PERFORMANCE TEST REPORT

for the LOW TEMPERATURE ENHANCED VOLATILIZATION SYSTEM

at the

CLAREMONT POLYCHEMICAL SUPERFUND SITE OLD BETHPAGE, NEW YORK

PREPARED FOR:

USACE New York District

PREPARED BY:

DOW ENVIRONMENTAL

October 1996

Table of Contents

		Page
1.0	EXECUTIVE SUMMARY	1-1
2.0	INTRODUCTION	2-1
3.0	PROCESS DESCRIPTION	3-1
4.0	SAMPLING AND ANALYTICAL PROCEDURES 4.1 Air Emissions Monitoring Procedures 4.2 Waste Feed/Residuals Testing Procedures 4.3 Test Matrix	4-1 4-4
5.0	PERFORMANCE TEST RESULTS 5.1 Waste Feed/Residuals Test Results 5.2 Air Emissions Monitoring Results 5.3 Destruction and Removal Efficiency (DRE) Results 5.3.1 DRE Based on Caustic Usage 5.3.2 DRE Based on Chloride Analyses 5.3.3 DRE Based on Sodium Analyses 5.4 LTEV Operating Summary 5.5 Mass Balance Results	5-2 5-2 5-8 5-9 . 5-11 . 5-12 . 5-12
6.0	QUALITY ASSURANCE/QUALITY CONTROL 6.1 Overview 6.2 CEM QA/QC 6.2.1 Daily Calibrations and Drift Checks 6.2.2 Calibration Error Checks 6.2.3 System Bias Checks 6.2.4 Response Time 6.2.5 System Leak Checks 6.3 Manual Methods QA/QC 6.3.1 Manual Methods Discussion Overview 6.3.2 Gas Meter Volume 6.3.3 Volumetric Flow—Pitot Tube Flow Measurements 6.4 Analytical QA/QC for Manual Methods	6-1 6-1 6-2 6-2 6-4 6-4 6-5 6-7 6-7
	6.5 Sample Tracking and Documentation Procedures	6-9

List of Appendices

Dispersion Modeling Results Α Sample Calculations В Mass Balance Calculations C LTEV Operating/Maintenance Log D Soils Analytical Data (PCE) Ε Scrubber Water Analytical Data (PCE, salinity) F Fuel Analytical Data (Sulfur Compounds) G SW-846 Method 0030 (VOST) Analytical Data (PCE) H EPA Method TO-14 Analytical Data (PCE) Ι EPA Method 18 Analytical Data (PCE, C₁-C₃) J EPA Method 26A Analytical Data (HCl) K CEM Data (O2, CO2, NOx, CO, THC, SO2) L EPA Method 5 Analytical Data (PM) M Volumetric Flow/Moisture Data N

C₁-C₃ Analytical Data

0

List of Tables

		Page
4-1	Claremont Polychemical Superfund Site LTEV Performance Test Matrix	4-5
4-2	Performance Test Sampling Plan	4-6
5-1	Comparison of Predicted Versus Actual Emissions from LTEV System	5-1
5-2	PCE Concentrations Measured in Waste Feed/Residuals	5-2
5-3	Summary of Air Monitoring Results	5-3
5-4	LTEV Dispersion Modeling Results	5-4
5-5	Summary of Analytical Results for PCE	5-5
5-6	HCl Sampling/Analytical Results	5-6
5-7	Particulate Matter Sampling/Analytical Results	. 5-8
5-8	DRE Estimates for LTEV System Based on Caustic Usage	5-10
5-9	DRE Estimates for the LTEV System Based on Chloride Analyses	
5-10	LTEV Operating Log Summary	
5-11	Mass Balance for LTEV System	
6-1	Summary of CEM QC Acceptance Criteria and Results	
6-2	Claremont Polychemical CEM Calibration Data Emissions Test 9/26/96	
6-3	Flue Gas Manual Sampling Meter Volume Quality Control Acceptance Criteria .	. 6-8

Claremont Polychemical Company Superfund Site

LTEV System Performance Test Results

1.0 EXECUTIVE SUMMARY

On September 26, 1996, Dow Environmental, Inc. (DEI) conducted a performance test of the Low Temperature Enhanced Volatilization (LTEV) system. The performance test consisted of three one-hour test trials at operating temperatures of 400-500°F. The performance test was conducted prior to full-scale implementation of LTEV operations to:

- Demonstrate that the treatment unit can meet the specified soil treatment criteria of 200 μg/kg;
- Demonstrate that the unit will be operated in a manner that is protective of human health and the environment; and
- Establish operational performance criteria to ensure compliance with performance levels.

During the performance test, the LTEV system was well below the contract required soil clean-up level. The measured concentration of tetrachloroethylene (PCE) was below the analytical detection limit of 5 μ g/kg in treated soils from all three test runs performed. The level of PCE measured in the scrubber water effluent was also below the detection limit of 5 μ g/liter.

The air monitoring results indicate that the LTEV system performs within the New York State and national regulatory limits. All emissions levels and maximum modeled ambient concentrations of PCE, HCl, NO_x, SO₂, and CO are in compliance with levels well below the applicable regulatory standards. The short-term maximum ambient concentration of PCE based on the dispersion modeling results is less than 1 percent of the New York State standard. The destruction and removal efficiency (DRE) for PCE was calculated to be greater than 99.9%, on average, and 99.99% for individual measurements of PCE in the exhaust stream based on an approach of using the caustic consumption in the scrubber to estimate the incoming PCE. Using an analysis of chloride in the scrubber effluent to estimate the incoming PCE, the DRE calculations range from 98.1 to 99.7 percent. [Note: The low DRE estimate is

from the test run showing the most variability (i.e., 4 orders of magnitude) in PCE.] Due to an extremely wide variation in measured concentrations of PCE in the incoming soils, in some instances the DRE was not calculable to the 99.99%. In summary, the LTEV has shown it can meet the required performance criteria and has shown that it can properly remediate the soils at the Claremont Polychemical Superfund Site in a manner that is protective of human health and the environment.

2.0 INTRODUCTION

Approximately 3,900 cubic yards of soil will be excavated and treated at the Claremont Polychemical Superfund Site using low temperature thermal desorption for removal of tetrachloroethylene (PCE). The excavated soils will be treated according to the requirements of the Land Disposal Restrictions (40 CFR Part 268) under RCRA.

In the low temperature enhanced volatilization (LTEV) system designed to remove and control emissions of PCE, soil is thermally treated to desorb the organic constituents. The desorption process is operated between 400° and 500°F. The off gases from the desorption unit are sent to a baghouse to remove the fine particulate matter entrained in the gas stream. The PCE removed from the soil and source material is then catalytically converted to carbon dioxide, water, and hydrogen chloride gases. The gas stream is scrubbed using water to remove the hydrogen chloride and produce a very dilute acid stream. The resulting acid stream is neutralized with sodium hydroxide solution to produce sodium chloride that is dissolved in the scrubber effluent.

Prior to full-scale implementation of LTEV operations, a complete system performance evaluation was conducted to:

- Demonstrate that the treatment unit can meet the specified soil treatment criteria of 200 μg/kg;
- Demonstrate that the unit will be operated in a manner that is protective of human health and the environment; and
- Establish operational performance criteria to ensure compliance with performance levels.

A performance test of the LTEV system was conducted by Dow Environmental, Inc. (DEI) on September 26, 1996. The performance test consisted of three one-hour test trials at desorber operating temperatures of 400-500°F. This report documents the test procedures and results from the LTEV system performance test.

3.0 PROCESS DESCRIPTION

The LTEV system utilizes a non-contact, counter-current, low-temperature, enhanced volatilization process which first volatilizes target organic contaminants from the soil into the air within the system. The airborne contaminants are then catalytically oxidized in a specially designed low-temperature, catalytic oxidation system used for treatment of chlorinated organics.

The feed material is initially screened to remove large material (i.e., greater than 2 inches) from the contaminated soil waste stream. The thermal desorption system consists of a feed hopper, a contaminated soil feed conveyor, a weigh conveyor with a continuous sensing weigh scale, a rotary drum equipped with a gas-fired low-NO_x burner, and a propane vaporizer. Desorption of the organic constituents in the waste feed is achieved in the countercurrent designed rotary drum, which is equipped with a 10 MMBtu/hr low-NO_x burner fueled with propane.

The exhaust gases from the desorption unit go to a baghouse designed to remove particulates greater than 5 microns in size. Processed/desorbed soils are ejected into a discharge moisturizing auger. The moisturizing auger is used to mix processed soils with baghouse fines, to cool processed soil, to control dust, and remoisturize the soil for enhanced compaction when backfilling. The collected baghouse fines are transferred via a closed auger system to the discharge moisturizing auger where they are mixed and rehydrated with the processed soil.

The exhaust gas stream from the baghouse is split into two streams passing through identical treatment equipment. The stream is first preheated in a cross exchanger, and then mixed with combustion gases from a catalyst preheater prior to entering the catalytic reactor. The catalyst preheater gas burner has a maximum firing rate of 3 MMBtu/hr and is operated using propane fuel. The catalytic reactor units were designed to achieve greater than 99.99 percent destruction efficiency for PCE, based on the gas flow rates and operating conditions of the units.

The gas stream from the catalytic oxidation units enter a multi-stage quench and then enter a packed bed, counter-current absorption column for removal of HCl from the oxidizer

exhaust. The pH in the scrubber sump is maintained at a near neutral condition by the automatic addition of NaOH solution, as needed.

Figure 3-1 provides an illustration of the LTEV system, with the sampling locations identified. The sampling ports for the air emissions monitoring are located a) in the combined vent stream before it is split to the catalytic oxidizer units; and b) downstream of the scrubber, in the combined exhaust vent stream to the atmosphere. The inlet sampling port was located in the duct that extended from the desorption trailer to the catalytic oxidation trailers, prior to the split in the duct feeding each of the catalytic oxidizers. The port was located in the 22 inch diameter duct which was of sufficient length to allow the optimum number of traverse points. The duct allowed at least a 44 inch distance from the nearest downstream disturbance and 8 duct diameters from the nearest upstream disturbance. Two sampling locations at a 90° angle were used. The 24 inch diameter exhaust stack allowed a total of 12 sampling points for the velocity traverse measurements.

Figure 3-1. Sample Port Locations

STACK OUTLET, OR DISTURBANCE. 꾿 3" FLANGED # LINIT 田田 EXPANSION JOINT SEE DETAIL ABONE THERMAL DESORPTION TRANSITION POINT FIELD CUT 3/4" THREAD-O-LET SAMPLE PORT TYPICAL 3 PLACES ٦١-LOOSE PING € 3" FLANGED SAMPLING PORTS (INLET) 116GA 316SS WELDED CONSTRUCTION TYPICAL 8/1 705 33 ₩ - 12" DIA, 1504 FLANGE PATTERN 316SS, 3/8" PLATE - 3" FLANGED SAMPLE POST 3 PLAGES (PORTS "A" HOUSE TANGED SAMPLE 18 1/2-"K 3-3

* NOTE

OUTLET SAMPLE PORTS
ARE GA+) DIAMETERS FROM
LAST FLOW DISTURBANCE
AND Z++) DIAMETERS FROM
THE STACK OUTLET, OR

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Air Emissions Monitoring Procedures

PCE was measured at both the inlet to the catalytic oxidation units and at the exhaust to the atmosphere, downstream of the scrubbers, to determine the control efficiency of the LTEV system. Several methods were used to measure PCE at the inlet and outlet locations. At the inlet to the catalytic oxidation units where PCE concentrations are relatively high, Summa canisters were used in accordance with EPA Method TO-14. In addition, field gas chromotography (GC) was used in accordance with EPA Method 18, collecting both instantaneous readings throughout each test run and an integrated bag sample over the entire run period. At the vent stream to the atmosphere, PCE was measured using both the volatile organics sampling train (VOST) in accordance with SW-846 Method 0030 and Summa canisters using Method TO-14. Three sets of samples using both Method TO-14 and Method 0030 were collected during each one-hour test run.

For HCl, three 60-minute runs were conducted using Method 26A. The sampling point for HCl was the vent stream to the atmosphere in order to compare the measured emissions levels with the levels shown in the permit to construct. For particulate matter, three 60 minute runs were conducted for each test condition using a Method 5 sampling train.

For SO_x, a maximum emissions rate was determined using fuel analysis by ASTM Method D3246 after fuel tank loading and prior to the test period. NO_x, CO, THC, CO₂, SO₂, and O₂ were continuously monitored during each of the test runs. EPA Method 1 procedures were used to determine the number and location of sampling traverse points required for each sample location, and EPA Method 2 was used to perform volumetric flow rate determinations. In addition, the average moisture content of the source gas was measured using the EPA Method 4 paccedures or collected as part of the Method 26A sampling train. An overview of each sampling method is provided below.

SW-846 Method 0030—The volatile organic sampling train (VOST) Method 0030 found in SW-846 was used to sample for PCE in the exhaust stream. This method utilizes Tenax and Tenax/Charcoal traps to absorb volatile organic compounds (bp < 100°C) from the sample stream. After sampling, the Tenax traps are sent to a laboratory for analysis using thermal desorption purge-and-trap by gas chromatography/mass spectrometry (Method 5040).

In accordance with the method, three runs were conducted for a single test condition. Based on the predicted concentrations of PCE in the exhaust stream, the sampling time per run for Method 0030 was approximately 10 minutes with a sampling rate of around 0.5 1/min (approximately 5 times the detection limit of the method).

EPA Method 26A—HCl was measured using Method 26A in the exhaust stream to the atmosphere. Method 26A is an isokinetic procedure to absorb gaseous hydrogen halides and halogens in alkaline or acidic solutions. Method 5 type impingers are used for collecting the HCl sample. The isokinetic method is used when water droplets are present, such as after a scrubber, where it is necessary to account for the bias of the halides in the scrubber water. Samples are recovered in the field and sent to a laboratory for ion chromatography analysis.

EPA Method 1—The number and location of sampling traverse points necessary for isokinetic sampling were determined according to EPA Method 1 protocol. EPA Method 1 parameters are based upon the length of duct separating the sampling ports from the closest downstream and upstream flow disturbances. The minimum number of traverse points for a circular duct less than 24 inches is 4 (8 total sampling points). Traverse point locations are determined for each sample port depending on the distances to duct disturbances. Method 1 procedures were implemented at the inlet to the catalytic oxidation units and at the exhaust stream to the atmosphere.

EPA Method 2—Volumetric flow rate was measured according to EPA Method 2. A Type K thermocouple and S-type pilot tube was used to measure flue gas temperature and velocity, respectively. Method 2 procedures were implemented at the inlet to the catalytic oxidation units and at the exhaust stream to the atmosphere.

EPA Method 4—The average moisture content of the sample gas was determined using EPA Method 4. Before sampling, the initial weight of the impingers was recorded. When sampling was completed, the final weights of the impingers were recorded, and the weight gain calculated. The weight gain and the volume of gas sampled were used to calculate the average moisture content (percent) of the sample gas.

EPA Method 5—Particulate matter was sampled isokinetically from the exhaust and collected on a glass fiber filter. The particulate mass, which includes any material that

condenses at or above the filtration temperature, was determined gravimetrically after removal of uncombined water.

Continuous Emissions Monitoring—CEM systems which meet EPA performance specifications were used for continuous monitoring of NO_x, CO, CO₂, THC, SO₂, and O₂. The CEMS configuration is comprised of four sub-systems, including:

- Sample gas extraction and transfer equipment;
- Conditioned sample gas analysis instrumentation (NO_x, CO, CO₂, SO₂, and O₂);
- Unconditioned sample gas analysis instrumentation (THC); and
- Calibration and QA standards delivery equipment.

The sample gas conditioning equipment is used to remove particulates, moisture, and other condensibles from the sample gas stream prior to measurement via a series of glass condensers/chillers.

Measurement of O₂ and CO₂ was conducted according to the specifications of EPA Method 3A ("Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources"). For O₂ analysis, an Amtek LS instrument was used. For CO₂, a Servomex 1400 instrument was used.

Measurement of NO_X was conducted according to the specifications of EPA Method 7E ("Determination of Nitrogen Oxides Emissions from Stationary Sources"). The NO_X analysis instrument was a TECO Model 42 analyzer.

Measurement of CO was conducted according to the specifications of EPA Method 10 ("Determination of Carbon Monoxide Emissions from Stationary Sources"). The CO analysis instrument was a TECO Model 48 analyzer.

Measurement of THC was made on a wet basis from an unconditioned sample gas stream according to the specifications of EPA Method 25A ("Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer"). The THC analysis instrument was a JUM VE-7 analyzer.

Measurement of SO₂ was made according to the specifications of EPA Method 6C using a continuous analyzer. Since the level of SO₂ was expected to be below the detection limit of the instrument (on the order of 1 ppm), sulfur analysis of the fuel was also conducted.

4.2 <u>Waste Feed/Residuals Testing Procedures</u>

During the performance test, multiple grab samples of the incoming waste soil were taken during each testing period. All soil pretreatment grab samples were collected from the cold feed belt. Samples were analyzed at an off-site laboratory using EPA Method 8260 to determine the concentration of PCE and identify other volatile organic constituents present. For each test, one grab sample of treated soil was collected approximately 5 to 8 minutes after a grab sample of waste feed material was obtained. Since soil residence time in the desorption chamber is about 4 to 8 minutes, with a residence time of 1 to 2 minutes in the discharge auger, this approach is the most likely to result in sampling of the same soils before and after treatment. Post-treatment grab samples were collected at the exit of the moisturizing auger in a stainless steel container and held until the soil was cool enough to be safely placed in sample containers by sampling personnel (approximately 1-2 minutes).

PCE in the waste feed and in the treated soils was monitored during the performance test to establish that the performance criteria of 200 μ g/kg of PCE was achieved. VOCs and PCE in scrubber blowdown were monitored to establish that the catalyst is performing properly and to demonstrate that contaminants are not being collected in the quench and scrubber.

4.3 Test Matrix

The constituents that were monitored, the sampling/analytical methods used, and the number of test runs performed during the performance test are shown in the test matrix, presented as Table 4-1.

The performance test consisted of three test trials each approximately 1 hour long designated 1 through 3 while each test trial consisted of three sub-trials of about 10 to 20 minutes each for canister and volatile organic sampling train (VOST) sampling designated .1 through .3 as demonstrated in Table 4-2.

Table 4-1. Claremont Polychemical Superfund Site LTEV Performance Test Matrix

Description		Frequency of Sampling/Monitoring	Off Site Testing	Parameters	Test Method
Waste Feed	1	*1 Grab Sample every 5 min. over 1 Hr. Test Run	1 Grab Sample every 5 min. over 1 Hr. Test Run	PCE	Method 8260
		Continuous Monitoring @	Contrl Panel	Waste Feed Rate	LTEV Continuous Weight Belt
Air Emissi	ons	Continuous Emissions	None	тнс	Method 25A
		(CEMs)		O ₂	Method 3A
				CO ₂	Method 3A
				со	Method 10
				NO _x	Method 7E
				SO ₂	Method 6C
		1 Sample/Test Run	1 Sample/Test Run	Moisture	Method 4
		(samples colled\cted from stack)		Volume/Velocity	Methods 1, 2
		stack)		HCI	Method 26A
				PM	Method 5
	3 Samples/Test Run (samples collected from stack) 3 Samples/Test Run (samples collected from inlet to catalytic oxidizer)		3 Samples Test Run	PCE	Method 0030 Method TO-14
			3 Samples/Test Run		Method TO-14 Method 18
Residuals	Treated Soils *1 Grab Sample per 1 Hr. Test Run taken from moisturizing auger outlet Scrubber Blowdown *1 Grab Sample per 1 Hr. Test Run Test Run		1 Grab Sample per Test Run (i.e., 3 Samples per Test Condition)	PCE	Method 8260
į			1 Grab Sample per Test Run (i.e., 3 Samples per Test Condition)	PCE	Method 8260

Table 4-2. Performance Test Sampling Plan

	Performance Test										
Test Run 1			Test Run 2			Test Run 3					
Sub-Trial 1.1	Sub-Trial 1.2	Sub-Trial 1.3	Sub-Trial 2.1	Sub-Trial 2.2	Sub-Trial 2.3	Sub-Trial 3.1	Sub-Trial 3.2	Sub-Trial 3.3			

5.0 PERFORMANCE TEST RESULTS

This section presents the test results from the September 26, 1996 performance test of the LTEV system. To summarize the results, the LTEV system was demonstrated to achieve the required soil clean-up level at the low temperature operating conditions (i.e., 400-500°F). The measured levels of PCE were below the detection limits in the treated soil and the scrubber effluent. Measured levels of PCE, PM, HCl, NO, SO2, THC, and CO in the exhaust (air) stream were also very low and well below the applicable regulatory guidelines. The calculated destruction and removal efficiency (DRE) for the LTEV system was calculated to be greater than 99.9 percent, on average, and 99.99 percent for individual measurements of PCE in the exhaust stream based on an approach of using the caustic consumption in the scrubber to estimate the incoming PCE. Using an analysis of chloride in the scrubber effluent to estimate the incoming PCE, the DRE calculations range from 98.1 to 99.7 percent. [Note: The low DRE estimate is from the test run showing the most variability (i.e., 4 orders of magnitude) in PCE.] A detailed discussion of the test results is presented in the following sections. Supporting data are included in Appendices E-N. An overall comparison of the predicted results based on design calculations to the actual results measured during the performance test are presented in Table 5-1.

Table 5-1. Comparison of Predicted Versus Actual Emissions from LTEV System

Compound	Predicted Emissions, lb/hr*	Actual Emissions, lb/hrb
Tetrachloroethylene	4.43 x 10 ⁻⁵	5.4 x 10 ⁻³
Hydrogen Chloride	2.14 x 10 ⁻⁴	3.4 x 10 ⁻³
Nitrogen Dioxide	0.553	0.64
Sulfur Dioxide	0.07	0.01

^{*} Predicted emissions based on design calculations prior to system operation.

^b Actual emissions based on average measurements conducted during performance test.

5.1 Waste Feed/Residuals Test Results

Soil samples taken of the incoming waste soil and the treated soil were analyzed for PCE concentration. Table 5-2 presents a summary of the measured concentrations of PCE in the incoming and treated soils. As shown, the variability of PCE measured in the incoming waste soil was very high. Measured concentrations of PCE in the incoming soil grab samples ranged from 1.2 to $68,000~\mu g/kg$. In the treated soil, the measured levels of PCE were below the detection limit of $5~\mu g/kg$ for all three test runs. The PCE analytical detection limit at $5~\mu g/kg$ is well below the required clean-up level of $200~\mu g/kg$. In addition, the level of PCE measured in the scrubber water effluent was below the analytical detection limit of $5~\mu g/liter$. This detection limit of PCE in water is below the regulatory goal of $5~\mu g/liter$ as specified in the NYSDEC Revised TAGM 4046 for groundwater.

Table 5-2. PCE Concentrations Measured in Waste Feed/Residuals

	PCE (Conc. In Was µg/kg	te Soil,	PCE Cone. In.	POT G	
Run No.	Max.	Min.	Avg.	Treated Soil, μg/kg	PCE Conc. In Scurbber	
1	12,000	1.4	1,745	<5	<5	
2	68,000	1.2	7,264	<5	<5	
3	9,900	2.7	2,580	<5	<5	

The soil samples were also analyzed for other chlorinated and non-chlorinated constituents per EPA Method 8260. The analytical results indicate that only PCE was present at levels above the analytical detection limits. No other chlorinated (or non-chlorinated) compounds were detected in the soil samples.

5.2 Air Emissions Monitoring Results

Measured levels of PCE, PM (particulate matter), HCl, NO_x, SO₂, and CO in the exhaust (vent) stream were well within regulatory requirements as supported by the data that follows. Table 5-3 presents the stack testing results for oxides of nitrogen (NO_x), sulfur dioxide (SO₂), carbon monoxide (CO), total hydrocarbons (THC), particulate matter (PM),

hydrogen chloride (HCl), and PCE. The measured emissions are compared against the applicable reporting thresholds for non-attainment areas (6 NYCRR Part 202) and the emissions limitation for PM in the State of New York (6 NYCRR Part 212).

Table 5-3. Summary of Air Monitoring Results

Compound	Run 1	Run 2	Run 3	Average	Criteria
NO _x , lb/hr	0.70	0.80	0.42	0.64 (0.14 tons/yr)	25 tons/yr
SO ₂ , lb/hr ^g	0.0073	0.00818	0.0131	0.0095 (0.002 tons/yr)	100 tons/yr
CO, lb/hr	0.29	0.24	0.14	0.22 (0.05 tons/yr)	100 tons/yr
HCl, lb/hr	0.0037	0.0036	0.0030	0.0034 ^d (99.96%)	99% removal effic.°
THC, lb/hr (as CH₄)	0.81	0.45	0.28	0.51 (0.11 tons/yr)	25 tons/yr
PM, grains/dscf	0.0051	0.0025	0.0033	0.0036	0.05 grains/dscf
Avg. PCE, lb/hr	0.0027	0.0101	0.0034	0.0054	c

^{*}Based on reporting threshold for non-attainment areas (6 NYCRR Part 202).

Based on a dispersion modeling analysis using the average measured emissions rates, the maximum concentrations are well below the New York ambient air quality standards and the National Ambient Air Quality Standards (NAAQS) for each compound. A detailed discussion of the dispersion modeling results are included in Appendix A. Table 5-4 presents the results of the analysis along with a comparison between the maximum modeled concentrations and the applicable ambient level regulatory guidelines. As shown, the maximum concentrations of all compounds are well below the applicable ambient standard,

^bEmissions limitation (6 NYCRR Part 212).

[&]quot;No emission limitation, ambient air standard presented in Table 5-4.

^drepresents 99.96% removal efficiency (see HCl discussion below).

⁶ NYCRR Part 373-2.15 requires 99% control efficiency for HCl emissions levels above

⁴ lb/hr. (This control requirement is not applicable to the LTEV system since emissions are substantially lower than 4 lb/hr.)

The PM results presented are based on the performance test conducted on August 27-29.

Based on fuel analyses.

with the short-term maximum concentration of PCE at less than 1 percent of the short-term guideline as specified in NY Air Guide 1.

Table 5-4. LTEV Dispersion Modeling Results

Pollutant	Averagia g Period	Short-Term Guideline Concentration (µg/m²)	Annual Guideline Concentration (µg/m²)	New York Ambient Air Standard (µg/m²)	NAAQS (µg/m²)	Maximum Concentration (µg/m²)	Percent of Standard
Perchloroethylene	1-hour	81,000				0.5	< 0.01
	Annual		7.5 <u>x10</u> -2			4.7x1 <u>0</u> -2	62.1
HCI	1-hour	150				0.3	0.2
	Annual		7			2.9x10 ⁴	0.4
NO ₂	Annual			170		5.5	<u>3.3</u>
	Annual				100	5.5	<u>5.5</u>
со	1-hour				40,000	19.0	0.05
	8-hour				10,000	13.3	0.1
PM	24-hour				150	5.4	3.6
	Annual				_50	1.4	2.8

A discussion of the performance testing results for each constituent measured follows.

PCE—PCE concentration in the exhaust was measured using two alternate methods, Method TO-14 (canisters) and SW-846 Method 0030 (VOST). Based on the sampling protocol, the VOST measurements were determined to more accurately represent the PCE concentrations in the exhaust stream since VOST is the more accurate method for low levels of VOCs. Average PCE stack emissions ranged from 0.01 to 0.0027 lb/hr based on the SW-846 Method 0030 (VOST) results.

PCE concentrations at the inlet, upstream of the catalytic oxidizers, were measured using Method TO-14 (canisters), direct GC analyses, and integrated bag samples which were analyzed by GC immediately after they were collected. Based on the variability of the measured concentrations of PCE in the incoming soil, the methods used to measure PCE at the inlet likely do not represent a true average concentration over the entire run period. Direct measurements of PCE in the grab samples of incoming soil and the inlet air stream to the catalytic oxidizers were not considered representative of the actual average PCE concentration due to the range of variation in PCE concentration. Based on this large variability in incoming

PCE concentrations and the intermittent nature of the inlet sampling of the soil and air stream upstream of the catalytic oxidation units, DEI proposes that the chloride ion concentration in the scrubber effluent should be used to estimate the average inlet mass flow rate of PCE. The Cl represents a more accurate estimate of the actual inlet concentration of PCE because it reflects the total amount of HCl produced from the catalytic oxidation of PCE that was neutralized in the scrubber. The soils analytical data supports the assumption that all of the HCl neutralized in the scrubber was generated from the oxidation of PCE alone, since no other chlorinated compounds were identified in the incoming soil.

Table 5-5 presents a comparison between the alternate methods used to measure PCE at the inlet to the catalytic oxidation units and at the exhaust to the atmosphere. These results have been converted to lbs/hr of PCE so that comparisons can be made in equivalent units.

Table 5-5. Summary of Analytical Results for PCE

			PCE Out, lb/hrd					
Test Run	Soil Analyses	Canisters	Average GC ^a	Integrated GC ^b	Caustic Usage	C1 [*] Analyses ^e	VOST	Canisters
1.1		0.3587					0.00072	0.0021
1.2		0.0777					0.00672	0.00958
1.3		0.0554					0.00168	0.00311
1 (Avg.)	0.0466	0.1639	0.8169	0.1482	11.823	0.696	0.00273	0.00493
2.1		0.1147					0.00178	0.03984
2.2		0.0900					0.02712	0.03078
2.3		0.6690					0.01018	0.00217
2 (Avg.)	0.2179	0.2678	0.3295	2.7500	8.873	0.521	0.01010	0.02427
3.1		0.0502					0.00043	0.00678
3.2		0.0365					0.001799	0.00786
3.3		0.6756					0.007715	
3 (Avg.)	0.0805	0.2541	0.2828		5.911	1.189	0.003417	0.00732
Average	0.1150	0.2286	0.4764	1.4491	8.869	0.8	0.00542	0.01217

^a Average of individual GC measurements taken during run period.

^b Integrated bag sample collected over entire run period.

^c Inlet sampling location was at the inlet to the catalytic oxidation units for all measurements except the inlet soils, which was sampled at the cold feed belt or loader bucket.

^d Outlet sampling location was at the exhaust stack to the atmosphere.

^e Chloride analyses of the scrubber effluent.

DEI believes that the excessive variability in PCE feed concentrations and the nature of the sampling in the inlet is responsible for the inconsistency in results between the methods.

HCl—HCl was measured in the exhaust stream using EPA Method 26A during each of the three test runs. Based on the analytical results, HCl was emitted at an average rate of 0.0034 lbs/hr over the three run test period. Based on the material balance calculations presented in Appendix C, the average HCl entering the scrubber was 7.810 lbs/hr for the performance test. The average HCl at the inlet to the scrubber (7.810 lbs/hr, based on caustic usage) minus the average HCl measured in the exhaust (0.0034 lbs/hr), yields an average removal of 7.8066 lbs/hr which demonstrates a greater than 99.95% removal efficiency [(7.81 - 0.0034) / 7.81 = 0.9996]. The HCl analytical results and the sample volumes are shown in Table 5-6. The example calculation for converting to units of lb/hr are shown in Appendix B.

Table 5-6. HCl Sampling/Analytical Results

Run No.	Meter Volume, dscf	HCl Catch, mg	HCl Emissions, lb/hr
1	32.74	0.16	0.0037
2	32.10	0.16	0.0036
3	33.87	0.14	0.0030
		Average	0.0034

NO_x, SO₂, CO, THC Results—Levels of NO_x, SO₂, THC, and CO emissions from the LTEV system were very low.

EPA Method 7E was used to measure NO_x emissions from the exhaust of the LTEV system. NO_x emissions ranged from 0.42 to 0.80 lb/hr over the three test runs. With the average NO_x emission of 0.64 lbs/hr, NO_x emissions over the life of the job (i.e., approximately 430 operating hours) would be less than 0.14 ton for the year. This level is well below the 25 ton/year reporting threshold level. Furthermore, the modeled maximum ambient concentrations of NO_x from the LTEV are less than 10 percent of the New York and national ambient air standard limitations.

Sulfur dioxide emissions from the LTEV system exhaust stream were measured using EPA Method 6C and by fuel analyses. Because of the very low levels of sulfur in the propane fuel, the measured levels of SO₂ were below the detection limit (i.e., on the order of 1 ppm for SO₂) of the continuous analyzer. Although the average of the SO₂ analyzer readings was greater than 1 ppm, the inherent drift in the instrument from negative to positive readings indicates that the actual concentration of SO₂ was below the threshold for the analyzer. Fuel analyses for sulfur compounds confirms that the levels are low and indicates that the estimated average concentration of SO₂ in the exhaust stream is only 0.17 ppmvd.

CO emissions ranged from 0.14 to 0.29 lb/hr over the three test runs. With average CO emissions of 0.22 lbs/hr, CO emissions over the life of the job (i.e., approximately 430 operating hours) would be less than 0.05 ton for the year. This level is well below the 100 ton/year reporting threshold level appearing in 6 NYCRR Part 202. Furthermore, the maximum ambient concentration of CO from the LTEV system is less than 1 percent of the NAAOS.

THC emissions from the LTEV system exhaust stream were measured using EPA Method 10. The average emissions ranged from 0.28 to 0.81 lb/hr over the three test runs, with an overall average of 0.51 lb/hr. Measured THC concentrations averaged 29 ppmvw. Concentrations of propane were measured in the exhaust stream using EPA Method 18. The average level of propane from runs 2 and 3 was 5.9 ppmvw or approximately 20 percent of the THC emissions. (Note: The propane and methane analyses from run 1 were inconsistent and not included in the averages.) Methane emissions were higher (methane is an intermediate in the combustion of propane), with an average of 26 ppmvw.

Particulate Matter—An EPA Method 5 sampling train was used to measure the emissions of particulate matter (PM) from the LTEV system. The PM filters from the performance test conducted on September 26 cannot be located. (Note: The analytical laboratory has not located the samples, which were reportedly shipped in the same package as the VOST samples.) Due to similar operating conditions, the results from the low temperature test conducted on August 27-29 were used. Particulate results from August 27-29 ranged from 0.003 to 0.005 grains/dscf, with an overall average of 0.004 grains/dscf. This level is well below the NYSDEC Part 212 compliance limit of 0.050 grains/dscf. The PM filter weights and the sample volumes are shown in Table 5-7. The example calculation for converting to units of grains/dscf are shown in Appendix B.

Table 5-7. Particulate Matter Sampling/Analytical Results

Run No.	Meter Volume, dscf	Particulate Catch, mg	Particulate Emissions, grains/dscf
1	30.48	10.1	0.0051
2	34.84	5.6	0.0025
3	35.90	7.7	0.0033
		Average	0.0036

5.3 <u>Destruction and Removal Efficiency (DRE) Results</u>

As previously mentioned, the variability in inlet PCE concentration in the incoming soil was very high. Measured concentrations of PCE in the incoming soil grab samples ranged from 1.2 to 68,000 µg/kg. Direct measurements of PCE in the grab samples of incoming soil and the inlet air stream to the catalytic oxidizers were not considered representative of the actual average PCE concentration due to the range of variation in PCE concentration. Based on this large variability in incoming PCE concentrations and the intermittent nature of the inlet sampling of the soil and the air stream upstream of the catalytic oxidizers, DEI proposes that either the caustic consumption in the HCl scrubber, the chloride analysis of the scrubber effluent, or the sodium analysis of the scrubber effluent should be used to estimate average inlet airstream PCE concentration. These three quantities represent a more accurate estimate of the actual inlet concentration of PCE because they reflect the total amount of HCl produced by the catalytic oxidation of PCE that was neutralized in the scrubber. The soils analytical results indicate that all of the HCl present was generated from the oxidation of PCE, since no other chlorinated compounds were present in the soil. Of the three, the chloride concentration in the effluent is the only one to provide a "primary" measurement of the chlorine present; both the caustic usage and sodium concentrations provide "secondary" measurements. Additionally, due to the measurement process used to determine caustic usage, these values exhibit the lowest accuracy of the three methods. As a result, the effluent chloride concentration is likely to provide the most accurate information concerning the inlet concentrations of PCE.

5.3.1 DRE Based on Caustic Usage

Caustic usage was measured using an accurate manual measurement of the tank level before and after each run period. The caustic flow rates were not measured using a metering pump due to the very low flow rates involved. An accurate physical measurement of the tank level was considered the most accurate method for assessing the caustic usage. The NaOH solution used in the LTEV scrubber was within the 25% NaOH by weight specification from the vendor within an accuracy of around ± 2 percent. The calculations of the quantity of HCl neutralized account for the pH of the scrubber effluent. The pH meter is accurate to within the following guidelines:

- Sensitivity is 0.05 of 1 pH, as calibrated;
- Stability of 0.05 of 1 pH per 24 hours, which is not cumulative; and
- Repeatability of 0.05 of 1 pH or better, as calibrated.

The pH meter is calibrated during equipment setup using standard pH solutions. It is highly unlikely that the ground water used in the scrubber contained any buffering agents to influence the pH; even if some buffering agents were present, the amount required to adversely impact the pH readings would have to be extremely high, which is improbable.

Agreement between the measured NaOH usage and salinity of the scrubber effluent are shown in the mass balance calculations presented in Appendix C. A comparison between the Na⁺, Cl⁻, and NaOH results is discussed in Section 5.5 below.

The original anticipated average destruction and removal efficiency (DRE) for the LTEV system was estimated to be greater than 99.99 percent. However, based on the data collected, the average DRE was found to be less than expected. The estimated DRE at Claremont was found to be 99.94%, on average, based on the caustic consumption to estimate incoming PCE. Because of the inconsistent levels of PCE in the soils processed during testing, it was not possible to maintain a consistent concentration of contaminants in the waste vapor stream for monitoring purposes. Regardless, comparisons of individual exhaust gas (VOST) data to incoming PCE data based on caustic usage indicate that the DRE was sometimes in excess of 99.99% as originally anticipated. These data are presented in Table 5-8.

Table 5-8 presents the results of the DRE calculations for the LTEV system based on caustic consumption to estimate incoming PCE. As shown, both individual VOST runs and the three run average for each of the three test periods were used to calculate the overall DRE of the LTEV system. Based on the initial individual VOST run performed during each test period, the calculated DRE ranges from 99.98 to 99.994 percent. Based on an average VOST result for each of the three testing periods (i.e., the three VOST runs performed during each test period were averaged), the calculated DRE ranges between 99.89 to 99.98 percent, with an overall average of 99.94 percent.

Table 5-8. DRE Estimates for LTEV System Based on Caustic Usage

	PCE In (NaOH Balance)					PCE Out (VOST)			
Run No.	NaOH Usage, in³/hr	Scrubber pH	Equiv. HCl, moles/hr	Estim. PCE, lb/hr	PCE, μg	Sample Vol., dsl	Exhaust Flow, dscfm	Estim. PCE, lb/hr	Calc. DRE, %
1.1	970	7.25	0.285	11.82	0.105	3.08	5698	0.00073	99.994
2.1	728	7.15	0.214	8.87	0.77	8.84	5474	0.00178	99.98
3.1	485	7.2	0.143	5.91	0.086	4.05	5450	0.00043	99.993
X.1 (Avg)			_	8.87	0.320	5.32		0.00098	99.99
1 (Avg)	970	7.25	0.285	11.82	0.407	3.177	5698	0.00273	99.98
2 (Avg)	728	7.15	0.214	8.87	2.901	5.883	5474	0.0101	99.89
3 (Avg)	485	7.2	0.143	5.91	0.748	4.467	5450	0.00342	99.94
Averag	ge	7.2		8.87	1.352	4.509		0.0054	99.94

An overall material balance was used to calculate the incoming PCE levels. The calculation is based on the assumption that the HCl neutralized in the scrubber is generated from the oxidation of PCE in the catalytic oxidation units. Since the scrubber operating data indicates that the scrubber effluent had an average pH of 7.2, the caustic used in the scrubber to neutralize HCl was calculated for each testing period. The caustic used during testing was 25% by weight based on the vendor specification. By measuring the total caustic used during each of the testing periods and the scrubber effluent pH, the equivalent moles of HCl neutralized and the total moles of PCE oxidized were calculated. An example of these calculations for the overall run average is shown in Appendix C.

5.3.2 DRE Based on Chloride Analyses

An alternate approach based on the chloride analyses of the scrubber effluent was also used to calculate the DRE from the LTEV system. Chloride analyses were performed for the clean feed water to the scrubber and from the scrubber effluent for each test run. The quantity of chlorine from the oxidation of PCE was calculated as the difference between the chloride analysis of the scrubber effluent and the incoming water. An example calculation of the estimated PCE at the inlet to the catalytic oxidation units based on chloride analyses is presented in Appendix C. Table 5-9 presents a summary of the DRE calculations based on the chloride analyses of the scrubber effluent to estimate incoming PCE. As shown, the calculated DRE ranges from 99.4 to 99.9% for individual test trials, and from 96.7 to 99.5% based on the overall run averages. The DRE calculations are greater than 99% for all test runs, with the exception of Run 2. For Run 2, the variability of measured inlet concentrations of PCE in the incoming soil was the highest, ranging from 1.2 to 68,000 μ g/kg. Due to the extremely high variability in inlet concentrations of PCE, the results from Run 2 are inconclusive.

Table 5-9. DRE Estimates for the LTEV System Based on Chloride Analyses

	PCE In (Cl Balance)								
.:	Cl Concentration, ug/l Incoming Scrubber Water Effluent		5 .42.5		. 1	P. Kainad		Calc. DRE, %	
Run No.			Estim. PCE, lb/hr	PCE, μg	Sample Vol., dsl	Exhaust Flow, dscfm	Estim. PCE, lb/hr		
1.1	40,000	96,000	0.696	0.105	3.08	5698	0.00073	99.895	
2.1	40,000	95,000	0.521	0.77	8.84	5474	0.00178	99.658	
3.1	40,000	170,000	1.189	0.086	4.05	5450	0.00043	99.964	
X.1 (Avg)			0.8	0.320	5.32	5540	0.00098	99.88	
1 (Avg)	40,000	96,000	0.696	0.407	3.177	5698	0.00273	99.608	
2 (Avg)	40,000	95,000	0.521	2.901	5.883	5474	0.0101	98.061	
3 (Avg)	40,000	170,000	1.189	0.748	4.467	5450	0.00342	99.712	
Average			0.8	1.352	4.509	5540	0.0054	99.35	

5.3.3 DRE Based on Sodium Analyses

Similar to the chloride case, DREs can be calculated using the sodium concentration of the scrubber effluent. The DREs in this case are 99.86%, 99.48%, and 99.84% for Runs 1, 2, and 3, respectively, with an overall average of 99.72%

5.4 LTEV Operating Summary

A number of operating parameters, including treated soil waste feed rate, discharge temperature, catalyst inlet temperature, catalyst exit temperature, drum draft, and scrubber water conductivity were continuously monitored during testing. These are the primary operational parameters that will be monitored during the extended operation of the LTEV system to maintain efficient operation. A summary of the operating conditions monitored during the performance testing is provided in Table 5-10. The performance test operating log with the maintenance information is included in Appendix D. The only maintenance that occurred during the performance test was replacement of a torn continuous weigh feed belt.

During the testing period, the unit operated at a maximum rate of 15.8 tons/hr and an average of 14.7 tons/hr soil feed. The soil exhaust temperature averaged 433 °F and catalyst inlet temperature averaged 770 °F for Unit 4 and 775 °F for Unit 5. The pH of the Unit 4 scrubber was maintained at 7.1 while Unit 5 averaged pH 7.3. Individual runs are outlined in Table 5-10. The average exhaust gas flow rate through the stack was 5,540 dscfm, with an average moisture content of 21.4%.

Table 5-10. LTEV Operating Log Summary

Operating Parameter	Run 1 10:15-11:15	Run 2 13:20-14:20	Run 3 15:45-17:48 ^a	Average
Cold Feed Meter, hrs.b	1	5	8	
Total Treated Soil, tons	13	67.5	109.6	
Feed Rate, tph Maximum Average	13.9 13.4	15.8 15.0	15.6 15.6	14.7
Avg. Soil Exit Temp., °F	451	424	423	433
Drum Draft, in. w.c.	0.06	0.08	0.08	0.07
Avg. Catalyst Inlet Temp, °F Unit 4 Unit 5	755 759	761 774	795 792	770 775
Avg. Catalyst Exit Temp, °F Unit 4 Unit 5	756 759	761 774	795 792	771 775
Avg. Scrubber pH Unit 4 Unit 5	7.1 7.4	7.1 7.2	7.1 7.3	7.1 7.3
Avg. Scrubber Conductivity, mili S Unit 4 Unit 5	6.8 3.0	5.9 2.8	7.8 3.3	6.6 3.0

^a LTEV shut-down from 16:07 - 17:13.

5.5 Mass Balance Results

Mass balance calculations are presented in Appendix C, which show the calculated incoming PCE based on caustic usage rate; the propane usage and corresponding combustion air balance; and the incoming soil, water, and caustic feed rates. The combustion reaction of propane accounts for consumption of O_2 and generation of CO_2 and water. The oxidation reaction of PCE accounts for generation of HCl, which is neutralized by NaOH in the scrubber. The excess NaOH in the scrubber effluent, as measured by the pH of the effluent, has been accounted for in the incoming HCl estimation. Typically, there are no naturally occurring buffering agents in groundwater. For the conclusions from the NaOH balance to be

^b The cold feed meter is a Hobbs style meter, powered by the material feed electrical circuit. The cold feed meter operates only when feed is conveyed to the thermal desorption unit.

impacted by the presence of buffering agents, concentrations would have to be unrealistically high.

Table 5-11 presents the results of the mass balance. The LTEV incoming streams include the soil, propane fuel, combustion air, and scrubber water/caustic streams, as shown by the light shaded columns in Table 5-11. The total estimated/measured mass flow rate of these combined incoming streams is 64,324 lb/hr. The LTEV outlet streams include the treated soil, the scrubber water effluent, and the air exhaust. The total estimated/measured mass flow rate of these combined outlet streams is 64,224 lb/hr. The agreement between the inlet and outlet mass balance is very good, with the less than 1 percent difference likely due to measurement error.

The salinity of the scrubber effluent was used to calculate the moles of Na⁺ and Cl⁻. Theoretically, the moles of Cl⁻, Na⁺, and NaOH should agree. The results are as follows:

- Estimated moles of Cl⁻ based on analytical data: 0.020 lb-mol Cl⁻/hr
- Estimated moles of Na⁺ from NaOH based on analytical data: 0.050 lb-mol Na⁺/hr
- Estimated moles of NaOH based on usage rate: 0.214 lb-mol NaOH/hr

As indicated above, there was some variation between the Na⁺ and Cl⁻ analytical results. Detailed equations used to generate the mass balance are included in Appendix C.

Table 5-11. Mass Balance for LTEV System

				Inlet to Catalytic	manus areas a constant		Treated	Scrubber	
Component	르	Inlet to Desorber	ē	Oxidizer	Inlet to Scrubber	crubber	Soil Out	Efficient	Exhanst
(Avg. lb/hr)	Soil	Propane*	Air		Air	Water			
PCE	0.84	1	1	8.0	0.005	•	-		0.005
Propane	-	361	-	p	0.29	1	-	_	0.29
0,	1	1	6,056	4,744	4,744	1		-	4,744
N_2	1		19,934	19,934	19,934	-		1	19,934
H ₂ O	2,117		193	2,900	2,900	6,254	4	4,923	4,231
THC	-	-	-		:	1	-	-	0.58
SO ₂	1	1	1	0.0095	0.0095	-	1	1	0.0095
CO ₂	1	1	-	886	886	1			988
NaOH	-	1	1		•	8.6		1	**
Na⁺			1		:	-	-	2.5	-
CI.	-	1	1		1	1	-	0.7	
HCI	1	-	1		7.8	1		-	0.003
Soil	29,400	-	1		1	1	29,400	-	
TOTAL, 1b/hr	31,518	361	26,183	28,567	28.574	6,263	29,400	4,926	29,898

^{*} Total for LTEV system -- not measured separately for desorber and catalytic oxidizer.

Note: light shaded columns indicate inlet streams; dark shaded columns indicate outlet streams.

b Not measured.

[°] Below detection limit.

^d Based on chloride analyses of scrubber effluent.

6.0 QUALITY ASSURANCE/QUALITY CONTROL

Quality Control/Quality Assurance (QA/QC) procedures were followed during the Claremont Polychemical Superfund Site Performance test to ensure a high quality data product. Quality control and quality assurance can be defined as followed:

- Quality Control. The overall system of activities whose purpose is to provide a
 quality product or service. "Quality" as used in this context refers to achieving
 a certain degree of precision, accuracy, and completeness for each data
 measurement. QC procedures are targeted at maintaining a quality product but
 in themselves are not assessments of the degree of quality achieved.
- Quality Assurance. A system of activities resulting in parameters that indicate the effectiveness of quality control system.

The following section will discuss data quality.

6.1 Overview

Stringent measures were followed to ensure emissions data of acceptable quality. Reference method QA/QC procedures were followed as well as additional steps to verify data quality. Section 6.2 discusses CEM data quality as it pertains to O₂, CO₂, NO_x, CO, and THC data. Section 6.3 discusses manual sampling quality assurance and Section 6.4 presents the analytical quality assurance.

6.2 CEM OA/OC

A summary of the CEM quality control acceptance criteria is shown in Table 6-1.

6.2.1 Daily Calibrations and Drift Checks

The analyzers were calibrated daily with a zero gas (generally ultra high purity nitrogen or air), and a high-range span gas. The zero and high level gases will bracket the expected flue gas concentrations. An initial calibration was performed prior to the onset of testing by either directing the calibration gas through the entire sampling system (introduced at the sample probe) or directly to the analyzer. The calibration drift is determined either at the end of the test day, or at the beginning of the next test day. Drift is determined by comparing

Table 6-1. Summary of CEM QC Acceptance Criteria and Results

Quality Control Check	Frequency	Acceptance Criteria	Rsults Summary
Zero and Span Calibration Drift (CD)	Daily	CD <3.0% of full scale	No Exceedances
Calibration Error (CE)	Once before and after each test run	CE < 2% of full scale	No Exceedances
Leak Check	1/Sample location	$O_2 < 0.3\% \text{ V (w/}O_2 \text{ gas)}$	
Response Time	1/Sample location	Measure response time (no criteria)	
Sample Bias	1/Sample location	< 5% of full scale	No Exceedances

the final instrument responses with the responses from the initial calibration for both zero and span gases.

6.2.2 Calibration Error Checks

After initial calibration, a mid-scale gas standard was challenged to the analyzer to determine the degree of calibration error. The gas is passed through the analyzer and the observed response is compared to the actual concentration. The allowable deviation is less than $\pm 2\%$ of the instrument full scale for O_2 , CO_2 , NO_x , CO, SO_2 , and 5% of actual concentration for THC, as shown in Table 6-2.

6.2.3 System Bias Checks

Sample bias induced by the sampling system was also measured. Bias was determined by comparing instrument response of a gas standard introduced directly to the analyzer to the response to the same gas passed through the entire sampling system. The acceptance criteria for bias is less than 5% of full scale, as shown in Table 6-2.

Table 6-2. Claremont Polychemical CEM Calibration Data Emissions Test 9/26/96

		Bottle	Direct		Blas Test 1		Bias Test 2		Bias Test 3	
			Reading		post		post		post	
02	high	20.8	20.9	0.48%			pasos		- passa	
	mid	12.1	12.2	0.82%	20.8	-0.48%	20.8	0.00%	20.8	0.00%
	zero	2.0	2.0	0.00%	2.0	0.00%	2.0	0.0	2.0	0.0
CO2	high	18.6	18.3	-1.64%						
	mid	5.1	5.1	0.00%	18.1	-1.09%	18.3	1.10%	18.7	2.19%
	zero	0.0	0	0	0	0	0	0	0	0
co	high	64.2	64.7	0.77%						
	mid	37.1	36.8	-0.82%						
	mid	4.1	3.8	-7.89%	64.3	-0.62%	64.8	0.78%	64.6	-0.31%
	zero	0.0	1.9	1.9%	0.0	-1.9%	0.0	0	0.0	0%
NOx	high	90	91.4	1.53%						
	mid	49.6	49.7	0.20%	92.1	0.77%	92.7	0.65%	89.8	-3.13%
	zero	0.0	0.4	0.2070	0.4	0.00%	0.5	0.3	0.3	-0.20%
THC	high	9.0	8.9	-1.12%						
	mid	5.1	4.9	-4.08%						
	mid	3.0	3.1	3.23%	9.0	1.12%	9.8	8.89%	9.8	0.0%
	zero	0.0	0.0	0	0.0	_0	0_	0	0.0	0
SO2	high	448	448.2	0.04%						
	mid	8.5	10.7	20.56%	10.6	-0.93%	11.7	10.38%	11.7	0%
	zero	0.5	-0.2	0	0	0%	-1.2	0	1.2	0%

6.2.4 Response Time

Response times for the analyzers were determined. A zero gas is introduced to the sampling system at the probe and after the instrument has stabilized, then stack gas is introduced. The amount of time it takes from when the gas is introduced to the probe to when the analyzer has reached a stable gas value is considered the response time. This time is considered the upscale response time. It is also useful to measure the down-scale response time by measuring the time it takes for the instrument to stabilize from a span gas reading down to the stack gas value.

6.2.5 System Leak Checks

Although not required by the reference method, it is advisable to conduct a leak check on the sampling system prior to any testing. This can be accomplished in a number of ways. One effective procedure requires the use of an oxygen analyzer. A zero oxygen gas (i.e., N_2 or 0.2% O_2) is introduced at the probe and passed through the entire sampling system. The resulting O_2 level is observed at the oxygen analyzer. Typically, levels less than 0.3% by volume (for 0% V O_2) are acceptable.

6.3 Manual Methods OA/OC

Manual emissions sampling methods were conducted during the Claremont Polychemical Superfund Site test program. Extensive sampling and analytical QA/QC procedures were incorporated into these test methods as summarized below.

SW846 Method 0030 Quality Control Procedures. Quality control procedures found in Method 0030 and analytical Method 5041 were followed for the samples collected using the VOST technique. Triplicate samples and a field blank were collected from the site. Laboratory blanks and method spikes were also analyzed. All procedures specified in the method were followed.

EPA Method 26A. Quality control procedures found in Method 26 were followed for sample preparation and collection, field recovery, and laboratory analysis. Triplicate samples and a field blank were collected from the field. Laboratory blanks were also analyzed.

Calibration of the balance used to determine the mass collected in the the filter, the impinger solution and rinses was checked with NIST weights before and after each weighing session.

EPA Method 18. Volatile organic compounds were determined by GC and GC/MS analysis of gaseous samples from a Tedlar bag or canister. The QC procedure included calibration checks and duplicate sample analyses. Calibration of the on-site GC was performed the morning of September 26, 1996 prior to testing. Two Tedlar bag calibration samples were manufactured, the first bag containing a concentration of 19.7 ppmv PCE and the second 7.1 ppmv PCE. The bag standards were injected twice and the GC calibrated using the retention times and responses from these runs. Duplicates of the calibration samples and the 19.7 ppmv calibration bag error were all within the specified limits for both the pre- and post-test calibrations. The 7.1 ppmv calibration bag provided a higher response than the criteria allowed. The results for this calibration bag averaged 10.4 ppmv. The on-site GC was used as a screening device to determine the applicability of using SW-846 Method 0030 (VOST) at the inlet. The concentrations of PCE at the inlet, as indicated by the GC, indicated that the gas stream concentrations were too high to effectively use VOST at the inlet to the thermal oxidizers.

Other Manual Methods. Quality control procedures for EPA Methods 1, 2, 3A, and 4 included calibration of the flow measurement apparatus and leak checks of the sampling equipment. All procedures specified in the methods were followed.

6.3.1 Manual Methods Discussion Overview

In regards to manual sample collection QA, it is important to review the component measurements which make up final pollutant concentration and emission rate determinations. Generally speaking, the following equations apply:

$$C_{p} = \frac{M_{p}}{V_{stp}} \times K \tag{1}$$

where:

Cp = Concentration of pollutant in the gas phase (ppm);

M_p = Mass of Pollutant collected in the sample train (ug);

 V_{stp} = Gas sample volume corrected to STP (dscf); and

K = Units correction coefficient.

$$ER_{p} = C_{p} \times Q_{stp} \times K$$
 (2)

where:

ER_p = Emission Rate of the pollutant (lbs/hr); and

 Q_{stp} = Gas volumetric flow (dscfm).

Basically, the quality of M_p collected is affected by sample recovery lab procedures (train preparation and sample recovery) and overall analytical performance. Quality indicators are field blank results, and a variety of analytical QA parameters. Quality V_{stp} determinations are indicated by the sample train leak check results, gas meter temperature and pressure measurements, and meter calibration coefficients. Quality flow rate measurements, Q_{stp} , are maintained by following reference method QC procedures, such as successful pitot tube leak checks and pluggage checks, manometer inspection (zeroing and leveling), controlling pitot tube pitch and yaw angles, maintaining accurate stack gas temperature and pressure measurements, and verifying accurate duct diameter measurements. These and other data quality indicators will be discussed in the following sections.

6.3.2 Gas Meter Volume

QA procedures for all tests followed guidelines listed in the reference method. VOST meter volumes were determined by a small meter box containing a gas meter, meter temperature and pressure indicators, flow rate rotameter, vacuum gage, flow controls and all necessary sample collection connection hardware. Leak checks were performed by plugging the end of the sample probe and verifying the absence of flow by observing the rotameter and gas meters. Only after successful completion of the pre-test leak check was a sample run conducted. As can be seen on the field data sheets, all sample trains had successful pre- and final-test leak checks.

Method 26A samples were collected using full size meter boxes and sample trains. The leak check criteria is that the post test rate be < 0.02 cfm or 4% of the sample rate, whichever is less. As shown on the field data sheets located in the appendices, all sample runs met the leak check criteria.

As shown in Table 6-3, all meter boxes are fully calibrated against a meter which itself has been calibrated against a primary standard (i.e., a respirometer) to determine a full calibration factor, or Y. Upon completion of the test program, all meter calibration coefficients are verified by comparing a post-test calibration coefficient with the Y. The post-test value must be within 5% of the Y. If it is not, the value which creates the worse case emissions scenario is used. A minimum of 30 dry standard cubic feet was collected for each run as instructed in the sampling methodology. An isokinetic sampling check was calculated for each test run performed. It was found to be within the required criteria of $100 \pm 10\%$. Post test meter box calibrations were also within the required limits of 1.00 ± 0.02 and the post test calibration factor agreed within $\pm 5\%$ of the pretest calibration factor. For the Claremont Polychemical Superfund Site test program, all meters met the test method criteria.

6.3.3 Volumetric Flow—Pitot Tube Flow Measurements

Volumetric flow rates were determined using EPA Method 2 which calls for pitot tube velocity pressure measurements. S-type pitots were used along with red gauge oil No. 2-filled inclined manometers. All pitot tube systems were leak checked, leveled, and zeroed before the tests, resulting in high quality velocity pressure measurements. Along with gas flow, the gas moisture content was also determined using EPA Method 4 incorporated into Method 26A. O₂ and CO₂ content were measured using the CEMS by EPA Method 3A for calculating dry gas molecular weight. There were no indications of poor data quality for the flow measurements.

6.4 Analytical QA/QC for Manual Methods

Analytical QA/QC procedures that were implemented during sample analysis are discussed in the following sections. Procedures include calibration checks and blanks as indicators of analytical accuracy, replicate analyses of samples and sample aliquots as indicators of precision, and analyses of matrix spikes to demonstrate that the analyses were free from interferences. All analytical data is shown in the Appendices.

Table 6-3. Flue Gas Manual Sampling Meter Volume Quality Control Acceptance Criteria

Measurement Parameter	QC Criteria	Control Limits	Corrective Action
Gas sample volume	Reference DGM ^a Calibration	Calibrated every six months against EPA standard	
Gas sample volume	Sample DGM Calibration	Calibrate every six months against the Reference DGM. Calibration Factor Limits = 1.00 ± .02	Adjust the dry gas meter and recalibrate
Gas sample volume	Sample DGM Post-test calibration	Post-test calibration factor agree ±5% of pre-test factor	Adjust sample volumes using the that gives smallest volume
Gas sample volume	Final leak rate (after each port)	≤ 0.02 acfm or 4% of sampling rate, whichever is less.	Invalidate run or adjust sample volume

^{*}DGM = Dry gas meter.

The following samples were submitted to off-site laboratories for analyses:

Method 26A	HC1	Radian/Austin Laboratories
Method 5	PM	Triangle Laboratories
Method TO-14	PCE/VOC	Radian/Austin Laboratories, Lancaster
		Laboratories
Method 0030	PCE	Triangle Laboratories., Air Quality
		Laboratories
Fuel Propane		Southern Petroleum Laboratories

The following sections summarize the QA results from those analyses.

Method 26 HCl Samples. HCl analyses were performed by Triangle Laboratories in RTP, NC. Triangle analytical data met quality control guidelines outlined in the testing plan. Chloride was not detected in the laboratory blank. A matrix spike and duplicate were analyzed. Both of these were within the QC limits. The recovery for the matrix spike and duplicate were both 101%. Seven calibration points were used giving a correlation coefficient of 0.99946.

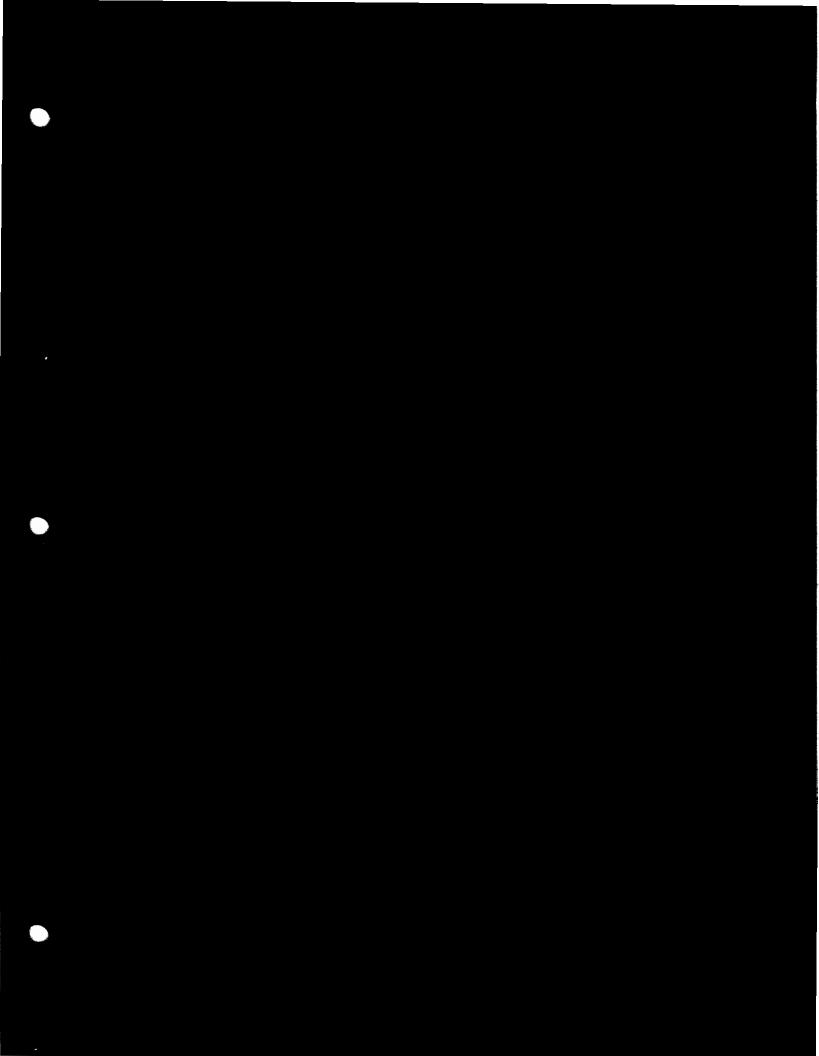
VOST Samples for PCE. PCE analyses were performed by Triangle Laboratories in RTP, NC and Air Quality Laboratories in RTP, NC. The analytical data met quality control guidelines outlined in the testing plan. Five calibrations points were used for tetrachloroethene with standard deviations from the response factors of less than 0.0148 and a relative standard deviation of less than 6.0%.

Field blanks for the VOST PCE testing all showed values of less than the detection limits for the compounds. Breakthrough was not found in any of the sample sets submitted for analysis. An oddity did occur in test run 1.2, the second set of tubes that was taken for the first testing set of VOST PCE testing. The back half tenax/charcoal tube showed a higher level of PCE (0.813 μ g or 46 ppb) than the front tube which displayed essentially none.

PCE and C₁-C₃. The canister samples were analyzed by Radian International and Lancaster Laboratories. Radian canister sample analyses met the quality control standards necessary to validate the data. Four calibration points were used for the GC calibration. The relative standard deviation (RSD) was 12.2% with a correlation factor of 1.000. The Method blank showed a non detect for a measured concentration at a detection limit of 0.0062 ppbv. The spiked sample recovery averaged 131%. The spiked concentration was 1.23 ppbv and the resulting measured concentrations were 1.57 and 1.64 ppbv. Duplicates on sample CL-LTEV-11-AI-094 for PCE were 11.2 and 11.2 ppbv.

Three calibration points were used for ethane and propane and four points used for methane. The RSD was 4.8% for methane, 8.04% for ethane, and 10.8% for propane. Methane had a correlation factor of 0.999 while ethane and propane both had correlation factors of 1.000. The laboratory blanks showed a non-detect at a detection limit of 0.0214 ppmv. The spike recovery for methane was also within the acceptable criteria, with spike recoveries of 128% and 119%. The methane lab duplicates on sample CL-LTEV-11-AI-094 gave concentrations of 6.43 ppmv and 6.55 ppmv.

6.5 Sample Tracking and Documentation Procedures


Sample handling procedures, including labeling, preserving, storing, and shipping, were conducted in such a manner as to ensure the integrity of the samples and to provide a link between the analytical results and the conditions they represent. Accurate documentation of field sampling procedures, sampling and process data, and sample collection and handling

records was maintained throughout the project. All sampling data, including sample times, locations, identification codes, and other pertinent and specific sample or process information was recorded in the bound field logbook as indicated in the Performance Test Plan.

A master logbook was kept for tracking and identifying samples collected during field activities. Information on sample volumes, sampling duration, process conditions, and notes or comments was entered by hand in this logbook.

Each sample was given a unique log number containing five fields which will identify the site, method, run number, and sample replicate or spike sample designation. Samples sent from the field to a laboratory for analysis were accompanied by a chain of custody form. This form accompanied the samples until their final disposition.

Samples collected for PCE and HCl analysis were transported to the laboratory via overnight express courier for next day delivery.

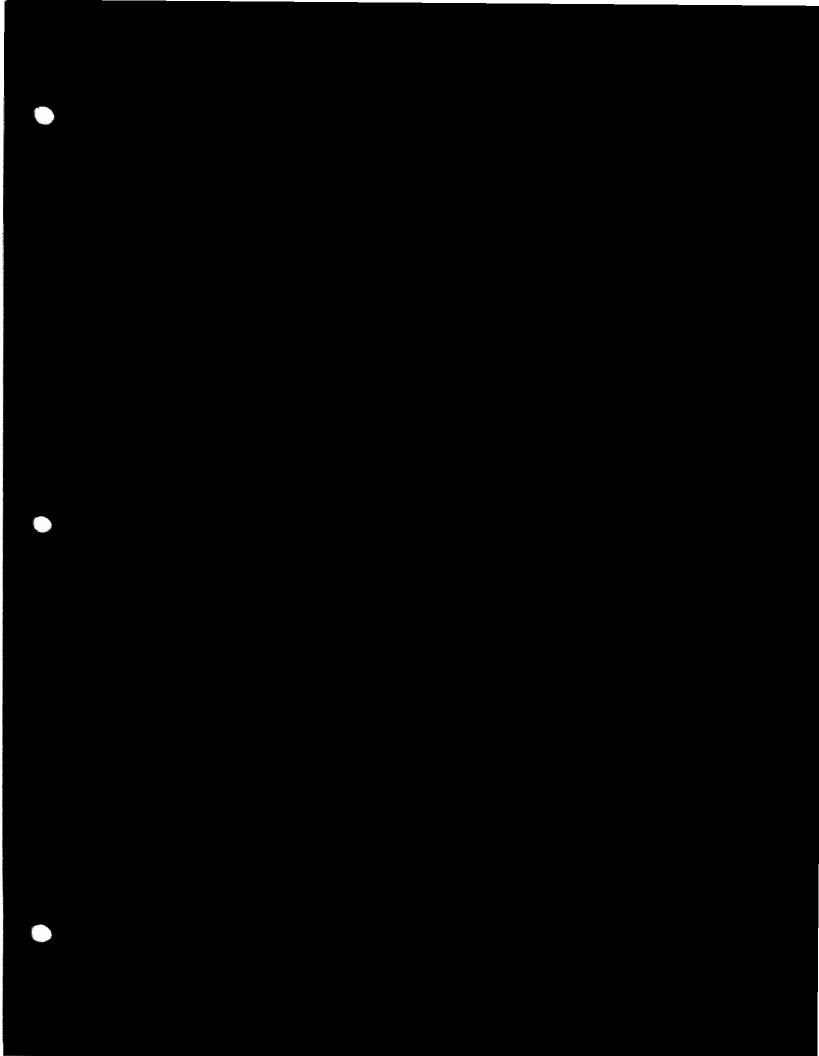
Results of Dispersion Modeling Analysis for LTEV System

A dispersion modeling analysis for the low temperature enhanced volatilization (LTEV) system located at the Claremont Polychemical Corporation facility in Old Bethpage, N.Y has been completed. The results of this modeling analysis indicate that the maximum concentrations are well below the New York standards and the National Ambient Air Quality Standards (NAAQS) for the pollutants emitted from the LTEV system.

The average emission rates recorded during stack testing of the LTEV were modeled using the SCREEN3 (version 96043) model. The following table presents the stack parameters and the tested emission rates used in the model. The stack parameters were obtained from the Application for Permit to Construct or Certificate to Operate for the proposed LTEV system.

Stack	Exit	Exit	Stack		Emission	Rates (lb/h	r)	
Height (ft)	Temperature (°F)	Velocity (ft/sec)	Diameter (ft)	Perchloroethylen e	Hydrogen Chloride	NO.	CO	PM
40	157	46.3	2	5.4x10 ⁻³	3.4x10 ⁻³	6.4x10 ⁻¹	2.2x10 ⁻¹	1.6x10 ⁻¹

Building downwash influences were incorporated into the model using building dimensions estimated from the Huntington, N.Y., 7.5 minute, U.S. Geographical Survey topographic map. The height of the building and the stack location was ascertained from Frank McConnell. Because terrain heights exceed the proposed stack height within 3-km of the stack, terrain heights were use in the analysis.


The SCREEN3 model was used to calculate an hourly maximum unit (1 gram/second) concentration for simple terrain receptors and a 24-hour maximum unit concentration for complex terrain. The hourly simple terrain concentration was converted to a 24-hour concentration using a factor of 0.4 for comparison to the complex terrain maximum. This factor is recommended in the SCREEN3 Model User's Guide (1995). The simple terrain concentration was greater than the complex terrain concentration; therefore, the simple terrain concentration was used in determining the maximum pollutant specific concentrations.

Maximum modeled concentrations of perchloroethylene and hydrogen chloride (HCl) were compared to New York's short-term guideline concentrations and annual guideline concentrations. NO₂ maximum concentrations were compared with both the New York ambient air standards and NAAQS. CO and PM maximum concentrations were compared with the NAAQS, which are equivalent to the New York guideline concentrations. The following table presents the maximum concentrations, applicable standards, and percent of standards for all the pollutants emitted from the LTEV system.

Conversion factors used to convert the maximum hourly concentrations were 0.9 for the 3-hour, 0.4 for the 24-hour, and 0.1 for the annual averaging periods. The 24-hour and annual conversion factors are recommended in the SCREEN3 Model User's Guide, while the 3-hour factor is equivalent to North Carolina's factor. These factors were used because there are none recommended in the DRAFT New York Air Guide-1: Guidelines for the Control of Toxic Ambient Air Contaminants (1991).

Pollutant	Averaging Period	Short-Term Guideline Concentration (µg/m²)	Annual Guideline Concentration (µg/m²)	New York Ambient Air Standard (µg/m³)	NAAQS (µg/m³)	Maximum Concentration (µg/m²)	Percent of Standard
Perchloroethylene	1-hour	81,000				0.5	< 0.01
	Annual		7.5x10 ⁻²			4.7x10 ⁻²	62.1
нсі	1-hour	150				0.3	0.2
	Annual		7_			2.9x10 ⁻²	0.4
NO ₂	Annual			170		5.5	3.3
	Annual				100	5.5	5.5
со	1-hour				40,000	19.0	0.05
	8-hour				10,000	13.3	0.1
PM	24-hour				150	5.4	3.6
	Annual				50	1.4	2.8

.

To convert

mg / dscf to lb/hr: (Mg/dscf) * (exhaust flow, dscfm) * (60 min/hr) / 103 mg/g) /

(454g / lb)

mg/dscf to grain/dscf: (mg/dscf) / (10³ mg/g) / (454 g/lb) * (7000 grain/lb)

ppmvw to lb/hr: (ppmvw/10⁶) * (exhaust flow dscfm) * (60 min/hr) * (mw) /

(385 ft³/lb-mol) / ((1 - frac. H2O)

ppmvd to lb/hr: (ppmvd/10⁶) * (exhaust flow dscfm) * (60 min/hr) * (mw) /

(385 ft³/lb-mol)

Stack Gas Flow

Absolute Gas Temperature: $T_{st} = T_s + 460^{\circ}$ Absolute Gas Pressure: $P_s = P_{st} + P_o/13.6$

Standard Gas Flow Rate: $Q_{i} = Q_{i} (528^{\circ} R/T_{si}) (P_{s}/29.92)$

Dry Standard Gas Flow Rate: $Q_{sd} = Q_s (528^{\circ}R/T_{st}) (P_s/29.92)(100 - 100)$

%H₂O)/100)

Gas velocity (Qs) = 85.49 * pitot coefficient * (average √ △ P) *

(average √ (stack temp°R/(stack pressure *

Molecular weight of gas stream)) * 60 * stack area ft2

Particulate Calculations

A_n = Cross-sectional area of nozzle, m² (ft²);

B_{wa} = Water vapor in the gas stream, proportion by volume;

c_a = Concentration of particulate matter in stack gas, dry basis, corrected to

standard conditions, g/dscm (g/dscf);

m, = Mass of residue of acetone after evaporation, mg;

m_n = Total amount of particulate matter collected, mg;

M_w = Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole);

P_{bar} = Barometric pressure at the sampling site, mm Hg (in. Hg);

P .	=	Absolute stack gas pressure, mm Hg (in. Hg);
P _{std}	=	Standard absolute pressure, 760 mm Hg (29.92 in. Hg);
R	=	ldeal gas constant, 0.06236 [(mm Hg) (m³)]/[(°K) (g-mole)] {21.85 [(in.Hg) (ft³)]/[(°R)(lb-mole)]};
T _m	=	Absolute average DGM temperature, °K (°R);
T,	=	Absolute average stack gas temperature, °K (°R);
T_{std}	=	Standard absolute temperature, 293°K (528°R);
V _{1c}	-	Total volume liquid collected in impingers and silica gel, ml;
V_{m}	=	Volume of gas sample as measured by dry gas meter, dcm (dcf);
$V_{\text{m(std)}}$	-	Volume of gas sample measured by the dry gas meter, corrected to standard conditions, dscm (dscf);
V _s	=	stack gas velocity using data obtained from Method 5, m/sec (ft/sec);
W _a	=	Weight of residue in acetone wash, mg;
Y	=	Dry gas meter calibration factor;
ΔΗ	=	Average pressure differential across the orifice meter, mm H ₂ O (in. H ₂ O);
ρ_{a}	=	Density of acetone, mg/ml;
$\rho_{\mathbf{w}}$	=	Density of water, 0.9982 g/ml (0.002201 lb/ml);
θ	=	Total sampling time, min;

Dry Gas Volume

=
$$K_1 V_m Y \frac{P_{par} + (\Delta H/13.6)}{T_m}$$

where:

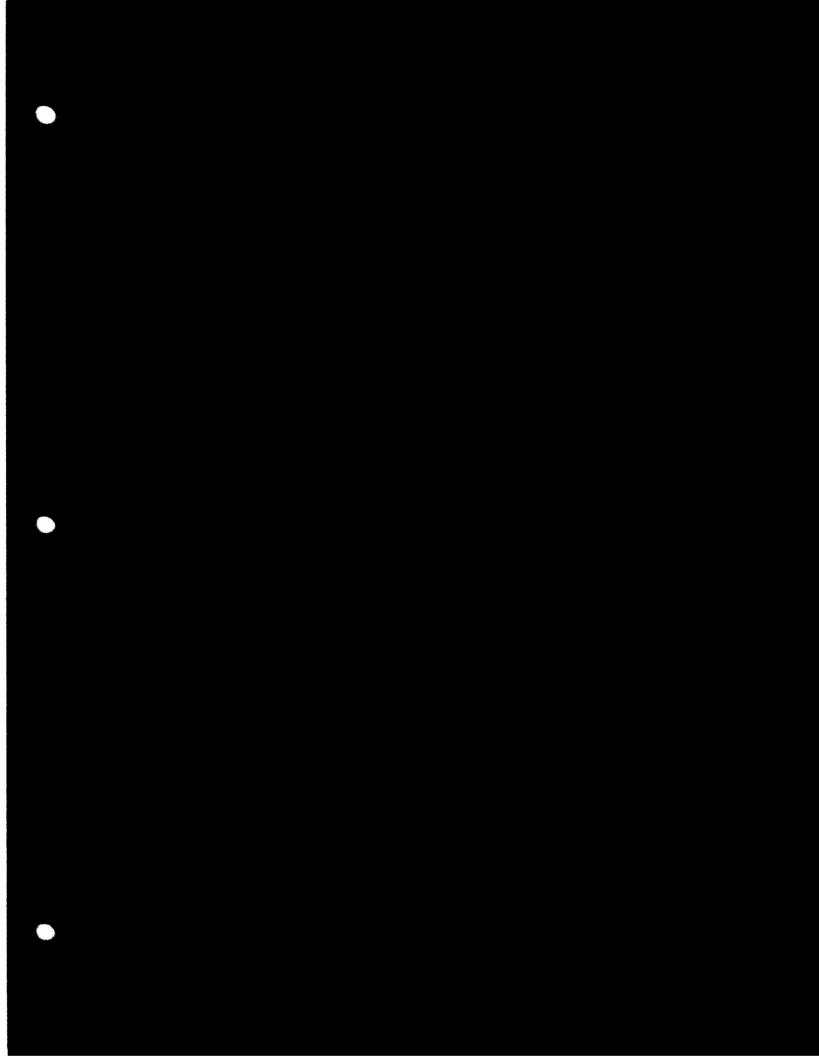
$$K_1 =$$

0.3858 °K/mm Hg for metric units, 17.64 °R/in. Hg for English units.

Volume of Water Vapor

$$V_{w(std)} = V_{1c} \frac{p_w R T_{std}}{M_w P_{std}} = K_2 V_{1c}$$

where:


0.001333 m³/ml for metric units, 0.04707 ft³/ml for English units.

Moisture Content

$$B_{ws} = \frac{V_{w(std)}}{V_{m(std)} + V_{w(std)}}$$

Particulate Concentration

$$c_s = 0.001 \text{ m}_n N_{\text{m(std)}}$$

MASS BALANCE CALCULATIONS

O₂/N₂ Balance

O2 Out (Exhaust):

- Avg. Exhaust rate = 5,540 dscfm
- Avg. O_2 in exhaust = 17.17 vol %

$$\frac{5540 \text{ ft}^3 \text{ dry } / .1717 \text{ mol } O_2 / \text{ mol exh } / 32 \text{ lb } O_2 / 60 \text{ min}}{\text{min } / \text{ mol exh } / 385 \text{ ft}^3 \text{ exh } / \text{ mol } O_2 / \text{ hr}} = 4743.7 \text{ lb/hr}$$

O2 Consumed in Combustion:

$$C_3H_8 + 5O_2 - 4H_2O + 3CO_2$$

- 85 gal/hr propane avg. (850 gal in 10 hr)
- 31.75 lb/ft³ propane density (liquid @ 17°C)

$$C_3H_8$$
: 85 gal / 31.75 lb / 35.3145 ft³ = (360.8 lb C_3H_8/hr) / (44 lb/lb mol)
hr / ft³ / 264.17 gal

= 8.2 lb mol/hr

O₂:
$$\frac{8.2 \text{ mol } C_3H_8 / 5 \text{ mol } O_2 / 32 \text{ lb}}{\text{hr} / \text{mol } C_3H_8 / \text{lb mol } O_2} = 1312 \text{ lb } O_2/\text{hr}$$

Total O₂ in Incoming Air:

Total N₂ in Incoming Air:

$$\frac{189.2 \text{ mol } O_2 / 79 \text{ mol } N_2 / 28 \text{ lb } N_2}{\text{hr} / 21 \text{ mol } O_2 / \text{ mol } N_2} = 19,934 \text{ lb } N_2/\text{hr}$$

Water Balance

Water Usage in Scrubber (Scrubber Effluent):

- Run 1 Water Usage: 870.94 gal.
- Run 2 Water Usage: 568.7 gal.
- Run 3 Water Usage: 534.73 gal.
- 658 gal/hr avg.

$$\frac{658.12 \text{ gal } / 7.48 \text{ lb}}{\text{hr} / \text{gal}} = 4923 \text{ lb H}_2\text{O/hr}$$

Water Generated in Combustion:

$$\frac{8.2 \text{ mol } C_3H_g / 4 \text{ mol } H_2O / 18 \text{ lb}}{\text{hr} / \text{mol } C_3H_g / \text{ mol } H_2O} = 590.4 \text{ lb } H_2O/\text{hr}$$

Moisture in Incoming Air:

- Avg Air Temp = 66°F
- Avg Dew Pt = 50° F = 10° C
- Avg Barometic Press = 30.36 in Hg * 760 mm Hg / (29.921 in Hg)

= 771.18 mm Hg

$$p_{H2O} = y_{H2O} P = p_{H2O,vp} (T_{dp}) = p_{vp} (10^{\circ}C) = 9.2 \text{ mm Hg}$$

 $9.2 \text{ mm Hg} = y_{H2O} (771.18 \text{ mm Hg})$
 $y_{H2O} = 0.0119$

Moles
$$H_2O = 0.0119$$
 (Moles Air) = 0.0119 (189.2 mol $O_2/hr + 711.9$ mol N_2/hr)
= (10.7 lb-mol H_2O/hr) * 18 lb/mol = 193.0 lb H_2O/hr

Moisture in Incoming Soil:

7.2 % by wt. moisture in soil

$$\frac{14.7 \text{ ton } / 2000 \text{ lb } / .072 \text{ lb H}_2\text{O} = 2116.8 \text{ lb H}_2\text{O/hr}}{\text{hr} / \text{ton } / \text{lb soil}}$$

Water at Inlet to Catalytic Oxidation Unit:

Incoming Air + Incoming Soil + Generated in Combustion

$$193 \text{ lb/hr} + 2,117 \text{ lb/hr} + 590 \text{ lb/hr} = 2,900 \text{ lb/hr}$$

Water in Exhaust Stream:

• 21.4 Vol % H₂O measured in exhaust

 $\frac{5540 \text{ dscf}/\text{ mol wet}}{\text{min}} \frac{/ \text{mol exh} / 0.214 \text{ mol H}_2\text{O} / 18 \text{ lb H}_2\text{O} / 60 \text{ min}}{/ (1-0.214) \text{ mol dry}} = 4231 \text{ lb H}_2\text{O/hr}$

Water in Scrubber Feed (Water In):

Water in Feed = Scrubber Water Out + (Water in Exhaust - Water at Inlet to Catalytic) = (4,923 lb/hr) + (4,231 lb/hr - 2,900 lb/hr) = 6,254 lb/hr

CO₂ Balance

CO₂ in Exhaust (measured):

• CO₂ in exhaust (measured): 2.6% by vol. CO₂

 $\frac{5540 \text{ dscf/mol exh} / .026 \text{ mol CO}_2 / 60 \text{ min} / 44 \text{ lb CO}_2}{\text{min} / 385 \text{ ft}^3 / \text{mol exh} / \text{hr} / \text{mol}} = 987.7 \text{ lb/hr}$

CO₂ in Exhaust (calculated from propane combustion):

$$\frac{8.2 \text{ mol } C_3H_8 / 3 \text{ mol } CO_2 / 44 \text{ lb } CO_2}{\text{hr}} = 1082 \text{ lb/hr}$$

HCI/PCE Balance Based on NaOH Consumption

• Caustic Solution Consumption: Avg: 727.7 in³/hr = 3.15 gal/hr

Run 1: 970 in³/hr Run 2: 728 in³/hr Run 3: 485 in³/hr

- Caustic Solution Density: 81.3 lb/ft³ (25 wt. % NaOH solution)
- Average Scrubber Effluent pH: 7.2
- Average Water Flow Rate: 658 gal/hr
- Scrubber Hold Volume: 405 gal.

Excess Moles NaOH in Scrubber Effluent:

$$pH = 14.0 - pOH = 7.2$$

$$pOH = -log[OH^{-}] = 14 - 7.2 = 6.8$$

$$[OH^{-}] = 1.58 \times 10^{-7} \text{ g-mol/liter}$$

$$(1.58 \times 10^{-7} \text{ g-mol/liter}) / (454 \text{ g-mol/lb-mol}) * (658 + 405 + 3.15 \text{ gal/hr}) * (3.785 \text{ l/gal})$$

= 1.4×10^{-6} lb-mol NaOH/hr

Total Incoming Moles NaOH:

$$(727.7 \text{ in}^3/\text{hr}) / (12 \text{ in/ft})^3 * (81.3 \text{ lb/ft}^3) * (0.25 \text{ lb NaOH/lb soln})$$

$$= (8.56 \text{ lb NaOH/hr}) / (40 \text{ lb/lb-mol}) = 0.214 \text{ lb-mol NaOH/hr}$$

Moles NaOH Used to Neutralize HCl:

Total Incoming Moles NaOH - Excess Moles NaOH

$$= 0.214 - 1.4 \times 10^{-6} = 0.214 \text{ lb-mol NaOH/hr}$$

Moles HCl Generated:

Moles HCl Generated = Moles NaOH Used to Neutralize HCl

= 0.214 lb-mol HCl/hr

Pounds HCl Generated = (0.214 lb-mol HCl/hr) * (36.5 lb HCl/lb-mol HCl)

= 7.81 lb HCl/hr

Equivalent Moles PCE Oxidized:

Equivalent Moles PCE Oxidized = Moles HCl Generated / (4 moles HCl/mole PCE)

= (0.214 lb-mol HCl/hr) / 4

= 0.0535 lb-mol PCE/hr * (165.8 lb PCE/mol PCE)

= 8.87 lb PCE/hr

Na⁺/Cl⁻ Balance

Moles Na⁺ Measured in Scrubber Effluent:

- Run 1: 230,000 μ g/l Na in 870.94 gal. effluent
- Run 2: 290,000 μ g/l Na in 568.7 gal. effluent
- Run 3: 330,000 μ g/l Na in 534.73 gal. effluent
- Average: 283,333 μ g/l Na in 658 gal. effluent
- Na in fresh water: $27,000 \mu g/l$
- Scrubber Hold Volume: 405 gal.
- Caustic is 19.4 wt % Na₂O

```
Moles Na = (283,333 - 27,000 \,\mu\text{g/l}) * (658 \,\text{gal./hr} + 405 \,\text{gal.}) * (3.785 \,\text{l/gal}) / (454 \,\text{g/lb}) / (10^6 \,\mu\text{g/g})
= 2.27 lb Na/hr / (23 lb Na/lb-mol Na)
= 0.099 lb-mol Na/hr
```

Moles Na from NaOH:

Basis: 1 gal caustic solution

NaOH: (1 gal) (81.3 lb/ft³) (0.25 lb NaOH/lb soln) / (7.48 gal/ft³) (40 lb NaOH/mole)

= 0.068 lb-mol NaOH/gal

Na₂O: $(1 \text{ gal}) (81.3 \text{ lb/ft}^3) (0.194 \text{ lb Na₂O/lb soln}) / (7.48 \text{ gal/ft}^3) (62 \text{ lb/mol})$

= 0.034 lb-mol Na₂O/gal

Total moles Na/gal = $(0.068) + (2 \text{ mol Na/mol Na}_2\text{O}) (0.034)$

= 0.136 mol Na/gal

Fraction Na from NaOH = 0.068/0.136 = 0.5

Total moles Na from NaOH = (0.099 lb-mol Na/hr) (0.5)

= 0.050 mol Na/hr from NaOH

Moles Cl⁻Measured in Scrubber Effluent:

- Run 1: 96,000 μ g/l Cl in 870.94 gal. effluent
- Run 2: 95,000 μ g/l Cl in 568.7 gal. effluent
- Run 3: 170,000 μ g/l Cl in 534.73 gal. effluent
- Average: 120,333 μ g/l in 658 gal. effluent
- Cl in fresh water: $40,000 \mu g/l$

Moles Cl =
$$(120,333 - 40,000 \,\mu\text{g/l}) * (658 \,\text{gal./hr} + 405 \,\text{gal.}) * (3.785 \,\text{l/gal}) / (454 \,\text{g/lb}) / (10^6 \,\mu\text{g/g})$$

= 0.71 lb Cl/hr / (35.5 lb Cl/lb-mol Cl)
= 0.02 lb-mol Cl/hr

PCE/HCl Balance Based on Cl Analyses

Moles PCE In:

Moles PCE = Moles Cl⁻/ (4 moles Cl⁻/mole PCE)
= (0.02 moles Cl⁻/hr) / 4
= (0.005 moles PCE/hr) * (165.8 lb PCE/mole)
= 0.831 lb PCE/hr

Moles HCl In:

Moles HCl = Moles PCE * (4 moles HCl/mole PCE)
= (0.005 mol PCE/hr) * 4
= 0.02 lb-mol HCl/hr

THC/Propane in Exhaust

THC Calculation:

• THC concentrations measured (calibrated as CH₄): Average: 32.7 ppmvw

Run 1: 46.3 ppmvw Run 2: 28.9 ppmvw

Run 3: 22.9 ppmvw

- Average exhaust flow rate: 5,540 dscfm
- Average moisture content: 21.4 vol. %

 $(32.7 \text{ ppmvw}) / (10^6 \text{ lb-mol exh.}) * (5,540 \text{ dscfm}) / (385 \text{ scf/lb-mol}) /$

 $(1-0.214 \text{ mol dry exh./mol wet exh.}) * (16 \text{ lb CH}_4/\text{lb-mol CH}_4) * (60 \text{ min/hr}) = 0.58 \text{ lb/hr}$

Propane Calculation:

• Propane concentrations measured: Average: 5.9 ppmvw

Run 2: 3.3 ppmvw

Run 3: 8.5 ppmvw

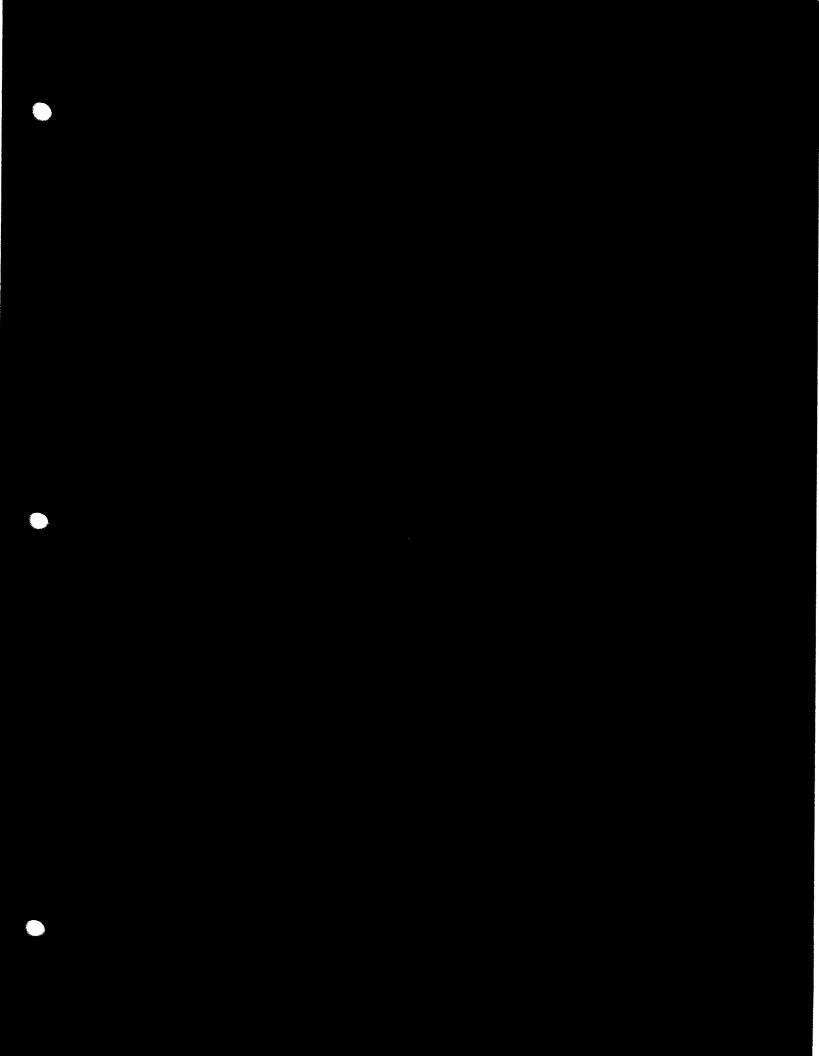
- Average exhaust flow rate: 5,540 dscfm
- Average moisture content: 21.4 vol. %

 $(5.9 \text{ ppmvw}) / (10^6 \text{ lb-mol exh.}) * (5,540 \text{ dscfm}) / (385 \text{ scf/lb-mol}) /$

 $(1-0.214 \text{ mol dry exh./mol wet exh.}) * (44 \text{ lb } C_3H_8/\text{lb-mol } C_3H_8) * (60 \text{ min/hr}) = 0.29 \text{ lb/hr}$

 $(1-0.214 \text{ mol dry exh./mol wet exh.}) * (44 \text{ lb } C_3H_8/\text{lb-mol } C_3H_8) * (60 \text{ min/hr}) = 0.29 \text{ lb/hr}$

SO₂ in Exhaust


• Sulfur from fuel analyses: Average: 18.2 ppm COS

Run 1: 13.9798 ppm COS Run 2: 15.5808 ppm COS Run 3: 25.0461 ppm COS

• Average propane usage rate: 85 gal/hr = 8.2 lb-mol/hr (see calculation above)

 $(18.2 \text{ mol COS}/10^6 \text{ mol C}_3\text{H}_8) * (8.2 \text{ mol C}_3\text{H}_8/\text{hr}) = 0.000149 \text{ lb-mol COS}/\text{hr}$

 $(0.000149 \text{ lb-mol COS/hr}) * (1 \text{ mol SO}_2/\text{mol COS}) * (64 \text{ lb/lb-mol SO}_2) = 0.00954 \text{ lb SO}_2/\text{hr}$

		Ry KS, MT .		
Totals	Superv. Oper.:	Operators: A_{γ}		
	\	Jnit Number: #s 3, 4 & 5 LTEVS	123.491	
	Shift:	Unit Number:	Job Tons:	Daily Tons:
Bun	6044		619.2	
Test 1	Job Number:	Stop Hr. Meter:	Start Hr. Meter:	Ttl. Genset Hrs.
	9-27-96	1'5	6.00	4,1
8	Date:	Stop Time(Belt):	Start Time(Belt): G.0. 0	Ttl. Hours(Belt):

	Differential Pres SCFM Air Flow	Catalyst Bed Scrubber	Š	12 75476578 789 153 167 7.8 2,5 7,20 7.42,5 2,5 1457,455	757 758 811 798 15/ 160 75 3,1 7,12 7,28 2,5 3,5 1464 3086	1 x.6 2146 22K/	13/5 40 77 53.3 13,6 474 306 70 ,06 \$755 767 188 151 152 5,5 2,1 7,08 2,6 2241 2203	626 2000 2088	12 2355 2264 0	J. 7. 1.03 J. 0 J. 3017 3036	6 2.6 3031 1680	, of 755 785 821 807 152 172 8.4 36 7.07 2.18 2.6 2.6 1839 1648		C + Whater			
rain	mp/Blowdown	pH	Unit 4 Unit 5 Uni	7,30 7.8/2,	7,12 7.28 3.	7.09 7.44 2.6	7.01 7.08 2.	7,147.242,	7.14 7.19 Dul	1.12 7.05 2.1	713 771 3-6 2.6	7,07 7,13 2,		1150 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Chlorocat APC Train	Scrubber St	Temp (deg F) Temp (deg F) Temp (deg F) Conc. (mili S)	5 Unit 4 Unit 5	7.8 2.5	75 3,1	5.6.1.35	5.5 2.1	5,7 2,8	6.6 1.9	780 796 789 152 164 6.9 3.4	7.8 3.3	8.4 2.6		Will will a	nicking buner adjustments on TD	of Test	
	Cuench	Temp (deg F.	Unit 4 Unit 5	153 167	15/ 160	152 170	EC1 151	152 170	151 168	152 164	794 148 161 7.8	152 172		7, 57,	or adjusta	p processing & 1810 End of Test	
	Catalyst Outle	Temp (deg F)	Unit 4 Unit 5	799 789	8/1 118	80x 787	286 786	792 786	181 781	796 789	4PT Tay	521 807		She 0 = 2	K. 24 60.02	6. 181	
	Catalyst Inlet	Temp (deg F)	Unit 4 Unit 5	754 765	757 758	754 760	\$755 767	753764	769 782	,05 767 790	795 JAN 807	755 785			7	23	
	E	Inlet Blower Draft	(% (Inches	6, 6		30,	70, 00	20,06	50,08	50, 59	80 50	$\overline{}$			- 0705 +	Stap	
No. 3	Soils Bag Hs Burner Drur	Inlet Bro	Temp. (F)	13:0 13:0 451 30/ 70	324 7	7 307	1306 7	1302 -	9 [25	305 b	741			7900	C. 55.79	UKWENT.	
Thermal Desorption Unit No. 3	Soils	Feed Exit	Rate Temp (tph) (ded F	13,0 45	1218 504	13.9 43	13,6 474	14,2 425	15.8 419	15.6 450	14.4 423			7.0	tert Pio	ALC Adt Reo	
Thermal Des	im. Total	nain Soil	G Treated	13.0	1015 20 83,5 25,8 12,8 504 324 70	34.7	7 53.3	7 67.5	59 LBC PIH 8.31 KOR 7L 0.9 SIHI	515 7,0 76 95.2 15.6 450 305	185 644 474 261 291	150 9.0 75 122,7	•	1.40 × 7.00 × 7.00 × 800	080 Str. Process 4-	MUN 45 WW LOA WEIGHSCALE ACT REDUCEMENT	
	Cold Estim.	Feed Remain Soil	Hr. LF	041501,0	20 83	3.0	40 7	5.0 7	6.0 7	7,0 7,	35 6.0 Soor	9,0 75			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cmy St V	
			Time	5188	10/8	1/5	13/5	1315	元元	1515	oaLI	1800	2	Comments:	Š	700	

)

 \mathcal{Q}

Slaremont !	Claremont Superfund Site	ite			Dow Environmental Inc.
			Scrubber Water Chart		
		Measurement	Measurement from top of Tank		
Date	Time	Center Depth	Center Dept	Run	Volume Calculation
9/0, 10					Run= 870, 94 gar.
014/07/	(6:11/11:5>	IL C	7		35
96/97/6	9/26/96 13:18/14.34	4.58	4,83	7	Run= 568.70 gar TOTAL= 11270, 03 gar
9/20/20	9/26/96 15:43/18:04	5.11	5,33	ŗ	RUN= 534,73gal
				Aug	658.12 gel
1					
				:	

CALCULATION WORKSHEET

SUBJECT:		CHECKED BY:	DATE:
Run I			
= 201,187.58	× 7.8 × 37.3 + 231 = × 7.8 × 37.32	870.99 gAL	
= 2,167989 86 =	231 =	9385 24 540	
Run D. 25 x - 12 (561 . 47	7.8 × 39.99 + :251 - 568. × 7.8 × 39.99	70 grac	
$\frac{2003358}{2003}$	7.8 × 41.66	7b.03 gac	
1 73 522, 35	- 231 = 534 7.8 × 41.66	173gac	1728
2,992, 849.07	- 231 = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.06 SAC	

Date	Time	% Propane @ Start	Temperature	Pressure	% Propane @ Finish	Run Number	% Propane Total
9-26-96	10:13	Left 82 > 53.56	2,41	90	94 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		,
	[3:5]	ST 70 178	34.	901	11% 11% 11% 11% 11% 11% 11% 11% 11% 11%	7	
	(5:43	14 th 18 16 8 16 8 16 8 16 8 16 8 16 16 16 16 16 16 16 16 16 16 16 16 16	185	01	\$21. \$21. \$31. \$31. \$31. \$31. \$31. \$31. \$31. \$3	က	
				Total Propane Use	ine Use		
Date	Total Time	% Propane @ Start			% Propane @ Finish		Ave Propane Use
92-26-61	٠	85%	=(100058)28°		75%	= (15/8500g)=	85C
In the	ch. tiw Reading 5		0		LEGEN C KKKK ENDING THES	בוארל א שנפ	
(9)	1 Time 06:50						
- I gap	اع د					·	

Measurement from top of Tank Center Dept Run	Slaremont	Claremont Superfund Site					Dow Environmental Inc.
Time Center Depth Center Dept Run Volume Calculation Center Depth Center Calculation Center Depth Center Depth Center Calculation Center Depth Center Calculation Cent				Caustic Us	e Chart,		
Time Center Depth Center Dept Run Volume Calculation @ Start 0::14 13.625" 13.625" 14.67" × 13.65" 14.67" × 41.5" ×			Measurem	ent from to	p of Tank		
19:14 13.625" Tank#1 13.625" 1955 1 46.75" × 41.5 13:23 13.625 Tank#1 14.8" 1855 2 13:23 13.55 Tank#1 14.8" 1801 3 15:47 14.0" Tank#1 14.8" 1801 3 15:47 14.0" Tank#2 13.75" L 3 Chumqa W Tank #2 13.75" L 3 Chumqa W Tank #2 13.75" L 3	Date	Time	Center Depth @ Start		_	·	
13.6° Tank #2 13.5° 1 1 13.65° Tank #1 14.0° 13.5° 2 14.0° Tank #1 14.0° 1307 3 13.75° Tank #2 13.75° 1 3	9b-92-b	10:14	13,625	Tank#1	Y		46.75" × 41.5" ×
13.5° Tank #1 14.0° 135° 2 13.5° Tank #1 14.0° 1301 14.0° Tank #1 14.0° 1301 3 Chumpe 18 Fault 4.			13.0"	Tank #2	13.5	_	
13.5" Tank #2 13.6" L 2 14.0" Tank #1 14.0" 1907 3 13.75" L 3 — Chumqe 14 Faste 4 —		13:23	13.625	Tank #1	1		
14.0" Tank #1 14.0" 1907 3 13.75" Tank #2 13.75" _ 3			13.5	Tank #2	13.5	7	
Tank #2 13.75" _ 3		15:47	14.0"	Tank #1			
	-1	-	13.75	Tank #2	13.75"	က	
						Chromopa	1

. Anitic headings during runs was taken from 100 of Park down to 100 of Caustic (6"Opening)
FROM STONE FROM

Ch. Hookadings

@ 06:45

Light currently in Tank - measurements taken from bottom of Tank up to Top of CADSTIC (ENDOR 3 DULLE)

TANK 1 - 44.5" TANK 2 - 44.25

CALCULATION SHEET

CALC. NO. _____

SIGNATURE______ DATE______ CHECKED_____ DATE_____

______ JOB NO._____ PROJECT_

SUBJECT__ ______ SHEET______ OF_____SHEETS

Caustic Ylsage

Run 1 0.5"

970 in 3

Run 2 0.375"

Run 3 0.25"

485 m 3

						1 101		
Sample Location	Sample Number (Primary Lab)	QC Sample Number (Primary Lab)	Associated Trip Blank (Primary Lab)	Associated Rinsate Blank (Primary Lab)	Sample Number (QA Lab)	Associated Trip Blank (QA Lab)	Associated Rinsate Blank (QA Lab)	Analysis
W-Soil Feed Noppers	C-15EV-03-5-009		210-WA-60-1857-77 1-10-14-80-1857-77	210-NN-50-1857-7				KOTSKE
u	010-5-50-N357 FD	•	U	u				u
"	C-1581-07-5011	210-5-60-13477	u	ų	C10-5-E0-ASET-77	CT-1384-03-5-013 CT-1884-03-141-015 CT-1884-03-111-813	CLUTTY-03-W1-013	"
4	4.10-5-014		ų	4				ý
<i>u</i>	a-00-103-5-015		tt	4				"
"	910-5-80-1217-73		u	n				"
u	T10-5-81-1017		ď	" "				"
EV- Bust Sted	a-1984-05-5-009	•	u	n				4
121-50;1 Feed Noppypa-LEV-03-5019	Q-15EV-03-5-019	·	и	t				u u
q	4-5-80-1317-Z	•	"	11		•		"
"	120-5-20-1311-2020-5-20-120-7	120-5-80-1311-50	4	ll ll	Ct-1881-03-5-022	n .	u	"
4	\$20-5-60+351-17		" "	#		*		. "
u	120-5-50-1657-52		ų	Ħ				, 11 3
W.	520-5-80-1351-17		u	n				11
"	920 5-50-1859-17		u	"				Û

Note: This table is to be completed in the field and maintained as part of the field sample log book based upon the actual samples taken.

PHONE NO. : 5162498874

FROM: DOWENVIRONMENTAL

92	7
0%	J.
8	.60

Sample Location	Sample Number (Primary Lab)	QC Sample Number (Primary Lab)	Associated Trip Blank (Primary Lab)	Associated Rinsate Blank (Primary Lab)	Sample Number (OA Lab)	Associated Trip Blank (QA Lab)	Associated Rinsate Blank (QA Lab)	Analysis
15V-50,7 Feed Hoppy G-184-03-5-027	C-184-03-5-027		n,					40928MS
1964-Serubber Blowborn CL-1584-03-44-017	CL-1564-03-14-017		"					"
u	810-FR-03-FR-018		u					"
u.	4.01.4.074.019		"					"
20-14-50-4857-17 Youl Good JAPAN - ASS.	320-14-50-1857-17							5w60104
n	520-114-60-1145-2				-		-	2.528.3
184- Sombby Mondown	(20-M-E0-180-42							SWEODA
ų	220-M-50-180-17							Ü
"	220-PM-CO-ABS-D							11
11	420-4-50-851-17	•				•		£325.2
u	120-41-60-1657-T					•		, "
u	120-NA-03-NA-027							"
1984-50;1 Fad Happer	120-560-1217-12	•	910-5-20-1857-52	u				4092845
4	620-5-E0 ASSA		u,	q				"
u	4-181-03-5-030		"	n				*

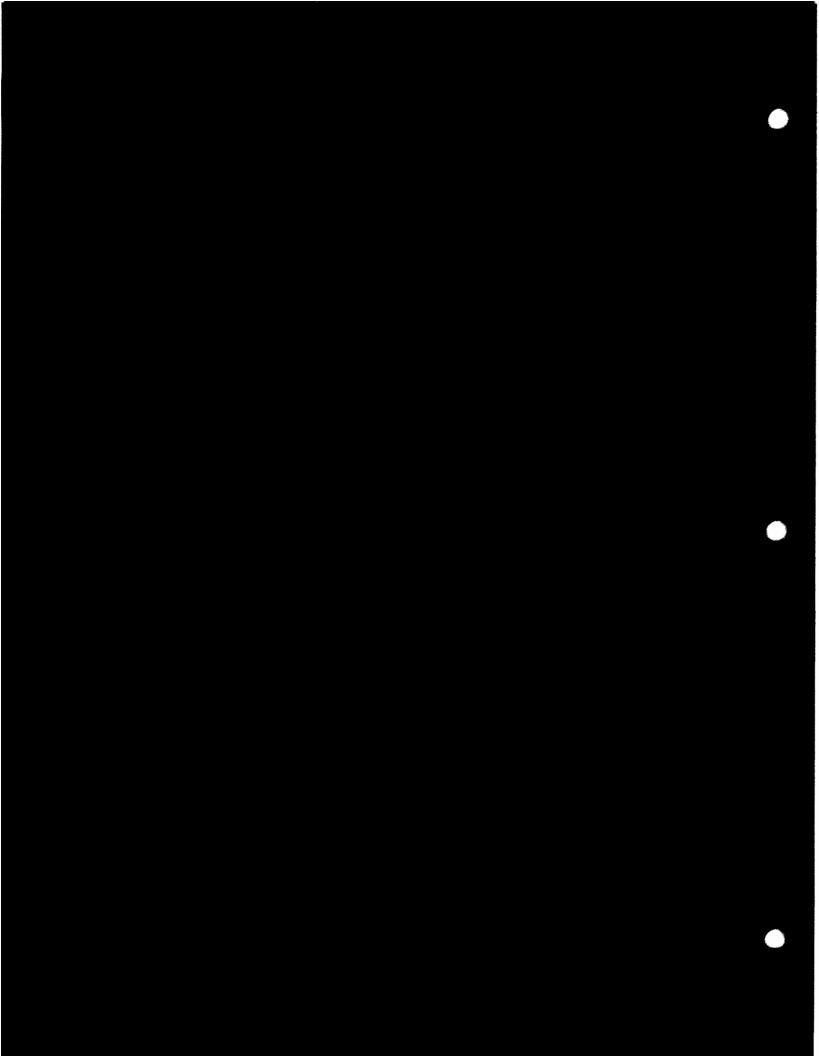
Note: This table is to be completed in the field and maintained as part of the field sample log book based upon the actual samples taken.

_
•
)

Sample Location	Sample Number (Primary Lab)	QC Sample Number (Primary Lab)	Associated Trip Blank (Primary Lab)	Associated Rinsate Blank (Primary Lab)	Sample Number (QA Lab)	Associated Trip Blank (QA Lab)	Associated Rinsate Blank (QA Lab)	Analysis
1964-50; 1 Feed Hopper	160-5-60-1617-10		#	ll .				rogress
"	250-5-501357-77		ll l	11				"
19EV-Dust Shed	010-5-50165-77	-	"	~				"
1981-5,1 Fud Hopper	4. LER-03-5-033		11	u				"
H	4.60-5-50-180-27 980-5-60-1851-17	1-50-5-50-155-77	q	4	CAMEROS-5-035	"	#	2
u	CE-CBH-03-5-037		u	"				"
u	4-084-03-5-038		И	II		;		z
ų	650-5-E0-130-72		n n	"				1
u	2-040-5-040	,	ħ	h				"
u	140-5-80-1857-7		h	u		•		"
u	240-5-50-AZM-77		. н	"				"
ø	640-5-60-1817-72		n	u				" "
u	4-158-03-5-044	1	n	"				, // *
u	240-5-50-1317-77 SHO-5-50-1317-72	940-5-80-1817-17	"	u	140-5-50-1847-12	"	"	"
ll	840-5-80-1357-12		11	ti				u

Note: This table is to be completed in the field and maintained as past of the field sample log book based upon the actual samples taken.

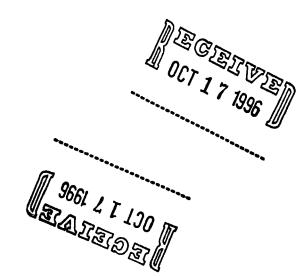
PHONE NO. : 5162498874


FROM: DOWENVIRONMENTAL

96.09.26 4 of 4

Sample Location	Sample Number (Primary Lab)	QC Sample Number	Associated Trip Blank	Associated Rinsate Blank	Sample Number (QA Lab)	Associated Trip Blank (OA Lab)	Associated Rinsate Blank	Analysis
		(Primary Lab)	(Primary Lab)	(Primary Lab)			(QA Lab)	
184-5:1 Fed Hoport 12-18003-5-049	40-5-E01451-T		"	U				ropesm5
EV-Dust Shid	110-5-50-1857-72		"	u				"
84-5.1 hed lapper 4-158403-5-050	050-5-80-1857-17		u	11				"
u	150-5-80-1857-77		u	"				"
u	250-S-EO-HAT-#2		4	u				"
*	590 + 60 AM T	_	"	" "		-	-	u -
u	a- 1184-03-5-054		u	ll l				u
4	50 Fin 185 19		u	" "				"
in 6- Fruh Soil 2-484-065-008	\$00-5-90-1217-12		"	"				"
		,						
								•

Note: This table is to be completed in the field and maintained as part of the field sample log book based upon the actual samples taken.



Northeast Region

Meadowbrook Industrial Park Milford, NH 03055 (603) 672-4835 (603) 673-8105 (FAX)

October 10, 1996

John Munson Dow Environmental, Inc. 501 Winding Road. Old Bethpage, NY 11804

RE: GTEL Client ID:

Login Number:

966044044 M6090414

Project ID (number):

6044

Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Dear John Munson:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 09/27/96 under Chain-of-Custody Number(s) 64038.64336.64039.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This Analytical report shall not be reproduced except in full.

GTEL is certified by the State of New York under Lab ID #10599.

grenelle for

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely,

GTEL Environmental Laboratories, Inc.

Susan C. Uhler Laboratory Director GTEL Client ID: 966044044 Login Number: M6090414 Project ID (number): 6044

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

CONFORMANCE/NONCONFORMANCE SUMMARY

(X = Requirements Met

* = See Comments

NA = Not Applicable)

#	Conformance Item	VOA CIC/MS	VOA GC	SV GC/MS	SV GC	METALS	WET
1	GC/MS Tune	X	NA	- '	NA	NA	NA
2	Initial Calibration	X	_	-	_	х	х
3	Continuing Calibration	X	_		_	х	х
4	Surrogate Recovery	X	_	_	_	NA	NA
5	Holding Time	X .	-			Х	х
6	Method Accuracy	X		_		•	•
7	Method Precision	X	_			Х	Х
8	Blank	х				X	Х

9 Comments:

Method 6010 in Water:

Sample M6090414-06. Sample anomaly. Not appropriate for evaluation. Matrix Spike and Matrix Spike Duplicate .090414-06, Sodium. Due to sample > spike. Supporting data batch laboratory control sample(s) demonstrate(s) accuracy (% Recovery). RPD of Matrix Spike and Matrix Spike Duplicate based on concentrations 0.85% demonstrate precision (% RPD or % RSD).

Sample M6090414-11. Sample anomaly. Not appropriate for evaluation. Matrix Spike and Matrix Spike Duplicate 090414-11, Sodium. Due to sample > spike. Supporting data batch laboratory control sample(s) demonstrate(s) accuracy (% Rec).

Method 325.2 in Water:

Sample M6090414-07. Sample anomaly. Not appropriate for evaluation. Matrix Spike and Matrix Spike Duplicate 090414 > calibrated range, Chloride. Supporting data batch laboratory control sample(s) demonstrate(s) accuracy (% Recovery).

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID: 966044044 in Number: M6090414 Project ID (number): 6044

Project ID (number): 6044 Method: EPA 8260
Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY Matrix: Solids

	OTEL C 3 - 11 - 1	NC000444 00	WC000414 0C		
	GTEL Sample Number	M6090414-23	M6090414-26	• •	* •
	Client ID	CLLTEV03S019	CLLTEV03S023	••	••
	Date Sampled	09/26/96	09/26/96	• •	••
	Date Analyzed	10/08/96	10/08/96		
	Dilution Factor	1.00	1.00		<u>.</u>
		Soil In- Run 1 00:40	50,1 In-		
	Reporting		Run 1 00:50		
Analyte	Limit Units		ncentration:Dry We	eight	200000 D.C 20000000 SV Specific in the contract
Dichlorodifluoromethane	1.2 mg/kg	1.2 U	1.2 U		
Chloromethane	1.2 mg/kg	1.2 U	1.2 U	 817 /	
Vinyl chloride	0.62 mg/kg	0.62 U	0.62 U	4.4	
Bromomethane	1.2 m g/kg	1.2 U	1.2 U		
Chloroethane	1. 2 m g/kg	1.2 U	1.2 U		
Trichlorofluoromethane	0.62 mg/kg	· 0.62 U	0.62 U		
1,1-Dichloroethene	0.62 mg/kg	0.62 U	0.62 ป		
Methylene chloride	0.62 mg/kg	0.62 U	0.18 J		
trans-1,2-Dichloroethene	0.62 mg/kg	0.62 U	0.62 U	4-	
1.1-Dichloroethane	0.62 mg/kg	0.62 U	0.62 U		
2,2-Dichloropropane	0.62 mg/kg	0.62 U	0.62 U		
cis-1,2-Dichloroethene	0.62 mg/kg	0.62 U	0.62 U		
Chloroform	0.62 mg/kg	0.62 U	0.62 U		44
nmochloromethane	0.62 mg/kg	0.62 U	0.62 U		
1.1-Trichloroethane	0.62 mg/kg	0.62 U	0.62 U	+ +	
1,1-Dichloropropene	0.62 m g/kg	0.62 U	0.62 U		
Carbon tetrachloride	0.62 m g/kg	0.62 U	0.62 U		
Benzene	0.62 m g/kg	0.62 U	0.62 U		
1,2-Dichloroethane	0.62 mg/kg	0.62 U	0.62 U	<u></u>	
Trichloroethene	0.62 mg/kg	0.62 U	0.62 U		
1,2-Dichloropropane		0.62 U	0.62 U		
Bromodichloromethane		0.62 U	0.62 U	7.	
				 Demography (1996)	
Dibromomethane	0.62 mg/kg	0.62 U	0.62 U		
Toluene	0.62 mg/kg	0.62 U	0.62 U		— —
1.1.2-Trichloroethane	0.62 mg/kg	0.62 U	0.62 U	-+	7-
1,2-Dibromoethane	0.62 mg/kg	0.62 U	0.62 U	— — 2000000000000000000000000000000000000	= = Margori v. J. Sata Margorian Sata Sata Sata Sata Sata Sata Sata Sa
Tetrachloroethene	0.62 mg/kg	5.5	3,1	•	
1.3-Dichloropropane	0.62 mg/kg	0.62 U	0.62 U	 2000-0019-011-200190	
Dibromochloromethane	0.62 mg/kg	0.62 U	0.62 U		±±±
Chlorobenzene	0.62 mg/kg	0.62 U	0.62 U	ecoso A. H. Jeanners and Commission	
Ethylbenzene	0.62 mg/kg	0.62 U	0.62 U		
1.1.1.2-Tetrachloroethane	0.62 mg/kg	0.62 U	0.62 U		
Xylenes (total)	0.62 mg/kg	0.62 U	0.62 U		
1.3-Dichlorobenzene	0.62 mg/kg	0.62 U	0.62 U		
Styrene	0.62 mg/kg	0.62 บ	0.62 U		역시 등 연극 등 기가 되었다.
1.4-Dichlorobenzene	0.62 mg/kg	0.62 U	0.62 U		
Bromoform	0.62 mg/kg	0.62 U	0.62 U		
1,2-Dichlorobenzene	0.62 mg/kg	0.62 U	0.62 U		
*sopropylbenzene	0.62 mg/kg	0.62 ป	0.62 U	jana, ku <u>"Z</u> ala jedj	

L Milford, NH

110090414

AWALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090414

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Solids

GTEL Sample Number	M6090414-23	M6090414-26	••	· · ·
Cliemt ID	CLLTEV03S019	CLLTEV03S023	••	••
Date Sampled	09/26/96	09/26/96		
Date Analyzed	10/08/96	10/08/96		••
Dilution Factor	1.00	1.00	••	••

	Reporting			
Analyte	Limit	Lnits	Conc	centration:Dry Weight
1,1,2,2-Tetrachloroethane	0.62	n _i g/kg	0.62 U	0.62 U
Bromobenzene	0,62	mig/kg	0.62 U	0.62 U
1,2,3-Trichloropropane	0.62	m∙g/kg	0.62 U	0.62 U
n-Propylbenzene	0.62	mg/kg	0,62 U	0.62 U
2-Chlorotoluene	0.62	mg/kg	0.62 U	0.62 U
1.3.5-Trimethylbenzene	0.62	mg/kg	- 0.62 U	0.62 U
4-Chlorotoluene	0.62	mg/kg	0.62 U	0.62 U
tert-Butylbenzene	0.62	mg/kg	0.62 U	0.62 U
1,2,4-Trimethylbenzene	0.62	mg/kg	0.62 U	0.62 U
sec-Butylbenzene	0.62	mg/kg	0.62 U	0.62 U
p-Isopropyltoluene	0.62	mg/kg	0.62 U	0.62 U
n-Butylbenzene	0.62	mg/kg	0.62 U	0.62 U
1,2-Dibromo-3-chloropropane	0.62	mg/kg	0.62 U	0.62 U
~ 2.4-Trichlorobenzene	0.62	mg/kg	0.62 U	0.62 U
∡achlorobutadiene	0.62	mg/kg	0.62 U	0.62 U ~-
Naphthalene	0.62	mg/kg	0,62 U	0.62 U
1,2,3-Trichlorobenzene	0.62	mg/kg	0.62 U	0.62 U
cis-1,3-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U
trans-1,3-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U
Percent Solids		ž	95.3	81.1

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemidal Methods", SW-846. Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well, as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated.

Page: 2

(GTEL: MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE * >18521::04

DATE AND TIME OF ANALYSIS = 10/08/96 12:45

SAMPLE NAME - BS093096780

MISC. INFO =

METHOD = CSCVT

INSTRUMENT - MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SŨIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.91	50.00	76-114	70-121	(53)	94.6
Toluene-d8(TOL)	6.17	50.00	68-110	81-117	(S1)	98.8
Bromofluoro- ber ane(BFB)	6.04	50.00	86-115	74-121	(52)	96.6

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18506::D4

DATE AND TIME OF ANALYSIS = 10/08/96 2:21

SAMPLE NAME = 090414-23

MISC. [NFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.48	\$0.00	76-114	70-121	(S3)	90.6
Toluene-d8(TOL)	5.94	\$ 0. 00	88-110	81-117	(S1)	98.1
Bromofluoro- ber ane(BFB)	5.85	50.00	86-115	74-121	(S2)	96.6

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18507::D4

DATE AND TIME OF ANALYSIS = 10/08/96 3:04

SAMPLE NAME = 090414-26

MISC. INFO =

METHOD = CSCVT

INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.99	50.00	76-114	70-121	(S3) 90.7
Toluene-d8(TOL)	6.48	50.00	88-110	81-117	(S1) 98.2
Bromofluoro- ber ine(BFB)	6.38	50.00	86-115	74-121	(S2) 96.7

(GTEL:M(LFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18524::D4

DATE AND TIME OF ANALYSIS = 10/08/96 14:47

SAMPLE NAME = MS090414-14

NISC. INFO =

METHOD = CSCVT

INSTRUMENT = MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.61	\$0.00	76-114	70-121	(S3) 89.0
			•		
Toluene-d8(TOL)	6.36	50.00	88-110	81-117	(S1) 101.0
Bromofluoro- ber ne(BFB)	6.10	\$0.00	86-115	74-121	(S2) 96.9

[VOLATILE ORGANICS - GC/MS]

(PRELIMINARY SURROGATE STANDARD REPORT)

SAMPLE DATA FILE # >18525::D4

DATE AND TIME OF ANALYSIS = 10/08/96 19:27

SAMPLE NAME = MD090414-14

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
l,2-Dichloro- ethane-d4(DCE)	5.63	50.00	76-114	70-121	(S3) 90.7
Toluene-d8(TOL)	6.31	50.00	88-110	81-117	(S1) 101.9
Bromofluoro- per rne(BFB)	6.10	50.00	86-115	74-121	(S2) 98.4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18527::D4

DATE AND TIME OF ANALYSIS = 10/08/96 16:44

SAMPLE NAME = LS093096B

MISC, INFO = METHOD = CSCVT

INSTRUMENT - MSDI

OPERATOR = VANGIE

-							
	SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
	1,2-Dichloro- ethane-d4(DCE)	5.86	50.00	76-114	70-121	(S3)	93.7
	Toluene-d8(TOL)	6.46	50.00	88-110	81-117	(S1)	103.3
	Bromofluoro- enzene(BFB)	6.13	50.00	86-115	74-121	(S2)	98.1

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [MEDIUM LEVEL]

Sample Spiked: Date of Analysis: 090414-14

10-08-96

Client ID:

Batch QC

Solution ID:

M96MS0292B

Batch #:

093096MB

0	Spike	Sample	MS	MS,%	Acceptability
Compound	Added	Conc.	Conc.	Percent	limits
	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	6.28	< 0.62	5.52	87.9	59-172
Trichloroethene	6.28	< 0.62	5.25	83.6	62-137
Benzene	6.28	< 0.62	6.33	101	66-142
Toluene	6.28	< 0.62	6.76	108	59-139
Chlorobenzene	6.28	< 0.62	6.40	101.9	60-133

	MD				Acceptability	
,	Spike	MD	MD,%		limits, a	
Compound	Added	Conc.	Percent	%	%	%
	(mg/kg)	(mg/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	6.22	5.27	85	3.6	59-172	22
Trichloroethene	6.22	4.94	79	5.1	62-137	24
Benzene	6.22	5.92	95	5.7	66-142	21
Toluene	6.22	6.54	105	2.3	59-139	21
Chlorobenzene	6.22	6.11	98	3.6	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

%RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) , PERCENT RECOVERY REPORT

Volatile Organics in Soil GC/MS VOA [MEDIUM LEVEL]

Sample Spiked: Date of Analysis: LS093096B

10-08-96

Client ID:

Batch QC

Solution ID:

M96MS0292B

Batch #:

093096MB

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	LCS Conc. (mg/kg)	LCS% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	6.25	< 0.62	4.84	77.4	59-172
Trichloroethene	6.25	< 0.62	4.60	73.6	62-137
Benzene	6.25	< 0.62	5.76	92.2	66-142
Toluene	6.25	< 0.62	6.03	96.5	59-139
Chlorobenzene	6.25	< 0.62	5.67	90.7	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

	GTEL Blank ID	BS093096B
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dichlorodifluoromethane	1.2	1.2 U
Chloromethane	1.2	1.2 U
Vinyl Chloride	0.62	0.62 U
Bromomethane	1.2	1.2 U
Chloroethane	1.2	1.2 U
Trichlorodifluoromethane	O.62	0.62 U
1,1-Dichloroethene	0.62	0.62 U
Methylene Chloride	0.62	0.62 U
trans-1,2-Dichloroethene	0.62	0.62 U
1,1-Dichloroethane	0.6 2	0.62 U
2,2-Dichloropropane	0.62	0.62 U
cis-1,2-Dichloroethene	0.62	0.62 ∪
Chloroform	0.62	0.62 U
Bromodichloromethane	0.62	0.62 U
1,1,1-Trichloroethane	0.62	0.62 U
1,1-Dichloropropane	0.62	0.62 U
Carbon Tetrachloride	0.62	0.62 U
Benzene	0.62	0.62 U
1,2-Dichloroethane	0.62	0.62 U
Trichloroethene	0.62	0.62 U
1,2-Dichloropropane	0.62	0.62 U
Bromochloromethane	0.62	0.62 U
Dibromochloromethane	0.62	0.62 U
cis-1,3-Dichloropropene	0.62	0.62 U
Toluene	0.62	0.62 U
trans-1,3-Dichloropropene	0.62	0.62 U
1,1,2-Trichloroethane	0.62	0.62 U
1,2-Dibromomethane	0.62	0.62 U
Tetrachloroethene	0.62	0. 62 U
1,3-Dichloropropane	0.62	0.62 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHCID BLANK RESULTS Aromatic Volatile Organics in Soil EFA Method 8260*

	GTEL Blank ID	BS093096B
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dilbromochloromethane	0.6	0.6 U
Chlorobenzene	0.6	0.6 U
Ethylbenzene	0.6	0.6 U
1,1,2,2-Tetrachloroethane	0.6	0.6 U
Xylenes (total)	0.6	0.6 U
1,3-Dichlorobenzene	0.6	0.6 U
Styrene	0.6	0.6 U
1,4-Dichlorobenzene	0.6	0.6 U
Bromoform	0.6	0.6 U
1,2-Dichlorobenzene	0.6	0.6 U
Isopropylbenzene	0.6	0.6 U
1,1,2,2-Tetrachloroethane	0.6	0.6 U
Bromobenzene	0.6	0.6 U
1,2,3-Trichloropropane	0.6	0.6 U
n-Propylbenzene	0.6	0.6 U
2-Chlorotoluene	0.6	0.6 U
1,3,5-Trimethylbenzene	0.6	0.6 U
4-Chlorotoluene	0.6	0.6 U
tert-Butylbenzene	0.6	0.6 U
1,2,4-Trimethylbenzene	0.6	0.6 U
sec-Butylbenzene	0.6	0.6 U
p-lsopropyltoluene	0.6	0.6 U
n-Butylbenzene	0.6	0.6 U
1,2-Dibromo-3-chloropropane	0.6	0.6 U
1,2,4-Trichlorobenzene	0.6	0.6 U
Hexachlorobutadiene	0.6	0.6 U
Naphthalene	0.6	0.6 U
1,2,3-Trichlorobenzene	0.6	0.6 U
cis-1,3-Dichloropropene	0.6	0.6 U
trans-1,3-Dichloropropene	0.6	6 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

- a Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.
- c Total 1,2-dichloroethene is the sum of the cis- and trans- isomers.

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

ogin Number:

M6090414

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Low Soil GTEL Sample Number M6090414-14 M6090414-17 M6090414-19 M6090414-28 Client ID CLLTEV03S010 CLLTEV03S017 **CLLTEV03S015** CLLTEV03S025 Date Sampled 09/26/96 09/26/96 09/26/96 09/26/96 Date Amalyzed 10/04/96 10/04/96 10/04/96 10/04/96 Dilution Factor 1.00 1.00 1.00 1.00 Soil In-Soil In-Soil In-Soil In-Kun 1 00:05 Run 1 00:30 Reporting Kun 1 00:20 RAN / 01:00 Analyte Limit Units Concentration:Dry Weight Dichlorodifluoromethane 10. ug/kg 10. U 10. U 10. U 10. U Chloromethane 10. ug/kg 10. U 10. U 10. U 10. U Vinyl chloride 5.0 ug/kg 5.0° U 5.0 U 5.0 U 5.0 U Bromomethane 10. ug/kg 10. U 10. U 10. U 10. U Chloroethane 10. ug/kg 10. U 10. U 10. U 10. U Trichlorofluoromethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U ug/kg 1.1-Dichloroethene 5.0 5.0 U 5.0 U 5.0 U 5.0 U Methylene chloride 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U trans-1.2-Dichloroethene 5.0 ug/kg 5.0 U 5.0 U 5.0.U 5.0 U 1.1-Dichloroethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 2.2-Dichloropropane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U cis-1,2-Dichloroethene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Chloroform 5.0 5.0 U ug/kg 5.0 U 5.0 U 5.0 U ^romochloromethane 5.0 5.0 U ug/kg 5.0 U 5.0 U 5.0 U 1.1-Trichloroethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 1.1-Dichloropropene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Carbon tetrachloride 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Benzene 1.0 ug/kg 1.0 U 1.0 U 1.0 U 1.0 U 1.2-Dichloroethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Trichloroethene 5.0 5.0 U ug/kg 5.0 U 5.0 U 5.0 U 1,2-Dichloropropane 5.0 ug/kg 5.0 U 5.0 U 5:0 U 5.0 U Bromodichloromethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Dibromomethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Toluene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 1.1.2-Trichloroethane 5.0 5.0 U 5.0 U ug/kg 5.0 U 5.0 U 1.2-Dibromoethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Tetrachloroethene. 5.0 ug/kg 31. 4.9 J 1.4 J 17. 1.3-Dichloropropane 5.0 5.0 U 5.0 U ug/kg 5.0 U 5.0 U Dibromochloromethane 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Chlorobenzene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Ethylbenzene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 1.1.1.2-Tetrachloroethane 5.0 5.0 U ug/kg 5.0 U 5.0 U 5.0 U Xylenes (total) 5.0 5.0 U 5.0 U 5.0 U ug/kg 5.0 U 1.3-Dichlorobenzene 5.0 5.0 U 5.0 U ug/kg 5.0 U 5.0 U Styrene 5:0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 1.4-Dichlorobenzene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Bromoform 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U 1.2-Dichlorobenzene 5.0 ug/kg 5.0 U 5.0 U 5.0 U 5.0 U Isopropy | benzene 5.0

EL Milford, NH

. 6090414

Page: 1

5.0 U

5.0 U

5.0 U

5.0 U

ug/kg

ANALYTICAL RESULTS Volatile Organics

M6090414-14

CLLTEV03S010

09/26/96

M6090414-17

CLLTEV03S017

09/26/96

TEL Client ID:

966044044

≠Jgin Number:

M6090414

Project ID (number): 6044

6044

GTEL Sample Number

Client ID

Date Sampled

Method: EPA 8260

M6090414-19

09/26/96

CLLTEV03S015

Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Matrix: Low Soil

M6090414-28

CLLTEV03S025

09/26/96

	Date A	nalyzed	10/04/96	10/04/96	10/04/96	10/04/96
	Dilution	Factor	1.00	1.00	1.00	1.00
	Reporting					
Analyte	Limit	Units	Conc	entration:Dry We	ight	
1,1.2,2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Bromobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2,3-Trichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
n-Propylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,3,5-Trimethylbenzene	5.0	ug/kg	5.0 U	5. 0 U	5.0 U	5.0 Ü
4-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
tert-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1.2.4-Trimethylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
sec-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
p-Isopropyltoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
n-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1.2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
2,4-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
nexachlorobutadiene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Naphthalene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2,3-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
trans-1.3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Percent Solids		%	96.1	96.1	95.9	80.3

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

EL Milford, NH M6090414

Page: 2

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

ر_ogin Number:

M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Low Soil

		<u> </u>	-			
	GTEL Sample		M6090414-30		••	
		ient ID	CLLTEV03S027	••		
		Sampled	09/26/96	••		
		nalyzed	10/05/96	••	••	
	Dilution	<u> Factor</u>	5.00		••	••
	_		Soil 11-			
	Reporting		Run Z 00:05			
Analyte	Limit	Units		entration:Dry	Weight	
Dichlorodifluoromethane	10.	ug/kg	50. U			
Chloromethane	10.	ug/kg	50. U			
Vinyl chloride	5.0	·ug/kg	25. U			
Bromomethane	10.	ug/kg	50. U			
Chloroethane	10.	ug/kg	50. U			
Trichlorofluoromethane	5.0	ug/kg	25. U			
1.1-Dichloroethene	5.0	ug/kg	25. U			
Methylene chloride	5.0	ug/kg	25. U		••	• •
trans-1,2-Dichloroethene	5.0	ug/kg	25. U			
1.1-Dichloroethane	5.0	ug/kg	25. U			- · · · ·
2.2-Dichloropropane	5.0	ug/kg	25. U			
cis-1,2-Dichloroethene	5.0	ug/kg	25. U			
Chloroform	5.0	ug/kg	25. U			
omochloromethane	5.0	ug/kg	25. U			
1.1.1-Trichloroethane	5.0	ug/kg	25. U			
1,1-Dichloropropene	5.0	ug/kg	25. U			
Carbon tetrachloride	5.0	ug/kg	25. U			
Benzene	1.0	ug/kg	5.0 U			
1.2-Dichloroethane	5.0	ug/kg	25. U			••
Trichloroethene	5.0	ug/kg ug/kg				
1.2-Dichloropropane	5.0	- •	25. U			
Bromodichloromethane	5.0	ug/kg	25. U			
Dibromomethane	5.0	ug/kg	25. U			
Toluene	5.0	ug/kg	25. U			7,7
1.1.2-Trichloroethane		ug/kg	25. U			
1,2-Dibromoethane	5.0	ug/kg	25. U			
Tetrachloroethene	5.0	ug/kg	25. U			•-
1.3-Dichloropropane	5.0	ug/kg	560:			
	5.0	ug/kg	25. U			
Dibromochloromethane	5.0	ug/kg	25. U			••
Chlorobenzene	5.0	ug/kg	25. U			
Ethylbenzene	5.0	ug/kg	25. U			
1.1.1.2-Tetrachloroethane	5.0	ug/kg	25. U			
Xylenes (total)	5.0	ug/kg	25. U			
1,3-Dichlorobenzene	5.0	ug/kg	25. U			
Styrene	5.0	ug/kg	25. U			
1.4-Dichlorobenzene	5.0	ug/kg	25. U			
Bromoform	5.0	ug/kg	25. U			
1.2-Dichlorobenzene	5.0	ug/kg	25. U			
^T sopropylbenzene	5.0	_ug/kg	25. U			
EL Milford, NH						

M6090414

:Page: 3

ANALYTICAL RESULTS Volatile Organics

TEL Client ID: 966044044 Login Number: M6090414

Project ID (number): 6044 Method: EPA 8260
Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY Matrix: Low Soil

GTEL Sample Number	M6090414-30	••	•••	
Client ID	CLLTEV03S027	• •		
Date Sampled	09/26/96	• •	• •	
Date Analyzed	10/05/96	••		
Dilution Factor	5.00		• •	

	Reporting					
Analyte	Limit	Units	Conce	entration:Dry	Weight	
1,1,2,2-Tetrachloroethane	5.0	ug/kg	25. U			
Bromobenzene	5.0	ug/kg	25. U			
1,2,3-Trichloropropane	5.0	ug/kg	25. U			
n-Propylbenzene	5.0	ug/kg	25. U			
2-Chlorotoluene	5.0	ug/kg	25. U			
1,3,5-Trimethylbenzene	5.0	ug/kg	` 25. U			
4-Chlorotoluene	5.0	ug/kg	25. U			
tert-Butylbenzene	5.0	ug/kg	25. U	- -		
1.2.4-Trimethylbenzene	5.0	ug/kg	25. U			
sec-Butylbenzene	5.0	ug/kg	25. U			
p-Isopropyltoluene	5.0	ug/kg	25. U			
n-Butylbenzene	5.0	ug/kg	25. U		• -	• • · · · · · · · · · · · · · · · · · ·
1.2-Dibromo-3-chloropropane	5.0	ug/kg	25. U			
2.4-Trichlorobenzene	5.0	ug/k g	25. U		- +	
nexachlorobutadiene	5.0	ug/kg	25. U			
Naphthalene	5.0	ug/kg	25. U			
1,2,3-Trichlorobenzene	5.0	ug/kg	25. U	••		
cis-1,3-Dichloropropene	5.0	ug/kg	25. U			
trans-1,3-Dichloropropene	5.0	ug/kg	25. U			
Percent Solids		*	78.8			

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

EL Milford, NH M6090414

Page: 4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18457::D4

DATE AND TIME OF ANALYSIS = 10/04/96 17:56

SAMPLE NAME = BL100496A

MISC. INFO =

METHOD = CSCVT

INSTRUMENT = MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% [RECOVERY
1,2-Dichloro- ethane-d4(DCE)	46.44	50.00	76-114	70-121	(S3)	92.9
Toluene-d8(TOL)	48.90	50.0,0	88-110	81-117	(S1)	9 7.8
Bromofluoro- henzene(BFB)	47.79	50.0 0	86-115	74-121	(S2)	95.6

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18458::D4

DATE AND TIME OF ANALYSIS = 10/04/96 18:38

SAMPLE NAME = 090414-14

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

BURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	41.42	50.00	76-114	70-121	(53)	82.8
Toluene-d8(TOL)	49.54	50.00	88-110	81-117	(S1)	99.1
Bromofluoro- b ne(BFB)	48. <i>7</i> 2	50.00	86-115	74-121	(S2)	97.4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18459:: D4

DATE AND TIME OF ANALYSIS = 10/04/96 19:19

SAMPLE NAME = 090414-17

MISC. NFO = METHOD = CSCVT

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

BURROGATE	AS FOUND IN SAMPLE	WAS SPIKED A	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	50.97	50.00	76-114	70-121	(S3) 101.9
Toluene-d8(TOL)	48.26	50.00	88-110	81-117	(S1) 96.5
Bromofluoro- ber ine(BFB)	47.53	50.00	86-115	74-121	(S2) 95.1

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18460::D4

DATE AND TIME OF ANALYSIS = 10/04/96 20:00

SAMPLE NAME = 090414-19

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	47.05	50.00	76-114	70-121	(S3)	94.1
Toluene-d8(TOL)	49.61	50.00	88-110	81-117	(S1)	99.2
Bromofluoro- or ane(BFB)	47.70	50.00	86-115	74-121	(S2)	95.4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA $F_{\parallel}ILE = > 18461::D4$

DATE AND TIME OF ANALYSIS = 10/04/96 20:42

SAMPLE NAME = 090414-28

INSTRUMENT - MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	39.39	50.00	76-114	70-121	(S3) 78.8
Toluene-d8(TOL)	49.02	50.00	88-110	81-117	(S1) 98.0
Bromofluoro- ber ne(BFB)	48.12	৯০.০০	86-115	74-121	(S2) 96.2

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18466:: D4

DATE AND TIME OF ANALYSIS = 10/05/96 0:07

SAMPLE NAME = 090414-30 [5]

MISC. INFO = METHOD = CSCVT

INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
t,2-Dichloro- thane-d4(DCE)	218.07	50.00	76-114	70-121	(S3) 87.2
Foluene-d8(TOL)	248.51	50.00	88-110	81-117	(S1) 99.4
3rcmofluoro- ne(BFB)	237.32	50.00	86-115	74-121	(S2) 94.9

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18470::D4

DATE AND TIME OF ANALYSIS = 10/05/96 2:48

SAMPLE NAME = MS090414-14

MISC. INFO =

METHOD - CSCVT INSTRUMENT - MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS \$PIKED, AT	WATER LIMITS	SOIL LIMITS	-	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	44.54	50.00	76-114	70-121	(S3)	89.1
Toluene-d8(TOL)	49.89	50.00	88-110	81-117	(S1)	99.8
Bromofluoro- henzene(BFB)	51.19	50.00	86-115	74-121	(S2)	102.4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18471:: D4

DATE AND TIME OF ANALYSIS = 10/05/96 3:26

SAMPLE NAME = MD090414-14

MISC. INFO = METHOD = CSCVT

INSTRUMENT = MSDI
OPERATOR = VANGIE

SURROGATE		FOUND WA SAMPLE SPIK			SOIL IMITS	% RECOVERY
1,2-Dichlethane-d4		4.39 50	.00 76	6-114 70	0-121 (S3)	88.8
Toluene-d	8(TOL) 49	9.91 50	.00 88	8-110 8:	1-117 (S1)	99.8
Bromofluo Penzene(B		0.53 50	.00 86	6-115 74	4-121 (S2)	101.1

[VOLATILE (ORGANICS - GC/MS]

[PRELIMINARY SUMROGATE STANDARD REPORT]

SAMPLE DATA FILE - > 18472:: D4

DATE AND TIME OF ANALYSIS = 10/05/96 4:03

SAMPLE NAME = LL1004961B

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

		'				
SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	43.81	50.00	76-114	70-121	(S3)	87.6
Toluene-d8(TOL)	49.58	50.00	88-110	81-117	(S1)	99.2
Bromofluoro- benzene(BFB)	50.72	50.00	86-115	74-121	(S2)	101.4

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked:

090414-14

Date of Analysis:

10/05/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

090496LA

	Spike	Sample	MS	MS,%	Acceptability
Compound	Added	Conc.	Conc.	Percent	limits
	(ug/kg)	(ug/kg)	(ug/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	25.0	< 5.00	22.61	90.4	59-172
Trichloroethene	25.0	< 5.00	26.41	105.6	62-137
Benzene	25.0	< 5.00	28.27	113.1	66-142
Toluene	25.0	< 5.00	26.09	104.4	59-139
Chlorobenzene	25.0	< 5.00	26.74	107.0	60-133

	Spike	MD	MD,%		Acceptabi	•
Compound	Added	Conc.	Percent	%	%	%
	(ug/kg)	(ug/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	25.0	27.03	108.1	17.81	59-172	22
Trichloroethene	25.0	26.35	105.4	0.23	62-137	24
Benzene	25.0	27.12	108.5	4.15	66-142	21
Toluene	25.0	25.98	103.9	0.42	59-139	21
Chlorobenzene	25.0	27.26	109.0	1.93	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Vo_iatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked:

LL1004961B

Date of Analysis:

10/05/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

100496LA

Compound	Spike Added (ug/kg)	Sample Cor _i c. (ug/kg)	LCS Conc. (ug/kg)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	25.0	< 5.00	26.33	105.3	59-172
Trichloroethene	25.0	< 5.00	26.19	104.8	62-137
Benzene	25.0	< 5.00	29.43	117.7	66-142
Toluene	25.0	< 5.00	26.71	106.8	59-139
Chlorobenzene	25.0	< 5.00	26.96	117.2	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not palculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

GTEL Client ID: 966044044

Login Number: M6090414
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100496LA
	Date Analyzed	10/04/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kg⁵
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	• 10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 ∪
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHCD BLANK RESULTS Volatile Organics in Low Soil EFA Method 8260^a

	GTEL File ID	BL100496LA
	Date Analyzed	10/04/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg⁵
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5,0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 ∪
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

Narrative Summary

Login Number:

M6090414

Project ID (number): 6044

oject ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Date of Report: Oct 10, 1996

Footnotes and Comments

Symbol keys (may appear beside values)

- \star Indicates the analyte has been qualified in the narrative section of the report.
- d Indicates the analyte was reported from a dilution other than that indicated on the report page.
- B Organic Analyses Indicates the analyte is found in the associated blank as well as in the sample.
- B Inorganic Analyses Indicates an estimated value below the EPA Contract Required Detection Limit.
- G Indicates an estimated surrogate recovery due to dilutions.
- J Indicates an estimated value below the reporting limit.
- U Indicates the analyte was analyzed for but not detected.
- NA Matrix Spike Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Matrix Spike Duplicate RPD Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Serial Dilution RPD Results Not Applicable, since the Sample Conc. was less than five times the CLP Contract Required Detection Limit.

Inorganics

Method: EPA 6010A

"Test Methods for Evaluating Solic Waste, Physical/Chemical Methods", SW-846, Third Edition including

promulgated Update 2.

Digestion is Method Specific.

M6090414-11:

Page: N1

ANALYTICAL RESULTS Volatile Organics

TEL Client ID: 966044044

Jgin Number: M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Solids

	GTEL Sample	Number	M6090414-18	M6090414-22	M6090414-24	M6090414-25
		ient ID	CLLTEV03S014	CLLTEV03S018	CLLTEV03S020	CLLTEV03S021
		Sampled	09/26/96	09/26/96	09/26/96	09/26/96
		nalyzed	10/02/96	10/02/96	10/02/96	10/02/96
	Dilution	<u>Factor</u>	1.00	1.00	1.00	1.00
	_		Soil In-	Soil In-	50:1 In-	Soil In-
	Reporting		Run 1 00:15	Run / 00:35	Run 1 00:45	Run 1 00:45
Analyte	Limit	Units	Co	ncentration:Dry	Weight Py FOZ/	Pup of 020
Dichlorodifluoromethane	1.2	mg/kg	1.3 U	1.6 U	1.3 U	1.4 U
Chloromethane	1.2	mg/kg	1.3 U	1.6 U	1.3 U	1.4 U
Vinyl chloride	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Bromomethane	1.2	mg/kg	1.3 U	1.6 U	1.3 U	1.4 U
Chloroethane	1.2	mg/kg	1.3 U	1.6 U	1.3 U	1.4 U
Trichlorofluoromethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1.1-Dichloroethene	0.6	mg/kg	0.7 U	0. 8 U	0.6 U	0.7 U
Methylene chloride	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
trans-1,2-Dichloroethene	0.6	mg/kg	.0,7 U	0.8 U	0.6 U	0.7 U
1.1-Dichloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
2.2-Dichloropropane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
cis-1.2-Dichloroethene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Chloroform	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7°U
romochloromethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1,1,1-Trichloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1.1-Dichloropropene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Carbon tetrachloride	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Benzene	0.6	mg/kg	0.1 J	0.3 J	0.6 U	0.7 U
1.2-Dichloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Trichloroethene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1,2-Dichloropropane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Bromodichloromethane	0.6	mg/kg	0.7 U	. 0.8 U	0.6 U	0.7 U
Dibromomethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Tol uen e	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1.1.2-Trichloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
l,2-Dibromoethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Tetrachloroethene	0.6	mg/kg	0.9	5.3	7.1	12.
1.3-Dichloropropane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Dibromochloromethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Chlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Ethylbenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
l.l.1,2-Tetrachloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
(ylenes (total)	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
l.3-Dichlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Styrene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
l,4-Dichlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Bromoform	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1.2-Dichlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Isopropylbenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U

EL Milford, NH

m6090414

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

ວgin Number:

M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Solids

GTEL Sample Number	M6090414-18	M6090414-22	M6090414-24	M6090414-25
Cli⊫ent ID	CLLTEV03S014	CLLTEV03S018	CLLTEV03S020	CLLTEV03S021
Date \$ampled	09/26/96	09/26/96	09/26/96	09/26/96
Date Amalyzed	10/02/96	10/02/96	10/02/96	10/02/96
Dilution Factor	1.00	1.00	1.00	1.00

R	eporting					
Analyte	<u>L</u> imit	Units	Conc	entration:Dry W	eight_	
1,1,2,2-Tetrachloroethane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Bromobenzene	0.6	mg/kg	0.7 บ	0.8 U	0.6 U	0.7 U
1.2.3-Trichloropropane	0.6	mg/kg	0.7 U	0.8 U	0 .6 U	0.7 U
n-Propylbenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
2-Chlorotoluene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1,3,5-Trimethylbenzene	0.6	mg/kg	` 0. 5 J	0.8 U	0.6 U	0.7 U
4-Chlorotoluene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
tert-Butylbenzene	0.6	mg/kg	0.7aU	0.8 U	0.6 U	0.7 U
1,2,4-Trimethylbenzene	0.6	mg/kg	0.2 J	0.8 U	0.6 U	0.7 U
sec-Butylbenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
p-Isopropyltoluene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
n-Butylbenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1,2-Dibromo-3-chloropropane	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
2,4-Trichlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
exachlorobutadiene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Naphthalene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
1.2.3-Trichlorobenzene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
cis-1,3-Dichloropropene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
trans-1.3-Dichloropropene	0.6	mg/kg	0.7 U	0.8 U	0.6 U	0.7 U
Percent Solids		<u> </u>	<u>95</u> .0	77.2	95.5	83.1

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was, analyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action. "J" indicates the presence of a compound that meets the mass spectral identification criteria. but the result is less than the reporting limit. The concentration of analytes flagged with α "J" is estimated.

TEL Milford, NH M6090414

Page: 2

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

Jgin Number:

M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Solids

	GTEL Sample		M6090414-29			••
		ient ID	CLLTEV03S026	••	• •	••
	Date	Sampled	09/26/96		••	
	Date A	nalyzed	10/02/96			••
	Dilution	Factor	1.00			
			Soil In -	_		
	Reporting		Run Z 00:00			
Analyte	Limit	Units	Con	centration:Dry	/ Weight	
Dichlorodifluoromethane	1.2	mg/kg	1.3 U			
Chloromethane	1.2	mg/kg	1.3 U			
Vinyl chloride	0.6	mg/kg	0.7 U	·4 =		
Bromomethane	1.2	mg/kg	1.3 U			
Chloroethane	1.2	mg/kg	1.3 U			
Trichlorofluoromethane	0.6	mg/kg	` 0.7 U			
1.1-Dichloroethene	0.6	mg/kg	0.7 U			
Methylene chloride	0.6	mg/kg	0.7 U			
trans-1,2-Dichloroethene	0.6	mg/kg	0.7 U			
1.1-Dichloroethane	0.6	mg/kg	0.7 U			
2.2-Dichloropropane	0.6	mg/kg	0.7 0	<u> </u>		
cis-1.2-Dichloroethene	0.6	mg/kg	0.7 U			55 (St. 2011)
Chloroform	0.6	mg/kg	0.7 U			
romochloromethane	0.6	mg/kg	0.7 U			
1.1.1-Trichloroethane	0.6	mg/kg	0.7 U			
1,1-Dichloropropene	0.6		0.7 U			
Carbon tetrachloride	0.6	mg/kg	0.7 U			
Benzene	0.6	mg/kg				
		mg/kg	0.7 U			
1.2-Dichloroethane	0.6	mg/kg	0.7 U			
Trichloroethene	0.6	mg/kg	0.7 U			
1,2-Dichloropropane	0.6	mg/kg	0.7 U		-,-	
Bromodichloromethane	0.6	mg/kg	0.7 U			
Dibromomethane	0.6	mg/kg	0.7 U	 .		.=.=
Toluene	0.6	mg/kg	0.7 U			
1.1.2-Trichloroethane	0.6	mg/kg	0.7 U			
1.2-Dibromoethane	0.6	mg/kg	0.7 U			
Tetrachloroethene	0.6	mg/kg	0.6 J	·		
1.3-Dichloropropane	0.6	mg/kg	0.7 U			
Dibromochloromethane	0.6	mg/kg	0.7 U			
Chlorobenzene	0.6	mg/kg	0.7 U			
Ethylbenzene	0.6	mg/kg	0.7 U			
1.1.1.2-Tetrachloroethane	0.6	mg/kg	0.7 U			
Xylenes (total)	0.6	mg/kg	0.7 U			
1.3-Dichlorobenzene	0.6	mg/kg	0.7 U			
Styrene	0.6	mg/kg	0.7 U			
1,4-Dichlorobenzene	0.6	mg/kg	0.7 U			
Bromoform	0.6	mg/kg	0.7 U			
1.2-Dichlorobenzene	0.6	mg/kg	0.7 U			
Isopropylbenzene	0.6	mg/kg	0.7 U			
TEL Milford, NH		gg	<u> </u>			

TEL Milford, NH

M6090414

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

Jgin Number:

M6090414

Project ID (number): 6044 Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Solids

GTEL Sample Number	M6090414-29			
Client ID	CLLTEV03S026			
Date \$ampled	09/26/96		••	
Date Amalyzed	10/02/96	• •		
Dilution Factor	1.00			

	Reporting					
Analyte	Limit	Units	Conc	entration:Dry	Weight	
1.1,2.2-Tetrachloroethane	0.6	mg/kg	0.7 U			
Bromobenzene	0.6	mg/kg	0.7 U.	1 -2-		
1,2,3-Trichloropropane	0.6	mg/kg	0.7 U			
n-Propylbenzene	0.6	mg/kg	0.7 U			÷ ~
2-Chlorotoluene	0.6	mg/kg	0.7 U			
1,3,5-Trimethylbenzene	0.6	mg/kg	0.7 U			
4-Chlorotoluene	0.6	mg/kg	0.7 U			
tert-Butylbenzene	0.6	mg/kg	0.7 U			
1,2,4-Trimethylbenzene	0.6	mg/kg	0.7 U			
sec-Butylbenzene	0.6	mg/kg	0.7 U			~ · ~
p-Isopropyltoluene	0.6	mg/kg	0.7 U			
n-Butylbenzene	0.6	mg/kg	0.7 U		**	r ≒, jeg with st
1,2-Dibromo-3-chloropropane	0.6	mg/kg	0.7 U			
2,4-Trichlorobenzene	0.6	mg/kg	0.7 U		.	
∴exachlorobutadiene	0.6	mg/kg	0.7 U			
Naphthalene	0.6	mg/kg	0.7 U		** ·	
1.2.3-Trichlorobenzene	0.6	mg/kg	0.7 U			
cis-1,3-Dichloropropene	0.6	mg/kg	0.7 U			
trans-1,3-Dichloropropene	0.6	mg/kg	0.7 U			
Percent Solids		*	91.5	, 		•

Notes:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was analyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action. "J" indicates the presence of a commound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with,a "J" is estimated.

TEL Milford, NH 116090414

Page: 4

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

SURROGATE RECOVERY SUMMARY

Method: EPA 8260 Matrix: Soil

	Percent Recovery, %							
GTEL No.	S1 (TOL)	S2 (BFB)	S3 (DCE)	TOTAL OUT				
BS092896	99.5	99.11	101.22	0				
MS090414-24	99.43	100.04	98.25	0_				
MD090414-24	99.21	101.11	99.60	0				
LS092896	98.54	100.20	101.11	0				
M6090414-18	99.38	99.96	100.38	0				
M6090414-24	100.02	97.04	89.97	0				
M6090414-22	99.36	99.14	99.99	0				
M6090414-25	98.21	98.05	100.63	0				
M6090414-29	97.84	99.24	101.66	0				

<u>Surrogates</u> <u>Amount S</u>	Spiked, ug/L Recovery Limits ^a
S2 BFB Bromofluorobenzene	50 81-117 50 7 4 -121 50 70-121

- * Indicates values outside of acceptability limits.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP) guidelines.
- D Diluted out. % Recovery is not calculated when surrogate compound(s) are diluted out.

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GC/MS VOA [MEDIUM LEVEL]

Sample Spiked:

090414-24

Date of Analysis:

10/02/96

Client ID:

Batch QC

Solution ID:

B96MS0292

Batch #:

092896MA

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	5.95	< 0.62	5.99	100.6	59-172
Trichloroethene	5.95	< 2.62	5.13	86.2	62-137
Benzene	5.95	< 0.62	5.58	93.7	66-142
Toluene	5.95	< 2.62	5.69	95.6	59-139
Chlorobenzene	5.95	< 2.62	5.65	94.9	60-133

	MD Spike	MD	MD,%		Acceptability limits, a	
Compound	Added	Conc.	Percent	%	%	%
	(mg/kg)	_ (mg/kց)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	6.02	5.96	98.9	1.70	59-172	22
Trichloroethene	6.02	5.07	84.2	2.37	62-137	24
Benzene	6.02	€,.01	99.8	6.22	66-142	21
Toluene	6.02	5.78	95.9	0.37	59-139	21
Chlorobenzene	6.02	5.61	93.1	1.91	60-133	21

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USIFPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) , PERCENT RECOVERY REPORT

Volatile Organics in Soil GC/MS VOA [MEDIUM LEVEL]

Sample Spiked:

LS092896

Client ID:

Batch QC

Date of Analysis:

10/02/96

Solution ID:

M96MS0292

Batch #:

092896MA

	Spike	Sample	LCS	LCS%	Acceptability
Compound	Added	Conc.	Conc.	Percent	limits
	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	6.25	< 0.62	6.47	103.5	59-172
Trichloroethene	6.25	< 0.62	5.31	85.0	62-137
Benzene	6.25	< 0.62	5.90	94.4	66-142
Toluene	6.25	< 0.62	5.87	93.9	59-139
Chlorobenzene	6.25	< 0.62	5.88	94.1	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

GTEL Client ID: 966044044

Login Number: M6090414
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

	GTEL Blank ID	BS092896A
	Date Analyzed	10/02/96
Analyte	Reporting l _r imit, mg/kg	Concentration, mg/kg
Dichlorodifluoromethane	1.2	1.2 U
Chloromethane	1.2	1.2 U
Vinyl Chloride	0.6	0.6 U
Bromomethane	1.2	1.2 U
Chloroethane	1.2	1.2 U
Trichlorodifluoromethane	0.6	0.6 U
1,1-Dichloroethene	0.6	0.6 U
Methylene Chloride	0.6	0.6 U
trans-1,2-Dichloroethene	0.6	0.6 U
1,1-Dichloroethane	0.6	0.6 U
2,2-Dichloropropane	0.6	0.6 U
cis-1,2-Dichloroethene	0.6	0.6 U
Chloroform	0.6	0.6 U
Bromodichloromethane	0.6	0.6 U
1,1,1-Trichloroethane	0.6	0.6 U
1,1-Dichloropropane	0.6	0.6 U
Carbon Tetrachlonde	0.6	0.6 U
Benzene	0.6	0.6 U
1,2-Dichloroethane	0.6	0.6 U
Trichloroethene	0.6	0.6 U
1,2-Dichloropropane	0.6	0.6 U
Bromochloromethane	0.6	0.6 U
Dibromochloromethane	0.6	0.6 U
cis-1,3-Dichloropropene	0.6	0.6 U
Toluene	0.6	0.6 U
trans-1,3-Dichloropropene	0.6	0.6 U
1,1,2-Trichloroethane	0.6	0.6 U
1,2-Dibromomethane	0.6	0.6 U
Tetrachloroethene	0.6	0.6 U
1,3-Dichloropropane	0.6	0.6 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

GTEL Blank ID BS092896A							
	Date Analyzed	10/02/96					
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg					
Dilbromochloromethane	0.6	0.6 U					
Chlorobenzene	0.6	0.6 U					
Ethylbenzene	0.6	0.6 U					
1,1,2,2-Tetrachloroethane	0.6	0.6 U					
Xylenes (total)	0.6	0.6 U					
1,3-Dichlorobenzene	0.6	0.6 U					
Styrene	0.6	0.6 U					
1,4-Dichlorobenzene	0.6	0.6 U					
Bromoform	0.6	0.6 U					
1,2-Dichlorobenzene	0.6	0.6 U					
Isopropylbenzene	0.6	0.6 U					
1,1,2,2-Tetrachloroethane	0.6	0.6 U					
Bromobenzene	0.6	0.6 U					
1,2,3-Trichloropropane	0.6	0.6 U					
n-Propylbenzene	0.6	0.6 U					
2-Chlorotoluene	0.6	0.6 U					
1,3,5-Trimethylbenzene	0.6	0.6 U					
4-Chlorotoluene	0.6	0.6 U					
tert-Butylbenzene	0.6	0.6 U					
1,2,4-Trimethylbenzene	0.6	0.6 U					
sec-Butylbenzene	0.6	0.6 U					
p-Isopropyltoluene	0.6	0.6 U					
n-Butylbenzene	0.6	0.6 U					
1,2-Dibromo-3-chloropropane	0.6	0.6 U					
1,2,4-Trichlorobenzene	0.6	0.6 U					
Hexachlorobutadiene	0.6	0.6 U					
Naphthalene	0.6	0.6 U					
1,2,3-Trichlorobenzene	0.6	0.6 U					
cis-1,3-Dichloropropene	0.6	0.6 U					
trans-1,3-Dichloropropene	0.6	6U					

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260*

- a Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.
- c Total 1,2-dichloroethene is the sum of the cis- and trans- isomers.

ANALYTICAL RESULTS Volatile Organics

TEL Client ID: 966044044
Login Number: M6090414
Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Low Soil

	GTEL Sample	Number	M6090414-10	M6090414-13	M6090414-15	M6090414-16
	C11	ient ID	CLLTEV05WA010	CLLTEV03S009	CLLTEV03S011	CLLTEV03S012
	Date S	Sampled	09/26/96	09/26/96	09/26/96	09/26/96
	Date Ar	-	10/01/96	10/01/96	10/01/96	10/02/96
	Dilution	Factor	1.00	2.00	5.00	1.00
			Soil Out-	Soil In -	Soil In-	So. 1 In-
	Reporting		Run Z	Kun / 00:00	Kun 1 00:10	Run 1 00:10
Analyte	Limit	_Units	Cc		Weight Dop of 0/2	Dap 0 F 011
Dichlorodifluoromethane	10.	ug/kg	10. ∪	20. U	50. U	10. U
Chloromethane	10.	ug/kg	10. U	20. U	50. U	10. U
Vinyl chloride	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Bromomethane	10.	ug/kg	10. U	20. U	50. U	10. U
Chloroethane	10.	ug/kg	10. U	2 0 . U	50. U	10. U
Trichlorofluoromethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.1-Dichloroethene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Methylene chloride	5.0	ug/kg	5.0 U	10. U	2.2 J	5.0 U
trans-1,2-Dichloroethene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.1-Dichloroethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
2.2-Dichloropropane	5.0	ug/kg	the state of the s	10. U	25. U	5.0 U
cis-1.2-Dichloroethene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Chloroform	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
omochloromethane	5.0	ug/kg	5. 0 U	10. U	25. U	5.0 U
1.1.1-Trichloroethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.1-Dichloropropene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Carbon tetrachloride	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Benzene	1.0	ug/kg	1.0 U	2.0 U	5.0 U	1.0 U
1,2-Dichloroethane	5.0	ug/kg	5.0 U	10, U	25. U	5.0 U
Trichloroe th ene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.2-Dichloropropane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Bromodichloromethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Dibromomethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Toluene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.1.2-Trichloroethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.2-Dibromoethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Tetrachloroethene	5.0	ug/kg	5.0 U	320	120	110
1.3-Dichloropropane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Dibromochloromethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Chlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Ethylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5. 0 U
1,1,1,2-Tetrachloroethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Xylenes (total)	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.3-Dichlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Styrene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.4-Dichlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5. 0 U
Bromoform	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1,2-Dichlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1sopropylbenzene	5.0	ug/kg	5.0 U	. 10. U	25. U	5.0 U

EL Milford, NH

M6090414

ANALYTICAL RESULTS Wolatile Organics

TEL Client ID:

966044044

.ogin Number:

M6090414

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Low Soil

	GTEL Sample	Number	M6090414-10	M6090414-13	M6090414-15	M6090414-16
	C1	ient ID	(CLLTEV05WA010	CLLTEV03S009	CLLTEV03S011	CLLTEV03S012
	Date :	Sampled	09/26/96	09/26/96	09/26/96	09/26/96
	Date A	nalyzed	10/01/96	10/01/96	10/01/96	10/02/96
	Dilution	Factor	1.00	2.00	5.00	1.00
	Reporting					
Analyte	Limit	Units	Co	ncentration:Dry	Weight	
1.1.2.2-Tetrachloroethane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Bromobenzene	5.0	ug/kg	5.0°U	10. U	2 5. U	5.0 U
1.2.3-Trichloropropane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
n-Propylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
2-Chlorotoluene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1,3,5-Trimethylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
4-Chlorotoluene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
tert-Butylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1,2,4-Trimethylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
sec-Butylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
p-Isopropyltoluene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
n-Butylbenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
1.2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
2,4-Trichlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U 🔾
.exachlorobutadiene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Naphthalene	5.0	ug/kg	5. 0 U	10. U	25. U	5.0 U
1,2,3-Trichlorobenzene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
trans-1,3-Dichloropropene	5.0	ug/kg	5.0 U	10. U	25. U	5.0 U
Percent Solids		*	81.7	80.6	84.4	79.7

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methogs", SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicages the presence of a compound that meets the mass spectral identification criteria. but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

M6090414-15:

Sample diluted due to non-target interference.

"EL Milford, NH M6090414

Page: 2

ANALYTICAL RESULTS Volatile Organics

TEL Client ID: 966044044

Login Number: M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site. Old Bethpage, NY

Method: EPA 8260 Matrix: Low Soil

	GTEL Sample	Number	M6090414-20	M6090414-21	M6090414-27	
	C1	ient ID	CLLTEV03S016	CLLTEV05S009	CLLTEV03S024	
	Date:	Sampled	09/26/96	09/26/96	09/26/96	
	Date A	nalyzed	10/02/96	10/02/96	10/02/96	
	<u>Di</u> lution	Factor	2.00	1.00	5.00	
			Soil In-	Soil 04t-	Soil In-	
	Reporting		Run 1 00:25	Kun 1	Run 1 00:55	
Analyte	<u>Limit</u>	Units		ncentration:Dry	Weight	
Dichlorodifluoromethane	10.	ug/kg	20 . U	10. U	50. U	
Chloromethane	10.	ug/kg	20. U	10. U	50. U	
Vinyl chloride	5.0	ug/kg	10. U	5.0 U	25. U	
Bromomethane	10.	ug/kg	20. U	10. U	50. U	
Chloroethane	10.	ug/kg	20U	10. U	50. U	>
Trichlorofluoromethane	5.0	ug/kg	10. U	5.0 U	25. U	
1.1-Dichloroethene	5, 0	ug/kg	10. U	5.0 U	25. U	
Methylene chloride	5.0	ug/kg	10. U	5.0 U	25. U	
trans-1.2-Dichloroethene	5.0	ug/kg	10. U	5.0 U	25. U	
1.1-Dichloroethane	5.0	ug/kg	10. U	5.0 U	25. U	
2.2-Dichloropropane	5.0	ug/kg	10 . U	5.0 U	25. U	
cis-1.2-Dichloroethene	5.0	ug/kg	10. U	5.0 U	25. U	
Chloroform	5.0	ug/kg	10. U	5.0 U	25. U	
omochloromethane	5.0	ug/kg	10. U	5.0 U	25. U	
1.1.1-Trichloroethane	5.0	u g/ kg	10. U	5.0 U	25. U	i
1.1-Dichloropropene	5.0	ug/kg	10. U	5.0 U	25. U	
Carbon tetrachloride	5.0	ug/kg	10. U	5.0 U	25. U	-/-
Benzene	1.0	ug/kg	2.0 U	1.0 U	5.0 U	
1.2-Dichloroethane	5.0	ug/kg	10. U	5.0 U	25. U	
Trichloroethene	5.0	ug/kg	10. U	5.0 U	25. U	
1.2-Dichloropropane	5.0	ug/kg	10. U	5.0 U	25. U	
Bromodichloromethane	5.0	ug/kg	10. U	5.0 U	25. U	
Dibromomethane	5.0	ug/kg	10. U	5.0 U	25. U	<u></u>
Toluene	5.0	ug/kg	10. U	5.0 U	25. U	
1.1.2-Trichloroethane	5.0	ug/kg	10. U	5.0 U	25. U	(a. 4.7)
1.2-Dibromoethane	5.0	ug/kg	10. U	5.0 U	25. U	
Tetrachloroethene	5.0	ug/kg	23.	5.0 U	270	
1.3-Dichloropropane	5.0	ug/kg	10. U	5.0 U	25. U	
Dibromochloromethane	5.0	ug/kg	10. U	5.0 U	25. U	
Chlorobenzene	5.0	ug/kg	10. U	5.0 U	25. U	
Ethylbenzene	5.0	ug/kg	10. U	5.0 U	25. U	
1.1.1.2-Tetrachloroethane	5.0	ug/kg	10. U	5.0 U	25. U	
Xylenes (total)	5.0	ug/kg	10. U	5.0 U	25. U	
1.3-Dichlorobenzene	5.0	ug/kg	10. U	5.0 U	25. U	
Styrene	5.0	ug/kg	10. U	5.0 U	25. U	
1.4-Dichlorobenzene	5.0	ug/kg	10. U	5.0 U	25. U	
Bromoform	5.0	ug/kg	10. U	5.0 U	25. U	
1.2-Dichlorobenzene	5.0	ug/kg	10. U	5.0 U	25. U	
[†] sopropylbenzene	5.0	ug/kg	10. U	5.0 U	25. U	

EL Milford, NH

M6090414

ANALYTICAL RESULTS Wolatile Organics

TEL Client ID:

966044044

Login Number:

M6090414

Project ID (number): 6044 Project ID (name):

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Low Soil

GTEL Sample Number	M6090414-20	M6090414-21	M6090414-27	
Client ID	CLLTEV03S016	CLLTEV05S009	CLLTEV03S024	
Date Sampled	09/26/96	09/26/96	09/26/96	
Date Analyzed	10/02/96	10/02/96	10/02/96	••
Dilution Factor	2.00	1.00	5.00	

	Reporting		
Analyte	Limit	Units	Concentration:Dry Weight
1.1.2.2-Tetrachloroethane	5.0	ug/kg	10. U 5.0 U 25. U
Bromobenzene	5.0	ug/kg	10, Ü 5.0 U 25. U
1,2,3-Trichloropropane	5.0	ug/kg	10. U 5.0 U 25. U
n-Propylbenzene	5.0	ug/kg	10. U 5.0 U 25. U
2-Chlorotoluene	5.0	ug/kg	10. U 5.0 U 25. U
1,3,5-Trimethylbenzene	5.0	ug/kg	10. U 5.0 U 25. U
4-Chlorotoluene	5.0	ug/kg	10. U 5.0 U 25. U
tert-Butylbenzene	5.0	ug/kg	10. U 5.0 U 25. U
1,2,4-Trimethylbenzene	5.0	ug/kg	10. U 5.0 U 25. U
sec-Butylbenzene	5.0	ug/kg	10. U 5.0 U 25. U
p-Isopropyltoluene	5.0	ug/kg	10. U 5.0 U 25. U
n-Butylbenzene	5.0	ug/kg	10. U 25. U 25. U
1,2-Dibromo-3-chloropropane	5.0	ug/kg	10. U 5.0 U 25. U
2,4-Trichlorobenzene	5.0	ug/kg	10.7 U 5.0 U 25. Û 69. 69. 49. D
nexachlorobutadiene	5.0	ug/kg	10. U 5.0 U 25. U
Naphthalene	5.0	ug/kg	10. U 5.0 U 6.5 J
1,2,3-Trichlorobenzene	5.0	ug/kg	10. U 5.0 U 25. U
cis-1,3-Dichloropropene	5.0	ug/kg	10. U 5.0 U 25. U
trans-1,3-Dichloropropene	5.0	ug/kg	10. U 5.0 U 25. U
Percent Solids		*	95.3 88.5 96.0

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methogs", SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicakes the prevence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blink contamination: The data user is warned to take appropriate action.

M6090414-20:

Sample diluted due to non-target interference.

M6090414-27:

Sample diluted due to non-target interference.

(GTEL:MILFORO, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18383::D4

DATE AND TIME OF ANALYSIS = 10/01/96 20:07

SAMPLE NAME = BL100196LA

MISC. INFO = \dots METHUD = CSCUT

INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT.	WATER LIMITS	SOIL LIMITS	*	REC(DUERY
1,2-Dichloro- ethane-d4(DCE)	46.83	50.00	76-114	70-121	(83)		93.7
Toluene-d8(TOL)	48.78	50.00	88-110	81-117	(S1)	"携	97.6
'romofluaro- √oenzene(BFB)	48.39	50.00	86-115	74-121	(S2)		96.8

[GTEL:MILFORO, N.H.]

[UOLATILE ORGANICS - GC/MS]

(PRELIMINARY SURROGATE STANDARD REPORT)

SAMPLE DATA FILE = >18385::D4

DATE AND TIME OF ANALYSIS = 10/01/96 21:25

SAMPLE NAME = MS090414-10

MISC, INFO =

METHOD = CSCUT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	50.83	50.00	76-114	70-121	(S3) 101.7
Toluene-d8(TOL)	47.58	50.0 _[0	88-110	81-117	(S1) 95.2
Sromofluoro- Jenzene(BFB)	50.21	50.0 ₁ 0	86-115	74-121	(S2) 100.4

[GTEL:MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18386::D4

DATE AND TIME OF ANALYSIS = 10/01/96 22:05

SAMPLE NAME - MD090414-10

MISC. INFO = ME:HOD = CSCVT

INSTRUMENT = MSDI

OPERATOR = VANGIE

SUPROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	47.18	50.00	76-114	70-121 (S3) 94.4
Tolucne-d8(TOL)	48.17	50.00	88-110	81-117 (S1) 96.3
Bromofluoro- jenzene(BFB)	50.12	50.00	86-115	74-121 (52) j100.2

(GTEL; MILFORD, N.H. 1

[VOLATILE:ORGANICS - GC/MS]

[PASLIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18393::D4

DATE AND TIME OF ANALYSIS = 10/02/96 2:45

SAMPLE NAME = LL1001964

MISC. INFO = -.....

METHOD = CSCUT 4 11 INSTRUMENT = MSDI

OPERATOR = VANGIE

	ريهوا لا أيومنيوني والمحمدة الجدار العلقاب			
SURROGATE	AS FOUND IN SAMPLE SI	WAS WATER		% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	52.12	50.0) 76-1	14 70-121 (S	3) 104.2
Toluene-d8(TOL) Bromofluoro- enzene(BFB)	50.83 34 80		15	1)

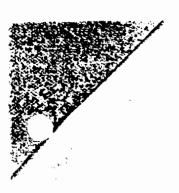
(GTEL: MILFORD, N.H.)

-[UOLATILE ORGANICS - GCZMS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18384:: D4

DATE AND TIME OF ANALYSIS = 10/01/96 20:46


SAMPLE NAME = 090414-10

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

BURROGATE (AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
l,2-Dichloro-	52.70	50.00	76-114	70-121 (S3) 105.4

					Fe)	-	
			Maria Landina de la compansión de la compa		, · · ·		
		****				*	
		Miles Inc. A. C. Co.	and the second second	A CONTRACTOR OF THE CONTRACTOR			
	and the second s	the same of the sa		Y		Acceptance of the second of	
	The state of the s	The second of the second section is the second		₩***		* studies and the	
	The second state of the second	tool 20 reference to the contract	· 6.4)				
	アニチ・マンは タイチョウ イナウレン	74/ 60		- 1	01 11		O /- O *
ŀ	(TOL)	JAMES 199 1990 1990 1990 1990 1990 1990 1990	50.00	88-110	. 1856	17 (S1)	94.0
•		The state of the s				A CONTRACTOR OF THE SECOND SEC	
	「食養性を食べて、食」ではは食養を、 まった マネー・カップというこうしゅうか	of the contract of the contrac	e (Marie Carlos Car	THE STATE OF THE PARTY OF THE STATE OF THE S	production and the second seco		The state of the state of
		A COMPANY OF A STATE O	atti dan tilli. Ta atti ta atti	さきさい ヤコマン おきかいん あわりん ありかばた アス・ビス・ビ	Control of the Contro	Control of the contro	A
	war weeken To the Control of the Con	The second secon			the state of the same of the s		44.45
	A SE COMPANY OF A PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY O				and the State of the Control of the State of	A CONTRACTOR OF THE PARTY OF TH	
	The second of the control of the second of t	· "不是我们的,我们就是一个人的一个人的。"		" - The same of the same of the same of the same of the	1 400 ft - 11 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACCOUNT OF THE PARTY OF THE PAR	
	The state of the s	THE THE RESERVE THE PARTY OF TH	Charles to the same of the first			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* * * * * * * * * * * * * * * * * * * *
		CONTRACTOR OF SECULOR STATES	3.1	A STATE OF THE STA	and the second s	The second secon	11 11 11 11 11 11
	The artists of the state of the	12 12 12 12 12 12 12 12 12 12 12 12 12 1	The common terms of the co	The second secon		All the same	
		TO THE STATE OF TH	and the second s	the first of the f	Tarachara M.	7714 4	
-						1 (62)	~~~
		- AU DA	10 10 25 25 (m. 11 11 11 11 11 11 11 11 11 11 11 11 11	- **** フ・28 しゃねんニオーり	74-17	/1 41 5 7 1 57 5	- YA - 2
	fluoro-	48.24	70.00	86-115		* T T T T	96.5
	44.					21 (S2)	

[GTEL:M;LFORO,N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18387::D4

DATE AND TIME OF ANALYSIS = 10/01/96 22:44

SAMPLE NAME = 090414-13 [2]

MISC. NFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

AS FOUND	WAS	WATER	SOIL	
SURROGATE IN SAMPLE	SPIKED AT	LIMITS	LIMITS %	RECOVERY
1,2-Dichloro- 93.95	50.00	76-114	70-121 (S3)	94.0
≥thane-d4(DCE)				
Foluene-d8(TOL) 93.04	50.00	88-110	81-117 (S1)	93.0
3ro fluoro- 96.10	50.00	86-115	7.74-121 (S2)	96.1

[GTEL:MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18388:: D4

DATE AND TIME OF ANALYSIS = 10/01/96 23:23

SAMPLE NAME = 090414-15 [5]

MISC. INFO =

METHOD = CSCVT
INSTRUMENT = MSDI
OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	. WAS SPIKED AT	WATER LIMITS	SOIL LIMITS %	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	240.55	50.00	76-114	70-121 (S3)	96.2
Toluene-d8(TOL)	228.15	50.00	88-110	81-117 (S1)	91.3
mofluoro- ene(BFB)	241.26	50.00	86-115	74-121 (S2)	96.5

(GTEL: M(LFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURPOGATE STANDARD REPORT]

SAMPLE DATA FILE = >18389::D4

DATE AND TIME OF ANALYSIS = 10/02/96 0:02

SAMPLE NAME = 090414-16

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND WAS WATER SOIL 1 RECOVERY	
1,2-Dichloro- sthane-d4(DCE)	47.82 %0.00 76-114 70-121 (S3) 95.6	
Toluene-d8(TOL)	46.37 \$0.00 88-110 81-117 (S1) 92.7	
Bry fluoro-	47.62 \$0.00 \(\text{86-115} \) \(\text{74-121} \) \(\text{352} \) \(\text{75-121} \)	を作りる

(GTEL:MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18390::D4

DATE AND TIME OF ANALYSIS = 10/02/96 0:41

SAMPLE NAME = 090414-20 [2]

MISC. INFO = ...

INSTRUMENT # MSDI

OPERATOR = VANGIE

URROGATE	AS FOUND IN SAMPLE		WATER LIMITS	SOIL LIMITS	% RECOVERY
,2-Dichloro-	104.74	50.00	76-114	70- 1 21 (S3) 104.7
thane-d4(DCE)			Property and the staff		
oluene-d8(TOL)	94.06	50.00	88-110	81-117 (S1) 94.1
romofluoro- e (BFB)	95.89	50.00	786-115	3 74-121 (52)

[GTEL: MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18391::D4

DATE AND TIME OF ANALYSIS = 10/02/96 1:21

SAMPLE NAME = 090414-21

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	- WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	47.82	.¥50.00	76-114	70-121 (9	95.6
Toluene-d8(TOL)	48.06	- 50.00	88-110	81-117 (S	96.1
Br(fluoro- benzene(BFB)	48.90	**** ** 0.00	₹ 86-115	74-121 (5	2),257:97.8

CHE STATE OF THE STATE OF

[GTEL:MILFORD, N.H.]

[VOLATILE DRGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18392::D4

DATE AND TIME OF ANALYSIS = 10/02/96 2:03

SAMPLE NAME = 090414-27 [5]

M1SC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS %	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	236.13	50.00	76-114	70-121 (S3)	94.5
Toluene-d8(TOL)	250.33	50.00	88-110	81-117 (S1)	100.1
Bromofluoro- ene(BFB)	242.58	50.00	86-115	74-121 (S2)	97.0

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked:

090414-10

Client ID:

Batch QC

Date of Analysis: 10

10/01/96

Solution ID:

M96IV0136

Batch #:

100196LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	20.64	103.2	59-172
Trichloroethene	20.0	< 5.00	20.37	101.9	62-137
Benzene	20.0	< 5.00	21.10	105.5	66-142
Toluene	20.0	< 5.00	20.73	103.7	59-139
Chlorobenzene	20.0	< 5.00	21.00	105.0	60-133

	Spike	MD	MD,%		Acceptabil	417
Compound	Added	Conc.	Percent	%	%	%
	(ug/kg)	(ug/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	20.0	20.78	103.9	0.68	59-172	22
Trichloroethene	20.0	20.34	101.7	0.15	62-137	24
Benzene	20.0	21.85	109.3	3.49	66-142	21
Toluene	20.0	20.94	104.7	1.01	59-139	21
Chlorobenzene	20.0	20.87	104.4	0.62	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nqnconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked:

LL100196A

Date of Analysis:

10/02/96

Client ID:

Batch QC

Solution ID:

M96IV0136

Batch #:

100196LA

	Spike	Sample	LCS	LCS,%	Acceptability
Compound	Added	Conc.	Conc.	Percent	limits
	(ug/kg)	(ug/kg)	(ug/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	20.0	< 5.00	25.88	129.4	59-172
Trichloroethene	20.0	< 5.00	20.07	100.4	62-137
Benzene	20.0	< 5.00	24.15	120.8	66-142
Toluene	20.0	< 5.00	21.60	108.0	59-139
Chlorobenzene	20.0	< 5.00	21.58	107.9	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Low Soil EF/A Method 8260°

	GTEL File ID	BL100196LA
	Date Analyzed	10/01/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-lsopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260°

	GTEL File ID	BL100196LA
	Date Analyzed	10/01/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kgb
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 ∪
Bromoethane	10	10 U
Chloroethane	. 10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	5.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Low Soil EPIA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

		ent ID Sampled	M6090429-18 CLLTEV03S042 09/26/96 10/09/96	M6090429-21 CLLTEV03S045 09/26/96 10/08/96	M6090429-22 CLLTEV03S046 09/26/96 10/09/96	M6090429-25 CLLTEV03S050 09/26/96 10/09/96
	Dilution		1.00	1.00	1.00	1.00
	Diracion	1 actor	50il In-	50.11n-	50,1 10-	Soil In-
	Reporting		Rua 3 00:05	Kun 3 00:20	Kun 3 00:20	Run 3 00:35
Analyte	Limit	Units	Co	<i>ملان ہو ہوں ال</i> ncentration:Dry W	Weight of ofs	
Dichlorodifluoromethane	10.	ug/kg	10. U	10. U	10. U	10. U
Chloromethane	10.	ug/kg	10. U	10 . U	10. U	10. U
Vinyl chloride	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Bromomethane	10.	ug/kg	10. U	10. U	10. U	10. U
Chloroethane	10.	ug/kg	10. U	10. U	10. U	10. U
Trichlorofluoromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Methylene chloride	5. 0	ug/kg	2.5 J	5.0 U.	5.0 U	5.0 U
trans-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
2,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Chloroform	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
nochloromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 บ
✓ 1.1-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,1-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Carbon tetrachloride	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Benzene	1.0	ug/kg	1.0 U	1.0 U	1.0 U	1.0 U
1.2-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Trichloroethene	5.0	ug/kg	5. 0 U	5.0 U	5.0 U	5.0 U
1,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Bromodichloromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Dibromomethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Toluene	5.0	ug/kg	5. 0 U	5.0 U	5.0 U	5.0 ປ
1,1,2-Trichloroethane	5.0	ug/kg ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromoethane	5.0	ug/kg ug/kg	5. 0 U	5.0 U	5.0 U	5.0 U
Tetrachloroethene	5.0 5.0	ug/kg	100	2.7 J	99.	16.
1,3-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Chlorobenzene	5.0	ug/kg	5. 0 U	5.0 U	5.0 U	5.0 U
Ethylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1,2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Xylenes (total)	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,3-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Styrene	5.0°	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1.4-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Bromoform	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
1.2-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
*sopropylbenzene	5.0	ug/kg ug/kg	5.0 U	Annual Company of the	5.0 U	5.0 U

L Milford, NH

າ..ບປ90429

ANALYTICAL RESULTS Volatile Organics

CTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

	Date :	iemt ID Sampled nalyzed	M6090429-18 \$LLTEV03S042 09/26/96 10/09/96 1.00	M6090429-21 CLLTEV03S045 09/26/96 10/08/96 1.00	M6090429-22 CLLTEV03S046 09/26/96 10/09/96 1.00	M6090429-25 CLLTEV03S050 09/26/96 10/09/96 1.00
	Reporting					
Analyte	<u>L</u> imit	Units	Cc	oncentration:Dry	Weight	
1.1,2,2-Tetrachloroethane	5.0	wg/kg	5.0 U	5.0 U	5.0 U	5.0 U
Bromobenzene	5.0	⊌g/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2,3-Trichloropropane	5.0	wg/kg	5.0 U	5.0 U	5.0 U	5.0 U
n-Propylbenzene	5.0	₩g/kg	5.0 U	5.0 U	5,0 U	5,0 U
2-Chlorotoluene	5.0	wg/kg	5.0 U	5.0 U	5.0 U	5.0 U
1.3.5-Trimethylbenzene	5.0	ųg/kg	15.0 U	5.0 U	5.0 U	5.0 U
4-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
tert-Butylbenzene	5.0	wg/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2,4-Trimethylbenzene	5.0	₩g/kg	5.0 U	5.0 U	5.0 U	5.0 U
sec-Butylbenzene	5,0	₩g/kg	5.0 U	5.0 U	5.0 U	5.0 U
p-Isopropyltoluene	5.0	⊌g/kg	5.0 U	5.0 U	5.0 U	5.0 U
n-Butylbenzene	5.0	₩g/kg	5.0 U	5.0 U	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	5.0	₩g/kg	5.0 U	5.0 U	5.0 U	5.0 U
2.4-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
<pre>xachlorobutadiene</pre>	5.0	₩g/kg	5.0 U	5.0 U	5.0 U	5.0 U 🥆
Naphthalene	5.0	wg/kg	5.0 U	5.0 U	5,0 U	5.0 U
1,2,3-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5,0 U	5.0 ป	5.0 U
trans-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	5.0 U
Percent Solids		*	77.7	95.7	80.0	94.8

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination; The data user is warned to take appropriate action.

L Milford, NH ...J90429

Page: 2

(GTEL:MILFORD, N.H.)

(VOLATILE ORGANICS - GC/MS)

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9A41::D2

DATE AND TIME OF ANALYSIS = 10/08/96 23:10

SAMPLE NAME = BL100896JB

MISC. INFO =

METHOD = M8260 INSTRUMENT = MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	· %	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	47.49	50.00	76-114	70-121	(53)	95.0
Toluene-d8(TOL)	50.34	5ù. 0 ù	88-110	81-117	(\$1)	100.7
Bromofluoro- enzene(BFB)	46.68	50.0ú	86-115	74-121	(S2)	93.4

(GTEL:MI_FORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE QATA FILE = >J9046::D2

DATE AND TIME OF ANALYSIS = 10/09/96 2:25 ...

SAMPLE NAME = 090429-18

misc. INFO =

METHOD = M8260 INSTRUMENT = MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	×	RECOVERY
:,2-Dichloro- :thane-d4(DCE)	47.36	50.00	. 76-114	70-121	(83)	94.7
foluene-d8(TOL)	50.50	50.00	88-110	81-117	(S1)	101.0
Bromofluoro- Jerrene(BFB)	45.51	50.00	86-115	74-121	(S2)	91.0

[GTEL:MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9042::D2

DATE AND TIME OF ANALYSIS = 10/08/96 20:49

SAMPLE NAME + 090429-21

MISC. INFO -

METHOD = M8260

INSTRUMENT = MSDJ OPERATOR = VANGIE SUPER GRP

-URROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
t,2-Dichloro- ethane-d4(DCE)	49.14	50.00	. 76-114	70-121	(S3) 98.3
Toluene-d8(TOL)	50.98	50.00	88-110	81-117	(S1) 102.0
Bramofluoro- um ene(BFB)	45.97	50.00	36-115	74-121	(S2) 91.9

IGTEL: MILFORD, N.H. I

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9047::02

DATE AND TIME OF ANALYSIS = 10/09/96 3:05

SAMPLE MAME = 090429-22

MISC. NPG = METHOD = M8260

INSTRUMENT = MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT		WATER LIMITS	SÕIL LIMITS	%	RECOVERY
i,2-Dichloro- ≀thane-d4(DCE)	46.85	50.00	٠	26-114	20-121	(S3)	93.7
(oluene-d8(TDL)	50.86	50.00		88-110	81-117	(S1)	101.7
Bromofluoro- Jermene(BFB)	46.36	53.00		86-115	74-121	(S2)	92.7

[GTEL:MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9048::D2

DATE AND TIME OF ANALYSIS : 10/09/96 3:44

SAMPLE NAME = 090429-25

MISC. 1NFO = METHOD - M8260

INSTRUMENT - MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	 WATER LIMITS	SOIL LIMITS	%	RECOVERY
t,2-Dichloro- ∋thane-d4(DCE)	49.08	50.00	76-114	70-121	(S3)	98.2
foluene-d8(TÜL)	50.78	50.00	88-110	81-117	(S1)	1Ú1.6
Bromofluoro- per ene(BFB)	46.58	50.00	 86-115	74-121	(S2)	93.2

(GTEL:MILFORD, N.H.)

[VOLATILE ORGANICS - SCIMS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9043::D2

DATE AND TIME OF ANALYSIS = 10/09/96 0:28

SAMPLE NAME = ms 09 0429-21

MISC. INFO =

METHOD = M8260 INSTRUMENT = MSDJ

OFFRATOR = VANGIE SUPER GRP

	AS FI	DUND WAS	HATER	R SOIL		
SURROGATE	IN S	AMPLE SPIKED		TS LIMITS	5 % -	RECOVERY
1,2-Dichl ethane-d4		.29 50.0		14 70-12:	1 (53)	100.6
Toluene-c	J8(TOL) 50	.91 50.0	88-1	10 81-11	7 (S1)	101.8
Bromofluc benzene(B		.73 50.0	0 86-1	15 74-12	1 (S2)	97.5

[GTEL:MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9044::D2

DATE AND TIME OF ANALYSIS = 10/09/96 1:07

SAMPLE NAME = md 090429-21

MISC. INFO =

METHOD = M8260 INSTRUMENT = MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS		RECOVERY
1,2-Dichloro- ethane-d4(DCE)	50.81	50.00	76-114	70-121		101.6
Toluene-d8(TOL)	50.56	50.00	88-110	81-117	(\$1)	101.1
Bromofluoro- henzene(BFB)	48.90	50.00	86-115	74-121	(S2)	97.8

[GTEL:MILFORD, N.H.]

[UOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >J9045::D2

DATE AND TIME OF ANALYSIS = 10/09/96 1:46

SAMPLE NAME = 11100896 jb

MISC. INFO =

METHOD = M8260 INSTRUMENT = MSDJ

OPERATOR = VANGIE SUPER GRP

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	49.47	50.00	76-114	70-121	(53)	98.9
Toluene-d8(TOL)	51.73	50.00	88-110	81-117	(S1)	103.5
Bromofluoro- henzene(BFB)	48.55	50.00	86-115	74-121	(\$2)	97.1

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked: Date of Analysis: 090429-21

10/09/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

100896JA

	Spike	Sample	MS	MS,%	Acceptability
Compound	Added	Conc.	` Conc.	Percent	limits
; ,	(ug/kg)	(ug/kg)	(ug/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	20.0	< 5.00	19.04	95.2	59-172
Trichloroethene	20.0	< 5.00	19.39	97.0	62-137
Benzene	20.0	< 5.00	19.23	96.2	66-142
Toluene	20.0	< 5.00	19.35	96.8	59-139
Chlorobenzene	20.0	< 5.00	19.42	97.1	60-133

	Spike	MD	MD,%		Acceptability limits, a	
Compound	Added	Conc.	Percent	%	%	%
	(ug/kg)	(ug/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	20.0	19.75	98.8	3.66	59-172	22
Trichloroethene	20.0	19.84	99.2	2.29	62-137	24
Benzene	20.0	19.34	96.7	0.57	66-142	21
Toluene	20.0	19.38	96.9	0.15	59-139	21
Chlorobenzene	20.0	18.98	94.9	2.29	60-133	21

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil GO/MS VOA [LOW LEVEL]

Sample Spiked:

LL100896JB

Date of Analysis:

10/09/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

100896JA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	LCS Conc. (ug/kg)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	19.41	97.1	59-172
Trichloroethene	20.0	< 5.00	18.92	94.6	62-137
Benzene	20.0	< 5.00	19.56	97.8	66-142
Toluene	20.0	<5.00	19.60	98.0	59-139
Chlorobenzene	20.0	< 5.00	19.16	95.8	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	BL100896JB	
	Date Analyzed	10/08/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kgb
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	. 10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 ∪
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5 <u>.</u> 0 U
Tetrachloroethene	5.0	5 <u>.</u> 0 U
1,3-Dichloropropane	5.0	5.0 U

GTEL Client ID: 966044044

Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHO') BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100896JB
	Date Analyzed	10/08/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kgb
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U_
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

`TEL Client ID:

966044044

ogin Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Low Soil

	Date Date A	mjent ID Sampled ralyzed	M6090429-09 CLLTEV03S032 09/26/96 10/04/96	M6090429-11 CLLTEV03S034 09/26/96 10/04/96		
	Dilution	_ <u>Factor</u>	50,/In-	501/ 50		•-
Analyte	Reporting Limit	Units	Run Z 00:30 Coi	Run 2 00:40 Run of 036 ncentration:Dry Wei	aht.	
Dichlorodifluoromethane	10.	ug/kg	10. U	10. U		
Chloromethane	10.	ug/kg	10. U	10. U		
Vinyl chloride	5.0	ug/kg	5.0 U	5.0 U		
Bromomethane	10.	ug/kg	10. U	10. U		
Chloroethane	10.	ug/kg	10. U	10. U		
Trichlorofluoromethane	5.0	ug/kg	` 5.0 U	5.0 U		
1.1-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		
Methylene chloride	5.0	ug/kg	5.0 U	5.0 U		
trans-1.2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		
1.1-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U		
2.2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		
cis-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		
Chloroform	5.0	ug/kg	5.0 U	5.0 U		
omochloromethane	5.0	ug/kg	5.0 U	5.0 U		
1.1.1-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U		•
1,1-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U		
Carbon tetrachloride	5.0	ug/kg	5.0 U	5.0 U		
Benzene	1.0	ug/kg	1.0 U	1.0 U		
1.2-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U		
Trichloroethene	5.0	ug/kg	5.0 U	5.0 U		
1.2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		
Bromodichloromethane	5.0	ug/kg	5.0 U	5.0 U		
Dibromomethane	5.0	ug/kg	5. 0 U	5.0 U		
Toluene	5.0	ug/kg	5.0 U	5.0 U		
1.1.2-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U		
1,2-Dibromoethane	5.0	ug/kg	5.0 U	5.0 U		
Tetrachloroethene	5.0	ug/kg	1.2 J	12.		
1.3-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		••
Dibromochloromethane	5.0	ug/kg	5.0 U	5.0 U		
Chlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
Ethylbenzene	5.0	ug/kg	5.0 U	5.0 U		
1.1.1.2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U		
Xylenes (total)	5.0	ug/kg	5.0 U	5.0 U		
1,3-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
Styrene	5.0	ug/kg	5.0 U	5.0 U		
1.4-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
Bromoform	5.0	ug/kg	5.0 U	5.0 U		
1.2-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
Isopropylbenzene	5.0	ug/kg	5.0 U	5.0 U		
FI Milford NH		<u>~3. NJ</u>		<u> </u>		

EL Milford, NH

M6090429

Page: 1

ANALYTICAL RESULTS Volatile Organics

TEL Client ID: 966044044 __ogin Number: M6090429

Project ID (number): 6044 Method: EPA 8260
Project ID (name): Claremont Polychemical Superfund Site Matrix: Low Soil

GTEL Sample Number	M6090429-09	M6090429-11	
Client ID	CLLTEV03S032	CLLTEV03S034	
Date Sampled	09/26/96	09/26/96	
Date Analyzed	10/04/96	10/04/96	 ••
Dilution Factor	1.00_	1.00	

	Reporting					
Analyte	Limit	_Units	Con	centration:Dry We	eight	
1.1.2.2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U		
Bromobenzene	5.0	ug/kg	5.0 U	5.0 U		
1.2.3-Trichloropropane	5.0	ug/kg	5.0 U	5.0 U		
n-Propylbenzene	5.0	ug/kg	5.0 U	5.0 U		ಕ್ಷಾ :
2-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U		
1,3,5-Trimethylbenzene	5.0	ug/kg	5.0 U	5.0 U		<u>-</u>
4-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U		
tert-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U		- + , ;;
1,2,4-Trimethylbenzene	5.0	ug/kg	5.0 U	5.0 U		
sec-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U		
p-Isopropyltoluene	5.0	ug/kg	5.0 U	5.0 U		
n-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U		
1,2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U	5.0 U		
2,4-Trichlorobenzene	5.0	ug/kg.	5.0 U	5.0 U		~-
nexachlorobutadiene	5.0	ug/kg	5.0 U	5.0 U		
Naphthalene	5.0	ug/kg	5.0 U	5.0 U		 1
1.2.3-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U		~- '
trans-1.3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U		
Percent Solids	<u>.</u> -	%	95.1	95.4		

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

EL Milford, NH M6090429

Page: 2

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18457::D4

DATE AND TIME OF ANALYSIS = 10/04/96 17:56

SAMPLE NAME - BL100496A

MISC. INFO =

METHOD - CSCUT

INSTRUMENT = MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	×	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	46.44	50.00	76-114	70-121	(S3)	92.9
Toluene-d8(TOL)	48.90	50.0 (0	88-110	81-117	(S1)	97.8
Bromofluoro- renzene(BFB)	47.79	50.0(0	86-115	74-121	(S2)	95.6

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE - > 18463::D4

DATE AND TIME OF ANALYSIS = 10/04/96 22:04

SAMPLE NAME = 090429-09

MISC. INFO = METHOD = CSCVT

INSTRUMENT = MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	40.29	50.00	76-114	70-121	
Toluene-d8(TOL)	48.85	50.00	88-110	81-117	(S1) 97.7
Bromofluoro- br ne(BFB)	48.46	50.00	86-115	74-121	(S2) 96.9

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18464::D4

DATE AND TIME OF ANALYSIS = 10/04/96 22:45

SAMPLE NAME = 090429-11

MISC. NFO = METHOD = CSCUT

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED A	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	41.45	\$0.00	76-114	70-121	(53)	82.9
Toluene-d8(TOL)	50.25	50.00	88-110	81-117	(S1)	100.5
Bromofluoro- be ne(BFB)	47.46	\$0.00	86-115	74-121	(\$2)	94.9

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18470::D4

DATE AND TIME OF ANALYSIS = 10/05/96 2:48

SAMPLE NAME = MS090414-14

INSTRUMENT = MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	44.54	50.00	76-114	70-121	(S3)	89.1
Toluene-d8(TOL)	49.89	50.00	88-110	81-117	(S1)	99.8
Bromofluoro- henzene(BFB)	51.19	50.00	86-115	74-121	(S2)	102.4

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18471:: D4

DATE AND TIME OF ANALYSIS = 10/05/96 3:26

SAMPLE NAME = MD090414-14

MISC, INFO =

METHOD = CSCUT

INSTRUMENT - MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	44.39	50.00	76-114	70-121	(S3)	88.8
 Toluene-d8(TOL)	49.91	50.0 _i 0	88-110	81-117	(S1)	99.8
Bromofluoro- Senzene(BFB)	50.53	50.0 ₀ 0	86-115	74-121	(S2)	101.1

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18472::D4

DATE AND TIME OF ANALYSIS = 10/05/96 4:03

SAMPLE NAME = LL100496 IB

MISC. INFO = METHOD = CSCUT

INSTRUMENT = MSDI

-	, ·						
	Bromofluoro- benzene(BFB)	50.72	50.00	86-115	74-121	(S2)	101.4
	Toluene-d8(TOL)	49.58	50.00	88-110	81-117	(S1)	99.2
	1,2-Dichloro- ethane-d4(DCE)	43.81	50.00 ·	76-114	70-121	(S3)	87.6
	SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Vola;ile Organics in Soil GC/MS VOA LOW LEVEL]

Sample Spiked:

090414-14

Date of Analysis:

10/05/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

090496LA

Compound	Spike Added (ug/kg)	Sample Conc (ug/kg)	MS Conc. (ug/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	25.0	< 5.00	22.61	90.4	59-172
Trichloroethene	25.0	< 5.00	26.41	105.6	62-137
Benzene	25.0	< 5.00	28.27	113.1	66-142
Toluene	25.0	< 5.00	26.09	104.4	59-139
Chlorobenzene	25.0	< 5.00	26.74	107.0	60-133

	Spike	MD	MD,%		Acceptabil limits, a	ity
Compound	Added	Conc.	Percent	%	%	%
	(ug/kg)	(ug/kឰ)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	25.0	2*7.03	108.1	17.81	59-172	22
Trichloroethene	25.0	26.35	105.4	0.23	62-137	24
Benzene	25.0	27.12	108.5	4.15	66-142	21
Toluene	25.0	25.98	103.9	0.42	59-139	21
Chlorobenzene	25.0	27.26	109.0	1.93	60-133	21

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when; sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Volatile Organics in Soil GC/MS VOA [LOW LEVEL]

Sample Spiked:

LL100496IB

Date of Analysis:

10/05/96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

100496LA

Compound	Spike Added	Sample Conc.	LCS Conc.	LCS,% Percent	Acceptability limits
	(ug/kg)	(ug/kg)	(ug/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	25.0	< 5.00	26.33	105.3	59-172
Trichloroethene	25.0	< 5.00	26.19	104.8	62-137
Benzene	25.0	< 5.00	29.43	117.7	66-142
Toluene	25.0	< 5.00	26.71	106.8	59-139
Chlorobenzene	25.0	< 5.00	26.96	117.2	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260*

	GTEL File ID	BL100496A
	Date Analyzed	10/04/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kg ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	10 U
Trichlorofluoromethane	5.0	5.0 ∪
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
<u>Trichloroethene</u>	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U_
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100496A
	Date Analyzed	10/04/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg⁵
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5,0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	_5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EFA Method 8260°

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

966044044 GTEL Client ID: M6090429 jin Number:

oject ID (number): 6044 Method: EPA 8260 Matrix: Low Soil

Project ID (name): Claremont Polychemical Superfund Site

	Date :	ient ID Sampled	M6090429-10 CLLTEV03S033 09/26/96	M6090429-12 CLLTEV03S036 09/26/96		
		nalyzed	10/08/96	10/08/96		••
	Dilution	<u>Factor</u>	1.00	1.00	<u></u>	
			50.1 In-	Soil IA - Run Z 00:40		
	Reporting		Rug Z 00:35	ncentration:Dry We		
Analyte	Limit	Units			ight	
Dichlorodifluoromethane	10.	ug/kg	10, U	10, U		
Chloromethane	10.	ug/kg	10. U	10. U		
Vinyl chloride	5.0	ug/kg	5.0 U	5.0 U	+-	
Bromomethane	10.	ug/kg	10. U	10. U		
Chloroethane	10.	ug/kg	10. U	10, U		
Trichlorofluoromethane	5.0	ug/kg	`5.0 U	5.0 U	= = xxxxx/rorduxxxx -us -usrxxxxxxxxxx	• •
1.1-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		***
Methylene chloride	5.0	ug/kg	5.0 U	5.0 U		
trans-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		
1,1-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U		
2,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		
cis-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U		•-
Chloroform	5.0	ug/kg	5.0 U	5.0 U		
romochloromethane	5.0	ug/kg	5.0 U	5.0 U		
1-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U		
1.1-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U		
Carbon tetrachloride	5.0	ug/kg	5.0 U	5.0 ป		
Benzene	1.0	ug/kg	1.0 U	1.0 U		
1,2-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U		
Trichloroethene	5.0	ug/kg	5.0 U	5.0 U	= -	
1,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		
Bromodichloromethane	5.0	ug/kg	5.0 Ū	5.0 U		
Dibromomethane	5.0	ug/kg	5.0 U	5.0 U		
Toluene	5.0	ug/kg	5.0 U	5.0 U		
1.1.2-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U	<u>_</u>	<u>_</u> _
1,2-Dibromoethane	5.0	ug/kg	5.0 U	5.0 U		
Tetrachloroethene	5.0	ug/kg	6.7	11.		22
1,3-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		
Dibromoch]oromethane	5.0	ug/kg	5.0 U	5.0 U	7.4.44 <u>22.6866</u>	
Chlorobenzene	5.0	ug/kg	5.0 U	5.0 U		
Ethylbenzene	5.0	ug/kg	5.0 U	5.0 U		
1,1,1,2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U	# 1048015100494.1 &	**************************************
Xylenes (total)	5.0	ug/kg	5.0 U	5.0 U	den Bualtan (j. 186	ethiku emellusti hvelle
1.3-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	49,494, 90,7158 (63) h (4
	5.0	ug/kg ug/kg	5.0 U	5.0 U		
Styrene	5.0 5.0			The same areas at the same are		
1,4-Dichlorobenzene	5.0 `5.0``	ug/kg	5.0 U	5.0 U	4 5 4 5 6 1 0 6 1 2 6 1	. 3. 00/2001 Uzra ki 1279 -
Bromoform		ug/kg	5.0 U	5.0 U	(1) (7* 1) 18 0	gereger wert eggget van Marika.
1.2-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U		9. 4.800, 20.40, 4. 20.4
Isopropylbenzene		ug/kg	5. <u>0 U</u>	5.0 U		A STANGARD DESCRIPTION OF THE PROPERTY OF THE

~L Milford, NH

90429ر

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

GTEL Sample Number	M6090429-10	M6090429-12	•-	••
Client ID	CLLTEV03S033	CLLTEV03S036	••	••
Date Sampled	09/26/96	09/26/96	• •	
Date Analyzed	10/08/96	10/08/96	••	••
<u>Dilution</u> Factor	1.00	1.00_		

	Reporting			
Analyte	Limit	Units	Cond	centration:Dry Weight
1,1,2,2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U
Bromobenzene	5.0	ug/kg	5.0 U	5.0 U
1.2.3-Trichloropropane	5.0	ug/k g	5.0 U	5.0 U
n-Propylbenzene	5.0	ug/kg	5.0 U	5.0 U
2-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U
1.3.5-Trimethylbenzene	5.0	ug/kg	· 5.0 U	5.0 U
4-Chlorotoluene	5.0	wg/kg	5.0 U	5.0 U
tert-Butylbenzene	5.0	wg/kg	5.0 U	5,0 U
1,2,4-Trimethylbenzene	5.0	wg/kg	5.0 U	5.0 U
sec-Butylbenzene	5.0	wg/kg	5.0 U	5.0 U
p-Isopropyltoluene	5.0	ug/kg	5.0 U	5.0 U
n-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U
1,2-Dibromo-3-chloropropane	5.0	₩g/kg	5.0 U	5.0 U
2.4-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U
achlorobutadiene	5.0	ug/kg	5.0 U	5.0 U 🚤
Naphthalene	5.0	ιg/kg	5.0 U	5.0 U
1,2,3-Trichlorobenzene	5.0	ւց/kg	5.0 U	5.0 U
cis-1.3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U
trans-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U
Percent Solids	Ž.	ŽŽ	94.0	95.3

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods". SW-846, Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analyses flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

L Milford, NH ...J90429

Page: 2

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18531::D6

DATE AND TIME OF ANALYSIS = 10/08/96 19:41

SAMPLE NAME - BL100896A

MISC. INFO =

METHOD - CSCVT

INSTRUMENT = MSDI

URROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
,2-Dichloro-	42.59	50.00	76-114	70-121	(S3)	85.2
thane-d4(DCE)						
oluene-d8(TOL)	53.63	50.00	88-110	81-117	(S1)	107.3
r fluoro-	44.17	50.00	86-115	74-121	(52)	88.3
e ne (BFB)	, , , , , , , , , , , , , , , , , , ,					

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18533::D6

DATE AND TIME OF ANALYSIS = 10/08/96 21:00

SAMPLE NAME = 090429-10 R1

Misc. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
l,2-Dichloro- ∍thane-d4(DCE)	46.77	53.00	76-114	70-121	(S3)	93.5
Toluene-d8(TOL)	48.64	50.00	88-110	81-117	(S1)	97.3
Bromofluoro- per ine(BFB)	48.75	5 0 .00	86-115	74-121	(S2)	97.5

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18532::D6

DATE AND TIME OF ANALYSIS = 10/08/96 20:20

SAMPLE NAME = 090429-12 R1

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	49.86	50.00	76-114	70-121	(53) 99.7
Toluene-d8(TOL)	48.50	50.00	88-110	81-117	(S1) 97.0
Bromofluoro- b ne(BFB)	42.11	50.00	86-115	74-121	(S2) 84.2

[UQLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18544::D6

DATE AND TIME OF ANALYSIS = 10/09/96 4:14

SAMPLE NAME = MS100016-04

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	41.73	50.00	76-114	70-121	(53)	83.5
Toluene-d8(TOL)	46.16	50.00	88-110	81-117	(S1)	92.3
Bromofluoro- benzene(BFB)	51.27	50.00	86-115	74-121	(52)	102.5

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18545::D6

DATE AND TIME OF ANALYSIS = 10/09/96 4:52

SAMPLE NAME = MD100016-04

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	48.28	50.00	76-114	70-121	(S3)	96.6
Toluene-d8(TOL)	47.27	50.00	88-110	81-117	(S1)	94.5
₹3romofluoro- benzene(BFB)	52.38	50.00	86-115	74-121	(S2)	104.8

[VQLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18546::D6

DATE AND TIME OF ANALYSIS = 10/09/96 5:30

SAMPLE NAME = LL100896A

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OFFERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKEC AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	46.56	50.0 ₁ 0	76-114	70-121 (S	3) 93.1
Toluene-d8(TOL)	47.09	50.0 ₁ 0	88-110	81-117 (S	1) 94.2
Bromofluoro- benzene(BFB)	52.44	50.00	86-115	74-121 (S	2) 104.9

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [LOW LEVEL]

Sample Spiked:

100016-04

Date of Analysis:

10-09-96

Client ID:

Batch QC

Solution ID:

B96MS0136

Batch #:

100896LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	<5.00	18.75	93.8	59-172
Trichloroethene	20.0	< 5.00	21.10	105.5	62-137
Benzene	20.0	< 5.00	19.90	99.5	66-142
Toluene	20.0	< 5.00	21.26	106.3	59-139
Chlorobenzene	20.0	< 5.00	23.56	117.8	60-133

	Spike	MD	MD,%		Acceptabil limits, a	ity
Compound	Added (ug/kg)	Conc. (ug/kg)	Percent Recovery	% RPD	% Recovery	% RPD
1,1-Dichloroethene	20.0	17.98	89.9	4.19	59-172	22
Trichloroethene	20.0	21.50	107.5	1.88	62-137	24
Benzene	20.0	24.17	120.9	19.38	66-142	21
Toluene	20.0	21.24	106.2	0.1	59-139	21
Chlorobenzene	20.0	23.88	119.4	1.35	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS)

Volatile ()rganics in Soil Modified EPA, Method 8240/8260 [LOW LEVEL]

Sample Spiked:

LL100896A

Client ID:

Batch QC

Date of Analysis:

10-09-96

Solution ID:

M96MS0136

Batch #:

100896LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	LCS Conc. (ug/kg)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	20.82	104.1	59-172
Trichloroethene	20.0	< 5.00	21.68	108.4	62-137
Benzene	20.0	< 5.00	24.46	122.3	66-142
Toluene	20.0	< 5.00	21.61	108.1	59-139
Chlorobenzene	20.0	< 5.00	24.18	120.9	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laporatory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 6 times the spike concentration.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

GTEL File ID BL100896A							
	Date Analyzed	10/08/96					
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kg⁵					
Dichlorodifluoromethane	10	10 U					
Chloromethane	10	10 U					
Vinyl Chloride	5.0	5.0 U					
Bromoethane	10	10 U					
Chloroethane	· 10	10 U					
Trichlorofluoromethane	5.0	5.0 U					
1,1-Dichloroethene	5.0	5.0 U					
Methylene Chloride	5.0	5.0 U					
trans-1,2-Dichloroethene	5.0	5.0 U					
1,1-Dichloroethane	5.0	5.0 U					
2,2-Dichloropropane	5.0	5.0 U					
cis-1,2-Dichloroethene	5.0	5.0 U					
Chloroform	5.0	5.0 U					
Bromochloromethane	5.0	5.0 U					
1,1,1-Trichloroethane	5.0	5.0 U					
1,1-Dichloropropene	5.0	5.0 U					
Carbon Tetrachloride	5.0	5.0 U					
Benzene	1.0	1.0 U					
1,2-Dichloroethane	5.0	5.0 U					
Trichloroethene	5.0	5.0 U					
1,2-Dichloropropane	5.0	5.0 U					
Bromodichloromethane	5.0	5.0 U					
Dibromomethane	5.0	5.0 U					
cis-1,3-Dichloropropene	5.0	5.0 U					
Toluene	5.0	5.0 U					
trans-1,3-Dichloropropene	5.0	5.0 U					
1,1,2-Trichloroethane	5.0	5.0 U					
1,2-Dibromoethane	5.0	5.0 U					
Tetrachloroethene	5.0	5.0 U					
1,3-Dichloropropane	5.0	5.0 U					

GTEL Client ID: 966044044

Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260

	GTEL File ID	BL100896A
	Date Analyzed	10/08/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kgb
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.Q U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

CTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

Project ID (name): Clarent	one Polychemical Superium Site				Matrix: LOW SOII			
	GTEL Sample	Number	M6090429-19	M6090429-28				
		ient ID	CLLTEV03S043					
		Sampled	09/26/96					
		nail yzed	10/07/96					
	<u>Di</u> lution		1.00			••		
	Dilucton	ractor	50:1 In-	Soil Out -				
	Reporting		Kun 3 00'10	Kun 3				
Analyte	Limit	Units		Concentration:Dry N	Weight			
Dichlorodifluoromethane	10	ıg/kg	10. U	10. U		The state of the s		
Chloromethane	10.	ug/kg	10. U	10. U	migriganical contraction of the contraction			
Vinyl chloride	5.0	ıg/kg	5.0 U	5.0 U		31. 144.50		
Bromomethane	10.	ug/kg	10. U	10. U	 	en e e massille me delt i		
Chloroethane	10.	ug/kg	10. U	10. U				
Trichlorofluoromethane	5.0	ug/kg	5.0 U	5.0 U	• • • • • • • • • • • • • • • • • • •			
1,1-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U				
Methylene chloride	5.0	ug/kg	5.0 U	5.0 U				
trans-1,2-Dichloroethene	5.0	⊯g/kg	5.0 U	5.0 U	oninini (maki 22) karasi	nt. vitvaiaistoju estosoma s		
The state of the s	5.0	ug/kg	5.0 U	5.0 U				
1.1-Dichloroethane	5.0 5.0		5.0 U	5.0 U				
2,2-Dichloropropane		wg/kg		5.0 U	77			
cis-1,2-Dichloroethene	5.0	wg/kg	5.0 U		 6-88888884-88888355-8801-6-0644.	 ::::::::::::::::::::::::::::::::::		
Chloroform	5.0	ug/kg	5.0 U	5.0 U				
mochloromethane	5.0	wg/kg	5.0 U	5.0 U	 ***********************************	en ar as a company		
1.1-Trichloroethane	5.0	ng/kg	5.0 U	5.0 U	**			
1.1-Dichloropropene	5.0	wg/kg	5.0 U	5.0 U		 .090000 - 0.000.099000 - 0.900 - 0.000 - 0.000		
Carbon tetrachloride	5.0	wg/kg	5.0 U	5.0 U	-•			
Benzene	1.0	wg/kg	1.0 U	1.0 U				
1,2-Dichloroethane	5.0	₩g/kg	5.0 U	5.0 U				
Trichloroethene	5.0	ug/kg	5.0 U	5.0 U				
1,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U				
Bromodichloromethane	5. 0	ug/kg	5.0 U	5.0 U				
Dibromomethane	5.0	ug/kg	5.0 U	5.0 U		Mariant Girana		
Toluene	5.0	ug/kg	5.0 U	5.0 U				
1,1,2-Trichloroethane	5.0	⊌g/kg	5.0 U	5.0 U	-			
1.2-Dibromoethane	5.0	ψg/kg	5.0 U	5.0 U				
Tetrachloroethene	5.0	ψg/kg	8.0	5.0 U	÷÷			
1.3-Dichloropropane	5.0	ι,g/kg	5.0 U	5.0 U				
Dibromochloromethane	5.0	Lg/kg	5,0 U	5.0 U	4-			
Chlorobenzene	5.0	ιg/kg	5.0 U	5.0 U				
Ethylbenzene	5.0	ug/kg	5.0 U	5.0 U				
1.1.1.2-Tetrachloroethane	5.0	μg/kg	5.0 U	5.0 U				
Xylenes (total)	5.0	ug/kg	5.0 U	5.0 0				
1,3-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U				
Styrene	5.0°	ug/kg:	5.0 U	5.0 U		.		
1,4-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U				
Bromoform	5.0°	ug/kg	5.0 U	5.00		~-"		
1.2-Dichlorobenzene	5.0	ug/kg ug/kg	5.0 U	5.0 U				
			5.0 U	5.0 U				
Isopropy I benzene	<u>5.</u> 0	ug/kg	2.0 0	3.4.0				

L Milford, NH

110090429

Page: 1

ANALYTICAL RESULTS Volatile Organics

CTEL Client ID:

966044044

in Number:

M6090429

'oject ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Low Soil

GTEL Sample Number	M6090429-19	M6090429-28	••	••
Client ID	CLLTEV03S043	CLLTEV05S011	••	••
Date Sampled	09/26/96	09/26/96		• •
Date Analyzed	10/07/96	10/07/96		••
Dilution Factor	1.00	1.00		••

	Reporting			
Analyte	Limit	Units	Concentration:Dry Weight	
1,1,2,2-Tetrachloroethane	5.0	ug/kg	5.0 U 5.0 U	
Bromobenzene	5,0	ug/kg	5.0 U 5.0 U	Dines.
1,2,3-Trichloropropane	5.0	ug/kg	5.0 U 5.0 U	0300010-003
n-Propylbenzene	5.0	ug/kg	5.0 U 5.0 U	
2-Chlorotoluene	5.0	ug/kg	5.0 U 5.0 U	
1.3.5-Trimethylbenzene	5.0	ug/kg	-5.0 U 5.0 U	
4-Chlorotoluene	5. 0	ug/kg	5.0 U 5.0 U	5501100 550
tert-Butylbenzene	5.0	ug/kg	5.0 U 5.0 U	
1,2.4-Trimethylbenzene	5.0	ug/kg	5.0 U 5.0 U	V V-V-
sec-Butylbenzene	5.0	ug/kg	5.0 U 5.0 U	
p-Isopropyltoluene	5.0	ug/kg	5.0 U 5.0 U	MATTER STORY
n-Butylbenzene	5.0	ug/kg	5.0 U 5.0 U	
1,2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U 5.0 U	
?.4-Trichlorobenzene	5.0	ug/kg	5.0 U 5.0 U	
<pre></pre>	5.0	ug/kg	5.0 U 5.0 U	
.aphthalene	5.0	ug/kg	5.0 U 5.0 U	
1,2,3-Trichlorobenzene	5.0	ug/kg	5.0 U 5.0 U	
cis-1.3-Dichloropropene	5.0	ug/kg	5.0 U 5.0 U	
trans-1.3-Dichloropropene	5.0	ug/kg	5.0 U 5.0 U	3 3 3 3 4 4
Percent Solids		X	95.9 <u>77.7</u>	

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

L Milford, NH JU90429

Page: 2

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [LOW LEVEL]

Sample Spiked: Date of Analysis: 090429-21

10-07-96

Client ID:

Batch QC

Solution ID:

B96MS0136

Batch #:

100796LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	<5.00	18.61	93.1	59-172
Trichloroethene	20.0	< 5.00	20.07	100.4	62-137
Benzene	20.0	< 5.00	26.04	130.2	66-142
Toluene	20.0	< 5.00	21.28	106.4	59-139
Chlorobenzene	20.0	< 5.00	21.93	109.7	60-133

	Spike	MD	MD,%		Acceptability limits, a	
Compound	Added (ug/kg)	Conc. (ug/kg)	Percent Recovery	% RPD	% Recovery	% RPD
1,1-Dichloroethene	20.0	21.66	108.3	15.15	59-172	22
Trichloroethene	20.0	20.01	100.1	0.30	62-137	24
Benzene	20.0	25.79	129.0	0.96	66-142	21
Toluene	20.0	20.73	103.7	2.6	59-139	21
Chlorobenzene	20.0	22.29	111.5	1.63	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to ligh native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS)

Volatile Organics in Soil Modified EPA Method 8240/8260 [LOW LEVEL]

Sample Spiked: Date of Analysis: LL100796A

10-07-96

Client ID:

Batch QC

Solution ID:

M96MS0136

Batch #:

100796LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	LCS Conc. (ug/kg)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	22.62	113.1	59-172
Trichloroethene	20.0	< 5.00	20.48	102.4	62-137
Benzene	20.0	< 5.00	25.72	128.6	66-142
Toluene	20.0	< 5.00	22.37	111.9	59-139
Chlorobenzene	20.0	< 5.00	22.20	111.0	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

igTEL:Milford,N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE - > 18490:: D4

DATE AND TIME OF ANALYSIS = 10/07/96 15:52 SAMPLE NAME = BL100796IA

MISC. NFO =

METHOD - CSCUT INSTRUMENT - MSDI OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	56.31	50.00	76-114	70-121	(\$3)	112.6
Toluene-d8(TOL)	49.70	50.00	88-110	81-117	(S1)	99.4
Bromofluoro- be(:ne(BFB)	48.84	50.00	86-115	74-121	(\$2)	97.7

(GTEL: MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18498::D4

DATE AND TIME OF ANALYSIS = 10/07/96 21:06

SAMPLE NAME = MS100429-21

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- sthane-d4(DCE)	59.83	50.00	76-114	70-121	(S3)	119.7
Toluene-d8(TOL)	49.46	50.00	88-110	81-117	(S1)	98.9
Bromofluoro- or ne(BFB)	52.56	50.00	86-115	74-121	(52)	105.1

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18499::D4

DATE AND TIME OF ANALYSIS = 10/07/96 21:44

SAMPLE NAME = MD100429-21

MISC. NFO = METHOD = CSCVT

INSTRUMENT - MSDI

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- sthane-d4(DCE)	59.47	50.00	76-114	70-121	(S3) 118.9
Toluene-d8(TOL)	47.83	5 [†] 0.00	88-110	81-117	(S1) 95.7
Bromofluoro- per ne(BFB)	52.90	50.00	86-115	74-121	(S2) 105.8

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18500::D4

DATE AND TIME OF ANALYSIS = 10/07/96 22:22

SAMPLE NAME = LL100796A

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	57.20	50.00	76-114	70-121	(S3)	114.4
Toluene-d8(TOL)	50.36	50.00	88-110	81-117	(S1)	100.7
Bromofluoro- ne(BFB)	52.92	50.00	86-115	74-121	(S2)	105.8

LSTEL: MILFORD, N.H. 1

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18493::04

DATE AND TIME OF ANALYSIS = 10/07/96 17:49

MEITHOD = CSCVT

INSTRUMENT - MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS		RECOVERY
1,2-Dichloro- ethane-d4(DCE)	55.80	€0.00	76-114	70-121		111.6
Toluene-d8(TOL)	47.77	₹0.00	88-110	81-117	(S1)	95.5
Bromofluoro- ber ane(BFB)	48.71	50.00	86-115	74-121	(S2)	97.4

(GTEL:MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18497::D4

DATE AND TIME OF ANALYSIS = 10/07/96 20:27

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

AS FOUND WAS WATER
IN SAMPLE SPIKED AT LIMITS SOIL LIMITS SURROGATE % RECOVERY -----1,2-Dichloro-50.00 76-114 70-121 (S3) 110.7 55.33 ethane-d4(DCE) Toluene-d8(TOL) 49.25 50.00 88-110 81-117 (S1) 98.5

49.66 50.00 86-115 74-121 (S2) 99.3 Bromofluorone (BFB)

GTEL Client ID: 966044044

Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil ERA Method 8260°

	GTEL File ID	BL100896IA
	Date Analyzed	10/07/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kgb
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5,0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
<u>Dibromomethane</u>	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5,0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5,0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100896IA
	Date Analyzed	10/07/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	_5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-lsopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5. <u>0</u> U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHΦD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100796IA
	Date Analyzed	10/07/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kg ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5,0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U_
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

	GTEL File ID	BL100796IA
	Date Analyzed	10/07/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	. 5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 ∪
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-lsopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHΦD BLANK RESULTS Volatile Organics in Low Soil EF/A Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SV/-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

roject ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Solids

riogett 15 (name). Orace	ising to the mitted to deport the deport			11001 17. 301103			
	GTEL Sample M Clie Date Sa Date Ana	ent ID ampled	M6090429-08 CLLTEV03S031 09/26/96 10/08/96	M6090429-14 CLLTEV03S038 09/26/96 10/08/96	M6090429-15 CLLTEV03S039 09/26/96 10/08/96	M6090429-23 CLLTEV03S048 09/26/96 10/08/96	
	Dilution 6		1.00	1.00	1.00	1.00	
			Soil In-	Soil In -	Soil In-	Sril In	
	Reporting		Run Z 00:25	Run 2 00:50	Run 2 00:55	Run 3 00:23	
Analyte	Limit	Units	Co	ncentration:Dry	Weight		
Dichlorodifluoromethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	
Chloromethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	
Vinyl chloride	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Bromomethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	
Chloroethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U	
Trichlorofluoromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,1-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Methylene chloride	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
trans-1,2-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,1-Dichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
2,2-Dichloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
cis-1,2-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Chloroform	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
`nomochloromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1-Trichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,1-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
	0.62		0.62 U	0.62 U	0.62 U		
Carbon tetrachloride	Strategic and a second of the second in the second of the	mg/kg	 Color Fig. Medicine and Color Programmer and Color Co	production and authorities of the production of the control of the production of the control of	THE RESERVE OF THE PROPERTY OF	0.62 U	
Benzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,2-Dichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 ป	
Trichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,2-Dichloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Bromodichloromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Dibromomethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 ป	
Toluene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1.1.2-Trichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1.2-Dibromoethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Tetrachloroethene	0.62	mg/kg	2.7	68.	8.4	2.5	
1.3-Dichloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Dibromochloromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	and the second s	
Chlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Ethylbenzene	0.62	mg/kg		0.62 U		0.62 U	
1.1.1.2-Tetrachloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Xylenes (total)	0.62	mg/kg∷	0.62 U		· ·		
1,3-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Styrene	0.62	mg/kg	0.62 U	0.62 U	0.62 U		
1.4-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
Bromoform	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
1,2-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	
^T sopropylbenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U	

L Milford, NH

...J90429

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Solids

	GTEL Sample Number Client ID Date Sampled Date Analyzed Dilution Factor		M6090429-08 CLLTEV03S031 09/26/96 10/08/96 1.00	M6090429-14 CLLTEV03S038 09/26/96 10/08/96 1.00	M6090429-15 CLLTEV03S039 09/26/96 10/08/96 1.00	M6090429-23 CLLTEV03S048 09/26/96 10/08/96 1.00
	Reporting		1			
Analyte	Limit	Units	Co	oncentration:Dry	Weight	
1.1.2.2-Tetrachloroethane	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
Bromobenzene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.2,3-Trichloropropane	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
n-Propylbenzene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
2-Chlorotoluene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.3.5-Trimethylbenzene	0.62	ng/kg	* 0.62 U	0.62 U	0.62 U	0.62 U
4-Chlorotoluene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
tert-Butylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2,4-Trimethylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
sec-Butylbenzene	0,62	i n g/kg	0.62 U	0.62 U	0.62 U	0.62 U
p-Isopropyltoluene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
n-Butylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.2-Dibromo-3-chloropropane	0.62	ing/kg	0.62 U	0. 62 U	0.62 U	0.62 U
2.4-Trichlorobenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
∡achlorobutadiene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
Naphthalene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2,3-Trichlorobenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
cis-1.3-Dichloropropene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
trans-1.3-Dichloropropene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
Percent Solids		*	75.9	82.7	95.2	96.0

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods'. SW-846, Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the amalyte was avalyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a 'J' is estimated.

H6090429-14:

The dilution factor equals 10 for Tetrachloroethene; data analyzed was 10/08/96.

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

roject ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Solids

		ent ID ampled	M6090429-24 CLLTEV03S049 09/26/96 10/08/96	M6090429-27 CLLTEV03S052 09/26/96 10/08/96	M6090429-29 CLLTEV03S053 09/26/96 10/08/96	M6090429-30 CLLTEV03S054 09/26/96 10/08/96
	Dilution	Factor	1.00	1.00	1.00	1.00
			So. 1 In-	Soil In -	Soil In -	50,1 11-
	Reporting		Kun 3 00:30	Run 3 00:45	Run 3 00:50	Ron 3 00:55
Analyte	Limit	Units		ncentration:Dry		
Dichlorodifluoromethane	1.2	mg/kg	1.2 0	1.2 U	1.2 U	1.2 U
Chloromethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U
Vinyl chloride	0.62	mg/kg	0.62 U	0.62 ป	0.62 U	0.62 U
Bromomethane	1.2	mg/kg	1.2 U	1.2 U	1.2 U	1.2 U
Chloroethane	1.2	mg/kg	1.2 U	1.2 U	1.2 ป	1.2 U
Trichlorofluoromethane	0.62	mg/kg	0.62 U	0.62 U	0.15 J	0.62 U
1.1-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Methylene chloride	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.14 J
trans-1,2-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.1-Dichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
2,2-Dichloropropane	0.62	mg/kg	0.62 U	0.62 ป	0.62 U	0.62 U
cis-1,2-Dichloroethene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Chloroform	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
ranmochloromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
, .,1-Trichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,1-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Carbon tetrachloride	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Benzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2-Dichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Trichloroethene	0. 6 2	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2-Dichloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Bromodichloromethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Dibromomethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 บ
Toluene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.1.2-Trichloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.2-Dibromoethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Tetrachloroethene	0.62	mg/kg	9.9	7.0	6.6	4.9
1.3-Dichloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Dibromochloromethane		mg/kg	0.62 U	0.62 U		0.62 U
Chlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Ethylbenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	
1.1.1.2-Tetrachloroethane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Xylenes (total)	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.3-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Styrene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.4-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Bromoform	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2-Dichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Isopropylbenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U

L Milford, NH

J90429

WNALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Solids

GTEL Sample I	lumber M6090429-24	M6090429-27	M6090429-29	M6090429-30
Clic	nt ID CLLTEV03S049	CLLTEV03S052	CLLTEV03S053	CLLTEV03S054
Date Sa	mpled 09/26/96	09/26/96	09/26/96	09/26/96
Date And	l yzed 10/08/96	10/08/96	10/08/96	10/08/96
Dilution I	actor 1.00	1.00	1.00	1.00

	Reporting					
Analyte	Limit	Units	Conc	entration:Dry We	ight	
1.1.2.2-Tetrachloroethane	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
Bromobenzene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.2.3-Trichloropropane	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
n-Propy1benzene	0.62	ing/kg	0,62 U	0.62 U	0.62 U	0.62 U
2-Chlorotoluene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.3.5-Trimethylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
4-Chlorotoluene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
tert-Butylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2,4-Trimethylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
sec-Butylbenzene	0.62	ing/kg	0.62 U	0.62 U	0.62 U	0.62 U
p-Isopropyltoluene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
n-Butyl benzene	0.62	ng/kg	0.62 U	0.62 U	0.62 U	0.62 U
1,2-Dibromo-3-chloropropane	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
2.4-Trichlorobenzene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
<pre> xachlorobutadiene</pre>	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U 🛰
Naphthalene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
1.2.3-Trichlorobenzene	0.62	mig/kg	0.62 U	0.62 U	0.62 U	0.62 U
cis-1.3-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U	0,62 U	0.62 U
trans-1,3-Dichloropropene	0.62	mg/kg	0.62 U	0.62 U	0.62 U	0.62 U
Percent Solids		Ž	78.7	80.1	76.8	81.4

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', SW-846, Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was analyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination; The data user is warned to take appropriate action. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a 'J' is estimated.

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [MEDIUM LEVEL.]

Sample Spiked: Date of Analysis: 090429-21

10-08-96

Client ID:

Batch QC

Solution ID:

M96MS0292B

Batch #:

100196MB

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	6.16	< 0.62	5.15	83.6	59-172
Trichloroethene	6.16	< 0.62	5.10	82.8	62-137
Benzene	6.16	< 0.62	6.32	103	66-142
Toluene	6.16	< 0.62	6.56	107	59-139
Chlorobenzene	6.16	< 0.62	6.25	101.5	60-133

	MD Spike	MD	MD,%		Acceptab limits, a	• 1
Compound	Added	Conc.	Percent	%	%	%
	(mg/kg)	(mg/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	6.38	5.85	92	9.2	59-172	22
Trichloroethene	6.38	5.01	79	5.3	62-137	24
Benzene	6.38	6.17	97	5.9	66-142	21
Toluene	6.38	6.45	101	5.2	59-139	21
Chlorobenzene	6.38	6.18	97	4.6	60-133	21

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

%RPD based on concentration rather than % recovery due to high native concentrations of analyte.

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Vethod 8240/8260 MEDIUM LEVEL]

Sample Spiked:

090429-04

Date of Analysis:

10-08-96

Client ID:

Batch QC

Solution ID:

M96MS0292B

Batch #:

100196MA

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	6.38	⋖ 0.62	6.25	98.0	59-172
Trichloroethene	6.38	⋖ 0.62	5.68	89.1	62-137
Benzene	6.38	₹ 0.62	5.92	93	66-142
Toluene	6.38	∢ 0.62	5.97	94	59-139
Chlorobenzene	6.38	< 0.62	6.05	94.9	60-133

	MD Spike	MC;	MD,%		Acceptabi limits, a	•
Compound	Added	Conc.	Percent	%	%	%
	(mg/kg)	(mg/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	6.07	5.89	97	1.0	59-172	22
Trichloroethene	6.07	5.62	93	3.9	62-137	24
Benzene	6.07	5.94	98	5.3	66-142	21
Toluene	6.07	6.06	100	6.5	59-139	21
Chlorobenzene	6.07	5.88	97	2.1	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

%RPD based on concentration rather than % recovery due to ligh native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS), PERCENT RECOVERY REPORT

Volatile Organics in Soil Modified EPA Method 8240/8260 [MEDIUM LEVEL]

Sample Spiked:

LS100196A

Client ID:

Batch QC

Date of Analysis:

10-08-96

Solution ID:

M96MS0292B

Batch #:

100196MA

Compound	Spike Added	Sample Conc.	LCS Conc.	LCS% Percent	Acceptability limits
	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	% Recovery,a
1,1-Dichloroethene	6.25	< 0.62	6.55	105	59-172
Trichloroethene	6.25	< 0.62	5.95	95	62-137
Benzene	6.25	< 0.62	5.74	92	66-142
Toluene	6.25	< 0.62	6.38	102	59-139
Chlorobenzene	6.25	< 0.62	6.37	102	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

LABORATORY CONTROL SAMPLE (LCS), PERCENT RECOVERY REPORT

Volatile Organics in Soil GC/MS VOA [MEDIUM ILEVEL]

Sample Spiked:

LS100196B

Client ID:

Batch QC

Date of Analysis:

10-08-96

Solution ID:

M96MS0292B

Batch #:

100196MB

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	LCS Conc. (mg/kg)	LCS% Percent Recovery	Acceptability limits % Recovery, a
1,1-Dichloroethene	6.25	< 0.62	5.41	86.6	59-172
Trichloroethene	6.25	< 0.62	4.96	79.4	62-137
Benzene	6.25	< 0.62	6.28	100.5	66-142
Toluene	6.25	< 0.62	6.43	102.9	59-139
Chlorobenzene	6.25	< 0.62	6.11	97.8	60-133

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260*

	GTEL Blank ID	BS100196A
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dichlorodifluoromethane	1.2	1.2 U
Chloromethane	1.2	1.2 U
Vinyl Chloride	0.62	0.62 U
Bromomethane	1.2	1.2 U
Chloroethane	1.2	1.2 U
Trichlorodifluoromethane	0.62	0.62 U
1,1-Dichloroethene	0.62	0.62 U
Methylene Chloride	0.62	0.62 U
trans-1,2-Dichloroethene	0.62	0.62 U
1,1-Dichloroethane	0.62	0.62 U
2,2-Dichloropropane	0.62	0.62 U
cis-1,2-Dichloroethene	0.62	0.62 U
Chloroform	0.62	0.62 U
Bromodichloromethane	0.62	0.62 U
1,1,1-Trichloroethane	0.62	0.62 U
1,1-Dichloropropane	0.62	0.62 U
Carbon Tetrachloride	0.62	0.62 U
Benzene	0.62	0.62 U
1,2-Dichloroethane	0.62	0.62 ∪
Trichloroethene	0.62	0.62 U
1,2-Dichloropropane	0.62	0.62 U
Bromochloromethane	0.6 2	0.62 U
Dibromochloromethane	0.62	0.62 U
cis-1,3-Dichloropropene	0.62	0.62 U
Toluene	0.62	0.62 U
trans-1,3-Dichloropropene	0.62	0.62 U
1,1,2-Trichloroethane	0.62	0.62 U
1,2-Dibromomethane	0.62	0.62 U
Tetrachloroethene	0.62	0.62 U
1,3-Dichloropropane	0.62	0.62 U

GTEL Client ID: 966044044

Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EF/A Method 8260^a

	GTEL Blank ID	BS100196A
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dibromochloromethane	0.62	0.62 U
Chlorobenzene	0.62	0.62 U
Ethylbenzene	0.62	0.62 U
1,1,2,2-Tetrachloroethane	0.62	0.62 U
Xylenes (total)	0.62	0.62 U
1,3-Dichlorobenzene	0.62	0.62 U
Styrene	0.62	0.62 U
1,4-Dichlorobenzene	0.62	0.62 U
Bromoform	0.62	0.62 U
1,2-Dichlorobenzene	0.62	0.62 U
Isopropylbenzene	0.62	0.62 U
1,1,2,2-Tetrachloroethane	0.62	0.62 U
Bromobenzene	0.62	0.62 U
1,2,3-Trichloropropane	0.62	0.62 U
n-Propylbenzene	0.62	0.62 U
2-Chlorotoluene	0.62	0.62 U
1,3,5-Trimethylbenzene	0.62	0.62 U
4-Chlorotoluene	0.62	0.62 U
tert-Butylbenzene	0.62	0.62 U
1,2,4-Trimethylbenzene	0.62	0.62 U
sec-Butylbenzene	0.62	0.62 U
p-Isopropyltoluene	0.62	0.62 U
n-Butylbenzene	0.62	0.62 U
1,2-Dibromo-3-chloropropane	0.62	0.62 U
1,2,4-Trichlorobenzene	0.62	0.62 U
Hexachlorobutadiene	0.62	0.62 U
Naphthalene	0.62	0.62 U
1,2,3-Trichlorobenzene	0.62	0.62 U
cis-1,3-Dichloropropene	0.62	0.62 U
trans-1,3-Dichloropropene	0.62	0.62 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

	GTEL Blank ID	BS100196B
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dichlorodifluoromethane	1.2	1.2 U
Chloromethane	1.2	1.2 U
Vinyl Chloride	0.62	0.62 U
Bromomethane	1.2	1.2 U
Chloroethane	1.2	1.2 U
Trichlorodifluoromethane	0.62	0.62 U
1,1-Dichloroethene	0.62	0.62 U
Methylene Chloride	0.62	0.62 U
trans-1,2-Dichloroethene	0.62	0.62 U
1,1-Dichloroethane	0.62	0.62 U
2,2-Dichloropropane	0.62	0.62 U
cis-1,2-Dichloroethene	0.62	0.62 U
Chloroform	0.62	0.62 U
Bromodichloromethane	0.62	0.62 U
1,1,1-Trichloroethane	0.62	0.62 U
1,1-Dichloropropane	0.62	0.62 U
Carbon Tetrachloride	0.62	0.62 U
Benzene	0.62	0.62 U
1,2-Dichloroethane	0.62	0.62 U
Trichloroethene	0.62	0.62 U
1,2-Dichloropropane	0.62	0.62 U
Bromochloromethane	0.62	0.62 U
Dibromochloromethane	0.62	0.62 U
cis-1,3-Dichloropropene	0.62	0.62 U
Toluene	0.62	0.62 U
trans-1,3-Dichloropropene	0.62	0.62 U
1,1,2-Trichloroethane	0.62	0.62 U
1,2-Dibromomethane	0.62	0.62 U
Tetrachloroethene	0.62	0.62 U
1,3-Dichloropropane	0.62	0.62 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

	GTEL Blank ID	BS100196B
	Date Analyzed	10/08/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dibromochloromethane	0.62	0.62 U
Chlorobenzene	0.62	0.62 U
Ethylbenzene	0.62	0.62 U
1,1,2,2-Tetrachloroethane	0.62	0.62 U
Xylenes (total)	0.62	0.62 U
1,3-Dichlorobenzene	0.62	0.62 U
Styrene	0.62	0.62 U
1,4-Dichlorobenzene	0.62	0.62 U
Bromoform	0.62	0.62 U
1,2-Dichlorobenzene	0.62	0.62 U
Isopropylbenzene	0.62	0.62 U
1,1,2,2-Tetrachloroethane	0.62	0.62 U
Bromobenzene	0.62	0.62 U
1,2,3-Trichloropropane	0.62	0.62 U
n-Propylbenzene	0.62	0.62 U
2-Chlorotoluene	0.62	0.62 U
1,3,5-Trimethylbenzene	0.62	0.62 U
4-Chlorotoluene	0.62	0.62 U
tert-Butylbenzene	0.62	0.62 U
1,2,4-Trimethylbenzene	0.62	0.62 U
sec-Butylbenzene	0.62	0.62 U
p-lsopropyltoluene	0.62	0.62 U
n-Butylbenzene	0.62	0.62 U
1,2-Dibromo-3-chloropropane	0.62	0.62 U
1,2,4-Trichlorobenzene	0.62	0.62 U
Hexachlorobutadiene	0.62	0.62 U
Naphthalene	0.62	0.62 U
1,2,3-Trichlorobenzene	0.62	0.62 U
cis-1,3-Dichloropropene	0.62	0.62 U
trans-1,3-Dichloropropene	0.62	0.62 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260*

- a Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.
- c Total 1,2-dichloroethene is the sum of the cis- and trans- isomers.

(GTEL: MILFORO, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18505::D4

DATE AND TIME OF ANALYSIS = 10/08/96 1:39

SAMPLE NAME - BS100196B

MISC. INFO = METHOD = CSCUT

INSTRUMENT - MSDI

OPERATOR = VANGIE

BURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
l,2-Dichloro- ∋thane-d4(DCE)	5.95	90.00	76-114	70-121	(53)	95.2
Toluene-d8(TOL)	6.06	a0.00	88-110	81-117	(S1)	96.9
3romofluoro- per ne(BFB)	5.97	50.00	86-115	74-121	(S2)	95.5

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18504::D4

DATE AND TIME OF ANALYSIS = 10/08/96 0:56

SAMPLE NAME = BS100196A

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI

OPERATOR - VANGIE

SURROGATE 1,2-Dichloro- thane-d4(DCE)	AS FOUND IN SAMPLE 5.54	WAS SPIKED AT 50.00	WATER LIMITS 76-114	SOIL LIMITS 70-121		RECOVERY 88.6
Toluene-d8(TOL)	6.26	50.00	88-110	81-117	(S1)	100.2
Bromofluoro- benzene(BFB)	6.06	50.00	86-115	74-121	(S2)	97.0

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18516:: D4

DATE AND TIME OF ANALYSIS = 10/08/96 9:26

SAMPLE NAME = MS090429-04

METHOD = CSCUT INSTRUMENT = MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	NAS SPIKED AIT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	6.06	\$0.00	76-114	70-121	(\$3)	94.7
Toluene-d8(TOL)	6.35	\$0.00	88-110	81-117	(SI)	99.3
Bromofluoro- ber 'ne(BFB)	6.44	\$0.00	86-115	74-121	(S2)	100.7

(GTEL: MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18517::04

DATE AND TIME OF ANALYSIS = 10/08/96 10:05

SAMPLE NAME = MD090429-04

MISC. [NFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

WAS AS FOUND WATER SOIL LIMITS IN SAMPLE SPIKED AT LIMITS SURROGATE % RECOVERY l,2-Dichloro-5.50 50.00 . 76-114 70-121 (S3) 90.9 sthane-d4(DCE) Foluene-d8(TOL) 6.09 50.00 81-117 (S1) 100.6 88-110 3romofluoro- 6.13 50.00 86-115 74-121 (S2) 101.3 > Tene(BFB)

(GTEL: MILFORD, N.H.)

[VOLATILE QRGANICS - GC/MS]

[PRELIMINARY SURFIGGATE STANDARD REPORT]

SAMPLE DATA FILE - > 18518:: D4

DATE AND TIME OF ANALYSIS = 10/08/96 10:46

SAMPLE NAME - LS100196A

MISC. INFO =

METHOD = CSCUT

INSTRUMENT - MSDI

OPERATOR - VANGIE

SURRÜGATE 1,2-Dichloro- ethane-d4(DCE)	AS FÜUND IN SAMPLE 5.39	WAS SPIKED AT 50.00	WATER LIMITS 76-114	SÜIL LIMITS 70-121		RECOVERY 86.2
Toluene-d8(TOL)	6.25	50.00	88-110	81-117	(S1)	100.0
Bromofluoro- ber ine(BFB)	6.39	%0.00	86-115	74-121	(S2)	102.2

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18508::D4

DATE AND TIME OF ANALYSIS = 10/08/96 3:46

SAMPLE NAME = 090429-08

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.22	50.00	76-114	70-121	(S3)	87.7
Toluene-d8(TDL)	5.99	50.00	88-110	81-117	(S1)	100.7
Bromofluoro- t -ene(BFB)	5.72	50.00	86-115	74-121	(52)	96.1

(GTEL: NILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURFOGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18509::D4

DATE AND TIME OF ANALYSIS = 10/08/96 4:28

SAMPLE | NAME = 090429-14

MISC. | INFO =

METHOD = CSCUT INSTRUMENT = MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	6.00	50.00	76-114	70-121	(53)	91.6
Toluene-d8(TOL)	6.33	50.00	88-110	81-117	(51)	96.6
Bromofluoro- ber ane(BFB)	6.36	\$0.00	86-115	74-121	(S2)	97.1

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18528::D6

DATE AND TIME OF ANALYSIS = 10/08/96 17:49

SAMPLE NAME = 090429-14R1 [10]

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- sthane-d4(DCE)	65.61	50.00	76-114	70-121	(S3)	100.2
Toluene-d8(TOL)	68.31	50.00	88-110	81-117	(S1)	104.3
Bromofluoro-	62.89	50.00	86-115	74-121	(52)	96.0

[VOLATILE QRGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18510:: D4

DATE AND TIME OF ANALYSIS = 10/08/96 5:11

SAMPLE NAME = 090429-15

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SP!KED AIT	WATER LIMITS	SOIL LIMITS	% ŘECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.73	\$0.00	76-114	70- 1 21	(S3) 88.2
Toluene-d8(TOL)	6.33	₩0.00	88-110	81-117	(S1) 97.3
Bromofluoro- ber ine(BFB)	6.28	≅0.00	86-115	74-121	(S2) 96.6

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18511::D4

DATE AND TIME OF ANALYSIS * 10/08/96 5:53

SAMPLE NAME = 090429-23

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
,2-Dichloro- thane-d4(DCE)	5.9ů	50.00	76-114	70-121	(53)	93.6
foluene-d8(TOL)	6.12	50.00	88-110	81-117	(51)	97.2
3romofluoro- per ane(BFB)	6.02	50.00	86-115	74-121	(S2)	95.6

[VOLATILE QRGANICS - GC/MS]

[PRELIMINARY SURFOGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18512::D4

DATE AND TIME OF ANALYSIS = 10/08/96 6:35

SAMPLE NAME = 090429-24

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.12	50.00	76-114	70-121	(53)	85.4
Toluene-d8(TOL)	6.33	%0.00	88-110	81-117	(S1)	105.5
Bromofluoro- ber-ene(BFB)	5.74	©0.00	86-115	74-121	(S2)	95.8

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18513::D4

DATE AND TIME OF ANALYSIS = 10/08/96 7:18

SAMPLE NAME = 090429-27

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.47	50.00	76-114	70-121	(S3)	87.5
Toluene-d8(TOL)	6.30	50.00	88-110	81-117	(S1)	100.8
Bramofluoro- ne(BFB)	6.00	50.00	86-115	74-121	(52)	96.0

(GTEL:MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18514:: D4

DATE AND TIME OF ANALYSIS = 10/08/96 8:00

SAMPLE NAME = 090429-29

MISC. | INFO =

METHOD = CSCVT

INSTRUMENT = MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SP∥KED A∏	WATER LIMITS	SOIL LIMITS	%	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.31	₹0.00	76-114	70-121	(S3)	89.2
Toluene-d8(TOL)	5.80	50.00	88-110	81-117	(S1)	97.5
Bromofluoro- ber ine(BFB)	5.81	50.00	86-115	74-121		97.6

(GTEL: MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18515::D4

DATE AND TIME OF ANALYSIS = 10/08/96 8:43

SAMPLE NAME = 090429-30

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.68	50.00	76-114	70-121	(S3) 85.3
Toluene-d8(TOL)	6.67	50.00	88-110	81-117	(S1) 100.3
Bromofluoro- ber-ene(BFB)	6.47	50.00	86-115	74-121	(S2) 97.2

[VOLATILE GRGANICS - GC/MS]

[PRELIMINARY SURFOGATE STANDARD REPORT]

SAMPLE DATA FILE = >18522::D4

DATE AND TIME OF ANALYSIS = 10/08/96 13:29

SAMPLE |NAME = MS090429-21

MISC. | INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

BURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.31	50.00	76-114	70-121	(S3)	86.4
Toluene-d8(TOL)	6.26	50.00	88-110	81-117	(S1)	101.7
Bromofluoro- per ne(BFB)	6.07	50.00	86-115	74-121	(S2)	98.8

IGTEL: MILFORD, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18523::D4

DATE AND TIME OF ANALYSIS = 10/08/96 14:09

SAMPLE NAME = MD090429-21

MISC. INFO = METHOD = CSCVT

INSTRUMENT - MSDI

OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- sthane-d4(DCE)	5.88	50.00	76-114	70-121	(83)	91.9
Toluene-d8(TOL)	6.45	50.00	88-110	81-117	(S1)	100.8
Bromofluoro- benzene(BFB)	6.19	50.0ù	86-115	74-121	(S2)	96.8
						

[GTEL:MILFORO,N.H.]

[UQLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE - > 18526:: D4

DATE AND TIME OF ANALYSIS - 10/08/96 16:05

SAMPLE NAME - LS1001968

MISC. INFO =

METHOD - CSCVT

INSTIRUMENT - MSDI

OPERATOR - VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- ethane-d4(DCE)	5.77	50.00	76-114	70-121	(53)	92.4
Toluene-d8(TOL)	6.33	50.0 ₁ 0	88-110	81-117	(S1)	101.2
Bromofluoro- henzene(BFB)	6.11	50.0 ₁ 0	86-115	74-121	(S2)	97.7

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

ມgin Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

	-				HIGHTIA. LOW	3011
-	GTEL Sample N	umber	M6090429-04	M6090429-05	M6090429-06	M6090429-07
		nt ID	CLLTEV06S008	CLLTEV03S028	CLLTEV03S029	CLLTEV03S030
	Date Sar		09/26/96	09/26/96	09/26/96	09/26/96
	Date Ana		10/02/96	10/02/96	10/02/96	10/02/96
	Dilution Fa	<u>actor</u>	1.00	5.00	1.00	1.00
			BinG -	50.7 Sn-	50,150-	50.1 In -
Analyte	Reporting	1 2 -	Trusted Soil	Kon Z 00:10	Kun Z 00:15	Ron Z 00:20
Dichlorodifluoromethane		<u>Jnits</u>	Cor	centration:Dry V		
Chloromethane		ug/kg ug/kg	10. U	50. U	10. U	10. U
Vinyl chloride		ug/kg ug/kg	10. U	50. U	10. U	10. U
Bromomethane		ug/kg ug/kg	5.0 U 10. U	25. U	5.0 U	5.0 U
Chloroethane		ug/kg ug/kg	10. U	50. U	10. U	10. U
Trichlorofluoromethane		ug/kg ug/kg	5.0 U	∬ 50. Ú	10. U	10. U
1,1-Dichloroethene		_		25. U	5.0 U	5.0 U
Methylene chloride		ıg∕kg ıg/kg	2.2 JB 5.0 U	13. JB	2.1 JB	2.1 JB
trans-1,2-Dichloroethene		ig/kg ig/kg	5.0 U	25. U	5.0 U	5.0 U
1.1-Dichloroethane		ig/kg ig/kg	5.0 U	25. U	5.0 U	5.0 U
2.2-Dichloropropane		ig/kg ig/kg	5.0 U	25. U	5.0 U	5.0 U
cis-1.2-Dichloroethene		ig/kg ig/kg		25. U	5.0 U	5.0 U
Chloroform		ig/kg ig/kg	5.0 U	25. U	5.0 U	5.0 U
romochloromethane			5.0 U	25. U	5.0 U	5.0 U
.,1,1-Trichloroethane		ıg/kg	5.0 U	25. U	5.0 U	5.0 U
1.1-Dichloropropene		ıg/kg	5.0 0	25. U	5.0 U	5.0 U
Carbon tetrachloride		ıg/kg	5.0 U	25. U	5.0 U	5.0 U
Benzene		ig/kg	5.0 U		A. C. C. C. S. C.	5.0 U
1.2-Dichloroethane		ıg/kg	1.0 U	5.0 U	1.0 U	1.0 U
Trichloroethene		ıg/kg	5.0 0	25. U	5.0°Ü	5.0 U
1.2-Dichloropropane		ig/kg	5.0 U	25. U	5.0 U	5.0 U
Bromodichloromethane		ig/kg:		25. U	5.0 U	5.0 U
Dibromomethane		ıg/kg	5.0 U	25. U	5.0 U	5.0 U
Toluene		ıg/kg	5.0 U	25. U	5.0 U	5.0 U
1.1.2-Trichloroethane		ıg/kg	5.0 U	25. U	5.0 U	5.0 U
1.2-Dibromoethane		ig/kg	5.0 U	25. U	5.0 U	5.0 U
Tetrachloroethene		ig/kg	5.0 U	25. U	5.0 U	5.0 U
1.3-Dichloropropane		ig/kg	5.0 U	26.	7.5	110
Dibromochloromethane		ig/kg	5.0 U	25. U	5.0 U	5.0 U
Chlorobenzene		ig/kg		#₩ 25. U	5.0 U	5.0 U
Ethylbenzene		ig/kg	5.0 U	25. U	5.0 U	5.0 U
1.1.1.2-Tetrachloroethane		ig/kg.	5.0 U	25. U 25. U	5.0 U	5.0 U
Xylenes (total)		ıg/kg ıg/kg	5.0 U 5.0 U	25. U	5.0 U	5.0 U
1.3-Dichlorobenzene		ig/kg ig/kg	5.0 U	25. U 25. U	5.0 U	5.0 U
Styrene		-			5.0 U	5.0 U
1.4-Dichlorobenzene		ig/kg	5.0 U	25. U	5.0 U	5.0 U
Bromoform		ig/kg	5.0 U	25. U	5.0 U	5.0 U
1.2-Dichlorobenzene		ig/kg	5.0 U	25. U	5.0 U	5.0 U
Isopropylbenzene		ig/kg	5.0 U	25. U	5.0 U	5.0 U
TEL Miliford NU		ıg/kg	5.0 U	25. U	5.0 U	5 <u>.0</u> U

TEL Milford, NH

✓ M6090429

ANALYTICAL RESULTS | Volatile Organics

GTEL Client ID:

966044044

.ogin Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

GTEL Sample Number	M6090429-04	M6090429-05	M6090429-06	M6090429-07
Client ID	CLLTEV06S008	CLLTEV03S028	CLLTEV03S029	CLLTEV03S030
Date Sampled	09/26/96	09/26/96	09/26/96	09/26/96
Date Amalyzed	10/02/96	10/02/96	10/02/96	10/02/96
Dilution Factor	1.00	5.00	1.00	1.00

	Reporting					
Analyte	Limit	Units	Conc	entration:Dry W	eight	
1,1,2,2-Tetrachloroethane	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
Bromobenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
1.2.3-Trichloropropane	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
n-Propylbenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
2-Chlorotoluene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
1,3,5-Trimethylbenzene	5.0	ug/kg	` 5.0 U	25. U	5.0 U	5.0 U
4-Chlorotoluene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
tert-Butylbenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
1,2,4-Trimethylbenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
sec-Butylbenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
p-Isopropyltoluene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
n-Butylbenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
1.2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
',2,4-Trichlorobenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
exachlorobutadiene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
Naphthalene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
1.2.3-Trichlorobenzene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
trans-1,3-Dichloropropene	5.0	ug/kg	5.0 U	25. U	5.0 U	5.0 U
Percent Solids		*	94.3	94.6	96. 6	94.1

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chamical Methods", SW-846, Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates; possible brank contamination: The data user is warned to take appropriate action.

M6090429-05:

Sample diluted due to non-target interference.

TEL Milford, NH 16090429

Page: 2

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

✓ _ogin Number:

M6090429 Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Low Soil

•	and officer caper raina office			warrix: Fom 2011			
		ient ID	M6090429-16 CLLTEV03S040	M6090429-17 CLLTEV03S041	M6090429-20 CLLTEV03S044	M6090429-26 CLLTEV03S051	
		Sampled	09/26/96	09/26/96	09/26/96	09/26/96	
		nalyzed	10/02/96	10/02/96	10/02/96	10/02/96	
	Dilution	Factor	1.00	1.00	1.00	5.00	
	Reporting		Soil In- Run Z 01:00	Soil In- Kon 3 00:00	Soil In- Run 3 00:15	So. 1 In- Kon 3 00:40	
Analyte	Limit	Units	Co	ncentration:Dry W	<i>l</i> eight		
Dichlorodifluoromethane	10.	ug/kg	10. U	10. U	10. U	50. U	
Chloromethane	10.	ug/kg	10. U	10. U	10. U	50. U	
Vinyl chloride	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Bromomethane	10.	ug/kg	10. U	10. U	10. U	50. U	
Chloroethane	10.	ug/kg	10. U	10. U	10. U	50. U	
Trichlorofluoromethane	5.0	ug/kg	` 5.0 U	5.0 U	5.0 U	25. U	
1.1-Dichloroethene	5.0	ug/kg	2.3 JB	2.5 JB	2.6 JB	12. JB	
Methylene chloride	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
trans-1.2-Dichloroethene	5.0	ug/kg:	5. 0 U	5.0 U	5.0 U	25. U	
1.1-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
2.2-Dichloropropane	5. 0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
cis-1,2-Dichloroethene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Chloroform	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
romochloromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.1.1-Trichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.1-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Carbon tetrachloride	5.0	ug/kg	5.0 U	5.0 U	5.0° U	25. U	
Benzene	1.0	ug/kg	1.0 U	1.0 U	1.0 U	5.0 U	
1.2-Dichloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Trichloroethene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1,2-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Bromodichloromethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U		
Dibromomethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Toluene	5.0	ug/kg ug/kg	5.0 U	5.0 U		25. U	
1.1.2-Trichloroethane	5.0	ug/kg ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.2-Dibromoethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U 5.0 U	25. U	
Tetrachloroethene	5.0	ug/kg	14.	7.8	55.	25. U	
1,3-Dichloropropane	5.0	ug/kg	5.0 U	5.0 U		49 .	
Dibromochloromethane	5.0	ug/kg ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Chlorobenzene	5.0	ug/kg ug/kg	5.0 U		5.0 U	25. U	
Ethylbenzene	5.0	ug/kg ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.1.1.2-Tetrachloroethane	5.0			5.0 U	5.0 U	25. U	
Xylenes (total)	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1,3-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25°. U	
Styrene		ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.4-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Bromoform	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
1.2-Dichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	
Isopropylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U	

"EL Milford, NH

M6090429

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

.ogin Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Low Soil

GTEL Sample N	lumber	M6090429-16	M6090429-17	M6090429-20	M6090429-26
Clie	ent ID	CLLTEV03S040	CLLTEV03S041	CLLTEV03S044	CLLTEV03S051
Date \$a	mpled .	09/26/96	09/26/96	09/26/96	09/26/96
Date Ama	lyzed	10/02/96	10/02/96	10/02/96	10/02/96
Dilution F	actor	1.00	1.00	1.00	5.00

	Reporting					
Analyte	<u>Limit</u>	Units	Conce	entration:Dry W	eight	
1.1.2.2-Tetrachloroethane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
Bromobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
1.2.3-Trichloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
n-Propylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
2-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
1.3.5-Trimethylbenzene	5.0	ug/kg	` 5.0 U	5.0 U	5.0 U	25. U
4-Chlorotoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
tert-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
1.2.4-Trimethylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
sec-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
p-Isopropyltoluene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
n-Butylbenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
1.2-Dibromo-3-chloropropane	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
2,4-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
exachlorobutadiene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U 🥌
Naphthalene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
1,2,3-Trichlorobenzene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
cis-1,3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
trans-1.3-Dichloropropene	5.0	ug/kg	5.0 U	5.0 U	5.0 U	25. U
Percent Solids	''.,	X	96.0	92.1	82.6	94.5

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chamical Methods", SW-846. Third Edition including promulgated Update 1. "U" indicates that the analyte was analyzed for but not detected. "J" indicates the presence of a compound that meets the mass spectral identification criteria. but the result is less than the reporting limit. The concentration of aralytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

M6090429-26:

Sample diluted due to non-target interference.

TEL Milford, NH 16090429

Page: 4

G €_#8 (j= (=0 %) = (j)

UNUTHILE URBANITE - 60 mag

·全年是1、1000年4月,1969年年96日7月,第1日8日4年,1967年7月

BAMHUE DATA HILE - HISAVTIILA

DATE AND TIME OF AVALUACE A 187007-1 1:120

·영화역문인원 제품역원 = - 출입10000위공사

METHOD = CBCVT MECT = TKBMURTEN; DEBRATOR = VANGLE

	AS FOUND IN SAMPLE	WAS SA(KEO AT	MATEP LIMITS	SOIL Limits	**	RE IOUERY
1,2-Dichloro- athane-d4:DCE)	50.3e	50 .00	76-114	79-121	 (93)	100.2
folgene-d8(TGL)	91.77	50.69	88-110	81-117	:51;	103.8
Bromofluoro- penzene(BFB)	48.48	50.00	86-119	74-121	:52)	92.0

[GTEL:MILFORO, N.H.]

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18416:: D4

DATE AND TIME OF ANALYSIS = 10/03/96 0:17

SAMPLE NAME = MS090429-04

INSTRUMENT = MSDI

DPERATOR - VANGIE

	AS FOUND IN SAMPLE SF		WATER LIMITS		% RECOVERY
,2-Dichloro-	52.23	150.00	76-114	70-121 (S3	104.5
(thane-d4(DCE)					
Foluene-d8(TOL)	47.85	50.00	88-110	°€ 81-117 (S1)
3romofluoro-	50.85	50.00	86-115	74-121 (S2) 101.7
enzene (BFB)	THE REAL TO				

(GTEL:MILFORD, N.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = > 18417::D4

DATE AND TIME OF ANALYSIS = 10/03/96 0:54

SAMPLE NAME - MD090429-04

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR - VANGIE

AS FOUND WAS WATER SURROGATE IN SAMPLE SPIKED AT LIMITS L	SOIL IMITS % RECOVERY
,2-Dichloro- 48.24 / 50.00 76-114 7	70-121 (S3) 97.5
;thane-d4(DCE)	
	31-117 (S1)
3romofluoro- 50.81 (; 50.00 86-115 7) enzene(BFB)	

or the control of the second

(1990年10日 15年6月8日日日 - 1870年)

并并变成,可以如果的,是现在的现在分词,是《**在**的方式等》,并是这些方式。

Example 19699 Field - 1915419:::e

19478 From Ciffe Or ANAL Sign : 19793774- 1135

Same Sovers a Luidozae om Sovers a viviliani.

#8780 = **6**5090 103m Trunchem1 313mmV = 90104340

AURADÜALE	AS FUUND IN SAMPLE	MAS SP(KEO AT	HATER LIMITS	SOIL Lim(TS	% Rt.1094.4
l,2-Eichiore- stoang-d4(802)	45.67	50.03	7e-114	70-131 (S3	97.9
Tuluene-d3/TOL:	48, <u>i</u> 0	5 0.00	88-110	84-117 (8)	발. 무슨 무슨 것
Snumaflaona- penzene(Snb)	90.Us	5 0.00	85-115	74-)3 <u>i</u> (8)	1,00.1

ibi-u:alufuko,N e i

(Obtained personners - or os)

(PRELIMINARY SURPOGNIE STANDARD REFUEL)

នសាកា € ប្រពិធ ទី ((៩ =)) (នឝមន,:)oឝ

ਹਾਲਾਵਾ ਦਾ ਗਾ ਹੋ ਹਿੰਦਾ ਸ਼ਿੰਦਾ ਵਿਸ਼ਵਾ ਮਿਤਾ ਤੋਂ ਜਾਣਾ ਗੁਣਗਾਜ਼ਤ ਪ੍ਰਵਾਜ਼ੀ ਹੈ। ਉਜਾਬੀਦੀ ਦੇ ਬਿਲਿਫੀ - ਗੁਲਗਾਜ਼ੀਤਿਜ਼ਸ਼ਵ

86180 - 85001 վահինԹստերմ - սեմվ State - Water

ştaküşere	нь Вишир Ти Вереге	0045 SP(856 4)	MATER LAMITS	Strii Luni (S	% ಕಟ್ಟರುಟ್ಕಾಗ
l,2-Dichtoro- ≀thane-d4:00E)	<u>a</u> 2. 33	Sil, tid	⁷ 6-li4	20-121 (63)	우쇼, 쇼
To:wene-d8(TOE)	47.27	50.00	88-110	81-1(2 (51)	94.6
Bromofluoro- benzene(BFB)	क्षत्रे , प ह	50.00	86-115	24-171 (52)	44.9

is building one in Bis

and the second of the second of the second s

ейн от мант эгнэ оог 9 бамилно н-нонго

चलाम्(ह्राच्या स्टार्ट व्हर्यापः व्

			 (事) (本) (本) (中) (中) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	1 (2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(+)		
- ·: , , -		IN SAMPLE	HERE	: (m))9	-11; <u>L</u> L.M., TS		RECOVERY
e i sur			· · · · · ·		20-1.1		93.3
್ಯ ತೃಕ್ಷಣ ಕೃತ್ಯ	i dit i	248.58	មិប្រែប្រ	81:0	8,-117	1 5 1	97.2
groundfjalen Jenzene (Efi		242.34	60.49	ನ್ ರ ಂದ ಕರ್ಮ	> 4 - 1 % t	1571	92. 9

.

THIEL: MILE PERINE.

PUBLISHED DEGRADS CONSI

TERRITAINARY SURPLIGN E HOAMBARD #580E.j

STATE OF A FOR STATE STATE - Ne Oe Abbe - - - 13 mixê€ 20:19 [04. F Hr.. SAMPLE MANTE 194499-0-

The Bloom State Community of the Communi

HEEROOF - MANAGE

85 FOURT (N SWIFT)	uess Spiken val	-64위 등등 - 1882 전달	SUIL LIMITS %	RECOVERY
47,44	9 ii - 2 ii -	** () *	20-121 (50)	94.0
49.5°	90. 0 0	88-1;0	81-112 (SI)	99.0
49,43	5/g : HH	An - 1 ° €	24-121 (62)	¥ ∀ .[[
	(N. SAMPLE)	AP.50 \$0.00	(M SAMPLE SPIKED A:	(N SAMPLE SPIRES A: . (N°TS LIMITS W 47.44

(G EL:M Leder.N e l

- Profile that the mileson to House in the Heat

ERRET OF MARKS BUPPINGSOFF BOOMDARD PERCHON

មានម៉ោង មានការការមាន ខាងការ មេន

1945 - 1940 - Time OR 1850, A 5 2 1 16201184- 2016-

58479 8 78 E HY0429-07

Markey to the second of the se

THE HOLD RECORD TO SELECT THE SEL

- () = H(()) \$\frac{1}{2} \tau_{1} \tau_{2}	AS FORMS In SWENS	Editoria Editoria	WATER CIMITS	SUIL Limits	4.5	RE-UVERY
.,D-Capharma - Charge selab Ea	48.65		26-114	20-121	 + <u>S</u> ,3+	Ψ7. <u>Д</u>
loluene-US:(UC)	49.19	\$15,000	88-110	8:-117	(51)	44.7
Snowatiaena- jenzeneitte	49.42	80.00	86-149	74-121	(59)	¥ਝ ਲੇ

্ডিটিচ: শেল্টেল্ডিল, সিলে ক

TENDER THE ORGANIES - 1981

те-ң оптыны қынжоқыг**е** қтымомко йңжОӨГ|

SAMPEE UPIA EILE - 7:8年17:10年 DR H 7:18 1988 原产 AMPE、41名 中 (1 AV79年 7::5年 名が18/元 MARSE - 9904(1977)を

METHUD - CHIM (METHUMENT - MECT OPERATOR - HAMILTE

	or Falling	ыня 86 (иб), на	864 € 1816	Start - A F	Paugoeer
. For Utiliana-	48.87	60.53	P6 - 114	20 A 1 1 1 1 5 5 5 1	97.7
% gene-d8+f0£+	47.67	50.0n	88-1:0	81-117 (6)	99.3
eropoficono- JenjenetSFET	49.21	5 0.00	86-115	2 4 -371 - 57 (98.4

rate, thist⊨aer,t. ⊨

Transport to the preparation and the state of the state o

(HRE) (Middle) 등이 모든 아니아 및 등이니다. HEO 유민은(HT)

하다 있었으나 한 불문 등 표

	Significant Property (1987)		(子) 在(/学+) () ()		
ente e tropologi		0000 8000- ₩₩ { (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		timire »	सेन्यूप्र _{चि} न्
.2+1、2+11.00+ .2+1、2+11.00+ 					
ng garag kajen (Og)	<u> 4명</u> .원명	9 (4.3)3	85-100	81-117 (51)	₩ .½
் மார்கள் க ூர் ஆது கார்	<u>4</u> 4,74	March (1991)	光亮 人名美国	14-17: (<u>†</u> 2)	မှမ ျ

y el≱f luHdHugN H f

ા મામાં કરવાડું કે માન્ય ફેલ્સમાં માટે કે કે પ્લાપ્ટ મેરે કે કે

THREE MINDER ENHANGALE ELANDARD BEADALL

targers arrangelies in 1841etina Carte es inche Gelenaar gelen in 1870ykae 2 195

ениегн мойб ч пчт42∀-2ч

ੈਨਾਜ਼ ਰਾਜ਼ਰ ਅਦਰਸ਼ਹਾ ਹੈ ਜ਼ਿਲ੍ਹੇ

	,a= −i.andafi	taber Fr	HATER	5034	
' = ਬ ਾਮਸਤੇਸ਼ ਦਿੱ	in the E	BEINED H:	i imili	LIMITS	씨 유는민인터된는데
l,2-frentero- ∵laane-d4:(Mf:	益學 . 货等	<u>\$4.</u> €.	26-114	70-171	등소) 무엇.팅
iviuene-d8:10L:	<u></u> 1, 9 5	50.00	88-119	81-117 (Si) 90.9
Scopefluores amzene(888)	<u>2</u> 9 90	50.00	86-115	24-121	99.7 99.7

HATELIN LEWED, N. H. J.

THE WESTERS - REPORTS

(PRELIMINARY EURENGARE STANDARD REPORT)

등위하다 된 Jan Hart Hole - (1841년1:64) TO A PARTY OF THE 9)ਗਾਸ ਦੇ ਪ੍ਰਸ਼ਾਦ । ਜੰਦਸ਼42ੁਖ-2ੁਰ ਸਮੇਂ ਜੀ ਤਰ੍ਹੇ ਜਾਵਦਾ ਦੇ ਹਨਕਾਰ ਹੈ। ej Heldi (Servi) Sjorane ademik (Servi)

OPERATOR CONTRACTE

-the entrace -	24 FORMO (M SAMECE	Щ#н≒ Э .Р - м + · · · за f	invale,⊭ - frief≒	5014 1.1017-	# #F (#)5# -
iko – u tadiko aras – ko – u tadiko aras – koaray – d⊈oaji £d	208.92	\$#.	26+11+	Phelyt (5%	9
or language Jers Tiller	240-62	§ 0.0∺	88-1.0	81-117 (S:	96.2
Heamot Dysers Syntyvnet 5분중기	246.1 9	មហ្	86 (15	24-121 - F-9	, 93.5

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [LOW LEVEL]

Sample Spiked: Date of Analysis: 090429-04

10-02-96

Client ID:

Batch QC

Solution ID:

B96MS0136

Batch #:

100296LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	MS Conc. (ug/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	2.1	17.30	76.2	59-172
Trichloroethene	20.0	< 5.00	20.03	100.2	62-137
Benzene	20.0	< 5.00	23.91	119.6	66-142
Toluene	20.0	< 5.00	20.37	101.9	59-139
Chlorobenzene	20.0	< 5.00	21.35	106.8	60-133

	Spike	MD	MD,%		Acceptabil limits, a	ity
Compound	Added	Conc.	Percent	%	%	%
	(ug/kg)	(ug/kg)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	20.0	18.20	80.7	5.74	59-172	22
Trichloroethene	20.0	20.08	100.4	0.25	62-137	24
Benzene	20.0	24.64	123.2	3.01	66-142	21
Toluene	20.0	20.34	102	0.1	59-139	21
Chlorobenzene	20.0	21.59	108.0	1.12	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

%RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS)

Volatile Organics in Soil Modified EPA Method 8240/8260 [LOW _EVEL]

Sample Spiked:

LL100296

Client ID:

Batch QC

Date of Analysis:

10-03-96

Solution ID:

M96MS0126

Batch #:

100396LA

Compound	Spike Added (ug/kg)	Sample Conc. (ug/kg)	LCS Conc. (ug/kg)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	18.50	92.5	59-172
Trichloroethene	20.0	< 5.00	20.58	102.9	62-137
Benzene	20.0	< 5.00	23.13	115.7	66-142
Toluene	20.0	< 5.00	21.08	105.4	59-139
Chlorobenzene	20.0	< 5.00	21.82	109.1	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Noncouformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260*

	GTEL File ID	BL100296IB
	Date Analyzed	10/02/96
Analyte	Reporting Limit ug/kg ^b	Concentration, ug/kg ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 ∪
Bromoethane	10	10 U
Chloroethane	<u>` 10 </u>	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	2.7
Methylene Chloride	5.0	5,0 ∪
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5,0 ∪
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	1.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EF/A Method 8260^a

	GTEL File ID	BL100296IB
<u></u>	Date Analyzed	10/02/96
Analyte	Reporting Limit, ug/kg	Concentration, ug/kg ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1.1.1.2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1.1.2.2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Low Soil EPA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

ANALYTICAL RESULTS Volatile Organics

^TEL Client ID:

966044044

ogin Number:

M6090429

Project ID (number): 6044

Project ID (name): Claremont Polychemic 1 Superfund Site

Method: EPA 8260

Matrix: Solids

	GTEL Sample Num		M6090429-13	M6090429-31	••	
	Client		CLLTEV03S037	CLLTEV03S055		••
	Date Samp		09/26/96	09/26/96	••	••
	Date Amaly		10/03/96	10/03/96		••
	<u>Dilution Fac</u>	tor_	1.00	1.00		
			50,1 11-	Soil In.		
	Reporting		ROA 2 00:45	Run 3 01:00		
Analyte	$\overline{}$	<u>nits</u>	Co	ncentration:Dry We	ight	
Dichlorodifluoromethane		ı/kg	1.2 U	1.2 U		
Chloromethane		J/kg	1.2 U	1.2 U		
Vinyl chloride		ı/kg	0.6 U	0.6 U	 ,	* * - : *
Bromomethane	_	J/kg	1.2 U	1.2 U		
Chloroethane		J/kg	1.2 U	1.2 U		
Trichlorofluoromethane	-	j/kg	· 0.6 U	0.6 U		
1.1-Dichloroethene		J/kg	0.6 U	0.6 U		
Methylene chloride		g/kg	0.6 U	0.6 U		
trans-1,2-Dichloroethene	0.6 mg	J/kg	0.6 U	0.6 U		
1.1-Dichloroethane	0.6 mg	į/kg	0.6 U	0.6 U		
2.2-Dichloropropane	0.6 mg	/kg	0.6 U	0.6 U		
cis-1.2-Dichloroethene	0.6 mg	j/kg	0.6 U	0.6 U		
Chloroform	0.6 mg	j/kg	0.6 U	0.6 U		
romochloromethane	0.6 mg	ı/kg	0.6 U	0.6 U		
1.1-Trichloroethane	-	/kg	0.6 U	0.6 U		🗨
1.1-Dichloropropene	0.6 mg	g/kg	0.6 U	0.6 U		
Carbon tetrachloride	-	/kg	0.6 U	0.6 U		
Benzene	•	j/kg	0.6 U	0.6 U		
1.2-Dichloroethane		g/kg	0.6 U	0.6 U		
Trichloroethene	•	j/kg	0.6 U	0.6 U		
1.2-Dichloropropane	•	j/kg	0.6 U	0.6 U		
Bromodichloromethane	•	j/kg	0.6 U	0.6 U		
Dibromomethane		j/kg	0.6.0	· 0.6 U		
Toluene		j/kg	0.6 U	0.6 U		
1.1.2-Trichloroethane	. •	j/kg	0.6 0	0.6 U		
1.2-Dibromoethane	-	g/kg	0.6 U	0.6 U		
Tetrachloroethene		/kg	14.	2.4		
1,3-Dichloropropane		j/kg	0.6 U	0.6 U		
Dibromochloromethane		g/kg	0.6 U	0.6 U		
Chlorobenzene		ı/kg	0.6 U	0.6 U		
Ethylbenzene	•	g/kg	0.6 U	0.6 U		
1.1.1.2-Tetrachloroethane	•	g/kg	0.6 U	0.6 U		
Xylenes (total)	•	g/kg	0.6 U	0.6 U		
1.3-Dichlorobenzene	•	g/kg g/kg	0.6 U	0.6 U		
Styrene	•	g/kg g/kg	0.6 U	0.6 U		
1.4-Dichlorobenzene	•	-	0.6 U	0.6 U		
Bromoform	-	g/kg		0.6 U		
1.2-Dichlorobenzene	-	g/kg	0.6 U			
Isopropylbenzene	•	g/kg	0.6 U	0.6 U		
TEL Milford, NH	U.O ING	g/kg	0.6 U	0.6 U		

m609**0**429

Page: 1

ANALYTICAL RESULTS Volatile Organics

TEL Client ID:

966044044

Login Number:

M6090429

Project ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Solids

GTEL Sample Number	M6090429-13	M6090429-31	••	
Client ID	CLLTEV03S037	CLLTEV03S055		• •
Date Sampled	09/26/96	09/26/96		
Date Analyzed	10/03/96	10/03/96		••
Dilution Factor	1.00	1.00		

	Reporting					
Analyte	Limit	Units	Conce	ntration:Dry Weigh	it	
1,1,2,2-Tetrachloroethane	0.6	mg/kg	0.6 U	0.6 U	•	
Bromobenzene	0.6	mg/kg	0.6 U	0.6 U		
1.2.3-Trichloropropane	0.6	mg/kg	0.6 U	0.6 U		••
n-Propylbenzene	0.6	mg/kg	0.6 U	0.6 U		
2-Chlorotoluene	0.6	mg/kg	0.6 U	0.6 U		••
1,3,5-Trimethylbenzene	0.6	mg/kg	0.6 U	0.6 U		, we want
4-Chlorotoluene	0.6	mg/kg	0.6 U	0.6 U		
tert-Butylbenzene	0.6	mg/kg⊳	0.6 U	0.6 U		• • •
1.2.4-Trimethylbenzene	0.6	mg/kg	0.6 U	0.6 U		
sec-Butylbenzene	0.6	mg/kg	0.6 U	0.6 U		~-
p-Isopropyltoluene	0.6	mg/kg	0.6 U	0.6 U		
n-Butylbenzene	0.6	mg/kg:	0.6 U	0.6 U		••
1.2-Dibromo-3-chloropropane	0.6	mg/kg	0.6 U	0.6 U		
2,4-Trichlorobenzene	0.6	mg/kg	0.6 U	0.6 U		and the second
	0.6	mg/kg	0.6 U	0.6 U		•-
Naphthalene	0.6	mg/kg	0.6 U	0.6 U		
1,2,3-Trichlorobenzene	0.6	mg/kg	0.6 U	0.6 U	••	••
cis-1,3-Dichloropropene	0.6	mg/kg	0.6 ⊍	0.6 U		
trans-1.3-Dichloropropene	0.6	mg/kg	0.6 U	0.6 U		
Percent Solids	•	*	97.4	81.5		

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste. Physical/Chemical Methods". SW-846. Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was analyzed for but not detected at or above the reporting limit indicated.

"B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action. "J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated.

TEL Milford, NH M6090429

Page: 2

(GTEL: MILFORD, N.H.)

[UOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18424::D4

DATE AND TIME OF AMALYSIS = 10/03/96 12:54

SAMPLE NAME = BS100196A

MEJTHOD = CSCVT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
1,2-Dichloro- thane-d4(DCE)	5.89	50.00	76-114	70-121 (S	3) 94.2
Foluene-d8(TOL)	6.14	50.00	88-110	81-117 (9	98.2
3romofluoro- penzene(BFB)	5.93	50.00	86-115	74-121 (S	2) 94.9

(GIEL:MILFORD, M.H.)

(UOLATILE ORGANICS - SCYMS)

TPRELIMINARY SUPPUGATE STANDARD REPORTS

SAMPLE DATA FILE = \\18429::[4

DATE AND TIME OF AMALIBIES 10/0/298 12:34

SAMPLE NAME - 090429-15

METHOD - CSCOT (NETRONENT - MSC) OFERATOR - VANGLE

::::::::::::::::::::::::::::::::::::::	AS FOUND IN SAMPLE	WAS SPIKEO A!	44768 Lim(15	SOIL Limits	% RELOVERY
,2-Oichloro- Thane-d4(DCE)	6.02	50.00	26-114	70-121 (9	531 96.4
Toluene-d8(TOL)	6.17	50.00	88-1:0	81-117 ()	ši) 98.7
⊰romofluoro- ∵enzene(BFB)	5.92	50.HO	86-119	74-121 (94.7

[GTEL:MALLFORD,N.H.]

(VOLATILE URBANIUS - 50 403)

TERELIMINARY SURRUGATE STANDARD REPORT!

SAMPLE DATA FILE - >18425::U4

DATE AND TIME OF ANALYSIS = 10/03/95 1=:13

SAMPLE 4ANE - 090429-31

мова, рыба мернор - съси

.NatheumenT = MSOL

OPERATOR - UNNETE

SURROGATE	AS FOUND IN SAMPLE	0145 SH.КЕО НП	WATER LIMITS	SOIL LIMITS	% RELOWERY
1,2-Dichloro- ethane-d4(DCE)	5.80	Su. ng	76-114	20-121 (9	96.6
Foluene-d8(TOL)	5.91	§0.UO	88-110	81-117 (9	48.4
Bromofluoro- Jenzene(BFB)	5.76	₩O.6U	86-115	24-121 (3	62 ·

(G)EL:MILFOFO,N.H.:

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18428::04 DATE AND TIME OF ANALYSIS = 10/03/96 15:32

SAMPLE NAME = MS090429-04

MISC. INFO =

METHOD = CSCVT INSTRUMENT = MSDI

OPERATOR = VANGIE

URROGATE	FOUNO SAMPLE	WAS SPIKED AT	WATER LIMITS	SO!L LIMITS	% RECOVERY
,2-Dichloro- thane-d4(DCE)	 5.65	50.00	76-114	70-121	(83) 88.3
oluene-d8(TOL)	6.42	50.00	88-110	81-117	(SÎ) 100.3
romofluoro- enzene(BFB)	6.29	50.00	86-115	74-121	(S2) 98.3

(GTEL:M(LFORG, M.H.)

[VOLATILE ORGANICS - GC/MS]

[PRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18429::D4

DATE AND TIME OF ANALYSIS = 10/03/96 16:09

SAMPLE NAME = MDU90429-04

MISC. [NFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

SURROGATE	AS FOUND IN SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	% RECOVERY
.,2-Dichloro- ;thane-d4(DCE)	5.26	₹0.00	76-114	70-121	(S3) 86.9
Foluene-d8(TOL)	5.96	€0.00	88-110	81-117	(S1) \$98.5
3romofluoro- penzene(BFB)	5.98	90.00	86-115	74-121	(S2) 98.9

(STEL:MILFORU, M.H.)

[UOLATILE ORGANICS - GC/MS]

[FRELIMINARY SURROGATE STANDARD REPORT]

SAMPLE DATA FILE = >18430::04

DATE AND TIME OF ANALYSIS = 10/03/96 16:47

SAMPLE NAME = LS100196A

MISC. INFO =

METHOD = CSCUT INSTRUMENT = MSDI OPERATOR = VANGIE

BURROGATE		FOUND SAMPLE	WAS SPIKED AT	WATER LIMITS	SOIL LIMITS	*	RECOVERY
1,2-Dichloro- (ethane-d4(DCE)		5.31	50.00	76-114	70-121	(53)	85.0
Toluene-d8(TOL)	• ·	6.42	50.00	88-110	81-117	(51)	102.8
Bromofluoro- penzene(BFB)		6.28	50.00	86-115	74-121	(S2)	100.4

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Soil Modified EPA Method 8240/8260 [MEDIUM LEVEL]

Sample Spiked: Date of Analysis: 090429-13

10-03-96

Client ID:

Batch QC

Solution ID:

M96MS0292B

Batch #:

100196MA

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	MS Conc. (mg/kg)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	6.38	< C.62	6.47	101.4	59-172
Trichloroethene	6.38	< C.62	6.90	108.2	62-137
Benzene	6.38	< C.62	7.20	113	66-142
Toluene	6.38	< C.62	6.77	106	59-139
Chlorobenzene	6.38	< C.62	6.71	105.2	60-133

	MD Spike	MD		MD,%		Acceptabi limits, a	•
Compound	Added	Conc.		Percent	%	%	%
	(mg/kg)	(mg/kg)		Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	6.07	5.	25	87	15.9	59-172	22
Trichloroethene	6.07	6.	58	108	0.2	62-137	24
Benzene	6.07	6.9	92	114	1.0	66-142	21
Toluene	6.07	6	39	105	0.8	59-139	21
Chlorobenzene	6.07	6/	63	109	3.8	60-133	21

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery, due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS), PERCENT RECOVERY REPORT

Volatile Organics in Soil Modified EPA Method 8240/8260 [MEDIUM LEVEL]

Sample Spiked:

LS100196A

Client ID:

Batch QC

Date of Analysis:

10-03-96

Solution ID:

M96MS0292B

Batch #:

100196MA

Compound	Spike Added (mg/kg)	Sample Conc. (mg/kg)	LCS Conc. (mg/kg)	LCS% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	6.25	< 0.62	7.08	113	59-172
Trichloroethene	6.25	< 0.62	6.67	107	62-137
Benzene	6.25	< 0.62	6.18	99	66-142
Toluene	6.25	< 0.62	6.46	103	59-139
Chlorobenzene	6.25	< 0.62	6.36	102	60-133

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

GTEL Client ID: 966044044

Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260

	GTEL Blank ID	BS100196A
	Date Analyzed	10/03/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dichlorodifluoromethane	1.2	1.2 U
Chloromethane	1.2	1.2 U
Vinyl Chloride	0.6	0.6 U
Bromomethane	1.2	1.2 U
Chloroethane	1.2	1.2 U
Trichlorodifluoromethane	0.6	0.6 U
1,1-Dichloroethene	0.6	0.6 U
Methylene Chloride	0.6	0.6 U
trans-1,2-Dichloroethene	0.6	0.6 U
1,1-Dichloroethane	0.6	0.6 U
2,2-Dichloropropane	0.6	0.6 U
cis-1,2-Dichloroethene	0.6	0.6 U
Chloroform	0.6	0.6 U
Bromodichloromethane	0.6	0.6 U
1,1,1-Trichloroethane	0.6	0.6 U
1,1-Dichloropropane	0.6	0.6 U
Carbon Tetrachloride	0.6	0.6 U
Benzene	0.6	0.6 U
1,2-Dichloroethane	0.6	0.6 U
Trichloroethene	0.6	0.6 U
1,2-Dichloropropane	0.6	0.6 U
Bromochioromethane	0.6	0.6 U
Dibromochloromethane	0.6	0.6 U
cis-1,3-Dichloropropene	0.6	0.6 U
Toluene	0.6	0.6 U
trans-1,3-Dichloropropene	0.6	0.6 U
1,1,2-Trichloroethane	0.6	0.6 U
1,2-Dibromomethane	0.6	0.6 U
Tetrachloroethene	0.6	0.6 U
1,3-Dichloropropane	0.6	0.6 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260^a

	GTEL Blank ID	BS100196A
	Date Analyzed	10/03/96
Analyte	Reporting Limit, mg/kg	Concentration, mg/kg
Dilbromochloromethane	0.6	0.6 U
Chlorobenzene	0.6	0.6 U
Ethylbenzene	0.6	0.6 U
1,1,2,2-Tetrachloroethane	0.6	0.6 U
Xylenes (total)	0.6	0.6 U
1,3-Dichlorobenzene	0.6	0.6 U
Styrene	0.6	0.6 U
1,4-Dichlorobenzene	0.6	0.6 U
Bromoform	0.6	0.6 U
1,2-Dichlorobenzene	0.6	0.6 U
Isopropylbenzene	0.6	0.6 U
1,1,2,2-Tetrachloroethane	0.6	0.6 U
Bromobenzene	0.6	0.6 U
1,2,3-Trichloropropane	0.6	0.6 U
n-Propylbenzene	0.6	0.6 U
2-Chlorotoluene	0.6	0.6 U
1,3,5-Trimethylbenzene	0.6	0.6 U
4-Chlorotoluene	0.6	0.6 U
tert-Butylbenzene	0.6	0.6 U
1,2,4-Trimethylbenzene	0.6	0.6 U
sec-Butylbenzene	0.6	0.6 U
p-lsopropyltoluene	0.6	0.6 U
n-Butylbenzene	0.6	0.6 U
1,2-Dibromo-3-chloropropane	0.6	0.6 U
1,2,4-Trichlorobenzene	0.6	0.6 ∪
Hexachlorobutadiene	0.6	0.6 U
Naphthalene	0.6	0.6 ∪
1,2,3-Trichlorobenzene	0.6	0.6 U
cis-1,3-Dichloropropene	0.6	0.6 U
trans-1,3-Dichloropropene	0.6	6 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Aromatic Volatile Organics in Soil EPA Method 8260*

- a Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.
- c Total 1,2-dichloroethene is the sum of the cis-iand trans- isomers.

Narrative Summary

Login Number: M6090429 Project ID (number): 6044

roject ID (name): Claremont Polychemical Superfund Site

Date of Report: Oct 09, 1996

Footnotes and Comments

Symbol keys (may appear beside values)

- * Indicates the analyte has been qualified in the narrative section of the report.
- d Indicates the analyte was reported from a dilution other than that indicated on the report page.
- B Organic Analyses Indicates the analyte is found in the associated blank as well as in the sample.
- B Inorganic Analyses Indicates an estimated value below the EPA Contract Required Detection Limit.
- G Indicates an estimated surrogate recovery due to dilutions.
- J Indicates an estimated value below the reporting limit.
- U Indicates the analyte was analyzed for but not detected.
- NA Matrix Spike Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Matrix Spike Duplicate RPD Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Serial Dilution RPD Results Not Applicable, since the Sample Conc. was less than five times the CLP Contract Required Detection Limit.

Inorganics

Method: EPA 6010A

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 2.

Digestion is Method Specific.

10 14M - KO928MS condustrations are probably 184 325.2 - Choride expedite are morta VOINGMS Flash Point 🗆 ☐ (iorrosivity ☐ Storage Location: X U 0109 🗆 1247 🗆 0247 🗖 7.002 🗇 2.852 beau CAM Metals TTLC - STLC -EPA Metals - Priority Pollutant 🗆 TAL 🗀 RCRA 64040 □ CLP Metals □ VOA □ Semi-VOA □ Pest □ Herb □ ElP TOX Metals

Pesticides

Herbicides 3 ☐ 0168 ☐ 019 A9B Work Order # M 6C9C42 Received by Laboratory: ☐ (\$S+) SBN ☐ JAT\07S8 ☐ J99\25 A9B ☐ (\$1+) SBN ☐ JAT\0\$28 ☐ J99\P5 A99 macros / 105 // EPA 608 - 8080 - PCB only -CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST Lab Use Only Lot EPA 602 [EPA 8020 [Received by Received by □ 0108 A93 □ 108 A93 REMARKS Waybill # EPA 503.1
EPA 502.2 EDB PA 504 - DBCP by 504 -□ 503 M2 □ 1.814 AI\H9II Oil and Grease 413.1 🗆 413.2 🗅 SM 503 🗆 Time Time ☐ iesei ☐ Hydrocarbons GC/FID Gas □ SPECIAL REPORTING REQUIREMENTS

3-5 day fox ETEX/Gas Hydrocarbons PID/FID | with MTBE | 12:60:16 Date with MTBE □ 0208 □ 209/X3T[®] 13:30 13:35 13:40 13:50 13:55 20:07 13:4 12.1 Sampling SPECIAL DETECTION LIMITS BMI : 8 GTHER PATE MEADOWBROOK INDUSTRIAL PARK (NAME) CHOFFIRM PSY CLAMICAL SADO) Method Preserved 4188-642-915 UNPRESERVED 008-642-915 ЭÇI '05°₩ FAX 52014 NINO³ HICH (som Sampler Name (Print) <u>язнтф</u> Client Project ID: (#) MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL TOUGOR OTHER USCOF B. I. MAHY POCKOY Matrix **≇**เกอด∈ Site location: ЯIÀ PO # SC-96-6044-044 7IO§ × × Phone #: FAX#: **MATER** Special Handling 22 2 # Containers N IN 2 2 Relinquished by Sampler: GTEL Contact 1/11, (Lab use only) Quote/Contract # _ GTEL Lab# Relinquished by: Relinquished by: QA / QC LEVEL Confirmation # edures were used during the collection ast that the proper field sampling 1 ENVIRONMENTAL LIEY-05-5-032 320-KM-83-1736 8CO-5-90-1367 1754-03-5-028 060-5-20-13-17 UEV-03-5-033 EAVICONMUNTO. LIEN-33-5-03 620-5-60-17357 20-NN-86-131 UK-05-W-016 RECORD 11141500 CL_P Field Sample ID 1 Winding pany Address ect Manager: ese samples pany Name: edited (48 hr) usiness Days iness Days rity (24 hr) 10

-YOJZBMS × × × × × × × □ (fivisono) Reactivity 🗆 ☐ trio9 dasl7 Storage Location: Organic cead 🗖 ہد × × × Lead 239.2 - 200.7 - 7420 - 7421 - 6010 **₹**~ Received by Laboratory: Arthory CAM Metals TTLC - STLC -EPA Metals - Priority Pollutant

TAL

RCRA 64041 ☐ Hetals ☐ AOV ☐ Semi-VOA ☐ Pest ☐ Herb EP TOX Metals

Pesticides

Herbicides Work Order # M 10 C9 C + 2 C) EPA 610 □ 8310 □ □ (\$2 +) \$8N □ 1AT/078 □ 1995 (+25) □ □ (\$! +) SBN □ JATIO+S8 □ J99(+15) □ Lab Use Only Lot # EPA 608 - 8080 - PCB only -CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST EPA 602 [] EPA 8020 [] Received by: Received by: □ 0108 A93 □ 108 A93 REMARKS Waybill # EPA 503.1 □ EPA 502.2 □ EDB PY 504 - DBCP by 504 -☐ 503 M2 ☐ 1.814 AI\H9T ☐ and Grease 413.1 ☐ 413.2 ☐ SM 503 ☐ CI. COINNER Time Time Time Hydrocarbon Profile (SIMDIS) Screen ☐ lesei ☐ Hydrocarbons GC/FID Gas □ SPECIAL REPORTING REQUIREMENTS BTEX/Gas Hydrocarbons PID/FID | with MTBE | Date Date with MTBE □ 0208 17:00 00:91 17:00 14:05 14:10 14:20 15:45 15:50 15:55 14:15 Sampling SPECIAL DETECTION LIMITS **HIME** 8.01.26 = OTHER SPECIFY) STAC to MEADOWBROOK INDUSTRIAL PARK Method Preserved NUPRESERVED ICE × × × 'OS'H HNO FAX HCI Sampler Name (Print): **ЯЗНТО** Client Project ID: (#) MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL тоидояч Matrix SCUDGE AIA Site location: **710S** × Phone #: (NAME) MATER FAX#: Special Handling # Containers 222 2 2 N Relinquished by Sampler (Lab use only) GTEL Lab# Relinquished by Relinquished by Quote/Contract # QA / QC LEVEL Confirmation # GTEL Contact edures were used during the collection Ξ. ~ ~ 2 : $\hat{}$ OTHER ٠ est that the proper field sampling PO # UEN-03-5-044 240-5-50-1317 240-5-20-1347 ENVIRONMENTAL LABORATORIES, INC UEN-03-5-039 040-5-50-N317 17EV-03-5-041 19EV-03-5-038 460-5-80-1317 1181-03-5-038 LYEV-03-5-03 SUSTODY RECORD CLP (D Field Sample ID npany Address ese samples pany Name: ect Manager bedited (48 hr) usiness Days siness Days ority (24 hr) 삨

ĕ

CT.	MEA	MEADOWBROOK INDUSTRIAL P	/BR	Ò	N	SOC	TRIA	L P/	ARK		(SE	₹ 5	CHAIN-OF-CUSTODY RECORD	ŽŽ.	370	7	EC(JRD.			3	308	0		`			
ENVIRONMENTAL		(603) 672-4835 (800) LAB-GTEL	583 T	15.55 1.05 1.05 1.05 1.05 1.05 1.05 1.05	2000	Pot	,)	0	4	T	- -	t	ζ)	5	5	Ē	3	S			•	r O))	1					
ompany Name:		Phone #:	 # •			•													.										-
mpany Address:		Site location:	ocati	:io										1100:00					•							5A 2F			
pject Manager:		Clien	t Pro	ject I	Client Project ID: (#)										203 MS (-		(+ 52)					2 - <u>2 °</u> 131 □ 19	deactivity		
ttest that the proper field sampling ocedures were used during the collection these samples	ampling the collection	Samp	E P	lame	(NAME) Sampler Name (Print):	÷															8N □ JAT\(7420 = 7		1.195-	
i 7	Ē	819	~	Matrix	. <u>×</u> .		Method	Method Preserved	<u> </u>	Sampling	ng																<u>/ </u>	- 00	_
Sample ID	GIEL Lab # (Lab use only)	# Contain	SOIL	STADGE ►	РАОDUСТ ОТНЕЯ	ЮH	H ² 20'	NIJBHEREBAED IC/E	D#1E (3•ECIFY) O'HER	- BMIT		B↑EX/602 □	BITEX/Gas Hy	Hydrocarbon	Oll and Greas	1.814 AI\HAT 3 408 by 504	□ t.603.1 □	∃ □ 109 A 9 ∃	ENA 608 8	EPA 624/PPL	EMA 625/PPL	8 □ 019 A49	EP TOX Meta	- elsteM A'13	CAM Metals	Lead 239.2 □	Corrosivity	978M5	
240-5-60-1317	3.1	N	×				Ė	×	96	1 72%0	10:91		1	1	2	N.	-	\vdash							-	-		×	
-11EV-03-5-046	2.2	2	×					×			1.01					1			,			\vdash						×	
860-5-50-1217-	(1)	7	×	,	\Box	<u>; </u>		×	;;	11 11	6:19	<u>,—</u>	<u></u>			:			,					:	-			 ×	
-LIEV-05-5-047	>	2	×					×		" 17	21:					•												×	
-UFEV-03-5-050	ن کی	7	×					×		" [7	12:																	×	-
UNEW 03-5-05T	36	2	×					×		" 17	:28								_							×		×	+
-11EV-03-5-052	> 22	2	×					×		" 17	:33							-	\dashv				\Box					×	
-1161-05-5-011	7.	2	×					×		"	52.							\dashv	\dashv			-	\dashv			4		7	
-11EV-03-5-053	74	2	×					`~		" /7	K							\dashv										×	<i>:</i>
-UEV-03-5-054	36	2	×	_			_	- 1	_	" 17	:43	ί.						-			\exists		_					ҳ	-
TAT	Special Handling	gulling				SPE	SPECIAL DET	_	ECTIO	ECTION LIMITS	ပ္ပ					뿐	REMARKS	S)											
iority (24 hr)	GTEL Contact				, . I											_													
pedited (48 hr)	Quote/Contract #				1														,										
Susiness Days	Confirmation #					SPE	SPECIAL REF	REP	ORTIN	ORTING REQUIREMENTS	UIRE	WENT	S			Lat	Lab Use Only Lot	Only	Fot #	_				Stor	age	Storage Location:	ë.		
ess Days	 				ı																					•			
	OA / OC LEVEL				i																				\wedge	~	(
UE CLP CLP	ОТНЕЯ	1				FAX										× ×	Work Order #	der#	٤	6 C4	cho bog w	5-			į	7	,		
	Relinquished by Sampler:	ü									ă	Date	_	Time		B.	Received by	d by:	1										
SUSTODY	Relinquished by:								'	-	۵	Date		Time	60	P.	Received by:	by:											
RECORD	Relinquished by:								,	_	۵	Date		Time		æ	Received by Laboratory:	by L	abora	atory:	B	1	\{\{\}	13	3	ا) `			
7/41						ż					7	28/91		01.6	C		Waybill #		100		76	10	35/	1					
											-																		

- K0928MS Reactivity Flash Point 🗆 Corrosivity [Storage Location Lead 239.2 🗆 2007 🗀 7420 🗀 729.2 🗀 5010 226 CAM Metals TTLC - STLC -Received by Laboratory: Authory. 64303 EPA Metals - Priority Pollutant

TAL

RCRA TCLP Metals ☐ VOA ☐ Semi-VOA ☐ Pest ☐ Herb Waybill # 7/6 2 1375/12 EP TOX Metals □ Pesticides □ Herbicides □ □ 0168 □ 019 A93 Work Order # 1 6090724 EPA 625/PPL [8270/TAL [NBS (+25) EPA 624/PPL □ 8240/TAL □ NBS (+15) □ Lab Use Only Lot # EPA 608 □ 8080 □ PCB only □ CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST □ 0208 A43 □ 208 A43 Received by: Received by: □ 0108 A93 □ 109 A93 REMARKS EPA 503.1 □ EPA 502.2 □ EDB PN 204

DBCP by 504 □ 803 M2 □ 1.814 FINH91 ☐ Sind Grease 413.1 ☐ 413.2 ☐ SM 503 ☐ 01.4 Time Time Time Hydrocarbon Profile (SIMDIS) Screen □ leseiQ Hydrocarbons GC/FID Gas □ BTEX/Gas Hydrocarbons PID/FID □ with MTBE □ SPECIAL REPORTING REQUIREMENTS 13/20/10/2 with MTBE Date □ 0208 **BTEX/602** □ Date Date Sampling SPECIAL DETECTION LIMITS TIME A. 09.25 OTHER (SPECIFY) TAC MEADOWBROOK INDUSTRIAL PARK MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL Method Preserved DIAMESERVED ICE 'OS'H FAX HNO3 ЮН Sampler Name (Print): **GTHER** Client Project ID: (#) SLUDGE PRODUCT Matrix ЯΙΑ Site location ROIL Phone #: (NAME) FAX#: **MATER** Special Handling # Containers N Relinquished by Sampler (Lab use only) GTEL Lab# Relinquished by: Relinquished by: Quote/Contract # QA / QC LEVEL Confirmation # GTEL Contact edures were used during the collection OTHER_ ۲, at that the proper field sampling PO #_ 250-5-60-1357 USTODY RECORD C.P. D Field Sample ID pany Address ese samples. pany Name: ect Manager: TAT edited (48 hr) siness Days rity (24 hr) ness Days

*

Laboratory Sample Number	Client Sample Number	Collect r Date		Due Date
M6090429-01 Army deliverables pa any rerun due to OOC NACL concentration.	ckage \ Client	t specific QC \	BJU reporting \	11-OCT-96 Include Report as
Aqueous S NA/6010 Aqueous S P/3005/	/B B	Hold: 25-MAR-97 Hold: 25-MAR-97	w7e w7e	1 Bottles 0 Bottles
M6090429-02 Army deliverables pa any rerun due to OOC NACL concentration.	ckage \ Client	A- 020 26-SEP t specific QC \	-96 28-SEP-96 BJU reporting \ ecords needed. \	11-OCT-96 Include Report as
Aqueous S CLRID/3	25.2L/B	Hold:24-OCT-96	w7e	1 Bottles
M6090429-03 Army deliverables pa any rerun due to OOC	ckage \ Clien	t specific QC \	BJU reporting \	11-OCT-96 Include
Aqueous S 8260/B	sarrogaces ,	Hold: 10-OCT-96	28-1c	2 Bottles
M6090429-04 Army deliverables pa any rerun due to OOC	ckage \ Clien	t specific QC \	BJU reporting \	11-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	sarrogaces ,	Hold:10-OCT-96	231c 231c	2 Bottles 0 Bottles
M6090429-05 Army deliverables pa any rerun due to OOC	ckage \ Clien	t specific QC \	BJU reporting \	11-0CT-96 Include
Solids S 8260/B Solids S SOLIDS	, 20110da	Hold:10-OCT-96	231c 231c	2 Bottles 0 Bottles
M6090429-06 Army deliverables pa any rerun due to OOC	ckage \ Cliem	t specific QC \	BJU reporting \	11-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	surrogaces ,	Hold:10-OCT-96	231c 231c	2 Bottles 0 Bottles
M6090429-07 Army deliverables pa	ckage 🔪 Cliem	t specific QC \		04-OCT-96 Include
any rerun due to OOC Solids S 8260/B Solids S SOLIDS	sarrogaces /	Hold:10-OCT-96	231c 231c	2 Bottles 0 Bottles
M6090429-08 Army deliverables pa	CL-LTEV-03-5	t specific QC \setminus	-96 28-SEP-96 BJU reporting \	11-OCT-96 Include
any rerun due to OOC Solids S 8260/B	surrogates /	Hold:10-OCT-96	231c	2 Bottles

Laboratory Sample Numbe		Client Sample Number	Collect Date			Due Date
Solids S	SOLIDS			231c	() Bottles
Army deliver any rerun du Solids S	ables pac	surrogates 🔪	032 26-SEP- specific QC \ Full custody re Hold:10-OCT-96	ecords needed.	`\:	11-OCT-96 Include 2 Bottles 0 Bottles
M6090429-10 Army deliver any rerun du	ables pac le to OOC 8 8260/B	kage \ Client surrogates \	033 26-SEP specific QC \ Full custody ro Hold:10-OCT-96	-96 28-SEP-96 BJU reporting ecords needed.		11-OCT-96 Include 2 Bottles 0 Bottles
Army deliver any rerun du Solids S	ables pac	kage \ Client surrogates \	034 26-SEP specific QC \ Full custody ro Hold:10-OCT-96	BJU reporting ecords needed.	· 🔨 :	11-OCT-96 Include 2 Bottles 0 Bottles
Army deliver any rerun du	rables pac le to OOC 8 8260/B	kage \ Client surrogates \	036 26-SEP specific QC \ Full custody ro Hold:10-OCT-96	BJU reporting ecords needed.		11-OCT-96 Include 2 Bottles 0 Bottles
Army deliver any rerun du Solids S	ables pac	kage \ Client surrogates \	037 26-SEP specific QC \ Full custody r Hold:10-OCT-96	BJU reporting ecords needed.	1 /	04-OCT-96 Include 2 Bottles 0 Bottles
Army deliver any rerun du Solids	ables pac	kage \ Client surrogates \	038 26-SEP specific QC \ Full custody r Hold:10-OCT-96	BJU reporting ecords needed.	1 /	11-OCT-96 Include 2 Bottles 0 Bottles
Army deliver any rerun du Solids	ables pac	kage \ Client surrogates \	039 26-SEP specific QC \ Full custody r Hold:10-OCT-96	BJU reporting ecords needed.	1 /	11-OCT-96 Include 2 Bottles 0 Bottles

Laboratory Sample Number	Client Sample Number	Collect Date	Receive Date PR	Due Date
M6090429-16 Army deliverables pa any rerun due to OOC	ckage \ Client speci	fic OC \ BJ	U reporting \	04-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	Hold:1	.0-OCT-96 23	lc	2 Bottles 0 Bottles
M6090429-17 Army deliverables pa any rerun due to OOC	ckage \ Client speci	fic QC \ BJ	U reporting \	04-OCT-96 Include
Solids S 8260/B Solids S SOLIDS		.0-OCT-96 23	lc	2 Bottles 0 Bottles
M6090429-18 Army deliverables pa any rerun due to OOC	ckage \ Client speci	fic QC \ BJ	U reporting \	11-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	Hold:1	0-OCT-96 23	lc	2 Bottles 0 Bottles
M6090429-19 Army deliverables pa any rerun due to OOC	ckage \ Client speci	fic QC \setminus BJ	U reporting \	11-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	Hold:	0-OCT-96 23 23	lc	2 Bottles 0 Bottles
M6090429-20 Army deliverables pa any rerun due to OOC	ckage \ Client speci	fic QC \ BJ	U reporting \	04-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	" Hold:1	0-OCT-96 23	lc lc	2 Bottles 0 Bottles
M6090429-21 Run MS/MSD \ Army de \ Include any rerun Solids S 8260/B Solids S SOLIDS	liverables package \	Client spe S \ Full cu 10-0CT-96 23	cific QC \ BJ stody records	11-OCT-96 J reporting needed. 2 Bottles 0 Bottles
M6090429-22 Army deliverables pa any rerun due to 000	CL-LTEV-03-\$-046 ckage \ Client speci	fic QC \ BJ	28-SEP-96 U reporting \ rds needed.	11-0CT-96 Include
Solids S 8260/B Solids S SOLIDS	Hold:	LO-OCT-96 23	lc lc	2 Bottles 0 Bottles
M6090429-23 Army deliverables pa any rerun due to 000	CL-LTEV-03-5-048 ckage \ Client speci surrogates \ Full o		28-SEP-96 U reporting \ ords needed.	11-0CT-96 Include
Solids S 8260/B	Hold:	LO-OCT-96 23	lc	2 Bottles

Laboratory Sample Number	Client Sample Number	Collect Receive Date Date PI	
Solids S SOLIDS		231c	0 Bottles
Army deliverables pa	ckage \ Client specif	26-SEP-96 28-SEP-96 fic QC \ BJU reporting \ stody records needed.	11-0CT-96 Include
Solids S 8260/B Solids S SOLIDS		D-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client specif	26-SEP-96 28-SEP-96 fic QC \ BJU reporting \ ustody records needed.	11-OCT-96 Include
Solids S 8260/B Solids S SOLIDS	Hold:10	0-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client speci:	26-SEP-96 28-SEP-96 5 fic QC \ BJU reporting ustody records needed.	04-0CT-96 \ Include
Solids S 8260/B Solids S SOLIDS		0-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client speci:	26-SEP-96 28-SEP-96 fic QC \ BJU reporting ustody records needed.	11-OCT-96 \ Include
Solids S 8260/B Solids S SOLIDS		0-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client speci:	26-SEP-96 28-SEP-96 fic QC \ BJU reporting ustody records needed.	11-OCT-96 \ Include
Solids S 8260/B Solids S SOLIDS	Hold:10	0-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client speci	26-SEP-96 28-SEP-96 fic QC \ BJU reporting ustody records needed.	11-0CT-96 \ Include
Solids S 8260/B Solids S SOLIDS		0-OCT-96 231c 231c	2 Bottles 0 Bottles
Army deliverables pa	ckage \ Client speci	26-SEP-96 28-SEP-96 fic QC \ BJU reporting	11-0CT-96 \ Include
solids S 8260/B Solids S SOLIDS	Hold:1	ustody records needed. 0-OCT-96 231c 231c	2 Bottles 0 Bottles

Laboratory Sample Number	Client Sample Numb	er	Collect Date	Receive Date P	Due E Date
M6090429-31 Army deliverables pacany rerun due to OOC Solids S 8260/B Solids S SOLIDS	kage \ Clie	nt specifi \ Full cus	c QC \ BJ tody reco: OCT-96 23	U reporting `rds needed.	04-OCT-96 Include 2 Bottles 0 Bottles
M6090429-32 Full custody records Aqueous S 8260/B Aqueous S CLRID/32 Aqueous S NA/6010/ Aqueous S P/3005/B	needed.			28-SEP-96 5 -1c e	
M6090429-33 Full custody records Aqueous S 8260/B Aqueous S CLRID/32 Aqueous S NA/6010/ Aqueous S P/3005/B	BLUE QC needed. 5.2L/B B	Hold:10-		e	
M6090429-34 Full custody records Solids S 8260/B	BLUE QC needed.			28-SEP-96 5	
M6090429-35 Full custody records Solids S 8260/B	needed.	Hold:10		28-SEP-96 5	04-OCT-96

Login Number: M6090429

	Samples Transfered	Released by	Time	Date	Transf. 5	TO.	Pecyd By	Time	Date	
,		F2) Jongieur 15	1		7		Keeva bi	TIME	Date	
		1		,	• •		11. 2		101 10	
		12. 77 1420								5-41
	<i>L'</i>	TI 1530 10/1/91			, ,	. 1/	// // //	,	' ' ' '	,
		20.26.31(15/2)	,		, .		and the second s			
	4-31(20+2)	Shaan More	2-17:	(50)0/1	196 Cto A	<u> </u>	1-1495	10/2/96	ź	
Ġ	11/0/1/	Mark Who who can	66 Z	- / /	Sty Ayr	77	7945 10/1.	2/965_		
		F 11) 26 31/192	Hioz	10/2/3	<u> </u>	<u> </u>	77-150	19/2/96		
	•	pho gest					,	,	7 7	
1	4(10/2)	Wil Inka	17:20	10/2/9	storage		Byland	30/1 7:	21 10-2-9	'y
	9-12(20/2)	my graft	11/6	2) 10-	3 th GCM:	SVOA	Mulo A uske	U_10:5	0 10/4/9	76
	<u>9-/2(26/2</u>) Mula Ductor	4:16	12/11/96	starage,	<u></u>	TG 3-4	Bosola	16:10 10	يعدعورا
	3(10f2)2	12 len col 5/	196 4:	30	GCMS VO	A	Mila Ducke	r_3;00	10/7/9	76
	[8,19,21,2	425 28 (202)7	millu	195190	17:00 13041	s VOA	Some Pink	De 101	796 9:0	(O
	1(181) 12	TA-1105 101	17/46	in ats/s	Then I/	ille	W 11:091	10/07/	96	
	iD 12 -1 77 =	25 -28 (2072) 800	0.2	10/-19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tivo	8 1111	110510	12/9/2	
	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	de Pan-			, ,	~ / A	/		, ,	
	,		,	///	/		~	. ,		
	/ / //	ki Braundill		///	Z siha i I I	-1			\sim \sim	i
/		Jack Schangsch		<i>F</i> (, C.	4			10 08	و) ۱۹
,		Deblic Hotope.								
ľ	<u> </u>	Whomphote Mil	K Zuigli	10/2/4/2	SR/AV	<u> </u>	~ 1335 10/9	166		
								-		
								<u> </u>		

INTERNAL SAMPLE HISTORY

oleri	*C F=frozen	Bluep /-Y		ICE	BAGGZD V-Yes	Top √-Yes	Interspers	ed	Bottom J-Yes		ot or Little
1	60			-Nater				-		21-0	/ /: ==1=
		1.		 		1					/ Little / Little
				,							/ Little
			:	1							/ Little
Unpa	cker notes GT	EL coolers	retun	ted with th	is job. Each bl	ock represe	nts a cooler. D	ata en	rv upda	tes cooler tr	acking.
Unpa	cker notes GT	EL coolers	retun	led with th	15 job. Each bl	ock represe	nts a cooler. D	ata en	TV upda	ites cooler tr	acking.
			.		\						l
			-								
			HCL	, HNO3, at	Preservand H2SO4 phe		I ph>12 or ph>	.9			
	Sample	ID	HCL	HNC3, at			I ph>12 or ph>			Нф	PP /-yes
				ЬÑ	nd H25O4 ph					рH	
	Sample			ЬÑ	nd H25O4 ph					рН	
			20	ЬÑ	PP						
		-WA-(20	ЬÑ	PP						
		-WA-(20	ЬÑ	PP						
		-WA-(20	ЬÑ	PP						

N:\QAmilf\loghist.pre

LEV. VII 05/07/%

Date:__/__/_

Contact:

🗸 = Nonconformance seen in Login

Time: AM/PM

Sample Custodian:	Burg			Customer Service
rems to be Discussed.		NTAIN	CONTAINERS: Other (non-GTEL/ICHEM)	nep. Resolution
Temperature ooc	H H	X	Jr missing	on cocs 64041, 64302,64303
Hd	Wrong Preserv.	×	Sample Signature missing	
Wrong Cont. (Yellow dot)/ Insuf. Sam	dou/ Insuf. Sample	9		
INORGANICS Default Used	ult Used corre	orrect?		
Sample Date coc missing / lebel missing / not earee	ilna / label missina / not aar	90		
Sample Time coc missing / label missing / not agree	on / poissim Jebel / poissim	f Agree		
Sire Location missing myc	49 200 (sw	140,	64041 0422, 64323	
/ Project #				
			•	
VerICY TAT				
- NO TAPE ON SAMPLE CONTIENERS	SALPLE CONTR	INCO	3	
100000 AS CLAGO	10) Jes Ven	773	CLAWD JEB VERTEY POUR BOCKED AS MICHONY	v3/1-
CLATO/325.16	DOGENT	M	war ns /610 - Verze-	
				, 0,
OLIENT ED.				
No VOA backup	Wrong Container	tainer	Unused Containers	

SOIL DRY WEIGHT SPREADSHEET

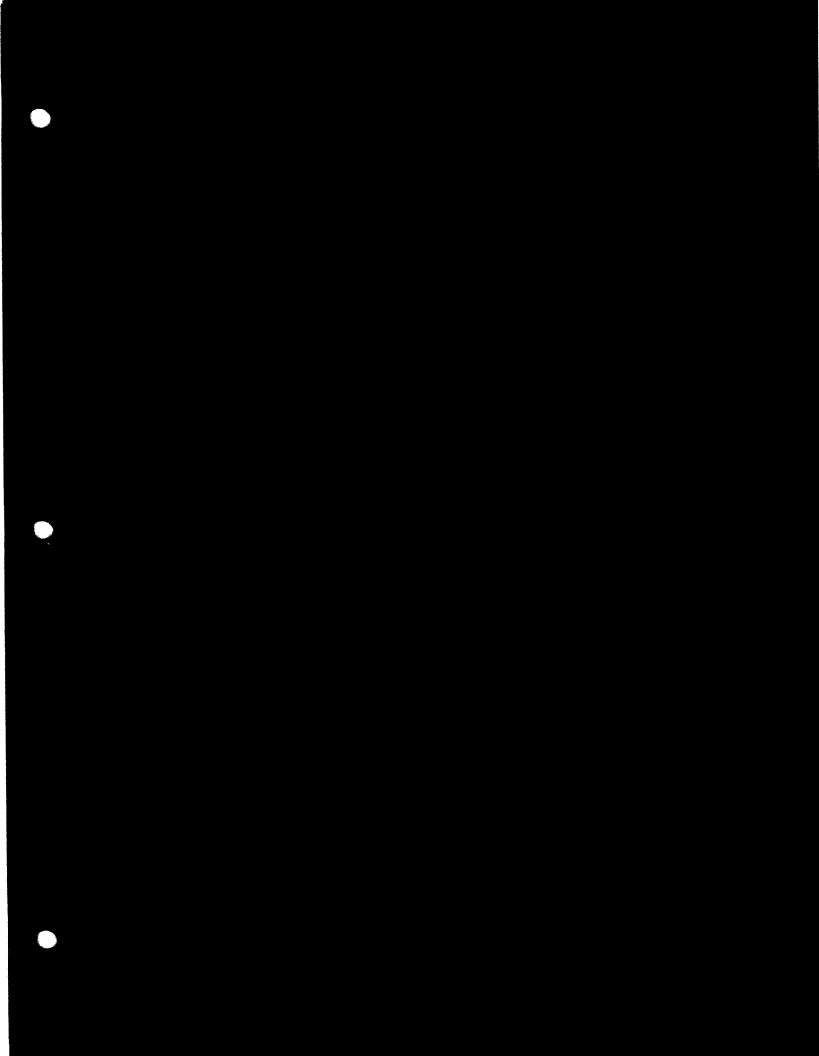
Oven No.: 6 Balance Number: T8 File No.: 100196SQL

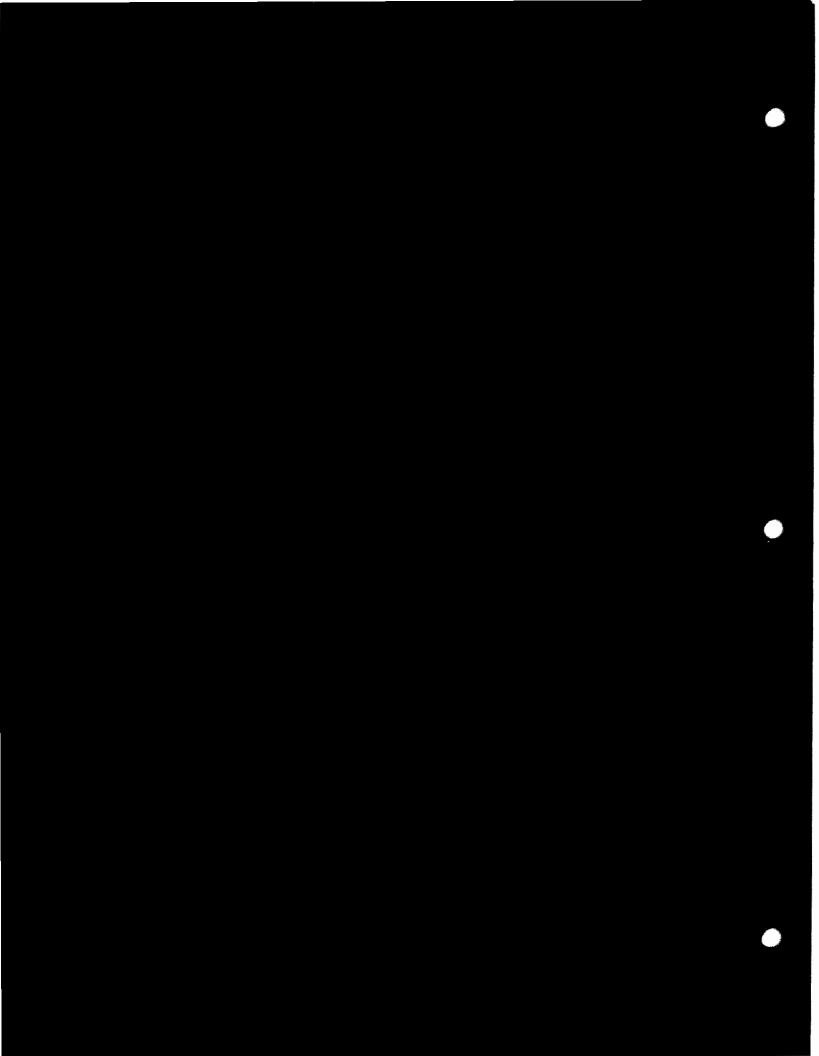
Book #: 1730

Page #: 0081

Logins needing MOISTURE formats: Logins needing DUP's (SOLIDS/C): Comments:

Email Sent (Y/N):


Date in: 10/01/96 Time In: 17:30 Temp. In: 105


Date Out: 10/02/96
Time Out: 08:35 am
Temp Out: 105

STARTED BY: Shana Morgan

COMPLETED BY :_ 16

						R.Grant	
		WET	WET	DRY	DRY		
LOGIN	DISH	DISH	MASS	DISH	MASS	%SOLIDS	MOIST.
09040111	0.9800	11.5300	10.5500	2.9200	1.9400	18.39	81.61
09040121	0.9800	11.5300	10.5500	2.920()	1.9400	18.39	81.61
09042010	0.9900	11.8900	10.9000	11.3000	10.3100	94.59	5.41
09042601	0.9800	11.2500	10.2700	10.4300	9.4500	92.02	7.98
09042602	0.9900	11.5500	10.5600	10.7000	9.7100	91.95	8.05
09042603	0.9700	11.7200	10.7500	10.0300	9.0600	84.28	15.72
09042604	1.0000	11.0600	10.0600	10.4900	9.4900	94.33	5.67
09042605	1.0000	11.2800	10.2800	9.5700	8.5700	83.37	16.63
09042606	0.9900	11.6100	10.6200	10.6600	9.6700	91.05	8.95
09042607	1.0100	11.0900	10.0800	9.9600	8.9500	88.79	11.21
09042608	0.9900	11.2700	10.2800	10.2700	9.2800	90.27	9.73
09042609	0.9800	11.4000	10.4200	10.1500	9.1700	88.00	12.00
09042610	0.9900	11.2700	10.2800	10.4700	9.4800	92.22	7.78
09042611	0.9900	10.8100	9.8200	10.2200	9.2300	93.99	6.01
09042612	0.9800	11.0600	10.0800	9.7100	8.7300	86.61	13.39
09042613	0.9800	10.9500	9.9700	9.4500	8.4700	84.95	15.05
09042614	0.9800	11.1700	10.1900	10.1200	9.1400	89.70	10.30
09042615	1.0100	10.9800	9.9700	9.0600	8.0500	80.74	19.26
09042616	1.0200	11.1500	10.1300	10.0000	8.9800	88.65	11.35
09042617	1.0100	10.8300	9.8200	10.2200	9.2100	93.79	6.21
09042618	0.9900	11.2500	10.2600	9.8500	8.8600	86.35	13.65
09042619	1.0100	11.4400	10.4300	10.2900	9.2800	88.97	11.03
09042904	0.9900	11.4400	10.4500	10.8400	9.8500	94.26	5.74
09042905	1.0000	11.0600	10.0600	10.5200	9.5200	94.63	5.37
09042906	1.0000	11.4300	10.4300	11.0700	10.0700	96.55	3.45
09042907	1.0100	11.6000	10.5900	10.9700	9.9600	94.05	5.95
09042908	1.0100	11.6300	10.6200	9.0700	8.0600	75.89	24.11
09042909	1.0000	11.2200	10.2200	10.7200	9.7200	95.11	4.89
09042910	1.0200	11.2600	10.2400	10.6400	9.6200	93.95	6.05
09042911	0.9900	11.4800	10.4900	11.0000	10.0100	95.42	4.58
09042912	0.9700	11.6700	10.7000	11.1700	10.2000	95.33	4.67
09042913	1.0000	11.2500	10.2500	10.9800	9.9800	97.37	2.63
09042914 09042915	0.9900	11.6500	10.6600	9.8000	8.8100	82.65	17.35
09042916	0.9800	11.0000	10.0200	10.5200	9.5400	95.21	4.79
09042917		11.0700	10.0800	10.6700	9.6800	96.03	3.97
09042918	0.9700	10.8000	9.8300	10.0200	9.0500	92.07	7.93
09042919	0.9800	11.5500 11.5800	10.5700 10.6000	9.1900	8.2100	77.67	22.33
09042920	1.0000	11.0300	10.0300	11.1400	10.1600	95.85	4.15
09042921	1.0200	11.6200	10.6000	9.2800	8.2800	82.55	17.45
09042922	1.0000	11.1300	10.1300	11.1600	10.1400	95.66	4.34
09042923	1.0000	10.8500	9.8500	9.1000	8.1000	79.96	20.04
09042924	0.9900	11.4500	10.4600	10.460C 9.220C	9.4600 8.2300	96.04 78.68	3.96
09042925	0.9700	11.3400	10.3700	10.800C	9.8300	94.79	21.32
09042926	0.9800	11.4500	10.4700	10.8700	9.8900	94.79	5.21
09042927	0.9800	11.0200	10.0400				5.54
09042928	0.9900	11.3800		9.0200	8.0400	80.08	19.92
09042929	1.0100		10.3900	9.0600	8.0700		22.33
09042929	1.0200	11.2200	10.2100	8.8500	7.8400	76.79	23.21
09042931	1.0000	11.2300	10.3500	9.4400	8.4200		18.65
10000301	0.9900	11,3400		9.3400	8.3400	81.52	18.48
10000301	1.0000		10.3500 10.1100	9.3300	8.3400	80.58	19.42
10000302	0.9700	11.1100 11.2400		9.4300	8.4300	83.38	16.62
10000303	1.0000	11.0900	10.2700	10.0300	9.0600	88.22	11.78
10000304	1.0100	$\overline{}$	10.0900	9.6400	8.6400	85.63	14.37
10000303	0.9900	11.4300	10.4200	10.7100	9.7000	93.09	6.91
10000301	0.9900	11.2400	10.0000	8.6600	7.6700	76.70	23.30
10001201	0.9800	11.6200	10.2500	9.8900	8.9000	86.83	13.17
10001202	0.9800	11.8800	10.6400	10.4800	9.5000 9.9300		10.71 8.90
		LLOOUU	IU SEELI	10 91(1)	9 9300	91.10	8.90

Northeast Region

Meadowbrook Industrial Park Milford, NH 03055 (603) 672-4835 (603) 673-8105 (FAX)

October 11, 1996

John Munson Dow Environmental, Inc. 501 Winding Road. Old Bethpage, NY 11804

RE: GTEL Client ID:

Login Number:

Project ID (number):

Project ID (name):

966044044

M6090429

6044

Claremont Polychemical Superfund Site

Dear John Munson:

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on 09/28/96 under Chain-of-Custody Number(s) 64040/64041/64302/64303.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes. This Analytical report shall not be reproduced except in full.

GTEL is certified by the State of New York under Lab ID #10599.

venelle for

If you have any questions regarding this analysis, or if we can be of further assistance, please call our Customer Service Representative.

Sincerely.

GTEL Environmental Laboratories, Inc.

Susan C. Uhler

Laboratory Director

GTEL Client ID: 966044044 Login Number: M6090429 Project ID (number): 6044

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

CONFORMANCE/NONCONFORMANCE SUMMARY

(X = Requirements Met

* = See Comments

NA = Not Applicable)

#	Conformance Item	VOA GC/MS	VOA GC	SV GC/MS	SV GC	METALS	WET CHEM
1	GC/MS Tune	X	NA		NA	NA	NA
2	Initial Calibration	Х				Х	Х
3	Continuing Calibration	X	_		_	х	Х
4	Surrogate Recovery	X	_		_	NA	NA
5	Holding Time	Χ.	-		_	X	х
6	Method Accuracy	X	_		-		•
7	Method Precision	Х			_	*	X
8	Blank	•	_	_		x	X

9 Comments:

Method 8260 in Low Soil:

Batch QC. Lab anomaly. Method Blank BL10(1296IR > 1/2 reporting limits, 1,1-Dichloroethane. Due to contaminated syringe. Analyte detected on sarpples is < 1/2 reporting limit.

Method 325.2 in Aqueous:

Sample M6090429-02. Sample anomaly. Estimated concentration. Matrix Spike and Matrix Spike Duplicate 090429-02 < limits, Chloride 3.1% Rec bias. Due to matrix interference. Supporting data batch laboratory control samples demonstrate(s) accuracy (%Rec).

Method 6010 in Aqueous:

Sample M6090429-01. Sample anomaly. Matrix Spike and Matrix Spike Duplicate 090429-01. Not appropriate for evaluation. Sodium. Due to sample > spike. Supporting data batch laboratory control sample(s) demonstrate(s) accuracy (% Rec). %RPD based on concentration is 1.5% and demonstrate(s) precision (%RPD or RSD).

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

jin Number:

M6090429

Project ID (number): 6044
Project ID (name): Claremont Polychemical Superfund Site

Method: EPA 8260 Matrix: Aqueous

rioject is (name).	one ronjenem car	ouper i	und Sitte		maci ix. Aqu	cous
	GTEL Sample N	lumber	M6090429-03	••	••	
		nt ID	CLLTEV03WA016		••	• •
	Date Sa		09/26/96	••		
	Date Ana	•	10/07/96			
	Dilution F	-	1.00		••	
	Diracioni	<u>uc coi</u>	Trip Blook.			
	Reporting		Cooler Z			
Analyte		Units		Concentration:		
Dichlorodifluoromethane	10.	ug/L	10. U	oneener de ron.		
Chloromethane	10.	ug/L	10. U			
Vinyl chloride	5.0	ug/L	5.0 U			
Bromomethane	10.	ug/L	10. U	- •		
Chloroethane	10.	ug/L	10. U			
Trichlorofluoromethane	5.0	ug/L	· 5.0 U			
1,1-Dichloroethene	5.0	ug/L ug/L	5.0 U			
Methylene chloride	5.0	ug/L	5.0 U			
trans-1,2-Dichloroethene	5.0	ug/L	5.0 U			
1.1-Dichloroethane	5.0	ug/L	5.0 U			• • •
2,2-Dichloropropane	5.0	ug/L	5.0 U	<u> </u>		
cis-1,2-Dichloroethene	5.0	ug/L	5.0 U			
Chloroform	5.0	ug/L	5.0 U	<u></u>		
Promochloromethane	5.0	ug/L	5.0 U		33333333333 - 15,411, 17,413 - 15,413 - 15,413 - 15,413 - 15,413 - 15,413 - 15,413 - 15,413 - 15,413 - 15,413 	2000 - Tagasan Tagasan
2.1-Trichloroethane	5.0	ug/L	5.0 U			er Akrejon <u>ist</u> Lääsenäillöt
1.1-Dichloropropene	5.0	ug/L	5.0 U			
Carbon tetrachloride	5.0	ug/L	5.0 U			
Benzene	1.0	ug/L	1.0 U			
1,2-Dichloroethane	5.0	ug/L ug/L	5.0 U			
Trichloroethene	5.0	ug/L ug/L	5.0 U			
1,2-Dichloropropane	5.0	ug/L	5.0 U			
Bromodichloromethane	5.0	ug/L ug/L	5.0 U			
Dibromomethane	5.0	ug/L ug/L	5.0 U			
	5.0	ug/L ug/L	5.0 U	7.7		
cis-1,3-Dichloropropene Toluene	5.0	ug/L ug/L	5.0 U			1570 445 3551 ven 300 355 (5.5%)
trans-1,3-Dichloropropene	5.0	ug/L ug/L	5.0 U			
1,1,2-Trichloroethane	5.0	ug/L	5.0 U			
1.2-Dibromoethane	5.0	ug/L ug/L	5.0 U			
Tetrachloroethene	5.0 5.0	ug/L ug/L	5.0 U			
1,3-Dichloropropane	5.0	ug/L	5.0 U		요 : 요하 하네워딩() (1)	
Dibromochloromethane	5.0	ug/L	5.0 U			
Chlorobenzene	5.0	ug/L	5.0 U	Substitute for the first through the second of the first state of the first state of the second of t	######################################	
Ethylbenzene	5.0 5.0	ug/L	5.0 U		enegrical espaga	
1.1.1.2-Tetrachloroethane	5.0	ug/L	5.0 U	2 (1976), 1996 		
Xylenes (total)	5.0 5.0	ug/L ug/L	5.0 U		•	
1,3-Dichlorobenzene	5.0	ug/L	5.0 U	· 한번 10년 - 11년 - 11년 - 11년 -	···	
Styrene	5.0	ug/L ug/L	5.0 U	ing the state of t		-
1.4-Dichlorobenzene	5.0	ug/L ug/L	5.0 U	· ~ . .	·	
Bromoform Bromoform	5.0 5.0	ug/L ug/L				
DI OHO (OTH)		ug/L	2.0 0			

TL Milford, NH

J90429

MALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090429

rroject ID (number): 6044

Project ID (name):

Claremont Polychemical Superfund Site

Method: EPA 8260

Matrix: Aqueous

GTEL Sample Number	M6090429-03			
Client ID	(¡LLTEV03WA016		••	
Date Sampled	09/26/96	••		
Date Anail yzed	10/07/96	••		
Dilution Factor	1.00			

	Reporting		
Analyte	Limit	Units	Concentration:
1,2-Dichlorobenzene	5.0	ug/L	5.0 U
Isopropylbenzene	5.0	ug/L	5.0 U
1,1,2,2-Tetrachloroethane	5.0	ug/L	5.0 U
Bromobenzene	5.0	ug/L	5.0 U
1,2,3-Trichloropropane	5.0	ug/L	5.0 U
n-Propylbenzene	5.0	ug/L	· 5.0 U
2-Chlorotoluene	5.0	ug/L	5.0 U
1,3,5-Trimethylbenzene	5.0	ug/L	5,0 U
4-Chlorotoluene	5.0	ug/L	5.0 U
tert-Butylbenzene	5.0	ug/L	5.0 U
1,2, 4 -Trimethylbenz e ne	5. 0	ug/L	5.0 U
sec-Butylbenzene	5.0	ug/L	5.0 U
p-Isopropyltoluene	5.0	ug/L	5.0 U
9utylbenzene	5.0	ug/L	5.0 U
¹ ∠-Dibromo-3-chloropropane	5.0	ug/L	5.0 U
1,2,4-Trichlorobenzene	5.0	ug/L	5.0 U
Hexachlorobutadiene	5.0	ug/L	5.0 U
Naphth a lene	5.0	ug/L	5.0 U
1,2,3-Trichlorobenzene	5.0	ug/L	5.0 U

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', SW-846, Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the amplyte was analyzed for but not detected.

"J" indicates the presence of a compound that meets the mass specyral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" ind;cates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination; The data user is warned to take appropriate action.

DataFile : C:\HPCHEM\1\DATA\K100796\K4822.D

Sample Name: BW100796KA Operator

Instrument: MSDK

Sample Misc:

Acquisition: 7 Oct 96 at 2:12 pm

Multiplier:1. Quant Time: 10-11-96 at 9:57 via Daily Calibration Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-11-96 at 9:51 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100796\K4821.D

Acquisition Timestamp : 7 Oct 96 1:10 pm Quantitation Timestamp: Oct 11 09:55 1996

Calibration Timestamp : Fri Oct 11 09:56:57 1996 Initial Calibration : Mon Oct 07 10:10:05 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.47 15.11 18.87	51.12	50.00	102.23	76-114 88-110 86-115	pass

[Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits		Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.88-11.88 12.09-13.09 16.63-17.63 20.56-21.56	12.59 17.13	pass pass	89925-359698 232445-929778 123883-495532 94957-379828	151168 375862 204233 139647	pass pass

Reporting Time: 12:21:24 Date: 10/11/96

[ENVIRONMENTAL GC/MS QA/QC REPORT]

DataFile : C:\HPCHEM\1\DATA\K100796\K4828.D

'ample Name: M6090429-03

sample Misc:

Acquisition: 7 Oct 96 at 6:05 pm

Quant Time: 10-11-96 at 10:6 via Daily Calibration

Operator :SillyGoos

Instrument: MSDK

Multiplier:1.
Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-11-96 at 9:51 Acquisition Paramaters: 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100796\K4821.D

Acquisition Timestamp: 7 Oct 96 1:10 pm Quantitation Timestamp: Oct 11 09:55 1996

Calibration Timestamp: Fri Oct 11 09:56:57 1996
Initial Calibration: Mon Oct 07 10:10:05 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.11		50.00	101.00 99.37 91.61	88-110	pass

[Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.88-11.88 12.09-13.09 16.63-17.63 20.56-21.56	12.60 17.14	pass pass	89925-359698 232445-929778 123883-495532 94957-379828	179925 467314 248308 175153	pass pass

Reporting Time: 12:21:50 Date: 10/11/96

DataFile : C:\HPCHEM\1\DATA\K100796\K4829.D

3ample Name: MS090429-03

ample Misc:

Acquisition: 7 Oct 96 at 6:41 pm

Quant Time : 10-11-96 at 10:7 via Daily Calibration

Operator

Instrument: MSDK Multiplier:1. Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-11-96 at 9:51 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100796\K4821.D

Acquisition Timestamp : 7 Oct 96 1:10 pm Quantitation Timestamp: Oct 11 09:55 1996

Calibration Timestamp: Fri Oct 11 09:56:57 1996 Initial Calibration : Mon Oct 07 10:10:05 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.48 15.11 18.88	49.79	50.00	99.59	76-114 pass 88-110 pass 86-115 pass

Standard _l Internal Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.88-11.88 12.09-13.09 16.63-17.63 20.56-21.56	12.59 17.14	pass pass	89925-359698 232445-929778 123883-495532 94957-379828	166401 447616 245364 181019	pass pass

Reporting Time: 12:21:53 Date: 10/11/96

DataFile : C:\HPCHEM\1\DATA\K1007\6\K4830.D

uple Name: MD090429-03

Sample Misc:

Acquisition: 7 Oct 96 at 7:17 pm Multiplier:1.

Quant Time: 10-11-96 at 10:9 via Daily Calibration Matrix: Water

Operator

Instrument: MSDK

Title of the GC/MS Method: SW-846: \$240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-11-96 at 9:51 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100796\K4821.D

Acquisition Timestamp: 7 Oct 96 ::10 pm Quantitation Timestamp: Oct 11 09:55 1996

Calibration Timestamp: Fri Oct 11 09:56:57 1996 Initial Calibration : Mon Oct 07 10:10:05 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.47 15.12 18.87	49.68	50.00 50.00 50.00		76-114 88-110 86-115	pass

[Internal Standard Report]

Internal Standard	-+Q.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.88-11.88 12.09-13.09 16.63-17.63 20.56-21.56	12.59 17.13	pass pass	89925-359698 232445-929778 123883-495532 94957-379828	177089 474305 255251 187752	pass pass

Reporting Time: 12:21:55 Date: 10/11/96

DataFile : C:\HPCHEM\1\DATA\K100796\K4823.D

F nple Name: LW100796KA

ple Misc:

Requisition: 7 Oct 96 at 2:48 pm

Quant Time: 10-11-96 at 9:58 via Daily Calibration

Operator Instrument: MSDK

Multiplier:1. Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-11-96 at 9:51 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100796\K4821.D

Acquisition Timestamp: 7 Oct 96 1:10 pm Quantitation Timestamp: Oct 11 09:55 1996

Calibration Timestamp: Fri Oct 11 09:56:57 1996 Initial Calibration : Mon Oct 07 10:10:05 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.48 15.11 18.87	50.01	50.00	100.07 100.03 95.84	88-110	pass

unternal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits		Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.88-11.88 12.09-13.09 16.63-17.63 20.56-21.56	12.59 17.14	pass pass	89925-359698 232445-929778 123883-495532 94957-379828	176492 459939 251007 188704	pass pass

Reporting Time: 12:21:30 Date: 10/11/96

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Water GC/MS VOA

Sample Spiked: Date of Analysis: 090429-03

10/07/96

Client ID: B

Batch QC

Solution ID: M96MS0133

Batch #: 100796KA

Compound	Spike Added (ug/L)	Sam Co (ug	80 a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.a.	MS (Conc. (ug/L)	MS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	<	5.00	19.99	100.0	61-145
Trichloroethene	20.0	<	5.00	20.39	102.0	71-120
Benzene	20.0	<	5.00	20.69	103.5	76-127
Toluene	20.0	<	5.00	21.13	105.7	76-125
Chlorobenzene	20.0	<	5.00	20.83	104.2	75-130

	Spike	MD	,MD,%		Acceptabilit limits, a	У
Compound	Added (ug/L)	Conc. (ug/L)	Fercent Recovery	% RPD	% Recovery	% RPD
1,1-Dichloroethene	20.0	19.42	97.1	2.89	61-145	14
Trichloroethene	20.0	19.69	98.5	3.49	71-120	14
Benzene	20.0	19.43	97.2	6.28	76-127	11
Toluene	20.0	20.16	100.8	4.70	76-125	13
Chlorobenzene	20.0	20.14	100.7	3.37	75-130	13

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Confract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD

Volatile Organics in Water GC/MS VOA

Sample Spiked:

LW100796KA

Date of Analysis:

10/07/96

Client ID:

Batch QC

Solution ID: M96MS0133

Batch #:

100796KA

Compound	Spike Added (ug/L)	Sample Conc. (ug/L)	LCS Conc. (ug/L)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	18.17	90.9	61-145
Trichloroethene	20.0	< 5.00	20.17	100.9	71-120
Benzene	20.0	< 5.00	19.57	97.9	76-127
Toluene	20.0	< 5.00	20.97	104.9	76-125
Chlorobenzene	20.0	< 5.00	20.72	103.6	75-130

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Nonconformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

GTEL Client ID: 966044044 Login Number: M6090429 Project ID (number): 6044

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METH�D BLANK RESULTS Volatile Organics in Aqueous E₽A Method 8260°

	GTEL File ID	BW100796KA
	Date Analyzed	10/07/96
Analyte	Reporting Limit ug/L ^b	Concentration, ug/L ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	5.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

GTEL Client ID: 966044044 Login Number: M6090429 Project ID (number): 6044

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Aqueous EPA Method 8260°

	GTEL File ID	BW100796KA
	Date Analyzed	10/07/96
Analyte	Reporting Limit, ug/L	Concentration, ug/L ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0_	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0_	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U

GTEL Client ID: 966044044 Login Number: M6090429
Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHQD BLANK RESULTS Volatile Organics in Aqueous EF/A Method 8260^a

	GTEL File ID	BW100796KA
	Date Analyzed	10/07/96
Analyte	Reporting Limit ug/L ^b	Concentration, ug/L ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	<u>10</u> U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	<u>5</u> .0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	5.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5. <u>0</u> U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5. <u>0</u> U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

GTEL Client ID: 966044044 Login Number: M6090429 Project ID (number): 6044

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Aqueous EPA Method 8260^a

	GTEL File ID	BW100796KA
	Date Analyzed	10/07/96
Analyte	Reporting Limit, ug/L	Concentration, ug/L ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-Isopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U

GTEL Client ID: 966044044 Login Number: M6090429 Project ID (number): 6044

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE

METHOD BLANK RESULTS Volatile Organics in Aqueous EPA. Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification priteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

GTEL Client ID: 966044044

ANALYTICAL RESULTS

Login Number: M6090429

Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site

Date of Report: Oct 09, 1996

PA 6010A	GTEL Sample Number	M6090429-01
Metals	Client ID	CLLTEV03WA020
Matrix: Aqueous	Date Sampled	09/26/96
	Date Prepared	10/07/96
	Date Analyzed	10/07/96
	Adjustment Multiplier	1.00
	Reporting	CTEV- 1 T. V
Analyte	Limit Units	witer Supply Tonk
Sodium	1000 ug/L	27000

Narrative Summary

Login Number: M6090429 Project ID (number): 6044

oject ID (name): Claremont Polychemical Superfund Site

Date of Report: Oct 09, 1996

Footnotes and Comments

Symbol keys (may appear beside values)

- \star Indicates the analyte has been qualified in the narrative section of the report.
- d Indicates the analyte was reported from a dilution other than that indicated on the report page.
- B Organic Analyses Indicates the analyte is found in the associated blank as well as in the sample.
- B Inorganic Analyses Indicates an estimated value below the EPA Contract Required Detection Limit.
- G Indicates an estimated surrogate recovery due to dilutions.
- J Indicates an estimated value below the reporting limit.
- U Indicates the analyte was analyzed for but not detected.
- NA Matrix Spike Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Matrix Spike Duplicate RPD Results Not Applicable, Bince the Sample Conc. exceeded four times the Spike Added.
- NA Serial Dilution RPD Results Not Applicable, since the Sample Conc. was less than

five times the CLP Contract Required Detection Limit.

Inorganics

Method: EPA 7421

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 2.

Digestion is Method Specific.

GTEL Client ID: 966044044 ANALYTICAL RESULTS

Login Number: M6090429 Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site Date of Report: Oct 09, 1996

.PA 7421 Metals	Client ID	CLLTEV03WA020
Matrix: Aqueous	Date Sampled	09/26/96
	Date Prepared	10/07/96
	Date Analyzed	10/08/96
	Adjustment Multiplier	1.00
	Reporting	UEN-
Analyte	Limit Units	Ushir Supply Took

ANALYTICAL RESULTS Chloride

GTEL Client ID:

966044044

in Number:

M6090429

Project ID (number): 6044
Project ID (name): Clare

Claremont Polychemical Superfund Site

Method: EPA 325.2

Matrix: Aqueous

GTEL Sample Number	M6090429-02	••	••	••
Client ID	CI.LTEV03WA025	••	••	••
Date Sampled	09/26/96	••	••	
Date Anallyzed	10/01/96	••		••
Dilution Factor	1.00		••	••

Reporting

Notir Supply Tonk

Analyte	Limit Uni	nits	Concentration:	
Chloride	4.0 mg	ng/L 40.		

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 325.2:

"Methods for Chemical Analysis of Water and Wastes". EPA 600/4-79-020. USEPA EMSL, Cincinnati, OH, Revised, March 1983.

M6090429-02:

See Nonconformance Summary.

L Milford, NH 100090429

Page: 1

GTEL Client ID: 966044044
Login Number: M6090429

Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site

QUALITY CONTROL RESULTS

_PA 6010A

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

Metals

Date of Report: Oct 09, 1996

Matrix: Aqueous	Sample ID:	M6090429-01	N	S ID:MS	9042901	. MSD	ID:MD0904	2901			
	Analysis Date:	10/07/96		10/	07/96		10/07/	96			
Units: ug/L		Sample	Spikes	Added	MS	MS	MSD	MSD		Acceptabi	lity Limits
Analyte		Conc.	MS	MSD	Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	%Rec.
Sodium	Unit with District Health of	27000 (27300)	5560	5560	32700	97.1	32200	88.1	NA 0.00 NA	20	80-120

GTEL Client ID:

966044044

Login Number: M6090429

Project ID (Number): 6044

roject ID (Name): Claremont Polychemical Supermund Site

QUALITY CONTROL RESULTS

EPA 6010A

Laboratory Control Sample(LCS) Results

Metals

Matrix: Aqueous

Blank Ref: BW100796A

LCS Ref:LW100796A

Date Prepared: 10/07/96

10/07/96

Date of Report: Oct 09, 1996

Date Analyzed: 10/07/96

10/07/96

Units: ug/L	Sample	Spike Adced	LCS	LCS	Acceptability Limits
Analyte	Conc.	LCS	Conc.	%Rec.	
Sodium	U 1000(0.00)	5560		99.1	80-120

GTEL Client ID: 966044044

Login Number:

M6090429

Project ID (Number): 6044

QUALITY CONTROL RESULTS METHOD BLANK REPORT

roject ID (Name): Claremont Polychemical Superfund Site

Date of Report: Oct 09, 1996

EPA 6010A	GTEL Sample Number	10079615A-1	
Metals	Reference	BW100796A	
Matrix: Aqueous	Date Prepared	10/07/96	
	Date Analyzed	10/07/96	
	Adjustment Multiplier	1.00	
	Reporting		
Analyte	Limit Units		
Antimony	60 ug/L	60 U	
Sodium	1000 ug/L	1000 U	

Chloride

EPA Method

325.2

Quality Control Results

Method Blank

Date Analyzed: 10/01/96

Date / mary Lou. 10/0 1/00		
GTEL	Reporting	Result Q
Sample ID	Limit	(mg/L)
i i	(mg/L)	
BW100196	.4.00	4.00 U

Matrix Spike (MS) Recovery

Date Analyzed: 10/01/96

Date Analyzeu.	10/01/00							
GTEL	Sample	Q	Spike	MS Result	Q	% Recovery	Q	Control
Sample ID	Result		Amount	(mg/L)				Limits
	(mg/L)			, , ,				
MS090429-02	40.0230		50.0000	78.4690		76.9	N	80-120%

Matrix Spike Duplicate (MD) Sample Results

Date Analyzed: 10/01/96

Date Allalyzed.	10/01/30							
GTEL	Spike	Q	MD Result	%	Q	% RPD	Q	Control
Sample ID	Amount		(mg/L)	Recovery				Limits
MD090429-02	50.0000		78.5240	77.0020	Ν	0.14		20

Laboratory Control Sample (LCS) Results

Date Analyzed: 10/01/96

Date Analyzed.	10/01/00					_	
GTEL		Spike	LCS Result	Q	% Recovery	Q	Control
Sample ID		Amount	(mg/L)				Limits
		(mg/L)					
LW100196		74.00	72.92		98.5		90-110%

Qualifiers (Q)

- U Indicates analyte was not detected at or apove the reporting limit.
- * See Nonconformance Summary
- NA = Not applicable; %RPD is not calculated when sample result is less than five times the reporting limit.

GTEL Client ID: 966

966044044

ANALYTICAL RESULTS

Login Number:

M6090414

Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Date of Report: Oct 10, 1996

GTEL Sample Number	M6090414-11
Client ID	CLLTEV03WA023
Date Sampled	09/26/96
Date Prepared	09/01/96
Date Analyzed	10/03/96
Adjustment Multiplier	1.00
Reporting	Scrubber Oscharge Run 3
Limit Units	Run 3
1000 ug/L	330000
	Client ID Date Sampled Date Prepared Date Analyzed Adjustment Multiplier Reporting Limit Units

GTEL Milford, NH M6090414 13:13

Reporting Conventions

The table below summarizes the reporting conventions which appear on the enclosed QC Package for inorganic analyses.

Flag	Interpretation				
Column Heading: C	Concentration qualifier:				
U	The analyte was analyzed for but not detected > reporting limit.				
Column Heading: Q	Qual: fier-Specified entries and their mean: ngs are as follows:				
N	Spiked sample recovery not within control limits.				
*	Duplicate analysis not in control.				
Column Heading: M	Method Used:				
P	Inductively Coupled Plasma (ICP).				

Data for soils are reported on a wet weight basis unless otherwise indicated.

SPIKED SAMPLE RECOVERY SUMMARY

GTEL Sample Spiked:

090414-11

Date Analyzed:

10/03/96

Concentration Units:

ug/L

Matrix:

Aqueous

Analyte	Spiked Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	Recovery	Lim	Q	М
Sodium	333086.7		332293.3		5560.0	NA	a		P

a Control limits (80-120%) are derived from EPA 6010A

NA Not applicable when sample results are greater than four times the amount added.

GTEL Milford, NH 090414.DOC:2

LABORATORY DUPLICATE SAMPLE RESULTS

GTEL Sample I.D.:

MSC90414-1.1

Date Analyzed:

10/03/96

Concentration Units:

ug∦L

Matrix:

Aqueous

Analyte	Sample Result	<u>.</u> U_	Durlicate Result	С	RPD, %	Control Limit ^a	Q	М
Sodium	333086.7		335580.0		0.8	a		P

a Control limits are derived from EPA 6010A

MS Matrix Spike

LABORATORY CONTROL SAMPLE

Date Analyzed:

10/03/96

Units:

ug/L

Analyte	True	Found	С	Recovery,	Control Limits,%a
Sodium	5560	4993.5		90	80-120

a Control limits are derived from EPA 6010A

BLANK RESULTS

Date Analyzed: 10/03/96
Preparation Blank Units: ug/L
Matrix: Aqueous

Analyte	Prep Blank		
		C	М
Socium	1000.0	ט	P

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

າin Number:

M6090414

Jject ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

roject ID (name): Clarem			fund Site, Old B		Matrix: Aque	
	Date	Number ient ID Sampled nalyzed	M6090414-01 CLLTEV03WA012 09/26/96 10/01/96	M6090414-02 CLLTEV03WA014 09/26/96 10/01/96	M6090414-03 CLLTEV03WA017 09/26/96 10/01/96	M6090414-04 CLLTEV03WA018 09/26/96 10/01/96
	Dilution	Factor	1.00	1.00	1.00	1.00
-			Rinsota	Trip	Run 1 -	Run Z-
	Reporting		Blook	Blank	Scrubber Bloudo	ium Scrubber Blouds
Analyte	Limit	Units		oncentration:		
ichlorodifluoromethane	10.	ug/L	10. U	10. U	10. U	10. U
hloromethane	10.	ug/L	10. U	10. U	10. U	10. U
inyl chloride	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
romomethane	10.	ug/L	10. U	10. U	10. U	10. U
hloroethane	10.	ug/L	10. U	10. U	10. U	10. U
richlorofluorometha ne	5.0	ug/L	· 5.0 U	5.0 U	5.0 U	5.0 U
.1-Dichloroethene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
ethylene chloride	5. 0	ug/L	5.0 U	1.3 J	1.2 J	1.3 J
rans-1,2-Dichloroethene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
,1-Dichloroethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
.2-Dichloropropane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
is-1,2-Dichloroethene	5. 0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
nloroform	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
romochloromethane	5.0	ug/L	5.0 U	5. 0 U	5.0 U	5.0 U
.1-Trichloroethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
.1-Dichloropropene	5.0	ug/L	5. 0 U	5.0 U	5.0 U	5.0 U
arbon tetrachloride	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
enzene	1.0	ug/L	1.0 U	1.0 U	1.0 U	1.0 U
,2-Dichloroethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
richloroethene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
,2-Dichloropropane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 Ü
romodichloromethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
)ibromomethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
is-1,3-Dichloropropene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
oluene	5.0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
rans-1.3-Dichloropropene	5. 0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
.1.2-Trichloroethane	5.0		5.0 U	5.0 U	5.0 U	5.0 U
,2-Dibromoethane	5.0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
etrachloroethene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 Ü
.3-Dichloropropane	5.0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Dibromochloromethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
hlorobenzene	5. 0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
thylbenzene	5. 0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
.,1,1,2-Tetrachloroethane	5.0	ug/L ug/L	5.0 U	5.0 U	5.0 U	5.0 U
				5.0 U	5.0 U	5.0 U
ylenes (total)	5.0 5.0	ug/L	5.0 U	5.0 U	the state of the s	5.0 U
.,3-Dichlorobenzene	5.0	ug/L	5.0 U		5.0 U	
Styrene	5.0	ug/L	5.0 U	5.0 U	5.0 0	5.0 U
1.4-Dichlorobenzene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Bromoform	5.0	ug/L	5.0 U	5.0 ∪	5.0 U	5.0 U

TEL Milford, NH

90414

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090414

Project ID (number): 6044
Project ID (name): Clare

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

5.0 U

Matrix: Aqueous

GTI	Date	iemt ID Sampled na'yzed	M6090414-01 CLLTEV03WA012 09/26/96 10/01/96 1.00	M6090414-02 CLLTEV03WA014 09/26/96 10/01/96 1.00	M6090414-03 CLLTEV03WA017 09/26/96 10/01/96 1.00	M6090414-04 CLLTEV03WA018 09/26/96 10/01/96 1.00
R	eporting					
Analyte	Limit	⊎nits	C	oncentration:		
1,2-Dichlorobenzene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene	5.0	ug/L	5.0 U	5.0 U	1.8 J	5.0 U
1,1,2,2-Tetrachloroethane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
Bromobenzene	5.0	ug/L	5,0 U	5.0 U	5.0 U	5.0 U
1,2,3-Trichloropropane	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
n-Propylbenzene	5.0	ug/L	- 5.0 U	5.0 U	5.0 U	5.0 U
2-Chlorotoluene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
1,3,5-Trimethylbenzene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
4-Chlorotoluene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U
tert-Butylbenzene	5.0	ug/L	5.0 U	5.0 U	5.0 U	5.0 U

5.0 U

Notes:

Dilution Factor:

Naphthalene

1.2.4-Trimethylbenzene

1.2.4-Trichlorobenzene

1.2.3-Trichlorobenzene

Hexachlorobutadiene

_-Dibromo-3-chloropropane

sec-Butylbenzene

- Butylbenzene

p-Isopropyltoluene

Dilution factor indicates the adjustments made for sample dilution.

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was analyzed for but not detected.

"J" indicates the presence of a compound that meets the mass spectral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination: The data user is warned to take appropriate action.

TL Milford, NH J90414

Page: 2

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090414

oject ID (number): 6044
Project ID (name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260 Matrix: Aqueous

	GTEL Sample	Number	M6090414-05			
	•	ient ID	CLLTEV03WA019	• •		••
		Sampled	09/26/96		••	••
		nalyzed	10/01/96	••	••	••
	Dilution	•	1.00	••	••	••
	Dilucion	ractor	1.00 Ru, 3 -			
	Reporting		Scrubber Bloudour	1		
Analyte	Limit	Units	Conc	centration:		
Dichlorodifluoromethane	10.	ug/L	10. U			
Chloromethane	10.	ug/L	10. U			
Vinyl chloride	5.0	ug/L	5.0 U	9888 - 4 77 - 188	++	
Bromomethane	10.	ug/L	10. U			
Chloroethane	10.	ug/L	10. U	*//// 74		
Trichlorofluoromethane	5.0	ug/L	·5.0 U			• •
1.1-Dichloroethene	5.0	ug/L	5.0 U			++
Methylene chloride	5.0	ug/L	1.2 J			• •
trans-1,2-Dichloroethene	5.0	ug/L	5.0 U	**		++
1.1-Dichloroethane	5.0	ug/L	5.0 U	- -		
2,2-Dichloropropane	5.0	ug/L	5.0 U		4. 4	++
cis-1,2-Dichloroethene	5.0	ug/L	5.0 U		• •	
Chloroform	5.0	ug/L	5.0 U			
romochloromethane	5.0	ug/L	5.0 U			
1-Trichloroethane	5.0	ug/L	5.0 U	**		**
1.1-Dichloropropene	5.0	ug/L	5.0 U			
Carbon tetrachloride	5.0	ug/L	5.0 U			
Benzene	1.0	ug/L	1.0 U			
1,2-Dichloroethane	5.0	ug/L	5.0 U			
Trichloroethene	5.0	ug/L	5.0 U			
1,2-Dichloropropane	5.0	ug/L	5.0 U			
Bromodichloromethane	5.0	ug/L	5.0 U			
Dibromomethane	5.0	ug/L	5.0 U			
cis-1,3-Dichloropropene	5.0	ug/L	5.0 U			
Toluene	5.0	ug/L	5.0 U			<u></u>
trans-1,3-Dichloropropene	5.0	ug/L	5.0 U			
1.1.2-Trichloroethane	5.0	ug/L	5.0 U			
1.2-Dibromoethane	5.0	ug/L	5.0 U			**************************************
Tetrachloroethene	5.0	ug/L	5.0 U			
1,3-Dichloropropane	5.0	ug/L	5.0 U		90 90 90 90 90 90 90 90 90 90 90 90 90 9	
Dibromochloromethane	5.0	ug/L	5.0 U			
Chlorobenzene	5.0	ug/L	5.0 U			, was marked and a state of the Cartes.
Ethylbenzene	5.0	ug/L	5.0 U			
1,1,1,2-Tetrachloroethane	5.0	ug/L	5.0 U	and the first engine 21 section = 1.000 to 1.00	_ = -m;	was the was a superior to the first
Xylenes (total)	5.0	ug/L	5.0 U			
1.3-Dichlorobenzene	5.0	ug/L	5.0 U			
Styrene Styrene	5.0	ug/L	5.0 U		John (Ja g esta) i	may it is an it is a
1.4-Dichlorobenzene	5.0	ug/L	5.0 U		*	
Bromoform	5.0	ug/L	5.0 U			
"I Milford NH	1000 1000 000 0000	ug/ L	0,0,0		Franklink v - Dansa - Franklin	<u> </u>

"L Milford, NH

≠J90414

ANALYTICAL RESULTS Volatile Organics

GTEL Client ID:

966044044

in Number:

M6090414

Project ID (number): 6044 Project ID (name): Clare

Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 8260

Matrix: Aqueous

GTEL Sample Number	M6090414-05	• •	••	
Client ID	CLLTEV03WA019	••	••	
Date Sampled	09/26/96		••	••
Date Analyzed	10/01/96		••	
Dilution Factor	1.00		<u></u>	••

	Reporting				
Analyte	Limit	Ųnits	Conc	entration:	
1.2-Dichlorobenzene	5.0	ug/L	5.0 U		
Isopropylbenzene	5.0	ug/L	5.0 U		2-
1,1,2,2-Tetrachloroethane	5.0	ug/L	5.0 U		
Bromobenzene	5.0	ug/L	5.0 U		
1,2,3-Trichloropropane	5.0	ug/L	5.0 U		
n-Propylbenzene	5.0	ug/L	.5.0 U		
2-Chlorotoluene	5.0	ug/L	5.0 U		
1.3.5-Trimethylbenzene	5,0	ug/L	5.0 U		
4-Chlorotoluene	5.0	ug/L	5.0 U		
tert-Butylbenzene	5.0	ug/L	5.0 U		
1,2,4-Trimethylbenzene	5.0	ug/L	5.0 U		
sec-Butylbenzene	5.0	ug/L	5.0 U		
p-Isopropyltoluene	5.0	ug/L	5.0 U		
<pre>Putylbenzene</pre>	5.0	ug/L	5.0 U		
<pre></pre>	5.0	ug/L	5.0 U		
1,2.4-Trichlorobenzene	5.0	ug/L	5.0 U		
Hexachlorobutadiene	5.0	ug/L	5.0 U		
Naphthalene	5,0	ug/L	5.0 U		
1,2,3-Trichlorobenzene	5.0	ug/L	5.0 U		

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 8260:

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', SW-846, Third Edition including promulgated Update 1. Analyte list modified to include additional compounds. "U" indicates that the analyte was apalyzed for but not detected.

"J" indicates the presence of a compound that meets the mass spec; ral identification criteria, but the result is less than the reporting limit. The concentration of analytes flagged with a "J" is estimated. "B" indicates the analyte is found in the associated blank as well as the sample. It indicates possible blank contamination; The data user is warned to take appropriate action.

DataFile : C:\HPCHEM\1\DATA\K100196\K4744.D

Sample Name: BW100196KA

Sample Misc:

quisition: 1 Oct 96 at 11:13 am

Mant Time: 10-1-96 at 11:56 via Daily Calibration

Operator :Sill Instrument: MSDK

Multiplier:1. Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration : Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.07	50.23	50.00	97.54 100.47 94.24	88-110	pass

Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits		Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.55 17.09	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	188696 492108 269146 196967	pass pass

Reporting Time: 16:43:33 Date: 10/01/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4745.D

Sample Name: LW100196KA

Sample Misc:

quisition: 1 Oct 96 at 11:48 am

Quant Time: 10-1-96 at 12:20 via Laily Calibration

Operator :Silly@ Instrument:MSDK

Multiplier:1.
Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters: 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration: Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits F	lag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.43 15.08 18.83	49.43 48.77 45.54		97.53	76-114 pa 88-110 pa 86-115 pa	ass

Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits		Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.56 17.10	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	198019 534447 287108 202114	pass pass

Reporting Time: 16:43:38 Date: 10/01/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4756.D

Sample Name: M6090414-01

Sample Misc:

quisition: 1 Oct 96 at 6:49 pm

■uant Time : 10-1-96 at 19:21 via Daily Calibration

Operator :Sillycoose

Instrument: MSDK Multiplier: 1.
Matrix : Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters: 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration: Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09	46.81	50.00	101.29 93.63 91.69	88-110	pass

Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57 17.11	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	170809 472879 246726 180317	pass pass

Reporting Time: 08:26:26 Date: 10/02/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4757.D

Sample Name: MS090414-01

mple Misc:

. quisition: 1 Oct 96 at 7:25 pm

Quant Time: 10-1-96 at 19:58 via Daily Calibration

Operator : Silly Instrument: MSDK

Multiplier:1.
Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters: 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration: Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09 ⁻	48.50	50.00	100.73 97.00 92.41		pass

Internal Standard Report]

Internal Standard		RT Det.	RT Flag	50%-200% Area Limits	Area Det.	Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.56 17.11	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	177646 498953 265296 197690	pass pass

Reporting Time: 08:26:30 Date: 10/02/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4758.D

Sample Name: MD090414-01

Sample Misc:

quisition: 1 Oct 96 at 8:01 pm

ant Time : 10-1-96 at 20:33 via Daily Calibration

Operator : Silly Instrument: MSDK

Multiplier:1. Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration : Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09	48.07	50.00	96.14	76-114 88-110 86-115	pass

'Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57 17.11	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	178305 497698 264087 187307	pass pass

Reporting Time: 08:26:33 Date: 10/02/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4759.D

Sample Name: M6090414-02

Sample Misc:
 quisition: 1 Oct 96 at 8:37 pm

Quant Time: 10-1-96 at 21:9 via Daily Calibration

Operator : Silly of Instrument: MSDK Multiplier: 1.
Matrix : Water

Title of the GC/MS Method: SW-846: \$240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters: 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1,DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration: Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09	48.34	50.00	97.67		pass

Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	174088 483244 252414 185733	pass pass

Reporting Time: 08:26:36 Date: 10/02/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4760.D

Sample Name: M6090414-03

mple Misc:

quisition: 1 Oct 96 at 9:13 pm

dant Time: 10-1-96 at 21:45 via Daily Calibration

Operator

Instrument: MSDK Multiplier:1. Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration : Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	11.44 15.09 18.84	48.75		101.53 97.50 92.51		pass

Internal Standard Report]

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits		Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57 17.11	pass pass	252931-1011722 140829-563314	166904 463799 243481 179967	pass pass

Reporting Time: 08:26:39 Date: 10/02/96

DataFile : C:\HPCHEM\1\DATA\K100196\K4761.D

Sample Name: M6090414-04

Sample Misc:
quisition: 1 Oct 96 at 9:49 pm

Quant Time: 10-1-96 at 22:21 via Daily Calibration

Instrument: MSDK Multiplier: 1.
Matrix: Water

Operator

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK }

The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification : 10-1-96 at 11:55

Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp: 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration: Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09	48.73 48.19 45.10	50.00	96.37	76-114 88-110 86-115	pass

Internal Standard Report]

Internal Standard	-+3.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	Area Flag
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57 17.10	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	167132 457194 236509 160477	pass pass

Reporting Time: 08:26:41 Date: 10/02/96

Operator

Instrument: MSDK

DataFile : C:\HPCHEM\1\DATA\K100196\K4762.D

Sample Name: M6090414-05

fimple Misc:

_quisition: 1 Oct 96 at 10:25 pm

Multiplier:1. quant Time : 10-1-96 at 22:57 via Daily Calibration Matrix :Water

Title of the GC/MS Method: SW-846: 8240/8260 { MSDK } The GC/MS Method File : C:\HPCHEM\1\METHODS\8260.M

Last Method Modification: 10-1-96 at 11:55 Acquisition Paramaters : 9-6-96 at 7:45

Continuing Calibration: C:\HPCHEM\1\DATA\K100196\K4743.D

Acquisition Timestamp : 1 Oct 96 10:16 am Quantitation Timestamp: Oct 01 10:52 1996

Calibration Timestamp: Tue Oct 01 10:55:06 1996 Initial Calibration : Wed Sep 25 12:27:06 1996

[Surrogate Recovery Report]

Compound Name	RT	Conc.	Spike	Recov.	Limits	Flag
1,2-Dichloroethane-d4 Tolene-d8 (S2) Bromofluorobenzene (S3	15.09	48.56	50.00	97.13	76-114 88-110 86-115	pass

Internal Standard Report |

Internal Standard	-+0.5 RT Limits	RT Det.	RT Flag	50%-200% Area Limits	Area Det.	
Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d5	10.83-11.83 12.05-13.05 16.60-17.60 20.51-21.51	12.57 17.11	pass pass	95571-382284 252931-1011722 140829-563314 105714-422856	163186 455410 239737 176476	pass pass

Reporting Time: 08:26:44 Date: 10/02/96

MATRIX SPIKE (MS) AND MATRIX SPIKE DUPLICATE (MD) SUMMARY PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD)

Volatile Organics in Water GC/MS VOA

Sample Spiked: Date of Analysis: 090414-01

10/01/96

Client ID:

Batch QC

Solution ID: M96MS0133

Batch #:

100196KA

	Spike	Sample	MS	MS,%	Acceptability
Compound	Added	Conc.	Conc.	Percent	limits
	(ug/L)	(ug/L)	(ug/L)	Recovery	% Recovery,a
1,1-Dichloroethene	20.0	< 5.00	22.41	112.1	61-145
Trichloroethene	20.0	< 5.00	21.28	106.4	71-120
Benzene	20.0	< 5.00	20.63	103.2	76-127
Toluene	20.0	< 5.00	21.25	106.3	76-125
Chlorobenzene	20.0	< 5.00	21.65	108.3	75-130

					Acceptabilit	y —
	Spike	MD	MD,%		limits, a	
Compound	Added	Conc.	Percent	%	%	%
	(ug/L)	(ug/L)	Recovery	RPD	Recovery	RPD
1,1-Dichloroethene	20.0	21.12	105.6	5.93	61-145	14
Trichloroethene	20.0	20.82	104.1	2.19	71-120	14
Benzene	20.0	20.07	100.4	2.75	76-127	11
Toluene	20.0	20.70	103.5	2.62	76-125	13
Chlorobenzene	20.0	21.12	105.6	2.48	75-130	13

Reported concentrations are based on wet weight.

- Indicates values outside of acceptability limits. See Noncynformance Summary.
- Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

LABORATORY CONTROL SAMPLE (LCS) PERCENT RECOVERY AND RELATIVE PERCENT DIFFERENCE (RPD

Volatile Organics in Water GC/MS VOA

Sample Spiked:

LW100196KA

Client ID:

Batch QC

Date of Analysis:

10/01/96

Solution ID: M96MS0133

Batch #:

100196KA

Compound	Spike Added (ug/L)	Sample Conc. (ug/L)	LCS Conc. (ug/L)	LCS,% Percent Recovery	Acceptability limits % Recovery,a
1,1-Dichloroethene	20.0	< 5.00	21.14	105.7	61-145
Trichloroethene	20.0	< 5.00	20.96	104.8	71-120
Benzene	20.0	< 5.00	20.06	100.3	76-127
Toluene	20.0	< 5.00	21.28	106.4	76-125
Chlorobenzene	20.0	< 5.00	20.64	103.2	75-130

Reported concentrations are based on wet weight.

- * Indicates values outside of acceptability limits. See Nonconformance Summary.
- a Acceptability limits are derived from USEPA Contract Laboratory Program (CLP).
- D Diluted out. Percent Recovery and RPD are not calculated when spike compound(s) are diluted out.

NA:Not Applicable % Recovery is not calculated when sample results exceed 5 times the spike concentration.

** %RPD based on concentration rather than % recovery due to high native concentrations of analyte.

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volati_le Organics in Aqueous EPA Method 8260°

	GTEL File ID	BW100196KA
	Date Analyzed	10/21/96
Analyte	Reporting Limit ug/L ^b	Concentration, ug/L ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	10	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	5,0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Aqueous EPA Method 8260^a

	GTEL File ID	BW100196KA
	Date Analyzed	10/21/96
Analyte	Reporting Limit ug/L ^b	Concentration, ug/L ^b
Dichlorodifluoromethane	10	10 U
Chloromethane	10	10 U
Vinyl Chloride	5.0	5.0 U
Bromoethane	10	10 U
Chloroethane	<u> </u>	10 U
Trichlorofluoromethane	5.0	5.0 U
1,1-Dichloroethene	5.0	5.0 U
Methylene Chloride	5.0	5.0 U
trans-1,2-Dichloroethene	5.0	5.0 U
1,1-Dichloroethane	5.0	5.0 U
2,2-Dichloropropane	5.0	5.0 U
cis-1,2-Dichloroethene	5.0	5.0 U
Chloroform	5.0	5.0 U
Bromochloromethane	5.0	5.0 U
1,1,1-Trichloroethane	5.0	5.0 U
1,1-Dichloropropene	5.0	5.0 U
Carbon Tetrachloride	5.0	5.0 U
Benzene	1.0	5.0 U
1,2-Dichloroethane	5.0	5.0 U
Trichloroethene	5.0	5.0 U
1,2-Dichloropropane	5.0	5.0 U
Bromodichloromethane	5.0	5.0 U
Dibromomethane	5.0	5.0 U
cis-1,3-Dichloropropene	5.0	5.0 U
Toluene	5.0	5.0 U
trans-1,3-Dichloropropene	5.0	5.0 U
1,1,2-Trichloroethane	5.0	5.0 U
1,2-Dibromoethane	5.0	5.0 U
Tetrachloroethene	5.0	5.0 U
1,3-Dichloropropane	5.0	5.0 U

Project ID (number): 6044
Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOL BLANK RESULTS Volatile Organics in Aqueous EPA Method 8260°

	GTEL File ID	BW100196KA
	Date Analyzed	10/21/96
Analyte	Fleporting Limit, ug/L	Concentration, ug/L ^b
Dibromochloromethane	5.0	5.0 U
Chlorobenzene	5.0	5.0 U
Ethylbenzene	5.0	5.0 U
1,1,1,2-Tetrachloroethane	5.0	5.0 U
Xylenes (total)	5.0	5.0 U
1,3-Dichlorobenzene	5.0	5.0 U
Styrene	5.0	5.0 U
1,4-Dichlorobenzene	5.0	5.0 U
Bromoform	5.0	5.0 U
1,2-Dichlorobenzene	5.0	5.0 U
Isopropylbenzene	5.0	5.0 U
1,1,2,2-Tetrachloroethane	5.0	5.0 U
Bromobenzene	5.0	5.0 U
1,2,3-Trichloropropane	5.0	5.0 U
n-Propylbenzene	5.0	5.0 U
2-Chlorotoluene	5.0	5.0 U
1,3,5-Trimethylbenzene	5.0	5.0 U
4-Chlorotoluene	5.0	5.0 U
tert-Butylbenzene	5.0	5.0 U
1,2,4-Trimethylbenzene	5.0	5.0 U
sec-Butylbenzene	5.0	5.0 U
p-lsopropyltoluene	5.0	5.0 U
n-Butylbenzene	5.0	5.0 U
1,2-Dibromo-3-chloropropane	5.0	5.0 U
1,2,4-Trichlorobenzene	5.0	5.0 U
Hexachlorobutadiene	5.0	5.0 U
Naphthalene	5.0	5.0 U
1,2,3-Trichlorobenzene	5.0	5.0 U

Project ID (name): CLAREMONT POLYCHEMICAL SUPERFUND SITE, OLD BETHPAGE, NY

METHOD BLANK RESULTS Volatile Organics in Aqueous EPA Method 8260^a

- a "Test Methods for Evaluating Solid Waste, SW-846, Third Edition, Revision 0, Table 3, US EPA November 1990; sample preparation by purge and trap. Method modified to include additional compounds.
- b Data Flag Definitions
 - U Indicates compound was analyzed for but not detected.
 - J Indicates an estimated value. This flag is used when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the quantitation limit, but greater than zero, or when reporting an estimated concentration for a tentatively identified compound.

Login Number:

M6090414

Project ID (number): 6044

Project ID (name): Claremont Polychemical Superfund Site, 21d Bethpage, NY

Date of Report: Oct 02, 1996

Footnotes and Comments

Symbol keys (may appear beside values)

- * Indicates the analyte has been qualified in the narrative section of the report.
- d Indicates the analyte was reported from a dillution other than that indicated on the report page.
- B Organic Analyses Indicates the analyte is found in the associated blank as well as in the sample.
- B Inorganic Analyses Indicates an estimated value below the EPA Contract Required Detection Limit.
- G Indicates an estimated surrogate recovery due to dilutions.
- J Indicates an estimated value below the reporting limit.
- U Indicates the analyte was analyzed for but not detected.
- NA Matrix Spike Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Matrix Spike Duplicate RPD Results Not Applicable, since the Sample Conc. exceeded four times the Spike Added.
- NA Serial Dilution RPD Results Not Applicable, since the Sample Conc. was less than

five times the CLP ${\tt Cont}_{\tt I}{\tt ract}$ Required Detection Limit.

Inorganics

Method: EPA 6010A

"Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition including promulgated Update 2.

Digestion is Method Specific.

ANALYTICAL RESULTS

GTEL Client ID: 966044044 Login Number: M6090414 Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site, Old Bethpage, NY Date of Report: Oct 02, 1996

Analyte Sodium	Limit Units 1000 ug/L	230000	290000
	Reporting	Kun 1 - Scrubber Discharge	Run Z - Scratter Oscharft
	Adjustment Multiplier	1.00	1.00
	Date Analyzed	09/30/96	10/01/96
	Date Prepared	09/30/96	09/30/96
Matrix: Aqueous	Date Sampled	09/26/96	09/26/96
Metals	Client ID		CLLTEV03WA022
∠PA 6010A	GTEL Sample Number	M6090414-06	M6090414-08

ANALYTICAL RESULTS Chloride

FTEL Client ID:

966044044

in Number:

M6090414

Project ID (number): 6044

Project ID (name):

6044
Claremont Polychemical Superfund Site, Old Bethpage, NY

Method: EPA 325.2

Matrix: Aqueous

Chloride	4.0 mg/L	96.	95.	170	++
Analyte	Limit Umits	Co	oncentration:	· ·	
	Reporting	Run 1- Scrubber Discharge	Run Z - Scrutber Discharg	Kon 3 - Scrubby Discharge	
	Dilution Factor	1.00	1.00	5.00	- •
	Date Analyzed	10/01/96	10/01/96	10/01/96	
	Date Sampled	09/26/96	09/26/96	09/26/96	
	Client ID	CL_TEV03WA024	CLLTEV03WA026	CLLTEV03WA027	
	GTEL Sample Number	#6090414-07	M6090414-09	M6090414-12	

Notes:

Dilution Factor:

Dilution factor indicates the adjustments made for sample dilution.

EPA 325.2:

"Methods for Chemical Analysis of Water and Wastes". EPA 600/4-79-02), USEPA EMSL, Cincinnati, OH, Revised, March 1983.

L Milford, NH

Rage: 1

GTEL Client ID: 966044044

Login Number: M6090414

Project ID (Number): 6044

Project ID (Name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Date of Report: Oct 02, 1996

PA 6010A

Matrix Spike(MS) and Matrix Spike Duplicate(MSD) Results

QUALITY CONTROL RESULTS

Metals

Matrix: Aqueous Sample ID: M6090414-06 MS ID:MS09041406 MSD ID:MD09041406

Analysis Date:	09/30/96		10	/01/96		10/01	/96			
Units: ug/L	Sample	Spikes	Added	MS	MS	MSD	MSD	Ac	ceptabi	lity Limits
Analyte	Conc.	MS	MSD_	Conc.	% Rec.	Conc.	% Rec.	RPD	RPD	*Rec.
Sodium	230000(228000)	5560	5560	234000	108 NA	236000	144 NA	0.00 NA	20	80-120

GTEL Client ID:

966044044

Login Number:

M6090414

Project ID (Number): 6044

roject ID (Name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Date of Report: Oct 02, 1996

EPA 6010A

Caboratory Control Sample(LCS) Results

QUALITY CONTROL RESULTS

Metals

Matrix: Aqueous

Blank Ref: BW093096A

LCS Ref:LW093096A

Date Prepared: 09/30/96

09/30/96

Date Analyzed: 09/30/96

09/30/96

	Bace (2.02) 200: 007:007		037.0		
Units: ug/L	Sample	Spike Addud	LCS	LCS	Acceptability Limits
Analyte	Conc.	LCS	Conc.	%Rec.	%Rec.
Sodium	U 1000(0.00)	5560	5580	100	80-120

GTEL Client ID: 966044044 Login Number: M6090414

Project ID (Number): 6044

QUALITY CONTROL RESULTS

METHOD BLANK REPORT

oject ID (Name): Claremont Polychemical Superfund Site, Old Bethpage, NY

Date of Report: Oct 02, 1996

EPA 6010A	GTEL Sample Nu	ımber (09309615A-1	
Metals	Refer	rence I	BW093096A	
Matrix: Aqueous	Date Prep	pared	09/30/96	
	Date Anal	lyzed	09/30/96	
	Adjustment Multip	olier	1.00	
	Reporting			
Analyte	Limit	Units		
Barium	200	ug/L	200 U	
Sodium	1000	ug/L	1000 U	

Chloride

EPA Method

325.2

Quality Control Results

Method Blank

Date Analyzed: 10/01/96

GTEL Sample ID	Reporting Limit	Result Q (mg/L)
'	(mg/L)	
BW100196	4.00	4.00 U

Matrix Spike (MS) Recovery

Date Analyzed: 10/01/96

GTEL Sample ID	Sample Result (mg/L)	Q	Spike Amount	MS Result (mg/L)	Q	% Recovery	Q	Control Limits
LW100196	4.00	U	74.00	72.92		98.5		80-120%

Matrix Spike Duplicate (MD) Sample Results

Date Analyzed: 10/01/96

GTEL Sample ID	Spike Amount	Q	MD Result (mg/L)		% Recovery	Q	% RPD	Q	Control Limits
LW100196	74.00		73.0	5	98.7		0.19		20

Laboratory Control Sample (LCS) Results

Date Analyzed: 10/01/96

GTEL Sample ID	Spike Amount (mg/L)	LCS Result Q (mg/L)	% Recovery Q	Control Limits
LW100196	74.20	72.92	98.5	90-110%

Qualifiers (Q)

- U Indicates analyte was not detected at or above the reporting limit.
- * See Nonconformance Summary
- NA = Not applicable; %RPD is not calculated when sample result is less than five times the reporting limit.

YOIDIMS × X × 7 Corrosivity [] Storage Location: ☐ beed oinsortO □ 0109 □ 1%+7 □ 02+7 □ 7.002 □ S.852 beed ☐ SITC ☐ SITC ☐ SITC EPA Metals - Priority Pollutant

TAL

ACRA 64038 ☐ chelt ☐ seef ☐ AOV-imeS ☐ AOV ☐ state ☐ TOLP Metals □ Peaticides □ Peaticides □ Herbicides □ Herbicides ☐ 0168 ☐ 018 A93 EPA 625/PPL () 8270/TAL () NBS (+25) Received by Laboratory: EPA 624/PPL [] 5240/TAL [] NBS (+15) Lab Use Only Lot # EPA 608 [] 8080 [] PC8 only [] CHAIN-OF-CUSTODY RECORD IND ANALYSIS REQUEST ☐ 0208 A93 ☐ 508 A93 Work Order # Received by: Received by EPA 601 [] EPA 8010 [] REMARKS Waybill EPA 503.1 [] EPA 502.2 [] EDB by 504 - DBCP by 504 -☐ 603 M2 ☐ 1.814 AI\H9T Oil and Grease 413.1 🗆 413.2 🗅 SM 503 🖂 CE :61 Time iii iii EE | Hydrocarbon Profile (SIMDIS) □ neems ☐ lessi ☐ Hydrocarbona GCIFID Gas □ SPECIAL REPORTING REQUIREMENTS 92.60.98 BTEX/Gae Hydrocarbons PID/FID I with MTBE Date with MTBE ☐ 209/X3T8 Date 8050 🗀 Dade 11:02 20:11 20:11 14:05 17:39 90:41 14:08 13:21 12:// Sampling SPECIAL DETECTION LIMITS 3MIT 701.27 • 2 CTISHES STAG 3 MEADOWBROOK INDUSTRIAL PARK MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL Polychymica UNPRESERVED Preserved HLB Method Phone #: 5/6-249-8800 ICE FAXE 'OS'H HNO 2 1 X × -548-HCI Site location: (Sam) Sampler Name (Print): Client Project ID: (#) **HEHTO** (NAME) CIPHIMOR! OTHER USALOF PALIMINATE PORCORE PRODUCT Matrix SLUDGE AIA 440-4409-76-25 "04 TIOS FAX #: **MATER** Special Handling 3 3 Ourote/Contract # 84504-# Containers ~ Relinquished by Sappler: GTEL Contact Poff. (Lab use only) Lab # Relinguished by: Relinquished by: GTEL QA / QC LEVEL Confirmation # lures were used during the collection that the proper field sampling 1EV-03-44-010 ENVISONMS .L EV-03-WA-022 EV-03-WA. 017 420 - VM-EO-13 Zahadar. Winding Road 210-1M-EO-17.3 E1-03-W1-014 810-14-CO-13 Environmenta 1511-03-WA-018 154-03-WA-02) 97 W.76 ا ئ **3ECORD** Manson Field Sample ID Manager: e samples iny Name: dited (48 hr) siness Days hy (24 hr) ece. Days

FROM: DOWENVIRONMENTAL

PHONE NO. : 5162498874

Sep. 27 1996 04:43PM P2

GIFL	226	MEADOWBROOK INDUSTRIAL PARK MILFORD, NH 03055 /603 672-4835	WBR.	ΟΤ. Q8	ON >	UST 2	RIAL	PA		7.00.16 C. C. C	_	2 .5 ₹5	CHAIN-OF-CUSTODY RECORD 'ND ANAL YSIS REQUEST	でき い	UST SIS	E G	REC IES1	080.	_		4	64336	(Q :	,					
LABORATORIES, INC.	90	(S) (S)	3-G	ᆏ	1	7	1	ò	<i>t</i> -	7	<u> </u>		1	7.3		- 4										٠			:X."
pany Name:		Pho	Phone #:			_								<u> </u>		_			;		<u>}</u>		<u>;</u>	<u>:</u> —	;	•			
		FAX #:	*									0	-		_							□ đì							
pany Address:		Site	Site location:	ion:							Ϊ	38TM	99108										AROR -	010	SAAR				
sct Manager:		Sign	Client Project ID: (#)	ject	(#) (#)								□ be	X)9 W					(415)	(+52)	hicid		□ 1 \	1 🗆 6	_	Jivita	L	190,1	
		(NA	(NAME)								at M									Sav	•H C				Ę.	:9H	un!	/1/	
set that the proper field sampling edures were used during the collection	ampling the collection	San	npler h	Name	Sampler Name (Print):						dtiw [TAL CI) sabioit				4.1910	□ tniọc	1005		110
Clair Clair	I I	2101		Matrix	×	_ 4	Method Preserved	lhod erved	్ట్రో	Sampling	<u> </u>															Hash I	- KI	2:52	5 - VI
Sample	Lab # (Lab use only)	# Contain	WATER	SLUDGE	TOUOOR9 ABHTO	HOO?	HEO'	NUMMES SERVED	Rainto Palosino TAO	BMIT	8TEX/602	BTEX/Gas H	Нубтосагроп	Hydrocærbon Oil and Grea:	1.814 ANHAT	EDB by 504 (☐ t08 A93	☐ SO3 A93	EPA 608 [] 8	144/ 829 44∃	EPA 610 C 8	TCLP Metals	- PPA Metals -	CAM Metals ·	Organio Leso	Corrosivity 🗆	7/D9M5		J.P.2.8.M.S
£30-NW-0-1317-		<u> </u>	ķ			×	*		7.10	11/2	17:34	0	-	-		-12	Ę	-	",	-	+-	ļ.	+-	╁			×	 	Т~
11EV-03-WA-027		/	×				*	Į,	"		7.34	1	3	<u></u>	5	*		COMO:	-	8	•		 -	┝		-		×	1
1264-03-5-009		2	7				*		"	51:01	54.				_	-							-	-	×	-	-	┼	×
UNEV- US-5- UTO		2	111	· .			Ĭ		1.		10:20	· -	-,	·,	<u>, </u>	<u>,</u> —	·	-;		;-	·,		 ,	ļ. -	_	ļ.—	·,—	>	
LFEY-03-5-011		2	ΙX				<u>×</u>		"	7	52:B													_	×	_		<u> </u>	
210-5-60-1357	de	2	r				<u>۸</u>	<u> </u>	"	\$2:01	152				Ľ.			-			_		_		×	\vdash	-	_	×
5-5-80-1367-A	927076 210.	Λ'	×				×		"	SH: Al	113					-													X
#10-5-CO-NAT		2	×					*	"	10	10:30					Н									×	_	H	-	x
510-5-60-1217		7	*				*		*	10.	:35	_		\dashv		\dashv							\dashv				-	\dashv	7
1161-03-5-016	•	7	*				—``		*	10:	2	_	_			\dashv		\dashv	4		\dashv			\dashv	×		\dashv	긕	×
TAT	Specia	Special Handling	_			SPECIA		ETE.	CTION	DETECTION LIMITS	'n				_	REMARKS	HKS												
orthy (24 hz)	GTEL Contact										i																		
Custoess Dave	Confirmation #																												
	PO #					SPECIAL	CIAL	3EPO	RTING	L REPORTING REQUIREMENTS	IREM	ENTS	,,		-	Lab Use Only Lot #	<u>8</u>	y Lot	₩=				Stora	ge L	Storage Location:	Ë			Т
Siness Days					Π																								
[QA / QC LEVEL																												
	OTHER				7	FAX				ŀ					\exists	Work Order #	Sider C						ŀ	ĺ		}		1	_
4 :	Relinquished by Sampler:	ng per:	'	/	\						Date	9	_	Lime	_	Received by:	æd by												
47P	1		1	1/	4					02	85.09.26	2	?	19:30															
SUSTODY	Relinquistad by:	7									Date	9	_	Time		Received by:	ed by	٠.								Ì		{	Γ
RECORD	Relinquished by:										Date	<u>.</u>		Time	_	Received by Laboratory:	ed by	Labo	ratory	ļ.,				1				}	Т
#12											,					Weybill ∦	*												
				!							_																		

FROM: DOWENVIRONMENTAL

PHONE NO. : 5162498874 Sep. 27 1996 04:44PM P3

	ME	MEADOWBROOK INDUSTRIAL PARK MILFORD, NH 03055	別が	Ş Ş Ş	N 200	rsu ,	FIA	۲. ا	Ä,		<u> </u>	₽. <u>≤</u>	<u>4</u> 0	CHAIN-OF-CUSTODY RECORD YES AND ANALYSIS REQUEST	SUS YSIS	5 8	% % %	S.F.	9		640	È	39						
LASORATORIES, INC.		(603) 672-4835 (800) LAB-GTEL	3-GT	ശ.പ്	M	Jo	(N	<i>o</i> -∼	F	ω	::::::::::::::::::::::::::::::::::::::						* 3		4)			V.	: .	•	7 (7) (8)		· · · · · · · · · · · · · · · · · · ·
cany Name:		Phor	Phone #:			\$						<u>. </u>				<u> </u>	-	<u> </u>	_	-	<u>{</u>	_			_	_		_	
	:	FAX #:	#																							_			
pany Address:		Site	Site location:	.: 5]	I SATM													`/_	P			
ct Manager:		Clie	Client Project ID: (#)	ject II	€										EOE M			•			· ·				<u>ک ر</u> ا 🗆 و	<u>< - <</u> Yiivito€			
		(NA	Œ,												\$ D								,		267 [<u>"(</u> ₽			
est that the proper field sampling adures were used during the collection ese samples.	ampling) the collection	Sam	Sampler Name (Print):	dame	(Prin	i ë						Hiw 🗆		(SIMDIS)	_									arrc 🗆		Inioq	•		
i i	לַ בַּוּ	161.2	<u> </u>	Matrix	 <u>×</u>		Metf	Method Preserved		Sampilng	E LI			əlñon4										поли	/				-
Sample ID	Lab # (Lab use only)	hiatnoO #	HETER SOIL	SEUDGE SEUDGE	PRODUCT A3HTO	HCI	°09²Н НиО³	NASHEGENED IČE	(7453448) ETAG	3MIT		BTEX/602 C	BTEX/Gas H	Нудгосягьоп	send Great 1.814 ANH9T	ED8 PÅ 204 I	EPA 503.1	EPA 601 [2]	B □ 809 A¶∃	EPA 624/PPL	EPA 610 🗅 6	EP TOX Meta	TCLP Metals	CAM Metals	_ Cead 239.2 C	Organic Lesse Compsivity D	928MS		
15W-05-5-009		2	×				П	×	12.	12802	10:53	-						_		-					-		*		
:TEV-03-5-018		7	X					7		1/ 10	05:01		\vdash									-			א		7		Τ
1184-03-5-019		7	×					X		11 11	55:01				_							-				_	>		
020-5-60-1337		7	×					×		"	1:00	\dashv	160	1/2	1351	12	2									 	×		<u> </u>
120-5-604357		7	x					<u></u>		<u>'</u>	DO						•									X	λ		
-15EV-03-5-023		~	×					74	\dashv	<u>"</u>	10.	_	_					-									X		
420-5-80-13-17-4		7	×					뇟		, ,	10/:														*	\ .	X		
520-5-80-1317°		N	×					×	_	"	স	-	\dashv		_		-	_					4			-	7,		
2-11EV-03-5-026		7	×	_		#		×		<u> </u>	27:2	\dashv	\dashv							\dashv					<u>×</u>	\ .	X		
120-5-80-1357.	ì	N	×					¥		"	3:28																7		<u> </u>
TAT	Special Handling	-tandilln _g				SP	SPECIAL	DEI.	ECTIC	DETECTION LIMITS	<u>S</u>					HE	REMARKS	တ											_
mity (24 hr)	GTEL Contact																				,								
	Ouolas/Contract #				1																								
Ousiness Days	Confirmation #						SPECIAL	끮	ORTIN	HEPORTING REQUIREMENTS	SURE	MEN	ည			를	Lab Use Only Lot	1	# 5				ξ	Drade	Storage Location:	tion:			<u>I</u>
Turness Days	- D																	•)					
-9	DA / OC LEVEL																												
je	OTHER	ı		9		FAX										ō, X	Work Order #	# 10											
34:	Refinquished by Sampler:	Jer:	\backslash				ĺ				ă	Date		ĭime		Rec	Received by:	ä											Т
47F	1		\\	*							27:00:26	¥. 22	_	17:30	5														
YDSTODY	Retifiquished by:										۵	Date	_	Пте	_	8	Received by:	<u>ئ</u>) 							_
FECORD	Refinquished by:										٥	Date	-	Time		F.	Received by Laboratory:	by Le	poret	یز									
3 #12																ž	• •												 ,.
7731						:		ı		-			_		-;	Š	MASADIN #												:

42 - 2582 Hdg YOLO9MS × - X09221MS $^{\sim}$ ١. X Reactivity Flash Point 🗆 Optrosivity Storage Location: Cirganic Lead [] Laad 239.2 🗆 200.7 🗀 7420 🖂 7421 🗂 6010 CAM Metals TTLC
STLC EPA Metals - Priority Pollutant

TAL

RCRA ∞ (7) □ draH □ tea9 □ AOV-ima2 □ AOV □ slstaM 91CT **684**3 TOX Metals 🏻 Pesticides 🗖 Herbicides 🗆 <∵ □ 0168 □ 019 A역B (1) 5 B B ☐ (+ 25) ☐ NBS (+ 26) ☐ APA (+ 26) ☐ Received by Laboratory: ☐ (51+) SBN ☐ JAT\0524 ☐ J974FPL ☐ 15) ☐ □ Vino BOS □ 8080 □ PCB only □ CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST Lab Use Only Lot # 718 □ 0208 A4∃ □ 208 A4∃ Work Order # Received by Received by ☐ 0108 A9∃ ☐ 100 A9⊞ REMARKS Waybill # ☐ S.SOS A9∃ ☐ 1:608 A9B EIDB by 504 □ DBCP by 504 □ ☐ \$03 MS ☐ 1.814 AI\H9T Gil and Grease 413.1 □ 413.2 □ SM 503 □ 06:61 Time Ó Hydrocarbon Profile (SIMDIS) □ Screen 🗆 ☐ lesei ☐ Hydrocarbons GC/FID Gas BÎTEX/Gas Hydrocarbons PID/FID □ with MTBE □ SPECIAL REPORTING REQUIREMENTS 36.09.76 with MTBE ☐ **Z**09/X∃**1**B Date 8050 Date Date 20:11 20:11 14:00 13:57 14:06 2:// Sampling SPECIAL DETECTION LIMITS ΗΙΜΕ NAME) Close most follychemical supertion X2:10% > -: * **3TA** MEADOWBROOK INDUSTRIAL PARK MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL (INFELTY) Method Preserved **∩**#PRESERVED Phone #: 516-249-8500 Β¢Ι × × λ ہد × 'OS2 Client Project ID: (#) 504 HINO Site location: (こみん) HCI × $\boldsymbol{\times}$ Sampler Name (Print): Стнев 405// тэпооя́я Petrusola Bakoga Matrix arnde E ЯİА Confirmation # 85-0044-044 aoir FAX #: **R**BTAW × ٧ × Special Handling 3 # Confainers \mathcal{L} Quote/Contract # 84501-Relinquished by Sampler GTEL Contact 16 H. (Lab use only) отнея *[[54/01]* // GTEL Lab# Relinguished by: Relinquished by QA / QC LEVEL ocedures were used during the collection attest that the proper field sampling ENVIRONMENTAL 720-KM-50-1317 010-12 CC-1217-Dow Environmental 210-KM-50-1347 420-11-60-1317: 410-KM-50-1357-P10-14-60-1317-920-8M-60-A317-1-11EV-03-WA-021 -CTEV-03-WA-01 -LTEV-03-WA-018 921679 CLP John Munson Winding Field Sample ID ompany Address: ompany Name: roject Manager: these samples. Business Days xpedited (48 hr) riority (24 hr) usiness Days L'GE ther _ 7/91 É,

ייש	ME	ADO,	WBRC	MEADOWBROOK INDUSTRIAL	NDO	STRI		PARK			CHA		CHAIN-OF-CUSTODY RECORD	UST Sign	00)	REC	SOR	0	1	\ \(\)	C V	(X			.			
ENVIRONMENTAL		(8) (8) (8) (8) (8) (8)	2, N 2,483(8-GTI	MILFORD, INF 03035 (603) 672-4835 (800) LAB-GTEL /	To	ر سرد	0	et.	S	α	Ž	ŧ	Į.	010	א ער ער	CES					")			•				
ompany Name:		Pho	Phone #:		-																							
ompany Address:		Site loc	FAX #: Site location:	Ë																								_ `
roject Manager:		Sie	nt Proj	Client Project ID:	(#)									CUC INIC				(+15)							activity			
		(NAME)	ME)							GIN				Э.П.:												_ <u> </u>		
attest that the proper field sampling ocedures were used during the collection these samples.	sampling g the collection	Sarr	pler N	Sampler Name (Print):	rint):					44;							□ 0											1.05
Z oi	GTEI	ers	2	Matrix		Me	Method Preserved	<u> </u>	Sampling								S08 A9											- FL
Sample ID	Lab # (Lab use only)	mistnoO #	SOIL	SLUDGE SLUDGE	OTHER HCI	h°2O° HNO³	NAPRESERVED ICE	OPTE (SPECIFY) DATE	ЭМІТ	C 509/X319	BTEX/602 []	Hydrocarbon	Hydrocarbon	Oil and Grea: TPH/IR 418.1	EDB by 504 [EPA 601 [EPA 602 □ E	EPA 608 □ 8	144/ 5 29 A4∃	8 □ 016 A93	EP TOX Meta	- sistem A93	CAM Metals	⊒ S.86S bead	Organic Lead	1/09/13	5 201	1832M)
820-NM-80-1317-7		_	×			×	×	130	1	NE. 2		1				1		 -			-	+				+		T
:-LIEV-03-WA-02)	·	_	×				7<		1/	134	<u> </u>		<u>,</u>	\$	<u>^</u>	2			, b 1	1	 	ļ		_	_		×	Ţ-
1-1181-03-5-00		17	놋				×		0/ //	5/:01											-			1.4	ìχ			×
1-15EN-03-5-010	-	2	2				>		0/ //	10:20												ļ		-				
1-1561-03-5-011	-	N	54				×		10	52:01								-						<u> </u>	٠ ۲×			
210-5-80-1317-	4 10	1/3	>				>		:01 "	§2:0														<u>``</u>	×			
5-5-80-1317-7	L 92:60:96 L10	N	7				×		1) 10	Ch: 101																		
410-5-80-1917-1		2	×				×		11 10	10:30														,	×	L		
1-17PV-03-5-015	.:	<i>N</i>	×				×	_	10	10:35																		
7-11EV-03-5-016	1.	13	۲				X	7	D1 '	04:01											_			$\stackrel{\sim}{}$	_			
TAT	Special Handling	andling			R.	ECIA	DET	CTION	SPECIAL DETECTION LIMITS	S				_	REMARKS	\RKS]							
riority (24 hr)	GTEL Contact																											
_	Quote/Contract #																											
Business Days	Confirmation #				R ₂	SPECIAL RE	. REP(BTING	PORTING REQUIREMENTS	JIREM	ENTS				Lab U	Lab Use Only Lot	ly Lo	#				Sto	orage	Storage Location:	ition:			
usiness Days	:																				P.	10	_	· ~	ĺ	(
_	QA / QC LEVEL																					Σ. •	`	Š	9	~		
	отнев				FAX	\Box									Work	Work Order	#	1)	. 1.0	9 C	1414	7						_
	Relinquished by Sampler:	эr:							~	Date			Time		Recei	Received by:	· 											
CUSTODY	Relinquished by:									Date			Time		Recei	Received by:	į.											
RECORD	Relinquished by:									Date			Time	-	Зесеі	Received by	Labo	Laboratory				X	~					1
											- in	₹ .60	5,		Waybill #		j.	15	-	<u> (</u>	• , •	(' <u>`</u>		′				
																												1

chain-of-custody record 64039		Screen	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	See of the control of		(SIMA) (S	EPA 500 1	Hydrocarbons Hydro	×	*		Asin MS/MS/	X	*	* * * * * * * * * * * * * * * * * * * *	**	*		REMARKS			# \$0 - 1 10 C 1 10 1 10 10 10	Lab Use Only Lot		A 6040414	Time Received by:	Time Received by:	Time Received by Laboratory: 8 Communication	
$\frac{1}{3}$		ıaH □ tı	səd [□ AO\ IAT □	V-im92 I tnstul	S 🗆 7	AOV □ vfinoin¶	SISTEM METAILS -														100	000	<i></i>	1 2 5			Me will	(100%)
64			+ 52)	1B2 (-	ור 🗆 וו	ΑΤ\0	728 🗆 .	199 625/PPI EPA 625/PPI			,														0000			Š	(
<i>ECORD</i> EST] Áluo (PCB 20 □	208 Aq □ 080	Ep∀ 608 □ 8			 								KS					-	(√/ # Jeb	d by:	d by:	by Laborato	,
ISTODY FIS REQUI				[204	ь ру	□ DBC	E28 by 504				ask!							REMAR			40	Lab 088		Work Or	Received	Весеіvес	Received	
AIN-OF-CU D ANAL YS		Screer	☐ [€	Diese	se 🗀	(SIW	S GC/FI Profile	Hydrocarbon: Hydrocarbon				Jun 1115											0			Time	Time	Time	0336
CH/V ANI		 ⊒ 38TM					8020	BILEX\602 □	52	05		20:	0.00:	1.07	0/:/	15	02	53				TATATO				Date	Date	Date	*
₹ ª							Sampling	TiME OØ1E (SECCIEY)	11:09:26 10	17:01	55.01 "	1://	1:11 //	1:11	1. 11:1	// //:/	11 13:	1) 13:	ECTION LIMITS	,		,	י י						-
STRIAL PARK							Method Preserved	O, HEB NHUBEREBAED IC;E HF2O' HAO'	×	×	X	<i>></i>	X	X	×	×	X	λ.	<u> </u>			OTIVIDAD CIVITACADA INICIACIA	בטואר אבויסדי		FAX				
MEADOWBROOK INDUSTRIAL MILFORD, NH 03055 (603) 672-4835 (800) LAB-GTEL	>	iu.	ect ID: (#)		Sampler Name (Print):		Matrix	AMA SLUDGE PRODUCT OTHER											S				<u></u>						
MEADOWBROC MILFORD, NH (603) 672-4835 (800) LAB-GTEL	Phone #:	Site location:	Client Project ID: (#)	(MAMP)	Sampler N			# Contain	ら	N	12	× 2	x 2	λ 2	× 2	λ 2	k 2	x 2	andling						ı	::			
ME/ MIL! (603 (800)					the collection	trie collection	101-0	Lab # (Lab use only)		* :	. ,	1,1	٠.	140	17	6 h	5,5	ζ,	Special Handling	GTEL Contact	Quote/Contract #	Confirmation #	#Od#	QA / QC LEVEL	ОТНЕВ	Relinquished by Sampler:	Relinquished by:	Relinquished by:	
GTEL ENVIRONMENTAL	ompany Name:	ompany Address:	oject Manager:		ittest that the proper field sampling	ocedures were used during the collection these samples.	<u>.</u>	Sample ID	-11EV-05-5-009	810-5-80-1317-	110-5-50-1917	020-5-60-1311-	120-5-607AJ1-	LTEV-03-5-023	420-5-80-13FT	520-5-80-1357	-2164-03-5-026	120-5-80-1317-	TAT	riority (24 hr)	xpedited (48 hr)	Business Days	ther	ו	CLP C		CUSTODY	RECORD	

NEI/GTEL Environmental Laboratories, Inc. LOGIN CHAIN OF CUSTODY REPORT (1n01) Sep 27 1996, 12:34 pm

Login Number: M6090414
Account: DWE01 Dow Environmental, Inc.
Project: 966044044 Old Bethbage, NY

	Laboratory Sample Numi	oer	Client Sample 1	lumber		Collect Date			Due Date	
	Army Delive	erables // Clie	CLLTEV03 package // nt specific B	BJU Rej QC //	porting Full C	// Inc	lude any records r	rerun d needed.	03-00 ue to 3 Bot	OOC
	Army Delive	erables	CLLTEVO: package // nt specific B	BJU Rep	porting Full C	// Inc	lude any records r	rerun d	ue to	ooc
	M6090414-03 Army Delive surrogates Aqueous	erables // Clie	CLLTEVO: package // nt specific B	BJU Rep C //	porting Full C	26-SEP- // Inc ustody OCT-96	lude any records r	rerun d needed.	03-OC ue to 3 Bot	ooc
	Army Delive	erables // Clie	CLLTEVO: package // nt specific B	BJU Rej	porting Full C	// Inc	lude any records i	rerun d needed.	03-0C ue to 3 Bot	ooc
,	Army Delive	erables // Clie	CLLTEVO: package // nt specific B	BJU Re	porting Full C	// Inc	lude any records i	rerun d	03-OC ue to 3 Bot	OOC
	Army Delive surrogates	erables // Clie	CLLTEVO: package // nt specific 10/B	BJU Re	porting Full C	// Industody	lude any records 1	rerun d	03-00 ue to 1 Bot	00C
	Army Delive	erables // Clie	CLLTEVO: package // nt specific /325.2L/B	BJU Re	porting Full C	// Inc	lude any	rerun d		000
	M6090414-00 Army Delive surrogates Aqueous	erables // Clie	package // nt specific	BJU Re	porting Full C	// Inc	records	rerun d		00C
	Army Delive surrogates	erables // Clie	CLLTEVO: package // nt specific /325.2L/B	BJU Re	porting Full C	// Ind	clude any records	rerun d		00C

NEI/GTEL Environmental Laboratories, Inc. LOGIN CHAIN OF CUSTODY REPORT (1n01) Ser 27 1996, 12:34 pm

Login Number: M6090414

Account: DWE01 Dow Environmental, Inc. Project: 966044044 Old Bethbage, NY

	Laboratory Sample Numi		Client Sample Numbe	Colle r Date	ect Receive Date	Due PR Date
_	Army Delive	erables pac	ckage // BJU	Reporting // : // Full Custo	EP-96 27-SEP-96 Include any rer dy records need 96 27-12 23LA	un due to OOC ed.
D	M6090414-1: Army Delive surrogates	erables pao // Client	ckage // BJJ specific QC	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 97 W6D	un due to OOC
	Army Delive surrogates	erables pac // Client	ckage // BJU specific QC	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 -W9D W6D	un due to OOC
	Army Delive	erables pac // Client S 8260/B	ckage // BJU specific QC	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 23LA 23LA	un due to OOC
	Army Delive	erables pac	ckage // BJU specific QC	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 23LA 23LA	un due to OOC
	Army Delive	erables pao // Client S 8260/B	ckage // BJU	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 23LA 23LA	un due to OOC
	Army Delive	erables pac	ckage // BJU specific OC	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 23LA 23LA	un due to 00C
	Army Delive	erables page	ckage // BJU	Reporting //	EP-96 27-SEP-96 Include any rer dy records need 96 23LA 23LA	un due to OOC

NEI/GTEL Environmental Laboratories, Inc. LOGIN CHAIN OF CUSTODY REPORT (1n01) Sep 27 1996, 12:34 pm

Login Number: M6090414
Account: DWE01 Dow Environmental, Inc.
Project: 966044044 Old Bethbage, NY

Laboratory Sample Number	Client Sample Number	Collect Date	Receive Date	Due PR Date
M6090414-18 Army Deliverables pasurrogates // Client Solids S 8260/B Solids S SOLIDS	<pre>ckage // BJU Repor specific QC // File </pre>	rting // Inc	clude any re records nee	run due to OOC
M6090414-19 Army Deliverables pasurrogates // Client Solids S 8260/B Solids S SOLIDS	<pre>ckage // BJU Repo specific QC // F</pre>	rting // Inc	clude any re records nee	run due to OOC
M6090414-20 Army Deliverables pasurrogates // Client Solids S 8260/B Solids S SOLIDS	ckage // BJU Repo specific QC // F	rting // Ind	clude any re records nee	run due to OOC
M6090414-21 Army Deliverables pa surrogates // Client Solids S 8260/B Solids S SOLIDS	ckage // BJU Repo	rting // Inc ull Custody	clude any re records nee	run due to OOC
M6090414-22 Army Deliverables pasurrogates // Client Solids S 8260/B Solids S SOLIDS	ckage // BJU Repo specific QC // F	rting // Ind	clude any re records nee	erun due to OOC
M6090414-23 Army Deliverables pasurrogates // Client Solids S 8260/B Solids S SOLIDS	ckage // BJU Repo	rting // Ind	clude any re	erun due to OOC
M6090414-24 MS/MSD // Army Delivedue to OOC surrogate Solids S 8260/B Solids S SOLIDS	s // Client speci	/ BJU Repor	ting // Incl ull Custody	lude any rerun
M6090414-25 Army Deliverables pasurrogates // Client Solids S 8260/B	ckage // BJU Repo	26-SEP orting // Inc ull Custody d:10-OCT-96	clude any re records nee	96 5 03-OCT-96 erun due to OOC eded. 2 Bottles

NEI/GTEL Environmental Laboratories, Inc. LOGIN CHAIN OF CUSTODY REPORT (1n01) Sep 2" 1996, 12:34 pm

Login Number: M6090414
Account: DWE01 Dow Environmental, Inc.
Project: 966044044 Old Bethbage, NY

Laboratory Sample Number	Client Sample Number	Collect Receive Date Date	Due PR Date
Solids S SOLID	S	23LA	0 Bottles
Army Deliverables	package // BJU Repor nt specific QC // Fu B Hold	26-SEP-96 27-SEP- ting // Include any r all Custody records ne l:10-OCT-96 23LA 23LA	erun due to OOC
M6090414-27 Army Deliverables surrogates // Clie Solids S 8260/ Solids S SOLID	package // BJU Repor nt specific QC // Fu B Hold	26-SEP-96 27-SEP- ting // Include any rail Custody records ne 1:10-OCT-96 23LA 23LA	96 5 03-OCT-96 erun due to OOC eded. 2 Bottles 0 Bottles
Army Deliverables	package // BJU Repor nt specific QC // Fu B Hold	26-SEP-96 27-SEP- rting // Include any r all Custody records ne d:10-OCT-96 23LA 23LA	erun due to 00C
Army Deliverables	package // BJU Repor nt specific QC // Fu B Hold	26-SEP-96 27-SEP- rting // Include any r all Custody records ne d:10-OCT-96 23LA 23LA	erun due to OOC
M6090414-30 Army Deliverables surrogates // Clie Solids S 8260/ Solids S SOLID	package // BJU Repor nt specific QC // Fu B Hold	26-SEP-96 27-SEP- rting // Include any r ill Custody records ne d:10-OCT-96 23LA 23LA	10-OCT-96 rerun due to OOC eeded. 2 Bottles 0 Bottles
Army Deliverables surrogates // Clie Solids S 8260/	package // BJU Report int specific QC // Fu B Hold	26-SEP-96 27-SEP- rting // Include any n ill Custody records ne d:10-OCT-96 23LA	rerun due to 00C eeded. 0 Bottles
Army Deliverables	package // BJU Report int specific QC // Fu	26-SEP-96 27-SEP- rting // Include any r ull Custody records no d:10-OCT-96 23LA	rerun due to OOC

Login Number: M6090414

.

	Samples ransfered	Released	by	Time	Date	Transf.	ТО	Recvd By	Time	Date
_	/(3 /,3-5((36/3) z(2	5/2)	12.71	1300	9/27/16	us			ı <u></u>
	10,13,15,16,1	18, 20-22 24	125,27	29 (1872	2) Az. ;	15-25	9/27	196 GCMS YO	a Mulu I	2:00 pm 9/2
	10,13,15,16,18		1 /	~ ///#	n U . D /F .		16-1	Bread		2 9-27-86,
	10,13-30(106							n fosic	Mil	Algerty
	1013-30/10	(2) MI	1	30	J 91	15/96	576			1/19/2/9
	79,12 (1061)	Breez	elet	15.5	5 9-28-9	1	2		- idl	1/2/14/30
	•	e. The 12'		. ,		21	Ve.	ilo. 1	2580	9/30/86
	14,17,19,23,26	/	,				/	SOL Shair		14:559/30/92
8	/ / / \	a Her	~ /		. ,	1 /	ı'	117	0,20	9/20/91
٠,		2(18Z) AZ				, () /	XI. / -17	_	7/
	·· //	Ω	/	•	, , ,		V-6	cas A/	11, 2 19	1/2/196
	10,13,15,16,20	//	, ,	/	. ,	10 1	$\overline{\Omega}$		H 34	40, 10/11 1 ·
	11(18/1) AZ.	/ '	1 4.		•	dus.			40 1011	500
	14,17,19,23,76			~/		\sim	7.7		0/1/96	6.
	11(1ch) Sh.	nd litter	my	130	10 10/01/	15G 51C	- 1	Z.7 N- 13	35 10/1	196 ff . [[
	13/5/6,20 7	127((42)	<u> </u>	الدرج	15st [10/1	120	<u>Sib</u> 2	4 f #	10/9/56
	7,9,12/14/	See Co	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	72 2/ 12/0/01		g AZ.		445 10/2/9	<u> </u>	
	1417,1928		1 3	-Eggl		40-376 (VOA Wales		0; <u>54 0 4</u> 9 ₆
	14,17,19,28,3	od 1002) y	relep	udreg	4,15	Storage	<u>e</u>	572 18-Cc	mer!6	12/04-84
				·						
		_								
										·
							_			·

Date: \(\(\frac{1}{2} \) \(\frac{1}{2} \)

Nonconformance/Phone Log

coc# 64038,64336,64039

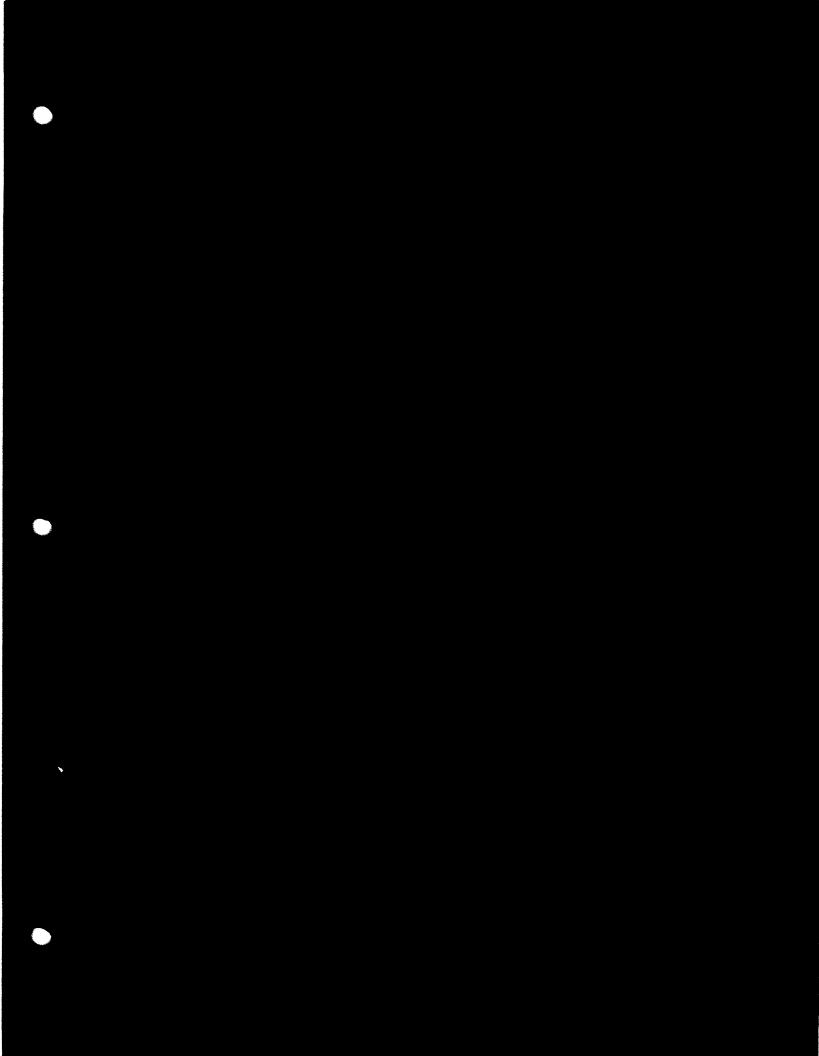
サイン

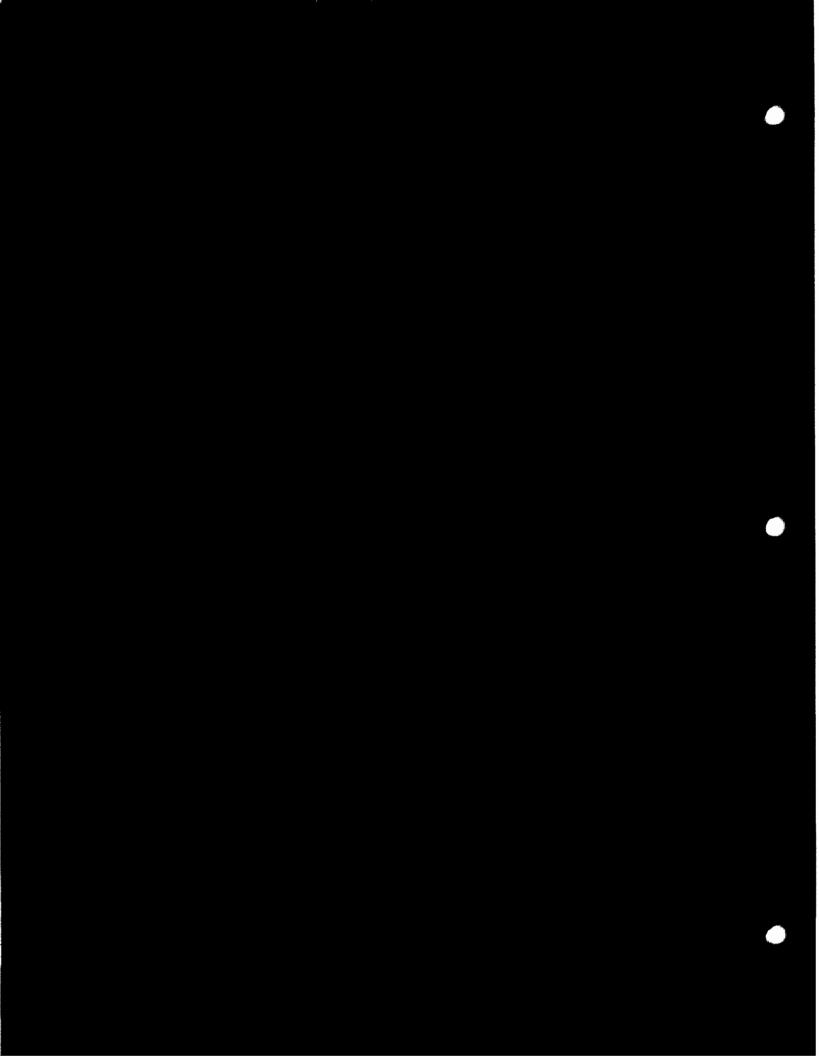
Contact:

Rev. 03/21/95

GICOMMONIQAMILEINCPHONE

だところが


(A) L


INTERNAL SAMPLE HISTORY

						servation			
GTEL S	ample C	ontrol Pe	erson(signatur	e) : <u>/</u>	neco	da		
						Seal on Co		tact: Y	\n (wi)
Cooleri	*C F=frozen	Bluepack /=Yes	ICE /-Yes.i	BAGGED /-Yes	Top ✓-Yes	Interspersed	Bottom /=Yes		t or Little
	40							Alot /	Little
	ļ			 				Alot /	Little
· · ·									Little
						<u></u>		Alot /	Little
If	more than one p	roject was shipped	in the cooler	containing this	project, rec	ord the other project	numbers in tl	pe abace per	ow:
Unpa	cker notes GTI	EL coolers return		Cooler Ti s job. Each blo		nts a cooler. Data e	ntrv update:	s cooler tra	cking.
		HCL,	HNO3, and	Preserved H2SO4 ph<		ph>12 or ph>9			
	Sample	ID	рH	PP √-yes		Sample II)	pH `	PP √=yes
CL-LTE	V-03-WA	-621 XIN	1.0						
CL-LTE	V-03-WA	-055 S	1.0	. :.					
CL-LTE	V-03-WA V-03-WA	-022 V	1.0						
CL-LTE CL-LTE	V-03-WA V-03-WA	-021 XIN -022 1 102) N	1.0				· ·		
CL-LTE	V-03-WA V-03-WA	-021 XIN -022 1 1023 N	1.0				· · · · · · · · · · · · · · · · · · ·		
CL-LTE CL-LTE	V-03-WA V-03-WA	-021 XIN -022 1 1 023 N	1.0						
CL-LTE	V-03-WA V-03-WA	-021 X (N -022 1 1 023 N	1.0						
CL-LTE	V-03-WA V-03-WA	-621 XIN -022 1 1023 N	1.0						
Dots	Unp	acker chec	k if ap	_					
Doss:	Unp.	acker chec	k if ap) Re	d(hot)_				
Doss:	Unp.	acker chec	k if ap) Re	d(hot)_	ontainer)			
Doss:	Unpor Fro	acker chec	k if ap) Re	d(hot)_				
Dots: White(te Orange(p	Unpor Fro	acker chec	k if ap)Re	d(hot)_ wrong c			ew	or.

6016

	'		

Certificate of Analysis No. L1-9609C61-02

RADIAN CORPORATION 1600 PERIMETER PARK DRIVE MORRISVILLE, NC 27560 ATTN: A. WEBER

P.O.# 277557.UA - COC #21215

10/23/96

PROJECT: CLAREMONT POLYCHEM

SITE:

SAMPLED BY: RADIAN SAMPLE ID: RUN 2

PROJECT NO:

MATRIX: PROPANE

DATE SAMPLED: 09/26/96 13:55:00

DATE RECEIVED: 09/30/96

	ANALYTICAL DATA		
PARAMETER	RESULTS	UNITS	
Carbonyl Sulfide	15.5808	ppm	
Hydroden Sulfide	<1	ppm	
Carbon Disulfide	<1	mqq	
Sulfur Dioxide	<1	ppm	
Total Mercaptans	<1	ppm	

ANALYZED BY: EG

METHOD: FPD-GC [GPA]

DATE/TIME: 10/08/96

COMMENTS:

QUALITY ASSURANCE: This analysis was performed in accordance with ASTM, UOP, or GPA guidelines for quality assurance.

> Billy A. Aug Billy Rich, Laboratory Manager

> > W450:Z0 96, 8Z 100

		4
		_

LAFAYETTE AREA LAB 500 AMBASSADOR CAFFERY PKWY. 8CDTT, LOUISIANA ZIP 70882-8544 PHONE: (318) 237-4775

Certificate of Analysis No. L1-9609C61-01

RADIAN CORPORATION 1600 PERIMETER PARK DRIVE MORRISVILLE, NC 27560

ATTN: A. WEBER

P.O.# 277557.UA - COC #21215 10/23/96

PROJECT: CLAREMONT POLYCHEM

SITE

SAMPLED BY: RADIAN SAMPLE ID: RUN 1 PROJECT NO:

MATRIX: PROPANE

DATE SAMPLED: 09/26/96 10:40:00

DATE RECEIVED: 09/30/96

	ANALYTICAL DATA		
PARAMETER	results	UNITS	
Carbonyl Sulfide	13.9798	ppm	
Hydroden Sulfide	<1	ppm	
Carbon Disulfide	<1	ppm	
Sulfur Dioxide	<1	mqq	
Total Mercaptans	<1	ppm	

ANALYZED BY: EG

METHOD: FPD-GC [GPA]

DATE/TIME: 10/08/96

CONCENTS:

QUALITY ASSURANCE: This analysis was performed in accordance with ASTM, UOP, or GPA guidelines for quality assurance.

Billy Rich, Laboratory Manager

1.4

	_

Certificate of Analysis No. L1-9609C61-03

RADIAN CORPORATION

1600 PERIMETER PARK DRIVE

MORRISVILLE, NC 27560

ATTN: A. WEBER

P.O.#

277557.UA - COC #21215

10/23/96

PROJECT: CLAREMONT POLYCHEM

SITE:

SAMPLED BY: RADIAN SAMPLE ID: RUN 3 PROJECT NO:

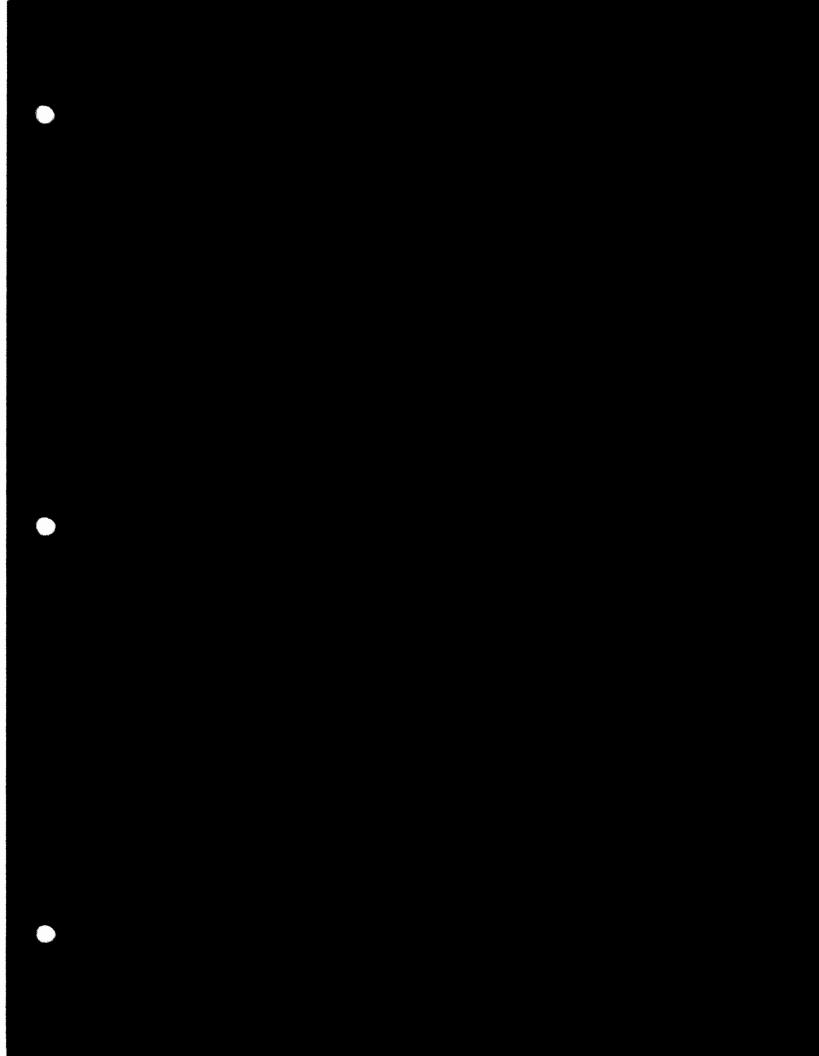
MATRIX: PROPANE

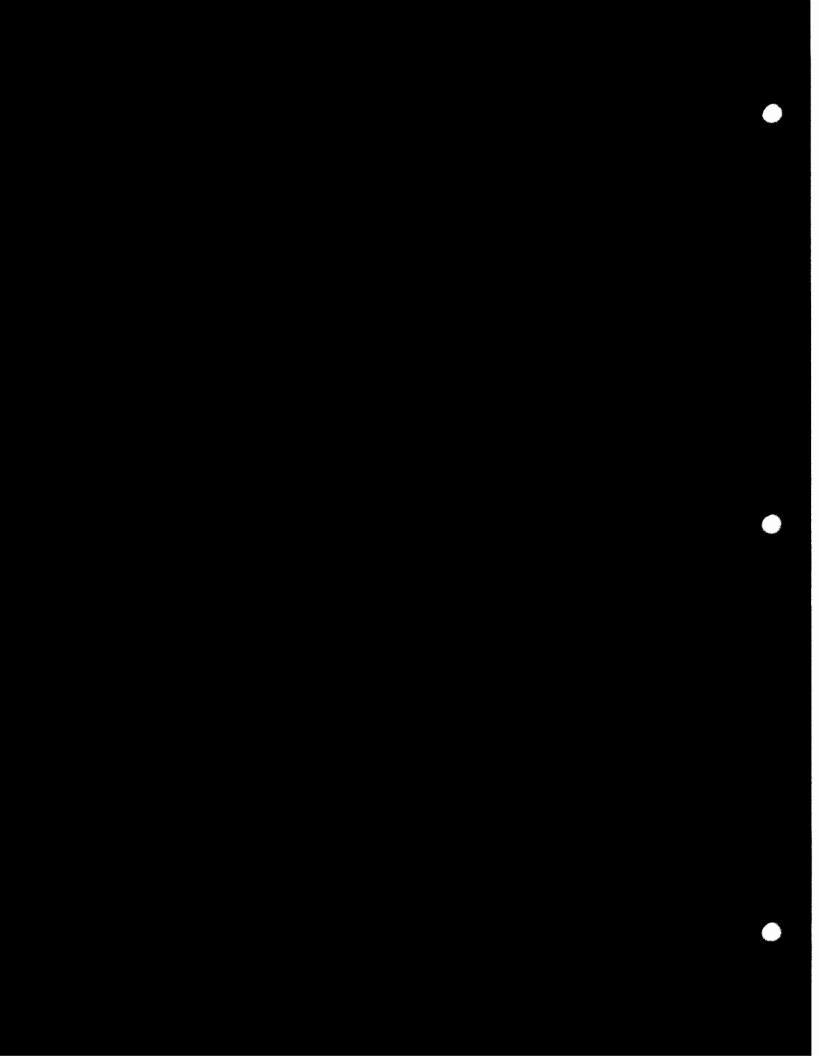
DATE SAMPLED: 09/26/96 DATE RECEIVED: 09/30/96

	AMALYTICAL DATA	
Parakhter	results	UNITE
Carbonyl Sulfide	25.0461	ppm
Hydroden Sulfide	<1	ppm
Carbon Disulfide	<1	maa
Sulfur Dioxide	<1	ppm
Total Mercaptans	<1	ppm

ANALYZED BY: EG

METHOD: FPD-GC [GPA]


DATE/TIME: 10/08/96


COMMENTS:

QUALITY ASSURANCE: This analysis was performed in accordance with ASTM, UOP, or GPA guidelines for quality assurance.

Billy Rich, Laboratory Manager

		_

12

Z,

VOST I LID DATA

Run Page 1 of

À.:

Plant	claremont	4 Ambient Temp. (*F) 63		Meter Box Number	A 147720
Date	1/26	Barometric Pressure (in. H2O)		DGM Cal. Factor (Y)	.980
Sampling Location	outle t	Stack Temp. (*F)		Probe Length & Type	٠,
Sample Type	Vost	Average delta P (in.H2O)		Probe Heater Setting (°F) 225	222
Run Number	14	Static Pressure (±) (in. H2O)	4.25	Filter # & Type (if used)	
Operator	4.0	Sample Rate (Ipm)	٦,	Filter Temp. (*F)	

Purpose: ____Other Data/Notes: ____

Set Rate (in. Hg) Vacuum (in. Hg) Rate (in. Hg) V.	LEAK CHECKS:	PRE TEST	PRE TEST	POST TEST	POST TEST
· · · · · · · · · · · · · · · · · · ·	Set	Rate (in. Hg)	Vacuum (In.Hg)	Rate (in. Hg)	Vacuum (in.Hg)
	2	0 0	1, 51		

				_					_	_		_			_	 				_
		Train	Vacuum	(in.Hg)	7					Q	2		\ \mathred{\cdots}	9				Vacuum	(in.Hg)	
		Stack	Төтр.	(° F)	143					143	1 43		171	2 /11					Ts	
		Probe	Тетр.	(°F)	011					1361	134		132	233						
Additional Tubes: Additional Tubes:		Line	Төтр.	(F)																
Additi		emperature		B (°F)	5.8					, 9	61		60	60						
		Condenser Temperature		A (°F)	58					49	19		/ 9	19			*(3	· · ·	<u> </u>	
Tenax Charcoal: Tenax Charcoal:		Meter	Temp.	(°F)	0)					74	75		52	76				Average	Lω	
Tena		Meter	Pressure	(in.H2O)	5	8.				8.	,		4	1				Average	Pm	
	Rotameter	Setting	(lpm/ft3/	min)	٤,	8	7	•		٠٤.	ک		5.	۲,			Average	Flow	Rate	(
Lot Tenax Tube:			Gas Meter Reading	(Vol in L or ft3)	17.022	19.35	10,040			21.900	21.650	24.500	25 389	27.50	29.140			Total Volume	Metered	
Set: 19 Outlet		g Times	Clock	(24hr)	1015	8 . 07	91.01			41.07	11:11	11:17	95 ::	1153	0621			Total	Time	
Set: Set:		Sampling Times	Bun	(min)	٥	5	0.	9		0	٠	ō	9		61			Run	Time	

₫

13

Comments:

		_
		•
		_

RA MAN

VOST I LD DATA

Run Page 1 of

Plant		Ambient Temp (*F)	٥	Meter Boy Number	4 14777.6
THE STATE OF THE S	Clareno	mission comp. ()			
Date	1/26/66	7/26/4 6 Barometric Pressure (in. H2O)	30. (DGM Cal. Factor (Y)	86.
Sampling Location	outlet	owflet Stack Temp. (°F)	141	Probe Length & Type '	1/0/
Sample Type	200	Average delta P (in.H2O)		Probe Heater Setting (*F)	23
Run Number	7	Static Pressure (±) (in. H2O)	52.	Filter # & Type (if used)	
Operator	4.6	Sample Rate (lpm)	ŗ	Filter Temp. (°F)	

Purpose:

Other Data/Notes:

Vacuum (in.Hg) POST TEST 7 POST TEST Rate (in. Hg) 0 Vacuum (in.Hg) PRE TEST PRE TEST Rate (in. Hg) LEAK CHECKS: Set

Setting Meter Condenser Temperature Line Probe Stack		Tenax Tube: Tenax Tube:	' ⊢	Tena	Tenax Charcoal: Tenax Charcoal:		Additi	Additional Tubes: Additional Tubes:			
(lpm/ft3/) Pressure (lpm/ft3/) Temp. Tem			Hotameter Setting	Meter	Meter	Condenser	Temperature	Line	Probe	Stack	Train
min (in.H20) (°F) A(°F) B(°F) (°F) (°F) (°F) (°F) (°F) (°F) (°F)	Gas Me	Gas Meter Reading	(lpm/ft3/	Pressure	Төтр.			Temp.	Temp.	Temp.	Vacuum
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sol	(Vol in L or ft3)	min)	(in.H2O)	(°F)	A (°F)	B (°F)	(F)	(°F)	(F)	(in.Hg)
.5 1 67 60 235 1441 .5 1 67 60 60 23 1445 .5 1 26 59 60 23 145 .5 1 68 58 57 23 145 .5 1 10 58 57 23 145 .5 1 10 57 57 23 145 .5 1 10 57 57 23 145 .5 1 10 57 57 23 145 .5 1 10 57 57 23 145 .5 1 10 57 57 23 145 .5 1 10 57 57 23 145 .5 1 1 57 57 57 23 145 .5 1 1 57 57 57 53 145 .5 1 1 1 1 1 1 Rate Pm Tm Tm T8	62	29. 283	K	•	64	63	19		233	1/41	0
. \$ (1) 67 60 60 73 (4x) . \$ (1) 66 \$1 60 23.5 (4x) . \$ (1) 68 \$6 \$7 23.3 (4x) . \$ (1) 70 \$7 \$7 \$1 70 . \$ (1) 71 \$7 \$7 \$7 \$1 70 Average	31	31.50	٧.	1	19	19	19		233	17/1	P
.5 ! GE 51 60 23.5 ! (45.5) .5 ! 68 58 57 6.0 2.33 ! (45.5) .5 ! 68 58 57 23.3 ! (45.5) .5 ! 10 57 57 23.3 ! (45.5) .5 ! 10 57 59 23.3 ! (45.5) Average Average Average Average Average Average Filow Tm Ta	33,	. 45	٠ ۶		19	09	90		7 5 2	hin 1	o
1	36.	70	٠ کر	,	66	5 8	09		233	527	٥
S	38.	00	15	,	20	5.9	lΙ		233	145	٥
5 68 50 57 233 145 5 1 70 58 57 233 145 5 1 70 57 57 233 145 5 1 70 57 57 233 145 6 Flow Average Average Average Average Average Average Average Pm Tm Ta									-		
15 10 58 57 233 145 15 10 57 51 15 1 10 57 51 17 57 57 115 18 Flow Average Tm Tm Te	38.	17	5.	1	89	58	52		233	145	0
1	1/0.	0 1	ر ج		10	58	57		233	145	۵
\$\frac{5}{5}\$ \$\langle \frac{70}{5}\$ \$\frac{7}{5}\$ \$\frac{7}{5}\$ \$\langle \frac{7}{5}\$ \$\langle \frac{7}{	42.	42.450	رح ,								
Image Average Average Average Average Average Average Average Average Average Test Test											
Average Flow Average Average Fm Tm Tm	42.	42.788	2,	/	10	22	52		233	145	0
Average Average Average Tm	1.00		٨.	,	11	57	65		737	1.75	0
Average Average Andrage Tm	47,	47,298									
Average Average Average Andrage	 - 										
Flow Average Average Rate Pm Tm			Average								
Pm Tm ·	Tota	Total Volume	Flow	Average	Average			-			Vacuum
	Σ	Metered	Rate	Pm	Tm					Ţŝ	(in.Hg)
			(

7

23

	, ,		
			_
			<u> </u>
			_
			•

VOST I LLD DATA

Run Page 1 of

Plant	(hene.	Ambient Temp. (*F)	98	Meter Box Number	A 147720
Date	9/20/9 6	/26/9 6 Barometric Pressure (in. H2O)	30,1	DGM Cal. Factor (Y)	380
Sampling Location	0.1167	Stack Temp. (*F)	104	Probe Length & Type	3.
Sample Type	West	Average delta P (in.H2O)	1	Probe Heater Setting (°F) 2 / 0	012
Run Number	7	Static Pressure (±) (in. H2O)	٠ ٢. ح.	Filter # & Type (if used)	
Operator	4.50	Sample Rate (ipm)	Þ	Filter Temp. (°F)	

Purpose:

Other Data/Notes:

POST TEST Vacuum (in.Hg)	
POST TEST Rate (in. Hg)	
PRE TEST Vacuum (in.Hg)	51
PRE TEST Rate (in. Hg)	0
LEAK CHECKS: Set	1

			Train	Vacuum	(in.Hg)		9												Vacuum	(in.Hg)	-
			Stack	Тетр.	(*F)	0 hh/	10/01			1441			1941		10/6/					Ts	
			Probe	Temp.	(°F)	1, 82	233			, 582			252		523						-
Additional Tubes:	Additional Tubes:		Line	Temp.	(°F))			i			ļ		1						
Addition	Addition		emperature		B (°F)	63	6 2			29			19		o e						-
			Condenser Temperature		A (°F)	79	09			88			09		61						-
Tenax Charcoal:	Tenax Charcoat:			Temp.	(*F)	86	9 6			8 4			80		79				Average	Tm	
Tena	Tena		Meter	Pressure	(In.H2O)	,	1			,			- 7		1				Average	Pm	-
		Rotameter	Setting	(lpm/ft3/	min)	١٨	. 5			>			. 7		٠۶.			Average	Flow	Rate	
Tenax Tube:	Tenax Tube:			Gas Meter Reading	(Vol in L or ft3)	48.910	50.85	53.015		53.400			56.10	5 8,113	50.620	61.3	63 285		Total Volume	Metered	_
			Sampling Times	Clock	(24hr)	0	3	01		0	Down	大津	5	0)	80	5	10		Total	Time	
 Set:	Set:		Samplin	Bun	(min)	15 47	15 57	57		1603		01/10	i	1716	WE ()	12 39	17 40(Run	Time	

30

3A

Comments:

•

VOST DATA CORRELATION

Sample No.	<u>Report Run No.</u>
CL-LTEV-II-AI-108	1A Front
CL-LTEV-II-AI-109	1A Back
CL-LTEV-II-AI-110	1 B Front
CL-LTEV-II-AI-111	1 B Back
CL-LTEV-II-AI-112	1 C Front
CL-LTEV-II-AI-113	1 C Back
CL-LTEV-II-AI-114	2A Front
CL-LTEV-II-AI-115	2A Back
CL-LTEV-II-AI-116	2 B Front
CL-LTEV-II-AI-117	2 B Back
CL-LTEV-II-AI-118	2 C Front
CL-LTEV-II-AI-119	2 C Back
CL-LTEV-II-AI-120	3A Front
CL-LTEV-II-AI-121	3A Back
CL-LTEV-II-AI-122	3 B Front
CL-LTEV-II-AI-123	3 B Back
CL-LTEV-II-AI-124	3 C Front
CL-LTEV-II-AI-125	3 C Back
CL-LTEV-II-AI-126	Blank Front
CL-LTEV-II-AI-126 CL-LTEV-II-AI-127	Black Back
CL-LIEV-II-AI-12/	DIACK DACK

			ř
			P
		_	•

CASE NARRATIVE

Analysis of Samples for the Presence of

Volatile Hydrocarbons by

High-Resolution Gas Chromatography / Low-Resolution Mass Spectrometry

METHOD 8240A Rev. 1 (7/92)

Date:

October 3, 1996

Client ID:

Radian Corporation

TLI Project Number:

39034

This report should only be reproduced in full. Any reproduction of this report requires permission from Triangle Laboratories, Inc.

Triangle Laboratories , Inc. Case Narrative

October 3, 1996 39034

Objective: Analysis of fourteen VOST tubes for the volatile compound tetracholorethene using Method 8240A.

Method:

Seven VOST tube pairs were received at Triangle Laboratories, Inc. on September 28, 1996 at 14°C in good condition. The samples were stored in a refrigerator at 4°C prior to analysis. The VOST tube samples were analyzed in separately according to the guidelines of Methods 8240A and 5040. The internal standards and surrogate standards were added in the amount of 0.25 micrograms (ug) immediately prior to analysis by GC/MS. The internal standard reported is chlorobenzene-d₅ and the surrogate standard reported is toluene-d₈. The results reported relate only to the items tested.

The GC/MS analysis conditions are listed below:

Purge and trap:

Tekmar LSC-2000

Purge:

11 min.

Desorb Temperature:

250 C

Desorb Time:

3 min.

GC Conditions:

Column:

30 m x .53 rnm x 0.3u J&W DB624

0 C hold .5 min, 10 C/min to 45C, 6 C/min to 90C, hold 1.5 min,

50 C/min to 200C.

MS Conditions:

Instrument:

VG-TRIO-1 Lab Base data system

Scan:

35-350 amu at .6s/scan

Interface:

Jet Separator, 200 C

Report:

Enclosed with the case narrative are copies of the sample identification index, the project summary sheets, client paperwork, sample log-in sheets, and log book pages. A sample identification index summarizes the client sample name, TLI sample number, and analytical file name for each sample and blank. The project summary lists the amounts for detected analytes in gray. The estimated detection limits will be listed in parentheses when the target analytes are not detected.

The data are reported as quantitation reports, chromatograms, interim reports, and spectra of detected target analytes. The quantitation report header lists the TLI project number, analysis method, instrument sample file name, client sample name, client project number, TLI sample number, calibration file, date received, and analysis date. The response factors used for all calculations are from the calibration file listed in the header. All initial and continuing calibration data are located in the back of the data package. The amount is reported in total ug for the VOST tubes. The retention time (RT) will be listed for all internal standards and analytes which are detected. If a target analyte is not detected, it will be flagged with a "U" and a detection limit will be listed. Estimated detection limits are calculated for all analytes

which were not found in the samples by using an area of 2000. The estimated detection limits reported are the average detection limits achievable over time on an instrument type. The actual detection limit for a given compound on a given day may vary from the estimate reported. The quantitation limit for all analytes is half of the low point of the initial calibration. Below this point the calibration cannot be considered to be linear. Any amount reported at a level below the quantitation limit will be flagged with a "J" and should be considered estimated. If any compounds are found at a level above the upper calibration range, the analyte will be flagged with an "E" and the amounts reported should be considered estimated. If any target analytes found in the laboratory blanks are detected in the associated samples, they will be flagged with a "B" on each sample topsheet. All analytes are quantitated against the internal standard preceding them on the target analyte list. Surrogate standards are quantitated against the internal standard with the matching internal standard reference number. For example, toluene-d₈ has 3 in the IS Ref column and would be quantitated against the internal standard which has IS3 listed in the flag column. If an internal standard area is above or below the quality control limits as defined by the continuing calibration, it will be flagged with "High" or "Low" in the flag column.

Results:

There were minor discrepancies between the sample identifications listed on the client chain of custody and those listed on the samples which arrived. The identifications on the sample labels were used for analytical and reporting purposes.

The VOST tubes were analyzed separately per client request. All samples were analyzed within the fourteen day sampling to analysis holding time. The samples were analyzed for tetrachloroethene only.

Tetracholoroethene was found at a level above the upper calibration limit in samples CL LTEV-11-AI-116 T and CL LTEV-11-AI-118 T. This compound is flagged with "E" and the amounts reported should be considered estimated.

The analyst noted that sample CL LTEV-11-AI-121 had a hairline crack.

All internal standard areas and surrogate standard percent recoveries were within quality control limits for all samples and the blank.

Tetrachloroethene was not detected in the laboratory blank. Tetrachloroethene was manually searched for when not detected in the samples by the instrument.

Sample Calculations:

Response Factor (RF) = $(area \ analyte) \ x \ (amt \ IS)$

(area IS) x (amt analyte)

Amount in ug = (area analyte in sample) x (amt IS)

(area IS) x (avg ical RF)

Triangle Laboratories , Inc. Case Narrative

October 3, 1996 39034

Where:

amt IS = amount of internal standard = 0.25 ug ical = initial calibration

The data in this package has been judged to be valid according to the guidelines of Methods 8240A and 5040 except as noted above. Should you have any questions, please feel free to contact our Project Scientist, Walter Murray, at (919)544-5729, Ext. 271.

For Triangle Laboratories, Inc.,

Report Preparation:

Tracy Wardell 10-3-96

Report Preparation Chemist

Quality Control

Report Preparation Chemist

The total number of pages in this data package is ______.

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

American Association for Laboratory Accreditation. Valid until July 31, 1997. Certificate Number 0226-01. Accreditation for technical competence in Environmental Testing.(Including Waste Water, Sol/Haz Waste, Pulp/Paper, and Air Matrices) Parameters are AOX/TOX, Volatiles, Pesticides, PCB's, BNA's, and Dioxin/Furan. Method 1613 for Drinking Water.

State of Alabama, Department of Environmental Management, Laboratory I.D. # 40950. Drinking Water for Dioxin, Expires December 31, 1997.

State of Alaska, Department of Environmental Conservation. Drinking Water for Dioxin. Expires December 31, 1996.

State of Arizona, Department of Health Services, Certificate # AZ0423, Drinking Water for Dioxin, Dioxin in WW and S/H Waste. Effective May 26, 1996. Expires May 26, 1997.

State of Arkansas, Department of Pollution Control and Ecology. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furan: AOX/TOX. Expires February 14, 1997. Primary No. 94-06497.

State of California, Department of Health Services. Certificate # 1922. Selected Metals in Waste Water; Volatiles, Semi-volatiles, and Dioxin/furan in WW and Sol/Haz Waste. Dioxin in Drinking Water. Expires August 31, 1997.

CLIA Registration. ID # 34D0705123. Expires May 30, 1997.

State of Connecticut, Department of Health Services. Registration # PH-0117. Dioxin in Drinking Water. Expires September 30, 1997.

Delaware Health and Social Services. Dioxin in drinking Water. Effective December 13, 1993. Expires December 31, 1996.

FDA Registration. ID #'s 059244 1053481. Expires July 1996.

Florida Department of Health and Rehabilitative Services. Dioxin in DW. Drinking Water ID HRS# 87424. Metals, Extractable Organics (GC/MS), Pesticides/PCB's (GC) and Volatiles (GC/MS) in Environmental Samples. Environmental water ID HRS# E87411. Expires May 27, 1997.

Hawaii Department of Health. Diexin in grinking water. "Accepted" status for regulatory purposes until March 1, 1997.

Idaho Department of Health and Welfare. Effective August 18, 1993. Dioxin in Drinking Water. Expires November 30, 1996.

State of Kansas, Department of Health and Environment. Valid until January 31, 1997. Environmental Analyses/Non potable Water and Solid and Hazardous Waste. Method 1613 for driOnking water. ID #'s - Drinking water and/or pollution control - E-215. Solid or Hazardous Waste - E-1209.

Commonwealth of Kentucky, Department for Environmental Protection. Drinking Water for Dioxin. ID# 90060. Valid until December 31, 1996.

Maryland Department of Health and Mental Hygiene. Drinking water by Method 1613A. Expires September 30, 1996.

State of Michigan, Department of Public Health. Drinking water by Method 1613. Expires October 1, 1996.

Montana Department of Health and Environmental Services. Effective October 1, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of New Jersey, Department of Environmental Protection and Energy. BNAs and Volatiles. Drinking water for Dioxin. Expires October 30, 1996. ID # 67851.

State of New Mexico, Environment Department. Drinking water for Dioxin. Expires July 31, 1997.

New York State Department of Health. Val₁d.until June 30, 1996. ID #11026. Environmental Analyses of non potable Water, Solid and Hazardous Waste. Method 1613 in DW.

State of North Carolina, Department of Environment Health and Natural Resources Certificate # 37751. Expiration date is December 31, 1996. Drinking Water for Dioxin.

State of North Carolina, Department of Environment, Health, and Natural Resources, Division of Environmental Management. Certificate # 485. Expires December 31, 1997. Metals, pesticides, semi-volatiles and volatiles; TCUP.

State of North Carolina, Department of Environment, Health, and Natural Resources - Division of Radiation Protection. General License No. 32-0875-0G; Specific License No. 0954-1. Expires April 30, 1998.

North Dakota State Department of Health and Consolidated Laboratories. Certificate # R-076. Effective October 4, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of South Carolina, Department of Health and Environmental—Control. Dioxin/Furans, BNA, Volatiles, and PCBs/pesticides under Clean Water Act, 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste. Expire June 30, 1996 and August 31, 1997. ID# 99040

State of Tennessee. Department of Environment and Conservation. Valid until February 5, 1999. Method 1613 Drinking water only. ID# 02992.

U.S. Army Corps of Engineers. Renewed until Nov. 30, 1997. Validated to perform methods 8280, 8290.

U.S. EPA Region V. Dioxin in Drinking Water. Expires December 29, 1996.

U.S. EPA Region VIII, for the State of Wyoming. Dioxin in Drinking Water. Expires December 31, 1996.

U.S. EPA Region X. Certification for 2,3,7,8-TCDD in Drinking Water.

State of Utah, Department of Health. Valid until December 31, 1997. Certificate Number E-166. Certification for the following parameters: Semi-Volatiles and Volatiles under RCRA; Volatiles under Clean Water Act; Dioxin/furans by Method 8280; Drinking water for Dioxin by Method 1613; Metals including Mercury and Microwave Digestion.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. ID # 00341. Dioxin in Drinking Water. Expires June, 1996.

State of Washington, Department of Ecology. Valid through September 11, 1996. Lab Accreditation Number C067. Scope of Accreditation applies to water analyses for Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzo-furans, volatiles, Base/Neutral and Acid Organics.

State of Washington, Department of Health. Drinking water for Dioxin. Expires April 30, 1997.

State of West Virginia, Department of Health. Drinking water for Dioxin. Expires December 31, 1996.

State of Wisconsin, Department of Natural Resources. Valid until June 30, 1996. Laboratory ID Number 999869530. Certification for the following categories of Organics: Purgeable, Base/Neutral, Acid, PCBs, and Dioxin.

Triangle Laboratories of RTP Sample Identification Index for Project: 39034

Client Id:	TLI le:	File Name:

CL LTEV-11-AI-108 T	140-63-1A	FT429
CL LTEV-11-AI-109 TC	140-63-1B	FT422
CL LTEV-11-AI-110 T	140-63-2A	FT430
CL LTEV-11-AI-111 TC	140-63-2B	FT423
CL LTEV-11-AI-112 T	140-6\$-3A	FT431
CL LTEV-11-AI-113 TC	140- 6 3-3B	FT424
CL LTEV-11-AI-114 T	140-63-4A	FT432
CL LTEV-11-AI-115 TC	140-63-4B	FT425
CL LTEV-11-AI-116 T	140-6β-5A	FT433
CL LTEV-11-AI-117 TC	140-6₿-5B	FT426
CL LTEV-11-AI-118 T	. 140-6β-6A	FT434
CL LTEV-11-AI-119 TC	140- 6 β-6В	FT427
CL LTEV-11-AI-120 T	140-63-7A	FT435
CL LTEV-11-AI-121 TC	140-63-7B	FT428
VOSTBLK T/TC 100296	VOSTBLK T/TC	FT421

Proj_Sum v4.0

Triangle Laboratories of RTP Project Summary for Project 39034

nits :	ug	ug	ug	ug	ug
atrix :	VOST	VOST	VOST	VOST	VOST
.I Id :	140-63-1A	140-63-1B	140-63-2A	140-63-2B	140-63-3A
ename : • •	FT429	FT422	FT430	FT423	FT431
ient ID:	CL LTEV-11 -AI-108 T	CL LTEV-11 -AI-109 TC	CL LTEV-11 -AI-110 T	CL LTEV-11 -AI-111 TC	CL LTEV-11 -AI-112 T

()-Estimated Detection Limit

Page 1

Triangle Laboratories of RTP Project Summary for Project 39034

Client ID:	CL LTEV-11 -AI-113 TC	CL LTEV-11 -AI-114 T	CL LTEV-11 -AI-115 TC	CL LTEV-11 -AI-116 T	CL LTEV-11 -AI-117 TC	
Filename : * •	FT424	FT432	FT425	FT433	FT426	,
TLI Id:	140-63-3B	140-63-4A	140-63-4B	140-63-5A	140-63-5B	
Matrix :	VOST	VOST	VOST	VOST	VOST	
Units	ug:	ug	ug	ug	ug	
Tetrachloroethene	. (0.001)	0.742	0.028	5.687	0.005	

()-Estimate(Detection Limit

Page 2

Triangle Laboratories of RTP Project Summary for Project 39034

Tetrachloroethene	2.241	(0.001)	0.086	(0.001)	(0.001)
Units :	ug	ug	ug	ug	ug
Matrix :	VOST	VOST	VOST	VOST	VOST
TLI Id:	140-63-6A	140-63-6B	140-63-7A	140-63-7B	VOSTBLK T/TC
Filename :	FT434	FT427	FT435	FT428	FT421
Client ID:	CL LTEV-11 -AI-118 T	CL LTEV-11 -AI-119 TC	CL LTEV-11 -AI-120 T	CL LTEV-11 -AI-121 TC	VOSTBLK T/ TC 100296

()-Estimated Detection Limit

Phone: (919) 544-5729 • Fax: (919) 544-5491

>
8
=
0

Page / of

Analysis Request and Chain of Custody Recold

Project Name

2												
				Invoice to:								,
A	28/EData Results to:	Date: 1/25/4	Gohn Musitable	Received by: (Signature)						ά	REMARK	SAMPLER REMARKS:
	Intact	Date: Time:	3	Received by: (Signature)	Date: Time:			Relinquished by: (Signalure)	Reli (Sig			
	Intact		4.	Received by: (Signature)	Date: Time:			Relinquished by: (Signature)	Reli (Sig		Affiliation	>
-	intact			(Signature)	Date: Time:			Relinquished by: (Signature)	(Sig		is. (orginardic	Campic
					DCE			Vost			7	// 7
					PO CF.							1116
					PCE	-						115
-					PCE	· 			-	!		114
		 			DCE	 		 		 		[1]
		-			PCE					-		117
				7	PCE.	-						1/1
					DCE				-:-			110
C WY (200		-		PCE			_			-	109
				,	RE.			Vost	×		9/14/26	108 9
	REMARKS	7	ANALYSIS HEQUESTED METHOD		TEST	Preservative	Sample Type (Water, Soil, Oil, Sludge, Etc.)	Sample Container (Size/Type)	Comp	Grab	Date and Time	ample No. / dentification
-		-	Clarenont	1 1340	Phone 919 461 1340	-	hak n	1600 Perimete Pak	160	<u> </u>		adian
-	Project No.	Pro	Project Location and State)	Contact Andrew Liebe	Co		ess	Address			ompany
							Dese-		ndrew	A	nitted by:_	ample submitted by:

PAGE 1 OF 2 Sample Seals: Absent ! TLI Project Number : 39034 Custody Seal : Absent T | Book | Accept.Cond.: YES Chain of Custody : Present : Present Sample Tags Sample Tag Mumpers: Listed SMO Forms : N/A ! To STORAGE! TO LAB : TO STORAGE! TO ARCHIVE! DISPOSED ! ILI Number Matrix : To LAB : To STORAGE: To LAB TENAX ! CD 140-63-1A +-1012186+-TNX/CHAR : 140-63-1B CL LTEV-11-AI-109 +-R26 : CL LTEV-11-AI-110 R26 ! TNX/CHAR : 140-63-28 CL LTEV-11-AI-111 +--140-63-3A TENAX : CL LTEV-11-AI-112 TNX/CHAR ! CL LTEV-11-AI-113 +--TENAX ! CL LTEV-11-AI-114 TNX/CHAR ! 140-63-48 CL LTEV-11-AI-115 +-140-63-5A CL LTEV-11-AI-116 +-CL LTEV-11-AI-117 +--R26 : Receiving Remarks: Archive Remarks: -----TRIANGLE LABORATORIES. INC.--LOG IN RECORD/CHAIN OF CUSTODY--REVISED 06/13/1996------

			le Seals: Abso		TLI	Project Numbe	er 39034	• • • • • • • • • • • • • • • • • • • •		; 8o	ok
Sample Tags : Present Sample Tag Numbers: Listed	:			+		ent: RACO5	+	Corporation		<u> </u>	40
SMO Forms : N/A				; 	Dat	e Received	09/28/	96 By	Gustt	Pa	ge
Ice Chest	ICE PACK	(S	Temp 14.	.oc;	Car	rier and Numbe	er : FedEx/			: 6.	3
						To STORAGE: Date/Init					
140-63-6A TENAX CL LTEV-11-AI-118 R26	1-1-1-1-1	iò									
140-63-6B TMX/CHAR CL LTEV-11-AI-119		· · · ·	1	· · · · · · · ·		; ;		 	 		
R26	,	}+	¦ +-			 			¦ +)	• •
140-63-7A TEMAX ; CL LTEV-11-AI-120 R26 ;			; 			 -	; ;	} }	; ; ;		
140-63-78 TMX/CHAR ;		-	·			, , 			! !		
CL LTEV=11-AI-121 R26	· 	· 	·						, }		
		 							 		
† 		+	·			·			 		
		+							 		
		+					,		 	*********	•-
		-	;	,			,				••
		-	;						,		••
		¦	!								
		+							; }	,	
		; +	<u></u>			; 	; 		; 		
		; +	 		; 	·	;		; •		
		: +	·		; 		; +		; •		
:		; +	<u></u>		; •	<u> </u>	; +		·		
Receiving Remarks:											
Archive Remarks:						IN OF CUSTODY					

	7	MS#
ЕХТ	12990	MS# COLUMN TYPE COLUMN #
EXTRACT / SAMPLE VOLUME	⊋ 42 76€3	COLUMN #
LUME	72 yo	ANALYSIS
ut/mt	COA	ACQ METHOD GC
	vois/Shlori	GC METHOD
2.	1. Wypplez	FIND DB'S
		OTHER

	4		Ę	(0)	FT 243	T	,	•	04:46	
\dashv	>	_				-	-		٠.	
		(1)		(p	F1242	MESTERONO TITE	<u>८३०७</u> १२५(१४	مرواودارمي حداداه اورع	04:21	
	>	_					107-116-2	N-311-6-1		
	10	(u)		(.0	Froge	5 K Stern 10 lank	-A11-411 6-XS		1h.89	-
							ميا الع-د الع			
	K)	()		(h	FT 240	OFB	क्रिव गार्भाष्ट		"Har Croz	14lar
					•	•	75) 1950			_0
×		(CA		CA	F7239	8.3.0030-Ten-C	138-27-21	17:45 38800A	12:05	e -
<u>`</u>						4	<u> </u>			- -
ه			_	Ç.⊋	FT 238	83-0036-782-6	138-27-201	58800 B 13827-20A	34.11	_
					•	1				
7	(17)	<u>[</u> (a	۰	(A)	FT 257	K3-0030-Try-A	44-12-86)	8 0088c	1170	
		•	_			1				
		(4)	_	(မှ	K7236	R1-003p-71-D	138-27-10A	3830A	10°59	
			_			1				
7	_	C _A		CA	FT235	RI-cessor CHA-D	138-27-68	40088 E	10:34	
_		•	_			かん				
*		(A	412414		FT 234 (7	UOSEBIK THE	expolinite		18/96/0:12	8681.
			S)			15.511-115.5			<u>-</u>
	9	ARC	NET /		_					
<u> </u>	וכ	DD PROC	Ω	ВЭНО	FILENAME	CLIENT SAMPLE ID	SAMPLE #	PROJECT #	TIME	DATE

PAGE

10-3-96

INTERNAL STANDARD

SURROGATE STANDARD

ANALYTE STANDARD

V57-115-2

tro alorly 6 625 m

RUN LOG

, INC. RUN LOG

COMMENTS		РПОС РН	BACKUP NET ARC	FILENAME OPER	CLIENT SAMPLE ID F		DATE TIME PROJECT # SAMPLE #	TIME	DATE
				ut/mt	UME	EXTRACT / SAMPLE VOLUME	ЕХТЯ		
	93	1. EX :0	03/5) Ausi	Cop	8240	ביטפון בויג	DB624		
ОТНЕЯ	FIND DB'S	Ę	GC METHOD	ACQ METHOD GC METHOD	ANALYSIS A	COLUMN #	MS# COLUMN TYPE COLUMN #	# Co	SW

			\prod			प्रमाज्या विश्व	Pe) त्रम				,
<i>,</i> 2		5		<u>←</u>	69	F7252	LCS TITC	_	Ų.	16:50	-
		5			(7)	FT251	1115 7 196			lice	
157-112-4 549: cales		(1)			42	£1 250	LIS TIAC	197-115-2 12-11-11-2	14.45 cxpn(en/40 cxp4)27/9-1	14.42	
		T			(n)	FT249	_	-		15:26	
		70			4)	FT 248	Sticke CECO HARA	27-118 5 57-118 5	1.513 1.513 1.513 1.513 1.513 1.513 1.513	12:49	
		(A)			· P	[+1:T=]	107501.00 718	حولان المراجعة	Ch DoistAT	11.92	-
		ໂລ			(0	F7216	x151003514	157-118 4 57-117-2	العادالة م المعادماء	[lie]	
		(b)			(D	F7245	VUSEDUSO TK	137-117-1 2017-146		10.4c	
EMS BYNGRANIA		(D)		(P	ر ک	わりてしょ	405(00.257 he	C37-116-3	2.50 -57: 118-4 cxp/e12144	راد/ المام	9/19/1
COMMENTS	모	PROC	ACKUP T ARC	BAC	OPER	FILENAME	CLIENT SAMPLE 1D	SAMPLE #	PROJECT # SAMPLE #	TIME	DATE

PAGE V57-115-2 -4563 97162160 423 INTERNAL STANDARD SURROGATE STANDARD 02 1 45-180 6 TE IWI **ANALYTE STANDARD** .

RUN LOG

_				<u>, </u>						_						
PAGE		<u></u>	رم/ اور						_		1/9/1/20	DATE		71	MS#	
ري م	£	52.10	v1-25	17.16	16:54	16:32	16.10	15:48	15:26	15'8	14:43	ŢĮMĘ				
	10 3-96			39035A	390358	1956g/K	- 34055A	ग क्रकुट	VA Opc	39681	79035A	PROJECT#	m	Peadd	COLUMN TYPE	
hiles dxa	INTERN	99 - 1 - 3	Cxp ielialan	145 64-11B	140.64-14	ીયતઃ દુખુવૃદ્ધ	140 64-7B	140-64-6	14c-64.5B)40-64-3B	140-64-2B	SAMPLE #	EXTRACT / SAMPLE VOLUME	J 42	E COLUMN #	
· 2·4	INTERNAL STANDARD	00340C	5fb	Ŗ	R	.0		R	72"	R	R	CLIENI	MPLE VOLU	7663	WN #	!
) Jv~ -	<u> </u>	00.25 The		w 3c Tlc	11 55 HU	Par AC VE	RUJBOTIE	RULZBTIC	Run 2A TIC	RUWIC TIC	17. GIP.	CLIENT SAMPLE ID	ME	8240	ANALYSIS	
	SURROGATE STANDARD	F1 408	F7 407	F7 406	F-1 405	F-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	H 403	FT402	K7401	FTHOS	FT 399	FILENAME	uL/mL	4ot	ACQ METHOD	
	Ö	(p	(A	Â	(A)	5	CA	(A	(a	(A)	र्व	OPER				
	ANAL											BAC		5)	3C ME	•
	YTE ST											BACKUP ET ARC	•	Erold S	SC METHOD	•
	ANALYTE STANDARD	(A	2,	(A	(A	(A)	(A	(A	(A	(A	(A	РПОС	2.	-	F	
	0											Hd	H Sher A	42/20	FIND DB'S	
							Chutset Chi			HEP BUT CIK	Mo:51	င္ပ	er 4	P	B'S	9
				(~_		4	Chot set the			id viet (1) Ira pilve	ن ن	COMMENTS			ОТНЕВ	
				-						Į į						

	,		ı
	71	MS#	
EXTF	100000	MS# COLUMN TYPE	
EXTRACT / SAMPLE VOLUME	2427663	COLUMN#	
.UME	તું મુજ	ANALYSIS	
սէ / տէ	\XOB	ACQ METHOD	
•	5Hoch	GC METHOD	
2. NSHORT	1. Bitis	FIND DB'S	
		OTHER	

by the lop Bur air	(J)	C		ĆA	F1 418	RUL 3P T	lyo-6५- ⁹ ନ	17;30 39035A 140-64-9A	54. ZV	K
	7	(₁		F	FT 417	Rus oc 7	140-64-78	39035A 140-64-7A	12:08	
- \$	⊅	CA		ঠ	FT416	Rw267)40-64-6A	259035A 140-64-6A	11:46	
Tube sad	₽	G		(ه	F7415	R ~ 2 P . T	140 64-5A	39035A 140-64-5A	11:24	
دعی لهریا	(A			CA	F-T 414	RUNIC T	140-64·3A	3 1035A 140-64-3A	<u>(</u>	
	P	<u> </u>	,	(p)	FT 413	RUIBT	140-64-2A	39035A 140-64-2A	Oh:01	
match epix dut discused	7	CA		()	FT 4112	RULIA 7	140-64-14	39035A 140.64-1A	10.19	
	\mathcal{D}	CA		ር舟	F7 411	JOSEBIK TITC	_		୦୩51	
	₽ P	(A)		F	ET410	~	7-	_	NE:190	
	\mathcal{P}	4	·	Z	7-7409	८८५ ५१८	ون انتط، ۲۰۹ الاعادالولوغ	145 813 1819 34.	°/2 4 ℃8-42	10/2/46
Hd		ACKUP PROC	NET	OPER	FILENAME	CLIENT SAMPLE ID	SAMPLE #	PROJECT #	TIME	DATE

PAGE

W

- 358. 3.4 9 515.167 0 423

INTERNAL STANDARD

SURROGATE STANDARD

058-3-1 (20.).11 058-3-1 (20.).11

ANALYTE STANDARD

13

RUN LOG

	7	MS# COLUMN TYPE
EXTRAC	DB624	MN TYPE (
EXTRACT / SAMPLE VOLUME	3427663	COLUMN #
UME	8270	ANALYSIS
ut / mL	Jop	ACQ METHOD
•	5400	GC METHOD
2. uspert	1. oy/12	FIND DB'S
		OTHER

	i	<u> </u>]	\			· -	3	D
\leftarrow									2116	DATE
16:14	16:02	G. 5	15.18	14:41	[મ:ર્સ	د دنها	13:39	13:16	1):54	TIME
<u> </u>	16:02 39634	39034	39034	heare	11			390359	1/21/1 1):54 39035A 140-64-109	PROJECT # SAMPLE #
140.63-7R	M0.63.66	140 43-58	146-63-4B	140-63-38	hs 53.32	39054 MO-63-18	130 2-4	145-64-11A	140-64108	SAMPLE #
16:24 39034 HO 63-78 CL LTEV- 11-17-121	THO-63-65 CL LTEU-11-AJ-119	TK-11-14-11-85-69-61	71C	Cr 1764-11-47-17	111-#4-11-13-13-48:69-54 77506-6	C	पर्वेन्धि। प्राप्ट	BUJ307	RULDB T	CLIENT SAMPLE ID
F1 428	Ft 427	F+426	Ft 425	于1424	FT413	F7422	KT421	F7420	FT419	FILENAME
(h	()	ĆΑ	ક	(1)	S	િ	င်	કે	4)	OPER
										NET
	٠				,					BACKUP ET ARC
(a	(p	(A	CA	(A	CA	(A	Св	CD	(A	PROC
					Y					₽H
Time had a harrine critically find		J						•	المعطيد في المكافرين)	COMMENTS

W.10-3-92 4

PAGE

INTERNAL STANDARD

SURROGATE STANDARD

ANALYTE STANDARD

RUN LOG

	TI	#SM
ЕХТ	DBGAY	MS# COLUMN TYPE
EXTRACT / SAMPLE VOLUME	2427663	COLUMN#
.UME	3 2 yo	ANALYSIS
ul / ml	Uon	ACQ METHOD
•	5616	GC METHOD
2.	1. wind had	FIND DB'S
		ОТНЕЯ

					3	F1 437	nosapolo in	croichth			
٠		S		<u> </u>	D	F-T 436	049	2.52-2.4 C79/014/m		13/46 57.72	Jay or
		P			S	Ft 435	CL, L.TEV-11-P#-120	140-63-7h	18:57 3 9034 NO-63-7A	18:51	(
		CA			G A	F-T434	39034 HO-63-60 CL LTEV-11-AI-113	M9-63-64	1	18:35	
		Ġ			5	FT453 (A	39034 140-63-5A CL LTEV-11-A4-116	luo-63-5A		13:13	
		G			()	F-1 432	140-63-97 CL LTEV-11-PJ-114	140-63-42 140-63-42	३१० <u>३</u> ५	1751	
		Â		—	6	F:1 451	140-63-30 CL 1-TEV-11-PI-112	140-63-30	59034	7:50	
		CA			Ŝ	F-7 43c	3 9034 140-63-20 CL LTEV-11-0-F- 110	140-63-20	39034	77.0%	
		£)			ر ه	FT 429	140.63-19 CL LIEV-11.87-108	190-63- 19	39054	16.46	1/2/96
COMMENTS	рН	РЯОС	BACKUP	z _	OPER	FILENAME	CLIENT SAMPLE ID	* SAMPLE	PROJECT # SAMPLE #	TIME	DATE

PAGE 5 07 10 HH 19 6 24 gm INTERNAL STANDARD SURROGATE STANDARD **ANALYTE STANDARD**

4

KADIAN CORPORATION

Project Number: 39034 Sample File: FT429

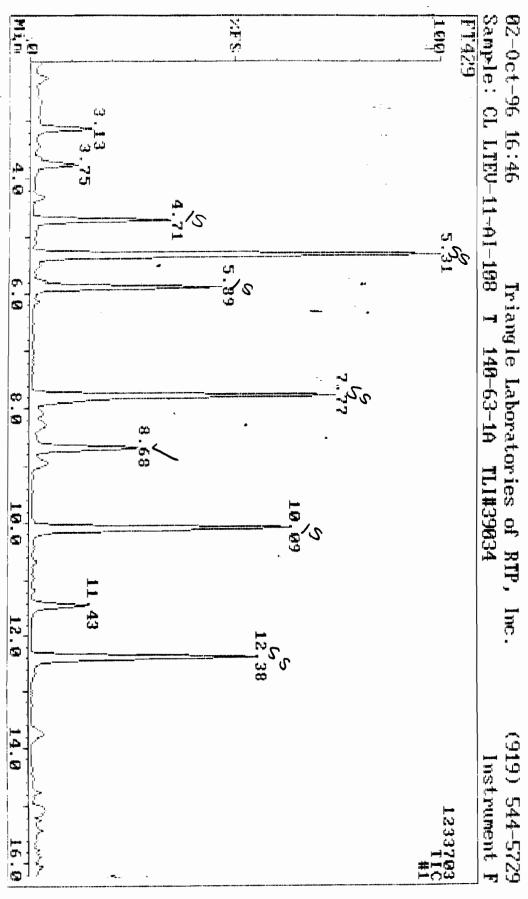
Method 8240A VOST Sample ID: CL LTEV-11-AI-108

Client Project: VOLATILE ANAL.

TLI ID: 140-63-1A

Date Received: 09/28/96

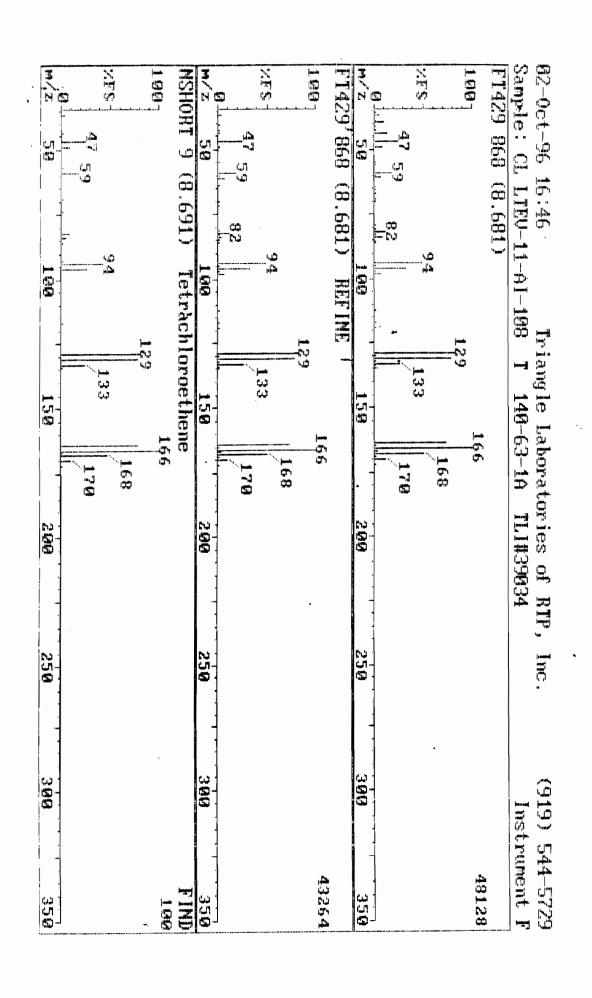
Response File: ICALF919


Date Analyzed: 10/02/96

Analyte	Amount FLA	AG RT De	t Limit Quan, Limit ug ug
Chlorobenzene-d	IS 3	10.09	
Tetrachloroethene	0.105	8.68	0.05

Surrogate Summary	Amount (ng)	RT	IS Ref	%REC
Toluene-d	0.23	 · 7.77	3	93

Reviewed by Date 10, 3,96


NA- Not Applicable; Ibet. Limit: Detection Limit; Quan. Limit: Quantitation Limit
IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

Data Review: TW Date: 10 - 3 - 96

И	o. MAT	FOR	REV	Delta	Area	PiFlags	RT	am	Name
-	1 100 2 100 3 100 4 72 5 100 6 100	32	99 99 96 83 85 99	-1 -1 -2 -1 1 -1	337064 1511835 1841824 792848 2429115 2402745	by - by by by by	4.711 5.831 10.091 5.311 5.311 7.771 12.681	114 117 65 84	Bromochloromethane 1.4-Difluorobenzene Chlorobenzene-d5 1.2-Dichloroethane-d4 Benzene-d6 Foluene-d8 o-Xylene-d10
-	3 100 3 1 00	89 88	95 98	0 0	1130883 300824	-	12.381 8.681	/	4-Bromofluorobenzene Tetrachloroethene

Date: 10 - 3 - 96

KADIAN CORPORATION

Project Number: 39034 Sample File: FT422 Method 8240A VOST Sample ID: CL LTEV-11-AI-109 T

Client Project: VOLATILE ANAL.

TLI ID: 140-63-1B

Date Received: 09/28/96

Response File: ICALF919

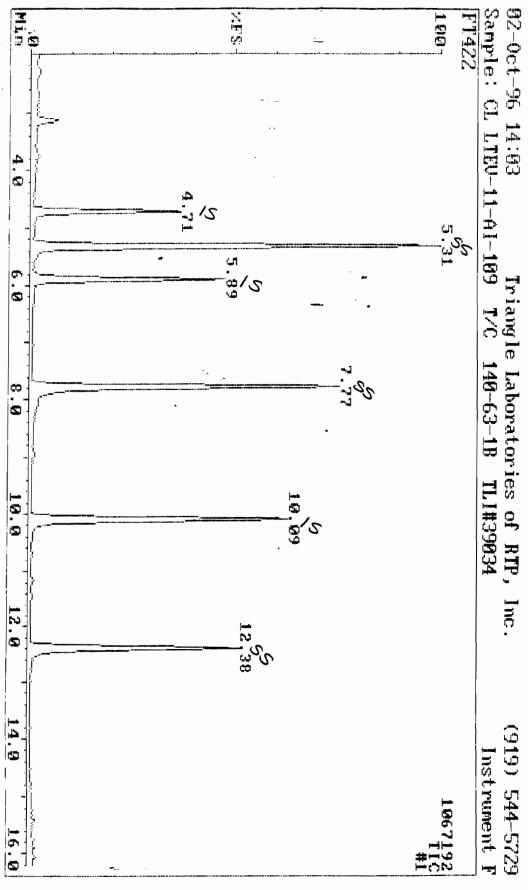
Date Analyzed: 10/02/96

Analyte Amount ug	FLAG	RT	Det. Limit ug	Quan. Limit ug
Chlorobenzene-d	IS 3	10.09		
Tetrachloroethene	U		0.001	0.05

	Lmount (ug)	. RT	IS Ref	%REC
Toluene-d	0.238	• 7.77	3	95

Reviewed by _______ Data 1013196

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit
IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range


Triangle Laboratories of RTP, Inc.

Savar v3.5

Printed: 11:17 10/03/1996

Phone: (919) 544-5729 • Fax: (919) 544-5491

801 Capitola Drive • Durham, North Carolina 27713

Data Review: TW Date: 10 - 3 - 96

QUAN DB : FT422

LAB-BAGE QUAN

02-0ct-96

14	:	2	6

No.	MAT	FOR	REV	Delta	Area	P.Flags	RT	ผผ	Name
1	100	94	99	-1	306668	bv	4.711	128	Bromochloromethane
2	100	.46	98	0	. 1290964	bv	5.891	114	1,4-Difluorobenzene
3	100	' 96	97	1,	1543689	bv	10.091	11.7	Chlorobenzene-d5
<i>/</i> 4	74	34	85	()	738456	bv	5.321	65	1.2-Dichloroethane-d4
5	100	80	82	0	2203980	bv	5.311	84	Benzene-d6
6,	100	24	99	- 1	2058711	bv	7.771	28	foluene-d8 ← ⊃
- 7 -	7		1.5	50	352	- 1:-1	12.581	98	o-Xylene-dl0 (R)
- 8	100	89	94	Θ	920096	bv	12.381		4-Bromofluorobenzene
	1.5		15	()- -	728	196 -,	8.631	164	Tetrachloroethene®

Data Raviow: TW Date: 10-3-96

RADIAN CORPORATION

Project Number: 39034 Sample File: FT430 Method 8240A VOST Sample ID: CL LTEV-11-AI-110 T

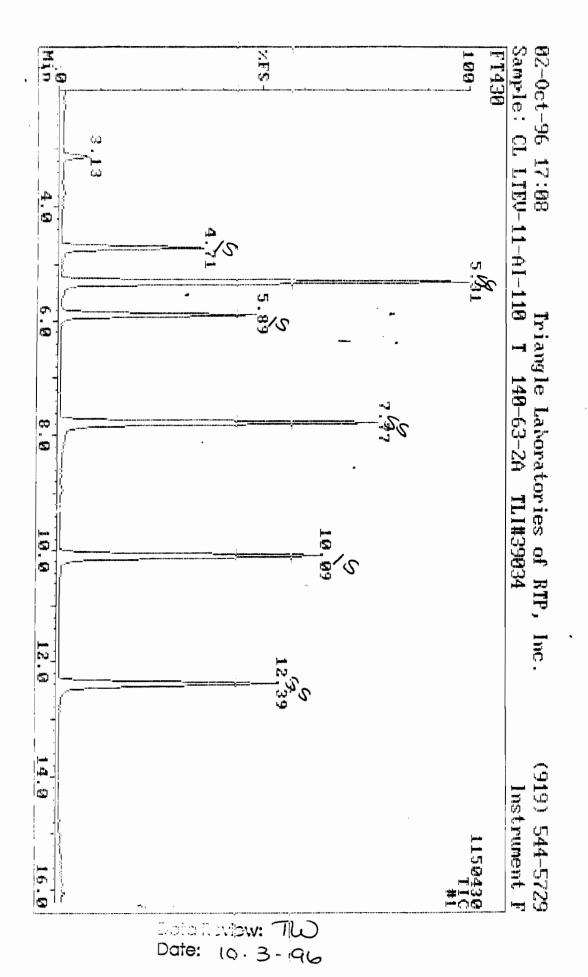
Client Project: VOLATILE ANAL.

TLI ID: 140-63-2A

Date Received: 09/28/96

Response File: ICALF919

Date Analyzed: 10/02/96


Analyte	Amount FLAG	RT	Det. Limit ug	Quan. Limit ug
Chlorobenzene-d	IS 3	10.09		
Tetrachloroethene	U		0.001	0.05

#	Amount (ug)	· _RT	IS Ref	%REC
Toluene-d	0.240	• 7.77	3	96

Reviewed by ______ Date 1013196

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

QUAN DB : FT430 . LAB-BASE QUAN

No.	MAT	FOR	REV	Delta	`Area	P.Flags	RT	MQ 	Name
	100	94	99	-1	336160		4.711	128	Bromochloromethane
2	100	96	99	0	1425000	bv	5.391	114	1.4-Difluorobenzene
3	100	96	97	1	$17\overline{2}3294$	bv	10.091	117	Chloropenzene-d5
4	75	35	85	~ 1	788564	bv	5.311 -	65	1,2-Dichloroethane-d4
5	100	79	81	O	2407600	bv	5.311	84	Benzene-dő
5	TOO	94	99	1	2325544	bv	7.773.		Toluene-d8
	7	- 2	1-4	50-	360 -	- bb	12 381	98	o-Xylene-d10
8	100	90	93	1	1032019	bv	12.391	95	4-Bromofluorobenzene
÷	16	+0	+6	.	1488	-bt-	8.601	1.64	Tetrachloroethene 🔊 🗸 👚
							•		

Data Kovisw: 7W Date: 10.3-96 02-0ct-96 17:30

RADIAN CORPORATION

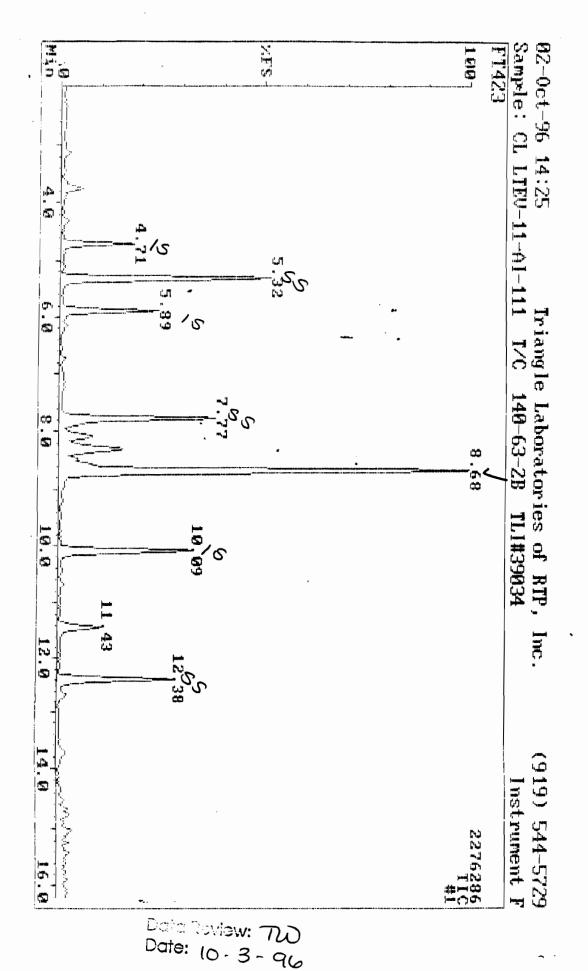
Project Number: 39034 Sample File: FT423 Method 8240A VOST Sample ID: CL LTEV-11-AI-111 TC

Client Project: VOLATILE ANAL.

TLI ID: 140-63-2B

Date Received: 09/28/96

Response File: ICALF919

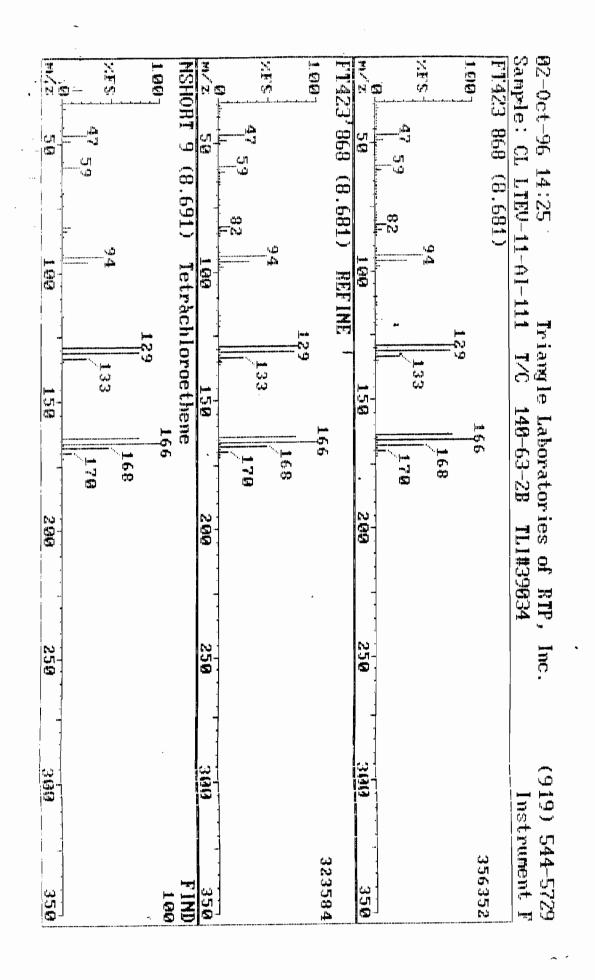

Date Analyzed: 10/02/96

Analyte	Amount	FLA	G RT	Det Limit Quan. Limit ug ug
Chlorobenzene-d		IS 3	10.09	
Tetrachloroethene	0.813		8.68	0.05

Surrogate Summary A	mount (ug)	, KI	S K 04	MEC
Toluene-d	0.231	7.77	' 3	92

Reviewed by _____ Date 1014 196

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit
IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range


· LAB-BASE QUAN

QUAN DB : FT423

02-0ct-96 14:48

No.	MAT	FOR	REV	Delta	Area	P.Flags	RT	ผผ	Name -
1	100	93	99	-1	316812	bv	4.711	128	Bromochlordmethane
2	100	94	- 99	0	1365364	bv	5.891	114	1.4-Difluorobenzene
3	100	97	98	1	1724408	bv	10.091	117	Chloropenzene-d5
싀	72	32	83	0	750052	b∨	5.321		1,2-Dichloroethane-d4
5	100	83	85	0	2237200	bv	5.311	84	Benzene-d6
6	100	93	99	-1	2236081	by	7.771	98	Toluene-d8
-7	- 1 2	10	-24	-20	6772	51	12.681	98	Tolueræ-d8 o-Xylene-d10
3	100	89	95	0	1055098	bv	12.381	95	4-Bromofluorobenzene
9	100	21	99	0	2186412	bv	8.681	164	Tetrachloroethene

Date: 10-3-96

RADIAN CORPORATION

Project Number: 39034 Sample File: FT431 Method 8240A VOST Sample ID: CL LTEV-11-AI-112 T

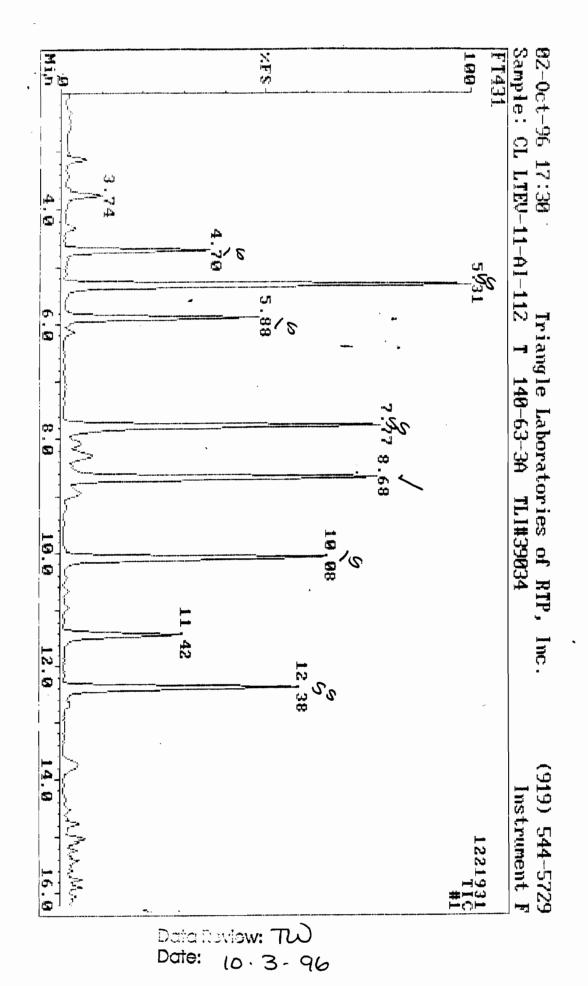
Client Project: VOLATILE ANAL.

TLI ID: 140-63-3A

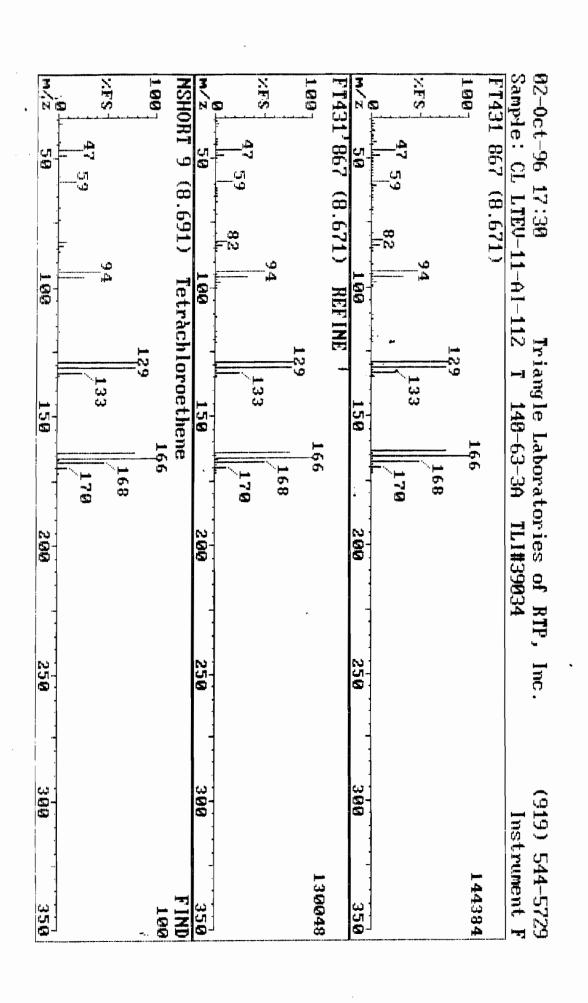
Date Received: 09/28/96

Response File: ICALF919

Date Analyzed: 10/02/96


Analyte	Amount	FLAG	RT	Det Limit ug	Quan. Limit ug
Chlorobenzene-d		IS 3	10.08		_
Tetrachloroethene	0.304		8.67		0.05

7	(no)	RT	13 Kei	
Toluene-d	0.231	 •7.77	3	92


Reviewed by Date: 1013,196

NA- Not Applicable; Cet. Limit Letection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Extimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

No.	MAT	FOR	REV	Delta	Anea	P.Flags	RT	ଲ୍ଲ	Name
1.	100	94	99	-2	347552	bv	4.701	128	Bromochloromethane
2	100	.95	99	0	1498072	bv	5.881		1,4-Difluorobenzene
3	100	96	97	1	1887707	bv	10.031	117	Chloropenzene-d5
4	73	32	84	O	792376	bv	5.311		1,2-Dichloroethane-d4
5	100	82	84	1	2441236	bv	5.311	84	Benzene-d6
6	100	94	99	O	244286.⊩	bv	7.771	98	Toluenerd8
-7	1.5	Ż	- 18	19	5044		12.671	98	o-Xylene-dlO(R)
8	100	90	95	1	1.163049	bv	12.381~		4-Eiromofluorobenzene
9	700	21	99	0	896024	b∨	8.671	164	Tetrachloroethene

RADIAN CORPORATION

Project Number: 39034 Sample File: FT424

Method 8240A VOST Sample ID: CL LTEV-11-AI-113 TC

Client Project: VOLATILE ANAL.

TLI ID: 140-63-3B

Date: Received: 09/28/96

Response File: ICALF919

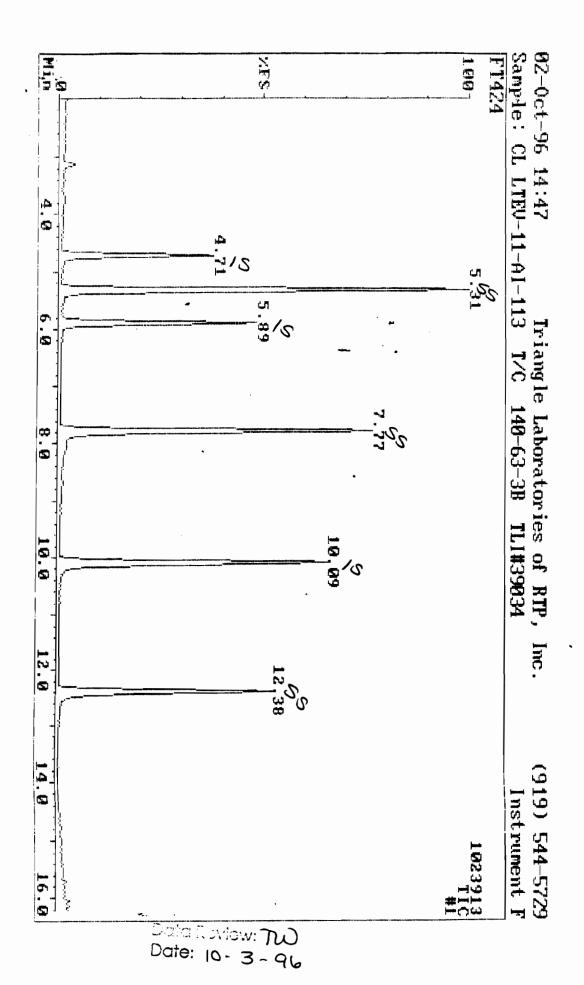
Date: Analyzed: 10/02/96

Analyte Amous ug	nt FLAG	RT	Det Limit ug	Quan, Limit ug
Chlorobenzene-d	IS 3	10.09		
Tetrachloroethene	Ŭ		0.001	0.05

Surrogate Summary	Lmount (ug)	R	IS Ref	%REC
Toluene-d	0.2219	— · 7.	.77	3 92

Reviewed by Date 1013196

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit


IS: Internal Standard; U: Undetected; B: Present In Blank; J: Listimated-Below Quantitation Limit; E: Estimated-Above Calibration Range

Triangle Laboratories of RTP, Inc.

Savar v3.5

Printed: 11:17 10/03/1996

801 Capitola Drive • Durham, North Carolina 27713

No.	MAT	FOR	REV	Delta	Area	P.Flægs	RT	พด	Name
1	100	94	99	-1	305456	bv	4.711	128	Bromochloromethane
2	100	96	98	0	1234496	bv .	5.891	114	1.4-Difluorobenzene
3	100	94	96	1	1581767	bv -	10.091	11.7	Chlorobenzene-d5
4	76	36	85	0	727936	bv	5.321	65	1.2-Dichloroethane-d4
·5	99	78	80	0	2122720	bv	5.311	84	Berizone-d6
6	100	94	.33	1	2036635-	bv	7.771	98	Toluene-d8
7	5-	- 2		- 39	324	bb (12.491	98	o-Xylene-d10
3	LOO	89	94	0	927327	bv	12.381		4-Bromofluorobenzene
7	-51	-34	47	1	7560	^	8.491	164	letrachloroethene

Date: 10-3-96

Project Number: 39034 Sample File: FT432 Method 8240A VOST Sample ID: CL LTEV-11-AI-114 T

Client Project: VOLATILE ANAL.

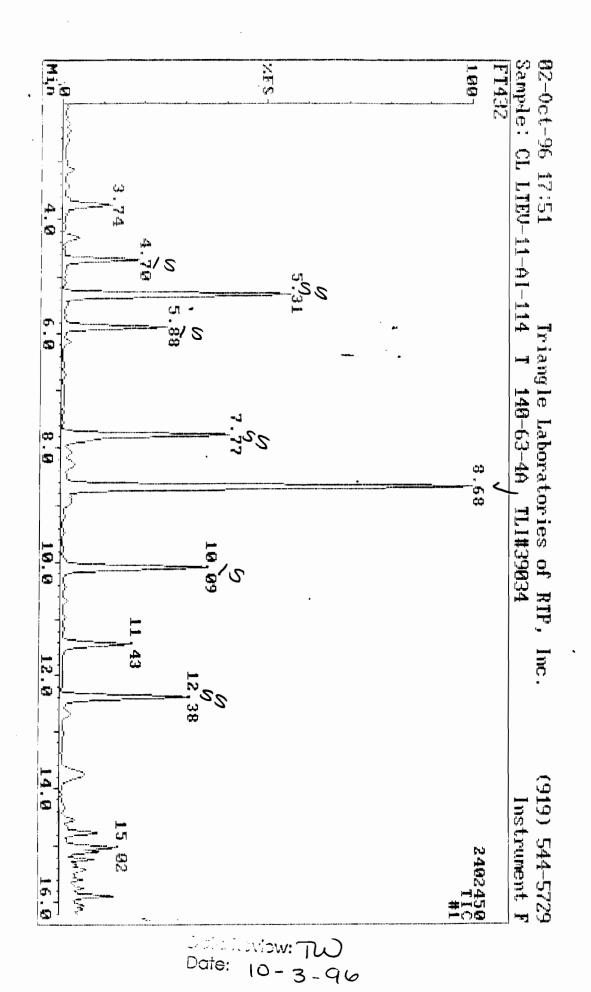
TLI ID: 140-63-4A

Date Received: 09/28/96

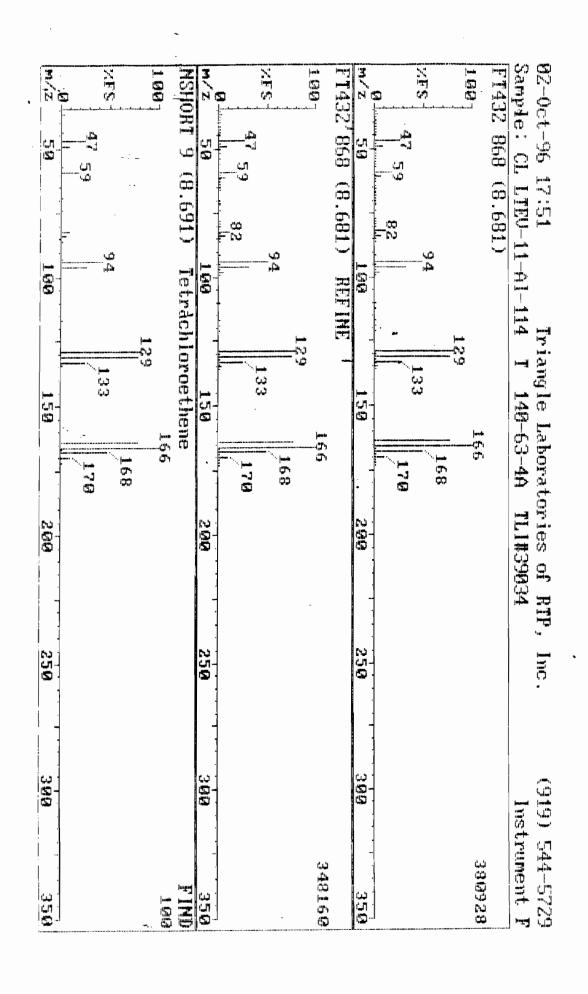
Response File: ICALF919

Date Analyzed: 10/02/96

Analyte	Amount FLAG	RT	Det Limit Quan. Limit ug ug
Chlorobenzene-d	IS 3	10.09	
Tetrachloroethene	0.742	8.68	0.05


	Amount		IS Ref	%REC
Toluene-d	0.225	 •7.77	3	90

Reviewed by ______ Date 1013196


NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

			_
			_
		,	
			_

No.	MAT	FOR	REV	Delta	Area	P.Flags	RT	МД	Name
1	100	93	99	-2	35370/8	bv	4.701	128	Bromochloromethane
2	100	95	99	0	1566492	bv	5.881	114	1.4-Difluorobenzene
3	100	' 97	98	2	1992976	bv	10.091	117	Chloropenzene-d5
4	71	31	83	0	822472	bv	5.311	6.5	1,2-Dichloroethane-d4
5	100	84	86	0	2534316	bv	5.301	84	Benzene-d6
6	100	93	99	~ 1.	2521152	bv	7.771	98	Toluene-d8
-7	19	- 1::-	- 24	-19	-1020/4	- 10 v - 1	12.691	98	o-Xylene-dlO
8	100	89	95	0	1217122	bv	12.381	95	4-Bromofluorobenzene
9	100	92	99	O	2308356	bv	8.681	1.64	Tetrachloroethene

Project Number: 39034 Sample File: FT425 Method 8240A VOST Sample ID: CL LTEV-11-AI-115 TC

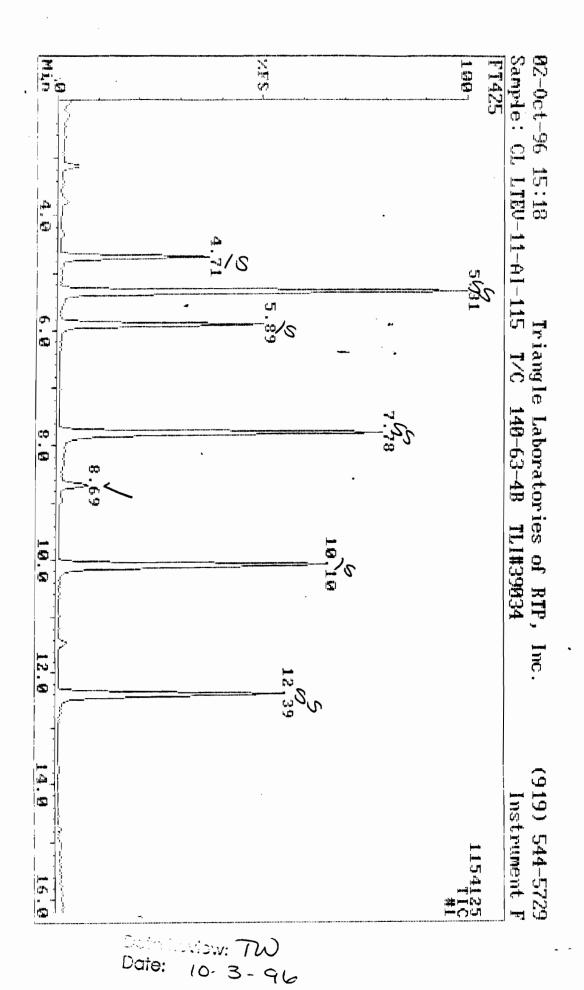
Client Project: VOLATILE ANAL.

TLI ID: 140-63-4B

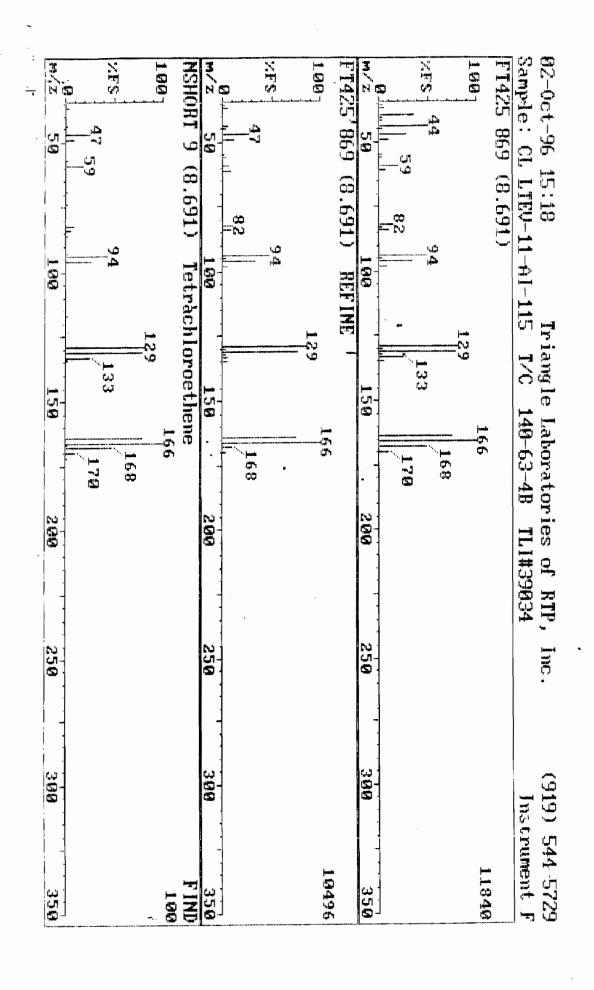
Date Received: 09/28/96

Response File: ICALF919

Date Analyzed: 10/02/96


Analyte	Amount ug	FLA	G . RT	Det Limit Quan. Limit ug ug
Chlorobenzene-d	· · ·	IS 3	10.09	
Tetrachloroethene	0.028	J	8.69	0.05

Surrogate Summary	kmount (pg)	RT .	IS Ref	%REC
Toluene-d	0.238	 - 7.78	3	95


Reviewed by Date 1013196

NA- Not Applicable; Det. Limit Detection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

No.	MAT	FOR	REV	Delta	Area	P.Flags	RT	MQ	Name ~
1	100	95	99	-1	333620	bv	4.711	128	Bromochloromethane
2	100	96	99	0	1460328	bv	5.891	114	1,4-Difluorobenzene
3	100	. 96	96	1	1782816	bv	10.091	117	Chloropenzana-d5
. 4	74	34	84	0	789384	bv	5.321	65	1.2-Dichloroethane-d4
5	1.00	80	82	0	2426524	bv	5.311	84	Benzene-d6
6	100	94	99	0	2385516	bv	7.781	98-	Toluene-d8
-7	7	2	-15	51	428	- 66 /	12.371	- 98	o-Xylene-dl0
13	100	89	95	Ţ	1039873	bv	12.391	95	4-8romofluorobenzene
9	100	80	92	L	77308	bb	8.691	1.64	Tetrachloroethene

Project Number: 39034 Sample File: FT433 Method 8240A VOST Sample ID: CL LTEV-11-AI-116 T

Client Project: VOLATILE ANAL.

TLI ID: 140-63-5A

Date Received: 09/28/96

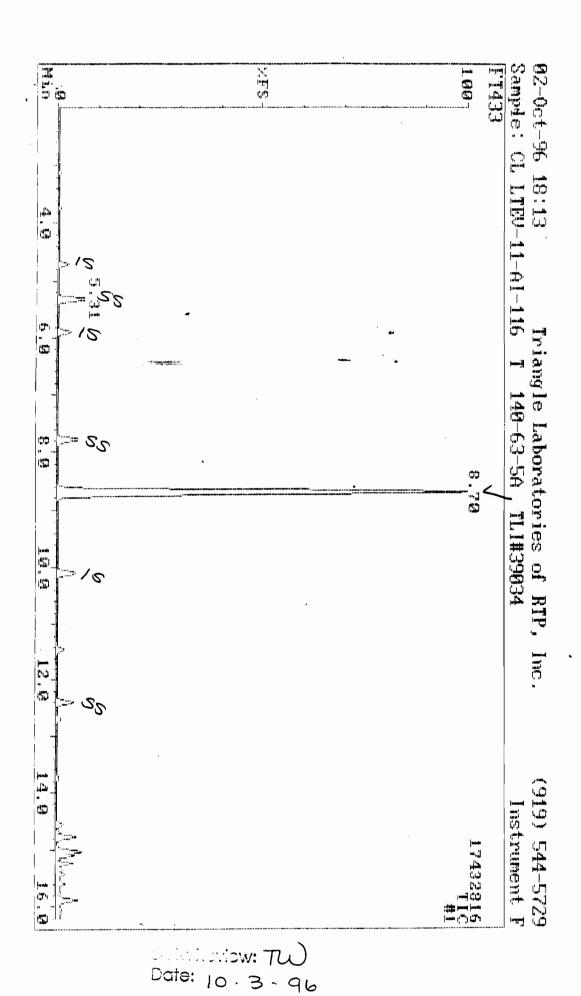
Response File: ICALF919

Date Analyzed: 10/02/96

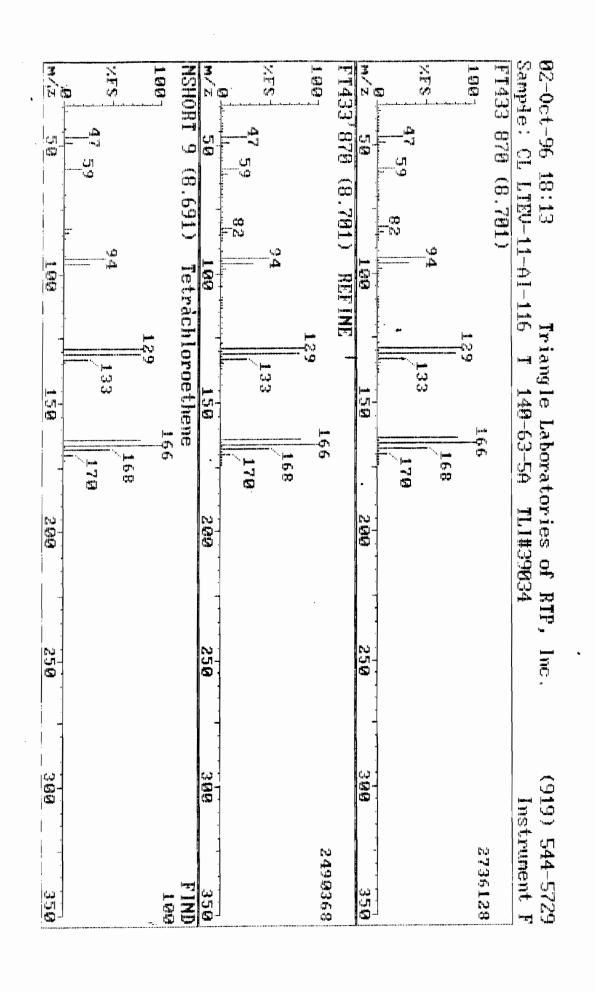
Analyte	tmount ug	FLA		et Limit Quan. Limit ug ' ug
Chlorobenzene-d	,	IS 3	10.09	
Tetrachloroethene	5.687	E	8.70	0.05

Surrogate Summary At	nount (ue)		KT	IS Ref	
Toluene-d	0.228	•••	•7 <i>.</i> 77	3	91

Reviewed by _____ Date 1013196


NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit
IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

Triangle Laboratories of RTP, Inc.


Savar v3.5

Printed: 11:17 10/03/1996

801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Νο.	MAT	FOR	REV	Delta	Area P.Fla	gs RT	MG	Name -
1	100	93	29	-2	357920 bv	4.701	128	Bromochloromethane
2	100	95-	99	()	1581260 bv	5.881	114	1,4-Difluorobenzene
3	100	• 97	28	2	1985828 by	10.091	117	Chloropenzene-d5
4	7.1	32	84	0	821440 bv	5.3L1 ·	65	1,2-Dichloroethane-d4
5	100	83	85	1	2500932 bv	5.311	84	Benzene-d6
6	100	93	99]	2539524 by	7.771	98	Toluene-d8
	2.4	14	- 31	10	45280 bb ,	12.301	98	o-Xvlene-d10(0) 4-Bromofluorobenzene
8	$\pm \alpha \phi$	89	96	1	l231878 bv	12:391	95	4-Bromofluorobenzenc
9	LOO	93	29	2	17617120 bv	8.701	164	Tetrachloroethene

Project Number: 39034 Sample File: FT426

Method 8240A VOST Sample ID: CL LTEV-11-AI-117 TC

Client Project: VOLATILE ANAL.

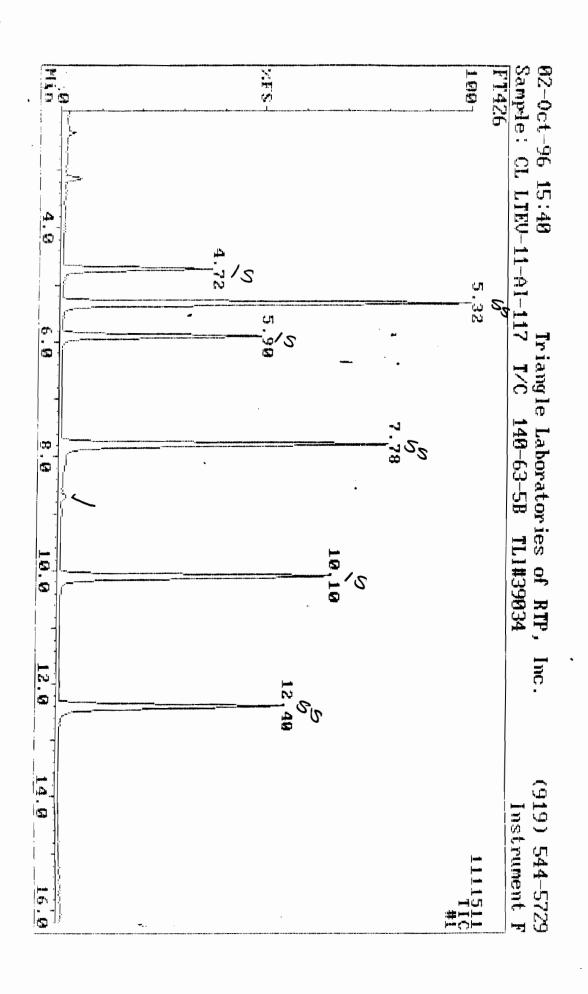
TLI ID: 140-63-5B

Date Received: 09/28/96

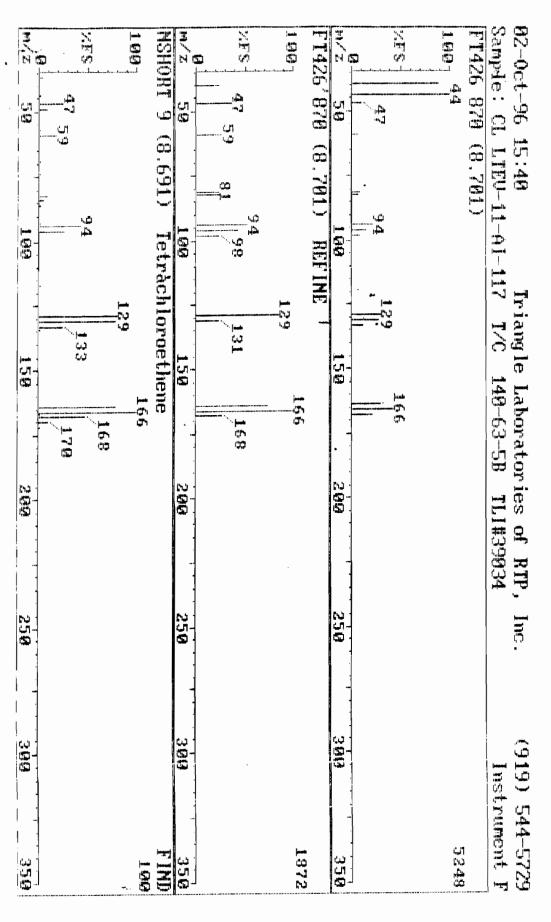
Response File: ICALF919

Dat∈ Analyzed: 10/02/96

Analyte	Amount	FLAC	RT	Det Limit Quan. Limit ug ug
Chlorobenzene-d	•	IS 3	10.10	
Tetrachloroethene	0.005	J	8.70	0.05


	Amount (ug)	RT	IS Ref	%REC
Toluene-d	0.240	· 7.78	3	96

Reviewed by ______ Date: 1013,196


NA-Not Applicable; Cet. Limit: Letection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

801 Capitola Drive • Durham, North Carolina 27713

1	ło.	MAT	FOR	REV	Delta	Area P.Flags	RT	MQ 	Name
	1	100	94	99	-1	327903 bv	4.711	128	Bromochloromethane .
	2	100	96	99	1	1396992 bv	5.901	114	1,4-Difluorobenzene
	3	100	96	96	0	1717817 by	10.101	117	Chloropenzene-d5
	4	74	35	85	0	780800 bv	5.321	65	1,2-Dichloroethane-d4
	5	100	. 80	82	0	2315720 bv	5.321	84	Benzene-d6
	E,	1.00	94	99	L	2342575 by	7.781		Toluene d3
	7	7.7	2	1.7	-45	364 bb ·	12.411	98	o-Xylane-dlO
	8	100	89	94	L	1014960 by	12.40 t	95	4-Bromofluorobenzene
	9	73	51	68	1	13988 bb	8.701	164	Tetrachloroethene

Project Number: 39034 Sample File: FT434 Method 8240A VOST Sample ID: CL LTEV-11-AI-118 T

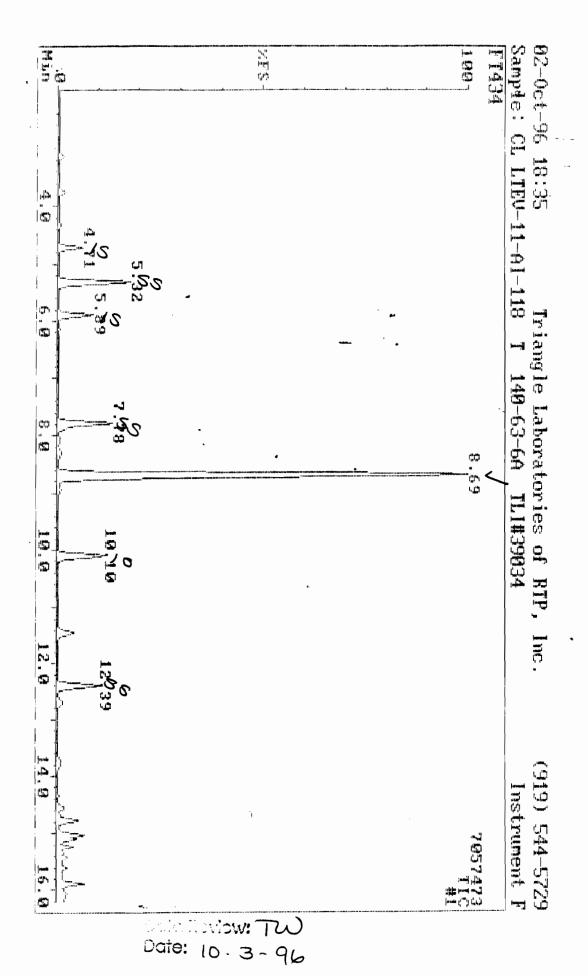
Client Project: VOLATILE ANAL.

TLI ID: 140-63-6A

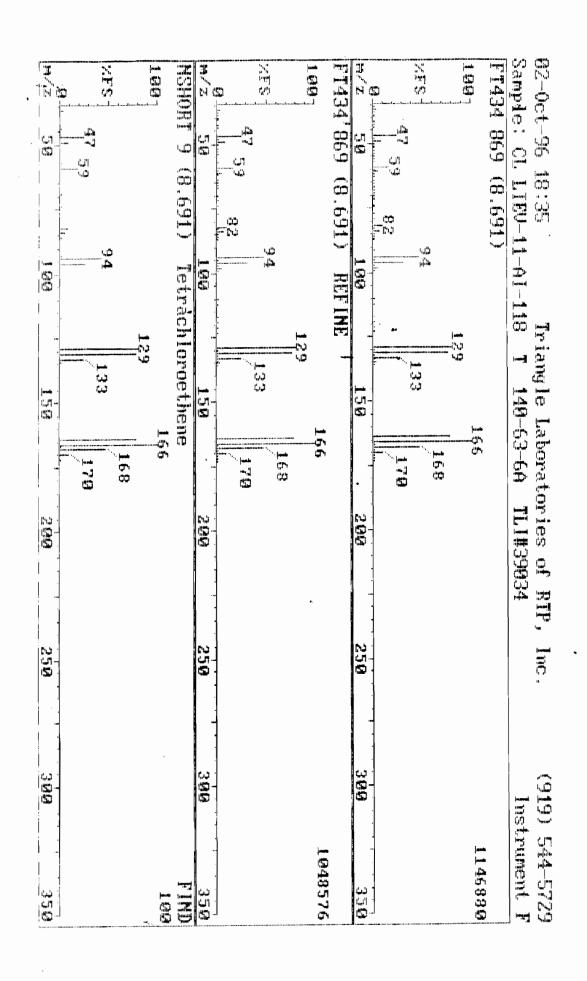
Date Received: 09/28/96

Response File: ICALF919

Date Analyzed: 10/02/96


Analyte	Amount ng	FLA	G RT I	Det Limit Quan. Limit ug ug
Chlorobenzene-d	•	IS 3	10.10	
Tetrachloroethene	2.241	E	8.69	0.05

Surrogate Summary	Amount		RT	IS Ref	%REC
Toluene-d	0.223	·	*7.78	3	89


Reviewed by ______ Date 1013,96

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Est_imated-Below Quantitation Limit; E: Estimated-Above Calibration Range

No.	MAT	FOR	REV	Delta	Area	P.F.ags	RT	MG -	Name
1	100	24	99	-1	353776	bν	4.711	123	Bromochlonomethane
2	100	.95	. 99	. 0	1606720	bv	5.821	114	1.4-Difluorobenzene
.5	100	. 97	98	- 2	2020605	bv	10.101	117	Chloropenzene-d5
4	72	32	83	Ó	7282GO	bv	5.321	6.5	1.2-Dichloroethane-d4
5	100	83	85	0	2467428	bv	5.31t	84	Benzene-d6
6	1.00	93	93	- 1	2524408	bv	7.781	98	ToluenordS 👩 🗋
- 7	-3.3	12	- 29	20	25282	- 	-12.69 1	98	o-Xylene-dio
24	1.00	89	95	\circ	1276789	bv	12.391		4-Bromofluorobenzene
9	100	93	99	O	7062464	bv	8.6 9 1	164	Tetrachloroethene

Project Number: 39034 Sample File: FT427

Method 8240A VOST Sample ID: CL LTEV-11-AI-119 TC

Client Project: VOLATILE ANAL.

TLI ID: 140-63-6B

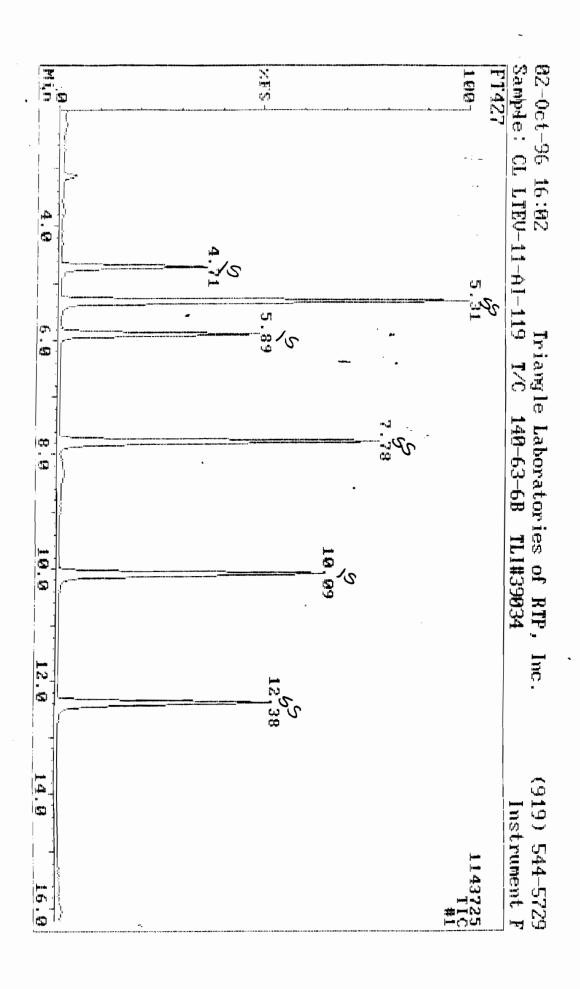
Date Received: 09/28/96

Response File: ICALF919

Date Analyzed: 10/02/96

Analyte Amount ug	FLA	G RT	Det. Limit ug	Quan. Limit
Chlorobenzene-d	IS 3	10.09		
Tetrachloroethene	U		0.001	0.05

Surrogate Summary Amount RT IS Ref %REC	Toluene-d	0.243	 • 7 78	2	97
	Surrogate Summary A	mount	RT	IS Ref	%REC


Date 10 13 196 Reviewed by

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated-Below Quantitation Limit; E: Estimated-Above Calibration Range

Savar v3.5

801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 11:17 10/03/1996

No.	MAT	FÒR	REV	Delta	Area	P.Flage	Rſ	MÇ.	Name
1	100	95.	99	-1	328948	bv	4.711	128	Bromochloromethane
ers To	LOO	96	99	0	1425312	bv	5.891	114	1,4-Difluorobenzene
3	100	· 74	95	.1.	17268 9 9	bv	10.091	117	Chloropenzene-d5
4	74	34	85	-1	785992	bv	5.311	65	1,2-Dichloroethane-d4
5	100	79	81	0	2384415	bv	5.311	84	Benzene-d6
ϵ_{i}	- 100	94	99	0	2356430	bv	7.731	98	Toluene-d8
- v y	7	2	3.4		SOUT	- dd -	12:361	98	o-Xylene-d10 (P) NO
8	100	39	95	\circ	999171	by	12.381	95	o-Xylene-d10 (P) (V) 4-Bromofluorobenzene
- 7	19	1.3	1.8	- 1.5	1660	1212	8.671		Tetrachloroethene

Project Number: 39034 Sample File: FT435

regression and and and

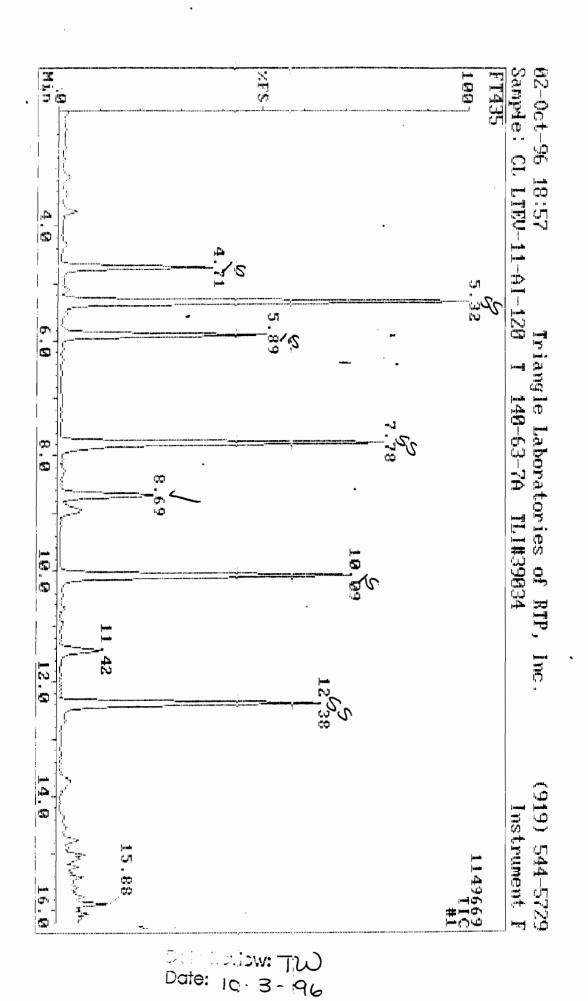
Method 8240A VOST Sample ID: CL LTEV-11-AI-120 T

Client Project: VOLATILE ANAL.

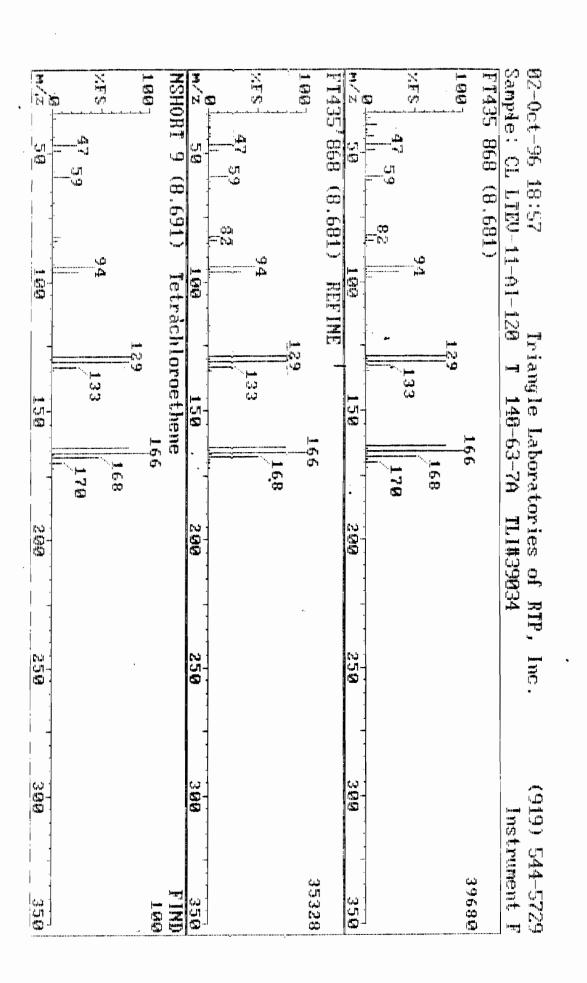
TLI ID: 140-63-7A

Date Received: 09/28/96

Response File: ICALF919


Date Analyzed: 10/02/96

Analyte	Amount FLAC	g RT	Det. Limit Quan. Limit ug ug
Chlorobenzene-d	IS 3	10.09	
Tetrachloroethene	0.086	8.68	0.05


Date 10/3/96 Reviewed by

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

Triangle Laboratories of RTP, Inc. 801 Capitola Drive • Durham, North Carolina 27713 Savar v3.5

No.	MAT	FOR	REV	Delta	Area	P.Flags	2T	MQ	Name -
	100	94	99	-1	360124	bv	4.711	128	Bromochloromethane
2	100	96-	99	0	1549668	bv	5.891	114	1,4-Difluorobenzene .
-3	100	' 26	97	1	1987120	bv	10.091	L17	Chloropenzene-d5
4	7.3	33	84	0	799332	bv	5.321		1,2-Dichloroethane-d4
e,	100	81	83	0	2453156	bv	5.311	84	Benzene-d6
6	100	94	90	O	2435828	by	2.78L	98	Totuene-d8
- 7 -	-10		- 1-1.	100		- 6/6 	12.721-	98	o-Xvlene-d10 (R)
8	100	89	95	Θ	1251411	bv	12.381	95	4-Bromofluor denzene
0	100	20	-)()	0	267964	bv	8.681	164	Tetrachloroethene

Project Number: 39034 Sample File; FT428

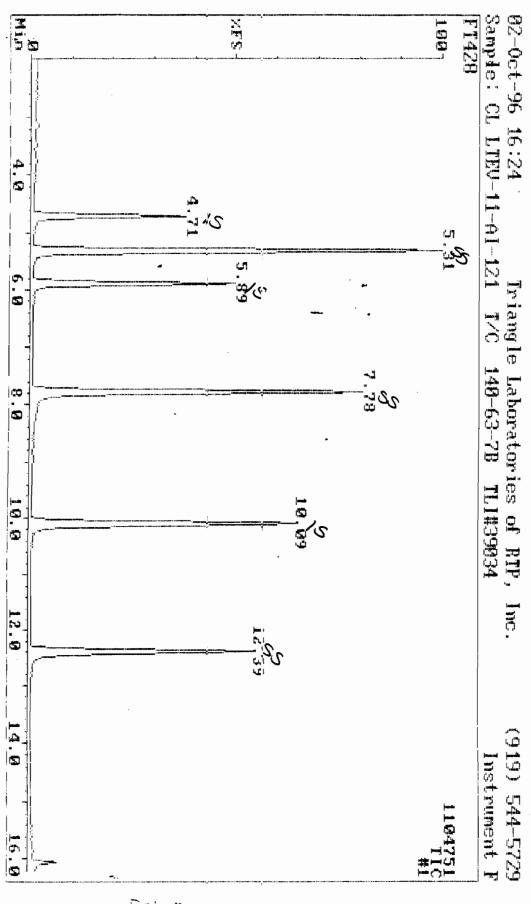
Method 8240A VOST Sample ID: CL LTEV-11-AI-121 TC

Client Project: VOLATILE ANAL.

TLI ID: 140-63-7B

Date Received: 09/28/96

Response File: ICALF919


Date Analyzed: 10/02/96

Analyte A	Amount FLAG	RT	Det. Limit ug	Quan. Limit ug
Chlorobenzene-d	IS 3	10.09		
Tetrachloroethene	U		0.001	0.05

Talman	(119)			
Surrogate Summary	Amount	. RT	TO TO C	%REC

Reviewed by ______ Date 101 3 196

NA- Not Applicable; Det. Limit: Detection Limit; Quan. Limit: Quantitation Limit
IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated- Below Quantitation Limit; E: Estimated- Above Calibration Range

Data Roview: 720 Date: 10 - 3 - 96

	MAUQ	DB	: FT	128		Li	AB-BASE	NAUG		02-0ct-96 16:47
	No.	MAT	FOR	REV	Delta	Area	P.#lags	RT	QM	Name .
-	1	ioσ	94	99	-1	328052	bv:	4.711	128	Bromochloromethane
	2	100	.26	99	0	1396464	bv	5.891	114	1.4-Difluorobenzene
	3	100	. 96	96	1	1731352	b√	10.091	117	Chlorobenzene-d5
	4	74	34	35	0	765680	bv	5.321	. 65	1,2-Dichloroethane-d4
	5	100	79	81	0	2358252	bv	5.311	84	Benzene-d6
	6	100	94	99	0	2308546	bv	7.781	98	foluene-d8
	-7	7	- 2	1.4	48	368	- bb	12.401	98	o-Xylene-dLO
	8	100	88	94	1	998816	bv	12.391		4-Bromofluorobenzene
	_ 0	70	17 "	77.7	0	2140	hk.	0 401	1.6.4	Tetrachloroothere ?

Project Number: 39034 Sample File: FT421

Method 8240A VOST Sample ID: VOSTBLK T/TC 10029ϵ

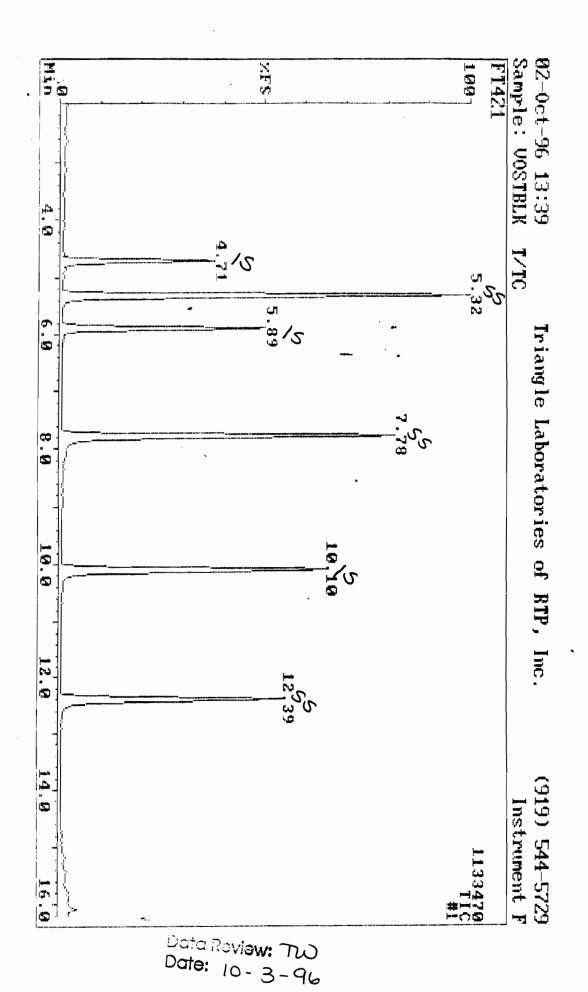
Client Project: VOLATILE ANAL.

TLI ID: VOSTBLKT/TC100296

Date Received: 11-

Response File: ICALF919

Date Analyzed: 10/02/96


Analyte Amount ug	FLA	G RT D	et. Limit ug	Quan. Limit ug
Chlorobenzene-d	IS 3	10.10		_
Tetrachloroethene	U		0.001	0.05

Surrogate Summary A	(mount (ug)	_RT	IS Ref	%REC
Toluene-d	0.244	 * 7.78	3	98

Date: 10,3,96 Reviewed by

NA- Not Applicable; Cet. Limit: Letection Limit; Quan. Limit: Quantitation Limit

IS: Internal Standard; U: Undetected; B: Present In Blank; J: Estimated-Below Quantitation Limit; E: Estimated-Above Calibration Range

No.	MAT	FOR	REV	Delta	Area	P.Flags	RT	MQ	Name
1	100	94	. 99	-1	327535	bb	4.711	128	Bromochloromethane
2	100	96-	99	O	1438532	bv	5.891	114	1.4-Difluorobenzene
3	100	. 96	9 7	2	1730313	bv	10.101	117	Chloropenzene-d5
4	75	36	85	0	765500	bv	5.321	65	1,2-Dichloroethane-d4
5	100	80	82	0	2363463	bv	5.311	84	Benzene-d6
6	100	94	99	- 1	2369716	bv	7.781	28	Toluene-d8 - 👝 🤿
		<u> </u>	<u> </u>	()		- 15-15	13.491	98	o-Xylene-dlo
8	100	89	75	0	1016226	bv	12.391	95	4-Bromofluorobenzene
9	O	O	0	O	O:		0.000	164	Tetrachloroethene

Triangle Laboratories of RTP, Inc. Continuing Calibration Curve

CCAL File: FT408

Date of Analysis:10/02/96

Analyte List: 8240A

ICAL File: ICALF919 VOST Calibration.

Analyte Flag RF0.25 RFMEAN %D

Chlorobenzene-d5 I
Tetrachloroethene 0.405 0.390 -3.8

Surrogate	riag	RPU-25 R	FMEAN	%D	
Toluene-d8	S	1.479	1.403	-5.4	

*- Fails QC Criteria for %D; << - Rf less than minimum QC RF; >>- RF greater than maximum QC RF

Triangle Laboratories of RTP, Inc. Initial Calibration Curve

 ICAL File: ICALF919
 Date of Analysis:09/19/96
 Analyte List: 8240A

 RF0.10 FT249
 RF0.25 FT244
 RF0.50 FT245

 RF0.75 FT246
 RF1.00 FT247

VOST Calibration.

Analyte	Flag	RF0.1D	RF0.25	RF0.50	RF0.75	RFL00	MEAN	%RSD	
Chlorobenzene-d5 Tetrachloroethene	I	0.404	0.387	0.412	0.380	0.366	0.390	4.7	
Surrogate	Flag	RF0.1)	RF0.25	RF0.50	RF0.75	RF1.00	Mean	%RSD	
Toluene-d8	S	1.36 _i l	1.450	1.459	1.380	1.363	1.403	3.4	

*- Fails QC Criteria for %RSD; << Rf less than minimum QC RF; >>- RF greater than maximum QC RF

CLIENT: Radian International

PROJECT: Claremont

PROJECT ID: CL-LTEV-11-AI

AQL #: 96055

DATE OF REPORT: October 4, 1996 DATE RECEIVED: September 28,1996

ANALYSIS OF TENAX & TENAX-CHARCOAL CARTRIDGE PAIRS FOR TETRACHLOROETHENE BY GC-MS.

The set of samples consisted of three pairs of Tenax/Tenax-Charcoal cartridges delivered to Air Quality Laboratory, Inc. via FED EX.

The samples were analyzed using SW-846 Method 5041 as a guidance document.

Summary points of the results are:

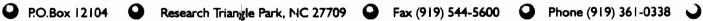
- 1. All samples arrived in good condition.
- 2. The samples were analyzed by GC-MS, utilizing a 0.32mm X 60 m DB-1 capillary column.
- 3. The Field blank samples were analyzed as a pair.
- 4. The remaining cartridges were analyzed separately to verify the presence or absence of breakthrough during sampling.
- 5. The sample cartridge 96055-3, Radian CL-LTEV-11-AI-124/3CF Outlet exceeded the calibration range of the GC-MS. This is an estimated value.

Thomas A. Buedel Laboratory Manager

Air Quality Laboratory

REPORT DATE 10/4/96 CLiENT Radian International, LLC CLIENT PROJECT ID Claremont CUSTOMER I.D. CL-LTEV-11-AI DATE RECEIVED 9/28/96 DATE OF ANALYSIS 10/4/96 DATAIFILE GC-MS 960334 AQL I.D. 96055

Tetrachloroethene


	Amount
Sample ID	(Total Ng)
96055-1 CL-LTEV-11-AI-122	419
3BF - OUTLIET	
96055-2 CL-LTEV-11-AI-123 3BB - OUTLET	<5NG
96055-3	1740
CL-LTEV-11-AI-124 3CF - OUTLET	
96055-4 CL-LTEV-11-AI-125 3CB - OUTLET	<5NG
96055-5 & 6 CL-LTEV-11 -AI-126	<5NG
Field Blank F - OUTLET CL-LTEV-11⊦AI-127	
Field Blank B - OUTLÆT	

Lab Blank

CALIBRATION CURVE DATA

PROJECT: 96055

COMPOUND: TETRACHLOROETHENE

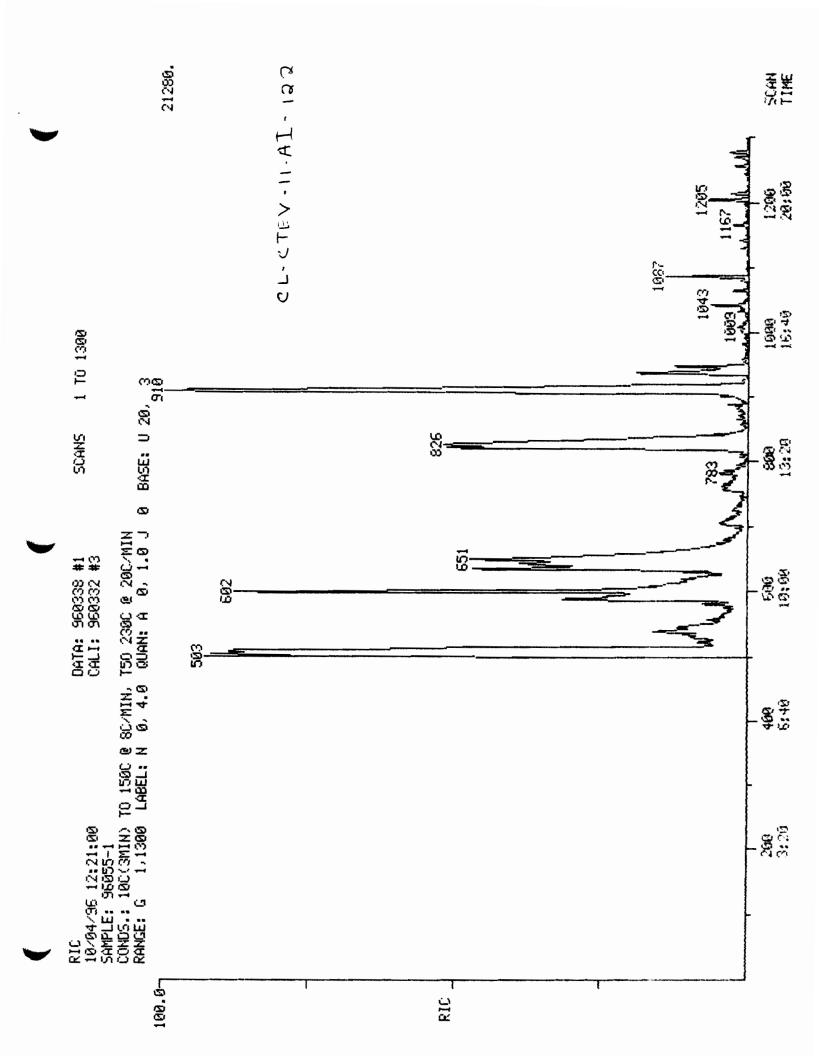
_	Standard Area Counts	Standard Amount (Nanograms)	Internal Standard Area Counts	Internal Standard Amount (Nanograms)	Response Factor
1	13864	200	57647	200	0.2405
2	24104	350	51472	200	0.2676
3	7138	100	54814	200	0.2604
4	38654	500	66258	200	0.2334
5	2893	50	48280	200	0.2397

Average response Factor = 0.2483 Standard Deviation = 0.0148 Per Cent Relative Std Dev. = 6.0

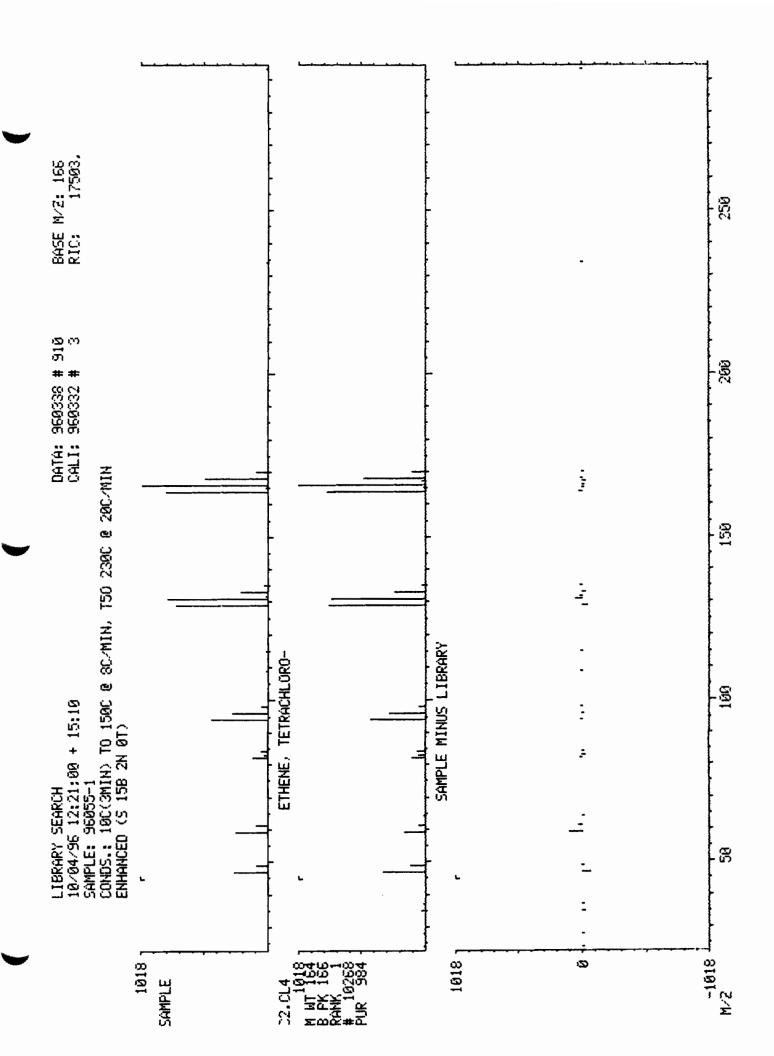
Internal Standard = d8-Toluene, ion 98.

96055 - SAMPLE CALCULATIONS

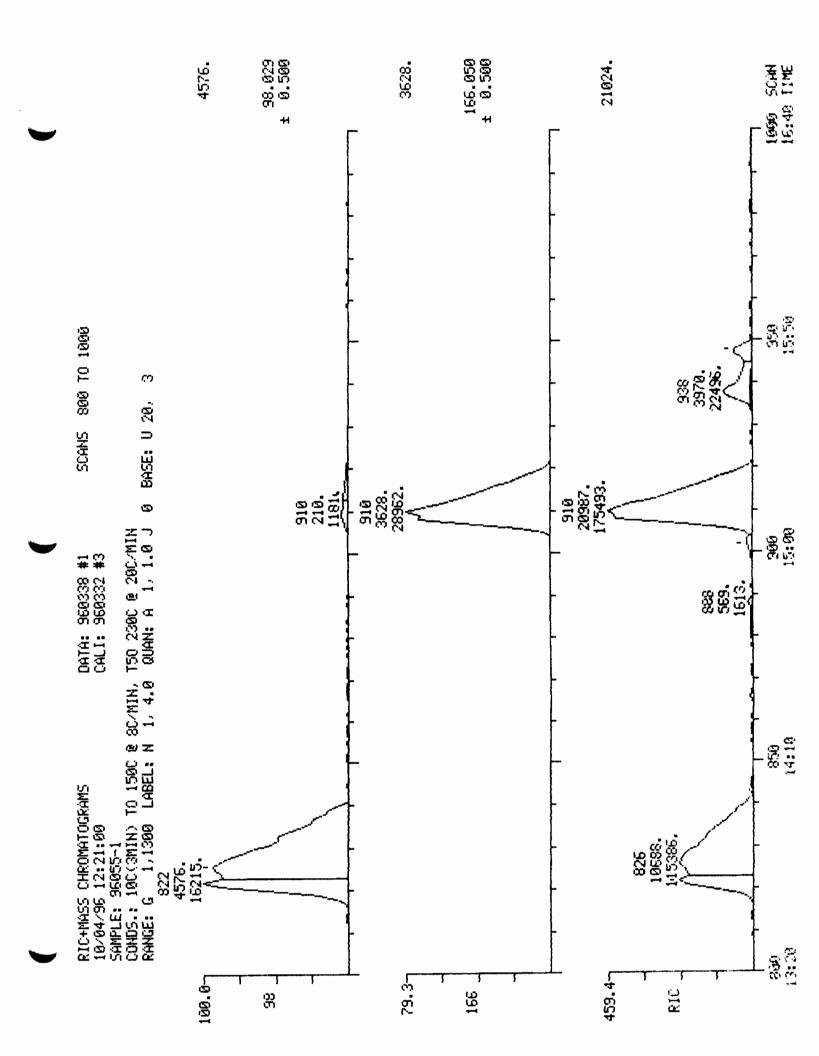
Sample ID	Amount (Total Ng)	Tetrachloroethene Area Units	Internal Standard Area Units	File
96055-1 CL-LTEV-11-Al-122 3BF - OUTLET	419	28962	55710	960338
96055-2 CL-LTEV-11-AI-123 3BB - OUTLET	<5NG	0	78006	960336
96055-3 CL-LTEV-11-AI-124 3CF - OUTLET	1740	148357	68693	960339
96055-4 CL-LTEV-11-AI-125 3CB - OUTLET	<5NG	0	75465	9 6 0337
96055-5 & 6 CL-LTEV-11-AI-126 Field Blank F - OUTLET CL-LTEV-11-AI-127 Field Blank B - OUTLET	<5NG	0	75215	960335
Lab Blank	6.5	634	78299	960334

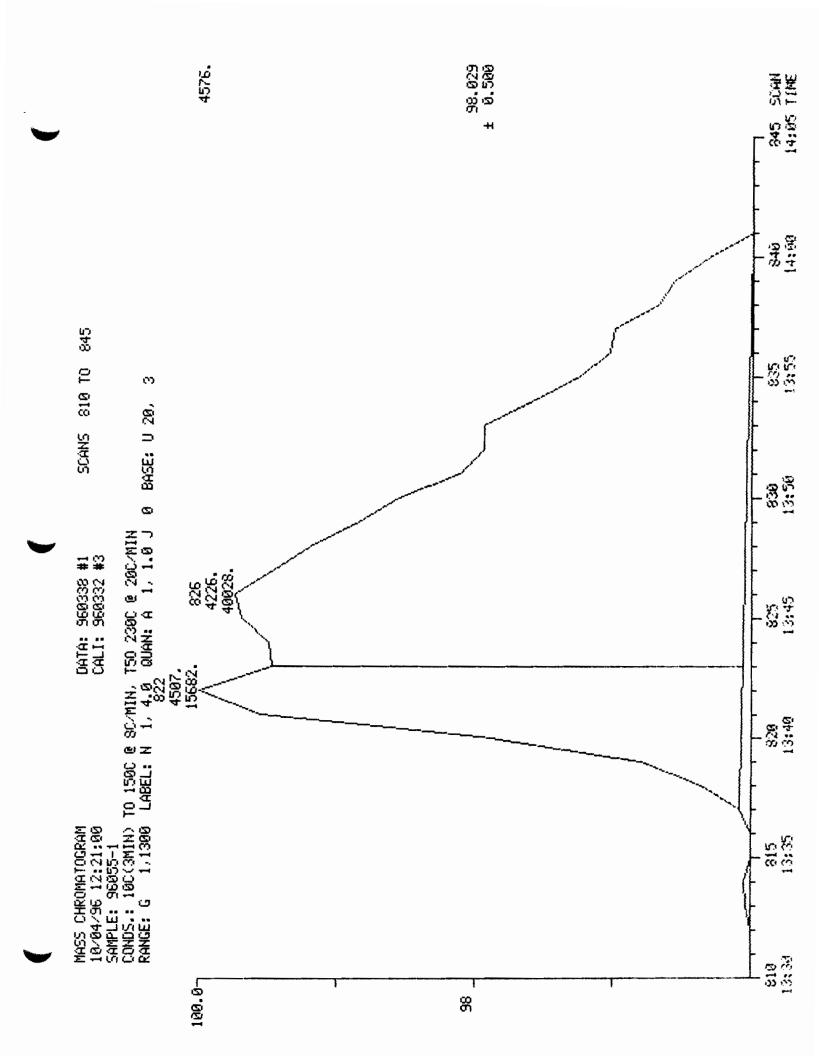

Calculations - continued

Amount Tetrachloroethene = (AMOUNTis X AREAtet) / (AREAis X RF)

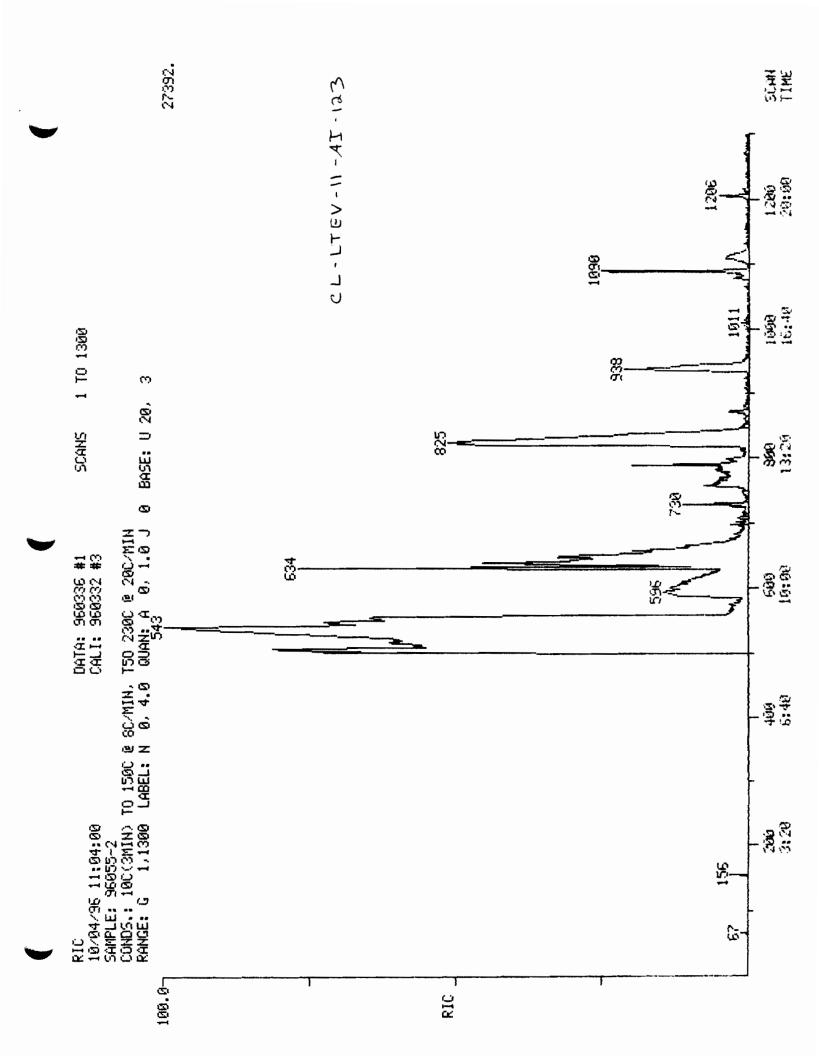

Where: AMOUNTis =: Amount of Internal Standard (200ng)

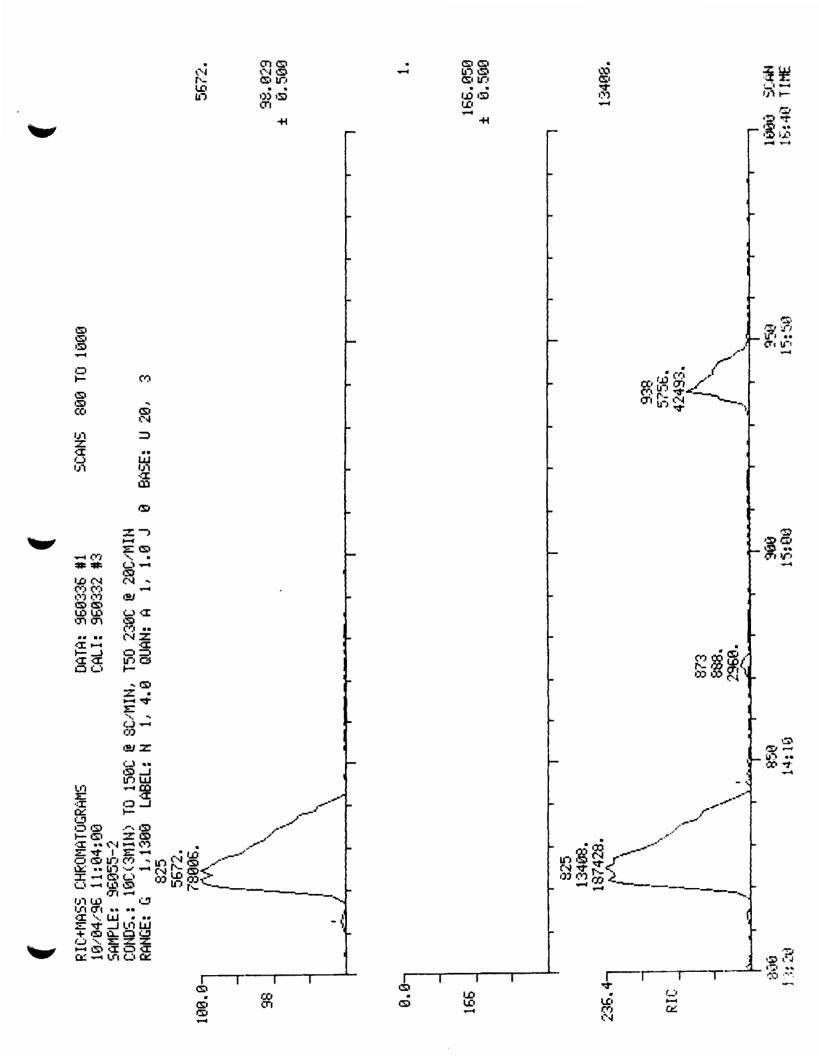
AREAis = Area of Internal Standard AREAtet = Area of Tetrachloroethene

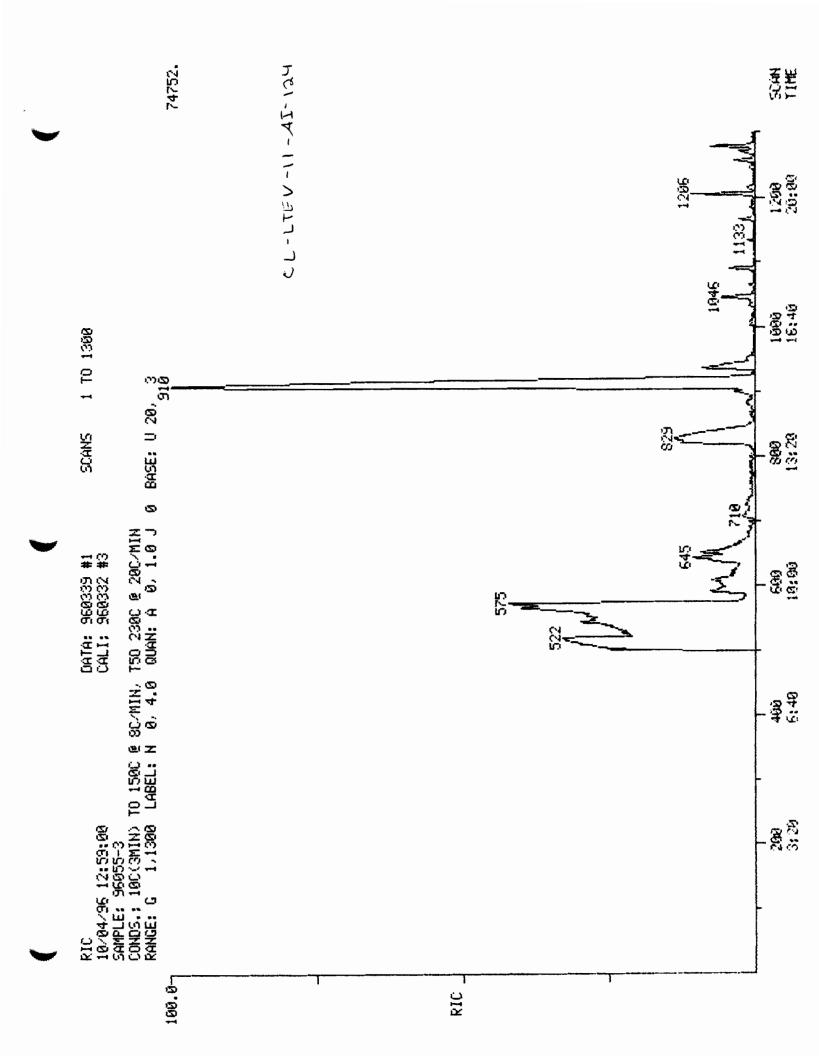

RF = Average response factor of Tetrachloroethene (0.2483)



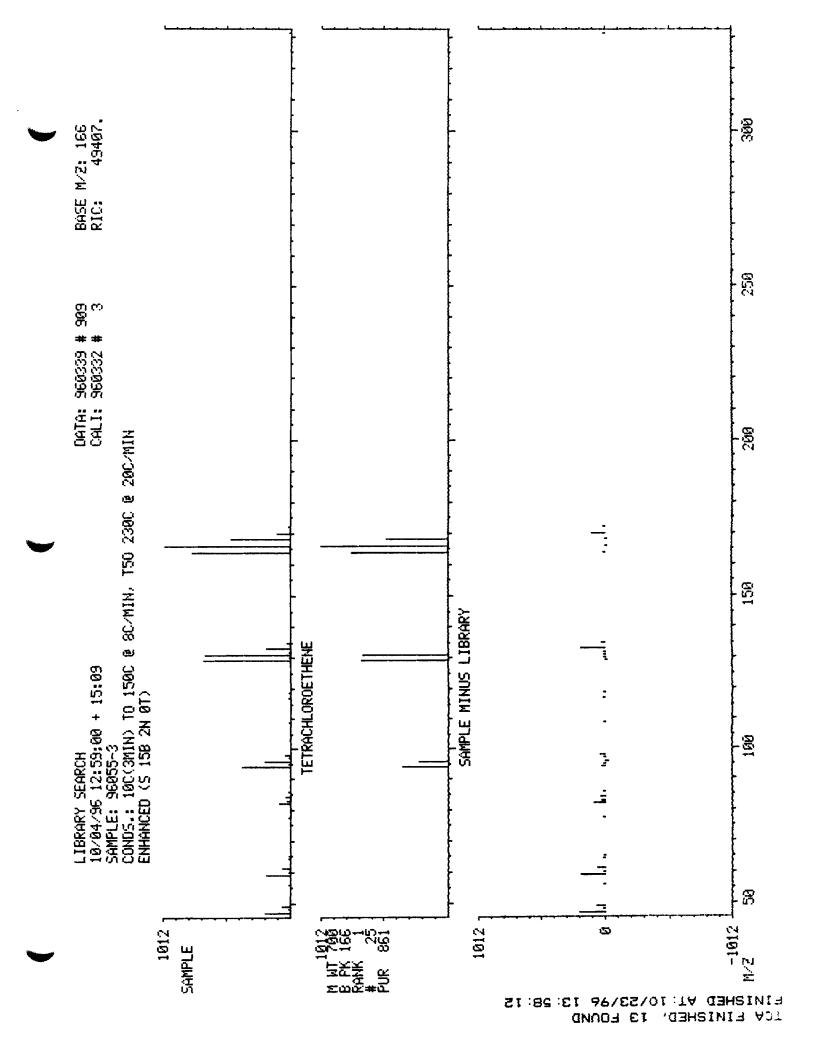
		•

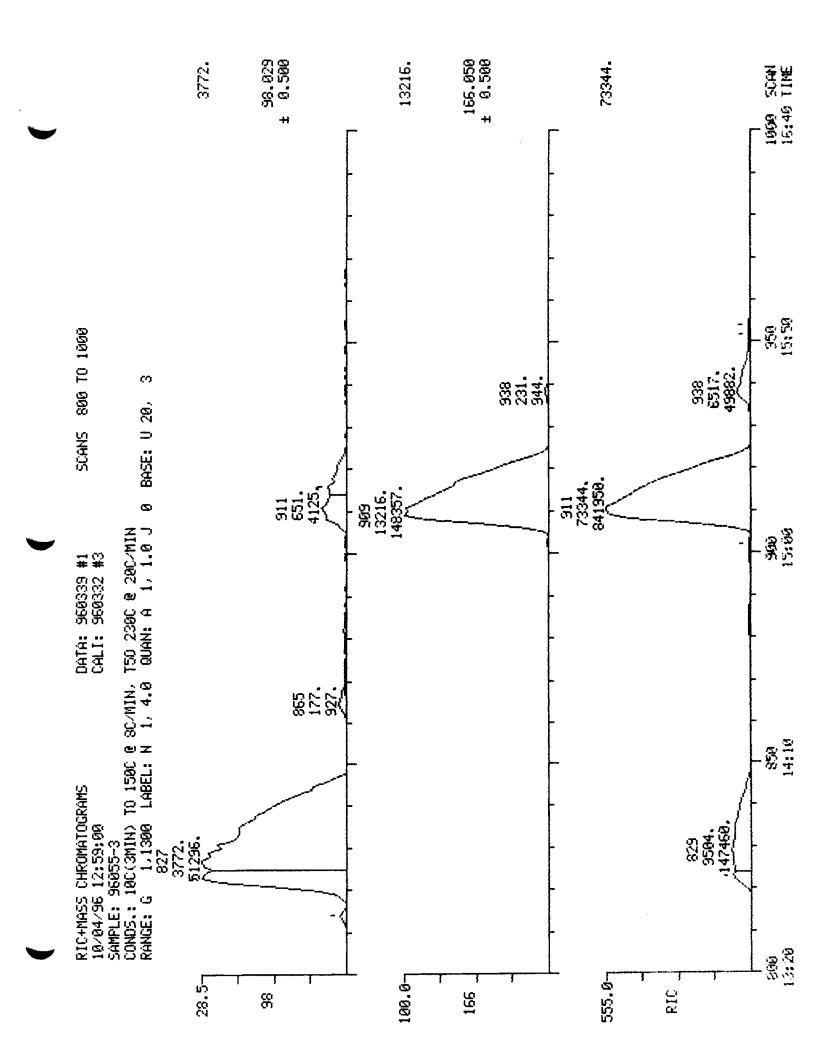


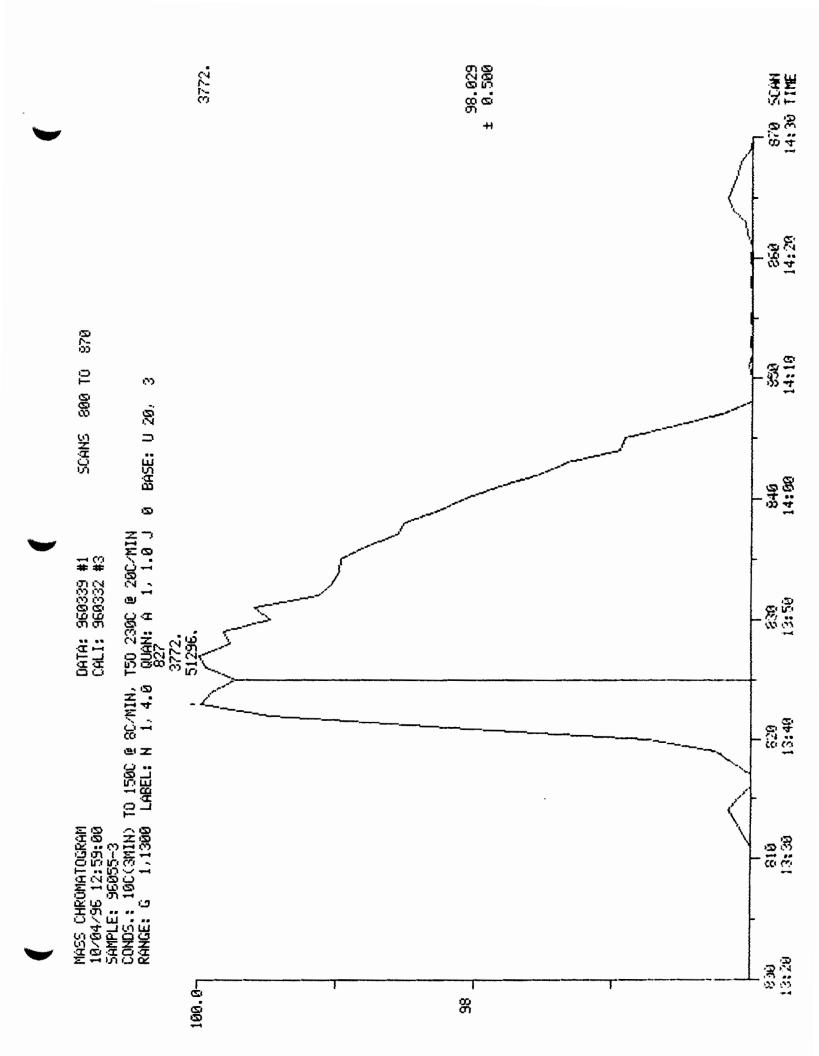

, ,		
		_

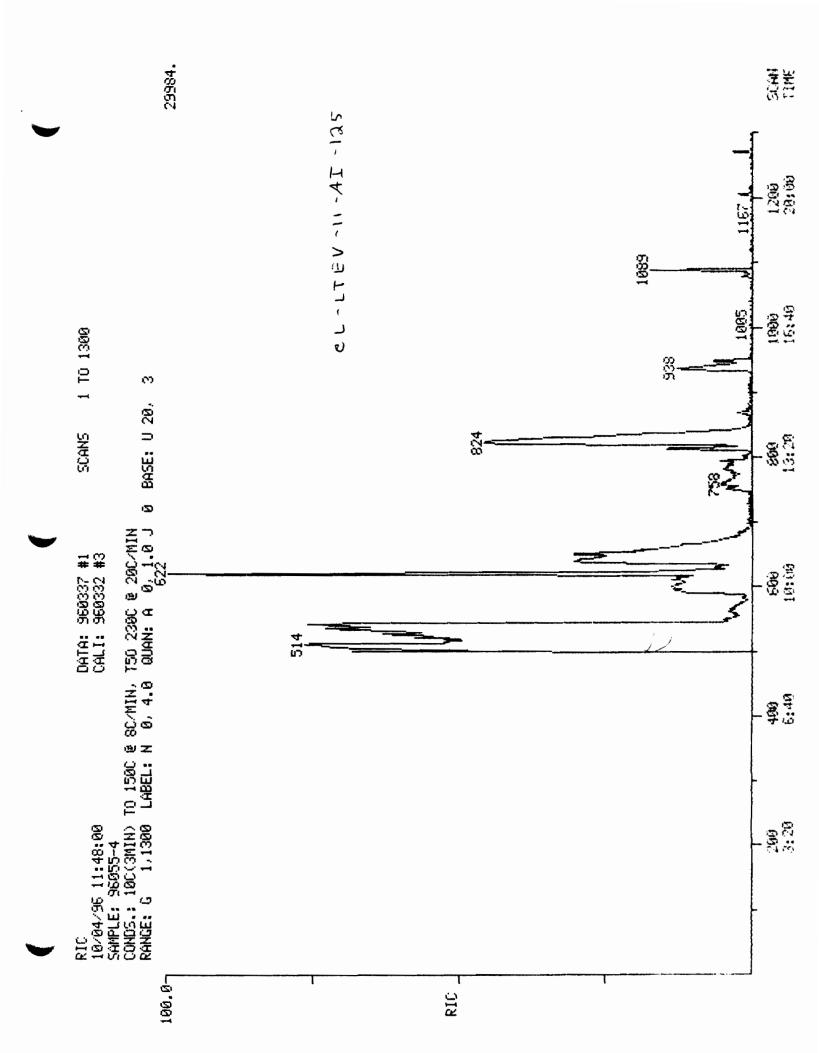


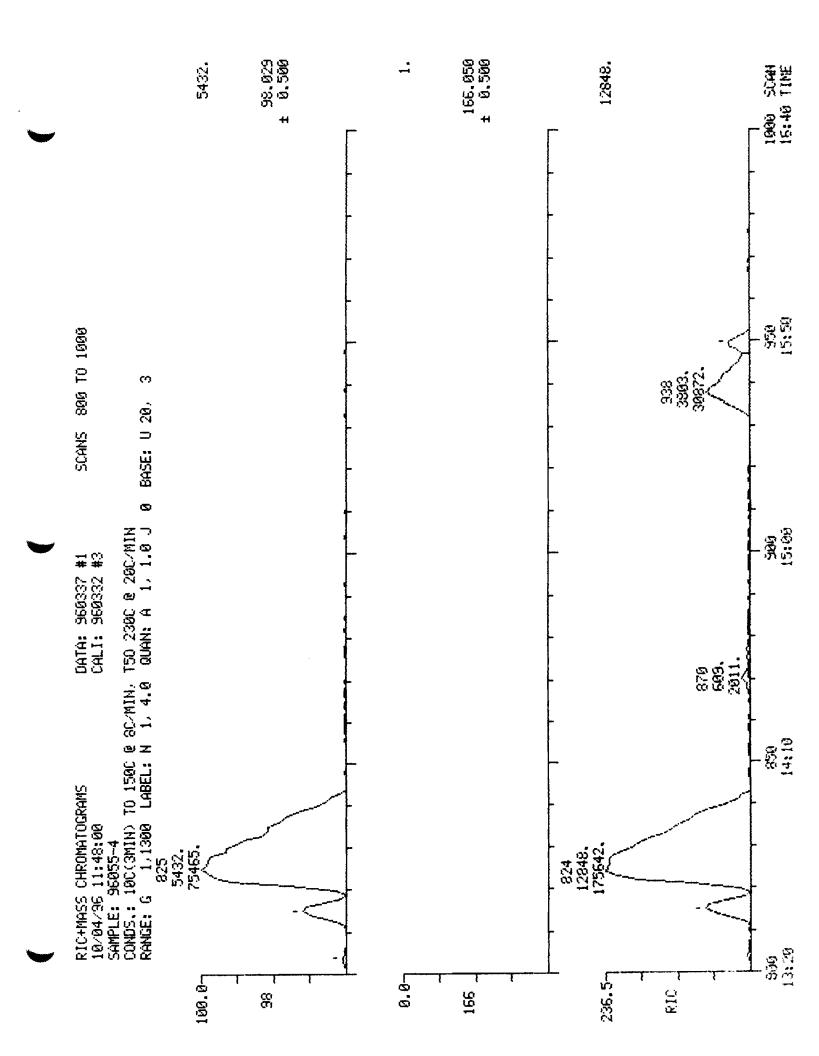
		•

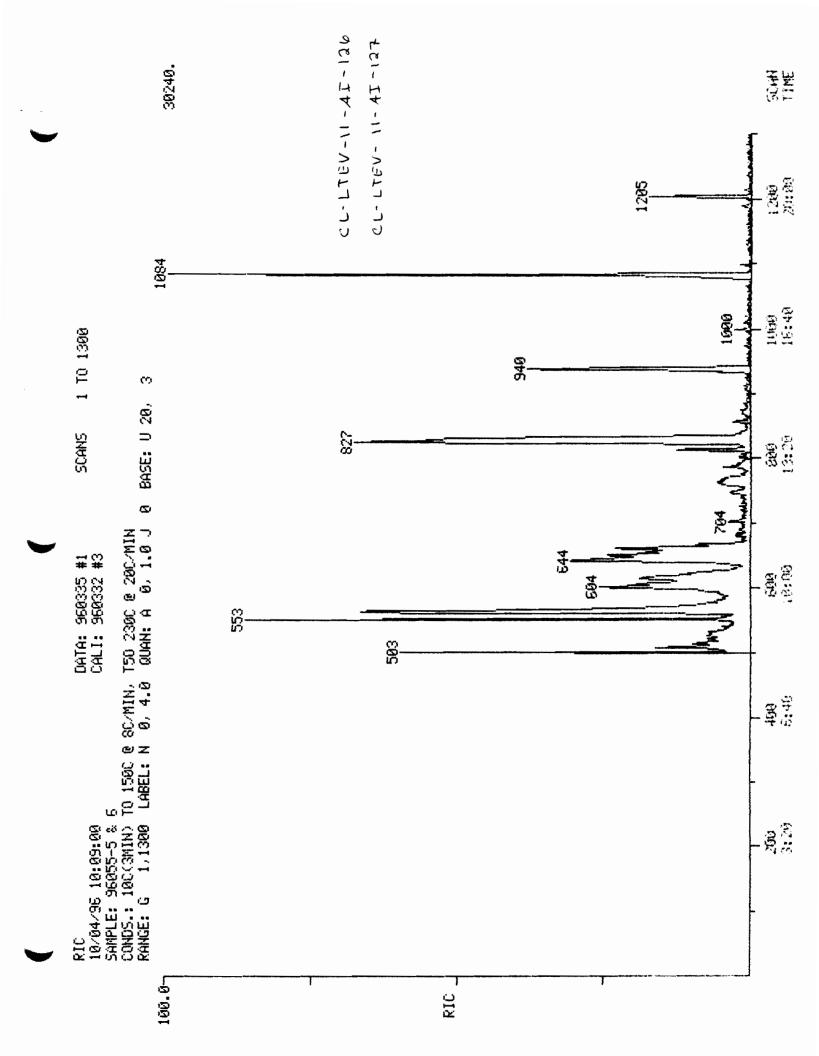


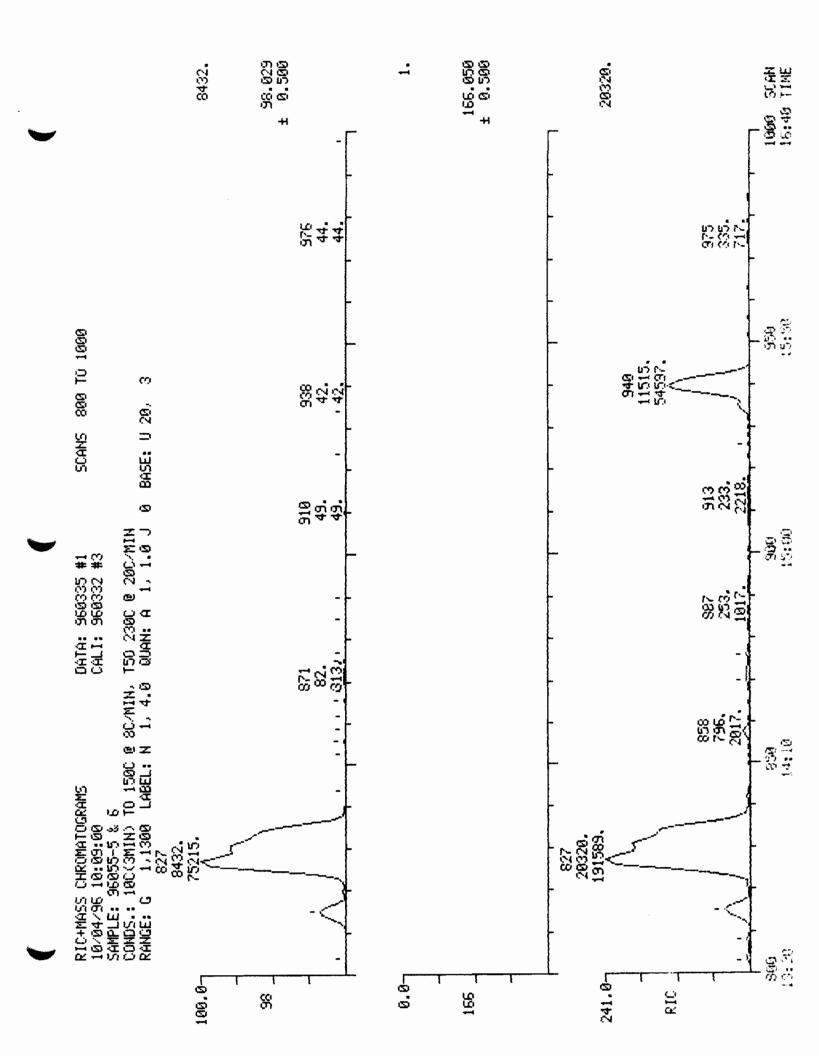

		_
		_


		i i i

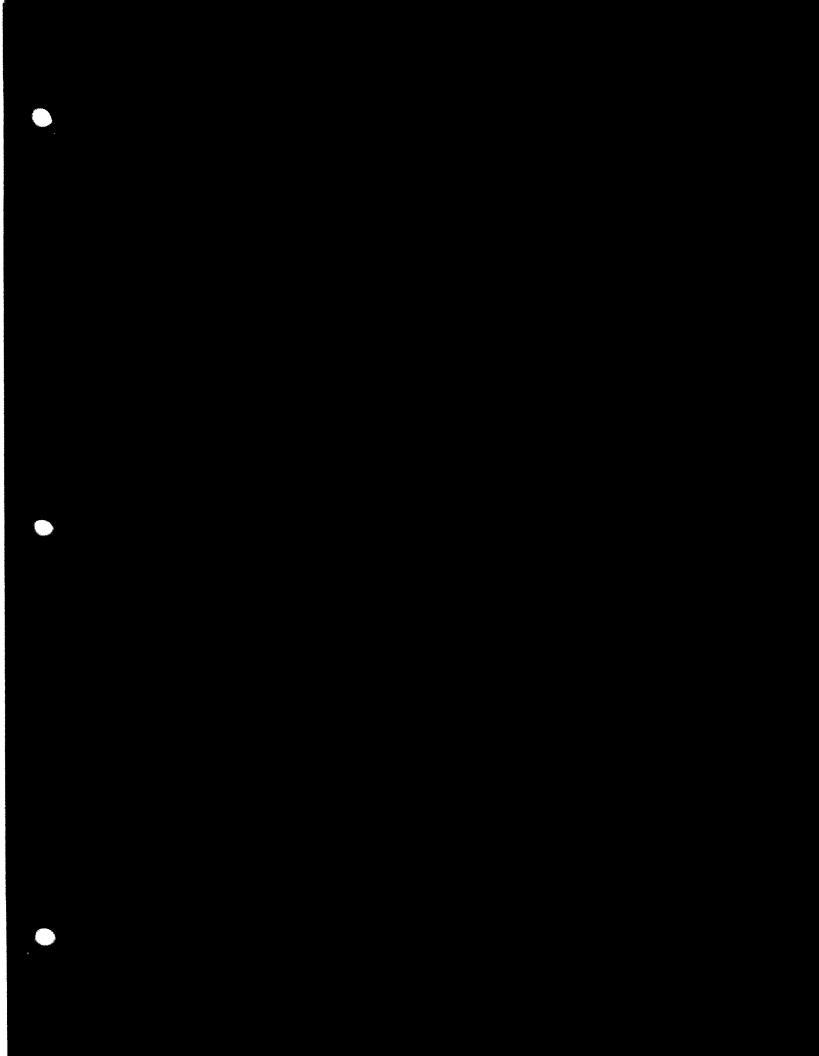

	1		
			_
			_
			_
			_
			_

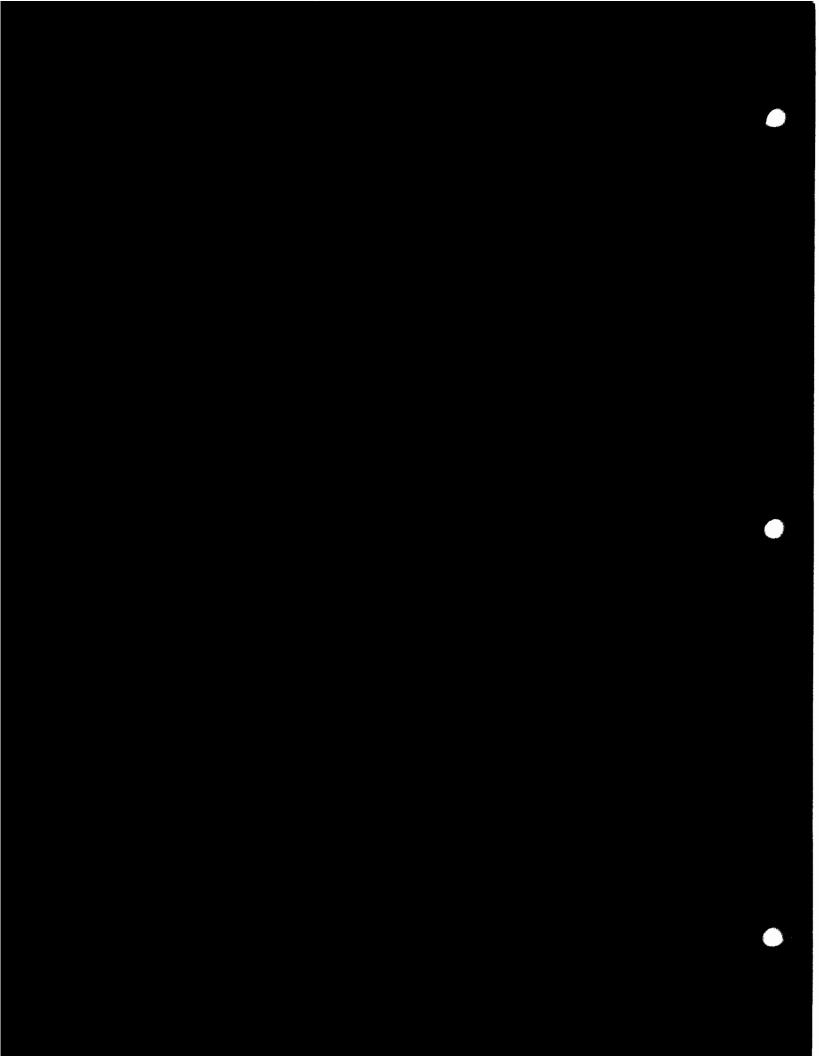

		•
		_


		_
		_



,		
	•	




	'		
		•	
)
			•
			•

		_
		_

SUMMA CANISTER DATA CORRELATION

Sample No.

_	Report Run No.
CL-LTEV-II-AI-091	Inlet 1-1
CL-LTEV-II-AI-092	Inlet 1-2
CL-LTEV-II-AI-093	Inlet 1-3
CL-LTEV-II-AI-097	Inlet 2-1
CL-LTEV-II-AI-098	Inlet 2-2
CL-LTEV-II-AI-099	Inlet 2-3
CL-LTEV-II-AI-103	Inlet 3-1
CL-LTEV-II-AI-104	Inlet 3-2
CL-LTEV-II-AI-105	Inlet 3-3
CL-LTEV-II-AI-094	Outlet 1-1
CL-LTEV-II-AI-095	Outlet 1-2
CL-LTEV-II-AI-096	Outlet 1-3
CL-LTEV-II-AI-100	Outlet 2-1
CL-LTEV-II-AI-101	Outlet 2-2
CL-LTEV-II-AI-102	Outlet 2-3
CL-LTEV-II-AI-106	Outlet 3-1
CL-LTEV-II-AI-107	Outlet 3-2

		_
		_
		_

Page: 1 of 2

LLI Sample No. AQ 2589991

Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/ 8/96

Discard: 10/ 8/96

100 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International

PO BOX 13000

RTP NC 27709 P.O. Rel.

AS RECEIVED

		/10 N			
CAT			LIMIT OF		
NO.	ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
5651	TO-14 Volatile Organics in Air	see form I			
5652	TO-14 Volatile Organics (cont)	see form I			
5695	TO-14 Form 1			See Page	2
7056	Methane	20.	10.	ppm (v)	
9001	Ethane	< 2.	2.	ppm(v)	
9002	Propane	4.	2.	ppm(v)	

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative Kay G. Hower at (717) 656-2300 127845 535501 21:30:18 D 0001 8 0 320 70.00 00084800 DISO00

MEMBER

SHETTHER TO THE STATE OF THE STATE O 100 34 - 3 fak 64 1 fe 33ku 438 110 4 56ku 419 - 64k 110 468ku 683 Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

in reeretarise in bit to less to hat on information pand appress to the

The 101 biking defines common symbols and appreviations used in reporting rechnical data:

N.D. TNTC	none detected	BMQL	Below Minimum Quantitation Level
	Too Numerous To Count	MPN	Most Propable Number
IU	international Units	CP Units	popart-onior opiatinate lunits
umhos/cm	micromnas am	NTU	nephetometric turbidity units
С	tearees Celsius	F	degrees Fanrenheit
Cal	det Rores	ib.	ocunars:
me q	m eta tens	kg	kilogramis)
g	gramis:	mg	m."igramisi
u g	microgramisi	!	hteris:
ml	missitéris)	ul	microliterisi
m3	cupic meter(s)	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- ress than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than
- parts per million. One ppm is equivalent to one milligram per kilogram (mg. kg), or one gram per million grams. For aqueous iquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank. Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument.	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J N P U X.Y.Z	Estimated value Presumptive evidence of a compound (TIC's only) Concentration difference between primary and confirmation columns >25% Compound was not detected Defined in case narrative	U W *	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the prent uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the prent, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:100 Lab Sample ID:2589991

Injection Volume: 50.0 cc Nominal Volume: 250 cc

Canister ID:SUMMA0085 Instrument ID: HP4508

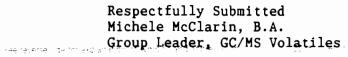
Date Collected: 9/27/96 Date Analyzed: 10/03/96

Pressure Rec'd: 15.8 psia

Date Received: 9/30/96 Time Analyzed:15:37 Final Pressure: 31.6 psia

Dilution Factor:

Lab File ID:C:\HPCHEM\1\DATA\OCTO3\0801011.D


CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
127-18-4	Tetrachloroethene	220	D

U = Compound was undetected at the specified limit of quantitation.

B = Compound was found in method blank. D = analysis of diluted sample.

142, 145, 4 - 21, 234

The following defines common symbols and appreviations used in reporting technical data.

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Propable Number
!U	International Units	CP Units	cobalt-ch'oroplatinate units
umhos/cm	micromhos: cm	NTU	nechelometric furcitaty units
С	degrees Celsius	F	degrees Fanrenne-t
Cal	de: 03 01 98	lb.	pound(s)
meq	ns leduk alents	kg	kilogramisi
g	gram:s	mg	milligram(s)
u g	microgram(s)	İ	liter(s)
ml	millinter(s)	ul	microliter(s)
m3	cubic meter(s)	ib > 5 um/ml	fibers greater than 5 microns in length per ml

- iess than The number following the sign is the <u>limit of quantitation</u> the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
Ν	Presumptive evidence of a compound (I/IC's only)	W	Post digestion spike out of control limits
P	Concentration difference between primary and confirmation columns >25%	+	Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
U	Compound was not detected		
X,Y.Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We displain any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client conditions at variance to our Standard Terms and Conditions are not part of the contract.

Page: 1 of 2

P.O.

Rel.

LLI Sample No. AQ Collected: 9/27/96 2589992

Submitted: 9/30/96 Reported: 10/ 8/96

Discard: 10/ 8/96

101 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International PO BOX 13000

RTP

NC 27709

AS RECEIVED

CAT LIMIT OF ANALYSIS NAME RESULTS NO. QUANTITATION UNITS 5651 TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) 5652 see form I 5695 TO-14 Form 1 See Page 7056 Methane 30. 10. ppm (v) 9001 Ethane < 2. 2. ppm(v) 9002 Propane ppm(v)

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 127845 535501 Kay G. Hower 21:30:40 D 0001 8 0 320 70.00 00084800 DISO00

ar y a fer capy ratifies 1415 New York 0 - 40 040 0 - 44 640 05 362425 0 - 646000 - 4000 636 683 Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The following defines common symbols, and abbreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
!U	international Units	CP Units	nobalt-chloropiatinate units
umhos/cm	n-cromhos cm	NTU	nephelometric turbidity units
, C	degrees Ceisius	F	degrees Fahrenheit
Cal	. 9tr 8. c. · e.s	lb.	pound(s)
meq	more place to the second of th	kg	kilogram(s)
g	gram(s)	mg	miligram(s)
ug	miorogramis)	1	iter(s)
ml	m linterist	ul	microliter(s)
m3	cubic meterisi	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm'is equivalent to one milligram per kilogram (mg, kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank. Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument.	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TIC's only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y.Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless samples have been performed by a member of our staff. This report shall not be reproduced except in full, without the swritten approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - in accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:101

Lab Sample ID:2589992

Instrument ID: HP4508

Canister ID:SUMMA0046 Injection Volume: 50.0 cc Nominal Volume: 250 cc

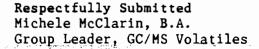
Date Collected: 9/27/96

Date Analyzed: 10/03/96

Pressure Rec'd: 14.9 psia

Date Received: 9/30/96

Time Analyzed:16:27


Final Pressure: 29.8 psia Dilution Factor:

Lab File ID:C:\HPCHEM\1\DATA\OCTO3\0901012.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
127-18-4	Tetrachloroethene	170		D

U = Compound was undetected at the specified limit of quantitation.

The following defines common symbols and appliediations used in reporting technical data:

N.D. TNTC IU umhos/cm C	none detected Too Numerous To Count International Units micromnos em degrees Celsius	BMQL MPN CP Units NTU F	Below Minimum Quantitation Level Most Propable Number cobalt-chloroplatinate units nephelometric turbidity units degrees Fahrenheit
Cal	.et color es	lb.	pound(s)
meq	ti equivalents	kg	kilogram(s)
g	gramis.	mg	milligramis)
u g	microgram(s)	Ĭ	liter(s)
ml	malater(s)	ul	microliter(s)
m3	cubic meteris)	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- 'ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Pry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Defined in case narrative

X.Y.Z

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
Ð	Compound quantitated on a diluted sample	N	Spike sample not within control limits
Ε	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
J	Estimated value	U	Compound was not detected
Ν	Presumptive evidence of a compound ("IC's only)	W	Post digestion spike out of control limits
P	Concentration difference between primary and confirmation columns >25%	* +	Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
U	Compound was not detected	'	Solidiano, Sociiisiani in More voloso

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Paricular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Analysis Report

Page: 1 of 2

P.O.

Rel.

2589993 LLI Sample No. AQ Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/ 8/96 Discard: 10/ 8/96

102 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International

PO BOX 13000

RTP

NC 27709

AS RECEIVED

LIMIT OF CAT ANALYSIS NAME RESULTS QUANTITATION UNITS NO. 5651 TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) 5652 see form I TO-14 Form 1 2 See Page 5695 7056 Methane 20. 10. ppm (v) ppm(v) 2. Ethane < 2. 9001 3. 9002 Propane ppm(v)

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 127845 535501 Kay G. Hower 21:30:58 D 0001 8 0 320 70.00 00084800 DIS000

Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The following defines common symbols and appravations used in reporting technical data:

N.D. TNTC IU umhos/cm C Cal meg	none detected Too Numerous To Count International Units micromhosism degrees Celsius 11411010008 mail and the second seconds	BMQL MPN CP Units NTU F Ib. kg	Below Minimum Quantitation Level Most Propable Number cobalt-chioropiat nate units nephelometric turbidity units degrees Fahrenheit cound(s) kilogram(s)
g	gramisi	mg	miligramis)
ug	microgramisi	Ĭ	iter(s)
ml	milliliterist	ul	microlit er(s)
m3	cubic meter(s)	$_{\circ}$ fib > 5 um/ml	tibers greater than 5 microns in length per mi-

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous fiquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Organic Qualifiers Inorganic Qualifiers Value is <CRDL. but ≥IDL Α TIC is a possible aldol-condensation product В В Analyte was also detected in the blank Ε Estimated due to interference С Pesticide result confirmed by GC/MS М Duplicate injection precision not met D Compound quantitated on a diluted sample Spike sample not within control limits Ν Ε S Method of standard additions (MSA) used Concentration exceeds the calibration range of the instrument for calculation U J Estimated value Compound was not detected Presumptive evidence of a compound (TIC's only) Post digestion spike out of control limits Ν W Ρ Concentration difference between primary and Duplicate analysis not within control limits Correlation coefficient for MSA < 0.995 confirmation columns >25% U Compound was not detected Defined in case narrative X.Y.Z

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY—in accepting analytical work, we warrant the accuracy of test requires for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:102

Lab Sample ID:2589993

Canister ID:SUMMA0121

Instrument ID:HP4224

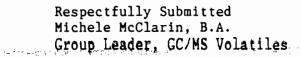
Date Collected: 9/27/96

Date Analyzed:10/03/96

Pressure Rec'd: 16.1 psia Injection Volume: 500.0 cc Nominal Volume: 250 cc

Date Received: 9/30/96 Time Analyzed:19:39

Final Pressure: 32.2 psia


Dilution Factor:

Lab File ID:C:\HPCHEM\1\DATA\OCTO3\1401006.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
127-18-4	Tetrachloroethene	12	D

U = Compound was undetected at the specified limit of quantitation.

The reliaining defines common symbols and abbreviations used in reporting technical data.

N.D.	none detected	BMQL	Balow Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Propagle Number
ŧυ	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos/cm	NTU	nephelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	dieti calches	lb.	pound(s)
meq	mili equivalents	kg	kilogram(s)
g	gramisi	mg	milligram(s)
ug	microgram(s)	1	liter(s)
ml	milliliterisi	ui	microliter(s)
m3	public meteris)	∮ib > 5 um/ml	fibers greater than 5 microns in length per ml

- ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

Defined in case narrative

X,Y,Z

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a dilluted sample Concentration exceeds the calibration range of	B E M N S	Value is <crdl, (msa)="" additions="" but="" control="" due="" duplicate="" estimated="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used<="" within="" ≥idl=""></crdl,>
J N P	the instrument Estimated value Presumptive evidence of a compound (TIC's only) Concentration difference between primary and confirmation columns >25% Compound was not detected	W +	for calculation Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We displain any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Page: 1 of 2

P.O.

Rel.

LLI Sample No. AQ Collected: 9/27/96 2589994

Submitted: 9/30/96 Reported: 10/ 8/96 Discard: 10/ 8/96

103 Summa Canister LL LTEU-11-A1 Project: Claremont

ANALYSIS NAME

NO.

Account No: 09379 Radian International

PO BOX 13000

NC 27709

AS RECEIVED

LIMIT OF CAT

RESULTS QUANTITATION UNITS

5651 TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) 5652 see form I

5695 TO-14 Form 1 See Page 2

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative Kay G. Hower at (717) 656-2300 21:31:20 D 0001 8 0 127845 535501 320 0.00 00072000 DIS000

i i Hiter Laboratore. , 425 Ne vet i en 18 18 ke Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The following defines common symbols and appreciations used in reporting technical data.

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Probable Number
10	international Units	CP Units	copalt-chioropiatinate units
umnos/cm	micromhos icm	NTU	hephelometric turbidity units
С	Jegrees Ceisius	F	degrees Fahrenheit
Cal	wwet daunes	lb.	30und(s)
meq	m Ballia ents	kg	xilogram(s)
g	diam.e.	mg	milligram/s)
ug	microgramis)	Ī	eter(s)
ml	multister(s)	ul	microliteris)
m3	public meter si	₁fib > 5 um/ml	f.bers greater than 5 microns in length per ml

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, apm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl. (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl.>
J	Estimated value	U	Compound was not detected
Ν	Presumptive evidence of a compound (TIC's only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA <0.995
Ü	Compound was not detected		
X,Y,Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laporatory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:103 Lab Sample ID:2589994

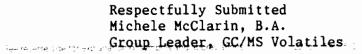
Canister ID:SUMMA0088 Injection Volume: 50.0 cc Nominal Volume: 250 cc

Instrument ID: HP4508

Date Collected: 9/27/96 Date Analyzed:10/03/96

Pressure Rec'd: 14.3 psia

Date Received: 9/30/96 Time Analyzed:03:32


Final Pressure: 28.6 psia Dilution Factor: 10.0

Lab File ID:C:\HPCHEM\1\DATA\OCTO2\2101023.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPB	7)	Q
127-18-4	Tetrachloroethene	550		D

U = Compound was undetected at the specified limit of quantitation.

The rovewing defines common symbols and appreviations used in reporting technical data:

N.D. TNTC	none detected Too Numerous To Count	BMQL MPN	Below Minimum Quantitation Level Most Procable Number
IŪ	International Units	CP Units	cobalt-chloroplatinate units
umhos/cm	micromhos om	NTU	nephelometric turbidity units
С	degrees Ce alus	F	degrees Fahrenheit
Cal	ret cartines	lb.	pound(s)
meq	m legging ents	kg	kilogram(s)
g	gramist	mg	milligram(s)
u g	microgramisi	Ī	liter(s)
ml	markteris)	ul	microliter(s)
m3	cubic meter(s)	ib > 5 um/ml	fibers greater than 5 microns in length per mi

- ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte shich can be reliably determined using this specific test.
- > greater than
- parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a dilluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J P U	Estimated value Presumptive evidence of a compound (TIC's only) Concentration difference between primary and confirmation columns >25% Compound was not detected	U W +	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
X,Y,Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We displain any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Analysis Report

Page: 1 of 2

LLI Sample No. AQ Collected: 9/27/96 2589995

Submitted: 9/30/96 Reported: 10/ 8/96

Discard: 10/ 8/96

104 Summa Canister LL LTEU-11-A1 Project: Claremont

Account No: 09379 Radian International PO BOX 13000

LIMIT OF

QUANTITATION UNITS

RTP

NC 27709

P.O. Rel.

AS RECEIVED

CAT NO.

5651

ANALYSIS NAME

RESULTS

TO-14 Volatile Organics (cont) 5652 5695

TO-14 Volatile Organics in Air

TO-14 Form 1

see form I see form I

See Page 2

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative Kay G. Hower at (717) 656-2300 21:31:38 D 0001 8 0 127845 535501 0.00 00072000 DISO00 320

anna iter Laboratories MEMBER
1423 New mail of Pike
19 4 10 10 10

an laster PA 11655-2435
11 656-2430 PAK 117-656-2681 Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The following defines common symbols, and abbleviations used in reporting technical data:

N.D.	nane detected	BMQL	Beicin Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Procable Number
IU	international Units	CP Units	cleart-chieroplatinate units
umhos/cm	micromnos icm	NTU	represometric turbidity units
С	degrees Celsius	F	degraes Fahrenheit 1
Cai	ret in cones	lb.	poundis
meq	milienulus eins	kg	Alogram(s)
g	gramis)	mg	ntilligram 3
ug	miorogramis)	Ī	terisi
ml	milliterisi	ul	microliter(s)
m3	cubic meterrs:	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (¡TIC's only)	W	Post digestion spike out of control limits
P	Concentration difference between primary and	•	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X.Y.Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY -In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of **a**ge

> VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:104

Lab Sample ID:2589995

Canister ID:SUMMA0128

Injection Volume: 50.0 cc Nominal Volume: 250 cc

Instrument ID: HP4508

Date Collected: 9/27/96

Date Analyzed: 10/03/96

Pressure Rec'd: 14.4 psia

Date Received: 9/30/96 Time Analyzed:05:12

Final Pressure: 28.8 psia

Dilution Factor: 10.0

Lab File ID:C:\HPCHEM\1\DATA\0CT02\2301025.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
127-18-4	Tetrachloroethene	400	D

U = Compound was undetected at the specified limit of quantitation.

The tollowing defines common symbols and appreviations used in reporting technical data:

N.D.	none detected	BMQL	Below Minimum Quantitation Level
TNTC	Tap Numerous To Count	MPN	Most Propable Number
iU	international Units	CP Units	cobalt-chloroplatinate units
umhos/cm	m-gramhas ram	NTU	nepherometric turbidity units
С	degrees Calsius	F	degrees Fahrenheit
Cal	districtiones	lb.	pound(s)
meq	Till equivalents	kg	kilogram/s-
g	gram(s)	mg	milligramisi
ug	microgram(s)	Ì	fiter(s)
ml	milliater(s)	ul	microliter(s)
m3	public meter(s)	ıfib > 5 um/ml	fibers greater than 5 microns in length per ml

- cess than The number folicywing the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous iquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Pry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J R P	Estimated value Presumptive evidence of a compound (*IC's only) Concentration difference between primary and confirmation columns >25% Compound was not detected	U W +	Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
X.Y.Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or micropiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the 'aboratory.

WARRANTY AND LIMITATION OF LIABILITY - in accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Page: 1 of 2

LLI Sample No. AQ 2589996

Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/8/96

Discard: 10/ 8/96

105 Summa Canister LL LTEU-11-A1 Project: Claremont

ANALYSIS NAME

NO.

Account No: 09379 Radian International PO BOX 13000

RTP

NC 27709

P.O. Rei.

AS RECEIVED

CAT

LIMIT OF
RESULTS QUANTITATION UNITS

5695 TO-14 Form 1 See Page 2

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative
Kay G. Hower at (717) 656-2300
21:31:56 D 0001 8 0 127845 535501
320 0.00 00072000 DIS000

and a ter Laboratories Life a NHA moral and Rive House Section 2015 House Participal (1985) Section Section Application A Section 1 Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The thickwing detines common symbols, and appreviations used in reporting technical data:

N.D.	non e detected	BMQL	Beicily Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Prodable Number
U;	International Units	CP Units	popaltion elepiatinate units
umhos/a m	mickernnes em	NTU	haphelometric turb dity units
С	degrees Cersius	F	gegrees Fahrenheit
Cai	den alones	lb.	36-17aks1
meq	the Harmon A. Harring	kg	k ogramis)
g	in during a	mg	muligramis)
ug	m omgramisi	1	, ter/si
m!	militerisi	ui	michiniteris
m3	subic meteris)	.fib > 5 um/ml	tipers greater than 5 microns in length per ml
			_

- iess than The number following the sign is the limit of quantitation, the smallest amount or analyte which can be reliably determined using this specific test.
- > greater than
- parts per million One ppmilis equivalent to one milligram per kilogram (mg kg), or one gram per million grams. For aqueous iliquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per belon

Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte weight basis

Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	บ	Compound was not detected
N	Presumptive evidence of a compound (TIC's only)	W	Post digestion spike out of control limits
Р	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sambling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test re-suits for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work re-unested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

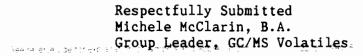
Sample No.:105 Lab Sample ID:2589996 Canister ID:SUMMA0147

Injection Volume: 500.0 cc Nominal Volume: 250 cc Instrument ID: HP4508

Date Collected: 9/27/96 Date Analyzed: 10/03/96

Pressure Rec'd: 14.4 psia

Date Received: 9/30/96 Time Analyzed:02:46 Final Pressure: 28.8 psia


Dilution Factor: 100.0

Lab File ID:C:\HPCHEM\1\DATA\OCTO2\2001022.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
127-18-4	Tetrachloroethene	7400	D

U = Compound was undetected at the specified limit of quantitation.

The tollowing defines common exmodistand appreciations used in reporting technical data:

N.D. TNTC	none defected Too Numerous To Count	BMQL MPN	Serow Minimum Quantitation Level Most Procacle Number
IU	international Units	CP Units	cobait-chloropiatinate units
umhos/cm	micromnas idm	NTU	nephelometric turbidity units
С	degrees Calsids	F	degrees Fahrenheit
Cal	16t 13 21 88	lb.	pound(s)
meq	 #\$\infty\$ #\$ for \$1\$ 	kg	kilogramisi
g	mar s	mg	milligramisi
ug	miorogram(s)	1	iter(s)
ml	and uter(s)	u!	microliter(s)
m3	Tuolo meteris:	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- ess than: The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million. One ppm/is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

 basis

U.S. EPA data qualifiers.

	Organic Qualifiers		Inorganic Qualifiers
A B C D	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC-MS Compound quantitated on a diluted sample	B E M N	Value is <crdl, but="" control="" due="" duplicate="" estimated="" injection="" interference="" limits<="" met="" not="" precision="" sample="" spike="" th="" to="" within="" ≥idl=""></crdl,>
Ē	Concentration exceeds the calibration range of the instrument	S	Method of standard additions (MSA) used for calculation
J	Estimated value	U	Compound was not detected
Ν	Presumptive evidence of a compound (ITIC's only)	W	Post digestion spike out of control limits
P U	Concentration difference between primary and confirmation columns >25% Compound was not detected	+	Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
X.Y.Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, clease contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms, and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Page: 1 of 2

LLI Sample No. AQ Collected: 9/27/96 2589997

Submitted: 9/30/96 Reported: 10/ 8/96 Discard: 10/ 8/96

106 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International

PO BOX 13000

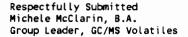
RTP

NC 27709

P.O. Rel.

AS RECEIVED

ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
TO-14 Volatile Organics in Air	see form I			
TO-14 Volatile Organics (cont)	see form I			
TO-14 Form 1			See Page	2
Methane	30.	10.	ppm (v)	
Ethane	< 2.	2.	ppm(v)	
Propane	6.	2.	ppm(v)	
	TO-14 Volatile Organics in Air TO-14 Volatile Organics (cont) TO-14 Form 1 Methane Ethane	TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) see form I TO-14 Form 1 Methane 30. Ethane < 2.	ANALYSIS NAME RESULTS QUANTITATION TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) see form I TO-14 Form 1 Methane 30. 10. Ethane < 2. 2.	ANALYSIS NAME RESULTS QUANTITATION UNITS TO-14 Volatile Organics in Air TO-14 Volatile Organics (cont) TO-14 Form 1 Methane See form I See form I See Page Methane 30. 10. ppm (v) Ethane 32. 2. ppm(v)


1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 Kay G. Hower 21:32:15 D 0001 8 0 127845 535501 320 70.00 00084800 DISO00

ancaster Laboratories MEMBER 2425 New Hy land Pike - 9.3 (4.1242) - 9.3 (4.1242) - 9.5 (4.1242) - 1.2

The following defines common symbols, and appreviations used in reporting technical data

N.D. TNTC IU	none detected Too Numerous To Count International Units	BMQL MPN CP Units	Below Minimum Chantitation Level Most Probable Number cobalt-chipropatinate units
umhos/cm	micromnos om	NTU	nechelometric turbiality units
С	regrees Celsius	F	degrees Fahrenneit
Cal	. et i salones	lb.	pound(s)
meq	mu pata via ents	kg	kiiogram(s)
g	gram(s)	mg	milligramisi
ug	microgramis)	1	Hter(s)
ml	millinterisi	ul	microliteris;
m3	subic meter(s)	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- Sess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- ppm parts per million One ppmilis equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry weight basis

 Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank. Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the call bration range of the instrument.	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
j	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (TIC's only)	W	Post digestion spike out of control limits
₽	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, nowever, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

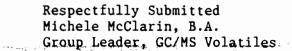
WARRANTY AND LIMITATION OF LIABILITY - in accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No purchase order or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

2 of

VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

Sample No.:106 Lab Sample ID:2589997 Canister ID:SUMMA0055 Injection Volume: 500.0 cc Nominal Volume: 250 cc

Instrument ID: HP4224


Date Collected: 9/27/96 Date Analyzed:10/03/96 Pressure Rec'd: 15.9 psia

Date Received: 9/30/96 Time Analyzed:20:26 Final Pressure: 31.8 psia Dilution Factor:

Lab File ID:C:\HPCHEM\1\DATA\OCTO3\1501007.D

CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	· Q	-;
127-18-4	Tetrachloroethene	38	D	-

U = Compound was undetected at the specified limit of quantitation.

The following defines immon symbols and aboveylations used in recording teannical data.

N.D. TNTC IU umhos/em	nune detected Too Numerous To Count In echational junits mischangs om	BMQL MPN CP Units NTU	Berow Minimum Quantitation Level (Most Probable Number cobart-phioroplatinate in ts haphelometric turb dity units
C	degrees Cersius	F	degrees Fahrenhait
Cal	nica innes	lb.	ocundis
meg	nicetu via enta	ka	kilogramis
g	(ram s	mg	milligramis-
ug	enprogram s)		liter(s)
ml	militeris;	ul	microliter(s)
m3	(uplo meteris)	fib > 5 um/ml	fibers greater than 5 microns in length per mi

- 'ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater man

ppm parts per million. One ppm is equivalent to one milligram per kilogram (mg kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

parts per billion

Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte special to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aidol-condensation product Analyte was also detected in the blank. Pesticide result confirmed by GC/MS. Compound quantitated on a dilluted sample Concentration exceeds the calibration range of the instrument.	B M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
J	Estimated value	U	Compound was not detected
N	Presumptive evidence of a compound (*IC's only)	W	Post digestion spike out of control limits
P	Concentration difference between primary and	*	Duplicate analysis not within control limits
	confirmation columns >25%	+	Correlation coefficient for MSA < 0.995
U	Compound was not detected		
X,Y,Z	Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of obliecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written appropriate of the apporatory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We displain any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the chent uses the test results. No purchase order or other order for work shall be accepted by the company with any sond tens that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract

Page: 1 of 2

2589998 LLI Sample No. AQ

Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/ 8/96

Discard: 10/ 8/96

107 Summa Canister LL LTEU-11-A1 Project: Claremont

Account No: 09379 Radian International PO BOX 13000

RTP

NC 27709

P.O. Rel.

AS RECEIVED

CAT			LIMIT OF		
NO.	ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
5651	TO-14 Volatile Organics in Air	see form I			
5652	TO-14 Volatile Organics (cont)	see form I			
5695	TO-14 Form 1			See Page	2
7056	Methane	30.	10.	ppm (v)	
9001	Ethane	< 2.	2.	ppm(v)	
9002	Propane	11.	2.	ppm(v)	

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 127845 535501 Kay G. Hower 21:32:35 D 0001 8 0 320 70.00 00084800 DIS000

Larva ter Laboratories MEMBER Satisfied and Re-TO 1 A 445 (35 3 56 94 175 (5-)425 (57 456/23)(37 6 4 717-656-258) Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

The following defines common symbols and appreviations used in reporting technical data:

N.D.	non e detected	BMQL	Below Minimum Quantitation Level
TNTC	Too Numerous To Count	MPN	Most Propable Number
łU	international Units	CP Units	cobalt-chloropiatinate units
umhos/cm	midramnos lam	NTU	nechelometric turbidity units
С	degrees Celsius	F	degrees Fahrenheit
Cal	tet capres	lb.	pound(s)
meq	m liegulua ents	kg	kilogramis
g	yram, si	mg	mlagramis:
ug	microgramis)	Ī	liter's)
mi	rmuter(s)	ul	microliter(s)
m3	cubic meteris:	ib > 5 um/ml	fibers greater than 5 microns in length per mi-

- ess than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.

ppb parts per billion

Dry weight basis

Р

Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

Inorganic Qualifiers

Duplicate analysis not within control limits Correlation coefficient for MSA <0.995

U.S. EPA data qualifiers:

Α В TIC is a possible aldol-condensation product Value is <CRDL, but ≥IDL В Ε Analyte was also detected in the blank Estimated due to interference С Pesticide result confirmed by GC/MS М Duplicate injection precision not met Compound quantitated on a diluted sample Ν Spike sample not within control limits Ε Concentration exceeds the calibration range of S Method of standard additions (MSA) used the instrument for calculation J Estimated value U Compound was not detected Ν Presumptive evidence of a compound (TIC's only) W Post digestion spike out of control limits

confirmation columns >25%
U Compound was not detected

Organic Qualifiers

Concentration difference between primary and

X.Y.Z Defined in case narrative

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our start. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We displain any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the alient uses the test results. No purchase order, or other order for work shall be accepted by the company with any conditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract.

Page 2 of

> VOLATILE ORGANICS IN AIR SUMMA CANISTER SAMPLE ANALYSIS DATA SHEET

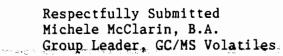
Sample No.:107

Lab Sample ID:2589998

Canister ID:SUMMA0005

Injection Volume: 500.0 cc Nominal Volume: 250 cc Instrument ID: HP4224

Date Collected: 9/27/96 Date Analyzed: 10/03/96 Pressure Rec'd: 15.0 psia Date Received: 9/30/96 Time Analyzed:21:12 Final Pressure: 30.0 psia


Dilution Factor:

Lab File ID:C:\HPCHEM\1\DATA\OCTO3\1601008.D

127-18-4 Tetrachloroethene 44 D	CAS RN	COMPOUND NAME	CONCENTRATION (PPBV)	Q
	127-18-4	Tetrachloroethene	44	D

U = Compound was undetected at the specified limit of quantitation.

The following defines common symbols and abbreviations used in reporting technical data:

N.D. TNTC IU	none detected Too Numerous To Count International Units	BMQL MPN	Below Minimum Quantitation Level Vost Probable Number
		CP Units	cobait-chloroplatinate units
umhos/cm	in promhes om	NTU	nephelometric turbialty units
С	degrees Ceisius	F	degrees Fahrenneit
Cal	diet belones	ib.	pound sy
meq	m lequivalents	kg	kilogramis;
g	gramis,	mg	milligramis)
u g	microgramis	1	liter(s)
ml	militteris)	ui	microliter(s)
m3	oudic meter(s)	fib > 5 um/ml	fibers greater than 5 microns in length per ml

- ess toan The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than
- parts per million. One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous iquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- ppb parts per billion
- Dry Results printed under this heading have been adjusted for moisture content. This increases the analyte concentration to approximate the value present in a similar sample without moisture.

U.S. EPA data qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of	B E M N S	Value is <crdl, (msa)="" additions="" but="" control="" due="" duplicate="" estimated="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used<="" within="" ≥idl=""></crdl,>
J N P	the instrument Estimated value Presumptive evidence of a compound (*IC's only) Concentration difference between primary and confirmation columns >25%	U W +	for calculation Compound was not detected Post digestion spike out of control limits Duplicate analysis not within control limits Correlation coefficient for MSA <0.995
U X,Y,Z	Compound was not detected Defined in case narrative		

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITATION OF LIABILITY - in accepting analytical work, we warrant the accuracy of test results for the sample as submitted. We disclaim any other warranties, express or implied, including a Warranty of Fitness for Particular Purpose and Warranty of Merchantability. We accept no responsibility for the purpose for which the client uses the test results. No burchase order or other order for work shall be accepted by the company with any sonditions that vary from our Standard Terms and Conditions. If Lancaster Laboratories performs work requested by the client, conditions at variance to our Standard Terms and Conditions are not part of the contract

Response Factor Report HP4508

Method : C:\HPCHEM\1\METHODS\ALL396.M

: TO14 SCAN METHOD Title

Last Update : Wed Oct 02 15:21:33 1996 Response via : Continuing Calibration

Calibration Files

=0801010.D 2 =0401005.D 3 =0601007.D

	Compound	1	2	3		Avg	%RSD
• `	Busmashlawanathana			IS	MD		
1)	Bromochloromethane	1 072	1 050		10	1 0	3 49
2)	Propens		1.050			1.0	3.48
3)	Dichlorodifluorometha					2.4	13.69
4)	Chlorodiflucromethane		1.858	1.720	• • •	1.8	4.52
5)	Freon 114		2.124	2.471		2.3	7.99
6)	Chloromethane		0.679	1.047-		0.8	22.26
7)	Vinyl Chloride		0.778	1.106		0.9	17.76
8)	1 70 -Butadiene		0.641	0.918		9 0.7	22.99
9)	Bromomethane			0.858	181 1 2 1	0.9	8.93
10)	Chloroethane		0.626	0.601	2 7 20 COBS	0.6	9.47
11)	Dichlorofluoromethane		3.427	3.091		3.3	5.39
12)	Bromoethene	0.830	0.876	0.808		0.8	4.13
13)	Trichlorofluoromethan		1.916	1.723		1.9	12.10
14)	Pentane	2.307	2.344	2.136	27.00	2.3	4.89
15)	Acrolein	0.322		0.378	13 49.	0.4	8.02
16)	1,1-Dichloroethene	1.874	1.527			1.6	17.48
17)	Freon 113	1.315	1.086	0.980	Prof.	1.1	15.18
18)	Acetone	1.460	1.437	1.436		1.4	0.95
19)	Methyl Iodide	3.052	3.203	2.895	-	3.0	5.06
20)	Carbon Disulfide	2,954	3.094	2.678	[]	2.9	7.28
21)	Acetonitrile	0.693	0.458	0.486		0.5	23.58
22)	3-Chloropropene	0.459	0.426	0.390	<u> </u>	20.4	8.05
23)	Methylene Chloride	0.977	0.850	0.754	Post-K" Fax Note 7 To Andrew (Netro) Contract Color Phone 8	851 194 61b	12.98
24)	Acrylonitrile	0.619	0.632	0.608	폴l 31:31	9 0.6	1.89
25)	trans-1,2-Dichloroeth	1.528	1.559	1.308	Post-II" Fax Note To Andrew [Connected in a	1.5	9.36
26)	Methyl t-Butyl Ether	2.364	2.417	2.291	#1 B/H	2.4	2.69
27)	Hexane	1.768	1.794	1.500	To Aln	1.7	9.64
28)	1,1-Dichloroethane	2.054	1.840	1.645	્રે હ કે ફે	ž 1.8	11.08
29)	Vinyl Acetate	2.419	2.582	2.460	<u> </u>	2.5	3.40
30)	cis-1,2-Dichloroethen		1.388	1.200		1.4	15.97
31)	2-Butanone	0.476	0.508	0.453		0.5	5.74
32)	Ethyl Acetate		0.266	0.244		0.3	5.60
33)	Methyl Acrylate		1.771	1.605		1.7	5.42
34)	Chloroform		1.855	1.664		1.9	11.66
35)	1,1,1-Trichloroethane					1.6	10.03
3 6)	Carbon Tetrachloride	1.908	1.662	1.471		1.7	13.03
37)	1,4-Difluorobenzene				TD		
3 B)	1,2-Dichloroethane		0.278			0.3	7.82
39)	Benzene		0.692			0.7	9.48
40)	Isooctane		1.484			1.4	6.46
41)	Heptan e	0.593	0.595	0.536		0.6	5.7 8
42)	Trichloroethene	0.380	0.343	0.327		0.3	7.84

Response Factor Report HP4508

Method : C:\HPCHEM\1\METHODS\ALL396.M

Title : TO14 SCAN METHOD

Last Update : Wed Oct 02 15 21:33 1996 Response via : Continuing Calibration

Calibration Files

1 =0801010.D 2 \(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1

<u>į.</u> 2 3 Avg &RSD Compound Ethyl Acrylate 0 621 0.681 0.702 1,2-Dichloropropane 0 329 0.296 0.298 Methyl Methacrylate 0 280 0.316 0.325 0.7 6.26 43) 0.3 6.02 44) 0.3 7.76 45) Dibromomethane 0.239 0.261 0.269 1,4-Dioxane 0.153 0.154 0.123 0.3 46) 5.95 0.1 0.5 47) 1,4-Dioxane 12.12 Bromodichloromethane 0.446 0.497 0.498 6.29 48) cis-1,3-Dichloroptope 0.438 0.405 0.425 0.4 49) 3.87 4-Methyl-2-Pentanone 0.692 0.755 0.756 0.7 50) 51) Chlorobenzene d5 -y----ISTD------52) Tolu**e**ne 0,918 0.683 0.792 0.8 14.73 9,792 0.677 0.711 0.7 531 Octane 8.14 trans-1,3-Dichloropro 0,399 0.322 0.382 54) 0.4 11.01 55) Ethyl Methacrylate 0,549 0.517 0.583 0.5 6.00 1,1,2-Trichloroethane 0,326 0.248 0.287 0.3 56) 13.49 Tetrachloroethene 0,536 0.401 0.429 0.5 57} 15.54 0,792 0.697 0.763 58) 2-Hexanone 0.8 6.49 59) Dibromochloromethane 0.381 0.363 0.410 0.4 6.17 1,2-Dibromoethane 0,462 0.365 0.422 Chlorobenzene 0,669 0.521 0.605 0.4 60) 11. 12.37 61) 0.6 1,1,1,2-Tetrachloroet 0.333 0.306 0.333 0.3 62) 4.85 Ethylbenzene 1.130 0.807 0.891 m/p-Xylene 0.886 0.630 0.690 63) 0.9 17.75 64) 0.7 m/p-Xylene 18.18 65) o-Xylene 0,882 0.635 0.709 0.7 17.09 65) 0,561 0.424 0.484 0.5 14.10 Styrene 0.438 0.427 0.484 Bromoform 67) 0.4 6.67 68) Cumene 1.011 0.930 1.028 1.0 5.30 69) 1,1,2,2-Tetrachlogoet 0,772 0.568 0.612 0.7 16.52 70) 1,2,3-Trichloropropan 0,154 0.140 0.151 0.1 5.11 71) 0,328 0.309 0.340 0.3 4.85 Bromobenzene 72) 4-Ethyltoluene 1.132 0.875 0.974 1.0 13.07 73) 1,3,5-Trimethylbenzen 0,920 0.676 0.765 0.8 15.71 0.5 74) Alpha Methyl Styrene 0.452 0.427 0.491 7.02 0.8 75) 1,2,4-Trimethylbehzen 0,940 0.704 0.787 14.79 76) 1,3-Dichlorobenzehe 0.663 0.505 0.571 0.6 13.65 1,4-Dichlorobenzehe 0.639 0.487 0.560 77) 0.6 13.56 0.5 78) Benzyl Chloride 0.580 0.462 0.553 11.66 791 1,2-Dichlorobenzehe 0,644 0.473 0.533 0.6 15.77 80) 0.4 Hexachloroethane 0,399 0.354 0.376 6.04 1,2,4-Trichlorobehzen 0,373 0.227 0.234 0.3 81) 29.65 0.3 82) Hexachlorobutadiehe 0.322 0.226 0.231 20.75

Vial: 4

Operator: GMM Inst : HP4508

Multiplr: 1.00

Quantitation Report

Data File: c:\hpchem\1\data\oct02\0401005.d

Acq On : 2 Oct 96 10:55 am Sample : VSTD50

Misc

Quant Time: Oct 2 11:31 1996

Method : C:\HPCHEM\1\METHODS\ALL396.M
Title : TO14 SCAN METHOD

Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane	15.63			10.00 PPB	
37) 1,4-Difluorobenzene	17.58				
51) Chlorobenzene d5	23.15	117	479016	10.00 PPB	0.00
System Monitoring Compounds			4.₹	*	Recovery
Target Compounds					Qvalue
2) Prepene	6.41	41	674987	50.13 PPB	97
 Dichlorodifluoromethane 	6.54	85	1509643		99
4) Chlorodifluoromethane	6.58	51	1194665		96
5) Freon 114	6.93	85	1365572	57.65 PPB	95
6) Chloromethane	7.11	50	436582	52.39 PPB	99
7) Vinyl Chloride	7.48 7.60	62	5002 8 7	52.68 PPB	100
8) 1,3-Butadiene	7.60	54	414359	49.94 PPB 54.37 PPB	98
9) Bromomethane	8.53	94	414359 570198 402347 1322269 588792	53.73 PPB	99 100
10) Chloroethane	8.84	64	1272760	31.41 PPB	99
11) Dichlorofluoromethane	9.42	67	1322203	53.80 PPB	99
12) Bromoethene	9.39	106	1232112	57.33 PPB	99
13) Trichlorofluoromethane	9.57 9.78	101 43	1228322	41.32 PPB	99
14) Pentane		56	213397	54.20 PPB	99
15) Acrolein	10.74	20	981930	54.11 PPB	97
16) 1,1-Dichloroethene	11.01		698632	53.81 PPB	100
17) Freon 113	10.99		850294		98
18) Acetone	11.12 11.42		1647780	42.35 PPB	98
19) Methyl Iodide		76	1840294		
20) Carbon Disulfide	11.61 11.86		273724		
21) Acetonitrile	11.94		274070		91
22) 3-Chloropropene	12.25	84			95
23) Methylene Chloride	12.25		408234		99
24) Acrylonitrile 25) trans-1,2-Dichloroethene			917409		97
	12.87				97
26) Methyl t-Butyl Ether 27) Hexane	13.48	57			95
28) 1,1-Dichloroethane	13.86	63	1123916		100
29) Vinyl Acetate	13.92	43	1519110	47.16 PPB	99
30) cis-1,2-Dichloroethene	15.12		847931		100
31) 2-Butanone	15.11	72	298801	47.93 PPB	83
32) Ethyl Acetate	15.19	70	157424	47.41 PPB	
33) Methyl Acrylate	15.29		1042127		99
34) Chloroform	15.76	83	1192567		99
35) 1,1,1-Trichloroethane	16.15				99
36) Carbon Tetrachloride	16.49	117	1015441	54.10 PPB	99
38) 1,2-Dichloroethane	16.93		637932	46.39 PPB	100
39) Benzene	16.90	78		44.90 PPB	100

Quantitation Report

Data File: c:\hpchem\1\data\cct02\0401005.d Vial: 4 Acq On : 2 Oct 96 10:55 am Operator: GMM Sample : VSTD50 Inst : HP4508 Misc Multiplr: 1.00

Quant Time: Oct 2 11:31 1996

Method : C:\HPCHEM\1\METHODS\ALL396.M

: TO14 SCAN METHOD Title

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
40)	Isooctane	16.97	57	3135046	43.25 PPB	99
41)		17.29	43	1304097	47.74 PPB	95
42)	Trichloroethene	18.12	130	787823	52.27 PPB	99
43)		18.22	55	1438-047	47.12 PPB	99
44)	1,2-Dichloropropahe	18.57	63	680428	50.90 PPB	99
45)	Methyl Methacrylate	18.67	69	667136	47.02 PPB	92
46)		18.82	174	548143	41.27 PPB	99
47)	1 -4-Dioxane	18.79	88	323387	47.80 PPB	98
48)	Bromodichloromethane	19.07	83	1056335	42.68 PPB	100
49)	cis-1,3-Dichloropropene	19.89	75	837074	44.03 PPB	98
50)	4-Methyl-2-Pentanone	20.12	43	1603341	47.19 PPB	97
52)	Toluene	20.53	91	1636647	44.27 PPB	100
53)	Octane	20.60	43	1491925	35.74 PPB	95
54)	trans-1,3-Dichloropropene	20.91	75	694000	40.02 PPB	97
5 5)	Ethyl Methacrylate	20.97	69	1132247	41.22 PPB	93
56)	1,1,2-Trichloroethane	21.28	97	565168	41.69 PPB	98
57)		21.58	166	961470	47.75 PPB	1
58)	2-Hexanone	21.66	43	1526944	42.72 PPB	
59)	Dibromochloromethane	22.07	127	796188	36.68 PPB	100
60)		22.32	107	873338	43.09 PPB	100
	Chlorobenzene	23.20	112	1247759	43.23 PPB	100
62)	1,1,1,2-Tetrachloroethane	23.33	131	695436	41.82 PPB	98
63)	• • •	23.35	91	1933728	43.11 PPB	99
64)	-	23.55	91	2942452	83.50 PPB	99
65)	o-Xylene	24.32	91	1519830	43.11 PPB	99
66)	Styrene	24.34	104	1015023	41.74 PPB	95
67)	Bromoform	24.78	173	950565	40.68 PPB	99
68)	Cumene	24.98	105	2037936	40.38 PPB	99
69)	1,1,2,2-Tetrachloroethane	25.55	83	1292065	38.99 PPB	100
70)	1,2,3-Trichloropropane	25.67	110	314697	40.13 PPB	91
71)	Bromobenzene	25.67	156	688231	39.61 PPB	100
72)		25.97	105	1989942	41.47 PPB	99
73)		26.07	105	1618692	43.02 PPB	97
74)	• • • • • • • • • • • • • • • • • • •	26.51	118	941123	39.64 PPB	99
75)	1,2,4-Trimethylbenzene	26.80	105	1601094	40.65 PPB	100
76)		27.43	146	1210543	42.37 PPB	99
77)	1,4-Dichlorobenzehe	27.5 9	146	1166455	41.36 PPB	98
	Benzyl Chloride	27.82	91	1106251	41.38 PPB	100
79)	- · -	28.33	146	1133512	41.97 PPB	98
80)	·	28.83	117	779244	39.72 PPB	98
81)	1,2,4-Trichlorobemzene	31.40	180	542974	37.21 PPB	99
82)	Hexachlorobutadiene	31.67	225	515044	39.83 PPB	100

Inst

Vial: 4

: HP4508

Operator: GMM

Multiplr: 1.00

Quantitation Report

Data File : c:\hpchem\1\data\oct02\0401005.d

Acq On : 2 Oct 96 10:55 am

Sample : VSTD50


Misc

Method

Quant Time: Oct 2 11:31 1996

: C:\HPCHEM\1\METHODS\ALL396.M

Title : TO14 SCAN METHOD

Quantitation Report

Data File : c:\hpchem\1\data\oct02\0601007.d Vial: 6

Acq On : 2 Oct 96 12:58 pm Operator: GMM Sample : VSTD100 Inst : HP4508 Misc ; Multiplr: 1.00

Quant Time: Oct 2 13:44 1996

Method : C:\HPCHEM\\\\METHODS\ALL396.M

: TO14 SCAN METHOD Title

Last Update : Wed Oct 02 16:51:58 1996 Response via : Single Level Calibration

Masponse via . Dingie Dever	.u.zzzaa.				
Internal Standards	R.T.	QIon	Response	Conc Units	Dev(Min)
1) Bromochloromethane	15.63	130	139294	10.00 PPB	0.00
37) 1,4-Difluorobenzene	17.59	114	469664	10.00 PPB	0.01
51) Chlorobenzene d5	23.16				
System Monitoring Compounds			** * **	76	Recovery
Target Compounds					Qvalue
2) Propene	6.42	41	1394156	95.61 PPB	98
 Dichlorodifluoromethane 	6.54	85	2952112	101.49 PPB	100
4) Chlorodifluoromethane	6.58	51	2395579		97
5) Freon 114	6.9 6	85	3441762		97
6) Chloromethane	7.13		1459053	161.67 PPB	100
7) Vinyl Chloride	7.5 1	62	1540124		100
8) 1,3-Butadiene	7.63	54	1285809	143.09 PPB	97
Bromomethane	8.54	94	1195607		100
10) Chloroethane	8.84		837688	103.29 PPB	100
11) Dichlorofluoromethane	9.42	67	2583670	56.66 PPB	1′
12) Bromoethene	9.39	106	1176688	99.28 PPB	
13) Trichlorofluoromethane	9.57	101	2399875	103.10 PPB	100
14) Pentane	9.78	43	2425151	75.31 PPB	99
15) Acrolein	10.72	56	490274	114.96 PPB	99
16) 1,1-Dichloroethene	11.01	61	1852106	94.23 PPB	99
17) Freon 113	10.98	103	1364983	97.06 PPB	100
18) Acetone	11.11	43	1840057	96.63 PPB	99
19) Methyl Iodide	11.42	142	3225496	76.53 PPB	99
20) Carbon Disulfide	11.61	76	3450047	83.04 PPB	99
21) Acetonitrile	11.86	41	629525	92.89 PPB 93.24 PPB 94.05 PPB	# 15
22) 3-Chloropropene	11.93	76	543751	93.24 PPB	93
23) Methylene Chloride	12.25		1050026	94.05 PPB	93
24) Acrylonitrile	12.83		851651	95.88 PPB	99
25) trans-1,2-Dichloroethene			1666956	80.16 PPB	100
26) Methyl t-Butyl Ether	12.86	73	2936268	94.11 PPB	97
27) Hexane	13.48	57	2006239	80.92 PPB	94
28) 1,1-Dichloroethane	13.86	63	2177031	82.43 PPB	99
29) Vinyl Acetate	13.93	43	3135433	89.87 PPB	98
30) cis-1,2-Dichloroethene	15.12	61	1587582	85.68 PPB	100
31) 2-Butanone	15.11	72	577376	85.52 PPB	87
32) Ethyl Acetate	15.21	70			# 100
33) Methyl Acrylate	15.31	55	2045827	89.13 PPB	98
34) Chloroform	15.76	83	2317187		99
35) 1,1,1-Trichloroethane	16.16	97	1954093		99
36) Carbon Tetrachloride	16.50	117			99
38) 1,2-Dichloroethane	16.94			92.60 PPB	10-
39) Benzene	16.90	78	3196488		_
		· -			

^{(#) =} qualifier out of range (m) = manual integration

Page 1

Vial: 6

Operator: GMM Inst : HP4508

Multiplr: 1.00

Quantitation Report

Data File : c:\hpchem\1\data\oct02\0601007.d

Acq On : 2 Oct 96 12:58 pm Sample : VSTD100

Misc

Quant Time: Oct 2 13:44 1996

Method : C:\HPCHEM\1\METHODS\ALL396.M

: TO14 SCAN METHOD Title

	Compound	R.T.	QIon	Response	Conc U	nit	Qv	alue
40)	Isooctane	16.97	57	5776276	77.91	PPB		99
41)	Heptane	17.30	43	2405110	86.08			92
42)	Trichloroethene	18.13	130	1533969	99.49	PPB		99
43)	Ethyl Acrylate	18.24	55	3034176	97.19			99
44)	1,2-Dichloropropane	18.58	63	1399101	102.32	PPB		99
45)	Methyl Methacrylate	18.68	69	1405201	96.82	PPB		93
46)	Dibromomethane	18.83	174	1154319	84.98	PPB		99
47)	1 /4- Dioxane	18.82	88	529623	76.54	PPB		96
48)	Bromodichloromethane	19.08	83	2165041	85.53	PPB		100
49)	cis-1,3-Dichloropropene	19.91	7 5	1797153	92.42	PPB		99
50)	4-Methyl-2-Pentanone	20.14	43	3283148	94.48	PPB		97
52)	Toluene	20.55	91	3477499	102.64	PPB	m	100
53)	Octane	20.62	43	2870557	75.03	PPB	m	93
54)	trans-1,3-Dichloropropene	20.92	75	150753 7	94.86	PPB	m	98
55)	Ethyl Methacrylate	20.99	69	2340178	92.97	PPB	ra	92
56)	1,1,2-Trichloroethane	21.29	97	1196255	96.30	_	m	99
57)	Tetrachloroethene	21.59	16 6	1885105	102.16	PPB	m	99
58)	2-Hexanone	21.69	43	3063109	93.51	-	m	97
59)	Dibromochloromethane	22.08	127	164850 6	82.87		m	100
60)	1,2-Dibromoethane	22.34	107	1851881	99.69		m	99
61)	Chlorobenzene	23.22	112	2653804	100.33		m	99
62)	1,1,1,2-Tetrachloroethane	23.34	131	1388765	91.12		m	99
63)	Ethylbenzene	23.36	91	3911068	95.14		m	98
64)	m/p-Xylene	23.57	91	5906246	182.88		m	99
65)	o-Xylene	24.34	91	3114363	96.39		m	99
66)	Styrene	24.36	104	2123444	95.28		m	96
67)	Bromoform	24.80	173	1974048	92.19		m	100
68)	Cumene	25.00	105	4129809	89.30		m	100
69)	1,1,2,2-Tetrachloroethane	25.57	83	2552085	84.04		m	99
70)	1,2,3-Trichloropropane	25.70	110	623382	86.73		m	88
71)	Bromobenzene	25.69	156	1389373	87.25		m	100
72)		25.99	105	4062162	92.36		m	99
73)	1,3,5-Trimethylbenzene	26.09	105	3356605	97.34		m,	98
74)	Alpha Methyl Styrene	26.53	118	1981749	91.09		m	99
75)	1,2,4-Trimethylbenzene	26.82	105	3281054	90.89		m	99
76)	1,3-Dichlorobenzene	27.45	146	2506622	95.74		m	99
77)	1,4-Dichlorobenzene	27.61	146	2460071	95.17		m	98
	Benzyl Chloride	27.85	91	2428014	99.09		m	99
79)	1,2-Dichlorobenzene	28.35	146	2338450	94.49		m	99
80)	Hexachloroethane	28.84	117	1519902	84.53		m	98
81)	1,2,4-Trichlorobenzene	31.39	180	1028878	76.93		m	99
82)	Hexachlorobutadiene	31.67	225	963409	81.29	FFB	m	100

Inst

Vial: 6

: HP4508

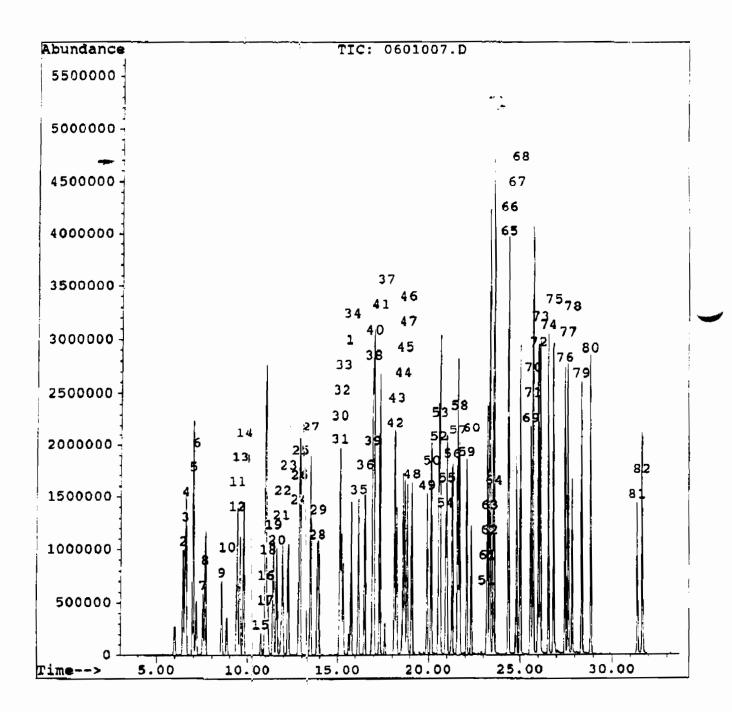
Operator: GMM

Multiplr: 1.00

Quantitation Report

Data File: c:\hpchem\1\data\oct02\0601007.d

Acq On : 2 Oct 96 12 58 pm


Sample : VSTD100

Misc

Quant Time: Oct 2 13:44 1996

Method : C:\HRCHEM\1\METHODS\ALL396.M

Title : TO14 SCAN METHOD

Vial: 8

Operator: GMM Inst : HP4508 Multiplr: 1.00

Quantitation Report

Data File : c:\hpchem\1\data\oct02\0801010.d

Acq On : 2 Oct 96 4:09 pm Sample : VSTD10 Misc :

Quant Time: Oct 2 16:46 1996

Method : c:\HPCHEM\1\METHODS\ALL396.M
Title : TO14 SCAN METHOD
Last Update : Wed Oct 02 16:51:58 1996 Response via : Single Level Calibration

Internal Standards	R.T.	QIon	Response	Conc Uni	its Dev(Min
1) Bromochloromethane	15.66			10.00 PF	
37) 1,4-Difluorobenzene			443293		
51) Chlorobenzene d5	23.16	117		10.00 PI	PB 0.00
System Monitoring Compounds			• √ =		%Recovery
Target Compounds					Qvalue
2) Propene	6.43	41	13 1 010	10.24 P	
 Dichlorodifluoromethane 	6.54	85	338617	13.27 PI	
4) Chlorodifluoromethane	6.58	51	228072	10.36 PI	
5) Freon 114	6.97	85	295377	13.12 PI	
6) Chloromethane	7.13	5 Q	98072	12.38 PI	
7) Vinyl Chloride	7.51	62	110776	12.27 PI	
8) 1,3-Butadiene	7.64	54	76025	9.64 PI	
9) Bromomethane	8.57	94	123781	12.42 P	
10) Chloroethane	8.88	64	87738		PB 99
11) Dichlorofluoromethane	9.47	67			
12) Bromoethene	9.43	106	106037	10.19 P	PB 100
13) Trichlorofluoromethane	9.61	101	267793	13.11 PH	PB 99
14) Pentane	9.83	43	229785	8.13 P	PB 99
15) Acrolein	10.79	56	36653	9.79 PI	PB 97
16) 1,1-Dichloroethene	11.05	61	229077	13.28 PF	PB 97
17) Freon 113	11.03	103			PB 98
18) Acetone	11.17	43	164228		
19) Methyl Iodide	11.47	142	298467	8.07 PI	PB 100
20) Carbon Disulfide	11.66	76	333986	9.16 P	PB 98
21) Acetonitrile	11.94	41	78827	13.25 PI	
22) 3-Chloropropene	11.99	76	56081	10.96 PF	
23) Methylene Chloride	12.29	84	119370	12.18 PH	
24) Acrylonitrile	12.88	53	76030	9.75 PI	
25) trans-1,2-Dichloroethene	12.94	61	170950	9.37 PI	
26) Methyl t-Butyl Ether	12.91	73	265859	9.71 PI	
27) Hexane	13.52	57	207490	9.54 PI	
28) 1,1-Dichloroethane	13.91	63	238538	10.29 PI	
29) Vinyl Acetate	13.96	43	270589		
30) cis-1,2-Dichloroethene	15.15		191466		
31) 2-Butanone	15.14	72	53280	8.99 P	
32) Ethyl Acetate	15.24		27010	8.56 PI	
33) Methyl Acrylate	15.33	55	181882	9.03 PI	
34) Chloroform	15.79	83	256594	12.31 PI	
35) 1,1,1-Trichloroethane	16.19	97	209780	12.02 PI	
36) Carbon Tetrachloride	16.52	117	221589	12.42 PI	
38) 1,2-Dichloroethane	16.96	62	140493	10.58 PI	
39) Benzene	16.93	78	356849	10.45 P	
			~~		

^{(#) =} qualifier out of range (m) = manual integration 0801010.d ALL396.M Wed Oct 02 16:55:36 1996 HP4508

Inst : HP4508 Multiplr: 1.00

Quantitation Report

Data File: c:\hpchem\1\data\oct02\0801010.d

Vial: 8 Operator: GMM Acq On : 2 Oct \$6 4:09 pm

: VSTD10 Sample

Misc Quant Time: Oct 2 16:46 1996

: c:\HPCHEM\1\METHODS\ALL396.M Method

: TO14 SCAN METHOD

	Compound	R.T.	QIon	Response	Conc Unit	Qvalue
40)	Isooctane	17.00	57	615650	8.80 PPB	98
	Heptane	17.32	43	250908	9.51 PPB	97
42)	Trichloroethene	18.15	130	168552	11.58 PPB	98
	Ethyl Acrylate	18.24	55	253440	8.60 PPB	# 91
44)	1,2-Dichloropropane	18.60	63	145940	11.31 PPB	99
45)	Methyl Methacrylate	18.70	69	114209	8.34 PPB	91
46)	Dibromomethane	18.84	174	97033	7.57 PPB	97
47)	1 ;4 -Dioxane	18.81	88	61914	9.48 PPB	99
48)	Bromodichloromethane	19.10	83	182690	7.65 PPB	99
49)	cis-1,3-Dichloropropene	19.92	75	174552	9.51 PPB	96
50)	4-Methyl-2-Pentanone	20.14	43	283677	8.65 PPB	99
52)	Toluene	20.55	91	351659	11.90 PPB	100
53)	Octane	20.63	43	279112	8.36 PPB	98
54)	trans-1,3-Dichloropropene	20.92	75	137602	9.92 PPB	96
55)	Ethyl Methacrylate	21.00	69	192523	8.77 PPB	9 5
56)	1,1,2-Trichloroethane	21.30	97	118551	10.94 PPB	99
57)	Tetrachloroethene	21.60	166	205160	12.74 PPB	,
58)	2-Hexanone	21.68	43	277541	9.71 PPB	
59)	Dibromochloromethane	22.09	127	133607	7.70 PPB	99
60)	1,2-Dibromoethane	22.34	107	176875	10.91 PPB	100
61)	Chlorobenzene	23.22	112	256060	11.10 PPB	99
62)	1,1,1,2-Tetrachloroethame	23.35	131	121056	9.10 PPB	99
63)	Ethylbenzene	23.36	91	432707	12.06 PPB	99
64)	m/p-Xylene	23.57	91	661375	23.47 PPB	100
65)	o-Xylene	24.34	91	337750	11.98 PPB	99
66)	Styrene	24.35	104	215058	11.06 PPB	95
67)	Bromoform	24.80	173	156168	8.36 PPB	99
68)	Cumene	25.00	105	354220	8.78 PPB	98
69)	1,1,2,2-Tetrachlorosthame	25.57	83	280941	10.60 PPB	99
•	1,2,3-Trichloropropane	25,69	110	55511	8.85 PPB	96
71)	Bromobenzene	25.69	156	116964	8.42 PPB	99
	4-Ethyltoluene	25.98	105	411913	10.74 PPB	99
	1,3,5-Trimethylbenzene	26.08	105	352385	11.71 PPB	94
74)	Alpha Methyl Styrene	26.53	118	159213	8.39 PPB	99
	1,2,4-Trimethylbenzene	26.81	105	341990	10.86 PPB	100
	1,3-Dichlorobenzeme	27.45	146	253947	11.12 PPB	98
77)	1,4-Dichlorobenzeme	27.60	146	244918	10.86 PPB	96
	Benzyl Chloride	27.84	91	222250	10.40 PPB	98
•	1,2-Dichlorobenzeme	28.34	146	246698	11.43 PPB	98
•	Hexachloroethane	28.84	117	140641	8.96 PPB	96
81)	1,2,4-Trichlorobenzene	31.40	180	142929	12.25 PPB	95
82)	Hexachlorobutadiene	31.67	225	117144	11.33 PPB	99

Inst

Vial: 8

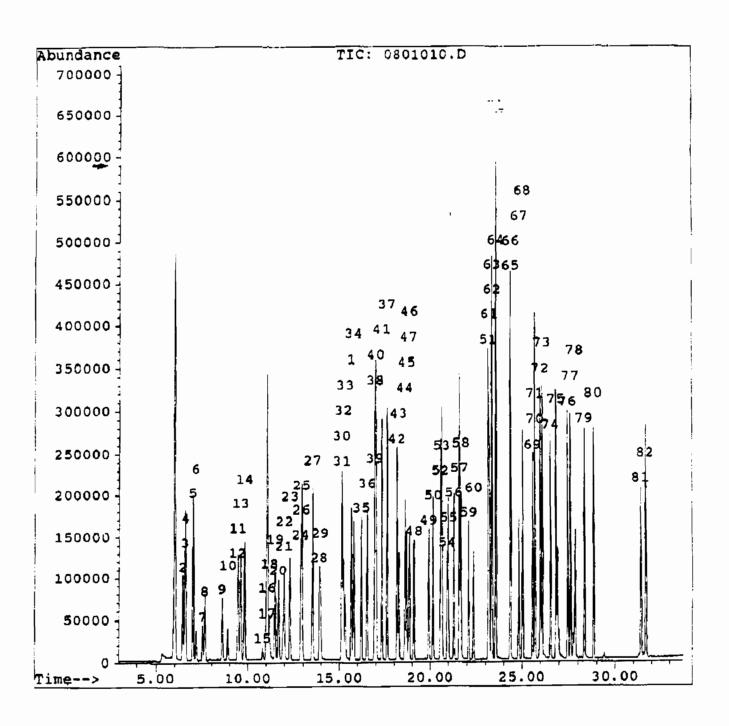
: HP4508

Operator: GMM

Multiplr: 1.00

Quantitation Report

.Data File : c:\hpchem\1\data\oct02\0801010.d


: 2 Oct 96 4:09 pm

Sample : VSTD10

Misc

Quant Time: Oct 2 16:46 1996

: c:\HPCHEM\1\METHODS\ALL396.M Method Title : TO14 SCAN METHOD

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\OCTO3\0201003.D

Vial: 2 Acq On : 3 Oct 96 9:11 am
Sample : VSTD50
Misc : Operator: GMM

Inst : HP4508 Multiplr: 1.00

Method : C:\HPCHEM\1\METHODS\ALL396.M Title : TO14 SCAN METHOD

Last Update : Wed Oct 02 16 51:58 1996 Response via : Single Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

	Compound	AvgRF	CCRF	*Dev	Area%	Dev(Min)
1	Bromochloromethane	1.000	1.000	0.0	104	0.00
2	Propene	1.041	1.140	-9.6	113	-0.02
3	Dichlorodifluoromethane	2.412	2.300	4.6	102	-0.02
4	Chlorodifluoromethane	1.814	1.911	-5.3	107	-0.03
5	Freon 114	2.337	2.743	-17.4	134	0.00
6	Chloromethane	0.843	1.104	-30.9#	169#	0.00
7	Vinyl Chloride	0.930	1.178	-26.7#		0.00
8	1,3-Butadiene	0.726	1.015	-39.7#		0.00
9	Bromomethane	0.919	0.909	1.1	107	-0.01
10	Chloroethane	0.648	0.634	2.2	105	-0.02
11	Dichlorofluoromethane	3.292	3.434	-4.3	104	-0.01
12	Bromoethene	. 0.838	0.891	-6.3	106	-0.02
13	Trichlorofluoromethane	1.943	1.827	6.0	99	0.00
14	Pentane	2,262	2.345	-3.7	104	0.00
15	Acrolein	0.353	0.351	0.4	102	-0.07
16	1,1-Dichloroethene	1.577	1.470	6.8	100	0.00
17	Freon 113	1.127	1.072	4.9	103	0.00
18	Acetone	1.444	1.375	4.8	99	-0.02
19	Methyl Iodide	3.050	3.175	-4.1	103	0.00
20	Carbon Disulfide	2.908	2.993	-2.9	101	-0.01
21	Acetonitrile	0.546	0.455	16.6	103	0.00
22	3-Chloropropene	0.425	0.421	0.9	103	0.00
23	Methylene Chloride	0.860	0.818	4.9	100	0.00
24	Acrylonitrile	0.620	0.599	3.4	98	-0.01
25	trans-1,2-Dichloroethene	1.465	1.487	-1.5	99	0.00
26	Methyl t-Butyl Ether	2.358	2.273	3.6	98	0.00
27	Hexane	1.688	1.730	-2.5	100	0.00
28	1,1-Dichloroethane	1.846	1.916	-3.7	108	0.00
29	Vinyl Acetate	2.487	2.398	3.6	97	0.00
30	cis-1,2-Dichloroethene	1.412	1.336	5.4	100	0.00
31	2-Butanone	0.479	0.469	2.0	96	0.00
32	Ethyl Acetate	0.250	0.248	0.8	97	0.00
33	Methyl Acrylate	1.667	1.559	6.5	91	0.00
34	Chloroform	1.872	1.833	2.1	103	0.00
35	1,1,1-Trichloroethane	1.563	1.515	3.0	100	0.00
36	Carbon Tetrachloride	1.681	1.585	5.7	99	0.00
37	1,4-Difluorobenzene	1.000	1.000	0.0	98	0.00
3 8	1,2-Dichloroethane	0.291	0.280	3.6	99	0.00
39	Benzene	0.726	0.733	-1.0	104	0.00
40	Isooctane	1.444	1.666	-15.4	110	0.00
41	Heptane	0.575	0.648	-12.8	107	0.00

Evaluate Continuing Calibration Report

Data File: C:\HPCHEM\1\DATA\OCTO3\0201003.D Vial: 2 Acq On : 3 Oct 96 9:11 am Sample : VSTD50 Operator: GMM Inst : HP4508 Multiplr: 1.00 Misc :

Method : C:\HPCHEM\1\METHODS\ALL396.M
Title : TO14 SCAN METHOD
Last Update : Wed Oct 02 16:51:58 1996 Response via : Single Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

	Compound	AvgRF	CCRF	*Dev	Area%	Dev(Min)
42	Trichloroethene	0.350	0.357	-2.0	102	0.00
43	Ethyl Acrylate	0.668	0.706		102	0.00
44	1,2-Dichloropropane	0.308	0.305		101	0.00
45	Methyl Methacrylate	0.307	0.325	- 5.7	101	0.00
46	Dibromomethane	0.256	0.290	-13.0	109	0.00
47	1, 4-Dioxane	0.143	0.169	-18.3	108	0.00
48	Bromodichloromethane	0.480	0.557	-15.9	110	0.01
49	cis-1,3-Dichloropropene	0.423	0.416	1.5	101	0.00
50	4-Methyl-2-Pentanone	0.734	0.796	-8.4	103	0.00
51	Chlorobenzena d5	1.000	1.000	0.0	82	0.00
52	Toluene	0.79B	0.847	-6.2	102	0.01
53	Octane	0.727	0.888	-22.2	108	0.01
54	trans-1,3-Dichloropropene	0.368	0.390	-6.1	99	0.00
55	Ethyl Methacrylate	0.550	0.638	-16.1	101	0.00
56	1,1,2-Trichloroethane	0.287	0.312	-8.7	103	0.00
57	Tetrachloroethene	0.455	0.493	-8.3	101	0.00
58	2-Hexanone	0.750	0.849	-13.2	100	0.02
59	Dibromochloromethane	0.385	0.436	-13.3	98	0.00
60	1,2-Dibromoethane	0.416	0.448	-7.7	101	0.02
61	Chlorobenzene	0.598	0.649	-8.6	102	0.00
62	1,1,1,2-Tetrachloroethane	0.324	0.370	-14.2	99	0.00
63	Ethylbenzene	0.943	1.011	-7.2	103	0.00
64	m/p-Xylene	0.735	0.787	-7.1	102	0.01
65	o-Xylene	0.742	0.793	-6.9	102	0.01
66	Styrene	0.490	0.535	-9.3	104	0.01
67	Bromoform	0.450	0.527	-17.3	101 100	0.01 0.01
68	Cumene	0.990	1.132	-14.4 -12.4	106	0.01
69	1,1,2,2-Tetrachloroethane	0.651	0.731	-12.4 -18.3	103	0.02
70	1,2,3-Trichloropropane	0.148	0.175 0.385	-18.0	102	0.01
71	Bromobenzene	0.326 0.994	1.094	-10.1	102	0.01
72	4-Ethyltoluene	0.787	0.862	-9.5	105	0.01
73	1,3,5-Trimethylbenzene	0.457	0.533	-16.7	102	0.01
74 75	Alpha Methyl Styrene	0.810	0.888	-9.6	103	0.01
75 76	1,2,4-Trimethylbenzene	0.580	0.641	-10.6	104	0.01
	1,3-Dichlorobenzene	0.562	0.626	-11.3	105	0.01
77 78	1,4-Dichlorobenzene Benzyl Chloride	0.532	0.594	-11.7	105	0.01
78 79	1,2-Dichlorobenzene	0.550	0.603	-9.7	104	0.01
80	Hexachloroethane	0.376	0.436	-15.8	101	0.00
	1,2,4-Trichlorobenzene	0.378	0.283	-1.9	102	0.00
81 82	Hexachlorobutadiene	0.270	0.277	-6.8	100	0.00
04	UEVACUITOT OPRICAGILE	V. Z V V				

Vial: 2

Quantitation Report

Data File: C:\HPCHEM\1\DATA\OCTO3\0201003.D
Acq On: 3 Oct 96 9:11 am

Operator: GMM

Sample : VSTD50 Inst : HP4508 Misc Multiplr: 1.00

Quant Time: Oct 3 9:57 1996

Method : C:\HPCHEM\1\METHODS\ALL396.M
Title : TO14 SCAN METHOD
Last Update : Wed Oct 02 16:51:58 1996 Response via : Single Level Calibration

Inte	ernal Standards	Ŕ.T.	QIon	Response	Conc Units	Dev(Min)
1)	Bromochloromethane	15.63	130	133642	10.00 PPB	
37)	1,4-Difluorobenzene			449530		
51)	Chlorobenzene d5	23.16	117		10.00 PPB	0.00
Syst	em Monitoring Compounds			.	*	Recovery
Targ	et Compounds					Qvalue
	Ргореле	6.39	41	762019	54.32 PPB	98
	Dichlorodifluoromethane	6.51	85	1537179		99
•	Chlorodifluoromethane	6.55	51	1276951		98
•	Freon 114	6.94	85	1832853	64.58 PPB	
•	Chloromethane	7.11	50	737423	81.27 PPB	100
	Vinyl Chloride	7.48	62	787079 681310 607662	75.70 PPB	99
	1,3-Butadiene	7.48 7.61 8.52	54	681310	79.51 PPB	97
	Bromomethane	8.52		607662	51.28 PPB	99
	Chloroethane	8.82	64	423836	50.69 PPB	99
	Dichlorofluoromethane	9.41	67	1376703	30.06 PPB	C
	Bromoethene	9.37	106	622296	53.14 PPB	1
13)	Trichlorofluoromethane	9.56	101	1220533	47.66 PPB	100
14)	Pentane	9.78	43			99
15)	Acrolein	10.72	5 6	218262	45.77 PPB	100
16)	1,1-Dichloroethene	11.00	61	982146	48.13 PPB	99
17)	Freon 113	10.98	103	716326	49.34 PPB	99
18)	Acetone	11.11	43	844990	43.99 PPB	98
19)	Methyl Iodide	11.42	142	1697305	39.65 PPB	99
	Carbon Disulfide	11.60	76	1849929	44.74 PPB	99
21)	Acetonitrile	11.86	41	282699	46.22 PPB	m 30
22)	3-Chloropropene	11.93	76	281631	49.44 PPB	92
23)	Methylene Chloride	12.25	84	546892	48.12 PPB	95
24)	Acrylonitrile	12.83	53	401982	47.62 PPB	96
25)	trans-1,2-Dichlorosthene	12.90	61	909249	43.64 PPB	98
26)	Methyl t-Butyl Ether	12.86	73	1397208	43.25 PPB	97
27)	Hexane	13,48	57		46.27 PPB	95
28)	1,1-Dichloroethane	13.86	63	1215978	49.46 PPB	100
29)	Vinyl Acetate	13.92	43	1466303	42.50 PPB	99
	cis-1,2-Dichloroethene	15.12	61	848402	45.74 PPB	99
	2-Butanone	15.11	72	286977	42.28 PPB	87
	Ethyl Acetate	15.19	70	152497	42.88 PPB	# 100
	Methyl Acrylate	15.30	55	953463	40.28 PPB	99
	Chloroform	15.76	83	1224558	49.41 PPB	99
	1,1,1-Trichloroethane	16.16	97	1012651	48.27 PPB	99
•	Carbon Tetrachloride	16.49	117	1006297	45.30 PPB	99
	1,2-Dichloroethane	16.94	62	629549	50.40 PPB	95
•	Benzene	16.91	78	1648222	52.99 PPB	1(

^{(#) =} qualifier out of range (m) = manual integration

Vial: 2

Operator: GMM Inst : HP4508

Multiplr: 1.00

Quantitation Report

Data File : c:\HPCHEM\1\DATA\OCTO3\0201003.D

Acq On : 3 Oct 96 9:11 am
Sample : VSTD50

Misc Quant Time: Oct 3 9:57 1996

Method : C:\HPCHEM\1\METHODS\ALL396.M
Title : TO14 SCAN METHOD
Last Update : Wed Oct 02 16:51:58 1996 Response via : Single Level Calibration

40) Isooctane 16.97 57 3446035 51.65 PPB 41) Heptane 17.30 43 1390612 52.01 PPB 42) Trichloroethene 18.13 130 802318 52.01 PPB 43) Ethyl Acrylate 18.23 55 1460704 47.73 PPB	95 99 100 98 94 99
41) Heptane 17.30 43 1390612 52.01 PPB 42) Trichloroethene 18.13 130 802318 52.01 PPB	95 99 100 98 94 99
42) Trichloroethene 18.13 130 802318 52.01 PPB	100 98 94 99
	98 94 99
	94 99
44) 1,2-Dichloropropane 18.58 63 686078 51.50 PPB	99
45) Methyl Methacrylate 18.68 69 671153 47.27 PPB	
46) Dibromomethane 18.83 174 595775 50.79 PPB	
47) 1-4-Dioxane 18.79 88 348505 50.36 PPB	97
48) Bromodichloromethane 19.08 83 1157763 51.78 PPB	100
49) cis-1,3-Dichloropropene 19.90 75 841975 46.23 PPB	98
50) 4-Methyl-2-Pentanone 20.13 43 1654433 48.75 PPB	98
52) Toluene 20.55 91 1663647 61.99 PPB	99
53) Octane 20.62 43 1604292 60.33 PPB	95
54) trans-1,3-Dichloropropene 20.92 75 689032 54.49 PPB	97
55) Ethyl Methacrylate 20.98 69 1146720 56.52 PPB	93
56) 1,1,2-Trichloroethane 21.29 97 582025 59.66 PPB	99
57) Tetrachloroethene 21.59 166 968894 61.46 PPB	100
58) 2-Hexanone 21.68 43 1525850 55.76 PPB	98
59) Dibromochloromethane 22.08 127 783850 54.94 PPB	100
60) 1,2-Dibromoethane 22.33 107 879636 61.43 PPB	100
61) Chlorobenzene 23.21 112 1275207 62.33 PPB	99
62) 1,1,1,2-Tetrachloroethane 23.34 131 689730 57.46 PPB	99
63) Ethylbenzene 23.36 91 1984292 62.58 PPB	99
64) m/p-Xylene 23.56 91 3013769 121.80 PPB	99
65) o-Xylene 24.33 91 1557048 62.48 PPB	99
66) Styrene 24.35 104 1050632 63.13 PPB	96
67) Bromoform 24.79 173 963253 57.47 PPB	99
68) Cumene 24.99 105 2034100 55.70 PPB	99
69) 1,1,2,2-Tetrachloroethane 25.56 83 1363739 61.15 PPB	100
70) 1,2,3-Trichloropropane 25.69 110 323920 59.01 PPB	91
71) Bromobenzene 25.68 156 702497 57.89 PPB	
72) 4-Ethyltoluene 25.98 105 2040589 59.41 PPB	
73) 1,3,5-Trimethylbenzene 26.08 105 1692263 63.76 PPB	
74) Alpha Methyl Styrene 26.52 118 962238 57.37 PPB	
75) 1,2,4-Trimethylbenzene 26.81 105 1656275 59.93 PPB	
76) 1,3-Dichlorobenzene 27.44 146 1259573 63.46 PPB	
77) 1,4-Dichlorobenzene 27.60 146 1229149 64.26 PPB	
78) Benzyl Chloride 27.84 91 1166578 64.31 PPB	
79) 1,2-Dichlorobenzene 28.34 146 1184425 63.73 PPB	
80) Hexachloroethane 28.83 117 787677 56.71 PPB	
81) 1,2,4-Trichlorobenzene 31.39 180 556521 62.51 PPB	
82) Hexachlorobutadiene 31.66 225 517588 58.22 PPB	100

^{(#) =} qualifier out of range (m) = manual integration 0201003.D ALL396.M Thu Oct 03 10:09:22 1996 HP450B Page 2

Inst

Vial: 2

: HP4508

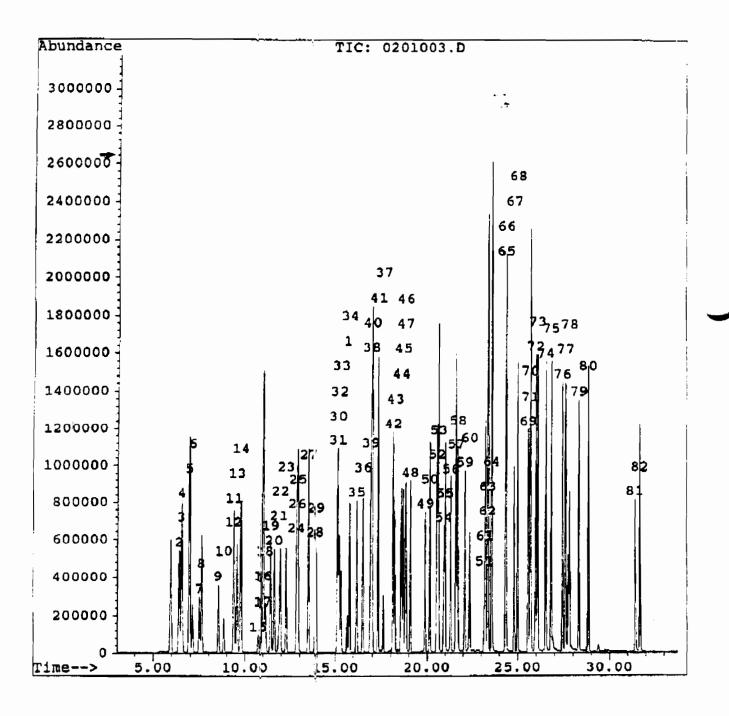
Operator: GMM

Multiplr: 1.00

Quantitation Report

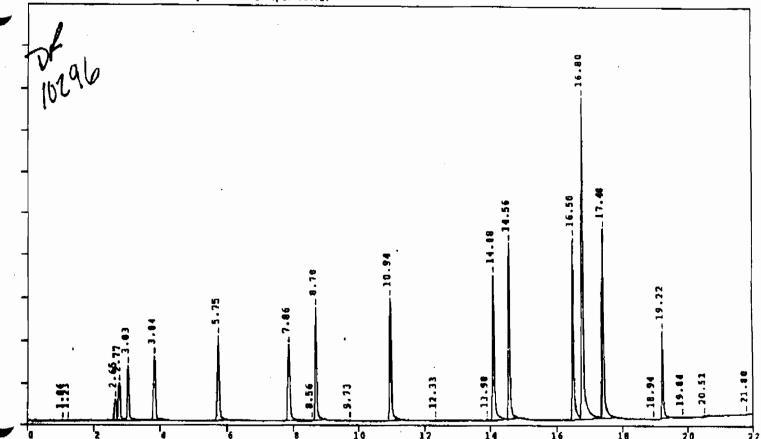
Data File : c:\HPCHEM\1\DATA\OCT03\0201003.D

Acq On : 3 Oct 96 9:11 am


Sample : VSTD50

Misc

Quant Time: Oct 3 9:57 1996


Method : C:\HPCHEM\1\METHODS\ALL396.M

Title : TO14 SCAN METHOD

File=C:\CP\DATAL\96275.01R Date printed=10-01-1996 Time= 06:47:20 Sample Mame=VSTD010

0.0 to 22.0 min. Low Y=-0.098 High Y=11.23 mu Span=11.328

Lancaster Labs Inc. Analysis Data Sheet DIR Analysis:

Sample No:

Lab Sample: VSTD010

Date Analyzed: Oct 1, 1996 06:47:01

Nominal Vol: 100 uL Instr. ID: A58309--FID

Lab File ID: C:\CP\DATA1\96275.01R

Calibration File: c:\cp\data1\FIDT.CAL

Calibration Version: 44 09/30/96 06:45:54

OCT 22 '96 11:00 TO 9194611381

FROM Lancaster Labs.

T-193 P.18

DIR Analysis:

Sample No:

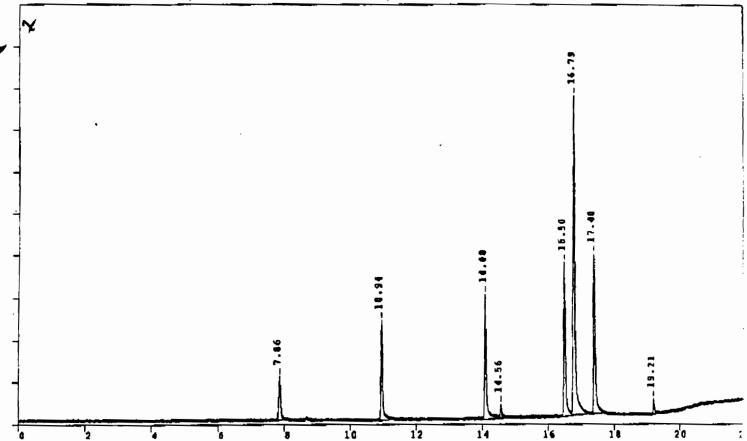
Lab Sample: VSTD010

Date Analyzed: Oct 1, 1996 06:47:01

Nominal Vol: 100 uL Instr. ID: A58309--FID

Lab File ID: C:\CP\DATA:\96275.01R

Calibration File: c:\cp\daga1\FIDT.CAL


Calibration Version: 44 09/30/96 06:45:54

Ret Time	Peak		Amount
(min)	Area	Peak Namu	PPM
1.064	64	, , , , , , , , , , , , , , , , , , ,	0.0000
1.230	87	•	0.0000
2.649	2535	Methane	11.6422
2.773	4494	Ethane	11.1526
3.034	6376	Propane	11.0531
3.841	7952	Butane	10.5817
5.746	9835	Peritane	10.2832
7.864	9796	Methyl t-Butyl Ether	11.1086
8.565	51		0.0000
8.704	11438	Hexane	10.2085
9.727	62		0.0000
10.945	11662	Berzene	10.6874
12.329	71		0.0000
13.903	167		0.0000
14.084	14038	Toluene	10.8699
14.560	15463	Octane	10.5359
16.498	17099	Ethylbenzene	11.1949
16.795		m/p-xylere	11.4975
17.403	18546	o-Xylene	11.3817
18.937	40		0.0000
19.223	8037	Decane	4.4397
19.837	33		0.0000
20.512	117		0.0000
21.798	171		0.0000
Total Area:	174881.2		

File-C:\CP\DATA1\96275B.01R Date printed=10-01-1996 Time= 06:49:21

Sample Name=VSTD010

0.0 to 22.0 min. Low Y=-0.748 High Y=72.363 mv Span=73.111

Lancaster Labs Inc. Analysis Data Sheet DIR Analysis:

Sample No:

Lab Sample: VSTD010

Date Analyzed: Oct 1, 1996 06:47:02

Nominal Vol: 100 uL Instr. ID: A58309--PID

Lab File ID: C:\CP\DATA1\96275B.01R

Calibration File: c:\cp\data1\PIDT.CAL

Calibration Version: 53 09/30/96 06:45:54

Ret Time	Peak		Amount
(min)	Area	Peak Name	
7.865	31986	Methyl t-Butyl Ether	8.9966
10.942	65327	Benzene	10.5935
14.081	81589	Toluene	11,0440
14.561	9661		0.0000
16,496	9575 7	Ethylbenzene	11.4742
16.792	235574	m/p-Xylene	23.5559
17.400	99958	o-Xylene	10.8956
19.215	7999		0.0000

Total Area: 627850.9

Continuing Calibration Report

Calib File (FID): FIDT44.CAL Ver#: 44 Date: 09-26-1996

(PID): PIDT53.CAL Ver#: 53 Date: 09-27-1996

CC Data file: C:\CP\DATA\\9627\\$.01\Z Date: 10/ 1/96 Time: 06:47

C:\CP\DATA1\9627\$B.01Z Date: 10/ 1/96 Time: 06:47 }

Compound	AVGRF	CCRF	%Diff	Qual
Methane	235.47	250.99	6.6%	
Ethane	420.32	432.12	2.8%	
Propane	577.47	637.60	10.4%	
Butane	771.09	795.20	3.1%	
Pentane	962.72	954.85	-0.8%	
Hexane	1084.07	1121.37	3.4%	
Octane	1393.37	1486.83	6.7%	
Decane	1933.33	2575.96	33.2%	#
Benzene	5989.63	6342.43	5.9%	
Toluene	7474.20	7921.26	6.0%	
Ethylbenzene	8504.67	9387.94	10.4%	
m/p-Xylene	10235.34	11325.67	10.7%	
o-Xylene	9406.30		1.2%	
Methyl t-Butyl Ether	900.74	981.56	9.0%	

DR 10296

RADIAM AMALYTICAL SERVICES

FPAS REPORT

TABLE OF CONTRETS

Client DEI Clairmont Client Code V DEI CM Facility Clairmont

Certified Bolinal Date

		Pag	Pages
Report Form	Analytical Batch ID	From	To
Work Order Summary		1	ч
Flag Definitions		2	7
Protocol Summary for AMBIENT VOC-GC/MD		٣	۳
Regults Summary		4	4
Initial Calibration		2	80
Analysis Batch Summary	VOC261003173401	6	6
Results		10	13
Laboratory Blank Information		14	14
Laboratory Control Samples		15	15
Calibration Verification		16	16
Sample Duplicates		17	17
Comments/Narrative		18	18
Protocol Summary for SOURCE VOC - GC/MD		19	19
Results Summary		20	20
Initial Calibration		21	23
Analysis Batch Summary	VOF1_61007113501	24	24
Results		25	28
Laboratory Blank Information		29	29
Calibration Verification		30	30
Sample Duplicates		31	31
Comments/Narrative		32	32
Protocol Summary for SOURCE VOC - GC/MD		33	33
Results Summary		34	35
Initial Calibration		36	36
Analysis Batch Summary	VOB261007083501	37	37
Results		38	41
Laboratory Blank Information		42	42
Laboratory Control Samples		43	43
Calibration Verification		44	4
Sample Duplicates		45	45

10/17/96 16:25:51 Previously Reported on 10/10/96.

RADIAH AHALYTICAL SERVICES

FPAS REPORT

Previously Reported on 10/10/96.

10/17/96 16:25:51

TABLE OF COMTEMIS (Cont'd)

Client DEI Clairmont

Facility Clairmont

Client Code V DEI CM

		Pa	Pages
Report Form	Analytical Batch ID	From	To
Analysis Batch Summary	VOB261008114701	46	46
Results		47	20
Laboratory Blank Information		51	51
Laboratory Control Samples		52	52
Calibration Verification	·	55	.53
Sample Duplicates		54	54
Comments/Narrative		55	55
		· 	

10/17/96 16:25:51

Report Radian Corporation To 8501 Mo-Pac Blvd. Austin, TX 78720

Attention Andy Weber

WORK ORDER SUMMARY

Client Code V DEI CM

Client DEI Clairmont Facility Clairmont

Work Order # 9610075

RCN 650-233-02-01

Work ID Equipment & VOC Samp

RAS # 61001ALAB SDG # NA

Case # NA

Prepared Radian Analytical Services By 14046 Summit Dr., Bldg. B

New York ELAP ID #: 10915

CSC LABENDELE

Austin, TX 78720-1088 P. O. Box 201088

Project Sample ID/ Description	Lab Sample ID	Test Code(s)	Method Desciption
CL LTEV-11-AI 094	01A	ADHRAACM	AMBIENT VOC-GC/MD
		SDFRAACM	SOURCE VOC - GC/MD
	018	ADHRAACM	AMBIENT VOC-GC/MD
		SDFRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 095	02 A	ADHRAACM	AMBIENT VOC-GC/MD
		SDFRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 096	03 A	ADHRAACM	AMBIENT VOC-GC/MD
		SDFRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 091	04A	SDHRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 092	05A	SDHRAACM	SOURCE VOC - GC/MD
	05B	SDHRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 093	06A	SDHRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 097	07 A	SDHRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 098	08 A	SDHRAACM	SOURCE VOC - GC/MD
	088	SDHRAACM	SOURCE VOC - GC/MD
CL LTEV-11-AI 099	09A	SDHRAACM	SOURCE VOC - GC/MD

PLAG DRFIHITIONS

Flag	Definition
v DL	Result less than stated Detection Limit and greater than or equal to zero.
NA	Analyte concentration not available for this analysis.
NC	RPD and/or * Recovery not calculated. See Narrative for explanation.
	Not detected. No instrument response for analyte or result less than zero.
N.	Not reported. Result greater than or equal to stated Detection Limit and less than specified Reporting Limit.
NS	Analyte not spiked.
Ø	Analyte detected in method blank at concentration greater than the Reporting Limit (and greater than zero).
ű	Confirming data obtained waing served in column or isons.
Œ	Analyte concentration exceeded calibration range.
124	Interference or coelution suspected. See Narrative for explanation.
I	Presence of analyte previously confirmed by historical data.
· ·	Analyte identification suspect. See Narrative for explanation.
ט	Result is less than stated Detection Limit but greater than or equal to specified Reporting Limit.
×	Peak did not meet method identification criteria. Analyte not detected on other GC column.
Σ	Result modified from previous Report. See Narrative for explanation.
Δ.	Analyte not confirmed. Results from primary and secondary GC columns differ by greater than a factor of 3.
a	QC result does not meet tolerance in Protocol Specification.
œ	Result reported elsewhere.
S	Analyte concentration obtained using Method of Standard Additions (MSA).
H	Second column confirmational analysis not performed.
×	See Narrative for explanation.
¥	See Narrative for explanation.
2	See Narrative for explanation.

10/17/96 16:25:51

AMALYTICAL PROTOCOL SUMMARY

Work Order # 9610075

Page 3

Client DEI Clairmont

Specification # ADHR

Facility Clairmont

Client Code V DEI CM

Method AMBIENT VOC-GC/MD

Project Sample ID/Description	Lab Sample ID	Test Code(s)	Extraction/Digestion Batch #	Analysis Batch #
CL LTEV-11-AI 094	9610075-01A	ADHRAACM	N.	VOC261003173401
CL LIEV-11-AI 094	9610075-01B	ADHRAACM	NA	VOC261003173401
CL LTEV-11-AI 095	9610075-02A	ADHRAACM	NA	VOC261003173401
CL LTEV-11-AI 096	9610075-03A	ADHRAACM	NA	VOC261003173401

Page 4

10/17/96 16:25:51

Method Ambient VOC - GC/MD ELCD

Test Code ADHRAACM

									_
Project Sample ID:	CL LTEV-11-AI		CL LTEV-11-AI	1-AI	CL LTEV-11-AI	AI	CL LTEV-11-AI	-AI	
	160		094		560		960		
Lab ID:	9610075-01A		9610075-01B	0118	9610075-02A	12A	9610075-03A	3 A	
File ID:	L100306		L100307		L100308		L100309		
Date Collected:	09/56/96		09/56/96	96	09/56/96	90	09/56/96	9	-
Date Prepared:									
Date Analyzed:	10/04/96 00:19:00	00:6	10/04/96 01:20:00	1:20:00	10/04/96 09:33:00	33:00	10/04/96 10:34:00	:34:00	
Dilution Factor:	.3819		.3819		.3137		.3249		
Matrix:	Air		Air		Air		Air		_
Units:	Λqdd		Λqdd		Λqdd		Λqdd		
Report as:	received		received	P	received	ņ	received	ā	
Se Lumin.									
Analyte	Conc.	DI	Conc.	DE	Conc.	10	Conc.	DF	
Tetrachloroethene	11.2	0.0812	11.2	0.0812	51.3	0.0988	16.7	0 0954	

10/17/96 16:25:51

Method AMBIENT VOC-GC/MD Test Code ADHRAASS

Sol'n #

CALIBRATION INITIAL

Initial Calibration # C2960606010000

Calibration Date 06/06/96 01:00:00

Reviewer JHC Analyst KRW

Instrument C2

Work Order # 9610075

Page 5

	Response Area Counts	Response Area Counts	Response Area Counts	Response Area Counts	Response	Response	Response			
Analytes	Reference Conc. ppbV	Reference Conc. ppbV	Reference Conc.	Reference Conc. ppbV	Reference Conc.	Reference Conc.	Reference Conc.	R	* RSD	Correlation
Dichlorodifluoromethane	38351 0.156000	81110 0.313000	203873	375721 1.566000				0.00000398	4.02	0.999
Chlorodifluoromethane	117561	235686 2.335200	556852 5.83800	1142278 11.67600				0.0000101	2.68	1.000
Chloromethane/Halocarbon 114	48939 0.311064	116471 0.624122	294342 1.561302	598393 3.122604				0.00000556	9.61	1.000
Vinyl chloride	28472 0.313000	85583 0.783000	182756 1.566000					0.00000957	13.2	1.000
Bromomethane	23067 0.311435	69140 0.779085	147643 1.558170					0.0000118	13.1	1.000
Chloroethane	25958 0.311122	80091 0.778302	170989					0.0000103	14.8	1.000
Vinyl bromide	99955 1.167600	209328 2.335200	597899 5.83800	1150071				0.0000107	8.27	666.0
Trichlorofluoromethane	97897 0.313000	268084 0.783000	548192 1.566000					0.00000299	6.05	1.000
Dichlorofluoromethane	257723 1.167600	488741 2.335200	1233003 5.83800	2438102 11.67600				0.00000471	2.56	1.000
1,1-Dichloroethene	41805	141086 0.783000	284586 1.566000					0.0000618	18.3	666.0

CALIBRATION Cont'd IRITIAL

Work Order # 9610075

Page 6

Initial Calibration # C2960606010000

Method AMBIENT VOC-GC/MD Test Code ADHRAASS

Sol'n #

10/17/96 16:25:51

Calibration Date 06/06/96 01:00:00

Instrument C2 Reviewer JHC Analyst KRW

	Response Area Counts	Response Area Counts	Response Area Counts	Response Area Counts	Response	Response	Response			
Analytes	Reference Conc. ppbV	Reference Conc. ppbV	Reference Conc.	Reference Conc.	Reference Conc.	Reference Conc.	Reference Conc.	&	* RSD	Correlation
Methylene chloride	49419	153197	296623 1.566000					0.00000557	11.9	0.999
Halocarbon 113	33336 0.151164	86516 0.303297	246615 0.758727	496690 1.517454				0.00000354	19.6	1.000
trans-1,2-Dichloroethene	27731 0.153504	47912 0.307992	152645	300832	·	:	-:	0.00000553	11.5	666.0
1,1-Dichloroethane	40590 0.313000	133289 0.783000	270896 1.566000	,				0.00000646	16.9	1.000
Chloroprene	19048	39598 0.300167	91155 0.750897	1.501794				0.00000800	4.33	1.000
cis-1,2-Dichloroethene	53157 0.313000	151241	285603 1.566000					0.00000552	6.47	0.998
Bromochloromethane	49155 0.328650	142238 0.822150	283291 1.644300					0.00000609	8.48	1.000
Chloroform	30228 0.157560	82901 0.316130	226872 0.790830	448131 1.581660				0.00000401	20.3	1.000
1,2-Dichloroethane	42939 0.155688	91791 0.312374	167646 0.781434	336136 1.562868				0.00000408	16.3	866.0
1,1,1-Trichloroethane	33832 0.156000	94099 0.313000	258138 0.783000	511208				0.00000351	21.3	1.000

10/17/96 16:25:51

Method AMBIENT VOC-GC/MD Test Code ADHRAASS

Sol'n #

Cont.d CALIBRATION INITIAL

Initial Calibration # C2960606010000

Calibration Date <u>06/06/96 01:00:00</u>

Instrument C2

Work Order # 9610075

Page 7

Reviewer JHC Analyst KRW

	Response Area Counts	Response Area Counts	Response Area Counts	Response Area Counts	Response	Response	Response			
Analytes	Reference Conc. ppbV	Reference Conc.	Reference Conc. ppbV	Reference Conc.	Reference Conc.	Reference Conc.	Reference Conc.	R	* RSD	Correlation
Carbon tetrachloride	42651 0.154128	111706	287496 0.773604	575095 1.547208				0.00000294	15.3	1.000
1,2-Dichloropropane	39740 0.156000	81069 0.313000	167628 0.783000	330295 1.566000				0.00000430	11.0	666.0
Bromodichloromethane	39263 0.163800	99274 0.328650	239021 0.822150	465179				0.00000361	10.6	666.0
Trichloroethene	73722 0.309870	223594 0.775170	455527 1.550340					0.0000369	12.0	1.000
cis-1,3-Dichloropropene	24469	58761 0.431940	139223 1.080540	283036 2.161080				0.0000789	8.01	1.000
trans-1,3-Dichloropropene	35633 0.306740	107130 0.7673 4 0	227092 1.534680					0.00000751	13.0	1.000
1,1,2-Trichloroethane	36982 0.156000	88387 0.313000	229809 0.783000	460139 1.566000				0.00000364	10.7	1.000
Dibromochloromethane	32531 0.163800	73802 0.328650	185279 0.822150	377614 1.644300				0.00000457	6.85	1.000
1,2-Dibromoethane	31078 0.156000	80844 0.313000	184371 0.783000	410574				0.00000424	13.1	866.0
Tetrachloroethene	53374 0.156000	130896 0.313000	341668 0.783000	682652 1.566000				0.0000247	12.2	1.000

10/17/96 16:25:51

Method AMBIENT VOC-GC/MD Test Code ADHRAASS

Sol'n #

CALIBRATION Cont'd INITIAL

Initial Calibration # C2960606010000

Calibration Date 06/06/96 01:00:00

Work Order # 9610075 Page 8

Instrument C2

Reviewer JHC Analyst KRW

	Correlation Coefficient	1.000	1.000	:			
	& RSD	16.9	8.83	`			
	RF	0.00000491	0.00000278				
Response	Conc.						
Response	Conc.			•			
Response Reference	Conc.			;			
Response Area Counts Reference	Conc. ppbv	392226 1.644300	603184 1.566000	î			
Response Area Counts Reference	Conc. ppbV	181364 0.822150	292501 0.783000				
Response Area Counts Reference	Conc. ppbv	67948 0.328650	1153 6 6 0.313000	;			
Response Area Counts Reference	Conc. ppbV	26892 0.163800	49627 0.156000				
	Analytes	Bromoform	1,1,2,2-Tetrachloroethane	·			

AMALYSIS BATCH SUMMARY Analysis Batch # VOC2 61003173401

Work Order # 9610075

Page 9

Analysis Start Date/Time 10/03/96 17:34:00

Analysis Stop Date/Time 10/04/96 10:34:00

Instrument C2
Analyst KRW
Reviewer JHC

Test Code <u>ADHRAASS</u>
Initial Calibration # <u>C2960606010000</u>
Calibration Date <u>06/06/96</u>

Method AMBIENT VOC-GC/MD

Analysis File #	L100301	L100302	L100304	L100305	L100306	L100307	L100308	L100309
Sample Type	Continuing Calibration Verification	Blank, Method	Lab Control Sample	Lab Control Sample Duplicate	Sample	Sample Duplicate	Sample	Sample
Lab Sample ID	CALCHECK	BLK963621	TCS966296	LCSD966296	9610075-01A	9610075-01B	9610075-02A	9610075-03 A
Project Sample ID					CL LTEV-11-AI 094	CL LTEV-11-AI 094	CL LTEV-11-AI 095	CL LTEV-11-AI 096
Sequence/Analysis Time	10/03/96 17:34:00	10/03/96 18:51:00	10/03/96 22:07:00	10/03/96 23:18:00	10/04/96 00:19:00	10/04/96 01:20:00	10/04/96 09:33:00	10/04/96 10:34:00
	1	2	33	4	5	9	7	00

Work Order # 9610075 Page 10

Analysis Batch # VOC2 61003173401

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument C2 Reviewer JHC Analyst KRW Column Date Analyzed 10/04/96 00:19:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Ambient VOC - GC/MD ELCD Lab Sample ID 9610075-01A Test Code ADHRAACM File # L100306

					_
		Aliquot Mass/Volume 0.1 (L)			
		Extract/Digestate Volume			
		1.0 (L)			
		Dilution Factor .3819			
		Measured Concentration	Detection Limit	Reporting Limit	-
Analyte	CAS #	Vdqq	Λqdd	Λqdd	
Tetrachloroethene	127-18-4	11.2	0.0812	,0	-

Work Order # 9610075

Page 11

Analysis Batch # VOC2 61003173401

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument C2 Reviewer JHC Analyst KRW Column _ Date Analyzed 10/04/96 01:20:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Ambient VOC - GC/MD ELCD Lab Sample ID 9610075-01B Test Code ADHRAACM File # L100307

		Aliquot Mass/Volume		
		Extract/Digestate Volume		
		1.0 (L)		
		Dilution Factor 3819		
		Measured Concentration	Detection Limit	Reporting Limit
Analyte	CAS #	Vdqq	ppbV	Vdqqq
Tetrachloroethene	127-18-4	11.2	0.0812	0

Work Order # 9610075

Page 12

Analysis Batch # VOC2 61003173401

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument C2 Reviewer JHC Analyst KRW Column 10/04/96 09:33:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 095 Method Ambient VOC - GC/MD ELCD Lab Sample ID 9610075-02A File # L100308 Test Cod

			
		Reporting Limit ppbV	,•
		Detection Limit ppbV	0.0988
	Aliquot Mass/Volume 0.1 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3137	Measured Concentration ppbV	51.3
		CAS #	127-18-4
Code ADHRAACM		Analyte	Tetrachloroethene

Page 13

Work Order # 9610075

Analysis Batch # VOC2 61003173401

Reporting Subset Spikes Subset ____ Specs Subset Instrument C2 Reviewer JHC Analyst KRW Column Date Collected 09/26/96 Date Received 10/03/96 Project Sample ID CL LTEV-11-AI 096 Method Ambient VOC - GC/MD ELCD Lab Sample ID 9610075-03A File # L100309 Test Code

Report As received

Matrix A

% Moisture

nod Ambient vot - GC/MD ELCD	Date Analyzed 10/04/90	Date Analyzed 10/04/36 10:34:00 Reviewer OHC		
t Code <u>ADHRAACM</u>				
		Aliquot Mass/Volume 0.1 (L) Extract/Digestate Volume 1.0 (L)		
		Dilution Factor 3249	:	
Analyte	CAS #	Measured Concentration ppbV	Detection Limit ppbV	Reporting Limit ppbV
Tetrachloroethene	127-18-4	16.7	0.0954	0

LABORATORY BLAKK IMPORMATION

Work Order # 9610075 Page 14

Analysis Batch # VOC2 61003173401

Date Analyzed 10/03/96 18:51:00 Date Prepared Method Ambient VOC - GC/MD ELCD Lab Sample ID BLK963621 Test Code ADHRAACM File # L100302

Reporting Subset Specs Subset Spikes Subset Instrument C2 Reviewer JHC Analyst KRW Column

Matrix A

	Aliquot Mass/Volume		
	Extract/Digestate Volume 1.0 (L) Dilution Factor 1.0		
:	Measured Conc.	Derection Limit	Reporting Limit
Analyte	ppbV	Addd	Vdqq
Tetrachloroethene	QN.	0.00620	0

LABORATORY CONTROL SAMPLE

Work Order # 9610075

Analysis Batch # VOC2 61003173401

Report As received Aliquot Mass or Vol * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument C2 Reviewer JHC Analyst KRW Column Date Analyzed 10/03/96 23:18:00 Date Prepared Method Ambient VOC - GC/MD ELCD Test Code ADHRAACM

			Revie	Reviewer JHC			A)	Aliquot Mass or Vol Extract Mass or Vol	lass or lass or	vol	1.0	0.2 (L) 1.0 (L)
Control Std. # Vol. Added CC-16236 0.2 L	Vol. Added Surrogate Sol'n # Vol.	Vol. Added	Lal Lo File ID	LCS Lab Sample ID LCS966296 File ID L100304		LC La L File ID	LCS Duplicate Lab Sample ID LCSD966296 File ID L100305		Recovery Spec. Limits	2	RPD	
Analyte	J		Spiked Conc. ppbV	Measured Conc. ppbV	Rec.	Spiked Conc. ppbV	Measured Conc. ppbV	Rec.	Low H	ligh F	Rec. Low High Result Limit	Spec. Limit
Tetrachloroethene			1.23	1.57	128	1.23	1.64	134			4.	

Page 15

CONTINUING (OR DAILY) CALIBRATION

VERIFICATION

Page 16

Work Order # 9610075

Analysis Batch # VOC2 61003173401

Initial Calibration # C2960606010000

Date Analyzed 10/03/96 17:34:00 Lab Sample ID CALCHECK

Reporting Subset Spikes Subset

Specs Subset

Instrument C2 Reviewer JHC Analyst KRW

Test Code ADHRAACM

Method Ambient VOC - GC/MD ELCD

File # L100301

				Recovery Specificati Limits	Recovery Specification Limits
	Measured Concentration	Kelerence Concentration	Recovery	Low	High
Analyte	ppbV	ppbV	مد	مد	٠ مد
Tetrachloroethene	1.04	0.832	125	50	150

SAMPLE DUPLICATES

Work Order # 9610075 Page 17

Analysis Batch # VOC2 61003173401

Analyst KRW Column

Report As received Matrix A Spikes Subset Reporting Subset Specs Subset

Instrument C2 Reviewer JHC Date Analyzed 10/04/96 01:20:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094

Method Ambient VOC - GC/MD ELCD

Test Code ADHRAACM

	Sample Duplicate Lab Sample ID Lab Sample ID 9610075-01A 9610075-01B Dil Fact. .3819	Duplicate Lab Sample ID 9610075-01B Dil Fact3819		RPD
Analyte	Measured Conc. ppbV	Measured Conc. ppbV	Result	Specification Limit
Tetrachloroethene	11.2	11.2	0.19	

Work Order # 9610075

AWALYTICAL PROTOCOL SUMMARY COMMENTS / WARRATIVE

Page 18

Specification# Method AMBIENT VOC-GC/MD

Lab Sample ID

Project Sample ID/Description Analyte

File ID

Flag Comment/Narrative

Corrective Action

10/17/96 16:25:51

AHALYTICAL PROTOCOL SUMMARY

Work Order # 9610075

Page 33

Client DEI Clairmont

Specification # SDHR

Facility Clairmont

Client Code V DEI CM

Method SOURCE VOC - GC/MD

Analysis Batch #	VOB2_61007083501	VOB2_61007083501	VOB2_61007083501	VOB2_61007083501	VOB261008114701	VOB2_61008114701	VOB2_61008114701	VOB261008114701
Extraction/Digestion Batch #	NA	NA	NA	NA	NA	NA	NA	NA
Test Code(s)	SDHRAACM	SDHRAACM	SDHRAACM	SDHRAACM	SDHRAACM	SDHRAACM	SDHRAACM	SDHRAACM
Lab Sample ID	9610075-04A	9610075-05A	9610075-05B	9610075-06A	9610075-07A	9610075-08A	9610075-08B	9610075-09A
	961	961	9610	9610	9610	9610	9610	9610

Method Source VOC - GC/MD ELCD Test Code SDHRAACM

10/17/96 16:25:51

Project Sample ID:	CL LTEV-11-AI		CL LTEV-11-AI	AI	CL LTEV-11-AI	-AI	CL LTEV-11-AI	-AI
	160		092		092		093	
Lab ID:	9610075-04A		9610075-05A		9610075-05B	5B	9610075-06A	6A
File ID:	0100106		010010		0100708		0100109	
Date Collected:	96/56/60		09/56/96	90	09/56/96	9	96/92/60	9
Date Prepared:								
Date Analyzed:	10/01/96 16:40:00	00:	10/07/96 17:42:00	7:42:00	10/07/96 18:37:00	:37:00	10/07/96 19:33:00	:33:00
Dilution Factor:	.3824		.3645		.3645		.3793	
Matrix:	Air		Air		Air		Air	
Units:	Amdd		Amdd		∆mdď		Λωdd	
Report as:	received		received	70	received	Ð	received	70
Gestumen:								
Analyte	Conc.	DĽ	Conc.	DĽ	Conc.	DL	Conc.	DL
Tetrachloroethene	3.77	0.0363	0.817	0.0381	0.792	0.0381	0.582	0.0366

RESULTS SUMMARY (Cont'd)

Page 35

Work Order # 9610075

Method Source VOC - GC/MD ELCD Test Code SDHRAACM

Project Sample ID:	CL LTEV-11-AI	-AI	CL LTEV-11-AI	1-AI	CL LTEV-11-AI	AI	CL LTEV-11-AI	AI
	160		860		860		660	
Lab ID:	9610075-07A	A7	9610075-08A	18.A	9610075-08B	B	9610075-09A	Ą
File ID:	0100806	_	0100806A	5 A	0100808		0100809	
Date Collected:	09/56/96	9	09/56/96	96	09/56/96		09/56/96	10
Date Prepared:								
Date Analyzed:	10/08/96 17:17:00	:17:00	10/08/96 19:12:00	9:12:00	10/08/96 20:12:00	12:00	10/08/96 21:16:00	16:00
Dilution Factor:	.3645		.3678		.3678		.3453	
Matrix:	Air		Air		Air		Air	
Units:	∧wdd		Vmqq		Vmqq		Vmqq	
Report as:	received	1 1	received	ad	received		received	_
Column:								
Analyte	Conc.	DL	Conc.	DĽ	Conc.	DL	Conc.	DL
Tetrachloroethene	1.31	0.0381	1.000	0.0378	0.968	0.0378	7.65	0.0403

10/17/96 16:25:51

Method SOURCE VOC - GC/MD

Sol'n #

Test Code SDHRAA00

CALIBRATION IRITIAL

Initial Calibration # <u>B2961003010000</u>

Calibration Date 10/03/96 01:00:00

Work Order # 9610075 Page 36

Instrument B2

Analyst <u>MEH</u> Reviewer <u>JHC</u>

				 -					
		Coefficient	666.0		· · · · · · · · · · · · · · · · · · ·				
		& RSD	8.19		:			,	
		— RF	0.00000000466	-	•		·		
Response	Reference	Conc.			``				
Response	Reference	Conc.			;				
Response	Reference	cone.							
Response	Reference	cone.							
Response Area Counts	Reference	Conc.	3919512 0.0198						
Response Area Counts	Reference	Conc.	2131852 0.00990		·				
Response Area Counts	Reference	conc.	230726 0.000990						
		Analytes	Tetrachloroethene						

AMALYSIS BATCH SUMMARY

Analysis Batch # VOB2 61007083501

Page 37 Work Order # 9610075

Analysis Start Date/Time 10/07/96 08:35:00

Analysis File # 0100702A 0100704A 0100702 0100704 0100106 010010 0100708 0100109 0100701 Instrument B2 Reviewer JHC Analyst CLS Continuing Calibration Verification Lab Control Sample Duplicate Lab Control Sample Lab Control Sample Sample Duplicate Blank, Method Sample Type Analysis Stop Date/Time 10/07/96 19:33:00 Sample Sample Sample Lab Sample ID 9610075-05B 9610075-06A 9610075-04A 9610075-05A LCSD966528 LCS966528 LCS966528 BLK963531 CALCHECK CL LTEV-11-AI 092 CL LTEV-11-AI 092 CL LTEV-11-AI 093 CL LTEV-11-AI 091 Project Sample ID Initial Calibration # <u>B2961003010000</u> Sequence/Analysis Time 10/07/96 08:35:00 10/07/96 09:45:00 10/01/96 10:56:00 10/07/96 12:11:00 10/07/96 14:52:00 10/07/96 16:40:00 10/07/96 17:42:00 10/07/96 18:37:00 10/01/96 19:33:00 Method SOURCE VOC - GC/MD Calibration Date 10/03/96 Test Code SDHRAA00

Work Order # 9610075

Page 38

Analysis Batch # <u>VOB2</u> 61007083501

Reporting Subset Spikes Subset Specs Subset Instrument B2 Analyst CLS Column Date Collected 09/26/96

Date Received 10/03/96

Date Prepared Project Sample ID CL LTEV-11-AI 091 Lab Sample ID 9610075-04A File # 0100706 Method Test Co

Report As received % Moisture Matrix A

20,001	Date Liebared	August Cars	Speca Subsec	a morardia e
d <u>Source VOC - GC/MD ELCD</u> Code <u>SDHRAACM</u>	Date Analyzed 10/07/96 16:40:00	6 16:40:00 Reviewer JHC		
		Aliquot Mass/Volume .010 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3824		
Analyte	CAS #	Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit ppmV
Tetrachloroethene	127-18-4	3.77	0.0363	0

Work Order # 9610075

Page 39

Analysis Batch # VOB2 61007083501

Report As received * Moisture Matrix A Reporting Subset ____ Spikes Subset Specs Subset Instrument B2 Reviewer JHC Analyst CLS Column 10/07/96 17:42:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 092 Method Source VOC - GC/MD ELCD Lab Sample ID 9610075-05A Test Code SDHRAACM File # 0100707

		Aliquot Mass/Volume			
		Extract/Digestate Volume			
		1.0 (L)			
	,	Dilution Factor .3645			
		Measured Concentration	Detection Limit	Reporting Limit	
Analyte	. CAS #	ppmV	ppmV	Vmqq	
Tetrachloroethene	127-18-4	0.817	0.0381	0	

Work Order # 9610075

Page 40

Analysis Batch # VOB2 61007083501

Instrument B2 Reviewer JHC Analyst CLS Column 10/07/96 18:37:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 092 Method Source VOC - GC/MD ELCD Lab Sample ID 9610075-05B Test Code SDHRAACM File # 0100708

Matrix A Report As received * Moisture Reporting Subset Spikes Subset Specs Subset

Reporting Limit 0 **DpmV** Detection Limit DpmV 0.0381 .3645 Extract/Digestate Volume Measured Concentration Aliquot Mass/Volume Dilution Factor .010 (L) 1.0 (L) 0.792 Vmqq CAS # 127-18-4 Tetrachloroethene Analyte

Page 41

Work Order # 9610075

Analysis Batch # VOB2 61007083501

Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 093

Method Source VOC - GC/MD ELCD

Test Code SDHRAACM

Lab Sample ID 9610075-06A

File # 0100709

Instrument B2

Reporting Subset Spikes Subset

Report As received * Moisture Matrix A Specs Subset

> Reviewer JHC Analyst CLS Column Date Analyzed 10/07/96 19:33:00

Reporting Limit DpmV Detection Limit 0.0366 DpmV Extract/Digestate Volume .3793 Measured Concentration Aliquot Mass/Volume Dilution Factor .010 (L) 1.0 (L) 0.582 DpmV

CAS #

127-18-4

Tetrachloroethene

Analyte

0

LABORATORY BLAMK IMPORMATION

Work Order # 9610075

Page 42

Analysis Batch # VOB2 61007083501

			
Matrix <u>A</u>		Keporting Limit ppmV 0	
Reporting Subset Spikes Subset Specs Specs Subset Specs Spec		Detection Limit ppmV 0.0278	
- Instrument <u>B2</u> :00 Column Analyst <u>CLS</u> Reviewer <u>JHC</u>	Aliquot Mass/Volume 0.005 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor 1.0	Measured Conc. ppmV ND	
Date Prepared Date Analyzed 10/07/96 09:45:00	й О	<u> </u>	
Lab Sample ID BLK963531 File # 0100702 Method Source VOC - GC/MD ELCD Test Code SDHRAACM		Analyte	

LABORATORY CONTROL SAMPLE

Work Order # 9610075

Analysis Batch # VOB2 61007083501

Page 43

.005 (L) 1.0 (L) Aliquot Mass or Vol Extract Mass or Vol Report As received * Moisture Matrix A Specs Subset Reporting Subset Spikes Subset Instrument B2 Reviewer JHC Analyst CLS Column _ Date Analyzed 10/07/96 12:11:00 Date Prepared Method Source VOC - GC/MD ELCD Test Code SDHRAACM

					Y G	רדשכר נ	20 01	EXCIACL MASS OF VOI	2	3
CC-16236 Surrogate Sol'n # Vol. Added Surrogate Sol'n # Vol. Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added CC-16236 Surrogate Sol Added	Added L.	LCS Lab Sample ID <u>LCS966528</u> File ID <u>0100702A</u>	-	LC. Lal	LCS Duplicate Lab Sample ID LCSD966528 File ID 0100704		Recovery Spec. Limits		RPD	
Analyte	Spiked Conc. ppmV	Measured Conc. ppmV	Rec.	Spiked Conc. ppmV	Measured Conc. ppmV	Rec.	Low Hi	Rec. Low High Result Limit	Spec.	c. it
Tetrachloroethene	0.00500	0.00593	118	0.00500	0.00579	116			1.7	

CONTINUING (OR DAILY) CALIBRATION

Work Order # 9610075

Page 44

VERIFICATION

Analysis Batch # VOB2 61007083501

Initial Calibration # B2961003010000

Reporting Subset Spikes Subset

Instrument B2 Analyst CLS

Date Analyzed 10/07/96 08:35:00

Specs Subset

Reviewer JHC

Test Code SDHRAACM

Method Source VOC - GC/MD ELCD

Lab Sample ID CALCHECK

File # 0100701

High 150 Specification * Limits Recovery Jo. 20 Recovery 101 مد Concentration Reference **DpmV** 0.00990 Concentration Measured 0.0100 Vmqq Analyte **Tetrachloroethene**

SAMPLE DUPLICATES

Work Order # 9610075 Page 45

Analysis Batch # VOB2 61007083501

Date Collected <u>09/26/96</u> Date Received 10/03/96 Date Prepared

Project Sample ID CL LTEV-11-AI 092 Method Source VOC - GC/MD ELCD

Test Code SDHRAACM

Instrument B2 Column

Report As received Matrix A Reporting Subset Spikes Subset Specs Subset

Reviewer JHC Analyst CLS Date Analyzed 10/07/96 18:37:00

	Sample Duplicate Lab Sample ID Lab Sample ID 9610075-05A 9610075-05B Dil Fact. .3645	Duplicate Lab Sample ID 9610075-05B Dil Fact3645		RPD
Analyte	Measured Conc. ppmV	Measured Conc. ppmV	Result	Specification Limit
TetrachlorOethene	0.817	0.792	3.2	

AHALYSIS BATCH SUMMARY

Analysis Batch # VOB2 61008114701

Work Order # 9610075 Page 46

Method SOURCE VOC - GC/MD

Test Code SDHRAA00

Initial Calibration # B2961003010000

Calibration Date 10/03/96

Analysis Start Date/Time 10/08/96 11:47:00 Analysis Stop Date/Time 10/08/96 21:16:00

Instrument <u>B2</u> Analyst <u>CLS</u> Reviewer <u>JHC</u>

	Sequence/Analysis Time	Project Sample ID	Lab Sample ID Sample Type	Sample Type	Analysis File #	
1	10/08/96 11:47:00		САТСНЕСК	Continuing Calibration Verification	0100802	
7	10/08/96 13:46:00		BLK963531	Blank, Method	0100803	
3	10/08/96 14:44:00		LCS966528	Lab Control Sample	0100804	
4	10/08/96 16:08:00		LCSD966528	Lab Control Sample Duplicate	0100805	
ųì	16/66/96 17.17.68	G. LIEW 22 AI 897	- 861007E-072	- Sample	Ananana	
9	10/08/96 19:12:00	CL LTEV-11-AI 098	9610075-08A	Sample	O100806A	
7	10/08/96 20:12:00	CL LTEV-11-AI 098	9610075-08B	Sample Duplicate	0100808	
80	10/08/96 21:16:00	CL LTEV-11-AI 099	9610075-09A	Sample	0100809	
				•	•	

Work Order # 9610075

Page 47

Analysis Batch # VOB2 61008114701

Matrix A Report As received * Moisture Reporting Subset Spikes Subset ______Specs Subset _____ Instrument B2 Analyst CLS Column Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 097 Lab Sample ID 9610075-07A File # 0100806 Test Cod Method

200010	Total Table	as I talk	1	200
hod Source VOC - GC/MD ELCD	Date Analyzed 10/08/96 17:17:00	08/96 17:17:00 Reviewer JHC		
C CODE SUINAMEN				
		Aliquot Mass/Volume		
		.010 (L)		
		Extract/Digestate Volume		
		1.0 (L)		
		Dilution Factor .3645		
		Measured Concentration	Detection Limit	Reporting Limit
Analyte	CAS #	Nwdd	Nmdd	Vmdd
Tetrachloroethene	127-18-4	1.31	0.0381	0

	, ,		

Work Order # 9610075

Page 48

Analysis Batch # VOB2 61008114701

Instrument B2 Column Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 098 Lab Sample ID 9610075-08A File # 0100806A

Method Source VOC - GC/MD ELCD

Test Code SDHRAACM

Analyst CLS Reviewer JHC 10/08/96 19:12:00 Date Analyzed

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset

Analyte	CAS #	Aliquot Mass/Volume .010 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3678 Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit
Tetrachloroethene	127-18-4	1.000	0.0378	0

Work Order # 9610075

Page 49

Analysis Batch # VOB2 61008114701

Report As received * Moisture Matrix A Reporting Subset ____ Spikes Subset Specs Subset Instrument B2 Reviewer JHC Analyst CLS Column Date Analyzed 10/08/96 20:12:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 098 Method Source VOC - GC/MD ELCD Lab Sample ID 9610075-08B Test Code SDHRAACM File # 0100808

		Aliquot Mass/Volume		
		.010 (L)		
		Extract/Digestate Volume		
		1.0 (L)		
		Dilution Factor .3678		
	,			
		Measured Concentration	Detection Limit	Reporting Limit
Analyte	CAS #	Vmqq	Vmdd	Nwdd
	7			:
Tetrachloroethene	127-18-4	0.968	0.0378	0

Work Order # 9610075

Page 50

Analysis Batch # VOB2 61008114701

Instrument B2 Analyst CLS Column Date Prepared

Date Analyzed 10/08/96 21:16:00 Date Collected 09/26/96 Date Received 10/03/96 Project Sample ID CL LTEV-11-AI 099 Lab Sample ID 9610075-09A File # 0100809

Method Source VOC - GC/MD ELCD

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset

Reviewer JHC

	Reporting Limit ppmV	0
	Detection Limit ppmV	0.0403
Aliquot Mass/Volume .010 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3453	Measured Concentration ppmV	7.65
	CAS #	127-18-4
	Analyte	Tetrachloroethene

LABORATORY BLAMK IMPORMATION

Work Order # 9610075 Page 51

Æ١

Analysis Batch # VOB2 61008114701

ab Sample ID <u>BLK963531</u>	Date Prepared	Instrument B2	Reporting Subset	Matrix
ile # 0100803	Date Analyzed 10/08/96 13:46:00	Column	Spikes Subset	
ethod Source VOC - GC/MD ELCD		Analyst CLS	Specs Subset	
est Code <u>SDHRAACM</u>		Reviewer JHC		

	Aliquot Mass/Volume 0.005 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor 1.0		
Analyte	Measured Conc. ppmV	Setection ismit ppmV	. Reporting Limit ppmV
Tetrachloroethene	CN.	0.0278	•

LABORATORY CONTROL SAMPLE

Work Order # 9610075 Page 52

Analysis Batch # VOB2 61008114701

Date Analyzed 10/08/96 16:08:00 Date Prepared Method Source VOC - GC/MD ELCD

Test Code SDHRAACM

Instrument B2 Reviewer JHC Analyst CLS Column

Reporting Subset Specs Subset Spikes Subset

Report As received Aliquot Mass or Vol Extract Mass or Vol * Moisture Matrix A

.005 (L) 1.0 (L)

Control Std. # Vol. Added Surrogate Sol'n # Vol. Added CYLINDER A 5 mL	File	LCS Lab Sample ID LCS966528 File ID 0100804		LC La L File ID	LCS Duplicate Lab Sample ID LCSD966528 File ID 0100805		Recovery Spec. Limits	Y	Q
Analyte	Spiked Conc. ppmV	Measured Conc. ppmV	Rec.	Spiked Conc. ppmV	Measured Conc. ppmV	Rec.	Low Hi	Rec. Low High Result	Spec. Limit
Tetrachloroethene	0.00500	0.00584	117	0.00500	0.00538	108		8.0	0

Page 53

CONTINUING (OR DAILY) CALIBRATION

VERIPICATION

Analysis Batch # VOB2 61008114701

Initial Calibration # B2961003010000

Method Source VOC - GC/MD ELCD Lab Sample ID CALCHECK File # 0100802

Date Analyzed 10/08/96 11:47:00

Reporting Subset Spikes Subset

Specs Subset

Instrument B2 Reviewer JHC Analyst CLS

Test Code SDHRAACM

		,		Recovery Specification Limits	ecovery cification Limits
	Measured	Reference			
	Concentration	Concentration	Recovery	Low	High
Analyte	Vmqq	Nwdd	*	*	*
Tetrachloroethene	0.00942	06600.0	95	90	150

10/17/96 16:25:51

SAMPLE DUPLICATES

Work Order # 9610075 Page 54

Analysis Batch # VOB2 61008114701

Date Collected 09/26/96 Project Sample ID CL LTEV-11-AI 098 Method Source VOC - GC/MD ELCD

Test Code SDHRAACM

Date Analyzed 10/08/96 20:12:00 Date Received 10/03/96 Date Prepared

Instrument B2 Reviewer JHC Analyst CLS Column

Report As received Matrix A Spikes Subset Reporting Subset

Specs Subset

	Sample Duplicate Lab Sample ID Lab Sample ID 9610075-08A 9610075-08B Dil Fact. .3678	Duplicate Lab Sample ID 9610075-08B Dil Fact3678		RPD
Analyte	Measured Conc. ppmV	Measured Conc. ppmV	Result	Specification Limit
Tetrachloroethene	1.000	0.968	3.2	

Work Order # 9610075

AMALYTICAL PROTOCOL SUMMARY COMMENTS / MARRATIVE

Page 55

Method SOURCE VOC - GC/MD

10/17/96 16:25:51

Specification#

Lab Sample ID

Project Sample ID/Description Analyte

File ID

Flag Comment/Narrative

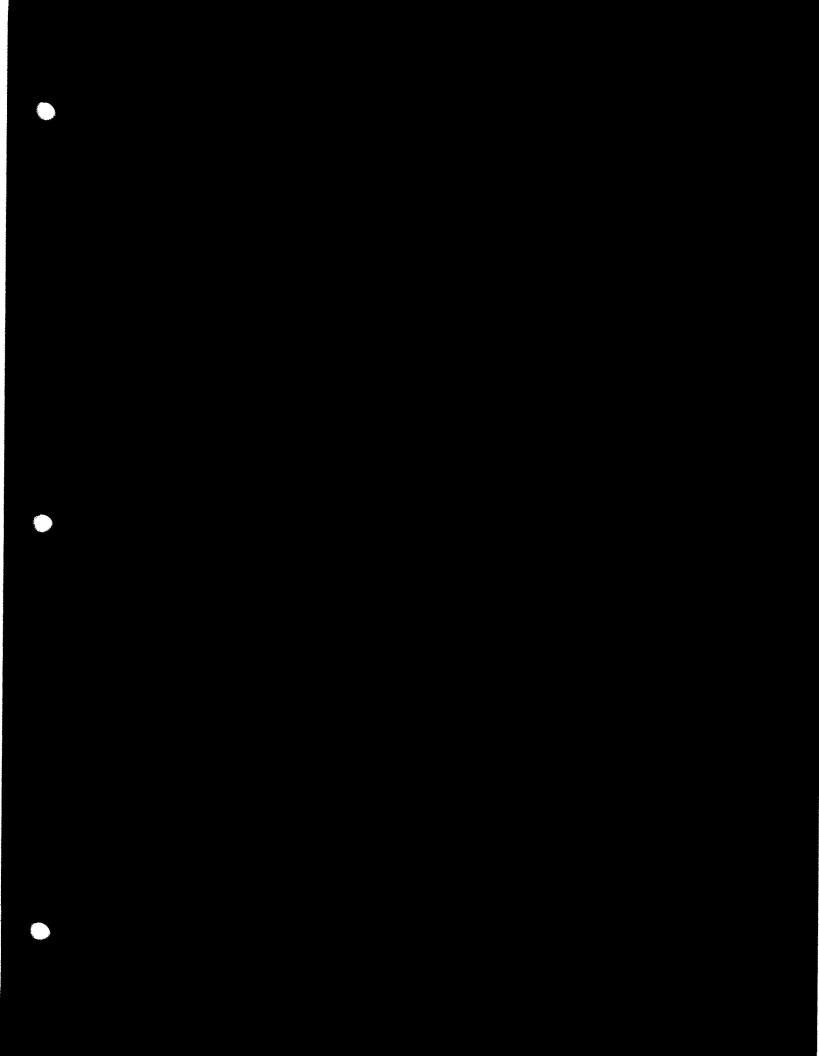
Corrective Action

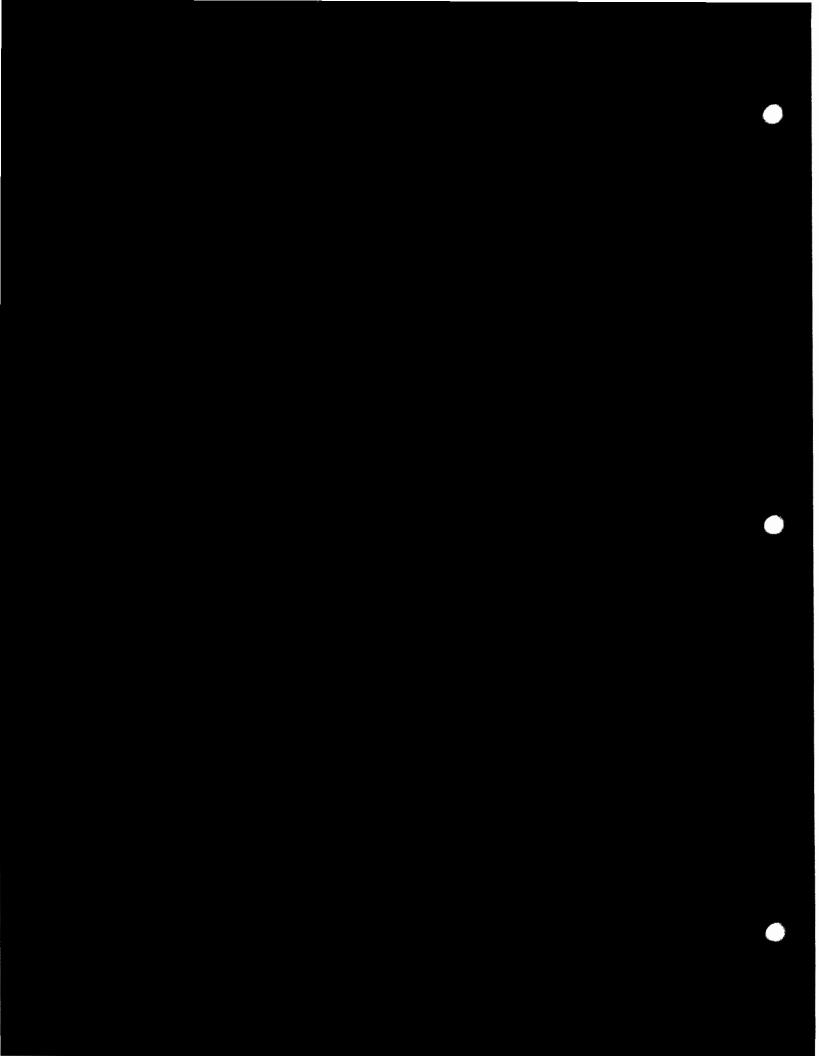
Corrected (

VOC PREP AMALYTICAL RUN

Analytical Group: HE_1961003172000 Prep Batch ID: VOHE_1610031720

PRIMAR 11 AP


Instrument: HE_1


Test Code: DILUAA00

	Delta Dilution Dilution Dilution	Pres. Factor Factor Date
뎔	Del ta	Pres.
Initial	Batch Dil	# Factor
	Diluent	Added
-g	Final	Pres.
Lab	Init.	Pres.
		Can 1d
	Test	Code
	Customer	OI
	Vorkorder	**

0.381916 0.381916 10/03/96 19:10:26 0.313746 0.313746 10/03/96 19:10:45 0.324960 0.324960 10/03/96 19:11:04 0.382432 0.382432 10/03/96 19:11:20	0.354574 0.364574 10/03/96 19:11:46 0.379356 0.379356 10/03/96 19:12:06 0.364532 0.364532 10/03/96 19:12:22 0.367836 0.367836 10/03/96 19:12:28	0.345325								
14.15 11.891 12.186 14.15	13.708 14.15 13.5606	13.3641								
의 의 의 의	의 의 의 등	l 티 I I	1 1	1 1 1	1.1	1 1	1 1 1	1 1	 	
22.35 23.20 22.80 22.30	22.90 22.60 22.50 22.70	24.00								
0.000 -2.259 -1.964 0.000	0.000	7859								
-14.15 -14.15 -14.15	-14.15 -14.15 -14.15									
HL0610 HL0955 HL0842 HL0825	HL0780 HL0866 HL0807 HL0857	HL0828								
DILUAAOO HLO610 DILUAAOO HLO955 DILUAAOO HL0955 DILUAAOO HL0842	DILUAAOO H									
9610075-01A CL LTEV-11-AI 094 9610075-02A CL LTEV-11-AI 095 9610075-03A CL LTEV-11-AI 096 9610075-04A CL LTEV-11-AI 091	9610075-05A CL LTEV-11-AI 092 9610075-06A CL LTEV-11-AI 093 9610075-07A CL LTEV-11-AI 097 9610075-08A CL LTEV-11-AI 098	비리								

		•
		•

Location	Time	GC Run	Test	Conc.
		Number		
TEST 1				
Direct	10:14	30	1-1	14.397
Direct	10:32	31	1-2	2.767
Bag	10:32	32	1-3	0.874
Bag	10:44	33	1-4	2.243
Bag	13:55	45	1-5	4.204
TEST 2				
Direct	12:30	36	2-1	4.02
Direct	12:37	37	2-2	1.042
Direct	12:48	38	2-3	0.734
Direct	13:03	39	2-4	0.702
Direct	13:12	40	2-5	12.758
Direct	13:26	41	2-6	3.038
Direct	13:31	42	2-7	4.078
Bag	13:43	43	2-8	29.96
Bag	13:50	44	2-9	32.906
TEST 3				
Direct	14:58	48	3-1	0.63
Direct	15:02	49	3-2	0
Direct	15:08	50	3-3	0
Direct	16:20	51	3-4	2.758
Direct	16:25	52	3-5	1.417
Direct	16:30	53	3-6	2.323
Direct	16:35	54	3-7	6.95
Direct	16:40	55	3-8	4.363
Direct	16:51	56	3-9	3.489
Direct	17:00	57	3-10	2.848
Bag	17:32	58	3-11	0
Bag	17:40	59	3-12	0

-

.

		_

RADIAN International

Client: Claremont

Date: 9/23/96

Barometric : 29.92 Temperature : 68

gamma: 1

Compound	Density	Molecular	Meter	uL	ppm
bp	20 C	weight	Volume		
Tetrachloroethylene	1.623	165.8	Liters 12.0	1.0	19.67
				1.0	20.0
	1.623	165.8	16.6	0.5	7.08
				0.7	10.0
				50.0	#DIV/0!
				#DIV/01	2000.0
				15.0	#DIV/01
				#DIV/0!	3000.0
				75.0	#DIV/01
				#DIV/0!	3500.0

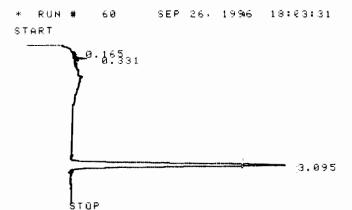
·		•
		•
		•

Power failed SEP 26, 1996 18:15:21

BREAK

Configuring, Wait for "LOOP UP" message

************ LOOP UP)*********


			:			
	.655	40961	6 B	. Ø 2; 9	5.43583	
	.820	8990	$\vee \vee$.037	1,19304	
1	.035	2359	PΥ	. 05:0	.31306	
1	.168	1268	V P	.053	.16827	
1	.405	2388	PΥ	. 05ji	.31691	
1	.520	645	VV	.05/7	.,08560	
2	.662	2573	PΥ	. 1063	.34146	
2	.800	3089	۷V	. 139	.40993	

TOTAL AREA = 753537 MUL FACTOR = 1.0000E+00

7, 16 Bay

Till pp

mises should

RUN# 60 SEP 26, 1996 18:03:31


ESTO-AREA

RT AREA TYPE CAU# AMOUNT 3,095 19509 PP #R 10.037

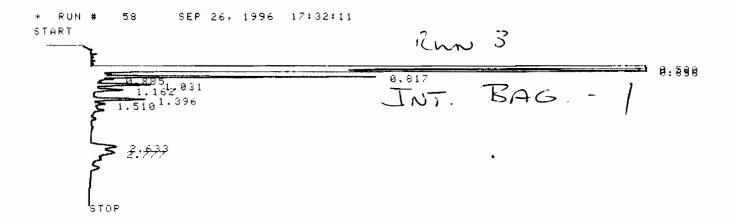
TOTAL AREA= 20250 MUL FACTOR=1.0000E+00

*0 BREAK

* RUN # 61 SEP 26, 1996 18:38:31

RUN# 61 SEP 26, 1996 1:8:08:31

NO CALIB PEAKS FOUND AREA%

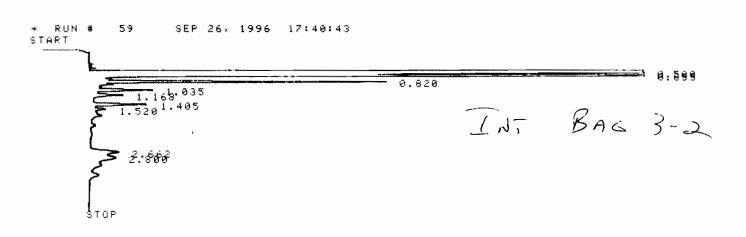

> RT AREA TYPE WID/TH AREA% 2.885 20057 PV .105 100.00000

TOTAL AREA= 20057

5

RT AREA TYPE CAL# AMOUNT 3.152 5535 VP 1R 2.848

TOTAL AREA=2923144 MUL FACTOR=1.0000E+00



RUN# 58 SEP 26, 1996 17:32:11

NO CALIB PEAKS FOUND

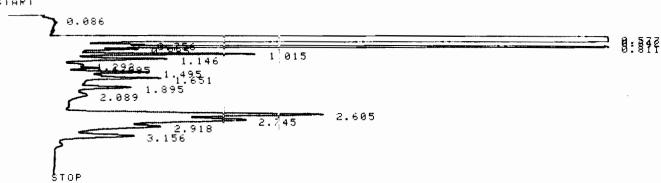
AREA%				
RT	AREA	TYPE	WIDTH	AREA%
.580	636526	PB	.032	92.01955
.656	35050	88	.026	5.06701
.817	8218	۸A	.035	1.18804
.885	355	٧P	.030	.05132
1.031	2298	VV	.049	.33221
1.162	1284	٧P	.053	.18562
1.396	2193	ВV	.049	.31703
1.510	564	VΥ	.055	.08153
2.633	2368	ВΥ	.104	.34233
2.777	2873	VV	.138	.41534

TOTAL AREA= 691729 MUL FACTOR=1.0000E+00

RUN# 59 SEP 26, 1996 17:40:43

NO CALIB PEAKS FOUND AREA%

PT AREA TYPE WIRTH AREA%


RUN# 55 SEP 26, 1996 16:40:59

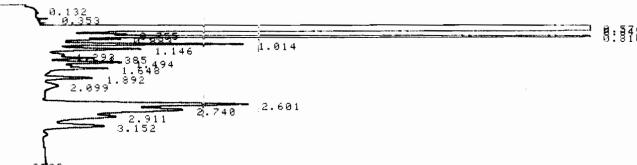
FSTO-AREA

RT AREA TYPE CAL# AMOUNT 3.282 8481 VV 1R 4.363

TOTAL AREA= 975933 MUL FACTOR=1.0000E+00

* RUN # 56 SEP 26, 1986 16:51:25 START

RUN# 56 SEP 26, 1996 10:51:25


ESTO-AREA

RT AREA TYPE CAU# AMOUNT 3.156 6781 VP QR 3.489

10TAL AREA=2816890 MUL FACTOR=1.0000E+00

* RUN # 57 SEP 26, 1946 17:30:18
START

0.132
0.353

* RUN # 53 SEP 26, 1996 16:30:23

START

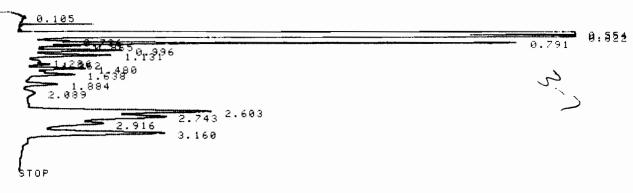
0.169
0.816

8:846

1.589
1.903

2.75614
3.165

RUN# 53 SEP 26, 1996 16:30:23


ESTO-AREA

RT AREA TYPE CAL# AMOUNT 3.165 4515 VV 1R 2.323

TOTAL AREA= 921296 MUL FACTOR=1.0000E+00

STOP

* RUN # 54 SEP 26, 1996 16:35:15 START

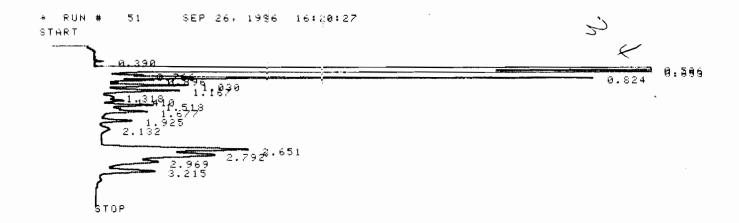
RUN# 54 SEP 26, 1996 16:35:15

ESTO-AREA

RT AREA TYPE CAL# AMOUNT 3.160 13508 VV 1R 6.950

TOTAL AREA=1142147 MUL FACTOR=1.0000E+00

* RUN # 55 SEP 26, 1996 16:40:59

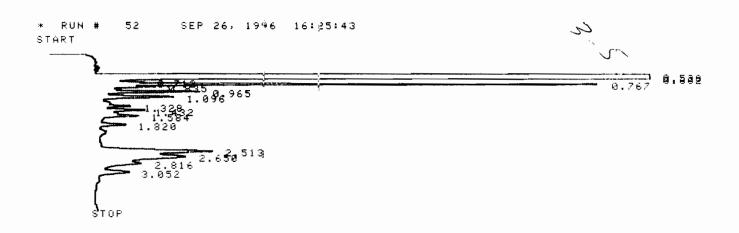

START

a. 524

W

				1
.512	68	88	. ଓଡ଼ାସ	.01093
.590	604044	PB	.026	97,09366
.660	2948	88	. 046	47386
.830	8050	VV	.035	1,29395
.901	494	VP.	.034	.07941
1.038	1919	VV	.042	.30846
1.179	1277	۷P	.049	,20526
1.417	923	V V	. ଓଞ୍ଚ	.14836
1.523	561	VV	.ଡଙ୍ଗ	,09017
2.663	1841	PΥ	.1₫4	.29592

TOTAL AREA= 622125 MUL FACTOR=1.0000E+00



RUN# 51 SEP 26, 1996 16:20:27

ESTD-AREA

RT AREA TYPE CAU# AMOUNT 3.215 5361 VV \$R 2.758

TOTAL AREA=1050953 MUL FACTOR=1.0000E+00

RUN# 52 SEP 26, 1996 15:25:43

ESTB-AREA

RT AREA TYPE CAL# AMOUNT 3.052 2755 VP LR 1.417

TOTAL ABEA-11448540

SEP 25, 1995 14:58:18 ESTD-AREA HREA TYPE CAL# ₽T THUOMA .630 1224 VP 1R 3.185

TOTAL AREA= 579058 MUL FACTOR=1.0000E+00

SEP 26, 1996 15:02:43 * RUN # 49 START 382 0.563 0.656 **01.17**,035 0.827 1.525 412 3:888 STOP

AREA%

.71536

SEP 26, 1996 15:02:43 RUN# 49

NO CALIB PEAKS FOUND AREA% RT AREA TYPE WIDTH .382 .007 285 .04406 P 4 .021 .563 125171

4627

19.35205 .587 494360 ٧B .019 76.43050 .018 .58951 3813 VΒ .656 .768 285 PΥ .031 .04406 .827 8496 44 .035 1.31352 .09354 .897 605 ۷P .035 .32251 .043 1.035 2086 ٧V 1.177 1568 VΡ .053 .24242 1487 вv . 044 .22990 1.412 .055 .09709 1.525 628 $\vee \vee$.102 2.660 3399 PΥ .52550

 $\vee \vee$

.138

TOTAL AREA= 646810 MUL FACTOR=1.0000E+00

2.805

* RUN # SEP 26, 1996 15:08:07 50 START 0.590 0.660 0.830 901,9038 1:5237 2.663 STOP

SEP 26, 1996 15:08:07 RUN# 50

RUN# 46 SEP 26, 1996 14:00:38

ESTO-AREA

RT AREA TYPE CA_# AMOUNT 3.166 61191 VV 1R 31.483

YOTAL AREA=1316365 MUL FACTOR=1.0000E+00

* RUN # 47 SEP 26, 1996 14:51:11
START

0.182

0.880
1.150018
1.395

2.626

RUN# 47 SEP 26, 1996 1,4:51:11

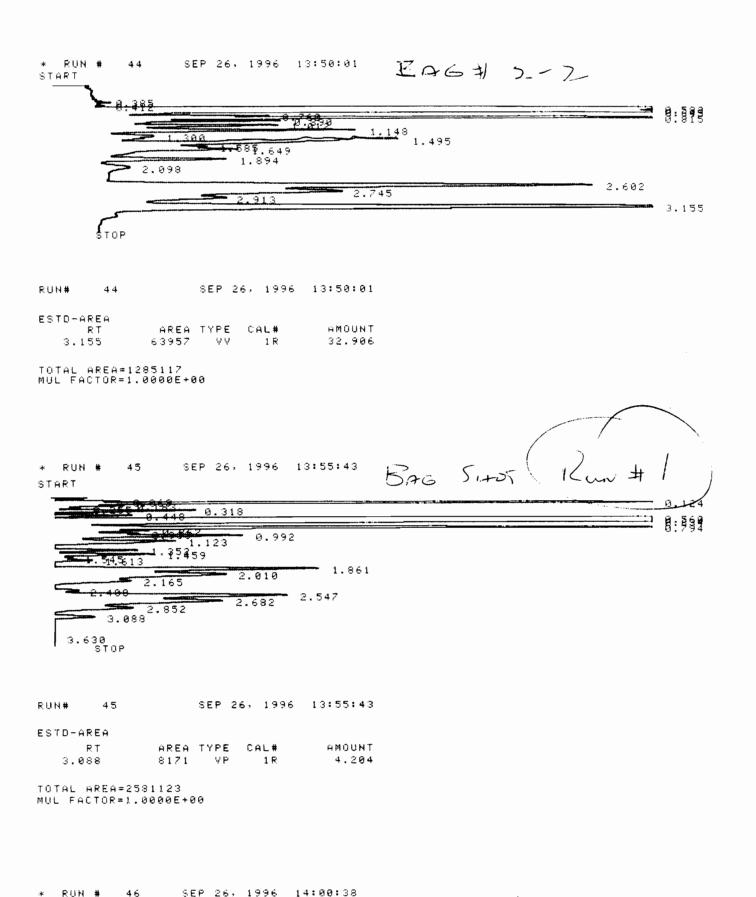
NO CALIB PEAKS FOUND AREA%

RT	AREA	TYPE	WIDITH	AREA%
.182	1083	PΥ	. 2:1 0	.15582
.574	677189	PВ	.030	97.43222
.643	2498	BB	. 0013	.35941
.812	8416	V V	. 0/3 6	1.21087
.880	506	٧P	. 0,3 3	.07280
1.018	1815	٧P	. 014 3	.26114
1.160	1196	PP	. 0148	.17208
1.395	1420	V V	0,48	. 20431
2.626	913	ΒV	. 104	.13136

TOTAL AREA= 695036 MUL FACTOR=1.0000E+00

* RUN # 48 SEP 26, 1996 14:58:18

RIN # 3


2.342

2.609

3.185

STOP

START

46 SEP 26, 1996 14:00:38

F. 206

1.145

1.294

1.493

1.493

RUN# 38 SEP 26, 1996 12:48:06

ESTD-AREA

RT AREA TYPE CAL# THUOMA 3.192 1426 VV 1R .734

TOTAL AREA≈ 670425 MUL FACTOR≃1.0000E+00

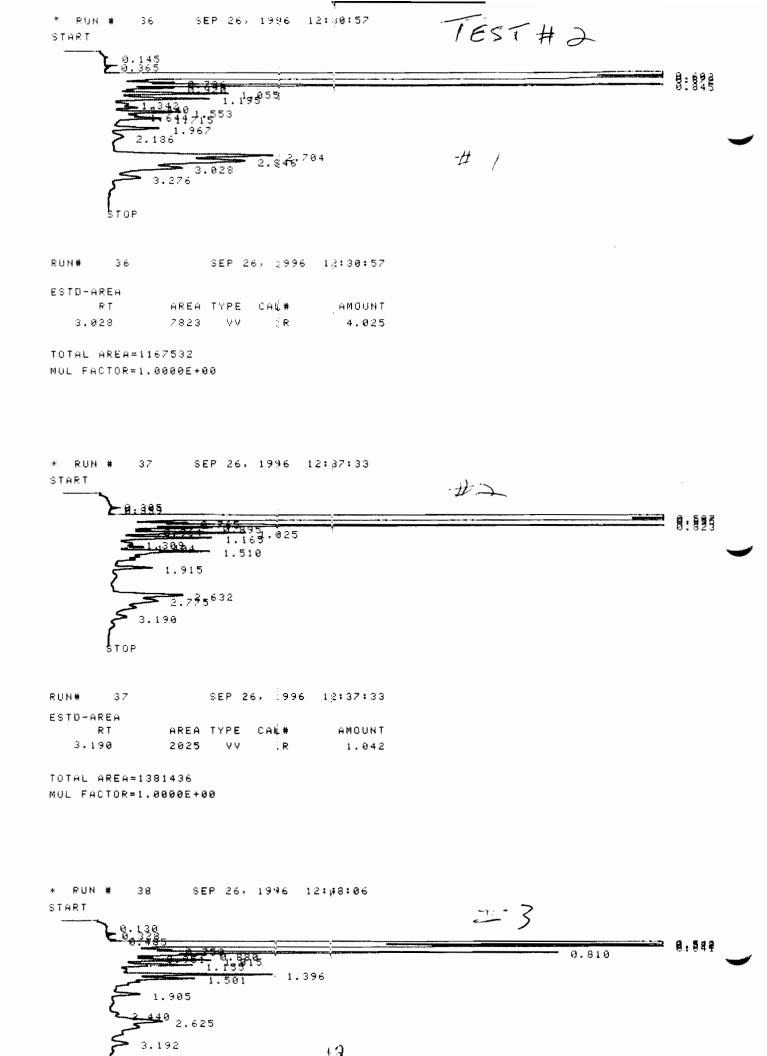
* RUN # 39 SEP 26, 1996 13:03:04 START . 17803€ . 17803€ 1.176 417_{1.526} 1.935 2.655 3.217 STOP

RUN# 39 SEP 26, 1996 13:03:04

ESTD-AREA

AMOUNT AREA TYPE CAL# RT 3.217 1364 VV 1 R .702

TOTAL AREA= 862053 MUL FACTOR=1.0000E+00


40 SEP 26, 1996 13:12:04 * RUN # # 5 START # #: 579 8: 579 1.1481 1.1481 1.383490 1.889 2.738.595 - 3.148 STOP

RUN# 40 SEP 26, 1996 13:12:04

ESTO-AREA RT

AREA TYPE CAL# 4796 VV 1R AMOUNT 24796 VV 12.758 3.148

TOTAL AREA= 949570 MUL FACTOR=1.0000E+00

TOTAL AREA=2056364 MUL FACTOR=1.0000E+00

* RUN # 34 SEP 26, 1996 10:53:38 START 4.415 - 0.575 Charles Andrews (Andrews Andrews Andre 1.465 3.490

RUN#

34 SEP 26, 1996 10:53:38

NO CALIB PEAKS FOUND

STOP

AREA%

RT	AREA	TYPE	ыготн	AREA%
.355	348	PB	.005	.56936
.415	72	BP	.004	.11780
.465	105	PB	.010	.17179
.575	25741	ΒV	.022	42.11482
.610	23399	٧B	.020	38.28309
1.465	1031	PΥ	.067	1.68682
3.490	10425	PΥ	.352	17.05633

TOTAL AREA = 61121 MUL FACTOR=1.0000E+00

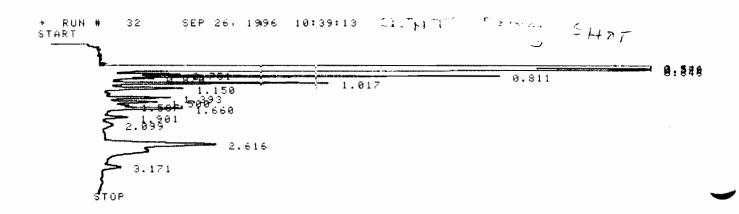
* RUN # 35 SEP 26, 1996 11:00:24 STACK EXMALLST SITET START 0.835 # + STOP

RUN# 35 SEP 26, 1996 11:00:24

NO CALIB PEAKS FOUND AREA%

RT	AREA	TYPE	WIDTH	AREA%
.559	28171	87	.025	45.92973
.594	26947	V V	.024	42.46678
.835	.362	¥8.	.942	.59020
2.253	6755	PΥ	.674	11.01329

TOTAL AREA≃ 61335 MUL FACTOR=1.0000E+00

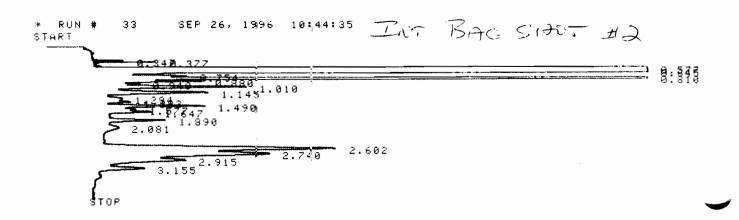


RUN# 31 SEP 26, 1996 1,0:32:10

ESTD-AREA

RT AREA TYPE CAL# AMOUNT 2.990 5378 VV 1R 2.767

TOTAL AREA=1447369 MUL FACTOR=1.0000E+00



RUN# 32 SEP 26, 1996 1,0:39:13

ESTO-AREA

RT AREA TYPE CAL# AMOUNT 3.171 1698 VP 1R .874

TOTAL AREA=1120803 MUL FACTOR=1.0000E+00

14

RUN# 33 SEP 26, 1996 10:44:35

ESTD-AREA

a. 0 87127 RT AREA TYPE CAL# AMOUNT 3.166 3595 VV 1R 4.422

TOTAL AREA=1995776 MUL FACTOR=1.0000E+00

* RUN # 29 SEP 26, 1996 10:07:09

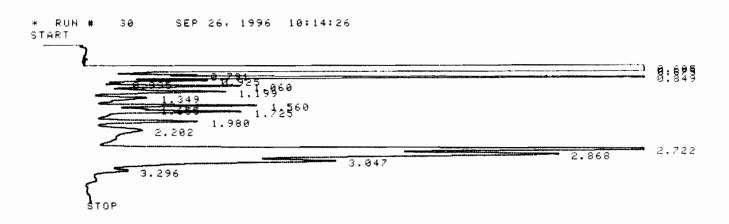
START

0.112

0.112

1.315
1.66.030
1.315
1.677
1.518
2.131

2.967
3.212


RUN# 29 SEP 26, 1996 10:07:09

ESTD-AREA

RT AREA TYPE CAL# AMOUNT 3.212 17793 VV 1R 9.155

TOTAL AREA=1963948 MUL FACTOR=1.0000E+00

STOP

RUN# 30 SEP 26, 1996 10:14:26

ESTD-AREA

RT AREA TYPE CAL# AMOUNT 3.047 27983 VV 1R 14.397

TOTAL AREA=1619514 MUL FACTOR≈1.0000E+00 ESTO-AREA
RT AREA TYPE CALL# AMOUNT
3.125 1160 VV (R .597

TOTAL AREA=2818573 MUL FACTOR=1.0000E+00

* RUN # 27 SEP 26, 1996 09:32:02

#.357 #.357 1.147 1.490 1.889 2.735 2.595

RUN# 27 SEP 26, 1996 09:32:02

NO CALIB PEAKS FOUND AREA%

ŔТ	AREA	TYPE	шіогн	AREA%
.357	364	V V	.014	.01912
.574	1830660	PB	.028	96, 14704
.642	8718	BP	.015	.45787
.750	1517	P۷	.031	.07967
.808	24605	VV	.038	1, 29227
.879	283 5	VV	.035	, 14890
.948	703	V V	.030	.03692
1.009	5737	VV	.016	.30131
1.147	3996	٧P	.054	.20987
1.287	1331	PP	.098	.06990
1.490	4989	PΥ	.056	, 26202
1.889	2183	٧P	.055	.11465
2.595	9240	VV	.133	.48529
2.735	7143	VV	. 134	.37515

TOTAL AREA=1904021 MUL FACTOR=1.0000E+00

* RUN # 28 SEP 26, 1996 10:01:17

START

1.280
1.1351.000
1.280
2.096

2.096

2.747

2.608

* RUN # 25 SEP 26, 1996 07:53:56 START

3:873 1.302 1.153 1.504 1.906 2.113 2.618 3.372

RUN# 25

SEP 26, 1996 07:53:56

NO CALIB PEAKS FOUND AREA%

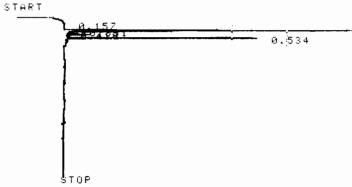
4KEH%				
RT	AREA	TYPE	WIDTH	AREA%
.325	1776	٧P	.060	.04740
.430	236	PΥ	.018	.00630
.477	326	٧P	.024	.00870
.575	3602056	PB	.029	96.12758
.644	20908	8 P	.018	.55797
.754	3608	PΥ	.033	.09629
.813	47047	VV	.039	1.25554
.885	7026	V V	.038	.18750
.955	1879	V V	.033	.05014
1.015	11681	٧P	.047	.31173
1.153	7553	PP	.057	.20157
1.302	2888	PP	.093	.07707
1.504	11766	P۷	.058	.31400
1.587	3357	VV	.057	.08959
1.782	1062	VV	.081	.02834
1.906	5398	V V	.070	.14406
2.113	1962	٧P	.171	.05236
2.460	792	PΥ	.096	.02114
2.618	9068	VV	.103	.24200

TOTAL AREA=3747162 MUL FACTOR=1.0000E+00

3.372

* RUN # 26 SEP 26, 1996 08:27:32

6772 VV .236

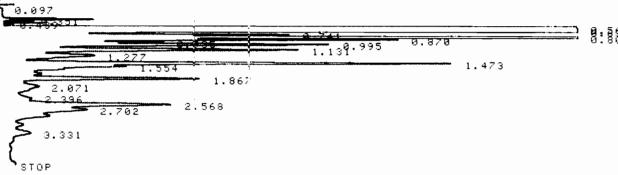

8.179 9.478 9.995 1.271 1.132 1.474 1.869 2.569 3.125

.18072

```
.+>> .1> // .046 / 14655
.536 5083 /B .032 50,60733
```

TOTAL AREA= 10044 MUL FACTOR=1.0000E+00

* RUN ***** 23 SEP 26, 1996 07:37:39


RUN# 23 SEP 26, 1996 07:37:39

NO CALIB PEAKS FOUND

AREA% RT

TOTAL AREA= 10725 MUL FACTOR=1.0000E+00

* RUH # 24 SEP 26, 19\$6 07:46:17

14

RUN# 24 SEP 26, 1996 07:46:17

NO CALIB PEAKS FOUND AREA%

EA%				
RT	AREA	TYPE	WIDTH	AREA%
.097	277	P۷	.057	.00963
.351	1661	VB.	.022	.05774
.439	186	B₽	. ଉପ୍5	.00647
.563	2534336	87	.038	88,09542
.635	124505	V V	. 045	4.32789
.741	9319	VV	.038	32394
.800	61242	VV	. 843	2.12882
.870	14553	ÝΫ	. 043	.50587
.935	5356	VV	.039	.13613
.995	17592	VV	. 063	.61151
1.131	17888	ýΫ	.071	.62180
1.277	9537	VV	.124	.33151
1.473	23291	VV	.061	.80961
1.554	6024	V V	.058	.20940
1.867	12772	VV	.027	.44396
2.071	6446	VΨ	. 21[9	.22407
2:396 2:568	15725	88	: 1 1 1	. 98238 54661
2.568	10/20	y y	. 1 1 1	434661

AREA% RT AREA TYPE WIDTH AREA% 10.44871 . 154 1155 PV .103 .326 696 VV .020 6.29636 2576 VV .039 23.30378 .368 .452 591 VV .036 5.34648 .532 5833 VV .028 52.76822 .588 203 VB .014 1.83644

TOTAL AREA = 11054 MUL FACTOR=1.0000E+00

* RUN # 21 SEP 26, 1996 07:10:22 START

0.041

0.551

0.551

3.068

RUN# 21 SEP 26, 1996 07:10:22

ESTO-AREA

RT AREA TYPE CAL# AMOUNT 3.068 22977 PB 1R 11.822

TOTAL AREA≖ 24887 MUL FACTOR=1.0000E+00

\$TOP

RUN# 22 SEP 26, 1996 07:31:22

NO CALIB PEAKS FOUND AREA%

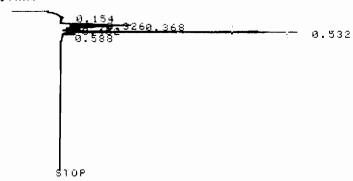
 * RUN # 19 SEP 26, 1996 06:27:18 START 1.888 STOP

RUN# 19 SEP 26, 1996 06:27:18

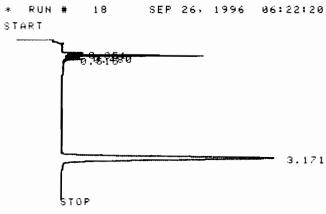
ESTD-AREA

RT AREA TYPE CAL,# ,AMOUNT 19233 88 1R 3.205 9.895

TOTAL AREA = 52393 MUL FACTOR=1.0000E+00


Power failed SEP 26, 1996 07:02:21

BREAK


Configuring, Wait for "LOOP UP" message

************ LOOP UP)********

* RUN # 20 SEP 26, 1996 07:04:06 START

CAL# 2 PT: REF PK CAL#: GROUP PEAKS [Y/N*]: CALIBRATION OPTIONS RF of uncalibrated peaks [0.0000E+00]: Replace calibration fit [Y/N*]: Disable post-run RT update [Y/N*]: * RUN # 17 SEP 26, 1996 06:12:37 START ัฮ.รีโร STOP RUN# 17 SEP 26, 1996 06:12:37 ESTD-AREA 14,87 RIT AREA TYPE CAL# AMOUNT 3.107 41430 BV 1R 21.316 TOTAL AREA= 43302 MUL FACTOR=1.0000E+00 * RUN # 18 SEP 26, 1996 06:22:20 START

RUN# 18 SEP 26, 1996 06:22:20

ESTD-AREA

RT AREA TYPE CAL# AMOUNT

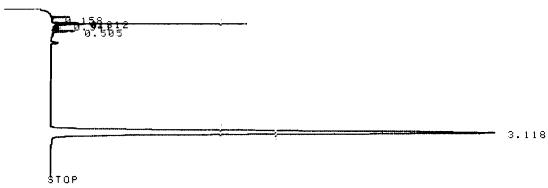
3.171 19265 BP 1R 9.912

TOTAL AREA= 22212

21

MUL FACTOR=1.0000E+00

1.5 SEP 26, 1996 05:25:57 RUN#


AREAX

RIT AREA TYPE WIDIH AREA% ρŪ .0066 .0**1**6 1,56293 4,95380 1,46385 .328 631 ٧B 2000 .ଡାହ୍ର .548 591 PB 3.180 37151 PV .107 92,01942

TOTAL AREA = 40373 MUL FACTOR=1.0000E+00

* RUN # 16 SEP 26, 1996 06:05:56

START

RUN# 16 SEP 26, 1996 06:05:56 0005145

AREA%

RT	AREA	TYPE	нұсім	AREA%
.158	534	VV	.024	1,24790
.312	1125	٧V	.045	2,62900
.341	419	V V	.014	97916
.505	627	ΒV	.030	1.46523
3.118	40037	PВ	. 146	93,67872

TOTAL AREA= 42792 MUL FACTOR=1.0000E+00

* EDIT CALIB @

E = EXTERNAL STANDARD

I = INTERNAL STANDARD

N = NORMALIZATION

CALIB PROCEDURE (E*/I/N1:

REF % RTW (5.0001: NON-REF % RTW [5.000]:

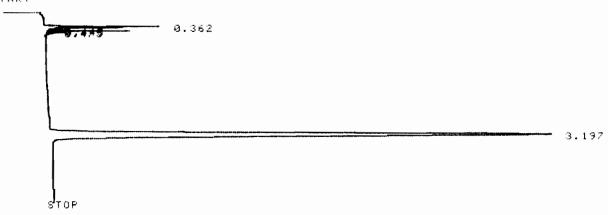
RF BASED ON AREA OR HEIGHT [A*/H]:

CAL# 1 RT: 3.118 AMT: 19.87

AMT/AREA: .0005145 NAME: PCE

PUN# 13 JAN 1, 1901 09:27:51 AREA% RI AREA TYPE WIDTH AREA% .042 .265 1630 ВV 1.62487 4882 4133 2373 .341 .364 .415 VV.021 .036 .041 4.86662 2.36552 .491 1346 ٧B .026 1.34176 .642 PB .025 .20934 210 .106 3.075 85207 88 84.93859 3.916 535 PB .043 .53331

TOTAL AREA= 100316 MUL FACTOR=1.0000E+00


*DATE09/26/96

INVALID SYSTEM COMMAND

*TIME 04:16:14 JAN 1, 1901 04:16:14

*DATE 09/26/96 SEP 26, 1996 04:16:27

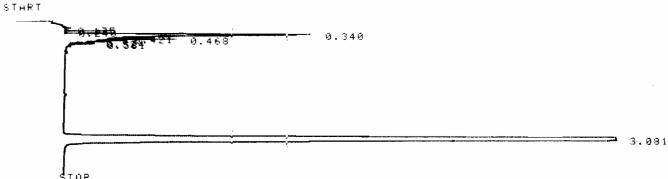
* RUN # 14 SEP 26, 1996 04:59:16 START

RUN# 14 SEP 26, 1996 04:59:16 AREA% RT AREA TYPE МІОТН AREA% .362 2268 .022 4.66168 293 VV .014 770 VB .010 .445 .60224 .475 1.58267 3.197 45321 PB .106 93.15341

TOTAL AREA= 48652 MUL FACTOR=1.0000E+00 .00 043 54

* RUN # 15 SEP 26, 1996 05:25:57 START 0.548.369 0.328

```
3.568
STOP
```

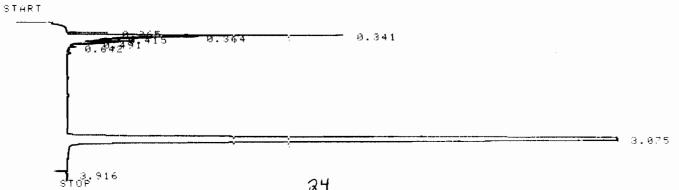

RUN# 11 JAN 1, 3901 00:11:57

AREA%

RT AREA TYPE WIDTH AREA%
.175 601 I PB .100 1 25078
.455 469 I PB .006 97607
3.568 46980 PV .110 97 77315

TOTAL AREA= 48050 MUL FACTOR=1.0000E+00

* RUN # 12 JAN 1, 19@1 09:23:04


RUN# 12 JAN 1, 1901 09:23:04

AREA%

RT	AREA	TYPE	MIDTH	AREA%
.175	1577	в۷	.102	1,50749
.240	514	VV	.009	49134
.340	12128	9.9	.055	11.59342
.421	2491	VV	.030	2.38120
.468	1729	VV	.047	1,65279
.524	1822	VV	. 044	1.74169
.581	370	VV	. 614	,35369
3.081	83980	PB	.166	80,27834

TOTAL AREA = 104611 MUL FACTOR=1.0000E+00

* RUN # 13 JAN 1, 19@1 09:27:51


```
3.133
STOP
```

```
RUN#
                JAN 1, 1901 08:59:28
AREA%
    RI
            HREA TYPE WIDTH
                               AREA%
                               .57648
   .345
             473
                 87
                      .022
   .395
            708
                 ٧P
                     .012
                               .86289
             97
                  PB .010
   .495
                              .11822
```

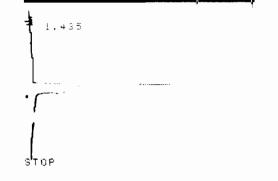
PΥ

.106

TOTAL AREA= 82050 MUL FACTOR=1.0000E+00

80772

3.133


* RUN # 10 JAN 1, 1901 09:05:49 START

98.44240

RUN#	10		MAL	1, 1901	09:05:49
AREA%					
F	ξT.	AREA	TYPE	WIDTH	AREA%
. 15	55	401	PB	.097	.81473
.36	3	166	ΒV	.014	.33727
.43	8	437	V V	.022	.88787
,48	35	122	٧P	.013	.24787
3.39	1	48093	I BB	.109	97.71229

TOTAL AREA= 49219 MUL FACTOR=1.0000E+00

RUN#	7	JAN	1, 1901	00:33:25
AREA%				
RT	AREA	TYPE	HTOIW	AREA%
.168	477	B۷	.027	,23288
.322 .422 .448 .499 .820 1.435	2849 128 348 3307 1682 332	> 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1.39092 36249 16990 1.61453 82118 .16209
3.128	195705	вν	.186	95,54602

TOTAL AREA= 204828 MUL FACTOR=1.0000E+00

* RUN # 8 JAN 1, 1901 08:09:43 START

8:498 0.531 0.838

RUN# 8		JAN	1, 1901	08:39:43
AREA%				
RT	AREA	TYPE	ыіртн	AREA%
.345	1064	VV	.01/2	"55850
.478	73	PB	. ଡଞ୍ଚ	_. 03832
.531	23 01	в٧	.027	1.20781
.590	82	VΒ	.ଡହଃ	04304
.830	1634	вв	.ଡଞ୍ଞ	, 85778
3.161	185356	PB	.107	97.29462

TOTAL AREA= 190510 MUL FACTOR=1.0000E+00

LZ4 ppm

* RUN # 9 JAN 1, 19@1 08:59:28 START

<u>0.495</u>3+5 0.395

750

्रास्त्रात्तः । जन्मः विश्वमः
0.531 0.817 STOP

RUN# 5 JAN 1, 1901 08:28:56

AREA%

AREA TYPE WIDTH AREA% RΤ .394 348 88 .011 8.16326 2301 P۷ .029 53.97608 .531 .817 1614 PB .033 37.86066

TOTAL AREA= 4263 MUL FACTOR=1.0000E+00

* RUN # 6 JAN 1, 1901 08:31:02

START 1.

RUN# 6 JAN 1, 1901 08:31:02

AREH%

RT AREA TYPE WIDTH AREA% 1.045 189230 PB .106 100.00000

TOTAL AREA≃ 189230 MUL FACTOR≃1.0000E+00

* RUN # 7 JHN 1, 1901 08:33:25 STHRT

<u>0.168</u> 0.322

27

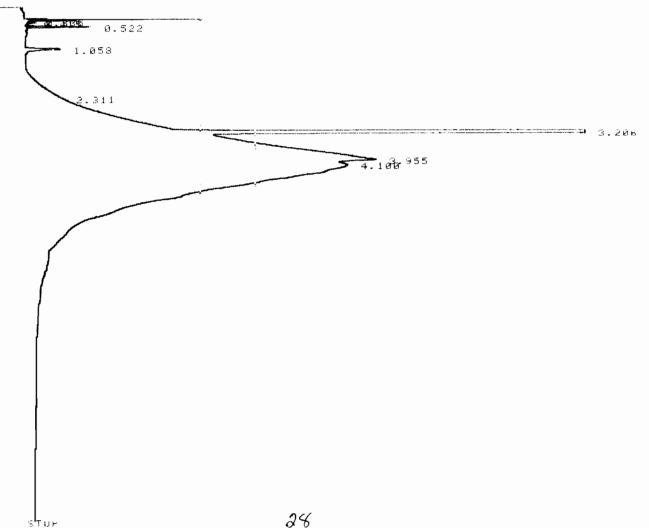
::= ..

- * NO PROGRAM ASSIGNED TO KEY
- * NO PROGRAM ASSIGNED TO KEW

*

BREAK

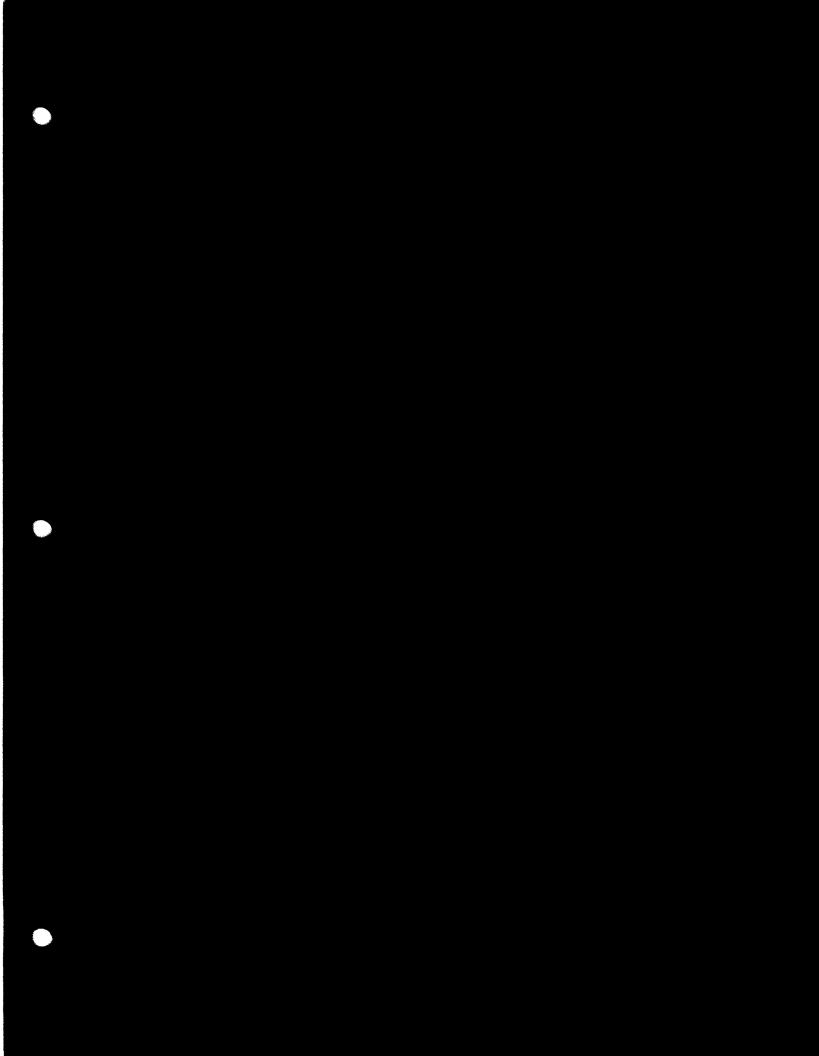
* NO PROGRAM ASSIGNED TO KEW

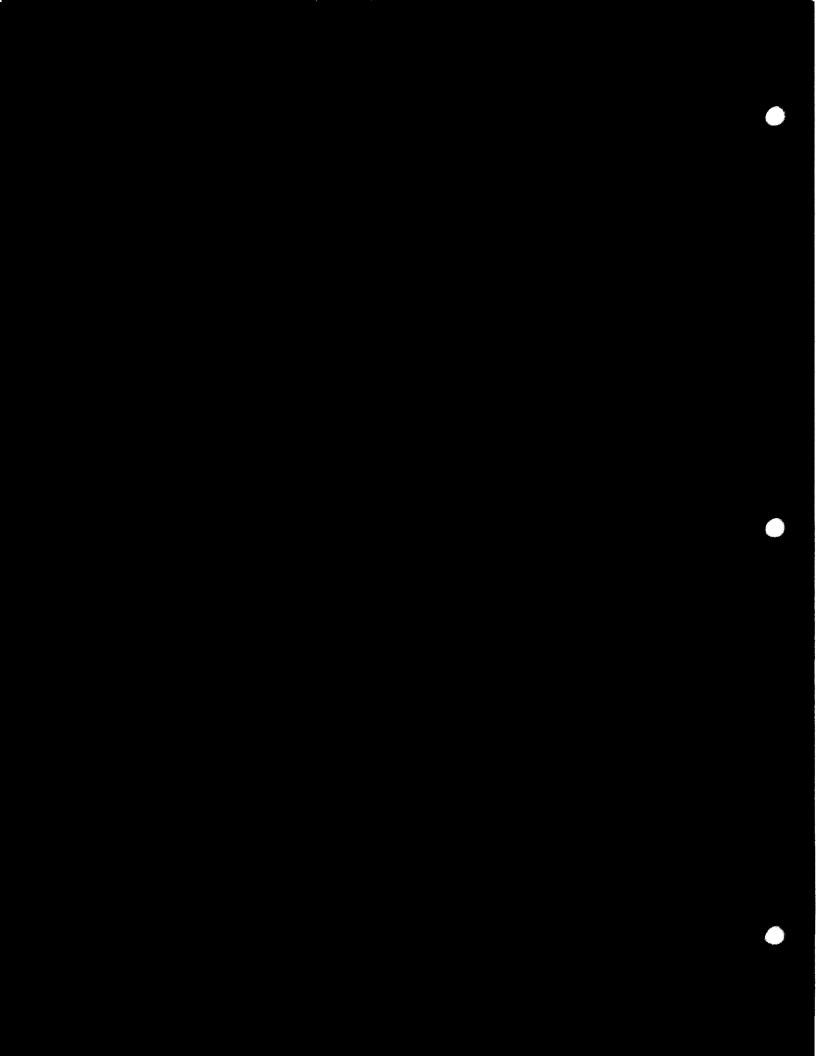

*KKKKKK888888888888888888KKK%KKKMMMMMMMMJJJJJHHHGGGTTTFFFDDEDGGGGGFFRDEES \circ

INVALID SYSTEM COMMAND

BREAK

* RUN # 4 JAN 1, 19Q1 04:48:09


START




```
RUN# 2 JAN 1, 1901 00:27:25
  AFIC AN
                                                      AREA TYPE WIDTH
                         ΒT
                                                                                                                                                   aREas.
                   .321
                                                      3853 BV .817
                                                                                                                                                .35445
  BREHK
  # RUN # 3 JAN 1, 1901 04:14:57
  START
                                                                                                                                            2.27 i
                              8,5820.511
                                                1.063
                                                                                        and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t
                                                                                                                                                                                                                                                                                                                                            2.641
                                                         4.165
                                                                                             ₹<sup>2.3</sup>.37506
                           STOP
                                                                                 JAN 1, 1981 84414:57
RUN#
AREAN
                                                        AREA TYPE Width
                                                                                                                                                   HREFIG
                     元 丁
                                                        3455 9%
                                                                                                             .012
                                                                                                                                                 ."/రగత్త
                 . 315
                                                                                                               .035
                                                                                                                                                 4.50001
                .340
                                                       16456
                                                                                         9.9
                2 4 .7 3
                                                        10000
                                                                                        2.57
                                                                                                              .007
                                                                                                                                                 .34364
                                                                                                                                                   .49345
                                                                                                              .022
                . E : :
                                                        រៈមាមដែ
                                                                                        17
                                                             822
                                                                                        17
                                                                                                               . 822
                                                                                                                                                  .1/920
                 .552
                                                                                                                                                      . 42707
              1.063
                                                           1000
                                                                                          ರರ
                                                                                                                .002
              2.54:
                                                                                         10
                                                                                                                . 00-
                                                                                                                                         07.10710
                                                   641062
                                                                                                                                                7.701700
              بالاقال
                                                                                         1 7
                                                                                                                . 4 / 7
                                                                                                                2000
                                                                                                                                              11 - 1 - 1 - 1 - 1 - 1
              A. Same
                                                       11,127
                                                                                         0.0
              3.762
                                                                                         .. ..
                                                                                                                  . .
                                                                                                                                                 ~ . */*·/· ·
                                                         Land Here
               - 100
```

29

		_

18 #R1

Ŋ,

	Initial Leak Check 124 @ 12 in	Final Leak Check // 6 /3 in		02	COS		Notes							- 1	14 0960 14"								,,	5935 - 1 :2.5	37.86	3	7	2	8	7	Calibratic	 Average	Impinger wer		2.205 1.1099	642.0 623.5	61 2.4 610.3	1.12 5.12	6.7.3 606.6	7 778.8 111.6 1,0	Total n 10/	1
¥	57	25	63014	•			Ċ	Exit Vacuum	.63	\$9 8		00 ७ ८	26	569		Š	2		286	6 93	7	25									-			 						 - -		
	Duct Dimensions	Static Press	Fitter Number	Sample Number			b Pump	Inlet Outlot	67 65	27 59	70 67	69 66	71 68	7/ 68			0	7	73 68	76 77	7	76 72																	+	- - - - - - !		
	15		244	242	2,45		Filter		2 5 0	7 7	123 23 7	192	b 23	231 267		,	3 3 2 8 8	P	727	41 256		233252																			Average	The second secon
	Probe	Pitot Number	Nozzle dia	Assumed Moisture	K Factor				_	1,10 1,43	124 144	2 441 241	3411	144			143	7 1 4 4	1.22 146	1 4 1 2 2 7	_	7 2 -																				
	9/26	2		1.47	1.0043		Вđ		3 40			03		5 5	0		<u>ئ</u>	197	20	250		45	0																	-	-	
	Date	ď	Meter Number	Meter p H @	Meter I'		• Meter	Votane	6 1	2003	20353	19902	20903	212,43	21 496		21.51.7	2 4 8 1 2	2 20 68	12 436	263	22922	23175																	-		Average
			NTERNATIONALEE	ţ	7	3	Point Sample	Time	-	٠,	3 10	٧	2		30		0	7	3 10	31 4	5 20	6 25																			Total / Average	
			INTERNA	Plant Acamont	Test Number	Operator A			1 3281	1930	787	1.5	13 45			۲,	2 20/1	10	21/1/	14/7	71/1	12 41																			Tot	

			_
			_
			_

Initial Leak Check 10 6 11 in Final Leak Check 6 in Pitot Leak Check 02	CO ₂	Notes								0.0							9	1.86 6994					Nozzie Calibration	2 3		fimpinger Weig		304. 6	650.3	~ \ \	391.4	0,000,0	0.37
Initial L Final L Pitot L								2	74	8	1							2 360,8	2	ľ	9	7		-	Average	i	₩ -	7			400	508	- 1
21089		ger Pump	<u>~</u>	7 7 7	202	523	7		20 7	,		2/2	727	536	F 3 8	7 00	8 S S												-				
sions Br nber		Pump Impinger		7.8	18	78			73			2/2	7 /	1 /	7 /	7 / 1	70													 			- - - -
Duct Dimens Static Press Filter Numb Sample Nur	707	Pump	19 (77	16	16	78	+	-			1/6	7	7	75	7 2	ر د												+	+			+
hpr an	2,45	Probe Filter		123 745	752 4 12	216 260	557 322		77628	1		192222	128268	ר יו ודו ב	23125	23/12/2	22722																_,
Probe Pitot Number Nozzle dia Assumed Moisture	gor	4 Stack Terms	1/3/1 8 5		144	-	9 / / 0		7 7 2	1		31 137	14180	1 43	15/1/1/2	an 11 2	7145															+	
	1.0043 KF	H d dd	Ë	1	17 5 1	47 17	17 2 10		71. Lh			38			1 25		/] 2																
er Number		Motor	3 2 68 6		3 9 1 5	_	22 417	1	7 7	7 48 6 4		49939	1225	55.41	1085	_	02 5 9	089.99														<u>+</u>	
Date Port Mete	We	Sample	7		1 01	$\overline{}$	2 02		7.5	7		2	5		15 21	٦	18 1	2															
	A. C.		\ \ \ \	رہ	3	٠,		Down.	+			_	7	4		7																	
RADIA INTERNATIO	Test Number	Clock Po	1848 1	05.31	1585	16 800	16 05	1097	2/2/2	2/8		1 9761	15 6	17.6	1741	17 46	17 41	95 [1															

ţ

•		
		_

NTEAN IN TOWN A				Set of			13.6		Probe				ì			Ž	Dimer	Shors		3.47		Initial Leak Check	Check	•	5
NTERNATIONALIES Mater Number 34 Notate that Notate	1					<u> </u>	22			, Z	ž	I	,			ita	, Drace		,	2 3		Final Leaf	 	•	
The first of the control of the co	NITED	MATION			14		20.10				5	ا ز					A LOS	, ,		اد_		Ditot I ook	1000	•	
The second of the second of	Plant		V -	Meter	I a		1.97		Assur		Moisi		7.5			Sam	Se No	aber A	8			TIOL LOSS	 		
Time	Test Nu	mber /		Mete	<u>.</u>		1.0043		X F				2.4	h					1				ု ၂ • ၀ွိ		
Tries		Port Point	Samole			,	9.4		=		3,13		2	E SE		gus	Pum		physical		2		Notes		
10.14 1			Time		3		ı		•				Œ.	Tem		nie.	S S		3		TEN.				
	10:14	-	0 3	9 /	2,2	~	0 4	0	. 9	ш	16		2		۲				ė						
1. 1. 1. 1. 1. 1. 1. 1.	20.01	-1] -	9 1	<u> </u>	B	7.0	0	0.9	80	14	<u>-</u>	11/2	7 7	90					,					
1	10.26	64	Į .	9	S		S	0	1.2	7	7	1 /	6 6	2	2	29		3	V	1					
	10.25	0*		-	0	8	\$	7	1,1	2															
1	2	1	30	9	9	_		7	7 1	7	7	=	0	7 7	9	_	7	7		_				.	
	00. 1	9	35	_	-			2	.3	7	2	=	~	v	•		9	ط	·	_					
11.25 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	2	-					~	4		2	4	1	$\overline{}$	4		69	9	٣		0					
1.25		_		1	_	_	S	٥		۲		1	_	٦	کر	9 9	9	v	_	۲					
11.25 2 11.26 2. 11.26 2. 11.26 2. 11.30 1.34 1.6 1.4 1.15 2.13 1.6 64 6.5 1.5 1. 11.30 1.34 1.6 1.4 1.6 1.4 1.15 2.13 1.6 64 6.5 1.5 1. 11.30 1.34 1.6 1.4 1.6 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	200	•		8	0	9																			
11.25. 2. 1.8 0.0 6.8 4'O 98 1 4 1.15 5 1.3 5 6 6 6 5 5 1.7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 4 6 7 5 1.3 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7		7																		_					
11.25. 2. 1. 8		٨																							
11.25 2 11.8 0.06 8 4.0		9																							
25. 2. 1. 18 0.068 40 9 9 14 1 15 5 13 5 6 4 6 5 5 5 1 1 37899 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																			-	_					
2. 1216.4 h.c. 192.32 49 116 139 182.152 66 66 55 5 2 2 65 65 65 137 1 1378.9 1 1378.9 1 147.0 147.0 1		2		8	_	9		0	6	Ø		-	٨	_	٨	$\overline{}$	9	4	1	2					
137 3. "1 8 1,20 1/4 1 1 1 2 2 3 3 4 1 3 8 4 1 4 1 2 2 2 3 3 4 1 4 1 2 3 3 4 1 4 1 2 3 3 4 1 4 1 2 3 3 3 3 3 3 3 3 3	2 2	ı	A.	$\overline{}$	7	7			/[/		3		7		7	_			$\overline{}$	2					
	8	1	75	+-	۲	5			1	0										_		1		1.1%	
-1 1 2 1 6 7 5 8 1 4 7 1 0 9 1 4 7 6 6 6 6 5 5 7 3 4 5 5 6 4 5 5 6 4 5 5 6 5 6 5 5 6 5 6 5 6 5 6 5 6 6 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8		1		%	~	_	5	0	1.4.		ħ	2		_	2	9		O		7		2		9.159	
5 1 8 9 1 3 5 8 1 4 7 1 4 7 2 6 7 6 7 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6		↓		2	2	_	7	80	4	1			00		_			S	\neg	7		3			
6 - 1 9 3 9 7 5 8 1 4 7 1 3 9 1 2 7 5 6 7 6 7 6 7 6 7 6 8 6 7 7 6 8 6 7 7 7 8 9 7 7 8 9 7 7 7 8 9 7 7 8 9 7 7 8 9 7 7 8 9 7 7 7 9 9 9 9		+		- 2	0		-	ŵ	_		7		_	_	0-				7	०		4			
		_	'	-	~		\ \frac{\frac{1}{3}}{3}		_			2		_	_		9		4	7		5			
Nozzie Calibration		╄			e	5			-													9			
1 2		, ,			-				-																
1 1 2						F																No.	zie Calib	ration	
Average Impinger Weight				_																		-	7	ا اس	
Final Initial					_	+															7				
Final initial from the first final initial ini				+		F			_														mpingerV	Veights	
1 65.3 6 491.8 2 630.6 617.7 3 603.7 603.3 4 570. \$68.8 6 771.6 71.4 71.4 Average Average Total p				+	-	-																Final	Initia		sence
2 630.6 617.7 3 603.7 603.3 4 570. \$68.8 5 600.1 600.1			_	+	+	F		\perp	_													15.59	491.8	166.	8
Average A Average Total p		+		+	_	T	 -		_		F	E										-	617.7	12.9	
Average A Total p Total p				#	+	T	_	\pm			F				-								603.3	7	
Average A Total p				_	-	1	-		_														8.895	1.2	
Average A Total p				+		1	-	_	-		F												1.009	0	
Average A Total p				+	+		+		-		F								_	4		7	761.4	(Ø	2
Average A		Total / Av	rerade			-									Ave	rage						7	_	7	
	_				Vera	\ ^]											Total	٦	3

		_
		_

RADIAN INTERNATIONAL LLC. PARTICULATE AND HCI TEST DATA WORKSHEET

CLIENT	Claremont			
LOCATION	Outlet	Outlet	Outlet	
TEST NO.	1	2	3	
DATE:	27-Sep-96	-	·	
TIME :	10:14	14:25	15:45	
TIME .	10.14	14.20	15.45	
TEST DATA INPUT				
Barometric Pressure (in. Hg)	30.1	30.1	30.1	
Stack Area (ft2)	3.14	3.14	3.14	
Nozzle Diameter (in.)	0.244	0.244	0.244	
Total Sampling Time (min.)	53 1.004	60 1.004	60 1.004	
Calibration Factor (Y) Pitot Coefficient	0.84	0.84	0.84	
Average Sqr Rt of Vel Head (in. wc)	0.71	0.69	0.67	
Average Orifice Pressure Drop (in. wc)	1.23	1.16	1.11	
Average Meter Temp. (°F)	100	98	76	
Average Stack Pressure (in. wc)	0.3	0.25	0.28	
Average Stack Temp. (°F)	154	152	148	
Meter Volume @ Meter Conditions (ft3)	34.27	33.49	33.94	
Total Water Collected (ml)	186.5	191.1	192.6	
CO2 in Stack Gas (%)	2.6	2.8	2.5	
O2 in Stack Gas (%)	17	17.1	17.4	
CO in Stack Gas (%)	0	0	0	
Total Particulate Catch (mg)				
Total HCL catch (mg)	0.16	0.16	0.14	
CALCULATED VALUES	20.74	20.40	22.07	Averes
Meter Volume (dscf)	32.74 21.18	32.10 21.92	33:87 21.15	Average 21.42
Water Vapor in Stack Gas (%) Molecular Weight of Stack Gas (dry)	29.096	29.132	29.096	29.11
Molecular Weight of Stack Gas (wry) Molecular Weight of Stack Gas (wet)	26.75	26.69	26.75	26.73
	2,659	2,582	2,517	2585.94
Average Velocity of Stack Gas (fpm) Actual Stack Gas Flowrate (acfm)	8,354	8,111	7,907	8123.98
•	7233	7044	6913	0120.00
SCFM	5701	5500	5451	5550.35
Stack Gas Flowrate (dscfm)				99.78
Isokinesis (%)	104.91	94.19	100.25	99.70
EMISSION CONCENTRATION				_
Particulate Concentration (gr/acf)	0.00E+00	0.00E+00	0.00E+00	0.00
Particulate Concentration (gr/dscf)	0.00	0.00	0.00	0.00
Particulate Concentration (lbs/dscf)	0.00E+00	0.00E+00	0.00E+00	0.00
Particulate Concentration (µg/m3)	0	0	0	0.00
HCI Concentration (mg/m3)	0.17	0.18	0.15	
HCL Concentration (ppm)	0.11	0.12	0.10	
EMISSION RATE				
Particulate Emission Rate (lbs/hr)	0.00	0.00	0.00	
HCI Emission Rate (lbs/hr)	0.0037	0.0036	0.0030	0.0034
	0.70	0.00	0.42	. 0.64
NOx	0.70	0.80	0.42	0.64
SO2				
CO	0.29	0.24	0.14	0.23

			-	Meter Box Calibration								Claibration	Readout
												Temp.(F)	Temp.(F)
	Full Calibration											3	
		90	•	Moder #	5	704.4			ě	28.5		8	
	Calc	26-0-5			2	1			3	200		3	
			•	1000	•	.00			Variation 11	4		R	
	* XX	Į.		Cal Meder 10.	-	à			ABCOM	0	2	3]
Affice	Cal. Meter	Gas Volume		Gas Volume	Cal. Temp	٩	f	Meter Temp		Ifme	Ρλ	Delta	
etting	Pressure	Cal. Meter		Meter Box	드	5		<u>.</u>	Out			6	
050		Final	25.138	88.137		le e	Þ	٤	74	16.75			
		Inf.	18.587	[8	R	9/	<u> </u>		1.0016	1.88	
		Total	6.551	6.640 Avg.	Avg.		70.0 Avg	'WG	75.0				
0.50		Final	18.587	81.497		70	10/	*	74	15.75			
		Inf	12.388	75.235		92	6	8/	7		1.0064	1.86	
ee.		Total	6.199	6.262 Avg	Avg.		70.0 Avg	Wg.	15.8				
PB:		Final	112.271	75.115		1.69	69	11	74	01			
***		Inf.	105.129	67.902		10/	2	78	7		1.0042	2.03	
***		Total	7.142	7.213	AVD.		69.5 Avg	.ba	15.8				
88.		Final	105.129			. 69	69	9/	1 13	8.5			
		Init.	760.66			e/	6	1	74		1.0026	5.06	
		otal	6.032	6.090 Avg.	Avg.		69.5 Avg.	W.	74.8				
3.00		Final	89.243	51.932		. 69	69	7.3	7.2	b) 14			
		init.	76.282			69	69	9/	13		1.006	2.01	
**		Total	12.961	12.979	AVG		69.0 Avg	łwg.	/3.5				
3.00		Final	896.868	61.682		69	69	73	72	5.01 10.5	L		
**		Init.	89.243	51.932		69	69	15		-	1.0047	2.01	
		Total	9.725	9.750	AVG		69.0 Avg.	Wg.	/3.3				
										Ave.	1,0043	1.9745	

	110
Z	AL
1	NO
٠	/N
7	ΙEI
1	Z

Meter Box Calibration

Claremont 23-Oct-96	
Post Calibration Job: Date	;

Cal Meter #	Cal Meter Yd:
23-Oct-96	N-34
Date.	Box #

Cal Temp.(F)	Readout Temp (F)
0	2
20	20
100	100
250	252
200	200

29.72

Pbar Vaccum

7014

Orifice Cal Meter Satting Pressure	Gas Volume Cai. Meter		Gas Volume Meter Box	Cal. Temp In	N PO	eter Temp In	a de	Time	ρλ	Delfa H@
1.10	Final	90.249	85.606	92	۶ ا	74	۶	31.25		
	Initial	72.548	67.442	2	20	02	69		0.9801	1.91
	Total	17.701	18.164	Avg.	70.0 Avg.	vg.	70.8			
1.10	Final	100.344	92:306	7.4	71	74	72	48		
	Initial	90.249	85.606	2	2	73	2		0.9875	1.95
	Total	10.095	10.300	Avg.	70.5 Avg.	vg.	72.3			
1.10	Final	12.894	108.704	20	70	73	72	23		
	Initial	0.344	92.906	2	2	74	7		0.9895	2.05
	Total	12.550	12.798	Avg.	70.0 Avg.	vg.	72.5			
								AVG.	0.9857	1.9679

HCL DATA CORRELATION

Sample No.	<u>Report Run No.</u>
CL-LTEV-II-AI-074	1
CL-LTEV-II-AI-078	2
CL-LTEV-II-AI-082	3
CL-LTEV-II-AI-084	Field Blank
CL-LTEV-II-AI-087	Reagant Blank

CASE NARRATIVE

Analysis of Samples for the Presence of

Chloride by

Ion Chromatography

METHOD 26A (5/94 Federal Register)

Date:

October 4, 1996

Client ID:

Radian Corporation

TLI Project Number:

39040

This report should only be reproduced in full. Any reproduction of this report requires permission from Triangle Laboratories, Inc.

Objective: Analysis of four impinger samples for chloride by Method 26A.

Method:

Eleven impinger samples were received by Triangle Laboratories, Inc. on September 28, 1996 without coolant and in good condition. The samples were stored at ambient temperature prior to analysis. Per client request, only four samples are being reported at this time. The samples were analyzed for chloride content by ion chromatography using EPA Method 26A (5/94 Federal Register) with suppressed conductivity detection. The results reported relate only to the items tested.

The analysis conditions are listed below:

Instrument: Dionex DX300 Ion Chromatograph with a PED-II Conductivity Detector Eluent flow: 1.5 mL/min. (1.8 mM sodium carbonate/1.7mM sodium bicarbonate)

Suppressor: Anion self-regenerating suppressor-1

Sample Loop: 25 uL

Detection: Conductivity - suppressed ion Data Recording: Dionex AI 450 software

Report:

Enclosed with the case narrative are copies of the client paperwork, sample log-in sheets, and log book pages. The data are reported as quantitation reports and chromatograms. A seven point calibration curve was performed ranging from 0.5 ppm to 100 ppm both before and after sample analysis. Reported concentrations are mean values determined from duplicate analyses.

Results:

Chloride was not detected in the laboratory blank. The current method detection limit established for chloride by ion chromatography is 0.04 ppm.

Chloride was detected in all the field samples at levels below the calibration range. Reported amounts for these samples should be considered estimates.

A matrix spike and matrix spike duplicate pair was analyzed. The percent recovery for both of the matrix spikes was within QC limits. The relative percent deviation between the MS and MSD was within quality control limits.

The data in this package has been judged to be valid according to the guidelines of Method 26A (5/94) except as noted above. Should you have any questions, please feel free to contact our Project Scientist, Walter Murray, at (919) 544-5729, Ext 271.

For Triangle Laboratories, Inc.,

Report Preparation:

Quality Control:

Tracy Wardell

Report Preparation Chemist

Amy Boehm

Report Preparation Chemist

The total number of pages in this data package is ______.

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

American Association for Laboratory Accreditation. Valid until July 31, 1997. Certificate Number 0226-01. Accreditation for technical competence in Environmental Testing.(Including Waste Water, Sol/Haz Waste, Pulp/Paper, and Air Matrices) Parameters are AOX/TOX, Volatiles, Pesticides, PCB's, BNA's, and Dioxin/Furan. Method 1613 for Drinking Water.

State of Alabama, Department of Environmental Management. Laboratory I.D. # 40950. Drinking Water for Dioxin. Expires December 31, 1997.

State of Alaska, Department of Environmental Conservation. Drinking Water for Dioxin. Expires December 31, 1996.

State of Arizona. Department of Health Services. Certificate # AZ0423. Drinking Water for Dioxin, Dioxin in WW and S/H Waste. Effective May 26, 1996. Expires May 26, 1997.

State of Arkansas, Department of Pollution Control and Ecology. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furan; AOX;TOX. Expires February 14, 1997. Primary No. 94-06497.

State of California, Department of Health Services. Certificate # 1922. Selected Metals in Waste Water; Volatiles, Semi-volatiles, and Dioxin/furan in WW and Sol/Haz Waste. Dioxin in Drinking Water. Expires August 31, 1997.

CLIA Registration. ID # 34D0705123. Expires May 30, 1997.

State of Connecticut, Department of Health Services. Registration # PH-0117. Dioxin in Drinking Water. Expires September 30, 1397.

Delaware Health and Social Services. Dioxin in drinking Water. Effective December 13, 1993. Expires December 31, 1996.

FDA Registration. ID #'s 059244 1053481. Expires July 1996.

Florida Department of Health and Rehabilitative Services. Dioxin in DW. Drinking Water ID HRS# 87424. Metals, Extractable Organics (GC/MS), Pesticides/PCB's (GC) and Volatiles (GC/MS) in Environmental Samples. Environmental water ID HRS# E87411. Expires May 27, 1997.

Hawaii Department of Health. Dioxin in drinking water. "Accepted" status for regulatory purposes until March 1, 1997.

Idaho Department of Health and Welfare. Effective August 18, 1993. Dioxin in Drinking Water. Expires November 30, 1996.

State of Kansas, Department of Health and Environment. Valid until January 31, 1997. Environmental Analyses/Non potable Water and Solid and Hazardous Waste. Method 1613 for driOnking water. ID #'s - Drinking water and/or pollution control - E-215. Solid or Hazardous Waste - E-1209.

Commonwealth of Kentucky, Department for Environmental Protection. Drinking Water for Dioxin. ID# 90060. Valid until December 31, 1996.

Maryland Department of Health and Mental Hygiene. Drinking water by Method 1613A. Expires September 30, 1996.

State of Michigan, Department of Public Health. Drinking water by Method 1613. Expires October 1, 1996.

Montana Department of Health and Environmental Services. Effective October 1, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of New Jersey, Department of Environmental Protection and Energy. BNAs and Volatiles. Drinking water for Dioxin. Expires October 30, 1996. ID # 67851.

State of New Mexico, Environment Department. Drinking water for Dioxin. Expires July 31, 1997.

New York State Department of Health. Valid until June 30, 1996. ID #11026. Environmental Analyses of non potable Water, Solid and Hazardous Waste. Method 1613 in DW.

State of North Carolina, Department of Environment Health and Natural Resources Certificate # 37751. Expiration date is December 31, 1996. Drinking Water for Dioxin.

State of North Carolina, Department of Environment, Health, and Natural Resources, Division of Environmental Management. Certificate # 485. Expires December 31, 1997. Metals, pesticides, semi-volatiles and volatiles; TCLP.

State of North Carolina, Department of Environment, Health, and Natural Resources - Division of Radiation Protection. General License No. 32-0875-0G; Specific License No. 0954-1. Expires April 30, 1998.

North Dakota State Department of Health and Consolidated Laboratories. Certificate # R-076. Effective October 4, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of South Carolina, Department of Health and Environmental Control. Dioxin/Furans, BNA, Volatiles, and PCBs/pesticides under Clean Water Act, 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste. Expire June 30, 1996 and August 31, 1997. ID# 99040

State of Tennessee. Department of Environment and Conservation. Valid until February 5, 1999. Method 1613 Drinking water only. ID# 02992.

U.S. Army Corps of Engineers. Renewed until Nov. 30, 1997. Validated to perform methods 8280, 8290.

U.S. EPA Region V. Dioxin in Drinking Water. Expires December 29, 1996.

U.S. EPA Region VIII, for the State of Wyoming. Dioxin in Drinking Water. Expires December 31, 1996.

U.S. EPA Region X. Certification for 2,3,7,8-TCDD in Drinking Water.

State of Utah, Department of Health. Valid until December 31, 1997. Certificate Number E-166. Certification for the following parameters: Semi-Volatiles and Volatiles under RCRA; Volatiles under Clean Water Act: Dioxin/furans by Method 8280; Drinking water for Dioxin by Method 1613; Metals including Mercury and Microwave Digestion.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. ID # 00341. Dioxin in Drinking Water. Expires June, 1996.

State of Washington, Department of Ecology. Valid through September 11, 1996. Lab Accreditation Number C067. Scope of Accreditation applies to water analyses for Polychlorinated Dibenzo-p-dioxins and Folychlorinated Dibenzo-furans, volatiles, Base/Neutral and Acid Organics.

State of Washington, Department of Health. Drinking water for Dioxin. Expires April 30, 1997.

State of West Virginia, Department of Health. Drinking water for Dioxin. Expires December 31, 1996.

State of Wisconsin, Department of Natural Resources. Valid until June 30, 1996. Laboratory ID Number 999869530. Certification for the following categories of Organics: Purgeable, Base/Neutral, Acid, PCBs, and Dioxin.

7

TL# 39040-HCL
CLIENT SAMPLES
RADIAN CORPORATION
03-OCTOBER-96

140-69-1 MSD	140-69-1 MS	140-69-7	140-69-5	140-69-3	140-69-1	זני פ
CL-LTEV-II-AI-074	CL-LTEV-H-AI-074	CL-LTEV-II-AI-084	CL-LTEV-II-AI-082	CL-LTEV-II-AI-078	CL-LTEV-II-AI-074	CLIENT 1D
2.51 2.51	2.52 2.51	2.36 2.37	2.39 2.38	2.38 2.41	2.38 2.38	4
455389308 457731520	452083014 454027840	490477 493997	1416848 1411162	1832448 1854894	1792709 1718762	AREA
.ee. .ee.		5.00 5.00	9 9 3 3	8.21 6.22	6.25 6.24	LOG AREA
50.68 50.91	50.32 50.52	0.00	002	0.26 0.28	0.28 0.27	LOG AREA RUN CONC
~ ~	22					PACTOR
101.32 101.81	100.63 101.04	0.00	0.22	0.26	0.26 0.27	SAMPLE CONC AVG CONC RPD TOTAL TOTAL mg TOTAL mg PH PPM PPM mL CI HCL CL2
101.57	100.84	0.08	0.22	0.26	0.27	AVG CONC
0.5	2	0.7	2	13	6	200
8	550	8	590	1.3 595	8	ML TV101
85 88	85 86	0.03	0.13	0.15	0.27 4.0 550 0.15	TOTAL mg
ı	I	0.03	0.14	0.16	0.16	TOTAL mg
i	1	i	I	i	ı	TOTAL mg
1	ı	-	-	_	-	7

MATRIX SPIKE

140-69-1 MSD	SAMPLE ID
2.52 2.51	RT
0.15	NATIVE AMT. CL (mg)
55,46 55,86	MS AMT. CL (mg)
55.0 55.0	AMT. SPIKE (mg)
N N	ş
101	%RECOVERY

% RECOVERY=[(AMT. SPIKED-AMT. NATIVE)(ADDED SPIKE AMT.)] X 100 TOTAL mg HCL: (TOTAL mg CL) (FW HCL/MW CL) TOTAL mg CL2: TOTAL mg CL x 1 ND=NOT DETECT

TLI 39040-HCL

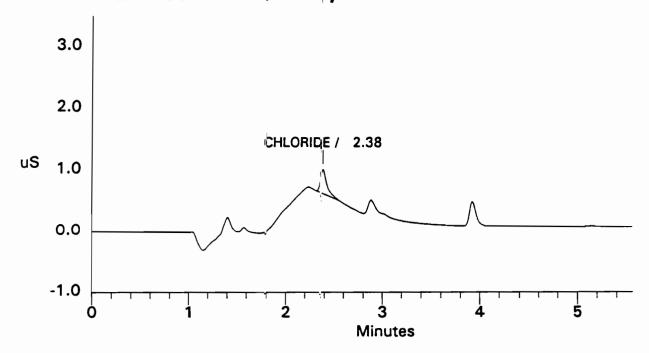
Data Reprocessed On 10/04/1996 10:42:14

Sample Name: 140-69-1 Date: 10/03/1996 18:12:09

Data File : C:\DX\DATA\3904DHCL\14069101.D19

: C:\DX\METHOD\CHLORIDE.met

ACI Address: 1 System: 1 Inject#: 19


Analyst Column:

Detector: PED-Cond.

Calibration Volume Dilution Points Rate Stop Area Reject Start 3600 0.00 5.56 External 5Hz 1000

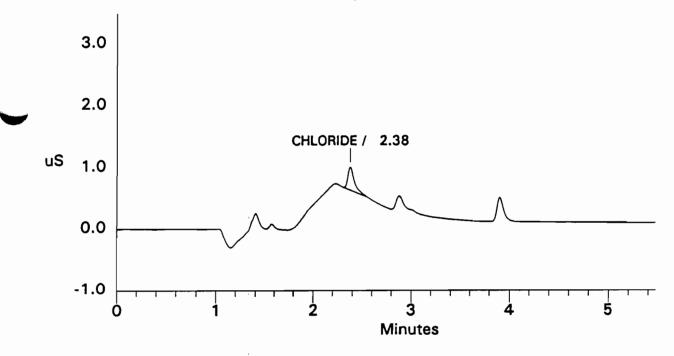
Pk. Num	Ret Component Time Name	Concentration	Height	Area Bl. %Delta Code
1	2.38 CHLORIDE	0.000	387209	1792709 1 1.42
	т	otals 0.000	387209	1792709

File: 14069101.D19 Sample: 140-69-1

Data Reprocessed On 10/04/1996 10:43:38

Sample Name: 140-69-1 Date: 10/03/1996 18:26:06 Data File : C:\DX\DATA\39040HCL\14069101.D20

Method : C:\DX\METHOD\CHLORIDE.met


ACI Address: 1 System: 1 Inject#: 20 Detector:PED-Cond.

Analyst : Column:

****************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name	Cond	centration	Height		Bl. Code	%Delta
1	2.38	CHLORIDE		0.000	373119	1718762	1	1.28
			Totals	0.000		1718762		

File: 14069101.D20 Sample: 140-69-1

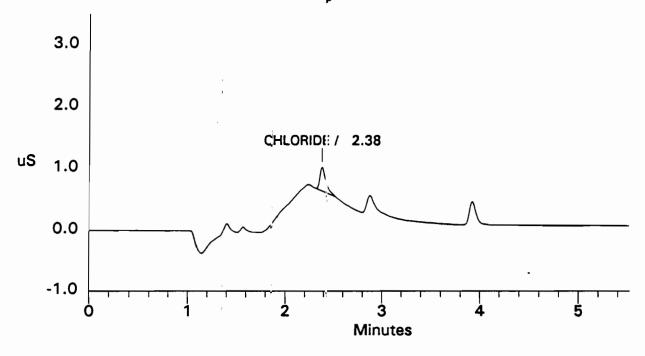
Data Reprocessed Ou 10/04/1996 10:48:32

Sample Name: 140-69-3 Date: 10/03/1996 18:40:03

Data File : C:\DX\DATA\3904CHCL\14069301.D21

Method : C:\DX\METHOD\CHIORIDE.met ACI Address: 1 System: 1 Inject#: 21

Analyst : Column:


Detector: PED-Cond.

Calibration		1		-	-
External	1	ì		5.52	1000

**************** Component Report: All Components ****************

Pk. Num		Component Name	Con	centration	Height	Area	Bl. Code	%Delta
1	2.38	CHLORIDE	'	0.000	380967	1632448	1	1.42
			Totals	0.000	380967	1632448		

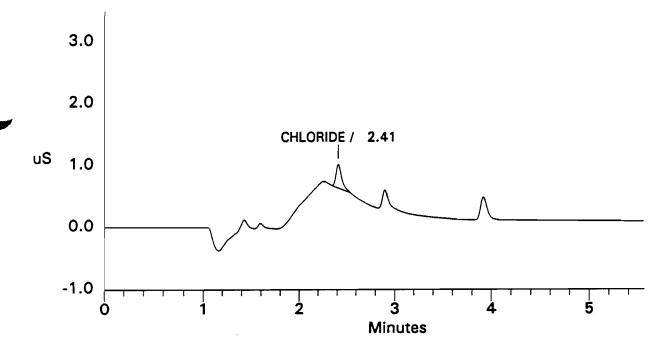
File: 14069301.D21 Sample: 140-69-3

Data Reprocessed On 10/04/1996 10:50:05

Sample Name: 140-69-3 Date: 10/03/1996 18:54:00

Data File : C:\DX\DATA\39040HCL\14069301.D22

Method : C:\DX\METHOD\CHLORIDE.met


ACI Address: 1 System: 1 Inject#: 22 Detector:PED-Cond.

Analyst : Column:

Calibration				-	-
External			0.00		1000

Pk. Num	Ret Time	Component Name	(Concentration	Height	Area	Bl. Code	%Delta
1	2.41	CHLORIDE		0.000	384981	1654694	1	2.55
			Totals	0.000	384981	1654694		

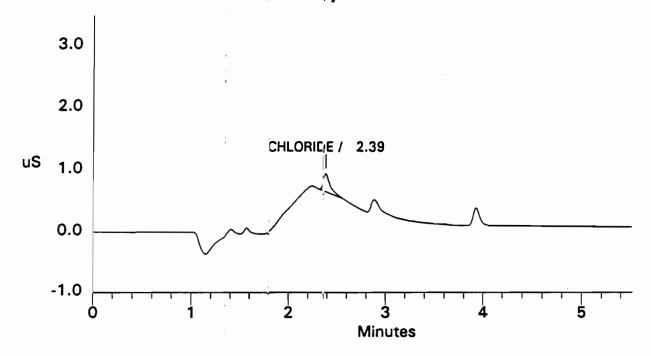
File: 14069301.D22 Sample: 140-69-3

Data Reprocessed Cn 10/04/1996 10:45:29

Sample Name: 140-69-5 Date: 10/03/1996 19:07:56

Data File : C:\DX\DATA\3904|OHCL\1|4069501.D23

Method : C:\DX\METHOD\CHLORIDF.met
ACI Address: 1 System: 1 Inject#: 23 Detector:PED-Cond.


Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop	Area Reject
			,				
Evternal	1	1	3600	SHO	0 00	5 52	1000

***************** Component Report: All Components ****************

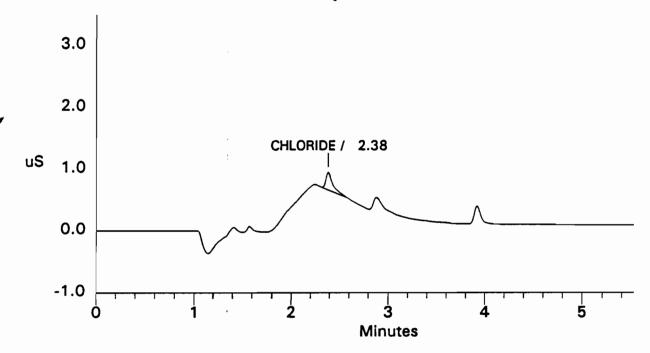
Pk. Num	Ret Component Time Name	cor	ncemtration	Height		Bl. Code	%Delta
1	2.39 CHLORIDE		0.000	294472	1416646	1	1.56
		Totals	0.000	294472	1416646		

File: 14069501.D23 Sample: 140-69-5

Data Reprocessed On 10/04/1996 10:46:40

Sample Name: 140-69-5 Date: 10/03/1996 19:21:51

Data File : C:\DX\DATA\39040HCL\14069501.D24


Method : C:\DX\METHOD\CHLORIDE.met
_ACI Address: 1 System: 1 Inject#: 24 Detector:PED-Cond.

Analyst : Column:

***************** Component Report: All Components ****************

Pk. Num	Ret Time	Component Name	Cor	ncentration	Height	Area	Bl. Code	*Delta
1	2.38	CHLORIDE		0.000	288942	1411162	1	1.42
			Totals	0.000	288942	1411162		

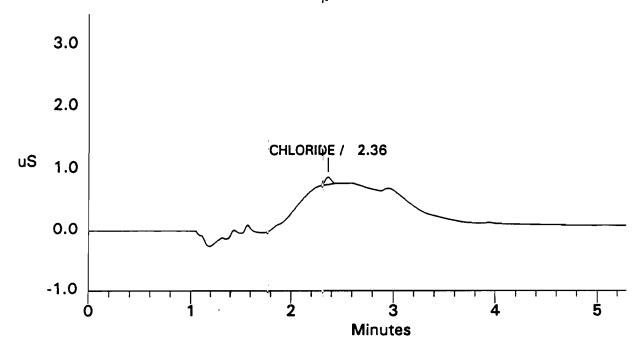
File: 14069501.D24 Sample: 140-69-5

Data Reprocessed On 10/04/1996 10:39:49

Sample Name: 140-69-7 Date: 10/03/1996 19:49:45

Data File : C:\DX\DATA\3904\psi HCL\1\psi 069701.D26

Method : C:\DX\METHOD\CHLORIDE.met


ACI Address: 1 System: 1 Imject#: 26 Detector:PED-Cond.

Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop .	Area Reject
External	1	1	3600	5Hz	0.00	5.29	1000

Pk. Num	Ret Comp		oncentration	Height	Area E	31. 4 ode	BDelta
1	2.36 CHL				490477	1	0.57
		Totals	0.000		490477		

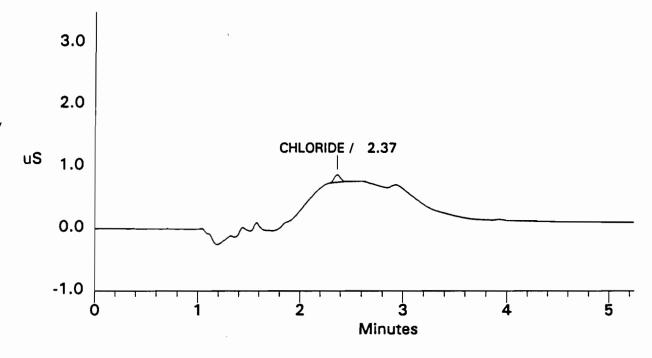
File: 14069701.D26 Sample: 140-69-7

Data Reprocessed On 10/04/1996 10:37:14

Sample Name: 140-69-7 Date: 10/03/1996 19:35:47

Data File : C:\DX\DATA\39040HCL\14069701.D25

Method : C:\DX\METHOD\CHLORIDE.met


ACI Address: 1 System: 1 Inject#: 25 Detector:PED-Cond.

Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop A	rea Reject
External	1	1	3600	5Hz	0.00	5.25	1000

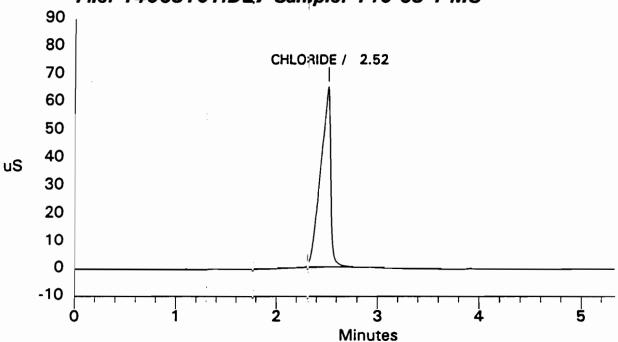
Pk. Num		Component Name	C	oncentration	Height		Bl. Code	%Delta	
1	2.37	CHLORIDE		0.000	118874	493997	1	0.71	
			Totals	0.000	118874	493997			

File: 14069701.D25 Sample: 140-69-7

Data Reprocessed On 10/04/1996 10:51:14

Sample Name: 140-69-1 MS Date: 10/03/1996 20:03:43

Data File : C:\DX\DATA\3904\HCL\14069101.D27


Method : C:\DX\METHOD\CHLORIDE.met
ACI Address: 1 System: 1 Inject#: 27 Detector:PED-Cond.

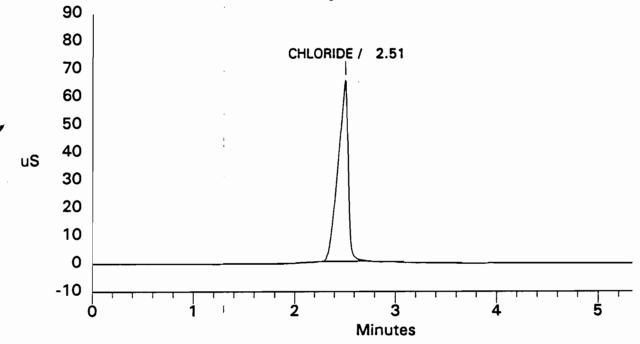
Analyst : Column:

Calibration				-	•
External	1	3600			1000

Pk. Num	Ret Time	Component Name	¢o:	ncentration	Height	Area	Bl. Code	%Delta
1	2.52	CHLORIDE		0.000	64753007		1	7.09
			Totals	•	64753007			

Data Reprocessed On 10/04/1996 10:53:14

Sample Name: 140-69-1 MS Date: 10/03/1996 20:17:40


Data File : C:\DX\DATA\39040HCL\14069101.D28

Analyst : Column:

Calibration Volume Dilution Points Rate Start Stop Area Reject
External 1 1 3600 5Hz 0.00 5.34 1000

Pk. Num	Ret Time	Component Name		Concentration	Height	Area	Bl. Code	%Delta
1	2.51	CHLORIDE	_	0.000		454027840	1	6.95
			Totals	0.000		454027840		

File: 14069101.D28 Sample: 140-69-1 MS

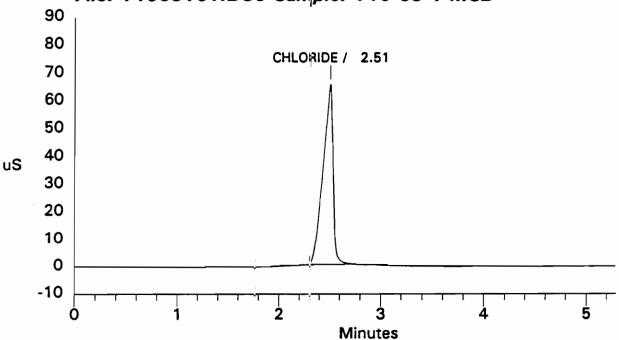
Data Reprocessed On 10/04/1996 10:55:56

Sample Name: 140-69-1 MSD Date: 10/03/1996 20:45:33

Data File : C:\DX\DATA\3904QHCL\14069101.D30

Method : C:\DX\METHOD\CHIORIDE met

ACI Address: 1 System: 1 Inject# 30 Detector:PED-Cond.


Analyst : Column:

Calibration				-	•
External	1	•		5.29	1000

********************* Component Report: All Components ******************

Pk. Num	Ret Component Time Name	Concen	ration	Height	Area	Area Bl. Code		
1	2.51 CHLORIDE		0.000	65101998	455389306	1	6.95	
		Totals	0.000	65101998	455389306			

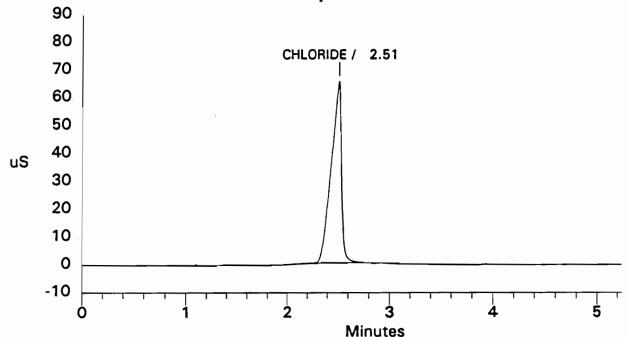
File: 14069101.D30 Sample: 140-69-1 MSD

Data Reprocessed On 10/04/1996 10:54:38

Sample Name: 140-69-1 MSD Date: 10/03/1996 20:31:35

Data File : C:\DX\DATA\39040HCL\14069101.D29

: C:\DX\METHOD\CHLORIDE.met ACI Address: 1 System: 1 Inject#: 29 Detector: PED-Cond.


Column: Analyst

Calibration Volume Dilution Points Rate Start Stop Area Reject 1 3600 5Hz 0.00 5.25 External 1 1000

**************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name	c	Concentration	Height	Area	Bl. Code	%Delta
1	2.51	CHLORIDE		0.000	65158696		1	6.95
			Totals	0.000	65158696			

2	>	
C	IJ	
ē	5	
•	•	

Analysis Request and Chain of Custody Record

Project Name

ANALYSIS REQUESTED Iter. Soil Oil. Preservative TEST METHOD	-	Dala Results to:	·								7	E de la companya de l				XS	6	
Containe Containe		Data Ri	Intact	Intact	15, 18											REMARKS		
Sample Type (Waler, Sol, Oil, Preservative) Sludge, Elc.) HACL HALL HALL HALL HALL HALL Date: Time: Received by: Signature) Time: Signature) Received by: Signature) The Signature of the signature of		Date: Time:	Date: Time:	Date: Time:	Time: Of:	7					-							
Sample Type (Water, Soil, Oil, Preservative Studge, Etc.) Hold Hold Hold Hold Hold Hold Hold Date: Time: Caste: Reservative Caste					The 1									-			RECHESTED	72/2017
Sample Type (Waler, Soil, Oil, Sludge, Etc.) Preservative Hold Hold Hold Hold Hold Date: Time: Date: Time: Date: Time:	Invoice to:	Received by: (Signature)	Received by: (Signature)	Received by: (Signature)	(Signature)							_					ANAI YSIS	1397
Sample Type (Water, Soil, Oil, Sludge, Etc.)			Date: Time:	Date: Time:	Date: Time:	Hold	Hold	Holl	HCL	Hold	HCL	Hold	HCL	Kold	HCL	TES		
										Ť	-					Preservalive	_ _ _;	
Sample Container (Size/Type)																(Water, Soil, Oil, Sludge, Etc.)	Sample Time	
			linquished by: gnature)	linquished by: gnature)	gnature)											Sample Container (Size/Type)		1600 per-ati
		REMARKS:		liation	· (O'graiore)	(Simplified)				,						Date and Time	,	
Date and dentification and dentification and and office of the contract of the		AMPLER F		Att	Compicio	0 8 7	980	580	189	083	190	079	078	075	074	Sample No. / Identification ルイビレー//-	104012-	-

TLI#39040-HCL CALIBRATION 03-04-OCTOBER-96

					8		H2SO4
		Ш		AVERAGE AREA	AREA	RT	TYPE
							BLANKS
		1.8	20.36	8.237	172439481	2.27	20.0
		à	20 70 70	346	176377100	s S	3
		30177	(ppm)	LOG AKEA	AREA	2	(ppm)
			PERMIT				
						N CHECK	EXTERNAL CALIBRATION CHECK
					1.06530 0.00715		X Coefficient(s) Std Err of Coef.
							9
				12			Degrees of Freedom
				14			No. of Observations
				0.02119			Std Err of Y Est
				6.84237	•		Constant
					utput:	Regression Output:	
1.40E-07	6.7	0.53	6.552	-0.301	3563341	2.33	0.5
1.50E-07	<u>*</u>	0.98	6.823	0.000	6654950	2.33	
1.31E-07	1.2	4.94	7.582	0.699	38157322	2.35	ט עס
1.33E-07	60	9.36 6	7.877	1.000	75337197	237	1 0
1.18E-07		24.60	8.324	1398	210974906	2 to	3 8
1.03E-07	4 <u>1</u> .0	57.63	8.986 8.71	2.000	968042086	2.57	3 8
1.41E-07		0.53	6.551	-0.301	3555635	2.33	0.5
1.48E-07	2.7	0.97	6.830	0.000	6757901	2.33	-
1.31E-07	0.9	4.96	7.583	0.699	38273733	2.34	O 1
1.33E-07	6.7	9.33	7.876	1.000	75079142	2.34	10
1.19E-07	1.7	24.58	8.324	1.398	210729574	2.42	25
1.07E-07	<u>*</u>	52.03	8.671	1.699	468450138	2.49	8
1.04E-07	2.1	102.11	8.983	2.000	960862459	2.58	18
CONCIANTAL		(ppm)					(ppm)
CONCINDENT	300	יווייייייייייייייייייייייייייייייייייי	LOG ANEX	בספ ניסואני	AKEA	R	CONC
RESPONSE	42EF	הסביורידבה	- >> ADEA	Olivo co	, , , , , , , , , , , , , , , , , , ,	ļ	

T-I 39040-HCL

H2SO4

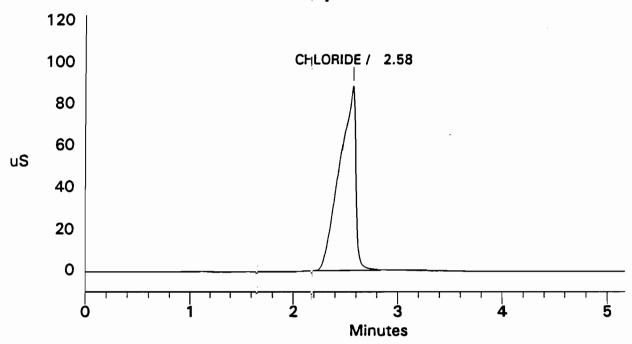
Š

Data Reprocessed On 10/04/1996 08:40:56

Sample Name: STD 100.0 PPM F Date: 10/03/1996 17:02:28

Data File : C:\DX\DATA\39040HCL\\$TD10001.D14

Method : C:\DX\METHOD\CHLORIDE.met


ACI Address: 1 System: 1 Inject#: 14 Detector:PED-Cond.

Analyst : Column:

Calibration Volume Dilution Points Rate Start Stop Area Reject
External 1 1 3600 5Hz 0.00 5.17 1000

Pk. Num	Ret Time	Component Name	¦	Conceptration	Height	Area	Bl. Code	%Delta
1	2.58	CHLORIDE		0.000	88380332	960862459	1	9.65
			Totals	0.000	88380332	960862459		

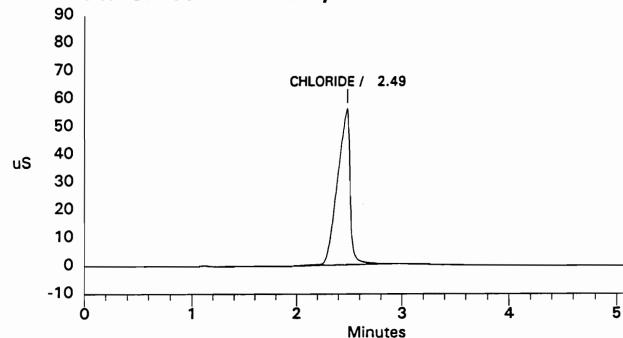
File: STD10001.D14 Sample: STD 100.0 PPM F

Data Reprocessed On 10/04/1996 08:30:27

Sample Name: STD 50.0 PPM F Date: 10/03/1996 16:34:37

Data File : C:\DX\DATA\39040HCL\STD05001.D12

| Method : C:\DX\METHOD\CHLORIDE.met | CI Address: 1 System: 1 Inject#: 12 | Detector:PED-Cond.


Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop 2	Area Reject
External	1	1	3600	5Hz	0.00	5.06	1000

**************** Component Report: All Components ***************

Pk. Num	Ret Component Time Name	Concentration	Height	Area Bl. %Delta Code
1	2.49 CHLORIDE		56184760	
			56184760	

File: STD05001.D12 Sample: STD 50.0 PPM F

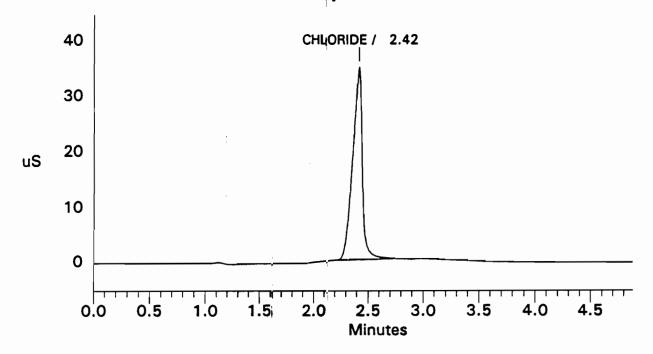
Data Reprocessed On 10/04/1996 08:20:26

Sample Name: STD 25.0 PPM F Date: 10/03/1996 16:06:44

Data File : C:\DX\DATA\3904OHCL\STD02501.D10

Method : C:\DX\METHOD\CHLORIDE.met

ACI Address: 1 System: 1 Inject#: 10 Detector:PED-Cond.


Analyst : Column:

Calibration		the state of the s				
External	1		•	0.00	1000	

**************** Component Report: All Components ***************

Pk. Num	Ret Component Time Name	:	Concentration	Height	Area	Bl. Code	%Delta
1	2.42 CHLORIDE		0.000	34865512	210729574	1	2.98
		Totals	0.000	34865512	210729574		

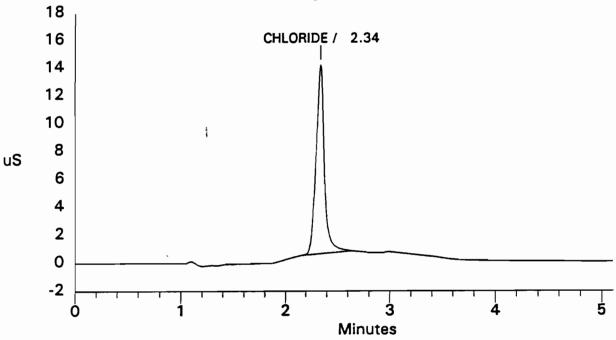
File: STD02501.D10 Sample: STD 25.0 PPM F

Data Reprocessed On 10/03/1996 15:38:30

Sample Name: STD 10.0 PPM F Date: 10/03/1996 15:24:54

Data File : C:\DX\DATA\39040HCL\STD01001.D07
Method : C:\DX\METHOD\CHLORIDE.met

ACI Address: 1 System: 1 Inject#: 7 Detector:PED-Cond.


analyst : Column:

Calibration				-	•
External	1		0.00		1000

***************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name	Cond	centration	Height		Bl. Code	%Delta
1	2.34	CHLORIDE		• • • • • • • • • • • • • • • • • • • •	13561456		1	-0.43
			Totals			75079142		

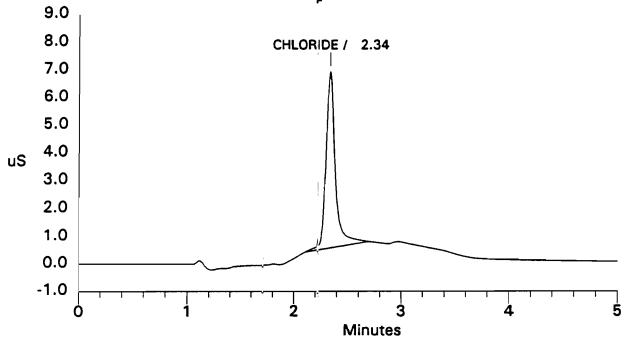
File: STD01001.D07 Sample: STD 10.0 PPM F

Data Reprocessed On 10/03/1996 15:24:28

Sample Name: STD 5.0 PPM F Date: 10/03/1996 15:10:55

Data File : C:\DX\DATA\39040HCL\SYD00501.D06

Method : C:\DX\METHOD\CHIORIDE.met
ACI Address: 1 System: 1 Inject#: 6


Analyst : Column:

Calibration		1		_	_
Evtornal	1	 1	0 00		1000

*************** Component Report: All Components **************

Pk. Num	Ret Time	Component Name	Concen	tration	Height	Area	Bl. Code	%Delta
1	2.34	CHLORIDE		0.000	6333764	38273733	1	-0.43
			Totals	0.000	6333764	38273733		

File: STD00501.D06 Sample: STD 5.0 PPM F

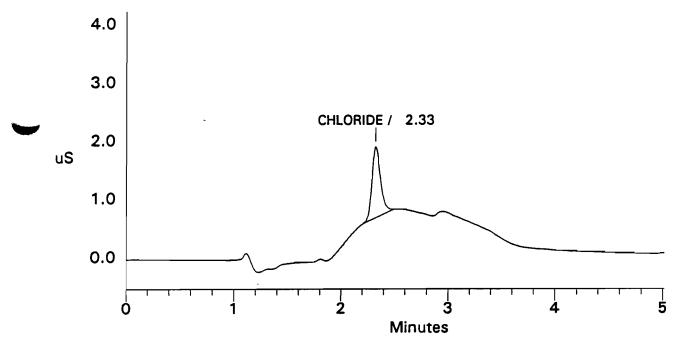
Detector: PED-Cond.

Data Reprocessed On 10/03/1996 15:16:51

Sample Name: STD 1.0 PPM F Date: 10/03/1996 14:43:02

Data File : C:\DX\DATA\39040HCL\STD00101.D04

Method : C:\DX\METHOD\CHLORIDE.met


CI Address: 1 System: 1 Inject#: 4 Detector:PED-Cond.

analyst : Column:

Calibration				-	_
External	1			5.02	1000

Pk. Num	Ret Time	Component Name	Cor	ncentration	Height		Bl. Code	%Delta
1	2.33	CHLORIDE		0.000	1215718	6757901	1	-0.99
			Totals		1215718	6757901		

File: STD00101.D04 Sample: STD 1.0 PPM F

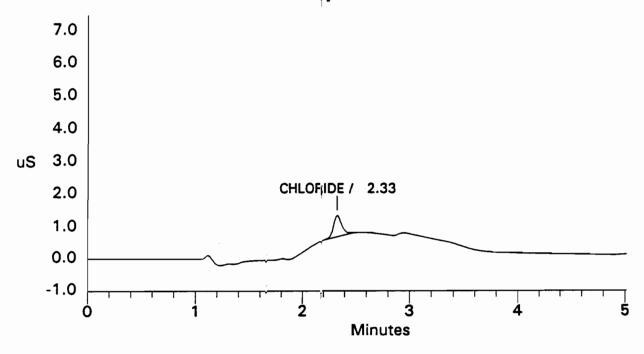
Data Reprocessed On 10/03/1996 15:07:02

Sample Name: STD 0.5 PPM F Date: 10/03/1996 14:15:11

Data File : C:\DX\DATA\3904\DHCL\S\TD00501.D02

Method : C:\DX\METHOD\CHLORIDE.met ACI Address: 1 System: 1 Inject#: 2

ACI Address: 1 System: 1 Inject#: 2 Detector:PED-Cond.


Analyst : Column:

Calibration				-	•
External	1		0.00		1000

**************** Component Report: All Components ***************

Pk. Num	Time	-		ncentration	Height		Bl. Code	%Delta
		CHLORIDE			653034	3555635	1	-0.85
			Totals	0.000		3555635		

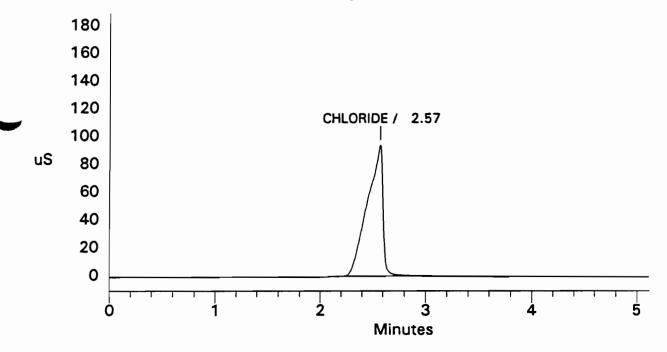
File: STD00501.D02 Sample: STD 0.5 PPM F

Data Reprocessed On 10/04/1996 11:22:33

Sample Name: STD 100.0 PPM B Date: 10/04/1996 00:00:52

Data File : C:\DX\DATA\39040HCL\STD10001.D44

: C:\DX\METHOD\CHLORIDE.met Method \CI Address: 1 System: 1 Inject#: 44 Detector: PED-Cond.


Analyst

External

Calibration Volume Dilution Points Rate Start Stop Area Reject 0.00 3600 5Hz 5.12

Pk. Num	Ret Time	Component Name		Concentration	Height	Area	Bl. Code	%Delta
1	2.57	CHLORIDE			93388319		1	9.50
			Totals		93388319			

File: STD10001.D44 Sample: STD 100.0 PPM B

1000

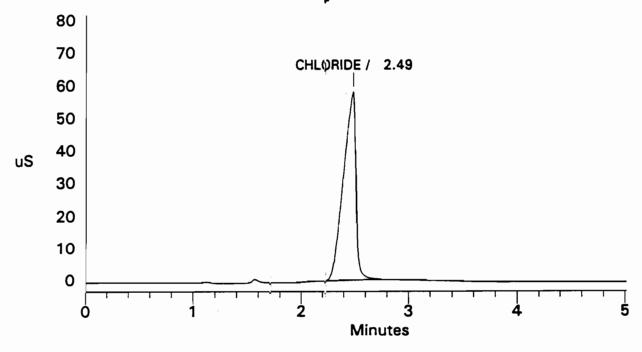
Data Reprocessed Or. 10/04/1996 09:59:02

Sample Name: STD 50.0 PPM B Date: 10/03/1996 23:32:57

Data File : C:\DX\DATA\39040HCL\STD05001.D42

Method : C:\DX\METHOD\CHLORIDE.met
ACI Address: 1 System: 1 Inject#: 42

Analyst : Column:



Calibration	Volume	Dilution	Points	Rate	Start	Stop	Area Reject
External	1	1	3600	5Hz	0.00	5.02	1000

***************** Component Repart: All Components ***************

Pk. Num	Ret Time	Component Name	Concent	ration	Height	Area	Bl. Code	%Delta
1	2.49	CHLORIDE		0.000	57908354	469130762	1	5.96
			Totals	0.000	57908354	469130762		

File: STD05001.D42 Sample: STD 50.0 PPM B

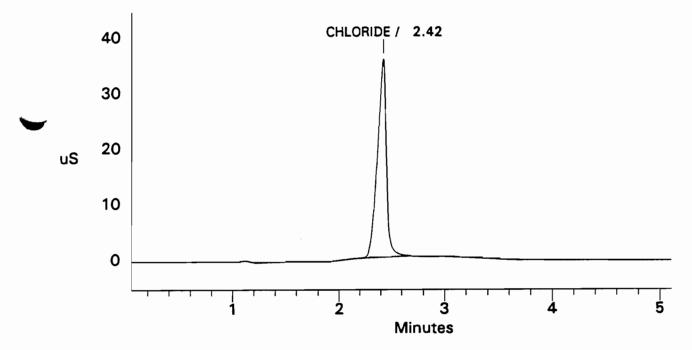
Detector: PED-Cond.

Data Reprocessed On 10/04/1996 09:46:54

Sample Name: STD 25.0 PPM B Date: 10/03/1996 23:05:03

Data File : C:\DX\DATA\39040HCL\STD02501.D40

Method : C:\DX\METHOD\CHLORIDE.met
CI Address: 1 System: 1 Inject#: 40 Detector:PED-Cond.


Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop A	Area Reject
External	1	1	3600	5Hz	0.05	5.11	1000

***************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name	Conce	entration	Height	 Bl. Code	%Delta	
1	2.42	CHLORIDE			35711663	1	3.12	
			Totals		35711663			

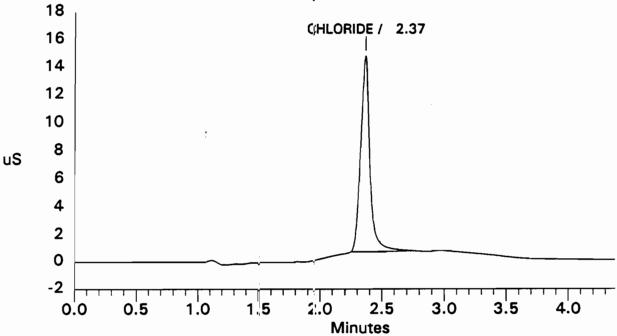
File: STD02501.D40 Sample: STD 25.0 PPM B

Data Reprocessed Or. 10/04/1996 08:09:04

Sample Name: STD 10.0 PPM B Date: 10/03/1996 22:37:09

Data File : C:\DX\DATA\39040HCL\STD01001.D38

: C:\DX\METHOD\CHLORIDE.met ACI Address: 1 System: 1 Inject#: 38


Analyst Column:

Detector: PED-Cond.

Calibration				-	-
External	1		0.00		1000

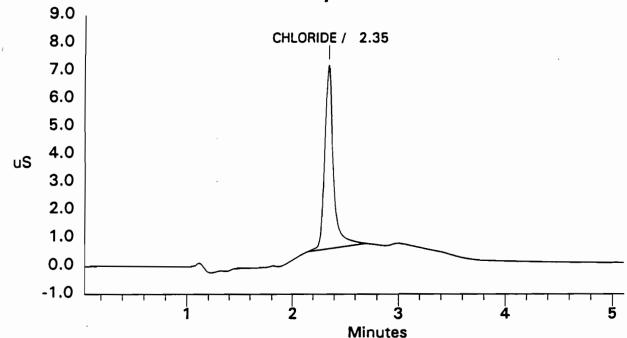
Pk. Num	Ret Time	Component Name	Concent	ration	Height	Area	Bl. Code	%Delta
1	2.37	CHLORIDE			14087435		1	0.85
			Totals		14087435	75337197		

File: STD01001.D38 Sample: STD 10.0 PPM B

Data Reprocessed On 10/04/1996 09:52:00

Sample Name: STD 5.0 PPM B Date: 10/03/1996 22:09:15

Data File : C:\DX\DATA\39040HCL\STD00501.D36


Method : C:\DX\METHOD\CHLORIDE.met
\CI Address: 1 System: 1 Inject#: 36 Detector:PED-Cond.

Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop 2	Area Reject
External	1	1	3600	5Hz	0.05	5.11	1000

Pk. Num	Ret Time	Component Name	c	oncentration	Height	Area	Bl. Code	%Delta
1	2.35	CHLORIDE		0.000		38157322	1	-0.14
			Totals	0.000		38157322		

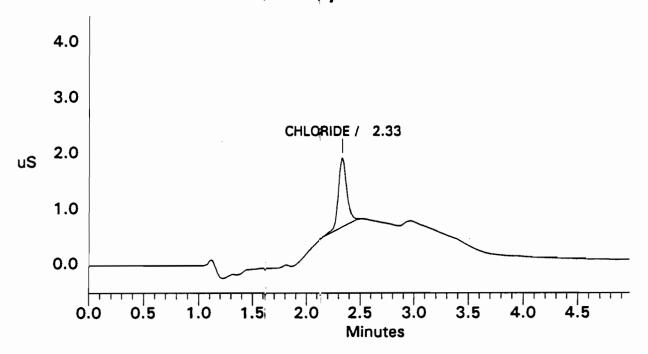
File: STD00501.D36 Sample: STD 5.0 PPM B

Data Reprocessed On 10/04/1996 09:22:22

Sample Name: STD 1.0 PPM B Date: 10/03/1996 21:27:24

Data File : C:\DX\DATA\39040HCL\\$TD00101.D33

Method : C:\DX\METHOD\CELORIDE.met
ACI Address: 1 System: 1 Inject#: 33


Analyst : Column:

Calibration					
External	1	_	ï	0.00	1000

****************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name		Concentration	Height	Area	Bl. Code	%Delta
1	2.33	CHLORIDE		0.000	1221956	6654950	1	-0.71
			Totals	0.000	1221956	6654950		

File: STD00101.D33 Sample: STD 1.0 PPM B

Detector: PED-Cond.

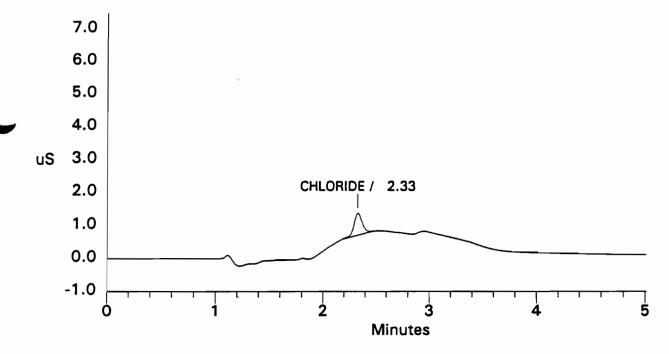
Data Reprocessed On 10/04/1996 11:10:52

Sample Name: STD 0.5 PPM B Date: 10/03/1996 21:13:28

Data File : C:\DX\DATA\39040HCL\STD00501.D32

Method : C:\DX\METHOD\CHLORIDE.met

ACI Address: 1 System: 1 Inject#: 32 Detector:PED-Cond.


Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop !	Area Reject
External	1	1	3600	5Hz	0.00	5.02	1000

******************* Component Report: All Components ********************

Pk. Num	Ret Time	Component Name	C	oncentration	Height		Bl. Code	%Delta
1	2.33	CHLORIDE		0.000		3563341	1	-0.85
			Totals	0.000		3563341		

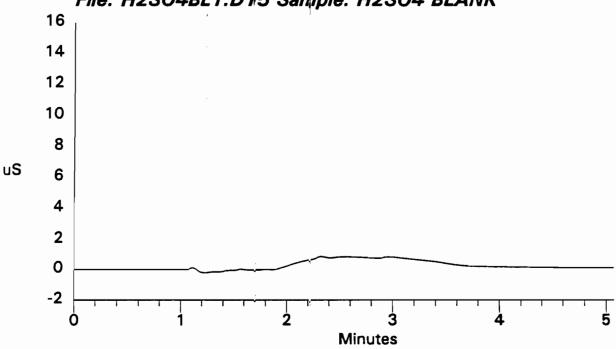
File: STD00501.D32 Sample: STD 0.5 PPM B

Data Reprocessed On 10/04/1996 10:57:18

Sample Name: H2SO4 BLANK Date: 10/03/1996 17:16:24

Data File : C:\DX\DATA\3904\HCL\H2S04BL1.D15

Method : C:\DX\METHOD\CHLORIDE.met
ACI Address: 1 System: 1 Inject#: 15


Analyst : Column:

Detector:PED-Cond.

Calibration				
External	1		0.00	1000

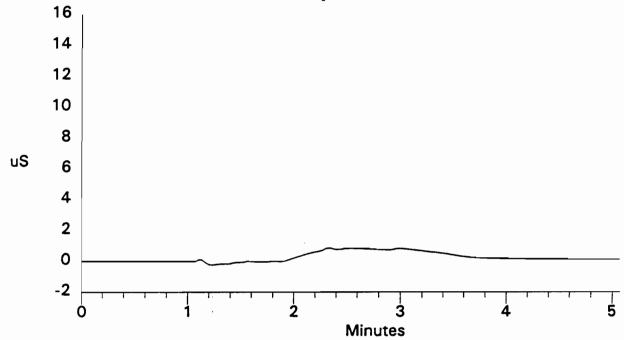
Pk. Num	Ret Time	Component Name	¢o	ncentration	Height		Bl. Code	%Delta
0	0.00	CHLORIDE		0.000	0	0	0	0.00
			Totals	0.000	0	0		

File: H2SO4BL1.D15 Sample: H2SO4 BLANK

Data Reprocessed On 10/04/1996 10:58:41

Sample Name: H2SO4 BLANK Date: 10/03/1996 17:30:20

Data File : C:\DX\DATA\39040HCL\H2S04BL1.D16


Analyst : Column:

Calibration	Volume	Dilution	Points	Rate	Start	Stop Ar	rea Reject
External	1	1	3600	5Hz	0.00	5.07	1000

***************** Component Report: All Components ***************

Pk. Num	Ret Time	Component Name	Cor	ncentration	Height	Area (Bl. Sode	tDelta
0	0.00	CHLORIDE		0.000	0 ·	0	0	0.00
			Totals	0.000	0	0		

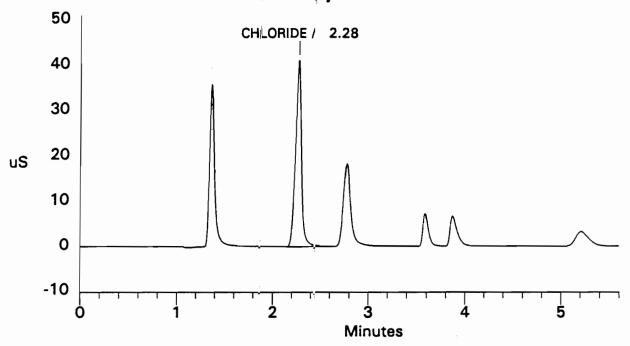
File: H2SO4BL1.D16 Sample: H2SO4 BLANK

Data Reprocessed On 10/04/1996 10:59:49

Sample Name: QC 20 PPM Date: 10/03/1996 17:44:18

Data File : C:\DX\DATA\3904CHCL\Q@20PPM1.D17

Method : C:\DX\METHOD\CHTORIDE met
ACI Address: 1 System: 1 Inject#: 17


Analyst : Column:

Detector: PED-Cond.

Calibration	Volume	Dilution	Points	Rate	Start	Stop	Area Reject
			·				
External	1	1	3600	5Hz	0.00	5.60	1000

Pk. Num	Ret Component Time Name	Concentration	Height	Area	Bl. Code	%Delta
1	2.28 CHLORIDE	0.000	41092825	176322109	1	-3.12
		Totals 0.000	41092825	176322109		

File: QC20PPM1.D17 Sample: QC 20 PPM

Data Reprocessed On 10/04/1996 11:01:14

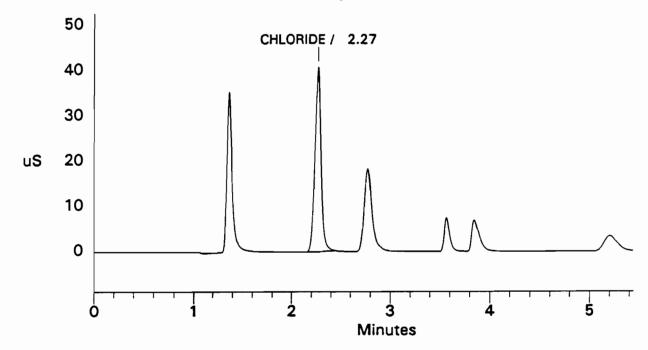
Sample Name: QC 20 PPM Date: 10/03/1996 17:58:14

Data File : C:\DX\DATA\39040HCL\QC20PPM1.D18

Method : C:\DX\METHOD\CHLORIDE.met

ACI Address: 1 System: 1 Inject#: 18 Detector:PED-Cond.

Analyst : Column:


Calibration Volume Dilution Points Rate Start Stop Area Reject

External 1 1 3600 5Hz 0.00 5.44 1000

***************** Component Report: All Components **************

Pk. Num	Ret Time	Component Name	Conc	entration	Height	Area	Bl. Code	%Delta
1	2.27	CHLORIDE		0.000		172439481	1	-3.26
			Totale		40866335			

File: QC20PPM1.D18 Sample: QC 20 PPM

	ı		
			_
•			
			a

4 C

		2:	Invoice to:							
Dala Results to:	Date: Time:	y	Received by: (Signature)						REMARKS:	SAMPLER REMARKS:
Intact	Date: Time:	yy:	Received by: (Signature)	Date: Time:			Relinquished by: (Signature)	Rel (Si		
Intact	Date: Time:	* -	Received by: (Signature)	Date: Time:			Relinquished by: (Signature)	Rel (Sig	Alliliation	Alli
Intact	Time of the	John Juestla	Received by: (Signature)	Date: Time:			Relinquished by: (Signature)	Rel	Samplers (Signature)	Samplers
45 NDEE912814	¥							-		
					-					
10 × 9/28/96	1/		1 HU	Gavineti.			E.Iti			08
NotReceived	> No:		1 Mics	brownstin			5/12			76
	7	4	1 HCC	paticulate			RITE			72
		-								
	_			Hold						088
REMARKS		METHOD		TEST	Preservative	(Water, Soil, Oil, Sludge, Etc.)	Container (Size/Type)	Gra	Time	Identification
		ANALYSIS REQUESTED				Sample Type	Sample	_		Sample No /
,		Clarenost		Phone 46/ 1340	Ρħ					Radia-
Project No.		Project Location and State		Contact	Co		Address	Ado		Company
		ne	Project Name				0	1, Web c		Sample submitted by:
ody Record	n of Custo	Analysis Request and Chain of Custody Record	Analysi	1						
4 (2612	Page 11/10 Page	(LAB ID:	ر-		

COPY PAGE 1 OF:

Custody Seal Sample Smals: Absent : TLI Project Number : 39040 Chain of Custody : Present Accept.Cond.: YES Sample Tags : Present : Client: RACO5 140. Sample Tag Numbers: Listed Matrix ! To LAB THE STORAGE! TO LAB ! To STORAGE! To LAB ! TO STORAGE! TO ARCHIVE! DISPOSED mR/H:CPM Client ID Location | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init CL-LTEV-II-AI-074 IC TABLE ! 140-69-2 CL-LTEV-II-AI-075 IC TABLE ! 140-69-3 LIQUID : CL-LTEV-II-AI-078 IC TABLE : LIQUID ! CL-LTEV-II-AI-079 IC TABLE ! CL-LTEV-II-AI-082 IC TABLE ! LIQUID 140-69-6 CL-LTEV-II-AI-083 IC TABLE : CL-LTEV-II-AI-084 LIQUID : CL-LTEV-II-AI-085 IC TABLE : 140-69-9 CL-LTEV-II-AI-086 IC TABLE : CL-LTEV-II-AI-087 Receiving Remarks: Archive Remarks: -----TRIANGLE LABORATORIES. INC .-- LOG IN RECORD/CHAIN OF CUSTODY--REVISED 06/13/1996-----

Custody Seal : Chain of Custody :	Absent Present		le Seals: Abse ot.Cond.: YES	nt :	TLI Pr	oject Numb	er ;	39040					: Book
	Present			; (Client	: RACO5	;	Radian	Corpor	ation			1 140
	N/A			:	Date F	Received	;	09/28/9)6 ¦ B	·A!	Ywanth		Page
Ice Chest		NO COOLANT		;	Carrie	er and Numb	er ¦	FedEx/					† ¦ 69
TLI Number mR/H:CPM Client ID			To STORAGE: Date/Init						To ST Date/	ORAGE! Init :	To ARCHIVE Date/Init	DIS Dat	POSED e/Ini
140-69-11 CL-LTEV-II-AI-	LIQUID 088 IC TABLE	 	 		+ : +	·				 ; 		} 	
		, 								ا ل	- ×	} 	
					+ ; +	: ; :+				 		} } }	
		 	; }		; +					; 		; +	
		 	; }		; + !	; + !			; }	·		; + !	
	,				-		••••		ķ		••••••	; + }	
		 			+ ; +	+			} 			+ ! +	
	••••	 	 		 	:						; +	
		 	 		; +	; +			} }			; + ı	
		 			 	۱ + ا		-	 			' } 	
·		,	}		+	·			} 			+ !	
		 	· :		+ ; +	; ;			 			; ;	
	••••	 	 +-		; +	! ! 			; +		·	! +	
		 	; }		; + !	; + !			, 		 	+ 	
		}	 	•••••	+	·			+ !		 	 	
		,			+-· ; +-·	· +			† 		• • • • • • • • • • • • • • • • • • •	+	
Receiving Remarks:						·							
ı													

				E LABORATOR	IES, INC.	: Form				- - -
Projec	et: 39040		· · · · · ·			ent: Radian (Corporation	(RAC05)		
 Method Solver		raction Date	Sam : <u>/0</u> /	nple Informa 5/96	tion					1
Sample	SAMPLE ID / CLIENT		orume	<u> </u>	1/51. //_	 //	 //	! ! !//	 //	 -
	140-69-1 CL-LTEV-II-AI-074_	1= F/13/M	/ >/ * {	1	550	! !	 	 	 	
	140-69-3 CL-LTEV-AI-II-078	595		1	 		 	 	 	
003	140-69-5 CL-LTEV-AI-II-082	590	 +	1	 	! +	 	 +	 	 -+
 004	140-69-7 CL-LTEV-AI-II-084	385	 	<i>.</i>	 +	 +	 	 +	 	 -+
			 	,	! +	 +	 +	 	 	 -+
					 	 	 	 	<u> </u> 	_
	 		 	,	+ ! 	 	+ 	+ 	+ 	- -
		I I	 		 	 	 	 	 	
		 	 		 	† 	 			
 			 		 		 	 	1	
		 	 	, <u>.</u>	 	 				
Commen	ics: Jimoltvi J	ella	m							

TRIANGLE LABORATORIES OF RTP. INC.

[PSTMF2]

PROJECT COMMUNICATION TRACKING FORM

TLI project Number: 39040

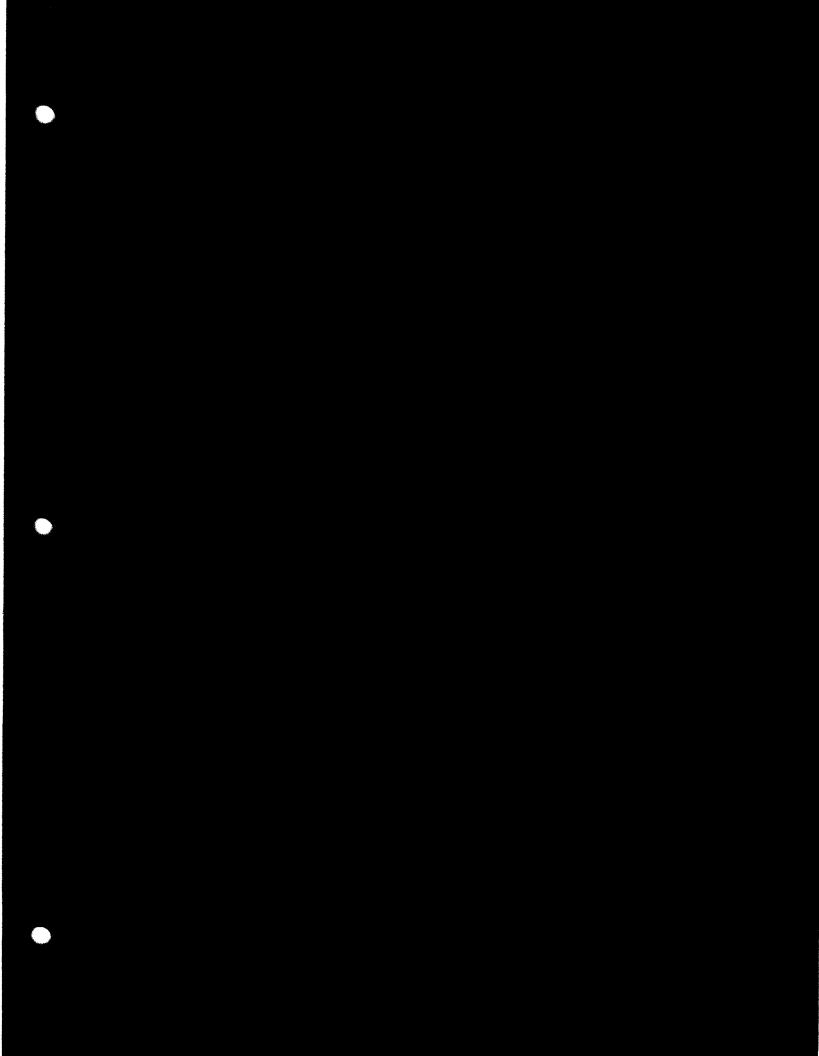
Use this form to record all exchanges of information between production units as well as personnel handling this project. Decisions, corrective actions and recommendations must also appear on this tracking document.

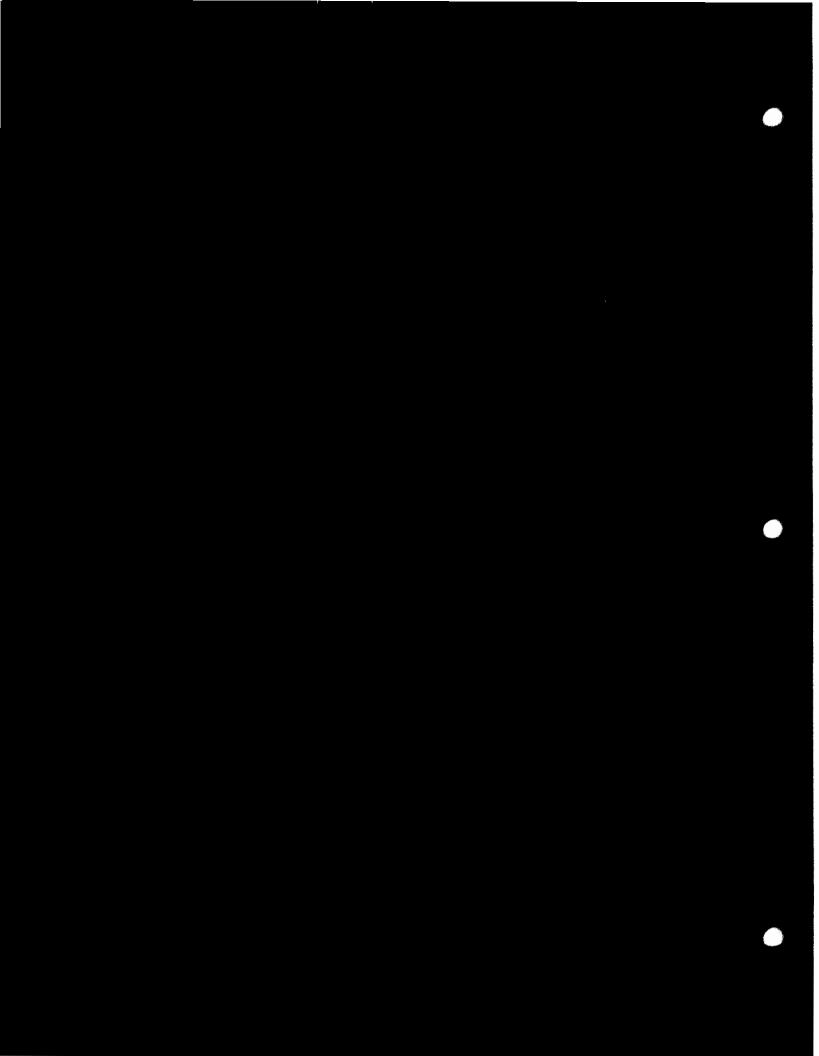
Date	Name	Comment / Decision / Resolution / Action / Observation
10.3-96	173	Sample 140-69-1 used as nis/ms1) with 3 m/ A sample mixed with 3 n/ A 100 ppm Std.
		MIS/MSD with 3 m/ A sample
		mixed with 3 nd 1 100 ppm Std.
		0 77
	<u> </u>	1
<u> </u>		
[[
		1
[<u> </u>
1		<u> </u>
·		
·		
<u></u>		
<u> </u>		•
<u> </u>		

ATTACHMENT I

SOP No. CGN126

Revision 2.0


28 October 1993 page 3 of 4


DIONEX SCHEDULE - C:\DX\SCHEDULE\39040HCL.SCH

Inj# S	Sample Name	Method	pata File	Vol.	Dil.	Int.Std.
	0.5 PPM F 0.5 PPM F	\CHLØRIDE		1	1	1
	1.0 PPM F	\CHLORIDE		1	ī	
	1.0 PPM F	\CHLORIDE		1	ī	1
	5.0 PPM F	\CHLORIDE		ī	ī	ī
	5.0 PPM F	\CHLORIDE		ī	ī	1
	10.0 PPM F	\CHLORIDE		ī	ī	1
	10.0 PPM F	\CHLORIDE		1	1	1
	25.0 PPM F	\CHLORIDE		1	1	1
10 STD 2	25.0 PPM F	\CHLORIDE		1	1	1
	50.0 PPM F	\CHLORIDE		1	1	1
12 STD 5	50.0 PPM F	\CHLORIDE		1	1	1
13 STD 1	100.0 PPM F	\CHLORIDE	\$TD100	1	1	1
14 STD 1	100.0 PPM F	\CHLORIDE	\$TD100	1	1	1
15 H2SO4	4 BLANK	\CHLORIDE	H2SO4BL	1	1	1
16 H2SO4	4 BLANK	\CHLØRIDE	H2SO4BL	1	1	1
17 QC 2	O PPM	\CHLORIDE	QC20PPM	1	1	1
	20 PPM	\CHLORIDE		1	1	1
19 140-6		\CHLØRIDE	140691	1	1	1
20 140-6		\CHLORIDE	140691	1	1	1
21 140-6		\CHLØRIDE	140693	1	1	1
22 140-6		\CHLORIDE	140693	1	1	1
23 140-6		\CHLORIDE		1	1	1
24 140-6		\CHLØRIDE		1	1	1
25 140-6		\CHLORIDE		1	1	1
26 140-6		\CHLØRIDE		1	1	1
27 140-6		\CHLØRIDE		1	1	,
28 140-6		\CHLORIDE		1	1	
	59-1 MSD	\CHLØRIDE		1	1	1
	59-1 MSD	\CHLØRIDE		1	1	1
	D.5 PPM B	\CHLØRIDE		1	1	1
32 STD 0		\CHLØRIDE		1	1	1
	L.O PPM B	\CHLØRIDE		1	i	i
34 STD 1 35 STD 5		\CHLØRIDE \CHLØRIDE		1	ī	i
36 STD 5		\CHLORIDE		1	1	i
37 STD 1		\CHLORIDE		ī	ī	ī
38 STD 1		\CHLØRIDE		ī	ī	ī
39 STD 2		\CHLØRIDE		ī	ī	ī
40 STD 2		\CHLØRIDE		ī	1	1
41 STD 5		\CHLØRIDE		1	ī	1
42 STD 5		\CHLØRIDE		1	1	1
	LOO.O PPM B	\CHLØRIDE		ī	1	1
	LOO.O PPM B	\CHLØRIDE		1	1	1
45 END		\STANDCL.		1	1	1
		,	1			

Comment:

TLI PROJECT 39040, ANALYZED ON THIS SCHEDULE FOR (HCL) DATE 10-03-96.(STD) USED FOR THIS PROJECT ARE ICS2-109-1THRU 7 QC USED LOT #L-ION2143, ANION ELUENT USED LOT #100296. LOOP SIZE (25uL) JIMMY POINDEXTER ACID PART.

Radian International Continuous Emissions Monitoring Dept. Morrisville, N.C. 27560

`EM SUMMARY TABLES ₩3/26/96

RUN ID#	TIME	02	CO2	CO	NOx	THC	SO2
1	1014-1115	17.0	2.6	8.1	20.2	46.3	2.8
2	1320-1420	17.1	2.8	6.4	20.5	28.9	4.7
3A	1545-1607	17.4	2.5	3.9	15.8	13.8	2.1
3B	1713-1748	17.4	2.5	5.7	15.2	28.7	1.5
3 Avg.	1545-1748	17.4	2.5	5.0	15.5	22.9	1.7

RUN ID#0926					- 110	202
TIN 45	02	CO2	CO	NOX	:THC	SO2
TIME	(%VD)	(%VD)	(PPMVD)	(PPMVD)	(PPMVW)	(PPMVD)
10:14:53	17.1	2.6	7.7	20.7 21.4	41.3	2.5 4.9
10:15:53	17.0	2.6	8.0 · 7.9		41.8 42.2	4. 9 4.8
10:16:53	17.0	2.6	7.9	20.8 21.9	42.2	5.1
10:17:53	17.0	2.6 2.6	7.9 7.9	21.7	44.6	7.4
10:18:53	17.0 17.0	2.6 2.7	7.9 7.9	23.3	44.0	3.2
10:19:53 10:20:53	17.0	2.7 2.7	7. 9 7.9	2;3.3 2;2.1	ر43.4 43.4	2.3
10:20:53	17.0	2.6	7.9 7.9	2,2.2	44.7	6.3
10:21:53	17.0	2.6	8.0	2,2.2	43.8	3.9
10:22:53	17.0	2.6	7.9	2,2.0	44.0	2.7
10:23:53	17.0	2.7	7.9	2,2.4	43.0	1.1
10:25:53	17.0	2.7	7.7	22.5	45.1	-1.2
10:26:53	17.0	2.7	7.7	22.1	46.1	-3.8
10:27:53	17.0	2.6	7.8	21.7	47.1	-1.9
10:28:53	17.0	2.6	7.9	21.1	46.5	-2.1
10:29:53	17.0	2.6	8.0	21.0	47.2	-3.9
10:30:53	17.0	2.6	8.0	20.8	47.4	-5.6
10:31:53	17.0	2.6	7.9	20.6	45.9	-7.2
10:32:53	17.0	2.6	7.9	20.2	45.5	-8.3
10:33:53	17.0	2.6	7.8	19.6	46.0	-7.8
10:34:53	17.0	2.6	7.8	13.7	46.1	-2.5
10:35:53	17.0	2.6	7.8	13.8	44.4	0.1
10:36:53	17.1	2.6	7.8	19.2	45.5	2.9
10:37:53	17.0	2.6	7.8	19.7	44.7	5.6
10:38:53	17.0	2.6	7.7	2:0.3	45.1	7.9
10:39:53	17.0	2.7	7.5	20.7	42.7	5.2
10:40:53	17.0	2.6	7.4	20.4	45.2	7.3
10:41:53	17.0	2.6	7.6	20.3	47.4	6.6
10:42:53	17.0	2.6	7.8	19.6	48.4	5.0
10:43:53	17.0	2.6	7.9	19.2	47.5	7.3
10:44:53	17.0	2.6	7.9	18.8	47.4	6.2
10:45:53	17.0	2.6	8.0	19.0	43.9	6.6
10:46:53	17.0	2.7	7.8	18.9	43.6	7.7
10:47:53	17.0	2.6	7.7	18.4	44.3	9.8
10:48:53	17.0	2.7	7.8	19.2	46.9	5.8
10:49:53	17.0	2.6	8.0	19.2	47.1	2.5
10:50:53	17.0	2.6	8.2	19.3	48.4	0.1
10:51:53	17.0	2.6	8.4	1 ₁ B.7	49.1	-0.6
10:52:53	17.0	2.6	8.3	19.6	48.0	-1.9
10:53:53	17.0	2.7	8.0	1 9.5	48.6	-2.8
10:54:53	17.0	2.7	8.0	20.5	48.2	-2.0
10:55:53	17.0	2.7	8.0	20.2	49.2	-0.3 2.2
10:56:53	17.0	2.7	8.2	2;0.0 1∣9.7	51.5 51.4	5.2
10:57:53	17.0	2.6	8.5 8.5	1 9.7	47.5	7.6
10:58:53	17.1	2.6 2.7	8.4	20.2	47.9	10.0
10:59:53	17.0 17.0	2.7 2.7	8.7	20.2 20.1	47.4	8.5
11:00:53	17.0	2.7	8.7	1 9.2	50.7	7.5
11:01:53	17.0	2.7	9.0	19.3	52.1	6.9
11:02:53 11:03:53	17.0	2.7	9.5	20.8	51.0	4.3
11:04:53	17.0	2.7	9.6	20.7	52.1	7.6
11:05:53	17.0	2.7	9.6	21.1	48.8	6.4
11:06:53	16.9	2.7	9.3	20.8	47.7	8.8
11:07:53	17.0	2.7	9.1	20.1	47.9	7.9
11:08:53	17.1	2.6	9.0	19.4	47.4	5.8
11:09:53	17.0	2.7	8.5	19.6	43.7	7.1
11:10:53	17.0	2.6	7.9	19.2	44.1	4.0
11:11:53	17.2	2.5	7.9	18.6	45.6	1.5
11:12:53	17.1	2.6	8.0	19.6	47.7	-0.3
11:13:53	17.1	2.6	8.1	20.1	43.4	-2.0
11:14:53	17.0	2.6	8.0	20.0	44.8	-2.6
11:15:53	17.1	2.5	7.7	19.4	42.7	-1.8
AVERAGE	17.0	2.6	8.1	20.2	46.3	2.8
AVENAGE	17.0	2.0	U . 1	-,		<u>-</u>

וים ID#092 N וים	6-02					
Sec	02	CO2	co	NOx	THC	SO2
TIME	(%VD)	(%VD)	(PPMVD)	(PPMVD)	(PPMVW)	(PPMVD)
13:20:01	17.0	2.8 2.8	6.7 6.8	17.4	34.6	7.0
13:20:11 13:20:21	17.1 17.1	2.8 2.8	6.8	17.1 16.8	38.8 33.3	6.9 6.1
13:20:31	17.1	2.8	6.8	16.4	38.4	5.6
13:20:41	17.1	2.8	6.9	16.4	42.0	5.3
13:20:51	17.1	2.7	6.9	16.8	42.2	5.3
13:21:01	17.1	2.7	6.9	16.6	38.5	4.6
13:21:11	17.2	2.7	7.0	16.4	41.1	4.0
13:21:21	17.2	2.7	7.1	16.5	41.2	3.9
13:21:31 13:21:41	17.2 17.2	2.8 2.7	7.2 7.3	16.5 16.4	32.6 40.1	2.9 2.8
13:21:51	17.2	2.7	7.3	16.3	41.7	2.6
13:22:01	17.2	2.7	7.3	16.1	42.3	2.3
13:22:11	17.8	2.7	7.3	16.1	37.7	2.1
13:23:11	17.2	2.7	7.3	16.0	36.2	1.0
13:24:11	17.1	2.8	6.8	17.3	36.4	-0.4
13:25:11	17.0	2.9	7.0	17.4	35.5	-1.8
13:26:11	17.0	2.8 2.8	7.3 7.3	18.3 18.5	38.2 36.9	-2.2 -0.8
13:27:11 13:28:11	17.0 17.0	2.8	7.3 7.2	18.8	34.0	1.5
13:29:11	17.0	2.9	7.0	19.7	33.6	4.1
13:30:11	16.9	2.9	7.1	19.9	33.6	7.1
13:31:11	16.9	2.9	7.1	20.7	34.6	9.3
13:32:11	17.0	2.9	7.2	20.9	34.7	11.2
13:33:11	16.9	2.9	7.2	21.0	33.7	13.8
13:34:11	16.9	3.0	7.1	20.9	31.4	8.9
13:35:11	17.0	2.9	7.1	20.9 20.4	33.9 35.9	6.0 6.4
13:36:11 13:37:11	17.0 17.0	2.9 2.9	7.1 7.1	20. 4 19.8	32.0	7.6
13:38:11	17.0	2.9	6.6	21.7	23.7	7.2
13:39:11	17.0	2.9	6.0	22.6	21.7	5.7
13:40:11	17.0	2.8	6.1	23.3	25.7	7.5
\:41:11	17.1	2.8	6.4	23.4	26.8	11.2
:42:11	17.1	2.8	6.5	23.4	24.1	7.6
13:43:11	17.1	2.8	6.2	23.9	23.0	4.5
13:44:11	17.1	2.8	6.1	23.0	22.4 21.7	2.5 0.8
13:45:11 13:46:11	17.1 17.1	2.8 2.8	6.0 5.9	22.7 21.0	21.7 23.9	-0.9
13:47:11	17.1	2.8	5.8	20.7	24.4	-2.2
13:48:11	17.1	2.7	5.8	20.0	27.4	-2.0
13:49:11	17.2	2.7	5.8	19.4	26.1	-0.9
13:50:11	17.2	2.7	5.7	19.3	23.8	1.2
13:51:11	17.2	2.7	5.5	18.2	22.8	4.1
13:52:11	17.2	2.7	5.5	18.2	24.0	6.5
13:53:11	17.3	2.6	5.3	17.5	22.3	8.9
13:54:11	17.3	2.7	5.2 5.3	18.2 18.9	23.8 24.6	7.9 4.6
13:55:11 13:56:11	17.2 17.1	2.7 2.8	5.6 5.6	20.5	22.7	6.9
13:57:11	17.1	2.8	5.7	21.8	23.2	7.0
13:58:11	17.1	2.8	5.8	23.7	21.2	8.3
13:59:11	17.1	2.8	5.6	23.9	20.2	6.7
14:00:11	17.1	2.8	5.5	23.9	21.3	8.5
14:01:11	17.1	2.8 2.7	5.5 5.5	23.4 22.5	21.5 22.7	7.0 6.9
14:02:11 14:03:11	17.2 17.2	2.7	5.6	22.7	23.7	10.5
14:04:11	17.1	2.8	5.7	22.9	21.5	7.3
14:05:11	17.0	2.9	5.3	22.9	18.7	4.6
14:06:11	17.1	2.8	5.2	23.0	23.0	2.5
14:07:11	17.1	2.8	5.5	22.8	25.1	0.7
14:08:11	17.1	2.8	5.9	22.6	26.4	-1.0
14:09:11	17.1	2.8	6.0	23.6	22.7	-2.2
14:10:11	17.0	2.8 2.8	5.8 5.8	23.4 23.3	21.9 23.7	-2.2 -0.6
14:11:11	17.0 17.1	2.8	6.2	23.3 23.0	27.6	1.5
14:12:11 14:13:11	17.1	2.8	6.4	23.0	26.7	4.4
14:14:11	17.1	2.8	6.4	23.2	24.2	7.0
1:15:11	17.0	2.9	6.1	23.8	23.2	9.3
4:16:11	17.1	2.8	6.0	23.9	23.8	7.1
14:17:11	17.1	2.8	6.3	23.9	27.4	7.5
14:18:11	17.2	2.7	6.6	23.5	24.3	8.3
14:19:11	17.3	2.7	6.4	22.8	23.8	7.6
14:20:11	17.1	2.8	6.2	22.8	21.8	5.8
AVERAGE	17,1	2.8	6.4	20.5	28.9	4.7

Radian International Continuous Emissions Monitoring Dept. Morrisville, N.C. 27560

RUN ID#092	6-03A					
	02	CO2	CO	NOx	THC	SQ2
TIME	(%VD)	(%VD)	(PPMVD)	(PPMVD)	(PPMVV)	(PPNIVD)
15:45:31	17.2	2.6	4.4	16.3	16.8	9.5
15:46:31	17.2	2.6	4.2	16.7	15.2	12,9
15:47:31	17.1	2.6	4.1	16.8	13.8	7.∌
15:48:31	17.2	2.6	4.0	16.3	15.0	5.∤4
15:49:31	17.2	2.6	4.2	. 16.6	1∜.6	8.≴
15:50:31	17.3	2.6	4.3	16.5	16.4	7.,9
15:51:31	17.3	2.6	4.2	17.0	13.7	13.1
15:52:31	17.2	2.7	4.0	17.1	13.9	8.5
15:53:31	17.1	2.7	3.9	17.5	14.9	4.4
15:54:31	17.1	2.6	4.0	17.3	16.3	0:7
15:55:31	17.2	2.6	4.2	17.3	1\$.1	-1;9
15:56:31	17.2	2.6	4.2	16.7	15.3	-4:3
15:57:31	17.2	2.6	4.2	17.0	14.6	-5;9
15:58:31	17.2	2.6	3.8	16.8	14.5	-7,4
15:59:31	17.3	2.6	3.7	15.7	17.0	-8;2
16:00:31	17.3	2.6	3.9	16.2	17.2	-7¦9
16:01:31	17.2	2.6	3.9	16.1	14.9	-6 <u>:</u> 5
16:02:31	17.1	2.7	3.6	16.9	13.6	-4-1
16:03:31	17.1	2.7	3.7	17.2	14.1	-2·1
16:04:31	17.2	2.6	3.9	17.0	13.1	0;5
16:05:31	18.7	1.7	3.3	11.6	6,8	3∤1
16:06:31	19.1	1.5	2.5	8.8	6,2	5∤7
16:07:31	18.9	1.5	2.3	9.0	3,9	8;9
AVERAGE	17.4	2.5	3.9	15.8	13.8	2,1

Radian International Continuous Emissions Monitoring Dept. Morrisville, N.C. 27560

RUN ID#0926-03B

Run Avg.

17.4

2.5

CO NOx THC S;)22 (PPMVD) (PPMVD) (PPMVD) O2 (%VD) CO2 TIME (%VD)

Radian international Continuous Emissions Monitoring Dept. Morrisville, N.C. 27560

RUN ID#092	6-03B				1	
	O2	CO2	CO	NOx	THC	Sp2
TIME	(%VD)	(%VD)	(PPMVD)	(PPMVD)	(PPMVW)	(PPI/IVD)
17:13:31	17.3	2.7	4.6	16.8	20.6	7,7
17:14:31	17.3	2.6	4.8	16.9	20.8	5;8
17:15:31	17.3	2.6	5.0	16.5	22.9	5,4
17:16:31	17.3	2.6	5.1	16.9	22.8	5,4
17:17:31	17.5	2.5	5.0	16.2	23.4	4:5
17:18:31	17.4	2.6	5.0	16.3	19.6	3:8
17:19:31	17.3	2.6	4.7	16.7	18.5	4-1
17:20:31	17.3	2.6	4.6	16.4	22.1	4:3
17:21:31	17.5	2.5	5.1	15.1	25.9	7;7
17:22:31	17.5	2.5	5.3	14.7	24.0	3;2
17:23:31	17.4	2.5	5.2	14.6	23.0	-0,2
17:24:31	17.4	2.5	4.9	15.0	2)1.9	-2,6
17:25:31	17.4	2.5	4.9	14.6	2:1.4	-4¦.8
17:26:31	17.5	2.5	4.9	15.0	25.3	-€,.2
17:27:31	17.4	2.5	5.1	14.8	24.7	-7,.7
17:28:31	17.4	2.5	5.1	15.4	25.6	-€,.3
17:29:31	17.5	2.4	5.5	15.4	30.2	-7,.5
17:30:31	17.5	2.5	5.9	15.4	2₿.7	-5 j.7
17:31:31	17.4	2.6	5.4	16.2	2) .5	-5.7 -3.7
17:32:31	17.3	2.6	4.7	16.7	20.8	-C _J .7
17:33:31	17.4	2.5	5.0	16.4	23.2	1:7
17:34:31	17.4	2.5	5.4	16.3	2:4.5	4,2
17:35:31	17.2	2.7	4.8	17.1	20.8	616
17:36:31	17.3	2.5	4.5	17.0	2,3.1	6,4
17:37:31	17.3	2.5	5.4	16.9	2,1.0	5:7
17:38:31	17.3	2.5	5.5	16.4	29.2	5,4
17:39:31	17.3	2.5	6.5	13.9	4∌.0	4,6
17:40:31	17.3	2.5	8.1	12.5	47.4	2.7
17:41:31	17.2	2.6	8.1	12.8	44.6	5,8
17:42:31	17.2	2.6	8.0	12.4	43.1	5,4
17:43:31	17.2	2.5	8.1	12.5	47.1	7.7
17:44:31	17.3	2.5	8.2	12.3	4β.8	3:7
17:45:31	17.3	2.5	8.2	12.0	44.6	0;3
17:46:31	17.2	2.5	7.6	12.8	35.4	-1.0
17:47:31	17.3	2.5	6.4	15.1	29.5	-1.0 -≾.9
17:48:31	17.3	2.4	6.0	15.4	31.6	-ŧ¦.8
AVERAGE	17.4	2.5	5.7	15.2	28.7	1,5
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				••		1

15.5

5.0

22.9

1.7

CALIBRATION SUMMARY
09-26-1996 06:18:11
TO BRATION FILE NAME = c:\cemdata\0926C1.CAL

nan. Name		Units :	Ze	ro	!	Sp	an	!	Slope	int.
		!	Conc.	Resp.	;	Conc.	Resp.	;		
1	02	7VD	2	.08		20.8	.8		25.11	0067
2	CO2	ZVD	0	Û		18.6	.1		201.5	.0904
3	00	PPMVD	0	01		64.2	8.3		10.1	.0877
4	NOx	PPMVD	0	.05		90	9		10.06	5073
5	THC	PPMVW	0	0		9	ç		1	0004
6	S02	PPMVD	0	0		448	.1		4944.48	-2.2094

RACIAN CORPERATION

ironmental Measurement and Analysis Department

. ..tinuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: GC CHECK--21.5 NOx/4.1 CO/8.5 SOZ

09-26-1 99 6 Time	02 %VD	CO2 %VD	CO PPMV d	NOx PPMVD	THC PPMVN	SO2 PPMVD	
06:20:50 06:20:53 06:21:03 06:21:13	-0.0 -0.0 -0.0 -0.0	-0.2 -0.1 -0.2 -0.2	3.8 3.8 3.9 3.8	22.2 22.2 22.2 22.2 22.3	8, 7 9, 0 9, 0 9, 0	11.2 11.5 10.5 9.5	
Avg =	-0.0	-0.2	3.8	22.2	8j. 9	10.7	

ironmental Measurement and Analysis Department

tinuous Emissions Monitoring Data

Claremont BETH PAGE, NY

Performed for: Claremont.

Date Printed = 09-26-1996 | Durrent Time = 06:25:07 File Name = c:\cemdata\092676.PRN | Calibration File:cs\cemdata\0926Ct.CAL

Test #: 30 CHECK--10.0 NO. 10.1 00/0.7 802

0 9- 26-1996 Time	32 XVD	222 %VD	bekAQ CO	60×44 75-	bbwΛM ihū	3 92 ₽₽₩₩₽	
06:25:08 06:25:09	-0.0 -0.0	-0.1 -0.1	1.9 1.7	13.0 13.0	4.9 4.9	-5.5 -5.5	
04:25:13	-0.0	-0.1	1.9	13.0	4.9	-2.4	
06:25:23 06:25:33	-0.0 -0.0	-0.1 -0.1	1.9	13.0 13.0	4,9 4,9	2.5	
06:25:43	-0.0 ========	-0.2 ======	1.9 =======	13.1 =======	4,9 =======	1.7 =======	
Avc =	-0.0 =======	-0, <u>1</u> ======	1.9 	13.0 =======	4.9	-1.1 	

ironmental Measurement and Analysis Department

....tinuous Emissions Monitoring Data

Claremont

BETH PAGE,NY

Performed for: Claremont

Date Printed = 09-26-1996 Current Time = 06:28:16

Test #: QC CHECK--49.6 NOx/37.1 CO

09-26-1995	D2	02	CO	NOx	THIC	S 02	
Time	%VD	% 70	PPMVD	PPMVD	PPAVW	₽₽ MV ,0	
06:28:17	-0.0	-0.1	36.8	49.3	0,1	1.2	
06:28:23	-0.0	-0.0	36.6	48.2	0,3	1.0	
06:28:33	-0.0	-0.1	36.7	48.9	0,3	0.7	
06:28:43	-0.0	-0.1	36.9	50.1	-0,0	0.2	
06:28:53	-0.0	-0.1	36.9	50.5	-0,0	-0.0	
06:28:53	-0.0	-0.1	36.8	51.0	-0,0	0.1	
Avg =	-0.0	-0.1	36.8	49.7	*: 0.1 *	0.5	

ironmental Measurement and Analysis Department

ntinuous Emissions Monitoring Data

Claremont BETH PAGE.NY

Performed for: Claremont

Test #: QC CHECK--90.0 NOx/64.2 CO

09-26-1996 Time	02 %VD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
06:32:16	-0.0	-0.1	5 4. 7	89.6	0.4	4,9	
06:32:23	-().()	-0.2	64.6	89.8	0.4	5.7	
06:32:33	-0.0	-0.2	64.5	90.2	0.4	5.6	
06:32:43	-0.0	-0.2	64.6	91.9	0.4	6.0	
06:32:53	-01.0	-0.2	64.7	92.9	0.4	6.9	
06:33:03	-0.0	-0.2	64.8	94.0	0.4	7.5	
Avg =	-0.0	-0.2	64.7	91.4	0.4	6.1	

ironmental Measurement and Analysis Department

Continuous Emissions Monitoring Data Claremont

BETH PAGE, NY

Performed for:

Claremont · ·

Date Printed = 09-26-1996 Current Time = 06:39:39

Test #: QC CHECK--448.0 902

09-26-1996 Time	02 %VD	002 %VD	00 P PMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
06:39:41	-0.0	0.0	0.1	0.3	0) . 0	448.4	
06:39:43	-0.0	0.0	0.1	0.3	0).0	448.4	
04:39:53	-0.0	0.0	-0.0	0.3	-0%.0	448.5	
06:40:03	-0.0	0.0	0.1	0.3	0, 0	448.2	
04:40:13	-0.0	0.0	0.0	0.3	01.0	447.4	
Avg =	-0.0 	11		1. T.		445.3	

polity dissipation

prontental Messurament and Analysis Department

tiruova Epiasiona Monitoring Data

Diarast t 9574 PAGE, MY

Panformatifant Claremont'

Deta Printed = 19-04-1996 | Current Time = 06:45:25 File Name = p:/pemiata/092696.PRN | Calibration Fileso: panists/192601.041

Test #: ZERO CHECK--2.0 CC

09-26-1996 Time	90 1970	032 893	bak/l	obwill 73-	ти <u>е</u> ормуу	5.8/\[.	
06:45:29 06:45:33 06:45:43 06:45:33	1.0 1.0	0.0 0.0 0.0 0.0	-0.0 -0.0 -0.1 -0.0		-0.0 000 -0.0 -0.0	0.5 -1.4 0.0 0.2	
Avg =	2.0	0.0	-0.0	0.4	-0.0	-0.2	

ironmental Measurement and Analysis Department

..tinuous Emissions Monitoring Data

Claremont BETH FAGE, NY

Performed for: Claremont

Test #: QC CHECK--20.8 02/18.6 CO2

09-26-1996 Time	02 XVD	CO2 XVD	CO PPMVD	NOX PPMVD	THIC PRIVA	502 P PMV ()	
06:47:42 06:47:44 06:47:53 06:48:03 06:48:13	20.8 20.8 20.9 20.9 20.9	18.3 18.3 18.3 18.3	-0.2 -0.2 -0.3 -0.3	-101.2 -101.2 -101.2 -101.2 -101.2	2 9 2.9 3.2 3.1 3.2	-1.0 -1.2 -1.7 -1.6	
Avg =	20.9	18.3	-0.3	-101.2	3.1	-1.3	

ironmental Measurement and Analysis Department

cinuous Emissions Monitoring Data

Claremont SETH PAGE, NY

Performed for: Claremont

Test #: QC CHECK--12.1 02/5.1 CO2

09-26-1996 Time	02 XVD	002 %VD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
06:50:26	12.3	5.1	-0.2	40.0	0.8	2.6	
06:50:33	12.2	5.1	-0.2	39.0	0.9	3.1	
06:50:43	12.2	5.1	-0.1	38.6	0.8	2.8	
06:50:53	12.2	5.1	-0.1	38,4	0.9	3.5	
06:51:03	12.2	5.1	-0.0	38.1	1.1	4.5	
06:51:13	12.2	5.1	-0.0	37.9	1.2	4.5	
06:51:23	12.2	5.1	-0.0	37.7	1.0	5.0	
06:51:33	12.2	5.1	-0.1	37.5	0.9	5.3	
Avg =	12.2	5.1	-0.1 =======	38.4	0.9	3,9	

ironmental Measurement and Analysis Department

inuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: ZERO CHECK--2.0 02

09-26-1996 Time	02 %VD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVN	SO2 ₽₽М√D	
12:21:33 12:21:43 12:21:53 12:22:03	2.0 2.0 2.0 2.0	0.0 0.0 0.0 -0.0	0.0 -0.0 -0.0 -0.0	0.5 0.5 0.5 0.5	-0:.0 0:.0 0:.0 0:.0		
Avg =	2.0	0.0 	-0.0	0.5	≈: -0).0	-1.2	

Fironmental Measurement and Analysis Department tinuous Emissions Monitoring Data

BETH PAGE,NY

Performed for:

Claremont.

Test #: GC CHECK--20.8 02/18.6 CO2

09-26-1996 Time	02 %VD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVN	SO2 PPMVD	
12:24:03	20.8	18.2	-0.2	-98.4	1.7	5.3	
12:24:05	20.8	18.2	-0.2	-98.4	1.9	5.3	
12:24:13	20.7	18.1	-0.3	-95.0	2.0	6.6	
12:24:23	20.8	18.0	-0.2	-89.3	1.9	6.5	
12:24:33	20.8	18.0	-0.3	-89.2	1.9	7.3	
Avg =	20.8	18.1	-0.2	-94.0	1.9	6.2	

ironmental Measurement and Analysis Department

inuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont...

Date Printed = 09-26-1996 Current Time = 12:26:11

Test #: QC CHECK--156.8 S02

09-26-1996 Time	02 %VD	CO2 XVD	CO PPMVD	NOX PPMVD	THC PPMVW	SO2 Ppnyo	
12:26:14	-0.0	0.0	0.1	12.2	-01.0	157.1	
12:26:23	-0.0	-0.0	0.1	7.5	-09.0	157.9	
12:26:33	-0.0	0.0	0.1	8.2	-04.0	158.2	
12:26:43	-0.0	0.0	0.2	7.1	0).0	160.2	
12:26:53	-0.0	0.0	0.1	6.3	-0). 0	161.0	
12:27:03	-0.0	-0.0	0.2	5.6	-0).0	161.5	
12:27:13	-0.0	-0.0	0.2	5.0	-0), 0	161.9	
Avg =	-0.0	0.0	0.1	7.7	-(h, ()	159.7	

ironmental Measurement and Analysis Department

tinuous Emissions Monitoring Data

Claremont BETH PAGE,NY

Performed for: Claremont.

Test #: QC CHECK--90.0 NOx/64.2 CO

09-26-1996 Time	02 %VD	CO2 XVD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
12:32:33	0.0	-0.0	64.6	92.2	-0.0	======= 21.4	**************************************
12:32:34	0.0	-0.0	64.6	92.2	-0.0	21.4	
12:32:43	-0.0	-0.2	63.9	92.9	-0.0	19.0	
12:32:53	-0.0	-0.2	64.1	72.6	-0.0	18.5	
12:33:03	-0.0	-0.2	64.3	90.9	-0.0	18.0	
=======================================	======	=======	=======	======	::::::::::	=======	
Avg =	-0.0	-0.1	64.3	92.1	-0.0	19.6	

ironmental Measurement and Analysis Department

linuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: GC CHECK--21.5 NOx/4.1 CO/8.5 SO2/9.0 CH4

09-26-1996 Time	02 XVD	C02 XVD	CO P PMVD	NOx PPMVD	THC PPMVW	802 PPMV)D	
12:36:49 12:36:50 12:36:52 12:37:01 12:37:11	-0.0 -0.0 -0.0 -0.0 -0.0	-0.0 -0.0 -0.0 -0.0 -0.0	3.8 3.8 3.8 3.9 3.9	19.9 19.9 19.9 19.9 20.8 20.9	8 . 9 8 . 9 8 . 9 8 . 9 8 . 9	11.2 11.2 11.2 11.2 9.8 9.8	
Avg =	-0.0	-0.0	3.9	20.3	8, 9	10.6	

ironmental Measurement and Analysis Department

tinuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: ZERO CHECK--2.0 02

09-26-1996 Time	02 %VD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVN	SO2 PPMVO	
14:31:23	2.0	0.0	0.1	0.6	0.0	-1.9	
14:31:31	2.0	0.0	0.0	0.6	0.0	-1.9	
14:31:41	2.0	0.0	0.0	0.6	0.0	-1.8	
14:31:51	2.0	0.0	0.0	0.5	0.0	-2.1	
14:32:01	2:0	0.0	0.0	0.5	0.0	-2.1	
14:32:11	2.0	0.0	-0.0	0.5	0.0	-1.6	
14:32:21	2.0	0.0	-0.1	0.5	-0.0	-1,4	
14:32:31	2.0	-0.0	-0.1	0.5	-0.0	-0.8	
14:32:41	2.0	0.0	-0.0	0.5	0.0	-0.5	
14:32:51	2.0	0.0	-0.0	0.5	0.0	-0.4	
14:33:01	2.0	0.0	-0.0	0.5	0.0	-0.2	
14:33:11	2.0	-0.0	0.0	0.5	0.0	0.4	
√ g =	2.0	0.0	-0.0	0.5	0.0	-1.2	
		======		======	=======	=======	

 ironmental Measurement and Analysis Department inuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: QC CHECK--20.8 02/18.6 C02

09-26-1996 Time	02 %VD	CD2 XVD	CO PPMVD	NOx PPMVD	THC PRMVW	902 PPM\(D	
14:37:36 14:37:41 14:37:51 14:38:01	20.8 20.3 20.8 20.8		-0.3 -0.2 -0.2		2.4	13.(14." 14.;	
Avg =	20. 8	18.3	-0.2	-100.5	2.4	14.::	

ironmental Measurement and Analysis Department

Atinuous Emissions Monitoring Data

Claremont BETH PAGE, NY

Performed for: Claremont

Date Printed = 09-26-1996 Current Time = 14:41:53

File Name = c:\cemdata\092696.PRN | Calibration File:c:\cemdata\0926C1.CAL

Test #: @C CHECK--90.0 NOx/64.2 CO

09-26-1996 Time	02 XVD	022 %VD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
14:41:57	-0.0	-0.1	64.9	93.8	0.0	24.1	
14:42:01	-0.0	-0.1	64.9	93.0	-0.0	25.9	
14:42:11	-0.0	-0.2	65.0	92.8	-0.0	25.8	
14:42:21	-0.0	-0.2	44.8	92.6	-0.0	25.8	
14:42:31	-0.0	-0.2	64.7	92.8	-0.0	25.8	
14:42:41	-0.0	-0.1	64.8	9 2.7	-0.0	25.8	
14:42:51	-0.0	-0.1	64.7	92.5	-0.0	25.3	
14:43:01	-0.0	-0.2	64.5	92.5	-0.0	25.4	
14:43:11	-0.0	-0.2	64.7	92.3	-0.0	25.1	
14:43:21	-0.0	-0.2	64.9	92.4	-0.0	25.3	
14:43:31	-0.0	-0.1	64.7	92.6	-0.0	24.8	
14:43:41	-0.0	-0.2	64.6	92.7	-0.0	24.3	
∵ .g =	-0.0	-0.1	64.8	92.7	-0.0	25.3	

ironmental Measurement and Analysis Department

Linuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: GC CHECK--21.5 NOx/4.1 CO/8.5 SO2/9.0 CH4

09-26-1996 Time	02 %VD	002 %VD	CO PPMVD	NOX PPMVD	THI: PPMVW	S02 PPMV¦)	
=======================================	=======	=======	=======		====;====	=====;==	
14:46:02	0.7	0.1	4.1	21.8	9,3	15.3	
14:46:04	0.7	0.1	4.1	21.8	9t.3	15.3	
14:46:11	0.9	0.1	4.0	21.4	9'.8	14.0	
14:46:21	1.0	0.1	4.0	21.1	91, 8	13.4	
14:46:31	1.1	0.1	4.1	20.6	91.8	11.9	
14:46:41	1.2	0.1	4.1	20.5	9, 8	11.8	
14:46:51	1.2	0.1	4.0	21.1	91.8	11.0	
14:47:01	1.1	0.1	4.0	21.3	10, 1	10.1	
14:47:11	1.2	0.1	4.1	21.3	10.2	9.2	
14:47:21	1.3	0.2	4.1	21.4	91.7	9.0	
14:47:31	1.3	0.1	4.1	21.5	10, 2	8.1	
	=======	~ .					
, = ===================================	1.1 	0.1 ======	4.1 ======	21.3	9%.8 	11.7	

ironmental Measurement and Analysis Department

cinuous Emissions Monitoring Data Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: GC CHECK--13.0 NOx/2.1 CO/3.7 802/5.1 CH4

09-26-1996 Time	02 XVD	CD2 XVD	CO PPMVD	NOx PPMVD	THC PPMVW	302 PPMVD	
14:51:39	-0.0	-0.0	2.1	12.1	4.9	-3.7	======================================
14:51:40	-0.0	-0.0	2.1	12.1	4.9	-3.7	
14:51:42	-0.0	-0.0	2.1	12.1	4.9	-3.7	
14:51:51	-0.0	0.0	2.0	12.2	4.9	-3.9	
14:52:01	-0.0	-0.0	2.0	12.2	4.9	-4.5	
Avg =	-0.0	-0.0	2.1	12.1	4.9	-3.9	

Trvironmental Measurement and Analysis Department

tinuous Emissions Monitoring Data

Claremont

BETH PAGE, NY

Parformed for:

Claremont

Test #: ZERO CHECK--2.0 02

09-26-1996 Time	02 XVD	CO2 %VD	00 PPMVD	NOX PPMVD	THC Ponvn	SO2 PPM/VD	
18:16:43	2.0	-0.0	-0.1	0.3	0.0	0.(3	
18:16:47	2.0	-0.0	-0.0	0.3	0.0	0.4	
18:16:57	2.0	-0.0	-0.0	0.3	0.0	1.1	
18:17:07	2.0	0.0	-0.1	0.3	~0.0	1.8	
18:17:17	2.0	0.0	-0.1	0.3	-0.0	2.2	
Avg =	2.0	0.0	-0.1	0.3	0 0	1.2	=======================================

Fronmental Measurement and Analysis Department inuous Emissions Monitoring Data Claremont

Claremont BETH PAGE,NY

Performed for: Claremont.

Test #: QC CHECK--20.8 G2/18.6 CO2

09-26-1996 Time	02 %VD	CO2 XVD	CO PPMV D	NOx PPMVD	THC PPMVW	502 PPMVD	
18:18:55 18:18:57 18:19:07 18:19:17	20.8 20.9 20.8 20.8	18.6 18.9 18.5 18.6	-0.3 -0.4	-96.4 -101.2 -94.2 -101.2	0.2 0.2 0.2 0.2	7.4 9.4 9.1 9.2	
Avg =	20.8	18.7	-0.3	-98.2	0.2	8.8	

 Fronmental Measurement and Analysis Department _invovs Emissions Monitoring Data

Claremont

BETH PAGE, NY

Performed for: Claremont -

Test #: QC CHECK--12.1 02/5.1 C02

09-26-1996 Time	02 XVD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVD	
18:21:10 18:21:11 18:21:17 18:21:27 18:21:37	12.2 12.2 12.2 12.2 12.2 12.2	5.2 5.2 5.3 5.2 5.2	-0.2 -0.2 -0.1 -0.2 -0.1	38.0 38.0 35.5 34.7 34.7	0, 0 0, 0 0, 0 0, 0 0, 0	15.9 15.9 15.8 16.8 17.0	
Avg =	12.2	5.2	-0.2	3 6. 2	0,0	16.7	

Tironmental Measurement and Analysis Department

inuous Emissions Monitoring Data Claremont

BETH PAGE, NY

Performed for: Claremont.

Test #: QC CHECK--90.0 NOx/64.2 CO

09-26-1996 Time	02 %VD	CO2 XVD	CD PPMVD	NOx PPMVD	THC PPMVW	GO2 PPMVD	
18:24:31	-0.0	-0.2	64.5	90.2	-0.0	12.4	=======================================
18:24:37	-0.0	-0.2	64.6	89,9	-0.0	12.1	
18:24:47	-0.0	-0.2	44.5	90.0	-0.0	10.3	
18:24:57	-0.0	-0.2	64.6	89.6	-0.0	10.2	
18:25:07	-0.0	-0.2	64.7	89.5	-0.0	9.6	
18:25:17	-0.0	-0.2	64.6	89.6	-0.0	8.6	
Avg =	-0.0	-0.2	64.6	89.8	-0.0	10.5	

Environmental Measurement and Analysis Department

inuous Emissions Monitoring Data

Ciaremont

BETH PAGE, NY

Performed for: Claremont -

Test #: QC CHECK--49.6 NOx/37.1 CO

07-26-1996 Time	02 XVD	CO2 %VD	CO PPMVD	NOx PPMVD	THC PPMVW	SO2 PPMVI	
18:34:07	-0.0	-0.1	36.3	49.0	-0,0		
18:34:08	-0.0	-0.1	34.3	49.0	-0,0	-7.3	
18:34:17	-0.0	-0.1	36.3	48.9	-0.0	-6.7	
18:34:27	-0.0	-0.1	36.4	49.5	-0.,0	-6.6	
18:34:37	-0.0	-0.1	36.6	49.9	-0.0	-6.0	
18:34:47	-0.0	-0.1	37.0	50.0	-0.,0	-6.1	
=======================================	=======	======			-		
Avg =	-0.0	-0.1	36.5	47.4	-0.,0	-6.7	

and the second of the second o

___inuous Emissions Monitorian nata

Claremont BETH PAGE,NY

Performed for: Claremont

Test #: QC CHECK--13.0 NGx/2.1 CO/3.7 SO2/5.0 CH4

09-26-1996 Time	02 XVD	CO2 XVD	00 P PMVD	NOx PPMVD	THC PPMVN	SO2 PPMVD	
18:46:17	-0.0	0.0	1.9	12.1	4.9	10.7	
18:46:18	-0.0	0.0	1.9	12,1	4.9	10.7	
18:46:27	-0.0	0.0	1.9	12.3	4.9	8.8	
18:46:37	-0.0	0.0	1.9	12.2	4,9	7.4	
18:46:47	-0.0	0.0	1.9	12.2	4.9	7.0	
18:46:57	-0.0	0.0	1.9	12.2	4.9	5.8	
18:47:07	-0.0	0.0	1.9	12.2	4.9	6.0	
18:47:17	-0.0	0.0	1.9	12.2	4.9	5.3	
18:47:27	-0.0	0.0	2.0	12.1	4,9	4.3	
18:47:37	-0.0	0.0	2.0	12.1	4.9	3.7	
18:47:47	-0.0	0.0	2.0	12.0	4.9	2.8	
_		A A		12 2	4 0		
-	-0.0 	0.0 ======	1.9 ======	12.2	4.9 	6.6 	

ironmental Measurement and Analysis Department

linuous Emissions Monitoring Data

Claremont

BETH FAGE, NY

Performed for: Claremont : Date Printed = 09-26-1996 Current Time = 18:50:18

Test #: GC CHECK--3.0 CH4

09-26-1796 Time	02 %VD	CO2 %VD	CO PPMVD	NOx PPMVD	THIC PPMVN	SO2 PPMVI)	
10.50.30	·========	^ ^		 c	2 0	;==	
18:50:22	-0.0	-0.0	-0.2	5.5	2.8	-4.6	
18:50:27	-0.0	0.0	-0.0	5.5	2.9	-4.7	
18:50:37	-0.0	0.0	-0.0	5.5	2.9	-5.5	
18:50:47	-0.0	0.0	0.0	5.5	2.9	-6.0	
18:50:57	-0.0	0.0	-0.0	5.5	2.9	-6.2	
18:51:07	-0.0	0.0	-0.0	5.4	2.9	-6.4	
18:51:17	-0.0	0.0	-0.1	5.5	2.8	-6.3	
18:51:27	-0.0	0.0	-0.1	5.5	2.8	-6.5	
18:51:37	-0.0	0.0	-0.0	5.4	2.8	-6.9	
18:51:47	-0.0	0.0	-0.0	5.4	2.8	-7.4	
Avg =	-0.0	0.0	-0.0	5.5	2.9	-6.0	=======================================
-							

ironmental Measurement and Analysis Department

inuous Emissions Monitoring Data

Maremont

BETH PAGE, NY

Performed for:

Claremont.

Avg = 17.5 2.4 283.4 10.3 1544.5 7.0

Date Printed = 09-26-1996 | Current Time = 18:59:05

Test #: INLET 0)2/002 R	UN#01	ス	nle-	T	
07-26-1996 Time	02 %VD	SD2 XVD	20 PP MVD	NOx PPMVD	THC PPMVW	SO2 PPMVD
18:59:06	17.6	2.4	-62.5	10.2	1542.2	٤.0
18:59:08	17.5	2.4	-62.5	10.2	1542.2	6.0
18:59:17	17.5	2.4	-64.7	10.3	1546.2	6.2
18:59:32	17.5	2.4	-84.8	10.4	1542.9	7.5
18:57:37	17.5	2.4	1002.1	10.5	1546.7	7.3
18:39:47	17.5	2.4	774.6	10.5	1546.7	8.5

ironmental Measurement and Analysis Department

inuous Emissions Monitoring Data

Claremont

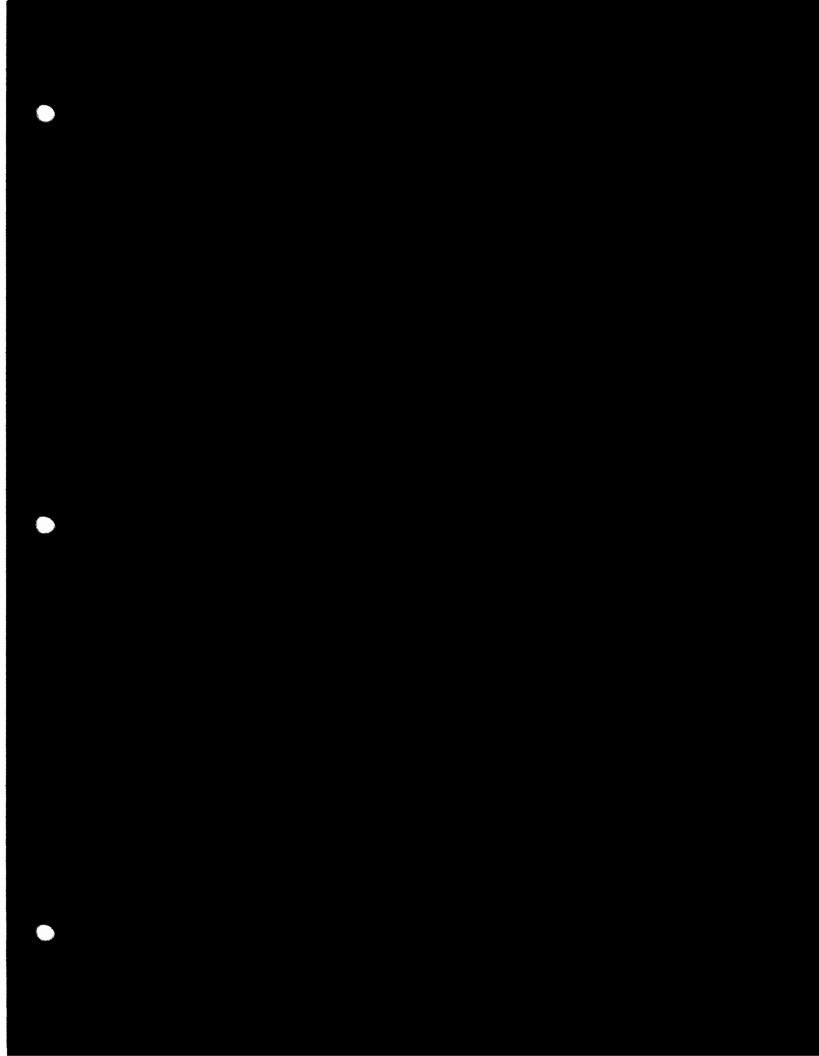
BETH PAGE, NY

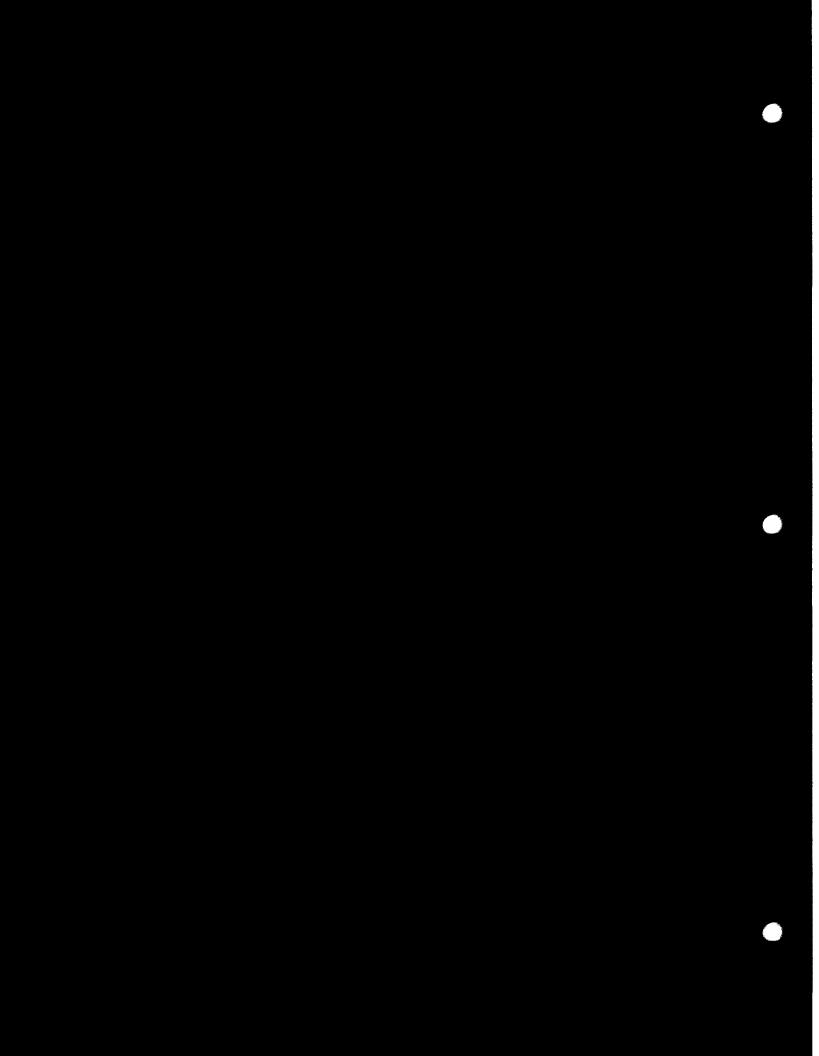
Performed fors Claremont - 1

Date Printed = 09-26-1996 | Current Time = 19:01:31

Test #: INLET	52/002 3	CN#I	In	le+		
09-15-1996 Time	02 XVD	602 XVD	SO PPMVD	NOx PP M VD	THC PPMVW	302 PPMVD
19:01:32	16.6	3.0	755.8	13.7	::::::::::::::::::::::::::::::::::::::	14.9
19:01:37	16.6	3.1	848.1		1039,7	16.2
19:01:47	16.5	3.1	935.0	14.2	1041.4	15.6
19:01:57	16.7	3.1	968.1	14.4	1044.3	16.0
19:02:07	16.6	3.1	972.0	14.4	1044.4	17.0
19:02:17	16.6	3.1	962.0	14.6	1044.3	17.9
19:02:27	16.6	3.1	977.9	14.6	1044.3	18.5
		======				========
Avg =	16.6	3.1	919.8	14.3	1041.8	16.6

rironmental Measurement and Analysis Department


inuous Emissions Monitoring Data Llaremont


BETH PAGE, NY

Performed for: Claremont -

Test #: INLET	02/002 R	UN#3	IL	,le+		
09-26-1996 Time	02 %VD	002 XVD	CO PPMVD	NOx PPMVD	THC PPMVN	502 PPMVD
19:04:44	17.8	2.3	405.4	15.0	558.1	======= 17.9
19:04:47	17.8	2.4	414.5	15.3	557.0	17.7
19:04:57	17.8	2.3	416.9	15.4	558.3	16.8
19:05:07	17.8	2.3	420.7	15.5	557.1	16.5
19:05:17	17.8	2.3	420.1	15.5	558.3	15.8
19:05:27	17.8	2.3	420.8	15.4	558.2	14.4
19:05:37	17.8	2.3	422.7	15.4	558.7	14.0
19:05:47	17.8	2.3	422.7	15.4	558.4	12.9
22222222222		======	=======	=======	=======	
Avg =	17.8	2.3	418.0	15.4	558.0	15.7

		J
		•

PARTICULATE DATA CORRELATION

Sample No.	<u>Report Run No.</u>
CL-LTEV-AI-II-007	1 Acetone
CL-LTEV-AI-II-010	1 Filter
CL-LTEV-AI-II-013	2 Acetone
CL-LTEV-AI-II-016	2 Filter
CL-LTEV-AI-II-021	3 Acetone
CL-LTEV-AI-II-024	3 Filter
CL-LTEV-AI-II-050	Blank Acetone
CL-LTEV-AI-II-053	Blank Filter

		•
		_
		_

RADIAN INTERNATIONAL LLC. PARTICULATE AND HCI TEST DATA WORKSHEET

CLIENT	Claremont			
LOCATION	Outlet	Outlet	Outlet	
TEST NO.	1	2	3	
DATE:	9/27/96			
TIME :	10:14	14:25	15:45	
TEST DATA INPUT				
Barometric Pressure (in. Hg)	30.1	30.1	30.1	
Stack Area (ft2)	3.14	3.14	3.14	
Nozzle Diameter (in.)	0.244	0.244	0.244	
Total Sampling Time (min.)	53	60	60	
Calibration Factor (Y)	1.004	1.004	1.004	
Pitot Coefficient	0.84	0.84	0.84	
Average Sqr Rt of Vel Head (in. wc)	0.71	0.69	0.67	
Average Orifice Pressure Drop (in. wc)	1.23	1.16	1.11	
Average Meter Temp. (°F)	100	98	76	
Average Stack Pressure (in. wc)	0.3	0.25	0.28	
Average Stack Temp. (°F)	154	152	148	
Meter Volume @ Meter Conditions (ft3)	34.27	33.49	33.94	
Total Water Collected (ml)	186.5	191.1	192.6	
CO2 in Stack Gas (%)	2.6	2.9	2	
O2 in Stack Gas (%)	17.2	17.1	18.1	
CO in Stack Gas (%)	0	0	0	
Total Particulate Catch (mg)	0.46	0.46	0.44	
Total HCL catch (mg)	0.16	0.16	0.14	
CALCULATED VALUES				
Meter Volume (dscf)	32.74	32.10	33.87	Average
Water Vapor in Stack Gas (%)	21.14	21.89	21.12	21.38
Molecular Weight of Stack Gas (dry)	29.104	29.148	29.044	29.10
Molecular Weight of Stack Gas (wet)	26.76	26.71	26.71	26.73
Average Velocity of Stack Gas (fpm)	2,659	2,581	2,519	2586.08
Actual Stack Gas Flowrate (acfm)	8,353	8,108	7,912	8124.42
SCFM	7231	7042	6917	
Stack Gas Flowrate (dscfm)	5702	5501	5457	5553.24
Isokinesis (%)	104.88	94.17	100.14	99.73
100.1111.0000 (10)				
EMISSION CONCENTRATION				
Particulate Concentration (gr/acf)	0.00E+00	0.00E+00	0.00E+00	0.00
Particulate Concentration (gr/dscf)	0.00	0.00	0.00	0.00
Particulate Concentration (lbs/dscf)	0.00E+00	0.00E+00	0.00E+00	0.00
Particulate Concentration (µg/m3)	0	0	0	0.00
HCI Concentration (mg/m3)	0.17	0.18	0.15	
HCL Concentration (ppm)	0.11	0.12	0.10	
The Controlled (ppm)	U	52	5,,,,	
EMISSION RATE				
Particulate Emission Rate (ibs/hr)	0.00	0.00	0.00	
HCI Emission Rate (lbs/hr)	0.0037	0.0036	0.0030	0.0034
	3.000.		 -	
NOv	0.70	0.80	0.42	0.64
NOx	0.70	0.00	0.72	U.U 4
SO2				
CO	0.29	0.24	0.14	0.23

200.00.7 Final Leak check O COLO !!! Pitot Leak Check 💍 👓 Initial Leak Check ဂ္ပ ဝိ 03534 2.43 **Assumed Moisture** Sample Number Filter Number AILING K Factor 1,612 -0.30 **Duct Dimensions** Meter Number Meter ∆ H @ Static Press Meter y 0.250 Pitot Number Nozzle dia Probe Pbar NTERNATIONAL Plant CLAREMONT Operator SEH Test Number

ANSTEA Difference THE 校 3028 200 147 **Impinger Weights** Nozzie Calibration 0.410 202-13 501.3 Notes <u>ר</u>יוריש 102 . 125 XXX BLE Final 603 Tota Z 9 ¥ TO STATE 7054 Initial Dell' Tre-me 2 581.5 501.0 581.5 0.25 4 4984 588.3 8.109 Average 3 9 5.0 Ó 000 5-0 0 V Ó Ó Ò M 200 JUN IN ă 36 83 46 72 10k Average 254 Temp 25.5 Probe Stack ٥ 0.59 0 I 9 74. 54.00 337 74. 850 037 74. 850 037 74. 850 057 75. 850 057 753 220 024 753 025 48 276 Average v Volume Semple K4 18 g 1 / Average Ser Clock Port Point ARESE TO A 1608 されたこと 1000 1613 B

S coppos Final Leak check Occide 12 Pitot Leak Check OCO Initial Leak Check S 93532 Assumed Moisture Sample Number Fitter Number 1.923 Assumed M. 1.012 File. -0.28 **Duct Dimensions** Meter Number Meter ∆ H @ Static Press Meter y 0520 Pitot Number Nozzle dia Probe Date Pbar INTERNATIONAL! Operator フミド Test Number

	·		
17# \$774CK \$754CK		3 6.250	Difference 178.3 4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		Nozzie Calibration 2 0.25/2 3 @ 0.250 Empirore: Weights	Final 652.0 625.0 568.3 487.1 617.4 617.5
143 is -		734.7 N 024? erage	initial 473,7 603,9 567.2 186.1 611.6
		7 - 8	-26450
できるからなった か	40000000000000000000000000000000000000		
1 44 4 M M M 9	2 3 MANAMA		
1 4 4 4 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9	00 9000000		
E E CHANA R	OC 33MM		4
S COUNTY IN	64445		
\$ <u>2222288</u> 8			
			Average
S CONTRACTOR OF	11		
	TANTER CE	+++++	++++
# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PARTICIPAL EX		
	11 41 7 200 2000		w .
\$ 2 3 00 000 0 5	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ב ב			
# 1700000 E	12/2 12/2/2012 30/		+++++
	WH		
: <u>क्रिक्ट भूज</u> ह	4 × × × × × × × × × × × × × × × × × × ×		
	000000		
्र व प्रशेल ले चेवच	3 200000		1
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E ERRESE		34.64
本学的工作	五年代 五十五 五年代 五十五 五		2
事でつるなるなる	8 8250 x 3		950
なんのでいて 3	高一つかけんって		Total / Average
§ 3	7		100
\$ 500 3 0000 35	2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		

Assumed Moisture Filter Number Sample Number 1.973 Assum (.012 F. 24 -0.28 **Duct Dimensions** Meter Number Meter ∆ H @ Static Press Meter y 20.20 3.ca.es 0.750 Pitot Number Nozzle dia Date Pbar Probe Plant CLARE FUEL Operator UEH Test Number

Clock Port	Point	Sample	4 5	Meter		PΡ		нν	Stack Tear		Probe	Tiller Tiller	Pump Inter		Pump	impinger Exit		Pump		Notes	3	
7	_		Ş	B	_	7	4	<u>-</u>		Ė	Z Y	777	L	-	1	7		<u>۷</u>				
1	- 6)			1	2 (21 -	7		_		1	2			9	10					
000	1	<u>۸</u>	4		7	ن	7	4	ב		d	7	T T	+	2	9						
) Orani	٨	9	77	9		0.5	_	48	7	8 2	5 H	25	\tilde{z}	11	36	δ 0	'	Q				
5101	7	(2	9	7	Š	半つ	 	7	15	7	55	73	<u>D</u>	. · 1	76	9	7	Q				
020	7	2	d	3	4	4		3	77	0	1	75	4	1	22	7	*) 					
52	و	25	8	8	Ş	7	8	3,98	14	4	3	45	ξ V	100	2	7	M	Ö				
100	15CD	NO.	816	-	368																	
	_																					
			_			722	3	7	4	# X	GA	MEC	7	09-	F	11/	_					
 						Ź	Ž	1	1	1	<i>y</i>	4£2K			Z 700							
					F	L	-		\ k—	_	/_ [_	_		γ_	<u> </u>	-	ļ,	1				
14,5		8	S.	-	ζ	47	1	4	10,	5	754	V	9-18	4	24		7 7	6.6				
		, X	De		5	ъ.	į-	10	13		**\ **	マヤ		K	7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5				
	N	3	do	1	1	JY JY		46		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	34	9	1	'n	X		(
2.1	1	3	9	1	3	3	5	Į.	17/2	4		1	مر ا	,	2	•	1) \				
S	7	7,		0	Q.	9	بر چ	7	٦[7	Ŋ	4	N N		8	E C	$\frac{1}{2}$					
656	Y	20	α	,		04	31 1	ģ	Ù		33	3	Ó		Ş	7	`	10				
ē	9	55	826	-		0	X	9.25	7	1	25H	45	$\frac{1}{2}$	Q	7	58						
130	15	09	å		163							•					_					
	-				-	+											\pm					
				+	-	-		+	+	-			-	-								
									_				-						7 676.	5 6855	ا	2
																						•
																				Nozzie Calibration	ibration	
																			भट व	20.25	3.	0.250
										_	_								Average	0 250	Ş	
																				Impinger Weights	r Weigh	2
				_					_										Initial	2000	_	Difference
				F															1 4 966	623	1.7	78.5
									_										2 596,3	_	6	19.6
			-														_		3 5 40.4		<u>ب</u>	2.7
			-		-														4487		2	0.8
						F													5 5 %.6	5 7 5,	()	7.1-
ျှီ	Tof-' / Average	rage	7	-	7			281	7/	7			Average) et	199				6 58 4.3	584,0	_	ر. <i>ک</i>
)	Ave	Average v	7	589	5													Total	7	108.4
			Annual St. No. of Lot, Lot									1									ľ	

CASE NARRATIVE

Analysis of Samples for Particulates

Method 5 (40 CFR, Part 60, Appendix A)

Client:

Radian Corporation

TLI Project Number:

38656A

Date:

September 4, 1996

This report should only be reproduced in full.

Any reproduction of this report requires permission from
Triangle Laboratories, Inc.

Objective: Analysis of seven filter and acetone rinse samples for filterable particulate according to the guidelines of Method 5 (40 CFR, Part 60, Appendix A).

Sample Receipt: Seven filters, seven acetone rinses, twelve H2SO4/H2O impingers, six NaOH/H2O impingers, two H2SO4 and two NaOH impingers, and one H2O sample were received at ambient temperature on August 31, 1996 by Triangle Laboratories, Inc. in good condition. The Ids on the client chain of custody did not match the Ids on the sample labels. The sample labels were used to identify the samples.

Sample Preparation and Analysis: The pre-tared filters were transferred to tared Teflon baggies and desiccated for a minimum of 24 hours. The acctone rinses were also transferred to tared Teflon baggies and desiccated for a minimum of 24 hours. After this time period, each baggie was weighed using a Mettler AT 100 analytical balance. All weights were recorded to the nearest 0.1 milligram. Each baggie was then desiccated for at least an additional six hours and weighed again. The process was continued until two consecutive weights agreed within +/, 0.5 milligrams or within 1.0% of the total weight less tare weight, whichever is greater. Results reported relate only to the items tested.

Data Review: The filterable particulate results are reported in units of milligrams (mg) and are the sum of the filter and rinse catches. The lowest weight obtained for each fraction was used in the calculations. Any particulate catch found in the acctone blank was subtracted from the reported total up to 0.001% of the weight of acctone used and then adjusted based on the relative volume of the blank and samples.

The weight for sample CL-LIEU-II-AI-050 was slightly negative. The sample has been prepared for ion chromatography analysis and cannot be further examined to determine the negative weight. Please note that negative catches of up to -0.3 mg are considered equivalent to a catch weight of 0.0 due to inherent system noise. All negative weights are reported as a value of 0.0.

The data in this package has been judged to be valid according to the guidelines of Method 5 except as noted above. If there are questions about the data, please feel free to contact our Project Scientist, Walter Murray at (919) 544-5729, extension 271.

For Triangle Laboratories, Inc.:

Report Preparation

Quality Control

Nina Woodgate

Report Preparation Chemist

Report Preparation Chemist

The total number of pages in this data package is:

TRIANGLE LABORATORIES, INC.

LIST OF CERTIFICATIONS AND ACCREDITATIONS

American Association for Laboratory Accreditation. Valid until July 31, 1997. Certificate Number 0226-01. Accreditation for technical competence in Environmental Testing.(Including Waste Water, Sol/Haz Waste, Pulp/Paper, and Air Matrices) Parameters are AOX/TOX, Volatiles, Pesticides, PCB's, BNA's, and Dioxin/Furan. Method 1613 for Drinking Water.

State of Alabama, Department of Environmental Management. Laboratory I.D. # 40950. Drinking Water for Dioxin. Expires December 31, 1997.

State of Alaska, Department of Environmental Conservation. Drinking Water for Dioxin. Expires December 31, 1996.

State of Arizona, Department of Health Services. Certificate # AZ0423. Drinking Water for Dioxin, Dioxin in WW and S/H Waste. Effective May 26, 1996. Expires May 26, 1997.

State of Arkansas, Department of Pollution Control and Ecology. Pulp/paper, soil, water, and Hazardous Waste for Dioxin/Furan; AOX/TOX. Expires February 14, 1997. Primary No. 94-06497.

State of California, Department of Health Services. Certificate # 1922. Selected Metals in Waste Water; Volatiles, Semi-volatiles, and Dioxin/furan in WW and Sol/Haz Waste. Dioxin in Drinking Water. Expires August 31, 1997.

CLIA Registration. ID # 34D0705123. Expires May 30, 1997.

State of Connecticut, Department of Health Services. Registration # PH-0117. Dioxin in Drinking Water. Expires September 30, 1997.

Delaware Health and Social Services. Dioxin in drinking Water. Effective December 13, 1993. Expires December 31, 1996.

FDA Registration. ID #'s 059244 1053481. Expires July 1996.

Florida Department of Health and Rehabilitative Services. Dioxin in DW. Drinking Water ID HRS# 87424. Metals, Extractable Organics (GC/MS), Pesticides/PCB's (GC) and Volatiles (GC/MS) in Environmental Samples. Environmental water ID HRS# E87411. Expires May 27, 1997.

Hawaii Department of Health. Diexin in drinking water. "Accepted" status for regulatory purposes until March 1, 1997.

Idaho Department of Health and Welfare. | Effective August 18, 1993. Dioxin in Drinking Water. Expires November 30, 1996.

State of Kansas, Department of Health and Environment. Valid until January 31, 1997. Environmental Analyses/Non potable Water and Solid and Hazardous Waste. Method 1613 for driOnking water. ID #'s - Drinking water and/or pollution control - E-215. Solid or Hazardous Waste - E-1209.

Commonwealth of Kentucky, Department for Environmental Protection. Drinking Water for Dioxin. ID# 90060. Valid until December 31, 1996.

Maryland Department of Health and Mental Hygiene. Drinking water by Method 1613A. Expires September 30, 1996.

State of Michigan, Department of Public Health. Drinking water by Method 1613. Expires October 1, 1996.

Montana Department of Health and Environmental Services. Effective October 1, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of New Jersey, Department of Environmental Protection and Energy. BNAs and Volatiles. Drinking water for Dioxin. Expires October 30, 1996. ID # 67851.

State of New Mexico, Environment Department. Drinking water for Dioxin. Expires July 31, 1997.

New York State Department of Health. Valid until June 30, 1996. ID #11026. Environmental Analyses of non potable Water, Solid and Hazardous Waste. Method 1613 in DW.

State of North Carolina, Department of Environment Health and Natural Resources Certificate # 37751. Expiration date is December 31, 1996. Drinking Water for Dioxin.

State of North Carolina, Department of Environment, Health, and Natural Resources, Division of Environmental Management. Certificate # 485. Expires December 31, 1997. Metals, pesticides, semi-volatiles and volatiles; TCLP.

State of North Carolina, Department of Environment, Health, and Natural Resources - Division of Radiation Protection. General License No. 32-0875-0G; Specific License No. 0954-1. Expires April 30, 1998.

North Dakota State Department of Health and Consolidated Laboratories. Certificate # R-076. Effective October 4, 1993. Dioxin in Drinking Water. Expires December 31, 1996.

State of South Carolina, Department of Health and Environmental Control. Dioxin/Furans, BNA, Volatiles, and PCBs/pesticides under Clean Water Act, 2,3,7,8-TCDD for Drinking Water, and Organic extractables for Solid and Hazardous Waste. Expire June 30, 1996 and August 31, 1997. ID# 99040

State of Tennessee. Department of Environment and Conservation. Valid until February 5, 1999. Method 1613 Drinking water only. ID# 02992.

U.S. Army Corps of Engineers. Renewed until Nov. 30, 1997. Validated to perform methods 8280, 8290.

U.S. EPA Region V. Dioxin in Drinking Water. Expires December 29, 1996.

U.S. EPA Region VIII, for the State of Wyoming. Dioxin in Drinking Water. Expires December 31, 1996.

U.S. EPA Region X. Certification for 2,3,7,8-TCDD in Drinking Water.

State of Utah, Department of Health. Valid until December 31, 1997. Certificate Number E-166. Certification for the following parameters: Semi-Volatiles and Volatiles under RCRA; Volatiles under Clean Water Act; Dioxin/furans by Method 8280; Drinking water for Dioxin by Method 1613; Metals including Mercury and Microwave Digestion.

Commonwealth of Virginia, Department of General Services, Division of Consolidated Laboratory Services. ID # 00341. Dioxin in Drinking Water. Expires June, 1996.

State of Washington, Department of Ecology. Valid through September 11, 1996. Lab Accreditation Number C067. Scope of Accreditation applies to water analyses for Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzo-furans, volatiles, Base/Neutral and Acid Organics.

State of Washington, Department of Health. Drinking water for Dioxin. Expires April 30, 1997.

State of West Virginia, Department of Health. Drinking water for Dioxin. Expires December 31, 1996.

State of Wisconsin, Department of Natural Resources. Valid until June 30, 1996. Laboratory ID Number 999869530. Certification for the following categories of Organics: Purgeable, Base/Neutral, Acid, PCBs, and Dioxin.

Radian Corporation

TLI Project:

38656-A

NSPS Method 5

US Army Corps Client Project:

Filters & Acetone Rinses Matrix:

Date Received:

08/31/96

TLI Number:	136-#1-1	136-81-2	136-81-3	136-81-4
Sample ID:	CL-LIEU-II-AI-010	CL-LIEU-II-AI-016	CL-LIEU-II-AI-024	CL-LIEU-II-AI-032
Filter Tare Wt., g:	0,6633	0.6772	0.6754	0.7155
Baggie Tare Wt., g:	3,7159	3.6451	3.6532	3.6598
Raw Weight, g:	4,3815	4.3238	4.3324	4.3836
FILTER SAMPLE WEIGHT, g:	0.0023	0.0015	0.0038	0.0083
Sample ID:	CL-LIEU-II-AI-007		CL-LIEU-II-AI-021	
		CL-LIEU-II-AI-013		CL-LIEU-II-AI-029
Tare Wt., g:	3,7052	3.5899	3.4959	3.6838
Raw Weight, g:	3,7130	<u>3.5940</u>	3.4998	<u> 3.6855</u>
RINSE SAMPLE WEIGHT, g:	0,0078	0.0041	0.0039	0.0017
Filter Catch, mg:	2.3	1.5	3.8	8.3
Rinse Catch, mg:	7.8	4.1	3.9	1.7
Rinse Blank Residue, mg:				
Net Rinse Catch, mg:	7.8	<u>4.1</u>	3.9_	1.7_
Filterable Particulate, mg:	10.1	5.6	7.7	10.0
VISUAL ANALYSIS OF FILTERS				
Intact:	• •			
Color:	LIGHT TAN	WHITE	LIGHT TAN	TAN
Texture:	NA	N/A	N/A	N/A
Foreign Matter:	NONE	NONE	NONE	NONE
Rel. Comp.:	EQUAL	LEAST	EQUAL	X2
Baggie Number:	477	479	481	483
VISUAL ANALYSIS OF RINSES				
Color:	LIGHT YELLOW	LIGHT YELLOW	LIGHT YELLOW	LIGHT BROWN
Texture:	SMALL STAIN	SMALL STAIN	SMALL STAIN	SMALL STAIN

NONE

X2

200

480

NONE

MOST

225

478

NONE

X2

200

482

PRDGRV v2.15, MILES v4.12.13

Triangle Laboratories, Inc.®

Foreign Matter:

Rel. Comp.:

Fragments: Baggie Number:

Volume, mL:

801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

Printed: 13:42 09/04/96 Page: 1 of 2 6

NONE

EQUAL

125

Radian Corporation

TLI Project:

38656-A

NSPS Method 5

Client Project:

Matrix:

US Army Corps Filters & Acetone Rinses

Date Received:

08/31/96

TLI Number:	136-81-5	136-81-6	136-81-7
Sample ID:	CL-LIEU-II-AI-038		CL-LIEU-II-AI-053
		CL-LIEU-II-AI-044	
Filter Tare Wt., g:	0.6982	0.6940	0.7143
Baggie Tare Wt., g:	3.7238	3.7868	3.8253
Raw Weight, g:	4.4312	4.4912	<u>4.5406</u>
FILTER SAMPLE WEIGHT, g:	0.0092	0.0104	0.0010
Sample ID:	CL-LIEU-II-AI-035		CL-LIEU-II-AI-050
		CL-LIEU-II-AI-041	
Tare Wt., g:	3.8166	3.7439	3.7647
Raw Weight, g:	<u>3.8174</u>	<u>3.7445</u>	3.7642
RINSE SAMPLE WEIGHT, g:	0.0008	0.0006	-0.0005
Filter Catch, mg:	9.2	10.4	1.0
Rinse Catch, mg:	0.8	0.6	0.0
Rinse Blank Residue, mg:			-
Net Rinse Catch, mg:	0.8_	0.6_	0.0
Filterable Particulate, mg:	10.0	11.0	1.0
VISUAL ANALYSIS OF FILTERS			
Intact:			
Color:	TAN	TAN	WHITE
Texture:	N/A	N/A	N/A
Foreign Matter:	NONE	NONE	NONE
Rel. Comp.:	X2	MOST	N/A
Baggie Number:	485	487	489
VISUAL ANALYSIS OF RINSES			
Color:	LIGHT BROWN	LIGHT BROWN	CLEAR
Texture:	SMALL STAIN	SMALL STAIN	N/A
Foreign Matter:	NONE	NONE	NONE
Rel. Comp.:	LEAST	EQUAL	N/A
Volume, mL:	100	200	125

488

490

Triangle Laboratories, Inc.®

Fragments: Baggie Number:

801 Capitola Drive • Durham, North Carolina 27713 Phone: (919) 544-5729 • Fax: (919) 544-5491

486

PRDGRV v2.15, MILES

Printed: 13:42 09/04/96 Page: 2 of

400
B
2118

												REMARKS
50:500 ⁻² 50:500-544 40:500		TIME TEMP'C SEAL # CONDITION		DATE		BY.	OPEN	AJHBILL NO.	DATE TIME AIRI	ੱ ਤੋਂ 	A ABOLVEORY B	RECEIVED FOR LABORATORY BY
-					אנץ	LAB USE ONLY	ا - اي					
TIME	DATE	RELINQUISHED BY:	DATE TIME		RECEIVED BY:	TIME REC	DATE		RELINQUISHED BY:	TIME	DATE	RECEIVED BY:
TIME	DATE	RELINQUISHED BY:										REMARKS
		Ç			*		8,54 2	Est 3	17	-	067	
			<u> </u>		×		Oottle 7	Fut2	1.1		066	
ţ		Test 2 sample B			×			77	=		240	
•		Testé samples			*	<u> </u>		76	=	 	036	
1		Tests SampleB			×			25	-		030	
					×			14	-		012	
		-			×			73	H, sq/H, 0	14	614	
		-			×			rı	H. SO4/H.O	Į,	800 - T	<u> L-LIEv-11.4I</u>
					× .					-	4 <u>±</u> - 00 - 7	L 4760 11 12
3	SAM ID NO. (for lab use only)	REMARKS		· •	HL	NO. C	DATE/TIME	DAI	SAMPLE MATRIX	S. J.	1 Cha	FIELD SAMPLE .D
				late		F CONTAIN			A THE		ignature	COLLECTED BY (Signature
			ANALYSES	/ / / ^		I' IERS	2	きんい	Porton	7	REVOL	PROJECT
		Page _		Record	7 Chain of Custody Reco	f Cus	nain o	7 Ch	AdO			

RADIAN 1088/31/96

一角のの Chain of Custody Record

RECEIVED FOR LABORATORY BY. DATE TIME AIRBILL NO.		RECEIVED BY: DATE TIME RELINQUISHED BY:	REMARKS	038 F./h	032 E14		016 Fillh	CL-CTEU-11-AI - 010 Filk	071 "	070	11 590	CL LIEV-11-4I- 088 HS4/H,0	FIELD SAMPLE I.D. SAMPLE MATRIX	COLLECTED BY (Signature)	SITE	Claverat Polystemical	
BILL NO DEENEO BY	LAI	DATE		16	75	ry	7-3	1-2	int 7 able 2	Tot 6 ALUCZ	Test Solthe 2	Fest 4 soffic2	DATE/TIME				
37	LAB USE ONLY	TIME RE											NC	OF CC	NTAIN	ERS	
	NLY	RECEIVED BY:		×	×	×	χ.	×	~	*	×	×	4		_	/	
		BY:		X	X	×	×	×					H. Ja	Lienles	/ (te	////	
DATE		DATE												_	<u> </u>	ANALYSES	
L ant		ETIME								_		-		<u></u>	<u></u>	SES	
MOLLIGMOD # TYRE DOUBLE		RELINQUISHED BY:	RELINQUISHED BY:	•	-	-	-	3	•	0	*		REMARKS	_			Pa
Q		Q.	, do										SAM ID NO. (for lab use only)				Page Z of
		DATE 11	DATE 11										D NO.				7
		TIME	TIME										<u> </u>] `

ВЖНУМЭВ

10

例りを別り。) COPy Chain of Custody Record

												REMARKS
	HON	TEMP°C SEAL # CONDITION	DATE TIME TER	Q,			OPENED BY:	AIRBILL NO.	DATE TIME		RECEIVED FOR LABORATORY BY	RECEIVED FOI
						LAB USE ONLY	LAB					
DATE TIME	0	RELINQUISHED BY:	DATE TIME		ED BY:	RECEIVED BY:	DATE TIME		RELINQUISHED BY:	TIME	DATE	RECEIVED BY:
DATE TIME	0	RELINQUISHED BY:							-			REMARKS
					×			73	N. OH/ H. O	_	210	
					×		:	7.2	NaOH/H3O	┿┈	004	
		W7 V R			×			17		:	140	
		6	<u> </u>		×	<u></u>	<u> </u>	16		; ;	035	
	Ď	Fosts sampleA			×			15.		=	019	
		•			×			14			01/	
		•			×			73	7	— —	013	
		-			×			T2	ext	Refore	007	
		•			×	×		17		1 FIK	11-42-044	U-27EV-11-AI
SAM ID NO. (for lab use only)	SAM (for lab	REMARKS			401	HCL		DATE/TIME	SAMPLE MATRIX	SA	I.D.	FIELD SAMPLE I.D.
		_	<u> </u>	ا الأنتعارة المالية		O. OF CC					(Signature)	COLLECTED BY (Signature)
						ONTAINERS				henica	+ Poly ()	SITE
	90		ANALYSES	A .		+						Dalo le Cri

CHAIN OF CUSTODY RECORD

	ignature	Sampler's Signature	တ္			Sampling By:	Sampl					_			•	
									Received by: (Signature)	eived by:	Rece	/ Time	Date	<u>ن</u>	Relinquished by: (Signature)	Relinqui
	-					rks:	Remarks:	ت	Received by: (Signature)	eived by:	Rec	/ Time	Date	0	Relinquished by: (Signature)	Relinqui
Shipping Licker No.						iore)	(Signature)				2	6 10:00	8/11/46	1	1511	
Shipped via:	Time	Date /	141	*	Received by Laboratory:	ved by L	Recel	ت	Received by: (Signature)	eived by:	Rec	/ Time	Date	<u>9</u>	Relinquished by: (Signature)	Relinqui
									-			7,0	Ylayari		051	
								+	χ :			70.01	\$ 6 E		0 6	
									×		`	2	-			
•									× 			Hasau	ragent	250	60	
								×		×			できっ	053 A	0	
										×		Fell	 	2 Z Z	0	
									×			Deld	1. ,	05/ 4	0	
								×		**		Fick	+	₹ 256 505	200	
7 7 0 0									×		-	17		42	00	
6 (X		:	76	~1	037	D	
6 (X		=	7	<u></u>	031	0	
Test / SampleC									~		HOW	17.	7	2	CL LTEU- 11-AI-073	21
REMARKS								Pa-	40,	40,	MATRIX	TIME	DATE		SAMPLE - ID	LAB#
			`	\			٠,	Licale,							Site Location: City, State	Site Lo
\						\	٤	\	\	Analysis					Project Name:	Projec
				\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		Used Type of		Chanic	2	7.8	Client Name: (kan	Client
									tive	Preservative	•	_	-			
	\downarrow		\downarrow	\downarrow		1	1		r Type	Container Type	Scope Q / M	Scop		Quote #_	Qu	AEN#
	1	1					\	-	ainer	# of Container		,	,		٠.	
Page 1 of 4					ORD	REC	S FOR A)F CUS	CHAIN OF CUSTODY RECOR		3/96	115/8 001	0	\ll		
1	•									ı)	`
1																

SEE REVERSE SIDE , TERMS AND CONDITIONS

CLIENT: Clarment Polychenical

8/29/96

				8	λ					<u> </u>	<u> </u>		 				1	$\frac{\times}{\parallel}$	×			San
																						Sample #
	643	540	140	ОНО	034	038	037	036	035	034	033	032	031	030	019	920	027	016	015	024	Cl-17EU-11-AE-023	Field *
1			MIGH Front Hilt	0030 VOST	0030 VOST	miba Filter	MIGA NOOH	m164 th 504	miss Frat Half	0030 Uost	1	1	1	MIGA HISY	MIGH Front Half	0030 7051	0030 VOST	0030 Vost	0030 Vost	miss f. 1th	MIG NOOH	Sample Type
	N, 0	Н, О	Autone	Inlet tubes	onthet tubes		420	rh.o	Autor	Inlet tukes	Outlet tubes		40	Н, О	Accord	Blank Outlet	Blank Intet	In 1ct	outlet		N, 0	Preservative
				Ph2580	085 LIA	35.38				085234	085184	1742						08508 4	085BG A	35%		Tace Wt
				5 H1580	085218					0852315	281280							v8088	08563			Final Wt
	17	77	17	16	16	16	76	16	16	15	15	15	15	15	15			TH	14	TH	TY	Comments

12

CLIENT: Clarent

RECOVERY: <u>9/27/46</u> 8/24/86

		>	,	>	~					አ	×					× —	*					
					-																	Sample #
210	120	010	p10	810	017	016	510	014	013	210	011	010	200	800	607	DØ 6	200	004	00 3	LL-LIEV -11- AI -002	C1-LTEV-11- AI -001	Pion Pion Pion Pion Pion Pion Pion Pion
MIGA HISON	MIGA Front Hal	0030 vost Bluck	2 mg 1500 0800	oozu vost	0030 Vost	MBA FILK	MIGO NEOF	MIGA H.SOW	MIBO POLL Halt	8030 Vost	aso vost	1	1	m264 H SOY	41	ı		1		MIFU NOTE	MID FORT HAIT	Sample Type
N/D	Autore	Enlet	Bulke +	Fifth thises	and the Sa	-	И, О	4,0	My ton	Filet toba	on that tinks		H2 0	H20	Azetone		Pulty takes	1	Н, В	H2O	Respone	Preservative
				08507 A	085/34	3532		H.11FE	342.0	A 80 %	085/24	3534		3427	342.7	* 511.4	AS 15 A			342.3	3 41. 1	Tare W(
				085074	085/30					0850115	085118					\$ 11580	85153					-Final-Wi
14	TH			F-3	F-3	7-3	7-3	7-3	1-3	7-2	72	7-2	7-1	T-2	T-2	1-1	7-1	7-1	7-1	T-1	7-1	Comments

13

CLIENT: Claderat

8/24/96

Sample #	Rield *	Sample Type	Prescrvative	Two Wt	Figure W(Comments
×	CL-LTEU-	0030 VOST	outlet hises	085214	68521 B	78 77
	046	Vost	•		085160	F& 77
<u>x</u> .		Vos t	Mct	•	085/76	
			143			
		- C	_			
	i		ALL MILL			
			Ι.			1
	150	M26/4	NaOH Blank			
	2.50	W.76A	H. SO, Blank			
				44 SE		
	054	VOST		08 504A	840580	
	550		Joby rug + Shart			
	056		NOOH regal Black			
	057		HO Regent Black			
	058	Carister	•			7-1
	, 650	Carista				7-2
	060 3	Caniste		,		73
	061 4	Can ste				TH
	5 290	Carute				75
	063 5	lac.ster				76
	084	Full prome	8/28/96 1640	1179		
	290	Fact proper	8/19/96 11:00 am	1167		
	960	Fred propour	8/29/16 17:00	11.17		

	CLIENT:	
DATE:	RECOVERY:	

Sample #	Field #	Sample Type	SCIVA	Tare Wt	W.
	U LTEV- 11-AI - 066	mich thou	HzO	8#12	8412
	U LIEU-11-AI - 067	MIGH HUSON	Ho		
	068	MIGH HISOY	Mo		
		MBA 11. Soy	H.O		
		MILLA H. SOY	H.O		
		MIGA H. SOU	M.O	•	•
		, ,			

COPY 4088/31/96

: Absent Custody Seal Sample Seals: Absent : TLI Project Number : 38656 Chain of Custody : Present Accept.@ond.: YES +----Sample Tags : Present ! Client: RACO5 : Radian Corporation Sample Tag Numbers: Listed SMO Forms NO COOLANT Ice Chest/Styro Cooler/Box Matrix ! To LAB _! To STORAGE! To LAB ! To STORAGE! To LAB ! To STORAGE! To ARCHIVE! DISPOSED mR/H:CPM Client ID Location | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init 136-81-1A CL-LIEU-II-AI-010 IC TABLE CL-LIEU-II-AI-007 IC TABLE ! H2S04/H20 136-81-1C CL-LIEU-II-AI-008 IC TABLE ! 136-81-1D NAOH/H20 CL-LIEU-II-AI-009 IC TABLE ! 136-81-1E H2S04/H20 ! CL-LIEU-II-AI-066 IC TABLE ! CL-LIEU-II-AI-016 IC TABLE ! 136-81-2B CL-LIEU-II-AI-013 IC TABLE ! : 136-81-2C H2SO4/H2O CL-LIEU-II-AI-014 IC TABLE ! NAOH/H20 : CL-LIEU-II-AI-015 IC TABLE ! 136-81-2E H2S04/H20 CL-LIEU-II-AI-067 IC TABLE ! Receiving Remarks: Client's Chain of Custody differs from what the Sample IDs read: used the IDs on sample to log in. -----TRIANGLE LABORATORIES. INC.--LOG I RECORD/CHAIN OF CUSTODY--REVISED 06/13/1996-----

COPY 4013 8/31/46

Custody Seal : Absent Sample Seals: Absent | TLI Project Number | 38656 Book Chain of Custody : Present Accept.Cond.: YES Sample Tags : Present Client: RACO5 : Radian Corporation 136 Sample Tao Numbers: Listed Ice Chest/Styro Cooler/Box TLI Number Matrix : To LAB : To STORAGE: To LAB : To STORAGE: To LAB ! To STORAGE! To ARCHIVE! DISPOSED CL-LIEU-II-AI-024 IC TABLE ! 136-81-3B ACETONE : CL-LIEU-II-AI-021 IC TABLE ! 136-81-3C H2S04/H20 : CL-LIEU-II-AI-022 IC TABLE ! TEST 4 SAMPLE C +-IC TABLE : H2S04/H20 CL-LIEU-II-AI-068 IC TABLE ! 136-81-4A FILTER ! CL-LIEU-II-AI-032 IC TABLE ! 136-81-4B ACETONE ! TEST 5 SAMPLE A IC TABLE ; H2S04/H20 : TEST 5 SAMPLE B IC TABLE ! 136-81-4D TEST 5 SAMPLE C IC TABLE ! H2S04/H2C ! CL-LIEU-II-AI-069 IC TABLE ! Receiving Remarks: Client's Chain of Custody differs from what the Sample IDs read; used the IDs on sample to log in.

Custody Seal : Absent Sample Seals: Absent : ILI Project Number : 38656 Book Accept.Cond.: YES Chain of Custody : Present Sample Tags : Present 13é Sample Tag Numbers: Listed SMO Forms ! 81 ! To STORAGE! To LAB ! To STORAGE! To LAB ! To STORAGE! To ARCHIVE! DISPOSED Matrix ! To LAB CL-LIEU-II-AI-038 IC TABLE 136-81-5B ACETONE : TEST 6 SAMPLE A IC TABLE ! 136-81-5C H2S04/H20 : TEST 6 SAMPLE B IC TABLE ; 136-81-5D NAOH/H20 ! TEST 6 SAMPLE C IC TABLE : H2SO4/H20 : CL-LIEU-II-AI-070 IC TABLE 136-81-6A CL-LIEU-II-AI-044 IC TABLE ! 136-81-6B ACETONE : TEST 7 SAMPLE A IC TABLE ! H2SO4/H2O : TEST 7 SAMPLE B IC TABLE ! NAOH/H20 136-81-60 TEST 7 SAMPLE C IC TABLE H2S04/H20 136-81-6E CL-LIEU-II-AI-071 IC TABLE ! Receiving Remarks: Client's Chain of Custody differs from what the Sample IDs read: used the IDs on sample to log in. -------TRIANGLE LABORATORIES.]MC.--LOG ;M RECORD/CHAIN OF CUSTODY--REVISED 06/13/1996-----

1098/31/80
PAGE 4 DF 4

; TLI Project Number ; 38656 Custody Seal : Absent Sample Seals: Absent Chain of Custody : Present Accept.Cond.: YES Sample Tags ! Radian Corporation : Present Client: RACO5 136 Sample Tag Numbers: Listed Ice Chest/Styro Cooler/Box NO COOLANT ; 81 ! To STORAGE! To LAB TO STORAGE! TO LAB ! To STORAGE! To ARCHIVE! DISPOSED Location | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init | Date/Init 136-81-7A CL-LIEU-II-AI-053 IC TABLE : 136-B1-7B CL-LIEU-II-AI-050 IC TABLE ! CL-LIEU-II-AI-051 IC TABLE ! 136-81-7D NADH ! CL-LIEU-II-AI-052 IC TABLE ! ₹36-81-8A CL-LIEU-II-AI-055 IC TABLE 136-81-88 NAOH ! CL-LIEU-II-AI-056 IC TABLE ! 136-81-80 H20 : CL-LIEU-II-AI-057 IC TABLE ! Receiving Remarks: Client's Chain of Custody differs from what the Sample IDs read: used the IDs on sample to log in. -----TRIANGLE LABORATORIES. INC.--LOG IN RECORD/CHAIN OF CUSTODY--REVISED 06/13/1996------

RACUS-Radian Corporation CL-LIEU-11-41-032 Project:38656 136-81-4A

poly Chanica Claremont T65+6 Tare 346, 7 method ZGA 406.5 Acetone Rinse Norch probe filter

Filter #Q-3542

Quartz-Ultra Pure

Claremon + Poly chemica) Test 5

method 26A

F. Ite

Surgle D

CL-LTGV-11-AE-032

RACOS-Radian Corporation TEST 5 SAMPLE A Project:38656 136-81-4B

Test 5 Claremont Polychemicani

method 26A

Acetone Rinse probe nouse file

Sample A.

TARC 346.6

414.3

RACO5-Radian Corporation CL-LIEU-II-AI-038 Project:38656 136-81-5A

Test 6

Clarement Polychemical

method 26A

I. Item

Sample D

Filter #Q-3538

CL-LT6U-11-AI- 038

✓ Quartz-Ultra Pure

RACOG-Radian Corporation TEST 6 SAMPLE A Project:38656 138-81-5B

Sample A

RACO5-Radian Corporation CL-LIEU-11-AI-044 Project: 38656 136-81-8A

Test 7

Clarement Ps by Chemical

method 26A

Filter

Filter #Q-3540

Samle D

Quartz-Ultra Pure

CL -LTEV-11-AT - OG4

RACOB-Radian Corporation TEST 7 SAMPLE A Project:38656 136-81-6B

Test 7 Claremont Polychemical

method 26A

TARE 345,5

Acetone Ringe - Probe morele fitter/2

481,0

SAMPLE A

RACO5-Radian Corporation CL-LIEU-11-A1-053 Project:38656 136-81-74

CL LTEU-11-AI- 053

Filter #Q-3544

Filter Blank

Quartz-Ultra Pure

RACOS-Radian Corporation CL-LIEU-II-AI-050 Project:38656 136-81-7B

Auton

169,4

24/18

IL LITEU HAI- 050

RACO5-Padian Corporation CL-LIEU-II-AI-013 Project: 38656

Filter #Q-3534	136-81-28
Quartz-Ultra Pure	Test 3 Claremont Polychemical
······································	method 26A
RACOS-Radian Corporation CL-LIEU-II-AI-010	Acctone Rinse
136-81-1A	probe nozzle filter 451.2
Test 2 Clarement Polychemical	Sample A
Method 26A 8/27	CL-LTEU - 11-AI-013
F. Iter Cool startel	RACO5-Radian Corporation CL-LIEU-II-AI-024 Project:38656 136-81-3A
Sample D	Test4 Clarement Poly Chemical
CL - LTEU -11 - AI -00-10	Method 2 GA 1
RACO5-Radian Girporation CL-LIEU-II-AI-007 Project:38656 136-87-18	- F. (ter
Dolechenia I	Surle D
~	CL LTEV-11-AT -OZY
method 26A There 342.7	
probe, nozzle, filter	Filter #Q-3536
-	Quartz-Ultra Pure
- Sample A CL-LTEV-11-AI-008	
RACQ5-Radian Corporation CL-LIEU-II-AI-016 Project: 38656	Project: 38556
136-81-2A —	Test 4 Claremont Polychemical
Test 3 Clarement Polychemical	method 26A Torre 34
method 26A Filter	r #Q-3532 prote, northe filte Fin' 460
	z-Ultra Pure Sample A
- ruple D	CL-LTEV-11-AI-021
CL-LTEU-11-AI-016	

3528 10/22/9 13:00	0.6769	10/31/9 11:15	0.6770
3530 10/22/9 13:00	0.6807	10/31/9 11:15	0.6805
3532 10/22/9 13:00	0.6772	10/31/9 11:15	0.6773
3534 10/22/9 13:00	0.6634	10/31/9 11:15	0.6633
3536 10/22/9 13:00	0.6754	10/31/9 11:15	0.6757
3538 10/22/9 13:00	0.6983	10/31/9 11:15	0.6982
3540 10/22/9 13:00	0.6940	10/31/9 11:15	0.6940
3542 10/22/9 13:00	0.7155	10/31/9 11:15	0.7155
3544 10/22/9 13:00	0.7143	10/31/9 11:15	0.7143
3546 10/22/9 13:00	0.6975	10/31/9 11:15	0.6975
3548 10/22/9 13:00	0.7155	10/31/9 11:15	0.7154
3550 10/22/9 13:00	0,6950	10/31/9 11:15	0.6949
3552 10/22/9 13:00	0.6999	10/31/9 11:15	0.7000
3554 10/22/9 13:00	0.7123	10/31/9 11:15	0.7123
3556 10/22/9 13:00	0.7092	10/31/9 11:15	0.7092
3558 10/22/9 13:00	0.7121	10/31/9 11:15	0.7120
3560 10/22/9 13:00	0.6715	10/31/9 11:15	0.6715
3562 11/6/95 14:30	0.5438	11/7/95 '11:15	0.5439
3584 11/8/95 14:30	0.5527	11/7/95 11:16	0.5527
3566 11/6/95 14:30	0.5391	11/7/95 '11:15	0.5393
3568 11/6/95 14:30	0.5433	11/7/95 11:15	0.5433
3570 11/6/95 14:30	0.5430	11/7/95 11:15	0.5420
3572 11/6/95 14:30	0.5350	11/7/95 '11:15	0 5350
3574 11/6/95 14:30	0.5309	11/7/95 11:15	0.5399
3576 11/6/95 14:30	0.5473	11/7/95 '11:15	0.5473
3578 11/6/95 14:30	0.6370	11/7/95 11:15	0.5370
3590 11/6/95 14:30	0.5368	11/7/95 11:15	0.5367
3582 11/8/95 14:30	0.5488	11/7/95 11:15	0.5488
3584 11/6/95 14:30	0.5513	11/7/95 11:15	0.6613
3586 11/6/95 14:30	0.5385	11/7/95 '11:15	0.5366
3588 11/6/95 14:30	0.5365	11/7/95 11:15	0.5364
3590 11/0/95 14:30	0.5489	11/7/95 11:16	0.5489
3592 11/6/95 14:30	0.5410	11/7/95 '11:15	0.5410
3594 11/6/95 14:30	0.5428	11/7/95 11:15	0,5428
3596 11/6/95 14:30	0.5468	11/7/95 11:15	0.5468
3599 11/6/95 14:30	0.5415	11/7/95 11:15	0.5415
3600 11/6/95 14:30	0.5371	11/7/95 11:15	0.5371
3802 11/6/95 14:30	0.5415	11/7/95 11:15	0.5416
3604 11/6/95 14:30	0.5347	11/7/95 11:15	0.5348
3606 11/6/95 14:30	0.5265	11/7/95 11:15	0.5265
3608 11/0/95 14:30	0.5381	11/7/95 11:15	0.5381
3610 11/6/95 14:30	0.5393	11/7/95 11:15	0.5390
3812 11/6/95 14:30	0.6253	11/7/95 '11:15	0.6253
3614 11/6/95 14:30		11/7/95 11:15	0.6125
3616 11/6/95 14:30	0.61.54	11/7/95 '11:15	0.6152
3818 11/6/95 14:30	ù.6169	11/7/95 11:15	ជីស់ ស៊ី

· .

TRIANGLE LABORATORIES, INC.

Gravimetrics Sample Tracking & Management Form

iect: 38656A Client: Radian Corporation (RACO5)

778-178 478-786 78 378 5 788-788 Method: 5- Particulates Start Date: 8/31/96 Humidity 31%-338, 37% - 312, 37% - 357, 37% - 37% Solvent/Acids(): Acetone Lot: #962211 | Filter No. & | Solvent | 9/1/96/09/01/96/09/09/96 | 9/2/96 | Weight | Baggie | Tare Weight | Volume | at 2 22 at at 23:30 | at 05:30 | at 12:00 Am Sample | SAMPLE ID CLIENT CL-LIEU-II-AI-010 3,7159 477 Q-3534 O.6633 4.3808 4.3816 4.3815 CL-LIEU-II-AI-007 3,7052 478 002 A CL-LIEU-II-AI-013 | 3,5899 | 480 | | 200 Q-35361 CL-LIEU-II-AI-024 3,6532 481 0.6754 005 CL-LIEU-II-AI-021 34969 482 200 34991 3,4999 CL-LIEU-II-AI-032 3.6598 483 0.7155 | 136-81-4B CL-LIEU-II-AI-029 3 6838 484 125 2 6855 3 6855 CL-LIEU-II-AI-038 3,7238 485 0.6982 A 4.4298 4.4296 4.43 06 4.4296 CL-LIEU-II-AI-035 3,8166 486 100 3.8174 3.8174 3.8174 3.8174 3.8174 CL-LIEU-II-AI-044 | 3.7868 | 487 | 0.6940 | 4.4904 | 4.4906 | 4.49 CL-LIEU-II-AI-041 37439 488 200 31445 31449 comments: The plastic petri dish was accidently rinsed into the Acctone rinses for the first three samples (002,004, and 006). This was = 5 mls of the total solvent volume

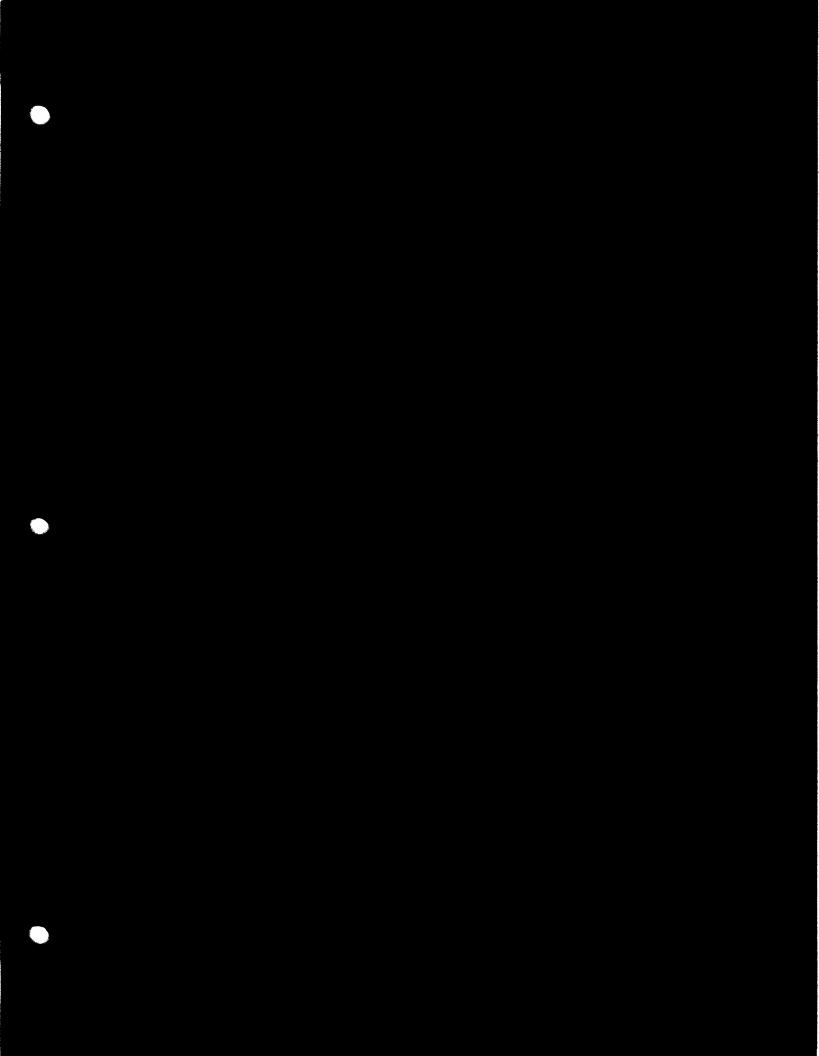
* See Ind page for Rense weighing information (Tomp Humid

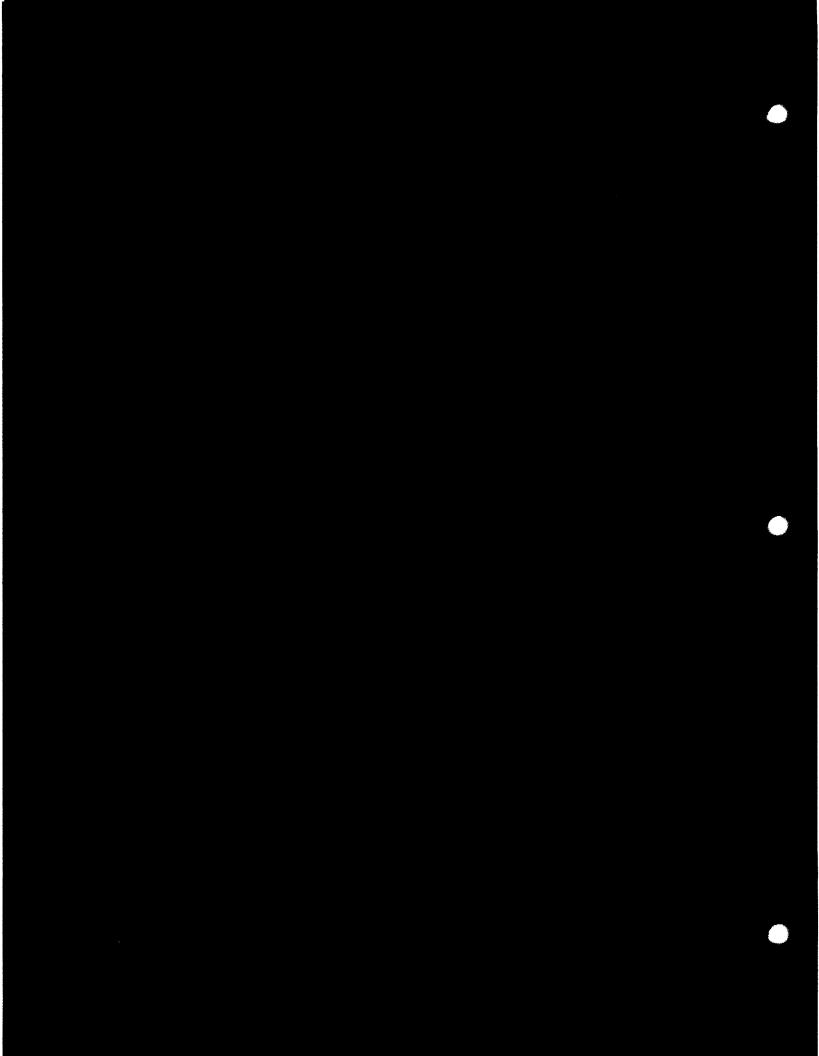
PAGE 2 OF \$3

TRIANGLE ABORATORIES, INC.

Gravimetrics Sample Tracking & Management Form

Project: 38656A


Client: Radian Corporation (RAC05)


I	1: 5 - Pai			St	tart Date: ot: #962	2211	 	Humidity (人)ドウ Initials	778-778 34%-33%	3967366 CmR	372>35 CmC	
 Sample # crd	TLI SAMPLE ID	/	CLIENT SAMPLE ID		Weight		Filter No.& Thre Weight (g)	Solvent	1 <u>7/1/10</u> !	<u>04/01 /16</u>	<u>09/02/76</u>	
A 013	136-81-7A	CL-	LIEU-II-AI-	053	3, 8253	489	02-3544 0.7143	• 	4.5398	4.54%	4.5406	;
A 014	136-81-7B	CL-	LIEU-II-AI-(050	3.7647	490	 	125	3.1642	3.71.42		
 +		 .	•	 	 	 	 	 	l Kinsis			>
*	Rinsin	1 <i>pm</i>	peratu	مدر ب		 	 		1 77°F → 77°F 137% → 38%		, - ,	+
 		_	•	ا ل	 	 		 	as i	CMR	v.P. 913196	137% V.f 913/96 \
 •		Da	me.	ا ا +	 	 		 			8:20 Am	
	-			ا ا +ا	 			 	 			·
			· · · · · · · · · · · · · · · · · · ·	' 	' 	, 		 	 			
				i +·		; ;+ 		 	 		, 	
				ا +	i. 	 	 	 	 			
 				 + 	 	 + 	 	 	 			
Comment	ts:			+		 +			 +			·
										F	 REV 07/19/96	(PSTMF 8)

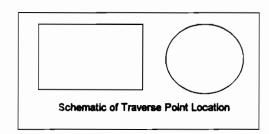
3 #3 PAGE 1 OF 9/41, 01.

+ 				TRIANG	LE LABORATORI	ES, INC.				
 ie:	ct: 38656A		Gravimetr	ics Sam	ple Tracking	-	t Form ent: Radian	Corporation	(RAC05)	J1
 Method	a: 5 Parti	Sample Inform	ation Start Date:	<u>¥/3</u>	i/9 ¢	Temperature	114	: 71°F	77F	171°F
 Solve	nt/Acids():	Acctone	Lot: #76	2211		Humidity		*	37%	386
 	·		-+	+	+	Initials	ı v.P.	<i>V 7.</i> +Sample W	eighings	CMC
 Sample # crd	TLI SAMPLE ID 	/ / CLIENT / SAMPLE ID	Baggie Weight (g)		Filter No.& Tare Weight (g)			at <u>(4</u> :35)	09/03/96 at 10:33 g).	
A 001	136-81-1A	CL-LIEU-II-AI-010		 	 		 	+ 	+ 	
A	136-81-1B	CL-LIEU-II-AI-007		 	 		 	 	3.7/30	
A	136-81-2A	CL-LIEU-II-AI-016		 	 	 	 	 	 	
A 004	136-81-2B	CL-LIEU-II-AI-013	 	 •	 		 	 	 	
A 005	136-81-3A	CL-LIEU-II-AI-024	3.6532		Q-3536 0.6754	 	4.2430	1 14 3352	14.3324	1 / 1 143324
006	136-81-38	CL-LIEU-II-AI-021	 	 	 		 	 	 	
A 007	136-81 -4A	CL-LIEU-II-AI-032	 +	 	 		 	 	 	
A 008	136-81-48	CL-LIEU-II-AI-029	 +	 •	 		 	 	 •	
A 009	136-81-5A	CL-LIEU-II-AI-038	3,7238	 485	Q-3538 0-6982	 	4.4312	- 4.4317	 	
A 010	136-81-5B	CL-LIEU-II-AI-035	<u> </u>					 	 	
A 011	136-81-6A	CL-LIEU-II-AI-044	3.7868		O-6940		4.49ik	<i>4.4</i> 924	4.4912	.4.4913
A 012	136-81-6B	CL-LIEU-II-AI-041		 			 	,	 	
Commen	ts:									1 !
						_				

		,
		_

Diameter	Claram 9/25/46 Inlet rs Upstream rs Downstres	Project No APC 0'-		33 oz ø		Nun Poir	I Traverse Point iber of Ports its Per Port be Traverses: H		12 2 8	
N	MINIMUM N	AND NO	I-PARTIO	CULATE TI	NTS FOR PAIRAVERSE	RTICULATE	E	←12"→	72	1
	ligher Number is to lisade or Ducts 24 or 25	_	rticulate 20	1.5		Noturbance Seasurement Site	→	+ +	β	
10 -	3	Non - Par		7	12	or 9		Cross Sectional Car Traverses:	(L+W) = you! For Rectargular St Matrix 3×3 4×3	acits.
		Duct Diamel	ers Downs	tream from FI (Distance B	low Disturbance			16 20 25	4×4 5×4 5×5	

Point		Location of Traverse Points in Circular Stacks*					Traverse Point Location		
on a	N	umber of Tra	verse Point	on a Diame	ter .	Distance	Nipple	Total	
Diameter	4	8	8	10	12	From Wall	Size	Distance	
1	6.7	4.4	3.2	2.6	2.1	.7	4	4.7	
2	25.0	14.6	10.5	8.2	6.7	2.3		6.3	
3	75.0	29.6	19.4	14.8	11.8	4.3		8.3	
4	93.3	70.4	32.3	22.6	17.7	7./		$H_{i,j}$	
5		85.4	67.7	34.2	25.0	14.9		18.9	
6		95.6	80.6	65.6	35.6	17.7		21.7	
7			89.5	77.4	64.4	19.7		23,7	
8			96.8	85.4	75.0	21.3		25.3	
9				91.8	82.3				
10				97.4	88.2				
11					93.3				
12					97.9				


^{*} Percent of Stack Diameter from Inside Wall to Traverse Point

EPA Method 2

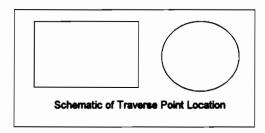
Velocity Traverse and Flow Rate Determination

Firm	Claremor	nt		
Date	9/26/96		Run No.	
Location	Inlet			
Stack			_	
Diameter	(in)	22	Area ft²	2.64
Length (k	n)		Area ft²	
Width (in) _			
Barometr	ic Pressure	P _{ber} =	30.1	in. Hg
Stack Sta	rtic Pressun	e: P _e =	-6	in. H₂O
Stack Ga	s Moisture (Content; % H ₂ C) =	17.2
Stack Ga	s Molecular	Weight; (wet)	M.	27.27
Pitot tube	No.		C, =	0.84
Field Tes	ter _		•	
Test Star	t Time :		Finish:	

Cyclonic Flow Angle
+ f Clockwise
E f Counterclockwise

Port	Point	pΡ	ÀρP	T. (°F)	±ſ	Pitots Reversed	Radians	ApP cos 1
1	1	0.15	0.39					
	2	0.17	0.41	245				
	3	0.18	0.42					
	4	0.15	0.39					
	5	0.19	0.44					
	6	0.24	0.49					
	7	0.28	0.53					
	8	0.28	0.53					
	1	0.23	0.48					
	2	0.39	0.62					
	3	0.41	0.64					
	4	0.18	0.42	248				
	5	0.17	0.41					
	6	0.17	0.41					
	7	0.18	0.42					
	8	0.22	0.47					
							_	
		Average	0.47	247			Average	

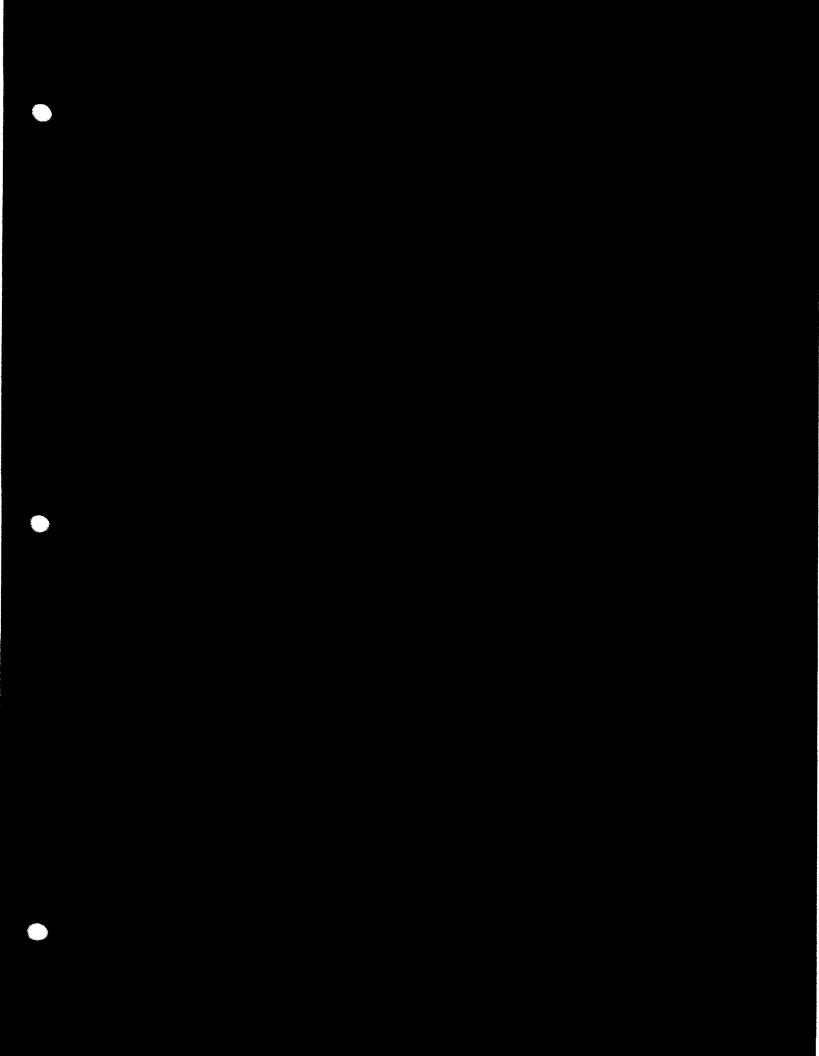
Absolute Gas Temperature; T _{et} = T _e +460°	707	*R
Absolute Gas Pressure; Pa = Pber + Pa / 13.6	29.66	in. Hg
Gas Velocity, $V_s = (85.49) C_p (\text{Ap P cos f}) (\text{avg A} (T_{\text{st avg}} / P_s^* M_s)))$	31.4	ft/sec
Actual Gas Flow Rate; Q _a = (V _s)(60)(A)	4971	acfm
Standard Gas Flow Rate; $Q_a = Q_a (528^{\circ}R / T_{st}) (P_e / 29.92)$	3683	scfm
Dry Standard Gas Flow Rate; $Q_{ed} = Q_e (528^{\circ}R / T_{et})(P_e / 29.92)((100-\%H_2O)/100)$	3049	dscfm

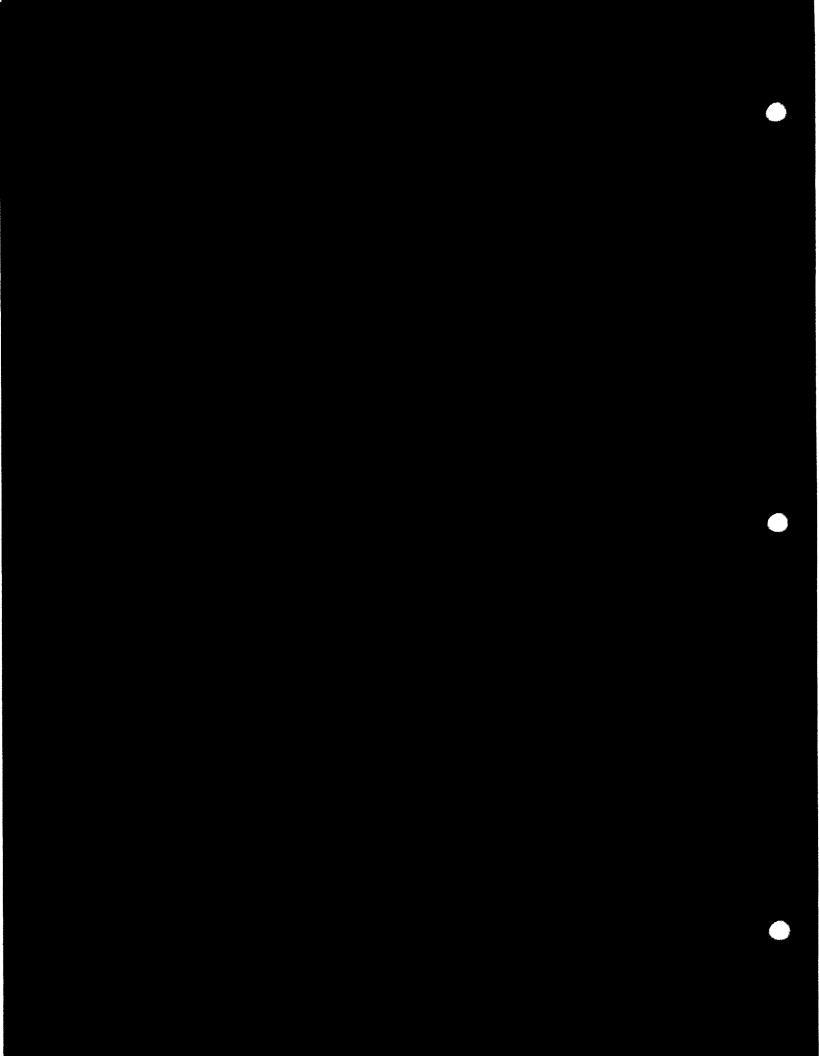

		_
		•

EPA Method 2

Velocity Traverse and Flow Rate Determination

Firm	Claremon	t		
Date	9/26/96		Run No.	2
Location	Iniet			
Stack				
Diameter	(in)	22	Area ft²	2.64
Length (in) _		Area ft ²	
Width (in)	_			_
Barometri	c Pressure;	P _{ber} =		in. Hg
Stack Sta	tic Pressure	: P _g =	-6	in. H₂O
Stack Ga	s Moisture C	ontent; % H ₂) =	17.2
Stack Gas	B Molecular \	Weight; (wet)	M.	27.27
Pitot tube	No.		C _p =	0.84
Field Test	ter			
Test Start	Time:	14:00	Finish:	




Cyclonic Flow Angle
+ f Clockwise
B f Counterclockwise

Port	Point	pΡ	ÀρP	T. (°F)	± ſ	Pitots Reversed	Radians	ApP cos 1
1	1	0.18	0.42	202				
	2	0.19	0.44	218				
	3	0.16	0.40	220				
	4	0.10	0.32	222				
	5	0.10	0.32	233				
	6	0.14	0.37	240				
	7	0.17	0.41	244				
	8	0.18	0.42	241				
	1	0.32	0.57	170				_
	2	0.45	0.67	165				
	3	0.25	0.50	199				
	4	0.36	0.60	215				
	5	0.10	0.32	220				
	6	0.10	0.32	230				
	7	0.11	0.33	236				
	8	0.11	0.33	232				
		Average	0.42	218			Average	

Absolute Gas Temperature; T _{st} = T _s +460°	678	*R
Absolute Gas Pressure; P _e = P _{ber} + P _g / 13.6	29.66	in. Hg
Gas Velocity; $V_s = (85.49) C_p (\text{Ap P cos f}) (\text{avg A} (T_{st \text{avg}} / P_s^* M_s)))$	27.7	ft/sec
Actual Gas Flow Rate; Q _a = (V _a)(60)(A)	4384	acfm
Standard Gas Flow Rate; $Q_s = Q_a (528^{\circ}R / T_{st}) (P_s / 29.92)$	3384	scfm
Dry Standard Gas Flow Rate; $Q_{ad} = Q_a (528^{\circ}R / T_{st})(P_s / 29.92)((100-\%H_2O)/100)$	2802	dscfm

		—
		_

SUMMA CANISTER ALKANE DATA CORRELATION

Sample No.	<u>Report Run No.</u>
CL-LTEV-II-AI-094	1-1
CL-LTEV-II-AI-095	1-2
CL-LTEV-II-AI-096	1-3
CL-LTEV-II-AI-101	2-1
CL-LTEV-II-AI-102	2-2
CL-LTEV-II-AI-103	2-3
CL-LTEV-II-AI-106	3-1
CL-LTEV-II-AI-107	3-2

-				_
			•	
				•
				_

Analysis Report

Page: 1 of 2

P.O.

Rei.

LLI Sample No. AQ 2589993

Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/ 8/96 Discard: 10/ 8/96

102 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International

PO BOX 13000

RTP

NC 27709

AS RECEIVED

CAT			LIMIT OF		
NO.	ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
5651	TO-14 Volatile Organics in Air	see form I			
5652	TO-14 Volatile Organics (cont)	see form I			
5695	TO-14 Form 1			See Page	2
7056	Methane	20.	10.	ppm (v)	
9001	Ethane	< 2.	2.	ppm(v)	
9002	Propane	3.	2.	ppm(v)	

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 Kay G. Hower 21:30:58 D 0001 8 0 127845 535501 320 70.00 00084800 DISO00

ene erter Laboratories MEMBER

-44.5 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4.0 (Jean 19 46

-4. Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

	_	

Analysis Report

Page: 1 of 2

P.O.

Rel.

LLI Sample No. AQ 2589991 Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/ 8/96

Discard: 10/8/96

100 Summa Canister LL LTEU-11-A1 Project: Claremont

Account No: 09379 Radian International PO BOX 13000

RTP

NC 27709

AS RECEIVED

CAT			LIMIT OF		
NO.	ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
5651	TO-14 Volatile Organics in Air	see form I			
5652	TO-14 Volatile Organics (cont)	see form I			
5695	TO-14 Form 1			See Page	2
7056	Methane	20.	10.	ppm (v)	
9001	Ethane	< 2.	2.	ppm(v)	
9002	Propane	4.	2.	ppm(v)	

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative Kay G. Hower at (717) 656-2300 127845 535501 21:30:18 D 0001 8 0 320 70.00 00084800 DISO00

 Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

see reverse in self or explanation in turn in the parapore, at on-

·		_
	,	
		_
		_

Analysis Report

Page: 1 of 2

P.O.

Rel.

LLI Sample No. AQ 2589992 Collected: 9/27/96

Submitted: 9/30/96 Reported: 10/8/96

Discard: 10/ 8/96

101 Summa Canister LL LTEU-11-A1 Project: Claremont Account No: 09379 Radian International

PO BOX 13000

RTP

NC 27709

AS RECEIVED

		LIMIT OF		
ANALYSIS NAME	RESULTS	QUANTITATION	UNITS	
TO-14 Volatile Organics in Air	see form !			
TO-14 Volatile Organics (cont)	see form I			
TO-14 Form 1			See Page	2
Methane	30.	10.	ppm (v)	
Ethane	< 2.	2.	ppm(v)	
Propane	3.	2.	ppm(v)	
	TO-14 Volatile Organics in Air TO-14 Volatile Organics (cont) TO-14 Form 1 Methane Ethane	TO-14 Volatile Organics in Air see form I TO-14 Volatile Organics (cont) see form I TO-14 Form 1 Methane 30. Ethane < 2.	ANALYSIS NAME RESULTS QUANTITATION TO-14 Volatile Organics in Air TO-14 Volatile Organics (cont) TO-14 Form 1 Methane 30. 10. Ethane 30. 2.	ANALYSIS NAME TO-14 Volatile Organics in Air TO-14 Volatile Organics (cont) See form I See form I See form I See form I TO-14 Form 1 Methane 30. 10. ppm (v) Ethane < 2. 2. ppm(v)

1 COPY TO Radian International

ATTN: Mr Andrew Weber

Questions? Contact your Client Services Representative at (717) 656-2300 127845 535501 Kay G. Hower 21:30:40 D 0001 8 0 320 70.00 00084800 DIS000

in - *⊕n .eC+::*** ⊕\$

Respectfully Submitted Michele McClarin, B.A. Group Leader, GC/MS Volatiles

ee leverve in this explanation of symbols and spore, at it

1. - 1. - 1

PPAS REPORT

RADIAM AMALY, ICAL SERVICES

TABLE OF CONTENTS

Client DEI Clairmont

Facility Clairmont

Client Code V DEI CM

Certified Box Mudo Budle Vaigt

		Pac	Pages
Report Form	Analytical Batch ID	From	To
Work Order Summary		1	1
Flag Definitions		2	2
Protocol Summary for METHANE GAS ANALYSIS		3	3
Results Summary		•	•
Initial Calibration		s	2
Analysis Batch Summary	VOF161017092501	9	9
Results		7	10
Laboratory Blank Information		11	11
Laboratory Control Samples		12	12
Calibration Verification		13	13
Sample Duplicates		14	*
Comments/Narrative		15	15

Client Code V DEI CM
Client DEI Clairmont
Facility Clairmont

Report Radian Corporation

To 8501 Mo-Pac Blvd.

Austin, TX 78720

Attention Andy Weber

Prepared Radian Analytical Services

By 14046 Summit Dr., Bldq. B

P. O. Box 201088

Austin, TX 78720-1088

Case # NA
SDG # NA
RAS # 61001ALAB

New York ELAP ID #: 10915

RCN 650-233-02-01

Work ID Equipment & VOC Samp

Page 1

Work Order # 9610175

CSC LABENDELE

Project Sample ID/ Description	Lab Sample ID	Test Code(s)	Method Desciption
CL LTEV-11-AI 094	01 A	CH4RAA00	METHANE GAS ANALYSIS
·	0110	CHARANO	DICHTER OUT ON THE STREET
CL LTEV-11-AI 095	02A	CH4RAA00	METHANE GAS ANALYSIS
CL LTEV-11-AI 096	03 A	CH4RAA00	METHANE GAS ANALYSIS

PLAG DEPIEITIOES

Flag	Definition
70 ×	Result less than stated Detection Limit and greater than or equal to zero.
NA	Analyte concentration not available for this analysis.
NC	RPD and/or * Recovery not calculated. See Narrative for explanation.
Ş	Not detected. No instrument response for analyte or result less than zero.
MR	Not reported. Result greater than or equal to stated Detection Limit and less than specified Reporting Limit.
SN	Analyte not spiked.
В	Analyte detected in method blank at concentration greater than the Reporting Limit (and greater than zero).
O	Confirming data obtained using second GC column or GCMS.
ы	Analyte concentration exceeded calibration range.
Œ	Interference or coelution suspected. See Narrative for explanation.
н	Presence of analyte previously confirmed by historical data.
I	Analyte identification suspect. See Narrative for explanation.
ני	Result is less than stated Detection Limit but greater than or equal to specified Reporting Limit.
×	Peak did not meet method identification criteria. Analyte not detected on other GC column.
Σ	Result modified from previous Report. See Narrative for explanation.
۵.	Analyte not confirmed. Results from primary and secondary GC columns differ by greater than a factor of 3.
œ	QC result does not meet tolerance in Protocol Specification.
24	Result reported elsewhere.
S	Analyte concentration obtained using Method of Standard Additions (MSA).
H	Second column confirmational analysis not performed.
×	See Narrative for explanation.
¥	See Narrative for explanation.
22	See Narrative for explanation.

ANALITICAL PROTOCOL SUMMARY

Work Order # 9610175

Page 3

Client DEI Clairmont

Specification # CH4R

Facility Clairmont

Client Code V DEI CM

Method METHANE GAS ANALYSIS

Analysis Batch #	VOF1_61017092501	VOF1_61017092501	VOF1 61017092501	VOF1_61017092501	
Extraction/Digestion Batch #	NA	NA	NA	NA	
Test Code(s)	CH4RAA00	CH4RAA00	CH4RAA00	CH4RAA00	
Lab Sample ID	9610175-01A	9610175-01B	9610175-02 A	9610175-03 A	
Project Sample ID/Description	CL LTEV-11-AI 094	CL LTEV-11-AI 094	CL LTEV-11-AI 095	CL LTEV-11-AI 096	

Page 4

Method Source VOC - methane Test Code CH4RAA00

Project Sample ID:	CL LTEV-11-AI	AI	CL LTEV-11-AI	L-AI	CL LTEV-11-AI	1-AI	CL LTEV-11-AI	I-AI
	094		094		960		960	
Lab ID:	9610175-01A	«	9610175-01B	01B	9610175-02A	02A	9610175-03A	3A
File ID:	P101717		P101718	6	P101719	6	P101720	•
Date Collected:	09/56/96		09/26/96	96	09/26/96	96	09/56/96	96
Date Prepared:								
Date Analyzed:	10/17/96 19:40:00	40:00	10/17/96 20:05:00	0:05:00	10/17/96 20:27:00	0:27:00	10/17/96 20:50:00	0:50:00
Dilution Factor:	.3819		.3819		.3137		. 3249	
Matrix:	Air		Air		Air		Air	
Units:	∧wdd.		Amdd		Amdd		Vmqq	
Report as:	received		received	Pa	received	Pa	received	Ę,
Column:								
Analyte	Conc.	DL	Conc.	DĽ	Conc.	ΔĪ	Conc.	DL
Methane	6.43	0.0560	6.55	0.0560	5.31	0.0682	6.26	0.0659

10/18/96 09:24:58

Method METHANE GAS ANALYSIS

Sol'n#

Test Code CH4RAA00

CALIBRATION INITIAL

Calibration Date 10/16/96 01:00:00 Initial Calibration # F1961016010000

Instrument F1

Work Order # 9610175

Page 5

Reviewer JHC Analyst MBH

	Response	Response	Response	Response	Response	Response	Response			
	Area Counts Reference	Area Counts Reference	Area Counts Reference	Area Counts Reference	Reference	Reference	Reference			
	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	1		Correlation
Analytes	Vmqq	DpmV	∆mdd	Nwdd				RF	* RSD	Coefficient
Methane	891	1630	8924	16532				0.000000614	4.82	0.999
	0.000525	0.00105	0.00525	0.0105						
		; -								
								:	•	*

AMALTSIS BATCH SUMMARY
Analysis Batch # VOF1 61017092501

Work Order # 9610175

Page 6

Method METHANE GAS ANALYSIS

Test Code CH4RAA00

Initial Calibration # F1961016010000

Calibration Date 10/16/96

Analysis Start Date/Time 10/17/96 09:25:00 Analysis Stop Date/Time 10/17/96 20:50:00

Instrument <u>F1</u>
Analyst <u>MEH</u>
Reviewer <u>JHC</u>

	Sequence/Analysis Time	Project Sample ID	Lab Sample ID	Sample Type	Analysis File #
1	10/17/96 09:25:00		CALCHECK	Continuing Calibration Verification	P101701
2	10/17/96 10:31:00		BLK963765	Blank, Method	P101702
8	10/17/96 11:02:00		BLK962933	Blank, Method	P101703
4	10/17/96 11:38:00		LCS967424	Lab Control Sample	P101704
ß	10/17/96 12:22:00		LCS967414	Lab Control Sample	P101705
9	10/17/96 12:57:00		LCSD967414	Lab Control Sample Duplicate	P101706
7	10/17/96 13:47:00		LCS967414	Lab Control Sample	P101707
a o	10/17/96 14:41:00		LCSD967414	Lab Control Sample Duplicate	P101708
6	10/17/96 19:40:00	CL LTEV-11-AI 094	9610175-01A	Sample	P101717
10	10/17/96 20:05:00	CL LTEV-11-AI 094	9610175-01B	Sample Duplicate	P101718
11	10/17/96 20:27:00	CL LTEV-11-AI 095	9610175-02A	Sample	P101719
12	12 10/17/96 20:50:00	CL LTEV-11-AI 096	9610175-03A	Sample	P101720

Page 7

Work Order # 9610175

Analysis Batch # VOF1 61017092501

Matrix A Report As received Reporting Subset Spikes Subset Instrument F1 Column Date Collected 09/26/96 Date Received 10/03/96 Project Sample ID CL LTEV-11-AI 094 Lab Sample ID 9610175-01A File # P101 Method Sour Test Code

le # <u>P101717</u> thod <u>Source VOC - methane</u> st Code <u>CH4RAA00</u>	Date Prepared Date Analyzed 10/17/96 19:40:00	Analyst MEH 96 19:40:00 Reviewer JHC	Specs Subset	* Moisture	1
		Aliquot Mass/Volume .005 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3819			
Analyte	**************************************	Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit ppmV	
Methane	74-62-8	6.45	0000	c	

Analysis Batch # VOF1 61017092501

Reporting Subset ____ Spikes Subset Specs Subset Instrument F1 Reviewer JHC Analyst MEH Column Date Analyzed 10/17/96 20:05:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Source VOC - methane Lab Sample ID 9610175-01B Test Code CH4RAA00 File # P101718

Reporting Limit 0 **DpmV** Detection Limit 0.0560 **DpmV** .3819 Extract/Digestate Volume Measured Concentration Aliquot Mass/Volume Dilution Factor .005 (L) 1.0 (L) 6.55 Vmqq CAS # 74-82-8 Analyte Methane

Mork Order # 9610175

Page 8

Report As received

Matrix A

* Moisture

Page 9

Work Order # 9610175

Analysis Batch # VOF1 61017092501

Matrix A Report As received * Moisture Reporting Subset Spikes Subset Specs Subset Instrument F1 Reviewer JHC Analyst MEH Column Date Analyzed 10/17/96 20:27:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 095 Method Source VOC - methane Lab Sample ID 9610175-02A Test Code CH4RAA00 File # P101719

		emiloNaseM form ta		
		.005 (L)		
		Extract/Digestate Volume		
		1.0 (L)		
		Dilution Factor .3137		
Analyte	CAS #	Measured Loncentration ppmV	Decection Limit	Reporting Limit PpmV
Methane	74-82-8	5.31		¢1

Page 10 Work Order # 9610175

Analysis Batch # VOF1 61017092501

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument F1 Analyst MEH Reviewer JHC Column 10/17/96 20:50:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared
Date Analyzed Project Sample ID CL LTEV-11-AI 096 Method Source VOC - methane Lab Sample ID 9610175-03A File # P101720 Test Code

hod Source VOC - methane	Date Analyzed 10/17/96	Date Analyzed 10/11/96 20:50:00 Reviewer JHC		
t Code CH4RAA00				
		Aliquot Mass/Volume .005 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor .3249		
Analyte	CAS #	Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit ppmV
Methane	74-82-8	97.9 .	0.0659	0

10/18/26 09:24:58

Work Order # 9610175

Page 11

Analysis Batch # VOF1 61017092501

Matrix A	Reporting Limit	Vmdq	0
Reporting Subset Spikes Subset Specs Subset	Detection Limit Re	Vmdq	0.0214
Instrument F1 Column Analyst MEH Reviewer JHC	Aliquot Mass/Volume 0.005 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor 1.0	ppmV	CN.
Date Prepared	Aliq Extrac	÷	
		Analyte	Methane
Lab Sample ID <u>BLK962933</u> File # <u>P101703</u> Method <u>Source VOC - methane</u> Test Code <u>CH4RAA00</u>			

CONTINUING (OR DAILY) CALIBRATION

VERIFICATION

Page <u>13</u>

Work Order # 9610175

Analysis Batch # VOF1 61017092501

Initial Calibration # F1961016010000

Date Analyzed 10/17/96 09:25:00

Reporting Subset Spikes Subset

Instrument F1 Reviewer JHC Analyst MEH

Test Code CH4RAA00

Lab Sample ID CALCHECK

High 130 Specification * Limits Recovery . Š 20 Specs Subset Recovery 106 . Concentration Reference **DpmV** 0.00525 Concentration Measured 0.00554 **DpmV** Method Source VOC - methane Analyte File # P101701 Methane

LABORATORY CONTROL SAMPLE

Work Order # <u>9610175</u> Page <u>12</u>

Analysis Batch # VOF1 61017092501

Instrument P1 Reporting Subset Matrix A Column Spikes Subset Report As received Analyst * Moisture . Reviewer JHC Aliquot Mass or Vol .005 Extract Mass or Vol 1.0 (L)	LCS LCS Duplicate Recovery Lab Sample ID Lab Sample ID Spec. LCS967414 LCSD967414 Limits File ID P101705 File ID P101706	Spiked Measured Spiked Measured Spec. Conc. Conc. Conc. Conc. Conc. PpmV to ppmV to the conc. Co	0.00475 0.00606 128 0.00475 0.00565 119 7.3
Method <u>Source VOC - methane</u> Date Prepared Test Code <u>CH4RAA00</u> Date Analyzed <u>10/17/96 12:57:00</u>	Control Std. # Vol. Added Surrogate Sol'n # Vol. Added LCS 5.0 mL	Ans)yre	Methane

ANALYTICAL PROTOCOL SUMMARY

COMMENTS/EARRATIVE

Specification# Method METHANE GAS ANALYSIS

Lab Sample ID

Project Sample ID/Description Analyte

Flag Comment/Narrative

Corrective Action

10/18/96 09:24:58

SAMPLE DUPLICATES

Work Order # 9610175 Page 14

Analysis Batch # VOF1 61017092501

Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Source VOC - methane Test Code CH4RAA00

Instrument F1 Analyst MEH Column

Reviewer JHC

Date Analyzed 10/17/96 20:05:00

Matrix A Report As received Spikes Subset Reporting Subset Specs Subset

	Sample Duplicate Lab Sample ID Lab Sample ID 9610175-01A 9610175-01B Dil Fact3819	Duplicate Lab Sample ID 9610175-01B Dil Fact3819		кро	
<u>Analyte</u>	Measured Conc. ppmV	Measured Conc. ppmV	Result	Specification Limit	
Methane	6.43	6.55	1.9		

			₹	LAB ID:			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		. Page) 0 //	+	
							A	nalysis	Analysis Request and Chain of Custody Record	f Custody I	Record	
Sample submitted by:	mitted by:	V	_3	sesk-			,	Project Name				
Company			Address	ess		Contact	of D'Webe		Project Location and State	Project No.	No.	
Radia			91	1600 A	, nh.	Phone	194	/360	Garnert			
Sample No /	Date	q	dı	Sample	ple Tyr			ANALYSIS	ANALYSIS REQUESTED			_
Identification		G 18	Com	Container (Size/Type)	Sludge, Etc.)	Preservative	TEST		METHOD	Canint TD	ARKS BY BY	<u> </u>
041	4/14/46	£	×-	larsk	Julie		PLE		Topyalor slightly loos	-3	18,	76
092				-	Sheet		1 100 6		1 1 0	HL0780	67	
093					Lut	and the second	Tro.			1/X0X/4	1/2	
hbo					Putet		BUE	,		140/10	6/	,
095					Puthe		PCE			HL0955	25	,
960					putter		PCE		r	4/20842	2	
600					Sult		put			14 080 X	24	
860					Inlet	•	Doll.			HE-0857	4.	T
ode					Julit		1 WCF:			82807H	82	
				_					,			,
Sampled	Samplers: (Signature)		Relin	Relinquished by: (Signature)			Date: Time:	Received by:	They hardt	Date: 10/3/Maact		
			Relin	Relinquished by:				Received by:	0	Date: Intact		,
¥	Affiliation		Retin	(Signature) Relinquished by:			Date:	(Signature) Received by:		Date: Intact		
SAMPLER REMARKS / 20	REMARKS:	12	٠, ⊢	1. 3	ongestra	carity	CHLOSH	OS4/2 Received by:			Data Results to:	,
arthout a	1 4 Un nester 1961656256	3 18	548		puniet of	Hould Gr Weber or	narder 9/30/96	trivoice to:				
Stored on The	F	4	A5-4	Sur Sur	Elay JAME	16/5/0						,
-	_			=	•							

Corrected

VOC PREP AMALYTICAL RUM

Analytical Group: HE_1961003172000 Prep Batch 10: VOHE_1610031720

PRINTE, 17 . Ap

Instrument: HE_1

Test Code: DILUAA00 Dilution Dilution Dilution Factor Factor Date Primary Final Field Delta Pres. Lab Delta Pres. Initial Batch Dil # Factor Diluent Added Pres. Final 9 Init. Pres. 9 Cen id Sode Iest Vorkorder Customer 2

0.381916 0.381916 10/03/96 19:10:26	0.313746 0.313746 10/03/96 19:10:45	0.324960 0.324960 10/03/96 19:11:04	0.382432 0.382432 10/03/96 19:11:20	0.364574 0.364574 10/03/96 19:11:46	0.379356 0.379356 10/03/96 19:12:06	0.364532 0.364532 10/03/96 19:12:22	0.367836 0.367836 10/03/96 19:12:38	(0.345325)0.345325 10/03/96 19:12:56										-											
14.15	11.891	12.186	14.15	13.708	14.15	13.5606	13.7571	13.3641																					
10	의	임	티	임	임	임	티	티티	1	١	!	1	١	l	I	1	1	I		l		1	1	I	l	I	I	I	I
22.35	23.20	22.80	22.30	22.90	22.60	22.50	22.70	24.00																					
0.000	-2.259	-1.964	0.00	4420	0.00	5894	3929	7859																					
-14.15	-14.15	-14.15	-14.15	-14.15	-14.15	-14.15	-14.15	-14.15																					
KL0610	HL0955	HL0842	HL0825	HL0780	HL0866	HL0807	HL0857	HL0828																					
DILUAA00	DILUAA00	DILUAA00	DILUAA00	DILUAA00	D1LUAA00	D1LUAA00	DILUAA00	DILUAA00																					
96 1017502610075-01A CL LTEV-11-AI 094	14:01 15-0200010-02A CL LTEV-11-AI 095	10115424949610075-03A CL LTEV-11-AI 096	9610075-04A CL LTEV-11-AI 091	9610075-05A CL LTEV-11-AI 092	9610075-06A CL LTEV-11-AI 093	9610075-07A CL LTEV-11-AI 097	9610075-08A CL LIEY-11-AI 998	9610075-09A CL LTEV-11-AI 099																					

AMALYTICAL PROTOCOL SUMMARY

Work Order # 9610075

Page 19

Client DEI Clairmont

Client DEI Clairmont	Specification # SDFR	_		
Facility Clairmont				
Client Code V DEI CM				
Method SOURCE VOC - GC/MD				
			Extraction/Digestion	
Project Sample ID/Description	Lab Sample ID	Test Code(s)	Batch #	Analysis Batch
		į		
CL LTEV-11-AI 094	9610075-01A	SDFRAACM	V N	VOF161007113501
CL LTEV-11-AI 094	9610075-01B	SDFRAACM	NA	VOF1_61007113501
CL LTEV-11-AI 095	9610075-02A	SDFRAACM	NA	VOF1_61007113501
CL LTEV-11-AI 096	9610075-03A	SDFRAACM	NA	VOF1_61007113501

Analysis Batch #

Page 20

10/17/96 16:25:51

Method <u>Source VoC - GC/MD FID</u>

Test Code <u>SDFRAACM</u>

Project Sample ID:	CL LTEV-11-AI	I	CL LTEV-11-AI	1-AI	CL LTEV-11-AI	.AI	CL LTEV-11-AI	-AI
	094	_	094		960		960	
Lab ID:	9610075-01A		9610075-01B	01B	9610075-02A	2A	9610075-03A	3.8
File ID:	P100705		P100706	9	P100707		P100708	
Date Collected:	09/26/96		09/26/96	96	09/26/96		09/56/96	9
Date Prepared:								
Date Analyzed:	10/07/96 17:35:00	5:00	10/07/96 18:35:00	8:35:00	10/07/96 19:31:00	:31:00	10/07/96 20:38:00	:38:00
Dilution Factor:	0.3819		0.3819		0.3137	_	0.3249	
Matrix:	Air		Air		Air		Air	
Units:	Awdd		Vmqq		Vmqq	-	Vmqq	
Report as:	received		received	ed	received	T	received	ש
Column:	<u>.</u>							
Analyte	Conc.	JG	Conc.	DL	Conc.	DI	Conc.	DI
TON CO	6.02	1.06	21.4	1.06	17.8	1.29	31.5	1.25
C3 VOCs	62.3	0.932	61.9	0.932	36.8	1.13	109	1.10

10/17/96 16:25:51

Method SOURCE VOC - GC/MD

Sol'n #

Test Code SDFRAASS

CALIBRATION INITIAL

Initial Calibration # F1961001010000

Calibration Date 10/01/96 01:00:00

Instrument F1

Work Order # 9610075

Page 21

Reviewer JHC Analyst MEH

	Response Area Counts	Response Area Counts	Response Area Counts	Response	Response	Response	Response			
	Reference	Reference	Reference	Reference	Reference	Reference	Reference			
Analytes	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	Conc.	<u>6</u> 2	* RSD	Correlation
		,	,							
C2 VOCs	8384 0.0205	726 0.00205	32988 0.082					0.00000258	8.04	1.000
C3 VOCs	12001	1003 0.003060	48220 0.1224					0.00000271	10.8	1.000
Isobut ane	14909	1331 0.0040	61465 0.16					0.00000276	7.70	1.000
n-Butane	14798 0.04060	1218 0.004060	60744 0.1624					0.00000292	12.4	1.000
Isopentane	18767 0.05025	1683 0.005025	75031 0.2010					0.00000278	6.38	1.000
n-Pentane	18687	1615 0.00505	74289 0.202					0.00000285	8.44	1.000
n-Hexane	20647	1838 0.0060	83195 0.24					0.00000302	7.07	1.000
Benzene	20556 0.06030	1789 0.006030	81704 0.2412					0.00000309	8.01	1.000
n-Heptane	24235 0.07035	2122 0.007035	96955 0.2814					0.00000304	7.84	1.000
Toluene	22721 0.06930	1849 0.006930	89696 0.2772					0.00000330	11.9	1.000

CALIBRATION CER'd INITIAL

Calibration Date 10/01/96 01:00:00 Initial Calibration # F1961001010000

Sol'n # Method <u>SOURCE VOC - GC/MD</u>

10/17/96 16:25:51

Test Code SDFRAASS

Instrument F1

Work Order # 9610075

Page 22

Analyst MEH Reviewer JHC

	Response Area Counts	Response Area Counts	Response Area Counts	Response	Response	Response	Response			
	Reference	Reference	Reference	Reference	Reference	Reference	Reference			0
Analytes	ppmv-C	ppmV-C	ppmV-C					RF	RSD *	Coefficient
Chlorobenzene	19130 0.05970	1625	72824					0.00000336	8 . 48	1.000
Ethylbenzene	26488 0.07920	2171 0.007920	101261 0.3168					0.00000326	10.7	1.000
m/p-Xylene/Bromoform	53104 0.1580	4185 0.01580	203110	`	·	:	;	0.00000329	13.0	1.000
Styrene	24483 0.07920	1851 0.007920	91786 0.3168					0.00000366	15.1	1.000
o-Xylene/1,1,2,2-TCEthane	32759 0.10020	2489 0.010020	117520 0.4008					0.00000350	14.0	666.0
n-Nonane	30674 0.08910	2564 0.008910	118929					0.00000313	9.80	1.000
p-Ethyltoluene	26359	2118 0.0090	97372 0.36					0.00000379	11.2	1.000
1,3,5-Trimethylbenzene	31063 0.09045	2590 0.009045	110926 0.3618					0.00000322	9.07	666.0
1,2,4-TMBenzene/t-Butylbenzene 30106	e 30106 0.090	2471 0.0090	108747 0.36					0.00000331	9.85	1.000
Benzyl chloride/m-DCBenzene	33986 0.13030	108994 0.5212	6354 0.02606					0.00000424	11.5	0.998

10/17/96 16:25:51

Method SOURCE VOC - GC/MD

Sol'n #

Test Code SDFRAASS

Cont.d CALIBRATION IMITIAL

Initial Calibration # F1961001010000

Calibration Date 10/01/96 01:00:00

Work Order # 9610075 Page 23

Instrument F1

Reviewer JHC Analyst MEH

			_	 			
	Correlation Coefficient	1.000	866.0				
	& RSD	6.94	12.3				
	RF	0.00000307	0.00000347				
Response	Reference Conc.						
Response	Reference Conc.						
Response	Reference Conc.						
Response	Reference Conc.						
Response Area Counts	Reference Conc. ppmV-C	202518	66801 0.24				
Response Area Counts		4865 0.015840	1569 0.0060				
Response Area Counts	Reference Conc. ppmV-C	55787	20019				
	Analytes	n-Decane/p-Dichlorobenzene	o-Dichlorobenzene				

AMALYSIS BATCH SUMMARY

Analysis Batch # VOF1 61007113501

Page 24

Work Order # 9610075

strument F1 viewer JHC lyst CLS

Method SOURCE VOC - GC/MD	Analysis Start	Analysis Start Date/Time 10/07/96 11:35:00	96 11:35:00	Inst
Test Code <u>SDFRAASS</u>	Analysis Stop D	Analysis Stop Date/Time 10/07/96 20:38:00	96 20:38:00	Anal
Initial Calibration # <u>F1961001010000</u>				Revi
Calibration Date 10/01/96				
Sequence/Analysis Time	Project Sample ID	Lab Sample ID Sample Type	Sample Type	

Se	Sequence/Analysis Time	Project Sample ID	Lab Sample ID Sample Type	Sample Type	Analysis File #
_	10/07/96 11:35:00		CALCHECK	Continuing Calibration Verification	P100701
CI.	10/07/96 12:33:00		BLK963531	Blank, Method	P100702
~	10/07/96 13:34:00		LCS966528	Lab Control Sample	P100703
	10/07/96 16:15:00		LCSD966528	Lab Control Sample Duplicate	P100704
ıc	10/07/96 17:35:00	CL LTEV-11-AI 094	9610075-01A	Sample	P100705
vs	10/07/96 18:35:00	CL LTEV-11-AI 094	9610075-01B	Sample Duplicate	P100706
7	10/07/96 19:31:00	CL LTEV-11-AI 095	9610075-02A	Sample	P100707
~	יי טטישניטכ אפּילרטלטנ	CT. LTEV-11-AT 096	4610075-03A	Sample	P100708

Analysis Batch # VOF1 61007113501

Page 25

Work Order # 9610075

Instrument F1 Analyst CLS Reviewer JHC Column Date Collected 09/26/96 Date Received 10/03/96 Project Sample ID CL LTEV-11-AI 094 Method Source VOC - GC/MD FID Lab Sample ID 9610075-01A File # P100705 Test Cod

Report As received * Moisture Matrix A Reporting Subset __ Spikes Subset Specs Subset

: Code <u>SDFRAACM</u>					
		Aliquot Mass/Volume 0.0010 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor 0.3819			
Analyte	CAS #	Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit ppmV	
C2 VOCs C3 VOCs		20.9	1.06	0 0	

2 H J

Page 26

Work Order # 9610075

Analysis Batch # VOF1 61007113501

Report As received * Moisture Matrix A Reporting Subset Spikes Subset Specs Subset Instrument F1 Reviewer JHC Analyst CLS Column 10/07/96 18:35:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Source VOC - GC/MD FID Lab Sample ID 9610075-01B Test Code SDFRAACM File # P100706

		Aliquot Mass/Volume 0.0010 (L) Extract/Digestate Volume 1.0 (L) Dilution Factor 0.3819			
Analyte	CAS #	Measured Concentration ppmV	Detection Limit ppmV	Reporting Limit ppmV	
C2 VOCs			1.06		

Work Order # 9610075

Page 27

Analysis Batch # VOF1 61007113501

Instrument F1 Reviewer JHC Analyst CLS Column 10/07/96 19:31:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 095 Method Source VOC - GC/MD FID Lab Sample ID 9610075-02A Test Code SDFRAACM File # P100707

Reporting Subset Matrix A Spikes Subset Report As received Specs Subset Moisture

Page 28

Work Order # 9610075

Analysis Batch # VOF1 61007113501

Matrix A Report As <u>received</u> * Moisture Reporting Subset Spikes Subset Specs Subset Instrument F1 Reviewer JHC Analyst CLS Column 10/07/96 20:38:00 Date Collected 09/26/96 Date Received 10/03/96 Date Analyzed Date Prepared Project Sample ID CL LTEV-11-AI 096 Method Source VOC - GC/MD FID Lab Sample ID 9610075-03A Test Code SDFRAACM File # P100708

		Aliquot Mass/Volume		
		0.0010 (L)		
		Extract/Digestate Volume		
		1.0 (L)		
		Dilution Factor 0.3249		
		Measured Concentration	Detection Limit	Reporting Limit
Analyte	CAS #	Vmqq	Vmqq	Vmqq
C2 VOCs		31.5	1.25	0
C3 VOCs		109	1.10	0

BLANK IMPORMATION LABORATORY

Work Order # 9610075 Page 29

Analysis Batch # <u>VOF1</u> 61007113501

Lab Sample ID BLK963531 Method <u>Source VOC - GC//</u> Test Code <u>SDFRAACM</u> File # P100702

963531	Date Prepared		Instrument F1	Reporting Subset	Matrix A
	Date Analyzed	Date Analyzed 10/07/96 12:33:00	Column	Spikes Subset	
- GC/MD FID			Analyst CLS	Specs Subset	
21			Reviewer JHC	1	
		Aliqu	Aliquot Mass/Volume		
		Extract	0.005 (L) Extract/Digestate Volume		
		Dilutio	Dilution Factor 1.0		
		2			
Analyte		₩	Measured Conc. ppmV	Detection Limit ppmV	reporting Limit
C2 VOCs			QN CENT	0.0812	0
C3 VOCs			Q.	0.0712	0

Page 30 Work Order # 9610075

VBRIPICATION

Analysis Batch # VOF1 61007113501

Initial Calibration # F1961001010000

Lab Sample ID CALCHECK File # P100701

Date Analyzed 10/07/96 11:35:00

Reporting Subset

Instrument F1

Reviewer JHC Analyst CLS

> Method Source VOC - GC/MD FID Test Code SDFRAACM

•	ц	
Spikes Subset	Specs Subset	

				Recovery	ery	
				Specification	cation	
				Lim	Limits	
	Measured	Reference				
	Concentration	Concentration	Recovery	Low	Hiqh	
a tyle and	Vmaa	Varior		a.		
27 64 2000		r Francis	•	•		
C2 VOCs	0.0100	0.0102	86	0,2	130	
C3 VOCs	0.0108	0.0102	106	7.0	130	

10/17/96 16:25:51

SAMPLE DUPLICATES

Work Order # 9610075 Page 31

Analysis Batch # VOF1 61007113501

Date Analyzed 10/07/96 18:35:00 Date Collected 09/26/96 Date Received 10/03/96 Date Prepared Project Sample ID CL LTEV-11-AI 094 Method Source VOC - GC/MD FID Test Code SDFRAACM

Instrument F1 Analyst CLS Column

Reviewer JHC

Reporting Subset Spikes Subset Specs Subset

Report As received Matrix A

	Sample Duplicate Lab Sample ID Lab Sample ID 9610075-01A 9610075-01B Dil Fact. 0.3819	Duplicate Lab Sample ID 9610075-01B Dil Fact. 0.3819		RPD
Analyte	Measured Conc. ppmV	Measured Conc. ppmV	Result	Specification Limit
C2 VOCs C3 VOCs	20.9	21.4	2.4	

南の日本教徒としてあり、ことはり、Q 出版「ひにもなる () 多少年基本ので、

157

AMALYTICAL PROTOCOL SUMMARY COMMENTS/MARRATIVE

10/17/96 16:25:51

Method SOURCE VOC - GC/MD

Specification#

Lab Sample ID

Project Sample ID/Description Analyte

File ID

Flag Comment/Narrative

Corrective Action

PERFORMANCE TEST REPORT for the LOW TEMPERATURE ENHANCED VOLATILIZATION SYSTEM

at the

CLAREMONT POLYCHEMICAL SUPERFUND SITE OLD BETHPAGE, NEW YORK

PF,EPARED FOR:

USACE New York District

PREPARED BY:

DOW ENVIRONMENTAL

October 1996