SYOSSET LANDFILL 2018 ANNUAL POST-CLOSURE SUMMARY REPORT

Ground Water-Monitoring Program

TOWN OF OYSTER BAY

DEPARTMENT OF PUBLIC WORKS SYOSSET, NEW YORK 11791 February 2019

LOCKWOOD KESSLER & BARTLETT, INC.

SYOSSET LANDFILL

2018 ANNUAL POST-CLOSURE SUMMARY REPORT

GROUND WATER-MONITORING PROGRAM

February 2019

Prepared by:

Lockwood, Kessler and Bartlett, Inc. One Aerial Way Syosset, NY 11791

Prepared for:

Town of Oyster Bay Department of Public Works 150 Miller Place Syosset, NY 11791

SYOSSET LANDFILL 2018 ANNUAL POST-CLOSURE SUMMARY REPORT

GROUND WATER-MONITORING PROGRAM

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>	Page No.
SECTION 1	INTRODUCTION	1
SECTION 2	RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR	3
SECTION 3	RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT	4
3.1	Horizontal Ground Water-Flow Directions and Gradients 3.1.1 Shallow Zone 3.1.2 Intermediate Zone	4 4 5
	3.1.3 Deep Zone	5
3.2 3.3	Vertical Hydraulic Gradients Influence of the Buried Glacial Valley on Ground Water- Flow Patterns	5 6
SECTION 4	RESULTS OF TASK 3 – GROUND-WATER MONITORING	8
4.1	Results of Field Parameter Measurements	9
4.2	Results of Volatile Organic Compound (VOC) Analyses	10
4.3	Results of NYSDEC Part 360 Leachate Indicator Analyses	11
4.4	Results of USEPA Target Analyte List (TAL) and Cyanide Analyses	12
SECTION 5	COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS	14
5.1	Temporal Variation in Water-Level Elevations	14
5.2	Temporal Variation in Ground-Water Quality	15
5.3	Results of Trend Analyses	16
SECTION 6	CONCLUSIONS AND RECOMMENDATIONS	17

TABLE OF CONTENTS (CONT'D)

LIST OF TABLES

	<u>LIOT OF TABLES</u>	
Table Nu	umber and Title	Follows Page
1. Sı	ummary of Water-Level Results	4
	ummary of Construction Details for Monitoring Wells Installed at near the Syosset Landfill	4
3. St	ummary of Field Parameter Monitoring Results	9
4. St	ummary of Volatile Organic Compound (VOC) Results	10
5. St	ummary of Leachate Indicator Parameter Results	11
6. St	ummary of Total and Dissolved Metals Results	12
7. Cl	hanges in Ground-Water Elevations	14
8. C	omparison of Current Total VOC Results to Previous Results	15
	omparison of Current Leachate Indicator Parameter Exceedance Previous Exceedances	s 15
	omparison of Filtered Sample Inorganic Parameter Exceedances Previous Exceedances	15
	rend Analysis Summary for Selected Part 360 Leachate Indicator arameters	16
	<u>LIST OF FIGURES</u>	
Figure N	umber and Title	Follows Page
		_

Figure	Number and Title	Follows Page
1.	Ground Water-Monitoring Well Location Plan	1
2.	Potentiometric Surface of the Shallow Zone of the Magothy Aquifer on March 14, 2018	4
3.	Potentiometric Surface of the Intermediate Zone of the Magothy Aquifer on March 14, 2018	4
4.	Potentiometric Surface of the Deep Zone of the Magothy Aquifer on March 14, 2018	4
5.	Location of Syosset Landfill Relative to Regional Ground-Water Divide	6
6.	Generalized Structure Contour Map of the Top of the Magothy Formation	6

LIST OF APPENDICES

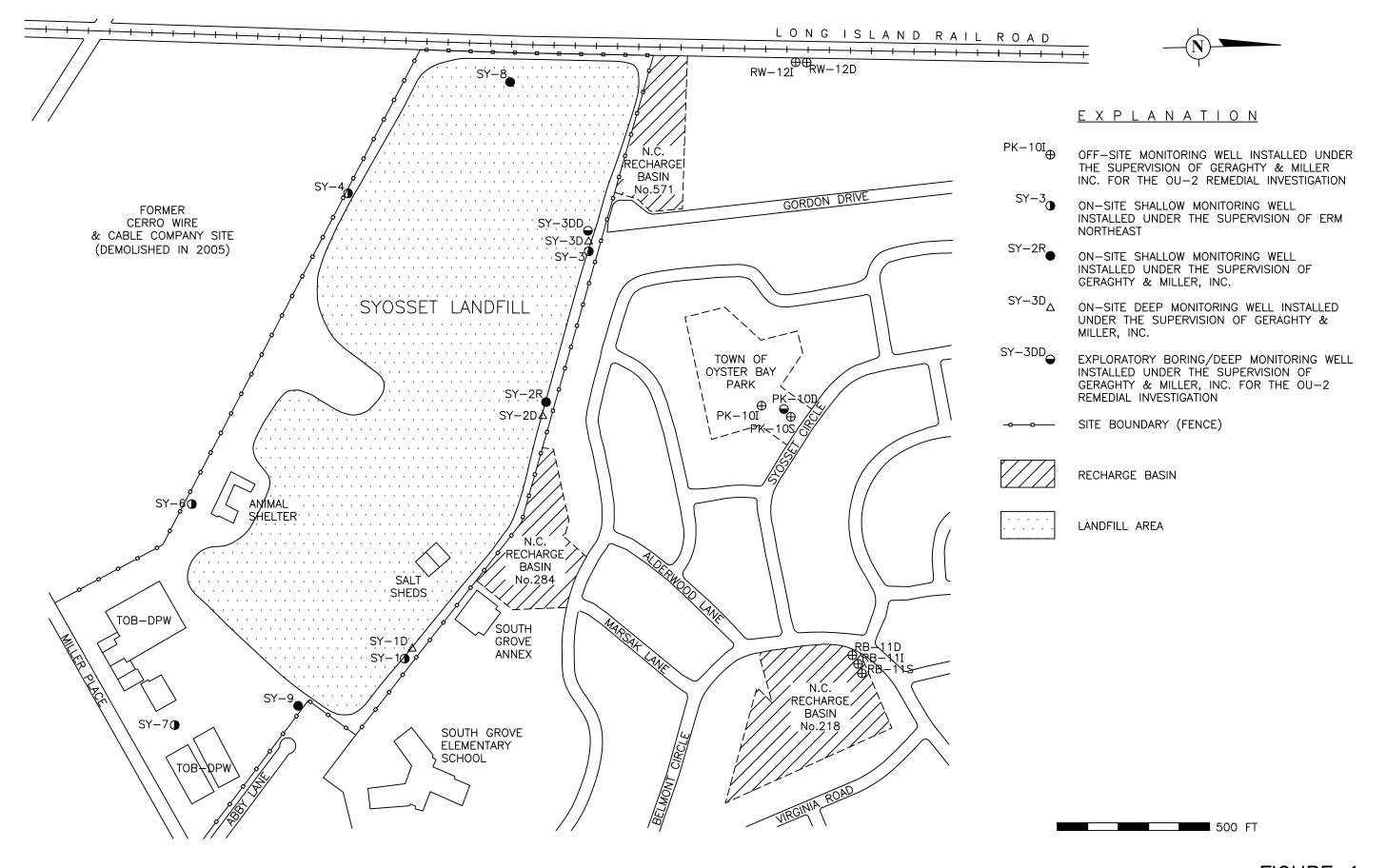
Appendix A: Completed Well Inspection Checklist Forms

Appendix B: Validated Laboratory Data

Appendix C: Trend Analysis Charts

SECTION 1

INTRODUCTION


The Town of Oyster Bay (Town) is required to perform ground-water monitoring at the Syosset Landfill (Landfill) during the post-closure period pursuant to two Records of Decision (RODs) from the United States Environmental Protection Agency (USEPA) Region II for the Landfill. These RODs are enforceable under a Consent Decree (CV-90-4183) entered into by Town and the USEPA.

The scope of the ground water-monitoring program is specified in Section 4 (Groundwater Monitoring System) of the Post-Closure Monitoring and Maintenance Operations Manual (O&M Manual), prepared by Lockwood, Kessler and Bartlett, Inc. (LKB), dated April 2003. The results of the annual groundwater monitoring program have been reported in a separate volume of the Syosset Landfill Annual Post-Closure Summary Reports each year due to the length of the report. In 2018, the Ground Water-Monitoring Program Volume of the 2018 Annual Summary Report is being published separately based on a request from the USEPA.

The main purpose of the ground water-monitoring program is to track ground water-flow and quality conditions now that capping has been completed, to ensure that the Landfill continues to not pose a threat to public health and the environment via the ground-water pathway. The Landfill was removed from the National Priorities List on April 28, 2005.

The USEPA's Fourth Five-Year Review Report was published in February 2017. In this report, the USEPA concluded that the remedies implemented for the site are protective of human health and the environment. In addition, the USEPA granted a reduction in the frequency of post-closure groundwater monitoring from annually to once every fifth quarter enabling the monitoring of groundwater once in each quarter during a Five-Year Review period. In 2018, groundwater monitoring was performed during the first quarter which was five quarters after the previous groundwater monitoring event conducted in the fourth quarter of 2016.

The ground water-monitoring system for the Landfill is comprised of 20 wells. The locations of the wells are indicated in Figure 1. As shown in this figure, thirteen of the wells are located onsite, along the upgradient (south) boundary, within, and along the downgradient (north) boundary of the Landfill. The other eight wells are located offsite, downgradient of the Landfill, in three clusters. The on-site wells are screened in either the shallow, intermediate or deep zone of the Magothy Aquifer, which is the uppermost aquifer. The overlying Upper Glacial Formation is unsaturated beneath the Landfill, and all of the off-site downgradient wells are screened in the Magothy Aquifer.

The post-closure monitoring well network is comprised of the following 11 wells:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

This Report presents the results of the 2018 annual ground water-monitoring round, which was performed on March 14th, 26th, 27th and 28th. The scope of work for this monitoring round followed Section 4.0 of the O&M Manual, and incorporated the recommendations in the 2016 ground water-monitoring round report.

Sections 2.0 through 4.0 of this Report summarize the results of monitoring well inspections, water-level measurements and ground-water sampling, respectively. Section 5.0 compares the 2018 results to the previous annual post-closure monitoring results obtained since 2003, and to the 1988 OU-1 RI and 1993 OU-2 RI results. Conclusions and recommendations based on the results are provided in Section 6.0. Each section is supported by tables, figures and appendices, as appropriate.

SECTION 2

RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR

Prior to performing the 2018 ground water-monitoring round, the 20 existing monitoring wells were located and inspected. All appeared to be in usable condition, and no significant modifications or repairs were required to the 11 wells that are monitored for ground-water quality. Well SY-9 was found to still be dry, which is consistent with the fact that the water-table elevation site-wide decreased by approximately one foot since the 2016 monitoring round. The inspection information for each existing ground water-monitoring well was recorded on a Well Inspection Checklist form, copies of which are presented in Appendix A.

SECTION 3

RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT

The 2018 synoptic water-level round was performed on March 14th. Measurements were made to the nearest 0.01-feet utilizing an electronic water-level meter. Water-level measurements were obtained from 19 of the 20 site monitoring wells. Well SY-9 could not be measured because it was dry due to the ongoing near-record low water table.

The 2018 water-level data are summarized in Table 1. Monitoring well construction details are provided in Table 2. Ground water-flow maps for the shallow, intermediate, and deep zones of the Magothy Aquifer in the vicinity of the Landfill, based on the 2018 water-level measurements, are provided in Figures 2, 3 and 4, respectively.

3.1 Horizontal Ground Water-Flow Directions and Gradients

3.1.1 Shallow Zone

As shown in Figure 2, the overall horizontal ground water-flow direction in the shallow zone of the Magothy Aquifer beneath the Landfill is from south to north. Downgradient of the Landfill, horizontal ground water-flow directions converge in the vicinity of Well Cluster PK-10 and then shift direction to the north-northwest. Moreover, based on the ground water-flow directions shown in Figure 2, Well Cluster RW-12 is located sidegradient to, rather than directly downgradient of, the Landfill.

The converging ground water-flow pattern observed in the shallow zone of the Magothy Aquifer downgradient of the Landfill is attributed to the influence of a buried glacial valley that begins beneath the western half of the Landfill and appears to trend to the north-northeast. The Upper Glacial Formation is unconfined and more permeable than the Magothy Formation, which is locally semi-confined. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the section of Magothy Formation in contact with the buried glacial valley and into the Upper Glacial Formation, resulting in the converging flow pattern observed. The buried glacial valley is discussed in more detail in Section 3.3 below.

The horizontal hydraulic gradient for the shallow zone of the Magothy Aquifer, calculated by dividing the difference in water-level elevation between Well SY-6 and Well PK-10S in 2018 (1.65 feet) by the distance between the two wells (1,975 feet), is 0.0008. This gradient similar to the gradients observed from 2013 through 2016, and during the pre-2011 monitoring rounds, and therefore appears to represent typical conditions. In contrast, in 2011 and 2012, lower horizontal hydraulic gradients were observed in this aquifer zone. They were attributed to the unusually rapid rises in the water-table elevation in late 2011 and late 2012 due to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in those years.

Table 1
Summary of Water-Level Results
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well No.	MP Elev.	MP Description	WL Depth	WL Elev.	Verti	cal Gradient (ft/ft)
		On-Site	Wells			
SY-1	198.48	Top of 2-inch steel casing.	120.80	77.68	-0.0023	(SY-1 / SY-1D)
SY-1D	197.02	Top of 4-inch PVC cap.	119.21	77.81		
SY-2R	190.86	Top of 4-inch PVC casing.	113.52	77.34	0.0045	(SY-2R / SY-2D)
SY-2D	190.91	Top of 3-inch PVC casing.	113.91	77.00		
SY-3	193.96	Top of 2-inch steel casing.	116.51	77.45	0.0085	(SY-3 / SY-3D)
SY-3D	194.47	Top of 3-inch PVC casing.	117.48	76.99	0.0008	(SY-3D / SY-3DD)
SY-3DD	193.95	Top of 2-inch PVC casing.	117.24	76.71		
SY-4	192.39	Top of 2-inch steel casing.	114.00	78.39		
SY-6	186.94	Top of 2-inch steel casing.	108.63	78.31		
SY-7	197.46	Top of 2-inch steel casing.	118.57	78.89		
SY-8	197.94	Top of 4-inch PVC cap.	119.86	78.08		
SY-9	202.41	Top of 4-inch PVC casing.	Dry	<79.50*		
		Off-Site	Wells			
PK-10S	188.73	Top of 4-inch PVC casing.	112.07	76.66	0.0015	(PK-10S / PK-10I)
PK-10I	187.10	Top of 4-inch PVC casing.	110.76	76.34	0.0000	(PK-10I / PK-10D)
PK-10D	188.25	Top of 4-inch PVC casing.	111.91	76.34		
RW-12I	197.32	Top of 4-inch PVC casing.	121.20	76.12	0.0009	(RW-12I / RW-12D)
RW-12D	197.29	Top of 4-inch PVC casing.	121.30	75.99		
RB-11S	189.91	Top of 4-inch PVC cap.	112.64	77.27	0.0044	(RB-11S / RB-11I)
RB-11I	190.32	Top of 4-inch PVC cap.	113.99	76.33	-0.0001	(RB-11I / RB-11D)
RB-11D	190.60	Top of 4-inch PVC cap.	114.26	76.34		

Water-level data collected on March 14, 2018.

MP - Measuring Point.

^{*} Approximate elevation of bottom of well screen.

Table 2
Summary of Construction Details for Monitoring Wells Installed at and Near the Syosset Landfill (Reference: OU-2 RI Report, 1993)

Well Designation	Completion Date	Well Diameter (inches)	Total Depth (feet below land surface)	Screen Setting (feet below land surface)	Interval Gravel Packed (feet below land surface)	Interval Sealed With Bentonite Pellets (feet below land surface)	Interval Sealed With Bentonite Slurry/Volclay (feet below land surface)	Height of Measuring Point (a) (relative to land surface)	Elevation of Measuring Point (b) (feet above mean sea level)	Well Casing and Screen Material
SY-1 (c)	10/19/82	2	135	125 - 135 (d)	35 - 135 (d)	34 - 35	8 - 34 (e)	-0.15	194.52	Black steel
SY-1D	2/2/88	4	218	182 - 192	179 - 218	177 - 179	2-177	+2.31	197.36	PVC
SY-2R	2/12/88	4	150	115 - 125	112 - 150	110 - 112	2-110	+1.95	187.12	PVC
SY-2D	2/9/88	3	215	190 - 200	187 - 215	185 - 187	2 - 185	+2.18	186.33	PVC
SY-3 (c)	10/20/82	2	145	135 - 145	47 - 145 (d)	45 - 47	4 - 45 (e)	-0.50	191.38	Black steel
SY-3D	2/25/88	3	240	189 - 199	184 - 240	181 - 184	2 - 181	+2.45	194.74	PVC
SY-3DD	12/9/92	2	540	630 - 640	517 - 540	512 - 517 (1)	2 - 512	0	194.23	PVC, stainless steel
SY-4	10/20/82	2	153	143 - 153 (d)	57 - 153 (d)	54 - 57	4 - 54 (e)	-0.20	193.32	Black steet
SY-5 (c) (h)	10/20/82	2.5	135	125 - 135 (d)	46 - 135 (d)	44 - 46	5 - 44 (e)	+4.20	188.07	Galvanized steel
SY-6 (c)	10/19/82	2	145	135 - 145 (d)	31 - 145 (d)	28 - 31	5 - 28 (e)	-0.10	185.92	Black steel
SY-6D	3/9/88	4	215	195 - 205	192 - 215	190 - 192	3 - 192	-0.30	185.60	PVC
SY-7 (c)	10/21/82	2	145	135 - 145 (d)	52 - 145 (d)	49 - 52	5 - 49 (e)	-0.25	197.46	Black steel
8-Y8	12/19/87	4	142	127 - 137	125 - 142	122 - 125	2-122	+2.25	195.84	PVC
SY-9	1/29/88	4	140	110 - 120	107 - 140	105 - 107	2 - 105	-0.70	199.41	PVC
N-3	11/10/87	2	120	105 - 115	102 - 120	100 - 102	2 - 100	+2.63	190.61	PVC
∿-4 (h)	11/18/87	2	120	104 - 114	102 - 120	100 - 102	2-100	+2.56	192.82	PVC
PK-10S	3/25/93	4	149	139 - 149	5 - 149	(i)	(i)	-0.40	188.70	PVC, stainless steel
PK-10I	4/14/93	4	362	352 - 362	346.5 - 363	341.5 - 346.5 (f)	2 - 341.5 (g)	0	187.62	PVC, stainless steel
PK-10D	12/31/92	4	499	489 - 499	477 - 500	472 - 477 (1)	2 - 472 (g)	Ō	188.23	PVC, stainless steel
RB-11S	8/26/93	4	143	133 - 143	120 - 144	115 - 120 (f)	2 - 115 (g)	Ô	189.91	PVC, stainless steel
RB-111	8/19/93	4	358.5	348.5 - 358.5	339 - 359	333 - 339 (f)	2 - 333 (g)	0	190.32	PVC, stainless steel
RB-11D	8/9/93	4	503	493 - 503	487 - 509	480 - 487 (f)	2 - 480 (g)	0	190.60	PVC, stainless steel
RW-12I	10/7/93	4	360	350 - 360	338 - 364	330 - 338 (f)	2 - 330 (g)	0	197.76	PVC, stainless steel
RW-12D	9/27/93	4	500	490 - 500	482 - 508	475 - 482 (f)	2 - 482 (g)	0	197.72	PVC, stainless steel

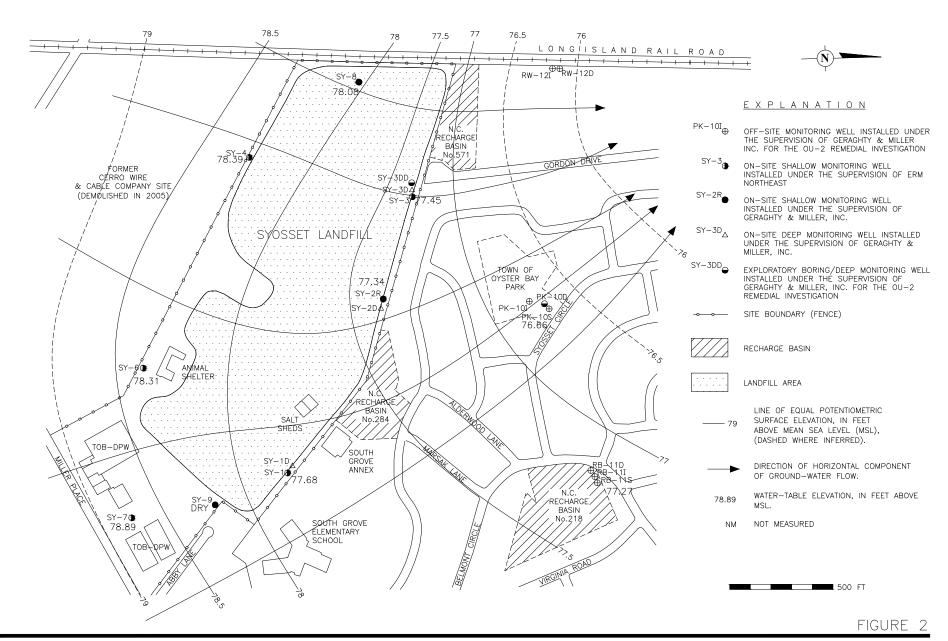
⁽a) The measuring point of each well is the top of the well casing.

⁽b) Survey performed to U.S. Geological Survey (USGS) datum.

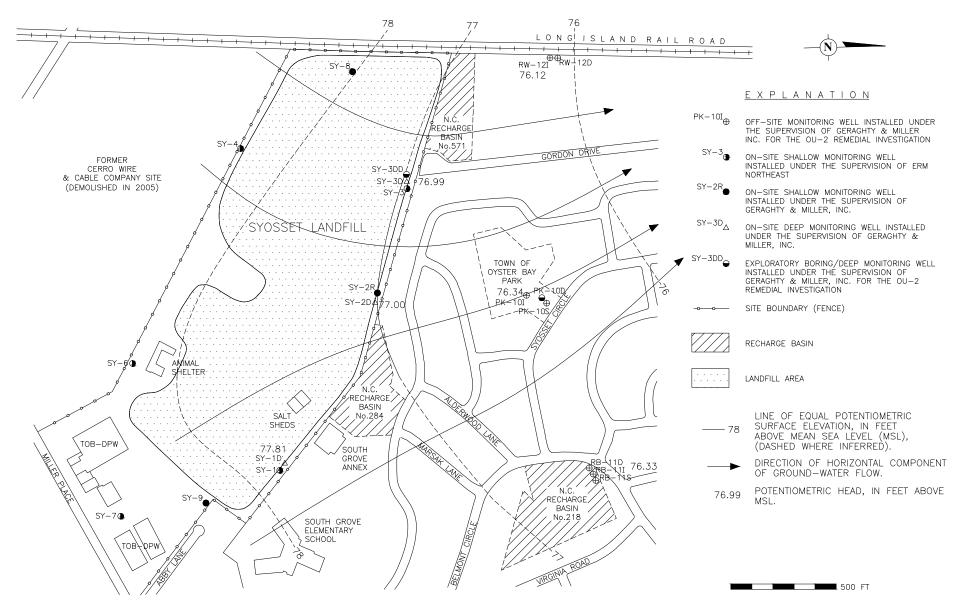
⁽c) Well installed during the ERM-Northeast site investigation.

 ⁽d) It appears that this interval consists of formation collapse.

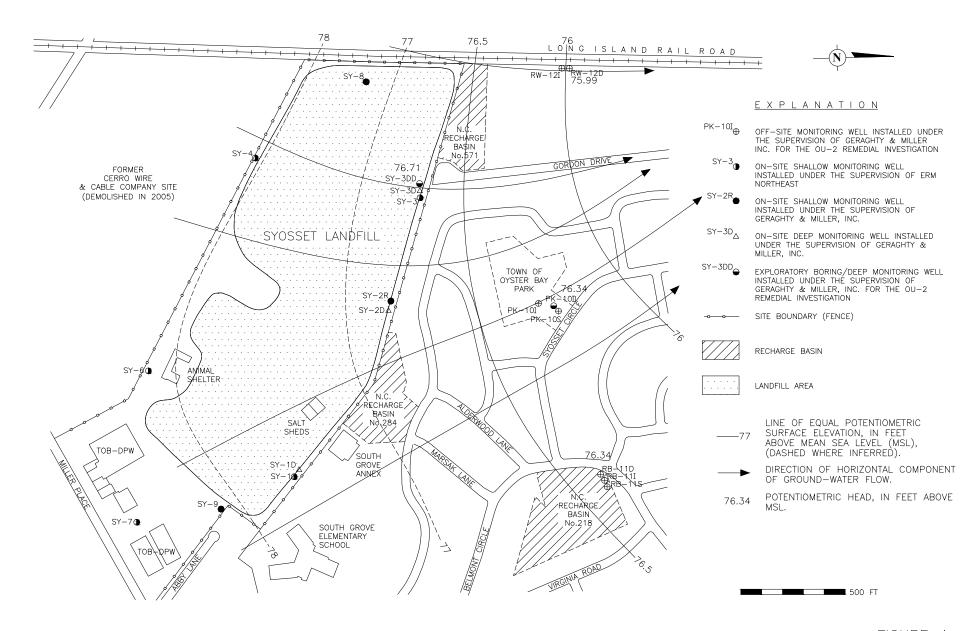
⁽e) Information not available as to whether grout or backfill (drill cuttings) was used to fill the annular space in this interval.


⁽f) #00 Sand used above J. Morie, Co. No. 1 Sand.

⁽g) Volclay grout sealant used (composed of 100 percent bentonite).


⁽h) Destroyed

⁽i) Well PK-10S was installed in the initial PK-10I borehole, which had collapsed at 328 feet due to unstable formation; PK-10S was constructed with the gravel pack extending to within 5 feet of land surface to allow for the gravel pack to stabilize before a permanant seal was installed. PK-10S is currently sealed at the land surface with a steel plate and rubber gasket. Gravel can be monitored/added through a 1-inch diameter access port.


PVC Polyvinyl chloride.

3.1.2 Intermediate Zone

As shown in Figure 3, based on the 2018 data, horizontal ground water-flow directions in the intermediate zone of the Magothy Aquifer are also generally from south to north beneath the Landfill. They also converge slightly downgradient of the Landfill in the vicinity of Well Cluster PK-10, although the degree of convergence is much less than is observed in the shallow zone of the Magothy Aquifer, and then also shift direction to the north-northwest.

The horizontal hydraulic gradient for the intermediate zone of the Magothy Aquifer, based on difference in water-level elevation in Wells SY-1D and PK-10I (1.47 feet) and the distance between the wells (1,400 feet), is 0.0010, which is similar to, but slightly higher than, the shallow zone gradient.

3.1.3 Deep Zone

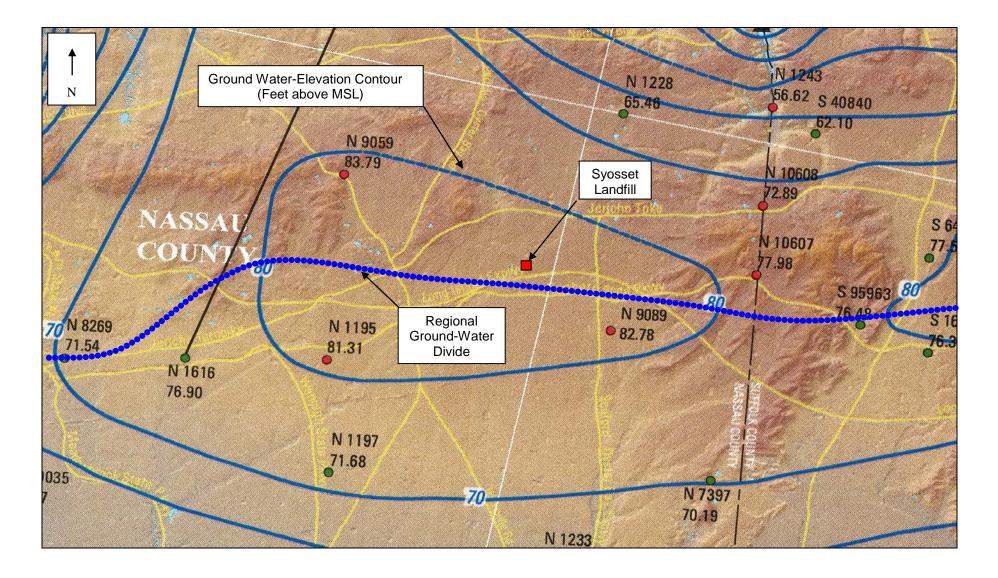
As shown in Figure 4, based on the 2018 data, the horizontal ground water-flow direction in the deep zone of the Magothy Aquifer is generally from south-southeast to north-northwest in the vicinity of the Landfill. This flow direction is based on data from just four downgradient wells and should therefore be considered approximate. However, it is consistent with the shallow and intermediate zone results, as well as the results from previous monitoring rounds. The convergence noted in the shallower zones of the Magothy Aquifer is not observed in this zone. This finding is consistent with the fact that the deep zone of the Magothy Aquifer is not bisected by the buried glacial valley.

The horizontal hydraulic gradient for the deep zone of the Magothy Aquifer, based on the difference in the water-level elevation in Wells SY-3DD and RW-12D (0.72 feet) and the distance between the wells (900 feet), is 0.0008, which is consistent with the horizontal hydraulic gradients in the shallow and intermediate zones of the aquifer.

3.2 Vertical Hydraulic Gradients

Vertical hydraulic gradients are an indication of whether vertical ground water-flow directions, in the absence of confining units, are upward, downward or negligible. Vertical hydraulic gradients calculated using the available 2018 water-level data are included in Table 1. A positive value indicates a downward gradient, whereas a negative value indicates an upward gradient. The vertical hydraulic gradients shown in Table 1 indicate that downward gradients predominate, and that the highest-magnitude downward gradients occur between the shallow and intermediate zones of the Magothy Aquifer at On-Site Downgradient Well Clusters SY-2 and SY-3, and at Off-Site Downgradient Well Cluster RB-11. The vertical hydraulic gradient between the shallow and intermediate zones of the Magothy Aquifer is not calculated for Well Cluster RW-12 because there is no shallow zone well at this location.

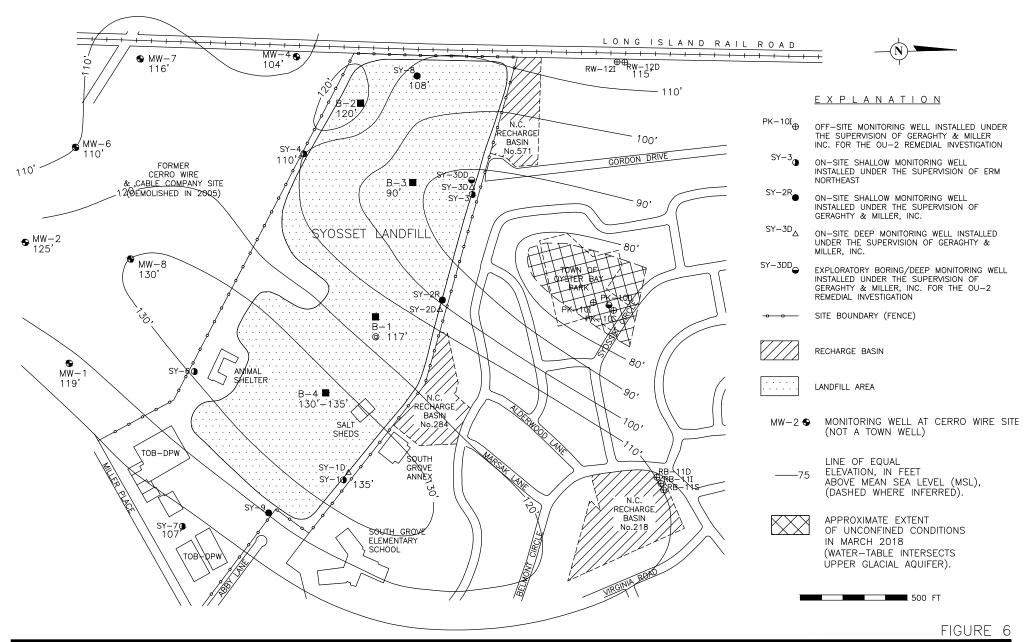
A slightly upward gradient was observed between the shallow and intermediate zones of the Magothy Aquifer at Well Cluster SY-1 again in 2018. During pre-2016 monitoring rounds, downward gradients were observed at this location. The slightly upward gradients observed in 2016 and 2018 are attributed to a localized response of the shallow zone of the Magothy Aquifer to below-average recharge from precipitation.


Vertical hydraulic gradients between the intermediate and deep zones of the Magothy Aquifer are lower in magnitude and varied from downward to slightly upward at the three downgradient well clusters for which data are available.

The predominance of downward vertical hydraulic gradients indicates the potential for ground water to migrate vertically downward in the absence of hydraulic barriers such as clay layers. Comparison of the average vertical gradient between the shallow and intermediate zone wells at each cluster (0.002) to the horizontal gradient of the shallow zone of the Magothy Aquifer (0.0008) indicates that it is 2.5 times higher. This finding is consistent with the Landfill being located near the regional ground-water divide, as shown in Figure 5. Typically, ground water-flow directions in such areas have a strong downward component. For this reason, assessment of impacts to the intermediate and deep zone wells must also take ground water-flow patterns in the shallow zone of the Magothy Aquifer into consideration.

3.3 Influence of the Buried Glacial Valley on Ground Water-Flow Patterns

Figure 6 shows a generalized structure contour map of the top of Magothy Formation based on the well boring logs from the OU-1 and OU-2 RIs. As shown in Figure 6, a trough in the Magothy Formation begins beneath the western portion of the Landfill and extends off-site, apparently to the north-northeast. This feature was formed by erosion of the Magothy Formation by the overlying Upper Glacial Formation, and is known as a buried glacial valley.


Due to differences in the hydraulic properties of Upper Glacial and Magothy Formations, the buried glacial valley influences local ground water-flow patterns. Specifically, the Upper Glacial Formation is more permeable than the Magothy Formation, which is finer-grained and contains localized clay layers that can cause semi-confined conditions. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the Magothy Aquifer and into the Upper Glacial Formation due to the hydraulic pressure differential between the formations. The influence of the buried glacial valley is most pronounced where it intersects the water table. Comparison of the structural contours in Figure 6 to the water-level data in Figure 2 indicates that the buried glacial valley gets deeper to the north-northeast and intersects the water table downgradient of the Landfill. This finding explains the converging ground water-flow patterns in the shallow and intermediate zones of the Magothy Aquifer downgradient of the Landfill.

Source: Sheet 1 of USGS Scientific Investigations Map 3326, showing water table-elevation contours during April-May 2013.

FIGURE 5

Moreover, it should be noted that as a result of the tendency for horizontal ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer to converge downgradient of the Landfill, there is potential for contamination that is not associated with the Landfill to migrate into the area downgradient of the Landfill. For example, in 2005, the gasoline service station located on the northwest corner of the intersection of South Oyster Bay Road and Miller Place replaced its underground storage tanks. LKB personnel noted that the excavated soil stockpile exhibited a very strong gasoline odor, indicating that a release had occurred. This gasoline service-station site could potentially be a source of the gasoline-related VOCs that were previously detected periodically at Well Cluster PK-10.

Also during 2005, the former Cerro Wire site, located adjacent to and upgradient of the Landfill, and comprised of a large industrial building, water tower and paved parking areas, was demolished and a large quantity of contaminated soil was reportedly removed. The site was an open excavation for most of 2005, but was eventually regraded, covered with topsoil and seeded, and is presently vacant land. The changes at the Cerro Wire site in 2005 have resulted in increased recharge directly upgradient of the Landfill and could potentially result in contamination from that site migrating north beneath the Landfill. Moreover, redevelopment of the former Cerro Wire site is currently being proposed. Future excavation associated with that redevelopment could also potentially influence ground-water conditions beneath the Landfill.

SECTION 4

RESULTS OF TASK 3 – GROUND-WATER MONITORING

The 2018 ground water-quality monitoring round was performed on March 26th, 27th and 28th, and included the following 11 wells specified in the O&M Manual:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

These ground water-monitoring wells were purged and sampled utilizing the modified low-flow procedure. The purge water from the off-site downgradient wells was collected and disposed of at a licensed facility. Daily trip blanks, a field blank, a matrix spike/matrix spike duplicate, and an anonymous duplicate sample from Well SY-3, labeled "Well SY-5", were also collected.

The samples were analyzed for the following parameters:

- USEPA Target Compound List (TCL) of Volatile Organic Compounds (VOCs)
- NYSDEC Part 360 Baseline Field and Leachate Indicator Parameters
- Total and Dissolved USEPA Target Analyte List (TAL) Inorganic Parameters
- Total Cyanide

The ground-water samples were collected by LKB. The water purged from the off-site downgradient wells was collected and disposed of by Eastern Environmental Solutions, Inc. of Manorville, New York. Laboratory analyses were performed by CHEMTECH of Mountainside, New Jersey. The results were validated by Environmental Data Services, Inc. of Virginia Beach, Virginia.

The field parameter readings and validated laboratory results are summarized in Tables 3 through 7. The monitoring results are compared to NYSDEC Part 703 Ambient Water Quality Standards and Guidelines for Class GA (potable) ground water, except for the parameters arsenic and total dissolved solids (TDS). The results for arsenic and TDS are compared to the Federal MCL for arsenic and SMCL for TDS, respectively, because they are more stringent than the NYSDEC standards for these parameters. The data usability summary reports and validated laboratory data are provided in Appendix B.

4.1 Results of Field Parameter Measurements

Prior to collecting the field parameter readings, a minimum of one well casing volume plus ten percent was purged from each well. Field parameters were then monitored continuously utilizing a YSI Professional Handheld Multiparameter Water Quality Meter equipped with a flow-through cell until the readings stabilized. Turbidity was also monitored with a Hach portable turbidity meter. The final field readings are provided in Table 3. Review of Table 3 indicates noticeable differences for certain field parameters in certain downgradient wells, relative to Well SY-6. The specific differences vary by well and are summarized in the table below:

Well No.	Field Parameter Difference(s) Relative to Upgradient Well SY-6
SY-2R	Higher conductivity, lower pH.
SY-2D	Higher conductivity, lower dissolved oxygen (DO).
SY-3	Higher conductivity, lower DO; negative oxidation-reduction potential (ORP).
SY-3D	Higher temperature and conductivity; lower DO; negative ORP, odor.
SY-3DD	Lower conductivity; higher DO.
PK-10S	Lower temperature, conductivity and pH.
PK-10I	Higher conductivity; lower DO.
PK-10D	Higher conductivity; lower DO.
RW-12I	Higher conductivity; lower DO.
RW-12D	Higher conductivity; lower DO.

Most of these differences, while noticeable, actually represent relatively minor ground water-quality impacts; and most occurred in the on-site downgradient wells. Overall, these findings are consistent with previous years' field parameter results. No significant potentially Landfill-related differences were noted for Well SY-3DD. Turbidity was also lower in all of the downgradient wells relative to Upgradient Well SY-6.

Standards exist for two of the field parameters – pH and turbidity. The pH of ground water in nine of the 11 wells, including the upgradient well, was lower than the 6.5-standard unit range minimum. These results are attributed to naturally-occurring low-pH of the ground water on Long Island. The turbidity of the ground water in all of the downgradient wells was less than the 5-NTU limit. The only exceedance for turbidity occurred in Well SY-6 and is attributed to its shallower depth and the low water table.

Table 3
Summary of Field Parameter Monitoring Results
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Downgradi	ent Wells				
Field Parameter	Units	Quality	Well			On-Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Temperature	°C		15.2	14.2	14.5	16.5	17.1	15.7	13.1	15.7	14.5	14.1	14.8
Conductivity	μS/cm		319	1,470	1,434	1,460	1,923	32.9	126	1,989	469	1,791	965
Dissolved Oxygen	mg/L		5.54	3.78	1.41	0.39	0.59	7.66	5.48	0.46	0.53	0.66	0.59
рН	SU	6-5-8.5	<u>6.13</u>	<u>5.23</u>	<u>5.85</u>	6.50	6.56	<u>5.61</u>	<u>5.38</u>	<u>5.93</u>	<u>5.40</u>	6.44	<u>5.73</u>
Oxidation-Reduction Potential	mV		153	63.6	123	-97.9	-57.6	91.6	170	205	191	95.5	157
Field Observations	NA		Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,
			No Odor	No Odor	Slight Odor	No Odor	Strong Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor
Turbidity	NTU	5	<u>11.50</u>	2.61	2.71	1.72	0.67	0.81	0.69	0.36	0.25	0.63	0.22

1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.

°C = Degrees Celcius.

 μ S/cm = microSiemens per centimeter.

milligrams per Liter = milligrams per Liter.

SU = Standard Units.

mV = milliVolts.

NA = Not applicable.

NTU = Nephelometric Turbidity Units.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

4.2 Results of Volatile Organic Compound (VOC) Analyses

The 2018 VOC results are summarized in Table 4. As shown in Table 4, VOCs detections in Upgradient Well SY-6 were limited to a low, estimated concentration of acetone. Regarding the on-site downgradient wells, VOCs were not detected in Wells SY-2R, SY-2D, SY-3 and SY-3DD. VOCs were detected in Well SY-3D, but were limited to low, primarily estimated concentrations of four VOCs that are much lower than their respective Class GA ground-water standards. The four VOCs detected in Well SY-3D were the solvents acetone, cis-1,2-dichloroethene and trichloroethene (TCE), and the aromatic hydrocarbon chlorobenzene.

At Off-Site Downgradient Well Cluster PK-10, VOCs were not detected in the shallow zone well, Well PK-10S. VOCs were detected in the two deeper wells, Wells PK-10I and PK-10D, but were limited to relatively low, primarily estimated, concentrations of one to three VOCs in each well. The VOCs detected in these two wells were chlorobenzene, chloroform and TCE, all at concentrations lower than their respective Class GA groundwater standard or guidance value, as applicable.

At Off-Site Downgradient Well Cluster RW-12, a number of chlorinated solvents and aromatic hydrocarbons were detected in both wells. For the most part, the same VOCs were detected in both wells, however the highest concentration of most of the VOCs occurred in the deep zone well, Well RW-12D. Total VOC concentrations in these two wells were 29.5 ug/L and 47.0 ug/L, respectively. These results represent decreases of approximately 45 and 51 percent, respectively, relative to the 2016 results, but are still consistent with the historical results for these wells.

The concentrations of three VOCs in Well RW-12I (chlorobenzene, 1,2-dichlorobenzene and 1,4-dichlorobenzene) and five VOCs in Well RW-12D (chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichloroethane and cis-1,2-dichloroethene) were higher than their respective Class GA ground-water standards. However, with the exception of the chlorobenzene detections, which exceeded the 5-ug/L Class GA standard by factors of approximately two and three in Wells RW-12I and RW-12D, respectively, the VOC exceedances in these two wells were low in magnitude.

In summary, the VOC results from the 2018 post-closure monitoring round continue to indicate that the Landfill is not a significant source of VOCs. Specifically, VOC detections in the on-site downgradient wells were limited to low, primarily estimated concentrations of three VOCs in Well SY-3D. Moreover, the fact that most of the VOCs detected at Off-Site Downgradient Well Cluster RW-12 are not present in the on-site downgradient wells indicates that they are not Landfill-related. This finding is consistent with the ground water-flow directions shown in Figures 2 through 4, which indicate that Well Cluster RW-12 is located sidegradient to, rather than directly downgradient of, the Landfill.

Table 4 Summary of Volatile Organic Compound (VOC) Results Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient	Wells				
Analyte	Units	Quality	Well			On-	Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
1,1,1-Trichloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2,2-Tetrachloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2-Trichloroethane	ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2-Trichlorotrifluoroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1-Dichloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3	5.4
1,1-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.8 J	<0.2
1,2,3-Trichlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2,4-Trichlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromo-3-chloropropane	ug/L	0.04	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromoethane	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Distribution 1,2-Di	ug/L ug/L	3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3.1	4.8
1,2-Dichloroethane	ug/L	0.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichloropropane	ug/L ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,3-Dichlorobenzene		3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.2	1.7
1.4-Dichlorobenzene	ug/L	3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		
,	ug/L	50 ^{GV}											<u>4.9</u>	<u>6.6</u>
2-Butanone	ug/L		<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<2.5	<2.5	<2.5	<2.5	<2.5
2-Hexanone	ug/L	50 ^{GV}	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<1.9	<2.5	<2.5	<2.5	<2.5	<2.5
4-Methyl-2-pentanone	ug/L		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Acetone	ug/L	50 ^{GV}	4.4 J	<0.5	<0.5	<0.5	<0.5	10.2	<0.5	<1	<1	<1	<1	<1
Benzene	ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.51 J	<0.2
Bromochloromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	< 0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromoform	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromomethane	ug/L ug/L	5	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J
		60 ^{GV}												
Carbon disulfide	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon tetrachloride	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.24 J	<0.2	<0.2	2.1	0.59 J	<u>9.7</u>	<u>18.3</u>
Chloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
Chloroform	ug/L	7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3.2	<0.2	0.99 J
Chloromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
cis-1,2-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.35 J	<0.2	<0.2	<0.2	<0.2	2.7	<u>5.2</u>
cis-1,3-Dichloropropene	ug/L	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyclohexane	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichlorodifluoromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Isopropylbenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
m&p-xylenes	ug/L	10*	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Methyl acetate	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
Methyl tert-butyl ether	ug/L	10 ^{GV}	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	<0.5	<0.5	<0.5	<0.5	<0.5
Methylcyclohexane	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylene chloride	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Tetrachloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.8	0.67 J
Toluene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-1,2-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-1,3-Dichloropropene	ug/L	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 J	<0.2	<0.2	<0.2	0.23 J	0.84 J	0.62 J
Trichlorofluoromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Vinyl chloride	ug/L	2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.96 J	1.9
No. of Target VOCs Detected ³ :	out of 51	N/A	1/51	0/51	0/51	0/51	0/51	4/51	0/51	0/51	1/51	3/51	12/51	11/51
Total VOC Concentration ⁴ :	ug/L		4.4 J	ND	ND	ND	ND	10.8 J	ND	ND	2.1	4.0 J	29.5 J	47.0 J

- ug/L = micrograms per Liter.

 1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.
 - 2 = Duplicate sample collected from Well SY-3.
 - 3 = m- and p-xylene counted as one VOC, total excludes total xylenes.
 - 4 = Based on all target VOCs detected, including estimated concentrations.
 - J = Estimated concentration.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

- * = Based on 5-ug/L limit for eash isomer.
- NA = Not applicable.
- ND = None detected.
 - -- = No standard or guidance value.

4.3 Results of NYSDEC Part 360 Leachate Indicator Analyses

The leachate indicator parameters analyzed for included alkalinity, ammonia, BOD (biological oxygen demand), bromide, chloride, color, COD (chemical oxygen demand) total hardness, nitrate, total phenols, sulfate, TDS, TKN (total Kjeldahl nitrogen), and TOC (total organic carbon).

As shown in Table 5, compared to Upgradient Well SY-6, the concentrations of every leachate indicator parameter except BOD, bromide, nitrate, total phenols and sulfate were noticeably higher in Wells SY-3 and SY-3D, which monitor the shallow and intermediate zones of the Magothy Aquifer, respectively, at the downgradient Landfill boundary. Elevated levels of leachate-related contaminants were not detected in Well SY-3DD, which monitors the deep zone of the Magothy Aquifer at the downgradient Landfill boundary. At On-Site Downgradient Well Cluster SY-2, only chloride and TDS were present at concentrations significantly higher than in Upgradient Well SY-6.

Comparison of the leachate parameter results for the upgradient and on-site downgradient wells to the Class GA ground-water standards indicates that Landfill-related exceedances in these wells were limited to: chloride and TDS in Wells SY-2R and SY-2D; color in Well SY-2D; and ammonia, chloride, color and TDS in Wells SY-3 and SY-3D. No exceedances occurred in Upgradient Well SY-6 or in On-Site Downgradient Well SY-3DD.

Comparison of the leachate indicator parameter results for the off-site downgradient wells to the Class GA ground-water standards indicates that exceedances were limited to: ammonia, chloride and TDS in Well PK-10I; and ammonia and TDS in Wells RW-12I and RW-12D. No exceedances occurred in Wells PK-10S and PK-10D.

Based on comparison of the leachate indicator parameter results for the on-site and off-site downgradient wells, most of the parameters detected at elevated concentrations in the on-site downgradient wells were detected at similar concentrations in Off-Site Downgradient Well PK-10I, indicating Landfill-related impacts in this well. However, this comparison also indicates that most of the parameters (e.g., alkalinity, ammonia, bromide, COD, hardness, nitrate, sulfate, TKN and TOC) were detected at higher concentrations in one or both wells at Well Cluster RW-12 than in the on-site downgradient wells. Moreover, at least one parameter (e.g., chloride) detected at relatively high concentrations in most on-site downgradient wells and Downgradient Off-Site Well PK-10I, was detected at much lower concentrations in Well Cluster RW-12. These disparities, together with the VOC and ground water-flow direction results, suggest that the leachate indicator parameters detected at Well Cluster RW-12 are not Landfill-related.

Taken as a whole, the 2018 leachate indicator parameter results indicate that the Landfill continues to be a relatively minor source of the Part 360 leachate-related contaminants.

Table 5
Summary of Leachate Indicator Parameter Results
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient	Wells				
Analyte	Units	Quality	Well			On-	Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Alkalinity	mg/L		118	114	47.8	232	221	220	3.8	7.8	130	24.8	892	90.8
Ammonia	mg/L	2	0.087 J	0.078 J	0.11	<u>11.3</u>	<u>11.1</u>	<u>18.7</u>	0.053 J	0.059 J	<u>3.6</u>	0.067 J	<u>69.6</u>	<u>5</u>
BOD	mg/L		<2	<2	<2	<2	<2	<2	3.8	<2	<2	<2	<2 J	<2 J
Bromide	mg/L	2	<0.066	<0.066	<0.066	0.28 J	0.28 J	0.42 J	<0.066	<0.066	0.85	0.7	1.9	1.1
Chloride	mg/L	250	6.9	<u>461</u>	<u>461</u>	<u>372</u>	<u> 365</u>	<u>508</u>	4.8	12.3	<u>583</u>	112	144	206
COD	mg/L		<5	6.59 J	15.5	15.5	12.5	14.5	<5	<5	<5	<2.43	31.4	<2.43
Color	cu	15	<5	<5	<u>20</u>	<u>300</u>	300	400	<5	<5	<5	<5	5 J	5 J
Hardness, Total	mg/L		161	80.5	105	191	188	186	6.42 J	40.9	186	92.8	338	277
Nitrate	mg/L	10	1.9	2.5	1.4	<0.027	< 0.027	< 0.027	0.72	3.2	<0.027	4.2	0.41 J	9.6 J
Phenols, Total	mg/L	0.001	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.05 J	<0.01	<0.01	<0.01	<0.01	<0.01
Sulfate	mg/L	250	38.7	36.6	15.7	36.2	35.1	40.5	<0.75	17.6 J	36 J	22.4 J	64.4	183
TDS	mg/L	500*	208	808	<u>779</u>	<u>859</u>	<u>815</u>	1,034	56	87	<u>1,147</u>	261	842 J	<u>733</u>
TKN	mg/L		0.25 J	0.24 J	0.26 J	10.5 J	10.8 J	8.1 J	0.24 J	0.17 J	5.6	0.26 J	67	5.3
TOC	mg/L		1.8	2.2	2.2	5.3	4.8	4.5	0.63	0.62	2.6	1.3	17.2	5.2

- 1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.
- 2 = Duplicate sample collected from Well SY-3.
- * = TDS limit is Federal SMCL, which is more stringent than the 1,000-mg/L NYSDEC limit for Class GA ground water.

mg/L = milligrams per Liter.

cu = color units.

J = Estimated concentration.

BOD = Biological oxygen demand.

COD = Chemical oxygen demand.

TDS = Total dissolved solids.

TKN = Total Kjeldhal nitrogen.

TOC = Total organic carbon.

Bold & Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

4.4 Results of USEPA Target Analyte List (TAL) and Cyanide Analyses

The samples were analyzed for both total and dissolved TAL parameters, and total cyanide. The RCRA (Resource Conservation and Recovery Act) and PPL (Priority Pollutant List) metals, which are a subset of 14 of the more toxic metals, are included in the TAL parameters. The results are summarized in Table 6, and the RCRA and PPL metals are identified with asterisks.

As shown in Table 6, of the 24 parameters analyzed for, three (antimony, cadmium and selenium) were not detected. Of the 21 detected parameters, 12 (aluminum, barium, chromium, cobalt, copper, cyanide, lead, mercury, nickel, silver, vanadium and zinc), were only detected sporadically and/or at low concentrations less than their respective Class GA standard or guidance value. The highest concentration of one other parameter (zinc) was detected in the upgradient well. The remaining nine detected TAL parameters include four RCRA/PPL metals (arsenic, beryllium, selenium and thallium) and calcium, iron, magnesium, manganese, potassium and sodium. The results for these nine parameters are discussed below.

Arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at total and dissolved concentrations higher than the 10-ug/L federal MCL. Comparison of the total and dissolved results for these two wells indicates that the arsenic is in dissolved form. The only other detections of arsenic occurred in Off-Site Downgradient Wells PK-10D, RW-12I and RW-12D, and were primarily limited to low, estimated concentrations that are much lower than the federal MCL. The dissolved arsenic concentration in Well RW-12I was slightly higher than the MCL, however since the total arsenic concentration in Well RW-12I was much lower than the MCL, this dissolved arsenic exceedance is considered to be spurious.

Beryllium was only detected in On-Site Downgradient Well SY-2R, at total and dissolved concentrations slightly higher than the 3-ug/L Class GA guidance value. Comparison of the total and dissolved results indicates that the beryllium is in dissolved form.

Selenium was only detected in filtered samples from Off-Site Downgradient Wells RW-12I and RW-12D, at estimated concentrations. The dissolved selenium concentration in Well RW-12I is slightly higher than the 10-ug/L standard, but is likely spurious as total selenium was not detected in unfiltered samples from this well cluster.

Thallium was only detected at low, estimated concentrations in the unfiltered duplicate sample from Well SY-3, the unfiltered sample from Well PK-10I, and in the filtered sample from Well SY-3DD. However, these detections are higher than the 0.5-ug/L Class GA standard and may be Landfill-related.

Calcium, iron, magnesium, manganese, potassium and sodium were each detected in one or more downgradient wells at concentrations noticeably higher than in Upgradient Well SY-6. Except for sodium, which had a more widespread occurrence, the highest

Table 6
Summary of Total and Dissolved Metals Results
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient \	Vells				
Analyte	Units	Quality	Well			On-						Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
						L METAI		_						
Aluminum	ug/L		17.7 J	267	325	13.8 J	13.1 J	7.2 J	<200	10.7 J	17.6 J	<200	22.0 J	13.0 J
Antimony*	ug/L	3	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	<10.0	<10.0	<u>41.3</u>	<u>42.5</u>	<u>18.7</u>	<10.0	<10.0	<10.0	3.0 J	<10.0	3.4 J
Barium*	ug/L	1,000	84.1 J	75.7 J	82.4 J	155 J	152 J	194 J	<200	14.9 J	60.1 J	34.2 J	60.0 J	77.1 J
Beryllium*	ug/L	3 ^{GV}	<5.0	<u>3.5 J</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L		40,900	24,300	32,100	44,900	44,000	50,000	1,530 J	12,000	50,000	24,000	70,900	71,700
Chromium*	ug/L	50	2.5 J	1.4 J	<10.0	<10	<10.0	<10.0	2.7 J	1.4 J	<10.0	1.2 J	1.4 J	<10.0
Cobalt	ug/L		<50.0	5.1 J	<50.0	<50.0	<50.0	18.6 J	<50.0	<50.0	98.0	3.1 J	<50.0	<50.0
Copper*	ug/L	200	20.4 J	3.9 J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Cyanide	ug/L	200	<10.0	3.7 J	<10.0	<10.0	<10.0	<10.0	2.7 J	<10.0	<10.0	<10.0	<10.0	<10.0
Iron	ug/L	300	212	40.9 J	158	<u>36,200</u>	<u>35,700</u>	<u>23,200</u>	<100	17.9 J	<100	<100	137	<100
Lead*	ug/L	25	3.7 J	<10.0	2.6 J	3.8 J	3.9 J	2.3 J	2.0 J	2.2 J	<10	<10.0	<10.0	<10.0
Magnesium	ug/L		14,400	4,820	5,960	19,200	18,900	14,900	632 J	2,660 J	14,900	7,990	39,100	23,800
Manganese	ug/L	300	26.3	32.4	<u>453</u>	<u>3,790</u>	<u>3,720</u>	<u>897</u>	2.4 J	15.0 J	<u>1,530</u>	24.9	52	12.8 J
Mercury*	ug/L	0.7	<0.20	<0.20	<0.20	0.062 J	0.059 J	0.16 J	<0.20	<0.20	<0.44	<0.20	<0.20	<0.20
Nickel*	ug/L	100	5.2 J	28.3 J	<40.0	<40.0	<40.0	<40.0	13.1 J	3.7 J	3.6 J	12.3 J	7.4 J	3.6 J
Potassium	ug/L		<5,000	1,750 J	4,590 J	15,100	14,900	24,500	<5,000	<5,000	16,400	<5,000	68,900	2,920 J
Selenium*	ug/L	10	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0 J	<35.0 J	<35.0 J	<35.0	<35.0
Silver*	ug/L	50	<10.0	<10.0	<10.0	0.91 J	0.94 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L	20,000	6,940	<u>267,000</u>	<u>233,000</u>	<u>224,000</u>	<u>218,000</u>	<u>282,000</u>	3,210 J	6,250	<u>316,000</u>	<u>55,900</u>	<u>140,000</u>	<u>137,000</u>
Thallium*	ug/L	0.5	<25.0	<25.0	<25.0	<25.0	<u>4.3 J</u>	<25.0	<25.0	<25.0	<u>3.7 J</u>	<25.0	<25.0	<25.0
Vanadium	ug/L		2.8 J	<50.0	<50.0	<50.0	<50.0	<50.0	3.8 J	<50.0	<50.0	<50.0	<50.0	<50.0
Zinc*	ug/L	2,000 ^{GV}	1,260	53.5 J	11.9 J	<60.0	6.5 J	3.1 J	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
					DISSOL	VED MET	ALS RE	SULTS						
Aluminum	ug/L		<200	230	19.3 J	20.9 J	21.0 J	<200	<200	<200	20.4 J	9.7 J	26.7 J	24.7 J
Antimony*	ug/L	3	<60.0	<60.0	<60.0	60	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	3.5 J	3.3 J	<u>53.5</u>	<u>56.1</u>	<u>16.0</u>	<10.0	<10.0	<10.0	<10.0	<u>10.8</u>	3.7 J
Barium*	ug/L	1,000	80.3 J	72.8 J	79.2 J	153 J	154 J	192 J	<200	13.7 J	59.7 J	32.5 J	60.3 J	74.3 J
Beryllium*	ug/L	3 ^{GV}	<5.0	3.4 J	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L		39,600	23,400	30,500	43,800	43,900	49,000	1,500 J	11,700	50,000	23,200	70,400	70,200
Chromium*	ug/L	50	<10.0	1.6 J	<10.0	<10.0	<10.0	<10.0	1.8 J	<10.0	<10.0	<10.0	<10.0	<10.0
Cobalt	ug/L		<50.0	4.7 J	<50.0	<50.0	<50.0	18.6 J	<50.0	<50.0	92.1	2.7 J	<50.0	<50.0
Copper*	ug/L	200	19.6 J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	2.5 J	<25.0	2.8 J	2.6 J	<25.0
Iron	ug/L	300	65.2 J	16.3 J	<100	34,900	35,500	23,000	<100	<100	<100	<100	106	<100
Lead*	ug/L	25	<10.0	2.6 J	3.9 J	2.7 J	3.2 J	2.5 J	3.1 J	<10.0	<10.0	1.9 J	<10.0	<10.0
Magnesium	ug/L		14,100	4,270 J	5,470	17,600	17,600	14,600	636 J	2.700 J	15,000	7,750	38,500	23,200
Manganese	ug/L	300	25.2	30.2	<u>361</u>	3,740	3,750	874	2.1 J	<15.0	<u>1,550</u>	24.6	50.1	12.4 J
Mercury*	ug/L	0.7	0.040 J	<0.20	<0.20	<0.20	0.039 J	0.039 J	0.043 J	<0.20	< 0.37	<0.20	<0.20	<0.20
Nickel*	ug/L	100	4.3 J	26.0 J	<40.0	<40.0	<40.0	<40.0	9.9 J	2.7 J	2.8 J	10.9 J	6.8 J	3.3 J
Potassium	ug/L		<5,000	<5,000	4,070 J	14,400	14,600	24,300	<5,000	<5,000	16,200	<5,000	67,000	2,660 J
Selenium*	ug/L	10	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0 J	<35.0 J	<35.0 J	<u>12.9 J</u>	6.4 J
Silver*	ug/L	50	<10.0	<10.0	<10.0	<10.0	0.79 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L	20,000	7,100	247,000	211,000	208,000	206,000	278,000	3,250 J	5,920	313,000	<u>53,600</u>	137,000	134,000
Thallium*	ug/L	0.5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<u>2.1 J</u>	<25.0	<25.0	<25.0	<25.0	<25.0
maillum														
Vanadium	ug/L	 2,000 ^{GV}	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0

ug/L = micrograms per Liter.

- 1 = NYSDEC Part 703 Ambient Water Quality Standard or Guidance Value (GV) for Class GA (Potable) ground water.
- 2 = Duplicate sample collected from Well SY-3.
- J = Estimated concentration.

 $\label{eq:bold water-quality standard or guidance value.} Bold \& \ Underlined = Exceeds \ ground \ water-quality \ standard \ or \ guidance \ value.$

- * = RCRA/PPL metal.
- ** = USEPA MCL, revised downward from 50 ug/L effective January 2006. NYSDEC TOGS 1.1.1 Ambient Water Quality Standard is 25 ug/L.
- -- = No standard or guidance value.

concentrations of these parameters occurred in Wells SY-3, SY-3D, PK-10I, RW-12I and/or RW-12D.

Comparison of the results for the on-site and off-site downgradient wells indicates that Landfill-related off-site impacts are minimal. For example, arsenic was only detected at significant concentrations in two on-site downgradient wells. The highest concentrations of iron, manganese and sodium also occurred in on-site downgradient wells, whereas the highest concentrations of calcium, magnesium and potassium occurred in Off-Site Downgradient Well Cluster RW-12. The differences in the results for the on-site downgradient wells and Off-Site Downgradient Well Cluster RW-12 suggest that certain parameters detected at Well Cluster RW-12 are not Landfill-related. Review of Table 6 also indicates that overall, the detected TAL parameters were present at similar concentrations in unfiltered and filtered samples. This indicates that the detected TAL parameters are primarily present in ground-water in dissolved form.

Taken as a whole, the TAL parameter and total cyanide results indicate that the Landfill continues to be a relatively minor source of certain metals/inorganic parameters, but is not a significant source of the RCRA/PPL metals. The only Landfill-related exceedances for the RCRA/PPL metals in 2018 were for arsenic in Wells SY-3 and SY-3D, beryllium in Well SY-2R, and possibly thallium in Wells SY-3 and PK-10I. The arsenic and beryllium exceedances appear to be limited to the downgradient landfill boundary as exceedances for these parameters did not occur in the deeper on-site downgradient wells at these two clusters, or in the off-site downgradient wells. The thallium exceedances may be Landfill-related but are for sporadic low, estimated concentrations.

SECTION 5

COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS

The 2018 ground water-monitoring results were compared to previous post-closure monitoring results, and the OU-1 RI and the OU-2 RI results, to determine if ground water-flow patterns and/or quality conditions have changed significantly since the Landfill was capped. This entailed 1) comparison of the current and historical post-closure water-level data, 2) comparison of the current and previous overall results for each parameter group, 3) comparison, on a well-to-well basis, of the current and previous results for Landfill-related exceedances of the ground-water standards or guidance values, and 4) trend analyses for the leachate indicator parameters that have historically been detected on a regular basis.

5.1 Temporal Variation in Water-Level Elevations

The 2018 water-level results are compared to post-closure water-level data collected since 2003 in Table 7. Review of Table 7 indicates that in March 2018 water-level elevations were, on average: 0.75 feet higher relative to 2003 data, -1.21 feet lower relative to 2005 data, -6.62 feet lower relative to the 2006 data, -7.89 feet lower relative to the 2007 data, -7.48 feet lower relative to the 2008 data, -6.58 feet lower relative to the 2019 data, -9.16 feet lower relative to the 2010 data, -10.47 feet lower relative to the 2011 data, -8.37 feet lower relative to the 2012 data, -6.97 feet lower relative to the 2013 data, -6.51 feet lower relative to the 2014 data, -4.74 feet lower relative to the 2015 data, and -0.97 feet lower relative to the 2016 data. These changes are attributed to natural temporal variations in recharge from precipitation, such as the below-normal precipitation in 2015 and 2016, and the increased recharge directly upgradient of the Landfill since 2005 resulting from the demolition work at the former Cerro Wire property.

Comparison of the current ground water-contour maps (Figures 2, 3 and 4) to previous post-closure ground water-contour maps indicates that, overall, ground water-flow directions are similar. One notable difference is that during the period from 2005 through 2008, ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer showed less convergence downgradient of the Landfill. This difference is attributed to the fact that the water-table elevation rose at a faster than normal rate during that period, which temporarily masked the influence of the buried glacial valley on ground water-flow patterns. The other notable difference is that in 2011 and 2012, water-level contours in the shallow and intermediate zones of the aquifer beneath the eastern half of the Landfill extended further south (upgradient) than is typically observed. This difference is attributed to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in these years.

Table 7
Changes in Ground-Water Elevations
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well	0000 0005 0000 0007 0000 0000 0000 0000 0000 0000 0000																		levation (ft.								
Number	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2018	'16' to '18	'15' to '18	'14 to '18	'13 to '18	'12 to '18	'11 to '18	'10 to '18	'09 to '18	'08 to '18	'07 to '18	'06 to '18	'05 to '18	'03 to '18
													On-Site	e Wells:													
SY-1	77.63	79.59	84.87	86.16	85.87	84.63	87.04	88.63	86.20	85.02	84.86	82.78	78.74	77.68	-1.06	-5.10	-7.18	-7.34	-8.52	-10.95	-9.36	-6.95	-8.19	-8.48	-7.19	-1.91	0.05
SY-1D	77.16	79.27	84.62	85.87	85.32	84.48	86.94	88.34	86.13	84.89	84.47	82.63	78.79	77.81	-0.98	-4.82	-6.66	-7.08	-8.32	-10.53	-9.13	-6.67	-7.51	-8.06	-6.81	-1.46	0.65
SY-2R	76.65	78.62	84.06	85.35	84.73	83.91	86.48	87.95	85.81	84.36	83.95	82.15	78.30	77.34	-0.96	-4.81	-6.61	-7.02	-8.47	-10.61	-9.14	-6.57	-7.39	-8.01	-6.72	-1.28	0.69
SY-2D	76.35	78.41	83.31	85.02	84.57	83.61	86.30	87.67	85.60	84.15	83.64	81.92	78.14	77.00	-1.14	-4.92	-6.64	-7.15	-8.60	-10.67	-9.30	-6.61	-7.57	-8.02	-6.31	-1.41	0.65
SY-3	76.77	78.46	84.09	85.27	84.85	83.98	86.70	88.16	85.97	84.35	84.10	82.22	78.36	77.45	-0.91	-4.77	-6.65	-6.90	-8.52	-10.71	-9.25	-6.53	-7.40	-7.82	-6.64	-1.01	0.68
SY-3D	76.04	77.94	83.53	84.74	84.28	83.46	86.14	87.44	85.47	83.86	83.28	81.67	77.92	76.99	-0.93	-4.68	-6.29	-6.87	-8.48	-10.45	-9.15	-6.47	-7.29	-7.75	-6.54	-0.95	0.95
SY-3DD	75.43	77.67	83.24	84.41	84.05	83.25	85.91	86.94	85.22	83.59	82.82	81.31	77.66	76.71	-0.95	-4.60	-6.11	-6.88	-8.51	-10.23	-9.20	-6.54	-7.34	-7.70	-6.53	-0.96	1.28
SY-4	78.04	79.71	84.80	86.24	85.69	84.91	87.40	90.19	86.79	85.55	85.11	83.15	79.31	78.39	-0.92	-4.76	-6.72	-7.16	-8.40	-11.80	-9.01	-6.52	-7.30	-7.85	-6.41	-1.32	0.35
SY-6	77.92	79.98	84.96	86.40	85.88	85.13	87.43	87.84	85.63	85.65	85.16	83.20	79.35	78.31	-1.04	-4.89	-6.85	-7.34	-7.32	-9.53	-9.12	-6.82	-7.57	-8.09	-6.65	-1.67	0.39
SY-7	NA	NA	NA	86.83	86.27	85.48	87.71	89.21	86.82	85.91	85.90	83.64	79.88	78.89	-0.99	-4.75	-7.01	-7.02	-7.93	-10.32	-8.82	-6.59	-7.38	-7.94	NA	NA	NA
SY-8	77.34	78.62	84.40	98.91*	85.28	97.62*	87.02	109.06*	86.23	84.55	84.61	82.56	78.60	78.08	-0.52	-4.48	-6.53	-6.47	-8.15	NA	-8.94	NA	-7.20	NA	-6.32	-0.54	0.34
SY-9	NA	NA	86.21	87.57	87.16	86.31	88.60	88.73	86.44	85.53	85.13	83.11	Dry	Dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
													Off-Site	e Wells:													
PK-10S	75.84	77.95	83.38	84.52	84.12	83.24	85.98	87.20	85.31	83.7	83.22	81.46	77.77	76.66	-1.11	-4.80	-6.56	-7.04	-8.65	-10.54	-9.32	-6.58	-7.46	-7.86	-6.72	-1.29	0.82
PK-10I	75.31	77.47	83.01	84.12	83.78	82.89	85.57	86.69	84.88	83.27	82.67	81.00	77.31	76.34	-0.97	-4.66	-6.33	-6.93	-8.54	-10.35	-9.23	-6.55	-7.44	-7.78	-6.67	-1.13	1.03
PK-10D	75.32	77.45	83.04	84.10	83.72	82.86	85.55	86.63	84.86	83.25	82.57	80.97	77.32	76.34	-0.98	-4.63	-6.23	-6.91	-8.52	-10.29	-9.21	-6.52	-7.38	-7.76	-6.70	-1.11	1.02
RW-12I	74.99	77.07	82.57	83.65	83.32	82.50	85.28	86.32	84.64	82.90	82.21	80.70	77.04	76.12	-0.92	-4.58	-6.09	-6.78	-8.52	-10.20	-9.16	-6.38	-7.20	-7.53	-6.45	-0.95	1.13
RW-12D	74.66	76.76	82.46	83.57	83.29	82.46	85.25	86.27	84.58	82.82	82.06	80.59	76.97	75.99	-0.98	-4.60	-6.07	-6.83	-8.59	-10.28	-9.26	-6.47	-7.30	-7.58	-6.47	-0.77	1.33
RB-11S	76.71	78.57	83.85	85.16	85.28	83.78	86.33	87.65	85.40	84.04	83.91	81.95	NM	77.27	NA	-4.68	-6.64	-6.77	-8.13	-10.38	-9.06	-6.51	-8.01	-7.89	-6.58	-1.30	0.56
RB-11I	NA	77.58	82.88	84.20	83.82	82.84	85.48	86.61	84.74	83.22	82.56	80.99	NM	76.33	NA	-4.66	-6.23	-6.89	-8.41	-10.28	-9.15	-6.51	-7.49	-7.87	-6.55	-1.25	NA
RB-11D	75.55	77.74	83.26	84.34	83.95	83.07	85.64	86.67	84.87	83.32	82.60	81.16	77.47	76.34	-1.13	-4.82	-6.26	-6.98	-8.53	-10.33	-9.30	-6.73	-7.61	-8.00	-6.92	-1.40	0.79
			-		-	-		-				-	Α	verages:	-0.97	-4.74	-6.51	-6.97	-8.37	-10.47	-9.16	-6.58	-7.48	-7.89	-6.62	-1.21	0.75

* - These water-level data for Well SY-8 appear to be anomalous, and were not used.

NM - Not measured.

NA - Not available.

Monitoring was not performed in 2017.

5.2 Temporal Variation in Ground-Water Quality

The 2018 ground water-quality results are also consistent with the previous post-closure monitoring results and the OU-1 and OU-2 RI results; and continue to indicate that the Landfill is not a significant source of VOCs or toxic metals, but that relatively minor Landfill-related impacts are present in Off-Site Downgradient Well PK-10I. Moreover, based on comparison of the results for on-site and off-site wells, and ground water-flow directions, the elevated levels of VOCs and certain leachate indicator and inorganic parameters at Well Cluster RW-12 do not appear to be Landfill-related. The gasoline-related VOCs detected in Well PK-10S in 2003 and 2008 were not detected in 2018. Semivolatile organic compounds, pesticides and polychlorinated biphenyls were not detected during the July 2003 initial (baseline) post-closure monitoring round, and with USEPA approval samples are no longer collected and analyzed for these parameters.

The 2018 total VOC results are compared to previous results in Table 8. Review of Table 8 indicates that relative to 2016, total VOC concentrations were similar or slightly lower in every well except On-Site Downgradient Well SY-3 and Off-Site Downgradient Wells RW-12I and RW-12D. In Well SY-3D, the total VOC concentration increased relative to 2016, primarily due to acetone. In Wells RW-12I and RW-12D, total VOC concentrations decreased substantially relative to 2016 but are still consistent with the historical results for these wells. Overall, total VOC concentrations in the downgradient wells continue to exhibit stable or decreasing trends. Moreover, no exceedances of a VOC ground water-quality standard or guidance value have occurred in an on-site downgradient well since 2003.

The 2018 exceedances for leachate indicator parameters are compared to previous exceedances in Table 9. Review of Table 9 indicates that these exceedances were similar to the 2016 results. Overall, the parameters for which exceedances are noted have been stable or decreasing over time in every well. This finding indicates that, with respect to exceedances of the ground-water standards and guidance values for leachate indicator parameters, ground water-quality conditions downgradient of the Landfill have been relatively consistent since 1993. Moreover, the relatively small number of exceedances listed in Table 9 demonstrates that the Landfill is not a significant source of Part 360 leachate indicator parameters at concentrations exceeding the Class GA ground water-quality standards or guidance values.

With respect to metals/inorganic parameters, the exceedances noted in the <u>filtered</u> samples from each well since 1993 are compared in Table 10. The results for the filtered samples are utilized because LKB noted that there were marked differences in the total results versus the dissolved results for certain samples collected during the OU-2 RI. This most likely was due to the presence of entrained sediment in the unfiltered samples as they were not collected utilizing a low-flow method. For this reason, only the results for the filtered samples are compared.

Table 8
Comparison of Current Total VOC Results to Previous Results
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well	Dec. 1993	Jul. 2003	Dec. 2005	Dec. 2006	Dec. 2007	Dec. 2008	Nov. 2009	Dec. 2010	Nov. 2011	Dec. 2012	Dec. 2013	Sept. 2014	Dec. 2015	Dec. 2016	Mar. 2018
	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC						
Number	Results	Results	Results	Results	Results	Results	Results	Results	Results						
		<u> </u>	1	<u> </u>		1	Upgradie	ent Well	1	<u>'</u>		1			
SY-6	0.0	3.6	1.2	1.4	0.0	0.0	0.65	0.50	1.80	0.40	0.00	0.0	0.50	0.0	4.4 J
						On	-Site Down	gradient We	lls						
SY-2R	0.6	3.6	0.0	0.2	0.0	4.2	0.0	0.0	0.0	0.0	0.72	0.0	0.0	0.0	0.0
SY-2D	7.9	2.8	4.9	3.9	2.1	1.5	0.0	0.0	0.25	0.0	0.2 / 0.0*	0.0	0.0	0.24	0.0
SY-3	10.7	23.9	0.7	1.6	5.5	74.0	1.3	1.77	4.5 / 0.8*	0.0	1.26	0.0	0.74	1.04	0.0 / 0.0*
SY-3D	11.4	20.9	6.0	3.8	3.9	2.2	1.9	7.98	2.9	0.7 / 0.0*	0.42	0.0	1.58	1.01 / 0.95*	10.8
SY-3DD	0.0	10.0	0.0	0.6	0.0	0.0	1.9	11.2	2.9	0.44	0.0	0.0	2.03	0.57	0.0
						Off	f-Site Down	gradient We	lls						
PK-10S	13.9	218	0.3	0.5	0.0	102	0.5	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0
PK-10I	15.6	33.4	17.0	15.0	11.0	13.6	7.7	5.25	3.4	2.7	4.34	2.2	4.3	7.99	2.10
PK-10D	6.5	21.8	1.8	2.0	3.1	10.2	5.1	5.41	4.4	3.9	1.69	2.7	4.27	5.18	4.02 J
RW-12I	260	154	134	88.0	72.6	72.2	62.4	66.4	53.1	69.5	62.5	30.7	41.0	53.9	29.5 J
RW-12D	31.9	200	111	73.0	65.8	87.6	60.8	41.3	64.0	80.5	64.4	34.8	63.2	96.5	47.0 J

Results are in units of ug/L.

Totals include estimated concentrations, totals for 2003-2010 include TICs.

Monitoring was not performed in 2017.

^{* =} Results for duplicate sample.

Table 9
Comparison of Current Leachate Indicator Parameter Exceedances to Previous Exceedances
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well Number	Exceedances In July/Dec.'93	Exceedances In July 2003	Exceedances In Dec. 2005	Exceedances In Dec. 2006	Exceedances In Dec. 2007	Exceedances In Dec. 2008	Exceedances In Nov. 2009	Exceedances In Dec. 2010	Exceedances In Nov. 2011	Exceedances In Dec. 2012	Exceedances In Dec. 2013	Exceedances In Sept. 2014	Exceedances In Dec. 2015	Exceedances In Dec. 2016	Exceedances In Mar. 2018
							Upg	radient Well							
SY-6	None Noted	Color	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted
							On-Site Do	wngradient W	ells						
SY-2R	Chloride and TDS	Color	Bromide (Slight)	Chloride and TDS	Chloride and TDS	Bromide Chloride and TDS	Chloride and TDS	None Noted	None Noted	Chloride and TDS	None Noted	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS	Chloride and TDS
SY-2D	Ammonia	Ammonia	Ammonia	Ammonia (Very Slight)	Ammonia (Very Slight)	None Noted	None Noted	TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS	Chloride, Color and TDS
SY-3	Ammonia Chloride and TDS	Ammonia Chloride Color and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia and TDS	Ammonia and Color	Ammonia Color and TDS	Ammonia Color, Phenols and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia, Color Phenols and TDS	Ammonia, Color and TDS	Ammonia, Chloride, Color and TDS
SY-3D	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS	Ammonia, Chloride, Color and TDS
SY-3DD	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted
							Off-Site Do	wngradient W	ells						
PK-10S	Sulfate*	Color	None Noted	None Noted	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols	None Noted
PK-10I	Ammonia Chloride and TDS	Ammonia Color and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride Phenols and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia, Chloride and TDS
PK-10D	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	Phenols	None Noted	None Noted
RW-12I	Ammonia	Ammonia Bromide and TDS	Ammonia and Color	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide and TDS	Ammonia, Color Phenols and TDS	Ammonia Bromide and TDS	Ammonia and TDS
RW-12D	Ammonia and TDS	Ammonia and TDS	Ammonia Color and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia Pheniols and TDS	Ammonia and TDS	Ammonia Phenols and TDS	Ammonia and TDS	Ammonia Bromide and TDS	Ammonia and TDS

^{* =} Not Landfill-related.

Table 10
Comparison of Filtered Sample Inorganic Parameter Exceedances to Previous Exceedances
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well	Exceedances In	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances	Exceedances
Number	July/Dec.'93	In July 2003	In Dec. 2005	In Dec. 2006	In Dec. 2007	In Dec. 2008	In Nov. 2009	In Dec. 2010	In Nov. 2011	In Dec. 2012	In Dec. 2013	In Sept. 2014	In Dec. 2015	In Dec. 2016	In Mar. 2018
							Upgradi	ent Well							
SY-6	Sodium	None Noted	Iron	Iron	Iron and Zinc	Iron and Zinc	Iron and Zinc	Zinc	Antimony and Zinc	Zinc	None Noted	Zinc	Iron and Zinc	None Noted	None Noted
							On-Site Down	gradient Wells							
SY-2R	Iron and Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium and Thalliun	Sodium	Antimony and Sodium	Sodium	Sodium	Sodium	Beryllium, Nickel and Sodium	Beryllium and Sodium	Beryllium and Sodium
SY-2D	Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Antimony Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
SY-3	Antimony Arsenic, Iron Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Iron Manganese and Sodium	Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium
SY-3D	Iron Magnesium Manganese and Sodium	Magnesium Manganese and Sodium	Manganese and Sodium	Iron Magnesium Manganese and Sodium	Iron Magnesium Manganese and Sodium	Arsenic, Iron Magnesium Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium
SY-3DD	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Thallium	None Noted	Thallium
							Off-Site Down	gradient Wells							
PK-10S	Iron and Sodium	None Noted	Selenium (slight)	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted
PK-10I	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
PK-10D	Nickel*	Nickel*	Mercury* and Nickel*	Nickel* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury*, Iron and Sodium	Mercury* and Sodium	Sodium
RW-12I	Sodium	Sodium	Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium Sodium and Thallium	Iron Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Arsenic** Selenium and Sodium
RW-12D	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium

The 2003 iron results were qualified as rejected by data validator. The 2003 iron concentrations in Wells SY-3, SY-3D, RW-12I and RW-12D likely exceeded the limit but are not listed above. Prior to 2006, the limit for arsenic was 25 ug/L. In 2006 it was lowered to 10 ug/L (new MCL). The 2003 arsenic concentrations in Wells SY-3 and SY-3D exceeded the current limit.

^{* =} Not Landfill-related.

^{** =} This exceedance is spurious, as an exceedance for total arsenic did not occur in the unfiltered sample from Well RW-12I.

Review of Table 10 indicates that the overall distribution of exceedances for dissolved metals/inorganic parameters is similar for all 14 post-closure monitoring rounds since 2003, particularly in the off-site downgradient wells. Taken as a whole, the results of this comparison indicate that the Landfill is not a significant source of the most toxic metals, and is only a relatively minor source of the other metals/inorganic parameters at concentrations exceeding the Class GA ground-water standards and guidance values.

5.3 Results of Trend Analyses

Trend analyses were performed to further assess post-closure changes in ground water-quality conditions. The trend analyses were performed for nine NYSDEC Part 360 leachate indicator parameters that have been detected on a relatively consistent basis during the post-closure monitoring rounds. A series of nine graphs showing the trends for each parameter in all wells from 2003 through 2018 is provided in Appendix C. These results are also summarized in Table 11. The prior results from the 1988 OU-1 RI ground water-monitoring events and the 1993 OU-2 RI ground water-monitoring events, if available for a parameter and/or well, are also summarized in Table 11. Table 11 also identifies long-term trends (based on all available data) and trends since 2005 (to differentiate changes that may be related to the 2005 demolition work at the upgradient former Cerro Wire Site) for each parameter and well, and summarizes the numbers of parameters with flat, decreasing or increasing trends in each well for both timeframes.

Review of the 2003 to 2018 trend graphs in Appendix C, and the Long-Term Trend Summary in Table 11, indicates that over the long term, a majority of the parameters in a majority of the wells exhibit flat or decreasing trends. In fact, none of the wells now have more parameters with increasing trends than flat and decreasing trends combined over the long term.

Review of the Trend Since 2005 Summary in Table 11 shows that since 2005 no wells have more parameters with increasing trends than flat or decreasing trends combined either. Based on this finding, the short-term impacts previously attributed to the increased recharge associated with the demolition work at the former Cerro Wire Site in 2005 have dissipated, as predicted in the 2008 Report, and ground water-quality conditions downgradient of the Landfill continue to be stable or improving over time.

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

(Page 1 of 3)

	Upgradient					Downgra	dient Wells				
Date*	Well SY-6	SY-2R	SY-2D	On-Site SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	Off-Site PK-10D	RW-12I	RW-12D
	010	01 ZIX	01 20	0.0	Alkalinity	01 000	1100	1101	1100	1000 121	100 120
OU1 RI 5/2/1988	72	26	270	880	1,300	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	66	26	280	890	1,200	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	195	39	100	716	1,180	14	23	404	25	167	74
OU2 RI 12/1/1993	202	35 11	82 66	727 710	1,020	9.6 6.0	24 11	419 350	18	162 100	80
6/26/2003 12/27/2005	99 22	13	66 71	150	140 510	8.8	12	350 320	22 22	680	170 230
12/27/2006	48	12	66	190	390	7.8	12	270	23	680	210
12/21/2007	56	8.8	56	180	350	6.6	6.0	220	22	950	180
12/29/2008	48	18	66	250	310	6.0	10	150	24	950	140
11/3/2009	57	30	52	200	270	6.32	12	130	28	510	110
12/6/2010	44	22	46	190	240	8.64	13	95	26	980	70
11/15/2011	51	11	45	160	220	5.9	10	84	24	1,000	98
12/13/2012	55	17	42	140	220	6	11	76	20	920	93
11/11/2013	50.1	9.84	37.7	172	217	8.24	13.3	90.3	22.7	876	86.5
9/24/2014 12/4/2015	49.1 69.8	9.92 10.2	34.6 31.1	180 164	232 244	6.16 4.56	12.2 11.6	91 104	24.2 22.5	858 845	87.3 89.8
12/8/2016	109	29.2	31.1	366	466	5.04	9.36	104	20.8	805	101
3/27/2018	118	114	47.8	232	220	3.8	7.8	130	24.8	892	90.8
Long-Term Trend:	Flat	Flat	Dec.	Dec.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Flat
Trend Since 2005:	Inc.	Flat	Flat	Inc.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Dec.
OU1 RI 5/2/1988	0.05	0.05	10	91	Ammonia 130	N/A	N/A	N/A	N/A	N/A	NI/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	0.05 0.05	0.05 0.05	18 17	91	130	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 11/2/1993	0.05	0.03	4.9	68	146	0.04	0.35	39	0.04	16	0.04
OU2 RI 12/1/1993	0.09	0.04	7.0	123	84	0.04	0.05	38	0.04	15	0.04
6/26/2003	0.29	0.26	2.7	61	9.9	0.3	0.2	32	0.26	4.7	4.8
12/27/2005	0.2	0.2	2.8	4.3	40	0.2	0.2	21	0.2	55	8.9
12/27/2006	0.2	0.70	2.1	4.3	39	0.2	0.2	19	0.2	47	6.8
12/21/2007	0.23	0.33	2.2	7.5	40	0.2	0.2	15	0.2	84	8.1
12/29/2008	0.2	0.33	1.9	9.7	38	0.20	0.35	15	0.24	89	9.9
11/3/2009	0.27	0.29	1.77	4.38	3.92	0.20	0.30	4.51	0.27	4.08	5.90
12/6/2010	0.05	0.1	1.4	9.8	21	0.12	0.04	3.2	0.12	74	3.1
11/15/2011	0.03	0.03	0.74	7.96	26.9	0.051	0.03	3.58	0.03	100	5.26
12/13/2012	0.07	0.091	0.751	7.78	15.7	0.09	0.05	4.17	0.049	83.1	6.1
11/11/2013	0.073	0.188	0.604	8.84	15.2	0.15	0.075	3.2	0.12	73.6	5.7
9/24/2014 12/4/2015	0.062 0.113	0.05 0.093	0.378 0.224	8.1 7.6	14.5 12.5	0.042 0.066	0.050 0.063	4.93 4.18	0.05 0.13	76.5 78.4	5.79 5.09
12/8/2016	0.113	0.093	0.224	10.9	16.3	0.066	0.063	5.21	0.13	82.5	5.75
3/27/2018	0.083	0.043	0.073	11.3	18.7	0.042	0.059	3.6	0.067	69.6	5.73
Long-Term Trend:	Flat	Flat	Flat	Flat	Dec.	Flat	Flat	Flat	Flat	Flat	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	cal Oxygen N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993			N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	IN/A	1 1/ / 1							11//	
OU2 RI 12/1/1993	N/A N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993 6/26/2003	N/A 2.5	N/A 2.5	N/A 2.5		6	2.5	2.5	N/A 29	N/A 2.5	N/A 2.5	13
6/26/2003 12/27/2005	N/A 2.5 38	N/A 2.5 2.5	N/A 2.5 2.5	N/A 45 5	6 25	2.5 2.5	2.5 2.5	29 2.5	N/A 2.5 2.5	N/A 2.5 39	13 17
6/26/2003 12/27/2005 12/27/2006	N/A 2.5 38 2.5	N/A 2.5 2.5 2.5	N/A 2.5 2.5 2.5	N/A 45 5 8	6 25 27	2.5 2.5 2.5	2.5 2.5 2.5	29 2.5 15	N/A 2.5 2.5 2.5	N/A 2.5 39 46	13 17 27
6/26/2003 12/27/2005 12/27/2006 12/21/2007	N/A 2.5 38 2.5 2.5	N/A 2.5 2.5 2.5 2.5	N/A 2.5 2.5 2.5 2.5	N/A 45 5 8 38	6 25 27 21	2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5	29 2.5 15 9.13	N/A 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65	13 17 27 18
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008	N/A 2.5 38 2.5 2.5 5.92	N/A 2.5 2.5 2.5 2.5 5.92	N/A 2.5 2.5 2.5 2.5 2.5	N/A 45 5 8 38 26	6 25 27 21 22	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5	N/A 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16	13 17 27 18 18
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009	N/A 2.5 38 2.5 2.5 5.92 2.5	N/A 2.5 2.5 2.5 2.5 5.92 5.98	N/A 2.5 2.5 2.5 2.5 2.5 2.5	N/A 45 5 8 38 26 38	6 25 27 21 22 26	2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98	N/A 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16	13 17 27 18 18 9.83
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 45 5 8 38 26 38 10.8	6 25 27 21 22 26 18.1	2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2	13 17 27 18 18 9.83 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79	N/A 45 5 8 38 26 38 10.8 11.6	6 25 27 21 22 26 18.1 14.6	2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.20	2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.77	29 2.5 15 9.13 2.5 5.98 2.5 5.75	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.81	N/A 2.5 39 46 65 16 67 62.2 71.4	13 17 27 18 18 9.83 2.5 16.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 45 5 8 38 26 38 10.8	6 25 27 21 22 26 18.1	2.5 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2	13 17 27 18 18 9.83 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55	N/A 45 5 8 38 26 38 10.8 11.6 2.58	6 25 27 21 22 26 18.1 14.6 17.3	2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25	2.5 2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.81 1.25	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1	13 17 27 18 18 9.83 2.5 16.5 7.68
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255 3.03 2.5 5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend:	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255 3.03 2.5 5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255 3.03 2.5 5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005:	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255 3.03 2.5 5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 Flat	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend:	N/A 2.5 38 2.5 2.5 5.92 2.5 2.5 1.20 1.255 3.03 2.5 5	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005:	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat Flat	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat N/A	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat Flat 30 20 43 34	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat Flat 220 200 108 97	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat Flat	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat Flat 30 20 43 34 19	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat Flat 52 57 449 613 140	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 4.2 4.5 3.5	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat V/A N/A 291 287 19	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat Flat 30 20 43 34 19 18	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat Flat 52 57 449 613 140 180	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 4.2 4.5 3.5 4.1	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat V/A N/A 291 287 19 340	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380 430	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 4.1 3.3	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380 430 490	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 4.1 3.3 3.9	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat N/A N/A 106 118 26 190 170 240	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380 430 490 210	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 2.5 1.25 2.5 2.5 2.5 2.5 1.4 7.8 10 8.9 11 7.2	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2006 12/21/2007 12/29/2008 11/3/2009	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat 99 110 136 176 380 380 430 490 210 160	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 2.5 1.25 2.5 1.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat Plat Flat Flat 106 118 26 190 170 240 170 190	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170 200
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat 99 110 136 176 380 380 430 490 210 160 170	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1 4.71	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170 200 170
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380 430 490 210 160 170 180	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1 4.71 4.5	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440 490	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170 200 170 200
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat 99 110 136 176 380 380 430 490 210 160 170	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1 4.71	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170 200 170
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7 12	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220 400	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310 320	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 430 490 210 160 170 180 230	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820 800	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 Flat Flat N/A 4.2 4.5 3.5 4.1 3.3 3.9 4.3 4.71 4.5 4.6	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09 13 14	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat V/A 291 287 19 340 350 390 370 450 440 490 470	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170 170	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 170 200 170 200 200
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7 12 9.54 7.47 5.14	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220 400 218	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310 320 291 278 252	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 380 430 490 210 160 170 180 230 228	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820 820 820	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 7 lat Flat N/A N/A 4.2 4.5 3.5 4.1 3.3 3.9 4.3 4.71 4.5 4.6 4.15	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat V/A 291 287 19 340 350 390 370 450 440 490 470 469	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170 170 170 160	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 170 200 170 200 200 199
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 COU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 12/8/2016	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7 12 9.54 7.47 5.14 4.94	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220 400 218 322 399 398	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310 320 291 278 252 266	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat 99 110 136 176 380 380 430 490 210 160 170 180 230 228 200 190 199	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820 800 820 800 820 749 524 549	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1 4.71 4.5 4.6 4.15 4.22 4.5 4.75	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09 13 14 12.5 14.6 11.8 11.8	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440 490 470 469 504 506 556	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170 160 163 146 147	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 170 200 170 200 170 200 170 200 170 200 199 207 197 210
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 Long-Term Trend: Trend Since 2005: OU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 12/8/2016 3/27/2018	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7 12 9.54 7.47 5.14 4.94 6.9	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220 400 218 322 399	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310 320 291 278 252 266 461	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat Flat 99 110 136 176 380 430 490 210 160 170 180 230 228 200 190 199 372	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820 800 820 749 524 549 508	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 Flat Flat N/A 4.2 4.5 3.5 4.1 3.3 3.9 4.3 4.1 4.71 4.5 4.6 4.15 4.22 4.5 4.75 4.8	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09 13 14 12.5 14.6 11.8 11.8 12.3	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440 490 470 469 504 506	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170 170 160 163 146 147 144	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 190 170 200 170 200 170 200 170 200 170 200 199 207 197 210 206
6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 COU1 RI 5/2/1988 OU1 RI 6/6/1988 OU2 RI 11/2/1993 OU2 RI 12/1/1993 OU2 RI 12/1/1993 6/26/2003 12/27/2005 12/27/2006 12/21/2007 12/29/2008 11/3/2009 12/6/2010 11/15/2011 12/13/2012 11/11/2013 9/24/2014 12/4/2015 12/8/2016	N/A 2.5 38 2.5 2.5 5.92 2.5 1.20 1.255 3.03 2.5 5 Flat Flat 30 20 43 34 19 18 3.4 7.2 10 7.8 14 4.7 12 9.54 7.47 5.14 4.94	N/A 2.5 2.5 2.5 2.5 5.92 5.98 2.5 1.20 5.56 4.97 2.5 6.59 Flat Flat 52 57 449 613 140 180 470 480 640 420 160 220 400 218 322 399 398	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.79 6.55 4 2.5 15.5 Flat Flat 220 200 108 97 120 160 140 150 170 200 230 310 320 291 278 252 266	N/A 45 5 8 38 26 38 10.8 11.6 2.58 11.8 5.76 15.5 Flat Flat 99 110 136 176 380 380 430 490 210 160 170 180 230 228 200 190 199	6 25 27 21 22 26 18.1 14.6 17.3 18.5 5.76 14.5 Flat Flat Chloride 340 330 269 265 300 510 680 770 820 910 860 820 800 820 800 820 749 524 549	2.5 2.5 2.5 2.5 2.5 2.5 1.20 1.25 2.5 2.5 2.5 2.5 2.5 4.1 3.3 3.9 4.3 4.1 4.71 4.5 4.6 4.15 4.22 4.5 4.75	2.5 2.5 2.5 2.5 2.5 2.5 4.77 1.25 2.5 2.5 2.5 Flat Flat N/A N/A 15 14 7.8 10 8.9 11 7.2 7.9 9.09 13 14 12.5 14.6 11.8 11.8	29 2.5 15 9.13 2.5 5.98 2.5 5.75 1.25 7.88 9.76 2.5 Flat Flat N/A N/A 291 287 19 340 350 390 370 450 440 490 470 469 504 506 556	N/A 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	N/A 2.5 39 46 65 16 67 62.2 71.4 54.1 52.5 52.8 31.4 Flat Flat Flat N/A N/A 106 118 26 190 170 240 170 190 170 170 160 163 146 147	13 17 27 18 18 9.83 2.5 16.5 7.68 9.82 10.8 2.5 Flat Flat N/A N/A 122 139 150 160 190 170 200 170 200 170 200 170 200 170 200 199 207 197 210

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

(Page 2 of 3)

	Upgradient			<u> </u>	<u> </u>		dient Wells				
Date*	Well			On-Site					Off-Site		
	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
OU1 RI 5/2/1988	100	50	150	330	Hardness 440	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	80	54	120	370	460	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	176	138	68.4	362	470	7.6	68.8	285	12.2	169	132
OU2 RI 12/1/1993	181	121	58.4	348	468	6.6	67.8	312	12.2	164	144
6/26/2003 12/27/2005	120 36	54 58	51 69	200 96	490 271	6.0 10	53 42	220 175	22 49	42 348	250 260
12/27/2006	52	178	70	350	359	6.1	42	187	70	350	317
12/21/2007	50	83	74	207	365	5.0	39	195	90	479	316
12/29/2008	100	109	96	185	330	11	46	180	114	453	276
11/3/2009 12/6/2010	102 66	57 36	84 97	159 159	273 266	7 7	46 43	162 165	110 111	412 409	223 208
11/15/2011	59.9	84.4	92.3	136	220	7.3	43.4	150	109	410	249
12/13/2012	77.3	127	121	140	112	6.68	42.3	166	112	6.62	110
11/11/2013	64	47.4	92.7	122	229	5.63	39.8	157	101	371	246
9/24/2014	85.13	124	76 60.7	131	211	5.73	38.9	160	117	347	253
12/4/2015 12/8/2016	135 156	128 105	69.7 76.1	139 166	190 192	6.36 6.76	40.2 39.4	197 181	127 99.2	427 357	308 273
3/27/2018	161	80.5	105	191	186	6.42	40.9	186	92.8	338	277
Long-Term Trend:	Flat	Flat	Flat	Dec.	Dec.	Flat	Flat	Dec.	Inc.	Inc.	Inc.
Trend Since 2005:	Inc.	Flat	Flat	Dec.	Dec.	Flat	Flat	Flat	Flat	Dec.	Flat
O114 B1 5/0/4000				10	Sulfate	N1/A	11/4	1 1/4	21/2	21/2	N1/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	50 40	50 54	47 68	42 16	22 14	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 11/2/1993	10	56	23	33	27	1.8	40	89	16	31	32
OU2 RI 12/1/1993	20	58	17	26	23	11.9	51	110	12	34	54
6/26/2003	12	29	19	20	64	1	1,800	21	2.8	1	18
12/27/2005 12/27/2006	1 5.9	29 94	22 76	40 90	41 96	1 1.5	29 24	67 120	1 1	79 120	120 170
12/27/2006	5.9 6.5	94 39	13	90 36	96 42	1.5 1.5	24	120 46	1 8.1	120 64	170
12/29/2008	75	36	16	38	45	0.7	22	1.5	8.4	58	130
11/3/2009	54	33	12	36	41	1.6	27	28	9.64	61	190
12/6/2010	20	34	13	35	41	2.21	23	37	10	63	220
11/15/2011 12/13/2012	19 20	27 30	14 17	34 39	40 41	2.1 2.1	20 18	37 37	10 12	64 65	180 180
11/11/2013	15.8	33.8	13.2	43.1	44.7	2.1	17.8	39.3	10.7	61.7	230
9/24/2014	47.2	31.1	11	37.3	46.6	1.93	18.3	39.6	13.6	65.3	191
12/4/2015	72.7	26.8	11.1	39.1	45.9	1.83	17.1	36.6	17.9	62.1	204
12/8/2016	42.3	34.3	10.7	42.2	47.4	1.95	18.2	35.9	20.4	71	199
3/27/2018	38.7	36.6	15.7	36.2	40.5	0.38	17.6	36	22.4	64.4 Flat	183
Long-Term Trend: Trend Since 2005:	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Dec. Flat	Flat Flat	Flat Flat	Flat	Inc. Inc.
					ssolved So						-
OU1 RI 5/2/1988	210	210	670	820	1,400	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	180	230	630	830	1,400	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993 OU2 RI 12/1/1993	287 323	861 850	282 299	726 757	1,240 1,400	44 54	162 181	918 1,020	87 85	345 408	320 511
6/26/2003	175	360	334	1,373	821	125	172	1,020	114	177	536
12/27/2005	64	490	380	790	1,200	42	130	940	160	940	710
12/27/2006	69	930	320	950	1,400	26	120	880	200	890	750
12/21/2007	83	750	330	1,000	1,400	11	85	840	210	1,000	680
12/29/2008 11/3/2009	170 190	1,100 800	380 390	650 470	1,700 1,800	10 44	90 100	880 910	270 300	1,100 1,100	690 630
12/6/2010	131	474	505	512	1,680	30	95	930	275	1,300	631
11/15/2011	99	458	596	511	1,620	24	95	985	301	1,470	684
12/13/2012	131	753	653	611	1,570	31	89	950	314	1,310	725
11/11/2013 9/24/2014	94 158	417 720	602 564	708 556	1,800	9 29	96 105	944 997	298 372	1,110 994	694 756
12/4/2015	215	720 773	503	545	1,472 1,236	29 27	90	997 1,074	372 324	994 1,027	756 773
12/8/2016	198	787	554	538	1,138	28	86	1,175	307	974	805
3/27/2018	208	808	779	859	1,034	56	87	1,147	261	842	733
Long-Term Trend:	Flat	Inc.	Inc.	Dec.	Flat	Flat	Dec.	Inc.	Inc.	Inc.	Inc.
Trend Since 2005:	Inc.	Flat	Inc.	Dec.	Dec. I Kjeldhal N	Flat	Flat	Inc.	Inc.	Flat	Inc.
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	1	1	2.49	93	11	1	1	37	1	3.53	5.12
12/27/2005 12/27/2006	0.5	0.5	0.5	3.8	51 15	0.5	0.5	21 6.16	0.5	40 10	7
12/27/2006	0.57 1.5	0.66 1.5	1.32 4.3	2.61 10	15 49	0.63 1.1	0.56 1.4	6.16 18	0.59 1.6	19 95	16 9.7
12/21/2007	1.5	1.5	3.8	11	40	1.6	1.8	12	1.51	100	8.82
11/3/2009	0.5	0.5	1.25	13	34	0.5	0.5	11	0.5	55	7.45
12/6/2010	0.486	0.5	1.9	16	40	0.2	0.2	6.9	0.222	140	2.7
11/15/2011	0.307	0.1	0.758	7.8	25	0.1	0.1	3.9	0.096	94	5.8
12/13/2012 11/11/2013	0.25 0.102	0.3 0.181	0.86 0.608	8.1 8.4	17 17.5	0.1 0.243	0.1 0.3	3.7 4.8	0.22 0.224	84 81.5	5.2 5.5
9/24/2014	0.102	0.181	0.588	9.7	17.5	0.243	0.3	4.89	0.224	84.5	5.79
12/4/2015	0.177	0.355	0.429	12.5	16.6	0.5	0.251	4.9	0.432	99.4	5.72
12/8/2016	0.338	0.354	0.228	10.8	15.8	0.16	0.24	4.82	0.196	77	5.66
3/27/2018	0.25	0.240	0.26	10.5	8.1	0.24	0.17	5.6	0.26	67	5.3
Long-Term Trend:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Inc.	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat

Table 11
Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters
Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

(Page 3 of 3)

	Upgradient		Downgradient Wells								
Date*	Well			On-Site					Off-Site		
	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
				Tota	al Organic C	Carbon					
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	1.24	0.74	1.05	17	3.19	0.4	0.4	5.17	0.4	1.27	6.73
12/27/2005	8.88	1.03	1.31	2.61	9.72	0.4	0.603	5.21	0.58	17	8.43
12/27/2006	0.4	0.5	0.459	2.43	6.51	0.4	0.4	3.65	0.4	16	7.27
12/21/2007	0.75	1.13	0.88	2.63	6.13	0.4	0.438	3.18	0.527	3.83	8.14
12/29/2008	1.49	1.21	1.08	3.55	6.4	0.4	0.701	2.63	0.885	4.34	7.23
11/3/2009	2.81	2.13	1.55	7.09	9.57	0.4	0.721	3.04	1.06	41	7.01
12/6/2010	1.2	1.1	0.859	3	4.3	0.196	0.416	1.7	0.944	24	3.3
11/15/2011	0.79	0.88	1	2.6	3.8	0.29	0.82	1.7	1	27	4.5
12/13/2012	1.2	1.3	1.2	3.7	4.3	0.35	0.71	2.1	1.3	22	5.6
11/11/2013	1.25	1.2	0.863	4.27	4.1	0.755	0.903	2.33	1.36	22	4.39
9/24/2014	1.55	1.07	0.84	4.2	5.25	0.236	0.566	2.25	1.53	21.9	4.81
12/4/2015	2.18	1.53	1.05	3.65	5.04	0.705	0.567	2.43	1.37	19.9	4.78
12/8/2016	2.01	1.94	4.23	4.23	4.91	0.311	0.522	2.41	1.1	19.4	4.42
3/27/2018	1.8	2.2	2.2	5.3	4.5	0.63	0.62	2.6	1.3	17.2	5.2
Long-Term Trend:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
				Long-T	erm Trend S	Summary					
Total Flat:	9	7	6	5	6	9	7	5	6	5	6
Total Decreasing:	0	0	1	3	3	0	2	2	0	0	0
Total Increasing:	0	2	2	1	1	0	0	2	3	4	3
				Trend S	Since 2005	Summary					
Total Flat:	6	9	7	5	5	9	9	6	7	6	6
Total Decreasing:	0	0	0	3	4	0	0	1	0	2	1
Total Increasing:	3	0	2	1	0	0	0	2	2	1	2

Notes:

All results are in units of milligrams per Liter (mg/L).

N/A = Not Available (Well not installed yet, not sampled during monitoring round, or sample not analyzed for that parameter).

^{* =} Approximate date (Monitoring rounds typically take place over several days).

SECTION 6

CONCLUSIONS AND RECOMENDATIONS

Based on the above results from the 2018 annual post-closure ground water-monitoring round, LKB concludes the following:

- The ground water-monitoring system, specifically the existing monitoring well network and modified low-flow purging and sampling method specified in the O&M Manual, continues to provide ground water-flow and ground water-quality data of sufficient quantity and quality to monitor the Landfill during the postclosure period.
- 2. The Landfill is not a significant source of VOCs or the toxic RCRA/PPL metals, and is only a relatively minor source of certain leachate-related contaminants and the other TAL inorganic parameters at concentrations exceeding Class GA ground-water standards and guidance values.
- 3. Although arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at concentrations exceeding the federal MCL, the fact that arsenic was not detected in the deeper well at this cluster (Well SY-3DD) and was only detected at very low, estimated total concentrations in two of the five off-site downgradient wells (Wells PK-10D and RW-12D) indicates that off-site impacts are negligible. The slight exceedance for dissolved arsenic in the filtered sample from Well RW-12I is spurious because total arsenic was only detected at a low, estimated concentration in the unfiltered sample from this well.
- 4. Although an exceedance for beryllium occurred in Well SY-2R again in 2018 it was still relatively low in magnitude, and the limit for beryllium is a guidance value rather than an actual standard. Moreover, beryllium was not detected in any of the other wells. Therefore, there are no off-site impacts from beryllium.
- Although a low-magnitude exceedance for dissolved selenium occurred in the filtered sample from Off-Site Downgradient Well RW-12I, this detection is spurious because total selenium was not detected in the unfiltered sample from this well.
- 6. Exceedances for total thallium occurred in the duplicate sample from On-Site Downgradient Well SY-3D, but not the actual sample, and in Off-Site Downgradient Well PK-10I. An exceedance for dissolved thallium also occurred in the filtered sample from On-Site Downgradient Well SY-3DD. Based on the pattern of these exceedances they are likely Landfill-related, but since they are relatively low in magnitude and are based on estimated, possibly spurious concentrations, they are not considered to be significant.

- 7. Overall, the current results show stable or improving ground water-quality conditions at the downgradient well locations relative to the previous post-closure monitoring rounds, the 1988 OU-1 RI results and the 1993 OU-2 RI results. This finding indicates that the selected remedy has been effective in mitigating ground water-quality impacts associated with the Landfill.
- 8. Based on the distribution of contaminants in ground water and ground water-flow directions, the majority of the contaminants detected in Well Cluster RW-12 do not appear to be Landfill-related. This conclusion is consistent with the conclusions of previous post-closure monitoring reports and the OU-2 RI Report.
- 9. Taken as a whole, the results of the 2018 ground water-monitoring round continue to support the de-listing of the Landfill from the NPL, which occurred on April 28, 2005.
- 10. The stable or improving ground water-quality conditions in the upgradient well and on-site downgradient wells continue to indicate that ground-water conditions have equilibrated following the demolition work at the adjacent former Cerro Wire property in 2005.

Following the 2016 monitoring round, which was performed during the fourth quarter, the USEPA reduced the frequency of ground-water monitoring from annually to once every fifth calendar quarter, to provide one round of data for each calendar quarter during a Five-Year Review period. Accordingly, monitoring was not required in 2017 and the 2018 monitoring round was performed during the first quarter. The next round of ground-water monitoring will therefore be performed during the second quarter of 2019.

Based on the above information, LKB recommends that the following work items be implemented during the 2019 annual monitoring round.

- 1. Continue to collect the duplicate sample from one of the on-site downgradient wells as these wells exhibit the highest degree of Landfill-related impacts.
- 2. Continue to collect and dispose of the purged ground water from the off-site downgradient wells, but discharge the purged ground water from the on-site wells onto the ground surface due to the low levels of contaminants encountered.
- Continue to evaluate ground-water quality conditions at the upgradient well and the on-site downgradient wells for influences related to future development and related construction activities at the former Cerro Wire property which may increase recharge directly upgradient of the Landfill.

APPENDIX A

Completed Well Inspection Checklist Forms

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact			
4.	Steel Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			On inside of lid
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	<u> </u>	
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	N/A	·	
4.	Remarks on Integrity of Casing	OK		
5	Depth to Water from Top of PVC	120	80'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1D</u> **DATE:** <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR I INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	<u>N/A</u>	\	
4.	Remarks on Integrity of Casing	OK		
5	Depth to Water from Top of PVC	119	21'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-2R</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact			
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	·	
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	N/A		
6.	Remarks on Integrity of Casing	OK		
De	epth to Water from Top of PVC	113.5	52'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-2D___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			Casing lid missing
	Lock – Intact			No Lock
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR IN INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A		
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	N/A	·	
4.	Remarks on Integrity of Casing	<u>Gri</u>	o-Plug I	Present, Casing Kinked
5.	Depth to Water from Top of PVC	113.9	91'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-3__ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			
4.	Steel Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			On Cap
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	\	
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	N/A	\	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	_116.	51'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-3D___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			Inside of Lid
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	\	
2.	Stick-Up	OK		
3.	Bottom of Well Below Grade	N/A	·	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	117.4	48'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-3DD___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Casing lid hinge broken
	Lock – Intact			Not locked, broken hinge
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/A	·	
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	N/A	<u>. </u>	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	117.2	24'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-4__ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under rip-rap)
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		
4.	Steel Casing (Stick-up) Straight			Slightly bent, but okay
5.	Designated Leveling Point Clearly Marked		\boxtimes	No room on steel
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/A	·	
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	N/A	·	
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	114.0	00'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __SY-6__ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		Yes	<u>No</u>	<u>Remarks</u>				
1.	Cement Seal		<u> </u>					
	Intact	\bowtie						
	Cracked		\square					
	Missing							
2.	Ponding of Water Around Cement Seal							
3.	Protective Steel Pipe & Lock (if used)							
J.	Pipe – Intact	\boxtimes						
	·	<u> </u>						
	Lock – Intact							
4.	PVC Casing (Stick-up) Straight	\boxtimes						
5.	Designated Leveling Point Clearly Marked							
6.	PVC Cap Vented Properly	\boxtimes						
7.	Well is Protected	\boxtimes						
8.	Well is Clearly Marked	\boxtimes						
	CHECKLIST FOR INSPECTION OF INSIDE OF EXISTING WELLS							
1.	Bottom of Well from Top of PVC Casing	N/A	·					
2.	Stick-Up	<u>OK</u>						
3.	Bottom of Well Below Grade	N/A						
4.	Remarks on Integrity of Casing	OK						
5.	Depth to Water from Top of PVC	_108.5	53'					

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-7</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	Road sand in curb box
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Not used, flush mount
	Lock – Intact		\boxtimes	N/A, curb box
4.	Steel Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR IN INSIDE OF EXIST			
1.	Bottom of Well from Top of PVC Casing	N/A	<u>. </u>	
2.	Stick-Up	N/A	(Flush-	Mount)
3.	Bottom of Well Below Grade	N/A		
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	118	.57'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-8</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			(Presumed, under veg/soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			Intact, but lower than PVC
	Lock - Intact			Cannot lock
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>	<u> </u>	
2.	Stick-Up	<u>OK</u>		
3.	Bottom of Well Below Grade	<u>N/A</u>	<u> </u>	
4.	Remarks on Integrity of Casing	<u>OK</u>		
5.	Depth to Water from Top of PVC	119.8	36'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-9</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under new soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact			
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR INSIDE OF EXIST			F
1.	Bottom of Well from Top of PVC Casing	N/.	Α	
2.	Stick-Up	<u>Oł</u>	<	
3.	Bottom of Well Below Grade	N/	Α	
4.	Remarks on Integrity of Casing	<u>Oł</u>	<	
5.	Depth to Water from Top of PVC	Dr	У	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-10S</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		Inside of Lid, Closet to Road
	CHECKLIST FOR I INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	1	N/A	
2.	Stick-Up		N/A (Flu	sh-Mount)
3.	Bottom of Well Below Grade	1	N/A	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC	1	12.07'_	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __PK-10I__ DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock - Intact			Bolted
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			Closest to ball court
	CHECKLIST FOR INSIDE OF EXIST			=
1.	Bottom of Well from Top of PVC Casing	_N/A_		
2.	Stick-Up	<u>N/A (</u>	<u>(Flush-Ν</u>	Mount)
3.	Bottom of Well Below Grade	_N/A_		
4.	Remarks on Integrity of Casing	OK		
5.	Depth to Water from Top of PVC	_110.7	76'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-10D</u> DATE: <u>3/14/2018</u>

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock - Intact	\boxtimes		Needs new bolts
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected			
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR INSIDE OF EXIST			=
1.	Bottom of Well from Top of PVC Casing	N/A	<u> </u>	
2.	Stick-Up	<u>N/A</u>	(Flush-	Mount)
3.	Bottom of Well Below Grade	<u>N/A</u>		
4.	Remarks on Integrity of Casing	<u>OK</u>		
5.	Depth to Water from Top of PVC	111	.91'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __RW-12I___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked			
	Missing			
2.	Ponding of Water Around Cement Seal			
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted, flush-mount
1	PVC Casing (Stick-up) Straight	\boxtimes		
			Ш	
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked			
	CHECKLIST FOR I INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N	I/A	
2.	Stick-Up	N	√A (Flu	sh-Mount)
3.	Bottom of Well Below Grade	<u>N</u>	I/A	
4.	Remarks on Integrity of Casing)K	
5.	Depth to Water from Top of PVC	1	21.20'_	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __RW-12D___

DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR IN			=
1.	Bottom of Well from Top of PVC Casing	N/	Α	
2.	Stick-Up	N/	A (Flush	n-Mount)
3.	Bottom of Well Below Grade	N/	Α	
4.	Remarks on Integrity of Casing	<u>Oł</u>	<	
5.	Depth to Water from Top of PVC	12	1.30'	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __RB-11S___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock - Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked	\boxtimes		
	CHECKLIST FOR II INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	1	N/A	
2.	Stick-Up	1	N/A (Flus	sh-Mount)
3.	Bottom of Well Below Grade	1	N/A	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC	1	112.64_	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. _RB-11I_ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing			
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			Bolted
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked			
6.	PVC Cap Vented Properly			
7.	Well is Protected			
8.	Well is Clearly Marked			
	CHECKLIST FOR IN INSIDE OF EXIST	TING W	ELLS	=
1.	Bottom of Well from Top of PVC Casing	N/	Α	
2.	Stick-Up	N/	A (Flush	n-Mount)
3.	Bottom of Well Below Grade	N/	A	
4.	Remarks on Integrity of Casing	<u>Oł</u>	<	
5.	Depth to Water from Top of PVC	11	3.99	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. __RB-11D___ DATE: 3/14/2018

PERSONNEL: J. Maggio and R. Chen

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact			
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact			
	Lock – Intact			Bolted
4.	PVC Casing (Stick-up) Straight			
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly			
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked		\boxtimes	
	CHECKLIST FOR IN			=
1.	Bottom of Well from Top of PVC Casing		N/A	
2.	Stick-Up		<u>N/A (Flu</u>	ush-Mount)
3.	Bottom of Well Below Grade		<u>N/A</u>	
4.	Remarks on Integrity of Casing		OK	
5.	Depth to Water from Top of PVC		114.26	

APPENDIX B Validated Laboratory Results

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: J2083

Laboratory: ChemTech, Mountainside, New Jersey Site: Syosset Landfill, Syosset, New York

Date: May 28, 2018

	VOCs/S ³	VOCs/Cyanide/Wet Chemistry	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1β	SY-6-20180326	J2083-01	Water
2	SY-3DD-20180326	J2083-02	Water
3*	TB-20180326	J2083-03	Water

* - VOC only β - SVOC, Cyanide, and Wet Chemistry only

	Total &	& Dissolved Metals/Mercury		
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix	
1T	SY-6-20180326	J2083-01	Water	
2T	SY-3DD-20180326	J2083-02	Water	
4D	SY-6-20180326	J2083-04	Water	
5D	SY-3DD-20180326	J2083-05	Water	

T - Total Metals & Mercury & Cyanide

D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for four water samples and one aqueous trip blank sample collected on March 26, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

Analysis. Method References **VOCs** USEPA SW846 8260C **SVOCs** USEPA SW846 8270D SIM Metals/Mercury/Cn USEPA CLP Method ISM02.3 Alkalinity Standard Method SM2320 B Ammonia (as N) Standard Method SM4500-NH3

Bromide USEPA Method 300.0 Chloride USEPA Method 300.0 Nitrate

USEPA Method 300.0

<u>Analysis</u>	Method References
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation

• Field Duplicate sample precision

Overall Usability Issues

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

 The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
EIELD DI ANIZ 20100101	C1.1 .1	ug/L		
FIELD-BLANK-20180404	Chloromethane	0.71	None	All ND
TB-20180326	None - ND		324	

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	1=2	E = 1	

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The method blanks exhibited the following contamination.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		
PBW001 (Total)	Potassium	90.6	None	All ND
PBW001 (Dissolved)	Potassium	272	None	All ND

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	ug/L	-	XHI

ICP Interference Check Sample

The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The MS/DUP samples exhibited acceptable percent recoveries (%R) and RPD values.

ICP Serial Dilution

• The ICP serial dilution exhibited acceptable %D values.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
	-	mg/L		•
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	-

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Ammonia as N	10%/-120%/200	None	4X Rule Applies
	TKN	294%/304%/OK	J/UJ	All Samples
	Phenolics	58%/59%/OK		

Laboratory Control Samples

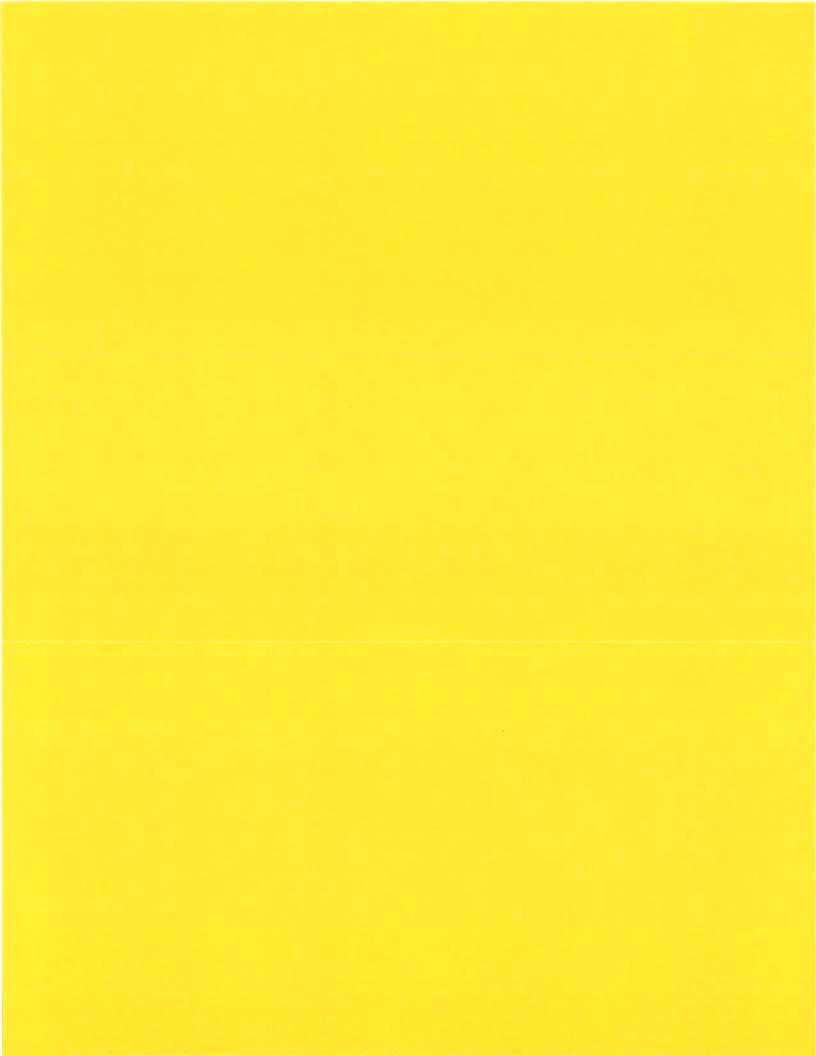
• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

EDS Sample ID #1 exhibited a high concentration of sulfate and was flagged (OR) for over the calibration range by the laboratory. The sample was diluted and reanalyzed and the dilution result for this compound should be used for reporting purposes.

Field Duplicate Sample Precision

Field duplicate samples were not collected.


Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 5/29/18

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Soil Aliquot Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

VOCMS Group1

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/26/18 Project: Syosset Landfill Date Received: 03/27/18 Client Sample ID: SY-3DD-20180326 SDG No.: J2083 Lab Sample ID: J2083-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL

Test:

GC Column: DB-624UI ID: 0.18 Level: LOW

иL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VX000477.D 1 03/27/18 23:18 VX032718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	l	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0,2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67 - 64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	l	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	I	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74 - 97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01 - 6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87 - 5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

L

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/26/18

Project:

Syosset Landfill

Date Received:

03/27/18

Client Sample ID:

SY-3DD-20180326

SDG No.:

J2083

Lab Sample ID:

J2083-02

Matrix:

Water

Analytical Method:

SW8260

% Moisture:

100

Sample Wt/Vol:

5

Units: mL

Final Vol:

5000

uL

Soil Aliquot Vol:

3

uL

Test:

VOCMS Group1

GC Column:

DB-624UI

ID: 0:18

Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VX000477.D

1

03/27/18 23:18

VX032718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	ī	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0,2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	ľ	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	I	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	12	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	I.	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							-
17060-07-0	1,2-Dichloroethane-d4	57.4		61 - 141		115%	SPK: 50
1868-53-7	Dibromofluoromethane	50.9		69 - 133		102%	SPK: 50
2037-26-5	Toluene-d8	48.3		65 - 126		97%	SPK: 50
460-00-4	4-Bromofluorobenzene	40.4		58 - 135		81%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	108916	5.68				
540-36-3	1,4-Difluorobenzene	195587	6.87				
3114-55-4	Chlorobenzene-d5	188577	10.12				
3855-82-1	1,4-Dichlorobenzene-d4	97748	12.09				

3

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected; 03/26/18

Project: Syosset Landfill Date Received: 03/27/18

 Client Sample ID:
 TB-20180326
 SDG No.:
 J2083

 Lab Sample ID:
 J2083-03
 Matrix:
 Water

Analytical Method SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: DB-624UI ID: 0.18 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VX000476.D 1 03/27/18 22:52 VX032718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0,5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75 - 09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0,2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78 - 87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75 - 27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

3

uL

Report of Analysis

Date Collected:

03/26/18

Project:

Client:

Lockwood, Kessler, & Bartlett

03/27/18

Client Sample ID:

Syosset Landfill

Date Received:

Lab Sample ID:

TB-20180326 J2083-03

SDG No.:

J2083

Analytical Method:

SW8260

Matrix: % Moisture: Water 100

Sample Wt/Vol:

Units: mL Final Vol:

5000

Soil Aliquot Vol:

uL

Test:

VOCMS Group1

GC Column:

DB-624UI

ID: 0.18

Level:

LOW

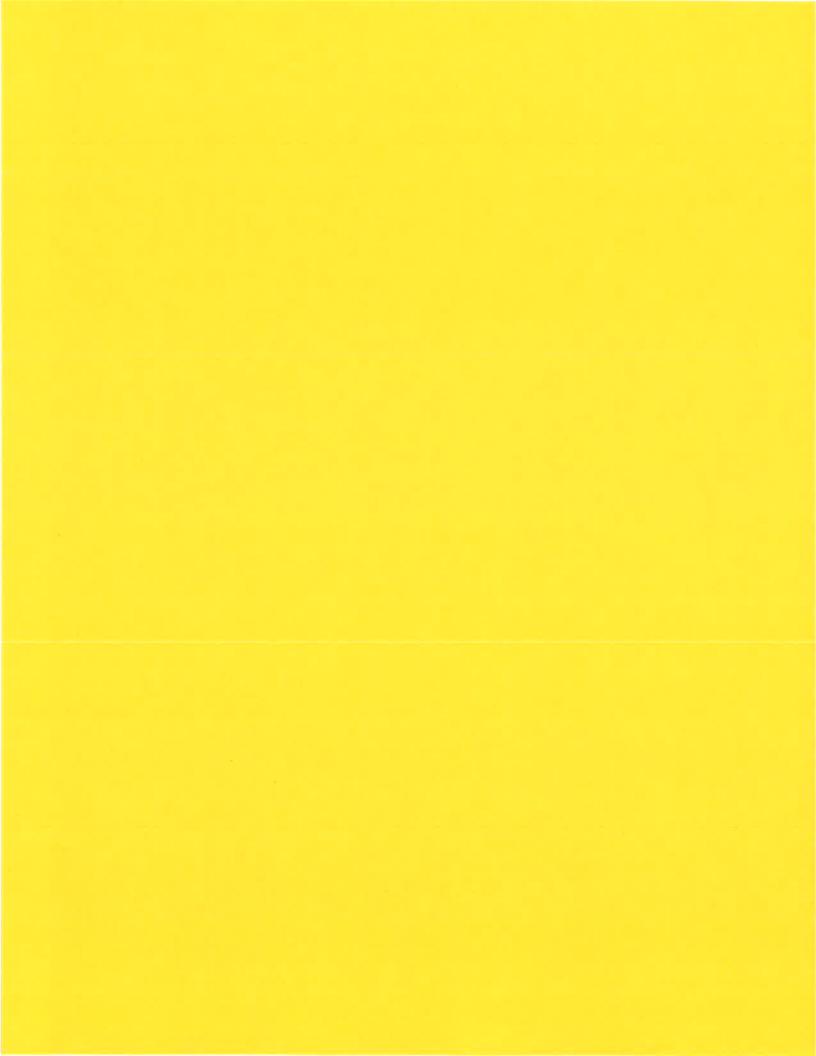
File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID


VX000476.D

1

03/27/18 22:52

VX032718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0,2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	l	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	57.1		61 - 141		114%	SPK: 50
1868-53-7	Dibromofluoromethane	50.3		69 - 133		101%	SPK: 50
2037-26-5	Toluene-d8	47.3		65 - 126		95%	SPK: 50
460-00-4	4-Bromofluorobenzene	39.6		58 - 135		79%	SPK: 50
INTERNAL STAN	NDARDS						
363-72-4	Pentafluorobenzene	106725	5.68				
540-36-3	1,4-Difluorobenzene	191166	6.87				
3114-55-4	Chlorobenzene-d5	184621	10:12				
3855-82-1	1,4-Dichlorobenzene-d4	93036	12.09				

SY-6-20180326

Lab Name:	Chemtech	Consu	lting Grou	p	Contract:	EPW14	030		
Lab Code:	CHM		Case No.:	Syosset Landfi	MA No.:			SDG No.:	J2083
Matrix:	WATER				Lab Sample	ID:	J2083-	-01	
% Solids:)-				Date Receiv	ved:	03/27	/2018	
Analytical	Method:	ICP-A	ES						
Concentrati	on Units	(ng/T	ma/I. ma/	'ka dry woight	or nal	ug/T			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	17.7	J	03/29/2018	1636
7440-36-0	Antimony	60.0	U	03/29/2018	1636
7440-38-2	Arsenic	10.0	U	03/29/2018	1636
7440-39-3	Barium	84.1	J	03/29/2018	1636
7440-41-7	Beryllium	5.0	U	03/29/2018	1636
7440-43-9	Cadmium	5.0	U	03/29/2018	1636
7440-70-2	Calcium	40900		03/29/2018	1636
7440-47-3	Chromium	2.5	J	03/29/2018	1636
7440-48-4	Cobalt	50.0	U	03/29/2018	1636
7440-50-8	Copper	20.4	J	03/29/2018	1636
7439-89-6	Iron	212		03/29/2018	1636
7439-92-1	Lead	3.7	J	03/29/2018	1636
7439-95-4	Magnesium	14400		03/29/2018	1636
7439-96-5	Manganese	26.3		03/29/2018	1636
7440-02-0	Nickel	5.2	J	03/29/2018	1636
7440-09-7	Potassium	5000	U	03/29/2018	1636
7782-49-2	Selenium	35.0	Ū	03/29/2018	1636
7440-22-4	Silver	10.0	U	03/29/2018	1636
7440-23-5	Sodium	6940		03/29/2018	1636
7440-28-0	Thallium	25.0	U	03/29/2018	1636
7440-62-2	Vanadium	2.8	J	03/29/2018	1636
7440-66-6	Zinc	1260		03/29/2018	1636
Hardness	Hardness (total)	161		03/29/2018	1636

SY-3DD-20180326	
1 300 20100320	

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: J2083 Lab Code: CHM WATER Matrix: Lab Sample ID: J2083-02 % Solids: Date Received: 03/27/2018 Analytical Method: ICP-AES ug/L

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) :

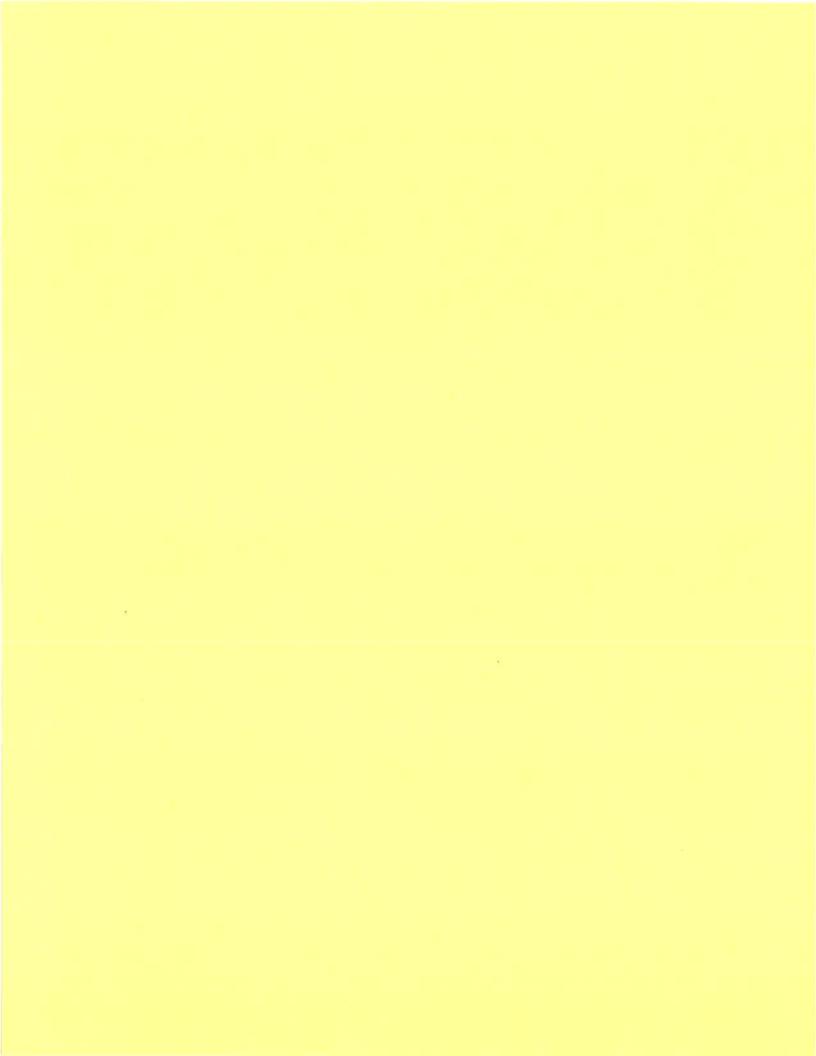
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1640
7440-36-0	Antimony	60.0	U	03/29/2018	1640
7440-38-2	Arsenic	10.0	U	03/29/2018	1640
7440-39-3	Barium	200	U	03/29/2018	1640
7440-41-7	Beryllium	5.0	U	03/29/2018	1640
7440-43-9	Cadmium	5.0	U	03/29/2018	1640
7440-70-2	Calcium	1530	J	03/29/2018	1640
7440-47-3	Chromium	2.7	J	03/29/2018	1640
7440-48-4	Cobalt	50.0	U	03/29/2018	1640
7440-50-8	Copper	25.0	U	03/29/2018	1640
7439-89-6	Iron	100	U	03/29/2018	1640
7439-92-1	Lead	2.0	J	03/29/2018	1640
7439-95-4	Magnesium	632	J	03/29/2018	1640
7439-96-5	Manganese	2.4	J	03/29/2018	1640
7440-02-0	Nickel	13.1	J	03/29/2018	1640
7440-09-7	Potassium	5000	U	03/29/2018	1640
7782-49-2	Selenium	35.0	U	03/29/2018	1640
7440-22-4	Silver	10.0	U	03/29/2018	1640
7440-23-5	Sodium	3210	J	03/29/2018	1640
7440-28-0	Thallium	25.0	U	03/29/2018	1640
7440-62-2	Vanadium	3.8	J	03/29/2018	1640
7440-66-6	Zinc	60.0	U	03/29/2018	1640
Hardness	Hardness (total)	6.42	J	03/29/2018	1640

SY-6-20180326

4D

Lab Name:	Chemtech	Consultin	g Grou	p		Contract:	EPW14	030		
Lab Code:	СНМ	Case	No.:	Syosset	Landfi	MA No. :			SDG No.:	J2083
Matrix: _	WATER					Lab Sample	ID:	J2083-	-04	
% Solids:						Date Recei	ved:	03/27	/2018	
Analytical	Method:	ICP-AES								
Concentrati	on Units	$(\mu g/L, mg/$	L, mg/	kg dry w	eight c	r μg) :	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1652
7440-36-0	Antimony	60.0	Ū	03/29/2018	1652
7440-38-2	Arsenic	10.0	U	03/29/2018	1652
7440-39-3	Barium	80.3	J	03/29/2018	1652
7440-41-7	Beryllium	5.0	U	03/29/2018	1652
7440-43-9	Cadmium	5.0	U	03/29/2018	1652
7440-70-2	Calcium	39600		03/29/2018	1652
7440-47-3	Chromium	10.0	U	03/29/2018	1652
7440-48-4	Cobalt	50.0	U	03/29/2018	1652
7440-50-8	Copper	19.6	J	03/29/2018	1652
7439-89-6	Iron	65.2	J	03/29/2018	1652
7439-92-1	Lead	10.0	U	03/29/2018	1652
7439-95-4	Magnesium	14100		03/29/2018	1652
7439-96-5	Manganese	25.2		03/29/2018	1652
7440-02-0	Nickel	4.3	J	03/29/2018	1652
7440-09-7	Potassium	5000	U	03/29/2018	1652
7782-49-2	Selenium	35.0	U	03/29/2018	1652
7440-22-4	Silver	10.0	U	03/29/2018	1652
7440-23-5	Sodium	7100		03/29/2018	1652
7440-28-0	Thallium	25.0	Ū	03/29/2018	1652
7440-62-2	Vanadium	50.0	U	03/29/2018	1652
7440-66-6	Zinc	1220		03/29/2018	1652


SY-3DD-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

326	1 6	
	ار <u>ا</u>	ú

Lab Name:	Chemtech	Consulting Gro	oup	Contract: EPW	W14030	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.:	J2083
Matrix: _	WATER			Lab Sample ID	: J2083-05	
% Solids:	-			Date Received	: 03/27/2018	
Analytical 1	Method:	ICP-AES				
Concentrati	on Units	(ug/L, mg/L, mg	g/kg dry weight	or ua): ua	g/L	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1656
7440-36-0	Antimony	60.0	U	03/29/2018	1656
7440-38-2	Arsenic	10.0	U	03/29/2018	1656
7440-39-3	Barium	200	U	03/29/2018	1656
7440-41-7	Beryllium	5.0	U	03/29/2018	1656
7440-43-9	Cadmium	5.0	U	03/29/2018	1656
7440-70-2	Calcium	1500	J	03/29/2018	1656
7440-47-3	Chromium	1.8	J	03/29/2018	1656
7440-48-4	Cobalt	50.0	U	03/29/2018	1656
7440-50-8	Copper	25.0	U	03/29/2018	1656
7439-89-6	Iron	100	U	03/29/2018	1656
7439-92-1	Lead	3.1	J	03/29/2018	1656
7439-95-4	Magnesium	636	J	03/29/2018	1656
7439-96-5	Manganese	2.1	J	03/29/2018	1656
7440-02-0	Nickel	9.9	J	03/29/2018	1656
7440-09-7	Potassium	5000	U	03/29/2018	1656
7782-49-2	Selenium	35.0	U	03/29/2018	1656
7440-22-4	Silver	10.0	U	03/29/2018	1656
7440-23-5	Sodium	3250	J	03/29/2018	1656
7440-28-0	Thallium	2.1	J	03/29/2018	1656
7440-62-2	Vanadium	50.0	U	03/29/2018	1656
7440-66-6	Zinc	4.6	J	03/29/2018	1656

SY-6-20180326

Lab 1	Name:	Chemt	ech Cons	ulting G	roup		Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case No	.: <u>sy</u>	osset Landfi	MA N	o. : _		s	DG No.:	J2083	
Matri	ix:	WATER					Lab :	Sample	ID:	J2083-01	1		
% Sol	lids:	-					Date	Recei	ved:	03/27/2	2018		
Analy	ytical	Method	: CVAA										
Conce	entrati	on Uni	ts (μg/L	, mg/L,	mg/kg	dry weight	or μg)	8	ug/I	1			_
Ī	CAS N	10.	Analyte	9		Concentrat	ion	Q	Date	Analyze	d Time	Analyzed	1
	7439-9	97-6	Mercur	У		0.20		U	04/0	04/2018	17	08	1

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN SY-3DD-20180326

М	

FORM I - IN INORGANIC ANALYSIS DATA SHEET

Lab 1	Lab Name: Chemtech Consulting Group						Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case No.:	Sy	osset Landfi	MA N	o. : _		SDC	5 No.:	J2083	
Matr	ix:	WATER					Lab :	Sample	ID:	J2083-02			
% Sol	lids:						Date	Recei	ved:	03/27/20	18		
Analy	ytical	Method	: CVAA										
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	g/kg	dry weight o	or µg)		ug/I				
[CAS N	10.	Analyte	9		Concentrat	ion	Q	Date	Analyzed	Time	Analyzed	1
	7439-9	97-6	Mercur	У		0.20		U	04/0	04/2018	17	10	

SY-6-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

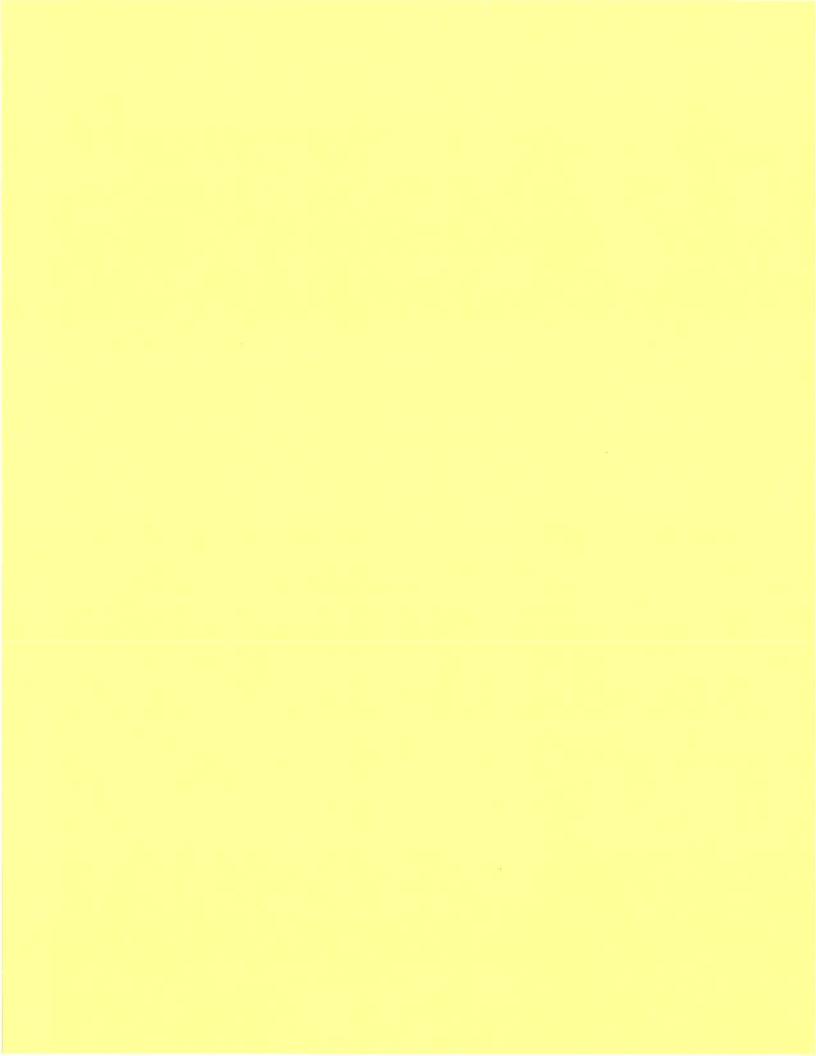
Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract:	EPW14030		
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. : _		SDG No.:	J2083
Matrix:	WATER			Lab Sample	ID: J208	3-04	
% Solids:				Date Receiv	red: 03/2	27/2018	

Analytical Method: CVAA

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.040	J	04/04/2018	1713

NOTE: Hardness (total) is reported in mg/L


SY-3DD-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

0020		
	٢.	_
	7 1	Ð

Lab 1	Name:	Chemte	tech Consulting Group					Cont	Contract: EPW14030					
Lab (Code:	СНМ		Case	No.:	Syoss	et Landfi	MA N	· . : _			SDG No.:	J2083	
Matri	ix:	WATER						Lab	Sample	ID:	J2083-0	5		
% So]	lids:							Date	Receiv	ved:	03/27/2	2018		
Analy	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (μg/L	, mg/	L, mg/	'kg dr	y weight	or μg) :	ug/L				
	CAS N	10.	Analyte	}			oncentrat	ion	Q	Date	Analyze	d Time	Analyzed	
	7439-9	97-6	Mercur	У			0.043		J	04/0	4/2018	17	15	

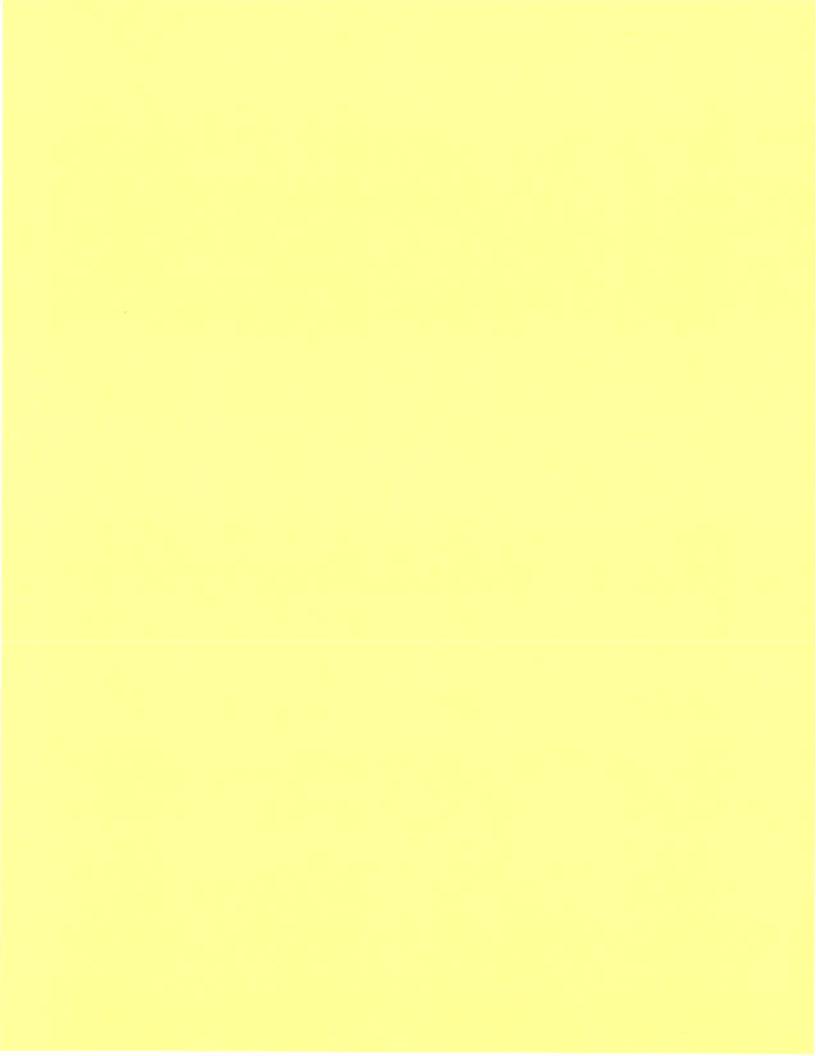
NOTE: Hardness (total) is reported in mg/L

SY-6-20180326

Lab 1	Name:	Chemte	ech Cons	ulting Grou	ıp		Contr	act:	EPW14	030			
Lab (Code:	СНМ		Case No.:	Syosset I	Landfi	MA No	·. : _			SDG No.	J2083	
Matri	ix:	WATER					Lab S	ample	ID:	J2083-0	01		
So]	lids:						Date	Recei	ved:	03/27/	2018		
Analy	ytical	Method	: Spec	trophotome	try								
Conce	entrati	on Uni	ts (μg/I	, mg/L, mg/	∕kg dry we	ight o	r μg)	:	ug/L				
	CAS N	lo.	Analyt	9	Conce	entrati	ion	Q	Date	Analyz	ed Time	Analyzed	1
	57-12-	-5	Cyanid	е	10.0			U	04/0	2/2018	1	614	1

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN


SY-3DD-20180326

INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consulting	Group	<u> </u>		Contra	ct:	EPW14	030			
Lab Code:	СНМ	Case N	10.: 5	Syosset	Landfi	MA No.	: "_			SDG No.	; J20	083
Matrix:	WATER					Lab Sar	mple	ID:	J2083-	-02		
% Solids:	2					Date R	eceiv	red:	03/27	//2018		
Analytical	Method:	Spectropho	tomet	ry								
Concentrati	on Units	(µg/L, mg/L	, mg/k	g dry w	eight c	r μg) :		ug/L				

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	2.7	J	04/02/2018	1549

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected:

03/26/18 14:30

Project:

Syosset Landfill

Date Received:

03/27/18

Client Sample ID:

SY-6-20180326

SDG No.:

J2083 WATER

Lab Sample ID:

J2083-01

Matrix:

	~ 1		
, ,	Sol	110	
∕ U	NU	II U	

0

Parameter	Conc.	Qua	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	118		1	0.4	1	2	mg/L		04/04/18 14:34	SM2320 B
Ammonia as N	0.087	J	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	${\sf mg/\!L}$		03/27/18 12:53	300.0
Chloride	6.9		1	0.075	0.075	0.15	mg/L		03/27/18 12:53	300.0
Nitrate Lee DL	1.9		1	0.027	0.065	0.13	mg/L		03/27/18 12:53	300.0
Sulfate	42.6	OR	1	0.13	0.375	0.75	mg/L		03/27/18 12:53	300.0
BOD5	2	U	1	2	2	2	mg/L		03/28/18 10:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/02/18 12:02	SM5220 D
Color	5	U	1	5	5	5	eu		03/28/18 09:52	SM2120 B
Phenolics	0.05 W	1 y	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	208		1	0.031	5	10	mg/L		03/27/18 16:00	SM2540C
TKN	0.25 ブ	Y	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
										B or C plus NH3
										G
TOC	1.8		1	80.0	0.25	0.5	mg/L		03/28/18 13:21	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

12002 CENICHERA

42 -4 224

Report of Analysis

IDL

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/26/18 14:30

Project:

Syosset Landfill

Date Received:

03/27/18

Client Sample ID:

SY-6-20180326DL

SDG No.:

J2083

WATER

Lab Sample ID:

J2083-01DL

Matrix: % Solid:

0

Parameter	Conc.	Qua.	ÐF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Sulfate	38.7	D	2	0.26	0.75	1,5	mg/L		03/27/18 15:26	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

rush 8/18

Report of Analysis

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/26/18 16:00

Project:

Syosset Landfill

Date Received:

03/27/18

Client Sample ID:

SY-3DD-20180326

SDG No.:

J2083 WATER

Lab Sample ID:

J2083-02

Matrix:

% Solid:

Parameter	Conc. (Qua	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	3.8		1	0.4	1	2	mg/L		04/04/18 14:45	SM2320 B
Ammonia as N	0.053	J	1	0.034	0.05	0.1	${\sf mg/L}$	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	${\sf mg/L}$		03/27/18 13:24	300.0
Chloride	4.8		ĵ	0.075	0.075	0.15	mg/L		03/27/18 13:24	300.0
Nitrate	0.72		I	0.027	0.065	0.13	mg/L		03/27/18 13:24	300,0
Sulfate	0.75	U	1	0.13	0.375	0.75	\mathfrak{mg}/L		03/27/18 13:24	300.0
BOD5	3.8		1	2	2	2	mg/L		03/28/18 10:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/02/18 12:02	SM5220 D
Color	5	U	1	5	5	5	cu		03/28/18 10:14	SM2120 B
Phenolics	0.05 UJ	V	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	56		1	0.031	5	10	mg/L		03/27/18 16:00	SM2540C
TKN	0.24 J	y	1	0.096	0.25	0,5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
										B or C plus NH3
										G
TOC	0.63		1	0.08	0.25	0.5	mg/L		03/28/18 12:02	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: J2116

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: May 28, 2018

	VOCs/SVOCs/Wet Chemistry								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1	SY-3D-20180327	J2116-01	Water						
1RE*	SY-3D-20180327RE	J2116-01RE	Water						
1DL1β	SY-3D-20180327DL1	J2116-01DL1	Water						
1DL2β	SY-3D-20180327DL2	J2116-01DL2	Water						
2MS	J2116-01MS	J2116-02	Water						
3MSD	J2116-01MSD	J2116-03	Water						
4	SY-3-20180327	J2116-04	Water						
4DL1β	SY-3-20180327DL1	J2116-04DL1	Water						
5	SY-2R-20180327	J2116-05	Water						
5DL1β	SY-2R-20180327DL1	J2116-05DL1	Water						
5DL2β	SY-2R-20180327DL2	J2116-05DL2	Water						
6	SY-5-20180327	J2116-06	Water						
6DL1β	SY-5-20180327DL1	J2116-06DL1	Water						
6DL2β	SY-5-20180327DL2	J2116-06DL2	Water						
7	SY-2D-20180327	J2116-07	Water						
7DL1β	SY-2D-20180327DL1	J2116-07DL1	Water						

	Total & Dissolved Metals/Mercury/Cn								
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix						
1T	SY-3D-20180327	J2116-01	Water						
2TMS	SY-3D-20180327MS	J2116-02	Water						
3TMSD	SY-3D-20180327MSD	J2116-03	Water						
4T	SY-3-20180327	J2116-04	Water						
5T	SY-2R-20180327	J2116-05	Water						
6T	SY-5-20180327	J2116-06	Water						
7T	SY-2D-20180327	J2116-07	Water						
8D	SY-3D-20180327	J2116-08	Water						
9DMS	SY-3D-20180327MS	J2116-09	Water						
10DMSD	SY-3D-20180327MSD	J2116-10	Water						
11D	SY-3-20180327	J2116-11	Water						
12D	SY-2R-20180327	J2116-12	Water						
13D	SY-5-20180327	J2116-13	Water						
14D	SY-2D-20180327	J2116-14	Water						

T - Total Metals & Mercury & Cyanide

D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for ten water samples collected on March 27, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u>	Method References
VOCs	USEPA SW846 8260C
SVOCs	USEPA SW846 8270D SIM
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries

- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

 All samples were analyzed within 14 days for preserved water samples except for the following.

Sample ID	Date Sampled	Date Extracted	# of Days	Qualifier
1RE	3/27/18 (1100)	4/10/18 (1853)	>14	J/UJ

Note: Reanalyzed outside HT due to CCAL deficiency in original analysis. The original analysis results should be used for reporting.

GC/MS Tuning

All criteria were met.

Initial Calibration

 The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Except 1RE

Method Blank

The method blanks were free of contamination.

Field Blank

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	4-6

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

<u>Laboratory Control Samples</u>

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifier
None	ND	ND		(e)

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

All criteria were met.

Initial Calibration

 The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		Næ:	9

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). For severely low surrogate recoveries (<10%), non-detected results in the affected samples are rejected (R) and are unusable for project objectives.

EDS Sample ID Compound		%R	Qualifier	
5	Terphenyl-d14	173%	None - Sample ND	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/MSD Sample ID	Compound	MS %R/MS %R/RPD	Qualifier	Affected Samples
2	1,4-Dioxane	17%/67%/119	J	2

Laboratory Control Samples

The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable.

Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifier
1,4-Dioxane	0.46	0.45	2%	None

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		-
PBW001 (Total)	Potassium	90.6	None	All Associated >10X
PBW001 (Dissolved)	Potassium	272	U	12

Field Blank

The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		-	-

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

	Total N	Ietals/Hg/Cn		
Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifie
Aluminum	13.8	13.1	5%	None
Arsenic	41.3	42.5	3%	
Barium	155	152	2%	7
Calcium	44,900	44,000	2%	7
Iron	36,200	35,700	1%	1
Lead	3.8	3.9	3%	7
Magnesium	19,200	18,900	2%	7
Manganese	3,790	3,720	2%	
Potassium	15,100	14,900	1%	1
Silver	0.91	0.94	3%	
Sodium	224,000	218,000	3%	7
Thallium	25.0U	4.3	NC	
Zinc	60.0U	6.5	NC	
Hardness*	191 mg/L	188 mg/L	2%	1
Mercury	0.062	0.059	5%	

	Dissolv	ed Metals/Hg		
Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifie
Aluminum	20.9	21.0	0%	None
Arsenic	53.5	56.1	5%	
Barium	153	154	1%	
Calcium	43,800	43,900	0%	
Iron	34,900	35,500	2%	None
Lead	2.7	3.2	17%	
Magnesium	17,600	17,600	0%	
Manganese	3,740	3,750	0%	
Potassium	14,400	14,600	1%	
Silver	10.0U	0.79	NC	
Sodium	208,000	206,000	1%	
Zinc	60.0U	5.0	NC	Ī
Mercury	0.20U	0.039	NC	

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended holding time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		•
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
lt.	TOC	0.4	None	•

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
1	Sulfate	-85%/-109%/OK	None	4X Rule Applies
	Chloride	-1,600%/-1,667%/OK	None	
	Ammonia as N	10%/-120%/200	None	
	TKN	294%/304%/OK	J	All Samples
	Phenolics	58%/59%/OK	ÜI	All Samples

Laboratory Control Samples

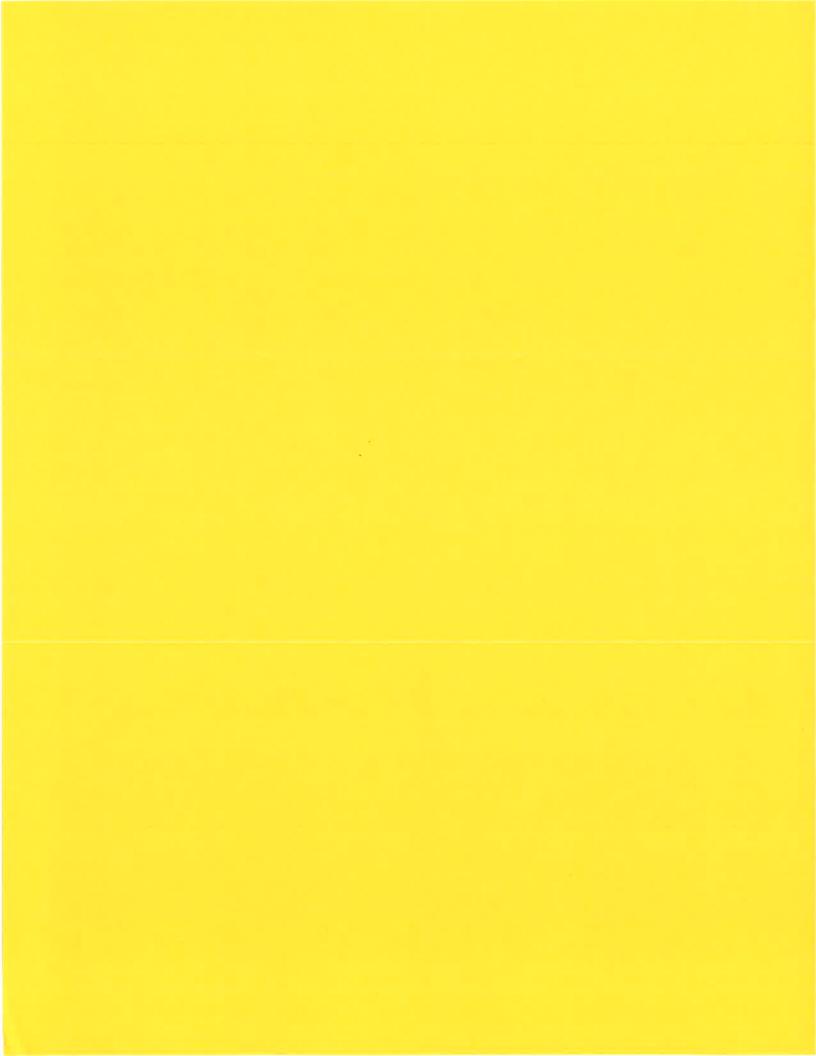
• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, sulfate, and/or TKN
and were flagged (OR) for over the calibration range by the laboratory. The samples were
diluted and reanalyzed and the dilution results for these compounds should be used for
reporting purposes.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.


Compound	SY-3-20180327 mg/L	SY-5-20180327 mg/L	RPD	Qualifier
Alkalinity	232	221	5%	None
Ammonia as N	11.3	11.1	2%	
Bromide	0.28	0.28	0%	
Chloride	372	365	2%	
Sulfate	36.2	35.1	3%	
COD	15.5	12.5	21%	
Color	300	300	0%	
TDS	859	815	5%	
TKN	10.5	10.8	3%	ĺ
TOC	5.3	4.8	10%	

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Nancy Weaver Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J=	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Lockwood, Kessler, & Bartlett

Date Collected:

Project: Syosset Landfill Date Received:

03/28/18

03/27/18

SY-3D-20180327 Client Sample ID: SDG No.: Lab Sample ID: J2116-01

J2116 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: иL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 LOW Level:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

1 04/07/18 18:44 VN040718 VN047446.D

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 UJ	N	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	10.2		0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	I	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	l	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74 - 97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	o U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.2	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

uL

03/27/18

03/28/18

J2116

Water

100

Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

Client: Lockwood, Kessler, & Bartlett

Syosset Landfill

Client Sample ID: SY-3D-20180327

Lab Sample ID: J2116-01

Analytical Method: SW8260

Sample Wt/Vol: Units: mLFinal Vol: 5000

Soil Aliquot Vol: иL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID 1 04/07/18 18:44 VN040718 VN047446.D

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	0.24	J	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	I	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0,2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	I	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0,2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53.6		61 - 141		107%	SPK: 50
1868-53-7	Dibromofluoromethane	51.2		69 - 133		102%	SPK: 50
2037-26-5	Toluene-d8	52.5		65 - 126		105%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.9		58 - 135		104%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1137740	7.66				
540-36-3	1,4-Difluorobenzene	1886090	8.59				
3114-55-4	Chlorobenzene-d5	1777050	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	742088	13.35				

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

IRE

Client: Lockwood, Kessler, & Bartlett Date Collected 03/27/18 Project: Date Received: Syosset Landfill 03/28/18 SY-3D-20180327RE Client Sample ID: SDG No.: J2116 Lab Sample ID: J2116-01RE Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5000 Units: mL Final Vol: Soil Aliquot Vol: Test: VOCMS Group1 иL GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047502.D 1 04/10/18 18:53 VN041018

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS				100	/		
75-71-8	Dichlorodifluoromethane	1 47	Ψ	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	6.2	0.2	1	ug/L
74-83-9	Bromomethane	1	U /	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	TU .	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	/ U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	X	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	/ 1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	Ü	0.2	0,5	1	ug/L
75-09-2	Methylene Chloride	1	Ų	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	Ü	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	Ü	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	0,35 T	1	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1 UJ	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	ψ	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	Ψ	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	Ü	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	l	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	ф	0.2	0.2	1	ug/L

m 51281.8

LOW

Level:

GC Column:

RXI-624

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

(RE

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/27/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-3D-20180327RE SDG No.: J2116 Lab Sample ID: J2116-01RE Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 Soil Aliquot Vol: uL Test: VOCMS Group1

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047502.D 1 04/10/18 18:53 VN041018

ID: 0.25

CAS Number	Parameter	Conc.	Qualifier	MDL /	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1 WJ	ψ	0.2	0,2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	Ü	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U /	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	W	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	Ų	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1/	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	Ų	0.2	0.2	1	ug/L
75-25-2	Bromoform	/ 1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	Ψ	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	TU TU	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	Ų	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95 - 50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	Ψ	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	36.2		61 - 141		72%	SPK: 50
1868-53-7	Dibromofluoromethane	39		69 - 133		78%	SPK: 50
2037-26-5	Toluene-d8	39.2		65 - 126		78%	SPK: 50
460-00-4	4-Bromofluorobenzene	32.6		58 - 135		65%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	428406	7.67				
540-36-3	1,4-Difluorobenzene	667968	8.59				
3114-55-4	Chlorobenzene-d5	572808	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	189022	13.35				

Client:

Project:

Report of Analysis

report of Amarysis

Lockwood, Kessler, & Bartlett

Syosset Landfill

SY-3-20180327

Lab Sample ID:

J2116-04

Analytical Method:

Sample Wt/Vol:

GC Column:

Client Sample ID:

SW8260

5

Units: mL

uL

Soil Aliquot Vol:

RXI-624

ID: 0.25

Date Collected:

03/28/18

03/27/18

Date Received:

J2116

SDG No.:

Water

% Moisture:

sture:

100

5000 uL

Test:

Final Vol:

Matrix:

VOCMS Group1

Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VN047447.D

1

VN040718

04/07/18 19:09 VN04

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	I	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1 0.36 U	1	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 05	H	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15 - 0	Carbon Disulfide	l	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	I	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0,5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	l	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	l	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	l	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	l	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	l	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27 - 4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	l	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	^D 1	ug/L

pur S/28/1.8

uL

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

03/27/18

Project:

Date Received:

03/28/18

Client Sample ID:

Client:

Syosset Landfill SY-3-20180327

Lockwood, Kessler, & Bartlett

J2116

Lab Sample ID:

J2116-04

SDG No.: Matrix:

Water

Analytical Method:

SW8260

5

% Moisture:

100

Sample Wt/Vol:

Units:

Final Vol:

5000

Soil Aliquot Vol:

GC Column:

RXI-624

uLID: 0.25

mL

Test: Level: VOCMS Group1

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VN047447.D

1

04/07/18 19:09

VN040718

CAS Number	Parameter	Carra	0	MDI	1.00	I OO / CDOY	
	r at afficter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	I	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0,4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0, 2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	I	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0,2	ŭ	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	I	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							•
17060-07-0	1,2-Dichloroethane-d4	53.9		61 - 141		108%	SPK: 50
1868-53-7	Dibromofluoromethane	52.3		69 - 133		105%	SPK: 50
2037-26-5	Toluene-d8	52.6		65 - 126		105%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.7		58 - 135		105%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1107920	7.67				
540-36-3	1,4-Difluorobenzene	1833850	8.59				
3114-55-4	Chlorobenzene-d5	1749710	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	740246	13.35				

5

uL

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected: 03/27/18

Project: Syosset Landfill Date Received: 03/28/18

Client Sample ID: SY-2R-20180327 SDG No.: J2116

Lockwood, Kessler, & Bartlett

Lab Sample ID: J2116-05 Matrix: Water

 Analytical Method:
 SW8260
 % Moisture:
 100

 Sample Wt/Vol:
 5
 Units: mL
 Final Vol:
 5000

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047448.D 1 04/07/18 19:34 VN040718

CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
75-71-8	Dichlorodifluoromethane		1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	L	0.68 U	V	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride		1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane		1 45	1 J	0.2	0.2	1	ug/L
75-00-3	Chloroethane		1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane		1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane		1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene		1	U	0.2	0.2	1	ug/L
67-64-1	Acetone		5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide		1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether		1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate		1	U	0.2	0,5	1	ug/L
75-09-2	Methylene Chloride		1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene		1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane		1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane		1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone		5	U	1:3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride		1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene		1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane		1	U	0.2	0.5	1	ug/L
67 - 66-3	Chloroform		1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane		1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane		1	U	0.2	0.2	1	ug/L
71-43-2	Benzene		1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane		1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene		1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane		1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane		1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone		5	U	1	1	5	ug/L
108-88-3	Toluene		1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene		1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene		1	U	0.2	0.2	1	ug/L

5

Client Sample ID:

Client:

Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected: 03/27/18

Date Received: 03/28/18

SY-2R-20180327 SDG No.: J2116

Lab Sample ID: J2116-05 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Lockwood, Kessler, & Bartlett

Syosset Landfill

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047448.D 1 04/07/18 19:34 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	Ŧ	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	ĺ	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	Ī	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	Ĭ	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	Ī	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53.1		61 - 141		106%	SPK: 50
1868-53-7	Dibromofluoromethane	51.7		69 - 133		103%	SPK: 50
2037-26-5	Toluene-d8	52.9		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	50.9		58 - 135		102%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1105660	7.66				
540-36-3	1,4-Difluorobenzene	1797660	8.59				
3114-55-4	Chlorobenzene-d5	1693700	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	675010	13.35				

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

03/27/18

Project:

Client:

Syosset Landfill

Lockwood, Kessler, & Bartlett

Date Received:

03/28/18

Client Sample ID:

SY-5-20180327

SDG No.:

J2116

Lab Sample ID:

J2116-06 SW8260 Matrix:

Water

Analytical Method
Sample Wt/Vol:

5

Units: mL

% Moisture: Final Vol:

5000

uL

 $Soil\,Aliquot\,Vol:$

GC Column:

RXI-624

uL ID: 0,25 Test: Level:

LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID

VOCMS Group1

VN047449.D

1

04/07/18 19:59

VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1 0.55 U	1	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	l	ug/L
74-83-9	Bromomethane	1 UJ	X	0.2	0.2	l	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	l	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	I	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	I	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93 - 3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
		cl.	. 0 1.8				

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

03/27/18 03/28/18

J2116

Project: Syosset Landfill

Date Received:

Client Sample ID: SY-5-20180327 SDG No.:

Lab Sample ID: J2116-06 Matrix:

Lockwood, Kessler, & Bartlett

Matrix: Water

Analytical Method SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0,25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047449.D 1 04/07/18 19:59 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.3		61 - 141		109%	SPK: 50
1868-53-7	Dibromofluoromethane	52.5		69 - 133		105%	SPK: 50
2037-26-5	Toluene-d8	53.3		65 - 126		107%	SPK: 50
460-00-4	4-Bromofluorobenzene	52		58 - 135		104%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1123110	7.67				
540-36-3	1,4-Difluorobenzene	1857580	8.59				
3114-55-4	Chlorobenzene-d5	1779900	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	711687	13,35				

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Lockwood, Kessler, & Bartlett Date Collected: 03/27/18

Project: Syosset Landfill Date Received: 03/28/18

 Client Sample ID:
 SY-2D-20180327
 SDG No.:
 J2116

 Lab Sample ID:
 J2116-07
 Matrix:
 Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047450.D 1 04/07/18 20:23 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 4	J V	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15 - 0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2,5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

03/27/18

Syosset Landfill

Date Received:

Date Collected:

03/28/18

Client Sample ID:

Client:

Project:

SY-2D-20180327

Lockwood, Kessler, & Bartlett

SDG No.:

J2116

Lab Sample ID:

J2116-07 SW8260

Matrix:

Water 100

Analytical Method: Sample Wt/Vol:

5

Units: mL % Moisture: Final Vol:

5000

uL VOCMS Group1

Soil Aliquot Vol:

GC Column:

RXI-624

uL ID: 0.25

Test: Level:

LOW

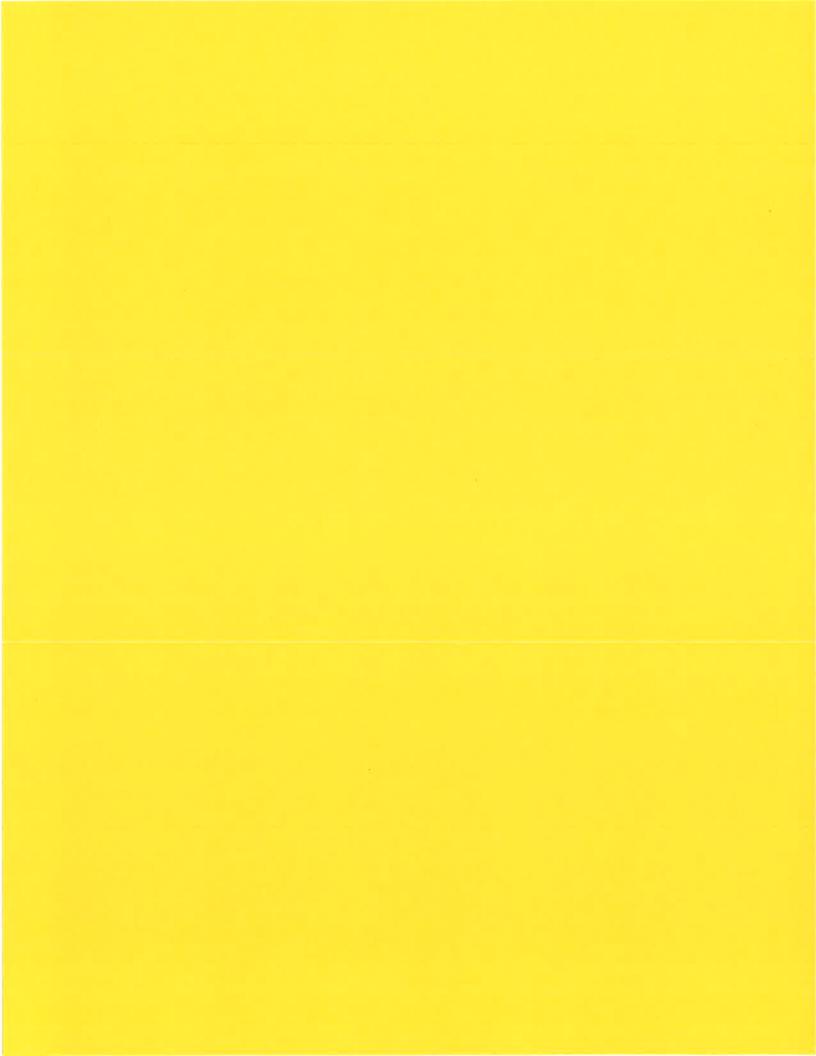
File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Prep Batch ID


VN047450.D

1

04/07/18 20:23

VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	I	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54		61 - 141		108%	SPK: 50
1868-53-7	Dibromofluoromethane	52		69 - 133		104%	SPK: 50
2037-26-5	Toluene-d8	52.9		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.3		58 - 135		107%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1107430	7.67				
540-36-3	1,4-Difluorobenzene	1818140	8.59				
3114-55-4	Chlorobenzene-d5	1751710	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	731459	13.35				

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-3D-20180327

Date Received: 03/28/2018

Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract:	EPW14	1030		17	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :			SDG No.:	J2116	
Matrix:	WATER			Lab Sample	ID:	J2116-	01		

Analytical Method: ICP-AES

% Solids:

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g): ug/L

			1411	41	
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	7.2	J	03/29/2018	1709
7440-36-0	Antimony	60.0	U	03/29/2018	1709
7440-38-2	Arsenic	18.7		03/29/2018	1709
7440-39-3	Barium	194	J	03/29/2018	1709
7440-41-7	Beryllium	5.0	U	03/29/2018	1709
7440-43-9	Cadmium	5.0	U	03/29/2018	1709
7440-70-2	Calcium	50000		03/29/2018	1709
7440-47-3	Chromium	10.0	U	03/29/2018	1709
7440-48-4	Cobalt	18.6	J	03/29/2018	1709
7440-50-8	Copper	25.0	U	03/29/2018	1709
7439-89-6	Iron	23200		03/29/2018	1709
7439-92-1	Lead	2.3	J	03/29/2018	1709
7439-95-4	Magnesium	14900		03/29/2018	1709
7439-96-5	Manganese	897		03/29/2018	1709
7440-02-0	Nickel	40.0	U	03/29/2018	1709
7440-09-7	Potassium	24500		03/29/2018	1709
7782-49-2	Selenium	35.0	U	03/29/2018	1709
7440-22-4	Silver	10.0	U	03/29/2018	1709
7440-23-5	Sodium	282000		03/29/2018	1709
7440-28-0	Thallium	25.0	Ū	03/29/2018	1709
7440-62-2	Vanadium	50.0	U	03/29/2018	1709
7440-66-6	Zinc	3.1	J	03/29/2018	1709
Hardness	Hardness (total)	186		03/29/2018	1709

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

S	Υ-	3-	2	01	. 8	0	32	7

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: J2116 Lab Code: CHM Lab Sample ID: J2116-04 WATER Matrix: % Solids: Date Received: 03/28/2018 Analytical Method: ICP-AES

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	13.8	J	03/29/2018	1725
7440-36-0	Antimony	60.0	U	03/29/2018	1725
7440-38-2	Arsenic	41.3		03/29/2018	1725
7440-39-3	Barium	155	J	03/29/2018	1725
7440-41-7	Beryllium	5.0	U	03/29/2018	1725
7440-43-9	Cadmium	5.0	U	03/29/2018	1725
7440-70-2	Calcium	44900	1	03/29/2018	1725
7440-47-3	Chromium	10.0	U	03/29/2018	1725
7440-48-4	Cobalt	50.0	U	03/29/2018	1725
7440-50-8	Copper	25.0	U	03/29/2018	1725
7439-89-6	Iron	36200		03/29/2018	1725
7439-92-1	Lead	3.8	J	03/29/2018	1725
7439-95-4	Magnesium	19200		03/29/2018	1725
7439-96-5	Manganese	3790		03/29/2018	1725
7440-02-0	Nickel	40.0	U	03/29/2018	1725
7440-09-7	Potassium	15100		03/29/2018	1725
7782-49-2	Selenium	35.0	U	03/29/2018	1725
7440-22-4	Silver	0.91	J	03/29/2018	1725
7440-23-5	Sodium	224000		03/29/2018	1725
7440-28-0	Thallium	25.0	U	03/29/2018	1725
7440-62-2	Vanadium	50.0	U	03/29/2018	1725
7440-66-6	Zinc	60.0	U	03/29/2018	1725
Hardness	Hardness (total)	191		03/29/2018	1725

SY-

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

-2R-20180327	

Lab Name:	: Chemtech Consulting Group		Contract: I	ontract: EPW14030				
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :			SDG No.:	J2116
Matrix:	WATER			Lab Sample	ID: J	2116-	-05	
% Solids:				Date Receiv	ed: 0	3/28	/2018	
Analytical	Method:	ICP-AES						
Concentrati	on Units	(ug/I. mg/I. mg	/ka drv weight o	or ua) 🥶	ua/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	267		03/29/2018	1729
7440-36-0	Antimony	60.0	U	03/29/2018	1729
7440-38-2	Arsenic	10.0	U	03/29/2018	1729
7440-39-3	Barium	75.7	J	03/29/2018	1729
7440-41-7	Beryllium	3.5	J	03/29/2018	1729
7440-43-9	Cadmium	5.0	U	03/29/2018	1729
7440-70-2	Calcium	24300		03/29/2018	1729
7440-47-3	Chromium	1.4	J	03/29/2018	1729
7440-48-4	Cobalt	5.1	J	03/29/2018	1729
7440-50-8	Copper	3.9	J	03/29/2018	1729
7439-89-6	Iron	40.9	J	03/29/2018	1729
7439-92-1	Lead	10.0	U	03/29/2018	1729
7439-95-4	Magnesium	4820	J	03/29/2018	1729
7439-96-5	Manganese	32.4		03/29/2018	1729
7440-02-0	Nickel	28.3	J	03/29/2018	1729
7440-09-7	Potassium	1750	J	03/29/2018	1729
7782-49-2	Selenium	35.0	U	03/29/2018	1729
7440-22-4	Silver	10.0	U	03/29/2018	1729
7440-23-5	Sodium	267000		03/29/2018	1729
7440-28-0	Thallium	25.0	U	03/29/2018	1729
7440-62-2	Vanadium	50.0	U	03/29/2018	1729
7440-66-6	Zinc	53.5	J	03/29/2018	1729
Hardness	Hardness (total)	80.5		03/29/2018	1729

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Y	-5	-2	01	8	03	27	7	

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: J2116 Lab Code: CHM Matrix: WATER Lab Sample ID: J2116-06 % Solids: Date Received: 03/28/2018

Analytical Method: ICP-AES

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	13.1	J	03/29/2018	1733
7440-36-0	Antimony	60.0	U	03/29/2018	1733
7440-38-2	Arsenic	42.5		03/29/2018	1733
7440-39-3	Barium	152	J	03/29/2018	1733
7440-41-7	Beryllium	5.0	U	03/29/2018	1733
7440-43-9	Cadmium	5.0	U	03/29/2018	1733
7440-70-2	Calcium	44000		03/29/2018	1733
7440-47-3	Chromium	10.0	U	03/29/2018	1733
7440-48-4	Cobalt	50.0	U	03/29/2018	1733
7440-50-8	Copper	25.0	U	03/29/2018	1733
7439-89-6	Iron	35700		03/29/2018	1733
7439-92-1	Lead	3.9	J	03/29/2018	1733
7439-95-4	Magnesium	18900		03/29/2018	1733
7439-96-5	Manganese	3720		03/29/2018	1733
7440-02-0	Nickel	40.0	U	03/29/2018	1733
7440-09-7	Potassium	14900		03/29/2018	1733
7782-49-2	Selenium	35.0	U	03/29/2018	1733
7440-22-4	Silver	0.94	J	03/29/2018	1733
7440-23-5	Sodium	218000		03/29/2018	1733
7440-28-0	Thallium	4.3	J	03/29/2018	1733
7440-62-2	Vanadium	50.0	U	03/29/2018	1733
7440-66-6	Zinc	6.5	J	03/29/2018	1733
Hardness	Hardness (total)	188		03/29/2018	1733

SY-2D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

20100327	1
	1 21
	_ / I

Lab Name: Chemtech		Consulting Grou	ıp	Contract: E	EPW140	30					
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2116				
Matrix: _	WATER			Lab Sample	ID: J	J2116-07					
% Solids:	-			Date Receive	ed: 0	3/28/2018					
Analytical	Method:	ICP-AES									
Concentrati	on Units	(ua/L, ma/L, ma/	/ka drv weight o	or ua) :	ug/L						

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	325		03/29/2018	1737
7440-36-0	Antimony	60.0	U	03/29/2018	1737
7440-38-2	Arsenic	10.0	U	03/29/2018	1737
7440-39-3	Barium	82.4	J	03/29/2018	1737
7440-41-7	Beryllium	5.0	U	03/29/2018	1737
7440-43-9	Cadmium	5.0	U	03/29/2018	1737
7440-70-2	Calcium	32100		03/29/2018	1737
7440-47-3	Chromium	10.0	U	03/29/2018	1737
7440-48-4	Cobalt	50.0	U	03/29/2018	1737
7440-50-8	Copper	25.0	U	03/29/2018	1737
7439-89-6	Iron	158		03/29/2018	1737
7439-92-1	Lead	2.6	J	03/29/2018	1737
7439-95-4	Magnesium	5960		03/29/2018	1737
7439-96-5	Manganese	453		03/29/2018	1737
7440-02-0	Nickel	40.0	U	03/29/2018	1737
7440-09-7	Potassium	4590	J	03/29/2018	1737
7782-49-2	Selenium	35.0	U	03/29/2018	1737
7440-22-4	Silver	10.0	U	03/29/2018	1737
7440-23-5	Sodium	233000		03/29/2018	1737
7440-28-0	Thallium	25.0	U	03/29/2018	1737
7440-62-2	Vanadium	50.0	U	03/29/2018	1737
7440-66-6	Zinc	11.9	J	03/29/2018	1737
Hardness	Hardness (total)	105		03/29/2018	1737

SY-3D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

_	
U	
ר	1)

Lab Name: Chemte		tech Consulting Group				ct: EPW	EPW14030			
Lab Code:	СНМ	Case No	s: Syc	sset Landfi	MA No.	:		SDG No.:	J2116	
Matrix: _	WATER				Lab Sam	mple ID:	J2116-	-08		
% Solids:	-				Date Re	eceived:	03/28	/2018		
Analytical	Method:	ICP-AES								
Concentrati	on Units	(µg/L, mg/L,	mg/kg	dry weight o	or ug) 🖫	ug	/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1750
7440-36-0	Antimony	60.0	U	03/29/2018	1750
7440-38-2	Arsenic	16.0		03/29/2018	1750
7440-39-3	Barium	192	J	03/29/2018	1750
7440-41-7	Beryllium	5.0	U	03/29/2018	1750
7440-43-9	Cadmium	5.0	Ū	03/29/2018	1750
7440-70-2	Calcium	49000		03/29/2018	1750
7440-47-3	Chromium	10.0	U	03/29/2018	1750
7440-48-4	Cobalt	18.6	J	03/29/2018	1750
7440-50-8	Copper	25.0	U	03/29/2018	1750
7439-89-6	Iron	23000		03/29/2018	1750
7439-92-1	Lead	2.5	J	03/29/2018	1750
7439-95-4	Magnesium	14600		03/29/2018	1750
7439-96-5	Manganese	874		03/29/2018	1750
7440-02-0	Nickel	40.0	U	03/29/2018	1750
7440-09-7	Potassium	24300		03/29/2018	1750
7782-49-2	Selenium	35.0	U	03/29/2018	1750
7440-22-4	Silver	10.0	U	03/29/2018	1750
7440-23-5	Sodium	278000		03/29/2018	1750
7440-28-0	Thallium	25.0	U	03/29/2018	1750
7440-62-2	Vanadium	50.0	U	03/29/2018	1750
7440-66-6	Zinc	7.8	J	03/29/2018	1750

FORM 1 - IN

SY-3-20180327

INORGANIC ANALYSIS DATA SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030

Case No.: Syosset Landfi MA No.: SDG No.: J2116

IID

Matrix: WATER

Lab Sample ID: J2116-11

% Solids: Date Received: 03/28/2018

Analytical Method: ICP-AES

Lab Code: CHM

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	20.9	J	04/05/2018	1259
7440-36-0	Antimony	60.0	U	04/05/2018	1259
7440-38-2	Arsenic	53.5		04/05/2018	1259
7440-39-3	Barium	153	J	04/05/2018	1259
7440-41-7	Beryllium	5.0	U	04/05/2018	1259
7440-43-9	Cadmium	5.0	U	04/05/2018	1259
7440-70-2	Calcium	43800		04/05/2018	1259
7440-47-3	Chromium	10.0	U	04/05/2018	1259
7440-48-4	Cobalt	50.0	U	04/05/2018	1259
7440-50-8	Copper	25.0	U	04/05/2018	1259
7439-89-6	Iron	34900		04/05/2018	1259
7439-92-1	Lead	2.7	J	04/05/2018	1259
7439-95-4	Magnesium	17600		04/05/2018	1259
7439-96-5	Manganese	3740	1.	04/05/2018	1259
7440-02-0	Nickel	40.0	U	04/05/2018	1259
7440-09-7	Potassium	14400		04/05/2018	1259
7782-49-2	Selenium	35.0	U	04/05/2018	1259
7440-22-4	Silver	10.0	U	04/05/2018	1259
7440-23-5	Sodium	208000		04/05/2018	1259
7440-28-0	Thallium	25.0	U	04/05/2018	1259
7440-62-2	Vanadium	50.0	U	04/05/2018	1259
7440-66-6	Zinc	60.0	U	04/05/2018	1259

FORM 1 - IN SY-2R-20180327

FORM I - IN INORGANIC ANALYSIS DATA SHEET

12D

Lab Name: Chemtech		Consulting Group				Contrac	ct:	EPW14030			
Lab Code:	CHM	Case	No.:	Syosset Lar	ndfi	MA No.	: ,			SDG No.:	J2116
Matrix:	WATER					Lab Sar	mple	ID:	J2116-	-12	
% Solids:	:					Date Re	ecei	ved:	03/28	/2018	
Analytical 1	Method:	ICP-AES									
Concentration	on Units	(μg/L, mg/	L, mg/	kg dry weig	ht o	r μg) :		ug/L			

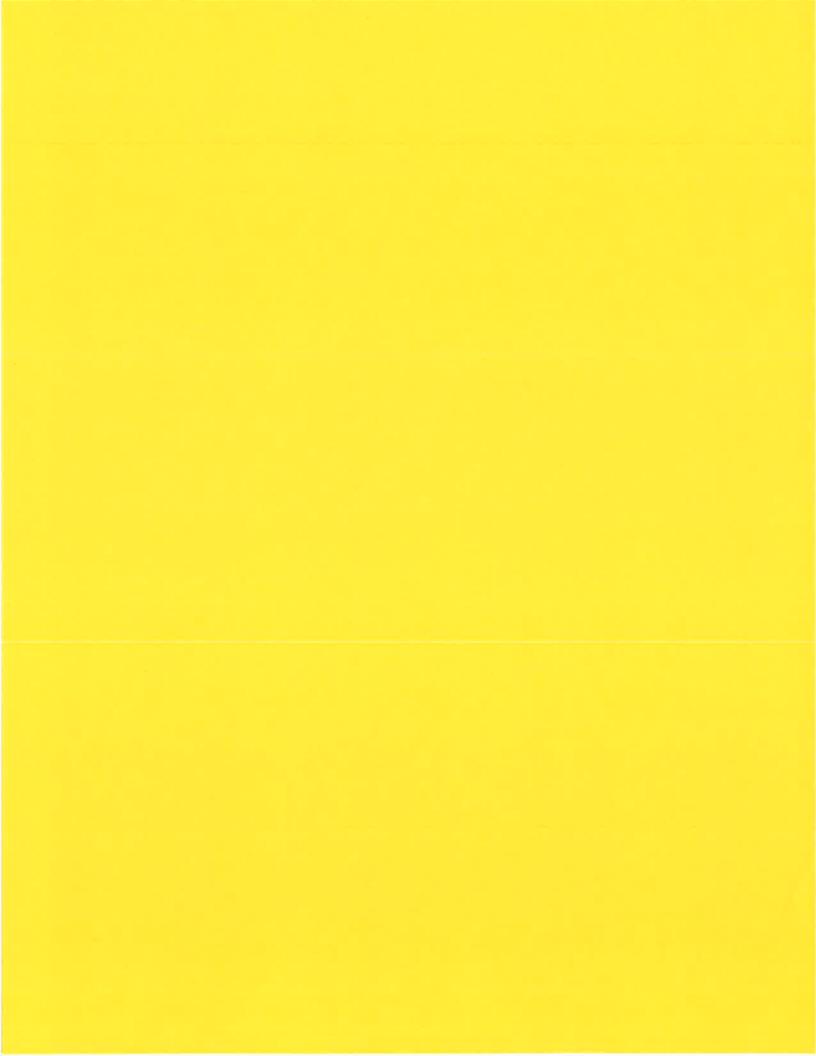
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	230		04/05/2018	1303
7440-36-0	Antimony	60.0	U	04/05/2018	1303
7440-38-2	Arsenic	3.5	J	04/05/2018	1303
7440-39-3	Barium	72.8	J	04/05/2018	1303
7440-41-7	Beryllium	3.4	J	04/05/2018	1303
7440-43-9	Cadmium	5.0	U	04/05/2018	1303
7440-70-2	Calcium	23400	l	04/05/2018	1303
7440-47-3	Chromium	1.6	J	04/05/2018	1303
7440-48-4	Cobalt	4.7	J	04/05/2018	1303
7440-50-8	Copper	25.0	U	04/05/2018	1303
7439-89-6	Iron	16.3	J	04/05/2018	1303
7439-92-1	Lead	2.6	J	04/05/2018	1303
7439-95-4	Magnesium	4270	J	04/05/2018	1303
7439-96-5	Manganese	30.2		04/05/2018	1303
7440-02-0	Nickel	26.0	J	04/05/2018	1303
7440-09-7	Potassium 5000	1230 u	V	04/05/2018	1303
7782-49-2	Selenium	35.0	U	04/05/2018	1303
7440-22-4	Silver	10.0	U	04/05/2018	1303
7440-23-5	Sodium	247000		04/05/2018	1303
7440-28-0	Thallium	25.0	U	04/05/2018	1303
7440-62-2	Vanadium	50.0	U	04/05/2018	1303
7440-66-6	Zinc	51.7	J	04/05/2018	1303

SY-5-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

	13D

Lab Name:	Chemtech	Contrac	ct: E	EPW14030							
Lab Code:	CHM	C	ase No.:	Syosset Landfi	MA No.	:			SDG No.:	J2116	
Matrix:	WATER			- la	Lab San	mple	ID:	J2116-	13		
% Solids:					Date Re	eceiv	ed:	03/28	/2018		
Analytical	Method:	ICP-AE	ES								
Concentrati	on Units	(ug/L,	ma/L, ma	/ka drv weiaht	or ua) ::		ug/L				


CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	21.0	J	04/05/2018	1307
7440-36-0	Antimony	60.0	U	04/05/2018	1307
7440-38-2	Arsenic	56.1		04/05/2018	1307
7440-39-3	Barium	154	J	04/05/2018	1307
7440-41-7	Beryllium	5.0	U	04/05/2018	1307
7440-43-9	Cadmium	5.0	Ū	04/05/2018	1307
7440-70-2	Calcium	43900		04/05/2018	1307
7440-47-3	Chromium	10.0	U	04/05/2018	1307
7440-48-4	Cobalt	50.0	U	04/05/2018	1307
7440-50-8	Copper	25.0	Ū	04/05/2018	1307
7439-89-6	Iron	35500		04/05/2018	1307
7439-92-1	Lead	3.2	J	04/05/2018	1307
7439-95-4	Magnesium	17600		04/05/2018	1307
7439-96-5	Manganese	3750		04/05/2018	1307
7440-02-0	Nickel	40.0	U	04/05/2018	1307
7440-09-7	Potassium	14600		04/05/2018	1307
7782-49-2	Selenium	35.0	U	04/05/2018	1307
7440-22-4	Silver	0.79	J	04/05/2018	1307
7440-23-5	Sodium	206000		04/05/2018	1307
7440-28-0	Thallium	25.0	U	04/05/2018	1307
7440-62-2	Vanadium	50.0	U	04/05/2018	1307
7440-66-6	Zinc	5.0	J	04/05/2018	1307

SY-2D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

(4)

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	19.3	J	04/05/2018	1311
7440-36-0	Antimony	60.0	Ū	04/05/2018	1311
7440-38-2	Arsenic	3.3	J	04/05/2018	1311
7440-39-3	Barium	79.2	J	04/05/2018	1311
7440-41-7	Beryllium	5.0	U	04/05/2018	1311
7440-43-9	Cadmium	5.0	U	04/05/2018	1311
7440-70-2	Calcium	30500		04/05/2018	1311
7440-47-3	Chromium	10.0	U	04/05/2018	1311
7440-48-4	Cobalt	50.0	U	04/05/2018	1311
7440-50-8	Copper	25.0	U	04/05/2018	1311
7439-89-6	Iron	100	U	04/05/2018	1311
7439-92-1	Lead	3.9	J	04/05/2018	1311
7439-95-4	Magnesium	5470		04/05/2018	1311
7439-96-5	Manganese	361		04/05/2018	1311
7440-02-0	Nickel	40.0	U	04/05/2018	1311
7440-09-7	Potassium	4070	J	04/05/2018	1311
7782-49-2	Selenium	35.0	U	04/05/2018	1311
7440-22-4	Silver	10.0	U	04/05/2018	1311
7440-23-5	Sodium	211000		04/05/2018	1311
7440-28-0	Thallium	25.0	U	04/05/2018	1311
7440-62-2	Vanadium	50.0	U	04/05/2018	1311
7440-66-6	Zinc	17.4	J	04/05/2018	1311

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-3D-20180327

Lab Name: Chemtech Cons			ech Cons	ulting Group			ract:	EPW14030				
Lab (Code: CHM		Case No.:	Syosset Landfi	MA No. :			SI	SDG No.: J2116			
Matri	x:	WATER				Lab	Sample	ID:	J2116-01			
% Sol	ids:					Date	Receiv	ved:	03/28/20	018		
Analy	tical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg/	kg dry weight	or μg)	j j	ug/I	1			
	CAS N	lo.	Analyte	<u> </u>	Concentrat	ion	Q	Date	Analyzed	Time	Analyzed	
	7439-9	97-6	Mercur	/	0.16		J	04/0	04/2018	17	17	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.	
SY-3-20180327	ן ו

Lab N	Name:	Chemte	ech Cons	ulting Grou	ıp		Cont	ract:	EPW14	030				
Lab (Code:	СНМ		Case No.:	Sy	osset Landfi	MA No	o. : _			SDG	No.:	J2116	
Matri	ix:	WATER					Lab :	Sample	ID:	J2116-	04			
% Sol	lids:						Date	Receiv	red:	03/28/	201	8		
Analy	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg	dry weight	or μg)	3	ug/I					
[CAS N	lo.	Analyte	9		Concentrat	ion	Q	Date	Analyz	ed	Time A	Analyzed	
	7439-9	97-6	Mercur	У		0.062		J	04/	04/2018	3	172	9	

NOTE: Hardness (total) is reported in mg/L

5

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-2R-20180327

Lab Name	: Chemt	ech Consult	ing Grou	p	Cont	ract:	EPW14	030	-	
Lab Code	: CHM	Ca	se No.:	Syosset Landfi	MA No	o, ; _		SDG	No.: J21	16
Matrix:	WATER				Lab s	Sample	ID:	J2116-05		
% Solids	:				Date	Receiv	red:	03/28/20	18	
Analytic	al Method	: CVAA								
Concentr	ation Uni	ts (μ g/L, m	ıg/L, mg/	kg dry weight	or μg)	3	ug/I	1		
CA	S No.	Analyte		Concentrat	ion	Q	Date	Analyzed	Time Anal	yzed
743	39-97-6	Mercury		0.20		U	04/0	04/2018	1731	

NOTE: Hardness (total) is reported in mg/L

SY-

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

-5-20180327	

Lab N	Name:	Chemte	ech Cons	ulting Gro	oup		Cont	cact:	et: EPW14030					
Lab (Code:	СНМ		Case No.	Sy	osset Landfi	MA No	o. : _			SDG	No.: J2116		
Matri	ix:	WATER				,	Lab S	Sample	ID:	J2116-	-06			
% Sol	lids:						Date	Recei	ved:	03/28	/201	8		
Analy	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/L, m	g/kg	dry weight o	r μg)	8	ug/I	L				
1	CAS N	No.	Analyte	9		Concentrat	ion	Q	Date	Analya	zed	Time Analyzed		
	7439-	97-6	Mercur	У		0.059		J	04/	04/201	8	1733		

NOTE: Hardness (total) is reported in mg/L

7

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-2D-20180327

Lab 1	Name:	Chemte	ech Cons	ulting	g Grou	р	Cont	ract:	EPW1	4030		
Lab (Code:	СНМ		Case	No.:	Syosset Landf	i MA N	0. :			SDG No	.: J2116
Matr	ix:	WATER					Lab	Sample	ID:	J2116-	07	
% So	lids:						Date	Recei	ved:	03/28/	/2018	
Anal	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/1	L, mg/	kg dry weight	or μg)	:	ug/	L		
	CAS N	10.	Analyte	9		Concentra	tion	Q	Date	Analyz	ed Tir	me Analyzed
	7439-9	97-6	Mercur	У		0.20		U	04/	04/2018	3	1735

8

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-3D-20180327

Lab 1	Name:	Chemte	ech Cons	ulting Gro	up		Cont	ract:	EPW1	1030				
Lab (Code:	СНМ		Case No.:	Syo	sset Landfi	MA N	0. :			SDG	No.: _	J2116	
Matr:	ix:	WATER					Lab	Sample	ID:	J2116-	-08			
% So	lids:						Date	Recei	ved:	03/28	/2018	3		
Anal	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (μg/L	, mg/L, mg	/kg d	dry weight	or μg)	•	ug/	L				
	CAS N	10.	Analyte	9		Concentrat	ion	Q	Date	Analyz	zed '	Time A	Analyze	ed
	7439-9	97-6	Mercur	У		0.039		J	04/	04/201	8	173	8	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN SY-3-20

S	Y-	3-	20	18	03	27	

II

FORM I - IN
INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consu	ulting Gr	oup		Contract:	EPW1	14030	
Lab Code:	СНМ		Case No.:	Syoss	et Landfi	MA No. :		SDG No.: J	2116
Matrix:	WATER					Lab Sample	e ID:	J2116-11	
% Solids:						Date Recei	.ved:	03/28/2018	
Analytical	Method:	CVAA							
Concentrat	ion Units	(µg/L	, mg/L, m	g/kg dr	y weight	or μg) :	ug/	/L	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1744

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-2R-20180327

Lab N	Name:	Chemte	ch Cons	ulting Gro	1p	Contr	ract:	EPW14	1030			
Lab (Code:	СНМ		Case No.:	Syosset Landfi	- MA No	o. : _		SDG	No.:	J2116	
Matri	ix:	WATER				Lab S	Sample	ID:	J2116-12			
% Sol	lids:	-				Date	Recei	ved:	03/28/20	18		
Analy	ytical	Method:	CVAA									
Conce	entrat:	ion Unit	s (µg/L	, mg/L, mg	/kg dry weight	or μg)	i	ug/l	L			
[CAS 1	No.	Analyte	9	Concentrat	ion	Q	Date	Analyzed	Time	Analyze	F

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1747

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

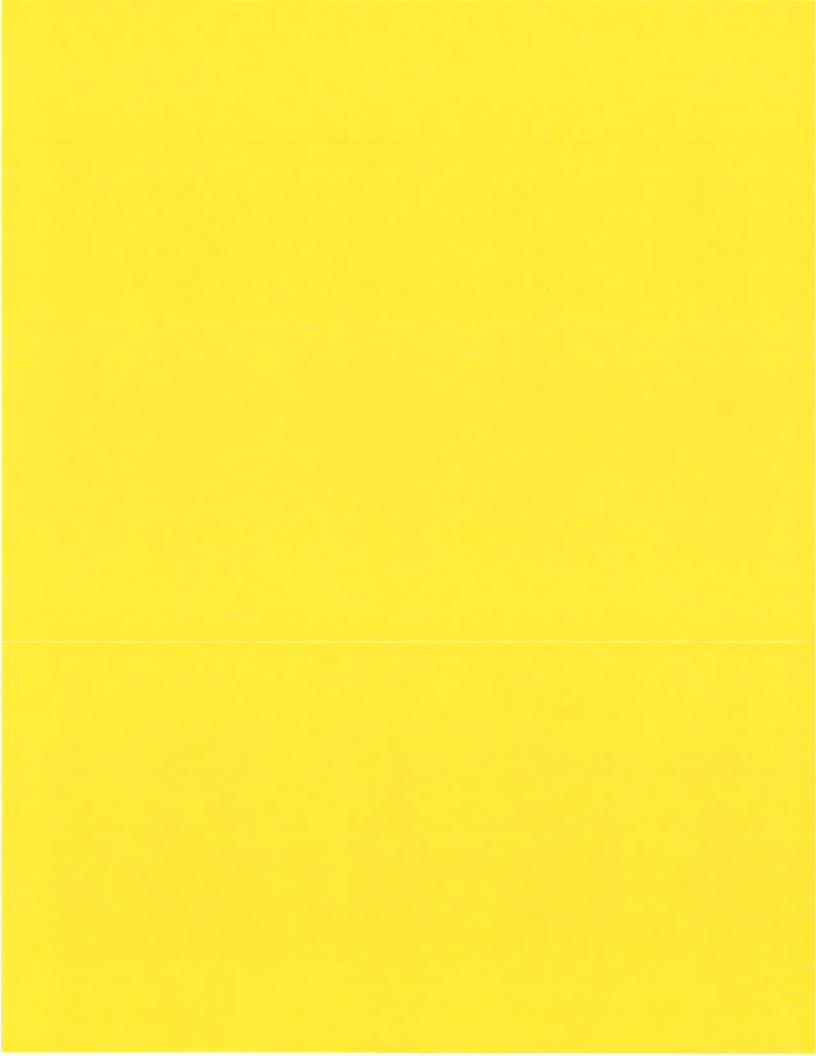
FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-5-20180327	
31-3-20100327	

Lab Name: Chemtech Consulting Group					Cont	ract:	EPW14030					
Lab (Code:	CHM		Case No.	: Sy	osset Landfi	MA N	o. : _		S	DG No.:	J2116
Matri	ix:	WATER					Lab	Sample	ID:	J2116-13	3	
% So]	lids:						Date	Receiv	red:	03/28/2	018	
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L,	mg/kg	dry weight	or μg)	1	ug/L			
	CAS N	lo.	Analyte)		Concentrat	ion	Q	Date	Analyzed	d Time	Analyzed
	7439-9	97-6	Mercur	У		0.039		J	04/0	14/2018	17	49

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN


SY-2D-20180327

INORGANIC ANALYSIS DATA SHEET

Lab N	Jame:	Chemtec	ch Cons	ulting Gro	oup		Cont	ract:	EPW14	1030				
Lab C	Code:	СНМ		Case No.:	Syc	sset Landf	i MA N	o. : _			SDG	No.:	J2116	
Matri	x:	WATER					Lab	Sample	ID:	J2116-	-14			
% Sol	ids:	1.5					Date	Recei	ved:	03/28	/201	8		
Analy	tical	Method:	CVAA											
Conce	ntrati	on Units	s (µg/L	, mg/L, m	g/kg	dry weight	or μg)	:	ug/l	L				
	CAS N	No.	Analyte	9		Concentra	tion	Q	Date	Analy	zed	Time	Analyze	ed

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1751

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$

FORM 1 - IN

SY-3D-20180327

			_		_	_	_		
TNORGANIC	7	Δ	N	JZ	ıτ	YSTS		מדמח	SHEET

Lab 1	Name:	Chemte	ech Consi	lting Gro	oup			Contract: EPW1			PW14030			
Lab (Code:	СНМ		Case No.:	Syo	sset	Landf	MA N	o. :			SDG No	.: J2116	
Matri	ix:	WATER						Lab	Sampl	le II	D: <u>J2116</u>	-01		
% So]	lids:							Date	Rece	eive	d: 03/28	3/2018		
Analy	ytical	Method	: Spect	rophotom	etry									
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	g/kg d	dry w	eight	or µg) :	ì	ıg/L			
	CAS N	No.	Analyte			Cond	centrat	ion	Q	D.	ate Analy	zed Ti	me Analyz	ed
	57-12-	-5	Cyanide)		10.	0		U		04/02/201	.8	1549	

NOTE: Hardness (total) is reported in mg/L

l

EPA SAMPLE NO.

SY-3-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab N	Name:	Chemte	ech Cons	ulting Grou	ıp		Cont	ract:	EPW14	1030			
Lab (Code:	CHM		Case No.:	Syoss	et Landfi	MA N	0. : _			SDG N	o.: J2116	
Matri	ix:	WATER					Lab	Sample	ID:	J2116-	-04		
% Sol	lids:	n	42.5				Date	Recei	ved:	03/28	/2018		
Analy	ytical	Method	: Spec	trophotome	etry								
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg/	/kg dr	y weight	or μg)		ug/l	L			
[CAS N	No.	Analyt	e		Concentrat	ion	Q	Date	Analya	zed T	ime Analyze	d
	57-12-	-5	Cyanid	е	-	L0.0	1 8 800	U	04/	02/201	8	1550	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN

SY-2R-20180327

INORGANIC ANALYSIS DATA SHEET

Lab N	Name:	Chemte	ech Consu	lting Grou	ıp	Cont	ract:	EPW14	030		
Lab (Code:	CHM		Case No.:	Syosset Land	fi MA N	o. :		SDG	No.: J2116	
Matri	x:	WATER				Lab	Sample	ID:	J2116-05		
% Sol	lids:					Date	Recei	ved:	03/28/201	.8	
Analy	tical	Method	: Spect	rophotome	etry						
Conce	entrati	on Uni	ts (µg/L,	mg/L, mg	/kg dry weight	or µg	:	ug/I	1		
[CAS N	10.	Analyte		Concentr	ation	Q	Date	Analyzed	Time Analyze	ed
35	57-12-	-5	Cyanide		3.7		J	04/0	02/2018	1556	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN

SY-5-20180327

INORGANIC ANALYSIS DATA SHEET

Lab 1	Name:	Chemte	ech Cons	ulting Gro	up		Cont	ract:	EPW14	030				
Lab (Code:	СНМ		Case No.:	Syc	sset Landfi	MA N	o. : _			SDG 1	٠	J2116	
Matr	ix:	WATER					Lab :	Sample	ID:	J2116-	06			
% Sol	lids:						Date	Receiv	ved:	03/28/	/2018			
Analy	ytical	Method	: Spec	trophotome	etry									
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg	/kg	dry weight o	or μg)		ug/L					
	CAS N	10.	Analyt	9		Concentrat	ion	Q	Date	Analyz	ed T	ime A	nalyze	d
2	57-12-	-5	Cyanid	е		10.0		U	04/0)2/2018	8	1556	5	

NOTE: Hardness (total) is reported in mg/L

7

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

SY-2D-20180327

Lab Name	: Chemi	tech Consulting Gr	oup C	ontract:	EPW14	030		
Lab Code	: CHM	Case No.	Syosset Landfi M	A No. :		SDG	No.: J2116	
Matrix:	WATE	R	L	ab Sample	e ID:	J2116-07		
% Solids	:		D	ate Rece	ived:	03/28/203	L8	
Analytic	al Metho	d: Spectrophoton	netry					
Concentr	ation Un	its (μ g/L, mg/L, m	g/kg dry weight or	μg) :	ug/L			
CA	S No.	Analyte	Concentratio	n Q	Date	Analyzed	Time Analyzed	1
57-	12-5	Cyanide	10.0	TT	04/0	12/2010	1556	1

NOTE: Hardness (total) is reported in mg/L

Client: Lockwood, Kessler, & Bartlett

Date Collected:

Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-3D-20180327 SDG No.: J2116

Lab Sample ID: J2116-01 Matrix: **WATER**

% Solid:

03/27/18 11:00

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		220		1	0.4	1	2	mg/L		04/04/18 14:41	SM2320 B
Ammonia as N	See DL	18.3	OR	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
											plus G
Bromide	SeeDLI	0.42	J	1	0.066	0.25	0.5	mg/L		03/28/18 13:37	300.0
Chloride	SKEIN	309	OR	1	0.075	0.075	0.15	mg/L		03/28/18 13:37	300.0
Nitrate		0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 13:37	300.0
Sulfate	See DL	68.5	OR	1	0.13	0.375	0.75	mg/L		03/28/18 13:37	300.0
BOD5		2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD		14.5		1	2.43	5	10	mg/L		04/02/18 12:04	SM5220 D
Color		400	15	10	50	50	50	cu		03/29/18 09:15	SM2120 B
Phenolics		0.05 📜	IA	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS		1034		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN		8.1 J		1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
											B or C plus NH3
											G
TOC		4.5		1	80.0	0.25	0.5	mg/L		03/28/18 16:16	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

46 45 977

OR = Over Range

SIZE(, & N = Spiked sample recovery not within control limits

10446 CENCHEM

Client Sample ID:

Report of Analysis

IDLI

03/28/18

Client: Lockwood, Kessler, & Bartlett

Date Collected: 03/27/18 11:00

Project: Syosset Landfill

> SY-3D-20180327DL SDG No .: J2116

Lab Sample ID: J2116-01DL Matrix: WATER

> % Solid: 0

Date Received:

Parameter	Con	c. Q	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	18.7		T/	20	0.68	1	2	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B
Chloride	Sec DLZ 528		ØR.	5	0.38	0.375	0.75	mg/L		03/28/18 18:47	plus G 300.0
Sulfate	40.5		D/	5	0.66	1.9	3.8	mg/L		03/28/18 18:47	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

47 45 977

OR = Over Range

pust28/18

N =Spiked sample recovery not within control limits

19446 OENIOUEM

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

1022

Client: Lockwood, Kessler, & Bartlett

ckwood, Kessler, & Bartlett Date Collected: 03/27/18 11:00

 Project:
 Syosset Landfill
 Date Received:
 03/28/18

 Client Sample ID:
 SY-3D-20180327DL2
 SDG No.:
 J2116

Lab Sample ID: J2116-01DL2 Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	508	K	100	7.5	7.5	15	mg/L		03/28/18 19:18	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Date Collected:

03/27/18 12:00

Client: Project:

Syosset Landfill

Lockwood, Kessler, & Bartlett

Date Received:

03/28/18

Client Sample ID:

SY-3-20180327

SDG No.:

J2116

Lab Sample ID:

J2116-04

Matrix:

WATER

% Solid:

0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		232		1	0.4	1	2	mg/L		04/04/18 14:48	SM2320 B
Ammonia as N	See DL	11.7	OR	1_	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
											plus G
Bromide	Carro	0.28	J	1	0.066	0.25	0.5	mg/L		03/28/18 14:08	300.0
Chloride	See DL	255	OR	1	0.075	0.075	0.15	mg/L		03/28/18 14:08	300.0
Nitrate		0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 14:08	300.0
Sulfate		36.2		I	0.13	0.375	0.75	mg/L		03/28/18 14:08	300.0
BOD5		2	U	1	2	2	2	${\sf mg/L}$		03/29/18 10:40	SM5210 B
COD		15.5		1	2.43	5	10	${\sf mg/L}$		04/02/18 12:07	SM5220 D
Color		300	D	10	50	50	50	cu		03/29/18 09:21	SM2120 B
Phenolics		0.05 U	1 B	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	Cana	859		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN	SeeDL	10.1	OR	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
											B or C plus NH3 G
TOC		5,3		1	0.08	0.25	0.5	mg/L		03/28/18 16:35	SM5310B

Comments

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

ru s/281.8

10116 OENICHEM

40 -4 977

Lab Sample ID:

Report of Analysis

401

Client: Lockwood, Kessler, & Bartlett

J2116-04DL

Date Collected: 03/27/18 12:00

Project: Syosset Landfill

Date Received: 03/28/18

Client Sample ID: SY-3-20180327DL

SDG No.: J2116

Matrix:
% Solid:

0

WATER

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	11.3	p	10	0.34	0.5	1	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B plus G
Chloride TKN	372 10.5 J	B	50 2	3.8 0.19	3.75 0.5	7.5 1	mg/L mg/L	03/29/18 09:15	03/28/18 19:49 03/30/18 11:04	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

SICE (18 N = Spiked sample recovery not within control limits

10116 OENIOUEM

20 44 277

 Client:
 Lockwood, Kessler, & Bartlett
 Date Collected:
 03/27/18 13:45

 Project:
 Syosset Landfill
 Date Received:
 03/28/18

Client Sample ID: SY-2R-20180327 SDG No.: J2116

Lab Sample ID: J2116-05 Matrix: WATER

% Solid:

5

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		114		1	0.4	1	2	mg/L		04/04/18 14:53	SM2320 B
Ammonia as N	Г	0.078	J	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
											plus G
Bromide		0.5	U	1	0.066	0.25	0.5	mg/L		03/28/18 15:10	300.0
Chloride	See DLZ	265	OR	1_	0.075	0.075	0.15	mg/L		03/28/18 15:10	- 300.0
Nitrate	Const	2.5		1	0.027	0.065	0.13	mg/L		03/28/18 15:10	300.0
Sulfate	Secoul	45.5	OR	1	0.13	0.375	0.75	mg/L		03/28/18 15:10	300.0
BOD5		2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD		6.59	J	1	2.43	5	10	mg/L		04/02/18 12:07	SM5220 D
Color		5	U	1	5	5	5	cu		03/29/18 09:26	SM2120 B
Phenolics		0.05 W	1 ゼ	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS		808		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN		0.24 T	Y	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
											B or C plus NH3
											G
TOC		2.2		1	0.08	0.25	0.5	mg/L		03/28/18 16:54	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

SIZE (IVN = Spiked sample recovery not within control limits

10116 OENOUEM

24 -5 277

5041

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/27/18 13:45

Project:

Date Received:

Syosset Landfill

03/28/18

Client Sample ID:

SY-2R-20180327DL

SDG No.:

J2116 WATER

Lab Sample ID:

J2116-05DL

Matrix: % Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride See DLZ	357		2	200	0.15	0.3	mg/L		03/28/18 21:22	300.0
Sulfate	36.6	Ø	2	0.26	0.75	1.5	mg/L		03/28/18 21:22	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

12446 CENICHEM

22 25 277

5012

03/27/18 13:45

03/28/18

J2116

WATER

Client: Lockwood, Kessler, & Bartlett

Project: Syosset Landfill

Client Sample ID: SY-2R-20180327DL2

Lab Sample ID: J2116-05DL2

% Solid:

Date Collected:

Date Received:

SDG No.:

Matrix:

Parameter	Conc.	Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	461	D	100 7.5	7.5	15	mg/L		03/29/18 10:36	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

LUSIZFI.8

N =Spiked sample recovery not within control limits

10446 OENIOHEM

22 -1 277

Client:

Report of Analysis

Date Collected: 03/27/18 12:15

Project: Syosset Landfill Date Received: 03/28/18

Client Sample ID: SY-5-20180327 SDG No.: J2116

Lockwood, Kessler, & Bartlett

Lab Sample ID: J2116-06 Matrix: WATER

% Solid:

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	221		1	0.4	1	2	mg/L		04/04/18 14:56	SM2320 B
Ammonia as N	11.2	OR	-1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
										plus G
Bromide	0.28	J	1	0.066	0.25	0.5	mg/L		03/28/18 14:39	300.0
Chloride See DL2	256	OR	-1	0.075	0.075	0.15	mg/L		03/28/18 14:39	300.0
Nitrate	0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 14:39	300.0
Sulfate See Del	37.6	OR	1	0.13	0.375	0.75	mg/L,		03/28/18 14:39	300.0
BOD5	2	U	1	2	2	2	${\sf mg/L}$		03/29/18 10:40	SM5210 B
COD	12.5		1	2.43	5	10	mg/L		04/02/18 12:08	SM5220 D
Color	300	D	10	50	50	50	cu		03/29/18 09:32	SM2120 B
Phenolics	0.05 👢	JB	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	815		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN See DU	10.7	OR	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
										B or C plus NH3
										G
TOC	4.8		1	0.08	0.25	0.5	mg/L		03/28/18 17:13	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

New 5/28/18

60L1

Client: Lockwood, Kessler, & Bartlett Date Collected:

03/27/18 12:15

Project:

Syosset Landfill

Date Received:

03/28/18

Client Sample ID:

SY-5-20180327DL

SDG No.:

J2116

Lab Sample ID:

J2116-06DL

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	11.1	P	10	0.34	0.5	ar .	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B
CORNIZ										plus G
Chloride See 002	308	OR	2	0.15	0.15	0.3	mg/L		03/28/18 20:20	300.0
Sulfate	35.1	Ø	2	0.26	0.75	1.5	mg/L		03/28/18 20:20	300.0
TKN	10.8	B	2	0.19	0.5	1	mg/L	03/29/18 09:15	03/30/18 11:04	SM4500-N Org
							_			B or C plus NH3
										G

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

12116 OENICHEM

9E _£ 977

6012

Client: Lockwood, Kessler, & Bartlett

Date Collected 03/27/18 12:15

Date Received:

SDG No.:

% Solid:

Project:

Syosset Landfill

03/28/18

Client Sample ID:

SY-5-20180327DL2

J2116

Lab Sample ID:

J2116-06DL2

Matrix:

WATER 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	365	13	50	3.8	3.75	7.5	mg/L		03/28/18 20:51	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

Slaffig N = Spiked sample recovery not within control limits

19446 OENIQUEM

. 00 -4 077

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/27/18 15:10

Project:

Syosset Landfill

Date Received:

03/28/18

Client Sample ID:

SY-2D-20180327

SDG No.:

J2116 WATER

Lab Sample ID:

J2116-07

Matrix:

%	Solid:		0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	47.8		1	0.4	1	2	mg/L		04/04/18 15:01	SM2320 B
Ammonia as N	0.11		1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	${\sf mg/L}$		03/28/18 15:41	300.0
Chloride See Du	242	OR	1	0.075	0.075	0.15	mg/L		03/28/18 15:41	300.0
Nitrate	1.4		1	0.027	0.065	0.13	mg/L		03/28/18 15:41	300.0
Sulfate	15.7		1	0.13	0.375	0.75	mg/L		03/28/18 15:41	300.0
BOD5	2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD	15.5		1	2.43	5	10	mg/L		04/02/18 12:08	SM5220 D
Color	20		1	5	5	5	cu		03/29/18 09:38	SM2120 B
Phenolics	0.05 W	ブ ひ	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	779		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN	0.26 J	Y	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
										B or C plus NH3
										G
TOC	2.2		I	0.08	0.25	0.5	mg/L		03/28/18 17:31	SM5310B

Comments

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

N =Spiked sample recovery not within control limits

nu strativ

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett

Date Collected: 03/27/18 15:10

Project: Syosset Landfill Date Received: 03/28/18
Client Sample ID: SY-2D-20180327DL SDG No.: J2116

Lab Sample ID: J2116-07DL Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	461	D	100	7.5	7.5	15	mg/L		03/29/18 11:07	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N=Spiked sample recovery not within control limits

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: J2136

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: May 28, 2018

	VOCs/SVC	Cs/Cyanide/Wet Chemistry	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	PK-10D-20180328	J2136-01	Water
1MSβ	PK-10D-20180328MS	J2136-01MS	Water
1MSDβ	PK-10D-20180328MSD	J2136-01MSD	Water
2	PK-10S-20180328	J2136-02	Water
3	PK-10I-20180328	J2136-03	Water
3MS†	PK-10I-20180328MS	J2136-03MS	Water
3MSD†	PK-10I-20180328MSD	J2136-03MSD	Water
6*	SY-6-20180328	J2136-06	Water
7*	TB-20180328	J2136-07	Water

^{* -} VOC only β - Ammonia, COD and TKN only † - Anions and Nitrate only

	Total &	Dissolved Metals/Mercury	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1T	PK-10D-20180328	J2136-01	Water
2T	PK-10S-20180328	J2136-02	Water
3T	PK-10I-20180328	J2136-03	Water
3TMS*	PK-10I-20180328MS	J2136-03MS	Water
3TDUP*	PK-10I-20180328DUP	J2136-03DUP	Water
8D	PK-10D-20180328	J2136-08	Water
9D	PK-10S-20180328	J2136-09	Water
10D	PK-10I-20180328	J2136-10	Water

T - Total Metals & Mercury & Cyanide

A Data Usability Summary Review was performed on the analytical data for seven water samples and one aqueous trip blank sample collected on March 28, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

D - Dissolved Metals & Mercury only

^{* -} Mercury only

Specific method references are as follows:

Method References <u>Analysis</u> **VOCs** USEPA SW846 8260C **SVOCs** USEPA SW846 8270D SIM Metals/Mercury/Cn USEPA CLP Method ISM02.3 Alkalinity Standard Method SM2320 B Ammonia (as N) Standard Method SM4500-NH3 Bromide USEPA Method 300.0 Chloride USEPA Method 300.0 Nitrate USEPA Method 300.0 Sulfate USEPA Method 300.0 BOD5 Standard Method SM5210 B COD Standard Method SM5220D Color Standard Method SM2120 B Phenolics USEPA SW-846 Method 9065 Total Dissolved Solids Standard Method SM2540C Total Kieldahl Nitrogen Standard Method SM4500-N Org B or C Total Organic Carbon Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

Holding times and sample preservation

- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for

compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Samples

Method Blank

• The method blanks were free of contamination.

Field Blank

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	1, 3
TB-20180328	None - ND	-	/es	#

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	12	552	5

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		_
PBW001 (Total)	Copper	2.0	U	1T, 3T
	Potassium	80.4	None	All ND or >10X
	Zinc	3.3	U	1T-3T
PBW001 (Dissolved)	Potassium	186	None	All ND or >10X
PBW003	Mercury	0.045	U	1T-3T, 9D-10D

Field Blank

The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	141		8

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Selenium	24%/OK	J/UJ	All Samples

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

· Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		•
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	-

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
3	Sulfate	79%/OK	J/UJ	All Samples
	Chloride	-2,767%/OK	None	4X Rule Applies

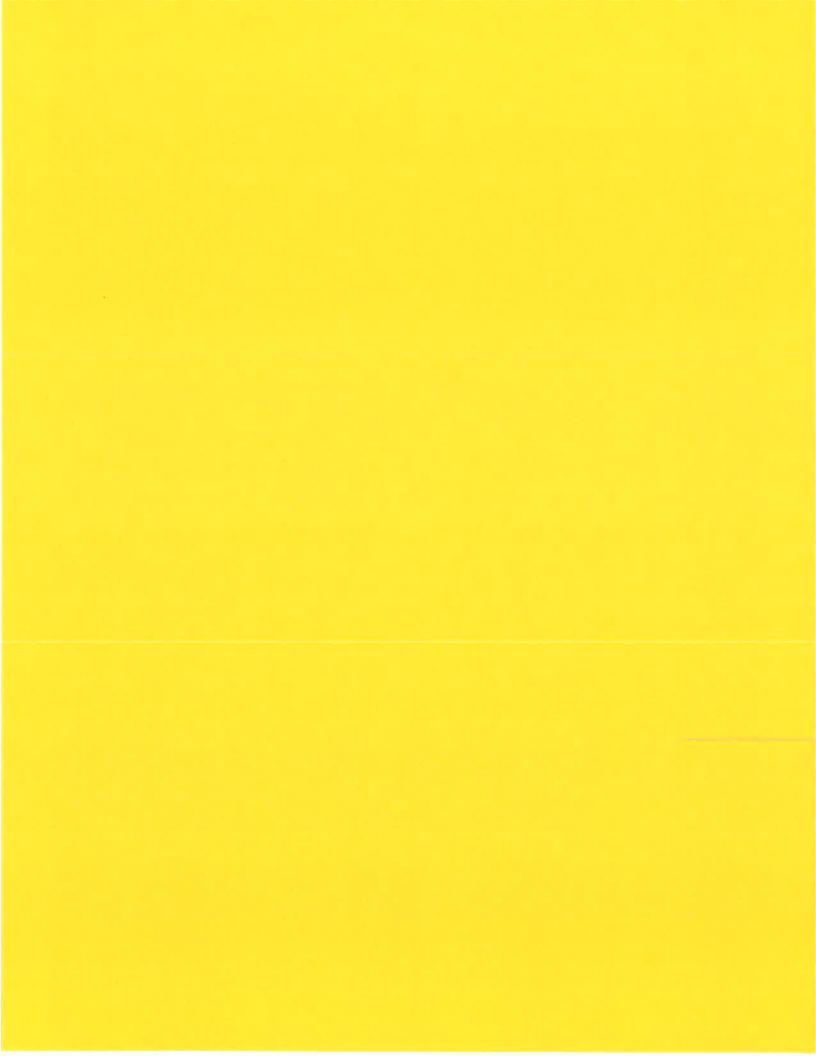
Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, and/or sulfate and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision


Field duplicate samples were not collected.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 5/29/18 Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 03/28/18 PK-10D-20180328 Client Sample ID: SDG No.: J2136 Lab Sample ID: J2136-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 5 Sample Wt/Vol: Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qe Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047440.D 1 04/07/18 16:15 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.68	× ×	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 47	N	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	I	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67 - 66-3	Chloroform	3.2		0,2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.23	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	I	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

uL

03/28/18

03/28/18

J2136

Water

100

5000

VOCMS Group1

Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

Date Received:

SDG No.:

% Moisture:

Final Vol:

Test:

Matrix:

Client: Lockwood, Kessler, & Bartlett

Syosset Landfill

PK-10D-20180328 Client Sample ID:

Lab Sample ID: J2136-01

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: $\mathfrak{m} L$

Soil Aliquot Vol:

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed

 $\mathfrak{u} L$

Prep Batch ID

VN047440.D 1 04/07/18 16:15 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	0.59	J	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	I	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0,2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53.2		61 - 141		106%	SPK: 50
1868-53-7	Dibromofluoromethane	50.8		69 - 133		102%	SPK: 50
2037-26-5	Toluene-d8	52.4		65 - 126		105%	SPK: 50
460-00-4	4-Bromofluorobenzene	51.4		58 - 135		103%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1148510	7.67				
540-36-3	1,4-Difluorobenzene	1882150	8.59				
3114-55-4	Chlorobenzene-d5	1765970	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	734247	13.35				

Client:

Project:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected: 03/28/18

Syosset Landfill Date Received: 03/28/18

Client Sample ID: PK-10S-20180328 SDG No.: J2136

Lockwood, Kessler, & Bartlett

Lab Sample ID: J2136-02 Matrix: Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047441.D 04/07/18 16:40 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 ルブ	¥	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0,2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	l,l,l-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	I	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	I	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

1

uL

Client: Lockwood, Kessler, & Bartlett

Project: Syosset Landfill

Client Sample ID: PK-10S-20180328

Lab Sample ID: J2136-02

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL Final Vol: 5000

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch:

Dilution:

Prep Date

Date Analyzed

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

Prep Batch ID

VN047441.D

3

04/07/18 16:40

VN040718

03/28/18

03/28/18

J2136

Water

100

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units	
79-00-5	1,1,2-Trichloroethane	- <u>1</u>	U	0.2	0.2	1	ug/L	
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L	
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L	
106-93-4	1,2-Dibromoethane	1	U	0.2	0,2	1	ug/L	
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L	
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L	
100-41-4	Ethyl Benzene	10	U	0.2	0.2	1	ug/L	
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L	
95-47-6	o-Xylene	1-	U	0.2	0.2	1	ug/L	
100-42-5	Styrene	Ī	U	0.2	0.2	1	ug/L	
75-25-2	Bromoform	-1	U	0.2	0.2	1	ug/L	
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L	
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L	
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L	
106-46-7	1,4-Dichlorobenzene	Ï	U	0.2	0.2	1	ug/L	
95-50-1	1,2-Dichlorobenzene	12	U	0.2	0.2	1	ug/L	
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L	
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L	
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L	
SURROGATES								
17060-07-0	1,2-Dichloroethane-d4	54.6		61 - 141		109%	SPK: 50	
1868-53-7	Dibromofluoromethane	51.9		69 - 133		104%	SPK: 50	
2037-26-5	Toluene-d8	52.8		65 - 126		106%	SPK: 50	
460-00-4	4-Bromofluorobenzene	53,7		58 - 135		107%	SPK: 50	
INTERNAL STA								
363-72-4	Pentafluorobenzene	1141320	7.67					
540-36-3	1,4-Difluorobenzene	1866850	8.59					
3114-55-4	Chlorobenzene-d5	1789630	11.41					
3855-82-1	1,4-Dichlorobenzene-d4	773552	13.35					

Client:

Report of Analysis

Lockwood, Kessler, & Bartlett Date Collected: 03/28/18

Project: Syosset Landfill Date Received: 03/28/18

 Client Sample ID:
 PK-10I-20180328
 SDG No.:
 J2136

 Lab Sample ID:
 J2136-03
 Matrix:
 Water

Analytical Method: SW8260 % Moisture: 100

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0,25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047442.D 1 04/07/18 17:05 VN040718

CAS Number	Parameter	Parameter Conc. Qualifier MDL		LOD	LOQ / CRQL	Units	
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.64 U	X	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 uJ	B	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0,2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79 -2 0-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93 - 3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75 - 27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	l	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	l	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

uL

03/28/18

03/28/18

J2136

Water

100

Client:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Date Collected:

Date Received:

SDG No.:

% Moisture:

Matrix:

Lockwood, Kessler, & Bartlett

Project: Syosset Landfill

Client Sample ID: PK-10I-20180328

Lab Sample ID: J2136-03

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL Final Vol: 5000

Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047442.D 1 04/07/18 17:05 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	2,1		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	Ĩ	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.7		61 - 141		109%	SPK: 50
1868-53-7	Dibromofluoromethane	52.4		69 - 133		105%	SPK: 50
2037-26-5	Toluene-d8	52.1		65 - 126		104%	SPK: 50
460-00-4	4-Bromofluorobenzene	52.5		58 - 135		105%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1160090	7.66				
540-36-3	1,4-Difluorobenzene	1922180	8.59				
3114-55-4	Chlorobenzene-d5	1824650	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	744266	13.35				

GC Column:

RXI-624

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected 03/28/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-6-20180328 SDG No.: J2136 Lab Sample ID: J2136-06 Water Matrix: Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 иL Soil Aliquot Vol: uL Test: VOCMS Group1

Level:

LOW

ID: 0.25

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047500.D 1 04/10/18 18:03 VN041018

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	I	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 UJ	H	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	l, l-Dichloroethene	1	U	0.2	0.2	I	ug/L
67-64-1	Acetone	4:4	J	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1,3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	I, I, I-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79 - 01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78 - 87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	I	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

VOCMS Group1

Soil Aliquot Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-6-20180328 SDG No.: J2136 Lab Sample ID: J2136-06 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: $\mathfrak{m} L$ Final Vol: 5000 uL

Test:

GC Column: RXI-624 ID: 0.25 Level: LOW

иL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047500.D 1 04/10/18 18:03 VN041018

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	l	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	I	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	l	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							-
17060-07-0	1,2-Dichloroethane-d4	35.5		61 - 141		71%	SPK: 50
1868-53-7	Dibromofluoromethane	38.9		69 - 133		78%	SPK: 50
2037-26-5	Toluene-d8	38.6		65 - 126		77%	SPK: 50
460-00-4	4-Bromofluorobenzene	30.3		58 - 135		61%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	495673	7.67				
540-36-3	1,4-Difluorobenzene	770230	8.59				
3114-55-4	Chlorobenzene-d5	628445	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	199351	13.35				

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

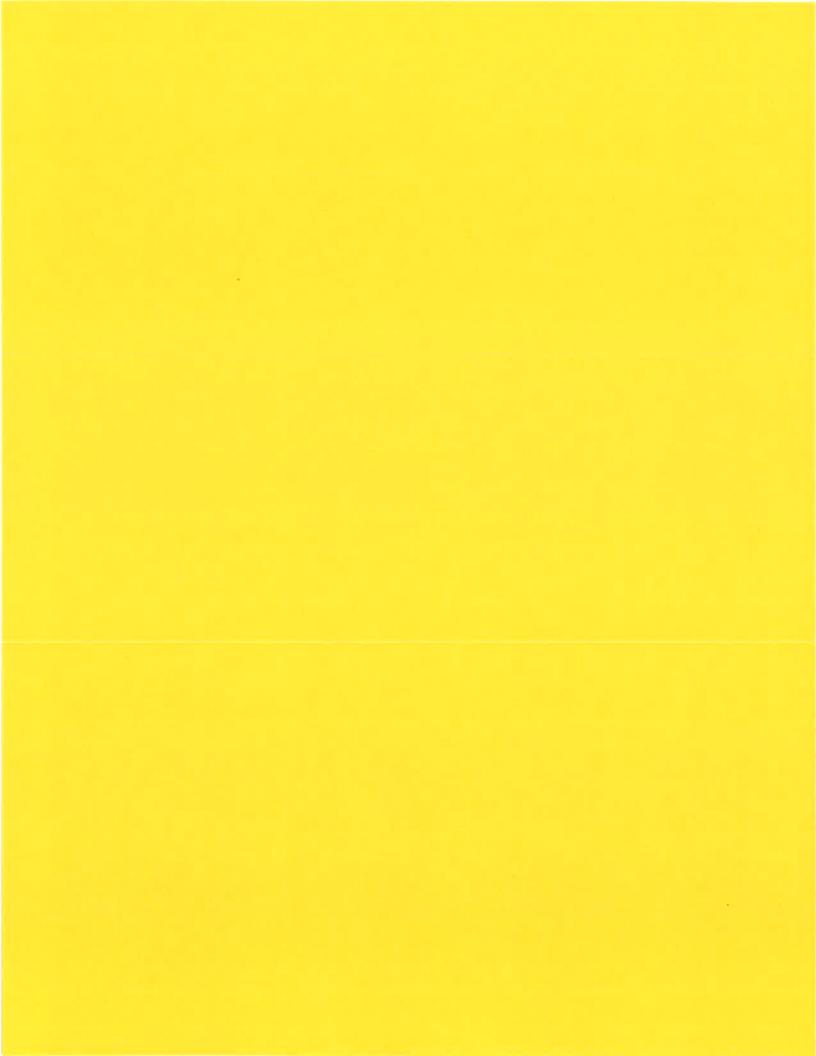
Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: TB-20180328 SDG No.: J2136 Lab Sample ID: J2136-07 Matrix: Water Analytical Method: SW8260 % Moisture: 100 5 Sample Wt/Vol: Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047437.D 1 04/07/18 15:01 VN040718

CAS Number	Parameter	Parameter Conc. Qua		MDL	LOD	LOQ / CRQL	Units	
TARGETS								
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L	
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L	
75-01-4	Vinyl Chloride	I	U	0.2	0.2	1	ug/L	
74-83-9	Bromomethane	1 WJ	J.F	0.2	0.2	1	ug/L	
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L	
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L	
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L	
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L	
67-64-1	Acetone	5	U	0.5	1	5	ug/L	
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L	
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L	
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L	
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L	
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L	
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L	
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L	
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L	
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L	
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L	
74 - 97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L	
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L	
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L	
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L	
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L	
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L	
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L	
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L	
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L	
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L	
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L	
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L	
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L	

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922


Report of Analysis

7

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: TB-20180328 SDG No.: J2136 Lab Sample ID: J2136-07 Matrix: Water Analytical Method: SW8260 % Moisture: 100 5 Sample Wt/Vol: Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047437.D 1 04/07/18 15:01 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	ï	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	Ĩ	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	l	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							2,
17060-07-0	1,2-Dichloroethane-d4	53.4		61 - 141		107%	SPK: 50
1868-53-7	Dibromofluoromethane	51.8		69 - 133		104%	SPK: 50
2037-26-5	Toluene-d8	52.6		65 - 126		105%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		58 - 135		106%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1174650	7.67				
540-36-3	1,4-Difluorobenzene	1911260	8.59				
3114-55-4	Chlorobenzene-d5	1821450	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	778053	13.35				

PK-10D

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

D-20180328		1
	1	- 1

Lab Name:	Chemtech	Consulting	Group		Contract: El	PW14030			
Lab Code:	СНМ	Case	No.:	Syosset Landf	i MA No.:		SDG No.:	J2136	
Matrix: _	WATER				Lab Sample I	D: J2136-	01		
₹ Solids:					Date Receive	d: <u>03/28</u> ,	/2018		
Analytical i	Method:	ICP-AES							
Concentrati	on Units	(ug/L. mg/L	. ma/1	ka drv weight	or ua) 😁 1	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/11/2018	1344
7440-36-0	Antimony	60.0	U	04/11/2018	1344
7440-38-2	Arsenic	3.0	J	04/11/2018	1344
7440-39-3	Barium	34.2	J	04/11/2018	1344
7440-41-7	Beryllium	5.0	U	04/11/2018	1344
7440-43-9	Cadmium	5.0	U	04/11/2018	1344
7440-70-2	Calcium	24000		04/11/2018	1344
7440-47-3	Chromium	1.2	J	04/11/2018	1344
7440-48-4	Cobalt	3.1	J	04/11/2018	1344
7440-50-8	Copper 25.0	3.0 U	J.T.	04/11/2018	1344
7439-89-6	Iron	100	U	04/11/2018	1344
7439-92-1	Lead	10.0	U	04/11/2018	1344
7439-95-4	Magnesium	7990		04/11/2018	1344
7439-96-5	Manganese	24.9		04/11/2018	1344
7440-02-0	Nickel	12.3	J	04/11/2018	1344
7440-09-7	Potassium	5000	U	04/11/2018	1344
7782-49-2	Selenium	35.0 kJ	N	04/11/2018	1344
7440-22-4	Silver	10.0	U	04/11/2018	1344
7440-23-5	Sodium	55900		04/11/2018	1344
7440-28-0	Thallium	25.0	U	04/11/2018	1344
7440-62-2	Vanadium	50.0	U	04/11/2018	1344
7440-66-6	Zinc 60.0	12.5 L	J.Br	04/11/2018	1344
Hardness	Hardness (total)	92.8		04/11/2018	1344

FORM 1 - IN PK-10S-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

		_
\sim	•	τ.
	_	

Lab Name: Chemte		Consulting	Contract:	EPW14030					
Lab Code:	СНМ	Case	No.:	Syosset Landfi	MA No. :			SDG No.:	J2136
Matrix:	WATER				Lab Sample	ID:	J2136-	-02	
% Solids:	8				Date Recei	ved:	03/28	/2018	
Analytical	Method:	ICP-AES							
Concentrati	on Units	(µg/L, mg/	L, mg/	kg dry weight o	or ug) :	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	10.7	J	04/11/2018	1348
7440-36-0	Antimony	60.0	U	04/11/2018	1348
7440-38-2	Arsenic	10.0	U	04/11/2018	1348
7440-39-3	Barium	14.9	J	04/11/2018	1348
7440-41-7	Beryllium	5.0	U	04/11/2018	1348
7440-43-9	Cadmium	5.0	U	04/11/2018	1348
7440-70-2	Calcium	12000		04/11/2018	1348
7440-47-3	Chromium	1.4	J	04/11/2018	1348
7440-48-4	Cobalt	50.0	Ū	04/11/2018	1348
7440-50-8	Copper	25.0	Ū	04/11/2018	1348
7439-89-6	Iron	17.9	J	04/11/2018	1348
7439-92-1	Lead	2.2	J	04/11/2018	1348
7439-95-4	Magnesium	2660	J	04/11/2018	1348
7439-96-5	Manganese	15.0	Ū	04/11/2018	1348
7440-02-0	Nickel	3.7	J	04/11/2018	1348
7440-09-7	Potassium	5000	Ū	04/11/2018	1348
7782-49-2	Selenium	35.0 u 1	10	04/11/2018	1348
7440-22-4	Silver	10.0	U	04/11/2018	1348
7440-23-5	Sodium	6250		04/11/2018	1348
7440-28-0	Thallium	25.0	U	04/11/2018	1348
7440-62-2	Vanadium	50.0	U	04/11/2018	1348
7440-66-6	Zinc 60.0	15.5 U	1	04/11/2018	1348
Hardness	Hardness (total)	40.9		04/11/2018	1348

PK-10I-20180328

31

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	17.6	J	04/11/2018	1352
7440-36-0	Antimony	60.0	U	04/11/2018	1352
7440-38-2	Arsenic	10.0	U	04/11/2018	1352
7440-39-3	Barium	60.1	J	04/11/2018	1352
7440-41-7	Beryllium	5.0	U	04/11/2018	1352
7440-43-9	Cadmium	5.0	U	04/11/2018	1352
7440-70-2	Calcium	50000		04/11/2018	1352
7440-47-3	Chromium	10.0	U	04/11/2018	1352
7440-48-4	Cobalt	98.0		04/11/2018	1352
7440-50-8	Copper	2.5 25.0 U	Jar.	04/11/2018	1352
7439-89-6	Iron	100	U	04/11/2018	1352
7439-92-1	Lead	10.0	U	04/11/2018	1352
7439-95-4	Magnesium	14900		04/11/2018	1352
7439-96-5	Manganese	1530		04/11/2018	1352
7440-02-0	Nickel	3.6	J	04/11/2018	1352
7440-09-7	Potassium	16400		04/11/2018	1352
7782-49-2	Selenium	35.0 uj	V	04/11/2018	1352
7440-22-4	Silver	10.0	Ū	04/11/2018	1352
7440-23-5	Sodium	316000		04/11/2018	1352
7440-28-0	Thallium	3.7	J	04/11/2018	1352
7440-62-2	Vanadium	50.0	U	04/11/2018	1352
7440-66-6	Zinc 60.0	9.6 U	No.	04/11/2018	1352
Hardness	Hardness (total)	186	Ì	04/11/2018	1352

RD

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

PK-10D-2018032	8
----------------	---

Lab Name: Chemtech Consulting Group Contract: EPW14030

Lab Code: CHM Case No.: Syosset Landfi MA No.: SDG No.: J2136

Matrix: WATER Lab Sample ID: J2136-08

Solids: Date Received: 03/28/2018

Analytical Method: ICP-AES

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	9.7	J	04/11/2018	1441
7440-36-0	Antimony	60.0	Ū	04/11/2018	1441
7440-38-2	Arsenic	10.0	U	04/11/2018	1441
7440-39-3	Barium	32.5	J	04/11/2018	1441
7440-41-7	Beryllium	5.0	U	04/11/2018	1441
7440-43-9	Cadmium	5.0	Ū	04/11/2018	1441
7440-70-2	Calcium	23200		04/11/2018	1441
7440-47-3	Chromium	10.0	Ū	04/11/2018	1441
7440-48-4	Cobalt	2.7	J	04/11/2018	1441
7440-50-8	Copper	2.8	J	04/11/2018	1441
7439-89-6	Iron	100	U	04/11/2018	1441
7439-92-1	Lead	1.9	J	04/11/2018	1441
7439-95-4	Magnesium	7750		04/11/2018	1441
7439-96-5	Manganese	24.6		04/11/2018	1441
7440-02-0	Nickel	10.9	J	04/11/2018	1441
7440-09-7	Potassium	5000	U	04/11/2018	1441
7782-49-2	Selenium	35.0 uj	II.	04/11/2018	1441
7440-22-4	Silver	10.0	U	04/11/2018	1441
7440-23-5	Sodium	53600		04/11/2018	1441
7440-28-0	Thallium	25.0	Ū	04/11/2018	1441
7440-62-2	Vanadium	50.0	U	04/11/2018	1441
7440-66-6	Zinc	13.5	J	04/11/2018	1441

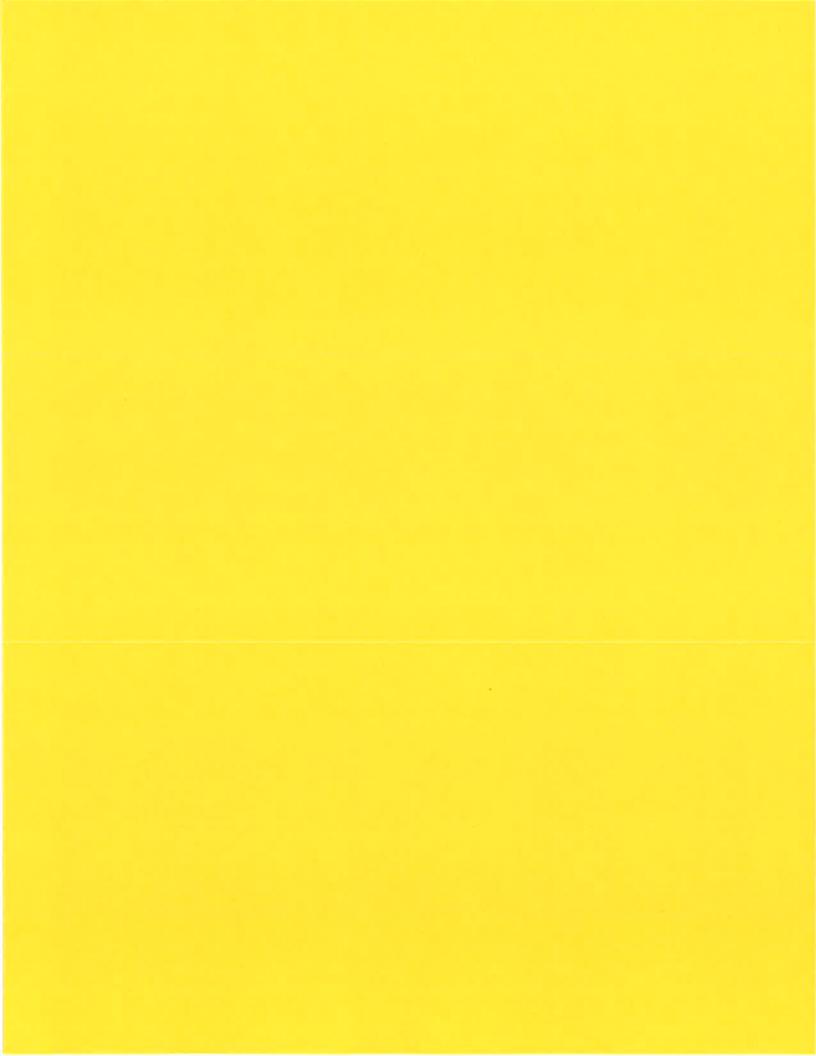
PK-10S-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: J2136 Lab Code: CHM Matrix: WATER Lab Sample ID: J2136-09 Solids: Date Received: 03/28/2018 Analytical Method: ICP-AES

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/11/2018	1542
7440-36-0	Antimony	60.0	U	04/11/2018	1542
7440-38-2	Arsenic	10.0	U	04/11/2018	1542
7440-39-3	Barium	13.7	J	04/11/2018	1542
7440-41-7	Beryllium	5.0	U	04/11/2018	1542
7440-43-9	Cadmium	5.0	U	04/11/2018	1542
7440-70-2	Calcium	11700		04/11/2018	1542
7440-47-3	Chromium	10.0	U	04/11/2018	1542
7440-48-4	Cobalt	50.0	U	04/11/2018	1542
7440-50-8	Copper	2.5	J	04/11/2018	1542
7439-89-6	Iron	100	U	04/11/2018	1542
7439-92-1	Lead	10.0	U	04/11/2018	1542
7439-95-4	Magnesium	2700	J	04/11/2018	1542
7439-96-5	Manganese	15.0	U	04/11/2018	1542
7440-02-0	Nickel	2.7	J	04/11/2018	1542
7440-09-7	Potassium	5000	U	04/11/2018	1542
7782-49-2	Selenium	35.0 UJ	JJ.	04/11/2018	1542
7440-22-4	Silver	10.0	U	04/11/2018	1542
7440-23-5	Sodium	5920		04/11/2018	1542
7440-28-0	Thallium	25.0	U	04/11/2018	1542
7440-62-2	Vanadium	50.0	U	04/11/2018	1542
7440-66-6	Zinc	12.7	J	04/11/2018	1542


PK-10I-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

OD

Lab Name:	Chemtech	Consulting	Group)	Contract:	EPW14	EPW14030					
Lab Code:	СНМ	Case N	io.:	Syosset Landf	MA No.		SDG No.:J2136					
Matrix:	WATER				Lab Sample	ID:	J2136-10					
⊰ Solids:					Date Recei	ved:	03/28/2018					
Analytical	Method:	ICP-AES										
Concentrati	on Units	(µg/L, mg/L,	mg/	kg dry weight	or µg) :	ug/L						

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	20.4	J	04/11/2018	1445
7440-36-0	Antimony	60.0	Ū	04/11/2018	1445
7440-38-2	Arsenic	10.0	U	04/11/2018	1445
7440-39-3	Barium	59.7	J	04/11/2018	1445
7440-41-7	Beryllium	5.0	U	04/11/2018	1445
7440-43-9	Cadmium	5.0	U	04/11/2018	1445
7440-70-2	Calcium	50000		04/11/2018	1445
7440-47-3	Chromium	10.0	U	04/11/2018	1445
7440-48-4	Cobalt	92.1		04/11/2018	1445
7440-50-8	Copper	25.0	U	04/11/2018	1445
7439-89-6	Iron	100	U	04/11/2018	1445
7439-92-1	Lead	10.0	U	04/11/2018	1445
7439-95-4	Magnesium	15000		04/11/2018	1445
7439-96-5	Manganese	1550		04/11/2018	1445
7440-02-0	Nickel	2.8	J	04/11/2018	1445
7440-09-7	Potassium	16200		04/11/2018	1445
7782-49-2	Selenium	35.0 WJ	J.	04/11/2018	1445
7440-22-4	Silver	10.0	U	04/11/2018	1445
7440-23-5	Sodium	313000		04/11/2018	1445
7440-28-0	Thallium	25.0	U	04/11/2018	1445
7440-62-2	Vanadium	50.0	U	04/11/2018	1445
7440-66-6	Zinc	13.5	J	04/11/2018	1445

T

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

1 - IN PK-10D-20180328

Lab N	Name:	Chemt	ech Cons	ulting Gro	Cont	ract:						
Lab C	Code:	СНМ		Case No.:	Syosset Landf	i MA N	۰. : _			SDG No	J2136	
Matrix:		WATER					Sample	ID:	J2136-	-01	**************************************	
% Sol	lids:					Date	Recei	ved:	03/28	/2018		
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/I	L, mg/L, mg	/kg dry weight	or μg)	:	ug/	L			
	CAS N	lo.	Analyt	e	Concentra	tion	Q	Date	Analyz	zed Ti	me Analyzed	
Ī	7439-9	97-6	Mercur	У	0.047 L		1	04/	04/201	8	1800	

NOTE: Hardness (total) is reported in $mg/{\rm L}$

FORM 1 - IN

PK-10S-20180328

INORGANIC	ANALYSTS	DATA	SHEET

Lab 1	Name:	Chemte	cech Consulting Group					ract:	EPW14	030		
Lab (Code:	СНМ		Case No.:	sy	osset Landfi	MA N	o. : _		SDG	No.: J2136	
Matr	Matrix: WATER Solids:						Lab	Sample	ID:	J2136-02		
% So.	lids:						Date Recei		ved: 03/28/2018		.8	
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg	dry weight o	r μg)		ug/I			
	CAS N	10.	Analyte	e		Concentrat	ion	Q	Date	Analyzed	Time Analyzed]
	7439-9	97-6	Mercur	У		0.040 0.2	u	1/	04/	04/2018	1803	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name: Chemtech Consulting Group							Cont	ract:	EPW14030						
Lab C	Lab Code: CHM Case No.:				Syc	sset Landf	i MA N	o. : _			SDG	No.:	J2136		
Matri	.x:	WATER						Lab	Sample	ID:	J2136-	-03			
% Sol	ids:							Date	Recei	ved:	03/28	/201	8		
Analy	tical	Method	: CVAA												
Conce	ntrati	on Uni	ts (µg/L	, mg/	L, mg/	/kg	dry weight	or µg) :	ug/	<u> </u>				
[CAS N	10.	Analyte	e			Concentra	tion	Q	Date	Analyz	zed	Time 2	Analyze	d
Ī	7439-9	97-6	Mercur	У			0.44 LL			04/	04/201	8	180)5	

NOTE: Hardness (total) is reported in mg/L

80

EPA SAMPLE NO.

PK-10D-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

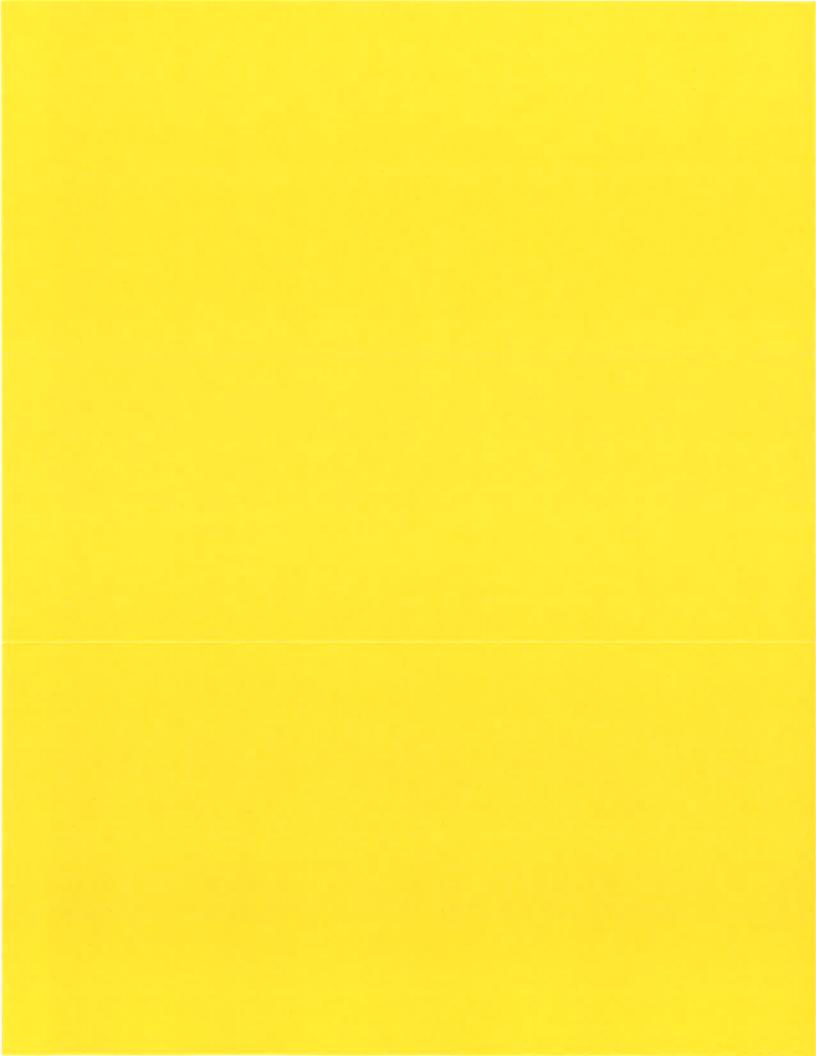
Lab N	lame:	Chemte	ch Cons	ulting (Group		Cont	ract:	EPW14030					
Lab C	Lab Code: CHM			Case No	s.: Sy	osset Landfi	MA N	o. : _			SDG No	·:_	J2136	
Matri	.x:	WATER					Lab	Sample	ID:	J2136-	08			
% Sol	ids:						Date	Recei	ved:	03/28/	/2018			
Analy	tical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/L,	mg/kg	dry weight	or μg)	ŝ	ug/I					
[CAS 1	No.	Analyte	÷		Concentrat	tion	Q	Date	Analyz	ed Ti	me A	nalyze	d
f	7439-	97-6	Mercur	7		0.20		TT	04/	04/2019	R	181	2	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

PK-10S-20180328

Lab Name: Chemtech Consulting Group Contract: EPW14030 Lab Code: CHM Case No.: Syosset Landfi MA No.: SDG No.: J2136 WATER Matrix: Lab Sample ID: J2136-09 % Solids: Date Received: 03/28/2018 Analytical Method: CVAA Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L CAS No. Analyte Concentration Date Analyzed Time Analyzed 7439-97-6 0.034 0.2 W Mercury 04/04/2018 1814


NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE	NO.	OD
PK-10I-20180	0328	

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab N	Tame:	Chemte	ech Cons	ulting	Grou	up		Cont	ract:	EPW14	1030	
Lab C	Code:	СНМ		Case	No.:	Syos	sset Landf	i ma n	o. : _		SDG	No.: J2136
Matri	.x:	WATER						Lab	Sample	ID:	J2136-10	
% Sol	ids:							Date	Receiv	red:	03/28/20	18
Analy	tical	Method	: CVAA									
Conce	ntrati	on Uni	ts (µg/I	, mg/1	L, mg/	/kg d	lry weight	or µg) :	ug/I	<u> </u>	
Ī	CAS 1	No.	Analyt	e			Concentra	tion	Q	Date	Analyzed	Time Analyzed
Ī	7439-	97-6	Mercur	v			0.37 44			04/	04/2018	1816

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN

PK-10D-20180328

INORGANIC ANALYSIS DATA SHEET

Lab 1	Name:	Chemte	ech Consu	lting G	roup		Conti	act:	EPW14	030			
Lab (Code:	СНМ		Case No	.: sy	osset Landf	i MA No	. : _			SDG No.	: J2136	
Matri	ix:	WATER					Lab S	Sample	ID:	J2136-	01		
% Sol	lids:						Date	Recei	ved:	03/28/	2018		
Analy	ytical	Method	: Spect	rophot	ometry	/							
Conce	entrati	on Uni	ts (µg/L	mg/L,	mg/kg	dry weight	or μg)	•	ug/I				
į	CAS N	lo.	Analyte			Concentra	tion	Q	Date	Analyz	ed Tim	e Analyzed	
	57-12-	-5	Cyanide	2		10.0		Ū	04/0	02/2018	3	1556	

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

PK-10S-20180328

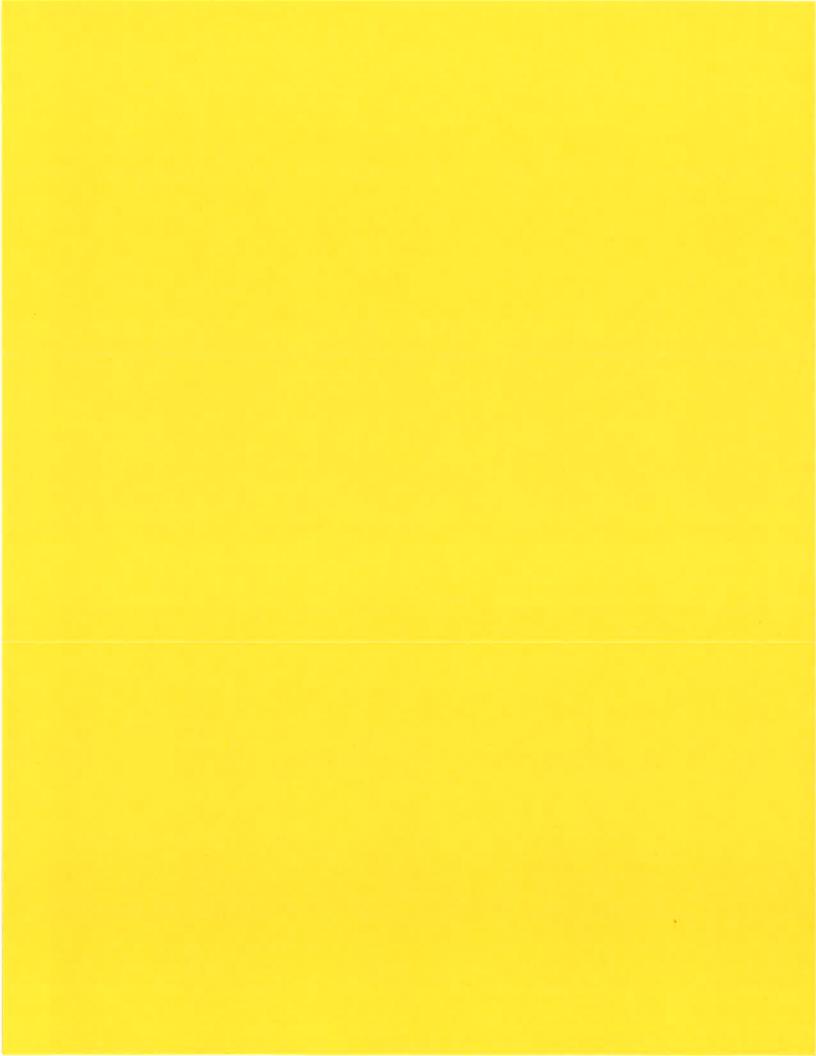
Lab N	Name:	Chemt	ech Cons	ulting	Group		Contra	ct:	EPW14	EPW14030			
Lab (Code:	СНМ		Case N	10.: 5	Syosset Landfi	MA No.	:			SDG No.:	J2136	
Matri	ix:	WATER					Lab Sa	mple	ID:	J2136-	02		
% Sol	lids:						Date R	ecei	red:	03/28/	2018		
Analy	ytical	Method	: Spec	tropho	tomet	ry							
Conce	entrati	ion Uni	ts (µg/L	, mg/L	, mg/k	g dry weight o	or μg)	:	ug/L				
Ī	CAS 1	No.	Analyte	:		Concentrat	ion	Q	Date	Analyz	ed Time	Analyzed	
Ī	57-12	-5	Cyanid	е		10.0		U	04/0	2/2018	3 15	56	

NOTE: Hardness (total) is reported in mg/L

Comments:

350

PK-10I-20180328


ug/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtec	h Consulting	grou	ıp.	Contract:	EPW14	4030	
Lab Code:	СНМ	Case	No.:	Syosset Landfi	MA No. :		SDG No.	J2136
Matrix:	WATER				Lab Sample	ID:	J2136-03	
% Solids:					Date Recei	ved:	03/28/2018	
Analytical	Method:	Spectroph	otome	try				

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg) : CAS No. Analyte Concentration Date Analyzed Time Analyzed 57-12-5 Cyanide 10.0 Ū 04/02/2018 1556

NOTE: Hardness (total) is reported in mg/L

Client: Lockwood, Kessler, & Bartlett

tt Date Collected:

03/28/18 10:00

Project:

Syosset Landfill

Date Received:

03/28/18

Client Sample ID:

PK-10D-20180328

SDG No.:

J2136

WATER

Lab Sample ID:

J2136-01

Matrix:

0	Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	24.8		1	0.4	1	2	mg/L		04/04/18 15:05	SM2320 B
Ammonia as N	0.067	J	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
										plus G
Bromide	0.7		1	0.066	0.25	0.5	mg/L		03/29/18 13:03	300.0
Chloride Use IDL	155	OR	1	0.075	0.075	0.15	 mg/L		03/29/18 13:03	300.0
Nitrate	4.2		1	0.027	0.065	0.13	mg/L		03/29/18 13:03	300.0
Sulfate	22.4 J	•	1	0.13	0.375	0.75	mg/L		03/29/18 13:03	300.0
BOD5	2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:02	SM5220 D
Color	5	U	1	5	5	5	cu		03/30/18 08:56	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	261		1	0.031	5	10	${\sf mg/L}$		04/02/18 16:00	SM2540C
TKN	0.26	J	1	0.096	0.25	0,5	${\sf mg/L}$	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
										B or C plus NH3
										G
TOC	1.3		1	80.0	0.25	0.5	mg/L		04/05/18 11:51	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

NW 5128/18

12426 CENICHEM

Parameter Chloride

Report of Analysis

IDL

0

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 10:00 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: PK-10D-20180328DL SDG No.: J2136 Lab Sample ID: J2136-01DL Matrix: WATER % Solid:

Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
112	P	20	1.5	1.5	3	mg/L		03/29/18 15:38	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

03/28/18 10:30

Client: Lockwood, Kessler, & Bartlett Date Collected:

Project: Syosset Landfill Date Received: 03/28/18

Client Sample ID: PK-10S-20180328 SDG No.: J2136

Lab Sample ID: J2136-02 Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	7.8		E	0.4	1	2	mg/L		04/04/18 15:58	SM2320 B
Ammonia as N	0.059	J	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		03/29/18 13:34	300.0
Chloride We 20L	12.1	OR-	1	0.075	0.075	0.15	mg/L		03/29/18 13:34	300.0
Nitrate	3.2		1	0.027	0.065	0.13	mg/L		03/29/18 13:34	300.0
Sulfate	17.6 J		1	0.13	0.375	0.75	mg/L		03/29/18 13:34	300.0
BOD5	2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:04	SM5220 D
Color	5	U	1	5	5	5	cu		03/30/18 09:05	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	87		1	0.031	5	10	mg/L		04/02/18 16:00	SM2540C
TKN	0.17	J	E	0.096	0.25	0.5	mg/L	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
										B or C plus NH3 G
TOC	0.62		1	0.08	0.25	0.5	mg/L		04/05/18 11:15	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

nw 5/28/18

10436 OENICHEM

46 -4 040

20L

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 10:30

Project: Syosset Landfill Date Received: 03/28/18

Client Sample ID: PK-10S-20180328DL SDG No.: J2136

Lab Sample ID: J2136-02DL Matrix: WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	12.3	Ip.	2	0.15	0.15	0.3	mg/L		03/29/18 18:12	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- ${\bf E}={\bf Indicates}$ the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

NW 5128/18

 ω 3128(18

Date Collected:

03/28/18 12:40

3

Client: Project: Lockwood, Kessler, & Bartlett

Date Received:

03/28/18

Syosset Landfill

CDC M

Client Sample ID:

PK-10I-20180328

SDG No.:

J2136 WATER

Lab Sample ID:

J2136-03

Matrix: % Solid:

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	use Di	130		1	0.4	1	2	mg/L		04/04/18 15:11	SM2320 B
Ammonia as N	we ve	3,6	OR	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
											plus G
Bromide	Had NI 2	0.85		1	0.066	0.25	0.5	${\sf mg/L}$		03/29/18 14:05	300.0
Chloride	use DL2	862	OR	-1-	0.075	0.075	0.15	mg/L		03/29/18 14:05	300.0
Nitrate	Luca Di	0.13	U	1	0,027	0.065	0.13	mg/L		03/29/18 14:05	300.0
Sulfate	usepl	39.1	-OR	-1-	0.13	0.375	0.75	mg/L		03/29/18 14:05	300.0
BOD5		2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD		10	U	1	2.43	5	10	mg/L		04/04/18 14:04	SM5220 D
Color		5	U	1	5	5	5	cu		03/30/18 09:12	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS		1147		1	0.031	5	10	mg/L		04/02/18 16:00	SM2540C
TKN		5.6		1	0.096	0.25	0.5	mg/L	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
											B or C plus NH3
											G
TOC		2.6		1	80.0	0.25	0.5	mg/L		04/05/18 11:34	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

nu stralia

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

3041

Client: Lockwood, Kessler, & Bartlett

Date Collected:

03/28/18 12:40

Project:

Syosset Landfill

Date Received:

03/28/18

Client Sample ID:

PK-10I-20180328DL

SDG No.:

J2136

WATER

Lab Sample ID:

J2136-03DL

Matrix: % Solid:

0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as 1	N	3.6	B	2	0,068	0.1	0.2	mg/L	04/02/18 14:42	04/03/18 11:11	SM 4500-NH3 B
	1100 3DL2	_ 9665075									plus G
Chloride	lese 3012	855	OR	2	0.15	0.15	0.3	mg/L		03/29/18 16:39	300,0
Sulfate		36 J	B	2	0.26	0.75	1.5	mg/L		03/29/18 16:39	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

NW 5/28/18

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

3012

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/28/18 12:40

Project:

Syosset Landfill

Date Received:

03/28/18

Client Sample ID:

PK-10I-20180328DL2

SDG No.:

J2136

Lab Sample ID:

J2136-03DL2

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF M	IDL LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	583	10	100 7.:	5 7.5	15	mg/L		03/29/18 18:43	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

NW 3/28/18

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N = Spiked sample recovery not within control limits

10106 CENICHEM

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client: Lockwood, Kessler, & Bartlett, Syosset, New York

SDG: J2215

Laboratory: ChemTech, Mountainside, New Jersey
Site: Syosset Landfill, Syosset, New York

Date: May 28, 2018

	VOCs	/SVOCs/Wet Chemistry	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	RW-12D-20180328	J2215-01	Water
1DL1^	RW-12D-20180328DL1	J2215-01DL1	Water
1DL2α	RW-12D-20180328DL2	J2215-01DL2	Water
1MS*	RW-12D-20180328MS	J2215-01MS	Water
1MSD*	RW-12D-20180328MSD	J2215-01MSD	Water
2	RW-12I-20180328	J2215-02	Water
2DL1^	RW-12I-20180328DL1	J2215-02DL1	Water
2DL2α	RW-12I-20180328DL2	J2215-02DL2	Water
2MSβ	RW-12I-20180328MS	J2215-02MS	Water
2MSDβ	RW-12I-20180328MSD	J2215-02MSD	Water

^{* -} Ammonia and Phenolics only

^{† -} Anions and Nitrate only

^ - SVOC and	Wet Chemistry	only	α - Wet	Chemistry o	nly

Total & Dissolved Metals/Mercury/Cyanide				
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix	
1T	RW-12D-20180328	J2215-01	Water	
1TMS	RW-12D-20180328MS	J2215-01MS	Water	
1TMSD	RW-12D-20180328MSD	J2215-01MSD	Water	
2T	RW-12I-20180328	J2215-02	Water	
3D	RW12D-20180328	J2215-03	Water	
3DMS*	RW12D-20180328MS	J2215-03MS	Water	
3DMSD*	RW12D-20180328MSD	J2215-03MSD	Water	
4D	RW-12I-20180328	J2215-04	Water	

T - Total Metals, Mercury & Cyanide

A Data Usability Summary Review was performed on the analytical data for four water samples collected on March 28, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

β - Anions and Sulfate only

D - Dissolved Metals & Mercury only * - Metals only

Specific method references are as follows:

Analysis
VOCs
USEPA SW846 8260C
SVOCs
USEPA SW846 8270D SIM
Metals/Mercury/Cn
Alkalinity
Ammonia (as N)
Bromide

Method References
USEPA SW846 8270D SIM
USEPA CLP Method ISM02.3
Standard Method SM2320 B
Standard Method SM4500-NH3
USEPA Method 300.0

Chloride USEPA Method 300.0 Nitrate USEPA Method 300.0 Sulfate USEPA Method 300.0 BOD5 Standard Method SM5210 B COD Standard Method SM5220D Color Standard Method SM2120 B Phenolics USEPA SW-846 Method 9065 Total Dissolved Solids Standard Method SM2540C

Total Kjeldahl Nitrogen Standard Method SM4500-N Org B or C

Total Organic Carbon Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

Holding times and sample preservation

- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for

these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Samples

Method Blank

• The method blanks were free of contamination.

Field Blank

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	1-2

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

MS/MSD samples were not analyzed.

<u>Laboratory Control Samples</u>

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days except for the following.

EDS Sample	Date Sampled	Date Extracted	# of Days	Qualifier
1/1DL	03/28/18	04/06/18	9	J
2/2DL	03/28/18	04/06/18	9	Ĵ

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		(E)	17.

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects

are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). For severely low surrogate recoveries (<10%), non-detected results in the affected samples are rejected (R) and are unusable for project objectives.

EDS Sample	Surrogate	%R	Qualifier
1DL	Nitrobenzene-d5	145%	None - See HT
	2-Fluorobiphenyl	198%	
2	2-Fluorobiphenyl	193%	None for 1 out per fraction
2DL	Nitrobenzene-d5	140%	None - See HT
	2-Fluorobiphenyl	217%	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• EDS Sample IDs 1 and 2 exhibited a high concentration of 1,4-dioxane which exceeded the calibration range and was flagged (E) by the laboratory. The samples were diluted and reanalyzed and the dilution results should be used for reporting purposes.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		*
PBW001 (Total)	Copper	2.0	U	1T-2T
	Potassium	80.4	None	All >10X
	Zinc	3.3	U	1T-2T
PBW001 (Dissolved)	Potassium	186	None	All ND or >10X

Field Blank

The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	(3)	-	#:

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Matrix Spike (MS) Recoveries

The following table presents MS samples that exhibited percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID Compound		MS %R	Qualifier	Affected Samples	
3D	Selenium	24%	J/UJ	All Dissolved Samples	

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• Several samples exceeded holding time criteria and were flagged (H) by the laboratory. The reviewer further qualified these results as estimated (J/UJ).

Initial and Continuing Calibration

All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		•
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	-

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
1	Ammonia as N	0%/NC	None	4X Rule Applies
2	Chloride	-600%/NC	None	4X Rule Applies
	Sulfate	75%/OK		

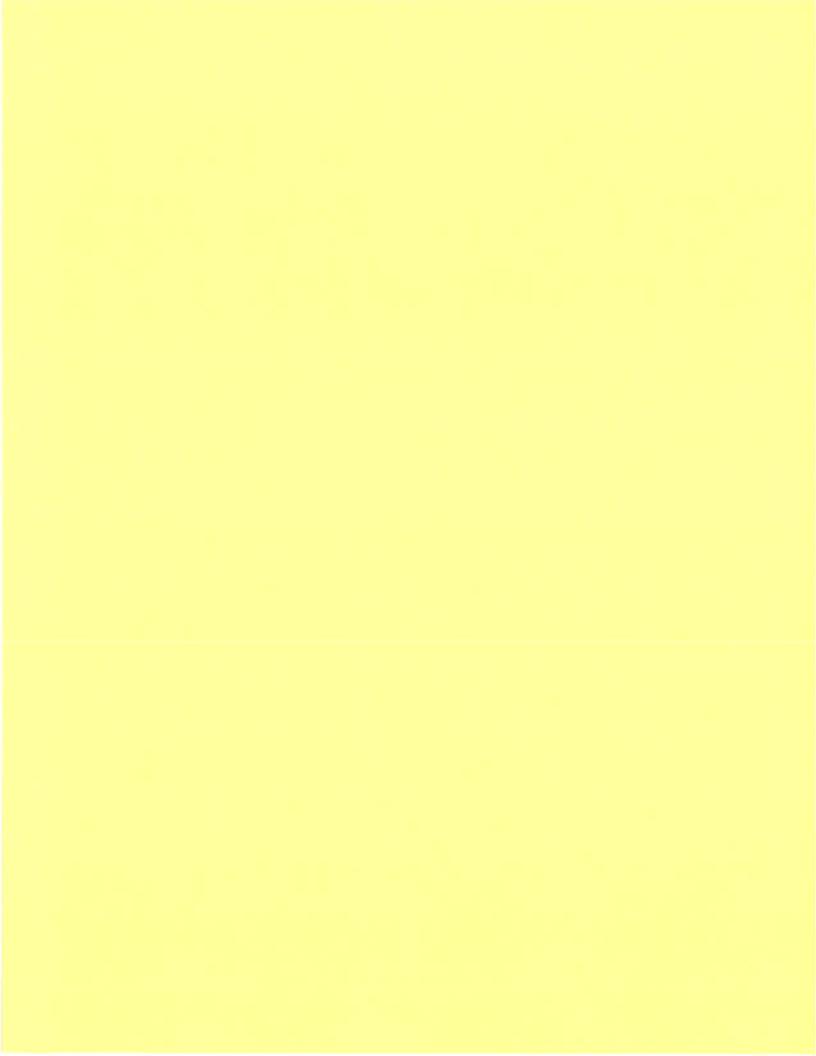
Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, nitrate, sulfate, and/or TKN and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision


Field duplicate samples were not collected.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 5/24/18

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 04/04/18 Client Sample ID: RW-12D-20180328 SDG No.: J2215 Lab Sample ID: J2215-01 Matrix: Water Analytical Method SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: иL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047444.D 1 04/07/18 17:55 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.53 W	x	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1.9		0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 4ブ	N	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acctate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	5.4		0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	5.2		0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	0.99	J	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.62	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0,2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 04/04/18 Client Sample ID: RW-12D-20180328 SDG No.: J2215 Lab Sample ID: J2215-01 Matrix: Water Analytical Method SW8260 % Moisture: 100 5 Units:

Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

VN047444.D 1 04/07/18 17:55 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79 - 00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	0.67	J	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	18.3		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79 - 34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	I	ug/L
541-73-1	1,3-Dichlorobenzene	1.7		0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	6.6		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	4.8		0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	I	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.1		61 - 141		108%	SPK: 50
1868-53-7	Dibromofluoromethane	52.3		69 - 133		105%	SPK: 50
2037-26-5	Toluene-d8	53.2		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		58 - 135		106%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	1142700	7.66				
540-36-3	1,4-Difluorobenzene	1881050	8.59				
3114-55-4	Chlorobenzene-d5	1815830	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	753409	13.35				

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/28/18 Project: Syosset Landfill Date Received: 04/04/18 Client Sample ID: RW-12I-20180328 SDG No.: J2215 Lab Sample ID: J2215-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mLFinal Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047445.D 1 04/07/18 18:19 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.46 W	8	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	0.96	J	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 47	10	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	0.8	J	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	3		0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	2.7		0.2	0.2	1	ug/L
74-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	0.51	J	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.84	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	I	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

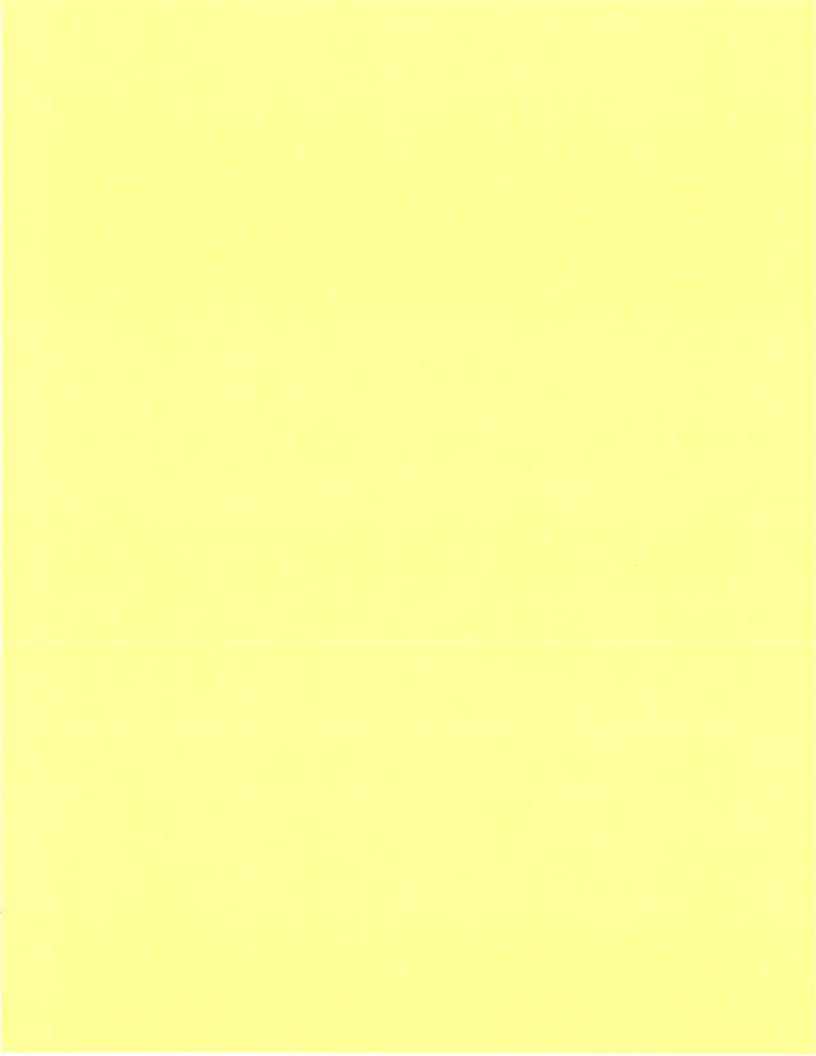
VOCMS Group1

Soil Aliquot Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

2 Lockwood, Kessler, & Bartlett Client: Date Collected 03/28/18 Project: Syosset Landfill Date Received: 04/04/18 Client Sample ID: RW-12I-20180328 SDG No.: J2215 Lab Sample ID: J2215-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL


Test:

GC Column: RXI-624 ID: 0.25 Level: LOW

uL

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047445.D 1 04/07/18 18:19 VN040718

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	I	ug/L
127-18-4	Tetrachloroethene	1.8		0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	9.7		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1.2		0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	4.9		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	3.1		0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	53.7		61 - 141		107%	SPK: 50
1868-53-7	Dibromofluoromethane	52.1		69 - 133		104%	SPK: 50
2037-26-5	Toluene-d8	53		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.7		58 - 135		107%	SPK: 50
INTERNAL STAN	VDARDS						
363-72-4	Pentafluorobenzene	1105460	7.67				
540-36-3	1,4-Difluorobenzene	1823640	8.59				
3114-55-4	Chlorobenzene-d5	1759230	11,41				
3855-82-1	1,4-Dichlorobenzene-d4	770917	13:35				

RW-12**D**-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

		•
-1	1	
-1		

Lab Name: Chemtech Consulting Group Contract: EPW14030

Lab Code: CHM Case No.: Syosset Landfi MA No.: SDG No.: J2215

Matrix: WATER Lab Sample ID: J2215-01

% Solids: Date Received: 04/04/2018

Analytical Method: ICP-AES

Concentration Units (µg/L, mg/k, mg/kg dry weight or µg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	22.0	J	04/11/2018	1356
7440-36-0	Antimony	60.0	U	04/11/2018	1356
7440-38-2	Arsenic	10.0	U	04/11/2018	1356
7440-39-3	Barium	60.0	J	04/11/2018	1356
7440-41-7	Beryllium	5.0	U	04/11/2018	1356
7440-43-9	Cadmium	5.0	U	04/11/2018	1356
7440-70-2	Calcium	70900		04/11/2018	1356
7440-47-3	Chromium	1.4	J	04/11/2018	1356
7440-48-4	Cobalt	50.0	U	04/11/2018	1356
7440-50-8	Copper 25.0	4.6 W	J.Fr	04/11/2018	1356
7439-89-6	Iron	137		04/11/2018	1356
7439-92-1	Lead	10.0	U	04/11/2018	1356
7439-95-4	Magnesium	39100		04/11/2018	1356
7439-96-5	Manganese	52.0		04/11/2018	1356
7440-02-0	Nickel	7.4	J	04/11/2018	1356
7440-09-7	Potassium	68900		04/11/2018	1356
7782-49-2	Selenium	35.0	U	04/11/2018	1356
7440-22-4	Silver	10.0	U	04/11/2018	1356
7440-23-5	Sodium	140000		04/11/2018	1356
7440-28-0	Thallium	25.0	U	04/11/2018	1356
7440-62-2	Vanadium	50.0	U	04/11/2018	1356
7440-66-6	Zinc 60.0	25.0 u	No.	04/11/2018	1356
Hardness	Hardness (total)	338		04/11/2018	1356

R

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12 D -20180328	
--------------------------	--

Lab Name:	Chemtech	Consulting (Group)	Contract:	EPW14	030_		
Lab Code:	СНМ	Case No	.:	Syosset Landfi	MA No.:			SDG No.:	J2215
Matrix:	WATER				Lab Sample	ID:	J2215-	-02	
% Solids:					Date Recei	ved:	04/04	/2018	
Analytical 1	Method:	ICP-AES							
Concentratio	on Units	(ug/T. mg/T.	mar/	ka drv weiaht a	or ua) 👀	ua/I			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	13.0	J	04/11/2018	1429
7440-36-0	Antimony	60.0	U	04/11/2018	1429
7440-38-2	Arsenic	3.4	J	04/11/2018	1429
7440-39-3	Barium	77.1	J	04/11/2018	1429
7440-41-7	Beryllium	5.0	U	04/11/2018	1429
7440-43-9	Cadmium	5.0	U	04/11/2018	1429
7440-70-2	Calcium	71700		04/11/2018	1429
7440-47-3	Chromium	10.0	U	04/11/2018	1429
7440-48-4	Cobalt	50.0	U	04/11/2018	1429
7440-50-8	Copper 95.0	2.4 W	متحد	04/11/2018	1429
7439-89-6	Iron	100	U	04/11/2018	1429
7439-92-1	Lead	10.0	U	04/11/2018	1429
7439-95-4	Magnesium	23800		04/11/2018	1429
7439-96-5	Manganese	12.8	J	04/11/2018	1429
7440-02-0	Nickel	3.6	J	04/11/2018	1429
7440-09-7	Potassium	2920	J	04/11/2018	1429
7782-49-2	Selenium	35.0	U	04/11/2018	1429
7440-22-4	Silver	10.0	Ū	04/11/2018	1429
7440-23-5	Sodium	137000		04/11/2018	1429
7440-28-0	Thallium	25.0	U	04/11/2018	1429
7440-62-2	Vanadium	50.0	U	04/11/2018	1429
7440-66-6	Zinc (00.0	18.6 u	8	04/11/2018	1429
Hardness	Hardness (total)	277		04/11/2018	1429

RW-12D-20180328

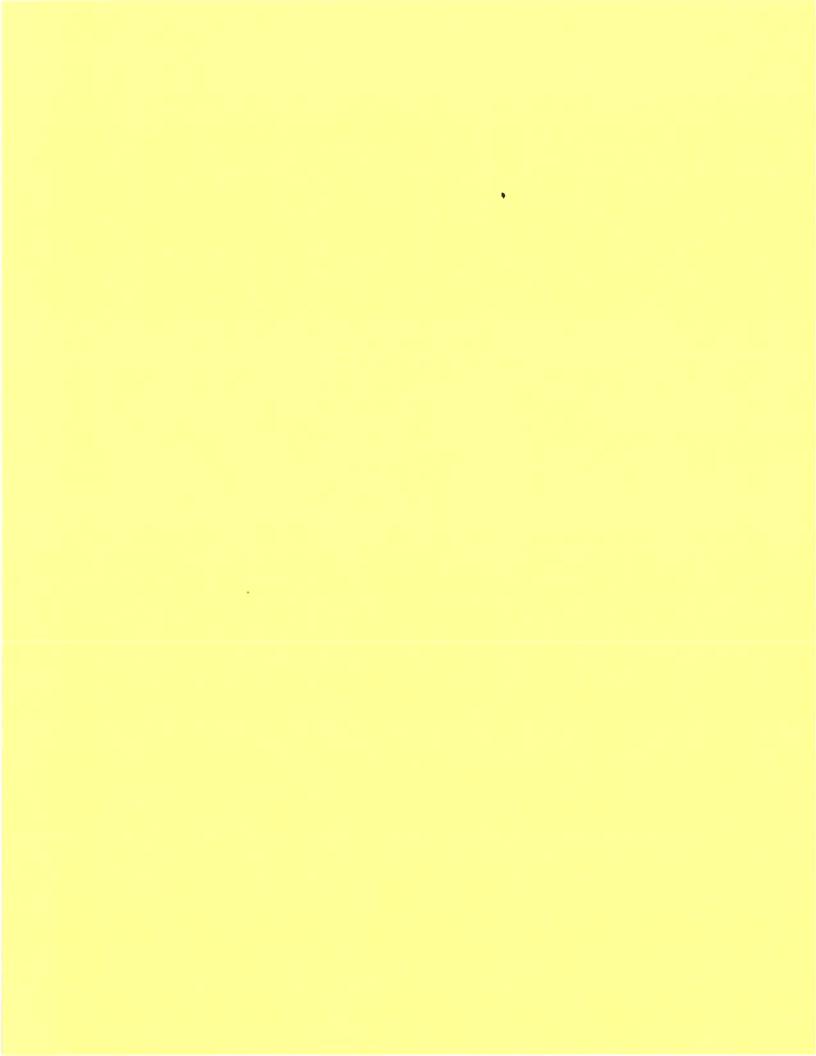
FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

3D

Lab Name: Chemtech Consulting Group Contract: EPW14030 Case No.: Syosset Landfi MA No.: SDG No.: J2215 Lab Code: CHM Matrix: WATER Lab Sample ID: J2215-03 % Solids: ______ Date Received: 04/04/2018 Analytical Method: ICP-AES

Concentration Units ($\mu g/L$, mg/L, mg/kg dry weight or μg): ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	24.7	J	04/11/2018	1449
7440-36-0	Antimony	60.0	U	04/11/2018	1449
7440-38-2	Arsenic	3.7	J	04/11/2018	1449
7440-39-3	Barium	74.3	J	04/11/2018	1449
7440-41-7	Beryllium	5.0	U	04/11/2018	1449
7440-43-9	Cadmium	5.0	U	04/11/2018	1449
7440-70-2	Calcium	70200	11.	04/11/2018	1449
7440-47-3	Chromium	10.0	Ų	04/11/2018	1449
7440-48-4	Cobalt	50.0	U	04/11/2018	1449
7440-50-8	Copper	25.0	U	04/11/2018	1449
7439-89-6	Iron	100	U	04/11/2018	1449
7439-92-1	Lead	10.0	U	04/11/2018	1449
7439-95-4	Magnesium	23200		04/11/2018	1449
7439-96-5	Manganese	12.4	J	04/11/2018	1449
7440-02-0	Nickel	3.3	J	04/11/2018	1449
7440-09-7	Potassium	2660	J	04/11/2018	1449
7782-49-2	Selenium	6.4 J	- July	04/11/2018	1449
7440-22-4	Silver	10.0	Ū	04/11/2018	1449
7440-23-5	Sodium	134000		04/11/2018	1449
7440-28-0	Thallium	25.0	U	04/11/2018	1449
7440-62-2	Vanadium	50.0	U	04/11/2018	1449
7440-66-6	Zinc	9.4	J	04/11/2018	1449


RW-12I-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

4	D
	···

Lab Name:	Chemtech	Consulting (Group		Contract:	EPW14	030		
Lab Code:	СНМ	Case No	o.:	Syosset Landfi	MA No. :			SDG No.:	J2215
Matrix:	WATER				Lab Sample	ID:	J2215-	-04	
% Solids:					Date Recei	ved:	04/04	/2018	
Analytical 1	Method:	ICP-AES							
Concentration	on Units	(ug/L, mg/L,	ma/l	ka drv weight (or ua) 🥶	ua/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	26.7	J	04/11/2018	1505
7440-36-0	Antimony	60.0	U	04/11/2018	1505
7440-38-2	Arsenic	10.8		04/11/2018	1505
7440-39-3	Barium	60.3	J	04/11/2018	1505
7440-41-7	Beryllium	5.0	U	04/11/2018	1505
7440-43-9	Cadmium	5.0	Ū	04/11/2018	1505
7440-70-2	Calcium	70400	-	04/11/2018	1505
7440-47-3	Chromium	10.0	U	04/11/2018	1505
7440-48-4	Cobalt	50.0	U	04/11/2018	1505
7440-50-8	Copper	2.6	J	04/11/2018	1505
7439-89-6	Iron	106		04/11/2018	1505
7439-92-1	Lead	10.0	U	04/11/2018	1505
7439-95-4	Magnesium	38500		04/11/2018	1505
7439-96-5	Manganese	50.1		04/11/2018	1505
7440-02-0	Nickel	6.8	J	04/11/2018	1505
7440-09-7	Potassium	67000		04/11/2018	1505
7782-49-2	Selenium	12.9	3	04/11/2018	1505
7440-22-4	Silver	10.0	U	04/11/2018	1505
7440-23-5	Sodium	137000		04/11/2018	1505
7440-28-0	Thallium	25.0	U	04/11/2018	1505
7440-62-2	Vanadium	50.0	Ü	04/11/2018	1505
7440-66-6	Zinc	10.0	J	04/11/2018	1505

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12**P**-20180328

17

Lab 1	Name:	Chemt	ech Cons	ulting	g Grou	р		Conti	cact:	EPW140	30			
Lab (Code:	СНМ		Case	No.:	Syosset La	ndfi	MA No	·			SDG No.:	J2215	
Matri	ix:	WATER						Lab S	Sample	ID:	J2215-	01		
% Sol	lids:							Date	Recei	ved:	04/04/	/2018		
Analy	ytical	Method	: CVAA											
Conce	entrati	on Uni	ts (µg/L	, mg/	L, mg/	kg dry weig	ght c	or μg)		ug/L				
[CAS N	10.	Analyte	<u> </u>		Concen	trat	ion	Q	Date .	Analyz	ed Time	Analyzed	i
	7439-9	97-6	Mercur	Y		0.20			U	04/0	6/2018	3 15	559	

NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12**D**-20180328

2T

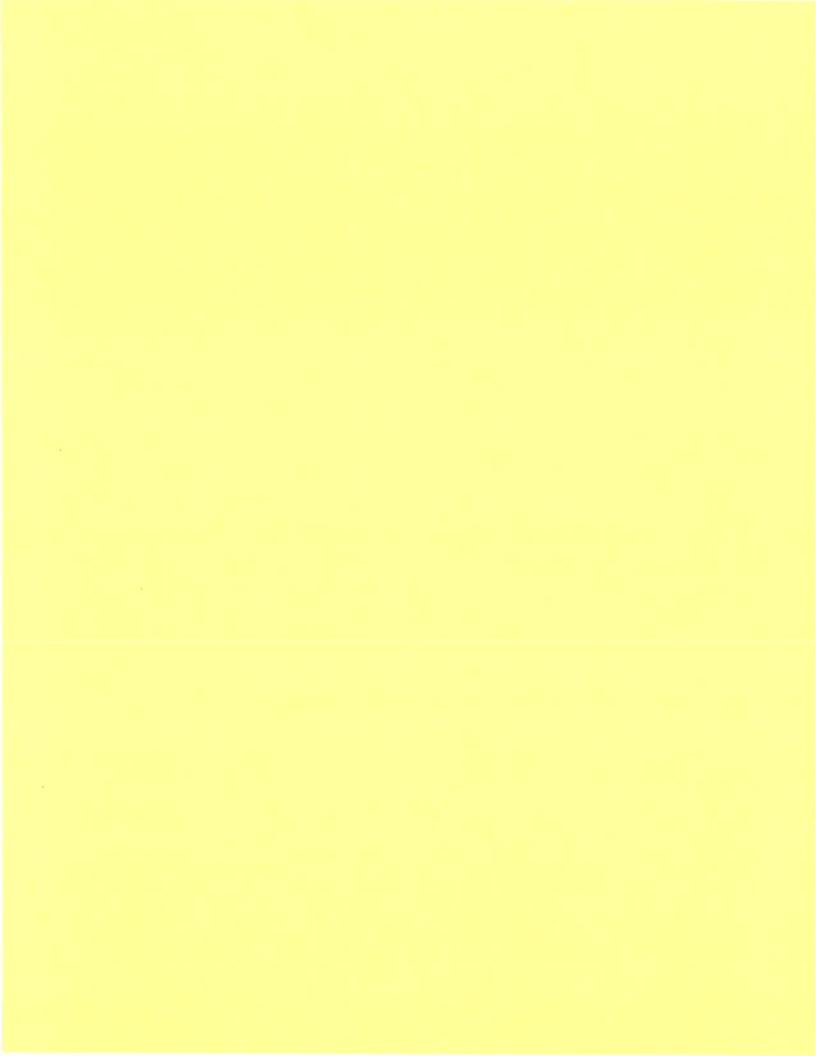
Lab 1	Name:	Chemt	ech Cons	g Grou	ıp.		Cont	ract:	EPW14	030			
Lab (Code:	СНМ		Case	No.:	Syo	sset Landf:	i ma n	o. : _			SDG 1	No.: J2215
Matr	ix:	WATER						Lab	Sample	ID:	J2215-0	02	
% So.	lids:							Date	Receiv	red:	04/04/	2018	
Analy	ytical :	Method	: CVAA										
Conce	entrati	on Uni	ts (μg/L	, mg/:	L, mg/	/kg d	lry weight	or µg)	<u>:</u>	ug/L			
	CAS N	0.	Analyte				Concentra	tion	Q	Date	Analyze	ed 1	Time Analyzed
	7439-9	7-6	Mercur	Y			0.20		U	04/0	6/2018	3	1607

RW-12D-20180328

3 D

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab 1	Name:	Chemte	ech Cons	ulting Gro	цр	Contr	act:	EPW14	1030		
Lab (Code:	СНМ		Case No.:	Syosset Landfi	- MA No	· . : _		s	DG No.:	J2215
Matri	ix:	WATER				Lab S	Sample	ID:	J2215-0	3	
% Sol	lids:					Date	Recei	ved:	04/04/2	2018	
Analy	ytical	Method	: CVAA								
Conce	entrati	on Uni	ts (µg/L	, mg/L, mg	/kg dry weight	or μg)	3	ug/I	1		
[CAS N	10.	Analyte	9	Concentrat	ion	Q	Date	Analyze	d Time	Analyzed
	7439-9	97-6	Mercur	V	0.20		U	04/0	06/2018	16	09


NOTE: Hardness (total) is reported in mg/L

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12I-20180328

Lab 1	Name:	Chemte	ech Cons	ultin	g Grou	ιp			Cont	ract:	EPW14	030				
Lab (Code:	СНМ		Case	No.:	Syos	sset	Landfi	i ma n	ſo.:_			SDG	No.:_	J2215	
Matr	ix:	WATER							Lab	Sample	ID:	J2215-	-04			
% So.	lids:								Date	Recei	ved:	04/04	/201	8		
Analy	ytical :	Method	: CVAA													
Conce	entrati	on Uni	ts (μg/L	, mg/	L, mg/	'kg d	lry we	eight	or µg) :	ug/L					_
	CAS N	0.	Analyte	<u> </u>			Conc	entrat	cion	Q	Date	Analyz	zed	Time A	Analyzed	
	7439-9	7-6	Mercur	У			0.20	0		U	04/0	6/201	8	161	.1	1

NOTE: Hardness (total) is reported in mg/L

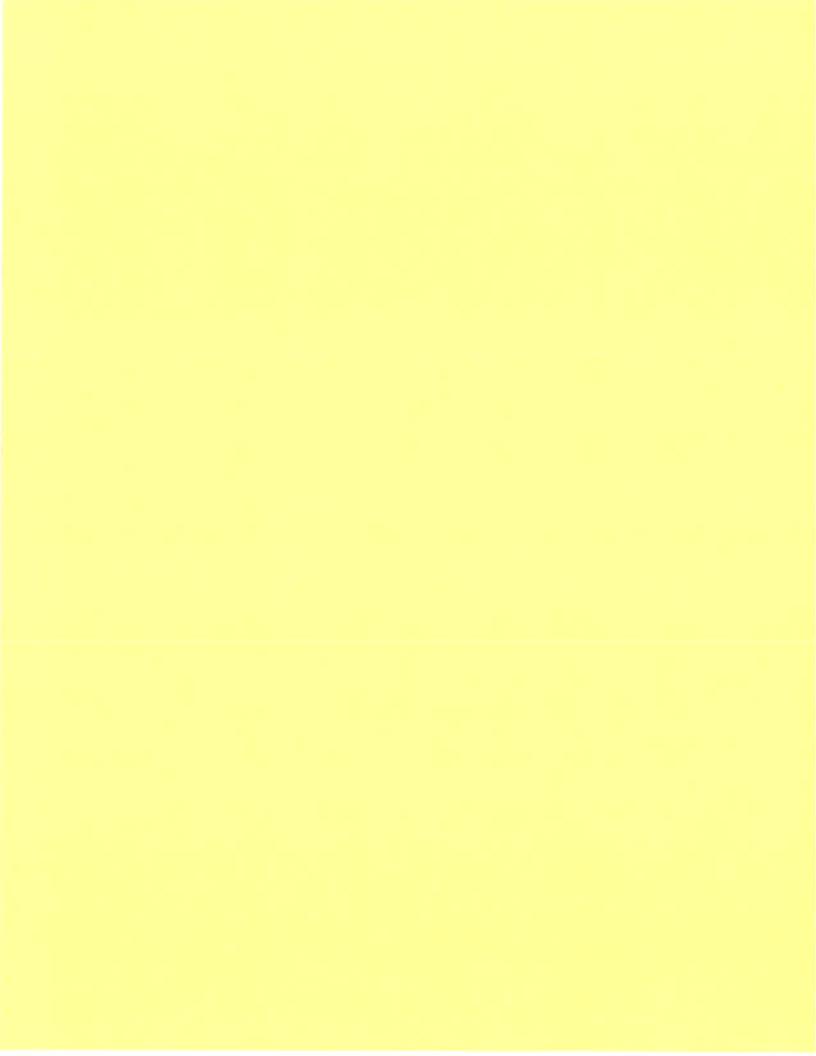
EPA SAMPLE NO.

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12D-20180328

Lab 1	Name:	Chemt	ech Cons	ulting	group)		Cont	ract:	EPW14	030				
Lab (Code:	СНМ		Case	No.:	Syosse	t Landí	Ei MA N	10.:			SDG	No.:	J2215	
Matr	ix:	WATER						Lab	Sample	ID:	J2215-	-01			
% Sol	lids:							Date	Recei	ved:	04/04	/2018	8		
Analy	ytical	Method	: Spec	tropho	otomet	ry									
Conce	entrati	on Uni	ts (μg/L	, mg/I	L, mg/}	kg dry	weight	or μg) :	ug/L	1				_
	CAS N	0.	Analyte	e		Co	ncentra	ation	Q	Date	Analyz	zed	Time A	Analyzed	
	57-12-	-5	Cyanid	е		10	0.0		U	04/0	06/201	8	115	1	1

NOTE: Hardness (total) is reported in $\ensuremath{\text{mg/L}}$


FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

RW-12I-20180328

2

Lab 1	Name:	Chemt	ech Cons	ulting G	coup		Cont	ract:	EPW14	1030			
Lab (Code:	СНМ		Case No.	: <u>sy</u>	osset Land	fi ma n	o. : _		SDG	No.:	J2215	
Matr	ix: _	WATER					Lab	Sample	ID:	J2215-02			
% So	lids:						Date	Recei	ved:	04/04/201	L8		
Anal	ytical	Method	: Spec	trophoto	metry	У							
Conc	entrati	on Uni	ts (µg/I	L, mg/L, n	ng/kg	dry weight	or µg	:	ug/I	ı			
	CAS N	io.	Analyt	e		Concentr	ation	Q	Date	Analyzed	Time	Analyzed	l
	E7 10		C	1		10 0			0.01	0.5.10.00.0			-

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/06/2018	1151

Report of Analysis

Client: Lockwood, Kessler, & Bartlett

17.2

0.08

0.25

Date Collected:

03/28/18 15:00

04/05/18 12:11 SM5310B

Project:

Syosset Landfill

Date Received:

04/04/18

Client Sample ID:

RW-12D-20180328

SDG No.:

J2215

Lab Sample ID:

J2215-01

Matrix: % Solid:

WATER

0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	10 - 21 1	892		l	0.4	1	2	mg/L		04/04/18 17:05	SM2320 B
Ammonia as N	use DLI	47.1	OR-	1	0.034	0.05	0.1	mg/L	04/04/18 12:50	-04/05/18 09:03	SM 4500-NH3 B
											plus G
Bromide	Use DI 2	1.1		1	0.066	0.25	0.5	mg/L		04/04/18 13:57	300.0
Chloride		299	OR-	-1-	0.075	-0.075	0.1.5	mg/L		04/04/18-13:57	300.0
Nitrate	use our	10,2	HOR	1	0.027	0.065	0.13	mg/L-		04/04/18-13:57	300.0
Sulfate	useoul	243	-OR	1	0.13	0.375	0.75	mg/L		04/04/18 13:57	-300.0
BOD5		2 U	HU	Ī	2	2	2	mg/L		04/04/18 15:30	SM5210 B
COD		31.4		1	2.43	5	10	mg/L		04/04/18 14:07	SM5220 D
Color		5	JИ	1	5	5	5	cu		04/04/18 12:38	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	04/04/18 12:50	04/05/18 12:10	9065
TDS	Tice SIL	842	J H	1	0.031	5	10	mg/L		04/04/18 16:00	SM2540C
TKN	nscori	42	OR	1	0.096	0.25	0.5	mg/L	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
											B or C plus NH3

0.5

mg/L

Comments:

TOC

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

New 5/28/18

Report of Analysis

IDLI

Client:

Lockwood, Kessler, & Bartlett

Date Collected:

03/28/18 15:00

Project:

Syosset Landfill

Date Received:

04/04/18

Client Sample ID:

RW-12D-20180328DL

SDG No.:

J2215

WATER

Lab Sample ID:

J2215-01DL

Matrix:

% Solid:

l: 0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N		69.6	p	50	1.7	2,5	5	mg/L	04/04/18 12:50	04/05/18 10:13	SM 4500-NH3 B
	Use DLZ										plus G
Chloride	Wise VE F	231	OR-	10	0.75	0.75	1.5	mg/L		04/04/18 16:01	300.0.
Nitrate		9.6	HD	10	0.27	0.65	1.3	mg/L		04/04/18 16:01	300.0
Sulfate		183	ID	10	1.3	3.75	7.5	mg/L		04/04/18 16:01	300.0
TKN		67	D	10	0.96	2.5	5	mg/L	04/06/18 08:30	04/09/18 10:59	SM4500-N Org
											B or C plus NH3
											G

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Au 5/28/1.8

1994E OENIOUEM

44 -4 240

Project:

Report of Analysis

IDL2

Client: Lockwood, Kessler, & Bartlett

Lockwood, Ressier, & Darnett

Syosset Landfill

Client Sample ID: RW-12D-20180328DL2

Lab Sample ID: J2215-01DL2

Date Collected:

03/28/18 15:00

Date Received:

04/04/18

SDG No.:

J2215

Matrix: % Solid:

WATER 0

Parameter	Conc.	Qua.	DF M	MDL LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	206	p	50 3	.8 3.75	7,5	mg/L		04/04/18 16:32	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

N = Spiked sample recovery not within control limits

8.18512 WA

Report of Analysis

Date Collected:

03/28/18 16:15

Client: Project:

Syosset Landfill

Date Received:

04/04/18

Client Sample ID:

RW-12I-20180328

Lockwood, Kessler, & Bartlett

SDG No.:

J2215

Lab Sample ID:

J2215-02

Matrix:

WATER

% Solid:

0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	90.8		1	0.4	1	2	mg/L		04/04/18 17:14	SM2320 B
Ammonia as N	5,3	OR	1	0.034	0.05	- 0.1	mg/L	04/04/18 12:50	04/05/18 09:09	SM 4500-NH3 B
										plus G
Bromide Use DL2	1.9		1	0.066	0.25	0.5	mg/L		04/04/18 14:28	300.0
Chloride	192	OR	-1	0.075	0.075	0.15	mg/L		04/04/18 14:28	_300.0
Nitrate	0.41	Н	1	0.027	0.065	0.13	${\sf mg/L}$		04/04/18 14:28	300.0
Sulfate Use DLI	74.6	OR	_1	0.13	0.375	0.75	mg/L		04/04/18 14:28	300.0
BOD5	2 U	JHU	1	2	2	2	mg/L		04/04/18 15:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:08	SM5220 D
Color	5 (1	JHU	1	5	5	5	cu		04/04/18 12:45	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	04/04/18 12:50	04/05/18 12:10	9065
TDS	733		1	0.031	5	10	${\sf mg/L}$		04/04/18 16:00	SM2540C
TKN	5.3		1	0.096	0.25	0.5	${\sf mg/L}$	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
										B or C plus NH3
										G
TOC	5.2		1	0.08	0.25	0.5	mg/L		04/05/18 12:30	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

New 5/28/18

Lab Sample ID:

Report of Analysis

2041

Client: Lockwood, Kessler, & Bartlett

J2215-02DL

Date Collected: 03/28/18 16:15

Matrix:

Project: Syosset Landfill

Date Received: 04/04/18

Client Sample ID: RW-12I-20180328DL

SDG No.: J2215

WATER

% Solid: 0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	5	B	10	0.34	0.5	1	mg/L	04/04/18 12:50	04/05/18 10:13	SM 4500-NH3 B
Chloride Sulfate	2 DL7 167 64.4	- QR	5_	0.38	-0.3 75	3.8	.mg/L mg/L		04/04/18 17:03 04/04/18 17:03	plus G 300.0 300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

MU S/28/18

Report of Analysis

20LZ

Client: Lockwood, Kessler, & Bartlett

ood, Kessler, & Bartlett Date Collected:

03/28/18 16:15

Project:

Syosset Landfill

Date Received: 04/04/18

Client Sample ID:

RW-12I-20180328DL2

J2215

WATER

Lab Sample ID:

J2215-02DL2

Matrix:

SDG No.:

% Solid:

Parameter	Conc. Qua	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	144	50	3.8	3.75	7.5	mg/L		04/04/18 17:34	300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

New 5/28/18

12245 OENICHEM

40 -4 340

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:

Lockwood, Kessler, & Bartlett, Syosset, New York

SDG:

J2252

Laboratory:

ChemTech, Mountainside, New Jersey Syosset Landfill, Syosset, New York

Site: Date:

May 28, 2018

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	FIELD-BLANK-20180404	J2252-01	Water
1MS*	FIELD-BLANK-20180404MS	J2252-01MS	Water
1DUP*	FIELD-BLANK-20180404DUP	J2252-01DUP	Water

^{* -} Ammonia and Phenolics only

A Data Usability Summary Review was performed on the analytical data for aqueous field blank sample collected on April 4, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

 Analysis
 Method References

 VOCs
 USEPA SW846 8260C

 SVOCs
 USEPA SW846 8270D SIM

Metals/Mercury/Cn
Alkalinity

Ammonia (as N)

USEPA CLP Method ISM02.3

Standard Method SM2320 B

Standard Method SM4500-NH3

Bromide USEPA Method 300.0 Chloride USEPA Method 300.0 Nitrate USEPA Method 300.0 Sulfate USEPA Method 300.0 BOD5 Standard Method SM5210 B COD Standard Method SM5220D Color Standard Method SM2120 B Phenolics USEPA SW-846 Method 9065 Total Dissolved Solids Standard Method SM2540C

Total Kjeldahl Nitrogen Standard Method SM4500-N Org B or C

Total Organic Carbon Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

All criteria were met.

Initial Calibration

 The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	None	Applies to Other Packages

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

MS/MSD samples were not collected.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

TICs were not detected.

Field Duplicate Sample Precision

Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	*	1	=

Surrogate Spike Recoveries

All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not collected.

Laboratory Control Samples

 \bullet $\,$ The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

ICP/MS tuning not required.

Initial Calibration Verification

All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
ICB	Copper	2.2	U	1
CCB2	Sodium	314	U	1
PBW001	Zinc	4.9	U	1

Field Blank

The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	- ug/ E	Э	*

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• MS/MSD samples were not analyzed.

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

The method blanks were free of contamination.

Field Blank

Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		${\sf mg/L}$		•
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
i i	TKN	0.24	None	parameters
	TOC	0.4	None	•

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The MS/DUP samples exhibited acceptable percent recoveries (%R) and RPD values for ammonia and phenolics.

Laboratory Control Samples

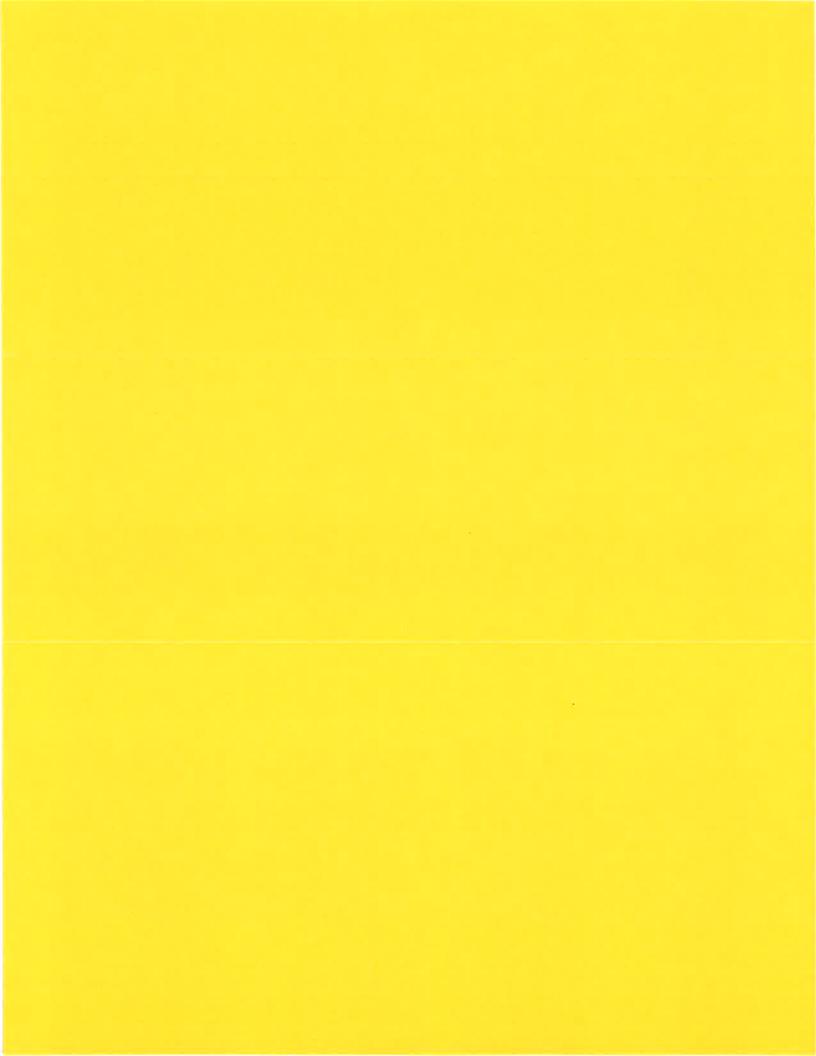
The LCS sample exhibited acceptable recoveries.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected.


Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Laucy ble ever Dated: Sl29/18
Nancy Weaver

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 04/04/18 Project: Syosset Landfill Date Received: 04/05/18 Client Sample ID: FIELD-BLANK-20180404 SDG No.: J2252 Lab Sample ID: J2252-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: $\mathfrak{u} L$ VOCMS Group1

Test:

GC Column: RXI-624 ID: 0.25 Level: LOW

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047517.D 1 04/11/18 16:14 VN041118

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.71	J	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74 - 83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	I	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

uL

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Report of Analysis

Client: Lockwood, Kessler, & Bartlett

Project: Syosset Landfill

Client Sample ID: FIELD-BLANK-20180404

Lab Sample ID: J2252-01

Analytical Method: SW8260

Sample Wt/Vol: 5 Units: mL

Soil Aliquot Vol:

GC Column: RXI-624 ID: 0.25

1

Date Collected:

04/04/18

Date Received:

04/05/18

SDG No.: Matrix: J2252 Water

% Moisture:

100

Final Vol:

5000

Test: VOCMS Group1

Level:

LOW

File ID/Qc Batch:

VN047517.D

Dilution:

Prep Date

uL

Date Analyzed

Prep Batch ID

04/11/18 16:14

VN041118

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78 - 6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	I	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	Ĺ	U	0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	I	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	Ī	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	ľ	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	I	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	I	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0.2	1	ug/L
SURROGATES							•
17060-07-0	1,2-Dichloroethane-d4	37.9		61 - 141		76%	SPK: 50
1868-53-7	Dibromofluoromethane	39.1		69 - 133		78%	SPK: 50
2037-26-5	Toluene-d8	39.2		65 - 126		78%	SPK: 50
460-00-4	4-Bromofluorobenzene	34.3		58 - 135		69%	SPK: 50
INTERNAL STA							
363-72-4	Pentafluorobenzene	369597	7.66				
540-36-3	1,4-Difluorobenzene	592014	8.59				
3114-55-4	Chlorobenzene-d5	509462	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	180535	13.35				

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

FIELD-BLANK-2018

Lab Name:	Chemtech	Consultin	g Grou	ıp	Contract:	EPW14	030			
Lab Code:	СНМ	Case	No.:	Syosset Landfi	MA No. :			SDG No.:	J2252	
Matrix: _	WATER				Lab Sample	ID:	J2252	-01		
ુ Solids:					Date Recei	ved:	04/05	/2018		
Analytical	Method:	ICP-AES								
Concontrati	on Units	(wa/T ma/	T mar	/ka dru woight o	or nat	ua/T				

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/06/2018	1426
7440-36-0	Antimony	60.0	U	04/06/2018	1426
7440-38-2	Arsenic	10.0	U	04/06/2018	1426
7440-39-3	Barium	200	U	04/06/2018	1426
7440-41-7	Beryllium	5.0	U	04/06/2018	1426
7440-43-9	Cadmium	5.0	U	04/06/2018	1426
7440-70-2	Calcium	5000	U	04/06/2018	1426
7440-47-3	Chromium	10.0	U	04/06/2018	1426
7440-48-4	Cobalt	50.0	U	04/06/2018	1426
7440-50-8	Copper	1-7 25.0 U	1	04/06/2018	1426
7439-89-6	Iron	100	U	04/06/2018	1426
7439-92-1	Lead	10.0	U	04/06/2018	1426
7439-95-4	Magnesium	5000	U	04/06/2018	1426
7439-96-5	Manganese	15.0	U	04/06/2018	1426
7440-02-0	Nickel	40.0	U	04/06/2018	1426
7440-09-7	Potassium	5000	U	04/06/2018	1426
7782-49-2	Selenium	35.0	U	04/06/2018	1426
7440-22-4	Silver	10.0	U	04/06/2018	1426
7440-23-5	Sodium	323 5000 U	18	04/06/2018	1426
7440-28-0	Thallium	25.0	U	04/06/2018	1426
7440-62-2	Vanadium	50.0	U	04/06/2018	1426
7440-66-6	Zinc	11.460.0 U	J	04/06/2018	1426
Hardness	Hardness (total)	33.1	Ü	04/06/2018	1426

NOTE: Hardness (total) is reported in mg/L

1

FORM 1 - IN

FIELD-BLANK-2018

INORGANIC	ANALYSIS	DATA	SHEET

Lab Name: Chemtech Consulting Group Contract: EPW14030

SDG No.: J2252

Matrix: WATER Lab Sample ID: J2252-01

% Solids: Date Received: 04/05/2018

Case No.: Syosset Landfi MA No. :

Analytical Method: Spectrophotometry

Lab Code:

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/06/2018	1211

NOTE: Hardness (total) is reported in mg/L

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected:

04/04/18 14:00

Project:

Syosset Landfill

Date Received:

04/05/18

Client Sample ID:

FIELD-BLANK-20180404

SDG No.:

J2252

Lab Sample ID:

J2252-01

Matrix:

WATER

% Solid:

Parameter	Conc.	Qua	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	2	U	Ī	0.4	1	2	mg/L		04/09/18 16:32	SM2320 B
Ammonia as N	0.085	J	Ī	0.034	0.05	0.1	mg/L	04/06/18 12:45	04/09/18 09:09	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		04/05/18 13:18	300.0
Chloride	0.15	U	E	0.075	0.075	0.15	mg/L		04/05/18 13:18	300.0
Nitrate	0.13	U	1	0.027	0.065	0.13	mg/L		04/05/18 13:18	300.0
Sulfate	0.75	U	1	0.13	0.375	0.75	mg/L		04/05/18 13:18	300.0
BOD5	2	U	1	2	2	2	${\sf mg/L}$		04/05/18 16:50	SM5210 B
Color	5	U	1	5	5	5	cu		04/05/18 13:08	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	04/06/18 12:45	04/09/18 12:04	9065
TDS	10	U	1	0.031	5	10	mg/L		04/09/18 16:30	SM2540C
TKN	0.24	J	1	0.096	0.25	0.5	mg/L	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
										B or C plus NH3
										G
TOC	0.4	J	1	80.0	0.25	0.5	mg/L		04/12/18 15:10	SM5310B

Comments:

U = Not Detected

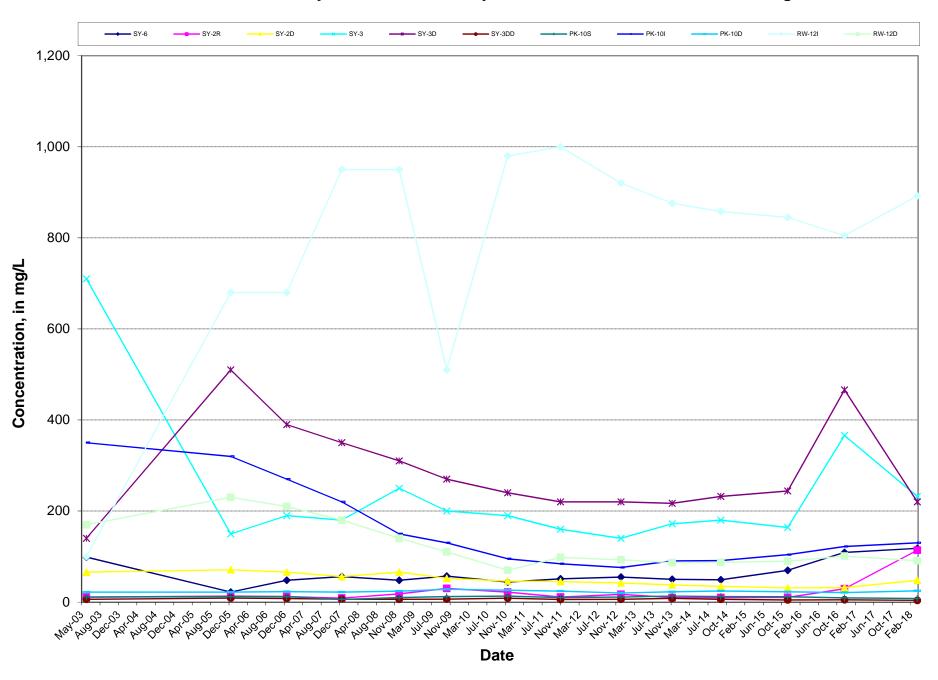
LOQ = Limit of Quantitation

MDL = Method Detection Limit

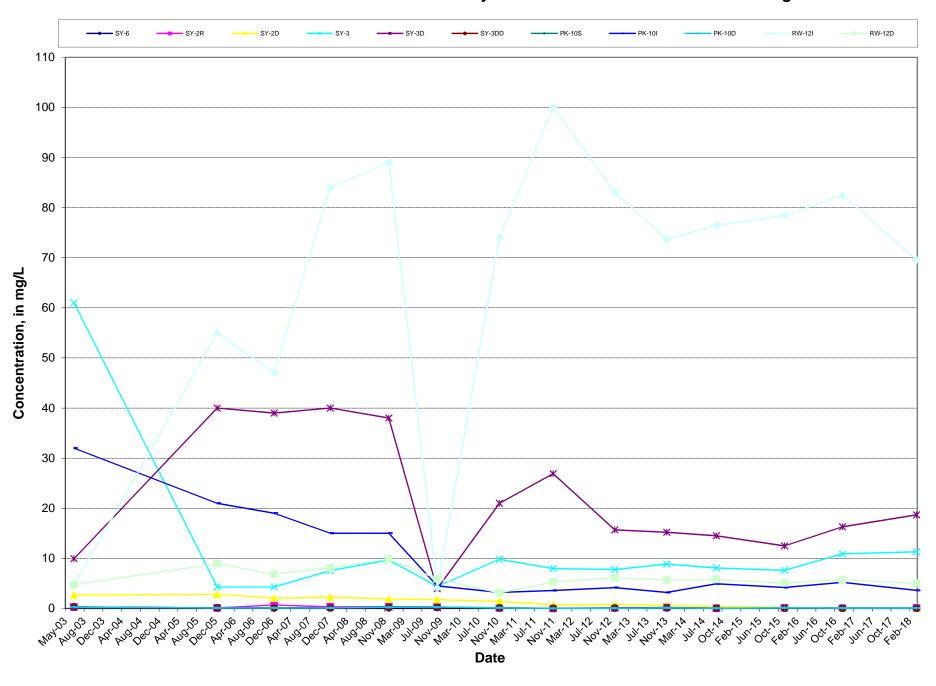
LOD = Limit of Detection

D = Dilution

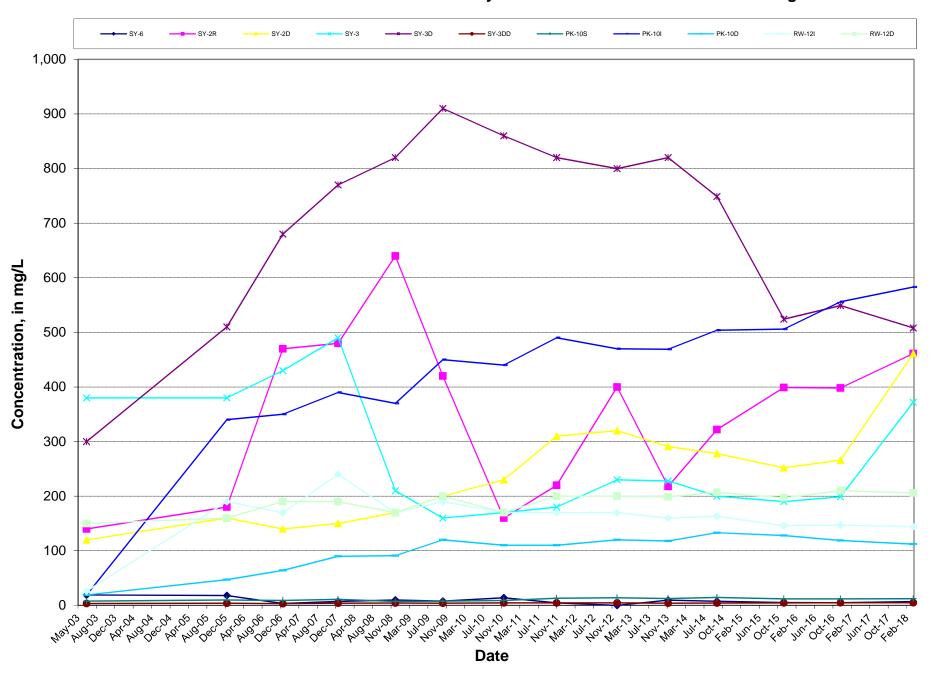
Q = indicates LCS control criteria did not meet requirements

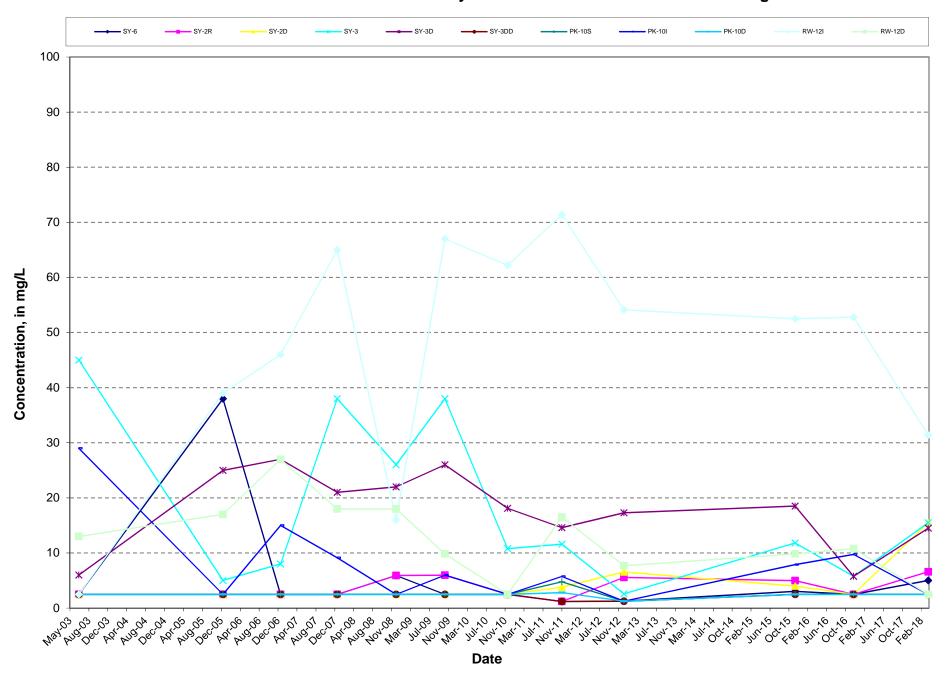

H = Sample Analysis Out Of Hold Time

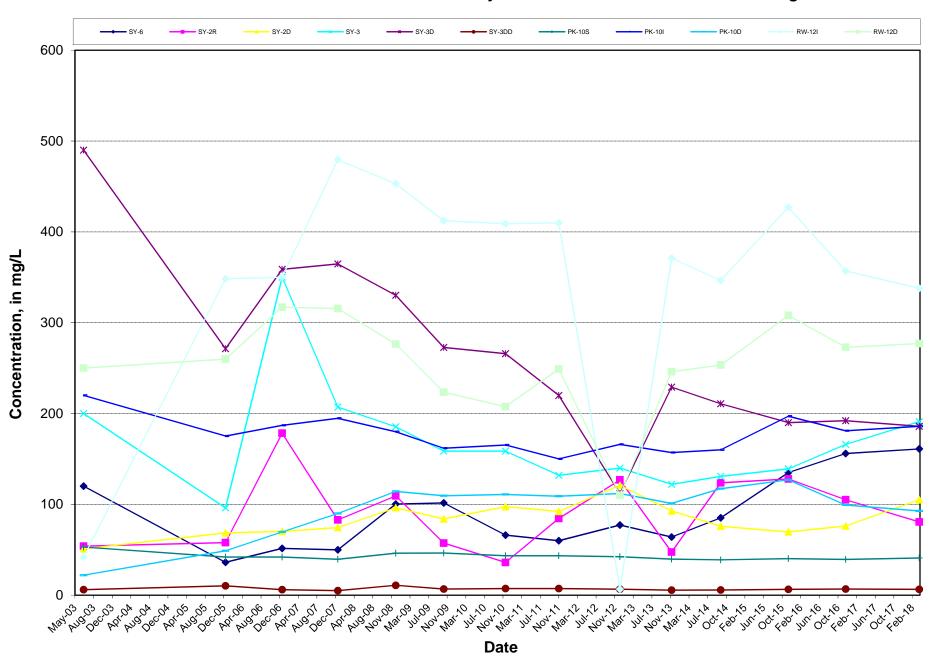
- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N = Spiked sample recovery not within control limits

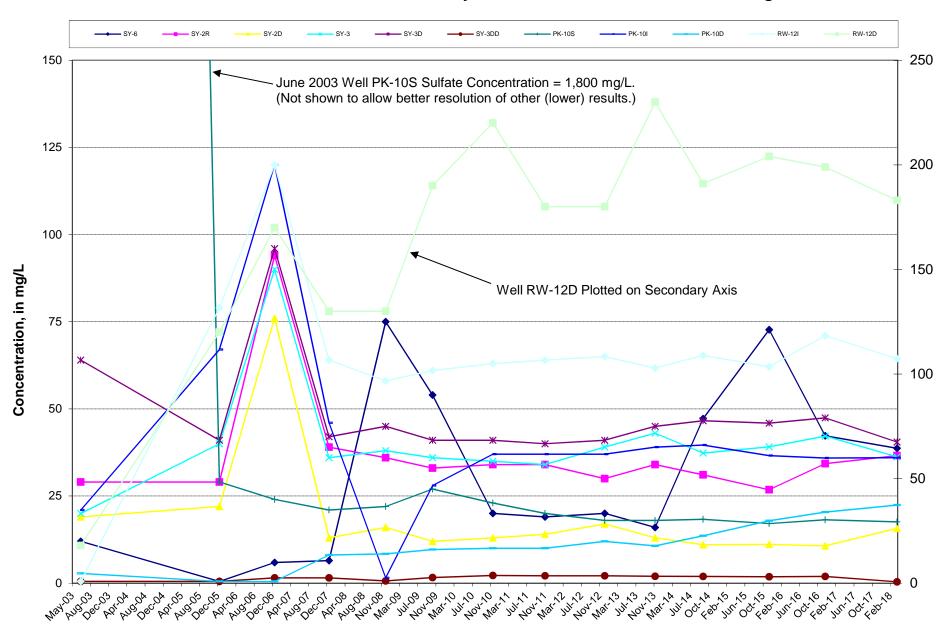

APPENDIX C

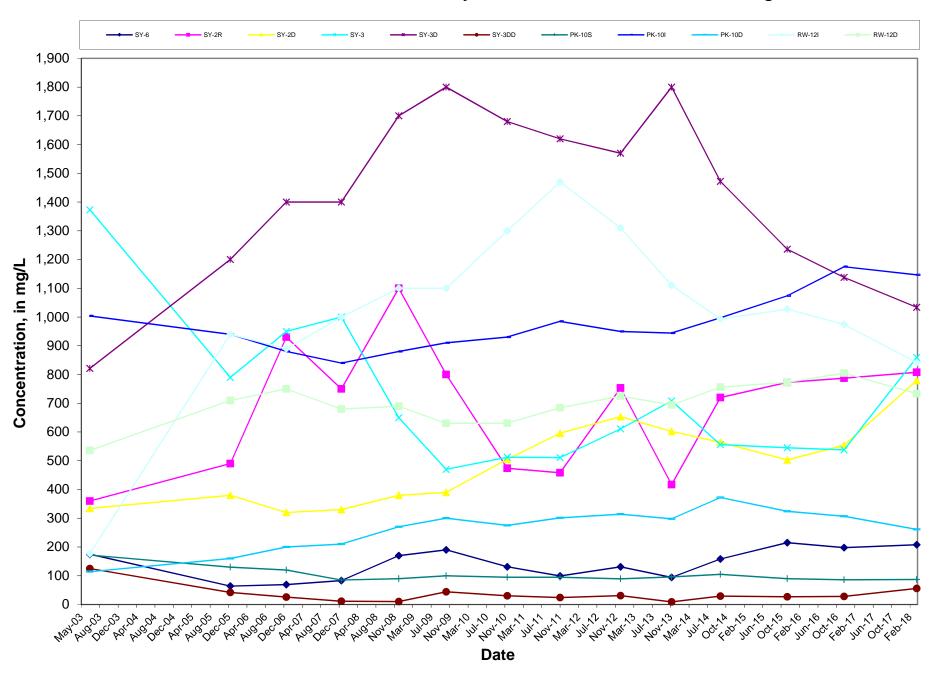
Trend Analysis Charts

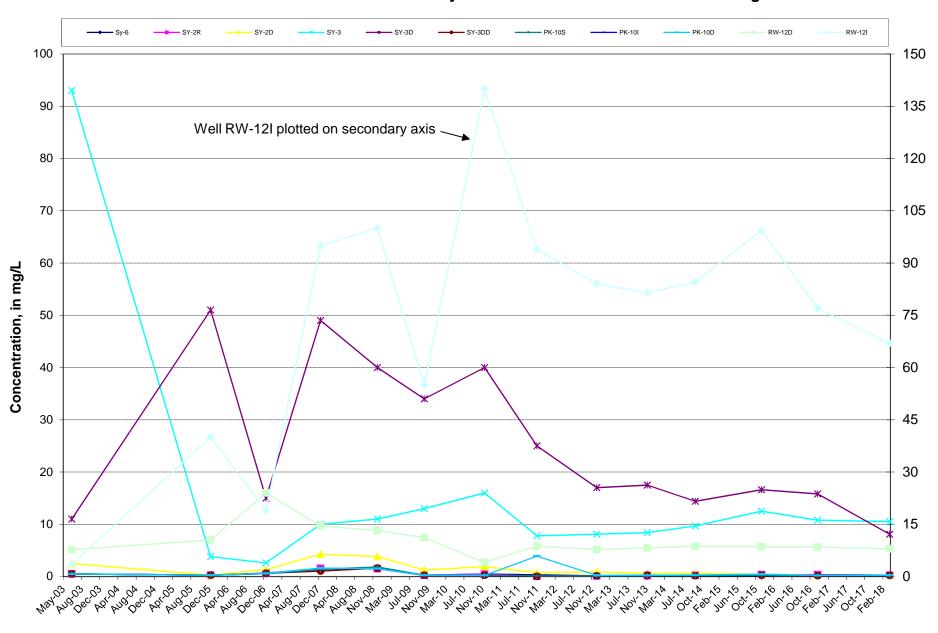

Post-Closure Alkalinity Concentrations in Syosset Landfill Ground Water-Monitoring Wells

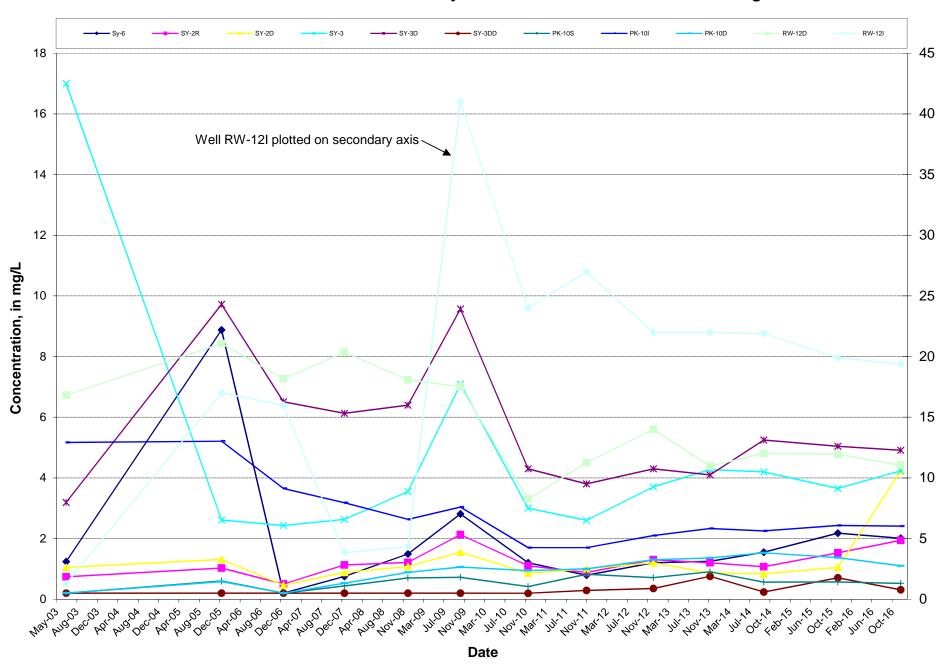

Post-Closure Ammonia Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Chloride Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure COD Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Hardness Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Sulfate Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure TDS Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Post-Closure TKN Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Post-Closure TOC Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Lockwood, Kessler & Bartlett, Inc.

1 Aerial Way Syosset, NY 11791-5592

> p: (516) 938-0600 f: (516) 931-6344

www.lkbinc.com