LAURA CURRAN NASSAU COUNTY EXECUTIVE

KENNETH G. ARNOLD, P.E. COMMISSIONER

NAZDEC Reg 1 Haz Waste Rem

DEC I O SO19

RECEIVED

COUNTY OF NASSAU DEPARTMENT OF PUBLIC WORKS

1194 PROSPECT AVENUE WESTBURY, NEW YORK 11590-2723

November 8, 2019

Matthew N. Mashhadi, Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-5062

Re: Fo

Former Purex Site (site # 130014)

Containment Area monitoring results (2018 – 2019)

Dear Mr. Mashhadi:

Please find enclosed the required Annual Containment Area Sampling results for the last two (2) years for the former Purex site. These results were obtained from groundwater monitoring wells which are hydraulically downgradient of the former source containment area (see attached map). All volatile organic compounds were found to be below Purex cleanup criteria.

If you have any questions or comments regarding these results, please contact Mr. Michael Flaherty, PG, Hydrogeologist III at (516) 571-7514.

Very truly yours,

Kenneth G. Arnold, P.E.

Commissioner of Public Works

KGA:VF:rp Enclosure

c:

Brian J. Schneider Deputy County Executive for Parks and Public Works

Donald Irwin, Director of Environmental Programs, NCDH

Vincent Falkowski, Deputy Commissioner for Environmental Programs

Walter J. Parish, NYSDEC, Region I

Eric Obrecht, NYSDEC

Charlotte Bethony, NYSDOH

Former PUREX SITE (site # 130014) Annual Containment Area Monitoring Results (ppb)

2018-2019

	Purex Cleanup Criteria	WELL W-261 DATE SAMPLED					WELL W-290 DATE SAMPLED				
VOLATILE ORGANICS COMPOUNDS (ppb)	(ppb)	4/11/18	6/4/19				4/12/18	6/4/19			
1,1,1,2-Tetrachloroethane	50	BDL	BDL				BDL	BDL			
1,1,1-Trichloroethane	50	BDL	BDL				BDL	BDL			
1,1,2-Trichloro-1,1,2-trifluoroethane	50	BDL	BDL				BDL	BDL			
1,1,2-Trichloroethane	50	BDL	BDL		in a consuma		BDL	BDL			
1,1-Dichloroethane	50	BDL	BDL				BDL	BDL			
1,1-Dichloroethene	5	BDL	BDL		17 a 117 m		BDL	BDL			
1,2-Dichloroethane	5	BDL	BDL				BDL	BDL			
1,4-Dichlorobenzene	50	BDL	BDL				BDL	BDL			
Benzene	5	BDL	BDL				BDL	BDL			
Bromodichloromethane	100*	BDL	BDL		- 100 at 100		BDL	BDL			
Bromoform	50	BDL	BDL				BDL	BDL			
Carbon Tetrachloride	50	BDL	BDL				BDL	BDL			
Chlorobenzene	50	BDL	BDL				BDL	BDL			
Chloroform	100*	BDL	BDL				BDL	BDL			
cis-1,3-Dichloropropene	2	BDL	BDL				BDL	BDL			
cis-1,2-Dichloroethylene	50	BDL	BDL				BDL	BDL			
Dibromochloromethane	100*	BDL	BDL		7		BDL	BDL			
Ethyl Benzene	50	BDL	BDL				BDL	BDL			
m,p-Xylene	50	BDL	BDL	-			BDL	BDL			
Methylene Chloride	50	BDL	BDL				BDL	BDL			
o-Xylene	50	BDL	BDL				BDL	BDL			
trans-1,3-Dichloropropene	2	BDL	BDL				BDL	BDL			
t-1,2 Dichloroethylene	50	BDL	BDL				BDL	BDL			
Tetrachloroethylene	50	9.6	BDL				1.7	5			
Toluene	50	BDL	BDL				BDL	BDL			
Trichloroethylene	50	1.1	BDL				BDL	BDL			
Vinyl Chloride	5	BDL	BDL				BDL	BDL			
TVOC	100	10.7	0.0	0.0	0.0	0.0	1.7	5.0	0.0	0.0	0.0

^{* -} Sum of these four compounds shall not exceed 100 ppb.

BDL - Below detection limits

B - Analyte detected in associated Method Blank

All results in ppb

Purex Well Location Map - 261 and 290

Legend

Glacial Monitoring Wells

Containment Area

