	cture, en	CADIS vironment, buil	dings	ARCADIS 6723 Towpath Ro P.O. Box 66 Syracuse New York 13214-0	
Public He NYSDOH Bureau o Investig Flanigan 547 Rive	f Environn ation Square, R	ialist nental Exposure oom 300		Copies: Tel 315.446.9120 Alicia Barraza, NYSDEC Fax 315.449.4111 Ramon Simon, Bayer MaterialScience LLC (w/o attachment)	
^{Subject:} Bayer Ma 125 New			1Y	Date: March 13, 2009 ARCADIS Project No.: B0032305.0001.00006 #5	
We are ser Attache Shop D Prints Other:	ed Prawings		Undo ans amples	er Separate Cover Via the Following Items:	er
Copies	Date	Drawing No.	Rev.	Description	Action*
1				Data Usability Summary Report	FA
1				Updated Soil Vapor and Ambient Air Analytical Results Data Tables	FA
🗌 AN A	pproved pproved As l s Requestec			CR Correct and Resubmit CR Correct and Resubmit CR File Return Copi F File Return Copi FA For Approval Review and Comm	es
	thod ostal Service d/Registered		ourier/Hand hited Parce	d Delivery FedEx Priority Overnight FedEx 2-Day FedEx Standard Overnight FedEx Econo FedEx Econo	•
				sability Summary Report and data tables that have been upda por investigation analytical data.	ated to

G:\Div10\COMMON\Bayer MaterialScience\Hicksville\05 Correspondence\072911022_Transmittal Letter.doc

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µg/m³)

PHASE 3 SOIL VAPOR INVESTIGATION SUMMARY BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

	NYSDOH Indoor Air Guidance		h Percentile Levels (µg/m³)	Ambient Air Analytical Results (µg/m³)				Soil Vapor Analytical Results (µg/m³)								
Sampling Location: Sample Depth: Date Collected:	Shown via	Indoor Air (Exceedences Shown via Bold)	Outdoor Air (Exceedences Shown via Italics)	AMBIENT 06/13/08	UW 09/20/07	DW 09/18/07	UW 02/11/09	SG-1 (5.0-5.5') 09/20/07	SG-2 (5.0-5.5') 09/19/07	SG-3 (5.0-5.5') 09/24/07	SG-4 (5.0-5.5') 09/18/07	SG-5 (5.0-5.5') 09/21/07	SG-6 (5.0-5.5') 09/18/07	SG-7 (5.0-5.5') 09/18/07	SG-8 (5.0-5.5') 09/24/07	SG-9 (15.0-15.5') 09/25/07
1,2,4-Trimethylbenzene		9.5	5.8	<0.79 J	3.0	4.9	<0.79	<98	<130	<88 [<88]	<20	<9.8	5.4	4.9	<27	<980
1,3,5,-Trimethylbenzene		3.7	2.7	<0.79 J	<0.79	1.6	<0.79	<98	<130	<88 [<88]	<20	<9.8	<2.5	1.6	<27	<980
1,3-Butadiene		3	3.4	<0.88 J	<0.88	<0.88	<0.88	<110	<150	<100 [<100]	<22	<11	<2.9	<0.88	<31	<1,100
2,2,4-Trimethylpentane				<0.75 J	12	34	<0.75	<93	<120	<84 [<84]	<19	21	7.5	8.9	<25	<930
4-Ethyltoluene		3.6	3	<0.79 J	2.8	4.9	<0.79	<98	<130	<88 [<88]	<20	<9.8	4.6	4.1	<27	<980
Cyclohexane				<0.55 J	0.62	1.3	<0.55	<69	1,400	<62 [<62]	<14	<6.9	<1.7	<0.55	<19	<690
Dichlorodifluoromethane		16.5	8.1	2.4 J	2.7	2.2	<2.0	<240	<330	<220 [<220]	<49	<25	<6.4	<2.0	<69	<2,500
Freon 11		18.1	4.3	1.2 J	1.5	1.1	<0.90	<110	<150	<100 [<100]	<22	52	28	1.1	<30	<1,100
n-Heptane				<0.66 J	2.2	5.7	<0.66	<82	1,100	<74 [<74]	<16	<8.2	<2.0	1.8	<22	<820
n-Hexane		10.2	6.4	<1.4 J	3.2	7.0	1.9	<170	670	<160 [<160]	<35	<18	<4.6	1.6	<49	<1,800
1,1,1-Trichloroethane		20.6	2.6	<0.87 J	<0.87	<0.87	<0.87	<110	<140	<98 [<98]	<22	<11	18	<0.87	<29	<1,100
2-Butanone (MEK)		12	11.3	<1.2 J	2.2	<1.2	1.3	<140	<190	<130 [<130]	<29	<15	18	3.5	<41	<1,500
2-Hexanone				<1.6 J	<1.6	<1.6	<1.6	<200	490	<180 [<180]	<41	<20	<5.3	<1.6	<57	<2,000
Acetone		98.9	43.7	<9.5 J	11	<9.5	<9.5	<1,200	<1,600	<1,100 [<1,100]	<240	<120	110	16	<330	<12,000
Benzene		9.4	6.6	<0.51 J	1.5	2.7	<0.51	<64	140	<58 [<58]	<13	<6.4	1.7	0.86	<17	<640
Carbon disulfide		4.2	3.7	<1.2 J	<1.2	<1.2	<1.2	<150	<210	<140 [<140]	<31	<16	<4.0	<1.2	<44	<1,600
Chlorobenzene		0.9	0.8	<0.74 J	<0.74	<0.74	<0.74	<92	460	<83 [<83]	<18	<9.2	<2.3	<0.74	<25	<920
Chloroform		1.1	0.6	<0.78 J	<0.78	<0.78	<0.78	<98	<130	<88 [<88]	<20	<9.8	<2.4	<0.78	<26	<980
Chloromethane		3.7	3.7	0.95 J	1.2	0.91	0.83	<100	<140	<93 [<93]	<21	<10	<2.7	<0.83	<29	<1,000
cis-1,2-Dichloroethene		1.9	1.8	<0.63 J	<0.63	<0.63	<0.63	590	320	79 [87]	<16	<7.9	<2.0	<0.63	<21	140,000
trans-1,2-Dichloroethene				<0.63 J	<0.63	<0.63	<0.63	<79	520	<71 [<71]	<16	<7.9	<2.0	<0.63	<21	2,900
1,2-Dichloroethene (total)				<0.63 J	<0.63	<0.63	<0.63	590	830	79 [87]	<16	<7.9	<2.0	<0.63	<21	140,000
Ethylbenzene		5.7	3.5	<0.69 J	2.5	4.8	<0.69	<87	330	<78 [<78]	<17	<8.7	2.6	2.3	<23	<870
Isopropyl Alcohol				<9.8 J	<9.8	<9.8	<9.8	<1,200	<1,600	<1,100 [<1,100]	<250	<120	<32	<9.8	<340	<12,000
Tetrachloroethene	100	15.9	6.5	<1.1 J	<1.1	<1.1	<1.1	20,000	<180	16,000 [15,000]	4,600	2,200	430	130	4,500	150,000
Toluene		43	33.7	0.68 J	15	37	1.2	<75	720	<68 [<68]	<15	41	12	11	83	<750
Trichloroethene	5	4.2	1.3	<0.86 J	<0.86	<0.86	<0.86	2,500	<140	390 [380]	91	1,100	470	3.0	48	36,000
Vinyl chloride		1.9	1.8	<0.41 J	<0.41	<0.41	<0.41	<51	10,000	<46 [<46]	<10	<5.1	<1.3	<0.41	<14	<510
Xylene (m,p)				<1.7 J	6.9	15	<1.7	<210	<290	<200 [<200]	<43	<22	7.8	7.8	<61	<2,200
Xylene (o)		7.9	4.6	<0.69 J	2.6	5.2	<0.69	<87	<110	<78 [<78]	<17	<8.7	3.4	3.2	<23	<870
Xylenes (total)		22.2	12.8	<0.69 J	10	21	<0.69	<87	<110	<78 [<78]	<17	<8.7	12	11	<23	<870

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µg/m³)

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

	NYSDOH Indoor Air Guidance		h Percentile Levels (μg/m³)	3) Soil Vapor Analytical Results (µg/m³)											
Sampling Location: Date Collected:	Value (Exceedences Shown via Shading)	Indoor Air (Exceedences Shown via Bold)	Outdoor Air (Exceedences Shown via Italics)	SG-10 (5.0-5.5') 09/21/07	SG-11 (5.0-5.5') 09/21/07	SG-12 (5.0-5.5') 09/20/07	SG-13 (5.0-5.5') 09/20/07	SG-14 (5.0-5.5') 09/20/07	SG-15 (5.0-5.5') 09/19/07	SG-16 (5.0-5.5') 09/19/07	SG-17 (5.0-5.5') 09/18/07	SG-18 (5.0-5.5') 09/24/07	SG-19 (29.5-30.0') 06/13/08	SG-20 (29.5-30.0') 06/13/08	SG-21 (5.0-5.5') 06/13/08
1,2,4-Trimethylbenzene		9.5	5.8	6.9	11	5.9	<15	<37	<6.9	13 [16]	3.7	23	<64	<25	<2.9
1,3,5,-Trimethylbenzene		3.7	2.7	1.9	<9.8	1.8	<15	<37	<6.9	3.9 [4.9]	1.2	6.4	<64	<25	<2.9
1,3-Butadiene		3	3.4	4.2	<11	12	<17	<42	<7.7	1.3 [1.4]	1.9	<3.3	<71	<29	<3.3
2,2,4-Trimethylpentane				7.5	26	4.6	75	<35	8.9	19 [39]	1.6	3.8	<61	<23	<2.8
4-Ethyltoluene		3.6	3	6.4	11	5.4	<15	<37	<6.9	11 [13]	3.3	18	<64	<25	<2.9
Cyclohexane				<0.69	<6.9	1.1	<11	<26	<4.8	0.96 [1.8]	<0.69	<2.0	<45	<17	<2.1
Dichlorodifluoromethane		16.5	8.1	<2.5	<25	<3.1	<38	<94	<17	<2.0 [<2.0]	<2.5	<7.4	<160	<64	<7.4
Freon 11		18.1	4.3	1.5	22	3.6	<17	<42	<7.9	2.2 [2.3]	1.6	<3.3	<73	<28	<3.4
n-Heptane				3.7	9.8	6.1	16	<31	<5.7	6.6 [10]	3.4	4.9	<53	<20	<2.5
n-Hexane		10.2	6.4	4.2	<18	8.1	<27	<67	<12	5.3 [8.8]	3.3	<5.3	<110	<46	<5.3
1,1,1-Trichloroethane		20.6	2.6	<1.1	<11	14	<17	<41	<7.6	<0.87 [<0.87]	<1.1	<3.2	<71	<27	<3.3
2-Butanone (MEK)		12	11.3	15	17	27	<23	<56	<10	8.3 [7.4]	13	15	<94	<38	<4.4
2-Hexanone				3.1	<20	<2.6	<32	<78	<14	<1.6 [<1.6]	<2.0	<6.1	<130	<53	<6.1
Acetone		98.9	43.7	88	<120	110	<180	<450	<83	40 [33]	74	81	<760	<310	38
Benzene		9.4	6.6	2.1	<6.4	3.2	<9.9	<24	<4.5	2.1 [3.5]	1.3	<1.9	<42	<16	<1.9
Carbon disulfide		4.2	3.7	3.0	<16	4.4	<24	<59	<11	2.0 [2.1]	5.3	<4.7	<100	<40	<4.7
Chlorobenzene		0.9	0.8	<0.92	<9.2	<1.2	<14	<35	<6.4	<0.74 [<0.74]	<0.92	<2.7	<60	<23	<2.8
Chloroform		1.1	0.6	<0.98	<9.8	<1.2	<15	<37	<6.8	<0.78 [<0.78]	4.9	<2.9	<63	<24	<2.9
Chloromethane		3.7	3.7	<1.0	<10	<1.3	<16	<39	<7.2	<0.83 [<0.83]	<1.0	<3.1	<66	<27	<3.1
cis-1,2-Dichloroethene		1.9	1.8	<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3	1,000	2,400	<2.4
trans-1,2-Dichloroethene				<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3	<52	<20	<2.4
1,2-Dichloroethene (total)				<0.79	<7.9	<0.99	<12	<30	<5.6	<0.63 [<0.63]	<0.79	<2.3	1,000	2,400	<2.4
Ethylbenzene		5.7	3.5	4.8	10	4.3	15	<33	<6.1	6.9 [10]	1.9	7.4	<56	<22	<2.6
Isopropyl Alcohol				<12	<120	<15	<190	<470	<86	<9.8 [<9.8]	<12	<37	<790	<320	<37
Tetrachloroethene	100	15.9	6.5	8.1	2,400	64	2,700	8,100	1,200	2.5 [3.1]	4.5	4.5	16,000	600	430
Toluene		43	33.7	22	53	17	110	49	27	35 [60]	7.2	21	<49	<19	<2.3
Trichloroethene	5	4.2	1.3	<1.1	24	1.4	<17	160	120	1.2 [1.6]	<1.1	<3.2	2,600	75	170
Vinyl chloride		1.9	1.8	<0.51	<5.1	<0.64	<7.9	<19	<3.6	<0.41 [<0.41]	<0.51	<1.5	<33	<13	<1.5
Xylene (m,p)				14	29	13	41	<83	<15	23 [34]	6.1	23	<140	<56	<6.5
Xylene (o)		7.9	4.6	5.6	11	4.8	16	<33	<6.1	8.7 [12]	2.6	9.6	<56	<22	<2.6
Xylenes (total)		22.2	12.8	20	40	17	56	<33	<6.1	33 [48]	9.1	33	<56	<22	<2.6

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µɡ/m³)

SOIL VAPOR INVESTIGATION SUMMARY REPORT BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

	NYSDOH Indoor Air Guidance		h Percentile Levels (µg/m³)		Soil Vapor Analytical Results (µg/m³)						
Sampling Location: Date Collected:		Indoor Air (Exceedences Shown via Bold)	Outdoor Air (Exceedences Shown via Italics)	SG-22 (5.0-5.5') 02/10/09	SG-23 (5.0-5.5') 02/11/09	SG-24 (5.0-5.5') 02/11/09	SG-25 (5.0-5.5') 02/10/09	SG-26 (5.0-5.5') 02/10/09	SG-27 (5.0-5.5') 02/11/09		
1,2,4-Trimethylbenzene		9.5	5.8	<0.79 [<0.79]	<0.79 J	<0.79	<0.79	<3.4	<15 J		
1,3,5,-Trimethylbenzene		3.7	2.7	<0.79 [<0.79]	<0.79 J	<0.79	<0.79	<3.4	<15 J		
1,3-Butadiene		3	3.4	1.8 [1.3]	3.1 J	1.1	4.4	12	77 J		
2,2,4-Trimethylpentane				<0.75 [<0.75]	<0.75 J	<0.75	<0.75	<3.3	<14 J		
4-Ethyltoluene		3.6	3	<0.79 [<0.79]	<0.79 J	<0.79	<0.79	<3.4	<15 J		
Cyclohexane				<0.55 [<0.55]	<0.55 J	<0.55	<0.55	<2.4	<11 J		
Dichlorodifluoromethane		16.5	8.1	<2.0 [<2.0]	2.6 J	2.2	<2.0	<8.9	<38 J		
Freon 11		18.1	4.3	1.6 [1.5]	1.9 J	1.7	1.7	<3.9	<17 J		
n-Heptane				<0.66 [<0.66]	1.8 J	1.1	1.7	4.5	<13 J		
n-Hexane		10.2	6.4	3.2 [<1.4]	4.6 J	1.8	3.9	7.4	<27 J		
1,1,1-Trichloroethane		20.6	2.6	<0.87 [<0.87]	<0.87 J	<0.87	<0.87	<3.8	<17 J		
2-Butanone (MEK)		12	11.3	5.0 [2.6]	8.3 J	3.8	6.5	13	26 J		
2-Hexanone				<1.6 [<1.6]	<1.6 J	<1.6	<1.6	<7.4	<32 J		
Acetone		98.9	43.7	29 [15]	38 J	16	36	52	<180 J		
Benzene		9.4	6.6	0.70 [0.58]	2.1 J	0.73	1.6	4.2	80 J		
Carbon disulfide		4.2	3.7	<1.2 [<1.2]	<1.2 J	<1.2	<1.2	<5.6	<24 J		
Chlorobenzene		0.9	0.8	<0.74 [<0.74]	<0.74 J	<0.74	<0.74	<3.2	<14 J		
Chloroform		1.1	0.6	<0.78 [<0.78]	<0.78 J	<0.78	<0.78	<3.4	<15 J		
Chloromethane		3.7	3.7	<0.83 [<0.83]	<0.83 J	<0.83	<0.83	<3.7	<16 J		
cis-1,2-Dichloroethene		1.9	1.8	<0.63 [<0.63]	<0.63 J	<0.63	< 0.63	<2.8	<12 J		
trans-1,2-Dichloroethene				<0.63 [<0.63]	<0.63 J	<0.63	<0.63	<2.8	<12 J		
1,2-Dichloroethene (total)				<0.63 [<0.63]	<0.63 J	<0.63	< 0.63	<2.8	<12 J		
Ethylbenzene		5.7	3.5	<0.69 [<0.69]	<0.69 J	<0.69	<0.69	<3.0	<13 J		
Isopropyl Alcohol				14 [<9.8]	<9.8 J	14	<9.8	81	<190 J		
Tetrachloroethene	100	15.9	6.5	10 [9.5]	<1.1 J	13	38	630	1,800 J		
Toluene		43	33.7	0.87 [0.75]	1.8 J	1.6	2.0	4.5	36 J		
Trichloroethene	5	4.2	1.3	<0.86 [<0.86]	<0.86 J	<0.86	<0.86	4.6	<17 J		
Vinyl chloride		1.9	1.8	<0.41 [<0.41]	<0.41 J	<0.41	<0.41	<1.8	<7.9 J		
Xylene (m,p)				<1.7 [<1.7]	<1.7 J	<1.7	<1.7	<7.8	<33 J		
Xylene (o)		7.9	4.6	<0.69 [<0.69]	<0.69 J	<0.69	<0.69	<3.0	<13 J		
Xylenes (total)		22.2	12.8	<0.69 [<0.69]	<0.69 J	<0.69	<0.69	<3.0	<13 J		

TABLE 1 SOIL VAPOR AND AMBIENT AIR ANALYTICAL RESULTS FOR DETECTED VOCs (µɡ/㎡)

PHASE 3 SOIL VAPOR INVESTIGATION SUMMARY BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

Notes:

- 1. Samples were collected by ARCADIS on the dates indicated.
- 2. Samples were analyzed for volatile organic compounds (VOCs) by TestAmerica, Inc. of Burlington, Vermont using United States Environmental Protection Agency (USEPA) Compendium Method TO-15.
- 3. New York State Department of Health (NYSDOH) Indoor Air Guidance Values are from Table 3.1 of the document titled "Guidance for Evaluating Soil Vapor in the State of New York" (NYSDOH, October 2006).
- 4. USEPA Indoor Air and Outdoor Air Background Levels are the 90th percentile of background air values observed by the USEPA in a study of public and commercial office buildings, per USEPA database information referenced in Section 3.2.4 of the "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (NYSDOH, October 2006).
- 5. Concentrations reported in micrograms per cubic meter (µg/m³).
- 6. < = Not detected at or above the associated reporting limit.
- 7. -- = Comparison value not available.
- 8. J = Indicates that the associated numerical value is an estimated concentration.
- 9. Field duplicate sample results are presented in brackets.
- 10. Shading indicates an exceedence of the NYSDOH Indoor Air Guidance Value.
- 11. Bold font indicates an exceedence of the USEPA 90th Percentile Background Indoor Air Value.
- 12. Italic font indicates an exceedence of the USEPA 90th Percentile Background Outdoor Air Value.
- 13. Results for samples collected through February 2009 have been validated.

TABLE 2 SOIL VAPOR AND AMBIENT AIR HELIUM ANALYTICAL RESULTS (%V/V)

PHASE III SOIL VAPOR INVESTIGATION SUMMARY BAYER MATERIALSCIENCE LLC 125 NEW SOUTH ROAD HICKSVILLE, NEW YORK

		Helium					
Sampling	Date	Concentration					
Location	Collected	(%v/v)					
Ambient Air A	Analytical R	esults					
AMBIENT	06/13/08	<2.3 J					
UW	09/20/07	<2.4					
DW	09/18/07	<2.5					
Soil Vapor Analytical Results							
SG-1	09/20/07	<2.2					
SG-2	09/19/07	<2.2					
SG-3	09/24/07	<2.3 [<2.2]					
SG-4	09/18/07	<2.2					
SG-5	09/21/07	<2.3					
SG-6	09/18/07	<2.1					
SG-7	09/18/07	<2.3					
SG-8	09/24/07	<2.3					
SG-9	09/25/07	<2.1					
SG-10	09/21/07	<2.4					
SG-11	09/21/07	<2.2					
SG-12	09/20/07	<2.3					
SG-13	09/20/07	<2.3					
SG-14	09/20/07	<2.3					
SG-15	09/19/07	<2.3					
SG-16	09/19/07	<2.2 [<2.1]					
SG-17	09/18/07	<2.2					
SG-18	09/24/07	<2.4					
SG-19	06/13/08	41					
SG-20	06/13/08	20					
SG-21	06/13/08	3.8					
SG-22	02/10/09	<2.6 [<2.5]					
SG-23	02/11/09	<2.6					
SG-24	02/11/09	<2.7					
SG-25	02/10/09	<2.7					
SG-26	02/10/09	<2.7					
SG-27	02/11/09	<2.5					

Notes:

- 1. Samples were collected by ARCADIS on the dates indicated.
- 2. Samples were analyzed for helium by TestAmerica, Inc. of Burlington, Vermont using ASTM Method D1946.
- 3. Concentrations reported in percent volume (% v/v).
- 4. < = Not detected at or above the associated reporting limit.
- 5. J = Indicates that the associated numerical value is an estimated concentration.
- 6. Field duplicate sample results are presented in brackets.
- 7. Results for samples collected through February 2009 have been validated.

Bayer MaterialScience

Data Usability Summary Report

HICKSVILLE, NEW YORK

Volatile and Helium Analyses

SDG#NY130076

Analyses Performed By: TestAmerica Laboratories, Inc. South Burlington, Vermont

Report: #9815 Review Level: Tier III Project: B0032305.0001.00006

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #NY130076 for samples collected in association with the Bayer site. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis					
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	SVOC	РСВ	MET	MISC	
DUP 021009	784224	AIR	2/10/2009	SG-22	Х				Х	
SG-22	784225	AIR	2/10/2009		Х				Х	
SG-25	784226	AIR	2/10/2009		Х				Х	
SG-26	784227	AIR	2/10/2009		Х				Х	
UW 021109	784228	AIR	2/11/2009		Х					
SG-27	784229	AIR	2/11/2009		Х				Х	
SG-24	784230	AIR	2/11/2009		Х				Х	
SG-23	784231	AIR	2/11/2009		Х				Х	

Note:

1. Miscellaneous parameters include helium.

ANALYTICAL DATA PACKAGE DOCUMENTATION GENERAL INFORMATION

	Rep	orted	Performance Acceptable		Not
Items Reviewed	No	Yes	No	Yes	Required
Sample receipt condition		Х		Х	
Requested analyses and sample results		Х		Х	
Collection Technique (grab, composite, etc.)		Х		Х	
Methods of analysis		Х		Х	
Reporting limits		Х		Х	
Sample collection date		Х		Х	
Laboratory sample received date		Х		Х	
Sample preservation verification (as applicable)		Х		Х	
Sample preparation/extraction/analysis dates		Х		Х	
Fully executed Chain-of-Custody (COC) form completed		х		х	
Narrative summary of QA or sample problems provided		х		х	
Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) Method TO-15 and ASTM D1946. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999, USEPA Region II SOP HW-31 Validating Air Samples Volatile Organic Analysis of Ambient Air In Canister by Method TO-15 of October 2006, New York State DEC Analytical Method ASP 2005 TO-15 (QA/QC Criteria R9 TO-15) and NYSDEC Modifications to R9 TO-15 QA/QC Criteria February 2008.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on

data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Method TO-15	Air	30 days storage from collection to analysis	Ambient temperature

All samples were analyzed within the specified holding time criteria.

The sample locations with canisters that exceeded return pressure criteria are presented in the following table.

Sample Locations	Return Pressure/Vacuum Reading ("of Hg)
SG-27	-3.8
SG-23	-3.9

Sample results associated with sample locations analyzed by analytical method TO-15 were qualified, as specified in the table below. All other canister return pressure/vacuum criteria were met.

Criteria	Qualification			
	Detected Analytes	Non-Detect Analytes		
Return pressure/vacuum < 4"Hg to 1"Hg	J	UJ		

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL.

3. Mass Spectrometer Tuning

Mass spectrometer performance and column resolution was acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (30%) and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (30%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than 40% or less than 40% of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the established acceptance limits of 70% to 130%. The relative percent difference (RPD) between the LCS/LCSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	LCS Recovery	LCSD Recovery
All sample locations	Naphthalene	AC	140%

The criteria used to evaluate the LCS/LCSD recoveries are presented in the following table. In the case of an LCS/LCSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
LCS/LCSD percent recovery >130%	Non-detect	No Action

Control Limit	Sample Result	Qualification
	Detect	J
$LCC/LCCD$ percent receivery $\sqrt{70\%}$ but $\sim 10\%$	Non-detect	UJ
LCS/LCSD percent recovery <70% but > 10%	Detect	J
< 10%	Non-detect	R
	Detect	J

7. Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for air matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Laboratory duplicates were not performed as part of this SDG.

8. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table.	Results for duplicate sam	nples are summarized	in the following table.
--	---------------------------	----------------------	-------------------------

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,3-Butadiene	0.88	1.8	AC
	Trichlorofluoromethane	1.5	1.6	AC
	Acetone	15	29	AC
	Isopropyl Alcohol	ND (9.8)	14	AC
SG-22/DUP 021009	n-Hexane	ND (1.4)	3.2	AC
	Methyl Ethyl Ketone	2.6	5.0	AC
	Benzene	0.58	0.70	AC
	Toluene	0.75	0.87	AC
	Tetrachloroethene	9.5	10	AC

AC = Acceptable.

The calculated RPDs between the parent sample and field duplicate were acceptable.

9. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

10. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: TO-15	Repo	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Required	
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/N	/IS)				
Tier II Validation						
Canister return pressure/vacuum (5"Hg <u>+</u> 1)		Х	Х			
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks					Х	
C. Trip blanks					Х	
Laboratory Control Sample (LCS)		Х		Х		
Laboratory Control Sample Duplicate(LCSD)		Х	Х			
LCS/LCSD Precision (RPD)		Х		Х		
Field Duplicate (RPD)		Х		Х		
Surrogate Spike Recoveries		Х		Х		
Dilution Factor		Х		Х		
Moisture Content					Х	
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration RRFs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Internal standard		Х		Х		
Compound identification and quantitation						
A.Reconstructed ion chromatograms		Х		Х		
B.Quantitation Reports		Х		Х		
C.RT of sample compounds within the established RT windows		Х		х		
D.Transcription/calculation errors present				Х		
E.Reporting limits adjusted to reflect sample dilutions		Х		Х		

VOCs: TO-15	Repo	orted	Perfor Accep		Not Required			
	No	Yes	No	Yes	Required			
GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS)								
%RSD Relative standard deviation								

%RSDRelative standard deviation%RPercent recoveryRPDRelative percent difference%DPercent difference

HELIUM ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
Helium by ASTM D1946	Air	14 days from collection to analysis	Ambient Temperature

All samples were analyzed within the specified holding time criteria.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum RSD of 15% is allowed.

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (15%).

All calibration criteria were within the control limits.

5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

6. Field Duplicate Analysis

Field duplicate analysis is used to assess the precision and accuracy of the field sampling procedures and analytical method. A control limit of 100% for air matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for air matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
SG-22/DUP 021009	Helium	ND (2.6)	ND (2.5)	AC
AO Assautable				

AC = Acceptable.

The calculated RPDs between the parent sample and field duplicate were acceptable.

7. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time.

No target compounds were identified in the samples.

8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR HELIUM

HELIUM; ASTM D1946	Rep	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC/FID)					
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		X	
Blanks					
A. Method blanks		Х		X	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		X	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Field Duplicate (RPD)		Х		X	
Surrogate Spike Recoveries					Х
Dilution Factor		Х		X	
Moisture Content					Х
Tier III Validation					
Initial calibration %RSDs		Х		X	
Continuing calibration %Ds		Х		Х	
System performance and column resolution		Х		Х	
Compound identification and quantitation					
A. Quantitation Reports		Х		X	
B. RT of sample compounds within the established RT windows		Х		х	
C. Transcription/calculation errors present				Х	
D. Reporting limits adjusted to reflect sample dilutions		Х		х	

%RSD – relative standard deviation, %R - percent recovery, RPD - relative percent difference, %D – difference

SAMPLE COMPLIANCE REPORT

Sample						Co	mplianc	y ¹		Noncompliance
Delivery Group (SDG)	Sampling Date	Protocol	Sample ID	Matrix	voc	svoc	РСВ	МЕТ	MISC	
NY130076	2/10/2009	TO-15	DUP 021009	Air	No				Yes	VOC: LCSD ²
NY130076	2/10/2009	TO-15	SG-22	Air	No				Yes	VOC: LCSD ²
NY130076	2/10/2009	TO-15	SG-25	Air	No				Yes	VOC: LCSD ²
NY130076	2/10/2009	TO-15	SG-26	Air	No				Yes	VOC: LCSD ²
NY130076	2/11/2009	TO-15	UW 021109	Air	No					VOC: LCSD ²
NY130076	2/11/2009	TO-15	SG-27	Air	No				Yes	VOC: LCSD ² , canister pressure
NY130076	2/11/2009	TO-15	SG-24	Air	No				Yes	VOC: LCSD ²
NY130076	2/11/2009	TO-15	SG-23	Air	No		-		Yes	VOC: LCSD ² , canister pressure

 Samples which are compliant with no added validation qualifiers are listed as "yes". Samples which are non-compliant or which have added qualifiers are listed as "no". A "no" designation does not necessarily indicate that the data have been rejected or are otherwise unusable.
 The deviation did not result in any qualification of the data. VALIDATION PERFORMED BY: Melissa Hall

SIGNATURE:

Melussee Hall

DATE: March 1, 2009

PEER REVIEW BY: Dennis K Capria

DATE: March 5, 2009

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

Г

CLIENT SAMPLE NO.

DUP 021009

Lab Sample No.: 784224 Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	υ	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.57		0.40	1.3		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.27		0.16	1.5		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16 🔹	U	0.16	0.63	U	0.63
Acetone	67-64-1	6.2		4.0	15		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	υ	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.40	U	0.40	1.4	U	1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	υ	0.65
Methyl Ethyl Ketone	78-93-3	0.87		0.40	2.6		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	υ	0.16	0.75	U	0.75
Benzene	71-43-2	0.18		0.16	0.58		0.51
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	υ	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

DUP 021009

Lab Sample No.: 784224

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

· · · · · · · · · · · · · · · · · · ·			Т		<u>п</u>	I	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	υ	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	<i>,</i> 108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	0.20		0.16	0.75		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	1.4	1	0.16	9.5		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1,6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.16	U	0.16	0.69	U	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
Xylene (total)	1330-20-7	0.16	U	0,16	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	υ	0.83
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

SG-22

Lab Sample No.: 784225

Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.81		0.40	1.8		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U_	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.28		0.16	1.6		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	12		4.0	29		9.5
Isopropyl Alcohol	67-63-0	5.8		4.0	14		9.8
Carbon Disulfide	75-15-0	0.40	υ	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	υ	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.91		0.40	⁻ 3.2		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
Methyl Ethyl Ketone	78-93-3	1.7		0.40	5.0		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.22		0.16	0.70		0.51
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethane	107-06-2	0.16	U	· 0.16	0.65	U	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

CLIENT SAMPLE NO.

SG-22

Lab Sample No.: 784225 Date Analyzed: 2/17/2009

	·		<u> </u>							
Target Compound	CAS Number	Results in ppbv	٩	RL in ppbv	Results in ug/m3	Q	RL in ug/m3			
Trichloroethene	79-01-6	0.16	υ	0.16	0.86	U	0.86			
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74			
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14			
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U U	1.1			
cis-1,3-Dichloropropene	10061-01-5	0.16	υ	0.16	0.73	υ	0.73			
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6			
Toluene	108-88-3	0.23		0.16	0.87		0.60			
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	υ	0.73			
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87			
Tetrachloroethene	127-18-4	1.5	1	0.16	10		1.1			
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6			
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4			
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2			
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74			
Ethylbenzene	100-41-4	0,16	U	0.16	0.69	U	0.69			
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7			
Xylene (o)	95-47-6	0.16	U	0.16	0.69	U	0.69			
Styrene	100-42-5	0.16	U	0.16	0.68	υ	0.68			
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7			
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1			
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	υ	0.69			
4-Ethyltoluene	622-96-8	0.16	υ	0.16	0.79	U	0.79			
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79			
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83			
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79			
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96			
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96			
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96			
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0			
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7			
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1			

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

SG-25

Lab Sample No.: 784226

Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	2.0		0.40	4.4		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	- 1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	U	0.70
Trichlorofluoromethane	75-69-4	0.30		0.16	1.7		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	15		4.0	36		9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	υ	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcoho!	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	1.1		0.40	3.9		1.4
1,1-Dichloroethane	75-34-3	0.16	υ	0.16	0.65	U	0.65
Methyl Ethyl Ketone	78-93-3	2.2		0.40	6.5		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	υ	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.50		0.16	1.6		0.51
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.42		0.16	1.7		0,66

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

SG-25

Lab Sample No.: 784226

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

			1		11	1	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	0.52		0.16	2.0		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	υ	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	υ	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	5,6		0.16	38		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (a)	95-47-6	0.16	U	0.16	0.69	U	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	υ	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 3.51

Sample Matrix: AIR

Г

SG-26

Lab Sample No.: 784227

Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	1.8	U	1.8	8.9	U	8.9
1,2-Dichlorotetrafluoroethane	76-14-2	0.70	U	0.70	4.9	U	4.9
Chloromethane	74-87-3	1.8	U	1.8	3.7	U	3.7
Vinyl Chloride	75-01-4	0.70	U	0.70	1.8	U	1.8
1,3-Butadiene	106-99-0	5.5		1.8	12		4.0
Bromomethane	74-83-9	0.70	U	0.70	2.7	υ	2.7
Chloroethane	75-00-3	1.8	U	1.8	4.7	U	4.7
Bromoethene	593-60-2	0.70	U	0.70	3.1	U	3.1
Trichlorofluoromethane	75-69-4	0.70	U	0.70	3.9	U	3.9
Freon TF	76-13-1	0.70	U	0.70	5.4	U	5.4
1,1-Dichloroethene	75-35-4	0.70	U	0.70	2.8	U	2.8
Acetone	67-64-1	22		18	52	******	43
Isopropyl Alcohol	67-63-0	33		18	81		44
Carbon Disulfide	75-15-0	1.8	U	1.8	5.6	U	5.6
3-Chloropropene	107-05-1	1.8	U	1.8	5.6	U	5.6
Methylene Chloride	75-09-2	1.8	U	1.8	6.3	U	6.3
tert-Butyl Alcohol	75-65-0	18	U	18	55	U	55
Methyl tert-Butyl Ether	1634-04-4	1.8	U	1.8	6.5	U	6.5
trans-1,2-Dichloroethene	156-60-5	0.70	U	0.70	2.8	U	2.8
n-Hexane	110-54-3	2.1		1.8	7.4		6.3
1,1-Dichloroethane	75-34-3	0.70	U	0.70	2.8	U	2.8
Methyl Ethyl Ketone	78-93-3	4.5		1.8	13		5.3
cis-1,2-Dichloroethene	156-59-2	0.70	U	0.70	2.8	U	2.8
Tetrahydrofuran	109-99-9	18	U	18	53	U	53
Chloroform	67-66-3	0.70	υ	0.70	3.4	U	3.4
1,1,1-Trichloroethane	71-55-6	0.70	U	0.70	3.8	U	3.8
Cyclohexane	110-82-7	0,70	U	0.70	2.4	U	2.4
Carbon Tetrachloride	56-23-5	0.70	U	0.70	4.4	U	4.4
2,2,4-Trimethylpentane	540-84-1	0.70	U	0.70	3.3	U	3.3
Benzene	71-43-2	1.3		0.70	4.2		2.2
1,2-Dichloroethene (total)	540-59-0	0.70	U	0.70	2.8	U	2.8
1,2-Dichloroethane	107-06-2	0.70	U	0.70	2.8	U	2.8
n-Heptane	142-82-5	1.1		0.70	4.5		2.9

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 3.51

Sample Matrix: AIR

SG-26

Lab Sample No.: 784227

Date Analyzed: 2/17/2009

					11	T	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.86		0.70	4.6		3.8
1,2-Dichloropropane	78-87-5	0.70	υ	0.70	3.2	U	3.2
1,4-Dioxane	123-91-1	18	U	18	65	U	65
Bromodichloromethane	75-27-4	0.70	U	0.70	4.7	U	4.7
cis-1,3-Dichloropropene	10061-01-5	0.70	U	0.70	3.2	U	3.2
Methyl Isobutyl Ketone	108-10-1	1.8	U	1.8	7.4	U	7.4
Toluene	108-88-3	1.2		0.70	4.5		2.6
trans-1,3-Dichloropropene	10061-02-6	0.70	U	0.70	3.2	U	3.2
1,1,2-Trichloroethane	79-00-5	0.70	U	0.70	3.8	υ	3.8
Tetrachioroethene	127-18-4	93		0.70	630		4.7
Methyl Butyl Ketone	591-78-6	1.8	U	1.8	7.4	U	7.4
Dibromochloromethane	124-48-1	0.70	U	0.70	6.0	U	6.0
1,2-Dibromoethane	106-93-4	0.70	U	0.70	5.4	υ	5.4
Chlorobenzene	108-90-7	0.70	U	0.70	3.2	U	3.2
Ethylbenzene	100-41-4	0.70	U	0.70	3.0	U	3.0
Xylene (m,p)	1330-20-7	1.8	U	1.8	7.8	U	7.8
Xylene (o)	95-47-6	0.70	U	0.70	3.0	U	3.0
Styrene	100-42-5	0.70	U	0.70	3.0	U	3.0
Bromoform	75-25-2	0.70	υ	0.70	7.2	U	7.2
1,1,2,2-Tetrachloroethane	79-34-5	0.70	U	0.70	4.8	U	4.8
Xylene (total)	1330-20-7	0.70	U	0.70	3.0	U	3.0
4-Ethyltoluene	622-96-8	0.70	U	0.70	3.4	U	3.4
1,3,5-Trimethylbenzene	108-67-8	0.70	U	0.70	3.4	υ	3.4
2-Chlorotoluene	95-49-8	0.70	U	0.70	3.6	U	3.6
1,2,4-Trimethylbenzene	95-63-6	0.70	U	0.70	3.4	U	3.4
1,3-Dichlorobenzene	541-73-1	0.70	U	0.70	4.2	U	4.2
1,4-Dichlorobenzene	106-46-7	0.70	U	0.70	4.2	U	4.2
1,2-Dichlorobenzene	95-50-1	0.70	υ	0.70	4.2	U	4.2
1,2,4-Trichlorobenzene	120-82-1	1.8	U	1.8	13	U	13
Hexachlorobutadiene	87-68-3	0.70	U	0.70	7.5	U	7.5
Naphthalene	91-20-3	1.8	U	1.8	9.4	U	9.4

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

UW 021109

Lab Sample No.: 784228 Date Analyzed: 2/17/2009

······			1				
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.40	U	0.40	2.0	U	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40		0.40	0.83	1	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U	0.41
1,3-Butadiene	106-99-0	0.40	U	0.40	0.88	U	0.88
Bromomethane	74-83-9	0.16	U	0,16	0.62	U	0.62
Chloroethane	75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	υ	0.70
Trichlorofluoromethane	75-69-4	0.16	U	0.16	0.90	U	0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	4.0	U	4.0	9.5	U	9.5
Isopropyl Alcohol	67-63-0	4.0	U	4.0	9.8	U	9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	υ	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	υ	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.54		0.40	1.9		1.4
1,1-Dichloroethane	75-34-3	0.16	υ	0.16	0.65	U	0.65
Methyl Ethyl Ketone	78-93-3	0.43		0.40	1.3		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	U	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.16	U	0.16	0.51	U	0.51
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.16	U	0.16	0.66	U	0.66

TO-14/15 Result Summary

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

UW 021109

Lab Sample No.: 784228 Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	υ	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	υ	0.16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	υ	1.6
Toluene	108-88-3	0.32		0.16	1.2		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	υ	0.87
Tetrachloroethene	127-18-4	0.16	U	0.16	1.1	U	1.1
Methyl Butyl Ketone	591-78-6	0.40	υ	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	U	1.2
Chlorobenzene	108-90-7	0.16	U	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.16	U	0,16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.16	U	0.16	0.69	U	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	υ	0.83
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	υ	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 15.40

Sample Matrix: AIR

SG-27

Lab Sample No.: 784229

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

	·		1		1	T I	
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	7.7	υJ	7.7	38	UJ	38
1,2-Dichlorotetrafluoroethane	76-14-2	3.1	υJ	3.1	22	UJ	22
Chloromethane	74-87-3	7.7	υJ	7.7	16	05	16
Vinyl Chloride	75-01-4	3.1	υJ	3.1	7.9	υJ	7.9
1,3-Butadiene	106-99-0	35	J	7.7	77	7	17
Bromomethane	74-83-9	3.1	UJ	3.1	12	UJ	12
Chloroethane	75-00-3	7.7	UΣ	7.7	20	UJ	20
Bromoethene	593-60-2	3.1	UΓ	3.1	14	υJ	14
Trichlorofluoromethane	75-69-4	3.1	UJ	3.1	17	UJ	17
Freon TF	76-13-1	3.1	07	3.1	24	υJ	24
1,1-Dichloroethene	75-35-4	3.1	UJ	3.1	12	υJ	12
Acetone	67-64-1	77	υĴ	77	180	τυ	180
Isopropyl Alcohol	67-63-0	77	υJ	77	190	υJ	190
Carbon Disulfide	75-15-0	7.7	UJ	7.7	24	UJ	24
3-Chloropropene	107-05-1	7.7	UJ	7.7	24	0.2	24
Methylene Chloride	75-09-2	7.7	UΣ	7.7	27	υJ	27
tert-Butyl Alcohol	75-65-0	77	UJ	77	230	τυ	230
Methyl tert-Butyl Ether	1634-04-4	7.7	υJ	7.7	28	υJ	28
trans-1,2-Dichloroethene	156-60-5	3.1	UJ	3.1	12	ĽU	12
n-Hexane	110-54-3	7.7	UJ	7.7	27	UJ	27
1,1-Dichloroethane	75-34-3	3.1	UJ	3.1	13	υJ	13
Methyl Ethyl Ketone	78-93-3	8.9	5	7.7	26	J	23
cis-1,2-Dichloroethene	156-59-2	3.1	υĴ	3.1	12	υŢ	12
Tetrahydrofuran	109-99-9	77	UJ	77	230	υJ	230
Chloroform	67-66-3	3.1	UJ	3.1	15	υJ	15
1,1,1-Trichloroethane	71-55-6	3.1	UJ	3.1	17	υJ	17
Cyclohexane	110-82-7	3.1	UJ	3.1	11	ປປັ	11
Carbon Tetrachloride	56-23-5	3.1	UJ	3.1	20	UJ	20
2,2,4-Trimethylpentane	540-84-1	3.1	UJ	3.1	14	υJ	14
Benzene	71-43-2	25	7	3.1	80	J	9.9
1,2-Dichloroethene (total)	540-59-0	3.1	UJ	3.1	12	UJ	12
1,2-Dichloroethane	107-06-2	3.1	υJ	3.1	13	υJ	13
n-Heptane	142-82-5	3.1	UJ	3.1	13	υJ	13

TO-14/15 Result Summary

Т

Т

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 15.40

Sample Matrix: AIR

Г

SG-27

Lab Sample No.: 784229

Date Analyzed: 2/17/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	3.1	07	3.1	17	UJ	17
1,2-Dichloropropane	78-87-5	3.1	UJ	3.1	14	UJ	14
1,4-Dioxane	123-91-1	77	υĴ	77	280	UJ	280
Bromodichloromethane	75-27-4	3.1	υJ	3.1	21	UJ	21
cis-1,3-Dichloropropene	10061-01-5	3.1	UJ	3.1	14	υJ	14
Methyl Isobutyl Ketone	108-10-1	7.7	υJ	7.7	32	UJ	32
Toluene	108-88-3	9.6	2	3.1	36	T	12
trans-1,3-Dichloropropene	10061-02-6	3.1	UΣ	3.1	14	UJ	14
1,1,2-Trichloroethane	79-00-5	3.1	υJ	3.1	17	03	17
Tetrachloroethene	127-18-4	260	J	3.1	1800	J	21
Methyl Butyl Ketone	591-78-6	7.7	05	7.7	32	UJ	32
Dibromochloromethane	124-48-1	3.1	07	3.1	26	UJ	26
1,2-Dibromoethane	106-93-4	3.1	UJ	3.1	24	τυ	24
Chlorobenzene	108-90-7	3.1	υŢ	3.1	14	UJ	14
Ethylbenzene	100-41-4	3.1	07	3.1	13	UJ	13
Xylene (m,p)	1330-20-7	7.7	UJ	7.7	33	UJ	33
Xylene (o)	95-47-6	3.1	υJ	3.1	13	UJ	13
Styrene	100-42-5	3.1	UJ	3.1	13	U-J	13
Bromoform	75-25-2	3.1	UJ	3.1	32	UJ	32
1,1,2,2-Tetrachloroethane	79-34-5	3.1	UJ	3.1	21	UJ	21
Xylene (total)	1330-20-7	3.1	U.Z.	3.1	13	υJ	13
4-Ethyltoluene	622-96-8	3.1	υŢ	3.1	15	τυ	15
1,3,5-Trimethylbenzene	108-67-8	3.1	UJ	3.1	15	UJ	15
2-Chlorotoluene	95-49-8	3.1	υJ	3.1	16	UT	16
1,2,4-Trimethylbenzene	95-63-6	3.1	UJ	3.1	15	υĴ	15
1,3-Dichlorobenzene	541-73-1	3.1	υŢ	3.1	19	υJ	19
1,4-Dichlorobenzene	106-46-7	3.1	υŢ	3.1	19	UJ	19
1,2-Dichlorobenzene	95-50-1	3.1	UJ	3.1	19	υJ	19
1,2,4-Trichlorobenzene	120-82-1	7.7	UJ	7.7	57	Ľu	57
Hexachlorobutadiene	87-68-3	3.1	UJ	3.1	33	υJ	33
Naphthalene	91-20-3	7.7	υJ	7.7	40	UJ	40

TO-14/15 Result Summary

Т

T

Т

Т

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

Г

SG-24

Lab Sample No.: 784230

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

1

Т

Τ

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.45		0.40	2.2		2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	U	0.16	1.1	U	1.1
Chloromethane	74-87-3	0.40	U	0.40	0.83	U	0.83
Vinyl Chloride	75-01-4	0.16	U	0.16	0.41	U.	0.41
1,3-Butadiene	106-99-0	0.51		0.40	1.1		0.88
Bromomethane	74-83-9	0.16	U	0.16	0.62	U	0.62
Chloroethane	, 75-00-3	0.40	U	0.40	1.1	U	1.1
Bromoethene	593-60-2	0.16	U	0.16	0.70	υ	0.70
Trichlorofluoromethane	75-69-4	0.31		0.16	1.7		0.90
Freon TF	76-13-1	0.16	U	0.16	1.2	U	1.2
1,1-Dichloroethene	75-35-4	0.16	U	0.16	0.63	U	0.63
Acetone	67-64-1	6.9		4.0	16		9.5
Isopropyl Alcohol	67-63-0	5.5		4.0	14		9.8
Carbon Disulfide	75-15-0	0.40	U	0.40	1.2	U	1.2
3-Chloropropene	107-05-1	0.40	U	0.40	1.3	U	1.3
Methylene Chloride	75-09-2	0.40	U	0.40	1.4	U	1.4
tert-Butyl Alcohol	75-65-0	4.0	U	4.0	12	U	12
Methyl tert-Butyl Ether	1634-04-4	0.40	U	0.40	1.4	U	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	U	0.16	0.63	U	0.63
n-Hexane	110-54-3	0.51		0.40	1.8		1.4
1,1-Dichloroethane	75-34-3	0.16	U	0.16	0.65	U	0.65
Methyl Ethyl Ketone	78-93-3	1.3		0.40	3.8		1.2
cis-1,2-Dichloroethene	156-59-2	0.16	U	0.16	0.63	U	0.63
Tetrahydrofuran	109-99-9	4.0	U	4.0	12	U	12
Chloroform	67-66-3	0.16	U	0.16	0.78	U	0.78
1,1,1-Trichloroethane	71-55-6	0.16	υ	0.16	0.87	U	0.87
Cyclohexane	110-82-7	0.16	U	0.16	0.55	U	0.55
Carbon Tetrachloride	56-23-5	0.16	U	0.16	1.0	U	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	U	0.16	0.75	U	0.75
Benzene	71-43-2	0.23		0.16	0.73		0.51
1,2-Dichloroethene (total)	540-59-0	0.16	U	0.16	0.63	U	0.63
1,2-Dichloroethane	107-06-2	0.16	U	0.16	0.65	U	0.65
n-Heptane	142-82-5	0.28		0.16	1.1		0.66

TO-14/15 Result Summary

CLIENT SAMPLE NO.

SG-24

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

Lab Sample No.: 784230 Date Analyzed: 2/17/2009

Date Received: 2/12/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	U	0.16	0.86	U	0.86
1,2-Dichloropropane	78-87-5	0.16	U	0.16	0.74	U	0.74
1,4-Dioxane	123-91-1	4.0	U	4.0	14	U	14
Bromodichloromethane	75-27-4	0.16	U	0.16	1.1	U	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	U	0,16	0.73	U	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	U	0.40	1.6	U	1.6
Toluene	108-88-3	0.42		0.16	1.6		0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	U	0.16	0.73	U	0.73
1,1,2-Trichloroethane	79-00-5	0.16	U	0.16	0.87	U	0.87
Tetrachloroethene	127-18-4	1.9		0.16	13		1.1
Methyl Butyl Ketone	591-78-6	0.40	U	0.40	1.6	U	1.6
Dibromochloromethane	124-48-1	0.16	U	0.16	1.4	U	1.4
1,2-Dibromoethane	106-93-4	0.16	U	0.16	1.2	υ	1.2
Chlorobenzene	108-90-7	0.16	υ	0.16	0.74	U	0.74
Ethylbenzene	100-41-4	0.16	U	0.16	0.69	U	0.69
Xylene (m,p)	1330-20-7	0.40	U	0.40	1.7	U	1.7
Xylene (o)	95-47-6	0.16	U	0.16	0,69	U	0.69
Styrene	100-42-5	0.16	U	0.16	0.68	U	0.68
Bromoform	75-25-2	0.16	U	0.16	1.7	U	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	U	0.16	1.1	U	1.1
Xylene (total)	1330-20-7	0.16	U	0.16	0.69	U	0.69
4-Ethyltoluene	622-96-8	0.16	U	0.16	0.79	U	0.79
1,3,5-Trimethylbenzene	108-67-8	0.16	U	0.16	0.79	U	0.79
2-Chlorotoluene	95-49-8	0.16	U	0.16	0.83	U	0.83
1,2,4-Trimethylbenzene	95-63-6	0.16	U	0.16	0.79	U	0.79
1,3-Dichlorobenzene	541-73-1	0.16	U	0.16	0.96	U	0.96
1,4-Dichlorobenzene	106-46-7	0.16	U	0.16	0.96	U	0.96
1,2-Dichlorobenzene	95-50-1	0.16	U	0.16	0.96	U	0.96
1,2,4-Trichlorobenzene	120-82-1	0.40	U	0.40	3.0	U	3.0
Hexachlorobutadiene	87-68-3	0.16	U	0.16	1.7	U	1.7
Naphthalene	91-20-3	0.40	U	0.40	2.1	U	2.1

TO-14/15 Result Summary

Т

Т

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

F

SG-23

Lab Sample No.: 784231

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Dichlorodifluoromethane	75-71-8	0.52	5	0.40	2.6	5	2.0
1,2-Dichlorotetrafluoroethane	76-14-2	0.16	UJ	0.16	1.1	υŢ	1.1
Chloromethane	74-87-3	0.40	υJ	0.40	0.83	Ľυ	0.83
Vinyl Chloride	75-01-4	0.16	υJ	0.16	0.41	Lu J	0.41
1,3-Butadiene	106-99-0	1.4	5	0.40	3.1	2	0.88
Bromomethane	74-83-9	0.16	υJ	0.16	0.62	υ2	0.62
Chloroethane	75-00-3	0.40	υJ	0.40	1.1	υJ	1.1
Bromoethene	593-60-2	0.16	τυ	0.16	0.70	-υ2	0.70
Trichlorofluoromethane	75-69-4	0.34	7	0.16	1.9	2	0.90
Freon TF	76-13-1	0.16	υJ	0.16	1.2	υJ	1.2
1,1-Dichloroethene	75-35-4	0.16	υJ	0.16	0.63	UJ	0.63
Acetone	67-64-1	16	2	4.0	38	2	9.5
Isopropyl Alcohol	67-63-0	4.0	UJ	4.0	9.8	υJ	9.8
Carbon Disulfide	75-15-0	0.40	LU	0.40	1.2	υJ	1.2
3-Chloropropene	107-05-1	0.40	υJ	0.40	1.3	υJ	1.3
Methylene Chloride	75-09-2	0.40	υŢ	0.40	1.4	υT	1.4
tert-Butyl Alcohol	75-65-0	4.0	υJ	4.0	12	υJ	12
Methyl tert-Butyl Ether	1634-04-4	0.40	UJ	0.40	1.4	υJ	1.4
trans-1,2-Dichloroethene	156-60-5	0.16	τυ	0.16	0.63	υJ	0.63
n-Hexane	110-54-3	1.3	J	0.40	4.6	2	1.4
1,1-Dichloroethane	75-34-3	0.16	υJ	0.16	0.65	UJ	0.65
Methyl Ethyl Ketone	78-93-3	2.8	5	0.40	8.3	J	1.2
cis-1,2-Dichloroethene	156-59-2	0.16	υĴ	0.16	0.63	UJ	0.63
Tetrahydrofuran	109-99-9	4.0	UJ	4.0	12	UJ	12
Chloroform	67-66-3	0.16	UJ	0.16	0.78	υJ	0.78
1,1,1-Trichloroethane	71-55-6	0.16	υJ	0.16	0.87	UJ	0.87
Cyclohexane	110-82-7	0.16	UJ	0.16	0.55	υĴ	0.55
Carbon Tetrachloride	56-23-5	0.16	υĴ	0.16	1.0	υJ	1.0
2,2,4-Trimethylpentane	540-84-1	0.16	ζυ	0.16	0.75	υJ	0.75
Benzene	71-43-2	0.65	5	0.16	2.1	5	0.51
1,2-Dichloroethene (total)	540-59-0	0.16	υJ	0.16	0.63	UJ	0.63
1,2-Dichloroethane	107-06-2	0.16	υS	0.16	0.65	UJ	0.65
n-Heptane	142-82-5	0.43	5	0.16	1.8	J	0.66

TO-14/15 **Result Summary**

Lab Name: TAL Burlington

SDG Number: NY130076

Dilution Factor: 0.80

Sample Matrix: AIR

SG-23

Lab Sample No.: 784231

Date Analyzed: 2/17/2009

Date Received: 2/12/2009

		1					
Target Compound	CAS Number	Results in ppbv	Q	RL in ppbv	Results in ug/m3	Q	RL in ug/m3
Trichloroethene	79-01-6	0.16	T U	0.16	0.86	UJ	0.86
1,2-Dichloropropane	78-87-5	0.16	υJ	0.16	0.74	UJ	0.74
1,4-Dioxane	123-91-1	4.0	υJ	4.0	14	UJ	
Bromodichloromethane	75-27-4	0.16	υJ	0.16	1.1	UJ	1.1
cis-1,3-Dichloropropene	10061-01-5	0.16	ζυ	0.16	0.73	υJ	0.73
Methyl Isobutyl Ketone	108-10-1	0.40	τu	0.40	1.6	UT	1.6
Toluene	108-88-3	0.47	2	0.16	1.8	5	0.60
trans-1,3-Dichloropropene	10061-02-6	0.16	UT	0.16	0.73	ŪJ	0.73
1,1,2-Trichloroethane	79-00-5	0.16	υJ	0.16	0.87	UT	0.87
Tetrachloroethene	. 127-18-4	0.16	U 7	0.16	1.1	UT	1.1
Methyl Butyl Ketone	591-78-6	0.40	υJ	0.40	1.6	UJ	1.6
Dibromochloromethane	124-48-1	0.16	τυ	0.16	1.4	UJ	1.4
1,2-Dibromoethane	106-93-4	0.16	υ 3	0.16	1.2	υŢ	1.2
Chlorobenzene	108-90-7	0.16	UJ	0.16	0.74	υJ	0.74
Ethylbenzene	100-41-4	0.16	UJ	0.16	0.69	υŢ	0.69
Xylene (m,p)	1330-20-7	0.40	υJ	0.40	1.7	τu	1.7
Xylene (o)	95-47-6	0.16	υJ	0.16	0.69	υJ	0.69
Styrene	100-42-5	0.16	UJ	0.16	0.68	υJ	0.68
Bromoform	75-25-2	0.16	UT	0.16	1.7	υŢ	1.7
1,1,2,2-Tetrachloroethane	79-34-5	0.16	UT	0.16	<u> </u>	U J	1.1
Kylene (total)	1330-20-7	0.16	UJ	0.16	0.69	UJ	0.69
4-Ethyltoluene	622-96-8	0.16	υJ	0.16	0.79	υĴ	0.79
I,3,5-Trimethylbenzene	108-67-8	0.16	UT	0.16	0.79	UJ	0.79
2-Chlorotoluene	95-49-8	0.16	UJ	0.16	0.83	υŢ	0.83
,2,4-Trimethylbenzene	95-63-6	0.16	υĴ	0.16	0.79	υj	0.79
,3-Dichlorobenzene	541-73-1	0.16	UJ	0.16	0.96	υĴ	0.96
,4-Dichlorobenzene	106-46-7	0.16	UJ	0.16	0.96	UJ	0.96
,2-Dichlorobenzene	95-50-1	0.16	UJ	0.16	0.96	υJ	0.96
,2,4-Trichlorobenzene	120-82-1	0.40	UJ	0.40	3.0	υĴ	3.0
lexachlorobutadiene	87-68-3	0.16	υJ	0.16	1.7	UT	1.7
laphthalene	91-20-3	0.40	υJ	0.40	2.1	υĴ	2.1

FORM 1	ARCADI SAMPLE NO.
VOLATILE ORGANICS ANALYS	DUP 021009
Lab Code: STLV Case No.: 29000	SAS No.: SDG No.: NY130076
Matrix: (soil/water) AIR	Lab Sample ID: 784224
Sample wt/vol: (g/mL) MI	Lab File ID: 21FEB091229-R011
Level: (low/med) LOW	Date Received: 02/12/09
% Moisture: not dec.	Date Analyzed: 02/21/09
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.5
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.5 U

VOLATILE	FORM 1 ORGANICS ANALYSI:	S DATA SHEET	ARCADI SAMPLE NO.
Lab Name: TESTAMERICA	BURLINGTON	Contract: 29000	SG-22
Lab Code: STLV C	ase No.: 29000	SAS No.:	SDG No.: NY130076
Matrix: (soil/water)	AIR	Lab Sample	e ID: 784225
Sample wt/vol:	(g/mL) ML	Lab File 1	ID: 21FEB091229-R021
Level: (low/med)	LOW	Date Recei	lved: 02/12/09
% Moisture: not dec.		Date Analy	vzed: 02/21/09
GC Column: CTR-1	ID: 6.35 (mm)	Dilution H	Factor: 1.6
Soil Extract Volume:_	(uL)	Soil Aliqu	uot Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	
7440-59-7	Helium		2.6 U

FO VOLATILE ORGANIC	ORM 1 S ANALYSIS DATA S		RCADI	SAMPLE	NO.
Lab Name: TESTAMERICA BURLING	GTON Contract	29000		SG-23	
Lab Code: STLV Case No.	: 29000 SAS No.	: SDG	No.: 3	NY1300'	76
Matrix: (soil/water) AIR		Lab Sample ID:	7842	31	
Sample wt/vol: (9	g/mL) ML	Lab File ID:	21FE	B091229	∂-R071
Level: (low/med) LOW		Date Received:	02/1	2/09	
% Moisture: not dec.	_	Date Analyzed:	02/2	1/09	
GC Column: CTR-1 ID: 6.35	5 (mm)	Dilution Facto	or: 1.	5	
Soil Extract Volume:	(uL)	Soil Aliquot V	olume	:	(uL)
CAS NO. COMPO		NTRATION UNITS: or ug/Kg) %.V/		Q	
7440-59-7Heliur	n	· · ·	2.6	υ	

FORM 1 VOLATILE ORGANICS ANALYSI	ARCADI SAMPLE NO. IS DATA SHEET
Lab Name: TESTAMERICA BURLINGTON	Contract: 29000
Lab Code: STLV Case No.: 29000	SAS No.: SDG No.: NY130076
Matrix: (soil/water) AIR	Lab Sample ID: 784230
Sample wt/vol: (g/mL) ML	Lab File ID: 21FEB091229-R061
Level: (low/med) LOW	Date Received: 02/12/09
% Moisture: not dec.	Date Analyzed: 02/21/09
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.6
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.7 U

FORM VOLATILE ORGANICS AN	—		ADI SAMPLE	NO.
Lab Name: TESTAMERICA BURLINGTON			SG-25	
Lab Code: STLV Case No.: 29	0000 SAS No.:	SDG N	o.: NY1300	76
Matrix: (soil/water) AIR	Lab	Sample ID:	784226	
Sample wt/vol: (g/mI) ML Lab	File ID:	21FEB09122	9-R031
Level: (low/med) LOW	Dat	e Received:	02/12/09	
% Moisture: not dec.	Dat	e Analyzed:	02/21/09	
GC Column: CTR-1 ID: 6.35	(mm) Dil	ution Factor	: 1.6	
Soil Extract Volume:(uL)	Soi	l Aliquot Vo	lume:	(uL)
CAS NO. COMPOUND		TION UNITS: ug/Kg) %.V/V	Q	
7440-59-7Helium			2.7 U	

FORM 1 VOLATILE ORGANICS ANALYS	ARCADI SAMPLE NO.
Lab Name: TESTAMERICA BURLINGTON	SG-26
Lab Code: STLV Case No.: 29000	SAS No.: SDG No.: NY130076
Matrix: (soil/water) AIR	Lab Sample ID: 784227
Sample wt/vol: (g/mL) ML	Lab File ID: 21FEB091229-R041
Level: (low/med) LOW	Date Received: 02/12/09
% Moisture: not dec	Date Analyzed: 02/21/09
GC Column: CTR-1 ID: 6.35 (mm)	Dilution Factor: 1.6
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) %.V/V Q
7440-59-7Helium	2.7 U

VOLATILE	FORM 1 ORGANICS ANALYSI	S DATA SHEET	ARCADI	SAMPLE	NO.
Lab Name: TESTAMERIC	A BURLINGTON	Contract: 29000		SG-27	
Lab Code: STLV	Case No.: 29000	SAS No.:	SDG No.:	NY1300'	76
Matrix: (soil/water)	AIR	Lab Sampl	le ID: 7842	29	
Sample wt/vol:	(g/mL) ML	Lab File	ID: 21FE	B091229	∂-R051
Level: (low/med)	LOW	Date Rece	eived: 02/1	2/09	
% Moisture: not dec.		Date Anal	lyzed: 02/2	1/09	
GC Column: CTR-1	ID: 6.35 (mm)	Dilution	Factor: 1.	4	
Soil Extract Volume:	(uL)	Soil Alic	uot Volume	:	(uL)
CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/Kg)		Q	
7440-59-7	Helium		2.5	U	

TestAmerica Burlingtor	30 Community Drive	Suite 11	South Burlington, VT 05403
-------------------------------	--------------------	----------	----------------------------

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shinment of these

Samples Collected By: D, Zu & of 2 COCs				58 ji 3d/A 946 946	Lister Contraction of the contra	3>33 H Fouge V	4/12	135 HF085 V	47		enheit)		3		(6H)		30.28		· Ehrek	Sames Received by Inco 9 ho Loc) / Y / Y	Received by:
Project Manager: John Brussol Phone: 315-671-9441	30	Analysis Turnaround Time	Standard (Specify)		Canister Canister Sample Vacuum in Field, "Hg Vacuum in Vacuum in Field, "Hg Date(s) Time Start Time Stop (Start)	and i have for	1 12:28 20 -6	10 16:13 7 -6	y 17:17 4 -6		Temperature (Fahrenheit)	Interior Ambient	start T 250°	stop X 48	Pressure (Ambient Ambient		Stop	' u/ questions on thema	Date/Time: 2/1/09 1900 Sampes		Date/Time:
5	HILL - MAL - 14	t Name: Boty	PO# Rod 37.305 0001 0000		Sample Identification	Dup 021009	56-22	Sr -25	56-2b									cial Instructions/OC Requirements & Comments	MAULE Contract John Brusson	Samples Shipped by:	Samples Relinquished by:	Relinquished by:

30 Community Drive

Canister Samples Chain of Custody Record

N: Project Manager: Ohn Brussed V: Pinone: 7/5-671-944 V: Pinone: 7/5-671-944 V: Straute Attail Excit Site Contact: D. Pentrau. Site Contact: D. Pentrau. Attail Site Site Contact: D. Pentrau. Valen: Standard (Specify) Attail Marce explant Sample Rush (Specify) Dot S 2 3 0 5. Cord L 0 9 Z/1/100 Rush (Specify) Sample Identification Sample Time Start Sample Identification Sample Innarcound Time Color Color Sample Innarcound Time Color Color Sam	Iou Project Manager: John 13ruscel Samples Collected By Jourporth Ld Email: Phone: 3/5-671/-9744 Samples Collected By Jourporth Ld Email: Phone: 3/5-671/-9744 Samples Collected By Parce Att 73214 Site Contact: D. Parce Phone: 3/5-671/-9744 Parce Site Contact: D. Parce Contact: D. Parce Phone: 3/5-671/-9744 Parce Site Contact: D. Parce Contact Phone: 4/4 Parce Site Contact: D. Parce Contact Phone: 4/4 Parce Site Contact Contact Phone: 4/4 Parce Rush (Specify) Nacuum in Vacuum	
Пров. Пров. <t< th=""><th>W. Hrtadi. Phone: $3/5$-671-944 $3/5$ $2/223$ 20 uppeh $1/4$ $3/5$ 2723 20 uppeh $1/4$ $3/5$ 272 20 uppeh $1/4$ $3/5$ 272 20 uppeh $1/4$ $1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/6$ $1/1/2$ -6 $2/1/6/6$ $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/6$ $1/1/2$ -6 $1/1/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ $1/1/2$ <</th><th>D. Zurk 7 2</th></t<>	W. Hrtadi. Phone: $3/5$ - 671 - 944 $3/5$ $2/223$ 20 uppeh $1/4$ $3/5$ 2723 20 uppeh $1/4$ $3/5$ 272 20 uppeh $1/4$ $3/5$ 272 20 uppeh $1/4$ $1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/6$ $1/1/2$ -6 $2/1/6/6$ $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/2$ -6 $1/1/6$ $1/1/6$ $1/1/2$ -6 $1/1/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ -6 $1/1/2$ $-2/2$ $2/1/6/6$ $1/1/2$ $1/1/2$ <	D. Zurk 7 2
Control Control <t< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th><th></th></t<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Size Filture Sile Contact: Description Sine contact: Description Standard (Specify) Prove S2 3 of Corror I obeo 6 Run Standard (Specify) Sample Identification Sample Sample Identification Sample Low O 2 [1 of 9] Z [1] [6 / [44] Sample Identification Sample Sample If and the sample Sample If and the sample Sample Identification Sample Sample Identification Sample Sample Identification Sample Sample If and the sample S	
Мали Солдек и Лан. Sill Contact. Oth Perifyruut kt. Landinge Landinge Warm Springe Manusysts Turnaround Tray Second Sill Contact. Manusysts Single	Solution: Standard Specify Value: Standard Specify Analysis Turnstrond Time Available: Manufals Turnstrond Time Available: Manufals Turnstrond Time Available: Rund (Specify) Available: Sample Identification Sample Identification Sample Barrier Time stor Color Color Color Color Color Color Sample Identification Sample Barrier Time stor Color Color Sample Identification Sample Barrier Sample I wave Color Sample Identification Sample Barrier Time stor Color Color Color Color Color Color Color Color Color Color Color <	(noi):
Analysis Carate Analysis Carate Analysis Landtill Gas Pro 543/11/L M Carate Carate <t< td=""><td>Analysis Turnarcound Timy Analysis Turnarcound Timy Standard (Specify) Canister Canister Sandard (Specify) Rush (Specify) Example Rush (Specify) Sample Rush (Specify) Requirements & Comments Start Requirements & Comments Start Requirements & Comments Start DaterTime Sample Start Requirements & Comments</td><td>2902</td></t<>	Analysis Turnarcound Timy Analysis Turnarcound Timy Standard (Specify) Canister Canister Sandard (Specify) Rush (Specify) Example Rush (Specify) Sample Rush (Specify) Requirements & Comments Start Requirements & Comments Start Requirements & Comments Start DaterTime Sample Start Requirements & Comments	2902
Носизицие Валлант (Specify) Валлар (Specify) Sannale (Specify) Ranning (Specify) Ranning (Specify) Sample (Infraster Sannale (Specify) Sample (Infraster Sannale (Specify) Sample (Infraster Sannale (Specify) Sample (Infraster) Sannale (Specify) Sannale (Infraster) Sanna	K Standard (Specify) Standard (Specify) Caniter Sample Rush (Specify) Sample Time start Sample Start Sample Start Start	sətor
Construction Canster Sample Identification Canster Sample Identification Canster Sample Identification Canster Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Sample Identification Date(s) True Start Float Wile Float 2////66 Float Wile Float C-22 2////66 IS/3 - 6 U/SSY U/GOOT NL Constant 2////66 IS/3 - 6 U/SSY U/GOOT NL Constant 2////66 IS/3 - 6 U/SSY U/GOOT NL Ser-23 2////66 IS/3 - 6 U/SSY U/GOOT NL Action IS IS - 6 U/SSY U/GOOT NL Action IS IS - 6 U/SSY U/GOOT NL Action IS - 6 U/SSY U/GOOT NL Solide Actin U/GOOT	Accord Control Austin (Specify) Indentification Sample sample sample rank (Specify) Canister (Canister Vacuum in	
Sample Canister Canister <thcanister< th=""> Canister <t< td=""><td>Identification Sample Date(s) Time Start Canister Time Start Canister Field, Hg Field, Hg Field, Hg Field, Hg Field, Hg Controller 09 2/11/05 1/11/05 1/1735 - 6 H F/04 Hg/12 2/10/05 1/11/12 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04</td><td>oəd:</td></t<></thcanister<>	Identification Sample Date(s) Time Start Canister Time Start Canister Field, Hg Field, Hg Field, Hg Field, Hg Field, Hg Controller 09 2/11/05 1/11/05 1/1735 - 6 H F/04 Hg/12 2/10/05 1/11/12 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04 Hg/12 2/10/05 1/142 - 6 H F/04	oəd:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-15 2-15 2-14A 255 27M D-1946 7946 7946 1001 Air 1001 Air 1001 Air
$2/10/69$ $15/3$ -6 $U_5 8/9$ $2/10/69$ $15/3$ -6 $U_5 8/9$ $2/10/69$ $15/3$ -6 $U_7 8/9$ $2/10/69$ $11/42$ -6 $U_7 8/9$ $2/10/69$ $11/42$ -6 $H_7/04$ $2/10/69$ $11/42$ -6 $11/42$ $2/10/69$ $11/42$ -6 $11/42$ $2/10/69$	$\frac{1}{16} = \frac{1}{15} = -6 = 4589 = 4412$ $\frac{1}{16} = \frac{1}{15} = -6 = 4589 = 4412$ $\frac{1}{12} = -6 = 4589 = 4412$ $\frac{1}{12} = -6 = 45$ $\frac{1}{12} = -6 = 4450$ $\frac{1}{12} = -6 = 45$ $\frac{1}{12} = -6 = 445$ $\frac{1}{12} = -6 = 45$ $\frac{1}{12} = -25$ $\frac{1}{12} = -25$ $\frac{1}{12} = -$	
Upper Upper <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td></t<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2/10/09 15/3 - - b H H V4450 2/10/09 11/42 - b H F044 4450 2/10/09 11/42 - b H F044 4470 2/10/09 11/42 - b H F044 4470 2/10/09 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 27 20 20 20 20 20 27 20 20 20 20 20 27 27 20 20 20 27 27 27	
2/(0/69 11(42 - 6 H F 04) I1(42 - 6 H F 04) Temperature (Fahrenheit) Interior Ambient Start Start Ambient Ambient Stop 光 代 Fressure (inches of Hg) Interior Ambient 30, 28 21 8	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Temperature (Fahrenheit) Interior Temperature (Fahrenheit) Interior Ambient Start Max Stop X Interior Ambient Start Pressure (inches of Hg) Start Ambient Start Ambient Start Ambient Start Start Start Ambient Start Ambient	Image: Start Image: Competature (Fahrenheit) Image: Start Temperature (Fahrenheit) Image: Start Image: Start Stop Stop Image: Start Image: Start Imag	○ 2 <i>b</i> h7 7t
Start Interior Start Start Stop Interior Start Start Stop	Imperature (Fahrenheit) Temperature (Fahrenheit) Start Interior Start Mabient Start Machine Start Start Date/Time: Machine Date/Time: Machine	
Start Interior Stop Interior Stop Interior Start Stor	Temperature (Fahrenheit) Start Temperature (Fahrenheit) Start Ambient Stop Stop Anbient Ambient Stop Stop Pressure (inches of Hg) Requirements & Comments: Date/Time: III 09 19 00	
Start Ambient Ambient Start Stop Pressure Pressure Interior Ambient Start Start Stop Stort Ambient Stort Stort Ambient	Interior Ambient Start Interior Start Received M. M. Stop Stop Start Interior Interior Ambient Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Date/Time: Interior	
Start Start Stop Stop Stop Start Start Ambient Start Stor Ambient	Start Start H ~ 50 Stop Stop × 45 Stop × 45 × 45 Interior × 45 × 45 Requirements & Comments: 29.28 × 11 Requirements & Comments: 29.24 × 45 Interior 29.24 × 45	
Stop Stop Pressure Pressure Start Ambient Start Start	Stop X X Y Requirements & Comments: Pressure (Inches of Hg) Requirements & Comments: Ambient Z Requirements & Comments: Contract J. Brussed M	
Pressure (Interior Ambient Start Stop	Requirements & Comments: Requirements & Comments: Plate/Time: ///09/19/00 Samples Received b: ///	
Interior Ambient Start Start Stop	Requirements & Comments: Requirements & Comments: Please Central J. Bruessel of M. Date/Time: ///09 19 00 Samples Received D. M.	
Start Stop	Requirements & Comments: Requirements & Comments: Plate Central J. Brussel of M.	
Stop	Requirements & Comments: Please Contract J. Brussel or An Date/Time: /11/09 1900 Sampag Received b. M.	
	Requirements & Comments: Plater Contract J. Brussel or M. DaterTime: /11/09 1900 Sampto Received D. M.	
	Date/Time: /11/09 19 00 Samples Received b: 101	
		1010
Date/Time: /11/09 1900 Samples Received / 11/ 10/09 10 10	Date/Time:	2 1 1 1 2
Hippedb: 3/1 Date/Time: /// 09 /900 Sampag Received 2/10 00	Relinquished by: Date/Time: Received by:	

÷