Prepared for:

Photocircuits Corporation
31 Sea Cliff Avenue
Glen Cove, New York 11542

Prepared by:

McLaren/Hart, Inc.
28 Madison Avenue Extension
Albany, New York 12203

September 28, 1998

REMEDIAL INVESTIGATION REPORT 31 AND 45A SEA CLIFF AVENUE SITES PHOTOCIRCUITS CORPORATION GLEN COVE, NEW YORK

Pall Letter Bullets - proposed general answers

Bullet One - lack of downgradient potentiometric and water quality data: Based on the results of the pilot study and the the data contained in the 2nd quarter 2003 report, we believe that hydraulic control is being achieved in the area of the hydraulic control wells. Collection of potentiometric and water quality downgradient would also be desirable, and perhaps it could be arranged with Pall's cooperation. Note that it may be some time before groundwater quality downgradient of the Hydraulic Control system improves.

Bullet Two - lack of cross gradient data: Collection of cross - gradient data to the east is inhibited by the arterial highway, and to the west by the photocircuits main building in the main contaminant area. Data further west could be collected, however, it is unlikely that the effect of the hydraulic control system could be discerned at great distance. I am not sure about what Pall means by the phrase "the flow pathways that have been confirmed under the Arterial Highway and west of the hydraulic control network". What flow pathways have been confirmed and by whom?

Bullet Three - Lack of tracer studies - we informally explored this possibility with Photocircuits before approving the system. In a sense, there are already tracers available (VOCs). This would require the cooperation of Pall. Also, it would be good to know if Pall is getting Soybean oil on their property..... Usually, the Department has not required tracer studies in similar situations.

Bullet Four - Only four wells instead of the originally designed five: The number of wells was decreased to four due to difficulties in placement encountered in the field - see 2nd quarter 2003 report. The pilot test and design documents indicate that 4 wells should be sufficient, as is confirmed by the results indicated in the above report.

Bullet 5 - less than the 3 gpm pumping rate: 2nd quarter 2003 report shows hydraulic control achieved by 1gpm per well. Actually, design document projects 2 gpm, not 3. A low pumping rate may be used because, despite the high hydraulic conductivity, the gradient that must be overcome is fairly low.

Bullet 6 - System only intended to capture from MW-7 source area: This is the only known major source area on the site. See potentiometric maps: there may be longer groundwater routes to the west that bring contamination to the Pall site - probably deep, because of the longer route. As far as I can tell, Pall and Photocircuits monitoring data confirms that the contamination entering to the west is deep.

Bullet 7 - Photocircuits maps in 3rd quarter 2003 report indicate that contamination is not being captured to the East near the arterial highway: Pall's coutour maps indicate that the flow direction in this area is more NNW than N, so the contamination is probably not getting around the hydraulic control system. Also, consider the local topography (sloping up to east).

Bullet 8 - Lowered pumping rate - rate lowered due to mechanical difficulties and due to soybean oil presence. As noted above, 2nd quarter report indicates sufficiency of current rate

- Bullet 9 DOH concerns: Have discussed with R. Mitchell. We agree with the DOH that eventually downgradient samples should be aquired
- Bullet 10 Draft Pall sampling results we await our copy with interest
- Bullet 11 We await our copy of your results with interest
- Bullet 12 Static water heights resisitivity images etc: Perhaps Pall should outline their suggestion about resitivity imaging, addition injections (tracers) etc. This seems to repeat previous items.

TABLE OF CONTENTS

<u>Secti</u>	<u>on</u>		Page
1.0	INTE	RODUCTION	1
2.0	SITE	BACKGROUND	2
	2.1	Site Location	2
	2.2	Site Geology	
	2.3	Site Hydrogeology	
	2.4	Preliminary Site Investigation of August 1996	
3.0	FIEL	D SAMPLING METHODOLOGIES	6
	3.1	Soil Sampling	6
	3.2	Groundwater Grab Sampling	
	3.3	Monitoring Well Installation	8
	3.4	Monitoring Well Sampling	8
	3.5	Slug Testing	
4.0	RES	ULTS AND CONCLUSIONS	12
	4.1	Soil Sampling and Analysis	12
		4.1.1 Photocircuits Site	12
		4.1.2 45A Site	
	4.2	Groundwater Quality	13
		4.2.1 Nature of contamination	13
		4.2.2 Photocircuits Site	13
		4.2.3 45A Site	15
	4.3	Geotechnical Testing	17
	4.4	Conclusions	17
5.0	INTE	ERIM REMEDIAL MEASURE	18
6.0	REFI	ERENCES	20

FIGURES

2-1	Site Plan and Monitoring Well Locations
2-2	Groundwater Contour Map - Shallow Wells, May 13,1998
2-3	Groundwater Contour Map - Deep Wells, May 13, 1998
2-4	Soil and Groundwater Grab Sampling Results – 45A Site
2-5	Soil and Groundwater Grab Sampling Results - Photocircuits Site
2-6	Monitoring Well Sampling Results, May, 1998
	TABLES
2-1	Analytical Summary of Volatile Organic Compounds in Soils
2-2	Summary of Soil and Groundwater Grab Analytical Results Exceeding NYSDEC Criteria
2-3	Analytical Summary of Volatile Organic Compounds in Groundwater (Grab Samples)
2-4	Water Level Measurements/Monitoring Well Construction Details
2-5	Groundwater Sampling Field-Measured Parameters
2-6	Analytical Summary of Volatile Organic Compounds - Monitoring Well Sampling Event
	of May 13-15, 1998
3-1	Summary of Falling/Rising Head Slug Testing Data and Results
	APPENDICES
A	Soil Boring Logs/Well Log
В	Laboratory Analytical Data Package (provided under separate cover)
C	Geotechnical Testing Results
D	Slug Test Raw Data and Calculations

1.0 INTRODUCTION

This Remedial Investigation (RI) Report presents the results of the RI activities conducted on behalf of Photocircuits Corporation (Photocircuits) at the properties located at 45A Sea Cliff Avenue ("45A Site") and 31 Sea Cliff Avenue ("Photocircuits Site"), Glen Cove, New York. The RI activities described in this Report have been conducted in satisfaction of the requirements set forth in the New York Department of Environmental Conservation (NYSDEC) Orders on Consent (Nos. W1-0771-96-07 and W1-0713-94-12, and in accordance with the scope of work and procedures presented in the NYSDEC-approved Remedial Investigation / Interim Remedial Measure (RI/IRM) Work Plan dated March 25, 1997, as well as NYSDEC Technical and Administrative Guidance Memoranda (TAGMs) and other applicable guidance.

The investigation results presented in this RI Report supplement those presented in the Preliminary Site Investigation (PSI) Report of November 15, 1996 and are intended to serve as a basis for selection and design of an Interim Remedial Measure (IRM). A preliminary conceptual description of the proposed IRM is provided in this Report.

The scope of work of the activities described in this Report consisted of the following tasks:

- Soil and groundwater sampling using a Geoprobe to further delineate impacts detected during the Preliminary Site Investigation (PSI) in the vicinity of the former solvent AST located in the Building 7 area of the 45A Site
- Soil and groundwater sampling using a Geoprobe to further delineate impacts detected during the PSI in the Acid/Base/Solvent Tank Farm area of the Photocircuits Site
- Installation of one additional shallow monitoring well on the 45A Site
- Sampling of monitoring wells on both sites
- Slug testing of monitoring wells on both sites

2.0 SITE BACKGROUND

2.1 SITE LOCATION

The Photocircuits Site and the 45A Site are located on the south side of Sea Cliff Avenue in Glen Cove, New York. The 45A Site was owned by Pass & Seymour Inc. and was purchased by Alpha Forty-Five L.L.C in April 1996. Photocircuits currently leases the 45A Site in connection with its manufacturing operations. The Photocircuits Site is bordered by Pall Corporation to the north, Cedar Swamp Road to the east, the Glen Head Country Club to the south, and the former Pass & Seymour site to the west. The 45A Site is bordered by the Associated Drapery site to the north, Pall Corp. to the northeast, and Photocircuits to the east, south, and west. A Site Plan showing details of both the 31 and 45A Sea Cliff Avenue Sites is provided in Figure 2-1.

2.2 SITE GEOLOGY

The Photocircuits and 45A sites are underlain by the following sequences, in descending order: the Upper Glacial Aquifer, the Port Washington confining unit, the Port Washington aquifer, the Lloyd Aquifer, and bedrock. The Upper Glacial aquifer is composed of stratified beds of fine to coarse sand and gravel with some interbedded lenses of silt and clay and extends to a depth of approximately 200 feet below the sites. The Port Washington confining unit, which extends approximately 100 feet below the Upper Glacial aquifer, consists of silt and clay with some interbedded sand and gravel lenses. The Port Washington aquifer is composed of sand and gravel with variable amounts of interbedded clay and silt. The Port Washington aquifer is approximately 50 feet thick. The Lloyd aquifer, which is approximately 200 feet thick, consists of discontinuous layers of gravel, sand, sandy clay, silt, and clay. It roughly parallels the crystalline bedrock, which is present at a depth of approximately 550 feet below the site (Geraghty and Miller, 1989).

2.3 SITE HYDROGEOLOGY

As discussed above, the uppermost hydrogeologic unit beneath the Photocircuits and 45A Sea Cliff Sites is the Upper Glacial aquifer. Depth to water measurements collected during groundwater sampling by McLaren/Hart indicate that groundwater is present at 4 to 10 feet below ground surface beneath the Photocircuits site and at 8 to 25 feet beneath the 45A Site (McLaren/Hart Preliminary Site Investigation Report, November 11, 1996). Groundwater was encountered in soil borings drilled on the eastern portion of the 45A Site at 23 to 25 feet below grade. Groundwater level measurements collected from the deep monitoring wells at the Photocircuits site during previous investigations indicate that groundwater flow is to the northwest. Shallow groundwater flow has also been shown to be toward the northwest.

Water level measurements were collected from all wells on both sites (except MW-2) during the May, 1998 groundwater sampling event. Groundwater contour maps for the shallow and deep wells are provided in Figures 2-2 and 2-3, respectively. As indicated by the contour map, the predominant direction of groundwater flow is consistent with previous observations, that is, primarily to the northwest.

2.4 Preliminary Site Investigation of August 1996

A preliminary site investigation was conducted in August 1996 with the following objectives:

- Confirm the results of the earlier soil sampling on the 31 Site in the Acid/Base/Solvent tank farm area
- Delineate detections of VOCs in and around the Acid/Base/Solvent tank farm
- Determine the nature and extent of soil VOC impacts on the 45A Site
- Determine groundwater flow direction
- Reevaluate groundwater quality and confirm previous groundwater sampling results

August 1996 Soil Sampling Results

Analytical results from the seventeen soil samples collected on the Photocircuits Site indicated the presence of volatile organic compounds (VOCs) in soils at five areas of review (AORs), with two of which, the drum storage area and the acid/base/solvent tank farm, contain VOCs at concentrations in excess of the NYSDEC Soil Cleanup Objectives contained in Technical and Administrative Guidance Memorandum (TAGM) HWR-94-4046.

On the 45A Site, soil samples from three of the four investigated AORs indicated the presence of VOCs. One soil sample, GP-30, near the former location of the aboveground PCE storage tank pad (since removed), contained VOC concentrations in excess of the NYSDEC Soil Cleanup Objective for tetrachloroethene (PCE).

August 1996 Ground Water Sampling Results

During the August 1996 PSI, VOCs were detected in four of the eleven monitoring wells on the Photocircuits Site. The groundwater sample from MW-7 in the vicinity of the acid/base/solvent tank farm and the drum storage area, indicated the presence of the following compounds at concentrations in excess of 6NYCRR Part 703.5 standards for Class GA waters: vinyl chloride, chloroethane, 1,1-dichloroethene, methylene chloride, 1,1-dichloroethane, 1,2-dichloroethane, 2-butanone, 1,1,1-trichloroethane, trichloroethene (TCE), toluene, and PCE.

The sample from MW-10, a deep well on the northeast corner of the Photocircuits property, contained the following compounds at concentrations exceeding the Part 703.5 standards: 1,1-dichloroethene, 1,1-dichloroethane, 1,1-trichloroethane, TCE, and PCE.

The groundwater sample from NC-Well, a shallow well located adjacent to the north edge of the Photocircuits property along Sea Cliff Avenue, contained 1,1-dichloroethane and 1,1,1-trichloroethane in concentrations in excess of Part 703.5 standards.

Groundwater grab sample GW-GP-10 was collected from a temporary well point on the east side of the Butler No. 2 Building and indicated concentrations of toluene, m, p and o-xylene in excess of the NYSDEC standards.

On the 45A Site, groundwater samples from two of the three shallow monitoring wells indicated VOCs above the laboratory detection limits. The sample from well MW-1S, which is located southeast of the main building, indicated PCE at a concentration exceeding the part 703.5 standard. The sample from well MW-3S, located north of the main building, indicated TCE and PCE at concentrations in excess of the part 703.5 standards.

3.0 FIELD SAMPLING METHODOLOGIES

3.1 SOIL SAMPLING

Soil sampling was conducted at the 45A Site in the vicinity of the former above ground solvent storage tank. On the Photocircuits site, soil sampling was conducted in the vicinity of the Acid/Base/Solvent Tank Farm. Soil sampling was conducted using a Geoprobe direct-push sampler. Soil samples were collected continuously from ground surface to the depth at which ground water was encountered. Soil samples were screened with a PID (OVM 580B), and samples were selected for laboratory analysis based on the screening results. Soil samples were obtained by driving a decontaminated four foot long, acetate-lined, stainless steel sampling tube to the desired sampling depth. The sampling tube was then retrieved at the surface and the acetate liner split to allow PID screening. Soil was removed from the acetate liner at selected six-inch sampling intervals and transferred to laboratory containers. Soil borings were logged for lithology and moisture content. Lithologic information as well as PID readings are provided on boring logs included in Appendix A.

Soil samples were analyzed using SW-846 Method 8260, including a 15-compound library search. Soil samples were preserved on ice until delivered to the laboratory. Analytical work was performed by Envirotech Research of Edison, New Jersey, a NY-certified laboratory. Appropriate sample chain-of-custody procedures were followed for sample handling. Analytical results for soils are summarized in Tables 2-1 and 2-2. Laboratory analytical data packages are provided in Appendix B.

Geotechnical Testing

Six soil samples were collected for geotechnical testing. Four samples from the 45A Site and two samples from the Photocircuits Site were collected. The objective of the geotechnical sampling was to provide detailed data on the physical characteristics of subsurface soils for use

in the selection and design of the IRM. Testing was performed by Paulus, Sokolowski and Sartor, Inc., of Warren, New Jersey, and consisted of the following tests:

- Grain size distribution
- Moisture content
- Density
- Hydraulic Conductivity
- Total Organic Carbon (TOC) by loss on ignition method

Results of geotechnical testing are provided in Appendix C.

3.2 GROUNDWATER GRAB SAMPLING

Groundwater grab sampling was conducted with the objective of delineating the lateral extent of VOCs detected in the water table aquifer during the PSI. Delineation on the 45A Site was focused primarily on the PCE previously detected in the vicinity of the above-ground solvent storage tank. On the Photocircuits site groundwater grab sampling activities were focused on completing delineation of VOC contamination in the vicinity of the Acid/Base/Solvent tank farm, monitoring well MW-7, and a portion of the adjacent parking lot. Groundwater grab sampling locations for the 45A Site are shown in Figure 2-4. Groundwater grab sampling locations for the Photocircuits Site are shown in Figure 2-5. Analytical results for groundwater grab sampling are summarized in Tables 2-2 and 2-3.

A Geoprobe with a temporary well point sampler was used to obtain groundwater grab samples on both sites. The samples were obtained by hydraulically driving a decontaminated, vertically slotted, two-foot long temporary well point into the first water bearing zone. Once the temporary well point was positioned in the water bearing zone, a minimum of three well point volumes were removed before sampling by either bailing with a ½-inch diameter bailer, or by pumping

using a dedicated length of polyethylene tubing and a peristaltic pump. The bailer was used where the water yield in the borehole was insufficient to allow use of the peristaltic pump.

3.3 MONITORING WELL INSTALLATION

One additional shallow monitoring well (MW-4S) was installed on the 45A Site on April 22, 1998. The new well was installed to provide confirmation of the delineation of the groundwater plume in the vicinity of Building 7 and the former above ground PCE storage tank. The well was installed by Summit Drilling Co. of Bridgewater, New Jersey, using the air rotary method. Split spoon samples were collected every two feet from 5 to 11 feet, and water was encountered at approximately 9-10 feet below grade. A drilling log of the well is provided in Appendix A. The location of the well is shown in Figure 2-1.

The well was completed to a depth of 15 feet below grade with 10 feet of four inch diameter, 0.020 inch slot PVC screen set from 5 to 15 feet. The well was developed by pumping at a rate of 1.5-2 gallons per minute (gpm). Development was concluded after approximately 55 gallons of water had been removed from the well. Visible turbidity of the discharge water was not present after approximately 40 gallons had been removed.

3.4 MONITORING WELL SAMPLING

Groundwater sampling was conducted May 13-15, 1998. Depth to water measurements were made in monitoring wells using an electronic water level indicator prior to purging. Water level measurements and monitoring well construction details are provided in Table 2-4. Each of the wells was purged prior to sampling using either a centrifugal pump or submersible pump. Purging was complete when three to five well volumes were removed from each well, or when the well became dry. Measurements of temperature, specific conductance, pH, turbidity, and dissolved oxygen were taken prior to purging, after purging, and immediately after sampling. In

several cases where wells were purged dry or recovered poorly, post-purging and post-sampling measurements were not obtained due to the lack of sufficient water in the well for measurement. Field-measured parameters are presented in Table 2-5.

Samples were collected from eleven wells on the Photocircuits Site and four wells on the 45A Site. Several wells were purged to dryness and were allowed to recharge sufficiently prior to sampling. Groundwater samples were collected using disposable Teflon bailers and new bailer cord for each well. Samples were obtained by lowering the bailer into the well until it was submerged in the water column. The bailer was then retrieved and the sample transferred to laboratory-prepared containers.

Groundwater samples were analyzed for volatile organic compounds (VOCs) by SW-846 Method 8260 plus a 15-compound library search by Envirotech Research. Chain-of-custody procedures were followed throughout sample handling. In addition to the field samples, trip blanks, field blanks, and field duplicate samples were collected for internal QA/QC purposes. Analytical results of all monitoring well samples are presented in Table 2-6 and are shown in Figure 2-6.

Analytical data was subjected to an internal QA/QC review to ensure quality and completeness. Results of the internal review did not indicate any significant deficiencies in the quality or reporting of the data by the laboratory.

3.5 SLUG TESTING

Falling and rising head slug tests were conducted on monitoring wells on site to determine a range of representative hydraulic conductivity (k) values for the sand aquifer. The slug testing procedure consists of instantaneously lowering or raising the water level in a well and measuring the change in water level over time until equilibrium is re-established. The instantaneous change

in water level was achieved by rapidly inserting a sand-filled PVC tube (slug) to displace the water level in each well. After the water level had returned to its original static level (falling head test), the slug was rapidly removed, and the rising water levels were then measured (rising head test).

Prior to each slug test, the static water level in the well was measured with an electronic water level indicator, and the bottom of the well casing was sounded to confirm the exact well depth. A pressure transducer connected to an In-Situ HERMIT data logger was then lowered into the well approximately one foot off the bottom. Initial settings were programmed on the data logger prior to beginning the test. The HERMIT was programmed for high speed early time data collection at a logarithmic schedule to measure the water level changes over time.

As the slug was rapidly submerged below the water level in the well, the data logger was simultaneously started to continuously measure the initial water level rise and subsequent decline at specified time increments. After the water level in the well had recovered to static equilibrium, the slug was rapidly withdrawn and the data logger restarted to record the rising water level. The test was terminated when the water level had risen to its initial static level. The computer program AQTESOLV (Rumbaugh and Duffield, 1989) was used to compute hydraulic conductivity values.

Slug tests were conducted on 14 monitoring wells to obtain a range of hydraulic conductivity (k) values for the water-table aquifer. The analytical results for the slug tests are summarized in Table 3-1. The raw slug test data and graphs are presented in Appendix D.

The Bouwer and Rice method was used to analyze slug test data. Rising head tests were performed on 14 wells, while falling head tests were performed on 12 of those 14 wells. Static water levels must be above the screened zone in order to obtain meaningful data from a falling head test. The water levels in MW-4S and MW-6, however, were within the screened zone. Therefore, no falling head test was performed on these two wells. The combination of both rising and falling head slug

tests conducted for these 14 wells yielded variable k values ranging from 1.862E-05 cm/s at MW-5 to 5.300E-02 cm/s at MW-1S.

Of the eight wells for which analytical results were available for both rising and falling head slug tests, seven of the eight wells had good to excellent agreement between rising head and falling head test results when comparing k values in units of cm/s. Rising and falling head results within the same order of magnitude are considered to be in good agreement. The results for the slug tests conducted in MW-2S differed by about one order of magnitude.

4.0 RESULTS AND CONCLUSIONS

4.1 SOIL SAMPLING AND ANALYSIS

4.1.1 Photocircuits Site

Soil samples were collected at six locations on the Photocircuits site (31-SB-33, 34,35,36, and 37); soil sampling locations are shown on Figure 2-5, and analytical results are presented in Tables 2-1 and 2-2. TVOC concentrations ranged from non-detectable to 48 ug/kg, with all but two of the borings having TVOC concentrations of less than 10 ug/kg. PCE and TCE were the VOCs most frequently detected. NYSDEC soil cleanup objectives (TAGM 4046) were not exceeded in the soil samples collected from the Photocircuits site.

4.1.2 45A Site

Soil borings were advanced at three locations within Building 7 on the 45A Sea Cliff Avenue site, as shown on Figure 2-4. Two soil samples were collected from each borings SB-31 and -32, and three soil samples were collected from boring SB-33; analytical results are provided in Tables 2-1 and 2-2. Only the soil sample from the 12-16 ft depth in boring SB-33 contained a contaminant in excess of NYSDEC soil cleanup objectives (2,500 ug/kg of PCE, as compared to the NYSDEC cleanup objective of 1,400 ug/kg).

Photoionization (PID) readings from the screening of soil samples collected from the sampled depths in borings SB-31, -32, and -33 ranged from 100-200 ppm to 2,166 ppm. While the PID screening is only semi-quantitative, it suggests that there is substantially greater PCE present in the unsaturated zone beneath Building 7 than is detected in the soil samples, and that the PCE is largely present as soil vapor rather than being adsorbed to soil solids.

4.2 GROUNDWATER QUALITY

4.2.1 Nature of Contamination

The list of parameters for analysis of soil and groundwater samples was selected based on the results of previous studies at the site. The contaminants of concern at both the Photocircuits site and the 45A Site are volatile organic compounds (VOCs). More specifically, the majority of the VOCs detected are chlorinated hydrocarbons. Of these compounds, three are common solvents: trichloroethene, tetrachloroethene, and 1,1,1-trichloroethane. The other chlorinated hydrocarbons which were detected are likely the result of biologic degradation of the three solvent compounds, as they do not have appreciable industrial usage and several studies have shown that chlorinated hydrocarbons can undergo microbially-mediated dehalogenation reactions in groundwater under anaerobic (absence of oxygen) conditions, as follows:

tetrachloroethene ⇒ trichloroethene ⇒ dichloroethene isomers ⇒ vinyl chloride⇒

1,1,1-trichloroethane \Rightarrow 1,1-dichloroethane \Rightarrow chloroethane

Both vinyl chloride and chloroethane are subject to degradation (mineralization) by aerobic (presence of oxygen) pathways (Norris, et al, 1994; Weidemeier, et al, 1996). Natural attenuation of VOC constituents is further discussed below in Section 4.2.2.

4.2.2 Photocircuits Site

Analytical results for groundwater grab samples collected on the Photocircuits site (GW-1, 4, 7, 9, 10, 11, 12 and 13) are presented in Tables 2-2 and 2-3, and the analytical results for samples collected from monitoring wells on the Photocircuits property are presented in Table 2-6.

Historic analytical results for samples collected from monitoring wells on the Photocircuits property were previously presented in the PSI Report of November 15, 1996.

Groundwater quality at the northern boundary of the property (along Sea Cliff Avenue) is defined by two clusters of monitoring wells: MW-3, -8 and the Nassau County Well (NC-Well); and MW-9, -10 and -11. Well depths and construction details for each of these wells are provided in Table 2-4. Total volatile organic compound (TVOC) concentration for MW-3, -8 and NC-Well ranged from 1.4 to 16 ug/L, with the greatest individual VOC detection being 5.7 ug/L of trichloroethene in MW-8 (this was also the only exceedance of state or federal drinking water standards in this monitoring well cluster). TVOC concentrations for MW-9, -10 and -11 ranged from 4.8 ug/L in MW-9 to 145 ug/L in MW-10. Exceedances of state or federal drinking water standards resulting from detection of individual VOCs were as follows: MW-9 - no exceedances, MW-10 (deep) - three exceedances, and MW-11 (deep) - one exceedance. By comparing the current groundwater results with results of previous studies, it is evident that groundwater quality at the downgradient boundary of the Photocircuits site is materially the same, or better, than previously reported both in terms of the VOCs detected and their respective concentrations.

The results of previous studies have indicated the presence of a localized area of relatively high concentrations of VOCs in the vicinity of MW-7. The analytical results for the groundwater sample collected from MW-7 are comparable to historic results for this well, both in terms of the VOCs detected and their respective concentrations. To assess the distribution of impacted groundwater in this area, groundwater grab samples were collected from selected locations, as shown on Figure 2-5; the first round of samples (GW-1, -4 and -7) were followed by a second set of samples (GW-9, -10, -11, -12, and -13). The first round of samples indicated that a relatively sharp concentration gradient exists when moving northward from MW-7 (3,400ug/L TVOC) to GW-4 (148 ug/L TVOC) to GW-7 (9.2 ug/L), and that the extent of shallow groundwater contamination decreases sharply in the vicinity of grab sample GW-7.

The results from GW-1 (8,000 ug/L TVOC) indicate that the extent of groundwater contamination to the south had not been defined, therefore requiring the collection of groundwater grab samples GW-9, -10, -11, -12, and -13. The results from the analysis of samples from GW-10, -11, -12, and -13 (TVOC concentrations of 200, 5, 2 and 4 ug/L, respectively) define the southern extent of the localized area of elevated shallow groundwater concentrations. The results from GW-9 (TVOC concentration of 1,800 ug/L) indicate that shallow groundwater contamination is present to the west of the chemical tank farm and south of the Photocircuits Main Building. Results from monitoring wells MW-4 and -5 (located southwest of the Main Building define the southwestern extent of the localized area of elevated shallow groundwater concentrations. Results from monitoring well MW-9 (located northwest of the Main Building) indicate that shallow groundwater contamination does not extend to MW-9, thus completing the northwest delineation activity

Basically the same suite of chlorinated VOCs were detected in MW-7 and the surrounding groundwater grab samples. With the exception of 6,000 ug/L of 1,1,1-trichloroethane in GW-1, the VOCs detected in the highest concentrations were degradation products (1,1-dichloroethane; dichloroethene isomers; vinyl chloride; and chloroethane). This finding suggests that natural attenuation through microbial degradation is occurring within the impacted area.

Comparison of MW-10 results from 1996 to the current 1998 sampling round indicates that the VOC concentrations remain essentially similar in 1998 to those detected in 1996.

4.2.3 45A Site

Groundwater samples were collected from the three existing monitoring wells and the new monitoring well, and groundwater grab samples were collected from seven locations. The locations of the grab sampling points are shown in Figure 2-4. Monitoring well locations are

shown in Figure 2-1. Analytical results for monitoring well samples are presented in Table 2-6, and analytical results for groundwater grab samples are presented in Table 2-3.

For the three wells located in the southern portion of the site (MW-1S, -2S and -4S), TVOC concentrations varied from 1.8 ug/L to 340 ug/L, with the predominant VOC being tetrachloroethene (also known as perchlororethylene, "perc" and PCE). Well 3S, located at the northern property boundary, had a TVOC concentration of 110 ug/L, with trichloroethene (TCE) being the dominant VOC.

Groundwater grab samples were proposed at locations in around Building 7, based on the results of the PSI. These locations were modified in the field based on findings. The highest TVOC concentrations were detected in samples collected from within the building; GW-2 and GW-3 had TVOC concentrations of 32,000 and 17,000 ug/L, respectively, with PCE being the dominant VOC. TVOC concentrations in groundwater grab samples collected around and downgradient of Building 7 ranged from less than 10 ug/l in GW-4, -5 and -6 to 130 ug/L in GW-7. Coupled with the groundwater results from the PSI, these results indicate that there is a localized area of elevated concentrations of VOCs (predominantly PCE) in the groundwater underlying Building 7. The concentration gradient from under Building 7 (GW-2 and -3) to the area immediately downgradient (GW-4, -5, -6 and -7) indicates that the contaminant mass is largely confined to the footprint of Building 7. Comparison of groundwater sampling results of wells MW-1S, 2S, and 3S from 1996 to the current results indicates an increase in the PCE concentration in well MW-1S from 47 ug/L in 1996 to 71 ug/L in 1998. Both wells MW-2S and MW-had sampling results within the ranges of historical data since December 1991. The Federal Maximum Contaminant Level for PCE is 5 ug/L (for drinking water).

4.3 GEOTECHNICAL TESTING

Six soil samples were submitted for geotechnical testing, including particle size distribution, moisture content, total organic carbon and permeability; the testing was conducted to aid in determining the suitability of the site for the application of soil vapor extraction technology. The results of the geotechnical testing are provided in Appendix C. The results indicate that the unsaturated zones at the Photocircuits and 45A sites are comprised of relatively coarse grained materials with low organic carbon content (0.19-0.65 %) and indicate a permeability range of 3.8 \times 10⁻⁴ to 1.5 \times 10⁻² cm/sec. These results are consistent with field observations as well as available literature.

4.4 CONCLUSIONS

The sampling and analysis described in this report accomplish the objectives of the investigation component of the approved work plan which was to determine the nature and distribution of contamination attributable to the sites and gather sufficient information to conduct the Feasibility Study. The investigation has also provided data sufficient to confirm the suitability of the proposed IRM for the Sites.

The shaded areas shown in Figure 2-6 represent the two areas which will be the focus area for implementation of the IRM at the site. Information gathered during the implementation of the IRM will be evaluated in preparing the Feasibility Study.

5.0 INTERIM REMEDIAL MEASURE

The RI work plan discussed the observed contamination and provided an evaluation of possible remedial technologies for the application of an interim remedial measure (IRM). The findings of the RI confirmed the results of the PSI in that there are two areas of relatively concentrated contamination, one on the Photocircuits site and one on the 45A site. The RI also determined that the extent of soil and groundwater contamination associated with these impacted areas is limited to the areas shown in Figure 2-6.

The RI work plan proposed the application of soil vapor extraction coupled with air sparging as the best technology for the IRM. Results of the RI confirm the applicability of these technologies, for the following reasons:

- The unsaturated soils are suitable for the application of soil vapor extraction technology because the permeability of the soils is conducive to the necessary air flow rates for the efficient extraction of soil vapors.
- The low organic carbon measurements for the soil samples indicate that contaminants
 will not be highly adsorbed to soils, and can therefore be readily sparged and extracted
 under vacuum (the PID readings collected from the borings at Building 7 further
 support this point).
- The concentration gradients indicate that the contaminant mass at each site are confined to a relatively localized area; remedial efficiency tends to increase if the contamination is more localized/concentrated.

• Both areas of contamination are covered (by pavement and/or a building) which limits infiltration of precipitation (thus limiting migration) and also helps to raise the efficiency of vacuum extraction (less loss of vacuum).

6.0 REFERENCES

Norris, R.D., R.E. Hinchee, R.A. Brown, P.L. McCarty, L. Semprini, J.T. Wilson, D.H. Kampbell, M. Reinhard, E.J. Bouwer, R.C. Borden, T.M. Vogel, J.M. Thomas, and C.H. Ward. 1994. *Handbook of Bioremediation*. Boca Raton, Florida: Lewis Publishers.

Wiedemeier, T.H., J.T. Wilson, D.H. Kampbell, J.E. Hansen, and P. Haas. 1996. Technical protocol for evaluating the natural attenuation of chlorinated ethenes in groundwater. Proceedings of the Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and Remediation Conference, Houston, Texas, November 13-15.

---- PROPERTY UNE

---- RIGHT-OF-WAY

- SAMPLING LOCATION (1996)
- ▲ GROUNDWATER GRAB SAMPLE LOCATION (1998)
- MONITORING WELL LOCATION
- SOIL SAMPLE LOCATION (1998)

ND* NO ANALYTES DETECTED IN EXCESS OF NYSDEC CRITERIA

NOTE: ALL RESULTS REPORTED IN PARTS PER BILLION (ppb)

SOIL AND GROUNDWATER
GRAB SAMPLING RESULTS (SITE 45A)

PHOTOCIRCUITS CORPORATION GLEN COVE, NEW YORK

DRWN: J.R.F.	CHK'D: C.B.S.
SCALE: AS SHOWN	DATE: 07/28/98

IC: 67800119 07/28/98

PROPERTY LINE
RIGHT-OF-WAY

- SOIL SAMPLE LOCATION (1996)
- ▲ GROUNDWATER GRAB SAMPLE
- ♦ MONITORING WELL LOCATION
- SOIL SAMPLE LOCATION (1998)

NO. NO ANALYTES DETECTED IN EXCESS OF NYSDEC CRITERIA

NOTE: ALL RESULTS REPORTED IN PARTS PER BILLION (ppb)

PHOTOCIRCUITS CORPORATION GLEN COVE, NEW YORK

 DRWN: J.R.F
 CHK'D: C.B.S.

 SCALE: AS SHOWN
 DATE: 07/22/98

DWG: 87800121 07/27/98

Table 2-1

Analytical Summary for Volatile Organic Compounds in Soil

Photocircuits Corporation

Glen Cove, New York

Sample Location	NYSDEC/USEPA	45A-SB-31	45A-SB-31	45A-SB-32	45A-SB-32	45A-SB-33	45A-SB-33
Sample Depth (ft)	Soil Cleanup	12-16	20-22	12-16	20-24	16	16-20
Sample ID	Objectives*	54859	54863	54862	54873	54866	54870
Sample Date	(ppb)	04/09/98	04/09/98	04/09/98	04/09/98	04/08/98	04/08/98
Dilution Factor		1.0	1.0	1.0	1.0	50.0	1.0
VOLATILE COMPOUND	S (ppb)						
Chloromethane	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Bromomethane	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
VinylChloride	200	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Chloroethane	1900	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 Ü
MethyleneChloride	100	1.5 B	1.2 B	1.5 B	3.6 B	140 U	1.8 B
Trichlorofluoromethane	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
1.1-Dichlorcethene	400	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
1,1-Dichloroethane	200	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
trans-1,2-Dichloroethene	300	1.0 U	1.2 U	1.2 U	1.2 U	140 U_	1.1 U
cis-1.2-Dichloroethene	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Chloroform	300	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
1,2-Dichloroethane	100	1.0 U	1.2 U	1.2 U	1.2 U	140 U	i.i U
1,1,1-Trichloroethane	800	1.0 U	1.2 U	1.2 U	0.9 J	140 U	1.1 U
CarbonTetrachloride	600	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Bromodichloromethane	NS.	1.0 U	1.2 Ŭ	1.2 U	1.2 U	140 U	1.1 U
1.2-Dichloropropane	NS	1.0 U	1.2 U	1.2 U	l.2 U	140 U	1.1 U
cis-1,3-Dichloropropene	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Trichloroethene	700	1.0 U	1.2 U	1.2 U	1.0 J	140 U	1.1 U
Dibromochloromethane	NS	1.0 U	1.2 U	1.2 Ü	1.2 U	140 U	1.1 U
1,1,2-Trichloroethane	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Benzene	60	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
trans-1.3-Dichloropropene	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
2-ChloroethvlVinvlEther	NS	1.0 U	1.2 Ü	1.2 U	1.2 U	140 U	1.1 U
Bromotorm	NS	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Tetrachloroethene	1400	31	33	52	48	2500	10
1.1.2.2.Tetrachloroethane	600	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Toluene	1500	1.7	1.1 3	22	3.9	140 U	2.2
Chlorobenzene	1700	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Ethylbenzene	5500	1.0 U	1.2 U	1.2 U	1.2 U	140 U	1.1 U
Xylene(Total)	1200	1.0 Ü	1.2 U	0.6 J	1.2 U	140 U	0.6 J
Total Confident Co.	nc VOAs (s)	33	33	74	52	2500	12
Total Estimated Conc.		0	8.6	0	8.3	0	7.9

NS: Not Specified

U: Analyte was not detected above the referenced reporting limit

B: Analyte was also detected in blank

J: Estimated Concentration at or below the reporting limit

JB: Sample result below the CRQL and analyte detected in associated field blank

^{*:} Taken from NYSDEC Soil Cleanup Oblectives to protect groundwater quality and USEPA recommended soil cleanup objectives. The higher of the two values is listed.

Table 2-1
Analytical Summary for Volatile Organic Compounds in Soil
Photocircuits Corporation
Glen Cove, New York

Sample Location	NYSDEC/USEPA	45A-SB-33	31-SB-34	31-SB-35	31-SB-36	31-SB-37
Sample Depth (ft)	Soil Cleanup	22-24	4	4	4	3
Sample ID	Objectives*	54871	56157	56159	56161	56162
Sample Date	(ppb)	04/08/98	04/20/98	04/20/98	04/20/98	04/20/98
Dilution Factor		1.0	1.0	1.0	1.0	1.0
VOLATILE COMPOUNDS	S (ppb)					
Chloromethane	NS	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
Bromomethane	NS	1.2 U	1.2 U	I.1 U	1.2 U	1.1 U
VinylChloride	200	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
Chloroethane	1900	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
MethyleneChloride	100	3.1 B	1.5 B	1.2 B	1.1 JB	1.1 JB
Trichlorofluoromethane	NS NS	1.2 U	1.2 Ü	1.1 U	1.2 U	1.1 U
1,1-Dichloroethene	400	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
1,1-Dichloroethane	200	1.2 U	6.8	1.1 U	1.2 U	1.1 U
trans-1,2-Dichloroethene	300	1.2 U	1.2 U	1.1 U	1.2 U_	1.1 U
cis-1,2-Dichloroethene	NS	1.2 U	2.1	1.1 U	2.2	1.1 U
Chloroform	300	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
1,2-Dichloroethane	100	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
1.1.1-Trichloroethane	800	0.8 J	3.2	1.1 U	5.8	1.1 U
CarbonTetrachloride	600	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
Bromodichloromethane	NS	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
1,2-Dichloropropane	NS	1.2 C	1.2 U	1.1 U	1.2 U	1.1 U
cis-1,3-Dichloropropene	NS	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
Trichloroethene	700	0.7 J	1.6	1.1 U	21	1.5
Dibromochloromethane	NS	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
1,1,2-Trichloroethane	NS	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
Benzene	60	1.2 U	1.2 U	1.1 U	1.2 U	1.1 U
trans-1,3-Dichloropropene	NS	1. 2 U	1.2 U	1.1 U	1.2 U	1.1 U
2-ChloroethylVinylEther	N'S	1.2 U	1.2 U	1.1 U	1.2 U	I.I U
Bromoform	NS	1.2 U	1,2 U	1.1 U	1.2 U	1.1 U
Tetrachloroethene	1400	60	20	1.1 U	19	4.1
1,1,2,2-Tetrachloroethane	600	1.2 U	1.2 U	1.1 U	1.2 U	l.1 U
Toluene	1500	6.9	2.9	4.5	1.2 U	0.6 J
Chlorobenzene	1700	1.2 U	1.2 U	1.1 U	1.2 Ü	1.1 U
Ethylbenzene	5500	1.2 U	1.0 J	0.6 J	1.2 U	1.1 U
Xylene(Total)	1200	0.9 J	5.6	3.6	1.2 Ü	1.1 Ū
Total Confident Cor	10 VOAs (s)	67	42	3,1	48	5.6
Total Estimated Conc.		10.0	7.0	81	0	0
Notal Estimated Conc.	VOATICS(S)	10.0	7.0	01	<u></u>	U

NS: Not Specified

U: Analyte was not detected above the referenced reporting limit

B: Analyte was also detected in blank

J: Estimated Concentration at or below the reporting limit

JB: Sample result below the CRQL and analyte detected in associated field blank

^{*:} Taken from NYSDEC Soil Cleanup Oblectives to protect groundwater quality and USEPA recommended soil cleanup objectives. The higher of the two values is listed.

Table 2-1
Analytical Summary for Volatile Organic Compounds in Soil
Photocircuits Corporation
Glen Cove, New York

Sample Location	YSDEC/USEP	31-SB-5	31-SB-6
Sample Depth (ft)	Soil Cleanup	4	3
Sample ID	Objectives*	56165	56168
Sample Date	(ppb)	04/20/98	04/20/98
Dilution Factor		1.0	1.0

Chloromethane	NA	1.2 U	1.1 U
Bromomethane	NA	1.2 U	1.1 U
VinylChloride	200	1.2 U	1.1 U
Chloroethane	1900	1.2 U	1.1 Ü
MethyleneChloride	100	1.0 JB	1.0 JB
Trichlorofluoromethane	NA	1.2 Ü	1.1 U
1,1-Dichloroethene	400	1.2 U	1.1 U
1,1-Dichloroethane	200	1.2 U	1.1 U
trans-1,2-Dichloroethene	300	1.2 U	1.1 U
cis-1,2-Dichloroethene	NA	1.2 U	1.6
Chloroform	300	1.2 U	1.1 U
1,2-Dichloroethane	100	1.2 U	1.1 U
1,1,1-Trichloroethane	800	1.2 U	1.1 U
CarbonTetrachloride	600	1.2 U	LIU
Bromodichloromethane	NA	1.2 U	1.1 U
1,2-Dichloropropane	NA	1.2 U	1.1 U
cis-1,3-Dichloropropene	NA	1.2 U	1.1 U
Trichloroethene	700	1.2 U	2.1
Dibromochloromethane	NA	1.2 U	L1 U
1,1,2-Trichloroethane	NA	1.2 U	1.1 U
Benzene	60	1.2 U	1.1 U
trans-1.3-Dichloropropene	NA	1.2 U	1.1 U
2-ChloroethylVinylEther	NA	1.2 U	1.1 U
Bromoform	NA	1.2 U	1.1 U
Tetrachloroethene	1400	1.2 U	2.0
1,1,2,2-Tetrachloroethane	600	1.2 U	1.1_U
Toluene	1500	0.8 J	1.0 J
Chlorobenzene	1700	1.2 U	1.1 U
Ethylbenzene	5500	1.2 U	1.1 U
Xylene(Total)	1200	1.2 U	1.1 U

Total Confident Conc. VOAs (s)	0	5.7
Total Estimated Conc. VOA TICs (s)	0	0

Summary of Analytical Results Exceeding NYSDEC Criteria (Soils and Groundwater Grab Samples) Table 2-2

Photocircuits Corporation Glen Cove, New York

45A-SB-33 16 NVSDEC/ USEPA Soil Cleanup (ppb) Criteria SOIL (PPB) Sample 11) Depth (ft)

Votatile Compounds (ppb)

2500 1400 Tetrachloroethene

GROUNDWATER (PPB)

45A-GW-7 45A-GW-3 28 45.4-GW-2 28 45A-GW-1 28 NYSDEC GW Criteria (ppb) Sample 1D Depth (ft)

I, I, I - Trichloroethene	\$		150	140	,
Trichloroethene	\$,	130	130	13
Tetrachloroethene	5	20	32000	17000	120

31-GW-13 31-GW-11 31-GW-10 31-GW-9 31-GW-4 12 31-GW-1 8 NYSDEC GW Criteria (ppb) GROUNDWATER (PPB) Sample ID Depth (ft)

Vinyl Chloride	2	•	3.4	040		3.7	16	_
Chloroethane	50		,	57	180			_
I, I-Dichloroethene	>	570	12					
I, 1-Dichloroethane	5	1300	68	440	3,6		0.8	_
1 1 - Trichlorouthane	~	0009	-		2		0.5	
		2000	2	7.7	•	•	•	
Irichlorothene	\$	•	•	38	•	,		
Tetrachloroethene	\$	150	7.1				,	_
								_

[&]quot;." : Analyte was not detected above the applicable NYSDEC criteria

Table 2-3
Analytical Summary for Volatile Organic Compounds in Groundwater (Grab Samples)
Photocircuits Corporation
Glen Cove, New York

ک			}												_								_										-
45.V-GW-5	54823	04/10/98	1.0		U 6.0	0.3 U	0.4 U	1.0 U	1.0 U	0.2 U	0.6 U	0.3 U	0.3 U	0.01	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.3 U	0.4 U	0.2 U	0.4 U	0.2 U	0.3 U	0.5 U	0.3 U	0.5	0.3 U	2.6	0.1.0	0.3
45A-GW-4	54827	04/10/98	1.0		U 6.0	0.3 U	0.4 U	U 0.1	1.0 U	0.2 U	0.6 U	0.3 U	0.3 U	n 0'1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U	0.3 U	0.4 U	0.2 U	0.4 U	0.2 U	0.3 U	0.5 U	0.3 U	2.3	0.3 U	6.0	0.1 (1	0.2 U
45A-GW-3	5-1822	04/10/98	100.0		93.0	27 U	39 1)	100 U	100 U	23 U	55 U	31 U	30 U	1001	20 U	22 U	140	16 U	U 61	46 U	33 C	130	23 U	43.0	24 U	31 U	46 U	30 U	17000	33 U	18 U	U 14	24 U
45A-CW-2	54874	04/09/98	200.0		130 11	54 U	78 U	210 U	210 U	46 U	110 U	62 U	O 09	200 U	40 U	44 1)	150	32 U	38 U	92 U	O 99	130	46 U	U 88	48 1	62 U	92 U	O 09	32000	U 99	36 U	28 U	48 U
45A-GW-1	54865	04/08/98	0.1		0.9 U	0.3 U	0.4 U	1.0 U	1.0 U	0.2 U	0.6 U	0.3 U	0.3 U	1.0 U	0.2 U	0.2 U	0.3	0.2 U	0.2 U	0.5 U	0.3 U	0.4 U	0.2 U	0.4 U	0.2 U	0.3 U	0.5 U	0.3 U	20	0.3 U	2.9	0.1.0	0.4
NYSDEC	GW	Criteria	(hpbb)		NS	NS	2	50	5	SN	5	5	NS	NS	7	5	5	5	NS	SN	SN	2	50	NS	0.7	NS	SN	SN	5	2	2	4	5
Sampling Location	Sample II)	Sample Date	Dilution Factor	VOLATILE COMPOUNDS (neb)	Chloromethanc	Bromomethane	VinylChloride	Chloroethane	MethyleneChloride	Trichlorolluoromethane	1,1-Dichloroethene	1, I-Dichloroethane	trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	Chloroform	1,2-1)ichlorocthane	1,1,1-Trichloroethane	CarbonTetrachloride	Brontodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichloroethene	Dibromochloromethane	1,1,2-Trichloroethane	Benzene	trans-1,3-Dichloropropene	2-ChloroethylVinylEther	Вготобогт	Tetrachloroethene	1,1,2,2-Tetrachloroethane	Toluene	Chlorobenzene	Ethylbenzene

Total Confident Conc. VOAs (s)
Total Estimated Conc. VOA TICs (s)

NS: Not Specified
U: Analyte was not detected above the referenced reporting limit

17270

32280

20

Table 2-3
Analytical Summary for Volatile Organic Compounds in Groundwater (Grab Samples)
Photocircuits Corporation
Glen Cove, New York

Sample ID Sample Date							
Sample Date	Z.K	54825	54826	56169	56164	56170	54824
	Criteria	04/10/98	04/10/98	04/20/98	04/20/98	04/20/98	86/60/10
Dilution Factor	(hpb)	1.0	1.0	100.0	1.0	1.0	1.0
VOLATILE COMPOUNDS (ppb)							
Chloromethane		0.9 U	U 6.0	93.11	U 6.0	0.9 U	U 6.0
Bromomethane	NS	0.3 U	0.3.0	27 U	0.3.0	0.3 U	0.3 U
VinylChtoride	2	0.4 U	0.4.U	39 U	3.4	0.4 U	0.4 U
Chloroethane	50	1.0 1.	1.0 U	100 U	4.5	1.0 U	1.0 U
MethyleneChloride	5	1.0 U	U 0.1	U 001	2.7	U 0.1	1.0 U
Trichlorofluoromethane	NS	0.2 U	0.2 U	23 U	0.2 U	0.2 U	0.2 U
1,1-Dichloroethene	5	0.6 U	0.6 U	570	12	0.6 U	0.6 U
1,1-Dichloroethane	5	0.3 U	0.3 U	1300	68	0.3 U	0.3 U
trans-1,2-Dichloroethene	NS	0.3 U	0.3 U	30 U	0.3 U	0.3 U	0.3 U
cis-1,2-Dichloroethene	NS	1.0 U	1.0 U	U 001	3.7	1.0 U	U 0.1
Chloroform	7	0.2 U	0.2 U	20 U	0.2 U	8.0	0.2 U
1,2-Dichlorocthane	5	0.2 U	0.2.0	22 ()	8.0	0.2 U	0.2 U
1,1,1-Trichloroethane	5	0.2 U	0.2 U	0009	18	1.4	0.2 U
Carbon Tetrachloride	5	0.2 U	0.2 U	N 91	0.2 U	0.2 U	0.2 U
Bromodichloromethane	NS	0.2 U	0.2 U	D 61	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	NS	0.5 U	0.5 บ	194	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	SN	0.3 U	0.3 U	n ee	0.3 U	0.3 U	0.3 U
Trichloroethene	5	0.4 U	13	41 U	4.7	1.3	0.4 U
Dibromochloromethane	50	0.2 U	0.2 U	23 U	0.2 U	0.2 U	0.2 U
chloroethu	SN	0.4 U	0.4 U	43 U	0.4 U	0.4 U	0.4 U
Benzene	0.7	0.2 U	0.3	24 U	0.2 U	0.2 U	0.2.0
trans-1,3-Dichloropropene	SS	0.3 U	0.3 U	31 ()	0.3 U	U E.O	0.3 U
2-ChloroethylVinylEther	SS	0.5 U	0.5 U	46 U	0.5 U	U 2.0	0.5.0
Вготобогт	SS	0.3 U	0.3 U	30 U	0.3 U	0.3 U	ก 6.0
Tetrachloroethene	2	7.0	120	150	7.1	2.2	0.1 U
1,1,2,2-Tetrachloroethane	۶	0.3 U	0.3 บ	33 U	0.3 U	0.3 U	0.3 U
Toluene	5	2.1	2.4	N 81	0.2 U	<i>L</i> :0	0.2 U
Chlorobenzene	4	0.1 U	0.1 U	14 U	0.1 U	0.1 U	0.1 U
Ethylbenzene	5	0.2	0.3	24 U	9.0	8.0	0.2 U
Xylene(Total)	5	1.0 U	1.0 U	ו 100 נו	2.0	2.0	1.0 U
Total Confident Cone, VOAs (s)		3.0	136	8020	148	9.2	0
Total Estimated Conc. VOA TICs (s)	s (s)	0	0	0	0	0	0

Total Estimated Conc. VOA TICs (s) 0

NS: No standard specified
U: Analyte was not detected above the referenced reporting limit

Table 2-3

Analytical Summary for Volatile Organic Compounds in Groundwater (Grab Samples)

Photocircuits Corporation
Glen Cove, New York

Criteria A1779 A17741 A17794									
tetor (Criticia de Gal) 6(6936 (604)7 (603)8 (603)	Sampling Location	NYSDEC	31-GW-9	31-GW-10	31-CW-11	31-CW-12	31-GW-13	1:13061798	TB061798
Criteria 6/17/98 6/	Sample 1D	GW	66934	66935	986999	66937	86699	66939	01699
Fraction (ppb) 6.0 1.	Sample Date	Criteria	86/11/9	6/17/98	86/11/9	6/17/98	86/11/9	86/11/9	6/17/98
RGANIC COMPOUNDS 460 0.9	Dilution Factor	(կրի)	0.0	1.0	1.0	1.0	1.0	1.0	1.0
NS 460 090 090 090 090 090 090	VOLATILE ORGANIC C	OMPOUND	20						
NS 141 031 031 031 031 031 031 2	Chloromethane	NS	1	0.9 U	U 6.0	0.6.0	U 6.0	U 6.0	0.6.0
2 640 0.4 U 3.7 0.7 9.1 0.4 U 5 5.2 U 1.0 U 1.0 U 1.0 U 5 5.2 U 1.0 U 1.0 U 1.0 U 5 5.2 U 1.0 U 1.0 U 1.0 U 5 1.2 U 0.2 U 0.2 U 0.2 U 5 1.1 U 0.6 U 0.6 U 0.6 U 0.6 U 5 1.1 U 0.6 U 0.6 U 0.6 U 0.6 U 5 1.1 U 0.6 U 0.6 U 0.6 U 0.6 U 6 5 1.1 U 0.6 U 0.6 U 0.6 U 0.6 U 7 1.0 U 0.2 U 0.2 U 0.2 U 0.2 U 8 7.2 U 0.2 U 0.2 U 0.2 U 0.2 U 9 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 1 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 1 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.3 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1.3 U 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 0.3 U 0.3 U 0.3 U 0.3 U 1 1 1 1 1 1 1 1 1	Bromomethane	NS		0.3 U	0.3 U				
SO ST 180 10U 10U 29 10U 1	VinylChloride	2	Į	0.4 U	3.7	0.7	9.1	0.4 U	0.4 U
S S2U 10U	Chloroethane	20		180	1.0 U	1.0 U	2.9	1.0 U	0.0.1
NS 12 U 02 U 06 U 07 U 0	MethyleneChloride	\$	ŀ	U 0.1	1.0 U	U 0.1	U 0.1	1.0 U	1.0 U
5 11 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U NS 440 36 1 0.3 U 1.5 0.3 U 0.2 U 0	Trichlorofluoromethane	NS		0.2 U	0.2 U	0.2 U	0.2.0	0.2 U	0.2 U
5 440 36 1 0.3 U 8.9 0.3 U NS 37 1.1 0.3 U 0.3 U 1.5 0.3 U NS 520 1.0 U 0.2 U 0.2 U 0.2 U 0.2 U 7 1.0 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 5 1.5 1.5 0.2 U 0.2 U 0.2 U 0.2 U 5 0.8 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 0.9 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.2 U 0.3 U 0.4 U 0.4 U 0.4 U 0.4 U NS 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.3 U 0.3 U 0.3 U	1,1-Dichlorocthene	\$		0.6 U	0.6 U	0.6 U	U 9.0	0.6.0	U 9.0
NS 3.7 1.1 0.3 U 0.3 U 1.5 0.3 U NS 520 1.0 U 1.0 U 0.2 U	1,1-Dichloroethane	\$		36	1	0.3 U	8.9	0.3 U	0.3 U
NS \$20 1.0 U 1.0 U 1.2 U 1.5 U 1.0 U 7 1.0 U 0.2 U	trans-1,2-Dichloroethene	NS		1.1	0.3 U	0.3 U	1.5	0.3 U	0.3 U
7 1.0 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 5 1.5 1 0.2 U 0.2 U 0.2 U 0.2 U 5 7.2 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 0.9 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 2.3 U 0.5 U 0.2 U 0.2 U 0.2 U 0.2 U NS 2.3 U 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U NS 1.2 U 0.3 U 0.4 U 0.4 U 0.3 U 0.4 U NS 1.2 U 0.4 U 0.4 U 0.4 U 0.3 U 0.2 U NS 1.2 U 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U NS 1.2 U 0.3 U 0.3 U 0.3 U 0.3 U 0.4 U NS 1.5 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.3 U 0.3 U <t< td=""><td>cis-1,2-Dichloroethene</td><td>SN</td><td>520</td><td>0.0.1</td><td>1.0 U</td><td>1.2</td><td>15</td><td>1.0 U</td><td>1.0 U</td></t<>	cis-1,2-Dichloroethene	SN	520	0.0.1	1.0 U	1.2	15	1.0 U	1.0 U
5 1.5 1 0.2 U 0.2 U <td>Chloroform</td> <td>7</td> <td>1.0.1</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 U</td> <td>0.2 U</td>	Chloroform	7	1.0.1	0.2 U	0.2 U				
5 7.2 0.2 U 0.3 U	1,2-Dichloroethane	5	1.5	1	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
5 0.8 U 0.2	1,1,1-Trichloroethane	5	2.7	0.2 U	0.2 U				
NS 6.9 U 6.2 U 6.2 U 6.5	CarbonTetrachloride	5	(18:0	0.2 U	0.2 U				
NS 2.3 U 0.5 U 0.	Bromodichloromethane	NS	១ 6.0	0.2 U	0.2 U	0.2 U	0.2.0	0.2 U	0.2 U
NS 1.6 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 5 38 0.4 U 0.4 U 0.4 U 0.2 U 0.2 U 0.4 U 50 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 2.2 U 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U NS 1.2 U 0.8 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.5 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.3 U <td>1,2-Dichluropropane</td> <td>NS</td> <td>2.3 U</td> <td>0.5 U</td> <td>0.5 U</td> <td>0.5 U</td> <td>ก ร.ช</td> <td>0.5 U</td> <td>0.5 U</td>	1,2-Dichluropropane	NS	2.3 U	0.5 U	0.5 U	0.5 U	ก ร.ช	0.5 U	0.5 U
5 38 0.4 U 0.4 U 0.4 U 1.9 0.4 U 50 1.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U NS 2.2 U 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U 0.7 1.2 U 0.8 0.3 U 0.2 U 1.1 0.2 U NS 1.6 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.5 U 0.5 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.3 U 0.3 U 0.3 U 0.3 U 0.3 U NS 1.5 U 0.1 U 0.1 U 0.3 U 0.3 U 0.3 U S 0.9 U 0.2 U 0.3 U 0.3 U 0.3 U 0.3 U A 0.7 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U S 1.2 U 0.5 U 0.2 U 0.2 U 0.2 U 0.2 U S 1.7 U 0.1 U	cis-1,3-Dichloropropene	NS	1.6 U	0.3 U	0.3 บ	0.3 U	0.3 U	0.3 U	0.3 U
50 1.2 U 0.2 U 0.	Trichloroethene	5	38	0.4 U	0.4 U	0.4 U	6.1	0.4 U	0.4 U
NS 2.2 U 0.4 U 0.7 U 0.8 U.3 U 0.2 U 1.1 0.2 U 0.8 U 0.3 U 0	Dibromochloromethane	50	1.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
0.7 1.2 U 0.8 0.3 0.2 U 1.1 0.2 U NS 1.6 U 0.3 U	1,1,2-Trichloroethane	NS	2.2 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
NS 1.6 U 0.3 U 0.5 U 0.3	Benzene	0.7	1.2 U	8.0	0.3	0.2 U	1.1	0.2 U	0.2 U
NS 23U 0.5U 0.5U 0.5U 0.5U 0.5U 0.5U NS 1.5U 0.3U 0.3U 0.3U 0.3U 0.3U S 0.5U 0.1 0.1U 0.1U 0.2 S 0.9U 0.2U 0.2U 0.2U 0.3U S 1.2U 0.1 0.1U 0.1U 0.1U 0.1U S 1.2U 0.5 0.2U 0.2U 0.2U S 5.0U 1.0U 1.0U 1.0U 1.0U 1.0U S 5.0U 1.0U 1.0U 1.0U 1.0U 1.0U S 5.0U 0.5 0.5 0.5 0.5U S 5.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U S 5.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U S 5.0U 0.5 0 0 0 0 15 0.5	trans-1,3-Dichloropropene	NS	1.6 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
NS 1.5U 0.3U 0.3U 0.3U 0.3U 0.3U 0.3U 0.3U 0.3	2-ChloroethylVinylEther	NS	2.3 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
5 0.5 U 0.1 U 0.1 U 0.2 U 0.1 U 0.2 U 0.1 U 0.1 U 0.2 U 0.1 U 0.1 U 0.1 U 0.3 U 0.6 0.6 0.6 0.6 0.6 0.6 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.1 U 0.2 U	Вготобогт	NS	1.5 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
\$ 1.6 U 0.3 U 0.6 0.2 U 0.6 0.6 0.6 0.6 0.6 0.7 U 0.1 U 0.1 U 0.1 U 0.1 U 0.2 U <td>Tetrachloroethene</td> <td>5</td> <td>0.5 U</td> <td>0.1</td> <td>0.1 U</td> <td>0.1 U</td> <td>0.2</td> <td>0.1 U</td> <td>0.1 U</td>	Tetrachloroethene	5	0.5 U	0.1	0.1 U	0.1 U	0.2	0.1 U	0.1 U
5 0.9 U 0.2 U 0.2 U 0.2 U 0.2 U 0.2 U 0.6 4 0.7 U 0.1 U 0.2 U	1,1,2,2-Tetrachloroethune	5	0.9.1	0.3 U	0.3 U				
4 0.7 U 0.1 U 0.2 U 0.6 U 0.6 U 0.6 U 0.4 U 0.6 U 0.4	Toluene	5	O 6.0	0.2 U	0.2 U	0.2 U	0.2 U	9.0	0.2 U
5 1.2 U 0.5 0.2 U 0.2 U 0.2 U 0.2 U 5 5.0 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 U s(s) 1718.4 219.5 5 1.9 40.6 0.6 TICs (s) 0 0 0 14 14	Chlorobenzene	4	U 7.0	0.1 U	0.1 U				
s(s) 1718.4 219.5 5 1.9 40.6 0.6 11Cs(s) 0 0 0 15 0 14 0	Ethylbenzene	5	1.2 U	0.5	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
s(s) 1718.4 219.5 5 1.9 40.6 0.6 TICs(s) 0 0 0 15 0 14	Xylene(Total)	5	5.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
s(s) 1718.4 219.5 5 1.9 40.6 0.6 TICs (s) 0 0 0 15 0 14									
TICs (s) 0 0 0 15 0 14	Total Confident Cone. VOA		1718.4	219.5	5	1.9	40.6	9.0	0
	Total Estimated Conc. VOA		0	0	0	15	0	14	0

NS: No standard specified
U: Analyte was not detected above the referenced reporting limit

Water Level Measurements/Monitoring Well Construction Details Photocircuits Corporation Glen Cove, New York Table 2-4

				L	Anon	August 7, 1996	Sentem	September 10, 1996	Man	May 13, 1998
		Casing	Depth to	Top of Casing	Depth to	Depth to Ground Water	Depth to	Depth to Ground Water	Depth to	Ground Water
Site	Well	Diameter	Bottom	Elevation	Water	Elevation	Water	Elevation	Water	Elevation
	Number	(in)	(IJ)	(ft above MSL)	(f)	(ft above MSL)	(£)	(ft above MSL)	(£)	(ft above MSL)
45A Sea Cliff	si-WM	4	20.62	101.94	10.68	91.26	11.41	90.53	8.75	82.51
Ave. Site	MW-2s	4	17.02	100.87	8.37	92.5	98.8	92.01	99'9	85.84
	MW-3s	4	18.73	99.83	8.8	91.03	9.56	90.27	7.02	84.01
	MW-4s	4	15.00	NA	NA	NA	NA	NA	5.20	NA
-	MW-2	2	24.62	102.76	9.2	93.56	10.02	92.74	NA	NA
-	MW-3	2	18.98	98.8	6.2	92.6	7.15	91.65	3.75	88.85
	MW-4	2	23.66	97.56	4.24	93.32	5.28	92.28	2.17	91.15
	MW-5	2	99.32	97.39	4.26	93.13	5.56	91.83	2.41	90.72
	9-MW	2	13.45	99	4.2	94.8	5.25	93.75	2.60	92.2
31 Sea Cliff	MW-7	4	23.37	95.9	5.38	90.52	6.3	9.68	3.55	86.97
Avc. Site	MW-8	7	169.3	99.01	8.04	76.06	88.8	90.13	5.88	85.09
	0-WW	4	27.57	98.5	7.34	91.16	8.47	90.03	5.80	85.36
	MW-10	4	130.27	98.43	7.74	69.06	8.61	89.82	5.64	85.05
	MW-11	4	170	98.46	7.9	90.56	8.79	29.68	5.90	84.66
	NC-Well	2	10.39	97.57	4.88	92.69	5.9	91.67	3.01	89.68

Note: MSL = Mean Sca Level

NA = Data Not Available MW-2 location is assumed to be paved over

TABLE 2-5

Ground Water Sampling Field Parameters, May 1998 Photoeircuits Corporation Glen Cove, New York

. 5, 6 40									, , , , , , , , , , , , , , , , , , , 	
amiT alqına2	9:40	15:50	0:01	\$ 6 1 9 E	8:20	41:51	\$0:91	14:42	91:91	14:29
Sample Date	86/61/2	86/E1/S	86/11/5	86/81/\$	2/18/DZ	86/81/5	86/61/5	8/14/88	86/E1/S	86/11/5
(mqg) əlasi əgru	ε	7	ε	7	7	ζ	ζ	7	7	7
Volume Purged (gal)	0.62	0.82	20.0	24.0	5.75	0.£1	15.0	0.82	0.4	30.0
Purge Method	2" Grundlos	solband "S	รบ์ไปตาภO "S	2" Grundlos	Cb	2" Grundles	solbannO "S	solbnmiD "S	ջուրությում "Հ	2" Grundfos
Purge End Time	5:35	12:57	£0:01	13:25	05:11	11:20	14:02	15:32	14:33	13:52
omil hate agaid	52:6	12:37	85:6	13:12	06:11	11:10	13:55	SEIL	14:31	13:45
(l\gm) O(l	08.2	06.T	\$0.£	09.8		18.£	2.65	65.9	24.2	ET.E
Turbidily (UTV)	6	-10	666	280	91	305	85	82	113	345
Sp. Cond. (uS/cm)	0.445	\$0£'0	tSL'0	0.190	0.450	0.194	958.0	191'0	954.0	3.330
(O°) อามเกอดุตอโ	15.9	0.51	1'91	1.2.1	9.8	14.4	15.2	L'SI	16.1	181
Hq	88.9	£Z.0	LIVS	90.7	t2.0	\$6.5	29.9	66°L	₽L'9	65.6
Post-Sample										
(1\gm) OC	£8.4	78.T	2 E. E	09.8		39.1	EL.1	6L'9	DKA	₽8.E
(UTV) ylibidwl	784	147	666	SL	ÞÞ	01-	380	991	DRY	164
Sp. Cond. (uS/cm)	22p.O	869.0	£1/L'0	146.0	1810	997.0	278.0	091.0	DKA	3.640
Compensibre (°C)	12.8	1.51	0.31	9.81	9. S	13.1	[4]	12.3	NYC	8.71
Hc	64.9	82.3	86.2	5172	9 <i>L</i> °9	84.0	LL'9	\$6"L	DRY	ÞL'6
Past-Purge										
						· · · · · · · · · · · · · · · · · · ·	,	r		
(l\gm) O(L6't	Z9.7	2.89	ÞEL		1.95	79.7	81.4	L6'7	SL'1
(UTM) ytibidau1	238	810	52	SLÞ	7.4	248.00	ILL	EÞ	322	28
Sp. Cond. (uS/cm)	664-0	817.0	₱ ८ 910	172.0	288.0	192.0	\$28.0	651.0	942.0	069.E
(O°) อามโซเอดุศายโ	0.51	13.4	13.5	9,21	9.p	17.3	14.2	15.5	0.51	þ.ð1
110	\$9.9	££.8	87'5	2T.3	14.0	£\$.3	£L'9	21.8	18.9	80.6
Pre-Purge										
						,				
Volumes (gal)	00,22	27.30	00'81	14.00	27.30	0Þ.T	10.40	00.24	02.2	38.00
(1sg) omuloV enC	08.7	9.10	0£.8	4.70	01.6	7.47	3,45	08.21	1.72	12.80
Well Diameter (in)	Þ	‡	Þ	þ	7	7	ζ	7	7	þ
(A) Algorit (A)	29.02	17,02	£7.81	12.00	79.42	86.81	23.66	25.99	24.81	7E. ES.
		99.9	Z0.7	02.2	ł.	ST.E	2.17	2.41	09.2	3.55
Ocplit to Water (fl)	ST.8									
(fl) 191kW of fliqo(27.8				·	· —			,	
	#\$# \$7.8	454	ust	st-ww	16	15	IE F-MW	15	9-WW	IE L-MW

CP: Centrifugal pump.

TABLE 2-5 Cround Water Sampling Field Parameters, May 1998 Photocircuits Corporation Glen Cove, New York

18	15	18	16	18	gite Location
NC- Mall	II-WW	01-WM	6-WW	8-WW	Well ID

3 Volumes (gat)	318,00	42.30	243.00	318.00	09.E
One Volume (gal)	00.301	14,10	81.00	00'90t	07.1
Well Diameter (in)	Þ	Þ	Þ	Þ	7
(fl) diqaCl IntoT	06.951	LS. LZ	130.27	94.86	LS'L6
Depth to Water (11)	88.2	08.2	t-9°S	06.2	3.01

917uf-97f 9.7 Ha

(I\gm) O(I	06.7	£\$.f	02.8	10,3	4.24
Turbidity (UTU)	89	302	981	8-	666
Sp. Cond. (uS/cm)	0.22.0	6.425	0,340	0.235	212.0
Temperature (°C)	18.0	14.1	0.81	£'.L1	5.81
Hq	06.7	0£,7	04.7	₽9.7	LUL

Post-Purge

(Ngm) OCI	08.8	16.1	00. £	7.32	£8.Þ
Turbidity (VTU)	96	666	9£1	01-	797
Sp. Cond. (uS/cm)	002.0	805.0	0,840	96170	£09'0
Cemperature (°C)	0.21	6.51	0.71	L'SI	6.91
liq	0S.T	£8.3	01.7	18.3	24.T

Post-Sample

040	LITE	02.3	00.T	2.80
515	666	961	871	7 5
0.22.0	T45.0	045.0	0.220	095.0
0.21	13.3	0.81	0.21	9.91
OS.T	94.9	00.8	09'L	24.T
	0.22.0	13.0 13.3 0.22.0 0.247	0,51	0.22.0 0.347 0.349 0.22.0 15.0 15.0

Sample Tinsc	12:30	13:21	57:11	10:44	11:06
Sample Date	86/91/\$	86/11/5	86/91/\$	86/91/\$	86/11/5
Purge Rale (gpm)	9	£	ς	Ş	[
Volume Purged (gal)	0.021	0.24	0.001	0.022	۵.۵
Purge Muthod	zolbannD "S	solbnund "S	solband "S	2" Grundfos	Ch
Purge End Time	15:12	۲0:٤١	01:11	54:6	95:01
Purge Start Time	11:23	15:21	10:32	\$0:6	75:01

CP: Centrifugal թառթ.

MW-3SD*

MW-4S

Table 2-6
Analytical Summary for Volatile Organic Compounds
Monitoring Well Sampling Event May 13-15, 1998
Photocircuits Corporation
Glen Cove, New York

MW-2S

MW-3S

MW-1S

NYSDEC

Sample ID	GW	61008	61001	61007	61011	61002
Sample Date	Criteria	5/14/98	5/13/98	5/14/98	5/14/98	5/13/98
Dilution Factor	(ppb)	1.0	1.0	1.0	1.0	2.0
VOLATILE COMPOUNDS (ppb)					
Chloromethane	NS	0.9 U	0.9 U	0.9 U	0.9 U	1.9 U
Bromomethane	NS	0.3 U	0.3 U	0.3 U	0.3 U	0.5 U
VinylChloride	2	0.4 U	0.4 U	0.4 U	0.4 U	0.8 U
Chloroethane	50	1.0 U	1.0 U	1.0 U	1.0 U	2.1 U
MethyleneChloride	5	1.0 U	1.0 U	1.0 U	1.0 U	2.1 U
Trichlorofluoromethane	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U
1.1-Dichloroethene	5	0.6 U	0.6 U	0.6 U	0.6 U	1.1 U
1.1-Dichloroethane	5	0.3 U	0.3 U	0.3 U	0.3 U	0.6 U
trans-1,2-Dichloroethene	NS	0.3 U	0.3 U	0.3 U	0.3 U	0.6 U
cis-1,2-Dichloroethene	NS	1.1	1.0 U	3.0	2.9	2.0 U
Chloroform	7	0.2 U	0,5	0.2 U	0.2 U	0.4 U
1.2-Dichloroethane	5	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U
1.1.1-Trichloroethane	5	0.3	0.2 U	0.2 U	0.2 U	0.4 U
CarbonTetrachloride	5	0.2 U	0.2 U	0.2 U	0.2 U	0.3 U
Bromodichloromethane	NS	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U
1.2-Dichloropropane	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.9 U
cis-1,3-Dichloropropene	NS	0.3 U	0.3 U	0.3 U	0.3 U	0.7 U
Trichloroethene	5	3.0	0.4 U	100	100	13
Dibromochloromethane	50	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U
1.1.2-Trichloroethane	NS	0.4 U	0.4 U	0.4 U	0.4 U	0.9 U
Benzene	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0.5 U
trans-1.3-Dichloropropene	NS	0.3 U	0.3 U	0.3 U	0.3 U	0.6 U
2-ChloroethylVinylEther	NS	0.5 U	0.5 U	0.5 U	0.5 U	0.9 U
Bromoform	NS	0.3 U	0.3 ป	0.3 U	0.3 U	0.6 U
Tetrachloroethene	5	71	1.3	9.1	9.7	330
1,1.2,2-Tetrachloroethane	5	0.3 U	0.3 U	0.3 Ü	0.3 U	0.7 U
Toluene	5	0.2 U	0.2 U	0.2 U	0.2 U	0.4 U
Chlorobenzene	4	0.1 U	0.1 U	0.1 U	0.1 U	0.3 Ü
Ethylbenzene	5	0.2 U	0.2 ป	0.2 U	0.2 U	0.5 U
Xylene(Total)	5.	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U
Total Confident Conc. VOAs		75	1.8	112	113	343
Total Estimated Conc. VOA	TICs (s)	0	0	0	0	0
NS: Not Specified					<u>-</u>	

NS: Not Specified

Sampling Location

U: Analyte was not detected above the referenced reporting limit

^{*:} Duplicate samples of MW-3S and MW-7

MW-6

MW-5

Table 2-6
Analytical Summary for Volatile Organic Compounds
Monitoring Well Sampling Event May 13-15, 1998
Photocircuits Corporation
Glen Cove, New York

MW-3

MW-NC

MW-4

NYSDEC

Sampling Location

Sample ID	GW	61005	61000	61003	61012	61004
Sample Date	Criteria	5/14/98	5/13/98	5/13/98	5/14/98	5/13/98
Dilution Factor	(ppb)	1.0	1.0	1.0	1.0	1.0
OLATILE COMPOUNDS	(ppb)					
Chloromethane	NS	0.9 U				
Bromomethane	NS	0.3 U				
VinylChloride	2	0.4 U	0.4 Ŭ	0.4 Ü	0.4 U	0.4 U
Chloroethane	50	1.0 U	1.0 Ŭ	1.0 U	1.0 U	1.0 U
MethyleneChloride	5	1.0 U				
Trichlorofluoromethane	NS	0.2 U				
1.1-Dichloroethene	5	0.6 U	0.6 U	0.6 U	0,6 U	0.6 U
1.1-Dichloroethane	5	0.4	0.3 U	0.3 U	0.3 U	0.5
trans-1,2-Dichloroethene	NS	0.3 U				
cis-1,2-Dichloroethene	NS	5.1	1.0 U	1.0 U	1.0 U	1.5
Chloroform	7	0.2 U				
1,2-Dichloroethane	5	0.2 U				
1.1.1-Trichloroethane	5	0.2 U				
CarbonTetrachloride	5	0.2 U				
Bromodichloromethane	NS	0,2 U	0.2 U	0.2 U	0.2 U	0.2 U
1.2-Dichloropropane	NS	0.2	0.5 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	NS	0.3 U				
Trichloroethene	5	2.4	0.4 U	0.4 U	0.9	0.4
Dibromochloromethane	50	0.2 U				
1,1,2-Trichloroethane	NS	0.4 U				
Benzene	0.7	0.2 U	0.2 U	0.2 U	0.2 U	0,2 U
trans-1.3-Dichloropropene	NS	0.3 U				
2-ChloroethylVinylEther	NS	0.5 U				
Bromoform	NS	0.3 U				
Tetrachloroethene	5	0.9	0.1 U	0.4	0.7	0.7
1,1,2,2-Tetrachloroethane	5	0.3 U				
Toluene	5	0.2 U	1.1	0.2 U	0.2 U	0.2 U
Chlorobenzene	4	0.1 U				
Ethylbenzene	5	0.2 U	0.3	0.2 U	0.2 U	0.2 U
Xvlene(Total)	5	1.0 U				
Total Confident Conc. VOAs	(s)	9.0	1.4	0.4	1.6	2.4
Total Estimated Conc. VOA		0	0	0	0	8.8

U: Analyte was not detected above the referenced reporting limit

MW-10

MW-9

Table 2-6 Analytical Summary for Volatile Organic Compounds Monitoring Well Sampling Event May 13-15, 1998 **Photocircuits Corporation** Glen Cove, New York

MW-7D*

MW-8

MW-7

NYSDEC

Sample ID	GW	61014	61010	61016	61009	61014
Sample Date	Criteria	5/14/98	5/14/98	5/15/98	5/14/98	5/15/98
Dilution Factor	(ppb)	25.0	25.0	1.0	1.0	1.0
OLATILE COMPOUNDS (p						, · · · · · · · · · · · · · · · · · · ·
Chloromethane	NS	23 U	23 U	0.9 U	0.9 U	0.9 U
Bromomethane	NS	6.8 U	6.8 U	0.3 U	0.3 U	0.3 U
VinylChloride	2	18	16	0.4 U	1.1	1.9
Chloroethane	50	71	74	1,0 U	1.0 ប	1.0 U
MethyleneChloride	5	26 U	26 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	NS	5.8 U	5.8 U	0.2 U	0.2 U	0.2 ป
1.1-Dichloroethene	5	14 U	14 U	0.6 U	0.6 Ū	13
l.I-Dichloroethane	5	3200	3200	2.0	1.6	62
trans-1.2-Dichloroethene	NS	7.5 U	7.5 U	0.3 U	0.3 U	0.3 U
cis-1.2-Dichloroethene	NS	25 U	25 U	6.3	2.0	46.0
Chloroform.	7	5.0 U	5.0 U	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	5	5.5 U	5,5 U	0.2 ปั	0.2 U	1.4
1.1.1-Trichloroethane	5	12	12	0.2 U	0.2 U	3.1
CarbonTetrachloride	5	4.0 U	4.0 U	0.2 U	0.2 U	0.2 U
Bromodichloromethane	NS	4.8 U	4.8 U	0.2 ปั	0.2 U	0.2 U
1,2-Dichloropropane	NS	12 U	12 U	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	NS	8.2 U	8.2 U	0.3 U	0.3 Ų	0.3 U
Trichloroethene	5	50	55	5.7	0.4 U	14
Dibromochloromethane	50	5.8 U	5.8 U	0.2 Ŭ	0.2 U	0.2 U
1,1,2-Trichloroethane	NS	ПÜ	11 U	0.4 U	0.4 U	0.4 U
Benzene	0.7	6.0 U	6.0 U	0.2 U	0.2 U	0.2 U
trans-1.3-Dichloropropene	NS	7.8 U	7.8 Ú	0.3 U	0.3 U	0.3 U
2-ChloroethylVinylEther	NS	12 U	12 U	0.5 Ŭ	0.5 U	0.5 U
Bromoform	NS	7.5 U	7.5 U	0.3 U	0.3 U	0.3 U
Tetrachloroethene	5	15	18	2.0	0.1	3.3
1.1.2.2-Tetrachloroethane	5	8.2 U	8.2 U	0.3 U	0.3 U	0.3 U
Toluene	5	26	27	0.2 U	0.2 U	0.2 U
Chlorobenzene	4	3.5 U	3.5 U	0.1 U	0.1 U	0.1 U
Ethylbenzene	5	6.0 U	6.0 U	0.2 U	0.2 U	0.2 U
Xylene(Total)	5	25 U	25 U	1.0 U	1,0 U	1.0 U
Total Confident Cons. VOAs (0)	3392	3402	16	1.0	145
Total Confident Conc. VOAs (Total Estimated Conc. VOA T		0	0	16 0	4.8	0

Sampling Location

U: Analyte was not detected above the referenced reporting limit

^{*:} Duplicate samples of MW-3S and MW-7

Table 2-6
Analytical Summary for Volatile Organic Compounds
Monitoring Well Sampling Event May 13-15, 1998
Photocircuits Corporation
Glen Cove, New York

Sampling Location	NYSDEC	MW-11	FB051498	TB51298
Sample ID	GW	61015	61006	61017
Sample Date	Criteria	5/15/98	5/14/98	5/12/98
Dilution Factor	(ppb)	1.0	1.0	1.0
VOLATILE COMPOUNDS (pp				
Chloromethane	NS	0.9 U	0,9 U	0.9 U
Bromomethane	NS	0.3 U	0.3 U	0.3 U
VinylChloride	2	0.4 U	0.4 U	0.4 U
Chloroethane	50	1.0 U	1.0 U	1.0 U
MethyleneChloride	5	1.0 U	1.4	1.0 U
Trichlorofluoromethane	NS	0.2 U	0.2 U	0.2 U
1.1-Dichloroethene	5	0.9	0.6 U	0.6 U
1,1-Dichloroethane	5	2.6	0.3 U	0.3 U
trans-1,2-Dichloroethene	NS	0.3 U	0.3 Ŭ	0.3 U
cis-1,2-Dichloroethene	NS	21.0	1.0 U	1.0 U
Chloroform	7	0.2 U	0.2 U	0.2 U
1,2-Dichloroethane	5	0.2 U	0.2 U	0.2 U
1,1,1-Trichloroethane	5	0.2	0.2 U	0,2 U
CarbonTetrachloride	5	0.2 U	0.2 U	0,2 U
Bromodichloromethane	NS	0.2 U	0.2 U	0.2 U
1,2-Dichloropropane	NS	0.5 U	0.5 U	0.5 U
cis-1,3-Dichloropropene	NS	0.3 U	0.3 U	0.3 U
Trichloroethene	5	16	0.4 U	0.4 U
Dibromochloromethane	50	0.2 U	0.2 U	0.2 U
1,1,2-Trichloroethane	NS	0.4 U	0.4 U	0.4 U
Benzene	0.7	0.2 U	0.2 U	0.2 U
trans-1,3-Dichloropropene	NS	0.3 U	0.3 U	0.3 U
2-ChloroethylVinylEther	NS	0.5 U	0.5 U	0.5 U
Bromoform	NS	0.3 U	0.3 U	0.3 U
Tetrachloroethene	5	1.5	0.1 U	0.1 U
1,1,2,2-Tetrachloroethane	5	0.3 U	0.3 U	0.3 U
Toluene	5	0.2 U	0.7	0.2 U
Chlorobenzene	4	0.1 U	0.1 U	0.1 U
Ethylbenzene	5	0.2 U	0.2 U	0.2 U
Xylene(Total)	5	1.0 U	1.0 U	1.0 U
Total Confident Conc. VOAs (s)		42	2.1	0
Total Estimated Conc. VOA TIC	cs (s)	0	4.7	0

NS: Not Specified

U: Analyte was not detected above the referenced reporting limit

Page 1 of 2

Glen Cove, New York

Summary of Falling/Rishig Head Slug Testing Data and Results Photocircuits Corp.

Table 3-1

SEWM SEWM	RISING FALLING RISING FALLING RISING FALLING	DATE OF THE PARTY			1.736 1.416 1.934 2.42 2.561 3.116 3.86	0.1667 0.08333 0.08333 0.08333 0.08333 0.08333	0.3333 0.25 0.25 0.25 0.25 0.25	191.5 194.9 196.8 196.8 196.9 196.9	10 10 10 10 10	6.5 13.83 13.83 20.46 20.46 96.22 96.22
SFMW	FALLING R				Ϋ́					
MW-3S	FALLING RISING				NQ 0.594	0.1667	0.3333	191.7	01	10.38
.28	RESINO				2.198	0.1667	0.3333	193.1	0:	13.75
MW-28	FALLING				1.227	0.1667	0.3333	193.1	01	13.75
MW.18	FALLING RISING				0.647	0.1667	0.3333	190.9	10	11.45
M	FALLING				Š.					
MONITORING WELL		1	NPCT	PARAMETERS •	(V) •H	Re (A)	Rw (f)	(v) q	1 (A)	н (м)

COMPUTED
PARAMETERS (Bouwer-Rice method)

K (Nmin)	Ö	1.060E-01	1.259E-02	1.9382-03	Ŏ _N	6.266E-03	N.A	2.080E-02	1.767E-03	2.080E-02 1.767E-03 1.262E-03 8.069E-04 6.859E-04 3	8.069E-04	6.859E-04	3.723E-05	8.042E-05
K (Nday)		1.526E+02	1.#13E+01	2.791E+00		9.0230.400		2.995E+01	2.544E+00	2.593E+01 2.544E+00 1.817E+00 1.162E+00 9.877E-01	1.162E+00	9.877E-01	5.361E-02	1.158E-01
K (cm/s)		5.30015-02	6.295E-03	9.6902-04		3,1332-03		1.04011-02	8.835E-04	6.3108-04	4.035E-04	3.430E-04	3.430E-04 8.815E-04 6.310E-04 4.035E-04 3.430E-04 1.862E-05 4.021E-05	4.021E-05

NA: Falling head alog lest was not appropriate because water level was within screened zone
NQ Data measured during test were not of autiable quality to provide a useable analytical result.
Ho: Initial drawdown in test well (Note: Yo is recalculated by program based on linearity of graph).
Re: Internal radius of test well easing
Re: Effective radius of test well
D: Salurated aquifer thickness under static combitions
I: Length of test well serven
H: Height of water column in test well under static conditions
K: Hydraulic conductivity
* Analytical Program: AQTESOL V, Duffield and Rumbaugh (1989)

Table 3-1
Summary of Failing/Rising Head Sing Testing Data and Results
Photocircuits Corp.
Glen Cove, New York

MONITORING WELL	Μ١		M\		ММ	/-8	MV	V-9	MW	-10	MW	-11	NC \	Well
	FALLING	RISINO	FALLING	RISINO	FALLING	RISING	FALLING	RISINO	FALLING	RISING	FALLING	risino	FALLING	RISING
INPUT PARAMETERS *				·	,,									
Но (Л)	NA	2.023	2.639	NQ	1.496	0.044	3.728	2.697	3,853	4.23	NQ	1.442	3.136	4.393
Rc (A)		0.08333	0.1667		0.1667	0.1667	0.1667	0.1667	0.1667	0.1667		0.1667	0.08333	0.08333
Rw (f)		0.25	0.3333		0.3333	0.3333	0.3333	0.3333	0,3333	0.3333		0.3333	0,25	0.25
D (N)		196,4	194.8		194.1	194.1	193.4	193.4	194.3	194.3		194.1	196	196
I (N)	-	10	15.33		15,33	15,33	15,33	15.33	15.33	15.33		15	5	5
H (N)		9.85	18.12		163.4	163.4	20.92	20.92	124.57	124.57		164.13	6.39	6.39
COMPUTED PARAMETERS (Bouwer-Rice	method)		.											•
K (N/min)	NA	8,329E-04	6.572E-03	NQ	1.677E-02	1.566E-02	3.891E-04	1.745E-03	6.849E-03	5.866E-03	NQ	6.587E-02	5.522E-04	5.402E-04
K (fVday)		1.199E+00	9.464E+00		2.415E+01	2.255E+01	5.603E-01	2.513日+00	9.863E+00	8.447E+00		9.485E+01	7.952E-01	7.779E-01
K (cm/s)		4.165E-04	3.286E-03		8.385E-03	7.830E-03	1.946E-04	8.725E-04	3.425E-03	2.933E-03		3.294E-02	2.761E-04	2.701E-04

NA: Falling head slug test was not appropriate because water level was within screened zone

8/31/98 2:04 PM

NQ Data measured during test were not of suitable quality to provide a useable analytical result

Ho: Initial drawdown in test well (Note: Yo is recalculated by program based on linearity of graph)

Re: Internal radius of test well easing

Rw: Effective radius of test well

D: Saturated equifer thickness under static conditions

I: Length of test well screen

H: Height of water column in test well under static conditions

K: Hydraulic conductivity

^{*} Analytical Program: AQTESOLV, Duffield and Rumbaugh (1989)

Appendix A

Soil Borings Logs/Well Log

EVETA	<i>n</i> ciai	ren	PROJECT NAME: Photocircuits		PROJECT NO.:]	Boring No:	45A-GW-1
WP1.	Hārl	-	PROJECT LOCATION	on: Avenue, Glen	Cove Long	island	LOCATION SKETCH	↑
COMPLETION DATE: 4/8/98	TOTAL DEP	TH OF 80 Feet	REHOLE:	MONITORING DEVIC	Ε:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTOR	R / DRILLER:		DRILLING EQUIPM	ENT:	DRILLING ME	HOD / BIT: em Push Rod		
SAMPLING METHOD: Acetate-Lined M	acrocore	22		GROUND SURFACE	ELEVATION:	WELL INSTALLED?]	
мемо: Boring to	cated to	the sou	rth of building	7.				

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moieture, Etc.	SAMPLES	
0			Ground Surface		o
 1	3.0	0	Asphalt fall in and fill, coarse gravel and pebbles		
_2					_2
_3 _3					_3
					_4
_ _5	3.0	0	Asphalt fall in		_ _5
_6					_6 _6
_7					_7
_8			Natural materials		
_9	3.8	0	Back fill material Fine to coarse tan to med brwn SAND, w/little to fine gravel and		_9
_10	<u> </u>		med gravel		_10
_11					11
12					
_13	3.8	0	Fine to coarse tan to med brwn SAND, w/ little to fine gravel and med gravel, trace pebbles and cobble		_ _13
_14					14
_15					_15
16	1.2	1.0	Fine to coarse tan to med brwn SAND, w/ little to fine gravel and		_ _16
_ _17	4.0	1.9	med gravel, trace pebbles and cobble		_ _17
_18			Fine to med SAND with silt and trace clay		_18
_ _19			Silty CLAY with a 2" lens of fine to medium sand with silt		_19
20			SILLY SEAT WITH a 2 18113 ST THIS TO THIS SAILS WITH SILL		20
_ _21	2.0	1.2	Damp Silty CLAY		_ _21
_ _22			WET SAND with trace gravel		
_23			End of boring at 28' b.g.		_23
_ 24					24

KYEZA	<u> vçlaren</u>	PROJECT NAME: Photocircuits		PROJECT NO.: 1 2080		Boring No:	45A-GW-2
MP	Hart	PROJECT LOCATIO	N: Avenue, Glen	Cove Long	Island	LOCATION SKETCH	↑
COMPLETION DATE: 4/10/98	TOTAL DEPTH OF BO	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTO Zebra/ Matt	R / DRILLER:	DRILLING EQUIPMI	ENT:	DRILLING MET Hollow St	HOD / BIT: em Push Rod		
SAMPLING METHOD: Acetate-Lined M		O GROUNDWATER Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
мемо: Boring lo	cated inside bui	lding 7.					

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Colar, Texture, Moieture, Etc.	SAMPLES	
0			Ground Surface		0
_1	2.5	332	Dark brwn Silty SAND with fine to medium gravel and trace cobble		
_2					_2
_ _3			Firm Sandy CLAY		_3
_ 4					4
	3.0	227	Very fine light brwn/ tan SAND w/ gravel and pebbles		
_6					6
- ₇					- -7
_8					
_ _9	3.0	370	Dark brwn Siity SAND		- _9
_10			Fine to coarse beach like SAND		
11		:			
[_					1
12	1.0	236	Light brwn/ tan Silty SAND with coarse materials		
_13					_13
_14	1.4	168	Light brwn/ tan Silty SAND with coarse materials 2" lens of sand		_14
_ _15	17	108	and clay, moist		_15
16					
_17	2.0	189	Light brwn/ tan Silty SAND with coarse materials		17
_ _ _18					_ _ _18
_	1.7	492	Light brwn/ tan fine SAND with trace clay		
_19					_19 _
_20 _	1.5	329	Damp, Light brwn/ tan fine SAND with trace clay		
_21					_21
22			End of boring at 22' b.g.		
_23			cha or boning at 22 b.g.		_23
24					

	NÇEŞ	<u>ren</u>	PROJECT NAME: Photocircuits		PROJECT NO.: 1 2080	1	Boring No:	45A-GW-3
	Hārl		PROJECT LOCATION	on: Avenue, Glen	Covelona	Island	LOCATION SKETCH	
COMPLETION DATE: 4/10/98	TOTAL DEP	TH OF BOI		MONITORING DEVIC		GEOLOGIST / OFFICE: J. Gagnon/Warren	1	N
DRILLING CONTRACTO	R / DAILLEA:		DRILLING EQUIPME Geoprobe		DAILLING MET			
SAMPLING METHOD: Acetate-Lined N			GROUNOWATER Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
мемо: Boring I	ocated ins	ide buil	ding 7.	<u> </u>			1	

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moieture, Etc.	SAMPLES]
	(reat)	(FFM)			1
_0	3.0	176	Ground Surface		-0
_1					1_1
_ _2					_2
_ _3					_3
- - 4					-4
	3.5	229	Very dark brwn fine silty SAND w/ coarse materials and pebbles		7
_5					_5
_6	· .		Light brwn/ tan finr SAND w/ coarse materials, some gravel		_6
_ _7					_ ₇
_8					_8
_9	4.0		USED AS GEOTECHNICAL SAMPLE		_9
_ 10					10
					-11
_					
12	1.0	180	Fine light brwn SAND coarse		- ¹²
_13					_13
_ _14	1.0	60	Clas Kababasa CAMD and as		_14
_15	1.0	60	Fine light brwn SAND coarse		15
_ 16					16
17	2.0	412	Fine light brwn SAND coarse		17
_					-
_18 	2	1036	Dark brwn brittle, Silty SAND with clay little pebbles		18
_19					_19
20	1,0	177	Light brwn/ tan fine to coarse SAND, moist		_20
_21		.,,	Eight 2. The tall find to dealed define, findst		_21
22					_22
23			End of boring at 22' b.g.		23
- - 24					24

TITE!	MÇLQI	<u>ren</u>	PROJECT NAME: Photocircuits		PROJECT NO.: 12080		Boring No:	45A-GW-4
M_{I}	Harl		PROJECT LOCATION 45A Seacliff	Avenue, Glen	Cove Long	Island	LOCATION SKETCH	1
COMPLETION DATE: 4/10/98	TOTAL DEP	TH OF BO Feet	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACT Zebra/ Matt	OR / DRILLER:		DRILLING EQUIPMI	ENT:	DRILLING MET Hollow Sta	HOD / BIT: em Push Rod]	
SAMPLING METHOD: Acetate-Lined MEMO: Boring		8	Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?]	
MEMS. DOTTING								

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moleture, Etc.	SAMPLES]
0			Ground Surface: Asphalt		_0
_ _1	2.5	0	Asphalt fall in Very coarse medium brown SAND with medium and large gravel		_1
2			,		
 					3
_3 _ _4		 			4
_ - _5	4.0	0	Very coarse medium brown SAND with medium and large gravel		
_6 	[6
- - _7					- - -7
8					
_9			End of boring at 8' b.g.		9
_10					_10
_ _11					_11
_ _12					_12
_13					_ _13
_14					14
_15					_15
_ _16					_16
_ _17					17
_18					_18
_19					_19
_20					_20
_ _21					_21
_22					_22
_ _23					_ _23
- 24					_24

	<i>ACIAI</i>	ren	PROJECT NAME: Photocircuits	:	PROJECT NO. 12080	: 	Boring No:	45A-GW-5
M_{H}	Hār		PROJECT LOCATION 45A Seacliff	ON: Avenue, Gien	Cove Long	Island	LOCATION SKETCH	1
COMPLETION DATE: 4/10/98	TOTAL DEP	TH OF 80	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTO	R / DRILLER:		DRILLING EQUIPME	ENT:	DRILLING ME Hollow St	THOD / BIT: em Push Rod		
SAMPUNG METHOD: Acetate-Lined N MEMO: Boring I		12	Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
				.,				

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Maisture, Etc.	SAMPLES	
_0			Ground Surface		_0
_1	3.0	0.4	Asphalt fall in, fine silty SAND with coarse materials		_1
_ _ _2]				2
_ _3					_3
- - 4					
	4.0	0.2	Fine silty SAND with coarse materials, pieces of large rock		
_3 _ _6					_6
					_
_7 _7 _8					_7 -
	3.5	0	Fine silty SAND with coarse materials, pieces of large rock		8
					_9 _
_10 _			Very coarse SAND with pebbles, rock, wet.		_10
_11					-11
12			End of boring at 12' b.g.		12
_13					13
_14					_14
_15					_15
_16					_16
_17					_ _17
_18					_18
_ _19					_19
_20					_20
21					21
_22					22
_ _23					_23
- 24					_24

	Nciai	геп	PROJECT NAME: Photocircuits		PROJECT NO.: 1 2080]	Boring No:	45A-GW-6
M.	Hār		PROJECT LOCATION 45A Seacliff	Avenue, Glen	Cove Long	Island	LOCATION SKETCH	↑
COMPLETION DATE: 4/10/98	TOTAL DEP	TH OF BO	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTO	OR / DRILLER:		DRILLING EQUIPMI	ENT:	DRILLING MET	нор / віт: em Push Rod		
SAMPLING METHOO: Acetate-Lined N			GROUNDWATER Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
MEMO: Boring lo	ocated ins	ide buil	ding 7.					

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Maieture, Etc.	SAMPLES	
0			Ground Surface		_0
_1	2.0	0	Asphalt fall in, medium brown silty SAND with coarse material and	pebbles	_1
2					_ _ _2
_3					 3
-3 -4					_
	3.0	0	Light brown/ ten fine to coarse SAND with gravel		_4
_5					_5
_6					_6
_ ₇					-7 -7
8					_8
_9	4.0	0	Light brown/ tan fine to coarse SAND with gravel		_ _9
_ _10					_ _10
_11			Coarse SAND, wet		
_ 12					_12
_ _13			End of boring at 12' b.g.		_13
_14	; ;				14
_ 15					- 15
16					_16
ì					_
_17					_17
_18					_18 _
_19					_19
_20					_20
_21					_21
_22					_ _22
_23					_ _23
24					_ _24

THE A	NC[A[<u>en</u>	PROJECT NAME: Photocircuits		PROJECT NO. 12080	:	Boring No:	45A-GW-7
MP_{1} .	Hart		PROJECT LOCATION	N: Avenue, Glen	Cove Long	Island	LOCATION SKETCH	†
COMPLETION DATE: 4/10/98	TOTAL DEPT	HOF BOI	REHOLE;	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTO	R / DRILLER:		DRILLING EQUIPMI Geoprobe	ENT:	DRILLING ME Hollow St	тноо / віт: em Push Rod		
SAMPLING METHOD: Acetate-Lined M	lacrocore	12	Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
мемо: Boring Id	ocated insid	de buil	ding 7.					

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moletture, Etc.	SAMPLES	
0			Ground Surface		_0
_1	1.5	0	Asphalt fall in Medium brown coarse Sand with medium to fine gravel		_1
_ _2					_2
_3					_3
_4	1.5	0	Medium brown coarse Sand with medium to fine gravel		_4
_ _5	1.5	1	Medium brown coarse said with medium to fine graver		_5 _5
_ _6					_6
_ _7					_ ₇
88					_8
_ _9	3.0	0	Coarse SAND with gravel and cobble		_9
_ _10	! 				_ _10
_11	<u>'</u>				_ _ 11
12					_12
_ _13			End of boring at 12' b.g.		_ _13
_ _14					_ _14
_15					_15
_ _16					_16
_ _17					_17
_18					_18
_19 _					19
_20 _					_20
_21 		1			_21 _
_22					_22 _
_23	}		·		_23
24					_24

Page 1 of 1

KTETA	<u>ıçlaren</u>	PROJECT NAME: Photocircuits		PROJECT NO.: 12080		Boring No:	45A-SB-31
MP	Hart	PROJECT LOCATION	on: Avenue, Glen	Cove Long	Island	LOCATION SKETCH	1
COMPLETION DATE: 4/9/98	TOTAL DEPTH OF BO	DAEHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTOR Zebra/ Matt	/ DRILLER:	DRILLING EQUIPMI	ENT:	DRILLING MET	HOD / BIT: em Push Rod		
SAMPLING METHOD: Acetate-Lined Ma		O GROUNDWATER	GROUND SURFACE		WELL INSTALLED?	- -	

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moisture, Etc.	SAMPLES	
0			Ground Surface		
	2.0	1904	Concrete fall in, Very dark brwn Silty SAND	45A-SB-32-(0-4):	
_ · _ _2					- - -
- - _3					- - -
. 4					-' -
	3.0	708	Concrete fall in, Very dark brwn Silty SAND	45A-SB-33-(4-8):	
5			Light brwn tan soft SAND		-
6					-
7					j-
8	4.0	212	Light have 1000 AND with rabble and cabble		
9	4.0	212	Light brwn/ tansoft SAND with pebbles and cobble		_
10					-
11					-
- 12					
13	3.0	270	Soft light brwn/ tan SAND		-
14			Silty medium brwn CLAY, moist		-
15			Medium brwn SAND w/ trace clay		-
16					-
17	1.5	115	Fine light brwn SAND w/ trace clay		
18					- -
	1.5	249	Fine light brwn SAND w/ trace clay		1_
19					-
20	1.0	110	Fine light brwn SAND w/ trace clay, damp		
21					-
22	1.0	105	Fine light brwn SAND w/ trace clay, damp		
23					-
24					-

End of boring at 24' b.g.

Page 1 of 1

	MÇ <u>laren</u>	PROJECT NAME: Photocircuits		PROJECT NO. 1 2080	:	Boring No:	45A-SB-32
W .	Hart	PROJECT LOCATION	Avenue, Glen	Cove Long	ı İsland	LOCATION SKETCH	↑
COMPLETION DATE: 4/9/98	TOTAL DEPTH OF BO	REHOLE:	MONITORING DEVIC	Æ:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACT Zebra/ Matt	OR / DRILLER:	DRILLING EQUIPM Geoprobe	ENT:	DRILLING ME	тнор / віт: tem Push Rod]	
SAMPLING METHOD: Acetate-Lined I	Macrocore 22	Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
мемо: Boring I	located inside buil	ding 7.					

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moisture, Etc.	SAMPLES	
0			Ground Surface		
_1	2.5	1153	Dark brwn Silty SAND with little gravel and pebbles	45A-SB-32-(0-4):	_1
_ _2			Soft light brwn/ tan SAND with gravel and pebbles		- -2
_ _3 					_3
4	3.0			45 A CD 22 (4 D)	
_5 _5	3.0	577	Concrete fall in Dark brwn Silty SAND with little gravel and pebbles	45A-SB-33-(4-8):	_5
_ _6					_e
					_7
8	10	11/4	Out to CAND in Federal Lands		
9	4.0	N/A	Dark brwn Silty SAND with little gravel and pebbles		e
_10			Soft light brwn/ ten SAND and PEBBLES		_10
_ _11 _					_1
12	20	000	C (ALL LA)		
_ _13	3.0	263	Soft light brwn/ tan SAND		_1:
_14			Silty SAND with trace clay, 4" lens stiff sand/ clay		_1·
_15 _					
16	1.0	720	Madicus Long CU TV CLAV and dealers also as been		
_ _17	1.0	728	Medium brwn SILTY CLAY, sandy silt w/ trace clay at bottom		_17
_18	2.0	514	Soft light brwn fine SAND		_18
_19 _					_1s
_20	1.0	270	Damp fine light brown SAND		
_21	1.0	270	Damp line light brown DANG		_21
22	1.0	217	W. 6 Fig. 1 CAND		
_23	1.0	317	Wet fine light brown SAND		23
_24			End of having as 241 h.		

End of boring at 24' b.g.

Page 1 of 1

KYFTA	<u> ACIATEN</u>	PROJECT NAME: Photocircuits		PROJECT NO. 1 2080	: 	Boring No:	45A-SB-33
	Hārt		PROJECT LOCATION: 45A Seacliff Avenue, Glen Cove Long Island				↑
COMPLETION DATE: 4/8/98	TOTAL DEPTH OF BO	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTOR Zebra/ Matt	r / DRILLER:	DRILLING EQUIPMI	ENT: DRILLING METHOD / BIT: Hollow Stem Push Rod				
			GROUND SURFACE ELEVATION: WELL INSTALLED? NA No				
мемо: Boring lo	cated inside buil	ding 7.					

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moisture, Etc.	SAMPLES	
0			Ground Surface		0
_ _1	3.0	519	Concrete fall in, fine SAND with fine to med gravel, med brwn/ tan 4" lens near bottom with pieces of black sand with trace clay	45A-SB-33-(0-4):	_1
_2					_2
_ _3					_3
- _4					
_5	3.0	217	Back fill material Med brwn to tan fine to coarse SAND, with med gravel and some pebbles and cobble	45A-SB-33-(4-8):	_5
_6			possios and sossio		_6
_ _7					_7
- 8					
_ _9	4.0	405	Back fill material and concrete fall in Med brwn to tan fine SAND		_9
_10					_10
_ _11					- - 11
12					
_13	3.0	1579	Fine to coarse tan to med brwn SAND	45A-SB-33-(12-16):	13
_ _14	į				_14
_ _15			Silty SAND with trace clay		_15
16					
_ _17	3.0	197	Fine tan SAND soft, trace clay	45A-SB-33-(16-20):	_17
_ _18					_18
_ _19					19
20					
_ _21	2.0	229	Damp fine tan SAND		_21
22					
_ _23	2.0	297	WET fine tan SAND		
24					

End of boring at 28' b.g.

Mclaren		PROJECT NAME: PROJECT Photocircuits 12080		PROJECT NO. 1 2080	:	Boring No:	31-SB-1	
	Hārl	-	PROJECT LOCATION: 31 Seacliff Avenue, Glen Cove Long Island				LOCATION SKETCH	↑
COMPLETION DATE: 4/20/98				MONITORING DEVICE: GEOLOG		GEOLOGIST / OFFICE: J. Gagnon/Warren		N
ORILLING CONTRACTOR McLaren/ Hart/ J		DRILLING EQUIPMI Geoprobe	ORILLING EQUIPMENT: ORILLING METHOD / BIT: Geoprobe Hollow Stem Push Rod					
			GROUNDWATER Feet	GROUND SURFACE ELEVATION: WELL INSTALL NA NO		WELL INSTALLED?		

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moisture, Etc.	SAMPLÉS
0			Ground Surface: Asphalt	
_1	3.0	0.7	Asphalt fall in, Black/ dark brown fine SAND with coarse material	_1
2			Medium brown fine SAND with coarse material, pebbles trace cobble	
 			Coarse damp fine SAND	
- - 4			Silty SAND with little black clay and cobble	-4
	3.0	3.7	Wet, very coarse black SAND with pebbles and cobble	
_5 -				
_6 				
_7 				_7
8		<u>, -</u> .	End of boring at 8' b.g.	
9				_9
_10				_11
_ _11				_1
_12				_1.
_13				_1.
_14				_1
_ _15				_1
_ _16				_1,
_ _17				_1:
_ _18				
_ _19				
_ _20				
_ _21				2
24				

		PROJECT NAME: Photocircuits	1	PROJECT NO.: 1 2080	<u> </u>	Boring No:	31-SB-2
MPA	Hārt	PROJECT LOCATION	on: Avenue, Glen C	ove Long Is	LOCATION SKETCH	↑	
COMPLETION DATE:	TOTAL DEPTH OF BO	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE:	1	N
4/20/98	8 Feet		OVM (PID)		J. Gagnon/Warren	_	
DRILLING CONTRACTO	R / DRILLER:	DRILLING EQUIPMI	ENT: DRILLING METHOD / BIT:				
McLaren/ Hart/	J. Lute	Geoprobe		Hollow St	m Push Rod		
SAMPLING METHOD:	DEPTH T	O GROUNDWATER	GROUND SURFACE	ELEVATION:	WELL INSTALLED?	7	
Acetate-Lined M	lacrocore 8	Feet	NA		No		
мемо: Boring lo	ocated]	

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moieture, Etc.	SAMPLES	
o			Ground Surface: Asphalt		_0
_1	2.0	24.7	Light brown fine SAND with some coarse material and pebbles 2" lens of white quartz rock		1_1
_ _ _2					_ ' 2
_2 _ _3			Black very coarse SAND with pebbles		1
1					_3
<u></u> 4	3.0	18.9	Wet, coarse material small pebbles very little sand		4
_ _5	0.0	70.0			_5
_ _6			Black very coarse sand with pebbles and cobble mixed throughout		_ _6
_ _7					_ _7
-8					_8
_9			End of boring at 8' b.g.		_ _ 9
_ _ _10					_ _ 10
					_11
_11 					Ľ
_12 _					-12
_13				,	_13
_14			-		_14
_ _15	l				_15
_ _16					_ _16
_ _17		·			_ _17
_ _18					_ _18
_ _19					_ _19
_ _20					_ _ _20
					21
 - 22					-2' - ₂₂
					_
_23 _			·		_23
24					_24

	vici ai	<u>ren</u>	PROJECT NAME: Photocircuits	3	PROJECT NO.:		Boring No:	31-SB-3
	Hārl		PROJECT LOCATION: 31 Seacliff Avenue, Glen Cove Long Island				LOCATION SKETCH	↑
COMPLETION DATE: TOTAL DEPTH OF BOREHOLE:			MONITORING DEVIC	E:	GEOLOGIST / OFFICE:		N	
4/20/98	12	Feet		OVM (PID)		J. Gagnon/Warren		
DRILLING CONTRACTO	A / DAILLER:		DRILLING EQUIPM	ENT: DRILLING METHOD / BIT:				
McLaren/ Hart/	J. Lute		Geoprobe		Hollow St	em Push Rod		
SAMPLING METHOD:		DEPTH TO	GROUNDWATER	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
Acetate-Lined N	//acrocore	8	Feet	NA		No		
мемо: Boring I	ocated							

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Mointure, Etc.	SAMPLES	
0			Ground Surface: Asphalt		
_1	3.0	11.7	Asphalt and white coarse SAND mixed with cobble		<u>-</u> 1
			Black Silty SAND and CLAY, pebbles		[_
			Damp fine light brown tan SAND with trace clay		- ²
_3 _					_3
4	3.5	13	Fine to coarse light brown SAND, trace gravel damp		
_5					_5
_6					_6
_7					_ ₇
8					
_ _9	4.0	0	Wet, very coarse to fine light brown tan SAND with pebbles, gravel		_9
_10					_10
_11					_11
12					
_ _13			End of boring at 12' b.g.		_ _ _13
14					_14
i_					
_15					_15
16					_16
_17					_17
_ _18					_18
_ 19					_19
_ _20					_20
_ _21					_21
_ _22					_22
					_ _23
- 24					24

		PROJECT NAME: Photocircuits		PROJECT NO. 1 2080	:	Boring No:	31-SB-4	
	Hār	t	PROJECT LOCATION: 31 Seacliff Avenue, Glen Cove Long Island				LOCATION SKETCH	†
COMPLETION DATE: 4/20/98	TOTAL DEF	TH OF BO	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACTO	R / DRILLER:		DRILLING EQUIPM	NT: DRILLING METHOD / BIT:				
McLaren/ Hart/	J. Lute		Geoprobe		Hollow St	tem Push Rod		
SAMPLING METHOD:		DEPTH TO	GROUNDWATER	GROUND SURFACE	ELEVATION:	WELL INSTALLED?	7	
Acetate-Lined N	/lacrocore	8	Feet	NA		No		
мемо: Boring I	ocated							

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moieture, Etc.	SAMPLES
0			Ground Surface: Asphalt	
_1	2.0	14.3	Very dark brown silty SAND, moist Very dark brown silty SAND with pebbles and cobble, moist	-
_ _2				-
_3			Fine to coarse light brown/ tan SAND with pebbles and other coarse material	-
_4				
_ _5	4.0	11.1	Very firm gray/ tan SANDY CLAY little coarse material	-
_6			O to the large state CAND living along	-
_ ₇			Red/ medium brown silty SAND, little clay	-
_8				
_ _9	2.0	11.1	Wet, COBBLE Red to medium brown fine silty SAND some pebbles and cobble	-
_10				-
_11			Medium brown coarse to fine SAND with cobble and pebbles	-
_12				-
_ 13			End of boring at 12' b.g.	-
_ _14				-
_ _15				-
_16				
_ _17				-
_18				-
_19				-
_ _20				
_21				
_22				-
_ _23				-
_24				

MCIaren			PROJECT NAME: Photocircuits	,	PROJECT NO. 1 2080	: 	Boring No:	31-SB-5
M_{Z}	Hart		PROJECT LOCATION	ROJECT LOCATION: 1 Seacliff Avenue, Glen Cove Long Island				†
COMPLETION DATE: 4/20/98	TOTAL DEPT	тн оя во Feet	REHOLE:	MONITORING DEVIC	E:	GEOLOGIST / OFFICE: J. Gagnon/Warren		N
DRILLING CONTRACT	OR / DRILLER:		DRILLING EQUIPM	ENT: DRILLING MÉTHOD / BIT:			7	
McLaren/ Hart/	J. Lute		Geoprobe		Hollow Stem Push Rod			
SAMPLING METHOD: Acetate-Lined	i i		GROUNDWATER Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED?		
мємо: Boring	located							

DEPTH (Feat)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Moieture, Etc.	SAMPLES	
0			Ground Surface: Asphalt		_0
_1	3.0	12.4	Red to light brown SAND with cobble		
Ī					_1
_2			Tan to light brown silty SAND with cobble and pebbles		_2
_3					_3
4	3.0	18.3	Very coarse SAND with coarse materials		_4
_ _5	3.0	10.3	Very coarse SAND with coarse materials		_ _5
_6	ļ				_6
_ _7			Red to brown on outside- inside light grey firm CLAY and SAND		_ _7
_ _ _8					_8
_9			End of boring at 8' b.g.		_ _ _9
					_
_10 _					_10 _
11					_11
_12					_12
_13					_13
14					_14
_ _15					_ _15
_16		i			_16
17					- _17
18					_ _ _18
_ _ _19					19
_20					_20 _
_21					_21
_22					_22
_23					_23
24					_24

MCIaren		PROJECT NAME: Photocircuits	· · · · · · · · · · · · · · · · · · ·	PROJECT NO.: 1 2080		Boring No:	31-S8-6	
What Hart			PROJECT LOCATION: 31 Seacliff Avenue, Glen Cove Long Island				LOCATION SKETCH	†
COMPLETION DATE: 4/20/98	: TOTAL DEPTH OF BOREHOLE:			MONITORING DEVICE: GEOLOGIST / OFFICE: OVM (PID) J. Gagnon/Warre		GEOLOGIST / OFFICE: J. Gagnon/Warren		N
			DRILLING EQUIPMI Geoprobe	ENT:	DRILLING MET	HOD/BIT: em Push Rod		
			GROUNDWATER Feet	GROUND SURFACE	ELEVATION:	WELL INSTALLED? No		
MEMO: Boring lo	cated							

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Texture, Maisture, Etc.	SAMPLES	_
0			Ground Surface: Asphalt		
_1	2.5	0	Dark Brown SILT with cobbles and pebbles.		_1
_2					_2
_3					_3
4					_4
_5	3.0	0	Dark Brown SILT with cobbles and pebbles. Coarse SAND (like beach sand) with coarse materials.		_5
_6					_6
-7 -7					7
-8					
_9			Coarse SAND (like beach sand) with coarse materials, wet		_9
_10					_10
_11					_11
12					
_13			End of boring at 12' b.g.		_13
_14					_14
_ _15					_ _15
_ _16					_16
17					_17
_18					_18
_19					_19
_20					_20
_21					_21
_22					_22
_23			-		_23
24					24

MCIaren		PROJECT NAME: Photocircuits		PROJECT NO.: 12080		Boring No:	31-SB-7	
	Hār		PROJECT LOCATION: 31 Seacliff Avenue, Glen Cove Long Island				LOCATION SKETCH	↑
COMPLETION DATE: 4/20/98	TOTAL DEP	TH OF BOI	REHOLE:	MONITORING DEVICE:		GEOLOGIST / OFFICE: J. Gagnon/Warren		N
			DRILLING EQUIPMI Geoprobe	PMENT: DRILLING METHOD / BIT: Hollow Stem Push Rod				
			GROUND SURFACE	ELEVATION:	WELL INSTALLED?			
мемо: Boring loc	eated							

DEPTH (Feet)	RECOVERY (Feet)	OVM (PPM)	BURMEISTER SYSTEM SOIL DESCRIPTION Color, Taxture, Moieture, Etc.	SAMPLES	
0			Ground Surface: Asphalt		o
_ _1	3.0	2.1	Black silty SAND and CLAY with pebbles]_ _ ₁
 _ _2					2
 _3			Damp, coarse SAND with coarse materials		
_3 _ 4			Camp, coarse SAND with coarse materials		
	4.0	0	USE AS A GEOTECHNICAL SAMPLE		4
_ _5 _					_5
_6 _					_6
_ _7					_ ₇
_8			End of boring at 8' b.g.		_8
_9					_9
_10					_10
_11					_11
_ _12					12
_ _13					_ _13
_ _14					_14
_ _15					15
_ _16					_ _16
_ _17					_ _ _17
_ _ _18					18
_ 19				·	19
_20 _ _21					<u>[</u>
_					_21
_22 					_22
_23 _			·		_23
24	L				_24

Central Jersey Industrial Park Chimney Rock Road, Bldg. 9W Bound Brook, NJ 08805

Telephone: Toll Free:

ر باد باب باب باب باب

(908) 722-4266 (800) 242-6648

FAX:

(732) 356-1009

ENVIRONMENTAL SPECIALISTS

WELL LOG

WELL: MW8

DATE DRILLED: 04/22/1998 CCCRD #1:

COCRD #2:

PERMIT #1:

PERMIT #2:

SITE: Photocircuits Corp, 31 Sea Cliff Avenue, , 31en Cove, NY OWNER: Photocircuits Corp. 31 Sea Cliff Avenue, . 31en Cove. WY

COUNTY: XSTREET: USE: Monitor

INNER CASING: PVC

OUTER CASING: DIAMETER:

SCREEN TYPE 1: PVC SCREEN TYPE 2: DIAMETER:

DRILLING METHOD: Air Rotary SAMPLING METHOD:

DIAMETER: LENGTH:

4 *

LENGTY:

LENGTH 1: 10' LENGTH 2:

HOLE DIA: 8", 8" TOTAL DEPTH: 14"

14 SET WELL: GRAVEL PK S2: Morie #2

GAL PER MIN: 3-5 STAT HZO LVL: 91

SLOT SIZE: .020

Carmine DeCorso DRILLER: SURFACE COMPLETION: M

DEVELOPMENT METEOD: Pump DEVELOPMENT TIME: 1/4 Hour CASING SEAL: Portland

Ground Surface AT-Grade Protective Watertight Manhole

OPEN HOLE:

DEPTH BELOW SURFACE

BLOWS PER 6" ON SAMPLER

FRCM - TO

REMARKS / SOILS IDENTIFICATION

0' - 1' Asphalt & road stone. 1' - 14' Brown & tan m/f sand trace m/f grave trace silt.

2' x 2' Concrete Pad Gravel Mix Concrete

Locking Compression Cap

PVC Casing i Diameter

Near Cement Grout

(ASTM Type II, 5% Bentonite Added)

3'- 3'

PVC Sereen - Diameter

Fravel Pack

2 - 14'

Bore Hole

3", 6" Diameter

Socton Cap

Appendix B

To be submitted separately

Appendix C

Geotechnical Testing Results

Boring No.:

Job No.: 1434-0014.03

Sample No. & Depth: 45A-6W-1 12'-16'

Project: MCLARENHART

(GLENCOVE, NY)

Recovery: 44"

Date Tested: 4/23/98

Sample Method: GEOPROBE

Tested By: LL

Date of Sample: 4/8/98

Checked By: 다소

Testing Notes: SEE BELOW

- BURMISTER-Length (inches) Soil Classification Depth

Remarks: SAVED BOT. 9"

Boring No.:

Job No.: 1434-0014-03

Sample No. & Depth: 454-6W-4 Depth?

Project: MCLAREN HART

(GLENCOVE, NY)

Recovery: 45#

Date Tested: 4/24/98

Sample Method: GEOPROBE

Tested By: LL

Date of Sample: 4/10/98

Checked By: 124

Testing Notes: SEE BELOW

~ BURMISTER~ Length (inches) Depth Soil Classification

Remarks: SAVED 11/2" OF TOP 13"

Boring No.:

/

Job No.: 1434-0014-03

Sample No. & Depth: 454-32 8'-12'

Project: McLARENHART (GLENCOVE, NY)

Date Tested: 4-124/98

Recovery: 42"

Date lested. F

Sample Method: GEOPROBE

Tested By: LL

Date of Sample: 4/9/98

Checked By: DA

Testing Notes: SEE BELOW

Depth Length (inches) — BURMISTER ~
Soil Classification

Remarks: a. JAR SAMPLE SAVED OF PORTION FROM 0"-0"
b. CONTENTS OF TUBE LOOSE 0"-42"

Boring No.:

Recovery: 44"

Sample No. & Depth: 45A-6W-3 8'-12'

Job No.: 1434-0014-03

Project: McLARENHART (GLENCOVE, N.Y.)

Date Tested: 4/24/98

Tested By: LL

Checked By: DA

Sample Method: GEOPROBE

Date of Sample: 4/10/98

Testing Notes: SEE BELOW

-BURMISTER ~ Length (inches) Depth Soil Classification

Remarks: @ BOTTOM 9" LOOSE

(33"-42")

UNDISTURBED SAMPLE LOG Boring No.: Job No.: 1434-0014-03 Sample No. & Depth: 31-3B-6 4'-8' Project: McLaren Hart (GLEN COVE, NY) Recovery: 38" Date Tested: 4/27/98 Sample Method: GEOPROBE Tested By: LL Date of Sample: 4/20/98 Checked By: DA Testing Notes: SEE BELOW - BURMISTER -Length (inches) Soil Classification Depth Tube Sample 48 46 44 42 40 38 Olive gray m-f SAND, little Sitt 3" 36

Remarks: JAR SAMPLE SAVED OF PORTION FROM 27"-35"

Boring No.:

Job No.: 1434-0014-03

0-4 Sample No. & Depth: 31-5B-1

Project: McLARENHART (GLENCOVE, NY)

Recovery: 28"

Date Tested: 4/27/98

Sample Method: GEOPROBE

Tested By: LL

Date of Sample: 4/20/98

Checked By: DA

Testing Notes: SEE BELOW

Remarks:

@ TOP 81/2" LOOSE

B JAR SAMPLE SAVED OF BOT. 3"

BORING	SAMPLE	· DEPTH	SYMBOL	CLASSIFICATION	MC	LL	PL
45A-6	W-3	B'-12'		Tanbact-f SAND, to Silt	2.6	~	~
				Tanbrict-f SAND, tr. Silt.			
					I		

BURMISTER SOIL CLASSIFICATION SYSTEM 5/15/98 GRAIN-SIZE DISTRIBUTION SILT OR CLAY COBBLES MEDIUM COARSE HEDIUM FINE COARSE FINE U.S. STANDARD SIEVE SIZE NO. GRAIN SIZE IN MILLIMETERS BORING SAMPLE DEPTH SYMBOL CLASSIFICATION MC LL PL Tan, gray br. c-mt-f SAND, 4'-B' 8.6 31-513-6 little+Silt, some+c+-f Gravel COBBLES GRAVEL SILT OR CLAY MEDIUM COARSE MEDIUM COARSE U.S. STANDARD SIEVE SIZE NO. GRAIN SIZE IN MILLIMETERS BORNS SAMPLE PL - DEPTH STMBOL CLASSIFICATION MC LL 01-4 Gray br. c-m+-f5AND, +++51H, 10.0 ~ some m-f Gravel

TOTAL ORGANIC CARBON (ASTM D 2974) LOSS ON IGNITION METHOD

TEST RESULTS

SAMPLE NO.	% ORGANIC MATTER
45A-6W-1	0.30
45A-6W-3	0.19
45A-6W-4	0.22
45A-32	0.19
31-SB-1	0.65
31-SB-6	0.45

•	'	<u> </u>							
(235/W ₂)	-	4.01×8.E			4-01x48				
u	ppvo	245.0		108'0	105.0				
05	2612	26.ET	<u> </u>	1,2.20					
02	£15.0	574'0	<u> </u>	0.430	46.00				
GP	06.5		<u>'</u>		157'0		<u> </u>		
L	1	OUZ	<u> </u>	69'2					
(44) P2		2.621		4.711	E. 711		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
%.2.W	4,8	6.8		0'01	6.9				
(州) 4只	1 I	5.881		5.951	7.821				
SH)BMUJO	62100	8600.0		\$1100	0110'0				
(U) P	691	518.5		69.1	S18'Z				
EIGHT (m)	76.9	8912		54.8	66,5		· · · · · · · · · · · · · · · · · · ·		
عاد (عسر) 124 عاد	2.608	\$.210		8.700	1.540				
BAT TARE	0.011	2.254		0'011	2.154				
STAT TAKE	2.919	2.0401	·	8.777	€.8701				
									-
% 'INC 16101	2.8	6.8		0.01	7.9				
ופון הפיץ ססור	5.245	1.275		0.500	E.282				
BAAT JAR	0.011	Z.25.2		0.011	2.124				
SETAW TER	P. ED .	5.03		8.00	8.05				
SET EOIL	5,678	8.099		O'LIL	5'0101		· · ·		
ART TARE	2.616	9.0401		8.TTT	6.8701				
TARE #	8z	3872		62	3817				
3-19MAR	9-95-16	9-85-18		1-85-18	1-95-18				
	DENSITY	RECONSTO K SAMPLE		DENSITY	SECONSTD LE				

SOKOLOWSKI SOKULUS AND SOKULUS

MCLAREN HART

- MOIST, CONT.

Appendix D

Slug Test Raw Data And Calculations

0.1083	1.227	
0.1166	0.811	1
0.1333	0.726	1
0.15	0.556	1
0.175	0.509	1
0.2083	0.453	1
0.2166	0.405	1
0.2416	0.358	1
0.25	0.311	1
0.2583	0.302	1
0.2833	0.217	1
0.2916	0.33	1
0.3	0.33	1
0.3083	0.245	1
0.3166	0.377	1
0.325	0.396	1
0.3333	0.386	1
0.3666	0.273	1
0.3833	0.349	1

McLaren/Hart Client: Photocircuits Project No.: 120802678001.013 Location: Glen Cove, NY MW-3 FALLING HEAD SLUG TEST DATA SET: A: \ MM8.F. dat 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Rice TEST DATE: 7/96 OBS. WELL: MAY 3 0.1**ESTI MATED PARAMETERS:** = 0.001767 ft/min y0 = 1.213 11 TEST DATA: 0.01 0 0 13.83 [[0.001 0. 8.0 3.2 Time (min)

0.0083 0.0166 0.025 0.0333 0.0416 0.05 0.0583 0.0666 0.075 0.08316 0.1083 0.11666 0.125 0.1333 0.1416 0.1583 0.1416 0.1583 0.1416 0.1583 0.1416 0.1583 0.1583 0.1666 0.175 0.1833 0.1835 0.1835 0.1835 0.1835 0.1835 0.1835 0.1835 0.1835 0.1835 0.18
1.416 1.283 1.227 1.198 1.189 1.151 1.095 1.01 1.028 1.09925 1

0.55 0.5666 0.5833 0.6 0.6166 0.6333 0.65 0.6666 0.7 0.7166 0.7333 0.75 0.7666 0.7833 0.8 0.8166 0.8333 0.85 0.8666 0.8833 0.9 0.9166 0.9333 0.95	0.32 0.292 0.405 0.358 0.424 0.311 0.358 0.254 0.273 0.264 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.210 0.010 0	
0.8666 0.8833 0.9 0.9166	0.311 0.198	1 1
0.9166 0.9333 0.95	0.179 0.179	1 1 1
0.9666	0 160	1 1
1.2 1.4	0.113 0.075	1
1.6 1.8 2	0.056 0.047 0.037	1 1 1
2.2	0.028 0.018	1
2.8 3	0.009 0.009 0	1 1
0.9833 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6	0.009 0.009 0	1 1 1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-4 FALLING HEAD SLUG TEST DATA SET: a: \ mw4f . det 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Rice TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 4 ESTI MATED PARAMETERS: 0.1 0.0008069 ft/min y0 = 1.652 ft 000 TEST DATA: 0000 0.01 ०००ऌ 0.001 5.6 1.4 4.2 7. Time (min)

0.1166 2.278 0.125 1.796 0.1333 1.768 0.1416 1.815 0.15 1.494 0.1583 1.853 0.1666 1.579 0.175 1.702 0.1833 0.425 0.1916 1.664 0.2 1.267 0.2083 1.437 0.2166 1.361 0.225 1.361 0.2333 1.371 0.2416 1.191 0.2583 1.286 0.275 1.276 0.2833 1.267 0.2916 1.257 0.3 1.238 0.3083 1.229 0.3166 1.219 0.325 1.2 0.3333 1.191 0.35 1.172 0.3666 1.077 0.4333 1.059 0.45 1.04 0.4666 0.973 0.5333 0.955 0.5666 0.917 0.5833 0.898	111111111111111111111111111111111111111
--	---

0.75 0.7666 0.7833 0.8166 0.881663 0.885663 0.88663 0.995663 1.468 2.468	0.784 0.775 0.765 0.7767 0.718 0.718 0.709 0.69 0.669 0.6652 0.652 0.652 0.652 0.179 0.019 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009	
--	---	--

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-5 FALLING HEAD SLUG TEST DATA SET: a: \ mw5f. dat 10. promorphismo 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - RI ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 5 **ESTIMATED PARAMETERS:** = 3.7231E-05 ft/min y0 = 2.002 ft TEST DATA: = 96.22 ft 0. 3. 12. 15. Time (min)

0.6833 0.716633 0.776633 0.776633 0.856633 0.856633 0.998 0.998 1.468 2.	1.945 2.102 1.988 1.954 1.954 1.954 1.954 1.954 1.954 1.995	
5.4 5.6	1.652	1
5.8	1.624	1
6.2 6.4	1.605 1.595	1
6.4	1.586	1
6.8 7	1.577	1
7.2	1.548	1

1.4	1.539	Τ
7.6	1.529	1
7.8	1.52	1
8	1.51	1
8.2	1.501	1
8.4	1.492	1
8.6	1.482	1
8.8	1.473	1
9	1.463	1
9.2	1.454	1
9.4	1.444	1
9.6	1.435	1
9.8	1.425	1
10	1.416	1
11	1.369	1
12	1.322	1
13	1.274	1
14	1.237	1
15	1.199	1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-7 FALLING HEAD SLUG TEST DATA SET: a:\mw7f.dat 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 7 ESTI MATED PARAMETERS: = 0.006572 ft/min y0 = 1.443 ft TEST DATA: 0.1 H = 18,12 ft 0.01 0.4 0.8 1.6 2. Time (min)

McLaren/Hart client: Photocircuits Corp. Project No.: 120802678001.013Location: Glen Cove, NY MW-8 FALLING HEAD SLUG TEST DATA SET: a:\mw8f.dat 10. ATTITUTE TO THE 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwar - Ri ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 8 ESTI MATED PARAMETERS: K = 0.01677 ft/min y0 = 4.396 ft TEST DATA: 0.1 H = 163.4 ft0.01 1.6 0.4 0.8 1.2 Time (min)

0.226	1
0.232	1
0.175	1
0.138	1
0.163	1
0.138	1
0.144	1
0.119	1
0.113	1
0.113	1
0.182	1
0.119	1
0.087	1
0.069	1
0,056	1
0.062	1
0.031	1
	0.232 0.175 0.138 0.163 0.138 0.144 0.119 0.113 0.113 0.113 0.182 0.119 0.087 0.069 0.056 0.062

•			
Project No.: 120802678001	8001.013	Location: Glen Cove,	e, NY
V	MW-9 FALLING I	9 FALLING HEAD SLUG TEST	
			DATA SET:
			a: \ mw81. da1
10.			06/18/98
		1-1	AQUI FER TYPE:
1		1	Unconfined SOLUTION METHOD:
10		1	Bouwer- Rt ce
J. com		T	TEST DATE:
(1)			7/98
1)			OBS. WELL:
) u		-	MAY 9
meet leading			ESTIMATED PARAMETERS:
90 ⁰			K = 0.0003891 f1/min
p) s		 	y0 = 0.8325 ft
eid -	\$05 ⁶	-	TEST DATA:
1		- - -	H0 = 3,726 ft
			Ħ
	¢		
)		1 1 20 2 4 1 1
			78.07 L
1.0			
· 0	4.4 8.8 13.2 Time (min)	17.6 22.	

G:\STAFF\SALDER\Phtocir\SlgFinl\MW9-F.wpd

0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2083 0.2166 0.225 0.22583 0.2666 0.275 0.2833 0.3166 0.325 0.3383 0.3166 0.325 0.3383 0.3166 0.325 0.3383 0.3466 0.325 0.3383 0.3466 0.4333 0.4566 0.4333 0.4666 0.4333 0.55666 0.5333 0.55666 0.5333 0.66663 0.66663 0.66663 0.7	2.627 2.59 2.548 2.5546 2.514 2.439 2.439 2.439 2.389 2.3307 2.389 2.3307 2.282 2.423 2.423 2.363 2.187 2.18	
--	--	--

7.8	0.27	1
8	0.283	1
8.2	0.27	1
8.4	0.258	1
8.6	0.251	1
8.8	0.251	1
9	0.245	1
9.2	0.245	1 1
9.4	0.239	1
9.6	0.239	1 1 1 1 1
9.8	0.27	1
10	0.276	1
11	0.239	1
12	0.232	1
13	0.232	1 1
14	0.245	1
15	0.232	1
16	0.226	1
17	0.232	1
18	0.226	1
19	0.232	1
20	0.232	1
21	0.226	1
22	0.226	1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-10 FALLING HEAD SLUG TEST DATA SET: a: \ mw10f . dat 08/16/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Rice TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 10 ESTI MATED PARAMETERS: TEST DATA: 0.1 0.01 1.2 1.8 2.4 0. 0.6 3. Time (min)

0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2083 0.2166 0.225 0.2333 0.2416 0.225 0.2583 0.2665 0.275 0.2833 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3466 0.4166 0.4333 0.4566 0.46633 0.55666 0.5333 0.55666 0.65663 0.71666 0.7333 0.71666 0.7333 0.75666 0.7833	3.853 3.74 3.445 1.735 3.049 2.881 9.69 2.869 2.69 2.69 2.69 2.69 2.69 2.69 2.69 2.	
--	--	--

0.8	0.729	1
0.8166	0.704	1
0.8333	0.685	1
0.85	0.666	1
0.8666	0.634	1
0.8833	0.616	1
0.9	0.59	1
0.9166	0.59	1
0.9333	0.584	1
0.95	0.559	1
0.9666	0.54	1
0.9833	0.528	1
1	0.502	ī
1.2	0.339	1
1.4	0.22	1
1.6	0.144	1
1.8	0.094	1
2	0.069	1
2.2	0.044	1
2.4	0.044	1
2.6	0.025	1
2.8	0.012	1
3	0.012	1

Page 1

2	1.125	1
2.2	1.125 1.03 0.93 0.848 0.76	1
2.2 2.4 2.6 2.8	0.93 0.848	1
2.6	0.848	1
2.8	0.76 0.703 0.641	1
3	0.703	1
3.2	0.641	1
3.2 3.4 3.6 3.8	0.578	1
3.6	0.54	1
3.8	0.496	1
4	0.452	1
4.2	0.414	1
4.2 4.4 4.6 4.8	0.383	1
4.6	0.339	1
4.0	0.333	1
5 2	0.233	1
5 4	0.270	1
5.6	0.231	1
5.2 5.4 5.6 5.8	0.703 0.641 0.578 0.54 0.496 0.452 0.414 0.383 0.339 0.333 0.295 0.276 0.251 0.251 0.251 0.175 0.163 0.175 0.163 0.15 0.138 0.125 0.138 0.125 0.138 0.125 0.138	1
6	0.194	ī
6 6.2 6.4 6.6 6.8	0.175	1
6.4	0.163	1
6.6	0.15	1
6.8	0.138	1
7	0.125	1
7.2	0.113	1
7.4	0.1	1
7.6	0.087	1
7.8	0.081	1
8	0.075	1
8.2	0.069	1
8.4	0.062 0.05	1
8.6	0.05	1
8.8	0.043	1
9	0.043 0.031 0.037	1
9.2	0.03/	1
9.4	0.023	1
9.8	0.031	1
10	0.037	1
22222333333444468 2468 2468 2468 2468 2468 2468 11	0.76 0.703 0.641 0.578 0.54 0.496 0.452 0.414 0.383 0.339 0.295 0.276 0.251 0.251 0.251 0.175 0.163 0.175 0.163 0.15 0.113 0.15 0.1087 0.087 0.087 0.069 0.062 0.05 0.043 0.037 0.037 0.037 0.012	

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-1S RISING HEAD SLUG TEST DATA SET: a:\mw1sr.dat 08/07/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 0.1 7/98 Displacement (ft) OBS. WELL: MW 18 ESTI MATED PARAMETERS: K = 0.106 f1/mln y0 = 11.01 ft TEST DATA: 0.01 H = 11,45 ft 0.2 0.6 0.8 1. Time (min)

0.0833	0.647	1
0.0916	0.508	1
0.1	0.341	1
0.1083	0.23	1
0.1166	0.161	1
0.125	0.116	1
0.1333	0.085	1
0.1416	0.066	1
0.15	0.05	1
0.1583	0.041	1
0.1666	0.031	ī
0.175	0.031	1
	-	
0.1833	0.018	1
0.1916	0.012	1
0.2	0.009	1
0.2083	0.009	1
0.2166	0.003	1
0.225	0	1
0.2333	0.003	1
0.2416	0	1
J 11 J	~	_

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-2S RISING HEAD SLUG TEST DATA SET: a: \ mw2sr. dat 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 2 S ESTI MATED PARAMETERS: TEST DATA: 0.1 H = 13.75 ft 0. 2. 10. Time (min)

0.0583 0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2 0.2083 0.2166 0.225 0.2333 0.2166 0.2583 0.2583 0.2666 0.275 0.2833 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3566 0.3666 0.3666 0.375 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3833 0.3666 0.3666 0.55333 0.5556 0.5833 0.5856 0.5856 0.58	2.198 1.811 1.745 1.67 1.604 1.538 1.415 1.358 1.315 1.113 1.068 1.151 1.068 1.151 1.068 1.029 1.151 1.068 1.707 1.066 1.029 1.737 1.066 1.029 1.737 1.066 1.029 1.037 1.043 1.043 1.058 1	
0.5166 0.5333 0.55 0.5666 0.5833 0.6 0.6166	0.301	1 1 1 1 1 1

0.6333 0.65	0.273 0.273 0.264 0.264 0.254 0.245 0.245 0.245 0.245 0.235 0.225 0.227 0.217 0.207 0.207 0.207 0.198 0.169 0.15 0.094 0.084 0.094 0.084 0.095 0.075 0.075 0.075 0.075 0.075	
5.2	0.066	ī

Page 2

0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2083 0.21666 0.225 0.2333 0.2416 0.2583 0.2583 0.2666 0.275 0.2833 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.31666 0.	0.594 0.575 0.565 0.565 0.528 0.499 0.491 0.4452 0.443 0.4452 0.443 0.4452 0.443 0.4455 0.386 0.377 0.368 0.377 0.368 0.377 0.368 0.377 0.368 0.377 0.368 0.377 0.368 0.377 0.368 0.377 0.378	
0.5666	0.179	1 1 1 1 1

0.65	0.141	1
0.6666	0.132	1
0.6833	0.132	1
0.7	0.122	1
0.7166	0.122	1
0.7333	0.113	1
0.75	0.113	1
0.7666	0.103	1
0.7833	0.103	1
0.8	0.094	1 1
0.8166	0.094	1
0.8333	0.084	1 1
0.85	0.084	1
0.8666	0.084	1
0.8833	0.075	1
0.9	0.075	1
0.9166	0.075	1
0.9333	0.066	1 1
0.95	0.066	1
0.9666	0.066	1
0.9833	0.056	1
1	0.056	1
1.2	0.037	1
1.4	0.028	1
1.6	0.018	1
1.8	0.009	1
2	0.009	1
2.2	0.018	1 1
1.8 2 2.2 2.4	0.009	1
2.6	0.009	1

0 005	1 726	- 1
0.025	1.736	1
	1.083	1
0.0333		
0.0416 0.05	0.407	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0410	0.407	_
0.05	0.29	1
0.05	0.23	_
0.0583	0.268	- 1
	0.040	-
0.0666	0.249	Τ.
0.0583 0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15	0.249	1
0.075	0.233	
0.0833	0.217	1
0.0055	0.217	_
0.0916	0.202	1
0.0510		_
0.1	0.186	1
0.4000	0.173	-
0.1083	0.173	Τ
0 1166	0.161	1
0.1166	0.161	T
0.125	0.151	1
0.123	0.131	_
0.1333	0.145	1
- 4446	0.173 0.161 0.151 0.145 0.132 0.126	-
0.1416	0.132	Ţ
A 1 F	0.126	4
0.15	0.132 0.126	Τ.
0.1583	0.12	1
0.1363	0.12	
0.15 0.1583 0.1666 0.175 0.1833	0.12 0.11	11 11 11 11 11 11 11 11 11 11 11 11
0.1000	0.11	
0.175	0.107	1
0 1000	0 101	4
0.1833 0.1916	0.101	Τ
	0.094	1
0.1916 0.2	0.094	
0.2 0.2083	0.088	1
0.2	0.000	-
0.2083	0.085	1
0.01.55	0 070	-
0.2083 0.2166 0.225 0.2333 0.2416 0.25 0.2583 0.2666	0.078	Τ.
0 225	0.075 0.072	1
0.225	0.075	
0 2333	0.072	1
0.2333	0.072	-
0.225 0.2333 0.2416 0.25 0.2583	0.069	1
		-
0.25	0.066	Τ.
0 2502		1
0.2583	0.06	
0.2666	0.06	1
0.2000	0.00	_
0.275	0.056	1
		_
0.2833	0.053	- 1
0 0016	0.05	4
0.2916	0.05	
\cap 3	0.047	1
0.5	0.047	
0.2833 0.2916 0.3 0.3083 0.3166 0.325	0.047	1
		_
0.3166	0.044	1
0.005	0.041	1
0.325	0.041	
0 2222	0.041	1
0.3333		1
0.3333 0.35 0.3666	0.037	1
0.00		-
0.3666	0.034	1
0.0000		
0.3833	0.031	1
\cap Λ	0.028	1
0.4		
0.4 0.4166	0.025	1
0.4000	0.005	
0.4333	0.025	1
0.45	0.025	1
0.45	0.025	
0.4666	0.022	1
		_
0.4833	0.022	1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-3 RISING HEAD SLUG TEST DATA SET: a:\mw3r.dat 08/18/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ca TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 3 0.1 ESTIMATED PARAMETERS: = 0.001262 f1/min TEST DATA: 0.01 = 13.83 11 0.001 0.8 1.6 3.2 Time (min)

0.0416 1 0.05 1 0.0583 1 0.0666 1 0.075 1 0.0833 1 0.0916 1 0.1 1 0.1083 1 0.1166 1 0.125 1 0.1333 1 0.1416 1 0.15 1 0.1583 1 0.1666 1 0.175 1 0.1833 1 0.1916 0 0.2 0 0.2083 0 0.2166 0 0.225 0 0.2333 0 0.2416 0 0.25 0 0.2583 0 0.2666 0 0.275 0 0.2583 0 0.2666 0 0.275 0 0.2833 0 0.2666 0 0.275 0 0.2833 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3166 0 0.325 0 0.3333 0 0.3466 0 0.3433 0 0.4166 0 0.44333 0 0.44666 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4833 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866 0 0.4888 0 0.4866	132 1 104 1 1075 1 1047 1 1099 1 1999 1 1962 1 1962 1 1962 1 1976 1 1977 1 1977 1 1978 1
--	--

0.5166 0.5333 0.555666 0.5833 0.6166 0.6333 0.66566 0.7166 0.77333 0.866633 0.766633 0.8833 0.88566 0.8833 0.996663 0.99833 1.2468 1.682 2.2468 3.3684	0.396 0.377 0.358 0.349 0.32 0.32 0.292 0.283 0.273 0.264 0.254 0.235 0.217 0.207 0.198 0.179 0.169 0.179 0.169 0.151 0.169 0.151 0.132 0.132 0.037 0.028 0.018 0.028 0.018 0.018 0.018 0.018 0.018 0.019 0.009 0.009	111111111111111111111111111111111111111
---	---	---

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-4 RISING HEAD SLUG TEST DATA SET: a:\mw4r.dat 08/18/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 7/98 OBS. WELL: ESTI MATED PARAMETERS: 0.0006859 ft/min TEST DATA: 0.1 00 0. 1.4 2.8 4.2 5.6 7. Time (min)

0.0416 0.05 83 0.05 83 0.075 33 0.075 33 0.091 83 0.1160 0.12 83 0.125 33 0.141 83 0.15 86 0.15 83 0.160 0.15 83 0.175 33 0.160 0.12 83 0.175 33 0.1891 83 0.1891 83 0.189	1.918 1.871 1.871 1.871 1.874 1.795 1.786 1.772 1.692 1.692 1.692 1.558 1.578 1.556 1.578 1.593 1.484 1.455 1.4465 1.4465 1.4465 1.447 1.489 1.389 1.314 1.276 1.231 1.181 1.162 1.143	
0.5333 0.55 0.5666 0.5833		1 1 1

3.6 0.094 1 3.8 0.085 1 4 0.075 1 4.2 0.075 1 4.4 0.056 1 4.6 0.056 1 4.8 0.056 1 5 0.047 1 5.2 0.047 1 5.4 0.038 1 5.6 0.038 1 5.8 0.038 1 6 0.038 1 6 0.038 1
6.2 0.028 1

6.4 0.019 1 6.6 0.019 1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-5 RISING HEAD SLUG TEST DATA SET a: \ mw5r. dat 08/17/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Rice TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 5 **ESTI MATED PARAMETERS:** K = 8.0415E-05 (1/min ¥0 = 1.085 ft TEST DATA: 0.1 H = 96, 22 ft 0.01 0.2 0.8 0.4 0.6 Time (min)

0.0333 1 0.0416 1 0.05 1 0.0583 1 0.0666 1 0.075 1 0.0833 1 0.0916 1 0.1 1 0.1083 1 0.1166 1 0.125 1 0.1333 1 0.1416 1 0.15 1 0.1583 1 0.1416 1 0.15 1 0.1583 1 0.1666 1 0.175 1 0.1833 1 0.1666 1 0.25 1 0.2083 1 0.2166 1 0.225 1 0.2333 1 0.2416 1 0.25 1 0.2583 1 0.2416 1 0.25 1 0.2583 1 0.2666 1 0.275 1 0.2833 1 0.2916 1 0.275 1 0.2833 1 0.2916 1 0.3 1 0.3083 1 0.3166 1 0.3083 1 0.3166 1	038 1 047 1 038 1 047 1 038 1 038 1 038 1 038 1
---	--

0.55 0.5666 0.5833 0.6 0.6166 0.6333 0.65 0.6666 0.77333 0.75 0.7666 0.833 0.8166 0.833 0.8166 0.833 0.9166 0.9333 0.9566 0.9333 1.2 1.4 1.6 1.8 2.2 2.4 2.6 3.8 4.2	1.019 1.019 1.019 1.019 1.019 1.019 1.019 1.01 1.01	
3 . 2 3 . 4 3 . 6 3 . 8 4 . 2 4 . 4 . 6 4 . 8 5 . 2 5 . 4 5 . 6	0.944 0.934 0.934 0.925 0.925	1 1 1 1 1 1 1 1 1
5.2 5.4 5.6	0.925 0.925 0.915	1 1 1

5.8	0.915	1
6	0.906	1
6.2	0.906	1
6.4	0.896	1
6.6	0.906	1
6.8	0.906	1
7	0.896	1
7.2	0.896	1
7.4	0.887	1
7.6	0.887	1
7.8	0.887	1
8	0.887	1

0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2083 0.2166 0.225 0.2333 0.2416 0.25 0.2583 0.2666 0.275 0.2833 0.3083 0.3083 0.3083 0.3166 0.325 0.3333 0.3466 0.325 0.3333 0.3466 0.325 0.3333 0.3466 0.325 0.3333 0.3466 0.325 0.3333 0.3466 0.4333 0.45 0.4666 0.55333 0.55666 0.5833 0.55666 0.5833 0.55666 0.5833 0.6166 0.6333	0.075 1.879 0.0833 1.759 0.0916 1.684 0.1 1.608 0.1083 1.533 0.1166 1.47 0.125 1.407 0.1333 1.357 0.1416 1.307 0.15 1.263 0.1583 1.219 0.1666 1.168 0.175 1.131 0.1833 1.093 0.1916 1.062 0.2 1.024 0.2083 0.992 0.2166 0.961 0.225 0.936 0.2333 0.905 0.2416 0.879 0.2583 0.823 0.2666 0.798 0.275 0.779 0.2833 0.754 0.2916 0.735 0.3083 0.691 0.3166 0.578 0.325 0.653 0.3333 0.546 0.4066 0.471 0.450 0.446 0.4066 0.427
	1.879 1.684 1.608 1.537 1.407 1.357 1.3219 1.131 1.092 1.099

1	0.031	T
7.2	0.025	1
7.4	0.018	1
7.6	0.018	1
7.8	0.012	1

0.0416 0.05 0.0583 0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.11666 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2 0.2083 0.2166 0.225 0.2333 0.2416 0.25 0.2583 0.2416 0.2583 0.3083 0.31666 0.333 0.31666 0.31	3.846 3.676 3.563 3.406 3.274 3.148 3.032 2.803 2.715 2.803 2.7608 2.715 2.155	
0.5333 0.55 0.5666 0.5833		1 1 1

0.6	0.257	1
0.6166	0.232	1
0.6333	0.213	1
0.65	0.201	1
0.6666	0.175	1
0.6833	0.157	1
0.7	0.144	1
0.7166	0.125	1
0.7333	0.119	1
0.75	0.106	1
0.7666	0.094	1
0.7833	0.081	1
0.8	0.075	1
0.8166	0.062	1
0.8333	0.062	1
0.85	0.056	1
0.8666	0.043	1
0.8833	0.037	1
0.9	0.031	1
0.9166	0.031	1
0.9333	0.025	1
0.95	0.025	1
0.9666	0.018	1
0.9833	0.006	1
1	0.006	1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013 Location: Glen Cove, NY MW-9 RISING HEAD SLUG TEST DATA SET: A: \ MWBR. DAT 08/18/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 9 ESTIMATED PARAMETERS: 0.001745 ft/min TEST DATA: 0.1 00 5.6 0. 1.4 8.5 4.2 7. Time (min)

0.0583 0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2 2083 0.2216 0.225 0.2333 0.2416 0.2583 0.2666 0.275 0.2833 0.2916 0.3083 0.3166 0.325 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3333 0.3166 0.3433 0.4666 0.4833 0.4666 0.4833 0.55666 0.5833 0.55666 0.5833 0.6066 0.5833 0.6166	2.653 2.653 2.659 2.659 2.555 2.555 2.553 2.550 2.555 2.550 2.555 2.550 2.555 2.550 2.550 2.555 2.550	
---	---	--

6.8	0.069	1
7	0.063	1
7.2	0.057	1
7.4	0.063	1
7.6	0.063	1
7.8	0.057	1
8	0.051	1
8.2	0.051	1
8.4	0.044	1
8.6	0.044	1
8.8	0.038	1
9	0.038	1
9.2	0.038	1
9.4	0.038	1
9.6	0.038	1
9.8	0.038	1
10	0.032	1
11	0.025	1
12	0.025	1
13	0.019	1
14	-0.006	1

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013Location: Glen Cove, NY MW-10 RISING HEAD SLUG TEST DATA SET: a: \ mw10r, dat 10. \Box 08/07/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Ri ce TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 10 ESTIMATED PARAMETERS: = 0.005866 ft/min TEST DATA: 0.1 H = 124.6 ft 0. 0.6 2.4 3. Time (min)

0.0666 0.075 0.0833 0.0916 0.1 0.1083 0.1166 0.125 0.1333 0.1416 0.15 0.1583 0.1666 0.175 0.1833 0.1916 0.2 0.2083 0.2166 0.225 0.2333 0.2416 0.25 0.2583 0.2416 0.25 0.2583 0.2666 0.275 0.2833 0.2916 0.3083 0.3083 0.3083 0.31666 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166 0.325 0.3333 0.3166	1.936 1 1.873 1 1.816 1 1.76 1 1.703 1 1.647 1 1.596 1 1.546 1 1.496 1 1.439 1 1.395 1
---	--

Page 1

0.6333	1.225	1
0.65	1.188	1
0.6666	1.15	1
0.6833	1.106	1 1
0.7	1.068	1
	1.037	1
0.7166 0.7333	1.005	1 1
0.75	0.968	1
0.7666	0.936	1 1
0.7833	0.924	1
0.8	0.886	1 1
0.8166	0.861	1
0.8333	0.817	1
0.85	0.81	1
0.8666	0.779	1
0.8833	0.779 0.754 0.722	1 1 1 1 1 1
0.9	0.722	1
0.9166	0.71 0.678	1
0.9333	0.678	1
0.95	0.653	1
0.9666	0.634	1
0.9833	0.622	1
1	0.603	1
1.2	0.396	1
1.4	0.257	1
1.6	0.176	1 1 1 1 1 1
1.8	0.119	1
2	0.081	1
2.2	0.062	1
2.2 2.4 2.6 2.8 3	0.025	1 1 1 1
2.6	0.012	1
2.8	0 0	1
3	Ų	Τ

McLaren/Hart Client: Photocircuits Corp. Project No.: 120802678001.013Location: Glen Cove, NY MW-11 RISING HEAD SLUG TEST DATA SET: a: \ mw11r. dat 08/07/98 AQUIFER TYPE: Unconfined SOLUTION METHOD: Bouwer - Rice TEST DATE: 7/98 Displacement (ft) OBS. WELL: MW 11 0.1 ESTI MATED PARAMETERS: = 0.06587 ft/mln TEST DATA: 0.01 0.2 0.4 0.8 0. 0.6 ĺ. Time (min)

0.05	1.442	1
0.0583	1.433	1
0.0666	1.433	1
0.075	1.386	1
0.0833	1.225	1
0.0916	1.018	1
0.1	0.876	1
0.1083	0.744	1
0.1166	0.641	1
0.125 0.1333 0.1416	0.546 0.462 0.386	1
0.1333	0.462	1
0.1416	0.386	1
0.15 0.1583	0.33 0.282	1 1 1 1 1 1 1 1
0.1583	0.282	1
0.1666	0.235 0.198	1
0.175 0.1833	0.198	1
0.1833	0.16	1
0.1916 0.2	0.132 0.113	1 1
0.2 0.2083	0.113	1
0.2166	0.084	1
0.2166 0.225	0.084 0.066	1
0.2333	0.056	1
0.2416	0.047	1 1
0.25	0.037	1
0.2583 0.2666	0.037	1 1 1 1
0.2666	0.028	1
0 275	0.018	1
0.2833	0.018	1
0.2916	0.018	1
0.2916 0.3 0.3083 0.3166 0.325	0.009	1
0.3083	0.009	1
0.3166 0.325	0.009	1
0.325	0	1

0.35 3. 0.3666 3. 0.3833 3. 0.4 3. 0.4166 3. 0.45 3. 0.4666 3. 0.4833 3. 0.5 3. 0.5166 3. 0.5333 3.	133 133 11 133 11 107 10047 1016 107 1016 107 1016 107 1016 107 1016 107 1016 107 1016 107 107 107 107 107 107 107 107
---	---

3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	0.6 3. 0.6166 3. 0.6333 3. 0.65 2. 0.6666 2. 0.7166 2. 0.775 2. 0.7666 2. 0.833 2. 0.8666 2. 0.8833 2. 0.99166 2. 0.99333 2. 0.99666 2. 0.9833 2. 1.2 1. 1.8 1. 2.4 1. 1.8 1. 2.6 1. 3.6 3. 3.6 3. 3.7 3. 3.8 3.
098 1 0973 1 098 1 098 1 098 1 098 1 098 1 1098 1 1098 1 1198	88 1 798 1 722 1

6.2	0.264	1
6.4	0.257	1
6.6	0.232	1
6.8	0.232	1
7	0.232	1
7.2	0.232	1
7.4	0.232	1
7.6	0.207	1
7.8	0.194	1
8	0.188	1
8.2	0.169	1
8.4	0.157	1
8.6	0.144	1
8.8	0.138	1
9	0.132	1
9.2	0.119	1
9.4	0.106	1
9.6	0.094	1
9.8	0.081	1
10	0.081	1