Un Bin

RESULTS OF PRELIMINARY SITE INVESTIGATION

31 & 45A Sea Cliff Avenue Properties

Prepared for:

Photocircuits Corporation 31 Sea Cliff Avenue Glen Cove, New York 11542

Prepared by:

McLaren/Hart Environmental Engineering Corp. 25 Independence Blvd. Warren, NJ 07059

November 15, 1996

TABLE OF CONTENTS

Secti	on	Pag	_ <u>'e</u>
1.0	INT	RODUCTION	1
2.0	SITI	E INVESTIGATION METHODOLOGIES	2
	2.1	MONITORING WELL REDEVELOPMENT	2
	2.2	GROUNDWATER SAMPLING	2
	2.3	SOIL SAMPLING	4
3.0	RES	ULTS AND CONCLUSIONS	6
	3.1	SOIL SAMPLING RESULTS	6
	3.2	GROUND WATER SAMPLING RESULTS	7
	3.3	GROUNDWATER FLOW	8
	3.4	COMPARISON WITH PALL CORPORATION WELL DATA	9
		<u>FIGURES</u>	
1	Site I	Plan	
2	Sumr	nary of Soil and Ground Water Data, August 7, 1996	
3	Poter	ntiometric Surface Contour Map - Shallow Wells, August 7, 1996	
4	Poter	ntiometric Surface Contour Map - Deep Wells, August 7, 1996	
5	Poter	ntiometric Surface Contour Map - Shallow Wells, September 10, 1996	
6	Poter	ntiometric Surface Contour Map - Deep Wells, September 10, 1996	
		<u>TABLES</u>	
1	Moni	toring Well measurements and Specifications	
2	Analy	tical Summary for Volatile Organic Compounds in Soil	

H:\geo\photocir\prelim.rpt

TABLE OF CONTENTS

TABLES (cont'd.)

- 3 Summary of Soil Analytical Data at or Above Detection Limits
- 4 Analytical Summary for Volatile Organic Compounds in Groundwater
- 5 Summary of Groundwater Analytical Data At or Above Detection Limits
- 6 Summary of Historical Data for Volatile Organics Compounds in Groundwater, 31 Sea Cliff Ave. Site
- 7 Summary of Historical Data for Volatile Organic Compounds in Groundwater, 45A Sea Cliff Ave. Site
- 8 Comparison of Historical Data for Volatile Organic Compounds in Groundwater, Pall
 Corporation and Photocircuits Corporation

LIST OF APPENDICES

- A Soil Boring Logs
- B Laboratory Analytical Data Package (provided under separate cover)

1.0 INTRODUCTION

On behalf of Photocircuits Corporation (Photocircuits), McLaren/Hart Environmental Engineering Corporation (McLaren/Hart) has completed the implementation of a Preliminary Site Investigation (PSI) to assess soil and ground water quality at two adjacent properties located at 31 Sea Cliff Avenue and 45A Sea Cliff Avenue in Glen Cove, New York. The purpose of the PSI was to verify and update results of previous investigations, since several years had elapsed since these investigations were conducted, and to provide a basis for evaluation of the site prior to negotiation of an Administrative Consent Order (ACO) with the New York Department of Environmental Conservation (NYSDEC). Since 1986, several phases of investigatory activities have been performed at the Photocircuits Site located at 31 Sea Cliff Avenue ("Photocircuits Site") and at the adjacent property at 45A Sea Cliff Avenue formerly owned by Slater Electric/Pass & Seymour ("45A Site"). During these previous activities, eleven monitoring wells were installed at the Photocircuits Site and three were installed at the 45A Site. Additionally, several soil borings were advanced at each of the sites to assess contaminant impacts to soil.

The scope of the PSI included redevelopment, resurveying and sampling of existing monitoring wells at both sites, and collection of soil samples using a Geoprobe® at five Areas of Review (AORs) at each site. AORs were selected based on data generated in previous investigations and on the March 1994 report prepared by the Nassau County Department of Public Works (DPW) detailing a preliminary site assessment conducted in the Sea Cliff Avenue Industrial Area, of which the two Sites are a part.

2.0 SITE INVESTIGATION METHODOLOGIES

The monitoring well redevelopment; groundwater sampling and soil sampling methodologies are described in the following section.

2.1 MONITORING WELL REDEVELOPMENT

Redevelopment of the existing monitoring wells was performed by Aquifer Drilling & Testing of Woodside, New York and was conducted under the supervision of a McLaren/Hart geologist. Locations of existing monitoring wells on both sites are shown in Figure 1. Redevelopment was completed over a two-day period from August 5 to 6, 1996. Development of the four inch diameter wells was performed using a surge block followed by pumping. The surge block was lowered into the well with the aid of a drill rig and surged up and down repeatedly to draw water in and out of the well screen. One to two well volumes were pumped from each well immediately after surging. The 2 inch diameter wells were developed by surging and pumping simultaneously with polyethylene tubing equipped with a check valve. The tubing and check valve were placed at the bottom of the well and repeatedly raised and lowered by hand. This motion forced water into and out of the screen and removed water from the well. One to two well volumes were removed during the development process.

2.2 GROUNDWATER SAMPLING

Groundwater sampling was conducted August 6-8, 1996. Depth to water measurements were made in monitoring wells using an electronic water level indicator prior to purging. Water level measurements are provided in Table 1. Each of the wells was purged prior to sampling using either a centrifugal pump or submersible pump. Purging was complete when three to five well volumes were removed from each well, or when the well became dry. Measurements of temperature, specific

conductivity, pH, turbidity, and dissolved oxygen were taken prior to purging, after purging, and immediately after sampling. In several cases where wells were purged dry or recovered poorly, post-purging and post-sampling measurements were not obtained due to the lack of sufficient water in the well for measurement.

Samples were collected from eleven wells on the Photocircuits Site and three wells on the 45A Site. Several wells were purged to dryness and were allowed to recharge sufficiently prior to sampling. Groundwater samples were collected using disposable Teflon bailers fitted with new bailer cord. All samples were obtained by lowering the bailer into the well until it was submerged in the water column. The bailer containing the sample was then retrieved and the groundwater poured into the sample containers.

A Geoprobe® with a temporary well point sampler was used to obtain two groundwater samples, GW-GP-08 and GW-GP-10. These samples were obtained by hydraulically driving a clean, vertically slotted, two-foot long temporary well point into the water bearing zone. Once the temporary well point was positioned in the water bearing zone, a minimum of three well point volumes were removed before sampling by inserting a dedicated length of polyethylene tubing attached to a peristaltic pump. At the surface, the ground water was placed into prelabelled laboratory-supplied sample containers. The polyethylene tubing was discarded after the sampling of each temporary well.

Groundwater samples were analyzed for volatile organic compounds (VOCs) by SW-846 Method 8240/8260 plus a 15-compound library search by McLaren/Hart's Field Services Division mobile laboratory. The laboratory is certified in the State of New York for the analytical method used for this project. Appropriate chain-of-custody procedures were followed throughout sample handling. In addition to the field samples, trip blanks, field blanks, field duplicate samples, and matrix spike/matrix spike duplicate samples were collected for QA/QC purposes.

2.3 SOIL SAMPLING

Based upon a review of the Nassau County DPW report and results of previous site investigations conducted by Holzmacher, McLendon & Murrell (H2M), a total of ten areas of review (AORs) were identified on the Photocircuits and 45A Sites. McLaren/Hart completed seventeen soil borings (GP-01 to GP-17) at five AORs on the Photocircuits Site using a Geoprobe sampling unit. Soil sampling locations are depicted on Figure 2. The investigation began on Tuesday, August 13, around the chemical storage building on the south end of the site. Four Geoprobe borings were completed in this vicinity: GP-01, GP-02, GP-03, and GP-05. Three borings were placed around a second AOR, an above ground fuel oil storage tank, and were labeled GP-04, GP-06, and GP-07. The eastern side of the Butler No. 2 Building was designated an AOR because historical groundwater quality data from MW-2 indicated the presence of volatile organic compounds. To investigate this AOR, three borings were placed along the eastern boundary of the Photocircuits Site, GP-08, GP-09, and GP-10. Seven soil borings were completed in the vicinity of the two remaining AORs on the Photocircuits property, the Acid/Base/Solvent tank farm and the drum storage area, which are both located near well MW-7. These borings were labeled GP-11 through GP-17.

The soil investigation on the 45A Site was begun on August 19, 1996 and a total of thirteen soil borings were completed using the Geoprobe unit. Five AORs were identified on the 45A Site. The first AOR, three former aboveground waste oil tanks, is located on the eastern side of the main building. Four borings were placed around the existing concrete enclosure and were designated GP-18 to GP-21. The second AOR is located south of the main building, west of well MW-1S, and is described as a former hydraulic oil and drum storage area. Four borings, designated GP-22 to GP-25, were completed around the existing concrete enclosure. A third AOR is located on the northern side of Building 7 and is identified as a possible drum storage area. Three borings were advanced in this area and were designated GP-27 to GP-29. The fourth AOR, identified as previous locations of two above ground tetrachloroethene (PCE) storage tanks, is located outside the western wall of Building

7. Due to limited access imposed by the fence along the property boundary, only two soil borings were possible around this AOR. The first, GP-26, is south of the existing concrete enclosure and the second, GP-30, is inside Building 7, along the west wall. An active 20,000 gallon fuel oil storage tank was identified as a fifth AOR on the 45A Site, however, a sample could not be collected at this location due to access constraints.

Soil samples were collected continuously from ground surface to the depth at which ground water was encountered, with the exception of several intervals of borings GP-28, GP-29 and GP-30, lithology in the area of these three borings is adequately provided by nearby borings GP-26 and GP-27. On the Photocircuits Site, depth to ground water ranged from four feet to eleven feet. On the 45A Site ground water was encountered at depths between ten feet and twenty-four feet. Logs for soil borings completed are included in Appendix A.

Soil samples were obtained by driving a decontaminated two or four foot long, acetate-lined, stainless steel sampling tube to a position just above the desired sampling depth. After the sampling tube was properly positioned, the tube was driven an additional two or four feet, allowing soil to enter the tube. The sampling tube was retrieved at the surface and the soil removed from the acetate liner within the tube.

Soil samples were field screened using a calibrated photoionization detector (PID). Field screen readings were taken directly from the acetate liner or by headspace readings from a VOA vial. Soil vapor screening data is recorded on the soil boring logs provided in Appendix A.

Soil samples were preserved on ice until delivered to the McLaren/Hart laboratory. Appropriate sample chain-of-custody procedures were followed for sample handling. Soil samples were analyzed using SW-846 Method 8240/8260 including a 15-compound library search. Use of this analytical method was approved by the NYSDEC prior to implementation of the PSI. Approval was received from C. Vasudevan of NYSDEC in a letter dated August 15, 1996.

3.0 RESULTS AND CONCLUSIONS

3.1 SOIL SAMPLING RESULTS

Analytical results from the seventeen soil samples collected on the Photocircuits Site indicated the presence of volatile organic compounds (VOCs) in soils at the five AORs. However, only two of the AORs, the drum storage area and the acid/base/solvent tank farm, contained VOCs at concentrations in excess of the NYSDEC Soil Cleanup Objectives contained in Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046. Soil samples from GP-11 and GP-12 contained three compounds in excess of the NYSDEC limits: 1,1-dichloroethene, 1,1-dichloroethane, and 1,1,1-trichloroethane. Figure 2 depicts the locations of soil samples collected along with the corresponding analytical results. A summary of analytical data for soil samples from both the 31 and 45A Sites is provided in Table 2. A summary of compounds detected above the method detection limit (MDL) is provided in Table 3.

On the 45A Site, soil samples from three of the four investigated AORs contained detectable concentrations of VOCs. VOCs were not detected in the four soil samples collected around the 1000 gallon hydraulic oil tank/drum storage area. However, only one soil sample near the above ground PCE storage tank, GP-30, demonstrated VOC concentrations which contained VOCs in excess of the NYSDEC Soil Cleanup Objective for tetrachloroethene.

Soil samples were collected in 1986 by H2M from a series of thirteen soil borings soil samples were analyzed for VOCs and metals. Since the boring locations and sampling intervals from the 1986 soil boring program are different from those of the recent PSI, the data from these two sets of samples may not completely correlate. However, similarities are evident in the results obtained from both events, specifically in the vicinity of the acid/base/solvent storage and drum storage areas near MW-7. Concentrations of chlorinated aliphatics (1,1-dichloroethene, 1,1-dichloroethane, 1,2-dichloroethane,

1,1,1-trichloroethane, trichloroethene, and tetrachloroethene) were detected in excess of NYSDEC Soil Cleanup Objectives in soil samples collected during the 1986 H2M investigation and the 1996 PSI.

3.2 GROUND WATER SAMPLING RESULTS

VOCs were detected in four of the eleven monitoring wells on the Photocircuits Site and in one of the two temporary well point samples collected with the Geoprobe® on the eastern side of the Photocircuits property. Results of the groundwater analyses are provided in Tables 4 through 7.

The groundwater sample from MW-7, a shallow well in the vicinity of the acid/base/solvent tank farm and the drum storage area, contained the following compounds at concentrations in excess of 6NYCRR Part 703.5 standards for Class GA waters: vinyl chloride, chloroethane, 1,1-dichloroethene, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, 2-butanone, 1,1,1-trichloroethane, trichloroethene, toluene, and tetrachloroethane.

The sample from MW-10, a deep well on the northeast corner of the Photocircuits property, contained the following compounds at concentrations exceeding the Part 703.5 standards: 1,1-dichloroethene, 1,1-dichloroethane, 1,1,1-trichloroethane, trichloroethene, and tetrachloroethane.

The groundwater sample from NC-Well, a shallow well located adjacent to the north edge of the Photocircuits property along Sea Cliff Avenue, contained 1,1-dichloroethane and 1,1,1-trichloroethane in concentrations in excess of Part 703.5 standards.

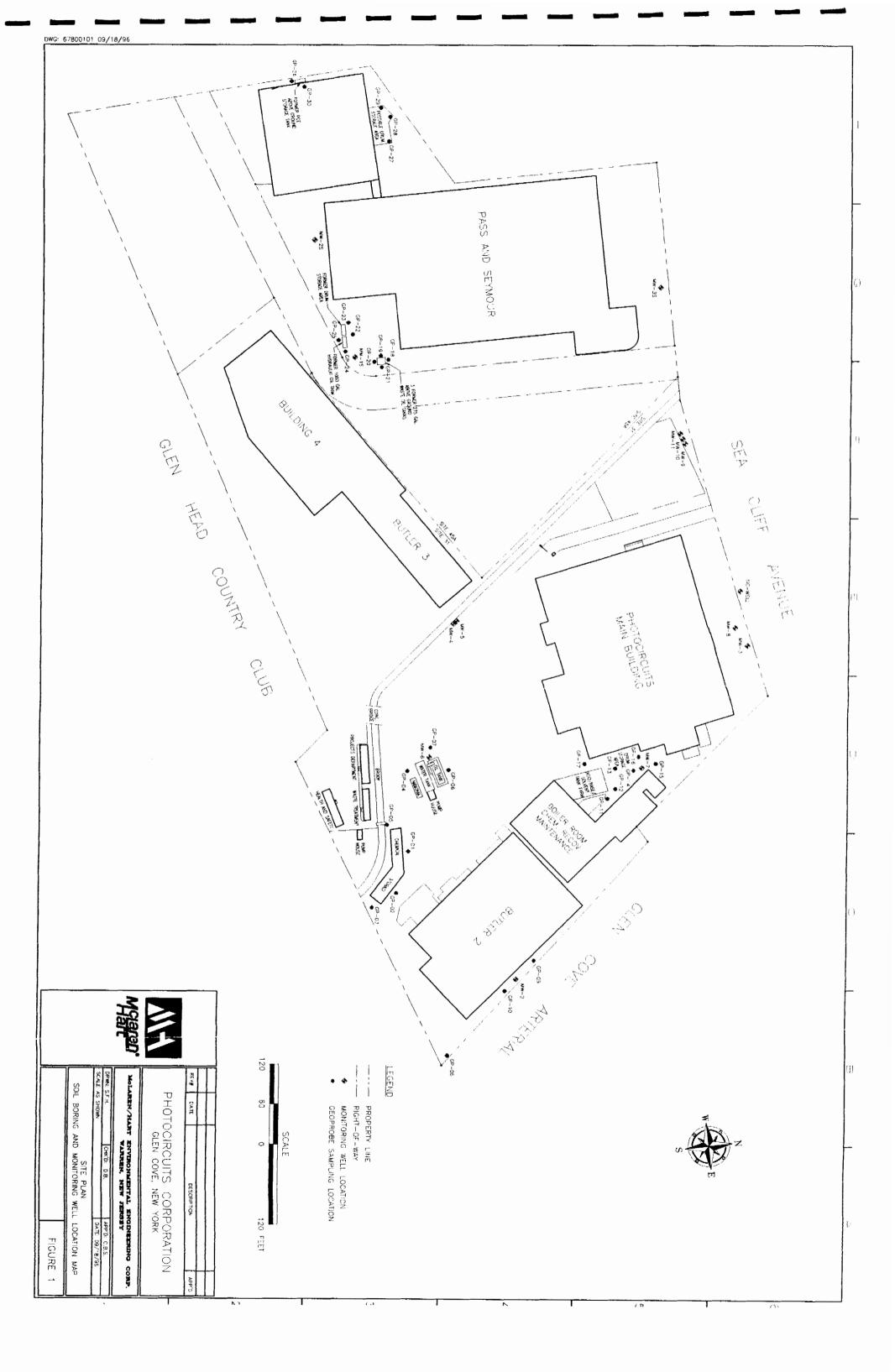
cis 1,2-Dichloroethane was detected in samples from MW-7, MW-9, MW-10, and NC-Well, however, this compound is not included in the Part 703.5 standards.

GW-GP-10, a groundwater sample collected from a temporary well point on the east side of the Butler No. 2 Building indicated concentrations of toluene, m, p and o-xylene in excess of the NYSDEC standards.

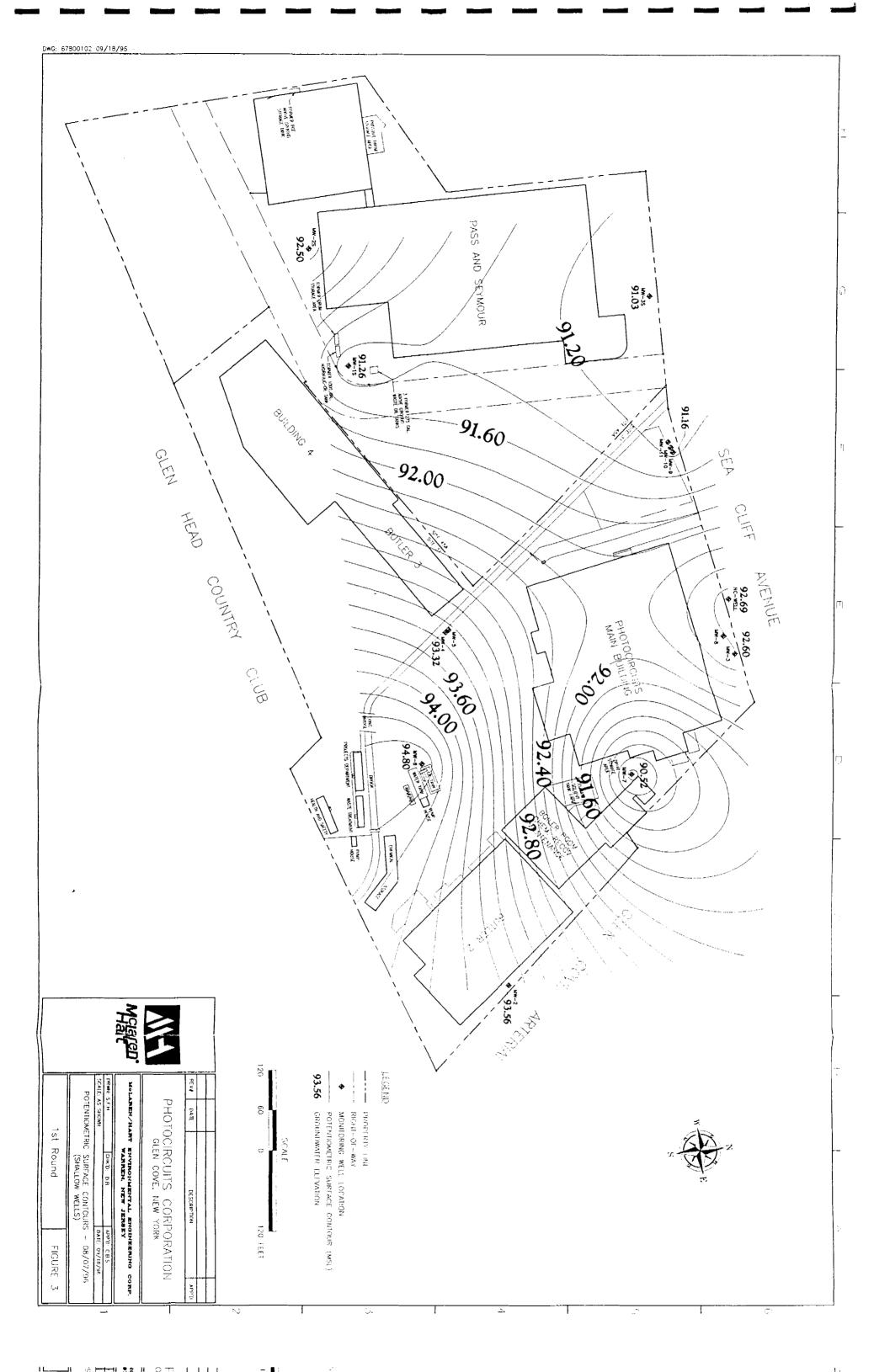
On the 45A Site, groundwater samples from two of the three shallow monitoring wells indicated VOCs above the laboratory detection limits. The sample from well MW-1S, which is located southeast of the main building, indicated tetrachloroethene at a concentration exceeding the part 703.5 standard. The sample from well MW-3S, located north of the main building, indicated trichloroethene and tetrachloroethene at concentrations in excess of the part 703.5 standards.

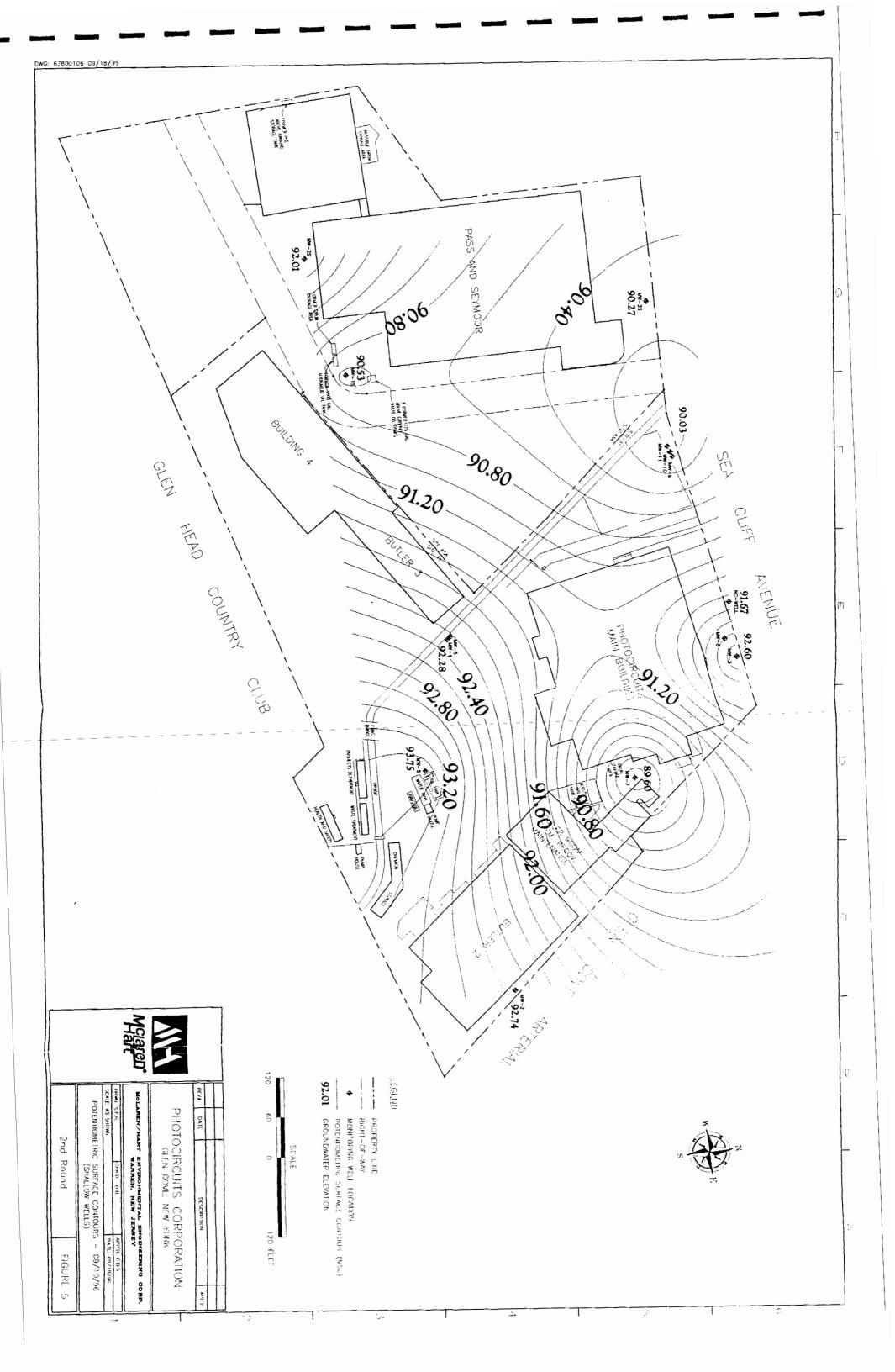
A complete listing of the analytical data for groundwater on the Photocircuits and 45A Sites is provided in Table 4 and a summary of data for groundwater samples with detected analyte concentrations is provided as Table 5. Detected VOC concentrations for the monitoring wells on both sites are also summarized in Figure 2.

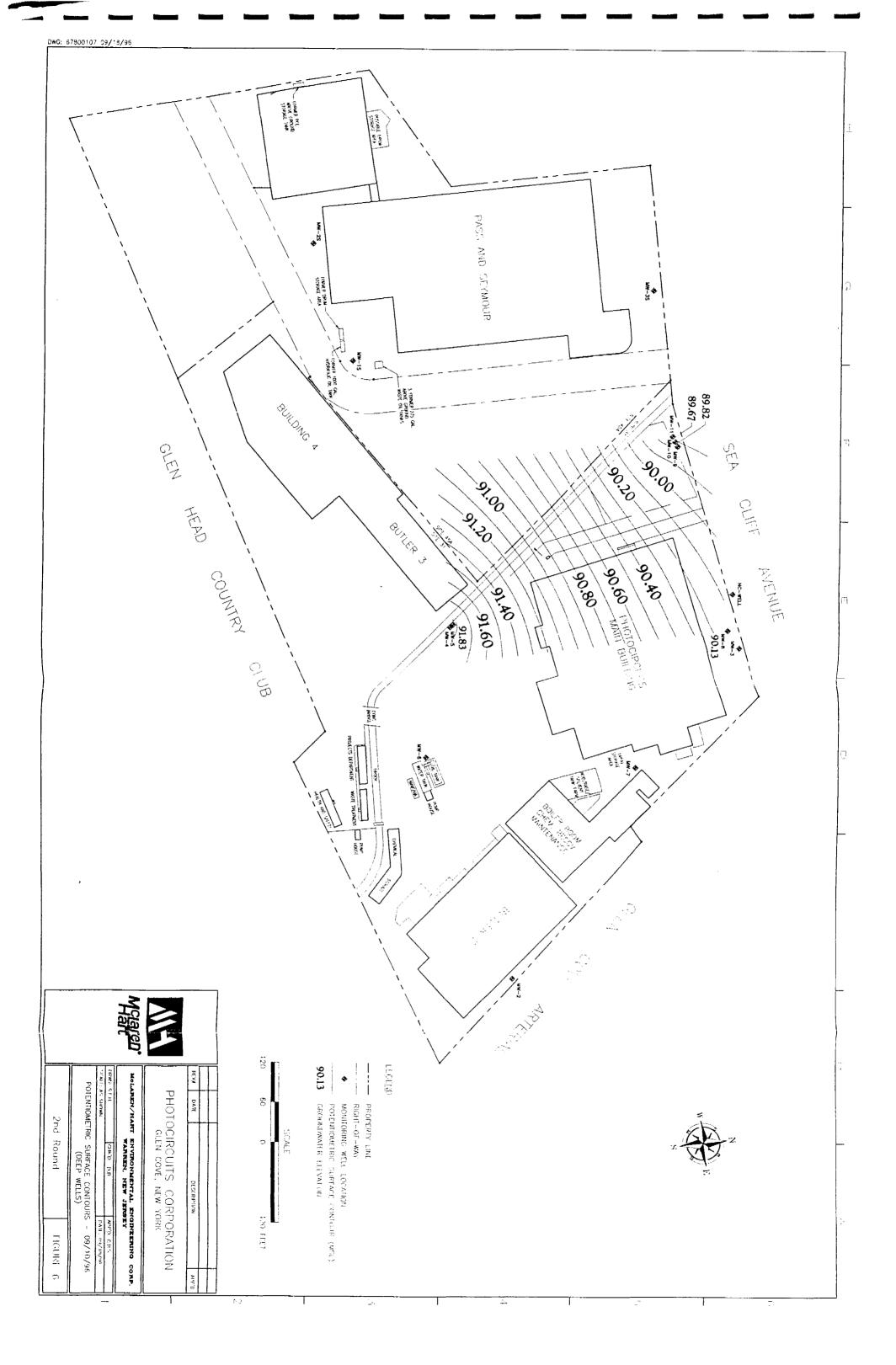
A comparison of groundwater analytical data from the December, 1991 sampling performed by H2M at the Photocircuits Site with the groundwater data obtained during the August 1996 PSI is provided in Table 6. With the exception of MW-7 and MW-10, concentrations of VOCs in the groundwater samples collected in 1996 are appreciably less than those in the 1991 samples. A comparison of analytical results from the two groundwater sampling events at the 45A Site is presented in Table 7. Again, it appears that concentrations of VOCs in groundwater have decreased from 1991 to 1996.

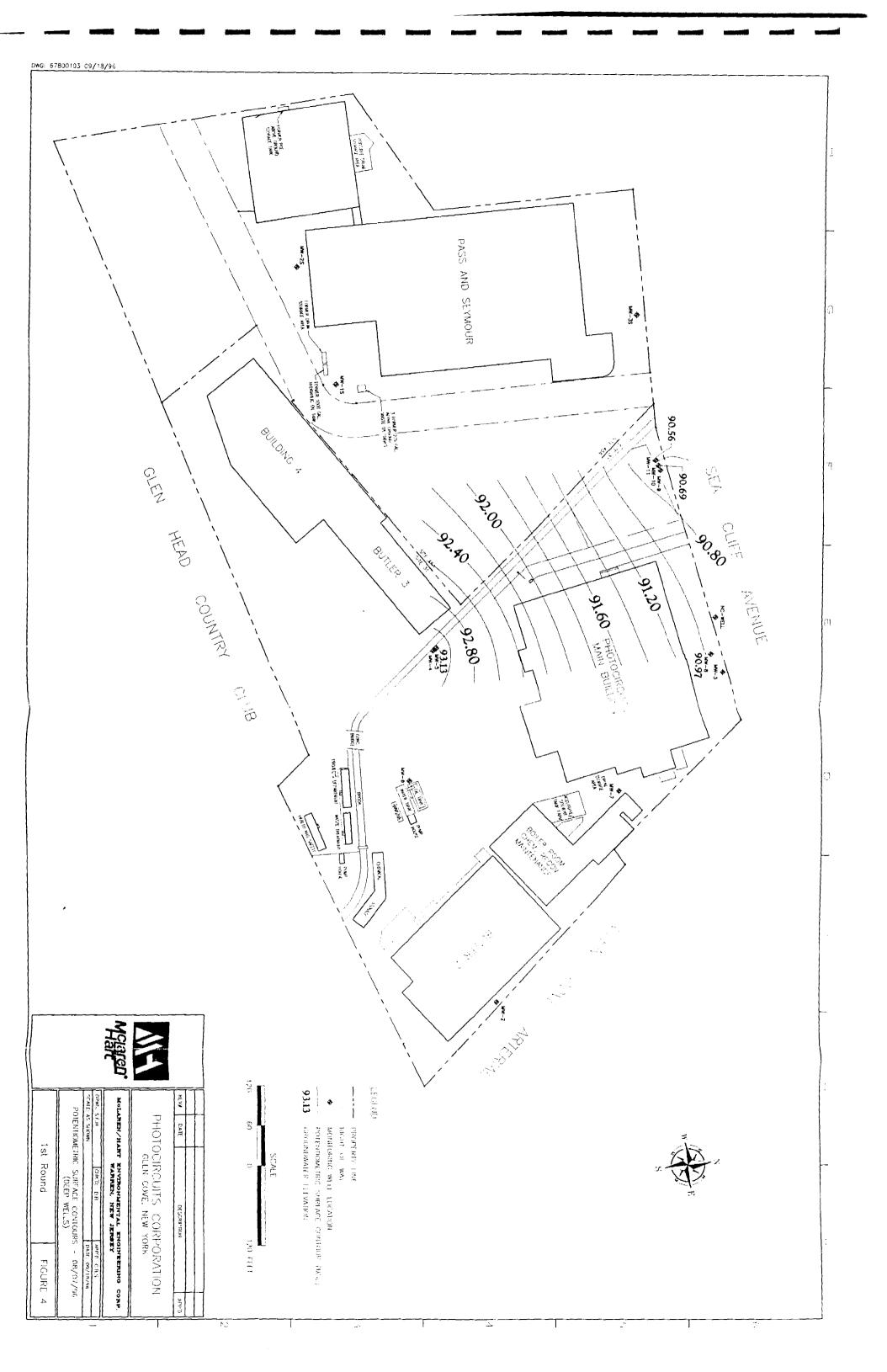

3.3 GROUNDWATER FLOW


Depth to water measurements were collected from the monitoring wells at the Photocircuits and 45A Sites on two separate occasions, once in conjunction with the groundwater sampling on August 7, 1996 and again on September 10, 1996. Figures 3 and 4 depict groundwater potentiometric surface


contours for the shallow and deep wells for August 7, while Figures 5 and 6 depict ground water potentiometric contours for the shallow and deep wells for September 10. Groundwater flow in the deep aquifer is clearly to the northwest, consistent with earlier data. Groundwater in the shallow aquifer also flows predominantly toward the northwest, however, water level measurements from each period reveals the presence of a groundwater depression on the Photocircuits property, near MW-7. Such anomalies are most likely the result of local variations in aquifer hydraulic conductivity which may cause a delay in movement of ground water towards a well. Precipitation may also influence the shallow ground water and thus seasonal fluctuations may also be observable over a longer period. The anomalies observed may also be present only under certain precipitation and recharge conditions.


3.4 COMPARISON WITH PALL CORPORATION WELL DATA


In October 1995, ground water sampling was conducted at the Pall Corporation Site, located across Sea Cliff Avenue to the north of the main Photocircuits facility (31 Sea Cliff Avenue Site). Monitoring wells MW-1P and MW-6P are located on the south side of the Pall Corporation property, closest to the northern property boundary of the Photocircuits Site. Table 8 compares the ground water analytical results obtained for MW-1P and MW-6P to the August 1996 results for the six monitoring wells on the north side of the Photocircuits property, MW-3, MW-8, NC-Well, MW-9, MW-10 and MW-11.



; Table 1
Monitoring Well Measurements and Specifications
Photocircuits Corporation
Glen Cove, New York

		,			Augu	st 7, 1996	Septem	ber 10, 1996
Site	Well Number	Casing Diameter (in)	Depth to Bottom (ft)	Top of Casing Elevation (ft above MSL)	Depth to Water (ft)	Ground Water Elevation (ft above MSL)	Depth to Water (ft)	Ground Water Elevation (ft above MSL)
Pass	MW-1s	4	20.62	101.94	10.68	91.26	10.68	70.64.
& .	MW-2s	4	20.71	100.87	8.37	92.5	8.37	71.79
Seymour	MW-3s	4	18.73	99.83	8.8	91.03	8.8	72.3
	MW-2	2	24.62	102.76	9.2	93.56	9.2	68.94
Ţ	MW-3	2	18.98	98.8	6.2	92.6	6.2	92.6
[MW-4	2	23.66	97.56	4.24	93.32	4.24	69.66
[MW-5	2	99.32	97.39	4.26	93.13	4.26	-6.19
	MW-6	2	13.45	99	4.2	94.8	4.2	81.35
Photocircuits	MW-7	4	23.37	95.9	5.38	90.52	5.38	67.15
[MW-8	4	169.3	99.01	8.04	90.97	8.04	-78,33
	MW-9	4	27.57	98.5	7.34	91.16	7.34	63.59
	MW-10	4	130.27	98.43	7.74	90.69	7.74	-39.58
	MW-11	4	170	98.46	7.9	90.56	7.9	-79.44
	NC-Well	2	10.39	97.57	4.88	92.69	4.88	82.3

Sample ID	NYSDEC/USEPA	GP-01	GP-02	GP-03	GP-03 Dilution	GP-04	GP-05
Interval (feet)	Soil Cleanup	0.5-1	2-3	3-4	3-4	3-4.5	2.5-3.5
Site Location	Objectives •	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff
Sampling Method	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe

interval (leet)	7 2011 Ctentrob	[<u>0.5-1</u>	1 2-3] → →	3-4	3-4.3] 2.5-3.5
Site Location	Objectives *	31 Sea Cliff	31 Sca Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff
Sampling Method	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe
			<u>_</u>			<u> </u>	
Volatile Organic Compou			,				
Dichlorodifluoromethane	NA	6 U	6 U	6 U	28 U	5 U	6 U
Chloromethane	NA	12 U	12 U	11 U	55 U	11 U	12 U
Vinyl Chloride	200	12 U	12 U	11 U	55 U	4 J	12 U
Bromomethane	NA	12 U	12 U	11 U	55 U	11 U	12 U
Chlcroethane	1900	12 U	12 U	11 U	55 U	11 U	12 U
Ethyl Ether	NA	6 U	6 U	6 U	28 U	5 U	6 U
tert-Butyl-Methyl-Ether	NA	6 Ü	6 U	6 U	28 U	5 Ü	6 U
Hexane	NA	6 Ü	6 U	6 U	28 U	5 U	6 U
Trichlorofluoromethane	NA	6 U	6 U	6 U	28 U	5 U	6 U
1,1-Dichloroethene	400	6 U	6 U	6 U	28 U	5 U	6 U
Carbon Disulfide	2700	1 J	12 U	2 J	55 U	11 U	12 U
Acetone	200	52 B	12 B	410 BE	500 B	48 B	10 JB
Methylene Chloride	100	6 U	6 Ü	6 U	28 U	5 U	6 U
trans-1,2-Dichloroethene	300	6 Ü -	· 6 U	6 U	28 U	5 U	6 U
cis-1,2-Dichloroethene	NA	8	3 J	4 J	28 U	6	6 U
1,1-Dichloroethane	200	6 Ü	6 U	6 U	28 U	2 J	6 U
Vinyl Acetate	NA _	12 U	12 U	11 U	55 U	11 U	12 U
Chloroform	300	6 U	6 U	6 U	28 U	5 U	6 U
1,2-Dichloroethane	100	6 U	6 U	6 U	28 U	5 U	6 U
2-Butanone	300	9]	12 U	28	32 J	6 3	12 U
1,1,1-Trichloroethane	800	6 U	6 U	6 U	28 U	5 U	6 U
Carbon Tetrachloride	600	6 U	6 U	6 U	28 U	5 U	6 U
Benzene	60	6 U	6 U	6 U	28 U	3 U	6 U
Trichloroethene	700	6 Ü	2 J	3 1	28 U	5 U	2 J
1,2-Dichloropropane	NA	6 U	6 U	6 U	28 U	5 U	6 Ü
Bromodichloromethane	NA	6 U	6 Ü	6 U	28 U	5 U	6 U
cis-1,3-Dichloropropene	NA	6 U	6 U	6 U	28 U	5 U	6 U
2-Chloroethylvinylether	NA	6 U	6 U	6 Ü	28 U	5 U	6 U
rans-1,3-Dichloropropene	NA	6 U	6 Ú	6 U	28 U	5 Ü	6 U
1,1,2-Trichloroethane	NA	6 U	6 U	6 Ü	28 U	5 Ü	6 Ü
Dibromochloromethane	NA	6 U	6 U	6 U	28 U	5 U	6 U
Bromoform	NA	6 U	6 U	6 Ū	28 U	3 U	6 U
4-Methyl-2-Pentanone	1000	12 U	12 U	11 U	55 U	11 U	12 Ü
Toluene	1500	5 J	6 U	21	15 J	5 U	6 U
l'etrachloroethene	1400	6 U	13	4 J	28 U	5 Ü	11
2-Hexanone	NA	12 U	12 U	11 U	55 U	11 U	12 U
Chlorobenzene	1700	6 Ü	6 U	6 U	28 U	5 U	6 U
Ethylbenzene	5500	6 U	6 U	17	28 U	3 U	6 U
M&P Xylene	1200	6 U	6 U	11	91	5 U	6 U
O Xylene	(total xylene)	6 U	6 J	- 11 J	28 U	3 U	6 U
Styrene	NA NA	6 U	6 U	6 U	28 U	5 U	6 U
1,1,2,2-Tetrachloroethane	600	6 U	6 U	6 U	28 U	3 U	6 U
1.3-Dichlorobenzene	1600	6 U	6 U	6 U	28 U	5 U	6 U
1,4-Dichlorobenzene	8500	6 U	6 U	6 U	28 U	3 U	6 U
1,2-Dichlorobenzene	7900	6 U	6 U	6 U	28 U	3 U	6 U

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

* Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

Sample ID	NYSDEC/USEPA	GP-06	GP-07	GP-08	GP-09	GP-10	GP-11
Interval (feet)	Soil Cleanup	2-4	2-3	7.5-8.5	5-6.5	7-8	1-3
Site Location	Objectives	31 Sea Cliff					
Sampling Method	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe
	*· ***					Ccoproce	Ocoproce
Volatile Organic Compou	nds (ppb)						
Dichlorodifluoromethane	NA_	6 U	NA	6 U	5 U	6 U	NA
Chloromethane	NA_	11 U	11 U	12 U	10 U	11 U	12 U
Vinyl Chloride	200	11 U	11 U	12 U	10 U	11 U	12 U
Bromomethane	NA	11 U	11 U	12 U	10 U	11 U	12 U
Chloroethane	1900	11 U	11 U	12 U	10 U	11 U	13
Ethyl Ether	NA	6 U	3 U	6 U	5 U	6 U	6 U
tert-Butyl-Methyl-Ether	NA	6 U	5 U	6 U	5 U	6 U	6 U
Hexane	NA	6 U	5 U	6 U	5 U	6 U	6 U
Trichlorofluoromethane	NA	6 U	5 U	6 U	3 U	6 Ü	1 J
1,1-Dichloroethene	400	6 U	5 U	6 U	5 U	6 U	200
Carbon Disulfide	2700	11 U	11 U	12 U	10 U	11 U	4 J
Acctone	200	17 B	49 B	5 JB	4 ЛВ	8 JB	71 B
Methylene Chloride	100	6 U	5 U	6 Ū	3 U	6 U	8 B
trans-1,2-Dichloroethene	300	6 U	· 5 U	6 U	5 U	6 U	6 Ü
cis-1,2-Dichloroethene	NA	4 J	5 U	6 U	5 Ü	6 U	3 J
1,1-Dichloroethane	200	6 U	5 U	6 U	5 U	6 U	240 E
Vinyl Acetate	NA	11 U	11 U	12 U	10 U	11 U	12 U
Chloroform	300	6 U	5 U	6 U	3 U	6 U	5 J
1,2-Dichloroethane	100	6 U	5 U	6 U	5 U	6 U	94
2-Butanone	300	11 U	7 J	12 U	10 U	11 U	22
1,1,1-Trichloroethane	800	6 U	5 U	6 U	5 U	6 U	1300 E
Carbon Tetrachloride	600	6 U	5 U	6 U	5 U	6 U	6 U
Benzene	60	6 U	5 U	6 U	5 U	6 U	6 U
Trichloroethene	700	6 U	5 U	6 U	5 U	6 Ų	110
1,2-Dichloropropane	NA	6 U	5 U	6 U	5 U	6 U	6 U
Bromodichloromethane	NA	6 U	5 U	6 U	5 U	6 U	6 U
cis-1,3-Dichloropropene	NA	6 U	5 U	6 U	5 U	6 U	6 U
2-Chloroethylvinylether	NA	6 U	5 U	6 U	3 U	6 U	6 U
trans-1,3-Dichloropropene	NA	6 U	5 Ü	6 U	5 U	6 U	6 U
1,1,2-Trichloroethane	NA NA	6 U	5 Ü	6 U	5 U	6 U	29
Dibromochloromethane Bromoform	NA NA	6 U	3 U	6 U	5 U	6 U	6 U
	1000	11 U	11 0	12 U		6 U	6 U
4-Methyl-2-Pentanone Toluene	1500	110			10 U	11 0	12 U
Tetrachloroethene	1400	32	6	6 U	5 U	6 Ū	69
2-Hexanone	NA NA	11 U	11 U		10 U		16
Chlorobenzene	1700	6 U	11 U	12 U	3 U	11 U	12 U
Ethylbenzene	5500	6 U	3 U	6 U	5 U	6 U	6 U
M&P Xylene	1200	6 U	2 1	6 U	3 U	6 U	6 U
O Xviene	(total xylene)	6 U	5 U	5 U	3 U	6 U	6 U
Styrene	NA NA	6 U	3 U	6 U	5 U	6 U	6 U
1,1,2,2-Tetrachloroethans	600	6 U	3 U	6 U	- 3 U	6 U	6 U
1.3-Dichlorobenzene	1600	6 U	5 U	6 U	5 U	6 U	- 6 U
1.4-Dichlorobenzene	8500	6 U	30	6 U	3 0	6 U	6 U
1,2-Dichlorobenzene	7900	6 U	3 U	6 Ü	5 U	6 U	6 U
1,2 51011010001120110	.,,,,						

Notes:

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available
* Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

Sample ID	NYSDECAUSEPA	GP-11 Dilution	GP-12	GP-12 Dilution	GP-13	GP-13 Dilution	GP-14
Interval (feet)	Soil Cleanup	1-3	2-4	2-4	2-4	2-4	2-4
Site Location	Objectives *	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff
Sampling Method	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe

Valatile	Organic	Compounds	(nob)

Volatile Organic Compou	nds (ppb)			_			
Dichlorodifluoromethane	NA	NA	NA NA	NA	NA	NA	NA
Chloromethane	NA NA	1200 U	12 U	2400 U	54 U	1100 U	110 U
Vinyl Chloride	200	1200 U	2 1	2400 U	54 U	1100 U	110 U
Bromomethane	NA	1200 U	12 U	2400 U	54 U	1100 U	110 U
Chloroethane	1900	1200 U	2.0	2400 U	54 U	1100 U	110 U
Ethyl Ether	NA	580 U	6 U	1200 U	27 U	540 U	54 U
tert-Butyl-Methyl-Ether	NA	580 U	6 U	1200 U	27 U	540 U	54 U
Hexane	NA	130 J	6 U	1200 U	27 U	130 J	54 U
Trichlorofluoromethane	NA	580 U	2 J	1200 U	27 U	540 U	54 U
1,1-Dichloroethene	400	520 J	970 E	1200 U	27 U	540 U	54 U
Carbon Disulfide	2700	1200 U	6 J	2400 U	54 U	1100 U	110 U
Acetone	200	490 J	270 EB	900 J	3300 EB	960 J	210
Methylene Chloride	100	580 U	14 B	1200 U	27 U	540 U	14 J
trans-1,2-Dichloroethene	300	580 U	· 6 U	1200 U	27 U	540 U	54 U
cis-1,2-Dichloroethene	NA	580 Ŭ	8	1200 U	93	540 U	14 J
1,1-Dichloroethane	200	290 J	2000 E	1500	30	540 U	18 J
Vinyl Acetate	NA	1200 U	12 Ü	2400 U	54 U	1100 U	110 U
Chloroform	300	580 U	6	1200 U	27 U	540 U	54 U
1,2-Dichloroethane	100	370 J	49	1200 U	27 U	540 U	54 U
2-Butanone	300	1200 U	140	2400 U	48 J	1100 U	ا بمد
1,1,1-Trichloroethane	800	9100	6700 E	18000	130	540 U	170
Carbon Tetrachloride	600	/ 580 U	6 U	1200 U	27 U	540 U	54 U
Benzene	60	580 U	6 U	1200 U	27 U	540 U	54 U
Trichloroethene	700	590	210	1200 U	690	170 J	42 J
1,2-Dichloropropane	NA	580 U	6 U	1200 U	27 U	540 U	54 U
Bromodichloromethane	_ NA	580 U	6 U	1200 U	27 U	540 U	54 U
cis-1,3-Dichloropropene	NA	580 U	6 U	1200 U	27 U	540 U	54 U
2-Chloroethylvinylether	NA	580 U	6 U	1200 U	27 U	540 U	54 U
trans-1,3-Dichloropropene	NA NA	580 U	6 Ŭ	1200 U	27 U	540 U	54 U
1,1,2-Trichloroethane	NA	580 U	100	1200 U	27 U	540 U	54 U
Dibromochloromethane	NA	580 U	6 U	1200 U	27 U	540 U	54 Ü
Bromoform	NA NA	580 U	6 U	1200 U	27 U	540 U	54 U
4-Methyl-2-Pentanone	1000	1200 U	12 U	2400 U	54 U	1100 U	110 U
Toluene	1500	250 J	790 E	780 J	17 J	540 U	54 U
Tetrachloroethene	1400	360 J	75	430 J	5000 E	930	1300
2-Hexanone	NA	1200 U	12 U	2400 U	54 U	1100 U	110 U
Chlorobenzene	1700	580 U	6 U	1200 U	27 U	540 U	54 U
Ethylbenzene	5500	580 U	6 U	1200 U	34	540 U	54 U
M&P Xylene	1200	580 U	3 J	1200 U	340	540 U	26 J
O Xylene	(total xylene)	580 U	2 J	1200 U	130	540 U	24 J
Styrene	NA	580 U	6 U	1200 U	27 U	540 U	54 U
1,1,2,2-Tetrachloroethane	600	580 U	6 U	1200 U	27 U	540 U	54 U
1,3-Dichlorobenzene	1600	580 U	6 U	1200 U	27 U	540 U	54 U
1,4-Dichlorobenzene	8500	580 U	6 U	1200 U	27 U	540 U	54 U
1,2-Dichlorobenzene	7900	580 U	6 U	1200 U	27 U	540 U	54 Ū

Notes:

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

^{**}Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

Sample ID	NYSDEC/USEPA	GP-15	GP-16	GP-17	GP-17 Dilution	GP-18	GP-19
interval (feet)	Soil Cleanup	2-4	2-4	6-8	6-8	10-12	8-10
Site Location	Objectives *	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	45a Sea Cliff	45a Sea Cliff
Sampling Method	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe
Volatile Organic Compou	nds (nnb)						
Dichlorodifluoromethane	NA NA	NA	NA.	NA	I NA	NA	N/A
Chloromethane	NA	63 U	23 U	11 0	55 U	11 U	NA 12 U
Vinyl Chloride	200	63 U	23 U	11 0	35 U	11 U	12 U
Bromomethane	NA	63 U	23 U	11 0	55 Ü	11 U	12 U
Chloroethane	1900	63 U	23 U	3 1	35 U	11 U	12 U
Ethyl Ether	NA	32 U	11 U	6 U	28 U	6 Ü	6 U
tert-Butyl-Methyl-Ether	NA	32 U	11 U	6 U	28 U	6 U	6 U
Hexane	NA	32 U	11 U	6 U	28 U	6 U	6 U
Trichlorofluoromethane	NA	32 U	11 U	6 U	28 U	6 U	6 U
1,1-Dichloroethene	400	32 U	11 U	3 J	28 U	1 /	6 U
Carbon Disulfide	2700	63 U	10 J	3 J	55 U	11 U	12 U
Acetone	200	82	64	70 B	150 B	6 JB	4 J
Methylene Chloride	100	10 J	4 J	20 B	28 U	6 U	6 U
trans-1,2-Dichloroethene	300	32 U	11 U	2 J	28 U	6 U	6 U
cis-1,2-Dichloroethene	NA	80	2 Ј	38	6 J	6 U	6 U
1,1-Dichloroethane	200	16 J	13	240 E	18 J	11	13
Vinyl Acetate	NA	63 U	23 U	11 U	55 U	11 U	12 U
Chloroform	300	32 U	11 U	6 U	28 U	6 U	6 U
1,2-Dichloroethane	100	32 U	11 U	1 J	28 U	6 U	6 U
2-Butanone	300	63 U	23 U	15	8 1	11 U	12 U
1,1,1-Trichloroethane	800	77	36	190	37	30	30
Carbon Tetrachloride	600	32 U	11 U	6 U	28 U	6 U	6 U
Benzene	60	32 U	5 J	6 U	28 U	6 U	6 U
l'richloroethene	700	170	8 J	150	55	6 U	6 U
1,2-Dichloropropane	NA	32 U	11 U	6 U	28 U	6 U	6 U
Bromodichloromethane	NA	32 U	11 U	6 U	28 U	6 U	6 U
is-1,3-Dichloropropene	NA	32 U	11 U	6 U	28 U	6 U	6 U
2-Chloroethylvinylether	NA	32 U	11 U	6 U	28 U	6 U	6 U
rans-1,3-Dichloropropene	NA	32 U	11 U	6 U	28 U	6 U	6 U
1,1,2-Trichloroethane	NA	32 U	11 U	6 U	28 U	6 U	6 U
Dibromochloromethane	NA	32 U	11 U	6 U	28 U	6 U	6 U
Bromoform	NA	32 U	11 U	6 U	28 U	6 U	6 U
-Methyl-2-Pentanone	1000	63 U	23 U	1 J	55 U	11 U	12 U
l'oluene	1500	32 U	11	14	7 J	6 U	6 U
l'etrachloroethene	1400	1100	9.1	240 E	190	2 J	3 J
2-llexanone	NA	63 U	23 U	11 U	55 U	11 U	12 U
Chlorobenzene	1700	32 U	11 U	6 U	28 U	6 U	6 U
Ethylbenzene	3500	32 U	11 U	2 J	28 U	6 U	6 Ü
√&P Xylene	1200	32 Ú	5 J	8	7 J	6 U	6 U
3.32-1	1 / 4 - 1 - 1 - 3 - 1	22 11			20.41		

Notes:

O Xylene

Styrene

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

(total xylene)

ΝA

600

1600

8500

7900

32 U

32 U

32 U

32 U

32 U

32 Ü

E = Value exceeds calibration range

NA " Information not available

1,1,2,2-Tetrachloroethane

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

 Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed. 11 U

11 U

11 Ų

II U

II U

21

5 J

6 U

6 U

6 U

6 U

6 U

28 U

28 U

28 U

28 U

28 U

28 U

6 U

6 U

6 Ų

6 U

6 Ų

6 U

6 U

6 U

6 U

6 U

6 Ü

6 U

Sample ID	NYSDEC/USEPA	GP-20	GP-21	GP-22	GP-23	GP-24	GP-25
Interval (feet)	Soil Cleanup	8-10	8-10	8-10	8-10	8-10	8-10
Site Location	Objectives •	45a Sea Cliff					
Sampling Method	(bbp)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe

Volatile	Organic	Compound:	(nnh)
votatue	OFFINIC	Compounds	. (000)

Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA	NA
Chloromethane	NA	10 Ü	11 U	10 U	10 U	10 U	10 U
Vinyl Chloride	200	10 Ü	11 U	10 U	10 U	10 U	10 U
Bromomethane	NA	10 U	11 U	10 U	10 U	10 U	10 U
Chloroethane	1900	10 U	11 U	10 U	10 U	10 U	10 U
Ethyl Ether	NA	5 U	6 U	5 U	5 U	5 U	5 U
tert-Butyl-Methyl-Ether	NA NA	5 U	6 U	3 Ü	5 U	5 U	5 U
Hexane	NA	5 U	6 U	5 U	5 Ü	5 U	3 U
Trichlorofluoromethane	NA	5 U	6 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	400	5 Ü	6 U	5 U	5 U	5 U	5 U
Carbon Disultide	2700	10 U	11 U	10 U	10 U	10 U	10 U
Acetone	200	34	15	9 JB	5 JB	3 JB	10 ЛВ
Methylene Chloride	100	2 J	2 J	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	300	3 U	6 U	5 U	S U	5 U	3 U
cis-1,2-Dichloroethene	NA	5 U	6 U	3 Ų	5 U	5 Ų	3 U
1,1-Dichloroethane	200	1 J	3 J	5 U	5 U	3 U	5 U
Vinyl Acetate	NA	10 U	11 U	10 U	10 U	10 U	10 U
Chloroform	300	5 U	6 U	5 Ü	3 U	5 U	5 U
1,2-Dichloroethane	100	5 U	6 U	5 U	5 U	5 U	5 U
2-Butanone	300	10 U	11 U	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	800	3 J	8	5 U	5 U	5 U	5 U
Carbon Tetrachloride	600	3 U	6 U	5 U	5 U	5 U	3 U
Benzene	60	5 U	6 U	3 U	5 U	5 Ū	5 U
Trichloroethene	700	5 U	6 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	NA	5 U	6 U	5 U	5 Ü	5 U	5 U
Bromodichloromethane	NA	5 U	6 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	NA	5 U	6 U	5 U	5 U	5 U	5 U
2-Chloroethylvinylether	NA	5 U	6 U	5 U	5 U	5 U	5 U
trans-1,3-Dichloropropene	ŇA	5 U	6 U	5 U	5 Ü	5 U	5 U
1,1,2-Trichloroethane	NA	5 U	6 U	5 U	5 U	5 U	5 U
Dibromochloromethane	NA	5 U	6 U	5 U	3 U	5 U	5 U
Bromoform	NA	5 U	6 U	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	1000	10 U	11 U	10 U	10 U	10 U	10 U
Toluene	1500	5 U	6 U	5 U	3 U	5 U	5 U
Tetrachloroethene	1400	5 U	1 J	5 U	5 U	5 U	5 U
2-Hexanone	NA	10 U	ii U	10 U	10 Ü	10 U	10 U
Chlorobenzene	1700	5 U	6 U	3 U	3 U	5 U	5 U
Ethylbenzene	5500	5 U	6 U	5 U	5 U	5 U	5 U
M&P Xylene	1200	5 U	6 U	5 U	5 U	5 U	5 Ü
O Xylene	(total xylene)	5 Ū	6 Ü	5 U	3 U	5 U	5 U
Styrene	NA	5 U	6 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	600	5 U	6 Ü	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	1600	5 U	6 U	5 U	5 U	5 U	3 U
1,4-Dichlorobenzene	8500	5 U	6 U	5 U	5 Ü	5 U	5 U
1.2-Dichlorobenzene	7900	5 U	6 U	3 U	5 U	5 U	5 U

Notes:

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

* Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

Sample ID	NYSDEC/USEPA	GP-26	CD 05				
Interval (feet)	Soil Cleanup	11-12	GP-27	GP-28	GP-29	GP-30	GP-30 Dilution
Site Location	Objectives *		20-22	20-22	22-24	20-22	20-22
Sampling Method	-	45a Sea Cliff					
Sampling Medical	(ppb)	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe	Geoprobe
Volatile Organic Compou	nds (nnh)						
Dichlorodifluoromethane	NA NA	l NA					
Chloromethane	NA NA	10 U	NA II U	NA	NA	NA	NA
Vinyl Chloride	200	10 U	11 0	11 U	12 U	11 U	5500 U
Bromomethane	NA	10 U	11 0	11 U	12 U	11 U	5500 U
Chloroethane	1900	10 U	11 U		12 U	11 U	5500 U
Ethyl Ether	NA	5 Ü	3 U	11 U	12 U	11 U	5500 U
tert-Butyl-Methyl-Ether	NA	5 U	3 U	6 U	6 U	6 U	2800 U
Hexane	NA	5 U	3 U	6 U	6 Ü	6 U	2800 U
Trichlorofluoromethane	NA	3 U	3 U	6 U	6 U	6 U	2800 U
1,1-Dichloroethene	400	5 U	5 U	6 U	6 U	6 U	2800 U
Carbon Disulfide	2700	10 U	11 U	11 U	6 U	6 U	2800 U
Acetone	200	8 JB	11 ЛВ	5 JB	12 U	11 U	5500 U
Methylene Chloride	100	3 U	3 U	- 5 JB	5 JB	11 JB	5500 U
trans-1,2-Dichloroethene	300	3 U	· 3 U	6 U	6 Ü	8	2800 U
cis-1,2-Dichloroethene	NA	5 U	3 U	6 U	6 U	6 U	2800 U
1,1-Dichloroethane	200	3 U	3 U	- 6 U	2 J	6 U	2800 U
Vinyl Acetate	NA	10 U	11 0	11 U	6 U	6 Ü	2800 U
Chloroform	300	3 U	3 U	6 0	12 Ü	11 U	5500 U
1,2-Dichloroethane	100	3 U	3 U	- 6 U	6 U	6 U	2800 U
2-Butanone	300	10 U	11 0	11 U	12 U	6 U	2800 U
1,1,1-Trichloroethane	800	5 U	3 U	6 U	6 U	11 U	5500 U
Carbon Tetrachloride	600	5 U	3 Ü	6 U	6 U	140	2800 U
Benzene	60	5 U	5 Ü	6 0	6 U	6 U	2800 U
Trichloroethene	700	5 U	3 U	6 U	3 1	130	2800 U
1,2-Dichloropropane	NA	5 Ü	5 U	6 U	6 U	6 U	2800 U
Bromodichloromethane	NA	5 U	3 U	6 U	6 U	6 U	2800 U
cis-1,3-Dichloropropene	NA	5 U	5 Ü	6 U	6 U	- 6 U	2800 U 2800 U
2-Chloroethylvinylether	NA	5 U	5 Ū	6 U	6 U	6 U	2800 U
trans-1,3-Dichloropropene	NA	5 U	5 U	6 U	- 6 U	6 U	2800 U
1,1,2-Trichloroethane	NA	5 U	5 U	6 U	6 U	11	2800 U
Dibromochloromethane	NA '	5 U	5 U	6 U	6 U	6 U	2800 U
Bromoform	NA	5 U	3 U	6 Ü	6 U	60	2800 U
4-Methyl-2-Pentanone	1000	10 U	11 U	11 0	12 U	11 U	5500 U
Toluene	1500	5 U	5 U	6 0	11	6	2800 U
Tetrachloroethene	1400	30	3 U	6 U	64	14000 EJ	23000
2-Hexanone	NA	10 U	11 U	11 U	12 U	11 U	5500 U
Chlorobenzene	1700	5 U	5 U	6 U	6 Ū	3 J	2800 U
Ethylbenzene	5500	5 U	5 U	6 U	6 U	6 U	2800 U
M&P Xylene	1200	5 U	5 U	6 Ü	6 U	2 1	2800 U
O Xylene	(total xylene)	5 U	5 U	6 U	6 U	6 U	2800 U
Styrene	NA	5 U	3 U	6 U	6 U	6 U	2800 U
1,1,2,2-Tetrachloroethane	600	5 U	5 Ü	6 U	6 U	6 U	2800 U
1,3-Dichlorobenzene	1600	5 Ü	5 U	6 U	6 U	6 U	2800 U
1,4-Dichlorobenzene	8500	5 Ü	5 U	6 U	6 U	6 U	2800 U
1,2-Dichlorobenzene	7900	5 U	5 U	6 U	6 U	6 U	2800 U

Notes

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

^{**} Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

; Table 3
Summary of Soil Analytical Data at/or Above the Detection Limits
Photocircuits Corporation
Glen Cove, New York
August 1996

	NYSDEC/USEPA
	Soil Cleanup
	Objectives *
Anulyte	(ppb)

] Objectives • [
Analyte	(ppb)	GP-03 (3-4)	GP-05 (2.5-3.5)	GP-06 (2-4)	GP-07 (2-3)	GP-10 (7-8)
Vinyl Chloride	200	11 U	12 U	11 U	11 U	11 U
Chloroethane	1900	11 U	12 U	11 U	ווע	11 U
1,1-Dichloroethene	200	6 U	6 U	6 U	5 U	6 U ·
Acetone	200	410 BE	10 ЛВ	17 B	49 B	8 JB
Methylene Chloride	100	6 U	6 U	6 U	5 U	6 U
cis 1,2-Dichloroethene	NA	4 J	6 U	4 Ј	5 U	6 U
1,1-Dichloroethane	200	6 U	6 U	6 U	5 U	6 U
Chloroform	300	6 U	6 U	6 U	5 U	6 U
1,2-Dichloroethane	100	6 U	6 U	6 U	5 U	6 U
2-Butanone	300	28	12 U	11 U	7 J	11 U
1,1,1-Trichloroethane	800	6 U	6 U	6 U	5 U	6 U
Trichloroethene	700	3 J	2 J	6 U	5 U	6 U
1,1,2-Trichloroethane	NA	6 U	6 U	6 U	5 U	6 U
Toluene	1500	21	6 U	l J	13	6 U
Tetrachloroethene	1400	4 J	11	32	6	10
M&P Xylene	1200	11	6 U	6 U	2 J	6 U
O Xylene	(total xylene)	3 J	6 U	6 U	5 U	6 U
1,2-Dichlorobenzene	7900	6 U	6 U	6 U	5 U	6 U

Notes:

- U = Not detected above the detection limit
- J = Estimated value below the detection limit
- B = Analyte detected in method blank
- E = Result exceeds the calibration range
- D = Result obtained after sample dilution
- NA = Information not available
- *Taken from NYSDEC Soil Cleanup Objectives to
- Protect Groundwater Quality and USEPA
- Recommended Soil Cleanup Objectives. The
- higher of the two values is listed.
- Shaded values exceed the NYSDEC/USEPA Criteria

; Table 3 Summary of Soil Analytical Data at/or Above the Detection Limits Photocircuits Corporation Glen Cove, New York August 1996

	NYSDEC/USEPA					
	Soil Cleanup				,	
	Objectives *				,	
Analyte	(ppb)	GP-11 (1-3)	GP-12 (2-4)	GP-13 (2-4)	GP-14 (2-4)	GP-15 (2-4)
Vinyl Chloride	200	12 U	2 J	54 U	110 U	63 U
Chloroethane	1900	13	20	54 U	110 U	63 U
1,1-Dichloroethene	200	200	970 E	27 U	54 U	32 U ·
Acetone	200	71 B	270 EB	3300 EB	210	82
Methylene Chloride	100	8 B	14 B	27 U	14 J	10 J
cis 1,2-Dichloroethene	NA	3 J	8	93	14 J	80
1,1-Dichloroethane	200	240 E	1500 D	30	18 J	16 J
Chloroform	300	5 J	6	27 U	54 U	32 U
1,2-Dichloroethane	100	94	49	27 U	54 U	32 U
2-Butanone	300	22	140	48 J	46 J	63 U
1,1,1-Trichloroethane	800	9100 D	18000 D	130	170	77
Trichloroethene	700	110	210	690	42 J	170
1,1,2-Trichloroethane	NA	29	100	27 U	54 U	32 U
Toluene	1500	69	790 E	17 J	54 U	32 U
Tetrachloroethene	1400	16	75	930 D	1300	1100
M&P Xylene	1200	6 U	3 J	340	26 J	32 U
O Xylene	(total xylene)	6 U	2 J	130	24 J	32 U
1,2-Dichlorobenzene	7900	6 U	6 ป	27 U	54 U	32 U

Notes:

U = Not detected above the detection limit

J = Estimated value below the detection limit

B = Analyte detected in method blank

E = Result exceeds the calibration range

D = Result obtained after sample dilution

NA = Information not available

◆Taken from NYSDEC Soil Cleanup Objectives to

Protect Groundwater Quality and USEPA

Recommended Soil Cleanup Objectives. The

higher of the two values is listed.

Shaded values exceed the NYSDEC/USEPA Criteria

i Table 3 Summary of Soil Analytical-Data at/or Above the Detection Limits Photocircuits Corporation Glen Cove, New York August 1996

	NYSDEC/USEPA
	Soil Cleanup
	Objectives •
Analyte	(ррь)

	Objectives •					
Analyte	(ppb)	GP-16 (2-4)	GP-17 (6-8)	GP-18 (10-12)	GP-19 (8-10)	GP-20 (8-10)
Vinyl Chloride	200	23 U	11 U	11 U	12 Ú	10 U
Chloroethane	1900	23 U	3 J	11 U	12 U	10 U
1,1-Dichloroethene	200	11 U	3 J	1 J	6 U	S U
Acetone	200	64	70 B	6 ЛВ	4 J	34
Methylene Chloride	100	4 J	20 B	6 U	6 U	2 J
cis 1,2-Dichloroethene	NA	2 J	38	6 U	6 U	5 U
1,1-Dichloroethane	200	13	190 D	11	13	1 J
Chloroform	300	11 U	6 U	6 U	6 U	5 U
1,2-Dichloroethane	100	11 U	l J	6 U	6 U	5 U
2-Butanone	300	23 U	15	11 U	12 U	10 U
1,1,1-Trichloroethane	800	36	190	30	30	3 J
Trichloroethene	700	8 J	150	6 U	6 U	5 U
1,1,2-Trichloroethane	NA	11 U	6 U	6 U	6 U	5 U
Toluene	1500	11	14	6 U	6 U	5 U
Tetrachloroethene	1400	9 J	240 E	2 J	3 J	5 U
M&P Xylene	1200	5 J	8	6 U	6 U	5 U
O Xylene	(total xylene)	II U	5 J	6 U	6 U	· 5 U
1,2-Dichlorobenzene	7900	21	6 U	6 U	6 U	3 U

Notes:

- U = Not detected above the detection limit
- J = Estimated value below the detection limit
- B = Analyte detected in method blank
- E = Result exceeds the calibration range
- D = Result obtained after sample dilution
- NA = Information not available
- Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.
 Shaded values exceed the NYSDEC/USEPA Criteria

Table 3
Summary of Soil Analytical Data at/or Above the Detection Limits
Photocircuits Corporation
Glen Cove, New York
August 1996

	NYSDEC/USEPA				
	Soil Cleanup				
	Objectives •				
Analyte	(ppb)	GP-21 (8-10)	GP-26 (11-12)	GP-29 (22-24)	GP-30 (20-22)
Vinyl Chloride	200	11 U	10 U	12 U	11 U
Chloroethane	1900	11 U	10 U	12 U	11 U
1,1-Dichloroethene	200	6 U	5 U	6 U	6 U
Acetone	200	15	8 ЛВ	5 JB	· 11 JB
Methylene Chloride	100	2 J	5 U	6 U	8
cis 1,2-Dichloroethene	NA	6 U	5 U	2 J	6 U
1,1-Dichloroethane	200	3 J	5 U	6 U	6 U
Chloroform	300	6 U	5 U	6 U	6 U
1,2-Dichloroethane	100	6 U	5 U	6 U	6 U
2-Butanone	300	11 U	10 U	12 U	11 U
1,1,1-Trichloroethane	800	8	5 U	6 U	140
Trichloroethene	700	6 U	5 U	3 J	130
1,1,2-Trichloroethane	NA	6 U	5 U_	6 U	1 J
Toluene	1500	6 U	5 U	1 J	6
Tetrachloroethene	1400	l J	30	64	23000 D
M&P Xylene	1200	6 U	5 U	6 U	2 J
O Xylene	(total xylene)	6 U	5 U	6 U	6 U
1,2-Dichlorobenzene	7900	6 U	5 U	6 U	6 U

Notes:

U = Not detected above the detection limit

J = Estimated value below the detection limit

B = Analyte detected in method blank

E = Result exceeds the calibration range

D = Result obtained after sample dilution

NA = Information not available

Taken from NYSDEC Soil Cleanup Objectives to Protect Groundwater Quality and USEPA Recommended Soil Cleanup Objectives. The higher of the two values is listed.

Shaded values exceed the NYSDEC/USEPA Criteria

Sample ID	NYSDEC	GW-GP-08	GW-GP-10	MW-2	MW-3	MW-4				
Site Location	GW Criteria	31 Sea Cliff	31 Sca Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff				
Sampling Method	(ppb)_	Geoprobe	Geoprobe	Monitor Well	Monitor Well	Monitor Well				
						·				
Volatile Organic Compound	Volatile Organic Compounds (ppb)									
Dichlorodifluoromethane	NA	5 U	5 U	NA	NA	5 U				
Chloromethane	NA	10 U								
Vinyl Chloride	2	10 U								
Bromomethane	NA	10 U								
Chiorcethane	50	10 U								
Ethyl Ether	NA	5 U	5 U	5 U	5 Ü	5 U				
tert-Butyl-Methyl-Ether	NA	2 J	3 J	5 Ü	1 J	5 U				
Hexane	NA	5 U	5 U	5 Ü	5 Ų	5 U				
Trichlorofluoromethane	NA	5 U	5 U	5 Ü	5 Ü	5 U				
1,1-Dichloroethene	5	5 U	5 U	5 Ü	5 U	5 U				
Carbon Disulfide	50	10 U	10 U	10 U	10 Ü	10 U				
Acetone	50	6 JB	3 JB	2 JB	1 Љ	10 U				
Methylene Chloride	5	5 U	5 U	5 Ü	5 U	5 U				
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U				
cis-1,2-Dichloroethene	NA	5 U	5 U	5 U	5 U	5 U				
1,1-Dichloroethane	5	5 U	5 U	3 J	5 U	5 U				
Vinyl Acetate	NA .	10 U								
Chloroform	7	5 U	5 U	5 U	5 ปี	3 U				
1,2-Dichloroethane	5	5 U	5 Ü	5 U	5 U	5 U				
2-Butanone	50	10 U								
1,1,1-Trichloroethane	5	5 U	5 U	3 U	5 U	5 U				
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U				
Benzene	0.7	5 U	3 U	5 U	5 U	5 U				
Trichloroethene	5	5 Ü	5 U	1 J	5 U	5 U				
1.2-Dichloropropane	NA	5 U	5 U	5 U	5 U	5 U				
Bromodichloromethane	NA	5 U	5 U	5 U	5 U	5 U				
cis-1,3-Dichloropropene	NA	5 U	5 U	5 U	5 U	5 U				
2-Chloroethylvinylether	NA	5 U	5 U	5 U	5 U	5 Ü				
trans-1,3-Dichloropropene	NA	5 U	5 U	5 U	5 U	5 U				
1,1,2-Trichloroethane	NA	5 U	.5 U	5 U	5 U	5 U				
Dibromochloromethane	50	3 U	5 U	5 U	5 U	5 U				
Bromoform	NA	5 U	5 U	5 U	5 U	5 U_				
4-Methyl-2-Pentanone	50	2 Ј	10 U	10 U	10 U	U_U				
Toluene	5	5 U	6	S U	5 U	5 U				
Tetrachloroethene	5	5 Ü	5 U	5 U	5 U	5 U				
2-Hexanone	NA	10 U								
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U				
Ethylbenzene	5	5 U	3 J	5 U	5 U	5 U				
M&P Xylene	5	5 Ū	9	5 U	5 U	5 U				
O Xylene	(total xylene)	5 U	5 J	5 U	5 U	5 U				
Styrene	NA	5 Ü	5 U	5 U	5 Ü	5 U				
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U				
1,3-Dichlorobenzene	5	5 U	5 U	5 U	5 U	5 U				
1,4-Dichlorobenzene	5	5 U	5 U	5 U	5 U	5 U				
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	5 Ü	5 U				

Notes:

U = Not detected above the detection limit

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

J = Value is an estimate

August 1996

Sample ID	NYSDEC	MW-5	MW-6	MW-7	MW-7 (Dilution)
Site Location	GW Criteria	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff	31 Sea Cliff
Sampling Method	(ppb)	Monitor Well	Monitor Well	Monitor Well	Monitor Well
Volatile Organic Compoun					
Dichlorodifluoromethane	NA NA	NA	5 U	NA	NA
Chloromethane	NA	10 U	10 U	10 U	1000 U
Vinyl Chloride	2	10 U	10 U	43	1000 U
Bromomethane	NA	10 U	10 U	10 U	1000 U
Chloroethane	50	10 U	10 U	610 E	1300
Ethyl Ether	NA	5 U	5 []	5 U	500 U
ten-Butyl-Methyl-Ether	NA	5 U	5 U	5 U	500 U
Hexane	NA	5 t1	5 U	5 U	500 U
Trichlorofluoromethane	NA	5 Ų	5 U	5 U	500 U
1,1-Dichloroethene	5	5 U	5 U	42	500 U
Carbon Disulfide	50	10 U	10 U	3 J	1000 U
Acetone	50	1 JB	2 ЛВ	350 BE	460 J
Methylene Chloride	5	5 U	5 U	340 E	470 J
trans-1,2-Dichloroethene	5	5 U	5 U	2 J	500 U
cis-1,2-Dichloroethene	NA	5 U	2 J	28	500 U
1,1-Dichloroethane	5	5 U	5 U	1200 E	7500
Vinyl Acetate	NA	10 U	10 U	10 U	1000 U
Chloroform	7	5 U	5 U	5 U	500 U
1,2-Dichloroethane	5	5 U	5 U	12	500 U
2-Butanone	50	10 U	10 U	410 E	1000 U
1,1,1-Trichloroethane	5	5 Ü	5 Ü	26	500 U
Carbon Tetrachloride	5	5 U	5 U	3 U	500 U
Benzene	0.7	5 Ü	5 U	4 5	500 U
Trichloroethene	5	5 U	5 U	23	500 U
1.2-Dichloropropane	NA	5 U	5 U	5 U	500 U
Bromodichloromethane	NA	5 Ü	5 U	5 U	500 U
cis-1,3-Dichloropropene	NA	5 U	5 U	5 U	500 U
2-Chloroethylvinylether	NA	5 U	3 U	5 Ü	500 U
trans-1,3-Dichloropropene	NA	5 U	3 U	5 U	500 U
1.1.2-Trichloroethane	NA	3 Ü	3 U	5 Ü	500 U
Dibromochloromethane	50	5 U	5 U	5 U	500 U
Bromoform	NA	5 Ü	3 U	5 Ü	500 U
4-Methyl-2-Pentanone	50	10 U	10 U	2 J	1000 U
Toluen e	5	5 U	5 U	56	500 U
Tetrachloroethene	5	1 /	5 U	14	500 U
2-Hexanone	NA	10 U	10 U	4 J	1000 U
Chlorobenzene	5	5 U	3 U	5 U	500 U
Ethylbenzene	5	5 U	3 U	1 J	500 U
M&P Xylene	5	5 U	5 U	4 J	500 U
O Xylene	(total xylene)	3 U	5 U	2 J	500 U
Styrene	NA	5 U	5 U	5 U	500 U
1,1,2,2-Tetrachloroethane	5	5 U	3 U	5 U	500 U
1,3-Dichlorobenzene	5	5 U	5 U	5 U	500 U
1,4-Dichlorobenzene	5	5 U	3 U	5 U	500 U
1,2-Dichlorobenzeno	4.7	5 U	5 U	3 U	500 U

Notes:

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

Table 4 Analytical Summary for Volatile Organic Compounds in Groundwater Photocircuits Corporation Glen Cove, New York August 1996

Sample ID	NYSDEC	MW-8	MW-9	MW-10	MW-11
Site Location	GW Criteria	31 Sea Cliff	31 Sea Cliff	31 Sca Cliff	31 Sea Cliff
Sampling Method	(ppb)	Monitor Well	Monitor Well	Monitor Well	Monitor Well

37-1-41-	O-co-io	Compounds	(dee)
Valence	1) FOSTIC	t ampailmas	נחחחו

Volatile Organic Compound	ds (ppb)				
Dichlorodifluoromethane	NA	NA	NA	NA	5 U
Chloromethane	NA	10 U	10 U	10 U	10 U
Vinyl Chloride	2	10 U	10 U	9.1	10 U
Bromomethane	NA	10 U	10 U	10 U	10 U
Chloroethane	50	10 U	10 U	2 J	10 U
Ethyl Ether	NA	5 U	5 U	5 U	5 U
tert-Butyl-Methyl-Ether	NA	1 J	5 U	5 U	5 U
Hexane	NA	5 U	5 U	5 U	5 U
Trichlorofluoromethane	NA	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	28	5 Ü
Carbon Disulfide	50	10 U	10 U	10 U	10 U
Acetone	50	10 U	2 JB	10 U	2 ЛВ
Methylene Chloride	5	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	NA	5 U	5	46	5 J
1,1-Dichloroethane	5	5 U	2 J	100	5 U
Vinyl Acetate	NA	10 U	10 U	10 U	10 U
Chloroform	7	5 U	5 U	5 U	5 U
1,2-Dichloroethane	5	3 U	5 U	2 J	5 Ü
2-Butanone	50	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	5	5 U	5 U	6	5 U
Carbon Tetrachloride	5	3 U	5 U	5 U	5 U
Benzene	0.7	5 U	5 U	5 U	5 U
Trichloroethene	5	5 Ü	5 U	16	4 J
1,2-Dichloropropane	NA	5 U	5 U	5 U	5 U
Bromodichloromethane	NA	5 U	5 Ü	5 U	5 U
cis-1,3-Dichloropropene	NA	5 U	5 U	5 U	5 Ü
2-Chloroethylvinylether	NA	5 U	5 U	5 U	5 Ü
trans-1,3-Dichloropropene	NA	5 U	5 Ü	5 U	5 Ü
1.1.2-Trichloroethane	NA	5 Ü	5 U	5 U	5 Ų
Dibromochloromethane	50	3 U	5 U	5 U	5 U
Bromoform	NA	5 U	5 U	5 U	5 U
4-Methyl-2-Pentanone	50	10 U	10 U	10 U	10 U
Toluene	5	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 Ü	6	5 U
2-Hexanone	NA	10 U	10 U	10 U	10 U
Chlorobenzene	5	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	5 U	5 U
M&P Xylene	5	5 U	5 U	5 U	5 U
O Xyleno	(total xylene)	5 U	5 U	5 Ü	5 U
Styrene	NA	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 Ü	5 U	5 U	5 U
1,3-Dichlorobenzene	5	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	5	5 U	5 U	5 U	5 Ü
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	5 U

U = Not detected above the detection limit

J - Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

Table 4

Analytical Summary for Volatile Organic Compounds in Groundwater Photocircuits Corporation Glen Cove, New York August 1996

Sample ID	NYSDEC	NC-WELL	MW-IS	MW-2S	MW-3S
Site Location	GW Criteria	31 Sea Cliff	45a Sea Cliff	45a Sea Cliff	45a Sca Cliff
Sampling Method	(ppb)	Monitor Well	Monitor Well	Monitor Well	Monitor Well
		- <u>, </u>		·	

Volatile	Organic	Compounds	(dog)

Volatile Organic Compound	is (ppb)				
Dichlorodifluoromethane	NA	NA	NA	NA	NA
Chloromethane	NA	10 U	10 U	10 U	10 U
Vinyl Chloride	2	10 U	10 U	10 U	10 U
Bromomethane	NA	10 U	10 IJ	10 U	10 U
Chloroethane	50	2 3	10 U	10 U	10 U
Ethyl Ether	NA	5 U	5 U	5 U	5 U
tert-Butyl-Methyl-Ether	NA	5 U	5 U	5 U	5 U
Hexane	NA	5 Ü	5 U	5 U	5 U
Trichlorofluoromethane	NA.	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	10 U
Carbon Disulfide	50	10 U	10 U	10 U	10 U
Acetone	50	1 JB	10 U	10 U	10 U
Methylene Chloride	5	5 U	5 U	5 U	5 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 Ü	5 U
cis-1,2-Dichloroethene	NA	10	5 U	5 U	1 J
1.1-Dichloroethane	5	8	5 U	5 U	5 U
Vinyl Acetate	NA	10 U	10 U	10 U	10 U
Chloroform	7	5 Ü	5 U	5 Ü	5 U
1,2-Dichloroethane	5	5 ប	5 U	5 U	5 U
2-Butanone	50	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	5	16	3 U	5 U	5 U
Carbon Tetrachlonde	5	5 U	5 U	5 U	5 U
Benzene	0.7	5 Ü	5 U	5 Ü	5 U
Trichloroethene	5	4 J	1.9 J	5 U	43
1,2-Dichloropropane	NA	5 U	5 U	5 U	5 U
Bromodichloromethane	NA	5 U	5 Ū	5 U	5 U
cis-1,3-Dichloropropene	NA	5 U	5 U	5 U	5 Ü
2-Chloroethylvinylether	NA	5 U	5 Ü	5 U	5 Ü
trans-1,3-Dichloropropene	NA	5 Ų	5 Ü	5 Ü	5 Ü
1,1,2-Trichloroethane	NΑ	5 ปั	5 Ü	5 Ü	5 U
Dibromochloromethane	50	5 U	5 U	5 U	5 U
Bromoform	NA	5 U	5 U	5 Ū	5 U
4-Methyl-2-Pentanone	50	10 U	10 U	10 U	10 U
Toluene	5	5 U	5 U	5 Ú	5 U
Tetrachloroethene	5	1 J	47	1 J	8
2-Hexanone	NA	10 U	10 U	10 U	10 Ü
Chlorobenzene	5	5 ប	5 U	5 U	5 Ü
Ethylbenzene	5	5 U	5 U	5 U	5 U
M&P Xylene	5	5 U	5 U	5 U	5 U
O Xylene	(total xylene)	5 U	5 Ü	5 U	5 Ū
Styrene	NA	5 U	5 U	5 U	5 Ū
1,1,2,2-Tetrachloroethane	5	S U	5 U	5 U	5 U
1,3-Dichlorobenzene	5	5 U	5 Ü	5 U	5 Ü
1,4-Dichlorobenzene	5	5 U	5 U	5 U	5 Ū
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	5 U

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Information not available

; Table 5
Summary of Groundwater Analytical Data at/or Above the Detection Limits
Photocircuits Corporation
Glen Cove, New York
August, 1996

	NYSDEC Groundwater				
Analyte	Standards (ppb)	GW-GP-10	MW-1s	MW-3s	MW7
		10 U			MW-7
Vinyl Chloride	2	 	10 U	10 U	43
Chloroethane	50	10 U	10 U	10 U	1300 D
1,1-Dichloroethene	5	5 U	5 U	5 U	42
Acetone	50	3 JB	10 U	10 U	350 BE
Methylene Chloride	5	5 U	5 U	5 U	470 JD
cis 1,2-Dichloroethene	NA	5 U	5 U	1 J	28
1,1-Dichloroethane	5	5 U	5 U	5 U	7500 D
1,2-Dichloroethane	5	5 U	5 U	5 U	12
2-Butanone	50	10 U	10 U	10 U	410 B
1,1,1-Trichloroethane	5	5 U	5 U	5 U	26
Trichloroethene	5	5 U	1.9 J	43	23
1,1,2-Trichloroethane	NA	5 U	5 U	5 U	5 U
Toluene	5	- 6	5 U	5 U	56
Tetrachloroethene	5	5 U	47	8	14
M&P Xylene	5	9	5 U	5 U	4 J
O Xylene	(totał xylene)	5 J	5 U	5 U	4 5

Notes:

U = Not detected above the detection limit

J = Estimated value below the detection limit

B = Analyte detected in method blank

E = Result exceeds the calibration range

D = Result obtained after sample dilution

NA = Inforamtion not available

Shaded values exceed the NYSDEC Criteria

; Table 5
Summary of Groundwater Analytical Data at/or Above the Detection Limits
Photocircuits Corporation
Glen Cove, New York
August, 1996

	NYSDEC			
	Groundwater			
	Standards			
Analyte	(ppb)	MW-9	MW-10	NC-WELL
Vinyl Chloride	2	10 U	9 J	10 U
Chloroethane	50	10 U	2 J	2 J
1,1-Dichloroethene	5	5 U	28	5 U
Acetone	50	2 ЛВ	10 U	ìЉ
Methylene Chloride	5	5 U	5 U	5 U
cis 1,2-Dichloroethene	NA	5	46	10
1,1-Dichloroethane	5	2 J	100	8
1,2-Dichloroethane	5	5 U	2 J	5 U
2-Butanone	50	10 U	10 U	10 U
1,1,1-Trichloroethane	5	5 U	6	16
Trichloroethene	5	5 U	16	4 J
1,1,2-Trichloroethane	NA	5 U	5 U	5 U
Toluene	5	5 U	5 U	5 U
Tetrachloroethene	5	5 U	6	l J
M&P Xylene	5	5 U	5 U	5 U
O Xylene	(total xylene)	5 U	5 ป	5 U

Notes:

U = Not detected above the detection limit

J = Estimated value below the detection limit

B = Analyte detected in method blank

E = Result exceeds the calibration range

D = Result obtained after sample dilution

NA = Inforantion not available

Shaded values exceed the NYSDEC Criteria

Table 6
Summary of Historical Data for Volatile Organic Compounds in Groundwater, 31 Sea Cliff Ave. Site

Photocircuits Corporation Glen Cove, New York

16 U U 16 9 NA U 86	S U 5 U 5 U 5 U 5 U 5 U 5 U
U 16 9 NA U	5 U 5 U 5 U 5 U
U 16 9 NA U	5 U 5 U 5 U
U 16 9 NA U	5 U 5 U 5 U
U 16 9 NA U	5 U 5 U
16 9 NA U	5 U
9 NA U	
NA U	5 U
U	
	5 U
86	5 U
VV	NA
Ü	5 U
NA	5 U
NA	5 U
62	10 U
NA	5 U
U	10 U
14	10 U
74	2 ЈВ
U	5 U
Ū	5 U
Ū	5 U
Ü	10 U
Ū	10 U
Ū	5 U
Ū	5 U
Ū	10 U
Ū	5 U
Ū	10 U
NA	5 U
U	5 U
Ū	5 U
NA	5 U
NA NA	5 U
U	5 U
NA -	5 U
NA NA	5 U
U	5 U
NA I	3 Ü
U	5 U
NA NA	<u> </u>
8	5 U
ਹੈ	5 U
	3 U
	5 U
	4 J
	5 U
	10 U
	10 U
U	NA NA
	NA U 79 NA

Notes

- U = Not detected above the detection limit
- J = Value is an estimate
- B = Analyte also detected in the method blank
- E = Value exceeds calibration range
- D = Value after dilution
- NA = Not analyzed for this parameter

Table 6
Summary of Historical Data for Volatile Organic Compounds in Groundwater, 31 Sea Cliff Ave. Site
Photocircuits Corporation
Glen Cove, New York

Sample ID	MV	V-2	M	W-3		N-4
Sample Date	December 1991	August 1996	December 1991	August 1996	December 1991	August 1996
Sample Date	December 1991	August 1990	December 1991	August 1990	December 1991	August 1990
Volatile Organic Compounds (pp	ıb)					
1.1.1-Trichloroethane	340	5 Ü	U	5 Ü	U	\$ U
1,1,2,2-Tetrachloroethane	U	5 U	U	5 U	 	5 U
1,1,2-Trichloroethane	U	5 U	Ū	3 U	 	3 U
1.1-Dichloroethane	260	3 J	Ū	3 U	Ü	3 U
I.I-Dichloroethene	140	5 U	Ū	3 U	Ŭ	3 Ü
1,2-Dichlorobenzene	NA	5 U	NA	5 U	NA NA	5 U
1,2-Dichloroethane	Ū	5 U	Ú	5 U	U	3 U
1,2-Dichloroethene (total)	60	NA	21	NA	4 J	NA
1,2-Dichloropropane	Ū	5 Ü	U	5 Ü	U	5 Ū
1,3-Dichlorobenzene	NA	5 U	NA	5 U	NA	5 U
1,4-Dichlorobenzene	NA	5 U	NA	5 Ü	NA NA	5 U
2-Butanone	U	10 U	Ú	10 U	U	10 U
2-Chloroethylvinylether	NA	5 Ü	NA	5 U	NA	3 U
2-Hexanone	U	10 U	U	10 Ū	Ü	10 U
4-Methyl-2-Pentanone	U	10 U	Ū	10 U	Ū	10 U
Acetone	U	2 ЛВ	Ü	1 JB		10 U
Benzene	Ü	5 U	Ü	5 U	Ü	5 U
Bromodichloromethane	U	5 U	Ū	5 U	U	3 U
Bromoform	Ū	5 Ü	Ū	5 U	U	5 U
Bromomethane	U	10 U	Ū	10 U	Ū	10 U
Carbon Disulfide	U	10 U	Ū	10 U	U	10 U
Carbon Tetrachloride	U	5 U	U	5 U	Ü	3 U
Chlorobenzene	U	5 U	Ü	3 U	- ŭ - l	3 U
Chloroethane	U	10 U	Ū	10 U	Ü	10 U
Chloroform	U	5 U	U	5 U	Ü	3 U
Chloromethane	U	10 U	U	10 U	U	10 U
cis-1,2-Dichloroethene	NA	5 U	NA	5 U	NA	5 U
cis-1,3-Dichloropropene	U	5 U	U	5 U	Ū	5 U
Dibromochloromethane	U	5 U	U	5 U	U	5 U
Dichlorodifluoromethane	NA	NA	NA	NA	NA	5 U
Ethyl Ether	NA	5 U	NA	5 U	NA	5 U
Ethylbenzene	Ū Ū	5 U	U	5 U	U	5 U
Hexane	NA NA	5 U	NA	5 U	NA	5 U
M&P Xylene	NA NA	5 U	NA	5 U	NA	5 U
Methylene Chloride	U	5 U	U	5 U	U	5 U
O Xylene	NA	5 Ú	NA	5 U	NA	5 U
Styrene	Ü	5 Ų	Ü	5 U	U	5 U
tert-Butyl-Methyl-Ether	NA NA	5 U	NA	1 J	NA	5 U
Tetrachloroethene	Ü	5 U	U	5 U	U	5 U
Toluene	Ü	5 U	U	5 U	Ü	5 Ü
trans-1,2-Dichloroethene	NA	5 U	NA	5 U	NA	5 U
trans-1,3-Dichloropropene	Ų	5 Ü	Ų	5 Ų	U	5 U
Trichloroethene	43	1 J	29	3 U	3 J	5 U
Trichlorofluoromethane	NA	5 U	NA	5 U	NA	5 U
Vinyl Acetate	U	10 U	Ü	10 U	Ū	10 U
Vinyl Chloride	U	10 U	Ū	10 U	Ū	10 U
Xylene (total)	U	NA	U	NA	U	NA

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E = Value exceeds calibration range

D = Value after dilution

NA = Not analyzed for this parameter

Table 6
Summary of Historical Data for Volatile Organic Compounds in Groundwater, 31 Sea Cliff Ave. Site
Photocircuits Corporation
Glen Cove, New York

Sample ID	MV	V-5	M	N-6	MV	V-7
Sample Date	December 1991	August 1996	December 1991	August 1996	December 1991	August 1996
Volatile Organic Compounds (
1.1.1-Trichloroethane	32	5 U	18	5 U	2100	26
1,1,2,2-Tetrachloroethane	Ŭ	5 U	U	. 5 U	U	5 U
1,1,2-Trichloroethane	U	5 U	Ŭ	5 U	Ŭ	5 U
1.1-Dichloroethane	4	S U	31	5 U	3400	7500 D
1,1-Dichloroethene	20	5 U	5	5 U	190	42
1,2-Dichlorobenzene	NA U	5 U	NA	5 U	NA NA	5 U
1,2-Dichloroethane	65	5 U	Ŭ	5 U	47	12
1,2-Dichloroethene (total)		NA	9	NA NA	36	NA
1,2-Dichioropropane	U NA	5 U	U	5 U	U	5 U
1,3-Dichlorobenzene	NA NA	5 U	NA	5 U	NA NA	5 U
1,4-Dichlorobenzene			NA NA	5 U	NA.	5 U
2-Butanone	U NA	10 U	U	10 U	170	410 E
2-Chloroethylvinylether 2-Hexanone	NA U	5 U 10 U	NA NA	5 U	NA	5 U
			Ū	10 U	U	4 J
4-Methyl-2-Pentanone	U	10 U	Ŭ	10 U	U	2 J
Acetone	- 1 	1 ЛВ	U	2 ЛВ	26	350 BE
Benzene		5 U	U	5 U	5.1	4 1
Bromodichloromethane	Ŭ	5 U	Ü	5 U	U	5 U
Bromoform	U	5 Ü	Ŭ	5 U	Ŭ	5 U
Bromomethane	U	10 U	U	10 U	Ū	10 U
Carbon Disulfide	Ü	10 U	U	10 U	U	3 J
Carbon Tetrachloride	Ü	5 U	Ü	5 U	U	5 U
Chlorobenzene	Ü	5 U	Ū	5 Ü	U	5 U
Chloroethane		10 U	10	10 U	1000	1300 D
Chloroform	U	5 U	U	5 U	3 J	5 U
Chloromethane	U	10 U	U	10 U	U	10 U
cis-1,2-Dichloroethene	NA NA	5 Ü	NA NA	2 J	NA	28
cis-1,3-Dichloropropene	U	5 U	Ŭ	5 U	U	5 U
Dibromochloromethane	Ü	5 U	Ū	5 U	Ū	5 U
Dichlorodifluoromethane	NA NA	NA	NA NA	5 U	NA	NA
Ethyl Ether	NA	5 U	NA	5 U	NA	5 U
Ethylbenzene	U	5 U	U	5 U	U	1 J
Hexane	NA NA	5 U	NA	5 U	NA NA	5 U
M&P Xyleno	NA NA	5 U	NA	5 U	NA	4 J
Methylene Chloride	U	5 U	U	5 U	100	340 E
O Xylene	NA	5 U	NA	5 U	NA	2 J
Styrene	U	5 U	Ü	5 U	U	5 U
tert-Butyl-Methyl-Ether	NA NA	5 Ü	NA	5 U	NA	5 U
Tetrachloroethene	66	1 J	U	5 U	35	14
Toluene	Ü	5 U	U	<u>5 U</u>	29	56
rans-1,2-Dichloroethene	NA NA	5 U	NA	5 U	NA	2 J
rans-1,3-Dichloropropene	U	5 U	U	5 U	U	5 U
Trichloroethene	59	5 U	U	5 U	11	23
Trichlorofluoromethane	NA NA	3 U	NA NA	5 U	NA NA	5 Ü
Vinyl Acetate	U	10 U	U	10 U	U	10 U
Vinyl Chloride	Ü	10 U	U	10 U	230	43
Yylene (total)	U	NA	U	NA.	U	NA

U = Not detected above the detection limit

J = Value is an estimate

B = Analyte also detected in the method blank

E - Value exceeds calibration range

D = Value after dilution

NA = Not analyzed for this parameter

Table 6
Summary of Historical Data for Volatile Organic Compounds in Groundwater, 31 Sea Cliff Ave. Site
Photocircuits Corporation
Glen Cove, New York

Sample ID	MV	V-8	M	V-9	MW	V-10
Sample Date	December 1991	August 1996	December 1991	August 1996	December 1991	August 1996
					*	
Volatile Organic Compounds (ppb)						
1,1,1-Trichloroethene	U	5 U	12	5 U	U	6
1,1,2,2-Tetrachloroethane	Ŭ	5 U	Ŭ	5 U	U	5 U
1,1,2-Trichloroethane	Ü	5 U	Ų	5 U	Û	5 U
I,1-Dichloroethane	14	5 U	19	2 J	6	100
1,1-Dichloroethene	U	5 U	6	5 U	Ŭ	28
1.2-Dichlorobenzene	NA .	5 U	NA	5 U	NA NA	5 U
1,2-Dichloroethane	Ū	5 U	Ŭ	5 U	Ū	2 J
1,2-Dichloroethene (total)	75	NA	79	NA	32	NA
1,2-Dichloropropane	U	5 Ü	Ū	5 U	Ŭ	5 U
1,3-Dichlorobenzene	NA	: U	NA NA	5 U	NA NA	5 U
1,4-Dichlorobenzene	NA.	5 U	NA NA	5 U	NA	5 U
2-Butanone	U	10 Ū	Ŭ	10 U	U	10 U
2-Chloroethylvinylether	NA NA	5 U	NA	5 U	NA	5 U
2-Hexanone	Ŭ	10 U	U	10 U	U	10 U
4-Methyl-2-Pentanone	Ū	10 U	U	10 U	U	10 U
Acetone	Ü	10 U	U	2 ЛВ	Ü	10 U
Benzene	U	5 U	Ū	5 U	U	5 U
Bromodichloromethane	U	5 U	Ŭ	5 U	Ü	5 Ü
Bromoform	U "	5 U	Ū	5 U	U	5 U
Bromomethane	U	10 U	U	10 Ü	U	10 U
Carbon Disulfide	15	10 Ü	Ŭ	10 U	Ü	10 U
Carbon Tetrachloride	U	5 U	Ū	5 U	U	3 U
Chlorobenzene	Ü	5 (i	Ū	5 U	U	5 U
Chloroethane	U	10 U	U	10 U	ΰ	2 J
Chloroform	U	5 Ư	U	5 Ü	U	5 Ü
Chloromethane	U	10 U	U	10 U	Ū	10 U
cis-1,2-Dichloroethene	NA	5 U	NA NA	5	NA	46
cis-1,3-Dichloropropene	Ū	5 U	Ü	3 U	U	5 U
Dibromochloromethane	Ŭ	5 U	U	5 U	Ŭ	5 U
Dichlorodifluoromethane	NA	NA	NA	NA	NA_	NA
Ethyl Ether	NA	5 Ü	NA	5 U	NA	5 U
Ethylbenzene	Ŭ	5 U	U	5 U	Ü	5 U
Hexane	NA NA	5 U	NA	5 U	NA	5 U
M&P Xylene	NA	5 U	NA	5 U	NA	5 Ü
Methylene Chloride	U	5 U	Ū	5 U	U	5 U
O Xylene	NA	5 U	NA	5 U	NA	5 U
Styrene	U	5 U	บ	5 Ü	U	5 U
tert-Butyl-Methyl-Ether	NA.	l J	NA.	5 U	NA	5 U
Tetrachloroethene	Ū	5 U	Ū	5 U	Ŭ	6
Toluene	U	5 U	U	5 U	ט	5 U
trans-1,2-Dichloroethene	NA	5 U	NA	5 U	NA	5 U
trans-1,3-Dichloropropene	U	5 U	U	5 U	Ū	5 U
Trichloroethene	4 J	5 U	59	5 U	30	16
Trichlorofluoromethane	NA	5 U	NA	5 U	NA NA	5 U
Vinyl Acetate	Ü	10 U	Ŭ	10 U	U	10 U
Vinyl Chloride	49	10 U	Ü	10 U	U	9 J
Xylene (total)	U	NA	Ŭ	NA	U	NA

- U * Not detected above the detection limit
- J = Value is an estimate
- B = Analyte also detected in the method blank
- E Value exceeds calibration range
- D = Value after dilution
- NA = Not analyzed for this parameter

Table 7
Summary of Historical Data for Volatile Organic Compounds in Groundwater, 45A Sea Cliff Ave. Site
Photocircuits Corporation
Glen Cove, New York

Sample ID	MW	/-1s	MV	V-2s	MW	/-3s
Sample date	December 1991	August 1996	December 1991	August 1996	December 1991	August 1996
Volatile Organic Compounds (ppb)						
1.1,1-Trichloroethane	U	5 U	U	5 U	U	5 U
1.1.2.2-Tetrachloroethane	Ŭ	5 U	U	5 Ų	Ŭ	5 U
1,1,2-Trichloroethane	U	5 U	Ü	5 U	Ŭ_	5 Ü
1.1-Dichloroethane	U	5 U	U	5 U	U	5 U
1,1-Dichloroethene	U	5 U	U	5 U	U	5 U
1,2-Dichlorobenzene	NA NA	5 U	NA	5 U	NA NA	5 U
1,2-Dichloroethane	U	5 U	Ü	5 U	U	5 U
1,2-Dichloroethene (total)	3 J	NA	Ū	NA	21	NA
1,2-Dichloropropane	U	5 U	U	5 Ü	Ŭ	3 U
1,3-Dichlorobenzene	NA	5 U	NA	5 U	NA	5 U
1,4-Dichlorobenzene	NA	5 U	NA	5 U	NA	5 U
2-Butanone	Ü	10 U	Ü	10 U	U	10 U
2-Chloroethylvinylether	NA	5 U	NA	5 U	NA_	5 U
2-Hexanone	Ŭ	10 U	U	10 U	Ŭ	10 U
4-Methyl-2-Pentanone	U	10 U	U	10 U	Ü	10 U
Acetone	U	10 U	Ŭ	10 U	Ü	10 U
Benzene	U	5 U	U	5 U	U	5 U
Bromodichloromethane	U	5 U	Ū	5 U	Ü	5 Ü
Bromoform	U	5 U	Ü	5 U	Ų	5 U
Bromomethane	Ü	10 U	U	10 U	U	10 U
Carbon Disulfide	Ū	10 Ų	Ü	10 U	U	10 U
Carbon Tetrachloride	U	5 U	U	5 Ü	Û	5 U
Chlorobenzene	Ü	5 U	Ū	3 U	U	5 U
Chloroethane	U	10 U	U	10 U	U	10 U
Chloroform	U	5 U	U	5 Ü	U	5 U
Chloromethane	U	10 U	Ū	10 U	U	10 U
cis-1,2-Dichloroethene	NA	5 U	NA	5 U	NA	1 J
cis-1,3-Dichloropropene	U	5 U	Ü	5 U	Ü	5 U
Dibromochloromethane	U	5 U	U	5 U	Ū	5 U
Dichlorodifluoromethane	NA	NA	NA	NA	NA	NA
Ethyl Ether	NA	5 U	NA	5 U	NA	5 Ü
Ethylbenzene	U	5 Ü	U	5 U	U	3 U
Hexane	NA	5 U	NA	5 U	NA	5 U
M&P Xylene	NA	5 U	NA	5 U	NA	3 U
Methylene Chloride	U	5 U	U	5 U	U	5 U
O Xylene	NA	5 U	NA	5 U	NA	3 U
Styrene	U	5 U	Ŭ	5 U	U	3 U
tert-Butyl-Methyl-Ether	NA NA	5 U	NA	5 U	NA	5 U
Tetrachloroethene	150	47	U	1 J	13	8
Toluene	Ü	5 U	U	5 U	Ū	5 U
trans-1,2-Dichloroethene	NA	5 U	NA	5 U	NA	5 U
trans-1,3-Dichloropropene	U	5 U	Ü	5 U	U	5 U
Trichloroethene	3 J	1.9 Ј	U	5 U	100	43
Trichlorofluoromethane	NA	5 U	NA	5 U	NA	5 Ü
Vinvi Acctate	Ŭ	10 U	U	10 U	U	· 10 Ü
Vinvl Chloride	Ü	10 U	U	10 U	Ū	10 U
Xviene (total)	Ū	NA	Ü	NA	U	NA

U = Not detected above the detection limit

B = Analyte also detected in the method blank

E = Value exceeds calibration range

NA = Not analyzed

J - Value is an estimate

Table 8

Comparison of Historical Data for Volatile Organic Compounds in Groundwater
Pall Corporation and Photocircuits Corporation
Glen Cove, New York

Sample ID	MW-1P	MW-6P	MW-3	MW-8	MW-9
Site Location	Pall Corp	Pall Corp	Photocircuits	Photocircuits	Photocircuits
Sample Date	October 1995	October 1995	August 1996	August 1996	August 1996
			<u> </u>		
Volatile Organic Compounds (pr					
1,1,1-Trichloroethane	5 U	47	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5 U	8.9	5 Ü	5 U	2 J
1,1-Dichloroethene	5 U	9.2 B	5 Ü	5 U	5 U
1,2-Dichlorobenzene	10 U	10 U	5 U	5 Ü	5 U
1,2-Dichloroethane	5 Ü	5 U	5 U	3 U	5 U
1,2-Dichloroethene (total)	8.6 B	47 B	NA.	NA.	NA
1,2-Dichloropropane	5 Ū	5 Ü	5 U	5 U	5 U
1,3-Dichlorobenzene	10 U	10 U	5 U	3 U	5 U
1,4-Dichlorobenzene	10 U	10 U	5 U	5 U	5 U
2-Butanone	NA	NA	10 U	10 U	10 U
2-Chloroethylvinylether	10 U	10 U	5 Ü	5 U	5 U
2-Hexanone	NA NA	NA	10 U	10 U	10 U
4-Methyl-2-Pentanone	NA	NA	10 U	10 U	10 U
Acetone	NA	. NA	I JB	10 U	2 Љ
Acrolein	20 U	20 U	NA.	NA	NA
Acrylonite	20 U	20 U	NA	NA	NA
Benzene	5 U	5 U	5 U	5 U	5 U
Bromodichloromethane	5 U	5 U	5 U	5 U	5 U
Bromoform	5 Ü	5 Ü	5 U	5 U	5 Ü
Bromomethane	10 U	10 U	10 U	10 U	10 U
Carbon Disulfide	NA	NA	10 U	10 U	10 U
Carbon Tetrachloride	5 U	5 Ū	3 U	3 U	5 U
Chlorobenzene	5 U	\$ U	5 U	5 U	5 U
Chloroethane	10 U	10 Ü	10 U	10 U	10 U
Chloroform	3 U	5 U	5 U	5 U	5 U
Chloromethane	10 U	10 U	10 U	10 U	10 U
is-1,2-Dichloroethene	NA	NA	5 U	5 U	5
is-1,3-Dichloropropene	3 U	5 U	5 U	5 U	5 U
Dibromochloromethane	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	NA NA	NA	NA	NA	NA
Ethyl Ether	NA NA	NA	5 U	5 U	3 U
Ethylbenzene	5 U	5 U	3 U	3 U	5 U
Hexane	NA NA	NA NA	5 U	3 U	3 U
M&P Xviene	NA NA	NA NA	3 U	5 U	3 Ü
Methylene Chloride	3 0	5 U	3 U	3 U	5 U
O Xvlene	NA NA	NA.	3 U	3 Ü	5 U
Styrene	NA NA	NA NA	3 U	3 U	- <u>5 Ü</u>
ert-Butyl-Methyl-Ether	NA NA	NA NA	1 J	1 1	3 U
Tetrachloroethene	5 U	9.8	5 Ü	3 U	3 U
Foluene	5 U	3 U	5 U	3 U	3 U
rans-1,2-Dichloroethene	NA NA	NA NA	3 U	3 U	3 U
rans-1,3-Dichloropropene	5 Ü	3 U	5 U	3 U	3 U
Trichloroethene	3 U	18	5 U	3 U	5 U
Trichlorofluoromethane	5 U	5 U	5 U	5 U	3 U
Vinyl Acetate	NA NA	NA.	10 U	10 U	10 U
Vinyl Chloride	10 U	10 U	10 U	10 U	10 U
Xylene (total)	3 U	3 U	NA.	NA	NA

U = Not detected above the detection limit

B = Analyte also detected in the

method blank

E = Value exceeds calibration range

NA = Not analyzed for this parameter

J - Value is an estimate

Comparison of Historical Data for Volatile Organic Compounds in Groundwater
Pall Corporation and Photocircuits Corporation
Glen Cove, New York Table 8

Sample ID	MW-10	II-MIN	NC-Well
Site Location	Photocircuits	Photocircuit	Photocircuits
Sample Date	August 1996	August 1996	August 1996

Xylene (total)	Visual Chlorida	Vinyl Acctate	Trichlorofluoromethane	Trichloroethene	and-1'2-ruemorobrobera	Tally had been been been been been been been bee	trans. 1 2-Dichloroethere	Toluene	Tetrachloroethene	tert-Butyl-Methyl-Ether	Styrene	O Xylene	Methylene Chloride	M&P Xylene	Hexane	Ethyloenzene	Eusyl Euler	Ethol Ethor	Dichloroduluoromethane	Dibromochloromethane	cis-1,3-Dichloropropene	cis-1,2-Dichloroethene	Chloromethane	Chloroform	Chloroethane	Chlorobenzene	Carbon Tetrachloride	Carbon Disulfide	Bromomethane	Bromoform	Bromodichloromethane	Benzene	Acrylonice	Acrolein	Acetone	4-Methyl-2-Pentanone	2-Hexanone	2-Chloroethylvinylether	2-Butanone	1.4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichloropropane	1,2-Dichloroethene (total)	1,2-Dichloroethane	1,2-Dichlorobenzene	1,1-Dichloroethene	1,1-Dichloroethane	1,1,2-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,1-Trichloroethane
NA	f 6	10 U	3 0	10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Š	20	5 ∪	6	5 0	30	3 0			110		1	ر د	NA	3 U	3 U	\$	10 U	5 U	2 J	S U	5 U	10 U	10 U	3 U	3 U	3 U	AN	NA	. 10 U	10 U	10 U	3 U	10 U	3 U	3 U	S U	NA	2 J	S C	28	100	5 U	5 U	6
NA	10 U	10 U				2 C	3 U	5 U	30	0				•	1	Š	2 0	5 U	3 0	30	\$ 0	30	10 0	\$ 0	10 U	5 U	5 U	10 U	10 ח	3 U	3 U	3 U	NA	NA	2 JB	10 U	10 U	5 U	10 U	S U	\$ C	3 U	NA	30	5 U	\$ C	5 U		3 U	50
NA	10 U	10 0			4 1	5 U	3 U	3 0						4	Su	3 U	5 0	3 U	NA	30	0.0	:	10 0	30	2 J	3.0	30	10 U	10 U	3 U	S U	s U	NA	NA	1 JB	10 U	10 U	50	10 U	5 C	5 U	5 U	NA A	0 0	3 0	30		5 0		16

ŧ

ï

ı

•

ı

ı

Notes:

- U Not detected above

- the detection limit

 J = Value is an estimate

 B = Analyte also detected in the

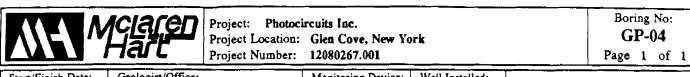
 method blank

 E = Value exceeds calibration range

 NA = Not analyzed for this parameter

ŧ

.


APPENDIX A

SOIL BORING LOGS

	11	MCIACED	Project: Photo	circuits Inc.						ng No: P-01]
	77	Hart	Project Location Project Number:	: Glen Cove, New Yo 12080267.001	OF K				l	1 of 1	
8/6/9	Finish D 6 - 8/6/9	6 Jen Zarnowsky	/Warren, New Jers		Weil Installed: No		•				1
Drilli	ng Conti	ractor/Driller: Dudley Warner		ng Method: Acetate Line	er	_ `	1				
Drilli	ng Equip	oment: Geoprobe	Drilling	Method: Hydraulic Push	Rods		•				
	Borchole 0 feet		ation (ft. MSL)								
Memo							ocation S	iketch			
Depth Below Surface (ft)	Sample Interval Peet of Recovery	Со	Soil Description			PID Reading	Graphic Log		Field No	tes	
	0.9	Grey/black fine to medium	SAND, some fine	gravel, slightly moist, a	sphalt	3.1			<u></u>		†
-		Beige FILL (Fine SAND, Brown/dark brown fine SA	dry) AND with rounded p	ebbles, moist							-
-2	1	NO RECOVERY		<u>, '</u>			· · · ·				-2
_		Black fine SAND with fine	e to medium gravel	and silt, wet		i	 				-
_4		END OF BORING AT 4 I	TET					 			+4
}		END OF BORING AT 4 I	·CC I								-
-											-
ļ	<u> </u>										+
-6	ĺ										-6
-											ŀ
}								1			F
 					Ì						-8
F8											-
}											
}											-10
-10											1
											-
											-
-12											-17
-											t
-		ł.									
ł											ļ
14 WILNGPTO	ļ	<u></u>						L			1-14

N	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			Boring No: GP-02 Page 1 of 1
8/6/96 Drillin Drillin T.D. E	g Equip	6 Dan Baldwin/Warren, New Jersey OVM 580 B No actor/Driller: Sampling Method: Dudley Warner Acetate Liner Oment: Drilling Method: Geoprobe Hydraulic Push Rods		7	
4.0 1emo	feet :			Location Sketch	
Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
	3.1	Concrete fragments, dry	1.7	000	
		Medium brown silty fine to medium SAND, trace fine gravel, medium dense, damp			
		Tan fine SAND, lit to some medium sand, well sorted, loose, damp			
		Black/dark grey fine sandy SILT, trace coarse gravel, firm, wet			
-		Same as above, saturated END OF BORING AT 4 FEET			
	ļ				
.					

	11	MCIACED	Project: Photocircuits Inc.	-		Boring No: GP-03	
	77	Hart	Project Location: Glen Cove, New York Project Number: 12080267.001			Page 1 of 1	
8/6/9	Finish C 6 - 8/6/9	06 Dan Baldwin/W	Monitoring Device: Well In	stalled:			
Drilli	ng Cont	ractor/Driller: Dudley Warner	Sampling Method: Acetate Liner		N		
Drilli	ng Equip		Drilling Method: Hydraulic Push Rods		 ‡		
	Borehol		tion (ft. MSL)		A		
Mem	o: 				Location Sketch		
Depth Below Surface (ft)	Sample Interval Peet of Recovery	Col	Soil Description or, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes	
 -	1.4			3.1	<u> </u>		_
<u>-</u>		Dark grey fine SAND, litt.	medium to coarse sand, trace fine gravel, little silt,			-	-
-2	0.9	Same as above, moist to w	·	5.9			-2
-							- -
-4	 I	Same as above, saturated		∤			-4
-		END OF BORING AT 4 F	£1			}	
-							-
-6						-	-6
						į	
-8							-8
-						-	-
-10						-	-10
}						}	
							-
-12						}	-12
						ŀ	
						t	-
,,							-14
WILNGFFED	<u> </u>						14

8/6/9	Finish I 6 - 8/6/9	96	Geologist/Office: Dan Baldwin/Warren, Ne	w Jersey	Monitoring Device: OVM 580 B	Well Installed	1:			
Drilli	ng Cont	ractor/I	Driller: dley Warner	Samplin	g Method: Acetate Line	,	1	4		
Drilli	ng Equi	pment:		Drilling	Method:		— <u>.</u>	L		
T.D.	Borehol		Geoprobe Fround Surface Elevation (ft. 1	MSL)	Hydraulic Push I	Rods				
6. Memo	0 feet									
Wienk					-			ocation	Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery		Soil D Color, Textur	escription e, Moistur		-	PID Reading	Graphic Log	Field Notes	
	1.5	NO R	ECOVERY			-,-=	0.7			十
		White	FILL (Fine to medium GRAV)	EL, some	fine sand, dry)			7.		}
_		Black	fine SAND, trace fine gravel,	moist					İ	-
-		ļ					Ì			}
-2	.	NO P	ECOVERY		,		0			-2
	1	NOR	ECOVERI				ľ			
				<u></u>						L
		Black	fine SAND, trace fine gravel,	noist						Γ
							1			
-4	-2	Black	/brown silty SAND, little fine g	ravel, moi	ist		0	HIII		-4
- 1		Tan/g	rey fine to coarse SAND, some	fine grave	el, medium dense, wet					ŀ
-										-
-							i			}
-6	<u> </u>		OC DODUNG A THE CENTER							16
		END	OF BORING AT 6 FEET							
-										Ī
−8										-8
-										Ì
-										-
-									:	}
-10										-10
_										-
_										L
_,,										L.,
-12										-12
-							,			+
-										}
14								l		L14

K	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			G1	ng No: P-05	
	/Finish I 96 - 8/6/	Date: Geologist/Office: Monitoring Device: Well Installed:			Tage		
		ractor/Driller: Sampling Method: Dudley Warner Acetate Liner	N				
Drill	ing Equi	oment: Drilling Method:	1				
	Borehol	Geoprobe Hydraulic Push Rods e: Ground Surface Elevation (ft. MSL)					
Mem	.0 feet		+				
Depth Below Surface (A)	Sample laterval Peet of Recovery	Soil Description Color, Texture, Moisture, Etc.	Reading Graphic Log	a Sketch	Field No	otes	
<u> </u>	3	Medium brown fine sandy SILT, roots, dry	• गा	 			+
t							<u> </u>
†		Medium/dark brown silty fine SAND, some medium to coarse sand, trace fine gravel, medium dense, moist to damp					
<u> </u>							İ
-2		Dark brown fine sandy SILT, moderately plastic, wet		1			-2
		Same as house astrophy					
-4		Same as above, saturated	_{]]]]				_[_
		END OF BORING AT 4 FEET					
-							L
}							-
-6							-6
}	1		1				-
-							-
}							-
-8							-8
}							ł
f							-
<u> </u>							ł
-10							-10
<u> </u>							T
-12							_12
["							'
1							
}							

	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			Boring No: GP-06 Page 1 of 1
8/7/9 Drilli Drilli T.D.	ng Equip Borehol 0 feet	Dan Baldwin/Warren, New Jersey OVM 580 B No	N A Location		
Depth Below Surface (ft)	Sample interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
	1.8	Medium brown to black fine to medium SAND, little silt, little fine gravel, moist	0		
-4	1.5	Tan/brown fine to medium SAND, trace coarse sand, saturated	0		
-6		Tan/rust fine to coarse SAND, little fine gravel, saturated END OF BORING AT 6 FEET			-
- - - -8					-8
- - - -10					- 1·
- - - -12					- - -
- -					

	GE	OPROBE SOIL BORING	LOC	3		
ME	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001					
Drilling Equ T.D. Boreho 4.0 feet Memo:	06 Dan Baldwin/War ractor/Driller: Dudley Warner oment: Geoprobe	Sampling Method: Acetate Liner Drilling Method: Hydraulic Push Rods		N		
Depth Below Surface (R) Sample Interval Pect of Recovery	Color	Soil Description Texture, Moisture, Etc.	PID	Graphic Log	Field Notes	
2	trace silt, moist to damp Medium/dark brown fine SAI to wet	ND, little medium to coarse sand, trace fine gravel, ND, some silt, little coarse sand and fine gravel, damp	0			
6	END OF BORING AT 4 FEE	T .				
8						
-12					·	

Λ	14	Mclaren Hart	' 1 -	cation:	rcuits Inc. Glen Cove, New Yo 12080267.001	rk			Boring No: GP-08 Page 1 of 1
8/7/9	Finish D 6 - 8/7/9 ng Cont	Dan Baldwin/ ractor/Driller:	Warren, New		Monitoring Device: OVM 580 B Method:	Well Installe No		N	
Γ. D .	ng Equip Borehole	Geoprobe			Acetate Liner Method: Hydraulic Push I			•	
Memo):							Location Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	c	Soil Descolor, Texture,	•	e, Etc.		PID	Graphic Log	Field Notes
	3.0	Medium brown fine SAN damp Tan/rust fine SAND, trac				•	0		
-2		Dark brown fine sandy S	ILT, trace med	lium san	d to fine gravel, roots,	damp			

Same as above, trace to little clay

END OF BORING AT 10 FEET

-10

-12

Same as above, rust mottles, damp to wet

Light grey CLAY, slightly plastic, dry to slightly damp

Rust/tan fine to medium SAND, little coarse sand to fine gravel, saturated

Λ	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001		Boring No: GP-09 Page 1 of 1
8/7/9 Drilli	Finish D 6 - 8/7/9 ing Conti	6 Dan Baldwin/Warren, New Jersey OVM 580 B No actor/Driller: Sampling Method: Dudley Warner Acetate Liner	N.	
T.D.	Borchole 0 feet	Geoprobe Hydraulic Push Rods	Location Sk	etch
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	Graphic Log	Field Notes
-4	2.6	Brown/grey fine SAND, some silt, little medium to coarse sand, trace fine gravel, damp Grey fine to medium SAND, little to some coarse sand, trace fine gravel, moist Grey CLAY with rust mottles, slightly plastic, damp Rust/tan fine SAND, little to some medium to coarse sand and fine gravel, moist to wet.		
		END OF BORING AT 7 FEET		
-10				
-12				

MY Melaren Hart	Project: Photocircuits Inc. Project Location: Glen Cove, New York	Boring No: GP-10				
TAN MAIL	Project Number: 12080267.001	Page 1 of	1			

Start/ 8/7/9	Finish D 6 - 8/7/9	ate: Geologist/Office: Moni 6 Dan Baldwin/Warren, New Jersey OV	toring Device: M 580 B	Well Installed No				
Drilli	ng Conti	actor/Driller: Sampling Metho Dudley Warner				l		
Drilli	ng Equip	ment: Drilling Method	i: ydraulic Push R		1	•		
	Borchole .0 feet		, di 44-e 1 di 1					
Memo					7.			
3 🔾	3 E			 1	7	ocation Sk	etch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.		į	PID Reading	Graphic Log	Field Notes	
	3.6	Brown/tan fine SAND, little to some silt, trace coarse s	sand and gravel,	dry to damp	0			-
}								
-2							}-	2
							ŀ	
					1		Ţ	
4		Rust/tan fine to medium SAND, some coarse sand and	fine gravel, dam	מו			[_	4
}	3.5		3 ,		0			
_							-	
<u> </u>			-		-		+	
-6							<u> </u> -	6
					į			
-8	1.3	Same as above, saturated			0		-1	8
}					Ì			
-							<u> </u>	
-10								10
-		END OF BORING AT 10 FEET					ŀ	
-							+	
}							f	
-12	İ						. -1	12
					į			
14								14

X	1-4	Project: Photocircuits Inc. Project Location: Glen Cove, New York			GP-11	
		Project Number: 12080267.001			Page 1 of 1	
8/19/9	Finish D 96 - 8/1! ng Conti	0/96 Dan Baldwin/Warren, New Jersey OVM 580 B No actor/Driller: Sampling Method:		N		
Drillir	ng Equip	oment: Drilling Method:		<u> </u>		
	Borcholo O feet	Geoprobe Hydraulic Push Rods e: Ground Surface Elevation (ft. MSL)		<u> </u>		
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Cocation Sketch	Field Notes	
-2	2.4	Concrete fragments Brown/grey fine SAND, trace to little clay and silt, little medium to coarse sand, damp to moist	39.3			-2
-4	1.2	Grey/brown silty clayey fine SAND, little medium sand, damp to wet Same as above, wet to saturated	26.6			-4
-6		END OF BORING AT 6 FEET		(//)		-6 -
-8	-					-8
-10						-1 -
-12						-1
14 WINOFFED						_1

A	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			GP-12 Page 1 of 1
8/19/9 Drillin Drillin T.D. 1 8.0	ig Equip Borehole) feet	Oate: Geologist/Office: Monitoring Device: Well Installe 9/96 Dan Baldwin/Warren, New Jersey OVM 580 B No Pactor/Driller: Sampling Method: Matt Ruf Acetate Liner Drilling Method: Geoprobe Hydraulic Push Rods		N	
Memo				ocation Sketch	
Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID Reading	Graphic Log	Field Notes
2	3.4	Tan/brown/grey fine SAND, some medium to coarse sand and fine gravel, damp to moist Brown/grey silty clayey fine SAND, little medium to coarse sand and fine gravel, moist to wet Same as above, tan/grey, wet Dark brown silty fine to medium SAND, dry to damp Tan/brown fine to coarse SAND and fine to medium GRAVEL, saturated	71		
3	L	END OF BORING AT 8 FEET	-	0	
0					
12					
14					

		MCIACO Project: Photocircuits Inc.		Boring No: GP-13
	77	Project Location: Glen Cove, New York Project Number: 12080267.001		Page 1 of 1
8/19/	Finish D 96 - 8/1	/96 Dan Baldwin/Warren, New Jersey OVM 580 B No		
1		actor/Driller: Sampling Method: Matt Ruf Acetate Liner	N A	
Ì	ng Equit	Geoprobe Hydraulic Push Rods	+	
	Borehol O feet	:: Ground Surface Elevation (ft. MSL)	 	
Memo	o:		Location Sketch	
Depth Below Surface (ft)	Sample Interval	Soil Description Color, Texture, Moisture, Etc.	Graphic Log	Field Notes
	2.1	Grey/tan/black fine SAND, some medium to coarse sand and fine gravel, wet 259		
F				ţ
<u> </u>				1
[Ī
-2				[*
				[
				[
-4				
	4	Same as above, saturated		
_		Salis as asoft, salis as		
				Į
-6				ļ.
-				
-				-
-				}
-8		END OF BORING AT 8 FEET		
}				}
-				-
-				-
-10				-1
}				ţ
-				F
				ţ
-12				-1
				<u> </u>
				ſ
14				

K	14	MCIACED		: Glen Cove, New Yo	ork			Boring N GP-14
E V	Finish C	Date: Geologist/Office:	Project Number:		Well Installe			Page 1 c
8/19/9	6 - 8/1	9/96 Dan Baldwin/V	Varren, New Jersey		No No	XI:		
		ractor/Driller: Matt Ruf		ng Method: Acetate Liner	r		N	
Drillin	ig Equi	Geoprobe		g Method: Hydraulic Push I	Rods		†	
	Borchol) feet	e: Ground Surface Ele	vation (ft. MSL)				A	
Memo							Location Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Co	Soil Description			PID	90	Field Notes
	1.8	Tan/black/brown fine SA to moist	ND, some medium to	coarse sand, little fine	gravel, damp	15.4		
.								
-2				•				
.		i.						
Ì								
4	+4	Tan fine to medium SANI), well sorted, trace	coarse sand, wet		14.7		
		Black/brown fine sandy S	LT to silty SAND, to	race medium to coarse s	and, mo ist			
6								
		Black fine to coarse SANI	and fine to medium	GRAVEL, saturated		1	•	
							0	
8	•	END OF BORING AT 8 I	EET					
10								
12								
	ļ							
.								
- 1						1	1 1	

	14	Boring No: GP-15			
		Project Number: 12080267.001			Page 1 of 1
8/19/	Finish E 96 - 8/1	9/96 Dan Baldwin/Warren, New Jersey OVM 580 B No	ed:		
1		ractor/Driller: Sampling Method: Matt Ruf Acetate Liner		N	
Drilli	ng Equip	pment: Drilling Method: Geoprobe Hydraulic Push Rods		†	
	Borchol O feet	e: Ground Surface Elevation (ft. MSL)		Ř	
Memo				Location :	Sketch
Depth Below Surface (ft)	Sample Interval	Soil Description Color, Texture, Moisture, Etc.	PID Reading	200	Field Notes
2 %				Ö	
-2	.1.5	Grey/tan/brown fine to medium SAND, some coarse sand and fine gravel, damp			-2
-		Grey/brown silty clayey fine SAND, little medium to coarse sand, moist	7		
-4	1	Same as above, saturated	9.9		-4
-6		END OF BORING AT 6 FEET	_	rzi i	6
-8					-8
}			ļ		-
-10 -					-10
-					<u> </u>
- -12					-12
- 1					-
14_					-14

K	E	Mciacen	Project: Photoc Project Location:	circuits Inc. Glen Cove, New York				Boring No: GP-16	
		<u>, nait</u>	Project Number:					Page 1 of 1	
8/19/	Finish I 96 - 8/1	9/96 Dan Baldwin/W	arren, New Jersey	Monitoring Device: W OVM 580 B	Veil Installed: No				
Drilli	ng Cont	ractor/Driller: Matt Ruf	Samplin	g Method: Acetate Liner		Ņ			
Drilli	iling Equipment: Geoprobe Drilling Method: Hydraulic Push Rods								
	. Borehole: Ground Surface Elevation (ft. MSL) 6.0 feet								
Memo			·····		· · · · · · · · · · · · · · · · · · ·	Location	Sketch		
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Col	Soil Description Color, Texture, Moisture, Etc.						
	1.9	Grey/tan fine to medium S	AND, little coarse s	and and fine gravel, dry	44.	5			+
i									
-2				•					-2
•		Same as above, black, satu	rated				1		Ì
-									T
-4									
	0.3				44	5			
-									
									-
-6	<u> </u>	END OF BORING AT 6 F	EET				<u> </u>	-	16
									-
-									+
									+
-8									-8
_	•								
-10									-10
-									-
									-
-12									-12
									-
-									-
									Ì
14 WILNGITED						<u> </u>	L		<u> </u> -14

Project: Photocircuits Inc.

Project Location: Glen Cove, New York

Boring No:
GP-17

Project Number: 12080267.001 Page 1 of 1 Start/Finish Date: Geologist/Office: Monitoring Device: Well Installed: Dan Baldwin/Warren, New Jersey 8/19/96 - 8/19/96 OVM 580 B No Drilling Contractor/Driller: Sampling Method: Matt Ruf Acetate Liner Drilling Equipment: Drilling Method: Geoprobe Hydraulic Push Rods T.D. Borehole: Ground Surface Elevation (ft. MSL) 8.0 feet Memo: Sample Interval Feet of Recovery Depth Below Surface (ft) PID Reading Field Notes Soil Description Color, Texture, Moisture, Etc. 2.4 Black sandy FILL Tan fine SAND, well sorted, little to some medium to coarse sand, damp 1.8 13.2 Grey/brown fine to coarse SAND, little gravel, saturated **END OF BORING AT 8 FEET** -10 -10 -12 12

	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001	,		Boring No: GP-18 Page 1 of 1
8/19/ Drilli	/Finish D /96 - 8/19 ing Conti	/96 Dan Baldwin/Warren, New Jersey OVM 580 B No sector/Driller: Sampling Method: Matt Ruf Acetate Liner	_	N	
T.D.	Borehole .0 feet	Geoprobe Hydraulic Push Rods		Location Sketch	
Depth Below Surface (ft)	Sample Interval Peet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID Reading	Graphic Log	Field Notes
	2.8	Asphalt fragments Tan/light rust fine SAND, little to some medium to coarse sand and fine gravel, damp	0		
-2 -					 - -
-4 -	4		0		
- -6					
-8	1.6	Tan/light rust very fine to fine SAND, trace to little medium to coarse sand, damp	0		-
		to most			
-10 -	1.5	Tan/rust fine to coarse SAND, well sorted, saturated	1		•
-12 -		END OF BORING AT 12 FEET			

K	E	Project Loca	notocircuits Inc. tion: Glen Cove, New York			Boring No: GP-19
		Project Num	ber: 12080267.001			Page 1 of 1
8/19/	/Finish I 96 - 8/1	0/96 Dan Baldwin/Warren, New Je	rsey OVM 580 B	ell Installed: No		
Drilli	ing Cont	eactor/Driller: San Matt Ruf	mpling Method: Acetate Liner		N	
	ng Equi	oment: Dr Geoprobe	illing Method: Hydraulic Push Rods	5	+	
12	Borchol .0 feet	e: Ground Surface Elevation (ft. MSL			A	
Mem					Location Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Descri Color, Texture, M		PID	Graphic Log	Field Notes
	2.9	FILL, fragments		0		
		Tan fine SAND, some medium to coarse s gravel, dry to damp	and, little fine gravel, trace med	ium		ļ
-						}
						ŀ
2			•			-
						1
						ţ
4	4	Tan/rust fine SAND, some very fine sand	, trace medium to coarse sand, tr	ace fine 0		<u> </u>
		gravel, damp				}
						_
5				Ì		
						ļ
8	L .					
	2			2.9		Ĺ
						ſ
!						
10	-2	Tan/rust fine to medium SAND, little coar	se sand, well sorted, saturated	0		ŀ
i				1		}
						1
						Į
12						
12		END OF BORING AT 12 FEET				
						ľ
,						}
	t I			Ī	1 1	

	14	Mclaren Hart	Project: Photocircuits Inc. Project Location: Glen Cove, New Project Number: 12080267.001	York			Boring No: GP-20
8/19/	Finish I 96 - 8/1	9/96 Dan Baldwin/\	Varren, New Jersey OVM 580 B	e: Well Installed: No			go i oi i
1		ractor/Driller: Matt Ruf	Sampling Method: Acetate Li	ner	N		
L	ng Equi	Geoprobe	Drilling Method: Hydraulic Pus	h Rods	Ħ		
	Borchol .0 feet	e: Ground Surface Ele	ration (ft. MSL)		J		
Mem	0:				Location :	Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Co	Soil Description lor, Texture, Moisture, Etc.	e Gira	Graphic Log	Fie	ld Notes
	3.0	Asphalt fragments		0	200		
		Tan/light rust fine SAND	little medium to coarse sand and fine gra	vel, dry to			
-2							
-							 -
-4	4			0			
-6		Tan/rust fine to medium S	AND, some coarse sand, little fine gravel	, damp			
 - 							-
-8 -	2	Same as above, trace clay		0			
-10	1	Tan/rust fine to coarse SA	ND, little fine gravel, saturated	0			
-							
-12	J	END OF BORING AT 12	FEET				,
<u> </u>							-

Λ	14	Mclaren Hart	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			Boring No: GP-21 Page 1 of 1
8/19/ Drilli Drilli T.D.	ng Equip Borchol	9/96 Dan Baldwin/W ractor/Driller: Matt Ruf pment: Geoprobe	Varren, New Jersey Monitoring Device: Well Instance OVM 580 B No Sampling Method: Acetate Liner Drilling Method: Hydraulic Push Rods ation (ft. MSL)		N	
Memo	.0 feet :				Location	Sketch
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Col	Soil Description or, Texture, Moisture, Etc	PID	90	Field Notes
	3.2		ium to coarse sand and fine gravel, damp	0		-2 -2 -4 -4
-10	2	Same as above, saturated		0		-1: -1: -
-12		END OF BORING AT 12	FEET			-14

	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			Boring No: GP-22 Page 1 of 1
	Finish C	Date: Geologist/Office: Monitoring Device: Well Insta	iled:		1 2 2 4 4
	96 - 8/20	0/96 Dan Baldwin/Warren, New Jersey OVM 580 B No ractor/Driller: Sampling Method:			
		Matt Ruf Acetate Liner	'	1	
Drillin	ng Equip	pment: Drilling Method: Geoprobe Hydraulic Push Rods	-	-	
	Borcholo O feet			ì	
Memo				ocation Si	ketch
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
	2.9	Asphalt fragments			
		Tan/light rust fine SAND, trace to little medium to coarse sand, dry to damp	7		
		Tan/rust very fine sandy SILT, dry to damp	-		
2		Tan/rust fine to medium SAND, some coarse sand, little fine gravel, damp			
.					
•	3.8		0		
	1				
	ł		Ì		
	}				
5	1		}		
İ					
					ŀ
			ĺ		ļ
,	1.8				
	1.0		١		į
-					
			Ì		
			l		
LO	1.5		0		
		Same as above, saturated			
			Ì		
12	1	END OF BORING AT 12 FEET	_		
					}
ł					}
					}
,,					
RNGPPED					

W	4	Project	Photocircuits Inc. Location: Glen Cove, New York Number: 12080267.001			Boring No: GP-23 Page 1 of 1
Start/Fini 8/20/96 - Drilling C Drilling F T.D. Bore 12.0 fe Memo:	8/20. Contra Equipa	/96 Dan Baldwin/Warren, Ne actor/Driller: Matt Ruf ment: Geoprobe	Sampling Method: Acetate Liner Drilling Method: Hydraulic Push Rods		N	
Surface (ft)	Fod of Recovery		escription e, Moisture, Etc.	PID	Graphic Log	Field Notes
2	1_	Asphalt fragments Tan/rust fine to medium SAND, little	e to some coarse sand and fine gravel, damp	0		

-1.7 Same as above, damp to moist

END OF BORING AT 12 FEET

-10

-12

Tan/rust very fine to fine SAND, trace medium to coarse sand and fine gravel, moist

Tan/light rust fine to coarse SAND, little to some fine gravel, wet to saturated

0

1114	Mclaren Hart	Pro Pro
------	-----------------	------------

Project: Photocircuits Inc.

Project Location: Glen Cove, New York

Project Number: 12080267.001

Boring No: GP-24 Page 1 of 1

Geologist/Office: Start/Finish Date: Monitoring Device: Well Installed: Dan Baldwin/Warren, New Jersey 8/20/96 - 8/20/96 OVM 580 B No Drilling Contractor/Driller: Sampling Method: Acetate Liner Drilling Equipment: Drilling Method: Geoprobe Hydraulic Push Rods Ground Surface Elevation (ft. MSL) T.D. Borehole: 12.0 feet Memo: Location Sketch

				ocation	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
	2.7	Concrete fragments	4	مر	
ļ		Brown/tan/rust fine to coarse SAND, some fine gravel, damp	\dashv	0.0	
			-		
			- 1		
F					
-2	1	. (1		
Γ*	ı		l		
 	ı		- {		
			1		
			-		
┝	ì		-		!
-4	L .				
	4		0	 	
† 1	1		Ì		
- 1			- [
[
-6					
1 1					
	ľ		1		
-					:
.					
	1				
⊢ 8 }	1.7	Grey/tan/rust fine to medium SAND, some coarse sand, little fine gravel, damp	0		
l l					<u> </u>
1 1					
├	1				
<u> </u>			1 1		}
1					ļ
-10	1.6	Same as above, wet	0		!
} [•
L					
		Tan/light rust very fine to fine SAND, saturated	- (i		
<u>ነ</u>	ı	Tan/rust fine to coarse SAND, little fine gravel, saturated	i		
-12	<u> </u>	l			
		END OF BORING AT 12 FEET			
[
- I					
WENOFTED	L			لــــا	L

	A A	MCIACED Project: Photocircuits Inc.				Boring No:	
	١Ę٠	Project Location: Glen Cove, New York Project Number: 12080267.001				GP-25 Page 1 of	1
8/20/	Finish I 96 - 8/2 ng Cont	eate: Geologist/Office: Monitoring Device: Well Installed		N		Tage T OI	=
	ng Equip	oment: Drilling Method: Geoprobe Hydraulic Push Rods		+			
	.0 feet	C. Ground Surface Dievation (it. 1452)		Location	Sketch		
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID Reading	1 20		Field Notes	
	2.4	Light brown fine to medium SAND, some coarse sand and fine gravel, dry to damp	0		-		
•							
2							
4	3.6		0				
5							
,	1.8	Tan/rust fine to medium SAND, trace to little coarse sand, trace fine gravel, damp	0				
ιο	1.8		0				
		Same as above, saturated					
12		END OF BORING AT 12 FEET					_
						•	

	14	Project: Photocircuits Inc. Project Location: Glen Cove, New York Project Number: 12080267.001			GP-26 Page 1 of 2
8/20/ Drilli Drilli T.D.	ng Equip Borehol .0 feet	0/96 Dan Baldwin/Warren, New Jersey OVM 580 B No ractor/Driller: Sampling Method: Acetate Liner pment: Drilling Method: Hydraulic Push Rods		N A	
Memo): 			Location Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
-2 -4 -6	3.2	Medium brown fine SAND, little medium to coarse sand, trace fine gravel, damp . Tan/light rust fine SAND, little medium to coarse sand, trace fine gravel, moist	56.7		-4 -6
-8 -	3.1		206		-8 - - -10
-12	1.5	Medium brown SILT, damp to moist Tan/light rust fine SAND, little medium to coarse sand, trace fine gravel, moist Medium brown SILT, damp to moist	186		-12
14		· · · · · · · · · · · · · · · · · · ·	l	[11111]	

Boring No: Project: Photocircuits Inc. **GP-26** Project Location: Glen Cove, New York Project Number: 12080267.001 Page 2 of 2 Depth Below Surface (ft) Sample Interval Feet of Recovery Field Notes Soil Description Color, Texture, Moisture, Etc. Tan very fine to fine SAND, damp Medium brown SILT, damp to moist Tan very fine to fine SAND, damp Medium brown SILT, damp to moist Tan very fine to fine SAND, damp Medium brown SILT, damp to moist -16 Tan very fine to fine SAND, damp Tan very fine to fine SAND, dry to damp **-**1.3 56 -20 -20 Medium/light brown very fine to fine SAND, little medium sand, saturated 46 - 22 **END OF BORING AT 22 FEET** -24 -26 -28

Project: Photocircuits Inc.

Project Location: Glen Cove, New York

Project Number: 12080267.001

GP-27

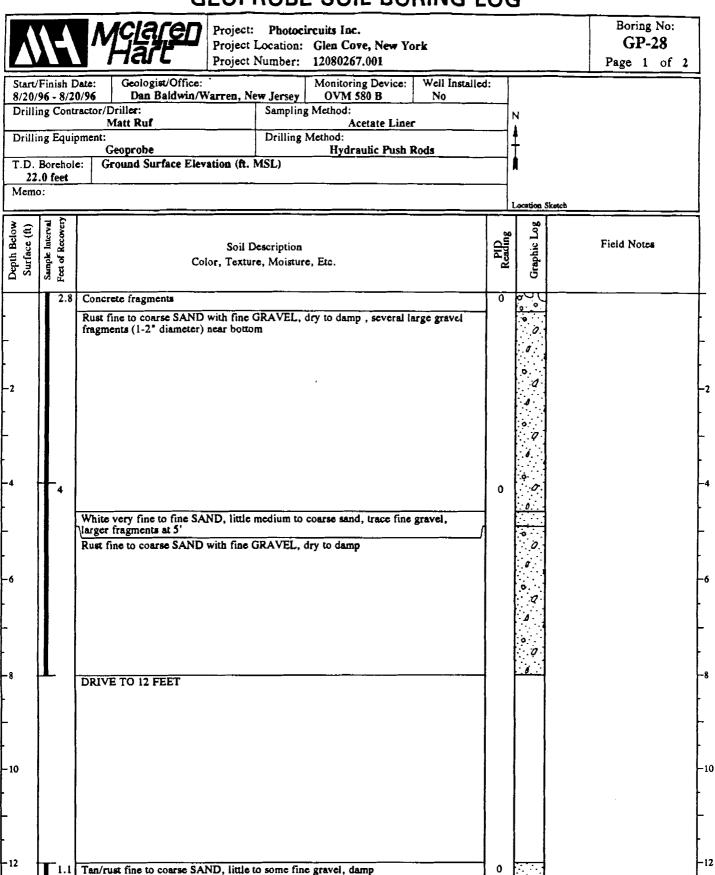
Page 1 of 2

Boring No:

Start/Fini: 8/20/96 -	8/20	/96 Dan Baldwin/Warren, Ne			Well Installed: No			
Drilling C	Contre	actor/Driller: Matt Ruf	Sampling	g Method: Acetate Liner		N	l	
Drilling F	Equip	ment: Geoprobe		Method: Hydraulic Push F			-	
T.D. Bore 24.0 fe		: Ground Surface Elevation (ft. 1	MSL)					
Memo:						L	ocation S	Sketch
Depth Below Surface (ft) Sample Interval	Peet of Recovery	Soil D Color, Textur	escription e, Moistur			PID Reading	Graphic Log	Field Notes
	3 -3.8	Medium/light brown fine SAND, little damp Tan/rust fine to medium SAND, som				0	5	
-12	1.3					0		

MCIAGED Hart

Project: Photocircuits Inc.


Project Location: Glen Cove, New York

Project Number: 12080267.001

Boring No: GP-27

Page 2 of 2

DRIVE TO 20 FEET DRIVE TO 20 FEET 1 Tan/rust fine to medium SAND, little coarse sand and fine gravel, damp 1 Medium brown SILT, some clay, trace coarse sand, damp SILT as above, saturated 2* lens of fine to medium SAND, little coarse sand and fine gravel 5* lens of SAND 1* leas of SAND 1* leas of SAND END OF BORING AT 24 FEET	Depth Below Surface (ft) Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes	
Tan/rust fine to medium SAND, little coarse sand and fine gravel, damp O Medium brown SILT, some clay, trace coarse sand, damp SILT as above, saturated 2* lens of fine to medium SAND, little coarse sand and fine gravel 5* lens of SAND 1* lens of SAND END OF BORING AT 24 FEET	- - -16 - - -					-16
2" lens of fine to medium SAND, little coarse sand and fine gravel 5" lens of SAND 1" lens of SAND END OF BORING AT 24 FEET	- -		0			-20
END OF BORING AT 24 FEET	-22 -1.2	SILT as above, saturated 2" lens of fine to medium SAND, little coarse sand and fine gravel	0			-22 -
-26	-24					-24
	-					-26 - - - -28
-28 -30	-					-30

Melaren Hart

Project: Photocircuits Inc.

Project Location: Glen Cove, New York

Project Number: 12080267.001

Boring No: GP-28

Page 2 of 2

		3 / 104 0	Project Number: 12080267.001				Page 2 of 2	
Depth Below Surface (ft)	Sample interval Feet of Recovery		Soil Description lor, Texture, Moisture, Etc.	GIA "	Neading	Graphic Log	Field Notes	
_		DRIVE TO 18 FEET						
-16								-16
-18	1.3	Tan/rust fine SAND, some	medium sand, trace coarse sand and fine gravel	, damp 0				-18
-			clay, trace to little sand, damp					-
-20	2.0	Tan/rust fine to medium S.	AND, little to some coarse sand, damp	0				-20
-22 -		END OF BORING AT 22	FEET					22
-24								-24
-26								-26
-								- - -
-28 -								-28
-30 -								-30
WILNGFFED								1_

A	14	Project	et: Photocircuits Inc. et Location: Glen Cove, New York et Number: 12080267.001			Boring No: GP-29 Page 1 of 2
8/21/9	Finish D 6 - 8/2	1/96 Dan Baldwin/Warren,		stalled:		
Drillin	ig Cont	ractor/Driller: Matt Ruf	Sampling Method: Acetate Liner		N	
Drillir	g Equip	pment: Geoprobe	Drilling Method: Hydraulic Push Rods		•	
	3orehol 0 feet		. MSL)		1	
Memo					F 61	
3 🔿	7 S				Location Sketch	
Depth Below Surface (ft)	Sample Interval Feet of Recuvery		Description ture, Moisture, Etc.	PID Reading	Graphic Log	Field Notes
	2.5	Tan/rust fine to medium SAND, se	ome coarse sand and fine gravel, damp	0		
	Î					
. [
}						
-	╀₄│					
1		Lens of medium brown clayey SIL Lens of SILT	T, little sand, damp			
[DRIVE TO 14 FEET				
İ						
]]	
0						
.2				ĺ	1	

Project: Photocircuits Inc.
Project Location: Glen Cove, New York

Project Number: 12080267.001

Boring No: **GP-29**

Page 2 of 2

	Project Number: 12080267.001			Page 2 of 2
Depth Below Surface (ft) Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes
1.5	Tan/light rust fine SAND, little medium to coarse sand and fine gravel, dry to damp	1		
16	DRIVE TO 20 FEET			
18				
20 1.7	Tan/light rust fine SAND, little medium to coarse sand and fine gravel, dry to damp	0		
1.5	Tan fine SAND, little medium sand, wet to saturated	4.7		
24	END OF BORING AT 24 FEET			
26				
28				
30				
WENCHTON				

K	1-1	Project: Photocircuits Inc. Project Location: Glen Cove, New York			Boring No: GP-30		
		Project Number: 12080267.001			Page 1 of 2		
Start/ 8/21/	Finish I 96 - 8/2	Date: Geologist/Office: Monitoring Device: Well Install 1/96 Dan Baldwin/Warren, New Jersey OVM 580 B No	led:			7	
		ractor/Driller: Sampling Method: Matt Ruf Acetate Liner		N			
Drilli	ing Equi	pment: Drilling Method:		<u> </u>			
T.D.	Borehoi	Geoprobe Hydraulic Push Rods c: Ground Surface Elevation (ft. MSL)					
	.0 feet						
Mene				Location Sketch			
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes		
	2	Concrete fragments	533	600		+	
-		Medium/dark brown fine SAND, little silt, little medium to coarse sand and fine	-	9		}	
-		gravel, damp				F	
ŀ						-	
-2		·				-2	
		Tan fine SAND, little medium to coarse sand, trace fine gravel, damp					
Γ						Γ	
Ī						1	
-4	4		> 100			-4	
}						 	
-						-	
-						}	
-6						-6	
		Tan very fine to fine SAND, trace medium to coarse sand and fine gravel, damp				-	
			İ			L	
-8	-	DRIVE TO 12 FEET				-8	
						†	
-	<u>'</u>					 	
-			ļ			ł	
-10			İ			-10	
	•		İ			ł	
-						-	
				1 1		-	
-12		To Anna Canada C		<u></u>		-12	
	1.3	Tan/rust fine to medium SAND, little coarse sand, trace fine gravel, damp	>3000				
Ĺ							
Ī.		Medium brown SILT, damp					
14 WENGPFED							

MCIAGED Hart

Project: Photocircuits Inc.

Project Location: Glen Cove, New York

Project Number: 12080267.001

Boring No: GP-30

Page 2 of 2

		Froject Number. 12080207.001			rage 2 of 2	į
Depth Below Surface (ft)	Sample Interval Feet of Recovery	Soil Description Color, Texture, Moisture, Etc.	PID	Graphic Log	Field Notes	
		DRIVE TO 16 FEET	+			
-						_
						ŀ
- 16	1.0	Medium brown SILT, trace sand, damp	>300			-16
-		Tan/light brown very fine to fine SAND, trace to little silt, damp to moist		Щ		_
						}
- 18	-	DRIVE TO 20 FEET				-18
-		·				_
						-
-20	2	Tan/light brown very fine to fine SAND, trace to little silt, damp to moist	>400			- 20
-						-
	İ					
-22	2	Tan/rust fine to medium SAND, trace coarse sand, damp to moist	> 150			-22 -
- ,						_
					y:	-
-24	1.5	Medium brown very fine to fine SAND, little to some silt, saturated	350			-24 -
•						_
	İ					-
-26		END OF BORING AT 26 FEET				-26 -
-						-
					·	- 20
-28	l					-28 -
-						_
30				1		- -30
-30		£				-3U -
WILHOFFED						-