

REMEDIAL SYSTEM OPTIMIZATION REPORT

SHORE REALTY CORPORATION (AES)
1 SHORE ROAD, GLENWOOD LANDING, NEW YORK 11547
NYSDEC Site No. 130006
Work Assignment No. D009812-01

Prepared for:

Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233

Prepared by:

TRC Engineers, Inc.1430 Broadway, 10th Floor
New York. New York 10018

TABLE OF CONTENTS

SECT	ION	PAGE
1.0	Introduction	1
1.1	Report Objectives	2
1.2	Report Organization	2
2.0	Site Description and History	
2.1	Site Location, Ownership, and Description	
2.2	Site History	
2.3	Previous Investigations/Remedial Actions	
3.0	Regulatory Requirements and Cleanup Goals	8
3.1	Remedial Action Objectives	
3.2	Cleanup Goals	8
4.0	Summary of Supplemental Investigation and Findings	10
4.1	Summary of Supplemental Investigation	
4.2	Nature and Extent of Contamination	11
5.0	Conceptual Site Model	13
5.1	Surface and Subsurface Characteristics	13
5.2	Contaminant Sources	13
5.3	Contaminants of Concern	13
5.4	Extent of Contamination	13
5.5	Exposure Pathways	14
6.0	Description of Remedy	16
6.1	Remedial Systems Overview	16
6.2	Operation, Maintenance, and Monitoring Program	17
7.0	Remedial System Performance	18
7.1	System Runtime/Downtime Summary	18
7.2	Contaminant Mass Recovery Assessment	
7.3	Regulatory Compliance	18
7.4	Health and Safety Records	18
7.5	Assessment of Cleanup Progress/Achievement of Remedial Action Objectives	19
7.6	Operations, Maintenance, and Monitoring Costs	20
8.0	Conclusions and Recommendations	21
9.0	Corrective Measure	22

January 2021

TABLE OF CONTENTS

SECTI	ON				
9.1	Basis of Excavation Limits				
9.2 Description of Corrective Measure					
9.3	Cost Estimate				
10.0	References				
	LIST OF FIGURES				
Figure 1	Site Location Map				
Figure 2	Site Layout				
Figure 3	Investigation Area 1 Ethylbenzene, Toluene, and Total Xylenes in Soil				
Figure 4	Investigation Area 2 Ethylbenzene, Toluene, and Total Xylenes in Soil				
Figure 5	Investigation Area 1 Benzene, Ethylbenzene, Toluene, Total Xylenes, Methylene				
	Chloride and Isopropylbenzene in Groundwater				
Figure 6	Investigation Area 2 Benzene, Ethylbenzene, Toluene, Total Xylenes, Methylene				
	Chloride and Isopropylbenzene in Groundwater				
	LIST OF TABLES				
Table 1	Soil Contaminants of Concern and Cleanup Goals				
Table 2	Groundwater Contaminants of Concern and Cleanup Goals				
Table 3	Remediation System Uptime Summary				
Table 4	Summary of Site OM&M Costs				
Table 5	Summary of Excavation Zones				
	LIST OF APPENDICES				
Append Append Append Append	ix B Revised Interim Remedial Measure Conceptual Plan – June 2020 ix C Remediation Systems Layout				
Thhema	A D Schedule I – Work Assignment No. D007012-01				

January 2021

1.0 Introduction

This Remedial System Optimization (RSO) Report has been prepared for the Shore Realty Corporation (AES) Site (the "Site"; Site No. 130006), located at 1 Shore Road, Glenwood Landing, New York. A Site Location Map is presented in **Figure 1**, and the overall Site Layout is presented in **Figure 2**. This RSO Report has been completed in accordance with New York State Department of Environmental Conservation (NYSDEC or the "Department") Division of Environmental Remediation (DER) Work Assignment (WA) No. D009812-01 and NYSDEC *Technical Guidance for Site Investigation and Remediation* (DER-10).

The Site has been under investigation and/or remediation since 1984, with the overall goals of remediating contaminated soil, groundwater, surface water, sediment, and air at the Site. Several hundred drums and approximately 700,000 gallons of hazardous waste were removed from the Site by the owner [Shore Realty Corporation (Shore Realty)] and the Department between 1985 and 1986. The Site was added to the National Priority List (NPL) in 1986 and a group of Potentially Responsible Parties (PRPs), originally referred to as the "Common Defense Group," who had shipped waste to the Site, assumed responsibility for investigating the Site. Remedial Investigations began in November 1987 and the final Remedial Investigation Report (RIR) was issued in April 1991. A Feasibility Study (FS) was issued in April 1991 and the Record of Decision (ROD) was issued in June 1991.

Subsequent to the ROD, a new organization of PRPs, known as the Participating Performing Group (PPG), assumed responsibility for implementing remedial actions at the Site. A remedial design was prepared, and construction of three remedial systems [air sparging (AS), soil vapor extraction (SVE) and treatment, and groundwater extraction and treatment] was completed in January 1995. Operation, maintenance, and monitoring (OM&M) of the remedial systems began in June 1995 and has continued, with significant modification and optimization, to present. A detailed description of historic OM&M and optimization activities is included in Section 2.3. In addition to remediation of contaminated soil and groundwater at the Site, a salt marshland and coastline restoration project was completed in May 2003 and a new bulkhead was installed along a portion of the Site in 2004.

Petroleum-related volatile organic compounds (VOCs) continue to be detected at concentrations greater than standards, criteria and guidance (SCGs) in two "hot spots" (Investigation Area 1 and Investigation Area 2, shown on Figure 2) in the western portion of the Site identified in a January 6, 2019 decision ordered (the 2019 Order) by the United States District Court Eastern District of New York. TRC Engineers, Inc. (TRC) completed supplemental soil investigation activities between July 2019 and December 2019 to delineate the likely source(s) of ongoing groundwater impacts in each Investigation Area. Details regarding findings are described in Section 4.0 and the Summary of Supplemental Investigation Activities, dated January 2020, prepared by TRC is included as Appendix A. At the request of the Department, TRC prepared a Revised Interim Remedial Measure Conceptual Plan, dated June 2020, which is included as Appendix B, to address the two "hot spots" delineated during the Supplemental Investigation. The Conceptual Plan includes excavation and off-site disposal of contaminated soil, an evaluation of four

support of excavation (SOE) approaches, application of an amendment to enhance in-situ bioremediation, and backfilling of excavation areas with clean fill.

1.1 Report Objectives

The objectives of this RSO Report are to:

- Evaluate performance of the existing remedial systems with respect to achieving the Remedial Action Objectives (RAOs) established for the Site in the two "hot spots"; and
- Recommend a Corrective Action to be implemented for the "hot spots", as needed.

1.2 Report Organization

The RSO Report has been organized into nine sections as follows:

- Section 1.0 Introduction/background information and report organization.
- Section 2.0 Description of the Site location, setting, and history.
- Section 3.0 Description of the RAOs and cleanup goals for this RSO Report.
- Section 4.0 Description of the investigations conducted to date, summary of findings from investigations, and the nature and extent of contamination to be addressed.
- Section 5.0 Presentation of the Conceptual Site Model (CSM).
- **Section 6.0** Description of existing remedial systems.
- Section 7.0 Evaluation of the performance of the existing remedial systems.
- Section 8.0 Recommendations for implementation of a Corrective Measure.
- **Section 9.0** Description of the recommended Corrective Measure.
- Section 10.0 A listing of references used for preparation of this report.

2.0 Site Description and History

2.1 Site Location, Ownership, and Description

The Site is located at 1 Shore Road, Glenwood Landing, New York. The Site is approximately 3.31 acres and is identified as Section 20, Block A, Lot 35. A Site Location Map depicting the approximate boundaries of the Site is provided as **Figure 1**. The owner of the Site is Shore Realty. The parcel to the north of the Site is being developed as condominiums and the parcel to the east is used for commercial purposes. The remainder of the Site is surrounded by Hempstead Harbor and Motts Cove and a bulkhead is present along the southern and western portions of the Site.

The western and eastern borders, and southwestern portion, of the Site (historically referred to as the Lower Area) are flat and paved at elevations between approximately 6 and 8 feet, North American Vertical Datum (NAVD88). The ground surface rises steeply to the central and northern portions of the Site (historically referred to as the Upper Area) to elevations between approximately 20 and 30 feet NAVD88.

2.2 Site History

The Site was first used for the bulk storage of petroleum products in 1939 by Texaco Oil Company. Texaco reportedly sold the property to Phillips Petroleum (Phillips) in 1964. Phillips used the property to store gasoline and fuel oil in aboveground storage tanks (ASTs) until 1972. In 1974 Phillips leased a portion of the Site to Circle Terminal Corp. Additionally, a portion of the Site was leased to the Mattiace Petrochemical Company (Mattiace) for the storage and distribution of chemical solvents.

In 1978 3,000 gallons of toluene were released from an overturned truck onto the western portion of the Site. Undetermined amounts of toluene infiltrated into the subsurface and spilled into Hempstead Harbor. Numerous smaller spills are known or suspected to have occurred throughout the history of commercial operation.

In July 1980 Phillips sold the property to Joseph Saleh and Amnon Bartur. In October 1980, Mattiace received 34 citations regarding the poor condition of the storage tanks and safety violations. Mattiace was also ordered by the New York State Department of Transportation (NYSDOT) and United States Coast Guard (USCG) to initiate a clean-up of the property, but failed to comply with the orders. Eventually, the Site owners installed a series of monitoring wells and a product recovery trench.

The Site was leased to Applied Environmental Services (AES) in 1980. AES operated a facility for the blending of various chemical waste materials. AES also operated a hazardous waste storage facility and installed a floating liquid chemical recovery pump. AES continued the monitoring and recovery efforts previously undertaken and installed additional product recovery equipment. The recovery trench reportedly recovered approximately 500 gallons of product per month between 1981 and 1982. Volatile halogenated and nonhalogenated hydrocarbons were detected in groundwater samples collected in 1982.

Shore Realty purchased the Site in October 1983, and evicted AES in January 1984. New York State filed suit against Shore Realty and its owner, Donald Leogrande, in February 1984. As a result of that suit, Shore Realty and Leogrande were ordered by the court to undertake remedial actions at the Site. Subsequently, Shore Realty and Leogrande commenced a third-party action suit against defendants, including prior Site owners, prior Site operators, and a number of companies that had allegedly shipped chemicals to the Site during AES' operations. No commercial activity has occurred at the Site since 1984.

2.3 Previous Investigations/Remedial Actions

In March 1984, the Department inventoried, and sampled chemicals contained on-Site and collected surface water samples from Hempstead Harbor. Between 1985 and 1986, a Department contractor removed more than 700,000 gallons of chemicals in ASTs. Shore Realty, under state supervision, removed several hundred drums of waste.

The Site was added to the NPL in 1986. The RI, performed by the Common Defense Group, began in November 1987 and the final RI Report was issued in April 1991. The RI Report concluded that Site soil, groundwater, and sediments were contaminated and identified the primary Site contaminants of concern (COCs) as benzene, benzo(b)fluoranthene, bis-2-ethylhexylphthalate, ethylbenzene, lead, naphthalene, tetrachloroethene, toluene, 1,1,1-trichloroethane, and xylenes. A Feasibility Study was issued in April 1991 and the ROD was issued in June 1992.

The remedy selected in the ROD consisted of AS, groundwater extraction and treatment, SVE and treatment, and enhanced in-situ bioremediation. The ROD concluded that treatment of impacted soil and groundwater would result in improved sediment conditions. In August 1992 the PPG entered into a Consent Judgement with the State of New York to design, construct, and operate the remedy selected in the ROD. The Consent Judgement also required the PPG to conduct restoration activities of the mudflats west and south of the Site.

A pre-design investigation (PDI) was performed in 1993 and confirmed the findings of the RI Report. The remedial design was prepared, and construction of remedial systems was completed in January 1995. In 1994, during construction of the remedy, approximately 14 tons of contaminated sludge, 870 tons of building debris, and two 700,000-gallon underground storage tanks (USTs) containing 3,200 gallons of flammable liquids were removed and disposed of off-Site. OM&M of remedial systems began in June 1995 and has continued, with significant modification and optimization, to present. OM&M of remediation systems and upgrade/optimization efforts are described in Section 6.0.

Inspections of the mudflats near the Site concluded that optimum conditions for long-term survival of a saltmarsh community were not present. Therefore, in a 2002 Stipulation and Proposed Order (2002 Stipulation) issued by the State of New York against Shore Realty, the Bar Beach Lagoon in North Hempstead, New York was selected as an alternative location for restoration activities. Restoration of salt marshland and coastline of Bar Beach Lagoon was completed in May 2003. In February 2004, a new steel bulkhead was installed along the eastern boundary of Hempstead Harbor. In 2006 the United States

Department of Justice (USDOJ) concurred that the PPG had completed actions that were required by the 1992 Consent Judgment and 2002 Stipulation to address Natural Resource Damage.

In 2008, the PPG submitted a *Remedial Effectiveness Plan (REP)*, prepared by ERM and dated February 2008, to USEPA, which concluded Site remediation systems, as configured at the time, had reached their effective limits for further reducing significant concentrations of contaminants in the soil or groundwater. However, the United States Environmental Protection Agency (USEPA) and NYSDEC disagreed and recommended further evaluation of the remediation systems. The PPG completed an extensive refurbishment in 2009, as documented in *SVE/AS and Groundwater Remedial System Performance July 1995 through March 2010*, prepared by ERM and dated September 2010. While the refurbishment improved system uptime performance and increased groundwater extraction rates, contaminant mass recovery did not substantially improve. As a result, in May 2011 USEPA requested the PPG complete additional remediation system upgrades.

In response to USEPA's request the PPG performed additional investigation activities, including Site-wide well inventory and inspections, a Site-wide hydraulic evaluation, and an expanded groundwater sampling event. Results of the investigation are documented in *Supplemental Data Acquisition Summary & Analysis* (SDASA), prepared by ERM and dated March 2012. It was concluded that remaining concentrations of VOCs in groundwater greater than Class GA Values at the Site were limited to the shallow aquifer in the vicinity of existing groundwater extraction wells. Additionally, the SDASA concluded that the hydraulic regime below the shallow aquifer and the bulkhead installed at the Site mitigated migration of Site groundwater contaminants to Hempstead Harbor. In response to the SDASA, NYSDEC:

- Requested that the PPG make a robust attempt to optimize the existing remedial system with the goal of achieving additional reductions in VOCs in the shallow groundwater aquifer near existing monitoring wells at the Site;
- Indicated that certain procedural requirements outlined in Chapter 6.4 (Remedial Process Closure Requirements) of DER-10 needed to be met to advance the Site toward closure;
- Noted that the technical modifications to optimize the remedial system may be beneficial, even if meeting the performance objectives in the ROD for the Site ultimately proved infeasible; and
- Further advised that these modifications were necessary before a decision could be made whether the remedy had reached the practical limits of its effectiveness and thus should be discontinued pursuant to the 1992 Consent Judgment.

As a result, the PPG prepared and submitted to the Agencies for approval a *Remedial System Optimization Plan (RSOP)*, prepared by ERM and dated June 2013. The goal of the RSOP was to modify/optimize the physical configuration and OM&M of the existing remedial system, without altering the agreed funding limits in the 1992 Consent Judgment, to meet the following objectives specified by NYSDEC:

- Further reduce hot-spot VOC concentrations in the shallow layer of groundwater in the area of the existing recovery wells along the western edge of the Site; and
- Satisfy DER-10 requirements.

Activities to modify/optimize the remedial system pursuant to the RSOP were undertaken and completed between September and November 2013. The actions focused on modifying the configuration and OM&M of the existing remedial systems. The following significant modifications were implemented:

- Installation and connection of three new groundwater extraction wells [two (GX-5 and GX-6) in the vicinity of existing groundwater extraction well GX-2, and the third (GX-07) near monitoring well WP-5A];
- Replacement of failing instrumentation control wiring/conduit for extraction wells GX0 through GX4;
- Replacement of the Tank-01 pump and motor;
- Repair of the Site water service line;
- Replacement of the treated water infiltration gallery;
- Installation of additional bag filters; and
- Pulse operation (cyclic 2 months on and 1 month off operation) of the remedial system.

The PPG continued OM&M of the remediation systems from November 2013 to December 2018, when the remediation systems were shut down. On January 6, 2019 the 2019 Order was issued by the United States District Court Eastern District of New York indicating that the PPG's obligations under the 1992 Consent Judgment were terminated and NYSDEC assumed responsibility for Site remediation. Additionally, the 2019 Order stated "the performance standards for the Remedy have been met in all areas across the Site except in two identified locations (the "Residual VOC Hotspots") and continuing the Remedy will not meaningfully reduce soil or groundwater concentrations of VOCs in the Residual VOC Hotspots." In March 2019 NYSDEC issued WA No. D007620-47 to TRC to perform OM&M activities and complete a Supplemental Investigation of the two remaining "hot spots" identified in the 2019 Order (Investigation Areas 1 and 2) in the western portion of the Site. In April 2019 Shore Realty granted and filed an Environmental Easement limiting future Site use to Commercial or Industrial in accordance with a Site Management Plan (SMP). TRC restarted operation of the remediation systems in July 2019 and completed a "shake-down" evaluation. Normal pulsed operation of the remediation systems resumed in August 2020 and continues to present.

TRC completed supplemental soil investigation activities between July 2019 and December 2019 to delineate the likely source(s) of ongoing groundwater impacts in two Investigation Areas (refer to **Figure**

TRC

¹ Independent evaluation of Site-wide impacts is beyond the scope of this RSO Report.

2). Details regarding the scope and findings are described in Section 4.0 and the *Summary of Supplemental Investigation Activities – January 2020*, prepared by TRC (refer to **Appendix A**).

3.0 Regulatory Requirements and Cleanup Goals

3.1 Remedial Action Objectives

RAOs are developed in order to set objectives for protecting public health and the environment. The ROD states that, at a minimum, the remedy selected should eliminate or mitigate all significant threats to public health and the environment presented by the hazardous waste disposed at the Site, through the proper application of scientific and engineering principles. The RAOs in the ROD are listed below.

Soil

- Reduction of the concentrations of benzene and methylene chloride so that the presence of these chemicals at the site do not present an added risk of cancer of more than one in one million under the most conservative exposure scenario; and
- Reduction of the concentrations of organic contaminants in soils so that, to the extent feasible, contaminants do not leach from soils and contaminate groundwater to levels above standards.

Groundwater

 Reduce the concentrations of contaminants in groundwater to below New York State groundwater standards, to the extent technically feasible.

Sediments

• Indirectly remediate sediments by treating the source of contaminants to the sediments, Site soils, and groundwater.

Air

• Eliminate exceedances of ambient air standards over the mud flats.

Surface Water

• Eliminate the sheen on surface waters to comply with applicable surface water standards.

3.2 Cleanup Goals

Soil

Soil remediation, in accordance with NYSDEC 6 NYCRR 375-6, is required to achieve compliance with Soil Cleanup Objectives (SCOs) for the protection of public health, protection of groundwater, and protection of ecological resources.

The Site is primarily comprised of disturbed (i.e., developed) land and is located adjacent to surface water and wetlands. A marshland/wetland restoration project and limited bulkhead replacement were completed

in 2004, fulfilling the Site owner's obligations to restore Natural Resource Damage. As such, Protection of Ecological Resources SCOs are not applicable to the Site.

As identified in Section 5.3, ethylbenzene, toluene, and total xylenes are the primary Site COCs in soil. Considering the recorded Environmental Easement limits Site use to Commercial and Industrial purposes, the Commercial Use (CU), Industrial Use (IU), and Protection of Groundwater (PGW) SCOs for ethylbenzene, toluene, and total xylenes are applicable and shown in **Table 1**.

Groundwater

The New York State groundwater classification for the Site is GA, which indicates waters that could be used as a source of drinking water. Therefore, groundwater quality Standards and Guidance Values established in the Division of Water TOGS 1.1.1 (Class GA Values) are the applicable cleanup goals for groundwater. Since Class GA Values are protective of sources of drinking water federal Maximum Contaminant Levels (MCLs) are not considered applicable for the purposes of this RSO Report.

As identified in Section 5.3, benzene, ethylbenzene, isopropylbenzene, methylene chloride, toluene, and total xylenes are the COCs in groundwater. The Class GA Values for benzene, ethylbenzene, isopropylbenzene, methylene chloride, toluene, and total xylenes in groundwater are shown in **Table 2**.

4.0 Summary of Supplemental Investigation and Findings

4.1 Summary of Supplemental Investigation

A total of 13 soil borings in Investigation Area 1 and seven soil borings in Investigation Area 2 were advanced using direct-push drilling techniques (DPT) during the first mobilization between July 8, 2019 and July 11, 2019. A total of seven soil borings in Investigation Area 1 and five soil borings in Investigation Area 2 were advanced using DPT during the second mobilization between December 2, 2019 and December 4, 2019. Soil boring locations are shown in **Appendix A**. Each soil boring was hand-cleared to 5 feet below ground surface (bgs) and then sampled continuously in 5-foot increments, using Macro-Core® samplers, to a maximum depth of 20 feet bgs. The samples were inspected and screened for indications of contamination [e.g., elevated photoionization detector (PID) readings, staining, odors, etc.]. Soils generally consisted of heterogeneous mixtures of silty sands with clay and gravel. Saturated soil was generally encountered between 2.5 and 4.0 feet bgs. Soil boring logs are included in **Appendix A**.

An aliquot of soil from the sample exhibiting the greatest indications of potential impacts from each soil boring was analyzed using an Oil-In-SoilTM dye test. At least one additional aliquot of soil collected from each of the soil borings SB-105, SB-106, SB-115, SB-119, SB-210, and SB-211 was analyzed using an Oil-In-SoilTM dye test. The Oil-In-SoilTM dye test provides qualitative visual indications of the presence of non-aqueous phase liquid (NAPL) in soil. Photographs of each Oil-In-SoilTM dye test are presented in **Appendix A**.

Generally, two soil samples from each boring (with the exception of SB-114 – one sample, SB-204 – three samples, SB-211 – four samples, and SB-212 – one sample) were submitted for laboratory analysis for Target Compound List (TCL) VOCs via USEPA Method 8260. Selected for analysis from each boring, generally, were the interval exhibiting the greatest evidence of impacts and the apparent underlying clean interval. At two locations, SB-114 and SB-212, no evidence of impacts was observed and one soil sample from the interval directly above the saturated zone was submitted for analysis. Soil samples were containerized, and the containers were labeled, sealed, and placed in a chilled cooler for shipment to Eurofins TestAmerica Laboratories, Inc. (Eurofins). Eurofins is an Environmental Laboratory Approval Program (ELAP)-certified laboratory approved by the New York State Department of Health (NYSDOH) located in Edison, NJ. Standard chain-of-custody procedures were followed. Boring identification numbers, depth intervals of samples selected for analysis, and the maximum PID measurement for each soil sample selected for analysis are presented in **Appendix A**.

The analytical results were compared to 6 NYCRR 375-6.8 Unrestricted Use (UU), CU, and PGW SCOs and are presented in **Appendix A**. Acetone, a common laboratory contaminant, was detected at concentrations greater than the UUSCO and PGWSCO in 19 of the 65 soil samples submitted for analysis. Methylene chloride was detected at a concentration slightly greater than the UUSCO and PGWSCO in one soil sample. While methylene chloride has been historically detected at concentrations above the NYSDEC

Standard for Class GA Water ("Class GA Value") in Site groundwater, it has not been detected in groundwater for over two years and was not considered a COC for the Supplemental Investigation (SI).

One or more ethylbenzene, toluene, and xylenes (ETX) compounds were detected at concentrations greater than the PGW SCOs and/or UU SCOs in 18 of the 65 soil samples submitted for analysis. Total xylenes were detected at concentrations greater than the CUSCO in SB-204 (5'-6') and SB-209 (5'-7'). A summary of field observations, Oil-In-SoilTM test results (and corresponding interpretations of the results) and the analytical laboratory results are presented in **Appendix A**. Additionally, the results of the analyses of soil samples for ETX compounds are summarized on **Figures 3 and 4**. PID measurement and Oil-In-SoilTM results are also summarized in **Figures 3 and 4**. A geologic cross-section location map; and geologic cross-sections, with PID screening results, ETX in soil concentrations, and Oil-In-SoilTM test results are included in **Appendix A**.

4.2 Nature and Extent of Contamination

Remaining impacts to Site soil and groundwater that are the subject of this RSO Report are limited to the two "hot spots" Investigation Areas 1 and 2 in the Lower Area delineated during the SI. A discussion of remaining concentrations of COCs in soil and groundwater in each Investigation Area is presented below.

Investigation Area 1

Evidence of petroleum-related impacts to soil were generally limited to between 3 and 11 feet bgs. The highest PID measurements were recorded during screening of soil recovered from SB-101, SB-102, and SB-204 between 4 to 6 feet bgs, in the northern and eastern portions of Investigation Area 1. Oil-In-SoilTM test results indicate evidence of impacts throughout Investigation Area 1. Ethylbenzene and/or total xylenes were detected at concentrations above PGW SCOs in eight samples collected from seven borings in Investigation Area 1. Total xylenes were detected at a concentration of 709 mg/kg, greater than the CU SCO of 500 mg/kg, in the soil sample collected 5 to 6 feet bgs from SB-204. The highest total ETX concentrations were detected in samples collected from SB-104 [(4'-5'), 34.7 milligrams per kilograms (mg/kg)], SB-111 [(4'-5'), 472 mg/kg], SB-113 [(6'-7'), 9.4 mg/kg], SB-203 [(5'-6'), 227.23 mg/kg)], and SB-204 [(5'-6'), 755 mg/kg] located east of monitoring well WP-5A or south of extraction well GX-7, and representing the most likely residual sources of impacts to groundwater in Investigation Area 1.

Concentrations of benzene, ETX, isopropylbenzene, and methylene chloride detected in groundwater samples collected within and near Investigation Area 1 between April 2018 and October 2020 are shown on **Figure 5**. Benzene and methylene chloride were not detected at concentrations greater than Class GA Values during this time period.

Prior to the October 2020 sampling event, ethylbenzene, isopropylbenzene, and xylenes had been consistently detected at concentrations greater than Class GA Values in groundwater samples collected from monitoring well WP-5A and extraction well GX-7. Between April 2018 and July 2020 total ETX concentrations ranged between 16.3 and 10,469.3 micrograms per liter (µg/L) in samples collected from

WP-5A and 0.36 and 1,034.8 μg/L in samples collected from GX-7. Individual ETX compounds were not detected at concentrations above Class GA Values in the samples collected from monitoring well WP-5A and extraction well GX-7 in October 2020. Isopropylbenzene concentrations have ranged between 29 and 66.3 μg/L in samples collected from WP-5A and non-detect and 22 μg/L in samples collected from GX-7 between April 2018 and October 2020. Isolated exceedances of total xylenes or isopropylbenzene were detected in samples collected from GX-0 in April and July 2018 and December 2019. Benzene has not been detected in the wells within and near Investigation Area 1 during the period between April 2018 and October 2020.

Investigation Area 2

The greatest evidence of petroleum impacts to soil were generally encountered between 5 and 15 feet bgs in Investigation Area 2. The highest PID measurements were recorded during screening of soil recovered from SB-209, SB-210, and SB-211, between 5 and 15 feet bgs, in the southern and eastern portions of Investigation Area 2. Oil-In-Soil™ test results indicate evidence of impacts throughout Investigation Area 2. Ethylbenzene, toluene, and/or total xylenes were detected at concentrations above PGW SCOs in six samples collected from five borings in Investigation Area 2. The soil sample collected from 5 to 6 feet bgs at SB-120 was saturated with NAPL. However, ETX compounds were not detected at elevated concentrations in the soil sample collected 5 to 6 feet bgs from SB-120, suggesting the encountered NAPL may be weathered and not a significant source of ETX impacts to groundwater. Total xylenes were detected at a concentration of 641 mg/kg, greater than the CU SCO of 500 mg/kg, in the sample collected from 5 to 7 feet bgs at SB-209. The highest total ETX concentrations were detected in samples collected from SB-115 [(7'-8'), 349 mg/kg], SB-119 [(9'-10'), 480 mg/kg], SB-209 [(5'-7'), 819 mg/kg], SB-210 [(7'-9'), 113.1 mg/kg], and SB-211 [(10'-11'), 100.264 mg/kg] located south or east of extraction well GX-2, and representing the most likely residual sources of impacts to groundwater in Investigation Area 2.

Concentrations of benzene, ETX, and isopropylbenzene detected in groundwater samples collected from within and near Investigation Area 2 between April 2018 and October 2020 are shown on **Figure 6**. Methylene chloride was not detected at a concentration greater than the Class GA Value during this time period.

Prior to the October 2020 sampling event, ETX were consistently detected at concentrations greater than Class GA Values in groundwater samples collected from extraction well GX-2. Between April 2018 and July 2020 total ETX concentrations have ranged between 0.53 and 572 μg/L in samples collected from GX-2. ETX was not detected in the sample collected from extraction well GX-2 in October 2020. Isopropylbenzene concentrations ranged between 0.52 and 8.2 μg/L in samples collected from GX-2 between April 2018 and July 2020. Isopropylbenzene was not detected in any of the wells sampled in October 2020. An isolated exceedance of the Class GA Value for total xylenes was detected in the sample collected from GX-5 in April 2018. Benzene was not detected in the wells within and near Investigation Area 2 during the three groundwater sampling events completed in 2020.

5.0 Conceptual Site Model

Described below is the conceptual site model for the two "hot spots" at the Site delineated during the SI.

5.1 Surface and Subsurface Characteristics

Soils in Investigation Areas 1 and 2 consist of highly heterogeneous distributed fine to coarse sands, gravel, silt and clay. During the SI, saturated soil in Investigation Area 1 was encountered between 2 and 3 feet bgs and underlying clay was encountered intermittently between approximately 15 and 19 feet bgs. Saturated soil in Investigation Area 2 was encountered between 2.5 and 4.0 feet bgs and underlying clay was encountered intermittently between approximately 11 and 18 feet bgs. Geological cross-sections are presented in **Attachment A**.

5.2 Contaminant Sources

Site soil and groundwater impacts are the result of historic chemical storage and management activities that likely resulted in several unreported releases to the environment, as well as one reported release of 3,000 gallons of toluene in the western portion of the Site. The likely sources of residual concentrations of petroleum-related VOCs in groundwater in the "hot spots" delineated during the SI are VOCs sorbed to soil below the water table.

5.3 Contaminants of Concern

ETX are the primary COCs in soil and benzene, ETX, isopropylbenzene, and methylene chloride are the primary COCs in groundwater that are the focus of this RSO Report.

5.4 Extent of Contamination

During the SI, individual ETX compounds were detected at concentrations greater than applicable PGW SCOs at depths up to 11 feet bgs in Investigation Area 1 and 15 feet bgs in Investigation Area 2. Individual ETX compounds and isopropylbenzene have been consistently detected at concentrations greater than Class GA Values in groundwater samples collected from monitoring well WP-5A and extraction well GX-7 in Investigation Area 1 and extraction well GX-2 in Investigation Area 2. (The exception to this is the most-recent, October 2020, groundwater sampling event. Only isopropylbenzene in WP-5A was detected at a concentration greater than the Class GA Value in the groundwater samples collected in October 2020.)

Total xylenes were detected at concentrations greater than the Class GA Value in groundwater samples collected from GX-0, located north of Investigation Area 1, in April and July 2018. Total xylenes were detected at a concentration greater than the Class GA Value in the groundwater sample collected from GX-5, located in the southern portion of Investigation Area 2, in April 2018. Isopropylbenzene was detected at a concentration greater than the Class GA Value in the groundwater sample collected from GX-0 in December 2019. Exceedances of Class GA Values have not been detected in samples collected quarterly from GX-0 since December 2019 or from GX-5 since April 2018.

5.5 Exposure Pathways

Exposure to a contaminant occurs when an exposure pathway is complete. An exposure pathway consists of five elements: (1) a contaminant source, (2) a contaminant release and transport mechanism, (3) a point of exposure, (4) a route of exposure, and (5) a receptor population. An exposure pathway is complete when all five elements are present. If one or more of the elements is absent, the pathway is potentially incomplete. An exposure pathway may be eliminated from consideration if any one of the five elements has not existed in the past, does not exist in the present, and will not exist in the future.

Based on the results of the SI and quarterly groundwater monitoring, VOCs are present in soil and groundwater at concentrations above applicable SCGs. A qualitative exposure assessment was prepared to evaluate the potential for exposure to VOCs in soil and groundwater.

Dermal contact, ingestion of soil or groundwater, or inhalation of vapors or dust represent the potential routes of exposure. Potential receptors include Site visitors, Site workers, property owners/occupants, construction workers, and off-Site residents during ground-intrusive maintenance, demolition, and/or redevelopment.

Considering the current conditions at the Site, the following exposure pathways are considered incomplete:

- **Groundwater ingestion:** The Hamlet of Glenwood Landing supplies potable water for businesses and residents in this area via a municipal water supply system; therefore, this exposure pathway is not complete.
- Soil dermal contact or ingestion by Site occupants and visitors: The portion of the Site with remaining contamination is covered by asphalt pavement or vegetation, thereby minimizing the potential for exposure of occupants and visitors to soil.
- Inhalation of vapors by Site occupants and visitors: The SVE system is operating during the majority of time spent on-Site by remediation technicians. Additionally, the concrete foundation and floor slab of treatment building, the only occupied structure on-Site, is elevated approximately 4 to 5 feet above the surrounding grade. Therefore, this exposure pathway is not complete.

The following exposure pathways are considered potentially complete:

- Groundwater dermal contact by construction workers and maintenance workers: Groundwater was encountered between approximately 2 and 4 feet bgs. Therefore, the potential that groundwater will be encountered during utility and/or property maintenance and future redevelopment activities exists.
- Soil dermal contact by construction workers and maintenance workers: Potential future construction and maintenance activities (e.g., utility repairs) could result in contact with impacted soil.

- Inhalation of vapors and dust by construction workers and maintenance workers: Potential future construction and maintenance activities (e.g., utility repairs, redevelopment, etc.) could result in the generation of and exposure to impacted vapors and dust.
- Inhalation of vapors and dust by off-Site residents: Remedial actions and future ground-intrusive activities (e.g., utility repairs, redevelopment, etc.) could result in the generation of impacted vapors and dust that have the potential to migrate off-Site during construction.
- Inhalation of vapors by future Site occupants and visitors: Soil vapor intrusion could occur if slab on grade structures are constructed on the Site in the future, resulting in exposure of Site occupants or visitors.

6.0 Description of Remedy

6.1 Remedial Systems Overview

The original AS, SVE, and groundwater extraction systems installed in 1995 include:

- A 30-foot by 60-foot metal building constructed on a raised foundation housing treatment equipment
- 42 AS wells
- 6 horizontal SVE wells
- 14 vertical SVE wells
- 5 groundwater extraction wells

In 2005, twelve additional air sparge points and an additional horizontal SVE well were installed in the Lower Area. The horizontal SVE well located near GX-2 was expanded approximately 50 feet to the northeast. Additionally, it was determined in October 2005 that cleanup goals had been achieved for soil and groundwater in the Upper Area and operation of the AS and SVE wells in the Upper Area was terminated. In 2013, two additional groundwater extraction wells (GX-5 and GX-6) were installed in the vicinity of extraction well GX-2 and one additional extraction well (GX-7) was installed in the vicinity of monitoring well WP-5A. The layout of the Site remediation systems is presented in **Appendix C**.

Historically, compressed air was delivered to AS wells to volatilize dissolved-phase VOCs into the vadose zone. Due to low concentrations of VOCs detected in recovered soil vapor, operation of the air sparge system was terminated in August 2020. Prior to termination, 24 AS wells had been in operation in the Lower Area. Currently, 10 vertical and horizontal SVE wells, connected via underground piping to a 25 horsepower (hp) blower, convey extracted vapors to the treatment system. Extracted soil vapor was originally treated via thermal oxidization prior to discharge to the atmosphere. In 2009, the thermal oxidizer was removed and replaced with two 400-pound vapor phase granular activated carbon (VGAC) vessels, operated in parallel.

Groundwater extraction from wells GX-1, GX-3, GX-4, GX-5, and GX-6 was terminated in April 2020 based on low concentrations of VOCs detected in groundwater samples collected from these wells. Extracted groundwater was originally treated via settling, flocculation, precipitation, air stripping, and bag filtration; amended with nutrients to stimulate in-situ bioremediation; and discharged to a horizontal reinjection well in the Upper Area. Flocculation and chemical precipitation were removed from the treatment system at an unknown date. In 2009, the air stripper was removed from the groundwater treatment system and replaced with two 165-pound liquid phase granular activated carbon vessels, operated in parallel. Accumulated sludge is transferred to a settling tank where water is decanted and recirculated through the treatment system. Accumulated sludge is transported off-Site for disposal.

6.2 Operation, Maintenance, and Monitoring Program

Since September 2013 the soil vapor and groundwater extraction and treatment systems have been operated on a 2-month on/1-month off pulse cycle. OM&M of the remediation systems is performed in accordance with Schedule 1 of WA No. D009812-01, included in **Appendix D**.

7.0 Remedial System Performance

7.1 System Runtime/Downtime Summary

A summary of remediation system uptime during operating months from November 2018 to March 2020 is presented in **Table 3** below.

Table 3							
Remediation System Uptime Summary ¹							
(SVE/GW)							
Pulse Cycle No. 21		Pulse Cycle No. 22		Pulse Cycle No. 23		Pulse Cycle No. 24	
November	December	August	September	November	December	February	March
2018	2018	2019	2019	2019	2019	2020	2020
0%/100%	60%/96%	65%/74%	89%/57%	88%/88%	63%/63%	75%/91%	89%/100%

¹ Percent of scheduled operation period. The remediation systems PLC is not equipped with remote telemetry monitoring, an alarm log download port, or a log of hours of operation for the groundwater extraction and treatment systems. Therefore, up-time calculations for the groundwater extraction and treatment system are estimated.

GW - Groundwater

Significant downtime events between November 2018 and March 2020 are described in detail in the *Semi-Annual Report/Technical Memorandum*, prepared by ERM, dated January 9, 2019 and *Semi-Annual Monitoring Reports (SMRs)*, prepared by TRC, dated November 29, 2019 and May 22, 2020.

7.2 Contaminant Mass Recovery Assessment

As of March 2020, the most-recent period for which an SMR has been prepared, approximately 90,000 pounds of VOCs have been removed from soil vapor and groundwater since June 1995. Of this total, only approximately 1 percent of the contaminant mass has been recovered since November 2013, when three additional groundwater monitoring wells were installed and the remediation systems were last optimized to enhance mass recovery. Additionally, only approximately 5 pounds of total VOCs have been recovered between August 2019 and March 2020. Therefore, it is not likely that continued operation of Site remediation systems will result in substantial contaminant mass recovery from soil vapor or groundwater.

7.3 Regulatory Compliance

Remediation system air and wastewater discharges are not subject to regulatory permit requirements. Remediation systems are operated in accordance with the ROD and modifications approved by NYSDEC and/or USEPA. SMRs are prepared and submitted to NYSDEC in accordance with WA No. D009812-01.

7.4 Health and Safety Records

No health or safety-related incidents have occurred at the Site since TRC assumed responsibility for OM&M of the remediation systems in March 2019.

7.5 Assessment of Cleanup Progress/Achievement of Remedial Action Objectives

The remediation systems have removed significant mass from the subsurface and achieved cleanup goals in the Upper Area and portions of the Lower Area of the Site. However, in two "hot spots" (within Investigation Areas 1 and 2, in the Lower Area of the Site) petroleum-related VOCs have consistently been detected in groundwater at concentrations above Class GA Values. Results of the SI indicate that concentrations of VOCs greater than PGW SCOs in soil below the water table are likely the source of continued groundwater impacts in these areas. Progress with respect to achieving Site cleanup goals described in Section 3.2 within and near Investigation Areas 1 and 2 is summarized below:

Investigation Area 1

Soil

- Achievement of Industrial Use SCOs None of the 41 soil samples analyzed as part of the SI exhibited results above the IU SCOs.
- Achievement of Commercial Use SCOs Total xylenes were detected at a concentration above the CU SCO in one soil sample collected from one soil boring as part of the SI. All other SI soil sampling results are below the CU SCOs.
- Achievement of Protection of Groundwater SCOs At least one COC was detected at a concentration above the applicable PGW SCO in eight soil samples collected from a total of seven soil borings as part of the SI.

Groundwater

Achievement of Class GA Values – Since April 2018 groundwater sampling results for two of the
five wells (A11 and GX-1) included in the quarterly monitoring well network within and near
Investigation Area 1 have been below Class GA Values. Additionally, with the exception of an
exceedance of the GA Value for isopropylbenzene detected in the sample collected from
monitoring well WP-5A, the results of analysis of the groundwater samples collected in October
2020 from monitoring wells within and near Investigation Area 1 were below Class GA Values.

Investigation Area 2

Soil

- **Achievement of Industrial Use SCOs** None of the 24 soil samples analyzed as part of the SI exhibited results above the IU SCOs.
- Achievement of Commercial Use SCOs Total xylenes were detected at a concentration above the CU SCO in one soil sample collected from one soil boring as part of the SI. All other SI soil sampling results are below the CU SCOs.

• Achievement of Protection of Groundwater SCOs – At least one COC was detected at a concentration above the applicable PGW SCO in six soil samples collected from a total of five soil borings as part of the SI.

Groundwater

• Achievement of Class GA Values – Since April 2018 groundwater sampling results have been below Class GA Values in one of the three extraction wells (GX-6) included in the quarterly monitoring network within and near Investigation Area 2. Additionally, results of analysis of groundwater samples collected quarterly from extraction well GX-5 have been below Class GA Values since July 2018. The results of analysis of all groundwater samples collected in October 2020 from monitoring wells within and near Investigation Area 2 were below Class GA Values.

7.6 Operations, Maintenance, and Monitoring Costs

A summary of OM&M costs incurred by TRC between August 2019 and April 2020, the last month for which an SMR has been prepared, is presented below.

Table 4				
Summary of Site OM&M Costs				
	April 2019 to	November 2019 to		
Task Description	October 2019	April 2020	Total	
OM&M Labor	\$49,456.97	\$60,469.07	\$109,926.04	
OM&M Subcontractors	\$13,864.72	\$19,515.53	\$33,380.25	
OM&M Expenses	\$3,281.45	\$10,345.51	\$13,626.96	
Utilities	\$12,918.18	\$15,847.00	\$28,765.18	
Groundwater Sampling Labor	\$6,289.97	\$10,266.18	\$16,556.15	
Groundwater Sampling Subcontractors	\$1,079.47	\$805.54	\$1,885.01	
Groundwater Sampling Expenses	\$1,086.67	\$921.21	\$2,007.88	
Total:	\$87,977.43	\$118,170.04	\$206,147.47	

8.0 Conclusions and Recommendations

Petroleum-related VOCs present in soil at concentrations above PGW SCOs are the likely source of ongoing exceedances of Class GA Values in the two remaining "hot spots" (in Investigation Areas 1 and 2) in the Lower Area of the Site delineated during the SI. Extensive refurbishment and optimization of the remediation systems have been performed over the past 25 years, including the installation of three groundwater extraction wells in the hot spot areas and optimization activities in 2013 to improve contaminant mass recovery and advance the Site towards closure. The 2013 optimization efforts failed to substantially increase contaminant mass recovery rates. It is likely that mass recovery is limited by the rate of contaminant desorption from soil to groundwater. Therefore, continued OM&M of the remediation systems, as configured, is not expected to recover a significant amount of the remaining contaminant mass nor achieve soil and groundwater cleanup goals within a reasonable timeframe. Considering the extensive reconfiguration and optimization activities previously performed at the Site, it is likely that removal of source material via excavation will be more effective at achieving Site cleanup goals than additional modification of the AS, SVE, and/or groundwater extraction systems.

Therefore, a Corrective Measure consisting of soil excavation, off-site disposal, and application of an amendment to enhance in-situ bioremediation of Site COCs, as described in the June 2020 Conceptual Plan (Appendix B), should be implemented in the two "hot spots" delineated during the SI. A conceptual description of the Corrective Measure, including estimated costs for implementation, is presented below in Section 9.0. Subsequent to approval of this RSO Report, TRC will prepare a Technical Scope of Work for implementation of the Corrective Measure. Contractor requirements for a Health and Safety Plan and a Community Air Monitoring Plan, to be prepared and implemented in accordance with NYSDEC DER-10, will be included in the Technical Scope of Work. Upon completion of the Corrective Measure existing remediation systems would be decommissioned and a long-term groundwater monitoring program should be implemented to monitor progress towards achieving Site RAOs. Existing remediation systems would not be disassembled and removed until groundwater monitoring demonstrates the Corrective Measure has been effective at achieving Site cleanup goals.

9.0 Corrective Measure

In June 2020, TRC prepared a Conceptual Plan (presented in **Appendix B**) for a Corrective Measure to remove petroleum-impacted soil from the two remaining "hot spots" at the Site (Investigation Areas 1 and 2) delineated during the SI. The objective of the Corrective Measure is to, within the "hot spots," remove residual sources of petroleum-related VOCs in soil, primarily ETX, detected in groundwater samples collected from extraction wells GX-2 and GX-7 and monitoring well WP-5A. Soil will be removed in four zones, as summarized in the table below. Limits of the Excavation Zones are shown on **Figures 1 and 2** in **Appendix B**.

Table 5 Summary of Excavation Zones					
Investigation Area	Excavation Zone	Area of Excavation (square feet)	Average Depth of Excavation (feet)	Excavation Volume (Rounded) (cubic yards)	
1	1A	790	8.0	240	
1	1B	500	15.0	280	
2	2A	420	13.5	210	
2	2B	170	18.0	110	
	840				

Note: All quantities are approximate.

9.1 Basis of Excavation Limits

The objective of the Corrective Measure is to remove the source of ongoing concentrations of groundwater COCs greater than Class GA Values in the two remaining "hot spots" at the Site delineated during the SI. Therefore, horizontal and vertical limits of excavation were established to remove exceedances of PGW SCOs. In certain instances, complete delineation to UU SCOs was not achieved during the SI. In these instances, recommended excavations limits were extended an appropriate distance from impacted monitoring or extraction wells. Additionally, proximity to monitoring or extraction wells not exhibiting VOC impacts was considered when establishing excavation limits.

Due to the non-uniform distribution of contamination identified at the Site and gaps in horizontal and vertical delineation of VOC concentrations above SCOs, uncertainty exists as to whether the planned soil removal alone would result in adequate reduction of VOC concentrations in groundwater at extraction wells GX-2 and GX-7 and monitoring well WP-5A. Therefore, as described below, the Corrective Measure includes the application of amendments to enhance post-excavation anaerobic bioremediation of petroleum-related VOCs.

9.2 Description of Corrective Measure

Major Corrective Measure work elements are described below. An evaluation of four excavation support options (Option 1 – Large Slide Rail System, Option 2 – Small Slide Rail System, Option 3 – Trench Box, and Option 4 – Sheeting) was completed as part of development of the Conceptual Plan (refer to **Appendix B**). However, the selected contractor will determine means and methods to complete the work.

Mobilization and Site Preparation

Prior to mobilization, an existing conditions survey would be performed, and excavation limits would be staked out in the field. Erosion and sediment controls would be installed and locations of subsurface utilities and bulkhead tie backs (if present) would be identified. Since overhead power lines are located near proposed excavation areas, electrical service to the Site would be temporarily deactivated. The existing groundwater treatment system would be connected to a temporary power source. Subsurface utilities running through the excavation areas (e.g., potable water) would be re-routed outside the limits of planned excavations. Additionally, clearing, grubbing, and grading would be performed in Excavation Zone 1B to prepare the area for installation of an excavation support system. Equipment, materials, and temporary facilities would be mobilized and staged at the Site.

Excavation Support Options

Potential excavation support systems are described in the Conceptual Plan in **Appendix B**. Excavation support systems for Options 1, 2, and 3 would be installed and advanced concurrent with excavation activities. Sheeting under Option 4 would be installed prior to commencing excavation activities. As such, the time to implement each excavation support option varies. It is expected that the selected contractor would be required to submit a schedule for each phase of the work and description of means and methods proposed for excavation support, and that the contractor would be required to obtain Department approval of the schedule and excavation support system prior to start of the work.

Dewatering

Since excavations will be advanced several feet below the water table, dewatering will be required. Dewatering liquids could be treated utilizing the existing Site groundwater treatment system and discharged to the reinjection gallery. However, the selected contractor will determine means and methods to complete the work.

Soil Removal, Staging, Transportation, Disposal, and Backfilling

Soil would be excavated to the target elevation in each Excavation Zone and staged on-Site for disposal. Wells and existing remediation system infrastructure within the limits of excavations would be removed. Disturbed remediation system infrastructure and wells outside the limits of excavation would be abandoned in place. Components of the bulkhead would be identified, clearly marked and protected from disturbance by soil staging and loading operations.

Excavated soil would be characterized and transported off-Site for disposal. Two confirmatory soil samples would be collected from the bottom of each Excavation Zone, for a total of eight confirmatory samples. The coordinates of the horizontal limits and elevation of the bottom of each Excavation Zone would be surveyed by a New York State-licensed surveyor. Excavations would be backfilled with imported clean fill, placed in lifts and compacted. Imported clean fill placed in lifts in the saturated and smear zones of excavations would be mixed with amendment (e.g., gypsum), to enhance anaerobic bioremediation of residual dissolved-phase petroleum-related VOCs.

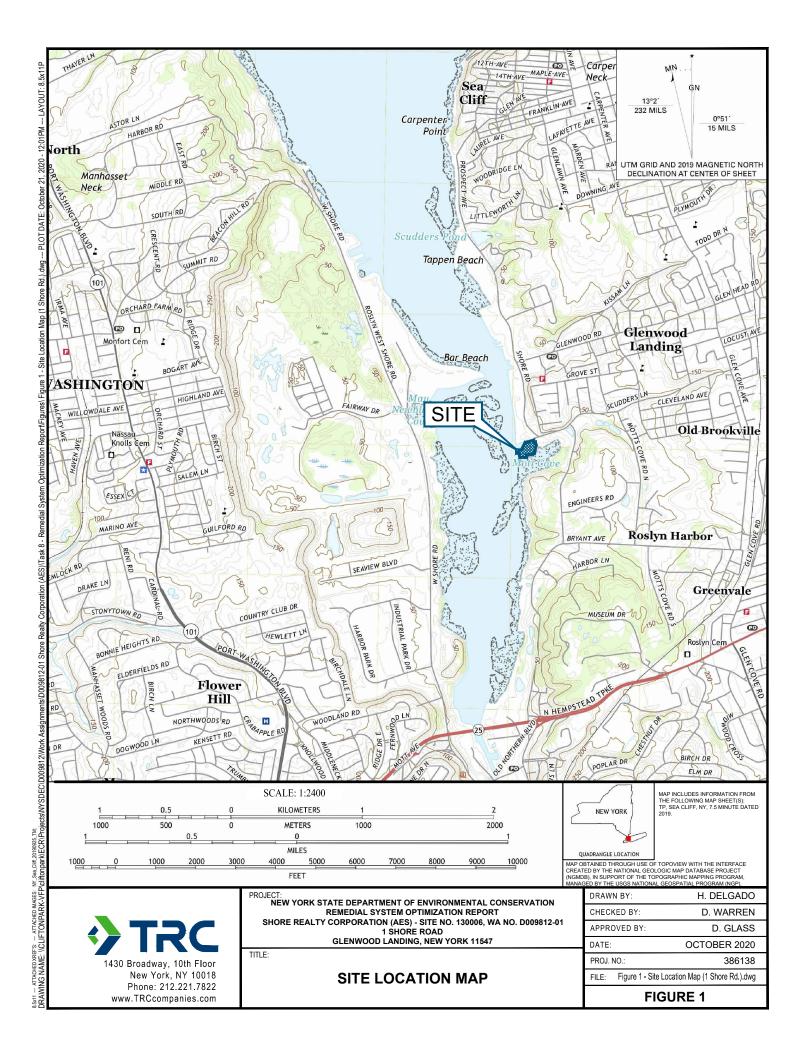
Utility Reconnection, Surface Restoration, and Demobilization

At the completion of backfilling, excavation supports would be removed, electrical service would be reconnected and reactivated and all equipment, excess materials, waste, and temporary tanks would be removed from the Site. Disturbed asphalt would be restored with either asphalt or compacted gravel and disturbed vegetated areas would be restored with topsoil and seed. Infrastructure associated with existing remediation systems which is disturbed or removed would not be restored or replaced. Appropriately located and screened groundwater monitoring wells would be installed and included in the long-term groundwater monitoring network.

9.3 Cost Estimate

Based on the work elements described above, and the basis of cost described in the Conceptual Plan, the estimated concept-level cost (including 20% contingency) to complete the Corrective Measure is between \$1.3 million and \$2.0 million. Cost estimate summaries are presented in **Appendix B**.

10.0 References


- 1. 6 NYCRR 375, Remedial Program Requirements.
- 2. 6 NYCRR 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.
- 3. ERM, Remedial Effectiveness Plan, February 2008.
- 4. ERM, SVE/AS and Groundwater Remedial System Performance July 1995 through March 2010, September 2010.
- 5. ERM, Supplemental Data Acquisition Summary & Analysis, March 2012.
- 6. ERM, Remedial System Optimization Plan, June 2013.
- 7. ERM, Semi-Annual Report/Technical Memorandum: August 2018 December 2018, January 2019.
- 8. Moskopf, Roslynn R., United States Attorney, USDOJ, to Strong, Andrew L., Attorney, Pillsbury Winthrop Shaw Pitman LLP. 2006. The State of New York v. Shore Realty Corp, et al., Civil Action Nos. 84 Civ. 0864, 85 Civ. 2270 (Weinstein, J.). March 10. Letter.
- 9. NYSDEC, DER-10, Technical Guidance for Site Investigation and Remediation, May 2010.
- 10. NYSDEC, Environmental Easement, April 2019.
- 11. NYSDEC, Work Assignment No. D009812-01, March 2020.
- 12. Remediation Technologies, Inc., Pre-Remedial Design Investigation Report, July 1993.
- 13. Remediation Technologies, Inc., Operations, Maintenance and Monitoring Manual, October 1995.
- 14. Remediation Technologies, Inc., Revised Remedial Action Report, February 1996.
- 15. Roux Associates, Inc., Draft Remedial Investigation, August 1988.
- 16. Roux Associates, Inc., Draft Supplemental Remedial Investigation, April 1990.
- 17. TRC Engineers, Inc., Semi-Annual Monitoring Report, November 2019.
- 18. TRC Engineers, Inc., Semi-Annual Monitoring Report, May 2020.
- 19. TRC Engineers, Inc., Summary of Supplemental Investigation Activities January 2020.
- 20. TRC Engineers, Inc., Revised Interim Remedial Measure Conceptual Plan, June 2020.
- 21. United States District Court Eastern District of New York, The State of New York, et al. against Shore Realty Corp, et al., Consent Judgment Order Nos. 84 Civ. 0864 and 2270, 1992.
- 22. United States District Court Eastern District of New York, The State of New York, et al. against Shore Realty Corp, et al., Stipulation and Proposed Order Nos. 84 Civ. 0864 and 2270, October 2002.
- 23. United States District Court Eastern District of New York, The State of New York, et al. against Shore Realty Corp, et al., Order Nos. 84 Civ. 0864 and 2270, January 2019.
- 24. USEPA, Record of Decision Applied Environmental Services Site Also Known as Shore Realty Site, Nassau County, New York, June 1991.
- 25. USEPA, Fourth Five-Year Review for Applied Environmental Services/Shore Realty Superfund Site, Nassau County, New York, August 2016.

FIGURES

TRC ENGINEERS, INC.

January 2021

KEY MAP NOT TO SCALE

LEGEND

AIR SPARGE WELL

GROUNDWATER

EXTRACTION WELL **GROUNDWATER** MONITORING WELL SOIL VAPOR EXTRACTION WELL


VAPOR MONITORING

INVESTIGATION AREA

FENCE

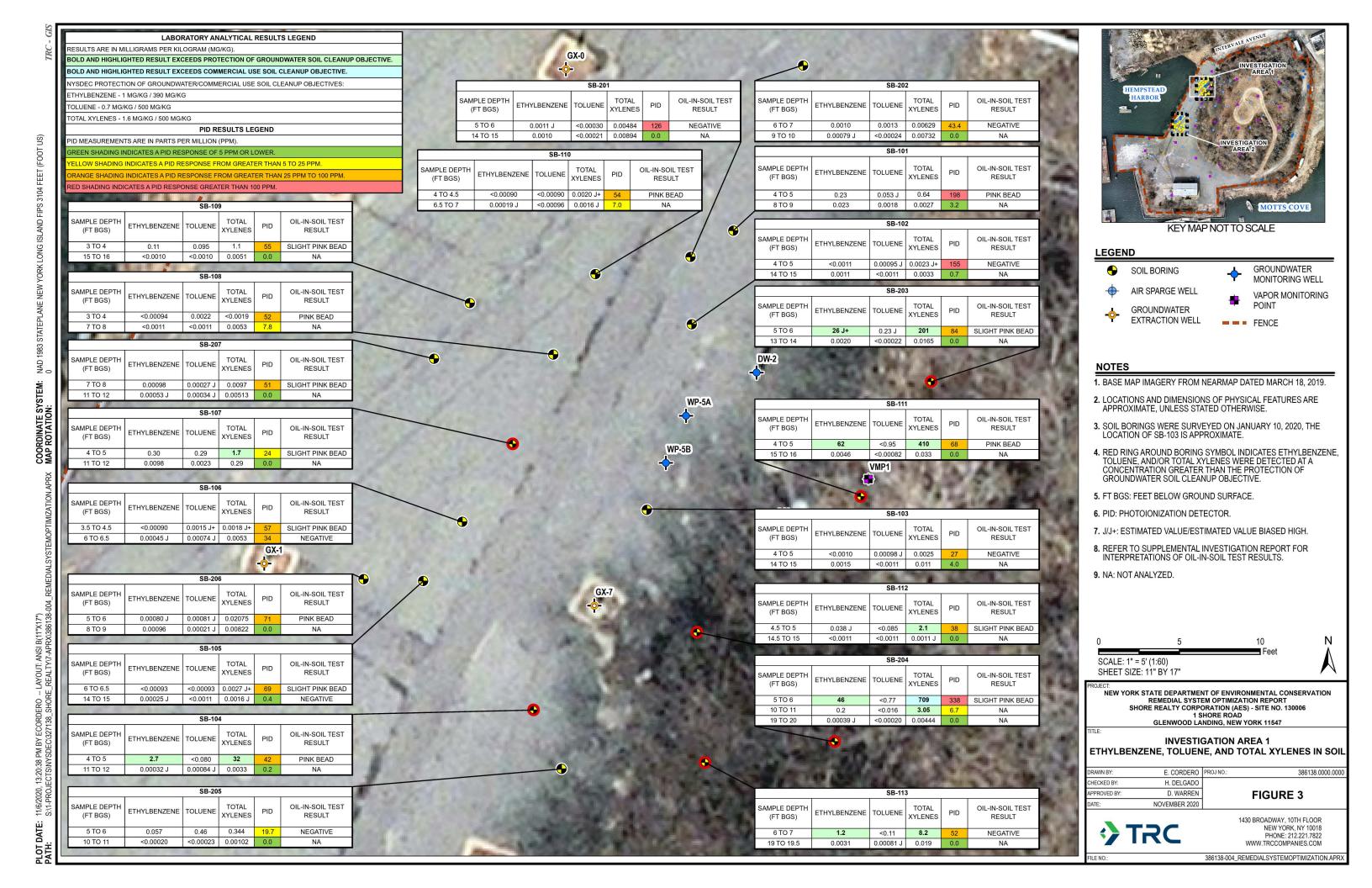
NOTES

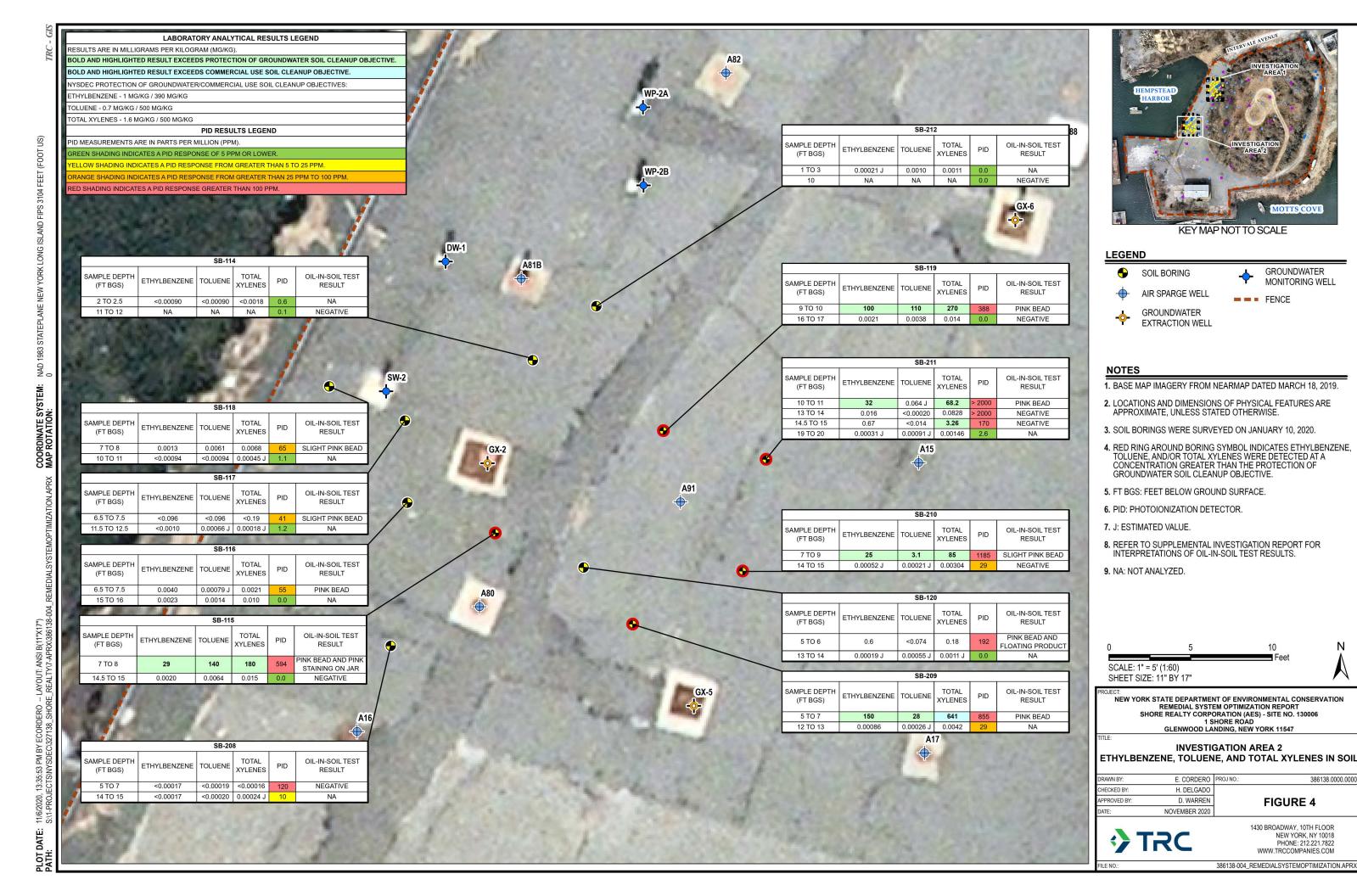
- 1. BASE MAP IMAGERY FROM NEARMAP DATED MARCH 18, 2019.
- 2. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES ARE APPROXIMATE, UNLESS STATED OTHERWISE.
- 3. AIR SPARGE WELLS, SOIL VAPOR EXTRACTION WELLS, VAPOR MONITORING POINTS, GROUNDWATER EXTRACTION WELLS, GROUNDWATER MONITORING WELLS, AND FENCE LOCATION ARE APPROXIMATE BASED ON ERM DRAWING TITLED "QUARTERLY SITE MONITORING POINTS" DATED JUNE 25, 2014 AND AERIAL
- 4. GROUNDWATER EXTRACTION WELLS GX-0 THROUGH GX-7, GROUNDWATER MONITORING WELLS SW-4 THROUGH SW-6 AND WP-5A, AND AIR SPARGE WELLS A11 AND A23, ARE INCLUDED IN THE QUARTERLY SAMPLING NETWORK.

OT:
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
REMEDIAL SYSTEM OPTIMIZATION REPORT
SHORE REALTY CORPORATION (AES) - SITE NO. 130006
1 SHORE ROAD
GLENWOOD LANDING, NEW YORK 11547

SITE LAYOUT

E. CORDERO PROJ NO.: H. DELGADO HECKED BY


FIGURE 2


386138.0000.0000

NOVEMBER 2020 ◆ TRC

1430 BROADWAY, 10TH FLOOR NEW YORK, NY 10018 PHONE: 212.221.7822 WWW.TRCCOMPANIES.COM

386138-004_REMEDIALSYSTEMOPTIMIZATION.APRX

KEY MAP NOT TO SCALE

LEGEND

AIR SPARGE WELL

GROUNDWATER

EXTRACTION WELL **GROUNDWATER**

MONITORING WELL

INVESTIGATION AREA

SOIL VAPOR

EXTRACTION WELL

VAPOR MONITORING

LABORATORY ANALYTICAL RESULTS LEGEND

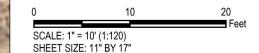
GROUNDWATER RESULTS ARE IN MICROGRAMS PER LITER (μ G/L).			
BOLD AND HIGHLIGHTED RESULT EXCE	EDS CLASS GA VALUE.		
COMPOUND	CLASS GA VALUE		
BENZENE	1 μG/L		
ETHYLBENZENE	5 μG/L		
TOLUENE	5 μG/L		
TOTAL XYLENES	5 μG/L		
METHYLENE CHLORIDE	5 μG/L		
ISOPROPYLBENZENE	5 μG/L		

NOTES

A30

0.43 U

0.60 U


0.53 U

0.59 U

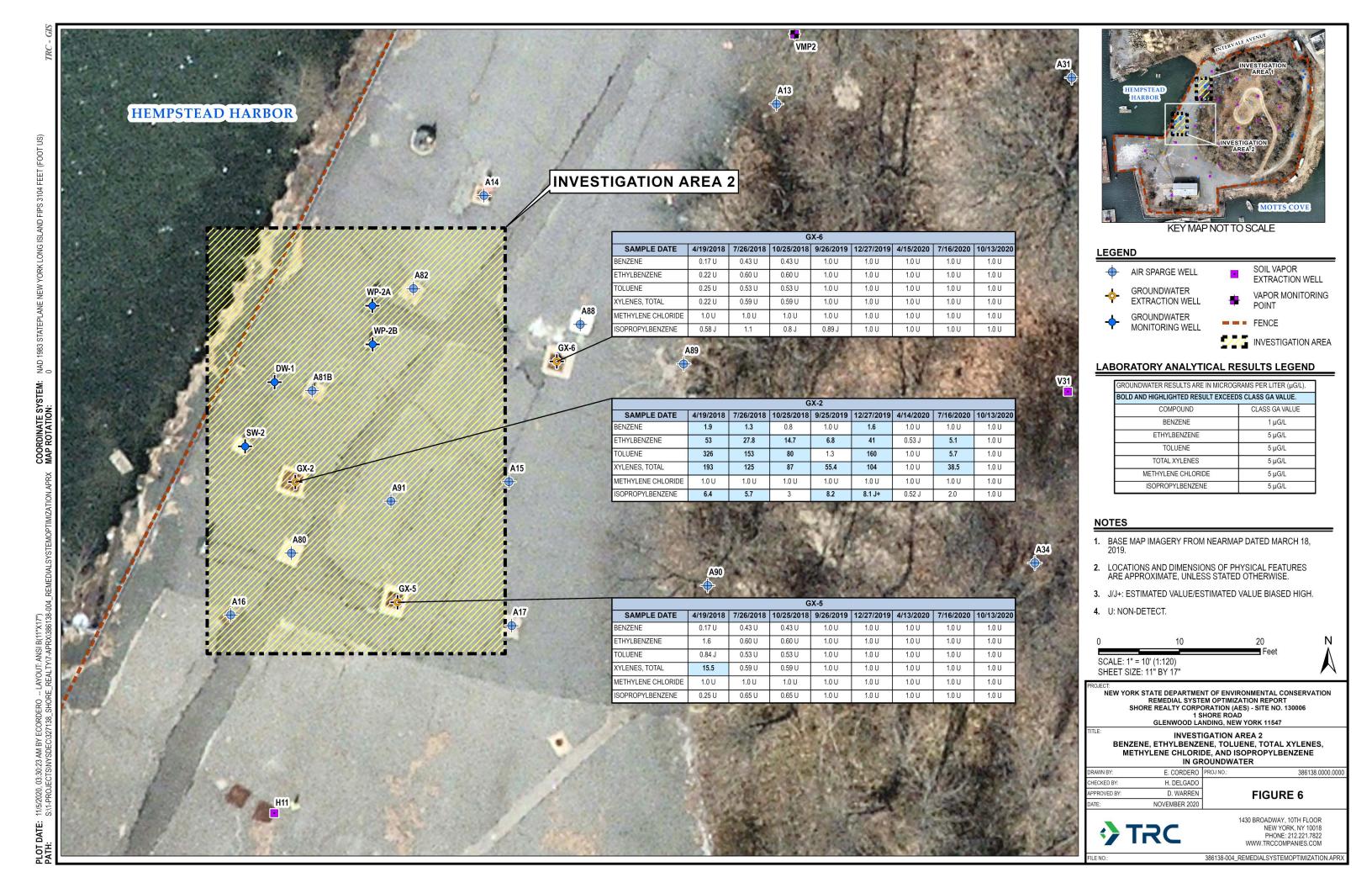
1.0 U

0.65 U

- 1. BASE MAP IMAGERY FROM NEARMAP DATED MARCH 18,
- 2. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES ARE APPROXIMATE, UNLESS STATED OTHERWISE.
- 3. J: ESTIMATED VALUE.
- 4. U: NON-DETECT.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION REMEDIAL SYSTEM OPTIMIZATION REPORT SHORE REALTY CORPORATION (AES) - SITE NO. 130006 1 SHORE ROAD

GLENWOOD LANDING, NEW YORK 11547


INVESTIGATION AREA 1 BENZENE, ETHYLBENZENE, TOLUENE, TOTAL XYLENES, METHYLENE CHLORIDE, AND ISOPROPYLBENZENE IN GROUNDWATER

7	DRAWN BY:	E. CORDERO	PI
	CHECKED BY:	H. DELGADO	Γ
20	APPROVED BY:	D. WARREN	1
250	DATE:	NOVEMBER 2020	1

386138.0000.0000 FIGURE 5

NEW YORK, NY 10018 PHONE: 212.221.7822

386138-004_REMEDIALSYSTEMOPTIMIZATION.APRX

TABLES

TRC ENGINEERS, INC.

January 2021

Table 1

New York State Department of Environmental Conservation Shore Realty Corporation (AES) Site 1 Shore Road, Glenwood Landing, New York Remedial System Optimization Report Soil Contaminants of Concern and Cleanup Goals

Soil Contaminants of Concern	Commercial Use Soil Cleanup Objective ¹ (ppm)	Industrial Use Soil Cleanup Objective ¹ (ppm)	Protection of Groundwater Soil Cleanup Objective ¹ (ppm)
Volatile Organic Compounds			
Ethylbenzene	390	780	1
Toluene	500	1,000	0.7
Total Xylenes	500	1,000	1.6

Notes

ppm - parts per million (or milligrams per kilogram)

Soil Cleanup Objective for Xylene (mixed) presented.

¹ - NYCRR Part 375 Subpart 375-6.8(b)

Table 2

New York State Department of Environmental Conservation Shore Realty Corporation (AES) Site Remedial System Optimization Report 1 Shore Road, Glenwood Landing, New York Groundwater Contaminants of Concern and Cleanup Goals

Groundwater Contaminants of Concern	Class GA Value ¹ (ug/L)
Volatile Organic Compounds	
Benzene	1
Ethylbenzene	5
Isopropylbenzene	5
Methylene chloride	5
Toluene	5
Total xylenes ²	5

Notes

ug/L - Micrograms per liter

¹ - NYSDEC Ambient Water Quality Standards and Guidance Values for Class GA Water.

² - The Class GA Value for total xylenes applies to each individual isomer.

APPENDIX A

Summary of Supplemental Investigation Activities – January 2020

TRC ENGINEERS, INC.

January 2021

DRAFT

TRC Engineers, Inc. 1430 Broadway, 10th Floor New York, New York 10018

Main (212) 221-7822 Fax (212) 221-7840

Memorandum

To: Ms. Caroline Eigenbrodt, Project Manager

New York State Department of Environmental Conservation

Division of Environmental Remediation

From: Daniel Warren, Project Manager

TRC Engineers, Inc.

Subject: Standby Engineering Contract

Work Assignment No. D007620-47

Shore Realty Corporation (AES) – Site No. 130006 Summary of Supplemental Investigation Activities

Date: January 31, 2020

CC: D. Glass (TRC)

J. Magda (TRC)

TRC Project 327138.0000.0000

No.:

This memorandum summarizes the results of the Supplemental Investigation (SI) activities completed at the Shore Realty Corporation (AES) Site located in Glenwood Landing, New York (the "Site", refer to Figure 1, Site Location Map). The field work, completed in July 2019 and December 2019, was performed in accordance with the New York State Department of Environmental Conservation (NYSDEC or the "Department") Division of Environmental Remediation (DER) Work Assignment No. D007620-47 Notice to Proceed dated April 30, 2019, the NYSDEC-approved Scope of Work (SOW) dated April 9, 2019, the NYSDEC-approved Supplemental Investigation Summary of Additional Scope of Services dated October 11, 2019, and NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation (DER-10). The objective of the SI activities was to determine the extent of residual sources of petroleum-related volatile organic compounds (VOCs) in soil, primarily ethylbenzene, toluene, and xylenes (ETX), detected in groundwater samples collected from extraction wells GX-2 and GX-7 and monitoring well WP-5A.

Work activities performed as part of the SI are described below. The methods implemented during the investigation were in accordance with the NYSDEC-approved generic Health and Safety Plan, Field Activities Plan, and Quality Assurance Project Plan (QAPP). Quality control samples, including matrix spike and matrix spike duplicates, were collected in accordance with the generic QAPP. Approximate sample locations and Investigation Areas 1 and 2 are shown on **Figures 2 and 3**.

Field Activities Completed

Aztech Technologies, Inc. (Aztech) was retained by TRC to complete the direct-push drilling. Prior to advancement of soil borings, Nova Geophysical Services (Nova) performed a utility clearance survey to identify subsurface infrastructure and clear each proposed soil boring location. The geophysical survey report is presented in **Attachment A**. A total of 13 soil borings in Investigation Area 1 and seven soil borings in Investigation Area 2 were advanced by Aztech using direct-push drilling techniques (DPT) during the first mobilization between July 8, 2019 and July 11, 2019. A total of seven soil borings in Investigation Area 1 and five soil borings in Investigation Area 2 were advanced by Aztech using DPT during the second mobilization between December 2, 2019 and December 4, 2019. Each soil boring was hand-cleared to 5 feet below ground surface (bgs) and then sampled continuously in 5-foot increments using a direct-push drill rig (Geoprobe® Series 6600) and Macro-Core® samplers to a maximum depth of 20 feet bgs. The samples were inspected and screened for indications of contamination [e.g., elevated photoionization detector (PID) readings, staining, odors, etc.]. Soils generally consisted of heterogeneous mixtures of silty sands with clay and gravel. Groundwater was generally encountered between 2.5 and 4 feet bgs. Soil boring logs are included in **Attachment B**.

An aliquot of soil from the sample exhibiting the greatest indications of potential impacts from each soil boring was analyzed using an Oil-In-SoilTM dye test. At least one additional aliquot of soil collected from each of the soil borings SB-105, SB-106, SB-115, SB-119, SB-210, and SB-211 was analyzed using an Oil-In-SoilTM dye test. The Oil-In-SoilTM dye test provides qualitative visual indications of the presence of non-aqueous phase liquid (NAPL) in soil. Photographs of each Oil-In-SoilTM dye test are presented in **Attachment C**.

Generally, two soil samples from each boring (with the exception of SB-114 – one sample, SB-204 – three samples, SB-211 – four samples, and SB-212 – one sample) were submitted for laboratory analysis for Target Compound List (TCL) VOCs via USEPA Method 8260. Selected for analysis from each boring were the interval exhibiting the greatest evidence of impacts and the apparent underlying clean interval. At two locations, SB-114 and SB-212, no evidence of impacts was observed and one soil sample from the interval directly above the saturated zone was submitted for analysis. Three soil samples were submitted from SB-204 and four soil samples were submitted for analysis from SB-211. Soil samples were containerized, and the containers were labeled, sealed, and placed in a chilled cooler for shipment to Eurofins TestAmerica Laboratories, Inc. (Eurofins). Eurofins is an Environmental Laboratory Approval

Program (ELAP)-certified laboratory approved by the New York State Department of Health (NYSDOH) located in Edison, NJ. Standard chain-of-custody procedures were followed. Boring identification numbers, depth intervals of samples selected for analysis, and the maximum PID measurement for each soil sample selected for analysis are presented below. PID measurements are also presented in **Table 1**.

Soil Boring Program Summary							
Soil Boring Identification Number	Analyzed Interval (ft. bgs)	Maximum PID Measurement (ppm)					
SB-101	4 – 5	198					
SB-101	8 – 9	3.2					
SB-102	4 – 5	155					
SD-102	14 – 15	0.7					
SB-103	4 – 5	27					
55 103	14 – 15	4.0					
SB-104	4 – 5	42					
	11 – 12	0.2					
SB-105	6 – 6.5	81					
	14 – 15	0.4					
SB-106	3.5 – 4.5	57					
	6 – 6.5	34					
SB-107	4 – 5	23.5					
	11 – 12	0					
SB-108	3 – 4	52					
	7 – 8	7.8					
SB-109	3 – 4	55					
	15 – 16	0					
SB-110	4-5	54					
	6.5 – 7	7.0					
SB-111	4-5	68					
	15 – 16	0					
SB-112	4.5 – 5 14.5 – 15	38					
	6 – 7	52					
SB-113	19 – 19.5	0					
	$\frac{19-19.3}{2-2.5}$	0.6					
SB-114	$\frac{2-2.5}{11-12^1}$	0.1					
	7 - 8	594					
SB-115	14.5 – 15	0					
	6.5 – 7.5	55					
SB-116	15 – 16	0					
	6.5 - 7.5	41					
SB-117	11.5 – 12.5	1.2					
	7 – 8	65					
SB-118	10 – 11	1.1					
GD 110	9 – 10	388					
SB-119	16 – 17	0					
SB-120	5-6	192					

Soil Boring Program Summary							
Soil Boring Identification Number	Analyzed Interval (ft. bgs)	Maximum PID Measurement (ppm)					
	13 – 14	0					
SB-201	5 – 6	126					
SD-201	14 – 15	0					
SB-202	6 – 7	43.4					
5D-202	9 – 10	0					
SB-203	5 – 6	84					
SD-203	13 – 14	4.0					
	5 – 6	338					
SB-204	10 – 11	6.7					
	19 - 20	0					
SB-205	5 – 6	19.7					
SB-203	10 – 11	11.2					
SB-206	5 – 6	71					
5B 200	8 – 9	0					
SB-207	7 – 8	51					
SB 207	11 – 12	0					
SB-208	5 – 7	120					
SB 200	14 – 15	10					
SB-209	5 – 7	855					
SB 20)	12 – 13	29					
SB-210	7 – 9	1,185					
55 210	14 – 15	29					
	10 – 11	> 2,000					
SB-211	13 – 14	> 2,000					
~~	14.5 – 15	170					
	19 – 20	2.6					
SB-212	1 – 3	0					
~2 2.2	10 ¹	0					

ft. bgs – feet below ground surface

Two drums of investigation-derived waste (IDW), limited to grossly contaminated soil, was staged on-Site. TRC will perform waste characterization sampling and schedule disposal of drums concurrent with a future waste pickup event at the Site, to be scheduled as part of Site operations, maintenance, and monitoring (OM+M) activities.

Data Summary

Validation of laboratory analytical data was performed in accordance with NYSDEC requirements, as well as the requirements for development of Data Usability Summary Reports (DUSRs) in DER-10. Soil analytical results were found to be valid and usable for decision-making purposes. Laboratory data packages are presented in **Attachment D**.

ppm – parts per million

¹ Soil sample was analyzed via Oil-In-Soil TM test but was not submitted for laboratory analysis.

The analytical results were compared to 6 NYCRR 375-6.8 Unrestricted Use (UU), Commercial Use (CU), and Protection of Groundwater (PGW) Soil Cleanup Objectives (SCOs) and are presented in **Table 3**. Acetone, a common laboratory contaminant, was detected at concentrations greater than the UUSCO and PGWSCO in 19 of the 65 soil samples submitted for analysis. Methylene chloride was detected at a concentration slightly greater than the UUSCO and PGWSCO in one soil samples. While methylene chloride has been historically detected at concentrations above the NYSDEC Standard for Class GA Water ("Class GA Value") in Site groundwater, it has not been detected in groundwater for over two years and is not considered a contaminant of concern (COC) for the SI.

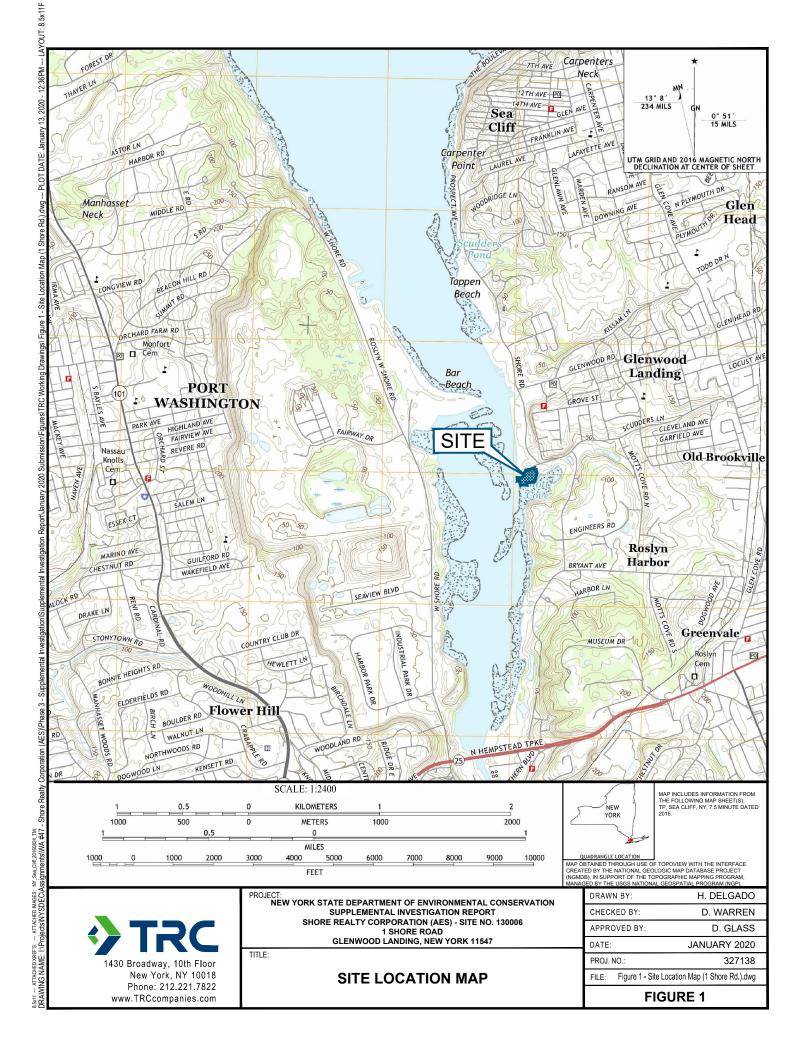
One or more ETX compounds were detected at concentrations greater than the PGWSCOs and/or UUSCOs in 18 of the 65 soil samples submitted for analysis. Total xylenes were detected at concentrations greater than the CUSCO in SB-204 (5-6) and SB-209 (5-7). **Table 2** presents a summary of field observations, Oil-In-SoilTM test results (and corresponding interpretations of the results) and the analytical laboratory results. Additionally, the results of the analyses of soil samples for ETX compounds are summarized on **Figures 2 and 3**. PID measurement and Oil-In-SoilTM results are also summarized on **Figures 2 and 3**. A geologic cross-section location map is shown on **Figure 4**. Geologic cross-sections, with PID screening results, ETX in soil concentrations and Oil-In-SoilTM test results, are shown on **Figures 5 through 8**. A summary of findings for each Investigation Area is presented below.

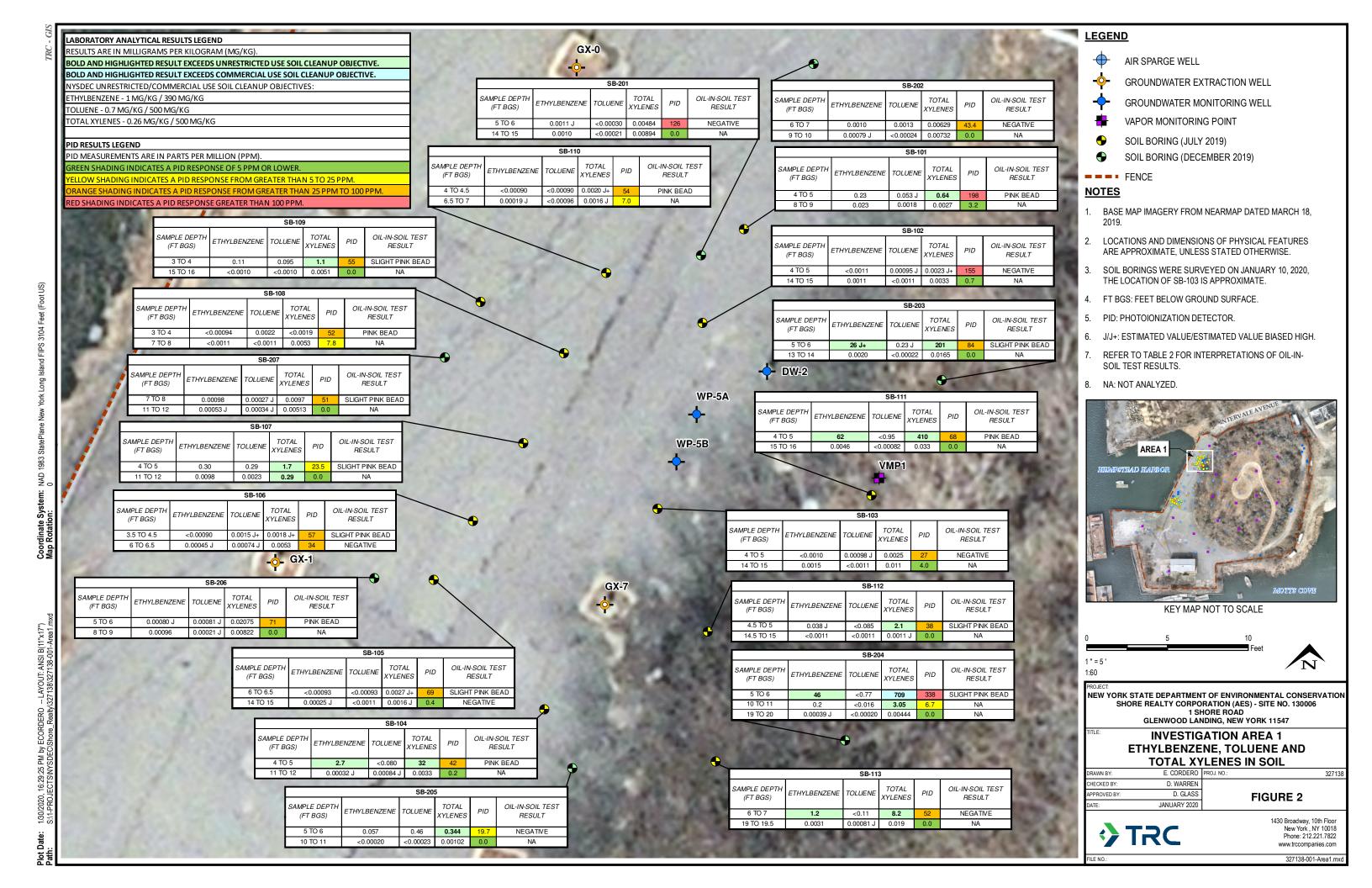
Investigation Area 1

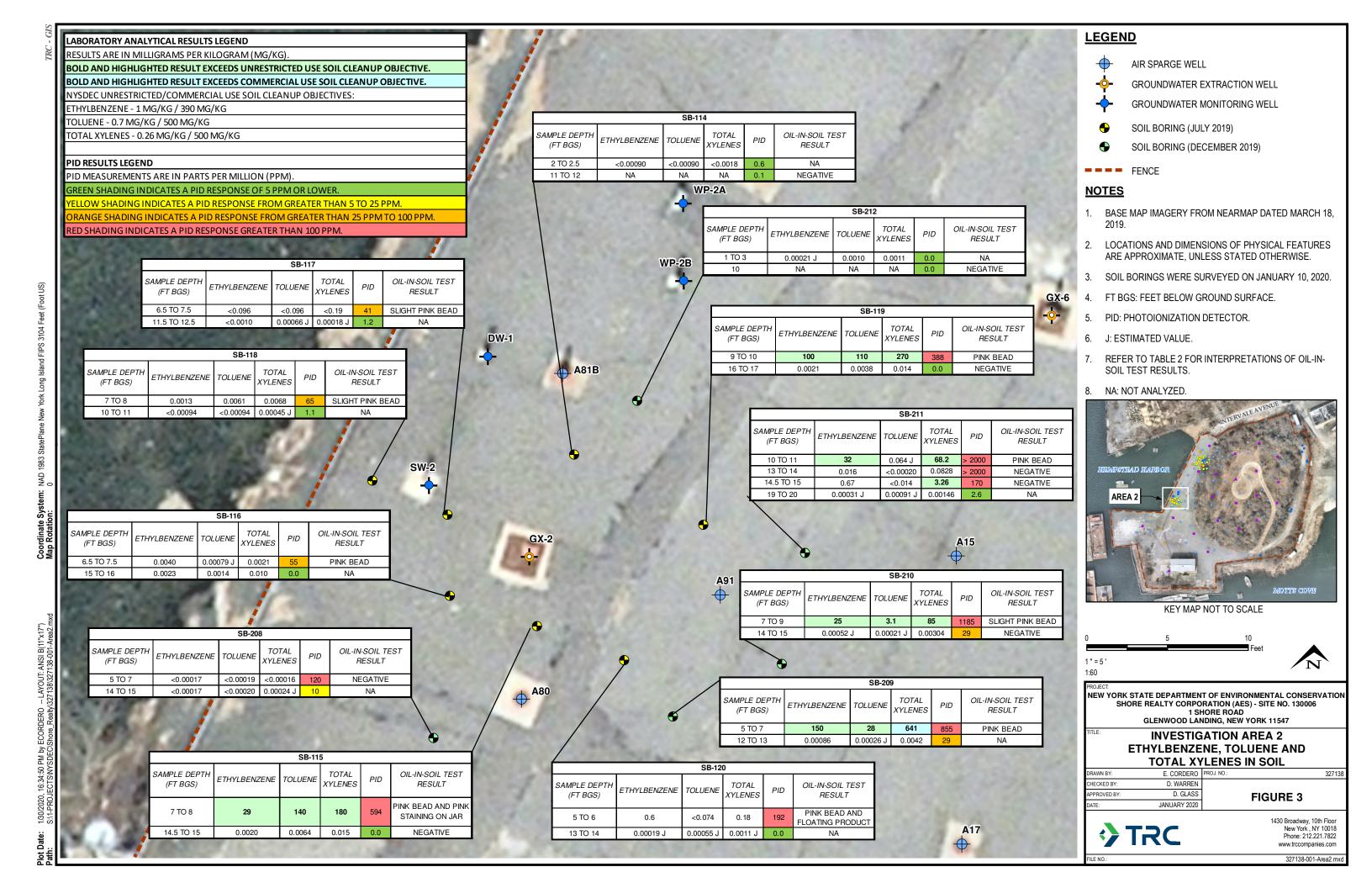
Evidence of petroleum-related impacts to soil were generally limited to between 3 and 8 feet bgs. The highest PID measurements were recorded during screening of soil recovered from SB-101, SB-102, and SB-204 between 4 to 6 feet bgs, in the northern and eastern portions of Investigation Area 1. Oil-In-SoilTM test results indicate evidence of impacts throughout Investigation Area 1. Ethylbenzene and/or total xylenes were detected at concentrations above UUSCOs in samples collected from 10 borings in Investigation Area 1. Total xylenes were detected at a concentration of 709 mg/kg, greater than the CUSCO of 500 mg/kg, in the soil sample collected from 5 to 6 feet bgs at SB-204. The highest total ETX concentrations were detected in samples collected from SB-104 [(4-5), 34.7 mg/kg], SB-111 [(4-5), 472 mg/kg], SB-113 [(6-7), 9.4 mg/kg], SB-203 [(5-6), 227.23 mg/kg)], and SB-204 [(5-6), 755 mg/kg] located east of monitoring well WP-5A or south of extraction well GX-7, and representing the most likely residual sources of impacts to groundwater in Area 1.

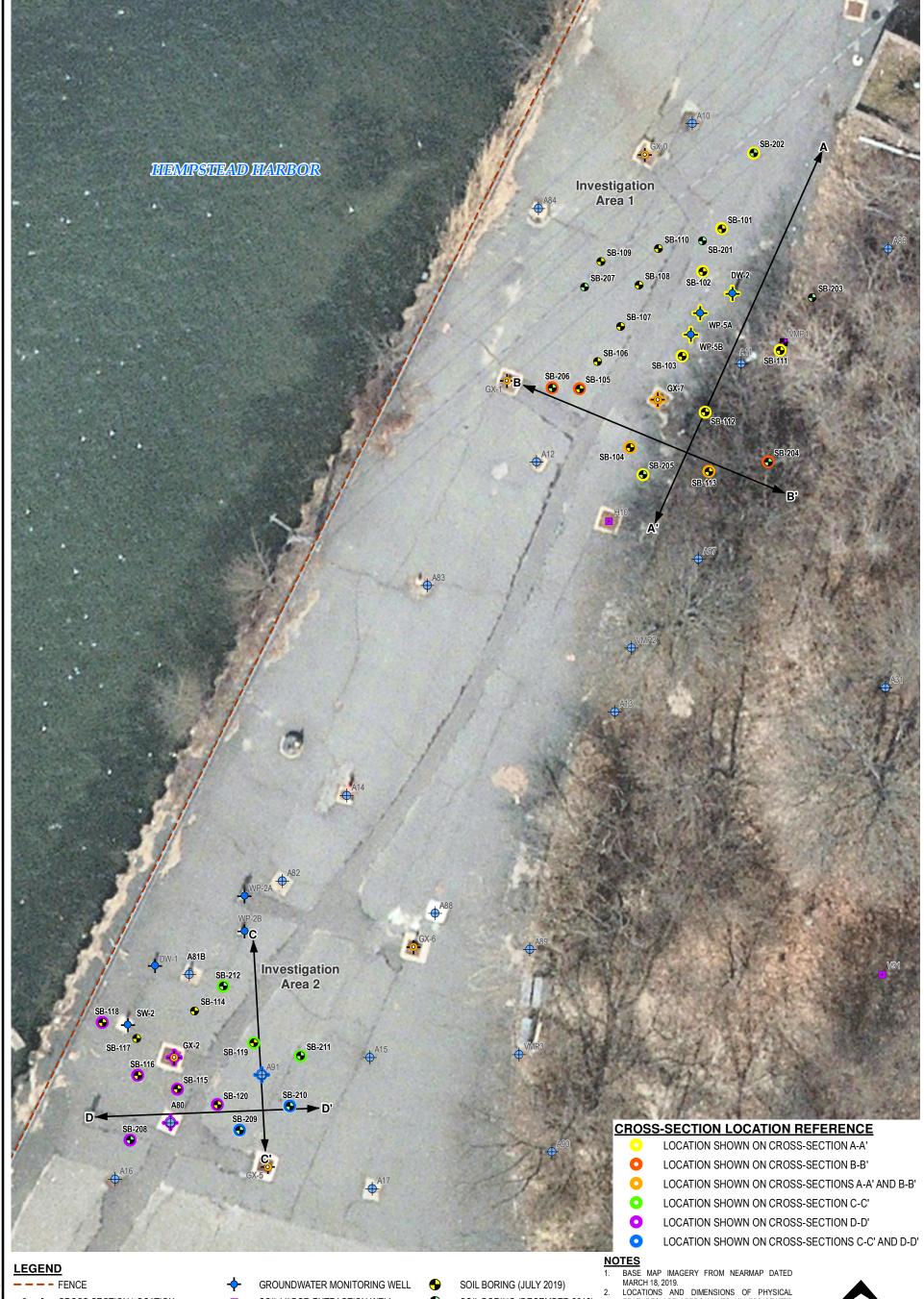
Investigation Area 2

The greatest evidence of petroleum impacts to soil were generally encountered between 5 and 15 feet bgs in Area 2. The highest PID measurements were recorded during screening of soil recovered from SB-209, SB-210, and SB-211, between 5 and 15 feet bgs, in the southern and eastern portions of Investigation Area 2. Oil-In-SoilTM test results indicate evidence of impacts throughout Investigation Area 2. The soil sample


collected from 5 to 6 feet bgs at SB-120 was saturated with NAPL. However, ETX compounds were not detected at elevated concentrations in the soil sample collected 5 to 6 feet bgs from SB-120, suggesting the encountered NAPL may be weathered and not a significant source of ETX impacts to groundwater. Total xylenes were detected at a concentration of 641 mg/kg, greater than the CUSCO of 500 mg/kg, in the sample collected from 5 to 7 feet bgs at SB-209. The highest total ETX concentrations were detected in samples collected from SB-115 [(7-8), 349 mg/kg], SB-119 [(9-10), 480 mg/kg], SB-209 [(5-7), 819 mg/kg], SB-210 [(7-9), 113.1 mg/kg], and SB-211 [(10-11), 100.264 mg/kg] located south or east of extraction well GX-2, and representing the most likely residual sources of impacts to groundwater in Area 2.


Next Steps


TRC understands that the likely preference will be to remediate the residual sources of ETX in groundwater at extraction wells GX-2 and GX-7 and monitoring well WP-5A via excavation and off-Site disposal. Upon request, TRC is prepared to provide recommendations for completing delineation of related impacts in support of implementing this or other potential remedial approaches at the Site.


FIGURES

TRC ENGINEERS, INC. JANUARY 2020

CROSS SECTION LOCATION

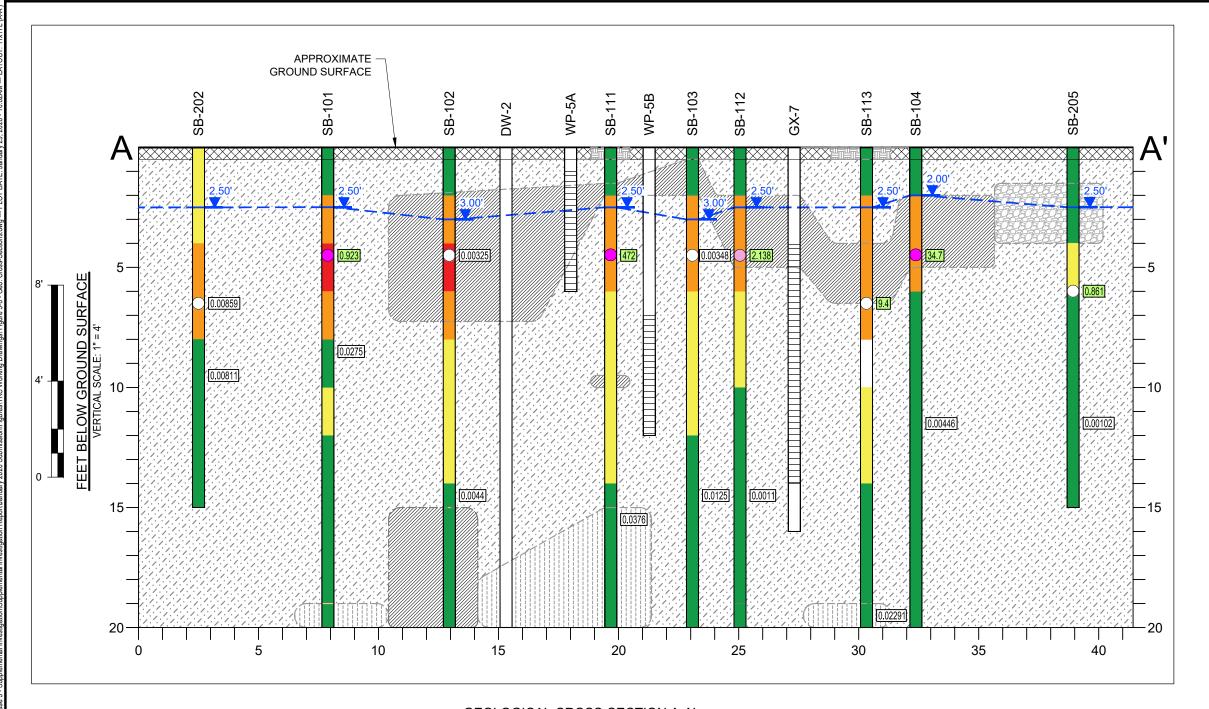
AIR SPARGE WELL

PROJECT:

- GROUNDWATER EXTRACTION WELL
- SOIL VAPOR EXTRACTION WELL

VAPOR MONITORING POINT

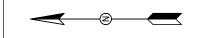
- SOIL BORING (DECEMBER 2019)
- FEATURES ARE APPROXIMATE, UNLESS STATED OTHERWISE.
- SOIL BORINGS WERE SURVEYED ON JANUARY 13, 2020; THE LOCATION OF SB-103 IS APPROXIMATE. FIGURE IS NOT TO SCALE.



CROSS-SECTION LOCATION MAP

IIILE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SHORE REALTY CORPORATION (AES) - SITE NO. 130006 1 SHORE ROAD **GLENWOOD LANDING, NEW YORK 11547**

FIGURE 4							
FILE:		327138-003.mxd					
PROJ. NO.:		327138					
DATE:		JANUARY 2020					
APPROVED BY:		D. GLASS					
CHECKED BY:		D. WARREN					
DRAWN BY:		E. CORDERO					



GEOLOGICAL CROSS-SECTION A-A' HORIZONTAL SCALE: 1" = 4'

NOTES:

- TO AID WITH VISUALIZATION AND SINCE CERTAIN BORINGS AND WELLS ARE OFFSET AND HAVE BEEN PROJECTED ONTO CROSS-SECTIONS, SPACING BETWEEN DATA POINTS DOES NOT MATCH ACTUAL FIELD CONDITIONS EXACTLY.
- SOIL BORING LOCATIONS AND ELEVATIONS WERE SURVEYED ON JANUARY 10, 2020, EXCEPT SB-103. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES AND SB-103 ARE APPROXIMATE.
- 3. BOUNDARIES BETWEEN SOIL TYPES ARE INFERRED.
- 4. ETX ETHYLBENZENE, TOLUENE, AND XYLENES.

- 5. MG/KG MILLIGRAMS PER KILOGRAM
- 6. PID PHOTOIONIZATION DETECTOR. THE MAXIMUM PID MEASUREMENT AT EACH DEPTH IS SHOWN.
- 7. PPM PARTS PER MILLION
- NO COLOR WITHIN SOIL BORING INDICATES NO PID MEASUREMENT DUE TO INSUFFICIENT RECOVERY.
- 9. NAPL NON-AQUEOUS PHASE LIQUID

LEGEND (SYMBOLS NOT TO SCALE):

- TOTAL ETX CONCENTRATION (MG/KG)
DETECTED IN SOIL.
LIGHT GREEN HIGHLIGHT INDICATES ETX
CONCENTRATION EXCEEDS THE
UNRESTRICTED USE SOIL CLEANUP
OBJECTIVE.

- PID RESPONSE OF 5 PPM OR LOWER

- PID RESPONSE FROM GREATER THAN 5 PPM TO 25 PPM

- PID RESPONSE FROM GREATER THAN 25 PPM TO 100 PPM

- PID RESPONSE GREATER THAN 100 PPM

ASPHALT

TOPSOIL

SAND

SAND WITH SILT AND CLAY

CLAY LUMPS / BANDS WITH SAND

CLAY

GRAVEL

APPROXIMATE GROUNDWATER TABLE SURFACE

WELL SCREEN

OIL-IN-SOIL RESULTS LEGEND:

SATURATED WITH NAPL

POSITIVE INDICATION OF NAPL

SLIGHT INDICATION OF NAPL

NO INDICATION OF NAPL

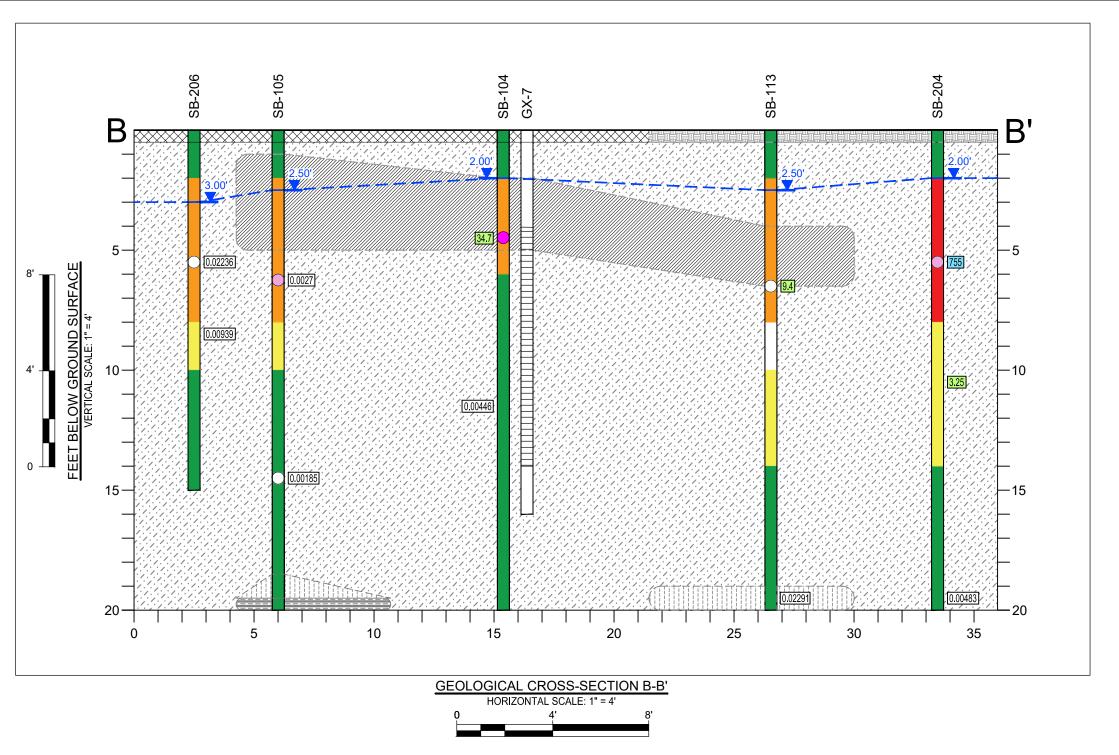
SHEET SIZE: 11" BY 17"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SUPPLEMENTAL INVESTIGATION REPORT SHORE REALTY CORPORATION (AES) - SITE NO. 130006

1 SHORE ROAD

GLENWOOD LANDING, NEW YORK 11547

TITLE:

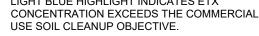

GEOLOGICAL CROSS-SECTION A-A'

DRAWN BY:	H. DELGADO	PROJ NO.: 327138
CHECKED BY:	D. WARREN	
APPROVED BY:	D. GLASS	FIGURE 5

1430 Broadway, 10th Floor New York, NY 10018 Phone: 212.221.7822 www.TRCcompanies.com

Figure 5-8 - Geo. Cross-Sections.dwg

NOTES:


- TO AID WITH VISUALIZATION AND SINCE CERTAIN BORINGS AND WELLS ARE OFFSET AND HAVE BEEN PROJECTED ONTO CROSS-SECTIONS, SPACING BETWEEN DATA POINTS DOES NOT MATCH ACTUAL FIELD CONDITIONS EXACTLY.
- 2. SOIL BORING LOCATIONS AND ELEVATIONS WERE SURVEYED ON JANUARY 10, 2020. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES ARE APPROXIMATE.
- 3. BOUNDARIES BETWEEN SOIL TYPES ARE INFERRED.
- 4. ETX ETHYLBENZENE, TOLUENE, AND XYLENES.
- 5. MG/KG MILLIGRAMS PER KILOGRAM

- 6. PID PHOTOIONIZATION DETECTOR. THE MAXIMUM PID MEASUREMENT AT EACH DEPTH IS SHOWN.
- 7. PPM PARTS PER MILLION
- NO COLOR WITHIN SOIL BORING INDICATES NO PID MEASUREMENT DUE TO INSUFFICIENT RECOVERY.
- 9. NAPL NON-AQUEOUS PHASE LIQUID

LEGEND (SYMBOLS NOT TO SCALE):

0.002

- TOTAL ETX CONCENTRATION (MG/KG)
DETECTED IN SOIL.
LIGHT GREEN HIGHLIGHT INDICATES ETX
CONCENTRATION EXCEEDS THE
UNRESTRICTED USE SOIL CLEANUP
OBJECTIVE.
LIGHT BLUE HIGHLIGHT INDICATES ETX

- PID RESPONSE OF 5 PPM OR LOWER

- PID RESPONSE FROM GREATER THAN 5 PPM TO 25 PPM

- PID RESPONSE FROM GREATER THAN 25 PPM TO 100 PPM

- PID RESPONSE GREATER THAN 100 PPM

ASPHALT

TOPSOIL

SAND

SAND WITH SILT AND CLAY

CLAY LUMPS / BANDS WITH SAND

CLAY

GRAVEL

2.50° APPROXIMATE GROUNDWATER TABLE SURFACE

WELL SCREEN

OIL-IN-SOIL RESULTS LEGEND:

SATURATED WITH NAPL

POSITIVE INDICATION OF NAPL

SLIGHT INDICATION OF NAPL

NO INDICATION OF NAPL

SHEET SIZE: 11" BY 17"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
SUPPLEMENTAL INVESTIGATION REPORT
SHORE REALTY CORPORATION (AES) - SITE NO. 130006
1 SHORE ROAD

GLENWOOD LANDING, NEW YORK 11547

TITLE:

GEOLOGICAL CROSS-SECTION B-B'

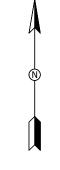
DRAWN BY:	H. DELGADO	PROJ NO.: 33	27138
CHECKED BY:	D. WARREN		
APPROVED BY:	D. GLASS	FIGURE 6	

1430 Broadway, 10th Floor New York, NY 10018 Phone: 212.221.7822 www.TRCcompanies.com

Figure 5-8 - Geo. Cross-Sections.dwg

GEOLOGICAL CROSS-SECTION C-C' HORIZONTAL SCALE: 1" = 4'

NOTES:


- TO AID WITH VISUALIZATION AND SINCE CERTAIN BORINGS AND WELLS ARE OFFSET AND HAVE BEEN PROJECTED ONTO CROSS-SECTIONS, SPACING BETWEEN DATA POINTS DOES NOT MATCH ACTUAL FIELD CONDITIONS EXACTLY.
- 2. SOIL BORING LOCATIONS AND ELEVATIONS WERE SURVEYED ON JANUARY 10, 2020. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES ARE APPROXIMATE.
- 3. BOUNDARIES BETWEEN SOIL TYPES ARE INFERRED.
- 4. ETX ETHYLBENZENE, TOLUENE, AND XYLENES.
- 5. MG/KG MILLIGRAMS PER KILOGRAM

- 6. PID PHOTOIONIZATION DETECTOR. THE MAXIMUM PID MEASUREMENT AT EACH DEPTH IS SHOWN.
- 7. PPM PARTS PER MILLION
- 8. ND NOT DETECTED
- NO COLOR WITHIN SOIL BORING INDICATES NO PID MEASUREMENT DUE TO INSUFFICIENT RECOVERY.
- 10. NAPL NON-AQUEOUS PHASE LIQUID

LEGEND (SYMBOLS NOT TO SCALE):

0.0

- TOTAL ETX CONCENTRATION (MG/KG)
DETECTED IN SOIL.
LIGHT GREEN HIGHLIGHT INDICATES ETX
CONCENTRATION EXCEEDS THE
UNRESTRICTED USE SOIL CLEANUP
OBJECTIVE.
LIGHT BLUE HIGHLIGHT INDICATES ETX
CONCENTRATION EXCEEDS THE COMMERCIAL

- PID RESPONSE OF 5 PPM OR LOWER

USE SOIL CLEANUP OBJECTIVE.

- PID RESPONSE FROM GREATER THAN 5 PPM TO 25 PPM

- PID RESPONSE FROM GREATER THAN 25 PPM TO 100 PPM

- PID RESPONSE GREATER THAN 100 PPM

ASPHALT ASPHALT

SAND

SAND WITH SILT AND CLAY

CLAY LUMPS / BANDS WITH SAND

CLAY

GRAVE

APPROXIMATE GROUNDWATER TABLE SURFACE

WELL SCREEN

OIL-IN-SOIL RESULTS LEGEND:

SATURATED WITH NAPL

POSITIVE INDICATION OF NAPL

SLIGHT INDICATION OF NAPL

NO INDICATION OF NAPL

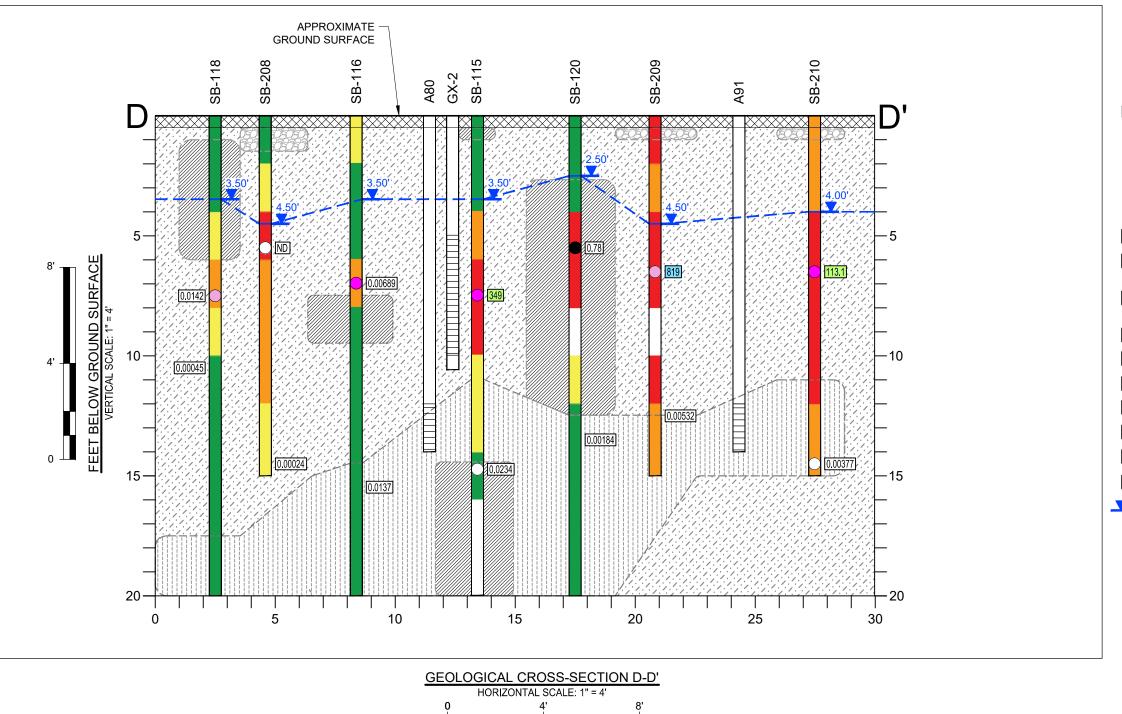
SHEET SIZE: 11" BY 17"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SUPPLEMENTAL INVESTIGATION REPORT
SHORE REALTY CORPORATION (AES) - SITE NO. 130006
1 SHORE ROAD

GLENWOOD LANDING, NEW YORK 11547

TTLE:

GEOLOGICAL CROSS-SECTION C-C'


DRAWN BY:	H. DELGADO	PROJ NO.: 327138
CHECKED BY:	D. WARREN	
APPROVED BY:	D. GLASS	FIGURE 7
APPROVED B1.	D. GLASS	FIGURE 1

1430 Broadway, 10th Floor New York, NY 10018 Phone: 212.221.7822 www.TRCcompanies.com

Figure 5-8 - Geo. Cross-Sections.dwg

.

NOTES:

- TO AID WITH VISUALIZATION AND SINCE CERTAIN BORINGS AND WELLS ARE OFFSET AND HAVE BEEN PROJECTED ONTO CROSS-SECTIONS, SPACING BETWEEN DATA POINTS DOES NOT MATCH ACTUAL FIELD CONDITIONS EXACTLY.
- 2. SOIL BORING LOCATIONS AND ELEVATIONS WERE SURVEYED ON JANUARY 10, 2020. LOCATIONS AND DIMENSIONS OF PHYSICAL FEATURES ARE APPROXIMATE.
- 3. BOUNDARIES BETWEEN SOIL TYPES ARE INFERRED.
- 4. ETX ETHYLBENZENE, TOLUENE, AND XYLENES.
- 5. MG/KG MILLIGRAMS PER KILOGRAM

- 6. PID PHOTOIONIZATION DETECTOR. THE MAXIMUM PID MEASUREMENT AT EACH DEPTH IS SHOWN.
- 7. PPM PARTS PER MILLION.
- 8. NO COLOR WITHIN SOIL BORING INDICATES NO PID MEASUREMENT DUE TO INSUFFICIENT RECOVERY.
- 9. NAPL NON-AQUEOUS PHASE LIQUID.
- 10. ND NOT DETECTED.

LEGEND (SYMBOLS NOT TO SCALE):

0.0142 - TOTAL ETX CONCENTRATION (MG/KG) DETECTED IN SOIL. LIGHT GREEN HIGHLIGHT INDICATES ETX CONCENTRATION EXCEEDS THE UNRESTRICTED USE SOIL CLEANUP OBJECTIVE. LIGHT BLUE HIGHLIGHT INDICATES ETX CONCENTRATION EXCEEDS THE COMMERCIAL

USE SOIL CLEANUP OBJECTIVE. - PID RESPONSE OF 5 PPM OR LOWER

- PID RESPONSE FROM GREATER THAN 5 PPM

- PID RESPONSE FROM GREATER THAN 25 PPM TO 100 PPM

- PID RESPONSE GREATER THAN 100 PPM

ASPHALT

SAND

SAND WITH SILT AND CLAY

CLAY LUMPS / BANDS WITH SAND

CLAY

GRAVEL

APPROXIMATE GROUNDWATER TABLE SURFACE

WELL SCREEN

OIL-IN-SOIL RESULTS LEGEND:

- SATURATED WITH NAPL
- POSITIVE INDICATION OF NAPL
- SLIGHT INDICATION OF NAPL
- NO INDICATION OF NAPL

SHEET SIZE: 11" BY 17"

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SUPPLEMENTAL INVESTIGATION REPORT SHORE REALTY CORPORATION (AES) - SITE NO. 130006 1 SHORE ROAD
GLENWOOD LANDING, NEW YORK 11547

GEOLOGICAL CROSS-SECTION D-D'

DRAWN BY:	H. DELGADO	PROJ NO.: 327	138
CHECKED BY:	D. WARREN		
APPROVED BY:	D. GLASS	FIGURE 8	

1430 Broadway, 10th Floor New York, NY 10018 Phone: 212.221.7822 www.TRCcompanies.com

Figure 5-8 - Geo. Cross-Sections.dwo

TABLES

TRC ENGINEERS, INC. JANUARY 2020

Table 1 NYSDEC

	PID Measurements from Borings in Investigation Area 1										
Sample Location:	SB-101	SB-102	SB-103	SB-104	SB-105	SB-106	SB-107	SB-108	SB-109	SB-110	
Screening Depth (ft bgs)					PID Measure	ment (ppm)					
0 - 2	2.2	0.1	0.0	0.6	0.6	0.3	0.0	1.8	11.6	1.2	
2 - 4	70	75	25	42	69	41	0.4	52	55	54	
4 - 6	198	155	27	42	81	57	23.5	20	47	54	
6 - 8	31	65	17	3.2	81	34	4.2	7.8	34	7.0	
8 - 10	3.2	20.6	22	3.2	18	23	NM	7.8	NM	7.0	
10 - 12	7	5.3	7.2	0.2	1.8	7.8	0.0	0.0	24	4.9	
12 - 14	4.4	5.3	4.0	0.0	1.8	11.3	0.0	0.0	NM	4.5	
14 - 16	0.0	0.7	4.0	0.0	0.4	0.0	0.0	0.0	0.0	2.3	
16 - 18	0.0	0.0	2.4	0.0	0.0	0.0	0.0	0.0	0.0	1.2	
18 - 20	4.1	0.0	0.7	0.0	0.0	3.9	0.0	3.6	0.0	3.5	

Notes:

The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface.

ppm - parts per million.

NM - No measurement due to insufficient recovery.

Shading indicates a PID response of 5 ppm or lower.

Shading indicates a PID response from greater than 5 to 25 ppm.

Shading indicates a PID response from greater than 25 to 100 ppm.

shading indicates a PID response greater than 100 ppm

TRC ENGINEERS, INC.

Table 1 NYSDEC

PID Measurements from Borings in Investigation Area 1										
SB-111	SB-112	SB-113	SB-201	SB-202	SB-203	SB-204	SB-205	SB-206	SB-207	
				PID Measure	ment (ppm)					
0.1	1.0	0.0	11.3	6.0	35	0.0	0.0	4.8	5.3	
50	38	38	75	18	76	119	0.0	49	38	
68	38	44	126	37.5	84	338	19.7	71	21	
11.3	11	52	126	43.4	11.3	338	1.2	71	51	
6.8	8.0	NM	8.0	0.0	11.3	16	1.2	0.0	NM	
5.2	2.8	7.6	3.6	0.0	3.6	6.7	0.0	0.0	0.0	
5.2	2.8	7.6	0.0	0.0	0.0	6.7	0.0	0.0	0.0	
0.0	0.0	4.0	0.0	0.0	0.0	3.1	0.0	0.0	0.0	
0.0	0.1	4.0				3.1				
0.0	0.0	0.0				0.0				
	0.1 50 68 11.3 6.8 5.2 5.2 0.0	0.1 1.0 50 38 68 38 11.3 11 6.8 8.0 5.2 2.8 5.2 2.8 0.0 0.0 0.0 0.1	SB-111 SB-112 SB-113 0.1 1.0 0.0 50 38 38 68 38 44 11.3 11 52 6.8 8.0 NM 5.2 2.8 7.6 5.2 2.8 7.6 0.0 0.0 4.0 0.0 0.1 4.0	SB-111 SB-112 SB-113 SB-201 0.1 1.0 0.0 11.3 50 38 38 75 68 38 44 126 11.3 11 52 126 6.8 8.0 NM 8.0 5.2 2.8 7.6 3.6 5.2 2.8 7.6 0.0 0.0 0.0 4.0 0.0 0.0 0.1 4.0 0.0	SB-111 SB-112 SB-113 SB-201 SB-202 PID Measures 0.1 1.0 0.0 11.3 6.0 50 38 38 75 18 68 38 44 126 37.5 11.3 11 52 126 43.4 6.8 8.0 NM 8.0 0.0 5.2 2.8 7.6 3.6 0.0 5.2 2.8 7.6 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.1 4.0 0.0 0.0	SB-111 SB-112 SB-113 SB-201 SB-202 SB-203 PID Measurement (ppm) 0.1 1.0 0.0 11.3 6.0 35 50 38 38 75 18 76 68 38 44 126 37.5 84 11.3 11 52 126 43.4 11.3 6.8 8.0 NM 8.0 0.0 11.3 5.2 2.8 7.6 3.6 0.0 3.6 5.2 2.8 7.6 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.1 4.0 0.0 0.0 0.0	SB-111 SB-112 SB-113 SB-201 SB-202 SB-203 SB-204 PID Measurement (ppm) 0.1 1.0 0.0 11.3 6.0 35 0.0 50 38 38 75 18 76 119 68 38 44 126 37.5 84 338 11.3 11 52 126 43.4 11.3 338 6.8 8.0 NM 8.0 0.0 11.3 16 5.2 2.8 7.6 3.6 0.0 3.6 6.7 5.2 2.8 7.6 0.0 0.0 0.0 6.7 0.0 0.0 4.0 0.0 0.0 0.0 3.1 0.0 0.1 4.0 0.0 0.0 0.0 3.1	SB-111 SB-112 SB-113 SB-201 SB-202 SB-203 SB-204 SB-205 PID Measurement (ppm) 0.1 1.0 0.0 11.3 6.0 35 0.0 0.0 50 38 38 75 18 76 119 0.0 68 38 44 126 37.5 84 336 19.7 11.3 11 52 126 43.4 11.3 336 1.2 6.8 8.0 NM 8.0 0.0 11.3 16 1.2 5.2 2.8 7.6 3.6 0.0 3.6 6.7 0.0 5.2 2.8 7.6 0.0 0.0 0.0 6.7 0.0 0.0 0.0 4.0 0.0 0.0 0.0 3.1 0.0 0.0 0.1 4.0 0.0 0.0 0.0 3.1 0.0	SB-111 SB-112 SB-113 SB-201 SB-202 SB-203 SB-204 SB-205 SB-206 PID Measurement (ppm) 0.1 1.0 0.0 11.3 6.0 35 0.0 0.0 4.8 50 38 38 75 18 76 119 0.0 49 68 38 44 126 37.5 84 338 19.7 71 11.3 11 52 126 43.4 11.3 338 12 71 6.8 8.0 NM 8.0 0.0 11.3 16 1.2 0.0 5.2 2.8 7.6 3.6 0.0 3.6 6.7 0.0 0.0 5.2 2.8 7.6 0.0 0.0 0.0 6.7 0.0 0.0 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.1 4.0 0.0 0.0 3.1	

Notes:

The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface.

ppm - parts per million.

NM - No measurement due to insufficient recovery.

Shading indicates a PID response of 5 ppm or lower.

Shading indicates a PID response from greater than 5 to 25 ppm.

Shading indicates a PID response from greater than 25 to 100 ppm.

Shading indicates a PID response greater than 100 ppm

TRC ENGINEERS, INC. 2 OF 4

Table 1 **NYSDEC**

	PID Readings from Borings in Investigation Area 2									
Sample Location:	SB-114	SB-115	SB-116	SB-117	SB-118	SB-119				
Screening Depth (ft bgs)	PID Measurement (ppm)									
0 - 2	0.3	0.3	6.1	0.0	0.1	0.8				
2 - 4	0.6	1.2	0.3	0.0	0.6	22.5				
4 - 6	0.4	38	1.2	6.5	11.5	22.5				
6 - 8	0.0	594	55	41	65	NM				
8 - 10	NM	111	2.4	14.9	11.6	338				
10 - 12	0.1	22	0.8	1.2	1.1	14.6				
12 - 14	0.4	11.5	2.7	0.0	0.0	NM				
14 - 16	0.0	0.0	0.0	0.0	0.0	13				
16 - 18	0.0	NM	0.0	0.0	0.0	0.0				
18 - 20	0.0	NM	0.0	0.0	0.0	0.0				

Notes:

The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface.

ppm - parts per million.

NM - No measurement due to insufficient recovery.

Shading indicates a PID response of 5 ppm or lower.

Shading indicates a PID response from greater than 5 to 25 ppm.

Shading indicates a PID response from greater than 25 to 100 ppm.
Shading indicates a PID response greater than 100 ppm.

TRC ENGINEERS, INC. 3 OF 4

Table 1 **NYSDEC**

		PID Readings fro	m Borings in Invest	tigation Area 2		
Sample Location:	SB-120	SB-208	SB-209	SB-210	SB-211	SB-212
Screening Depth (ft bgs)			PID Measure	ement (ppm)		
0 - 2	0.0	2.0	120	38	11	0.0
2 - 4	0.6	6.5	38	38	7.0	0.0
4 - 6	192	120	180	1,185	388	0.0
6 - 8	116	85	855	1,185	388	NM
8 - 10	NM	71	NM	1,185	NM	NM
10 - 12	14.6	35	168	175	> 2,000	0.0
12 - 14	0.0	10	29	29	> 2,000	0.0
14 - 16	0.0	10	45	29	170	0.0
16 - 18	0.0				129	
18 - 20	0.0				2.6	
18 - 20	0.0				2.6	

The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface.

ppm - parts per million.

NM - No measurement due to insufficient recovery.

Shading indicates a PID response of 5 ppm or lower.

Shading indicates a PID response from greater than 5 to 25 ppm. Shading indicates a PID response from greater than 25 to 100 ppm.

Shading indicates a PID response greater than 100 ppm

TRC ENGINEERS, INC. 4 OF 4

Shore Realty Corporation (AES) - Site No. 130006

1 Shore Road, Glenwood Landing, New York 11547

Summary of Laboratory Data, Oil-In-Soil Test Results, and Field Observations

Soil Boring ID	DTW (ft bgs)	Sample Depth Interval (ft bgs)	Soil Color and Type	Total ETX Concentration (mg/kg)	PID (ppm)	Oil-In-Soil Result	Interpretation of Oil-In-Soil Results
				INVESTIGATI	ON AREA	.1	
SB-101	2.5	4 to 5	Dark gray fine to medium sand, trace silt and gravel, stained	0.923	198	Pink bead	Positive indication of NAPL
SB-102	3	4 to 5	Gray fine sand and silt with clay, stained	0.00325	155	Negative	No indication of NAPL
SB-103	3	4 to 5	Gray to brown fine to medium sand and gravel	0.00348	27	Negative	No indication of NAPL
SB-104	2	4 to 5	Dark gray to brown sand, clay and silt, trace gravel	34.7	42	Pink bead	Positive indication of NAPL
SB-105	2.5	6 to 6.5	Dark brown fine to medium sand, trace silt, stained	0.0027	81	Slight pink bead	Slight indication of NAPL
GB 100	2.0	14 to 15	Dark gray fine to medium sand with clay and silt	0.00185	0.4	Negative	No indication of NAPL
SB-106	2.5	3.5 to 4.5	Dark gray fine sand, clay and silt and fine gravel, stained	0.0033	57	Slight pink bead	Slight indication of NAPL
		6-6.5	Dark gray medium to coarse sand, fine gravel, stained	0.00649	34	Negative	No indication of NAPL
SB-107	2	4 to 5	Dark gray fine sand	2.3	23.5	Slight pink bead	Slight indication of NAPL
SB-108	2.5	3 to 4	Gray fine sand, clay and silt stained	0.0022	52	Pink bead	Positive indication of NAPL
SB-109	2.5	3 to 4	Dark gray fine to medium sand, clay and silt, stained	1.3	55	Slight pink bead	Slight indication of NAPL
SB-110	2.5	4 to 4.5	Dark gray fine sand, clay and silt, stained	0.002	54	Pink bead	Positive indication of NAPL
SB-111	2.5	4 to 5	Dark brown/gray fine to medium sand, trace silt, stained	472	68	Pink bead	Positive indication of NAPL
SB-112	2.5	4.5 to 5	Dark gray/brown fine to medium sand with clay and silt, trace coarse gravel, stained	2.14	38	Slight pink bead	Slight indication of NAPL
SB-113	2.5	6 to 7	Light to dark gray fine to medium sand with clay and silt	9.4	52	Negative	No indication of NAPL
SB-201	3	5 to 6	Brown to gray coarse to medium sand, sea shells, trace fine gravel	0.00594	126	Negative	No indication of NAPL
SB-202	2.5	6 to 7	Grayish brown fine to medium sand, trace fine gravel, sea shells	0.00859	43.4	Negative	No indication of NAPL
SB-203	3	5 to 6	Brown fine to medium sand, little fine gravel, organic material	227.23	84	Slight pink bead	Slight indication of NAPL
SB-204	2	5 to 6	Dark gray to black fine sand	755	338	Slight pink bead	Slight indication of NAPL
SB-205	2.5	5 to 6	Dark gray, fine sand	0.861	19.7	Negative	No indication of NAPL
SB-206	3	5 to 6	Dark gray fine to medium sand, little silt, sea shells	0.02236	71	Negative	No indication of NAPL
SB-207	2.5	7 to 8	Gray fine sand	0.01095	51	Slight pink bead	Slight indication of NAPL

Notes

DTW - Depth to water

ETX - Ethylbenzene, toluene, and xylenes

mg/kg - Milligrams per kilogram

PID - Photoionization detector. The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface

ppm - Parts per million

NM - No measurement due to insufficient recovery

SCO - Soil Cleanup Objective

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

Shading indicated a PID response of 5 ppm or lowe

Shading indicates a PID response from greater than 5 to 25 ppm.

Shading indicates a PID response from greater than 25 to 100 ppm.

Shading indicates a PID response greater than 100 ppm.

TRC ENGINEERS, INC. 1 OF 2

Shore Realty Corporation (AES) - Site No. 130006

1 Shore Road, Glenwood Landing, New York 11547

Summary of Laboratory Data, Oil-In-Soil Test Results, and Field Observations

Soil Boring ID	DTW (ft bgs)	Sample Depth Interval (ft bgs)	Soil Color and Type	Total ETX Concentration (mg/kg)	PID (ppm)	Oil-In-Soil Result	Interpretation of Oil-In-Soil Results
				INVESTIGATI	ON AREA	. 2	
SB-114	3	11 to 12	Dark gray medium sand, trace silt and gravel	NA	0.1	Negative	No indication of NAPL
SB-115	3.5	7 to 8	Dark gray medium to coarse sand, clay and gavel	349	594	Pink bead and pink staining on jar	Positive indication of NAPL
OB-110	0.0	14.5 to 15	Yellow coarse to very coarse sand.	0.0234	0.0	Negative	No indication of NAPL
SB-116	3.5		Dark gray medium to coarse sand, trace silt and gravel, stained	0.00689	55	Pink bead	Positive indication of NAPL
SB-117	3.5	6.5 to 7.5	Dark gray medium sand with clay an fine to medium gravel, stained	ND	41	Slight pink bead	Slight indication of NAPL
SB-118	3.5	7 to 8	Dark brown medium to coarse sand, trace fine gravel	0.0142	65	Slight pink bead	Slight indication of NAPL
SB-119	4	9 to 10	Gray fine to medium sand, trace silt and gravel	480	338	Pink bead	Positive indication of NAPL
l		16 to 17	Yellow fine to medium Sand	0.0199	0.0	Negative	No indication of NAPL
SB-120	2.5		Gray - fine to medium sand, trace gravel, stained, saturated with NAPL	0.78	192	Pink bead and floating product	Saturated with NAPL
SB-208	4.5	5 to 7	Gray medium to coarse sand	ND	120	Negative	No indication of NAPL
SB-209	4.5	5 to 7	Light brown to gray fine to medium sand, little fine gravel	819	855	Pink bead	Positive indication of NAPL
SB-210	4	7 to 9	Dark gray fine to medium sand, trace fine gravel and few seashells	113.1	1,185	Slight pink bead	Slight indication of NAPL
		14 to 15	Red brown to gray fine sand, clayey patches	0.00377	29	Negative	No indication of NAPL
		10 to 11	Dark gray fine to medium sand	100.2640	>2,000	Pink bead	Positive indication of NAPL
SB-211	4	13 to 14	Yellow-brown to gray fine to medium sand, little clayey patches	0.0988	>2,000	Negative	No indication of NAPL
		14.5 to 15	Gray clay, medium silt	3.93	170	Negative	No indication of NAPL
SB-212	3	1 to 3	Grayish brown fine sand	0.00231	0.0	Negative	No indication of NAPL

Notes DTW - Depth to water

ETX - Ethylbenzene, toluene, and xylenes

mg/kg - Milligrams per kilogram

PID - Photoionization detector. The maximum PID measurement from each screening depth is presented in this table.

ft bgs - Feet below ground surface

ppm - Parts per million

NM - No measurement due to insufficient recovery

SCO - Soil Cleanup Objective

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

Shading indicated a PID response of 5 ppm or lower.

Shading indicates a PID response from greater than 5 to 25 ppm.

Shading indicates a PID response from greater than 25 to 100 ppm.

Shading indicates a PID response greater than 100 ppm

TRC ENGINEERS, INC. 2 OF 2

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

												INV	ESTIGATI	ON AREA 1								
			SAMPLE NAME	SR-SO-SB-10	1(4-5)	SR-SO-SB-10	1(8-9)	SR-SO-SB-	102(4-5)	SR-SO-SB-102	2(14-15)	SR-SO-SB-10		SR-SO-SB-103(14-15)	SR-SO-SB-104	(4-5)	SR-SO-SB-104(11-12)	SR-SO-SB-105	5 (6-6.5)	SR-SO-SB-105 (14-15)
			ORY SAMPLE ID	460-186425		460-186425	i-8	460-1864	. ,	460-186425	` /	460-186425	-13	460-186425-		460-186195-		460-186195-		460-18629		460-186298-8
			DEPTH (FT BGS)	4-5 FT BC	iS	8-9 FT BG	S	4-5 FT I	BGS	14-15 FT E	BGS	4-5 FT BG	iS	14-15 FT BC	GS	4-5 FT BGS	S	11-12 FT BO	GS	6-6.5 FT E	GS	14-15 FT BGS
			AMPLING DATE	7/11/2019		7/11/2019		7/11/20		7/11/201		7/11/2019		7/11/2019		7/9/2019		7/9/2019		7/10/201		7/10/2019
			UNITS	mg/kg		mg/kg		mg/k		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg
VOLATILE ORGANIC COMPOUNDS (VOCs)	NYSDEC Unrestricted Use SCO	NYSDEC Commercial Use SCO	NYSDEC Protection of Groundwater SCO	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q
1.1.1-Trichloroethane	0.68	500	0.68	0.096	U	0.0010	U	0.0011	U *	0.0011	U	0.0010	U*	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U*
1,1,2,2-Tetrachloroethane	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,1,2-Trichloro-1,2,2-trifluoroethane	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,1,2-Trichloroethane	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,1-Dichloroethane	0.27	240	0.27	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U*	0.0011 U
1,1-Dichloroethene	0.33	500	0.33	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2,3-Trichlorobenzene	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2,4-Trichlorobenzene	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2-Dibromo-3-Chloropropane	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2-Dichlorobenzene	1.1	500	1.1	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2-Dichloroethane	0.02	30	0.02	0.096	U	0.0010	U	0.0011	U*	0.0011	U	0.0010	U*	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,2-Dichloropropane	NC	NC	NC NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,3-Dichlorobenzene	2.4	280	2.4	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,4-Dichlorobenzene	1.8	130	1.8	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
1,4-Dioxane	0.1	130	0.1	4.8	U	0.021	U	0.022	U	0.022	U	0.021	U	0.021	U	4.0	U	0.021	U	0.019	U	0.0011 U
2-Butanone (MEK)	0.12	NC NC	0.12	0.48	U	0.0051	U	0.0056	U	0.0054	U	0.0051	U	0.0053	U	0.40	U	0.0035	J	0.0047	U	0.0053 U
2-Hexanone	NC	NC NC	NC	0.48	U	0.0051	U	0.0056	U	0.0054	U	0.0051	U	0.0053	U	0.40	U	0.0053	U	0.0047	U	0.0053 U
4-Methyl-2-pentanone (MIBK)	NC	NC	NC	0.48	II	0.0051	U	0.0056	U	0.0054	U	0.0051	U	0.0053	U	0.40	U	0.0053	U	0.0047	U	0.0053 U
Acetone	0.05	500	0.05	0.48	U	0.036	-	0.093	J+	0.059		0.054		0.028		0.40	U	0.12		0.033	J+	0.021
Benzene	0.06	44	0.06	0.096	U	0.00045	J	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Bromoform	NC	NC	NC	0.096	U	0.00043	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Bromomethane	NC	NC NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Carbon disulfide	NC	NC	NC	0.096	II	0.0015	-	0.0026	I+	0.00011	ī	0.0010	U	0.0012		0.080	U	0.0011		0.0017	I+	0.0011 U
Carbon tetrachloride	0.76	22	0.76	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0012	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chlorobenzene	1.1	500	1.1	0.096	II	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chlorobromomethane	NC	NC	NC NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chlorodibromomethane	NC	NC NC	NC NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chloroethane	NC NC	NC NC	NC NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chloroform	0.37	350	0.37	0.096	U	0.0010	U*	0.0011	U*	0.0011	U*	0.0010	U*	0.0011	U*	0.080	U	0.0011	U	0.00093	U	0.0011 U
Chloromethane	NC	NC	NC	0.096	U	0.0010	U	0.0011	II.	0.0011	U	0.0010	II.	0.0011	II.	0.080	U	0.0011	U	0.00093	II.	0.0011 U
cis-1,2-Dichloroethene	0.25	500	0.25	0.096	U	0.0010	U	0.0011	U*	0.0011	U	0.0010	11.*	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
	0.23 NC		NC NC	0.096	U	0.0010	U	0.0011	II.	0.0011	U	0.0010	II.	0.0011	II	0.080	II	0.0011	U	0.00093	U	0.0011 U
cis-1,3-Dichloropropene		NC NC	NC NC	0.096	T T	0.0010	U	0.0011			U	0.0010		0.0011	Ü	0.000	U	0.0011	Ŭ			0.0011 U
Cyclohexane	NC NC	NC NC	NC NC	0.069	J	0.0010		0.0011	U	0.0011		0.0010	U	0.0011	U	0.15	11	0.0011	U	0.00093	U	0.0011 U
Dichlorobromomethane Dichlorodifluoromethane	NC NC	NC NC	NC NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U U	0.00093	U	0.0011 U
	NC 1	390	NC 1	0.096	U	0.0010	U	0.0011	U		U	0.0010	U		U	2.7	U	0.0011	J	0.00093		0.0011 U 0.00025 J
Ethylbenzene Ethylene Dibromide	NC	390 NC	NC.	0.23	U	0.023	11	0.0011	U	0.0011 0.0011	U	0.0010	U	0.0015	U	0.080	TI	0.00032	U	0.00093	U	0.00025 J 0.0011 U
,			NC NC		U		U						U				U					
Isopropylbenzene Mathyl acetata	NC NC	NC NC	NC NC	0.15	т т	0.0059	U*	0.036	J+ U *	0.00032	J U*	0.019	U*	0.0011	U U*	0.45	U	0.00026	J U	0.046	J+ U	0.00069 J 0.0053 U
Methyl acetate		NC 500		00	J	0.000		0.0000	U*			0.000	U *				_	0.000		0.00.		
Methyl tert-butyl ether	0.93		0.93	0.096	U	0.0010	U	0.0011		0.0011	U	0.0010	U *	0.0011	U	0.080	U	0.0011	U	0.00093	U*	0.0011 U*
Methylcyclohexane	NC 0.05	NC 500	NC 0.05	1.7	***	0.0040		0.093	J+	0.00088	J	0.040	+ +	0.0011		0.63		0.0011	U	0.077	J+	0.0011 U
Methylene Chloride	0.05	500	0.05	0.096	U	0.0012		0.0014	J+	0.00096	J	0.0016	+ +	0.0029		0.080	U	0.0014		0.0026	J+	0.0028
m-Xylene & p-Xylene ⁽¹⁾	NC	NC	NC	0.60	 _	0.0024		0.0023	J+	0.0031	+	0.0020	+ - +	0.010	-	32		0.0027		0.0023	J+	0.0014
p-Xylene ⁽¹⁾	NC	NC	NC	0.042	J	0.00037	J	0.0011	U	0.0011	U	0.00051	J	0.00094	J	0.076	J	0.00062	J	0.00036	J	0.00020 J
Styrene	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Tetrachloroethene	1.3	150	1.3	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Toluene	0.7	500	0.7	0.053	J	0.0018		0.00095	J	0.0011	U	0.00098	J	0.0011	U	0.080	U	0.00084	J	0.00093	U	0.0011 U
rans-1,2-Dichloroethene	0.19	500	0.19	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
rans-1,3-Dichloropropene	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Trichloroethene	0.47	200	0.47	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Trichlorofluoromethane	NC	NC	NC	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Vinyl chloride	0.02	13	0.02	0.096	U	0.0010	U	0.0011	U	0.0011	U	0.0010	U	0.0011	U	0.080	U	0.0011	U	0.00093	U	0.0011 U
Xylenes, Total	0.26	500	1.6	0.64		0.0027		0.0023	J+	0.0033		0.0025		0.011		32		0.0033		0.0027	J+	0.0016 J

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight).
FT BGS - Feet below ground surface
F1 - MS and/or MSD Recovery is outside acceptance limits F2 - MS/MSD RPD exceeds control limits

U - Compound was not detected at specified quantitation limit

* - LCS or LCSD is outside acceptance limits

UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion

ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective (1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC.

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

												INV	ESTIGAT	TION AREA 1									
			SAMPLE NAME	SR-SO-SB-106	(3.5-4.5)	SR-SO-SB-10	6 (6-6.5)	SR-SO-SB-10	7(4-5)	SR-SO-SB-107	(11-12)	SR-SO-SB-108		SR-SO-SB-108	8(7-8)	SR-SO-SB-109	0(3-4)	SR-SO-SB-109(15-16)	SR-SO-SB-110	(4-4.5)	SR-SO-SB-110((6.5-7.0)
		LABORATO	ORY SAMPLE ID	460-18629	8-9	460-18629	3-10	460-186425	5-1	460-186425	5-2	460-186425	5-3	460-186425	i-4	460-186425-	-11	460-186425-	-12	460-186425	5-5	460-186425	15-6
		SAMPLE I	DEPTH (FT BGS)	3.5-4.5 FT I	BGS	6-6.5 FT E	GS	4-5 FT BG	iS	11-12 FT B	GS	3-4 FT BG	S	7-8 FT BG	S	3-4 FT BG5	S	15-16 FT BO	GS	4-4.5 FT B	GS	6.5-7 FT B	3GS
		SA	AMPLING DATE	7/10/201	9	7/10/201	9	7/10/2019	9	7/10/2019)	7/10/2019)	7/10/2019)	7/11/2019	1	7/11/2019)	7/11/2019	9	7/11/2019	19
			UNITS	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
VOLATILE ORGANIC COMPOUNDS (VOCs)	NYSDEC Unrestricted Use	NYSDEC Commercial Use	NYSDEC Protection of Groundwater	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
	SCO	SCO	SCO																				
1,1,1-Trichloroethane	0.68	500	0.68	0.00090	U	0.0010	U*	0.11	U	0.00090	U	0.00094	U *	0.0011	U	0.074	U	0.0010	U	0.00090	U *	0.00096	U *
1,1,2,2-Tetrachloroethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,1,2-Trichloro-1,2,2-trifluoroethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,1,2-Trichloroethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,1-Dichloroethane	0.27	240	0.27	0.00090	U *	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,1-Dichloroethene	0.33	500	0.33	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,2,3-Trichlorobenzene	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,2,4-Trichlorobenzene	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,2-Dibromo-3-Chloropropane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,2-Dichlorobenzene	1.1	500	1.1	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,2-Dichloroethane	0.02	30	0.02	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U *	0.0011	U	0.074	U	0.0010	U	0.00090	U*	0.00096	U *
1,2-Dichloropropane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,3-Dichlorobenzene	2.4	280	2.4	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,4-Dichlorobenzene	1.8	130	1.8	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
1,4-Dioxane	0.1	130	0.1	0.018	U	0.02	U	5.5	U	0.018	U	0.019	U	0.022	U	3.7	U	0.02	U	0.018	U	0.019	U
2-Butanone (MEK)	0.12	NC	0.12	0.0045	U	0.014		0.55	U	0.0045	U	0.0047	U	0.0056	U	0.37	U	0.0045	J	0.0045	U	0.0048	U
2-Hexanone	NC	NC	NC	0.0045	U	0.0050	U	0.55	U	0.0045	U	0.0047	U	0.0056	U	0.37	U	0.0050	U	0.0045	U	0.0048	U
4-Methyl-2-pentanone (MIBK)	NC	NC	NC	0.0045	U	0.0050	U	0.55	U	0.0045	U	0.0047	U	0.0056	U	0.37	U	0.0050	U	0.0045	U	0.0048	U
Acetone	0.05	500	0.05	0.065	J+	0.070		0.55	U	0.071		0.074		0.053		0.37	U	0.028	J+	0.070	J+	0.054	
Benzene	0.06	44	0.06	0.00090	U	0.00062	J	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Bromoform	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Bromomethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Carbon disulfide	NC	NC	NC	0.0022	J+	0.0041		0.11	U	0.0044		0.0047		0.014		0.074	U	0.0091		0.0012	J+	0.0036	
Carbon tetrachloride	0.76	22	0.76	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Chlorobenzene	1.1	500	1.1	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Chlorobromomethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Chlorodibromomethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Chloroethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Chloroform	0.37	350	0.37	0.00090	U	0.0010	U	0.11	U	0.00090	U *	0.00094	U *	0.0011	U *	0.074	U	0.0010	U *	0.00090	U *	0.00096	U *
Chloromethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
cis-1,2-Dichloroethene	0.25	500	0.25	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U *	0.0011	U	0.074	U	0.0010	U	0.00090	U *	0.00096	U *
cis-1,3-Dichloropropene	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Cyclohexane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Dichlorobromomethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Dichlorodifluoromethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Ethylbenzene	1	390	1	0.00090	U	0.00045	J	0.30		0.0098		0.00094	U	0.0011	U	0.11		0.0010	U	0.00090	U	0.00019	J
Ethylene Dibromide	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Isopropylbenzene	NC	NC	NC	0.017	J+	0.0018	1	0.094	J	0.0060	1	0.0055	1	0.00084	J	1.1	1	0.00049	J	0.092	J+	0.0027	+
Methyl acetate	NC	NC	NC	0.0045	U	0.0050	U	0.18	J	0.0045	U*	0.0047	U*	0.0056	U*	0.20	J	0.0050	U*	0.0045	U*	0.0048	U*
Methyl tert-butyl ether	0.93	500	0.93	0.00090	U*	0.0010	U*	0.11	U	0.00090	U	0.00094	U*	0.0011	U	0.074	U	0.0010	U	0.00090	U*	0.00096	U *
Methylcyclohexane	NC	NC	NC	0.14	J+	0.0028		0.11	U	0.0081		0.00094	U	0.0016		1.8		0.0010	U	0.10	J+	0.0056	4
Methylene Chloride	0.05	500	0.05	0.0010	J+	0.0024		0.11	U	0.00090	U	0.0017		0.0013		0.074	U	0.0031		0.00090	U	0.0012	+
m-Xylene & p-Xylene ⁽¹⁾	NC	NC	NC	0.0018	J+	0.0049		1.5		0.29		0.00094	U	0.0052		1.0		0.0049		0.0020	J+	0.0013	4
o-Xylene ⁽¹⁾	NC	NC	NC	0.00090	U	0.00039	J	0.21		0.0045		0.00094	U	0.0011	U	0.11		0.00021	J	0.00090	U	0.00025	J
Styrene	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Tetrachloroethene	1.3	150	1.3	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Toluene	0.7	500	0.7	0.0015	J+	0.00074	J	0.29		0.0023		0.0022	ļ Ī	0.0011	U	0.095		0.0010	U	0.00090	U	0.00096	U
trans-1,2-Dichloroethene	0.19	500	0.19	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
trans-1,3-Dichloropropene	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Trichloroethene	0.47	200	0.47	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Trichlorofluoromethane	NC	NC	NC	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Vinyl chloride	0.02	13	0.02	0.00090	U	0.0010	U	0.11	U	0.00090	U	0.00094	U	0.0011	U	0.074	U	0.0010	U	0.00090	U	0.00096	U
Xylenes, Total	0.26	500	1.6	0.0018	J+	0.0053		1.7		0.29		0.0019	U	0.0053		1.1		0.0051		0.002	J+	0.0016	J

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight).
FT BGS - Feet below ground surface
F1 - MS and/or MSD Recovery is outside acceptance limits

F2 - MS/MSD RPD exceeds control limits

U - Compound was not detected at specified quantitation limit * - LCS or LCSD is outside acceptance limits

UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion

ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective (1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC. Page 2 of 7

Table 3

NYSDEC

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

				Γ							INV	ESTIGA'	TION AREA 1								
			SAMPLE NAME	SR-SO-SB-11		SR-SO-SB-111 (15-16)	SR-SO-SB-112		SR-SO-SB-112 (14.5-15)	SR-SO-SB-113		SR-SO-SB-113 (1	19-19.5)	SR-SO-SB-201	(5-6)	SR-SO-SB-201((14-15)	SR-SO-SB-202	2(6-7)	SR-SO-SB-202(9-10)
		LABORATO	ORY SAMPLE ID	460-186298	8-3	460-186298-4	460-18629		460-186298	-	460-186298	-1	460-186298		460-198061	-	460-198061	1-8	460-198061	-9	460-198061-10
		SAMPLE I	DEPTH (FT BGS)	4-5 FT BC	is	15-16 FT BGS	4.5-5 FT B		14.5-15 FT E		6-7 FT BGS	S	19-19.5 FT B	BGS	5-6 FT BG		14-15 FT BO		6-7 FT BG	S	9-10 FT BGS
		SA	AMPLING DATE	7/10/2019	9	7/10/2019	7/10/201	9	7/10/2019)	7/9/2019		7/9/2019		12/4/2019		12/4/2019)	12/4/2019)	12/4/2019
			UNITS	mg/kg		mg/kg	mg/kg		mg/kg		mg/kg		mg/kg	, .	mg/kg		mg/kg		mg/kg		mg/kg
	NYSDEC	NYSDEC	NYSDEC																		
VOLATILE ORGANIC COMPOUNDS	Unrestricted Use	Commercial Use	Protection of	Result	Q	Result Q	Result	0	Result	O	Result	O	Result	Q	Result	0	Result	O	Result	Q	Result Q
(VOCs)	SCO	SCO	Groundwater		`									`		`		`		`	
444 511	0.60		SCO	0.05		0.0000	0.00#		0.0044		0.44		0.0000#	77.0	0.00020		0.00024		0.00000		0.00004
1,1,1-Trichloroethane	0.68 NC	500	0.68	0.95	U	0.00082 U *	0.085	U	0.0011	U	0.11	U	0.00097	U*	0.00030	U	0.00021	U	0.00022	U	0.00024 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	NC NC	NC NC	NC NC	0.95	U	0.00082 U 0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00027	U	0.00020 0.00028	U	0.00020 0.00028	U	0.00022 U 0.00031 U
1,1,2-Trichloroethane	NC NC	NC NC	NC NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00039	U	0.00028	U	0.00028	U	0.00031 U
1,1-Dichloroethane	0.27	240	0.27	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00023	U	0.00010	U	0.00017	U	0.00019 U
1.1-Dichloroethene	0.33	500	0.33	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00029	U	0.00013	U	0.00013	U	0.00021 U
1.2.3-Trichlorobenzene	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	UJ	0.11	U	0.00097	U	0.00023	U	0.00017	U	0.00017	U	0,00019 U
1,2,4-Trichlorobenzene	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	UJ	0.11	U	0.00097	U	0.00046	U	0.00033	U	0.00033	U	0.00037 U
1,2-Dibromo-3-Chloropropane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00059	U	0.00042	UJ	0.00043	U	0.00048 UJ
1,2-Dichlorobenzene	1.1	500	1.1	0.95	U	0.00082 U	0.085	U	0.0011	UJ	0.11	U	0.00097	U	0.00018	U	0.00013	U	0.00013	U	0.00015 U
1,2-Dichloroethane	0.02	30	0.02	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00038	U	0.00027	U	0.00027	U	0.00031 U
1,2-Dichloropropane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00054	U	0.00039	U	0.00039	U	0.00044 U
1,3-Dichlorobenzene	2.4	280	2.4	0.95	U	0.00082 U	0.085	U	0.0011	UJ	0.11	U	0.00097	U	0.00020	U	0.00015	U	0.00015	U	0.00017 U
1,4-Dichlorobenzene	1.8	130	1.8	0.95	U	0.00082 U	0.085	U	0.0011	UJ	0.11	U	0.00097	U	0.00029	U	0.00021	U	0.00021	U	0.00023 U
1,4-Dioxane	0.1	130	0.1	47	U	0.016 U	4.2	U	0.021	U	5.5	U	0.019	U	0.012	U	0.0084	U	0.0085	U	0.0096 U
2-Butanone (MEK) 2-Hexanone	0.12 NC	NC NC	0.12 NC	4.7 4.7	U	0.0041 U 0.0041 U	0.42	U	0.0053 0.0053	U	0.55 0.55	U	0.010 0.0049	IJ	0.024 0.0022	U	0.0025 0.0016	U	0.017 0.0016	U	0.0028 U 0.0018 U
4-Methyl-2-pentanone (MIBK)	NC NC	NC NC	NC NC	4.7	U	0.0041 U	0.42	U	0.0053	U	0.55	U	0.0049	II	0.0022	U	0.0014	U	0.0016	U	0.0018 U
Acetone (WIBK)	0.05	500	0.05	4.7	U	0.0041	0.42	U	0.0033	J-	0.55	U	0.0049	0	0.0020	U	0.014	U	0.074	U	0.0010
Benzene	0.06	44	0.06	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00033	U	0.00024	U	0.00024	U	0.00027 U
Bromoform	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00054	U	0.00039	UJ	0.00039	U	0.00044 UJ
Bromomethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00061	U	0.00043	U	0.00044	U	0.00049 U
Carbon disulfide	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.0030		0.0014		0.00024	UJ	0.0017		0.00028 UJ
Carbon tetrachloride	0.76	22	0.76	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00050	U	0.00035	U	0.00036	U	0.00040 U
Chlorobenzene	1.1	500	1.1	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00023	U	0.00016	U	0.00016	U	0.00018 U
Chlorobromomethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00036	U	0.00026	U	0.00026	U	0.00029 U
Chlorodibromomethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00025	U	0.00018	UJ	0.00018	U	0.00020 UJ
Chloroethane	NC 0.27	NC 250	NC 0.27	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00067	U	0.00048	U	0.00048	U	0.00054 U
Chloromethane	0.37 NC	350 NC	0.37 NC	0.95	U	0.00082 U 0.00082 U	0.085	U	0.0011	U	0.11	U U	0.00097	U	0.00041	U	0.00029 0.00040	U	0.00030	U	0.00033 U 0.00045 UJ
cis-1,2-Dichloroethene	0.25	500	0.25	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00038	U	0.00040	U	0.00040	U	0.00043 UJ
cis-1,3-Dichloropropene	NC	NC NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	II	0.00015	U	0.00014	U	0.00014	U	0.00010 U
Cyclohexane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.054	J	0.00097	U	0.00038	U	0.00020	U	0.00023	U	0.00023 U
Dichlorobromomethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00033	U	0.00024	U	0.00024	U	0.00027 U
Dichlorodifluoromethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00043	U	0.00031	UJ	0.00031	U	0.00035 UJ
Ethylbenzene	1	390	1	62		0.0046	0.038	J	0.0011	U	1.2		0.0031		0.0011	J	0.0010		0.0010		0.00079 J
Ethylene Dibromide	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00023	U	0.00016	U	0.00017	U	0.00019 U
Isopropylbenzene	NC	NC	NC	0.78	J	0.00025 J	0.063	J	0.0011	U	0.048	J	0.00097	U	0.090		0.00012	U	0.011		0.00013 U
Methyl acetate	NC	NC	NC	4.7	U	0.0041 U	0.42	U	0.0053	U	0.55	U	0.0043	J	0.0055	U	0.0039	U	0.0040	U	0.0045 U
Methyl tert-butyl ether	0.93	500	0.93	0.95	U	0.00082 U *	0.085	U	0.0011	U	0.11	U	0.00097	U*	0.00016	U	0.00011	U	0.00012	U	0.00013 U
Methylcyclohexane Methylcyclohexane	NC 0.05	NC 500	NC 0.05	0.54 0.95	J U	0.00082 U 0.0019	0.085	U	0.0011 0.0021	U	0.093 0.061	J	0.00097	U	0.17	U	0.00046 0.0014	U	0.00046	U	0.00052 U 0.00062 J
Methylene Chloride	NC	NC	NC	380	U	0.0019	2.0	U	0.0021	ī	7.7	J	0.00064 0.018	J	0.00039	U	0.0014		0.00043	U	0.00062 J
m-Xylene & p-Xylene ⁽¹⁾	NC NC	NC NC	NC NC	26		0.0036	0.036	ī	0.00088	U	0.56		0.017	1	0.00074	J	0.00054	J	0.0057	I	0.0008 0.00052 J
o-Xylene ⁽¹⁾ Styrene	NC	NC NC	NC	0.95	U	0.0030 0.00082 U	0.085	U	0.0011	U	0.11	U	0.0017	U	0.00074	U	0.00034	U	0.00039	U	0.00032 J 0.00029 U
Tetrachloroethene	1.3	150	1.3	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00038	U	0.00023	U	0.00028	U	0.00029 U
Toluene	0.7	500	0.7	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	J	0.00018	U	0.00013	U	0.00013	-	0.00013 U
trans-1,2-Dichloroethene	0.19	500	0.19	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00030	U	0.00021	U	0.00023	U	0.00024 U
trans-1,3-Dichloropropene	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00034	U	0.00024	UJ	0.00025	U	0.00028 UJ
Trichloroethene	0.47	200	0.47	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00018	U	0.00013	U	0.00013	U	0.00015 U
Trichlorofluoromethane	NC	NC	NC	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00052	U	0.00037	UJ	0.00038	U	0.00042 UJ
Vinyl chloride	0.02	13	0.02	0.95	U	0.00082 U	0.085	U	0.0011	U	0.11	U	0.00097	U	0.00070	U	0.00050	U	0.00051	U	0.00057 U
Xylenes, Total	0.26	500	1.6	410		0.033	2.1		0.0011	J	8.2		0.019		0.00484		0.00894		0.00629		0.00732

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight).
FT BGS - Feet below ground surface
F1 - MS and/or MSD Recovery is outside acceptance limits

F2 - MS/MSD RPD exceeds control limits U - Compound was not detected at specified quantitation limit

* - LCS or LCSD is outside acceptance limits

UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion

ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

(1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC. Page 3 of 7

Shore Realty Corporation (AES) - Site No. 130006

1 Shore Road, Glenwood Landing, New York 11547 Summary of Results of Analysis of Soil for Volatile Organic Compounds

March Marc]	INVESTIGATION	AREA	1									
MAINTENNING PARTIES				SAMPLE NAME	SR-SO-SB-203	3(5-6)	SR-SO-SB-203	(13-14)	SR-SO-SB-204	4(5-6)	SR-SO-SB-204(10	-11)	SR-SO-SB-204(SR-SO-SB-205((10-11)	SR-SO-SB-20	06(5-6)	SR-SO-SB-20	6(8-9)	SR-SO-SB-2	207(7-8)	SR-SO-SB-207	7(11-12)
MACH												ļ	1								1				460-19806	
March Color Colo				` /																					11-12 FT E	
Notice Color Col			S			<u>'</u>		9		,				'				'		9		9			12/4/201 mg/kg	
March Marc					nig/kg		IIIg/kg	1	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	1	IIIg/Kg	3	mg/kg	$\overline{}$
Proceedings	VOLATILE ORGANIC COMPOUNDS		1 12																							
1,2,3,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1					Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1.5. Febrush 1.5.		sco	SCO	SCO																						
12 20 20 20 20 20 20 20		0.68	500	0.68	0.16	U	0.00022	U	0.86	U	0.018	U	0.00020	U	0.014	U	0.00023	U	0.00022	U	0.00020	U	0.00022	U	0.00022	U
13.1 13.1	1,1,2,2-Tetrachloroethane			NC	0.11	U	0.00020	U	0.59	U	0.012	U	0.00018	U	0.0097	U		UJ		U	0.00019	U	0.00021	U	0.00020	U
1.5 1.5		_		1.0																					0.00028	U
Designation							010001							Ü			0.00010								0.00016	U
1.5 1.5	7							U				U								U					0.00019 0.00021	U
1.5.4 1.5.								II.				U		-						II.					0.00021	U
Description NC							0.00017		***				0.00010	Ŭ			0.00010								0.00017	U
1.	7.7																								0.00042	U
Declaration New No. New No. O. U. D. U. D. U. D. U. D. U. D. D	1 1							_						-				_		_					0.00013	U
Decision Control Con	1,2-Dichloroethane	0.02	30	0.02	0.14	U	0.00028	U	0.77	U	0.016	U	0.00025	U	0.013	U	0.00030	U	0.00028	U	0.00026	U	0.00028	U	0.00027	U
A-Polarhomenee 18				110	0.1			U	0.00					U		U		U		U		U		U	0.00039	U
Lethonoxe O.1 180 O.1 4.8 U 0.0005 U 27 U 0.055 U 0.077 U 0.44 U 0.0097 U 0.44 U 0.0095 U 0.0008 U	<i>y</i> -																			_					0.00015	U
Demonstration Demonstratio								_														_		_	0.00021	U
Part				0.10			0.0005		2,									Ŭ		U					0.0085	U
Publish Publ																		_		II					0.0025 0.0016	U
Receive 0.05 500 0.65 2.5 11								-										_							0.0010	U
Denome	7 1 \ /													Ŭ				Ŭ						-	0.059	<u> </u>
December NC								U	0.62				0.00022	U		U		U				U		U	0.00024	U
Curbon desirible	Bromoform	NC	NC	NC	0.1	U	0.00040	UJ	0.56	U	0.011	U	0.00036	UJ	0.0091	U	0.00042	UJ	0.00041	UJ	0.00037	UJ	0.00041	UJ	0.00039	U
Carbon termedionize	Bromomethane	NC	NC	NC	0.31	UJ	0.00044	U	1.7	UJ	0.035	UJ	0.00041	U	0.028	U	0.00047	U	0.00045	U	0.00041	U	0.00046	U	0.00044	U
Chhorebeneme	Carbon disulfide																					- 00			0.00051	J
Chirochemomethane NC NC NC 0.17 U 0.00026 U 0.93 U 0.019 U 0.00016 U 0.00027 U 0.00025 U 0.00025 U 0.00027 U 0.00025 U 0																									0.00036	U
Chiroridhementhane N.C. N.C. N.C. N.C. 0.12 U 0.00019 U 0.00019 U 0.00017 U 0.00017 U 0.00019																		Ŭ							0.00016	U
Characterise N.C. N.C. N.C. N.C. 0.21 U 0.00049 U 1.1 U 0.022 U 0.00045 U 0.00052 U 0.000051 U 0.00050	Cincretionementalie												0.00021	Ü			0.00020								0.00026	U
Charterform 0.37 350 0.37 0.12 U 0.00030 U 0.08 U 0.014 U 0.00027 U 0.011 U 0.00031 U 0.00								_	0.00											_		_		_	0.00018	U
cis-12-Dishloroscheme 0.25 500 0.25 0.14 U 0.00014 U 0.8 U 0.017 U 0.00013 U 0.0013 U 0.00015 U 0.00013 U 0.00014 U 0.00014 U 0.00014 U 0.00014 U 0.00014 U 0.00015		_					0.000.0										0.0000								0.00029	U
Second Control Seco	Chloromethane	NC	NC	NC	0.22	UJ	0.00040	UJ	1.2	UJ	0.026	U	0.00037	UJ	0.02	U	0.00043	UJ	0.00042	UJ	0.00038	UJ	0.00042	UJ	0.00040	U
Cyclebrane	cis-1,2-Dichloroethene	0.25	500	0.25	0.14	U	0.00014	U	0.8	U	0.017	U	0.00013	U	0.013	U	0.00015	U	0.00015	U	0.00013	U	0.00015	U	0.00014	U
Dichlorodifilioromethane NC NC NC NC 0.084 U 0.00024 U 0.46 U 0.0095 U 0.00022 U 0.00026 U 0.00025 U 0	cis-1,3-Dichloropropene	_		NC		U F1		U	0.68	UJ		UJ		U		U		UJ		U		U		U	0.00025	U
Dishlorodifiburomethane NC NC NC NC O.17 UJ 0.00031 UJ 0.96 UJ 0.02 UJ 0.00029 UJ 0.016 U 0.00034 UJ 0.00032 UJ 0.00030 UJ 0.00032 UJ	· ·																								0.00020	U
Ethylbenzene	Diemorooromomeum				0.00				0.1.0		0.0000		0.000=		0.00,0		0.000		0.000=0		0.000=		0.000=0		0.00024	U
Ethylene Dibromide		NC 1		NC 1				UJ		UJ		UJ		_		U		_				UJ		UJ	0.00031	U*
Sopropylbenzene NC NC NC NC NC NC NC N	Emploement	NC		NC NC			******	II	.0	II	*	IJ	0.00037	, ,	0.057	II	0.00020	Ŭ	0.0000		0.00000	II	0.00070	II	0.00053	U
Methyl acetate NC NC NC NC 0.44 U 0.0040 U 2.4 U 0.05 U 0.0037 U 0.0041 U 0.0043 U 0.0041 U 0.0038 U 0.0041 U 0.0044 U 0	3							U				J						J		T -					0.00017	U
Methylcyclohexane NC NC NC NC O.59 0.00046 U 0.68 0.014 J 0.0011 U 0.0012 0.0085 0.00044 J 0.0021 Methylene Chloride 0.005 500 0.05 500 0.05 0.02 U 0.00089 J 0.065 U 0.013 U 0.00058 J 0.00044 U 0.00092 0.00098 m-Xylene & p-Xylene ⁽¹⁾ NC						U		U		U		U				U	0.0000	U		U				U	0.0040	U
Methylene Chloride 0.05 500 0.05 0.12 U 0.00069 J 0.65 U 0.013 U 0.00058 J 0.011 U 0.00068 J 0.00044 U 0.00092 0.00098 m-Xylene & p-Xylene & p-	Methyl tert-butyl ether	0.93	500	0.93	0.072	U	0.00013	J	0.4	U	0.0083	U	0.00011	U	0.0066	U	0.00012	U	0.00012	U	0.00011	U	0.00012	U	0.00012	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Methylcyclohexane			NC	0.59			U	0.68			J	0.000.0	U	0.011	U						J			0.00046	U
o-Xylene NC NC NC NC 0.095 UF1 0.0025 29 0.25 0.0034 J 0.0044 J 0.0019 U 0.00075 J 0.00052 J 0.0012 Styrene NC NC NC 0.095 UF1 0.00026 U 0.52 U 0.011 U 0.00024 U 0.00024 U 0.00086 U 0.00028 U 0.00027 U 0.00	- 40	0.00				U	0.0000	J	0.05	U	0.000	U	0.0000	J		U	0.0000		0.000	U	0.000		0.0000		0.00067	J
Styrene NC NC NC NC NC O.095 UFI 0.0026 U 0.52 U 0.011 U 0.00024 U 0.00028 U 0.00027 U 0.00028 U 0.00028 U 0.00027 U 0.00027 U 0.00027 U 0.00028 U 0.00014 U 0.00024 U 0.00014										<u> </u>						ļ									0.0047	—
Tetrachloroethene 1.3 150 1.3 0.2 U 0.00027 J 1.1 U 0.0012 U 0.0014 U 0.0014 U 0.0013 U 0.0014 U 0.0014 U 0.0013 U 0.0014 U 0.0014 U 0.0013 U 0.0014 U 0.0013 U 0.0014 U 0.0014 U 0.0013 U 0.0014 U 0.0014 U 0.0013 U 0.0014 U 0.0021 U 0.0023 U 0.0021 U 0.0023 U 0.0021 U 0.0023 U 0.0021 U 0.0025 U 0.00024 U 0.00024 U								L		L				J						J					0.00043	J
Toluene 0.7 500 0.7 0.23 J 0.00022 U 0.77 U 0.016 U 0.00020 U 0.46 0.00023 U 0.00081 J 0.00021 J 0.00027 J trans-1,2-Dichloroethene 0.19 500 0.19 0.1 U 0.00023 U 0.56 U 0.011 U 0.00021 U 0.00021 U 0.00025 U 0.00025 U 0.00024 U 0.00022 U 0.00024 U 0.00024 U 0.00024 U 0.00025 U 0.00026 U	-																			_					0.00026	U
$ \frac{1}{1} \frac{1} \frac$						U							0.0000			U	0.0000			U		U	0.000.	U	0.00013 0.00034	U J
trans-1,3-Dichloropropene NC NC NC 0.11 U 0.00025 UJ 0.59 J 0.012 UJ 0.00023 UJ 0.0097 U 0.00027 UJ 0.00025 UJ 0.00023 UJ 0.00026 UJ 0.00026 UJ				0.17		I I		_								TT				J II		J II		J II	0.00034	U
								_						Ü										_	0.00023	U
princhioroethene U.4/ 200 U.4/ 0.12 U 0.00013 U 0.68 U 0.014 U 0.00012 U 0.00014 U 0.00014 U 0.00013 U 0.00014 U 0.00014 U 0.00013 U 0.00014 U 0.00014 U 0.00014 U 0.00015 U 0.00014 U 0.00014 U 0.00014 U 0.00015 U 0.00014	Trichloroethene	0.47	200	0.47	0.12	U	0.00023	U	0.68	U	0.012	U	0.00023	U	0.011	U	0.00027	U	0.00023	U	0.00023	U	0.00020	U	0.00023	U
						+ - +																			0.00037	U *
Vinyl chloride 0.02 13 0.02 0.11 U 0.00051 U 0.62 UJ 0.013 UJ 0.00047 U 0.01 U 0.00055 U 0.00052 U 0.00048 U 0.00052 U	Vinyl chloride			0.02	0.11	U	0.00051	U	0.62	UJ	0.013	UJ	0.00047	U	0.01	U	0.00055		0.00052	U	0.00048	U	0.00052	U	0.00050	U
Xylenes, Total 0.26 500 1.6 201 0.0165 709 3.05 0.00444 0.344 0.00102 0.02075 0.00822 0.0097	Xylenes, Total	0.26	500	1.6	201		0.0165		709		3.05		0.00444		0.344		0.00102		0.02075		0.00822		0.0097		0.00513	

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight). FT BGS - Feet below ground surface

F1 - MS and/or MSD Recovery is outside acceptance limits

F2 - MS/MSD RPD exceeds control limits

U - Compound was not detected at specified quantitation limit

* - LCS or LCSD is outside acceptance limits UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

Q - Qualifier

SCO - Soil Cleanup Objective

(1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC. Page 4 of 7

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

											INVESTIGA	TION AREA 2								
			SAMPLE NAME	SR-SO-SB-114	(2-2.5)	SR-SO-SB-115	5(7-8)	SR-SO-SB-115	(14.5-15)	SR-SO-SB-116(6.5-7.5)	SR-SO-SB-116(15-16)	SR-SO-SB-117(6.	5-7.5)	SR-SO-SB-117(11	.5-12.5)	SR-SO-SB-118	(7-8)	SR-SO-SB-118 (1	10-11)	SR-SO-SB-119(9-10)
		LABORAT	ORY SAMPLE ID	460-186195	` /	460-186195	` /	460-18619	` /	460-186195-1	460-186195-2	460-186195-1		460-186195-		460-186523	` '	460-186523-		460-186195-7
			DEPTH (FT BGS)	2-2.5 FT BC		7-8 FT BG	-	14.5-15 FT		6.5-7.5 FT BGS	15-16 FT BGS	6.5-7.5 FT BC		11.5-12.5 FT H		7-8 FT BG		10-11 FT BG		9-10 FT BGS
			SAMPLING DATE	7/9/2019		7/8/2019		7/8/2019	9	7/8/2019	7/8/2019	7/9/2019	,,,	7/9/2019	, , ,	7/11/2019		7/11/2019		7/9/2019
		•	UNITS	mg/kg		mg/kg		mg/kg		mg/kg	mg/kg	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg
			NYSDEC											88						
VOLATILE ORGANIC COMPOUNDS	NYSDEC	NYSDEC	Protection of																	
(VOCs)	Unrestricted Use	Commercial Use	Groundwater	Result	Q	Result	Q	Result	Q	Result Q	Result Q	Result	Q	Result	Q	Result	Q	Result	Q	Result Q
(voes)	SCO	SCO	SCO																	
1.1.1 T.: 11	0.68	500		0.00090	7.7	0.42	7.7	0.0010	U	0.00000	0.00090 U	0.006	TT	0.0010	T.T.	0.00089	U	0.00094	TTW	0.70
1,1,1-Trichloroethane	NC	NC	0.68	0.00090	U	0.43	U	0.0010		0.00098 U 0.00098 U		0.096 0.096	U	0.0010	U	0.00089		0.00094	U*	0.79 U 0.79 U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	NC NC	NC NC	NC NC	0.00090	U	0.43	U	0.0010	U	0.00098 U 0.00098 U	0.00090 U 0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U U	0.79 U
, , , , , , , , , , , , , , , , , , , ,															U					
1,1,2-Trichloroethane	NC 0.27	NC 240	NC 0.27	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010		0.00089	U	0.00094	U	0.79 U
1,1-Dichloroethane	0.27	240	0.27	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,1-Dichloroethene	0.33	500	0.33	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,2,3-Trichlorobenzene	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,2,4-Trichlorobenzene	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,2-Dibromo-3-Chloropropane	NC	NC 500	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,2-Dichlorobenzene	1.1	500	1.1	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,2-Dichloroethane	0.02	30	0.02	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U*	0.79 U
1,2-Dichloropropane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,3-Dichlorobenzene	2.4	280	2.4	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,4-Dichlorobenzene	1.8	130	1.8	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
1,4-Dioxane	0.1	130	0.1	0.018	U	22	U	0.02	U	0.02 U	0.018 U	4.8	U	0.02	U	0.018	U	0.019	U	39 U
2-Butanone (MEK)	0.12	NC	0.12	0.0045	U	2.2	U	0.0053		0.0088	0.0045 U	0.48	U	0.0051	U	0.019		0.0047	U	3.9 U
2-Hexanone	NC	NC	NC	0.0045	U	2.2	U	0.0051	U	0.0049 U	0.0045 U	0.48	U	0.0051	U	0.0044	U	0.0047	U	3.9 U
4-Methyl-2-pentanone (MIBK)	NC	NC	NC	0.0045	U	2.2	U	0.0051	U	0.0049 U	0.0045 U	0.48	U	0.0051	U	0.0044	U	0.0047	U	3.9 U
Acetone	0.05	500	0.05	0.014		2.2	U	0.15		0.11	0.086	0.48	U	0.015		0.089		0.015	J+	3.9 U
Benzene	0.06	44	0.06	0.00090	U	0.43	U	0.0010	U	0.00038 J	0.00090 U	0.096	U	0.0010	U	0.00034	J	0.00094	U	0.79 U
Bromoform	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Bromomethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Carbon disulfide	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.0079	0.00090 U	0.096	U	0.0010	U	0.0082		0.00094	U	0.79 U
Carbon tetrachloride	0.76	22	0.76	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Chlorobenzene	1.1	500	1.1	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Chlorobromomethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Chlorodibromomethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Chloroethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Chloroform	0.37	350	0.37	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U*	0.79 U
Chloromethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
cis-1,2-Dichloroethene	0.25	500	0.25	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U*	0.79 U
cis-1,3-Dichloropropene	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Cyclohexane	NC	NC	NC	0.00090	U	0.79		0.0010	U	0.00098 U	0.00090 U	0.19		0.0010	U	0.00089	U	0.00094	U	2.4
Dichlorobromomethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Dichlorodifluoromethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Ethylbenzene	1	390	1	0.00090	U	29		0.0020		0.0040	0.0023	0.096	U	0.0010	U	0.0013		0.00094	U	100
Ethylene Dibromide	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Isopropylbenzene	NC	NC	NC	0.00090	U	0.94		0.00016	J	0.053	0.00094	1.1		0.0010	U	0.11		0.00025	J	4.5
Methyl acetate	NC	NC	NC	0.0045	U	2.2	U	0.0051	U	0.0049 U	0.0045 U	0.10	J	0.0051	U	0.0044	U	0.0047	U*	3.9 U
Methyl tert-butyl ether	0.93	500	0.93	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U*	0.79 U
Methylcyclohexane	NC	NC	NC	0.0016		2.4		0.00072	J	0.00098 U	0.00090 U	0.51		0.0010	U	0.025		0.00094	U	8.6
Methylene Chloride	0.05	500	0.05	0.0016		0.43	U	0.00075	J	0.00098 U	0.00090 U	0.096	U	0.0014		0.0021		0.0024	J+	0.79 U
m-Xylene & p-Xylene ⁽¹⁾	NC	NC	NC	0.00090	U	140		0.012		0.00048 J	0.0092	0.096	U	0.00018	J	0.0058		0.00045	J	220
o-Xylene ⁽¹⁾	NC	NC	NC	0.00090	U	40		0.0033		0.0017	0.00088 J	0.096	U	0.0010	U	0.0010		0.00094	U	55
Styrene	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Tetrachloroethene	1.3	150	1.3	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Toluene	0.7	500	0.7	0.00090	U	140		0.0064		0.00079 J	0.0014	0.096	U	0.00066	J	0.0061		0.00094	U	110
trans-1,2-Dichloroethene	0.19	500	0.19	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
trans-1,3-Dichloropropene	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Trichloroethene	0.47	200	0.47	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Trichlorofluoromethane	NC	NC	NC	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Vinyl chloride	0.02	13	0.02	0.00090	U	0.43	U	0.0010	U	0.00098 U	0.00090 U	0.096	U	0.0010	U	0.00089	U	0.00094	U	0.79 U
Xylenes, Total	0.26	500	1.6	0.0018	U	180		0.015	1	0.0021	0.01	0.19	U	0.00018	ī	0.0068		0.00045	Ī	270

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight).
FT BGS - Feet below ground surface
F1 - MS and/or MSD Recovery is outside acceptance limits

F2 - MS/MSD RPD exceeds control limits U - Compound was not detected at specified quantitation limit

* - LCS or LCSD is outside acceptance limits

UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion

ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective (1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC.

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

												INV	ESTIGAT	TION AREA 2									
			SAMPLE NAME	SR-SO-SB-119	(16-17)	SR-SO-SB-120	(5-6)	SR-SO-SB-120	(13-14)	SR-SO-SB-208	3 (5-7)	SR-SO-SB-208		SR-SO-SB-209	9 (5-7)	SR-SO-SB-209	(12-13)	SR-SO-SB-210	(7-9)	SR-SO-SB-210	(14-15)	SR-SO-SB-211	1 (10-11)
		LABORATO	ORY SAMPLE ID	460-18619	5-8	460-186195-	-3	460-186195	5-4	460-197892	2-2	460-197892	2-3	460-197892	2-4	460-197892	2-5	460-197892	2-6	460-19789	2-7	460-19789	92-8
			DEPTH (FT BGS)		GS	5-6 FT BGS	S	13-14 FT B	GS	5-7 FT BG	S	14-15 FT B0	GS	5-7 FT BG	iS	12-13 FT B	BGS	7-9 FT BG	S	14-15 FT B	BGS	10-11 FT I	BGS
		SA	AMPLING DATE	7/9/2019)	7/8/2019		7/8/2019	1	12/3/2019)	12/3/2019)	12/3/2019)	12/3/2019	9	12/3/2019)	12/3/201	9	12/3/201	19
			UNITS	mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	5
VOLATILE ORGANIC COMPOUNDS (VOCs)	NYSDEC Unrestricted Use SCO	NYSDEC Commercial Use SCO	NYSDEC Protection of Groundwater SCO	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q	Result	Q
1,1,1-Trichloroethane	0.68	500	0.68	0.00077	U	0.074	U	0.00085	U	0.00019	U	0.00020	U	0.63	U	0.00020	U	0.066	U	0.00019	U	0.072	U
1,1,2,2-Tetrachloroethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00018	U	0.00018	U	0.42	U	0.00018	U	0.043	U	0.00017	U	0.049	U
1,1,2-Trichloro-1,2,2-trifluoroethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00025	U	0.00026	U	0.76	U	0.00026	U	0.08	U	0.00024	U	0.087	U
1,1,2-Trichloroethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00015	U	0.00015	U	0.18	U	0.00015	U	0.019	U	0.00014	U	0.02	U
1,1-Dichloroethane	0.27	240	0.27	0.00077	U	0.074	U	0.00085	U	0.00017	U	0.00017	U	0.54	U	0.00018	U	0.056	U	0.00016	U	0.061	U
1,1-Dichloroethene	0.33	500	0.33	0.00077	U	0.074	U	0.00085	U	0.00019	U	0.00019	U	0.59	U	0.00019	U	0.062	U	0.00018	U	0.067	U
1,2,3-Trichlorobenzene	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00015	U	0.00015	U	0.78	U	0.00015	U	0.082	U	0.00014	U	0.089	U
1,2,4-Trichlorobenzene	NC NG	NC NC	NC	0.00077	U	0.074	U	0.00085	U	0.00030	U	0.00030	U	0.6	U	0.00031	U	0.063	U	0.00029	U	0.069	U
1,2-Dibromo-3-Chloropropane	NC	NC 500	NC	0.00077	U	0.074	U	0.00085	U	0.00038	U	0.00039	U	0.51	U	0.00039	U	0.054	U	0.00037	U	0.059	U
1,2-Dichlorobenzene	1.1 0.02	500 30	0.02	0.00077 0.00077	U	0.074 0.074	U U	0.00085 0.00085	U	0.00012 0.00025	U	0.00012 0.00025	U	0.49	U	0.00012 0.00025	U	0.052	U	0.00012 0.00024	U	0.056 0.064	U
1,2-Dichloroethane 1,2-Dichloropropane	0.02 NC	NC	0.02 NC	0.00077	U	0.074	U	0.00085	U	0.00025	U	0.00025	U	0.56	U	0.00025	U	0.059 0.042	U	0.00024	U	0.064	U
1,3-Dichloropropane	2.4	280	2.4	0.00077	U	0.074	U	0.00085	U	0.00035	U	0.00036	U	0.4	U	0.00036	U	0.042	U	0.00034	U	0.046	U
1,4-Dichlorobenzene	1.8	130	1.8	0.00077	U	0.074	U	0.00085	U	0.00013	U	0.00013	U	0.74	U	0.00014	U	0.078	U	0.00013	U	0.084	U
1,4-Dictiorobenzene	0.1	130	0.1	0.00077	U	3.7	U	0.00083	U	0.00019	U	0.00019	II	19	U	0.0078	II	2.0	II	0.0073	U	2.2	U
2-Butanone (MEK)	0.12	NC NC	0.12	0.0038	U	0.37	U	0.0043	U	0.0070	U	0.0078	U	4.9	U	0.0078	U	0.52	U	0.0073	U	0.56	U
2-Hexanone	NC	NC NC	NC	0.0038	U	0.37	U	0.0043	U	0.0023	U	0.0023	U	2.5	U	0.0023	U	0.27	U	0.0022	U	0.29	U
4-Methyl-2-pentanone (MIBK)	NC	NC	NC	0.0038	U	0.37	U	0.0043	U	0.0014	U	0.0013	U	2.9	U	0.0013	U	0.31	U	0.0014	U	0.33	U
Acetone	0.05	500	0.05	0.023		0.37	U	0.027		0.0015	-	0.0076		9.9	U	0.0049	U	1.0	U	0.0046	U	1.1	U
Benzene	0.06	44	0.06	0.00077	U	0.074	U	0.00085	U	0.00021	U	0.00022	U	0.45	U	0.00022	U	0.047	U	0.00021	U	0.052	U
Bromoform	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00035	U	0.00036	U	0.4	U	0.00036	U	0.047	U	0.00034	U	0.046	U
Bromomethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00039	U	0.00040	U	1.2	U	0.00040	U	0.13	U	0.00038	U	0.14	U
Carbon disulfide	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00066	J	0.00023	U	1.5	U	0.00023	U	0.16	U	0.00021	U	0.17	U
Carbon tetrachloride	0.76	22	0.76	0.00077	U	0.074	U	0.00085	U	0.00032	U	0.00033	U	0.74	U	0.00033	U	0.077	U	0.00031	U	0.084	U
Chlorobenzene	1.1	500	1.1	0.00077	U	0.074	U	0.00085	U	0.00015	U	0.00015	U	0.54	U	0.00015	U	0.056	U	0.00014	U	0.061	U
Chlorobromomethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00023	U	0.00024	U	0.67	U	0.00024	U	0.07	U	0.00022	U	0.077	U
Chlorodibromomethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00016	U	0.00016	U	0.49	U	0.00017	U	0.052	U	0.00015	U	0.056	U
Chloroethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00043	U	0.00044	U	0.83	U	0.00045	U	0.087	U	0.00042	U	0.095	U
Chloroform	0.37	350	0.37	0.00077	U	0.074	U	0.00085	U	0.00027	U	0.00027	U	0.49	U	0.00027	U	0.052	U	0.00025	U	0.056	U
Chloromethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00036	U	0.00037	U	0.9	U	0.00037	U	0.094	U	0.00035	U	0.1	U
cis-1,2-Dichloroethene	0.25	500	0.25	0.00077	U	0.074	U	0.00085	U	0.00013	U	0.00013	U	0.58	U	0.00013	U	0.061	U	0.00012	U	0.066	U
cis-1,3-Dichloropropene	NC NG	NC NC	NC	0.00077	U	0.074	U	0.00085	U	0.00023	U	0.00023	U	0.5	U	0.00023	U	0.052	U	0.00022	U	0.057	U
Cyclohexane	NC NC	NC NC	NC NC	0.00077	U	0.82	1.7	0.00085	U	0.00018	U	0.00019	U	2.3	* *	0.00019	U	1.0	**	0.00018	U	0.066	**
Dichlorobromomethane Dichlorodifluoromethane	NC NC	NC NC	NC NC	0.00077 0.00077	U	0.074 0.074	U	0.00085 0.00085	U	0.00021 0.00028	U	0.00022 0.00029	U	0.33	U	0.00022 0.00029	U	0.035 0.073	U	0.00021 0.00027	U	0.038 0.079	U
Ethylbenzene Ethylbenzene	NC 1	NC 390	NC 1	0.000//	U	0.074	U	0.00085	U	0.00028	U	0.00029	U	150	U	0.00029	U	25	U	0.00027	U	32	-
Ethylene Dibromide	NC	NC	NC	0.0021	U	0.074	U	0.00019	U	0.00017	U	0.00017	U	0.42	U	0.00086	U	0.045	U	0.00032	U	0.049	U
Isopropylbenzene	NC NC	NC NC	NC NC	0.00077	J	2.0	U	0.00085	J	0.00013	U	0.00013	U	4.6	U	0.00013	U	2.6	_ ·	0.00014	U	3.0	+ -
Methyl acetate	NC	NC NC	NC NC	0.0038	U	0.37	U	0.00013	U	0.0036	U	0.0036	U	1.8	UJ	0.0037	U	0.18	UJ	0.0034	U	0.20	UJ
Methyl tert-butyl ether	0.93	500	0.93	0.00077	U	0.074	U	0.00045	U	0.00010	U	0.00011	U	0.29	U	0.00011	U	0.031	U	0.00010	U	0.033	U
Methylcyclohexane	NC	NC NC	NC NC	0.00077	U	4.5		0.00085	U	0.00042	U	0.00011	U	6.9	<u> </u>	0.00043	U	3.9	ΙŤ	0.00040	U	3.5	+ -
Methylene Chloride	0.05	500	0.05	0.0011	T -	0.074	U	0.00095	Ť	0.00039	U	0.00046	J	0.47	U	0.00049	U	0.049	U	0.00037	U*	0.054	U
m-Xylene & p-Xylene ⁽¹⁾	NC	NC	NC	0.011	1	0.18		0.00081	J	0.00014	U	0.00024	J	570	1 -	0.0036	1 -	75	<u> </u>	0.0026	1 -	64	
o-Xylene ⁽¹⁾	NC	NC	NC	0.0035		0.074	U	0.00027	J	0.00016	U	0.00016	U	71		0.00060	J	10		0.00044	J	4.2	
Styrene	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00023	U	0.00024	U	0.38	U	0.00024	U	0.04	U	0.00022	U	0.043	U
Tetrachloroethene	1.3	150	1.3	0.00077	U	0.074	U	0.00085	U	0.00012	U	0.00012	U	0.8	U	0.00012	U	0.085	U	0.00011	U	0.092	U
Toluene	0.7	500	0.7	0.0038		0.074	U	0.00055	J	0.00019	U	0.00020	U	28		0.00026	J	3.1		0.00021	J	0.064	J
trans-1,2-Dichloroethene	0.19	500	0.19	0.00077	U	0.074	U	0.00085	U	0.00020	U	0.00021	U	0.4	U	0.00021	U	0.042	U	0.00020	U	0.046	U
trans-1,3-Dichloropropene	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00022	U	0.00023	U	0.42	U	0.00023	U	0.045	U	0.00021	U	0.049	U
Trichloroethene	0.47	200	0.47	0.00077	U	0.074	U	0.00085	U	0.00012	U	0.00012	U	0.49	U	0.00012	U	0.052	U	0.00012	U	0.056	U
Trichlorofluoromethane	NC	NC	NC	0.00077	U	0.074	U	0.00085	U	0.00034	U	0.00034	U	0.71	U	0.00035	U	0.075	U	0.00032	U	0.082	U
Vinyl chloride	0.02	13	0.02	0.00077	U	0.074	U	0.00085	U	0.00045	U	0.00046	U	0.45	U	0.00047	U	0.047	U	0.00044	U	0.051	U
Xylenes, Total	0.26	500	1.6	0.014		0.18		0.0011	J	0.00016	U	0.00024	J	641		0.0042		85		0.00304		68.2	

Bold text and green shading indicates result above Unrestricted Use SCO

Bold text and orange shading indicates result above Protection of Groundwater SCO

Bold text and blue shading indicates result above Commercial Use SCO

mg/kg - milligrams per kilogram (dry weight).
FT BGS - Feet below ground surface
F1 - MS and/or MSD Recovery is outside acceptance limits

F2 - MS/MSD RPD exceeds control limits

U - Compound was not detected at specified quantitation limit * - LCS or LCSD is outside acceptance limits

UJ - Non-detect with a potential low bias

J - Estimated value

J+ - Estimated value with a potential high bias

J- - Estimated value with a potential low bias

NC - No criterion

ND - Not detected

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

(1) - There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC. Page 6 of 7

Table 3

NYSDEC

Shore Realty Corporation (AES) - Site No. 130006 1 Shore Road, Glenwood Landing, New York 11547

Summary of Results of Analysis of Soil for Volatile Organic Compounds

						INX	ESTICAT	TION AREA 2			
			SAMPLE NAME	SR-SO-SB-211	(13-14)	SR-SO-SB-211 (SR-SO-SB-211	(19-20)	SR-SO-SB-212	2 (1-3)
			DRY SAMPLE ID	460-197892		460-197892		460-197892		460-197892	(- /
			DEPTH (FT BGS)	13-14 FT BO	-	14.5-15 FT I	-	19-20 FT B		1-3 FT BC	
			AMPLING DATE	12/3/2019		12/3/2019		12/3/2019		12/2/2019	
		51	UNITS	mg/kg		mg/kg		mg/kg		mg/kg	
			NYSDEC								Т
VOLATILE ORGANIC COMPOUNDS	NYSDEC	NYSDEC	Protection of								
(VOCs)	Unrestricted Use	Commercial Use	Groundwater	Result	Q	Result	Q	Result	Q	Result	Q
(vocs)	SCO	SCO	SCO								
1,1,1-Trichloroethane	0.68	500	0.68	0.00020	U	0.016	U	0.00023	U	0.00018	U
1,1,2,2-Tetrachloroethane	NC	NC	NC	0.00020	U	0.010	U	0.00023	U	0.00018	U
1,1,2-Trichloro-1,2,2-trifluoroethane	NC	NC	NC	0.00018	U	0.011	II	0.00021	U	0.00010	U
1,1,2-Trichloroethane	NC	NC	NC	0.00025	U	0.0045	U	0.00027	U	0.00023	U
1,1-Dichloroethane	0.27	240	0.27	0.00017	U	0.013	U	0.00020	U	0.00014	II
1,1-Dichloroethene	0.33	500	0.33	0.00019	U	0.015	U	0.00022	U	0.00017	U
1,2,3-Trichlorobenzene	NC	NC	NC	0.00015	U	0.02	U	0.00018	UJ	0.00014	U
1,2,4-Trichlorobenzene	NC	NC	NC	0.00013	U	0.015	U	0.00018	UJ	0.00014	U
1,2-Dibromo-3-Chloropropane	NC	NC	NC	0.00039	U	0.013	U	0.00045	U	0.00027	U
1,2-Dichlorobenzene	1.1	500	1.1	0.00012	U	0.012	U	0.00014	U	0.00011	U
1,2-Dichloroethane	0.02	30	0.02	0.00025	U	0.014	U	0.00029	U	0.00023	U
1,2-Dichloropropane	NC	NC	NC	0.00036	U	0.01	U	0.00041	U	0.00032	U
1,3-Dichlorobenzene	2.4	280	2.4	0.00013	U	0.018	U	0.00015	U	0.00012	U
1,4-Dichlorobenzene	1.8	130	1.8	0.00019	U	0.019	U	0.00022	U	0.00017	U
1,4-Dioxane	0.1	130	0.1	0.0077	U	0.49	U	0.0089	U	0.007	U
2-Butanone (MEK)	0.12	NC	0.12	0.0023	U	0.12	U	0.0026	U	0.0021	U
2-Hexanone	NC	NC	NC	0.0014	U	0.063	U	0.0017	U	0.0013	U
4-Methyl-2-pentanone (MIBK)	NC	NC	NC	0.0013	U	0.073	U	0.0015	U	0.0012	U
Acetone	0.05	500	0.05	0.0048	U	0.25	UJ	0.0055	U F1	0.0052	T
Benzene	0.06	44	0.06	0.00022	U	0.011	U	0.00025	U	0.00020	U
Bromoform	NC	NC	NC	0.00036	U	0.01	U	0.00041	U	0.00032	U
Bromomethane	NC	NC	NC	0.00040	U	0.031	UJ	0.00046	U	0.00036	U
Carbon disulfide	NC	NC	NC	0.00022	U	0.038	U	0.00026	U	0.00020	U
Carbon tetrachloride	0.76	22	0.76	0.00033	U	0.018	U	0.00038	U	0.00030	U
Chlorobenzene	1.1	500	1.1	0.00015	U	0.013	U	0.00017	U	0.00014	U
Chlorobromomethane	NC	NC	NC	0.00024	U	0.017	U	0.00027	U	0.00021	U
Chlorodibromomethane	NC	NC	NC	0.00016	U	0.012	U	0.00019	U	0.00015	U
Chloroethane	NC	NC	NC	0.00044	U	0.021	U	0.00051	U	0.00040	U
Chloroform	0.37	350	0.37	0.00027	U	0.012	U	0.00031	U	0.00024	U
Chloromethane	NC	NC 500	NC	0.00037	U	0.022	U	0.00042	U	0.00033	U
cis-1,2-Dichloroethene	0.25	500	0.25	0.00013	U	0.015	U	0.00015	U	0.00012	U
cis-1,3-Dichloropropene	NC NC	NC NC	NC NC	0.00023	U	0.012	U	0.00026	U	0.00021	U
Cyclohexane	NC NC	NC NC	NC NC	0.00019 0.00022	U	0.015 0.0084	U	0.00021 0.00025	U	0.00017 0.00020	U
Dichlorobromomethane Dichlorodifluoromethane	NC NC	NC NC	NC NC	0.00022	U	0.0084	U	0.00025	U	0.00020	U
Ethylbenzene	NC 1	NC 390	NC 1	0.00028	U	0.017	U	0.00033	I	0.00026	J
Ethylene Dibromide	NC	390 NC	NC	0.016	U	0.67	U	0.00031	U	0.00021	U
Isopropylbenzene	NC NC	NC NC	NC NC	0.00013	, o	0.011	I	0.00017	U	0.00014	U
Methyl acetate	NC	NC	NC	0.0036	U	0.044	UJ	0.0042	U	0.0033	U
Methyl tert-butyl ether	0.93	500	0.93	0.00011	U	0.0073	U	0.00012	U	0.00096	U
Methylcyclohexane	NC	NC	NC	0.0025	١	0.055	J	0.00012	U	0.00038	U
Methylene Chloride	0.05	500	0.05	0.0023	U	0.033	U	0.00045	U	0.00035	U
m-Xylene & p-Xylene ⁽¹⁾	NC	NC	NC	0.079		3.1	T .	0.0012		0.00090	T -
o-Xylene ⁽¹⁾	NC	NC	NC	0.0038		0.16	1	0.00026	J	0.00020	J
Styrene	NC	NC	NC	0.00033	U	0.0095	U	0.00027	U	0.00020	U
Tetrachloroethene	1.3	150	1.3	0.00023	U	0.003	U	0.00027	U	0.00021	U
Toluene	0.7	500	0.7	0.00012	U	0.014	U	0.00014	ī	0.0011	+ -
trans-1,2-Dichloroethene	0.19	500	0.19	0.00020	U	0.014	U	0.00031	U	0.00019	U
trans-1,3-Dichloropropene	NC	NC	NC	0.00021	U	0.011	U	0.00024	U	0.00019	U
Trichloroethene	0.47	200	0.47	0.00012	U	0.012	U	0.00014	U	0.00011	U
Trichlorofluoromethane	NC	NC NC	NC	0.00034	U	0.012	U	0.00039	U	0.00031	U
Vinyl chloride	0.02	13	0.02	0.00046	U	0.011	U	0.00053	U	0.00042	U
Xylenes, Total	0.26	500	1.6	0.0828		3.26		0.00146	1	0.0011	1

Bold text and green shading indicates result above Unrestricted Use SCO
Bold text and orange shading indicates result above Protection of Groundwater SCO
Bold text and blue shading indicates result above Commercial Use SCO

- mg/kg milligrams per kilogram (dry weight).
 FT BGS Feet below ground surface
 F1 MS and/or MSD Recovery is outside acceptance limits
- F2 MS/MSD RPD exceeds control limits
- U Compound was not detected at specified quantitation limit * - LCS or LCSD is outside acceptance limits
- UJ Non-detect with a potential low bias
- J Estimated value
- J+ Estimated value with a potential high bias
- J- Estimated value with a potential low bias
- NC No criterion
- ND Not detected
- NYSDEC New York State Department of Environmental Conservation
- SCO Soil Cleanup Objective
 (1) There are no SCOs for m/p xylene or o-xylene. The SCOs for total xylenes are shown.

TRC ENGINEERS, INC.

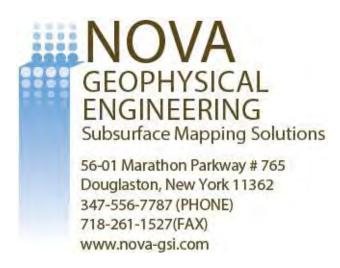
TRC ENGINEERS, INC. JANUARY 2020

GEOPHYSICAL ENGINEERING SURVEY REPORT

Industrial Property
1 Shore Road,
Glenwood Landing, New York 11547

NOVA PROJECT NUMBER:

19-1332


DATED:

July 12, 2019

PREPARED FOR:

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS

56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.novagsi.com

July 12, 2019

Dan Warren
Senior Project Manager
TRC
21 Griffin Road North
Windsor, CT 06095

T: 860.298.6378 | F: 860.298.6399 | C: 917.232.9837

E: <u>Dwarren@trccompanies.com</u>

Re: Geophysical Engineering Survey (GES) Report

Industrial Property
1 Shore Road.

Glenwood Landing, New York 11547

Dear Mr. Warren.

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 1 Shore Road, Glenwood Landing, New York 11547 (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify utilities, underground storage tanks and other substructures as well as to clear and mark proposed boring locations on July 3rd, 2019.

The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the

GEOPHYSICAL ENGINEERING SURVEY REPORT

Industrial Property

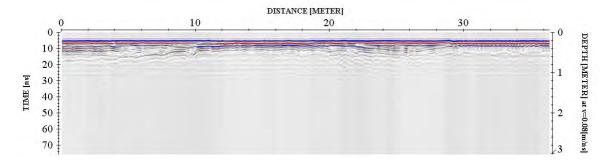
1 Shore Road,

Glenwood Landing, New York 11547

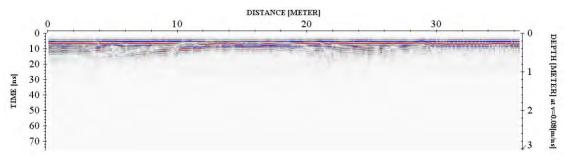
subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

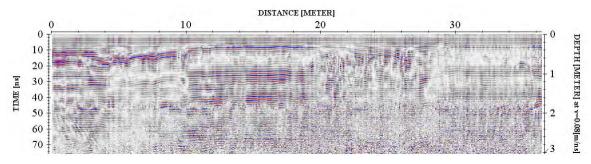
GEOPHYSICAL METHODS

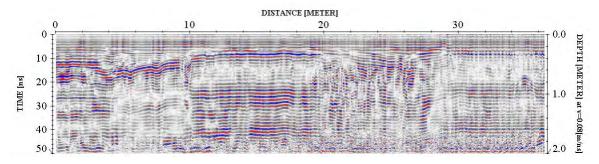

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was used to help determine the locations of utilities within the survey area.

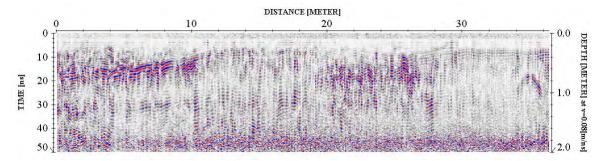
EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.


DATA PROCESSING

In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.




Step 2. Remove instrument noise (dewow)


Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and represents the subsurface anomalies much more accurately.

GEOPHYSICAL ENGINEERING SURVEY REPORT

Industrial Property 1 Shore Road,

Glenwood Landing, New York 11547

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Partly Cloudy

Temperature: 85° F

Surface: Concrete, Asphalt, Vegetation

Geophysical Noise Level (GNL): The GNL was moderate at the site. The noise was a result of

the site being located in a semi-urban environment.

RESULTS

The results of the geophysical engineering survey (GES) identified the following at the project

site:

Anomalies resembling potential subsurface utilities (such as drainage, water, remediation

and gas) were identified during the GES. The approximate locations are shown in the

survey plan.

No large geophysical anomalies resembling an underground storage tank (UST) were

identified within the Survey Area.

All detected subsurface anomalies were marked in the onsite mark out.

All cleared boring locations were marked in the onsite mark out.

GEOPHYSICAL ENGINEERING SURVEY REPORT

Industrial Property
1 Shore Road,

Glenwood Landing, New York 11547

If you have any questions, please do not hesitate to contact the undersigned.

Sincerely,

NOVA Geophysical Services

Levent Eskicakit, P.G., E.P.

Sweet BAT

Project Engineer

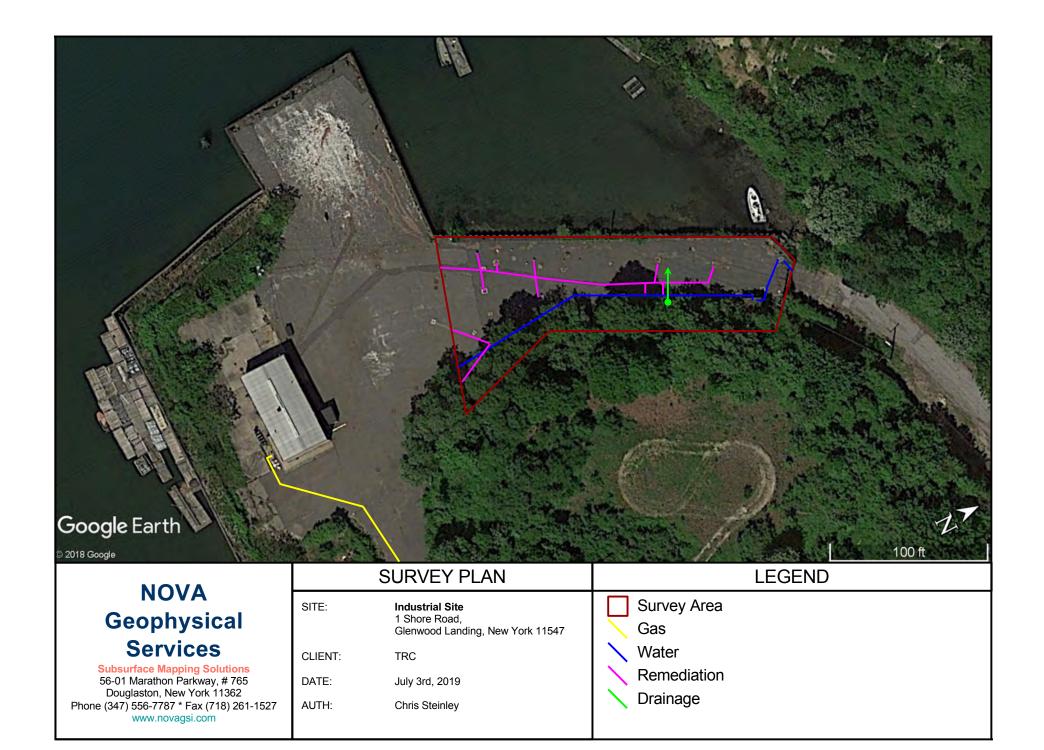
Attachments:

Location Map

Survey Plan

Geophysical Images

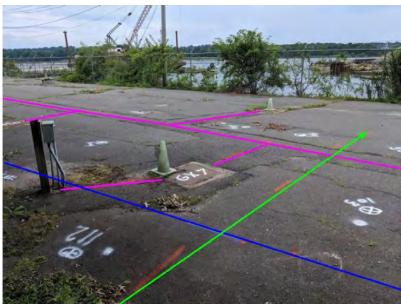
Geophysical Services

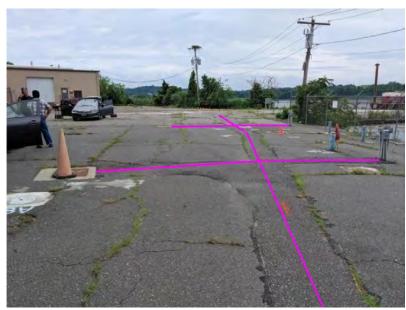

Subsurface Mapping Solutions 56-01 Marathon Parkway, # 765 Douglaston, New York 11362 Phone (347) 556-7787 * Fax (718) 261-1527 www.novagsi.com

Glenwood Landing, New York 11547

CLIENT: TRC


DATE: July 3rd, 2019


AUTH: Chris Steinley



GEOPHYSICAL IMAGESIndustrial Site

1 Shore Road, Glenwood Landing, New York 11547 July 3rd, 2019

ATTACHMENT B – SOIL BORING LOGS

TRC ENGINEERS, INC. JANUARY 2020

BORING NUMBER: **SB-101** Page 1 of 1

		t Num	ber: 🗓	327138	3.0000.00	Glenwood Landing, NY 00 Phase 3 epartment of Environmental Conservation	1	7/11/19 State Plane - Lor 239437.2345		: 7/11/19 : 1082002.13
			By: _	Sanjay	Sharma	epartment of Environmental Conservation	Vertical Datum		Ground Elevation	
D				DF	RILLING I	NFORMATION ogies, Inc.	MEASUREMENT	GROUND WAT	ER OBSERVATIONS At End of Drilling	▼ After Drill
	Drillin	Drillei g Meth				d Jon Grazione	DATE DEPTH (ft.bgs.)	7/11/2019 2.5		
Е		ent/Mo	del: C	GeoPr	obe - 661	10DT	REFERENCE	Ground Surface NA		
EPTH (FT.)	SAMPLE		_	RECOVERY (FT.)	Sharma	MATE	STABILIZATION	NA		VOC SCREEN RESULTS (ppr
						0'- 0.5' Asphalt (2 layers)	345 15 7			
	1	MAC	5.0	5.0		0.5'-1' Dark brown, fine to medium Staining. 1'-2.5' Gray to brown, fine to medium 2.5'-4' Same as above (sample 1-2. 4'-5' Dark gray, fine to medium SAN	m SAND, trace silt and she	nd fine gravel, wet a	it 2.5" bgs	
_	2	MAC	5.0	4.0		5'- 6' Same as above (sample 4-5), v 6'- 7.5' Dark gray, fine SAND, dense 7.5'- 9' Light gray, fine SAND, mediu	e, wet. Mild odor, no :	Ū		,
10	3	MAC	5.0	5.0		10'- 12.5' Dark gray, fine SAND, med 12.5'- 15' Whitish gray, fine SAND, r				>
15						15'- 15.83' Same as above (sample	12.5-15), wet. No oo	dor, no staining		
	4	MAC	5.0	5.0		15.83'-20' Yellow brown, fine to med	•	_	bgs	•
20		<u> </u>			<u>^</u> , ^; ^; ^; 4	Bottom of bo	orehole at 20.0 feet.		l	

BORING NUMBER: **SB-102** Page 1 of 1

		t Locat	ion: 1	Shor		Glenwood Landing, NY	Boring Depth Date Started	: 7/11/19	Hole Diameter Date Completed:	
	Projec		_			00 Phase 3 Department of Environmental Conservation		: State Plane - Lor : 239431.4378	_	: 1081999.56
	L		_		Sharma	·	Vertical Datum		Ground Elevation:	
		ecked	-							
						INFORMATION		GROUND WAT	ER OBSERVATIONS	
D	rilling C					logies, Inc.	MEASUREMENT DATE		▼ At End of Drilling	▼ After Drilli
	Drillin	g Meth	–			d Jon Grazione	DEPTH (ft.bgs.)	3		
Е		_	_		obe - 66	10DT	REFERENCE	Ground Surface		
		Samp	oler: S	Sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ГШНОГОСУ		RIAL DESCRIPTION			VOC SCREENI RESULTS (ppor
						0'- 0.5' Asphalt (2 layers)		_		
	1	MAC	5.0	5.0		0.5'-2' Dark brown, fine to medium's staining 2'-2.5' Gray to dark brown, fine to mand silt. Strong odor, no staining 2.5'-3' Gray, fine SAND, day and silt odor, stains 3'-4' Same as above (sample 2.5-3) 4'-5' Gray, fine SAND, wet, day and	edium SAND, moist, t, shell bed (crushed , wet I silt, shells. Strong c	, day and fine to me d shells), heavy, mo odor, stains	edium gravel ist. Strong	
_ _ _	2	MAC	5.0	4.0		5'-7.33' Dark gray/black, fine to med wet. Strong odor, stains 7.33'-9' Light gray, fine SAND, wet,			Juling ava,	/ / †
10	3	MAC	5.0	5.0		10 '- 13.5 ' Dark gray, fine SAND, med)
_						2 3 3.	•			
1 <u>5</u>	4	MAC	5.0	5.0		15'-18' Same as above (sample 13.			ining.	
	1					18'-20' Yellow brown, fine to mediur	n SAND, day and sil	lt, dense, wet	-	
_										
20					• , • , • , • , •	Pottom of h	orehole at 20.0 feet.			
						BOILOTTOLD				
Note									-	

BORING NUMBER: **SB-103**Page 1 of 1

						orp (AES)	Boring Dept	h: 20 feet	Hole Diameter	2 inches
						Glenwood Landing, NY	Date Started		Date Completed:	7/11/19
	Projec		_			000 Phase 3	Coordinate Systen			Nat Cumrau
			_			Department of Environmental Conservation	_	Not Surveyed		Not Survey
				sanjay Dan W	Sharma	l .	Vertical Datum	n: Not Surveyed	Ground Elevation:	Not Survey
	Cit	ieckeu	Бу			INFORMATION		CDOUND WAT	TED ODGEDVATIONS	
D	rillina C	`ontrac	etor:			INFORMATION logies, Inc.	MEASUREMENT		ER OBSERVATIONS At End of Drilling	▼ After Drill
	······································		_			d Jon Grazione	DATE	7/11/2019	<u></u>	
	Drillin			Direct			DEPTH (ft.bgs.)	3		
Е	quipme				obe - 66		REFERENCE	Ground Surface		
		Sam	oler: <u>S</u>	Sanjay	Sharma	1	STABILIZATION	NA NA		
epth (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ		ERIAL DESCRIPTION			VOC SCREEN RESULTS (ppor
						0'- 0.5' Asphalt (2 layers)				: : :
						0.5'-2' Dark brown, fine to medium	SAND, day and silt,	medium gravel, rod	ks, dry. No	
						odor, no staining				
_						21 21 Croonich aray oils (CANID For	o aroual maint Mala	odor no etoinine		
	1	MAC	5.0	5.0		2'-3' Greenish gray, silty SAND, fir	e graver, moist. ivild	cuor, no staining		1
_					<u> </u>	3'-5' Gray to brown, fine to mediun	n SAND and aravel v	vet Mild odor	<u></u>	· · · · · · · · · · · · · · · · · · ·
							i w and graver, v	VOL. IVIIG COOL.		/
_										<i>j</i>
5										/
-					*******	5'-7' Dark brown/gray, fine to medi	um SAND and grave	l, medium dense, w	et. Mild odor,	······· 🕈 · · · ·
						no staining	Č	,		i
_										1
										\ \ \
	2	MAC	5.0	5.0		7'-10' Light gray, fine SAND, dense	e, wet			7:
	_	""	0.0	0.0						/ :
										1 / 1
_										
10										/
10						10'- 12:33' Dark gray to black, fine	to medium SAND tra	nce silt, wet dense	No odor, no	•
						staining	C. I. COMONITOR WED, U.C.	on, not, do loc.	10 000i, i io	
_										·i:
										1
_	_									<u> 1</u>
	3	MAC	5.0	5.0		12.33 '- 15 ' Light gray, fine SAND, r	nedium dense, wet. N	No odor, no staining.	. 7	Ţ
										Lilli
										1 : : :
15						45 47 11 11 11 11 11 11 11 11 11 11 11 11 11				
						15'-17' Light gray, fine SAND. No o	poor, no staining			
_									}	
_						17'-20' Light gray (whitish), fine sa	nd medium dense w	<u>rot</u>	 	
	4	MAC	5.0	5.0		17 - 20 Light gray (William), Illie sa	ina, ilibululliudi 150, V	ю		
_									-	
_										
20										
-					<u>r. 4 - 1 - 1</u>	Bottom of It	porehole at 20.0 feet.			

BORING NUMBER: **SB-104** Page 1 of 1

				PR	OJECT I	NFORMATION		BORING	INFORMATION	
	,		_			orp (AES)	Boring Depth		Hole Diameter	
						Glenwood Landing, NY	Date Started		Date Completed:	7/9/19
	Projec					00 Phase 3 epartment of Environmental Conservation	Coordinate System			4004000 75
	1.		_		Sharma	eparament of Environmental Conservation	Vertical Datum	239407.5508 NAVD88	Ground Elevation:	1081989.75 7.1
			-	Dan W			Vertical Batam	INAVEOU	Ordana Elevation.	···
						NFORMATION		GROUND WA	TER OBSERVATIONS	
Dr	rillina C	Contrac	ctor:			logies, Inc.	MEASUREMENT	✓ At Time of Drilling	·	▼ After Drill
	J					d Jon Grazione	DATE	7/9/2019		
				Direct			DEPTH (ft.bgs.)	2		
E	quipme				obe - 66	10DT	REFERENCE	Ground Surface		
		Samp	oler: S	Sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppor
						0'-0.5' Asphalt (2 layers).				- : : :
						0.5'-2' Dark brown, fine to medium S	SAND, trace silt and	arge gravel/rocks.	No odor, no	
					!:::::::	staining				1
									$\overline{}$	
	1	MAC	5.0	5.0		2'-3' Dark gray to brown, fine SAND		nce tine gravel, few	/large	
			""	5.5		gravel/rocks, wet. No odor, no staining		_		
						3'-5' Same as above (sample 2-3), v	wet. No odor, no stai	ning		/
										/
5						E F 00 D d b c c c c c c c c c	-F CANID ill	-F	Midala	√
						5'-5.83' Dark brown/gray, fine to me	culum Sand, with me	cuum gravel, wet. I	iviia soivents	
_						odor	man nilt umt danss	Mid ook roots as-is-		<u> </u>
						5.83'- 10' Whitish gray, fine SAND, ti	race siit, wet, dense.	iviid solvents odor	·•	1 1 1 1
_									İ	
	2	MAC	5.0	5.0						
_									¦	
									ľ	
-									į.	
10									ļ	
-						10'-12' Gray, fine SAND, day and si	ilt, wet, dense. No od	dor, no staining	<u> </u>	
						ş			j	
\dashv										
									!	
\neg	3	MAC	5.0	5.0		12'-15' Dark gray, fine SAND, dense	e, wet. No odor, no s	taining	<u> </u>	
	J	IVIAC	0.0	3.0						
									ĺ	
15						451 47510	0.45\			
						15'- 17.5' Same as above (sample 1:	2-15), wet. No odor,	no staining	!	
									1.	
									i	
_									Į.	
	4	MAC	5.0	5.0		17.5'-20' Light brown (whitish), fine	SAND dense wet N	hodor no etainin	1	
\dashv						17.5 - 20 Light Diowit (William), Illie	G IND, USI SS, WSL. I	w ww, i w stall lil i	y	
_										
20										
20						Rattom of ho	orehole at 20.0 feet.			
						Dollotto				
Note	3C.									

BORING NUMBER: **SB-105** Page 1 of 1

	Proj	ect Na	me: \$			NFORMATION orp (AES)	Boring Depth		INFORMATION Hole Diameter	2 inches
						Glenwood Landing, NY	Date Started	7/10/19	Date Completed:	7/10/19
	Projec		_			00 Phase 3	Coordinate System	State Plane - Lo		
			_			epartment of Environmental Conservation	1	239415.5354		1081982.91
		00	-		Sharma		Vertical Datum	NAVD88	Ground Elevation:	6.98
	Cn	ecked	ву: _							
ъ.	.::: 6	.				NFORMATION	MEACUDEMENT		ER OBSERVATIONS	T After Drill
DI	rilling C					ogies, Inc. d Jon Grazione	MEASUREMENT DATE	7/10/2019	▼ At End of Drilling	▼ After Drill
	Drillin	g Meth				d John Grazione	DEPTH (ft.bgs.)	2.5		
Е					obe - 662	20DT		Ground Surface		
		Samp	oler: 🛚	Sanjay	Sharma		STABILIZATION	NA		
PTH FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОБУ	MATER	RIAL DESCRIPTION			VOC SCREENI RESULTS (ppr
						0'-0.5' Asphalt (2 layers)				
					•••••	0.5'-1' Brown, fine to medium SAND), few large gravel, di	y. No odor, no stai	ning	
						1'-2.5' Gray, fine to medium SAND,	medium gravel, woo	d, day and silt, wet	i. No odor, no	
						staining				
	1	MAC	5.0	5.0		05 5 Dad	ND days 1.35			``
		.				2.5'-5' Dark gray, fine to medium SA	NND, day and silt, se	a snells, wet, shee	n. Strong	
						petroleum odor and stains				
_										
_										
5		-		-	0,0,0,0,0	5'-6' Dark gray to black, medium to	marca SANID tram	eilt wat lote of cha	alle Strong	
						petroleum odor and stains	Warse Sand, trace	SIII, WEL, IOLS OF STE	als. Suring	
_						6'-7.83' Dark brown, fine to medium	SAND trace eilt me	odium doneo wat 1	Moderate	· · · · • · · · · ·
						odor and stains at places	SAND, II ace siil, IT e	culum dense, well i	Violetale	/
_						odor di la stali lo di piacco			,	/
	2	MAC	5.0	4.0						1
_						7.83'-9' Dark gray/black, medium to	coarse SAND, trace	silt and fine gravel	, wet.	7
						Moderate odor				<u> </u>
										11 11 11
10										<u> </u>
					******	10'- 11.5' Same as above (sample 7.	.83-9), wet. Moderate	e to no odor, stains	at places	i i i i i i i i i i i i i i i i i i i
							•			
_									<u> </u>	
						11.5'- 14' Whitish gray, fine SAND, n	nedium dense, wet. 1	√loderate to no odd	r, stains at	
	3	MAC	5.0	50		places			ĺ.	
	J	IWIAC	5.5	3.0					Į.	
									ľ	
							AKIN -L.			
						14'-15' Dark gray, fine to medium S	4ND, day and silt, m	eaium aense. No a	paor, no	
15						stains	15) unt Na adamen	ataina		
					 :::::::	15'- 18' Same as above (sample 14-	13), wet. IND OCOT, NO) Stall 15		
\dashv										
_										
	4	MAC	5.0	5.0						
_					• • • • •	18'- 19.5' Red brown/orange, fine to	medium SAND. dav	and silt and day lu	imps. No	
						odor, no stains				
\dashv						•				
20						19.5'- 20' Clay. No odor, no stains				
-			1		<i>V/////</i>		orehole at 20.0 feet.			

BORING NUMBER: **SB-106** Page 1 of 1

						NFORMATION			INFORMATION	
						orp (AES) Glenwood Landing, NY	Boring Dept Date Starte		Hole Diamete Date Completed	
						Oo Phase 3		n: <u>//10/19</u> n: State Plane - Lor		i. 1/10/19
			_			epartment of Environmental Conservation	1	n: 239419.2026	-	t: 1081985.3 4
	L		_		Sharma	·	Vertical Datun		Ground Elevation	
		necked						-	_ _	
				DF	RILLING I	NFORMATION			ER OBSERVATIONS	
Dı	rilling (_			logies, Inc.	MEASUREMENT		▼ At End of Drilling	▼ After Dril
	Dr::::		–			d Jon Grazione	DEPTH (ft bas)	7/10/2019 2.5		
_		ng Meth ent/Mo			push obe - 662	ZODT	DEPTH (ft.bgs.) REFERENCE	2.5 Ground Surface		
_	quipiti		_		Sharma		STABILIZATION	NA NA		
5	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						0'- 0.5' Asphalt (2 layers)				
					••••••	0.5'-1' Brown, medium SAND, fine to				<u>Nii i i</u>
		1			[`.`.\ <u>.</u>	1'-1.5' Gray, fine to medium SAND,				_ 🗽
						1.5'-2.5' Dark gray, fine to medium \$		fine to medium grav	el, shells,	
	1	MAC	5.0	5.0		heavy, moist. Mld odor and stains at			<u> </u>	•
_						2.5'-4' Same as above (sample 1.5-	2.5), shells, wet			\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.
_						4'-5' Dark gray/black, fine SAND, da	av and silt and fine	oravel seashells Sh	ona odor	
5						and stains		g. 4701, 00001 10110. Oli	J. 19 0001	
		1				5'- 6.5' Dark gray, medium to coarse	SAND. fine aravel.	shells, wet. Modera	te odor,	-/
					:::::::	staining at places.	, io gravor,		,	/
\dashv		1			::::::::	.				· · · · · / · · · · · ·
						6.5'-8.5' Dark gray/brown, fine to me	edium SAND, trace	fine gravel, medium	dense, wet.	7
	2	MAC	5.0	5.0	::::::: <u> </u>	Moderate odor				
	2	IVIAC	3.0	3.0	[:::::::]					/
					•••••••					i i i
						8.5'-10' Dark gray/black, fine to med	dium SAND, dense,	wet. Very mild odor.		Ţ
		1			::::::::					
10					******	10'- 15' Dark brown/gray, fine to med	dium SAND day on	deilt and araud	dium doneo	.
					::::::: <u> </u>	wet. Very minor odor at places	uiui ii saind, day an	u sıı arıu gravei, me	uiui i iuei ise,	
\dashv						wa. vay mila ada acplaces				
										i
\dashv		1								ļ
	3	MAC	5.0	5.0						
\dashv					:::::::					1
										! ! ! !
\neg		1								l : : : : :
15										
						15'-18' Same as above (sample 10-	15), wet. No odor, r	no staining		[
										¦
\dashv		1								ļ
	4	MAC	5.0	5.0						
_					******	_ 18'- 18.33' Red brown/orange, fine to	o medium SAND d	av lumos		1
						18.33 '- 19' Red/gray CLAY		a, a po		7
_						19'-20' Gray/Whitish, fine SAND, we	t Noodor no staini	m		} {}}-
20		1				10 20 Gray/William, III ic or ND, We		· ·y		
		1			<u>ie ridsk</u>	Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-107**Page 1 of 1

					Realty Corp (AES)	Boring Dept		Hole Diameter	
					Road, Glenwood Landing, NY	Date Starte		Date Completed:	7/10/19
	Projec		_		.0000.0000 Phase 3		n: State Plane - Lo	_	1001000 10
					rk State Department of Environmental Conse Sharma	Norti Vertical Datur	h: 239424.0246	 Ground Elevation:	1081988.46
				Dan W		Vertical Datur	II. NAVDOO	Ground Elevation.	<u>'</u>
					ILLING INFORMATION		CBOTIND MV	TER OBSERVATIONS	
Dr	rillina C	Contrac	ctor:		Technologies, Inc.	MEASUREMENT	☐ At Time of Drilling		▼ After Drilli
	5				organ and Jon Grazione	DATE	7/10/2019		_
	Drillin	g Meth	nod: _[Direct	oush	DEPTH (ft.bgs.)	2.5		
Ed	quipme				obe - 6620DT	REFERENCE	Ground Surface		
		Samp	oler: <u>S</u>	Sanjay	Sharma	STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	пнолож	MATERIAL DESCRIPTION			VOC SCREENI RESULTS (ppn
					0'-0.5' Asphalt (2 layers)				: : :
					0.5'- 1.5' Brown, fine to med	dium SAND, trace gravel (lar	ge), shells. No odor	r, no staining	
					*	odium CAND day and silt a	ruchod chollo moio	t No odor no	
\dashv					1.5'-2' Dark gray, fine to me	outum omnu, day and siil, d	iuaiteu aitella, IIDIS	140 0001, 110	\
	1	MAC	5.0	5.0	2'-4' Light gray, fine SAND,	. shells, wet at 30". Mild odor		<u></u>	
\dashv						,,	==	-	
									\
\dashv					4'-5' Dark gray to black, fin	e SAND, seashells (crushed), wet. Mild odor		
5						•			~/
					5'-5.5' Same as above (sar				
					5.5'-7' Dark gray, fine to me	edium SAND, wood, loose, v	vet. No odor, no sta	ining	T
\Box					71 Ollight own 4500 CANES	wot			1
	2	МАС	5.0	3.0	7'-8' Light gray, fine SAND,	, wet			i i i i i
\dashv									ļ. ļ ļ ļ .
								;	' ! ! !
\dashv								ļi	
10								!	
					10'- 11' Same as above (sa	mple 7-8), wet. No odor, no :	staining	†	
					<u> </u>				
					11 '- 12.5' Dark gray, fine SA	AND, medium dense, wet. No	o odor, no staining		
	3	MAC	5.0	4.5	4051 40511 104	CANID No oden ne etalistis su			
\dashv					12.5'- 13.5' Light gray, fine	annu. Inu odor, no staining.	•	Į.	
					13.5'- 14.5' Dark gray, fine \$	SAND wet Nordor no etail	nina		
\dashv					10.0 14.0 Dairigiay, line	- 1 12, 110. I 10 0001, I 10 Stall		į.	
15					· 1 · 4 · 2				
-					15'- 17.66' Gray, fine SAND), medium dense, wet. No oc	lor, no staining	†	
\dashv					조기의			Į:	
					과정의				
\neg	4	MAC	5.0	5.0	공항의			ľ	
		, (0	3.5	5.5	17.66'-20' Yellowish red/bro	own, fine to coarse SAND, d	ense, day lumps, v	vet. No odor,	
					no staining				
					••••••				
20					`^`^`^`^] 	tom of borehole at 20.0 feet.			: : :
					БО	ad not bord be at 20.0 leet.			

BORING NUMBER: **SB-108** Page 1 of 1

	Droi	oot No	mo: (INFORMATION orp (AES)	Poring Dont		INFORMATION Hole Diameter	·· 2 inches
	,		_			Glenwood Landing, NY	Boring Dept Date Starte		Date Completed:	
	•		_			00 Phase 3	l .	n: State Plane - Lo		1710/10
						Department of Environmental Conservation	1	n: 239429.5615		1081990.98
	L		_		Sharma		Vertical Datun		Ground Elevation:	
			-	Dan W			1			
						INFORMATION		GROUND WAT	ER OBSERVATIONS	
D	rillina (Contrac	ctor:			logies, Inc.	MEASUREMENT	☐ X At Time of Drilling		▼ After Dril
_	9					d Jon Grazione	DATE	7/10/2019		
	Drillin			Direct			DEPTH (ft.bgs.)	2.5		
Е		•	_		obe - 66	20DT	REFERENCE	Ground Surface		
		Sam	oler: 🤱	Sanjay	Sharma	l .	STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (pp
						0'-0.5' Asphalt (2 layers)				16 32 48
					• • • • • • •	0.5'-1' Dark brown, fine to medium \$	SAND. Jarge gravel	trace silt, dry. No o	tor. no	
-	1					\staining	_ , go g. a.vo,		,	V irrieri
					::::::::	1'-2.5' Dark gray, fine to medium SA	ND. dav and silt s	eashells (crushed)	wet at 30"	
-	1		l _			No odor, no staining.	, oa, anon, o	casi iono (or dor iod),		
	1	MAC	5.0	5.0		2.5'-4' Gray, fine SAND, day and sil	t, crushed shell lave	er, wet. Moderate o	for and	*
_	1					stains	., or or ion ray	,		· · · · · · /:
_	1					4'-5' Dark gray, fine SAND, wet				/
5						3 7, - ,				j
-				1		5'-7' Dark brown, fine to medium SA	ND, trace fine grav	el, shells, wet. Mild o	odor	• •
						,		,		i
_	1									· /:· · :
										/:
_	1		l _	1_		7'-7.66' Dark brown, fine SAND, we	t. No to very mild od	lor, no staining		♦ : :: - : : :
	2	MAC	5.0	5.0		7.66 '- 10 ' Light gray, fine SAND, med	=	_	no etaining	$i \downarrow i \downarrow i$
_	1					7.00 - 10 Light gray, III te SAND, ITE	arumuchoc, Wel. IV	vay mid ddd, i	N SIGH III IG	1 1 1 1 1
										! ! ! !
_	1								!!	
10										
. <u> </u>						10'- 14.5' Light gray to dark brown, fi	ne SAND, trace fine	e to medium gravel.	medium 🕈	••••
						dense, wet	•	3 -,		
_	1								į.	
									ļ	
_	1 _								ļ-	
	3	MAC	5.0	5.0						
_	1									
									i	
_	1								ŀ	
15					0000	14.5'- 15' Yellow brown, fine SAND,	wet, dense. No odo	r, no stainina		
-				1		15'- 19' Same as above (sample 14.				
						.5 15 Carib Go Good God Pie 14.	5 10 ₁ , wot. 1 w 0001		}	
-	1								i.	
									į.	
_	1								ļ.	
	4	MAC	5.0	5.0					<u> </u>	
_	1									
_	-					10'- 10 23' CL AV di 19900				,
00						19'-19.33' CLAY dumps				
20					<u> </u>	19.33 '- 20 ' Gray, silty CLAY				<u>: : : :</u>
						Bottom of bo	orehole at 20.0 feet.			
Note										

BORING NUMBER: **SB-109** Page 1 of 1

						orp (AES)	Boring Deptl		Hole Diameter	
						Glenwood Landing, NY 00 Phase 3	Date Started		Date Completed:	7/11/19
	Projec					epartment of Environmental Conservation		n: State Plane - Lo n: 239432.7509		1081985.81
	1		_		Sharma		Vertical Datum		Ground Elevation:	
			-	Dan W			Volusia Batan			
						NFORMATION		GROUND WA	TER OBSERVATIONS	
D	rilling C	Contrac	ctor:			ogies, Inc.	MEASUREMENT			▼ After Dril
						d Jon Grazione	DATE	7/11/2019		
_		_	_	Direct	•		DEPTH (ft.bgs.)	2.5		
Е	quipme				obe - 66	IODT	REFERENCE	Ground Surface NA		
					Sharma		STABILIZATION	NA .		
epth (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						0'- 0.5' Asphalt (2 layers)				•
_						0.5'-1.5' Dark brown, fine to medium	n SAND, trace medic	um gravel. Mild odo	r, no	
						staining	mandiums americal is	ot Otronomerical	m adar	`*
_						1.5'-2.5' Gray, silty SAND, day and stains	meaium gravei, moi	isi. Strong petroleur	HOCKOF,	
	1	MAC	5.0	5.0		2.5'-4' Dark gray/black, fine to media	m SAND day and	silt some modium	aravel wet	
-						Strong petroleum odor, stains	um un view, day ahu	on, some medium	graver, wet.	· · · · · · · · · · · · · · · · · · ·
					::::::::	31				j
_						4'-5' Same as above (sample 2.5-4)	, wet, large gravel. S	Strong petroleum o	dor, stains	***
5					 ::::::]					_/
						5'- 6.75' Dark gray, fine to medium S	AND, trace silt and	gravel, wet, loose. I	Mild odor	7
										1
_					********					j
	2	МАС	5.0	1.8						
_										
										i
-										
10										
						10 '- 11.5 ' Same as above (sample 5	-6.75), wet, loose. M	/ild odor, no stainin	g	7
										1
										1
	3	МАС	5.0	1.5						1
_										<i>.</i>
										$i \perp \cdot \cdot \cdot$
_										/· :· · · : · · · : · · · : · · · : ·
15									ļ/	
					:	15 '- 17.66 ' Same as above (sample s	5-6.75), wet. No odo	or, no staining	†	
						•		-	i	
					 :::::::					
					[::::::]				1	
	4	MAC	5.0	5.0					ĺ	
						17.66'-20' Yellowish brown, fine to n	nedium SAND, day	lumps from 19.5-20	Oft bgs, wet.	
						No odor, no staining				
_										
20					::::::: <u> </u>					
∠∪					[•••••]		orehole at 20.0 feet.			<u> </u>

BORING NUMBER: **SB-110** Page 1 of 1

	Projec L	t Num Cli ogged.	ber: 3 ent: <u>1</u> By: 3	327138 New Yo Sanjay	3.0000.000 ork State De Sharma	Glenwood Landing, NY 00 Phase 3 epartment of Environmental Conservation	1	n: State Plane - Loi n: 239434.5396	-	: 1081993.59
		necked		DF	RILLING II	NFORMATION			ER OBSERVATIONS	-
	Orilling (ogies, Inc. d Jon Grazione	MEASUREMENT DATE		▼ At End of Drilling	▼ After Drill
	Drillin	ig Metl	–			J GOIT GIGLIGHO	DEPTH (ft.bgs.)	2.5		
E	Equipm		_		obe - 662	20DT	REFERENCE	Ground Surface NA		
EPTH (FT.)	SAMPLE NUMBER		_	RECOVERY (FT.)	Sharma LHOLOGY		STABILIZATION RIAL DESCRIPTION	IVA		VOC SCREEN RESULTS (ppr
						0'-0.5' Asphalt (2 layers)				
- -	1	MAC	5.0	5.0		0.5'-1' Dark brown, fine to medium \$\\\ staining 1'-2.5' Dark gray, fine to medium \$\\\ 2.5'-4' Dark gray, fine SAND, wet, \$\\\ 4'-5' Same as above (sample 2.5-4)	AND, clay and silt, sh	nells, dry. No odor, r		
5						- 0 Carro as above (3arrpie 2.5 -)	, day and sin, well.			/
- - -	2	MAC	5.0	4.0		5'-6' Dark brown to gray, fine to medium		_	alid cool	
1 <u>0</u> _	3	MAC	5.0	5.0		10'-125' Same as above (sample 6	-9), loose, watery. N	lo odor, no staining.		
_	↓	171710		5.5		12.5'- 13.66' Dark gray, fine SAND,	wet			ļ. <u> </u>
_ 15						13.66'-15' Light gray (whitish), fine \$				
_	4	MAC	5.0	5.0		15'- 17' Same as above (sample 13. 17'- 18:33' Whitish gray, fine to med		r, no staining		
_	_					18.33 '- 20 ' Yellowish brown to red bi from 19-20 ft bgs	rown, fine to medium	n SAND, wet, dense	, day lumps	
20										
						Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-111**Page 1 of 1

					Realty C		Boring Dept		Hole Diameter	
						Glenwood Landing, NY 000 Phase 3	Date Started	d: <u>//9/19</u> n: State Plane - Lo	Date Completed:	//10/19
	riojec					Department of Environmental Conservation		n: 239420.7687		1082010.02
	L		_		Sharma	· · · · · · · · · · · · · · · · · · ·	Vertical Datum		Ground Elevation:	
		ecked				-				
				DF	RILLING	INFORMATION		GROUND WA	TER OBSERVATIONS	
D	rilling C	Contrac	ctor:			ologies, Inc.	MEASUREMENT			▼ After Dril
		Drille	r(s): <u> </u>	Jeff M	organ an	nd Jon Grazione	DATE	7/9/2019		
		g Meth	_				DEPTH (ft.bgs.)	2.5		
Е	quipme		_		obe - 66 Sharma		REFERENCE STABILIZATION	Ground Surface NA		
EPTH (FT.)	SAMPLE		L	RECOVERY (FT.)	ПТЮСОСУ		ERIAL DESCRIPTION	1 121		VOC SCREEN RESULTS (ppi
5	1	MAC	5.0	5.0		0'- 0.83' Topsoil and organics with o staining. 0.83'- 1.5' Same as above (sample staining.) 1.5'- 2' Same as above (sample 0-0 2'- 4' Dark brown/gray, medium to o Strong petroleum odor and stains.) 4'- 5' Dark brown/gray, fine to medioodor	0-0.83), dry, day and 0.83), day and silt, m coarse SAND, day ar um SAND, trace silt,	d medium gravel. Noist nd fine gravel, loose medium, dense, we	o odor, no e, wet at 30".	
	2	MAC	5.0	5.0		5'-9.5' Light to dark gray, fine to me and stains at places				
	3	MAC	5.0	5.0		10'-12.5' Light gray, fine to medium				
15						15'-20' Same as above (sample 12	25-15), wet, day ban	ds and lumps. No c	dor, no	/
	4	MAC	5.0	5.0		staining.				
					آه ه ه ه ۱	Deffere of le				
						Bottomort	corehole at 20.0 feet.			

BORING NUMBER: **SB-112** Page 1 of 1

	Drai	aat Nia				NFORMATION orp (AES)	Boring Dept		INFORMATION Hole Diameter	. O inches
						Glenwood Landing, NY	Date Started		Date Completed:	
						00 Phase 3	-	n: State Plane - Lo		1710/10
						epartment of Environmental Conservation		n: 239412.3569		1081999.87
	L		_		/ Sharma		Vertical Datum		Ground Elevation:	
		00	, _	Dan W						
						NFORMATION		GROUND WAT	TER OBSERVATIONS	
D	rillina C	Contrac	ctor:			logies, Inc.	MEASUREMENT	☐ At Time of Drilling		▼ After Dril
_						d Jon Grazione	DATE	7/10/2019		_
	Drillin		–	Direct			DEPTH (ft.bgs.)	2.5		
Е	quipme	ent/Mo	odel:	GeoPi	obe - 662	20DT	REFERENCE	Ground Surface		
		Sam	pler: 🛚	Sanjay	/ Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						_ 0'-0.33' Asphalt.				10 20 30
_	1	MAC	5.0	5.0		0.33 '- 2' Dark brown, fine to medium odor, no staining. 2'- 5' Dark gray to brown, fine to med trace coarse gravel, shells, wet. Strong	dium SAND, day an	d silt, fine to mediur	_	
5	2	MAC	5.0	4.2		5'-6' Dark brown, fine to medium SA stains at places 6'-7' Light gray, fine SAND, medium 7'-9.17' Whitish gray, fine SAND, me brown sand, wet	dense, wet			†
10	3	MAC	5.0	5.0		10 '- 14.5 ' Same as above (sample 7- staining	-9.17) with fine grav	el (traces), wet. No	odor, no	
1 <u>5</u>						14.5'- 15' Yellowish brown, fine to m 15'- 18' Same as above (sample 14. staining				
	4	MAC	5.0	5.0		18'-19' Gray, fine SAND, traces of c	-	_		
20						HOπOM Of M	Jenoje at 70.0166t.			
20						Dollaria	. o o			

BORING NUMBER: **SB-113**Page 1 of 1

						orp (AES)	Boring Depti		Hole Diameter	
						Glenwood Landing, NY 00 Phase 3	Date Started	i: <u>7/9/19</u> n: State Plane - Lo	Date Completed:	7/9/19
	riojec					Department of Environmental Conservation		: 239404.2908		1082000.37
	L		_		Sharma	•	Vertical Datum		Ground Elevation:	
		ecked								
				DF	RILLING I	INFORMATION		GROUND WAT	TER OBSERVATIONS	
D	rilling C	Contrac	ctor: A			logies, Inc.	MEASUREMENT			▼ After Dril
			` ' —			d Jon Grazione	DATE	7/9/2019		
		g Meth					DEPTH (ft.bgs.)	2.5		
Е	quipme				obe - 66		REFERENCE	Ground Surface NA		
		Samp	oler: _s	anjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	МАТЕ	ERIAL DESCRIPTION			VOC SCREEN RESULTS (ppor
					711/	0'-0.5' Topsoil with organics. No oc			T	<u> </u>
					71/2 71/	0.5'-2' Brown, fine to medium SAN	D, gravel, dry. No odd	or, no staining		
					1/ 1//					
					1 1/2 x 1/2	Ol Al Cross florence Francis and Comment	ANID troop silt size!	rough west formers	phollo Otrovo	\ <u>`</u>
	1	МАС	5.0	5.0		2'-4' Gray/brown, fine to medium S petroleum odor and stains	AND, trace slit and g	ravel, wet, tew seas	shells. Strong	Ţ
						peroreumouor arustans.			_	
_						4'-5' Gray, fine SAND, trace mediu	m clay and silt. seash	nells, medium arava	el. wet.	
5						sheen. Strong to mild odor (solvent?)), stains at places	,	, :=9	
<u> </u>						5'- 6.5' Light to dark gray, fine to me		d silt, wet, some se	ashells. Mild	
						odor of solvents(?).	, , .	, ,========	-	
										/
	2	MAC	5.0	1.5						
			0.0							/
_									.	
10										/
10					tagand	10'- 12.5' Light brown, fine SAND, to	race silt, wet, mediun	n dense. Mild odor o	of .	\(\frac{1}{2}\)
						solvents(?)				
_										11-1-1
										ļ i i i
-	2	MAC							-	11 11
	3	IVIAC	J.U	5.0		12.5'-15' Dark gray/black, fine SAN	ID, medium dense, w	et. Mild odor of solv	vents(?).	11 11
										<u> </u>
										<u> </u>
15						15! 10! Comp on oher in /	10) umt \/	odor (ook sort-0)		j . <u>j</u> <u>i</u> i.
						15'-19' Same as above (sample 6.5	o- 10), wet. very mid	odor (sorvents?).		
_										
									i	
_									ļ	(
	4	MAC	5.0	5.0						
_										
									ľ	
_						19'-20' Light brown, fine SAND with	n day lumps. No odo	r, no stains	<u> </u>	
20						-				
					<u> </u>	Bottom of b	orehole at 20.0 feet.		L	
	l									

BORING NUMBER: **SB-114**Page 1 of 1

	Project	t Locat	tion: _1	Shor		Glenwood Landing, NY	Boring Depth Date Started	i: 7/9/19	Date Completed	2 inches 7/9/19
	Projec					00 Phase 3 Department of Environmental Conservation	1	: State Plane - Loi : 239331.2665	_	: 1081930.85
	L				Sharma	•	Vertical Datum		Ground Elevation	
	Ch	necked	Ву: _	Dan W	arren		-			
_	willima C	Santra	-t			INFORMATION	MEASUREMENT	GROUND WAT	ER OBSERVATIONS At End of Drilling	▼ After Drilli
D	Tilling C					logies, Inc. d Jon Grazione	DATE	7/9/2019	* At Life of Dilling	
		ıg Metl	nod: I	Direct	push		DEPTH (ft.bgs.)	3		
Е	quipme				obe - 66′ Sharma		REFERENCE STABILIZATION	Ground Surface NA		
EPTH (FT.)	SAMPLE			RECOVERY (FT.)	ППОСОСУ	MATE	RIAL DESCRIPTION	17.7		VOC SCREENI RESULTS (ppn
						0'-0.66' Asphalt (2 layers).				
_	1	MAC	5.0	5.0		O.66'-2' Dark brown, fine to medium no staining. 2'-3' Dark gray to brown, fine to medodor, no staining.	dium SAND, trace sil	it, lots of sea shells,	moist. No	*
5						3'-5' Grayish brown, fine SAND, da no staining 5'-6.66' Light grayish brown, fine SA		, and the second		/
	2	MAC	5.0	2.0		6.66'-7' Dark brown, fine to medium odor, no staining.	i SAND, trace coarse	e sand, seashells, w	et, loose. No	1
			50	20		10'- 12' Dark gray, medium SAND, to odor, no staining 12'- 13' Gray, fine to medium SAND,				
_	3	MAC	5.0	3.0		staining				/
 1 <u>5</u>						15'-17' Same as above (sample 12-	·13)			,' ,'
_	4	MAC	5.0	5.0		17'-20' Reddish brown/tan/brown to dumps/bands, wet. No odor, no stain		n SAND, silt and da	у	
		-			<u> °.°.*//</u> /	Bottom of bo	orehole at 20.0 feet.			
	I									

BORING NUMBER: SB-115 Page 1 of 1

						orp (AES) Glenwood Landing, NY	Boring Depth Date Started	: 7/9/19	Hole Diameter Date Completed	
	Projec		_			000 Phase 3		State Plane - Lor		4004000 54
			_		Sharma	Department of Environmental Conservation	North Vertical Datum	239320.6642	 Ground Elevation	: 1081928.54 : 7.44
		necked					Vertical Datum	. IVAVDOO	Ordana Elevation	. 1.44
						INFORMATION		GROUND WAT	ER OBSERVATIONS	
D	rilling (logies, Inc.	MEASUREMENT	∑ At Time of Drilling	▼ At End of Drilling	▼ After Drill
	D :II:		` ' -			d Jon Grazione	DATE DEPTH (ft has)	7/9/2019 3.5		
F		ig Metl ent/Mo	_		obe - 66	10DT	DEPTH (ft.bgs.) REFERENCE	Ground Surface		
	-darb				Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
					XXXX	_ 0'- 0.33' Asphalt.		.,		• : : :
_						0.33 '- 0.92 ' Gray to light brown, fine \FILL (glass), organics/wood, dry. No		ay and fine to medi	um gravel,	
						0.92'- 3.5' Light gray to dark gray, fir		light to medium ne	hhles/aravel	
_		MAG				some seashells (small to large), wet a			solour gravor,	
	1	MAC	5.0	5.0		/	<u></u>			.
						3.5'-5' Dark gray to black, fine to me	odium CAND trace a	ilt and fine area (cl.)	ot Mid odor	
_						and staining.	Balanti SAND, Italie S	ili ariu ili le gravei, v	vet. IVIId Odol	
5						a. a. s.ag.				
_						5'-7.5' Dark gray to black, medium t		edium dense, day a	nd gravel,	
						wet. Strong petroleum odor and stain	S			
										/
_										
	2	MAC	5.0	4.3		7.5'-9.33' Gray, medium to coarse \$	SAND, trace silt and	fine gravel, wet, me	dium dense.	*
_	-					Strong petroleum odor, no to light sta		3 , ,		i i i i i
										.;
40					<u> </u>					i
10					*,*,*,*,	10 '- 11 ' Same as above (sample 7.5	;-9.33). Mild odor. no	staining.		
						(00.14.0.00	,,	· · · · · · · · · · · · · · · ·		
_	-					11 '- 14.33 ' Yellow/orange to brown,		very coarse SAND	, day and f	······································
						gravel, dense, few day lumps, wet. N	lo odor, no staining		ļ	
	3	MAC	5.0	5.0						
_										
						14.22 15 Crow fine to mode CA	VID donos unt No.	odor no etoinine		· : : : : :
15						14.33'- 15' Gray, fine to medium SA	ND, UEISE, WELINO	Juor, no staining		
						15'-20' No recovery				
_	-									
	4	MAC	5.0	0.0						
	-	IVIAC	0.0	0.0						
_										
20										
			-			Bottom of bo	orehole at 20.0 feet.		I	
	1									

BORING NUMBER: **SB-116** Page 1 of 1

	Droi	act Na	mo: '			INFORMATION orp (AES)	Boring Depti		INFORMATION Hole Diameter	2 inches
						orp (AES) Glenwood Landing, NY	Date Started		Date Completed:	
	•		_			00 Phase 3	•	: State Plane - Lo		
	-,00		_			Department of Environmental Conservation		239322.5229	-	1081923.15
	L		_		Sharma	·	Vertical Datum		Ground Elevation:	
		00	, –	Dan W]			
				DF	RILLING I	INFORMATION		GROUND WA	TER OBSERVATIONS	
Dı	rilling C	Contrac	ctor: _			logies, Inc.	MEASUREMENT			▼ After Dril
			` ' -			d Jon Grazione	DATE	7/9/2019		
_		_	_	Direct			DEPTH (ft.bgs.)	3.5		
Е	:quipme		_		obe - 66		REFERENCE	Ground Surface		
	1	Sam	oier: _	Sanjay Sharma STABILIZATION NA						
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОБУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						_ 0'-0.33' Asphalt.				10 32 40
						0.33'- 0.83' Light brown to gray, fine	to medium SAND. s	ome fine to mediun	n gravel,	7 : : :
\dashv						loose, dry. No odor, no staining			, J ,	
						0.83'- 2' Light gray, fine to medium S	SAND, trace silt, sea	shells, trace mediu	m gravel and	
\exists	4	NAA 0	ΕΛ	FO		\wood, moist. No odor, no staining	, , , , , , , , , , , , , , , , , , , ,	,	<u>^</u>	
	1	MAC	5.0	5.0		2'-4' Light gray, fine to medium SAN	ID, trace silt and f gr	avel, loose, seashe	ells, few large	
						gravel, wet. No odor, no staining	J			
						4'-5' Same as above (sample 2-4), v	wet. No odor, no sta	ning	<u> </u>	
5		L		\perp						
						5'-6' Light brown, medium to coarse		ose, trace medium	to large	`_
					<u> </u>	gravel, wet, seashells. No odor, no sta				``\
						6'- 6.83' Dark gray to black, medium			ivel, sheen,	
					******	wet, medium dense. Heavy/strong pe			<u></u>	/
	2	MAC	50	4.5	::::::: <u> </u>	6.83'- 9.5' Yellowish brown to whitish		SAND, day and si	It and fine	/
	_		5.5		[:::::::]	gravel, loose, wet. Mild odor, no stain	ing		•	<u> </u>
									li I	
									 .	
					<u></u>				i	
10						10! 12! Cros , modis water and a CAN	ND troop oilt and all	v fino omovel rest-	ium donos	
						10 '- 13 ' Gray, medium to coarse SAI wet. No odor, no staining	ND, trace slit and da	ıy, iine gravei, med	iumaense,	
_						wel. No odor, no staining			 	
									ľ.	
	3	МАС	5.0	5.0					ļi	
_						12! 1/ E0! Oray fine to modi CAN	ID troop cilt and al-	u modium done -	unt troop	
						13'-14.58' Gray, fine to medium SAI fine gravel. No staining, some mild on	vi∟, itace siitand da Kor	iy, meaiumaense, '	wei, irace	
_						iiie gravei. 190 statriing, surre Mild 00	М			
_						44501 4513/-11	Supplied to the second	Davidle et early	I was a	
15			-	-		14.58 - 15 ' Yellow brown to orange, to	rine to medium SAN	with day bands (iumps), wet.	
						No odor, no staining	FO 4F\		/	
_						15'-17' Same as above (sample 14.	oo-15)			
_						17'-20' Orange/yellow brown, fine to	medium SAND with	day lumbe wet N	h odor no	
	4	MAC	5.0	5.0		staining.	mouluinomind Will	ruay iuri ps, wet. I	wo occor, no	
\dashv						San III Ig				
_										į į į .
20						Dattom of he	proholo at 20 0 feet			<u>: : : : : : : : : : : : : : : : : : : </u>
						BOTTOT DO	orehole at 20.0 feet.			
	i									
Note										

BORING NUMBER: **SB-117** Page 1 of 1

		t Num	ber: 🗓	32713	3.0000.00	Glenwood Landing, NY 00 Phase 3 epartment of Environmental Conservation	Date Started Coordinate System	h: 20 feet 7/9/19 State Plane - Lor 239327.5606		r: 2 inches 7/9/19 : 1081923.00
			Ву: _	Sanjay	/ Sharma	epartment of Environmental Conservation	Vertical Datum		Ground Elevation	
				DI	RILLING I	NFORMATION	MEAGUEENENE		ER OBSERVATIONS	7 AC D 30
D	rilling C					logies, Inc. d Jon Grazione	MEASUREMENT DATE		▼ At End of Drilling	▼ After Drilli
		g Meth	nod: _I	Direct	push		DEPTH (ft.bgs.)	3.5		
E	quipme		_		obe - 661 / Sharma	10DT	REFERENCE STABILIZATION	Ground Surface NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						0'- 0.66' Asphalt (2 layers).				. ! ! !
	1	MAC	5.0	5.0		O.66'-2' Dark brown, medium to find staining. 2'-3' Light brown to gray, fine to med No odor, no staining. 3'-5' Light gray to brown, fine to med	dium SAND, seashe	ills, trace coarse gra		
	2	MAC	5.0	4.0		5'-7' Dark gray/black, medium SAN wet. Strong petroleum odor and stain 7'-7.66' Dark gray, fine to medium S7.66'-9' Dark gray/black, medium S	ing SAND, trace silt and AND, trace fine grav	fine gravel, wet. Mild el, wet. Mild odor		<i>f</i>
						10'-11.5' Same as above (sample 7	•		Ning no	
_	_					11.5'- 12.66' Yellow brown, fine to modor	EUIUITIOHIND, IIAUE	me graver. NO Stalf	II 19, 110	
_ _ 15	3	MAC	5.0	5.0		12.66 '- 15 ' Dark gray/black, medium no odor	nto coarse SAND, tra	ace fine gravel, wet.	No staining,	·
_	4	MAC	5.0	5.0		15'-18.5' Grayish brown, fine to med staining, no odor	dium SAND, trace si	It and few day dum	ps. No	
_					******	18.5'-20' Reddish gray/brown, CLA'	Y, silt with trace fine	to medium gray sar	nd, wet. No	
20						staining, no odor				
						Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-118** Page 1 of 1

	Project	Locat	ion: 1	Shor		Glenwood Landing, NY	Boring Depth Date Started	d: 7/11/19	Hole Diamete Date Completed	
	Projec					00 Phase 3	1	n: State Plane - Lor n: 239329.6582	-	:: 1081918.35
	L				Sharma	•	Vertical Datum		Ground Elevation	
	Ch	ecked	Ву: _	Dan W	arren					
						NFORMATION			ER OBSERVATIONS	
D	rilling C					logies, Inc. d Jon Grazione	MEASUREMENT DATE		▼ At End of Drilling	▼ After Dril
	Drillin	g Meth	` ' -			a con Graziono	DEPTH (ft.bgs.)	3.5		
E	quipme				obe - 66		REFERENCE	Ground Surface		
		Samp	oler: S	Sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ		RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
					0,0,0,0,0	_ 0'- 0.33' Asphalt (2 layers)				· i i i
_						0.33'-1' Dark brown, fine to medium	SAND, day and fine	e to medium gravel,	rocks. No	, <u>.</u>
						odor, no staining	1) day and silt de :	No odor no otoinio	/]	
_						1'-2' Same as above (sample 0.33- 2'-3.5' Brown, fine to medium SAND			4	.
	1	MAC	5.0	5.0		No odor, no staining.	, ady drivinine to His	Audingrava, liace:	ли, II Ю ЗС.	
									∇	
_						3.5'-5' Same as above (sample 2-3.	5), wet. No odor, no	staining	_	\
5										1
					. * . * . * . * .	5'- 6.33' Sane as above (sample 2-3	3.5), wet. No odor, no	staining		• (
						, .		Ü		
					,,*,*,*	6.33'-7.5' Dark brown to black, med	ium to coarse SAND) trace silt and fine	aravel wet	- : : : :
_	_ 2 MAC 5.0 4.0					Strong odor, sheen, stains		, trace on a la line ;	gravor, vvoi:	
				4.0	******	7.5'-9' Yellow brown, fine to medium	n SAND, watery past	te. Mild odor		•
_						, , , , , , , , , , , , , , , , , , , ,				1
										!
										i
10						10'- 12.5' Same as above (sample 7	'5-9) wet Noodor i	no staining		}
						10 120 6412 45 4500 (641) 510 1	.0 0), 110 1 10 0001, 1	no otali in ig.:		
_										
	3	MAC	5.0	5.0		125'-145' Dark growto brown (valle	nui) fine to marco S	SAND trace fine area	val madium	, ; ; ;
_					 	12.5 - 14.5 Dark gray to brown (yelk dense, wet	Jvvj, iii ie to warse s	nu, uave iii e gia	va, mbalum I	
						•				
_					******					
15					******	14.5'- 15' Red brown/orange, fine to				
						15'-17.66' Dark gray to black, media Appears to be caved in	um to coarse SAND,	iine to medium grav	/ei, Wet.	
_					k	, pposition so cavouil i.				
	4	MAC	5.0	5.0						
_				-	******	17.66 '- 20 ' Yellowish to reddish brow	vn, fine to medium S	AND, day and silt, o	dense, wet.	.
						No odor, no staining				
_										
20										
						Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-119** Page 1 of 1

	Proi	ect Na	me. •			INFORMATION orp (AES)	Boring Deptl		INFORMATION Hole Diameter	· 2 inchae
1						Glenwood Landing, NY	Date Started		Date Completed:	
		t Num	ber: 3	327138	3.0000.00	00 Phase 3	Coordinate System	State Plane - Lo		
		Cli	ent: 🛚	New Yo	rk State D	Pepartment of Environmental Conservation	North	239326.9427	East:	1081938.86
			-		Sharma		Vertical Datum	: NAVD88	Ground Elevation:	7.63
	Ch	ecked	By: <u>I</u>	Dan W	arren					
						INFORMATION			TER OBSERVATIONS	
Dr	rilling C					logies, Inc.	MEASUREMENT DATE	✓ At Time of Drilling 7/8/2019	▼ At End of Drilling	▼ After Drill
	Drillin		` ' -	Jett Mo Direct		d Jon Grazione	DEPTH (ft.bgs.)	4		
F		_	_		obe - 66	10DT	REFERENCE	Ground Surface		
_	4a.b				Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						0'-0.5' Asphalt (2 layers)				100 200 300
					:•;• ; •;•;	0.5'-1' Dark brown, medium SAND,	with seashells. Loos	e, dry. No odor, no	staining	
\dashv						1'-2' Light to dark brown, fine to med				
						shells, organics. No odor, no staining.			·	
	1	MAC	5.0	5.0		2'-5' Brown to gray, fine to medium:	SAND, trace silt and		Il and large	T
	'	IVIAC	0.0	3.0		seashells (crushed and solid), compa				\
										\
									$\sqrt{\ \ }$	
									_	\.
5						E! 7E! Cray fine to mark m CAND	trans large area of a	anaa uut Otranau	actual au ma	· · · · · · · · · · · · · · · · · · ·
						5'-7.5' Gray, fine to medium SAND, odor, staining.	trace range graver, o	erise, wet. Strong p	betroieum	\
_						odor, stairing				
										'
_										······································
	2	MAC	5.0	3.7	· · · •] • [•	7.5'-8' Yellowish to brown, medium	SAND			
_					*****	8'-8.66' Gray, fine to medium SAND		dense wet Stro	na netroleum	
					******	¬ odor, staining	, trace sit and grave	a, aci sc, wci. ciro	gparacam	/
_						(,g			/ ·	
10										/
						10'-11.33' Dark gray, medium to coa	arse to very coarse \$	SAND, medium to d	lense, day	•
						and medium gravel, wet. Mild petrole	um odor		į	
_					*****				ľ	
	3	MAC	50	1.3					- 	
	•	,	5.5						Įį,	
]										
									 1-	
									ľ	
15						15'- 17' Same as above (sample 10-	11 23) wat Mild ad	or.	į.	
					::::::::	10 - 17 Saine as above (Sainple 10-	1 1.33), Wet. IVIIU 00	JI		
\dashv					[::::::::]				\	
-					· · · · · · · · · · · · · · · · · · ·	17'-17.66' Yellow brown, medium to	fine SAND, day an	silt, wet. No odor	no staining	
	4	MAC	5.0	5.0	*****				5001111911	
-						17.66 '- 20 ' Reddish gray, silty CLAY	with Sand. INO Odor,	no staining		
-										
20										
_~					اه <i>گه گلا</i> " مرا	Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-120** Page 1 of 1

	D- '					NFORMATION	D		INFORMATION	O im-l
D.						orp (AES) Glenwood Landing, NY	Boring Dept Date Starte		Hole Diamete Date Completed	
	-		_			00 Phase 3	1	n: State Plane - Lo		i. 110/13
	·oject		_			epartment of Environmental Conservation	1	h: 239318.5484	-	: :: 1081933.9
	Loc		_		/ Sharma		Vertical Datur		Ground Elevation	
					/arren		. S. tiodi Batti		S. Sand Elovation	
			,· <u>-</u>			NFORMATION		GBUIND MV	TER OBSERVATIONS	
Drill	lina Co	ntrac	tor 4			ogies, Inc.	MEASUREMENT	☐ X At Time of Drilling		▼ After Dri
5.111	-					d Jon Grazione	DATE	7/8/2019	<u>-</u>	
	Drilling		` ' —				DEPTH (ft.bgs.)	3.5		
	_		_		robe - 661	10DT	REFERENCE	Ground Surface		
					/ Sharma		STABILIZATION	NA		
DEPTH (FT.)	NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (pp
	1 1		5.0	5.0		0'-0.33' Asphalt 0.33'-0.83' Light brown to gray, fine No odor, no staining 0.83'-2' Whitish gray, fine SAND and of seashells (large and small). No odd 2'-2.5' Same as above (sample 0.83' 2.5'-3' Light brown to gray, fine SAN no staining 3'-5' Light gray, fine SAND, day and 5'-5.5' Yellow gray, fine to medium \$	d trace day and silt or, no staining 3-2), heavy, moist. N ID, clay and silt, sea d silt, wet. Mild solve	trace coarse grave to odor, no staining a shells, heavy, moi	al, moist, lots st. No odor,	and the state of t
	2	мас	5.0	3.0		5.5'-8' Dark gray, coarse to very coadense, wet. Strong petroleum odor, st	arse SAND, day an	d silt and fine grave	I, medium	- *
	3 1	мас	5.0	5.0		10'- 12.5' Same as above (sample 5.			vet, dense.	†
15						No odor, no staining. 15'-20' Orange/brown to gray, fine to No odor, no staining.	o medium SAND, di	ense, day lumps at	places, wet.	
20	4	мас	5.0	5.0			walada at XXX			
I						Bottom of bo	orehole at 20.0 feet.			

BORING NUMBER: **SB-201** Page 1 of 1

						INFORMATION	_		INFORMATION	
			_			corp (AES)	Boring Dept			ter: 2 inches
	-		_			Glenwood Landing, NY 000 Phase 3	Date Starter	d: <u>12/3/19</u> n: State Plane - Lo	Date Complet	.ea: <u>12/4/19</u>
	riojed					Department of Environmental Conservation		n: State Plane - Lo h: 239435.6132		_ st: 1081999.48
	L		_		Sharma	·	Vertical Datun		 Ground Elevation	
				Dan W						
						INFORMATION		GROUND WA	TER OBSERVATIONS	;
Dr	rilling C			Aztech	Techno	logies, Inc.	MEASUREMENT			▼ After Dril
						d Austin Armbrster	DATE	12/3/2019		
_		•	_	Direct	•	40DT	DEPTH (ft.bgs.)	3 Ground Surface		
E	quipme		_		obe - 66 Sharma		REFERENCE STABILIZATION	NA		+
EPTH (FT.)	SAMPLE		z		ПТНОСОСУ		RIAL DESCRIPTION	1	1	VOC SCREEN RESULTS (ppr
		0,	-			0'-0.5' ASPHALT.				30 60 90
					• • • • • • •	0.5'-1.5' Dark brown, fine to medium	SAND rocks			*
\dashv						no bankarowi, in a to il taltul				
						1.5'-4' Dark gray to brown, fine to m		of SILT, and fine G	RAVEL, sea	† • 🕈
-	1	MAC	50	5.0		shells, moist to 3', then wet. Moderate				<u> </u>
	'	IVIAC	3.0	3.0						1
_						Al Figure on the second second	allaat Circor			<u> </u>
_						4'-5' Same as above, lots of sea she	ells, wet. Strong odd	or, no staining.		\
5		-				5'-6.5' Brown to gray coarse to med	ium SAND (sample	5-6) see shalls tra	and of fine	4
						GRAVEL, wet. Moderate odor, no sta	inina.	JUJ, SEA SI IEIIS, Il'A		
_						5. V. W	'9'			
		2 MAC 5.0			6.5'-9' Dark gray fine SAND, wet, tra	ace of SILT. No odo	r, no stainina.		+ ! ! !	
\dashv	_									
	2	MAC	5.0	4.0						
\neg										
										1
										7
10				1		401 421 Come on ober a No adam	a atainina			\
						10'-13' Same as above. No odor, no	saining.			
\dashv										
_										
	3	MAC	5.0	5.0						
\dashv						13'- 15' Whitesh grey to brown SANI	D (sample 14-15), w	et. No odor, no sta	ining.	†
						3 ,	//	,	J	j : : :
_										
15										1
			•	•	. 1.1 1.1	Bottom of bo	orehole at 15.0 feet.			•

BORING NUMBER: **SB-202** Page 1 of 1

	_					NFORMATION			INFORMATION	0 ! !
						orp (AES) Glenwood Landing, NY	Boring Depth		Hole Diamete Date Completed	
						00 Phase 3	Date Started	: 12/3/19 : State Plane - Loi		1. 12/4/19
	i rojec					epartment of Environmental Conservation		239447.4603		: 1082006.45
	L		_		Sharma	·	Vertical Datum		Ground Elevation	
		ecked	-							
				DF	RILLING I	NFORMATION		GROUND WAT	ER OBSERVATIONS	
Dr	rilling C	Contrac	ctor:			logies, Inc.	MEASUREMENT			▼ After Drill
	_	Drille	r(s): _	leff Mo	organ and	d Austin Armbrster	DATE	12/3/2019		
		g Meth					DEPTH (ft.bgs.)	2.5		
E	quipme		_		obe - 66'		REFERENCE	Ground Surface		
		Samp	oler: S	sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОГОСУ	MATER	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						_ 0'- 0.33' ASPHALT.				10 20 30
_	1	MAC	5.0	5.0		0.33 '- 2.5 ' Dark gray to brown fine to moist. No odor, no staining.			∇	
						2.5'-5' Dark gray fine to medium SA		r sea snells, trace c	or nine _	
						GRAVEL, wet at 2.5'. Slight odor, no s	siaining.			\
\dashv										
_										
5					• × • × • • • • • • • • • • • • • • • •	5'-7' Grayish brown fine to medium	SAND (cample 6.7)	trace of fine CDAV	FISES	
						shells, wet. Slight odor, no staining.	onini⊃ (sarriple o-7),	uace of title GRAV	LL, 36a	
_						sicils, wat digit oud, no stailing.				
_					******	7'-10' Light gray fine SAND (sample	9-10), wet No odor	. no staining		
	2	MAC	5.0	5.0			. 5 10), 110110.0001	,		- i i i.
\dashv										
										/
-										/
10										/
						10'-15' Reddish brown fine SAND, to	race of SILT, wet. No	o odor, no staining.	<u> </u>	
								J		
\neg										
\neg	3	MAG	50	50						
	3	MAC	5.0	5.0						
15										
						Bottom of bo	orehole at 15.0 feet.			
_										
_										
_										
_										
20										
Note										

BORING NUMBER: **SB-203** Page 1 of 1

Client: New York State Department of Environmental Conservation Logged By: Sanjay Sharma Checked By: Dan Warren DRILLING INFORMATION Drilling Contractor: Aztech Technologies, Inc. Driller(s): Deff Morgan and Austin Armbrster DIFFICULTY OF THE PROPERTY	12/3/19 Date Comple State Plane - Long Island Zone 239427.8809 Ea NAVD88 Ground Elevation GROUND WATER OBSERVATIONS	st: 1082014.3887 on: 7.59 After Drilling VOC SCREENING
Project Location: 1 Shore Road, Glenwood Landing, NY Project Number: 2327138.0000.0000 Phase 3 Client: North: Logged By: Checked By: Drilling Contractor: Driller(s): Drilling Method: Equipment/Model: Sampler: Sanjay Sharma DRILLING INFORMATION Drilling Method: Driller(s): Drilling Method: Sanjay Sharma Dan Warren DRILLING INFORMATION Drilling Method: Driller(s): Drilling Method: Sanjay Sharma Depth (ft.bgs.) Equipment/Model: Sanjay Sharma STABILIZATION MATERIAL DESCRIPTION	12/3/19 Date Comple State Plane - Long Island Zone 239427.8809 Ea NAVD88 Ground Elevation GROUND WATER OBSERVATIONS	ted: 12/4/19 st: 1082014.3887 on: 7.59 After Drilling VOC SCREENING
Project Number: Client: Logged By: Checked By: Drilling Contractor: Driller(s): Drilling Method: Equipment/Model: Sampler: Project Number: Alter York State Department of Environmental Conservation North: Vertical Datum: North: Nor	State Plane - Long Island Zone 239427.8809 Ea NAVD88 Ground Elevation GROUND WATER OBSERVATIONS ▼ At Time of Drilling 12/3/2019 3 Ground Surface NA	st: 1082014.3887 on: 7.59 After Drilling VOC SCREENING
Client: New York State Department of Environmental Conservation Logged By: Sanjay Sharma Checked By: Dan Warren DRILLING INFORMATION Drilling Contractor: Aztech Technologies, Inc. Drilling Method: Direct push Equipment/Model: Sampler: Sanjay Sharma DEPTH USE SANJAN STABILIZATION MEASUREMENT DATE DATE DEPTH USE SANJAN STABILIZATION MEASUREMENT DATE DEPTH USE SANJAN STABILIZATION MATERIAL DESCRIPTION	GROUND WATER OBSERVATIONS At Time of Drilling 12/3/2019 3 Ground Surface NA	7.59 After Drilling VOC SCREENING
Logged By: Sanjay Sharma Checked By: Dan Warren PRILLING INFORMATION Aztech Technologies, Inc. Drilling Method: Equipment/Model: Sampler: Sampler: Sampler: DEPTH (FT.) DE	GROUND WATER OBSERVATIONS At Time of Drilling 12/3/2019 3 Ground Surface NA	After Drilling VOC SCREENING
DRILLING INFORMATION Drilling Contractor: Aztech Technologies, Inc. Driller(s): Jeff Morgan and Austin Armbrster Drilling Method: Direct push Equipment/Model: Sampler: Sampler: Sanjay Sharma DEPTH (FT.) Drilling Method: Direct push GeoProbe - 6610DT Sanjay Sharma STABILIZATION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining.		▼ After Drilling VOC SCREENING
Drilling Contractor: Driller(s): Drilling Method: Equipment/Model: Sampler: Sampler: DITITUDE TO SAMPLE TO DEPTH (ft.bgs.) Sampler: Sampler: DITITUDE TO DEPTH (ft.bgs.) GeoProbe - 6610DT Sanjay Sharma STABILIZATION MATERIAL DESCRIPTION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining. O.5'-5' Brown fine to medium SAND, little fine GRAVEL, on o staining.		▼ After Drilling VOC SCREENING
Driller(s): Drilling Method: Equipment/Model: Sampler: Sampler: Sampler: DITITION Sampler: Sampler: DITITION DIFFER MORGAN And Austin Armbrster DEPTH (ft.bgs.) REFERENCE STABILIZATION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining. O.5'-5' Brown fine to medium SAND, little fine GRAVEL, on o staining.	12/3/2019 3 Ground Surface NA	VOC SCREENING
Drilling Method: Equipment/Model: Sampler: STABILIZATION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining. O.5'-5' Brown fine to medium SAND, little fine GRAVEL, on o staining.	3 Ground Surface NA	
Equipment/Model: GeoProbe - 6610DT REFERENCE SAmpler: Sanjay Sharma STABILIZATION EPTH (FT.) Sanjay Sharma STABILIZATION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining.	Ground Surface NA	
Sampler: Sanjay Sharma STABILIZATION MATERIAL DESCRIPTION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining.	NA .	
MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION O'-0.5' TOP SOIL, organic, dark brown fine to medium SAND, little fine GRAVEL, on o staining.	AND, little GRAVEL. No odor,	
0'-0.5' TOP SOL, organic, dark brown fine to medium SA no staining. 0.5'-5' Brown fine to medium SAND, little fine GRAVEL, on o staining.	ND, little GRAVEL. No odor,	RESULTS (ppm)
5	$\overline{\nabla}$	
5'-6' Same as above (sample 3-6 & 5-6). Strong odor, no bgs. 6'-10' Dark gray to whitesh grary fine SAND, wet. Slight of the same as above (sample 3-6 & 5-6). Strong odor, no bgs.	-	
10'-13' Same as above, wet. Slight odor, no staining. 3 MAC 5.0 5.0		
13'- 15' Red brown fine SAND, wet (sample 13-14). No or	ou, no saimg.	
Bottom of borehole at 15.0 feet.		

BORING NUMBER: SB-204

Page 1 of 1

Project Number: 327138.0000.000 Phase 3 Closed by Sanjay Sharma Chested by Dan Warren Ch							orp (AES) Glenwood Landing, NY	Boring Depti Date Started		Hole Diamete Date Complete	
Chesked By Dan Warren Chesked By Dan Warren Drilling Contractor. Drilling Mach Driver Dust.								_			
Checked By Dan Warren PORILING INFORMATION Difficulty Service Technologies, Inc. Difficulty Service								North	n: 239405.593		
Diffiling Contractor. Diffiling Management Model. Equipment/Model. Equipment/Model. Equipment/Model. Diffiling Management Ambinister Diffiling Management Ambinister Diffiling Management Ambinister Diffiling Management Management Ambinister Diffiling Management Managemen							1	Vertical Datum	n: NAVD88	Ground Elevation	n: 7.48
Defining Contractor: Auteon Technologies, Inc. Difference of Jeff Morgan and Austin Ambrister Difference of Jeff Morgan of Detect push Equipment/Morgan of Geophose - 6610DT Sampler: Sanlay Sharma Stabilization NA PPTH Marco Ma		Ch	ecked	By: <u>I</u>							
Drilling Method Direct push Equipment Models Deprited by 10 per things 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_	6						MEAGUIDEMENT			7 7 Aft
Deling Method: Direct push Equipment/Model: Geophode: 661001 REFERENCE Ground Surface Sampler: Samply Sharma STABILIZATION NA Part	ט	rilling C		_						At End of Drilling	¥ Aiter Di
Equipment/Model: Septrobe - 6610DT REFERENCE STABILIZATION NA Part		Drillin		–			a Austin Ambristor				
MAC 5.0 5.0 5.0 To 15 'Same as above (sample 10-11), wet. Slight odor, no staining. 15 MAC 5.0 5.0 5.0 To 15 'Same as above (sample 10-11), wet. Slight odor, no staining. 16 MAC 5.0 5.0 5.0 To 15 'Same as above (sample 10-11), wet. Slight odor, no staining.	E	quipme						REFERENCE	Ground Surface		
0 - 2 'Brown medium to coarse SAND, little tine GRAVEL, most. No odor, no staining. 2 - 4 'Brownish grey tine to medium SAND, wet. Strong odor, no staining. 4 - 5 'Dank gray to black tine SAND. Slight odor, no staining. 5 - 7.5 'Same as above (sample 4-6, 5-6), wet. Strong odor, no staining. 7.5 - 10 'Whitesh grey tine SAND, wet. Slight odor, no staining.			Samp	oler: <u></u>	Sanjay	Sharma	1	STABILIZATION	NA NA		
2 MAC 50 50 2 -4 Brownish grey line to medium SAND, wet. Strong odor, no staining. 5 - 7.5 Same as above (sample 4-6, 5-6), wet. Strong odor, no staining. 7.5 - 10 Whitesh grey line SAND, wet. Slight odor, no staining. 10 - 15 Same as above (sample 10-11), wet. Slight odor, no staining. 15 - 19 Same as above, wet. No odor, no staining.		SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ					RESULTS (pp
5 - 7.5' Same as above (sample 4-6, 5-6), wet. Strong odor, no staining. 7.5'-10' Whitesh grey fine SAND, wet. Slight odor, no staining. 10 - 10' - 15' Same as above (sample 10-11), wet. Slight odor, no staining. 15 - 19' Same as above, wet. No odor, no staining. 15 - 19' Same as above, wet. No odor, no staining.		1	MAC	5.0	5.0		2'-4' Brownish grey fine to medium	SAND, wet. Strong o	odor, no staining.	o staining.	
2 MAC 5.0 5.0 5.0 7.5'-10' Whitesh grey fine SAND, wet. Slight odor, no staining. 10 10'-15' Same as above (sample 10-11), wet. Slight odor, no staining. 15 15'-19' Same as above, wet. No odor, no staining. 15'-20' Red-brown fine to medium SAND (sample 19-20), wet. No odor, no staining.	5						3.,	3 ,	3		
15		2	MAC	5.0	5.0		7.5'- 10' Whitesh grey fine SAND, w	et. Slight odor, no st	aining.		*
4 MAC 5.0 5.0 15'- 19' Same as above, wet. No odor, no staining. 19'- 20' Red-brown fine to medium SAND (sample 19-20), wet. No odor, no staining.		3	MAC	5.0	5.0		10'-15' Same as above (sample 10	-11), wet. Slight odor	r, no staining.	•	
19'- 20' Red-brown fine to medium SAND (sample 19-20), wet. No odor, no staining.	15						15'- 19' Same as above, wet. No od	or, no staining.		•	
20	_	4	MAC	5.0	5.0						
DOMESTIC DOTO DO DE 20.0 TOCK	20)), wet. No odor, no	staining.	
							<u> </u>	S. S. 1010 Ct. 20.0 100t.			

BORING NUMBER: **SB-205** Page 1 of 1

F	D'					NFORMATION orp (AES)	Desire - D. III		INFORMATION Hole Diamete	or: Oinahas
						orp (AES) Glenwood Landing, NY	Boring Depth Date Started		Date Complete	
	,		_			00 Phase 3		: State Plane - Lo		
	,					epartment of Environmental Conservation		239403.9022		t: 1081991.49
	L	ogged	By:	Sanjay	/ Sharma		Vertical Datum	: NAVD88	Ground Elevation	n: 7.12
	Ch	ecked	By: _	Dan W	arren					
						NFORMATION			TER OBSERVATIONS	
Dri	illing C					ogies, Inc. d Austin Armbrster	MEASUREMENT DATE	∑ At Time of Drilling 12/3/2019	▼ At End of Drilling	▼ After Drill
	Drillin	g Meth	` ' —			u Austin Armbrster	DEPTH (ft.bgs.)	2.5		
					obe - 66	10DT	REFERENCE	Ground Surface		
		Samp	oler:	Sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОБУ	MATE	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
					•••••	0'-0.5' ASPHALT. 0.5'-1.5' Dark brown fine SAND, trace No odor, no staining. 1.5'-4' GRAVEL No odor, no stainir		/EL, 2 layers of pla	stic sheets.	3 6 9
	1	MAC	5.0	5.0			ઝ		$\overline{\triangle}$	
5					*****	4'-5' Dark grey, fine SAND, wet. No 5'-6' Same as above (sample 5-6).	odor, no staining.			
10	2	MAC	5.0	5.0		6'-10' Greyish to yellow white fine S	AND, wet. Slight ook	or, no staining.		
_						10'-13' Same as above (sample 10-	11, MS/MSD). No oo	dor, no staining.		
	3	MAC	5.0	5.0		13'-15' Dark grey, fine SAND, wet. N	No odor, no staining.		•	
					\```` \\					
15					<u> </u> •.*•.*•.*•	Dottom of he	orehole at 15.0 feet.			L i i i

BORING NUMBER: **SB-206** Page 1 of 1

Locat Numi Cli ogged ecked ontrac Drille g Meth ent/Mo	In the control of the	Shor 27138 lew Yo Sanjay Dan W DF Aztech leff Mo Direct GeoPr Sanjay	.0000.000 rk State De Sharma arren ILLING IN Technolo organ and	lenwood Landing, NY 0 Phase 3 partment of Environmental Conservation IFORMATION ogies, Inc. Austin Armbrster	North Vertical Datum MEASUREMENT DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EWI loose gravel, d	: 12/3/19 : State Plane - Loi : 239415.6515 : NAVD88 GROUND WAT	East Ground Elevation FER OBSERVATIONS	: 12/4/19 : 1081979.23
Numicliongged ecked ontrace Driller of Metric Samp	By: [Hallow (LL)] By: (LL) By: (LL)	E27138 EW York Sanjay Dan W DF Aztech eff Mo Direct GeoPr Sanjay	.000.000 rk State De Sharma arren ILLING IN Technolo organ and oush bbe - 6610 Sharma	0 Phase 3 partment of Environmental Conservation IFORMATION ogies, Inc. Austin Armbreter DDT MATERIA 0'- 0.5' ASPHALI. 0.5'- 1' Brown fine to medium SAND, fe	Coordinate System North Vertical Datum MEASUREMENT DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EWIlcose gravel, d	State Plane - Loi 239415.6515 NAVD88 GROUND WAT ✓ At Time of Drilling 12/3/2019 3 Ground Surface NA	ng Island Zone East Ground Elevation ER OBSERVATIONS	∴ 1081979.23 ∴ 6.88 ✓ After Drilli VOC SCREEN RESULTS (ppn
Cli ogged decked ontrace ontrace of the state of the stat	ent: hereTRATION BBy: [Lagrange of the content of	SEGONESA (LL)	rk State De Sharma arren ILLING IN Technolo organ and oush obe - 6610 Sharma	partment of Environmental Conservation IFORMATION ogies, Inc. Austin Armbrster DDT MATERIA 0'- 0.5' ASPHALI. 0.5'- 1' Brown fine to medium SAND, fe	North Vertical Datum MEASUREMENT DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EWI loose gravel, d	E 239415.6515 E NAVD88 GROUND WAT	East Ground Elevation FER OBSERVATIONS	✓ After Drilli VCC SCREEN RESULTS (ppn
ogged ecked ontrac Driller g Metr ent/Mo Samp	BASE TENTION (FT) BASE TENTION	Sanjay DF Aztech GeoPr Sanjay	Sharma arren ILLING IN Technolo organ and oush obe - 6610 Sharma	DDT MATERIA 0'- 0.5' ASPHALI. 0.5'- 1' Brown fine to medium SAND, fe	MEASUREMENT DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION	GROUND WAT	Ground Elevation	✓ After Drilli VCC SCREEN RESULTS (ppn
ontrac Driller J Meth ont/Mo Samp	By: [(FT) By: [(FT) By: [By:	DER STEEN ST	arren ILLING IN Technolo organ and oush obe - 6610 Sharma	O'- 0.5" ASPHALI. 0.5'- 1" Brown fine to medium SAND, fe	MEASUREMENT DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EW ICOSE GRAVEL, d	GROUND WAT	ER OBSERVATIONS	▼ After Drilli VOC SCREEN RESULTS (ppn
ontrac Drillei g Meth nt/Mo Samp	PENETRATION (FT.) (FT.) (FT.)	DFAZTECH leff Mo Direct SeoPr Sanjay	ILLING IN Technologing and push bush bbe - 6610 Sharma	O'- 0.5" ASPHALI. 0.5'- 1" Brown fine to medium SAND, fe	DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EW loose gravel, d			VOC SCREENI RESULTS (ppn
Drillei g Meth ent/Mo Samp	PENETRATION (FT.) John Control of the control of t	Aztech leff Mc Direct GeoPr Ganjay	Technolo organ and oush obe - 6610 Sharma	O'- 0.5" ASPHALI. 0.5'- 1" Brown fine to medium SAND, fe	DATE DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EW loose gravel, d			VOC SCREENI RESULTS (ppn
Drillei g Meth ent/Mo Samp	PENETRATION (FT.) John Control of the control of t	RECOVERY SeoDirect (FT) (FT)	organ and oush obe - 6610 Sharma	Austin Armbrster DDT MATERIA 0'- 0.5' ASPHALI. 0.5'- 1' Brown fine to medium SAND, fe	DEPTH (ft.bgs.) REFERENCE STABILIZATION AL DESCRIPTION EW ICOSE Gravel, d	3 Ground Surface NA		RESULTS (ppn
SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	obe - 6610 Sharma	0'- 0.5' ASPHALT. 0.5'- 1' Brown fine to medium SAND, fe	REFERENCE STABILIZATION AL DESCRIPTION ew loose gravel, d	Ground Surface NA		RESULTS (ppr
SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	Sharma	0'- 0.5' ASPHALT. 0.5'- 1' Brown fine to medium SAND, fe	STABILIZATION AL DESCRIPTION EW loose gravel, d	NA		RESULTS (ppr
SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)		0'- 0.5' ASPHALT. 0.5'- 1' Brown fine to medium SAND, fe	AL DESCRIPTION ew loose gravel, d			RESULTS (ppr
			ПТЮСОСУ	0'- 0.5' ASPHALT. 0.5'- 1' Brown fine to medium SAND, fe	ew loose gravel, d			RESULTS (ppn
MAC	5.0	5.0	-	0.5'-1' Brown fine to medium SAND, fe		•		
MAC	5.0	5.0	-					
MAC	5.0	5.0		1'-2.5' Grey fine to medium SAND, find				
MAC	5.0	5.0			e to medium grave	el, little silt, trace wo	ods, slag.	\
MAC	5.0	5.0						
				OF FIDed	D 1992 - 99	alla Marianat	no stainte :	
				2.5'-5' Dark grey fine to medium SAND	D, little slit, sea sh	eils. Ivioderate odor	, no staining.	
							_	1
								i i i
			-	5'-65' Samo as about / samola E 6'	Not Moderate and	r no etoinina		
				5 - 0.5 Same as above (Sample 5-6), V	wet. IVIDUETALE 000	i, no staining.		/
			-	65'-8' Gray fine SAND trace of fine of	raval vet Na ada	r no etaining	·	* 1
				0.5 - 6 Grey in the SAND, trace of lifte g	iavei, wel. NO OOC	ı, ı ıo sıalı III ig.		<u> </u>
MAC	5.0	4.0					i	!
			- 14	8'-9'\/hitesh arev fine SAND (sample	8-9) Wet Nhada	r no staining	\	•
					, o o), wol. I wo out	i, i lo stati ili ig.		
			-1954 -					
			2,45,455	10'-125' Same as above wet No odo	or no staining		•	• • • • • • • • • • • • • • • • • • • •
				10 120 0412 45 45010, 110.110 040	or, ric ottair iir ig.			
MAC	5.0	5.0	-	12.5'- 14' Yellowish brown fine SAND	Tittle silt, wet. No o	odor, no stainina	——	• : : :
						,		
			-	14'- 15' Greyish white fine SAND. wet.	No odor, no staini	ng.	•	• • • • • • • • • • • • • • • • • • • •
				,	,	•		
			<u>. 1949</u>	Bottom of bore	ehole at 15.0 feet.			
					MAC 5.0 4.0 8'-9' Whitesh grey fine SAND, trace of fine grey fine SAND (sample 10'-12.5' Same as above, wet. No odd 12.5'-14' Yellowish brown fine SAND, wet.	MAC 5.0 4.0 8'-9' Whitesh grey fine SAND (sample 8-9), wet. No odo 10'-12.5' Same as above, wet. No odor, no staining. 12.5'-14' Yellowish brown fine SAND, little silt, wet. No odor, no staining.	8'-9' Whitesh grey fine SAND (sample 8-9), wet. No odor, no staining. 10'-12.5' Same as above, wet. No odor, no staining. 12.5'-14' Yellowish brown fine SAND, little silt, wet. No odor, no staining. 14'-15' Greyish white fine SAND, wet. No odor, no staining.	6.5 '- 8 ' Grey fine SAND, trace of fine gravel, wet. No odor, no staining. 8 '- 9 ' Whitesh grey fine SAND (sample 8-9), wet. No odor, no staining. 10 '- 12.5 ' Same as above, wet. No odor, no staining. 12.5 '- 14 ' Yellowish brown fine SAND, little silt, wet. No odor, no staining.

BORING NUMBER: **SB-207** Page 1 of 1

	Droi	oot Ne	mo:			INFORMATION orp (AES)	Boring Dept		S INFORMATION Hole Diamete	or: 2 inches
						Glenwood Landing, NY	Date Starte		Date Complete	
						000 Phase 3		n: State Plane - Lo		<u>12-7/10</u>
	,					Department of Environmental Conservation		h: 239429.3051		t: 1081983.5933
	L	.ogged	By:	Sanjay	Sharma	ı	Vertical Datun	n: NAVD88	Ground Elevation	n: 6.79
	Ch	eckec	l By: _	Dan W	arren		_			
						INFORMATION			TER OBSERVATIONS	
Dr	rilling C		_			logies, Inc.	MEASUREMENT DATE		▼ At End of Drilling	▼ After Drilling
	Drillin			Jett Me Direct		d Austin Armbrster	DEPTH (ft.bgs.)	2.5		
E					obe - 66	10DT	REFERENCE	Ground Surface		
					Sharma		STABILIZATION	NA		
EPTH FT.)	SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATE	RIAL DESCRIPTION			VOC SCREENING RESULTS (ppm)
				+		0'-0.5' ASPHALT.				20 40 60 8
					••••••	0.5'- 1.5' Dark brown fine to medium	SAND, little mediur	n to coarse gravel,	dry. No odor,	R. III III
					******	no staining.				
						1.5'-5' Dark grey fine SAND, little sil staining. Wet at 2.5' bgs.	t and gravel, moist,	sea shells. Slight c	dor, no	[]
	1	MAC	5.0	5.0		staining. Wet at 2.5 bgs.			<u></u>	
-										· • • • • • • • • • • • • • • • • • • •
5					******					<u> </u>
						5'- 6.5' Dark grey fine SAND, trace of	of fine gravel and silt	, wet. Slight odor, r	no staining.	/
_										
						6.5'-7' Tan GRAVEL Slight odor, no	o staining.			- 🔨 🗀 🗆
_	_					7'-8' Grey fine SAND (sample 7-8),		staining.		***
	2	MAC	5.0	3.0		(00.14.0.1.2.1.2.4.0.1.4.				
-										,*
										/
10				+-		10 '- 11 ' Brownish grey, fine to mediu	ım SAND trace of fi	ne aravel wet No	odor no	K
						staining.	, a doc of ii	9.0.70, 1101.110	,	
\dashv						11'- 15' Grey fine SAND (sample 11-	-12), trace of silt, we	et. No odor, no stair	ning.	>
						, (,	, ,	•	
	3	MAC	5.0	50						
	J	IVIAO	0.0	0.0						
_					::::::: <u> </u>					
15										
15				Ь	[.•	Pottom of by	orehole at 15.0 feet.			

BORING NUMBER: **SB-208** Page 1 of 1

						INFORMATION			INFORMATION	
						orp (AES)	Boring Dept			ter: 2 inches
	-		_			Glenwood Landing, NY	Date Starte		Date Complet	ed: 12/3/19
	Projec					000 Phase 3	-	m: State Plane - Lo		
			_			Department of Environmental Conservation	-	h: 239313.7329		st: 1081922.13
				Sanjay Dan W	Sharma arren		Vertical Datur	II. INAVDOO	Ground Elevation	л. <u>7.40</u>
	Oi	JONEU	. Бу. <u>-</u>			INFORMATION		CBOI IND 14/4	TER OBSERVATIONS	
Dr	rillina (Contra	ctor:			logies, Inc.	MEASUREMENT	☐ X At Time of Drilling		▼ After Drill
						d Austin Armbrster	DATE	12/2/2019		_
	Drillin			Direct			DEPTH (ft.bgs.)	4.5		
E	quipme		_		obe - 66		REFERENCE	Ground Surface		
		Sam	pler: _	Sanjay	Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATE	RIAL DESCRIPTION			VOC SCREEN RESULTS (ppr
						0'-0.5' ASPHALT.				3 6 2
						0.5'-1.5' GRAVEL, rocks, cobbles. N	No odor, no staining			†
\neg					\bowtie		_			
					******	1.5'-2' Brown fine SAND, little fine to				I
	1	MAC	5.0	5.0		2'-4' Brown grey fine to medium SA	ND, seashells, little	fine to medium grav	vel, cobbles,	T
_				1		dry. No odor.				1
\dashv						4'-5' Whitesh grey-brown fine SAND) wet at 4.5' Slinht	odor no staining	$\overline{}$	
5				1		. O William groy Drown Illia Con VL	z, mocat 4.0. angili	oo, no saliliy.	<u></u>	
				1		5'-6' Same as above, wet. Mild odo	r, no staining.			
							, 			
\dashv						6'-9' Grey medium to coarse SAND	(sample 5-7), wet. S	Slight odor, no stain	ing.	† : : : : : : : : : : : : : : : : : : :
						-		· ·	-	
	2	MAC	5.0	5.0						/
	_	"" (0	3.0	3.0						
										/
\dashv						9'-10' Dark grey medium to coarse	SAND wat Slight a	dor no etaining		ļ
40						9 - 10 Dark grey mediumito warse	unine, vvci. Siigi il 0	uu, i io stati III IG.		
10		-		-		10'-12.5' Same as above, wet. Sligh	nt odor no staining			+ •
						i i i i i i i i i i i i i i i i i i i	i. Jaoi, i io Jian in ig.			/
_										/
										/
-	_									<u>7</u>
	3	MAC	5.0	5.0		12.5'-15' Whitesh grey fine to mediu	ım SAND (sample 1	4-15), wet. No odor	r, no staining.	•
				1						
]										
15										
						Bottom of bo	orehole at 15.0 feet.			

BORING NUMBER: **SB-209** Page 1 of 1

					INFORMATION			INFORMATION	
-		_				-			eu. <u>12/3/19</u>
riojec						-			_ st: 1081936.97 8
L		_			·	-			
]			
			DF	RILLING	INFORMATION		GROUND WAT	TER OBSERVATIONS	
illing C		_			- ·	MEASUREMENT		At End of Drilling	▼ After Drilli
D ::::		–			d Austin Armbrster				
					10DT				
quipirio						STABILIZATION	NA NA		
SAMPLE	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ	MATE	RIAL DESCRIPTION		,	VOC SCREENI RESULTS (ppn
			 		_ 0'-0.33' ASPHALT.				
					0.33 '- 1 ' ROOK, gravel.			/	
						ium SAND, sea she	ells, moist. Wood odd	or.	7
					1.5'-2.5' Light brown, fine SAND, tra				Τ
1	МАС	5.0	5.0		_ staining.				↓ \
						ID, trace of fine grav	el and few sea shel	ls, wet at 4.5.	
					Moderate odor, no staining.				
								$\overline{}$	
								<u></u>	
			+-	* * * * * * *	5'-7' Light brown to arev fine to med	ium SAND (sample	s 5-7, 5-10). little fin	e gravel. wet.	+!!
					Strong odor, no staining.		,,,		
					<i>,</i> 3				
2	MAG	50	20	• • • • • • • • • • • • • • • • • • •					† /
2	IVIAC	3.0	2.0						
									/
									/
									/
			+		10'- 12' Light grey coarse SAND fin	ne aravel wet Made	erate odor no stainii	na	- ∳
					10 12 Light grey, waise on ND, III	~ grava, wa. wou	orate each, no stall li	'⊎∙	/
									<i> </i>
				!					!
					12'- 13' Grey, fine SAND (sample 12	2-13), wet. No odor.	no staining.		†
3	MAC	5.0	5.0						li i i i
					13'- 15' Greyish brown fine SAND w	ith small pieces of c	day. Slight odor.		*
				::::::: <u> </u>					
				 • • • • • • • • • • • • • • • • • • •					
					Bottom of bo	orenoie at 15.0 feet.			
i	Project Ch Ch Ch Drilling C	Project Local Project Num Cli Logged Checked Illing Contrar Drille Drilling Meth uipment/Mo Sam 1 MAC 1 MAC	Project Location: Client: Logged By: Checked By: Unilling Contractor: Driller(s): Sampler: Sampler: 1 MAC 5.0 MAC 5.0	Project Location: Project Number: Client: Logged By: Checked By: Checked By: Dilling Contractor: Driller(s): Drilling Method: uipment/Model: Sampler: Sampler: Samjay 1 MAC 5.0 5.0 2 MAC 5.0 2.0	Project Location: 1 Shore Road, 227138.0000.00 New York State E Sanjay Sharma Drilling Contractor: Driller(s): Driller(s): Sampler: Sanjay Sharma Drilling Method: Sampler: Sanjay Sharma Direct Driller(s): Sanjay Sharma Drilling Method: GeoProbe - 66 Sanjay Sharma Drilling Method: Sampler: Sanjay Sharma Drilling Method: GeoProbe - 66 S	DRILLING INFORMATION Attech Technologies, Inc. Driller(s): Jeff Morgan and Austin Armbreter Drilling Method: Direct push Uipment/Model: GeoProbe - 6610DT Sampler: Sanjay Sharma MATE 1 MAC 5.0 5.0 5.0	Toget Location: Ishore Road, Glenwood Landing, NY 327138.0000.0000 Phase 3 New York State Department of Environmental Conservation Logged By: Checked By: Dan Warren Diller (s): Dan Warren	Project Number: 327138.0000.0000 Phase 3 Client: New York State Department of Environmental Conservation Logged By: Sanjay Sharma Checked By: Dan Warren PRILLING INFORMATION Brilling Contractor: Aztech Technologies, Inc. Driller(s): Jeff Morgan and Austin Armbrister Drilling Method: Direct push Upment/Model: GeoProbe - 6610DT Sampler: Sanjay Sharma O'-0.33" ASPHALI. 0.33"-1"ROCK, gravel. 1"-1.5" Dark brown-grey fine to medium SAND, sea shells, moist. Wood odd 1.5"-2.5" Light brown to grey fine to medium SAND (samples 5-7, 5-10), little fin Strong codor, no staining. 10'-12' Light grey, coarse SAND, fine gravel, wet. Moderate odor, no staining.	Troject Location: 1 Shore Road, Glenwood Landing, NY project Number: 327138.0000.000 Phase 3 Client: New York State Department of Environmental Conservation Logged By: Sanjay Sharma DRILLING INFORMATION SAND MATER OBSERVATIONS

BORING NUMBER: **SB-210** Page 1 of 1

East: 1081943.72 round Elevation: 7.77 SERVATIONS End of Drilling VCC SCREEN RESULTS (ppr	Date Completed: 12/3/19 ng Island Zone East: 1081943.726 Ground Elevation: 7.77 FER OBSERVATIONS At End of Drilling VOC SCREENIN RESULTS (ppm)
East: 1081943.72 round Elevation: 7.77 SERVATIONS End of Drilling VCC SCREEN RESULTS (ppr	East: 1081943.726 Ground Elevation: 7.77 FER OBSERVATIONS At End of Drilling VOC SCREENIN RESULTS (ppm) 240 480 720 9
East: 1081943.72 round Elevation: 7.77 SERVATIONS End of Drilling VCC SCREEN RESULTS (ppr	East: 1081943.726 Ground Elevation: 7.77 FER OBSERVATIONS At End of Drilling VOC SCREENIN RESULTS (ppm) 240 480 720 9 251 44.
VCC SCREEN RESULTS (ppr	Ground Elevation: 7.77 FER OBSERVATIONS At End of Drilling VOC SCREENIN RESULTS (ppm) 240 480 720 1
SERVATIONS End of Drilling VOC SCREEN RESULTS (ppr	TER OBSERVATIONS At End of Drilling VOC SCREENIN RESULTS (ppm) 240 480 720 251 4'.
VOC SOREEN RESULTS (ppr	VOC SCREENIN RESULTS (ppm)
VOC SOREEN RESULTS (ppr	VOC SCREENIN RESULTS (ppm)
RESULTS (ppr	RESULTS (ppm) 240 480 720 26ss. No octor,
RESULTS (ppr	RESULTS (ppm) 240 480 720 26ss. No octor,
RESULTS (ppr	RESULTS (ppm) 240 480 720 26ss. No octor,
RESULTS (ppr	RESULTS (ppm) 240 480 720 9 Ess. No odor,
	ass. No odor,
oxor,	at 4'.
∞dor,	at 4'.
	at 4'.
$\overline{\Box}$	
$\overline{\Box}$	
<u> </u>	
	few
/	1 / .
/	
	/
. ∳	1 /
/	• ∳ ; • • • † • • • †
 	1
11 : : :	*
No. # : : :	The work No.
No 🛉	es, wet. No
No •	es, wet. No
No •	es, wet. No
No 🌓	es, wet. No
No 🌓	es, wet. No

BORING NUMBER: **SB-211**Page 1 of 1

	D'	a a 4 M I				INFORMATION	Desire D		INFORMATION	r: 2 inches
			_			orp (AES) Glenwood Landing, NY	Boring Dept Date Starte		Hole Diamete Date Complete	
	-		_			000 Phase 3	1	n: State Plane - Lo		u. <u>12/3/19</u>
	, rojec		_			Department of Environmental Conservation	1	n: 239325.1845		: 1081945.16
	L		_		Sharma		Vertical Datun		Ground Elevation	
			-	Dan W						
				DF	RILLING	INFORMATION		GROUND WAT	ER OBSERVATIONS	
Dr	rilling C					logies, Inc.	MEASUREMENT		▼ At End of Drilling	▼ After Drill
						d Austin Armbrster	DATE	12/2/2019		
_				Direct		40DT	DEPTH (ft.bgs.)	4 Ground Surface		
	quipme				obe - 66 Sharma		REFERENCE STABILIZATION	NA		
EPTH	뉴쯦						RIAL DESCRIPTION	I		VOC SCREEN RESULTS (ppr
(FT.)	SAMPLE NUMBER	SAMPLE TYPE	PENETRATION (FT.)	RECOVERY (FT.)	ПТНОСОСУ		VAL DESCRIPTION			420 840 1260
					* * * * * * *	_ 0'- 0.33' ASPHALT.				>
				1		0.33'- 0.67' Dark brown fine to mediu	ım SAND, little grav	eı, dry, plastic layer	s at 4' and 8'.	.
						No odor, no staining.	Tuith me to the	rol unit at 41 Na1		ļ i i i
_					!	0.67'- 5' Brown to fine medium SANI staining.	, with mealum grav	/ei, wet at 4°. 1\10 000	r, no	<u> </u>
	1	MAC	5.0	5.0		sailig.				
_					[]					++
									abla	
-									<u></u>	
5				1						I
						5'-7.5' Dark grey fine to medium SA	ND, wet. Slight to m	oderate odor, no sta	aining.	*
				1			-		-	\ \
				1						/
										· · · · · · · · · · · · · · · · · · ·
	2	MAC	5.0	2.5	·····					\ \ \
	_									
				1						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_										
40				1						
10				-		10'- 13' Same as above (samples 10)-11 1()-12) west 9t	rang ador no stainii	ng	
				1		.5 15 Carib as above (sairpies it	, 10 12 _j , wet. O	. s. ig cao, i io stall li	.გ.	
\dashv										
				1	 					
\dashv	_			1	[]					
	3	MAC	5.0	5.0						
_				1		13'-14.17' Yellow-brown to grey fine	to medium SAND (sample 13-14), little	dayey	
				1		patches, wet. Slight odor, no staining.				
						14.17'- 15' Grey CLAY (sample 14.5	-15), medium silt. V	ery strong odor. no:	staining.	Y
15								<u> </u>	5	<u>i</u>
				1		15'-18' Fallen from top. Very strong	odor.			1111
				1						
				1						
-				1						i . (
	4	MAC	5.0	5.0						
_					111111	18'-19.5' Red brown sandy CLAY (s	ample 19-20 MS/M	YSD).		 - -
						iso itemsoring of it	pio 10 20, IVIO1V	 ,.		
_					<i>{/////</i> }					
20				1		19.5'-20' Gray fine SAND, wet. No o	odor, no staining.			· i i i
					<i>V/////</i>		orehole at 20.0 feet.			
l										

BORING NUMBER: **SB-212** Page 1 of 1

	D!	006.81	mo:			INFORMATION	Donie - D		INFORMATION Hole Diamete	or: 2 inches
						orp (AES) Glenwood Landing, NY	Boring Dept Date Starte		Date Complete	
	-		_			000 Phase 3		n: State Plane - Lo		su. 12/3/19
	i iojeo		_			Department of Environmental Conservation		h: 239334.5883		- st: 1081934.750 °
	L		_		Sharma		Vertical Datur		Ground Elevation	
	Ch	ecked	By:	Dan W	arren					
				DF	RILLING	INFORMATION		GROUND WAT	ER OBSERVATIONS	
Dri	illing C					logies, Inc.	MEASUREMENT		▼ At End of Drilling	▼ After Drilling
	Drillin			Jeff M Direct		d Austin Armbrster	DATE DEPTH (ft.bgs.)	12/2/2019		
		•	_		obe - 66	10DT	REFERENCE	Ground Surface		
	quipirio				Sharma		STABILIZATION	NA		
EPTH (FT.)	SAMPLE	SAMPLE TYPE	RATION (FT.)	RECOVERY (FT.)	лногосу	MATER	RIAL DESCRIPTION	1		VOC SCREENIN RESULTS (ppm)
-	ઝ∋	₩.		Ε̈́Ε.	貞					
		Ŋ	Ē.		_	0'-0.33' ASPHALT.				0 0 0
						0.33'-2' Brown fine to medium SANI) little fine to media	ım aravel same sea	shells moist	† ! ! !
\dashv					 	No odor, no staining.	-,		S. 10110, 11 10101.	
						, 				
\dashv	1	MAC	E0	5.0	نايد	2'-2.5' ROCKS & COBBLES. No odd				<u> </u>
	1	IVIAC	3.0	3.0	• • • • • • • • • • • • • • • • • • • •	2.5'-5' Brown fine SAND (sample 1-	3), trace of fine grav	vel, wet at 3' bgs (ob	served at	Ť. i. i. i
					````````\  `````\\	high tide). No odor, no staining.			<del></del>	
5					<b>*</b> ******	5'- 10' No recovery				ļ
						5'-10' No recovery.				
$\dashv$										
-	_		_							
	2	MAC	5.0	0.0						
$\dashv$										
10				_		401 4E1 One 2-la laure - CAN 15	nt No adam :1	nina		<u> </u>
						10'- 15' Greyish brown fine SAND, w	vet. No odor, no stai	ning.		
$\perp$										
$\dashv$					<b>*****</b> ***					
	3	MAC	5.0	5.0	<b> </b>					
$\dashv$					<b>*****</b> *******************************					
					<b>****</b> ***					: : :
15										

## ATTACHMENT C – PHOTOGRAPH LOG

TRC ENGINEERS, INC. JANUARY 2020



Photo 1: Drill rig setup on SB-116.



Photo 2: Side view of Oil-In-Soil test on sample collected from 7 to 8 feet bgs at SB-115.



Photo 3: Top view of Oil-In-Soil test on sample collected from 7 to 8 feet bgs at SB-115.



Photo 4: Side view of Oil-In-Soil test on sample collected from 14 feet bgs at SB-115.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	A TOC
327138	Sanjay Sharma	1 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	♦ IKC



Photo 5: Top view of Oil-In-Soil test on sample collected from 14 feet bgs at SB-115.



Photo 6: Top view of Oil-In-Soil test on sample collected from 6.5 to 7.5 feet bgs at SB-116.



Photo 7: Side view of Oil-In-Soil test on sample collected from 6.5 to 7.5 feet bgs at SB-116.



Photo 8: Top view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-120.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		<b>T</b>
327138	Sanjay Sharma	2 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	4	HRC



Photo 7: Side view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-120.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	N
327138	Sanjay Sharma	3 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	



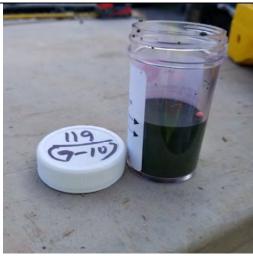



Photo 1: Side view of Oil-In-Soil test on sample collected from 9 to 10 feet bgs at SB-119.



Photo 2: Top view of Oil-In-Soil test on sample collected from 9 to 10 feet bgs at SB-119.



Photo 3: Top view of Oil-In-Soil test on sample collected from 16 to 17 feet bgs at SB-119.



Photo 4: Side view of Oil-In-Soil test on sample collected from 16 to 17 feet bgs at SB-119.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		
327138	Sanjay Sharma	1 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	1	



Photo 5: Side view of Oil-In-Soil test on sample collected from 11 to 12 feet bgs at SB-114.



Photo 6: Top view of Oil-In-Soil test on sample collected from 11 to 12 feet bgs at SB-114.



Photo 7: Side view of Oil-In-Soil test on sample collected from 6.5 to 7.5 feet bgs at SB-117.



Photo 8: Top view of Oil-In-Soil test on sample collected from 6.5 to 7.5 feet bgs at SB-117.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		TOC
327138	Sanjay Sharma	2 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	7	IKC



Photo 9: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-104.



Photo 10: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-104.



Photo 11: Side view of Oil-In-Soil test on sample collected from 6 to 7 feet bgs at SB-113.



Photo 12: Top view of Oil-In-Soil test on sample collected from 6 to 7 feet bgs at SB-113.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	<b>1 T C</b>
327138	Sanjay Sharma	3 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	♦ IKC



Photo 1: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-111.



Photo 2: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-111.



Photo 3: Top view of Oil-In-Soil test on sample collected from 4.5 to 5 feet bgs at SB-112.



Photo 4: Side view of Oil-In-Soil test on sample collected from 4.5 to 5 feet bgs at SB-112.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		TOC
327138	Sanjay Sharma	1 of 4	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	1	IKC



Photo 5: Top view of Oil-In-Soil test on sample collected from 6 to 6.5 feet bgs at SB-105.



Photo 6: Side view of Oil-In-Soil test on sample collected from 6 to 6.5 feet bgs at SB-105.



Photo 7: Side view of Oil-In-Soil test on sample collected from 14 to 15 feet bgs at SB-105.



Photo 8: Top view of Oil-In-Soil test on sample collected from 14 to 15 feet bgs at SB-105.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		<b>T</b>
327138	Sanjay Sharma	2 of 4	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	4	IKC



Photo 9: Side view of Oil-In-Soil test on sample collected from 3.5 to 4.5 feet bgs at SB-106.

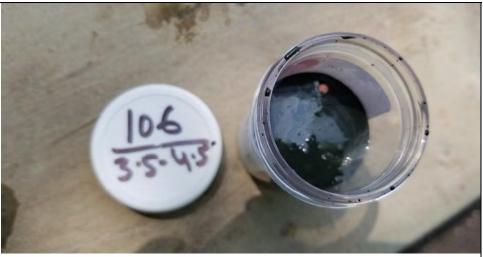



Photo 10: Top view of Oil-In-Soil test on sample collected from 3.5 to 4.5 feet bgs at SB-106.



Photo 11: Side view of Oil-In-Soil test on sample collected from 6 to 6.5 feet bgs at SB-106.



Photo 12: Top view of Oil-In-Soil test on sample collected from 6 to 6.5 feet bgs at SB-106.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	<b>1 T C</b>
327138	Sanjay Sharma	3 of 4	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	



Photo 13: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-107.



Photo 14: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-107.



Photo 15: Side view of Oil-In-Soil test on sample collected from 3 to 4 feet bgs at SB-108.



Photo 16: Top view of Oil-In-Soil test on sample collected from 3 to 4 feet bgs at SB-108.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		<b>T</b>
327138	Sanjay Sharma	4 of 4	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	1	IKC



Photo 1: Side view of Oil-In-Soil test on sample collected from 4 to 4.5 feet bgs at SB-110.



Photo 2: Top view of Oil-In-Soil test on sample collected from 4 to 4.5 feet bgs at SB-110.



Photo 3: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-101.



Photo 4: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-101.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
327138	Sanjay Sharma	1 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	♦ IKC



Photo 5: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-102.



Photo 6: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-102.



Photo 7: Top view of Oil-In-Soil test on sample collected from 3 to 4 feet bgs at SB-109.



Photo 8: Side view of Oil-In-Soil test on sample collected from 3 to 4 feet bgs at SB-109.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	<b>1 T C</b>
327138	Sanjay Sharma	2 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	♦ IKC



Photo 9: Top view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-103.



Photo 10: Side view of Oil-In-Soil test on sample collected from 4 to 5 feet bgs at SB-103.



Photo 11: Top view of Oil-In-Soil test on sample collected from 7 to 8 feet bgs at SB-118.



Photo 12: Side view of Oil-In-Soil test on sample collected from 7 to 8 feet bgs at SB-118.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		756
327138	Sanjay Sharma	3 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	1	IKC



Photo 1: Soil boring surfaces restored in Area 1.



Photo 2: Soil boring surfaces restored in Area 2.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	<b>N</b>
327138	Sanjay Sharma	1 of 1	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	🤣 lr

## **Supplemental Investigation Photograph Log – December 3, 2019**



Photo 1: Side view of Oil-In-Soil test on sample collected from 5 to 7 feet bgs at SB-208.



Photo 2: Top view of Oil-In-Soil test on sample collected from 5 to 7 feet bgs at SB-208.



Photo 3: Side view of Oil-In-Soil test on sample collected from 5 to 7 feet bgs at SB-209.



Photo 4: Top view of Oil-In-Soil test on sample collected from 5 to 7 feet bgs at SB-209.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	1 = 1
327138	Sanjay Sharma	1 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	♦ IKC

## **Supplemental Investigation Photograph Log – December 3, 2019**

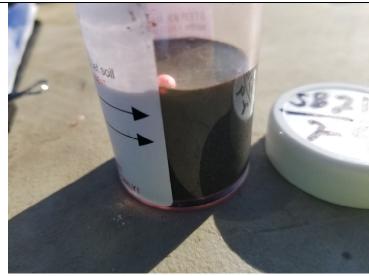



Photo 5: Side view of Oil-In-Soil test on sample collected from 7 to 9 feet bgs at SB-210.



Photo 6: Top view of Oil-In-Soil test on sample collected from 7 to 9 feet bgs at SB-210.



Photo 7: Side view of Oil-In-Soil test on sample collected from 14 to 15 feet bgs at SB-210.



Photo 8: Top view of Oil-In-Soil test on sample collected from 14 to 15 feet bgs at SB-210.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	A TOC
327138	Sanjay Sharma	2 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	→ IKC

## **Supplemental Investigation Photograph Log – December 3, 2019**



Photo 9: Side view of Oil-In-Soil test on sample collected from 10 to 11 feet bgs, 13 to 14 feet bgs, and 14.5 to 15 feet bgs at SB-211.



Photo 10: Top view of Oil-In-Soil test on sample collected from 10 to 11 feet bgs, 13 to 14 feet bgs, and 14.5 to 15 feet bgs at SB-211.



Photo 11: Side view of Oil-In-Soil test on sample collected from 10 bgs at SB-212.



Photo 12: Top view of Oil-In-Soil test on sample collected from 10 feet bgs at SB-212.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	<b>1 T C</b>
327138	Sanjay Sharma	3 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	→ IKC

## **Supplemental Investigation Photograph Log – December 4, 2019**



Photo 1: Side view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-201 and from 5 to 6 feet bgs at SB-205.



Photo 2: Top view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-201 and from 5 to 6 feet bgs at SB-205.



Photo 3: Side view of Oil-In-Soil test on sample collected from 6 to 7 feet bgs at SB-202.



Photo 4: Top view of Oil-In-Soil test on sample collected from 6 to 7 feet bgs at SB-202.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
327138	Sanjay Sharma	1 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	1



## **Supplemental Investigation Photograph Log – December 4, 2019**



Photo 5: Side view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-203.



Photo 6: Top view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-203.



Photo 7: Top view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-204.



Photo 8: Side view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-204.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:		
327138	Sanjay Sharma	2 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	4	IK

## **Supplemental Investigation Photograph Log – December 4, 2019**



Photo 9: Top view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-206 and from 7 to 8 feet bgs at SB-207.



Photo 10: Side view of Oil-In-Soil test on sample collected from 5 to 6 feet bgs at SB-206 and from 7 to 8 feet bgs at SB-207.

TRC Job No.	Photographs Taken By:	Page No.	Client:	Site Name & Address:	
327138	Sanjay Sharma	3 of 3	NYSDEC	Shore Realty Corp – 1 Shore Road, Glenwood Landing, NY	5





### APPENDIX B

Revised Interim Remedial Measures Conceptual Plan – June 2020

TRC ENGINEERS, INC.

January 2021





#### **DRAFT**

TRC Engineers, Inc. 1430 Broadway, 10th Floor New York, New York 10018

Main (212) 221-7822 Fax (212) 221-7840

### Memorandum

**To:** Caroline Jalanti, Project Manager

New York State Department of Environmental Conservation

Division of Environmental Remediation

From: Daniel Warren, Project Manager

TRC Engineers, Inc.

**Subject:** Standby Engineering Contract

Work Assignment No. D009812-01

Shore Realty Corporation (AES) – Site No. 130006 Revised Interim Remedial Measure Conceptual Plan

**Date:** June 10, 2020

CC: D. Glass (TRC)

J. Magda (TRC)

**TRC Project No.:** 386138.0000.0000

This revised memorandum provides a concept-level description of the elements of an Interim Remedial Measure (IRM), consisting of excavation and off-site disposal of petroleum-related volatile organic compound (VOC)-impacted soil and related work, at the Shore Realty Corporation (AES) Site located in Glenwood Landing, New York (the "Site"). TRC submitted the original Conceptual Plan on April 3, 2020. The revised conceptual plan has been prepared based on the results of a Supplemental Investigation completed in December 2019, summarized in a memorandum, prepared by TRC, dated January 31, 2020 and comments received from New York State Department of Environmental Conservation (NYSDEC) via email on April 15, 2020. The objective of the IRM is to remove residual sources of petroleum-related VOCs in soil, primarily ethylbenzene, toluene, and xylenes (ETX), detected in groundwater samples collected from extraction wells GX-2 and GX-7 and monitoring well WP-5A. Soil will be removed in four zones, as summarized in the table below and described further in this memorandum. Conceptual limits of the Excavation Zones are shown on **Figures 1** and **2**.

TRC ENGINEERS, INC. JUNE 2020

Summary of Excavation Zones							
Investigation Area	Excavation Zone	Area of Excavation (square feet)	Average Depth of Excavation (feet)	Excavation Volume (Rounded) (cubic yards)			
1	1A	790	8.0	240			
1	1B	500	15.0	280			
2	2A	420	13.5	210			
2	2B	170	18.0	110			
	840						

Note: All quantities are approximate.

Presented below are descriptions of the primary elements of the IRM, estimated costs, and an estimated schedule to complete the work. At the request of NYSDEC, TRC has included an evaluation of four excavation support options utilizing three different excavation support system types: 1) trench box, 2) slide rail, and 3) interlocking sheeting. The evaluation of two different size slide rail systems is included in this Conceptual Plan. It should be noted that due to the non-uniform distribution of contamination identified at the Site and gaps in horizontal and vertical delineation of VOC concentrations above Soil Cleanup Objectives, uncertainty exists as to whether the planned soil removal alone would result in adequate reduction of VOC concentrations in groundwater at extraction wells GX-2 and GX-7 and monitoring well WP-5A. Therefore, as described below, the IRM also includes the application of amendments to enhance post-excavation anaerobic bioremediation of petroleum-related VOCs.

### **Interim Remedial Measure Work Plan and Technical Scope of Work**

TRC will prepare an IRM Work Plan describing the scope, estimated cost, and schedule in greater detail than in this memorandum for NYSDEC review and approval. TRC would also prepare a Technical Scope of Work, including drawings, for use by the Department for procurement of a Standby call-out contractor. The IRM Work Plan and Technical Scope of Work would be prepared in accordance with applicable provisions of NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation and in consultation with the Department.

### Implementation of Interim Remedial Measure Work Plan/Technical Scope of Work

Conceptual descriptions of significant IRM work elements are described below. However, the selected contractor will determine means and methods to complete the work. TRC will review contractor submittals and provide full-time on-Site supervision of the contractor's activities.

### Mobilization and Site Preparation

Prior to mobilization, an existing conditions survey would be performed, and excavation limits would be staked out in the field. Erosion and sediment controls would be installed and locations of subsurface utilities and bulkhead tie backs (if present) would be identified. Since overhead power lines are located near proposed excavation areas, electrical service to the Site would be temporarily deactivated. The existing groundwater treatment system would be connected to a temporary power source. Subsurface utilities running through the excavation areas (e.g., potable water and natural gas lines) would be re-routed outside the limits of planned excavations. Additionally, clearing, grubbing, and grading would be performed in Excavation Zone 1B to prepare the area for installation of an excavation support system. Equipment, materials, and temporary facilities would be mobilized and staged at the Site.

### **Excavation Support Options**

Potential excavation support systems are described below. Excavation support systems for Options 1, 2, and 3 would be installed and advanced concurrent with excavation activities. Sheeting under Option 4 would be installed prior to commencing excavation activities. As such, the time to implement each excavation support option varies. It is expected that the selected contractor would be required to submit a schedule for each phase of the work and description of means and methods proposed for excavation support, and that the contractor would be required to obtain TRC approval of the schedule and excavation support system prior to start of the work.

### Option 1 – Large Slide Rail System

Slide rail excavation support utilizes a component system of steel panels and posts installed simultaneously by sliding the panels into rails on the posts and then pushing the panels and posts down as the excavation is advanced. Option 1 includes the installation of a 60-foot by 45-foot slide rail system encompassing the entirety of Excavation Zones 1A and 1B to facilitate excavation and backfilling of both zones in one effort. The conceptual slide rail system includes extensive bracing because of the large size of the system.

After Excavation Zone 1 is completed, the slide rail system posts and much of the slide rail equipment would be utilized to construct an excavation support system encompassing the entirety of Excavation Zones 2A and 2B. Excavation Zone 1 panels and bracing equipment not required for Excavation Zone 2 would be removed from the Site and delivery of different size slide rail system panels suitable for the smaller Excavation Zone 2 would be required for completion of Zone 2 work. The Excavation Zone 2 slide rail system would be approximately 29 feet long by 24 feet wide.

### Option 2 – Small Slide Rail System

Option 2 includes the installation of individual slide rail systems, similar to those which would be utilized for Option 1, encompassing Excavation Zones 1A and B. Due to the smaller size of the slide rail systems, Option 2 would include less bracing than Option 1. A 56-foot by 28-foot slide rail system would be installed

around Excavation Zone 1A. Following completion of the excavation, backfilling, and slide rail system removal in Excavation Zone 1A, the same support technique would be used to excavate Excavation Zone 1B using a portion of the slide rail system posts, panels, and equipment used for Excavation Zone 1A. The Excavation Zone 1B slide rail system would be approximately 37 feet long by 18 feet wide.

Once Excavation Zone 1 is completed, the support of the entirety of Excavation Zone 2 could be completed with slide rail components already onsite from the Excavation Zone 1A and 1B slide rail systems, so a second equipment delivery would not be required. Additionally, unused slide rail equipment could be returned. Using the equipment already onsite from the Excavation Zone 1 system, the Excavation Zone 2 slide rail system would be approximately 37 feet long by 28 feet wide.

### Option 3 – Trench Box

Option 3 includes advancement, removal, and relocation of a 24-foot by 8-foot by 16-foot trench box in Excavation Zones 1A and 1B for excavation of approximately one eleventh of the total area of both Excavation Zones per move. Following completion of the first setup excavation, backfilling, and trench box removal in Excavation Zone 1A or 1B, the same support technique would be repeated ten additional times to complete the work in Excavation Zones 1A and 1B.

After Excavation Zone 1 is completed, the same trench box would be used to excavate Excavation Zones 2A and 2B. It is estimated that four trench box excavation setups would be required to excavate the entirety of Excavation Zones 2A and 2B. In and around Zone 2B, at the start of the work, soil would be excavated to a depth of approximately 2 feet, in order to advance the trench box to 18 feet below ground surface.

### Option 4 – Sheeting

Temporary sheeting would be installed around the perimeter of each excavation area and, if necessary, between the boundary of Excavation Zones 1A and 1B. A vibration monitoring plan would be developed and implemented to monitor for potential damage to the bulkhead during sheeting installation. Additionally, periodic inspection of the bulkhead would be performed. If predetermined vibration or settling limits were exceeded the contractor would be required to stop work and submit a corrective action plan. For cost estimating purposes, sheeting quantities are based on installing sheeting between Excavation Zones 1A and 1B and driving sheeting to three times the depth of each Excavation Zone.

#### Dewatering

Since excavations will be advanced several feet below the water table, dewatering will be required. Dewatering liquids would be conveyed to temporary tanks, treated utilizing the existing Site groundwater treatment system, and discharged to the reinjection gallery.

### Soil Removal, Staging, Transportation, Disposal, and Backfilling

Soil would be excavated to the target elevation in each Excavation Zone and staged on-Site for disposal. Monitoring wells and existing remediation system infrastructure within the limits of excavations would be removed. Disturbed remediation system infrastructure and monitoring wells outside the limits of excavation would be abandoned in place. Components of the bulkhead would be identified, clearly marked and protected from disturbance by soil staging and loading operations.

Removed soil would be characterized and transported off-Site for disposal. Two confirmatory soil samples would be collected from the bottom of each Excavation Zone, for a total of eight confirmatory samples. The coordinates of the horizontal limits and elevation of the bottom of each Excavation Zone would be surveyed by a New York State-licensed surveyor. Excavations would be backfilled with imported clean fill, placed in lifts and compacted. Imported clean fill placed in the saturated and smear zones of excavations in lifts would be mixed with amendment (e.g., gypsum), to enhance anaerobic bioremediation of residual dissolved-phase petroleum-related VOCs.

Soil removal, staging, transportation, disposal, and backfilling would proceed at different rates for each excavation support option described above. Since slide rail systems and trench boxes are installed as an excavation is advanced, slower productivity is anticipated than with sheeting. During advancement of slide rail systems, excavated soil outside of the Excavation Zone limits would be stockpiled on-Site and screened for suitability for reuse and, if acceptable, returned to the same excavation, as practicable, during backfilling. The concept-level cost estimates which are part of this memorandum are based on reuse of excavated soil beyond the limits of the Excavation Zones targeted for remediation. However, final quantities of soil reused and disposed off-Site would vary based on conditions encountered and the contractor's selected means and methods. TRC estimates soil removal, staging, transportation, disposal, and backfilling would be completed within six weeks utilizing Option 1 (Large Slide Rail System), eight weeks utilizing Option 2 (Small Slide Rail System), 11 weeks utilizing Option 3 (Trench Box), and two weeks utilizing Option 4 (Sheeting).

### Utility Reconnection, Surface Restoration, and Demobilization

At the completion of backfilling, excavation supports would be removed, electrical service would be reconnected and all equipment, excess materials, waste, and temporary tanks would be removed from the Site. Disturbed areas would be restored with asphalt and topsoil and seed, to match current conditions. Infrastructure associated with existing remediation systems which is disturbed or removed would not be restored or replaced. All disturbed groundwater monitoring wells would be replaced. Additionally, groundwater monitoring wells would be installed in the former locations of extraction wells GX-2 and GX-7.

### **Construction Completion Report**

Upon completion of the work, TRC would prepare a Construction Completion Report in accordance with DER-10, including:

- A description of the work performed;
- Waste profiles;
- Copies of waste manifests and bills of lading;
- Truck weight tickets;
- Documentation of source of imported material;
- Daily inspection reports;
- Laboratory analytical results;
- Photograph log; and,
- Record drawings.

### **Cost Estimate**

Based on the conceptual plan presented above, the estimated concept-level costs (including 20% contingency) to complete the IRM utilizing each excavation support option are presented below:

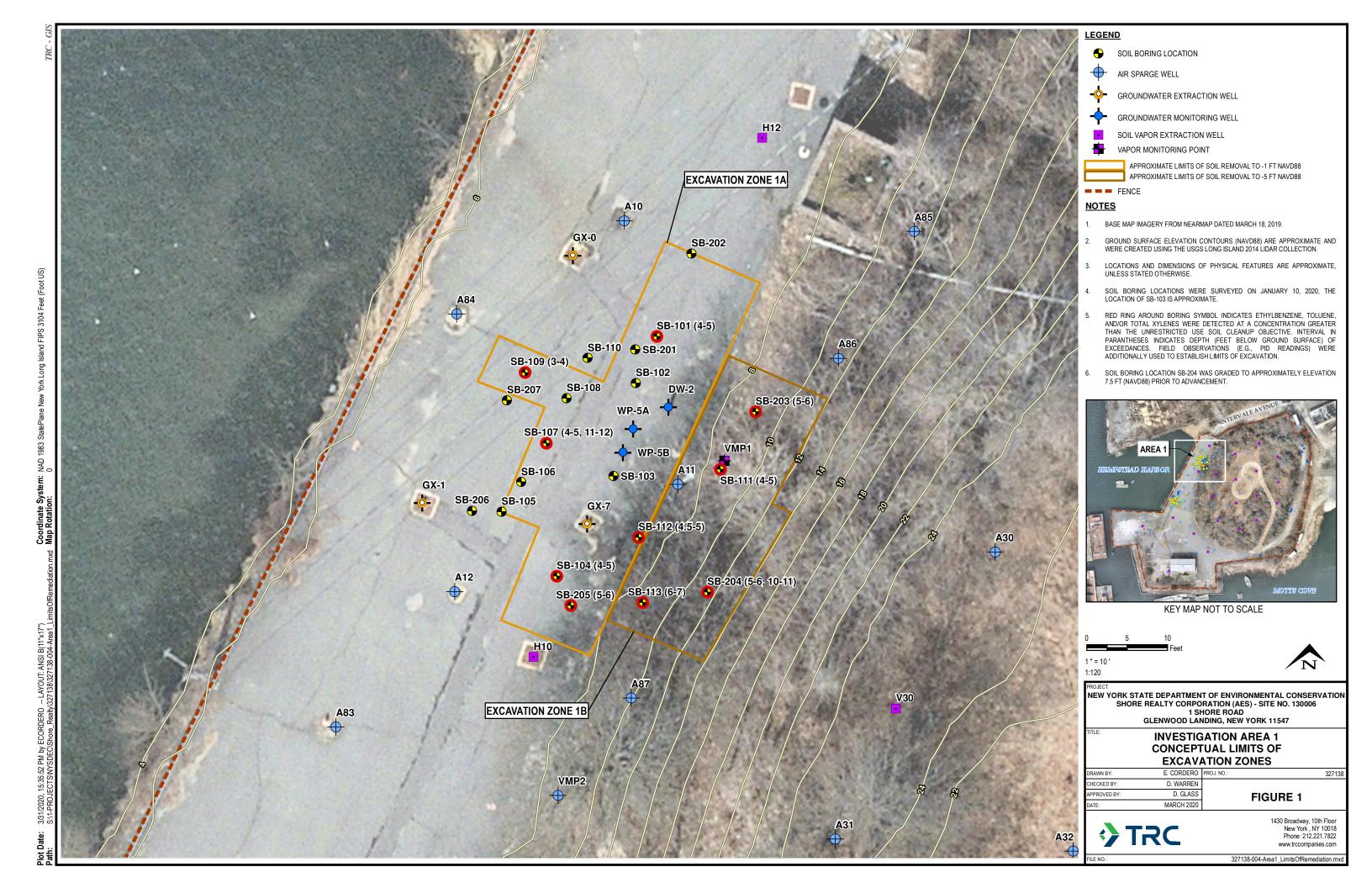
- Option 1: \$1.3 million
- Option 2: \$1.4 million
- Option 3: \$1.5 million
- Option 4: \$2.0 million

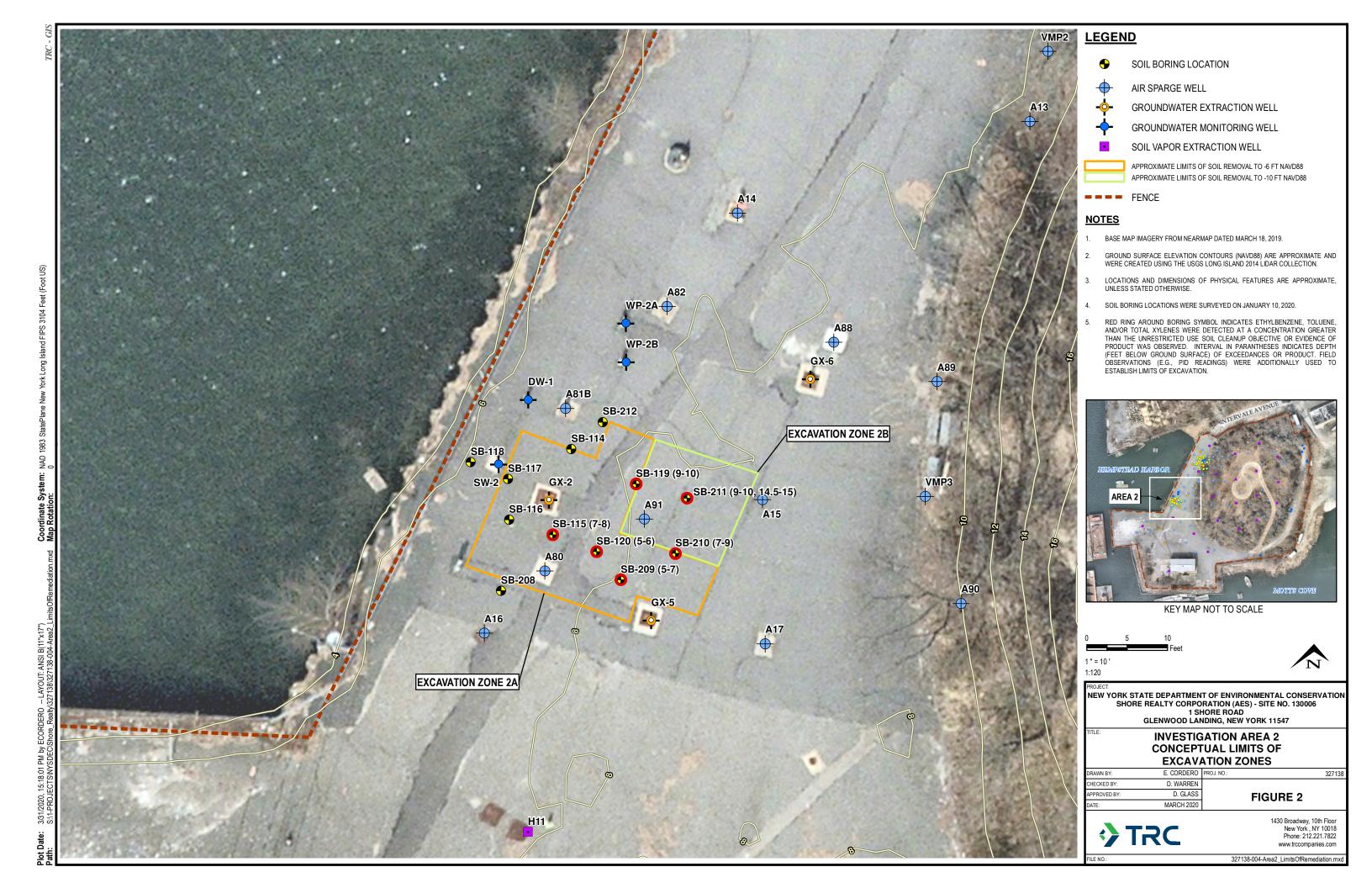
Cost estimate summaries utilizing each excavation support option are presented in **Attachment A**. The basis of the cost estimates is presented below.

### Basis of Cost

- The Department would procure a Standby call-out contractor to implement the IRM. Therefore, costs for remedial design services for public bidding and bid phase services are not included in the cost estimate.
- Concept-level dewatering calculations and associated estimated costs are based on hydrogeologic data presented in the historic Environmental Resource Management (ERM) report: Supplemental Data Acquisition Summary & Analysis, dated March 3, 2012.
- Excavated material would be characterized as non-hazardous (petroleum impacted).
- Excavated material not specified for disposal would be returned to the excavation during backfilling.
- Excavation support systems would be removed after completion of backfilling activities.

- Based on preliminary calculations, the existing groundwater treatment system will be adequate to treat dewatering liquids; however, confirmation will be required as part of development of the Technical Scope of Work.
- Cost estimate is based on performing the work during non-winter months.
- Costs to decommission and remove existing monitoring wells and remediation systems beyond the limits of the work are not included in the cost estimates.
- Costs to prepare a Site Management Plan or perform long-term groundwater monitoring are not included in the cost estimates.


### **Project Schedule**


An estimated project schedule is presented below.

Task Description	Estimated Time of Completion		
Preparation of IRM Work Plan and Technical SOW	8 weeks from authorization to proceed		
Implementation of IRM	To be determined based on excavation support option		
	selected		
Construction Completion Report	4 weeks from receipt of contractor submittals		

### **FIGURES**

TRC ENGINEERS, INC. JUNE 2020





### ATTACHMENT A – COST ESTIMATES

TRC ENGINEERS, INC. JUNE 2020

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SHORE REALTY CORPORATION (AES) - SITE NO. 130006 CONTRACT/WA NO. D009812-01

### CONCEPT-LEVEL COST ESTIMATE FOR SOIL EXCAVATION AND OFF-SITE DISPOSAL EXCAVATION SUPPORT OPTION 1 - LARGE SLIDE RAIL SYSTEM

#### **JUNE 2020**

			ESTIMATED	ESTIMATED	ESTIMATED
	ITEM DESCRIPTION	UNIT	UNIT COST	QUANTITY	EXTENDED COST
1	PREPARATION OF INTERIM REMEDIAL MEASURE WORK PLAN	LS	\$40,000	1	\$40,000
2	PREPARATION OF TECHNICAL SCOPE OF WORK	LS	\$45,000	1	\$45,000
	MOBILIZATION (SUBMITTALS, SITE PREPARATION, CLEARING AND GRUBBING,				
3	TEMPORARY FACILITIES, EROSION AND SEDIMENTATION CONTROLS, UTILITY AND TIE-	LS	\$95,000	1	\$95,000
	BACK LOCATING, WELL ABANDONMENT, ETC.)				
4	UTILITY RELOCATING AND ELECTRICAL SERVICE DISCONNECTION AND REACTIVATION	LS	\$25,000	1	\$25,000
5	DEWATERING (SYSTEM SETUP, OPERATION AND REMOVAL)	LS	\$150,000	1	\$150,000
6	EXCAVATION ZONES 1A AND 1B SLIDE RAIL SYSTEM RENTAL	MONTH	\$68,000	1	\$68,000
7	EXCAVATION ZONES 2A AND 2B SLIDE RAIL SYSTEM MOBILIZATION ¹	LS	\$5,400	1	\$5,400
8	EXCAVATION ZONES 2A AND 2B SLIDE RAIL SYSTEM RENTAL	WEEK	\$6,300	2	\$12,600
9	ONSITE SUPPORT FOR SLIDE RAIL INSTALLATION	WEEK	\$3,000	3	\$9,000
	SUPPORT SYSTEM INSTALLATION AND ADVANCEMENT, EXCAVATION, STOCKPILING,		*		4
10	AND LOADING (INCLUDING WASTE CHARACTERIZATION SAMPLING AND ANALYSIS) ²	CY	\$80	1,825	\$146,000
11	TRANSPORTATION AND DISPOSAL OF EXCAVATED MATERIAL (NON-HAZARDOUS)	TON	\$125	1,430	\$178,750
	PLACEMENT OF CLEAN FILL (TESTING, IMPORT, MIXING WITH AMENDMENT,		4		4
12	PLACEMENT, AND COMPACTION)	CY (IN PLACE)	\$50	840	\$42,000
13	BACKFILL OF STOCKPILED MATERIAL	CY (IN PLACE)	\$20	985	\$19,700
14	ENHANCED BIOREMEDIATION AMENDMENT (GYPSUM)	LB	\$0.25	12,000	\$3,000
15	ENHANCED BIOREMEDIATION AMENDMENT (UREA)	50 LBS	\$100	3	\$300
16	POST-EXCAVATION SAMPLING, ANALYSIS AND REPORTING	EACH	\$250	8	\$2,000
17	PAVEMENT RESTORATION	SF	\$15	2,800	\$42,000
18	PLACEMENT OF TOPSOIL AND SEEDING	SF	\$3	600	\$1,800
19	PRE-EXCAVATION, PROGRESS, AND POST-EXCAVATION SURVEYS	LS	\$25,000	1	\$25,000
20	WELL REPLACEMENT	EACH	\$4,500	7	\$31,500
21	DEMOBILIZATION	LS	\$25,000	1	\$25,000
22	CONSTRUCTION PHASE ENGINEERING SERVICES	LS	\$100,000	1	\$100,000
23	PREPARATION OF CONSTRUCTION COMPLETION REPORT	LS	\$50,000	1	\$50,000
			SUBTOTAL		\$1,117,050
		CONTINGENCY (20%)		\$223,410	
		T	OTAL (ROUNDED	D):	\$1,341,000

### NOTES



¹ - A SECOND MOBILIZATION IS REQUIRED TO DELIVER ADDITIONAL SLIDE RAIL SYSTEM EQUIPMENT REQUIRED FOR EXCAVATION ZONES 2A AND 2B.

² - BASED ON REUSE OF EXCAVATED MATERIAL NOT SPECIFIED FOR DISPOSAL.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SHORE REALTY CORPORATION (AES) - SITE NO. 130006 CONTRACT/WA NO. D009812-01

## CONCEPT-LEVEL COST ESTIMATE FOR SOIL EXCAVATION AND OFF-SITE DISPOSAL EXCAVATION SUPPORT OPTION 2 - SMALL SLIDE RAIL SYSTEM JUNE 2020

				ESTIMATED	ESTIMATED
	ITEM DESCRIPTION	UNIT	ESTIMATED UNIT COST	QUANTITY	EXTENDED COST
1	PREPARATION OF INTERIM REMEDIAL MEASURE WORK PLAN	LS	\$40,000	1	\$40,000
2	PREPARATION OF TECHNICAL SCOPE OF WORK	LS	\$45,000	1	\$45,000
	MOBILIZATION (SUBMITTALS, SITE PREPARATION, CLEARING AND GRUBBING,		\$85,000	1	\$85,000
3	TEMPORARY FACILITIES, EROSION AND SEDIMENTATION CONTROLS, UTILITY AND TIE-	LS			
	BACK LOCATING, WELL ABANDONMENT, ETC.)				
4	UTILITY RELOCATING AND ELECTRICAL SERVICE DISCONNECTION AND REACTIVATION	LS	\$25,000	1	\$25,000
5	DEWATERING (SYSTEM SETUP, OPERATION AND REMOVAL)	LS	\$188,000	1	\$188,000
6	EXCAVATION SLIDE RAIL SYSTEM RENTAL	MONTH	\$41,200	2	\$82,400
7	ONSITE SUPPORT FOR SLIDE RAIL INSTALLATION	WEEK	\$3,000	4	\$12,000
8	SUPPORT SYSTEM INSTALLATION AND ADVANCEMENT, EXCAVATION, STOCKPILING,	CY	\$130	1,500	\$195,000
ŏ	AND LOADING (INCLUDING WASTE CHARACTERIZATION SAMPLING AND ANALYSIS) ¹	CY			
9	TRANSPORTATION AND DISPOSAL OF EXCAVATED MATERIAL (NON-HAZARDOUS)	TON	\$125	1,430	\$178,750
10	PLACEMENT OF CLEAN FILL (TESTING, IMPORT, MIXING WITH AMENDMENT,	CY (IN PLACE)	\$50	840	\$42,000
10	PLACEMENT, AND COMPACTION)				
11	BACKFILL OF STOCKPILED MATERIAL	CY (IN PLACE)	\$20	660	\$13,200
12	ENHANCED BIOREMEDIATION AMENDMENT (GYPSUM)	LB	\$0.25	12,000	\$3,000
13	ENHANCED BIOREMEDIATION AMENDMENT (UREA)	50 LBS	\$100	3	\$300
14	POST-EXCAVATION SAMPLING, ANALYSIS AND REPORTING	EACH	\$250	8	\$2,000
15	PAVEMENT RESTORATION	SF	\$15	2,700	\$40,500
16	PLACEMENT OF TOPSOIL AND SEEDING	SF	\$3	600	\$1,800
17	PRE-EXCAVATION, PROGRESS, AND POST-EXCAVATION SURVEYS	LS	\$25,000	1	\$25,000
18	WELL REPLACEMENT	EACH	\$4,500	7	\$31,500
19	DEMOBILIZATION	LS	\$25,000	1	\$25,000
20	CONSTRUCTION PHASE ENGINEERING SERVICES	LS	\$120,000	1	\$120,000
21	PREPARATION OF CONSTRUCTION COMPLETION REPORT	LS	\$50,000	1	\$50,000
			SUBTOTAL		\$1,205,450
			CONTINGENCY (20%)		\$241,090
			TOTAL (ROUNDED):		\$1,447,000

### **Assumptions**



 $^{^{\}rm 1}$  - Based on Reuse of excavated material not specified for disposal.

## NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SHORE REALTY CORPORATION (AES) - SITE NO. 130006 CONTRACT/WA NO. D009812-01

## CONCEPT-LEVEL COST ESTIMATE FOR SOIL EXCAVATION AND OFF-SITE DISPOSAL EXCAVATION SUPPORT OPTION 3 - TRENCH BOX JUNE 2020

			ESTIMATED	ESTIMATED	ESTIMATED
	ITEM DESCRIPTION	UNIT	UNIT COST	QUANTITY	EXTENDED COST
1	PREPARATION OF INTERIM REMEDIAL MEASURE WORK PLAN	LS	\$40,000	1	\$40,000
2	PREPARATION OF TECHNICAL SCOPE OF WORK	LS	\$45,000	1	\$45,000
	MOBILIZATION (SUBMITTALS, SITE PREPARATION, CLEARING AND GRUBBING,				
3	TEMPORARY FACILITIES, EROSION AND SEDIMENTATION CONTROLS, UTILITY AND TIE-	LS	\$80,000	1	\$80,000
	BACK LOCATING, WELL ABANDONMENT, ETC.)				
4	UTILITY RELOCATING AND ELECTRICAL SERVICE DISCONNECTION AND REACTIVATION	LS	\$25,000	1	\$25,000
5	DEWATERING (SYSTEM SETUP, OPERATION AND REMOVAL)	LS	\$244,000	1	\$244,000
6	TRENCH BOX RENTAL	MONTH	\$2,700	3	\$8,100
7	SUPPORT SYSTEM INSTALLATION AND ADVANCEMENT, EXCAVATION, STOCKPILING,	CY	¢210	1 220	¢277.200
/	AND LOADING (INCLUDING WASTE CHARACTERIZATION SAMPLING AND ANALYSIS) ¹	CY	\$210	1,320	\$277,200
8	TRANSPORTATION AND DISPOSAL OF EXCAVATED MATERIAL (NON-HAZARDOUS)	TON	\$125	1,430	\$178,750
9	PLACEMENT OF CLEAN FILL (TESTING, IMPORT, MIXING WITH AMENDMENT,	CV (IN DI ACE)	¢50	840	¢42.000
9	PLACEMENT, AND COMPACTION)	CY (IN PLACE)	\$50	840	\$42,000
10	BACKFILL OF STOCKPILED MATERIAL	CY (IN PLACE)	\$20	480	\$9,600
11	ENHANCED BIOREMEDIATION AMENDMENT (GYPSUM)	LB	\$0.25	12,000	\$3,000
12	ENHANCED BIOREMEDIATION AMENDMENT (UREA)	50 LBS	\$100	3	\$300
13	POST-EXCAVATION SAMPLING, ANALYSIS AND REPORTING	EACH	\$250	8	\$2,000
14	PAVEMENT RESTORATION	SF	\$15	2,300	\$34,500
15	PLACEMENT OF TOPSOIL AND SEEDING	SF	\$3	600	\$1,800
16	PRE-EXCAVATION, PROGRESS, AND POST-EXCAVATION SURVEYS	LS	\$25,000	1	\$25,000
17	WELL REPLACEMENT	EACH	\$4,500	7	\$31,500
18	DEMOBILIZATION	LS	\$25,000	1	\$25,000
19	CONSTRUCTION PHASE ENGINEERING SERVICES	LS	\$150,000	1	\$150,000
20	PREPARATION OF CONSTRUCTION COMPLETION REPORT	LS	\$50,000	1	\$50,000
			SUBTOTAL		\$1,272,750
		CC	ONTINGENCY (20	%)	\$254,550
		T	OTAL (ROUNDED	D):	\$1,528,000

### **Assumptions**



¹ - BASED ON REUSE OF EXCAVATED MATERIAL NOT SPECIFIED FOR DISPOSAL.

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION SHORE REALTY CORPORATION (AES) - SITE NO. 130006 CONTRACT/WA NO. D009812-01 CONCEPT-LEVEL COST ESTIMATE FOR SOIL EXCAVATION AND OFF-SITE DISPOSAL

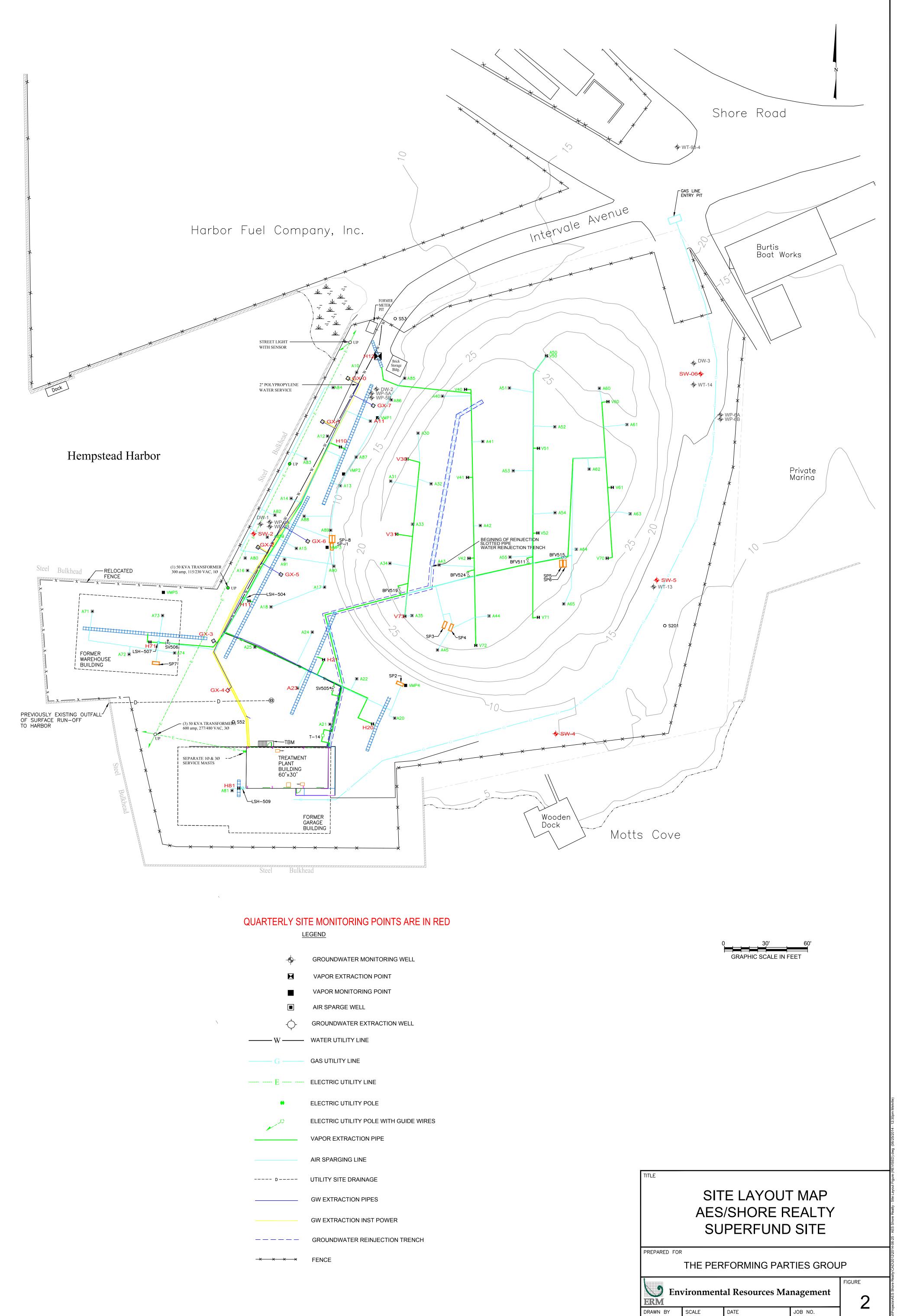
### EXCAVATION SUPPORT OPTION 4 - SHEETING JUNE 2020

	ITEM DESCRIPTION	UNIT	ESTIMATED UNIT COST	ESTIMATED QUANTITY	ESTIMATED EXTENDED COST
1	PREPARATION OF INTERIM REMEDIAL MEASURE WORK PLAN	LS	\$40,000	1	\$40,000
2	PREPARATION OF TECHNICAL SCOPE OF WORK	LS	\$45,000	1	\$45,000
3	MOBILIZATION (SUBMITTALS, SITE PREPARATION, CLEARING AND GRUBBING, TEMPORARY FACILITIES, EROSION AND SEDIMENTATION CONTROLS, UTILITY AND TIE-BACK LOCATING, WELL ABANDONMENT, ETC.)	LS	\$75,000	1	\$75,000
4	UTILITY RELOCATING AND ELECTRICAL SERVICE DISCONNECTION AND REACTIVATION	LS	\$25,000	1	\$25,000
5	DEWATERING (SYSTEM SETUP, OPERATION AND REMOVAL)	LS	\$75,000	1	\$75,000
6	EXCAVATION, STOCKPILING, AND LOADING (INCLUDING WASTE CHARACTERIZATION SAMPLING AND ANALYSIS)	CY	\$60	840	\$50,400
7	SHEETING (INSTALLATION, REMOVAL AND SALVAGE)	SF	\$75	12,000	\$900,000
8	TRANSPORTATION AND DISPOSAL OF EXCAVATED MATERIAL (NON-HAZARDOUS)	TON	\$125	1,430	\$178,750
9	PLACEMENT OF CLEAN FILL (TESTING, IMPORT, MIXING WITH AMENDMENT, PLACEMENT, AND COMPACTION)	CY (IN PLACE)	\$50	840	\$42,000
10	ENHANCED BIOREMEDIATION AMENDMENT (GYPSUM)	LB	\$0.25	12,000	\$3,000
11	ENHANCED BIOREMEDIATION AMENDMENT (UREA)	50 LBS	\$100	3	\$300
12	POST-EXCAVATION SAMPLING, ANALYSIS AND REPORTING	EACH	\$250	8	\$2,000
13	PAVEMENT RESTORATION	SF	\$15	1,400	\$21,000
14	PLACEMENT OF TOPSOIL AND SEEDING	SF	\$3	600	\$1,800
15	PRE-EXCAVATION, PROGRESS, AND POST-EXCAVATION SURVEYS	LS	\$25,000	1	\$25,000
16	WELL REPLACEMENT	EACH	\$4,500	6	\$27,000
17	DEMOBILIZATION	LS	\$25,000	1	\$25,000
18	CONSTRUCTION PHASE ENGINEERING SERVICES	LS	\$80,000	1	\$80,000
19	PREPARATION OF CONSTRUCTION COMPLETION REPORT	LS	\$50,000	1	\$50,000
			SUBTOTAL		\$1,666,250
		CC	ONTINGENCY (20	%)	\$333,250
		T	OTAL (ROUNDE	0):	\$2,000,000



### APPENDIX C

**Remedial Systems Layout** 


TRC ENGINEERS, INC.

January 2021





40'



SOURCE: HANDEX OF NEW JERSEY, INC. 500 CAMPUS DRIVE P.O. BOX 451, MORGANVILLE, NEW JERSEY, 07751 SITE PLAN DWG NAME: 12499-SP, DATE 2/16/2002 FIGURE 1 BASEPLAN DONE BY: LAND TECH REMEDIAL, INC.



### APPENDIX D

Schedule 1 – Work Assignment No. D009812-01

TRC ENGINEERS, INC.

January 2021



### **SCHEDULE 1**

# SCOPE OF WORK SHORE REALTY CORPORATION (AES) WA NO. D009812-01 SITE MANAGEMENT

### SCHEDULE 1 – SCOPE OF WORK SHORE REALTY CORPORATION (AES) WA NO. D009812-01 SITE MANAGEMENT APRIL 2020

### **Task 1 – Preliminary Activities**

### Work Assignment Package

TRC Engineers, Inc. (TRC) will prepare a Work Assignment (WA) Package, including a cover letter, Schedule 1 - Scope of Work, Schedule 2 - Schedule 2.11s, and Schedule 3 - Supporting Documentation (e.g., WA Package Checklist, subcontractor documentation, etc.) consistent with Department requirements. The complete WA Package will be sent to the Department's Contract Manager and Project Manager for review and approval. TRC will review any comments provided by the Department and revise the WA Package (as necessary), as part of this task.

### Task 2 – Operation, Maintenance and Monitoring

TRC will operate, maintain and monitor the existing groundwater extraction, air sparge (AS), soil vapor extraction (SVE), and water and vapor treatment systems, collectively referred to as "remediation systems" for 12 months, beginning in March 2020, consistent with the most-recent practice including the pulsing cycle. Groundwater extraction, AS, and SVE systems will be cycled on for two months and off for one month. The AS system will be pulsed to run for 24 hours on and one hour off during operating months. Groundwater extraction, SVE, and water and vapor treatment systems will be operated continuously during operating months. For the purpose of this Scope of Work, the term "biweekly" shall be defined as twice per week. For budgeting purposes, the Scope of Work is based on continued operation of the remediation systems for the full duration of the WA and that the remediation systems will not be shut down and/or temporarily decommissioned during the WA¹. Laboratory analytical services under this task will be performed by a NYSDEC call-out laboratory. Therefore, costs for laboratory services are not included in the Schedule 2.11s.

Operation, Maintenance, and Monitoring (OM+M) activities will consist of:

### General

 Annual inspection of backflow preventer and inspection and servicing of fire extinguishers in accordance with local regulations and codes. This Scope of

¹ Since the schedule for implementation of the Interim Remedial Measure (IRM) under Task 6 is unknown, the work activities under Task 2 are presented with the understanding that no modifications to current OM+M procedures would be made as a result of IRM implementation.



Work includes costs for one inspection/service event for both the backflow preventer and fire extinguishers.

- o Snow removal services to maintain site accessibility.
- Landscaping to maintain access to monitoring wells and the elevated/vegetated portion of the Site.
- o Removal and off-Site disposal of municipal solid waste every two weeks.
- o Biweekly housekeeping and equipment/supply inventorying.
- o Biweekly visual inspection of the harbor, from the Site, for sheen on surface water.
- Weekly documentation of natural gas and electrical (single and three-phase) meter readings.
- Weekly inspection of plant heating system and water supply piping.

### • Groundwater Extraction System

- Weekly cleaning and testing of the three level-sensing (conductivity) probes in each of the eight groundwater extraction wells (GX-0 through GX-7).
- Weekly documentation of the total flow, in gallons, from each groundwater extraction well.

### Air Sparge System

- Weekly inspection of air compressor and documentation of total hours of operation; drain air receiver tank (T-05) and compressor.
- o Preventative maintenance of air compressor in accordance with manufacturer's recommendations. Scheduled service shall be performed approximately every 2,000 hours of operation.
- Weekly inspection and documentation of air flow (cubic feet per hour) to each of the 24 AS wells.

### • Soil Vapor Extraction and Treatment System

- Weekly inspection of SVE blower, and documentation of total hours of operation, temperature, influent pressure (inches of water, measured at moisture separator), and influent photoionization detector (PID) measurement in parts per million (ppm).
- Weekly documentation of blower and post-vapor phase granular activated carbon (VGAC) effluent pressure (inches of water), VGAC effluent flow rate in cubic feet per minute, and VGAC effluent PID measurement in ppm.
- o Monthly greasing of SVE blower motor and tightening of SVE blower belts.
- o Monthly collection of vapor sample from VGAC effluent via SUMMA® canister and laboratory analysis for total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) via United States Environmental Protection Agency (USEPA) Method TO-3.
- O Quarterly, during the final week of each 2-month operating period, collection of vacuum and PID measurements from each of the 10 currently utilized soil vapor extraction wells (H-10, H-11, H-12, H-20, H-21, H-71, H-81, V-30, V-31, and V-73).
- o No removal and replacement of VGAC is included in this Scope of Work since it is not expected to be required during the planned 12-month operating period.



### • Water Treatment System

- O Biweekly inspection of extracted groundwater, SVE condensate, sludge tank (T-03), supernatant tank (T-09), and building sump effluent equalization tank (T-01); clarifier (T-02); clarifier supernatant tank (T-06); and T-03. Routine decanting of T-03 will be performed based on visual inspections.
- o Biweekly monitoring of plant influent and effluent pH and iron concentrations via field instrumentation.
- o Biweekly removal and replacement of two 10-micron and two 5-micron bag filters from November to March; note that bag filter replacement frequency will increase and be performed three times per week between April and October 2020.
- Biweekly documentation of total water discharge to reinjection gallery from both local and remote flow totalizers and the instantaneous flow rate during a discharge cycle.
- o Monthly greasing of sludge auger (A-01) drive chain per manufacturer's instructions.
- Monthly collection of water samples from the influent to the primary bag filters and combined LGAC effluent via the discharge pipe, and analysis for BTEX and methylene chloride via USEPA Method 624.
- o Monthly backwash of the two liquid phase granular activated carbon (LGAC) vessels to remove accumulated sediment.
- Monthly nutrient amendment (i.e., injection) of solution consisting of 100 pounds of ammonium chloride, 5 pounds of monopotassium phosphate, and 5 pounds of dipotassium phosphate; amendment will be mixed and injected in a single batch. Amendment solution will be mixed in T-04 and pumped to discharge injection galley.
- Removal and replacement of 165 pounds of LGAC every two operating months from each of the two LGAC vessels during the 12-month period (i.e., total of four replacement events for each LGAC vessel).
- Removal and off-site disposal of accumulated sludge in T-03 via vacuum truck extraction. TRC anticipates that the waste will be characterized for disposal utilizing existing Site data. A total of two waste disposal events have been included in the Scope of Work to account for the sludge currently accumulated at the Site.
- Removal and off-Site disposal of drummed spent carbon and used bag filters. TRC anticipates that waste will be characterized for disposal utilizing existing Site data. A total of two waste disposal events have been included in the Scope of Work for each waste stream to account for drums currently accumulated at the Site.

OM+M activities during each 1-month non-operating period will consist of:

#### • General

- o Inspection of backflow preventer(s) and inspection and servicing of fire extinguishers in accordance with local regulations and codes.
- o Snow removal services to maintain site accessibility.



- Landscaping to maintain access to monitoring wells and the elevated/vegetated portion of the Site.
- Weekly housekeeping and equipment/supply inventorying.
- Weekly documentation of natural gas and electrical (single and three-phase) meter readings.
- o Weekly inspection of plant heating system and water supply piping.
- o Preventative maintenance items identified during the operating period.

### Groundwater Extraction System

o Removal and maintenance (e.g., cleaning with muriatic acid) of groundwater extraction pumps, as necessary.

### • Water Treatment System

o Removal/cleaning of accumulated sludge in T-01, T-02, T-06, associated level switches and bag filter housings via pressure washing. Removed sludge will be transferred to T-03.

Upon collection, wastewater samples will be placed in laboratory-supplied containers, labeled, placed in coolers with ice and shipped, with the vapor sample, under chain-of-custody protocols to TestAmerica Laboratories, Inc., under contract to NYSDEC as a call-out laboratory. Therefore, costs for laboratory services will not be included in the Schedule 2.11s. Quality control samples will not be collected. Field work, including sample collection and analysis, will be completed in accordance with the Generic and Site-Specific Health and Safety Plan, Generic Field Activities Plan (FAP), and Generic Quality Assurance Project Plan (QAPP).

Remediation systems OM+M activities will be reported in Semi-Annual Site Monitoring Reports as described in Task 5. Laboratory analytical data generated under Task 2 will not be validated. TRC anticipates the activities described under Task 2 will be completed with biweekly Site OM+M visits by the Plant Operator and weekly Site OM+M visits by a Plant Technician during each 2-month operating period and weekly Site OM+M visits by the Plant Operator and Plant Technician during each 1-month non-operating period. In consultation with the Department, TRC may recommend reduced frequency of Site OM+M and O+M visits, as appropriate.

Additionally, unanticipated OM+M activities will likely arise during the duration of the Work Assignment. Therefore, TRC has included budget for additional OM+M visits, non-routine maintenance tasks (plant sump cleaning, manhole repairs, etc.), and unforeseeable equipment repairs or replacement and other operating costs in the WA Package. Additionally, since Lexington Technologies has previously provided licensed electrician and controls support to the Site, including the installation, troubleshooting, and repair of existing Progammable Logic Controller (PLC) infrastructure, TRC has included budget for their services in this WA Package.



### Task 3 – Supplemental Investigation

### **Investigation Derived Waste**

Soil cuttings generated during a Supplemental Investigation performed in July and December 2019 are containerized in 55-gallon drums staged at the Site. Analysis for waste characterization purposes of one soil sample and transportation and off-Site disposal of the drums has been included in the Work Assignment Package.

### Task 4 - Groundwater Monitoring

Groundwater samples will be collected via low-flow sampling techniques quarterly (i.e., a total of four sampling events), approximately two weeks after the completion of each 2-month operating period, from the eight groundwater extraction wells (GX-0 through GX-7), four groundwater monitoring wells (SW-4 through SW-6 and WP-5A), and one air sparge well (A-23). Headspace readings and depth to water and total well depth measurements will be collected from each well prior to sampling. Upon collection, groundwater samples will be placed in laboratory-supplied containers, labeled, placed in coolers with ice and shipped under chain-of-custody protocols to TestAmerica Laboratories, Inc., under contract to NYSDEC as a call-out laboratory. Therefore, costs for laboratory services will not be included in the Schedule 2.11s. Groundwater samples will be submitted for laboratory analysis for Target Compound List VOCs via USEPA Method 8260. Quality control samples will be in accordance with the Generic QAPP. Field work, including sample collection and analysis, will be completed in accordance with the Generic and Site-Specific Health and Safety Plan, Generic FAP, and Generic QAPP.

The laboratory will provide Category B data deliverable packages and TRC will validate analytical results in accordance with NYSDEC DER-10. Electronic Data Deliverables in EQuISTM format will be submitted to the NYSDEC. Results of analysis of groundwater samples will be included in Semi-Annual Site Monitoring Reports described in Task 5.

### Task 5 – Semi-Annual Site Monitoring Reporting

TRC will prepare and submit to the NYSDEC three Semi-Annual Site Monitoring Reports in May and November 2020, and March 2021. Each report will document the following:

- Summary of OM+M activities completed under Task 2.
- Summary of remediation systems performance data including items such as:
  - o Number of days the systems operated during the reporting period or the percentage of run time for the reporting period.
  - Volumes processed during the reporting period and the cumulative total processed for each system during the reporting period.
  - o Average, high and low flows.
  - o Estimated mass of contaminants removed by each system.



- Description and explanation of significant downtime and/or performance issues encountered (if any) during the reporting period and the associated resolution(s).
- Field data collected (e.g., vacuum and pressure readings, PID readings, etc.).
- Summary of groundwater monitoring activities completed under Task 4. Since groundwater elevations and flow direction at the Site have been well documented, groundwater elevation contour maps will not be prepared.
- Summary of performance and effectiveness of the remediation systems, including identification of needed repairs or modifications.
- Summary of OM+M costs, including recommendations (if any) for cost savings.
- Summary of new conclusions or observations regarding Site contamination based on the inspections, sampling or data generated by operating the systems.
- Recommendations regarding any necessary changes to the Site remedy, OM+M or Standard Operating Procedures.

### Task 6 – Interim Remedial Measure

This WA Package has been prepared with the understanding that an Interim Remedial Measure (IRM) will be implemented at the Site. The final details of the IRM have not been determined at this time. Therefore, the estimated cost presented in this WA Package (developed using 2020 labor and expense rates) for Task 6 have been prepared in accordance with recent communications with the Department and are based on an IRM consisting of excavation and off-Site disposal of petroleum-related VOC-impacted soil, including the following:

- TRC will develop a conceptual plan for an IRM consisting of removal and off-Site disposal of petroleum-related VOC-impacted soil, which is the likely source of residual groundwater contamination at the Site, and backfilling with clean fill mixed with amendment to enhance bioremediation.
- TRC will prepare an IRM Work Plan (IRMWP), which will include a detailed description of the selected IRM and anticipated schedule for implementation.
- TRC will prepare a Technical Scope of Work for implementation of the IRM for use by the NYSDEC for procurement of a NYSDEC Standby call-out contractor.
- TRC will review contractor submittals and provide full-time on-Site supervision of contractor activities during implementation of the IRM. Since the details of the IRM (e.g., number of submittals, contractor's schedule, etc.) have not yet been determined, estimated costs in the Schedule 2.11s are intended to serve as a placeholder. Final budget and scope of engineering services for implementation of the IRM will be determined after the call-out contractor has been selected. As indicated above, it is TRC's understanding



that the IRM will be implemented by a NYSDEC Standby call-out contractor. Therefore, contractor costs to implement the IRM are not included in the 2.11s.

• TRC will prepare a Construction Completion Report (CCR).

### **Project Schedule**

An estimated project schedule is presented below.

Task No.	Task Description	<b>Estimated Time of Completion</b>
1	Preliminary Activities WA Package	Completed in April 2020
2	Operation, Maintenance, and Monitoring	Started March 1, 2020
		Completed February 2021
3	Supplemental Investigation	To Be Determined (To Be Coordinated With Another Disposal Event)
4	Groundwater Monitoring	Completed January 2021
5	Semi-Annual Site Monitoring Reporting	Completed March 2021
6	Interim Remedial Measure	To Be Determined

