

Report of Groundwater & Soils Investigation at The Former Ruco Division Plantsite Hicksville, New York

SECTION III Analytical

October 1984

Table of Contents

CONCLUSIONS

ń

. 5

5

Soil - Well Sites

Groundwater

Soil - Therminol Spill Area

1.0 SAMPLING

- 1.1 Introduction
- 1.2 Soil from Well Sites
- 1.3 Groundwater
- 1.4 Soil from Therminal Spill Area

2.0 ANALYTICAL RESULTS

- 2.1 Introduction
- 2.2 Soil from Well Sites
- 2.3 Groundwater
- 2.4 Soil from Therminol Spill Area

3.0 DISCUSSION OF RESULTS

- 3.1 Soil from Well Sites
- 3.2 Groundwater
- 3.3 Soil from Therminol Spill Area
- 4.0 ANALYTICAL QUALITY ASSURANCE
 - 4.1 Summary
 - 4.2 Introduction
 - 4.3 Specific Points
 - 4.3.1 Phthalates
 - 4.3.2 Holding Times
 - 4.3.3 Quality Control
 - 4.3.4 Precision and Accuracy

REFERENCES

- Proposed Hicksville Plant Groundwater Study, D. R. Thielen and R. G. Badger, 4/03/83.
- 2). Parsons, F., Lage, G, Rice, R., Astvaskis, M., and Nassau, R., "Behaviour and Fate of Hazardous Organic Chemicals in Contaminated Groundwater", Report to Florida Department of Environmental Regulation, December 1982.
- Wood, P. R., Parsons, F., Lang, R. F., Payan, I. L., Espinet-Tracey, S. S., and Harwin, H. J., "Pilot Plant Project for Removing Organic Substances from Drinking Water", EPA Report EPA600/2-84-009, January, 1984.
- 4). Harris, D., and Davids, H. W., "Interim Report #2, Vinyl Chloride Contamination of Groundwater, North Bay Shore, New York", Suffolk County Department of Health Services, November, 1983.

CONCLUSIONS

Soil - Well Sites

With the exception of sites E and F, soil from the well sites did not show the presence of organic or inorganic compounds at significant levels. At site E, tetrachloroethylene was found at a level of 240 ppm in a sample near the surface with much smaller amounts in deeper samples. Very low concentrations of Aroclor 1248 (less than 1 ppm) were also detected in some of these soils. At site F tetrachloroethylene only was found in much smaller concentrations (less than 2 ppm) in samples at 36 and 46 feet below grade level. Sites B and C each had one sample (the uppermost one) with less than 0.4 ppm of tetrachloroethylene. Sites C and D had very low concentrations of Aroclor 1248 (less than 1 ppm) in three of the seven samples analyzed.

Groundwater

Water samples from twelve locations were analyzed for a variety of parameters. None of the organic compounds analyzed for were found in six of these locations. Of the remaining six locations, two had only one compound, three had two compounds and one had three compounds. Only four values were over 50 ppb and none were over 200 ppb. Vinyl chloride was found at concentrations of 7, 140 and 50 ppb at sites E-1, F-1 and F-2 respectively. TOC and COD values at sites C-1, D-1, E-1, E-2, F-1 and F-2 indicate the possible presence of additional organic or oxidizable compounds at these sites. There is no consistent pattern of groundwater contamination by organics found in the soil samples.

Soil - Therminol Spill Area

In the limited area of the therminol spill region, Aroclor 1248 was found near the surface at the four sites samples. There was a rapid decrease found of concentration with increasing depth. A value of less than 50 ppm was former for the surface of the state of the

1.0 SAMPLING

1.1 Introduction

All soil and water sampling was done by personnel from the firm of Leggette, Brashears and Graham. The general principles were outlined in the Proposed Hicksville Plant Groundwater Study document⁽¹⁾ which is included in this report as Appendix B-1. Additional details are given in this report in Section II - Hydrogeology. All samples were split with the NYS DEC representative who was present for all sampling operations.

1.2 Soil - Well Sites

The general procedure for sampling soil from the well sites was to use a split spoon in advance of the casing. Samples were taken at 5 foot intervals from the surface down to the top of the saturated zone. At each site, three of these samples were selected for analysis, while the others were archived at the analytical laboratory.

The initial work at Site E encountered an oily material at approximately 48 feet below grade. Samples of soil and water with this material were taken for limited worker health related analysis at the Occidental Chemical Corporation's laboratory at Grand Island, NY. This material was not observed in a subsequent resampling from a spot about 5 feet east of the original site. Additional detail is supplied in Section II (Hydrogeology) of this report. The site locations are shown in Figure 1.1. Note that samples F-36 and F-61 were from the actual location of the F wells at the edge of the sump.

Figure 1.2

Locations of Pilot Borings

1 inch=20 feet

Plant #1

1.3 Groundwater

The procedure for water sampling was to use a small submersible pump for purging the well casing and taking the samples except for volatiles. A manual bailer was used to obtain volatiles samples. Details on the procedures used and observations made are provided in Section II (Hydrogeology) of this report. The sampling site locations are shown in Figure 1.1.

1.4 Soil - Therminol Spill Area

The therminol spill area is presently paved with asphalt. The soil samples were taken starting just below the paving. Continuous split spoon samples were taken except for the uppermost sample which was taken manually. The sites for sampling in this area are shown in Figure 1.2.

2.0 ANALYTICAL RESULTS

2.1 Introduction

The analysis results reported here were obtained by the Environmental Testing and Certification Corp. (ETC), Edison, NJ. The analytical methods were those specified in the original proposal (Appendix B-1). These methods are given in Appendix B-2. A complete set of the ETC reports is available in Appendix B-4 (bound separately).

Comments on the quality assurance of the analytical work are found in Section 4.0. As noted in 4.3.1, the EPA method used to determine the phthalates proved to be inadequate. The magnitude of this problem and

TABLE 2.2

HICKSVILLE SOIL FROM WELL SITES AT VARIOUS DEPTHS

Parameter	NDL (ug/kg)	<u>4-5</u>	<u>A-25</u>	<u>A-50</u>	<u>8 · 5</u>	1-25	8-50	<u>C-6</u> (4)	<u>c-11^(a)</u>	<u>C-56^(a)</u>	<u>D-5</u>	<u>p-25</u>	0-50	<u>D-55</u>	<u>E-2(a)</u>	<u>E-6</u> (a)	<u>E-25⁽⁴⁾</u>	<u>E-51^(a)</u>	<u>E • 55</u>	<u>E-60</u>	<u>r-17</u>	<u>F-36</u>	<u>F-46</u>	F-36 ^(e)	<u>F-61</u> (d,e)
1,1-Dichloroethylene	100	ND	ND LOD	WD 100	ND	HD 100	ND 100	ND 100	ND LOO	ND SOO	ND LOO	NULOO	ND LOD	ND 100	ND SILLIN	NU LOO	ND 100	ND 1000			MD- 100	ND	MD	юр. 100	MD_100
Tetrochloroethylene	100	м) "м	ND LOO	MD 100	310	ND 100	ND	367	ND IDO	ND	*D	ND LOO	ND 100	MD LOO	244,000	1010	164	ND	•	•	ю	L700	120	100 M	но _{, 160}
Toluene	100	ND	ND LOS	ю. 	ю 100	HD 100	ND 100	ND 100	ND LOO	ND 500	ND 100	ND ION	ND 100	NU 100'	ND 5000	ND LOO	ND LOO	ND 1000	•	-	ND 100	14D	MD 100	ю. 	····
1,2-Transdichlorosthylene	100	ND 100	MD LOG	ND 100	ND 100	ND 100	MD LOO	ND 100	NU LUO	ND 500	NU 100	ND 100	ND 100	ND 100	ND 5000	ND 100	ND 100	NU 1000	•	•	жр 100	MD 100	HCP 100	#0 100	ND,00
Trichloroethylene	100	ND 100	100	ND 100	100 100	ND 100	ND 100	ND 100	ND LOO	ND 500	NU LUO	ND 100	MD LUO	ND LOD	ND 5000	ND LOG	ND 100	ND LOOD	-	•	ND 100	ND 100	ND 100	ND 100	MD 100
Vinyi Chioride	100	ю	100 I 00	ND 100	ND 100	ND LOO	ND 100	ND 100	ND 100	ND 500	ND LOO	ND 100	ND LOO	ND 100	ND 5000	ND LOO	ND 100	ND LOOD	•	-	HD 100	ND LOO	ND 100	ND LOD	HD 100
Styrene	100	HD 100	ND 100	100 IOO	ND 100	HD 100	ND LOO	MD 100	ND 100	ND 500	ND LOO	ND 100	ND 100	NU 100	ND 5000	ND LOO	ND 100	ND 1000	•	•	100	ND 100	ND LOO	MD 100	MD 100
Bis[2-Ethylhexyl]phthelste	٠	10 11	MD_113	ю ₁₁	10 238	HD	NU 250	ND	ND 200	ND 200	ND 21.3	MD 222	ND 233	ND 222	ND 1	ND 200	ND 200	ND 278	•	-	HD 256	100 244	ND 2 70	ND 233	ND ₂₃₃
Butylbunsylphthelate	•	10 ₁₁₁	10,11	мр ₂₁₃	ND	ND	ND .	ND	MD	ND	ND	ND	ND	ND	ND	ND	ND .	ND 278	•	•	HD.	ND .	HD	KD.	HD .
Diethylphthelate	•	10	ND	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND)	ND	ND	ND 200	ND 200	ND	•	-	ND	ND	HD	HD	ND .
Dimethylphthalate	•	ND .	ND .	ND	ND	ND	HD .	ND	ND	ND	ND	ND	ND:	ND	ND	ND	ND	жD	•	•	HD.	RD .	10 3	۱D	HD .
Di-n-Butylphthalate	•	100 213	100 213	ю ₂₁₃	ND.	ND	ND	ND	мD	ND	MD	ND	ND	ND	ND	KD 200	ND 200	KD	•	•	ND.	HD .	NG)-	IID 233	MD 233
Di-n-Octylphthelate	•	10 11	10 11	MD 21.3	HD.	ND	HD.	ND	KD	ND	ND 213	ND 222	ND 233	MD 222	ND 11	100 200	ND 200	ND	•	•	ж0)	KD		HD .	ND .
Noce	*	100 113	ໝາມ	10213	100 238	ND 244	ND 250	ND	ND	ND	ND 213	ND 222	HD 233	HD_222	ND	ND 500	ND 500	ND 556	•	•	ND 256	ND 244	MD 270	100 543	100 54.3
Arochior 1061 (mg/kg)	0.1	100 0, L	ND 0.1	ND 0,1	MD 0.1	ND 0,1	ND 0.1	ND 0,1	HD 0.1	ND G, 1	ND 0,1	ND D.1	ND-0.1	ND 0,1	^{КД} 0, L	MD 0.1	ND	ND 0,1	ж0 _{0.1}	ND 0.1	MG 0.1	ND 0.1	MD 0.1	^{NO} 9.1	#0 0.1
1221 -	0.1	100 0.1	ND 0.1	ND 0.1	MD 0.1	MD _{0,1}	۳D _{0.1}	ND _{0.1}	ND 0.1	ND 0,1	ND Q.1	ND 0.1	МО 0, L	ND 0. L	MD _{0.1}	MD 0.1	ND 0.1	нр 0. L	11D 0.1	100 0.1	800 0.L	ND 0.1	110 0,1	140 9.L	MD 0.L
1232 -	0.1	10 0,1	ND 0.1	мр _{0.1}	ID 0.1	ND 0.1	100 0.1	ND	NGU	ND 0.1	ND 0,1	ND 0, L	100 0. L	MD 0.1	ND 0.1	¹⁶⁰ 9.1	ND 0.1	ND 0.1	ND 0.1	MD 0.1	IID 0,1	ND 0.1	μΩ 0.ι	۳D _{0.1}	MD _{0.1}
1242 "	0.1	MD	NC 0,1	NCD 0,1	ND 0.1	MD	MD. 1	ND 0.1	ND 0,1	ND O, L	MU 0.1	ND O.L	ND _{D L}	ND 0.1	100 0, L	ND 0,1	ND 0,1	ND 0.1	ND 0.1	10 0.1	MD 0, 1	ND 0,1	⁶⁰⁰ 0.1	ир 0.1	10.1
1248 *	0.1	100 0.1	ND 0.1	ND 0,1	MD 0.1	100 0.1	100 0.1	0,53	0.12	#D	0.21	ND 0.1	ND 0.1	ND 0.1	0,94	0,18	0.1	0.27	ND 0.1	140 9.L	MD 0.1	ND 0,1	⁸⁰⁰ 0.1	100 9.1	ND 0.1
1254 *	0.1	100 0.1	80 0.1	ND 0.1	MD 0.1	MD 0.1	100 0,1	MD 0.1	NED 0.1	ND 0.1	MD 0.1	ND 0.1	NU 0.1	ND 0.1	MD 0.1	MD 0.1	ND 0.1	ND 0.1	ND 0,1	KD 0.1	^{KD} 0.L	MD 0.1	50.1	ND 0.1	D 0.1
1260	0.1	ю.1	WD 0.1	100 0.1	ND 0.1	HD 0.1	10 0.1	^{но} о. 1	MD 0.1	MD 0.1	ND 0.1	ND 0.1	ND 0.1	MD 0,1	NED O, L	ND 0.1	ND 0.1	ND 0.1	ND 0.1	MD _{0,1}	MD 0.1	ND 9,1	^{HED} 0.1	⁸⁰⁰ 0.1	ND 0.1
Bertum (ng/L)	1.0	^{µ©} ۱	ю ₁	HD_1	10,	ND ₅	ND 1	MD 100	MD 100	ND 100	ю,	ND 1	MD 1	MD	•	MD 1	ND 100	ND 100	•	-	۳۵ _۱	но ₁	MD	ID 0.5	10 0,5
Ceda Luas 🐂	0.05	MD 0.05	10 0.05	10 0.05	ND 0.5	MD 0.5	WD 0.05	ND 1	MD 1	ĸĎ	MD 0,05	ND 0,05	1 ¹⁰ 0.05	ND 0.05	•	MD 1	жо _L	NDL	•	•	ND 0.05	ND 0,05	ND 0.05	MD 0.2	що. 2
Copper "	0.03	ND 0.2	ND 0, 2	MD 0.2	PO. 2	ID 0.2	MD 0,2	ND 0,2	ND 0,02	ND 0,2	ND 0.2	ND 0.2	ND U.2	ND 0.2	•	0.04	ND 0,2	HDD 0,2	٠	•	MD 0.2	ND 0.2	MD 0.2	0.02	0.06
Lend (ug/L)	5	MD 200	MD 200	MD 10	ю,	ю,	ND LO	n	1	ND 200	ND 5	MD LO	5	6	•	17 ,	•	ND 200	•	•	260	120	110	10. I	WD.a
Mercury *	0.3	ю ₃	ю,	но ₃	HD j	₩0 ₃	ND 3	RD 2	MD 5	ND,	0,3	^{ж0} 0.1	0.3	0,3	-	100 a.t	WD 0,2	ND ₂	-	-	MD 0.)	^{NCD} 0.3	^{HD} 0.3	⁸⁰ 0.3	* 0.3
Zinc (mg/L)	0.05	0.24	0.43	0.22	0.2	0.7	⁴⁰ 0.05	9.05	0.15	0.05	0.11	0.10	0.04	0.45	•	1.2	0.07	0.23	•	•	0.22	0.65	0.21	0.4	0.6
Hitrate as H (mg/L)	0.04	D 0.1	MD 0.1	MD _{0.1}	0.31	0.19	0.17	0.18	0.15	0.04	1.5	0.12	ND 0.1	ND 0.1	0.25	-	0,38	0.27	-	•	0,19	0.12	0.25	0,10	0.04
Phonolica (Total) "	0.05	0.06	10 0.05	ND 0.05	ND 0.0	5 ^{IIID} 0.0	s ^{MD} a.as	ND 0.05	ND 4,05	ND 0.05	ND 0.05	MD 0.05	ND 0.05	ND 0.05	10,05	•	ND 0.05	ND 0.05	•	•	ND 0.05	HD 0.05	ND 0.05	ND 0.05	^{MD} 0.05
Suliste as SO "	9	⁴⁰ ,	ю,	10 1	109	ю,	нD ₉	ND9	9 9	ND 9	ND9	ND 9	ND 9	ND 9	ND 9	•	ND +	ND 9	-	-	MD ¹⁵	17	RD ₉	мD ₉	100 1

ETC ID.

 C54.29
 C54.33
 C54.48
 C7342
 C7336
 C5444
 C54.39
 C54.53
 C54.13
 C54.19
 C52.24
 C52.47
 C53.74
 C53.71
 C53.72
 C54.45
 C53.80

 C53.74
 C53.75
 C53.76
 C5628 C5434

••• - All parameters below are the analysis of liquid trom EP Toxicity Test Procedures, Resource Conservation and Necovery Act.

- Parameters not determined.

(a) - Separate sample for Arochior analysis. Reliting ?.

(b) - The numeral in the column heading is the approximate sample depth (fert) below grade.

(c) - ND means not determined at or above the concentration of ax.
 (d) - Sample taken from the driller's trough.

(e) - Samples taken from second boring at rim of sump.

TABLE 2.3

HICKSVILLE WATER SAMPLE ANALYSIS (C)

	HDL (ug/L)	H UDSOVIRCB City Water	ENDCAS2INB Casing Blank	XFLDHLKEEA1 Blank (b)	<u>A1</u>	<u>A2</u>	<u>81</u>	<u>H 2</u>	<u>cı</u>	<u>C2</u>	<u>01</u>	<u>Þ7</u>	<u>E1</u>	<u>E 2</u>	<u>F1</u>	<u>12</u>
1,1-Dichioroethylene	10	ND 100	ND	ND 10	ND	ND 10	ND 10	ND	ND IO	ND 10	ND 10	ND 10	ND	ND	MD 10	ND
Tetrachloroethylene	10	ND 100	ND LUO	NULO	ND 10	ND 10	ND IO	NDIO	ND 10	50	160	ND 10	ND IO	ND 10	ND 10	ND
Toluene	10	ND	ND	ND IO	NU 10	NDIO	ND	ND 10	ND	01 ^{0M}	ND 10	NDIO	ND	ND10	ND 10	ND
1,1-Transdictloroethylene	10	ND 100	ND	NU 10	NULO	ND	ND 10	NULO	NULO	NDIO	24	0,04	30	ND ₁₀	130	200
Trichloroethylene	LO	ND 100	ND 100	ND 10	ND	25	NDLO	ND IO	NDIO	ND	16	ND 10	NDLO	ND 10	ND IO	ND 10
Vinyl Chloride	5	ND LOO	ND 100	ND	ND	ND ₅	ND S	ND	NDS	NDS	ND 5	NDS	,	ND S	140	50
Styrene	10	ND 100	ND 100	ND	NP ₁₀	ND	ND_ DI	ND	ND 10	NDLO	NDIO	OL ^{DR}	DL DK	ND	ND 10	ND 10
Blai2-Ethylhexyliphthalate	10	ND	ND 13	ND 10	ND	ND IQ	*	•	ND 10	01 ⁰	ND 10	ND	ND 10	ND	MD 30	ND 10
Butylbenzylphthalate	*	ND	ND	NU UN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethylphthelste	*	ND	ND	ND	ND	NÐ	ND	ND	ND	ND	ND	ND	NÐ	ND	ND	ND
Dimethylphthalate	•	ND	ND	ND	ND	ND	ND	H D	ND	ND	ND	ND	MD	ND	ND	ND
D1-n-butylphthalate	•	ND	ND	ND	ND	ND	ND	ND	ND	ND	DN	ND	ND	ND	MD	ND
Di-n-ocytlphthalate	10	ND 10	ND 11	ND 10	NDLO	ND IO	*	•	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND LO
Noca	10	ND 25	•	NDIO	ND	ND IG	٠	٠	ND	ND	ND	ND 10	ND 19	ND 10	MD 10	ND 25
Arochiors 1242	10	ND	ND 10	ND 10	ND IO	ND 10	ND IO	ND 10	NDIO	ND	NDIO	ND	ND	ND 10	MD 10	MD 10
1254	10 -	ND 10	ND 10	ND 10	NDIO	*U 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	ND 10	NDLO	ND LO	ND 10
1260	10	ND	ND	ND 10	ND 10	NDLO	ND	ND 10	ND 10	ND	ND 10	ND 10	ND 10	ND 10	ND 10	MD 10
1248	10	ND	ND 10	ND	ND	ND	ND 10	NDIO	ND	ND 10	ND	ND 10	ND	WD 10	ND	10 NO
1232	10	ND 10	ND LO	ND 10	ND10	ND LO	ND 10	NDIO	NDIO	ND 10	ND10	ND 10	ND 10	NDLO	ND 10	ND 10
1221	10	NU 10	ND 10	ND 10	NULO	ND 10	NDLO	NDIO	ND 10	ND 10	NDID	NDLO	ND 10	NDLO	MDLO	ND 10
1016	10	ND 10	ND 10	ND 10	NDIO	NU 10	ND LO	ND 10	ND 10	ND 10	ND 10	ND	ND 10	ND 10	ND 10	ND 10
Codelius	50	ND	ND	ND n	NU	ND 50	NDSO	ND	ND	ND 50	ND 50	ND	ND SO	NDSO	ND SO	ND 50
Copper	200	ND20	20	ND 200	ND 200	ND 200	ND 200	*D200	ND 200	ND-200	ND,00	ND 200	ND 200	ND 200	ND 200	ND 200
Lead	6	8.0	9.0	ND	NU	ND	NU	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0, 3	ND _O	ND I	ัญกับ	ND 1	NDŐI	ND_0_1	ND 1	ND ₀	ND . 1	ND.1	ND . 1	ND 0.1	ND	ND D. 1	ND 0.1
Zinc	50	ND	ND	60	64	ND 50	NDSQ	ND 50	ND 50	ND SQ	NUSO	NDSO	84	ND 50	ND SO	ND SO
Barium	1000	ND	ND	ND 1000	ND 1000	ND 1000	NDLOOD	*D 1000	ND 1000	ND 1000	ND 1000	ND 1000	ND LOOO	ND 1000	ND 1000	MD LOOD
Sulfate as SO (mg/L)	1	ND,	ND,	MD ₂	13	15	20	34	4	36	19	17	ND2	ND 2	4	5
000 (mg/L)	2		-	ND,	3	4	3	4	13	3	9	ND 5	25	15	46	66
Mitrate on H (mg/L)	0.1	-	-	ND 0.1	в	1.7	ι, ι	2.2	1,1	1.2	ND 0.1	0,53	ND 0.1	ND 0.1	ND 0.L	0.17
Specific Cond. (umhos/cm) ^(a)	100	-	-	64.00)00	120	220	240	110	170	240	200	180	280	290	400
рH	•	-	-	4.7	6.8	7.0	2.9	7.1	7.5	7.5	6.1	6.7	6.7	6.6	6.4	6,2
Phenolics (Total) (mg/L)	0,05	-	-	ND 0.05	ND 0.05	ND 0.05	ND 0.05	ND 0.05	ND 0.05	ND 0,05	ND 0,05	ND 0.05	ND 0.05	ND 0.05	ND 0.05	ND 0.05
TOC (mg/L)	1		-	1,1,ND,ND	1.2	1.5	1.6	1.4	4.2	1.8	2.4	1.3	8.2	0,7 ^(d)	22 ^{(d)"}	14
ETC No.		D3262	D3263	D9766	D8923	03907	D 3915	03913	D3911	D3917	03918	D 3916	D8547	03912	D9921	D9922

* - No detection limit established

** - Detection Limit (DL) except where otherwise stated.

- - Not analyzed

.

.

.

(a) - 1.86G Field Notes except for 6400 value.

(b) - Field Blank - Blank water through the pump & tubing and from the baller.

(c) - ND means not detected at or above the concentration of xx. (d) - Average of 4 determinations,

TABLE 2.4

HICKSVILLE SOIL FROM THERMINOL SPILL AREA (a,b)

<u>Site</u>	Depth (ft.)	ETC No.	1061	<u>1221</u>	1232	1242	1248	<u>1254</u>	1260
W	1	D5513	ND 500	ND 500	ND 500	ND 500	20,000	ND 500	ND 500
	1 - 2.5	D5514	ND 500	ND 500	ND 500	ND 500	2,200	ND 500	ND 500
	2.5 - 4	D5515	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀
	4 - 5.5	D5516	ND _{0.5}	ND _{0.5}	ND _{0.5}	ND _{0.5}	3.3	ND _{0.5}	ND ₀₅
	5.5 - 7	D5517	ND1.0	ND _{1.0}	ND _{1.0}	ND _{1.0}	13	ND _{1.0}	ND _{1 0}
	7 - 8.5	D5493	ND _{0.5}	ND _{0.5}	ND _{0.5}	ND ₀₅	7.0	ND ₀₅	ND ₀₅
	8.5 - 10	D5494	ND2.5	ND _{2.5}	ND2.5	ND _{2.5}	21	ND2.5	ND2.5
х	0.5 - 1.0	D5475	ND ₅₀₀	ND ₅₀₀	ND ₅₀₀	ND ₅₀₀	23,000	ND 500	ND ₅₀₀
	1.0 - 2.5	D5476	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	1,300	ND ₅₀	ND ₅₀
	2.5 - 4.0	D5477	ND ₁ 0	NDio	ND	ND	21	ND	ND ₁
	4.0 - 5.5	D5478	ND _{2.5}	ND _{2.5}	ND _{2.5}	ND ₂₅	54	ND ₂₅	ND _{2 5}
	5.5 - 7.0	D5479	ND _{1.0}	ND _{1.0}	ND ₁ 0	ND ₁₀	8.6	ND ₁₀	ND ₁ 0
	7.0 - 8.5	D5499	ND ₅	ND5	ND ₅	ND ₅	18	ND5	ND ₅
	8.5 - 10.0	D5501	ND0.5	ND _{0.5}	ND0.5	ND0.5	10	ND0.5	ND0.5
Ŷ	1 - 2.5	D5481	ND 500	ND 500	ND 500	ND 500	11,000	ND 500	ND 500
	2.5 - 4.0	D5482	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	500	ND ₅₀	ND ₅₀
	4.0 - 5.5	D5483	ND _{1.0}	ND ₁ 0	ND	NDio	30	ND	ND ₁₀
	5.5 - 7.0	D5484	ND _{0.5}	ND _{0.5}	ND _{0.5}	ND ₀₅	11	ND ₀₅	ND ₀₅
	7.0 - 8.5	D5498	ND1.0	ND ₁ ,0	ND _{1.0}	ND1.0	7.2	ND ₁	ND ₁₀
	8.5 - 10.0	D5499	ND _{1.0}	ND1.0	ND1.0	ND1.0	7.0	ND 1.0	ND1.0
Z	0.5 - 2.0	C5434	ND 500	ND ₅₀₀	ND ₅₀₀	ND 500	22,000	ND ₅₀₀	ND ₅₀₀
	2.0 - 3.5	C5435	ND 500	ND 500	ND 500	ND 500	7,300	ND 500	ND ₅₀₀
	3.5 - 5.0	C5436	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	1,900	ND ₅₀	ND ₅₀
	5.0 - 6.5	C5437	ND _{2.5}	ND2.5	ND _{2.5}	ND _{2.5}	87	ND ₂₅	ND _{2.5}
	6.5 - 8.5	C 5 4 3 8	ND2.5	ND _{2.5}	ND2.5	ND2.5	28	ND _{2.5}	ND _{2.5}
	8.5 - 10.0	D5480	ND 1.0	ND1.0	ND1.0	ND1.0	35	ND1.0	ND1.0

(a) Concentration in mg/Kg dry weight basis.

(b) ND_{XX} means not detected at or above the concentration of xx.

its' cause were not known until after the April review of the groundwater results. At this point, it was not possible to correct the situation. Thus, it must be recognized that there are no valid results for phthalates in either the soil or groundwater samples.

2.2 Soil - Well Sites

At least three soil samples from each well site were analyzed. Soil from near the surface and at approximately 25 and 50 ft. depths were generally chosen as providing a vertical section of the sites. The list of parameters and the results are given in Table 2.2. Due to difficulties originating at the laboratory, ETC, sites C and E had to be sampled a second time to obtain soil for the Aroclor analyses. Thus, the results for the Aroclors at these sites were obtained using different samples from those used for the other parameters. Regarding the special soil and water samples taken at the 48 ft. depth at Site E (see 1.2), the water, the oily phase and some sediment were examined qualitatively with GC/MS to determine the major components. The results are given in a report located in Appendix B-3.

2.3 Groundwater

Water samples collected from each well site at two depths were analyzed. The parameters and results are given in Table 2.3.

2.4 Soil - Therminol Spill Area

All of the soil samples from the therminol spill area were analyzed for the seven Aroclors listed by the USEPA as priority pollutants. A total of 26 samples from the four sites were analyzed. The results are listed in Table 2.4 along with the laboratory sample numbers for cross referencing.

3.0 Discussion of Results

3.1 Soil - Well Sites

Except for sites E and F the results on the soil samples indicate a very low level presence of two organic compounds, tetrachloroethylene (TECE) and Aroclor 1248 in isolated samples. Two phthalates were identified at site E, but no conclusions about the presence of phthalates can be reached relative to other sites. Other parameters were not detected at levels of note.

The TECE was detected in seven soil samples from four sites. Sites A and D had none at all. At sites B and C the top samples only had very low concentrations, less than 0.4 ppm. At site F the samples taken 20 and 30 feet below the sump bottom had 1.7 and 0.12 ppm respectively, while the samples near the sump bottom (F-17) and the samples taken from the rim of the sump had nothing. At site E samples taken at depths of 2, 6 and 25 feet had concentrations of 244, approximately 1 and 0.16 ppm respectively. These data indicate that the source of the TECE at Site E is near the surface and that the TECE from this source will not be found in significant quantitation below the 25 foot depth.

Traces of Aroclor 1248 (less than 1 ppm) were found in seven samples from three sites. Four of these were at site E with three of them being in samples where TECE also was found. Two more were in samples from site C and one at Site D. The levels are so low (two are near the

detection limit) that no significance can be given to the small differences in concentrations.

The qualitative analysis of the special samples taken from the 48' level of site E showed the presence of Aroclor 1248, bis(2-ethylhexyl)phthalate and di-n-butylphthalate. These compounds were found in the mixtures of the oily phase with water and/or sediment, but not in the water phase. The fact that this oily phase was not observed in the resampling for Aroclors analysis indicates that this area contains a boundary zone for a localized source or a plume of unknown origin.

3.2 Groundwater

;

Low concentrations of four chlorinated organic compounds were found in water from sites A-2, C-2, D-1, E-1, F-1 and F-2. The trichloroethylene (TCE) value for A-2 (25 ppb) and the TECE for C-2 (50 ppb) are low and seem to originate from upgradient (off-site) source. The TECE data for the groundwater do not correlate with the TECE found in the soils. The pattern of 1,2-transdichloroethylene and vinyl chloride seen in E-1, F-1 and F-2 is consistent with the hypothesis that TCE or TECE can biodegrade to yield these compounds. (2,3,4)

The relatively high values (compared to other sites) of TOC and COD for sites C-1, D-1, E-1, E-2, F-1 and F-2 indicate the presence of some organic compounds and/or oxidizable substances. The presence of extra peaks in the volatiles and base neutral chromatograms for samples from sites E-1, F-1 and F-2 tend to reinforce the idea that other unidentified materials are present at these sites.

Values for groundwater parameters, other than those mentioned above, are not considered to be notable. The values for zinc reported in A-1 and E-1 are doubtful since they are not much above the detection limit and a similar value was reported for one of the blank samples. The value for specific conductance for the blank water is very likely to be an error of decimal location.

3.3 Soil - Therminol Spill Area

Aroclor 1248 was the only Aroclor found in these soil samples. Concentrations were highest at the surface and decreased rapidly with increasing depths. For sites W, X, and Y, a relatively constant value of less than 50 mg/Kg was reached at depths between 2.5 and 4 ft. At site Z this constant value was reached at between 6.5 and 8.5 ft. These constant values may result from small amounts of soil from the top being moved to lower depths by the drilling-sampling procedures.

4.0 ANALYTICAL QUALITY ASSURANCE

4.1 Summary

Reviews of the Hicksville Analytical Program were made February 24th and April 12, 1984 at ETC Laboratories, N.J. In general, all analyses have been performed according to the requirements of the study as described in the document "Proposed Hicksville Plant Groundwater Study", D. R. Thielen and R. G. Badger, March 3, 1983.

Documentation is complete for all phases of the quality assurance program including chain of custody, analytical methodology, calibration and quality control (spikes and duplicates).

Quality control data indicates that no major problems existed in the analytical program, except for the analysis of phthalates where the EPA procedure proved inadequate. The performance of the laboratory was acceptable.

4.2 Introduction

ř,

臣臣

The analytical requirements of the Hicksville Groundwater Study are contained in the document "Proposed Hicksville Plant Groundwater Study", D. R. Thielen and R. G. Badger, March 3, 1983.

The analytical services required by the study were provided by Environmental Testing and Certification Corporation (ETC), 284 Raintan Center Parkway, Edison, NJ.

All groundwater and soil samples submitted were analyzed according to

the study requirements for all parameters.

4.3 Specific Points

4.3.1 Phthalates

USEPA Method 625 was selected for the analysis of phthalates, either directly in groundwater or from water generated by the EP TOX leach test. This GC/MS method is a general method to analyze a number of classes of compounds including phthalates. Detection limits for some of phthalates were not reported by the laboratory because acceptable spike recoveries (>50%) were not obtained. The reason given was that the method calls for a pH of greater than 11, at this pH, phthalates hydrolyze and can not be recovered. This is an inadequacy of the method rather than of the laboratory. Neither the laboratory nor Occidental were aware of this problem prior to beginning the study.

what method? EP-Sof

Basis - legal be what atost

4.3.2 Holding Times

= which over? In some instances the 7 day holding period prior to extraction of samples for Method 625 was not met. They were extracted within 22 days of receipt. The laboratory feels, based on private communications from researchers at Rutgers University, that this would not affect the validity of the analyses. We agree with the laboratory that the longer holding time should not affect the analysis

4.3.3 Quality Control

Excellent documentation of internal quality control

procedures was received. This included chain of custody, method summary and GC/MS performance data for every sample. Calibration curves were shown to be linear. Analyses were repeated when a blank sample was shown to be contaminated. The method detection limits were calculated based on the lowest standard run.

4.3.4 Precision and Accuracy

Precision and Accuracy data for all compounds over the course of the study have been compiled: Table I, Soil/Leachate Data; Table II, Water Data. The first two columns of the tables shown accuracy and precision for a spike into a reagent water blank. The accuracy is the average recovery observed for each compound/ parameter. The precision is the % relative standard deviation of all the recoveries performed. The third and fourth columns show accuracy and precision for a matrix (actual sample) spike. Spiking level and method detection limit are shown in columns five and six.

The tables show that accuracy and precision were similar for the blank and matrix spikes. The matrix spike was slightly less accurate and precise, as would be expected. In general, the precision and accuracy data were acceptable for all parameters. The only exception was vinyl chloride in soil where

the precision is 42%. The loss of very volatile compounds is to be expected during handling of soil samples. Recoveries of Butylbenzyl, Diethyl, Dimethyl and Di-nbutyl phthalates were very poor, this was discussed earlier. Matrix spike recoveries for Moca were low, but are considered acceptable.

TABLE I

Soil/Leachate

	Spike	B1ank	Spike S	ample		
Compound	Accuracy	Precision	Accuracy	Precision	Spiking Level	MDL
PCB						
A1248	-	-	93	39	0.2	0.1 mg/kg
A1248	-	-	117	14	15-17	0.1 mg/kg
Phthalates						
Bis 2 ethylhexyl	107	13	70	18	300	100 ug/kg
Butyl Benzyl	13	5	13	5	300	100 ug/kg
Diethyl	3	1	5	4	300	100 ug/kg
Dimethyl	1	1	1	1	300 .	100 ug/kg
Di-n-butyl	23	8	25	13	300	100 ug/kg
Di-n-octyl	97	16	30	8	300	100 ug/kg
Moca	97	16	30	8	500	250 ug/kg
Volatiles						
1.1-Dichloroethylene	95	12	98	13	36	10 ug/kg
Tetrachloroethylene	103	8.5	95	12	36	10 ug/kg
Toluene	98	5.6	99	6.2	36	10 ug/kg
1.2-Trans-dichloroethylene	95	11	92	4.7	36	10 ug/kg
Trichloroethylene	101	5.3	97	15	36	10 ug/kg
Vinyl Chloride	94	18	67	42	36	5 ug/kg
Styrene	105	8.5	107	15	36	10 ug/kg
Metals, Conventionals						
Barium	101	2.4	100	4.9	4.0	1.0 mg/l
Cadmium	99	2.9	95	9.2	0.400	0.050 mg/1
Copper	101	5.4	92	8.3	0.400	0.200 mg/1
Lead	101	3.5	100	4.0	1.6	0.01 mg/1
Zinc	102	2.7	93	6.2	1.6	0.050 mg/1
Mercury	99	3.6	96	10	0.002	0.0003 mg/1
Nitrate	95	8.4	94	9.2	0.5-10	"0.10 mg/1
Sulfate	99	2.2	103	3.9	25	9 mg/1
· Phenols, Total	103	6.7	98	3.3	0.100	0.050 mg/1
COD	102	8.4	95	11	500	2 mg/1
TOC	-	-	-	-	-	-
TOC	-		-	-	-	-
TOC	-	-	-	-	-	-

TABLE	I	I				

Wat	er
-----	----

	Spike	Blank	Spike S	ample		
Compound	Accuracy	Precision	Accuracy	Precision	Spiking Level	MDL
PCB						
A1248	73	7.6	72	13	20	10 ug/1
Phthalates						
Bis 2 ethylhexyl	83	13	69	5	30	10 ug/1
Butyl Benzyl	15	5	17	3	30	10 ug/l
Diethyl	3	2	4	3	30	10 ug/1
Dimethy1	2	2	2	2	30	10 ug/1
Di-n-butyl	20	5	23	1	10	10 ug/1
Di-n-octyl	71	14	57	9	30	10 ug/1
Moca	63	15	47	7	60	25 ug/1
Volatiles						
1.1-Dichloroethylene	122	13	109	7.3	14	10 ug/1
Tetrachloroethylene	97	15	110	7.4	14	10 ug/1
Toluene	103	12	112	16	14	10 ug/1
1.2-Trans-dichloroethylene	120	4.9	120	3.7	14	10 ug/1
Trichloroethvlene	99	16	100	13	14	10 ug/1
Vinvl Chloride	92	18	97	13	14	5 ug/1
Styrene	100	4	105	5.6	14	10 ug/1
Metals, Conventionals						
Barium	102	31	107	14	2.0	1.0 mg/i
Cadmium	112	1.1	111	1.6	0.120	0.050 mg/
Copper	107	6.4	108	2.3	0,400	0.200 mg/1
Lead	118	1.6	102	2.1	0.02	0.10 mg/1
Zinc	103	3.7	112	2.2	0.120	0.050 mg/
Mercury	103	0.1	96	0.1	0.0005	0.0003 mg/1
Nitrate	95	8.4	94	9.2	0.5-10	0. 10 mg/1
Sulfate	99	2.2	103	3.9	25 '	2 mg/
Phenols, Total	103	6.7	98	3.3	0.100	0.050 mg/
COD	102	8.4	95	11	500	2 mg/
TOC	-	-	125	0.1	2	1 mg/
тос	-	-	95	4.7	44	1 mg/
TOC	-	-	108	0.4	19	1 mg/1

APPENDIX B-1

PROPOSED HICKSVILLE PLANT GROUNDWATER STUDY

PROPOSED HICKSVILLE PLANT GROUNDWATER STUDY

A study of the groundwater and certain soils at the Occidental Chemical Corporation's former Hicksville plant (Hicksville, Long Island, New York) is being planned. The work will be divided into two tasks, sampling and analytical. The requirements for both of these tasks are outlined in this document to aid in the estimation of the cost of the program.

I. SAMPLING

Sampling will be performed by a two-person team with experience in environmental sampling. The senior member of the team will be responsible for complete documentation of sampling which will be kept in a field notebook with bound pages, appropriately dated and signed. The sampling team will be responsible for supplying proper sample containers, the filtration of water samples, for the preservation of all samples and performing any tests required in the field. The team also will maintain chain of custody records for all samples until they are shipped to the analytical laboratory.

Twelve (12) well sites will be sampled for water and samples of soil will be taken during the construction of six (6) of these wells. Six (6) of these wells will be screened at the 50-70 ft. depth and six (6) will be screened at the 80-100 ft. depth. Additional soil samples will be taken at 4 to 7 other sites during the same time that the wells are being constructed.

Groundwater Details

Wells will be sampled after pumping at least four volumes of the well casing, or until the well has been completely evacuated, whichever comes first. Placement of the pump inlet tubing should be such as to assure that the water in the casing will be exchanged with fresh water from the aquifier. Pumping and sampling will be performed using a peristaltic, centrifugal or gas lift pump which contain materials of construction shown not to compromise or contaminate the sample in any way. Samples for volatile organics will be taken by bailing after the well has been purged. With the exception of the Group A compounds, all water will be pressure filtered using a 0.5u pore size "Teflon" membrane filter and placed into an appropriate sample container. Group A compounds will be taken and analyzed as unfiltered samples (after any solids have separated by settling or mild centrifugation). The sample must be properly preserved as noted in Table I and stored at 4^o C until analysis. Detailed preservation techniques are noted in reference (1). Conductivity and pH measurements will be made on unfiltered samples in the field.

Soil Details

Soil samples at well sites will be taken during well construction at approximately five (5) foot intervals in the unsaturated zone. A 2"x24" split spoon driven in advance of the auger will be the mode of sampling. The top six (6) inches of the split spoon sample will be discarded in all cases and the remainder will be placed in a suitable size glass jar with a "Teflon" lined screw cap. All soil samples will be cooled to 4°C for transportation to the laboratory. It is expected that separate samples (using special precautions to avoid loss of volatiles) will be taken for volatiles analysis.

Soil samples in the Therminol handling area will be taken by continuous split spoon sampling to a depth of approximately 6 feet. The initial sampling will be at the center of the handling area and 10 feet from the center in three radial directions. If contamination is found in the initial samples, additional sampling will be required to define the area of contamination.

Sampling Cleanup

Cross contamination between sites for either water or soil sampling must be avoided. This can be done either by dedicated pumping equipment for water or by rigorous clean up between sites (for water) or samples (for soil). Details on the procedures to protect sample integrity should be provided.

II. METHODOLOGY

Table 2 contains the groupings of those compounds which must be determined in the samples. The required detection limits are also included.

Groundwater

<u>Group A</u>. EPA Method 624 is required using GC/MS for quantitation. Styrene has been included as per the attached memo (Simon, N., September 29, 1982).

<u>Group B</u>. EPA Method 625 is required using GC/MS for quantitation. MOCA has been included as per the attached memo (Simon, N., September 29, 1982).

<u>Group C</u>. EPA Method 608 is required using GC/EC for quantitation.

<u>Group D</u>. The required EPA Methods are listed in Table II.

Soil

<u>Group A</u>. The required method is a modification of a Midwest Research Report (5). The specific modifications of this method are found in the attached report (Simon and Johnson, August 16, 1982). Quantitation will be by GC/MS.

<u>Group B</u>. The soil will be prepared by obtaining an aqueous extract of the soil using the EPA's EP Toxicity digestion procedure 2. The aqueous extract will be analyzed using EPA Method 625 and GC/MS for quantitation. The limits of detection stated in Table II are based on the limits for the aqueous extract using Method 625 and related back to the original soil sample.

<u>Group C</u>. The required method is that described in Reference (3). In cases of interferences from organochlorine pesticides, an additional clean-up procedure, as outlined in Section 9C of the same manual, will be considered. Quantitation will be by GC/EC. <u>NOTE</u>: Due to the nature of the program, special priority should be given these samples to obtain the most rapid turnaround possible. Please state what this will be.

<u>Group D</u>. The required EPA procedures listed in Table II will be carried out on an aqueous extract of the soil obtained by using the EPA's EP Toxicity digestion procedure (2). The parameters of pH, conductivity COD and TOC will not be required for soils.

The USEPA Methods defined above may be modified in your proposal if valid technical reasons exist. In all cases, your proposed methodology must attain the expected detection limits and be fully documented. Full verification of any non-EPA methods must be made. III. QUALITY ASSURANCE

As a general rule, EPA practices outlined in Reference (4) will be followed. In particular, the following QC procedures will be required for every batch of samples or at a minimum of every ten samples:

- Replicate sample analysis as randomly selected by the contractor with approval of the project liaison.
- (2). Recovery of all analyzed compounds at two to three times the detection limit using laboratory distilled water.
- (3). Recovery of spikes made to a sample selected by the contractor with approval of the technical liasion. Spiking will be done for all analyzed compounds at a level which approximately doubles the concentration found in the sample. In samples where compounds of interest are not detected, spiking must be at levels not exceeding two to three times the detection limit.
- (4). Reagent and method blanks.

All standards used for quantitation must be traceable to a verified standard; that is, a compound whose purity has been determined by at least two different analytical procedures. A linearity of detector response for each compound must be demonstrated by generation of a linearity curve containing five concentrations of that compound. All sample calculations must be made from responses which fall within this linear range. During the course of the analysis, standards must be interspersed at frequent intervals to check the calibration. The preparation of all standards including purity verification, dilutions, linearities, etc. must be recorded in the bound notebook.

Samples and extracts must be retained and properly stored until time of disposal. After acceptance of the final report by Occidental, the contractor must request and receive permission prior to disposing of samples.

Records containing all relevant data must be easily accessible and kept for a specified period of time as determined by Occidental's technical liaison. These records must include all logbooks, workbooks, worksheets, graphs, charts and/or any records of pertinent nature relating to this study. All chromatography scans must remain connected in the sequence in which they were generated, i.e., no scans shall be cut, torn or otherwise removed from the body of the chromatographic data attached to it.

The final report must include sample identification information, methods used, analysts, and all samples and quality control data. The calculated data must include units of concentration and limits of detection given with the proper significant figures. In cases where compounds are not detected at or above the stated detection limit, the reporting protocol will be ND_x where x is the required detection limit. An assessment of analytical precision and accuracy must also be stated.

The contractor will designate a project manager who has direct responsibility for the technical aspects of the study. The project manager will be available for detailed technical reviews during the course of the program.

III. QUOTATION AND TECHNICAL PROPOSAL

One technical proposal should cover the complete sample program outlined above. It should contain the following:

- (1). Documented methodology for each analysis.
- (2). Detailed procedures for and the cost of sampling. Also, the precise number, size and type of samples required from each sampling point to allow the contractor to do all the analyses which may be necessary i.e. spikes, duplicates, etc.
- (3). Timing for completion of analyses after receipt of samples. To include issuing of preliminary (verbal) and final (draft) reports.
- (4). A separate cost estimate broken down by analysis and sample including necessary development work.
- (5). An estimate of timing starting from receipt of samples to when a report including documentation, QA/QC and results can be expected.

One quotation should be submitted separately and cover the complete program. Included in the quotation should be the cost broken down by analysis and sample.

The technical proposal and quotation should be sent to our attorney, who will also refer any questions to the appropriate technical personnel.

John Hanna, Esq. WHITEMAN, OSTERMAN AND HANNA 99 Washington Avenue Albany, New York 12210 PHONE: 518/449-7600

DATE:_____

PREPARED BY:

Daniel R. Thielen Sr. Research Chemist Central Sciences Richard G. Badger Sr. Research Chemist Central Sciences

/jb 03/02/83

REFERENCES

- (1). "Handbook for Sampling and Sample Preparation of Water and Wastewater", EPA-600/4-82-029, Sept. 1982.
- (2). "RCRA Test Methods for Evaluating Solid Waste Physical/Chemical Methods", SW-846, May 1980.
- (3). "Manual of Analytical Methods for the Analysis of Pesticides in Humans and Environmental Samples", EPA-600/8-30-038, June 1980, Section 11A.
- (4). "Handbook for Analytical Quality Control in Water and Wastewater Laboratories", EPA-600/4-79-019, March 1979.
- (5). MRI Special Report No. 1, "Development of Analytical Test Procedures for the Measurement of Organic Priority Pollutants in Sludges and Sediments", June 26, 1979, Midwest REsearch Institute Project No. 4583-A.

PRIVILEGED & CONFIDENTIA ATTO.....EY-CLIENT COMMUNICATION PREPARED / THE RECUES OF LEGAL COUNSEL IN CONTEMPLATION OF LUNCTICE

TABLE 1 FRESERVATION METHODS - WATER

PARAMETER

2

ų

.

PRESERVATION METHOD

VOLATILE ORGANICS BASE/NEUTRAL ORGANICS PCB'S NITRATES SULFATES CADMIUM® MERCURY® BARIUM® COPPER® LEAD® ZINC® COD TOC PHENOLICS

4* C ⊿* ⊏ 4" C 2ML H2 SO4 FER LITER AND 4 C 4" C ADD 1:1 REDISTILLED HNO, TO PH OF (2 • ADD SULFURIC ACID TO PH OF (2 AND 4°C ADD H₂SO₄ OR HCL TO PH OF (2 AND 4°C ADD H₂PO₄ TO PH OF (4, ADD 1G/L OF CUSO₄, AND 4°C

GROUP A	TAB'E 2 ATTORN OF	EY-CLIENT COMMUNIC TON PREPARED AT THE REQUEST
VOLATILES FRACTION	HATER DETECTION LIMIT(UG/L)	SOIL Detection Limit(NG/G)
TETRACHLOROETHYLENE TRICHLOROETHYLENE DICHLOROETHYLENE TOLUENE VINYL CHLORIDE STYRENE	10 10 10 5 10	100 100 100 100 100 100
GROUF B		
BASE NEUTRAL FRACTIC	WATER DN DETECTION LIMITAUG/L)	SOIL DETECTION LIMIT(NG/G)
PIS(2-ETHYLHEXYL)FHT BUTYL FENZYL FHTHALATE DIETHYL FHTHALATE DI-N-FUTYL FHTHALATE DI-N-OCTYL FHTHALATE DI-N-OCTYL FHTHALATE MOCA (3,3'-DICHLORO- DIAMINODIFHENYLMETH	Imalate 10 ATE 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	100 100 100 100 100 250
GROUP C		
ARDCHLOR FRACTION	WATER Detection Limit(UG/L)	SOIL Detection limit(NG/G)
AROCHLOR-1016 AROCHLOR-1221 AROCHLOR-1232 AROCHLOF-1242 AROCHLOF-1248 AROCHLOR-1254 AROCHLOR-1260	10 10 10 10 10 10	100 100 100 100 100 100 100
GROUF D		
OTHER PARAMETERS	WATER AND SOLL Of timum range	USEFA METHOD +
NITRATES SULFATES CADHIUH® HERCURY® E4KIUH® CDEFEF® LEAD® ZINC® CONDUCTIVITY FH COD TOC FHENOLICS	0.1 TO 2.0MG NO -N/LI 3 TG 400 MG SO /LITER 0.05 TO 2 MG/LITER 3 TO 20 MG/LITER 1 TO 20 MG/LITER 0.2 TO 5 M5/LITER 0.05 TO 1 MG/LITER 	TER: 352.1 375 213.1 245.1 208.1 220.1 239.2 289.1 120.1 150.1 410.4 415.1 420
 THE DETECTION L EXTRACT AND RELAT THE DETECTION I DETAINED FROM THE 	IMIT IS FASED ON THE ANAL ED BACK TO THE ORIGINAL (LIMIT IS FASED ON THE AN AQUEDUS EXTRACTION OF TO	LYSIS OF AN AQUEOUS WEIGHT OF THE SOIL. ALYSIS OF THE WATER HI SOIL(EP TOX).

Occidental Chemical Corporation

Research Center

To_____A. F. Weston ______ Date _____ September 29, 1982

From N. Simon

Subject <u>GC/MS Analysis of Styrene, Moca, Phthalates and Fiv</u>e Volatile Organics

COPIES: D. Johnson, P. Skotnicki, R. Badger, TIC

I. SUMMARY

The EPA Priority Pollutant Method for base neutral organics was extended to include styrene and 3',3'-dichloro 4,4'-diamino diphenyl methane (MOCA). Standard curves were generated and extraction efficiencies calculated. Detection limits were set at 10 μ g/L for styrene and 25 μ g/L moca. The volatiles analyses could also be used to analyze for styrene and appears to be the preferred method.

- A. Extractables
- 1). Instrumental Parameters

Gas Chromatographic Conditions (Finnigan 96100)

Column		- 15 m DB5-NB fused silica capillary (J&W)
Carrier		- Helium 15.0 psi
Injector Temperature		– 275 ⁰ C
Injection		- Grob, 60/1 split after 60 seconds
Detector Temperature		- 275 ⁰ C
GC/MS Interface		- 265 ⁰ -275 ⁰ C
Column Program	1)	- 20° to 250° at 10° /minute after a 1 minute hold at 20° , hold at 250° for 20 minutes.
	2)	- Without styrene - 50° to 250° .

Mass Spectrometer Conditions (Finnigan 4000)

Instrument	Finnigan 4000 GC/MS Acquisition System	interfaced with an Incos Data N
Source Parameters	85 ⁰ , Electron Impact electrons	Source with 70eV ionizing
EM Volts	1380 volts	
Scan Parameters	Total scan sequence acquisition during second hold at bot 350-45.	5 second consisting of .45 second up scan, .05 .tom. Mass range scanned

2). Sample Preparation

for the base neutral extraction, one liter of sample was adjusted to pH 11 with 6N NaOH; extracted three times with methylene chloride according to EPA protocol; dried through a sodium sulfate column; and concentrated to 5 ml using a Kuderna-Danish evaporator and nitrogen.

An internal standard, deuterated phenanthrene was added 15 minutes prior to the analysis.

3). Standard Preparation

A stock solution containing the six phthalates was purchased from Supelco. Styrene and MOCA standards were prepared in-house. The standards were prepared to give 1,5,10 and 20 times the detection limit. The detection limit for MOCA was set at 25 μ g/L to give a relatively equivalent response when compared to styrene and the phthalates at 10 μ g/L.

4). Extraction Efficiencies

Since the method has routinely been used for phthalates it was only necessary to verify its efficiency for styrene and MOCA. Three blank water samples were spiked at 10X the detection limit, extracted and analyzed by the method noted above.

	% Recovery								
Sample	Styı	rene	MOC/	A					
	Day 1	Day 2	Day 1	Day 2					
20832	51	55	72	88					
20833	74	60	79	85					
20834	88	74	69	83					

The ions used to identify and quantitate were m/e 266, 268, and 131 for MOCA, and m/e 104, 102, 51 for styrene.

(B). VOLATILES

Extending Method 624 to include styrene.

(see Page 3 for Volatiles)

N. Simon September 29, 1982

(B). <u>VOLATILES</u>

4

1) <u>Instrumental Parameters</u>

<u>(Tekmar L</u>	Puro iquid	<u>ge and Trap Conditions</u> Sample Concentrator-Model LSC-2)
Plumbing	-	Hard plumbed from trap effluent to the GC flow controller via a 1/8 inch O.D. copper line
Trap Column	-	12" x 1/4" stainless steel tubing packed with Tenax 60/80 mesh. Baked after each run at 250° for 20+ min.
Purge	-	12 minutes at 30 cc/minute
Desorb	-	4 minutes at 195 ⁰ C
Sample Size	-	5 ml transferred by Blenco gas/liquid syringe
<u>Gas</u> Chro	matog	raphic Conditions (Finnigan 9610)
Column	-	8 foot by 1/4 inch (2mm I.D.) glass packed with 0.1% SP-1000 on Carbopack C
Carrier	-	Helium at 30 cc/minute
Injector	-	180 ⁰ C
GC/MS Interface	-	250 ⁰
Column Program	-	50 ⁰ for purge, desorb and three minutes after desorb, 8 /min. to 180°; held for 30 min. at 180°
	Mass	Spectrometer Conditions
Instrument	-	Finnigan 4000 GC/MS interfaced with an Incos Data Acquisition System
Source Parameters	-	260 ⁰ , Electron Impact Source with 70 eV ionizing electrons
Manifold Temperature	-	90 ⁰
Electron Multiplier	-	1080 volts
Scan Parameters	-	Total scan sequence of 2 seconds consisting of data acquisition during 1.95 sec. up scan, 0.05 sec. hold at bottom. Mass range scanned 45-270.

.

2. Standards

The standards used were supplied by Supelco and are described as "Standards for EPA Consent Decree Protocol". They are further referenced to (I.F.B. No. WA77-B133, Appendix B, Sampling and Analysis for Priority Pollutants, US EPA). A solution of styrene at the same concentration as the above standards, was prepared in the lab.

Bromochloromethane, 2-Bromo-1-chloropropene and 1,4-dichlorobutane were used as internal standards.

The stock solutions, as received from Supelco, were stored in a freezer. Dilutions were stored in the refrigerator in 15 ml hypovials until one hour before analysis. Standards were prepared to give concentration levels of 10 μ g/L (50 ng injected) and 100 μ g/L (500 ng injected). An additional standard at 25 μ g/L (125 ng injected) was analyzed to verify linearity. Internal standards were prepared at 20 μ g/L; 5 μ l (100 ng injected) was used to spike each standard and sample.

Standards were stored in the refrigerator until one hour before analysis.

Standards were poured into a 5 ml syringe; the volume adjusted; the needle removed and 5 μ l internal standard added immediately before injection into the Tekmar.

Standards could be prepared by weighing pure materials into methanol instead of using the commercial mix since only five of the priority pollutants are required: perchloroethylene, trichloroethylene, trans-1,2-dichloroethylene, toluene, and vinyl chloride. It should also be noted that the required detection limit for VCM is 5 μ g/L while the detection limit for the other volatile components is 10 μ g/L.

3. Results and Discussion

The EPA Priority Pollutant base neutral method can be extended to include styrene and MOCA. The chromatogram following (Figure 1) demonstrates the relative retention times of styrene and MOCA compared to the phthalates.

It seems preferable to analyze styrene with the volatiles rather than the extractables for a number of reasons: The gas chromatographic oven will not need subambient conditions to separate styrene from the solvent (see Figure 2); loss of styrene will not be a problem; a narrower range of internal standards will be acceptable, styrene carryover will be limited in the volatiles analysis, etc.

The RIC's from the analyses (Figures 1,2,4) and the mass spectrum of MOCA (Figure 3) follow.

Man Junen

Nan Simon Central Sciences

jmw/

.

i hooker

August 16, 1982

To: R. Hall

From: N. Simon, D. Johnson

Distribution: P. Skotnicki, A. Weston

Reference: GC/MS Analysis of Soil Samples for Volatile Priority Pollutants

I. <u>Summary</u>

This report summarizes the GC/MS sample preparation and analyses of six soil samples taken at the Arecibo facility on 8/ /82. The methodology used was as developed for the EPA. It is considered semi-quantitative because of variances in the sampling, sample handling and the sample matrix.

Sample 00003 (STP Plant across from PRC/sewer bottoms in sewer dumping spot #5) was the only sample where priority pollutant volatile organics were detected at greater than 10 ug/L. The compounds found were benzene, toluene and chlorobenzene. Vinyl chloride, 1,1-dichloroethylene, trans-1,2-dichloroethylene and trichloro-ethylene were not detected in any of the samples. Toluene was only detected in 00003. Non-volatile priority pollutants found were xylenes in sample 00003 and dichlorobenzene in 00092.

II. Experimental

The EPA priority pollutant method is described in Special Report No. 1 "Development of Analytical Test Procedures for the Measurement of Organic Priority Pollutants in Sludges and Sediment", published June 26, 1979 under contract No. 58-03-2695, MRI Project No. 4583-A. The only significant deviation from the published method was the use of a larger sample to give a lower detection limit.

A. Instrumental Parameters

	<u>(Tekmar</u>	Liquid Sample Concentrator-Model LSC-2)
Plumbing	-	Hard plumbed from trap effluent to the GC flow controller via a 1/8 inch O.D. copper line.
Trap Column	-	12" X 1/4" stainless steel tubing packed with Tenax 60/80 mesh. Baked after each run at 250 ⁰ for 20+ min.
Purge	-	12 minutes at 30 cc/minute
Desorb	-	4 minutes at 195 ⁰ C
Sample Size	-	0.5g in 5ml distilled water

N. Simon, D. Johnson Page 2

Gas Chromatographic Conditions (Finnigan 9610)

Column	-	8 foot by 1/4 inch (2 mm I.D.) glass packed with 60/80 Carbopack C/0.2% CW 1500
Carrier	-	Helium at 25 cc/minute
Injector	-	180 ⁰ C
GC/MS Interface	-	250 ⁰
Column Program	-	50° for purge, desorb and three minutes after desorb; 8° /min. to 180° ; held for 30 min. at 180°
		Mass Spectrometer Conditions
Instrument	-	Finnigan 4000 GC/MS interfaced with an Incos Data Acquisition System
Source Parameters	5-	260 ⁰ , Electron Impact Source with 70 eV ionizing electrons
Manifold Temperat	ure-	90 ⁰
Electron Multipli	er-	1330
Scan Parameters	-	Total scan sequence of 1 second consisting of data acquisition during 0.95 sec. up scan, 0.05 sec. hold at bottom. Mass range scanned 45-180

B. Sample Preparation

The sample for each site was received in a wide mouth glass quart bottle with a teflon cover. (There was considerable head space in each bottle). One half ml. ($\sim 0.5g$) was transferred, using a tipless disposable pipet to a Tekmar tube. Five mls of distilled water and 5 ml of an internal standard solution were added. The tube was immediately attached to the Tekmar and purged.

Since the samples did not appear to be homogenous and since there was one to three inches of headspace, the 0.5ml aliquot was taken from the bottom half of the bottle and each sample was analyzed in duplicate.

The samples were refrigerated until one hour before analysis.

۰.

N. Simon, D. Johnson Page 3

C. Standards

The standards used were supplied by Supelco and are described as "Standards for EPA Consent Decree Protocol". They are further referenced to (I.F.B. No. WA77-B133, Appendix B, Sampling and Analysis for Priority Pollutants, US EPA).

Bromochloromethane, 2-Bromo-1-chloropropene and 1,4-dichlorobutane were used as internal standards.

The stock solutions, as received from Supelco, were stored in a freezer. Dilutions were stored in the refrigerator in 15 ml hypovials until one hour before analysis. Standards were prepared to give concentration levels of 10 µg/L (5 ng injected) and 100 µg/L (50 ng injected). An additional standard at 50 µg/L (25 ng injected was analyzed to verify linearity. Internal standards were prepared at 20 μ g/L: 5 μ l (100 ng injected) was used to spike each standard and sample.

III. Quality Assurance

All six samples were analyzed in duplicate. A blank was prepared using 1/2 ml quar (a mg of soil and 5 mls of distilled water. The blank was analyzed as a standard back was analyzed using 1/2 ml quark was as a standard back was a the absence of sample handling contamination. Three spiked samples were prepared at 10 or 20 ug/L, two from the lab blank and one an actual sample.

Linearity was verified with a three point curve (10, 50 and 100 ug/L) and a three component internal standard was added to each sample and standard.

The significant amount of headspace and the non uniformity of each sample limits the quantitative conclusions that normally could be assumed with the rigorous quality assurance protocal. Sample 00003 was the most obvious example; a mixture of soil and black sludge that was impossible to accurately reproduce in the transfer.

IV. Results and Conclusions

The results are listed in Table 1. % recoveries from the three spikes are listed in Table 2. Chromatograms of each sample follow the tables.

Alam Domen

Nan Simon

.imw/

attachments

TABLE 1

RESULTS SUMMARY

C.S. Log #	20811	20812	20813*	20814**	20815	20816
Sample I.D.	00061	00002	00003	00092	00090	00062
Chloromethane	ND	ND	ND	ND	ND	ND
Bromomethane	ND ₁₀	ND10	ND10	ND10	ND10	ND ₁₀
Vinylchloride	ND10	ND ₁₀	ND ₁₀	ND10	ND10	0 F ^{DN}
Chloroethane	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀
Methylene Chloride	ND ₁₀	ND10	NDTO	ND10	ND10	ND ₁₀
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND
1.1-Dichloroethylene	ND10	ND ₁₀	NDTO	ND ₁ 0	01 ^{DN}	ND ₁₀
1,1-Dichloroethane	ND ₁ O	ND ₁₀	ND10	ND10	ND10	ND10
Trans-1,2-Dichloroethylene	ND10	ND10	ND ₁₀	ND10	ND10	ND ₁₀
Chloroform	ND10	ND10	ND10	ND10	ND10	ND ₁₀
1,2-Dichloroethane	ND ₁₀	01 ^{GN}	ND ₁₀	ND10	ND 10	01 ^{GN}
l,l,l-Trichloroethane	ND10	ND 10	ND ₁₀	ND10	ND10	ND ₁₀
Carbon Tetrachloride	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀
Bromodichloromethane	ND10	ND ₁₀	01 ^{DN}	ND ₁₀	ND10	ND10
1,2-Dichloropropane	ND10	ND10	01 ^{0N}	ND ₁₀	ND10	ND ₁₀
Trans-1,3-Dichloropropene	ND10	ND10	ND10	ND10	ND10	ND ₁₀
Trichloroethylene	ND10	ND10	ND10	ND ₁₀	ND10	ND10
Dibromochloromethane	ND10	ND10	ND10	OIDN	ND10	ND10
Cis-1,3-Dichloropropene	ND10	ND10	ND10	0 I ^{DN}	ND ₁₀	ND10
Benzene	ND10	ND10	ND10	ND ₁₀	ND 1 O	ND10
Bromoform	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀	ND ₅₀
1,1,2,2-Tetrachloroethene	ND ₁₀	ND10	ND10	01 ^{dn}	ND ₁₀	01 ^{0N}
1,1,2,2-Tetrachloroethane	ND10	01 ^{DN}	ND ₁₀	ND10	ND 10	ND10
Toluene	ND10	ND10	19 11	ND 10	ND10	ND10
Chlorobenzene	ND10	ND10	134 66	ND10	ND10	ND10
Ethylbenzene	ND10	ND10	ND10	ND10	ND10	ND 10

* Xylenes also detected

•

****** A significant amount of dichlorobenzene was detected

TA	۱BL	Ε	II	

% RECOVERY FROM SPIKED SOIL

	D.L. ug/L	Blank Soil @ 10 ug/L	Blank Soil @ 20 ug/L	20811-00061 Soil @ 20 ug/L
Chloromethane	No std.	ND	ND	ND
Bromomethane	10	136%	103%	110%
Vinylchloride	10	103	105	117
Chloroethane	50	ND	ND	123
Methylene Chloride	10	143	161	550*
Trichlorofluoromethane	No std.	ND	ND	ND
1.1-Dichloroethylene	10	108	105	103
1,1-Dichloroethane	10	102	92	114
Trans-1,2-Dichloroethylene	10	100	94	111
Chloroform	10	106	97	100
l,2-Dichloroethane	10	140	100	110
1,1,1-Trichloroethane	10	109	102	121
Carbon Tetrachloride	50	ND	ND	ND
Bromodichloromethane	10	105	101	115
l,2-Dichloropropane	10	147	103	84
Trans-1,3-Dichloropropene	10	90	78	148
Trichloroethylene	10	84	76	95
Dibromochloromethane	10	82	98	101
Cis-l,3-Dichloropropene	10	143	100	110
Benzene	10	96	88	105
Bromoform	50	ND	ND	ND
1,1,2,2-Tetrachloroethene	10	158	155	144
1,1,2,2-Tetrachloroethane	10	83	74	67
Toluene	10	125	138	580*
Chlorobenzene	10	94	85	105
Ethylbenzene	10.	108	98	124

* It can reasonably be assumed that the large recovery is contribution from the sample #20811 - identified as 00061. However, neither compound was found in the unspiked sample.

February 27, 1984

TABLE 2: METHOD PERFORMANCE DATA

Surrogate Recovery - GC/MS Data (QR20)

Chain of 4	Custody Data Required f	or ETC Data Managem	ent Summary A	eports		
D8923						
ETC Sample No.	Company	Facility	Sample Point	Date	Time	Elapsed Hours

	Amount	Amount Addad Y Presupru		Limits *
Сотроила	ug ug	% Recovery	Lower	Upper
VOLATILE FRACTION				· · · ·
Bromochloromethane	. 200	103	79	127
Benzene, d ₆	. 150	116	63	122
Fluorobenzene	. 150	123	74	122
1,4-Dichlorobutane	. 200	76	75	117
Pentafluorobenzene	. 150	133	58	124
Ethylbenzene,d ₁₀	. 150	121	78	114
ACID FRACTION				·····
2-Fluorophenol	-	-	20	86
Pentafluorophenol	-	-	37	127
BASE/NEUTRAL FRACTION			· · · · · · · · · · · · · · · · · · ·	
2-Fluorobiphenyl	80	78	62	122
1-Fluoronaphthalene	80	102	64	104
Nitrobenzene, d ₅	80	103	58	105
, i i i i i i i i i i i i i i i i i i i				
• Three Standard Deviations About the Mean,		ļ		
		1	.	

February 17, 1984

TABLE 2: METHOD PERFORMANCE DATA

GC/MS Tuning Data - Bromofluorobenzene (BFB) for Volatiles Analysis (QR21)

Chain of Custody	Data Required for ETC Data	Management Summary	Reports
D8923			
			Elapsed.
ETC Sample No:	Company F	acility Sample Point	Date Time Hours

m/ż	Ion Abundance Criteria	Abundance (% Base Peak)
50 75 96 173 174 175 176 177	15-40% of the base peak 30-60% of the base peak Base Peak, 100% relative abundance 5-9% of the base peak Less than 1% of the base peak Greater than 50% of the base peak 5-9% of mass 174 Greater than 50% of the base peak 5-9% of mass 176	28 50 100 41 67 5 62 4

Date:	840204
gabella Run No:	>A0173
Spectrum No;	·· 174
Analyst:	- R Albert

1

February 27, 1984

TABLE 2: METHOD PERFORMANCE DATA

GC/MS Tuning Data - Decafluorotriphenylphospine (DFTPP) for Base/Neutrals Analysis (QR23)

Chain of Custody Data Required for ETC Data Management Summary Reports
D8923
ETC Sample No. Company Facility Sample Point Date Time Hours

m/z	Ion Abundance Criteria	Abundance (% Base Peak)
51 68 700 127 197 198 199 275 365 441 442 443	30-60% of mass 198 Less than 2% of mass 69 Less than 2% of mass 69 40-60% of mass 198 Less than 1% of mass 198 Base peak, 100% relative abundance 5-9% of mass 198 10-30% of mass 198 Greater than 1% of mass 198 Less than mass 443 Greater than 40% of mass 198 17-23% of mass 442	60 (2 (2 (2 (4 (1 100 7 21 2 10 67 13 13

Daté: 840223 🔅
Run No: >G1058
Analyst: K. Weiner

Methodology

for

GC Analysis of Polychlorinated Biphenyls

The methods employed in the analysis of your water sample for polychlorinated biphenyls are established EPA methods taken from the "Manual of Analytical Methods for the Analysis of Pesticide Residues in Human and Environmental Samples," June, 1980.

The water method can be summarized as follows: A measured volume of sample, approximately 500 ml, to which sodium sulfate has been added is extracted with methylene chloride. The methylene chloride extract is dried and concentrated to approximately 1 ml. The concentrated extract is transferred to a silica gel column and eluted with hexane. The eluate is concentrated to a final volume of 1 ml and injected into a gas chromatograph equipped with a ⁵⁰Ni electron capture detector.

The GC operating parameters were as follows:

COLUMN

6' x 4 mm glass 1.5% SF-2250 & 1.95% SP-2401 Supelcoport 100/120 mesh

TC ENVIRONMENTAL TESTING and CERTIFICATION

CARRIER FLOW

60 ml/min. Argon/Methane

COLUMN OVEN

220⁰ C

INJECTOR TEMPERATURE

225⁰ C

DETECTOR TEMPERATURE

325⁰ С

Į

520

Q

S

P.

do la

k

METHODOLOGY

The methods employed in the analysis of your samples are both established EPA methods for priority pollutants in water and modified EPA procedure for priority pollutants in sediments and sludges. Gas chromatography combined with electron impact mass spectrometry (GC/MS) was used for this analysis.

For the analysis of the volatile organic compounds, EPA Method 624 (Federal Register, <u>December 3, 1979</u>; page 69532) was used, A September 1982 modification of EPA Method 624 which allows for the analysis of styrene was included. The method can be summarized as follows: Helium is bubbled through a 5-ml water sample contained in a specially designed purging chamber at ambient temperature. The purgeable volatile organic compounds are efficiently transferred from the aqueous phase to the vapor phase. The vapor is swept through a sorbent column where the purgeables are trapped. After purging is completed, the sorbent column is heated and back flushed with helium to desorb the purgeables onto a gas chromatographic column. The gas chromatograph is temperature programmed to separate the purgeables which are then detected with a mass spectrometer.

For the analysis of volatile organic compounds in sediments and sludges, methods taken from [special report No. 1, "Development of Analytical Test Procedures for the Measurement of Organic Priority Pollutants in Sludges and Sediments"] June 1979 were used. That method can be summarized as follows: 0.5 ml (0.5 grams) of sediment/sludge was transferred to a Tekmar purging chamber using a tipless disposable pipet. Five mls of reagent water and five mis of an internal standard water solution were added to the purging chamber. The mixture was purged and trapped following the same procedure used in Method 624 for water samples.

For the analysis of the target Base/Neutral priority pollutants, EPA Method 625 (Federal Register, December 3, 1979; page 69540) was used. The procedure includes a September (1962 modification to include the analysis of 3',3'-dichloro 4,4'-diamino dephenyl methane (MOCA). The method can be summarized as follows: A measured volume of sample, approximately 1-liter, was serially extracted with methylene chloride at <u>a pH greater</u> than 11 using a separatory funnel or a continuous extractor. The methylene chloride extract was dried and concentrated to a volume of 1 ml. The concentrate was injected into GC/MS systems set specifically for the separation and measurement of the priority pollutants.

For the analysis of target base neutrals and MOCA in sediment and solls. <u>EPA</u> Method 625 (previously referenced) was applied to an aqueous extract of the sample obtained by using the EP Toxicity extraction procedure found in "RCRA Test Methods For Evaluating Solid Wastes- Physical/Chemical Methods", SW846, May 1980.] The EP Toxicity extraction procedure can be summarized as follows: 100g of sediment of sludge are stabalized at pH 5 using 0.5 Normal acetic acid solution. The mixture is diluted to a final volume of 2 liters with distilled water. The entire sample is tumble shaken for 24 hours followed by positive pressure filtration at 75 PSI. The filtrate is extracted and analyzed using EPA Method 625.

For the analysis of PCB's in water and sediment, methods taken from Manual of Analytical methods for the analysis of Pesticides in Human and Environmental Samples. 7 EPA 600-8-30-038 were used. The water method can be summarized as follows: A measured volume of water sample, approximately 500 ml, to which sodium sulfate has been added, is extracted with methylene chloride. The methylene chloride extract is dried and concentrated to approximately 1 ml. The concentrated extract is transferred to a silica gel column and eluted with hexane. The eluate is concentrated to a final volume of 1 ml and 2 injected into a gas chromatograph equipped with a ⁶³Ni electron capture detector.

The soil method can be summarized as follows: A weighed amount of air dried sample, approximately 2 grams, is soxhlet extracted for 5 hours with 1:1 acetone/hexane solution. The extract is dried and concentrated to approximately 3 ml. The concentrated extract is transferred to a silica gel column and eluted with hexane. The eluate is concentrated to a final volume of 1 ml and injected into a gas chromatograph equipped with a ⁶³Ni electron capture detector.

Qualitative Identification of the target priority pollutants was performed initially using the relative retention times, the relative abundance of three characteristic ions, and their ratios. The entire-mass spectrum was reviewed before an identification was recorded. Ouantitative analysis was performed using an internal standard with a single characteristic (ion.

- Each GC/MS is checked and retuned, if necessary, every eight hours to ensure that its performance on decafluorotriphenylphosphine (DFTPP) meets the EPA criteria.
- A calibration curve for quantitation is prepared using a mixture of standards composed of either the Organic Acid or Base/Neutral Extractable Compounds at a minimum of 3 concentrations and using 2,2°-diffuorobiphenyl as an internal standard.
- The calibration curve is verified with a mixture of priority pollutant standards every eight hours.
- Results are compared to the acceptance criteria given in Method 625; any that do not meet the criteria are re-analyzed.

Analysis of Metals

All Samples

- ~ New standards are prepared for each batch of samples.
- Normal calibration is performed using a blank sample and four standards that have been through the sample preparation procedure. A regression analysis is used to construct the calibration curve.
- For each sample analysis that requires the use of the "method of additions" technique, a three point calibration is performed using U.S. EPA "Methods for Chemical Analysis of Water and Wastes, 1979". Results are obtained using linear regression analysis. Any results with a coefficient of correlation below 0.990 are considered erroneous, necessitating raw data editing or sample re-analysis.
- In constructing the normal calibration curves the lowest concentration levels we use are values greater than or equal to 5 times the Instrumental Detection Limit (IDL).
- All calibration standards are analyzed in duplicate, at a minimum.
- Independent reference standards are used to check the accuracy of calibration standards.
- A check standard is analyzed every ten samples to validate the normal calibration curve.

Homogeneous Samples (except for Mercury analysis)

Samples are analyzed in batches of 30 or less. For batches in which the sample matrices are homogeneous, the QC program is a minimum of 42% and consists of analyzing:

- 3 Replicates;
- 2 Replicate spikes;
- 2 Replicate independent reference standards;
- 8 Calibration standards (processed using the sample preparation method);
- 2 Blanks (processed using the sample preparation method);
- 4 Calibration standards (without sample preparation); and
- 1 Blank (without sample preparation).

Heterogeneous Samples (except for Mercury analysis)

Samples are analyzed in batches of 30 or less. For batches in which the sample matrices are heterogeneous, the QC program is a minimum of 65% and consists of analyzing:

- each of the 30 customer samples in duplicate;
- 4 Replicates;
- 4 Replicate spikes;
- 2 Replicate independent reference standards;
- B Calibration standards (processed using the sample preparation method);
- 2 Blanks (processed using the sample preparation method);
- 4 Calibration standards (without sample preparation); and
- 1 Blank (without sample preparation).

Analysis of Mercury-

To analyze samples for mercury we group them by matrix in batches of 2D or less. Our QC program is a minimum of 66% and consists of analyzing:

- each of the 20 customer samples in duplicate;
- 3 Replicates;
- 2 Replicate spikes;
- 2 Replicate independent reference standards;
- 10 Calibration standards (processed using the sample preparation method); and
- 2 Blanks.

Analysis of Pesticides, Herbicides and PCB's (EPA Method 608) 4

not the method met does it

Pesticide, herbicide and PCB samples are grouped in batches of 16 customer samples or less according to the type of analysis to be performed. The QC program for each of these three types of analyses is a minimum of 20% and consists of analyzing:

- 1 blank sample;
- 1 spiked blank sample;
- 1 replicate sample;
- 1 replicate spiked sample; and
- 1 blank QC sample for at least each 100 samples analyzed.

The GC instruments are tuned daily to meet performance criteria in Method 608. Because Method 608 lacks data acceptance criteria, ETC has developed its own upper and lower quality control limits. When a test result falls outside the control limits, the test is re-run.

What is bit Contras Grant

Analysis of Phenols

Phenois are analyzed using a Technicon AutoAnalyzer II GT.

- Absorbance of full scale standards must be within +/- 25% of nominal absorbance.
- Duplicate calibration standards at four different concentrations are run with each batch of customer samples.
- At least one intersample standard is run for each 20 customer samples.
- Gain and carryover standards are analyzed at the end of each run.

Chain-of-Custody

The chain-of-custody procedure is part of our quality assurance protocol. We believe our chain-of-custody record fully complies with the legal requirements of federal, state and local government agencies and of the courts of law. The record covers:

- Tabeling of sample bottles, packing the Sample Shuttle and transferring the Shuttle under seal to the custody of a shipper;
- outgoing shipping manifests;
- the chain-of-custody form completed by the person(s) breaking the Shuttle seal, taking the sample, resealing the Shuttle and transferring custody to a shipper;
- incoming shipping manifests;
- breaking the Shuttle's reseal;
- storing each labeled sample bottle in a secured area;
- disposition of each sample to an analyst or technician; and
- the use of the sample in each bottle in a testing procedure appropriate to the intended purpose of the sample.

The record shows for each link in this process:

- the person with custody; and
- the time and date each person accepted or relinquished custody.

Appendix A1

TEDITICE BILL CENTRE STATE

-

100.00

1997 - S. 1

Gas Chromatographic Spectral Data for Quantitated Compounds

 A reconstructed gas chromatogram for each sample analysed by a GC instrument.

2) A reconstructed gas chromatogram for the appropriate standard compounds analyzed with the same GC under the same operating conditions.

APPENDIX B-2

TYPICAL ETC REPORT

Corober 4, 1984 Detection TECHNICAL REPORT for WHITEMAN, OSTERMAN & HANNA 99 WASHINGTON AVE.

ALBANY, NY 12210

PRIVILEGED & CONFIDENTIAL PREPARED AT THE REQUEST OF LEGAL COUNSEL

	Chain of C	Custody Data F	Required fo	or ETC Data Mana	gement Summar	y Report	ts	
D8923	WHITEMAN,	OSTERMAN,	8 HANNA	WOHHICKGMM W	137A1001A1 8	40130	1530	61
ETC Sample	No.	• Company		Facility	"Sample Point	Date	Time	Hours
		EN	VIRONME	NTAL TESTING &	nd CERTIFICATI	ON COR	PORA	TION
				Λ		1		
				////	' s	7		X
				V	X	_		
				bons c	. K. Lin, Ph.D.	$\smile \frown$		}
				Research	and Operations			
				V	1			
				V .				

- 284 RARITAN CENTER PARKWAY - EDISON, NJ 08837 (201) 225-5600 -

TABLE OF CONTENTS

Introduction

Table 1: Results and Quality Assurance Data

Table 2: Method Performance Data

Methodology

QA Protocol

Report Appendices

Appendix A1

Appendix A

Appendix B

Appendix D

Appendix E

.

INTRODUCTION

This report contains the analytical results on your water samples, submitted on February 2, 1984. It is designed to satisfy the needs of your people at various levels in your organization.

The results we obtained on your sample are presented in a tabular format immediately after this introduction. Included with the sample results, the quality assurance data on your specific sample are tabulated to verify the validity of the results obtained. The quality assurance data include those obtained on the blank, the spiked blank, the replicate and the spiked sample (commonly known as matrix spike). Also presented in the quality assurance data report is the verification of the proper functioning of the instruments used. The gas chromatograms and/or mass spectra generated in the analysis of your sample are included in the Appendix of this report. The chain of custody record for your sample is included at the end of this report.

The established methods we used in the analysis of your sample are described in the Methodology section after the Results. In the analysis we followed a rigidly controlled Quality Assurance Protocol. This Protocol is described after the Methodology section.

We hope our report format is useful in assisting you to obtain pertinent information on your sample.

RESULTS

The results obtained on your sample and the accompanying quality assurance data are listed in Table 1.

The data on the recovery of the surrogates in your sample and the certification of the GC/MS systems used in the analysis of your sample are listed in Table 2.

The sample extract was qualitatively analyzed by GC/ECD for the presence of Aroclors. If present, the Aroclors were quantitated.

The sample chromatograms were compared qualitatively to chromatograms of all 7 Aroclors - 1016, 1221, 1232, 1242, 1248, 1254, and 1260 for matching peaks. Quantitation was based on a three point calibration curve for Aroclor 1248. The data are tabulated in Table 1; this quality assurance data obtained on the Method Blank, Replicate and Matrix Spike analyses. The methodology and quality assurance protocol follow Table 1. Sample and standard chromatograms are included in the appendix of this report.

The Chain-of-Custody Record on your sample is also included at the end of this Report.

TAB	LE 1: QUA Volat	NTITAT	IVE RES	SULTS a	ind QUA S Analy:	LITY AS	SURAN	CE DA	ATA	MAY 8	, 1984
	D8923 W ETC Sample No.	Chain of Cust HITEMAN, D	ody Data Req STERMAN & 1 Company	uired for ETC HANNA	Data Manag WOHHICKGW Facility	jement Summa 4 W137A1001 Sample Poi	Al 840130	1530 Time Hou	sed Its		
NPDES Compound Number	9 • • • • • • • • • •	Rest Sample Concen ug/l	MDL ug/la	QC Rép First ug/l	Second ug/1	Blank Blank Data ug/l	Concen. Added ug/l	Blank % Recov	Unspiked Sample ug/l	Concen Added Ug/1	Recov
1,1-Dichloroethylene Tetrachloroethylene Toluene 1,2-Trans-dichloroethyl Trichloroethylene Vinyl chloride Styrene # ETM Buditshed Rethod Detection Limit. # ETC estudiated Rethod Detection Limit for	lene this porticular sample.		10 10 10 5 10		ND ND ND ND ND ND	ND ND ND ND ND ND	18 18 18 18 18 18	88 99 98 81 87 100 98	ND ND ND ND ND ND	18 18 18 18 18 18	96 106 89 90 104 93

TABL	E 1: QUA SE/NEUT	NTITAT	IVE RES	SULTS a DS - GC	nd QUA :/MS AN	LITY AS IALYSIS	SURAN DATA (CE DA (QR03	NTA 3)	JUN 26,	
	D8923 W ETC Sample No.	Chain of Custo HITEMAN, D	ody Data Req STERMAN & ^{Company}	uired for ETC HANNA	Data Manag WOHHICKGW Facility	ement Summa W137A1001 Sample Poi	ry Reports A1 840130	1530 Time Elap	sed rs		
		Resu	lts	QC Rep	licate	QC Blank	and Spiked	Blank	PC M	atrix Spik	e
NPDES Compound Number		Sample Concen, ug/l	MDL ug/l 4	First ug/l	Second ug/l	Blank Data ug/l	Concen Added ug/l	X Recov	Unspiked Sample ug/l	Concen Added ug/l	
bis(2-Ethylhexyl)phthal Butyl benzyl phthalate Diethyl phthalate Dimethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Moca	ate	ND ND ND ND	10 10 10 с		ND ND ND ND ND ND	ND ND ND ND ND ND	30 30 30 30 30 30 60.	(108 18 3 0 28 102 94	50000000000000000000000000000000000000	30 30 30 30 30 60	<
L A 294 published Hethod Detection Limit, B Hot Determinable, C 27C estimated Hethod detection timit,											

ł

JUN 26, 1984

•

X Recov

Ŗ

and states

D8923

ETC Sample No.

.

Company

March 20, 1984 **TABLE 1: QUANTITATIVE RESULTS** Metals, Cyanide and Phenois - Analysis Data (QR05) Chain of Custody Data Required for ETC Data Management Summary Reports WHITEMAN, OSTERMAN & HANNA WOHHICKGWM WI37A1001A1 840130 1530 Elapsed Facility Sample Point Date Time Hours

Ē

			Res	ults	 		 	
NPD Num	ES ber	Compound	Sample Concen. ug/l	MDL ug/l				
4M 6M 77M 13M 15M	Cadmium Copper Lead Mercury Zinc Phenolics. Barium		Concen. ug/l ND ND ND ND ND ND ND ND ND ND ND ND ND	MOL ug/1 50 200 6 0.3 50 50 1000				

and the second

March 30, 1984

TABLE 1: QUANTITATIVE RESULTS

Conventionals Analysis Data (QR12)

	Chail D8923 W	n of Custody Da HITEMAN, OST	ata Required fo ERMAN & HANN	r ETC Data Man A WOHHIC	agement Summ KGWM W137A10	pary Reports 01A1 840130	1530 Elapsed		¢
			Proulte	Pacifi			Inter Hours		
Parameter		Sample Measure	MDL	Units of Measure.					
Chemical Oxygen Demand (pH Specific Conductance Sulfate as SO4 Total Organic Carbon		3 5.1 310 13 12	2 100 2	mg/l std umhos/cm mg/l mg/l	· · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · ·
			· · · · · ·	"' ' ''''					
	**************************************							n an	
			1 · · · · · · · · · · · · · · · · · · ·						
									en de la Angele. Esta esta esta esta esta esta esta esta e
		анан аларынан аларын аларын аларын аларын		· · · · · · · ·	· · · · ·				· · · · ·
	: .	• * · ·							
							_		

,

March 20, 1984

TABLE 1: QUANTITATIVE RESULTS and QUALITY ASSURANCE DATA

Conventional Analysis Data

I	Chain of Custon	ly Data Required for ET(: Data Management Sur	nmary Reports
	D8923 WHITEM	IAN, OSTERMAN & HANN	A WOHHICKGWM W	137A100TA1 840130 1530
	ETC Sample No.	Company	Facility Sample	Elapsed Point Date Time Hours

	Results		QC Rep	licate	QC Blank	and Spiked	Blank	QC Matrix Spike		
Compound	Sample Concen. mg/l	MDL mg/1*	First mg/l	Second mg/l	Biank Data mg/l	Amount Added mg/l	X Recov	Unspiked Sample mg/l	Amount Added mg/1	% Recov
Nitrate as No. 1027124	13	0.1	13	20	'ND'	1.0	102	20**	25	118
			······	·····		· ·			•••••••••••••••••••••••••••••••••••••••	
		N. 112 MA		·····	nas ym r		1. m#.m.e		·····	
	a kanan sana sa k Tanga kanan sa k	yyn sjawar sa							-y	
										· · · · · · · · · · · · · · · · · · ·
an a		. W			t, Agric (Wis	n an	-See		······	
an a	with training	an Yu Amerikan II. I			en de la compañía		1997) 1997)	· ······		······
					n in the second		anger a pr			
a se	- <u>Manar</u> - 17 1-			······	. w lin mwwy .	. an indiana ing ang ang ang ang ang ang ang ang ang a	**************************************	••••		
				gangis 'n s'	ing in pr		.N 744	and the second s	· · · · · · · · · · · · · · · · · · ·	
		amani in	· · · · · · · · · · · · · · · · · · ·		, and a second	, sa sharakanin Latin			· · · · · · · · · · · · · · · · · · ·	
an a					ower of the second	an anna air is a'			·····	
a na ana ana ana ana ana ana ana ana an				· • • • • • • • • • • • • • • • • • • •	# **	uhin an in aris	inga te			
	witzenen erzen T	n en <i>nyen se</i> t				n na statig og	11 A.C. A.			
an a	VIWI			·····	· .	· · ·		······	· ····· · · · · · · · · ·	
		and the second				и н. Г	Ì			
· · · · · · · · · · · · · · · · · · ·				······································				••	·····	
e e englishe	· ·	ł			Į		ļ			

MAR 12, 1984

TABLE 1: QUANTITATIVE RESULTS and QUALITY ASSURANCE DATA

Aroclors - GC Analysis Data (QR14)

	D8923 W ETC Sample No.	Chain of Cust HITEMAN, O	ody Data Red STERMAN &	uired for ETC HANNA	Data Manag WOHHICKGW Facility	ement Summa 1 W137A1001 Sample Poi	AT 840130	1530 Time Hau	5ed 75		
		Results		QC Rep	licate	QC Blank	and Spiked Blank		QC Matrix Spike		
NPDES Compound Number		Sample Concen. ug/l	MDL ug/l +	First ug/l	Second ug/1	Blank Data ug/l	Concen. Added ug/l	% Récov	Unspiked Sample .ug/l	Concen. Added ug/l	% Recov
Aroclor 1242 Aroclor 1254 Aroclor 1260 Aroclor 1248 Aroclor 1232 Aroclor 1221 Aroclor 1016 • ML celculated for each sample matrix.			10 10 10 10 10 10 10 10		ND ND ND ND ND ND	ND ND ND ND ND ND	0 0 20 0 0 0	97	ND	20	104

р¥-

and the second second

.

ł

ŧ

· · · · · · ·

.

ETC ENVIRONMENTAL TESTING AND CERTIFICATION

10000

Appendix A

Mass Spectral Data for Quantitated Compounds

 A total ion chromatogram for each sample analysed by a GC/MS instrument.

2) A mass spectrum and a reference spectrum for each priority pollutant compound detected in the sample.

THE FOLLOWING **DOCUMENTS** WERE OF **POOR QUALITY**

Data File: >A0182::U1 Name: VDA, 840204, A Misc: D8923V

Id File: VOA Title: DFILE, PURGEABLE PRIORITY POLLUTANTS, A Last Calibration: 840205 00:57

Operator ID: RA0157 Qaunt Time: 840205 02:44

and a set of the set o

). .

ic Falm - Out-Po Tates - RE - PERACATIZM (A. - 840224, 6 Lagi Coltonation - Offica - CM-ab

Unerstern II: 1995-39 Qaunt Tame: 849527 16-69

ETC ENVIRONMENTAL TESTING AND CERTIFICATION

Appendix B

Mass Spectral Data for Calibration Compounds

- If the sample analysis included the determination of purgeable organic compounds then a mass spectrum for 4-bromofluorobenzene (BFB) is included. This data was used in the instrument calibration protocol on the day of analysis.
- 2) If the sample analysis included the determination of non-purgeable organic compounds then a mass spectrum for decafluorotriphenylphosphine (DFTPP) is included. This data was used in the instrument calibration protocol on the day of analysis.

XA0173 PHBEB 174 SUB NRM			SUNGIS PERFORMANCE STD -						
File: >A	0173 9	Scan ≇÷	174 R	etn, tim	.⊕. 1,1, ,	50			
m / 2.	Int.	t3 / Z.	Int.	m/z	Int.	m/z	Int.	m/:	Int.
26.00	4.40	43.05	.26	68.05	12.52	78.95	5.35	96.05	7.86
31,00	1.30	49.05	4.75	69.05	10.45	81.05	3.02	105.00	. 6 0
34.55	2.42	49.95	27.98	71.05	1.38	85.15	4.75	109.00	2.76
35.75	2.76	51.05	8.29	73.05	1.99	88.05	5.87	141.10	2.42
35.95	2.76	55.05	. 78	73.95	14.16	91.05	3.28	173.95	66.58
36.85	10.62	56.05	2.33	75.05	49 91	93.05	4.84	174.95	5.01
37.95	7.08	57.05	4.92	75.95	1.73	94.05	10.54	175.95	62.35
38.85	1.90	61.05	4.75	77.05	2.94	95.05	100.00	176.95	4.06
40.95	1.21	61.95	5.18						

,

AL.,3 Move cursor; then press carriage return :

> 34 (6号) 加欠会	ç	BADVV3, E Due adi k	iev.	· 504:	y By TPP				
lereinal RERISUSE	iset to St	a typerah	€्र ⊭्त	€ .					
Fale: >8	11058 8	Selar, ≹÷	a Statilite D	 (4) 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	uri alti Factor	€ela		·	
₩ 4 %.	1.12 ⁴	e :Zie	. 63	£, 12	Ent.	the state	n ar air ar a' s	ari tu Etri ∎	
6 () D ¹⁰	A.C. 720	4.6.7 6.0				2		600 2 0 13	••••••••••••••••••••••••••••••••••••••
~~~.70 En OE	1.2.7.2	111.00	200 - 14 4 14 - 10 4	しいアニアモー 人間の しん	. <u>C.</u> Y	二回り ラント・ション・ション・ション・ション・ション・ション・ション・ション・ション・ション	1942 1972	213170 മലകമ്മ	
50.75 CA DC	37.07	446 00		- 武田子(1646) - 人名伯 - 646	, 44 () 4 - 24 ()	10201-515 1044 400	. ( 6		
500 CC	50. 	141,00 141,00	1. N. F. C. N. F.	- 3.600,600 - 4.62 - 151.	3.40 00	an a	, e 7 ·	265 24	
012.70 012.90	. L	444 98	2 07	465 86	· 7 z	100 A 100 - 7 - 20 10 A 100 - 77 100		1000201910 1000201910	·· ··
A.B. 8%	72	442 26	7.5	- ALE - 120 - ALE - 120	7 <b>0</b> %			- 302 .70 - 343 - 86	•••
A0 85	4.4	115 00	7.51 7.51	- 100.70 - 12.7 98	4 4 7	- 2020 - 513 - 2020 - 513	A. 0 A.	- 340,60 - 340 AB	
60 EE	7.6	192 60	4 11-7	- 559 00	10 10 10 10 10 10 10 10 10 10 10 10 10 1		<u> </u>	744 86	11
83.05	2 20	5 90 - SB	1 07	472 60	44.54 (4)	2000 Br	1 C.L	2000 CP	4
54 95	ш. <u>с</u> (	120.10	а 1 Ц.,	121.60	4 C. 4	2012 - 00 2012 - 00	4.4 7.5	202 2.8	
A.S. 505	<b>6</b> .0	ት ሥራ ሳሳ	مراجع	4 27 - 6 0	73	n na serie de la serie de l La serie de la s		1253 <b>0</b> .9	• •
477 65. 100 17 1		122 00	47 45	428.84	4 24	<ul> <li>Received and the second se second second sec</li></ul>	i.	7547 N.C	n na shekarar n Na shekarar na s
7 A <b>9</b> A	二 4日	4.1P1 5.1	3		n in the second s		4 ¹		• •
24 95	17 pr	420 83		170 29	5 4 5	2010 - 190 2010 - 200			анан на
22 0S	<b>2</b> 14 14 14 14	4 19 E - E - E - E - E - E - E - E - E - E		41.9.94	· · · ·	19.51 34.	12.7		 
77.85	2.32	130 90		186 18				349.45 349.45	
78.55	5 A.S	1.745 2.01		4 M.A. 9 M	n e	14 A 17 A 17 A			
11:11:11:11:11:11:11:11:11:11:11:11:11:	4 5/10	1 4.4 Q B		n Herrier in 1995. N Herrier in 1995.	4 6 6	912 87			4 4 V
81.15	2.55	133 FB	200			222.85	<b>h</b> 2		
858.18		124 96	. 61		3.89	248.68	3. C.	38 a. 95	··
85 92	4	13a 64	53.5		****	249 95	74		
86.85	6.5	4.141 2.4	Ľ,	191. 28	<b>6</b> 9			2.2.2.4.4	
96.85	. 410	1.7 (C. 4	. 3 1	334 . <u>2</u> 55	3 66	25 N. 85	43.5.	81 x 191	
91.83	. A. I.	141.54		192.52	4.07		6.7	Stra . Ch	
$\phi_{12} = \phi_{13}$	4	243.33	÷	1877 - SS	44	1	2.	364 65	Δ.
92.85	• · · · ·		i	5 S.J. 25		257.74		1. E 1	
94. <b>8</b> 5	. 6.2	2	£1	197.85	100.00	259.20			
95.15	. 5. 7	1.422 11	2.2	198.85	7,07	264 80		1.2.4	,
95 89	. 6.3	127.00	2 I, A	4921.88		264.91		◎天真、61	.5
93 US	2.70	2. 1. 2. 6.10	2.37	201.15	. 42	266 93		AUL C	·
<u> 위위 - 0 등</u>	4.6	5 48 90	. 04	061 <u>2</u> 0	4 :	222.20	<u>4</u> 9.0	$\mathbf{z}(g) \in \mathbf{C}(g)$	
çışı çış		2.62	17.17	262.85	. 34	273.86	3.69	4.7. 	• •
1.00.95	4 C -	152 20		203.05	2.63	274.80	21 44	423 CU	
162.75	1 . 32	153.44	1.3	264 63	5.08	275.00	2.25	422 20	
103.85	1.46	153.90	5.6	295.85	20.28	276.80	3.63	441.10	9.82
105.05	.96	155.00	74	205.85	8.18	280.80	5.12	442.00	66.65
106.05	. 5. 5	158.90	5.72	287.95	1.49	281.80	. 80	443.00	12.96
106.85	$\pm 3.20$	156.90	. 345	205.65	. 72	282.80	. 69	444.10	3

• •

; .

108.05 60.,20

S 205 Move cursor; then press carrage return :

.

# ETC ENVIRONMENTAL TESTING AND CERTIFICATION

100/10

## Appendix D Subcontractor's Data

 A copy of the originating subcontractor's report is included for all data not generated within ETC's laboratory.

## RECEIVED FEB 8 1984



1101 State Road, Building B Princeton, New Jersey (0854) 609-924-5151

#### LABORATORY ANALYSIS REPORT

Client:	ETC Corporation						
Address:	284 Raritan Center P.	arkway					
	Edison, New Jersey 0	8837					

Test Number: 184055 Date Received: January 31, 1984 Date Sampled: Unknown

Attention: Mr. R. Smith

Job Number: _____03001-22F_

SAMPLE NUMBER	SAMPLE DESIGNATION DESCRIPTION								
1	D3907								
2	D8923								
DL	Detection Limit								
			=						
			S	AMPLE NUM	IBER				
PARAMETER (CONSTI	NENT	1	2	DL					
Chemical Oxygen Dem	and	4	3	2					
Chicage Carge Chipen									
Sulfates		15	13	2					
		l							
	<u> </u>								
		Į		<u> </u>					
		lí		<b>{</b>					
		ll		╡────┤					
· · · · · · · · · · · · · · · · · · ·		L <u></u>			· · · · · · · · · · · · · · · · · · ·				
		<u> </u>							
		₩		1					
		<b>N</b>	<b>4_</b>	4, <u></u>					
-									
All results in mg/1 (pp	m) except	where not	cd. Pag	e 3 of 4	Laboratory ID No. 11195				

February 3, 1984

Date

Michael Wright / Laboratory Supervisor

### EIC TESTING AND CERTIFICATION *

10.14

### Appendix E

#### Chain-of Custody Forms

- 1) A field Chain-of-Custody form (CC1) is included for all samples shipped by ETC shuttle.
- An in-house sample Chain-of Custody form is included for the period the sample was in ETC's possession.
- 3) A subcontractor's Chain-of-Custody form is included for any analytical work not performed within ETC's laboratory.
- Any additional Chain-of-Custody material provided by a client or by a client's sampling agent is also included.

	FTC ENVIRONMENTAL	Tic brow 1: 78723
	CHAIN OF CUSTODY FORM (CC1)	mer
	Hooker - Ruco	Pobert La Honica
	Hickswille, N.Y 11803	() -
	SAMPLE IDENTIFICATION	
	MICIHIHITICIKISI	
	Seven Cales	
	Bel (5) Bottom Sedmant (0) Protratment Failth	V     (r)     Long/Generic     (i)       V     (r)     Breatment Fechty     (ii)
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	$\frac{1}{2} \frac{1}{2} \frac{1}$
	Seure Code Your Sample Point D Start Data (from share) (left Juguity) (mo/coy/st)	Bist Time Caperd Have (2400 Nr. etest)
	W 1101/071216131P1 1 1015/115/8	1/ 0191310 /131
•	Sample Bottle Condition Somp	e Eottie Condition
189	D8923 EI SAMIRE NOT FELTERED D8923 U	13 Per
12	D8123 E2/ MALYZE AS PER FULL D8923 1 WOH RED	with light
	D8923 EY/ All samples taken then D8923	BI WERDING
	D8123 VI/ puny except vollo	
	CHAIN OF CUSTODY CHROMIC	NE-40 mi tripblank
	Durin Opened Dy. (print) Robert Lamonica De	na: 01/35/84 Time: 14:46
	some ushot famonica so	# 1: ODIRG 77 Mor. Vec
i	I have received trace motioner in good senation from the serve parties.	
	2 Norme: Signature: Signature: Servertee:	
	I have received shape mananipe in good senation from the serve person.	
	2. Here: Bester: Bester:	
	I have received these meterical in gass condition from the source person.	
	4. Mene Septeme	
	Brik: The Bundie: "	
	2 Proces Second Dr. (and) Robert Lamornia Bo	DI 30/54 15:53
	Kouit homorum	QU18678
	ETC USE DNLY DATA BY (2, NOYFISON	no: 1/3//14
	See g: Constan	walf



- ETO ENVIRONMENTAL	3959
TESTING and CERTIFICATION Request for	Analysis
Name of Subcontractor:	num
ETC Sample Number (s) <u>D3907</u> , Sen D8923 Sen	d bill to: Mr. John Birri d report to: Mr. R. F. Smith
Date Data Required: 2/11/84	ETC Corporation 284 Raritan Center Pkw. Edison, NJ Ø8837 (201) 225-5600 P. F. Smith immediately
II deadime cannot be met, contact	A. I. Smith Immediately.
Please perform the analyses request Color Conductance, Specific Odor pH Turbidity Total Solids Total Suspended Solids Total Dissolved Solids Total Volatile Solids Gross Alpha and Gross Beta* Radium 226 if Gross Alpha exceeds 5 pCi/l Radium 228 if Radium 226 exceeds 3 pCi/l	ed below: Coliform, Total Coliform, Fecal Biological Oxygen Demand (5 day, 20 degree C) Chemical Oxygen Demand(COD) Oil & Grease (Gravimetric) Petroleum Hydrocarbons (Infrared) Organic Carbon, Total (TOC) Phenols, Total (as Phenolics) Methylene Blue Active Substances (MBAS) (Foaming Agents, Surfactants)
If Gross Alpha exceeds 5 pCi/l, R immediately.	. F. Smith must be notified
Acidity Alkalinity Bromide Chloride Chlorine, Total Residual Cyanide, Total Ammonía (as N) Total Kjeldahl Nitrogen (TKN) Nitrate	Nitrate-Nitrite Nitrite Oxygen, Dissolved Phosphorous, Ortho Phosphate Silica, Dissolved VSulfate (as SO4) Sulfide (as S) Sulfite (as SO3) Fluoride
DTHERS	
Sample(s) Relinquished by: $\frac{1}{164}$ Time $5120M$	Auso
Sample(s) Received by:	<u>4</u>
Date 1/5//64 Time 5/11	
284 RARITAN CENTER PARKWAY	• EDISON, NJ 08837 (201) 225-5600

		<u>VCLE</u>
ETC Sample Number(s) D89	23	
Sample Preparation For:	Analyst	Date
Base/Neutral (PCB's & Pesticides	A. Mushaccio	2/21/84)
Acids		
Metals	<u></u>	
Others PP/BN	A. Niefiacio	2/31/54
Others PLB (GC)	David R- from	2/21/84
Others		<u></u>
Crours		<u> </u>
Santple Analysis Fort	Analyst	Date
Ease Westral/Fill & Resticides	Keuf. This	alaslat
Acids		·
VOA/Purgeables	R Albert	840204
Metals		
Others	C. Cullinen	_2/14/84
Diners Tre uppert	Lu Juna	2/21/84
Otrers, Sen Danulan PP/P.	B/GC)	2/23/84
Others		
Others		<u> </u>
Others		
-		
12.	Pake -	
Verified By	funce	

_____

ETC Sample Number N 20	17 LRG73	
Sample Preparation For:		Date
Base/Neutral/PUB's & Pesticides		
Motais	Vir 14	1/3, 19, 1
	- A fine	
Others		
Others		
C' :rs		
Sample Analysis For:	Anā.; st	Date .
Base Neutral/Full to Festicides		
Acids		
VOA/Purgeables		······································
Metals	Zmill	2/25/84
Others	······································	
Others		
Others		
Others		
Others	<u> </u>	<u> </u>
Others		<u> </u>
Verified By	en Deke	

ŝ

APPENDIX B-3

Site E - Special Samples

.

• .

# Occidental Chemical Corporation

**MEMO** 

**Research Center** 

To _____ R. Badger _____ Date ____ Date ____ July 15, 1983

From <u>N. Simon</u>

Subject _____ GC/MS ANALYSIS OF C3588 FOR AROCLORS & PHTHALATES _____

COPIES: R. Schuttler, M. Kargatis, D. Thielen, A. Weston, TIC

#### I. SUMMARY

Fractions of the sample contained Aroclor 1248, bis(2-ethylhexyl)phthalate, di-N-butylphthalate and other unidentified phthalates. Very approximate estimates of the concentrations show Aroclor 1248 present at greater than 100 ug/g and the two identified phthalates at 1-3 mg/g.

**II. EXPERIMENTAL** 

#### A). Sample Preparation

Aliquots of the sample were weighed into a 40 ml hypo-vial and diluted approximately 50:1 with methylene chloride. Each dilution or extract was shaken vigorously by hand for five minutes and then sonificated for ten minutes. The hypo-vials were inverted and 1 ul of each extract analyzed by GC/MS.

#### B). Instrumental Parameters

#### Gas Chromatographic Conditions (Finnigan 9610)

Column	- 15 m DB5-NB fused silica capillary (J&W)
Injection	- Grob, 60/1 split after 48 secs.
Carrier	- Helium 14.5 psi
Injector Temp.	- 280 ⁰ C
Detector Temp.	- 280 ⁰ C
GC/MS Interface	- 280 ⁰ C
Column Program	- $10^{\circ}$ to $280^{\circ}$ at $12^{\circ}$ /min. after a 1 min.

# Occidental Chemical Corporation

Research Center

R. Badger GC/MS ANALYSIS OF C3588 FOR AROCLORS AND PHTHALATES July 15, 1983

Page 2

Mass Spectrometer Conditions (Finnigan 4000)

Instrument	-	Finnigan 4000 GC/MS interfaced with an Incos Data Acquisition System
Source Parameters	-	85 ⁰ , Electron Impact Source with 70 eV ionizing electrons, ionizer temp. 270 ⁰ C.
EM Volts	-	1080
Scan Parameters	-	MID for Aroclors on six ions 2 each representing $Cl_3$ , $Cl_4$ , $Cl_5$ for phthalates data acquisition in .45 sec. with .5 sec. hold. Scan 140-350

(MID descriptor shown in Figure 1)

#### (C). Standard Preparation

Bis(2-ethylhexyl)phthalate, di-n-butylphthalate and Aroclor 1254 were prepared by weighing pure standards in methylene chloride. Aroclors 1242, 1248, 1232, were obtained in solution from Supelco. Dilutions were made in methylene chloride.

#### III. RESULTS AND DISCUSSION

Aliquots of the sample representing soil and water, oil (or other organics) and water, and water alone were extracted with methylene chloride. An analysis of the extracts showed that the PCBs present are from Aroclor 1248. Figures 2, 3 and 4 compare a soil/water extract to Aroclors 1242, 1248 and 1254. An estimate of the concentration of Aroclor 1248 was made based on two concentration levels of a standard. The calculation was based on the sum of the trichlorobiphenyl isomers. It should be noted that the extracts analyzed represented mixtures of soil or oil and water. The water alone did not contain a detectable concentration of Aroclor 1248 (ND₅₀ ug/g). The water present could have diluted the Aroclor in the soil or oil.

Sample	Conc. of Aroclor 1248'ug/g
1 soil/water A	400
2 soil/water B	150
3 oil/water A	250
4 oil/water B	220
5 water	ND ₅₀

# Occidental Chemical Corporation

**Research Center** 

R. Badger GC/MS ANALYSIS OF C3588 FOR AROCLORS AND PHTHALATES. July 15, 1983

Page 3

Samples 1, 3 and 5 were also analyzed for phthalates. The two phthalates identified were quantitated based on two concentration levels of a standard. It should be noted again that the concentrations found were very approximate.

<u>Sa</u>	mple		di-N-buty	lphthalate ug/g	<pre>bis(2-ethylhexyl)phthalate</pre>
1	soil/water	<u>A</u>		1000	280
3	oil/water	<u>A</u>		2500	2200
5	water		less than	100	ND ₇₅

Other phthaltes were detected. They were not identified or quantitated. Figures 5, 6 and 7 show reconstructed ion chromatograms of samples 1, 3 and 5 on the lower trace and an ion chromatogram of m/e 149 - the most common fragment to phthalates.

Nan Jun

Nan Simon Associate Chemist Central Sciences

/jb Attachments Figure 1

Ē.

. . . .

MID Descriptor for

identification of

Aroclor

MID DESC: PC INST: FINN CALI: 0714DJ

. .

.

· • ·

-

•••• • • • •

.

.

MASS DEFECT AT 100 AMU 30 MMU MASTER RATE 1024 TOTAL' ACOU TIME 0. 628' SECS TOTAL' SCAN' TIME' 0. 700' SECS CENT' SAMP' INT' 0. 200' MS MASS' RANGE 1' TO' 1024' AMU 6. . . . 255. 576 . . 326. 597 . . . . 1. 000 . . . 0. 700 . . . 1. . . B0 . . 0 . . 1. . . 0 . PD5 INT BEGIN MEND TIME (SECS) MPW MEW MA' TH' BL' ION * **** MASS **** MASS *** REQUEST ** ACTUAL 0.105 2 150 50 PDS 1. 255. 576 256. 576 0.100 1 0 2. **** 257, 577 . ** 258, 577 ***** 0. 100 **** 0. 105 **** 2*** 150 ** 50 *** 1*** 0** POS 290. 587 ..... 0. 100 .... 0. 105 .... 2 . 150 .... 50 .... 1 .... 0 ... POS · 3. · · · · 289. 586 4. **** 291. 587*** 292. 587***** 0. 100**** 0. 103**** 2** 150** 50*** 1*** 0** PDS 15.111 323.5961 324.59711110.1001110.10511211501501111001PDS 6. . . . 325. 597 . . 326 597 . . . 0. 100 . . 0. 105 . . . 2 . 150 . 50 . . 1 . . 0 . PDS











____

_____


APPENDIX B-4

L

1

COMPLETE ETC REPORTS

(Bound Separately)