Steven Scharf - Stipulation Agreement Site 1-30-003C

From:	Kevin Lumpe <klumpe@steelequities.com></klumpe@steelequities.com>
To:	"sxscharf@gw.dec.state.ny.us" <sxscharf@gw.dec.state.ny.us></sxscharf@gw.dec.state.ny.us>
Date:	11/1/2013 10:09 AM
Subject:	Stipulation Agreement Site 1-30-003C
Attachments:	SE-Plant2SVILtrRpt(050608).pdf; SE-Plant2SVILtrRpt(061509-NoDUSR).pdf

Steve,

As a follow-up to our conversation on 10/25/13 I have attached the 2 reports that we submitted to your office in connection with the implementation of the Stipulation Agreement.

The reports that were initially reviewed to determine the sub-slab/ IAQ locations in our Soil Vapor Intrusion Investigation are referenced in the second paragraph of the Background section of the May 6, 2008 submittal.

"Historic environmental reports associated with the former Grumman Plant 2 building were reviewed including the April 1996 Phase II Site Assessment For Plant 2 and the December 1996 Supplemental Phase II Site Assessment For Plant 2 prepared by Dvirka & Bartalucci, the December 1997 Supplemental Site Investigation Report and Delisting Petition prepared by Eder Associates, and various correspondence from the NYSDEC regarding these documents."

This should bring everyone up to date. Please forward as needed, to Steve and Joe. Regards

Kevin J. Lumpe Steel Equities 700 Hicksville Road Bethpage, NY 11714 Phone: 516-576-3165 Fax: 516-576-3170 Klumpe@steelequities.com

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com 6 May 2008

Mr. Steven M. Scharf, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Action, Bureau A 625 Broadway Albany, NY 12233-7015

Re: Soil Vapor Intrusion Investigation Results Interior Building Areas Near Phase II Area Nos. 25 & 46 Former Grumman Plant 2, Bethpage, New York Environmental Resources Management

520 Broad Hollow Road Suite 210 Melville, NY 11747 (631) 756-8900 (631) 756-8901 (fax) http://www.erm.com

Dear Mr. Scharf:

On behalf of Steel Los III, LP, (Steel Los III), ERM Consulting & Engineering, Inc. (ERM) has prepared this letter report to present the results of the Soil Vapor Intrusion (SVI) Investigation recently performed within the former Grumman Plant 2 building near Area of Concern Nos. 25 (Former Paint Storage, Mixing and Stripping Room) & 46 (Machine Pit) identified in a Phase II investigation conducted by Dvirka & Bartalucci in 1996. The SVI investigation was conducted pursuant to the Stipulation Agreement between Steel Los III and NYSDEC dated 4 February 2008, and involved collection of six (6) sub-slab vapor samples in accordance with ERM's 28 January 2008 Revised SVI Investigation Work Plan (the Work Plan) that was approved by New York State Department of Environmental Conservation.¹

Background

The New York State Department of Environmental Conservation (NYSDEC) requested that Steel Los III perform a SVI investigation to evaluate whether there are any potential soil vapor intrusion issues within the former Grumman Plant 2 building that are associated with the former Areas of Concern.

Historic environmental reports associated with the former Grumman Plant 2 building were reviewed including the April 1996 Phase II Site Assessment For Plant 2 and the December 1996 Supplemental Phase II Site Assessment For Plant 2 prepared by Dvirka & Bartalucci, the December 1997 Supplemental Site Investigation Report and Delisting Petition prepared by Eder Associates, and various correspondence from the NYSDEC regarding these documents.

¹ Letter dated 31 January 2008 from Steve Scharf-NYSDEC to Chris Wenczel-ERM.

Based on these reviews, only two former areas were identified where volatile organic compounds (VOCs) were detected in soil at concentrations above the corresponding NYSDEC Soil Cleanup Objectives for those compounds. The former areas, by number, name and corresponding compounds detected in soil at that location are:

Area	Former Area Name	Detected Compounds
25	Paint Storage, Mixing &	Methylene Chloride 1,1-DCA,
	Stripping Room	1,2-DCE, 1,1,1-TCA
46	Former Machine Pit	ТСЕ, 1,1,1-ТСА

1,1-DCA: 1,1-Dichloroethane 1,2-DCE: 1,2-Dichloroethene 1,1,1-TCA: 1,1,1-Trichloroethane

The Work Plan called for the collection sub-slab soil vapor samples from six (6) locations; two (2) in the vicinity of Area 25 - Former Paint Storage, Mixing and Stripping Room, and four (4) in the vicinity Area 46 – Former Machine Pits. Soil vapor sampling locations SS-03 and SS-06 were positioned at the perimeter of Area 46 because the machine pits have been filled in and a second concrete slab poured in-place over the pits. Soil vapor sampling locations SS-04 and SS-05 were relocated to the east of Area 46 at the request of the NYSDEC, and the revised locations were incorporated into the NYSDEC-approved Work Plan.

Sub-Slab Vapor Sampling

The sub-slab vapor sampling was performed on 25 February 2008. Sampling locations SS-01 through SS-06 are shown in Figure 1, which were slightly adjusted in the field based on accessibility and positioned to cause minimal disruption to the business activities of the current tenant, the United States Postal Service.

Sampling was performed following the protocols outlined in the NYSDEC-approved Work Plan and in accordance with the applicable protocols identified in the NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006). An "Indoor Air Quality Questionnaire and Building Inventory, and Product Inventory Forms" was completed (Attachment 1) contained in Appendix B of the NYSDOH Guidance. Each sampling location was screened using a photoionization detector (PID) to identify areas of potential interferences, and removing possible sources of VOCs from the sampling area. The PID was properly calibrated using isobutylene at the beginning of the day. No interferences were noted at the sampling locations. All sub-slab soil vapor samples were collected over the same 8-hour period with individually-certified clean Summa[®] canisters fitted with appropriately programmed regulators. All the pertinent data was recorded for each sampling location and is summarized in Table 1.

Laboratory Analysis & Reporting

The six summa canisters were shipped via overnight courier to Alpha Analytical Laboratories (NYSDOH Certification No. 11627) in Mansfield, Massachusetts, an Environmental Laboratory Accreditation Program-(ELAP)-certified laboratory. The sub-slab vapor samples were analyzed for VOCs using USEPA Method TO-15, with a target detection limit of 1.0 micrograms per cubic meter (μ g/m³) or less for all parameters. However, all samples required dilution during analyses due to elevated concentrations of target compounds, which resulted in higher detection limits.

All laboratory data was reported in ASP Category B deliverable format and a data usability validation was performed by a qualified ERM Chemist. The Data Usability Report which includes laboratory data summary sheets is presented in Attachment 2. The validated analytical results are presented in Table 2. The full ASP Category B laboratory data deliverable is provided on the CD presented in Attachment 3. Detected compounds and associated concentrations are summarized below.

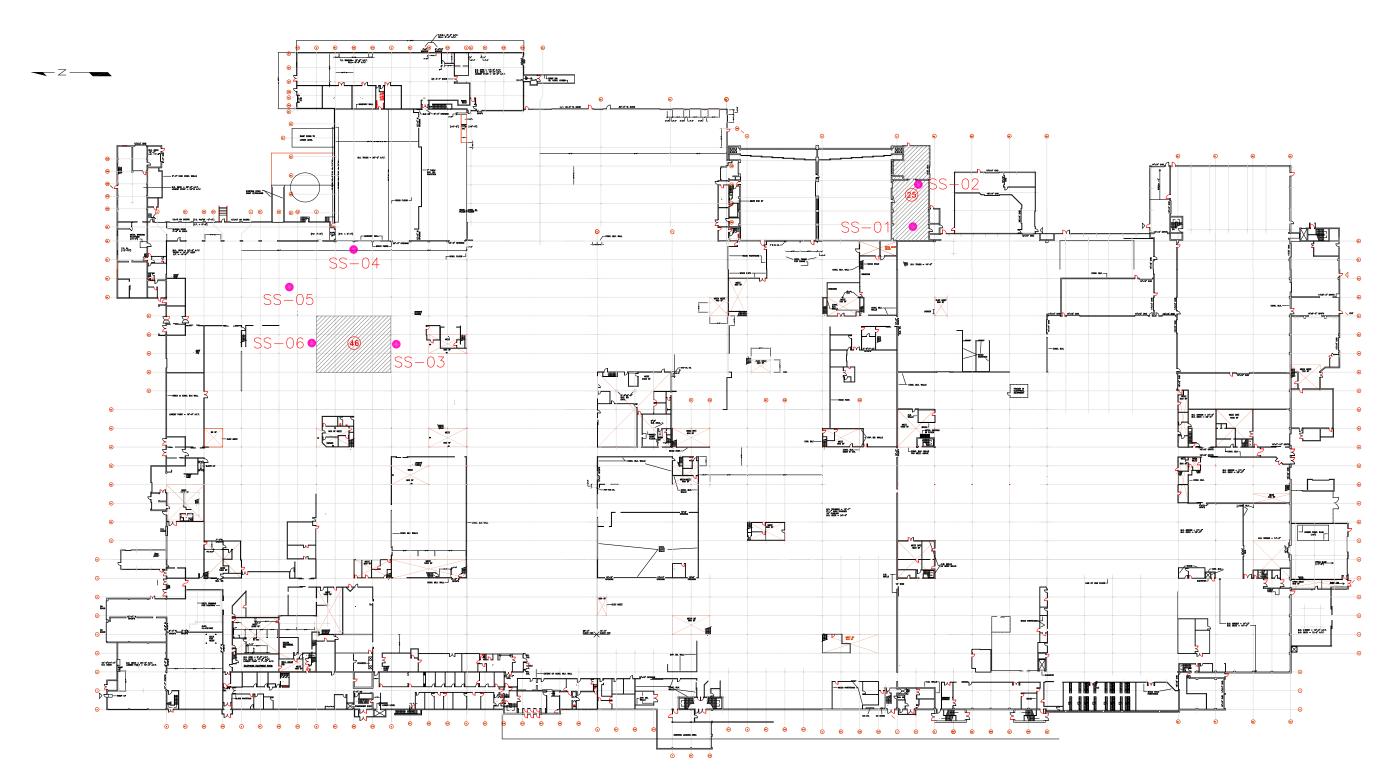
Detected Compounds	Are	ea 25		Are	ea 46	
(µg/m³)	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
1,1,1-Trichloroethane	33,400	1,260	2,050	4.01	11.7	23.7
1,1-Dichloroethane	3,200	130	U	U	U	U
1,1-Dichloroethene	1,520	14.3	U	U	U	U
1,2,4-Trimethylbenzene	U	U	U	67.8	175	12.4
1,3,5-Trimethybenzene	U	U	U	24.3	25.4	3.3
1,3-Butadiene	U	U	U	1.84	U	U
2-Butanone	U	U	15.1	17.2	24.3	11
4-Ethyltoluene	U	U	U	10.2	16.2	2.98
4-Methyl-2-pentanone	U	U	U	297	U	6.1
Acetone	U	5.98	96.3	327	138	58.8
Benzene	U	U	U	4.1	U	2.53
Carbon disulfide	175	U	U	3.96	U	1.96
Carbon tetrachloride	454	26.5	U	U	U	U
Chloroethane	21.6	U	U	U	U	U
Chloroform	815	26.8	24	3.71	U	15.6
Cis-1,2-Dichloroethene	15.5	U	U	2.89	U	U
Cyclohexane	10.7	U	U	U	U	U
Ethanol	55	U	93.4	46.7	252	9.56
Ethylbenzene	U	U	U	17.1	U	3.85
Freon-113	196	37.2	U	U	U	U
Heptane	U	U	U	2.94	U	2.32
Isopropanol	U	U	U	7.74	U	6.15
Methylene chloride	21.4	U	U	U	U	U
n-Hexane	U	U	U	2.27	U	2.22
o-Xylene	U	U	U	36.1	U	3.49
p/m-Xylene	U	U	U	91.3	U	14
Propylene	U	U	U	8.34	U	U
Tetrachloroethene	U	138	U	6.33	U	2.86
Toluene	U	U	11.7	22.1	21.9	14.2
Trichloroethene	128	723	1,320	724	290	395
Trichlorofluoromethane	U	U	13.7	3.51	U	16.8

Mr. Steven M. Scharf, P.E. 6 May 2008 Page 4

The exact sources of VOCs in sub-slab soil vapor are unknown. Although minor use of detergent, lubricants and degreasers by the current tenant in servicing package conveyance systems and general housekeeping was noted, it is highly unlikely that current tenant operations are responsible for the sub-slab findings since the PID screening at each sampling location did not indicate the presence of VOCs in the ambient air.

We do not expect resultant impacts to indoor air quality from the subslab vapors because the integrity of the floor slab is very good in these areas, and there are powerful heating/ventilation/air conditioning systems that continuously feed and circulate fresh air from outdoors under a positive pressure to all occupied areas of the building, which would suppress sub-slab vapors from entering the building. We would like to meet with you to discuss these results. If you have any additional questions or comments, please do not hesitate to contact me at (631) 756-8900.

Very truly yours,


D. Wengo

Chris W. Wenczel Senior Consultant

Attachments

cc: Kevin Lumpe, Steel Los III, LP Manfred Bohms, Steel Los III, LP John Swartwout, NYSDEC Walter Parish, NYSDEC

FIGURES

NO	DATE	APPR.	REVISION	NO.	DATE APPR. REVISION	STEEL LOS III	CHECKED DESIGN ENGINEER	DATE	DRAWING NO.
-		-		_		PLANT 2 BUILDING	PROJECT ENGINEER	SOIL VAPOR SAMPLING LOCATIONS	1
							PROJECT MANAGER	25 February 2008	REV. NO.
						Environmental Resources Management	APPROVED	DRAWN EMF/CWW DATE REVISION DATE: REVISION DATE:	
						ERM	APPROVED	SCALE JOB NO. PILE NAME: 0072943 new-M-2	SHEET OF

<u>LEGEND</u>

- SOIL VAPOR SAMPLING LOCATION
- 45 FORMER AREA OF CONCERN

0		50'			10	00'	
	-	-	-				
GR	чрні	с	sc	ALE	IN	FEET	

TABLES

0072943

Table 1 Sub-Slab Vapor Sampling - 25 February 2008 Former Areas 25 & 46 Steel Equities - Plant 2

	Are	ea 25	Area 46			
Sample ID	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
Sampler's Name	KP/MJB	KP/MJB	KP/MJB	KP/MJB	KP/MJB	KP/MJB
	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08
Date, Time And PID Reading Following	1000	0955	0950	0945	0940	0935
Purge	0.0PPM	0.0PPM	50.3PPM	9.1PPM	18.1PPM	29.1PPM
	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08
	1000	0955	0950	0945	0940	0935
Date, Time And PID Reading in Room	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM
	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08
	1003	1002	0959	0958	0957	0956
Date And Time Of Sample Start And Stop	1802	1801	1758	1739	1740	1755
Summa [®] Canister Serial Number	210	235	459	393	320	198
Flow Controller ID Number	FC0084	FC0213	FC0283	FC0093	FC0398	FC0265
	-30"Hg+	-30"Hg+	-30"Hg+	-30"Hg+	-28"Hg	-30"Hg+
Initial And Final Summa® Canister Vacuum	-9"Hg	-4"Hg	-5"Hg	-3"Hg	-1"Hg	-5"Hg
	SS-01	SS-02	SS-03	SS-04	SS-05	SS-06
	See Figure	See Figure of				
Sample Identification, And Descriptive	of sampling	sampling	sampling	sampling	sampling	sampling
Location Of The Sampling Area	locations.	locations.	locations.	locations.	locations.	locations.
Sample Identification For Other						
Corresponding Samples At The Same						
Property	None	None	None	None	None	None
Weather Conditions Including Barometric	29.89"	29.89"	29.89"	29.89"	29.89"	29.89"
Pressure, And Ambient Temperature Inside	43°F	43°F	43°F	43°F	43°F	43°F
And Outside The Building	70°F	70°F	70°F	70°F	70°F	70°F
Floor Slab Thickness	8"	8"	10"	8"	8"	8"
Sampling Depth(S)	10" bgs	10" bgs	12" bgs	10" bgs	10" bgs	10" bgs
Soil Type At Sample Location, If Known	3-	3-	- 3-	3-	3-	3-
Soil Vapor Purge Volumes	200 ml	200 ml	200 ml	200 ml	200 ml	200 ml
	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08	2/25/08
All Equipment Calibrations Performed.	0900	0900	0900	0900	0900	0900

PERIOD: From 02/25/2008 thru 02/25/2008 - Inclusive SAMPLE TYPE: Air

CONSTITUENT	SITE LAB SAMPLE ID DATE	SS-01 L0802694-01 02/25/2008	SS-02 L0802694-02 02/25/2008	SS-03 L0802694-03 02/25/2008	SS-04 L0802694-04 02/25/2008
1,1,1-Trichloroethane	(ug/m3)	33400	1260	2050	4.01
1,1,2,2-Tetrachloroethane	(ug/m3)	13.7 U	13.7 U	13.7 U	3.43 U
1,1,2-Trichloroethane	(ug/m3)	10.9 U	10.9 U	10.9 U	2.72 U
1,1-Dichloroethane	(ug/m3)	3200	130	8.09 U	2.02 U
1,1-Dichloroethene	(ug/m3)	1520	14.3	7.92 U	1.98 U
1,2,4-Trichlorobenzene	(ug/m3)	14.8 U	14.8 U	14.8 U	3.71 U
1,2,4-Trimethylbenzene	(ug/m3)	9.82 U	9.82 U	9.82 U	67.8
1,2-Dibromoethane	(ug/m3)	15.4 U	15.4 U	15.4 U	3.84 U
1,2-Dichlorobenzene	(ug/m3)	12 U	12 U	12 U	3 U
1,2-Dichloroethane	(ug/m3)	8.09 U	8.09 U	8.09 U	2.02 U
1,2-Dichloropropane	(ug/m3)	9.24 U	9.24 U	9.24 U	2.31 U
1,3,5-Trimethylbenzene	(ug/m3)	9.82 U	9.82 U	9.82 U	24.3
1,3-Butadiene	(ug/m3)	4.42 U	4.42 U	4.42 U	1.84
1,3-Dichlorobenzene	(ug/m3)	12 U	12 U	12 U	3 U
1,4-Dichlorobenzene	(ug/m3)	12 U	12 U	12 U	3 U
1,4-Dioxane	(ug/m3)	7.2 U	7.2 U	7.2 U	1.8 U
2,2,4-Trimethylpentane	(ug/m3)	9.34 U	9.34 U	9.34 U	2.33 U
2-Butanone	(ug/m3)	5.89 U	5.89 U	15.1 J	17.2 J
2-Hexanone	(ug/m3)	8.19 U	8.19 U	8.19 U	2.05 U
4-Ethyltoluene	(ug/m3)	9.82 U	9.82 U	9.82 U	10.2
4-Methyl-2-Pentanone	(ug/m3)	8.19 U	8.19 U	8.19 U	297
Acetone	(ug/m3)	4.75 U	5.98 J	96.3 J	327 J
Allyl chloride	(ug/m3)	6.26 U	6.26 U	6.26 U	1.56 U
Benzene	(ug/m3)	6.38 U	6.38 U	6.38 U	4.1
Benzyl chloride	(ug/m3)	10.3 U	10.3 U	10.3 U	2.59 U
Bromodichloromethane	(ug/m3)	13.4 U	13.4 U	13.4 U	3.35 U
Bromoform	(ug/m3)	20.6 U	20.6 U	20.6 U	5.16 U
Bromomethane	(ug/m3)	7.76 U	7.76 U	7.76 U	1.94 U
Carbon Disulfide	(ug/m3)	175	6.22 U	6.22 U	3.96
Carbon Tetrachloride	(ug/m3)	454	26.5	12.6 U	3.14 U
Chlorobenzene	(ug/m3)	9.2 U	9.2 U	9.2 U	2.3 U
Chloroethane	(ug/m3)	21.6	5.27 U	5.27 U	1.32 U
Chloroform	(ug/m3)	815	26.8	24	3.71
Chloromethane	(ug/m3)	4.13 U	4.13 U	4.13 U	1.03 U
cis-1,2-Dichloroethene	(ug/m3)	15.5	7.92 U	7.92 U	2.89
cis-1,3-Dichloropropene	(ug/m3)	9.07 U	9.07 U	9.07 U	2.27 U
Cyclohexane	(ug/m3)	10.7	6.88 U	6.88 U	1.72 U
Dibromochloromethane	(ug/m3)	17 U	17 U	17 U	4.26 U
Dichlorodifluoromethane	(ug/m3)	9.88 U	9.88 U	9.88 U	2.47 U

U - Non-detect.

PERIOD: From 02/25/2008 thru 02/25/2008 - Inclusive SAMPLE TYPE: Air

CONSTITUENT	SITE LAB SAMPLE ID DATE	SS-01 L0802694-01 02/25/2008	SS-02 L0802694-02 02/25/2008	SS-03 L0802694-03 02/25/2008	SS-04 L0802694-04 02/25/2008
Ethanol	(ug/m3)	55	47.1 U	93.4	46.7
Ethyl acetate	(ug/m3)	18 U	18 U	18 U	4.5 U
Ethylbenzene	(ug/m3)	8.68 U	8.68 U	8.68 U	17.1
Freon 113	(ug/m3)	196	37.2	15.3 U	3.83 U
Freon 114	(ug/m3)	14 U	14 U	14 U	3.49 U
Heptane	(ug/m3)	8.19 U	8.19 U	8.19 U	2.94
Hexachlorobutadiene	(ug/m3)	21.3 U	21.3 U	21.3 U	5.33 U
Hexane	(ug/m3)	7.04 U	7.04 U	7.04 U	2.27
Isopropyl Alcohol	(ug/m3)	12.3 U	12.3 U	12.3 U	7.74
m+p-Xylene	(ug/m3)	17.4 U	17.4 U	17.4 U	91.3
Methyl Tertiary Butyl Ether	(ug/m3)	7.2 U	7.2 U	7.2 U	1.8 U
Methylene Chloride	(ug/m3)	21.4	6.94 U	6.94 U	1.74 U
o-Xylene	(ug/m3)	8.68 U	8.68 U	8.68 U	36.1
Propylene	(ug/m3)	3.44 U	3.44 U	3.44 U	8.34
Styrene	(ug/m3)	8.51 U	8.51 U	8.51 U	2.13 U
Tetrachloroethene	(ug/m3)	13.6 U	138	13.6 U	6.33
Tetrahydrofuran	(ug/m3)	5.89 U	5.89 U	5.89 U	1.47 U
Toluene	(ug/m3)	7.53 U	7.53 U	11.7	22.1
trans-1,2-Dichloroethene	(ug/m3)	7.92 U	7.92 U	7.92 U	1.98 U
trans-1,3-Dichloropropene	(ug/m3)	9.07 U	9.07 U	9.07 U	2.27 U
Trichloroethene	(ug/m3)	128	723	1320	724
Trichlorofluoromethane	(ug/m3)	11.2 U	11.2 U	13.7	3.51
Vinyl Acetate	(ug/m3)	7.04 U	7.04 U	7.04 U	1.76 U
Vinyl bromide	(ug/m3)	8.74 U	8.74 U	8.74 U	2.18 U
Vinyl chloride	(ug/m3)	5.11 U	5.11 U	5.11 U	1.28 U
Sum of Constituents	(ug/m3)	40012.20	2361.78	3624.20	1732.44

U - Non-detect.

PERIOD: From 02/25/2008 thru 02/25/2008 - Inclusive SAMPLE TYPE: Air

CONSTITUENT	SITE LAB SAMPLE ID DATE	SS-05 L0802694-05 02/25/2008	SS-06 L0802694-06 02/25/2008	
1,1,1-Trichloroethane	(ug/m3)	11.7	23.7	
1,1,2,2-Tetrachloroethane	(ug/m3)	13.7 U	2.74 U	
1,1,2-Trichloroethane	(ug/m3)	10.9 U	2.18 U	
1,1-Dichloroethane	(ug/m3)	8.09 U	1.62 U	
1,1-Dichloroethene	(ug/m3)	7.92 U	1.58 U	
1,2,4-Trichlorobenzene	(ug/m3)	14.8 U	2.97 U	
1,2,4-Trimethylbenzene	(ug/m3)	175	12.4	
1,2-Dibromoethane	(ug/m3)	15.4 U	3.07 U	
1,2-Dichlorobenzene	(ug/m3)	12 U	2.4 U	
1,2-Dichloroethane	(ug/m3)	8.09 U	1.62 U	
1,2-Dichloropropane	(ug/m3)	9.24 U	1.85 U	
1,3,5-Trimethylbenzene	(ug/m3)	25.4	3.3	
1,3-Butadiene	(ug/m3)	4.42 U	0.884 U	
1,3-Dichlorobenzene	(ug/m3)	12 U	2.4 U	
1,4-Dichlorobenzene	(ug/m3)	12 U	2.4 U	
1,4-Dioxane	(ug/m3)	7.2 U	1.44 U	
2,2,4-Trimethylpentane	(ug/m3)	9.34 U	1.87 U	
2-Butanone	(ug/m3)	24.3 J	11 J	
2-Hexanone	(ug/m3)	8.19 U	1.64 U	
4-Ethyltoluene	(ug/m3)	16.2	2.98	
4-Methyl-2-Pentanone	(ug/m3)	8.19 U	6.1	
Acetone	(ug/m3)	138 J	58.8 J	
Allyl chloride	(ug/m3)	6.26 U	1.25 U	
Benzene	(ug/m3)	6.38 U	2.53	
Benzyl chloride	(ug/m3)	10.3 U	2.07 U	
Bromodichloromethane	(ug/m3)	13.4 U	2.68 U	
Bromoform	(ug/m3)	20.6 U	4.13 U	
Bromomethane	(ug/m3)	7.76 U	1.55 U	
Carbon Disulfide	(ug/m3)	6.22 U	1.96	
Carbon Tetrachloride	(ug/m3)	12.6 U	2.51 U	
Chlorobenzene	(ug/m3)	9.2 U	1.84 U	
Chloroethane	(ug/m3)	5.27 U	1.05 U	
Chloroform	(ug/m3)	9.76 U	15.6	
Chloromethane	(ug/m3)	4.13 U	0.825 U	
cis-1,2-Dichloroethene	(ug/m3)	7.92 U	1.58 U	
cis-1,3-Dichloropropene	(ug/m3)	9.07 U	1.81 U	
Cyclohexane	(ug/m3)	6.88 U	1.38 U	
Dibromochloromethane	(ug/m3)	17 U	3.4 U	
Dichlorodifluoromethane	(ug/m3)	9.88 U	7.25	

U - Non-detect.

PERIOD: From 02/25/2008 thru 02/25/2008 - Inclusive SAMPLE TYPE: Air

CONSTITUENT	SITE LAB SAMPLE ID DATE	SS-05 L0802694-05 02/25/2008	SS-06 L0802694-06 02/25/2008
Ethanol	(ug/m3)	252	9.56
Ethyl acetate	(ug/m3)	18 U	3.6 U
Ethylbenzene	(ug/m3)	8.68 U	3.85
Freon 113	(ug/m3)	15.3 U	3.06 U
Freon 114	(ug/m3)	14 U	2.79 U
Heptane	(ug/m3)	8.19 U	2.32
Hexachlorobutadiene	(ug/m3)	21.3 U	4.26 U
Hexane	(ug/m3)	7.04 U	2.22
sopropyl Alcohol	(ug/m3)	12.3 U	6.15
n+p-Xylene	(ug/m3)	17.4 U	14
lethyl Tertiary Butyl Ether	(ug/m3)	7.2 U	1.44 U
lethylene Chloride	(ug/m3)	6.94 U	1.39 U
-Xylene	(ug/m3)	8.68 U	3.49
Propylene	(ug/m3)	3.44 U	0.688 U
ityrene	(ug/m3)	8.51 U	1.7 U
etrachloroethene	(ug/m3)	13.6 U	2.86
Fetrahydrofuran	(ug/m3)	5.89 U	1.18 U
Toluene	(ug/m3)	21.9	14.2
rans-1,2-Dichloroethene	(ug/m3)	7.92 U	1.58 U
rans-1,3-Dichloropropene	(ug/m3)	9.07 U	1.81 U
richloroethene	(ug/m3)	290	395
richlorofluoromethane	(ug/m3)	11.2 U	16.8
/inyl Acetate	(ug/m3)	7.04 U	1.41 U
/inyl bromide	(ug/m3)	8.74 U	1.75 U
/inyl chloride	(ug/m3)	5.11 U	1.02 U
Sum of Constituents	(ug/m3)	954.50	616.07

U - Non-detect.

ATTACHMENTS

ATTACHMENT 1 - INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AND PRODUCT INVENTORY FORMS

ATTACHMENT 2 - DATA VALIDATION REPORT

ATTACHMENT 3 - ALPHA ANALYTICAL LABORATORIES ASP CATEGORY B LABORATORY DATA DELIVERABLE

ATTACHMENT 1 - INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AND PRODUCT INVENTORY FORMS

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Karen Pickering Date/Time Prepared 2/27/08 Preparer's Affiliation ERM Phone No. (631) 756-8900
Preparer's Affiliation \underline{FRM} Phone No. $\underline{(631)}756-8900$
Purpose of Investigation Legacy Site
1. OCCUPANT:
Interviewed: Y/D
Last Name: Nick Vernaci First Name:
Address: 288 Gruman Road, West Bethpage, NY 11714
County: Nassau
Home Phone: Office Phone: (516) 803-0132
Number of Occupants/persons at this location $500 +$ Age of Occupants $18-60$ (in 2 shifts)
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: ①/ N
Last Name: Lumpe First Name: Kevin
Address: 700 Hicksville Rd. Bethpage, NY 11714
County: Nassau
Home Phone: Office Phone: (516) 576-3165

3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Resid	lential
Indus	trial

School Church Commercial/Multi-use Other:

If the property is residentia	l, type? (Circle app	ropriate respons	e)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment Hous Log Home	se Townho	al	
If multiple units, how many	?			
If the property is commerci	al, type?			
Business Type(s)	5 Postal	Service	<u> </u>	
Does it include residence	s (i.e., multi-use)?	Y/N	If yes, how many?	_
Other characteristics:				
Number of floors		Building age	70 yrs	
Is the building insulated	\land		Tight / Average / Not Tig	ght
4. AIRFLOW				
Use air current tubes or tra	cer smoke to evalu	ate airflow pat	terns and qualitatively d	lescribe:
Airflow between floors				
Airflow near source				
Outdoor air infiltration				
Infiltration into air ducts				
				······································

,

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	Y / N			
k. Water in sump? Y /	N / not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation) Space Heaters Electric baseboard

Heat pump Stream radiation Wood stove

Hot water baseboard Radiant floor Outdoor wood boiler

The primary type of fuel used is:

Natural Gas Electric Wood

Fuel Oil Propane Coal

Kerosene Solar

Natural Gas/Electric Domestic hot water tank fueled by: Main Floor Boiler/furnace located in: Outdoors Basement Air conditioning: Central Air Window units Open Windows

NoBoiler Other

None

Are there air distribution ducts present? (Y) N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

Rooftop Mounted equipment. Supply and return penetrate roof deck with approx. 10-12 of Vertical Duct and 4 way diffuser on supply single return. and

7. OCCUPANCY

Is basement	t/lowest level occupied? Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., fam	<u>ilyroom, bedro</u>	om, laundry, w	orkshop, storage)
Basement				
1 st Floor	Slab on grade. Pack throughout. Ceiling	age Distr	ibution Co	nveyors
2 nd Floor	Partial Mezzanine of	rice		
3 rd Floor	NA			
4 th Floor	NA			
a. Is there	RS THAT MAY INFLUENCE INDOOR e an attached garage? 1e garage have a separate heating unit?	AIR QUALITY	YN YN (NA)	
c. Are pe	troleum-powered machines or vehicles in the garage (e.g., lawnmower, atv, car)		Y/N NA	
d. Has th	e building ever had a fire?		Y (N) When?	
e. Is a kei	rosene or unvented gas space heater prese	nt?	Y (N) Where	?
f. Is there	e a workshop or hobby/craft area?	Y / 🕅	Where & Type	?
g. Is there	e smoking in the building?	Y /N	How frequently	/?
h. Have c	leaning products been used recently?	(ŷ/ N	When & Type?	YPical Detergents WD40, Degreasers
i. Have co	osmetic products been used recently?	Y / 🕅	When & Type?	·

j. Has painting/sta	iining been done i	n the last 6 mo	nths? Y	Ð	Where & Wher	l?		
k. Is there new ca	rpet, drapes or otl	ner textiles?	y /t	Ð	Where & Wher	1?		
l. Have air fresher	iers been used rec	ently?	Y (1	Ð	When & Type?			
m. Is there a kitch	en exhaust fan?		Y /(1	Ù	If yes, where ve	ented?		
n. Is there a bath	room exhaust fan'	?	(Y)	1	If yes, where ve	ented? <u>R</u> oof	<u>ר</u>	
o. Is there a clothe	es dryer?		Y /(1	Ì	If yes, is it vent	ed outside? Y /	N	
p. Has there been	a pesticide applic	ation?	Y (Ð	When & Type?			
Are there odors in If yes, please desc	a the building? pribe:		Y (I	<u>り</u>				
Do any of the buildin (e.g., chemical manuf boiler mechanic, pest	ng occupants use s facturing or laborat icide application, c	solvents at wor ory, auto mecha osmetologist	'k? Y / I anic or auto bo	ا dy :	UN KOWN shop, painting,	500 - fuel oil deliver	templ	oyees shifts
If yes, what types o	of solvents are used	?						
If yes, are their clo	thes washed at wor	k?	Y / Y	1				
Do any of the buildi response)	ng occupants regu	llarly use or we	ork at a dry-c	ear	ning service? ((Circle appropria	ite	
Yes, use dry-	cleaning regularly cleaning infrequen a dry-cleaning serv	tly (monthly or	less)		No Unknown			
Is there a radon mit Is the system active		the building/s Active/Passive		Ń	Date of Installa	tion:		
9. WATER AND SE	WAGE							
Water Supply:	Public Water	Drilled Well	Driven Well		Dug Well	Other:		
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field		Dry Well	Other:		
10. RELOCATION	INFORMATION	(for oil spill ro	esidential eme	rge	ency)			
a. Provide reaso	ns why relocation	is recommend	ed:					
b. Residents choose to: remain in home relocate to frier				.mil	ly relocate	e to hotel/motel		
c. Responsibility	for costs associat	ed with reimb	ursement expl	ain	ed? Y / N			
d. Relocation pa	ekage provided a	nd explained to	o residents?		Y / N			

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

~

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
				1		
						-

		-				
				1		

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

DATA USABILITY SUMMARY REPORT (DUSR) STEEL EQUITIES SOIL VAPOR INTRUSION INVESTIGATION INTERIOR BUILDING AREAS NEAR PHASE II AREA NOS. 25 & 46 FORMER GRUMMAN PLANT 2, BETHPAGE, NEW YORK ENVIRONMENTAL RESOURCES MANAGEMENT (ERM) PROJECT NUMBER 0072943 ALPHA ANALYTICAL SAMPLE DELIVERY GROUP (SDG) L0802694

Deliverables:

The above referenced data packages for six (6) soil vapor samples contains all the required deliverables as stipulated under the 2005 New York State Department of Environmental Conservation (NYSDEC) Analytical Services Protocol (ASP) Category B deliverables. The sample were analyzed following "Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition 1997, EPA/625/R-96/010B", Compendium Method TO-15, "Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS)". The data have been evaluated according to the protocols and quality control (QC) requirements of the ASP, the National Functional Guidelines for Organic Data Review (October 1999), the USEPA Region 2 Data Review Standard Operating Procedure (SOP) Number HW-31, Revision 4, October 2006: Validating Volatile Organic Analysis of Ambient Air in canister by Method TO-15 and the reviewer's professional judgment.

This report pertains to the following soil vapor samples collected on 25 February 2007:

<u>ERM Sample ID</u>	<u>Alpha Sample ID</u>
SS-01	0802694-01
SS-02	0802694-02
SS-03	0802694-03
SS-04	0802694-04
SS-05	0802694-05
SS-06	0802694-06

The following items/criteria were reviewed:

- Case narrative and deliverable compliance
- Chain-of-Custody (COC)
- Holding times
- Canister Certification/Pressures
- Surrogate compound recoveries, summary and data

- Laboratory Check Sample (LCS) recoveries, summary and data
- Method blank summary and data
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning and performance
- Initial and continuing calibration summaries and data
- Internal standard areas, retention times, summary and data
- Organic analysis data sheets (Form I)
- GC/MS chromatograms, mass spectra and quantitation reports
- Quantitation/detection limits
- Qualitative and quantitative compound identification

The items listed above were in compliance with the analytical methods and with the ASP and USEPA criteria with the exceptions discussed in the text below. The data have been validated according to the procedures outlined above and qualified accordingly.

Chains-of-Custody

• The Chains-of-Custody (COCs) were reviewed for completeness and accuracy. There were no discrepancies observed with the samples presented on the COC, and all tests specified on the COC were performed for the designated samples.

Volatiles

- Methylene chloride was positively identified (1.53 ug/m³) in the method blank applicable to the further diluted analysis of sample SS-01. No qualification of the sample data is required as only the result for 1,1,1-trichloroethene and 1,1-dichloroethane have been utilized from the further diluted analysis of sample SS-01.
- The following table lists compounds that exceeded 30 percent relative standard deviation (%RSD) for relative response factors (RRFs) in the initial calibration (ICAL). Associated field samples are also listed. Positive results for these compounds in associated samples are considered estimated and qualified "J" while non-detect results do not require qualification.

Calibration	Compound	Deficiency	Associated Samples
ICAL 01/31/2008 @ 18:43-23:36	acetone 2-butanone	%RSD=40.93 %RSD=35.64	All samples

• All samples required dilution due to the elevated concentration of target compounds. Sample SS-01 was reanalyzed at a further dilution due to the concentration of 1,1,1-trichloroethene and 1,1-dichloroethane. Results for these 2 compounds have been taken from the further diluted analysis of sample SS-01.

Package Summary:

All data are valid and usable with qualifications as noted in this review.

Andof Coenen

Signed:

Andrew J. Coenen ERM QA Manager Dated: 07 April 2008

Project Name:	STEEL EQUITIES
Project Number:	Not Specified

Lab Number: Report Date:

L0802694 03/05/08

..

L0802694-01
SS-01
BETHPAGE, NY
Air
48,TO-15
03/03/08 14:21
HM

Date Collected:	02/25/08 18:02
Date Received:	02/26/08
Field Prep:	Not Specified

	ppt	v	ug/m3	ug/m3		Dilution Factor
Parameter	Results	RDL	Results RDL		Qualifier	
Low Level Volatile Organic Compo	ounds in Air					
1,1,1-Trichloroethane	6120 >1000	2	33400 >5456-	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	791 >1000	2	3200 >4047	8.09		10
1,1-Dichloroethene	384	2.00	1520	7.92		10
1,2,4-Trichlorbenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
I,2-Dichlorobenzene	ND	2.00	ND	12.0		10
,2-Dichloroethane	ND	2.00	ND	8.09		10
,2-Dichloropropane	ND	2.00	ND	9.24		10
,3,5-Trimethybenzene	ND	2.00	ND	9.82		10
,3-Butadiene	ND	2.00	ND	4.42		10
,3-Dichlorobenzene	ND	2.00	ND	12.0		10
,4-Dichlorobenzene	ND	2.00	ND	12.0		10
,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	ND	2.00	ND	5.89		10
2-Hexanone	ND	2.00	ND	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	ND	2.00	ND	4.75		10
Benzene	ND	2.00	ND	6.38		10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

Project Name:	STEEL EQUITIES

Project Number: Not Specified

Lab Number: Report Date:

L0802694 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-01 SS-01 BETHPAGE, NY				Date Field	Collected: Received: Prep:	02/25/08 18 02/26/08 Not Specifie
Devenueter		ppbV Results	RDL	ug/m3	RDL	Qualifier	Dilution Factor
Parameter	Organic Compounds		RDL	Results	RDL	Quanner	10 Marcal
Bromoform		ND	2.00	ND	20.6		10
Bromomethane					7.76		10
Carbon disulfide		ND 56.4	2.00 2.00	ND 175	6.22		10
Carbon tetrachloride							10
Chlorobenzene		72.3	2.00	454 ND	12.6 9.20		10
Chloroethane		ND					10
Chloroform		8.19 167	2.00	21.6 815	5.27 9.76		10
Chloromethane					4.13		10
cis-1,2-Dichloroethene		ND	2.00	ND			10
cis-1,3-Dichloropropene		3.92	2.00	15.5	7.92 9.07		10
Cyclohexane		ND	2.00	ND			10
Dibromochloromethane		3.11	2.00	10.7	6.88 17.0		10
Dichlorodifluoromethane		ND	2.00	ND	9.88		10
Ethanol		ND	2.00	ND 55.0	47.1		10
Ethyl Acetate		29.2	25.0	55.0 ND	18.0		10
Ethylbenzene		ND ND	5.00 2.00	ND	8.68		10
Freon-113		25.6	2.00	196	15.3		10
Freon-114		25.6 ND	2.00	ND	14.0		10
Hexachlorobutadiene					21.3		10
Isopropanol		ND	2.00		12.3		10
Methylene chloride		ND	5.00				
		6.16	2.00	21.4	6.94		10
4-Methyl-2-pentanone Methyl tert butyl ether		ND	2.00	ND	8.19		10
		ND	2.00	ND	7.20		10
o/m-Xylene o-Xylene		ND	4.00	ND	17.4		10 10
		ND	2.00	ND	8.68		10
Heptane		ND	2.00	ND	8.19		10
n-Hexane Propylene		ND ND	2.00 2.00	ND ND	7.04 3.44		10 10

Lab Number:

STEEL EQUITIES

Project Number: Not Specified

Project Name:

L0802694 **Report Date:** 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-01 SS-01 BETHPAGE, NY				Date	Collected: Received: Prep:	02/25/0 02/26/0 Not Spe	8
		ppbV	0	ug/m	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	2.00	ND	8.51		10	
Tetrachloroethene		ND	2.00	ND	13.6		10	
Tetrahydrofuran		ND	2.00	ND	5.89		10	
Toluene		ND	2.00	ND	7.53		10	
trans-1,2-Dichloroethen	9	ND	2.00	ND	7.92		10	
trans-1,3-Dichloroprope	ne	ND	2.00	ND	9.07		10	
Trichloroethene		23.8	2.00	128	10.7		10	
Trichlorofluoromethane		ND	2.00	ND	11.2		10	
Vinyl acetate		ND	2.00	ND	7.04		10	
Vinyl bromide		ND	2.00	ND	8.74		10	
Vinyl chloride		ND	2.00	ND	5.11		10	

						(03050815:58	
Project Name:	STEEL EQUITIES				Lab N	umber:	L0802694	
Project Number:	Not Specified				Repor	t Date:	03/05/08	
		SA	AMPLE RE	SULTS				
Lab ID: Client ID: Sample Location: Matrix: Anaytical Method: Analytical Date:	L0802694-01 💉 D SS-01 BETHPAGE, NY Air 48,TO-15 03/05/08 14:19 HM	5 -			1 Service of the local	collected: Received: Prep:	02/25/08 02/26/08 Not Spec	
Analyst:	нм	ppbV		ug/m3	_		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air	/					
1,1,1-Trichloroethane		6120	32.4	33400	176		161.8	
1,1-Dichloroethane		791	32.4	3200	131		161.8	
			~	see finised	form	1		

.

9

Project Name:	STEEL EQUITIES
Design to at Manual and	

Project Number: Not Specified

Report Date:

Lab Number:

L0802694 03/05/08

L0802694-02
SS-02
BETHPAGE, NY
Air
48,TO-15
03/03/08 14:58
HM

Date Collected:	02/25/08 18:01
Date Received:	02/26/08
Field Prep:	Not Specified

	ppbV		ug/m3			Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Cor	mpounds in Air					
1,1,1-Trichloroethane	230	2.00	1260	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	32.2	2.00	130	8.09		10
1,1-Dichloroethene	3.61	2.00	14.3	7.92		10
1,2,4-Trichlorbenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethybenzene	ND	2.00	ND	9.82		10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	ND	2.00	ND	5.89		10
2-Hexanone	ND	2.00	ND	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	ND	2.00	ND	9.82		10
Acetone	2.52	2.00	5.98	4.75	J	10
Benzene	ND	2.00	ND	6.38	-	10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

Project Number: Not Specified

Project Name:

Lab Number: L0802694 Report Date:

03/05/08

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L0802694-02 SS-02 BETHPAGE, NY				Date Field	Collected: Received: Prep:	02/25/08 18:0 02/26/08 Not Specified
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor
	Organic Compounds		NDL	-UNIT IS ALL			
Bromoform	5	ND	2.00	ND	20.6		10
Bromomethane		ND	2.00	ND	7.76		10
Carbon disulfide		ND	2.00	ND	6.22		10
Carbon tetrachloride		4.22	2.00	26.5	12.6		10
Chlorobenzene		ND	2.00	ND	9.20		10
Chloroethane		ND	2.00	ND	5.27		10
Chloroform		5.49	2.00	26.8	9.76		10
Chloromethane		ND	2.00	ND	4.13		10
cis-1,2-Dichloroethene		ND	2.00	ND	7.92		10
cis-1,3-Dichloropropene	1	ND	2.00	ND	9.07		10
Cyclohexane		ND	2.00	ND	6.88		10
Dibromochloromethane		ND	2.00	ND	17.0		10
Dichlorodifluoromethan		ND	2.00	ND	9.88		10
Ethanol		ND	25.0	ND	47.1		10
Ethyl Acetate		ND	5.00	ND	18.0		10
Ethylbenzene		ND	2.00	ND	8.68		10
Freon-113		4.86	2.00	37.2	15.3		10
Freon-114		ND	2.00	ND	14.0		10
Hexachlorobutadiene		ND	2.00	ND	21.3		10
Isopropanol		ND	5.00	ND	12.3		10
Methylene chloride		ND	2.00	ND	6.94		10
4-Methyl-2-pentanone		ND	2.00	ND	8.19		10
Methyl tert butyl ether		ND	2.00	ND	7.20		10
p/m-Xylene		ND	4.00	ND	17.4		10
o-Xylene		ND	2.00	ND	8.68		10
Heptane		ND	2.00	ND	8.19		10
n-Hexane		ND	2.00	ND	7.04		10
Propylene		ND	2.00	ND	3.44		10

ALPHA

 Project Name:
 STEEL EQUITIES

 Project Number:
 Not Specified

Lab Number: Report Date:

L0802694 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-02 SS-02 BETHPAGE, NY					Collected: Received: Prep:	02/25/08 1 02/26/08 Not Specif	
		ppbV	<u> </u>	ug/m:	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	2.00	ND	8.51		10	
Tetrachloroethene		20.4	2.00	138	13.6		10	
Tetrahydrofuran		ND	2.00	ND	5.89		10	
Toluene		ND	2.00	ND	7.53		10	
trans-1,2-Dichloroethen	9	ND	2.00	ND	7.92		10	
trans-1,3-Dichloroprope	ne	ND	2.00	ND	9.07		10	
Trichloroethene		135	2.00	723	10.7		10	
Trichlorofluoromethane		ND	2.00	ND	11.2		10	
Vinyl acetate		ND	2.00	ND	7.04		10	
Vinyl bromide		ND	2.00	ND	8.74		10	
Vinyl chloride		ND	2.00	ND	5.11		10	

Project Name:	STEEL EQUITIES
D I I I I I	

Project Number: Not Specified

 Lab Number:
 L0802694

 Report Date:
 03/05/08

Lab ID:	L0802694-03
Client ID:	SS-03
Sample Location:	BETHPAGE, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/03/08 15:35
Analyst:	HM

Date Collected:	02/25/08 17:58
Date Received:	02/26/08
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution	
Parameter	Results	RDL	RDL Results		Qualifier	Factor	
ow Level Volatile Organic Comp	ounds in Air						
I,1,1-Trichloroethane	376	2.00	2050	10.9		10	
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10	
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10	
I,1-Dichloroethane	ND	2.00	ND	8.09		10	
1,1-Dichloroethene	ND	2.00	ND	7.92		10	
1,2,4-Trichlorbenzene	ND	2.00	ND	14.8		10	
1,2,4-Trimethylbenzene	ND	2.00	ND	9.82		10	
1,2-Dibromoethane	ND	2.00	ND	15.4		10	
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10	
1,2-Dichloroethane	ND	2.00	ND	8.09		10	
I,2-Dichloropropane	ND	2.00	ND	9.24		10	
1,3,5-Trimethybenzene	ND	2.00	ND	9.82		10	
1,3-Butadiene	ND	2.00	ND	4.42		10	
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10	
1,4-Dichlorobenzene	ND	2.00	ND	12.0		10	
1,4-Dioxane	ND	2.00	ND	7.20		10	
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10	
2-Butanone	5.12	2.00	15.1	5.89	J	10	
2-Hexanone	ND	2.00	ND	8.19		10	
3-Chloropropene	ND	2.00	ND	6.26		10	
4-Ethyltoluene	ND	2.00	ND	9.82		10	
Acetone	40.6	2.00	96.3	4.75	J	10	
Benzene	ND	2.00	ND	6.38	52	10	
Benzyl chloride	ND	2.00	ND	10.3	•	10	
Bromodichloromethane	ND	2.00	ND	13.4		10	

Project Name: STEEL EQUITIES

Project Number: Not Specified

03050815:58 Lab Number: L0802694

Report Date:

L0802694 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-03 SS-03 BETHPAGE, NY	ppbV		ug/m3	Date Field	Collected: Received: Prep:	02/25/08 17:58 02/26/08 Not Specified	
Parameter		Results	RDL	Results	RDL		llution Factor	
Low Level Volatile	Organic Compounds	in Air	150 Q.M	HAR BIEL	in the set	Ma Landar		
Bromoform		ND	2.00	ND	20.6		10	
Bromomethane		ND	2.00	ND	7.76		10	
Carbon disulfide		ND	2.00	ND	6.22		10	
Carbon tetrachloride		ND	2.00	ND	12.6		10	
Chlorobenzene		ND	2.00	ND	9.20		10	
Chloroethane		ND	2.00	• ND	5.27		10	
Chloroform		4.91	2.00	24.0	9.76		10	
Chloromethane		ND	2.00	ND	4.13		10	
cis-1,2-Dichloroethene		ND	2.00	ND	7.92		10	
cis-1,3-Dichloropropene		ND	2.00	ND	9.07		10	
Cyclohexane		ND	2.00	ND	6.88		10	
Dibromochloromethane		ND	2.00	ND	17.0		10	
Dichlorodifluoromethane		ND	2.00	ND	9.88		10	
Ethanol		49.6	25.0	93.4	47.1		10	
Ethyl Acetate		ND	5.00	ND	18.0		10	
Ethylbenzene		ND	2.00	ND	8.68		10	
Freon-113		ND	2.00	ND	15.3		10	
Freon-114		ND	2.00	ND	14.0		10	
Hexachlorobutadiene		ND	2.00	ND	21.3		10	
Isopropanol		ND	5.00	ND	12.3		10	
Methylene chloride		ND	2.00	ND	6.94		10	
4-Methyl-2-pentanone		ND	2.00	ND	8.19		10	
Methyl tert butyl ether		ND	2.00	ND	7.20		10	
p/m-Xylene		ND	4.00	ND	17.4		10	
o-Xylene		ND	2.00	ND	8.68		10	
Heptane		ND	2.00	ND	8.19		10	
n-Hexane		ND	2.00	ND	7.04		10	
Propylene		ND	2.00	ND	3.44		10	

STEEL I	EQUITIES
---------	----------

Project Number: Not Specified

Project Name:

Lab Number: Report Date:

L0802694

03/05/08

Lab ID: L0802694-03 Client ID: SS-03 Sample Location: BETHPAGE, NY					Date Collected: Date Received: Field Prep:		02/25/08 17:58 02/26/08 Not Specified	
		ppbV	1	ug/m3	3	Qualifier	Dilution Factor	
Parameter		Results	RDL	Results	RDL			
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	2.00	ND	8.51		10	
Tetrachloroethene		ND	2.00	ND	13.6		10	
Tetrahydrofuran		ND	2.00	ND	5.89		10	
Toluene		3.10	2.00	11.7	7.53		10	
trans-1,2-Dichloroethen	e	ND	2.00	ND	7.92		10	
trans-1,3-Dichloroprope	ne	ND	2.00	ND	9.07		10	
Trichloroethene		246	2.00	1320	10.7		10	
Trichlorofluoromethane		2.44	2.00	13.7	11.2		10	
Vinyl acetate		ND	2.00	ND	7.04		10	
Vinyl bromide		ND	2.00	ND	8.74		10	
Vinyl chloride		ND	2.00	ND	5.11		10	

Project Name: Project Number: Not Specified

STEEL EQUITIES

4

Lab Number: L0802694

Report Date:

03/05/08

Lab ID:	L0802694-04 R
Client ID:	SS-04
Sample Location:	BETHPAGE, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/03/08 18:41
Analyst:	HM

Date Collected:	02/25/08 17:39
Date Received:	02/26/08
Field Prep:	Not Specified

	ppbV	ppbV		3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Com	pounds in Air					
1,1,1-Trichloroethane	0.735	0.500	4.01	2.72		2.5
1,1,2,2-Tetrachloroethane	ND	0.500	ND	3.43		2.5
1,1,2-Trichloroethane	ND	0.500	ND	2.72		2.5
1,1-Dichloroethane	ND	0.500	ND	2.02		2.5
1,1-Dichloroethene	ND	0.500	ND	1.98		2.5
1,2,4-Trichlorbenzene	ND	0.500	ND	3.71		2.5
1,2,4-Trimethylbenzene	13.8	0.500	67.8	2.46		2.5
1,2-Dibromoethane	ND	0.500	ND	3.84		2.5
1,2-Dichlorobenzene	ND	0.500	ND	3.00		2.5
1,2-Dichloroethane	ND	0.500	ND	2.02		2.5
1,2-Dichloropropane	ND	0.500	ND	2.31		2.5
1,3,5-Trimethybenzene	4.95	0.500	24.3	2.46		2.5
1,3-Butadiene	0.832	0.500	1.84	1.10		2.5
1,3-Dichlorobenzene	ND	0.500	ND	3.00		2.5
1,4-Dichlorobenzene	ND	0.500	ND	3.00		2.5
1,4-Dioxane	ND	0.500	ND	1.80		2.5
2,2,4-Trimethylpentane	ND	0.500	ND	2.33		2.5
2-Butanone	5.83	0.500	17.2	1.47	J	2.5
2-Hexanone	ND	0.500	ND	2.05		2.5
3-Chloropropene	ND	0.500	ND	1.56		2.5
4-Ethyltoluene	2.08	0.500	10.2	2.46		2.5
Acetone	138	0.500	327	1.19	J	2.5
Benzene	1.28	0.500	4.10	1.60	125	2.5
Benzyl chloride	ND	0.500	ND	2.59		2.5
Bromodichloromethane	ND	0.500	ND	3.35		2.5

Project Name:STEEL EQUITIESLab Number:Project Number:Not SpecifiedReport Date:

03050815:58

ł

er: L0802694 e: 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-04 R SS-04 BETHPAGE, NY				Date Field	Collected:02/25/08 17Received:02/26/08Prep:Not Specifie
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Dilution Qualifier Factor
	Organic Compounds	Contract Contract of the	KDL	Results	RDE	Quanner
Bromoform		ND	0.500	ND	5.16	2.5
Bromomethane		ND	0.500	ND	1.94	2.5
Carbon disulfide		1.27	0.500	3.96	1.56	2.5
Carbon tetrachloride		ND	0.500	ND	3.14	2.5
Chlorobenzene		ND	0.500	ND	2.30	2.5
Chloroethane		ND	0.500	ND	1.32	2.5
Chloroform		0.760	0.500	3.71	2.44	2.5
Chloromethane		ND	0.500	ND	1.03	2.5
cis-1,2-Dichloroethene		0.729	0.500	2.89	1.98	2.5
cis-1,3-Dichloropropene		0.729 ND	0.500	ND	2.27	2.5
Cyclohexane		ND	0.500	ND	1.72	2.5
Dibromochloromethane		ND	0.500	ND	4.26	2.5
Dichlorodifluoromethan		ND	0.500	ND	2.47	2.5
Ethanol		24.8	6.25	46.7	11.8	2.5
Ethyl Acetate		ND	1.25	ND	4.50	2.5
Ethylbenzene		3.93	0.500	17.1	2.17	2.5
Freon-113		ND	0.500	ND	3.83	2.5
Freon-114		ND	0.500	ND	3.49	2.5
Hexachlorobutadiene		ND	0.500	ND	5.33	2.5
Isopropanol		3.15	1.25	7.74	3.07	2.5
Methylene chloride		ND	0.500	ND	1.74	2.5
4-Methyl-2-pentanone		72.6	0.500	297	2.05	2.5
Methyl tert butyl ether		ND	0.500	ND	1.80	2.5
p/m-Xylene		21.0	1.00	91.3	4.34	2.5
o-Xylene		8.31	0.500	36.1	2.17	2.5
Heptane		0.718	0.500	2.94	2.05	2.5
n-Hexane		0.645	0.500	2.34	1.76	2.5
Propylene		4.85	0.500	8.34	0.860	2.5

03/05/08

Project Name: STEEL EQUITIES

Project Number: Not Specified

Lab Number: L0802694

Report Date:

ParameterResultsRDLResultsRDLQualifierFactorLow Level Volatile Organic Compounds in AirStyreneND0.500ND2.132.5Tetrachloroethene0.9340.5006.333.392.5TetrachloroetheneND0.500ND1.472.5Toluene5.870.50022.11.882.5trans-1,2-DichloroetheneND0.500ND1.982.5trans-1,3-DichloroptopeneND0.500ND2.272.5Trichloroethene1350.5007242.682.5Trichlorofluoromethane0.6250.5003.512.812.5Vinyl acetateND0.500ND1.762.5	Lab ID: L0802694-04 R Client ID: SS-04 Sample Location: BETHPAGE, NY					Date	Collected: Received: Prep:	02/25/08 17: 02/26/08 Not Specifie	
Parameter Results RDL Results RDL Rolt Rolt			ppb\	ppbV		3		Dilution	
Styrene ND 0.500 ND 2.13 2.5 Tetrachloroethene 0.934 0.500 6.33 3.39 2.5 Tetrachloroethene ND 0.500 ND 1.47 2.5 Toluene 5.87 0.500 22.1 1.88 2.5 trans-1,2-Dichloroethene ND 0.500 ND 1.98 2.5 trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5	Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Tetrachloroethene 0.934 0.500 6.33 3.39 2.5 Tetrahydrofuran ND 0.500 ND 1.47 2.5 Toluene 5.87 0.500 22.1 1.88 2.5 trans-1,2-Dichloroethene ND 0.500 ND 1.98 2.5 trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	Low Level Volatile	Organic Compounds	in Air						
Tetrahydrofuran ND 0.500 ND 1.47 2.5 Toluene 5.87 0.500 ND 1.88 2.5 trans-1,2-Dichloroethene ND 0.500 ND 1.98 2.5 trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	Styrene		ND	0.500	ND	2.13		2.5	
Toluene 5.87 0.500 22.1 1.88 2.5 trans-1,2-Dichloroethene ND 0.500 ND 1.98 2.5 trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	Tetrachloroethene		0.934	0.500	6.33	3.39		2.5	
ND 0.500 ND 1.98 2.5 trans-1,2-Dichloroethene ND 0.500 ND 2.27 2.5 trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	Tetrahydrofuran		ND	0.500	ND	1.47		2.5	
trans-1,3-Dichloropropene ND 0.500 ND 2.27 2.5 Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	Toluene		5.87	0.500	22.1	1.88		2.5	
Trichloroethene 135 0.500 724 2.68 2.5 Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	trans-1,2-Dichloroethen	е	ND	0.500	ND	1.98		2.5	
Trichlorofluoromethane 0.625 0.500 3.51 2.81 2.5 Vinyl acetate ND 0.500 ND 1.76 2.5	trans-1,3-Dichloroprope	ne	ND	0.500	ND	2.27		2.5	
Vinyl acetate ND 0.500 ND 1.76 2.5	Trichloroethene		135	0.500	724	2.68		2.5	
	Trichlorofluoromethane		0.625	0.500	3.51	2.81		2.5	
	Vinyl acetate		ND	0.500	ND	1.76		2.5	
Vinyl bromide ND 0.500 ND 2.18 2.5	Vinyl bromide		ND	0.500	ND	2.18		2.5	
Vinyl chloride ND 0.500 ND 1.28 2.5	/inyl chloride		ND	0.500	ND	1.28		2.5	

Project Name:	STEEL EQUITIES
Project Number:	Not Specified

 Lab Number:
 L0802694

 Report Date:
 03/05/08

Lab ID:	L0802694-05
Client ID:	SS-05
Sample Location:	BETHPAGE, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/03/08 16:47
Analyst:	HM

Date Collected:	02/25/08 17:40
Date Received:	02/26/08
Field Prep:	Not Specified

	ppbV	ppbV		3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Cor	mpounds in Air					
1,1,1-Trichloroethane	2.15	2.00	11.7	10.9		10
1,1,2,2-Tetrachloroethane	ND	2.00	ND	13.7		10
1,1,2-Trichloroethane	ND	2.00	ND	10.9		10
1,1-Dichloroethane	ND	2.00	ND	8.09		10
1,1-Dichloroethene	ND	2.00	ND	7.92		10
1,2,4-Trichlorbenzene	ND	2.00	ND	14.8		10
1,2,4-Trimethylbenzene	35.7	2.00	175	9.82		10
1,2-Dibromoethane	ND	2.00	ND	15.4		10
1,2-Dichlorobenzene	ND	2.00	ND	12.0		10
1,2-Dichloroethane	ND	2.00	ND	8.09		10
1,2-Dichloropropane	ND	2.00	ND	9.24		10
1,3,5-Trimethybenzene	5.16	2.00	25.4	9.82		10
1,3-Butadiene	ND	2.00	ND	4.42		10
1,3-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dichlorobenzene	ND	2.00	ND	12.0		10
1,4-Dioxane	ND	2.00	ND	7.20		10
2,2,4-Trimethylpentane	ND	2.00	ND	9.34		10
2-Butanone	8.24	2.00	24.3	5.89	J	10
2-Hexanone	ND	2.00	ND	8.19		10
3-Chloropropene	ND	2.00	ND	6.26		10
4-Ethyltoluene	3.30	2.00	16.2	9.82		10
Acetone	58.2	2.00	138	4.75	J	10
Benzene	ND	2.00	ND	6.38		10
Benzyl chloride	ND	2.00	ND	10.3		10
Bromodichloromethane	ND	2.00	ND	13.4		10

L0802694

03/05/08

Lab Number: Report Date:

STEEL EQUITIES

Project Number: Not Specified

Project Name:

Lab ID: Client ID: Sample Location:	L0802694-05 SS-05 BETHPAGE, NY				Date Field	Received: Prep:	02/25/08 17:40 02/26/08 Not Specified
Parameter		ppbV Results	RDL	ug/m Results	RDL		ution
all sector and the	Organic Compounds		RDL	Hoound		quannor	
Bromoform	5	ND	2.00	ND	20.6		10
Bromomethane		ND	2.00	ND	7.76		10
Carbon disulfide		ND	2.00	ND	6.22		10
Carbon tetrachloride		ND	2.00	ND	12.6		10
Chlorobenzene		ND	2.00	ND	9.20		10
Chloroethane		ND	2.00	ND	5.27		10
Chloroform		ND	2.00	ND	9.76		10
Chloromethane		ND	2.00	ND	4.13		10
cis-1,2-Dichloroethene		ND	2.00	ND	7.92		10
cis-1,3-Dichloropropene		ND	2.00	ND	9.07		10
Cyclohexane		ND	2.00	ND	6.88		10
Dibromochloromethane		ND	2.00	ND	17.0		10
Dichlorodifluoromethane	9	ND	2.00	ND	9.88		10
Ethanol		134	25.0	252	47.1		10
Ethyl Acetate		ND	5.00	ND	18.0		10
Ethylbenzene		ND	2.00	ND	8.68		10
Freon-113		ND	2.00	ND	15.3		10
Freon-114		ND	2.00	ND	14.0		10
Hexachlorobutadiene		ND	2.00	ND	21.3		10
Isopropanol		ND	5.00	ND	12.3		10
Methylene chloride		ND	2.00	ND	6.94		10
4-Methyl-2-pentanone		ND	2.00	ND	8.19		10
Methyl tert butyl ether		ND	2.00	ND	7.20		10
p/m-Xylene		ND	4.00	ND	17.4		10
o-Xylene		ND	2.00	ND	8.68		10
Heptane		ND	2.00	ND	8.19		10
n-Hexane		ND	2.00	ND	7.04		10
Propylene		ND	2.00	ND	3.44		10

			03050815:58
Project Name:	STEEL EQUITIES	Lab Number:	L0802694
Project Number:	Not Specified	Report Date:	03/05/08
		SAMPLE RESULTS	

Lab ID: Client ID: Sample Location:	L0802694-05 SS-05 BETHPAGE, NY				Date	Collected: Received: Prep:	02/25/08 02/26/08 Not Spe	3
		ppbV	1	ug/m	3		Dilution	
Parameter		Results	RDL	Results	RDL	Qualifier	Factor	
Low Level Volatile	Organic Compounds	in Air						
Styrene		ND	2.00	ND	8.51		10	
Tetrachloroethene		ND	2.00	ND	13.6		10	
Tetrahydrofuran		ND	2.00	ND	5.89		10	
Toluene		5.82	2.00	21.9	7.53		10	
trans-1,2-Dichloroethen	e	ND	2.00	ND	7.92		10	
trans-1,3-Dichloroprope	ne	ND	2.00	ND	9.07		10	
Trichloroethene		54.1	2.00	290	10.7		10	
Trichlorofluoromethane		ND	2.00	ND	11.2		10	
Vinyl acetate		ND	2.00	ND	7.04		10	
Vinyl bromide		ND	2.00	ND	8.74		10	
Vinyl chloride		ND	2.00	ND	5.11		10	

Project Name:	STEEL EQUITIES
Project Number:	Not Specified

1

03050815:58

 Lab Number:
 L0802694

 Report Date:
 03/05/08

SAMPLE RESULTS

×

Lab ID:	L0802694-06 R
Client ID:	SS-06
Sample Location:	BETHPAGE, NY
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	03/04/08 07:50
Analyst:	HM

Date Collected:	02/25/08 17:55
Date Received:	02/26/08
Field Prep:	Not Specified

	ppbV		ug/m	3		Dilution
Parameter	Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile Organic Con	npounds in Air					
1,1,1-Trichloroethane	4.34	0.400	23.7	2.18		2
1,1,2,2-Tetrachloroethane	ND	0.400	ND	2.74		2
1,1,2-Trichloroethane	ND	0.400	ND	2.18		2
1,1-Dichloroethane	ND	0.400	ND	1.62		2
1,1-Dichloroethene	ND	0.400	ND	1.58		2
1,2,4-Trichlorbenzene	ND	0.400	ND	2.97		2
1,2,4-Trimethylbenzene	2.53	0.400	12.4	1.96		2
1,2-Dibromoethane	ND	0.400	ND	3.07	326	2
1,2-Dichlorobenzene	ND	0.400	ND	2.40		2
1,2-Dichloroethane	ND	0.400	ND	1.62		2
1,2-Dichloropropane	ND	0.400	ND	1.85		2
1,3,5-Trimethybenzene	0.673	0.400	3.30	1.96		2
1,3-Butadiene	ND	0.400	ND	0.884		2
1,3-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dichlorobenzene	ND	0.400	ND	2.40		2
1,4-Dioxane	ND	0.400	ND	1.44		2
2,2,4-Trimethylpentane	ND	0.400	ND	1.87		2
2-Butanone	3.75	0.400	11.0	1.18	5	2
2-Hexanone	ND	0.400	ND	1.64		2
3-Chloropropene	ND	0.400	ND	1.25		2
4-Ethyltoluene	0.606	0.400	2.98	1.96		2
Acetone	24.8	0.400	58.8	0.949	J	2
Benzene	0.791	0.400	2.53	1.28		2
Benzyl chloride	ND	0.400	ND	2.07		2
Bromodichloromethane	ND	0.400	ND	2.68		2

Project Name: STEEL EQUITIES Project Number: Not Specified

Lab Number:

03050815:58

L0802694 **Report Date:** 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-06 B SS-06 BETHPAGE, NY				Date Field	Collected: Received: Prep:	02/25/08 17:5 02/26/08 Not Specified	
Parameter		ppbV Results	RDL	ug/m3 Results	RDL	Qualifier	Dilution Factor	
	Organic Compounds		AND DESCRIPTION OF			de la la	Secure 2	
Bromoform		ND	0.400	ND	4.13		2	
Bromomethane		ND	0.400	ND	1.55		2	
Carbon disulfide		0.630	0.400	1.96	1.24		2	
Carbon tetrachloride		ND	0.400	ND	2.51		2	
Chlorobenzene		ND	0.400	ND	1.84		2	
Chloroethane		ND	0.400	ND	1.05		2	
Chloroform		3.20	0.400	15.6	1.95		2	
Chloromethane		ND	0.400	ND	0.825		2	
cis-1,2-Dichloroethene		ND	0.400	ND	1.58		2	
cis-1,3-Dichloropropene		ND	0.400	ND	1.81		2	
Cyclohexane		ND	0.400	ND	1.38		2	
Dibromochloromethane		ND	0.400	ND	3.40		2	
Dichlorodifluoromethane		1.47	0.400	7.25	1.98		2	
Ethanol		5.08	5.00	9.56	9.41		2	
Ethyl Acetate		ND	1.00	ND	3.60		2	
Ethylbenzene		0.888	0.400	3.85	1.74		2	
Freon-113		ND	0.400	ND	3.06		2	
Freon-114		ND	0.400	ND	2.79		2	
Hexachlorobutadiene		ND	0.400	ND	4.26		2	
Isopropanol		2.50	1.00	6.15	2.46		2	
Methylene chloride		ND	0.400	ND	1.39		2	
4-Methyl-2-pentanone		1.49	0.400	6.10	1.64		2	
Methyl tert butyl ether		ND	0.400	ND	1.44		2	
p/m-Xylene		3.24	0.800	14.0	3.47		2	
o-Xylene		0.804	0.400	3.49	1.74		2	
Heptane		0.567	0.400	2.32	1.64		2	
n-Hexane		0.630	0.400	2.22	1.41		2	
Propylene		ND	0.400	ND	0.688		2	

Project Name:STEEL EQUITIESProject Number:Not Specified

03050815:58

Lab Number: Report Date: L0802694 03/05/08

Lab ID: Client ID: Sample Location:	L0802694-06 R SS-06 BETHPAGE, NY					Collected: Received: Prep:	02/25/08 17:5 02/26/08 Not Specified
		ppbV		ug/m	3		Dilution
Parameter		Results	RDL	Results	RDL	Qualifier	Factor
Low Level Volatile	Organic Compounds	in Air					
Styrene		ND	0.400	ND	1.70		2
Tetrachloroethene		0.421	0.400	2.86	2.71		2
Tetrahydrofuran		ND	0.400	ND	1.18		2
Toluene		3.78	0.400	14.2	1.51		2
trans-1,2-Dichloroethen	e	ND	0.400	ND	1.58		2
trans-1,3-Dichloroprope	ne	ND	0.400	ND	1.81		2
Trichloroethene		73.6	0.400	395	2.15		2
Trichlorofluoromethane		2.99	0.400	16.8	2.24		2
Vinyl acetate		ND	0.400	ND	1.41		2
Vinyl bromide		ND	0.400	ND	1.75		2
Vinyl chloride		ND	0.400	ND	1.02		2

ATTACHMENT 2 - DATA VALIDATION REPORT

ATTACHMENT 3 - ALPHA ANALYTICAL LABORATORIES ASP CATEGORY B LABORATORY DATA DELIVERABLE (ON CD)

15 June 2009

Mr. Steven M. Scharf, P.E. New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Action, Bureau A 625 Broadway Albany, NY 12233-7015

Re: Supplemental Soil Vapor Intrusion/Indoor Air Quality Investigation Results Interior Building Areas Near Phase II Area Nos. 25 & 46 Former Grumman Plant 2, Bethpage, New York

Dear Mr. Scharf:

On behalf of Steel Los III, LP, (Steel Los III), ERM Consulting & Engineering, Inc. (ERM) has prepared this letter report to present the results of the Supplemental Soil Vapor Intrusion (SVI)/Indoor Air Quality (IAQ) Investigation performed within the former Grumman Plant 2 building in certain office/break room areas, and near Area of Concern Nos. 25 (Former Paint Storage, Mixing and Stripping Room) & 46 (Machine Pit) identified in a Phase II investigation conducted by Dvirka & Bartilucci in 1996.

Background

An initial SVI investigation was conducted on 25 February 2008 pursuant to the Stipulation Agreement between Steel Los III and New York State Department of Environmental Conservation (NYSDEC) dated 4 February 2008. The initial investigation involved collection of six (6) sub-slab vapor samples in accordance with ERM's 28 January 2008 Revised SVI Investigation Work Plan¹ that was approved by NYSDEC². The purpose of the SVI investigation was to evaluate whether there are any potential soil vapor intrusion issues within the former Grumman Plant 2 building that are associated with the former Areas of Concern.

The sampling was conducted on 25 February 2008 within the portion of the building occupied by the current tenant, the United States Postal Service (USPS). The integrity of the building concrete floor slab is very good throughout ranging in thickness from 6 to 12 inches with an

0072943 700 Hicksville Road, Bethpage, NY 15 June 2009

Environmental Resources Management

40 Marcus Drive Suite 200 Melville, NY 11747 (631) 756-8900 (631) 756-8901 (fax) http://www.erm.com

¹ Letter dated 28 January 2008 from Chris Wenczel-ERM to Steve Scharf-NYSDEC

² Letter dated 31 January 2008 from Steve Scharf-NYSDEC to Chris Wenczel-ERM

average thickness of approximately 8 inches. There are powerful heating/ventilation/air conditioning systems that continuously feed and circulate fresh air from outdoors under a positive pressure to all occupied areas of the building. Specific details are presented below.

According to Steel Los III, the HVAC system for USPS space in the former Grumman Plant 2 building (the space containing former AOCs 25 & 46) consists of 34 rooftop units that produce an airflow of 2,560,000 CFM. The nominal fresh air setting is at 20%, resulting in a fresh air flow of 512,000 CFM. The footprint of the USPS space is 373,000 square feet, with an interior volume of 10,440,000 cubic feet. The HVAC system provides a minimum of 3 air changes an hour. In general, fresh air influx through the HVAC system places the space under positive pressure. The space is not airtight, allowing communication between indoor and outdoor air, which also lessens vapor intrusion concerns.

Ceiling heights range from 9 to 38.5 feet with 96% of the space consisting of high bay areas with a ceiling height of 24 feet or greater.

The sub-slab vapor sampling findings were presented to NYSDEC in ERM's 6 May 2008 letter³. Based on those results, the NYSDEC and NYSDOH requested that Steel Los III perform additional soil vapor sampling along with the simultaneous collection of an indoor air sample at each location.

Accordingly, the supplemental investigation was performed and the results thereof are presented below.

Soil Vapor Intrusion/Indoor Air Quality Investigation

The SVI investigation was conducted on 16 March 2009 and subslab/indoor air/ambient air sampling locations are shown in Figure 1, which were slightly adjusted in the field based on accessibility and positioned to cause minimal disruption to the business activities of the current tenant, the USPS.

Sampling was performed following the protocols outlined in the NYSDEC-approved Work Plan and in accordance with the applicable protocols identified in the New York State Department of Health (NYSDOH) "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (October 2006). An "Indoor Air Quality Questionnaire and Building Inventory, and Product Inventory Forms" was completed (Attachment 1) contained in Appendix B of the NYSDOH Guidance.

³ Letter dated 6 May 2008 from Chris Wenczel-ERM to Steve Scharf-NYSDEC. 0072943 700 Hicksville Road, Bethpage, NY 15 June 2009

Each sampling location was screened using a photoionization detector (PID) to identify areas of potential interferences, and removing possible sources of VOCs from the sampling area. The PID was properly calibrated using isobutylene at the beginning of the day. No interferences were noted at the sampling locations. All sub-slab/indoor air/ambient air samples were collected over the same 8-hour period with individually-certified clean Summa[®] canisters fitted with appropriately programmed regulators. Sampling was discontinued while the canisters still exhibited a slight vacuum. All the pertinent data was recorded for each sampling location and is summarized in Table 1.

Sub-Slab Soil Vapor Samples

Four (4) sub-slab soil vapor samples (SS-07 through SS-10) were collected: one soil vapor sample was collected from each of Areas Nos. 25 & 46, and two additional locations that the NYSDOH now has requested to be sampled. Samples SS-07 and SS-09 correspond to the two additional locations requested by NYSDOH. Sample SS-08 corresponds to the highest VOC concentrations previously observed at Area No. 46 (SS-03). Sample SS-10 corresponds to the location closest to an occupied area within Area No 25.

The proposed sampling location in AOC 25 is considered representative of a worse-case location regarding soil vapor intrusion since it is located in an area with a low ceiling and a security office situated on top of an area of known sub-slab VOC concentrations in soil. Other office areas are located a minimum of 150 feet away from the AOCs associated with VOC concentrations in soil.

Indoor Air Samples

Four (4) indoor air samples (IA-07 through IA-10) were collected from the immediate locations of the sub-slab samples. Sample collection was through a section of dedicated Teflon tubing extending from the Summa[®] canister to the breathing zone of a seated person, approximately three (3) feet above the floor.

Ambient Air Sample

The Plant 2 building has roof-mounted heating/ventilation/air conditioning systems that continuously feed and circulate fresh air from outdoors under a positive pressure to all occupied areas of the building. Accordingly, one ambient air sample (AA-01) was collected from an upwind location on the roof adjacent to a roof-top air intake for the building.

A section of dedicated Teflon tubing was extended from the Summa[®] canister to collect the sample from the breathing zone of a standing individual at four (4) to six (6) feet above the ground.

Laboratory Analysis

The nine canisters were shipped via overnight delivery to Accutest Laboratories (NYSDOH Certification No. 10983) in Dayton, New Jersey, an Environmental Laboratory Accreditation Program- (ELAP)-certified laboratory. All samples were analyzed for VOCs using USEPA Method TO-15, with a target detection limit of 1.0 micrograms per cubic meter (μ g/m³) or less for all parameters except trichloroethene (TCE). The target detection limit for TCE in indoor air samples was 0.25 ug/m³ or less. This lower detection limit is required for TCE because the Decision Matrices in the NYSDOH Guidance used to evaluate indoor TCE concentrations, and Decision Matrix 1 evaluates the risks posed by TCE at concentrations as low as 0.25 ug/m³ although the actual NYSDOH guidance value for indoor air is 5 ug/m³ for TCE.

All laboratory data was reported in ASP Category B deliverable format and a data usability validation was performed by a qualified ERM Chemist. The Data Usability Report which includes laboratory data summary sheets is presented in Attachment 2. The validated analytical results are presented in Table 2. The full ASP Category B laboratory data deliverable is provided on the CD presented in Attachment 3. Detected compounds and associated concentrations are summarized in Table 2.

The exact sources of VOCs in sub-slab soil vapor and indoor air are presently unknown. The current tenant uses and stores minor amounts of detergents, lubricants and degreasers in servicing its package conveyance systems and for general housekeeping. Since the PID screening at each sampling location taken at the time of the sub-slab and indoor air sampling did not indicate the presence of VOCs, the tenant's use and storage of these VOC-containing products is unlikely to have influenced the sampling results.

Conclusions

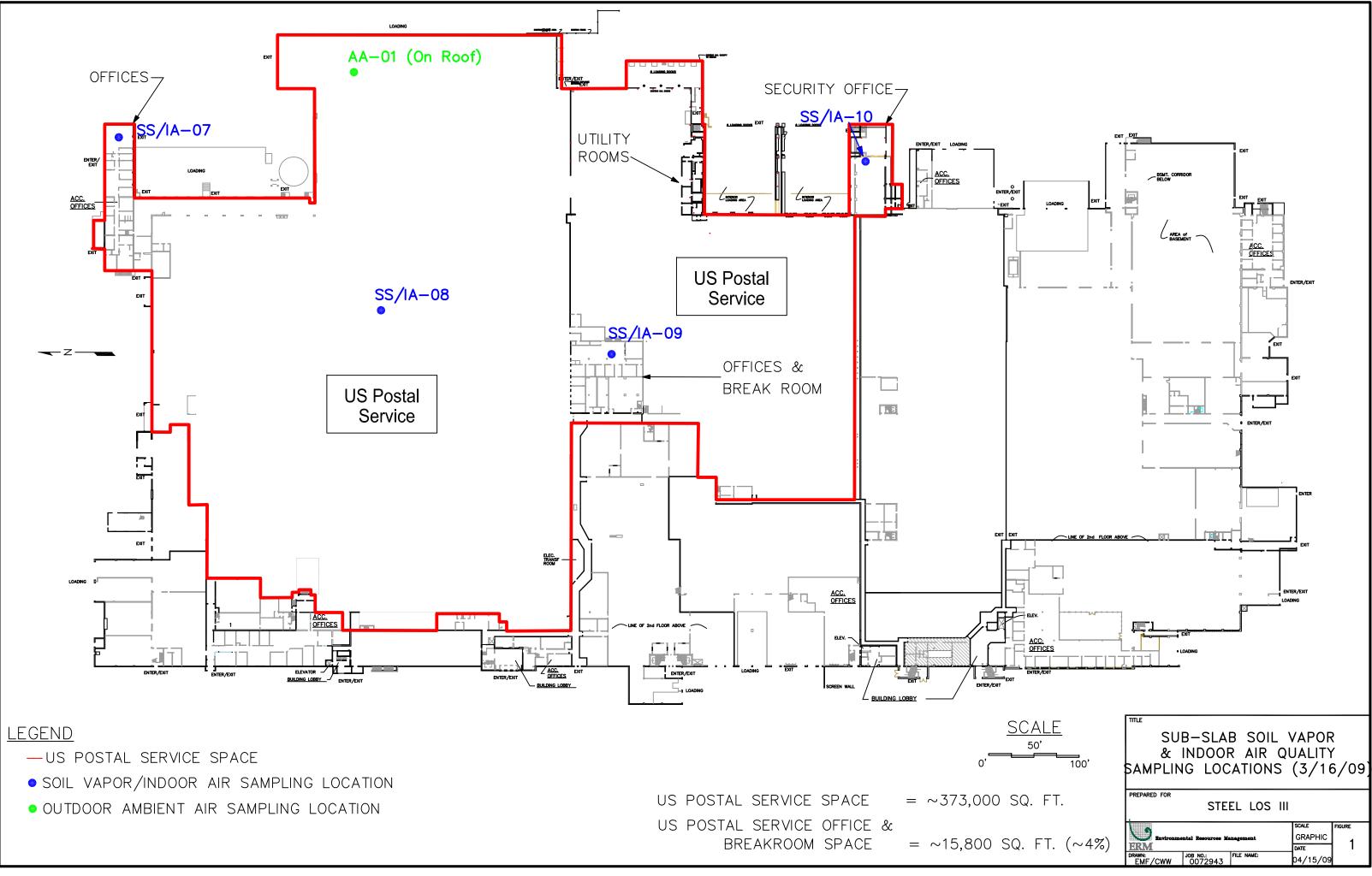
Based on the sampling results, indoor air sample IA-07 contained a concentration of 11 ug/m³, which exceeds the NYSDOH indoor air guideline of 5 ug/m³ for TCE. Detected concentrations of TCE in the remaining three indoor air samples were below the 5 ug/m³ for TCE guideline. Steel Los has adjusted the fresh air inlet damper on the HVAC unit that services the area of the building where sample IA-07 was

collected to provide a greater volume of fresh air to this area thereby reducing TCE concentrations in the indoor air.

We do not expect to observe additional impacts to indoor air quality from the sub-slab vapors above the NYSDOH indoor air guideline because the integrity of the floor slab is very good in these areas, and there are powerful heating/ventilation/air conditioning systems that continuously feed and circulate fresh air from outdoors under a positive pressure to all occupied areas of the building, which would suppress sub-slab vapors from entering the building.

We would like to meet with you to discuss these results. If you have any additional questions or comments, please do not hesitate to contact me at (631) 756-8900.

Very truly yours,


rlenge

Chris W. Wenczel Senior Consultant

Attachments

cc: Kevin Lumpe, Steel Los III, LP Manfred Bohms, Steel Los III, LP John Swartwout, NYSDEC Walter Parish, NYSDEC

FIGURES

TABLES

ERM

TABLE 1 SUB-SLAB/INDOOR AIR/AMBIENT AIR SAMPLING SUMMARY 16 MARCH 2009 STEEL LOS III, FORMER GRUMMAN PLANT 2 700 HICKSVILLE ROAD, BETHPAGE, NY

	NE Roof	f Conference Room/ Mainenance Offices		Area 46		Storage Room (near Break Room)		Area 25	
Sample ID	AA-01	IA-07	SS-07	IA-08	SS-08	IA-09	SS-09	IA-10	SS-10
Sampler's Name	KP/TS	KP/TS	KP/TS	KP/TS	KP/TS	KP/TS	KP/TS	KP/TS	KP/TS
	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09
Date, Time And PID Reading Following	0935	1006	1006	0851	0851	0911	0911	0922	0922
Purge	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM
	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09
	0935	1006	1006	0851	0851	0911	0911	0922	0922
Date, Time And PID Reading in Room	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM	0.0PPM
	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09	3/16/09
	0937	1008	1008	0853	0852	0913	0914	0924	0924
Date And Time Of Sample Start And Stop	1736	1807	1807	1652	1651	1712	1713	1723	1723
Summa [®] Canister Serial Number	A871	A900	A901	A902	A903	A895	A899	A896	A905
Flow Controller ID Number	FC214	FC222	FC202	FC195	FC220	FC216	FC217	FC208	FC200
	-30"Hg+	-30"Hg	-30"Hg+	-30"Hg+	-30"Hg	-30"Hg+	-30"Hg	-30"Hg+	-27"Hg
Initial And Final Summa® Canister Vacuum	-5.5"Hg	-6"Hg	-6"Hg	-11"Hg	-6"Hg	-6.5"Hg	-8"Hg	-5.5"Hg	-8"Hg
	AA-01	IA-07	SS-07	IA-08	SS-08	IA-09	SS-09	IA-10	SS-10
	See Figure	See Figure	See Figure	See Figure	See Figure	See Figure	See Figure	See Figure	See Figure
Sample Identification, And Descriptive	of sampling	of sampling	of sampling	•	of sampling	of sampling	of sampling	of sampling	of sampling
Location Of The Sampling Area	locations.	locations.	locations.	locations.	locations.	locations.	locations.	locations.	locations.
Sample Identification For Other									
Corresponding Samples At The Same									
Property	None	None	None	None	None	None	None	None	None
Weather Conditions Including Barometric	30.2"	30.2"	30.2"	30.2"	30.2"	30.2"	30.2"	30.2"	30.2"
Pressure, And Ambient Temperature Inside		70°F	70°F	70°F	70°F	70°F	70°F	70°F	70°F
And Outside The Building	45°F	45°F	45°F	45°F	45°F	45°F	45°F	45°F	45°F
Floor Slab Thickness			6"		6"		6"		6"
Sampling Depth(S)			-		-		-		
Soil Type At Sample Location, If Known									
	60 ml	60 ml	60 ml	60 ml	60 ml	60 ml	60 ml	60 ml	60 ml
	3/16/2009	3/16/2009	3/16/2009	3/16/2009	3/16/2009	3/16/2009	3/16/2009	3/16/2009	3/16/2009
All Equipment Calibrations Performed.	0800	0800	0800	0800	0800	0800	0800	0800	0800

TABLE 2 SUB-SLAB/INDOOR AIR/AMBIENT AIR SAMPLING RESULT SUMMARY 16 MARCH 2009 STEEL LOS III, FORMER GRUMMAN PLANT 2 700 HICKSVILLE ROAD, BETHPAGE, NY

Bate Printoor No.2004 S162000 S16200	Sample ID	OSHA PEL	NYSDOH	SS-07	IA-07	SS-08	IA-08	SS-09	IA-09	SS-10	IA-10	AA-01
Units ogan" ogan" <th< th=""><th>Date</th><th></th><th>Indoor Air</th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th></th<>	Date		Indoor Air		-							-
11.1-10.23 11.1-10.23 11.23	Location	Air ¹	Guideline ²	NE Offices	NE Offices	AOC 46	AOC 46	Break Room	Break Room	AOC 25		NE Roof
11.22-Treintendentarie 36.00 NOV U	Units			ug/m ³								
11.2-Dictionalization 45.000 NOV U U U U U U U U U 11.3-bit interfance NS NOV U 1.4.5 U 2.8 U 1.5.1 U 3.1 U U U 11.3-bit interfance NS NSV U 2.7 1.1 U 1.2 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></t<>							-					
11-Discription NGV 2.9 U 1.5 U 2.9 U 55.4 U U 12.4-761050xcm0 NS NGV U U 0.4 U <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				-	-		-	-				
11-Blacknochme NS NGV U				-	-	-	-	-	-	-	-	_
12,4-Trinshysene NS NGV U	'				-		-		-		-	
12.4-Tomoshore NS NGV U Z.7 1.1 U U.3 0.1 U <thu< td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td></thu<>							-		-			
12-Decharbes/pergene 3200,00 NGV U U U U </td <td>1,2,4-Trimethylbenzene</td> <td></td> <td></td> <td>U</td> <td>2.7</td> <td>1.1</td> <td>U</td> <td>2.3</td> <td>1.1</td> <td>U</td> <td>U</td> <td>U</td>	1,2,4-Trimethylbenzene			U	2.7	1.1	U	2.3	1.1	U	U	U
12-Backborgenbane 2003.000 NGV U </td <td>1,2-Dibromoethane</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>_</td>	1,2-Dibromoethane		-	-	-	-	-	-	-	-	-	_
12-Dichospongene 550.00 NGY U U	,			-	-		-	-	-	-		
13,8-Timeltybenzene NS NGV U 0 U	'			-	-	-	-	-	-	-	-	_
13-Batadené 1,000 NGV U <thu< th=""> U U</thu<>				-	-		-	-	-	-	-	
13-Dickinochanzene NS NSV U				-		-	-		-	-	-	_
14-Doxano 360,000 NGV U U U 1.2 U U U U 2-Butnance \$90,000 NGV U 4.1 4.7 2.7 2.7 2.7 3.5 1 2.1 1.1 2-Butnance S00,000 NGV U <t< td=""><td>· ·</td><td></td><td></td><td>Ŭ</td><td>U</td><td>Ū</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td></t<>	· ·			Ŭ	U	Ū	U	U	U	U	U	U
22,4-Timethylgentame NS NGV U 1.4 U 0.98 0.757 3.5 U 0.84J U 2-Chirontolene NS NGV U	,				-		-		-		-	_
24Butanne 590.000 NGV 1.9 4.1 4.7 2.7 2.7 2.7 3.5 1 2.1 1.1 2-Horatobare NGV U <tdu< td=""><td>,</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>_</td></tdu<>	,		-	-	-	-	-		-	-	-	_
S NGV U			-	-		-				-		_
2+Haranne 410,000 NGV U <thu< th=""> U U</thu<>										-		
32-Ohotopropene 3,000 NOV U	2-Hexanone			-	-		-	-	-	-		
At:Bitydiane NS NSV U 0.64.J U U U U U U U Acetore 2,400,000 NGV 12 54.6 36.3 13 323 27.1 10 9.3 5.7 Benzene 3,190 NGV 0.54.J 2 0.48.J 1.4 4.8 1.7 0.64 1.3 0.87 Benzene NS NGV U	3-Chloropropene			-	-		-	-	-	-		
Acetone 2.400,000 NGV 0.54 32.3 13 32.3 27.1 10 9.3 5.7 Benzy chloride NS NGV U <	4-Ethyltoluene	NS		-		-	-	-	-	-	-	_
Benzene 5,190 NGV 0.54J 2 0.48J 1.4 4.88 1.7 0.64 1.3 0.89 Benzyl chlorid NS NGV U <				-	-	=	-		-	-	-	_
Banagk chlonde NS NSV U <thu< th=""> U U</thu<>							-			-		-
Bromochhome NS NSV U			-									
Bromethene NS NSV U <			-	-	-	-	-	-	-			
Brommerhane Carbon disulfide (achon disulfide) NGV 62,000 U	Bromoethene			-			-			_		
Carbon disulfide 62,000 NGV 4.7 U 0.62 U 3.7 U <th< td=""><td>Bromoform</td><td></td><td>NGV</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td><td>U</td></th<>	Bromoform		NGV	U	U	U	U	U	U	U	U	U
Carbon tetrachloride 63,704 NGV 20 U 7.5 U <th< td=""><td>Bromomethane</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td></th<>	Bromomethane			-	-	-	-	-	-	-	-	_
Chiorobenzene 350,000 NGV U					-		-		-	_	-	_
Chlorosthane 2,60,000 NGV U			-				-	-				_
Chlorodram 240,000 NGV 5.4 U 33 U 19 U 18 U U Chloromethane 100,000 NGV 3.9 1.3 0.68 1.3 0.97 1.3 0.33J 1.2 1.3 Gis1_2.D:chloroethane 5.000 NGV U			-	-	-	-	-	-	-	-	-	_
Chloromethane 100,000 NGV U 1.3 0.6 1.3 0.97 1.3 0.33J 1.2 1.3 cis-1,2-Dichlorograpene 5,000 NGV U <thu< th=""> <thu< td=""><td>Chloroform</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td></thu<></thu<>	Chloroform			-	-	-	-	-	-	-	-	_
cis-13-bichioropropene 5,000 NGV U	Chloromethane		NGV	U	1.3	0.6	1.3	0.97	1.3	0.33J	1.2	1.3
Cyclohexane 1,650,000 NGV U 0.722 U <td>cis-1,2-Dichloroethene</td> <td></td> <td></td> <td></td> <td>U</td> <td>0.48J</td> <td>U</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>_</td>	cis-1,2-Dichloroethene				U	0.48J	U		-		-	_
Dibronchloromethane 87,000 NGV U </td <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>					-		-		-			
Dichtorodifluoromethane 4,950,000 NGV 2.8 5.4 4 2.7 2.5 2.7 3.2 2.8 2.8 Ethyl Acetate NS NGV 2 4.7 5.8 4 3.65 12.60 1.2 39.4 5.5 Ethyl Acetate NS NGV 2 4.7 5.8 4 3.6 3.6 2.4 2.2 U Ethyl Acetate NS NGV U 1.4 1 0.96 1.5 1.2 U 0.74J U Freon-113 NS NGV U							-				-	_
Ethanol 1,900,000 NGV 18 558.J 13 33.5 28.8 126J 12 39.4 5.5 EthylAcetate NS NGV 2 4.7 5.8 4 3.6 3.6 24 2.2 U EthylAcetate NS NGV 3.3 U 11 U 21 U 0.74J U Freon-113 NS NGV 3.3 U 11 U				-	-	-	-	-			-	_
Ethyl Acetate NS NGV 2 4.7 5.8 4 3.6 3.6 2.4 2.2 U Ethylbenzene 435,000 NGV U 1.4 1 0.96 1.5 1.2 U 0.74J U Freon-113 NS NGV 3.3 U 11 U 21 U												
Freen-113 NS NGV 3.3 U 11 U 21 U 12 U U Freen-114 NS NGV U	Ethyl Acetate											
Freon-114 NS NGV U <t< td=""><td>Ethylbenzene</td><td></td><td></td><td>-</td><td>1.4</td><td>1</td><td>0.96</td><td></td><td>1.2</td><td>-</td><td>0.74J</td><td>U</td></t<>	Ethylbenzene			-	1.4	1	0.96		1.2	-	0.74J	U
HeptaneNSNGVU6.1U1.13.21.6U0.86UHexachlorobutadieneNSNGVUUU	Freon-113				-		-					_
Hexachlorobutadiene NS NGV U					-		-		-		-	
Isopropanol 980,000 NGV U 1.7 0.56J 1.1 2 2 U 0.88 0.42J Methyl tert butyl terther NS NGV 2.9 152J 1.8 11 8.8 110J 2.3 15 0.71 Methylene chloride 87,933 NGV U				-		-				-		_
Methyl tert butyl ether NS NGV 2.9 152J 1.8 11 8.8 110J 2.3 15 0.71 Methylene chloride 87,933 NGV U <t< td=""><td>Isopropanol</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>_</td><td>-</td><td>-</td></t<>	Isopropanol			-	-	-	-			_	-	-
Methylene chloride 87,933 NGV U <td>Methyl tert butyl ether</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	Methyl tert butyl ether			-						-		
o-Xylene 435,000 NGV U 1.6 1.1 0.69J 1.4 0.96 U 0.65J U p/m-Xylene 435,000 NGV 0.56J 3.8 2.5 1.7 4 2.4 0.83J 1.5 0.56J Propylene NS NGV U U 1.4 1.9 13 U U 1.9 U Styrene NS NGV U U U 3.4 U <td>Methylene chloride</td> <td>87,933</td> <td>NGV</td> <td>-</td> <td>U</td> <td></td> <td>U</td> <td></td> <td>U</td> <td>U</td> <td>U</td> <td>U</td>	Methylene chloride	87,933	NGV	-	U		U		U	U	U	U
p/m-Xylene435,000NGV0.56J3.82.51.742.40.83J1.50.56JPropyleneNSNGVUU1.41.913UU1.9UStyreneNSNGVUUUU3.4UUUUTertiary Butyl Alcohol300,000NGVU2.1UUUUUUUTetrachloroethene678,000100.0281200.88261.31320.75UTetrachloroethene590,000NSUUUUUUUUUToluene754,000NS1.1148.7918132.43.41.5trans-1,2-Dichloroethene790,000NS0.99UUUUUUUUTrichloroethene537,000S.00844114641.27421.1436UUUTrichloroethaneNSNS1.72.7132.82.62.53.721.6Vinyl acetateNSNSNANANANANANANANANANAVinyl chlorideNSNSUUUUUUUUUUUinyl acetateNSNSUUUUUUUUU<	n-Hexane											
Propylene NS NGV U U 1.4 1.9 13 U U 1.9 U Styrene NS NGV U U U U 3.4 U U U U Tertiary Butyl Alcohol 300,000 NGV U 2.1 U	-			-								
Styrene NS NGV U U U U 3.4 U U U U Tertiary Butyl Alcohol 300,000 NGV U 2.1 U <td></td>												
Tertiary Butyl Alcohol300,000NGVU2.1UUUUUUUUTetrachloroethene678,000100.0281200.88261.31320.75UTetrahydrofuran590,000NSUUUUUUUUUUUToluene754,000NS1.1148.7918132.43.41.5trans-1,2-Dichloroethene790,000NS0.99UUUUUUUUtrans-1,3-Dichloroptopene5,000NSUUUUUUUUUTrichloroethene537,0005.00844114641.27421.1436UUUTrichlorofluoromethaneNSNS1.72.7132.82.62.53.721.6Vinyl acetateNSNSUUUUUUUUUUUVinyl bromideNSNSNANANANANANANANANANAVinyl chloride3,000NSUUUUUUUUUU												
Tetrachloroethene678,000100.0281200.88261.31320.75UTetrahydrofuran590,000NSUUUUUUUUUToluene754,000NS1.1148.7918132.43.41.5trans-1,2-Dichloroethene790,000NS0.99UUUUUUUUUtrans-1,3-Dichloropropene5,000NSUUUUUUUUUUTrichloroethene537,000S.008441146441.27421.1436UUUTrichlorofluoromethaneNSNS1.72.7132.82.62.53.721.6Vinyl acetateNSNSUUUUUUUUUUUVinyl chlorideNSNSNANANANANANANANANANAVinyl chloride3,000NSUU<	-			-	-	-	-			_		
Toluene 754,000 NS 1.1 14 8.7 9 18 13 2.4 3.4 1.5 trans-1,2-Dichloroethene 790,000 NS 0.99 U				-		-	-		-	-	-	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-			-								
trans-1,3-Dichloropropene 5,000 NS U <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Trichloroethene 537,000 5.00 844 11 464 1.2 742 1.1 436 U U Trichlorofluoromethane NS NS NS 1.7 2.7 13 2.8 2.6 2.5 3.7 2 1.6 Vinyl acetate NS NS U						-	-					
Trichlorofluoromethane NS NS 1.7 2.7 13 2.8 2.6 2.5 3.7 2 1.6 Vinyl acetate NS NS U					-	-	-	-	-	-	-	_
Vinyl acetate NS NS U												_
Vinyl bromide NS NS NA	Vinyl acetate											
	Vinyl bromide	NS	NS	NA	NA	NA	NA	NA	NA		NA	NA
Xylenes (total) 435,000 NS 0.56J 5.2 3.6 2.3 5.2 3.4 0.83J 2.2 0.56J	Vinyl chloride			-								_
	Xylenes (total)	435,000	NS	0.56J	5.2	3.6	2.3	5.2	3.4	0.83J	2.2	0.56J

110103.

All units are in (ug/m³)

1: PELs Permissible Exposure Limits For Chemicals In Indoor Air: United States Department of Labor - Occupational Health & Safety Administration: http://www.osha.gov/SLTC/pel/

2: New York State Department of Health: Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006: Table 3.1 Air Guideline Values Derived By The NYSDOH NGV = No Guidance Value

ATTACHMENTS

ATTACHMENT 1 - INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AND PRODUCT INVENTORY FORMS

ATTACHMENT 2 - DATA VALIDATION REPORT

ATTACHMENT 3 – ACCUTEST LABORATORIES ASP CATEGORY B LABORATORY DATA DELIVERABLE (ON CD)

ATTACHMENT 1 - INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY, AND PRODUCT INVENTORY FORMS

	NEW YORK STATE DEPARTMENT OF HEALTH
INDOOR	AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY
	CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Karen Pickering Date/Time Prepared
Preparer's Name Karen Pickering Date/Time Prepared 03/16/09 Preparer's Affiliation ERM Phone No. (631) 756-8900
Purpose of Investigation Legacy Site
1. OCCUPANT:
Interviewed: Y/D
Last Name: Nick Vernaci First Name:
Address: 288 Gruman Road, West Bethpage, NY 11714
County: Nassau
Home Phone: Office Phone: 516) 803-0132
Number of Occupants/persons at this location 500 + Age of Occupants 18-60 (in 2 shifts)
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: ⑦/ N
Last Name: Lumpe First Name: Kevin
Address: 700 Hicksville Rd. Bethpage, NY 11714
County: Nassau
Home Phone: Office Phone: (516) 576-3165
3. BUILDING CHARACTERISTICS

Type of Building: (Circle appropriate response)

Residential Industrial School Church Commercial/Multi-use

OSR - 3

F....

		-	
If the property is residentia	ll, type? (Circle appropria	te response)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Family Colonial Mobile Home Townhouses/Condos Other:	
If multiple units, how man	y?		
If the property is commerc			
Business Type(s)	S Postal Se	ervice	
Does it include residen	ces (i.e., multi-use)? Y 🖊	N If yes, how many?	
Other characteristics:			
Number of floors	Buil	ding age 70 Yrs	
Is the building insulate	d V/N Hov	v air tight? Tight / Average / Not Tight)	
4. AIRFLOW Use air current tubes or t	racer smoke to evaluate	airflow patterns and qualitatively describe:	
Airflow between floors		· · · · ·	
Airflow near source			<u></u> ,,
Outdoor air infiltration			
Infiltration into air ducts			

•

2

. _

.

a. Above grade construction:	wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with _	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially fin	ished
j. Sump present?	Y/N			
-	Y / N / not applicable	,		

3

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

	air circulation	
	e Heaters	
Elec	tric baseboard	

Heat pump Stream radiation Wood stove

Hot water baseboard Radiant floor Outdoor wood boiler

rom roo Othe

No Boile

The primary type of fuel used is:

Natural Gas Electric Wood

Fuel Oil Propane Coal

Kerosene Solar

Natural Gas/Electric Domestic hot water tank fueled by:

Boiler/furnace located in:

Outdoors Basement

Air conditioning:

None

Other

Central Air

Window units Open Windows

Main Floor

Are there air distribution ducts present?

·

.

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

(Y)N

Rooftop Mounted equipment. Supply and return
- La la Golf dack with approx. 10-12 of
Vertical Duct and 4 way attuser on suppry
and single return.

7. OCCUPANCY

1. 0000000						
Is basement/lo	west level occupied?	Full-time	Occasionall	5	ldom	Almost Never
<u>Level</u>	<u>General Use of Each</u>	Floor (e.g., f	amilyroom, bee	droom,	<u>, laundry, wo</u>	rkshop, storage)
Basement						
1 st Floor	Slab on an throughou Partial Mezz	ade. Part. t. Ceilina	<u>ckage Dis</u> 7 Helgna	+1-3	<u>ution Co</u> 32'	nveyors
2 nd Floor						
3 rd Floor	NA					-
4 th Floor	NA					_
8. FACTOR	S THAT MAY INFLU	ENCE INDO	OR AIR QUAI	LITY		
a. Is there	an attached garage?			1	Y N	
b. Does th	e garage have a separa	te heating uni	t?	-	Y/N/NA	
c. Are pet stored i	roleum-powered mach n the garage (e.g., lawr	ines or vehicle mower, atv, ca	es ar)		•	
d. Has the	e building ever had a fi	re?			<u> </u>	n?
e. Is a ker	osene or unvented gas	space heater	present?		-	re?
f. Is there	e a workshop or hobby	/craft area?	×.	Y /🕅	Where & Ty	pe?
g. Is ther	e smoking in the build	ing?		Y /	How frequer	typical Detergents be? WD40, Degreasers
	1	need recently	2 (D/N	When & Ty	pe? MDHO, Degreasers

h. Have cleaning products been used recently?

i. Have cosmetic products been used recently?

5	
j. Has painting/staining been done in the last 6 months?	Y N Where & When?
k. Is there new carpet, drapes or other textiles?	Y N Where & When?
1. Have air fresheners been used recently?	Y (N) When & Type?
m. Is there a kitchen exhaust fan?	Y (N) If yes, where vented?
n. Is there a bathroom exhaust fan?	(\hat{Y}) N If yes, where vented? $K \otimes F$
o. Is there a clothes dryer?	Y (\widehat{N}) If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y N When & Type?
Are there odors in the building? If yes, please describe:	Y (N)
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or boiler mechanic, pesticide application, cosmetologist	Y/N UNKOWN 500 + emplored auto body shop, painting, fuel oil delivery, in Z
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y / N
Do any of the building occupants regularly use or work a response)	t a dry-cleaning service? (Circle appropriate No
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	Unknown
Is there a radon mitigation system for the building/struct Is the system active or passive? Active/Passive	ture? Y / Date of Installation:
9. WATER AND SEWAGE	
Water Supply: Public Water Drilled Well Dr	riven Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Le	each Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill reside	
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate t	to friends/family relocate to hotel/motel
c. Responsibility for costs associated with reimburs	ement explained? Y / N
c. Responsibility for costs associated that a	ement explained? 1/19

· · · · ·

and the second second

.

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

12.2.2

5 - 4

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

								· see																				
÷																		÷								,		
																			•									

.....

8

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ______

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
						_
						_
				. 1		
`						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

ATTACHMENT 2 - DATA VALIDATION REPORT