56 U	5 6 U	100000
1,2-Dichloroethane	54 U	54 U	57 U	6 U	56 U	55 U	56 U	5 6 U	7000
1,1,1-Trichloroethane	5,4 U	54 U	57 U	6 U	56 U	5.5 U	56 U	56 U	!
Carbon Tetrachloride	54 U	5.4 U	57 U	6 U	56 U	55 U	5.6 U	56 U	5000
Bromodichloromethane 1,2-Dichloropropane	54 U 54 U	54 U	5.7 U	6 U	56 U	55 U	56 U	5 6 U	10000
cis-1,3-Dichioropropene	54 U	54 U 5.4 U	57 U 57 U	6 U	56 U 56 U	5.5 U 5.5 U	5.6 U 5 G U	56 U	9000
Trichloroethene	54 U	5.4 U	57 U	6 U	56 U	55 U	56 U	56 U 56 U	4000 58000
Dibromochloromethane	54 U	5.4 U	57 U	6 U	56 U	55 U	56 U	56 U	3000
1,1,2-Trichloroethane	54 Ŭ	5.4 U	57 U	6 U	5.6 U	5.5 U	56 U	56 U	11000
Benzene	5.4 U	54 U	57 U	6 U	56 U	5.5 U	56 U	5.6 U	22000
t-1,3-Dichloropropene	54 U	54 U	57 Ū	6 Ū	56 U	55 U	56 U	56 U	4000
2-Chloroethyl Vinyl Ether	54 U	54 U	57 U	6 U	56 U	55 U	56 U	5 6 U	_
Bromoform	54 U	54 U	57 U	6 U	5 6 U	55 U	56 U	5 6 U	81000
Tetrachioroethene	54 U	54 U	5.7 U	6 U	5.6 U	55 U	56 U	5 6 U	12000
1,1,2,2-Tetrachloroethane	5,4 U	54 U	5.7 U	6 U	5 6 U	5.5 U	5.6 U	5.6 U	3000
Toluene Chlorobenzene	54 U 5.4 U	5,4 U 54 U	57 U 57 U	6 U 6 U	5.6 U 5 6 U	55 U 5.5 U	56 U 5.6 U	5 6 U 5 6 U	16000000
2-Butanone	5.4 U	54 U	57 U	6 U	56 U	5.5 U	5.6 U	56 U	1600000
Ethyl Benzene	54 U	5.4 U	57 U	6 U	56 U	55 U	5.6 U	56 U	7800000
m/p-Xylenes	5.4 U	54 U	5.7 U	6.0	56 U	5.5 U	5.6 U	5.6 U	16000000
o-Xylene	54 U	54 U	5.7 U	6 U	56 U	55 U	5.6 U	5.6 U	160000000
Acetone	54 U	54 U	57 U	6 U	56 U	55 Ū	56 U	5 6 Ū	7800000
Carbon Disulfide	54 U į	5.4 U	57 U	6 U	5.6 U	55 ป	5.6 U	5 6 U	7800000
4-Methyl-2-Pentanone	54 U	54 U	5.7 U	6 U	56 U	55 U	56 U	5.6 ∪	<u> </u>
2-Hexanone	54 U	54 U	57 U	6 U	56 U	55 U	5.6 U	5.6 U	
Styrene 1,3-Dichlorobenzene	5.4 U 54 U	54 U	57 U 57 U	6 U	5.6 U	55 U	5.6 U	56 U	16000000
1,4-Dichlorobenzene	54 U	5.4 U 5 4 U	57 U	6 U	56 U 56 U	5 5 U 5.5 U	5.6 U 56 U	56 U 56 U	27000
1.2-Dichlorobenzene	54 U	54 U	57 U	60	560	55 U	56 U	56 U	7000000
Dichlorodifluoromethane	54 U	54 U	5.7 U	6 Ŭ	56 U	550	56 U	56 U	
Vinyl Acetate	27 U	27 U	28 U	30 U	28 U	27 U	28 U	28 U	78000000
2,2-Dichloropropane	54 U	54 U	5.7 U	6 U	56 U	5.5 ∪	5.6 U	56 U	-
Bromochioromethane	5.4 U	54 U	5.7 U	6 U	56 U	5.5 U	5.6 U	5.6 U	_
1,1-Dichloropropene	54 U	54 U	57 U	6 U	56 U	55 U	56 U	5 6 U	
1,3-Dichloropropane	54 U	5.4 U	570	6 U	56 U	5.5 U	5.6 U	5 6 U	-
1,2-Dibromoethane Isopropylbenzene	5,4 U 54 U	5.4 U	5.7 U	6 U	56 U	5.5 U	5.6 U	5.6 U	-
1,2,3-Trichloropropane	54 U	5,4 U 54 U	5.7 U 5.7 U	6 U 6 U	5 6 U 5 6 U	5.5 U 55 U	5,6 U 5 6 U	5.6 U 5 6 U	_
1,1,1,2-Tetrachloroethane	5.4 U	5.4 U	5.7 U	6 U	56 U	55 U	5.6 U	56 U	=
Bromobenzene	54 U	5.4 U	5.7 U	6 U	5.6 U	55 U	5.6 U	56 U	
n-propylbenzene	5.4 U	54 U	5.7 U		56 U	5.5 U	5.6 U	58 U	_
2-Chlorotoluene	5.4 U	54 U	5.7 U	6 Ü	5.6 U	5.5 U	5.6 U	5.6 U	-
1,3,5-Trimethylbenzene	5.4 U	54 U	5.7 U	6 U	5.6 U	55 U	5.6 U	5,6 U	-
4-Chlorotoluene	54 U	54 U	5.7 U	6 U	56 U	5.5 U	5,6 U	5.6 U	
tert-Butylbenzene	54 U	5,4 U	5.7 U	6 U	5.6 U	5.5 U	5.6 U	5.6 U	i
1,2,4-Trimethylbenzene	54 U	5.4 U	5.7 U	6 U	5.6 U	5.5 U	5.6 U	56 U	-
sec-Butylbenzene	5.4 U	54 U	5.7 U	6 U	5.6 U	5.5 U	5.6 U	5.6 U	-
p-isopropyitoluene	5.4 U	54 U	57 U	6 U	56 U	5.5 U	5.6 U	5.6 U	_
Dibromomethane n-Butylbenzene	5.4 U 54 U	5.4 U 5.4 U	57 U	6 U 6 U	56 U	5.5 U	56 U	560	
1,2-Dibromo-3-Chioropropane	54 U	5.4 U 5.4 U	5.7 U 5.7 U	6 U	5.6 U 5 6 U	5.5 U 5.5 U	5 6 U 5.6 U	5.6 U 5.6 U	_
1,2,4-Trichlorobenzene	54 U	5.4 U	5.7 U	6 U	56 U	55 U	5.6 U	5.6 U	780000
Hexachlorobutadiene	54 U	5.4 U	57 U	6 U	5.6 U	5.5 U	5.6 U	5.6 U	8000
Naphthalene	5.4 U	54 U	5.7 U	60	5.6 U	5.5 U	5.6 U	56 U	3100000
MTBE	54 U	54 U	5.7 U	6 U	56 U	5.5 U	56 U	56 U	_
1,2,3-Trichlorobenzene	5.4 U	5.4 U	5.7 U	6 U	56 U	5.5 U	5.6 U	5.6 U	
Total Confident Conc. VOAs (s)	3	4	4	6	5	9	5	ND	10000

Qualifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Notes
-- Not established
ND Not Detected

			v	OLATILE ORGANIC COMP	POUNDS				
Sample Location		Hangar 1		Storage Area in Office	Area East of Hangar 2		Old Ejection Pits		
Sample ID	132 B03 3-5	132 B04 1-3	132 B04 3-5	133 B01 1-3"	I33 B01 3-5'	134 B01 4-6	134 B01 6-8	134 B02 2-4	Comparison Value
Sample Depth (ft)	3-5	1-3	3-5	1-3	3-5	4-6	6-8	2-4	for Areas
Sampling Date	09/20/00	09/20/00	09/20/00	09/28/00	09/28/00	09/29/00	09/29/00	09/29/00	of Concern
Matrix	, S	S	ş	s	s	S	s	s	
Dilution Factor Units	1.0	10	10	10	10	10	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug∕kg	ug/kg	ug/kg	ug/kg	ug/kg
							i		
Chloromethane	5.4 U	5.9 U	54 U	5.3 U	53 U	54 U	52 U	8 U	
Bromomethane	54 U	5.9 U	54 U	5.3 U	53 U	54 U	52 U	8 U	
Vinyl Chloride	54 U	59 U	54 U	53 U	53 0	54 U	5.2 U	6 U	300
Chloroethane	5.4 U	59 U	5.4 U	53 U	53 U	54 0	52 U	8 U	300
Methylene Chloride	35 J	7	5.6	14 3	1.5 J	53 1	31 1	41 J	85000
Trichlorofluoromethane	5.4 U	5 9 บ	5.4 U	5.3 U	53 U	54 U	5.2 U	6 U	
1,1-Dichloroethene	54 U	5.9 Ŭ	54 U	53 U	5.3 U	54 U	5.2 U	6 Ü	1000
1,1-Dichloroethane	54 U	5.9 U	54 Ü	530	53 U	5.4 U	5.2 U	6 Ü	7800000
trans-1,2-Dichloroethene	54 U	59 U	54 U	5.3 Ū	53 Ū	5.4 U	5.2 U	6 Ū	1500000
cle-1,2-Dichloroethene	5.4 U	5.9 ∪	54 U	53 Ú	53 Ū	5.4 Ü	5.2 U	6 Ü	780000
Chloroform	5.4 U	59 U	54 U	5.3 U	53 U	5.4 U	5.2 U	6 U	100000
1,2-Dichloroethane	54 U	5.9 U	54 U	5 3 U	53 U	5.4 U	5.2 U	6 U	7000
1,1,1-Trichloroethane	54 U	59 U	54 U	53 U	53 U	54 U	52 U	6 U	-
Carbon Tetrachloride	54 U	59 U	54 U	53 U	53 U	5.4 U	5.2 U	6 U	5000
Bromodichloromethane	5.4 U	59 U	5.4 U	53 U	5.3 U	54 U	5.2 U	6 U	10000
1,2-Dichloropropane	54 U	59 U	54 U	53 U	53 U	5.4 U	5.2 U	6 U	9000
cle-1,3-Dichloropropene	5.4 U	59 U	54 U	5.3 U	53 U	54 U	5.2 U	6 U	4000
Trichloroethene	54 U	5.9 U	54 U	53 U	53 U	5.4 U	5.2 U	6 U	58000
Dibromochloromethane	5.4 U	5.9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	-
1,1,2-Trichioroethane Benzene	5.4 U	59 U	54 U	5.3 U	53 U	54 U	52 U	6 U	11000
I-1,3-Dichloropropene	5.4 U 5 4 U	59 U 59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	22000
2-Chloroethyl Vinyl Ether	5.4 U	59 U	5.4 U 5.4 U	53 U	5.3 U	54 U	5.2 U	6 U	4000
Bromotorm	5.4 U	59 U	54 U	53 U 53 U	53 U 53 U	54 U 54 U	5.2 U 5.2 U	6 U	81000
Tetrachioroethene	5.4 U	59 U	54 U	53 U	5.3 U	54 U	5.2 U	6 U 6 U	12000
1,1,2,2-Tetrachloroethans	5.4 U	59 U	54 U	53 U	53 U	54 U	52 U	6 U	3000
Toluene	540	5.9 U	54 U	53 U	5.3 U	54 U	5.2 U	6 0	16000000
Chlorobenzene	54 U	59 U	54 U	53 U	53 U	54 U	52 U	6 0	1600000
2-Butanone	1 54 Ü	59 Ü	54 U	53 U	53 U	54 U	52 U	6 Ü	'
Ethyl Benzene	54 U	59 Ü	54 Ü	53 U	53 Ū	5 4 U	5.2 U	6 U	7800000
m/p-Xylenes	54 U	59 Ü	54 U	53 U	5,3 U	54 U	52 U	ěŭ	160000000
o-Xylene	54 U	5.9 U	54 U	53 U	53 Ú	54 Ū	5.2 U	6 Ú	160000000
Acetone	54 U	59 U	54 U	53 U	53 U	54 U	45	6 Ú	7800000
Carbon Disulfide	54 U	5.9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	7800000
4-Methyl-2-Pentanone	5.4 U	59 U	54 U	53 U	53 U	54 U	52 U	6 U	-
2-Hexanone	54 U	5 9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	-
Styrene	5.4 U	5.9 U	54 U	53 U	53 U	54 U	52 U	6 U	16000000
1,3-Dichlorobenzene	5.4 U	59 U	54 U	53 U	53 U	54 U	52 U	6 U	l
1,4-Dichlorobenzene 1,2-Dichlorobenzene	54 U	59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	27000
Dichlorodifluoromethane	5.4 U 5.4 U	5.9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	7000000
Vinyl Acetale	27 U	5 9 U 29 U	54 U 27 U	53 U 26 U	53 U 26 U	5.4 U 27 U	52 U 26 U	6 U 30 U	7000000
2,2-Dichloropropane	54 0	5.9 U	54 U	53 U	53 U	54 U	52 U	30 U	78000000
Bromochioromethane	54 U	59 U	54 U	530	530	54 U	5.2 U	6 U	=
1,1-Dichloropropene	54 U	59 U	54 U	53 U	53 U	54 Ŭ	52 U	6 U	_
1,3-Dichloropropane	54 U	59 U	54 U	53 U	53 Ŭ	54 U	5.2 U	δŬ	_
1,2-Dibromoethans	5.4 U	59 Ú	54 U	53 U	53 Ŭ	54 U	5.2 U	έŬ	
leopropylbenzene	54 U	59 U	54 U	53 Ú	53 Ū	54 U	5.2 U	δŪ	_
1,2,3-Trichioropropane	5.4 U	59 U	54 U	53 U	53 U	54 U	5.2 U j	6 Ü	l
1,1,1,2-Tetrachloroethane	5.4 U	59 U	54 U	53 U	53 U	5.4 U	52 U	6 Ü	l -
Bromobenzene	54 U	5.9 U	54 U	53 U	53 U	54 U	52 U	6 U	-
n-propylberizene	5.4 U	5.9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	-
2-Chlorotoluene	5.4 U	59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	1 -
1,3,5-Trimethylbenzene	5.4 U	59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	_
4-Chlorotoluene	5.4 U	59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	_
tert-Butylbenzene	54 U	59 U	54 U	53 U	5.3 U	5.4 U	5.2 U	6 U	_
1,2,4-Trimethylbenzene	5.4 U	5.9 U	54 U	5.3 U	53 U	5.4 U	5.2 U	6 U	_
sec-Butythenzens	54 U	5.9 U	54 U	53 U	53 U	54 U	5.2 U	6 U	-
p-leopropyttoluene	5.4 U	59 U	54 U	53 U	53 U	54 U	5.2 U	6 U	-
Dibromomethane	5.4 U	5.9 U	54 U	53 U	53 U	5.4 U	52 U	6 U	_
n-Butylbenzene 1,2-Dibromo-3-Chloropropane	5.4 U 5 4 U	5.9 U 5 9 U	54 U 54 U	53 U	53 U	54 U	5.2 U	6 U	_
1.2.4-Trichiorobenzene	5.4 U	5.9 U	5.4 U 5.4 U	53 U	53 U	5.4 U	5.2 U	6 U	70000
Hexachiorobutadiene	5.4 U	5.9 U	5.4 U	53 U 5.3 U	53 U	54 U 5.4 U	5.2 U	6 U	780000
Naphthalene	5.4 U	5.9 U	54 U	5.3 U	5 3 U 5.3 U	5.4 U	5.2 U 5.2 U	6 U 6 U	8000 3100000
MTBE	5.4 U	590	5.4 U	53 U	5.3 U	5.4 U	5.2 U	8 U	310000
1,2,3-Trichlorobenzene	5.4 U	5.9 U	5.4 U	53 U	53 U	54 U	5.2 U	6 U	I _
Total Confident Conc. VOAs (s)	4	7	6	1	2	5	48	4	10000

Cleasifilers

U. The compound was not detected at the indicated sonoenhallon.

J. Data indicates the presence of a compound that mosts the identification offsets. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Notes — Not established

Sample Location	Old Ejection Prts		Former Ro	stor Doom		Machine Chan /for		()-b-(-b , D)	
Sample ID	134 B02 4-6	I36 B01 1-3'	136 B01 3-5'	136 B02 1-3'	136 B02 3-5'	137 B01 1-3'	merly referred to as Former 137 B01 3-5'	I37 B02 1-3'	Companson Value
Sample Depth (ft)	4-6	1-3	3-5	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/29/00	09/22/00	09/22/00	09/22/00	09/22/00	09/27/00	09/27/00	09/27/00	of Concern
Matrix	s	s	s	s	s	s	S	S	
Dilution Factor	10	10	10	10	10	10	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1									
Chloromethane	5.1 U	5.3 U	55 U	55 11					1
Bromomethane	5.1 U	5.3 U 53 U	55 U	55 U	56 U 56 U	52 U	5 6 U	53 U	- }
Vinyl Chloride	51 U	5.3 U	55 U	55 U	56 U	52 U 52 U	5 6 U 5 6 U	53 U 53 U	300
Chloroethane	510	53 U	55 U	55 U	56 U	52 U	56 U	5.3 U	300
Methylene Chlonde	51 U	53 U	55 U	55 U	56 U	5.2 U	56 U	5.3 U	85000
Trichlorofluoromethane	51 U	53 U	55 U	55 U	56 U	52 U	56 U	53 U	
1,1-Dichloroethene	51 U	53 U	55 U	55 U	56 U	52 U	5 6 U	5 3 U	1000
1,1-Dichloroethane	5,1 U	5.3 U	5.5 U	55 U	5,6 U	52 U	5 6 U	5.3 U	7800000
trans-1,2-Dichloroethene	5.1 U	5,3 U	55 U	55 U	56 U	5.2 U	56 U	5.3 U	1600000
ds-1,2-Dichloroethene Chloroform	5 1 U 5.1 U	53 U	55 U	55 U	56 U	52 U	56 U	5.3 U	780000
1,2-Dichloroethane	5.1 U	53 U 53 U	55 U 55 U	55 U 55 U	56 U 56 U	52 U 52 U	56 U 56 U	5.3 U	100000
1,1,1-Trichloroethane	51 U	530	5.5 U	55 U	56 U	5.2 U	56 U	5,3 U 5,3 U	7000
Carbon Tetrachlonde	51 0	53 U	5.5 U	5.5 U	56 U	52 U	56 U	5.3 U 5.3 U	5000
Bromodichloromethane	5.1 U	5.3 U	55 U	5.5 U	56 U	52 U	56 U	5.3 U	10000
1,2-Dichloropropane	51 Ü	53 U	55 U	55 U	5.6 U	520	5 6 U	53 U	9000
cis-1,3-Dichloropropene	51 U	53 U	55 U	55 U	56 U	5 2 U	5 6 U	53 U	4000
Trichloroethene	51 U	53 U	55 U	55 U	56 U	52 U	56 U	53 U	58000
Dibromochloromethane	51 U	53 U	55 U	55 U	56 U	52 U	5.6 U	53 U	
1,1,2-Trichloroethane	51 U	53 U	55 U	55 U	56 U	52 U [5 6 U	5,3 U	11000
Benzene t-1,3-Dichloropropene	5.1 U	53 U	55 U	55 U	5 6 U	52 U	56 U	53 U	22000
2-Chloroethyl Vinyl Ether	5,1 U 51 U	5.3 U 5 3 U	55 U 55 U	55 U 55 U	56 U 56 U	5.2 U 5 2 U	56 บ 5.6 บ	53 U 53 U	4000
Bromoform	5.1 U	5.3 U	5.5 U	55 U	56 U	5.2 U	5.6 U	53 U	81000
Tetrachloroethene	51 U	53 U	55 U	55 U	56 U	5.2 U	56 U	53 U	12000
1,1,2,2-Tetrachloroethane	51 Ū	53 U	55 U	5.5 U	56 U	52 U	5.6 U	53 U	3000
Toluene	51 U	5.3 U	5.5 U	55 U	56 U	5.2 U	56 U	53 U	16000000
Chlorobenzene	51 U	5.3 U	5.5 U	55 U	56 U	52 U	56 Ü	53 U	1600000
2-Butanone	51 U	53 U	55 U	55 U	56 U	52 U	56 U	5 3 U	
Ethyl Benzene	51 U	53 U	55 U	55 U	56 U	52 U	5.6 U	5 3 U	7800000
m/p-Xylenes	51 U	5.3 U	55 U	55 U	56 U	52 U	5 6 U	53 U	160000000
o-Xylene Acetone	51 U 43	53 U 5.3 U	55 U 55 U	55 U 55 U	56 U	52 U	5 6 U	53 U	160000000
Carbon Disulfide	51 U	53 U	5.5 U	5.5 U	56 U 56 U	5.2 U 5 2 U	56 U 56 U	53 U 53 U	7800000 7800000
4-Methyl-2-Pentanone	5.1 U	5.3 U	5.5 U	5.5 U	56 U	52 U	56 U	53 U	7800000
2-Hexanone	51 U	53 U	55 U	55 Ŭ	56 U	52 U	56 U	53 U	
Styrene	5.1 U	5.3 U	55 U	55 Ü	56 U	52 U	56 U	53 U	16000000
1,3-Dichlorobenzene	51 U	5 3 U	5.5 U	5.5 U	56 U	52 U	5 6 U	5.3 ป	
1,4-Dichlorobenzene	51 U	53 U	5.5 U	55 U	56 U	52 U	56 U	5.3 U	27000
1,2-Dichlorobenzene Dichlorodifluoromethane	51 U	53 U	55 U	55 U	56 U	5.2 U	5 6 U	53 U	7000000
Vinyl Acetate	5.1 U 26 U	5 3 U 26 U	5.5 U 28 U	55 U 28 U	56 U 28 U	52 U	5.6 U	53 U	
2,2-Dichloropropane	5.1 U	5.3 U	5.5 U	5.5 U	28 U 56 U	5.2 U	28 U 5.6 U	27 U 5.3 U	78000000
Bromochloromethane	51 0	53 U	55 U	5.5 U	56 U	5.2 U	5.6 U	5.3 U	_
1,1-Dichloropropene	51 U	53 U	55 U	55 U	56 U	5.2 U	5.6 U	5.3 U	
1,3-Dichloropropane	51 U	5.3 U	55 U	55 U	56 U	52 U	5.6 U	5.3 U	
1,2-Dibromoethane	5.1 U	53 U	55 U	5.5 U	56 U	52 U	56 U	5 3 U	-
Isopropylbenzene	5.1 U	5.3 U	55 U	55 U	56 U	5.2 U	5.6 U	5,3 U	
1,2,3-Trichloropropane	5.1 U 51 U	53 U 53 U	5.5 U	55 U	56 U	52 U	5.6 U	53 U	-
1,1,1,2-Tetrachioroethane Bromobenzene	51 U 51 U	53 U 53 U	5.5 U 5.5 U	55 ป 55 ป	56 U	5.2 U	56 U	53 U	
n-propylbenzene	5.1 U	53 U	5.5 U 55 U	55 U	5.6 U 5 6 U	5.2 U 5.2 U	5,6 U 5,6 U	5.3 U 5.3 U	
2-Chlorotoluene	5.1 U	53 U	55 U	5.5 U	56 U	52 U	5.6 U	5.3 U	_
1,3,5-Trimethylbenzene	51 U	53 U	55 U	5.5 U	56 U	520	56 U	5.3 U	
4-Chlorotoiuene	5 i Ŭ	5.3 U	55 U	55 U	56 U	52 U	56 U	53 U	
tert-Butylbenzene	5.1 U	53 U	55 U	55 U	5.6 U	52 U	56 U	5.3 U	
1,2,4-Trimethylbenzene	51 U	53 U	5.5 U	55 U	56 U	5.2 U	5.6 U	5,3 U	-
sec-Butylbenzene	51 U	53 U	55 U	5.5 U	5 6 U	5.2 U	5.6 U	53 U	_
p-Isopropyttoluene	51 U	53 U	55 U	5.5 U	56 U	52 U	5.6 U	53 U	-
Dibromomethane n-Butylbenzene	5.1 U	5.3 U	5.5 U	55 U	56 U	5.2 U	56 U	5.3 U	-
1,2-Dibromo-3-Chloropropane	5.1 U 5.1 U	53 U 5.3 U	5.5 U 55 U	55 U 55 U	56 U	5.2 U	56 U	53 U	-
1,2,4-Trichlorobenzene	5.1 U 51 U	5.3 U 53 U	5.5 U	55 U	5.6 U 5 6 U	52 U 52 U	56 U 56 U	53 U	790000
Hexachlorobutadiene	5.1 U	5,3 U	5.5 U	5.5 U	56 U	52 0	5 6 U	53 U 53 U	780000 8000
Naphthalene	51 U	5.3 U	55 U	5.5 U	5.6 U	5.2 U	5.6 U	5.3 U 53 U	3100000
MTBE	51 Ŭ	5.3 U	55 U	5.5 U	5.6 U	5.2 U	5.6 U	53 U	3,0000
1,2,3-Trichlorobenzene	51 U	5,3 Ų	55 U	5.5 U	56 U	5.2 U	56 U	53 U	
Total Confident Conc VOAs (s)	43	ND	ND	ND	ND	ND	ND ND	ND	10000

Notes
-- Not established
ND Not Detected

	I Marklands		VC	NATILE ORGANIC COMPO	UNUS				
	Machine Shop (formerly referred to as Former								
Sample Location	Uphoistery Room)		p-11	·		_			
Sample ID	137 B02 3-5	138 B01 1-3'	Boiler F	138 B02 1-3"			r Facility Maintenance Facility		
Sample Depth (ft)	3-5	1-3	138 BU1 3-6	138 B02 1-3"	138 B02 3-5' 3-5	139 801 1-3	139 B01 3-6	I39 B02 1-3	Comparison Value
Sampling Date	09/27/00	09/26/00	09/26/00	09/26/00	09/26/00	1-3 09/19/00	3-5	1-3	for Areas
Matrix	s 1	S	S	0w/20/00 S	04/20/00 S	0w1w00	09/19/00 S	09/19/00	of Concern
Dilution Factor	1 10 1	10	10	10	1.0	1.0	10	S 10	
Units	ug/kg	ug/kg	ug/kg	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
							97.4	- UNIVA	
		1							
Chloromethane	540	55 U	51 U	53 U	5.6 U	53 U	51 U	5.3 U	_
Bromomethane	5.4 U	55 U	51 U	53 U	56 U	53 U	5.1 U	5.3 U	-
Vinyl Chloride	5.4 U	55 U	51 U	53 U	56 U	5.3 U	51 U	5.3 U	300
Chloroethane	54 U	5.5 U	51 U	53 U	56 U	5.3 U	51 U	53 U	_
Methylene Chloride	5.4 U	9.2	94	44 J	6.9	4.3 J	5 J	43 J	85000
Trichlorofluoromethane 1.1-Dichloroethene	5.4 U 5.4 U	5.5 U	5.1 U	53 U	5.6 U	53 U	5.1 U	5.3 U	-
1.1-Dichloroethane	5.4 0	55 U 55 U	51 U	5.3 U	5.6 U	5.3 U	5,1 U	53 U	1000
trans-1,2-Dichioroethene	54 U	5.5 U	51 U 51 U	5.3 U 5.3 U	5.6 U	5.3 U	510	53 U	7800000
cis-1,2-Dichloroethene	5.4 U	5.5 U	510		56 U	53 U	510	53 U	1600000
Chloroform	5.4 0	5.5 U	5.1 U	53 U	56 U	53 U	510	53 U	780000
1,2-Dichloroethane	540	5.5 U	5.1 U	53 U	56 U	53 U	5.1 U	53 U	100000
1,1,1-Trichloroethane	540	55 U	5.1 U	5.3 U	5.6 U 5.6 U	5.3 U 5.3 U	51 U	53 U	7000
Carbon Tetrachioride	5.4 0	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U 53 U	5.1 U 5.1 U	5.3 U 5 3 U	5000
Bromodichloromethane	5.4 0	5.5 U	5.1 U	5.3 U	56 U	5.3 U	5.1 U	53 U	10000
1,2-Dichloropropane	5.4 U	5.5 U	510	5.3 U	5.6 U	5.3 U	5.1 U	53 U	9000
cis-1,3-Dichloropropens	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 0	5.3 U	4000
Trichloroethene	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 U	53 U	58000
Dibromochioromethane	5.4 U	5.5 U	5.1 U	53 U	56 U	5.3 U	51 U	63 U	"-
1,1,2-Trichloroethane	5.4 U	5.5 U	5.1 U	5.3 ∪ 1	5.6 U	8.3 U	5.1 Ū	5 3 U	11000
Benzene	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 U	5 3 U	22000
I-1,3-Dichloropropene	5.4 U	5.5 U	51 U	53 U	5.6 U	5.3 U	5.1 U	5.3 U	4000
2-Chloroethyl Vinyl Ether	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	51 U	53 U	_
Bromoform	5.4 U	5.5 U	51 U	53 U	56 U	53 U	51 U	5.3 U	81000
Tetrachioroethene	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 U	5 3 U	12000
1,1,2,2-Tetrachioroethane	5.4 U	55 U	5.1 U	5.3 U	56 U	5.3 U	5.1 U	6 3 U	3000
Toluene	54 U	5.5 U	5.1 U	5.3 U	56 U	5.3 ∪	5.1 U	5 3 U	16000000
Chlorobenzene	5.4 U	5.5 U	5.1 U	5.3 U	56 U	5.3 U	51 U	5 3 U	1600000
2-Butanone Ethyl Benzene	540	55 U	5.1 U	53 U	56 U	6.3 U	51 U	5 3 U	-
n/p-Xylenes	5.4 U 5.4 U	6.5 U 5.5 U	51 U	53 U	5 6 U	5.3 U	5.1 U	5 J U	7800000
o-Xytene	54 U	5.5 U	51 U 5,1 U	5.3 U 5.3 U	56 U	53 U	5.1 U	53 U	160000000
Acelone	5.4 U	5.5 U	5.1 U	5.3 U	56 U	53 U	510	53 U	160000000
Carbon Disulfide	5.4 U	5.5 U	5.1 U	530	5.6 U	53 U	51 U	53 U	7800000
4-Methyl-2-Pentanone	5.4 U	55 U	5.1 U	530	5.6 U 5.6 U	5.3 U 5.3 U	510	53 U	7800000
2-Hexanone	5.4 U	55 U	51 0	5.3 U	5.6 U	5.3 U	51 U 51 U	53 U 53 U	_
Styrene	54 U	5.5 U	510	53 0	5.6 U	5.3 U	51 U	53 U	16000000
1,3-Dichlorobenzene	5.4 U	55 U	81 U	530	5.6 U	5.3 U	5.1 U	5.3 U	1800000
1,4-Dichlorobenzene	5.4 U	5.5 U	510	5.3 Ú	5.6 U	5.3 U	5.1 U	5.3 U	27000
1,2-Dichlorobenzene	5.4 U	55 U	5.1 U	53 U	56 U	53 U	510	53 U	7000000
Dichlorodifluoromethane	5.4 U	5.5 U	5.1 U	5.3 Ŭ	5.6 U	5.3 U	510	53 U	
Vinyl Acetate	27 U	27 Ú	26 U	27 Ú	28 U	27 U	26 U	27 Ú	78000000
2,2-Dichloropropane	5.4 U	5.5 U	5.1 U	5.3 U	5.6 Ú	5.3 U	51 U	53 U	_
Bromochloromethane	5.4 U	5.5 U	51 U	5.3 U	56 U	5.3 U	51 U	5 3 U	-
1,1-Dichloropropene	6.4 U	5.5 U	5.1 U	53 U	5.6 U	5.3 U	51 U	53 U	-
1,3-Dichloropropane	5.4 U	5.5 U	5.1 U	53 U	5.6 U	5.3 U	51 U	53 U	-
1,2-Dibromoethane	5.4 U	5.5 U	51 U	5.3 U	5.6 U	5.3 ∪	51 U	5 3 U	-
leopropylbenzene	5.4 U	5.5 U	81 U	53 U	5.6 U	5.3 U	51 U	53 U	i –
1,2,3-Trichioropropane	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	51 U	53 U	-
1,1,1,2-Tetrachloroethane	5.4 U	55 U	510	53 U	56 U	53 U	5.1 U	53 U	-
Bromobenzene n-omoutheconen	5.4 U	55 U	510	53 U	56 U	53 U	5.1 U	53 U	–
n-propylbenzene 2-Chlorotoluene	5.4 U	5.5 U	5.1 U	53 U	56 U	5.3 U	5.1 U	53 U	-
z-Chlorotoluene 1,3,5-Trimethylbenzene	5.4 U 5.4 U	55 U	51 U	53 U	5.6 U	5.3 U	5.1 U	5.3 U	–
1,3,5- i rimetrytoerizene 4-Chlorotoluene		55 U	5.1 U	53 U	5.6 U	5.3 U	51 U	53 U	-
4-Cnlorosoluene tert-Butytbenzene	5.4 U 5.4 U	5.5 U	51 U	53 U	56 U	53 U	510	53 U	_
1.2.4-Trimethylbenzene	5.4 U	5.5 U 5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5 1 U	53 U	-
sec-Bulyfbenzene	5.4 U	5.5 U	51 U 51 U	5.3 U	5.6 U	5.3 U	5 1 U	53 U	-
p-isopropyttoluene	5.4 U	5.5 U	510	53 U	5.6 U	53 U	5.1 U	5.3 U	-
Dibromomethane	5.4 U	5.5 U	510		56 U	5.3 U	51 U	5.3 U	_
n-Butylbenzene	5.4 U	5.5 U 5.5 U		5.3 U	5.6 U	5.3 U	51 U	53 U	-
1.2-Dibromo-3-Chloropropane	5.4 U	5.5 U	5.1 U 5.1 U	53 U 5.3 U	5.6 U	53 U	51 U	53 U	–
1,2,4-Trichlorobenzene	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U 5.6 U	5.3 U 53 U	5.1 U	5.3 U	700000
Hexachlorobutadiene	5.4 U	5.5 U	51 U	53 U	5.6 U	53 U 5.3 U	5.1 U 5.1 U	53 U	780000 8000
Naphthalene	5.4 U	5.5 U	5.1 U	53 U	5.6 U	5.3 U	5.1 U 5.1 U	5.3 U 5 3 U	3100000
MTBE	5.4 U	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 U 5.1 U	5.3 U	
1,2,3-Trichlorobenzene	54 Ŭ	5.5 U	5.1 U	5.3 U	5.6 U	5.3 U	5.1 U 5.1 U	5.3 U 53 U	_

J Date indicates the presence of a compound that mosts the Identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Complet continu	Former Facility								
Sample Location Sample ID	Maintenance Area	140 B01 2-4	H0 B01 4-6	140 B03 1-3	Hangar 2 140 B03 3-5	H0 B04 1-3	140 B04 3-5	I40 B05 1-3	Comparison Value
Sample Depth (ft)	3-5	2-4	4-6	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/19/00	10/04/00	10/04/00	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00	of Concern
Matrix	s	S	S	S	s	s	S	S	5. 5555
Dilution Factor	1.0	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	uġ/kg	ug/kg
Chloromethane	52 U	54 U	51 U	53 U	53 U	5 2 U	5.1 U	5 2 U	
Bromomethane	520	5.4 U	51 U	5.3 U	53 U	52 U	5.1 U	52 U	_
Vinyl Chloride	5.2 U	5.4 U	51 U	53 U	5.3 U	52 U	5.1 U	5.2 U	300
Chioroethane	5.2 U	5.4 U	51 U	53 U	53 U	52 Ü	51 U	5.2 U	=
Methylene Chloride	3.9 J	15	51 U	56	63	44 J	38 J	34 J	85000
Trichlorofluoromethane	5.2 U	5.4 U	51 U	53 U	5 3 U	5 2 U	5 1 U	5 2 U	-
1,1-Dichloroethene	52 U	5.4 U	51 U	53 U	5.3 U	52 U	51 U	5 2 U	1000
1,1-Dichloroethane trans-1,2-Dichloroethene	52 U 52 U	54 U 54 U	51 U	53 U	53 U	52 U	5.1 U	5.2 U	7800000
cis-1,2-Dichloroethene	52 U	54 U	51 U 51 U	5.3 U	53 U 53 U	5 2 U 5 2 U	5 1 U 5.1 U	5 2 U 5.2 U	1600000 780000
Chioroform	5.2 U	54 U	51 U	53 U	5.3 U	52 U	5.1 U	5.2 U	100000
1,2-Dichloroethane	52 U	54 U	5.1 U	53 U	53 U	52 U	51 U	52 U	7000
1,1,1-Trichloroethane	52 U	5 4 U	51 U	53 U	5.3 U	52 U	51 U	52 U	
Carbon Tetrachlonde	52 U	5 4 U	51 U	53 U	53 U	5.2 U	51 U	5 2 U	5000
Bromodichloromethane	52 U	54 U	51 U	53 U	5.3 U	5 2 U	5 1 U	5 2 U	10000
1,2-Dichloropropane	52 U	54 U	51 U	53 U	53 U	5 2 U	5 1 U	52 U	9000
cis-1,3-Dichloropropene Trichloroethene	5.2 U 5.2 U	5.4 U 5.4 U	51 U	53 U	53 U	5 2 U	51 U	52 U	4000
Dibromochioromethane	5.2 U 5.2 U	54 U	51 U 5.1 U	53 U 53 U	5.3 U 5.3 U	5 2 U 5 2 U	5 1 U 5.1 U	5 2 U 5 2 U	58000
1,1,2-Trichloroethane	52 U	5.4 U	5.1 U	530	5.3 U	52 U	5.1 U 5 1 U	52 U	11000
Benzene	52 U	5.4 U	51 U	53 U	5.3 U	52 U	51 U	52 U	22000
t-1,3-Dichloropropene	52 U	5 4 U	51 U	5 3 U	53 U	5 2 U	51 U	5.2 U	4000
2-Chloroethyl Vinyl Ether	52 U	5.4 U	51 U	53 U	5.3 U	5 2 U	5.1 U	5 2 U	
Bromoform	5.2 U	5.4 U	5,1 U	53 U	53 U	5 2 U	5,1 U	5 2 U	81000
Tetrachioroethene	5.2 U	63	51 U	5.3 U	53 U	5 2 U	5 1 U	5.2 U	12000
1,1,2,2-Tetrachloroethane Toluene	5.2 U 5.2 U	5 4 U 5.4 U	51 U 51 U	53 U	53 U 53 U	5.2 U 5 2 U	5.1 U 5.1 U	52 U	3000 16000000
Chlorobenzene	5.2 U	5.4 U	51 U	53 U	53 U	52 U	5.1 U	5 2 U 5 2 U	1600000
2-Butanone	5.2 U	5.4 U	5.1 U	5.3 U	53 U	52 U	5.1 U	52 U	
Ethyl Benzene	5.2 U	5.4 U	51 U	53 U	53 Ū	5 2 Ū	51 U	5 2 U	7800000
m/p-Xylenes	52 U	54 U	51 U	5 3 U	53 U	52 U	51 U	5 2 U	160000000
o-Xylene	5.2 U	5.4 U	51 U	53 U	5 3 U	5 2 U	5 1 U	5.2 U	160000000
Acetone	5.2 U	54 U	51 U	53 U	53 U	52 U	5 1 U	5 2 U	7800000
Carbon Disulfide 4-Methyl-2-Pentanone	5.2 U 5.2 U	5 4 U 5.4 U	51 U 51 U	53 U 53 U	53 U	52 U	51 U	5.2 U	7800000
2-Hexanone	52 U	5.4 U	51 U	53 U	53 U 53 U	5 2 U 5 2 U	5.1 U 5 1 U	5 2 U 5.2 U	_
Styrene	52 U	54 U	51 U	53 U	53 0	52 U	510	5.2 U	16000000
1,3-Dichlorobenzene	5.2 U	5 4 U	5.1 U	53 U	53 U	5.2 U	5.1 U	5 2 U	
1,4-Dichlorobenzene	52 U	5 4 U	51 U	5.3 U	53 U	52 U	5.1 U	52 U	27000
1,2-Dichlorobenzene	5.2 ∪	54 U	5.1 U	5 3 U	53 U	5.2 U	51 U	5.2 U	7000000
Dichlorodifluoromethane	52 U	54 U	51 U	53 U	53 U	52 U	51 U	5 2 U	
Vinyl Acetate 2.2-Dichloropropane	26 U	27 U 54 U	26 U 5 1 U	26 U 5 3 U	26 U	26 U	25 U	26 U	78000000
Bromochloromethane	52 U	5.4 U	51 U	53 U	53 U 53 U	52 U 52 U	51 U 5.1 U	5.2 U 5 2 U	_
1,1-Dichloropropene	52 0	5.4 U	51 U	53 U	53 U	52 U	51 U	52 U	l <u> </u>
1,3-Dichloropropane	52 U	5 4 U	5.1 U	53 0	53 U	52 U	51 U	52 U	
1,2-Dibromoethane	5.2 U	5 4 U	51 U	53 U	53 U	5 2 U	51 U	5.2 U	
Isopropylbenzene	5.2 U	5.4 U	51 U	53 U	53 U	5.2 U	5,1 U	5 2 U	-
1,2,3-Trichloropropane	5.2 U	54 U	51 U	53 U	5.3 U	52 U	5.1 U	52 U	i –
1,1,1,2-Tetrachloroethane Bromobenzene	5.2 U 5.2 U	54 U 54 U	5.1 U 5.1 U	53 U	53 U	52 U	51 U	5,2 U	-
n-propylbenzene	5.2 U	54 U	5.1 U	5,3 U 53 U	53 U 53 U	52 U 52 U	51 U 51 U	5.2 U 5 2 U	_
2-Chlorotoluene	5.2 U	5.4 U	5.1 U	53 U	53 U	52 U	51 U	52 U	
1,3,5-Trimethylbenzene	5.2 U	5.4 U	51 U	53 U	53 U	52 U	5.1 U	52 U	_
4-Chlorotoluene	5.2 U	54 U	5.1 U	53 U	53 U	52 U	5.1 U	52 U	_
tert-Butylbenzene	5.2 U	54 U	5.1 U	53 U	5.3 U	5.2 U	51 U	5 2 U	i –
1,2,4-Trimethylbenzene	5.2 U	5.4 U	5.1 U	5.3 U	53 U	5.2 U	5 1 U	5.2 U	
sec-Butylbenzene	5.2 U	54 U	51 U	5 3 U	53 U	52 U	51 U	5.2 U	_
p-Isopropyttoluene	5.2 U	54 U	51 U	53 U	5.3 U	52 U	5.1 U	5.2 U	-
Dibromomethane n-Butylbenzene	52 U 5.2 U	5.4 U 5.4 U	51 U 51 U	5 3 U 5.3 U	53 U	52 U	510	5.2 U	
1,2-Dibromo-3-Chloropropane	52 U	5.4 U	51 U	5.3 U	53 U 53 U	5.2 U 5.2 U	51 U 5.1 U	5 2 U 5.2 U	=
1,2,4-Trichlorobenzene	5.2 U	5.4 U	5.1 U	5.3 U	53 U	5.2 U	5.1 U 51 U	5.2 U 5 2 U	780000
Hexachlorobutadiene	52 U	54 Ü	51 U	53 U	53 U	52 U	51 U	52 U	8000
Naphthalene	52 U	54 U	51 U	53 U	53 U	52 U	5.1 U	5 2 U	3100000
MTBE	5.2 U	54 U	5.1 U	53 U	53 U	5.2 U	51 U	5 2 U	-
1,2,3-Trichlorobenzene Total Confident Conc. VOAs (s)	52 U	5 4 U 78	51 U ND	53 U	53 U	52 U	5.1 U	52 U	10000
				6	6	4	4		

Qualifiers

U. The compound was not detected at the indicated concentration

J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quentilation limit but greater than zero. The concentration given is an approximate value.

Notes

Not established

ND Not Detected

Sample Location Sample ID	140 805 3-5	Hangar 2			Random Loca	tions of Historic Manufactur			
Sample Depth (ft)	3-5	I40 B06 1-3 1-3	140 B06 3-5 3-5	H1 B01 0-2	H1 B01 2-4	H1 B02 1-3	I41 B02 3-5	H1 B03 1-3	Comparison Value
Sampling Date	09/20/00	09/20/00	09/20/00	0-2 10/16/00	2-4 10/16/00	1-3 10/13/00	3-5 10/13/00	1-3	for Areas
Matrix	S	0a/20/00 S	5 S	S	10/16/00 S	10/13/00 S	10/13/00	10/13/00 S	of Concern
Dilution Factor	10	10	10	10	10	10	10 1	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	52 U	5,5 ∪	5 1 U	5 J U	53 U	57 U	51 U [5 1 U	-
Bromomethane	5.2 U	5.5 U	5 1 U	53 U	53 U	5.7 ป	5.1 U	5 1 U	-
Vinyl Chloride	5.2 U	55 U	5 1 U	53 U	53 U	57 U	51 U	5 1 U	300
Chloroethane Methylene Chloride	5 2 U 3.6 J	55 U 5 J	51 U	53 U	53 U	57 U	510	51 U	l . .
Trichlorofluoromethane	5.0 J	55 U	36 J 51 U	53 U 53 U	53 U 53 U	11 57 U	11 5.1 U	14 5 1 U	85000
1,1-Dichloroethene	5.2 0	5.5 U	51 U	5.3 U	53 U	57 U	5.1 U	51 U	1000
1,1-Dichloroethane	5.2 0	5.5 U	51 U	53 U	53 0	57 U	5.1 U	51 U	7800000
trans-1,2-Dichloroethene	5.2 U	55 U	5.1 Ŭ	53 U	53 Ŭ	57 U	510	51 U	1600000
cis-1,2-Dichloroethene	5.2 U	55 U	51 U	53 U	53 U	57 U	51 Ŭ	5 1 U	780000
Chloroform	5.2 U	55 U	5.1 U	53 U	53 U	57 Ū	51 Ú	5 1 U	100000
1,2-Dichloroethane	5.2 U	55 U	5 1 U	53 U	5.3 ∪	57 U	51 U	5 1 U	7000
1,1,1-Trichioroethane	5.2 U	55 U	51 U	53 U	53 ∪	5.7 U	5.1 U	51 U	_
Carbon Tetrachloride	5.2 U	55 U	5 1 U	5 3 U	53 U	57 U	5,1 U	51 U	5000
Bromodichloromethane	52 U	55 U	51 U	53 U	53 U	57 U	5.1 U	51 U	10000
1,2-Dichloropropane cis-1,3-Dichloropropane	5.2 U 5.2 U	55 U 55 U	51 U 51 U	53 U	5.3 U	57 U	510	51 U	9000
Trichloroethene	5.2 U	55 U	51 U	5 3 U 5.3 U	53 U 53 U	5.7 U 57 U	51 U 5.1 U	51 U 51 U	4000 58000
Dibromochioromethane	5.2 U	5.5 U	51 U	5.3 U	53 U	57 U	5.1 U 5.1 U	51 U 51 U	38000
1,1,2-Trichloroethane	5.2 U	5.5 U	51 U	5.3 U	53 U	57 U	5.1 U	510	11000
Benzene	5.2 U	55 U	510	5.3 U	53 U	57 U	5.1 U	510	22000
t-1,3-Dichloropropene	5.2 U	5.5 U	51 Ŭ	5.3 U	53 U	5.7 U	5.1 U	510	4000
2-Chloroethyl Vinyl Ether	5.2 U	55 Ü	51 Ü	53 U	53 U	57 U	510	5.1 U	_
Bromoform	5.2 U	5.5 U	51 U	53 U	53 U	57 U	51 U	51 U	81000
Tetrachloroethene	5.2 U	55 U	51 U	53 U	53 U	57 U	51 U	5.1 U	12000
1,1,2,2-Tetrachioroethane	5.2 U	55 U	5.1 U	53 U	53 U	57 U	51 U	51 U	3000
Toluene Chlorobenzene	5.2 U 5.2 U	55 U 55 U	51 U 51 U	53 U 53 U	53 U	57 U	51 U	51 U	16000000
2-Butanone	52 U	5.5 U	51 U	53 U 53 U	53 U 53 U	57 U 57 U	510	510	1600000
Ethyl Benzene	5.2 U	5.5 U	\$1 U	53 U	530	5.7 U 57 U	5.1 U 5.1 U	5 1 U 5.1 U	7800000
m/p-Xylenes	5.2 U	5.5 U	51 U	5.3 U	11 3	2.2 J	5.1 U	16 J	160000000
o-Xylene	5.2 U	5.5 U	5 i U	5.3 U	ไ ร่วับ ไ	5.7 U	5.1 U	51 U	160000000
Acetone	5.2 U	5.5 U	51 U	12	53 U	57 U	5.1 U	5.1 U	7800000
Carbon Disulfide	5.2 U	5.5 U	51 U	53 U	53 Ú	57 U	51 U	51 U	7800000
4-Methyl-2-Pentanone	5.2 U	5.5 U	51 U	53 U	5.3 U	57 U	51 U	5.1 U	-
2-Hexanone	5.2 U	5.5 U	5.1 U	53 U	53 U	57 U	5.1 U	51 U	l - l
Styrene 1,3-Dichlorobenzene	5.2 U 5.2 U	5.5 U 5.5 U	51 U 51 U	5.3 U 5 3 U	53 U	57 U	6.1 U	5.1 U	16000000
1.4-Dichlorobenzene	52 U	5.5 U	5.1 U	53 U	5.3 U 5.3 U	57 U 57 U	51 U 51 U	51 U 51 U	27000
1,2-Dichlorobenzene	5.2 0	5.5 U	51 U	53 U	5.3 U	57 U	5.1 U	51 U	7000000
Dichlorodifluoromethane	5.2 U	5.5 U	51 U	5.3 U	53 U	57 U	5.1 U	510	/******
Vinyi Acetate	26 U	27 U	25 U	26 U	26 U	28 U	25 U	26 Ú	78000000
2,2-Dichloropropane	5.2 U	85 U	5.1 U	53 U	5.3 U	57 U	510	51 Ŭ	
Bromochloromethane	5.2 U	5.5 U	51 U	53 U	53 U	5.7 U	5.1 Ū	510	l i
1,1-Dichloropropene	5.2 U	5.5 U	51 U	53 U	5.3 U	57 U	51 U	51 U	-
1,3-Dichloropropane	5.2 U	5.5 U	51 U	53 U	5.3 U	57 U	51 U	51 U	- 1
1,2-Dibromoethane	5.2 U	55 U	5.1 U	53 U	5.3 U	5.7 U	5.1 U	51 U	- 1
Isopropylbenzene 1,2,3-Trichloropropane	5.2 U 5.2 U	5 5 U 5.5 U	51 U 51 U	5.3 U 5.3 U	53 U 53 U	5.7 U	5.1 U 5.1 U	510	-
1,1,1,2-Tetrachloroethane	5.2 U	5.5 U	51 U	5.3 U 5.3 U	5.3 U	5.7 U 5 7 U	5.1 U	51 U 51 U	
Bromobenzene	5.2 U	5.5 U	5.1 U	53 U	53 U	5.7 U	5.1 U	510	
n-propylbenzene	5.2 0	55 U	5.1 U	530	5.3 U	5.7 U	5.1 U	510] =
2-Chlorotoluene	5.2 U	55 U	5.1 U	53 0	53 U	5.7 U	5.1 U	51 U	-
1,3,5-Trimethylbenzene	5.2 U	5.5 U	5 t U	53 U	53 U	57 U	51 U	51 U	
4-Chlorotoluene	5.2 U	5.5 U	5.1 U	53 U	53 U	5.7 U	5.1 U	5.1 U	
tert-Butylbenzene	5.2 U	5.5 U	5.1 U	5.3 U	53 U	87 U	51 U	51 Ü	-
1,2,4-Trimethylbenzene	5.2 U	5.5 U	5.1 U	53 U	5.3 U	57 U	5.1 Ü	51 Ü	
sec-Butylbenzene	5.2 U	5.5 U	5.1 U	5.3 U	5.3 U	5.7 U	5.1 U	5.1 U	1 -
p-laopropyttoluene	5.2 U	5.5 U	5.1 U	5.3 U	5.3 U	5.7 U	5.1 U	5.1 U	
Dibromomethane	5.2 U	86 U	5.1 U	5.3 U	53 U	8.7 U	5.1 U	5.1 U	
n-Butyfbenzene	5.2 U	5.5 U	5.1 U	5.3 U	5.3 U	5.7 U	5.1 U	5.1 U	-
1,2-Dibromo-3-Chloropropane	5.2 U	5.5 U	5.1 U	5.3 U	53 U	5.7 U	5.1 U	5.1 U	70000
1,2,4-Trichlorobenzene Hexachlorobutadiene	52 U 52 U	5.5 U 5.5 U	5.1 U 5 1 U	53 U	5.3 U	5.7 U	5.1 U	510	750000
Naphthalene	520	5.5 U	5.1 U	5.3 U 5.3 U	6.3 U 5.3 U	5.7 U 5.7 U	5.1 U 5.1 U	5.1 U	8000
MTBE	5.2 U	5.5 U	5.1 U 5.1 U	5.3 U	5.3 U	5.7 U 57 U	5.1 U 5.1 U	5.1 U 5.1 U	3100000
1,2,3-Trichlorobenzene	5.2 U	5.5 U	5.1 U	5.3 U	5.3 U	5.7 U	5.1 0	5.1 U	
Total Confident Conc. VOAs (s)	1 3	5	4	12	1	13	11	16	10000
				· · · · · · · · · · · · · · · · · · ·			<u> </u>		

Constitues

U. The companied was not detected at the indicated concentration.

J. Data tradicates the presence of a compound that mosts the identification criteria. The result is take then the quantitation limit but greater than zero.
The concentration given is an approximate value.

Notes ---: Not sotablished

						Paint Shop Dry Well in			
Sample Location		Random Location	ons of Historic Manufactur			Former Hammer Shop	Dry Wells in Forme		
Sample ID Sample Depth (ft)	141 B03 3-5 3-5	141 B04 1-3 1-3	141 B04 3-5 3-5	H1 B05 1-3	H1 B05 3-5	I42B01 (8-10)	143B01 (8-10)	H3B01(14-16)	Comparison Value
Sampling Date	10/13/00	10/13/00	10/13/00	1-3 10/13/00	3-5 10/13/00	8-10 10/19/00	8-10 10/20/00	14-16 10/20/00	for Areas of Concern
Matrix	s	S	S	S	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, u. 1.5.00 S	102000 S	10/20/00 S	oi conceiii
Dilution Factor Units	1.0	1.0	1.0	1.0	10	1.0	1.0	1.0	j
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
]
Chioromethane	5.1 U	57 U	5 1 U	55 U	54 U	51 U	28 U	53 U	
Bromomethane Vinyl Chloride	5.1 U 5.1 U	5.7 U 57 U	5 1 U 5.1 U	55 U 5,5 U	54 U 54 U	51 U 5.1 U	28 U 28 U	53 U	300
Chloroethane	51 U	5.7 U	5.1 U	5.5 U	54 U	5.7 U	28 U	5.3 U 5.3 U	300
Methylene Chloride	14	14	13	14	18	49 J	11 J	53 U	85000
Trichlorofluoromethane 1,1-Dichloroethene	51 U 5.1 U	57 U 5,7 U	5 1 U 5.1 U	5.5 U	54 U	51 U	28 U	5.3 U	
1,1-Dichloroethane	5.1 U	5.7 U	5.1 U	5,5 U 5 5 U	54 U 54 U	5.1 U 51 U	28 U 28 U	53 U 53 U	1000 7800000
trans-1,2-Dichloroethene	51 U	5.7 U	51 U	55 U	5.4 U	5.1 U	28 U	53 U	1600000
cis-1,2-Dichloroethene Chloroform	5.1 U	5.7 U	5.1 U	5.5 U	54 U	5.1 U	28 U	53 U	780000
1,2-Dichloroethane	51 U 5.1 U	57 U 57 U	5 1 U 5.1 U	55 U 55 U	54 U 54 U	5.1 U 5.1 U	28 U 28 U	53 U	100000
1,1,1-Trichloroethane	5.1 Ŭ	57 U	5.1 U	55 U	54 U	5.1 U	28 U	5.3 U 5 3 U	7000
Carbon Tetrachloride	5.1 U	5.7 U	5.1 U	5.5 U	54 U	5.1 U	28 U	5 3 U	5000
Bromodichloromethane 1,2-Dichloropropane	51 U 51 U	57 U 57 U	5.1 U 5.1 U	5.5 U	5,4 U	5,1 U	28 U	5.3 U	10000
cis-1,3-Dichloropropene	5.1 U	5.7 U	5.1 U 5.1 U	55 U 55 U	54 U 54 U	5.1 U 5.1 U	28 U 28 U	5.3 U 5.3 U	9000 4000
Trichloroethene	5,1 U	57 U	51 U	5,5 U	54 U	51 U	82	5,3 U	58000
Dibromochloromethane	5.1 U	5.7 U	51 U	5.5 U	54 U	5.1 U	28 U	53 U	
1,1,2-Trichloroethane Benzene	5.1 U 5.1 U	5.7 U 5.7 U	5.1 U 5.1 U	5.5 U 5 5 U	54 U 54 U	5 1 U 5.1 U	28 U 28 U	53 U	11000 22000
t-1,3-Dichloropropene	51 U	57 U	5.1 U	5.5 U	54 U	5.1 U	28 U	5.3 U 5.3 U	4000
2-Chloroethyl Vınyl Ether	51 U	57 U	5.1 U	55 U	54 U	51 U	28 U	53 U	
Bromoform Tetrachloroethene	5.1 U 5.1 U	5.7 U 5.7 U	51 U	55 U	54 U	51 U	28 U	53 U	81000
1,1,2,2-Tetrachioroethane	5.1 U	5.7 U	51 U 51 U	55 U 55 U	54 U 54 U	51 U 51 U	72 J 28 U	53 U 53 U	12000 3000
Toluene	5.1 U	5.7 U	51 U	5.5 U	54 U	5.1 U	28 U	53 U	16000000
Chlorobenzene	510	57 U	51 U	55 U	54 U	51 U	28 U	5 3 U	1600000
2-Butanone Ethyl Benzene	5.1 U 5 1 U	5 7 U 5.7 U	5 1 U 5.1 U	55 U 55 U	5,4 U 54 U	5,1 U 5,1 U	28 U 28 U	5,3 U 5 3 U	7800000
m/p-Xylenes	Šiū	5.7 U	5.1 U	55 U	5.4 U	5.1 U	28 U	5.3 U	16000000
o-Xylene	51 U	57 U	51 U	5.5 U	54 U	51 U	28 U	53 U	160000000
Acetone Carbon Disulfide	5.1 U 5.1 U	57 U 5.7 U	51 U 51 U	5 5 U 5 5 U	5.4 U	51 U	46	14	7800000
4-Methyl-2-Pentanone	5.1 U	57 U	51 U	55 U	5.4 U 5.4 U	5 1 U 5.1 U	28 U 28 U	53 U 53 U	7800000
2-Hexanone	51 U	5.7 U	51 U	55 U	54 U	51 U	28 U	5.3 U	_
Styrene 1,3-Dichlorobenzene	5,1 U 51 U	57 U 57 U	51 U	55 U	54 U	51 U	28 U	53 U	16000000
1,4-Dichlorobenzene	510	57 U	5 1 U 5.1 U	55 U 55 U	54 U 54 U	51 U 51 U	28 U 28 U	53 U 53 U	27000
1,2-Dichlorobenzene	5.1 U	5.7 U	5.1 U	55 U	54 U	51 U	28 U	53 U	7000000
Dichlorodifluoromethane	51 U	57 U	5 1 U	55 U	54 U	51 U	28 U	53 U	-
Vinyl Acetate 2,2-Dichloropropane	26 U 5.1 U	28 U 5 7 U	25 U 5.1 U	27 U 55 U	27 ป 54 ป	26 U 5.1 U	140 U 28 U	26 U 5 3 U	78000000
Bromochloromethane	510	5.7 U	5.1 U	55 U	54 U	5.1 U	28 U	5.3 U	1 - 1
1,1-Dichloropropene	51 U	57 U	5.1 U	55 U	54 U	5.1 U	28 U	5.3 U	-
1,3-Dichloropropane 1,2-Dibromoethane	5.1 U 51 U	57 U 57 U	5.1 U 5.1 U	5.5 U 5.5 U	54 U 54 U	51 U	28 U	5.3 U	-
Isopropylbenzene	51 U	57 U	5.1 U 5.1 U	5.5 U 5.5 U	54 U 5.4 U	5,1 U 5,1 U	28 U 28 U	5.3 U 5.3 U	_
1,2,3-Trichloropropane	51 U	5.7 U	5.1 U	55 U	54 U	51 U	28 U	5.3 U	_
1,1,1,2-Tetrachloroethane	5.1 U	57 U	51 U	55 U	54 U	51 U	28 U	5 3 U	-
Bromobenzene n-propylbenzene	5.1 U 5.1 U	5 7 U 5.7 U	5 1 U 5 1 U	55 U 55 U	5 4 U 5,4 U	51 U 51 U	28 U 28 U	53 U 53 U	-
2-Chlorotoluene	5.1 U	57 U	51 U	55 U	5.4 U	51 U	28 U	5.3 U	=
1,3,5-Trimethylbenzene	5.1 U	57 U	5.1 U	55 U	5 4 U	51 U	28 U	5 3 U	-
4-Chlorotoluene tert-Butylbenzene	51 U 51 U	57 U 57 U	51 U	55 U	54 U	51 U	28 U	53 U	i
1,2,4-Trimethylbenzene	51 U	5.7 U	5.1 U 5.1 U	55 U 55 U	54 U 54 U	51 U 5.1 U	28 U 28 U	53 U 53 U	
sec-Butylbenzene	51 U	57 U	51 U	5,5 U	54 Ü	51 U	28 U	53 U	
p-tsopropyttoluene	5.1 U	5.7 U	51 U	55 U	54 U	51 U	28 U	5 3 U	-
Dibromomethane n-Butvibenzene	5.1 U 5.1 U	57 U 57 U	5 1 U 5.1 U	5.5 U 55 U	54 U 54 U	51 U	28 U	53 U	_
1,2-Dibromo-3-Chloropropane	5.1 U	5.7 U	5.1 U	55 U	54 U	5.1 U 5 1 U	28 U 28 U	53 U 53 U	
1,2,4-Trichlorobenzene	5.1 U	5.7 U	5.1 U	55 U	5 4 U	51 U	28 ∪	5.3 U	780000
Hexachlorobutadiene Naphthalene	5.1 U 5.1 U	5.7 U	5.1 U	55 U	54 U	5.1 U	28 U	53 U	8000
MTBE	5.1 U 5.1 U	5.7 U 57 U	5 1 U 5 1 U	55 U 5.5 U	5,4 U 5,4 U	5.1 U 5.1 U	28 U 28 U	5.3 U 5 3 U	3100000
1,2,3-Trichlorobenzene	51 U	57 U	5.1 U	5.5 U	5.4 U	5.1 U	28 U	53 U	
Total Confident Conc. VOAs (s)	14	14	13	14	18	49	146.2	14	10000

Qualifiers

U. The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meats the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

Notes

227

Same D (1) Market 11-11 Market 14-12 Market 1					OLATILE ORGANIC COM	-00103				
Same David (1) Same David (2) Same David (3)	Sample Location	Dry Wells in Form		Canopy Trim Fixture			ction Station	Former Spot We	ld Rinse Tank	
Sample Date 197000 19200							I45 B01 2-4	I46 B01 0-2	146 B01 2-4	Comparison Value
Accordance 1									2-4	
Change C							10/16/00	10/16/00	10/16/00	of Concern
Characteristics									S	
Characteristics									10]
Biotenembars 3.0 7.0 5.1 1.0 5.2 5.2 5.7 5	Onits	ид/кр	Ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Biotenembars 3.0 7.0 5.1 1.0 5.2 5.2 5.7 5		1								
Biotenembars 3.0 7.0 5.1 1.0 5.2 5.2 5.7 5	Chiamana	1	-							
Principle									57 U	-
Chicontame							5.2 U	57 U	57 U	-
Methyland Chinose									57 U	300
Treinfordimental 23 U 7 U 31 U 8 U 32 U 37 U 37 U 70 100			. •						57 U	
1.10-Disconference									57 U	85000
11-001-001-001-001-001-001-001-001-001-									5.7 U	
1										
28-12-Officementary 19-10-10-10-10-10-10-10-10-10-10-10-10-10-										
Checkman									57 U	
13-Ordinosphare										
1.1.17-inchrombane										
Carbon Tenzinotes										7000
Storophic former Storophic f										-
1.3 Disconposemen										
18th 3-13-Orderbosponemen	1.2-Dichiomoronane									
Trickhonelmen	de 1 3-Dichlomomoene									
Demonstration										
1,1,2,7 inchrometure										58000
Bersen										
11-13-Directopropopers 13-10										
Coloropage										
Blomodom										4000
Teleschiorophame										-
11.12.2-Testachroorhane										
Tolume										
Charbonariame										
2-Butanone										
Emp Benzame										1600000
Mary Name Salu Tu										
2-Cytein										
Accision										
Carbon Disulfide										
Alberty 2-Perfanone										
2-Personne 53 U										7800000
Symme										-
1,3-Dichrophareare										
1,4-Dichrophensaries										16000000
1.2-Dichroorbane										
Schoolshoomestane										
Virty Acotate	Dichiorodifluoromethane									/000000
12-Dichropropane	Vinyl Acetate	27 U								
Some-chloromethane	2,2-Dichloropropane									/800000
1,1-Dichtoropropene	Bromochloromethane									
1,3-Dictroorposes 53 U	1,1-Dichloropropene					6211				
12-Ditromoethane	1,3-Dichioropropane	53 Ú								
Sopronylearcane	1,2-Dibromoethane									
12,3-Trichloropropane	leopropylbenzene	53 U	7 U							
1,1,1,2-Tetrachtorosthane			7 U	5.1 U						
Strong S	1,1,1,2-Tetrachloroethane		7 U	51 U						
Proprietable	Bromobenzene	5.3 U	7 U							
C-Chloroblusne	n-propylbenzene									
1.3.5-Trimethythenizene	2-Chlorotoluene									
Chloroblune	1,3,5-Trimethylbenzene	5.3 U	7 Ü	5.1 U						
art-Buy/benzene 53.U 7U 51.U 6U 52.U 52.U 57.U 57.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U 5	4-Chlorotoluene	5.3 U	7 Ú	51 U						
12,4-Trichloroberazene 53 U 7 U 51 U 6 U 52 U 57 U	tert-Butylbenzene	5.3 U	7 Ū							
Sec Buythenzane	1,2,4-Trimethylbenzene		7 U							
Signature Sign	sec-Butylbenzene	5.3 U								1
Shortmethane	p-laopropyltoluene	5,3 U								1
-Butyberzene 5.3 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5.7 U - 2.0 bromo-3-Chloropropane 5.3 U 7 U 5.1 U 6 U 5.2 U 5.2 U 5.7 U 5.7 U - 2.4 Trichloroberzene 5.3 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5.7 U 780000 elaxachiorobutadiene 53 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5.7 U 5.7 U 8000 elaxachiorobutadiene 53 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5.7 U 5.7 U 8000 elaxachinalene 53 U 7 U 5.1 U 6 U 5.2 U 5.2 U 5.7 U 5.7 U 8000 elaxachinalene 53 U 7 U 5.1 U 6 U 5.2 U 5.2 U 5.7 U 5.7 U 3100000 elaxachinalene 5.3 U 7 U 5.1 U 6 U 5.2 U 5.2 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.7 U 5.1 U 6 U 5.2 U 5.2 U 5.7 U 5	Dibromomethane	5.3 U	7 Ū I							
1.2-Ditromo-3-Chloropropane	n-Butyfbenzene	5.3 U								
1.2.4-Trichlorobenzene	1,2-Dibromo-3-Chloropropana	5.3 U	7 U							
Assachhorobutadiene	1,2,4-Trichlorobenzene			5.1 U						780000
Alphthiater 53 U	Hexachlorobutadiene	53 U	7 Ü							
MTBE 5.3 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5.7 U	Naphthalene		7 Ū	5.1 Ū	6 Ū					
2,3-Trichlorobenzane 5.3 U 7 U 5.1 U 6 U 5.2 U 5.7 U 5	MTBE		7 U			5.2 U				
Catal Canada (1,2,3-Trichlorobenzene			5.1 U						1
	Total Confident Conc. VOAs (s)	2.6	13 1	48	6.2	ND	ND	NO	31	10000

Countriers

U. The compound was not detected at the Indicated concentration.

J. Date indicates the presence of a compound that meets the Identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

Notes

-- Not established
NO Not Detected

				OLATILE ORGANIC COMP				
Sample Location		RHIC Magnet F						
Sample ID Sample Depth (ft)	H7 B01 0-2	I47 B01 2-4	147 B02 0-2	147 B02 2-4				Comparison Value
	0-2	2-4	0-2	2-4		i	ŀ	for Areas
Sampling Date Matrix	10/16/00	10/16/00	10/16/00	10/16/00				of Concern
Dilution Factor	S 1.0	S 10	, S	S I				
Units	ug/kg	ug/kg	1 0 ug/kg	1 0 ug/kg				
		Ug/kg	og/cg	ug/kg				ug/kg
	l 1	1			1			
Chloromethane	5.3 U	5.1 U	5 4 U	5.1 U			1	
Bromomethane	<u> </u> 53 U	5.1 ป	5.4 U	51 U			l	-
Vinyl Chloride	53 U	51U	5.4 U	51 U			1	300
Chloroethane	5.3 U	51 U	5.4 U	510			1	
Methylene Chloride Trichlorofluoromethane	53 U	510	5.4 U	11 J			1	85000
1.1-Dichloroethene	5.3 U 5.3 U	5.1 U 5 1 U	5.4 U	5.1 U		1	1 1	
1,1-Dichioroethane	5.3 U	510	5 4 U 5 4 U	51 U 51 U		1		1000
trans-1,2-Dichloroethene	53 U	510	54 U	51 U		ı		7800000
crs-1,2-Dichloroethene	53 0	510	54 U	5.1 U		l		1600000
Chloroform	53 0	5.1 U	54 U	5.1 U				780000 100000
1,2-Dichloroethane	5.3 U	5.1 U	5.4 U	5.1 U		1		7000
1,1,1-Trichloroethane	53 U	5.1 U	54 U	51 U		į.		7000
Carbon Tetrachloride	53 ∪	5.1 U	5.4 U	5.1 U	1	ì	ı l	5000
Bromodichloromethane	53 U	51 U	54 U	51 U	1	l	ı l	10000
1,2-Dichloropropane	5.3 U	51 U	54 U	51 U		1		9000
cis-1,3-Dichloropropene	53 U	51 U	54 U	5.1 U		1		4000
Trichloroethene Dibromochloromethane	53 U	5.1 U	54 U	5.1 U		i	ı l	58000
1,1,2-Trichloroethane	53 U 53 U	5.1 U	5.4 U	5.1 U	1	l	ı l	
Benzene	5.3 U 5.3 U	5.1 U 51 U	54 U 54 U	51 U 51 U	1	İ		11000
t-1,3-Dichloropropene	53 U	51 U	54 U	51 U		i		22000
2-Chloroethyl Vinyl Ether	53 0	51 U	54 U	51 U	1			4000
Bromoform	5.3 U	5.1 U	5,4 U	51 Ü		,		81000
Tetrachloroethene	5.3 U	51 U	54 U	51 U		Į.		12000
1,1,2,2-Tetrachioroethane	5.3 ∪	5.1 Ų	5.4 U	51 U	ì	<u> </u>		3000
Toluene	[53 U	5.1 U	5.4 U	51 U		i i		16000000
Chlorobenzene	53 U	51 U	54 U	51 U		ľ		1600000
2-Butanone	5.3 U	51 U	14	51 U		1		***
Ethyl Benzene m/p-Xylenes	53 U 53 U	51 U	54 U	5.1 U				7800000
o-Xylene	5.3 U	5.1 U 5.1 U	54 U 54 U	51 U 51 U		1		160000000
Acetone	53 U	5.1 U	12	66		i		160000000
Carbon Disulfide	5.3 U	5.1 U	54 U	51 U		1		7800000 7800000
4-Methyl-2-Pentanone	5,3 U	510	54 U	5.1 U		1		700000
2-Hexanone	53 U	5.1 U	5 4 U	510				_
Styrene	5,3 U	5.1 U	54 U	51 U				16000000
1,3-Dichlorobenzene	53 U	5.1 U	5.4 U	5.1 U	ł l		- 1	
1,4-Dichlorobenzene	53 U	5.1 U	5 4 U	5.1 U			1 1	27000
1,2-Dichlorobenzene	5.3 U	5.1 U	54 U	51 U		ļ	ł	7000000
Dichlorodifluoromethane Vinyl Acetate	53 U 26 U	510	5.4 U	5.1 U				
2,2-Dichloropropane	5.3 U	26 U 5.1 U	27 U 5.4 U	26 U 5.1 U	1			78000000
Bromochloromethane	5.3 U	5.1 U	5.4 U	5.1 U)		_
1,1-Dichloropropene	53 U	5.1 U	54 U	51 U	[_
1,3-Dichloropropane	5.3 U	51 U	5.4 U	51 Ü		ı	į l	Ξ
1,2-Dibromoethane	5.3 U	5.1 U	54 U	5.1 U			1	
Isopropylbenzene	5.3 ∪	5.1 U	5.4 U	5.1 U	ļ <u> </u>		1 !	_
1,2,3-Trichloropropane	53 U	5.1 U	5.4 U	5.1 U	l l		1	_
1,1,1,2-Tetrachloroethane	53 U	51 U	5 4 U	5.1 U			1	_
Bromobenzene	5.3 U	51 U	5 4 U	5.1 U	1	l	- 1	_
n-propyibenzene 2-Chlorotoluene	5.3 U 53 U	5.1 U 51 U	54 U	51 U		1		_
1,3,5-Trimethylbenzene	53 U	51 U 51 U	54 U 5.4 U	5.1 U 5.1 U		1		_
4-Chlorotoluene	53 U	510	5.4 U	5.1 U 5.1 U		1		
tert-Butylbenzene	5.3 U	5.1 U	5.4 U	5.1 U	1	1		_
1,2,4-Trimethylbenzene	5.3 U	5.1 U	5.4 U	5.1 U	}	ĺ]	Ξ
sec-Butylbenzene	53 U	5.1 U	5.4 U	5.1 U		ĺ	1	_
p-Isopropyttoluene	53 U	5.1 Ŭ	5.4 U	5.1 U		1	1	
Dibromomethane	5.3 U	510	5.4 U	5.1 U		}		
n-Butylbenzene	5.3 U	5.1 U	54 U	51 U	1 .1	l l		
1,2-Dibromo-3-Chloropropane	53 U	5.1 U	5.4 U	51 U	1	ł		l –
1,2,4-Trichlorobenzene	53 U	510	54 U	5.1 U		i		780000
Hexachiorobutadiene Naphthalene	5.3 U	510	54 U	5.1 U	1	į.		8000
Naphthalene MTBE	53 U 5.3 U	51 U 5.1 U	54 U	5.1 U		1		3100000
1,2,3-Trichlorobenzene	5.3 U 53 U	5.1 U 51 U	54 U 5.4 U	51 U 51 U	1	1		_
	g 53 (F)	. 5101						
Total Confident Conc. VOAs (s)	NO NO	NO	26	8				10000

Qualiflers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criterie. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

--- Not established ND Not Detected

		T							
Sample Location	Former Paint S	Spray Room	Former Paint S		Former Storage Bldg DW		Former Dry Well Area		
Sample ID	102 B01 1-3	102 B01 3-5	103 B01 1-3	103 B01 3-5	104 B01 8-10	105 B01 8-10	105 B01 20-22	E43 B02/105 B02 14-16	Comparison Valu
Sample Depth (ft) Sampling Date	1-3 09/19/00	3-5 09/19/00	1-3 09/19/00	3-5 09/19/00	8-10	8-10	20-22	14-16	for Areas
		09/19/00 S			10/17/00	10/02/00	10/02/00	10/12/00	of Concern
Matrix Dilution Factor	S 1.0	10	, S 10	S	, S	S	S	S	1
Units	uo/kg	uo/ko	ua/ka	1.0 ua/ka	1 0 ug/kg	10 ug/kg	10 ua/ka	10	
Phenol	380 U	370 U	350 U	340 U			•		ug/kg
2-Chlorophenol	380 U	370 U	350 U	340 U	340 U 340 U	390 U	37ò U	380 U	47000000
2-Chlorophenol	360 U	370 U	350 U	340 U	340 U 340 U	390 U 390 U	370 U 370 U	380 U	390000
2,4-Dimethylphenoi	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	1600000
2,4-Dichlorophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	230000
4-Chioro-3-methytphenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	230000
2,4,6-Trichiorophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	58000
2,4-Dinitrophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	160000
4-Nitrophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	1
4,6-Dinitro-2-methylphenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	l
Pentachiorophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	3000
bis(2-Chloroethyl)ether	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 Ú	600
1,3-Dichiorobenzene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	1
1,4-Dichlorobenzene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	27000
1,2-Dichlorobenzene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	7000000
N-Nitroso-di-n-propylamine	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	90
Hexachloroethane	360 U	370 U	350 U	340 U	340 U	390 U	370 Ú	380 U	46000
Nitrobenzene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	39000
Isophorone	360 Ü	370 U	350 U	340 U	340 U	390 U	370 U	380 U	670000
bis(2-Chloroethoxy)methane	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	
1,2,4-Trichlorobenzene	360 U	370 U	350 U	340 U	340 Ú	390 U	370 U	380 U	780000
Naphthalene	360 U	370 U	350 U	340 U	340 U	350 J	370 U	380 U	3100000
Hexachiorobutadiene	360 ∪	370 U	350 U	340 U	340 U	390 U	370 U	380 ∪	8000
Hexachiorocyclopentadiene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 ∪	550000
2-Chloronaphthalene	360 ∪	370 ∪	350 U	340 U	340 U	390 ∪	370 ∪	380 ∪	
Dimethylphthalate	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	
Acenaphthylene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	
2,6-Dinitrotoluene	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	900
Acenaphthene	360 じ	370 U	350 U	340 U	340 U	340 J	370 U	380 U	4700000
2,4-Dinitrotoluene	360 U	370 U	350 ∪	340 U	340 U	390 U	370 U	380 U	900
Diethylphthalate	360 U	370 U	350 ∪ ∤	340 U	340 ∪	390 U	370 U	380 U	63000000
4-Chlorophenyl-phenylether	360 ∪	370 ∪	350 ∪	340 U	340 ∪	390 U	370 U	380 U	
Fluorene	360 U	370 U	350 ∪ │	340 U	340 U	420	370 U	380 U	3100000
N-Nitrosodiphenylamine	360 U	370 U	350 ∪	340 U	340 U	390 ∪	370 U	380 U	130000
4-Bromophenyl-phenylether	360 U	370 U	350 ∪	340 U	340 U	390 U	370 U	380 U	
Hexachlorobenzene	360 U	370 U	350 ∪	340 U	340 U	390 U	370 U	380 U	400
Phenanthrene	400	370 ∪	46 J	340 U	340 U	3100	370 ∪	380 U	
Anthracene	61 J	370 U	350 U	340 U	340 U	760	370 ∪	380 U	23000000
Di-n-butylphthalate	77 J	120 J	65 J	64 J	69 J	92 J	40 J	380 U	7800000
Fluoranthene	420	370 U	60 J	340 U	340 U	3100	370 U	96 J	3100000
Pyrene	230 J	370 U	350 U	340 U	340 U	1800	370 U	68 J	2300000
Butylbenzylphthalate	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	16000000
3,3'-Dichlorobenzidine	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	1000
Benzo(a)anthracene	140 J	370 U	350 U	340 U	340 U	1300	370 U	40 J	900
Chrysene	160 J	370 U	350 U	340 U	340 U	1300	370 U	59 J	88000
bis(2-Ethylhexyl)phthalate	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	46000
Di-n-octyl phthalate	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	16000000
Benzo(b)fluoranthene	110 J	370 U	350 U	340 U	340 U	1200	370 U	49 J	900
Benzo(k)fluoranthene	90 J	370 U	350 U	340 U	340 U	1100	370 U	55 J	9000
Benzo(a)pyrene	99 J	370 U	350 U	340 U	340 U	1400	370 U	42 J	90
Indeno(1,2,3-cd)pyrene	50 J	370 U	350 U	340 U	340 U	560	370 U	380 U	900
Dibenzo(a,h)anthracene	360 U	370 ∪	350 ∪	340 U	340 U	84 J	370 U	380 U	90
Benzo(g,h,l)perylene	58 J	370 U	350 U	340 U	340 U	630	370 U	380 U	-
2,4,5-Trichlorophenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	7800000
2-Methylphenol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	3900000
3+4-Methylphenols	720 U	750 U	690 U	690 U	670 U	780 U	730 U	770 U	
Benzyl Alcohol	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	_
2,2-oxybis(1-Chloropropane)	380 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	
4-Chioroanitine	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	310000
2-Methylnaphthalene	380 U	370 U	350 U	340 U	340 U	85 J	370 U	380 U	
4-Nitroaniline	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	
2-Nitroaniline	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	_
3-Nitroaniline	360 U	370 U	350 U	340 U	340 U	390 U	370 U	380 U	-
Dibenzofuran	360 U	370 U	350 U	340 U	340 U	260 J	370 U	380 U	-
Azobenzene	360 U	• 370 U	350 U	340 U	340 U	390 U	370 U	380 U	l
Benzoic acid	360 U	370 U	350 U	340 U	340 U	. 390 Ų	370 U	380 U	310000000
Total Carcinogenic PAHs	667	0	. 0	0	. 0	6944	0	245	10000
Total PAH	1636	120	146		0	17789	0	409	100000
Total Confident Conc SVOC (s)	1913	120	171	64	69	17881	40	409	500000

- Cualifors

 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D: This qualifer identifies all compounds identified in an analysis at a secondary dilution factor

SEMIVOLATILE ORGANIC COMPOUNDS									
Sample Location	Former Dry Well Area			aint Shop			Former Paint Tunnel		
Sample ID	E43 B02/I05 B02 6-8	106 B01 1-3'	106 B01 3-5'	106 B02 1-3'	106 B02 3-5'	107 B01 3-5	107 B01 5-7	107 B02 1-3'	Companson Value
Sample Depth (ft)	6-8	1-3	3-5	1-3	3-5	3-5	5-7	1-3	for Areas
Sampling Date Matrix	10/12/00 S	09/21/00 S	09/21/00	09/21/00	09/21/00	09/29/00	09/29/00	09/21/00	of Concern
Dilution Factor	10	5 1.0	S	S	S	S	S	S	
Units	ug/kg	ug/kg	1 0 ua/ka	10	10	10	10	10	
Phenol	390 U	350 U		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2-Chlorophenoi	390 U	350 U	340 U 340 U	400 U	79 J	6700 D	390 U	370 Ü	47000000
2-Nitrophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	390000
2,4-Dimethylphenol	390 U	350 U	340 U	400 U 400 U	420 U	380 U	390 U	370 U	
2,4-Dichlorophenol	390 U	350 U	340 U	400 U	420 U 420 U	510	390 U	370 U	1600000
4-Chloro-3-methylphenoi	390 U	350 U	340 U	400 U	420 U	380 U 380 U	390 U	370 U	230000
2,4,6-Trichlorophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U 390 U	370 U 370 U	58000
2,4-Dinitrophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	160000
4-Nitrophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	100000
4,6-Dinitro-2-methylphenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	"
Pentachlorophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	3000
bis(2-Chloroethyl)ether	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	600
1,3-Dichlorobenzene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	1 000
1,4-Dichlorobenzene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	27000
1,2-Dichlorobenzene	390 U	350 Ú	340 U	400 U	420 U	380 U	390 U	370 U	7000000
N-Nitroso-di-n-propylamine	390 U	350 U	340 U	400 Ú	420 U	380 U	390 U	370 U	90
Hexachloroethane	390 U	350 U	340 U	400 Ü	420 Ŭ	110 J	390 U	370 U	46000
Nitrobenzene	390 U	350 U	340 U	400 U	420 U	380 U	390 บ	370 U	39000
Isophorone	390 U	350 ป	340 U	400 U	420 U	380 U	390 U	370 U	670000
bis(2-Chloroethoxy)methane	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U] 1
1,2,4-Trichlorobenzene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	780000
Naphthalene	390 U	350 U	340 U	400 U	420 U	45 J	390 U	370 U	3100000
Hexachlorobutadiene	390 ∪	350 U	340 U	400 U	420 U	380 U	390 U	370 U	8000
Hexachlorocyclopentadiene	390 ∪	350 U	340 U	400 U	420 U	380 ∪	390 U	370 U	550000
2-Chloronaphthalene	390 U	350 U	340 U	400 ∪	420 U	380 U	390 U	370 U	
Dimethylphthalate	390 U	350 U	340 U	400 U	420 U	380 ∪	390 U	370 U	
Acenaphthylene	390 U	350 U	340 U	400 U	420 U	380 ∪ ∫	390 U	370 U	1 1
2,6-Dinitrotoluene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	900
Acenaphthene	390 U	350 U	340 U	400 U	420 U	380 U	390 ∪	370 U	4700000
2,4-Dinitrotoluene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	900
Diethylphthalate	390 U	350 U	340 U	400 U	420 U	470	390 U	370 U	63000000
4-Chlorophenyl-phenylether Fluorene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	
N-Nitrosodiphenylamine	390 U	350 U 350 U	340 U 340 U	400 U	420 U	380 U	390 U	370 U	3100000
4-Bromophenyl-phenylether	390 U	350 U	340 U	400 U 400 U	420 U	380 U	390 U	370 U	130000
Hexachlorobenzene	390 U	350 U	340 U	400 U	420 U 420 U	380 U 380 U	390 U	370 U	
Phenanthrene	390 U	350 U	340 U	400 U	180 J	300 .	390 U 390 U	370 U	400
Anthracene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	260 J 59 J	23000000
Di-n-butylphthalate	56 J	68 J	42 J	140 J	91 J	210 J	390 U	87.J	7800000
Fluoranthene	390 U	350 U	340 U	400 U	47 3	200 J	390 U	310 J	3100000
Pyrene	390 U	350 U	340 U	400 U	76 J	100 J	390 U	180 J	2300000
Butylbenzylphthalate	390 U	350 U	340 U	400 U	420 U	4400 D	390 U	370 U	16000000
3,3'-Dichlorobenzidine	390 ∪	350 U	340 U	400 U	420 U	380 U	390 U	370 U	1000
Benzo(a)anthracene	390 ∪	350 U	340 U	400 U	420 U	380 U	390 U	130 J	900
Chrysene	390 U	350 U	340 U	400 ₺	420 Ú	130 J	390 U	140 J	88000
bis(2-Ethylhexyl)phthalate	390 U	350 U	340 U	400 U	90 J	7600 D	390 U	49 J	46000
Di-n-octyl phthalate	390 ∪	350 U	340 U	400 ∪	420 U	380 U	390 U	370 U	16000000
Benzo(b)fluoranthene	390 U	350 U	340 U	400 U	420 U	380 Ų	390 U	96 J	900
Benzo(k)fluoranthene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	85 J	9000
Benzo(a)pyrene	390 U	350 U	340 U	400 U	420 U	380 ∪	390 U	96 J	90
Indeno(1,2,3-cd)pyrene	390 U	350 U	340 U	400 U	420 U	380 U	390 ∪	57 J	900
Dibenzo(a,h)anthracene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	90
Benzo(g,h,i)perylene	390 U	350 U	340 U	400 U	420 U	54 J	390 U	61 J	
2,4,5-Trichiorophenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	7800000
2-Methylphenol	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	3900000
3+4-Methylphenois Benzyl Alcohol	780 U 390 U	690 U 350 U	680 U	800 U	840 U	4900 D	780 U	750 U	
			340 U	400 U	420 U	380 U	390 U	370 U	_
[2,2'-oxybis(1-Chloropropane)	390 U 390 U	350 U 350 U	340 U	400 U	420 U	380 U	390 U	370 U	l
4-Chloroaniline 2-Methylnaphthalene	390 U	350 U	340 U 340 U	400 U	420 U	380 U	390 U	370 U	310000
4-Nitroaniline	390 U	350 U	340 0	400 U 400 U	78 J	380 U	390 U	370 U	
2-Nitroaniline	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	
3-Nitroaniline	390 U	350 U	340 U	400 U	420 U 420 U	380 U 380 U	390 U	370 U	
Dibenzofuran	390 U	350 U	340 U	400 U	420 U	380 U 47 J	390 U 390 U	370 U 370 U	
Azobenzene	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	
Benzoic acid	390 U	350 U	340 U	400 U	420 U	380 U	390 U	370 U	310000000
Total Carcinogenic PAHs	1 000	3000	0	1000	1 1 0	13	390 0	604	10000
Total PAH	Ö	Ö	Ö	Ö	381	876	0	1474	10000
Total Confident Conc. SVOC (s)	56	68	42	140	641	25776	ND	1610	500000
			·	· · · · · · · · · · · · · · · · · · ·			, 170	1010	300000

Qualifors
U. The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Sample Location		Former Paint Tunnel		Boller Room Fo			mmer Shop	Paint Shop Former DW	I
Sample ID	107 B02 3-5'	107 B03 5-7	107 B03 7-9	108 B01 2-4'	108 B01 9-11'	109 B01 1-3'	109 B01 3-5"	(10 B01 4-6'	Comparison Value
Sample Depth (ft) Sampling Date	3-5 09/21/00	5-7 10/17/00	7-9 10/17/00	2-4 09/26/00	9-11 09/26/00	1-3 09/26/00	3-5 09/26/00	4-6 09/25/00	for Areas of Concern
Matrix	S S	l winds	10/1//00 S	0#20/00 S	0#20/00 S	0w/20/00 S	0w/20/00 S	0#/25/00 S	or Concern
Dilution Factor	1.0	10	1.0	10	10	10	10	1 10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	340 U	370 U	17000 D	46 J	64 J	62 J	350 U	350 U	47000000
2-Chlorophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	390000
2-Nitrophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
2,4-Dimethylphenol 2,4-Dichlorophenol	340 U 340 U	370 U 370 U	220 J	340 U	340 U	390 U	350 U	350 U	1600000
4-Chloro-3-methylphenol	340 U	370 U	350 U 350 U	340 U 340 U	340 U 340 U	390 U 390 U	350 U 350 U	350 U 350 U	230000
2,4,6-Trichlorophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	58000
2,4-Dinitrophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	160000
I-Nitrophenol	340 Ú	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
4,6-Dinitro-2-methylphenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Pentachlorophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	3000
bis(2-Chloroethyl)ether	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	600
1,3-Dichlorobenzene	340 U 340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	340 U	370 U 370 U	350 U 350 U	340 U 340 U	340 U 340 U	390 U	350 U	350 U	27000
N-Nitroso-di-n-propylamine	340 U	370 U	350 U	340 U	340 U	390 U 390 U	350 U 350 U	350 U 350 U	7000000
Hexachioroethane	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	45000
Nitrobenzene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	39000
Isophorone	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	670000
bis(2-Chloroethoxy)methane	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 ∪	-
1,2,4-Trichlorobenzene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	780000
Naphthalene	340 U	370 U	180 J	340 U	340 U	390 U	350 U	350 U	3100000
Hexachlorobutadiene	340 U 340 U	370 U 370 U	350 U 350 U	340 U	340 U	390 U	350 U	350 U	8000
Hexachlorocyclopentadiene 2-Chloronaphthalene	340 U	370 U	350 U	340 U 340 U	340 U 340 U	390 U 390 U	350 U 350 U	350 U 350 U	550000
Dimethy/phthaiate	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Acenaphthylene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
2,6-Dinitrotoluene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 Ü	900
Acenaphthene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 ∪	4700000
2,4-Dinitrotoluene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	900
Diethylphthalate	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	63000000
4-Chlorophenyl-phenylether	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Fluorene N. Misseadishers ferrine	340 U 340 U	370 U 370 U	350 U 350 U	340 U 340 U	340 U 340 U	390 U 390 U	350 U 350 U	350 U 350 U	3100000
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	130000
Hexachlorobenzene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	400
Phenanthrene	340 U	370 U	350 U	210 J	59 J	62 J	350 U	350 U	
Anthracene	340 U	370 U	52 J	43 J	340 U	390 U	350 U	350 U	23000000
Di-n-butylphthalate	60 1	54 J	81 J	120 J	110 J	130 J	67 J	65 J	7800000
Fluoranthene	340 U	370 U	350 U	230 J	65 J	77 J	350 U	350 U	3100000
Pyrene Butylbenzylphthalate	340 U 340 U	370 U 170 J	350 U 350 U	140 J 340 U	39 J 340 U	52 J	350 U 350 U	350 U 350 U	2300000
3.3'-Dichlorobenzidine	340 U	370 U	350 U	340 U	340 U	390 U 390 U	350 U	350 U	16000000 1000
Benzo(a)anthracene	340 U	370 U	350 U	100 J	340 U	390 U	350 U	350 U	900
Chrysene	340 U	370 U	350 U	100 J	340 U	390 U	350 U	350 U	88000
bls(2-Ethylhexyl)phthalate	67 J	70 J	350 U	340 U	340 U	390 ∪	350 U	55 J	46000
Di-n-octyl phthalate	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	18000000
Benzo(b)fluoranthene	340 U	370 U	350 U	66 J	340 U	390 U	350 U	350 U	900
Benzo(k)fluoranthene	340 U 340 U	370 U 370 U	350 U 350 U	76 J 65 J	340 U 340 U	390 U 390 U	350 U	350 U	9000
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	340 U	370 U 370 U	350 U	55 J 61 J	340 U	390 U	350 U 350 U	350 U 350 U	90
Dibenzo(s,h)anthracene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	900
Benzo(g,h,i)perylene	340 U	370 U	350 U	59 J	340 U	390 U	350 U	350 U	I
2,4,5-Trichlorophenol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	7800000
2-Methylphenol	340 Ú	370 U	440	340 U	340 U	390 U	350 U	350 U	3900000
3+4-Methylphenois	690 U	740 U	770	680 U	690 Ú	780 U	690 U	690 U	-
Benzyl Alcohol	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	_
2,2'-oxybis(1-Chloropropane)	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	-
4-Chloroaniline	340 U 340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	310000
2-Methylnaphthalene 4-Nitroanlline	340 U 340 U	370 U 370 U	350 U 350 U	340 U 340 U	340 U 340 U	390 U	350 U 350 U	350 U	_
4-Nitroaniine 2-Nitroaniine	340 U	370 U 370 U	350 U 350 U	340 U 340 U	340 U	390 U 390 U	350 U 350 U	350 U 350 U	1 =
2-Mitroaniline 3-Nitroaniline	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Dibenzofuran	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Azobenzene	340 U	370 U	350 U	340 U	340 U	390 U	350 U	350 U	
Benzoic acid	340 U	370 U	350 U	340 Ų	340 U	390 U	350 U	350 U	310000000
Total Carcinogenic PAHs	0	0	0	468	0	. 0	0	0	10000
Total PAH	0	0	52	1150	163	191	0	0	100000
Total Confident Conc. SVQC (s)	127	294	18743	1316	337	383	67	120	500000

- Qualifors

 U The compound was not detected at the indicated concentration.

 J Data indicates the presence of a compound that receis the identification criteris. The result is less than the quantitation limit but greater than zero D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Page 3 of 23 5/30/01 9:59 AM

Simple D				SLW	IVOLATILE ORGANIC CO					
Semicle Depth (f)	Sample Location				Former					l
Section Company Comp							I11 B03 1-3'	I11 B03 3-5'	I11 B04 1-3'	Comparison Value
Second Column									1-3	for Areas
District Table T										of Concern
College		1 -		•						
The color The	Units									1 . 1
Changement										
Nethorhand Sept S										
4-6 General Programmer 50 U 50										390000
4 Octobershere										
-Chons-Smithylehered										
1.4 A Friencephore										230000
4-6-Inforpried 360 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 370										
- Newgoland	2,4-Dinitrophenol									
4.5 One 5.5 Cent	4-Nitrophenol									1 '
	4,6-Dinitro-2-methylphenol	350 U								
Part	Pentachiorophenol	350 ∪	350 U				,,,,			
35 Octonomeror 360 U 350	bis(2-Chloroethyl)ether	350 ∪	350 U	350 U						
4-6-Chemopharemen	1,3-Dichlorobenzene		350 U	350 ∪	360 U					
350 U 350		350 ∪	350 U	350 U	360 U					27000
Affect A				350 U	360 U	340 U				
Security Security	N-Nitroso-di-n-propylamine					340 U				
Section Sect						340 U	400 U			
September Sept										
and C-Understendy-inferrations 350 U							400 U	350 U		
Sachthaleme								350 U	370 U	
								350 U	370 U	780000
Heardhroncyclopentaline										
College									370 U	8000
										550000
Compatifylene 350 U 350										
										1
A-Directoplane 350 U 35							, ,,,,			
Description of the property										
-Chicopteny-pheny-										
Note										63000000 }
Nethrosoption-physimme	Fluorene									
-Bromopheny-phenylether 350 U 350	N-Nitrosodiphenylamine									
desarchiobenzene 350 U 350 U 350 U 350 U 350 U 350 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 400 400 U 350 U 370 U 300 U		350 U								130000
Phenanthrene 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 2300000	Hexachlorobenzene									1 1
Inthracene 350 U 3	Phenanthrene									400
Sh-Pukyphthalate	Anthracene	350 ∪	350 U							23000000
Illustratifiere 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 31000000 370 U 31000000 370 U 3100000000000000000000000000000000000	Di-n-butylphthalate			350 U	360 U	45 J				
Prefere	Fluoranthene				360 U	340 U	400 U	350 U		
Surpherryphthalate	Pyrene					340 U	400 U			
1,3-Dichroberbichine 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 900						340 U	400 U	350 U		
Description 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 80000									370 U	1000
1862-Ethylhexyl)phthalate									370 U	900
Dimodry Pithalate										
Senzo(phuramhene 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 900										
Serzo(A)Nurranthene 350 U 350 U 350 U 350 U 360 U 360 U 340 U 400 U 350 U 370 U 900										
Senzia (a)pyrene 350 U 350 U 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 90										
Indemotif 2.3-cd)pyrene 350 U 350 U 350 U 350 U 350 U 350 U 370 U 900	Benzo(a)pyrene									
Diberzo(a, h)anthracene	Indeno(1,2,3-cd)pyrene									
Senzy (A)-Prichlorophenol 350 U 350 U 350 U 350 U 350 U 350 U 370 U	Dibenzo(a,h)anthracene									
2.4.5-Trichlorophenol 350 U 350 U 350 U 350 U 350 U 350 U 350 U 370 U 7800000 34-Methylphenol 350 U 35	Benzo(g,h,i)perylene									90
2-Methylphenol 350 U 710 U 690 U 720 U 880 U 750 U 3800 U 370 U 35	2,4,5-Trichiorophenol									7800000
34-Methylphenols 680 U 350 U 350 U 350 U 350 U 350 U 370 U 350 U 370 U 350 U 370 U 350 U 350 U 350 U 350 U 350 U 370 U 350 U 370 U 350 U 3	2-Methylphenol	350 U								
Serzy Alcohol S50 U S50	3+4-Methylphenols	690 U								1
22-oxylos(1-Chloropropane)	Benzyl Alcohol			350 U						1
H-Chloroanline 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 310000 2-Methy/naphthalene 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U	2,2'-oxybis(1-Chloropropane)			350 U						
2-Metry/naphthalene 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U	4-Chloroaniline									310000
Childraniline	2-Methylnaphthalene									1
2-Nitronaline 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U	4-Nitroaniline					340 U				
S-Nitronline 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U Storman 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U Storman 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U Sterzole acid 350 U 350 U 350 U 350 U 340 U 400 U 350 U 370 U Sterzole acid 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U 31000000 Total Carcinogenic PAHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-Nitroaniline									1
Observation										
Azoberezene 350 U 350 U 350 U 350 U 360 U 340 U 400 U 350 U 370 U										
Serzoio acid 350 U 350 U 350 U 350 U 340 U 400 U 350 U 370 Û 310000000 Total Carcinogene PAHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								350 U		
10tal Carcinogenic PAH\$ 0 0 0 0 0 0 0 0 0 0 100000										310000000
Feld Confident Cone (VOC (s) 0 1 0 100000								0		
100er Collingtia Collin STAC (8)										
	TOTAL CONTINENT CONC SVOC (8)		ND ND	44	LND	45	L 75	84	95	500000

Qualiform

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the Identification criteria. The result is fees than the quantitation limit but greater than zero

D This qualifier Identifies all compounds Identified in an analysis at a secondary dilution factor

			SEM	IVOLATILE ORGANIC CO	MPOUNDS				
Sample Location			Former	Paint Shop Booths and Pai	nt Tunnel			Former Alodine Room	
Sample ID	I11 B04 3-5'	I11 B05 1-3	I11 B05 3-5'	I11 B06 0-2	111 B06 2-4	111B07 (1.5-3.5)	I11B07 (3.5-5.5)	112 B01 1-3'	Comparison Value
Sample Depth (ft) Sampling Date	3-5 09/22/00	1-3	3-5	0-2	2-4	15-35	3 5-5 5	1-3	for Areas
Matrix	0w2200	09/28/00 S	09/28/00 S	10/16/00	10/16/00	10/20/00	10/20/00	09/21/00	of Concern
Dilution Factor	10	1.0	10	S 10	S 10	S 10	\$ 1.0	S 10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	47000000
2-Chlorophenoi	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	390000
2-Nitrophenol	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	350000
2,4-Dimethylphenol	340 U	390 U	340 U	340 Ú	340 U	340 U	340 U	350 U	1600000
2,4-Dichlorophenol	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	230000
4-Chloro-3-methylphenol	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	
2,4,6-Trichlorophenol 2,4-Dinitrophenol	340 U 340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	58000
4-Nitrophenoi	340 U	390 U 390 U	340 U 340 U	340 U	340 U	340 U	340 U	350 U	160000
4,6-Dinitro-2-methytohenol	340 U	390 U	340 U	340 U 340 U	340 U 340 U	340 U	340 U	350 U	1 = 1
Pentachtorophenol	340 U	390 U	340 U	340 U	340 U	340 U 340 U	340 U 340 U	350 U 350 U	3000
bis(2-Chloroethyl)ether	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	800
1,3-Dichiorobenzene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	i
1,4-Dichlorobenzene	340 U	390 ∪	340 U	340 U	340 U	340 U	340 U	350 U	27000
1,2-Dichlorobenzene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	7000000
N-Nitroso-di-n-propylamine	340 U] 390 ∪	340 U	340 U	340 U	340 U	340 U	350 U	90
Hexachioroethane	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	46000
Nitrobenzene	340 U 340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	39000
bis(2-Chloroethoxy)methane	340 U	390 U 390 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	350 U 350 U	670000
1,2,4-Trichlorobenzene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	780000
Naphthalene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	3100000
Hexachlorobutadiene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	8000
Hexachlorocyclopentadiene	340 U	390 U	340 Ū	340 U	340 U	340 U	340 U	350 U	550000
2-Chloronaphthalene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	-
Dimethylphthalate	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	
Acenaphthylene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	
2,6-Dinkrotoluene Acenaphthene	340 U 340 U	390 U 390 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	350 U	900
2,4-Dinitrotoluene	340 U	390 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	350 U	4700000
Diethylphthalate	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U 350 U	900 63000000
4-Chlorophenyl-phenylether	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	8300000
Fluorene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	3100000
N-Nitrosodiphenylamine	340 U	390 U	340 U	340 Ü	340 U	340 U	340 U	350 U	130000
4-Bromophenyl-phenylether	340 U	390 ∪	340 U	340 U	340 U	340 U	340 U	350 U	
Hexachiorobenzene Phenanthrene	340 U 340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	400
Anthracene	340 U	390 U 390 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	350 U	l
Di-ri-butytohthalate	150 J	55 J	76 J	340 0	340 U 130 J	340 U 52 J	340 U 59 J	350 U 64 J	23000000
Fluoranthene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	7800000 3100000
Pyrene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	2300000
Butylbenzylphthalate	340 U	390 Ü	340 U	340 U	340 U	340 U	340 U	350 U	16000000
3,3'-Dichlorobenzidine	340 U	j 390 ∪	340 U	340 U	340 U	340 U	340 U	350 U	1000
Benzo(a)anthracene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	900
Chrysene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	88000
bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate	340 U 340 U	390 U 390 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	350 U	46000
Benzo(b)fluoranthene	340 U	390 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	350 U 350 U	16000000
Benzo(k)fluoranthene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	9000
Benzo(a)pyrene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	900
indeno(1,2,3-cd)pyrene	340 ป	390 U	340 U	340 U	340 U	340 U	340 U	350 U	900
Dibenzo(a,h)anthracene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	90
Benzo(g,h,i)perylene	340 U] 390 U	340 U	340 U	340 U	340 U	340 U	350 U	l
2,4,5-Trichlorophenol	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	7800000
2-Methylphenol	680 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	3900000
3+4-Methylphenols Benzyl Alcohol	340 U 340 U	780 U	670 U	660 U	680 U	690 U	690 U	700 U	- 1
2,2'-oxybis(1-Chloropropane)	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	-
4-Chloroaniline	340 U	390 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	350 U 350 U	310000
2-Methylnaphthalene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	310000
4-Nitroaniline	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	
2-Nitroaniline	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	=
3-Nitroaniline	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U] []
Dibenzofuran	340 U	390 U	340 U	340 U	340 U	340 Ú	340 U	350 U	[- [
Azobenzene	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	-
Benzoic acid	340 U	390 U	340 U	340 U	340 U	340 U	340 U	350 U	310000000
Total Carcinogenic PAHs	0		<u> </u>	- 0	. 0	0	0	0	10000
Total PAH Total Confident Conc. SVOC (s)	0 150	0 56	0	0	0 430	0	0		100000
Total Confident Conc. SVOC (s)	150		76	94	130	52	59	64	500000

Citalities:

U. The compound was not detected at the indicated concentration.

J. Data tradicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

D. This qualifier identifies all compounds identified in an analysis at a excendery distrion factor.

Sample Dill 18 801 AF F18 81 AF 12 801 AF 12	SEMIVOLATILE ORGANIC COMPOUNDS									
Sample Depth (b) 5.5 (-1.5 3.5 1.3 3.5 1.2 3.5 1.3 3.5 1.2 3.5	Sample Location									
Samering Date March										Comparison Value
Marie S										
Debts 1										or Concern
Information Information				•						
Finded 34 J 340 U 44 J 560 U 361 U 360 U 3									, ,	l un/kn
2-Chosphand 3-60 U 340 U 340 U 340 U 360 U										
2-Nondermont 3-0 3										
24 - Charachysterident										
2-6-Christophenel 340 U										1600000
2.4 6 Thirthopsehood 2.4 6 Districts-printed prints of the	2,4-Dichlorophenol									
2.4-Christophenol Ado U 340 U	4-Chloro-3-methylphenol				340 U	340 U	340 U	350 U	340 U	
	2,4,6-Trichlorophenol						340 U		340 U	
4.6 Particle-Chemister 340 U 340										160000
Principle complement										
Section of the content of the cont										l
13-Defendementer										
14-Defendementer										600
12.00Enthosperame										1
Web Membrone-broughering Sept										
Hear-shire-deman										
Nicoberane										
Isoshbornes										
1846.Chinopherkarymethane										
1.2.4-Trinfordoebezeme 340 U 340 U 340 U 340 U 350 U 360 U 3										0,000
Nighthaliene 340 U										780000
Head-thinopholademen										
Head-blooky-doerhaldnen										
2-Chiconophishalane 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 360		340 U	340 U	340 U						
Accessability of the company of th	2-Chloronaphthalene	340 U	340 U	340 U	340 U	340 U				
2.8-Demicrobleme	Dimethylphthalate	340 U	340 U	340 U	340 U	340 U	340 U	350 U	340 Ú	
Acenaphrehe 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 360 U	Acenaphthylene		340 U	340 U	340 U	340 U	340 U	350 ∪	340 U	
2.4-Distriptiolatere 340 U 340 U 340 U 340 U 360	2,6-Dinitrotoluene									
Distribuphshales	Acenaphthene									4700000
## Christophenychenychenychenychenychenychenychenyc										
Filorene 340 U 350 U 68 J 1000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 1000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 1000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 10000000 340 U 340 U 340 U 340 U 340 U 350 U 68 J 10000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 10000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 10000000 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 100000000000000000000000000000000000										63000000
N-Metrosocherheylamene										
-Bromopheny-benyether										
Hexachtobenzene										130000
Phenanthrene 340 U 350 U 370 3700000000000000000000000000000	4-Bromophenyl-phenylether									
Anthracene										400
Disputs/phthalate										2222222
Fiboranthene 340 U										
Pyrene 340 U 340 U 340 U 340 U 340 U 340 U 350 U 68 J 2200000 3,3°-Dichoroberazine 340 U 340 U 340 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 350 U 340 U 350 U 3										
Buylbenzy(phthalate 340 U 350 U 47 J 900 Chrysene 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 47 J 900 Chrysene 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 42 J 46000 Den-cort) phthalate 340 U 340										
33-Ci-Diphorobenzidine										
Benzo(a)anthracene										
Chrysene	Benzo(a)anthracene									
bis(2-Ethylhexyl)phthalate 340 U 340 U 340 U 340 U 340 U 350 U 350 U 340 U 16000000 Benzo(b)fluoranthene 340 U 340 U 340 U 340 U 340 U 350 U 350 U 360	Chrysene	340 U								
Den-ortyl phthalate 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 360	bis(2-Ethylhexyl)phthalate	340 U	340 U	340 U						
Berzo(h)fluoranthene 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 38 J 900 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 45 J 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 45 J 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 90 Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 360 U 340 U 350 U 340 U 340 U 350 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U	Dr-n-octyl phthalate					340 U	340 U	350 U	340 U	
Berzo(a)pyrene 340 U 340 U 340 U 340 U 340 U 350 U 45 J 90 Indenot(1,23-cd)pyrene Dibenzo(a,h)anthracene 340 U 340	Benzo(b)fluoranthene								36 J	900
Indenot(1,23-cd)pyrene										
Dibenzo(a, h)anthracene 340 U 34										
Bertzo(g), h)perylene 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340										
2.4.5-Trichiomophenol 340 U 340 U 340 U 340 U 340 U 350 U 340 U 7800000 2.4-Methylphenols 690 U 340 U										90
2-Methylphenol 340 U 340										
3-4-Methylphenols 690 U										
Benzyl Alcohol 340 U 350 U 340 U 310000 2-Methylnaphthalene 340 U 340 U 340 U 340 U 340 U 340 U 350 U 34										3900000
22-0xybis(1-Chloropropane) 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U										
4-Chloranilline 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 310000 A-Chloranilline 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 350 U 340 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 340 U 350 U 360										
2-Methylnaphthalene 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Nitroniline 340 U 340 U 340 U 340 U 340 U 350 U 340 U 2-Nitroniline 340 U 340 U 340 U 340 U 350 U 350 U 340 U 3-Nitroniline 340 U 340 U 340 U 340 U 350 U 350 U 340 U 3-Nitroniline 340 U 340 U 340 U 340 U 350 U 340 U 3-Nitroniline 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 350 U 340 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 360 U 360 U 360 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 360 U 360 U 360 U 4-Robenzene 340 U 340 U 340 U 340 U 340 U 360 U 360 U										310000
4-Nitroaniline 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 2-Nitroaniline 340 U 340 U 340 U 340 U 340 U 350 U 340 U 3-Nitroaniline 340 U 340 U 340 U 340 U 340 U 350 U 340 U 3-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 0-Nitroaniline 340 U 340										310000
2-Nitroanlitre 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 3-1										_
3-Nitronlline 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U Clibenzofuran 340 U 340 U 340 U 340 U 340 U 350 U 340 U Azobenzene 340 U 340 U 340 U 340 U 340 U 350 U 340 U Berzolic acid 340 U 340 U 340 U 340 U 350 U 340 U Berzolic acid 340 U 340 U 340 U 340 U 350 U 340 U Clotal Carcinogenic PAHs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2-Nitmanika									1
Olbenzofuran 340 U 350 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 360 U 340 U 340 U 340 U 340 U 350 U 340 U 360 U 340 U 360 U										3
Azobenzene 340 U 340 U 340 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 340 U 350 U 340 U 340 U 350 U 340 U 340 U 350 U 340 U										1
Benzoic acid 340 U 340 U 340 U 340 U 340 U 350 U 350 U 340 U 310000000 Total Carcinogenic PAHs 0 0 0 0 0 0 0 0 228 10000 Total PAH 0 52 0 0 0 0 0 485 100000										
Total Carcinogenic PAHs 0 0 0 0 0 0 0 228 10000 Total PAH 0 52 0 0 0 0 0 485 100000										310000000
Total PAH 0 52 0 0 0 0 0 0 485 100000										
		0		0						
	Total Confident Conc SVOC (s)	106	52	166	96	346	52	134		

Qualifors
U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D' This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

SEMIVOLATILE ORGANIC COMPOUNDS									
Sample Location	Former Alodine Room		Former Downs				Former Heat Treat Room		
Sample ID	112 B05 3-5'	113 B01 2-4	I13 B01 8-9	113802(2-4)	113B02 (6-7)	116 B02 1+3'	I16B02 (3.5-5.5)	116B02 (5.5-7.5)	Comparison Value
Sample Depth (ft)	3-5	2-4	8-9	2-4	6-7	1-3	35-55	5 5-7 5	for Areas
Sampling Date	09/21/00	10/17/00	10/17/00	10/20/00	10/20/00	09/21/00	10/19/00	10/19/00	of Concern
Matrix	s	s	s	S	S	s	s	s	
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	υg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	47000000
2-Chlorophenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	390000
2-Nitrophenol	350 U	370 U	340 U	340 ∪	340 U	340 U	350 ∪	340 U	· -
2,4-Dimethylphenol	350 U	370 U	340 U	340 ∪	340 U	340 U	350 U	340 U	1600000
2,4-Dichlorophenol	350 U	370 Ú	340 U	340 U	340 U	340 U	350 U	340 Ü	230000
4-Chloro-3-methylphenol	1 350 U	370 Ú I	340 Ū	340 U	340 U	340 U	350 U	340 U	
2,4,6-Trichlorophenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	58000
2,4-Dinkrophenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	160000
4-Nitrophenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
4,6-Dinitro-2-methylphenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
Pentachlorophenol	350 U	370 U	340 U	340 U	340 U	340 ()	350 U	340 U	3000
bis(2-Chloroethyl)ether	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	600
1.3-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
1,4-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	27000
1,2-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	7000000
N-Nitroso-di-n-propylamine	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	90
Hexachiomethane	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	46000
Nitrobenzene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	39000
Isophorone	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	670000
bis(2-Chloroethoxy)methane	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	0/000
1,2,4-Trichlorobenzene	350 U	370 U	340 U	340 U	340 U				70000
1,2,4-1 nchiprobenzene Naphthalene	350 U	370 U 370 U				340 U	350 U	340 U	780000
			340 U	340 U	340 U	340 U	350 U	340 U	3100000
Hexachlorobutadiene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	8000
Hexachlorocyclopentadiene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	550000
2-Chloronaphthalene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
Dimethylphthalate	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	_
Acenaphthylene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
2,6-Dinitrotoluene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	900
Acenaphthene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	4700000
2,4-Dinitrotoluene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	900
Diethylphthalate	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	63000000
4-Chlorophenyl-phenylether	350 U	370 U	340 U	340 U	340 U	340 U	350 ∪	340 U	-
Fluorene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	3100000
N-Nitrosodiphenylamine	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	130000
4-Bromophenyl-phenylether	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
Hexachlorobenzene	350 U	370 U	340 U	340 U	340 U	340 U	350 ∪	340 U	400
Phenanthrene	35 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	·
Anthracene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	23000000
Di-n-butylphthalate	270 J	72 J	43 J	96 J	340 U	59 J	51 J	65 J	7800000
Fluoranthene	73 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	3100000
Pyrene	49 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	2300000
Butylbenzylphthalate	61 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	16000000
3,3'-Dichlorobenzidine	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	1000
Benzo(a)anthracene	360 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	900
Chrysene	37 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	88000
bis(2-Ethylhexyl)phthalate	78 J	370 U	340 U	340 U	340 U	340 U	96 J	340 U	46000
Di-n-octyl phthalate	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	16000000
Benzo(b)fluoranthene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	900
Benzo(k)fluoranthene	49 J	370 U	340 U	340 U	340 U	340 U	350 U	340 U	9000
Benzo(a)pyrene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	90
Indeno(1,2,3-cd)pyrene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	900
Dibenzo(a,h)anthracene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	90
Benzo(g,h,i)perylene	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
2,4,5-Trichlorophenol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	7800000
2-Methylphenol	350 U	370 U	340 U	340 U	340 U	340 U] 350 U	340 U	3900000
3+4-Methylphenols	690 U	730 U	680 U	690 U	660 U	690 U	700 U	690 U	-
Benzyl Alcohol	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
2,2'-oxybis(1-Chioropropane)	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	_
4-Chloroaniline	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	310000
2-Methylnaphthalene	350 U	370 U	340 U	340 U	340 Ú	340 U	350 U	340 U	
4-Nitroaniline	350 ∪	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
2-Nitroaniline	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	
3-Nitroaniline	350 U	370 U	340 U	340 U	340 U	340 U	350 U	340 U	-
Dibenzofuran	350 U	370 ∪	340 U	340 U	340 U	340 U	350 U	340 U	_
Azobenzene	350 U	370 U	340 U	340 U	340 U	340 ∪	350 U	340 U	
Benzoic acid	350 U	370 U	340 U	340 U	340 Ú	340 U	350 U	340 U	310000000
Total Carcinogenic PAHs	86	0	0	0	0	0	0	0	10000
Total PAH	243	0	0	0	0	0	0	0	100000
Total Confident Conc SVOC (s)	652	72	43	96	ND	59	149	65	500000

Citalifers

U. The compound was not detected at the influsted concentration.

J. Data influstes the presence of a compound that made the identification criteria. The result is less than the quantitation limit but greater than zero.

D. This qualifier identifies all compounds identified in an analysis at a secondary distribun factor.

IA. T. T. T. T. T. T. T. T. T. T. T. T. T.				VOLATILE ORGANIC COI				
Sample Location Sample ID	117 B01 1-3'	Former Paint I17 B01 3-5'	Mixing Room I17 B02 1-3'	147 Dog 8 El		tock Room	Five Former Machine Pits	
Sample ID Sample Depth (ft)	1-3	3-5	117 802 1-3	117 B02 3-5' 3-5	I19 B01 1-3'	I19 B01 3-5'	121 B01 2-4	Companson Value
Sampling Date	09/26/00	09/26/00	09/26/00	09/26/00	09/28/00	3-5 09/28/00	2-4 10/04/00	for Areas
Matrix	5 S	S S	08/20/00 S	09/20/00 S	09/28/00 S	09/20/00 S	10/04/00 S	of Concern
Dilution Factor	10	10	10	10	10	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenoi	51 J	340 U	360 U	340 U	350 U	37 J	340 U	47000000
2-Chlorophenol	430 Ú	340 U	360 U	340 U	350 U	350 U	340 U	390000
2-Nitrophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
2,4-Dimethylphenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	1600000
2,4-Dichlorophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	230000
4-Chloro-3-methylphenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
2,4,6-Trichlorophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	58000
2,4-Dinitrophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	160000
4-Nitrophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	1
4,6-Dinitro-2-methylphenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	- }
Pentachlorophenol	430 U 430 U	340 U	360 U	340 U	350 U	350 U	340 U	3000
bis(2-Chioroethyl)ether 1,3-Dichlorobenzene	430 U 430 U	340 U 340 U	360 U 360 U	340 U	350 U	350 U	340 U	600
1,4-Dichlorobenzene	430 U	340 U	360 U	340 U 340 U	350 U	350 U	340 U	
1,2-Dichlorobenzene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	27000
N-Nitroso-di-n-propylamine	430 U 430 U	340 U	360 U	340 U	350 U 350 U	350 U 350 U	340 U 340 U	7000000 90
Hexachloroethane	430 U	340 U	360 U	340 U	350 U	350 U	340 U	46000
Ntrobenzene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	39000
Isophorone	430 U	340 U	360 U	340 U	350 U	350 U	340 U	670000
bis(2-Chloroethoxy)methane	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
1,2,4-Trichlorobenzene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	780000
Naphthalene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	3100000
Hexachlorobutadiene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	8000
Hexachlorocyclopentadiene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	550000
2-Chloronaphthalene	430 U	340 U	360 U	340 ∪	350 ∪	350 ∪	340 U	
Dimethylphthalate	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
Acenaphthylene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	- 1
2,6-Dinitrotoluene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	900
Acenaphthene	430 U 430 U	340 U	360 U	340 U	350 U	350 U	340 U	4700000
2,4-Dinitrotoluene Diethylphthalate	430 U 430 U	340 U 340 U	360 U 360 U	340 U	350 U	350 U	340 U	900
4-Chlorophenyl-phenylether	430 U 430 U	340 U 340 U	360 U	340 U 340 U	350 U 350 U	350 U	340 U	63000000
Fluorene	430 U	340 U	360 U	340 U	350 U	350 U 350 U	340 U 340 U	3100000
N-Nitrosodiphenylamine	430 U	340 U	360 U	340 U	350 U	350 U	340 U	130000
4-Bromophenyl-phenylether	430 U	340 U	360 U	340 U	350 U	350 U	340 U	130000
Hexachlorobenzene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	400
Phenanthrene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	-
Anthracene	430 U	340 U	380 U	340 U	350 U	350 U	340 U	23000000
Di-n-butytphthalate	90 J	100 J	55 J	67 J	39 J	47 J	100 J	7800000
Fluoranthene	430 U	340 U	360 ∪	340 U	350 U	350 U	340 U	3100000
Pyrene	430 U	340 U	360 U	340 U	350 ∪	350 U	340 U	2300000
Butylbenzylphthalate	430 U	340 U	360 U	340 U	350 U	350 U	340 U	16000000
3.3 - Dichlorobenzidine	430 U	340 U	360 U	340 U	350 U	350 U	340 U	1000
Benzo(a)anthracene	430 U	340 U	360 ป	340 U	350 U	350 U	340 U	900
Chrysene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	88000
bis(2-Ethylhexyt)phthalate Di-n-octyl phthalate	430 U 430 U	340 U 340 U	360 U 360 U	340 U 340 U	350 U	350 U	340 U	46000
Benzo(b)fluoranthene	430 U 430 U	340 U	360 U	340 U 340 U	350 U 350 U	350 U	340 U	16000000
Benzo(k)fluoranthene	430 U	340 U	360 U	340 U	350 U	350 U 350 U	340 U 340 U	900
Benzo(a)pyrene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	9000
Indeno(1,2,3-cd)pyrene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	900
Dibenzo(a,h)anthracene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	90
Benzo(g,h,i)perylene	430 U	340 U	360 U	340 U	350 U	350 U	340 U	<u>~</u>
2,4,5-Trichlorophenol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	7800000
2-Methylphenol	430 U	340 U	360 U	340 U	350 U	350 U	680 U	3900000
3+4-Methylphenois	850 U	690 U	720 U	680 U	690 U	710 U	340 U	
Benzył Alcohol	430 U	340 U	360 U	340 U	350 U	350 U	340 U	-
2,2'-oxybis(1-Chloropropane)	430 U	340 U	360 U	340 U	350 ∪	350 U	340 U	
4-Chloroaniline	430 U	340 U	360 U	340 U	350 U	350 ∪	340 U	310000
2-Methylnaphthalene	430 U	340 U	360 U	340 U	350 U	350 U	340 ∪	
4-Nitroaniline	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
2-Nitroaniline	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
3-Nitroaniline	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
Dibenzofuran	430 U	340 U	360 U	340 U	350 U	350 U	340 U	
Azobenzene Benzoic acid	430 U 430 U	340 U 340 U	360 U 360 U	340 U 340 U	350 U 350 U	350 U	340 U	
Total Carcinogenic PAHs	430 0	340 0	360 0	340 0	350 U	350 U	340 U	310000000
Total PAH	0	0	0	0			0	10000
Total Confident Conc SVOC (s)	141	100	55	67	39	84	100	500000
	. 171	1		- 01	38	C**	100	1 300000

Qualifers
U The compound was not detected at the indicated concentration

D This Coupling identifies all compound the meets the identification criteria. The result is less than the quantitation limit but greater than zero D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

			SEMI	IVOLATILE ORGANIC CO					
Sample Location	104 BAL 4 A	104 000 4 91	(04 000 0 0	Five Former		104 B04 4 0 T	104 104 10 10 1	104 007 4 01	
Sample ID Sample Depth (ft)	121 B01 4-6 4-6	I21 B02 1-3'	121 802 3-5' 3-5	121 B03 5-7 5-7	121 B03 7-9 7-9	I21 B04 1-3 1-3	121 B04 3-5 3-5	i21 B05 1-3'	Comparison Value for Areas
Sampling Date	10/04/00	10/03/00	10/03/00	10/04/00	10/04/00	10/04/00	10/04/00	10/03/00	of Concern
Matrix	S	S	S	S	s	s l	s	S	1
Dilution Factor	10	10	10	10	10	1.0	1.0	1.0	1
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg .
Phenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	47000000
2-Chlorophenol	380 U 380 U	340 U 340 U	350 U	370 U	350 U	390 U	350 U	410 U	390000
2-Nitrophenol 2.4-Dimethylohenol	380 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	390 U	350 U 350 U	410 U 410 U	1600000
2,4-Dichlorophenol	380 U	340 U	350 U	370 U	350 U	390 U 390 U	350 U	410 U	230000
4-Chloro-3-methylphenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	23000
2,4,6-Trichlorophenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	58000
2,4-Dinkrophenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	160000
4-Nitrophenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
4,6-Dinitro-2-methylphenol	380 ∪	340 ∪	350 U	370 U	350 U	390 U	350 U	410 U	
Pentachlorophenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	3000
bis(2-Chloroethyl)ether	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	600
1,3-Dichlorobenzene	380 U 380 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	390 U	350 U	410 U	27000
1,4-Dichlorobenzene	380 U	340 U	350 U	370 U	350 U	390 U 390 U	350 U 350 U	410 U 410 U	7000000
N-Nitroso-di-n-propylamine	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	700000
Hexachloroethane	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	46000
Nitrobenzene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	39000
Isophorone	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	670000
bis(2-Chloroethoxy)methane	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	i -
1,2,4-Trichlorobenzene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	780000
Naphthalene	380 U 380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	3100000
Hexachlorobutadiene	380 U	340 U 340 U	350 U 350 U	370 U	350 U 350 U	390 U	350 U 350 U	410 U	8000 550000
Hexachlorocyclopentadiene 2-Chloronaphthalene	380 U	340 U	350 U	370 U 370 U	350 U	390 U 390 U	350 U	410 U 410 U	33000
Dimethylphthalate	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
Acenaphthylene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
2,6-Dinkrotoluene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	900
Acenaphthene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	4700000
2,4-Dinitrotoluene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	900
Diethylphthalate	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	63000000
4-Chlorophenyl-phenylether	380 U 380 U	340 U 340 U	350 U 350 U	370 U	350 U	390 U	350 U 350 U	410 U	3100000
Fluorene N-Nitrosodiphenytamine	380 U	340 U	350 U	370 U 370 U	350 U 350 U	390 U	350 U	410 U 410 U	130000
4-Bromophenyl-phenylether	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	13000
Hexachlorobenzene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	400
Phenanthrene	380 U	340 U	50 J	140 J	350 U	390 U	350 U	410 U	
Anthracene	380 U	340 U	350 U	370 U	350 U	390 ∪	350 U	410 U	23000000
Di-n-butyiphthalate	44 J	260 J	980	71 J	61 J	390 ∪	56 J	64 J	7800000
Fluoranthene	380 U	39 J	64 J	130 J	350 U	390 U	350 U	410 U	3100000
Pyrene But the arm debth state	380 U 380 U	340 U 340 U	63 J 350 U	130 J 370 U	350 U 350 U	390 U	350 U 350 U	410 U	2300000
Butylbenzylphthalate 3,3'-Dichlorobenzidine	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U 410 U	16000000
Benzo(a)anthracene	380 U	340 U	350 U	58 J	350 U	390 U	350 U	410 U	900
Chrysene	380 U	340 U	50 J	55 J	350 U	390 U	350 U	410 U	88000
bis(2-Ethylhexyl)phthalate	380 Ü	44 J	350 U	370 U	65 J	390 U	350 U	91 J	46000
Di-n-octyl phthalate	380 U	340 U	350 U	370 U	350 U	390 ∪	350 U	410 U	16000000
Benzo(b)fluoranthene	380 U	340 U	53 J	36 J	350 U	390 U	350 U	410 U	900
Benzo(k)fluoranthene	380 U 380 U	340 U	62 J 350 U	46 J 45 J	350 U 350 U	390 U I	350 U 350 U	410 U	9000
Benzo(a)pyrene Indeno(1,2,3-od)pyrene	380 U	340 U	350 U 41 J	370 U	350 U 350 U	390 U	350 U	410 U 410 U	900
Dibenzo(a,h)anthracene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	90
Benzo(g,h,i)perylene	380 U	340 U	90 7	370 U	350 U	390 U	350 U	410 U	
2,4,5-Trichlorophenol	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	7800000
2-Methylphenol	760 U	690 U	690 U	750 U	690 U	780 U	350 U	810 U	3900000
3+4-Methylphenois	380 U	340 U	350 U	370 U	350 U	390 U	700 U	410 U	
Benzyl Alcohol	380 U	340 U	350 ∪	370 U	350 U	390 ∪	350 U	410 U	
2.2'-oxybis(1-Chloropropane)	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
4-Chloroaniline	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	310000
2-Methylnaphthalene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	_
4-Nitroaniline 2-Nitroaniline	380 U 380 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	390 U	350 U 350 U	410 U 410 U	
3-Nitroaniline	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
Dibenzofuran	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	_
Azobenzene	380 U	340 U	350 U	370 U	350 U	390 U	350 U	410 U	
Benzoic acid	380 U	340 U	350 U	370 U	350 U	390 Ų	350 Ú	410 U	310000000
Total Carcinogenic PAHs	0	0	206	242	0	0	0	0	10000
Total PAH	0	83	443	642	0	0	0	0	100000
Total Confident Conc SVOC (s)	. 44	343	1423	713	126	ND ND	56	155	500000

Qualiform
U The compound was not detected at the Indicated concentration.

J Dats indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

D' This qualifier identifies all compounds identified in an enalysis at a secondary dilution factor

Sample Location	Five Former Machine Pits	Pump St		VOLATILE ORGANIC CO		ormer Alodine Room		Air Handling Unit Room	
Sample ID	i21 B05 3-5'	123 B01 0-2	I23 B01 2-4	126 B01 1-3'	126 B01 3-5'	126 B02 1.5-3.5'	126 B02 3.5-5.5"	128 B01 2-4'	Companson Value
Sample Depth (ft)	3-5	0-2	2-4	1-3	3-5	1 5-3 5	3.5-5 5	2-4	for Areas
Sampling Date Matrix	10/03/00 S	10/18/00 S	10/18/00	09/22/00	09/22/00	09/22/00	09/22/00	09/28/00	of Concern
Dilution Factor	10	1.0	S 10	S 10	\$ 10	, S	S .	, s	
Units	ua/ka	ua/ka	ua/ka	ua/ka	ug/kg	1 0 ug/kg	1 0 ug/kg	1,0 ug/kg	ug/kg
Phenol	360 U	340 U	340 U	400 U	350 U	350 ∪	340 U	380 U	47000000
2-Chlorophenol	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	390000
2-Nitrophenol	360 U	340 U	340 U	400 U	350 U	350 ∪	340 U	380 ℃	
2,4-Dimethylphenol	360 U 360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 ∪	1600000
4-Chloro-3-methylphenol	360 U	340 U	340 U 340 U	400 U 400 U	350 U	350 U	340 U	380 U	230000
2,4,6-Trichlorophenol	360 U	340 U	340 U	400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U 380 U	58000
2,4-Dinitrophenol	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	160000
4-Nitrophenol	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
4,6-Dintro-2-methylphenol	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
Pentachlorophenol bis(2-Chloroethyl)ether	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	3000
1.3-Dichlorobenzene	360 U 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U	350 U	340 U	380 U	600
1,4-Dichlorobenzene	360 U	340 U	340 U	400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U 380 U	27000
1,2-Dichlorobenzene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	7000000
N-Nitroso-di-n-propytamine	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	90
Hexachloroethane	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	46000
Nitrobenzene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	39000
Isophorone bis(2-Chloroethoxy)methane	360 U 360 U	340 U 340 U	340 U 340 U	400 U	350 U	350 U	340 U	380 U	670000
1,2,4-Trichiorobenzene	360 U	340 U	340 U 340 U	400 U 400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U	790000
Naphthalene	360 U	340 U	340 U	400 U	350 U	350 U I	340 U	380 U 380 U	780000 3100000
Hexachlorobutadiene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	8000
Hexachlorocyclopentadiene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	550000
2-Chloronaphthalene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	_
Dimethylphthalate Acenaphthylene	360 U 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U	350 U	340 U	380 U	
2,6-Dinitrotoluene	360 U	340 U	340 U	400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U 380 U	900
Acenaphthene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	4700000
2,4-Dinitrotoluene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	900
Diethylphthalate	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	63000000
4-Chlorophenyl-phenylether	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	-
Fluorene N-Nitrosodiphenylamine	360 U 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U	350 U	340 U	380 U	3100000
4-Bromophenyl-phenylether	360 U	340 U	340 U	400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U 380 U	130000
Hexachiorobenzene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	400
Phenanthrene	37 J	340 U	340 U	400 U	350 U	350 U	340 U	40 J	
Anthracene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	23000000
D+n-butyiphthalate	40 J	220 J	120 J	93 J	100 J	41 J	50 J	380 U	7800000
Fluoranthene Pyrene	39 J 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U 350 U	350 U	340 U	41 J	3100000
Butylbenzylphthalate	360 U	340 U	340 U	400 U	350 U	350 U 350 U	340 U 340 U	380 U 380 U	2300000 16000000
3,3'-Dichlorobenzidine	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	1000
Benzo(a)anthracene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	900
Chrysene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	88000
bis(2-Ethylhexyt)phthalate	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	46000
Di-n-octyl phthalate Benzo(b)fluoranthene	360 U 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U	16000000
Benzo(k)fluoranthene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U 380 U	9000
Benzo(a)pyrene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	900
indeno(1,2,3-cd)pyrene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	900
Dibenzo(a,h)anthracene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	90
Benzo(g,h,i)perylene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
2,4,5-Trichlorophenol 2-Methylphenol	360 U 720 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U	350 U	340 U	380 U	7800000
3+4-Methylphenois	360 U	680 U	680 U	790 U	350 U 700 U	350 U 700 U	340 U 690 U	380 U 770 U	3900000
Benzyl Alcohol	360 U	340 U	340 U	400 U	350 U	350 U	340 U	770 U 380 U	
2,2'-oxybis(1-Chloropropane)	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
4-Chloroaniline	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	310000
2-Methylnaphthalene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
4-Nitroanitine	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	-
2-Nitroaniline 3-Nitroaniline	360 U 360 U	340 U 340 U	340 U 340 U	400 U 400 U	350 U 350 U	350 U	340 U	380 U	-
Dibenzofuran	360 U	340 U	340 U	400 U	350 U 350 U	350 U 350 U	340 U 340 U	380 U 380 U	
Azobenzene	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	
Benzoic acid	360 U	340 U	340 U	400 U	350 U	350 U	340 U	380 U	310000000
Total Carcinogenic PAHs	0	0	0	0	0	0	0	0	10000
Total PAH	78 118	0 220	120	0 93	100	0 41	0 50	81	100000
Total Confident Conc. SVOC (s)								81	500000

Qualifers

U The compound was not detected at the indicated concentration

The compound was not detected at the indicated concentration

The acceptance of a compound that meets the identity J Date indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D' This qualifier identifies all compounds identified in an analysis at a secondary disulon factor

V/ SEMIVOLATILE ORGANIC COMPOUNDS										
Sample Location	Air Handling Unit Room				Former Storage Building					
Sample ID	128 B01 4-6'	I30 B01 1-3	130 B01 3-5	130 B02 1-3	130 B02 3-5	130 B03 1-3	130 B03 3-5	130B03N8 1-3	Comparison Value	
Sample Depth (ft)	4-6	1-3	3-5	1-3	3-5	1-3	3-5	1-3	for Areas	
Sampling Date	09/28/00	09/19/00	09/19/00	09/19/00	09/19/00	09/18/00	09/18/00	12/20/2000	of Concern	
Matrix	s :	S	S	S	S.	S	s	S		
Dilution Factor Units		10	10	10	10	10	1.0	10		
	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Phenol	48 J	410 U	370 U	370 U	350 U	350 ∪	340 U	360 U	47000000	
2-Chiorophenoi	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	390000	
2-Nitrophenol	340 U	410 U	370 U	370 ∪	350 U	350 ∪	340 U	360 U		
2,4-Dimethylphenol	340 U	410 U	370 U	370 U	350 U	92 J	340 U	360 U	1600000	
2,4-Dichlorophenol	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	230000	
4-Chloro-3-methylphenol	1 0,00	410 U	370 U	370 U	350 U	350 U	340 U	360 U	I I	
2,4,6-Trichiorophenoi	340 U	410 U	370 U	370 U	350 U	[350 U [340 U	360 U	58000	
2,4-Dinitrophenol	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	160000	
4-Nitrophenol	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	-	
4.6-Dinitro-2-methylphenol	340 U 340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	-	
Pentachlorophenol bis/2-Chioroethy/lether	340 U	410 U 410 U	370 U	370 U	350 U	350 U	340 U	360 U	3000	
1,3-Dichlorobenzene			370 U	370 U	350 U	350 U	340 U	360 U	600	
1,4-Dichlorobenzene	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	-	
	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	27000	
1,2-Dichlorobenzene	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	7000000	
N-Nitroso-di-n-propylamine	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	90	
Hexachioroethane Nitrobenzene	340 U	410 U 410 U	370 U	370 U	350 U	350 U	340 U	360 U	46000	
			370 U	370 U	350 U	350 U	340 U	300 U	39000	
Isophorone	340 U	410 U	370 U	370 U	350 U	350 U	340 U	380 U	670000	
bis(2-Chloroethoxy)methene	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
1,2,4-Trichlorobenzene Nachthalene	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	780000	
	360 340 U	410 U	370 U	370 U	350 U	2800	49 J	360 U	3100000	
Hexachiorobutadiene		410 U	370 U	370 U	350 U	350 U	340 U	360 U	8000	
Hexachiorocyclopentadiene	340 U	410 U	370 U	370 U	350 U	350 ∪	340 U	360 U	550000	
2-Chloronaphthalene	340 U	410 U	370 U	370 U	350 U	350 ∪	340 U	380 U		
Dimethylphthalate	340 U 340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
Acenaphthylene 2,6-Dinitrotoluene	340 U	410 U	370 U	370 U	350 U	230 J	340 U	360 U	-	
		410 U	370 U	370 U	350 U	350 U	340 U	360 U	900	
Acenaphthene	330 J	410 U	370 U	370 U	350 U	2500	280 J	360 U	4700000	
2,4-Dinitrotoluene	340 U	410 U	370 U	370 ∪	350 U	350 U	340 U	360 U	900	
Diethylphthalate	340 U	410 U	370 U	370 U	350 U	350 U	99 J	360 U	63000000	
4-Chlorophenyl-phenylether	340 U	410 U	370 U	370 U	350 U	350 ∪	340 U	360 U		
Fluorene	320 J	410 U	370 U	370 U	350 U	5400 D	340 J	360 U	3100000	
N-Nitrosodiphenylamine	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	130000	
4-Bromophenyl-phenylether	340 U	410 U	370 U	370 U	350 U	350 ∪	340 U	380 U		
Hexachiorobenzene	340 U	410 U	370 U	370 U	350 U	350 ∪	340 U	380 U	400	
Phenanthrene	6600 D	110 J	370 U	42 J	350 U	28000 D	1900	360 U		
Anthracene	590	410 U	370 U	370 U	350 U	9800 D	640	360 U	23000000	
Di-n-butyiphthalate	66 J	56 J	59 J	42 J	81 J	180 J	120 J	360 U	7800000	
Fluoranthene	5500 D	120 J	370 U	44 J	350 U	27000 D	2300	380 U	3100000	
Pyrene	3700 0	62 J	370 U	370 U	350 U	21000 D	2200	360 U	2300000	
Butylbenzylphthalate	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	16000000	
3,3'-Dichlorobenzidine	340 U	410 U	370 U	370 U	350 U	350 U	340 Ú	360 U	1000	
Benzo(a)anthracene	1700	45 J	370 U	370 U	350 U	18600 D	1900	360 U	900	
Chrysene	1900	43 J	370 U	370 U	350 U	17000 D	1800	380 U	88000	
bis(2-Ethylhexyl)phthalate	58 J	410 U	370 U	370 U	350 U	350 U	93 J	360 U	46000	
Di-n-octyl phthalate	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	18000000	
Benzo(b)fluoranthene	1500	410 U	370 U	370 U	350 U	13000 D	1800	360 U	900	
Benzo(k)fluoranthene	1300	410 U	370 U	370 U	350 U	16000 D	940	360 U	9000	
Benzo(a)pyrene	1200	410 U	370 U	370 U] 350 ∪	15000 D	1400	360 U	90	
Indeno(1,2,3-od)pyrene	390	410 U	370 U	370 U	350 U	4000 D	480	360 U	900	
Dibenzo(s,h)anthracens	110 J	410 U	370 U	370 U	350 U	420	58 J	360 U	90	
Benzo(g,h,i)perylene	510	410 U	370 U	370 ∪	350 U	4800 D	500	360 U	1 - 1	
2,4,5-Trichlorophenol	340 U	410 U	370 U	370 ∪	350 U	350 ∪	340 U	360 U	7800000	
2-Methylphenol	340 U	410 U	370 U	370 U	350 U	53 J	340 U	380 U	3900000	
3+4-Methylphenois	680 U	810 U	750 U	730 U	700 U	150 J	690 U	720 U		
Benzyl Alcohol	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
2,2'-oxybis(1-Chioropropane)	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
4-Chloroantline	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	310000	
2-Methylnaphthalene	98 J	410 U	370 U	370 U	350 U	1600	340 U	360 U		
4-Nitroaniline	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
2-Nitroaniline	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
3-Nitroaniline	340 0	410 U	370 U	370 U	350 U	350 U	340 U	360 U	_	
Dibenzofuran	470	410 U	370 U	370 U	350 U	2200	170 J	360 U		
Azobenzene	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U		
Benzoic acid	340 U	410 U	370 U	370 U	350 U	350 U	340 U	360 U	310000000	
Total Carcinogenic PAHs	8100	88	0	- 0	0	83820	6378	ND	10000	
Total PAH	26468	380	0	86	i	186120	16757	ND	100000	
Total Confident Conc. SVQC (s)	26748	436	59	128	81	189625	17039	ND ND	500000	
						100020	11000	170	, ,,,,,,,,,	

Qualifers

U The compound was not detected at the Indicated concentration.

J Date indicates the presence of a compound that meets the Identification criteria. The result is less than the quantitation limit but greater than zero D This qualifer identifies all compounds identified in an analysis at a secondary dilution factor

		A.	SEM	IVOLATILE ORGANIC CON	MPOUNDS				
Sample Location				Former Storage Building					<u> </u>
Sample ID Sample Depth (ft)	130B03N8 3-5 3-5	130B03S8 1-3	130B03S8 3-5	130B03S12 0-2	130B03S12 4-6	130B03S12 8-10	130B03W8 1-3	130B03W8 3-5	Companson Value
Sampling Date	12/20/2000	1-3 12/20/2000	3-5 12/20/2000	0-2 01/04/01	4-6 12/28/00	8-10 01/04/01	1-3	3-5	for Areas
Matrix	S S	S S	12/20/2000 S	01/04/01 S	12/26/00 S	01/04/01 S	12/20/2000 S	12/20/2000 S	of Concern
Dilution Factor	10	•	10	•	•	•	10	10	!
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	47000000
2-Chlorophenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	390000
2-Nitrophenol 2,4-Dimethylphenol	360 U 360 U	370 U 370 U	340 U 340 U	380 U 380 U	340 U	330 U	370 U	350 U	
2.4-Dichlorophenol	360 U	370 U	340 U	380 U	340 U 340 U	330 U 330 U	370 U 370 U	350 U 350 U	1600000 230000
4-Chloro-3-methylphenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	230000
2,4,6-Trichlorophenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	58000
2,4-Dinkrophenol	360 U	370 U	340 U	380 U	340 ป	330 U	370 U	350 U	160000
4-Nitrophenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	
4,6-Dinitro-2-methylphenol Pentachlorophenol	360 U 360 U	370 U 370 U	340 U	380 U	340 U	330 U	370 U	350 U	
bis(2-Chloroethyl)ether	360 U	370 U	340 U 340 U	380 U 380 U	340 U 340 U	330 U	370 U	350 U	3000
1,3-Dichlorobenzene	360 U	370 U	340 U	380 U	340 U	330 U 330 U	370 U 370 U	350 U 350 U	600
1,4-Dichlorobenzene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	27000
1,2-Dichlorobenzene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	7000000
N-Nitroso-di-n-propylamine	360 U	, 370 U	340 U	380 U	340 U	330 U	370 U	350 U	90
Hexachloroethane	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	46000
Ntrobenzene Isophorone	360 U 360 U	370 U 370 U	340 U 340 U	380 U 380 U	340 U	330 U	370 U	350 U	39000
bis(2-Chloroethoxy)methane	360 U	370 U 370 U	340 U 340 U	380 U 380 U	340 U 340 U	330 U 330 U	370 U	350 U	670000
1,2,4-Trichlorobenzene	360 U	370 U	340 U	380 U	340 U	330 U	370 U 370 U	350 U 350 U	780000
Naphthalene	360 U	7000 D	340 U	87 J	340 U	330 U	370 U	350 U	3100000
Hexachlorobutadiene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	8000
Hexachlorocyclopentadiene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	550000
2-Chloronaphthalene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	
Dimethylphthalate Acenaphthylene	360 U 360 U	370 U 400	340 U	380 U	340 U	330 U	370 U	350 U	(
2,6-Dinitrotoluene	360 U	370 U	340 U 340 U	380 U 380 U	340 U 340 U	330 U 330 U	370 U 370 U	350 U 350 U	900
Acenaphthene	360 U	11000 D	340 U	160 J	340 U	330 U	60 J	350 U	4700000
2,4-Dinitrotoluene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	900
Diethylphthalate	360 U	370 U	340 U	380 U	340 U	330 U	40 J	350 U	63000000
4-Chlorophenyl-phenylether	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	
Fluorene	360 U	13000 D	340 U	140 J	340 U	330 U	64 J	350 U	3100000
N-Nitrosodiphenytamine 4-Bromophenyl-phenylether	360 U	370 U 370 U	340 U 340 U	380 U 380 U	340 U	330 U	370 U	350 U	130000
Hexachlorobenzene	360 U	370 U	340 U	380 U	340 U 340 U	330 U 330 U	370 U 370 U	350 U 350 U	400
Phenanthrene	42 J	81000 D	340 U	1400	36 J	330 U	510	350 U	400
Anthracene	360 U	24000 D	340 U	390	340 U	330 U	150 J	350 U	23000000
Drn-butylphthalate	360 U	370 U	340 U	53 J	52 J	36 J	370 U	350 U	7800000
Fluoranthene	48 J	88000 D	340 U	1300	340 U	330 U	680	350 U	3100000
Pyrene Butylbenzylphthalate	360 U 360 U	130000 D	340 U	1600	340 U	330 U	400	350 U	2300000
3,3'-Dichlorobenzidine	360 U	370 U 370 U	340 U 340 U	380 U 380 U	340 U 340 U	330 U 330 U	370 U 370 U	350 U 350 U	16000000
Benzo(a)anthracene	360 U	64000 D	340 U	950	340 U	330 U	290 J	350 U	900
Chrysene	360 U	62000 D	340 U	830	340 U	330 U	310 J	350 U	88000
bis(2-Ethylhexyl)phthalate	53 J	370 U	40 J	380 U	340 U	330 U	44 J	120 J	46000
Di-n-octyl phthalate	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	16000000
Benzo(b)fluoranthene	360 U	56000 D	340 U	830	340 U	330 U	250 J	350 U	900
Benzo(k)fluoranthene	360 U	65000 D	. 340 U	610	340 U	330 U	290 J	350 U	9000
Benzo(a)pyrene	360 U 360 U	59000 D	340 U	710	340 U	330 U	270 J	350 U	90
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	360 U	12000 D 2900	340 U 340 U	120 J 380 U	340 U 340 U	330 U 330 U	57 J	350 U	900
Benzo(g,h,i)perylene	360 U	27000 D	340 U	190 J	340 U	330 U	370 U	350 U 350 U	90
2,4,5-Trichlorophenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U 350 U	7800000
2-Methylphenol	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	3900000
3+4-Methylphenois	720 U	160 J	680 U	760 U	680 U	670 U	730 U	690 U	
Benzyl Alcohol	360 U	370 U	340 U	380 Ū	340 U	330 U	370 U	350 U	
2,2'-oxybis(1-Chloropropane)	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	_
4-Chloroaniline 2-Methylnaphthalene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	310000
4-Nitroaniline	360 U 360 U	2300 370 U	340 U 340 U	380 U 380 U	340 U 340 U	330 U 330 U	370 U	350 U	_
2-Nitroaniline	360 U	370 U	340 U	380 U	340 U	330 U 330 U	370 U 370 U	350 U 350 U	-
3-Nitroaniline	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	_
Dibenzofuran	360 U	7700 D	340 U	83 J	340 U	330 U	370 U	350 U	_
Azobenzene	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U] =
Benzoic ackl	360 U	370 U	340 U	380 U	340 U	330 U	370 U	350 U	310000000
Total Carcinogenic PAHs	ND	320900	ND	4050	ND	ND	1467	NĎ	10000
Total PAH	90	712300	ND	9400	36	ND	3398	ND	100000
Total Confident Conc. SVOC (s)	143	712460	40	9453	88	36	3482	120	500000

Qualifors

U. The compound was not detected at the indicated concentration.

J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D. This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

Notes
Result exceeds Comparison Value for Areas of Concern
- Not established

Combined INTERIOR non UIC.xls Page 12 of 23 5/30/01 9·59 AM

V											
Sample Location				Former Storage Building			• • • • • • • • • • • • • • • • • • • •				
Sample ID	130B03W12 0-2	130B03W12 4-6	130B03W12 8-10	130B03E8 1-3	130B03E8 3-5	130B03E12 0-2	130B03E12 4-6	130B03E12 8-10	Comparison Value		
Sample Depth (ft)	0-2	4-8	8-10	1-3	3-5	0-2	4-6	8-10	for Areas		
Sampling Date	01/04/01	01/04/01	01/04/01	12/20/2000	12/20/2000	01/04/01	01/04/01	01/04/01	of Concern		
Matrix	S	s	s	S	s I	s	S	s	1		
Dilution Factor		_		10	10		1				
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg		
Phenol	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	47000000		
2-Chlorophenol	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	390000		
2-Nitrophenol	370 ∪	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
2,4-Dimethylphenol	370 ∪	340 U	340 U	360 ∪	370 U	350 U	380 U	340 U	1600000		
2,4-Dichiorophenol	370 ∪	340 U	340 U	360 U	370 U	350 U	380 U	340 U	230000		
4-Chloro-3-methylphenol	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 Ú			
2,4,6-Trichlorophenol	370 ∪	340 U	340 U	360 ∪ ∫	370 U	350 U	380 U	340 U	58000		
2,4-Dinkrophenoi	370 U	340 U	340 U	360 ∪	370 U	350 U	380 U	340 U	160000		
4-Nitrophenol	370 ∪	340 U	340 U] 360 U	370 U	350 U	380 U	63 J			
4,6-Dinitro-2-methylphenol	370 U	340 U	340 U	360 U	370 ∪	350 U	380 U	340 U			
Pentachlorophenol	370 ∪	340 U	340 U	360 U	370 U	350 Ü	380 U	340 U	3000		
bis(2-Chloroethyl)ether	370 U	340 U	340 U	360 ∪	370 ∪	350 U	380 U	340 U	600		
1,3-Dichlorobenzene	370 ∪	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
1,4-Dichlorobenzene	370 ∪	340 U	340 U	360 U	370 U	350 U	380 Ú	340 U	27000		
1,2-Dichlorobenzene	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	7000000		
N-Nitroso-di-n-propylamine	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	90		
Hexachloroethane	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	46000		
Nitrobenzene	370 ∪	340 U	340 U	360 U	370 U	350 U	380 U	340 U	39000		
Isophorone	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	670000		
bis(2-Chloroethoxy)methane	370 U	340 U	340 U	380 U	370 U	350 U	380 U	340 U			
1,2,4-Trichiorobenzene	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	780000		
Naphthalene	46 J	340 U	340 U	580	370 U	58 J	380 U	74 J	3100000		
Hexachlorobutadiene	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	8000		
Hexachlorocyclopentadiene	370 U	340 U	340 U	360 U	370 Ü	350 U	380 U	340 U	550000		
2-Chloronaphthalene	370 ∪	340 U	340 U	360 U	370 Ú	350 U	380 U	340 U	-		
Dimethylphthalate	370 ∪	340 U	340 U] 360 U [370 U	350 Ú	380 U	340 U	i		
Acenaphthylene	370 U	340 U	340 U	79 J	370 U	350 Ú	380 U	340 U			
2,6-Dinitrotoluene	370 ∪	340 U	340 U	360 U	370 U	350 U	380 U	340 U	900		
Acenaphthene	120 J	340 U	340 U	770	370 U	76 J	380 U	140 J	4700000		
2,4-Dinitrotoluene	370 ∪	340 U	340 U	j 360 ∪	370 U	350 U	380 Ú	340 U	900		
Diethylphthalate	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	63000000		
4-Chlorophenyl-phenylether	370 ∪	340 U	340 U	360 U	370 U	350 U	380 Ú	340 U			
Fluorene	110 J	340 U	340 U	810	370 U	110 J	380 U	190 J	3100000		
N-Nitrosodiphenylamine	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	130000		
4-Bromophenyl-phenylether	370 U	340 U	340 U	} 360 U [370 U	350 ∪	380 U	340 Ū			
Hexachlorobenzene	370 U	340 U	340 U	} 360 U ∫	370 U	350 U	380 U	340 Ú	400		
Phenanthrene	1300	240 J	340 U	7800 D	370 U	1600	54 J	1800	_		
Anthracene	290 J	48 J	340 U	1600	370 U	200 J	380 U	330 J	23000000		
Di-n-butylphthalate	370 U	340 U	50 J] 360 ∪ [370 U	100 J	84 J	96 J	7800000		
Fluoranthene	1300	260 J	340 U	7800 D	370 U	1200	41 J	1600	3100000		
Pyrene	1100	280 J	340 U	12000 D	370 ∪	1000	380 U	1300	2300000		
Butylbenzylphthalate	70 J	340 U	340 U	360 U	370 U	350 ∪	380 U	340 U	16000000		
3,3'-Dichlorobenzidine	370 U	340 U	340 U	360 U	370 U	350 ∪	380 U	340 U	1000		
Benzo(s)anthracene	590	110 J	340 U	5000 D	370 U	390	380 U	620	900		
Chrysene	540	82 J	340 U	5200 D	370 U	460	380 U	680	88000		
bis(2-Ethylhexyl)phthelate	370 U	340 U	340 U	110 J	370 ∪	350 U	380 U	92 J	46000		
Di-n-octyl phthalate	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	16000000		
Benzo(b)fluoranthene	650	100 J	340 U	5500 D	370 U	410	380 U	600	900		
Benzo(k)fluoranthene	260 J	53 J	340 U	4300 D	370 U	220 J	380 U	430	9000		
Benzo(a)pyrene	350 J	53 J	340 U	4600 D	370 U	250 J	380 U	430	90		
Indeno(1,2,3-cd)pyrene	64 J	340 U	340 U	790	370 U	81 J	380 U	98 J	900		
Dibenzo(a,h)anthracene	370 U	340 U	340 U	260 J	370 U	350 U	380 U	340 U	90		
Benzo(g,h,i)perylana	110 J	340 U	340 U	1700	370 U	93 J	380 U	150 J			
2,4,5-Trichlorophenol	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	7800000		
2-Methylphenol	370 U	340 U	340 Ú	360 U	370 U	350 U	380 U	340 Ú	3900000		
3+4-Methylphenois	740 U	670 U	670 U	44 J	730 U	690 U	780 U	690 U	-		
Benzyl Alcohol	370 U	340 Ü	340 U	360 U	370 U	350 U	380 U	340 U			
2,2'-oxybis(1-Chloropropane)	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
4-Chloroaniline	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	310000		
2-Methylnaphthalene	370 U	340 U	340 U	220 J	370 U	350 U	380 U	340 U	"		
4-Nitroaniline	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
2-Nitroaniline	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
3-Nitroaniline	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U	_		
Dibenzofuran	63 J	340 U	340 U	560	370 U	93 1	380 U	110 J			
Azobenzene	370 U	340 U	340 U	360 U	370 U	350 U	380 U	340 U			
Benzoic acid	370 U	340 Ü	340 U	360 U	370 U	350 U	380 U	340 U	310000000		
Total Carcinogenic PAHs	2454	398	ND	25650	NÖ	1771	ND ND	2855	10000		
Total PAH Total Confident Conc. SVOC (s)	6893	1226	ND	59660	NO NO	6201	96	8549	100000		

Qualifiers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

D This qualitar identifies all compounds identified in an analysis at a secondary dilution factor.

Notes
Result exceeds Comperison Value for Areas of Concern
-- Not cetablished

Page 13 of 23

Same Dec	Sample Location				Former Storage Building]
Searchife Date Original O	Sample ID				I30 B05 8-10'					Companson Value
Material										for Areas
Description 10							_	_		of Concern
Propose	Dilution Factor	1.0	10	1.0	1.0		1.0			
2-Cherophonhom										
2-Interpretation										47000000
2-60methylehend										390000
2 - Chemosphere										1600000
4-Circle-S-printpripriency 350 U										
2-Christophemic 350 U 350 U 340 U 410 U 410 U 30					340 U	410 U	390 U			
### Abstract										58000
4										
Personal Conference										
Select-Content/Professor Select-Content/Prof										1
1.4-Discholoroprome 350 U 350 U 360 U	bis(2-Chloroethyl)ether			340 U				360 U		
1.2-Dichrodorecaree										
N-Merson-di-person/amme										
Head-thire-openhame										
Natioparame										
Section Sect										39000
1.2.+Trickinobarceme								360 U	350 U	670000
Naprihalmer 350 U 350 U 340 U 340 U 340 U 360 U 360 U 350 U 350 U 350 U 350 U 360 U										<u> </u>
Heacethrophothademe										
Hexachtmorystopentademe										
2-Chiromaphthelme										
Acengathylene 350 U 350 U 340 U 340 U 410 U 390 U 390 U 350 U 350 U 340 U 340 U 410 U 390 U 390 U 350 U 350 U 340 U 340 U 410 U 390 U 390 U 350 U 350 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 390 U 350						410 U	390 U	360 U		
2.6-Dintrolouleme										-
Acentaphthene 350 U 350 U 340 U 340 U 340 U 390 U 390 U 350										
2.4-Districtolularies										
Diethytchhalate										
Fluorene 350 U 350 U 340 U 340 U 410 U 300 U 73 J 350 U 310000 74 Fluoropheny/-pheny/ether 350 U 350 U 350 U 340 U 340 U 410 U 300 U 360 U 350	Diethylphthalate	350 U	350 U	340 U	340 U	410 U	390 U			63000000
N-Morodolphery/amine										
4-Bromopheny-fohenylether 350 U 350 U 340 U 340 U 340 U 390 U 390 U 350 U 400 Phenanthrene 350 U 350 U 340 U 340 U 340 U 390 U 380 U 380 U 380 U Phenanthrene 330 J 350 U 340 U 150 J 240 J 390 U 640 350 U 200 Dh-bytychthlaite 65 J 71 J 52 J 68 J 57 J 48 J 60 J 60 J 760000 Phyrene 330 J 350 U 340 U 110 J 270 J 380 U 400 Pyrene 200 J 350 U 340 U 110 J 270 J 380 U 460 Surphyenylphthaiste 350 U 350 U 340 U 61 J 170 J 380 U 360 U 350 U 330 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 350 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 340 U 340 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 340 U 380 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 340 U 380 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 340 U 330 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 330 U 380 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 330 U 380 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 330 U 380 U 380 U 380 U Surphyenylphthaiste 350 U 350 U 340 U 340 U 340 U 330 U 380 U 380 U 380 U Surphylphthaiste 350 U 350 U 340 U 340 U 340 U 340 U 350 U 350 U 350 U Surphylphthaiste 350 U 350 U 340 U 340 U 340 U 340 U 350 U 350 U 350 U Surphylphthaiste 350 U 350 U 340 U 340 U 340 U 350 U 350 U 350 U 350 U Surphylphthaiste 350 U 350 U 340 U 340 U 340 U 350 U 350 U 350 U 350 U Surphylphthaiste 350 U 350 U 340 U 340 U 340 U 350 U										3100000
Hexachionberizene										130000
Phemarthrene										400
Anthracene										
Fluoranthene 330 J 350 U 340 U 110 J 270 J 390 U 700 350 U 310000						64 J			350 U	23000000
Pyrene										7800000
ButyNetherpyInthalate										
33-Dichkonbenzidine 350 U 350 U 340 U 340 U 340 U 390 U 390 U 350 U 350 U 350 U 350 U 360 U 350 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U										
Chrysene		350 U	350 U	340 U						1000
bis(2-Ethythexylohthalate 350 U 350 U 340 U 340 U 340 U 340 U 360 U 350 U 350 U 350 U 360 U 350 U 360 U 350 U 360 U										
Di-noctyl phthalate 350 U 350 U 340 U 340 U 340 U 340 U 350 U 350 U 350 U 350 U 350 U 360 U 350 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U										
Betrack(b)Nuoranthene										
Benzo(k)fluoranthene										
Senzy(a)pyrene 100 J 350 U 340 U 340 U 340 U 42 J 390 U 230 J 350 U 90 O Indeno(1,2,3-od)pyrene 51 J 350 U 340 U 340 U 42 J 390 U 92 J 350 U 90 O Dibenzo(a,h)anthracene 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 350 U 350 U Senzy(a,h,h)perylene 56 J 350 U 340 U 340 U 410 U 390 U 360 U 350 U 350 U 350 U 350 U 340 U 410 U 390 U 360 U 350 U 350 U 350 U 350 U 340 U 410 U 390 U 360 U 350 U 350 U 360 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 350 U 360 U 360 U 350 U 360	Benzo(k)fluoranthene	120 J	350 U	340 U	340 U	120 J		230 J		
Diberazo(a,h)anthracene 350 U 350 U 340 U 340 U 340 U 340 U 35									350 U	90
Benzo(g,h,f)perylene										
2.4.5-Tichlorophenol										90
2-Methylphenol 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 3900000 344-Methylphenols 710 U 690 U 690 U 690 U 410 U 390 U 720 U 690 U										7800000
3+4-Methylphenols										3900000
Benzy Alcohol 350 U 350 U 340 U 340 U 340 U 350	3+4-Methylphenols	710 U	690 ป							1
4-Chlorpaniline 350 U 350 U 350 U 340 U 340 U 410 U 390 U 380 U 350 U 350 U 31000 2-Methylnaphthalene 350 U 350 U 350 U 340 U 410 U 390 U 380 U 35	Benzyl Alcohol			340 U	340 U	810 U	780 U	360 U	350 U	
2-Methylnaphthalene										
4-Nitroaniline 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 2-Nitroaniline 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 3-Nitroaniline 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U Dibenzofuran 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U Dibenzofuran 350 U 350 U 340 U 340 U 410 U 390 U 39 J 350 U Benzoic acid 350 U 350 U 340 U 340 U 410 U 390 U 380 U 350 U Benzoic acid 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U Benzoic acid 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 350 U Total Caramogenic PAHs 651 0 0 0 594 0 1362 0 10000										310000
2-Nitroaniline 350 U 350 U 340 U 340 U 340 U 340 U 360 U 360 U 350										
3-Nitroaniline 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U Diberazóruran 350 U 350 U 340 U 340 U 410 U 390 U 39 J 350 U Bertzoic acid 350 U 350 U 350 U 340 U 410 U 390 U 390 U 360 U 350 U Bertzoic acid 350 U 350 U 350 U 340 U 410 U 390 U 360 U 350 U Total Carcanogenic PAHs 651 0 0 0 594 0 1362 0 100000 Total PAH 1617 0 0 0 321 1365 0 3451 0 100000										
Dibenzofuran 350 U 350 U 340 U 340 U 410 U 390 U 39 J 350 U	3-Nitroaniline	350 U	350 U	340 U	340 U	410 U	390 U		350 U	1 1
Benzoic acid 350 U 350 U 340 U 340 U 410 U 390 U 360 U 350 U 3100000 Total Carrenogenic PAHs 0 1362 0 10000 Total PAH 1817 0 0 321 1385 0 3451 0 100000 100000 100000 100000 100000 100000 1000000 1000000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 100000 100000 100000 100000 1000000 100000 100000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 10000000 10000000 100000000										
Total Carcinogenic PAHs 651 0 0 0 594 0 1382 0 10000 Total PAH 1617 0 0 321 1385 0 3451 0 10000										
Total PAH 1617 0 0 321 1385 0 3451 0 10000										310000000
	Total Confident Conc. SVOC (s)			52	389	1486	92	3686	80	500000

Qualifors

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

SEMIVOLATILE ORGANIC COMPOUNDS Sample Location Refrigeration/AC Room Hangar 1										
Sample Location	I31 B01 1-3	I31 B01 3-5	131 B02 2-4	131 B02 4-6	132 B01 1-3	Han 132 B01 3-5	gar 1 I32 B02 1-3	132 B02 3-5	Comparison Value	
Sample Depth (ft)	06	3-5	2-4	4-8	1-3	3-5	1-3	3-5	for Areas	
Sampling Date	09/18/00	09/18/00	09/18/00	09/18/00	09/19/00	09/19/00	09/19/00	09/19/00	of Concern .	
Matrix	s	s	\$	s	s	s	S	S	ŀ	
Dilution Factor	10	10	10	10	10	1,0	10	10		
Units Phenol	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
2-Chlorophenol	340 U 340 U	360 U	360 U 360 U	380 U 380 U	400 U 400 U	370 U	370 U 370 U	370 U	47000000	
2-Nitrophenol	340 U	360 U	360 U	380 U	400 U	370 U 370 U	370 U	370 U 370 U	390000	
2,4-Dimethylphenol	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	1600000	
2,4-Dichlorophenol	340 U	360 U	360 U	380 บ	400 U	370 U	370 U	370 U	230000	
4-Chloro-3-methylphenol	340 U	360 U	360 U	380 U	400 Ú	370 U	370 Ú	370 U		
2,4,6-Trichlorophenol	340 U	360 U	360 U	380 ∪	400 U	370 U	370 U	370 U	58000	
2,4-Dinitrophenol	340 U 340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	160000	
4-Nitrophenol 4,6-Dinitro-2-methylphenol	340 U	360 U 360 U	360 U 360 U	380 U 380 U	400 U 400 U	370 U 370 U	370 U 370 U	370 U 370 U		
Pentachlorophenol	340 Ú	360 U	360 U	380 U	400 U	370 U	86 J	120 J	3000	
bis(2-Chloroethyl)ether	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	600	
1,3-Dichlorobenzene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U		
1,4-Dichlorobenzene	340 U	360 U	360 U	380 U	400 U	370 U	370 ∪	370 U	27000	
1,2-Dichlorobenzene	340 U	360 U	360 U	380 U	400 U	370 U	370 ∪	370 U	7000000	
N-Nitroso-di-n-propylamine	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	90	
Hexachioroethane Nitrobenzene	340 U 340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	46000	
Isoohorone	340 U	360 U 360 U	360 U 360 U	380 U 380 U	400 U 400 U	370 U 370 U	370 U 370 U	370 U	39000	
bis(2-Chloroethoxy)methane	340 U	360 U	360 U	380 U	400 U	370 U	370 U 370 U	370 U 370 U	670000	
1,2,4-Trichlorobenzene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	780000	
Naphthalene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	57 J	3100000	
Hexachiorobutadiene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	8000	
Hexachlorocyclopentadiene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	550000	
2-Chloronaphthalene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U		
Dimethylphthalate Acenaphthylene	340 U 340 U	360 U 360 U	360 U 360 U	380 U 380 U	400 U	370 U	370 U	370 U		
2,6-Dinitrotoluene	340 U	360 U	360 U	380 U	400 U 400 U	370 U 370 U	370 U 370 U	370 U 370 U	900	
Acenaphthene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	3,00	4700000	
2,4-Dinitrotoluene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	900	
Diethylphthalate	340 U	380 U	360 U	380 U	400 U	370 U	370 U	370 U	63000000	
4-Chlorophenyl-phenylether	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 Ū	۱	
Fluorene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	140 J	3100000	
N-Nitrosodiphenylamine	340 U 340 U	360 U 360 U	360 U	380 U	400 U	370 U	370 U	370 U	130000	
4-Bromophenyl-phenylether Hexachlorobenzene	340 U	380 U	360 U 360 U	380 U 380 U	400 U 400 U	370 U 370 U	370 U 370 U	370 U 370 U	400	
Phenanthrane	340 U	360 U	42 J	380 U	400 U	150 J	180 J	730	400	
Anthracene	340 U	360 U	360 U	380 Ú	400 U	45 J	42 J	220 J	23000000	
Di-n-butylphthalate	76 J	69 J	89 J	71 J	80 J	83 J	ີ່ <u>ຄື</u> ັ້ນ	66 J	7800000	
Fluoranthene	340 U	360 U	86 J	380 U	400 U	180 J	160 J	750	3100000	
Pyrene	340 U	360 U	64 J	380 U	400 U	100 J	90 J	520	2300000	
Butylbenzylphthalate 3.3'-Dichlorobenzidine	340 U 340 U	360 U	460 360 U	380 U	400 U	370 U	370 U	370 U	16000000	
Benzo(a)enthracene	340 U	360 U	360 U 45 J	380 U 380 U	400 U 400 U	370 U 77 J	370 U 70 J	370 U	1000	
Chrysene	340 U	360 U	53 J	380 U	400 U	77 3	,	360 J 360 J	88000	
bis(2-Ethylhexyf)phthalate	110 J	200 J	250 J	66 1	400 U	370 U	370 U	370 U	48000	
Di-n-octyl phthalate	340 U	380 U	360 U	380 U	400 U	370 U	370 U	370 U	16000000	
Benzo(b)fluoranthene	340 U	360 U	46 J	380 U	400 U	56 J	49 J	270 J	900	
Benzo(k)fluoranthene	340 U	360 U	60 J	380 U	400 U	62 J	54 J	320 J	9000	
Benzo(s)pyrene	340 U	360 U	46 J	380 U	400 U	65 J	59 J	330 J	90	
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	340 U 340 U	360 U 360 U	360 U 360 U	380 U 380 U	400 U 400 U	41 J 370 U	370 U 370 U	140 J	900	
Benzo(g,h,i)perylene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	56 J 200 J	90	
2,4,5-Trichlorophenol	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	7800000	
2-Methylphenol	340 U	360 U	380 U	380 U	400 U	370 U	370 U	370 U	3900000	
3+4-Methylphenois	340 U	360 U	360 U	380 U	800 U	740 U	730 U	750 U	_	
Benzyl Alcohol	670 U	720 U	720 U	760 U	400 U	370 U	370 U	370 U		
2,2'-oxybis(1-Chloropropane)	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U		
4-Chioroaniline	340 U 340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	310000	
2-Methylnaphthalene 4-Nitroaniline	340 U 340 U	360 U 360 U	360 U 360 U	380 U 380 U	400 U 400 U	370 U 370 U	370 U 370 U	59 J 370 U	_	
2-Nitroaniline	340 U	360 U	360 U	380 U	400 U	370 U 370 U	370 U	370 U	_	
3-Nitroaniline	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	_	
Dibenzofuran	340 Ŭ	380 U	360 U	380 U	400 U	370 U	370 U	63 J		
Azobenzene	340 U	360 U	360 U	380 U	400 U	370 U	370 U	370 U	·	
Benzoic acid	340 Ų	360 U	360 U	380 U	400 U	370 U	370 U	370 U	310000000	
Total Carcinogenic PAHs	0	0	250	<u> </u>	0	378	301	1836	10000	
Total PAH	0	. 0	442	0	0	853	762	4674	100000	
Total Confident Conc. SVOC (s)	186	269	1241	136	80	936	921	4860	500000	

Cualifiers:

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is fees then the quentitation limit but greater than zero.

O This qualifier identifies all compounds identified in an analysis at a escondary disation factor.

5/30/01 9:59 AM

Cample Laurities		11	4						
Sample Location Sample ID	∤32 B03 1-3	Hang 132 B03 3-5		100 DO4 0 F	Storage Area in Office	Area East of Hangar 2		ction Pits	۱ I
Sample Depth (ft)	1-3		132 B04 1-3	132 B04 3-5	133 B01 1-3'	133 B01 3-5	134 B01 4-6	134 B01 6-8	Companson Value
Sampling Date	09/20/00	3-5 09/20/00	1-3 09/20/00	3-5 09/20/00	1-3	3-5	4-6	6-8	for Areas
Matrix	09/20/00 S	08/20/00 S			09/28/00	09/28/00	09/29/00	09/29/00	of Concern
Dilution Factor	1.0	1.0	S 10	S	S I	S	S	S	1
Units				1.0	10	1.0	1.0	1.0	
	ug/kg	ug/kg	ug/kg	ug/kg	ид/кд	ug/kg	ug/kg	ug/kg	ug/kg
Phenol .	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	47000000
2-Chlorophenot	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	390000
2-Nitrophenol	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
2,4-Dimethylphenol	370 U	360 ⊍	390 U	360 U	350 U	350 U	410 U	340 U	1600000
2,4-Dichlorophenol	370 U	360 U	390 U	360 U	350 ∪	350 U	410 U	340 U	230000
4-Chloro-3-methylphenol	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
2,4,6-Trichlorophenol	370 U	} 360 U ∤	390 U	360 U	350 U	350 U	410 U	340 U	58000
2,4-Dinitrophenol	[370 U	360 U	390 U	360 ∪	350 U	350 U	410 U	340 U	160000
4-Nitrophenol	(370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
4,6-Dinitro-2-methylphenol	370 U	360 U	390 U	360 ∪	350 U	350 U	410 U	340 U	i
Pentachlorophenol	370 ∪	150 J	390 U	130 J	350 U	350 U	410 U	340 U	3000
bis(2-Chioroethyl)ether	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	600
1.3-Dichlombenzene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U] ""
1,4-Dichlorobenzene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	27000
1,2-Dichlorobenzene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	7000000
N-Nitroso-di-n-propylamine	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	700000
Hexachloroethane	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	46000
Nitrobenzene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	39000
Isophorone	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
bis(2-Chloroethoxy)methane	370 U	360 U	390 U						670000
1,2,4-Trichlorobenzene	370 U	360 U	390 U	360 U 360 U	350 U	350 U	410 U	340 U	
Naphthalene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	780000
					350 U	350 U	410 U	340 U	3100000
Hexachlorobutadiene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	8000
Hexachlorocyclopentadiene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	550000
2-Chloronaphthalene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	l i
Dimethylphthalate	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	-
Acenaphthylene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
2,6-Dinitrotoluene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	900
Acenaphthene	370 ∪	360 じ	390 U	360 U	350 U	350 ป	410 U	340 U	4700000
2,4-Dinitrotoluene	[370 U [360 U (390 U	360 U	350 U [350 U ∮	410 U	340 U	900
Diethylphthalate	370 ∪ ∤	360 ∪	390 U	360 U	350 U	350 U	410 U	340 U	63000000
4-Chlorophenyl-phenylether	370 U	360 ∪	390 U	360 U	350 U	350 U	410 U	340 U	
Fluorene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	3100000
N-Ntrosodiphenylamine	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	130000
4-Bromophenyl-phenylether	370 ∪	360 U	390 U	360 U	350 U	350 U	410 U	340 U	'
Hexachlorobenzene	370 ∪	360 ⊍ │	390 U	360 U	350 U	350 U	410 U	340 U	400
Phenanthrene	370 U	220 J	390 U	180 J	350 U	350 U	140 J	340 U	1
Anthracene	370 U	58 J	390 U	360 U	350 U	350 U	410 U	340 U	23000000
Di-n-butylphthalate	370 U	360 U	42 J	360 U	350 U	72 J	110 J	66 J	7800000
Fluoranthene	370 U	260 J	390 U	220 J	350 U	350 U	130 J	340 U	3100000
Pyrene	370 U	140 J	390 U	120 J	350 U	350 U	72 J	340 U	2300000
Butylbenzylphthalate	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	16000000
3,3'-Dichlorobenzidine	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	1000
Benzo(a)anthracene	370 U	110 J	390 U	94 J	350 U	350 U	43 J	340 U	900
Chrysene	370 U	110 J	390 U	100 J	350 U	350 U	58 J	340 U	88000
bis(2-Ethylhexyl)phthalate	370 U	360 U	390 U	360 U	350 U	64 J	410 U	340 U	46000
Di-n-octvl phthalate	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	16000000
Benzo(b)fluoranthene	370 U	82 J	390 U	71 J	350 U	350 U	410 U	340 U	900
Benzo(k)fluoranthene	370 U	120 J	390 U	110 J	350 U	350 U	54 J	340 U	9000
Benzo(a)pyrene	370 U	100 J	390 U	83 J	350 U	350 U	410 U		
Indeno(1,2,3-cd)pyrene	370 U	62 J	390 U					340 U	90
	370 U	360 U		51 J	350 U	350 U	410 U	340 U	900
Dibenzo(a,h)anthracene			390 U	360 U	350 U	350 U	410 U	340 U	90
Benzo(g,h,i)perylene	370 U	72 J	390 U	59 J	350 U	350 U	410 U	340 U	l
2,4,5-Trichlorophenol	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	7800000
2-Methylphenol	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	3900000
3+4-Methylphenols	750 U	720 U	780 U	720 U	700 U	700 U	810 U	690 U	1 - 1
Benzyl Alcohol	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
2,2'-oxybis(1-Chloropropane)	370 U	360 U	390 U	360 ป	350 U	350 U	410 U	340 U	
4-Chloroaniline	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	310000
2-Methylnaphthalene	370 U	360 ∪	390 U	360 U	350 U	350 U	410 U	340 U	
4-Nitroaniline	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
2-Nitroaniline	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
3-Nitroaniline	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	
Dibenzofuran	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	1 - 1
Azobenzene	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	_
Benzoic acid	370 U	360 U	390 U	360 U	350 U	350 U	410 U	340 U	310000000
Total Carcinogenic PAHs	0,00	584	000	509	- 330 0	330 0	155	0	10000
Total PAH	0	1334		1088		0	357	0	10000
Total Confident Conc. SVOC (s)	ND	1484	42	1218	ND ND				
Town Countries (a)		1 1904		1415	L NU	136	607	66	500000

Qualifiers

U. The compound was not detected at the indicated concentration.

J. Data indicates the presence of a compound that meets the identification criteria. The result is tess than the quantitation limit but greater than zero.

D. This qualifier identifies all compounds identified in an analysis at a secondary distribution factor.

Notes
Result exceeds Comparison Value for Areas of Concarn
Not established

Combined INTERIOR non UIC.xls

Page 16 of 23

Sample Location	"Old" Ejec	rtion Pite		Former Po	outer Room		Machine Shop (formerly	referred to as Former	T
Sample ID	134 B02 2-4	134 802 4-8	136 B01 1-3'	136 B01 3-5'	136 B02 1-3'	136 B02 3-5'	Uphoister I37 B01 1-3'	9 KOOM) 137 B01 3-5'	Comparison Value
Sample Depth (ft)	2-4	4-6	1-3	3-5	1-3	3-5	1-3	3-5	for Areas
Sampling Date	09/29/00	09/29/00	09/22/00	09/22/00	9/22/00	09/22/00	09/27/00	09/27/00	of Concern
Matrix	s	S	s I	S	s	l s	l s i	S	
Dilution Factor	1.0	10	10	10	10	10	10		
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenoi 2-Chlorophenoi	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	47000000
2-Chlorophenol	400 U 400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	390000
2,4-Dimethylphenol	400 U	340 U 340 U	370 U 370 U	370 U 370 U	370 U 370 U	370 U 370 U	350 U 350 U	360 U	1600000
2,4-Dichlorophenol	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U 360 U	230000
4-Chloro-3-methylohenol	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	23000
2,4,6-Trichlorophenol	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	58000
2,4-Dinitrophenol	400 U	340 U	370 Ú	370 U	370 U	370 U	350 U	360 U	160000
4-Nitrophenol	400 U	340 U	370 ∪	370 U	370 U	370 U	350 U	360 U	
4,6-Dinitro-2-methylphenol	400 U	340 U	370 U	370 U	370 U	370 U	350 ∪	360 U	
Pentachlorophenol	400 U	340 U	370 U	370 U	370 U	370 U	350 ∪	360 U	3000
bis(2-Chloroethyl)ether	400 U	340 U	370 U	370 U	370 U	370 U	350 ∪	380 U	600
1,3-Dichlorobenzene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	400 U 400 U	340 U 340 U	370 U 370 U	370 U	370 U	370 U	350 U	360 U	27000
N-Nitroso-di-n-propylamine	400 U	340 U	370 U	370 U 370 U	370 U 370 U	370 U	350 U	360 U	7000000
Hexachloroethane	400 U	340 U	370 U	370 U	370 U 370 U	370 U 370 U	350 U 350 U	360 U 360 U	90 46000
Nitrobenzene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	380 U	39000
Isophorone	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	670000
bls(2-Chloroethoxy)methane	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	
1,2,4-Trichiorobenzene	400 Ü	340 U	370 U	370 U	370 U	370 U	350 U	380 U	780000
Naphthalene	400 U	340 U	370 ∪	370 U	370 U	370 U	350 U	360 U	3100000
Hexachlorobutadiene	400 U	340 U	370 U	370 U	370 U	370 ∪	350 U	360 U	8000
Hexachlorocyclopentadiene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	550000
2-Chloronaphthalene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	-
Dimethylphthelate	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	-
Acenaphthylene 2.6-Dinkrotokune	400 U 400 U	340 U 340 U	370 U 370 U	370 U 370 U	370 U 370 U	370 U	350 U	360 U	
Acenachthene	400 U	340 U	370 U	370 U	370 U	370 U 370 U	350 U 350 U	360 U 360 U	900 4700000
2,4-Dinkrotoluene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	900
Diethylphthalate	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	63000000
4-Chlorophenyl-phenylether	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	-
Fluorene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	3100000
N-Nitrosodiphenylamine	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 Ú	130000
4-Bromophenyl-phenylether	400 U	340 U	370 U	370 U	370 U	370 ∪	350 U	360 U	
Hexachlorobenzene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	400
Phenanthrene Anthracene	400 U (340 U 340 U	370 U	370 U	370 U	370 U	350 U	110 J	
Di-n-butylphthalate	72 J	340 U	370 U 370 U	370 U	370 U 370 U	370 U	350 U 350 U	360 U	23000000
Fluoranthene	400 U	340 U	370 U	370 U	370 U	110 J 370 U	350 U	100 J 47 J	7800000 3100000
Pyrene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	2300000
Butylbenzylphthalate	400 U	340 U	370 U	370 U	370 U	370 U	350 U	13000 D	16000000
3,3'-Dichlorobenzidine	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	1000
Benzo(a)anthracene	400 U	340 U	370 ∪	370 U	370 U	370 U	350 U	360 U	900
Chrysene	400 U	340 U	370 U	370 U	370 U	370 U	350 ∪	360 U	88000
bis(2-Ethylhexyl)phthalate	400 U	340 U	370 U	370 U	370 U	370 U	350 U	59 J	46000
Di-n-octyl phthalate	400 U	340 U	370 U	370 U	370 U	370 U	350 U	380 U	16000000
Benzo(b)fluoranthene Benzo(k)fluoranthene	400 U 400 U	340 U 340 U	370 U 370 U	370 U 370 U	370 U	370 U	350 U	360 U	900
Benzo(a)pyrene	400 U	340 U	370 U	370 U	370 U 370 U	370 U 370 U	350 U	360 U	9000
Indeno(1,2,3-cd)pyrene	400 U	340 U	370 U	370 U	370 U	370 U 370 U	350 U 350 U	360 U 360 U	90
Dibenzo(a,h)anthracene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	380 U	900
Benzo(g,h,i)perylene	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	J
2,4,5-Trichiorophenoi	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	7800000
2-Methylphenol	400 U	340 Ŭ	370 U	370 U	370 U	370 U	350 U	360 U	3900000
3+4-Methylphenois	800 U	680 U	730 U	730 U	750 U	750 U	590 U	720 U	
Benzyl Alcohol	400 U	340 U	370 U	220 J	370 U	540	350 U	110 J	
2,2'-oxybis(1-Chioropropane)	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	
4-Chloroaniline	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	310000
2-Methylnaphthalene	400 U	340 U	370 U	370 U	370 U	370 ∪	350 U	360 U	1
4-Nitroaniline	400 U	340 U	370 U	370 U	370 U	370 U	350 U	360 U	
2-Nitroaniline	400 U	340 U	370 U	370 U	370 U	370 U	350 U	380 U	-
3-Nitroaniline Dibenzofuran	400 U 400 U	340 U 340 U	370 U	370 U	370 U	370 U	350 U	360 U	_
Azobenzene	400 U	340 U	370 U 370 U	370 U	370 U	370 U	350 U	360 U	-
	400 U	340 U	370 U	370 U	370 U 370 U	370 U 370 U	350 U 55 J	360 U	310000000
Benzoic acid									
Benzoic acid Total Carcinogenic PAHs		0	0.00	- 5,00	3/00	0	- 55 7	360 U	10000
				0					

- <u>Qualifors</u>
 U. The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that mosts the identification orders. The result is less than the quantitation limit but greater than zero.

 D. This qualifier identifies all compounds identified in an enalysis at a secondary dilution factor.

V.

Sample Location	Machine Shop (former) Upholste	y referred to as Former		Boiler	Room		Engra-Fa-Nt 111	waterana Ecolor	T
Sample ID	137 B02 1-3'	137 B02 3-5'	I38 B01 1-3'	138 B01 3-5'	138 B02 1-3'	138 B02 3-5'	Former Facility Ma I39 B01 1-3	I39 B01 3-5	Comparison Value
Sample Depth (ft)	1-3	3-5	1-3	3-5	1-3	3-5	1-3	3-5	for Areas
Sampling Date Matrix	09/27/00	09/27/00	09/26/00	09/26/00	09/26/00	09/26/00	09/19/00	09/19/00	of Concern
Dilution Factor	S 10	S	\$ 1.0	S 1.0	S 10	S	s i	s	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	1.0 ug/kg	10 ug/kg	1 0 ug/kg	ua/ka
Phenoi	350 U	360 U	370 U	340 U	62 J	370 U	350 U	340 U	ug/kg 4700000
2-Chlorophenol	350 U	360 U	370 ∪	340 U	350 U	370 U	350 U	340 U	390000
2-Nitrophenol	350 U	360 U	370 U	340 U	350 U	370 ∪	350 U	340 U	
2,4-Dimethylphenol 2,4-Dichlorophenol	350 U 350 U	360 U 360 U	370 U 370 U	340 U	350 U	370 U	350 U	340 U	1600000
4-Chloro-3-methylphenol	350 U	360 U	370 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	340 U 340 ป	230000
2,4,6-Trichlorophenol	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	58000
2,4-Dinitrophenol	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	160000
4-Nitrophenol	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 Ú	
4,8-Dinitro-2-methylphenol Pentachlorophenol	350 U 350 U	360 U 360 U	370 U 1	340 U	350 U	370 U	350 U	340 U	
bis(2-Chloroethy!)ether	350 U	360 U	370 U	340 U 340 U	350 ป 350 ป	370 U	350 U	340 U	3000
1,3-Dichlorobenzene	350 U	360 U	370 U	340 U	350 U	370 U 370 U	350 U 350 U	340 U 340 U	600
1,4-Dichlorobenzene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	27000
1,2-Dichlorobenzene	350 U	360 U	370 U	340 U	350 U	370 U	350 Ü	340 U	7000000
N-Nitroso-di-ri-propylamine	350 U	360 U	370 U	340 U	350 U	370 Ū	350 U	340 U	90
Hexachloroethane Nitrobenzene	350 U 350 U	360 U 360 U	370 U	340 U	350 U	370 U	350 U	340 U	46000
Isophorone	350 U	360 U	370 U 370 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	340 U	39000
bis(2-Chloroethoxy)methane	350 U	360 U	370 U	340 U	350 U	370 U 370 U	350 U	340 U 340 U	670000
1,2,4-Trichlorobenzene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	780000
Naphthalene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	3100000
Hexachlorobutadiene Hexachlorocyclopentadiene	350 U 350 U	360 U 360 U	370 U 370 U	340 U	350 U	370 U	350 U	340 U	8000
2-Chloronaphthalene	350 U	360 U	370 U	340 U 340 U	350 U 350 U	370 U	350 U	340 U	550000
Dimethylphthalate	350 U	360 U	370 U	340 U	350 U	370 U 370 U	350 U 350 U	340 U 340 U	_
Acenaphthylene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	
2,6-Dinitrotoluene	350 ∪	360 ∪	370 U	340 U	350 U	370 U	350 U	340 U	900
Acenaphthene	350 U	45 J	370 U	340 U	350 U	370 ∪	350 U	340 U	4700000
2,4-Dinitrotoluene Diethylphthalate	350 U 350 U	360 U 360 U	370 U 370 U	340 U 340 U	350 U	370 U	350 U	340 U	900
4-Chlorophenyl-phenylether	350 U	360 U	370 U	340 U	350 U 350 U	370 U 370 U	350 U 350 U	340 U 340 U	63000000
Fluorene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	3100000
N-Nitrosodiphenylamine	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	130000
4-Bromophenyl-phenylether	350 U	360 U	370 U	340 U	350 U	370 ∪	350 U	340 U	
Hexachlorobenzene Phenanthrene	350 U 350 U	360 U 950	370 U 370 U	340 U 340 U	350 U	370 U	350 U	340 U	400
Anthracene	350 U	120 J	370 U	340 U	350 U 350 U	370 U 370 U	110 J 350 U	340 U	
Di-n-butylphthalate	350 U	93 J	120 J	75 J	93 J	120 J	110 J	340 U 85 J	23000000 7800000
Fluoranthene	350 U	920	370 U	340 U	350 U	370 U	110 3	340 U	3100000
Pyrene	350 U	550	370 U	340 U	350 U	370 U	60 J	340 U	2300000
Butylbenzylphthalate 3,3'-Dichlorobenzidine	350 U	11000 D	370 U	340 U	350 U	370 U	350 U	340 U	16000000
Benzo(a)anthracene	350 U	360 U 330 J	370 U 370 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U	340 U	1000
Chrysene	350 U	410	370 U	340 U	350 U	370 U 370 U	39 J 44 J	340 U 340 U	900 88000
bis(2-Ethylhexyl)phthalate	350 U	38 J	370 U	340 U	350 U	370 U	350 U	340 U	46000
Di-n-octyl phthalate	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	16000000
Benzo(b)fluoranthene Benzo(k)fluoranthene	350 U 350 U	250 J 280 J	370 U 370 U	340 U	350 U	370 U	350 U	340 U	900
Benzo(a)pyrene	350 U	280 J 240 J	370 U 370 U	340 U 340 U	350 U 350 U	370 U	350 U	340 U	9000
Indeno(1,2,3-cd)pyrene	350 U	190 J	370 U	340 U	350 U	370 U 370 U	350 U 350 U	340 U 340 U	90
Dibenzo(a,h)anthracene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U 340 U	900
Benzo(g,h,i)perylene	350 U	190 J	370 U	340 U	350 U	370 U	350 U	340 U	
2,4,5-Trichlorophenol	350 U	360 U	370 U	340 U	350 U	370 ∪	350 U	340 U	7800000
2-Methylphenol	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	3900000
3+4-Methylphenois Benzyl Alcohol	710 U 350 U	720 U 620	730 U 370 U	680 U 340 U	710 U	750 U	710 U	680 U	
2,2'-oxybis(1-Chloropropane)	350 U	360 U	370 U	340 U	350 U 350 U	370 U 370 U	350 U 350 U	340 U 340 U	-
4-Chloroaniline	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U 340 U	310000
2-Methylnaphthalene	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	310000
4-Nitroaniline	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	
2-Nitroaniline	350 U	360 U	370 U	340 U	350 U	370 U	350 U	340 U	
3-Nitroaniline Dibenzofuran	350 U 350 U	360 U 56 J	370 U 370 U	340 U	350 U	370 U	350 U	340 U	-
Azobenzene	350 U	360 U	370 U	340 U 340 U	350 U 350 U	370 U 370 U	350 U 350 U	340 U	
Benzoic acid	350 U	360 U	370 U	340 U	350 U	370 U	350 U 350 U	340 U 340 U	310000000
Total Carcinogenic PAHs	0	1700	0	0	0	3/00	83	340 0	10000
Total PAH	0	4531	0	0	0		363	0	100000
Total Confident Conc SVOC (s)	ND	16282	120	75	155	120	473	85	500000

Qualifors
U The compound was not detected at the indicated concentration

U The Compound were not conscious as we enacement contents word.

D that indicates the presence of a compound the meets the identification criteria. The result is less than the quantitation limit but greater than zero.

D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Notes

Result exceeds Comparison Value for Areas of Concern

--- Not established

Sample Location	Former Facility Ma	intenance Facility			Han	gar 2			
Sample ID	139 B02 1-3	139 B02 3-5	140 B01 2-4	140 B01 4-6	I40 B03 1-3	140 B03 3-5	I40 B04 1-3	140 B04 3-5	Comparison Value
Sample Depth (ft)	1-3	3-5	2-4	4-8	1-3	3-5	1-3	3-5	for Areas
Sampling Date	09/19/00	09/19/00	10/04/00	10/04/00	09/20/00	09/20/00	09/20/00	09/20/00	of Concern
Matrix	S	s	s	s	s	l s	l s	s	
Dilution Factor	10	10	10	10	1.0	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenoi 2-Chiorophenoi	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	47000000
2-Chlorophenol	350 U 350 U	340 U 340 U	380 U	340 U	350 U	350 U	340 U	340 U	390000
2,4-Dimethylphenol	350 U	340 U	360 U 360 U	340 U 340 U	350 U 350 U	350 U	340 U	340 U	1
2.4-Dichlorophenol	350 U	340 U	360 U	340 U	350 U	350 U 350 U	340 U 340 U	340 U	1600000
4-Chloro-3-methylphenol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U 340 U	230000
2,4,6-Trichlorophenol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	58000
2,4-Dinkrophenol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	160000
4-Nitrophenol	350 U	340 U	360 ∪	340 U	350 U	350 U	340 U	340 U	-
4,6-Dinitro-2-methylphenol] 350 U }	340 U	360 U	340 U	350 U	350 U	340 U	340 U	
Pentachiorophenol	350 U	340 U	360 U	340 U	350 U	350 ∪	340 ∪	340 U	3000
bis(2-Chloroethyl)ether	350 U	340 U	360 U	340 U	350 U	350 ∪] 340 U	340 U	500
1,3-Dichlorobenzene 1,4-Dichlorobenzene	350 U 350 U	340 U 340 U	360 U 360 U	340 U	350 U	350 U	340 U	340 U	
1,2-Dichlorobenzene	350 U	340 U	360 U	340 U 340 U	350 U	350 U	340 U	340 U	27000
N-Nitroso-di-n-propylamine	350 U	340 U	360 U	340 U	350 U 350 U	350 U	340 U	340 U	7000000
Hexachloroethane	350 U	340 U	360 U	340 U	350 U	350 U 350 U	340 U 340 U	340 U 340 U	90 46000
Nitrobenzene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	39000
Isophorone	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	670000
bis(2-Chloroethoxy)methane	360 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	1
1,2,4-Trichlorobenzene	j 350 ∪ j	340 U	360 U	340 U	350 U	350 U	340 U	340 U	780000
Naphthalene	350 U	340 U	360 U	340 U	350 U	350 ∪	340 Ú	340 U	3100000
Hexachlorobutadiene	350 U	340 U	360 U	340 U	350 U] 350 ∪	340 U	340 U	8000
Hexachiorocyclopentadiene	350 U	340 U	360 U	340 U	350 U] 350 U	340 U	340 U	550000
2-Chloronaphthalene Dimethylphthalate	350 U 360 U	340 U 340 U	360 U	340 U	350 U	350 U	340 U	340 U	!
Acenaphthylene	350 U	340 U	360 U 360 U	340 U 340 U	350 U	350 U	340 U	340 U	-
2,6-Dinitrotoluene	350 U	340 U	360 U	340 U	350 U 350 U	350 U 350 U	340 U 340 U	340 U 340 U	900
Acenaphthene	350 U	340 U	360 U	340 1	350 U	350 U	340 U	340 U	4700000
2,4-Dinitrotoluene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	900
Diethylphthalate	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	63000000
4-Chiorophenyl-phenylether	350 U	340 U	360 U	340 Ü	350 U	350 U	340 U	340 U	-
Fluorene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	3100000
N-Nitrosodiphenylamine	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	130000
4-Bromophenyl-phenylether Hexachlorobenzene	350 U 350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	!
Phenanthrene	55 1	340 U 340 U	360 U 360 U	340 U 340 U	350 U 350 U	350 U	340 U	340 U	400
Anthracene	350 U	340 U	360 U	340 U	350 U	110 J 350 U	340 U 340 U	340 U	2222222
Di-n-butylphthaiste	68 1	110 J	62 J	39 J	56 J	87 J	340 U	340 U	23000000 7800000
Fluoranthene	64 j	340 U	360 U	340 U	36 J	140 J	340 U	340 U	3100000
Pyrene	350 U	340 U	380 U	340 U	350 U	78 1	340 U	340 U	2300000
Butylbenzylphthalate	350 U	340 U	75 J	340 Ü	350 U	350 U	340 U	340 U	16000000
3,3'-Dichlorobenzidine	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	1000
Benzo(a)anthracene	350 U	340 U	360 U	340 U	350 U	54 J	340 ∪	340 U	900
Chrysene bis(2-Ethylhexyl)phthelate	350 U 350 U	340 U	360 U	340 U	350 U	57 J] 340 ∪	340 U	88000
Di-n-octyl phthalate	350 U	340 U 340 U	120 J 360 U	50 J	350 U	350 U	340 U	340 U	46000
Benzo(b)fluoranthene	350 U	340 U	360 U	340 U 340 U	350 U 350 U	350 U	340 U	340 U	16000000
Benzo(k)fluoranthene	350 U	340 U	360 U	340 U	350 U	350 U 66 J	340 U 340 U	340 U	900
Benzo(a)pyrene	350 U	340 U	360 U	340 U	350 U	60 J	340 U	340 U 340 U	9000
Indeno(1,2,3-cd)pyrene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	900
Dibenzo(a,h)anthracene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	90
Benzo(g,h,i)perylene	350 ∪	340 U	360 U	340 Ū	350 U	350 U	340 U	340 U	1 -
2,4,5-Trichlorophenol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	7800000
2-Methylphenol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	3900000
3+4-Methylphenois	710 U	690 U	720 U	680 U	700 U	700 U	690 U	670 U	
Benzyl Alcohol	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	
2,2'-oxybis(1-Chloropropane) 4-Chloroaniline	350 U 350 U	340 U 340 U	360 U	340 U	350 U	350 U	340 U	340 U	
2-Methylnaphthalene	350 U	340 U	360 U 360 U	340 U 340 U	350 U	350 U	340 U	340 U	310000
4-Nitroaniline	350 U	340 U	360 U	340 U	350 U 350 U	350 U 350 U	340 U 340 U	340 U	j -
2-Nitroaniline	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U 340 U	1 <u> </u>
3-Nitroaniline	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	-
Dibenzofuran	350 U	340 U	380 U	340 U	350 U	350 U	340 U	340 U	
Azobenzene	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 U	
Benzoic acid	350 U	340 U	360 U	340 U	350 U	350 U	340 U	340 Ú	310000000
Total Carcinogenic PAHs	0	0	0	0	0	217	0	Ó	10000
Total PAH	119	0	0	0	36	543	0	0	100000
Total Confident Conc. SVOC (s)	187	110	257	80	92	630	ND	ND	500000

- Citalifers

 U The compound was not detected at the indicated concentration.

 J. Date indicates the presence of a compound that meets the identification criteris. The result is less than the quantitation limit but greater than zero D. This qualifier identifies all compounds identified in an analysis at a secondary dilution factor.

Complete				IVOLATILE ORGANIC CO					
Sample Location Sample ID	I40 B05 1-3	Hans 140 B05 3-5	gar 2 I40 B06 1-3	140 B06 3-5	144 004 0.0	Random Locations of Histor	nc Manufacturing Operations		
Sample Depth (ft)	1-3	3-5	1-3	3-5	141 B01 0-2 0-2	J41 B01 2-4 2-4	141 B02 1-3 1-3	141 B02 3-5	Companson Value
Sampling Date	09/20/00	09/20/00	09/20/00	09/20/00	10/16/00	10/16/00	10/13/00	3-5 10/13/00	for Areas
Matrix	s] s	s	\$	S	i s	s l	10/13/00 S	of Concern
Dilution Factor	10	1.0	10	1.0	1.0	10	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol 2-Chiorophenol	340 U 340 U	350 U 350 U	370 U	340 U	350 U	350 U	260 J	340 U	47000000
2-Nitrophenol	340 U	350 U	370 U 370 U	340 U	350 U	350 U	380 U	340 U	390000
2,4-Dimethylphenol	340 U	350 U	370 U	340 U 340 U	350 U 350 U	350 U	380 U	340 U	
2,4-Dichlorophenol	340 U	350 U	370 U	340 U	350 U	350 U 350 U	380 U 380 U	340 U 340 U	1600000
4-Chioro-3-methylphenol	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	230000
2,4,6-Trichiorophenoi	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	58000
2,4-Dinitrophenol	340 U	350 ∪	370 U	340 U	350 U	350 U	380 U	340 U	160000
4-Nitrophenol	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	
4,6-Dinitro-2-methylphenol	340 U	350 U	370 U	340 U	350 U	350 ∪	380 U	340 U	
Pentachlorophenol bis(2-Chloroethyl)ether	340 U 340 U	350 U 350 U	370 U	340 U	350 U	350 U	380 U	340 U	3000
1,3-Dichlorobenzene	340 U	350 U	370 U 370 U	340 U 340 U	350 U	350 U	380 U	340 U	600
1,4-Dichlorobenzene	340 U	350 U	370 U	340 U	350 U 350 U	350 U 350 U	380 U	340 U	
1,2-Dichlorobenzene	340 U	350 U	370 U	340 U	350 U	350 ti	380 U 380 U	340 U	27000
N-Nitroso-di-n-propylamine	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U 340 U	7000000 90
Hexachiomethane	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	46000
Nitrobenzene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	39000
isophorone	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	670000
bis(2-Chloroethoxy)methane	340 U	350 U	370 U	340 U	350 U	350 ∪	380 U	340 U	
1,2,4-Trichlorobenzene Naphthalene	340 U 340 U	350 U 350 U	370 U 370 U	340 U	350 U	350 U	380 U	340 U	780000
Hexachlorobutadiene	340 U	350 U 350 U	370 U 370 U	340 U	350 U	350 U	380 U	340 U	3100000
Hexachlorocyclopentadiene	340 U	350 U	370 U	340 U 340 U	350 U	350 U	380 U	340 U	8000
2-Chloronaphthalene	340 U	350 U	370 U	340 U	350 U 350 U	350 U	380 U	340 U	550000
Dimethylphthalate	340 U	350 U	370 U	340 U	350 U	350 U 350 U	380 U 380 U	340 U 340 U	
Acenaphthylene	340 U	350 Ú	370 U	340 U	350 U	350 U	380 U	340 U	
2,6-Dinitrotoluene	340 U	1 350 ∪	370 ↓	340 U	350 U	350 U	380 U	340 U	900
Acenaphthene	340 U	350 U	370 ∪	340 U	350 U	350 U	380 U	340 U	4700000
2.4-Dinitrotoluene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	900
Diethylphthalate 4-Chlorophenyl-phenylether	340 U 340 U	350 U	370 U	340 U	350 U	350 U	380 ∪ }	340 U	63000000
Fluorene	340 U	350 U 350 U	370 U 370 U	340 U	350 U	350 U	380 U	340 U	
N-Nitrosodiphenylamine	340 U	350 U	370 U	340 U 340 U	350 U 68 J	350 U 350 U	380 U	340 U	3100000
4-Bromophenyl-phenylether	340 U	350 U	370 U	340 U	350 U	350 U I	380 U 380 U	340 U 340 U	130000
Hexachlorobenzene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	400
Phenanthrene	340 U	350 U	370 U	340 U	350 U	350 U	110 J	150 J	400
Anthracene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	23000000
Di-n-butylphthalate	37 J	65 J	75 J	340 U	120 J	87 J	69 J	81 J	7800000
Fluoranthene Pyrene	340 U 340 U	350 U 350 U	370 U 370 U	340 U	350 U	350 ∪ ∫	89 J	100 J	3100000
Butylbenzylphthalate	340 U	350 U	370 U	340 U 340 U	350 U	350 U	59 J	74 J	2300000
3,3'-Dichlorobenzidine	340 U	350 U	370 U	340 U	350 U 350 U	350 U	380 U	340 U	16000000
Benzo(a)anthracene	340 U	350 U	370 U	340 U	350 U	350 U 350 U	380 U 380 U	340 U 34 J	1000 900
Chrysene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	43 J	88000
bis(2-Ethylhexyl)phthalate	340 U	350 U	370 U	340 U	350 U	350 U	61 J	340 U	46000
Di-n-octyl phthalate	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	16000000
Benzo(b)fluoranthene Benzo(k)fluoranthene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	900
Benzo(a)pyrene	340 U 340 U	350 U 350 U	370 U	340 U	350 U	350 U	380 U	340 U	9000
Indeno(1,2,3-cd)pyrene	340 U 340 U	350 U 350 U	370 U 370 U	340 U 340 U	350 U	350 U	380 U	340 U	90
Dibenzo(a,h)anthracene	340 U	350 U	370 U	340 U 340 U	350 U 350 U	350 U 350 U	380 U 380 U	340 U	900
Benzo(g,h,i)perylene	340 U	350 U	370 U	340 U	350 U	350 U (380 U (340 U 340 U	90
2,4,5-Trichlorophenol	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	7800000
2-Methylphenol	690 U	690 U	730 U	670 U	350 U	350 U	380 U	340 U	3900000
3+4-Methylphenols	340 U	350 U	370 U	340 U	700 U	700 U	760 U	670 U	390000
Benzyl Alcohol	340 U	350 U	370 U	340 U	2200	260 J	2300	340 U	
2,2'-oxybis(1-Chloropropane)	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	
4-Chloroaniline 2-Methylnaphthalene	340 U 340 U	350 U 350 U	370 U	340 U	350 U	350 U	380 U	340 U	310000
14-Nitroaniline	340 U 340 U	350 U 350 U	370 U 370 U	340 U	350 U	350 U	380 U	340 U	
2-Nitroaniline	340 U	350 U	370 U	340 U 340 U	350 U	350 U	380 U	340 U	-
3-Nitroaniline	340 U	350 U	370 U	340 U	350 U 350 U	350 U 350 U	380 U	340 U	
Dibenzofuran	340 U	350 U	370 U	340 U	350 U	350 U 350 U	380 U 380 U	340 U 340 U	
Azobenzene	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	
Benzoic acid	340 U	350 U	370 U	340 U	350 U	350 U	380 U	340 U	310000000
Total Carcinogenic PAHs	0	0		0	0	0	0	77	10000
Total PAH Total Confident Cong. SV/OC (s)	0	0	0	0		0	258	401	100000
Total Confident Conc SVOC (s)	37	65	75	ND	2388	347	2948	482	500000

Qualifors
U The compound was not detected at the indicated concentration

D This indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D' This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

Notes
Result exceeds Comparison Value for Areas of Concern
Not established

	T		SEM	IVOLATILE ORGANIC CO	MPOUNDS				
Sample Location		6	andom I ocations of Life-te-	ric Manufacturing Operatio			Paint Shop Dry Well in	Dry Wells in Former	
Sample ID	H1 B03 1-3	H1 B03 3-5	H1 B04 1-3	nc Manufacturing Operatio	ns I41 B05 1-3	I41 B05 3-5	Former Hammer Shop	Carpentry Shop	٠
Sample Depth (ft)	1-3	3-5	1-3	3-5	1-3	3-5	142B01 (8-10) 8-10	143B01 (8-10)	Comparison Value
Sampling Date	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	10/19/00	8-10 10/20/00	for Areas of Concern
Matrix	s	s	S	S	s	s	i s	,	OI COILCEIN
Dilution Factor	10	10	10	10	10	1.0	10	1.0	
Units Phenol		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2-Chlorophenol	340 U	340 U	380 U	340 U	370 U	140 J	340 U	370 U	47000000
2-Nitrophenol	340 U	340 U 340 U	380 U 380 U	340 U	370 U	380 U	340 U	370 U	390000
2,4-Dimethylphenol	340 U	340 U	380 U	340 U 340 U	370 U	360 U	340 U	370 U	
2,4-Dichlorophenol	340 U	340 U	380 U	340 U	370 U 370 U	360 U 360 U	340 U 340 U	370 U	1600000
4-Chloro-3-methylphenol	340 Ü	340 U	380 U	340 U	370 U	360 U	340 U	370 U 370 U	230000
2,4,6-Trichlorophenol	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	58000
2,4-Dinitrophenol	340 U	340 U	380 U	340 Ú	370 U	360 U	340 U	370 U	160000
4-Nitrophenol 4,6-Dinitro-2-methylphenol	340 U	340 U	380 U	340 U	370 U	360 U	340 Ü	370 U	
Pentachlorophenol	340 U 340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 ∪	
bis(2-Chloroethyl)ether	340 U	340 U 340 U	380 U 380 U	340 U	370 U	360 U	340 U	370 U	3000
1,3-Dichlorobenzene	340 U	340 U	380 U	340 U 340 U	370 U 370 U	360 U	340 U	370 U	600
1.4-Dichlorobenzene	340 U	340 U	380 U	340 U	370 U	360 U 360 U	340 บ 340 บ	370 U	
1,2-Dichlorobenzene	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U 370 U	27000 7000000
N-Nitroso-di-n-propytamine	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	700000
Hexachioroethane	340 U	340 U	380 U	340 Ú	370 U	360 U	340 U	370 U	46000
Nitrobenzene Isophorone	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	39000
isopnorone bis(2-Chloroethoxy)methane	340 U 340 U	340 U 340 U	380 U	340 U	370 U	360 U	340 U	370 U	670000
1,2,4-Trichlorobenzene	340 U	340 U	380 U 380 U	340 U	370 U	360 U	340 U	370 U	
Naphthalene	340 U	340 U	380 U	340 U 340 U	370 U 370 U	360 U	340 U	370 U	780000
Hexachlorobutadiene	340 U	l 340 U l	380 U	340 U	370 U	360 U	34 J 340 U	340 J 370 U	3100000 8000
Hexachlorocyclopentadiene	340 U	340 Ú	380 U	340 U	370 U	360 U	340 U	370 U	550000
2-Chloronaphthalene	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	
Dirnethylphthalate	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	
Acenaphthylene 2.6-Dinitrotoluene	340 U 340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 Ú	
Acenaphthene	160 J	340 U 340 U	380 U	340 U	370 U	360 U	340 U	370 U	900
2,4-Dinitrotoluene	340 U	340 U	380 U 380 U	340 U 340 U	370 U 370 U	360 U	190 J	270 J	4700000
Diethylphthalate	340 U	340 U	380 U	340 U	370 U	360 U	340 U 340 U	370 U 370 U	900
4-Chlorophenyl-phenylether	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U 370 U	63000000
Fluorene	170 J	340 U	380 U	340 U	370 U	360 U	290 J	370 J	3100000
N-Nitrosodiphenylamine	340 U	340 U	380 U	340 Ú	370 U	360 U	340 U	370 U	130000
4-Bromophenyl-phenylether Hexachlorobenzene	340 U	340 U	380 U	340 U	370 ∪	360 U	340 U	370 U	_
Phenanthrene	340 U 1800	340 U 330 J	380 U	340 U	370 U	360 U	340 U	370 U	400
Anthracene	290 J	330 J 51 J	380 U 380 U	340 U 340 U	370 U 370 U	360 U	1500	2300	
Di-n-buty/phthalate	74 J	110 1	380 U	340 U	370 U	360 U 59 J	340 J 48 J	550	23000000
Fluoranthene	2000	440	380 U	340 U	370 U	360 U	1300	110 J 2400	7800000 3100000
Pyrene	1500	370	380 U	340 U	370 U	360 U	770	1700	2300000
Butylbenzylphthalate	340 U	340 ∪	380 U	340 U	370 U	360 U	340 U	370 U	16000000
3,3'-Dichiorobenzidine	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	1000
Benzo(a)anthracene	970	220 J	380 U	340 U	370 U	360 U	510	1300	900
Chrysene bis(2-Ethylhexyl)phthalate	1300 61 J	310 J	380 U 380 U	340 U	370 U	360 U	650	1500	88000
Di-n-octyl phthalate	340 U	47 J 340 U	380 U	340 U 340 U	370 U 370 U	360 U	340 U	370 U	46000
Benzo(b)fluoranthene	990	180 J	380 U	340 U	370 U	360 U	340 U 330 J	370 U 1200	16000000
Benzo(k)fluoranthene	1000	300 J	380 U	340 U	370 U	360 U	410	1300	900
Benzo(a)pyrene	820	220 J	380 U	340 U	370 U	360 U	380	1100	1 800
Indeno(1,2,3-cd)pyrene	510	160 J	380 U	340 U	370 U	360 U	190 J	180 J	900
Dibenzo(a,h)anthracene	57 J	340 ∪	380 U	340 U	370 U	360 U	340 U	44 J	900
Benzo(g,h,i)perylene	580	240 J	380 U	340 U	370 U	360 U	200 J	270 J	=
2,4,5-Trichlorophenol	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	7800000
2-Methylphenol 3+4-Methylphenois	340 U 680 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	3900000
Benzyl Alcohol	340 U	680 U 340 U	760 U	670 U	730 U	720 U	680 U	750 U	-
2.2'-oxybis(1-Chloropropane)	340 U	340 U I	380 U 380 U	340 U 340 U	370 U 370 U	2500	340 U	370 U	! -
4-Chloroaniline	340 U	340 U	380 U	340 U	370 U	360 U	340 U 340 U	370 U	
2-Methylnaphthalene	340 U	340 Ŭ	380 U	340 U	370 U	380 U	340 U 340 U	370 U 110 J	310000
4-Nitroaniline	340 Ú	340 U	380 U	340 U	370 U	360 U	340 U	370 U	_
2-Nitroaniline	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	1 =
3-Nitroaniline	340 U	340 U	380 U	340 U	370 U	380 U	340 U	370 U	_
Dibenzofuran Azabassasa	76 J	340 U	380 U	340 U	370 U	360 U	110 J	190 J	-
Azobenzene Benzoia add	340 U	340 U	380 U	340 U	370 U	360 U	340 U	370 U	_
Benzoic acid Ital Carcinogenic PAHs	340 U 5347	340 U 1190	380 U	340 U	370 U	360 U	340 U	370 U	310000000
Total PAH	11923	2821	- 0	0	0	0	2470	6624	10000
Total Confident Conc. SVOC (s)	12058	2978	ND ND	ND	ND ND	2699	7060 7250	15124 15234	100000
				.,,,,			1230	15234	500000

Qualifiers

U The compound was not detected at the indicated concentration.

J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

Notes

Result exceeds Comparison Value for Areas of Concern

Not established

Sample III (1990) (1990	Sample Location			Dry Wells in Form	er Carpentry Shop		· . 	Canony Trim Entered	Drain Hole/Sump Pd	· · · · · · · · · · · · · · · · · · ·
Same Defend 1, 14-16	Sample ID			I43B02(13-15)	143802A 15-17	I43B02A 17-19	143B02A 19-21	144B01 (4-6)	144801 (6-8)	Comparison Value
### March 250							19-21	4-6	6-8	
All										
International Section										
Table	Units									
Component Sept	Phenol									
	2-Chlorophenol									
										350000
-Chloro-Smithylprend 350 U 350 U 480 U 350 U 360 U							350 U	340 U		1600000
4.4 Transperiories										230000
4.6 Interpolation 360 U 350 U 480 U 350 U 360 U										
46 Onter-2-methydrheded 350 U 35	4-Nitrophenoi	350 U								
International	4,6-Dinitro-2-methylphenol			480 U	350 U					
## 1.00 -	Pentachlorophenol					350 U				3000
							350 U			
2-00Interpretations									410 Ú	
Althorough providence 350 U 350 U 480 U 350 U 350 U 350 U 360										
	N-Nitroso-di-n-propylamine									
	Hexachioroethane									
September SSC U	Nitrobenzene									
### ### ### ### ### ### ### ### ### ##	Isophorone	350 U								
2.4 Infertionbertance	bis(2-Chloroethoxy)methane			480 U						8/0000
Applications						350 U				780000
Restantinocinocinocinocinocinocinocinocinocinoc							350 U	340 U		
-Chloropathhalere 350 U 350 U 440 U 350 U 350 U 340 U 410 U — membryaphthalate 350 U									410 U	8000
Johnstyleythalaide										550000
CompatinyMeme	Dimethylphthalate									
6-Pintrolloulene	Acenaphthylene									-
Ceangaffhine	2,6-Dinitrotoluene	350 U								
	Acenaphthene			270 J						
April										
Number N										
Numberopolipenylamine						, ,		340 U	410 U	
-Bromopheny-										
Nexachionbenzene										130000
Phenanthrene 1800 350 U 2100 350 U 74 J 34 J 340 U 410 U 2300000 340 U 410 U 2300000 350 U 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U 2300000 350 U 350 U 350 U 350 U 350 U 350 U 350 U 360	Hexachlorobenzene									-
rithracene 380 350 U 470 J 350 U 350 U 350 U 330 U 410 U 23000000 Hubrathene 96 J 1 1 240 J 350 U 350 U 350 U 350 U 340 U 410 U 31000000 rymene 1500 350 U 350 U 350 U 350 U 360 U 410 U 31000000 rymene 1500 J 350 U 350 U 350 U 350 U 360 U 370 J 340 U 410 U 31000000 rymene 1500 J 350 U 350 U 350 U 350 U 350 U 350 U 350 U 410 U 100000000000000000000000000000	Phenanthrene	1800								400
Pendengy principalizate 98 J 61 J 240 J 350 U 350 U 350 U 340 U 72 J 7700000 1000000 1000000 100000000 100000000	Anthracene									23000000
100 100						350 U				
Unit/Derry(phthalate 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 360 U										3100000
33										2300000
Perzo (a) prime 1200 350 U 1800 350 U 350 U 350 U 410 U 900			350 U							16000000
Thrysene 1600 350 U 2300 350 U 350 U 410 U 410 U 88000 350 U 350 U 350 U 350 U 410 U 46000	Benzo(a)anthracene									
Signatury Sign	Chrysene									
N-n-oxy phthalate	bis(2-Ethylhexyl)phthalate			200 J						
Petrological Contention 1700 350 U 1700 350 U 92 J 52 J 340 U 410 U 900	Di-n-octyl phthalate				350 U					
Serzo(a)pyrene 980 350 U 370 U 350 U 350 U 350 U 340 U 410 U 900								340 U		
Address Addr									410 U	9000
Penzy(a), h)perylene										
A.5-Trichiorophenol 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 360 U	Benzo(g,h,i)perylene									90
Althorhythopenol	2,4,5-Trichiorophenol									
+4-Methylphenols 700 U 710 U 950 U 950 U 710 U 770 U 770 U 810 U Party Alcohol 350 U 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U 22-oxybis(1-Chloropropane) 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U Chloropropane	2-Methylphenol									
Perzyk Alcohol 350 U 350 U 350 U 350 U 350 U 350 U 310	3+4-Methylphenols			950 U						1 1
22-0xy0s(1-Chloropropane) 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U	Benzyl Alcohol				350 U					1 (
-Uniordamine 350 U 350 U 480 U 350 U 350 U 340 U 410 U 310000 Methyhaphthalene 44 J 350 U 480 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 U Nitroaniline 350 U						350 U	350 U			
-Netrymaphranene									410 U	310000
-Nitroaniline 350 U 350 U 480 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 340 U 410 UNitroaniline 350 U 350									410 U	1 1
-Nitronaline 350 U 350 U 480 U 350 U 350 U 340 U 410 U bibenzofuran 100 J 350 U 100 J 350 U 350 U 350 U 340 U 410 U bibenzofuran 100 J 350 U 350 U 350 U 350 U 340 U 410 U czobenzene 350 U 350 U 350 U 350 U 340 U 410 U benzole acid 350 U 350 U 350 U 350 U 350 U 340 U 410 U benzole acid 350 U 350 U 350 U 350 U 340 U 410 U benzole acid 350 U 350 U 350 U 350 U 340 U 410 U 31000000 cital Cardinogenic PAHs 6337 0 0 10084 ND 362 152 0 0 0 100000 cital PAH 13891 0 2 20333 ND 768 389 0 0 0 1000000	2-Nitroanline									1 1
	3-Nitroaniline									-
20benzene 350 U 350 U 480 U 350 U 350 U 350 U 350 U 350 U 350 U 360 U	Dibenzofuran									
Jenzoic acid 350 U 350 U 480 U 350 U 350 U 350 U 340 U 410 U 310000000 0 tal Cardinogenic PAHs 6337 0 10084 ND 362 152 0 0 10000 0 tal PAH 13891 0 20333 ND 768 389 0 0 100000 0 tal Cardinogenic Cone SVOC (s) 1373 64 20003 ND 768 389 0 0 1000000	Azobenzene									-
total Cardinagemic PAHs 6337 0 10064 ND 362 152 0 0 10000 total PAH 13891 0 20333 ND 766 389 0 0 100000 total PAH 1373 61 20033 ND 766 389 0 0 100000	Benzoic acid	350 U	350 U	480 U						310000000
0tal PAH 13881 0 20333 ND 766 389 0 0 100000										
	Total PAH						389	0		
	rotal Confident Conc. SVOC (s)	13723	61	20923	ND ND	1657				

Qualiform

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero D' This qualifier identifies all compounds identified in an analysis at a secondary dilution factor

Notes
Result exceeds Comparison Value for Areas of Concern --- Not established

Sample Location	Waste Colle	ction Station	Former Spot V	Veld Rise Tank		PHIC Magnet	Pumping Units		
Sample ID	145 B01 0-2	145 B01 2-4	146 B01 0-2	146 B01 2-4	147 B01 0-2	147 B02 2-4	147 B02 0-2	147 B02 2-4	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	2-4	for Areas
Sampling Date	10/16/00	10/16/00	10/16/00	10/16/00	10/16/00	10/16/00	10/16/00	10/16/00	of Concern
Matrix Dilution Factor	S A A	S	S	S	S	S	S	S	
Units	10 ug/kg	10 ug/kg	ug/kg	10 ug/kg	10	10	10	10	
Phenol	340 U	350 U	380 U	380 U	ид/kg 350 U	ug/kg 340 U	ug/kg 360 U	ug/kg 340 U	ug/kg 47000000
2-Chlorophenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	390000
2-Nitrophenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
2,4-Dimethylphenol	340 U	350 ∪	380 U	380 U	350 U	340 Ü	380 U	340 U	1600000
2,4-Dichlorophenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	230000
4-Chloro-3-methylphenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
2,4,6-Trichlorophenol 2,4-Dinkrophenol	340 U 340 U	350 U 1	380 U 380 U	380 U 380 U	350 U 350 U	340 U 340 U	360 U	340 U 340 U	58000
4-Nitrophenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	160000
4,6-Dinitro-2-methylphenol	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
Pentachlorophenol	340 U	350 ∪	380 Ú	380 U	350 U	340 U	360 U	340 U	3000
bis(2-Chloroethyl)ether	340 U	350 U	380 U	380 ∪	350 U	340 U	360 U	340 U	600
1,3-Dichlorobenzene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
1,4-Dichlorobenzene	340 U 340 U	350 U 350 U	380 U	380 U	350 U	340 U	360 U	340 U	27000
1,2-Dichlorobenzene N-Nitroso-di-n-propylamine	340 U	350 U	380 U i 380 U	380 U 380 U	350 U 350 U	340 U	360 U	340 U	7000000
Hexachloroethane	340 U	350 U	380 U	380 U	350 U	340 U 340 U	360 U	340 U 340 U	90 46000
Nitrobenzene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	39000
Isophorone	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	670000
bls(2-Chloroethoxy)methane	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
1,2,4-Trichiorobenzene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	780000
Naphthalene Hexachlorobutadiene	340 U 340 U	350 U 350 U	380 U	380 U	350 U	340 U	360 U	340 U	3100000
Hexachlorocyclopentadiene	340 U	350 U	380 U 380 U	380 U 380 U	350 U 350 U	340 U 340 U	360 U 360 U	340 U 340 U	8000
2-Chloronachthalene	340 U	350 U	380 U	380 U	350 U	340 U	380 U	340 U	550000
Dimethylphthalate	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
Acenaphthylene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
2,6-Dinkrotoluene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	900
Acenaphthene	340 U	350 U	92 J	380 U	350 U	340 U	360 U	340 U	4700000
2,4-Dinkrotoluene Diethylphthalate	340 U 340 U	350 U 350 U	380 U 380 U	380 U	350 U	340 U	360 U	340 U	900
4-Chlorophenyl-phenylether	340 U	350 U	380 U	380 U 380 U	350 U 350 U	340 U 340 U	360 U	340 U	63000000
Fluorene	340 U	350 U	96 J	380 U	350 U	340 U	360 U	340 U 340 U	3100000
N-Nitrosodiphenylamine	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	130000
4-Bromophenyl-phenylether	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	-
Hexachlorobenzene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	400
Phenanthrene Anthracene	340 U	39 J	1100	74 J	350 U	340 U	360 U	340 U	
Antriacene Di-n-butylphthalate	340 U 160 J	350 U 100 J	200 J 190 J	380 U 93 J	350 U 150 J	340 U 80 J	360 U	340 U	23000000
Fluoranthene	340 U	39 1	1100	68 J	350 U	340 Ú	. 51 J . 360 U	91 J 340 U	7800000 3100000
Pyrene	340 U	350 U	670	43 1	350 U	340 U	360 U	340 U	2300000
Butylbenzylphthalate	340 Ú	350 U	7500 D	200 J	350 U	340 Ŭ	360 U	340 U	16000000
3,3'-Dichlorobenzidine	340 U	350 U	380 U	380 U	350 U	340 Ú	380 U	340 U	1000
Benzo(a)anthracene	340 U	350 U	460	380 U	350 U	340 U	360 ∪	340 U	900
Chrysene	340 U 340 U	350 U 350 U	500 380 U	380 U	350 U	340 U	360 U	340 U	88000
bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate	340 U	350 U	380 U	380 U 380 U	38 J 350 U	340 U 340 U	360 U	340 U 340 U	48000
Benzo(b)fluoranthene	340 U	350 U	430	380 U	350 U	340 U	360 U 360 U	340 U	16000000 900
Benzo(k)fluoranthene	340 U	350 U	330 J	380 U	350 U	340 U	360 U	340 U	9000
Benzo(a)pyrene	340 U	350 U	340 J	380 U	350 U	340 U	360 U	340 U	90
Indeno(1,2,3-od)pyrene	340 U	350 U	130 J	380 U	350 U	340 U	360 U	340 U	900
Dibenzo(a,h)anthracene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	90
Benzo(g,h,i)perylene	340 U	350 U	180 J	380 U	350 U	340 U	360 U	340 U	
2,4,5-Trichlorophenol 2-Methylphenol	340 U 340 U	350 U 350 U	380 U 380 U	380 U 380 U	350 U 350 U	340 U 340 U	360 U	340 U 340 U	7800000
2-Methylphenois	690 U	890 U	760 U	380 U	350 U 700 U	340 U 680 U	380 U	340 U 680 U	3900000
Benzyl Alcohol	160 J	270 J	380 U	380 U	350 U	340 U	360 U	340 U	
2,2'-oxybis(1-Chioropropane)	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	1 -
4-Chioroaniline	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	310000
2-Methylnaphthalene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
4-Nitroanline	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	-
2-Nitroaniline 3-Nitroaniline	340 U 340 U	350 U 350 U	380 U 380 U	380 U 380 U	350 U	340 U	360 U	340 U	-
Dibenzofuran	340 U	350 U	89 J	380 U	350 U 350 U	340 U 340 U	360 U 360 U	340 U 340 U	_
Azobenzene	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	
Benzoic acid	340 U	350 U	380 U	380 U	350 U	340 U	360 U	340 U	310000000
Total Carcinogenic PAHs	0	0	2180	. 0	0	0	0	Ö	10000
Total PAH	0	39	5687	185	0	0	0	0	100000
Total Confident Conc. SVOC (s)	320	448	13377	478	188	80	51	91	500000

Page 23 of 23

- Qualiform
 U: The compound was not detected at the indicated concentration.
- J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

 D' This qualifier identifies all compounds identified in an enalysis at a secondary dilution factor.

Sample Location	Former Storage Building Former Dry Wells		Former Dr	y Well Area		Boiler Room F	ormer Dry Well	Paint Shop Former Dry Well	
Sample ID Sample Depth ft Sampling Date Matrix Dilution Factor Units	I04 B01 8-10 8-10 10/17/00 S 1.0 ug/kg	105 B01 8-10 8-10 10/02/00 S 1.0 ug/kg	105 B01 20-22 20-22 10/02/00 S 1.0 ug/kg	E43 B02/I05 B02 6- 8 6-8 10/12/00 S 1.0 ug/kg	14-16 14-16 10/12/00 S 1.0 ug/kg	108 B01 2-4* 2-4 09/26/00 S 1.0 ug/kg	108 B01 9-11' 9-11 09/26/00 S 1.0 ug/kg	110 B01 4-6' 4-6 09/25/00 S 1.0 ug/kg	Comparison Value for Areas of Concem ug/kg
Aroclor 1016	17 U	19 U	18 U	19 ∪	19 U	17 U	17 U	17 U	
Aroclor 1221	17 U	19 U	18 U	19 U	19 U	17 U	17 U	1 7 ∪	•
Aroclor 1232	17 U	. 19 U	18 U	19 U	19 U	17 U	17 U	17 U	•
Aroclor 1242	17 U	19 U	18 U	19 U	19 U	17 U	17 U	17 U	•
Aroclor 1248	17 U	19 U	18 U	19 U	460	17 U	17 U	17 U	•
Arocior 1254	17 U	19 U	18 U	19 U	19 U	17 U	17 U	17 U	
Aroclor 1260	17 U	19 U	18 U	19 U	19 U	17 U	17 U	17 U	•

Sample Location	Paint Shop Former Dry Well		Former Downsp				Former Heat Treat Room		
Sample ID	I10 B01 10-12	I13 B01 2-4	I13 B01 8-9	113B02(2-4)	113B02 (6-7)	116 B02 1-3'	I16B02 (3.5-5.5)	116B02 (5.5-7.5)	Companson Value
Sample Depth ft	10-12	2-4	8-9	2-4	6-7	1-3	3 5-5 5	5 5-7.5	for Areas
Sampling Date	09/25/00	10/17/00	10/17/00	10/20/00	10/20/00	09/21/00	10/19/00	10/19/00	of Concern
Matrix	S	S	S	S	S	s	s	S	
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	ug/kg	mg/kg	mg/kg	ug/kg
Aroclor 1016	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	1 •
Aroclor 1221	17 년	18 U	17 U	17 U	17 U	17 U	18 U	17 U	
Aroclor 1232	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	•
Aroclor 1242	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	
Aroclor 1248	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	
Aroclor 1254	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	
Aroclor 1260	17 U	18 U	17 U	17 U	17 U	17 U	18 U	17 U	•

Sample Location		Hallway Adjacent to F	ormer Alodine Room			Former Storage Building		
Sample ID	126 B01 1-3'	126 B01 3-5'	126 B02 1.5-3.5'	126 B02 3.5-5.5'	I30 B01 1-3	I30 B01 3-5	130 B02 1-3	Companson Value
Sample Depth ft	1-3	3-5	1.5-3 5	3.5-5.5	1-3	3-5	1-3	for Areas
Sampling Date	09/22/00	09/22/00	09/22/00	09/22/00	09/19/00	09/19/00	09/19/00	of Concern
Matrix	s.	s	s	s	s	s	s	
Dilution Factor	1.0	1.0	1.0	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	20 U	18 U	18 U	17 U	20 U	19 U	18 U	•
Aroclor 1221	20 ∪	18 U	18 U	17 U	20 U	19 U	18 U	•
Aroclor 1232	20 U	18 U	18 U	17 U	20 U	19 U	18 U	•
Aroclor 1242	20 ∪	18 U	18 U	17 U	20 U	19 U	18 U	•
Arocior 1248	<u> </u> 20 U	18 U	18 U	17 U	20 U	19 U	18 U	
Aroclor 1254	20 U	18 U	18 U	17 U	20 U	19 ປ	18 U	1 • 1
Aroclor 1260	20 U	18 U	18 U	17 U	20 ∪	19 U	18 U	· 1

Qualifiers
U: The compound was not detected at the indicated concentration.

Notes
*: Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Table C-4 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN

Sample Location				Former Storage	Building				
Sample ID	130 B02 3-5	130 B03 1-3	130 B03 3-5	130 B04 1-3	130 B04 3-5	130 B05 6-8"	130 B05 8-10°	130 B06 1-3	Comparison Value
Sample Depth ft	3-5	1-3	3-5	1-3	3-5	6-8	8-10 Ì	1-3	for Areas
Sampling Date	09/19/00	09/18/00	09/18/00	09/19/00	09/19/00	10/03/00	10/03/00	09/18/00	of Concern
Matrix	l s	s	s	s l	s	s	s	S	
Dilution Factor	10	1.0	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	18 U	18 U	17 U	18 U	17 U	17 U	17 U	20 U	
Aroclor 1221	18 U	18 U	17 U	18 U	17 U	17 U	17 U	20 U	
Aroctor 1232	18 U	18 U	17 U	18 U	17 U	17 U	17 U	20 U	
Aroclor 1242	18 U	18 U	17 U	18 U	17 U	17 U	17 U	20 U	
Aroclor 1248	18 Ú	18 Ú	17 U	18 Ū	17 Ū	17 U	17 U	20 U	
Aroclor 1254	18 ∪	18 U	17 U	18 U	17 Ü	17 U	17 U	20 U	
Aroclor 1260	18 U	18 Ú	17 U	18 Ū	17 Ü	17 U	17 U	20 U	

Qualifiers

U The compound was not detected at the indicated concentration.

Sample Location	[F	ormer Storage Bullding				Hangar 1			
Sample ID	130 B06 3-5	130 B07 0-2	130 B07 2-4	132 B01 1-3	132 B01 3-5	I32 B02 1-3	132 B02 3-5	132 B03 1-3	Comparison Value
Sample Depth ft	3-5	0-2	2-4	1-3	3-5	1-3	3-5	1-3	for Areas
Sampling Date	09/18/00	10/17/00	10/17/00	09/19/00	09/19/00	09/19/00	09/19/00	09/20/00	of Concern
Matrix	l s l	s	s	s	s	s	s	S	
Dilution Factor	10	10	10	10	10	10	10	10	1
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	20 U	18 U	17 U	20 U	19 U	18 U	19 U	19 U	
Aroclor 1221	20 U	18 U	17 U	20 U	19 U	18 U	19 Ü	19 Ŭ	
Aroclor 1232	20 U	18 U	17 U	20 ∪	19 U	18 U	19 U	19 U	
Aroclor 1242	20 U	18 U	17 U	20 ∪	19 U	16 U	19 ∪	19 U	• 1
Aroclor 1248	20 U	18 U	17 U	20 ∪	19 U	18 U	19 U	19 U	
Aroclor 1254] 20 U	18 U	17 U	20 ∪	19 U	18 U	19 U	19 U	•
Aroclor 1260	20 U	_18 U	17 U. I	20 ∪	19 U	18 U	19 U	19 U) •

Qualifiers
U. The compound was not detected at the indicated concentration.

Sample Location	1	Hangar 1			"Old" Ejecti	ion Pits		Transformer Rooms	
Sample ID	132 B03 3-5	132 B04 1-3	132 B04 3-5	134 B01 4-6	134 B01 6-8	134 B02 2-4	134 B02 4-6	135 B01 1-3	Comparison Value
Sample Depth ft	3-5	1-3	3-5	4-6	6-8	2-4	4-6	1-3	for Areas
Sampling Date	09/20/00	09/20/00	09/20/00	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	of Concern
Matrix	s	s	s	s l	s	s	s	s	
Dilution Factor	1 10 1	10	10	1.0	10	10	10	10	
Units	սց/հգ	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
			ļ						
Aroclor 1016	18 U	20 U	18 U	20 U	17 U	20 U	17 U	22 U	
Aroclor 1221	18 U	20 U	18 ∪	20 ∪	17 U	20 U	17 U	22 U	•
Aroclor 1232	18 U	20 U	18 U	20 U	17 U	20 U	17 U	22 U	•
Aroclor 1242	18 U	20 U	18 U	20 U	17 U	20 U	17 U	22 U	•
Aroclor 1248	18 U	20 U	18 U	20 U	17 U	20 U	17 U	22 U	•
Aroclor 1254	18 U (20 U	18 ∪	20 U	17 U	20 U {	17 U	22 U	
Aroctor 1260	18 U	20 U	18 U	20 U	17 U	20 U	17 U	22 U	

Qualifiers

Page 2 of 4 5/30/01 10:09 AM

U: The compound was not detected at the indicated concentration.

Notes
*: Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Sample Location		Transformer Rooms				Hangar 2		11	
Sample ID	135 B01 3-5	135 B02 1-3	135 B02 3-5	I40 B01 2-4	I40 B01 4-6	I40 B03 1-3	140 B03 3-5	I40 B04 1-3	Companson Value
Sample Depth ft	3-5	1-3	3-5	2-4	4-6	1-3	3-5	1-3	for Areas
Sampling Date	09/29/00	09/29/00	09/29/00	10/04/00	10/04/00	09/20/00	09/20/00	09/20/00	of Concern
Matrix	s	s I	s I	s	s	s	s	s	
Dilution Factor	10	10	10	1.0	10	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	18 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	
Aroclor 1221	18 U	18 U	18 U	18 U	17 U	18 Ú	18 U	17 U	•
Aroclor 1232	18 U	18 U	18 U	18 U	17 U	18 Ú	18 U	17 U	•
Aroclor 1242	18 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	*
Aroclor 1248	18 U	18 U	18 U	18 U	17 U	18 Ū	18 U	17 U	•
Aroclor 1254	18 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	•
Arocior 1260	18 U	18 U	18 U	18 U	17 U	18 U	18 U	17 U	

Qualifiers

U: The compound was not detected at the indicated concentration.

Sample Location		_	Hangar 2			Random Location	ns of Historic Manufacturing	g Operations	
Sample ID	140 B04 3-5	I40 B05 1-3	140 B05 3-5	I40 B06 1-3	140 B06 3-5	I41 B01 0-2	I41 B01 2-4	i41 B02 1-3	Companson Value
Sample Depth ft	3-5	1-3	3-5	1-3	3-5	0-2	2-4	1-3	for Areas
Sampling Date	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00	10/16/00	10/16/00	10/13/00	of Concern
Matrix	l s l	s	s	s	s	s	s l	s	
Dilution Factor	10	10	10	10	10	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
ĺ									
Aroclor 1016	17 U	17 U	17 U	18 U	17 U	18 U	18 U	19 U	
Aroclor 1221	j 17 U j	17 U	17 U	18 U	17 U	18 U	18 U	19 U	
Aroclor 1232	17 U	17 U	17 U	18 U	17 U	18 U	18 U	19 U	•
Aroclor 1242	17 U	17 U	17 U	18 U	17 U	18 U	18 U	19 U	•
Aroclor 1248	17 U	17 U	17 U	18 U	17 ∪ ∦	18 U	18 U	19 U	
Aroclor 1254	17 U (17 U	17 U	18 U	17 U	18 U	18 U	19 Ū	
Aroclor 1260	17 U	17 U	17 U	18 U	17 U	18 U	18 U	19 U	

Qualifiers
U: The compound was not detected at the indicated concentration

Sample Location			Random Locati	ons of Historic Manufactur	ing Operations			Paint Shop Dry Well in Former Hammer shop	
Sample ID	I41 B02 3-5	I41 B03 1-3	I41 B03 3-5	I41 B04 1-3	(41 B04 3-5	I41 B05 1-3	I41 B05 3-5	I42B01 (8-10)	Companson Value
Sample Depth ft	3-5	1-3	3-5	1-3	3-5	1-3	3-5	8-10	for Areas
Sampling Date	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	10/13/00	10/19/00	of Concern
Matrix	s	s	s	S	s	s	S	s	i
Dilution Factor	1.0	10	10	10	10	1.0	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	ug/kg
Aroclor 1016	17 U	17 U	17 U	19 U	17 U	18 U	18 U	17 U	
Aroclor 1221	17 U	17 U	17 U	19 U	17 U	18 U	18 U	17 U	•
Aroclor 1232	17 U	17 U	17 U	19 U	17 U	18 U	18 U	17 U	
Aroclor 1242	17 U	17 U]	17 U	19 U	17 U	18 U	18 U	17 U	
Aroclor 1248	17 U	17 U	17 U 🚶	19 U	17 U	18 U	18 U	 17 ∪	•
Aroclor 1254	17 U	17 U	17 U	19 U	17 U	18 U	18 U	17 U	•
Aroclor 1260	17 U	19	22	19 U	17 U	18 U	18 ∪	l 17 ∪	

Qualifiers
U The compound was not detected at the indicated concentration

Notes
*: Comparison Value for PC8s is 10,000 ug/kg in Sub-surface soils

Table C-4 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN PCBs

Sample Location	Waste Collection Station A			 	···	
Sample ID Sample Depth ft Sampling Date Matrix Dilution Factor	145 B01 0-2 0-2 10/16/00 S 1 0	145 B01 2-4 2-4 10/16/00 S 1 0				Comparison Value for Areas of Concern
Units	ug/kg	ug/kg	 			 ug/kg
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	17 U 17 U 17 U 17 U 17 U 17 U	17 U 17 U 17 U 17 U 17 U 17 U				

Qualifiers

U The compound was not detected at the indicated concentration

Notes
Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Sample Location	I			Hang	jar 1				Hangar 2
Sample ID	I32 B01 1-3	132 B01 3-5	132 B02 1-3	132 B02 3-5	132 B03 1-3	132 B03 3-5	132 B04 1-3	132 B04 3-5	140 B01 2-4
Sample Depth (ft)	1-3	3-5	1-3	3-5	1-3	3-5	1-3	3-5	2-4
Sampling Date	09/19/00	09/19/00	09/19/00	09/19/00	09/20/00	09/20/00	09/20/00	09/20/00	10/04/00
Matnx	s	s	s	s	s	s	s	s	s
Dilution Factor	1.0	10	10	1.0	1.0	10	10	10	10
Units	mg/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg
Propylene glycol	12 U	11 U	11 U	11 U	11 U	11 U	12 U	11 U	11 U
Ethylene glycol	12 U	11 U	11 U	11 U	11 U	11 U	12 U	11 U	11 U
L									

Sample Location					Hangar 2			•	
Sample ID	140 B01 4-6	140 B03 1-3	I40 B03 3-5	I40 B04 1-3	140 B04 3-5	140 B05 1-3	140 B05 3-5	I40 B06 1-3	140 B06 3-5
Sample Depth (ft)	4-6	1-3	3-5	1-3	3-5	1-3	3-5	1-3	3-5
Sampling Date	10/04/00	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00	09/20/00
Matrix	s	s	s	s	s	s	s	s	S
Dilution Factor	10	1.0	10	10	10	10	1.0	10	10
Units	mg/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Propylene glycol	11 U	11 U	11 U	10 U	10 U	10 U	10 U	11 U	10
Ethylene glycol	11 U	11 U	11 U	10 U	10 U	10 U	10 U	11 U	10

Qualifers

U The compound was not detected at the indicated concentration

Table C-6 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- INTERIOR AREAS OF CONCERN PESTICIDES/HERBICIDES

Sample Location				Hangar 1			·	
Sample ID	132 B01 1-3	132 B01 3-5	132 B02 1-3	132 B02 3-5	132 B03 1-3	132 B03 3-5	132 B04 1-3	132 B04 3-5
Sample Depth, ft	1-3	3-5	1-3	3-5	1-3	3-5	1-3	3-5
Sampling Date	09/19/00	09/19/00	09/19/00	09/19/00	09/20/00	09/20/00	09/20/00	09/20/00
Matrix	s	s I	s	s	s	S I	09/20/00 S	
Dilution Factor	10	10	10	10	10	10	10	S 10
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ua/ka
Pesticides						551.0	9879	- одику
Aldrin	2 U	1.9 ∪	18 U	190	190	1.8 U	2 U	18 U
alpha-BHC	2 U	1.9 Ú	180	190	1.9 Ŭ	1.8 U	2 0	18 U
beta-BHC	5	190	180	1.9 U	1.9 U	18 U	2 U	18 U
delta-BHC	2 U	190	1.8 U	1.9 U	1.9 U	1.8 U	2 0	18 U
gamma-BHC (Lindane)	2 U	1.9 U	180	190	า์จีบั	18 U	20	1.8 U
alpha-Chlordane	2 U	1.9 Ū	180	190	1.9 Ŭ	180	20	1.8 U
gamma-Chlordane	2 U	190	180	190	190	180	2 U	180
Chlordane	20 U	19 Ū	18 U	19 U	19 Ŭ	18 U	20 U	18 U
4,4'-DDD	l 2 U	19 Ū	180	1.9 U	190	180	20 U	
4,4'-DDE	2 U	190	1.8 U	190	1.9 Ŭ	1.8 U	20	18 U 18 U
4,4'-DDT	2 U	19 Ū	1.8 U	1,9 Ŭ	190	18 0	2 0	
Dieldrin	2 U	190	1.8 U	1.9 Ŭ	190	180	2 0	18 U
Endosulfan I	2 0	190	18 U	เอีย ไ	1.9 U	1.8 U	20	1.8 U 1.8 U
Endosulfan II	2 U	190	180	190	19 U	18 U	2 0	
Endosulfan Sulfate	2 U	19 U	180	190	190	180	20	18 U 18 U
Endrin	201	19 Ü	18 U	190	190	180	20	
Endrin ketone	2 Ū	19 U	18 U	1.9 U	1.9 U	1.8 U	20	18 U 18 U
Endrin aldehyde	Í 2 Ú Í	190	18 U	190	190	180	2 0	18 U
Heptachlor	ŽŪ I	1.9 U	180	190	190	180	20	18 U 18 U
Heptachior epoxide	Í 2 U I	190	180	190	190	180	2 0	
Toxaphene	20 U	19 U	18 U	19 U	19 Ŭ	18 U	20 U	18 U
Methoxychlor	2 U	1.9 U	180	190	1.9 U	18 U	200	18 U 1 B U
	<u> </u>					100	20	100
<u>Harbicides</u>			!	J	1	ľ	l	
Dicamba	} 4∪ }	37 U	37 U	37 U	37 U	36 U	39 U	3 6 U
2,4-D	4 0	37 Ū	37 U	370	370	36 U	390	36 U
2,4,5-TP (Silvex)	40	370	37 U	37 U	37 0	36 U	390	36 U
2,4,5-T	4 U	370	37 U	37 U	370	360	390	36 U

Qualifers

U The compound was not detected at the indicated concentration.

Combined Park RIOR non UIC xls

Sample Location						Former Settling	Tank	s/Leaching Pools					T
Sample ID	E1 B01 14-16	$\neg \top$	E1 B01 20-22		E01802 12-14'	E01B02 20-22'		E01B03 12-14'	-	E01B03 20-22'	E01804 12-14'	E01B04 20-22'	Comparison Value
Sample Depth (ft)	14-16	H	20-22		12-14	20-22		12-14	- 1	20-22	12-14	20-22	for Areas
Sampling Date	10/17/00		10/17/00		10/09/00	10/09/00		10/09/00	- 1	10/09/00	10/09/00	10/09/00	of Concern
Matrix	l s	- 1	s		s l	S		S	- 1	S	S	S	
Dilution Factor	10	- 1	10		10	10		10	- 1	10	1.0	1 10	İ
Units	mg/kg		mg/kg		mg/kg	mg/kg		mg/kg	- 1	ma/ka	mg/kg	ma/ka	mg/kg
							_		-			1	
Arsenic	0.59	u	0 61	В	1.9	0 34	В	2 1	- 1	031 L	2.7	19	20
Barium	27	в	36	В	37.6	5 4	В	12 1	В	48 E	33.2	10 1	B 5500
Cadmium	021	u	0 21	U	4.5	0 09	U	0.09	ul	0 09 L	4	0 09	J 78
Chromium	31,5	- 1	152		15	27	- 1	16,4	1	3 2	30 7	6.2	390
Lead	3		27		27 9 E	2 3	Εİ	12 9	E	59 E	316	E 3.6	E 400
Mercury	0 04	u	0 04	u	0 04 UN	0.04	UN*		N۴	0 04 UN	018 N		23
Selenium	0.41	ul	0.42	В	0 62	0 24	U	0 46	В	0 25 L	0 42	B 0.5	B 390
Silver	0 17	u	0 17	u	. 14	0 14	u	0 29	В	0 15 L	0 69	0 14	390

Sample Location			·			Former Settling Tai	nks/Leaching Pools						
Sample ID	E01B05 12-14'	7	E01B05 18-20'	E1B06 12-14	П	E1B06 20-22	E1B07 12-14	Т	E1B07 20-22	1	E01 B08 18-20	E01 B08 24-26	Comparison Value
Sample Depth (ft)	12-14	- 1	18-20	12-14	- 1	20-22	12-14		20-22		18-10	24-26	for Areas
Sampling Date	10/09/00	- 1	10/09/00	10/11/00	- 1	10/11/00	10/11/00		10/11/00		10/10/00	10/10/00	of Concern
Matrix	s	- 1	s i	S	- 1	s	l s		S		S	s	
Dilution Factor	10		10	1.0	- 1	10	10		10		10	10	
Units	mg/kg		mg/kg	mg/kg	- 1	mg/kg	mg/kg		mg/kg		mg/kg	mg/kg	mg/kg
								一		\rightarrow			
Arsenic	0.51	в	0 28 U	0 59	u	0 57	J 0.58	u	0 58	u	12	2 2	20
Barlum	9	в	56 B	- 27	В	3.2	B 66	В	3 3	В	49 E	4 4	B 5500
Cadmium	01	ᄖ	0 08 1	0 21	U	02 (J 02	u	0.2	ul	0 13 E	0 04	U 78
Chromium	6.5		11	14		16 7	34		57	1	23 8	103	390
Lead	37	E	22 E	24		26	3	- 1	2.5		1.2	17	400
Mercury	0.04	UN	0 04 UN*	0 03	UN	0 07	vi 003 l	UN	0 03 L	JN	0 03 UN	004 U	
Selenium	0 28	u	043 B	0 41	u	04 1	J 041	u	0.41	u	0 22 L	031	B 390
Silver	0.8	В	0.14 U	0.17	U	0 16	J 0 16	ü	0 16	u	0 06 i	01	B 390

Sample Location							Former Settling Ta	anks	/Leaching Pools							Т	
Sample ID	E01 B09 16-18	E	01 B09 24-26		E01 B11 12-14	Т	E01 B11 20-22	Т	E01 B12 12-14		E01 B12 20-22	T	E01 B13 12-14		E01 B13 20-22	\neg	Comparison Value
Sample Depth (ft)	16-18	1	24-26	ļ	12-14	-	20-22	į	12-14		20-22	- 1	12-14		20-22	ı	for Areas
Sampling Date	10/10/00	- 1	10/10/00	Į.	10/10/00	1	10/10/00	- 1	10/13/00		10/13/00	- 1	10/13/00		10/13/00	- 1	of Concern
Matrix	s	1	S	- 1	S	1	S	- 1	S		S	- 1	S		s	- 1	
Dilution Factor	10	1	10	- 1	10		10	- [10		10	- 1	10		1.0		
Units	mg/kg		mg/kg		mg/kg	_1.	mg/kg		mg/kg	- 1	mg/kg	ļ	mg/kg	1	mg/kg		mg/kg
						7		7		_		_		1		Ť	
Arsenic	15		, 21	ı	11	В	2.5		0 61	u	0 71	녜	199	1	0 68	ul	20 أ
Barium	7.1	В	69	В	12.9	В	98	В	75	в	8 4	8	237		4 1	В	5500
Cadmium	0 04	U	0 04	ᅵ	0.49	В	0 19	В	0 22	ᄖ	0 25	U	47.9		0 24	ul	78
Chromium	5	Į.	9,4	- 1	13.9		86	- 1	13 8	티	8 1	Е	94.7	E	7.2	E	390
Lead	26	1	2 1	- 1	47		38	- 1	5 2	티	47	E	130	E	2.9	E	400
Mercury	0 03	UN	0 03	UN	0 04 U	IN	0 04 L	JN	0.04	UN	0 04	UN	0 63	N	0.04	UN	23
Selenium	0 23	ᄖ	0 23	ᄖ	0 33	В	0 29	В	0 43	ᅦ	0.5	u	3 2	1	0 48	u	390
Silver	0 08	В	0 06	u	29		7		23		02	Ú	60 5	i	0 19	ŭ	390

Qualifiers

Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit
 Reported value is estimated due to interference
 M Spiked sample recovery not within control limits

Notes
Result exceeds Comperison Value for Areas of Concern

Table C-7 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- EXTERIOR AREAS OF CONCERN RCRA METALS

Sample Location	Former Settling	Tank	s/Leaching Pools						Six Former	Lead	ching Pools					T	
Sample ID	E01B14 12-14'		E01B14 18-20'	E2 B0	1 12-14	П	E2 B01 20-22	T	E2 B02 6-8'	Т	E2 B02 14-16	т	E2 B03 12-14	Т	E2 B03 20-22	7 0	ompanson Value
Sample Depth (ft)	12-14		18-20		12-14	- 1	20-22		6-8		14-16	- 1	12-14	- 1	20-22		for Areas
Sampling Date	10/09/00		10/09/00	1 0	9/29/00	- 1	09/29/00		09/28/00		09/28/00	- 1	09/29/00	ı	09/29/00		of Concern
Matrix	s		s	1	s	- 1	S		S		S	- 1	\$		S	- [
Dilution Factor	1.0		1.0	1	10	- 1	10		10		10	ı	10		10		
Units	mg/kg	- 1	mg/kg	1	mg/kg	- 1	mg/kg		mg/kg		mg/kg	- 1	mg/kg		mg/kg	- 1	mg/kg
· · · · · · · · · · · · · · · · · · ·		┰		1		_				_		⇁		7		_	
Arsenic	0.28	ui	0 27 L	i i	0.38	ul	0.74	в	5 1	ļ	0.5	ы	2	- [17	- 1	20
Barlum	84	8	95	*	62	В	52	ei	183	в	43	в	5.2	В	72	в	5500
Cadmium	0.08	u	0.73		0 23	В	0.16	ei	12	- 1	0 64	- 1	0 11	В	0 15	в	78
Chromium	23 9		10 4		129	- 1	57 5	- 1	51	N	415	N	149		115		390
Lead	39	Ε	25	4	3		23	- 1	76.4	E	25	E	2.1	- 1	6.8	- 1	400
Mercury	0.05	N-	0 03 UN	1	0 02	ul	0.02	ul	0.08	N	0.05	N	0 02	В	0 02	Вİ	23
Selenium	0.23	u	0 22	1	0.22	ũ	0 22	ū	0 24	в	0 23	u	0.23	В	0 22	üİ	390
Silver	0.13	Ü	0 13	i	0.09	В	0 13	В	5	٦	0 23	Ř	0.06	ũ	0.06	A	390

Sample Location	Six Former	Leaching Pools		Former Heat Tr	at Drainage Wells		Forme	r Dry Well]
Sample ID	E2 B04 12-14	E2 B04 24-26	E03 B01 16-18	E03 B01 22-24	E03 B02 14-16	E03 B02 20-22	E04 B01 8-10	E04 B01 18-20	Comparison Value
Sample Depth (ft)	12-14	24-26	16-18	22-24	14-16	20-22	8-10	18-20	for Areas
Sampling Date	09/29/00	09/29/00	10/10/00	10/10/00	10/10/00	10/10/00	10/12/00	10/12/00	of Concern
Matrix	l s	l s	l s	l s	i s	s	8	s	
Dilution Factor	10	1.0	10	10	10	10	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		1	<u> </u>	ſ		<u></u>			
Arsenic	0.68	8 42	4	22	41	0.46	3.4	057 (20
Barium	6.7	B 107 E	1 146 €	131	B 172 (2.2 E	81 (al 35 6	5500
Cadmium	0 14	B 004 (17	0.08	B 033 I	9 097	0.23	اء 02 ا	78
Chromium	45 3	99.6	47 9	128	116	11	53	1.6	390
Lead	28	4 3	79 1	27	11.9	1.2	5.2	2.8	400
Mercury	0.02	B 0.02 (01 6	d 004 U	N 023 /	0 04 UN	004 U	+ 003 U	
Selenium	0.22	U 0.24 U	0.25	0.25	ul 0.78	0.27 U	0.57	9 04 L	390
Silver	0.15	B 016 (41	0 07	U 023 I	0 07 (018 (016	390

Sample Location	1			Leachin	g Pool Area				T
Sample ID	E6 B01 10-12	E6 B01 20-22	E4 B02 10-12	E6 B02 20-22	E6 B03 10-12	E6 B03 20-22	E6 B04 10-12	E6 B04 20-22	Comparison Value
Sample Depth (ft)	10-12	20-22	10-12	20-22	10-12	20-22	10-12	20-22	for Areas
Sampling Date	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/05/00	10/05/00	of Concern
Matrix	s	S] s	S	s	s	s	s	1
Dilution Factor	10	10	10	10	10	10	1 10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mo/kg	mg/kg	mg/kg
	i ···		1		I	1	. 1		1
Arsenic	1.1	2.5	15	2	0.56	B 1.8		1.2	20
Barlum	3.4	B 44 I	B 46 I	B 56	B 35	B 47	BÍ 31	B 42	B 5500
Cadmium	0 04	ul 004 1	ર્ઘા ૦૦ ⊦ા	JI 004	ul 004	uł 004	ul 004	ul 005	ul 78
Chromium	5.2	97	7.5	83	75	81	35	71	390
Lead	15	19	13	14	1.2	1 16	0.76	0 97	400
Mercury	0.06	0.04	0.02 1	0.1	0 36	0 13	0.02	ul 0.02	U 23
Selenium	0.54	0.23	ul 023 (0.22	U 0.28	B 0.29	B 0.23	u 0.25	U 390
Sibone	014 B		NI 011 BU	0.15	BM 0.06		BN 0.08	B 0.11	B 300

Citabilities:

U. Correlibers was not detected at the indicated concentration.

B. Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instituteral Detection Limit But greater than or equal to the Insti

suff exceeds Comparison Value for Areas of Concern

Sample Location				ng Pool Area			Nine Lea	ching Pools	
Sample ID	E6 B05 3-5	E6 B05 12-14	E06 B06 8-10	E06 B06 16-18	E06 B09 10-12	E06 B09 20-22	E7 B01 14-16	E7 B01 18-20	Companson Value
Sample Depth (ft)	3-5	12-14	8-10	16-18	10-12	20-22	14-16	18-20	for Areas
Sampling Date	10/05/00	10/05/00	10/10/00	10/10/00	10/04/00	10/04/00	09/20/00	09/20/00	of Concern
Matrix	l s	i s	l s	s	S	S	S	5002000	0.00,00,
Dilution Factor	10	10	1 10	10	1.0	10	1 10	1.0	1
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						1		i i	
Arsenic	0.98	B 14	4.8	0.45	B 14	097	el 038 ເ	d 39	20
Barrum	32	B 57	B 94	B 24	B 72	B 39 i	16 8	3.3	B 5500
Cadmium	0.05	B 0.04	U 14	0 09	B 015	B 004 i	004 1	0 04	U 78
Chromium	23	5.9	154	57	59	9.7	15	13.3	390
Lead	10 1	1.5	27 4	0 98	1 4	12	1.8	1 2	400
Mercury	0.07	0 05	0.09	N 0.07	N 0 02	U 003 I	0 02 L	0.09	23
Selenium	0.47	B 022	U 036	B 0.36	B 0.51	B 022 (0.22	0.23	U 390
Silver	0 09	B 0.08	B 0 25	B 01	B 0.06	U 007	0.22	0.23	U 390

Sample Location	T T						Nine Lead	ching	Pools					_		Т	
Sample ID	E7 B02 12-14		E7 B02 16-18	\neg	E7 B03 11-13	\top	E7 B03 19-21	Т.	E7 B04 11-13	Т	E7 B04 19-21	Т	E7 805 15-17	Т	E7 B05 19-21	⊣ ,	Companson Value
Sample Depth (ft)	12-14		16-18	- 1	11-13	1	19-21		11-13	-	19-21		15-17	1	19-21	- []	for Areas
Sampling Date	09/20/00	l l	09/20/00	1	09/21/00	1	09/21/00		09/21/00		09/21/00		09/21/00	1	09/21/00		of Concern
Matrix	s		s	- 1	S	1	s	- [S		S		S	ı	S		0.00.100.11
Dilution Factor	10		10		10	1	10		10	1	10		10		10	- 1	
Units	mg/kg	L_	mg/kg		mg/kg		mg/kg		mg/kg	Т	mg/kg		mg/kg		mg/kg		mg/kg
								_		十		寸		+		_	1139738
Arsenic	0 79	В	5.3		4.8	1	19		0.27 U	ul	0.77	В	0 91	R	26	- 1	20
Barlum	2	В	42	В	105	в	28	в	24	В	56	В	42	a	37	R	5500
Cadmium	0.05	В	0.04	U	18	1	0 08	úl	0.08	ū	0.08	ū	0.08	ũ	0 11	ĭ	78
Chromium	1.7	- 1	103	Į	14.5	1	62	1	23	7	93	٦	3.5	٦	16.2	٦	390
Lead	23	- 1	2.9	- 1	18		0.91	- 1	4	1	13	- 1	26	1	1.4		400
Mercury	0.02	Bĺ	0,03	в	0 12	4	0.02 (u∙l	0 02 U	J٠l	0.07	-	0 02 B	١.		U+	23
Selenium	0 22	u	0 24	ū	0 22	ul	0 26	В	0 22 1		0.22	1	021		0 29	7.1	390
Silver	0 06	U	0 17	В	13		0 29	В	0 13	вĺ	0 45	ы	0 13	ĭ	066	Ř	390

Sample Location							Nine Lead	chin	g Pools					_		
Sample ID	E7 B06 11-13		E7 B06 19-21	Т	E7 B07 11-13	Т	E7 B07 19-21	1	E7 B09 11-13	Т	E7 809 19-21	т	E7 B10 11-13	1	E7 B10 19-21	Comparison Value
Sample Depth (ft)	11-13	- 1	19-21	- 1	11-13	- (19-21	1	11-13	- 1	19-21		11-13	-1	19-21	for Areas
Sampling Date	09/22/00		09/22/00	- 1	09/22/00	ì	09/22/00	ı	09/22/00	ļ	09/22/00	- 1	09/22/00		09/22/00	of Concern
Matrix	s		S	- 1	s	-	s	-	s	- 1	S	1	\$		\$	Or Concern
Dilution Factor	1.0		10	- 1	10	-	10	-	10	- 1	10	- (10		1.0	
Units	mg/kg		mg/kg		mg/kg		mg/kg	-	mg/kg	ì	mg/kg	ı	mg/kg	- [ma/ka	mg/kg
	7					Т		7		寸		_		+		1
Arsenic	0.43	ui	1	В	0 86	В	13	В	0 38	ul.	3.1		0.77	R	26	20
Barium	72	В	15 4	В	1.7	в	3.1	В	9 2	В	84	R	5.4	ă	5.9	5500
Cadmium	077		0 23	В	0.05	u	0 05	ü	0 41	В	0.12	Ā	0.04	П	0.04	78
Chromium	8.1		13.3	- 1	2.1		6.4	1	56	٦	14.7	٦	5.8	٦	8.1	390
Lead	15		26	1	13	-	15	-	95	1	5 2		2.8	- 1	1.5	400
Mercury	0.15	- 1	0 02	u	0 02	u	0 02	ы	0 17	- 1	004	ы	0 02	.1	0.02	23
Selenium	0 25	uk	0 26	ŭ	0 26	ŭ	0 29	ĭ	0 22		0.26	Я	0 22	X	024	
Silver	2.2	1	0 86	В	0 07	ŭ	0 08	ŭ	0 57	ă	0.25	ă	0.06	ĭ	0 24	月 390 オ 390

Qualifiers

U Constituent was not detected at the indicated concentration

B Constituent was not detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E Reported value is estimated due to Interference

N Spiked sample recovery not within control limits

Notes
Result exceeds Comperison Value for Areas of Concern

Table C-7 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- EXTERIOR AREAS OF CONCERN RCRA METALS

Sample Location				Nine Lea	ching Pools				1
Sample ID	E7 811 11-13	E7 B11 19-21	E7 B12 11-13	E7 B12 19-21	E7 813 11-13	E7 B13 19-21	E07 B14 9-11	E07 814 18-20	Comparison Value
Sample Depth (ft)	11-13	19-21	11-13	19-21	11-13	19-21	9-11	18-20	for Areas
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix	l s	i s	l s	l s	s	s	l s	s	1
Dilution Factor	1.0	10	10	10	10	10	10	10	1
Units	mg/kg	mg/kg	mg/kg_	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	0.47	B 091	B 038	U 24	12	1.3	0 37	ul 058 :	g 20
Barium	15	B 35	B 112	B 28	B 24	B 33	B 26	B 2 1	5500
Cadmium	0.04	ul 004	U 013	B 004	U 004	uł 004 :	ul 004	ul 004 (78
Chromium	24	1 4	138	75	94	39	32	29	390
Lead	079	0 93	37	16	11	0 91	11	0 64	400
Mercury	0 03	B 002	ປ 005	0 02	ul 002	ul 002	ul 002	B 002 (23
Selenium	0.22	ul 0.23	ul 025	B 0.22	Ul 037	B 023	u 023	B 03	390
Silver	0.1	B 015	B 3	0 42	B 006	U 006	ul 006	ul 0.06	390

Sample Location						Forme	r Leaching Field	with 1	wenty Leaching Pools							I
Sample ID	E8 B01 6-6"		E8 801 14-16'	7	E8 802 6-8"	E	8 B02 14-16'	Т	E8 B03 8-10"	Т	E8 B03 14-16'	П	E8 B04 10-12	Т	ES BO4 14-16	Comparison Value
Sample Depth (ft)	L 6⊸8	·	14-16	- 1	6-8	l	14-16		8-10		14-16	Į.	10-12	Ų	14-16	for Areas
Sampling Date	10/03/00		10/03/00	- 1	10/03/00	ł	10/03/00		10/03/00	- 1	10/03/00	- 1	10/04/00	- 1	10/04/00	of Concern
Matrix	l s		S	- 1	s	į.	S		S	- 1	S	- 1	S	- 1	S	
Dilution Factor	1.0		10	ı	10		10		10	- 1	10	- 1	10	ı	10	1
Units	mg/kg		mg/kg	\perp	mg/kg		mg/kg		mg/kg	\perp	mg/kg	- 1	_mg/kg	- 1	mg/kg	mg/kg
		Т					_	_		7		Т		\neg		
Arsenic	22	E	0.5	BE	25 E	4	2 4	Ε	079 B	BE	0.27 U	UE	3		3.3	20
Barlum	33 4	H	35	8	44 7		4.4	8	37	В	3	В	167	В	57	5500
Cadmium	009	U	0 08	ા	009 U	4	0.08	U	0.08	ᄖ	900	U	1.2	- 1	0.41 1	78
Chromium	11 8		19 7	- 1	16 1		10 4		2.2		29	- 1	8 1		21 5	390
Lead	5 5	E	17	티	8 E	4	1.4	E	1	Ε	15	티	79	- 1	14	400
Mercury	0 02	u	0 02	u	0 02 L	4	0 02	ui	0 02	u	0 02	ul	0 03	В	0 02	J 23
Selenium	0.25	u	0 22	ul	0.26 U	,	0.23	ul	0 22	u	0 22	uŧ	0.23	ul	0 22	J 390
Silver	0 15	UN	0 13	UN	0 15 UN	4	0 13	UN	013 U	IN	0 13 L	UN	0 23	В	0.08	390

Sample Location							Former Leaching Field v	viti.	Twenty Leaching Pools							T	
Sample ID	E8 B05 14-16	Т	E8 B05 22-24	П	E8 B06 8-10	Т	E8 B06 14-16	Т	E8 B07 8-10	$\neg \top$	ES 807 14-16	Т	E08 B08 10-12		E06 B04 20-22	⊐ ເ∞	mparison Valu
Sample Depth (ft)	14-16	l	22-24	ı	8-10	ı	14-16	ı	8-10	- 1	14-16	ı	10-12		20-22	1	for Areas
Sampling Date	10/04/00		10/04/00		10/04/00	ł	10/04/00		10/05/00	- 1	10/05/00	- 1	10/05/00		10/05/00	1	of Concern
Matrix	l s		S		S		S		S	- 1	S	- 1	S		s	1	
Dilution Factor	10		1.0		10		10		10	- 1	10	- 1	10		10	1	
Units	mg/kg	- 1	mg/kg	- 1	mg/kg		mg/kg	- 1	mg/kg	Ţ	mg/kg	- 1	mg/kg		mg/kg	1	mg/kg
		_		_		т		┪				┪				+-	
Arsenic	0 83	В	1.6		0.96 8	8	04	а	18		0 48	в	27		0.84	в	20
Barium	53	В	38	В	112	В	6 1	в	77	B	14	В	8.8	В	34	B	5500
Cadmium	093	- 1	0.04	u	0.15	В	0 08	В	0.04	ᄖ	0.04	u	0.21	8	0.04	ul	78
Chromium	61		5 1	- 1	6.1	-	3 2	- 1	61		25	- 1	9.9		59	1	390
Lead	2.2		1.2	- 1	5.4	1	19	- 1	1.6		0.86	- 1	4.6		0.8	1	400
Mercury	0.02	В	0 02	В	0.04	1	0 02	u	0 02	ul	0 17	- 1	0 02	u	0 02	B	23
Selenium	0.22	ul	0 48	В	0 22 l	ui	0 22	ui	0 23	ul	0 33	В	0.27	8	0.35	В	390
Silver	0 13	В	0.06	u	0 19	В	0.07	В	0.08	В	0.07	ú	0 16	A	0.06	u	390

Qualifiers
U Constituent was not detected at the Indicated economission.

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the instrument Detection Limit E Reported value in actinguise due to interference

H Spilled sample recovery not within control limits

Notes
Result excoade Comparison Value for Areas of Consess

combined FARFOR non UIC.xls

Sample Location	,					_	Former Leaching Field	with	Twenty Leaching Pools	;					
Sample ID	E08 B09 10-12		E08 B09 20-22		E08 B10 8-10	ⅎ	E08 B10 16-18	Т	E08 B11 6-8		E08 B11 14-16	E08 B12 12-14		E08 B12 18-20	Comparison Value
Sample Depth (ft)	10-12	- 1	20-22		8-10	1	16-18	- 1	6-8	- 1	14-16	12-14		18-20	for Areas
Sampling Date	10/05/00	- 1	10/05/00		10/05/00	-	10/05/00	ı	10/05/00	- 1	10/05/00	10/05/00		10/05/00	of Concern
Matrix	s		s		s	- [s	- 1	s	- 1	s	s		s	
Dilution Factor	10		10		10	1	1.0	- 1	10	- 1	10	10		10	
Units	mg/kg		mg/kg		mg/kg		mg/kg	- 1	mg/kg	- 1	mg/kg	mg/kg		mg/kg	mg/kg
			***************************************			Т									
Arsenic	24	- 1	1.5	- 1	045 (u	0 42	ᅦ	0 85	в	12	1.3	;	0 43	B 20
Barium	72	В	12 3	В	4.5 I	В	3	в	4.1	в	78	BÍ 112	: 8	ર્ક્ક 54	B 5500
Cadmium	0 17	В	0 67	- 1	011	в	0 05	u	0.04	ᅵ	0 04	U 051		0 24	B 78
Chromium	53		6.2		2.5	-1	27	- 1	18 1	- 1	21.3	67	•	4.9	390
Lead	28	- 1	4 6	- 1	12	-	0.8	- 1	0 94	- 1	21	3.4		17	400
Mercury	0 02	ul	0 02	ul	0 02 (ul	0 02	ul	0.02	ul	0 02	U 0 02	: ι	0.02	U 23
Selenium	0 22	ul	03	В	0.53	ы	0 69	-1	0 21	u	0 34	B 0.71		0.25	U 390
Silver	0.08	в	0.15	В	007 (ul	0 08	ᅵ	0.08	ᇜ	01	B 01		0 1	B 390

Sample Location	Former Leaching Field	with Twenty Leaching Pools	Former Coa	l Storage Bin		Seven Former	Leaching Pools		
Sample ID	E08B14 8-10	E08B14-16-18	E09 B01 0-2	E09 B01 6-8	E10 B01 13-15	E10 B01 21-23	E10 B02 11-13	E10 B02 19-21	Comparison Value
Sample Depth (ft)	8-10	16-18	0-2	6-8	13-15	21-23	11-13	19-21	for Areas
Sampling Date	10/11/00	10/11/00	10/02/00 .	10/02/00	10/12/00	10/12/00	10/12/00	10/12/00	of Concern
Matrix	l s	l s	s	l s	l s	l s	i s	s	
Dilution Factor	10	10	10	10	1.0	10	1.0	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
						T .		1	
Arsenic	28	059 U	7.4	142	058 t	J 1.5	057 U	059 I	J 20
Barium	38 4	82 B	185 B	197 8	73 6	3 1	B 6.7 B	43	5500
Cadmium	0.24	U 0.21 U	0.12 B	03 i	(02 t	J 021 (J. 02 ∪	021 1	78
Chromium	15.7	6.4	10,9	12.1	34	3.9	26	118	390
Lead	9.5	3	834	32.8	3	28	33	37	400
Mercury	0 04 U	N 004 UN	02	0 13	0.04	• 004 U	r! 003 ∪•	0.03 U	+l 23
Selenium	0 53	B 042 U	0 25 U	0.65	041 L	J 042 L	ul 04 Ū	0.41	J 390
Silver	0 28	B 017 U	0 21 BN	015 8	Ē 016 ∪	J 017 Ú	Ú 0.16 Ú	0.17	390

Sample Location							Seven Forme	r Le	aching Pools							
Sample ID	E10 B03 12-14		E10 B03 20-22		E10B04 11-13	Т	E10804 19-21	7	E10 B05 10-12	\neg	E10 B05 16-18	Т	E10 B06 10-12	E10 B06 16-18	_	Companson Value
Sample Depth (ft)	12-14	- 1	20-22		11-13	Т	19-21	- 1	10-12	- 1	16-18		10-12	16-18		for Areas
Sampling Date	10/02/00	- 1	10/02/00		10/11/00		10/11/00	- 1	10/02/00	- 1	10/02/00	- 1	10/02/00	10/02/00		of Concern
Matrix	s	- 1	s		s	Т	S	- 1	S	- 1	s		s	S		
Dilution Factor	1.0		10	١	10	1	10	- 1	10	ŀ	10	١	1.0	1 10	- 1	
Units	mg/kg		mg/kg	- 1	mg/kg		mg/kg		mg/kg	. !	mg/kg	ı	mg/kg	mg/kg	- 1	mg/kg
	ı			\neg		Т		T						1		·
Arsenic	0 53	В	2	- 1	0 66	ui	0 58	u	76	- 1	0 99	в	18	0 62	В	20
Barlum	93	ㅁ	3.7	В	17.5	В	4 4	Вĺ	123		26	В	49	3.3	В	5500
Cadmium	0.04	ᄖ	0 04	ᄖ	0 44	в	02	ul	42	- 1	0 04	u	16.7	0.05	Ū	78
Chromium	26		12 3	- 1	66	П	42	- 1	134		3.1	1	99.8	24	-1	390
Lead	31		18	- 1	60 9		51	- 1	183	ı	1.2	- 1	65 2	12	- 1	400
Mercury	06		0 15	- 1	0 04 U	N	0 03	UN	0 77		0 02	u	0 09	0 02	ul	23
Selenium	0.23	ui	0 23	U	0 46	υİ	0.41	ul	3.8		0 22	u	1	0.25	ũ	390
Silver	0.15	8N		BN	0 18	u	0 16	Ü	83	N		BN	2.1	N 013	BN	390

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E Reported value is estimated due to interference N Spiked sample recovery not within control limits

Notes

Result exceeds Comparison Value for Areas of Concern

Table C-7 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- EXTERIOR AREAS OF CONCERN RCRA METALS

Sample Location		er Leaching Pools	Forme	r Dry Well		Former Drum	Storage Area		T
Sample ID	E10B08 6-10	E10B06 14-16	E12B01 10-12	E12B01 18-20	E13 B01 1-3"	E13 B01 3-5	E13 B02 0-2"	E13 B02 2-4'	Comparison Value
Sample Depth (ft)	6-10	14-16	10-12	18-20	1-3	3-5	0-2	2-4	for Areas
Sampling Date	10/11/00	10/11/00	10/11/00	10/11/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix	l s	l s	s	S	1	002000	022300	032300	Or Concern
Ollution Factor	1 10	10	10	10	10	10	1	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	matra
			1					1110210	mg/kg
Arsenic	0 67	B 11	061	J 057 U	55 .	15	25	27	20
Barlum	196	B 4 1	27	B 66 B	25 1	42 B	22.2 B	184 8	5500
Cadmium	0.2	U 02 (0.21	J 02 U	005 U	004 U	l ; 1	019	78
Chromium	116	58	24	107	435	32	122	19.1	
Lead	15 3	3	29	35	1 778	16	43 6		390
Mercury	0.09	N 003 U			003 B	0 02 U		14 3	400
Selenium	058	704	0 48	04 0			0 26	0 03	23
Silver	0 16	u 018			0.25 U	0.23 U	024 U	0 24	390
Skadi		<u>VI</u> V 10 I	0 17	U 016 U	0 15 B	008 8	l 007 Bá	0 07	39 0

Sample Location				site	Recharge Basin			T	Former On-s	site	Recharge Basin	0	niden	tified Pit	I
Sample ID	£18 B01 0-2		E18 B01 2-4		E18 B02 0-2	1	E18 B02 2-4	T	19801 8-10"	Т	E19801 18-20"	E20 B01 2-4'		E20 801 4-6'	Comparison Value
Sample Depth (ft)	0-2		2-4		0-2	1	2-4		8-10	- 1	18-20	2-4		4-6	for Areas
Sampling Date	10/05/00		10/05/00	- 1	10/05/00		10/05/00	1	10/09/00	- 1	10/09/00	09/28/00		09/28/00	of Concern
Matrix	l s		S	- 1	s		S	1	S	- 1		J		082800	or concern
Dilution Factor	10		10	ı	10	1	10	1	10	- 1	10	10		10	1
Units	mg/kg		mg/kg		mg/kg		mg/kg	i i	mg/kg	_ [mg/kg	mg/kg			
	- 1	\neg		_		1		_		-	8.7.4	"777	_	mg/kg	mg/kg
Arsenic	16		1	В	14		0 57	В	5.5		1.1	1 13		09 E	20
Barlum	37	ei	3 9	8	51 6	3	22		23 1		5.7 E		_	4.1	5500
Cadmium	01	ai	0 17	В	0 16 E		0 07	A	01	7	0 43 E	0.28	. 3	04 6	
Chromium	54	-1	5.8	- 1	5	1	6.6	1	47	٦	220	1 %		24.7 N	78
Lead	1 44		11 3	- 1	12 7		19		26 5	اء	7.2 E	7,7		247	390
Mercury	0 03	A	0.02	- ul	0 03 E		0 02		004 U					2 6	400
Selenium	0 23	7	04	2	0.36	1	0 35	3	088	~"				0 03 BN	
Carde Mills	0.20	ч		-	V.JO 6		0.33	-	U 88	- 1	0.23 L	0.23		0 23 L	390

Sample Location				Former AST ar	d Salvage Area					T
Sample ID	E21 802 0-2	E21 B02 2-4	E21 B03 0-2	E21 803 2-4	E21 804 0-2		E21 804 2-4	E21 806 0-2	E21 B05 2-4	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	- 1	2-4	0-2	2-4	for Areas
Sampling Date	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	- 1	09/29/00	09/29/00	09/29/00	of Concern
Matrix	s	s	S	s	S	1		022200	002000	or concern
Dilution Factor	10	10	10	10	10	- 1	10	10	10	I
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg	mg/kg	mg/kg	mg/kg
			1			_				1119749
Arsenic	27	14	3 6	1 46	53	ŀ	4.3	39	51	20
Barium	97	B 74 6	a 169	B 25 1	14.7	В	28 9	15 9	20.2	5500
Cadmium	0.04	տ! օգ ւ	ıİ 005 ∣	ul 0.05	ul 606	ū	0.05	005	u 504 i	78
Chromium	76	54	62	113	1 11	٦	14.1	106	92	390
Lead	5 6	26	91	77	68		78	6.2	1 46	400
Mercury	0.03	0 07	0.04	0 03	B 0 03		0 02	004	003	
Selenium	0 34	Bi 0.24 L	072	0 25	025	.1	0 25	u 09		B 23
Silver	0 12	0 00 6	0 16	B 0.08	B 01	2	0.09	018	0 24 U	390

Constituent was not seasces at the inscises concerning on
 Constituent and control beginning to control Regulated Destriction Limit but greater than or equal to the instrument Descriction Limit
 Reported value is estimated due to Interference
 M Spitsed semple recovery not within control limits

combined EXTERIOR non UIC.xis

20/01 11 26 AM

Sample Location	Former Con	crete Sump Prt	Pump	Station A	1	Catch Basins (Vicinity of I	Pump House/Water Tank)		1
Sample ID	E25 B01 5-7	E25 B01 7-9	E30 B01 13-15	E30 801 15-17	E32 B01 6-8	E32 B01 8-10	E32 B02 6-8	E32 B02 8-10	Companson Value
Sample Depth (ft)	5-7	7-9	13-15	15-17	6-8	8-10	6-8	8-10	for Areas
Sampling Date	10/04/00	10/04/00	10/18/00	10/18/00	10/16/00	10/16/00	10/16/00	10/16/00	of Concern
Matrix	l s	l s	s	l s	s	s	l s	l s	1
Dilution Factor	10	1.0	10	10	10	10	1.0	1.0	l 1
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		T							
Arsenic	2.9	043 L	(2	1 1	056 (B 1.7	15	11	20
Banum	23 8	1.8 E	136 E	36	31 €	B 10.4 E	10.7 E	5 E	s 5500 l
Cadmium	0.05 (J 0.13 E	🛛 005 U	005 (.4 004 U	ا 004	J 0.04 L	J 0.04 L	78
Chromium	76	2.1	6.7	[23	114 1	√l 55 N	47 1	d 9.2 N	dl 390 l
Lead	5.3	09	83	1.2	26	27	2.4	13	400
Mercury	0.02	J 006	0.04 UN	004 U	01	0 04	0.03 t	D.03 L	23
Selenium	0 26	J 0.25 t	073	0 45	.a∥ 039 t	U 04 t	0.38 L	0.39	390
Silver	0.07	J 0.07 L	0.07 (0 07	0 06 (U 006_ U	0 07 €	0 09 6	390

Sample Location	Former Tank 1111	(Betwe	een Hangars 1 and 2)				Courtyard Betw	veen	Hangar 1 and 2					1
Sample ID	E33 B01 1-3'		E33 B01 3-5'	E34 B01 1-3	E34 B01 3-5		E34 B02 1-3'	\neg	E34 B02 3-5	Т	E34 B03 0-2"	\neg	E34 B03 2-4'	Comparison Value
Sample Depth (ft)	1-3		3-5	1-3	3-5		1-3	- 1	3-5	- 1	0-2	- 1	2-4	for Areas
Sampling Date	09/28/00		09/28/00	09/25/00	09/25/00		09/25/00	- 1	09/25/00	- 1	09/25/00	- 1	09/25/00	of Concern
Matrix	s	- 1	s	S	l s	-	S	- 1	S	- 1	S	ı	S	1
Dilution Factor	1.0	- 1	10	1.0	10		1.0	- 1	10	- 1	1.0	ı	1.0	ì
Units	mg/kg	j	mg/kg	mg/kg	mg/kg	ł	mg/kg	- 1	mg/kg	- 1	mg/kg	ŀ	mg/kg	mg/kg
		<u> </u>						T		Ť	2	7		
Arsenic	5.2	- 1	3.6	33	1.2	1	28		0 39	u	2	- 1	14	20
Barium	3.4	в	176 B	13	3 24	В	48	В	2	ы	5	В	33	B 5500
Cadmium	0.6	- 1	0.2 B	0.04 (JĮ 0.04	u	0 87		0.04	u	0.04	u	0 04	u 78
Chromium	493	N	268 N	7.4	3.2		57 7		23	- 1	6.5	- 1	6.2	390
Lead	47.9	E	16.1 E	83) 13	1	50 4	- 1	1.1	- 1	3.5	1	17	400
Mercury	0.1	N°	0 03 BN	0.02 t	U 0.02	u	0.1	- 1	0 02	u	0 02	Ų	0 02	B 23
Selenium	0.26	в	0.5 B	0.22 l	U 043	В	0 23	ᄖ	0.23	ᄖ	0.24	U	0.22	ul 390
Silver	62	1	1.8	0.1	в 0.06	ы	14.1	-1	0.08	в	0.1	В	0.1	B 390

Qualifiers

U. Constituent was not detected at the indicated concentration

B Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

E. Reported value is estimated due to interference N. Spiked sample recovery not within control limits Notes

Result exceeds Comparison Value for Areas of Concern

Table C-7 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1- EXTERIOR AREAS OF CONCERN RCRA METALS

Sample Location	Courtyard Bet	ween Hangar 1 and	12			Area We	st of	Hangar 1			\Box	Former Drainage Swal	le (N of Maintenance Area)	
Sample ID	E34 B04 0-2'	E34 B0	¥ 2-4°	E35 B01 0-2		E35 B01 2-4	Т	E35 B02 0-2	Т	E35 B02 2-4	Т	E36 B01 1-3"	E36 B01 3-5'	Comparison Value
Sample Depth (ft)	0-2		2-4	0-2	- 1	2-4	ı	0-2	- 1	2-4		1-3	3-5	for Areas
Sampling Date	09/25/00	09	/25/00	10/10/00	- 1	10/10/00	- 1	10/10/00	- 1	10/10/00		09/25/00	09/25/00	of Concern
Matrix	l s		S	l s	- 1	S	- 1	S	- 1	S		s	l s	
Dilution Factor	1.0		10	10	- 1	10		10	- 1	10	- 1	10	10	
Units	i mg/kg	ŀ	mg/kg	mg/kg	- 1	mg/kg		mg/kg		mg/kg	- 1	mg/kg	mg/kg	mg/kg
				1			Т		$\overline{}$		7		1	
Amenic	0.57	В	16	28		1.4	- 1	0 79	В	0.9	В	1.4	062 E	20
Barium	15	В	7.3	B 107	В	6	В	26	В	35	В	39 (B 61 E	5500
Cadmium	004	ul	0 05	U 42	- 1	11	- 1	0.04	ul	0.05	8	2.7	004 L	78
Chromium	24	1	46	14	l i	6.5	- 1	3.2		4	- 1	70 1	4.5	390
Lead	079	1	3.5	195	- 1	36	- 1	2		35	- 1	20.2	14	400
Mercury	0.02	ul	0 02	ul 004	UN	0.05	N	0 03	UN	0.04	UN	01	002 (23
Selenium	0.22	úl	0.56	0.27	В	0.23	ul	0.22	ul	0.23	u	024 (ul 022 i	390
Silver	0.06	B	0.08	ial 0.06	ul	0.08	ü	0.08	R	0 07	a	30 8	0.06	390

Sample Location	Former Drainage Swale	(N of Maintenance Area)		Former Discoloratio	n (SE Parking Area)		Boller Room Exte	rior Former Dry Well	
Sample ID	E34 B02 1-3'	E34 B02 3-5'	E37 B01 0-2	E37 B01 2-4	E37 B02 0-2	E37 B02 2-4	E38 B01 10-12	E38 801 20-22	Comparison Value
Sample Depth (ft)	1-3	3-6	0-2	2-4	0-2	2-4	10-12	20-22	for Areas
Sampling Date	09/25/00	09/25/00	09/29/00	09/29/00	09/29/00	09/29/00	10/12/00	10/12/00	of Concern
Matrix	l s	l s l	s	S	s	s	s s	l s	1
Dilution Factor	10	10	10	10	10	10	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
				•					
Arsenic	3.2	106	1.8	17	2.8	046 B	065 ((0.67 t	20
Barlum	47 E	9 7 B	83 B	193 B	78 B	3.2 E	3.2 6	45 8	5500
Cadmium	3.2] 15	004 U	004 U	0 04 U	0 04 U	0.23 L	d 0.23 L	76
Chromium	873	507	55	73	4.5	25	2	33	390
Lead	25 2	7.5	37	42	113	13	26	2.0	400
Mercury	0.05	0.08	002 U	0.05	0 04	002 U	0 04 U	1 004 U	23
Selenium	0.23 L	d 0.23 Ú	048 B	0 24 U	051 B	023 U	048 (d 047 L	390
Silver	36 9	006 U	0 07 B	0 08 B	0 12 B	006 U	018 (1 019 L	390

Sample Location	Dry Well Outside Form	Dry Well Outside Former Facility Maintenance Area		Dry Well Outside Former Paint Tunnel		outside Boiler Room	Former 2,000 Gal Gas		
Sample ID	E38 B01 8-10	E30 B01 20-22	E41 B01 8-10	E41 801 18-20	E42 B01 3-6	E42 B01 8-7	E43 B01 6-8	E43 B01 14-16	Comparison Value
Sample Depth (R)	8-10	20-22	8-10	18-20	3-6	5-7	6-8	14-16	for Areas
Sampling Date	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	of Concern
Matrix		s	l s	s	s	l s	S	s	
Dilution Factor	10	10	10	10	10	10	10	10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Ĭ		1		i				T
Arsenic	0.58	u 086 i	23	13	087 8	058 U	1 18	, 095 E	20
Barlum	33	8 7.7	127 (B 5 1	B . 15.1 B	44 8	128 6	9 29 E	5500
Cadmium	0.2	u 02 t	ul 0.25 t	ا 0.2	u l 021 U	d 0.2 U	0.22 (J 0.22 U	76
Chromium	17	10.7	38 8	87	6	2.5	6.2	7	390
Lead	29	3.2	27 8	38	5.8	14.6	26 1	4.1	400
Mercury	0 03	∪- oos u	n¶ 004 U	ქ ითა ს	יו 004 טי	† 003 U	1 004 U	1 004 U	1 23
Selenium	0.41	B 041 (u 0.5 t	J 041 1	UI 042 U	å 0.41 U	. 0.45 U	.d 051 €	390
Sheer	0.16	ul 016 i	43	0.16	017 1	d 016 i		d 018 i	1 390

assaurance
U. Constituent was not detected at the indicated concentration.
B. Constituent electrical below the Contract Required Detection Limit but greater than or equal to the instrument De
E. Reported value is estimated due to interference
N. Spilled sample recovery not within central limits

/30/01 11.26 AM

combined EXCERIOR non UIC.xls

Sample Location		ouse S of Refrig/AC Room		LIPA Ph/Sump		Squ	uare Ejector Pit North of Rech	arge Basin	1
Sample ID	E44801 0-2	E44B01 2-4	D14B01 5-7	D14B01 7-9	D14B01 9-11	D15B01 6-8	D15801 10-12	D15B01 14-16	Comparison Value
Sample Depth (ft)	0-2	2-4	5-7	7-9	9-11	6-8	10-12	14-16	for Areas
Sampling Date	10/11/00	10/11/00	01/08/01	01/08/01	01/08/01	04/10/01	04/10/01	04/10/01	of Concern
Matrix	s	s	l s	s	s	s	s	s	
Dilution Factor	10	10	10	10	1 10	1.0	1.0	1 10	
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		<u> </u>							
Arsenic	26	14	79	9.1	16	19	0 26	u 088	B 20
Barium	10.8	B 157	B 15 1	B 104	B 69	BÍ 217	29	B 36	B 5500
Cadmium	0 23	U[0.23	U[10	0.41	B 021	ul 004	U 0.04	U 024	B 78
Chromium	6	6.7	383	221	495	25 4	87	39 2	390
Lead	9.1	56	78	50	32	46	0 98	13	400
Mercury	0 05	N 004	UN 0.04	U 004	u 004	u 0.04	U 0 04	U 0.04	U 23
Selenium	11	0 79	9 083	0 42	U 043	u 034	U 033	U 0.34	U 390
Silver	0 22	B 0.18	U 066	B 017	U 0 23	B 0 26	B 014	U 0 15	B 390

Sample Location	Square Ejector Pit I	North of Recharge Basin	Prt in Room	Adjacent to South	Side of Forme	er Carpentry Shop				1
Sample iD	D15B01 17-19	D15B01 19-21	D17B01 0-2	D178	J01 2-4	D17B01 4-6				Comparison Value
Sample Depth (ft)	17-19	19-21	0-2		2-4	4-6			1	for Areas
Sampling Date	04/10/01	04/10/01	04/10/01	0	4/10/01	04/10/01	Į.		- t	of Concern
Matrix	s	l s	l s		s	s	i		,	
Dilution Factor	10	1.0	1.0		10	10			1	1
Units	mg/kg	mg/kg	mg/kg	1	mg/kg	mg/kg	1		}	mg/kg
										1
Arsenic	0 26	เมื่ 14	0 65	В	079 E	3 2	ı		1	20
Barlum	3 9	BJ 162	B 85	В	71 F	BÍ 31	K		1	5500
Cadmium	0 09	B 059	0 04	u	004 L	02	a		i	78
Chromium	39 5	584	108		21 2	27			i	390
Lead	19	10 9	143		5	104			İ	400
Mercury	0 04	ul 009	0 03	ul	0 03 L	J 0 03	ull		1	23
Selenium	0.33	U 0.36	u 032	녜	032 (0 32	ũi .	į .	i	390
Silver	j 014	UÌ 04	Eİ 013	rd.	0 19 E	0 26	all	1	1	390

Qualifiers
U Constituent was not detected at the indicated concentration

U Constituent was not detected at the indicated concentration

S Constituent detected below the Contract Required Detection Limit but greater than or equal to the Instrument Detection Limit

Reported valuage estimated due to Interference

N Spiked sample recovery not within control limits

				VOLATILE ORGANIC C					
Sample Location					Tanks/Leaching Pools				
Sample ID	E1 B01 14-16	E1 801 20-22	E01 B02 12-14	E01 B02 20-22	E01 B03 12-14	E01 B03 20-22	E01 B04 12-14	E01 B04 20-22	Comparison Value
Sample Depth (ft) Sampling Date	14-16 10/17/00	20-22 10/17/00	12-14 10/09/00	20-22	12-14	20-22	12-14	20-22	for Areas
Matrix	10/1//00 S	10/1//00 S	10/09/00 S	10/09/00 S	10/09/00 S	10/09/00	10/09/00 S	10/09/00 S	of Concern
Dilution Factor	10 1	1.0	10	1,0	10	10	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	∪g/kg	ug/kg	ug/kg	ug/kg
							i		
Chloromethane	5.2 U	5.2 U	30 U	5 6 U	6 U	57 U	6 U	55 U	-
Bromomethane	5.2 U	5.2 U	30 U	5.6 U	6 U	57 U	6 U	55 U	
Vinyl Chloride	5.2 U	5.2 U	30 U	56 U	6 U	57 U	6 U	55 U	300
Chioroethane Methylene Chioride	5.2 U 9.9	5.2 U 3.2 JB	30 U 14 J	56 U	6 U	57 U	6 U	55 U	
Trichlorofluoromethane	5.2 U	5.2 U	30 U	56 U	26 J 6 U	57 U 57 U	6 U 6 U	5.5 U 5.5 U	85000
1,1-Dichloroethene	5.2 U	5.2 U	30 U	5.6 U	6 U	570	انة	5.5 U	1000
1,1-Dichloroethane	5.2 U	5.2 U	30 U	56 U	6 Ü	57 U	ěŬ	55 U	7800000
trane-1,2-Dichloroethene	5.2 U	5.2 U	30 U	5 6 U	6 Ú	57 U	8 Ü	55 U	1600000
cis-1,2-Dichloroethene	5.2 U	5.2 U	30 U	56 U	6 U	57 U	6 U	55 U	780000
Chloroform	5.2 U	5.2 U	30 U	56 U	6 U	57 U	60	55 U	100000
1,2-Dichloroethane	5.2 U	5.2 U	30 U	56 U	6 U	57 U	6 U	5.5 U	7000
1,1,1-Trichloroethane	52 U	52 U	30 U	56 U	6 U	57 U	6 U	55 U	
Carbon Tetrachloride Bromodichloromethane	52 U 5.2 U	5.2 U	30 U 30 U	56 U	6 U	57 U	6 U	5.5 U	5000
1,2-Dichioropropane	5.2 U	5.2 U 5.2 U	30 U	56 U 56 U	6 U	57 U 57 U	60	5.5 U 5.5 U	10000
cis-1,3-Dichloropropens	5.2 U	5.2 U	30 U	5.6 U	80	57 U	80	5.5 U	4000
Trichioroethene	5.2 U	5.2 U	30 U	5.6 U	" "	57 U	80	5.5 U	58000
Dibromochloromethane	52 Ŭ	5.2 U	30 U	56 U	. šŭ	57 Ŭ J	δŬ	55 U	_
1,1,2-Trichloroethane	5.2 U	5.2 U	30 U	5.6 U	ا قن	57 Ŭ	ěŭ	5.5 U	11000
Benzene	5.2 U	52 Ú	30 U	56 U	6 0	5.7 Ū	6 Ŭ	5.5 U	22000
t-1,3-Dichloropropene	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	5.5 U	4000
2-Chioroethyl Vinyl Ether	5.2 U	5.2 U	30 U	56 U	6 U	57 U	6 U	5.5 U	_
Bromoform	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	5.5 U	81000
Tetrachioroethens	5.2 U	5.2 U	40	5.6 U	6 U	5.7 U	28 J	5.5 U	12000
1,1,2,2-Tetrachloroethane	5.2 U	5.2 U	30 U	56 U	6.0	57 U	6 U	5.5 U	3000
Chlorobenzene	52 U I 52 U	5.2 U 5.2 U	30 U	5 6 U 5.6 U	6 U	5.7 U 57 U	6 U	5.5 U 5.5 U	16000000 1600000
2-Butanone	52 U	5.2 U	88	3.2 J	80	5.7 U	60	5.5 U	180000
Ethyl Benzene	520	5.2 U	l 11 J	56 U	6 0	57 U	8 Ŭ	5.5 U	7800000
m/p-Xylenes	5.2 U	5.2 U	34	5.6 U	ا ق	š7ŭ	12 J	5.5 U	160000000
o-Xylene	5.2 U	5.2 U	17 J	56 U	6 Ü	5.7 U	6 U	5.5 U	160000000
Acetone	5.2 U	5.2 U	340	77	16	24	46	48	7800000
Carbon Disulfide	5.2 U	5.2 U	30 U	56 U	6 U	57 U	60	55 U	7800000
4-Methyl-2-Pentanone	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	55 U	-
2-Hexanone Styrene	5.2 U	5.2 U	30 U 30 U	56 U	6 U	57 U	6 U	55 U	
1,3-Dichlorobenzene	5.2 U 5.2 U	5.2 U 5.2 U	30 U	56 U 56 U	6 U	57 U 5.7 U	6 U	5.5 U 5.5 U	16000000
1,4-Dichlorobenzene	5.2 U	5.2 U	30 0	5.6 U		57 0	80	5.5 U	27000
1.2-Dichlorobenzene	5.2 U	52 U	30 U	5.6 U	١	570	8 U	5.5 U	7000000
Dichlorodifluoromethans	5.2 Ŭ	5.2 U	30 U	56 U	l 6 Ü	57 U	6 U	5.5 U	_
Vinyl Acutate	26 U	26 U	150 U	28 U	30 Ŭ] 29 Ŭ I	30 U İ	27 U	78000000
2,2-Dichloropropane	5.2 U	5.2 U	30 U	56 U	6 Ü	57 U	6 U	55 U	-
Bromochloromethane	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	55 U	
1,1-Dichloropropene	5.2 U	5.2 U	30 U	56 U	6 U	57 U	6 U	5.5 U	-
1,3-Dichloropropane	5.2 U	52 U	30 U	56 U	6 U	57 U	6 U	5.5 U	_
1,2-Dibromoethane Isopropylbenzene	5.2 U 5.2 U	5.2 U 5.2 U	30 U 71 J	56 U 56 U	6 U	57 U 57 U	6 U	5.5 U	i
1,2,3-Trichloropropane	5.2 U	5.2 U	30 U	56 U	""	5.7 U	80	5.5 U 5.5 U	=
1,1,1,2-Tetrachioroethane	5.2 U	5.2 U	30 0	5.6 U	80	57 U		5.5 U	=
Bromobenzene	52 U	5.2 U	30 U	5.6 U	80	5.7 U		5.5 U	=
n-propy/benzene	5.2 U	5.2 U	30 U	5.6 U	6 0	57 U	ěŭ	5.5 U	_
2-Chlorotoluene	5.2 U	5.2 U	30 U	56 Ü	6 Ü	5.7 U	δŬ	55 U	-
1,3,5-Trimethylbenzene	5.2 U	5.2 U	110	5.6 U	8 U	57 U	59 J	55 U	-
4-Chiorotoluene	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	5.5 U	
teri-Butytbenzene	5.2 U	5.2 U	30 U	5.6 U	6 U	57 U	17	55 U	_
1,2,4-Trimethylbenzene	5.2 U	5.2 U	110	5.6 U	6 U	57 U	6 U	5.5 U	_
sec-Butylbenzene	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	,6 U	5.5 U	-
p-Isopropyltoluene	5.2 U	52 U	30 U	56 U	6 U	57 U	17	5.5 U	_
Dibromomethane	5.2 U	5.2 U	30 U	56 U	6 U	5.7 U	6 U	5.5 U	-
n-Butylbenzene 1,2-Dibromo-3-Chloropropane	5.2 U 5.2 U	5.2 U	30 U 30 U	5.6 U	6 U	5.7 U	6 U	5.5 U	_
1.2.4-Trichlorobenzene	5.2 U	5.2 U 5.2 U	30 U	5.6 U 5.6 U	6 U	5.7 U 57 U	6 U	5.5 U 5.5 U	780000
Hexachlorobutadiene	5.2 U	5.2 U	30 U	560	80	57 0	80	5.5 U	8000
Naphthalene	5.2 U	5.2 U	30 U	5.6 U	8 U	57 0	6 U I	5.5 U	3100000
MTBE	5.2 U	5.2 U	30 Ŭ	56 U	60	5.7 U	ěŭΙ	5.5 U	1
1,2,3-Trichlorobenzene	5.2 U	5 2 U	30 U	56 U	6 U	57 U	6.0	55 Ų	
Total Conc. VOAs (s)	10	3	771	17	19	24	90	48	10000

OccaPillance

U The correpound was not detected at the Indicated concentration.

J Deta indicates the presence of a compound that reads the Identification criteria. The result to less than the quantitation limit but greater than zero. The concentration given it am agreements value.

B The analyte was found in the Indicatory blank as well as the sample. This Indicates possible informatory contamination of the environmental sample.

Notes:
-- Not established

Sample Depth (ft) 12-14	E01 B08 24-26 24-26 10/10/00 S 1 0 ug/kg 54 U 54 U 54 U 54 U 54 U 54 U	Comparison Value for Areas of Concern ug/kg 300
Sample Depth (ft) 12-14 18-20 12-14 20-22 12-14 20-22 18-20 10/09/00 10/09/00 10/09/00 10/09/00 10/10/00 10/11/00	24-26 10/10/00 S 1 0 ug/kg 54 U 54 U 54 U 6.7	for Areas of Concern ug/kg
Sampling Date 10/09/00 10/09/00 10/11/00 10/11/00 10/11/00 10/11/00 10/11/00 10/11/00 10/11/00 10/11/00 10/11/00 S S S S S S S S S S S S S S S S S S	10/10/00 S 10 ug/kg 5.4 U 5.4 U 5.4 U 5.4 U 6.7	of Concern ug/kg
Matrix	S 10 ug/kg 5.4 U 5.4 U 5.4 U 5.4 U 6.7	ug/kg
Dilution Factor	1 0 ug/kg 5 4 U 5 4 U 5 4 U 5 4 U 6.7	-
Units	ug/kg 5.4 U 5.4 U 5.4 U 5.4 U 6.7	-
Chloromethane 63 U 54 U 52 U 52 U 51	5 4 U 5.4 U 5 4 U 5 4 U 6.7	-
Brommethane	5.4 U 5 4 U 5 4 U 6.7	
Bromomethane	5.4 U 5 4 U 5 4 U 6.7	
Vinyl Chloride 63 U 54 U 52 U 52 U 51 U 52 U 5	5 4 U 5 4 U 6.7	
Chloroethane 63 U 54 U 52 U 51 U 52	5.4 U 6.7	300
Methylene Chloride 31 J 27 J 52 U 52 U 63 U 52 U 51 U <td>6.7</td> <td></td>	6.7	
Trichlorofluoromethane		1
1.1-Dichloroethene 6.3 U 5.4 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U 5.2 U 5.1 U 5.1 U		85000
1.1-Dichloroethane	54 U	1000
trans-1,2-Dichloroethene 63 U 5.4 U 52 U 51 U	5.4 U	7800000
cis-12-Dichloroethene 63 U 54 U 52 U 51 U 52 U	5.4 U	1600000
Chloroform	5.4 U	780000
1,2-Dichloropethane	5.4 U	100000
1.1,1-Trichforbethane 63 U 54 U 52 U 52 U 51 U	5.4 U	7000
Bromodichloromethane	5 4 U	_
1,2-Dichloropropane 63 U 54 U 52 U 51 U 51	54 U	5000
cis-13-Dichloropropene 63 U 54 U 52 U 51 U 52	5.4 U	10000
Trichloroethene	54 U	9000
Dibromochloromethane	54 U	4000
1,1,2-Tnchloroethane	54 U	58000
Benzene	54 U	
1-1.3-Dichlotopropene	5 4 U	11000
2-Chloroethyl Vinyl Ether	5 4 U 5 4 U	22000
Bromoform	54 U	4000
Tetrachloroethene 45 J 54 U 52 U 52 U 51 U 52 U 52 U <td>54 U</td> <td>81000</td>	54 U	81000
1.1.2.2-Tetrachloroethane 63 U 5.4 U 52 Ü 52 Ü 51 Ü 52 Ü 51 Ü	5 4 U	12000
	5 4 U	3000
Toluene	5.4 U	16000000
Chlorobenzene	54 U	1600000
2-Butanone	54 U	- 1
Ethyl Benzene 63 U 54 U 52 U 51 U 52 U 51 U	5 4 U	7800000
m/p-Xylenes 63 U 54 U 52 U 52 U 51 U 52 U 51 U	54 U	160000000
0-Xylene 6.3 U 5.4 U 5.2 U 5.2 U 5.2 U 5.2 U 5.2 U 5.2 U	54 U	160000000
Acetone 19 47 52 U 52 U 51 Ŭ 52 Ŭ 5.1 Ŭ	54 U	7800000
Carbon Disulfide 63 U 5.4 U 52 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2	54 U	7800000
han 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5 4 U	-
	5 4 U	
Styrene	5 4 U 5 4 U	16000000
1.4-Dichlorobenzene 63 U 5.4 U 52 U 52 U 52 U 51 U	5.4 U	27000
1,2-Dichlorobenzene 63 U 54 U 52 U 52 U 51 U 52 U 51 U	5.4 U	7000000
Dichlorodifluoromethane	5 4 U	
Vinyl Acetate	27 Ŭ	78000000
2,2-Dichloropropane 6.3 U 54 U 52 U 51 U 52 U 51 U	54 U	
Bromochloromethane 63 U 54 U 52 U 51 U 52 U 51 U	54 U	-
1,1-Dichloropropene 63 U 5.4 U 5.2 U 5.2 U 5.1 U 5.2 U 5.1 U	54 U	-
1.3-Dichoropropane 63 U 5.4 U 5.2 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.1 U 5.2 U 5.2 U 5.1 U 5.2 U	54 U	-
1.2-Dibromoethane 63.U 54.U 52.U 51.U 52.U 51.U	54 U	-
Isopropylienzene	54 U	_
	5 4 U	
1,1,1,2-Tetrachloroethane	54 U 54 U	_
1.5	54 U	=
2-Chlorotoluene 63 U 54 U 52 U 52 U 52 U 51 U 52 U 51 U	54 U	
1,3,5-Trimethylbenzene 63 U 54 U 52 U 51 U 52 U 5,1 U	54 U	
4-Chlorotoluene 63 U 54 U 52 U 51 U 52 U 51 U	54 U	
tert-Buty/benzene 6.3 U 5.4 U 5.2 U 5.1 Û 5.2 Û 5.1 Û	54 U	_
1,2,4-Trimethylbenzene 6.3 U 54 U 52 U 51 Ü 52 Ü 51 Ü	5.4 U	
sec-Butytbenzene 63 U 54 U 52 U 51 Ü 5.2 U 5.1 Ü	5 4 U	-
D-Isopropyttoluene 63 U 54 U 52 U 51 U 52 U 5.1 U 5.1 U	5 4 U	- '
Dibromomethane	5 4 U	-
	54 U	-
1,2-Dibromo-3-Chloropropane 63 U 5,4 U 52 U 5.1 U 52 U 5.1 U 52 U 5.1 U 52 U 5.1 U 52 U 5.1 U 5.1 U 52 U 5.1	5.4 U	1
1.2.4-Trichlorobenzene	54 U	780000
	54 U	8000
Naphthalene	54 U	
12.3-Trichlorobenzene 63 U 54 U 52 U 51 U 52 U 51 U		3100000
Total Conc. VOAs (s) 27 50 NO NO 6 NO 7	5.4 U 5.4 U	310000

CUBINITIES

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B The analyte was found in the laboratory blank as wall as the sample. This indicates possible laboratory contempation of the environmental sample.

Notes:
--- Not established
ND Not detected

				VOLATILE ORGANIC C	OMPOUNDS				
Sample Location					Tanks/Leaching Pools				
Sample ID Sample Depth (ft)	E01 B09 16-18 16-18	E01 B09 24-26	E01 B11 12-14	E01 B11 20-22	E01 B12 12-14	E01 B12 20-22	E01 B13 12-14	E01 B13 20-22	Comparison Value
Sampling Date	10/10/00	24-26 10/10/00	12-14 10/10/00	20-22	12-14	20-22	12-14	20-22	for Areas
Matrix	s l	10/10/00 S	10/10/00 S	10/10/00 S	10/13/00	10/13/00	10/13/00	10/13/00	of Concern
Dilution Factor	10	10	10	10	S 10	S	\$ 10	S	
Units	ua/ka	ug/kg	υg/kg	ug/kg	ug/kg	υ <u>ο</u> /κο	ug/kg	10 ug/kg	
				97.74	Upra	99.70	Up/ng :	- Odvag	ug/kg
l I									
Chloromethane	51 U	52 U	6 U	5 9 U	56 U	63 U	94 U	61 U	-
Bromomethane Vinvi Chloride	51 U	52 U	6 U	59 U	56 U	63 U	94 U (61 U	-
Chloroethane	5.1 U 5 1 U	52 U	6 U	59 U	56 U	63 U	94 U	6 1 U	300
Methylene Chloride	51 U	52 U 52 U	60	59 U	5 6 U	63 U	9.4 U	61 U	
Trichlorofluoromethane	51 U	52 U	60	59 U 59 U	16 5 6 D	18 63 U	31 94 U	16	85000
1,1-Dichloroethene	รับป	5.2 U	6 U .	59 U	56 U	63 0	94 0	61 U	1000
1,1-Dichioroethane	šiŭ	52 U	6 0	59 U	56 U	630	94 0	61 U	7800000
trans-1,2-Dichloroethene	51 Ü	5.2 U	60	59 Ú	56 U	630	94 11	61 U	1600000
cis-1,2-Dichloroethens	5.1 U	5.2 U	6 Ū	59 U	56 U	63 0	94 0	61 U	780000
Chioroform	51 U	5 2 U	6 ∪	5 9 Ū	56 U	63 U I	9.4 U	6.1 U	100000
1,2-Dichloroethane	51 U	5.2 U	6 U	59 U	56 U	63 U	94 U	61 U	7000
1,1,1-Trichloroethane	51 U	5.2 U	6 U	5 9 U	56 U	63 U	9,4 U	61 U	
Carbon Tetrachloride	51 U	52 U	6 U	5 9 U	56 U	63 U	94 U	61 U	5000
Bromodichioromethane	51 U	5.2 U	6 U	59 U	56 U	63 U	94 U	61 U	10000
1,2-Dichloropropane cle-1,3-Dichloropropene	5.1 U	52 U	6 U	59 U	56 U	63 U	94 U	6.1 U	9000
Trichioroethene	51 U 51 U	5.2 U 5.2 U	6 U	5.9 U 5 9 U	56 U	63 U	94 U	61 U	4000
Dibromochioromethane	510	52 U	80	59 U	56 U 56 U	63 U	94 U	61 U	58000
1,1,2-Trichloroethane	510	5.2 U	80	59 U	56 U	63 U 63 U	94 U 94 U	61 U 6.1 U	11000
Benzene	5.1 U	5.2 U	6 Ü	5 9 U	56 U	63 0	94 0	6.1 U	22000
t-1,3-Dichloropropene	51 U	5.2 U	. šū	59 U	56 U	63 0	94 U	61 U	4000
2-Chloroethyl Vinyl Ether	5.1 U	5.2 U	6 U	59 U	56 U	6.3 U	94 Ŭ	61 U	
Bromoform	51 U	52 U	6 U	59 U	56 U	63 U	94 Ü	61 Ū	81000
Tetrachioroethene	51 U	5.2 U	6 U	5 9 U	56 U	63 U	94 U	61 U	12000
1,1,2,2-Tetrachioroethane	51 U	52 U	6 U	59 U	56 U	63 U	94 U	61 U	3000
Toluene Chloroberizene	51 U 51 U	52 U	6 U	5 9 U	56 U	63 U	94 U	61 U	16000000
2-Butanone	510	5.2 U 5.2 U	6 U 6 U	59 U 59 U	56 U	63 U	9.4 U	61 U	1600000
Ethyl Benzene	5.1 U	5.2 U	80	59 U	56 U 56 U	6.3 U	94 U	61 U	-
m/p-Xylenes	5 1 U	5.2 U	6 0	59 U	14 J	63 U 63 U	94 U	61 U 61 U	7800000 180000000
o-Xylene	51 Ŭ	5.2 U	60	5 9 U	56 U	63 U	94 Ŭ	61 U	160000000
Acetone	5.1 U	5.2 U	6 Ŭ	5 9 Ŭ	56 U	63 U	94 Ŭ	61 U	7800000
Carbon Disulfide	5.1 U	5.2 U	6 U	5 9 Ū	56 U	63 U	94 Ŭ	61 0	7800000
4-Methyl-2-Pentanone	51 U	5.2 U	6 U	59 U	56 U	63 U	94 U	61 Ū	_
2-Hexanone	510	52 U	6 U	5.9 U	56 U	63 U	94 U	6.1 U	-
Styrene 1,3-Dichlorobenzene	51 U 51 U	52 U 52 U	6 U 6 U	5 9 U	56 U	63 U	9.4 U	61 U	16000000
1,4-Dichlorobenzene	5.1 U	52 U	80	59 U 5.9 U	56 U 56 U	63 U	94 U	61 U	
1,2-Dichlorobenzene	51 U	52 U	80	5.9 U	56 U	6.3 U 63 U	94 U 94 U	61 U	27000 7000000
Dichlorodifluoromethane	5.1 Ŭ	5.2 U	60	5.0 U	56 U	63 0	94 0	6.1 U 6 1 U	700000
Vinyl Acetate	26 U	26 U	30 Ŭ	29 U	28 U	32 U	47 Ŭ	30 U	78000000
2,2-Dichloropropane	51 U	5.2 U	6 Ŭ	59 U	56 U	63 0	94 0	61 U	
Bromochloromethane	5.1 U	5.2 U	6 U	5 9 U	56 U	6.3 U	94 U	81 U	l –
1,1-Dichloropropene	5.1 U	5.2 U	6 U	5.9 U	56 U	63 U	94 U	6.1 U	-
1,3-Dichloropropane 1,2-Dibromoethane	510	5.2 U	6 U	5.9 U	56 U	63 U	94 U	6.1 U	-
leopropythenzene	51 U 51 U	5.2 U 5.2 U	6 U 6 U	59 U 59 U	56 U 56 U	63 U	94 U	6.1 U	-
1,2,3-Trichloropropane	51 U	5.2 U	80	59 U	56 U	63 U	94 U 94 U	6.1 U 6.1 U	-
1,1,1,2-Tetrachlorgethane	51 U	5.2 U	60	59 U	56 U	6.3 U	94 U	6.1 U	_
Bromobenzene	510	5.2 U	60	59 U	56 U	63 0	94 U	61 U	
n-propylbenzene	510	5.2 U	6 Ŭ	5 9 U	56 U	63 0	94 0	61 U	_
2-Chiorotoluene	5.1 U	5.2 U	6 Ü	59 U	56 U	630	94 U	6.1 U	_
1,3,5-Trimethylbenzene	51 U	5.2 U	6 U	5.9 U	56 U	6.3 Ū	94 U	61 Ü	_
4-Chlorotoluene	51 U	5.2 U	6 U	5.9 U	56 U	6.3 U	94 U	61 U	_
tert-Butylbenzene	5.1 U	5.2 U	6 U	5.9 U	6.6 U	63 U	94 U	6.1 U	_
1,2,4-Trimethylbenzene	5.1 U	5.2 U	6 U	5.9 U	56 U	63 U	9.4 U	6.1 U	-
sec-Butylbenzene p-isopropylioluene	5.1 U 5.1 U	5.2 U 5.2 U	6 U 6 U	5.9 U 5.9 U	56 U	63 U	94 U	61 U	-
Dibromomethane	5.1 U	5.2 U	80	5.9 U	5.6 U 5.6 U	6.3 U 6.3 U	94 U 94 U	6.1 U 6.1 U	_
n-Butylbenzene	5.1 U	5.2 U		5.9 U	5.6 U	6.3 U	94 U	6.1 U 6.1 U	
1,2-Dibromo-3-Chioropropane	5.1 U	5.2 U	6 Ŭ	5.9 U	5.0 U	6.3 U	9.4 U	6.1 U	=
1,2,4-Trichlorobenzene	5.1 U	5.2 U	ěŭ	5 9 U	5.6 U	6.3 U	9.4 U	6.1 U	780000
Hexachlorobutadiene	5.1 U	5.2 U	6 U	5.9 U	56 U	6.3 U	9.4 U	6.1 U	8000
Naphthalene	5.1 U	5.2 U	6 U	1.9 J	5.6 U	6.3 ∪	9.4 Ú	6.1 Ų	3100000
MTBE	5.1 U	5.2 U	6 U I	5.9 U	5.6 U	8.3 U	9.4 U	6.1 U	
1									
1,2,3-Trichlorobenzene Total Conc. VOAs (s)	51 U ND	5.2 U ND	6 U ND	59 U	5.6 U	63 Ú	94 U 31	6.1 U	10000

J Date infloates the processor of a compound that made the identification criteria. The result is loss.

The concentration given is an approximate value.

B The analyte was found in the laboratory blank as well as the comple. This indicates possible laboratory.

				VOLATILE ORGANIC C	OMPOUNDS	_			
Sample Location Sample ID	Former Settling Ta E01 B14 12-14	nks/Leaching Pools E01 B14 18-20	E2 B01 12-14	E2 B01 20-22	Six Forme	r Leaching Pools			
Sample Depth (ft)	12-14	18-20	12-14	20-22 20-22	E2 B02 6-8' 6-8	E2 B02 14-16 14-16	E2 B03 12-14	E2 B03 20-22	Companson Value
Sampling Date	10/09/00	10/09/00	09/29/00	09/29/00	09/28/00	09/28/00	12-14 09/29/00	20-22 09/29/00	for Areas
Matrix	S	S	V3/25/50	S .	03/20/00 S	09/20/00 S	09/29/00 S	09/29/00 S	of Concern
Dilution Factor	10	10	1.0	1.0	1.0	1.0	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
								44.14	
Chi									
Chloromethane	53 U	5.1 U	5.1 U	5.2 U	54 U	52 U	5 2 U	5 3 U	
Bromomethane Vinyl Chloride	5.3 U 53 U	5.1 U	510	5 2 U	54 U	5.2 U	5.2 U	5,3 U	-
Chloroethane	5.3 U	5.1 U 5.1 U	51 U 51 U	52 U	54 U	52 U	5.2 U	5 3 U	300
Methylene Chloride	52 J	5.1 U	59	52 U 56	54 U	5.2 U	5.2 U	53 U	
Trichlorofluoromethane	5.3 U	51 U	510	52 U	23 J 54 U	14 J 5.2 U	5 J 5 2 U	7.1 5.3 U	85000
1,1-Dichloroethene	5.3 U	5.1 U	51 U	52 U	54 U	5.2 U	52 U	5.3 U	1000
1,1-Dichloroethane	5.3 U	5.1 U	51 U	5.2 U	5.4 U	5.2 U	52 U	53 U	7800000
trans-1,2-Dichloroethene	5,3 U	5,1 U	51 U	52 U	5 4 U	5.2 U	52 U	53 U	1600000
cis-1,2-Dichloroethene	53 U	51 U	51 U	5.2 U	54 U	52 U	5.2 U	5.3 U	780000
Chloroform	5.3 U	5.1 U	51 U	5 2 U	54 U	52 U	5.2 U	53 U	100000
1,2-Dichloroethane	5.3 U	5.1 U	5 1 U	5.2 U	54 Ú	5 2 U	5 2 U	5.3 U	7000
1,1,1-Trichloroethane	5.3 U	51 U	5.1 ป	5.2 U	54 U	5 2 U	5.2 U	53 U	
Carbon Tetrachloride	53 U	51 U	5.1 U	52 U	54 U	5.2 U	5.2 U	5.3 U	5000
Bromodichioromethane	53 U	5.1 U	5.1 U	5.2 U	5.4 U	52 U	5.2 U	5.3 U	10000
1,2-Dichloropropane cis-1,3-Dichloropropene	5,3 U	51 U	5.1 U	5.2 U	5.4 U	5.2 U	5.2 U	5 3 U	9000
Trichloroethene	53 U 5.3 U	510	5.1 U	5.2 U	54 U	5.2 U	5.2 U	53 U	4000
Dibromochloromethane	5.3 U 53 U	51 U 51 U	5.1 U 51 U	5.2 U	54 U	5.2 U	5.2 U	53 U	58000
1,1,2-Trichloroethane	5.3 U	5.1 U	5.1 U	52 U 52 U	5.4 U 5 4 U	5.2 U	52 U	5.3 U	
Benzene	5.3 U	51 U	5.1 U	5.2 U	54 U	5.2 U 5.2 U	5.2 U 5 2 U	5.3 U	11000
t-1,3-Dichloropropene	5.3 U	51 U	51 U	52 U	54 U	5.2 U	52 U	53 U 53 U	22000 4000
2-Chloroethyl Vinyl Ether	5.3 U	5.1 U	5.1 U	52 U	5.4 U	5.2 U	52 U	5.3 U	4000
Bromoform	53 U	51 Ü	5.1 U	5.2 U	5 4 U	5 2 U	5.2 U	5.3 U	81000
Tetrachloroethene	5.3 U	1.6 J	51 U	52 U	54 U	5.2 U	5.2 U	53 U	12000
1,1,2,2-Tetrachioroethane	5.3 U	5.1 U	51 U	5 2 U	54 U	5.2 U	5 2 U	5 3 U	3000
Toluene	53 U	51 U	5.1 U	5,2 U	5 4 U	5.2 U	52 U	53 U	16000000
Chlorobenzene	53 U	5,1 U	51 U	52 U	54 U	5 2 U	52 U	5 3 U	1600000
2-Butanone	26 J	5.1 U	51 U	5 2 U	54 U	5 2 U	5 2 U	5 3 U	
Ethyl Benzene m/p-Xylenes	53 U 53 U	510	51 U	52 U	5 4 U	5 2 U	5 2 U	53 U	7800000
o-Xylene	53 U	5.1 U 5 1 U	5.1 U 51 U	52 U 52 U	5 4 U 5 4 U	52 U	52 U	53 U	160000000
Acetone	6.1	91	5.1 U	52 U	12	5 2 U 5.2 U	52 U 52 U	53 U	160000000 7800000
Carbon Disulfide	53 U	51 U	51 U	52 U	54 11	5.2 U	52 U	5.3 U 5.3 U	7800000
4-Methyl-2-Pentanone	5.3 U	51 U	51 U	5.2 U	5 4 U	52 U	5.2 U	5.3 U	700000
2-Hexanone	53 U	51 U	5,1 U	5 2 U	54 U	52 U	52 U	53 U	
Styrene	53 U	51 U	51 U	5 2 U	5.4 U	5 2 U	52 U	53 U	16000000
1,3-Dichlorobenzene	53 U	5.1 U	51 U	52 U	54 U	5 2 U	52 U	5 3 U	
1,4-Dichlorobenzene	5.3 U	5.1 U	51 U	5.2 U	5 4 U	5 2 U	5 2 U	5.3 U	27000
1,2-Dichlorobenzene Dichlorodifluoromethane	53 U 5.3 U	51 U 51 U	51 U	5.2 U	54 U	5 2 U	5 2 U	5.3 U	7000000
Vinyl Acetate	26 U	26 U	26 U	5 2 U	54 U	52 U	5 2 U	5 3 U	
2,2-Dichloropropane	5.3 U	5.1 U	51 U	52 U	27 U 5.4 U	26 U 5 2 U	26 U	27 U	78000000
Bromochloromethane	53 U	5.1 U	51 U	52 U	5.4 U	5.2 U	5.2 U 5 2 U	5.3 U 5 3 U	
1,1-Dichioropropene	53 U	51 0	51 U	52 U	54 U	5.2 U	52 U	53 U	_
1,3-Dichloropropane	5.3 U	5.1 U	51 U	5 2 U	54 U	52 U	5.2 U	53 U	
1,2-Dibromoethane	53 U	51 U	5.1 ป	5.2 U	5 4 U	52 U	5.2 U	53 U	
Isopropylbenzene	53 U	51 U	51 ป	5 2 U	5 4 U	5.2 U	52 U	5.3 U	_
1,2,3-Trichloropropane	5.3 U	5.1 U	51 U	52 U	5 4 U	5.2 U	52 U	5.3 U	
1,1,1,2-Tetrachloroethane	5.3 U	5.1 U	51 U	52 U	54 U	52 U	52 U	5 3 U	
Bromobenzene	53 U	5.1 U	51 U	52 U	54 U	52 U	5.2 U	53 U	- 1
n-propylbenzene 2-Chlorotoluene	5.3 U 53 U	5.1 U 5 1 U	51 U	52 U	5 4 U	52 U	52 U	53 U	-
1,3,5-Trimethylbenzene	53 U	5.1 U	5,1 U 5,1 U	52 U	5.4 U	52 U	52 U	53 U	-
4-Chlorotoluene	53 U	5.1 U	5.1 U 5.1 U	5.2 U 5 2 U	5 4 U 5.4 U	52 U 5.2 U	52 U	5.3 U	
tert-Butylbenzene	53 U	51 U	5.1 U	52 U	5.4 U 5.4 U	5.2 U 52 U	5.2 U 5.2 U	5.3 U 5.3 U	_
1,2,4-Trimethylbenzene	5.3 U	5.1 U	510	52 U	54 U	52 U	5.2 U 5 2 U	5.3 U 53 U	
sec-Butylbenzene	53 U	5.1 U	510	52 U	54 U	52 U	52 U	53 U	
p-Isopropyttoluene	5.3 U	5.1 U	510	5.2 U	54 U	52 U	5.2 U	53 U	
Dibromomethane	5.3 U	51 U	5.1 U	5.2 U	5.4 U	5.2 U	5.2 U	5.3 U	
n-Butylbenzene	53 U	51 U	51 U	52 U	5.4 U	52 U	52 U	53 U	-
1,2-Dibromo-3-Chloropropane	53 U	5.1 U	51 បូ	5 2 U	5 4 U	52 U	5.2 U	53 U	
1,2,4-Trichlorobenzene	5.3 U	5.1 U	51 U	52 U	5.4 U	52 U	5 2 U	53 U	780000
Hexachlorobutadiene	5.3 U	51 U	5.1 U	52 U	54 U	52 U	5.2 U	5.3 U	8000
Naphthalene MTBE	5.3 U	5.1 U	51 0	5 2 U	54 U	5.2 U	52 U	53 U	3100000
1,2,3-Trichlorobenzene	5.3 U 5 3 U	51 U 51 U	5.1 U 51 U	5 2 U	54 U	5.2 U	5.2 U	53 U	-
Total Conc. VOAs (s)	14	93	51 0	5.2 U	5 4 U	52 U	520	5.3 U	40000
Livial Collo. VOAS (S)	. 14	83			14	1	5	7	10000

Qualifiers

U The compound was not detected at the indicated concentration

J Data Indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration prime is an approximate value.

8. The analyte was found in the laboratory blank as well as the zemple. This indicates possible taboratory contamination of the environmental sample.

Notes; --- Not established

				VOLATILE ORGANIC C					
Sample Location	Six Former L	eaching Pools			at Drainage Wells		Former (
Sample ID Sample Depth (ft)	E2 B04 12-14 12-14	E2 804 24-26 24-26	E03 B01 16-18 16-18	E03 B01 22-24	E03 B02 14-16	E03 B02 20-22	E04 B01 8-10	E04 B01 18-20	Comparison Value
Sampling Date	09/29/00	09/29/00	10/10/00	22-24 10/10/00	14-16 10/10/00	20-22 10/10/00	8-10 10/12/00	18-20	for Areas
Matrix	S	S S	i i i i i i i i i i i i i i i i i i i	iuriuw s	S	iuriurou S	10/12/00	10/12/00 S	of Concern
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
la									1
Chioromethane Bromomethane	5,1 U 5 1 U	55 U	56 U	6 U	59 U	63 U	6 U	5.2 U	-
Vinyl Chloride	51 U	5 5 U 5.5 U	56 U 56 U	6 U	59 U 59 U	63 U 63 U	6 U 6 U	5.2 U 5.2 U	300
Chloroethane	51 U	5.5 U	5.6 U	6 U	59 U	63 U	8 0	5.2 U	300
Methylene Chloride	45 J	6	5 6 U	6 Ŭ	59 U	63 U	38 1	31 J	85000
Trichiorofluoromethane	5.1 U	5 S U	56 U	ě ŭ l	59 U	63 Ŭ		52 U	-
1,1-Dichloroethene	51 U	55 U	56 Ü	6 Ū	59 U	63 U	6 Ŭ	5.2 Ŭ	1000
1,1-Dichloroethane	51 U	55 U	56 U	6 U	59 U	63 U	6 U	5.2 U	7800000
trans-1,2-Dichloroethene	51 U	55 U	56 U	6 U	59 U	6.3 U	6 U	52 U	1800000
cls-1,2-Dichloroethens Chloroform	5.1 U	5.5 U	56 U	6 U	59 U	63 U	6 U	52 U	780000
1,2-Dichloroethane	51 U 51 U	55 U 55 U	560	6 U	59 U	63 U	6 U	52 U	100000
1,1,1-Trichloroethane	51 U	5.5 U	56 U 56 U	6 U 6 U	59 U 59 U	63 U 63 U	8 U	5.2 U	7000
Carbon Tetrachloride	510	5.5 U	56 U	6 U	59 U	830	6 U	5.2 U 5.2 U	5000
Bromodichioromethane	51 U	5.5 U	560	6 U	59 U	63 0	انةا	5.2 U 5.2 U	10000
1,2-Dichloropropane	810	55 U	560	ěŭ	59 U	63 Ŭ	ا نَّهُ ا	52 U	9000
cls-1,3-Dichloropropene	51 U	5.5 U	56 U	6 Ü	59 U	63 Ŭ	ěŭ !	5.2 U	4000
Trichloroethene	51 U	55 U	56 U	6 U	59 U	63 U	60	52 U	58000
Dibromochloromethane	51 U	55 U	56 U	6 U	59 U	63 U	6 U	5 2 U	- I
1,1,2-Trichloroethane	51 U	5.5 U	56 U	6 U	59 U	63 U	60	5.2 U	11000
Benzene I-1,3-Dichloropropene	5.1 U	5.5 U	56 U	6 U	5 9 U	63 U	6 U	5.2 U	22000
2-Chloroethyl Vinyl Ether	51 U 51 U	5.5 U 55 U	56 U 56 U	6 U	59 U 59 U	6.3 U 63 U	6 U 6 U	5.2 U 5.2 U	4000
Bromoform	5.1 0	55 U	5611	8.0	59 U	63 0	80	5.2 U	81000
Tetrachioroethene	51 U	5.5 U	56 U	6 Ŭ	59 U	6.3 Ŭ	6 U	5.2 U	12000
1,1,2,2-Tetrachloroethane	5.1 U	55 Ú	56 Ü	δŬ	59 U	63 U	ěŭ	5.2 U	3000
Toluene	51 U	55 U	56∪	6 U	59 U	63 U	6 U	5.2 U	16000000
Chlorobenzene	5.1 U	55 U	56 U	6 U	59 U	63 U	6 U	52 U	1600000
2-Butanone	5.1 U	5.5 U	56 U	6 U	59 U	63 U	6 U	5.2 U	I
Ethyl Benzene m/p-Xylenes	5.1 U 5 1 U	5.5 U	56 U	6 U	59 U	63 U	6 U	52 U	7800000
o-Xviene	5.1 U	5.5 U 5.5 U	56 U 56 U	6 U 6 U	59 U	6.3 U 63 U	6 U 6 U	52 U 52 U	16000000 16000000
Acetone	5.1 U	5.5 U	56 U	6 U	59 U	63 U	6 U	5.2 U	7800000
Carbon Disulfide	51 U	55 U	56 U		59 U	63 0	6 Ŭ	5.2 U	7800000
4-Methyl-2-Pentanone	51 U	55 U	56 U	6 Ú	59 U	63 U	6 Ü	5.2 U	-
2-Hexanone	51 U	5.5 U	56 U	6 U	59 U	63 U	6 U	52 U	•••
Styrene	5.1 U	55 U	56 U	6 U	59 U	63 U	6 U	52 U	16000000
1,3-Dichlorobenzene 1,4-Dichlorobenzene	51 U 51 U	55 U 55 U	56 U 56 U	6 U	59 U	63 U	6 U	52 U	
1.2-Dichlorobenzene	510	55 U	56 U	6 U 6 U	59 U 59 U	63 U 63 U	6 U 6 U	5 2 U 5 2 U	27000 7000000
Dichlorodifluoromethane	510	55 U	560	6 0	59 U	63 0	6 U	52 U	/0000
Vinyl Acetate	25 U	27 U	28 U	30 U	29 Ú	31 0	30 U	26 U	78000000
2,2-Dichloropropane	51 Ü	5.5 U	56 U	6 U	59 U	63 U	6 Ü	52 U	_
Bromochioromethane	510	55 Ú	56 Ü	6 Ü	59 Ü	63 Ü	6 U	5.2 U	-
1,1-Dichioropropene	5.1 U	5.5 U	56 U	6 U	59 U	63 U	6 U	5.2 U	-
1,3-Dichioropropene 1,2-Dibromoethane	510	5.5 U	56 U	6 U	59 U	63 U	6.0	52 U	-
1,2-Otoromoethane Isopropylbenzene	5.1 U 5.1 U	55 U 55 U	56 U 56 U	6 U 6 U	59U	63 U 63 U	6 U 6 U	52 U	-
1,2,3-Trichloropropane	5.1 U	55 U	56 U	60	59U	63 0	6 U	52 U 52 U	=
1,1,1,2-Tetrachloroethane	510	5.5 U	560	6 0	590	6.3 U	8 0	52 U	=
Bromobenzene	510	5.5 U	560	6 0	59 U	6.3 U	8 U	5.2 U	
n-propylbenzene	5.1 U	5.5 U	56 U	6 U	59 U	63 Ú	6 บั	5.2 U	
2-Chlorotoluene	51 U	5.5 U	5 6 U	6 Ú	59 Ü	63 U	6 U	5.2 U	-
1,3,5-Trimethylbenzene	51 U	55 U	56 U	6 U	59 U	63 U	6 U	5.2 U	- 1
4-Chlorotoluene	5.1 U	55 U	56 U	6 U	59 U	6.3 U	6 U	5.2 U	-
tert-Butytbenzene	5.1 U	55 U	5.6 U	6 U	59 U	63 U	6 U	5.2 U	
1,2,4-Trimethylbenzene sec-Butylbenzene	5.1 U 5.1 U	5.5 U 5.5 U	56 U	6 U	59 U	6.3 U	6 U	5.2 U	-
p-leopropytioluene	5.1 U 5.1 U	5.5 U	56 U 56 U	6 U 6 U	59 U 59 U	63 U 63 U	6 U	5.2 U 5.2 U	_
Dibromomethane	5.7 U	5.5 U	56 U	6 U	59U	6.3 U	80	5.2 U	_
n-Butylbenzene	510	5.5 U	560	8 0	59 U	6.3 U	8 0	5.2 U	
1,2-Dibromo-3-Chloropropane	51 U	55 U	56 U	δŬ	59 Ŭ	63 U		5.2 U	_
1,2,4-Trichiorobenzene	5.1 U	55 U	5.6 U	6 U	5.9 U	63 U	6 U	5.2 U	780000
Hexachlorobutadiene	5.1 U	5.5 U	56 U	6 U	5.9 U	6.3 U	6 U	5.2 U	8000
Naphthalene	5.1 U	55 U	56 U	6 U	59 U	6.3 U	6 U	5.2 U	3100000
MTBE 1,2,3-Trichiorobenzene	5.1 U	5.5 U	56 U	6 U	59 U	6.3 U	6 U	5.2 U	-
Total Conc. VOAs (s)	5.1 U	5.5 U	5 6 U	6 U ND	59 U	6.3 U ND	6 U	5.2 U	10000
TOWN CORE. YORK (8)	<u> </u>		LNU	ND ND	NO.	L NO	4	3	10000

Sample Location	и			I a a a bil	an Deal Asses				
Sample Location Sample ID	E6 B01 10-12	E6 B01 20-22	E6 B02 10-12	E6 B02 20-22	ng Pool Area E6 B03 10-12	E6 B03 20-22	E6 B04 10-12	E6 B04 20-22	Companson Value
Sample Depth (ft)	10-12	20-22	10-12	20-22	10-12	20-22	10-12	20-22	for Areas
Sampling Date	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/05/00	10/05/00	of Concern
Matrix	l s l	s	s	s	S	s	s	S	5, 55,,,55,,,
Dilution Factor	10	1.0	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	52 U	52 U							
Bromomethane	5.2 U	5.2 U	53 U 53 U	5 2 U 5.2 U	52 U	52 U	5.2 U	57 U	_
Vinyl Chloride	52 U	52 U	53 U	5.2 U	52 U 52 U	5 2 U 5.2 U	5 2 U 5 2 U	5 7 U 5.7 U	300
Chloroethane	52 0	52 U	53 U	52 U	52 U	5.2 U	5.2 U	5.7 U	300
Methylene Chloride	5.2 U	5.2 U	53 U	5 2 U	5.2 U	52 U	2.7 J	35 J	85000
Trichlorofluoromethane	52 U	52 U	5 3 U	5 2 U	52 U	5,2 U	5.2 U	57 U	
1,1-Dichloroethene	52 U	5.2 U	53 U	52 U	52 U	52 U	52 U	57 U	1000
1,1-Dichloroethane	52 U	5.2 U	53 U	52 U	52 U	52 U	5.2 U	57 U	7800000
trans-1,2-Dichloroethene	52 U	52 U	53 U	52 U	52 U	52 U	5.2 U	57 U	1600000
cis-1,2-Dichioroethene	5.2 U	52 U	53 U	5 2 U	5.2 U	52 U	52 U	57 U	780000
Chloroform 1,2-Dichloroethane	52 U 52 U	5.2 U 5.2 U	53 U 5,3 U	5.2 U 5 2 U	52 U	5.2 U	52 U	57 U	100000
1,1,1-Trichloroethane	5.2 U	5.2 U	53 U	52 U	5.2 U 5 2 U	5.2 U 5 2 U	5 2 U 5 2 U	57 U 57 U	7000
Carbon Tetrachioride	52 U	5.2 U	5.3 U	52 U	52 U	52 U	52 U	57 U	5000
Bromodichloromethane	5.2 Ū	52 U	53 U	52 U	52 U	5.2 U	5.2 U	57 U	10000
1,2-Dichloropropane	52 U	52 U	53 U	5.2 U	5.2 U	5.2 U	52 U	5.7 U	9000
cis-1,3-Dichloropropene	5.2 U	52 U	53 U	52 U	5 2 U	5 2 U	5.2 U	57 U	4000
Trichloroethene	52 U	52 U	53 U	5 2 U	5 2 U	5 2 U	5 2 U	57 U	58000
Dibromochloromethane	52 U	52 U	53 tf	52 U	5 2 U	52 U	5 2 U	57 U	
1,1,2-Trichloroethane	52 U	5.2 U	53 U	52 U	5.2 U	5 2 U	5 2 U	5,7 U	11000
Benzene	5.2 U	52 U	5.3 U	52 U	52 U	52 U	5.2 U	57 U	22000
t-1,3-Dichloropropene 2-Chloroethyl Vinyl Ether	5.2 U 5 2 U	52 U 52 U	53 U 53 U	52 U 52 U	5.2 U 5 2 U	5.2 U	5.2 U	57 U 57 U	4000
Bromoform	5.2 U	52 U	5.3 U	52 U	52 U	5.2 U 5 2 U	5 2 U 5.2 U	5.7 U	81000
Tetrachloroethene	52 U	5.2 U	53 U	5.2 U	5.2 U	52 U	52 U	5.7 U	12000
1,1,2,2-Tetrachioroethane	5.2 U	52 U	53 U	52 U	5 2 U	52 U	5.2 U	57 U	3000
Toluene	52 U	5.2 U	53 U	52 U	5 2 U	5.2 U	52 U	5.7 U	16000000
Chlorobenzene	52 U	52 U	53 U	52 U	5.2 U	5 2 U	5.2 U	57 U	1600000
2-Butanone	5.2 U	52 U	53 U	52 U	5 2 U	52 U	5.2 U	5 7 U	
Ethyl Benzene	5.2 U	5.2 U	53 U	52 U	5 2 U	5.2 U	52 U	5.7 U	7800000
m/p-Xylenes o-Xylene	5.2 U 5.2 U	5.2 U 5 2 U	53 U 53 U	52 U	5.2 U	5.2 U	5.2 U	5.7 U	160000000
Acetone	52 U	52 U	53 U	5.2 U 5.2 U	5.2 U 5.2 U	5 2 U 5.2 U	52 U 40	5 7 U 27	160000000 7800000
Carbon Disulfide	5.2 U	5.2 U	53 U	5.2 U	5.2 U	5.2 U	52 U	57 U	7800000
4-Methyl-2-Pentanone	52 U	5.2 U	53 U	5.2 U	5.2 U	5.2 U	52 U	5.7 U	700000
2-Hexanone	5.2 U	5.2 U	53 Ú	5 2 U	5.2 U	5 2 U	52 U	5.7 U	-
Styrene	52 U	5.2 U	53 U	5.2 U	5 2 U	5.2 U	52 U	5.7 U	16000000
1,3-Dichlorobenzene	5.2 U	52 U	53 U	5.2 U	5.2 U	52 U	5 2 U	5.7 U	
1,4-Dichlorobenzene	5.2 U	52 U	53 U	52 U	5.2 U	52 U	52 U	5.7 U	27000
1,2-Dichlorobenzene Dichlorodifluoromethane	5.2 U 5.2 U	52 U 52 U	53 U	52 U	52 U	5.2 U	52 U	5.7 U	7000000
Vinyl Acetate	26 U	26 U	53 U 26 U	5.2 U 26 U	5.2 U 26 U	5 2 U 26 U	5 2 U 26 U	5 7 U 29 U	7800000
2,2-Dichloropropane	52 U	5.2 U	53 U	52 U	5.2 U	52 U	52 U	29 U 5.7 U	/800000
Bromochloromethane	5.2 U	52 U	53 U	5.2 U	5.2 U	5.2 U	52 U	57 U	_
1,1-Dichloropropene	5.2 U	5.2 U	53 U	52 U	52 U	5.2 U	520	57 U	
1,3-Dichloropropane	52 U	5.2 U	53 U	5 2 U	5 2 U	5.2 U	52 U	57 U	-
1,2-Dibromoethane	52 U	52 U	5,3 U	5 2 U	5 2 U	52 U	5.2 U	57 U	-
Isopropyibenzene	52 U	5.2 U	53 U	5.2 U	52 U	5.2 U	5 2 U	5.7 U	_
1,2,3-Trichloropropane 1,1,1,2-Tetrachloroethane	52 U 5.2 U	5 2 U 5.2 U	53 U	52 U	52 U	5.2 U	5.2 U	5.7 U	-
Bromobenzene	5.2 U	5.2 U	5,3 U 5,3 U	5 2 U 5 2 U	5.2 U 5.2 U	52 U 52 U	52 U	5.7 U	-
n-propylbenzene	5.2 U	5.2 U	5.3 U	5.2 U	5.2 U	5.2 U	5 2 U 5.2 U	5.7 U 5.7 U	
2-Chlorotoluene	52 U	5.2 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	57 U	
1,3,5-Trimethylbenzene	5.2 U	5.2 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	57 U	_
4-Chiorotoluene	5.2 U	5 2 U	53 U	5.2 U	52 U	5.2 U	5.2 U	57 U	_
tert-Butylbenzene	52 U	52 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	5.7 U	
1,2,4-Trimethylbenzene	5.2 U	5.2 U	53 U	5.2 U	52 U	5.2 U	5 2 U	5.7 U	- - -
sec-Butylbenzene	5.2 U	5.2 U	53 U	52 U	5.2 U	5.2 U	5.2 U	57 U	1 - 1
p-isopropyttoluene	5.2 U	5.2 U	53 U	52 U	5.2 U	5.2 U	5.2 U	5.7 U	-
Dibromomethane	5.2 U	5.2 U	5.3 U	52 U	5.2 U	5.2 U	52 U	5.7 U	-
n-Butytbenzene 1,2-Dibromo-3-Chloropropane	5.2 U 5.2 U	5.2 U 5.2 U	5 3 U 5.3 U	52 U 52 U	52 U	5.2 U	5.2 U	5.7 U	
1.2.4-Trichlorobenzene	5.2 U	5.2 U	5.3 U	5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	5.7 U 5 7 U	780000
Hexachlorobutadiene	5.2 U	5.2 U	5.3 U	52 U	5.2 U	5.2 U	5.2 U	5.7 U	8000
Naphthalene	5.2 U	5.2 U	53 U	5.2 U	520	5.2 U	5.2 U	57 U	3100000
MTBE	5.2 U	5.2 U	5.3 U	5.2 U	52 U	52 U	5.2 U	5.7 Ü	
1,2,3-Trichlorobenzene	5.2 U	5.2 U	53 U	5.2 U	52 U	5.2 U	52 U	5.7 U	
Total Conc. VOAs (s)	ND .	ND	ND	ND	ND	ND	43	31	10000

Qualifiers
U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B The ensiyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Sample Location	1		Leaching	Pool Area			Nilas I asah	las Basis	r
Sample ID	E6 805 3-5	E6 B05 12-14	E06 B06 8-10	E06 B06 16-18	E06 809 10-12	E06 B09 20-22	Nine Leach E7 B01 14-16	E7 B01 18-20	Comparison Value
Sample Depth (ft)	3-5	12-14	8-10	16-18	10-12	20-22	14-16	18-20	for Areas
Sampling Date	10/05/00	10/05/00	10/10/00	. 10/10/00	10/04/00	10/04/00	09/20/00	09/20/00	of Concern
Matrix Dilution Factor	\$	S	S	\$	s	S	S	\$	
Units	10 ug/kg	10 ug/kg	10 ug/kg	1.0 ug/kg	10 ug/kg	1.0 ug/kg	10	10 ua/ka	
	797	Ugrag	- Up Ng		- Up Kg	Ugrig	ug/kg	Ug/kg	ug/kg
a.	1						1		
Chioromethane Bromomethane	5.2 U	5.2 U	5.7 U	53 U	53 U	52 U	51 U	5 2 U	→
Vinyl Chloride	5.2 U 5.2 U	5.2 U 5.2 U	57 U 57 U	5.3 U 5.3 U	53 U 53 U	5.2 U	51 U	52 U	
Chloroethane	5.2 U	52 U	57 11	53 U	53 U	52 U 52 U	51 U 51 U	5.2 U 5.2 U	300
Methylene Chloride	2 1	34 J	57 Ŭ	53 U	53 U	52 U	34 1	39.1	85000
Trichiorofluoromethane	5.2 U	52 U	57 U	53 U	53 U	5.2 U	51 U	52 U	_
1,1-Dichloroethene	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	1000
1,1-Dichloroethane trans-1,2-Dichloroethene	5.2 U 52 U	5.2 U 5.2 U	5.7 U 57 U	53 U	53 U	5.2 U	51 U	5 2 U	7800000
cie-1.2-Dichloroethene	5.2 U	5.2 U	5.7 U	53 U 53 U	53 U 53 U	5.2 U 5.2 U	51 U 51 U	5 2 U 5 2 U	1600000 780000
Chloroform	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	510	52 U	100000
1,2-Dichloroethane	52 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	7000
1,1,1-Trichloroethane	5.2 U	5.2 U	57 U	53 U	5.3 U	5.2 U	51 U	5.2 U	_
Carbon Tetrachloride Bromodichloromethane	5.2 U	5.2 U	5.7 U	53 U	53 U	5.2 U	51 U	5.2 U	5000
1,2-Dichloropropane	5.2 U 5.2 U	5 2 U 5.2 U	57 U 57 U	53 U	53 U	5.2 U	51 U	5.2 U	10000
cie-1,3-Dichloropropene	5.2 U	52 U	57 U	5.3 U 5.3 U	53 U 53 U	5.2 U S.2 U	51 U 51 U	5.2 U 5.2 U	9000 4000
Trichloroethene	5.2 U	5.2 U	57 U	5.3 U	53 U	5.2 0	51 U	5.2 U 52 U	4000 58000
Dibromochioromethane	5.2 U	5.2 U	57 Ŭ	53 U	53 U	5.2 U	510	5.2 U	
1,1,2-Trichloroethane	5.2 U	5 2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	11000
Benzene	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	5.1 U	5.2 U	22000
1-1,3-Dichloropropene 2-Chloroethyl Vinyl Ether	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	4000
Bromoform	5.2 U 52 U	5.2 U 5 2 U	57 U 57 U	53 U 53 U	53 U 53 U	52 U 52 U	51 U 1	5.2 U	
Tetrachioroethene	5.2 U	14 J	5.7 U	53 U	530	5.2 0	510	52 U 52 U	81000 12000
1,1,2,2-Tetrachloroethane	5.2 U	5.2 U	57 Ŭ	53 U	53 U	5.2 U	510	52 U	3000
Toluene	5.2 U	5.2 U	57 Ū	53 U	53 U	5.2 U	51 U	5.2 U	16000000
Chlorobenzene	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	1600000
2-Butanone Ethyl Benzane	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	5.1 U	5 2 U	
m/p-Xylenes	5.2 U 5.2 U	5.2 U 6.2 U	5 7 U 5.7 U	53 U	53 U	52 U	51 U	5.2 U	7800000
o-Xylene	5.2 0	5.2 U	5.7 U	53 U 53 U	53 U 53 U	52 U 52 U	51 U 51 U	5.2 U	160000000
Acetone	12	84	57 U	53 U	53 U	52 U	510	5.2 U 5.2 U	16000000 7800000
Carbon Disulfide	5.2 U	5.2 U	57 Ū	53 U	53 U	52 U	5.1 U	5.2 U	7800000
4-Methyl-2-Pentanone	5.2 U	5.2 U	57 U	53∪	53 U	52 U	5.1 U	5.2 U	-
2-Hexanone	5.2 U	5.2 U	57 U	5.3 U	53 U	5.2 U	51 U	5.2 U	-
Styrene 1,3-Dichlorobenzene	5.2 U 52 U	5.2 U 5 2 U	57 U 57 U	53 U 53 U	53 U 53 U	5.2 U 5.2 U	51 U 51 U	5.2 U	16000000
1.4-Dichlorobenzene	5.2 U	5.2 U	57 U	53 U	53 U	52 0	510	5.2 U 5.2 U	27000
1,2-Dichlorobenzene	5.2 U	5.2 U	57 Ŭ	53 U	53 U	52 U	510	5.2 U	7000000
Dichlorodifluoromethane	5.2 U	5.2 U	57 U	53 U	53 U	52 U	51 U	5.2 U	-
Vinyl Acetate	26 U	26 U	28 U	26 U	26 U	26 U	25 U	26 U	78000000
2,2-Dichloropropans Bromochloromethans	5.2 U 5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	_
1,1-Dichloropropens	520	5.2 U 5.2 U	57 U 57 U	53 U 53 U	53 U 53 U	52 U 52 U	5.1 U 5 1 U	5.2 U 5.2 U	-
1,3-Dichloropropane	52 U	5.2 U	57 U	53 U	53 U	5.2 0	510	5.2 U	-
1,2-Dibromosthane	5.2 U	5.2 Ŭ	57 Ü	53 U	53 U	5.2 Ŭ	510	52 U	-
leopropyfbenzene	5.2 U	5.2 U	57 U	53 Ū	53 U	5.2 U	5.1 Ú	5.2 U	l –
1,2,3-Trichloropropane	5.2 U	5.2 U	57 U	53 U	53 U	52 U	5.1 U	5.2 U	
1,1,1,2-Tetrachioroethane Bromobenzene	5.2 U 5.2 U	5.2 U 5.2 U	57 U 57 U	53 U 53 U	53 U 53 U	52 U	51 U	5.2 U	_
n-propylbenzene	5.2 U	5.2 U	57 U	53 U	53 U 53 U	5.2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	
2-Chlorotoluene	5.2 U	5.2 U	57 U	5.3 U	53 U	5.2 U	510	5.2 U	=
1,3,5-Trimethylbenzene	5.2 U	5.2 U	57 Ŭ	53 U	53 U	5.2 U	510	5.2 U	
4-Chlorotoluene	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	-
tert-Butyfbenzene	5.2 U	5.2 U	57 U	53 U	53 U	52 U	5.1 U	52 U	-
1,2,4-Trimethylbenzene sec-Butylbenzene	5.2 U 5.2 U	5.2 U 5.2 U	57 U 57 U	53 U	53 U	52 U	5.1 U	52 U	-
p-leopropylloluene	5.2 U	5.2 U	57 U	53 U 5.3 U	53 U 53 U	52 U 52 U	5.1 U 5.1 U	52 U 52 U	
Dibromomethane	5.2 U	5.2 U	57 U	5.3 U	5.3 U	520	5.1 U 51 U	5.2 U 5.2 U	_
n-Butytbenzene	5.2 U	52 U	57 Ŭ	5.3 U	53 U	5.2 U	5.1 U	5.2 U	_
1,2-Dibromo-3-Chloropropane	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	_
1,2,4-Trichlorobenzene	5.2 U	5.2 U	5.7 U	53 U	53 U	5.2 U	51 U	5.2 U	780000
Hexachlorobutadiene Naphthalene	5.2 U	5.2 U	57 U	53 U	53 U	5.2 U	51 U	5.2 U	8000
MTBE	5.2 U 5.2 U	5.2 U 5.2 U	57 U 5.7 U	53 U 53 U	53 U 5.3 U	5.2 U 5.2 U	5.1 U	5.2 U	3100000
1,2,3-Trichlorobenzene	5.2 U	5.2 U	5.7 U	5.3 U	5.3 U 53 U	5.2 U	5.1 U 5.1 U	5.2 U 5 2 U	
Total Conc. VOAs (s)	14	13	ND	NO	ND ND	ND ND	3.10	920	10000

ACMANDED.

1. The compound was not detected at the indicated concentration.

2. Data indicates the presence of a compound that meets the identification orderin. The result is less than the quantitation first but greater than zero. The concentration given it an appreciated value.

8. The concentration given it an appreciated value.

				OLATILE ORGANIC C	OMPOUNDS				
Sample Location				Nine Le	eaching Pools				
Sample ID Sample Depth (ft)	E7 B02 12-14	E7 B02 16-18	E7 B03 11-13	E7 B03 19-21	E7 B04 11-13	E7 B04 19-21	E7 B05 15-17	E7 805 19-21	Comparison Value
Sampling Date	12-14 09/20/00	16-18 09/20/00	11-13	19-21	11-13	19-21	15-17	19-21	for Areas
Matrix	09/20/00 S	09/20/00 S	09/21/00 S	09/21/00 S	09/21/00 S	09/21/00	09/21/00	09/21/00	of Concern
Dilution Factor	10	10	10	10	10	S 10	S 10	S 1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
								UP AS	UBING
Chloromethane							1		
Bromomethane	51 U 51 U	56 U 56 U	5 1 U	52 U	51 U	52 U	51 U	6.7 U	
Vinyl Chloride	51 U	56 U	51 U 51 U	5 2 U 5 2 U	5 1 U 5 1 U	52 U	51 U	67 U	
Chloroethane	5.1 U	5.6 U	510	5.2 U	51 U	. 52 U 52 U	51 U 51 U	67 U 67 U	300
Methylene Chloride	7	391	48 J	4 J	51 U	52 U	5.1 U	10	85000
Trichlorofluoromethane	5 1 U	56 U	5 1 U	5 2 U	5 1 Ŭ	52 U	5.1 U	67 U	
1,1-Dichloroethene	5.1 U	5.6 U	5 1 U	5 2 U	51 U	5 2 U	51 U	6.7 U	1000
1,1-Dichloroethane	51 U	56 U	5 1 U	5 2 U	51 U	5 2 U	51 U	67 U	7800000
trans-1,2-Dichloroethene	5 1 U	5.6 U	51 U	5 2 U	5 1 U	5.2 U	51 U	67 U	1600000
cis-1,2-Dichloroethene Chloroform	5 1 U 5 1 U	5.6 U 5.6 U	5 1 U 5 1 U	5.2 U	5.1 U	5.2 U	51 U	67 U	780000
1,2-Dichloroethane	5.1 U	5.6 U	51 U	5.2 U 5 2 U	5.1 U	52 U	51 U	67 U	100000
1,1,1-Trichloroethane	5.1 U	56 U	51 U	52 U	5 1 U 5 1 U	5 2 U 5 2 U	51 U	6,7 U	7000
Carbon Tetrachlonde	5.1 U	56 U	5.1 U	52 U	5.1 U	52 U	51 U j	6.7 U 6 7 U	5000
Bromodichloromethane	5.1 U	56 U	510	52 U	51 U	52 U	5.1 U	6.7 U	10000
1,2-Dichloropropane	5.1 U	5.6 U	51 U	52 U	51 U	52 U	5.1 U	67 U	9000
cis-1,3-Dichloropropene	51 U	56 U	5.1 U	5 2 U	5 1 Ū	52 U	5.1 U	67 U	4000
Trichloroethene	5 1 U	56 U	5 1 U	5.2 U	5.1 U	52 U	5.1 U	67 U	58000
Dibromochloromethane	51 U	56 U	5.1 U	52 U	51 U	52 U	51 U	67 U	_
1,1,2-Trichloroethane Benzene	51 U 51 U	56 U 56 U	5.1 U	52 U	51 U	52 U	51 U	67 U	11000
t-1,3-Dichloropropene	5.1 U	5.6 U	5 1 U 5 1 U	5 2 U 5 2 U	51 U 51 U	52 U 52 U	5.1 U	67 U	22000
2-Chloroethyl Vinyl Ether	51 U	5.6 U	51 U	52 U	5.1 U	52 U	51 U 51 U	67 U 67 U	4000
Bromoform	51 Ŭ	5.6 U	51 U	52 U	5.1 U	5.2 U	5.1 U	67 U	81000
Tetrachioroethene	51 U	5 6 U	510	5 2 U	5.1 U	52 U	51 U	67 U	12000
1,1,2,2-Tetrachloroethane	51 U	5,6 U	51 U	5 2 U	51 U	52 U	510	67 U	3000
Toluene	51 U	56 U	5 1 U	5 2 U	51 U	5 2 U	5.1 U	67 U	16000000
Chlorobenzene	5.1 U	56 U	51 U	5 2 U	51 U	52 U	5.1 U	67 U	1600000
2-Butanone	51 U	56 U	51 U	5 2 U	5 1 U	52 U	5.1 U	67 U	_
Ethyl Benzene m/p-Xylenes	51 U 51 U	56 U 56 U	51 U	52 U	51 U	52 U	510	67 U	7800000
o-Xylene	51 U	56 U	51U 51U	5.2 U 5 2 U	5.1 U 5 1 U	52 U 52 U	5.1 U	67 U	160000000
Acetone	510	56 U	5,1 U	5.2 U	5.1 U	5.2 U	51 U 51 U	67 U 67 U	160000000 7800000
Carbon Disulfide	5 1 U	56 U	51 U	52 U	5.1 U	52 U	5.1 U	67 U	7800000
4-Methyl-2-Pentanone	5.1 U	56 U	5.1 U	5.2 U	5,1 U	5.2 U	510	67 U	_
2-Hexanone	51 U	5.6 U	5 1 U	5 2 U	5 1 U	52 U	51 U	67 U	
Styrene	51 U	56 U	51 U	5.2 U	5 1 U	52 U	510	67 U	16000000
1,3-Dichlorobenzene 1,4-Dichlorobenzene	5 1 U 5.1 U	56 U 56 U	51 U	52 U	5 1 U	52 U	5.1 U	67 U	
1,2-Dichlorobenzene	5.1 U	560	5 1 U 5.1 U	5 2 U 5.2 U	5 1 บ 5 1 บ	52 U	5.1 U	67 U	27000
Dichlorodifluoromethane	51 U	56 U	51 U	5.2 U	51 U	5 2 U 5.2 U	5.1 U 5 1 U	67 U 6.7 U	7000000
Vinyl Acetate	26 U	28 U	26 U	26 U	25 U	26 U	25 U	33 U	78000000
2,2-Dichloropropane	5 1 U	5,6 U	5 1 U	52 U	51 U	52 U	5.1 U	6.7 U	
Bromochloromethane	5.1 U	5.6 U	5.1 U	52 U	5 1 U	5.2 U	51 U	67 Ū	_
1,1-Dichloropropene	51 U	5.6 U	5.1 U	5,2 U	5.1 U	5.2 U	51 U	67 ป	_
1,3-Dichloropropane 1,2-Dibromoethane	51 U	56 U 56 U	51 U	52 U	51 U	52 U	51 U	6.7 U	
Isopropylbenzene	5.1 U 5.1 U	56 U	5 1 U 5 1 U	52 U	5.1 U	5.2 U	51 U	67 U	-
1,2,3-Trichloropropane	5.1 U	56 U	5.1 U	5 2 U 5.2 U	5,1 U 5 1 U	5.2 U 5 2 U	5 1 U 5.1 U	67 U 6.7 U	Ξ
1,1,1,2-Tetrachloroethane	5.1 U	56 U	5.1 U	5.2 U	5.1 U	52 U	5.1 U 51 U	6.7 U	_
Bromobenzene	5.1 U	56 U	5.1 U	5.2 U	51 U	52 U	510	67 U	_
n-propylbenzene	5.1 U	56 U	5.1 U	52 U	51 U	5.2 Ų	5.1 U	67 U	
2-Chlorotoluene	5.1 U	56 U	5.1 U	52 U	51 U	5.2 U	5.1 U	6.7 U	
1,3,5-Trimethylbenzene	5.1 U	56 U	5.1 U	5 2 U	51 U	52 ∪	5.1 U	67 U	- 1
4-Chlorotoluene	5.1 U	56 U	5.1 U	52 U	51 U	52 U	5.1 U	67 U	-
tert-Butylbenzene 1,2,4-Trimethylbenzene	5.1 U 5 1 U	56 U	51 U	52 U	5.1 U	5.2 U	5.1 U	67 U	= 1
sec-Butylbenzene	51 U	5 6 U 5 6 U	5 1 U 5.1 U	5 2 U 5 2 U	51 U	5.2 U	5.1 U	67 U	-
p-Isopropyltoiuene	5.1 U	5.6 U	5.1 U 51 U	52 U	5.1 U 5 1 U	5.2 U	510	67 U	-
Dibromomethane	510	5.6 U	51 U	52 U	51 U	5 2 U 5.2 U	5.1 U 5.1 U	67 U 67 U	=
n-Butylbenzene	5.1 U	5.6 U	510	52 U	5.1 U	5.2 U	5.1 0	67 U	_
1,2-Dibrorno-3-Chloropropane	5.1 Ŭ	5.6 U	510	52 U	510	52 U	5.1 0	6.7 U	
1,2,4-Trichlorobenzene	5.1 U	5.6 U	5.1 ป	52 U	510	5.2 U	51 U	6.7 U	780000
Hexachiorobutadiene	5.1 U	56 U	51 ป	52 U	51 U	5.2 U	5.1 U	6.7 U	8000
Naphthalene	5.1 U	5,6 U	51 U	52 U	51 U	5.2 U	5.1 U	6.7 U	3100000
MTBE	5.1 U	56 U	5.1 U	5.2 U	5.1 U	5.2 U	5.1 U	67 U	-
1,2,3-Trichlorobenzene Total Conc. VOAs (s)	510	56 U	51 U	52 U	5.1 U ND	52 U	5.1 U	67 U	_
						ND	ND	10	10000

Qualifiers
U The compound was not detected at the indicated concentration

O This compositive two two resources on the instruction compositive that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B The analytis was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

			····	OLATILE ORGANIC C					
Sample Location Sample ID	E7 B06 11-13	E7 B06 19-21	F7 007 44 40 1	Nine L	eaching Pools				
Sample ID Sample Depth (ft)	11-13	E7 B06 19-21 19-21	E7 B07 11-13 11-13	E7 B07 19-21 19-21	E7 B09 11-13 11-13	E7 809 19-21 19-21	E7 810 11-13	E7 810 19-21	Comparison Value
Sampling Date	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	11-13 09/22/00	19-21 09/22/00	for Areas of Concern
Matrix	s	S	S	S	\$ S	S S	S .	0#22/00 S	or Concern
Dilution Factor	10	10	10	10	10	10	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
									1
Ob. 1									
Chloromethane Bromomethane	5.9 U	62 U	61 U	67 U	5 U	5.9 U	51 U	5.7 U	-
Vinyl Chloride	59 U	6.2 U 6.2 U	61 U 61 U	67 U	5 U	5.9 U	5.1 U	57 U	l . . .
Chloroethane	59 U	6.2 U	6.1 U	6.7 U 67 U	5 U 5 U	5.9 U 5 9 U	51 U	5.7 U	300
Methylene Chloride	38 1	43	3.7 J	5 1	391	4.5 J	5.1 U 14 J	57 U 3.4 J	85000
Trichioroffuoromethane	5.9 U	6.2 Ŭ	6.1 U	67 U	5 U	5.9 U	51 Ŭ	5.7 U	-
1,1-Dichloroethene	5.9 U	6.2 U	81 U	67 U	5 Ü	59 U	51 U	57 U	1000
1,1-Dichloroethane	59 U	6.2 U	61 U	8.7 U	5 Ü	5.9 Ŭ	510	5.7 U	7800000
trane-1,2-Dichlomethene	59 U	6.2 U	61 U	67 U	5 U	5.9 U	51 U	5.7 U	1800000
cis-1,2-Dichloroethene	5.9 U	6.2 U	6.1 U	87 U	5 U	59 U	5.1 U	5.7 U	780000
Chloroform	5.9 U	62 U	6.1 U	67 U	5 U	59 U	51 U	57 U	100000
1,2-Dichloroethane 1,1,1-Trichloroethane	59 U	6.2 U	61 U	67 U	5 U	5.9 ป	51 U	57 U	7000
	59 U	6.2 U	6.1 U	67 U	5 U	5.9 U	51 U	87 U	
Carbon Tetrachioride Bromodichioromethane	5.9 U 5.9 U	6.2 U 6.2 U	61 U 6.1 U	67 U 67 U	5 U 5 U	59 U 59 U	5.1 U 5.1 U	57 U 57 U	5000 10000
1.2-Dichloropropane	5.9 U	6.2 U	61 U	67 U	5 U	590	5.1 U	5.7 U	9000
cle-1,3-Dichloropropens	59 U	6.2 U	61 U	6.7 U	5 U	590	5.1 U 5.1 U	5.7 U	4000
Trichloroethene	590	6.2 U	61 U	67 U	5 U	590	5.1 U	5.7 U	58000
Dibromochloromethane	5.9 U	6.2 U	6.1 Ŭ	6.7 U	ŠŬ	5.9 U	5.1 U	5.7 U	
1,1,2-Trichioroethane	5.9 U	6.2 U	61 U	6.7 U	5 Ü	5.9 U	51 U	5.7 U	11000
Benzene	5.9 U	6.2 U	61 U	6.7 U	5 U	5.9 U	5.1 U	57 U	22000
t-1,3-Dichloropropene	5.9 U	6.2 U	61 U	6.7 U	5 U	5.9 U	51 U	5.7 U	4000
2-Chloroethyl Vinyl Ether	5.9 ∪	6.2 U	6.1 U	6.7 U	5 U	59 U	5.1 U	5.7 U	1 -
Bromoform	59 U	6.2 U	61 U	67 U	5 U	5.9 U	51 U	5.7 U	81000
Tetrachioroethene 1,1,2,2-Tetrachioroethane	5.9 U	6.2 U	610	6.7 U	5 U	5.9 U	5.1 U	5.7 U	12000
Toluene	5.9 U	6.2 U 6.2 U	61 U 61 U	67 U 6.7 U	5 U 5 U	5.9 U 5 9 U	5.1 U	5.7 U	3000
Chlorobenzene	5.9 U	6.2 U	8.1 U	6.7 U	5 U	5.9 U	5.1 U 5.1 U	5.7 U 5.7 U	16000000 1600000
2-Butanone	59 U	6.2 U	61 0	6.7 U	5 U	5.9 U	5.1 U	5.7 U	100000
Ethyl Benzene	59 Ŭ	6.2 U	61 0	6.7 U	5 Ü	59 U	5.1 U	57 U	7800000
m/p-Xylenes	5.9 Ŭ	6.2 U	61 0	87 U	5 Ü	59 U	51 U	5.7 U	160000000
o-Xylene	59 U	6.2 U	61 Ū	6.7 U	5 U	5.9 U	51 U	57 U	16000000
Acetone	5.9 Ū	6.2 U	6.1 U	6.7 U	5 U	59 U	51 Ü	5.7 U	7800000
Carbon Disulfide	59 U	6.2 U	61 U	67 U	5 U	5.9 U	5.1 U	57 U	7800000
4-Methyl-2-Pentanone	5.9 U	6.2 U	6.1 U	6.7 U	5 U	5.9 U	51 U	6.7 U	
2-Hexanone	59 U	6.2 U	61 U	6.7 U	5 U	59 U	5.1 U	57 U	-
Styrene	59 U	6.2 U	61 U	6.7 U	5 U	59 U	51 U	57 U	16000000
1,3-Dichlorobenzene 1,4-Dichlorobenzene	59 U 5.9 U	62 U 62 U	61 U 61 U	67 U 67 U	5 U 5 U	59 U	51 U	57 U	
1.2-Dichlorobenzene	5.9 U	6.2 U	6.1 0	67 U	5 U	59 U 59 U	51 U 51 U	57 U	27000 7000000
Dichlorodifluoromethane	590	62 U	61 U	67 U	5 U	590	510	57 U 57 U	/******
Vinyl Acetate	30 U	31 U	31 0	34 Ú	25 U	29 U	26 U	29 U	78000000
2,2-Dichloropropane	59 Ŭ l	6.2 U	610	6.7 U	5 Ü	59 U	510	57 U	
Bromochloromethane	5.9 U	6.2 U	6.1 Ū	67 U	5 Ü	59 U	51 0	5.7 U	l
1,1-Dichloropropens	5.9 U	6.2 U	61 U	6.7 U	5 U	59 U	51 U	57 Ú	
1,3-Dichloropropene	59 U	6.2 U	81 U	67 U	5 U	5.9 ∪	51 U	57 U	_
1,2-Dibromoethane	59 U	6.2 U	61 U	6.7 U	5 U	5.9 U	5.1 U	67 U	_
leopropylbenzene 1,2,3-Trichloropropene	59 U	6.2 U	610	6.7 U	5 U	5.9 U	51 U	57 U	_
1,2,3-1 richioropropane 1,1,1,2-Tetrachioroethane	59 U 5.9 U	6.2 U 6.2 U	61 U 61 U	6.7 U 6.7 U	5 U	59 U	51 U	57 U	_
Bromobenzene	5.9 U	6.2 U	610	6.7 U	5 U 5 U	59 U	51 ป 51 ป	5.7 U	_
n-propylbenzene	590	6.2 U	610	6.7 U	5 U	5.9 U	51 U 5.1 U	5.7 U 5.7 U	_
2-Chlorotoluene	590	62 U	610	6.7 U	5 U	5.9 U	5.1 U 51 U	5.7 U 57 U	_
1.3.5-Trimethylbenzene	59 0 1	6.2 U	610	67 U	5 U	59 U	510	57 U	=
4-Chlorotoluene	59 0	6.2 U	6.1 U	67 U	šŭ	59 0	510	57 U	_
tert-Butytbenzene	59 U	6.2 U	61 U	67 U	5 Ü	59 Ŭ	510	57 U	_
1,2,4-Trimethylbenzene	5.9 U	6.2 U	61 U	6.7 U	5 Ü	59 U	5.1 Ŭ	57 U	_
sec-Butylbenzene	59 U	6.2 U	61 U	67 U	5 Ŭ	5.9 U	5.1 U	57 U	I -
p-laopropyttoluene	5.9 U	6.2 U	61 U	67 U	5 U	59 U	51 U	57 Ū	
Dibromomethane	5.9 U	6.2 U	61 U	67 U	5 U	59 U	5.1 U	5.7 U	
n-Butyfbenzene	59 U	6.2 U	61 U	67 U	5 U	59 U	51 U	57 U	I -
1,2-Dibrorno-3-Chloropropane	59 U	6.2 U	6.1 U	67 U	5 U	59 U	51 U	57 U	
1,2,4-Trichlorobenzene	5.9 U	6.2 U	6.1 U	67 U	5 U	59 U	5.1 U	5.7 U	780000
Hexachiorobutadiene Naphthalene	5.9 U	6.2 U	61 U	67 U	5 U	59 U	5.1 U	5.7 U	8000
	59 U	6.2 U	61 U	67 U	5 U	5.9 U	51 U	57 U	3100000
MTRE	1 40 tt l	42111	44111	2711	4 11				
MTBE 1,2,3-Trichlorobenzene	5.9 U 5.9 U	6.2 U 6.2 U	61 U 61 U	67 U 67 U	5 U 5 U	5.9 U 5.9 U	51 U 51 U	5.7 U 5.7 U	_

Constitues

U. The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that mosts the identification criterie. The result is less than the quantitation limit but greater than zero. The concentration plant is an experientative value.

8. The analyte was found in the laboratory blank as well as the sample. This indicates people televatory contamination of the environmental sample.

Notes:
-- Not established

Comple Leaster				N	and an Breefe				
Sample Location Sample ID	E7 B11 11-13	E7 B11 19-21	E7 B12 11-13	Nine Le E7 B12 19-21	eaching Pools E7 B13 11-13	E7 B13 19-21	E07 B14 9-11	E07 B14 18-20	C
Sample Depth (ft)	11-13	19-21	11-13	19-21	11-13	19-21	9-11	18-20 18-20	Comparison Value for Areas
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix	s	s	s	S	S	S	S	S	5. 5055
Dilution Factor	1.0	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	52 U	5 2 U	5 2 U	52 U	5 1 U	51 U	51 U	5 2 U	_
Bromomethane Vinyl Chloride	5.2 U 5.2 U	5 2 U 5 2 U	5.2 U	52 U	5.1 U	51 U	51 U	52 U	
Chloroethane	5.2 U	52 U	5 2 U 5 2 U	52 U	5.1 U	5.1 U 5 1 ป	510	52 U	300
Methylene Chloride	5.2 U	49 J	520	5 2 U 5 4	5,1 U 5 .t	57	5 1 U 5.2	52 U 5.5	85000
Trichlorofluoromethane	52 U	52 U	52 U	52 U	51 0	51 U	5.1 U	5.5 52 U	05000
1,1-Dichloroethene	52 U	5 2 U	52 U	52 U	51 U	5 1 U	51 U	5.2 U	1000
1,1-Dichloroethane	5 2 U	5 2 U	5 2 U	52 U	5.1 U	5.1 บ	51 U	5,2 U	7800000
trans-1,2-Dichloroethene	52 U	5 2 U	5 2 U	52 U	51 U	5.1 U	5 1 U	5 2 U	1600000
cis-1,2-Dichloroethene	5 2 U	5 2 U	5 2 U	52 U	5 1 ป	51 U	5 1 U	5.2 U	780000
Chloroform	52 U	5 2 U	52 U	52 U	5.1 U	5 1 ป	5 1 U	5 2 U	100000
1,2-Dichloroethane	5.2 U	5.2 U	52 U	52 U	51 U	5.1 U	5.1 U	5.2 U	7000
1,1,1-Trichloroethane Carbon Tetrachloride	5.2 U 5.2 U	5.2 U 5 2 U	52 U	5.2 U	51 U	5.1 U	51 U	52 U	
Bromodichloromethane	5.2 U	5.2 U	5.2 U 5 2 U	52 U 52 U	5.1 U 5 1 U	51 U 51 U	51 U 51 U	5.2 U 5 2 U	5000 10000
1,2-Dichloropropane	5.2 U	5.2 U	5.2 U	52 U	51 U	5.1 U	51 U	52 U	9000
cis-1,3-Dichloropropene	5.2 U	52 U	52 U	52 U	51 U	5.1 U	51 U	52 U	4000
Trichloroethene	52 Ŭ	52 U	52 U	52 U	5 1 U	51 U	51 U	52 U	58000
Dibromochloromethane	5.2 U	52 U	52 U	52 U	51 U	510	5 1 Ŭ	52 U	_
1,1,2-Trichloroethane	5.2 U	52 U	5 2 U	5 2 U	51 U	51 U	51 U	52 U	11000
Benzene	52 U	5.2 U	5 2 U	5.2 U	51 U	51 U	5 1 U	52 U	22000
t-1,3-Dichloropropene	52 U	5.2 U	5 2 U	52 U	51 U	5 1 U	5 1 U	5 2 U	4000
2-Chloroethyl Vinyl Ether	5.2 U	5.2 U	5.2 U	52 U	5,1 U	51 U	5 1 U	5 2 U	
Bromoform Tetrachloroethene	5.2 U 5 2 U	5,2 U 5 2 U	5 2 U 5 2 U	5 2 U 5 2 U	51 U 51 U	51 U	5.1 U	5.2 U	81000
1,1,2,2-Tetrachloroethane	5.2 U	52 U	5.2 U	52 U	5.1 U	5.1 U	5,1 U 5 1 U	5 2 U 5.2 U	12000 3000
Toluene	5.2 U	52 U	5.2 U	5.2 U	5.1 U	5.1 U	51 U	5.2 U	16000000
Chlorobenzene	5.2 U	52 U	5.2 U	52 U	51 U	5.1 U	51 U	52 U	1600000
2-Butanone	52 U	5.2 U	52 U	52 U	51 U	5.1 U	51 0	52 U	
Ethyl Benzene	5,2 U	5.2 U	52 U	5 2 U	51 U	5.1 U	51 U	52 U	7800000
m/p-Xylenes	52 U	5.2 U	52 U	5.2 U	51 U	5.1 U	5 1 U	52 U	160000000
o-Xylene	5.2 U	52 U	5 2 U	5 2 U	51 U	51 U	51 U	52 U	160000000
Acetone	52 U	52 U	52 U	52 U	5 1 U	5 1 U	51 U	5 2 U	7800000
Carbon Disulfide 4-Methyl-2-Pentanone	5.2 U 5 2 U	5 2 U 5 2 U	520	52 U	51 U	510	51 U	52 U	7800000
2-Hexanone	52 U	52 U	52 U 52 U	5 2 U 5 2 U	5 1 U 5 1 U	5.1 U 5 1 U	51 U 51 U	52 U 52 U	
Styrene	5.2 U	52 U	52 U	52 U	5.1 U	510	51 0	5.2 U	16000000
1,3-Dichlorobenzene	52 U	52 U	52 U	5 2 U	51 U	5.1 U	510	5.2 U	1000000
1,4-Dichlorobenzene	52 U	5.2 U	52 U	52 U	51 U	510	510	52 U	27000
1,2-Dichlorobenzene	5.2 ป	5,2 U	52 U	52 U	51 U	5.1 U	5.1 U	5 2 U	7000000
Dichlorodifluoromethane	52 U	5.2 U	52 U	52 U	5.1 U	5.1 U	5 1 U	5 2 U	_
Vinyl Acetate	26 U	26 U	26 U	26 U	26 U	26 U	25 U	26 U	78000000
2,2-Dichloropropane Bromochloromethane	5.2 U 5 2 U	5.2 U 5.2 U	52 U 52 U	5.2 U 5 2 U	5 1 U 5.1 U	5.1 U 5 1 U	51 U	52 U	_
1,1-Dichloropropene	52 U	5.2 U	52 U	52 U	5.1 U 5 1 U	510	5.1 U 5 1 U	52 U 52 U	
1,3-Dichloropropane	52 U	5.2 U	52 U	52 U	51 U	51 U	51 U	52 U	
1,2-Dibromoethane	5.2 U	5.2 U	5.2 U	52 U	51 บ	510	51 U	52 U	
Isopropylbenzene	5.2 U	52 U	52 U	52 U	5.1 U	51 Ŭ	51 U	5.2 U	
1,2,3-Trichioropropane	5.2 U	5.2 U	52 U	5 2 U	5.1 U	51 U	51 Ū	52 U	_
1,1,1,2-Tetrachloroethane	5.2 U	5.2 U	5 2 U	52 U	5.1 U	5.1 U	5 1 U	5.2 U	-
Bromobenzene	52 U	52 U	5.2 U	5 2 U	51 U	5.1 U	5 1 U	52 U	
n-propylbenzene	52 U	5.2 U	52 U	52 U	51 U	51 U	5.1 U	52 U	-
2-Chlorotoluene 1,3,5-Trimethylbenzene	5 2 U 5 2 U	5.2 U	52 U	5 2 U	51 U	5.1 ป	51 U !	52 U	-
1,3,5-1 nmethylbenzene 4-Chlorotoluene	52 U 52 U	5.2 U 5 2 U	5 2 U 5 2 U	5 2 U 5 2 U	5 1 U 5 1 U	5.1 U 51 U	51 U : 5.1 U	52 U	
tert-Butylbenzene	52 U	52 U	52 U	52 U	51 U 51 U	51 U 51 U	5.1 U 5 1 U	52 U 52 U	=
1,2,4-Trimethylbenzene	5.2 U	52 U	52 U	52 U	51 U	5.1 U	51 U	5.2 U	_
sec-Butylbenzene	52 U	52 U	52 U	52 U	51 U	51 U	5.1 U	5.2 U	
p-isopropyttoluene	52 U	52 U	52 U	52 U	5.1 U	510	5.1 U	52 U	_
Dibromomethane	5.2 U	5 2 U	5 2 U	5 2 U	51 U	51 U	5.1 U	52 Ŭ	
n-Butylbenzene	52 U	5 2 U	52 U	5.2 U	51 U	5.1 U	5.1 U	5.2 U	-
1,2-Dibromo-3-Chloropropane	5.2 U	52 U	5 2 U	5.2 U	51 U	5.1 U	51 U	52 U	_
1,2,4-Trichiorobenzene	5.2 U	5.2 U	5.2 U	52 U	5.1 U	51 U	5 1 U	52 U	780000
Hexachlorobutadiene	5.2 U	52 U	5.2 U	52 U	5.1 U	51 U	5 1 U	52 U	8000
Naphthalene MTBE	52 U 52 U	5 2 U 5,2 U	52 U 5.2 U	52 U 5.2 ป	51 U 51 U	510	5 1 U 5 1 U	5.2 U	3100000
1,2,3-Trichlorobenzene	52 U	5.2 U	5.2 U ;	5.2 U	5,1 U	51 U 51 U	51 U 51 U	52 U 52 U	
Total Conc. VOAs (s)	ND ND	5 5	5	5.2 0	5,10	510	510	520	10000
23/10: 7 3/10 [0]		<u> </u>		<u> </u>	<u> </u>	• · · · · · · · · · · · · · · · · · · ·	<u>J</u>	<u> </u>	10000

Cualifiers:

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the emirronmental sample.

Notes:
--- Not established
ND Not detected

				VOLATILE ORGANIC C	OMPOUNDS				
Sample Location				Former Leaching Field	with Twenty Leaching P	ools		·	
Sample ID	E8 B01 6-8"	E8 B01 14-16'	E8 B02 6-8'	E8 B02 14-16'	E8 B03 8-10"	E8 B03 14-16'	E8 B04 10-12	E8 B04 14-16	Comparison Value
Sample Depth (ft)	6-8	14-16	6-8	14-16	8-10	14-16	10-12	14-16	for Areas
Sampling Date	10/03/00	10/03/00	10/03/00	10/03/00	10/03/00	10/03/00	10/04/00	10/04/00	of Concern
Matrix	S	S	S	S	S	S	s	S	
Dilution Factor	10	10 j	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	6 U	52 U	6 U	52 U	5 1 U	52 U	52 U	5 1 U	
Bromomethane	6 Ü	5.2 U	6 Ū	52 U	51 U	52 U	52 U	51 U	
Vinyl Chloride	6 Ü	5.2 U	6 Ŭ	52 U	51 U	52 U	52 U	51 U	300
Chloroethane	6 U	5.2 U	6 Ú	52 U	51 U	5.2 Ū	5.2 U	51 U	
Methylene Chloride	35 J	2.5 J	33 J	23 J	28 J	34 J	5.2 U	51 U	85000
Trichlorofluoromethane	60	52 U	6 U	52 U	51 U	5.2 U	5.2 U	51 U	-
1,1-Dichloroethene	6 U	52 U	6 U	52 U	51 U	5.2 U	5.2 U	5.1 U	1000
1,1-Dichloroethane	6 U	52 U	8 U	5.2 U	51 U	5.2 U	5.2 U	5 1 U	7800000
trans-1,2-Dichloroethene	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	52 U	5 1 U	1600000
cls-1,2-Dichloroethene	6 U	52 U	6 U	5.2 U	5.1 U	52 U	5.2 U	5 1 U	780000
Chloroform 1,2-Dichloroethane	6 U	52 U	6 U	5.2 U	51 U	52 U	5.2 U	5 1 U	100000
	6 U	5.2 U	6 U	52 U	51 U	5.2 U	5.2 U	51 U	7000
1,1,1-Trichioroethane Carbon Tetrachioride	6 U	5.2 U 5.2 U	6 U 6 U	52 U	51 U	5.2 U	5.2 U	5.1 U	
Bromodichloromethane	80	5.2 U	6 U	5.2 U 5.2 U	51 U 51 U	5.2 U 5.2 U	5.2 U	51 U	5000
1,2-Dichloropropene	80	5.2 U	6 0	5.2 U	51 U	5.2 U	5.2 U 5.2 U	5 1 U 5.1 U	10000 9000
cis-1,3-Dichloropropens	ا ناء	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U 5.2 U	5.1 U 5 1 U	4000
Trichloroethene	ا نَّهُ ا	5.2 U	6 U	5.2 U	510	5.2 U			
Dibromochloromethans	ا قُوْ	5.2 U	6 0	5.2 U	51 U	520	5.2 U 5.2 U	5.1 U 5.1 U	58000
1,1,2-Trichloroethane	ا ن ق	5.2 U	6 0	5.2 U	510	5.2 U	5.2 U	5.1 U	11000
Benzene	ěŭ	5.2 U	6 Ŭ	5.2 U	5 1 U	5.2 U	5.2 U	5.1 U	22000
t-1,3-Dichloropropene	6 Ū	5.2 U	6 Ŭ	5.2 U	51 U	5.2 U	5.2 U	5 1 U	4000
2-Chloroethyl Vinyl Ether	6 U	5.2 U	6 Ú	5.2 U	5 1 U	5.2 Ú	52 U	5.1 U	_
Bromoform	6 U	5.2 U	6 U	5.2 U	5 1 U	5.2 U	5.2 Ŭ	51 U	81000
Tetrachioroethene	6 U	5.2 U	6 U	5.2 U	5 1 U	5.2 U	1.7 J	5.1 Ū	12000
1,1,2,2-Tetrachioroethane	8 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5.1 U	3000
Toluene	60	5.2 U	6 U	5.2 U	5 1 U	5.2 U	5.2 U	5.1 U	16000000
Chlorobenzene	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5 1 U	1600000
2-Butanone	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5 1 U	-
Ethyl Benzene	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5.1 U	7800000
m/p-Xylenes o-Xylene	6 U	5.2 U	6 U	5.2 U	5 1 U	6.2 U	5.2 U	51 U	160000000
Acetone	150	5.2 U 12	6 U 9.4	5.2 U	5 1 U	5.2 U	52 U	5.1 U	160000000
Carbon Disulfide	18 U	5.2 U	9.4 6 U	21 5.2 U	25 5 1 U	5.2 U 5.2 U	5.2 U 5.2 U	5,1 U 5 1 U	7800000 7800000
4-Methyl-2-Pentanone	ľů	6.2 U	6 0	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	/80000
2-Hexanone	ا ق	5.2 U	6 U	5.2 U	510	5.2 U	52 U	5.1 U	
Styrene	l šū	52 Ŭ l	6 Ŭ	5.2 Ŭ	510	5.2 U	5.2 U	5.1 U	16000000
1,3-Dichlorobenzene		5.2 U	6 Ü	5.2 U	5 1 Ŭ	5.2 U	52 0	5.1 U	'
1,4-Dichlorobenzene	6 U	5.2 U	6 Ú	5.2 U	51 U	5.2 U	5.2 U	51 U	27000
1,2-Dichlorobenzene	80	5.2 U	6 U	5.2 U	51 U	6.2 U	5.2 U	5.1 U	7000000
Dichlorodifluoromethans	6 U	5.2 U	6 U	5.2 U	5.1 U	5.2 U	6.2 U	5.1 U	-
Vinyl Acetale	30 U	26 U	30 U	26 U	26 U	28 U	26 U	26 U	78000000
2,2-Dichloropropane	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5.1 U	l –
Bromochloromethane	6.0	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5.1 U	-
1,1-Dichloropropene 1,3-Dichloropropene	6 U	6.2 U	6 U	5.2 U	810	5.2 U	5.2 U	51 U	_
1,3-Dichioropropane 1,2-Dibromoethane	6 U	5.2 U 5.2 U	6 U 6 U	5.2 U 5.2 U	5 1 U 5.1 U	5.2 U 5.2 U	5.2 U	51 U 51 U	_
isopropylbenzens	80	5.2 U	6 0	5.2 U	5.1 U 5 1 U	5.2 U	5.2 U 5.2 U	5.1 U 5.1 U	_
1,2,3-Trichioropropane	80	5.2 U	6 U	, 52 U	51 U	5.2 U	5.2 U 5.2 U	5.1 U 5.1 U	
1,1,1,2-Tetrachloroethane	80	5.2 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	
Bromobenzene	80	52 0	6 0	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U 5.1 U	
n-propy/benzene	ا ق	5.2 U	6 0	5.2 U	51 0	5.2 U	52 U	5.1 U	=
2-Chlorotoluene	ěŭ	6.2 U	ěŬ	5.2 U	5.1 U	52 0	5.2 U	5.1 U	
1,3,5-Trimethylbenzene	6 U	62 U	ěŬ	5.2 U	5.1 U	5.2 U	52 0	5.1 U	_
4-Chlorotoluene	6 Ŭ	5.2 U	δŬ	5.2 U	5.1 U	5.2 U	52 U	5.1 U	_
tert-Butylbenzene	6 Ú	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	5.1 U	
1,2,4-Trimethylbenzene	6 U	5.2 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	
sec-Butylbenzene	6 U	5.2 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	-
p-laopropytioluene	6 U	5.2 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	-
Dibromomethane	6 U	5.2 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	_
n-Butyfbenzene	6 U	5.2 U	6 U	5.2 U	51 U	5.2 U	5.2 U	51 U	_
1,2-Dibromo-3-Chloropropane	60	5.2 U	6 U	5.2 U	51 U	5.2 U	52 U	5.1 U	l
1,2,4-Trichlorobenzene	6 0	62 U	6 U	5.2 U	5.1 U	5.2 U	5.2 U	5.1 U	780000
Hexachiorobutadiene Naphthalene	6 U 6 U	6.2 U	6 U 6 U	5.2 U	5.1 U	5.2 U	52 U	5.1 U	6000
MTRE	80	5.2 U 5.2 U	6 U	5.2 U	5.1 U	5.2 U	6.2 U	5.1 U	3100000
1,2,3-Trichlorobenzene	1 80	5.2 U	6 U	5.2 U 5.2 U	5.1 U 51 U	5.2 U 5.2 U	5.2 U 5.2 U	5.1 U 5.1 U	l
Total Conc. VOAs (s)	19	15	13	23	28	3	3.7 0	ND ND	10000
CITE TANK I ALM IN		· · · · · · · · · · · · · · · · · · ·		دع	40		- 6	- NU	1 10000

Casa Miders

U The compound was not detected at the indicated concentration.

J Data Indicates the presence of a compound that mode the identification criterie. The result is less than the quantitation limit but greater than zero This concentration plant is on approximate value.

S The analyte was found in the laboratory blank as well as the semple. This indicates possible laboratory contembration of the environmental pample.

Sample Location	T								
Sample Location Sample ID	E8 B05 14-16	E8 B05 22-24	E8 B06 8-10	Former Leaching Field	with Twenty Leaching F	ools			
Sample Depth (ft)	14-16	22-24	8-10	E8 B06 14-16 14-16	E8 B07 8-10 8-10	E8 B07 14-16 14-16	E08 B08 10-12	E08 B08 20-22	Comparison Value
Sampling Date	10/04/00	10/04/00	10/04/00	10/04/00	10/05/00	10/05/00	10-12 10/05/00	20-22 10/05/00	for Areas
Matrix	l s	S	S	S	S	S	10/05/00	10/05/00 S	of Concern
Dilution Factor	10	1.0	10	1.0	10	10	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
						·····			
									i
Chloromethane	5.1 U	5.2 U	5.1 U	51 U	5 2 U	5.6 U	5.2 U	51 U	
Bromomethane	51 U	52 U	5.1 U	5 1 U	5 2 U	56 U	52 U	5.1 U	-
Vinyl Chloride	51 U	52 U	51 U	51 U	5 2 U	56 U	52 U	5.1 U	300
Chloroethane Methylene Chloride	5.1 U	52 U	51 U	5.1 U	5 2 U	56 U	52 U	51 U	-
Trichlorofluoromethane	5.1 U 51 U	5 2 U 5 2 U	51 U	5.1 U	52 U	36 J	2.6 J	2.6 J	85000
1,1-Dichloroethene	51 0	52 U	5 1 U 5.1 U	510	52 U	56 U	52 U	5.1 U	
1,1-Dichloroethane	5.1 U	5.2 U	51 U	51 U 51 U	5 2 U 5.2 U	5.6 U	52 U	5.1 U	1000
trans-1,2-Dichloroethene	51 U	5.2 U	510	5.1 U	5.2 U	5,6 U 5,6 U	5 2 U 5.2 U	5.1 U	7800000 1600000
cis-1,2-Dichloroethene	5.1 U	5.2 U	510	5.1 U	52 U	5.6 U	5.2 U	5.1 U 5.1 U	780000
Chloroform	51 U	5 2 U	51 Ŭ	51 U	5.2 U	5.6 U	52 U	51 U	100000
1,2-Dichloroethane	51 U	5 2 U	5.1 U	51 U	52 U	56 U	52 U	5.1 U	7000
1,1,1-Trichioroethane	5.1 U	5.2 U	51 U	51 U	52 U	56 U	52 U	51 U	
Carbon Tetrachlonde	51 U	5.2 U	51 U	5.1 U	52 U	56 U	5 2 U	5.1 U	5000
Bromodichloromethane	51 U	52 U	51 U	5.1 U	52 U	56 U	5.2 U	5 1 U	10000
1,2-Dichloropropane	5.1 U	52 U	5.1 U	51 U	5.2 U	5.6 U	52 U	51 U	9000
cis-1,3-Dichloropropene	51 U	5 2 U	5.1 U	51 U	5.2 U	5,6 U	5.2 U	51 U	4000
Trichloroethene Dibromochloromethane	5,1 U 5,1 U	52 U	5 1 U	510	52 U	5 6 U	5 2 U	5,1 U	58000
1,1,2-Trichloroethane	5.1 U 5.1 U	5.2 U 5.2 U	5.1 U 5.1 U	51 U	52 U	56 U	52 U	5,1 U	_
Benzene	5.1 U	5.2 U	5.1 U	51 U 51 U	5 2 U 5 2 U	56 U	5.2 U	5.1 U	11000
t-1,3-Dichloropropene	51 0	52 U	51 U	5.1 U	52 U	5 6 U 5.6 U	52 U	5.1 U	22000
2-Chloroethyl Vinyl Ether	51 U	52 U	51 U	510	52 U	5.6 U	52 U 52 U	5.1 U 5 1 U	4000
Bromoform	51 U	5 2 U	510	510	52 U	56 U	52 U	51 U	81000
Tetrachloroethene	51 U	5 2 U	51 U	51 U	52 U	56 U	52 U	51 U	12000
1,1,2,2-Tetrachioroethane	5.1 U	5 2 U	5.1 U	51 U	52 U	56 U	52 0	5.1 U	3000
Toluene	51 U	52 U	5 1 U	51 U	5.2 U	5.6 U	5.2 U	5.1 U	16000000
Chlorobenzene	5.1 U	52 U	5.1 U	51 U	52 U	56 U	5.2 U	5.1 U	1600000
2-Butanone	5.1 U	5 2 U	5 1 U	51 U	52 U	5 6 U	52 U	51 U	_
Ethyl Benzene	5.1 U	52 U	51 U	5 1 U	52 U	5 6 U	52 U	51 U	7800000
m/p-Xylenes o-Xylene	51 U	5 2 U	5 1 U	51 U	52 U	56 U	52 U	51 U	160000000
Acetone	5.1 U 5 1 U	5 2 U 5 2 U	51 U	5 1 U	52 U	5.6 U	5 2 U	5 1 U	160000000
Carbon Disulfide	510	52 U	5.1 U 5 1 U	51 U 51 U	19 5 2 U	19 56 U	26	35	7800000
4-Methyl-2-Pentanone	5.1 U	52 U	51 U	510	52 U	56 U	5 2 U 5.2 U	51 U 51 U	7800000
2-Hexanone	5.1 U	5 2 U	51 U	510	52 U	56 U	5.2 U	5.1 U	
Styrene	51 U	5 2 U	51 U	5.1 U	52 U	56 U	52 U	5.1 U	16000000
1,3-Dichlorobenzene	51 ∪	5 2 U	5 1 บ	51 U	5.2 U	5,6 U	52 U	5 1 U	-
1,4-Dichlorobenzene	5.1 U	5 2 U	5 1 U	51 U	5 2 U	5.6 U	52 U	51 U	27000
1,2-Dichlorobenzene	5.1 U	5 2 U	51 U	5.1 U	52 U	56 U	5.2 U	51 U	7000000
Dichlorodifluoromethane	5.1 U	5 2 U	5 1 U	51 U	52 U	56 U	52 U	51 U	- 1
Vinyl Acetate 2,2-Dichloropropane	25 U 5.1 U	26 U 5 2 U	26 U	26 U	26 U	28 U	26 U	26 U	78000000
Bromochloromethane	5.1 U	5.2 U	51 U	51 U	5 2 U	56 U	52 U)	51 U	-
1,1-Dichloropropene	510	5.2 U	5.1 U	5 1 U 5 1 U	5 2 U 5 2 U	5.6 U	5.2 U	51 U	-
1,3-Dichloropropane	5.1 U	5.2 U	51 U	5.1 U	52 U	56 U 56 U	52 U 52 U	5.1 U 5 1 U	
1,2-Dibromoethane	5.1 U	52 U	5 1 Ŭ	51 U	52 U	56 U	5.2 U	5.1 U	
isopropylbenzene	51 U	52 U	51 U	510	52 U	56 U	5.2 U	5.1 U	
1,2,3-Trichloropropane	51 U	5.2 ∪	51 U	5.1 Ú	52 U	5.6 U	52 U	51 U	
1,1,1,2-Tetrachloroethane	5.1 U	5.2 U	51 U	5 1 U	5 2 U	56 U	52 U	51 U	_
Bromobenzene	510	5.2 U	5.1 U	5.1 U	52 U	56 U	52 U	51 U	_
n-propylbenzene	51 U	5.2 U	51 U	51 U	52 U	5 6 U	52 U	51 U	
2-Chlorotoluene 1,3,5-Trimethylbenzene	5.1 U 5.1 U	52 U	5.1 U	51 U	52 U	5,6 U	5.2 U	5 1 U	-
4-Chlorotoiuene	5.1 U 51 U	5.2 U 5.2 U	5.1 U 5 1 U	51 U	52 U	5.6 U	52 U	5.1 U	- 1
tert-Butylbenzene	510	5.2 U	51 U	510	5.2 U	5.6 U	52 U	51 U	(
1,2,4-Trimethylbenzene	. 510	5.2 U	51 U	5.1 U 5.1 U	5 2 U 5 2 U	56 U 56 U	52 U	51 U	-
sec-Butylbenzene	5.1 U	5.2 U	5.1 U	5.1 U	52 U	560	52 U	5.1 U	-
p-Isopropyttoluene	5.1 U	5.2 U	5.1 U	51 U	52 U	56 U	52 U 52 U	51 U	-
Dibromomethane	510	5.2 U	510	51 U	5.2 U	56 U	52 U	5.1 U 5.1 U	_
n-Butylbenzene	510	5.2 U	510	5.1 U	52 U	5.6 U	52 U	5.1 U 5 1 U	_
1,2-Dibromo-3-Chloropropane	51 U	52 U	510	51 U	52 U	5.6 U	52 U	5.1 U	_
1,2,4-Trichlorobenzene	510	5.2 U	5 1 U	51 U	5.2 U	5.6 U	52 U	5.1 U	780000
Hexachlorobutadiene	5.1 U	5.2 U	5.1 U	5.1 U	52 U	5.6 U	52 U	51 U	8000
Naphthalene	5.1 U	5 2 U	5.1 U	51 U	52 Ū	56 U	5.2 U	5.1 U	3100000
MTBE	51 U	52 U	5.1 U	51 U	52 U	56 U	5 2 U	5.1 U	- 1
1,2,3-Trichlorobenzene Total Conc VOAs (s)	51 U	52 U	51 U	510	52 U	5 6 U	52 U	51 U	
TOTAL COTTO YUAS (8)	ND	ND I	ND	ND	19	23	29	38	10000

Qualifiers

U The compound was not detacted at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

The concentration given is an approximate value
The concentration given is an approximate value
The concentration given is an approximate value
The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contemination of the environ

Notes: ... Not established NO Not detected

				VOLATILE ORGANIC C				 	
Sample Location Sample ID	E08 B09 10-12	E08 B09 20-22	E08 B10 8-10	Former Leaching Field E08 810 14-18	with Twenty Leaching P	ools	E08 B12 12-14	E08 B12 18-20	
Sample Depth (R)	10-12	20-22	8-10	16-18	E08 B11 6-8	E08 B11 14-16 14-16	12-14	18-20	Comparison Value for Areas
Sampling Date	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	of Concern
Matrix	s	s	s	s l	S	S	i u u u	S	U CONCENT
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane	51 U	5.2 U	6 U	56 U	51 U	52 U	58 U	57 U	- 1
Bromomethane Vinyl Chloride	510	52 U	6 U	56 U	5 1 U	52 U	5 8 U	57 U	l <u></u> 1
Chloroethane	5.1 U 5 1 U	5 2 U 5.2 U	6 U	56 U 56 U	5 1 U 5 1 U	52 U	58 U	57 U	300
Methylene Chloride	273	26 J	4.8 J	41.1	36.1	5.2 U	1 U 8 2	57 U 41 J	85000
Trichiorofluoromethane	510	5.2 U	7.6 U	56 U	5.1 U	5.2 U	5 8 U	5.7 U	1 ~~~
1,1-Dichloroethene	5.1 Ŭ	5.2 U	6 Ŭ	56 U	5.1 U	5.2 U	560	5.7 U	1000
1,1-Dichloroethane	51 U	5.2 U	6 U	56 U	51 U	5.2 U	580	57 U	7800000
trans-1,2-Dichloroethene	5.1 U	5.2 U	6 U	5 6 U	51 U	52 U	5.8 U	5.7 U	1600000
cis-1,2-Dichloroethene	510	5.2 U	6 U	56 U	51 U	5.2 U	58 U	5.7 U	780000
Chloroform	5.1 U	5.2 U	6 U	56 U	51 U	5.2 U	58 U	57 U	100000
1,2-Dichloroethane 1,1,1-Trichloroethane	51 U 51 U	5.2 U	6 U	56 U	51 U	5.2 U	5 8 U	5.7 U	7000
Carbon Tetrachloride	510	5.2 U 5.2 U	6 U	56 U 56 U	51 U 51 U	52 U	58 U	57 U 57 U	5000
Bromodichioromethane	510	52 U	80	56 U	51 U	52 U 52 U	58 U 58 U	57 U	10000
1,2-Dichloropropane	5.1 U	52 U	80	560	510	52 U	5.8 U	5,7 U	9000
cis-1,3-Dichloropropene	51 U	52 U	6 Ŭ	56 U	51 U	52 U	5.8 U	5.7 U	4000
Trichloroethene	51 U	5.2 U	6 Ü	56 U	51 Ü	52 U	5 8 Ü	57 U	58000
Dibromochioromethane	51 U	5.2 U	6 U	56 U	51 U	52 U	58 U	57 U	-
1,1,2-Trichloroethane	5.1 U	52 U	6 U	56 U	51 U	52 U	58 U	57 U	11000
Benzene	510	52 U	6 U	56 U	51 U	52 U	58 U	57 U	22000
t-1,3-Dichloropropene	51U 51U	5.2 U	6 U	56 U	51 U	5.2 U	58 U	5.7 U	4000
2-Chloroethyl Vinyl Ether Bromoform	510	5 2 U 5.2 U	l 👸	56 U 56 U	51 U 51 U	52 U 52 U	5 6 U	57 U 57 U	81000
Tetrachloroethene	2.4 J	5.2 U	80	560	17 J	52 U	13 J	57 U	12000
1,1,2,2-Tetrachioroethane	510	5.2 U	80	56 Ŭ	51 Ŭ	52 Ŭ	58 U	57 U	3000
Toluene	51 U	52 U	l šŭ l	56 U	51 U	52 U	5 8 U	57 U	16000000
Chlorobenzene	51 U	5.2 U	6 U	56 U	51 U	52 U	58 U	57 U	1600000
2-Butanone	51 U	52 U	6 U	56 U	51 U	52 U	58 U	57 U	1 – 1
Ethyl Benzene	51 U	5.2 U	60	56 U	5 1 U	52 U	58 U	57 U	7800000
m/p-Xylenes	51 U	5.2 U	• U [56 U	5 1 U	52 U	58 U	5.7 U	160000000
o-Xylene Acetone	51 U 28	52 U 22	60	56 U	51 U	52 U	58 U	57 U	160000000
Carbon Disulfide	51 U	5.2 U	ا ۱۵۰۱	30 56 U	26 5 1 U	23 52 U	22 5 8 U	16 57 U	7800000 7800000
4-Methyl-2-Pentanone	510	5.2 U	80	560	51 U	52 U	580	57 U	/80000
2-Hexanone	810	5.2 U	ا نَهُ ا	56 U	51 U	52 Ŭ	5.8 U	57 U	1 <u> </u>
Styrene	51 U	5.2 U	60	56 U	51 U	5.2 U	5.8 U	57 U	16000000
1,3-Dichlorobenzene	51 U	5.2 U	6 U	56 U	5 1 U	52 U	58 U	57 U	:
1,4-Dichlorobenzene	51 U	5.2 U	6 U	56 U	51 U	5.2 U	58 U	57 U	27000
1,2-Dichlorobenzene	51 U	5.2 U	6 U	56 U	51 U	5.2 U	58 U	5.7 U	7000000
Dichlorodifluoromethane Vlnyl Acetate	51 U 26 U	52 U	6 U 30 U	56 U	51 U	5.2 U	5 8 U	57 U	<u></u>
2.2-Dichloropropane	510	26 U 5.2 U	80	28 U 5 6 U	25 U 5 1 U	26 U 52 U	29 U	28 U 5 7 U	78000000
Bromochloromethane	51 U	5.2 U	ا ناهٔ ا	560	51 U	52 U	580	57 U	-
1,1-Dichloropropene	5.1 U	5.2 U	ا نَّهُ ا	56 0	510	52 Ŭ	58 0	57 U	
1,3-Dichloropropane	5.1 U	5.2 U	60	56 U	510	52 Ŭ	5.8 Ú	57 U	_
1,2-Dibromoethane	51 U	5.2 U	60	56 U	51 U	52 U	58 U	57 U	- 1
leopropylbenzene	51 U	5.2 U	6 U	56 U	51 U	5.2 U	58 U	57 U	-
1,2,3-Trichloropropene	5.1 U	52 U	60	56 U	51 U	52 U	58 U	57 U	-
1,1,1,2-Tetrachloroethane	5.1 U	5.2 U	6 0	56 U	51 U	52 U	58 U	57 U	- 1
8romobenzene n-propylbenzene	5.1 U 5 1 U	5.2 U 5.2 U	6 U	56 U 56 U	5 1 U 5.1 U	5.2 U	58 U	57 U	-
2-Chlorotoluene	5.1 U	5.2 U	å i	560	5.1 U	5.2 U 5.2 U	58 U 58 U	57 U 57 U	=
1,3,5-Trimethylbenzene	5.1 U	5.2 U	80	5.6 U	510	5.2 U	5.8 U	5.7 U	
4-Chlorotoluene	5.1 U	5.2 U	انة	56 U	510	5.2 U	5.8 U	57 U	
tert-Butythenzene	5.1 Ŭ	52 U	ěŭ	5 8 Ŭ	51 U	5.2 U	5.8 U	57 U	_
1,2,4-Trimethylbenzene	51 U	52 U	6 U	56 U	51 U	5.2 U	58 U	5.7 U	_
sec-Butylbenzene	5.1 U	52 U	6 U	56 U	51 U	5.2 U	5.8 U	57 U	-
p-leopropytioluene	5.1 U	5.2 U	6 U	56 U	51 U	5.2 U	5.8 U	5.7 U	-
Dibromomethane	510	5.2 U	6 U	56 U	5.1 U	5.2 U	5 B U	5.7 U	-
n-Butylbenzene	5.1 U	5.2 U	6 U	5.6 U	51 U	5.2 U	5 6 U	5.7 U	
1,2-Dibromo-3-Chloropropane 1,2,4-Trichlorobenzane	5 1 U 5.1 U	5.2 U	6 U 6 U	56 U	51 U	5.2 U	58 U	57 U	J 700000
Hexachlorobutadiene	5.1 U	5.2 U 5.2 U	80	56 U 56 U	5.1 U 5.1 U	5.2 U 5.2 U	5.8 U 5.8 U	5 7 U 5.7 U	780000 8000
Naphthalene	5.1 U	5.2 U	៖ ទំប័	5.6 U	51 U	5.2 U	5.8 U	5.7 U	3100000
MTBE	5.1 Ŭ	5.2 U		5.6 U		5.2 U	5.8 U	5.7 U	
MIDE	9.10	3.4 0 1	, , ,	3,00	51 U	1 7.2 4 1	9,6 U I	9.7 U	
1,2,3-Trichlorobenzene Total Conc. VOAs (s)	5.1 U 33	52 U 25	6 U	5.6 U	51 U	5.2 U 5.2 U	5.8 U	5.7 U	10000

Cisalifiers

U The compound was not detected at the Indicated concentration

J Data indicates the presence of a compound that meets the identification effects. The result is less than the quantitation limit but greater than zero The concentration given is an appearance value.

B The analyte was found in the laboratory blank as well as the semple. This indicates possible laboratory contamination of the environmental sample.

Notes:
- Not established

		with Twenty Leaching							
Sample Location Sample ID	Po E08B14 8-10				Seven Form	er Leaching Pools			}
Sample Depth (ft)	8-10	E08B14-16-18 16-18	E10 B01 13-15	E10 B01 21-23	E10 B02 11-13	E10 B02 19-21	E10 B03 12-14	E10 B03 20-22	Companson Value
Sampling Date	10/11/00	10/11/00	13-15 10/12/00	21-23 10/12/00	11-13 10/12/00	19-21	12-14	20-22	for Areas
Matrix	S	S .	10/12/00 S	10/12/00 S	10/12/00 S	10/12/00	10/02/00	10/02/00	of Concern
Dilution Factor	1.0	10	10	10	1.0	S 1.0	S 1.0	S	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	1.0 ug/kg	ua/ka	1.0	
		ograg	Ogray	97.9	i ug/kg	og/kg	Ug/kg	ug/kg	ug/kg
Chloromethane	6 U	5.3 U	5 2 U	53 U					
Bromomethane	6 U	53 U	52 U	53 U	5 2 U	52 U	52 U	52 U	
Vinvi Chlonde	8 U	53 U	52 U	53 U	52 U	5.2 U	5.2 U	52 U	
Chloroethane	60	5.3 U	5.2 U	53 U	5.2 U 5 2 U	52 U 52 U	5 2 U 5 2 U	5 2 U	300
Methylene Chloride	85	85	5.2 U	53 U	5.2 U	52 U	52 U	52 U	BE000
Trichlorofluoromethane	ั้ดับ	53 U	52 U	53 U	5.2 U	52 U	5.2 U	5 2 U 5 2 U	85000
1,1-Dichloroethene	6 U	53 U	52 U	53 U	52 U	52 U	52 U	52 U	1000
1,1-Dichloroethane	6 U	53 U	52 U	53 U	52 U	52 U	5,2 U	5.2 U	7800000
trans-1,2-Dichloroethene	6 U	53 U	52 0	53 U	52 Ü	5.2 U	5 2 U	52 U	1600000
cis-1,2-Dichloroethene	6 U	53 U	52 U	5.3 U	5.2 U	5.2 U	5 2 U	52 U	780000
Chloroform	14	53 U	5.2 ∪	5,3 U	5 2 U	5.2 U	5.2 U	52 U	100000
1,2-Dichloroethane	6 U	5.3 U	5.2 U	53 U	52 U	5.2 U	5.2 U	52 U	7000
1,1,1-Trichloroethane	6 U	53 U	52 U	53 U	5.2 U	52 U	5.2 U	52 U	1 -
Carbon Tetrachlonde	6 ∪	53 U	52 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	5000
Bromodichloromethane	6 U]	5.3 U	52 U	53 U	52 U	52 U	5.2 U	5.2 U	10000
1,2-Dichloropropane	6 U [5.3 U	52 U	53 U	5 2 Ū	5.2 U	5.2 U	52 U	9000
cis-1,3-Dichloropropene	6 U	53 U	5.2 U	53 U	5 2 U	52 U	52 U	5 2 U	4000
Trichloroethene	6 U	53 U	52 U	5.3 U	5.2 U	5.2 U	5.2 U	5 2 U	58000
Dibromochloromethane	6 U	53 U	52 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	_
1,1,2-Trichloroethane	6 U	53 U	52 U	5.3 U	5 2 U	5.2 U	5 2 U	52 U	11000
Benzene	6 U	53 U	52 U	5.3 U	5 2 U	5.2 U	5 2 U	5.2 U	22000
t-1,3-Dichloropropene	6 U	53 U]	52 U	53 U	5.2 U	5.2 U	5 2 U	5 2 U	4000
2-Chloroethyl Vinyl Ether	6 U	53 U	52 U	53 U	5 2 U	52 U	5.2 U	5.2 U	-
Bromoform	6 U	53 U	52 U	53 U	5.2 U	5.2 U	52 U	5 2 U	81000
Tetrachloroethene	6 U	5 3 U	11 J	53 U	52 Ų	52 U	52 U	5.2 U	12000
1,1,2,2-Tetrachioroethane	6 U	53 U	52 U	53 U	5 2 U	5.2 U	52 U	5 2 U	3000
Toluene	6 U	53 U	52 U	53 U	5.2 U	5.2 U	52 U	5.2 U	16000000
Chlorobenzene	6 U	5.3 U	5 2 U	53 U	52 U	5.2 U	5 2 U	5.2 U	1600000
2-Butanone	6 U	53 U	5 2 U	5.3 U	52 U	5.2 U	52 U	5.2 U	-
Ethyl Benzene	6 U	53 U	52 U	53 U	52 U	52 U	52 U	5 2 U	7800000
m/p-Xylenes o-Xylene	6 U	5.3 U	5 2 U	53 U	5 2 U	52 U	52 U	52 U	160000000
Acetone	6 U	53 U	5.2 U	53 U	5.2 U	52 U	5 2 U	5 2 U	160000000
Carbon Disulfide	6 U 6 U	53 U 53 U	52 U	53 U	52 U	5.2 U	5 2 U	5.2 U	7800000
4-Methyl-2-Pentanone	6 U	5.3 U	52 U	53 U	5.2 U	5.2 U	5.2 U	5.2 U	7800000
2-Hexanone	6 U	5.3 U	5 2 U 5 2 U	53 U	5.2 U	5.2 U	5 2 U	5 2 U	-
Styrene	6 U	53 U	52 U	53 U	52 U	5.2 U	52 U	52 U	1
1,3-Dichlorobenzene	6 U	5.3 U	5.2 U	5.3 U 5 3 U	5 2 U 5 2 U	52 U	5.2 U	5.2 U	16000000
1.4-Dichlorobenzene	6 11	53 U	52 U	5.3 U	52 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U	27000
1,2-Dichlorobenzene	60	53 U	52 U	5.3 U	5.2 U	5.2 U		5.2 U	
Dichlorodifluoromethane	8 11	5.3 U	52 U	53 U	5.2 U	5.2 U	52 U	5.2 U	7000000
Vinyl Acetate	30 U	27 U	26 U	27 U	26 U	26 U	5 2 U 26 U	5 2 U	78000000
2,2-Dichloropropane	60	53 U	52 U	53 U	52 U	5.2 U	52 U	26 U 5.2 U	/800000
Bromochloromethane	์ 6 บี l	5.3 U	52 U	53 U	52 U	5.2 U	52 U	5.2 U	=
1,1-Dichloropropene	6 U	5.3 U	5.2 0	53 U	52 U	5.2 U	52 U	5.2 U	=
1,3-Dichloropropane	6 U	53 U	5.2 U	53 U	52 U	5.2 U	5.2 U	5.2 U	_
1,2-Dibromoethane	6 U	5.3 U	52 U	53 U	52 U	52 U	52 U	5.2 U	_
Isopropylbenzene	6 U	53 U	52 Ų	53 U	52 U	52 U	5.2 U	52 U	_
1,2,3-Trichloropropane	6 U	53 U	5.2 U	53 U	52 U	52 U	52 U	52 U	=
1,1,1,2-Tetrachloroethane	6 Ū	53 U	52 U	53 U	52 U	52 U	52 0	52 U	_
Bromobenzene	6 U	53 U	52 U	53 Ų	5 2 U	5.2 U	52 U	52 U	_
n-propylbenzene	6 U	5.3 U	5.2 U	53 Ū	52 U	52 U	5.2 U	5.2 U	
2-Chlorotoluene	6 U	53 U	52 U	5.3 U	52 U	5.2 U	5.2 U	5.2 U	_
1,3,5-Trimethylbenzene	6 U	53 U	52 U	53 U	52 U	52 U	5.2 U	5.2 U	
4-Chlorotoluene	6 U	5.3 U	52 U	5.3 U	52 U	52 U	5.2 U	5.2 U	_
tert-Butylbenzene	6 U	53 U	5.2 U	5.3 U	5.2 U	52 U	52 U	5.2 U	
1,2,4-Trimethylbenzene	6 U	5.3 U	5.2 U	53 U	5.2 U	5 2 U	52 U	5.2 U	l –
sec-Butytbenzene	6 U	5.3 U	5.2 U	5,3 U	5.2 U	5.2 U	5.2 U	5.2 U	
p-Isopropyltoluene	6 U	5.3 U	5.2 U	5.3 U	5 2 U	5.2 U	5.2 U	5.2 U	_
Dibromomethane	6 U	5.3 U	5.2 U	5.3 U	52 U	52 U	5 2 U	52 U	_
n-Butytbenzene	6 U	5.3 U	5.2 U	5.3 U	52 U	5 2 U	5.2 U	5 2 U	_
1,2-Dibromo-3-Chloropropane	6 U	5.3 U	52 U	53 U	52 Ų	52 U	52 U	52 U	
1,2,4-Trichlorobenzene	6 U	53 U	5.2 U	53 U	5.2 ป	5 2 U	5.2 U	52 U	780000
Hexachlorobutadiene	6 U	5.3 U	5.2 U	5.3 U	52 U	5 2 U	5.2 U	5.2 Ü	8000
Naphthalene	6 U	5.3 U	5.2 U	5.3 U	5 2 U	5.2 U	5.2 U	5.2 U	3100000
MTBE	6 U	53 U	5.2 U	53 U	52 U	52 U	5 2 U	5 2 U	
1,2,3-Trichlorobenzene	6 U	5.3 U	52 U	53 U	52 U	52 U	52 U	5 2 U	1 _

Qualifiers

U The compound was not detected at the indicated concentration

J Date indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. This concentration given is an approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates possible isboratory contamination of the environmental sample.

Constant and the second	· · · · · · · · · · · · · · · · · · ·		4	VOLATILE ORGANIC C					
Sample Location Sample ID	E10B04 11-13	E10804 19-21	E10 B05 10-12	Seven Form E10 B05 16-18	er Leaching Pools				
Sample Depth (ft)	11-13	19-21	10-12	16-18	E10 B06 10-12 10-12	E10 B06 16-18 16-18	E10808 6-10 6-10	E10B08 14-16	Comparison Value
Sampling Date	10/11/00	10/11/00	10/02/00	10/02/00	10/02/00	10/02/00	10/11/00	14-16 10/11/00	for Areas of Concern
Matrix	S	S	s	s	S	i iuozoo	1011100	S .	of Concern
Dilution Factor	10	1.0	10	10	10	10	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Chloromethane								•	
Bromomethane	57U 57U	52 U	12 U	53 U	51 U	58 U	52 U	5.2 U	_
Vinyl Chloride	57 U	5.2 U 5 2 U	12 U	53 U	51 U	5.8 U	52 U	52 U	-
Chloroethane	570	5.2 U	12 U 12 U	53 U 5.3 U	51 U 51 U	5 8 U 5.8 U	52 U	52 U	300
Methylene Chioride	57 U	83 B	12 U	5.3 U	510	5.8 U 5.8 U	52 U 7.3 B	52 U 67 B	85000
Trichlorofluoromethane	57 U	52 U	12 U	53 U	51 U	580	52 U	52 U	85000
1,1-Dichloroethena	57 U	5.2 U	12 U	53 U	51 U	58 0	5.2 U	52 Ŭ	1000
1,1-Dichloroethane	5.7 U	5.2 U	12 U	53 U	51 U	58 Ū	5.2 U	52 Ü	7800000
trans-1,2-Dichloroethene	5.7 U	5 2 U	12 U	53 U	51 U	58 U	52 U	5.2 U	1600000
cls-1,2-Dichlomethene	57 U	5.2 U	12 U	53 U	51 U	580	52 U	5 2 U	780000
Chloroform 1.2-Dichloroethane	57 U	5 2 U	12 U	53 U	51 U	58 U	52 U	5 2 U	100000
1,1,1-Trichioroethane	5.7 0	5.2 U	12 U	53 U	51 U	58 U	5.2 U	52 U	7000
Carbon Tetrachioride	5.7 U	5 2 U 5.2 U	12 U	53 U 53 U	51 U	58 U	5.2 U	52 U	
Bromodichloromethane	5.7 U	5.2 U	12 0	53 U	51 U 51 U	58 U 58 U	5.2 U	5.2 U	5000
1,2-Dichloropropane	57 U	5.2 U	12 U	53 U	51 U	58 U	5.2 U 52 U	52 U	10000 9000
cle-1,3-Dichloropropene	57 U	5.2 U	12 0	53 U	51 U	58 U	5.2 U	52 U 52 U	4000
Trichloroethene	57 U	52 U	12 U	53 U	5 1 U	58 U	5.2 U	52 U	58000
Dibromochloromethane	57 Ū	5 2 U	12 U	53 U	51 U	58 U	5.2 Ú	5.2 U	
1,1,2-Trichioroethane	5.7 U	5.2 U	12 U	53 U	5 1 U	58 U	52 U	5.2 U	11000
Benzene	57 U	5.2 U	12 U	53 U	51 U	58 U	52 U	5 2 U	22000
t-1,3-Dichloropropene	57 U	5.2 U	12 U	53 U	51 U	58 U	5.2 U	5.2 U	4000
2-Chloroethyl Vinyl Ether	57 U	5.2 U	12 U	53 U	51 U	58 U	52 U	5.2 U	_
Bromoform Tetrachioroethene	57 U 57 U	5.2 U 5.2 U	12 U 12 U	53 U	51 U	58 U	5.2 U	5.2 U	81000
1,1,2,2-Tetrachloroethane	5.7 U	5.2 U	12 0	53 U 53 U	51 U	58 U	52 U	5.2 U	12000
Toluene	57 U	5.2 U	12 U	53 U	51 U 51 U	58 U 58 U	5.2 U 5.2 U	5.2 U	3000 1600000
Chlorobenzene	570	5.2 U	12 0	53 U	51 U	58 U	52 U	52 U 52 U	1600000
2-Butanone	5.7 U	5.2 U	12 0	53 U	510	5.8 U	5.2 U	5.2 U	190000
Ethyl Benzene	57 Ŭ	5 2 U	12 U	53 U	51 U	5.8 U	5.2 U	5.2 U	7800000
m/p-Xylenes	5.7 Ú	13 J	12 U	53 Ŭ	51 Ú	58 U	5.2 U	5.2 U	16000000
o-Xylene	57 U	5.2 U	12 U	53 U	51 Ū	58 U	52 U	5.2 U	160000000
Acetone	57 U	5.2 U	12 U	5.3 U	51 U	58 U	52 U	5 2 U	7800000
Carbon Disulfide	57 U	5.2 U	12 U	53 U	51 U	580	5.2 U	5.2 U	7800000
4-Methyl-2-Pentanone 2-Hexanone	5.7 U 57 U	5.2 U	12 U	53 U	51 U	58 U	52 U	5.2 U	_
Styrene	57 U	5 2 U : 5.2 U	12 U	53 U	51 U	58 U	52 U	5.2 U	
1,3-Dichlorobenzene	57 U	5.2 U	12 U 12 U	53 U 53 U	51 U	5 8 U	52 U	5.2 U	16000000
1,4-Dichlorobenzene	570	5.2 U	12 0	5.3 U	51 U 51 U	58 U	52 U	5.2 U	27000
1,2-Dichlorobenzene	57 U	5.2 U	12 0	53 U	51 U	5.8 U 5 8 U	52 U 52 U	5.2 U 5.2 U	7000000
Dichlorodifluoromethane	5.7 U	52 U	12 Ŭ	53 U	51 U	58 0	52 U	5.2 U	700000
Vinyl Acetate	29 U	26 U	58 U	26 U	25 U	29 U	26 U	26 U	78000000
2,2-Dichloropropane	5.7 U	5.2 U	12 U	53 U	5 1 U	58 U	5.2 U	52 U	_
Bromochioromethane	57 U	5 2 U	12 U	53 U	5 1 U	5.8 U	5.2 U	52 U	-
1,1-Dichloropropene 1,3-Dichloropropane	57 U 57 U	5.2 U	12 U	53 U	51 U	58 U	5.2 U	5.2 U	
1,3-Dibromoethane	5.7 U	5 2 U 5.2 U	12 U 12 U	53 U	51 U	58 U	52 U	5.2 U	-
teopropylbenzene	5.7 U	5.2 U	12 U	53 U 53 U	51 U 51 U	58 U	52 U	52 U	-
1,2,3-Trichloropropane	57 U	5.2 U	12 0	5.3 U	51 U	58 U 58 U	52 U 5.2 U	5 2 U 5 2 U	_
1,1,1,2-Tetrachloroethane	57 Ŭ	5.2 U	12 0	53 U	51 U	5.8 U	5.2 U	52 U	_
Bromobenzene	57 U	5.2 U	12 U	53 U	51 U	5.8 U	52 U	5.2 U	_
n-propylbenzene	5.7 Ú	5.2 U	12 U	53 U	51 U	58 U	5.2 U	5.2 U	_
2-Chlorotoluene	57 U	5.2 U	12 U	53 U	51 U	58 Ü	5.2 U	5.2 U	-
1,3,5-Trimethylbenzene	57 U	5.2 U	12 U	5.3 ∪	51 U	58 U	52 U	5.2 U	
4-Chlorotoluene	57 U	5.2 U	12 U	53 U	51 U	58 U	5.2 U	5.2 U	-
tert-Butytoenzene	57 U	5.2 U	12 U	5.3 U	51 U	5.8 U	5.2 U	52 U	_
1,2,4-Trimethylbenzene	57 U 57 U	5.2 U	12 U	53 U	51 U	58 U	5.2 U	5 2 U	-
sec-Butylbenzene p-leopropyltoluene	5.7 U	5.2 U 5.2 U	12 U 12 U	5.3 U 5.3 U	51 U	58 U	52 U	52 U	-
Dibromomethane	5.7 U	5.2 U 5.2 U	12 U 12 U	53 U 53 U	51 U 51 U	58 U	5.2 U	52 U	-
n-Butylbenzene	57 U	5.2 U	12 U 12 U	53 U	51 U 51 U	58 U 58 U	52 U	52 U	_
1,2-Dibromo-3-Chloropropane	57 U	5.2 U	12 0	53 U	51 U	58 0	52 U 5.2 U	5 2 U 5.2 U	
1,2,4-Trichlorobenzene	57 Ŭ	5.2 U	12 U	5.3 U	51 U	580	5.2 U	5.2 U	780000
Hexachlorobutadiene	5.7 U	5.2 U	12 0	53 U	5 1 U	58 0	5.2 U	52 U	8000
Naphthalene	5.7 U	5.2 U	12 U	53 U	51 U	5.8 Ŭ	5.2 U	5.2 U	3100000
MTBE	87 U	5.2 U	12 U	53 U	51 U	5,8 U	5.2 U	5.2 U	
1,2,3-Trichlorobenzene Total Conc. VQAs (s)	5.7 U	5.2 U	12 U	53 U	51 U	58∪	52 U	5.2 U	_
	ND T	10	ND	ND	ND	ND	7		10000

Qualifier

U The compound was not detected at the Indicated concentrate

J Data indicates the presence of a compound that mosts the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration shows is an assessment within

B. The analyte was found in the laboratory blank as well as the sample. This indicates possible intronsory contemporation of the environmental sample.

Notes:

-- Not established

ND Not detected

Sample Location Former Dry Well Former Drum Storage Area Existing On-site Red Sample ID 10-12 E12801 16-20 E13 801 1-3 E13 801 3-5 E13 802 0-2 2-4 0-2	harge Basin E18 B01 2-4 2-4 10/05/00 S 10 Ug/kg 6 U 6 U 6 U 6 U 3 4 J	Companson Value for Areas of Concern ug/kg —
Sample Depth (#) 10-12 18-20 10-3 3-5 0-2 2-4 0-2	2-4 10/05/00 S 1 0 ug/kg 6 U 6 U 6 U 6 U	for Areas of Concern ug/kg — —
Sampling Date	10/05/00 S 1 0 ug/kg 6 U 6 U 6 U 6 U 6 U	of Concern ug/kg — —
Matrix S D <th>S 10 ug/kg 6 U 6 U 6 U 6 U</th> <th>ug/kg — —</th>	S 10 ug/kg 6 U 6 U 6 U 6 U	ug/kg — —
Dilution Factor	10 ug/kg 6 U 6 U 6 U 6 U	_
Units Ug/kg Ug/k	ug/kg 6 U 6 U 6 U 6 U	_
Chloromethane	6 U 6 U 6 U	_
Bromomethane	6 U 6 U 6 U	_ 200
Bromomethane	6 U 6 U 6 U	_ 200
Vin/I Chlorade 56 U 52 U 6 U 53 U 57 U 57 U 51 U Chloroethane 5.6 U 5.2 U 6 U 53 U 57 U 57 U 51 U Methylene Chlorade 87 B 66 B 38 J 2,6 J 38 J 36 J 5,1 U	6 U 6 U	
Chioroethane	6 U	200
Methylene Chlonde		300
	34 J	
Trichlorofluoromethane 56 U 52 U 6 U 53 U 57 U 57 U 51 U	6 U	85000
1.1-Dichloroethene 56 U 52 U 6 U 5.3 U 57 U 57 U 5.1 U	6 U	1000
1.1-Dichloroethane	60	7800000
trans-1,2-Dichloroethene 56 U 52 U 6 U 53 Ū 5,7 Ū 5,7 Ū 5,7 Ū	6 U	1600000
cis-1,2-Dichloroethene	6 U	780000
Chloroform 56 U 5.2 U 6 Ū 53 Ū 57 Ū 5,7 Ū 5 1 Ŭ	6 Ū	100000
1,2-Dichloroethane 56 U 5.2 U 6 U 53 U 57 U 5,7 U 51 Û	6 U	7000
1,1-Trichloroethane	6 U	-
Carbon Tetrachloride	6 U	5000
Bromodichioromethane	6 U	10000
1,2-Dichloropropane 56 U 5.2 U 6 U 53 U 57 U 5.7 U 51 U cas-1,3-Dichloropropane 56 U 5.2 U 6 U 53 U 57 U 5.7 U 51 U	6 U	9000
150 3.7 U 5.	6 U 6 U	4000 58000
5.6 U 5.2 U 6 U 5.3 U 5.7 U 5.1 U 5.1 U	6 U	50000
1.1.2-Trichloroethane 5.6 U 5.2 U 6 U 5.3 U 5.7 U 5.7 U 5.1 U	6 U	11000
Benzene 5.6 U 52 U 6 U 53 U 57 U 57 U 5.1 U	6 U	22000
-1,3-Dichloropropene 56U 52U 6U 53U 57Û 57Û 51Û	6 Ŭ	4000
2-Chloroethyl Vinyl Ether 56 U 52 U 6 U 53 U 57 U 57 U 51 U	6 U	
Bromoform 5.6 U 5.2 U 6.1 U 5.3 U 5.7 U 5.1 Ū	6 U	81000
Tetrachionethene 56 U 52 U 6 U 53 U 57 U 57 U 4.1 J	6 U	12000
1.1,2,2-Tetrachloroethane 5.6 U 52 U 6 U 53 U 57 U 57 U 5.1 U Toluene 5.6 U 52 U 6 U 53 U 57 U 57 U 51 U	6 U	3000
Toluene	6 U	16000000
28-butanone 5.6 U 5.2 U 6 U 5.3 U 57 U 57 U 5.1 U	6 U .	1600000
Ethyl Benzene 56 U 5.2 U 6 U 53 U 5.7 U 5.7 U 5.7 U	6 U	7800000
m/p-Xylenes 56U 52U 6U 53U 57U 57U 51U	6 U	16000000
o-Xylene	ě Ŭ	160000000
Acetone 5.6 U 52 U 6 U 53 U 57 U 5,1 Ū	29	7800000
Carbon Disulfide 56 U 52 U 6 U 53 U 57 U 5.7 U 51 U	6 U	7800000
4-Methyl-2-Pentanone 56 U 5.2 U 6 U 53 U 5.7 U 5.7 U 51 U	6 U	_
2-Hexanone	6 U	
	6 U	16000000
1,3-Dichlorobenzene 56 U 52 U 6 U 53 U 57 U 57 U 51 U 1.4-Dichlorobenzene 56 U 52 U 6 U 53 U 57 U 57 U 51 U	6 U 6 U	27000
1,2-Dichlorobenzene 56 U 52 U 6 U 53 U 5,7 U 5,7 U 51 U	6 U	7000000
Dichlorodifluoromethane 56 U 52 U 6 U 53 U 5,7 U 5,7 U 5,7 U	δŬ	-
Vinyl Acetate	30 U	78000000
2,2-Dichloropropane 5.6 U 52 U 6U 53 U 57 U 5.7 U 5.1 U	6 U	_
Bromochloromethane 5.6 U 52 U 6 U 53 U 5.7 U 5.7 U 5.1 U	6 U	_
1.1-Dichloropropene 56 U 52 U 6 U 53 U 5.7 U 5.7 U 5.1 U	6 U	-
1,3-Dichloropropane 56 U 52 U 6 U 53 U 5,7 U 5,7 U 5,1 U 1,2-Dibromoethane 56 U 52 U 6 U 53 U 5,7 U 5,1 U	6 U	_
1,2-Dibromoethane 56 U 52 U 6 U 53 U 57 U 5.7 U 5.1 U Isopropytbenzene 5.6 U 5.2 U 6 U 5.3 U 5.7 U 5.7 U 5.1 U	6 U 6 U	_
12,3-Trokhoppropane 5,6 U 5,2 U 6 U 5,7 U 5,7 U 5,1 U 5,1 U	6 U	-
11.1.1.2-Tetrachlomoethane 56 U 52 U 6 U 5.3 U 5.7 U 57 U 57 U 51 U	6 U	=
Bromobenzene 5.6 U 5.2 U 6 U 53 U 5.7 U 5.7 U 5.1 U	6 U	_
n-propythenzene 5.6 U 52 U 6 U 53 U 57 U 5,7 U 51 U	6 U	-
2-Chlorotoluene 5.6 U 52 U 6 U 53 U 5.7 U 5.7 U 5.1 Û	6 U	-
1,3,5-Trimethylbenzene 56 U 52 U 6 U 53 U 5,7 U 5,7 U 5,1 U	6 U	_
4-Chlorotoluene 5.6 U 52 U 6 U 53 U 57 U 5.7 U 5.1 U	6 U	-
	6 U	
1,2,4-Trimethylbenzene	6 U	-
	6 U	-
	6 U	-
Discretioner 5.6 U 5.2 U 6 U 5.7 U 5.7 U 5.7 U 5.1 U 5.0 U 5.7 U	6 U 1	
12-Dibromo-3-Chloropropane 5.6 U 5.2 U 6.0 5.3 U 5.7 U 5.7 U 5.7 U 5.7 U	6 U	
12.4-Trichlorobenzene 5.6 U 5.2 U 6 U 5.3 U 5.7 U 5.7 U 5.7 U	6 U	780000
Hexachlorobutadiene 5.6 U 5.2 U 6 U 5.3 U 5.7 U 5.7 U 5.1 U	6 U	8000
Naphthalene 56U 5.2U 6U 5.3U 5.7Ü 5.1Ü	6 Ü	3100000
MTBE 5.6 U 5.2 U 6 U 53 U 57 U 5.7 Û 5.1 Û	6 Ü	-
12.3-Trichlorobenzene 56 U 5.2 U 6 U 53 U 57 U 5.7 U 5.1 U	6 U	
Total Conc. VOAs (s) 9 7 4 3 4 4 4	32	10000

Citalifiers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero The concentration given is an approximate value.

6 The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes:
- Not established

				VOLATILE ORGANIC C	OMPOUNDS				
Sample Location	Existing On-site	Recharge Basin	Former On-site	Recharge Basin		tifled Pit	Former AST ar	nd Salvage Area	
Sample ID Sample Depth (ft)	E18 B02 0-2	E18 B02 2-4	E19 B01 8-10"	E19 B01 18-20	E20 B01 2-4'	E20 B01 4-6'	E21 B01 0-2	E21 B01 2-4	Comparison Value
Sampling Date	10/05/00	2-4 10/05/00	8-10 10/09/00	18-20	2-4	4-8	0-2	2-4	for Areas
Matrix	S	S		10/09/00	09/28/00	09/28/00	09/29/00	09/29/00	of Concern
Dilution Factor	10	1.0	S I	S	S	S	S	S	
Units	ug/kg	1.0 Ug/kg	10 ug/kg	10	10	10	10	10	_
		U U V	Ughta	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
			l	1					
Chloromethane	5.2 U	5.8 ∪	60	5.2 U	53 U	53 U	55 U	54 U	
Bromomethane	5.2 U	5,8 U	6 Ū	5.2 U	5.3 U	5.3 U	55 U	5.4 U	_
Vinyl Chloride	5.2 U	5.8 U	6 Ú	5.2 U	53 U	5.3 U	5.5 U	5.4 U	300
Chloroethane	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	5.5 U	54 U	-
Methylene Chloride	2.9 J	3.8 J	4.2 J	52 U	53 U	1.5 J	49 3	5.4 U	85000
Trichiorofluoromethane	5.2 U	58 U	60	5.2 U	53 U	53 U	55 U	54 U	
1,1-Dichloroethene	5.2 U	58 U	6 U	5.2 Ü	53 U	53 0	55 U	54 U	1000
1,1-Dichloroethane	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	5.5 U	5.4 U	7800000
trans-1,2-Dichioroethene	5.2 U	5.8 U	8 U	5.2 U	53 U	5.3 U	5.5 U	5.4 U	1600000
cis-1,2-Dichloroethene	5.2 U	6.8 U	6 U	5.2 U	5.3 U	5.3 U	2.9 J	5.4 Ŭ	780000
Chloroform	5.2 U	5.8 U	60	5.2 U	53 U	5.3 Ú	55 U	5.4 U	100000
1,2-Dichloroethane	5.2 U	5.8 U	60	5.2 U	53 U	53 U	55 U	5.4 U	7000
1,1,1-Trichloroethane	5.2 U	5.8 U	60	5.2 Ú	53 U	5.3 U	5.5 U	5.4 U	
Carbon Tetrachioride	5.2 U	5.8 U	60	5.2 U	5.3 U	5.3 U	5.5 U	5.4 U	5000
Bromodichloromethane	5.2 U	6.8 U	6 U	5.2 U	53 U	53 Ŭ	55 U	54 U	10000
1,2-Dichloropropane	5.2 U	5.8 ∪	6 U	5.2 U	5.3 U	5.3 U	5.5 U	5.4 U	9000
cie-1,3-Dichloropropene	5.2 U	58 U	60	5.2 U	53 U	5.3 U	5.5 U	5.4 U	4000
Trichloroethene	5.2 U	58 U	10	5.2 U	53 U	53 U	110	86	58000
Dibromochloromethane	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	5.4 U	_
1,1,2-Trichloroethane	5.2 U	5.8 U	6 U	52 U	53 U	53 U	5.5 U	l 54 U	11000
Benzene	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	54 Ū	22000
t-1,3-Dichloropropene	5.2 U	5.8 U	60	5.2 U	53 U	53 U	55 U	5.4 Ŭ	4000
2-Chloroethyl Vinyl Ether	5.2 U	58 U	6 U	5.2 U	5.3 U	5.3 Ú	5.5 U	5.4 U	-
Bromoform	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	54 U	61000
Tetrachloroethene	52 U	2.4 J	34 J	3 1	53 U	53 U	98	45 J	12000
1,1,2,2-Tetrachloroethane	5.2 U	58 U	6 U	5.2 U	53 U	53 U	5.5 U	l 54 Ü	3000
Toluene	5.2 U	5.8 U	6 U	5.2 U	5.3 U	5.3 U	5.5 U	5.4 Ū	16000000
Chlorobenzene	5.2 U	5.8 U	6 U	5.2 U	53 U	5.3 U	5.5 U	54 Ú	1600000
2-Butanone	5.2 U	5.8 U	6 U	5.2 U	53 U	5.3 U	55 U	5.4 U	_
Ethyl Benzene	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	54 Ü	7800000
m/p-Xylenes	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	5.4 Ú	160000000
o-Xylene	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	5.4 U	160000000
Acetone	27	58 U	34	45	53 U	21	55 U	54 U	7800000
Carbon Disulfide	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	j 54 U	7800000
4-Methyl-2-Pentanone	5.2 U	58 U	60	52 U	5 3 U	53 U	. 55 U	5.4 U	
2-Hexanone	5.2 U	58 U	6.0	5.2 U	53 U	53 U	55 U	5.4 U	_
Styrene	52 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	16000000
1,3-Dichlorobenzene	52 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	54 U	_
1,4-Dichlorobenzene	52 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	54 U	27000
1,2-Dichlorobenzene	5.2 U	5.8 U	6 U	52 U	5.3 U	5.3 U	55 U	5.4 U	7000000
Dichlorodifluoromethane	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	-
Vinyl Acetale	26 U	29 U	30 U	26 U	26 U	26 U	27 U	27 U	78000000
2,2-Dichloropropane Bromochloromethane	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	-
1,1-Dichloropropene	5.2 U	58 U	6 U	5.2 U	5.3 U	53 U	55 U	54 U	
1,3-Dichloropropene	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	5.4 U	
	5.2 U	58 U	6 U	52 U	53 U	5.3 U	5.5 U	5.4 U	_
1,2-Dibromoethane	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	
isopropylbenzene	5.2 U	58 U	60	5.2 U	53 U	53 U	55 U	54 U	-
1,2,3-Trichloropropane	52 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	_
1,1,1,2-Tetrachioroethane Bromobenzene	5.2 U	58 U	6 U	52 U	53 U	53 U	55 U	54 U	_
n-propylbenzene	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	_
	5.2 U	5 0 U	6 0	52 U	53 U	53 U	55 U	54 U	_
2-Chlorotoluene 1,3,5-Trimethylbenzene	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	
	52 U	5 B U	6 U	5.2 U	53 U	53 U	55 U	54 U	_
4-Chiorotoluene	5.2 U	5.8 U	6 U	5.2 U	53 U	53 U	55 U	5.4 U	_
tert-Butylbenzene	5.2 U	5.8 U	6 U	52 U	5 3 U	53 U	55 U	54 U	
1,2,4-Trimethylbenzene	5.2 U	58 U	6 U	5.2 U	53 U	5,3 U	5.5 U	5.4 U	-
sec-Butylbenzene	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	
p-isopropylloluene	5.2 U	58 U	6 U	5.2 U	53 U	5.3 U	5.5 U	5.4 U	_
Dibromomethane	5.2 U	5.8 U	6 U	5.2 U	53 U	5.3 ∪	55 U	5.4 U	-
n-Butylbenzene	5.2 U	58 U	6 U	5.2 U	53 U	5.3 ∪	55 U	54 U	_
1,2-Dibromo-3-Chloropropane	5.2 U	5.8 U	6 U	52 U	5.3 U	53 U	55 U	54 U	_
1,2,4-Trichlorobenzene	5.2 U	5.8 U	6 U	5.2 U	5.3 U	5.3 U	5.5 U	5.4 U	780000
Hexachlorobutadiene Nachthalene	5.2 U	58 U	6 U	5.2 U	53 U	53 U	55 U	54 U	8000
MTBE	5.2 U	58 U	60	5.2 U	5,3 U	5.3 U	5.5 U	5.4 U	3100000
	5.2 U	5 8 U	6 U	5.2 U	53 U	5.3 U	55 U	54 U	_
1,2,3-Trichiorobenzene	5.2 U	58 U	6 U	5.2 U 48	53 U ND	53 U	5.5 U 128	5.4 U 91	
Total Conc. VOAs (s)									10000

Catalifiers

U The compound was not detected at the indicated concentration.

1. Date indicates the presence of a compound that mosts the identification criteria. The result is less than the quantitation limit but great. The concentration plans is an approximate value.

If The analyte was found in the laboratory blank as well as the sample. This indicates possible independent concentration of the environs.

Cample Leagues	1			VOLATILE ORGANIC C					
Sample Location Sample ID	E21 B02 0-2	E21 B02 2-4	E21 B03 0-2	Former AST E21 B03 2-4	and Salvage Area	F04 504 6 4 1			
Sample Depth (ft)	0-2	2-4	0-2	E21 B03 2-4 2-4	E21 B04 0-2 0-2	E21 B04 2-4 2-4	E21 B05 0-2 0-2	E21 B05 2-4 2-4	Comparison Value
Sampling Date	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	for Areas of Concern
Matrix	s	S	S S	03/23/00 S	03/23/00 S	S S	09/29/00 S	09/29/00 S	or Concern
Dilution Factor	1.0	10	10	10	10	10	1.0	10	l i
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
					49.19		- Carria	ugrag	Og/Kg
Chloromethane	55 U	55 U	57 U	5 9 U	5.7 U	57 U	5.8 U	57 U	i – I
Bromomethane	55 U	5.5 U	57 U	59 U	57 U	57 U	5 8 U	57 U	-
Vinyl Chloride	5.5 U	5.5 U	57 U	59 U	57 U	5 7 U	58 U	57 U	300
Chloroethane	55 U	55 U	57 U	59 U	57 U	57 U	58 U	57 U	
Methylene Chlonde Trichlorofluoromethane	4.5 J 55 U	42 J 55 U	49 J	5 J	57 U	4 4 J	4 6 J	4 J	85000
1,1-Dichloroethene	5.5 U	55 U	57 U 57 U	59 U	57 U	57 U	58 U	57 U	i . .
1,1-Dichloroethane	5.5 U	55 U	5.7 U	5.9 U 5.9 U	57 U 57 U	57 U	58 U	57 U	1000
trans-1,2-Dichloroethene	55 U	55 U	5.7 U	5.9 U	57 U	5.7 U 5 7 U	58 U	57 U	7800000
cis-1,2-Dichloroethene	5.5 U	55 U	57 U	59 U	5.7 U	57U	58 U	5.7 U 5 7 U	1600000
Chloroform	5.5 U	55 U	57 U	59 U	5.7 U	57 U	5.8 U 5.8 U	57 U	780000 100000
1,2-Dichloroethane	5.5 U	55 U	57 U	59 U	57 U	57 U	5.8 U	57 U	
1,1,1-Trichloroethane	5.5 U	55 U	57 U	59 U	57 U	5.7 U	5.8 U		7000
Carbon Tetrachionde	5.5 U	55 U	57 U	59 U	57 U	5.7 U 5 7 U	5.8 U	57 U	 5000
Bromodichloromethane	55 U	55 U	5.7 U	59 U	57 U	5.7 U	5.0 U 58 U	5.7 U 5 7 U	10000
1,2-Dichloropropane	5.5 U	5.5 U	57 U	59 U	5.7 U	5.7 U	5.8 U	5.7 U	9000
cis-1,3-Dichloropropene	55 U	55 U	57 U	59 U	5.7 U	5.7 U	5.8 U	5.7 U	4000
Trichloroethene	55 U	55 U	5.7 U	5.9 U	57 U	5.7 U	43	57 U	58000
Dibromochloromethane	55 U	5.5 U	57 U	5.9 U	5.7 U	5.7 U	58 U	5.7 U	36500
1,1,2-Trichloroethane	5,5 U	55 U	57 Ŭ	59 U	57 U	57 U	58 U	5.7 U	11000
Benzene	5.5 U	55 U	57 Ū	59 U	57 U	57 U	58 0	57 U	22000
t-1,3-Dichloropropene	55 U	55 U	57 U	5.9 U	57 U	5.7 U	58 0	57 U	4000
2-Chloroethyl Vinyl Ether	55 U	55 U	57 U	59 U	57 Ŭ	57 U	58 U	57 U	1
Bromoform	55 U	55 U	57 Ų	5.9 U	5.7 U	5.7 U	5 8 U	57 U	81000
Tetrachloroethene	55 U	55 U	5.7 U	5 9 U	57 U	5.7 U	21 J	57 U	12000
1,1,2,2-Tetrachloroethane	55 U	55 U	57 U	5 9 U	57 U	57 U	58 U	57 U	3000
Toluene	55 U	55 U	57 U	59 U	57 U	57 U	5 8 U	57 U	16000000
Chlorobenzene	55 U	55 U	57 U	59 U	57 U	57 U	58 U	5.7 U	1600000
2-Butanone	55 U	55 U	57 U	59 U	5.7 U	57 U	5.8 U	57 U	
Ethyl Benzene	55 U	55 U	33 J	59 U	5.7 U	57 U	58 U	57 U	7800000
m/p-Xylenes	5.5 U	55 U	77	59 U	57 U	57 U	58 U	57 U	160000000
o-Xylene	55 U	55 U	25 J	59 U	57 U	57 U	5 8 U	57 U	160000000
Acetone	55 U	55 U	57 U	5.9 U	57 U	5.7 ป	58 U	57 U	7800000
Carbon Disulfide	55 U	55 U	57 U	59 U	57 U	5.7 ป	58 U	5 7 U	7800000
4-Methyl-2-Pentanone	55 U	55 U	57 U	5 9 U	57 U	57 U	58 U	5,7 U	- !
2-Hexanone	55 U	55 U	5.7 U	5,9 U	57 U	57 U	58 U	57 U	- 1
Styrene	55 U	55 U	57 U	59 U	5.7 U	57 U	58 U	57 U	16000000
1,3-Dichlorobenzene	55 U	55 U	5.7 U	5 9 U	57 U	57 U	5.8 U	57 U	- !
1,4-Dichlorobenzene 1,2-Dichlorobenzene	55 U 55 U	55 U	57 U	5 9 U	5.7 U	57 U	58 U	5.7 U	27000
Dichlorodifluoromethane	55 U	55 U	57 U	5 9 U	57 U	57 U	58 U	57 U	7000000
Vinyl Acetate	27 U	55 U	5.7 U	5 9 U	57 U	57 U	58 U	57 U	
2,2-Dichloropropane	55 U	27 U 5,5 U	29 U 57 U	29 U 5 9 U	29 U 5 7 U	29 U	29 U	28 U	78000000
Bromochloromethane	55 U	5.5 U	57 U	59 U	57 U	57 U	5.8 U	57 U	-
1,1-Dichloropropene	55 U	55 U	5.7 U	59 U	57 U	57U	58 U	5.7 U	-
1,3-Dichloropropane	550	5.5 U	5.7 U	59 U	5.7 U	57 U 57 U	58 U 58 U	57 U 57 U	-
1,2-Dibromoethane	5.5 U	5.5 U	5.7 U	59 U	5.7 U				
Isopropyibenzene	55 U	5.5 U	57 U	5.9 U	57 U	57 U 57 U	58 U 58 U	57 U	
1,2,3-Trichloropropane	5.5 U	55 U	57 U	5.9 U	57 U	57U	58 U	5 7 U 5 7 U	
1,1,1,2-Tetrachloroethane	5.5 U	55 U	57 U	59 U	57 U	57 U	58 U	57 U	
Bromobenzene	5.5 U	55 U	57 U	59 U	57 U	57U	58 U	57 U	
n-propylbenzene	5.5 U	5.5 U	4.2 J	59 U	57 U	5.7 U	58 U	57 U	
2-Chlorotoluene	5.5 U	5.5 U	5.7 U	5.9 U	57 U	5.7 U	5.8 U	57 U	
1,3,5-Trimethylbenzene	55 U	55 U	21	5,9 U	57 U	5.7 U	5.8 U	57 U	_
4-Chiorotoluene	55 0	55 U	57 U	59 U	57 U	5.7 U	58 U	57 U	
tert-Butylbenzene	5.5 U	55 U	57 U	59 U	57 U	57 U	5.8 U	57 U	_
1,2,4-Trimethylbenzene	5.5 U	55 U	57	5.9 U	57 U	57 U	58 U	57 U	
sec-Butylbenzene	55 U	55 U	57 U	5.9 U	57 U	570	58 U	57 U	
p-Isopropyttoluene	5.5 U	5.5 U	57 U	5.9 U	57 U	57 U	5.8 U	5.7 U	
Dibromomethane	5.5 U	5.5 U	57 U	5.9 U	57 U	5.7 U	5.8 U	5.7 U	
n-Butylbenzene	5.5 U	55 U	57 U	5.5 U	57 U	5.7 U	5.8 U	57 U	
1,2-Dibromo-3-Chioropropane	5.5 U	55 U	57 U	59 U	57 U	5.7 U	5.8 U	57 U	I - I
1,2,4-Trichlorobenzene	55 U	5.5 Ú	57 U	59 U	5.7 U	57 U	58 U	5.7 U	780000
Hexachlorobutadiene	5.5 U	5.5 U	5.7 U	5.9 U	5.7 U	570	580	5.7 U	8000
Naphthalene	55 U	5.5 U	59	5.9 U	57 U	5.7 U	5.8 U	5.7 U	3100000
MTBE	5.5 U	5.5 U	57 U	59 U	57 U	5.7 U	5.8 U	5.7 U	
1,2,3-Trichlorobenzene	5,5 U	55 U	57 U	59 U	57 U	5.7 U	58 U	57 U	
Total Conc VOAs (s)	5	4	107	5	ND	4	50	4	10000

Qualifiers
U The compound was not detected at the indicated con

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes:
-- Not established
ND Not detected

Table C-8 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT1 - EXTERIOR AREAS OF CONCERN VOLATILE ORGANIC COMPOLINDS

			\	OLATILE ORGANIC C	OMPOUNDS				
Sample Location			· · · · · · · · · · · · · · · · · · ·	Material	Storage Area				
Sample ID	E22 B01 0-2'	E22 B01 2-4'	E22 B02 0-2'	E22 B02 2-4'	E22 B03 0-2"	E22 B03 2-4"	E22 B04 0-2'	E22 804 2-4'	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	2-4	for Areas
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix	S	s	s	s	s	s	s	s	
Dilution Factor	1.0	10	10	10	10	1.0	1.0	10	1
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
			[. i			
Chloromethane	54 U	6 U	61 U	6 U	6 U	6 U	88 U	6.2 U	-
Bromomethane	54 U	6 U	61 U	6 U	6 U	6 U	68 U	62 U	
Vinyl Chloride	54 U	6 U	61 U	6 U	6 U	6 U	68 U	62 U	300
Chloroethane	5,4 U	6 U	61 U	. 6 U	6 U	6 U	68 U	6.2 U	-
Methylene Chloride	25 J	3.1 J	381	24 J	32 J	26 J	6.8 U	35 J	85000
Trichlorofluoromethane	5.4 U	6 U	61 U	6 U	6 U	6 U	68 U	62 U	
1,1-Dichloroethene	5.4 U	6 U	61 U	6 U	6 U	6 U	6.8 U	6.2 U	1000
1,1-Dichloroethane	54 U	6 U	610	6 U	6 U	6 U	6.8 U	6.2 U	7800000
trans-1,2-Dichloroethene cis-1,2-Dichloroethene	54 U 54 U	6 U	610	6 U	6 U	6 U	68 U	62 U	1600000
Chloroform	54 U	6 U	6.1 U 6 1 U	6 U 6 U	6 U	6 U	6.8 U	6.2 U	780000 100000
1,2-Dichioroethane	5.4 U	80	61 U	6 U	6 U 3	6 U	68 U 68 U	62 U	7000
1,1,1-Trichloroethane	5.4 U	60						6.2 U	7000
Carbon Tetrachioride	5.4 U	80	61 U 6.1 U	6 U 6 U	6 U 6 U	6 U 6 U	68 U 68 U	6.2 U 6.2 U	5000
Bromodichloromethane	5.4 U	80	61 U	6 0	6 0	80	68 0	6.2 U	10000
1,2-Dichloropropane	5.4 U	80	610	6 U	6 0		6.8 U	62 U	9000
cie-1,3-Dichloropropene	54 U	6 0	61 0	6 U	6 U	8 U	6.8 U	6.2 U	4000
Trichloroethene	5.4 U	8 0	610	6 U	8 U	60	6.6 U	6.2 U	58000
Dibromochloromethane	54 0	60	6.1 U	6 U	8 U	80	88 0	62 U	
1.1.2-Trichloroethane	5.4 U	80	61 U	6 U	60	60	88 0	6.2 U	11000
Benzene	5.4 U	6 0	610	6 U	8 0	60	68 U	6.2 U	22000
1-1,3-Dichloropropene	54 U	60	6.1 Ŭ	8 Ŭ	6 Ü	aŭ l	6.6 U	6.2 U	4000
2-Chloroethyl Vinyl Ether	5.4 U	60	61 Ŭ	6 Ŭ	8 0	6 Ŭ	66 U	6.2 U	-
Bromoform	5.4 U	6 0	610	6 Ü	8 0	6 Ŭ	68 0	6.2 U	81000
Tetrachioroethene	5.4 Ŭ	ا نَّهُ ا	610	ěŭ	6 U		66 U	62 U	12000
1,1,2,2-Tetrachloroethane	5.4 U	اققا	610	6 Ü	8 U	انة	68 U	6.2 U	3000
Toluene	54 U	ěŭ	6.1 Ŭ	ěŭ	6 U	ăŭ	68 0	6.2 U	16000000
Chlorobenzene	54 U	6 Ŭ	6.1 U	δŬ	6 Ŭ	ě Ü	6.8 U	6.2 U	1600000
2-Butanone	54 U	6 Ŭ	6.1 U	δŬ	6 U	6 Ŭ	68 Ŭ	6.2 U	
Ethyl Benzene	5.4 U	6 Ŭ	61 U	δŬ	6 Ŭ	6 Ŭ	68 U I	6.2 U	7800000
m/p-Xylenes	64 U	6 Ŭ	6.1 U	ěŭ	6 Ü	ě ŭ	6.8 U	6.2 U	160000000
o-Xylene	5.4 U	6 U	61 U	6 Ú	6 U	6 Ü	68 U	6.2 U	160000000
Acetone	54 U	80	61 U	6 U	6 U	6 U	44	6.2 U	7800000
Carbon Disulfide	54 U	60	61 U	6 U	6 U	6 U	68 U	6.2 U	7800000
4-Methyl-2-Pentanone	5.4 U	6 U	61 U	6 U	6 U	6 U	6.8 U	6.2 U	
2-Hexanone	54 U	6 U	61 U	6 U	6 U	6 U	6.8 U	6.2 U	_
Styrene	54 U	6 U	61 U	6 U	6 U	6 U	68 U	6.2 U	16000000
1,3-Dichlorobenzene	54 U	6 U	61 U	6 U	6 U	6 U	68 U	6.2 U	-
1,4-Dichlorobenzene	54 U	6 U	61 U	6 U	6 U	6 U	6.8 U	6.2 U	27000
1,2-Dichlorobenzene	54 U	6.0	61 U	6 U	6 U	6 U	68 U	6.2 U	7000000
Dichlorodifluoromethane	54 U	60	61 U	6 U	6 U	6 U	88 U	6.2 U	-
Vinyl Acetate	27 U	30 U	30 U	30 U	30 U	30 U	34 U	31 U	78000000
2,2-Dichloropropane	5.4 U	6 U	610	6 U	6 U	6 U	68 U	6.2 U	-
Sromochioromethane	5.4 U	8 U	6.1 U	6 U	6.0	6 U	68 U	6.2 U	-
1,1-Dichloropropene	54 U	6.0	610	6 U	6 U	6 U	6.8 U	6.2 U	
1,3-Dichloropropane	5.4 U	60	6.1 U	6 U	60	6 U	6.8 U	6.2 U	-
1,2-Dibromoethane	5,4 U 5,4 U	6 U	6.1 U	6 U	6 U	60	68 U	6.2 U	_
leopropylbenzene	5.4 U	6 U	61 U 6.1 U	6 U 6 U	6 U	6 0 }	68 U	6.2 U	
1,2,3-Trichioropropane 1,1,1,2-Tetrachioroethane	5.4 U	6 U 6 U	6.1 U	6 U	6 U 6 U	6 U	68 U 68 U	6.2 U 6.2 U	
Romobeozene	54 U	60	6.1 U	6 U	80	6 U	6.6 U		
n-propylbenzene	5.4 U	80	6.1 U	6 U	60	. Su	68 U	6.2 U 6.2 U	
2-Chlorotoluene	54 U	80	6.1 U	6 0	6 0	នីប៉	6.8 U	6.2 U	=
1,3,5-Trimethylbenzene	5.4 U		6.1 U	6 0	6 0	อ บ	68 U	6.2 U	_
4-Chlorotoluene	5.4 U	80	6.1 U	6 U	6 0	្តី ម	6.8 U	6.2 U	_
tert-Butytbenzene	5.4 U	80	6.1 U	8 U	6 0	80	6.8 U	6.2 U	_
1,2,4-Trimethylbenzene	6.4 U	80	6.1 U	6 U	80	เม็	6.8 U	6.2 U	_
sec-Butylbenzene	5.4 U	80	61 U	6 U	6 0	เมื่	68 U	6.2 U	_
p-isopropylioluene	5.4 U	ا ناق	61 U	6 U	6 0	" "	68 U	6.2 U	_
Dibromomethane	5.4 U	80	6.1 U	6 U	6 0	เมื่อ	68 U	6.2 U	
n-Butylbenzene	5.4 U	80	6.1 U	6 0	60	80	88 U	6.2 U] =
1,2-Dibromo-3-Chloropropane	5.4 U	80	6.1 U	. 6 U	80	80	68 U	6.2 U	1 _
1.2.4-Trichlorobenzene	5.4 U	ŠŬ	6.1 U	6 U	6 U	80	58 U	6.2 U	780000
Hexachlorobutadiene	5.4 U	8 0	6.1 U	6 U	6 Ü	ا قنا	68 0	6.2 U	8000
Naphthalene	5.4 U		6.1 U	6 U	δŬ		66 U	6.2 U	3100000
MTBE	5.4 U	6 0	6.1 U	6 U	8 0	60	68 U	6.2 U	
1,2,3-Trichiorobenzene	5.4 U	60	6.1 U	6 Ú	6 Ŭ		68 U	6.2 U	l _
Total Conc. VOAs (s)	3	3	4	2	3	3	44	7	10000
								` _	

Ocualifiers

U The compound was not detected at the bridicated concentration.

J Data indicates the presenter of a compound that meets the identification criteria. The result is less than this quantitation limit but greater than zero The concentration plant is an approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates psecifies toboratory contamination of the environmental sample.

[OLATILE ORGANIC C					
Sample Location	Former Conc	rata Suma Dit	Location of Former Ti	ishlamathulana Tank	Pump St	totion #4*	Catab Passas Official of F	Hawaa 84/ Taato	
Sample ID	E25 B01 5-7	E25 B01 7-9	E27 B01 1-3'	E27 B01 3-5'	E30 B01 13-15	E30 B01 15-17	Catch Basins (Vicinity of F E32 B01 6-8	E32 B01 8-10	Comparison Value
Sample Depth (ft)	5-7	7-9	1-3	3-5	13-15	15-17	6-8	8-10	for Areas
Sampling Date	10/04/00	10/04/00	09/28/00	09/28/00	10/18/00	10/18/00	10/16/00	10/16/00	of Concern
Matrix	s	s	s	s	S	s	s	S	U. 40.1.00.1.1
Dilution Factor	1.0	10	10	10	1.0	10	10	1.0]
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
1									1
Chloromethane	59 U	5,8 U	5 U	5 U	6 U	61 U	5.2 U	52 U	
Bromomethane	59 U	5.8 U	5 U	5 U	6 U	61 U	5 2 U	5.2 U	
Vinyl Chloride Chloroethane	59 U 59 U	58 U 5.8 U	5 ป 5 ป	5 U	6 U	6,1 U	5.2 U	5.2 U	300
Methylene Chloride	5.9 U	5.8 U	3.2 J	5 U 2 9 J	6 U 4 3 J	61 U	52 U	5 2 U	
Trichlorofluoromethane	5.9 U	5.8 U	3.2 J 5 U	29 J 5 U	43 J 6 U	32 J 61 U	5 2 U 5 2 U	5.2 U 5 2 U	85000
1,1-Dichloroethene	590	58 U	50	5 U	6 U	61 U	52 U	5.2 U	1000
1,1-Dichloroethane	59 U	58 Ŭ	ŠŬ	5 Ŭ	6 U	6.1 U	52 U	5.2 U	7800000
trans-1,2-Dichloroethene	59 U	5.8 U	5 Ü	5 U	6 Ü	61 U	52 U	5.2 U	1600000
cis-1,2-Dichloroethene	59 U	58 U	5 U	5 U	6 Ū	61 U	5,2 U	52 U	780000
Chloroform	59 U	5.8 ∪	5 U]	5 U	6 U	61 U	5.2 U	52 U	100000
1,2-Dichloroethane	5.9 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	7000
1,1,1-Trichloroethane	59 ป	5.8 U	5 U	5 U	6 U	61 U	52 U	52 ป	-
Carbon Tetrachloride	5.9 U	58 U	5 U	5 U	6 U	61 U	52 U	5 2 U	5000
Bromodichloromethane	5.9 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	10000
1,2-Dichloropropane	5.9 U	58 U	5 U	5 U	6 U	610	52 U	5 2 U	9000
cis-1,3-Dichloropropene Trichloroethene	59 U 59 U	58 U 58 U	5 U	5 U 5 U	6 U 6 U	61 U 61 U	52 U 52 U	5.2 U	4000
Dibromochloromethane	5.9 U	5.8 U	5 0					5.2 U	58000
1,1,2-Trichloroethane	5.9 U	5.8 U	5 U	5 U 5 U	6 U 6 U	6.1 U 61 U	5.2 U 5 2 U	5.2 U 5.2 U	11000
Benzene	59 U.	58 U	5 U	5 0	60	6.1 U	52 U	5.2 U	22000
t-1,3-Dichloropropene	590	58 U	5 U	š ŭ l	6 U	61 U	52 U	5.2 U	4000
2-Chloroethyl Vinyl Ether	59 ∪	5.8 U	5 U	5 U	6 U	61 U	52 Ü	52 U	
Bromoform	59 U	5.8 ∪	5 U	5 U	6 U	61 U	52 U	5.2 U	81000
Tetrachloroethene	59 U	5.8 U	5 U	5 U	6 U	61 U	5,2 U	5 2 U	12000
1,1,2,2-Tetrachloroethane	59 U	58 U	5 U	5 U	6 U	61 U	52 U	5 2 U	3000
Toluene	59 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	16000000
Chlorobenzene	59 U	5.8 U	5 U	5 U	6 U	6.1 U	52 U	5.2 U	1600000
2-Butanone Ethyl Benzene	59 U 59 U	58 U 58 U	5 U 5 U	5 U 5 U	6 U 6 U	61 U 61 U	52 U	52 U	700000
m/p-Xylenes	59 U	5.8 U	5 0	5 U	6 U	61 U	5 2 U 5 2 U	5 2 U 5 2 U	7800000 16000000
o-Xylene	5.9 U	5.8 U	š Ü	5 U I	6 U	610	5,2 U	52 U	160000000
Acetone	59 U	58 U	5 Ŭ	šυ	10	25	5.2 U	52 U	7800000
Carbon Disulfide	59 U	58 U	5 U	5 Ü	6 U	61 U	52 Ū	52 U	7800000
4-Methyl-2-Pentanone	59 ∪	58 U	5 U	5 U	6 U	6.1 U	5.2 U	5 2 U	1
2-Hexanone	59 U	58 U	5 ป	5 U	6 U	61 U	5 2 U	5.2 U	-
Styrene	59 U	58 U	5 U	5 ป	6 U	61 U	52 U	52 U	16000000
1,3-Dichlorobenzene	59 U (5.8 U	5 U	5 U	6 U	61 U	52 U	5 2 U	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	59 U 59 U	58 U 58 U	5 U 5 U	5 U	6 U	61 U	520	5 2 U	27000
Dichlorodifluoromethane	590	5.8 U	5 0	5 U 5 U	6 U 6 U	61 U 61 U	52 U 52 U	52 U	7000000
Vinyl Acetate	29 U	29 U	25 U	25 U	30 U	30 U	26 U	5 2 U 26 U	78000000
2,2-Dichloropropane	5.9 U	58 U	5 U	5 U	6 U	6.1 U	52 U	5.2 U	78000000
Bromochioromethane	59 Ŭ	5.8 U	5 Ü	5 U	6 U	61 U	5.2 U	5 2 U	
1,1-Dichloropropene	59 U	5.8 U	5 Ü	5 U	δŬ	6.1 U	5.2 U	52 U	
1,3-Dichloropropane	59 U	5.8 U	5 U	5 U	6 U	61 U	52 U	5 2 U	
1,2-Dibromoethane	59 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	_
Isopropyibenzene	59 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	-
1,2,3-Trichloropropane	5.9 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	-
1,1,1,2-Tetrachioroethane	59 U	58 U	5 U	5 U	6 U	61 U	52 U	5.2 U	-
Bromobenzene n-propylbenzene	59 U 5,9 U	58 U 58 U	5 บ 5 บ	5 U	6 U	61 U	52 U	5.2 U	-
2-Chlorotoluene	5,9 U	58 U	5 U	5 ป 5 ป	6 U 6 U	61 U 61 U	52 U	5.2 U	
1,3,5-Trimethylbenzene	5.9 U	58 U	5 U	5 U	80	610	52 U 52 U	5 2 U 5 2 U	
4-Chlorotoluene	5.9 U	58 U	5 U	5 U	60	610	52 U	5.2 U	
tert-Butylbenzene	590	58 U	ŠŬ	5 U	6 0	6.1 U	52 U	5.2 U	
1,2,4-Trimethylbenzene	59 U	5.8 U	5 Ŭ	δÜ	6 U	6.1 U	5.2 U	52 U	_
sec-Butylbenzene	59 U	5.8 U	5 Ū	5 U	6 U	61 U	5 2 U	52 U	_
p-isopropyttoluene	59 U	5.8 U	5 U	5 U	6 U	61 U	52 U	52 U	_
Dibromomethane	5.9 U	58 U	5 U	5 U	6 U	6.1 U	52 U	5 2 U	-
n-Butylbenzene	59 U	5 8 U	5 U	5 U	6 U	61 U	52 U	5 2 U]
1,2-Dibromo-3-Chloropropane	59 U	5.8 U	5 U	5 U	6 U	61 U	52 U	52 U	
1,2,4-Trichlorobenzene Hexachlorobutadiene	59 U	5.8 U	5 U	5 U	6 U	6,1 U	52 U	5.2 U	780000
Naphthalene	59 U 5.9 U	5 8 U 5.8 U	5 U 5 U	5 U	6 U	61 U	5.2 U	52 U	8000
MTBE	5.9 U	5,8 U 5 8 U	5 U	5 U 5 บ	6 U 6 U	6.1 U 6 1 U	52 U 52 U	52 U	3100000
1,2,3-Trichiorobenzene	5.9 U	5.8 U	5 U	5 U	60	61 U	5.2 U	5.2 U 5.2 U	ı <u>-</u>
Total Conc VOAs (s)	ND ND	ND	30	3	14	28	9.2 U ND	ND ND	10000
			·					140	10000

Qualifiers
U The compound was not detected at the indicated concr

J Data indicates the presence of a compound that meets the identification criteris. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B The analyte was found in the isboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes:

— Not established

NO Not detected

Table C-8 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT1 - EXTERIOR AREAS OF CONCERN VOLATILE ORGANIC COMPOUNDS

				OLATILE ORGANIC C	OMPOUNDS				
Sample Location		of Pump House/Water	F						
Sample ID	E32 B02 6-6	E32 B02 8-10	Former Tank 1111 (Bet E33 B01 1-3'	E33 B01 3-5'	E34 B01 1-3	E34 B01 3-5	en Hangars 1 and 2 E34 B02 1-3'	E34 B02 3-6	Comparison Value
Sample Depth (ft)	6-8	8-10	1-3	3-5	1-3	3-5	1-3	3-5	for Areas
Sampling Date	10/16/00	10/16/00	09/28/00	09/28/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix Oilution Factor	s	S	S	S	S	S	S	S	
Units	1.0 uo/ka	10 ug/kg	10 ug/kg	10 ug/kg	1 0 ug/kg	10 ug/kg	10	10	
	944	- Cyring	90.0	- Ograg	- Up/kg	Ug/kg 1	ug/kg	ug/kg	ug/kg
	ll					1			
Chloromethane Bromomethane	52 U 5.2 U	5.2 U 5.2 U	53 U 53 U	56 U 56 U	59 U 59 U	5 2 U 5 2 U	5.2 U 5.2 U	5.2 U	-
Vinyl Chloride	52 0	52 U	530	56 U	59U	52 U	52 0	5 2 U 5.2 U	300
Chloroethane	5.2 U	52 U	5.3 U	5 6 U	590	52 U	52 0	5.2 U	-
Methylene Chloride	52 U	5.2 U	27 J	3 9 J	69	52 U	51 J	49 j	85000
Trichiorofluoromethane	5.2 U 5.2 U	52 U	53 U	5 6 U	59 U	52 U	52 U	5 2 U	-
1,1-Dichloroethane	52 0	52 U 5.2 U	53 U 53 U	56 U 56 U	59 U 59 U	52 U 52 U	52 U 52 U	5 2 U 5 2 U	1000 7800000
trans-1,2-Dichloroethene	5.2 0	52 U	530	5 6 U	590	52 U	5.2 U	52 U	1600000
cis-1,2-Dichloroethens	5.2 U	5.2 U	53 U	5 6 U	59 U	52 Ŭ	5.2 U	52 U	780000
Chioroform	5.2 U	5.2 U	53 U	56 U	5 9 U	52 U	5.2 U	5 2 U	100000
1,2-Dichloroethane 1,1,1-Trichloroethane	5.2 U	5.2 U	53 U	5 6 U	59 U	52 U	5.2 U	5 2 U	7000
Carbon Tetrachioride	5.2 U 5.2 U	52 U 52 U	53 U 53 U	5 6 U 5 6 U	59 U	52 U 5.2 U	5.2 U 5.2 U	5 2 U 5 2 U	5000
Bromodichloromethane	5.2 U	52 U	530	5 6 U	59 U	52 U	5.2 U	52 U	10000
1,2-Dichloropropane	5.2 U	5.2 U	53 U	56 U	59 U	52 U	5.2 U	52 U	9000
cis-1,3-Dichloropropene	5.2 U	52 U	53 U	56 U	59 U	52 U	5.2 U	5.2 U	4000
Trichloroethene Dibromochloromethane	5.2 U 5.2 U	5.2 U 5.2 U	53 U 53 U	5.6 U 5 6 U	59 U . 59 U	5.2 U	5.2 U	5.2 U	58000
1.1.2-Trichloroethane	52 U	52 U	530	56 U	59 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	11000
Benzene	5.2 U	52 U	53 Ü	56 U	59 Ü	5.2 U	52 U	5.2 U	22000
t-1,3-Dichloropropene	5.2 U	5.2 U	53 U	56 U	5 9 U	5.2 U	52 U	5 2 U	4000
2-Chloroethyl Vinyl Ether Bromoform	5.2 U	52 U	5.3 U	56 U	59 U	52 U	5.2 U	5 2 U	
Tetrachloroethene	5.2 U 5.2 U	5.2 U 5.2 U	53 U 53 U	56 U I	59 U 59 U	52 U 52 U	5 2 U 5.2 U	52 U	81000 12000
1,1,2,2-Tetrachloroethane	520	5.2 U	530	56 U	590	52 U	52 U	52 U 52 U	3000
Toluene	5.2 U	5.2 U	53 U	56 U	59 U	5.2 U	5.2 U	52 U	16000000
Chlorobenzene	5.2 U	5.2 U	53 U	5 6 U	59 U	5.2 U	52 U	5.2 U	1600000
2-Butanone Ethyl Benzene	5.2 U 5.2 U	5.2 U 5 2 U	53 U	5 6 U	59 U	5.2 U	5.2 U	5.2 U	
m/p-Xylenes	5.2 0	52 U	53 U 53 U	56 U 56 U	59 U	5 2 U 5.2 U	5 2 U 6.2 U	5.2 U 5.2 U	7800000 160000000
o-Xylene	520	52 U	53 U	56 U	590	5.2 U	5.2 U	5.2 U	160000000
Acetone	5.2 U	5.2 U	53 U	5 6 Ū	59 U	5.2 U	5.2 U	5.2 U	7800000
Carbon Disulfide	5.2 U	52 U	53 U	5 6 U	59 U	5.2 U	5.2 U	5.2 U	7800000
4-Methyl-2-Pentanone 2-Hexanone	5.2 U 5.2 U	52 U 5.2 U	53 U 53 U	56 U 56 U	59 U 59 U	5.2 U 5.2 U	5 2 U 5.2 U	5.2 U 5.2 U	
Styrene	520	5.2 U	53 U	56 U	59 U	5.2 U	5.2 U	5.2 U	18000000
1,3-Dichlorobenzene	5.2 U	5.2 U	53 U	5 6 U	59 U	52 U	5.2 U	5.2 U	-
1,4-Dichlorobenzene	5.2 U	5.2 U	63 U	5 6 U	59 U	5.2 U	5.2 U	5.2 U	27000
1,2-Dichlorobenzene Dichlorodifluoromethane	5.2 U 5.2 U	52 U 52 U	53 U 53 U	56 U 56 U	59U 59U	52 U 52 U	5.2 U 5 2 U	5.2 U	7000000
Vinyl Acetate	26 U	26 U	27 U	28 U	29 U	26 U	26 U	5.2 U 26 U	78000000
2,2-Dichloropropane	52 U	5.2 U	53 U	5 6 Ŭ	59 Ú	5.2 U	52 0	5.2 U	-
Bromochloromethane	5.2 U	5.2 U	53 U	5 6 U	59 U	5.2 U	5.2 U	5.2 U	
1,1-Dichloropropene 1,3-Dichloropropane	5.2 0	5.2 U	5.3 U	5.6 U	59 U	5.2 U	5.2 U	5.2 U	-
1,2-Dibromoethane	5.2 U 5.2 U	5.2 U 5.2 U	5.3 U 5 3 U	5 6 U 5 6 U	59U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	=
leopropy/benzene	6.2 Ŭ	5.2 U	53 U	56 U	59 U	52 U	5.2 U	5.2 U	=
1,2,3-Trichloropropane	5.2 U	5.2 U	53 U	56 U	59 U	52 U	5.2 U	5.2 U	_
1,1,1,2-Tetrachloroethane	5.2 U	5.2 U	53 U	56 U	59 U	5.2 U	5.2 U	5.2 U	_
Bromobenzene n-propylbenzene	5.2 U 5.2 U	5.2 U 5.2 U	53 U 5.3 U	56 U 56 U	59U 59U	5.2 U	5.2 U 5.2 U	5.2 U	_
2-Chlorotoluene	520	5.2 U	5.3 U	56 U	590	5.2 U 5.2 U	5.2 U	5 2 U 5.2 U	_
1,3,5-Trimethylbenzene	5.2 U	5.2 U	53 U	5 6 Ų	59 U	5.2 U	5.2 U	5.2 U	_
4-Chlorotoluene	5.2 U	5.2 U	53 U	5 6 U	5.9 U	5.2 U	5.2 U	5.2 U	_
tert-Butylbenzene 1.2.4-Trimethylbenzene	5.2 U 5.2 U	5.2 U	53 U	56 U	5.9 U	5.2 U	5.2 U	5.2 U	_
1,2,4-Trimetriyibenzene sec-Butyibenzene	5.2 U 5.2 U	5.2 U 5.2 U	5.3 U 5.3 U	5 6 U 5.6 U	59 U	5.2 U 5.2 U	5.2 U (5.2 U	_
p-leopropytoluene	5.2 U	5.2 U	53 U	5.6 U	590	5.2 U	5.2 U	5.2 U 5.2 U	_
Dibromomethane	5.2 U	5.2 U	5.3 U	5 6 U	5.9 U	5.2 U	5.2 U	5.2 U	
n-Butythenzene	5.2 U	52 U	53 Ú	5.6 U	5.9 U	5.2 U	5.2 U	5.2 U	-
1,2-Dibromo-3-Chloropropane	5.2 0	5.2 U	5.3 U	5.6 U	59 U	5.2 U	5.2 U	5.2 U	
1,2,4-Trichlorobenzene Hexachlorobutadiene	5.2 U 5.2 U	5.2 U 5.2 U	5.3 U 5.3 U	5.6 U 5.6 U	5 9 U 5.9 U	5.2 U 5.2 U	5.2 U 5.2 U	5.2 U 5.2 U	780000 8000
Naphthalene	5.2 U	5.2 U	5.3 U	5.6 U	5.9 U	5.2 U	5.2 U	5.2 U	3100000
MTBE	5.2 U	5.2 U	5.3 U	5.6 Ú	5.9 U	5.2 U	5.2 U	5.2 U	
1,2,3-Trichlorobenzene	5.2 U	5.2 U	5.3 U	56 U	59 U	5.2 U	5.2 U	5.2 U	-
Total Conc. VOAs (s)	NO NO	ND	3	4	7	ND	5	5	10000

Citalifier:

U. The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that needs the istratification enterts. The result is less than the quantitation limit but greater than pare. The concentration plant is an approximate value.

6 The analyte was found in the feboratory blank on write the exempts. This indicates possible laboratory contamination of the environmental compts.

VOLATILE ORGANIC COMPOUNDS Sample Location Courtyard Between Hangars 1 and 2 Area West of Hangar 1										
Sample Location Sample ID	E34 B03 0-2'	Courtyard Betwee E34 B03 2-4'	n Hangars 1 and 2 E34 B04 0-2'	E34 B04 2-4'	E35 B01 0-2	Area We E35 B01 2-4	st of Hangar 1 E35 B02 0-2	E35 B02 2-4	Comparison V-/	
Sample Depth (ft)	0-2	2-4	0-2	E34 B04 2-4*	E35 B01 0-2 0-2	E35 B01 2-4 2-4	£35 B02 0-2 0-2	E35 B02 2-4 2-4	Comparison Value for Areas	
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	10/10/00	10/10/00	10/10/00	10/10/00	of Concern	
Matrix	s	S	S	S	, unit s	i s	S	S	or concern	
Dilution Factor	1.0	10	10	10	10	10	1.0	1.0		
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Chloromethane	55 U	5.1 U	5 1 U	57 U	5,4 U	5.4 U	52 U	53 U	_	
Bromomethane	55 U	5.1 U	51 U	57 U	5.4 U	5.4 U	5.2 U	53 U		
Vinyl Chloride	55 U	5 1 U	5.1 Ŭ	5.7 U	54 U	54 U	5.2 U	5.3 U	300	
Chloroethane	55 U	51 U	51 U	57 U	5 4 U	54 U	52 U	53 U	"-	
Methylene Chloride	35 J	5.1 U	5.1 U	84	65	54 U	5 2 U	53 U	85000	
Trichlorofluoromethane	55 U	5.1 U	51 U	57 U	54 U	5.4 U	5 2 U	5.3 U		
1,1-Dichloroethene	5.5 U	5.1 U	51 U	5.7 U	54 U	54 U	5.2 U	53 U	1000	
,1-Dichloroethane	5.5 U	5.1 U	5 1 U	57 U	5.4 U	5.4 U	5.2 U	53 Ū	7800000	
rans-1,2-Dichloroethene	55 U	5.1 U	5.1 U	57 U	54 U	54 U	52 U	5.3 U	1600000	
cis-1,2-Dichloroethene	5.5 U	5.1 U	51 ป	57 U	54 U	54 U	5.2 U	5.3 U	780000	
Chloroform	55 U	5.1 U	51 ป	5.7 U	54 U	5 4 U	5.2 U	5.3 U	100000	
1,2-Dichloroethane	55 U	51 U	5.1 U	57 U	54 U	5.4 U	5.2 U	53 U	7000	
1,1,1-Trichloroethane	5.5 U	5.1 U	5 1 U	57 U	54 U	54 U	5.2 U	53 U	_	
Carbon Tetrachloride	55 U	51 U	5.1 U	57 U	54 U	54 U	5.2 U	5 3 U	5000	
Bromodichloromethane	55 U	51 U	5.1 U	57 U	54 U	54 U	5.2 U	53 U	10000	
1,2-Dichloropropane	55 U	51 U	5.1 U	5.7 U	54 U	54 U	5 2 U	5,3 U	9000	
cis-1,3-Dichloropropene	5.5 U	5,1 U	5 1 U	57 U	54 U	5.4 U	5.2 U	5 3 U	4000	
Trichloroethene	55 U	5.1 U	5 1 U	57 U	54 U	5.4 U	5.2 U	5.3 U	58000	
Dibromochloromethane	5.5 U	51 U	5.1 U	5.7 U	54 U	54 U	5 2 U	5.3 U		
1,1,2-Trichloroethane	55 U	51 U	5.1 U	57 U	54 U	54 U	52 U	5.3 U	11000	
Benzene	55 U	51 U	51 U	5.7 U	54 U	5.4 U	5.2 U	53 U	22000	
t-1,3-Dichloropropene	5.5 U	51 U	5.1 U	5.7 U	5.4 U	54 U	5.2 U	53 U	4000	
2-Chloroethyl Vinyl Ether	5.5 U	5.1 U	5.1 U	5.7 U	54 U	54 U	5.2 U	53 U		
Bromoform	5.5 U	5.1 U	51 U	5.7 U	54 U	54 U	5.2 U	53 U	81000	
Tetrachloroethene	55 U	51 U	5.1 U	5.7 U	43 J	54 U	5.2 U	5.3 U	12000	
1,1,2,2-Tetrachloroethane Toluene	5.5 U	5.1 U	5.1 U	5.7 U	54 U	54 U	5.2 U	5,3 U	3000	
Chiorobenzene	5.5 U 5.5 U	5 1 U 5.1 U	51 U 51 U	57 U 57 U	5.4 U 5.4 U	5.4 U 5.4 U	5.2 U	53 U	16000000	
							5.2 U	5.3 U	1600000	
2-Butanone	5.5 U 55 U	5.1 U	5,1 U	57 U	54 U :	54 U	5.2 U	5.3 U		
Ethyl Benzene m/p-Xylenes	55 U	5.1 U 5 1 U	5.1 U 5 1 U	57 U 57 U	54 U 54 U	54 U 54 U	52 U	53 U	7800000	
o-Xylene	55 U	51 U	510	57 U	54 U	5.4 U	52 U 52 U	53 U 53 U	160000000 160000000	
Acetone	55 U	51 U	5.1 U	5.7 U	54 U	5.4 U	5.2 U	5.3 U	7800000	
Carbon Disulfide	5.5 U	5.1 U	510	5.7 U	54 U	5.4 U	5.2 U	5.3 U	7800000	
4-Methyl-2-Pentanone	5.5 U	5.1 U	51 U	5.7 U	54 U	5.4 U	5.2 U	5.3 U	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
2-Hexanone	5.5 U	51 U	5 i ii	57 U	54 U	5.4 U	52 U	5.3 U	_	
Styrene	5.5 U	5.1 U	5.1 U	57 U	54 U	54 U	5.2 U	53 U	16000000	
1,3-Dichlorobenzene	5.5 U	51 U	51 U	57 U	54 U	54 U	5.2 U	53 U	-	
1,4-Dichlorobenzene	5.5 U	51 U	5 1 U	5.7 U	54 U	54 U	5.2 U	5.3 U	27000	
1,2-Dichlorobenzene	5.5 U	5.1 U	51 U	5.7 U	54 U	54 U	5.2 U	5.3 U	7000000	
Dichlorodifluoromethane	55 U	5.1 U	51 U	57 U	54 U	5.4 U	52 U	5.3 U		
Vinyl Acetate	27 U	26 U	26 U	28 U	27 U	27 U	26 U	27 U	78000000	
2,2-Dichloropropane	5.5 U	5.1 ป	51 U	57 U	54 U	5.4 U	52 U	53 U		
Bromochloromethane	5.5 U	51 U	5.1 U	57 Ú	54 U	5.4 U	5.2 U	5.3 U	l –	
1,1-Dichioropropene	5.5 U	51 U	51 U	5.7 U	5.4 U	54 U	5.2 U	5.3 U		
1,3-Dichloropropane	55 U	5.1 U	5.1 U	57 U	54 U	5.4 U	5.2 U	53 U	-	
1,2-Dibromoethane	55 U	5.1 U	5 1 U	57 U	54 U	54 U	5.2 U	53 U	l -	
Isopropylbenzene	5,5 U	5.1 U	5 1 U	57 U	5.4 U	54 U	5.2 U	53 U	-	
1,2,3-Trichloropropane	55 U	5.1 U	5.1 U	57 U	54 U	54 U	5.2 U	5.3 U	l –	
1,1,1,2-Tetrachloroethane	55 U	5.1 U	5.1 U	57 U	54 U	5.4 U	52 U	53 U		
Bromobenzene	5.5 U	5 1 U	51 U	57 U	54 U	54 U	52 U	53 U		
n-propylbenzene	5.5 U	5 1 U	5.1 U	57 U	54 U	5.4 U	52 U	5.3 U	-	
2-Chlorotoluene	5.5 U	5.1 U	51 U	57 U	54 U	5.4 U	52 U	53 U	-	
1,3,5-Trimethylbenzene	55 U	5.1 U	51 U	57 U	54 U	54 U	5.2 U	53 U) -	
4-Chiorotoluene	55 U	5.1 U	5.1 U	57 U	54 U	54 U	5.2 U	53 ป	1 -	
tert-Butylbenzene	55 U	51 U	5.1 U	57 U	54 U	5.4 U	52 U	5 3 U	l –	
1,2,4-Trimethylbenzene	55 U	5.1 U	5.1 U	57 U	54 U	54 U	5.2 U	5,3 U	-	
sec-Butylbenzene	5.5 U	51 U	5.1 U	5.7 U	54 U	54 U	52 U	53 U	-	
p-Isopropyltoluene	5.5 U	51 U	51 U	57 U	54 U	54 U	52 U	5.3 U	-	
Dibromomethane	5.5 U	5 1 U	510	5.7 U	5.4 U	54 U	52 U	53 U	_	
n-Butylbenzene	5.5 U	5.1 U	51 U	57 U	54 U	5.4 U	5.2 U	5.3 U	-	
1,2-Dibromo-3-Chloropropane	5.5 U	51 U	5.1 U	57 U	54 U	540	52 U	53 U		
1,2,4-Trichlorobenzene	55 U	51 U	5.1 U	5.7 U	5,4 U	5.4 U	5.2 U	5.3 U	780000	
Hexachlorobutadiene	55 U	5.1 U	5.1 U	5.7 U	54 U	5.4 U	52 U	53 U	8000	
Naphthalene	55 U	51 U	51 U	5.7 U	54 U	54 U	5.2 U	53 U	3100000	
MTBE 1,2,3-Trichlorobenzene	55 U 55 U	5.1 U	5.1 U	57 U	5.4 U	5.4 U	52 U	53 U	-	
	. 5501	51 U	ไ 51 ปี	57 U	II 54U	1 54 U] 52U	53 U		

<u>Qualifiers</u>
U The compound was not detected at the indicated concentration.
J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

The concentration given is an approximate value.

B The analyte was found in the isboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Notes:
-- Not established
ND Not detected

Table C-8 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT1 - EXTERIOR AREAS OF CONCERN VOLATILE ORGANIC COMPOUNDS

				OLATILE ORGANIC C	OMPOUNDS				
Sample Location		Former Drainage Swale		}.			tion (SE Parking Area)		
Sample ID	E36 B01 1-3'	E36 B01 3-6'	E36 B02 1-3	E36 B02 3-5"	E37 B01 0-2	E37 B01 2-4	E37 B02 0-2	E37 B02 2-4	Comparison Value
Sample Depth (ft)	1-3	3-5	1-3	3-5	0-2	2-4	0-2	2-4	for Areas
Sampling Date Matrix	09/25/00	09/25/00	09/25/00	09/25/00	09/29/00	09/29/00	09/29/00	09/29/00	of Concern
Dilution Factor	S 10	S 1.0	S 10	S 10	S 10	S 10	S	S 10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	υρ/κρ	ug/kg	ug/kg
	Oprig	55.5	97.7	- Ograg	Vg/Ag	0,01.5	0314	Ug ng	- Sp - Ng
Chioromethane	56 U	52 U	53 U	53 U	54 U	54 U	55 U	5 2 U	_ 1
Bromomethane	5.6 U	5.2 0	53 U	53 U	54 U	54 U	55 U	52 U	
Vinyl Chloride	56 U	52 U	53 U	53 U	54 U	5.4 Ŭ	55 U	52 U	300
Chloroethane	58 U	5.2 U	53 U	53 U	54 U	54 U	55 U	52 U	_
Methylene Chloride	3.4 J	3.1	53 U	25 J	54 U	25 J	3.1	4 2 J	85000
Trichiorofluoromethane	56 U	52 U	53 U	53 U	54 U	54 U	55 U	5.2 U	-
1,1-Dichloroethene 1,1-Dichloroethane	5.6 U	5.2 U	53 U 53 U	53 U	54 U	5.4 U	55 U	52 U	1000
trans-1,2-Dichloroethens	5.6 U 5.6 U	5.2 U 5.2 U	5.3 U	5.3 U 5.3 U	54 U 54 U	54 U 54 U	55 U 5.5 U	52 U 5.2 U	7800000 1600000
cle-1,2-Dichloroethene	5.6 U	5.2 U	53 U	53 U	54 U	54 0	5.5 U	5.2 U	780000
Chloroform	56 U	5.2 U	53 U	53 U	54 U	54 U	55 U	5.2 U	100000
1,2-Dichloroethane	56 U	5.2 U	53 U	53 U	54 Ü	54 U	55 Ŭ	5.2 U	7000
1,1,1-Trichloroethane	5.6 U	5.2 U	53 U	53 U	54 U	54 U	55 U	52 U	1 –
Carbon Tetrachloride	5.6 U	5.2 U	53 U	53 U	54 U	54 U	55 U	5.2 U	5000
Bromodichloromethane	5.6 U	5.2 U	53 U	5.3 U	54 U	54 U	55 U	5.2 U	10000
1,2-Dichloropropana cla-1,3-Dichloropropana	56 U 56 U	5.2 U 5.2 U	53 U 5.3 U	53 U 53 U	54 U 54 U	54 U 54 U	5.5 U 55 U	52 U	9000 4000
Trichloroethene	56 U	5.2 U	53 U	53 U	54 U	54 U	55 U	5.2 U 5.2 U	58000
Dibromochloromethane	5.6 U	5.2 U	530	53 U	5.4 U	5.4 U	5.5 U	5.2 U	l
1,1,2-Trichloroethane	56 U	5.2 U	5.3 Ú	53 U	54 U	54 U	5.5 U	52 U	11000
Benzene	56 U	52 U	53 U	53 Ú	54 U	5.4 U	55 U	5.2 U	22000
t-1,3-Dichloropropene	5 6 U	5.2 U	53 U	53 U	54 U	54 U	55 U	52 U	4000
2-Chloroethyl Vinyl Ether	5.6 U	52 U	53 U	53 U	5.4 U	54 U	55 U	5.2 U	
Bromoform Tetrachloroethene	5.6 U 5.6 U	5.2 U 5.2 U	53 U 53 U	53 U 53 U	5.4 U 5 4 U	54 U 54 U	55 U 55 U	5.2 U 61	81000 12000
1,1,2,2-Tetrachloroethane	5.6 U	5.2 0	530	530	54 U	54 U	55 U	5.2 U	3000
Toluene	5 6 U	5.2 U	53 Ŭ	53 U	54 U	54 U	55 U	52 U	16000000
Chlorobenzene	56 U	5.2 U	53 U	53 Ü	5 4 U	54 Ŭ	55 U	5.2 U	1600000
2-Butanone	56 U	52 U	5.3 U	53 U	54 U	54 U	55 U	5 2 U	l –
Ethyl Benzene	5.6 U	5.2 U	53 U	53 U	54 U	5.4 U	55 U	5.2 U	7800000
m/p-Xylenes	5.6 U	52 U	53 U	5.3 U	54 U	54 U	55 U	5.2 U	160000000
o-Xylene Acetone	5.6 U 5.6 U	52 U 52 U	53 U 53 U	53 U 53 U	54 U 54 U	54 U 54 U	55 U 32	52 U 5.2 U	160000000 7800000
Carbon Disulfide	5.6 U	520	530	53 U	54 U	54 U	55 U	52 U	7800000
4-Methyl-2-Pentanone	5.6 U	5.2 U	53 Ū	5.3 U	54 Ü	54 Ŭ	5.5 U	5.2 U	
2-Hexanone	56 U	5.2 U	53 U	53 U	54 U	54 U	55 U	5.2 U	-
Styrene	5.6 U	5.2 U	53 U	53 U	54 U	54 U	55 U	5 2 U	16000000
1,3-Dichlorobenzene	56 U	52 U	53 U	53 U	54 U	54 U	55 U	52 U	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	5.6 U 5 6 U	5.2 U 5.2 U	53 U 53 U	53 U 53 U	54 U 54 U	54 U 54 U	55 U 5.5 U	52 U 52 U	27000 7000000
Dichlorodifluoromethane	56 U	5.2 U	530	530	54 U	54 U	55 U	52 U	/**************************************
Vinvi Acetate	28 U	26 U	27 U	26 U	27 U	27 U	27 U	26 U	78000000
2,2-Dichloropropane	5.6 U	5.2 U	53 U	53 U	5.4 U	54 Ŭ	55 U	5.2 U	
Bromochioromethane	56 U	5.2 U	53 U	53 U	54 U	5.4 U	55 U	5 2 U	
1,1-Dichloropropene	5.6 U	52 U	53 U	53 U	54 U	54 U	55 U	5.2 U	-
1,3-Dichloropropane 1,2-Dibromoethane	5.6 U 5.6 U	52 U 52 U	53 U 53 U	53 U 53 U	54 U 54 U	5.4 U 5.4 U	55 U 55 U	5.2 U 5.2 U	
leopropylbenzene	56 U	5.2 0	530	53 U	54 U	54 U	55 U	52 U	=
1,2,3-Trichloropropane	5.6 U	520	53 0	53 U	54 U	54 U	55 U	5.2 U	1 =
1,1,1,2-Tetrachloroethane	56 U	5.2 Ú	53 Ú	53 U	54 Ŭ	54 U	55 Ŭ	52 U	_
Bromobenzene	56 U	52 U	53 U	53 U	54 U	54 U	55 U	5.2 U	1 -
n-propyfbenzene	5.6 U	5.2 U	53 U	5 3 U	54 U	54 U	55 U	5.2 U	_
2-Chlorotoluene 1,3,5-Trimethylbenzene	56 U	52 U	53 U	53 U	54 U	54 U	5.5 U	52 U	_
1,3,5-Trimethylbenzene 4-Chlorotoluene	5 6 U 5.6 U	5.2 U 5.2 U	53 U 53 U	53 U 53 U	54 U 54 U	5.4 U 5.4 U	5.5 U 5.5 U	52 U 52 U	
tert-Butytbenzene	5.6 U	52 0	53 U	53 U	54 U	54 U	5.5 U	52 U	I =
1,2,4-Trimethylbenzene	5.6 U	5.2 U	53 0	53 U	54 U	54 U	55 U	52 U	_
sec-Butylbenzens	56 Ú	5.2 U	53 U	53 U	54 U	54 U	5.5 U	5 2 U	-
p-leopropyltoluene	5.6 U	5.2 U	53 U	5.3 U	54 U	54 U	5.5 U	5.2 U	-
Dibromomethane	5.6 U	52 U	53 U	53 U	54 U	54 U	55 U	5.2 U	_
n-Butythenzene	5.6 U	5.2 U	5.3 U	53 U	54 U	5.4 U	5.5 U	5 2 U	-
1,2-Dibromo-3-Chloropropane 1,2,4-Trichiorobenzene	56 U 56 U	5.2 U 5.2 U	53 U 53 U	53 U 5.3 U	54 U 54 U	5.4 U	55 U	52 U	780000
Hexachlorobutadiene	560	5.2 U	53 U	5.3 U 5.3 U	34 U 54 U	5.4 U 5.4 U	5.5 U 5.5 U	52 U 5.2 U	8000
Naphthalene	5.6 U	5.2 U	53 U	5.3 U	5.4 U	5.4 U	55 U	5.2 U	3100000
MTBE	56 U	52 U	53 Ŭ	53 U	5.4 U	54 U	5.5 U	5.2 U	
1,2,3-Trichlorobenzene	56 U	52 U	53 Ų	5.3 U	54 Ų	5.4 U	5.5 ป	5.2 U	
Total Conc. VQAs (s)	3	3	90	3	ND	3	35	10	10000

Case lifeiers

U. The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that made the identification criteria. The result to less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample

r				OLATILE ORGANIC C					
Sample Location	Roller Room Exter	ior Former Dry Well	Dry Well Outside Form	er Facility Maintenance ea	Dry Well Outerde F	ormer Paint Tunnel	Unidentified Pit Outs	ide Bailer Daam	
Sample ID	E38 B01 10-12	E38 B01 20-22	E39 B01 8-10	E39 B01 20-22	E41 B01 8-10	E41 B01 18-20	E42 B01 3-5	E42 B01 5-7	Companson Value
Sample Depth (ft)	10-12	20-22	8-10	20-22	8-10	18-20	3-5	5-7	for Areas
Sampling Date	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	of Concern
Matrix	S	s	S	s	S	s	s	S	
Dilution Factor	1.0	10	1,0	1.0	1,0	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kģ	ug/kg
Chloromethane	58 U	6 U	5 1 U	52 U	63 U	52 U	5 4 U	5 2 U	_
Bromomethane	5,8 U	6 U	5.1 U	5.2 U	63 Ú	5 2 U	5.4 U	52 U	_
Vinyl Chloride	58 U	6 U	51 U	5.2 U	63 U	5 2 U	54 U	5 2 U	300
Chloroethane	58 U	6 U	5.1 U	52 U	63 U	52 U	54 U	52 U	
Methylene Chlonde	58 U	6 U	34 J	35 J	39 J	3.6 J	36 J	33 J	85000
Trichlorofluoromethane	58 U	6 U	5.1 U	52 U	63 U	52 U	54 U	5.2 U	
1,1-Dichloroethene 1,1-Dichloroethane	58 U 5.8 U	6 U 6 U	51 U 51 U	52 U 52 U	63 U	5.2 U 5 2 U	5 4 U 5,4 U	52 U	1000 7800000
trans-1,2-Dichloroethene	5.8 U	6 Ŭ	510	5.2 U	63 U	52 U	5.4 U	5 2 U 5.2 U	1600000
cis-1,2-Dichloroethene	58 U	6 Ū	510	52 U	6,3 U	52 U	54 U	5.2 U	780000
Chloroform	58 U	6 U	51 U	52 U	63 U	52 U	54 U	52 U	100000
1,2-Dichloroethane	5.8 U	6 U	5.1 U	52 U	63 U	5 2 U	54 U	5.2 U	7000
1,1,1-Trichloroethane	58 U	6 U	51 U	5.2 U	63 U	5.2 U	5.4 U	5 2 U	_
Carbon Tetrachloride	5.8 U	6 U	51 U	52 U	63 U	5.2 U	5.4 U	52 U	5000
Bromodichloromethane 1,2-Dichloropropane	58 U 5.8 U	6 U 6 U	5.1 U 5.1 U	52 U	63 U	52 U	5.4 U	52 U	10000
cis-1,3-Dichloropropene	5.8 U	6 U	5.1 U 5.1 U	52 U 52 U	63 U 63 U	5 2 U 5 2 U	5.4 U 5.4 U	52 U	9000 4000
Trichioroethene	580	6 U	5.1 U	19 J	63 U	52 U	5.4 U	5 2 U 5 2 U	58000
Dibromochloromethane	58 U	6 U	51 U	5.2 U	63 U	5.2 U	5.4 U	5.2 U	3555
1,1,2-Trichloroethane	58 U	6 U	5.1 U	52 U	6,3 U	52 U	54 U	5.2 U	11000
Benzene	5.8 U	6 U	5.1 U	52 U	63 U	5.2 U	54 U	52 U	22000
t-1,3-Dichloropropene	58 U	6 U	51 U	52 U	63 U	52 U	5 4 U	5 2 U	4000
2-Chloroethyl Vinyl Ether	58 U	6 U	51 U	52 U	63 U	52 U	5 4 U	5 2 U	
Bromoform Tetrachioroethene	58 U 58 U	6 U 6 U	51 U	5.2 U	63 U	52 U	54 U	5 2 U	81000
1,1,2,2-Tetrachloroethane	5.8 U	6 U	5.1 U 5.1 U	52 U 52 U	6,3 U 63 U	52 U 52 U	5.4 U	5 2 U	12000 3000
Toluene	5.8 U	6 U	5.1 U	5.2 U	63 U	5.2 U	54 U	5.2 U 5.2 U	16000000
Chlorobenzene	58 U	6 Ŭ	5.1 U	52 U	63 U	52 U	54 U	52 U	1600000
2-Butanone	5.8 U	6 U	51 U	52 Ū	63 U	5.2 U	54 U	52 U	_
Ethyl Benzene	5.8 U	6 U	5.1 U	5.2 U	63 U	52 U	54 U	52 U	7800000
m/p-Xylenes	5.8 U	6 U	13 J	5 2 U	63 U	52 U	5.4 U	5 2 U	160000000
o-Xylene	5.8 U	6 U 6 U	51 U	5.2 U	63 U	52 U	5 4 U	5 2 U	160000000
Acetone Carbon Disutfide	5 8 U 5.8 U	6 U	51 U 51 U	5.2 U 5 2 U	6.3 U 6.3 U	5 2 U 5.2 U	5 4 U 5.4 U	5 2 U 5 2 U	7800000 7800000
4-Methyl-2-Pentanone	58 U	6 U	510	52 U	63 U	5.2 U	5.4 U	5.2 U	/80000
2-Hexanone	58 Ú	6 Ŭ	510	5.2 U	63 U	5.2 U	54 U	5.2 U	
Styrene	58 U	6 Ú	51 Ú	5 2 U	63 U	5.2 U	54 U	52 U	16000000
1,3-Dichlorobenzene	5.8 U	6 U	51 U	5.2 U	6.3 U	52 U	54 U	5.2 U	_
1,4-Dichlorobenzene	5.8 U	6 U	5.1 U	52 U	6,3 U	52 U	54 U	5 2 U	27000
1,2-Dichlorobenzene Dichlorodifluoromethane	5.8 U 5 8 U	6 U 6 U	51 U 51 U	52 U	63 U	52 U	54 U	5.2 U	7000000
Vinyl Acetate	29 U	30 U	26 U	5 2 U 26 U	63 U 31 U	5 2 U 26 U	54 U 27 U	5 2 U 26 U	7800000
2,2-Dichloropropane	58 U	6 U	51 U	52 U	6.3 U	52 U	54 U	52 U	7000000
Bromochloromethane	58 U	6 Ŭ	5.1 U	5.2 U	63 U	5.2 U	54 U	52 U	
1,1-Dichioropropene	58 U	6 U	5.1 U	52 U	63 U	52 U	5.4 U	52 U	
1,3-Dichloropropane	58 U	6 U	51 U	5.2 U	63 U	52 U	54 U	5.2 U	I –
1,2-Dibromoethane	5.8 U	6 U	5.1 U	5.2 U	63 U	5.2 U	5.4 U	52 U	
Isopropylbenzene 1,2,3-Trichloropropane	5.8 U 5.8 U	6 U	51 U 5.1 U	5 2 U i 5.2 U	63 U 63 U	5.2 U	5.4 U	52 U	_
1,1,1,2-Tetrachloroethane	5.8 U	8 U	5.1 U 51 U	5.2 U	63 U	5.2 U 5 2 U	5.4 U 5.4 U	5.2 U 5.2 U	
Bromobenzene	5.8 U	6 0	5.1 U	5.2 U	6.3 U	52 U	54 U	5.2 U	
n-propylbenzene	58 U	6 Ū	51 U	52 U	63 U	5.2 U	540	5.2 U	i
2-Chlorotoluene	58 U	6 U	5.1 じ	5 2 U	63 U	5.2 U	5.4 Ü	5 2 Ü	I –
1,3,5-Trimethylbenzene	58 U	6 U	5.1 U	52 U	63 U	5.2 U	54 U	5.2 U	-
4-Chlorotoluene	5.8 U	6 U	5.1 U	5.2 U	63 U	5.2 U	54 U	5.2 U	-
tert-Butylbenzene	5.8 U	6 U	510	5.2 U	63 U	5.2 U	5.4 U	5.2 U	_
1,2,4-Trimethylbenzene	5.8 U 5.8 U	6 U 6 U	5.1 U 5 1 U	5.2 U 5 2 U	6.3 U	5.2 U	54 U	5.2 U	_
sec-Butylbenzene p-Isopropyltoluene	5.8 U	80	51 U 5.1 U	52 U 5.2 U	6.3 U 63 U	5.2 U 5.2 U	54 U 54 U	5.2 U 5.2 U	I =
Dibromomethane	5.8 U	8 0	5.1 U	52 U	63 U	5.2 U	54 U	5.2 U	1 =
n-Butylbenzene	5.8 U	6 0	5.1 U	5.2 U	63 U	5.2 U	54 U	5.2 U	
1,2-Dibromo-3-Chloropropane	5.8 U	6 Ü	51 U	5.2 U	63 U	52 U	5.4 U	5.2 U	
1,2,4-Trichlorobenzene	5.8 ∪	6 U	5.1 U	5.2 U	63 U	5.2 U	5.4 U	5.2 U	780000
Hexachlorobutadiene	5.8 U	6 U	5,1 U	5.2 U	6,3 ∪	5.2 U	5.4 U	5.2 U	8000
Naphthalene MTBE	58 U	6 U	51 U	5.2 U	6.3 U	5.2 U	5.4 U	5.2 U	3100000
1,2,3-Trichlorobenzene	5.8 U 5 8 U	6 U 6 U	5.1 U 5 1 U	5.2 U 5 2 U	6.3 U 63 U	5.2 U 5.2 U	5.4 U 5.4 U	5.2 U 5 2 U	_
Total Conc. VOAs (s)	ND ND	ND	5	5 5	830	3.2 0	3.4 0	3	10000
	<u> </u>		• <u> </u>		<u> </u>				_ 1,0000

Clustifiers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteris. The result is isset than the quantitation timit but greater than zero. The concentration given is an approximate value.

B The analytis was found in the laboratory blank as well as the sample. This indicates possible faboratory contamination of the environmental sample.

Table C-8 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT1 - EXTERIOR AREAS OF CONCERN VOLATILE ORGANIC COMPOUNDS

Sample Location		Gas USTs (4) S. of	Former Gas pump Ho				
Sample Location Sample ID	E43 B01 8-8	C Room E43 B01 14-16	Roo E44801 0-2	m E44B01 2-4			Comparison Value
Sample Depth (ft)	6-8	14-16	0-2	2-4			for Areas
Sampling Date	10/12/00	10/12/00	10/11/00	10/11/00		1	of Concern
Matrix	s	S	s	S			
Dilution Factor	10	10	1.0	10		l	
Units	ug/kg	ug/kg	ug/kg	ug/kg			ug/kg
							
Chloromethane	5.7 ∪	58 U	6 U	5.7 U			-
Bromomethane	57 U	5.8 U	6 U	57 U			_
Vinyl Chloride Chloroethane	57 U 5.7 U	5 6 U 5 6 U	6 U	5.7 U		1	300
Methylene Chloride	36 J	3.6 J	5.9 8	5.7 U 5 7 U	l i	1	85000
Trichiorofluoromethane	5.7 U	5.8 U	60	5.7 U		1	8500
1,1-Dichloroethene	5.7 U	5 8 U	60	5.7 U	l i		1000
1,1-Dichloroethane	5.7 U	5.8 U	6 U	5.7 U		!	7600000
trane-1,2-Dichloroethene	5.7 U	5.8 U	6 U	5.7 U	l i	1	1600000
cle-1,2-Dichloroethene Chloroform	5.7 U 5.7 U	58 U 58 U	6 U	57 U		1	780000
1.2-Dichloroethane	57 U	58 U	80	5.7 U 5 7 U	l i		100000 7000
1,1,1-Trichioroethane	5.7 U	58 U	80	57 U			1 /000
Carbon Tetrachloride	5.7 U	5 B U	ěŭ	5.7 U	I İ		5000
Bromodichioromethane	5.7 U	5 6 U	6 Ú	5.7 U	1	1	10000
1,2-Dichloropropane	5.7 U	58 U	6 U	57 U	1	[9000
cle-1,3-Dichloropropene Trichloroethene	5.7 U 5.7 U	5.8 U 5.8 U	6 U	5 7 U 5.7 U	t l	[4000
Dibromochioromethane	57 U	5.8 U	80	5.7 U 5 7 U	!	[58000
1,1,2-Trichloroethane	5.7 U	5 8 U	, šŭ	5.7 U	1		11000
Benzene	5.7 U	5 8 U	6 Ú	57 U	i		22000
I-1,3-Dichloropropene	67 U	58 U	6 U	57 U	1	ŀ	4000
2-Chloroethyl Vlnyl Ether Bromoform	57 U 57 U	5.8 U 5 B U	6 U	57 U			l . .
Tetrachloroethene	57 U	5.8 U	aŭ l	57 U 57 U			81000 12000
1,1,2,2-Tetrachioroethane	5.7 U	58 U	l šŭ l	5.7 U	f		3000
Toluene	57 U	5 a U	6 U	5.7 U	1		16000000
Chlorobenzene	57 U	58 U	6 U	5.7 U	1	1	1600000
2-Butanone Ethyl Benzane	5.7 U	58 U	6 U	57 U		1	l
m/p-Xylenes	57 U 57 U	5 8 U 5 8 U	6 U	57 U 57 U		1	7800000 180000000
o-Xylene	57 U	58 0	6 ŭ	5.7 U			160000000
Acetone	57 Ü	5.8 U	6 Ŭ	57 U	1	į į	7800000
Carbon Disulfide	57 U	58 U	6.0	57 U			7800000
4-Methyl-2-Pentanone 2-Hexanone	57 U 57 U	5.8 U 5 B U	6 U	57 U 57 U			
Styrene	5.7 U	58 U	6 0	57 U	I		16000000
1,3-Dichlorobenzene	57 Ŭ	58 U	80	57 U	l i	1	1 100000
1,4-Dichlorobenzene	57 U	58 U	6 U	57 Ū	ŀ		27000
1,2-Dichlorobenzene	5.7 U	5,8 U	6 U	5.7 U		1 .	7000000
Dichlorodifluoromethane Vinyl Acetate	57 U	58 U	60	57 U		1	l
2,2-Dichloropropane	28 U 57 U	29 U 58 U	30 U 6 U	28 U 57 U	1	1	78000000
Bromochloromethane	57 U	58 Ú	80	5.7 U	l i	1	1 =
1,1-Dichloropropene	5.7 U	58 U	6 U	5.7 U	1	1	_
1,3-Dichloropropane	5.7 U	5.6 U	6 U	57 U		1	_
1,2-Dibromoethane laopropyfbenzene	5.7 U i 5.7 U	5 8 U 5,8 U	6 U	57 U 57 U	1	1	-
1,2,3-Trichloropropane	5.7 U	5.8 U		57 U]	1	
1,1,1,2-Tetrachioroethane	57 U	58 U	60	57 U	I	i i	
Bromobenzene	8.7 Ū	5 8 U	6 U	5.7 U]	_
n-propylbenzene	5.7 U	5 8 U	6 U	57 U]		-
2-Chlorotoluene 1,3,5-Trimethylbenzene	57 U	58 U	6 U	5 7 U		1	
4-Chlorotoluene	5.7 U 5 7 U	5.8 U 5.8 U	6 U	57 U 57 U	<u> </u>	1	
tert-Butytbenzene	57 U	5.8 U	80	5.7 U		[
1,2,4-Trimethylbenzene	5.7 U	58 Ü	6 U	57 U	1		-
sec-Butylbenzene	5.7 U	58 U	6 U	57 U	1 1		
p-Isopropylloluene	5.7 U	58 U	6 U	57 U	l l	[_
Dibromomethane n-Butytbenzene	5.7 U 5 7 U	58 U 5.8 U	6 U	5.7 U 5 7 U]		-
1,2-Dibromo-3-Chioropropane	5.7 U	5.8 U	80	57 U	1		
1,2,4-Trichlorobenzene	5.7 U	5.8 U	60	5.7 U	l l		780000
Hexachlorobutadiene	5.7 U	5.8 ∪	6 Ü	57 U			8000
Naphthalene	5.7 U	5.8 U	6 U	57 U	I İ		3100000
MTBE 1,2,3-Trichlorobenzene	5.7 U 5.7 U	58 U 58 U	60	5.7 U 5 7 U	l		-
	5.r U	380		ND ND			10000

SAMESTREET

1 The compound was not detected at the indicated concentration.

2 Data indicates the presence of a compound that mode the identification oritoris. The result is less than the quantitation limit but greater than zero.

The concentration plans is an approximate value.

8 The analyse was found in the identification to eveil so the sample. This indicates possible laboratory contamination of the environmental sample.

5/30/01 10 42 AM

Page 25 of 25

Sample Location				Former Settling Ta	anks/Leaching Pools				
Sample ID	E1 B01 14-16	E1 B01 20-22	E01B02 12-14'	E01B02 20-22'	E01B03 12-14'	E01B03 20-22'	E01B04 12-14'	E01804 20-22'	Comparison Value
Sample Depth (ft)	14-16	20-22	12-14	20-22	12-14	20-22	12-14	20-22	for Areas
Sampling Date	10/17/00	10/17/00	10/09/00	10/09/00	10/09/00	10/09/00	10/09/00	10/09/00	of Concern
Matrix	S	S	S	S	s	S	S	S	
Dilution Factor Units	10 ug/kg	10	1.0	10	10	10	10	10	
Phenol	350 U	ug/kg 350 U	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2-Chlorophenol	350 U	350 U	410 U 410 U	370 U 370 U	400 U 400 U	380 U	400 U	370 U	47000000
2-Nitrophenol	350 U	350 U	410 U	370 U	400 U	380 U 380 U	400 U 400 U	370 U 370 U	390000
2,4-Dimethylphenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	1600000
2,4-Dichlorophenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	230000
4-Chloro-3-methylphenol	350 ∪	350 U	410 U	370 ∪	400 U	380 U	400 U	370 U	
2.4.6-Trichlorophenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	58000
2,4-Dintrophenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	160000
4-Nitrophenol 4,6-Dinitro-2-methylphenol	350 U	350 U 350 U	410 U 410 U	370 U	400 U	380 U	400 U	370 U	
Pentachlorophenol	350 U	350 U	410 U	370 U 370 U	400 U 400 U	380 U 380 U	400 U	370 U	
bis(2-Chloroethyl)ether	350 U	350 U	410 U	370 U	400 U	380 U	400 U 400 U	370 U 370 U	3000 600
1,3-Dichlorobenzene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	600
1,4-Dichlorobenzene	350 U	350 U	410 U	370 U	400 U	380 U	240 J	370 U	27000
1,2-Dichlorobenzene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	7000000
N-Nitroso-di-n-propylamine	350 ∪	350 U	410 U	370 U	400 U	380 U	400 U	370 U	90
Hexachloroethane	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	46000
Nitrobenzene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	39000
Isophorone bis(2-Chloroethoxy)methane	350 U 350 U	350 U 350 U	410 U 410 U	370 U 370 U	400 U	380 U	400 U	370 U	670000
1,2,4-Trichlorobenzene	350 U	350 U	410 U	370 U	400 U 400 U	380 U	400 U	370 U	
Naphthalene	350 U	350 U	410 U	370 U	400 U	380 U 380 U	400 U 400 U	370 U 370 U	780000 3100000
Hexachlorobutadiene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	8000
Hexachlorocyclopentadiene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	550000
2-Chioronaphthalene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	330000
Dimethylphthalate	350 U	350 U	410 U	370 U	400 Ü	380 U	400 U	370 U	
Acenaphthylene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	
2,6-Dinitrotoluene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	900
Acenaphthene 2,4-Dinitrotoluene	350 U 350 U	350 U 350 U	410 U 410 U	370 U 370 U	400 U	380 U	400 U	370 U	4700000
Diethylphthalate	350 U	350 U	410 U	370 U	400 U 400 U	380 U	400 U	370 U	900
4-Chlorophenyl-phenylether	350 U	350 U	410 U	370 U	400 U	380 U 380 U	400 U 400 U	370 U	63000000
Fluorene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U 370 U	3100000
N-Nitrosodiphenylamine	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	130000
4-Bromophenyl-phenylether	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	
Hexachlorobenzene	350 U	350 ∪	410 U	370 U	400 U	380 U	400 U	370 U	400
Phenanthrene	350 U	350 U	75 J	370 U	400 U	380 U	140 J	370 U	
Anthracene D-n-butylphthalate	350 U ∫ 37 J	350 U 48 J	410 U	370 U	400 U	380 U	400 U	370 U	23000000
Fluoranthene	350 U	350 U	49 J 130 J	370 U	52 J	56 J	170 J	180 J	7800000
Pyrene	350 U	350 U	97 J	370 U	400 U 400 U	380 U 380 U	320 J 240 J	370 U	3100000
Butylbenzylphthalate	350 U	350 U	86 J	370 U	400 U	380 U	400 U	370 U 370 U	2300000 16000000
3,3'-Dichlorobenzidine	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	1000
Benzo(a)anthracene	350 U	350 U	53 J	370 U	400 U	380 U	160 J	370 U	900
Chrysene	350 U	350 U	77 J	370 U	400 U	380 U	200 J	370 U	88000
bis(2-Ethylhexyl)phthalate	350 U	350 U	350 J	370 ∪	400 U	380 U	260 J	370 U	46000
Di-n-octyl phthalate Benzo(b)fluoranthene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	16000000
Benzo(k)fluoranthene	350 U 350 U	350 U 350 U	47 J 60 J	370 U	400 U	380 U	130 J	370 U	900
Benzo(a)pyrene	350 U	350 U	410 U	370 U 370 U	400 ป 400 ป	380 U 380 U	200 J 77 J	370 U	9000
Indeno(1,2,3-cd)pyrene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U 370 U	90 900
Dibenzo(a,h)anthracene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	900
Benzo(g,h,i)perylene	350 ∪ (350 U	410 U	370 U	400 U	380 U	400 U	370 U	~
2,4,5-Trichlorophenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	7800000
2-Methylphenol	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	3900000
3+4-Methylphenols	690 U	710 U	810 U	750 U	790 U	770 U	800 U	730 U	
Benzyl Alcohol 2,2'-oxybis(1-Chloropropane)	350 U 350 U	350 U 350 U	410 U 410 U	370 U	400 U	380 U	400 U	370 U	
4-Chloroaniline	350 U	350 U 350 U	410 U 410 U	370 U 370 U	400 U	380 U	400 U	370 U	
2-Methylnaphthalene	350 U	350 U	410 U	370 U	400 U 400 U	380 U	400 U	370 U	310000
4-Nitroaniline	350 U	350 U	410 U	370 U	400 U 400 U	380 U 380 U	400 U 400 U	370 U	
2-Ntroaniline	350 U	350 U	410 U	370 U	400 U	380 U	400 U 400 U	370 U	_
3-Nitroaniline	350 U	350 U	410 U	370 U	400 U	380 U	400 U 400 U	370 U 370 U	_
Dibenzofuran	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	
Azobenzene	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	
Benzoic acid	350 U	350 U	410 U	370 U	400 U	380 U	400 U	370 U	310000000
Total Carcinogenic PAHs	0	0	237	0	0	0	767	0	10000
	0	0	539	0	0	0	1467	0	100000
Total PAHs Total Conc. SVOC (s)	37	48	1024	ND ND	52	56	2137	180	500000

Qualifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes
--- Not established
ND: Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Location	f			Former Settling Ta	inks/Leaching Pools				
Sample ID	E01B05 12-14'	E01B05 18-20'	E1B06 12-14	E1B06 20-22	E1B07 12-14	E1B07 20-22	E01 B08 18-20	E01 B08 24-26	Comparison Value
Sample Depth (ft)	12-14	18-20	12-14	20-22	12-14	20-22	18-20	24-26	for Areas
Sampling Date	10/09/00	10/09/00	10/11/00	10/11/00	10/11/00	10/11/00	10/10/00	10/10/00	of Concern
Matrix	S	s	s	s	s I	S	s	S	
Dilution Factor	10	10	10	10	10	1.0	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenoi	420 U	380 U	340 U	340 Ü	340 U	340 U	340 U	360 U	47000000
2-Chlorophenol	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	390000
2-Nitrophenol	420 U	360 ∪	340 U	340 U	340 U	340 U	340 U	360 U	
2,4-Dimethylphenoi	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	1600000
2,4-Dichlorophenol	420 U	360 ∪	340 U	340 U	340 U	340 U	340 U	360 U	230000
4-Chloro-3-methylphenol	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	-
2,4,6-Trichlorophenol	420 U	380 U	340 U	340 U	340 U	340 U	340 U	360 U	58000
2,4-Dinkrophenol	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	160000
4-Nitrophenol	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	-
4,6-Dinitro-2-methylphenol	420 U	380 U	340 U	340 U	340 U	340 U	340 U	360 U	
Pentachiorophenol	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	3000
bis(2-Chloroethyl)ether	420 U	380 U	340 U	340 U	340 U	340 U	340 U	360 U	600
1,3-Dichlorobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
1,4-Dichlorobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	27000
1,2-Dichlorobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U	7000000
N-Nitroso-di-n-propylamine	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	90
Hexachloroethane	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	48000
Nitrobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	39000
Isophorone	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U	670000
bis(2-Chioroethoxy)methane	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
1,2,4-Trichlorobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	780000
Naphthalene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	3100000
Hexachiorobutadiene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	8000
Hexachiorocyclopentadiene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U	550000
2-Chloronaphthalene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
Dimethylphthalate	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
Acenaphthylene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	-
2,6-Dinitrotoluene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	900
Acenaphthene 2.4-Dinitrotoluene	420 U	360 U 360 U	340 U	340 U	340 U	340 U	340 U	360 U	4700000
	420 U	300 0	V-10 0	340 U	340 U	340 U	340 U	380 U	900
Diethylphthelate	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U	63000000
4-Chiorophenyl-phenylether	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
Fluorene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U	3100000
N-Nitrosodiphenylamine	420 U 420 U	360 U 360 U	340 U 340 U	340 U	340 U	340 U	340 U	360 U	130000
4-Bromophenyl-phenylether Hexachlorobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
	420 U			340 U	340 U	340 U	340 U	360 U	400
Phenanthrene Anthracene		360 U	340 U	340 U	340 U	340 U	340 U	360 U	
	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	23000000
Di-n-butyiphthelate	69 J 420 U	52 J	250 J 340 U	230 J	39 J	61 J	56 J	38 J	7800000
Fluoranthene	420 U	360 U 360 U	340 U	340 U	340 U	340 U	340 U	360 U	3100000
Pyrene Butylbenzylohthalate	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	2300000
3,3'-Dichlorobenzidine	420 U	360 U	340 U	340 U	340 U	340 U 340 U	340 U	360 U	16000000
Benzo(a)anthracene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U 360 U	1000
Chrysene	420 U	360 U	340 U	340 U					900
bis(2-Ethylhexyl)phthalate	61 J	360 U	36 J	340 U	340 U 340 U	340 U 340 U	340 U	360 U	88000 48000
Oi-n-octyl phthelate	420 U	360 U	36 J I	340 U	340 U	340 U	340 U	360 U 360 U	46000 16000000
Benzo(b)fluoranthene	420 U	360 U	340 U	340 U	340 U	340 U	340 U		
Benzo(k)fluoranthene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	900
Benzo(s)pyrene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	380 U 360 U	9000
Indeno(1,2,3-od)pyrene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	90 900
Diberzo(a,h)anthracene	420 U	360 U	340 U	340 U	340 U	340 U	340 U		
	420 U	360 U	340 U					360 U	90
Benzo(g,h,i)perylene 2,4,5-Trichlorophenol	420 U	360 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	360 U	700000
2,4,5-1 honorophenoi 2-Methylohenoi	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	7800000
3+4-Methylphenois	840 U	720 U	590 U	340 U 690 U	340 U 680 U	340 U 690 U	340 U 680 Li	360 U	3900000
	420 U	360 U	340 U				*****	720 U	
Benzyl Alcohol				340 U	340 U	340 U	340 U	360 U	_
2,2'-oxybis(1-Chioropropane)	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
4-Chloroaniline 2-Methylnaphthalene	420 U	360 U 360 U	340 U 340 U	340 U	340 U	340 U	340 U	360 U	310000
	420 U		340 U	340 U	340 U	340 U	340 U	360 U	
4-Nitroaniline	420 U	360 U		340 U	340 U	340 U	340 U	360 U	
2-Nitrosniline	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
3-Nitroaniline	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	_
Dibenzofuran	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	-
Azobenzene	420 U	360 U	340 U	340 U	340 U	340 U	340 U	360 U	
Benzoic acid	420 U	360 U					340 U	360 U	310000000
Total Carcinogenic PAHs	0	0		0	0		<u> </u>	0	10000
Total PAHs	0	0	0	0	2	0	0	0	100000
Total Conc. SVOC (s)	130	52	286	230	39	61	56	38	500000

Qualifiers
U: The compound was not detected at the Indicated concentration.
J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

Notes -- Not established

Sample Location				Former Settling Ta	anks/Leaching Pools				
Sample ID	E01 B09 16-18	E01 B09 24-26	E01 B11 12-14	E01 B11 20-22	E01 B12 12-14	E01 B12 20-22	E01 B13 12-14	E01 B13 20-22	Comparison Value
Sample Depth (ft)	16-18	24-26	12-14	20-22	12-14	20-22	12-14	20-22	for Areas
Sampling Date	10/10/00	10/10/00	10/10/00	10/10/00	10/13/00	10/13/00	10/13/00	10/13/00	of Concern
Matrix	S	S	S	s	s	S	s	S	
Dilution Factor	10	10	10	10	10	1.0	10	10	İ .
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	47000000
2-Chlorophenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	390000
2-Nitrophenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
2,4-Dimethylphenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	1600000
2,4-Dichlorophenol	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	230000
4-Chloro-3-methylphenol	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	
2,4,6-Trichlorophenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	58000
2,4-Dinitrophenol	340 U	350 U	400 ↓	390 U	370 ∪	420 U	630 U	410 U	160000
4-Nitrophenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
4,6-Dinitro-2-methylphenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
Pentachiorophenoi	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	3000
bis(2-Chioroethyl)ether	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	600
1,3-Dichlorobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
1,4-Dichlorobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	27000
1,2-Dichlorobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	7000000
N-Nitroso-di-n-propylamine	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	90
Hexachloroethane	340 U	350 U	400 U	390 U	370 ↓	420 U	630 U	410 U	46000
Nitrobenzene	340 ป	350 U	400 U	390 U	370 U	420 U	630 U	410 U	39000
Isophorone	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	670000
bis(2-Chloroethoxy)methane	340 U	350 U	400 U	390 ∪	370 U	420 U	630 U	410 U	
1,2,4-Trichlorobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	780000
Naphthalene	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	3100000
Hexachlorobutadiene	340 U	350 U	400 U	390 U	370 ∪ 1	420 U	630 U	410 U	8000
Hexachlorocyclopentadiene	340 U į	350 U	400 U	390 U	370 U	420 U	630 U	410 U	550000
2-Chloronaphthalene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
Dimethylphthalate	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
Acenaphthylene	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	
2,6-Dinitrotoluene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	900
Acenaphthene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	4700000
2,4-Dinitrotoluene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	900
Diethylphthalate	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	63000000
4-Chlorophenyl-phenylether	340 U	350 U	400 U	390 U	370 ∪	420 U	630 Ú	410 U	
Fluorene	340 U	350 U	400 U	390 U	370 U	420 U	630 Ū	410 U	3100000
N-Nitrosodiphenylamine	340 U	350 U	400 U	390 U	370 ป	420 U	630 U	410 U	130000
4-Bromophenyl-phenylether	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	***
Hexachlorobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	400
Phenanthrene	340 U	350 U	400 U	390 U	370 ∪	420 U	98 J	410 U	
Anthracene	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	23000000
Di-n-butylphthalate	94 J	59 J	400 U	110 J	49 J	110 J	76 J	53 J	7800000
Fluoranthene	340 U	350 U	400 U	390 U	370 U	420 U	120 J	410 U	3100000
Pyrene	340 U	350 U	400 U	390 U	370 U	420 U	120 J	410 U	2300000
Butylbenzylphthalate	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	16000000
3,3'-Dichlorobenzidine	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	1000
Benzo(a)anthracene	340 U	350 U	400 U	390 U	370 U	420 U	71 J	410 Ū	900
Chrysene	340 U	350 U	400 U	390 U	370 U	420 U	96 J	410 U	88000
bis(2-Ethylhexyl)phthalate	340 U	350 U	400 U	390 U	60 J	420 U	180 J	410 U	46000
Di-n-octyl phthalate	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	16000000
Benzo(b)fluoranthene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	900
Benzo(k)fluoranthene	340 U	350 U	400 U	390 U	370 ∪	420 U	74 J	410 U	9000
Benzo(a)pyrene	340 U	350 U	400 U	390 U	370 U	420 U	68 J	410 U	90
Indeno(1,2,3-cd)pyrene	340 U	350 U	400 U	390 U	370 ∪	420 U	630 U	410 U	900
Dibenzo(a,h)anthracene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	90
Benzo(g,h,i)perylene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	l –
2,4,5-Trichlorophenol	340 U	350 U	400 U	390 ∪	370 U	420 U	630 U	410 U	7800000
2-Methylphenol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	3900000
3+4-Methylphenols	690 U	690 U	790 U	780 U	740 U	840 U	74 J	810 U	
Benzyl Alcohol	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	_
2,2'-oxybis(1-Chioropropane)	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
4-Chloroaniline	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	310000
2-Methylnaphthalene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	-
4-Nitroaniline	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
2-Nitroaniline	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
3-Nitroaniline	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	
Dibenzofuran	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	_
Azobenzene	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	l
Benzoic acid	340 U	350 U	400 U	390 U	370 U	420 U	630 U	410 U	310000000
Total Carcinogenic PAHs	0	0	0	0	0	0	309	0	10000
Total PAHs	0	0	0	0	0	0	647	0	100000
Total Conc SVOC (s)	94	59	ND	110	109	110	977	53	500000

Qualifiers
U The compound was not detected at the indicated concentration
J. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes
-- Not established
ND Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIYOLATILE ORGANIC COMPOUNDS

Sample Location	Former Settling To	anks/Leaching Pools			Six Former I	Leaching Pools			
Sample ID	E01B14 12-14	E01B14 18-20	E2 B01 12-14	E2 B01 20-22	E2 B02 6-8'	E2 B02 14-16	E2 B03 12-14	E2 B03 20-22	Comparison Value
Sample Depth (ft)	12-14	18-20	12-14	20-22	6-8	14-16	12-14	20-22	for Areas
Sampling Date	10/09/00	10/09/00	09/29/00	09/29/00	09/28/00	09/28/00	09/29/00	09/29/00	of Concern
Matrix	S	S	S	S	S	s	S	S	OI COINCEIN
Dilution Factor	10	10	10	10	1.0	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	47000000
2-Chlorophenol	350 U	340 U	340 U	340 U	360 U Ì	350 U	340 U	350 U	390000
2-Nitrophenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	***
2,4-Dimethylphenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	1600000
2,4-Dichlorophenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	230000
4-Chloro-3-methylphenol	350 ∪	340 U	340 U	340 U	360 ∪	350 U	340 U	350 U	
2,4,6-Trichlorophenol	350 U	340 U	340 U	340 U	380 U	350 U	340 U	350 U	58000
2,4-Dinkrophenol	350 U	340 U	340 U	340 U	380 U	350 ∪	340 U	350 U	160000
4-Nitrophenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	
4,6-Dinitro-2-methylphenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	-
Pentachiorophenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	3000
bis(2-Chloroethyl)ether	350 U 350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	600
1,3-Dichiorobenzene	350 U	340 U	340 U 340 U	340 U	360 U	350 U	340 U	350 U	
1.2-Dichlorobenzene	350 U	340 U	340 U	340 U 340 U	360 U	350 U	340 U	350 U	27000
N-Nitroso-di-n-propylamine	350 U	340 U	340 U	340 U	360 U	350 U 350 U	340 U	350 U	7000000
Hexachloroethans	350 U	340 U	340 U	340 U	360 U	350 U 350 U	340 U	350 U 350 U	90 45000
Nitrobenzene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	39000
Isophorone	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	670000
bis(2-Chloroethoxy)methane	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	0,000
1,2,4-Trichiorobenzene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	780000
Naphthalene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	3100000
Hexachlorobutadiene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	8000
Hexachlorocyclopentadiene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	550000
2-Chloronaphthalene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	
Dimethylphthalate	350 ∪	340 U	340 U	340 U	360 U	350 U	340 U	350 U	
Acenaphthylene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	
2,6-Dinkrotoluene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	900
Acenaphthene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	4700000
2,4-Dinitrotoluene	350 U	340 U	340 U	340 U	360 U	350 ∪	340 U	350 U	900
Diethylphthalate	350 U	340 U	340 U	340 U	360 U	350 ∪	340 U	350 U	63000000
4-Chlorophenyl-phenylether	350 U	340 U	340 U	340 U	360 ∪	350 U	340 U	350 U	-
Fluorene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	3100000
N-Nitrosodiphenylamine	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	130000
4-Bromophenyi-phenyiether	350 U 350 U	340 U 340 U	340 U 340 U	340 U	360 U	350 U	340 U	350 U	
Hexachiorobenzene Phenanthrane	350 U	340 U	340 U	340 U	360 U	350 U 350 U	340 U	350 U	400
Anthracene	350 U	340 U	340 U	340 U	180 J 43 J	350 U	120 J 340 U	95 J 350 U	2300000
Di-n-butylphthalate	350 U	340 U	55 J	. 36	64.1	350 U	120 J	180 J	7800000
Fluoranthene	350 U	340 U	340 U	340 U	390	350 U	140 J	150 J	3100000
Pyrene	350 U	340 U	340 U	340 U	730	350 U	93 J	97 J	2300000
Butylbenzylphthalate	350 U	340 U	340 U	340 U	41 J	350 U	340 U	350 U	16000000
3,3'-Dichlorobenzidine	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	1000
Benzo(a)anthracene	350 U	340 U	340 U	340 U	310 J	350 U	46 J	54 J	900
Chrysene	350 U	340 U	340 U	340 U	380	350 U	52 J	59 J	88000
bis(2-Ethylhexyl)phthalate	350 U	340 U	340 U	340 U	270 J	350 U	340 U	350 U	46000
Di-n-octyl phthalate	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	16000000
Benzo(b)fluoranthene	350 U	340 U	340 U	340 U	390	350 U	37 J	45 J	900
Benzo(k)fluoranthene	350 U	340 U	340 U	340 U	500	350 U	340 U	45 J	9000
Benzo(a)pyrene	350 U	340 U	340 U	340 U	596	350 ∪	40 J	47 J	90
Indeno(1,2,3-od)pyrene	350 U	340 U	340 U	340 U	45 J	350 U	340 U	43 J	900
Dibenzo(a,h)anthracene	350 U	340 U	340 U	340 U	43 J	350 U	340 U	350 U	90
Benzo(g,h,l)perylene	350 U	340 U	340 U	340 U	150 J	350 U	39 J	45 J	i
2,4,5-Trichlorophenol	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	7800000
2-Methylphenol	350 U 700 U	340 U	340 U 680 U	340 U	360 U	350 U	340 U	350 U	3900000
3+4-Methylphenois Benzyl Alcohol	700 U	340 U	340 U	340 U	720 U	600 U	690 U	710 U	
2,2'-oxybis(1-Chioropropane)	350 U	340 U	340 U	340 U	360 U 360 U	350 U	340 U	350 U	_
4-Chloroaniline	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U 350 U	310000
2-Methylnaphthalene	350 U	340 U	340 U	340 U	360 U	350 U	340 U 340 U	350 U	310000
4-Nitroaniline	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	I
2-Nitroaniline	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	-
3-Nitroaniline	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	
Olbenzofuran	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	=
Azobenzene	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	I =
Benzoic acid	350 U	340 U	340 U	340 U	360 U	350 U	340 U	350 U	310000000
Total Carcinogenic PAHs	70	0	0	0	2013		175	293	10000
Total PAHs	Ŏ	ŏ	Ŏ.	<u> </u>	3547		587	680	100000
TOUR FAITS									

Cualifiers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is tess than the quantitation limit but greater than zero

Sample Location	Six Former L	eaching Pools		Former Heat Tre	at Drainage Wells	<u> </u>	Former	Dry Well	
Sample ID	E2 B04 12-14	E2 B04 24-26	E03 B01 16-18	E03 B01 22-24	E03 B02 14-16	E03 B02 20-22	E04 B01 8-10	E04 B01 18-20	Companson Value
Sample Depth (ft)	12-14	24-26	16-18	22-24	14-16	20-22	8-10	18-20	for Areas
Sampling Date	09/29/00	09/29/00	10/10/00	10/10/00	10/10/00	10/10/00	10/12/00	10/12/00	of Concern
Matrix Dilution Factor	\$ 1.0	S	s	S	S	, s	S	S	
Units	ua/ka	1.0 ug/kg	1 0 ug/kg	1 0 ug/kg	1 0 ug/kg	10 ug/kg	1,0 ug/kg	1.0 ug/kg	ug/kg
Phenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	47000000
2-Chlorophenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	390000
2-Nitrophenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
2,4-Dimethylphenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	1600000
2,4-Dichlorophenoi	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	230000
4-Chloro-3-methylphenoi 2,4,6-Trichlorophenoi	340 U 340 U	370 U 370 U	370 U 370 U	400 U 400 U	390 U 390 U	420 U	400 U	340 U	
2,4-Dintrophenol	340 U	370 U	370 U	400 U	390 U	420 U 420 U	400 U 400 U	340 U 340 U	58000 160000
4-Nitrophenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	160000
4,6-Dintro-2-methylphenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Pentachlorophenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	3000
bis(2-Chloroethyl)ether	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	600
1,3-Dichlorobenzene 1,4-Dichlorobenzene	340 U	370 U 370 U	370 U	400 U	390 U	420 U	400 U	340 U	
1,2-Dichlorobenzene	340 U	370 U	370 U 370 U	400 U 400 U	390 U 390 U	420 U 420 U	400 U	340 U	27000
N-Nitroso-di-n-propylamine	340 U	370 U	370 U	400 U	390 U	420 U	400 U 400 U	340 U 340 U	7000000 90
Hexachloroethane	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	46000
Nitrobenzene	340 U	370 ∪	370 U	400 U	390 U	420 U	400 U	340 U	39000
Isophorone	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	670000
bis(2-Chloroethoxy)methane 1,2,4-Trichlorobenzene	340 U 340 U	370 U 370 U	370 U 370 U	400 U 400 U	390 U	420 U	400 U	340 U	
Naphthalene	340 U	370 U	370 U	400 U	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	780000 3100000
Hexachlorobutadiene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	8000
Hexachlorocyclopentadiene	340 U	370 ∪	370 U	400 U	390 U	420 U	400 U	340 U	550000
2-Chloronaphthalene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Dimethylphthalate	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Acenaphthylene 2,6-Dinitrotoluene	340 U 340 U	370 U 370 U	370 U 370 U	400 U 400 U	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	900
Acenaphthene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	4700000
2,4-Dinitrotoluene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	900
Diethylphthalate	340 U	370 U	370 U	400 U	390 ∪	420 U	400 U	340 U	63000000
4-Chlorophenyl-phenylether	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Fluorene N-Nitrosodiphenylamine	340 U	370 U 370 U	370 U 370 U	400 U 400 U	390 U	420 U	400 U	340 U	3100000
4-Bromophenyl-phenylether	340 U	370 U	370 U	400 U	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	130000
Hexachlorobenzene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	400
Phenanthrene	340 U	370 U	240 J	400 U	390 U	420 U	400 U	340 U	
Anthracene	340 U	370 U	62 J	400 U	390 U	420 U	400 U	340 U	23000000
Di-n-butylphthalate Fluoranthene	58 J 340 U	84 J 370 U	100 J 410	53 J 400 U	55 J 390 U	53 J	64 J	77 J	7800000
Pyrene	340 U	370 U	300 J	400 U	390 U	420 U 420 U	400 U 400 U	340 U 340 U	3100000 2300000
Butylbenzylphthalate	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	16000000
3,3'-Dichlorobenzidine	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	1000
Benzo(a)anthracene	340 U	370 U	170 J	400 U	390 U	420 U	400 U	340 U	900
Chrysene	340 U	370 U	200 J	400 U	390 U	420 U	400 U	340 U	88000
bis(2-Ethylhexyl)phthalate Di-n-octyl phthalate	340 U 340 U	370 U 370 U	160 J 370 U	400 U 400 U	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	46000
Benzo(b)fluoranthene	340 U	370 U	140 J	400 U	390 U	420 U	400 U	340 U	16000000 900
Benzo(k)fluoranthene	340 U	370 U	160 J	400 U	390 U	420 Ú	400 U	340 U	9000
Benzo(a)pyrene	340 U	370 ∪	130 J	400 U	390 U	420 U	400 U	340 U	90
Indeno(1,2,3-cd)pyrene	340 U	370 U	44 J	400 U	390 U	420 U	400 U	340 U	900
Dibenzo(a,h)anthracene	340 U 340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	90
Benzo(g,h,i)perylene 2,4,5-Trichlorophenol	340 U	370 U 370 U	49 J 370 U	400 U 400 บ	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	700000
2-Methylphenol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	7800000 3900000
3+4-Methylphenois	670 U	730 U	750 U	790 U	780 U	830 U	790 U	690 U	350000
Benzyl Alcohol	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
2,2'-oxybis(1-Chloropropane)	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	_
4-Chloroaniline	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	310000
2-Methylnaphthalene 4-Nitmaniline	340 U 340 U	370 U 370 U	370 U 370 U	400 U 400 U	390 U	420 U	400 U	340 U	
2-Nitroaniline	340 U	370 U	370 U	400 U	390 U 390 U	420 U 420 U	400 U 400 U	340 U 340 U	
3-Nitroaniline	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Dibenzofuran	340 U	370 U	370 U	400 U	390 Ú	420 U	400 U	340 U	
Azobenzene	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	
Benzoic acid	340 U	370 U	370 U	400 U	390 U	420 U	400 U	340 U	310000000
Total Caminagona BAHa									
Total Carcinogenic PAHs Total PAHs	<u> </u>	0	844 1905	0	0	0	0	0	10000 100000

Qualifiers
U: The compound was not detected at the indicated concentration.

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMYOLATILE ORGANIC COMPOUNDS

Sample Location				Leaching	Pool Area				
Sample ID	E6 B01 10-12	E6 B01 20-22	E6 B02 10-12	E6 B02 20-22	E6 B03 10-12	E6 B03 20-22	E6 B04 10-12	E6 B04 20-22	Comparison Value
Sample Depth (ft)	10-12	20-22	10-12	20-22	10-12	20-22	10-12	20-22	for Areas
Sampling Date	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/02/00	10/05/00	10/05/00	of Concern
Matrix	S	s	S	S	s	s	s	S	
Dilution Factor	10	1.0	1.0	10	10	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenoi	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	47000000
2-Chiorophenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	390000
2-Nitrophenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
2,4-Dimethylphenol 2,4-Dichlorophenol	340 U	350 U 350 U	350 U 350 U	340 U	340 U	350 U	350 U	380 U	1600000
4-Chloro-3-methylphenol	340 U	350 U	350 U	340 U 340 U	340 U 340 U	350 U	350 U	380 U	230000
2,4,6-Trichlorophenol	340 U	350 U	350 U	340 U	340 U	350 U 350 U	350 U	380 U	
2.4-Dinitrophenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U 350 U	380 U 380 U	58000 160000
4-Nitrophenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	180000
4,6-Dinitro-2-methylphenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
Pentachiorophenol	340 U	350 ∪	350 U	340 U	340 U	350 U	350 U	380 U	3000
bls(2-Chloroethyl)ether	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	600
1,3-Dichlorobenzene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
1,4-Dichlorobenzene	340 U	350 ∪	350 U	340 U	340 U	350 U	350 U	380 U	27000
1,2-Dichlorobenzene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	7000000
N-Nitroso-di-n-propytamine	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	90
Hexachioroethane	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	46000
Nitrobenzene Isophorone	340 U	350 U 350 U	350 U 350 U	340 U	340 U	350 U	350 U	380 U	39000
bis(2-Chioroethoxy)methane	340 U	350 U	350 U	340 U 340 U	340 U	350 U	350 U	380 U	670000
1,2,4-Trichlorobenzene	340 U	350 U	350 U	340 U	340 U 340 U	350 U	350 U	380 U	
Naphthalene	340 U	350 U	350 U	340 U	340 U	350 U 350 U	350 U 350 U	380 U 380 U	780000 3100000
Hexachlorobutadiene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	8000
Hexachlorocyclopentadiene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	550000
2-Chloronaphthalene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
Dimethylphthalate	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
Acenaphthylene	340 U	350 ∪	350 U	340 U	340 U	350 U	350 U	380 U	
2,6-Dinitrotoluene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	900
Acenaphthene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	4700000
2,4-Dinitrotoiuene	340 U	350 U	350 U	340 U	340 U	350 U	350 ∪	380 U	900
Diethylphthalate	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	63000000
4-Chlorophenyl-phenylether Fluorene	340 U 340 U	350 U 350 U	350 U 350 U	340 U	340 U	350 U	350 U	380 U	
N-Nitrosodiphenytamine	340 U	350 U	350 U	340 U	340 U 340 U	350 U 350 U	350 U	380 U	3100000
4-Bromophenyl-phenylether	340 U	350 U	350 U	340 U	340 U	350 U	350 U 350 U	380 U 380 U	130000
Hexachiorobenzene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	400
Phenanthrene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
Anthracene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	23000000
Di-n-butylphthalate	41 J	38 J	36 J	54 J	79 J	76 J	54 J	63 J	7800000
Fluoranthene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	3100000
Pyrene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	2300000
Butylbenzylphthalate	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	16000000
3,3'-Dichlorobenzidine	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	1000
Benzo(a)anthracene Chrysene	340 U 340 U	350 U 350 U	350 U 350 U	340 U 340 U	340 U	350 U	350 U	380 U	900
bis(2-Ethylhexyl)phthalate	340 U	350 U	350 U	340 U	340 U	350 U 350 U	350 U	380 U	88000
Di-n-octyl phthalate	340 U	350 U	350 U	340 U	340 U	350 U	350 U 350 U	380 U 380 U	48000 18000000
Benzo(b)fluoranthene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	900
Benzo(k)fluoranthene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	9000
Benzo(a)pyrene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	9000
Indeno(1,2,3-cd)pyrene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	900
Dibenzo(a,h)anthracene	340 U	350 ∪	350 U	340 U	340 U	350 U	350 U	380 U	90
Benzo(g,h,i)perylene	340 U	350 U	350 ∪	340 U	340 U	350 U	350 U	380 U	_
2,4,5-Trichiorophenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	7800000
2-Methylphenol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	3900000
3+4-Methylphenois	690 U	690 U	700 U	690 U	690 U	690 U	690 U	770 U	_
Benzyl Alcohol	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
2,2'-oxybis(1-Chloropropane)	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
4-Chioroaniline 2-Methylnaphthalene	340 U 340 U	350 U 350 U	350 U i 350 U	340 U 340 U	340 U	350 U	350 U	380 U	310000
2-Meurymaphrasene 4-Nitroaniline	340 U	350 U	350 U	340 U 340 U	340 U	350 U	350 U	380 U	-
2-Nitroaniline	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
3-Nitroaniline	340 U	350 U	350 U	340 U	340 U	350 U	350 U 350 U	380 U 380 U	
Dibenzofuran	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	_
Azobenzene	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	
Benzoic acid	340 U	350 U	350 U	340 U	340 U	350 U	350 U	380 U	31000000
								300 0	
Total Carcinogenic PAHs	0	0	0	0	. 0	Ö		0	10000
Total Carcinogenic PAHs Total PAHs Total Conc. SVQC (s)	0 0 41	0 0 38	0 0 36	00	0	0	0	0	10000

Qualifiers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes —. Not established

Sample Location			Leaching	Pool Area			Nine Loan	tuna Poole	r
Sample ID	E6 B05 3-5	E6 B05 12-14	E06 B06 8-10	E06 B06 16-18	E06 B09 10-12	E06 B09 20-22	E7 B01 14-16	hing Pools E7 B01 18-20	Comparison Value
Sample Depth (ft)	3-5	12-14	8-10	16-18	10-12	20-22	14-16	18-20	for Areas
Sampling Date	10/05/00	10/05/00	10/10/00	10/10/00	10/04/00	10/04/00	09/20/00	09/20/00	of Concern
Matrix	s	s	S	l s	S	s	S	S	O CONCENT
Dilution Factor	10	1.0	1.0	10	10	10	10	10	i
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	350 U	340 Ü	380 U	350 U	350 U	340 U	340 U	350 U	47000000
2-Chlorophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	390000
2-Nitrophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	380000
2,4-Dimethylphenol	350 U	340 U	380 ↓	350 U	350 U	340 U	340 U	350 U	1600000
2,4-Dichlorophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	230000
4-Chloro-3-methylphenoi	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
2,4,6-Trichlorophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	58000
2,4-Dinitrophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	160000
4-Nitrophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
4,6-Dinitro-2-methylphenol	350 ∪	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Pentachlorophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	3000
bis(2-Chloroethyl)ether	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	600
1,3-Dichlorobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
1,4-Dichlorobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	27000
1,2-Dichlorobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	7000000
N-Nitroso-di-n-propylamine	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	90
Hexachioroethane	350 U	340 U	380 U	350 ∪	350 ⊔	340 U	340 U	350 U	46000
Ntrobenzene	350 U	340 U	380 U	350 U	350 ⊔	340 U	340 U	350 U	39000
Isophorone	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	670000
bis(2-Chioroethoxy)methane	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
1,2,4-Trichlorobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	780000
Naphthalene	350 U	340 U	380 U	350 ป	350 ∪	340 U	340 U	350 U	3100000
Hexachlorobutadiene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	8000
Hexachlorocyclopentadiene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	550000
2-Chloronaphthalene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Dimethylphthalate	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Acenaphthylene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
2,6-Dinitrotoluene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	900
Acenaphthene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	4700000
2,4-Dinitrotoluene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	900
Diethylphthalate	350 U	340 U	380 U	350 U	350 ∪	340 U	340 U	350 U	63000000
4-Chlorophenyl-phenylether	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Fluorene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	3100000
N-Nitrosodiphenylamine	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	130000
4-Bromophenyl-phenylether	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Hexachlorobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	400
Phenanthrene	350 U	340 ∪	58 J	350 ∪	99 J	340 U	340 U	350 U	
Anthracene	350 U	340 U	380 U	350 U	350 U	340 U	340 U [350 U	23000000
Di-n-butylphthalate	76 J	92 J	66 J	81 J	110 J	110 J	78 J	68 J	7800000
Fluoranthene	350 U	340 U	130 J	350 U	72 J	340 U	340 U	350 U	3100000
Pyrene	350 U	340 U	100 J	350 U	82 J	340 U	340 U	350 U	2300000
Butylbenzylphthalate	350 U	340 U	380 U	350 U	350 ∪	340 U	340 U	350 U	16000000
3,3'-Dichlorobenzidine	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	1000
Benzo(a)anthracene	350 U	340 U	58 J	350 U	350 U	340 U	340 U	350 U	900
Chrysene	350 U	340 U	81 J	350 U	350 U	340 U	340 U	350 U	88000
bis(2-Ethylhexyl)phthalate	350 U	340 U	380 U	350 U	350 ∪	340 U	340 U	350 U	46000
Di-n-octyl phthalate	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	16000000
Benzo(b)fluoranthene	350 U	340 U	53 J	350 U	350 U	340 U	340 U	350 U	900
Benzo(k)fluoranthene	350 U	340 U	77 J	350 U	350 U	340 U	340 U	350 U	9000
Benzo(a)pyrene	350 U	340 U	57 J	350 U	350 U	340 U	340 U	350 U	90
Indeno(1,2,3-cd)pyrene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	900
Dibenzo(a,h)anthracene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	90
Benzo(g,h,i)perylene	350 U	340 U	38 J	350 U	350 U	340 U	340 U	350 U	
2,4,5-Trichlorophenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	7800000
2-Methylphenol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	3900000
3+4-Methylphenols	690 U	690 U	760 U	700 U	700 U	690 U	670 U	690 U	
Benzyl Alcohol	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
2,2'-oxybis(1-Chloropropane)	350 U	340 U	380 U	350 U	350 ∪	340 U	340 U	350 U	-
4-Chioroaniline	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	310000
2-Methylnaphthalene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	-
4-Nitroaniline	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
2-Nitroaniline	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	-
3-Nitroaniline	350 U	340 U	380 U	350 ∪	350 U	340 U	340 Ú	350 U	
Dibenzofuran	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Azobenzene	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	
Benzoic acid	350 U	340 U	380 U	350 U	350 U	340 U	340 U	350 U	310000000
Total Carcinogenic PAHs	0		326	0	0	0	. 0	0	10000
Total PAHs	0	0	652	0	253	0	0	0	100000
Total Conc. SVQC (s)	76	92	718	81	363	110	78	68	500000

Notes
--- Not established

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIYOLATILE ORGANIC COMPOUNDS

Sample Location				Nine Lead	hing Pools				
Sample ID	E7 B02 12-14	E7 B02 16-18	E7 B03 11-13	E7 B03 19-21	E7 B04 11-13	E7 B04 19-21	E7 B05 15-17	E7 B05 19-21	Comparison Value
Sample Depth (ft)	12-14	16-18	11-13	19-21	11-13	19-21	15-17	19-21	for Areas
Sampling Date	09/20/00	09/20/00	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	09/21/00	of Concern
Matrix District Foots	s	s	s	S	S	S	S	S	
Dilution Factor Units	1.0 ug/kg	10 ug/kg	10 ug/kg	10 ug/kg	10 ug/kg	1.0	10	10	
Phenol	340 U	370 U	340 U	350 U	340 U	ug/kg 350 U	ыд/kg 340 U	ug/kg 450 U	ug/kg 4700000
2-Chlorophenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	390000
2-Nitrophenol	340 U	370 U	340 Ŭ	350 U	340 U	350 U	340 U	450 U	38000
2,4-Dimethylphenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	1600000
2,4-Dichlorophenol	340 U	370 ∪	340 U	350 U	340 U	350 U	340 U	450 U	230000
4-Chloro-3-methylphenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	
2,4,6-Trichiorophenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	58000
2,4-Dinitrophenol 4-Nitrophenol	340 U 340 U	370 U 370 U	340 U 340 U	350 U 350 U	340 U	350 U	340 U	450 U	160000
4.6-Dinitro-2-methylphenol	340 0	370 U	340 U	350 U 350 U	340 U	350 U 350 U	340 U	450 U	
Pentachlorophenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U 340 U	450 U 450 U	3000
bls(2-Chloroethyl)ether	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	600
1,3-Dichlorobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	
1,4-Dichlorobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	27000
1,2-Dichlorobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	7000000
N-Nitroso-di-n-propytamine	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	90
Hexachloroethane	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	46000
Nitrobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	39000
Isophorone bis(2-Chloroethoxy)methane	340 U 340 U	370 U 370 U	340 U 340 U	350 U	340 U 340 U	350 U 350 U	340 U 340 U	450 U 450 U	670000
1.2.4-Trichlorobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	780000
Naphthalene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	3100000
Hexachlorobutadiene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	8000
Hexachlorocyclopentadiene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	550000
2-Chloronaphthalene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	_
Dimethylphthalate	340 U	370 U	340 U	350 U	340 U	350 U	340 U]	450 U	-
Acenaphthylene 2.6-Dinitrotoluene	340 U 340 U	370 U 370 U	340 U 340 U	350 U 350 U	340 U	350 U	340 U	450 U	
Acenaphthene	340 U	370 U	340 U	350 U	340 U 340 U	350 U 350 U	340 U 340 U	450 U	900 4700000
2,4-Dinitrotoluene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U 450 U	900
Diethylphthalate	340 U	370 U	340 U	38 1	340 U	350 U	340 U	450 U	63000000
4-Chlorophenyl-phenylether	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	
Fluorene	340 U	370 U	340 U	350 ∪	340 U	350 U	340 U	450 U	3100000
N-Nitrosodiphenylamine	340 U	370 ∪	340 U	350 U	340 U	350 U	340 U	450 U	130000
4-Bromophenyl-phenylether	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	-
Hexachlorobenzene Phenanthrene	340 U 340 U	370 U 370 U	340 U 340 U	350 U	340 U	350 U	340 U	450 U	400
Anthracene	340 U	370 U	340 U	350 U	340 U 340 U	350 U 350 U	340 U 340 U	450 U 450 U	23000000
Di-n-but/lohthalate	130 1	89 J	340 U	73 J	79 J	50 1	340 U	120 J	7800000
Fluoranthene	340 U	370 U	38 J	350 U	340 U	350 U	340 U	450 U	3100000
Pyrene	340 U	370 U	340 U	350 ∪	340 U	350 U	340 U	450 U	2300000
Butylbenzylphthalate	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	18000000
3,3'-Dichlorobenzidine	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	1000
Benzo(a)anthracene Chrysene	340 U 340 U	370 U 370 U	340 U 340 U	350 U 350 U	340 U	350 U	340 U	450 U	900
bis(2-Ethylhexyl)phthalate	340 U	370 U	340 U	350 U	340 U	350 U 350 U	340 U	450 U 450 U	88000 48000
Di-n-octyl phthalate	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	16000000
Benzo(b)fluoranthene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	900
Benzo(k)fluoranthene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	9000
Benzo(a)pyrene	340 U	370 U	340 U	350 U	46 J	350 U	340 U	450 U	90
Indeno(1,2,3-od)pyrene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	900
Dibenzo(a,h)anthracene	340 U 340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	90
Benzo(g,h,i)perylene 2,4,5-Trichlorophenol	340 U	370 U 370 U	340 U 340 U	350 U 350 U	340 U 340 U	350 U 350 U	340 U 340 U	450 U 450 U	7800000
2-Methylphenol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	3900000
3+4-Methylphenois	680 U	750 U	680 U	690 U	670 U	690 U	670 U	900 U	J#00000
Benzyl Alcohol	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	
2,2'-oxybis(1-Chloropropane)	340 Ú	370 U	340 U	350 U	340 U	350 U	340 U	450 U	l -
4-Chloroaniline	340 U	370 ∪	340 U	350 U	340 U	350 Ú	340 U	450 U	310000
2-Methylnaphthalene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	–
4-Nitroaniline	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	
2-Nitroaniline 3-Nitroaniline	340 U 340 U	370 U 370 U	340 U 340 U	350 U 350 U	340 U	350 U	340 U	450 U	
Dibenzofuran	340 U	370 U	340 U	350 U	340 U	350 U 350 U	340 U 340 U	450 U 450 U	
Azobenzene	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	=
Benzoic acid	340 U	370 U	340 U	350 U	340 U	350 U	340 U	450 U	310000000
Total Carcinogenic PAHs	0	0	0	0	46	0	0	0	10000
Total PAHs	0	0	38	0	46	. 0	0	0	100000
Total Conc. SVQC (s)	130	89	38	111	125	50	ND	120	500000

<u>Qualifiers</u>

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

Sample Location				Nine Lear	ching Pools				
Sample ID	E7 B06 11-13	E7 B06 19-21	E7 B07 11-13	E7 B07 19-21	E7 B09 11-13	E7 809 19-21	E7 B10 11-13	E7 B10 19-21	Companson Value
Sample Depth (ft)	11-13	19-21	11-13	19-21	11-13	19-21	11-13	19-21	for Areas
Sampling Date	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	09/22/00	of Concern
Matrix	s	s	s	s	s	s	s	S	0. 0000
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	47000000
2-Chlorophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	390000
2-Nitrophenol	390 ∪	420 U	410 U	450 U	340 U	390 U	340 U	380 U	-
2,4-Dimethylphenol	390 ป	420 U	410 U	450 U	340 U	390 U	340 U	380 U	1600000
2,4-Dichlorophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	230000
4-Chloro-3-methylphenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
2,4,6-Trichlorophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	58000
2,4-Dinitrophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	160000
4-Nitrophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
4,6-Dinitro-2-methylphenoi	390 ↓	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Pentachlorophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	3000
bis(2-Chloroethyl)ether	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	600
1,3-Dichlorobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
1,4-Dichlorobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	27000
1,2-Dichlorobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	7000000
N-Nitroso-di-n-propylamine	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	90
Hexachloroethane	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	46000
Nitrobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	39000
Isophorone	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	670000
bis(2-Chloroethoxy)methane	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
1,2,4-Trichlorobenzene	390 ∪	420 U	410 U	450 U	340 U	390 U	340 U	380 U	780000
Naphthalene	390 U	420 U	410 U	450 U	340 U	390 U	35 J	380 U	3100000
Hexachlorobutadiene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	8000
Hexachlorocyclopentadiene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	550000
2-Chloronaphthalene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Dimethylphthalate	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Acenaphthylene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
2,6-Dinitrotoluene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	900
Acenaphthene	390 U	420 U	410 U	450 U	340 U	390 U	42 J	380 U	4700000
2,4-Dinitrotoluene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	900
Diethylphthalate	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	63000000
4-Chlorophenyl-phenylether	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Fluorene	390 U	420 U	410 U	450 U	340 U	390 U	39 J	380 U	3100000
N-Nitrosodiphenylamine	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	130000
4-Bromophenyl-phenylether	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Hexachlorobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	400
Phenanthrene	50 J	420 U	410 U	450 U	340 U	390 U	200 J	380 U	
Anthracene	390 U	420 U	410 U	450 U	340 U	390 U	58 J	380 U	23000000
D+n-butylphthalate	60 J	66 J	410 U	140 J	270 J	89 J	60 J	49 J	7800000
Fluoranthene	63 J	420 U	410 U	450 U	340 U	390 U	210 J	380 U	3100000
Pyrene	77 J	420 U	410 U	450 U	340 U	390 U	110 J	380 U	2300000
Butylbenzylphthaiate	390 U	420 U	410 U	450 U	60 J	390 U	340 U	380 U	16000000
3,3'-Dichlorobenzidine	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	1000
Benzo(a)anthracene	390 U	420 U	410 U	450 U	340 U	390 U	87 J	380 U	900
Chrysene	390 U	420 U	410 U	450 U	340 U	390 U	89 J	380 U	88000
bis(2-Ethylhexyl)phthalate	39 J	420 U	410 U	450 U	62 J	390 U	340 U	380 U	46000
Di-n-octyl phthalate	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	16000000
Benzo(b)fluoranthene	390 U	420 U	410 U	450 U	340 U	390 U	59 J	380 U	900
Benzo(k)fluoranthene	390 U	420 U	410 U	450 U	340 U	390 U	60 J	380 U	9000
Benzo(a)pyrene	390 U	420 U	410 U	450 U	340 U	390 U	70 J	380 U	90
Indeno(1,2,3-cd)pyrene	390 U	420 U	410 U	450 U	340 U	390 U	72 J	380 U	900
Dibenzo(a,h)anthracene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	90
Benzo(g,h,i)perylene	390 U	420 U	410 U	450 U	340 U	390 U	58 J	380 U	=
2,4,5-Trichlorophenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	7800000
2-Methylphenol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	3900000
3+4-Methylphenols	780 U	830 U	810 U	900 U	670 U	780 U	680 U	760 U	
Benzyl Alcohol	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
2,2'-oxybis(1-Chloropropane)	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
4-Chloroaniline	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	310000
2-Methylnaphthalene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
4-Nitroaniline	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
2-Nitroaniline	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
3-Nitroaniline	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	_
Dibenzofuran	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	
Azobenzene	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	I
Benzoic acid	390 U	420 U	410 U	450 U	340 U	390 U	340 U	380 U	310000000
Total Carcinogenic PAHs	0	0	0	0	0	0	437	300 0	10000
Total PAHs	190	0	0	0	60	ŏ	1169		10000
TOTAL TAILS									

Qualifiers

U The compound wee not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

Notes
-- Not established

ND: Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIYOLATILE ORGANIC COMPOUNDS

Sample Location				Nine Lead	thing Pools				
Sample ID	E7 B11 11-13	E7 B11 19-21	E7 B12 11-13	E7 B12 19-21	E7 B13 11-13	E7 B13 19-21	E07 B14 9-11	E07 B14 18-20	Comparison Value
Sample Depth (ft)	11-13	19-21	11-13	19-21	11-13	19-21	9-11	18-20	for Areas
Sampling Date Matrix	09/25/00 S	09/25/00 S	09/25/00 S	09/25/00 S	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix Dilution Factor	10	1.0	10	10	S	\$ 1.0	S 10	S	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	∪g/kg	ug/kg	1.0 ug/kg	ug/kg
Phenol	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	4700000
2-Chiorophenoi	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	390000
2-Nitrophenoi	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
2,4-Dimethylphenol	340 U	350 U	340 U	340 U	340 U	340 Ú	340 U	340 U	1600000
2,4-Dichlorophenol	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	230000
4-Chloro-3-methylphenol	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	-
2,4,6-Trichlorophenol	340 U 340 U	350 U 350 U	340 U	340 U 340 U	340 U	340 U	340 U	340 U	58000
2,4-Dinitrophenoi 4-Nitrophenoi	340 U	350 U	340 U	340 U	340 U 340 U	340 U	340 U	340 U	160000
4,6-Dinitro-2-methylphenol	340 U	350 U	340 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	
Pentachlorophenol	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	3000
bis(2-Chloroethyl)ether	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	600
1,3-Dichlorobenzene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	_
1,4-Dichlorobenzene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	27000
1,2-Dichlorobenzene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	7000000
N-Nitroso-di-n-propylamine	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	90
Hexachloroethane	340 U 340 U	350 U 350 U	340 U 340 U	340 U	340 U	340 U	340 U	340 U	46000
Nitrobenzene Isophorone	340 U	350 U	340 U	340 U 340 U	340 U	340 U	340 U	340 U	39000
bis(2-Chloroethoxy)methane	340 U	350 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	670000
1,2,4-Trichlorobenzene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	780000
Naphthalene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	3100000
Hexachlorobutadiene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	8000
Hexachlorocyclopentadlene	340 U	350 U	340 U	340 U	340 U	340 Ū	340 U	340 U	550000
2-Chloronaphthalene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	***
Dimethylphthalate	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	_
Acenaphthylene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
2,6-Dinkrotoluene Acenachthene	340 U	350 U 350 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	900
2.4-Dinitrotoluene	340 U	350 U	340 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	4700000 900
Diethylohthalate	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	63000000
4-Chlorophenyl-phenylether	340 Ŭ	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
Fluorene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	3100000
N-Nitrosodiphenylamine	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	130000
4-Bromophenyl-phenylether	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	_
Hexachlorobenzene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	400
Phenanthrane Anthracene	340 U 340 U	350 U 350 U	340 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	
Di-n-butylphthelate	36 1	50 J	59 J	40 J	340 U	340 U 41 J	340 U 42 J	340 U 43 J	23000000 7800000
Fluoranthene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	3100000
Pyrene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	2300000
Butylbenzylphthalate	340 Ú	350 Ú	340 U	340 U	340 U	340 U	340 U	340 U	16000000
3,3'-Dichlorobenzidine	340 U	350 U	340 U	340 U	340 U	340 Ü	340 U	340 U	1000
Benzo(a)anthracene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	900
Chrysene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	88000
bis(2-Ethythexyl)phthelate Di-n-octyl phthelate	340 U 340 U	350 U	340 U 340 U	340 U	340 U	340 U	340 U	340 U	46000
Benzo(b)fluoranthene	340 U 340 U	350 U 350 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U	340 U	340 U	16000000
Benzo(k)fluoranthene	340 U	350 U	340 U	340 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	900
Benzo(a)pyrene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	, www
Indeno(1,2,3-od)pyrene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
Dibenzo(a,h)anthracene	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	900
Benzo(g,h,i)perylene	340 Ú	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
2,4,5-Trichiorophenol	340 U	350 ∪	340 U	340 U	340 U	340 U	340 U	340 U	7800000
2-Methylphenol	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	3900000
3+4-Methylphenois	690 U	690 U	690 U	690 U	680 U	680 U	670 U	690 U	-
Benzyl Alcohol	340 U	350 U	340 U 340 U	340 U	340 U	340 U	340 U	340 U	_
2,2'-oxybis(1-Chloropropane) 4-Chloroaniline	340 U 340 U	350 U 350 U	340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	
2-Methylnaphthalene	340 U	350 U	340 U	340 U	340 U I	340 U 340 U	340 U 340 U	340 U 340 U	310000
4-Nitroaniline	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	_
2-Nitroaniline	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
3-Nitroaniline	340 U	350 U	340 U	340 Ú	340 U	340 U	340 U	340 U	
Dibenzofuran	340 U	350 U	340 U	340 U	340 U	340 U	340 U	340 U	
Azobenzene	340 U	350 ∪	340 U	340 U	340 U	340 U	340 Ú	340 U	
Benzoic acid	340 U	350 U	340 U	340 U	340 U	340 Ų	340 U	340 U	310000000
Total Carcinogenic PAHs	0	0	0	0	0	0	0	0	10000
Total PAHs	0	0	0	0	0		0	0	100000
Total Conc SVOC (s)	36	50	59	40	NO	41	42	43	500000

Custifiers

U The compound was not detected at the indicated concentration.

J. Data indicates the presence of a compound that mosts the identification criteria. The result is less than the quantitation limit but greater than zero.

Sample Location			FC	rmer Leaching Field w					
Sample ID	E8 B01 6-8'	E8 B01 14-16'	E8 B02 6-8'	E8 B02 14-16'	E8 B03 8-10'	E8 B03 14-16'	E8 B04 10-12	E8 B04 14-16	Companson Value
Sample Depth (ft)	6-8	14-16	6-8	14-16	8-10	14-16	10-12	14-16	for Areas
Sampling Date	10/03/00	10/03/00	10/03/00	10/03/00	10/03/00	10/03/00	10/04/00	10/04/00	of Concern
Matrix	S	S	S	S	s	S	s	S	
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1,0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	47000000
2-Chlorophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	390000
2-Nitrophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
2,4-Dimethylphenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	1600000
2,4-Dichlorophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	230000
4-Chloro-3-methylphenol	400 U	340 U	400 U	340 U	340 U	340 ↓	340 U	340 U	
2,4,6-Trichlorophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	58000
2,4-Dinitrophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	160000
4-Nitrophenol	400 U]	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
4,6-Dintro-2-methylphenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
Pentachlorophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	3000
bis(2-Chloroethyl)ether	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	600
1,3-Dichlorobenzene	400 U	340 U	400 U	340 U	340 U	340 Ų	340 U	340 U	
1,4-Dichlorobenzene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	27000
1,2-Dichlorobenzene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	7000000
N-Nitroso-d⊢n-propylamine	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	90
Hexachloroethane	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	46000
Nitrobenzene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	39000
Isophorone	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	670000
bis(2-Chloroethoxy)methane	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
1,2,4-Trichlorobenzene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	780000
Naphthalene	400 U	340 U	400 U	340 Ų	340 U	340 U	340 U	340 U	3100000
Hexachlorobutadiene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	8000
Hexachlorocyclopentadiene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	550000
2-Chloronaphthaiene	400 U	340 U	400 U	340 ⊔	340 U	340 U	340 U	340 U	
Dimethylphthalate	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
Acenaphthylene	400 U	340 U	400 U	340 ∪	340 U	340 U	340 Ū	340 U	
2,6-Dinitrotoluene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	900
Acenaphthene	400 U	340 U	400 U	340 U	340 U	340 Ú	340 U	340 U	4700000
2,4-Dinitrotoluene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	900
Diethylphthalate	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	63000000
4-Chlorophenyl-phenylether	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
Fluorene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	3100000
N-Nitrosodiphenylamine	400 ∪	340 U	400 U	340 U	340 U	340 U	340 U	340 U	130000
4-Bromophenyl-phenylether	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	***
Hexachlorobenzene	400 U	340 U	400 U	340 ⊔	340 U	340 U	340 U	340 U	400
Phenanthrene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
Anthracene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	23000000
D⊩n-butylphthalate	93 J	340 U	400 U	46 J	340 U	340 U	140 J	120 J	7800000
Fluoranthene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	3100000
Pyrene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	2300000
Butylbenzylphthalate	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	16000000
3,3'-Dichlorobenzidine	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	1000
Benzo(a)anthracene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	900
Chrysene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	88000
bis(2-Ethylhexyl)phthalate	400 U	340 U	61 J	340 U	340 U	340 U	57 J	340 U	46000
Di-n-octyl phthalate	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	16000000
Benzo(b)fluoranthene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	900
Benzo(k)fluoranthene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	9000
Benzo(a)pyrene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	90
indeno(1,2,3-cd)pyrene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	900
Dibenzo(a,h)anthracene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	90
Benzo(g,h,i)perylene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
2,4,5-Trichlorophenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	7800000
2-Methylphenol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	3900000
3+4-Methylphenois	800 U	690 U	790 Ú	690 U	680 U	690 U	690 U	680 U	
Benzyl Alcohol	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
2,2'-oxybis(1-Chloropropane)	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	l
4-Chloroaniline	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	310000
2-Methylnaphthalene	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	310000
4-Nitroaniline	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
2-Nitroaniline	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	_
3-Nitroaniline	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	i
Dibenzofuran	400 U	340 U	400 U	340 U	340 U	340 U	340 U	340 U	
Azobenzene	400 U	340 U	400 U	340 U	340 U				
Benzoic acid	400 U	340 U	400 U	340 U		340 U	340 U	340 U	240000000
Total Carcinogenic PAHs	0	0 0	0	340 0	340 U	340 U	340 U	340 U	310000000
	0	0	0	0	0	0	0	0	10000
Total PAHs									

Notes
-- Not established
ND Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Location			Fo	rmer Leaching Field wi	th Twenty Leaching Pi	ools			I
Sample ID	E8 B05 14-16	E8 B05 22-24	E8 B06 8-10	E8 B06 14-16	E8 B07 8-10	E8 B07 14-16	E08 B08 10-12	E08 B08 20-22	Comparison Value
Sample Depth (ft)	14-16	22-24	8-10	14-16	8-10	14-16	10-12	20-22	for Areas
Sampling Date	10/04/00	10/04/00	10/04/00	10/04/00	10/05/00	10/05/00	10/05/00	10/05/00	of Concern
Matrix Dilution Factor	S	S	\$	S	S	S	S	S	
Units	10 ug/kg	1.0 ug/kg	10 ug/kg	10 uo/ka	10	10	10	10	
Phenol	340 U	340 U	340 U		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2-Chlorophenol	340 U	340 U	340 U	340 U 340 U	340 U 340 U	370 U 370 U	350 U 350 U	340 U 340 U	4700000 390000
2-Nitrophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	39000
2,4-Dimethylphenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	1800000
2,4-Dichiorophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	230000
4-Chloro-3-methylphenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
2,4,6-Trichlorophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	58000
2,4-Dinitrophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	160000
4-Nitrophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
4,6-Dinitro-2-methylphenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
Pentachiorophenol	340 U 340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	3000
bis(2-Chloroethyl)ether 1,3-Dichlorobenzene	340 U 340 U	340 U 340 U	340 U 340 U	340 U 340 U	340 U	370 U	350 U	340 U	600
1,4-Dichlorobenzene	340 U	340 U	340 U	340 U	340 U	370 U 370 U	350 U	340 U	
1,2-Dichlorobenzene	340 U	340 U	340 U	340 U	340 U	370 U	350 U 350 U	340 U	27000
N-Nitroso-di-n-propylamine	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U 340 U	7000000 90
Hexachioroethane	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	46000
Nitrobenzene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	39000
Isophorone	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	670000
bis(2-Chioroethoxy)methane	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	1
1,2,4-Trichlorobenzene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	780000
Naphthalene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	3100000
Hexachlorobutadiene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	8000
Hexachlorocyclopentadiene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	550000
2-Chloronaphthalene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	-
Dimethylphthalate	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	-
Acenaphthylene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
2,6-Dinitrotoluene	340 U	340 U 340 U	340 U 340 U	340 U	340 U	370 U	350 U	340 U	900
Acenaphthene 2.4-Dinitrotoluene	340 U	340 U	340 U	340 U	340 U 340 U	370 U	350 U	340 U	4700000
Diethylohthalate	340 U	340 U	340 U	340 1	340 U	370 U 370 U	350 U 350 U	340 U 340 U	900 63000000
4-Chlorophenyl-phenylether	340 U	340 U	340 U	340 U	340 U	370 11	350 U	340 U	8300000
Fluorene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	3100000
N-Nitrosodiphenylamine	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	130000
4-Bromophenyl-phenylether	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
Hexachiorobenzene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	400
Phenanthrene	340 U	340 U	340 U	340 U	340 U	370 U	55 J	340 U	
Anthracene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	23000000
Di-n-butylphthalate	150 J	35 J	61 J	54 J	120 J	110 J	120 J	95 J	7800000
Fluoranthene	340 U	340 U	340 U	340 U	340 U	370 U	65 J	340 U	3100000
Pyrene	340 U	340 U	340 U	340 U	340 U	370 U	57 J	340 U	2300000
Butylbenzylphthalate 3,3'-Dichlorobenzidine	340 U 340 U	340 U 340 U	340 U 340 U	340 U	340 U	370 U	350 U	340 U	16000000
Benzo(a)anthracene	340 U	340 U	340 U	340 U 340 U	340 U 340 U	370 U	350 U	340 U	1000
Chrysene	340 U	340 U	340 U	340 U	340 U	370 U 370 U	350 U 350 U	340 U 340 U	900 88000
bis(2-Ethylhexyl)phthalate	35 1	340 U	39.1	46.1	44.1	370 U	350 U	340 U	46000
Di-n-octyl phthalate	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	16000000
Benzo(b)fluoranthene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	900
Benzo(k)fluoranthene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	9000
Benzo(a)pyrene	340 Ú	340 U	340 Ü	340 U	340 U	370 U	350 U	340 U	90
Indeno(1,2,3-od)pyrene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	900
Dibenzo(a,h)anthracene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 Ú	90
Benzo(g,h,i)perylene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	-
2,4,5-Trichlorophenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	7800000
2-Methylphenol	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	3900000
3+4-Methylphenois	670 U	690 U	680 U	680 U	690 U	750 U	690 U	680 U	ı –
Benzyl Alcohol 2 2 conducts (1 Chlomomores)	340 U 340 U	340 U	340 U 340 U	340 U	340 U	370 U	350 U	340 U	-
2,2'-oxybis(1-Chloropropane) 4-Chloroaniline	340 U	340 U	340 U	340 U 340 U	340 U 340 U	370 U	350 U	340 U	3,000
2-Methylnaphthalene	340 U	340 U	340 U	340 U	340 U	370 U 370 U	350 U 350 U	340 U 340 U	310000
4-Nitroaniline	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	=
2-Nitroaniline	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	=
3-Nitroaniline	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	_
Dibenzofuran	340 Ŭ	340 U	340 U	340 U	340 U	370 U	350 U	340 U	=
Azobenzene	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	
Benzoic acid	340 U	340 U	340 U	340 U	340 U	370 U	350 U	340 U	310000000
Total Carcinogenic PAHs	0	0	0	0	0	0	0	0	10000
Total PAHs	0	0	0	0	0	0	177	0	100000
Total Conc. SVOC (s)	185	35	100	100	164	110	297		500000

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

Notes
-- Not established

Sample Location		· · · · · · · · · · · · · · · · · · ·	Fr	rmer Leaching Field w	ith Twenty Leaching P	onis			
Sample ID	E08 B09 10-12	E08 B09 20-22	E08 B10 8-10	E08 B10 16-18	E08 B11 6-8	E08 B11 14-16	E08 B12 12-14	E08 B12 18-20	Comparison Value
Sample Depth (ft)	10-12	20-22	8-10	16-18	6-8	14-16	12-14	18-20	for Areas
Sampling Date	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	10/05/00	of Concern
Matrix	S	s	S	s	S	S	S	S	OI CONCEIN
Dilution Factor	1.0	10	1.0	10	10	10	1.0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	47000000
2-Chlorophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	390000
2-Nitrophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
2,4-Dimethylphenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	1600000
2,4-Dichlorophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	230000
4-Chloro-3-methylphenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
2,4,6-Trichlorophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	58000
2,4-Dinitrophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	160000
4-Nitrophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
4,6-Dinitro-2-methylphenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
Pentachlorophenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	3000
bis(2-Chloroethyl)ether	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	600
1,3-Dichlorobenzene 1,4-Dichlorobenzene	340 U 340 U	340 U 340 U	400 U	370 U	340 U	340 U	390 U	380 U	_
			400 U	370 U	340 U	340 U	390 U	380 U	27000
1,2-Dichlorobenzene	340 U 340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	7000000
N-Nitroso-di-n-propylamine Hexachloroethane	340 U	340 U 340 U	400 U	370 U	340 U	340 U	390 U	380 U	90
Nitrobenzene	340 U	340 U	400 U 400 U	370 U 370 U	340 U	340 U	390 U	380 U	46000
Isophorone	340 U	340 U	400 U	370 U	340 U 340 U	340 U	390 U	380 U	39000
bis(2-Chloroethoxy)methane	340 U	340 U	400 U	370 U	340 U 340 U	340 U 340 U	390 U	380 U	670000
1,2,4-Trichlorobenzene	340 U	340 U	400 U	370 U	340 U		390 U	380 U	
Naphthalene	340 U	340 U	400 U	370 U	340 U	340 U 340 U	390 U	380 U	780000
Hexachlorobutadiene	340 U	340 U	400 U	370 U	340 U	340 U	390 U 390 U	380 U	3100000
Hexachlorocyclopentadiene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U 380 U	8000
2-Chloronaphthalene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	550000
Dimethylphthalate	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
Acenaphthylene	340 U	340 U	400 U	370 U	340 11	340 U	390 U	380 U	
2,6-Dinitrotoluene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	900
Acenaphthene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	4700000
2,4-Dinitrotoluene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	900
Diethylphthalate	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	63000000
4-Chlorophenyl-phenylether	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
Fluorene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	3100000
N-Nitrosodiphenylamine	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	130000
4-Bromophenyi-phenylether	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
Hexachlorobenzene	340 U	340 U	400 U	370 U	340 U	340 U j	390 U	380 U	400
Phenanthrene	340 U	340 U	400 U	370 U	340 U	340 ∪	390 U	380 U	
Anthracene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	23000000
Di-n-butylphthalate	340 U	110 J	90 J	370 U	71 J	71 J	68 J	340 J	7800000
Fluoranthene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	3100000
Pyrene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	2300000
Butylbenzylphthalate 3,3'-Dichlorobenzidine	340 U 340 U	340 U 340 U	400 U 400 U	370 U	340 U	340 U	390 U	380 U	16000000
Benzo(a)anthracene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	1000
Chrysene	340 U	340 U		370 U	340 U	340 U	390 U	380 U	900
bis(2-Ethylhexyl)phthalate	340 U	340 U	400 U	370 U 370 U	340 U 340 U	340 U	390 U	380 U	88000
Di-n-octyl phthalate	340 U	340 U	400 U	370 U	340 U	36 J 340 U	390 U 390 U	380 U 380 U	46000 16000000
Benzo(b)fluoranthene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	900
Benzo(k)fluoranthene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	9000
Benzo(a)pyrene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	9000
Indeno(1,2,3-cd)pyrene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	900
Dibenzo(a,h)anthracene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	90
Benzo(g,h,i)perylene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	-
2,4,5-Trichlorophenot	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	7800000
2-Methylphenol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	3900000
3+4-Methylphenols	680 U	690 U	790 U	740 U	670 U	690 U	780 U	760 U	
Benzyl Alcohol	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
2,2'-oxybis(1-Chloropropane)	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
4-Chloroaniline	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	310000
2-Methylnaphthalene	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
4-Nitroaniline	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
2-Nitroaniline	340 U	340 U	400 U	370 U	340 Ú	340 U	390 U	380 U	
3-Nitroaniline	340 U	340 U	400 U	370 ∪	340 U	340 U	390 U	380 U	
	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	
Dibenzofuran		340 U İ	400 U	370 ป	340 ti	340 U	390 U	380 U	l
Azobenzene	340 U								
Azobenzene Benzoic acid	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	310000000
Azobenzene Benzolc acid Total Carcinogenic PAHs	340 U 0	340 U 0	400 U 0	370 U	340 U	340 U 0	390 U	380 U	10000
Azobenzene Benzoic acid	340 U	340 U	400 U	370 U	340 U	340 U	390 U	380 U	

Qualifiers
U The compound was not detected at the indicated concentration
J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes

- Not established

ND Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Depth (ft) Sampling Date Matrix Dilution Factor Units Phenol 2-Chlorophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Chlorophenol 2-Ch	DBB14 8-10 B-10 10/11/00 S 10/11/00 S 10 10/11/00 S 10 10 400 U	DOSS E08814-18-18 16-18 10/11/00 S 10 UQ/kg 44 J 350 U	Former Coal E09 B010-2 0-2 10/02/00 S 10 Up/kg 390 U	E09 B01 8-8 6-8 10/02/00 S 1 0 U9/kg 380 U	E10 B01 13-15 13-15 10/12/00 S 1 0 99/kg 340 U	Seven from E10 Bot 21-23 21-23 10/12/00 S 1 0 Ug/vg 350 U	E10 802 11-13 11-13 10/12/00 10/12/00 10/12/00 10/12/00 340 U	E10 B02 19-21 19-21 10/12/00 5 1 0 00/00 350 U	Comparison Value for Areas of Concern up/kg 4700000 390000 1800000 230000 58000 160000 30000 600 27000 7000000 90 48000 390000 6700000 7800000 31000000 31000000
Sampling Date Matrix Dilution Factor Units Phenol 2-Altrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 2-Nitrophenol 4-Chioro-3-methylphenol 2-A-Dintrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 4-Nitrophenol 6-Nitroph	8-10 10/11/00 S 1 0 10/11/00 400 U	16-18 10/11/00 S 10 0 90 44 J 350 U	0-2 10/02/00 S 1 0 Up/kg 390 U	8-8 10/02/00 S 1 0 19/kg 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	13-15 10/12/00 S 1 0 10/12/00 S 340 U	21-23 10 12/00 S 1 0 10 12/09 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	11-13 10/12/00 S 1 0 Ug/kg 340 U	19-21 10/12/00 S 1 0 10/12/00 S 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	for Areas of Concern up/kg 47000000 3900000 2300000 2300000 580000 1600000 30000 6000 270000 90 460000 390000 6700000 7800000 7800000 3100000
Samoling Date Alatrix Silution Factor Julis Phenol Chiorophenol Albrethyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthyphenol A-Direthorophenol A-Direthorophenol B-Bornophenol B-Direthorophenol B-Bornophe	10/11/00 S 1 0 U/fg 400 U	10/11/00 S S S 10 U	10/02/00 S S 10 Up/kg 390 U	10/02/00 S S 1 0 U y/kg 380 U	10/12/00 S S 1 0 Ug/kg 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	10/12/00 S S 1 0 Ug/kg 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	10/12/00 S 1 0 10/kg 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	10/12/00 S 1 0 Ug/ng 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	0f Concern 19/kg 17000000 390000
Dilution Factor Jints Phenol C-Chiorophenol C-Chiorophenol C-Chiorophenol C-Chioro-Temsthytohenol C-Chioro-Temsthytohenol C-Chioro-Temsthytohenol C-Chioro-Temsthytohenol C-Chioro-Temsthytohenol C-Chiorophenol C-Chiorophenol I-Nitroohenol C-Chiorophenol I-Nitroohenol C-Chiorophenol I-Nitroohenol I-Nitroohenol I-S-Chiorophenol I-Nitroohenol I-C-Chiorophenol I-Chiorophenol I-C-Chiorophenol I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-C-Chiorophenol I-D-Introtoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene I-Introdoluene	10 U/kg 400 U	10 ug/kg 44 J 350 U	10 Up/kg 390 U	1 0 U/kg 380 U	1 0 U9/Ng 340 U	S 1 0 Up/kg 350 U	S 10 10 10 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	S 10 U 350 U	100/kg 4700000 390000
Units Phenol 2-Chlorophenol 2-Nitrophenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthylphenol 2-A-Direthrophenol 3-A-Direthrophenol 3-Direthro-2-methylphenol 9-entachlorophenol 1-A-Direthorobenzene 1-A	400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	99/kg 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	4700000 390000 390000 230000 230000 58000 160000 3000 600 27000 90 46000 39000 670000 780000 3100000
Phenoi C-Chiroph	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	4700000 390000 390000 230000 230000 58000 160000 3000 600 27000 90 46000 39000 670000 780000 3100000
2-Chlorophenol 2-A-Directhylphenol 2, 4-Directhylphenol 2, 4-Directhylphenol 2, 4-Directhylphenol 2, 4-Directhylphenol 2, 4-Directhylphenol 2, 4, 6-Directhylphenol 3, 4-Directhylphenol 4-A-Directhylphenol 4-Directhylphenol 4-Directhylphenol 5, 6-Directhylphenol 5, 6-Directhylphenol 5, 6-Directhylphenol 5, 6-Directhylphenol 5, 6-Directhylphenol 6, 6-Directhylphenol 6, 6-Directhorophenol 6, 6-Di	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390000 1800000 230000
2-Nitrophenol 2,4-Diritorophenol 2,4-Diritorophenol 2,4-Diritorophenol 2,4-Diritorophenol 2,4-Diritorophenol 2,4-Diritorophenol 2,4-Diritorophenol 3,5-Diritoro-2-methylphenol 3,5-Diritoro-2-methylphenol 3,5-Diritoro-2-methylphenol 3,5-Diritorobenzene 1,2-Diritorobenzene 1,2-Diritorobenzene 1,2-Diritorobenzene 1,2-Diritorobenzene 1,2-Diritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,2-Tiritorobenzene 1,3-Tiritorobenzene 1-Bromophenyl-phenylether 1-Bromophenylether 1-Bromophenylether 1-Bromophenylether 1-Bromophenylether 1-Bromophenylether 1-Bromophenylether 1-Bro	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	
4-Dinterthylphenol -4-Dichlorophenol -4-Dichlorophenol -4-Dinterphenol -4-Dinterphenol -4-Dinterphenol -4-Dinterphenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Nitrophenol -1-Dichlorobenzene -1-Dichlorobenzene -1-Nitrophenol	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	230000
2.4-Dichlorophenol Chloro-3-methylphenol 3.4-S-Trichlorophenol 3.4-Dinthrophenol 3.4-Dinthrophenol 3.5-Dinthro-2-methylphenol senachlorophenol 3.2-Dichlorobenzene 3.4-Dichlorobenzene 3.2-Dichlorobenzene 3.2-Dichlorobenzene 3.2-Dichlorobenzene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 4.2-Dinthrobluene 5.3-Dichlorobenzene 7-yrene 8.3-Dichlorobenzene 7-yrene 8.3-Dichlorobenzeline 8-enzo(a)-gorthradate 8-enzo(a)-g	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	230000
I-Chloro-3-methylphenol 2, 4-Britchlorophenol 2, 4-Britchlorophenol 3, 4-Britchlorophenol 4, 4-Britchlorophenol 4, 4-Britchlorophenol 4, 4-Britchlorophenol 4-Britchlorophenol 5, 4-Britchlorophenol 5, 3-Britchlorobenzene 1, 3-Britchlorobenzene 1, 4-Britchlorobenzene 1, 4-Britchlorobenzene 1, 4-Britchlorobenzene 1, 4-Britchlorophenol 1, 4-Britchlorophenol 1, 4-Britchlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 1, 4-Trichlorophenol 1, 2, 4-Drittolophenol 1, 2, 4-Drittolophenol 1, 4-Dritt	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	58000 160000
1.4,6-Trichlorophenol 1.4-Onitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1Nitrophenol 1.2-Lichlorophenol 1.3-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Dichlorobenzene 1.4-Nitroso-di-n-propylamine 1.4-Nitroso-di-n-propylamine 1.4-Nitroso-di-n-propylamine 1.4-Nitroso-di-n-propylamine 1.4-Nitroso-di-n-propylamine 1.4-Nitroso-di-n-propylamine 1.4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.4-Xintrosobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,4-Trichlorobenzene 1.2,5-Dinitrotoluene 1.2,5-Dinitrotoluene 1.2,6-Dinitrotoluene 1.2,6-Dinitrotoluene 1.2,6-Dinitrotoluene 1.2-Dinitrotolu	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	160000
2.4-Dintrophenol Nitrophenol	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	160000
-Nitrophenol ,-O-Dnitro-2-methylphenol rentachiorophenol ist2-Chloroethyl)sther ,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene -Nitroso-di-n-propylamine texachioroethane ittrobenzene sophorone ist2-Chloroethoxylmethane ,2,4-Trichlorobenzene texachiorobuadiene texachiorobuadiene texachiorobuadiene texachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene exachiorobuadiene -(-Albinitrotouene -(-Albinitrotouene -(-Albinitrotouene -(-Bohirtotouen	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	3000 600 7000000 90 46000 39000 670000 780000 3100000
rentachlorophenol isit/2-Chioroethy/lether is/2-Chioroethy/lether is/2-Chioroethy/lether is/2-Dichlorobenzene 4-Dichlorobenzene 4-Dichlorobenzene 4-Nitroso-di-n-propylamine texachloroethoxy/methane istrobenzene sophorone iste/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methane is/2-Chioroethoxy/methalene is/2-Chioroethoxy/methalene is/2-Chioroethoxy/methalene is-cenaphthylene is-Chiorobenthylene is-Dinitrotoluene coraphthene is-dinitrotoluene coraphthene is-Dinitrotoluene coraphthylene is-Dinitrotoluene is-Dinitrotoluene is-Chiorobenyi-phenylether is-Dinitrotoluene is-Dinitrotoluene is-Dinitrotoluene is-Dinitrotoluene is-Dinitrotoluene is-Chiorobenyi-phenylether is-Dinitrotoluene is-Dinitrotoluen	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	900
isia(2-Chloroethyl)ether [.3-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobenzene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobutadiene [.4-Dichlorobenzene	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	900
3Dichlorobenzene 2Dichlorobenzene 2Dichlorobenzene 2Dichlorobenzene 3Dichlorobenzene 4-Nikroso-di-n-propylamine feusachiorobenzene sophorone sic(2-Chloroethoxy)methane sic(2-Chloroethoxy)methane siz-chlorobenzene sighthalene feusachiorobuszelene feusachiorobuszelene feusachiorobuszelene feusachiorobuszelene somethylothalate conaphthylene 3Dinitrotokuene conaphthylene 3Dinitrotokuene conaphthylene 5.4-Dinitrotokuene conaphthylene 1.4-Dinitrotokuene 1.4	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	27000 7000000 90 46000 39000 670000 — 780000 3100000
.4-Dichlorobenzene .2-Dichlorobenzene !-Nitroso-di-n-propylamine lexachiorosthane ittroberzene lophorone is(2-Chlorosthoxy)methane .2,4-Trichlorobenzene lagoritaliene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobuadiene lexachiorobene lexitylobuadiene lexitylobuadiene lexachiorobenyi-phenyisther lexachiorobenyi-phenyisther lexachiorobenzene henardirene lexachiorobenzene henardirene lexachiorobenzishine lexacoliphenyi-phinalate lexacoliphorobenzishine lexacoliphorobenzishine lexacoliphorobenzishine lexacoliphuoranthene lexacoliphuoranthene lexacoliphuoranthene lexacoliphyrene lobenzo(a) lipyrene lobenzo(a) lipyrene lobenzo(a) lipyrene	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	7000000 90 46000 39000 670000 — 780000 3100000
2Dichlorobenzene	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	7000000 90 46000 39000 670000 — 780000 3100000
A-Nitroso-di-n-propylamine lexachitorothane iltrobenzene loophorone list-2-Chirorethoxy)methane j.2,4-Trichlorothoxy)methane j.2,4-Trichlorothoxy)methane lexachitorobenzene lexachitorobenzene lexachitorobenzene lexachitorobenzene lexachitorobenzene lexachitorobenzene lexachitorobenzene lexachitorobene lexachitorobene lexachitorobene lex-polititorobene l	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	90 46000 39000 670000 780000 3100000
lexactionoethane likrobenzene sophorone isia(2-Chloroethoxylmethane isia(2-Chloroethoxylmethane) isia(2-Chloroethoxylmethane) isia(2-Chloroethoxylmethane lexachlorobuadiene lexachlorocyclopertadiene exachlorocyclopertadiene exachloroethalene exac	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 Ú 380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U	46000 39000 670000 — 780000 3100000
ittrobenzene soponome is(2-Chloroethoxy)methane ;2,4-Trichloroethoxy)methane ;2,4-Trichloroethoxy)methane exachtorobutacliene fexachtorobutacliene fexachtorobutacliene (-Chloronaphthalene imethylorithalate conaphthylene ;8-Dinitrotobuene coeraphthene ;4-Dinitrotobuene coeraphthene ;4-Dinitrotobuene icenaphthylene jethylorithalate -Chlorophenyl-phenylether fuorene +Hittrosodiphenyl-phenylether fuorene +Hittrosodiphenyl-phenylether fexachtorobenzene henarthrene prinne prinne ich-butyphthalate fuoranthene prinne lettz(-Ethylhoxyl)phthalate letzo(a)phthalate -Propolitorobenziche letzo(a)phthalate -Propolitorobenziche letzo(bluoranthene	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U 350 U	39000 670000 780000 3100000
sophoroe sic(2-Chloroethoxy)methane 1,2,4-Trichlorobenzene (aprithalene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobutadiene (exacchlorobenzene (exacchlor	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U 350 U	670000 780000 3100000
bis (2-Chloroethoxy)methane 1,2,4-Trichlorobenzene Naprithalene Hexachlorocyclopentadiene Hexachlorocyclopentadiene 2-Chloronaphthelene Dimethylychthalate Acenaphthylene 2,8-Dinitrotokuene Acenaphthelene 2,4-Dinitrotokuene Acenaphthelene 2,4-Dinitrotokuene Diethylphthalate 4-Chlorophenyl-phenylether Fluorare N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Phenarthrene Phenarthrene Phenarthrene Burybenzylphthalate 1,3-Dichlorobenziche Benzolaharthacene Dhrysene bis(2-Ethylhexyl)phthalate Dhr-oxyl phthalate Benzolaharthacene Dhr-oxyl phthalate Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene Benzolaharthacene	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U	340 U 340 U 340 U 340 U	350 U 350 U 350 U 350 U	780000 3100000
1.2.4-Trichlorobenzene Naprihalene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1exachiorobutadiene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.4-Dinitrotobuene 1.2.3-Dichlorobenzene 1.3.4-Dichlorobenzene 1.3.4-Dichlorobenzene 1.3.4-Dichlorobenzeline 1.3.4	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U 340 U	350 U 350 U 350 U	340 U 340 U 340 U	350 U 350 U 350 U	3100000
Vapithalene lexachiorobutadiene lexachiorobutadiene lexachiorocycloperitadiene lexachiorocycloperitadiene lexachiorocycloperitadiene lexachiorocycloperitadiene lexachiorobutadiene lexachiorobutadiene lexachiorobutene lexachiorobutene lexityloritadie lexchiorophenyl-phenylether lexochiorobutadie lexa	400 Ú 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U 380 U 380 U	340 U 340 U 340 U	350 U 350 U	340 U 340 U	350 U 350 U	3100000
- lexachiorocyclopertadiene - lechioronaphthelene - lemethylothialiste - lechioronaphthelene - lemethylothialiste - lechioronaphthylene - lechioronaphthylene - lechioronaphthene - lechioronaphthene - lechioronaphthene - lechioronaphthene - lechioronaphthene - lechioronaphthene - less - lechioronaphthene - less - lechioronaphthene - less - lechioronaphthene - less - lechioronaphthene - lendardhene - lechioronaphthene - lech	400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U 390 U	380 U 380 U 380 U	340 U	350 U			****
	400 U 400 U 400 U 400 U	350 U 350 U 350 U 350 U	390 U 390 U 390 U 390 U	380 U 380 U		350 ป			8000
Directry/chthalate Acenaphthylene 2,6-Dinitrotoluene Conaphthylene 2,6-Dinitrotoluene Conaphthylene 3,6-Dinitrotoluene Distrylphthalate I-Chlorophenyl-phenylether Fluorene I-Romophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-phenylether I-Bromophenyl-p	400 U 400 U 400 U	350 U 350 U 350 U	390 U 390 U 390 U	380 U	340 ()		340 U	350 U	550000
conaphthylene (,6-Dinitrotoluene conaphthylene (,4-Dinitrotoluene blethylothialate -Chlorophenyl-phenylether fluorene -Hittosodiphenylamine -Bromophenyl-phenylether fluorene -Bromophenyl-phenylether fluorene -Bromophenyl-phenylether fluorene -Bromophenyl-phenylether fluorene -Bromophenyl-phenylether fluorene -Bromophenyl-phenylether fluorenthrene -Phenanthrene -Phenanthrene -Buytibenzylothialate -Brozo(a)anthreacene -Invisene isic(2-Ethylhexyl)phthalate -Brozo(b)fluoranthene -Benzo(b)fluoranthene -Benzo(b)fluoranthene -Benzo(b)oyrene -Indicapene -Indic	400 U 400 U	350 U 350 U	390 U 390 U	***************************************		350 U	340 U	350 U	-
(.8-Dinitrotoluene (.cenaphthene (.4-Dinitrotoluene	400 U	350 ∪	390 U		340 U	350 U	340 U	350 U	
conaphthene (.4-Ointrotoiusne)sethylothtelate -Chlorophenyl-phenylether favorene -Hitrosodiohenylamine -Bromophenyl-phenylether fesschlorobenzee -Phenaritrene -Theosphenyl-phenylether fesschlorobenzee -Phenaritrene -Theosphenylethtelate -Baoranthene -Pyrene Butylbanzylothtelate -Berzo(a)anthene -Physene -Butylbanzylothtelate -Physene -Berzo(a)anthene -Physene				380 U	340 U	350 U	340 U	350 U	
.4-Dintrotokuene DistriptiohistateChlorophenyi-phenyisther kuoreneHittosodiphenyismineBromophenyi-phenyisther fesachiorobenzeneHenarthreneInh-butyphthalateLuoranthene	400 U			380 U 380 U	340 U 340 U	350 U	340 U	350 U	900
Distriylphthalate	400 U	350 U	390 U	380 U	340 U	350 U 350 U	340 U 340 U	350 U 350 U	4700000
	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	900 63000000
Fluorene -Nitrosodiphenylamine -Bromophenyl-phenylether -Exactionobenzene -Phenarithrene -Phenarithrene -Phenarithrene -Phenarithrene -Phenarithrene -Phrene -Phenarithrene -Pyrene -Blutybenzylphthalate -Blutybenzylphthalate -Bruzo(a)anthracene -Physene -Blutybenzylphthalate -Blutybenzylphthalate -Physene -Blutybenzylphthalate -Bruzo(b)fluoranthene -Benzo(a)pyrene -Benzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene -Bluenzo(a)pyrene	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	8300000
V-Nitrosodiohenylamine I-Bromophenyl-phenylether Iexachiorobenzene Phenanthrene Unthracene Di-n-butylphthalate Raucrathene Pyrene Butylbenzylphthalate Batzo(Rahmtracene Di-n-butylphthalate Butylbenzylphthalate Batzo(Rahmtracene Di-n-cotyl phthalate Benzo(Rahmtracene) Di-n-cotyl phthalate Benzo(Rahmtracene) Benzo(Rahmtracene) Benzo(Rahmtracene) Benzo(Rahmtracene) Benzo(Rahmtracene) Benzo(Rahmtracene)	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	3100000
fexachtorobenzene Phenaritrene withtracene Hin-butyphthalate favoranthene Pyrane Butybenzylphthalate Butybenzylphthalate Benzo(a)anthracene Chrysene Benzo(a)anthracene Chrysene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	130000
hienanthrene unthracene N-n-busyphthalate Nacranthene Nyrane lutybienzylphthalate si-1-Dictionobenzidine lenzo(a)anthracene hrysene (42-Ethythracene N-n-octyl phthalate lenzo(b)lhucranthene lenzo(b)lyucranthene lenzo(b)lyucranthene lenzo(b)lyucranthene lenzo(b)lyucranthene lenzo(b)lyucranthene lenzo(b)lyucranthene	400 U	350 ∪	390 U	380 ∪	340 Ú	350 U	340 U	350 U	
Anthracene Ohr-butylphthalate Fauoranthene Pyrene Slay/benzylphthalate 3,3-Olchborobenzishne Benzo(a)senthracene Chrysene Dinysene bis(2-Ethylhexyl)phthalate Din-octly phthalate Benzo(b)fluoranthene Benzo(a)pyrene Dienzo(a)pyrene Dibenzo(a,1)parthracene	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	400
H-n-butylphthalate	400 U	350 U	230 J	160 J	340 U	350 U	340 U	350 U	
Faucranthene Pryrene Surybenzylphthalate 3,3-Dichlorobenzisine Benzo(a)arthracene Chrysene bic(2-Ethythexyl)phthalate 3-n-octyl phthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indication (1,2,3-cd)pyrene Indication (1,3-cd)pyrene Indication (1,3-cd)pyrene Indication	400 U	350 U	47 J	42 J	340 U	350 U	340 U	350 U	23000000
hyrene Suylobenzylphthalate Suylobenzylphthalate Senzo(a)anthracene Chrysene Mc(2-Ethylhexyl)phthalate M-n-oxly phthalate Senzo(b)fluoranthene Senzo(b)fluoranthene Senzo(a)pyrene ndeno(1,2,3-oxl)pyrene Motenzo(a, h)anthracene	71 J	65 J	47 J	79 J	48 J	72 J	100 J	88 J	7800000
Sulybenzylothalate J., "Dichlorobenzidine Senzo(a)arithracene Chrysene Julysene	400 U 400 U	350 U 350 U	360 J	230 J	340 U	350 U	340 U	350 U	3100000
3.3-Obthorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate D-h-octly liphthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene ndeno(1,2,3-od)pyrene Dibenzo(a, h)anthracene	400 U	350 U	210 J 390 U	140 J 380 U	340 U 340 U	350 U 350 U	340 U	350 U	2300000
Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate bi-n-oxly phthalate Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene ndeno(1,2,3-oxl)pyrene blenzo(a,n)anthracene	400 U	350 U	390 U	380 U	340 U	350 U		350 U	16000000
Chrysene bis (2-Ethylhexyf)phthalate bis (2-Ethylhexyf)phthalate Benzo(b)fluoranthene Benzo(a)pyrene Benzo(a)pyrene ndenot (1-2-3-od)pyrene bloezo(a) phrathracene	400 U	350 U	130 J	83 1	340 U	350 U	340 U 340 U	350 U 350 U	1000
ole (2-Ethylhexyl) phthalate Di-n-oxyl phthalate Benzo (N) from anthene Benzo (a) pyrene Indeno (1,2,3-cd) pyrene Dibenzo (a, n) anthracene	400 U	350 U	160 J	110 J	340 U	350 U	340 U	350 U	88000
Di-n-odyl phtheiste Benzo(b)fluoranthene Benzo(a)fluoranthene Benzo(a)pyrene Indeno(1,2,3-od)pyrene Dibenzo(a, n)enthracene	400 U	56 J	390 U	380 U	340 U	350 U	340 U	84 J	48000
Senzo(k)fluoranthene Senzo(a)pyrene ndeno(1,2,3-od)pyrene Dibenzo(a,h)anthracene	400 U	350 ∪	390 U	380 U	340 U	350 U	340 U	350 Ŭ	18000000
lenzo(a)pyrene ndeno(1,2,3-cd)pyrene libenzo(a,h)anthracene	400 U	350 ∪	110 J	83 J	340 U	350 U	340 U	350 U	900
ndeno(1,2,3-cd)pyrene Dibenzo(a,h)enthracene	400 U	350 ∪	140 J	110 J	340 U	350 U	340 U	350 U	9000
eneocritical distribution (d.s.) oznadk	400 U	350 ∪ [130 J	98 J	340 U	350 U	340 U	350 U	90
	400 U	350 U	55 J	45 J	340 U	350 U	340 U	350 U	900
	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	90
lenzo(g,h,i)perylene	400 U	350 U	72 J	62 J	340 U	350 U	340 U	350 U	-
2,4,5-Trichiorophenol	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	7800000
-Methylphenol	400 U 800 U	350 U	390 U 780 U	380 U	340 U	350 U	340 U	350 U	3900000
+4-Methylphenois lenzyl Alcohol	avv U	350 U	780 U 390 U	770 U 380 U	690 U 340 U	710 U	690 U	690 U	-
2.2'-oxybis(1-Chioropropane)	400.11	350 U	390 U	380 U	340 U 340 U	350 U 350 U	340 U 340 U	350 U 350 U	-
-Chloroaniline	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U 350 U	310000
-Methylnaphthalene	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	3,000
-Nitroaniline	400 U 400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	=
-Nitroaniline	400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	
-Nitroaniline	400 U 400 U 400 U		390 U	380 U	340 U	350 U	340 U	350 U	
Dibenzofuran	400 U 400 U 400 U 400 U	350 ປ 📗	390 U	380 U	340 U	350 U	340 U	350 U	_
Azobenzene	400 Ü 400 U 400 U 400 U 400 U 400 U 400 U	350 U	390 U	380 U	340 U	350 U	340 U	350 U	
Benzoic acid	400 Ü 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U	390 ∪	380 U	340 U	350 U	340 U	350 U	310000000
Total Cardinogenic PAHs	400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U 350 U		537	0	0	0	Ö	10000
otal PAHs otal Conc. SVOC (s)	400 Ü 400 U 400 U 400 U 400 U 400 U 400 U 400 U	350 U 350 U	725 1414	1171	0		0	172	100000

Qualifier

U The compound was not detected at the indicated concentration.

J. Date indicates the presence of a commound that meets the identification criterie. The result is less than the quantitation limit but creater than zero

Sample Location			·	Course Face	L onehon saata				
Sample Location	E10 B03 12-14	E10 B03 20-22	E10B04 11-13	E10804 19-21	Leaching pools E10 B05 10-12	E40 D0E 40 40			
Sample Depth (ft)	12-14	20-22	11-13	19-21	10-12	E10 B05 16-18 16-18	E10 B06 10-12	E10 B06 16-18	Comparison Value
Sampling Date	10/02/00	10/02/00	10/11/00	10/11/00	10/02/00	10/02/00	10-12 10/02/00	16-18 10/02/00	for Areas of Concern
Matrix	s	s	S	S	10/02/00 S	S	10/02/00	10/02/00 S	or Concern
Dilution Factor	10	10	10	10	1.0	1.0	1.0	1,0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ua/ka
Phenol	350 ∪	350 U	380 U	350 U	780 U	350 Ü	340 U	390 U	47000000
2-Chlorophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	390000
2-Nitrophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 ∪	
2,4-Dimethylphenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	1600000
2,4-Dichlorophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	230000
4-Chloro-3-methylphenol 2,4,6-Trichlorophenol	350 U 350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
2.4-Dinitrophenal	350 U	350 U 350 U	380 U 380 U	350 U 350 U	780 U 780 U	350 U	340 U	390 U	58000
4-Nitrophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U 340 U	390 U	160000
4,6-Dinitro-2-methylphenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U 390 U	-
Pentachlorophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	3000
bis(2-Chloroethyl)ether	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	600
1,3-Dichlorobenzene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
1,4-Dichlorobenzene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	27000
1,2-Dichlorobenzene	350 U	350 U	380 U	350 U	780 U	350 Ų	340 U	390 U	7000000
N-Nitroso-di-n-propylamine	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	90
Hexachloroethane	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	46000
Nitrobenzene Isophorone	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	39000
Isophorone bis(2-Chloroethoxy)methane	350 U 350 U	350 U 350 U	380 U 380 U	350 U	780 U	350 U	340 U	390 U	670000
1,2,4-Trichlorobenzene	350 U	350 U	380 U	350 U 350 U	780 U	350 U	340 U	390 U	
Naphthalene	350 U	350 U	380 U	350 U 350 U	780 U 1	350 U 350 U	340 U	390 U	780000
Hexachlorobutadiene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U 390 U	3100000
Hexachlorocyclopentadiene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	8000 550000
2-Chloronaphthalene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	35000
Dimethylphthalate	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
Acenaphthylene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
2,6-Dinitrotoluene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	900
Acenaphthene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	4700000
2,4-Dinitrotoluene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	900
Diethylphthalate	350 U 350 U	350 U	380 U	350 U	780 U	48 J	340 U	390 ∪	63000000
4-Chlorophenyl-phenylether Fluorene	350 U	350 U 350 U	380 U 380 U	350 U	780 U	350 U	340 U	390 U	
N-Nitrosodiphenylamine	350 U	350 U	380 U	350 U 350 U	780 U 780 U	350 U	340 U	390 U	3100000
4-Bromophenyl-phenylether	350 U	350 U	380 U	350 U	780 U	350 U 350 U	340 U 340 U	390 U	130000
Hexachlorobenzene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U 390 U	400
Phenanthrene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	400
Anthracene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	23000000
Di-n-butylphthalate	73 J	37 j	48 J	47 J	380 J	130 J	340 U	85 J	7800000
Fluoranthene	350 U	350 U	380 ∪	350 U	100 J	350 U	340 U	390 U	3100000
Pyrene	350 U	350 ↓	380 U	350 U	780 U	350 U	340 Ū	390 U	2300000
Butylbenzylphthalate	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	16000000
3,3'-Dichlorobenzidine	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	1000
Benzo(a)anthracene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	900
Chrysene bis(2-Ethylhexyl)phthalate	350 U 350 U	350 U 350 U	380 U	350 U	780 U	350 U	340 U	390 U	88000
Di-n-octyl phthalate	350 U	350 U	380 U 380 U	350 U 350 U	780 U	350 U	340 U	390 U	46000
Benzo(b)fluoranthene	350 U	350 U	380 U	350 U 350 U	780 U 780 U	350 U	340 U	390 U	16000000
Benzo(k)fluoranthene	350 U	350 U	380 U	350 U	780 U	350 U 350 U	340 U 340 U	390 U 390 U	900 9000
Benzo(a)pyrene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	9000
Indeno(1,2,3-cd)pyrene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	900
Dibenzo(a,h)anthracene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	90
Benzo(g,h,i)perylene	350 U	350 Ų	380 U	350 U	780 U	350 U	340 U	390 U	
2,4,5-Trichlorophenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	7800000
2-Methylphenol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	3900000
3+4-Methylphenois	890 U	690 U	770 U	690 U	1600 U	700 U	670 U	780 U	1
Benzyl Alcohol	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
2,2'-oxybis(1-Chloropropane)	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	
4-Chloroaniline	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	310000
2-Methylnaphthalene	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	-
4-Nitroaniline	350 U	350 U	380 U	350 U	780 U	350 U	340 U	390 U	-
2-Nitroaniline 3-Nitroaniline	350 U 350 U	350 U 350 U	380 U 380 U	350 U 350 U	780 U	350 U	340 U	390 U	-
Dibenzofuran	350 U	350 U	380 U	350 U	780 U 780 U	350 U 350 U	340 U	390 U	-
Azobenzene	350 U	350 U	380 U	350 U	780 U	350 U	340 U 340 U	390 U	_
Benzoic acid	350 U	350 U	380 U	350	780 U	350 U	340 U	390 U	310000000
Total Carcinogenic PAHs	0	0	0	0	7000	0	0	380 0	10000
	ö	0	ō	0		Ö			
Total PAHs Total Conc SVOC (s)	73	37	48	47	100		1 0	0	100000

Qualifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes
-- Not established
ND: Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Dis 1998 8-10								¥		
Sample Death (1) 6-10 16-16 10	Sample Location	Seven Former	Leaching Pools				Former Drum			
Sample 101100										
March S	Sampling Date									
United U	Matrix			s						OI COINCEILI
Present										
2-Cherocherol 340 U 340 U 310 U 350	· · · · · ·									
2.4-Chemisphemen	2-Nitrophenol	340 U	340 U	370 U						390000
4-Calend-Ambrehamed 340 U 340 U 350						400 U	350 U			1600000
2.4.5-Trentprehend										230000
2.4-Christophene										
## AMERICAN PRINCIPATION 350 U 350	2,4-Dinitrophenol									
Pertachinophenol 340 U 340 U 370 U 350 U 3					350 ∪	400 U				
Selectors Sele										
1.5-Chinophensee							****	*****		
1-6-Discholopheramen								****	900 0	
1.2 Definitions			340 U	370 U						
## Affection-Christopy (marker) ## Affection-Christopy (marker)						400 U	350 U	380 U	380 U	
Nitrobursame							350 ∪			
Isopherome										
Select-Chronosthosymetheme 340 U 340 U 370 U 350 U 400 U 350 U 380 U	Isophorone	340 U								
Naphthalasis Supplement S	bis(2-Chloroethoxy)methane			370 U	350 U					
Hearchtonochadesines									*****	
HeaceThroncyclopentalelares										
2-Cheronaphtheime 340 U 340 U 370 U 350 U 400 U 350 U 360 U		340 U								
Dimethylephrinalists	2-Chloronaphthalene	340 U	340 U	370 U						33000
2.4-Deinscholuses 340 U 340 U 370 U 350 U 400 U 350 U 360 U	Dimethylphthalate					400 U	350 U			
Acanaphthene 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 380 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
2.4-Dristrolouluma 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 380 U 30000000 4-Charopharyl-pharylether 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 30000000 4-Charopharyl-pharylether 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3000000 4-Charopharyl-pharylether 340 U 340 U 370 U 350 U 400 U 350 U 380										
Distriptivishabate	2,4-Dinitrotoluene							,,,,,		
Fluorente 340 U 340 U 370 U 350 U 330 U	Diethylphthalate				350 U					
N-Nitrosobhenytamine 340 U 340 U 370 U 350 U 400 U 350 U 380										
4-Bromophery-interlystater 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 390 U 400 U 350 U 380 U 390 U 400 U 350 U 380 U 390 U 400 U 350 U 7000 2000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 2000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 2000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 U 200 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 0 2000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 0 2000 31000000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 0 200 0 31000000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 0 2000 3100000 3200000 April Ambracharone 340 U 370 U 350 U 400 U 350 U 700 0 100 D 300 U 300										
Hearschirocherisene 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 300 U 400 370 U 350 U 400 U 350 U 2200 400 23000000									****	130000
Phenanthrane		340 Ú	340 U	370 U						400
Den-buty/pithhalate								7200		
Fluoranthene										
Pyreme										
Bulyberry(n)thislate	Pyrene	48 J	340 U							
Benzo(a)anthracene								1100		
Chryseine 344 U 340 U 340 U 370 U 350 U 400 U 350 U 1100 150 J 46000 Denzo(h)threatate 340 U 340 U 370 U 350 U 400 U 350 U 1100 150 J 46000 Denzo(h)threatate 340 U 340 U 370 U 350 U 400 U 350 U 7860 1786 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 7860 1786 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 7860 1786 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 7860 1786 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 5800 1780 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 5800 1780 9000 Benzo(h)threatathree 340 U 340 U 370 U 350 U 400 U 350 U 5800 1780 900 Penzo(h,h)terpreter 340 U 340 U 370 U 350 U 400 U 350 U 5800 1780 90 Penzo(h,h)terpreter 340 U 340 U 370 U 350 U 400 U 350 U 5800 1780 90 Penzo(h,h)terpreter 340 U 340 U 370 U 350 U 400 U 350 U 400 U 350 U 420 1780 90 Penzo(h,h)terpreter 340 U 340 U 370 U 350 U 400 U 350										
bla(2-Ethytheuxylophthalate										
Den-cotyl phthalate 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 10000000000000000000000000000000000	bis(2-Ethythexyl)phthalate									
Benzo(it)fluoranthene	Di-n-octyl phthalate	340 U	340 U	370 Ú	350 U	400 Ŭ	350 U	380 U	380 U	16000000
Benzo(a)pyrene 37 J 340 U 370 U 350 U 400 U 350 U 800 340 J 900 Indeno(1,2,3-ot)pyrene 340 U 340 U 370 U 350 U 400 U 350 U 800 340 J 900 Benzo(a,h)anthracene 340 U 340 U 370 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 400 U 350 U 360										
Indexnot 12.3-cd) pyrene										
Diberzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene									
Benzo(gh,f)perylene	Dibenzo(a,h)anthracene									
2.4.5-frichtorophanol 340 U 340 U 370 U 350 U 350 U 380	Benzo(g,h,i)perylene					400 U	350 U			
34-Methylohenols 860 U 860 U 740 U 760 U 770 U 770 U 770 U 770 U 760 U 2.2-oxybis(1-Chloropropane) 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 4-Chloropropane) 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 4-Chloropropane) 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 4-Methylohenols 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 4-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 4-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 5-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 5-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 5-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 7-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 8-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 8-Nitropanitine 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U									380 U	
Benzyl Alcohol 340 U 340 U 370 U 350 U 350 U 360										3900000
2.2-onyble(1-Chloropropane) 340 U 340 U 370 U 350 U 400 U 350 U 38	Benzyl Alcohol		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							_
4-Chloroaniline 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 310000 2-Methylnaphthalene 340 U 340 U 370 U 350 U 400 U 350 U 380 U	2,2'-oxybis(1-Chloropropane)	340 Ú	340 U	370 U	350 U					
4-Nitroaniline 340 U 340 U 370 U 350 U 350 U 350 U 360 U 360 U 360 U 370 U 350 U 350 U 360	4-Chioroaniline						350 U	380 U		310000
2-Nitroaniline 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 3- 3-Nitroaniline 340 U 340 U 370 U 350 U 400 U 350 U 380										
3-Nitronalitire 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U Dibenzofuran 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U Azoberizane 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U Benzote said 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U Benzote said 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 300 U Total Carcinogenic PAHs 37 0 0 0 0 0 0 30420 6450 10000 Total PAHs 122 0 0 0 0 0 0 81861 14155 100000										
Dibenzofuran 340 U 340 U 370 U 350 U 400 U 350 U 790 150 J Azobenzene 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 380 U 380 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 370 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 370										
Azobersene 340 U 340 U 370 U 350 U 400 U 350 U 380 U 380 U 380 U 380 U 370 U 350 U 3	Dibenzofuran	340 Ū	340 U	370 U	350 U	400 U				
Total Carcinogenic PAHs 37 0 0 0 0 0 30426 6450 10000 Total PAHs 122 0 0 0 0 0 61651 14155 100000	Azobenzene Renzola esid						350 U	380 ∪	380 U	
Total PAHs 122 0 0 0 0 0 81881 14185 100000										
Tele (Cons. 6) (CO.) (CO.	Total PAHs									
	Total Conc. SVOC (s)			58	52	50	76	63909	14805	500000

Ottailifiers

U: The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Secret Dot Compare C	Sample Location			 Former Drun	Storage Area				
Sampling Date 1227/00								E13B02E8 2-4	Comparison Value
Marie S									for Areas
Dilation Feature 10									of Concern
United U			-						
Prevent									1
2-Cheinpringer 380 U 370 U 380 U 350 U	01110								ug/kg
2-Neropelment 380 U 370 U 350 U									47000000
2.4-Chiertophened									390000
2.4 Co-Chrishophenol									
## C-Chen-2-minthychenel 380 U 370 U 350 U 320 U 350 U 420 U 350 U 50 U 420 U 350 U 50 U 420 U 350 U 50 U 420 U 350 U 50 U 420 U 350 U				0,00					1600000
2.4.6-Trinforphered									230000
2.4-Chistophenol 300 U 370 U 350 U 3							,		
									58000
4.6 Drinto-Z-methylehenol									160000
Pertachionophemori									
Sign C-Prince-physiphen									
13-Delinobracere									3000
14-Dichenbertzene									600
1.3.Che/incohestrates									
Nethtorach-propylamine									27000
recarbinophilame									7000000
Second color Seco									90
Solitorione 380 U 370 U 350 U									46000
Bidg-Christoneshroxymethane 380 U 370 U 350 U 340 U 350 U									39000
1.2.4-Trichlorobenzane									670000
Nachthallene									
Hearschirotycladeline									780000
Hearthforecyclopentadene									3100000
2-Chornaphthalene									8000
Dimethypithilaties									550000
Acenaphthylene									
2.8-Dintriolulene									
Accessabilithene 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 470 U 350 U 3								*****	
2.4-Dietriotolusee									900
Diethychrishalate 380 U 110 J 350 U 340 U 350 U									4700000
## 4-Chiropheny-phenylether 380 U 370 U 350 U 340 U 350 U									900
Filipotene 380 U 370 U 350 U 340 U 350 U 350 U 320 U 350									63000000
N-Mitrosodiphery/farme 380 U 370 U 350 U 340 U 350 U 350 U 350 U 320 U 330 U 130 Hazachforberzene 380 U 370 U 350 U									
## depropriety-interylether 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U									3100000
Hexachforobenizane									130000
Pleanathrene									
Anthracene									400
Display(phthalate 380 U 370 U 350 U 340 U 350 U									
Fluoranthene 380 U 370 U 350 U 340 U 350 U									23000000
Pyrene 380 U 370 U 350 U 360 U 350 U									7800000
Bulybenzyloththalate 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350									3100000
33-Dichforbenzidine 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 10 Dichforbenzidine 380 U 370 U 350 U 350 U 350 U 420 U 35									2300000
Benzu(a)printenee	outywertzytpritrialate								16000000
Chrysene 380 U 370 U 350 U 340 U 350									1000
bisic/2-Ethylhexylphthalate 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 420 U 350 U 420 U 350 U 420 U 350 U 420 U 350 U 430 U 350 U 430 U 350 U 430 U 350 U 430 U 350 U 430 U 350 U 430 U 350 U 420 U 350 U									900
Di-n-octyl phthalate									88000
Benzo (h)fluoranthene									46000
Benzo(k)fluoranthene 380 U 370 U 350 U 340 U 350 U									16000000
Benzo(a)pyrene 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U									900
Indenot(1,2,3-cd)pyrene									9000
Dibenzo(a,h)perylene									90
Benzo(g,h,i)perylene 380 U 370 U 350 U 340 U 350 U									900
2.4.5-Trichlorophenol 380 U 370 U 35									90
2-Methylphenol 380 U 370 U 350									
344-Methylphenols 770 U 730 U 890 U 890 U 690 U 700 U 830 U 690 U 690 U 700 U 830 U 690 U 690 U 700 U 830 U 350 U									7800000
Benzyl Akonhol 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 350 U 420 U 350									3900000
2,2-avybls(1-Chloropropane) 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 32									
4-Chloroaniline 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 360 U 370 U 35									
2-Methythaphthalene 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 350 U 420 U 350 U 350 U 420 U 350									l .
4-Nitroaniline 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 2-Nitroaniline 380 U 370 U 350 U									310000
2-Nitroaniline 380 U 370 U 350 U 350 U 350 U 420 U 350									
3-Nitroanliine 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350									
Dibenzofuran 380 U 370 U 350 U 340 U 350 U									
Azobenzene 380 Ú 370 Ú 350 Ú 340 Ú 350 Ú 350 Ú 420 Ú 350 Ú Benzolc acid 380 Ú 370 Ú 350 Ú 340 Ú 350 Ú 350 Ú 420 Ú 350 Ú		1 000 0							
Benzolic acid 380 U 370 U 350 U 340 U 350 U 350 U 420 U 350 U 310 U Total Carcinogenic PAHs ND ND ND ND ND ND ND ND ND ND 1									-
Total Carcinogenic PAHs ND ND ND ND ND ND ND 1									
									310000000
IQBIFANS I NU I NU I NU I NO I NO I NO I NO I NO									10000
						ND ND	ND ND	ND ND	100000 500000

Qualifiers

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes

— Not established
ND. Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMMOLATILE ORGANIC COMPOUNDS

Sample Location	γ			Paris David					
Sample ID	E13B02NE10 0-2	E13B02NE10 2-4	E13B02W12 0-2	E13802W12 2-4	n Storage Area E13B02E12 0-2	E13B02E12 2-4	E13B02NE20 0-2	E13B02NE20 2-4	C
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	E13802NE20 2-4	Comparison Value for Areas
Sampling Date	12/27/00	12/27/00	12/27/00	12/27/00	12/27/00	12/27/00	12/27/00	12/27/00	of Concern
Matrix	S	s	s	l s	S	S	s	, , , , , , , , , , , , , , , , , , ,	0.00.00
Dilution Factor	1.0	10	10	1.0	10	1.0	10	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	370 U	380 U	350 U	350 U	420 U	340 U	360 Ü	360 U	47000000
2-Chlorophenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	390000
2-Nitrophenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	
2,4-Dimethylphenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	380 U	1600000
2,4-Dichlorophenol 4-Chloro-3-methylphenol	370 U 370 U	380 U 380 U	350 U 350 U	350 U	420 U	340 U	360 U	360 U	230000
2,4,6-Trichlorophenol	370 U	380 U	350 U	350 U 350 U	420 U	340 U	360 U	360 U	
2,4-Dinitrophenol	370 U	380 U	350 U	350 U	420 U 420 U	340 U 340 U	360 U	360 U	58000
4-Nitrophenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U 360 U	360 U 360 U	160000
4,6-Dinitro-2-methylphenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	_
Pentachlorophenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	3000
bis(2-Chloroethyl)ether	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	600
1,3-Dichlorobenzene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	
1,4-Dichlorobenzene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	27000
1,2-Dichlorobenzene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	300 U	7000000
N-Nitroso-di-n-propylamine	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	90
Hexachioroethane	370 U	380 U	350 U	350 U	420 U	340 U	360 Ū	360 U	46000
Nkrobenzene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	380 U	39000
Isophorone	370 U	380 U	350 U	350 U	420 U	340 U	380 U	360 U	670000
bis(2-Chioroethoxy)methane	370 U	380 U	350 U	350 U	420 U	340 U	360 ∪] 360 U	
1,2,4-Trichlorobenzene Nachthalene	370 U	380 U	350 U 350 U	350 U	420 U	340 U	360 U	360 U	780000
Hexachiorobutadiene	370 U	380 U	350 U	350 U 350 U	420 U	340 U	360 U	360 U	3100000
Hexachiorocyclopentacliene	370 U	380 U	350 U	350 U	420 U 420 U	340 U 340 U	360 U 360 U	360 U	8000
2-Chloronaphthalene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	550000
Dimethylphthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 0	360 U	_
Acenaphthylene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	
2,6-Dinitrotoluene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	900
Acenaphthene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 Ŭ	4700000
2,4-Dinitrotoluene	370 U	380 U	350 U	350 U	420 U	340 U	380 Ū	360 U	900
Disthylphthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	63000000
4-Chlorophenyl-phenylether	370 U	380 U	350 ∪	350 U	420 U	340 U	360 U	360 U	
Fluorene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 ∪	3100000
N-Nitrosodiphenytemine 4-Bromophenyt-phenytether	370 U	380 U	350 U	350 U	420 U	340 U] 360 U	360 ∪	130000
Hexachiorobenzene	370 U 370 U	380 U	350 U 350 U	350 U 350 U	420 U	340 U	360 U	360 U	
Phenanthrena	370 U	380 U	350 U	350 U	420 U 420 U	340 U 340 U	360 U	360 U	400
Anthracene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	23000000
Di-n-butyiphthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	7800000 7800000
Fluoranthene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	3100000
Pyrene	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	2300000
Butylbenzylphthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 Ŭ	16000000
3,3'-Dichlorobenzidine	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	1000
Benzo(a)anthracene	370 ∪	380 U	350 U	350 U	420 U	340 U	360 U	360 U	900
Chrysene	370 ∪	380 U	350 ∪	350 U	420 U	340 U	360 U	360 U	88000
bis(2-Ethylhexyl)phthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 Ú	46000
Di-n-octyl phthalate	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	16000000
Benzo(b)fluoranthene Benzo(k)fluoranthene	370 U 370 U	380 U 380 U	350 U	350 U	420 U	340 U	360 U	360 U	900
Benzo(s)pyrane	370 U	380 U	350 U 350 U	350 U 350 U	420 U	340 U	360 U	360 U	9000
Indeno(1,2,3-cd)ovrene	370 U	380 U	350 U	350 U	420 U 420 U	340 U	360 U	360 U	90
Dibenzo(a,h)anthracene	370 U	380 U	350 U	350 U	420 U	340 U 340 U	360 U	360 U	900
Benzo(g,h,i)perylene	370 U	380 U	350 U	350 U	420 U	340 U	360 U 360 U	360 U 360 U	90
2,4,5-Trichlorophenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	7800000
2-Methylphenol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	3900000
3+4-Methylphenois	730 U	760 U	710 U	690 U	840 U	590 U	720 U	720 U	390000
Benzyl Alcohol	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	_
2,2'-oxybis(1-Chloropropane)	370 U	380 U	350 U	350 ∪	420 U	340 U	360 U	360 U	
4-Chloroaniline	370 U	380 U	350 U	350 U	420 U	340 U	360 U	380 U	310000
2-Mathylnaphthalene	370 U	380 U	350 ∪	350 ∪	420 U	340 U	360 U	360 U	_
4-Nitroaniline	370 U	380 U	350 U	350 ∪	420 U	340 U	360 U	360 U	
2-Nitroaniline	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	
3-Nitroaniline	370 U	380 U	350 U	350 U	420 U	340 U	360 Ú	360 U	
Dibenzofuran	370 U	380 U	350 U	350 U	420 U	340 U	360 U	380 U	
Azobenzene Benzoic acid	370 U	380 U	350 U	350 U	420 U	340 U	360 U	360 U	-
Total Carcinogenic PAHs	370 U ND	380 U	350 U	350 U ND	420 U	340 U	380 U	360 U	310000000
Total PAHs	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	10000
Total Conc. SVOC (s)	ND ND	ND ND	NO NO	ND ND	ND ND	ND ND	NO NO	ND ND	100000
· *** **** **** *** *** **** **** ****	, NU	I		L NU	NU	NU NU	ND ND	ND ND	500000

Qualifiers
U The compound was not detected at the indicated concentration.

Sample Location		Existing On-site			Former On-site	Recharge Basin	Uniden	tified Pit	ſ
Sample ID	E18 B01 0-2	E18 B01 2-4	E18 B02 0-2	E18 B02 2-4	E19B01 8-10'	E19B01 18-20'	E20 B01 2-4'	E20 B01 4-6'	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	8-10	18-20	2-4	4-6	for Areas
Sampling Date	10/05/00	10/05/00	10/05/00	10/05/00	10/09/00	10/09/00	09/28/00	09/28/00	of Concern
Matrix Dilution Factor	S I	S	S	S	S	S	s	S	
Units	1 0 ug/kg	1 0 ug/kg	1 0 ug/kg	10	10	10	10	10	_
Phenol	340 U			ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
2-Chlorophenol	340 U	400 U 400 U	350 U 350 U	390 U 390 U	400 U 400 U	350 U	350 U	350 U	47000000
2-Nitrophenol	340 U	400 U	350 U	390 U	400 U	350 U 350 U	350 U 350 U	350 U 350 U	390000
2,4-Dimethylphenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	1600000
2,4-Dichlorophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	230000
4-Chloro-3-methylphenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	250000
2,4,6-Trichlorophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	58000
2,4-Dinitrophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	160000
4-Nitrophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
4,6-Dintro-2-methylphenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
Pentachlorophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	3000
bis(2-Chloroethyl)ether 1,3-Dichlorobenzene	340 U 340 U	400 U 400 U	350 U	390 U	400 U	350 U	350 U	350 U	600
1,4-Dichlorobenzene	340 U	400 U	350 U 350 U	390 U 390 U	400 U	350 U	350 U	350 U	
1,2-Dichlorobenzene	340 U	400 U	350 U	390 U	400 U 400 U	350 U	350 U	350 U	27000
N-Nitroso-di-n-propylamine	340 U	400 U	350 U	390 U	400 U	350 U	350 U 350 U	350 U	7000000
Hexachloroethane	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U 350 U	90 46000
Nitrobenzene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	46000 39000
Isophorone	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	670000
bis(2-Chloroethoxy)methane	340 U	400 Ü	350 U	390 U	400 U	350 U	350 U	350 U	
1,2,4-Trichlorobenzene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	780000
Naphthalene	340 U	400 U	350 U	390 U	400 U	350 ∪	350 U	350 U	3100000
Hexachlorobutadiene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	8000
Hexachlorocyclopentadiene	340 U	400 U	350 U	390 U	400 U	350 ∪	350 U	350 U	550000
2-Chloronaphthalene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
Dimethylphthalate Acenaphthylene	340 U 340 U	400 U 400 U	350 U	390 U	400 U	350 U	350 U	350 U	
2.6-Dinitrotoluene	340 U	400 U	350 U 350 U	390 U	400 U	350 U	350 U	350 U	
Acenaphthene	340 U	400 U	350 U	390 U 390 U	400 U 400 U	350 U 350 U	350 U	350 U	900
2,4-Dinitrotoluene	340 U	400 U	350 U	390 U	400 U	350 U	350 U 350 U	350 U 350 U	4700000
Diethylphthalate	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	900 63000000
4-Chlorophenyl-phenylether	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	6300000
Fluorene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	3100000
N-Nitrosodiphenylamine	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	130000
4-Bromophenyl-phenylether	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
Hexachlorobenzene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	400
Phenanthrene	340 U	130 J	140 J	390 U	50 J	350 U	350 U	350 U	
Anthracene	340 U	400 U	350 U	390 U	400 U	350 U	86 J	350 U	23000000
Di-n-butylphthalate	65 J	99 J	240 J	65 J	230 J	350 U	350 ∪	50 J	7800000
Fluoranthene Pyrene	35 J 340 U	220 J 170 J	240 J 190 J	390 U 390 U	84 J	350 U	350 U	350 U	3100000
Butylbenzylphthalate	340 U	400 U	350 U	390 U	62 J 400 U	350 U	350 U	350 U	2300000
3,3'-Dichiorobenzidine	340 U	400 U	350 U	390 U	400 U	350 U 350 U	350 U 350 U	350 U	16000000
Benzo(a)anthracene	340 U	95 J	100 J	390 U	400 U	350 U	350 U 350 U	350 U 350 U	1000 900
Chrysene	340 U	140 J	160 J	390 U	52 J	350 U	350 U	350 U	900 88000
bis(2-Ethylhexyl)phthalate	340 U	400 U	38 J	390 U	400 U	350 U	350 U	350 U	46000
Di-n-octyl phthalate	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	16000000
Benzo(b)fluoranthene	340 U	140 J	140 J	390 U	400 U	350 U	350 U	350 U	900
Benzo(k)fluoranthene	340 U	150 J	150 J	390 U	52 J	350 U	350 U	350 U	9000
Benzo(a)pyrene	340 U	120 J	120 J	390 U	400 U	350 U	350 U	350 U	90
Indeno(1,2,3-cd)pyrene	340 U	400 U	39 J	390 U	400 U	350 U	350 U	350 U	900
Dibenzo(a,h)anthracene	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	90
Benzo(g,h,i)perylene	340 U	54 J	62 J	390 U	400 U	350 U	350 U	350 U	-
2,4,5-Trichlorophenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	7800000
2-Methylphenol	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	3900000
3+4-Methylphenols Benzyl Alcohol	680 U 340 U	790 U 400 U	690 U 350 U	780 U	790 U	690 U	700 U	700 U	
2,2'-oxybis(1-Chloropropane)	340 U	400 U	350 U	390 U 390 U	400 U	350 U	350 U	350 U	
4-Chloroaniline	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
2-Methylnaphthalene	340 U	400 U	350 U	390 U	400 U 400 U	350 U 350 U	350 U	350 U	310000
4-Nitroaniline	340 U	400 U	350 U	390 U	400 0	350 U	350 U 350 U	350 U	
2-Nitroaniline	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U 350 U	
3-Nitroaniline	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	
Dibenzofuran	340 U	400 U	350 U	390 Ŭ	400 U	350 U	350 U	350 U	_
Azobenzene	340 U	400 U	350 ∪	390 U	400 U	350 U	350 U	350 U	
Benzoic acid	340 U	400 U	350 U	390 U	400 U	350 U	350 U	350 U	310000000
Total Carcinogenic PAHs	0	645	670	0	104	0	0	0	10000
Total PAHs	0	1219	1302	0	250	0	66	0	100000
Total Conc. SVOC (s)	100	1318	1619	65	530	ND	66	50	

Notes

Result exceeds Comparison Value for Areas of Concern

— Not established
ND Not detected

Qualifiers
U. The compound was not detected at the indicated concentration.

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Location	·			Former AST ar	nd Salvage Area				Г
Sample ID	E21 B02 0-2	E21 B02 2-4	E21 B03 0-2	E21 B03 2-4	E21 B04 0-2	E21 B04 2-4	E21 B05 0-2	E21 B05 2-4	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	2-4	for Areas
Sampling Date Matrix	09/29/00 S	09/29/00	09/29/00 S	09/29/00 S	09/29/00 S	09/29/00	09/29/00	09/29/00	of Concern
Dilution Factor	10	10	10	10	10	10	S 10	S 10	
Units	ug/kg	- ug/kg	ug/kg	ug/kg	ug/kg	ua/ka	ug/kg	ug/kg	ug/kg
Phenol	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	47000000
2-Chlorophenol	370 ∪	370 U	380 U	390 U	380 U	380 U	390 U	380 U	390000
2-Nitrophenol	370 U	370 U	380 U	390 U	380 U	380 ∪	390 U	380 Ú	
2,4-Dimethylphenol	370 U	370 U	46 J	390 U	380 U	380 U	390 U	380 U	1600000
2,4-Dichiorophenol 4-Chloro-3-methylphenol	370 U 370 U	370 U 370 U	380 U	390 U 390 U	380 U 380 U	380 U	390 U	380 U	230000
2,4,6-Trichlorophenol	370 U	370 U	380 U	390 U	380 U	380 U 380 U	390 U	380 U 380 U	 58000
2,4-Dinitrophenol	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	160000
4-Nitrophenol	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	10000
4,6-Dinitro-2-methylphenoi	370 U	370 U	380 U	390 U	380 ∪	380 U	390 U	380 U	_
Pentachlorophenol	370 U	370 U	380 U	390 U	380 ∪	380 U	390 U	380 U	3000
bis(2-Chloroethyl)ether	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	600
1,3-Dichlorobenzene 1,4-Dichlorobenzene	370 U 370 U	370 U 370 U	380 U 380 U	390 U	380 U	380 U	390 U	380 U	_ _ _
1.2-Dichlombenzene	370 U	370 U	380 U	390 U 390 U	380 U 380 U	380 U 380 U	390 U	380 U	27000
N-Nitroso-di-n-propylamine	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U 380 U	7000000 90
Hexachloroethane	370 U	370 U	220 J	390 U	380 U	380 U	390 U	380 U	46000
Nitrobenzene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	39000
Isophorone	370 U	370 U	380 U	390 U	380 U	380 U	390 Ū	380 U	670000
bis(2-Chloroethoxy)methane 1.2.4-Trichlorobenzene	370 U 370 U	370 U 370 U	380 U 380 U	390 U	380 U	380 U	390 U	380 U	
1,2,4-Trichioropenzene Nachthalene	370 U 370 U	370 U 370 U	380 U 1000	390 U 390 U	380 U 380 U	380 U	390 U	380 U	780000
Hexachlorobutadiene	370 U	370 U	380 U	390 U	380 U 380 U	380 U 380 U	390 U 390 U	380 U 380 U	3100000 8000
Hexachlorocyclopentadiene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	550000
2-Chloronaphthalene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	l *****
Dimethylphthaiate	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	_
Acenaphthylene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 Ú	_
2,6-Dinitrotoluene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	900
Acenaphthene 2,4-Dinitrotoluene	370 U 370 U	370 U 370 U	380 U	390 U 390 U	380 U :	380 U	390 U	380 U	4700000
Diethylphthalate	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U 380 U	900 6300000
4-Chlorophenyl-phenylether	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	6300000
Fluorene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	3100000
N-Nitrosodiphenylamine	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	130000
4-Bromophenyl-phenylether	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	
Hexachlorobenzene Phenanthrene	370 U 370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	400
Anthracene	370 U	370 U 370 U	380 U 380 U	390 U	380 U 380 U	380 U	390 U	380 U	23000000
Di-n-butylphthaiate	76 J	52 J	45 1	66.1	56 J	110 J	390 U	380 U 57 J	7800000 7800000
Fluoranthene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	3100000
Pyrene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	2300000
Butylbenzylphthalate	370 U	370 U	380 U	390 U	380 U	380 ∪	390 U	380 U	16000000
3,3'-Dichlorobenzidine	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	1000
Benzo(a)anthracene Chrysene	370 U 370 U	370 U 370 U	380 U 380 U	390 U	380 U	380 U	390 U	380 U	900
bis(2-Ethylhexyl)phthalate	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	88000
Di-n-octyl phthalate	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U 380 U	46000 16000000
Benzo(b)fluoranthene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	900
Benzo(k)fluoranthene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	9000
Benzo(a)pyrene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	90
Indeno(1,2,3-od)pyrene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	900
Olbenzo(a,h)anthracene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	90
Benzo(g,h,l)perylene 2,4,5-Trichiorophenol	370 U 370 U	370 U 370 U	380 U 380 U	390 U	380 U 380 U	380 U	390 U	380 U	
2-Methylphenol	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U 380 U	7800000 3900000
3+4-Methylphenois	730 U	730 U	770 U	780 U	750 U	770 U	780 U	760 U	390000
Benzyl Alcohol	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	l -
2,2'-oxybis(1-Chloropropane)	370 U	370 U	380 U	390 U	380 U	380 ∪ 1	390 U	380 U	l
4-Chloroaniline	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	310000
2-Methylnaphthalene	370 U	370 U	47 J	390 U	380 U	380 U	390 U	380 U	-
4-Nitroaniine	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	
2-Nitroaniline 3-Nitroaniline	370 U 370 U	370 U 370 U	380 U 380 U	390 U 3	380 U	380 U	390 U	380 U	_
Dibenzofuran	370 U	370 U	380 U	390 U	380 U 380 U	380 U 380 U	390 U 390 U	380 U 380 U	-
Azobenzene	370 U	370 U	380 U	390 U	380 U	380 U	390 U	380 U	<u> </u>
Benzoic acid	370 Ų	370 U	380 U	390 U	380 U	380 U	390 U	380 U	310000000
Total Carcinogenic PAHs	0	0	ō	0	0	0	000	- 33 5	10000
Total PAHs	0	0 52	1047		. 0	0	0	. 0	100000
Total Conc. SVQC (s)	76		1358	66	58	110	46	57	500000

Qualifiers

U The compound was not detected at the indicated concentration.

J: Date indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes -- Not established

Sample Location				Matenal S	torage Area				l .
Sample ID	E22 B01 0-2	E22 B01 2-4	E22 B02 0-2'	E22 B02 2-4	E22 B03 0-2	E22 B03 2-4	E22 B04 0-2'	E22 B04 2-4'	Comparison Value
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	2-4	for Areas
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Matrix	S	S	s	S	S	s i	s	S	
Dilution Factor	10	1.0	10	1.0	10	1.0	1,0	1.0	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	47000000
2-Chlorophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	390000
2-Nitrophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
2,4-Dimethylphenot	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	1600000
2,4-Dichlorophenoi	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	230000
4-Chloro-3-methylphenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
2,4,6-Trichlorophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	58000
2,4-Dinitrophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	160000
4-Nitrophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	_
4,6-Dinitro-2-methylphenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
Pentachlorophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	3000
bis(2-Chloroethyl)ether	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	600
1,3-Dichlorobenzene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
1,4-Dichlorobenzene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	27000
1,2-Dichlorobenzene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	7000000
N-Nitroso-di-n-propylamine	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	90
Hexachloroethane	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	46000
Nitrobenzene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	39000
Isophorone	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	670000
bis(2-Chloroethoxy)methane	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
1,2,4-Trichlorobenzene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	780000
Naphthalene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	3100000
Hexachlorobutadiene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	8000
Hexachlorocyclopentadiene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	550000
2-Chloronaphthalene Dimethylphthalate	360 U 360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
		400 U	410 U	400 U	400 U	400 U	460 U	410 U	
Acenaphthylene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
2,6-Dinitrotoluene	360 U	400 U	410 U	400 U	400 U	400 U	480 U	410 U	900
Acenaphthene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	4700000
2,4-Dinitrotoluene Diethylohthalate	360 U 360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	900
		400 U	410 U	400 U	400 U	400 U	460 U	410 U	63000000
4-Chlorophenyl-phenylether	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
Fluorene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	3100000
N-Nitrosodiphenylamine	360 U 360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	130000
4-Bromophenyl-phenylether Hexachlorobenzene	360 U	400 U 400 U	410 U 410 U	400 U	400 U	400 U	460 U	410 U	-
Phenanthrene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	400
Anthracene	360 U	400 U	410 U	400 U 400 U	400 U	400 U	460 U	410 U	-
Di-n-butylphthalate	58 J	130 J	130 J	400 U 68 J	400 U 400 U	400 U	460 U	410 U	23000000
Fluoranthene	360 U	400 U	410 U	400 U		400 U	53 J	68 J	7800000
Pyrene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	3100000
Butylbenzylphthalate	360 U	400 U	410 U	400 U	400 U	400 U	460 U 1	410 U	2300000
3,3'-Dichlorobenzidine	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U 410 U	16000000
Benzo(a)anthracene	360 U	400 U	410 U	400 U				1,00	1000
Chrysene	360 U	400 U	410 U	400 U	400 U 400 U	400 U 400 U	460 U	410 U	900
bis(2-Ethylhexyl)phthalate	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	88000
Di-n-octyl phthalate	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	46000
Benzo(b)fluoranthene	360 U	400 0	410 0	400 U	400 U	400 U	460 U	410 년 410 년	16000000 900
Benzo(k)fluoranthene	360 U	400 U	410 U	400 U	400 U	400 U	460 U		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Benzo(a)pyrene	360 U	400 U	410 U	400 U	400 U	400 U		410 U	9000
Indeno(1,2,3-cd)pyrene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	90
Dibenzo(a,h)anthracene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	900
Benzo(g,h,i)perylene	360 U	400 U	410 U	400 U	400 U	400 U	460 U 1	410 U 410 U	90
2,4,5-Trichlorophenol	360 U	400 U	410 U	400 U	400 U	400 U	460 U		700000
2-Methylphenol	360 U	400 U	410 U	400 U	400 U	400 U		410 U	7800000
3+4-Methylphenols	720 U	790 U	810 U	800 U	U 008	800 U	460 U	410 U	3900000
Benzyl Alcohol	360 U	400 U	410 U	400 U	400 U	400 U	910 U 460 U	820 U	-
2,2'-oxybis(1-Chloropropane)	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
4-Chloroaniline	360 U	400 U	410 U	400 U	400 U	400 U		410 U	
2-Methylnaphthalene	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	310000
4-Nitroaniline	360 U	400 U	410 U	400 U	400 U	400 U	460 U	410 U	
2-Nitroaniline	360 U	400 U	410 U	400 U	400 U 400 U	400 U 400 U	460 U	410 U	
3-Nitroaniline	360 U	400 U	410 U	400 U	400 U		100 0 1	410 U	-
Dibenzofuran	360 U	400 U	410 U	400 U		400 U	460 U	410 U	
Azobenzene	360 U	400 U	410 U	400 U	400 U 400 U	400 U	460 U	410 U	
Benzoic acid	360 U	400 U	410 U	400 U	400 U	400 U 400 U	460 U	410 U	-
Total Carcinogenic PAHs	3000	400 0	410 0	400 0	400 0	400 U	460 U	410 U	310000000
Total PAHs	 	0		- 0	0	- 0	- 0	0	10000
Total Conc SVOC (s)	58	130	130	68	ND	ND ND	53	68	100000 500000

Notes

-- Not established

ND Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Location	Former Con	crete Sump Pit	Pump S	ation "A"		atch Basins (Vicinity of	Duma Maria Atlatas Ta	-1.	
Sample ID	E25 B01 5-7	E25 B01 7-0	E30 B01 13-15	E30 B01 15-17	E32 B01 6-8	E32 B01 8-10	E32 B02 6-8	E32 B02 8-10	Composices Makes
Sample Depth (ft)	5-7	7-9	13-15	15-17	6-8	8-10		E32 B02 8-10 8-10	Comparison Value
Sampling Date	10/04/00	10/04/00	10/18/00	10/18/00	10/16/00	10/16/00	6-8 10/16/00	8-10 10/16/00	for Areas
Matrix	S	S	S	101.000 S	i i i i i i i i i i i i i i i i i i i	10/16/00 S	10/16/00 S		of Concern
Dilution Factor	10	10	10	10	10	10		S	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	10	10	
Phenol	390 U	390 U	400 U	410 U	340 U		ug/kg	ug/kg	ug/kg
2-Chlorophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	47000000
2-Nitrophenol	390 U					350 U	340 U	340 U	390000
2,4-Dimethylphenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
		390 U	400 U	410 U	340 U	350 U	340 U	340 U	1600000
2,4-Dichlorophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	230000
4-Chloro-3-methylphenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	-
2,4,6-Trichlorophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	58000
2,4-Dinkrophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	160000
4-Nitrophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
4,6-Dinitro-2-methylphenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
Pentachlorophenol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	3000
bis(2-Chloroethyl)ether	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	600
1,3-Dichlorobenzene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
1,4-Dichlorobenzene	390 ∪	390 U	400 U	410 U	340 U	350 U	340 U	340 U	27000
1,2-Dichlorobenzene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	7000000
N-Nitroso-di-n-propylamine	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	90
Hexachloroethane	390 U	390 U	400 U	410 Ú	340 U	350 U	340 U	340 U	46000
Nitrobenzene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	39000
Isophorone	390 U	390 Ú	400 U	410 U	340 U	350 U	340 U	340 U	670000
bis(2-Chloroethoxy)methane	390 U	390 U	400 U	410 U	340 U	350 U	340 Ŭ	340 U	V 4444
1,2,4-Trichlorobenzene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	780000
Naphthalene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	3100000
Hexachiorobutadiene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	8000
Hexachiorocyclopentadiene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
2-Chloronaphthalene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	550000
Dimethylohthalate	390 U	390 U	400 U	410 U	340 U				-
Acenaphthylene	390 U	390 U	400 U	410 U	340 U	350 U 350 U	340 U	340 U	
2,6-Dinitrotoluene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
Acenachthene	390 U	390 U	400 U	410 U	340 U	350 U	340 U 340 U	340 U	900
2.4-Dinitrotoluene	390 U	390 U	400 U					340 U	4700000
Disthylphthalate	390 U	390 U	400 U	410 U 410 U	340 U	350 U	340 U	340 U	900
4-Chlorophenyl-phenylether	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	63000000
Fluorene	390 U	390 U	400 U		340 U	350 U	340 U	340 U	
N-Nitrosodiphenylamine	390 U	390 U		410 U	340 U	350 U	340 U	340 U	3100000
4-Bromophenyl-phenylether	390 U	390 U	400 U 400 U	410 U	340 U	350 U	340 U	340 U	130000
				410 U	340 U	350 U	340 U	340 U	
Hexachiorobenzene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	400
Phenanthrene Anthracene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	23000000
Di-n-butyiphthalate	40 J	390 U	79 J	57 U	81 J	35 J	52 J	43 J	7800000
Fluoranthene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	3100000
Pyrene	390 U	390 U	400 U	410 J	340 U	350 U	340 U	340 U	2300000
Butylbenzylphthalate	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	16000000
3,3'-Dichlorobenzidine	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	1000
Benzo(a)anthracene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	900
Chrysene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	88000
bis(2-Ethylhexyl)phthalate	390 U	49 J	320 J	410 U	340 U	350 U	340 U	340 U	46000
Di-n-octyl phthalate	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	16000000
Benzo(b)fluoranthene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	900
Benzo(k)fluoranthene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	9000
Benzo(a)pyrene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	90
Indeno(1,2,3-od)pyrene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	900
Diberizo(a,h)anthracene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	90
Benzo(g,h,i)perylene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	I —
2,4,5-Trichlorophenol	390 U	390 ∪	400 U	410 U	340 U	350 U	340 U	340 U	7800000
2-Methylphenol	390 U	390 U	400 U	410 Ū	340 U	350 U	340 U	340 U	3900000
3+4-Methylphenois	780 U	780 U	790 Ú	810 U	690 U	690 U	690 U	990 U	l
Benzyl Alcohol	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	
2,2'-oxybis(1-Chloropropane)	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	I
4-Chloroaniline	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	310000
2-Methylnaphthalene	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	31000
4-Nitroanline	390 U	390 U	400 U	410 U	340 U	350 U	340 U	340 U	ı =
2-Nitroaniline	390 U	390 U	400 U	410 U	340 U	350 U			-
3-Nitroaniline	390 U	390 U	400 U	410 U			340 U	340 U	
Dibenzofuran	390 U	390 U	400 U	410 U	340 U 340 U	350 U	340 U	340 U	
Azobenzene	390 U	390 U	400 U	410 U 410 U	340 U 1	350 U	340 U	340 U	
Benzoic acid	390 U	390 U	400 U	410 U 410 U		350 U	340 U	340 U	
Total Carcinogenic PAHs	390 0		400 0		340 U	350 U	340 U	340 U	310000000
	•	•	ι. υ	0	0	0	0 7	0	10000
Total PAHs Total Conc SVOC (s)	40	49	399	0 57	81	0 35	0 52	0 43	100000 500000

<u>Qualifiers</u>
U* The compound was not detected at the indicated concentration.
J Data indicates the presence of a compound that meets the identification criteria. The result is less then the quantity

Notes — Not established

Sample Location	Former Tank 1111 (B	etween Hangars 1 and			County and Botus	on Honor 4 and 2			
Sample ID	E33 B01 1-3'	E33 B01 3-5'	E34 B01 1-3	E34 B01 3-5	E34 B02 1-3'	en Hangars 1 and 2 E34 B02 3-5	E34 B03 0-2'	E34 B03 2-4'	Comparison Value
Sample Depth (ft)	1-3	3-5	1-3	3-5	1-3	3-5	0-2	2-4	for Areas
Sampling Date Matrix	09/28/00 S	09/28/00 S	09/25/00 S	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	of Concern
Dilution Factor	1.0	10	1,0	S 1.0	S 10	S	S	S	-
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	10 ug/kg	1 0 ug/kg	ug/kg
Phenol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	4700000
2-Chlorophenol	350 U [370 U	390 U	340 U	350 U	340 U	370 U	340 U	390000
2-Nitrophenol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	_
2,4-Dimethylphenol 2,4-Dichlorophenol	350 U 350 U	370 U 370 U	390 U 390 U	340 U	350 U	340 U	370 U	340 U	1600000
4-Chloro-3-methylphenol	350 U	370 U	390 U	340 U 340 U	350 U 350 U	340 U 340 U	370 U 370 U	340 U 340 U	230000
2,4,6-Trichlorophenol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	58000
2,4-Dinitrophenol	350 U	370 ∪	390 U	340 U	350 U	340 U	370 U	340 U	160000
4-Nitrophenol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	
4,6-Dinitro-2-methylphenol Pentachlorophenol	350 U 350 U	370 U 370 U	390 U	340 U 340 U	350 U	340 U	370 U	340 U	
bis(2-Chloroethyl)ether	350 U	370 U	390 U	340 U	350 U 350 U	340 U 340 U	370 U 370 U	340 U	3000
1,3-Dichlorobenzene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U 340 U	600
1,4-Dichlorobenzene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	27000
1,2-Dichlorobenzene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	7000000
N-Nitroso-di-n-propylamine	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	90
Hexachioroethane Nitrobenzene	350 U 350 U	370 U 370 U	390 U	340 U	350 U	340 U	370 U	340 U	46000
Isophorone	350 U	370 U	390 U	340 U 340 U	350 U 350 U	340 U 340 U	370 U 370 U	340 U 340 U	39000 670000
bis(2-Chloroethoxy)methane	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	07000
1,2,4-Trichlorobenzene	350 U	370 U	390 U	340 Ú	350 U	340 U	370 U	340 U	780000
Naphthalene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	3100000
Hexachlorobutadiene	350 U 350 U	370 U 370 U	390 U	340 U	350 U	340 U	370 U	340 U	8000
Hexachlorocyclopentadiene 2-Chloronaphthalene	350 U	370 U	390 U 390 U	340 U 340 U	350 U 350 U	340 U 340 U	370 U I	340 U 340 U	550000
Dimethylphthalate	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	
Acenaphthylene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	
2,6-Dinitrotoluene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	900
Acenaphthene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	4700000
2,4-Dinitrotoluene Diethylphthalate	350 U 350 U	370 U 370 U	390 U	340 U 340 U	350 U	340 U	370 U	340 U	900
4-Chlorophenyl-phenylether	350 U	370 U	390 U	340 U	350 U 350 U	340 U	370 U 370 U	340 U	63000000
Fluorene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	3100000
N-Nitrosodiphenylamine	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	130000
4-Bromophenyl-phenylether	350 ∪	370 U	390 U	340 U	350 U	340 U	370 U	340 U	
Hexachlorobenzene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	400
Phenanthrene Anthracene	350 U 350 U	370 U 370 U	390 U 390 U	340 U 340 U	350 U	340 U	370 U	340 U	l
Di-n-butylphthalate	66 J	56 J	43 J	340 U	350 U 80 J	340 U 57 J	370 U 370 U	340 U 38 J	23000000 7800000
Fluoranthene	45 J	370 U	390 U	340 U	62 J	340 U	370 U	340 U	3100000
Pyrene	350 U	370 U	390 U	340 U	42 J	340 U	370 U	340 U	2300000
Butylbenzylphthalate	350 U	370 U	390 U	340 U	36 J	340 U	370 U	340 U	16000000
3,3'-Dichlorobenzidine	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	1000
Benzo(a)anthracene Chrysene	350 U 350 U	370 U 370 U	390 U 390 U	340 U 340 U	350 U 350 U	340 U 340 U	370 U	340 U 340 U	900 88000
bis(2-Ethylhexyl)phthalate	350 U	370 U	390 U	340 U	61 J	340 U	370 U	340 U	46000
Di-n-octyl phthalate	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	16000000
Benzo(b)fluoranthene	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	900
Benzo(k)fluoranthene	350 U	370 U	390 U	340 U	J 88	340 U	370 U	340 U	9000
Benzo(a)pyrene	350 U 350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	90
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	350 U 350 U	370 U 370 U	390 U 390 U	340 U 340 U	350 U	340 U	370 U	340 U	900
Benzo(g,h,i)perylene	350 U	370 U	390 U	340 U	350 U	340 U 340 U	370 U 370 U	340 U	90
2,4,5-Trichlorophenol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U 340 U	7800000
2-Methylphenol	350 U	370 Ú	390 U	340 U	350 U	340 U	370 U	340 U	3900000
3+4-Methylphenols	710 U	740 U	780 U	690 U	690 U	690 U	730 U	680 U	
Benzyl Alcohol	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	-
2,2'-oxybis(1-Chloropropane) 4-Chloroaniline	350 U 350 U	370 U 370 U	390 U 390 U	340 U 340 U	350 U	340 U	370 U	340 U	l
2-Methylnaphthalene	350 U	370 U	390 U	340 U	350 U 350 U	340 U 340 U	370 U 370 U	340 U 340 U	310000
4-Nitroaniline	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	
2-Nitroaniline	350 U	370 U	390 U	340 U	350 U	340 U	370 U	340 U	=
3-Nitroaniline	350 U	370 U	390 U	340 U	350 U	340 U	370 ∪	340 U	_
Dibenzofuran	350 U	370 U	390 U	340 U	350 ປ	340 U	370 U	340 Ū	_
Azobenzene Benzoic acid	350 U 350 U	370 U 370 U	390 U 390 U	340 U 340 U	350 U	340 U	370 U	340 U	
Total Carcinogenic PAHs	350 0	3/0 U	390 U	340 U	350 U 38	340 U	370 U	340 U	310000000
Total PAHs	45	Ö	0	0	222	0		0	10000
Total Conc SVOC (s)	111	56	43	ND	319	57	ND I	38	500000

Qualifiers
U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Notes

— Not established

ND* Not detected

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

							Former Drainage Swa		
Sample Location Sample ID	Courtyard Between E34 B04 0-2'	E34 B04 2-4'	E35 B01 0-2	Area West			Are		
Sample Depth (ft)	0-2	2-4	0-2	2-4	E35 B02 0-2 0-2	E35 B02 2-4 2-4	E36 B01 1-3'	E36 B01 3-5'	Comparison Value for Areas
Sampling Date	09/25/00	09/25/00	10/10/00	10/10/00	10/10/00	10/10/00	09/25/00	09/25/00	of Concern
Matrix	s	S	S	s	s	S	s	S	UI CONCOIII
Dilution Factor	10	10	1.0	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Phenol	340 U	370 U	360 U	370 U	340 U	350 U	100 J	35 J	47000000
2-Chlorophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	390000
2-Nitrophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	-
2,4-Dimethylphenol 2,4-Dichlorophenol	340 U 340 U	370 U 370 U	360 U 360 U	370 U 370 U	340 U 340 U	350 U 350 U	370 U 370 U	340 U 340 U	1600000
4-Chloro-3-methylphenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	230000
2,4,6-Trichlorophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	58000
2,4-Dinitrophenoi	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	160000
4-Nitrophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	
4,6-Dinitro-2-methylphenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 Ú	
Pentachlorophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	3000
bis(2-Chloroethyl)ether	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	600
1,3-Dichlorobenzene	340 U 340 U	370 U 370 U	360 U 360 U	370 U	340 U	350 U	370 U	340 U	
1,4-Dichlorobenzene	340 U	370 U	360 U	370 U 370 U	340 U 340 U	350 U 350 U	370 U	340 U	27000
N-Nitroso-di-n-propylamine	340 U	370 U	360 U	370 U	340 U	350 U 350 U	370 U	340 U 340 U	7000000 90
Hexachloroethane	340 U	370 U	380 U	370 U	340 U	350 U	370 U	340 U	46000
Nitrobenzene	340 U	370 ∪	380 U	370 U	340 U	350 U	370 U	340 U	39000
Isophorone	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	670000
bis(2-Chloroethoxy)methane	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 Ú	-
1,2,4-Trichlorobenzene	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	780000
Naphthalene Hexachlorobutadiene	340 U 340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	3100000
Hexachlorocyclopentadiene	340 U	370 U 370 U	360 U	370 U 370 U	340 U	350 U	370 U	340 U	8000
2-Chioronaphthalana	340 U	370 U	360 U	370 U	340 U	350 U 350 U	370 U	340 U	550000
Dimethylphthalate	340 0	370 U	360 U	370 U	340 U	350 U	370 U	340 U 340 U	-
Acenaphthylene	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	
2,6-Dinitrotoluene	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	900
Acenaphthene	340 U	370 U	51 J	370 U	340 U	350 U	370 U	340 U	4700000
2,4-Dinitrotoluene	340 U	370 U	360 ∪	370 U	340 U	350 U	370 U	340 U	900
Diethylphthalate	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	63000000
4-Chlorophenyl-phenylether Fluorene	340 U 340 U	370 U 370 U	360 U	370 U	340 U	350 U	370 U	340 U	
N-Nitrosodiphenytamine	340 U	370 U	38 J	370 U 370 U	340 U	350 U 350 U	370 U 370 U	340 U	3100000
4-Bromophenyl-phenylether	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U 340 U	130000
Hexachlorobenzene	340 Ŭ	370 U	360 U	370 U	340 U	350 U	370 U	340 U	400
Phenanthrene	340 U	370 U	390	370 U	340 U	350 U	370 U	340 U	
Anthracene	340 U	370 U	82 J	370 U	340 U	350 U	370 U	340 U	23000000
Di-n-butyiphthalate	44 J	45 J	85 J	41 J	340 U	350 U	72 J	340 U	7800000
Fluoranthene	340 U	370 U	570	370 U	340 U	350 U	370 U	340 U	3100000
Pyrene Butyfbenzylphthalate	340 U 340 U	370 U 370 U	440 51 J	370 U	340 U	350 U	370 U	340 U	2300000
3,3'-Dichlorobenzidine	340 U	370 U	360 U	370 U	340 U 340 U	350 U 350 U	56 J 370 U	340 U 340 U	16000000
Benzo(a)anthracene	340 U	370 U	270 J	370 U	340 U	350 U	370 U	340 U	900
Chrysene	340 U	370 U	300 J	370 U	340 U	350 U	370 U	340 U	88000
bis(2-Ethylhexyl)phthalate	340 U	370 U	81 J	370 U	340 U	350 U	370 U	340 U	46000
Di-n-octyl ohthalate	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	16000000
Benzo(b)fluoranthene	340 U	370 U	220 J	370 U	340 U	350 U	370 U	340 U	900
Benzo(k)fluoranthene	340 U	370 U	260 J	370 U	340 U	350 U	370 U	340 U	9000
Benzo(a)pyrene	340 U 340 U	370 U	200 J	370 U	340 U	350 U	370 U	340 U	90
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	340 U	370 U 370 U	64 J 360 U	370 U	340 U 340 U	350 U	370 U	340 U	900
Benzo(g,h,l)perylene	340 U	370 U	83 J	370 U	340 U	350 U	370 U 370 U	340 U 340 U	90
2,4,5-Trichlorophenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	7800000
2-Methylphenol	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	3900000
3+4-Methylphenois	680 U	750 U	720 U	730 U	690 U	710 U	750 U	690 U	-
Benzyl Alcohol	340 U	370 Ú	360 U	370 U	340 U	350 U	370 U	340 U	
2,2'-oxybis(1-Chloropropane)	340 U	370 U	380 U	370 U	340 U	350 U	370 U	340 U	
4-Chloroaniline	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	310000
2-Methylnaphthalene	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	
4-Nitroaniline	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	
2-Nitroaniline 3-Nitroaniline	340 U 340 U	370 U 370 U	360 U	370 U 370 U	340 U 340 U	350 U	370 U	340 U	-
Dibenzofuran	340 U	370 U	360 U	370 U	340 U	350 U 350 U	370 U	340 U	-
Azobenzene	340 U	370 U	360 U	370 U	340 U	350 U	370 U 370 U	340 U 340 U	
Benzoic acid	340 U	370 U	360 U	370 U	340 U	350 U	370 U	340 U	310000000
Total Carcinogenic PAHs	0	0	1314	0	0	0	- 0,00	- 340 0	10000
Total PAHs	0	0	2968	- 0	0	Ŏ			
Total Conc SVOC (s)	44	45	3185	41	ND		0	0	100000

Qualifiers
U The compound was not detected at the indicated concentration.

Sample Leading		ale (N of Maintenance		Farmar Duranta anti-	- /05.5				
Sample Location Sample ID	E36 B02 1-3'	ea) E36 B02 3-5'	E37 B01 0-2	E37 B01 2-4	n (SE Parking Area) E37 B02 0-2	E37 B02 2-4	Boiler Room Exter E38 B01 10-12	or Former Dry Well E38 B01 20-22	Companson Value
Sample Depth (ft)	1-3	3-5	0-2	2-4	0-2	2-4	10-12	20-22	for Areas
Sampling Date	09/25/00	09/25/00	09/29/00	09/29/00	09/29/00	09/29/00	10/12/00	10/12/00	of Concern
Matrix	s	S	S	S	s	s	s	S	
Dilution Factor	10 ua/ka	1.0	10	10	10	10	10	10	
Phenol	350 U	ug/kg 75 J	ug/kg 360 U	ug/kg 360 U	ug/kg 370 U	ug/kg 340 U	ug/kg	ug/kg	ug/kg
2-Chlorophenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U 390 U	400 U 400 U	47000000 390000
2-Nitrophenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	390000
2,4-Dimethylphenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	1600000
2,4-Dichlorophenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	230000
4-Chioro-3-methylphenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	
2,4,6-Trichlorophenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	58000
2,4-Dinitrophenol 4-Nitrophenol	350 U 350 U	350 U 350 U	360 U 360 U	360 U 360 U	370 U	340 U	390 U	400 U	160000
4,6-Dinitro-2-methylphenol	350 U	350 U	360 U	360 U	370 U 370 U	340 U 340 U	390 U	400 U	
Pentachlorophenoi	350 U	350 U	360 U	360 U	370 U	340 U	390 U 390 U	400 U 400 U	3000
bis(2-Chloroethyl)ether	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	600
1,3-Dichiorobenzene	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	
1,4-Dichiorobenzene	350 U	350 ∪	360 U	360 U	370 U	340 U	390 U	400 U	27000
1,2-Dichlorobenzene	350 U	350 U	360 U	360 U	370 U	340 Ū	390 U	400 U	7000000
N-Nitroso-di-n-propylamine	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	90
Hexachloroethane Nitrobenzene	350 U 350 U	350 U 350 U	360 U 360 U	360 U	370 U	340 U	390 U	400 U	46000
Isophorone	350 U	350 U	360 U	360 U 360 U	370 U 370 U	340 U	390 U	400 U	39000
bis(2-Chloroethoxy)methane	350 U	350 U	360 U	360 U	370 U 370 U	340 U 340 U	390 U 390 U	400 U 400 U	670000
1.2.4-Trichlorobenzene	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	780000
Naphthalene	350 U	81 J	360 U	380 U	370 U	340 U	390 U	400 U	3100000
Hexachlorobutadiene	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	8000
Hexachlorocyclopentadiene	7 350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	550000
2-Chloronaphthalene	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	
Dimethylphthaiate Acenaphthylene	350 U 350 U	350 U 350 U	360 U 360 U	360 U	370 U	340 U	390 U	400 U	
2,6-Dinitrotoluene	350 U	350 U	360 U	360 U	370 U 370 U	340 U	390 U	400 U	
Acenaphthene	350 U	98 J	360 U	360 U	370 U	340 U 340 U	390 U 390 U	400 U 400 U	900 4700000
2,4-Dinitrotoluene	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	900
Diethylphthalate	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	63000000
4-Chlorophenyl-phenylether	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	
Fluorene	350 U	130 J	360 U	360 U	370 U	340 U	390 U	400 U	3100000
N-Nitrosodiphenylamine	350 U 350 U	350 U 350 U	360 U	360 U	370 U	340 U	390 U	400 U	130000
4-Bromophenyl-phenylether Hexachlorobenzene	350 U	350 U	360 U 360 U	360 U 360 U	370 U 370 U	340 U	390 U	400 U	
Phenanthrene	350 U	860	360 U	360 U	370 U	340 U 340 U	390 U 390 U	400 U 400 U	400
Anthracene	350 U	240 J	360 U	360 U	370 U	340 U	390 U	400 U	23000000
Di-n-butylphthalate	83 J	140 J	68 J	360 U	370 U	340 U	390 U	88 J	7800000
Fluoranthene	350 U	860	360 U	360 U	370 U	340 U	390 U	400 U	3100000
Pyrene	350 U	630	360 U	360 U	370 U	340 U	390 U	400 U	2300000
Butylbenzylphthalate 3,3'-Dichlorobenzidine	350 U 350 U	350 U 350 U	360 U 360 U	360 U	370 U	340 U	390 U	400 U	16000000
Benzo(a)anthracene	350 U	450	360 U	360 U	370 U 370 U	340 U 340 U	390 U 390 U	400 U	1000
Chrysene	350 U	440	360 U	360 U	370 U	340 U	390 U	400 U 400 U	900 88000
bis(2-Ethylhexyl)phthalate	87 J	350 U	360 U	360 U	370 U	340 U	390 U	400 U	46000
Di-n-octyl phthalate	350 U	350 ∪	360 U	360 U	370 U	340 U	390 U	400 U	16000000
Benzo(b)fluoranthene	350 U	330 J	360 U	360 U	370 U	340 U	390 U	400 U	900
Benzo(k)fluoranthene	350 U	450	360 U	360 U	370 U	340 U	390 U	400 U	9000
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	350 U 350 U	370	360 U	360 U	370 U	340 U	390 U	400 U	90
Dibenzo(a,h)anthracene	350 U	80 J 350 U	360 U	360 U 360 U	370 U 370 U	340 U 340 U	390 U	400 U	900
Benzo(g,h,i)perylene	350 U	120 J	360 U	360 U	370 U	340 U	390 U 390 U	400 U 400 U	90
2,4,5-Trichlorophenoi	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	7800000
2-Methylphenol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	3900000
3+4-Methylphenols	710 U	700 U	720 U	720 U	730 U	690 U	780 U	790 U	
Benzyl Alcohol	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	
2,2'-oxybis(1-Chloropropane)	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	i
4-Chloroaniline	350 U 350 U	350 U 38 J	360 U 360 U	360 U	370 U	340 U	390 U	400 U	310000
2-Methylnaphthalene 4-Nitroaniline	350 U	38 J 350 U	360 U	360 U 360 U	370 U	340 U	390 U	400 U	
2-Nitroaniline	350 U	350 U	360 U	360 U	370 U 370 U	340 U 340 U	390 U	400 U	
3-Nitroaniline	350 U	350 U	360 U	360 U	370 U	340 U	390 U 390 U	400 U 400 U	_
Dibenzofuran	350 U	70 J	360 U	360 U	370 U	340 U	390 U	400 U	_
Azobenzene	350 U	350 ∪	360 U	360 U	370 U	340 U	390 U	400 U	
Benzoic acid	350 U	350 U	360 U	360 U	370 U	340 U	390 U	400 U	310000000
Total Carcinogenic PAHs	0	2120	0	0	0	0	0	0	10000
Total PAHs	0	5247 5462	0 68	0 ND	0 ND	0 ND	0	0	100000
Total Conc. SVOC (s)	170						ND	88	500000

Notes

Result exceeds Comparison Value for Areas of Concern

Not established
 ND Not detected

Qualifiers
U The compound was not detected at the indicated concentration.

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIVOLATILE ORGANIC COMPOUNDS

Sample Location		le Former Facility ance Area	Doy Well Ordered	ormer Paint Tunnel	Lieidentiffer Dr. C.	utside Boiler Room		Gas USTs (4) S of	
Sample Location	E39 B01 8-10	E39 801 20-22	E41 B01 8-10	E41 B01 18-20	E42 B01 3-5	E42 B01 5-7	Refrig/A E43 B01 6-8	C Room E43 B01 14-16	Comparison Value
Sample depth (ft)	8-10	20-22	8-10	18-20	3-5	5-7	6-8	14-16	for Areas
Sampling Date	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	of Concern
Matrix Dilution Factor	S 10	S 10	S 1.0	S	S	s	S	S	
Units	ug/kg	ua/ka	ug/kg	10 ug/kg	10 ug/kg	1.0 ug/kg	1.0 ug/kg	1.0 un/m	
Phenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	ug/kg 4700000
2-Chiorophenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	390000
2-Nitrophenol	340 U	340 U	420 U	340 U	360 U	350 ∪	420 U	390 U	
2,4-Dimethylphenol	340 U 340 U	340 U	420 U	340 U	360 U	350 ∪	420 U	390 U	1600000
2,4-Dichlorophenol 4-Chloro-3-methylohenol	340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U	350 U	420 U	390 U	230000
2,4,6-Trichlorophenoi	340 U	340 U	420 U	340 U	360 U	350 U 350 U	420 U 420 U	390 U 390 U	
2,4-Dinitrophenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	58000 160000
4-Nitrophenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	100000
4,6-Dinitro-2-methylphenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	_
Pentachlorophenol bis(2-Chloroethyl)ether	340 U 340 U	340 U . 340 U	420 U 420 U	340 U	360 U	350 U	420 U	390 U	3000
1,3-Dichlorobenzene	340 U	340 U	420 U	340 U 340 U	360 U 360 U	350 U 350 U	420 U 420 U	390 U 390 U	600
1,4-Dichlorobenzene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	27000
1,2-Dichlorobenzene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	7000000
N-Nitroso-di-n-propylemine	340 U	340 U	420 U	340 U	360 U	350 ∪	420 U	390 U	90
Hexachioroethane	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	46000
Nitrobenzene isophorone	340 U 340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U	350 U	420 U	390 U	39000
bis(2-Chloroethoxy)methane	340 U	340 U	420 U 420 U	340 U 340 U	360 U	350 U 350 U	420 U	390 U	670000
1,2,4-Trichlorobenzene	340 U	. 340 U	420 U	340 U	360 U	350 U	420 U 420 U	390 U 390 U	780000
Naphthalene	340 Ú	340 U	420 U	340 U	360 U	350 U	420 U	390 U	3100000
Hexachlorobutadiene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	8000
Hexachlorocyclopentadiene	340 U 340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	550000
2-Chloronaphthalene Dimethylphthalate	340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U	350 U	420 U	390 U	-
Acenaphthylene	340 U	340 U	420 U	340 U	360 U	350 U 350 U	420 U 420 U	390 U 390 U	
2,6-Dinitrotoluene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	900
Acenaphthene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	4700000
2,4-Dinitrotoluene	340 U	340 U	420 U	340 U	360 U	350 ∪	420 U	390 U	900
Diethylphthalate	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	63000000
4-Chlorophenyl-phenylether Fluorene	340 U 340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U 360 U	350 U	420 U	390 U	
N-Nitrosodiphenylamine	340 U	340 U	420 U	340 U	360 U	350 U 350 U	420 U 420 U	390 U 390 U	3100000 130000
4-Bromophenyl-phenylether	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	130000
Hexachlorobenzene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	400
Phenanthrene Anthracene	340 U	340 U	420 U	340 U	360 U	350 ∪	420 U	390 U	
Oi-n-butylphthalate	340 U 340 U	340 U 340 U	420 U 43 J	340 U 100 J	360 U	350 U	420 U	390 U	23000000
Fluoranthene	340 U	340 U	420 U	340 U	360 U	78 J 350 U	87 J 420 U	120 J	7800000
Pyrene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U 390 U	3100000 2300000
Butylbenzylphthalate	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	16000000
3,3'-Dichlorobenzidine	340 U	-340 U	420 U	340 U	360 U	350 U	420 U	390 U	1000
Benzo(s)anthracene Chrysene	340 U 340 U	340 U 340 U	420 U	340 U	360 U	350 U	420 U	390 U	900
bis(2-Ethylhexyl)phthalate	340 U	340 U	420 U 420 U	340 U 340 U	360 U 360 U	350 U	420 U	390 U	88000
Di-n-octyl phthelate	340 U	340 U	420 U	340 U	360 U	350 U 350 U	420 U 420 U	390 U 390 U	46000 16000000
Benzo(b)fluoranthene	340 U	340 Ú	420 U	340 U	360 U	350 U	420 U	390 U	900
Benzo(k)fluoranthene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	9000
Benzo(a)pyrene	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	90
Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene	340 U 340 U	340 U 340 U	420 U 420 U	340 U	360 U	350 U	420 U	390 U	900
Benzo(g,h,i)perviene	340 U	340 U	420 U 420 U	340 U 340 U	360 U	350 U 350 U	420 U	390 U	90
2,4,5-Trichlorophenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U 420 U	390 U 390 U	7800000
2-Methylphenol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	3900000
3+4-Methylphenols	680 U	690 U	830 U	690 U	720 U	890 Ŭ	830 U	780 U	-
Benzyl Alcohol	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	-
2,2'-oxybis(1-Chloropropane) 4-Chloroaniline	340 U 340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U	350 U	420 U	390 U	
2-Methylnaphthalene	340 U	340 U 340 U	420 U 420 U	340 U 340 U	360 U	350 U	420 U	390 U	310000
4-Nitroaniline	340 U	340 U	420 U	340 U	360 U	350 U 350 U	420 U	390 U	
2-Nitroaniline	340 U	340 U	420 U	340 U	360 U	350 U	420 U 420 U	390 U 390 U	<u></u>
3-Nitroaniline	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	_
Dibenzofuran	340 U	340 U	420 U	340 U	380 U	350 U	420 U	390 U	_
Azobenzene Bannala asid	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	
Benzoic acid Total Carcinogenic PAHs	340 U	340 U	420 U	340 U	360 U	350 U	420 U	390 U	310000000
Total PAHs		0	0		- 0	0	0	0	10000

Qualifier

U The compound was not detected at the indicated concentration

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than year.

Note

- Not notableb

ND: Not detected

Sample Location	Former Gas Pump H		<u> </u>	LIPA Pit/Sump					
Sample ID	E44B01 0-2	E44B01 2-4	D14B01 5-7	D14B01 7-9	D14B01 9-11	D15B01 6-8	ector Pit North of Rech		
Sample Depth (ft)	0-2	2-4	5-7	7-9	9-11	6-8	D15B01 10-12 10-12	D15B01 14-16 14-16	Comparison Value
Sampling Date	10/11/00	10/11/00	01/08/01	01/08/01	01/08/01	04/10/01	04/10/01	04/10/01	for Areas
Matrix	S	S	S	S	S	S S	5 S	04/10/01 S	of Concern
Dilution Factor	10	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ua/ka	ug/kg	ug/kg
Phenol	400 U	380 U	370 Ų	360 U	350 U	350 U	350 U	350 U	47000000
2-Chlorophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	390000
2-Nitrophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	580000
2,4-Dimethylphenol	400 U	380 ∪	370 U	360 ∪	350 U	350 U	350 U	350 U	1600000
2,4-Dichlorophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	230000
4-Chloro-3-methylphenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
2,4,6-Trichlorophenol	400 U	380 ∪ [370 U	360 U	350 U	350 U	350 U	350 U	58000
2,4-Dinitrophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	160000
4-Nitrophenol	400 U	380 U	370 ∪	360 U	350 U	350 U	350 U	350 U	
4,6-Dinitro-2-methylphenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
Pentachlorophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	3000
bis(2-Chloroethyl)ether	400 U	380 U	370 ∪	360 U	350 U	350 U	350 U	350 U	600
1,3-Dichlorobenzene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
1,4-Dichlorobenzene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	27000
1,2-Dichlorobenzene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	7000000
N-Nitroso-di-n-propylamine	400 U	380 U	370 U	360 U	350 U	350 U	350 ∪	350 U	90
Hexachloroethane	400 U	380 U	370 U	360 U	350 ∪	350 U	350 U	350 U	46000
Nitrobenzene	400 U	380 U	370 U	360 U	350 U	350 ∪	350 Ư	350 U	39000
Isophorone	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	670000
bis(2-Chloroethoxy)methane	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
1,2,4-Trichlorobenzene	400 U	380 U	370 U	360 U	350 U	350 ป	350 U	350 U	780000
Naphthalene	400 U	380 U	370 U	360 U	350 U	350 ∪	350 U	350 U	3100000
Hexachiorobutadiene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	8000
Hexachlorocyclopentadiene	400 U 400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	550000
2-Chloronaphthalene		380 U	370 U	360 U	350 U	350 U	350 U	350 U	
Dimethylphthalate	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
Acenaphthylene 2,6-Dinitrotoluene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	_
Acenaphthene	400 U 400 U	380 U 380 U	370 U	360 U	350 U	350 U	350 U	350 U	900
2,4-Dintrotoluene	400 U	380 U	370 U 370 U	360 U 360 U	350 U	350 U	350 U	350 U	4700000
Diethylphthalate	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	900
4-Chlorophenyl-phenylether	400 U	380 U	370 U		350 U	350 U	350 U	350 U	63000000
Fluorene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
N-Nitrosodiphenylamine	400 U	380 U	370 U	360 U 360 U	350 U	350 U	350 U	350 U	3100000
4-Bromophenyl-phenylether	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	130000
Hexachlorobenzene	400 U	380 U	370 U	360 U	350 U 350 U	350 U	350 U	350 U	
Phenanthrene	400 U	380 U	370 U	360 U	350 U		350 U	350 U	400
Anthracene	400 U	380 U	370 U	360 U		350 U	350 U	350 U	
Di-n-butylphthalate	1.08	92 J	130 J	68.1	350 U 100 J	350 U	350 U	350 U	23000000
Fluoranthene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	7800000
Pyrene	400 U	380 U	370 U	360 U	350 U	350 U 350 U	350 U	350 U	3100000
Butylbenzylphthalate	400 U	380 U	370 U	360 U	350 U		350 U	350 U	2300000
3,3'-Dichlorobenzidine	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	16000000
Benzo(a)anthracene	400 U	380 U	370 U	360 U	350 U	350 U 350 U	350 U	350 U	1000
Chrysene	400 U	380 U	370 U	360 U	350 U	350 U	350 U 350 U	350 U	900
bis(2-Ethylhexyl)phthalate	400 U	380 U	41 .	78 J	350 U 81 J	350 U 350 U	350 U	350 U	88000
Di-n-octyl phthalate	400 U	380 U	370 U	360 U	350 U	350 U		350 U	46000
Benzo(b)fluoranthene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	16000000
Benzo(k)fluoranthene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	900
Benzo(a)pyrene	400 U	380 U	370 U	360 U	350 U	350 U	350 U 350 U	350 U	9000
Indeno(1,2,3-cd)pyrene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	90
Dibenzo(a,h)anthracene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	900
Benzo(g,h,i)perylene	400 U	380 U	370 U	360 U	350 U I	350 U		350 U	90
2,4,5-Trichlorophenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	700000
2-Methylphenol	400 U	380 U	370 U	360 U	350 U	350 U	350 U 350 U	350 U	7800000
3+4-Methylphenols	800 U	760 U	730 U	720 U	710 U	710 U	700 U	350 U 700 U	3900000
Benzyl Alcohol	400 U	380 U	370 U	360 U	350 U	350 U	700 U	700 U 350 U	_
2,2'-oxybis(1-Chloropropane)	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
4-Chloroaniline	400 U	380 U	370 U	360 U	350 U	350 U	350 U		210000
2-Methylnaphthalene	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U 350 U	310000
4-Nitroaniline	400 U	380 U	370 U	360 U	350 U	350 U	350 U 350 U	350 U 350 U	
2-Nitroaniline	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	_
3-Nitroaniline	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
Dibenzofuran	400 U	380 U	370 U	360 U	350 U	350 U	350 U	350 U	
Azobenzene	400 U	380 U	370 U	380 U	350 U	350 U	350 U	350 U	
Benzoic acid	400 U	380 Ú	370 U	360 U	350 U	350 U	350 U	350 U	310000000
Total Carcinogenic PAHs	0	0	ND	ND	ND ND	ND ND	ND ND	ND ND	10000
Total PAHs		o o	ND ND	ND	ND	ND	ND ND	ND ND	10000
Total A2185Conc. SVOC (s)	80	92	171	146	181	ND	ND		100000

Qualifiers
U The compound was not detected at the indicated concentration

Notes

- Not established

Table C-9 SUMMARY OF ANALYTICAL RESULTS NGC PLANT 1 - EXTERIOR AREAS OF CONCERN SEMIYOLATILE ORGANIC COMPOUNDS

ample Location		orth of Recharge Basin	Pit in Room Adjacer	t to South Side of For			
Sample ID	D15801 17-19	D15B01 19-21	D17B01 0-2	D17B01 2-4	D17B01 4-6		Comparison Val
Sample Depth (ft)	17-19	19-21	0-2	2-4	4-6		for Areas
ampling Date	04/10/01	04/10/01	04/10/01	04/10/01	04/10/01		of Concern
latrix	S	S	S	S	s I		
Dilution Factor	10	10	10	10	10		1 1
Inits	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg		ug/kg
Phenol	350 U	370 U	340 U	340 U	340 U		47000000
-Chlorophenol	350 U	370 U	340 U	340 U	340 U		390000
-Nitrophenol	350 U	370 U	340 U	340 U	340 U		_
,4-Dimethylphenol	350 U	370 U	340 U	340 U	340 U		1600000
,4-Dichlorophenol	350 U	370 U	340 U	340 U	340 U		230000
-Chloro-3-methylphenol	350 U	370 U	340 U	340 U	340 U	l l	
4,6-Trichlorophenol	350 U	370 U	340 U	340 U	340 U		58000
,4-Dinitrophenol	350 U	370 ∪	340 U	340 Ü	340 U		160000
I-Nitrophenol	350 U	370 U	340 U	340 U	340 U		
,6-Dinitro-2-methylphenol	350 U	370 ∪	340 U	340 U	340 U		_
Pentachiorophenol	350 U	370 U	340 U	340 U	340 U	!	3000
is(2-Chloroethyl)ether	350 U	370 U	340 Ú	340 U	340 U		600
3-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U		"
4-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U	l i	27000
.2-Dichlorobenzene	350 U	370 U	340 U	340 U	340 U		7000000
-Nitroso-di-n-propylamine	350 U	370 U	340 U	340 U	340 U		700000
lexachloroethane	360 U	370 U	340 U	340 U	340 U	l	46000
itrobenzene	350 U	370 U	340 U	340 U	340 U	l	39000
ophorone	350 U	370 U	340 U	340 U	340 U		670000
is(2-Chloroethoxy)methane	350 U	370 U	340 U	340 U	340 U		6/000
,2,4-Trichlorobenzene	350 U	370 U	340 U	340 U	340 U	1	780000
lachthalene	350 U	370 U	340 U	340 U	340 U		310000
lexachlorobutadiene	350 U	370 U	340 U	340 U	340 U	1	8000
lexachiorocyclopentadiene	350 U	370 U	340 U	340 U	340 U		
-Chloronaphthalene	350 U	370 U	340 U	340 U	340 U		550000
-canoromagnic lateral Dimethylphthalate	350 U	370 U	340 U				-
cenaphthylene	350 U	370 U	340 U	340 U	340 U		"
.6-Dinitrotoluene	350 U	370 U	340 U	340 U	340 U		l
cenaphthene	350 U	370 U	340 U	340 U 340 U	340 U		900
4-Dinkrotoluene	350 U		340 U		39 1		4700000
		370 U		340 U	340 U		900
Diethylphthalate	360 U	370 U	340 U	340 U	340 U		63000000
l-Chlorophenyl-phenylether	350 U	370 U	340 U	340 U	340 U		-
luorene	350 U	370 U	340 U	340 U	48 J		3100000
f-Nitrosodiphenylamine		370 U	340 U	340 U	340 U		130000
-Bromophenyl-phenylether	350 U	370 U	340 U	340 U	340 U		
lexachlorobenzene	350 U	370 U	340 U	340 U	340 U		400
Thenanthrene	350 U	370 U	41 J	340 U	720		
Inthracene	350 U	370 U	340 U	340 U	92 J		23000000
X-n-butylphthelate	350 U	120 J	61 J	45 J	130 J		7800000
luoranthene	350 U	370 U	54 J	340 U	960		3100000
yrene	350 U	370 U	38 J	340 U	630	i i	2300000
Jutylbenzylphthalate	350 U	370 U	340 U	340 U	44 J	1	16000000
,3'-Dichlorobenzidine	350 U	370 U	340 U	340 U	340 U		1000
lenzo(a)anthracene	350 U	370 U	340 U	340 U	320 J	l l	900
hrysene	350 U	370 U	34 J	340 U	540	i i	88000
is(2-Ethylhexyl)phthelate	350 U	370 U	44 J	340 U	58 J		48000
I-n-octyl phthalate	350 U	370 U	340 U	340 U	340 U	l l	16000000
enzo(b)fluoranthene	350 U	370 U	35 J	340 U	590		900
enzo(k)fluoranthene	350 U	370 U	340 U	340 U	140 J	l	9000
enzo(a)pyrene	350 U	370 U	340 U	340 U	180 J	i	90
ideno(1,2,3-cd)pyrene	350 U	370 U	340 U	340 U	130 J		900
(benzo(a,h)anthracene	350 U	370 U	340 U	340 U	340 U	l l	90
enzo(g,h,i)perylene	350 U	370 U	340 U	340 U	120 J	l l	
4,5-Trichlorophenol	350 U	370 U	340 U	340 U	340 U	l l	7800000
Methylphenol	350 U	370 U	340 U	340 U	340 U	l l	3900000
4-Methylphenols	690 U	750 U	670 U	670 U	670 U		
enzyl Alcohol	350 U	370 U	340 U	340 U	340 U		
2'-oxybis(1-Chloropropane)	350 U	370 U	340 U	340 U	340 U	I	<u>-</u>
-Chloroaniline	350 U	370 U	340 U	340 U	340 U	1	310000
-Methylnachthalene	350 U	370 U	340 U	340 U	340 U	1	310000
-Nitroaniline	350 U	370 U	340 U	340 U	340 U		1 -
	350 U	370 U	340 U	340 U			
	350 U				340 U		
Nitroaniline	1 350 U	370 U	340 U	340 U 340 U	340 U		
-Nitroaniline -Nitroaniline					45 J	i i	
-Nitroaniline -Nitroaniline ibenzofuran	350 U	370 U	340 U				1 -
-Nitroaniline -Nitroaniline Vibenzofuran zobenzene	350 U 350 U	370 U	340 U	340 U	340 U		1 =
-Nitroaniline -Nitroaniline bibenzofuran zobenzene enzoic acid	350 U 350 U 350 U	370 U 370 U	340 U 340 U	340 U 340 U	340 U 340 U		310000000
-Nitroaniline -Nitroaniline fiberzofuran zobenzene enzoic zeld otal Carcinogenic PAHs	350 U 350 U 350 U ND	370 U 370 U ND	340 U 340 U 89	340 U 340 U ND	340 U 340 U 1900		310000000 10000
Nitroaniline Nitroaniline ibenzofuran zobenzene enzolc acid	350 U 350 U 350 U	370 U 370 U	340 U 340 U	340 U 340 U	340 U 340 U		

Qualiflers

U The compound was not detected at the indicated concentration.

J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero

Sample Location				Former Settling Tank	s/Leaching Pools			• • • • • • • • • • • • • • • • • • • •	
Sample ID	E1 B01 14-16	E1 B01 20-22	E01B02 12-14'	E01B02 20-22'	E01B03 12-14'	E01B03 20-22'	E01B04 12-14'	E01B04 20-22'	Companson Value
Sample Depth, ft	14-16	20-22	12-14	20-22	12-14	20-22	12-14	20-22	for Areas
Sampling Date	10/17/00	10/17/00	10/09/00	10/09/00	10/09/00	10/09/00	10/09/00	10/09/00	of Concern
Matrix	s i	s	s l	s	s	s	s	5	0.00
Dilution Factor	1.0	1.0	1.0	10	10	1.0	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ua/ka	ug/kg	ug/kg
Aroclor 1016	17 U	18 U	20 U	19 U	20 U	19 U	20 U	18 U	
Aroclor 1221	17 U	18 U	20 U	19 U	20 Ü	19 U	20 U	18 U	•
Aroclor 1232	17 U	18 U	20 U	19 U	20 U	19 U	20 U	18 U	•
Aroclor 1242	17 U	18 U	20 U	19 U	20 U	19 U	20 U	18 U	•
Arockor 1248	17 U	18 U	20 ∪	19 U	37	19 U	20 U	18 U	•
Aroclor 1254	17 U	18 U	20 U	19 Ü	20 U	19 U	20 U	18 U	•
Aroclor 1260	17 U	18 U	41	19 U	20 U	19 U	20 U	18 U	

Sample Location				Former Settling Ta	nks/Leaching Pools				1
Sample ID	E01B05 5-7'	E01B05 12-14'	E01805 18-20'	E1806 12-14	E1B06 20-22	E1B07 12-14	E1B07 20-22	E01 B08 18-20	Comparison Value
Sample Depth, ft	5-7	12-14	18-20	12-14	20-22	12-14	20-22	18-20	for Areas
Sampling Date	10/09/00	10/09/00	10/09/00	10/11/00	10/11/00	10/11/00	10/11/00	10/10/00	of Concern
Matrix	l s l	s	s	S	S	,, s	J	10.1000	or concern
Dilution Factor	10	1.0	10	10	1.0	10	10	10	1
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	19 U	21 U	18 U	17 U	17 U	17 U	17 U	17 U	1 . 1
Aroclor 1221	19 U	21 U	18 U	17 Ū	17 U	17 U	17 0	17 U	
Aroclor 1232	19 U	21 U	18 U Ì	17 U	17 U	17 0	17 0	17 Ŭ	1
Aroclor 1242	19 U	21 U	18 U	17 U	17 U	17 Ŭ	17 Ŭ	17 0	
Aroclor 1248	210	21 U	18 Ú	17 U	17 U	17 0	17 Ŭ	17 0	1 . 1
Aroclor 1254	19 U	21 Ú	18 U	17 U	17 U	17 0	17 U	17 0	1 . 1
Aroclor 1260	19 U	21 Ú	18 U	17 U	17 U	17 U	17 U	17 U	1 . !

Sample Location				Former Settling Tar	ks/Leaching Pools				
Sample ID	E01 B08 24-26	E01 B09 16-18	E01 B09 24-26	E01 B11 12-14	E01 B11 20-22	E01 B12 12-14	E01 B12 20-22	E01 B13 12-14	Companson Value
Sample Depth, ft	24-26	16-18	24-26	12-14	20-22	12-14	20-22	12-14	for Areas
Sampling Date	10/10/00	10/10/00	10/10/00	10/10/00	10/10/00	10/13/00	10/13/00	10/13/00	of Concern
Matrix	s	s	s	s l	s i	S	s	S	
Dilution Factor	10	10	10	10	10	10	10	10	!
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	18 U	17 U	17 U	20 U	20 U	21 U	35 U	31 U	
Aroclor 1221	18 U	17 U	17 Ū	20 U	20 U	21 U	35 U	31 U	1 . 1
Aroclor 1232	18 U	17 U	17 U	20 U	20 U	21 U	35 U	31 U	
Aroclor 1242	18 U	17 U	17 U	20 U	20 U	21 U	35 ப	31 U	
Aroclor 1248	18 U	17 U	17 Ü	20 U	20 U	21 U	35 U	31 U	
Aroclor 1254	18 U	17 U	17 U	20 U	20 U	21 U	35 U	31 U	
Aroclor 1260	18 U	17 U	17 U	20 U	20 U	21 U	35 U	31 U	

U - The compound was not detected at the indicated concentration

Notes
Companson Value for PCBs is 10,000 ug/kg in Sub-surface soils

Table C-10 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1 - EXTERIOR AREAS OF CONCERN PCBs

Sample Location		er Settling Tanks/Leaching Po			Former Heat Treat	Drainage Wells		Nine Leaching Pools	T
Sample ID	E01 B13 20-22	E01B14 12-14	E01B14 18-20'	E03 B01 16-18	E03 B01 22-24	E03 B02 14-16	E03 B02 20-22	E7 B11 5-7	Comparison Value
Sample Depth, ft	20-22	12-14	18-20	16-18	22-24	14-16	20-22	5-7	for Areas
Sampling Date	10/13/00	10/09/00	10/09/00	10/10/00	10/10/00	10/10/00	10/10/00	09/25/00	of Concern
Matrix	s I	s	s	s	s	s	s	S	0.00.100.11
Dilution Factor	10	10	10	1.0	10	10	10	10	
Units	ug/kg	ug/kg	Ug/kg	ug/kg	ug/kg	ug∕kg	ug/kg	ug/kg	ug/kg
				1					
Aroctor 1016	19 U	18 U	17 U	19 U	20 U	20 U	21 U	17 U	
Arocior 1221	19 U	18 U	17 Ū	19 U	20 U	20 U	21 Ŭ	17 U	•
Arocior 1232	19 U	18 U	17 U	19 Ū	20 U	20 U	21 Ŭ	17 U	•
Aroctor 1242	19 U	18 U	17 U	19 U	20 U	20 U	21 0	17 U	•
Arocior 1248	19 U	18 U	17 Ü	2000 D	20 U	20 U	21 Ŭ	17 U	
Aroctor 1254	19 U	18 U	17 Ú	19 U	20 U	20 U	21 Ŭ	17 U	•
Aroctor 1260	19 U	18 U	17 Ū	51	20 U	20 U	21 U	17 Ŭ	•

	Former Leaching Field with					**			1
Sample Location	Twenty Leaching Pools		Former Drum St	orage Area	1	Ex	isting On-site Recharge Basi	n	
Sample ID	E06 B09 4-7	E13 B01 1-3"	E13 B01 3-6"	E13 B02 0-2"	E13 802 2-4"	E18 B01 0-2	E18 B01 2-4	E18 802 0-2	Comparison Value
Sample Depth, ft	6-7	1-3	3-6	0-2	2-4	0-2	2-4	0-2	for Areas
Sampling Date	10/05/00	09/25/00	09/25/00	09/25/00	09/25/00	10/05/00	10/05/00	10/05/00	of Concern
Matrix	5	s I	s i	s	S	S	8	8	V. 33
Dilution Factor	1.0	10	10	10 l	10	10	10	10	
Units	∪g/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroctor 1016	17 U	20 U	18 U	96 U	19 U	17 U	20 U	17 U	
Aroctor 1221	17 0	20 U	18 U	96 Ŭ	19 0	17 U			1 . 1
Arodor 1232	17 0	20 U	18 U				20 U	17 U	1 1
Aroctor 1242	17 0	20 U		96 U	19 U	17 U	20 U	17 U	1 1
			18 U	96 U	19 U	17 U	20 U	17 U	l
Aroctor 1248	17.0	20 U	18 U	96 U	19 U	17 U	20 ∪	17 U	•
Aroctor 1254	17 U	20 U	18 U 🚶	700	130	17 U	20 ∪	17 U	1
Aroctor 1260	17.0	20 U	18 U	96 U	19 U	17 U	20 U	17 U	l

Sample Location	Existing On-site Recharge Basin	Former On-site Recharge Basin		Unident	ified Pit		Former AST and Salvage Are	•	
Sample IO Sample Depth, ft Sampling Date Matrix Dilution Factor Units	E18 B02 2-4 2-4 10/05/00 S 1.0 ug/kg	E19801 8-10* 8-10 10/09/00 S 1 0 ug/kg	E19801 18-20' 18-20 10/09/00 S 1 0	E20 B01 2-4* 2-4 09/26/00 S 1.0 ug/kg	E20 B01 4-6' 4-6 09/28/00 S 1 0	E21 802 0-2 0-2 09/29/00 \$ 1.0 ug/kg	E21 802 2-4 2-4 09/29/00 \$ 1.0 ug/kg	E21 B03 6-2 0-2 09/29/00 S 1 0 ug/kg	Comparison Value for Areas of Concern
						·			
Aroclor 1016 Aroclor 1221	19 U 19 U	20 U 20 U	17 U 17 U	18 U 18 U	18 U 18 U	18 U 18 U	18 U	19 U 19 U	:
Aroclor 1232 Aroclor 1242	19 U	20 U 20 U	17 U	18 Ü	18 U	18 Ú	18 Ü	19 Ū	
Arocior 1248	19 Ü	340	17 U 17 U	18 U 18 U	18 U 18 U	18 U 18 U	18 U 18 U	19 U 19 U	:
Aroctor 1254 Aroctor 1260	19 U 19 U	20 U 37	17 U 43	18 U 46	18 U 18 U	18 U 18 U	18 U 18 U	19 U 19 U	:

Qualifiers
U - The compound was not detected at the indicated concentration.

Notes
* Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Sample Location			ner AST and Salvage Area				Material Storage Area		ľ
Sample ID	E21 B03 2-4	E21 B04 0-2	E21 B04 2-4	E21 B05 0-2	E21 B05 2-4	E22 B01 0-2	E22 B01 2-4	E22 B02 0-2'	Companson Value
Sample Depth, ft	2-4	0-2	2-4	0-2	2-4	0-2	2-4	0-2	for Areas
Sampling Date	09/29/00	09/29/00	09/29/00	09/29/00	09/29/00	09/25/00	09/25/00	09/25/00	of Concern
Matnx	s I	s	s	s	s	s	s	S	0. 00
Dilution Factor	10	1.0	10	1.0	1.0	1.0	1.0	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	20 U	19 U	19 U	19 U	19 U	18 U	20 U	20 U	
Aroclor 1221	20 U	19 U	19 U	19 U	19 U	18 U	20 Ų	20 U	
Aroclor 1232	20 U	19 U	19 U	19 U	19 U	18 U	20 U	20 U	•
Arocior 1242	20 U	19 U	19 U j	19 U	19 U	18 U	20 U	20 U	•
Arockor 1248	20 U	19 U	19 U	19 U	19 U	18 U	20 ∪	20 U	
Aroclor 1254	20 U	19 U	19 U	19 U	19 U	18 U	20 U	20 U	٠ .
Aroclor 1260	20 ∪	19 U	19 U	19 U	19 U	18 U	20 U	20 U	

Sample Location			Material Storage Area			Former Conc	ete Sump Pit	Courtyard Between Hangars 1 and 2		
Sample ID	E22 B02 2-4	E22 B03 0-2	E22 B03 2-4	E22 B04 0-2'	E22 B04 2-4'	E25 B01 5-7	E25 B01 7-9	E34 B01 1-3	Comparison Value	
Sample Depth, ft	2-4	0-2	2-4	0-2	2-4	5-7	7-9	1-3	for Areas	
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	10/04/00	10/04/00	09/25/00	of Concern	
Matrix	s i	s i	s i	s I	s I	s i	s	s		
Dilution Factor	1.0	1.0	1.0	10	10	1.0	10	10		
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Arodor 1016	20 U	20 U	20 U	23 U	21 U 🖡	20 U İ	19 U	20 U		
Aroclor 1221	20 U	20 U [20 U	23 U	21 ∪	20 U	19 Ū	20 U	•	
Arodor 1232	20 U	20 U	20 U	23 U	21 U	20 U	19 Ü	20 U	•	
Arodor 1242	20 U	20 U	20 U	23 U	21 U	20 U	19 U	20 U	•	
Aroclor 1248	20 U	20 ∪	20 U	23 U	21 U	20 U	19 U	20 U		
Aroclor 1254	20 U	20 U	20 U	23 U	21 U	20 U	19 U	20 U	•	
Aroclor 1260	20 U	20 U)	20 U	23 U	21 U	20 U	19 U	20 0	•	

Sample Location			Cour	tyard Between Hangars 1 an	d 2			Area West of Hangar 1	
Sample ID	E34 B01 3-5	E34 B02 1-3'	E34 B02 3-5	E34 B03 0-2'	E34 B03 2-4'	E34 B04 0-2'	E34 B04 2-4'	E35 B01 0-2	Comparison Value
Sample Depth, ft] 3-5	1-3	3-5	0-2	2-4	0-2	2-4	0-2	for Areas
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	10/10/00	of Concern
Matrix	l s	s	s l	s I	s	s	S	S	
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	į
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	17 U 17 U 17 U 17 U	17 U 17 U 17 U 17 U	17 U 17 U 17 U 17 U	18 U 18 U 18 U 18 U 18 U 18 U	17 U 17 U 17 U 17 U	17 U 17 U 17 U 17 U 17 U 17 U 17 U	19 U 19 U 19 U 19 U	18 U 18 U 18 U	•
Aroclor 1248 Aroclor 1254 Aroclor 1260	17 U 17 U 17 U	270 17 U 17 U	17 U 17 U 17 U	18 U 18 U 18 U	17 U 17 U 17 U	17 U 17 U 17 U	19 U 19 U 19 U	18 U 18 U 30	

Qualifiers
U - The compound was not detected at the indicated concentration,

Notes
* Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Table C-10 SUMMARY OF ANALYTICAL RESULTS NGC-PLANT 1 - EXTERIOR AREAS OF CONCERN PCBs

Sample Location		Area West of Hangar 1			Former Drainage Swale	(N of Maintenance Area)		Former Discoloration (SE Parking Area)	
Sample ID	E35 B01 2-4	E35 B02 0-2	E35 B02 2-4	E36 B01 1-3'	E36 B01 3-5'	E36 B02 1-3'	E36 B02 3-5"	E37 B01 0-2	Comparison Value
Sample Depth, ft	2-4	0-2	2-4	1-3	3-5	1-3	3-5	0-2	for Areas
Sampling Date	10/10/00	10/10/00	10/10/00	09/25/00	09/25/00	09/25/00	09/25/00	09/29/00	of Concern
Matrix	l s l	s	s	s I	s	l s l	S	l s	1
Dilution Factor	10 1	10	10	10	10	10	10	10	
Units	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg
Aroclor 1016	180	17 U	18 U	19 U	17 U	71 U	1800 U	18 U	
Aroctor 1221	180	17 U	18 U	19 ປ	17 ט	71 ປ	1800 U	18 Ü	•
Aroctor 1232	180	17 U	18 U	19 U	17 U	71 U	1800 U	18 Ú	•
Aroclor 1242	18 U	17 U	18 U	19 U	17 U	71 U	1800 U	18 U	•
Aroctor 1248	180	17 U	18 U	160	17 U	270	1800 U	18 Ü	•
Aroctor 1254	18 U	17 U	18 U	19 U	17 U	71 U	13000	18 Ū	
Aroclor 1260	18 U	17 U	18 U	19 U	17 U	71 U	1800 U	18 Ü	

Sample Location	Forme	Former Discoloration (SE Parking Area)			r Exterior Dry Well	Dry Well Outside Former	Facility Maintenance area	Dry Well Outside Former Paint Tunnel	
Sample ID	E37 B01 2-4	E37 B02 0-2	E37 B02 2-4	E38 B01 10-12	E38 B01 20-22	E39 B01 8-10	E39 B01 20-22	E41 B01 8-10	Comparison Value
Sample Depth, R	2-4	0-2	2-4	10-12	20-22	6-10	20-22	8-10	for Areas
Sampling Date	09/29/00	09/29/00	(9/29/00	10/12/00	10/12/00	10/12/00	10/12/00	10/12/00	of Concern
Matrix	S	S	s	s	S	s	s	S	
Dilution Factor	10	10	10	10	10	10	10	10	
<u>. </u>	ug/kg	ug/kg	ug/kg_	υ <u>α</u> /kg	υρ/κο	ug/kg	ug/kg	υρ/κα	ug/kg
Aroctor 1016	18 U	18 U	17 U	19 U j	20 U	17 U	17 U	21 U	•
Aroclor 1221	18 U	18 U	17 U	19 U]	20 U	17 U	17 U	21 U	•
Aroctor 1232	18 U	18 U	17 U	19 U	20 U	17 U	17 U	21 U	•
Aroctor 1242	16 U	18 U 1	17 U	19 U	20 ∪	17 U	17 U	21 Ú	•
Aroclor 1248	18 U	18 U	17 U	19 U	20 U	17 U	17 Ū	21 Ú	•
Arocior 1254	18 U	18 U	17 U	19 U	20 U	17 U j	17 Ú	21 U	•
Aroctor 1260	18 U	18 U	17 U	19 U	20 ∪	17 U	17 Ú	21 U	•

Sample Location	Dry Well Outside Former Paint Tunnel	Unidentified Pit Outs	ide Boller Room		
Sample ID Sample Depth, ft Sampling Data Matrix Dilution Factor	E41 B01 18-20 18-20 10/12/00 S 1 0	E42 B01 3-6 3-6 10/12/00 S 1 0	E42 B01 5-7 5-7 10/12/00 S 1 0		Comparison V for Areas of Concern
Units		ug/kg	ug/kg		ug/kg
	1	1		i	1
Arocior 1016	17 U	18 U	17 U		
Aroclor 1221	17 Ŭ	18 U	17 Ŭ		·
Aroctor 1232	17 U	18 U	17 U	i i	
Aroctor 1242	17 U	18 U	17 U		
Aroctor 1248	55	18 U	17 Ú		1 .
Aroctor 1254	17 U	18 U	17 U	ļ	1 •
Aroctor 1260	17 U	18 U Ì	17 U	I I	1 1 .

Notes
Comparison Value for PCBs is 10,000 ug/kg in Sub-surface soils

Sample Location				Material Si	torage Area				Former Concrete Sump
Sample ID	E22 B02 0-2'	E22 B02 2-4	E22 B03 0-2	E22 B03 2-4	E22 B01 0-2	E22 B01 2-4	E22 B04 0-2'	E22 B04 2-4'	E25 B01 5-7
Sample Depth (ft)	0-2	2-4	0-2	2-4	0-2	2-4	0-2	2-4	5-7
Sampling Date	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	10/4/00
Matrix	s	l s l	s	s	s	s	s	S	s
Dilution Factor	10	1.0	10	10	10	10	10	10	10
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Propylene glycol	12 U) 12 U)	12 U	12 U	11 U	12 U	14 U)	12 U	∬ 12 Ų
Ethylene glycol	12 U	12 U	12 U	12 U	11 U	12 U	14 U	12 U	12 U

Sample Location	Former Concrete Sump				Court yard Batus	on Hanger 1 and 2							
Sample ID	E25 B01 7-9	E34 B01 1-3	Courtyard Between Hangar 1 and 2 E34 B01 1-3										
	1 '	E34 BUI 1-3	E34 B01 3-5	E34 B02 1-3	E34 B02 3-5'	E34 B03 0-2'	E34 B03 2-4'	E34 B04 0-2'	E34 B04 2-4'				
Sample Depth (ft)	7-9	1-3	3-5	1-3	3-5	0-2	2-4	0-2	2-4				
Sampling Date	10/4/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00	09/25/00				
Matrix	l s l	s [s	s	s	s	s	s	s				
Dilution Factor	10	10	10	10	10	10	10	10	10				
Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg				
Propylene glycol	12 U	12 U	10 U	10 U	10 U	11 U	10 U	10 U	11 U				
Ethylene glycol	12 U	12 U	10 U	10 U	10 U	11 U	10 U	10 U	11 U				

U The compound was not detected at the indicated concentration

Sample ID	PLT1MW-01	PLT1MW-02	PLT1MW-03	PLT1MW-04	PLT1GM-14	PIT-INFFTMW
Lab Sample Number	L1896-07	L1896-04	L1896-02	L1896-03	L1896-09	L1951-01
Sampling Date	10/23/00	10/23/00	10/23/00	10/23/00	10/24/00	10/27/00
Matrix) w	l w	w	l w	l w	l w
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
METALS						
Arsenic	15.7	5.7 t	J 5.7 L	ا 5.7 ل	ı 5.7 ل	57 U
Barium	19.2 B	7.1	61.9 E	51.6 E	45.8 E	35.9 B
Cadmium	2 U	2 (ا (2	ا (ا ا	2 U
Chromium	36.8	3.7 (J 3.7 ∪	ا ا	J 3.8 E	26.5
Lead	9	22 (ا 2.2 ل	ا 2.2	3.6	2.2 U
Mercury	0.2 U	0.2 l	ا 0.2 ل	الا 0.2 ل	اا 0.2 ل	02 U
Selenium	4 U	4 (J 4 U	ا (ያ	4 Ū
Silver	1.6 U	1.6 (J 16 U	ا (1	ا 1.6 ل	1.6 Ū

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found between CRDL and IDL
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed

Sample ID	PLT1MW-01		PLT1GM-14		PIT-INFFTMWD	
Lab Sample Number	L1896-07		L1896-09		1951-01	
Sampling Date	10/23/00	10/23/00			10/27/00	
Matrix	W		W		W	
Dilution Factor					1.0	
Units	ug/L		ug/L		ug/L_	
METALS						
Arsenic	3.7	U	3.7	U	5.7	U
Barium	4.6	В	36.9	В	23.9	В
Cadmium	0.4	U	0.4	U	2.8	В
Chromium	9	В	0.5	니	3.7	U
Lead	1.4	U	1.8	В	2.2	U
Mercury	0.2	U	0.2	U	0.2	U
Selenium	3.8	U	3.8	U	4	U
Silver	0.6	U	0.6	U	1.6	U

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found between CRDL and IDL
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- NR Not analyzed.

Table C-13 NGC-PLANT 1 - EXTERIOR MONITORING WELL VOLATILE ORGANIC COMPOUNDS

VOLATILE ORGANIC COMPOUNDS								
Sample ID	PLT1MW-01	PLT1MW-02	PLT1MW-03	PLT1MW-04	PIT-INFFTMW			
Lab Sample Number	L1896-07	L1896-04	L1896-02	L1896-03	L1951-01			
Sampling Date	10/23/00	10/23/00	10/23/00 W	10/23/00 W	10/27/00 W			
Matrix	W 10	W 10	10	10	10			
Dilution Factor	10 υg/L	ug/L	ug/L	ug/L	ug/L			
Units	UyL	ugi	ugic	- ogc				
Chloromethane	5 บ	5 U	5 U	5 U	5 U			
Bromomethane	5 U	5 U	5 U	5 U	5 U			
Vinyl Chlonde	5 U	5 U	5 U	5 U	5 U			
Chloroethane	5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U			
Methylene Chlonde	5 U 5 U	5 U 5 U	5 U	5 U	5 U			
Trichlorofluoromethane 1,1-Dichloroethene	5 U	5 U	5 U	5 U	5 U			
1.1-Dichloroethane	5 U	5 U	5 U	5 U	5 U			
trans-1,2-Dichloroethene	5 U	5 Ü	5 Ü	5 U	5 U			
cis-1,2-Dichloroethene	5 U	5 U	5 U	5 U	4.3 J			
Chloroform	5 Ü	2 J	5 U	5 U	5 U			
1,2-Dichloroethane	5 U	5 U	5 U	5 U	5 U			
1,1,1-Trichloroethane	5 U	5 U	5 U	5 U	5 U			
Carbon Tetrachloride	5 U	5 U	5 U	5 U	5 U			
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U			
1,2-Dichloropropane	5 U	5 U	5 U	5 U	5 U 5 U			
as-1,3-Dichloropropene	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U			
Trichloroethene	5 U	5 U	5 U	5 U	5 U			
Dibromochloromethane 1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U			
Benzene	5 U	5 0	5 υ	5 Ŭ	5 Ü			
t-1,3-Dichloropropene	5 U	5 Ū	5 U	5 U	5 U			
2-Chloroethyl Vinyl Ether	5 U	5 U	5 U	5 U	5 U			
Bromoform	5 ป	5 U	5 U	5 U	5 U			
Tetrachloroethene	5 U	5 U	5 U	5 U	5 U			
1,1,2,2-Tetrachloroethane	5 U .	5 U	5 U	5 U	5 U			
Toluene	5 U	5 U	5 U	5 U	5 U			
Chlorobenzene	5 U	5 U	5 U	5 U	5 U			
2-Butanone	5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U			
Ethyl Benzene	5 U 5 U	5 U 5 U	5 U	5 U	5 U			
m/p-Xylenes o-Xylene	5 U	5 U	5 U	5 U	5 U			
Acetone	5 U	5 0	5 0	5 Ŭ	5 Ü			
Carbon Disulfide	5 Ü	5 U	5 U	5 U	5 U			
4-Methyl-2-Pentanone	5 U	5 U	5 U	5 U	5 U			
2-Hexanone	5 U	5 U	5 U	5 U	5 U			
Styrene	5 U	5 U	5 U	5 U	5 บ			
1,3-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U			
1,4-Dichlorobenzene	5 U	5 U	5 U	5 U	5 U 5 บ			
1,2-Dichlorobenzene	5 บ 5 บ	5 U 5 U	5 U 5 U	5 U 5 U	5 U			
Dichlorodifluoromethane	25 U	25 U	25 U	25 U	25 U			
Vinyl Acetate 2,2-Dichloropropane	5 U	5 0	5 Ü	5 Ŭ	5 U			
Bromochloromethane	5 U	5 Ū	5 0	5 U	5 U			
1,1-Dichloropropene	5 U	5 Ū	S Ū	5 U	5 U			
1.3-Dichloropropane	5 U	5 U	5 U	5 U	5 U			
1,2-Dibromoethane	5 U	5 U	5 U	5 U	5 U			
Isopropylbenzene	5 U	5 U	5 U	5 U	5 U			
1,2,3-Trichloropropane	5 U	5 U	5 U	5 U	5 U			
1,1,1,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U			
Bromobenzene	5 U	5 U	5 U	5 U	5 U			
n-propyibenzene	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U			
2-Chlorotoluene 1,3,5-Trimethylbenzene	5 U	5 U	5 U	50	5 U			
4-Chlorotoluene	5 U	5 U	5 U	50	5 U			
tert-Butylbenzene	5 U	5 U	5 Ŭ	5 Ŭ	5 U			
1,2,4-Trimethylbenzene	5 Ŭ	5 U	5 U	5 U	2.1 J			
sec-Butylbenzene	5 U	5 U	5 U	5 U	5 U			
p-Isopropyltoluene	5 U	5 U	5 U	5 U	5 U			
Dibromomethane	5 U	5 U	5 U	5 U	5 U			
n-Butylbenzene	5 U	5 U	5 U	5 U	5 U			
1,2-Dibromo-3-Chloropropane	5 U	5 U	5 U	5 U	5 U 5 U			
1,2,4-Trichlorobenzene	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U			
Hexachlorobutadiene	5 U	5 U	5 U	5 U	5 U			
Naphthalene 1.2.3-Trichlorobenzene	5 U	5 U	5 U	5 U	5 U			
Methyl tert-butyl Ether	5 U	ร์ บั	5 Ü	5 U	5 U			
Total Conc. VOAs (s)	ND	2	ND	ND	6.4			
· · · · · · · · · · · · · · · · · · ·								

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
 B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample NR - Not analyzed.

Table C-14 NGC-PLANT 1 - EXTERIOR MONITORING WELL SEMIVOLATILE ORGANIC COMPOUNDS

Sample ID	PLT1MW-01	PLT1MW-02	PLT1MW-03	PLT1MW-04	PIT-INFFTMW
Lab Sample Number	L1896-07	L1896-04	L1896-02	L1896-03	L1951-01
Sampling Date	10/23/00	10/23/00	10/23/00	10/23/00	10/27/00
Matnx	w	l w	l w	w	w
Dilution Factor	10	10	10	10	10
Units	ug/L	ug/L	ug/L	ug/L	ug/L
		1			
					40.11
Phenol	10 U	10 U	10 U	10 U	10 U 10 U
2-Chlorophenol	10 U	10 U	10 U	10 U 10 U	10 U
2-Nitrophenol	10 U	10 U	10 U 10 U	10 U	10 U
2,4-Dimethylphenol	10 U 10 U	10 U 10 U	10 U	10 U	10 U
2,4-Dichlorophenol 4-Chloro-3-methylphenol	10 U	10 U	10 U	10 U	10 U
2,4,6-Trichlorophenol	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrophenol	10 U	10 U	10 U	10 U	10 U
4-Nitrophenol	10 U	10 บ	10 U	10 U	10 U
4,6-Dinitro-2-methylphenol	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethyl)ether	10 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	10 U	10 U	10 U 10 U
1,4-Dichlorobenzene	10 U	10 U	10 U	10 U 10 U	10 U
1,2-Dichlorobenzene	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U
N-Nitroso-di-n-propylamine Hexachloroethane	10 U	10 U	10 U	10 U	10 U
Nitrobenzene	10 U	10 U	10 U	10 U	10 U
Isophorone	10 U	10 U	10 U	10 U	10 U
bis(2-Chloroethoxy)methane	10 U	10 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	10 U	10 U	10 U	10 U	10 U
Naphthalene	10 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	10 U	10 U	10 U	10 U	10 U
2-Chloronaphthalene	10 U	10 U	10 U	10 U	10 U 10 U
Dimethylphthalate	10 U	10 U	10 U	10 U 10 U	10 U
Acenaphthylene 2.6-Dinitrotoluene	10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U
Acenaphthene	10 U	10 U	10 U	10 U	10 U
2,4-Dinitrotoluene	10 U	10 U	10 U	10 U	10 U
Diethylphthalate	16 J	10 U	10 U	29 J	10 U
4-Chlorophenyl-phenylether	10 U	10 U	10 U	10 U	10 U
Fluorene	10 U	10 U	10 U	10 U	11J
N-Nitrosodiphenylamine	10 U	10 U	10 U	10 U	10 U
4-Bromophenyl-phenylether	10 U	10 U	10 U	10 U	10 U
Hexachlorobenzene	10 U	10 U	10 U	10 U	10 U
Phenanthrene	10 U	10 U	10 U	10 U 10 U	10 U 10 U
Anthracene	10 U 78 J	10 U 1 2 J	10 U 1 3 J	13	10 U
Di-n-butylphthalate Fluoranthene	10 U	10 U	10 U	10 U	10 U
Pyrene	10 U	10 U	10 U	10 U	2 J
Butylbenzylphthalate	33 J	10 U	10 Ü	3 J	10 U
3,3'-Dichlorobenzidine	10 U	10 U	10 U	10 U	10 U
Benzo(a)anthracene	10 U	10 U	10 U	10 U	10 U
Chrysene	10 U	10 U	10 U	10 U	10 U 1.8 J
bis(2-Ethylhexyl)phthalate	1.8 J	10 U	10 U 10 U	15 J 10 U	1.8 J 10 U
Di-n-octyl phthalate Benzo(b)fluoranthene	10 U 10 U	10 U 10 U	10 U	10 U	10 U
Benzo(b)fluoranthene Benzo(k)fluoranthene	10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene	10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene	10 U	10 U	10 U	10 U	10 U
Benzo(g,h,ı)perylene	10 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	10 U	10 U	10 U	10 U	10 U
2-Methylphenol	10 U	10 U	10 U	10 U	10 U
3+4-Methylphenois	20 U	21 U	20 U	20 U	20 U
Benzyl Alcohol	10 U	10 U	10 U	10 U 10 U	10 U 10 U
2,2'-oxybis(1-Chloropropane)	10 U	10 U	10 U 10 U	10 U	10 U
4-Chloroaniline 2-Methylnaphthalene	10 U 10 U	10 U 10 U	10 U	10 U	10 U
4-Natroaniline	10 U	10 U	10 U	10 U	10 U
2-Nitroaniine	10 U	10 U	10 U	10 U	10 U
3-Nitroaniline	10 U	10 U	10 U	10 U	10 U
Dibenzofuran	10 U	10 U	10 U	10 U	10 U
Azobenzene	10 U	10 U	10 U	10 U	10 U
Benzoic acid	10 U	10 U	10 U	10 U	10 U
Total Carcinogenic PAHs	0	0	0	0	0
Total Coop RNAs (c)	0	0	0	0 20 4	49
Total Conc. BNAs (s)	14 5	12	13	20 4	49

- Qualifiers

 U The compound was not detected at the indicated concentration

 J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concertation given is an approximate value.

 B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample. NR Not analyzed.

Table C-15 NGC-PLANT 1 - EXTERIOR MONITORING WELL PCB'S

Sample ID	PLT1MW-01	PLT1MW-02	PLT1MW-03	PLT1MW-04	PLT1GM - 14	PIT-INFFTMW
Lab Sample Number	L1896-07	L1896-04	L1896-02	L1896-03	L1896-09	L1951-01
Sampling Date	10/23/00	10/23/00	10/23/00	10/23/00	10/23/00	10/27/00
Matrix	w	w	w	w [w	w
Dilution Factor	1.0	1.0	1.0	1.0	1.0	1.0
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Aroclor 1016	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor 1221	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor 1232	0.5 U	0.5 U	0.5 ป	0.5 U	0.5 U	0.5 U
Arodor 1242	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Arocior 1248	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Arocior 1254	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Aroclor 1260	0.5 U	0.5 U_	0.5 U	0.5 U	0.5 U	0.5 U

Qualifiers

- U The compound was not detected at the indicated concentration
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concetration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NR - Not analyzed.

5/30/01