DATA REPORT July, 2003

Claremont Polychemical Superfund Site Long-term Groundwater Monitoring Old Bethpage, New York

Prepared For:

United States Environmental Protection Agency Region II New York, New York

Prepared by:

US Army Corps of Engineers July 2003

Table of Contents

List of Figures	v
List of Abbreviations and Acronyms	vi
Executive Summary	ix
1 Introduction	1
2 Site Description and History	1
2.1 Current Setting	1
2.2 Environmental Investigation History	
3 Physical Setting	4
3.1 Climate	4
3.2 Physiography	4
3.3 Geology	4
3.4 Hydrogeology	5
3.4.1 General	
3.4.2 Hydraulic Conductivity	
3.4.3 Hydraulic Gradients and Groundwater Flow	
3.5 Wells	7
4 Groundwater Monitoring Analytical Results and Discussion	7
4.1 Data-Related Issues	Ç
4.1.1 Data Gaps	
4.1.2 Analyte Selection	
4.1.3 Sample Designation System	10
4.1.4 Laboratory Data Packages	11
4.1.4.1 General Non-CLP Data Package Issues	11
4.1.4.2 Specific Groundwater Monitoring Data Package Issues	
4.1.4.2.1 August 2001	
4.1.4.2.2 November 2001	
4.1.4.2.3 February 2002	
4.2 Analyte Distribution and Magnitude	
4.2.1 Analytes of Interest	
4.2.2 PCE	
4.2.3 TCE	
4.2.4 1,2-DCE and Isomers	
4.2.4.1 <i>trans</i> -1,2-DCE	
4.2.4.2 <i>cis</i> -1,2-DCE	
4.2.6 1.1.1-trichloroethane	

	4.2.7	1,1-dichloroethane	19
	4.2.8	1,1-dichloroethene	
	4.2.9	Chloroform	19
	4.2.10	Aromatic Hydrocarbons	20
	4.2.11	Metals	
	4.2.12	Water Quality	23
	4.2.12.		
	4.2.12.	2 CLP Data Sets	24
5	System C	Operation and Evaluation	25
		em Description	
	5.2 Syst	em Evaluation Performance	27
	5.2.1	Current System Operation and General Observations	
	5.2.2	Flow Rate	27
	5.2.3	Water Quality	27
	5.2.4	Data Evaluation	29
	5.2.5	Data Deficiencies	30
	5.2.6	Operational Problems.	30
6	Conclusion	ons and Recommendations	31
	6.1 Syst	em Performance Evaluation	31
	6.1.1	Conclusions	
	6.1.2	Recommendations	31
	6.2 Che	mistry and Groundwater Monitoring	32
	6.2.1	Conclusions	
	6.2.2	Recommendations	33
	6.3 Proc	ess Engineering	34
	6.3.1	Conclusions	34
	6.3.2	Recommendations	34
7	Referenc	PS S S S S S S S S S S S S S S S S S S	34

Tables

Figures

Appendix A: Cumulative Groundwater Monitoring Well Data Tables

Appendix B: Raw Process Data Tables

List of Tables

Sec. 2	
2-1	Historical Chemicals Involved with Manufacturing Processes
Sec. 3	
3-1	Groundwater Elevation and Well Construction Data for August 2001, November 2001, February 2002
3-2	Groundwater Elevation and Well Construction Data for May 2002, August 2002, October 2002
3-3	Groundwater Elevations and Vertical Gradients
Sec. 4	
4-1	August 2001 Groundwater Monitoring Data
4-2	August 2001 Data Summary
4-3	November 2001 Groundwater Monitoring Data
4-4	November 2001 Data Summary
4-5	February 2002 Groundwater Monitoring Data
4-6	February 2002 Data Summary
4-7	May 2002 Groundwater Monitoring Data
4-8	May 2002 Data Summary
4-9	August 2002 Groundwater Monitoring Data
4-10	August 2002 Data Summary
4-11	October 2002 Groundwater Monitoring Data
4-12	October 2002 Data Summary
4-13	Data Summary for ROD and Permit Analytes
Sec. 5	
5-1	Groundwater Discharge from Extraction Wells to Flow Equalization Tank
5-2	Clarified Water at Inlet to Sand Filter A
5-3	Clarified Water at Inlet to Sand Filter B
5-4	Filtered Water to Inlet of Air Stripper
5-5	Treated Water from Discharge of Air Stripper to Granular Activated Carbon Vessel A
5-6	Treated Water from Discharge of Air Stripper to Granular Activated Carbon Vessel B
5-7	Polished Water Discharged from Granular Activated Carbon Vessel A to Treated Effluent Tank

iii

5-8	Polished Water Discharged from Granular Activated Carbon Vessel B to Treated Effluent Tank
5-9	Treated System Effluent from Effluent Storage Tank
5-10	Summary of Operation Problems and Corrective Actions for June 2001 to October 2002
5-11	Quantity of Contaminated Groundwater Treated from June 2002 to October 2002
Appendix A	

A-1	EW-1A Cumulative Groundwater Monitoring Data
A-2	EW-1B Cumulative Groundwater Monitoring Data
A-3	EW-1C Cumulative Groundwater Monitoring Data
A-4	EW-2A Cumulative Groundwater Monitoring Data
A-5	EW-2B Cumulative Groundwater Monitoring Data
A-6	EW-2C Cumulative Groundwater Monitoring Data
A-7	EW-4A Cumulative Groundwater Monitoring Data
A-8	EW-4B Cumulative Groundwater Monitoring Data
A-9	EW-4C Cumulative Groundwater Monitoring Data
A-10	SW-1 Cumulative Groundwater Monitoring Data
A-11	DW-1 Cumulative Groundwater Monitoring Data
A-12	DW-2 Cumulative Groundwater Monitoring Data
A-13	EW-5 Cumulative Groundwater Monitoring Data
A-14	EXT-1 Cumulative Extraction Well Data
A-15	EXT-2 Cumulative Extraction Well Data
A-16	EXT-3 Cumulative Extraction Well Data

Appendix B

B-1	Treated System Effluent from Effluent Storage Tank - VOCs
B-2	Treated System Effluent from Effluent Storage Tank - SVOCs
B-3	Treated System Effluent from Effluent Storage Tank - Metals

iv

List of Figures

Sec. 2	
2-1	The Claremont Polychemical Superfund Site and Surrounding Area
Sec. 3	
3-1	Generalized Stratigraphic Column of Rocks Underlying the Claremont Polychemical Superfund Site
3-2	Well Location Map
3-3	Potentiometric Surface Map, October 2002
Sec. 4	
4-1	PCE Maximum Concentration in Groundwater, October 2002
4-2	TCE Maximum Concentration in Groundwater, October 2002
4-3	cis-1,2-DCE Maximum Concentration in Groundwater, October 2002
4-4	1,1,1-TCA Maximum Concentration in Groundwater, October 2002
4-5	Chlorinated Solvent Degradation Sequences
Sec. 5	
5-1	Generalized Process Flow Diagram for Treatment of Groundwater at Claremont
5-2	Groundwater Influent Concentrations (PCE, TCE, cis-1,2-DCE, and 1,1,1-TCA) vs. Time
5-3	Groundwater Influent Concentrations (Iron and Manganese) vs. Time
5-4	Treated System Effluent Concentrations (PCE, TCE, cis-1,2-DCE, and 1,1,1-TCA) vs. Time
5-5	Treated System Effluent Concentrations (Iron and Manganese) vs. Time

 \mathbf{V}

List of Abbreviations and Acronyms

A-E architect-engineer amsl above mean sea level

As arsenic

B organic analyte detected in associated blank, *or*, inorganic analyte

concentration between the instrument detection level and the contract-

required detection level (data qualifier)

Ba barium

bgs below ground surface

CENWK-EC-EF US Army Corps of Engineers Kansas City District Environmental

Science Section

CLP contract laboratory program (EPA) CPC Claremont Polychemical Corp.

CPSS Claremont Polychemical Superfund site

Cr chromium (total) Cr⁺⁶ hexavalent chromium

CRDL contract-required detection level (CLP term for inorganic analyses)
CRQL contract-required quantitation level (CLP term for organic analyses)

DAR design analysis report DCE dichloroethene

DO dissolved oxygen

DW- diffusion well (historical site well)

E exceeded calibration range (data qualifier)

Eh oxidation-reduction potential

EPA US Environmental Protection Agency

EW- historical monitoring well installed by a particular contractor

EXT- extraction well (remediation system)

Fe iron (total)
FS feasibility study
FSP field sampling plan
IAG interagency agreement
IDL instrument detection limit

INJ injection well (remediation system)

GM- historical monitoring well installed by a particular contractor

gpd/ft² gallons per day per square feet GWTS groundwater treatment system

HCl hydrochloric acid

J estimated (data qualifier)
LCL lower confidence limit
LCS laboratory control sample

LTEV low temperature enhanced volatilization

LTGWM long-term groundwater monitoring

LTRA long-term remedial action MCL maximum contaminant level

MDL method detection limit
MEE methane, ethane, ethene

Mn manganese MS matrix spike

MSD matrix spike duplicate

mV millivolt MW monitoring

MW monitoring well na not analyzed

NCDH Nassau County Department of Health

ND not detected

NPL National Priorities List

NR not reported ns not sampled

NTU nephelometric turbidity units

NYSDEC New York State Department of Environmental Conservation

OBL Old Bethpage Landfill Superfund site

O&M operations and maintenance ORP oxidation-reduction potential OU 1-6 operable units 1 through 6

Pb lead

PCE tetrachloroethene
pH hydrogen ion activity
PQL practical quantitation limit

QA quality assurance

QAPP quality assurance project plan

QC quality control

QCSR quality control summary report

R rejected (data qualifier)

RD/RA remedial design/remedial action

RI remedial investigation ROD record of decision

RPD relative percent difference

SAIC Scientific Applications International Corporation

SAP sampling and analysis plan

Sb antimony Se selenium

su standard units (pH)
STL Severn-Trent Laboratory

SVOC semivolatile organic compound SW- historical site well designation

TAL target analyte list

TB trip blank
TCA trichloroethane
TDS total dissolved solids
TCE trichloroethene

TCL target compound list TOC total organic carbon

TRPH total recoverable petroleum hydrocarbons

TSS total suspended solids
U not detected (data qualifier)
UCL upper confidence limit
URS URS Greiner Corporation
USACE US Army Corps of Engineers

USACE-KCD US Army Corps of Engineers Kansas City District USACE-NAN US Army Corps of Engineers New York District

VOC volatile organic compound

Executive Summary

Introduction

This report summarizes the analytical results of groundwater and process water sampling associated with long-term groundwater monitoring and treatment plant operations at the Claremont Polychemical Superfund Site (CPSS), Old Bethpage, New York, for the period June 2001 to October 2002, and is based on data provided by the former operations and maintenance contractor (URS Greiner Corporation (formerly Radian International)) and the new operations and maintenance contractor (Scientific Applications International Corporation (SAIC)).

Site Background

The Claremont Polychemical Superfund Site is located on a 9.5-acre parcel of land in the industrial section of Old Bethpage, Nassau County, New York. The site lies approximately 800 feet east of the border between Nassau and Suffolk County, and is accessed via Winding Road on the property's western border. The CPSS property includes one large two-story building, covering approximately 35,000 square feet (the former processing plant) and a smaller water treatment building with ancillary structures.

The Claremont Polychemical Corporation (Claremont) operated from 1966 to 1980 and was a former manufacturer of pigments for plastics and inks, coated metal flakes, and vinyl stabilizers. In 1979, State Inspectors identified releases associated with damaged or mishandled drums in several areas including one larger release located east of the plant building (referred to as the "spill area") and the drums were removed 1980. Ownership and site management was transferred to the New York Bankruptcy Court later that year but the petition was eventually dismissed in 1997 transferring ownership back to Claremont. By June 1986, the Claremont Polychemical Site was placed on the US Environmental Protection Agency's (USEPA) National Priorities List (NPL) and is currently being addressed through federal actions.

Following a number of investigations and removal actions, construction began on a groundwater treatment system (GWTS) designed to capture most of the on-site contamination in 1997. The system went into full-scale operation in February 2000. The EPA also incorporated an ongoing groundwater remediation system at the nearby Old Bethpage Landfill Site to capture contaminants associated with the off-site groundwater plume. In February 2000, the long-term response action (LTRA) services for this site began under a USACE contract action as directed by the Kansas City District (CENWK). Region II requires these services for nine years or until February 2010.

Local stratigraphy consists of approximately 1,200 feet of unconsolidated Quaternary, Tertiary and Cretaceous System sand and silty sand sediments of glacial, fluvial, and deltaic origin, which overlie Precambrian igneous and metamorphic bedrock (Rust 1992; Ebasco, 1990). At the Claremont site, the Magothy Formation is the uppermost geologic unit and aquifer of concern.

Site Objectives

The primary objectives are to provide effective Operation and Maintenance (O&M) for the site system and to ensure that it is adequately addressing site groundwater contamination in accordance with the Record of Decision (ROD) and all regulatory requirements. The first objective is provided by the USACE through LTRA contractual agreements with an on-site O&M contractor (currently SAIC). The second objective is provided by monitoring system performance (weekly and monthly frequencies) and groundwater (quarterly frequency). Groundwater data reports are then provided to the USEPA Region II on a semi-annual basis. This report however (and the previous data report #1) contains more that six months data in order to bring the reporting effort up to standard.

Groundwater Monitoring Network

Since October 2002, hydraulic data has been collected from 29 monitoring wells divided into a group of 14 onsite wells and an additional group of 15 offsite wells. Together, these two groups of wells comprise the extended monitoring network. The monitoring wells within this network have been grouped into 6 "levels" based on the elevation of the screened interval. This grouping is useful for describing contaminant distribution and system operation, and is based solely on well construction information, not on lithologic or hydrogeologic differences in the formation, since the Magothy aquifer is unconfined and the levels are hydraulically connected

Groundwater Monitoring Analytical Results

This report includes results from six rounds of groundwater sampling. For all rounds except October 2002, only 13 monitoring wells located on the Claremont Polychemical site property were sampled for chemical analyses. The October 2002 sampling event is the first round collected from the extended monitoring network.

PCE distribution for the October 2002 data set shows the vicinity of the extraction wells to be the locus of highest PCE concentrations, suggesting that this contaminant is being captured by the extraction system.

TCE, *cis*-1,2-DCE, and 1,1,1-TCA distributions for the October 2002 data set shows specific monitoring well clusters to be the locus of maximum contamination, not any of the extraction wells. Detections offsite indicate these analytes are present in deeper intervals to the south and southeast. The data suggest that the extraction system is not providing complete capture, and that contaminant migration is occurring in deeper levels of the aquifer.

Additional description and discussion of these and other site chemicals of concern and water quality parameters are provided in the body of the report.

Current System Operation

The groundwater is sampled and analyzed in accordance with the Sampling and Analysis Matrix for the GWTS originally provided in the Radian Field Sampling Plan Addendum (Radian, 1999). The Sampling and Analysis Matrix requires groundwater chemical analyses be performed for a limited number of locations within the GWTS. The GWTS is designed to treat groundwater at a flow rate of 500 gpm with a contract requirement of 174 million gallons per year. The current contractor is running the plant at 450 gpm with 50 gpm being recycled to the system for a continuous treatment total of 400 gpm.

The most cited operational problem relates to the proper functioning of the flow meters. The flow meter bearings fail at variable flow rates giving out erroneous readings of the flow rate. A precise flow rate is needed to tabulate the amount of groundwater treated and to calculate the amount of contamination being removed by the plant. Poor functioning of these flow meters could potentially lead to inaccurate evaluation of groundwater and plume capture.

In response to this problem, the effluent mechanical flow meter was designated for replacement with a magnetic flow meter. A preliminary design and cost estimate was completed and submitted to USACE in January 2003. Installation of the meter was completed in May 2003.

Conclusions

- The current onsite well network is not adequate to monitor either horizontal or vertical contaminant migration.
- Modeling software should be employed that provides 3-dimensional infinite capabilities for evaluation of the capture zone and possible modification of the current extraction system. The software must also be capable of providing visual cross-sections to adequately evaluate contaminant concentrations and extrapolate migration across the horizontal (x and y-axes) and vertical (z-axis). The installation of several observation wells should also be considered for improved monitoring of the extraction system cone of depression.
- Useful information is being provided from nearby downgradient monitoring wells associated with the OBL (LF and MW clusters) and the Fireman's Training facility (BP cluster), which are located within the Bethpage State Park and golf course. The USACE suggest that our three sites meet through Region II and discuss the development of a common database or repository for use by all parties to ease data access and sharing
- PCE was detected at high frequency and concentrations, and remains a site analyte of concern. The highest PCE concentrations per sampling round are from the shallowest depth wells, which is consistent with previous work. Many Level 1 wells have been dry since November 2001 and the apparent decrease in maximum PCE concentration since August 2001 may change when the water level rebounds. PCE distribution data suggest that PCE is being captured by the extraction system.

- TCE was detected at high frequency and concentrations, and remains a site analyte of concern. The highest TCE concentrations per sampling round are from EW-4C, a Level 3 well, which is consistent with previous work. TCE distribution data suggest that TCE is not being completely captured by the extraction system. TCE has been detected in deeper offsite wells, suggesting that there is a vertical dimension to contaminant migration.
- Historical identification of *trans*-1,2-DCE as an analyte of interest may have been erroneous due to limitations of older analytical methodology and/or data reporting errors. Although both *cis* and *trans* isomers of 1,2-DCE have been detected, *cis*-1,2-DCE was detected more frequently and at higher concentrations, and is a site analyte of concern. The highest *cis*-1,2-DCE concentrations per sampling round have been in Level 3 wells since November 2001 and in EW-4C, the locus of elevated TCE, since February 2002. *Cis*-1,2-DCE distribution data suggest that this analyte is not being captured by the extraction system, and is migrating offsite at deeper levels.
- 1,1,1-TCA was detected at high frequency and concentrations, and remains a site analyte of concern. The onsite locus for 1,1,1-TCA is EW-2C, rather than the extraction wells. Higher concentrations were detected offsite in the deeper MW-10 cluster to the southeast, indicating that this analyte is not being captured by the extraction system.
- Barium, manganese, and iron were the most frequently detected metals, with barium and manganese detected in all samples. Barium and manganese concentrations have remained fairly constant through time, and appear to be representative. An abrupt decrease in iron concentrations may be related to a change in sampling protocols, and the lower concentrations are probably more representative. Other metals have not been detected consistently or at elevated concentrations, and do not appear to be of concern.
- Site DO, ORP, and pH conditions in general do not appear favorable to reductive intrinsic bioremediation.
- The groundwater treatment system has at times not performed to discharge standards. Three times in April 2001 the effluent results show the TCE concentration and once the PCE concentration were above discharge limits. Measures have been taken such as backwashing the GAC units more often to prevent channelization and lowering the process flow to the air stripper.
- The mechanical flow meters that measure flows at various points of the system need to be replaced with better quality flow meters. A preliminary design and cost estimate of the effluent flow meter was completed and submitted to USACE in January 2003 to replace with a magnetic flow meter. Installation of the meter was completed in May 2003 and will provide the site a more accurate accounting of the quantity of groundwater treated.

Data Report

1 Introduction

This report summarizes the analytical results of groundwater and process water sampling associated with long-term groundwater monitoring and treatment plant operations at the Claremont Polychemical Superfund Site (CPSS), Old Bethpage, New York, for the period June 2001 to October 2002, and is based on data provided by the former operations and maintenance contractor (URS Greiner Corporation (formerly Radian International)) and the new operations and maintenance contractor (Scientific Applications International Corporation (SAIC)).

From June 2001 to March 20, 2002, samples from 13 monitoring wells, 3 extraction wells, and various process locations were collected by URS and analyzed by Severn-Trent Laboratory (STL) in Shelton, CT. Analyses for volatile organic compounds (VOCs), selected semivolatile organic compounds (SVOCs) metals, and water quality parameters were performed using SW-846 methodology. A limited number of field water quality parameters were also collected during monitoring well sampling.

From March 27, 2002 to October 30, 2002, SAIC collected samples that were analyzed using the US Environmental Protection Agency (EPA) contract laboratory program (CLP). Analyses for target compound list (TCL) VOCs, SVOCs, target analyte list (TAL) metals were conducted in accordance with OLC03.2, ILM04.1 methodology. Non-CLP water quality analyses were conducted by ALSI laboratory, and six field water quality parameters were measured during monitoring well sampling.

2 Site Description and History

2.1 Current Setting

The Claremont Polychemical Superfund Site (CPSS) is located on a 9.5-acre parcel of land in the industrial section of Old Bethpage, Nassau County, New York. Figure 2-1 shows the location of the site and all adjacent properties. The site lies approximately 800 feet east of the border between Nassau and Suffolk County, and is accessed via Winding Road on the property's western border. The CPSS property includes one large two-story building, covering approximately 35,000 square feet (the former processing plant) and a smaller water treatment building with ancillary structures.

Properties adjacent to the CPSS include the Bethpage State Park and a golf course to the south and southeast, the State University of New York-Farmingdale Campus to the east, and a commercial and light industrial area to the north. The Oyster Bay Solid Waste Disposal Complex (Old Bethpage Landfill or OBL) is immediately west of the CPSS, and is also a Superfund site with the Town of Oyster Bay as the responsible party. The Nassau County Fireman's Training Center, which has also contributed to soil and groundwater

contamination in the area, is located approximately 500 feet south of the OBL site. Groundwater extraction and treatment systems are currently in operation at both the OBL site and Fireman's Training Center. The golf course has a number of pumping and/or irrigation wells, which are used for watering the fairways. The closest residences are approximately one-half mile from the site, immediately west of the OBL. The nearest public supply well is located 3,500 feet northwest of the site. Within a 3-mile radius of the CPSS, nearly 47,000 people obtain water from private-use wells.

2.2 Environmental Investigation History

The Claremont Polychemical Corporation (Claremont) operated from 1966 to 1980 and was a former manufacturer of pigments for plastics and inks, coated metal flakes, and vinyl stabilizers. During its operation, Claremont disposed of liquid waste in three leaching basins and deposited solid wastes and treatment sludge in drums or in old, aboveground metal tanks. The principal wastes generated were organic solvents, resins, and wash wastes (mineral spirits) (Table 2-1 and Ebasco, 1990)

During a series of inspections in 1979, the Nassau County Department of Health (NCDH) found 2,000-3,000 drums of inks, resins, and organic solvents on the Site. Inspectors identified releases associated with damaged or mishandled drums in several areas including one larger release located east of the plant building (referred to as the "spill area"). Claremont sorted and removed the drums in 1980.

In 1980, NCDH directed Claremont to install groundwater monitoring wells but the facility declared bankruptcy later that year. Ownership and site management was transferred to the New York Bankruptcy Court. However, in 1997 the Court dismissed Claremont's bankruptcy petition and ownership of the property shifted back to Claremont.

The Claremont Polychemical Site was placed on the US Environmental Protection Agency's (USEPA) National Priorities List (NPL) in June 1986 and is currently being addressed through federal actions. The Remedial Investigation/Feasibility Study (RI/FS) was initiated and completed in 1989. The US Environmental Protection Agency, Region II (EPA Region II) also conducted a removal action in 1989 and 1990 for 13,000 gallons of hazardous liquid wastes contained in drums, aboveground storage tanks, and basins.

EPA Region II determined that contamination at the CPSS required remediation as specified in the Record of Decision (ROD) dated September 1989. The ROD required compatibility testing, bulking and consolidation, and treatment and disposal of wastes from operable unit 2 (OU2).

EPA Region II initiated a second, comprehensive RI/FS in 1988. A second ROD followed in 1990 and required the following remedial actions: treatment of underground storage tanks (OU-1), excavation and treatment of contaminated soil by low temperature-enhanced volatilization (LTEV) of the contaminants (OU-3) and deposition of the treated soil in the excavated areas; extraction and treatment of the onsite groundwater by air stripping and

carbon absorption and then reinjection of the treated water into the ground upgradient with appropriate monitoring (OU-4); treatment of off-property groundwater contamination by air stripping and carbon absorption (OU-5), and decontamination of the onsite building by vacuuming and dusting the contaminated surfaces and by removing the asbestos insulation (OU-6).

In September 1990, the EPA entered into an interagency agreement (IAG) with the US Army Corps of Engineers (USACE) to design the LTEV at OU-3, the on-property groundwater treatment system (OU-4), and perform the building decontamination (OU-6). In September 1993, the EPA Region II entered into a second IAG with the USACE to perform oversight of the construction activities at OU3 and the decontamination of OU-6.

USACE completed the design work for OU-3 and OU-4 in February 1995. The soil excavation work (OU-3) and building decontamination (OU-6) were completed in December 1996 and July 1998, respectively. During the building decontamination, a hole was discovered in the building's concrete slab, and ultimately a new source of organic contamination (tetrachloroethene (PCE)) in the soil and groundwater beneath the building was discovered. EPA determined that the best way to address the soil contamination would be a soil vapor extraction (SVE) system. The SVE pilot system was scheduled for design in September of 2001 and was implemented in fall of 2002 under the supervision of Region II. The system operated briefly and is not inactive for reasons unknown to the USACE.

The groundwater portion of the remedy was implemented in two phases. During the first phase, three extraction wells and four reinjection wells were installed to capture most of the onsite contamination (OU-4). Construction began in 1997 and the wells went into full-scale operation in February 2000. The second phase was addressing the offsite groundwater contamination. The EPA incorporated an ongoing groundwater remediation system at the nearby Old Bethpage Landfill Site to capture contaminants associated with the offsite groundwater plume (OU-5). Hence, the offsite plume will be addressed through a financial assistance agreement between the EPA and the New York State Department of Environmental Conservation (NYSDEC), which integrates the remedy for Claremont's offsite plume into the Old Bethpage treatment system.

In February 2000, URS Greiner Corporation (URS) began the long-term response action (LTRA) services for this site at OU-4 under a USACE contract action as directed by the Kansas City office (CENWK). Once awarded, the task order authority was transferred to the USACE New York office (CENAN). Following the award, CENAN personnel have been providing oversight for the ongoing site operations and monitoring. CENAN exercised the one-year priced option during the past year, which expires on February 22, 2002.

In September 2001, CENWK was tasked with providing quarterly groundwater monitoring reports and for the Long-Term Remedial Action (LTRA) services and operations and Maintenance (O&M) at the CPSS site under another IAG with EPA Region II. Region II requires these services for nine years or until February 2010.

3 Physical Setting

3.1 Climate

The site's geographic location with respect to the Atlantic Ocean has a moderating affect on area weather conditions (Ebasco, 1990). Temperatures historically range from approximately 25° to 78° Fahrenheit (F) and annual precipitation ranges between 40 to 45 inches. Area wind typically flows from the west-northwest with a secondary direction out of the northeast. However, the existence of the OBL structure altars the direction of wind at the Claremont site by creating an obstruction to air flow along the east-west axis. The result is wind flowing north to south across the site with an absence of flow from the west. Average annual wind speed at the site is 9.5 miles per hour (Ebasco, 1990).

3.2 Physiography

The Claremont Polychemical Superfund site is located on Long Island within the Coastal Plain physiographic province (Ebasco, 1990). Locally, the nearest natural surface drainage feature is the Massapequa Creek, which lies approximately three miles to the south (Ebasco, 1990). Only seasonal surface runoff related to precipitation occurs on the site. A number of anthropogenic water bodies are in the immediate area both up- and downgradient. The nearest is a pond downgradient and adjacent to the Nassau County Firemen's Training Area.

Although most of the site is relatively flat with elevations ranging between 128 to 134 feet above mean sea level, the site topographically slopes upgradient to the north and northeast (Ebasco, 1990). The Old Bethpage landfill creates approximately 125 ft. of relief to the west of the site. The Bethpage State Park and the golf course that border the site to the south and east have elevations 20 to 30 feet higher than the Claremont site. The sudden change in elevation suggests that portions of the site were historically used for borrow materials.

3.3 Geology

Local stratigraphy consists of approximately 1,200 feet of unconsolidated Quaternary, Tertiary and Cretaceous System sand and silty sand sediments of glacial, fluvial, and deltaic origin, which overlie Precambrian igneous and metamorphic bedrock (Rust 1992; Ebasco, 1990). The bedrock contact is an unconformity or erosional contact, which represents a significant break in geological deposition and time (Figure 3-1). Historical investigations in the immediate area surrounding the Claremont site have encountered four main geologic units, which in descending order are: approximately 20 feet of Upper Glacial/Manetto Gravel deposits (Quaternary System), approximately 750 feet of the Magothy Formation (Cretaceous System), 150 feet of the Raritan Clay member (Cretaceous System), and approximately 250 feet of Lloyd Sand member (Cretaceous System) (Ebasco, 1990; Feldman et al., 1992). Subsequent to the Remedial Investigation, several stratigraphic units have been renamed or reclassified (Foster, et al., 1999). The changes are documented on Figure 3-1 for

correlation. However, the following description uses the older unit classifications for consistency with previous investigations.

At the Claremont site, the Upper Glacial/Manetto Gravel is absent and the Magothy Formation is the uppermost geologic unit and aquifer of concern. Fill material overlies the Magothy Formation in a sporadic pattern across the north and east portions of the site, and is approximately 2-6 ft. thick when present. Local water supply wells in the Magothy Formation are typically screened within the intermediate and lower portions of the aquifer to intercept the coarse, gravel-rich intervals.

Site-specific subsurface investigations from a variety of soil borings and monitoring, injection, and/or extraction well installations to a maximum depth of 250 feet below ground surface (bgs) have identified "well-stratified fine to medium sand with silt lenses, abundant peat laminae, and discontinuous sand layers" (Ebasco, 1990). Borings in the northern portion of the site also encountered numerous interbedded silt and clay horizons. A comparison of site logs with municipal supply well logs to the north suggest that the site is located within a transitional area between the predominately sandy southern portion of the Magothy Formation and an interbedded clayey-sand portion to the north (Ebasco, 1990).

3.4 Hydrogeology

3.4.1 General

The Magothy Formation is the uppermost water-bearing unit and the sole-source aquifer supplying potable drinking water to the majority of Long Island (Ebasco, 1990). It is an unconfined aquifer and the water table is typically encountered between 65 to 95 feet below ground surface (bgs). Previous investigations have shown that while the Magothy Aquifer has bodies of silt and clay within it, they are lenticular and discontinuous. Since vertical hydraulic barriers are not present locally, unit saturated thickness is assumed to be 650 to 700 ft.

Recharge occurs through precipitation and upgradient subsurface flow. Nearly 50% of annual precipitation can add to the recharge resulting in seasonal water level fluctuations of up to five feet (Rust, 1992 and Ebasco, 1990).

3.4.2 Hydraulic Conductivity

Hydraulic conductivities in the range $200 - 400 \text{ gpd/ft}^2$ were obtained from hydraulic permeability testing (slug tests) conducted during the RI (Ebasco, 1990). These values are significantly lower than historical data collected from actual pumping tests by Geraghty and Miller in 1987 (Ebasco, 1990). Based on these discrepancies, recent hydraulic recovery data was collected during a system shutdown in late June 2003 using the three extraction wells and two nearest monitoring well clusters as observation points. These data will not be available until August 2003, and will be included in a future report.

It is the Corps' intention to provide a revised capture zone analysis in the next data report (#3) using the recently collected hydraulic data from the expanded network. It will be compared to the historical analyses from both the Feasibility Study and 100% design submittal. The 100% design document also provided a cross-section of the extraction system and associated monitoring wells from on-site and one cluster from the off-site locations (or expanded network). Part of our evaluation in data report #3 will also duplicate the historical cross-section and provide revised figures that demonstrate changes in the contaminant plume along the recently expanded monitoring network.

3.4.3 Hydraulic Gradients and Groundwater Flow

Potentiometric data was collected by URS in August 2001, November 2001 and February 2002; and by SAIC in May 2002, August 2002 and October 2002 (Tables 3-1 and 3-2). The majority of this data, however, does not include upgradient well cluster MW-6 or several data points that are lateral and downgradient beyond the confines of the immediate Claremont site, which produces a very myopic and extremely bias view of the site's potentiometric surface. Hence, only the October 2002 expanded monitoring network data was plotted for this report (Figure 3-2).

According to RI report, groundwater flow is generally to the south-southeast with historical gradients ranging from 0.001-0.002 (ft/ft) (Ebasco, 1990). Based upon groundwater elevation data collected in October 2002, a potentiometric surface map was created for the site and adjacent properties (Figure 3-3). The recent data confirms a generally south and southeast direction of groundwater flow, which reverses slightly into a depression that appears centered around monitoring well DW-2 and just west of Extraction Well 3 (EXT-3). A slight mounding also occurs within the vicinity of EXT-2. The displacement of the anticipated cone of depression from EXT-3 to DW-2 and slight mounding in EXT-2 may indicate some level of error within the extraction well data set. It may support the need to add several observation wells immediately east to southeast of the extraction system to adequately define the cone of depression.

In October 2002, the horizontal gradient was approximately 0.003 (ft/ft) as measured between monitoring wells EW-6C and EW-4C over a distance of approximately 625 ft, 0.002 as measured between monitoring wells EW-4C and EW-2C at approximately 300 feet, and 0.001 as measured between monitoring wells MW-8C and MW-10C at approximately 1100 feet.

Historical records indicate marginal variations between piezometric elevations within the same site well clusters ("generally less than 0.5 feet without consistency or pattern"). Thus, it was determined to be insignificant with respect to contaminant movement (Ebasco, 1990). Unfortunately, actual vertical gradients and flow velocities are only inferred and not directly mentioned in this report. It is true that groundwater data collected on a quarterly frequency from five sets of on-site clustered monitoring wells since August 2001 does not show consistent patterns of either upward or downward gradients, which ultimately reflects subsurface discharge or recharge, respectively (Table 3-3). However, significant vertical

gradients have been observed during the past six quarters, which could easily impact migration of site contaminants, as they are often several magnitudes greater than observed and historical horizontal component.

3.5 Wells

Well construction and survey information for monitoring and process system wells is listed in Table 3-2. Hydraulic data is collected from 29 monitoring wells divided into a group of 14 onsite wells and an additional group of 15 offsite wells (Table 3-2 and Fig. 3-2). Together, these two groups of wells comprise the extended monitoring network (Table 3-2 and Fig. 3-2).

The 14 onsite monitoring wells were constructed of 4" diameter, 80-schedule PVC with 0.020" size slotted screens ranging from 5 - 10 ft. in length with the exception of EW-4A, which has a 15-ft. screen.

The monitoring wells have been grouped into 6 "levels" based on the elevation of the screened interval (Table 3-2). This grouping is useful for describing contaminant distribution and system operation, and is based solely on well construction information, not on lithologic or hydrogeologic differences in the formation, since the Magothy aquifer is unconfined and the levels are hydraulically connected.

All onsite wells except EW-5 are screened in one of the three uppermost levels (Table 3-2). Five wells (SW-1, SW-2, EW-1A, EW-2A, and EW-4A) are screened in Level 1; five wells in Level 2 (DW-1, DW-2, EW-1B, EW-2B, and EW-4B); and three wells (EW-1C, EW-2C, and EW-4C) are screened in Level 3. One well, EW-5, is screened in Level 4 and is the deepest onsite monitoring well. Most offsite wells are screened at deeper levels (Table 3-2). Three wells (EW-3A, EW-6A, and BP-3A) are screened in Level 1; one well (EW-3B) is screened in Level 2; two wells (EW-3C and LF-2) are screened in Level 3 (note, upgradient well EW-6B also intercepted this interval but was damaged and abandoned) four wells (EW-6C, MW-6D, MW-8B, and MW-10B) are screened in Level 4; three wells (MW-8C, MW-10C, and BP-3B) in Level 5; and two wells (MW-10D and BP-3C) in Level 6.

Although the extraction wells are screened across multiple levels, they do not extend to the deepest monitoring level. Extraction Well 1 has 2-screened intervals, with the upper screen intercepting Levels 1 and 2 and the lower screen intercepting Levels 3 and 4. Extraction Well 2 also has 2-screened intervals, with the upper screen intercepting Level 2 and the lower screen intercepting Levels 3 and 4. Extraction Well 3 has a continuous screened interval, which intercepts Levels 2, 3 and 4. Since Level 4 is the deepest level intercepted by the site's extraction wells, contaminants that have migrated below this interval will likely not be removed by the system.

4 Groundwater Monitoring Analytical Results and Discussion

This report includes results from six rounds of groundwater sampling. Three rounds (August and November 2001, February 2002) were performed by the previous O&M contractor (URS, Inc.), and three rounds (May, August, and October 2002) were performed by the current O&M contractor (SAIC, Inc). For ease in reference, these data are collectively referred to as "data set 1" and "data set 2", respectively.

For all rounds except October 2002, only 13 monitoring wells located on the Claremont Polychemical site property (Table 3-2 and Fig. 3-2) were sampled for chemical analyses. The October 2002 round includes 14 additional offsite wells (Table 3-2 and Fig. 3-2) and is the first round collected from the extended monitoring network.

There are a number of differences between data set 1 and data set 2. Samples in data set 1 (rounds through February 2002) were analyzed using SW-846 methodology for VOCs (method 8260B), selected metals (method 6010B), and hexavalent chromium (Cr⁺⁶) (method 7196). A contract laboratory (STL Connecticut) performed the analyses.

Samples in data set 2 (rounds collected during May, August, and October 2002) were analyzed for TCL volatiles and TAL metals through the EPA contract laboratory program (CLP) using methods OLC03.2 and ILM04.1 respectively. The change to CLP methodology was made at the request of EPA region II. Following discussions with EPA and the state, Cr⁺⁶ was dropped as an analyte of interest for samples from monitoring wells.

Analytical data for the six rounds of groundwater monitoring sampling covered in this report are listed in Tables 4-1, 4-3, 4-5, 4-7, 4-9, and 4-11. Number of samples, detections, and detected concentration ranges for each round are given in Tables 4-2, 4-4, 4-6, 4-8, 4-10, and 4-12.

Cumulative analytical data per well for the 13 site wells and three extraction wells are given in Tables A-1 to A-16 in Appendix A. All cumulative monitoring well tables include available historical data from investigations by CA Rich Consultants (1986), Ebasco (1990), and SEC Donohue (1992). Since this report includes only one sampling round from the extended monitoring network, cumulative data for the 14 additional extended network wells will be compiled and presented in a subsequent report.

Concentration plots for analytes that were detected with sufficient frequency for graphical presentation (PCE; TCE; *cis*-1,2-DCE; 1,1,1-TCA) are shown in Figures 4-1 to 4-4. The figures were prepared using Surfer® version 7 (Golden Software, Inc., 1999). To avoid the distortion due to the lack of measured data points outside the property boundary shown by figures in the previous report (USACE, 2002), the figures in this report are based on the October 2002 analytical data from the extended network.

In order to avoid software artifacts due to the sparse amount of data from some levels, it was necessary to plot the maximum analyte concentration per well cluster. Therefore, Figures

4-1 through 4-4 are not depth-discrete. Since the analytes do show vertical differences in distribution, for future plots, it may be necessary to use a different software package that allows better handling of 3-dimensional data.

4.1 Data-Related Issues

4.1.1 Data Gaps

A number of data gaps identified in the previous USACE groundwater monitoring report (USACE, 2002) are being addressed. However, the present report includes three rounds of data (data set 1) with similar problems to those reported in the previous document.

Although it was known during the remedial investigation (RI) that the contaminant plume had migrated offsite to the southeast (Ebasco, 1990) and there are down- and sidegradient monitoring wells offsite, sampling of these wells was not included in the original O&M contract. The available site documents did not include the rationale for sampling only onsite monitoring wells and excluding offsite wells. The lack of down- and sidegradient data for control hindered the usefulness and the interpretation of the site data presented in the previous USACE groundwater monitoring report (USACE, 2002). To provide better contaminant distribution data, USACE (2002) recommended that appropriate offsite monitoring wells be selected and included in future groundwater sampling episodes. This recommendation was implemented in October 2002, and the 14 additional offsite wells listed in Table 3-2 were sampled (USACE, 2002).

Only historical data (i.e., pre-long-term groundwater monitoring) appear to be available for site well SW-2. This well is located in the cluster, which also includes DW-2 and EW-5 (Figure 3-2). Data set 1 does not include any results for this well, and the reason for the lack of data is not known. However, SW-2 was reported to be dry in the May, August, and October 2002 rounds (data set 2), and may have also been dry during previous sampling.

No field water quality data were available at the time the previous USACE report was written (USACE, 2002). The analytical data packages for the first 4 rounds of long-term groundwater monitoring included in the previous report did not include field data, and the field data had not been compiled in any other type of reports. For the current report, the available field water quality data for data set 1 sampling rounds were obtained from raw field data sheets and included in data tables A-1 to A-13 (Appendix A). Field water quality data were not measured for all rounds of data set 1. A maximum of only four parameters (pH, conductivity, DO, temperature) were measured. During some rounds, only pH and/or temperature were measured.

The field water quality data gap was addressed in data set 2 by measuring six field water quality parameters (pH, conductivity, turbidity, DO, temperature, Eh) during pre-sample purging activities. Also, low-flow sampling protocols are now being implemented for onsite monitoring wells using dedicated, positive-pressure Teflon® bladder pumps.

However, no laboratory water quality analyses have been conducted during any rounds of either data set 1 or 2. Additional laboratory water quality analyses such as anions, sulfide, and MEE (methane, ethane, ethene) may be useful in evaluating the progress of site remediation, and should therefore be included in future monitoring well sampling episodes.

4.1.2 Analyte Selection

As described in USACE (2002), the rationale for the specific inorganic analytes included in the long-term groundwater monitoring through February 2002 (data set 1) was not adequately documented in existing site material. The eight metals analyzed were arsenic (As), barium (Ba), hexavalent chromium (Cr⁺⁶), iron (Fe), manganese (Mn), lead (Pb), antimony (Sb), and selenium (Se). This list does not correspond to the site record of decision (ROD) or any frequently analyzed suite of metals (e.g., "RCRA 8", "priority pollutant", or TAL).

Four metals (As, Cr, Pb, and Mn) were identified in the site ROD as exceeding federal or state regulatory standards (USEPA, 1990a). Of these, Cr and Pb have been detected at concentrations greater than the maximum contaminant levels (MCL) in upgradient wells (CA Rich, 1986; Ebasco, 1990; USEPA, 1990a), which suggest that these two metals are not site-related. Furthermore, the site historical data for chromium all refer to total chromium. There are no historical data for hexavalent chromium (Cr⁺⁶), and there was no approved analytical method for Cr⁺⁶ at the time the historical data were collected.

Sb and Se are not historical metals of concern. Ba was historically used onsite (Table 2-1; Ebasco, 1990). Fe and Mn are known to occur in site groundwater at high concentrations that can interfere with treatment plant operations if not removed (Ebasco, 1990; Rust, 1992). However, based on the limited volume of sludge processed for annual disposal, removing solids from the treatment system has not typically been an issue at Claremont.

The eight metals in data set 1 appear to be related to discharge permit requirements. The previous Sampling and Analysis Plan Addendum (Radian, 1999) included a table of effluent concentration standards that lists the eight metals. However, the text did not discuss the rationale for choosing these specific metals, and no supporting documentation (i.e., permits or correspondence) was included.

Beginning in May 2002, groundwater monitoring includes the TAL metals, and Cr^{+6} has been removed from the list of analytes.

4.1.3 Sample Designation System

There were difficulties with the sample designation system used prior to May 2002. The alphanumeric sample designation system used in the data packages for data set 1 did not allow samples from different sampling points (e.g., process, extraction well, and monitoring well) to be distinguished at a glance, and did not correspond to historical usage for some

sampling points (e.g., monitoring wells). Also, sample designations for samples from the same sampling point proved to be inconsistent among the data packages.

Beginning with the May 2002 round, the sample designation system was revised according to a previous USACE recommendation (USACE, 2002) to include the historical monitoring well designations for samples from monitoring wells and an "EXT-" prefix for extraction well samples to distinguish them from historical monitoring wells having an "EW-" prefix.

4.1.4 Laboratory Data Packages

4.1.4.1 General Non-CLP Data Package Issues

The issues described in this section apply to the non-CLP data packages (data set 1). Content and format of the data packages was not consistent and varied from package to package. Although analytical results for some rounds were available in electronic format, other information could only be obtained from hard-copy data packages (e.g., custody, cooler temperature, sampling time, etc.). Some rounds had electronic results but no hard-copy package. Some hard-copy packages did not include a copy of the custody form or lab checkin sheets, so sample condition on arrival at the laboratory was not always known.

The non-CLP data packages did not include any laboratory quality control (QC) data for method blanks, laboratory control samples (LCS), matrix spike and matrix spike duplicates (MS/MSD), surrogate recoveries (when applicable), and other method- and batch-required QC, which are necessary for assessment of laboratory performance and the evaluation of the quality and usability of the sample data. Due to the lack of laboratory QC data, non-CLP data included in this report could not be properly evaluated and a quality control summary report (QCSR) could not be prepared. In particular, data for common organic laboratory contaminants (e.g., acetone, methylene chloride) reported with a "B" qualifier may be artifacts of blank contamination and not actual positive detections. These data could not be evaluated without laboratory QC results.

The non-CLP data packages did not include any results from quality assurance (QA) replicate samples. QA samples are a necessary quality tool because the analyses are performed by an independent laboratory to evaluate the performance of the contract laboratory and the reliability of the primary data set. Although the Radian SAP Addendum (Radian, 1999) indicated that QA samples would be collected, when contacted, the designated QA laboratory indicated that it had not received any samples.

4.1.4.2 Specific Groundwater Monitoring Data Package Issues

4.1.4.2.1 August 2001

Data for August 2001 was received in two packages (rounds 77 & 78). In addition to general problems noted in sec. 4.1.4.1, data deficiencies and problems for this package include the following:

- Extraction well (EXT-1) was not sampled. The reason is not known.
- Cooler temperature measured at the laboratory for the samples collected on 8/15/01 was unacceptably high (14.1 °C). Although the laboratory check-in sheets clearly indicated the temperature exceedance and stated that a corrective action report was filed, the laboratory case narrative did not describe the problem with sample temperature, and it does not appear that the site personnel were notified. The affected samples are EXT-2 and EXT-3. An "R" qualifier (rejected) is applied to these data.
- The laboratory receipt temperature for samples collected on 8/20/01 was also high (8.7 °C) but within an acceptable range of 6-9 °C. Affected samples are SW-1, DW-1, DW-2, and EW-5. These data are qualified "J" (estimated).

4.1.4.2.2 November 2001

Data for November 2001 was received in two packages (rounds 89 & 90). In addition to general problems noted in sec. 4.1.4.1, data deficiencies and problems for this package include the following:

- Data package 90 did not include a copy of the chain-of-custody form. Therefore, the cooler receipt temperature is not known. Affected samples are EXT-1, EXT-2, and EXT-3.
- Although the field data sheets and the chain-of-custody form indicate that samples were collected from SW-1 and shipped to the laboratory for VOCs, selected metals, Cr⁺⁶, these samples were not analyzed. These samples had been lined out on the custody form and the notation in the remarks column stated "not a complete sample, partially dry well". There was no explanation or discussion of the rationale in the laboratory case narrative.
- The laboratory receipt temperatures for all samples collected between 11/5/01 and 11/9/01 were high (8-9 °C), but within an acceptable range of 6-9 °C. Affected samples are EW-1A, EW-1A-QC, EW-1B, EW-1C, EW-2A, EW-2B, EW-2C, EW-4A, EW-4B, EW-4C, SW-1, DW-1, DW-1-QC, DW-2, and EW-5. These data are qualified "J" (estimated).

4.1.4.2.3 February 2002

Data for February 2002 was received in one package (round 102). In addition to general problems noted in sec. 4.1.4.1, data deficiencies and problems for this package include the following:

• No results were received for EXT-1, EXT-2, and EXT-3. These samples were not listed on the chain-of-custody form for package 102. Because in the past, results for samples which appeared to be missing were sometimes included in a different data package (USACE, 2002), the data reports for rounds 91-107 were checked, but

- these samples were not included in another report. Therefore, it appears that the extraction wells were not sampled during this episode. The rationale for not sampling the extraction wells during this round is not known.
- The laboratory receipt temperatures for all samples collected on 11/11, 11/12, and 11/14/01 were high (6-8 °C), but within an acceptable range of 6-9 °C. Affected samples are EW-1A, EW-1B, EW-1C, EW-2A, EW-2B, EW-2C, DW-1, DW-2, and EW-5. These data are qualified "J" (estimated).
- The laboratory check-in sheets for this round indicated that the use of block ice rather than ice cubes in the shipping coolers may have been responsible for the temperature issues, but the case narrative does not indicate that the site personnel were contacted and requested to use ice cubes.

4.2 Analyte Distribution and Magnitude

4.2.1 Analytes of Interest

The site record-of-decision (ROD) lists 12 VOCs as being of concern: tetrachloroethene (PCE), trichloroethene (TCE), trans-1,2-dichloroethene (trans-1,2-DCE), vinyl chloride, 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethane (1,1-DCA), benzene, ethylbenzene, xylene, methylene chloride, and acetone (US EPA, 1990a). In addition to these analytes, the site discharge permit also includes *cis*-1,2-dichloroethene (*cis*-1,2-DCE), 1,1-dichloroethene (1,1-DCE), chloroform, toluene, and chlorobenzene. Acetone and methylene chloride are common laboratory contaminants, and are not discussed further.

Inorganic analytes of interest listed in the ROD are arsenic (As), chromium (Cr), lead (Pb), and manganese (Mn). In addition to these analytes, the site discharge permit also includes antimony (Sb), barium (Ba), cadmium (Cd), iron (Fe), selenium (Se), and hexavalent chromium (Cr⁺⁶). In data set 1, groundwater samples were analyzed for Cr⁺⁶, but this analyte was not detected (Tables 4-13; A-1 to A-13). Following discussion with the regulators, Cr⁺⁶ was removed from the list of groundwater monitoring analytes in data set 2, but is retained as an analyte for plant effluent discharge monitoring, and Cd was added to the groundwater monitoring and effluent analytes for data set 2. Cd was historically used onsite (Table 2-1; Ebasco, 1990).

Number of samples, number of detections, wells having the maximum and minimum detections per analyte, and screen level for the wells are summarized in Table 4-13 for data sets 1 and 2.

4.2.2 PCE

Tetrachloroethene (PCE) is an analyte listed in both the ROD (USEPA, 1990a) and the site discharge permit. PCE can be an initial release to the environment. Historical data indicate that PCE was used onsite (Table 2-1; Ebasco, 1990).

PCE was detected in 117 of 131 site samples and 128 of 144 total long-term groundwater samples (Table 4-13).

The highest pre-remediation historical detection of PCE in a monitoring well was 1300 μ g/L in SW-1 (Table A-10). The highest concentrations of PCE detected during May 2000 to February 2002 (data set 1) were all in samples from SW-1 (a Level 1 well) and ranged from 840 μ g/L in May 2000 to 7,100 μ g/L in August 2001 (Table 4-13 and A-10). SW-1 has been dry since November 2001. The highest concentration of PCE detected during May – October 2002 was 340 μ g/L in EW-1A (also a Level 1 well) in May 2002. By October 2002, the highest concentration of PCE in an onsite monitoring well was 84 μ g/L in EW-4A, the only Level 1 monitoring well that was not dry during that sampling round. The data indicate that the highest PCE concentrations have consistently been detected in samples from the shallowest monitoring wells screened level, which is in agreement with previous work (Ebasco, 1990; US EPA, 1990a).

Overall concentration ranges for PCE in extraction wells were $31-1,900~\mu g/L$ for data set 1 and $19-280~\mu g/L$ for data set 2 (Table 4-13). The maximum concentration for PCE in extraction wells was > $1000~\mu g/L$ for the first 2 rounds of data set 1 (May and Sept. 2000). In all subsequent rounds, the maximum has been $\leq 350~\mu g/L$ (Table 4-13). The highest concentrations of PCE in extraction wells were reported for EXT-2 for all sampling rounds except August 2001 (Table 4-13).

PCE distribution for the October 2002 data set is shown in Figure 4-1. This figure shows the maximum detected concentration for each well and is not depth-discrete. As indicated by Figure 4-1, the isocontours for highest concentrations of PCE are concentrated in the vicinity of the extraction wells, suggesting that this contaminant is being captured by the extraction system.

4.2.3 TCE

Trichloroethene (TCE) is an analyte listed in both the ROD (USEPA, 1990a) and the site discharge permit. Although TCE can be an initial release to the environment, historical data do not indicate that TCE was used onsite (Table 2-1; Ebasco, 1990). TCE can also be produced in the environment by reductive dechlorination of PCE (Bouwer, 1994; Kleopfer et al., 1985) (Fig. 4-5).

TCE was detected in 96 of 131 site samples and 107 of 144 total long-term groundwater samples (Table 4-13).

The highest pre-remediation historical detection of TCE in a sample from a monitoring well was 260 μ g/L in DW-1 (Table A-11). The highest concentrations of TCE detected during May 2000 to February 2002 (data set 1) were all in samples from EW-4C (a Level 3 well) and ranged from 490 μ g/L (February 2002) to 4,200 μ g/L (February 2001) (Table 4-13 and A-9).

The highest concentrations of TCE detected during May 2002 to October 2002 (data set 2) were also all in samples from EW-4C and ranged from 650 μ g/L (August 2002) to 1,100 μ g/L (May 2002) (Table 4-13 and A-9).

Overall concentration ranges for TCE in extraction wells were $1.0-1,900~\mu g/L$ for data set 1 and $20-780~\mu g/L$ for data set 2 (Table 4-13). The maximum concentration for TCE in extraction wells was > $1000~\mu g/L$ for the first 4 rounds of data set 1 (May 2000 to May 2001). In all subsequent rounds, the maximum has been $\leq 820~\mu g/L$ (Table 4-13). The highest concentrations of TCE in extraction wells were reported for EXT-3 for all sampling rounds (Table 4-13).

TCE distribution for the October 2002 data set is shown in Figure 4-2. This figure shows the maximum detected concentration for each well and is not depth-discrete. As indicated by Figure 4-2, EW-4C is the locus of maximum TCE contamination, not any of the extraction wells. Detections of TCE in MW-10D (Level 6), EW-3C (Level 3), and BP-3B (Level 5) indicate that TCE is present in deeper intervals offsite to the southeast. The extraction wells are only screened down to Level 4. The data suggest that the extraction system is not providing complete capture of TCE, and that offsite TCE migration is occurring in deeper levels of the aquifer.

4.2.4 1,2-DCE and Isomers

Although 1,2-dichloroethene (DCE) is an analyte listed in both the ROD (USEPA, 1990a) and the site discharge permit, a different isomer (structural form) is specified in each regulatory source. The ROD lists *trans*-1,2-DCE, which is produced in the environment by abiotic degradation of TCE (Bouwer, 1994; Kleopfer et al., 1985). However, the discharge permit specifies *cis*-1,2-DCE, which is produced by biologically mediated reductive dechlorination of TCE (Bouwer, 1994; Kleopfer et al., 1985).

The available site historical data (Table 2-1 and Ebasco, 1990) do not indicate that isomers of 1,2-DCE were used on site.

4.2.4.1 *trans*-1,2-DCE

Although historical data (Tables A-1 to A-13) and the ROD list *trans*-1,2-DCE as an analyte of concern, it is believed that this analyte may have been misidentified, and should have been reported as total 1,2-DCE. At the time the record of decision (ROD) was signed in 1990 (USEPA, 1990), resolution and quantification of the isomers of 1,2-DCE using the older method 8240 was problematic. Laboratories analyzed and reported total 1,2-DCE, not the individual isomers. However, sometimes the total 1,2-DCE was erroneously reported as *trans* 1,2-DCE due to transcription errors or poor recordkeeping (Zigmund, 1999). Method 8260, which allows the isomers of 1,2-DCE to be resolved and quantified, did not become the official SW-846 method for VOCs until publication of the 3rd edition in December 1996. Therefore, pre-1997 reporting of 1,2-DCE isomers is suspect, and the chemical of concern in the ROD should have been listed as total 1,2-DCE.

Historical frequency of reporting of *trans*-1,2-DCE was 18 of 32 samples (Tables A-1 to A-13). However, the frequency of detection for *trans*-1,2-DCE in the combined long-term groundwater monitoring data sets 1 and 2 is only 7 of 131 site samples collected (Table 4-13).

The highest pre-remediation historical reporting of *trans*-1,2-DCE in a sample from a monitoring well was 982 μ g/L in SW-1 (Table A-10). In data set 1, *trans*-1,2-DCE was detected in only five of 96 samples. Concentration range was 0.3 – 16.0 μ g/L, with the maximum detection in EW-2B (Level 2) in May 2000 (Table 4-13).

In data set 2, trans-1,2-DCE was detected in only two of 35 onsite samples. Concentration range was $0.71 - 1.0 \mu g/L$, with the maximum detection in EW-1C (Level 3) in May 2002. Trans-1,2-DCE was also detected in two samples from the BP3 (Level 5 & 6) cluster at concentrations of $0.14 - 1.0 \mu g/L$ (Table 4-13).

Trans-1,2-DCE was not detected in extraction wells in data set 1 (Table 4-13). Three detections in the range $0.1-0.26~\mu g/L$ were reported in data set 2, with the maximum concentration reported for EXT-3 (Table 4-13).

The low frequency of detection and low concentrations of *trans*-1,2-DCE in the combined long-term groundwater monitoring data sets 1 and 2 suggest that the historical high frequency and concentrations reported for *trans*-1,2-DCE were in error. These historical data should have been reported as total 1,2-DCE.

4.2.4.2 *cis*-1,2-DCE

Cis-1,2-DCE was not reported in historical groundwater monitoring data. The frequency of detection for *cis*-1,2-DCE is 80 of 131 site samples collected in the combined data sets 1 and 2 (Table 4-13).

During the first five rounds of data set 1, the maximum concentrations of cis-1,2-DCE reported from site monitoring wells ranged from 61 μ g/L to 83 μ g/L, and all maxima except that for February 2001 occurred in Level 1 wells (Table 4-13). The maximum concentrations of cis-1,2-DCE reported for all rounds from November 2001 to October 2002 is in the range 10 μ g/L to 34 μ g/L, and all site maxima occurred in Level 3 wells (Table 4-13). In November 2001, the site locus of maximum cis-1,2-DCE was EW-2C. From February 2002 to October 2002, the site locus of maximum cis-1,2-DCE has been at EW-4C.

In October 2002, the 3 highest detections of *cis*-1,2-DCE occurred in offsite wells of the extended monitoring network (Table 4-1 and Figure 4-3), with the maximum concentration (25 μ g/L) detected in the sample from BP-3C (Level 6)

Overall concentration ranges for *cis*-1,2-DCE in extraction wells were $5-93 \mu g/L$ for data set 1 and $5-19 \mu g/L$ for data set 2 (Table 4-13). The maximum concentration for *cis*-1,2-

DCEin extraction wells was $> 50 \,\mu\text{g/L}$ for the first 2 rounds of data set 1 (May and Sept. 2000). In all subsequent rounds, the maximum has been $< 30 \,\mu\text{g/L}$ (Table 4-13). The highest concentrations of *cis*-1,2-DCE in extraction wells were reported for EXT-3 for all sampling rounds (Table 4-13).

Cis-1,2-DCE distribution for the October, 2002 data set is shown in Figure 4-3. This figure shows the maximum detected concentration for each well and is not depth-discrete. As indicated by Figure 4-3, the onsite locus for cis-1,2-DCE is the EW-4 cluster, rather than the extraction wells. Higher concentrations were detected offsite in the deeper MW-10 and BP-3 clusters to the southeast and south-southeast, indicating that this analyte is not being captured by the extraction system.

The long-term groundwater monitoring data indicate that *cis*-1,2-DCE is the most prevalent isomer. The presence and relative abundance of *cis*-1,2-DCE on site indicates the predominance of biologically mediated reductive dehalogenation of a precursor (PCE or TCE) (Bouwer, 1994, Kleopfer, et al., 1985). Since *trans*-1,2-DCE is produced by abiotic reductive dehalogenation (Bouwer, 1994, Kleopfer, et al., 1985), its absence indicates that the abiotic reaction is not important on site. However, TCE and PCE were detected in nearly all groundwater monitoring well samples, with maximum detections on the order of 4,200-7,100 µg/L. Degradation products (1,2-DCE isomers) were detected in only a fraction of the total number of samples, and the maximum detection of any degradation product was 93µg/L *cis*-1,2-DCE. These data suggest a limitation on the reductive degradation of TCE to 1,2-DCE isomers.

4.2.5 Vinyl Chloride

Vinyl chloride is an analyte listed in the ROD (USEPA, 1990a), and is produced in the environment by reductive dechlorination of 1,2-DCE (Bouwer, 1994; Kleopfer et al., 1985).

Vinyl chloride was historically detected only in samples from SW-1, with concentrations ranging $1.0 - 12.0 \,\mu\text{g/L}$ (Table A-10).

Vinyl chloride was not detected in any of the 131 on-site groundwater monitoring well samples or 56 extraction well samples collected in the combined data sets 1 and 2 (Table 4-13). Vinyl chloride was detected in one off-site sample (BP-3C) at a concentration of 1.0 μ g/L (Table 4-14).

Possible reasons for lack of vinyl chloride detections include unfavorable site conditions, further degradation, contaminant migration, and sampling-induced error. Although chemical precursors of vinyl chloride are present, concentrations and frequency of detection of 1,2-DCE isomers are not high relative to PCE and TCE.

The limited data from field measurements of dissolved oxygen (DO) and oxidation-reduction potential (ORP) (see Tables 4-1 to 4-13 and sec. 4.2.1.2) suggest site conditions that are not favorable to reductive intrinsic biodegradation. However, these DO-ORP conditions may be

favorable to oxidation, and vinyl chloride is removed from the system faster under oxidizing conditions than by reductive dehalogenation (EPA, 1998). The absence of vinyl chloride may indicate "type 3" behavior as described by EPA (1998). Since the reductive degradation products of vinyl chloride (i.e., methane, ethane, ethane (MEE)) are not presently being analyzed, the possibility that vinyl chloride may be degrading to other compounds by reductive dechlorination cannot be evaluated.

Contaminant plumes often show zoning of constituents, and the more mobile analytes are found farther downgradient than the less mobile analytes. The only detection of vinyl chloride in the extended monitoring network was in a sample from the BP-3 cluster (Table 4-13), which is the most distal well cluster to the south-southeast.

Another possibility for at least some sampling rounds is sampling-induced error. The sampling method and equipment used is not known for the pre-data set 2 samples. If a poor sampling method was used (e.g., bailers or high-speed pump), any vinyl chloride in the groundwater may have partitioned into the atmosphere prior to analysis. Vinyl chloride has a very high Henry's law coefficient and is extremely fugitive. However, data set 2 samples have been collected using bladder pumps and low-flow protocols, and vinyl chloride was detected only in one sample.

4.2.6 1,1,1-trichloroethane

- 1,1,1-trichloroethane (1,1,1-TCA) is listed in both the ROD (USEPA, 1990a) and the discharge permit.
- 1,1,1-TCA was detected in 67 of 131 site samples and 72 of 144 total long-term groundwater-monitoring samples (Table 4-13).

The highest pre-remediation historical detection of 1,1,1-TCA in a sample from a monitoring well was 100 μ g/L in DW-1 (Table A-11). The highest concentrations of 1,1,1-TCA detected in the combined data sets 1 and 2 were all in samples from EW-2C (a Level 3 well) and ranged from 9 μ g/L (May 2000) to 170 μ g/L (May 2001) (Table 4-13). During February to November 2001, maximum 1,1,1-TCA concentrations were > 100 μ g/L.

1,1,1-TCA was detected in 29 of 56 extraction well samples in the combined data sets 1 and 2. The highest concentrations of 1,1,1-TCA detected in extraction well samples ranged from $11 - 45 \mu g/L$, and all maxima were detected in samples from EXT-3 (Table 4-13).

The distribution of 1,1,1-TCA for the October 2002 data set is shown in Figure 4-4. This figure shows the maximum detected concentration for each well and is not depth-discrete. As indicated by Figure 4-4, the onsite locus for 1,1,1-TCA is the EW-2 cluster (EW-2C), rather than the extraction wells. Higher concentrations were detected offsite in the deeper MW-10 cluster to the southeast, indicating that this analyte is not being captured by the extraction system.

4.2.7 1,1-dichloroethane

- 1,1-dichloroethane (1,1-DCA) is a degradation product of 1,1,1-TCA and is listed in both the ROD (USEPA, 1990a) and the discharge permit.
- 1,1-DCA was detected in 22 of 131 site samples and in 25 of 144 total long-term groundwater-monitoring samples (Table 4-13).

The highest pre-remediation historical detection of 1,1-DCA in a sample from a monitoring well was 8.0 μ g/L in EW-1A (Table A-1). The highest concentrations of 1,1-DCA detected in the combined data sets 1 and 2 for the site were all in samples from EW-2C (a Level 3 well) and ranged from 0.92 μ g/L (October 2002) to 17 μ g/L (May 2001) (Table 4-13). The maximum concentration of 1,1-DCA for the extended monitoring network in October 2002 was 1.6 μ g/L in MW-10C (Level 5).

1,1-DCA was detected in 17 of 56 extraction well samples in the combined data sets 1 and 2. The highest concentrations of 1,1-DCA detected in extraction well samples ranged from $4 - 7 \mu g/L$, and all maxima were detected in samples from EXT-3 (Table 4-13).

4.2.8 1,1-dichloroethene

- 1,1-dichloroethene (1,1-DCE) is a transformation product of 1,1,1-TCA (Fig 4-5) and is listed in the discharge permit.
- 1,1-DCE was detected in 35 of 131 site samples and in 35 of 144 total long-term groundwater-monitoring samples (Table 4-13).

The highest pre-remediation historical detection of 1,1-DCE in a sample from a monitoring well was 220 μ g/L in SW-1 (Table A-10). The highest concentrations of 1,1-DCE detected in the combined data sets 1 and 2 were all in samples from EW-2C (a Level 3 well) and ranged from 11 μ g/L (September 2000) to 93 μ g/L (May 2001) (Table 4-13).

1,1-DCE was detected in 29 of 56 extraction well samples in the combined data sets 1 and 2. The highest concentrations of 1,1-DCE detected in extraction well samples ranged from $11 - 45 \mu g/L$, and all maxima were detected in samples from EXT-3 (Table 4-13).

The daughter products of 1,1,1-TCA, 1,1-DCA and 1,1-DCE, were detected at moderate frequency and moderate to low concentrations. The onsite locus for both compounds is EW-2C, coincident with 1,1,1-TCA. 1,1-DCE occurs at higher frequency and concentration, suggesting that the transformation reaction is more important than reductive dehalogenation.

4.2.9 Chloroform

Chloroform is an analyte listed in the discharge permit. Chloroform is a degradation product of carbon tetrachloride (Fig. 4-5).

Chloroform was detected in only two historical samples, with the maximum concentration of 1 μ g/L in EW-2A (Table A-4). Chloroform was detected in 25 of 144 long-term groundwater monitoring samples at concentrations of $0.16-2.2~\mu$ g/L and in 10 of 56 extraction well samples at concentrations of $0.18-4.0~\mu$ g/L (Table 4-13). The relatively low frequency of detection and low detected concentration ranges for chloroform indicates that this is not a significant, site-related contaminant.

4.2.10 Aromatic Hydrocarbons

Benzene, ethylbenzene, and xylene are analytes listed in the ROD (USEPA, 1990a). Toluene and chlorobenzene are listed in the discharge permit. According to available site historical information (Table 4-13; Ebasco, 1990) toluene was used onsite.

Historical concentrations of benzene ranged from 0.4 μ g/L to a maximum of 60.0 μ g/L in DW-1 (Table A-11).

Benzene was not detected in any of the 131 site groundwater monitoring samples and was detected in only one offsite sample (0.43 μ g/L in MW-6D, Table 4-1 and 4-13). Benzene was detected in five of 56 extraction well samples collected in the combined data sets 1 and 2 at concentrations ranging 0.1 – 2 μ g/L (Table 4-13).

Historical concentrations of ethylbenzene ranged from $0.3~\mu g/L$ to a maximum of $1.0~\mu g/L$ in DW-1 (Table A-11). Ethylbenzene was not detected in any of the 131 site groundwater monitoring, 144 total long-term groundwater monitoring, or 56 extraction well samples collected in the combined data sets 1 and 2 (Table 4-13).

Historical concentrations of xylenes ranged from 1.0 μ g/L to a maximum of 2.0 μ g/L in EW-4A (Table A-7). Xylenes were detected in only one of the 131 site groundwater monitoring samples (0.9 μ g/L in SW-1 in May 2000) and were not detected in any offsite samples (Table 4-1 and 4-x). Xylenes were detected in six of 56 extraction well samples collected in the combined data sets 1 and 2 at concentrations ranging 0.14 – 18 μ g/L (Table 4-13).

Historical concentrations of toluene ranged from $0.6~\mu g/L$ to a maximum of $2.0~\mu g/L$ in EW-1A (Table A-1). Toluene was detected in three of 131 site groundwater monitoring and four of 144 total long-term groundwater monitoring samples (Table 4-13). Maximum concentration was $0.87~\mu g/L$ in MW-8B (Table 4-1 and 4-x). Toluene was detected in seven of 56 extraction well samples collected in the combined data sets 1 and 2 at concentrations ranging $0.5-4~\mu g/L$ (Table 4-13).

Chlorobenzene was not historically detected in any site wells (Tables A-1 to A-13). Chlorobenzene was detected in one of 131 site groundwater monitoring and three of 144 total long-term groundwater-monitoring samples (Table 4-13). Maximum concentration was 0.59 μ g/L in MW-6D (Table 4-1 and 4-x). Chlorobenzene was detected in one of 56 extraction

well samples collected in the combined data sets 1 and 2 at concentration of 0.18 μ g/L (Table 4-13).

The low frequency of detection and low detected concentration ranges for the various aromatic hydrocarbons indicate that these compounds are not significant, site-related contaminants.

4.2.11 Metals

Antimony

The highest historical detection of antimony was 29.7 μ g/L in EW-2A (Table A-4). Antimony was detected in 3 of 132 site samples at a concentration range of 1.5 – 2.8 μ g/L and in 7 of 143 total long-term groundwater-monitoring samples at concentrations of 1.4 – 3.3 μ g/L (Table 4-13). The onsite detections were from Level 1 and 2 wells, while the offsite detections were from Level 5 and 6 wells. Antimony was detected in 10 of 56 extraction well samples at concentrations of 2.4 – 56.2 μ g/L, with the maximum concentrations per round detected in EXT-1 (Table 4-13).

Arsenic

The highest historical detection of arsenic was $64.4 \,\mu\text{g/L}$ in EW-1C (Table A-3). Arsenic was detected in 10 of 132 site samples at a concentration range of $2.3 - 11.4 \,\mu\text{g/L}$ and 11 of 144 total long-term groundwater-monitoring samples at a concentration range of $2.3 - 44.1 \,\mu\text{g/L}$ (Table 4-13). Onsite detections were primarily in Level 1 wells. The highest concentration of arsenic was $44.1 \,\mu\text{g/L}$ in the sample from offsite well MW-6D (Level 4).

Arsenic was detected in 7 of 53 extraction well samples at concentrations of $0.5 - 9.3 \mu g/L$, with the maximum concentrations per round detected in EXT-1 (Table 4-13).

Barium

The highest historical detection of barium was 276 μ g/L in EW-5 (Table A-13). Barium was detected in all long-term groundwater-monitoring samples of combined data sets 1 and 2 (Table 4-13). The concentration range was $13-151~\mu$ g/L for site samples and $13-596~\mu$ g/L for the extended network. The magnitude of the site maximum has remained nearly constant. During May 2000 to November 2001, the highest onsite detections were in Level 1 wells. The on- and offsite maxima were detected in EW-5 and MW-8B, respectively.

Barium was detected in 51 of 53 extraction well samples at concentrations of $22.2 - 115 \mu g/L$, with the maximum concentrations per round detected in EXT-2 (Table 4-13)

Cadmium

The highest historical detection of cadmium was 9.5 μ g/L in EW-2A (Table A-4). Cadmium was not analyzed in data set 1. Cadmium in data set 2 was detected in 3 of 35 site samples at concentrations of $0.32 - 0.56 \mu$ g/L and in 6 of 46 total long-term groundwater monitoring samples at concentrations of $0.32 - 9.9 \mu$ g/L (Table 4-13). The maximum concentration of 9.9 μ g/L was detected in the sample from offsite well EW-6C (Tables 4-1 and 4-13). Cadmium was detected in 2 of 11 extraction well samples at a concentration range of 0.32 - 0.37 μ g/L. Both detections were in samples from EXT-1 (Table 4-13).

Chromium

The highest historical detection of chromium was 159 μ g/L in EW-2A (Table A-4). Total chromium was not analyzed in data set 1. Chromium in data set 2 was detected in 2 of 35 site samples at concentrations of $1.1 - 1.6 \mu$ g/L and in 5 of 46 total long-term groundwater monitoring samples at concentrations of $1.1 - 12.4 \mu$ g/L (Table 4-13). The maximum concentration of 12.4μ g/L was detected in the sample from offsite well BP-3B (Tables 4-1 and 4-13). Chromium was not detected in any extraction well samples.

Iron

The highest historical detection of iron was 49,900 μ g/L in EW-1A (Table A-1). Iron was detected in 97 of 132 site samples and 108 of 143 total long-term groundwater monitoring samples at concentrations of $12.7 - 27,700 \,\mu$ g/L and $12.7 - 48,200 \,\mu$ g/L, respectively (Table 4-13). From May 2000 to November 2001, maximum site iron concentrations in the range $10,300 - 28,700 \,\mu$ g/L were all detected in samples from EW-4A (Level 1) (Table 4-13). From February – October 2002, maximum site iron concentrations in the range $3,900 - 5,150 \,\mu$ g/L were all detected in samples from DW-1 (Level 2). This decrease may be related to concurrent improvement in sampling methodology (i.e., low-flow purging). The offsite maximum of $48,200 \,\mu$ g/L was detected in MW-6D (Level 4).

Iron was detected in 53 of 55 extraction well samples at concentrations of $43 - 10,200 \mu g/L$ (Table 4-13)

Lead

The highest historical detection of lead was 163 μ g/L in DW-2 (Table A-12). Lead was detected in 19 of 132 site samples and 30 of 143 total long-term groundwater monitoring samples at concentrations of 1.3 – 33.2 μ g/L and 1.3 – 93.1 μ g/L, respectively (Table 4-13). With the exception of the overall site maximum (33.2 μ g/L is SW-1 in September 2000), maximum site lead has been in the range 2.5 – 8.1 μ g/L, and most often detected in Level 1 wells (Table 4-13). The offsite maximum (93.1 μ g/L) was detected in MW-10D.

Lead was detected in 34 of 52 extraction well samples at concentrations of $1.5-69.2~\mu g/L$ (Table 4-13). The maximum detection was most frequently reported for EXT-3.

Manganese

The highest historical detection of manganese was 1,380 μ g/L in EW-2A (Table A-4). Manganese was detected in all site and total long-term groundwater monitoring samples at concentrations of $1.8-1,730~\mu$ g/L and $1.8-1,770~\mu$ g/L, respectively (Table 4-13). The magnitude of the site maximum has remained nearly constant. For all rounds except May and August 2002, the site maximum was at EW-4A. The overall site and total long-term groundwater monitoring maxima were at EW-1A and MW-6D, respectively.

Manganese was detected in 52 of 56 extraction well samples at concentrations of $47 - 669 \mu g/L$ (Table 4-13). The maximum detection was most frequently in EXT-1.

Selenium

The highest historical detection of selenium was 19 μ g/L in SW-1 (Table A-10). Selenium was detected in 14 of 132 site samples and 14 of 143 total long-term groundwater-monitoring samples at concentrations of 1.6 – 4.4 μ g/L (Table 4-13). Selenium was detected in 4 of 52 extraction well samples at concentrations of 1.6 – 19.2 μ g/L.

4.2.12 Water Quality

4.2.12.1 Non-CLP Data Sets

A maximum of 4 field water quality parameters (pH, conductivity, DO, temperature) were collected during the August 2001, November 2001, and February 2002 groundwater sampling rounds. For some rounds, only pH and/or temperature were measured. These data were obtained from field data sheets, which did not include rationale when fewer than 4 parameters were measured. No laboratory water quality (e.g., anions, MEE, sulfide) or field test kit (e.g., ferrous iron, alkalinity) parameters were analyzed during these rounds. Since a number of useful analytes were not collected, the wells have not been rated using the EPA (1998) scoring system.

Aug. 01: Data set 1 (rounds 77 & 78).

- pH: All pH values were in the range 5 9 su (Table 4-1), which is considered favorable to intrinsic bioremediation according to EPA (1998).
- DO: DO was measured on 9 of 12 wells. It is not known why DO was not measured on DW-1, DW-2, EW-5. One well (EW-1B) had DO = 0 mg/L (Table 4-1). DO in 8 wells was > 5 mg/L, which is considered unfavorable to reductive intrinsic bioremediation according to EPA (1998). Furthermore, the DO values reported for 7 wells (EW-1C; EW-2A, B, C; EW-4A, B, C; Table 4-1) were in the range 10.77 18.1 mg/L, which exceeds the equilibrium solubility for oxygen in water at the corresponding temperatures for each well, indicating that significant aeration occurred during measurement. These values may therefore not be representative of in-situ aquifer conditions.

- Temperature: All temperature values were in the range 14.8 18.5 °C. EPA (1998) considers temperatures > 20 °C to be the most favorable for intrinsic bioremediation.
- ORP: ORP was not measured during this round.

Nov. 01: Data set 1 (rounds 89 & 90).

- pH: pH < 5 was measured in 2 well (EW-2B, EW-4A, Table 4-3). EPA (1998) considers pH < 5 or > 9 unfavorable to intrinsic bioremediation. All other pH values were in the range 5.1 6.29 su (Table 4-3).
- DO: DO was > 1 mg/L in 9 wells, of which 6 wells were > 5 mg/L (EW-1A, EW-2A, C; EW-4A, C; SW-1; Table 4-3) which is considered unfavorable to reductive intrinsic bioremediation according to EPA (1998). DO = 0 mg/L was reported for 4 wells (EW-1B,C; DW-1; DW-2; Table 4-3).
- Temperature: All temperature values were in the range 12.4 16.7 °C. EPA (1998) considers temperatures > 20 °C to be the most favorable for intrinsic bioremediation.
- ORP: ORP was not measured during this round.

Feb. 02: Data set 1 (round 102).

- pH: pH < 5 was measured in one well (EW-4A; Table 4-5). EPA (1998) considers pH < 5 or > 9 unfavorable to intrinsic bioremediation.
- DO: DO was > 1 mg/L in 8 wells, of which 5 wells were > 5 mg/L (EW-1A, EW-2A, EW-4B, C; EW-5; Table 4-5) which is considered unfavorable to reductive intrinsic bioremediation according to EPA (1998). DO = 0 mg/L was reported for 4 wells (EW-1B,C; DW-1; DW-2; Table 4-5).
- Temperature: All temperature values were in the range 12.7 15.9 °C. EPA (1998) considers temperatures > 20 °C to be the most favorable for intrinsic bioremediation.
- ORP: ORP was not measured during this round.

4.2.12.2 CLP Data Sets

May 02: Data set 2

- pH: pH < 5 was measured in 4 wells (EW-1A; EW-2C; EW-4A; DW-2; Table 4-7). EPA (1998) considers pH < 5 or > 9 unfavorable to intrinsic bioremediation. All other pH values were in the range 5.0 6.27 su (Table 4-7).
- DO: DO was > 1 mg/L in 9 wells, of which 4 wells were > 5 mg/L (EW-1A, EW-4B, C; EW-5; Table 4-7) which is considered unfavorable to reductive intrinsic bioremediation (EPA, 1998). No DO values < 0.5 were recorded during this round.
- Temperature: All temperature values were in the range 12.85 19.55 °C for this round. EPA (1998) considers temperatures > 20 °C to be the most favorable for intrinsic bioremediation.

• ORP: ORP < 50 mV is considered favorable for reductive intrinsic biodegradation (EPA, 1998). The lowest ORP value measured in this round was 60 mV in DW-1 (Table 4-7). All other ORP values were in the range 153 – 377 mV.

Aug. 02: Data set 2

- pH: pH < 5 was measured in 4 wells (EW-1A; EW-2C; EW-4A; DW-2; Table 4-9). EPA (1998) considers pH < 5 or > 9 unfavorable to intrinsic bioremediation. All other pH values were in the range 5.16 6.32 su (Table 4-9).
- DO: DO was measured on 11 wells and detected in 11. DO was > 1 mg/L in 8 wells, of which 3 were > 5 mg/L (EW-1A, EW-4B, C; Table 4-9) which is considered unfavorable to reductive intrinsic bioremediation (EPA, 1998). DO was < 0.5 in 3 wells (EW-1C; DW-1; EW-5; Table 4-9), which is considered favorable.
- Temperature: Temperature > 20 °C was recorded for 2 wells (EW-1A; EW-5), which is considered favorable for intrinsic bioremediation (EPA, 1998). All other temperature values were in the range 18.21 19.94 °C.
- ORP: ORP < 50 mV was recorded for 1 well (DW-1), which is considered favorable for reductive intrinsic biodegradation (EPA, 1998). All other ORP values were in the range 153 285 mV (Table 4-9).

Oct. 02: Data set 2

- pH: pH in 11 site wells was in the range 5.04 6.35 su. No site wells were < 5 or >9 su. However, 4 offsite wells had pH <5 (EW-6C; MW-8C; MW-10C, D). The other offsite wells had pH in the range 5.28 6.23 (Table 4-11).
- DO: DO was > 1 mg/L in 6 site wells, of which 2 were > 5 mg/L (EW-4B,C; Table 4-11) which is considered unfavorable to reductive intrinsic bioremediation (EPA, 1998). DO was < 0.5 in 3 site wells (EW-1B; DW-1; EW-5; Table 4-11), which is considered favorable. DO was > 1 mg/L in 8 offsite wells, of which 7 were > 5 mg/L (EW-3B,C; MW-8B; MW-10B,C,D; BP-3B; Table 4-11).
- Temperature: No temperatures > 20 °C were recorded during this sampling round. Temperature for all site wells was in the range 17.74 19.43 °C (Table 4-11). Temperature for all offsite wells was in the range 10 16.21 °C (Table 4-11).
- ORP: ORP < 50 mV was recorded for 1 site well (DW-1), which is considered favorable for reductive intrinsic biodegradation (EPA, 1998). All other site ORP values were in the range 105 308 mV. ORP was only measured in 4 offsite wells during this round, with all values in the range 159 285 mV (Table 4-11).

5 System Operation and Evaluation

5.1 System Description

The Process Flow Diagram (Figure 5-1) provides the overall layout of the system. The description of the various processes is provided below.

The groundwater treatment system (GWTS) extracts contaminated groundwater from the Cretaceous Magothy Aquifer for on-site treatment. Three extraction wells remove water from the aquifer and deliver it to the flow equalization tank outside the plant.

The water from the flow equalization tank is pumped to the two reaction tanks operating in parallel. Caustic (sodium hydroxide) is added to the water before it enters the reaction tanks raising the pH to approximately 6.5, although other pH values may prove to be necessary to optimize subsequent heavy metals precipitation and removal. Water is then sent through the flash mixer tanks and the flocculation tanks to provide the mixing time and also, because there is no bypass system directly to the plate clarifiers. The small amount of sludge produced in the plate clarifiers is transferred to the sludge collection tank for disposal.

The original design had potassium permanganate and polymer chemical feed systems, but these systems are currently not being used. The process has iron and manganese concentrations usually close to the discharge permit requirements and therefore, addition of these chemicals are unnecessary.

The clarified water is then filtered in the downflow sand filter. The original plant design had upflow filtration, but during construction, it was modified to a downflow filter. Filtered water is sent to the air stripper feed tanks. The filter backwash water is taken to the recycle tank and then back to the flow equalization tank for reuse.

The hydrochloric acid (HCl) in-line static mixer is available for addition of acid to the water if the pH needs to be lowered before going into the air stripper from the feed tanks. The pH of the water is maintained between 6 to 8, to prevent premature fouling of the air stripper.

The water is passed in a semi-batch mode from the air stripper feed tanks to the countercurrent packed tower air stripper to remove VOCs and SVOCs from the wastewater stream. The designed maximum flow rate through the air stripper is 500 gpm, but could reach up to 800 gpm in semi-batch mode. A further discussion of some of the problems with high flow rates is in Section 5.2.4. The water gravity-flows down the air stripper tower and the forced draft air stripper blower passes a countercurrent air stream through the air stripper, thus, transferring the contaminants from the liquid phase to the vapor phase.

The contaminated air is passed through the vapor phased granular activated carbon (GAC) adsorbers. An electric in-line duct heater increases the contaminated gas stream temperature by about 20° to 25°F over the ambient temperature. This increase in temperature reduces the relative humidity of the contaminated gas stream to approximately 50%. The decrease in relative humidity helps increase the life and adsorption efficiency of the granular carbon. The treated air is then discharged to the atmosphere. The estimated daily mass loading of contaminants through the vapor phase carbon is 2.6 lbs/day. This is calculated by taking the average concentrations of PCE, TCE, cis-1,2-DCE, and 1,1,1-TCA during this reporting period (May 2001 to October 2002), assuming a process water flowrate of 400 gpm, and assuming 100% air stripper removal efficiency.

The stripped water in the GAC feed tanks is passed through the liquid phase GAC adsorbers for removal of any residual VOCs and SVOCs. Treated water is discharged to the two treated water storage tanks before injection back into the four injection wells. The treated water can also be recycled back to the head of the plant if required for reprocessing.

5.2 System Evaluation Performance

This section provides a discussion of the overall performance of the GWTS. The groundwater is sampled and analyzed in accordance with the Sampling and Analysis Matrix for the GWTS listed in the Field Sampling Plan Addendum dated 4/14/99 (Radian, 1999). The Sampling and Analysis Matrix requires groundwater chemical analyses be performed for a limited number of locations within the GWTS.

The following subsections present summaries of the results of the chemical analyses of the groundwater at the locations on the system identified on the data tables.

5.2.1 Current System Operation and General Observations

The current operation of the system has been modified to eliminate the use of potassium permanganate, and polymer during clarification, and also to minimize the use of hydrochloric acid for pH adjustment before/after passing the clarified and filtered groundwater through the air stripper.

The sand filter operation has been modified during construction and start-up to have a downflow of the filtrate in lieu of the original design of upflow filtration.

The above modifications in the process operation and the reduction in influent metals concentrations over time have reduced the sludge production. The reduced quantity of sludge does not require the filter press operation.

5.2.2 Flow Rate

The GWTS is designed to treat groundwater at a flow rate of 500 gpm with a contract requirement of 174 million gallons per year. The current contractor, SAIC, is running the plant at 450 gpm with 50 gpm being recycled to the system for a continuous treatment total of 400 gpm. Information on the amount of groundwater treated as of April 2002 is presented in Table 5-11.

5.2.3 Water Quality

The GWTS is designed on the basis of the following influent concentrations, according to the Operations and Maintenance Manual (Radian, 1998):

PCE 1,395 μg/L Maximum

> 465 μg/L Average 5 μg/L Discharge Limit

TCE 2,078 μg/L Maximum

115 µg/L Average

5 μg/L Discharge Limit

cis-DCE 1,047 μg/L Maximum

350 μg/L Average

5 μg/L Discharge Limit

Iron 8 mg/L Maximum

4 mg/L Average

600 µg/L Discharge Limit

Manganese 16 mg/L Maximum

1 mg/L Average

600 μg/L Discharge Limit

pH 7.0 Maximum

5.5 Average 4.3 Maximum

The GWTS was also designed to remove any SVOCs, however, there is no influent sampling of SVOCs so it is not known how much actually enters the GWTS. There are, however, discharge limits for the SVOCs, Bis-(2-ethylhexyl)phthalate and Di-n-butylphthalate, at 5 and 50 μ g/L.

VOC concentration data for the influent water to the system was provided for the period of June 8, 2001 to October 30, 2002. VOC contaminants, metals and other water quality concentration data, which are presented in Table 5-1, show the following analytes are above discharge limits: tetrachloroethene (PCE), trichloroethene (TCE), 1,1,1-trichloroethane (1,1,1-TCA), *cis*-1,2-dichloroethene (*cis*-1,2-DCE), and iron.

Tables 5-2 to 5-8 show the groundwater sampling data for individual streams in the treatment system. Tables 5-2 and 5-3 show data for the clarified water through sand filters A and B, respectively. Table 5-4 shows data for the filtered water to the inlet of the air stripper. Tables 5-5 and 5-6 show data for the treated water from the discharge of the air stripper going to liquid GAC units A and B, respectively. Tables 5-7 and 5-8 show polished water data from the GAC Vessels going to the Treated Effluent tanks A and B, respectively. Sampling data for the Treated Effluent Tank water are shown in Table 5-9, which includes VOC, SVOC, and metals data. Appendix B contains additional raw process data tables.

Figure 5-2 graphs the plant influent concentrations of PCE, TCE, *cis*-1,2 DCE, and 1,1,1-TCA, all of which are above discharge limits. Figure 5-3 graphs the plant influent concentrations of iron and manganese, and it shows iron usually above the discharge limit of 600 μg/L. Figure 5-4 shows the treated water effluent tank concentrations of PCE, TCE, cis-1,2 DCE, and 1,1,1-TCA. For TCE, Figure 5-4 shows that the plant had only one exceedance of the discharge standard during this reporting period. Figure 5-5 shows the treated water effluent tank concentrations of iron and manganese, both of which have met discharge standards for the period.

The influent and effluent water, between the dates June 7, 2001 to October 30, 2002, as compared with the design concentrations is provided below for comparison.

		Concentration	
	Design	Influent	Effluent
PCE (max.)	1,395 μg/L	220 μg/L	5.0 μg/L
(ave.)	465 μg/L	138 μg/L	1.9 μg/L
TCE (max.)	2,078 μg/L	740 μg/L	6.9 μg/L
(ave.)	115 μg/L	377 µg/L	2.1 μg/L
cis-1,2-DCE (max)	1,047 μg/L	18.0 μg/L	5.0 μg/L
(ave.)	350 μg/L	11.0 μg/L	2.2 μg/L
Iron (max.	8 mg/L	3.33 mg/L	0.140 mg/L
(ave.)	4 mg/L	2.09 mg/L	0.054 mg/L
Manganese (max.)	16 mg/L	0.450 mg/L	0.367 mg/L
(ave.)	1 mg/L	0.403 mg/L	0.184 mg/L

5.2.4 Data Evaluation

An issue during April 2001 that was not mentioned in Data Report No.1 was the GWTS not achieving discharge limits on PCE and TCE. On April 11, 2001, PCE levels reached 28.0 μ g/L and TCE reached 79.0 μ g/L in effluent sampling. Subsequent testing of the effluent the next two weeks showed TCE levels at 15.0 and 11.0 μ g/L, respectively, which again did not achieve discharge limits.

For this reporting period (June 2001 to October 2002), Table 5-9 shows that TCE has exceeded its discharge limit once, on June 12, 2002, with a slightly above the limit level of $6.9 \mu g/L$. Otherwise, the GWTS is operating sufficiently to remove contaminants below their respective discharge limits.

A check of the individual components of the plant shows that the air stripper did not remove TCE down to clean up levels in Tables 5-5 and 5-6 during August 2001. The GAC units, however, were able to remove TCE and other contaminants down to clean up levels as seen in Tables 5-7 and 5-8.

5.2.5 Data Deficiencies

Please refer to section 4.1 for information on data deficiencies. Tables 5-1 through 5-8 are missing quarterly data from February 2002. Table 5-9, which has data that are usually taken weekly, is missing data from the first two weeks of November 2001.

5.2.6 Operational Problems

During the period February 2000 to February 2002, the former plant operator (URS) was not required to provide operational reports. The current contractor, SAIC, has provided biweekly Project Status Reports and updates to their site activities schedule since March 2002. These reports note the operational problems occurring at the site. A listing of the most significant operational problems is found in Table 5-10. Also, draft monthly reports are currently being compiled by SAIC.

The most cited problem relates to the proper functioning of the flow meters. The flow meter bearings fail at variable flow rates giving out erroneous readings of the flow rate. A precise flow rate is needed to tabulate the amount of groundwater treated and to calculate the amount of contamination being removed by the plant. Poor functioning of these flow meters could potentially lead to inaccurate evaluation of groundwater and plume capture.

In response to this problem, the effluent mechanical flow meter was designated for replacement with a magnetic flow meter. A preliminary design and cost estimate was completed and submitted to USACE in January 2003. Installation of the meter was completed in May 2003.

Another problem with the system is clogging of the sand filters, which leads to water overflowing from the filters and more water than usual being sent to the recycle tank. Daily cleaning of the nozzles with utility air, backwashing of the filters, and periodic acid washing of the filter was implemented to remove scale build-up.

The GWTS has also failed to meet discharge standards as mentioned in Section 5.2.4, during April 2001. According to plant operators, a low air-to-water ratio in the air stripper or initial breakthrough of the liquid GAC units could have caused this failure to meet discharge standards.

The semi-batch mode of the air stripper could explain the failure to meet discharge. The air stripper is designed to treat a maximum of 500 gpm. However, in semi-batch mode, it can at times operate intermittently at flows up to 800 gpm or more. This high flow rate lowers the air-to-water ratio in the air stripper, thus lowering its efficiency. The plant operators,

subsequently after the exceedance, lowered the process flow rate to achieve better stripping efficiency.

The other possible reason the effluent didn't meet discharge standards was that there was breakthrough of the liquid GAC vessels. Channeling effects of the carbon units could have formed preferential paths. The carbon was backwashed to eliminate any preferred channels that might have formed in the GAC units, and a carbon change-out was also scheduled. These procedures were performed and fresh carbon was in the GAC units by July 2001. Regularly scheduled backwashing and change-out of the liquid GAC vessels have resulted in the one TCE exceedance on June 12, 2002 mentioned in Section 5.2.4.

6 Conclusions and Recommendations

6.1 System Performance Evaluation

6.1.1 Conclusions

Data suggests the groundwater treatment system is not sufficiently containing on-site source contamination as currently operated or possibly designed. Recently collected hydraulic data shall be used to compare with data from the expanded monitoring network for analysis in the next report as previously mentioned in Section 3.4 of this report. This comparison should verify system performance or issues with respect to hydraulic capture.

Recent expansion of the monitoring system has made it possible for better interpretation of the site conditions associated with the extraction wells, which improved the overall hydraulic and contaminant plots. In addition, an older monitoring well, WT-1, located east of the site and lateral of the plume, was also redeveloped and added to the water elevation list for the collection of hydraulic data (June 2003). However, the current on-site well network is still inadequate with respect to vertical contaminant migration based on concentrations identified in deeper monitoring wells.

6.1.2 Recommendations

- 1. Modeling software should be employed that provides 3-dimensional infinite capabilities for evaluation of the capture zone and possible modification of the current extraction system. The software must also be capable of providing visual cross sections to adequately evaluate contaminant concentrations and extrapolate migration across the horizontal (x and y-axes) vertical or z-axis. These changes are necessary to bring the site conceptual model up to date.
- 2. Since the expanded network still does not adequately define the contaminant plume, additional monitoring wells should be installed onsite (and possibly also offsite), with adequately screened intervals for the monitoring of vertical contaminant migration at depth.

- 3. The installation of several observation wells should also be considered for improved monitoring of the extraction system cone of depression.
- 4. Useful information is being provided from nearby downgradient monitoring wells associated with the OBL (LF and MW clusters) and the Fireman's Training facility (BP cluster), which are located within the Bethpage State Park and golf course. The USACE suggest that our three sites meet and discuss the development of a common database or repository for use by all parties to ease future data access.

6.2 Chemistry and Groundwater Monitoring

6.2.1 Conclusions

PCE was detected at high frequency and concentrations, and remains a site analyte of concern. The highest PCE concentrations per sampling round are from the shallowest depth (Level 1 – screened 75.10 through 44.86 feet above mean sea-level) wells, which is consistent with previous work. Since many Level 1 wells have been dry since November 2001, the apparent decrease in maximum PCE concentration since August 2001 may change when the water level rebounds. PCE distribution data suggest that PCE is being captured by the extraction system.

TCE was detected at high frequency and concentrations, and remains a site analyte of concern. The highest TCE concentrations per sampling round are from EW-4C, a Level 3 well (screened 20.62 through 2.99 feet above mean sea-level), which is consistent with previous work. TCE distribution data suggest that TCE is not being completely captured by the extraction system. TCE has been detected in deeper offsite wells, suggesting that there is a vertical dimension to contaminant migration.

Historical identification of *trans*-1,2-DCE as an analyte of interest may have been erroneous due to limitations of older analytical methodology and/or data reporting errors. Although both *cis*- and *trans*- isomers of 1,2-DCE have been detected during long-term groundwater monitoring, *cis*-1,2-DCE was detected more frequently and at higher concentrations, and is a site analyte of concern. The highest *cis*-1,2-DCE concentrations per sampling round have been in Level 3 wells since November 2001 and in EW-4C, the locus of elevated TCE, since February 2002. *Cis*-1,2-DCE distribution data suggest that this analyte is not being captured by the extraction system, and is migrating offsite at deeper levels.

The presence and relative abundance of *cis*-1,2-DCE indicates that some intrinsic bioremediation is occurring onsite. However, based on frequency of detection and concentration of degradation products, the amount of intrinsic biodegradation occurring is not proportional to the amounts of TCE and PCE present, and will not significantly aid site remediation.

Vinyl chloride was detected in only one sample from the deepest monitoring well in the most distal well cluster in the extended monitoring network. Since analyses for reductive

degradation products of vinyl chloride (MEE) are not presently being conducted, there are no data which indicate that vinyl chloride is being removed by reductive dechlorination. However, the absence of vinyl chloride and relatively high DO and ORP conditions may indicate an alternative degradation mechanism (i.e., oxidation). Another possibility is that since vinyl chloride is a very fugitive compound, it may have already migrated outside the limits of the extended network. This data also suggests a vertical dimension to contaminant migration.

1,1,1-TCA was detected at high frequency and concentrations, and remains a site analyte of concern. The onsite locus for 1,1,1-TCA is EW-2C, rather than the extraction wells. Higher concentrations were detected offsite in the deeper MW-10 cluster to the southeast, indicating that this analyte is not being captured by the extraction system.

The daughter products of 1,1,1-TCA, 1,1-DCA and 1,1-DCE, were detected at moderate frequency and moderate to low concentrations. The onsite locus for both compounds is EW-2C, coincident with the locus of maximum 1,1,1-TCA. 1,1-DCE occurs at higher frequency and concentration than 1,1-DCA, suggesting that the transformation reaction is more important than reductive dehalogenation.

Chloroform and aromatic hydrocarbons (benzene, ethylbenzene, xylene, toluene, and chlorobenzene) were detected at low frequency and concentration, and do not appear to be significant, site-related contaminants.

Barium, manganese, and iron were the most frequently detected metals, with barium and manganese detected in all samples. Barium and manganese concentrations have remained fairly constant through time, and appear to be representative. An abrupt decrease in iron concentrations may be related to a change in sampling protocols, and the lower concentrations are probably more representative.

Other metals have not been detected consistently or at elevated concentrations, and do not appear to be of concern.

Site DO, ORP, and pH conditions in general do not appear favorable to reductive intrinsic bioremediation.

6.2.2 Recommendations

- 1. Since the degradation products of vinyl chloride (i.e., methane, ethane, ethene (MEE)) are not presently being analyzed, the possibility that vinyl chloride may be degrading to other compounds cannot be evaluated. It is recommended that this analysis (RSK-175) be added to the analytical suite.
- 2. Additional field and laboratory water quality parameters, which may be useful in evaluating the progress of site remediation include: field test kit measurement of alkalinity and ferrous iron (Fe⁺²), and laboratory analysis for anions (chloride, nitrate,

nitrite, sulfate) and sulfide. Collectively, these water quality parameters can be used to evaluate system conditions (i.e., presence or absence of reducing conditions) and together with VOC data, the occurrence and extent of intrinsic biodegradation of site chlorinated solvent contamination.

6.3 Process Engineering

6.3.1 Conclusions

The GWTS has at times not performed to discharge standards. Three times in April 2001 the effluent results show the TCE concentration and once the PCE concentration were above discharge limits. Measures have been taken such as backwashing the GAC units more often to prevent channelization and lowering the process flow to the air stripper.

The mechanical flow meters that measure flows at various points of the system need to be replaced with better quality flow meters. The effluent flow meter shall be replaced in March 2003 with a magnetic flow meter. A more accurate accounting of the quantity of groundwater treated will occur once they have been replaced.

6.3.2 Recommendations

The following additional recommendations, if implemented, are deemed beneficial to the proper functioning of the GWTS.

- 1. SVOCs should be tested for at the plant influent and before the liquid GAC units. This should be done in order to determine the amount of SVOCs entering the plant and the amount of SVOCs being treated by the liquid GAC units. If influent concentrations show that SVOC are quite low, then a reevaluation of whether the liquid GAC units are necessary should be done.
- 2. The flow rate to the air stripper should be set so that it never exceeds its designed flow rate of 500 gpm. Doing this will ensure that the efficiency of the air stripper is high due to a high air-to-water ratio. The higher efficiency of the air stripper could eliminate the need for the liquid GAC units. Eliminating the liquid GAC units would save the project on carbon expenditures and would reduce the number of monitoring points after the air stripper from four points to only one point.

7 References

- Bouwer, E.J., 1994, Bioremediation of chlorinated solvents using alternate electron acceptors, <u>in</u>, Norris, R.D., Hinchlee, R.E., Brown, R., McCarty, P.L., Semprini, L., Wilson, J.T., Kampbell, D.H., Reinhard, M., Bouwer, E.J., Borden, R.C., Vogel, T.M., Thomas, J.M., and Ward, C.H., eds., Handbook of bioremediation: Boca Raton, FL, Lewis Publ., p. 149-175.
- Drever, J.I., 1988, The geochemistry of natural waters: Englewood Cliffs, NJ, Prentice-Hall, 437p.
- Ebasco Services, Inc., 1990, Draft final remedial investigation report, Claremont Polychemical Superfund Site, Old Bethpage, New York: Lyndhurst, NJ, Ebasco Environmental, 6 vol., var. pg.
- Ebasco Services, Inc., 1990, Draft final feasibility study, Claremont Polychemical Superfund Site, Old Bethpage, New York: Lyndhurst, NJ, Ebasco Environmental, var. pg.
- Feldman, S.M., Smolensky, D.A., and Masterson, J.P., 1992, Ground-water quality in the Bethpage-Hicksville-Levittown area, Long Island, New York, with emphasis on volatile organic compounds: US Geological Survey Water Resources Investigation Report 90-4182, 51p.
- Foster, D.S., et al., 1999, Stratigraphic Framework Maps of the Near Shore Area of Southern Long Island from Fire Island to Montauk Point, New York: US Geological Survey Open File Report 99-559, http://pubs.usgs.gov/of/of99-559/
- Geraghty and Miller, Inc., 1987, OBSWDC aquifer test for evaluating hydraulic control of leachate-impacted groundwater, Old Bethpage, Long Island, New York: Geraghty and Miller, Inc., var. pg.
- Golden Software, Inc., 1999, Surfer® version 7: Golden, CO, Golden Software, Inc.
- Kleopfer, R.D., Easley, D.M., Hass Jr., B.B., and Deihl, T.G., 1985, Anaerobic degradation of trichloroethylene in soil: Envir. Sci. Tech., v. 19, p. 277-280.
- Radian International, 1999, Phase II Remedial Design Sampling and Analysis Plan Addendum, Claremont Polychemical Corp. Superfund Site, Old Bethpage, New York: New York, Radian International, var. pg.
- CA Rich Consultants, Inc., 1986, Hydrologic investigation of the former Claremont Polychemical facility, Old Bethpage, New York: New York, CA Rich Inc., var. pg.

- Rust Environmental Infrastructure, Inc., 1992, Remedial Design Work Plan, Claremont Polychemical Superfund Site, Old Bethpage, New York: Sheboygan, WI, Rust Environmental, var. pg.
- USACE-HTRW-CX, 2001, Draft Remediation System Evaluation Report Claremont Polychemical Superfund Site Old Bethpage, New York: Omaha, NE, US Army Corps of Engineers, var. pg.
- USACE-KCD, 2002, Data report, Claremont Polychemical Superfund Site, long-term groundwater monitoring: Kansas City, MO, US Army Corps of Engineers, var. pg.
- USACE-KCD, 1999, CENWK-EC-EF data quality evaluation guidance: Kansas City, MO, US Army Corps of Engineers, 14p.
- USEPA, 1998, Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater: Washington, DC, EPA/600/R-98/128, var. pg.
- USEPA, 1990a, Record of decision, OU-1, Claremont Polychemical Superfund Site, Old Bethpage, New York: US Environmental Protection Agency, var. pg.
- USEPA, 1990b, Decision summary for Claremont Polychemical Superfund Site, Old Bethpage, New York: US Environmental Protection Agency, var. pg.
- Zigmund, F., 1999, Personal communication.

Tables

Table 3-1 **Claremont Polychemical Superfund Site** Groundwater Elevation and Well Construction Data

										Elevation	to Top of			August 2001	I		Nov 2001			February 200	12
Screened Level	Well ID	Northing ^g	Easting ⁹	Well Diameter (inches)	Depth of Screened Interval (ft bgs)	Elevation of Screened Interval (ft AMSL)	Depth to Pump (ft bgs)	Well Depth (ft bgs)	Steel Casing (ft AMSL)	PVC Casing (ft AMSL) ^a	Pump Cap	Calculated PVC casing (ft AMSL) ^c	Sample Date	Depth to Water BTOC (ft)	Water Elevation BTOC (ft AMSL)	Sample Date	Depth to Water Below Ref El ^b (ft)	Water Elevation (ft AMSL)	Sample Date	Depth to Water BTOC (ft)	Water Elevation BTOC (ft AMSL)
				0	Insite Monitoring Well																
1	SW-1	194071.311	2154123.654	4	65 to 70	61.50 to 66.50	70	70.99		131.31	131.49	131.44	Aug-01	68.20	63.29	Nov-01	69.90	61.59	Feb-02	71.30	60.01
2	DW-1	194070.541	2154132.146	4	93.5 to 98.5	32.89 to 38.39	95	99.10		131.19	131.38	131.33	Aug-01	NM		Nov-01	69.90	61.48	Feb-02	70.80	60.39
2	SW-2 DW-2	194051.190 194063.355	2154448.258 2154430.872	4	63 to 73 95 to 100	65.10 to 75.10 37.35 to 42.35	/d 100	73.11 100.79		137.92 137.61	/d 136.42	136.93 136.37	Aug-01 Aug-01	NM 74.90	61.52	Nov-01 Nov-01	NM 75.90	60.52	Feb-02 Feb-02	dry 86.00	51.61
				4					a						01.52						
1	EW-1A	193873.779	2154019.942	4	65.17 to 75.00	53.34 to 63.17	75	76.50	130.09 ^a	130.02	130.00	129.95	Aug-01	NM	-	Nov-01	68.70	61.30	Feb-02	69.70	60.32
2	EW-1B	193883.104	2154024.450	4	90.17 to 100.00	28.75 to 38.58	100	102.40	130.65 ^a	130.56	130.53	130.48	Aug-01	68.20	62.33	Nov-01	69.40	61.13	Feb-02	70.20	60.36
3	EW-1C	193876.735	2154013.250	4	115.17 to125.00	3.43 to 13.26	125	127.50	130.6 ^a	130.47	130.44	130.39	Aug-01	68.20	62.24	Nov-01	69.20	61.24	Feb-02	69.90	60.57
1	EW-2A	193955.252	2154621.992	4	92.17 to 102.00	65.19 to 55.36	105	108.50	157.54 ^a	157.14	157.36	157.31	Aug-01	96.50	60.86	Nov-01	97.20	60.16	Feb-02	97.80	59.34
2	EW-2B	193968.144	2154627.191	4	120.17 to 130.00	28.74 to 38.57	125	129.50	157.99 ^a	157.61	157.73	157.68	Aug-01	96.30	61.43	Nov-01	97.50	60.23	Feb-02	98.20	59.41
3	EW-2C	193965.658	2154619.710	4	140.17 to 150.00	7.60 to 17.43	145	149.50	157.93 ^a	157.54	157.66	157.61	Aug-01	NM		Nov-01	97.90	59.76	Feb-02	98.40	59.14
1	EW-4A	194255,578	2154569,281	4	100.17 to 115	44.86 to 59.69	115	116.60	161.81 ^a	161.89	161.78	161.73	Aug-01	99.30	62.48	Nov-01	104.00	57.78	Feb-02	102.70	59.19
2	FW-4B	194249,291	2154569.137	4	120.17 to 130.00	29.8 to 39.63	130	131.72	161.91 ^a	161.67	161.80	161.75	Aug-01	99.50	62.30	Nov-01	107.00	54.80	Feb-02	101.50	60.17
3	EW-4C	194242.950	2154569.108	4	145.17 to 155.00	4.59 to 14.42	150	157.00	161.68 ^a	161.41	161.54	161.49	Aug-01	99.00	62.54	Nov-01	107.50	54.04	Feb-02	101.20	60.21
4	EW-5	194051.026	2154443.232	4	165.17 to 175.00	-31.16 to -40.99	170	178.87	135.81 ^a	135.55	136.98	136.93	Aug-01	NM		Nov-01	76.40	60.58	Feb-02	77.10	58.45
		10 100 1.020	2101110.202		Extraction Wells	01.10 to 10.00	110	110.01	100.01	100.00	100.00	100.00	rag or			1107 01	70.10	00.00	1 00 02	77110	00.10
1/2; 3/4	EXT-1	193746.762	2154315.864	10	75 to110, 125 to 175			175	134.31			134.31	NM	NM	NM	NM	NM	NM	Feb-02	77.94	56.37
2; 3/4	EXT-2	193853.944	2154407.808	10	95 -120, 135 -190			190	146.25			146.25	NM	NM	NM	NM	NM	NM	Feb-02	88.27	57.98
2/3/4	EXT-3	193997.321	2154530.799	10	94 -194			194	160.69			160.60	NM	NM	NM	NM	NM	NM	Feb-02	102.88	57.72
					Injection Wells															1	
	IW-1	194379.317	2155044.992	8	133 to 248		NA	248	164.85 ^b				NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-2	194391.192	2155157.407	8	100 to 250		NA	250	165.61 ^b				NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-3	194392.982	2155258.559	8	102 to 252		NA	252	166.23 ^b				NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-4	194269.929	2155249.809	8	100 to 250		NA	250	166.11 ^b				NM	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

- a) As reported in the Draft Final Remedial Investigation Report, July 1990
- b) Surveyed June/July 2002
- c) With the exception of SW-2 that does not have a pump cap and was surveyed to the TOC, the PVC TOC elevation was calculated by subtracting the cap thickness (0.0521 ft) from the surveyed elevation of top of pump cap
- d) Pump not installed
- e) Unable to measure depth to water due to low conductivity
 f) Depth to water was measured from top of PVC casing; elevation to top of PVC casing not available
- g) All coordinates were converted to GIS standard for consistency
- h) First round of synoptic sampling and water levels collected by Nassau County, Town of Old Bethpage Landfill and SAIC at Claremont Polychemical

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level BTOC - Below top of PVC casing NM - not measured SW/DW - shallow vs. deep wells

EW - Embasco wells

EXT/IW - Extraction vs. Injection wells

NA - not applicable

Level 1	Screened interval from 75.10 through 44.86 feet AMSL
Level 2	Screened interval from 42.35 through 22.32 feet AMSL
Level 3	Screened interval from 20.62 through 2.99 feet AMSL
Level 4	Screened interval from -13.99 through -40.99 feet AMSL

Table 3-2 Claremont Polychemical Superfund Site Groundwater Elevation and Well Construction Data

Screened																					
8		J.								Elevation	to Top of			May 2002 Depth to			August 2002			October 2002	
C				Well	Depth of Screened	Elevation of	Depth to	Well	Steel			Calculated		Water	Water		Depth to	Water		Depth to	Water Elevation
				Diameter	Interval	Screened Interval	Pump	Depth	Casing	PVC Casing	Pump Cap	PVC casing	Sample	Below Ref	Elevation	Sample	Water Below	Elevation	Sample	Water	BTOC
	Well ID	Northing ⁹	Easting ⁹	(inches)	(ft bgs)	(ft AMSL)	(ft bgs)	(ft bgs)	(ft AMSL)	(ft AMSL)	(ft AMSL)b	(ft AMSL)	Date	El ^b (ft)	(ft AMSL)	Date	Ref El ^b (ft)	(ft AMSL)	Date	BTOC (ft)	(ft AMSL)
2010.	11015	recraming	Lucung		Onsite Monitoring Well		(it bgo)	(it bgo)	(It Allioz)	(It raile)	(It /tilloz)	(IC FUNDE)	Buto	2. (17)	(ICPAINOL)	Buto	1101 21 (11)	(It Allioz)	Duto	D.00 (ii)	(It raile)
	SW-1	194071.311	2154123.654	4	65 to 70	61.50 to 66.50	70	70.99		131.31	131.49	131.44		dry			dry		22-Oct-02	dry	
	DW-1	194070.541	2154132.146	4	93.5 to 98.5	32.89 to 38.39	95	99.10		131.19	131.38	131.33	16-May-02	71.72	59.66	5-Aug-02	73.12	58.26	22-Oct-02	73.73	57.60
	SW-2 DW-2	194051.190 194063.355	2154448.258 2154430.872	4	63 to 73 95 to 100	65.10 to 75.10 37.35 to 42.35	/d 100	73.11 100.79		137.92 137.61	/d 136.42	136.93 136.37	15-May-02	dry 78.24	58.18	5-Aug-02	dry 79.50	56.92	22-Oct-02 22-Oct-02	dry 80.06	56.31
	EW-1A	193873.779	2154019.942	4	65.17 to 75.00	53.34 to 63.17	75	76.50	130.09 ^a	130.02	130.00	129.95	16-May-02	70.61	59.39	6-Aug-02	72.00	58.00	21-Oct-02	dry	30.31
	FW-1B	193883.104	2154024.450	4	90.17 to 100.00	28.75 to 38.58	100	102.40	130.65 ^a	130.56	130.53	130.48	16-May-02	71.13	59.40	6-Aug-02	73.13	57.40	21-Oct-02	73.94	56.54
																					+
	EW-1C	193876.735	2154013.250	4	115.17 to125.00	3.43 to 13.26	125	127.50	130.6 ^a	130.47	130.44	130.39	16-May-02	71.02	59.42	6-Aug-02	72.52	57.92	21-Oct-02	73.02	57.37
	EW-2A	193955.252	2154621.992	4	92.17 to 102.00	65.19 to 55.36	105	108.50	157.54 ^a	157.14	157.36	157.31	17-May-02	98.89	58.47	7-Aug-02	101.17	56.19	23-Oct-02	dry	-
	EW-2B	193968.144	2154627.191	4	120.17 to 130.00	28.74 to 38.57	125	129.50	157.99 ^a	157.61	157.73	157.68	15-May-02	99.05	58.68	7-Aug-02	100.42	57.31	23-Oct-02	100.75	56.93
	EW-2C	193965.658	2154619.710	4	140.17 to 150.00	7.60 to 17.43	145	149.50	157.93 ^a	157.54	157.66	157.61	15-May-02	99.19	58.47	7-Aug-02	100.25	57.41	23-Oct-02	100.69	56.92
1E	EW-4A	194255.578	2154569.281	4	100.17 to 115	44.86 to 59.69	115	116.60	161.81 ^a	161.89	161.78	161.73	16-May-02	102.90	58.88	6-Aug-02	103.49	58.29	23-Oct-02	104.07	57.66
2 E	EW-4B	194249.291	2154569.137	4	120.17 to 130.00	29.8 to 39.63	130	131.72	161.91 ^a	161.67	161.80	161.75	16-May-02	102.17	59.63	6-Aug-02	103.55	58.25	23-Oct-02	104.02	57.73
. 3 E	EW-4C	194242.950	2154569.108	4	145.17 to 155.00	4.59 to 14.42	150	157.00	161.68 ^a	161.41	161.54	161,49	16-May-02	101.91	59.63	6-Aug-02	103.48	58.06	23-Oct-02	103.87	57.62
4 E	EW-5	194051.026	2154443.232	4	165.17 to 175.00	-31.16 to -40.99	170	178.87	135.81 ^a	135.55	136.98	136.93	15-May-02	78.36	58.62	5-Aug-02	78.75	58.23	22-Oct-02	79.11	57.82
				С	Offsite Monitoring Well									1			1			1	
	EW-3A	214282.000	1140103.000	4	95.17 to 105.00	52.28 to 62.11	/d	106.00	159.24 ^a	158.92	/d		NM	NM	NM	NM	NM	NM	24-Oct-02	dry	-
2 E	EW-3B	214302.000	1140102.000	4	125.17 to 135.00	22.32 to 32.15	133	136.86	159.36 ^a	159.06			NM	NM	NM	NM	NM	NM	24-Oct-02	104.04	55.18
3 E	EW-3C	214301.000	1140108.000	4	154.17 to 164.00	2.99 to -6.84	162	165.85	159.25 ^a	158.92			NM	. NM	NM .	NM	NM	NM	24-Oct-02	103.97	55.85
1E	EW-6A	194676.900	2154136.030	4	63.17 to 73.00	57.66 to 67.49	/d	71.00	130.76 ^a	130.48	/d		NM	NM	NM	NM	NM	NM	23-Oct-02	dry	
. 3 E	EW-6B	Aband	oned	4	110.17 to 120.00	10.79 to 20.62			130.86 ^a	130.61	-		NM	NM	NM				23-Oct-02	abandoned	-
	EW-6C	194676.900	2154136.030	4	160.67 to 170.50	-29.60 to -39.43	/d	169.00	131.53 ^a	130.90	/d	130.90	NM	NM	NM	NM	NM	NM	23-Oct-02	71.30	59.60
	MW-6D	214310.000	1138494.000	4	185 to 190	-26.1 to -31.1	187	190.00		160.39			NM	NM	NM	NM	NM	NM	21-Oct-02	104.20	56.37
	MW-8B	193723.370	2154266.420	4	155 to 160	-22.2 to -27.2	157	160.00	b	134.24			NM	NM	NM	NM	NM	NM	21-Oct-02	77.49	56.75
5N	MW-8C	193723.373	2154266.424	4	245 to 250	-110.7 to -115.7	247	250.00	136.26 ^b	135.72			NM	NM	NM	NM	NM	NM	21-Oct-02	68.55	57.31
	MW-10B	193334.083	2155374.785	4	173 to 178	-13 to -18	175	178.00	162.24 ^b	161.12			NM	NM	NM	NM	NM	NM	21-Oct-02	105.02	55.72
5 N	MW-10C	193355.184	2155308.330	4	273 to 278	-113.1 to -118.1	275	278.00	161.16 ^b	160.27			NM	NM	NM	NM	NM	NM	21-Oct-02	104.20	56.04
	MW-10D	193341.537	2155310.126	4	309 to 314	-149.2 to -154.2	311	314.00	161.85 ^b	161.17			NM	NM	NM	NM	NM	NM	21-Oct-02	95.00	55.42
1 E	BP-3A	211705.900 211723.000	1139430.000		54 to 74 215 to 235	51 to 71 -91 to -111	70	234.00		124.54 123.57			NM NM	NM NM	NM NM	NM NM	NM NM	NM NM	21-Oct-02 21-Oct-02	72.94	50.65
6 E	BP-3C	211755.000	1139444.000		280 to 300	-156 to -176	290	201.00		123.68			NM	NM	NM	NM	NM	NM	21-Oct-02	69.88	50.57
3 1	LF-2	215096.000	1379580.000	6	110 to 115	3 to 8	112	115.00		118.70			NM	NM	NM	NM	NM	NM	21-Oct-02	61.01	57.69
1/2: 3/4 E	FX-1	193746.762	2154315.864	10	75 to 110, 125 to 175	ı		175	134.31			134.31	NM	NM	NM	NM	I NM I	NM	24-Oct-02	77.12	57.19
	EX-1 EX-2	193746.762	2154315.864	10	95 -120, 135 -190			190	134.31			134.31	NM	NM	NM	NM	NM	NM NM	24-Oct-02 24-Oct-02	88.64	57.19
	EX-3	193997.321	2154530.799	10	94 -194			194	160.69			160.60	NM	NM	NM	NM	NM	NM	24-Oct-02	102.98	57.62
					Injection Wells	T.															
	W-1	194379.317	2155044.992	8	133 to 248		NA	248	164.85 ^b	-			NM	NM	NM	NM	NM	NM	NM	NM	NM
ļr	W-2	194391.192	2155157.407	8	100 to 250		NA	250	165.61 ^b				NM	NM	NM	NM	NM	NM	NM	NM	NM
	W-3	194392.982	2155258.559	8	102 to 252		NA	252	166.23 ^b	-			NM	NM	NM	NM	NM	NM	NM	NM	NM
	W-4	194269.929	2155249.809	8	100 to 250		NA	250	166.11 ^b				NM	. NM	NM	NM	NM	NM	NM	NM	NM

Notes:

- a) As reported in the Draft Final Remedial Investigation Report, July 1990
- b) Surveyed June/July 2002 c) With the exception of SW-2 that does not have a pump cap and was surveyed to the TOC, the PVC TOC elevation was calculated by subtracting the cap thickness (0.0521 ft) from the surveyed elevation of top of pump cap
- d) Pump not installed

NA - not applicable

- e) Unable to measure depth to water due to low conductivity
- f) Depth to water was measured from top of PVC casing; elevation to top of PVC casing not available
- g) All coordinates were converted to GIS standard for consistency
- h) First round of synoptic sampling and water levels collected by Nassau County, Town of Old Bethpage Landfill and SAIC at Claremont Polychemical

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level BTOC - Below top of PVC casing NM - not measured SW/DW - shallow vs. deep wells EW - Embasco wells EXT/IW - Extraction vs. Injection wells

Screened interval from 75.10 through 44.86 feet AMSL Screened interval from 42.35 through 22.32 feet AMSL Level 2 Screened interval from 20.62 through 2.99 feet AMSL Screened interval from -13.99 through -40.99 feet AMSL Screened interval from -91.00 through -118.10 feet AMSL Screened interval from -91.00 through -176.00 feet AMSL Level 6

Table 3-3 Claremont Polychemical Superfund Site Groundwater Elevations and Vertical Gradients

						August 2001					Nov 2001			
Screened Level		PVC Casing (ft AMSL) ^a		Calculated PVC casing (ft AMSL) ^c	Sample Date	Depth to Water BTOC (ft)	Water Elevation BTOC (ft AMSL)	Wells	Vertical Gradient	Sample Date	Depth to Water Below Ref El ^b (ft)	Water Elevation (ft AMSL)	Wells	Vertical Gradient
1	SW-1	404.04	404.40	404.44	A 04	00.00	00.00	ı		Nov. 04	00.00	04.50	1	
		131.31 131.19	131.49	131.44 131.33	Aug-01	68.20 NM	63.29	 SW-1 to DW-1		Nov-01	69.90 69.90	61.59 61.48	 O(A) 4 t- D(A) 4	0.012
2	DW-1		131.38		Aug-01			SW-1 to DW-1	ID	Nov-01			SW-1 to DW-1	
	SW-2 DW-2	137.92 137.61	/d	136.93 136.37	Aug-01	NM 74.00		 SW-2 to DW-2		Nov-01	NM 75.00	60.52	 O(A) O t- D(A) O	ID
2			136.42		Aug-01	74.90	61.52		ID	Nov-01	75.90		SW-2 to DW-2	
1	EW-1A	130.02	130.00	129.95	Aug-01	NM		EW-1A to 1B	ID	Nov-01	68.70	61.30	EW-1A to 1B	0.015
2	EW-1B	130.56	130.53	130.48	Aug-01	68.20	62.33	EW-1B to 1C	0.007	Nov-01	69.40	61.13	EW-1B to 1C	-0.008
3	EW-1C	130.47	130.44	130.39	Aug-01	68.20	62.24	EW-1A to 1C	ID	Nov-01	69.20	61.24	EW-1A to 1C	0.008
1	EW-2A	157.14	157.36	157.31	Aug-01	96.50	60.86	EW-2A to 2B	-0.041	Nov-01	97.20	60.16	EW-2A to 2B	-0.005
2	EW-2B	157.61	157.73	157.68	Aug-01	96.30	61.43	EW-2B to 2C	ID	Nov-01	97.50	60.23	EW-2B to 2C	0.055
3	EW-2C	157.54	157.66	157.61	Aug-01	NM		EW-2A to 2C	ID	Nov-01	97.90	59.76	EW-2A to 2C	0.037
1	EW-4A	161.89	161.78	161.73	Aug-01	99.30	62.48	EW-4A to 4B	0.025	Nov-01	104.00	57.78	EW-4A to 4B	0.420
2	EW-4B	161.67	161.80	161.75	Aug-01	99.50	62.30	EW-4B to 4C	-0.034	Nov-01	107.00	54.80	EW-4B to 4C	0.107
3	EW-4C	161.41	161.54	161.49	Aug-01	99.00	62.54	EW-4A to 4C	-0.004	Nov-01	107.50	54.04	EW-4A to 4C	0.292
4	EW-5	135.55	136.98	136.93	Aug-01	NM		DW-2 to EW-5	ID	Nov-01	76.40	60.58	DW-2 to EW-5	-0.003
1/2; 3/4	EX-1			134.31	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
2; 3/4	EX-2			146.25	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
2/3/4	EX-3			160.60	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-1	-			NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-2	-			NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-3	-			NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-4	-			NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

- a) Ebasco, 1990
- b) Surveyed June/July 2002
- c) With the exception of SW-2 that does not have a pump cap and was surveyed to the TOC, the PVC TOC elevation was calculated by subtracting the cap thickness (0.0521 ft) from the surveyed elevation of top of pump cap
- d) Pump not installed
- e) Unable to measure depth to water due to low conductivity
- f) Depth to water was measured from top of PVC casing;
- elevation to top of PVC casing not available
- g) All coordinates converted to GIS standard for consistency
- h) First round of synoptic sampling and water levels collected by Nassau County, Town of Old Bethpage Landfill and SAIC at Claremont Polychemical

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level BTOC - Below top of PVC casing

NM - not measured

ID - Insufficient data for calculation

Level 1
Level 2
Level 3
Screened interval from 75.10 through 44.86 feet AMSL
Screened interval from 42.35 through 22.32 feet AMSL
Screened interval from 20.62 through 2.99 feet AMSL
Level 4
Screened interval from -13.99 through -40.99 feet AMSL

SW/DW - shallow vs. deep wells

EW - Embasco wells

EXT/IW - Extraction vs. Injection wells

Table 3-3 Claremont Polychemical Superfund Site Groundwater Elevations and Vertical Gradients

						February 200	2				May 2002			
Screened Level	Well ID	PVC Casing (ft AMSL) ^a		Calculated PVC casing (ft AMSL) ^c	Sample Date	Depth to Water BTOC (ft)	Water Elevation BTOC (ft AMSL)	Wells	Vertical Gradient	Sample Date	Water Below Ref El ^b (ft)	Water Elevation (ft AMSL)	Wells	Vertical Gradient
		,	,				· · ·				. ,	, ,		
1	SW-1	131.31	131.49	131.44	Feb-02	71.30	60.01				dry			
2	DW-1	131.19	131.38	131.33	Feb-02	70.80	60.39	SW-1 to DW-1	-0.042	16-May-02	71.72	59.66	SW-1 to DW-1	ID
1	SW-2	137.92	/d	136.93	Feb-02	dry					dry			
2	DW-2	137.61	136.42	136.37	Feb-02	86.00	51.61	SW-2 to DW-2	ID	15-May-02	78.24	58.18	SW-2 to DW-2	ID
1	EW-1A	130.02	130.00	129.95	Feb-02	69.70	60.32	EW-1A to 1B	-0.004	16-May-02	70.61	59.39	EW-1A to 1B	-0.001
2	EW-1B	130.56	130.53	130.48	Feb-02	70.20	60.36	EW-1B to 1C	-0.015	16-May-02	71.13	59.40	EW-1B to 1C	-0.001
3	EW-1C	130.47	130.44	130.39	Feb-02	69.90	60.57	EW-1A to 1C	-0.034	16-May-02	71.02	59.42	EW-1A to 1C	-0.004
1	EW-2A	157.14	157.36	157.31	Feb-02	97.80	59.34	EW-2A to 2B	-0.005	17-May-02	98.89	58.47	EW-2A to 2B	-0.015
2	EW-2B	157.61	157.73	157.68	Feb-02	98.20	59.41	EW-2B to 2C	0.032	15-May-02	99.05	58.68	EW-2B to 2C	0.025
3	EW-2C	157.54	157.66	157.61	Feb-02	98.40	59.14	EW-2A to 2C	0.018	15-May-02	99.19	58.47	EW-2A to 2C	0.000
1	EW-4A	161.89	161.78	161.73	Feb-02	102.70	59.19	EW-4A to 4B	-0.138	16-May-02	102.90	58.88	EW-4A to 4B	-0.106
2	EW-4B	161.67	161.80	161.75	Feb-02	101.50	60.17	EW-4B to 4C	-0.006	16-May-02	102.17	59.63	EW-4B to 4C	0.000
3	EW-4C	161.41	161.54	161.49	Feb-02	101.20	60.21	EW-4A to 4C	-0.080	16-May-02	101.91	59.63	EW-4A to 4C	-0.059
4	EW-5	135.55	136.98	136.93	Feb-02	77.10	58.45	DW-2 to EW-5	-0.378	15-May-02	78.36	58.62	DW-2 to EW-5	-0.024
	EX-1	-		134.31	Feb-02	77.94	56.37	NM	NM	NM	NM	NM	NM	NM
2; 3/4	EX-2			146.25	Feb-02	88.27	57.98	NM	NM	NM	NM	NM	NM	NM
2/3/4	EX-3	-		160.60	Feb-02	102.88	57.72	NM	NM	NM	NM	NM	NM	NM
	IW-1				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-2				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-3				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-4				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

- a) Ebasco, 1990
- b) Surveyed June/July 2002
- c) With the exception of SW-2 that does not have a pump cap and was surveyed to the TOC, the PVC TOC elevation was calculated by subtracting the cap thickness (0.0521 ft) from the surveyed elevation of top of pump cap
- d) Pump not installed
- e) Unable to measure depth to water due to low conductivity
- f) Depth to water was measured from top of PVC casing;
- elevation to top of PVC casing not available
- g) All coordinates converted to GIS standard for consistency
- h) First round of synoptic sampling and water levels collected by Nassau County, Town of Old Bethpage Landfill and SAIC at Claremont Polychemical

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level BTOC - Below top of PVC casing

NM - not measured

ID - Insufficient data for calculation

Level 1
Level 2
Level 3
Screened interval from 75.10 through 44.86 feet AMSL
Screened interval from 42.35 through 22.32 feet AMSL
Screened interval from 20.62 through 2.99 feet AMSL
Level 4
Screened interval from -13.99 through -40.99 feet AMSL

SW/DW - shallow vs. deep wells

EW - Embasco wells

EXT/IW - Extraction vs. Injection wells

Table 3-3 Claremont Polychemical Superfund Site Groundwater Elevations and Vertical Gradients

						August 20	002			О	ctober 2002	2 ^h		
Screened Level	Well ID	PVC Casing (ft AMSL)	Pump Cap	Calculated PVC casing (ft AMSL) ^c	Sample Date	Water Below Ref El ^b (ft)	Water Elevation (ft AMSL)	Wells	Vertical Gradient	Sample Date	Depth to Water	Water Elevation BTOC (ft AMSL)	Wells	Vertical Gradient
		, , , ,	<u> </u>											
1	SW-1	131.31	131.49	131.44		dry				22-Oct-02	dry			
2	DW-1	131.19	131.38	131.33	5-Aug-02	73.12	58.26	SW-1 to DW-1	ID	22-Oct-02	73.73	57.60	SW-1 to DW-1	ID
1	SW-2	137.92	/d	136.93		dry				22-Oct-02	dry			
2	DW-2	137.61	136.42	136.37	5-Aug-02	79.50	56.92	SW-2 to DW-2	ID	22-Oct-02	80.06	56.31	SW-2 to DW-2	ID
1	EW-1A	130.02	130.00	129.95	6-Aug-02	72.00	58.00	EW-1A to 1B	0.054	21-Oct-02	dry	-	EW-1A to 1B	ID
2	EW-1B	130.56	130.53	130.48	6-Aug-02	73.13	57.40	EW-1B to 1C	-0.038	21-Oct-02	73.94	56.54	EW-1B to 1C	-0.061
3	EW-1C	130.47	130.44	130.39	6-Aug-02	72.52	57.92	EW-1A to 1C	0.011	21-Oct-02	73.02	57.37	EW-1A to 1C	ID
1	EW-2A	157.14	157.36	157.31	7-Aug-02	101.17	56.19	EW-2A to 2B	-0.081	23-Oct-02	dry	-	EW-2A to 2B	ID
2	EW-2B	157.61	157.73	157.68	7-Aug-02	100.42	57.31	EW-2B to 2C	-0.012	23-Oct-02	100.75	56.93	EW-2B to 2C	0.001
3	EW-2C	157.54	157.66	157.61	7-Aug-02	100.25	57.41	EW-2A to 2C	-0.112	23-Oct-02	100.69	56.92	EW-2A to 2C	ID
1	EW-4A	161.89	161.78	161.73	6-Aug-02	103.49	58.29	EW-4A to 4B	0.006	23-Oct-02	104.07	57.66	EW-4A to 4B	-0.010
2	EW-4B	161.67	161.80	161.75	6-Aug-02	103.55	58.25	EW-4B to 4C	0.027	23-Oct-02	104.02	57.73	EW-4B to 4C	0.015
3	EW-4C	161.41	161.54	161.49	6-Aug-02	103.48	58.06	EW-4A to 4C	0.018	23-Oct-02	103.87	57.62	EW-4A to 4C	0.003
4	EW-5	135.55	136.98	136.93	5-Aug-02	78.75	58.23	DW-2 to EW-5	-0.072	22-Oct-02	79.11	57.82	DW-2 to EW-5	-0.083
1/2; 3/4	EX-1			134.31	NM	NM	NM	NM	NM	24-Oct-02	77.12	57.19	NM	NM
2; 3/4	EX-2			146.25	NM	NM	NM	NM	NM	24-Oct-02	88.64	57.61	NM	NM
2/3/4	EX-3			160.60	NM	NM	NM	NM	NM	24-Oct-02	102.98	57.62	NM	NM
	IW-1				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-2				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-3				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM
	IW-4				NM	NM	NM	NM	NM	NM	NM	NM	NM	NM

Notes:

- a) Ebasco, 1990
- b) Surveyed June/July 2002
- c) With the exception of SW-2 that does not have a pump cap and was surveyed to the TOC, the PVC TOC elevation was calculated by subtracting the cap thickness (0.0521 ft) from the surveyed elevation of top of pump cap
- d) Pump not installed
- e) Unable to measure depth to water due to low conductivity
- f) Depth to water was measured from top of PVC casing;
- elevation to top of PVC casing not available
- g) All coordinates converted to GIS standard for consistency
- h) First round of synoptic sampling and water levels collected by Nassau County, Town of Old Bethpage Landfill and SAIC at Claremont Polychemical

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level BTOC - Below top of PVC casing

NM - not measured

ID - Insufficient data for calculation

Level 1
Level 2
Screened interval from 75.10 through 44.86 feet AMSL
Screened interval from 42.35 through 22.32 feet AMSL
Level 3
Screened interval from 20.62 through 2.99 feet AMSL
Level 4
Screened interval from -13.99 through -40.99 feet AMSL

SW/DW - shallow vs. deep wells

EW - Embasco wells

EXT/IW - Extraction vs. Injection wells

Table 4-1 Claremont Polychemical Superfund Site August, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C		SW-1	
sampling date				08/21/01		08/21/01		08/21/01		08/23/01		08/23/01		08/23/01		08/22/01		08/22/01		08/22/01		08/20/01	_
cooler temp				4.8 °C		4.8 °C		4.8 °C		5 °C		5 °C		5 °C		5 °C		5 °C		5 °C		8.7 °C	J
VOCs				4.0 0		4.0 0		4.0 0		3 0		3 0		3 0		3 0		3 0		3 0		0.7 0	
VOC dilution factor				2x		1x		1x		1x		1x		1x		1x		1x		5x		50x	
dichlorodifluoromethane	μg/L					17		17		17		17		17		17		17		O.A		OUX	
chloromethane	μg/L		10.0	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50.0	U	500.0	U
vinyl chloride	μg/L		10.0	20.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	U	10.0	U	10.0	Ü	50.0	Ü	500.0	Ü
bromomethane	μg/L		10.0	20.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	U	50.0	Ü	500.0	Ü
chloroethane	μg/L		10.0	20.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	U	10.0	U	10.0	Ü	50.0	Ü	500.0	Ü
trichlorofluoromethane	μg/L		10.0	20.0		10.0		10.0		10.0		10.0		10.0		10.0		10.0		00.0	Ū	000.0	
1,1-dichloroethene	μg/L		5.0	10.0	U	5.0	U	5.0	U	0.4	J	7.0		52.0		5.0	U	5.0	U	25.0	U	250.0	U
1.1.2-trichloro-1.2.2-trifluoroet	μg/L		0.0	10.0		0.0		0.0	Ū	5.4		7.0		52.5		0.0		0.0		20.0	Ū	200.0	
acetone	μg/L		10.0	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50.0	U	500.0	U
carbon disulfide	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	25.0	Ü	250.0	Ü
methyl acetate	μg/L		0.0	10.0	Ū	0.0		0.0		0.0		0.0	Ŭ	0.0		0.0		0.0		20.0	Ū	200.0	<u> </u>
methylene chloride	μg/L μg/L		5.0	1.0	J	0.6	J	2.0	J	0.6	J	1.0	J	0.6	J	0.4	J	5.0	U	4.0	J	140.0	J
trans -1.2-dichloroethene	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	25.0	Ü	250.0	U
tert-butyl methyl ether	μg/L		0.0	10.0	J	0.0		0.0		0.0		0.0		0.0		0.0		0.0		20.0	J	200.0	
1,1-dichloroethane	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	8.0		5.0	U	5.0	U	25.0	U	250.0	U
cis -1.2-dichloroethene	μg/L		5.0	1.0	J	5.0	Ü	5.0	U	6.0		7.0	-	12.0		2.0	J	2.0	J	11.0	J	61.0	J
2-butanone (MEK)	μg/L		10.0	20.0	Ü	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50.0	Ü	500.0	Ū
bromochloromethane	μg/L		10.0	20.0		10.0		10.0		10.0		10.0		10.0		10.0		10.0		00.0	Ū	000.0	
chloroform	μg/L		5.0	10.0	U	5.0	U	5.0	U	2.0	J	0.6	J	0.9	J	5.0	U	5.0	U	25.0	U	250.0	U
1,1,1-trichloroethane	μg/L		5.0	10.0	Ü	5.0	Ü	5.0	U	2.0	J	17.0	_	110.0		5	Ü	2.0	J	6.0	J	250.0	Ü
cyclohexane	μg/L		0.0	10.0		0.0		0.0		2.0		11.0		110.0		Ü		2.0		0.0		200.0	
carbon tetrachloride	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	U
benzene	μg/L		0.7	1.0	U	0.7	U	0.7	U	0.7	Ü	0.7	U	0.7	U	0.7	U	0.7	U	4.0	U	35.0	Ü
1.2-dichloroethane	μg/L		5.0	10.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	Ü	25.0	Ü	250.0	Ü
trichloroethene	μg/L		5.0	4.0	J	0.3	J	5.0	U	3.0	J	10.0		25.0		1.0	J	110.0		840.0	Ū	100.0	J
methylcyclohexane	μg/L		0.0	7.0	Ŭ	0.0	<u> </u>	0.0		0.0	·	10.0		20.0				110.0		040.0		100.0	<u> </u>
1,2-dichloropropane	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	U
bromodichloromethane	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	Ü
cis-1,3-dichloropropene	μg/L		5.0	10.0	Ü	5.0	Ü	5.0	U	5.0	Ü	25.0	Ü	250.0	Ü								
4-methyl-2-pentanone (MIBK)	μg/L		10.0	20.0	Ü	10.0	U	10.0	U	10.0	Ü	10.0	U	10.0	U	10.0	U	10.0	Ü	50.0	Ü	500.0	Ü
toluene	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	0.4	J	5.0	U	5.0	Ü	25.0	U	250.0	Ü
trans -1,3-dichloropropene	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	25.0	U	250.0	Ü
1,1,2-trichloroethane	μg/L		5.0	10.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	U	5.0	U	5.0	Ü	25.0	Ü	250.0	Ü
tetrachloroethene	μg/L		5.0	340.0		3.0	J	5.0	U	120.0		26.0		20.0		29.0		4.0	J	21.0	J	7.100.0	
2-hexanone	μg/L		10.0	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50.0	U	500.0	U
dibromochloromethane	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	U
1.2-dibromoethane	μg/L		0.0			0.0		0.0		0.0		0.0		0.0		0.0		0.0		_0.0	Ŭ		
chlorobenzene	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	U
ethylbenzene	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	25.0	Ü	250.0	Ū
xylenes (total)	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	25.0	U	250.0	Ū
styrene	μg/L		5.0	10.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	U	5.0	U	5.0	Ü	25.0	U	250.0	Ü
bromoform	μg/L		5.0	10.0	Ü	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	25.0	U	250.0	Ü
isopropylbenzene	μg/L		0.0		ŭ	0.0		0.0		0.0		0.0		0.0		0.0		0.0		_0.0			
1.1.2.2-tetrachloroethane	μg/L		5.0	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25.0	U	250.0	U
1.3-dichlorobenzene	μg/L		0.0		ŭ	0.0		0.0		0.0		0.0		0.0		0.0		0.0		_0.0	Ŭ		
1,4-dichlorobenzene	μg/L																						
1.2-dichlorobenzene	μg/L																						
1.2-dibromo-3-chloropropane	μg/L μg/L																						
1.2.4-trichlorobenzene	μg/L μg/L																						
1,2,3-trichlorobenzene	μg/L μg/L																						
1,2,5-mcmoropenzene	µg/L																						

Table 4-1 Claremont Polychemical Superfund Site August, 2001 Groundwater Monitoring Data

Sampling date	Analyte	units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EW-5-QC		EXT-1	EXT-2		EXT-3	_
Section Sect		units	IVIDE	OIVQL													08/15/01	_
VOC distribution factor VOC distribution VOC distrib						- 1	115		- 1		- 1		-	Aug-01		В	14.1 °C	R
Voc dilution factor					6.7 C	J		0.7 C	J	6.7 C	J	0.7 C	J	no data	14.1 C	г	14.1 C	
Control discontentane					1v			1v		1v		1v		110 uata	2×		10x	
Policy P	·	ua/l			IX			1.8		1.8		IX			2.X		10.0	$\overline{}$
viny chinode 197L 10.0 10.0 U 10.0 U 10.0 U 20.0 U 11.0 U 20.0 U 11.0 U 20.0 U 11.0 U 10.0 U 20.0 U 11.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 10.0 U 20.0 U 11.0 U 10.0 U 20.0 U 11.0 U 10.0 U 20.0	B			10.0	10.0	- 11		10.0	- 11	10.0	- 11	10.0	- 11		20.0	- 11	100.0	U
Decompendance 190/L 10.0 10.0 U 10.0 U 10.0 U 20.0 U 11.0 U 10.0 U 20.0 U 11.0 U 10.0 U	B					_			_		_		_			_	100.0	U
Collected name	,																100.0	U
Incident control page	·																100.0	U
1-1 dichiprorethene				10.0	10.0			10.0	-	10.0	-	10.0			20.0	-	100.0	
1.1 - 2 inchistoro - 1.2 - 2 inchistoro - 1.2 inchistor	·			5.0	5.0	ш		5.0	П	5.0	Ш	0.9			4.0	-	16.0	J
Section Lipid Li				0.0	0.0	- 0		3.0	- 0	5.0	U	0.5	•		4.0	•	10.0	_
Carbon disulfide				10.0	10.0	ш		10.0	П	10.0	Ш	10.0	ш		25		170	
Intertry																ш	50.0	U
Intelligence chloride				0.0	0.0			3.0	-	5.0	-	0.0			10.0	-	30.0	
Frans-1,2-dichloroethene				5.0	5.0			2.0	.1	0.6	.1	1.0	.1		13.0	R	40.0	JB
Lett-butyl methyl ether						Ш											50.0	U
1.1-dichloroethane	,			0.0	0.0			0.0		0.0	Ū	0.0			10.0		00.0	
2-butanone (MEK) yg/L 10.0 10.0 U				5.0	5.0	ш		5.0	П	1.0		5.0	ш		10.0	- 11	7.0	J
2-butanone (MEK)																	20.0	J
Dromochloromethane																Ш	100.0	U
Chiproform				10.0	10.0			10.0		10.0	Ū	10.0			20.0		100.0	
1,1,1-trichloroethane	B			5.0	5.0	ш		5.0	П	5.0	Ш	5.0	ш		10.0	- 11	50.0	U
Carbon tetrachloride Light S.0 S.0 U	·																45.0	J
Carbon tetrachloride				0.0	0.0			0.0		0.0	_	0.0	•		0.0		40.0	_
Denzene				5.0	5.0	Ш		5.0	Ш	5.0	Ш	5.0	Ш		10.0	Ш	50.0	U
1,2-dichloroethane	B																7.0	U
trichloroethene μg/L 5.0 5.0 U 5.0 U 66.0 320.0 88 methylcyclohexane μg/L 5.0 5.0 U 5.0 U </td <td></td> <td>50.0</td> <td>Ü</td>																	50.0	Ü
Methylcyclohexane	,					_					Ū						820.0	
1,2-dichloropropane	B			0.0	0.0			0.0		02.0					020.0		020.0	
Dromodichloromethane				5.0	5.0	Ш		5.0	Ш	5.0	Ш	5.0	Ш		10.0	Ш	50.0	U
c/s-1,3-dichloropropene µg/L 5.0 5.0 U 5.0 U 5.0 U 5.0 U 10.0 U 5.0 U 5.0 U 10.0 U 20.0 U 11.0 U 10.0 U 5.0 U 1.0 U						_					_		_			_	50.0	Ü
4-methyl-2-pentanone (MIBK) μg/L 10.0 10.0 U 10.0 </td <td></td> <td>50.0</td> <td>U</td>																	50.0	U
Solution																	100.0	U
trans-1,3-dichloropropene µg/L 5.0 5.0 U 5.0 U 5.0 U 5.0 U 10.0 U 5.0 U 1.0	toluene																4.0	J
1,1,2-trichloroethane	trans -1 3-dichloropropene																50.0	U
Section Part																	50.0	Ü
2-hexanone μg/L 10.0 10.0 U 5.0									_		_						32.0	J
dibromochloromethane					10.0			10.0		10.0	U	10.0	U		20.0	U	100.0	U
1,2-dibromoethane						_			_		_		_			_	50.0	U
chlorobenzene µg/L 5.0 5.0 U						-			-		-					-		
ethylbenzene µg/L 5.0 5.0 U				5.0	5.0	U		5.0	U	5.0	U	5.0	U		10.0	U	50.0	U
xylenes (total) µg/L 5.0 5.0 U	·												-				50.0	U
styrene µg/L 5.0 5.0 U																	50.0	Ü
bromoform μg/L 5.0 5.0 U 5.0 U 5.0 U 5.0 U 10.0 U 5 Isopropylbenzene μg/L 10.0 U 5	, ,																50.0	Ü
isopropylbenzene µg/L lisopropylbenzene ug/L ug/L lisopropylbenzene ug/L u																	50.0	Ü
						-			-		-		-			-		
1, 1, 2, 2-tetrachioroemane μg/L 5.0 5.0 U 5.0 U 5.0	1,1,2,2-tetrachloroethane	μg/L		5.0	5.0	U		5.0	U	0.3	J	5.0	U		10.0	U	50.0	U
1,3-dichlorobenzene µg/L	, , ,					-		1	-				-			-		
1,4-dichlorobenzene µg/L	/																	
1,2-dichlorobenzene µg/L																		
1,2-dibromo-3-chloropropane µg/L																		
1,2,4-trichlorobenzene µg/L																		
1,2,3-trichlorobenzene ug/L	, ,																	

Table 4-1 Claremont Polychemical Superfund Site August, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C		SW-1	
sampling date				08/21/01		08/21/01		08/21/01		08/23/01		08/23/01		08/23/01		08/22/01		08/22/01		08/22/01		08/20/01	
cooler temp				4.8 °C		4.8 °C		4.8 °C		5°C		5 °C		8.7 °C	J								
metals		IDL	CRDL																			ns	
aluminum	μg/L		200.0																				
antimony	μg/L	4.7	20.0	4.7	U																		
arsenic	μg/L	4.4	40.0	4.4	U	4.4	U	4.4	U	6.1	В	4.4	U										
barium	μg/L		200.0	78.1	В	26.4	В	48.5	В	16.2	В	55.4	В	48.2	В	68.6	В	35.4	В	31.9	В	64.8	В
beryllium	μg/L		5.0																				
cadmium	μg/L		5.0																				
calcium	μg/L		5000.0																				
chromium	μg/L		10.0																				
cobalt	μg/L		50.0																				
copper	μg/L		25.0																				
iron	μg/L	19.9	200.0	20.7	В	19.9	U	117.0		14,000.0		88.6	В	32.3	В	17,000.0		26.4	В	29.9	В	2,860.0	
lead	μg/L	2.0	10.0	2.0	U	2.0	U	2.0	U	4.4		2.0	U	7.5									
magnesium	μg/L		5000.0																				
manganese	μg/L	1.2	15.0	607.0		233.0		351.0		686.0		378.0		139.0		1,150.0		221.		71.5		87.3	
mercury	μg/L		0.2													.,							
nickel	μg/L		40.0																				
potassium	μg/L		5000.0																				
selenium	μg/L	4.8	30.0	4.8	U																		
silver	μg/L		10.0																				
sodium	μg/L		5000.0																				
thallium	μg/L		10.0																				
vanadium	µg/L		50.0																				
zinc	μg/L		20.0																				
	PS' L		20.0																				
field instrument																						no data	
рН	su			5.07		6.26		6.33		7.07		6.44		6.44		6.32		6.18		6.51			
conductivity	µmhos/cr	n		0.224		0.797		0.785		0.118		0.236		0.209		0.331		0.155		0.114			
turbidity	NTU		<u> </u>			2.701		2.700		20		2.200		2.200		2.30		21100					
DO	mg/L			6.98		0.00		11.80		11.39		10.77		11.69		18.10		15.05		12.81			
temperature	°C			16.70		15.90		18.50		15.00		15.10		15.60		15.31		17.30		18.10			
Eh (ORP)	mV			10.70		10.00		10.00		10.00		10.10		10.00		10.01		17.00		10.10			
LII (OIXI)	IIIV																						
other																							
chromium. hexavalent	mg/L		0.010	0.010	U																		
TSS	mg/L																						

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured

NM: not measured ns: not sampled

Table 4-1 **Claremont Polychemical Superfund Site** August, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EW-5-QC		EXT-1	EXT-2		EXT-3	
sampling date				08/20/01		ns	08/20/01		08/20/01		08/20/01		Aug-01	08/15/01		08/15/01	
cooler temp				8.7 °C	J		8.7 °C	J	8.7 °C	J	8.7 °C	J	Ü	14.1 °C	R	14.1 °C	R
metals		IDL	CRDL			ns							no data				
aluminum	μg/L		200.0														
antimony	μg/L	4.7	20.0	4.7	U		4.7	U	4.7	U	4.7	U		4.7	U	4.7	U
arsenic	μg/L	4.4	40.0	4.4	U		4.4	U	4.4	U	4.4	U		4.4	U	4.4	U
barium	μg/L		200.0	37.9	В		37.7	В	46.0	В	48.0	В		73.7	В	68.2	В
beryllium	μg/L		5.0														
cadmium	μg/L		5.0														
calcium	μg/L		5000.0														
chromium	μg/L		10.0														
cobalt	μg/L		50.0														
copper	μg/L		25.0														
iron	μg/L	19.9	200.0	2,830.0			47.2	В	19.9	U	19.9	U		662.0		4,580.0	
lead	μg/L	2.0	10.0	2.0	U		2.0	U	2.0	U	2.0	U		2.8	В	2.0	U
magnesium	μg/L		5000.0														
manganese	μg/L	1.2	15.0	397.0			209.0		493.0		412.0			343.0		299.0	
mercury	μg/L		0.2														
nickel	μg/L		40.0														
potassium	μg/L		5000.0														
selenium	μg/L	4.8	30.0	4.8	U		4.8	U	4.8	U	4.8	U		4.8	U	4.8	U
silver	μg/L		10.0														
sodium	μg/L		5000.0														
thallium	μg/L		10.0														
vanadium	μg/L		50.0														
zinc	μg/L		20.0														
field instrument						ns							no data	no data		no data	
pH	su			6.56			5.55		6.23								
conductivity	µmhos/cr	n		NM			NM		NM								
turbidity	NTU																
DO	mg/L			NM			NM		NM								
temperature	°C			14.80			14.90		15.50								
Eh (ORP)	mV																
other						ns							no data				
chromium. hexavalent	mg/L		0.010	0.010	U	115	0.010	U	0.010	U	0.010	U	110 uata	0.01	U	0.01	U
TSS	mg/L		0.010	0.010	U		0.010	U	0.010	U	0.010	U		5.00	U	12.00	
100	IIIg/L													5.00	U	12.00	

boldface: lab analysis positive detection U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

ns: not sampled

Table 4-2 Claremont Polychemical Superfund site August 2001 Data Summary

						monitoring well	s				extraction wells		
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01
VOCs													
dichlorodifluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
chloromethane	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
vinyl chloride	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
oromomethane	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
chloroethane	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
trichlorofluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethene	μg/L		5.0	14	4	0.4 - 52.0	EW-2A	EW-2C	2	2	4.0 - 16.0	EXT-2	EXT-3
1,1,2-trichloro-1,2,2-trifluoroet	μg/L			-	-	-	-	-	-	-	-	-	-
acetone	μg/L		10.0	14	0	-	-	-	2	2	25.0 - 170.0	EXT-2	EXT-3
carbon disulfide	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
methyl acetate	μg/L			-	-	-	-	-	-	-	-	-	-
methylene chloride	μg/L		5.0	14	13	0.4 - 140.0	EW-4A	SW-1	2	2	13.0 - 40.0	EXT-2	EXT-3
trans-1,2-dichloroethene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
tert-butyl methyl ether	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethane	μg/L		5.0	14	2	1.0 - 8.0	EW-5	EW-2C	2	1	7		EXT-3
cis -1,2-dichloroethene	μg/L		5.0	14	10	1.0 - 61.0	EW-1A	SW-1	2	2	13.0 - 20.0	EXT-2	EXT-3
P-butanone (MEK)	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
bromochloromethane	μg/L			-	-	-	-	-	-	-	-	-	-
hloroform	μg/L		5.0	14	3	0.6 - 2.0	EW-2B	EW-2A	2	0	-	-	-
1,1,1-trichloroethane	μg/L		5.0	14	7	2.0 - 110.0	EW-2A	EW-2C	2	2	9.0 - 45.0	EXT-2	EXT-3
cyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
arbon tetrachloride	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
enzene	μg/L		0.7	14	0	-	-	-	2	0	-	-	-
1,2-dichloroethane	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
trichloroethene	μg/L		5.0	14	11	0.3 - 840.0	EW-1B	EW-4C	2	2	320.0 - 820.0	EXT-2	EXT-3
methylcyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichloropropane	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
bromodichloromethane	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
cis-1,3-dichloropropene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
I-methyl-2-pentanone (MIBK)	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
oluene	μg/L		5.0	14	1	0.4		EW-2C	2	1	4		EXT-3
trans-1,3-dichloropropene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
1,1,2-trichloroethane	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
tetrachloroethene	μg/L		5.0	14	13	0.8 - 7,100.0	DW-1	SW-1	2	2	32.0 - 280.0	EXT-2	EXT-3
?-hexanone	μg/L		10.0	14	0	-	-	-	2	0	-	-	-
libromochloromethane	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
1,2-dibromoethane	μg/L			-	-	-	-	-	-	-	-	-	-
chlorobenzene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
ethylbenzene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
xylenes (total)	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
styrene	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
bromoform	μg/L		5.0	14	0	-	-	-	2	0	-	-	-
sopropylbenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	μg/L		5.0	14	1	0.3		EW-5	2	0	-	-	-
1,3-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dibromo-3-chloropropane	μg/L			-	-	-	-	-	-	-	-	-	-
1,2,4-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2,3-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-

Table 4-2 Claremont Polychemical Superfund site August 2001 Data Summary

						monitoring well:	s				extraction wells		
Analyte	units	MDL	CRQL	sampled		range	min well	max well	sampled	detected	range	min well	max well
sampling date				Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01
metals		IDL	CRDL										
aluminum	μg/L		200.0	-	-	-	-	-	-	-	-	-	-
antimony	μg/L	4.7	20.0	14	0	-	-	-	2	0	-	-	-
arsenic	μg/L	4.4	40.0	14	1	6.1		EW-2A	2	0	-	-	-
barium	μg/L		200.0	14	14	16.2 - 78.1	EW-2A	EW-1A	2	2	68.2 - 73.7	EXT-3	EXT-2
beryllium	μg/L		5.0	-	-	-	-	-	-	-	-	-	-
cadmium	μg/L		5.0	-	-	-	-	-	-	-	-	-	-
calcium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
chromium	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
cobalt	μg/L		50.0		-	-	-	-	-	-	-	-	-
copper	μg/L		25.0	-	-	-	-	-	-	-	-	-	-
iron	μg/L	19.9	200.0	14	11	20.7 - 17,000	EW-1A	EW-4A	2	2	662 4,580.0	EXT-2	EXT-3
lead	μg/L	2.0	10.0	14	2	4.4 - 7.5	EW2A	SW-1	2	1	2.8		EXT-2
magnesium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
manganese	μg/L	1.2	15.0	14	14	71.5 - 1,150	EW-4C	EW-4A	2	2	299.0 - 343.0	EXT-3	EXT-2
mercury	μg/L		0.2	-	-	-	-	-	-	-	-	-	-
nickel	μg/L		40.0	-	-	-	-	-	-	-	-	-	-
potassium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
selenium	μg/L	4.8	30.0	14	0	-	-	-	2	0	-	-	-
silver	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
sodium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
thallium	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
vanadium	μg/L		50.0	-	-	-	-	-	-	-	-	-	-
zinc	μg/L		20.0	-	-	-	-	-	-	-	-	-	-
field instrument													
pH	su			12	12	5.07 - 7.07	EW-1A	EW2A	0	0	-	-	-
conductivity	umhos/cm	1		9	9	0.114 - 0.785	EW-4C	EW-1C	0	0	-	-	-
turbidity	NTU								0	0	-	-	-
DO	mg/L			9	8	6.98 - 18.1	EW-1A	EW-4A	0	0	-	-	-
temperature	°C			12	12	14.8 - 18.5	DW-1	EW-1C	0	0	-	-	-
Eh (ORP)	mV								0	0	-	-	-
other													
chromium. hexavalent	mg/L		0.010	14	0	-	-	-	2	0	-	-	-
TSS	mg/L			-	-	-	-	-	2	1	12.0	-	EXT-3

⁻ not measured or analyzed, no results

Table 4-3 Claremont Polychemical Superfund Site November, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1A-QC		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C	
sampling date				11/05/01		11/05/01		11/05/01		11/05/01		11/09/01		11/09/01		11/09/01		11/09/01		11/09/01		11/09/01	
cooler temp				8 ° C	J	8 ° C	J	8 ° C	J	8 ° C	J	9 °C	J	9 °C	J	9 °C	J	9 °C	J	9 °C	J	9 °C	J
VOCs				0 0	- 0	0 0	-	0 0	J	0 0	-	3 0	Ü	3 0	-	3 0	J	3 0	-	3 0	Ü	3 0	
VOC dilution factor				4x		4x		1x		1x		1x		1x		1x		1x		1x		5x	
dichlorodifluoromethane	μq/L			7/		77		1/		1/4		1/		17		1/		1/4		1/		- OX	
chloromethane	μg/L		10.0	40.0	U	40.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50	U
vinyl chloride	μg/L		10.0	40.0	U	40.0	Ü	10.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	Ü	10.0	U	50	Ü
bromomethane	μg/L		10.0	40.0	U	40.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	U	50	Ü
chloroethane	μg/L		10.0	40.0	U	40.0	Ü	10.0	U	10.0	Ü	10.0	Ü	10.0	Ü	10.0	U	10.0	Ü	10.0	U	50	Ü
trichlorofluoromethane	μg/L		10.0	40.0	U	40.0	U	10.0	0	10.0	- 0	10.0	U	10.0	- 0	10.0	0	10.0	- 0	10.0	U	30	
1,1-dichloroethene	μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	0.20	J	2.00	J	44.00		5.0	U	5.0	U	1.00	J
1.1.2-trichloro-1.2.2-trifluoroet	μg/L		5.0	20.0	U	20.0	- 0	5.0	- 0	3.0		0.20	-	2.00		44.00		5.0		3.0	U	1.00	
acetone	μg/L		10.0	63.00		40.0	U	10	U	10	U	10	U	10	U	3.00	J	4.00	J	10	U	50	U
carbon disulfide			5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	U	5.0	U	25	Ü
methyl acetate	μg/L μg/L		J.U	20.0	U	20.0	U	3.0	U	5.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	20	
methylene chloride	μg/L μg/L		5.0	7.00	J	6.00	J	0.50	UJ	1.00	UJ	5.0	U	1.00	J	1.00	J	1.00	J	3.00	J	5.00	J
trans -1,2-dichloroethene	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.00	U	25	U
tert-butyl methyl ether	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	20	
	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	6.00		5.0	U	5.0	U	25	U
1,1-dichloroethane cis-1.2-dichloroethene	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	0.80	J	3.00	<u> </u>	10.00		6.00	U	1.00	J	7.00	J
2-butanone	μg/L		10.0	40.0	U	40.0	Ü	10.0	U	10.0	U	10.0	Ü	10.0	Ü	10.00	U	10.0	U	10.0	U	50	U
bromochloromethane	μg/L μg/L		10.0	40.0	U	40.0	- 0	10.0	U	10.0	- 0	10.0	U	10.0	- 0	10.0	U	10.0	- 0	10.0	U	50	
chloroform	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	2.00	J	0.20	J	0.70	J	5.0	U	5.0	U	25	U
1,1,1-trichloroethane	μg/L μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	U	2.00	J	5.00	- 3	100.00	J	5.00	U	1.00	J	5.00	J
cyclohexane	μg/L		5.0	20.0	U	20.0	U	5.0	0	3.0	- 0	2.00	-	3.00		100.00		3.00		1.00	3	3.00	
carbon tetrachloride	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25	U
benzene			.7	3.0	U	3.0	U	.7	U	.7	U	.7	U	.7	Ü	.7	U	.7	U	.7	U	4	U
1.2-dichloroethane	μg/L μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	U
trichloroethene	μg/L		5.0	3.00	J	4.00	J	0.30	J	5.0	U	2.00	J	5.00	- 0	26.00	0	4.00	J	84.00	U	490.00	
methylcyclohexane	μg/L		5.0	3.00		4.00		0.50		3.0	- 0	2.00	-	3.00		20.00		4.00		04.00		430.00	
1,2-dichloropropane	μg/L μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25	U
bromodichloromethane	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
cis-1,3-dichloropropene	μg/L μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
4-methyl-2-pentanone	μg/L		10.0	40.0	U	40.0	Ü	10.0	U	10.0	U	10.0	U	10.0	Ü	10.0	U	10.0	Ü	10.0	U	50	Ü
toluene	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
trans-1,3-dichloropropene	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
1.1.2-trichloroethane	μg/L		5.0	20.0	U	20.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U	25	Ü
tetrachloroethene	μg/L		5.0	390.00		420.00		3.00	J	0.80	J	170.00		19.00		24.00		200.00		4.00	J	16.00	J
2-hexanone	μg/L		10.0	40.0	U	40.0	U	10.0	U	10.0	Ü	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	50	Ū
dibromochloromethane	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
1,2-dibromoethane	μg/L		0.0	20.0	J	20.0		0.0		0.0		0.0	J	0.0		0.0		0.0		0.0	J		
chlorobenzene	μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25	U
ethylbenzene	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
xylenes (total)	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	Ü
styrene	μg/L		5.0	20.0	U	20.0	Ü	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U	25	Ü
bromoform	μg/L		5.0	20.0	U	20.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U	5.0	Ü	5.0	U	25	U
isopropylbenzene	μg/L		0.0	20.0	U	20.0		5.0	U	0.0	U	5.0	٦	5.0	-	5.0	U	5.0	U	5.0	U		
1.1.2.2-tetrachloroethane	μg/L		5.0	20.0	U	20.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	25	U
1.3-dichlorobenzene	μg/L		0.0	20.0		20.0		5.0		0.0	-	5.0		5.0		5.0		5.0		5.0	-		
1,4-dichlorobenzene	μg/L																						
1.2-dichlorobenzene	μg/L																						
1.2-dibromo-3-chloropropane	μg/L μg/L																						
1,2,4-trichlorobenzene	μg/L μg/L																						
1,2,3-trichlorobenzene	μg/L																						
1,2,0-010110100001120110	μу/∟											l				l				l			

Table 4-3 Claremont Polychemical Superfund Site November, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	SW-1	DW-1		DW-1-QC		SW-2	DW-2		EW-5		EXT-1		EXT-2		EXT-3	
sampling date				Nov-01	11/06/01		11/06/01		Nov-01	11/07/01		11/07/01		11/20/01		11/20/01		11/20/01	
cooler temp					8 ° C	J	8 ° C	J		9 °C	J	9 °C	J	no CoC		no CoC		no CoC	
VOCs				na			- 0 0		ns			- 0							
VOC dilution factor					1x		1x			1x		1x		2x		4x		10x	
dichlorodifluoromethane	μg/L																		
chloromethane	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
vinyl chloride	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
bromomethane	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
chloroethane	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
trichlorofluoromethane	μg/L																		
1,1-dichloroethene	μg/L		5.0		5.0	U	5.0	U		0.80	J	5.0	U	1.00	J	20.0	U	17.00	J
1,1,2-trichloro-1,2,2-trifluoroet	μg/L																		
acetone	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
carbon disulfide	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
methyl acetate	μg/L																		
methylene chloride	μg/L		5.0		2.00	UJ	2.00	UJ		5.0	U	2.00	J	3.0	U	6.0		39.0	
trans -1,2-dichloroethene	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
tert-butyl methyl ether	μg/L																		
1,1-dichloroethane	μg/L		5.0		5.0	U	5.0	U		0.60	J	5.0	U	10.0	U	20.0		50.0	U
cis -1,2-dichloroethene	μg/L		5.0		5.0	U	5.0	U		4.00	J	5.0	U	6.00	J	16.00	J	16.00	J
2-butanone	μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
bromochloromethane	μg/L																		
chloroform	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
1,1,1-trichloroethane	μg/L		5.0		5.0	U	5.0	U		3.00	J	5.0	U	3.00	J	5.0	U	45.00	J
cyclohexane	μg/L																		
carbon tetrachloride	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
benzene	μg/L		.7		.7	U	.7	U		.7	U	.7	U	1.5	U	3.0	U	7.0	U
1,2-dichloroethane	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
trichloroethene	μg/L		5.0		5.0	U	5.0	U		91.00		5.0	U	62.00		290.00		770.00	
methylcyclohexane	μg/L													10.0				500	
1,2-dichloropropane	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
bromodichloromethane	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
cis-1,3-dichloropropene	μg/L		5.0		5.0	U	5.0 10.0	U		5.0 10.0	U	5.0 10.0	U	10.0 20.0	U	20.0	U	50.0	U
4-methyl-2-pentanone	μg/L		10.0 5.0		10.0 5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	40.0 20.0	U	100.0 50.0	U
toluene	μg/L					U	5.0	U			U	5.0	U	10.0	U	20.0	U	50.0	U
trans-1,3-dichloropropene 1,1,2-trichloroethane	μg/L μg/L		5.0 5.0		5.0 5.0	U	5.0	U		5.0 5.0	U	5.0	U	10.0	U	20.0	U	50.0	U
tetrachloroethene			5.0		1.00	J	5.0	U		2.00	J	2.00	J	300.00	U	330.00	U	31.00	J
2-hexanone	μg/L μg/L		10.0		10.0	U	10.0	U		10.0	U	10.0	U	20.0	U	40.0	U	100.0	U
dibromochloromethane	μg/L μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10	U	20.0	U	50.0	Ü
1,2-dibromoethane	μg/L μg/L		J.U		3.0	U	5.0	U		5.0	U	J.U	U	10	U	20.0	J	50.0	
chlorobenzene	μg/L μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.00	U
ethylbenzene	μg/L μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	Ü	50.00	Ü
xylenes (total)	μg/L μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	Ü	50.00	Ü
styrene	μg/L μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	Ü	50.00	Ü
bromoform	μg/L		5.0		5	U	2.00	J		5.0	U	5.0	Ü	10.0	U	20.0	Ü	50.00	Ü
isopropylbenzene	μg/L		0.0		Ť			-		0.0		0.0			Ť	_0.0	-	00.00	<u> </u>
1.1.2.2-tetrachloroethane	μg/L		5.0		5.0	U	5.0	U		5.0	U	5.0	U	10.0	U	20.0	U	50.00	U
1,3-dichlorobenzene	μg/L					-		-			-				-		-		
1,4-dichlorobenzene	μg/L																		
1,2-dichlorobenzene	μg/L																		
1.2-dibromo-3-chloropropane	μg/L																		
1,2,4-trichlorobenzene	μg/L																		
1,2,3-trichlorobenzene	μg/L				1					+									

Table 4-3
Claremont Polychemical Superfund Site
November, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1A-QC	:	EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C	
sampling date				11/05/01		11/05/01		11/05/01		11/05/01		11/09/01		11/09/01		11/09/01		11/09/01		11/09/01		11/09/01	
cooler temp				8 ° C	J	8 ° C	J	8 ° C	J	8 ° C	J	9 °C	J										
metals		IDL	CRDL																				
aluminum	μg/L		200.0																				
antimony	μg/L	4.6	60.0	4.6	U																		
arsenic	μg/L	4.4	10.0	4.4	U		U	4.4	U	4.4	U	5.4	В	4.4	U								
barium	μg/L		200.0	92.1	В	92.8	В	28.5	В	80.4	В	14.3	В	75.2	В	59.8	В	81.2	В	44.2	В	36.5	В
beryllium	μg/L		5.0																				
cadmium	μg/L		5.0																				
calcium	μg/L		5000.0																				
chromium	μg/L		10.0																				
cobalt	μg/L		50.0																				
copper	μg/L		25.0																				
iron	μg/L	16.2	100.0	79.3	В	56.7	В	16.2	U	36.8	В	4,720.0		235.0		65.3	В	10,300.0		32.0	В	16.2	U
lead	μg/L	2.0	3.0	2.0	U																		
magnesium	μg/L		5000.0																				
manganese	μg/L	0.20	15.0	760.0		766.0		246.0		871.0		174.0		511.0		213.0		1,220.0		254.0		76.7	
mercury	μg/L		0.2																				
nickel	μg/L		40.0																				
potassium	μg/L		5000.0																				
selenium	μg/L	4.9	5.0	4.9	U																		
silver	μg/L		10.0																				
sodium	μg/L		5000.0																				
thallium	μg/L		10.0																				
vanadium	μg/L		50.0																				
zinc	μg/L		20.0																				
field instrument																							
pН	su			5.10				6.26		5.54		5.7		4.99		5.26		4.82		5.36		5.50	
conductivity	µmhos/cr	n		0.224				0.797		0.696		0.108		0.343		0.272		0.302		0.189		0.134	
turbidity	NTU																						
DO	mg/L			6.98				0.00		0.00		5.45		4.96		6.05		7.65		4.65		5.31	
temperature	°C			16.70				16.60		16.60		15.6		15.10		16.00		16.20		15.80		15.40	
Eh (ORP)	mV																						
other																							
chromium. hexavalent	μg/L		0.010	10.0	U																		
TSS	mg/L										-		-		-				-		-		

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured

ns: not sampled

na: not analyzed

Table 4-3
Claremont Polychemical Superfund Site
November, 2001 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	SW-1	DW-1		DW-1-QC		SW-2	DW-2		EW-5		EXT-1		EXT-2		EXT-3	
sampling date				Nov-01	11/06/01		11/06/01		Nov-01	11/07/01		11/07/01		11/20/01		11/20/01		11/20/01	
cooler temp					8 ° C	J	8 ° C	J		9 °C	J	9 °C	J	no CoC		no CoC		no CoC	
metals		IDL	CRDL	na					ns										
aluminum	μg/L		200.0																
antimony	μg/L	4.6	60.0		4.6	U	4.6	U		4.6	U	4.6	U	4.5	U	4.5	U	4.5	U
arsenic	μg/L	4.4	10.0		5.3	В	4.4	U		4.4	U	4.4	U	4.6	U	4.6	U	4.6	U
barium	μg/L		200.0		42.7	В	15.3	В		59.5	В	43.5	В	73.1	BJ	89.3	BJ	77.8	BJ
beryllium	μg/L		5.0																
cadmium	μg/L		5.0																
calcium	μg/L		5000.0																
chromium	μg/L		10.0																
cobalt	μg/L		50.0																
copper	μg/L		25.0																
iron	μg/L	16.2	100.0		2,920.0		40.8	В		145.0		16.2	U	254.0	J	897.0	J	922.0	J
lead	μg/L	2.0	3.0		2.0	U	2.0	U		2.0	U	2.0	Ü	2.3	U	29.2		2.3	U
magnesium	μg/L		5000.0																
manganese	μg/L	0.20	15.0		513.0		1.8	В		534.0		111.0		490.0	J	413.0	J	358.0	J
mercury	μg/L		0.2																
nickel	μg/L		40.0																
potassium	μg/L		5000.0																
selenium	μg/L	4.9	5.0		4.9	U	4.9	U		4.9	U	4.9	U	4.9	U	4.9	U	5.1	J
silver	μg/L		10.0											1.0					_
sodium	μg/L		5000.0																
thallium	μg/L		10.0																
vanadium	μg/L		50.0																
zinc	μg/L		20.0																
21110	pg/L		20.0																
field instrument									ns					nm		nm		nm	
pH	su			5.62	6.29				110	5.60		5.29							
conductivity	µmhos/cr	n		0.246	0.657					0.365		0.502							
turbidity	NTU			0.240	0.007					0.000		0.302							
DO	mg/L			5.75	0.00					0.00		3.06							
temperature	°C			12.4	15.20					15.50		15.80							
Eh (ORP)	mV			14.7	13.20					13.50		13.00							
LII (ORF)	IIIV									+									
other																			
chromium. hexavalent	μg/L		0.010	10.0	U 10.0	U	10.0	U	10.0 U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
TSS	mg/L													5	U	5.5		5	U
	<u> </u>													-				-	

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured ns: not sampled

na: not analyzed

Table 4-4
Claremont Polychemical Superfund site
November 2001 Data Summary

						monitoring wel	ls				extraction wells		
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01
VOCs													
dichlorodifluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
chloromethane	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
vinyl chloride	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
bromomethane	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
chloroethane	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
trichlorofluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethene	μg/L		5.0	14	5	0.2 - 44.0	EW-2A	EW-2C	3	2	1.0 - 17.0	EXT-1	EXT-3
1,1,2-trichloro-1,2,2-trifluoroet	μg/L			-	-	-	-	-	-	-	-	-	-
acetone	μg/L		10.0	14	3	3.0 - 63.0	EW-2C	EW-1A	3	0	-	-	-
carbon disulfide	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
methyl acetate	μg/L			-	-	-	-	-	-	-	-	-	-
methylene chloride	μg/L		5.0	14	8	1.0 - 7.0	EW-2B,C, 4A	EW-1A	3	2	6.0 - 39.0	EXT-2	EXT-3
trans-1,2-dichloroethene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
tert-butyl methyl ether	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethane	μg/L		5.0	14	2	0.6 - 6.0	DW-2	EW-2C	3	0	-	-	-
cis -1,2-dichloroethene	μg/L		5.0	14	7	0.8 - 10.0	EW-2A	EW-2C	3	3	6.0 - 16.0	EXT-1	EXT-2, 3
2-butanone	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
bromochloromethane	μg/L			-	-	-	-	-	-	-	-	-	-
chloroform	μg/L		5.0	14	3	0.2 - 2.0	EW-2B	EW-2A	3	0	-	-	-
1,1,1-trichloroethane	μg/L		5.0	14	7	1.0 - 100.0	EW-4B	EW-2C	3	2	3.0 - 45.0	EXT-1	EXT-3
cyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
carbon tetrachloride	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
benzene	μg/L		.7	14	0	-	-	-	3	0	-	-	-
1,2-dichloroethane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
trichloroethene	μg/L		5.0	14	10	0.3 - 490.0	EW-1B	EW-4C	3	3	62.0 - 770.0	EXT-1	EXT-3
methylcyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichloropropane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
bromodichloromethane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
cis-1,3-dichloropropene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
4-methyl-2-pentanone	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
toluene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
trans-1,3-dichloropropene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
1,1,2-trichloroethane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
tetrachloroethene	μg/L		5.0	14	13	1.0 - 420.0	DW-1	EW-1A QC	3	3	31.0 - 330.0	EXT-3	EXT-2
2-hexanone	μg/L		10.0	14	0	-	-	-	3	0	-	-	-
dibromochloromethane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
1,2-dibromoethane	μg/L			-	-	-	-	-	-	-	-	-	-
chlorobenzene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
ethylbenzene	μg/L		5.0	14	0	-	-	-	3	0	-	_	-
xylenes (total)	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
styrene	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
bromoform	μg/L		5.0	14	1	2.0		DW-1 QC	3	0	-	-	-
isopropylbenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	μg/L		5.0	14	0	-	-	-	3	0	-	-	-
1,3-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dibromo-3-chloropropane	μg/L			-	-	-	-	-	-	-	-	_	-
1,2,4-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2,3-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	_	-

Table 4-4
Claremont Polychemical Superfund site
November 2001 Data Summary

						monitoring wells	3				extraction wells		
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01	Nov-01
· -													
metals		IDL	CRDL										
aluminum	μg/L	57.0	200.0	-	-	-	-	-	-	-	-	-	-
antimony	μg/L	1.2	60.0	14	0	-	-	-	3	0	-	-	-
arsenic	μg/L	3.0	10.0	14	2	5.3 - 5.4	DW-1	EW-2A	3	0	-	-	-
barium	μg/L	0.30	200.0	14	14	14.3 - 92.1	EW-2A	EW-1A	3	3	73.1 - 89.3	EXT-1	EXT-2
beryllium	μg/L	0.20	5.0	-	-	-	-	-	-	-	-	-	-
cadmium	μg/L	0.30	5.0	-	-	-	-	-	-	-	-	-	-
calcium	μg/L	15.0	5000.0	-	-	-	-	-	-	-	-	-	-
chromium	μg/L	0.80	10.0	-	-	-	-	-	-	-	-	-	-
cobalt	μg/L	0.70	50.0	-	-	-	-	-	-	-	-	-	-
copper	μg/L	1.5	25.0	-	-	-	-	-	-	-	-	-	-
iron	μg/L	13.0	100.0	14	12	32.0 - 10,300.0	EW-4B	EW-4A	3	3	245.0 - 922.0	EXT-1	EXT-3
lead	μg/L	1.2	3.0	14	0	-	-	-	3	1	29.2		EXT-2
magnesium	μg/L	12.0	5000.0	-	-	-	-	-	-	-	-	_	-
manganese	μg/L	0.20	15.0	14	14	1.8 - 1,220.0	DW-1 QC	EW-4A	3	3	358.0 - 490.0	EXT-3	EXT-1
mercury	μg/L	0.10	0.2	-	-	-	-	-	-	-	-	-	-
nickel	μg/L	1.0	40.0	-	-	-	-	-	-	-	-	-	-
potassium	μg/L	40.0	5000.0	-	-	-	-	-	-	-	-	-	-
selenium	μg/L	3.0	5.0	14	0	-	-	-	3	0	-	-	-
silver	μg/L	0.80	10.0	-	-	-	-	-	-	-	-	-	-
sodium	μg/L	304	5000.0	-	-	-	-	-	-	-	-	-	-
thallium	μg/L	2.4	10.0	-	-	-	-	-	-	-	-	-	-
vanadium	μg/L	0.70	50.0	-	-	-	-	-	-	-	-	-	-
zinc	μg/L	1.1	20.0	-	-	-	-	-	-	-	-	-	-
field instrument													
рН	su			13	13	4.82 - 6.29	EW-4A	DW-1	-	-	-	-	-
conductivity	umhos/cn	1		13	13	0.108 - 0.797	EW-2A	EW-1B	-	-	-	_	-
turbidity	NTU			-	-	-	-	-	-	-	-	_	-
DO	mg/L			13	9	3.06 - 7.65	EW-5	EW-4A	-	-	-	-	-
temperature	°C			13	13	12.4 - 16.7	SW-1	EW-1A	-	-	-	_	-
Eh (ORP)	mV			-	-	-	-	-	-	-	-	_	-
(/													
other													
chromium. hexavalent	μg/L		0.010	14	0	-	-	-	3	0	-	-	-
TSS	mg/L			-	-	-	-	-	3	1	5.5		EXT-2

⁻ not measured or analyzed, no results

Table 4-5 Claremont Polychemical Superfund Site February, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C		SW-1
sampling date				2/14/02		2/14/02		2/14/02		2/12/02		2/12/02		2/12/02		2/13/02		2/13/02		2/13/02	i	Feb-02
cooler temp				8 °C	J	8 °C	J	8 °C	J	6 °C	J	6 °C	J	6 °C	J	5 °C		5 °C		5 °C		. 05 02
VOCs				0 0	-	0 0	·	0 0	Ū	0 0	-	0 0		0 0		0 0		0 0		0 0		ns - dry
VOC dilution factor				4x		1x		1x		1x		1x		1x		1x		1x		10x		no dry
dichlorodifluoromethane	μg/L			77		1.4		1/		1.7		17		17		1/4		1/		10%		
chloromethane	μg/L μg/L	0.9	5.0	4.0	U	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U	9.0	U	
vinyl chloride	μg/L μg/L	0.3	5.0	1.0	Ü	0.3	Ü	0.3	Ü	0.3	U	0.3	Ü	0.3	U	0.3	Ü	0.3	U	3.0	Ü	
bromomethane	μg/L μg/L	2.0	5.0	7.0	U	2.0	Ü	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	17.0	Ü	
chloroethane		4.0	5.0	16.0	U	4.0	Ü	4.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0	U	40.0	Ü	
trichlorofluoromethane	µg/L	4.0	5.0	10.0	U	4.0	U	4.0	U	4.0	U	4.0	U	4.0	- 0	4.0	- 0	4.0	U	40.0	U	
	μg/L	0.6	5.0	2.0	- 11	0.0	U	0.0	U	0.0	U	0.0	- 11	18.0		0.6	U	0.0	U	6.0	U	
1,1-dichloroethene	μg/L	0.0	5.0	2.0	U	0.6	U	0.6	U	0.6	U	0.6	U	18.0		0.6	U	0.6	U	6.0	U	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L	0.0	40.0	4.0		0.0		0.0		0.0		0.0		0.0		0.0				0.0		
acetone	μg/L	0.9	10.0	4.0	U	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U	0.9	U	9.0	J	9.0	U	
carbon disulfide	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
methyl acetate	μg/L	0.0	5.0	0.0	LIE	0.0		0.0	ш	4.0		4.0		4.0		0.0				4.0	- 10	
methylene chloride	μg/L	0.2	5.0	0.8	UB	0.2	U	0.2	UB	4.0	J	4.0	J	4.0	J	0.2	U	2.0	J	4.0	JB	
trans -1,2-dichloroethene	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
tert-butyl methyl ether	μg/L																					
1,1-dichloroethane	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	J	0.3	U	0.3	U	3.0	U	
cis -1,2-dichloroethene	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.6	J	3.0	J	9.0		6.0		1.0	J	13.0	J	
2-butanone (MEK)	μg/L	0.4	10.0	2.0	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	4.0	U	
bromochloromethane	μg/L																					
chloroform	μg/L	0.2	5.0	8.0	U	0.2	U	0.2	U	8.0	J	0.2	U	0.2	U	0.2	U	0.2	U	2.0	U	
1,1,1-trichloroethane	μg/L	0.2	5.0	8.0	U	0.2	U	0.2	U	1.0	J	2.0	J	41.0		0.2	U	2.0	J	8.0	J	
cyclohexane	μg/L																					
carbon tetrachloride	μg/L	0.2	5.0	0.8	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	2.0	U	
benzene	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
1,2-dichloroethane	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
trichloroethene	μg/L	0.8	5.0	5.0	J	8.0	U	0.8	U	0.9	J	4.0	J	13.0		5.0		63.0		820.0		
methylcyclohexane	μg/L																					
1,2-dichloropropane	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
bromodichloromethane	μg/L	0.2	5.0	0.8	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	2.0	U	
cis-1,3-dichloropropene	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
4-methyl-2-pentanone (MIBK)	μg/L	0.4	10.0	2.0	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	0.4	U	4.0	U	
toluene	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
trans -1,3-dichloropropene	μg/L	0.2	5.0	0.8	Ū	0.2	Ū	0.2	U	0.2	U	0.2	Ū	0.2	U	0.2	U	0.2	Ū	2.0	Ü	
1,1,2-trichloroethane	μg/L	0.2	5.0	0.8	Ü	0.2	Ū	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	2.0	Ü	
tetrachloroethene	μg/L	0.3	5.0	380.0		4.0	J	1.0	J	120.0		17.0		9.0		130.0		4.0	J	19.0	J	
2-hexanone	μg/L	0.8	10.0	3.0	U	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U	0.8	U	8.0	U	
dibromochloromethane	μg/L	0.2	5.0	0.8	Ü	0.2	Ū	0.2	U	0.2	U	0.2	U	0.2	Ü	0.2	Ü	0.2	Ü	2.0	Ü	
1,2-dibromoethane	μg/L	-				-	-	-	-	-	-	-		-					-	-		
chlorobenzene	μg/L	0.2	5.0	0.8	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	2.0	U	
ethylbenzene	μg/L	0.3	5.0	1.0	Ü	0.3	Ü	0.3	U	0.3	U	0.3	Ü	0.3	Ü	0.3	Ü	0.3	U	3.0	Ü	
xylenes (total)	μg/L	0.5	5.0	2.0	Ü	0.5	Ü	0.5	U	0.5	U	0.5	U	0.5	Ü	0.5	Ü	1.0	J	5.0	Ü	
styrene	μg/L	0.2	5.0	0.8	Ü	0.2	Ü	0.2	U	0.2	U	0.2	Ü	0.2	Ü	0.2	Ü	0.2	Ü	2.0	Ü	
bromoform	μg/L	0.2	5.0	0.8	Ü	0.2	Ü	0.2	U	0.2	U	0.2	U	0.2	Ü	0.2	U	0.2	U	2.0	Ü	
isopropylbenzene	μg/L	U. <u>L</u>	0.0	0.0	٦	U. <u>L</u>	J	0.2	J	U. <u>L</u>	J	V. <u>L</u>	٦	V. L		U. <u>L</u>		0.2	J	2.0	٦	
1,1,2,2-tetrachloroethane	μg/L	0.3	5.0	1.0	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3	U	3.0	U	
1,3-dichlorobenzene	μg/L μg/L	0.0	0.0	1.0	-	0.0		0.0	U	0.0	-	0.0	-	0.0		0.0		0.0		0.0	U	
1.4-dichlorobenzene	μg/L μg/L																					
1,2-dichlorobenzene																						
1,2-dichioropenzene 1.2-dibromo-3-chloropropane	μg/L																					
/	μg/L																					
1,2,4-trichlorobenzene	μg/L																					
1,2,3-trichlorobenzene	μg/L																	<u> </u>				

Table 4-5 Claremont Polychemical Superfund Site February, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EXT-1	EXT-2	EXT-3
sampling date				2/11/02		Feb-02	2/11/02		2/11/02		Feb-02	Feb-02	Feb-02
cooler temp				6 °C	J	- · · -	6 °C	J	6 °C	J		1 2 2 2	
VOCs					-	ns				-	no data	no data	no data
VOC dilution factor				1x			1x		1x				
dichlorodifluoromethane	μg/L												
chloromethane	μg/L	0.9	5.0	0.9	U		0.9	U	0.9	U			
vinyl chloride	μg/L	0.3	5.0	0.3	Ü		0.3	Ü	0.3	Ū			
bromomethane	μg/L	2.0	5.0	2.0	U		2.0	U	2.0	Ü			
chloroethane	μg/L	4.0	5.0	4.0	U		4.0	U	4.0	Ü			
trichlorofluoromethane	μg/L												
1,1-dichloroethene	μg/L	0.6	5.0	0.6	U		1.0	J	0.6	U			
1,1,2-trichloro-1,2,2-trifluoroet	μg/L												
acetone	μg/L	0.9	10.0	0.9	U		0.9	U	0.9	U			
carbon disulfide	μg/L	0.3	5.0	0.3	U		0.3	U	0.3	Ü			
methyl acetate	μg/L												
methylene chloride	μg/L	0.2	5.0	0.4	J		0.4	J	0.8	J			
trans -1,2-dichloroethene	μg/L	0.3	5.0	0.3	U		0.3	U	0.3	Ū			
tert-butyl methyl ether	μg/L				-			-		-			
1,1-dichloroethane	µg/L	0.3	5.0	0.3	U		0.3	U	0.3	U			
cis -1,2-dichloroethene	μg/L	0.3	5.0	0.3	Ü		6.0		0.3	Ū			
2-butanone (MEK)	μg/L	0.4	10.0	0.4	U		0.4	U	0.4	Ü			
bromochloromethane	μg/L												
chloroform	μg/L	0.2	5.0	0.2	U		0.2	U	0.2	U			
1,1,1-trichloroethane	μg/L	0.2	5.0	0.2	Ü		4.0	J	0.2	Ü			
cyclohexane	μg/L												
carbon tetrachloride	μg/L	0.2	5.0	0.2	U		0.2	U	0.2	U			
benzene	μg/L	0.3	5.0	0.3	U		0.3	Ü	0.3	Ü			
1,2-dichloroethane	μg/L	0.3	5.0	0.3	Ü		2.0	JH	0.3	Ü			
trichloroethene	μg/L	0.8	5.0	0.8	U		170.0	0	0.8	Ü			
methylcyclohexane	µg/L	0.0	0.0	0.0			11.010		0.0				
1,2-dichloropropane	μg/L	0.3	5.0	0.3	U		0.3	U	0.3	U			
bromodichloromethane	μg/L	0.2	5.0	0.2	Ü		0.2	Ü	0.2	Ü			
cis-1,3-dichloropropene	μg/L	0.3	5.0	0.3	U		0.3	U	0.3	Ü			
4-methyl-2-pentanone (MIBK)	μg/L	0.4	10.0	0.4	U		0.4	U	0.4	Ü			
toluene	μg/L	0.3	5.0	0.3	Ü		0.3	Ü	0.3	Ü			
trans -1,3-dichloropropene	μg/L	0.2	5.0	0.2	U		0.2	Ü	0.2	Ü			
1,1,2-trichloroethane	μg/L	0.2	5.0	0.2	U		0.2	Ü	0.2	Ü			
tetrachloroethene	μg/L	0.3	5.0	0.3	U		2.0	J	0.9	J			
2-hexanone	µg/L	0.8	10.0	0.8	U		0.8	U	0.8	U			
dibromochloromethane	μg/L	0.2	5.0	0.2	Ü		0.2	Ü	0.2	Ü			
1,2-dibromoethane	μg/L	0.2	0.0	0.2			0.2		0.2				
chlorobenzene	μg/L	0.2	5.0	0.2	U		0.2	U	0.2	U			
ethylbenzene	μg/L	0.3	5.0	0.3	U		0.3	Ü	0.3	U			
xylenes (total)	μg/L	0.5	5.0	0.5	U		0.5	Ü	0.5	Ü			
styrene	μg/L	0.2	5.0	0.2	U		0.3	Ü	0.2	Ü			+
bromoform	μg/L	0.2	5.0	0.2	U		0.2	Ü	0.2	Ü			
isopropylbenzene	μg/L	U. <u>L</u>	5.0	J. <u>L</u>	٥		J. <u>L</u>	-	V.E	٥			
1,1,2,2-tetrachloroethane	μg/L	0.3	5.0	0.3	U		0.3	U	0.3	U			
1,3-dichlorobenzene	μg/L	0.0	0.0	0.0			0.0	J	0.0	J			
1,4-dichlorobenzene	μg/L												
1,2-dichlorobenzene	μg/L						 						+
1,2-dibromo-3-chloropropane	μg/L μg/L						 						+
1,2,4-trichlorobenzene	μg/L μg/L						 					+	+
1,2,3-trichlorobenzene	μg/L μg/L						 						+

Table 4-5 Claremont Polychemical Superfund Site February, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C		SW-1
sampling date				2/14/02		2/14/02		2/14/02		2/12/02		2/12/02		2/12/02		2/13/02		2/13/02		2/13/02		Feb-02
cooler temp				8 °C	J	8 °C	J	8 °C	J	6 °C	J	6 °C	J	6 °C	J	5 °C		5 °C		5 °C		
metals		IDL	CRDL																			ns - dry
aluminum	μg/L		200.0																			
antimony	μg/L	5.9	20.0	5.9	U																	
arsenic	μg/L	7.0	40.0	7.0	U																	
parium	μg/L	1.1	5.0	73.2		33.1		60.3		25.2		69.4		88.2		69.5		40.6		44.9		
peryllium	μg/L		5.0																			
admium	μg/L		5.0																			
alcium	μg/L		5000.0																			
chromium	μg/L		10.0																			
cobalt	μg/L		50.0																			
copper	μg/L		25.0																			
ron	μg/L	85.3	200.0	85.3	U	85.3	U	85.3	U	2,880.0		87.3	В	85.3	U	2,760.0		85.3	U	85.3	U	
ead	μg/L	3.4	10.0	3.4	Ü	3.4	Ü	3.4	U	6.0	В	5.0	В	3.4	Ū	3.4	U	3.4	U	3.4	Ü	
nagnesium	µg/L		5000.0																			
manganese	μg/L	1.2	15.0	706.0		230.0		592.0		143.0		492.0		296.0		990.0		196.0		80.1		
nercury	μg/L		0.2																			
nickel	µg/L		40.0																			
ootassium	μg/L		5000.0																			
selenium	μg/L	6.9	30.0	6.90	U																	
silver	μg/L		10.0																			
sodium	µg/L		5000.0																			
hallium	μg/L		10.0																			
vanadium	μg/L		50.0																			
zinc	µg/L		20.0																			
	P3. =		20.0																			
field instrument																						ns - dry
оН	su			5.07		6.55		6.08		5.42		5.04		5.00		4.81		5.36		5.55		
conductivity	µmhos/c	m		0.151		0.586		0.569		0.073		0.279		0.221		0.188		0.121		0.109		
urbidity	NTU			001		0.000		0.000		0.0.0		0.2.0		J /		000		V		000		
00	mg/L			6.78		0.00		0.00		5.05		3.95		3.66		2.87		7.35		6.75		
emperature	°C			15.50		15.90		15.80		13.90		15.50		14.40		16.00		15.40		15.10		
Eh (ORP)	mV			10.00		10.00		10.00		10.00		10.00		11.10		10.00		10.10		10.10		
-11 (OTA)	1117																					
other																						
hromium. hexavalent	mg/L	0.003	0.010	0.003	U																	
rss	mg/L																					

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured

ns: not sampled

Table 4-5 Claremont Polychemical Superfund Site February, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EXT-1	EXT-2	EXT-3
sampling date				2/11/02		Feb-02	2/11/02		2/11/02		Feb-02	Feb-02	Feb-02
cooler temp				6 °C	J		6 °C	J	6 °C	J			
metals		IDL	CRDL			ns					no data	no data	no data
aluminum	μg/L		200.0										
antimony	μg/L	5.9	20.0	5.9	U		5.9	U	5.9	U			
arsenic	μg/L	7.0	40.0	7.0	U		7.0	U	7.0	U			
barium	μg/L	1.1	5.0	42.0			65.0		47.4				
beryllium	μg/L		5.0										
cadmium	μg/L		5.0										
calcium	μg/L		5000.0										
chromium	μg/L		10.0										
cobalt	μg/L		50.0										
copper	μg/L		25.0										
ron	μg/L	85.3	200.0	3,410.0			85.3	U	99.8	В			
ead	μg/L	3.4	10.0	3.4	U		3.4	U	3.4	U			
magnesium	μg/L		5000.0										
manganese	μg/L	1.2	15.0	542.0			528.0		124.0				
mercury	μg/L		0.2										
nickel	μg/L		40.0										
ootassium	μg/L		5000.0										
selenium	μg/L	6.9	30.0	6.90	U		6.90	U	6.90	U			
silver	μg/L		10.0										
sodium	μg/L		5000.0										
hallium	μg/L		10.0										
/anadium	μg/L		50.0										
zinc	μg/L		20.0										
field instrument						ns					no data	no data	no data
Н	su			6.38			5.55		5.06				
conductivity	µmhos/cr	n		0.479			0.272		0.271				
urbidity	NTU												
00	mg/L			0.00			0.00		6.18				
emperature	°C			13.80			14.20		12.70				
Eh (ORP)	mV												
other											no data	no data	no data
chromium. hexavalent	mg/L	0.003	0.010	0.003	U		0.003	U	0.003	U			
TSS	mg/L												

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured ns: not sampled

Table 4-6 Claremont Polychemical Superfund Site February 2002 Data Summary

						monitoring wells	\$				extraction wells		
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02
, g													
VOCs													
dichlorodifluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
chloromethane	μg/L	0.9	5.0	12	0	-	-	-	-	-	-	-	-
vinyl chloride	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
bromomethane	μg/L	2.0	5.0	12	0	-	-	-	-	-	-	-	-
chloroethane	μg/L	4.0	5.0	12	0	-	-	-	-	-	-	-	-
trichlorofluoromethane	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethene	μg/L	0.6	5.0	12	2	1.0 - 18.0	DW-2	EW-2C	-	-	-	-	-
1,1,2-trichloro-1,2,2-trifluoroet	μg/L			-	-	-	-	-	-	-	-	-	-
acetone	μg/L	0.9	10.0	12	1	9		EW-4B	-	-	-	-	-
carbon disulfide	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
methyl acetate	μg/L			-	-	-	-	-	-	-	-	-	-
methylene chloride	μg/L	0.2	5.0	12	7	0.4 - 4.0	DW-1,2	EW-2A,C; 4C	-	-	-	-	-
trans-1,2-dichloroethene	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
tert-butyl methyl ether	μg/L			-	-	-	-	-	-	-	-	-	-
1,1-dichloroethane	μg/L	0.3	5.0	12	1	3		EW-2C	-	-	-	-	-
cis-1,2-dichloroethene	μg/L	0.3	5.0	12	7	0.6 - 13.0	EW-2A	EW-4C	-	-	-	-	-
2-butanone (MEK)	μg/L	0.4	10.0	12	0	-	-	-	-	-	-	-	-
bromochloromethane	μg/L			-	-	-	-	-	-	-	-	-	-
chloroform	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
1,1,1-trichloroethane	μg/L	0.2	5.0	12	6	1.0 - 41.0	EW-2A	EW-2C	-	-	-	-	-
cyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
carbon tetrachloride	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
benzene	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
1,2-dichloroethane	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
trichloroethene	μg/L	0.8	5.0	12	8	0.9 - 820.0	EW-2A	EW-4C	-	-	-	-	-
methylcyclohexane	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichloropropane	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
bromodichloromethane	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
cis-1,3-dichloropropene	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
4-methyl-2-pentanone (MIBK)	μg/L	0.4	10.0	12	0	-	-	-	-	-	-	-	-
toluene	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
trans-1,3-dichloropropene	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
1,1,2-trichloroethane	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
tetrachloroethene	μg/L	0.3	5.0	12	11	0.9 - 380.0	EW-5	EW-1A	-	-	-	-	-
2-hexanone	μg/L	0.8	10.0	12	0	-	-	-	-	-	-	-	-
dibromochloromethane	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
1,2-dibromoethane	μg/L			-	-	-	-	-	-	-	-	-	-
chlorobenzene	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
ethylbenzene	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
xylenes (total)	μg/L	0.5	5.0	12	0	-	-	-	-	-	-	-	-
styrene	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
bromoform	μg/L	0.2	5.0	12	0	-	-	-	-	-	-	-	-
isopropylbenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,1,2,2-tetrachloroethane	μg/L	0.3	5.0	12	0	-	-	-	-	-	-	-	-
1,3-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,4-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2-dibromo-3-chloropropane	μg/L			-	-	-	-	-	-	-	-	-	-
1,2,4-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-
1,2,3-trichlorobenzene	μg/L			-	-	-	-	-	-	-	-	-	-

Table 4-6 Claremont Polychemical Superfund Site February 2002 Data Summary

						monitoring wells	s				extraction wells	1	
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02	Feb-02
camping date				. 00 02	. 00 02	. 05 02	. 05 02	. 05 02	. 02 02	. 00 02	. 02 02	. 05 02	. 05 02
metals		IDL	CRDL										
aluminum	ua/L		200.0	-	-	-	-	-	-	-	-	-	-
antimony	μg/L	5.9	20.0	12	0	-	-	-	-	-	-	-	-
arsenic	μg/L	7.0	40.0	12	0	-	-	-	-	-	-	-	-
barium	μg/L	1.1	5.0	12	12	25.2 - 88.2	EW-2A	EW-2C	-	-	-	-	-
beryllium	μg/L		5.0	-	-	-	-	-	-	-	-	-	-
cadmium	μg/L		5.0	-	-	-	-	-	-	-	-	-	-
calcium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
chromium	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
cobalt	μg/L		50.0	-	-	-	-	-	-	-	-	-	-
copper	μg/L		25.0	-	-	-	-	-	-	-	-	-	-
iron	μg/L	85.3	200.0	12	5	87.3 - 3,410.0	EW-2B	DW-1	-	-	-	-	-
lead	μg/L	3.4	10.0	12	2	5.0 - 6.0	EW-2B	EW-2A	-	-	-	-	-
magnesium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
manganese	μg/L	1.2	15.0	12	12	80.1 - 990.0	EW-4C	EW-4A	-	-	-	-	-
mercury	μg/L		0.2	-	-	-	-	-	-	-	-	-	-
nickel	μg/L		40.0	-	-	-	-	-	-	-	-	-	-
potassium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
selenium	μg/L	6.9	30.0	12	0	-	-	-	-	-	-	-	-
silver	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
sodium	μg/L		5000.0	-	-	-	-	-	-	-	-	-	-
thallium	μg/L		10.0	-	-	-	-	-	-	-	-	-	-
vanadium	μg/L		50.0	-	-	-	-	-	-	-	-	-	-
zinc	μg/L		20.0	-	-	-	-	-	-	-	-	-	-
field instrument													
рH	su			12	12	4.81 - 6.55	EW-4A	EW-1B	-	-	-	-	-
conductivity	µmhos/cı	n		12	12	0.073 - 0.586	EW-2A	EW-1B	-	-	-	-	-
turbidity	NTU			-	-	-	-	-	-	-	-	-	-
DO	mg/L			12	8	2.87 - 7.35	EW-4A	EW-4B	-	-	-	-	-
temperature	°C			12	12	12.7 - 15.9	EW-5	EW-1B	-	-	-	-	-
Eh (ORP)	mV			-	-	-	-	-	-	-	-	-	-
other													
chromium. hexavalent	mg/L	0.003	0.010	12	0	-	-	-	-	-	-	-	-
TSS	mg/L			-	-	-	-	-	-	-	-	-	-

⁻ not measured or analyzed, no results

Table 4-7 Claremont Polychemical Superfund Site May, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1A-QC		EW-1B		EW-1C		EW-2A		EW-2B		EW-2C		EW-4A		EW-4B		EW-4C	
sampling date				5/16/02		5/16/02		5/16/02		5/16/02		5/17/02		5/15/02		5/15/02		5/16/02		5/16/02		5/16/02	
VOCs																							
VOC dilution factor				1x		1x		1x		1x		1x		1x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromomethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.16	J	0.50	U	0.50	U
1,1-dichloroethene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	1.20		20.00		0.50	U	0.50	U	3.60	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
acetone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
carbon disulfide	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
methyl acetate	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
methylene chloride	μg/L		0.50	0.50	U	0.50	U	1.80		0.50	U	0.50	U										
trans-1,2-dichloroethene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	UJ	0.50	U	1.00	
tert-butyl methyl ether	μg/L		0.50	2.00		2.20		0.50	U	0.50	U												
1,1-dichloroethane	μg/L		0.50	0.50	U	0.42	J	0.50	U	0.50	U	0.50	U	0.50	U	2.10		0.50	U	0.50	U	1.10	
cis -1,2-dichloroethene	μg/L		0.50	1.50		1.70		0.50	U	0.50	U	0.83		2.80		6.80	J	8.40	J	0.65		34	J
2-butanone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	UJ	5.0	U	5.0	U	5.0	U	5.0	U
bromochloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloroform	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.31	J	0.50	U	0.57		0.50	U	0.50	U	0.50	U
1,1,1-trichloroethane	μg/L		0.50	0.64		0.75		0.50	U	0.50	U	0.57		2.20		63.00	D	0.62		1.30		13.00	
cyclohexane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
benzene	μg/L		0.50	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ	0.50	UJ
1,2-dichloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
trichloroethene	μg/L		0.50	3.30		3.60		0.55	J	0.50	UJ	0.98		6.40	J	15.00		4.40	J	72.00	D	1,100.00	D
methylcyclohexane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
toluene	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	U
trans-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
tetrachloroethene	μg/L		0.50	340.00	D	280.00	D	1.20	J	0.50	UJ	73.00	D	22.00	J	9.00		140.00	D	3.00		19.00	
2-hexanone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	UJ	5.0	U	5.0	U	5.0	U	5.0	U
dibromochloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dibromoethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
ethylbenzene	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	U
xylenes (total)	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	U
styrene	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.41	J
bromoform	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
isopropylbenzene	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	UJ	0.50	U	0.50	U
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,4-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U

Table 4-7 Claremont Polychemical Superfund Site May, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	SW-1	DW-1	SW-2	DW-2		EW-5		EXT-1		EXT-2		EXT-3	
sampling date				May-02	5/16/02	May-02	5/15/02	T	5/15/02		5/29/02		5/29/02		5/29/02	_
ouriping date				may oz	0/10/02	May 02	0/10/02		0/10/02		O/LO/OL		0/20/02		0,20,02	
VOCs				ns - dry		ns - dry		\neg								
VOC dilution factor					1x		1x	\neg	1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50		0.50 U			Ü	0.50	Ü	0.50	U	0.50	U	0.50	Ü
vinvl chloride	μg/L		0.50		0.50 U			Ü	0.50	Ü	0.50	Ü	0.50	Ü	0.50	Ü
bromomethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
chloroethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
trichlorofluoromethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
1,1-dichloroethene	μg/L		0.50		0.50 U			Ü	1.00		0.79		6.70		17.00	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50		0.50 U			Ü	0.50	U	0.50	U	0.50	U	0.26	J
acetone	μg/L		5.0		5.0 U			U	5.0	U	5.0	U	5.0	U	5.0	U
carbon disulfide	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
methyl acetate	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
methylene chloride	μg/L		0.50		0.50 U			U	0.58	ŭ	0.50	U	0.50	U	0.50	Ü
<i>trans</i> -1,2-dichloroethene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ū
tert-butyl methyl ether	μg/L		0.50		0.50 U			U	0.50	U	0.19	J	0.11	J	0.50	
1,1-dichloroethane	μg/L		0.50		0.50 U			U	1.60		0.22	J	1.50	-	4.20	
cis -1.2-dichloroethene	μg/L		0.50		0.50 U			U	6.80		5.30		11.00		18.00	J
2-butanone	μg/L		5.0		5.0 U			Ü	5.0	U	5.0	U	5.0	U	5.0	U
bromochloromethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
chloroform	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.17	J	0.38	_ j
1,1,1-trichloroethane	μg/L		0.50		0.50 U		0.18	J	0.50	Ü	1.40		11.00		27.00	Ď
cvclohexane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
benzene	μg/L		0.50		0.50 UJ			U	0.50	U	0.50	U	0.50	U	0.50	Ü
1,2-dichloroethane	μg/L		0.50		0.50 U		0.50	Ü	0.50	Ü	0.50	Ü	0.70		1.40	
trichloroethene	μg/L		0.50		0.50 U		0.68		240.00	D	20.00	D	210.00	D	620.00	D
methylcyclohexane	μg/L		0.50		0.50 U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50		0.50 U			Ü	0.50	U	0.50	U	0.50	U	0.50	Ü
bromodichloromethane	μg/L		0.50		0.50 U			Ü	0.50	U	0.50	U	0.50	U	0.50	Ü
cis-1,3-dichloropropene	μg/L		0.50		0.50 U			Ü	0.50	Ü	0.50	Ü	0.50	Ü	0.12	J
4-methyl-2-pentanone	μg/L		5.0		5.0 U			Ü	5.0	Ü	5.0	U	5.0	U	5.0	U
toluene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
trans-1,3-dichloropropene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
1,1,2-trichloroethane	μg/L		0.50		0.50 U			Ü	0.50	Ü	0.16	J	0.13	J	0.28	J
tetrachloroethene	μg/L		0.50		0.50 U		2.00		2.90		140.00	D	150.00	D	45.00	D
2-hexanone	μg/L		5.0		5.0 U		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
dibromochloromethane	μg/L		0.50		0.50 U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	Ü
1,2-dibromoethane	μg/L		0.50		0.50 U			U	0.50	Ü	0.50	Ü	0.50	Ü	0.50	Ü
chlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
ethylbenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
xylenes (total)	μg/L		0.50		0.50 U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	Ü
styrene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	Ü	0.50	Ü
bromoform	μg/L		0.50		0.50 U			U	0.50	U	0.50	UJ	0.50	UJ	0.50	UJ
isopropylbenzene	μg/L		0.50		0.50 U			Ü	0.50	Ü	0.50	U	0.50	U	0.50	U
1,1,2,2-tetrachloroethane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ū
1,3-dichlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
1,4-dichlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.11	J	0.50	U	0.50	Ū
1,2-dichlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ū
1,2-dibromo-3-chloropropane	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ū
1,2,4-trichlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	Ü
1.2.3-trichlorobenzene	μg/L		0.50		0.50 U			U	0.50	U	0.50	U	0.50	U	0.50	U

Table 4-7 **Claremont Polychemical Superfund Site** May, 2002 Groundwater Monitoring Data

cobalt µg/L 0.60 50.0 8.9 B 9.8 B 3.4 B 54.8 4.0 B 19.4 B 10.1 B 16.2 B 5.8 B copper µg/L 0.90 25.0 1.5 B 1.4 B 2.8 B 4.1 B 7.8 B 2.4 B 6.6 B rion µg/L 1.7 3 10.0 17.3 U 17.3 U 17.3 U 27.2 B 3.0 B 6.6 B 4.7 B 2.4 B 6.6 B 6.6 D 2.1 U 2.7 B 5.2 2.1 U 2.1	EW-4C		EW-4B		EW-4A		EW-2C		EW-2B		EW-2A		EW-1C		EW-1B		EW-1A-QC		EW-1A	CRQL	MDL	units	Analyte
	5/16/02	=	5/16/02		5/16/02		5/15/02		5/15/02		5/17/02		5/16/02		5/16/02		5/16/02		5/16/02				sampling date
ntimony µg/L 47 60.0 4.7 U 4.7		_		_		_						_						_					
anum pg/L 0.80 20.00 86.9 B 89.0 B 31.4 B 77.1 B 13.9 B 60.7 B 84.6 B 67.5 B 47.1 B 8.01 B 8.01 B 9.01 B 9.0																							
Peryllium				_		_		_				_		_		_							
Page				_				_				_				_							
Part				_				_				_		_		_							
Chromitum		U		U		U		U		U		U		U		U		U					
Depart Pig/L 0.60 50.0 8.9 B 9.8 B 3.4 B 54.8 4.0 B 19.4 B 10.1 B 16.2 B 5.8 B Example Exempted Pig/L 0.90 25.0 1.5 B 1.4 B 2.8 B 4.1 B 7.8 B 2.6 B 4.7 B 2.4 B 6.6 B Research Research Pig/L 17.3 10.00 17.3 U 17.3	13,900.00										6,220.00											μg/L	calcium
Pig/L 0.90 25.0 1.5 B 1.4 B 2.8 B 4.1 B 7.8 B 2.6 B 4.7 B 2.4 B 6.6 B Pig/L 17.3 100.0 17.3 U 17.3 U 17.3 U 17.3 U 38.9 B 1,830.0 17.3 U 26.7 B 34.0 B 17.3 U Pig/L 2.1 3.0 2.1 U 6.6 2.1 U 2.7 B 5.2 2.1 U 2.1		U		_		_		_		_		U		_		_		_					
Pig/L 17.3 100.0 17.3 U 17.3 U 17.3 U 38.9 B 1,830.00 17.3 U 26.7 B 34.0 B 17.3 U 2.1 U 2.		В	5.8	В	16.2	В	10.1	В	19.4	В			54.8	В	3.4	В	9.8	В	8.9			μg/L	cobalt
Page	1.2	В	6.6	В	2.4	В	4.7	В	2.6	В	7.8	В	4.1	В	2.8	В	1.4	В	1.5	25.0	0.90	μg/L	copper
Page	J 17.3	U	17.3	В	34.0	В	26.7	U	17.3		1,830.00	В	38.9	U	17.3	U	17.3	U	17.3	100.0	17.3	μg/L	iron
Managanese	J 2.1	U	2.1	U	2.1	U	2.1	U	2.1		5.2	В	2.7	U	2.1		6.6	U	2.1	3.0	2.1	μg/L	ead
Page	3 2,720.00	В	3,360.00		9,560.00	В	4,130.00		6,670.00	В	3,100.00		8,930.00		7,280.00		5,680.00		5,450.00	5000.0	9.5	μg/L	nagnesium
Page	37.8		170		885		197		450		174		851		292		1,130.00		1,090.00	15.0	0.10	μg/L	manganese
Display	J 0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	U	0.20	0.2	0.20		mercury
Decision	3.1	В	3.7	В	2.3	В	6.7	В	39.9	U	1.8	В	5.2	В	9.4	В	7.8	В	6.3	40.0	1.8		
Selenium	3,550.00	В	3,350.00	В	2,130.00	В	3,750.00	В	2,590.00	В	1,690.00	J	15,900.00	J	11,900.00	В	4,770.00	В	4,680.00	5000.0	20.0		ootassium
silver		_		_		U		В		_		U		U		_		_					
Sodium		UJ						UJ															
thallium		J																					
vanadium µg/L 0.80 50.0 0.80 U 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 <th< td=""><td></td><td>_</td><td></td><td>U</td><td>,</td><td>_</td><td></td><td>U</td><td></td><td>_</td><td></td><td>U</td><td></td><td>_</td><td></td><td>U</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td></th<>		_		U	,	_		U		_		U		_		U		_					
Field instrument		U		_		_		_				_		_		_							
field instrument Su 4.93 4.93 6.27 5.50 5.63 5.00 4.91 4.75 5.44 conductivity Jmhos/cm 0.342 0.342 0.987 0.812 0.112 0.498 0.369 0.324 0.215 turbidity NTU 4.2 4.2 61.2 3.0 35.5 2.3 2.0 13.0 0.8 DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 temperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	30.9					-				_													
pH su 4.93 4.93 6.27 5.50 5.63 5.00 4.91 4.75 5.44 conductivity Jmhos/cm 0.342 0.342 0.987 0.812 0.112 0.498 0.369 0.324 0.215 turbidity NTU 4.2 4.2 61.2 3.0 35.5 2.3 2.0 13.0 0.8 DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 temperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	+	\rightarrow									200.00					\rightarrow		\dashv				rg	
conductivity Jmhos/cm 0.342 0.342 0.987 0.812 0.112 0.498 0.369 0.324 0.215 urbidity NTU 4.2 4.2 61.2 3.0 35.5 2.3 2.0 13.0 0.8 DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 emperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04		\neg														\dashv		\neg					field instrument
conductivity Jmhos/cm 0.342 0.342 0.987 0.812 0.112 0.498 0.369 0.324 0.215 turbidity NTU 4.2 4.2 61.2 3.0 35.5 2.3 2.0 13.0 0.8 DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 temperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	5.66		5.44		4.75		4.91		5.00		5.63		5.50		6.27	\neg	4.93		4.93			su	оН
turbidity NTU 4.2 4.2 61.2 3.0 35.5 2.3 2.0 13.0 0.8 DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 temperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	0.256	$\overline{}$														\neg		\rightarrow)		conductivity
DO mg/L 5.66 5.66 0.84 4.01 2.5 3.00 2.45 2.81 7.24 temperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	22.9	\rightarrow														\rightarrow		\dashv					· · · · · · · · · · · · · · · · · · ·
emperature °C 18.68 18.68 19.55 19.53 12.85 17.86 17.72 18.70 19.04	7.67	\rightarrow														\rightarrow		\dashv					
	19.50	\rightarrow		_								\rightarrow				\rightarrow		\rightarrow					
Eh (ORP) mV 377 377 261 251 153 303 310 358 322	271	\rightarrow	322		358		310		303		153	_	251		261	\dashv	377	\rightarrow	377			mV	

boldface: lab analysis positive detection U: not detected

J: estimated

R: rejected
B: IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution NM: not measured

Table 4-7 **Claremont Polychemical Superfund Site** May, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	SW-1	DW-1		SW-2	DW-2		EW-5		EXT-1		EXT-2		EXT-3	
sampling date				May-02	5/16/02		May-02	5/15/02		5/15/02		5/29/02		5/29/02		5/29/02	_
																	_
metals		IDL	CRDL	ns - dry			ns - dry										_
aluminum	μg/L	7.3	200.0		7.3	U		75.6	В	85.0	В	123	В	120	В	82.6	
antimony	μg/L	4.7	60.0		4.7	U		4.7	U	4.7	U	1.6	U	1.6	U	1.6	- 1
arsenic	μg/L	2.8	10.0		2.8	U		2.8	U	2.8	U	4.2	U	4.2	U	4.2	
oarium	μg/L	0.80	200.0		41.8	В		58.1	В	120	В	86.3	В	103	В	73.5	
beryllium	μg/L	0.10	5.0		0.10	U		0.55	В	0.48	В	0.85	В	1.0	В	0.82	
cadmium	μg/L	0.40	5.0		0.40	U		0.40	U	0.40	U	0.32	В	0.30	U	0.30	Į
calcium	μg/L	6.6	5000.0		20,800.00			27,300.00		32,600.00		31,800.00		22,100.00		16,400.00	
chromium	μg/L	0.60	10.0		0.60	U		0.60	U	0.60	U	0.50	U	0.50	U	0.50	ι
cobalt	μg/L	0.60	50.0		1.3	В		7.1	В	38.0	В	17.5	В	16.0	В	13.6	E
copper	μg/L	0.90	25.0		0.90	U		1.9	В	1.6	В	5.2	В	5.1	В	3.2	E
iron	μg/L	17.3	100.0		3,900.00			17.3	U	17.3	U	43.0	В	11.4	U	11.4	ι
lead	μg/L	2.1	3.0		2.1	U		2.1	U	2.1	U	12.9		32.2		35.1	
magnesium	μg/L	9.5	5000.0		2,610.00	В		6,590.00		14,600.00		7,770.00		7,360.00		5,830.00	
manganese	μg/L	0.10	15.0		510			130		954		502		392		342	
mercury	μg/L	0.20	0.2		0.20	U		0.20	U	0.20	U	0.13	BJ	0.15	BJ	0.18	В
nickel	μg/L	1.8	40.0		1.8	U		4.5	В	26.9	В	8.0	В	8.6	В	5.3	E
potassium	μg/L	20.0	5000.0		8,160.00	J		7,920.00	J	12,800.00	J	14,800.00	J	10,300.00	J	8,970.00	٠,
selenium	μg/L	3.0	5.0		3.0	U		3.6	В	3.0	U	2.2	U	2.2	U	2.2	ι
silver	μg/L	1.0	10.0		1.0	UJ		1.0	UJ	1.0	UJ	0.70	U	0.70	U	0.70	ι
sodium	μg/L	354	5000.0		74,500.00	J		62,600.00	J	37,500.00	J	80,900.00		59,000.00		32,300.00	
thallium	μg/L	5.4	10.0		5.4	U		5.4	U	5.4	U	3.3	U	3.3	U	3.3	ι
vanadium	μg/L	0.80	50.0		0.80	U		0.80	U	0.80	U	0.50	U	0.50	U	0.50	ι
zinc	μg/L	1.1	20.0		15.6	В		23.7		53.7		23.5	J	13.7	В	6.7	E
field instrument				ns - dry			ns - drv										
oH	su			na - ury	6.09		ns - dry	4.80		5.34		5.78		4.99		5.33	_
onductivity	umhos/cm				0.805			0.792		0.774		0.958		0.717		0.683	_
turbidity	NTU	1			8.2			8.0		2.5		12.7		5.4		11.4	_
DO	mg/L				0.76			2.16		8.18		1.54		2.02		1.82	_
	°C				19.25			18.57		19.34		1.54		19.29		1.02	_
temperature	mV				60			304		292		211		291		273	_
Eh (ORP)	mv				60			304		292		211		291		2/3	

boldface: lab analysis positive detection U: not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution
NM: not measured

Table 4-8 Claremont Polychemical Superfund Site May 2002 Groundwater Monitoring Data Summary

						Monitoring Well	s				Extraction Wells	6	
Analyte	units	MDL	CRQL	no.	no.	detected conc.	mainall	many wall	no.	no.	detected conc.	mainall	many wall
·				sampled	detected	range	min. well	max. well	sampled	detected	range	min. well	max. well
sampling date				May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02
VOCs													
dichlorodifluoromethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
chloromethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
vinyl chloride	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
bromomethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
chloroethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
trichlorofluoromethane	μg/L		0.50	13	1	0.16		EW-4A	3	0	-	-	-
1,1-dichloroethene	μg/L		0.50	13	4	1.0 - 20.2	EW-5	EW-2C	3	3	0.79 - 17.0	EXT-1	EXT-3
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	13	0	-	-	-	3	1	0.26		EXT-3
acetone	μg/L		5.0	13	0	-	-	-	3	0	-	-	-
carbon disulfide	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
methyl acetate	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
methylene chloride	μg/L		0.50	13	1	1.80		EW-1B	3	0	-	-	-
trans -1,2-dichloroethene	μg/L		0.50	13	1	1.00		EW-1C	3	0	-	-	-
tert-butyl methyl ether	μg/L		0.50	13	2	2.0 - 2.2	EW-1A	EW-1A QC	3	3	0.19 - 0.50	EXT-1	EXT-3
1,1-dichloroethane	μg/L		0.50	13	4	0.42 - 2.1	EW-1A QC	EW-2C	3	3	0.22 - 4.20	EXT-1	EXT-3
cis -1,2-dichloroethene	μg/L		0.50	13	9	0.65 - 34.0	EW-4B	EW-4C	3	3	5.30 - 18.0	EXT-1	EXT-3
2-butanone	µg/L		5.0	13	0	-	-	-	3	0	-	-	-
bromochloromethane	μg/L		0.50	13	0	_	_	-	3	0	_		_
chloroform	μg/L		0.50	13	0	_	-	-	3	2	0.17 - 0.38	EXT-2	EXT-3
1,1,1-trichloroethane	μg/L		0.50	13	9	0.18 - 63.0	DW-2	EW-2C	3	3	1.40 - 27.0	EXT-1	EXT-3
cyclohexane	μg/L μg/L		0.50	13	0	0.10 - 05.0	-	LVV-2C	3	0	1.40 - 27.0	-	- LX1-3
carbon tetrachloride	μg/L μg/L		0.50	13	0	-		-	3	0	-		-
				13	0			-	3	0	-		-
benzene	μg/L		0.50	13	0	-	-	-	3			-	- EVT 0
1,2-dichloroethane trichloroethene	μg/L		0.50	13	11				3	1 3	1.4 20.0 - 620.0	EVT 4	EXT-3
	μg/L		0.50			0.55 - 1,100.0	EW-1B	EW-4C			20.0 - 620.0	EXT-1	EXT-3
methylcyclohexane	μg/L		0.50	13	0			-	3	0			
1,2-dichloropropane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
bromodichloromethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
cis-1,3-dichloropropene	μg/L		0.50	13	0	-	-	-	3	1	0.12		EXT-3
4-methyl-2-pentanone	μg/L		5.0	13	0	-	-	-	3	0	-	-	-
toluene	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
trans-1,3-dichloropropene	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
1,1,2-trichloroethane	μg/L		0.50	13	0	-	-	-	3	3	0.13 - 0.28	EXT-2	EXT-3
tetrachloroethene	μg/L		0.50	13	11	1.2 - 340.0	EW-1B	EW-1A	3	3	45.0 - 150.0	EXT-3	EXT-2
2-hexanone	μg/L		5.0	13	0	-	-	-	3	0	-	-	-
dibromochloromethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
1,2-dibromoethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
chlorobenzene	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
ethylbenzene	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
xylenes (total)	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
styrene	μg/L		0.50	13	1	0.41		EW-4C	3	0	-	-	-
bromoform	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
isopropylbenzene	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
1,1,2,2-tetrachloroethane	μg/L		0.50	13	0	-	-	-	3	0	-	-	-
1,3-dichlorobenzene	μg/L		0.50	13	0	-	_	-	3	0	-	-	-
1,4-dichlorobenzene	μg/L		0.50	13	0	-	-	-	3	1	0.11		EXT-1
1,2-dichlorobenzene	μg/L		0.50	13	0	_		-	3	0	-	_	-
1,2-dibromo-3-chloropropane	μg/L μg/L		0.50	13	0	-		-	3	0	-		
1,2-dibroffio-3-chloroproparie	μg/L μg/L		0.50	13	0	-		-	3	0	-		-
1,2,3-trichlorobenzene	μg/L μg/L		0.50	13	0	-		-	3	0	-		-

Table 4-8
Claremont Polychemical Superfund Site
May 2002 Groundwater Monitoring Data Summary

						Monitoring Well	s				Extraction Wells	1	
Analyte	units	MDL	CRQL	no.	no.	detected conc.			no.	no.	detected conc.		
				sampled	detected	range	min. well	max. well	sampled	detected	range	min. well	max. well
sampling date				May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02	May-02
· 5													
metals		IDL	CRDL										
aluminum	μg/L	7.3	200.0	13	9	7.6 - 307.0	EW-1A,C	EW-2A	3	3	82.6 - 123	EXT-3	EXT-1
antimony	μg/L	4.7	60.0	13	0	-	-	-	3	0	-	-	-
arsenic	μg/L	2.8	10.0	13	1	9.00		EW-2A	3	1	-	-	-
barium	μg/L	0.80	200.0	13	13	13.9 - 120.0	EW-2A	EW-1B	3	3	73.5 - 103	EXT-3	EXT-2
beryllium	μg/L	0.10	5.0	13	9	0.14 - 0.55	EW-1A	DW-2	3	3	0.82 - 1.0	EXT-3	EXT-2
cadmium	μg/L	0.40	5.0	13	0	-	-	-	3	1	0.32		EXT-1
calcium	μg/L	6.6	5000.0	13	13	6,220 - 48,400	EW-2A	EW-1C	3	3	16,400 - 31,800	EXT-3	EXT-1
chromium	μg/L	0.60	10.0	13	1	1.10		EW-2A	3	0	-	-	-
cobalt	μg/L	0.60	50.0	13	13	1.3 - 54.0	DW-1	EW-1C	3	3	13.6 - 17.5	EXT-3	EXT-1
copper	μg/L	0.90	25.0	13	12	1.2 - 7.8	EW-4C	EW-2A	3	3	3.2 - 5.2	EXT-3	EXT-1
iron	μg/L	17.3	100.0	13	5	26.7 - 3900	EW-2C	DW-1	3	1	43.0		EXT-1
lead	μg/L	2.1	3.0	13	2	2.7 - 5.2	EW-1C	EW-2A	3	3	12.9 - 35.1	EXT-1	EXT-3
magnesium	μg/L	9.5	5000.0	13	13	2,610 - 14,600	DW-1	EW-5	3	3	5,830 - 7,700	EXT-3	EXT-1
manganese	μg/L	0.10	15.0	13	13	37.8 - 1,130	EW-4C	EW-1A QC	3	3	342 - 502	EXT-3	EXT-1
mercury	μg/L	0.20	0.2	13	0	-	-	-	3	3	0.13 - 0.18	EXT-1	EXT-3
nickel	μg/L	1.8	40.0	13	11	2.3 - 39.9	EW-4A	EW-2B	3	3	5.3 - 8.6	EXT-3	EXT-2
potassium	μg/L	20.0	5000.0	13	13	1,690 - 15,900	EW-2A	EW-1C	3	3	8,970 - 14,800	EXT-3	EXT-1
selenium	μg/L	3.0	5.0	13	1	3.30		EW-2B	3	0	-	-	-
silver	μg/L	1.0	10.0	13	0	-	-	-	3	0	-	-	-
sodium	μg/L	354	5000.0	13	13	1,620 - 74,500	EW-2A	DW-1	3	3	32,300 - 80,900	EXT-3	EXT-1
thallium	μg/L	5.4	10.0	13	0	-	-	-	3	0	-	-	-
vanadium	μg/L	0.80	50.0	13	1	1.00	-	EW-2A	3	0	-	-	-
zinc	μg/L	1.1	20.0	13	13	15.6 - 368	DW-1	EW-2A	3	3	6.7 - 23.5	EXT-3	EXT-1
field instrument													
pН	su			13	13	4.75 - 6.27	EW-4A	EW-1B	3	3	4.99 - 5.78	EXT-2	EXT-1
conductivity	umhos/cn	1		13	13	0.112 - 0.987	EW-2A	EW-1B	3	3	0.683 - 0.958	EXT-3	EXT-1
turbidity	NTU			13	13	0.8 - 61.2	EW-4B	EW-1B	3	3	5.4 - 12.7	EXT-2	EXT-1
DO	mg/L			13	13	0.76 - 8.18	DW-1	EW-5	3	3	1.54 - 2.02	EXT-1	EXT-2
temperature	°C			13	13	12.9 - 19.55	EW-2A	EW-1B	3	3	19.29 - 19.72	EXT-2	EXT-3
Eh (ORP)	mV			13	13	60 - 377	DW-1	EW-1A	3	3	211 - 291	EXT-1	EXT-2

- no results

Table 4-9 Claremont Polychemical Superfund Site August, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A	EW-1B	EW-1C	EW-2A	EW-2B	EW-2C	EW-4A	EW-4B	EW-4C	SW-1
sampling date				8/6/02	8/6/02	8/6/02	Aug-02	8/7/02	8/7/02	8/6/02	8/6/02	8/6/02	Aug-02
camping date				0/0/02	0/0/02	0/0/02	7 tag 02	0/1/02	0/1/02	0/0/02	0/0/02	0/0/02	7 tag 02
VOCs							ns - dry						ns - dry
VOC dilution factor				1x	1x	1x	no dry	1x	1x	1x	1x	1x	no dry
dichlorodifluoromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
chloromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
vinyl chloride	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
bromomethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
chloroethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
trichlorofluoromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U	0.50 U	0.17 J	0.13 J	0.50 U	
1,1-dichloroethene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.47 J	17.00	0.25 J	0.48 J	3.00	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U	0.24 J	0.50 U	0.50 U	0.50 U	
acetone	μg/L		5.0	5.0 U	5.0 U	5.0 U		5.0 U					
carbon disulfide	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
methyl acetate	μg/L		0.50	0.50 UJ	0.50 U	0.50 U		0.50 U					
methylene chloride	μg/L		0.50	0.50 UJ	0.50 U	0.50 U		0.50 U					
trans-1,2-dichloroethene	μg/L		0.50	0.50 U	0.50 UJ	0.50 U		0.50 U	0.50 U	0.50 UJ	0.50 U	0.71	
tert-butyl methyl ether	μg/L		0.50	1.80	0.24 J	0.50 U		0.50 U	0.50 U	0.14 J	0.50 U	0.50 U	
1,1-dichloroethane	μg/L		0.50	0.26 J	0.50 U	0.50 U		0.50 U	1.90	0.15 J	0.18 J	0.86	
cis -1,2-dichloroethene	μg/L		0.50	1.60	0.50 UJ	0.50 U		1.20	11.00 J	4.90 J	0.84	18.00	
2-butanone	μg/L		5.0	5.0 U	5.0 U	5.0 U		5.0 U					
bromochloromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
chloroform	μg/L		0.50	0.11 J	0.50 U	0.50 U		0.17 J	0.76	0.50 U	0.50 U	0.14 J	
1,1,1-trichloroethane	μg/L		0.50	0.50	0.50 U	0.50 U		0.92	22.00 D	0.87	1.70	11.00	
cyclohexane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
carbon tetrachloride	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
benzene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,2-dichloroethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U	0.50 U	0.50 U	0.50 U	0.37 J	
trichloroethene	μg/L		0.50	2.00	0.79	0.50 U		3.20	14.00	2.90	42.00 D	650.00 D	
methylcyclohexane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,2-dichloropropane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
bromodichloromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
cis-1,3-dichloropropene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
4-methyl-2-pentanone	μg/L		5.0	5.0 U	5.0 U	5.0 U		5.0 U					
toluene	μg/L		0.50	0.33 J	0.50 U	0.50 U		0.50 U					
trans-1,3-dichloropropene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,1,2-trichloroethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U	0.50 U	0.50 U	0.50 U	0.25 J	
tetrachloroethene	μg/L		0.50	140.00 D	2.10	0.43 J		5.60	4.20	77.00 D	3.50	14.00	
2-hexanone	μg/L		5.0	5.0 U	5.0 U	5.0 U		5.0 U					
dibromochloromethane	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,2-dibromoethane	µg/L		0.50	0.50 U	0.50 U 0.50 U	0.50 U 0.50 U		0.50 U	0.50 U 0.50 U	0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	
othylhonzone	μg/L		0.50	0.50 U				0.50 U		0.50 U			
ethylbenzene	μg/L		0.50	0.50 U	0.50 U	0.50 U 0.50 U		0.50 U	0.50 U	0.50 U	0.50 U	0.50 U 0.50 U	
xylenes (total)	μg/L		0.50 0.50	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U		0.50 U 0.50 U					
styrene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
bromoform	μg/L		0.50	0.50 U	0.50 U	0.28 J		0.50 U	0.18 J	0.50 U	0.18 J	0.19 J	
1 1 2 2 totraphlaroothese	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,1,2,2-tetrachloroethane 1,3-dichlorobenzene	µg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
7	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U	0.50 U	0.17 J	0.50 U	0.50 U	
1,4-dichlorobenzene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1.2 dibromo 2 obloropropos	μg/L		0.50	0.50 U	0.50 U	0.14 J		0.50 U					
1,2-dibromo-3-chloropropane 1,2.4-trichlorobenzene	µg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,2,4-trichlorobenzene	μg/L		0.50	0.50 U	0.50 U	0.50 U		0.50 U					
1,2,3-1110110100001120110	μg/L		0.30	0.50 0	0.50 U	U.50 U		0.50 0	U.50 U	0.50 0	0.50 U	0.50 U	

Table 4-9 Claremont Polychemical Superfund Site August, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EXT-1		EXT-1-QC		EXT-2		EXT-3	
sampling date				8/5/02		Aug-02	8/5/02		8/5/02		8/7/02		8/7/02		8/7/02		8/7/02	
γ 3																		
VOCs						ns - dry												
VOC dilution factor				1x			1x		1x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50	0.14	J		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
vinyl chloride	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromomethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloroethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
trichlorofluoromethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,1-dichloroethene	μg/L		0.50	0.50	U		0.50	U	0.92		0.69		0.73		4.20		15.00	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.24	J
acetone	μg/L		5.0	5.0	U		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
carbon disulfide	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.27	J	0.50	U	0.50	U
methyl acetate	μg/L		0.50	0.50	U		0.50	U	0.50	UJ	0.50	U	0.50	U	0.50	U	0.50	U
methylene chloride	μg/L		0.50	0.50	U		0.50	U	0.62	UJ	0.50	U	0.50	U	0.50	U	0.50	U
trans-1,2-dichloroethene	μg/L		0.50	0.50	UJ		0.50	U	0.50	U	0.50	U	0.50	U	0.10	J	0.26	J
tert-butyl methyl ether	μg/L		0.50	0.12	J		0.30	J	0.13	J	0.24	J	0.32	J	0.20	J	0.76	
1,1-dichloroethane	μg/L		0.50	0.50	U		0.50	U	1.20		0.24	J	0.23	J	1.10		4.4	
cis-1,2-dichloroethene	μg/L		0.50	0.50	UJ		0.50	U	6.10		5.30		5.30		13.00		19.00	J
2-butanone	μg/L		5.0	5.0	U		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
bromochloromethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloroform	μg/L		0.50	0.50	U		0.50	U	0.13	J	0.50	U	0.50	U	0.19	J	0.42	J
1,1,1-trichloroethane	μg/L		0.50	0.50	U		0.20	J	2.60		1.40		1.40		8.6		26.00	D
cyclohexane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
benzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.10	J	0.50	U	0.50	U
1,2-dichloroethane	μg/L		0.50	0.50	U		0.50	U	3.9		0.50	U	0.50	U	0.50	U	0.80	
trichloroethene	μg/L		0.50	0.43	J		0.50	U	130.00	J	21.00		23.00		160.00	D	580.00	D
methylcyclohexane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0	5.0	U		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
toluene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
trans-1,3-dichloropropene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50	0.50	U		0.50	U	0.12	J	0.17	J	0.20	J	0.18	J	0.38	J
tetrachloroethene	μg/L		0.50	0.44	J		0.59		2.30		180.00	D	180.00	D	280.00	D	21.00	
2-hexanone	μg/L		5.0	5.0	U		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
dibromochloromethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dibromoethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
ethylbenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
xylenes (total)	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
styrene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromoform	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.18	J	0.50	U	0.50	U	0.50	U
isopropylbenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,4-dichlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.15	J	0.18	J	0.50	U	0.50	U
1,2-dichlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U

Table 4-9 **Claremont Polychemical Superfund Site** August, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A		EW-1B		EW-1C		EW-2A	EW-2B		EW-2C		EW-4A		EW-4B		EW-4C		SW-1
sampling date				8/6/02		8/6/02		8/6/02		Aug-02	8/7/02		8/7/02		8/6/02		8/6/02		8/6/02		Aug-02
· •										<u> </u>											
metals - ILM04.1		IDL	CRDL							ns - drv											ns - dry
aluminum	μg/L	57.0	200.0	22.2	U	55.7	В	55.7	В		22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	1.0 0.1
antimony	μg/L	1.2	60.0	8.7	Ü	8.7	U	8.7	U		8.7	Ü	8.7	U	8.7	Ü	8.7	U	8.7	U	
arsenic	μg/L	3.0	10.0	6.0	Ü	6.0	Ü	6.0	Ü		6.0	Ü	6.0	Ü	6.0	Ü	6.0	Ü	6.0	Ü	
parium	μg/L	0.30	200.0	104.0		46.8	В	90.6	В		65.7	В	102.0	В	88.0	В	53.3	В	68.7	В	
peryllium	μg/L	0.20	5.0	0.1	U	0.1	U	0.1	U		0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	
cadmium	μg/L	0.30	5.0	0.6	Ü	0.6	U	0.6	U		0.6	U	0.6	U	0.6	Ü	0.6	U	0.6	U	
calcium	μg/L	15.0	5000.0	25,700		59,500		39,600			13,600	-	15,600	-	8,690		12,600		13,200		
chromium	μg/L	0.80	10.0	1.3	U	1.3	U	1.3	U		1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	
cobalt	μg/L	0.70	50.0	1.4	Ü	1.7	В	53.3			13.5	В	7.7	В	20.5	В	4.3	В	1.8	В	
copper	μg/L	1.5	25.0	2.6	Ü	3.2	В	3.3	В		5.1	В	5.0	В	2.6	U	2.6	U	19.0	В	
ron	μg/L	13.0	100.0	22.3	Ü	22.3	U	48.0	В		22.3	U	22.3	U	24.3	В	22.3	U	22.3	U	
ead	μg/L	1.2	3.0	8.1	J	3.1	J	2.9	U		2.9	Ü	2.9	Ü	2.9	U	2.9	Ū	4.1		
magnesium	μg/L	12.0	5000.0	7,420.0		8,340		8,840			6,490		4,850	В	10,400		3,240	В	2,670	В	
manganese	μg/L	0.20	15.0	1,730.0		301.0		801.0			370.0		175.0		903.0		146.0		34.4	J	
mercury	μg/L	0.10	0.2	0.2	U	0.2	U	0.2	U		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	
nickel	μg/L	1.0	40.0	6.2	В	1.8	Ü	1.8	Ü		21.8	В	1.8	U	1.8	Ü	1.8	U	1.8	Ū	
ootassium	μg/L	40.0	5000.0	8,840	J	15,900	J	18,300	J		2,970	BJ	4,730	В	3,370	BJ	4,460	BJ	4,460	BJ	
selenium	μg/L	3.0	5.0	3.0	U	3.0	U	3.0	U		3.0	U	3.1	В	3.0	U	3.0	U	3.0	U	
silver	μg/L	0.80	10.0	2.0	Ü	2.0	U	2.0	Ü		2.0	U	2.0	U	2.0	Ü	2.0	U	2.0	Ü	
sodium	μg/L	304	5000.0	17,700	J	93,200	J	45,200	J		38,000	J	25,400	J	14,600		6,160	J	10,700	J	
hallium	μg/L	2.4	10.0	8.8	U	8.8	U	8.8	U		8.8	U	8.8	U	8.8	U	8.8	U	8.8	U	
vanadium	μg/L	0.70	50.0	1.0	U	1.0	U	1.0	Ū		1.0	U	1.0	U	1.0	U	1.0	U	1.0	Ū	
zinc	μg/L	1.1	20.0	47.3		2.6	Ū	4.4	В		3.2	В	9.5	В	2.6	U	2.6	U	2.6	U	
field instrument										ns - dry											ns - dry
)H	su			4.83		6.32		5.44			5.16		4.92		4.78		5.46		5.57		c dry
conductivity	umhos/cn	1		0.404		0.999		0.780			0.451		0.366		0.316		0.198		0.216		
urbidity	NTU			3.0		2.1		2.2			6.2		6.5		20.6		9.8		0.92		
00	mg/L			7.72		1.18		0.36			3.54		2.69		3.48		6.43		7.22		
emperature	°C			23.36		19.88		19.94			18.52		18.21		18.57		18.54		19.54		
Eh (ORP)	mV			283		153		157			244		285		248		208		217		

U: not detected

J: estimated

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

Table 4-9 **Claremont Polychemical Superfund Site** August, 2002 Groundwater Monitoring Data

units	MDL	CRQL	DW-1		SW-2	DW-2		EW-5		EXT-1		EXT-1-QC		EXT-2		EXT-3	
			8/5/02		Aug-02	8/5/02		8/5/02		8/7/02		8/7/02		8/7/02		8/7/02	
	IDL	CRDL			ns - drv												
ua/L	57.0		22.2	U		22.2	U	22.2	U	22.2	U	22.2	U	22.2	U	22.2	ι
	1.2	60.0	8.7	Ü		8.7	U	8.7	Ü	8.7	U	8.7	U	8.7	U	8.7	Ĺ
	3.0	10.0	6.0	Ū		6.0	Ü	6.0	Ü	6.0	Ū	6.0	Ū	6.0	Ü	6.0	Ĺ
	0.30	200.0	46.2	В		62.0	В	151.0	В	82.4	В	85.4	В	95.9	В	86.5	Е
	0.20	5.0	0.1	U		0.1	U	0.1	U	0.1	U	0.1	U	0.1	U	0.1	L
	0.30	5.0	0.6	U		0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	L
	15.0	5000.0	25,200			29,200		39,100		30,400		32,200		21,000		14,200	
μg/L	0.80	10.0	1.3	U		1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
μg/L	0.70	50.0	1.4	U		6.7	В	43.4	В	14.2	В	15.4	В	13.2	В	12.7	В
μg/L	1.5	25.0	2.6	U		3.3	В	5.4	В	5.9	В	5.9	В	29.6		20.7	В
	13.0	100.0	3,660	J		22.3	U	22.3	U	204.0		258.0	J	480.0	J	107.0	
μg/L	1.2	3.0	5.9	J		5.7	J	4.1	J	6.7		5.0		23.8		23.9	
μg/L	12.0	5000.0	3,070.0	В		7,630		17,000		7,660		8,040		7,560		5,950	
	0.20	15.0	639.0			157.0		1070.0		471.0		495.0		397.0		336.0	
	0.10	0.2	0.2	U		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U
	1.0	40.0	1.8	U		1.8	U	12.3	В	1.8	U	1.8	U	1.8	U	1.8	U
μg/L	40.0	5000.0	9,850	J		9,160	J	17,600	J	16,100	J	16,900	J	10,700	J	7,780	J
μg/L	3.0	5.0	3.0	U		3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U
μg/L	0.80	10.0	2.0	U		2.0	U	2.0	U	2.0	U	2.0	U	2.0	U	2.0	U
μg/L	304	5000.0	74,300	J		56,500	J	62,600	J	86,900	J	91,800	J	56,700	J	24,100	J
μg/L	2.4	10.0	8.8	U		8.8	U	8.8	U	8.8	U	8.8	U	8.8	U	8.8	U
μg/L	0.70	50.0	1.0	U		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
μg/L	1.1	20.0	2.6	U		8.9	В	27.2		1,080		1,230		1,380		457.0	
					ns - drv												
SU			6.05		;	4.89		5.39		5.91		5.91		5.45		5.17	
	1																
NTU			9.7			4.7											
			0.13														
°C																	
mV			-57			210		167		121		121		158		194	
	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	IDL µg/L 57.0 µg/L 1.2 µg/L 0.30 µg/L 0.30 µg/L 0.30 µg/L 0.80 µg/L 0.80 µg/L 1.5 µg/L 1.5 µg/L 1.0 µg/L	IDL CRDL	IDL CRDL	IDL CRDL	DL CRDL DI DI DI DI DI DI DI	IDL CRDL	IDL CRDL DIS - dry Section Section	Bound Boun	DL CRDL DS - dry DS - dry	IDL CRDL	IDL CRDL	IDL CRDL DIL CRDL DIL CRDL DIL CRDL DIL CRDL DIL DIL CRDL DIL DIL	Book Book	Box Box	IDL CRDL NS - dry Style Styl	IDL CRDL

U: not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution
NM: not measured

Table 4-10
Claremont Polychemical Superfund Site
August 2002 Data Summary

Analyte						Monitoring We	lio .		•		Extraction Well	3	
Anaryto	units	MDL	CRQL	sampled		range	min well	max well	sampled		range	min well	max well
sampling date				Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02
, g				- 5	. 5	. 5		. 3	J	- J		. 0	
VOCs													
dichlorodifluoromethane	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
chloromethane	μg/L		0.50	11	1	0.14	-	DW-1	4	0	-	-	-
vinyl chloride	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
bromomethane	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
chloroethane	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
trichlorofluoromethane	μg/L		0.50	11	2	0.13 - 0.17	EW-4B	EW-4A	4	1	0.50		EXT-3
1.1-dichloroethene	μg/L		0.50	11	6	0.25 - 17.0	EW-4A	EW-2C	4	4	0.69 - 15.0	EXT-1	EXT-3
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	11	0	-	-	-	4	1	0.24		EXT-3
acetone	μg/L		5.0	11	0	-	-	-	4	0	-	_	-
carbon disulfide	μg/L		0.50	11	0	-	-	-	4	1	0.27		EXT-1
methyl acetate	μg/L		0.50	11	0	-	-	-	4	0	-	_	-
methylene chloride	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
trans-1,2-dichloroethene	μg/L		0.50	11	1	0.71		EW-4C	4	2	0.1 - 0.26	EXT-2	EXT-3
tert-butyl methyl ether	μg/L		0.50	11	6	0.12 - 1.8	DW-1	EW-1A	4	4	0.2 - 0.76	EXT-2	EXT-3
1,1-dichloroethane	μg/L		0.50	11	6	0.15 - 1.9	EW-4A	EW-2C	4	4	0.23 - 4.4	EXT-1QC	EXT-3
cis -1.2-dichloroethene	μg/L		0.50	11	7	0.84 - 18	EW-4B	EW-4C	4	4	5.3 - 19.0	EXT-1, 1QC	EXT-3
2-butanone	µg/L		5.0	11	0	-	-	-	4	0	-	-	-
bromochloromethane	μg/L		0.50	11	0	_	-	-	4	0	_	_	-
chloroform	μg/L		0.50	11	5	0.11 - 0.76	EW-1A	EW-2C	4	2	0.19 - 0.42	EXT-2	EXT-3
1,1,1-trichloroethane	μg/L		0.50	11	8	0.20 - 22	DW-2	EW-2C	4	4	1.4 - 26	EXT-1, 1QC	EXT-3
cvclohexane	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
carbon tetrachloride	μg/L		0.50	11	0	-	-	_	4	0	_	_	_
benzene	μg/L		0.50	11	0	_	-		4	1	0.10		EXT-1QC
1,2-dichloroethane	μg/L		0.50	11	1	0.37			4	0	-	_	-
trichloroethene	μg/L		0.50	11	9	0.43 - 650	DW-1	EW-4C	4	4	21.0 - 580	EXT-1	EXT-3
methylcyclohexane	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
1,2-dichloropropane	μg/L		0.50	11	0		_		4	0		_	
bromodichloromethane	μg/L		0.50	11	0		_		4	0		_	
cis-1,3-dichloropropene	μg/L		0.50	11	0		_		4	0		_	
4-methyl-2-pentanone	μg/L		5.0	11	0		_		4	0		_	
toluene	μg/L		0.50	11	1	0.33	_	EW-1A	4	0		_	
trans-1,3-dichloropropene	μg/L		0.50	11	0	-	_	-	4	0		_	
1,1,2-trichloroethane	μg/L μg/L		0.50	11	2	0.12 - 0.25	EW-5	EW-4C	4	4	0.17 - 0.38	EXT-1	EXT-3
tetrachloroethene	μg/L		0.50	11	11	0.43 - 140	EW-1A	EW-1C	4	4	21.0 - 280	EXT-3	EXT-2
2-hexanone	μg/L		5.0	11	0	-	-	-	4	0	-	- LX1-3	-
dibromochloromethane	μg/L μg/L		0.50	11	0		-	<u> </u>	4	0		-	-
1,2-dibromoethane	μg/L μg/L		0.50	11	0		-	-	4	0	-	-	
chlorobenzene	μg/L		0.50	11	0		-		4	0		_	
ethylbenzene	μg/L μg/L		0.50	11	0		-	<u> </u>	4	0		_	
xylenes (total)			0.50	11	0		-	<u> </u>	4	0		-	
, ,	μg/L		0.50	11	0	-	-	-	4	0		-	-
styrene bromoform	μg/L μg/L		0.50	11	4	0.18 - 0.28	- EW-2C, EW-4B	EW-1C	4	1	0.18	-	EXT-1
			0.50	11	0		EVV-2C, EVV-4D	-	4	0			
isopropylbenzene	μg/L		0.50	11	0	-	-	-	4	0	-	-	-
1,1,2,2-tetrachloroethane	μg/L				1		-	-	4	0	<u> </u>	-	-
1,3-dichlorobenzene	μg/L		0.50	11		0.17		EW-4A					
1,4-dichlorobenzene	μg/L		0.50	11	1	0.13		EW-4A	4	2	0.15 - 0.18	EXT-1	EXT-1QC
1,2-dichlorobenzene	μg/L		0.50	11 11	1	0.14		EW-1C	4	0	-	-	-
				11	0	-	_	_	4	0	-	_	_
1,2-dibromo-3-chloropropane 1,2,4-trichlorobenzene	μg/L μg/L		0.50 0.50	11	0	-	-	-	4	0	_	_	_

Table 4-10
Claremont Polychemical Superfund Site
August 2002 Data Summary

						Monitoring Well	s				Extraction Wells	3	
Analyte	units	MDL	CRQL	sampled	detected	range	min well	max well	sampled	detected	range	min well	max well
sampling date				Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02	Aug-02
metals - ILM04.1		IDL	CRDL										
aluminum	μg/L	57.0	200.0	11	2	55.7		EW-1B,C	4	0	-	-	-
antimony	μg/L	1.2	60.0	11	0	-	-	-	4	0	-	=	-
arsenic	μg/L	3.0	10.0	11	0	-	-	-	4	0	-	-	-
barium	μg/L	0.30	200.0	11	11	42.6 - 151.0	DW-1	EW-5	4	4	82.4 - 95.9	EXT-1	EXT-2
beryllium	μg/L	0.20	5.0	11	0	-	-	-	4	0	-	=	-
cadmium	μg/L	0.30	5.0	11	0	-	-	-	4	0	-	-	-
calcium	μg/L	15.0	5000.0	11	11	8,690 - 59,500	EW-1B	EW-4A	4	4	14,200 - 32,200	EXT-3	EXT-1QC
chromium	μg/L	0.80	10.0	11	0	-	-	-	4	0	-	=	-
cobalt	μg/L	0.70	50.0	11	9	1.7 - 53.3	EW-1B	EW-1C	4	4	12.7 - 15.4	EXT-3	EXT-1-QC
copper	μg/L	1.5	25.0	11	7	3.2 - 19.0	EW-1B	EW-4C	4	4	5.9 - 29.6	EXT-1,1QC	EXT-2
iron	μg/L	13.0	100.0	11	3	24.3 - 3,660	EW-4A	DW-1	4	4	107.0 - 480.0	EXT-3	EXT-2
lead	μg/L	1.2	3.0	11	4	3.1 - 8.1	EW-1B	EW-1A	4	4	5.0 - 23.9	EXT-1QC	EXT-3
magnesium	μg/L	12.0	5000.0	11	11	2,670 - 17,000	EW-4C	EW-5	4	4	5,950 - 8,040	EXT-3	EXT-1QC
manganese	μg/L	0.20	15.0	11	11	146.0 - 1,730.0	EW-4B	EW-1A	4	4	336.0 - 495.0	EXT-3	EXT-1QC
mercury	μg/L	0.10	0.2	11	0	-	-	-	4	0	-	-	-
nickel	μg/L	1.0	40.0	11	3	6.2 - 21.8	EW-1A	EW-2B	4	0	-	-	-
potassium	μg/L	40.0	5000.0	11	11	2,970 - 18,300	EW-2B	EW-1C	4	4	7,780 - 16,900	EXT-3	EXT-1QC
selenium	μg/L	3.0	5.0	11	0	-	-	-	4	0	-	-	-
silver	μg/L	0.80	10.0	11	0	-	-	-	4	0	-	-	-
sodium	μg/L	304	5000.0	11	11	6,160 - 93,200	EW-4B	EW-1B	4	4	24,100 - 91,800	EXT-3	EXT-1QC
thallium	μg/L	2.4	10.0	11	0	-	-	-	4	0	-	-	-
vanadium	μg/L	0.70	50.0	11	0	-	-	-	4	0	-	-	-
zinc	μg/L	1.1	20.0	11	6	3.2 - 47.3	EW-2B	EW-1A	4	4	457.0 - 1,380.0	EXT-3	EXT-2
field instrument													
рН	su			11	11	4.78 - 6.32	EW-4A	EW-1B	3	3	5.17 - 5.91	EXT-3	EXT-1
conductivity	umhos/cm	1		11	11	0.198 - 0.999	EW-4B	EW-1B	3	3	0.396 - 0.905	EXT-3	EXT-1
turbidity	NTU			11	11	0.92 - 20.6	EW-4C	EW-4A	3	3	6.6 - 32.2	EXT-2	EXT-1
DO	mg/L			11	11	0.13 - 7.72	DW-1	EW-1A	3	3	1.34 - 3.38	EXT-1	EXT-3
temperature	°C			11	11	18.21 - 23.36	EW-2C	EW-1A	3	3	20.56 - 21.37	EXT-1	EXT-2
Eh (ORP)	mV			11	11	-57 - 285	DW-1	EW-2C	3	3	121 - 194	EXT-1	EXT-3

- no results

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A	EW-1B	EW-1B-	QC	EW-1C		EW-2A	EW-2B	E	N-2C	EW-	3A	EW-3B		EW-3C
sampling date				Oct-02	10/21/02	10/21/		10/21/02		Oct-02	10/23/02		/23/02	Oct-	02	10/24/02		10/24/02
, J															-			
VOCs				ns - dry						ns - dry				ns - o	dry			
VOC dilution factor					1x	1x		1x			1x		1x			1x		12.5x
dichlorodifluoromethane	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
chloromethane	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
vinyl chloride	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
bromomethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
chloroethane	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
trichlorofluoromethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U	0.50 U	J		0.50	U	6.3
1,1-dichloroethene	μg/L		0.50		0.10	0.50	U	0.50	U		0.50	U 1	2.00 J			0.50	U	6.3
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U	J		0.50	U	6.3
acetone	μg/L		5.0		5.0 l	J 5.0	U	5.0	U		5.0	U	5.0 L	J		5.0	U	63
carbon disulfide	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
methyl acetate	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U	J		0.50	U	6.3
methylene chloride	μg/L		0.50			JJ 0.50	ŪJ		UJ).71 U	J		0.50	ÜJ	8.7 I
trans -1,2-dichloroethene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
tert-butyl methyl ether	μg/L		0.50			0.50	Ū	0.50	Ü			U	0.50 U	J		0.50	U	6.3
1,1-dichloroethane	μg/L		0.50		0.50 l	J 0.50	Ū	0.50	Ū		0.50		0.92			0.50	Ü	6.3
cis-1,2-dichloroethene	μg/L		0.50			J 0.50	U	0.50	U		1.30		7.70 J	l l		0.50	U	2.90
2-butanone	μg/L		5.0		5.0 l	J 5.0	U	5.0	U		5.0	U	5.0 L	J		5.0	U	63
bromochloromethane	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
chloroform	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.16	J I).41 J			0.50	U	6.3
1,1,1-trichloroethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.94	2	2.00 E)		0.50	U	3.50
cyclohexane	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
carbon tetrachloride	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U	J		0.50	U	6.3
benzene	μg/L		0.50		0.50 L	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
1,2-dichloroethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U	0.50 U	J		0.50	U	6.3
trichloroethene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		3.50	1	8.00			0.23	J	86.00
methylcyclohexane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
1,2-dichloropropane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
bromodichloromethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
cis-1,3-dichloropropene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U	J		0.50	U	6.3
4-methyl-2-pentanone	μg/L		5.0		5.0 l	J 5.0	U	5.0	U		5.0	U	5.0 L	J		5.0	U	63
toluene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	UJ	6.3
trans-1,3-dichloropropene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U	J		0.50	U	6.3
1,1,2-trichloroethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U	J		0.50	U	6.3
tetrachloroethene	μg/L		0.50		2.10	2.10		6.00			6.00		3.50			0.24	J	6.80
2-hexanone	μg/L		5.0		5.0 l	J 5.0	U	5.0	U		5.0	U	5.0 L	J		5.0	U	63
dibromochloromethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U (0.50 U			0.50	U	6.3
1,2-dibromoethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
chlorobenzene	μg/L		0.50		0.50 L	JJ 0.50	UJ	0.50	U		0.50	UJ ().50 U	П		0.50	UJ	6.3 l
ethylbenzene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
xylenes (total)	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
styrene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U	0.50 U			0.50	U	6.3
bromoform	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).50 U			0.50	U	6.3
isopropylbenzene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U (0.50 U			0.50	U	6.3
1,1,2,2-tetrachloroethane	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
1,3-dichlorobenzene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U ().50 U			0.50	U	6.3
1,4-dichlorobenzene	μg/L		0.50		0.50 l	J 0.50	U	0.50	U		0.50	U).14 J	1		0.50	U	6.3
1,2-dichlorobenzene	μg/L		0.50			J 0.50	U	0.15	J		0.50	U ().50 U			0.50	U	6.3
1,2-dibromo-3-chloropropane	μg/L		0.50		-	J 0.50	Ū	0.50	U			U	0.50 U			0.50	U	6.3
1,2,4-trichlorobenzene	μg/L		0.50			J 0.50	Ū	0.50	Ü				0.50 U			0.50	Ü	6.3
1,2,3-trichlorobenzene	μg/L		0.50			J 0.50	Ü	0.50	Ü				0.50 U			0.50	U	6.3

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-4A	EW-4B		EW-4C	SW-1	DW-1	SW-2	DW-2	EW-5	EW-6A	EW-6B
sampling date				10/23/02	10/23/02		10/23/02	Oct-02	10/22/02	Oct-02	10/22/02	10/22/02	Oct-02	abandoned
pg														
VOCs								ns - dry		ns - dry			ns - dry	
VOC dilution factor				6.3x	4.2x		50.0x		1x		1x	25x		
dichlorodifluoromethane	μg/L		0.50	3.1 U	2.1	U	25 l	l	0.50	U	0.50 U	13 U		
chloromethane	μg/L		0.50	3.1 U	2.1	Ū	25 l			U	0.50 U			
vinyl chloride	μg/L		0.50	3.1 U	2.1	Ū	25 l			U	0.50 U			
bromomethane	μg/L		0.50	3.1 U	2.1	U	25 l	l l	0.50	U	0.50 U	13 U		
chloroethane	μg/L		0.50	3.1 U		U	25 l	l	_	U	0.50 U			
trichlorofluoromethane	μg/L		0.50	3.1 U	2.1	U	25 l	l	0.50	U	0.50 U			
1,1-dichloroethene	μg/L		0.50	3.1 U	2.1	U	25 l	l		U	0.50 U			
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	3.1 U	2.1	Ū	25 l	l l		U	0.50 U			
acetone	μg/L		5.0	31 U	21	UJ	250 L	l	5.0	U	5.0 U			
carbon disulfide	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.50 U			
methyl acetate	μg/L		0.50	3.1 U	2.1	U	25 l	l	0.50	U	0.50 U			
methylene chloride	μg/L		0.50	3.1 U	2.1	Ü	25 l			UJ	0.50 U			
trans-1,2-dichloroethene	μg/L		0.50	3.1 U	2.1	U	25 l		_	U	0.50 U			
tert-butyl methyl ether	μg/L		0.50	3.1 U	2.1	U	25 L		0.13	J	0.15 J			
1,1-dichloroethane	μg/L		0.50	3.1 U		U	25 l			U	0.50 U			
cis-1,2-dichloroethene	μg/L		0.50	3.20	0.60	J				U	0.50 U			
2-butanone	μg/L		5.0	3.2 U	21	UJ	250 l	I	5.0	U	5.0 U	130 U		
bromochloromethane	μg/L		0.50	3.1 U	2.1	U	25 L	l		U	0.50 U			
chloroform	μg/L		0.50	3.1 U		U	25 l	l	0.50	U	0.50 U			
1,1,1-trichloroethane	μg/L		0.50	0.81 J	2.30		11.00			U	0.10 J			
cyclohexane	μg/L		0.50	3.1 U	2.1	U	25 l	l	_	U	0.50 U			
carbon tetrachloride	μg/L		0.50	3.1 U		U	25 l	l	0.50	U	0.50 U			
benzene	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.50 U			
1,2-dichloroethane	μg/L		0.50	3.1 U	2.1	Ū	25 l	l l	0.50	U	0.50 U			
trichloroethene	μg/L		0.50	2.60 J	59.00		890.00		0.51		0.40 J	280.00		
methylcyclohexane	μg/L		0.50	3.1 U	2.1	U	25 l	l l	0.50	U	0.50 U	13 U		
1,2-dichloropropane	μg/L		0.50	3.1 U	2.1	U	25 l	I	0.50	U	0.50 U	13 U		
bromodichloromethane	μg/L		0.50	3.1 U		U	25 l			U	0.50 U			
cis-1,3-dichloropropene	μg/L		0.50	1.10 J	0.56	J				U	0.50 U			
4-methyl-2-pentanone	μg/L		5.0	31 U	21	U	250 l	I	5.0	U	5.0 U	130 U		
toluene	μg/L		0.50	3.1 U		U	25 L			U	0.50 U			
trans-1,3-dichloropropene	μg/L		0.50	3.1 U	2.1	UJ	25 L	l	0.50	U	0.50 U			
1,1,2-trichloroethane	μg/L		0.50	3.1 U		UJ	25 l	l l	0.50	U	0.50 U			
tetrachloroethene	μg/L		0.50	84.00	3.20				0.78		0.41 J			
2-hexanone	μg/L		5.0	31 U	21	U	250 L		5.0	U	5.0 U			
dibromochloromethane	μg/L		0.50	3.1 U		U	25 L		_	U	0.50 U			
1,2-dibromoethane	μg/L		0.50	3.1 U	2.1	Ü	25 L			U	0.50 U			
chlorobenzene	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.50 U			
ethylbenzene	μg/L		0.50	3.1 U	2.1	Ü	25 L		_	U	0.50 U			
xylenes (total)	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.50 U			
styrene	μg/L		0.50	3.1 U	2.1	Ü	25 L			U	0.50 U			
bromoform	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.30 J			
isopropylbenzene	μg/L		0.50	3.1 U	2.1	U	25 l			U	0.50 U			
1,1,2,2-tetrachloroethane	μg/L		0.50	3.1 U	2.1	Ü	25 L			U	0.50 U			
1,3-dichlorobenzene	μg/L		0.50	3.1 U	2.1	Ü	25 L			U	0.50 U			
1,4-dichlorobenzene	μg/L		0.50	3.1 U	2.1	Ü	25 L		_	U	0.50 U			
1.2-dichlorobenzene	μg/L		0.50	3.1 U		U	25 L		_	U	0.50 U			
1,2-dibromo-3-chloropropane	μg/L		0.50	3.1 U	2.1	U	25 L			U	0.50 U			
1,2,4-trichlorobenzene	μg/L		0.50	3.1 U	2.1	Ü	25 L			U	0.50 U			
1,2,3-trichlorobenzene	μg/L		0.50	3.1 U		U		l		U	0.50 U			

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-6C	MW-6D		MW-8B		MW-8C		MW-10B		MW-10C		MW-10D	BP-3A	BP-3B		BP-3C
sampling date				10/23/02	10/24/02	Ť	10/24/02		10/23/02		10/24/02		10/24/02		10/24/02	Oct-02	10/25/02	T	10/25/02
VOCs																ns - dry			
VOC dilution factor				1x	1x		1x		1x		1x		3.1x		2.1x		1x		1x
dichlorodifluoromethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.16	J	2.60
chloromethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
vinyl chloride	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	1.00
bromomethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
chloroethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
trichlorofluoromethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.38 J
1,1-dichloroethene	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
acetone	μg/L		5.0	5.0 U	5.0	U	5.0	U	5.0	UJ	5.0	U	16	U	10 l	J	5.0	U	5.0 U
carbon disulfide	μg/L		0.50	0.50 U	0.45	J	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
methyl acetate	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U	1.0 l	J	0.50	U	0.50 U
methylene chloride	μg/L		0.50	0.50 UJ		U	0.50	U	0.50	U	0.50	U	2.6	UJ	2.7 U		0.50 l	IJ	0.90 U
trans -1,2-dichloroethene	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J	1.00		0.14 J
tert-butyl methyl ether	μg/L		0.50	0.50 U	0.62		1.60		0.50	U	0.50	U	1.6	U		J	0.50	U	0.50 U
1,1-dichloroethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.60	J		J		J	1.10 J
cis-1,2-dichloroethene	μg/L		0.50	0.50 U	0.25	J	0.12	J	0.50	U	1.30		17.00			J	21.00		25.00 D
2-butanone	μg/L		5.0	5.0 U	5.0	U	5.0	U	5.0	UJ	5.0	U	16	U		J		U	5.0 U
bromochloromethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
chloroform	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.65		2.20	J	0.00	J	0.30	J	0.21 J
1,1,1-trichloroethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	3.10		22.00			J		J	0.70
cyclohexane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	UJ	0.50	U	1.6	U		J		U	0.50 U
carbon tetrachloride	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
benzene	μg/L		0.50	0.50 U	0.43	J	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1,2-dichloroethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	4.00		2.00			U	0.50 U
trichloroethene	μg/L		0.50	0.33 J	0.40	J	0.70		0.34	J	3.40		20.00		21.00		5.70		2.00 J
methylcyclohexane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1,2-dichloropropane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
bromodichloromethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
4 mathed 2 mantages	μg/L		0.50 5.0	0.50 U 5.0 U	0.50 5.0	U	0.13	J	0.12 5.0	J UJ	0.13 5.0	J U	0.42 16	J		J J		U U	0.50 U 5.0 U
4-methyl-2-pentanone toluene	μg/L		0.50	5.0 U 0.50 U	0.50	U	5.0 0.87	U	0.50	U	0.50	U		U		J		U	0.50 U
	μg/L							- 11		UJ		_	1.6	_				_	
trans-1,3-dichloropropene	μg/L μg/L		0.50 0.50	0.50 U 0.50 U	0.50 0.50	U	0.50 0.50	U	0.50 0.50	UJ	0.50 0.50	U	1.6 1.6	U		J J		U U	0.50 U 0.50 U
tetrachloroethene	μg/L μg/L		0.50	0.50 U	0.50	J	0.50	U	1.00	UJ	2.70	U	26	U		J		D	0.50 J
2-hexanone	μg/L μg/L		5.0	5.0 U	5.0	U	5.0	U	5.0	UJ	5.0	U	26.0	U		J		U	5.0 U
dibromochloromethane	μg/L μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1,2-dibromoethane	μg/L μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
chlorobenzene	μg/L μg/L		0.50	0.11 J	0.59	-	0.50	U	0.50	U	0.50	U	1.6	UJ	1.0 U			IJ	0.50 U
ethylbenzene	μg/L μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
xylenes (total)	μg/L μg/L		0.50	0.50 U	0.50	Ü	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
styrene	μg/L μg/L		0.50	0.50 U	0.50	Ü	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
bromoform	μg/L		0.50	0.20 J	0.50	U	0.50	U	0.21	J	0.50	U	0.70	J		J		J	0.50 U
isopropylbenzene	μg/L		0.50	0.50 U	0.11	J	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1.1.2.2-tetrachloroethane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1,3-dichlorobenzene	μg/L		0.50	0.50 U	0.50	Ü	0.50	Ü	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1,4-dichlorobenzene	μg/L		0.50	0.50 U	0.99		0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1.2-dichlorobenzene	μg/L		0.50	0.50 U	0.70		0.50	U	0.50	U	0.50	U	1.60	U		J		U	0.50 U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U
1.2.4-trichlorobenzene	μg/L		0.50	0.50 U	0.50	Ü	0.50	Ü	0.50	U	0.50	Ü	1.6	U		J		U	0.50 U
1,2,3-trichlorobenzene	μg/L		0.50	0.50 U	0.50	U	0.50	U	0.50	U	0.50	U	1.6	U		J		U	0.50 U

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	LF-2 QC		LF-2		EXT-1		EXT-1-QC		EXT-2		EXT-3	
sampling date	unito	11100	UNGE	11/19/02		11/19/02		10/25/02		10/25/02		10/25/02		10/25/02	-
Sampling date				11/19/02		11/19/02		10/23/02		10/23/02		10/23/02		10/23/02	
VOCs															
VOC dilution factor				1x		1x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	0.50	Ü	0.50	U	0.50	U
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	0.50	Ü	0.50	Ü	0.50	U	0.50	U
bromomethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	0.50	Ü	0.50	U	0.50	Ü
chloroethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	0.50	Ü	0.50	U	0.50	Ü
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	0.50	Ü	0.50	U	0.12	J
1,1-dichloroethene	µg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	0.50	Ü	3.70		0.15	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U	0.50	Ū	0.50	Ü	0.50	Ū	0.50	U	0.50	U
acetone	μg/L		5.0	5.0	UJ	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
carbon disulfide	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
methyl acetate	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
methylene chloride	μg/L		0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	0.50	UJ	0.78	UJ
trans-1,2-dichloroethene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.21	J
tert-butyl methyl ether	μg/L		0.50	0.35	J	0.30	J	0.15	J	0.17	J	0.12	J	0.64	
1,1-dichloroethane	μg/L		0.50	0.50	U	0.50	U	0.22	J	0.23	J	1.00	J	5.20	
cis-1,2-dichloroethene	μg/L		0.50	0.50	U	0.50	U	5.00		5.20		13.00		19.00	J
2-butanone	μg/L		5.0	0.88	J	5.0	U	4.40	J	2.70	J	6.70		5.0	U
bromochloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chloroform	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.18	J	0.43	J
1,1,1-trichloroethane	μg/L		0.50	0.50	U	0.50	U	1.20		1.20		0.82		27.00	D
cyclohexane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
benzene	μg/L		0.50	0.50	U	0.50	U	0.12	J	0.12	J	0.50	U	0.50	U
1,2-dichloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
trichloroethene	μg/L		0.50	0.50	U	0.50	U	34.00	D	37.00	D	140.00	D	780.00	D
methylcyclohexane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
toluene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	UJ	0.50	U
trans-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50	0.50	U	0.50	U	0.18	<u> </u>	0.20	J	0.50	U	0.29	J
tetrachloroethene	μg/L		0.50	0.15	J	0.50	U	170.00	D	170.00	D	190.00	D	19.00	
2-hexanone	μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
dibromochloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2-dibromoethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
chlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.18	J	0.50	UJ	0.50	UJ	0.50	U
ethylbenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
xylenes (total)	μg/L		0.50 0.50	0.50 0.50	U	0.50 0.50	U	0.15 0.50	J U	0.14 0.50	J U	0.50 0.50	U	0.50 0.50	U
styrene	μg/L			0.50	J		U		J		U		U		J
bromoform	μg/L		0.50 0.50	0.50	U	0.50 0.50	U	0.21 0.50	U	0.50 0.50	U	0.50 0.50	U	0.16 0.50	U
isopropylbenzene 1.1.2.2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,4-dichlorobenzene	μg/L μg/L		0.50	0.50	J	0.50	J	0.50	J	0.50	J	0.50	U	0.50	U
1,2-dichlorobenzene	μg/L μg/L		0.50	0.50	U	0.19	U	0.14	U	0.50	U	0.50	U	0.50	U
1,2-dibromo-3-chloropropane	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,4-trichlorobenzene	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1.2.3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U
1,2,0-010110100001120110	µg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U	0.50	U

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-1A	EW-1B		EW-1B-QC		EW-1C		EW-2A	EW-2B		EW-2C		EW-3A	EW-3B		EW-3C
sampling date				Oct-02	10/21/02		10/21/02		10/21/02		Oct-02	10/23/02		10/23/02		Oct-02	10/24/02		10/24/02
metals		IDL	CRDL	ns - dry							ns - dry					ns - dry			
luminum (AI)	μg/L	57.0	200.0	ĺ	68.8	В	56.7	U	56.7	U		56.7	U	56.7	U		86.7	В	56.7
ntimony (Sb)	μg/L	1.2	60.0		2.8	В	1.2	U	1.2	U		1.2	U	1.2	U		1.2	U	1.2
rsenic (As)	μg/L	3.0	10.0		3.0	U	3.0	U	3.0	Ü		3.0	Ü	3.0	U		3.0	Ū	3.0
arium (Ba)	μg/L	0.30	200.0		49.7	В	42.8	В	91.5	В		69.3	В	88.9	В		13.0	В	32.6
eryllium (Be)	μg/L	0.20	5.0		0.20	U	0.20	U	0.25	В		0.34	В	0.61	В		0.20	U	0.20
admium (Cd)	μg/L	0.30	5.0		0.30	U	0.30	U	0.30	U		0.56	В	0.32	В		0.30	U	0.30
alcium (Ca)	μg/L	15.0	5000.0		59.000		56,200		46,400			14,500		13.400			2.940	В	4,840
chromium (Cr)	μg/L	0.80	10.0		0.80	U	0.80	U	0.80	U		1.6	В	0.80	U		0.80	U	0.80
cobalt (Co)	μg/L	0.70	50.0		3.0	В	1.7	В	47.8	В		13.8	В	8.9	В		0.70	U	0.70
copper (Cu)	μg/L	1.5	25.0		2.3	В	1.8	В	18.4	В		8.5	В	4.2	В		1.5	U	1.7
ron (Fe)	μg/L	13.0	100.0		18.6	В	12.5	U	257			105		12.5	U		206	J	13.7
ead (Pb)	μg/L	1.2	3.0		1.2	U	1.2	U	2.4	В		2.5	В	1.2	U		1.5	В	1.9
nagnesium (Mg)	μg/L	12.0	5000.0		8,180		7,780		9,190			7,050		4,660	В		970	В	3,330
manganese (Mn)	μg/L	0.20	15.0		285		272		729			349		180			24.3		15.6
nercury (Hg)	μg/L	0.10	0.2		0.10	UJ		UJ	0.10	UJ		0.10	U	0.10	U		0.10	U	0.10
nickel (Ni)	μg/L	1.0	40.0		10.6	В	8.8	В	12.5	В		44.3		7.7	В		1.9	В	1.6
ootassium (K)	μg/L	40.0	5000.0		14,100	J	13,500	J	19,200	J		2,900	В	3,750	В		537	В	941
selenium (Se)	μg/L	3.0	5.0		3.1	В	3.0	U	3.0	U		3.0	U	3.0	U		3.0	U	3.0
silver (Ag)	μg/L	0.80	10.0		0.80	U	0.80	U	0.80	Ü		0.80	U	0.80	U		0.80	U	0.80
sodium (Na)	μg/L	304	5000.0		95,700		91,200		63,100			47,700	J	31,800	J		5,230	J	10,000
hallium (TI)	μg/L	2.4	10.0		2.4	U	2.4	U	2.4	U		2.4	U	2.4	U		2.4	U	2.4
ranadium (V)	μg/L	0.70	50.0		1.2	В	0.70	Ü	0.70	Ü		0.70	U	0.70	U		0.70	U	0.70
zinc (Zn)	μg/L	1.1	20.0		1.1	U	1.1	Ü	20.8			33.9	J	15.1	В		2.3	В	2.5
field instrument				ns - dry							ns - dry	+				ns - dry			
H	su			.10 019	6.59		6.59		5.77			5.26		5.07		o dry	5.46		5.28
conductivity	µmhos/ci	n			0.999		0.999		0.876			0.497		0.399			0.066		0.152
urbidity	NTU				4.7		4.7		5.8			8.2		7.2			23.6		11.5
00	mg/L				0.47		0.47		0.72			3.21		3.70			8.89		6.44
emperature	°C				19.43		19.43		19.31			17.74		17.90			15.59		15.71
Eh (ORP)	mV				105		105		125			275		303			261		285
(/	1111				100		100		120			2.0		000			201		200

U: not detected

J: estimated

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-4A		EW-4B		EW-4C		SW-1	DW-1		SW-2	DW-2		EW-5		EW-6A	EW-6B
sampling date				10/23/02		10/23/02		10/23/02		Oct-02	10/22/02		Oct-02	10/22/02		10/22/02		Oct-02	abandoned
metals		IDL	CRDL							ns - dry			ns - dry					ns - dry	abandoned
uminum (AI)	μg/L	57.0	200.0	56.7	U	56.7	U	56.7	U		56.7	U		165	В	56.7	U		
ntimony (Sb)	μg/L	1.2	60.0	1.5	В	1.2	U	1.2	U		1.2	U		1.2	U	1.2	U		
senic (As)	μg/L	3.0	10.0	3.0	U	3.0	U	3.0	U		3.0	U		3.0	U	3.0	U		
arium (Ba)	μg/L	0.30	200.0	83.8	В	53.8	В	56.9	В		48.3	В		79.1	В	118	В		
eryllium (Be)	μg/L	0.20	5.0	0.20	U	0.30	В	0.20	U		0.20	U		0.69	В	0.40	В		
admium (Cd)	μg/L	0.30	5.0	0.30	U	0.30	U	0.30	U		0.30	U		0.30	U	0.39	В		
alcium (Ca)	μg/L	15.0	5000.0	9,230		11.500		10,900			25,600			3,880		36,900			
hromium (Cr)	μg/L	0.80	10.0	0.80	U	0.80	U	0.80	U		0.80	U		0.80	U	0.80	U		
obalt (Co)	μg/L	0.70	50.0	23.0	В	5.8	В	2.5	В		1.5	В		7.7	В	32.3	В		
opper (Cu)	μg/L	1.5	25.0	3.2	В	1.9	В	2.4	В		2.1	В		3.4	В	4.1	В		
on (Fe)	μg/L	13.0	100.0	339	J	12.5	U	12.5	U		5,150			19.6	В	33.3	В		
ead (Pb)	μg/L	1.2	3.0	1.2	U	1.2	Ū	1.2	Ū		1.2	U		1.2	U	1.2	U		
nagnesium (Mg)	μg/L	12.0	5000.0	10,100		3,530	В	23,500	В		2910	В		9,860		14,700			
nanganese (Mn)	μg/L	0.20	15.0	780		157		32.7			588			181		751			
nercury (Hg)	μg/L	0.10	0.2	0.10	U	0.10	U	0.10	UJ		0.15	BJ		0.10	UJ	0.10	UJ		
ickel (Ni)	μg/L	1.0	40.0	4.9	В	5.4	В	3.3	В		1.0	U		8.1	В	24.9	В		
otassium (K)	μg/L	40.0	5000.0	3,670	В	4,540	В	36,500	В		8,820	J		10,600	J	15,400	J		
elenium (Se)	μg/L	3.0	5.0	3.0	U	3.0	U	3.0	U		3.0	U		3.0	U	3.0	U		
ilver (Ag)	μg/L	0.80	10.0	0.80	U	0.80	U	0.80	U		0.80	U		0.80	U	0.80	U		
odium (Na)	μg/L	304	5000.0	20,600	J	9,270	J	11,400			7,130			82,000		60,000			
hallium (TI)	μg/L	2.4	10.0	2.4	U	2.4	U	2.4	U		2.4	U		2.4	U	2.4	U		
anadium (V)	μg/L	0.70	50.0	0.70	Ū	0.70	U	0.70	U		0.70	U		0.70	U	0.70	U		
inc (Zn)	μg/L	1.1	20.0	2.7	В	9.6	В	9.9	В		1.1	U		7.2	В	28.1			
field instrument										ns - dry			ns - dry					ns - dry	abandoned
H	su			5.04		5.48		5.80		no dry	6.35		no ony	5.10		5.58		dry	azandono
onductivity	µmhos/ci	n		0.302		0.187		0.193			0.693			0.940		0.836			
urbidity	NTU			17.8		10.2		10.0			9.4			6.2		6.0			
00	mg/L			2.70		5.16		6.51			0.32			1.48		0.42			
emperature	°C			18.14		18.23		18.26			18.07			18.21		18.83			
h (ORP)	mV			308		275		253			10.07			283		202			
()	1117			000		2,0		200			10			200		202			

U: not detected

J: estimated

R: rejected
B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	EW-6C		MW-6D		MW-8B		MW-8C		MW-10B		MW-10C		MW-10D		BP-3A	BP-3B		BP-3C
sampling date				10/23/02		10/24/02		10/24/02		10/23/02		10/24/02		10/24/02		10/24/02		Oct-02	10/25/02		10/25/02
metals		IDL	CRDL															ns - drv			
lluminum (AI)	μg/L	57.0	200.0	78.9	В	56.7	U	168	В	56.7	U	133	В	89.9	В	56.7	U		115	В	83.1
Intimony (Sb)	μg/L	1.2	60.0	1.2	U	1.6	В	1.2	U	3.3	В	1.5	В	1.2	U	1.4	В		1.2	U	1.2
rrsenic (As)	μg/L	3.0	10.0	3.0	Ü	44.1		3.0	Ü	3.0	U	3.0	U	3.0	U	3.0	U		3.0	Ū	3.0
arium (Ba)	μg/L	0.30	200.0	25.3	В	125	В	596		61.3	В	42.0	В	102	В	76.2	В		40.6	В	101
peryllium (Be)	μg/L	0.20	5.0	0.20	U	0.20	U	1.2	В	0.30	В	0.21	В	0.59	В	0.20	U		0.20	U	0.20
cadmium (Cd)	μg/L	0.30	5.0	9.9		0.30	U	0.90	В	0.36	В	0.30	U	0.30	U	0.30	Ü		0.30	U	0.30
calcium (Ca)	μg/L	15.0	5000.0	13,300		19,700		36,200		8,140		7,350		8.500		15,400			1,900	В	20,800
chromium (Cr)	μg/L	0.80	10.0	0.80	U	0.80	U	0.80	U	0.80	U	2.9	В	0.80	U	0.80	U		12.4		9.4
cobalt (Co)	μg/L	0.70	50.0	10.2	В	9.5	В	17.4	В	3.7	В	0.80	В	3.4	В	2.3	В		0.70	U	7.7
copper (Cu)	μg/L	1.5	25.0	22.8	В	5.4	В	8.2	В	14.8	В	6.9	В	17.8	В	51.3			3.2	В	9.0
ron (Fe)	μg/L	13.0	100.0	120		48,200	J	68.0	В	294	J	1,690	J	176	J	110			201	J	189
ead (Pb)	μg/L	1.2	3.0	2.0	В	4.9		2.7	В	34.8		8.5		19.1		93.1			1.5	В	1.3
magnesium (Mg)	μg/L	12.0	5000.0	2,300	В	10,100		22,200		2,820	В	3,610	В	4,130	В	5,350			2,020	В	6,300
manganese (Mn)	μg/L	0.20	15.0	30.4		1,770		738		15.6		43.2		90.4		11.3	В		8.1	В	31.6
mercury (Hg)	μg/L	0.10	0.2	0.10	U	0.10	U	0.82		0.10	U	0.10	U	0.10	U	0.10	U		0.10	U	0.10
nickel (Ni)	μg/L	1.0	40.0	2.1	В	2.3	В	50.7		8.3	В	2.3	В	11.5	В	3.6	В		11.4	В	34.1
ootassium (K)	μg/L	40.0	5000.0	2,300	В	3,630		25,900		1,330	В	1,060	В	1,200	В	1,650	В		2,620	В	7,590
selenium (Se)	μg/L	3.0	5.0	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U	3.0	U		3.0	U	3.0
silver (Ag)	μg/L	0.80	10.0	0.80	U	0.80	U	0.80	U	0.80	U	0.80	U	0.80	U	0.80	Ü		0.80	U	0.80
sodium (Na)	μg/L	304	5000.0	47,100	J	78,400	J	10,500	J	20,700	J	7,390	J	8,170	J	28,700	J		7,770	J	19,700
hallium (TI)	μg/L	2.4	10.0	2.4	U	4.3	В	2.4	U	2.4	U	2.4	U	2.4	U	2.4	U		2.4	U	2.4
vanadium (V)	μg/L	0.70	50.0	1.1	В	0.70	U	0.70	U	1.7	В	0.70	U	0.70	U	0.70	U		0.70	U	0.70
zinc (Zn)	μg/L	1.1	20.0	199	J	83.7	J	118	J	75.9	J	69.9	J	72.2	J	178	J		44.0	J	17.8
field instrument								ns - dry										ns - dry			
H	su			4.49		6.23		113 - GLY		4.78		5.34		4.85		4.87		113 - ury	5.62		6.02
conductivity	µmhos/ci	n		2.700		1.040				0.159		0.101		0.129		0.247			0.092		0.321
urbidity	NTU			0.0		4.0				7.0		0.0		0.123		0.247			17.4		17.8
<u></u>	mg/L			1.05		0.55				5.48		5.51		7.25		5.00			8.05		0.30
emperature	°C			13.60		14.90				12.60		11.40		10.70		10.00			15.62		16.21
Eh (ORP)	mV			NM		NM				NM		NM		NM		NM			204		159
	111.0			I WIVI		14141				14141		14141		14141		14141			207		100

U: not detected

J: estimated

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

Table 4-11 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data

Analyte	units	MDL	CRQL	LF-2 QC	LF-2	EXT-1		EXT-1-QC		EXT-2		EXT-3	
sampling date				11/19/02	11/19/02	10/25/02		10/25/02		10/25/02		10/25/02	
metals		IDL	CRDL	no data	no data								
luminum (AI)	μg/L	57.0	200.0			56.7	U	56.7	U	119	В	56.7	
ntimony (Sb)	μg/L	1.2	60.0			1.2	U	1.2	U	1.2	U	1.2	
rsenic (As)	μg/L	3.0	10.0			3.0	U	3.0	U	3.0	U	3.0	
parium (Ba)	μg/L	0.30	200.0			83.0	В	80.2	В	95.5	В	87.2	
peryllium (Be)	μg/L	0.20	5.0			0.21	В	0.20	U	0.37	В	0.33	
cadmium (Cd)	μg/L	0.30	5.0			0.37	В	0.30	U	0.30	U	0.30	
calcium (Ca)	μg/L	15.0	5000.0			32,900		3,210		21,600		14,900	
chromium (Cr)	μg/L	0.80	10.0			0.80	U	0.80	U	0.80	U	0.80	
cobalt (Co)	μg/L	0.70	50.0			15.5	В	15.1	В	15.1	В	14.3	
copper (Cu)	μg/L	1.5	25.0			10.9	В	9.2	В	49.5		27.3	
ron (Fe)	μg/L	13.0	100.0			212	J	198	J	724	J	123	
ead (Pb)	μg/L	1.2	3.0			8.0		5.9		38.6		10.3	
magnesium (Mg)	μg/L	12.0	5000.0			8,620		8,010		7,630		6,010	
manganese (Mn)	μg/L	0.20	15.0			480		469		403		343	
mercury (Hg)	μg/L	0.10	0.2			0.10	U	0.11	В	0.10	U	0.10	
nickel (Ni)	μg/L	1.0	40.0			7.6	В	7.5	В	9.5	В	7.1	
ootassium (K)	μg/L	40.0	5000.0			18,900		16,800		11,700		8,310	
selenium (Se)	μg/L	3.0	5.0			3.0	U	3.0	U	3.0	U	3.0	
silver (Ag)	μg/L	0.80	10.0			0.80	U	0.80	U	0.80	U	0.80	
sodium (Na)	μg/L	304	5000.0			91,300	J	89,400	J	62,500	J	29,200	
hallium (TI)	μg/L	2.4	10.0			2.4	U	2.4	U	2.4	U	2.4	
vanadium (V)	μg/L	0.70	50.0			0.70	U	0.70	U	0.70	U	0.70	
zinc (Zn)	μg/L	1.1	20.0			3,630	J	1,960	J	2,470	J	592	
field instrument				no data	no data								
Н	su					6.00		6.00		5.33		5.11	
conductivity	µmhos/cr	n				0.909		0.909		0.676		0.396	
urbidity	NTU					27.6		27.6		28.3		12.3	
00	mg/L					1.48		1.48		2.39		3.01	
emperature	°C					17.22		17.22		17.69		17.87	
Eh (ORP)	mV					132		132		190		225	

U: not detected

J: estimated

R: rejected

B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution

NM: not measured

Table 4-12 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data Summary

						Monitoring Wel	ls				Extraction Wells	3	
Analyte	units	MDL	CRQL	no.	no.	detected conc.	min, well	max, well	no.	no.	detected conc.	min. well	max. well
•			J.1.4_	sampled	detected	range			sampled	detected	range		
sampling date				Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02
1/00													
VOCs			0.50	0.4	0	0.40.00	DD 0D	DD 00		0			
dichlorodifluoromethane	μg/L		0.50	24	2	0.16 - 2.6	BP-3B	BP-3C	4	0	-	-	-
chloromethane	μg/L		0.50 0.50	24 24	1	1.0	-	- BP-3C	4	0	-	-	-
vinyl chloride	μg/L		0.50	24	0	-			4	0	-	-	-
bromomethane	μg/L		0.50	24	0	-	<u>-</u> -	-	4	0	-	-	-
chloroethane	μg/L μg/L		0.50	24	1	0.38	-	- BP-3C	4	1	0.12	-	EXT-3
trichlorofluoromethane 1,1-dichloroethene	μg/L μg/L		0.50	24	2	0.36	EW-1B	EW-2C	4	2	3.7 - 15	EXT-2	EXT-3
1,1,2-trichloro-1,2,2-trifluoroet			0.50	24	0	0.10 - 12		- EVV-2C	4	0	3.7 - 15 -	-	- = = = = = = = = = = = = = = = = = = =
			5.0	24	1	- 51	-	- EW-5	4	0	-		_
acetone carbon disulfide	μg/L		0.50	24	1	0.45	-	MW-6D	4	0	-		_
methyl acetate	μg/L μg/L		0.50	24	0	-	-	-	4	0	-		_
methylene chloride	μg/L μg/L		0.50	24	0	<u>-</u>	_	-	4	0	-		_
trans-1,2-dichloroethene	μg/L μg/L		0.50	24	2	0.14 - 1.0	BP-3C	BP-3B	4	1	0.21		EXT-3
tert-butyl methyl ether	μg/L		0.50	24	7	0.14 - 1.6	DW-1	MW-8B	4	4	0.12 - 0.64	EXT-2	EXT-3
1,1-dichloroethane	μg/L μg/L		0.50	24	4	0.13 - 1.6	BP-3B	MW-10C	4	4	0.12 - 0.04	EXT-1	EXT-3
cis -1,2-dichloroethene	μg/L		0.50	24	14	0.12 - 25	MW-8B	BP-3C	4	4	5.0 - 19	EXT-1	EXT-3
2-butanone	μg/L		5.0	24	1	0.12 - 25	-	- DI - OO	4	3	2.7 - 6.7	EXT-1 QC	EXT-2
bromochloromethane	μg/L		0.50	24	0	_	_	_	4	0		-	-
chloroform	μg/L		0.50	24	7	0.16 - 2.2	EW-2B	MW-10C	4	2	0.18 - 0.43	EXT-2	EXT-3
1,1,1-trichloroethane	μg/L		0.50	24	11	0.10 - 22	DW-2	EW-2C,MW10C	4	4	1.2 - 27	EXT-1	EXT-3
cyclohexane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
carbon tetrachloride	μg/L		0.50	24	1	0.21		MW-10D	4	0	-	_	-
benzene	μg/L		0.50	24	1	0.43		MW-6D	4	2	1.2	EXT-1	EXT-1 QC
1,2-dichloroethane	μg/L		0.50	24	2	2.0 - 4.0	MW-10D	MW-10C	4	0	-	-	-
trichloroethene	μg/L		0.50	24	19	0.23 - 890	EW-3B	EW-4C	4	4	34 - 780	EXT-1	EXT-3
methylcyclohexane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,2-dichloropropane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
bromodichloromethane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
cis-1,3-dichloropropene	μg/L		0.50	24	7	0.12 - 7.3	MW-8C	EW-4C	4	0	-	-	-
4-methyl-2-pentanone	μg/L		5.0	24	0	-	-	-	4	0	-	-	-
toluene	μg/L		0.50	24	1	0.87		MW-8B	4	0	-	-	-
trans-1,3-dichloropropene	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,1,2-trichloroethane	μg/L		0.50	24	0	-	-	-	4	3	0.18 - 0.29	EXT-1	EXT-3
tetrachloroethene	μg/L		0.50	24	22	0.15 - 84	LF2-QC	EW-4A	4	4	19 - 190	EXT-3	EXT-2
2-hexanone	μg/L		5.0	24	0	-	-	-	4	0	-	-	-
dibromochloromethane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,2-dibromoethane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
chlorobenzene	μg/L		0.50	24	2	0.11 - 0.59	EW-6C	MW-6D	4	1	0.2		EXT-1
ethylbenzene	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
xylenes (total)	μg/L		0.50	24	0	-	-	-	4	2	0.14 - 0.15	EXT-1 QC	EXT-1
styrene	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
bromoform	μg/L		0.50	24	7	0.20 - 6.8	EW-6C, BP3C	EW-5	4	2	0.16 - 0.21	EXT-3	EXT-1
isopropylbenzene	μg/L		0.50	24	1	0.11		MW-6D	4	0	-	-	-
1,1,2,2-tetrachloroethane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,3-dichlorobenzene	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,4-dichlorobenzene	μg/L		0.50	24	4	0.14 - 0.99	EW-2C	MW-6D	4	2	0.14	EXT-1	EXT-1 QC
1,2-dichlorobenzene	μg/L		0.50	24	2	0.15 - 0.70	EW-1C	MW-6D	4	0	-	-	-
1,2-dibromo-3-chloropropane	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,2,4-trichlorobenzene	μg/L		0.50	24	0	-	-	-	4	0	-	-	-
1,2,3-trichlorobenzene	μg/L		0.50	24	0	-	- 20 of 40	-	4	0	-	-	-

Page 39 of 40

Table 4-12 Claremont Polychemical Superfund Site October, 2002 Groundwater Monitoring Data Summary

						Monitoring Well	s				Extraction Wells	;	
A t	!4-	MDI	CDO!	no.	no.	detected conc.			no.	no.	detected conc.	mainal!	
Analyte	units	MDL	CRQL	sampled	detected	range	min. well	max. well	sampled	detected	range	min. well	max. well
sampling date				Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02	Oct-02
metals		IDL	CRDL										
aluminum	μg/L	57.0	200.0	22	9	68.8 - 168	EW-1B	MW-8B	4	1	119		EXT-2
antimony	μg/L	1.2	60.0	22	6	1.4 - 3.3	MW-10D	MW-8C	4	0	-	-	-
arsenic	μg/L	3.0	10.0	22	1	44.1		MW-6D	4	0	-	-	-
barium	μg/L	0.30	200.0	22	22	13 - 596	EW-3B	MW-8B	4	4	80.2 - 95.5	EXT-1 QC	EXT-2
beryllium	μg/L	0.20	5.0	22	10	0.21 - 1.2	MW-10B	MW-8B	4	3	0.21 - 0.37	EXT-1	EXT-2
cadmium	μg/L	0.30	5.0	22	6	0.32 - 9.9	EW-2C	EW-6C	4	1	0.37		EXT-1
calcium	μg/L	15.0	5000.0	22	22	1,900 - 59,000	BP-3B	EW-1B	4	4	3,210 - 32,900	EXT-1 QC	EXT-1
chromium	μg/L	0.80	10.0	22	4	1.6 - 12.4	EW-2B	BP-3B	4	0	-	-	-
cobalt	μg/L	0.70	50.0	22	19	1.7 - 32.3	EW-1B QC	EW-5	4	4	14.3 - 15.5	EXT-3	EXT-1
copper	μg/L	1.5	25.0	22	21	1.7 - 51.3	EW-3C	MW-10D	4	4	9.2 - 49.5	EXT-1 QC	EXT-3
iron	μg/L	13.0	100.0	22	18	13.7 - 48,200	EW-3C	MW-6D	4	4	123 - 724	EXT-3	EXT-2
lead	μg/L	1.2	3.0	22	13	1.3 - 93.1	BP-3C	MW-10D	4	4	5.9 - 38.6	EXT-1 QC	EXT-2
magnesium	μg/L	12.0	5000.0	22	22	970 - 22,200	EW-3B	MW-8B	4	4	6,010 - 8,620	EXT-3	EXT-1
manganese	μg/L	0.20	15.0	22	22	8.1 - 1,770	BP-3B	MW-6D	4	4	343 - 480	EXT-3	EXT-1
mercury	μg/L	0.10	0.2	22	2	0.15 - 0.82	DW-1	MW-8B	4	1	0.11		EXT-1 QC
nickel	μg/L	1.0	40.0	22	21	1.6 - 50.7	EW-3C	MW-8B	4	3	7.1 - 9.5	EXT-3	EXT-2
potassium	μg/L	40.0	5000.0	22	22	537 - 36,500	EW-3B	EW-4C	4	4	8,310 - 18,900	EXT-3	EXT-1
selenium	μg/L	3.0	5.0	22	1	3.1		EW-1B	4	0	-	-	-
silver	μg/L	0.80	10.0	22	0	-	-	-	4	0	-	-	-
sodium	μg/L	304	5000.0	22	22	5,230 - 95,700	EW-3B	EW-1B	4	4	29,200 - 91,300	EXT-3	EXT-1
thallium	μg/L	2.4	10.0	22	1	4.3		MW-6D	4	0	-	-	-
vanadium	μg/L	0.70	50.0	22	3	1.1 - 1.7	EW-6C	MW-8C	4	0	-	-	-
zinc	μg/L	1.1	20.0	22	19	2.3 - 199	EW-3B	EW-6C	4	4	592 - 3.630	EXT-3	EXT-1
field instrument													
pH	su			21	21	4.49 - 6.59	EW-6C	EW-1B	4	4	5.11 - 6.00	EXT-3	EXT-1
conductivity	umhos/cm	1		21	21	0.066 - 2.700	EW-3B	EW-6C	4	4	0.396 - 0.909	EXT-3	EXT-1
turbidity	NTU			21	17	4.0 - 23.6	MW-6D	EW-3B	4	4	12.3 - 28.3	EXT-3	EXT-2
DO	mg/L			21	21	0.32 - 8.89	DW-1	EW-3B	4	4	1.48 - 3.01	EXT-1	EXT-3
temperature	°C			21	21	10.0 - 19.43	MW-10D	EW-1B	4	4	17.22 - 17.87	EXT-1	EXT-3
Eh (ORP)	mV			21	15	10 - 308	DW-1	EW-4A	4	4	132 - 225	EXT-1	EXT-3

- no results

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells	3						extraction wells		
A I A	sampling			no.	no.	detected conc.	mater and the	screen		screen	no.	no.	detected conc.		
Analyte	date	wells	units	sampled	detected	range	min. well	level	max. well	level	sampled	detected	range	min. well	max. wel
vinyl chloride															
rinyl chloride	May-00	site	μg/L	15	0	-	-	-	-	-	28	0	-	-	-
vinyl chloride	Sep-00	site	μg/L	15	0	-	-	-	-	-	6	0	-	-	-
vinyl chloride	Feb-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
vinyl chloride	May-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
vinyl chloride	Aug-01	site	μg/L	14	0	-	-	-	-	-	2	0	-	-	-
vinyl chloride	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	0	-	-	-
vinyl chloride	Feb 02	site	μg/L	12	0	-	-	-	-	-		-	-	-	-
vinyl chloride	May 02	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
vinyl chloride	Aug 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
vinyl chloride	Oct 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
vinyl chloride	Oct 02	all	μg/L	24	1	1.0	-	-	BP-3C	6					
total, site wells				131	0	-	-	-		-	56	0	-	-	-
total, all wells				144	1	1.0			BP-3C	6					
1,1-dichloroethene															
1,1-dichloroethene	May-00	site	μg/L	15	4	1.0 - 5.0	EW-4B	2	EW-2C	3	28	8	1.0 - 67.0	EXT-1	EXT-3
1,1-dichloroethene	Sep-00	site	μg/L	15	3	0.9 - 11.0	EW-2B	2	EW-2C	3	6	2	2.0 - 7.0	EXT-2	EXT-3
1,1-dichloroethene	Feb-01	site	μg/L	13	2	14.0 - 61.0	EW-2B	2	EW-2C	3	3	3	0.7 - 12.0	EXT-1	EXT-3
1,1-dichloroethene	May-01	site	μg/L	13	3	0.6 - 93.0	EW-5	4	EW-2C	3	3	2	4.0 - 23.0	EXT-2	EXT-3
1,1-dichloroethene	Aug-01	site	μg/L	14	4	0.4 - 52.0	EW-2A	1	EW-2C	3	2	2	4.0 - 16.0	EXT-2	EXT-3
1,1-dichloroethene	Nov 01	site	μg/L	14	5	0.2 - 44.0	EW-2A	1	EW-2C	3	3	2	1.0 - 17.0	EXT-1	EXT-3
1,1-dichloroethene	Feb 02	site	μg/L	12	2	1.0 - 18.0	DW-2	2	EW-2C	3	-	-	-	_	-
1,1-dichloroethene	May 02	site	μg/L	13	4	1.0 - 20.2	EW-5	4	EW-2C	3	3	3	0.79 - 17.0	EXT-1	EXT-3
1,1-dichloroethene	Aug 02	site	μg/L	11	6	0.25 - 17.0	EW-4A	1	EW-2C	3	4	4	0.69 - 15.0	EXT-1	EXT-3
1,1-dichloroethene	Oct 02	site	μg/L	11	2	0.1 - 12.0	EW-1B	2	EW-2C	3	4	2	3.7 - 15	EXT-2	EXT-3
1,1-dichloroethene	Oct 02	all	μg/L	24	2	0.10 - 12	EW-1B	2	EW-2C	3					
total, site wells				131	35	0.10 - 93.0	EW-1B	2	EW-2C	3	56	28	0.69 - 67.0	EXT-1	EXT-3
total, all wells				144	35	0.10 - 93.0	EW-1B	2	EW-2C	3					
acetone															
acetone	May-00	site	μg/L	15	3	0.2 - 11.0	EW-1C	3	EW-4C	3	28	13	11.0 - 580.0	EXT-1	EXT-3
acetone	Sep-00	site	µg/L	15	7	2.0 - 16.0	EW-4A,AQC,B	1,2	SW-1	1	6	4	50.0 - 100.0	EXT-1	EXT-2,3
acetone	Feb-01	site	µg/L	13	2	5.0		-	DW-1, DW-2QC	2	3	1	28.0	-	EXT-3
acetone	May-01	site	µg/L	13	9	1.0 - 120.0	EW-5	4	EW-4C	3	3	2	3.0 - 5.0	EXT-2	EXT-1
acetone	Aug-01	site	µg/L	14	0	-	-			-	2	2	25.0 - 170.0	EXT-2	EXT-3
acetone	Nov 01	site	µg/L	14	3	3.0 - 63.0	EW-2C	3	EW-1A	1	3	0	-	-	-
acetone	Feb 02	site	µa/L	12	1	9.0		-	EW-4B	2	-	-	_	_	_
acetone	May 02	site	ug/L	13	0	-	-		-	-	3	0	-	-	-
acetone	Aug 02	site	µg/L	11	0	_	-		-	-	4	0	-	_	-
acetone	Oct 02	site	ug/L	11	1	51.0	-	-	EW-5	4	4	0	_	_	_
acetone	Oct 02	all	ua/L	24	1	51.0	-		EW-5	4	<u> </u>	Ť			
total, site wells			1.3	131	26	0.2 - 120.0	EW-1C	3	EW-4C	3	56	22	3.0 - 580.0	EXT-2	EXT-3
			+	144	26	0.2 - 120.0	EW-1C	3	EW-4C	3					

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells	8						extraction wells		
Analyte	sampling	wells	units	no.	no.	detected conc.	min. well	screen	max, well	screen	no.	no.	detected conc.	min. well	max. well
Analyte	date	Wells	uiiits	sampled	detected	range	min. weii	level	max. wen	level	sampled	detected	range	min. weii	max. weii
methylene chloride methylene chloride	May-00	site	μg/L	15	8	0.3 - 16.0	EW-1A,B;DW1QC	1,2	EW-4C	3	28	11	4.0 - 50.0	EXT-1	EXT-3
methylene chloride	Sep-00			15	8	0.6 - 66.0	EW-1A,B,DW1QC	2	SW-1	1	6	2	50.0	<u> </u>	EXT-2,3
methylene chloride	Feb-01	site	μg/L	13	7	0.8 - 48.0	EW-1B	3	EW-4C	3	3	1	10.0		EXT-3
methylene chloride	May-01	site site	µg/L ua/L	13	7	0.5 - 46.0	DW-2.EW-5	2.4	SW-1	1	3	3	8.0 - 12.0	EXT-1.2	EXT-3
methylene chloride	Aug-01	site	µg/L µg/L	14	13	0.4 - 140.0	EW-4A	2,4	SW-1	1	2	2	13.0 - 40.0	EXT-1,2	EXT-3
methylene chloride		site	ug/L	14	8	1.0 - 7.0	EW-2B.C. 4A	1.2.3	EW-1A	1	3	2	6.0 - 39.0	EXT-2	EXT-3
metriylerie critoride	Nov 01	Site	µg/L	14	0	1.0 - 7.0	EVV-2D,C, 4A	1,2,3	EVV-IA	4.0	3		0.0 - 39.0	□ ∧ 1 - Z	EV1-9
methylene chloride	May 02	site	µg/L	12	1	0.4 - 4.0	DVV-1,2		EW-2A,U; 4U	1,3	- 0	0	-	-	_
methylene chloride		site	μg/L	11	0	1.8	-	-	EW-1B		4	0	-		_
methylene chloride	Aug 02	site	μg/L			-	-	-		-	4		-		-
methylene chloride	Oct 02	site	μg/L	11	0	-	-	-	-		4	0	-	-	-
methylene chloride	Oct 02	all	μg/L	131	59	0.0 440.0	FW 44 B-DW400	4.0	SW-1	1	56	21	4.0 - 50.0	EXT-1	EXT-3
total, site wells					59 59	0.3 - 140.0	EW-1A,B;DW1QC		SW-1	1	20	21	4.0 - 50.0	EXI-1	EXI-3
total, all wells				144	59	0.3 - 140.0	EW-1A,B;DW1QC	1,2	3VV-1	7					
trans -1,2-dichloroethene															
trans-1,2-dichloroethene	May-00	site	μg/L	15	4	0.3 - 16.0	EW-4A	1	EW-2B	2	28	0	-	-	-
trans-1,2-dichloroethene	Sep-00	site	μq/L	15	1	0.6	-	-	EW-5	4	6	0	-	-	-
trans-1,2-dichloroethene	Feb-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
trans-1.2-dichloroethene	May-01	site	ua/L	13	0	_	-	-	_	-	3	0	-	_	-
trans-1,2-dichloroethene	Aug-01	site	μg/L	14	0	-	-	-	-	-	2	0	-	-	-
trans-1,2-dichloroethene	Nov 01	site	μq/L	14	0	-	-	-	-	-	3	0	-	_	-
trans-1,2-dichloroethene	Feb 02	site	µg/L	12	0	-	-	-	_	-	_	-	-	_	-
trans-1.2-dichloroethene	May 02	site	ua/L	13	1	1.0	-	-	EW-1C	3	3	0	-	-	-
trans-1,2-dichloroethene	Aug 02	site	μq/L	11	1	0.71	_	_	EW-4C	3	4	2	0.1 - 0.26	EXT-2	EXT-3
trans-1,2-dichloroethene	Oct 02	site	µg/L	11	0	_	_	_			4	1	0.21		EXT-3
trans-1.2-dichloroethene	Oct 02	all	μg/L	24	2	0.14 - 1.0	BP-3C	6	BP-3B	5		'	0.21		LXI 0
total, site wells	00102	an	pg/L	131	7	0.3 - 16.0	EW-4A	1	EW-2B	2	56	3	0.1 - 0.26	EXT-2	EXT-3
total, all wells				144	9	0.14 - 16.0	BP-3C	6	EW-2B	2	- 00	-	0.7 0.20	2,7, 2	ZX. 0
1,1-dichloroethane															
1,1-dichloroethane	May-00	site	μg/L	15	0	-	-	-	-	-	28	0	-	-	-
1,1-dichloroethane	Sep-00	site	μg/L	15	1	5.0	-	-	EW-2C	3	6	1	4.0		EXT-3
1,1-dichloroethane	Feb-01	site	μg/L	13	2	2.0 - 12.0	EW-2B	2	EW-2C	3	3	2	1.0 - 5.0	EXT-2	EXT-3
1,1-dichloroethane	May-01	site	μg/L	13	3	0.6 - 17.0	EW-5	4	EW-2C	3	3	2	0.9 - 7.0	EXT-2	EXT-3
1,1-dichloroethane	Aug-01	site	μg/L	14	2	1.0 - 8.0	EW-5	4	EW-2C	3	2	1	7.0	-	EXT-3
1,1-dichloroethane	Nov 01	site	μg/L	14	2	0.6 - 6.0	DW-2	2	EW-2C	3	3	0	-	-	-
1,1-dichloroethane	Feb 02	site	µg/L	12	1	3.0	-	-	EW-2C	3		-	-		-
1,1-dichloroethane	May 02	site	µg/L	13	4	0.42 - 2.1	EW-1A QC	1	EW-2C	3	3	3	0.22 - 4.20	EXT-1	EXT-3
1,1-dichloroethane	Aug 02	site	μg/L	11	6	0.15 - 1.9	EW-4A	1	EW-2C	3	4	4	0.23 - 4.4	EXT-1QC	EXT-3
1,1-dichloroethane	Oct 02	site	μg/L	11 24	1	0.92	- DD 2D	-	EW-2C	3	4	4	0.22 - 5.2	EXT-1	EXT-3
1,1-dichloroethane	Oct 02	all	μg/L		4	0.56 - 1.6	BP-3B	5	MW-10C	5	F.C.	47	0.22 7.0	EVT 4	EVT ^
total, site wells				131	22	0.15 - 17.0	EW-4A	1	EW-2C	3	56	17	0.22 - 7.0	EXT-1	EXT-3
total, all wells	1	I		144	25	0.15 - 17.0	EW-4A	1	EW-2C	3		l	1		

Table 4-13
Claremont Polychemical Superfund site
Data Summary for ROD and Permit Analytes

						monitoring wells	3						extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
cis -1,2-dichloroethene															
cis-1,2-dichloroethene	May-00	site	μg/L	15	10	0.8 - 66.0	EW-1C	3	EW-4A	1	28	20	5.9 - 93.0	EXT-1	EXT-3
cis-1,2-dichloroethene	Sep-00	site	µg/L	15	8	2.0 - 83.0	EW-5	4	EW-4A	1	6	6	8.0 - 56.0	EXT-1	EXT-2
cis-1,2-dichloroethene	Feb-01	site	µg/L	13	8	0.9 - 56.0	EW-2A	1	EW-4C	3	3	3	7.0 - 29.0	EXT-1	EXT-3
cis-1,2-dichloroethene	May-01	site	µg/L	13	8	0.6 - 63.0	EW-2A	1	SW-1	1	3	3	5.0 - 21.0	EXT-1	EXT-3
cis-1,2-dichloroethene	Aug-01	site	µg/L	14	10	1.0 - 61.0	EW-1A	1	SW-1	1	2	2	13.0 - 20.0	EXT-2	EXT-3
cis-1,2-dichloroethene	Nov 01	site	µg/L	14	7	0.8 - 10.0	EW-2A	1	EW-2C	3	3	3	6.0 - 16.0	EXT-1	EXT-2. 3
cis-1 2-dichloroethene	Feb 02	site	ug/L	12	7	0.6 - 13.0	FW-2A	1	FW-4C	3	-	_	-		
cis-1,2-dichloroethene	May 02	site	µg/L	13	9	0.65 - 34.0	EW-4B	2	EW-4C	3	3	3	5.30 - 18.0	EXT-1	EXT-3
cis-1,2-dichloroethene	Aug 02	site	μg/L	11	7	0.84 - 18	EW-4B	2	EW-4C	3	4	4	5.3 - 19.0	EXT-1, 1QC	EXT-3
cis-1,2-dichloroethene	Oct 02	site	µg/L	11	6	0.6 - 11.0	EW-4B	2	EW-4C	3	4	4	5.0 - 19	EXT-1	EXT-3
cis-1,2-dichloroethene	Oct 02	all	µg/L	24	14	0.12 - 25	MW-8B	4	BP-3C	6			0.0 .0		2,1,0
total, site wells			FS-	131	80	0.6 - 83.0	EW-2A, EW-4A,B	1,2	EW-4A	1	56	48	5.0 - 93.0	EXT-1	EXT-3
total, all wells				144	88	0.12 - 83.0	MW-8B	4	EW-4A	1					
,															
chloroform															
chloroform	May-00	site	μg/L	15	2	0.5 - 2.0	EW-1C	3	SW-1	1	28	4	2.0 - 4.0	EXT-1	EXT-3
chloroform	Sep-00	site	μg/L	15	1	2.0	-	-	EW-2A	1	6	0	-	-	-
chloroform	Feb-01	site	μg/L	13	2	0.5 - 0.6	EW-2C	3	EW-2A	1	3	0	-	-	-
chloroform	May-01	site	μg/L	13	2	0.6	-	-	EW-2B,C	2,3	3	0	-	-	-
chloroform	Aug-01	site	μg/L	14	3	0.6 - 2.0	EW-2B	2	EW-2A	1	2	0	-	-	-
chloroform	Nov 01	site	μg/L	14	3	0.2 - 2.0	EW-2B	2	EW-2A	1	3	0	-	-	-
chloroform	Feb 02	site	μg/L	12	0	-	-	-	-	-	-	-	-	-	_
chloroform	May 02	site	μg/L	13	0		-	-		-	3	2	0.17 - 0.38	EXT-2	EXT-3
chloroform	Aug 02	site	μg/L	11	5	0.11 - 0.76	EW-1A	1	EW-2C	3	4	2	0.19 - 0.42	EXT-2	EXT-3
chloroform	Oct 02	site	μg/L	11	2	0.16 - 0.41	EW-2B	2	EW-2C	3	4	2	0.18 - 0.43	EXT-2	EXT-3
chloroform	Oct 02	all	μg/L	24	7	0.16 - 2.2	EW-2B	2	MW-10C	5					
total, site wells				131	20	0.16 - 2.0	EW-2B	2	SW-1, EW-2A	1	56	10	0.18 - 4.0	EXT-2	EXT-3
total, all wells				144	25	0.16 - 2.2	EW-2B	2	MW-10C	5					
1,1,1-trichloroethane															
1,1,1-trichloroethane	May-00	site	μg/L	15	10	0.4 - 9.0	DW-2	2	EW-2C	3	28	5	3 - 11	EXT-1	EXT-3
1,1,1-trichloroethane	Sep-00	site	μg/L	15	5	3.0 - 28.0	EW-2A,B	1,2	EW-2C	3	6	3	2.0 - 18.0	EXT-1	EXT-3
1,1,1-trichloroethane	Feb-01	site	μg/L	13	3	3.0 - 140.0	EW-5	4	EW-2C	3	3	3	1.0 - 22.0	EXT-1	EXT-3
1,1,1-trichloroethane	May-01	site	μg/L	13	6	0.6 - 170.0	EW-2A	1	EW-2C	3	3	3	2.0 - 37.0	EXT-1	EXT-3
1,1,1-trichloroethane	Aug-01	site	μg/L	14	7	2.0 - 110.0	EW-2A	1	EW-2C	3	2	2	9.0 - 45.0	EXT-2	EXT-3
1,1,1-trichloroethane	Nov 01	site	μg/L	14	7	1.0 - 100.0	EW-4B	2	EW-2C	3	3	2	3.0 - 45.0	EXT-1	EXT-3
1,1,1-trichloroethane	Feb 02	site	μg/L	12	6	1.0 - 41.0	EW-2A	1	EW-2C	3	-	-	-	-	-
1,1,1-trichloroethane	May 02	site	μg/L	13	9	0.18 - 63.0	DW-2	2	EW-2C	3	3	3	1.40 - 27.0	EXT-1	EXT-3
1,1,1-trichloroethane	Aug 02	site	μg/L	11	8	0.20 - 22	DW-2	2	EW-2C	3	4	4	1.4 - 26	EXT-1, 1QC	EXT-3
1,1,1-trichloroethane	Oct 02	site	μg/L	11	6	0.1 - 22.0	DW-2	2	EW-2C	3	4	4	1.2 - 27	EXT-1	EXT-3
1,1,1-trichloroethane	Oct 02	all	μg/L	24	11	0.1 - 22.0	DW-2	2	EW-2C,MW10C	3,5					
total, site wells				131	67	0.1 - 170.0	DW-2	2	EW-2C	3	56	29	1.2 - 45.0	EXT-1	EXT-3
total, all wells	1			144	72	0.1 - 170.0	DW-2	2	EW-2C	3					

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
benzene															
penzene	May-00	site	μg/L	15	0	-	_	-	_	-	28	1	2.0		EXT-1
benzene	Sep-00	site	µg/L	15	0	-					6	0	-		LXI-I
benzene	Feb-01	site	µg/L	13	0	_		_	-	_	3	1	0.2	_	EXT-2
benzene	May-01	site	µg/L	13	0	_	_	_	_	_	3	0	-	_	- LXI Z
benzene	Aug-01	site	µg/L	14	0	_	_	_	_	-	2	0	_	_	_
benzene	Nov 01	site	µg/L	14	0	_	_	-	_	_	3	0	_	_	_
benzene	Feb 02	site	na/F	12	0	_	_	_	_	_	-	_	_	_	_
benzene	May 02	site	µg/L	13	0	-	_	-	_	_	3	0	_	_	_
benzene	Aug 02	site	μg/L	11	0	-	_	-	_	-	4	1	0.10		EXT-1QC
benzene	Oct 02	site	µg/L	11	0	-	_	-	_	-	4	2	1.2	EXT-1	EXT-1 QC
benzene	Oct 02	all	µg/L	24	1	0.43	_	-	MW-6D	4					
total, site wells			- 13	131	0	-	_	-	_	-	56	5	0.1 - 2.0	EXT-1 QC	EXT-1
total, all wells				144	1	0.43			MW-6D	4					
trichloroethene															
trichloroethene	May-00	site	μg/L	15	13	0.2 - 660.0	EW-1A	1	EW-4C	3	28	26	1.0 - 1,900.0	EXT-1	EXT-3
trichloroethene	Sep-00	site	μg/L	15	10	2.0 - 1,200	EW-1B	2	EW-4C	3	6	6	15.0 - 1,900.0	EXT-1	EXT-3
trichloroethene	Feb-01	site	µg/L	13	8	4.0 - 4,200	EW-1A	1	EW-4C	3	3	3	17.0 - 1,300	EXT-1	EXT-3
trichloroethene	May-01	site	ua/L	13	8	0.8 - 2.100	DW-2	2	EW-4C	3	3	3	47.0 - 1.100	EXT-1	EXT-3
trichloroethene	Aug-01	site	µg/L	14	11	0.3 - 840.0	EW-1B	2	EW-4C	3	2	2	320.0 - 820.0	EXT-2	EXT-3
trichloroethene	Nov 01	site	μg/L	14	10	0.3 - 490.0	EW-1B	2	EW-4C	3	3	3	62.0 - 770.0	EXT-1	EXT-3
trichloroethene	Feb 02	site	μg/L	12	8	0.9 - 820.0	EW-2A	1	EW-4C	3	-	-	_	_	-
trichloroethene	May 02	site	μg/L	13	11	0.55 - 1,100.0	EW-1B	2	EW-4C	3	3	3	20.0 - 620.0	EXT-1	EXT-3
trichloroethene	Aug 02	site	μg/L	11	9	0.43 - 650	DW-1	2	EW-4C	3	4	4	21.0 - 580	EXT-1	EXT-3
trichloroethene	Oct 02	site	μg/L	11	8	0.4 - 890.0	DW-2	2	EW-4C	3	4	4	34 - 780	EXT-1	EXT-3
trichloroethene	Oct 02	all	μg/L	24	19	0.23 - 890	EW-3B	2	EW-4C	3					
total, site wells				131	96	0.23 - 4,200.0	EW-3B	2	EW-4C	3	56	54	1.0 - 1,900.0	EXT-1	EXT-3
total, all wells				144	107	0.23 - 4,200.0	EW-3B	2	EW-4C	3					
toluene															
toluene	May-00	site	μg/L	15	1	0.2	-	-	DW-2	2	28	6	0.5 - 2.0	EXT-1	EXT-3
toluene	Sep-00	site	μg/L	15	0	-	-	-	-	-	6	0	-	-	-
toluene	Feb-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
toluene	May-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
toluene	Aug-01	site	μg/L	14	1	0.4	-	-	EW-2C	3	2	1	4.0		EXT-3
toluene	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	0	-	-	-
toluene	Feb 02	site	μg/L	12	0	-	_	-	-	-	-	-	-	-	-
toluene	May 02	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
toluene	Aug 02	site	μg/L	11	1	0.33	-	-	EW-1A	1	4	0	-	-	-
toluene	Oct 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
toluene	Oct 02	all	μg/L	24	1	0.87	-	-	MW-8B	4					
total, site wells				131	3	0.2 - 0.4	DW-2	2	EW-2C	3	56	7	0.5 - 4.0	EXT-1	EXT-3
total, all wells				144	4	0.2 - 0.87	DW-2	2	MW-8B	4					

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Ameliata	sampling			no.	no.	detected conc.	and a second	screen		screen	no.	no.	detected conc.	and a second	
Analyte	date	wells	units	sampled	detected	range	min. well	level	max. well	level	sampled	detected	range	min. well	max. well
tetrachloroethene															
tetrachloroethene	May-00	site	μg/L	15	15	0.6 - 840.0	EW-1A	1	SW-1	1	28	27	55 - 1,900	EXT-1	EXT-2
tetrachloroethene	Sep-00	site	μg/L	15	13	3.0 - 1,900	DW-1	2	SW-1	1	6	6	110 - 1,300	EXT-3	EXT-2
tetrachloroethene	Feb-01	site	μg/L	13	9	2.0 - 4,200	EW-5	4	SW-1	1	3	3	70.0 - 350.0	EXT-3	EXT-2
tetrachloroethene	May-01	site	μg/L	13	10	1.0 - 4,500	DW-2,EW-5	2,4	SW-1	1	3	3	35.0 - 300.0	EXT-3	EXT-2
tetrachloroethene	Aug-01	site	μg/L	14	13	0.8 - 7,100.0	DW-1	2	SW-1	1	2	2	32.0 - 280.0	EXT-2	EXT-3
tetrachloroethene	Nov 01	site	μg/L	14	13	1.0 - 420.0	DW-1	2	EW-1A QC	1	3	3	31.0 - 330.0	EXT-3	EXT-2
tetrachloroethene	Feb 02	site	μg/L	12	11	0.9 - 380.0	EW-5	4	EW-1A	1	_	-	-	-	-
tetrachloroethene	May 02	site	μg/L	13	11	1.2 - 340.0	EW-1B	2	EW-1A	1	3	3	45.0 - 150.0	EXT-3	EXT-2
tetrachloroethene	Aug 02	site	μg/L	11	11	0.43 - 140	EW-1A	1	EW-1C	3	4	4	21.0 - 280	EXT-3	EXT-2
tetrachloroethene	Oct 02	site	μg/L	11	11	0.41 - 84.0	DW-2	2	EW-4A	1	4	4	19 - 190	EXT-3	EXT-2
	Oct 02	all	μg/L	24	22	0.15 - 84	LF2-QC	3		1					
total, site wells				131	117	0.41 - 7,100.0	DW-2	2	SW-1	1	56	55	19.0 - 1,900.0	EXT-3	EXT-2
total, all wells				144	128	0.15 - 7,100.0	LF2-QC	3	SW-1	1					
chlorobenzene															
chlorobenzene	May-00	site	µg/L	15	1	0.5	-	-	EW-1B	2	28	0	-	-	-
chlorobenzene	Sep-00	site	µg/L	15	0	-	_	-	-	-	6	0	-	_	-
chlorobenzene	Feb-01	site	µg/L	13	0	_	_	-	_	-	3	0	_	_	_
chlorobenzene	May-01	site	ug/L	13	0	_	_	_	_	_	3	0	_	_	_
chlorobenzene	Aug-01	site	µg/L	14	0	-	_	-	_	_	2	0	-	_	_
chlorobenzene	Nov 01	site	µg/L	14	0	_	_	_		_	3	0	_	_	_
chlorobenzene	Feb 02	site	un/l	12	Ω	_	_	_	_	_	_	_	_	_	_
chlorobenzene	May 02	site	ug/L	13	0	_					3	0	_	_	_
chlorobenzene	Aug 02	site	µg/L	11	0	_	_	_			4	0	_	_	_
chlorobenzene	Oct 02	site	μg/L	11	0						4	1	0.18		EXT-1
chlorobenzene	Oct 02	all	μg/L	24	2	0.11 - 0.59	EW-6C	4	MW-6D	4			0.10		LX1-1
total, site wells	OCI 02	all	μg/L	131	1	0.5	LVV-0C	-	EW-1B	2	56	1	0.18		EXT-1
total, all wells				144	3	0.11 - 0.59	EW-6C	4	MW-6D	4	30	'	0.10		EXI-I
total, all wells				144	3	0.11 - 0.39	EVV-0C	*	IVIVV-OD	4					
ethylbenzene															
ethylbenzene	May-00	site	μg/L	15	0	-	-	-	-	-	28	0	-	-	-
ethylbenzene	Sep-00	site	μg/L	15	0	-	-	-	-	-	6	0	-	-	-
ethylbenzene	Feb-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
ethylbenzene	May-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
ethylbenzene	Aug-01	site	μg/L	14	0	-	-	-	-	-	2	0	-	-	-
ethylbenzene	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	0	-	-	-
ethylbenzene	Feb 02	site	μg/L	12	0	-	-	-	-	-	-	-	-	-	-
ethylbenzene	May 02	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
ethylbenzene	Aug 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
ethylbenzene	Oct 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
ethylbenzene	Oct 02	all	μg/L	24	0	-	-	-	-	-					
	-			131	0			-	-	_	56	0	-		
total, site wells				131	U		-		_		00		- 1		

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
xylenes (total)															
xylenes (total)	May-00	site	μg/L	15	1	0.9	-	-	SW-1	1	28	4	0.3 - 18	EXT-1	EXT-3
xylenes (total)	Sep-00	site	μg/L	15	0	-	_	-	-	-	6	0	-	-	-
xylenes (total)	Feb-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
xylenes (total)	May-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
xylenes (total)	Aug-01	site	μg/L	14	0	-	_	-	_	-	2	0	-	_	-
xylenes (total)	Nov 01	site	μg/L	14	0	-	_	-	-	-	3	0	-	-	-
xylenes (total)	Feb 02	site	μg/L	12	0	_	_	-	_	-	-	-	_	_	_
xylenes (total)	May 02	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
xylenes (total)	Aug 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
xylenes (total)	Oct 02	site	μg/L	11	0	-	-	-	-	-	4	2	0.14 - 0.15	EXT-1 QC	EXT-1
xylenes (total)	Oct 02	all	μg/L	24	0	-	-		-						
total, site wells				131	1	0.9			SW-1	1	56	6	0.14 - 18.0	EXT-1	EXT-3
total, all wells				144	1	0.9			SW-1	1					
antimony	_														
antimony	May-00	site	μg/L	15	0	-	-	-	-	-	28	10	2.4 - 56.2	EXT-1	EXT-1
antimony	Sep-00	site	μg/L	15	1	2.4	-	-	EW-2B	2	6	0	-	-	-
antimony	Feb-01	site	μg/L	14	0	-	_	-	_	-	-	_	_	_	-
antimony	May-01	site	ua/L	13	0	_	_	-	_	-	3	0	_	_	-
antimony	Aug-01	site	µg/L	14	0	-	_	-	_	-	2	0	-	_	-
antimony	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	0	-	-	-
antimony	Feb 02	site	μg/L	12	0	_	_	-	_	-	-	-	_	_	_
antimony	May 02	site	μg/L	13	0	-	_	-	-	-	3	0	-	-	-
antimony	Aug 02	site	μg/L	11	0	-	_	-	-	-	4	0	-	-	-
antimony	Oct 02	site	μg/L	11	2	1.5 - 2.8	EW-4A	1	EW-1B	2	4	0	-	-	-
antimony	Oct 02	all	μg/L	22	6	1.4 - 3.3	MW-10D	6	MW-8C	5					
total, site wells				132	3	1.5 - 2.8	EW-4A	1	EW-1B	2	53	10	2.4 - 56.2	EXT-1	EXT-1
total, all wells				143	7	1.4 - 3.3	MW-10D	6	MW-8C	5					
arsenic															
arsenic	May-00	site	μg/L	15	1	4.6	-	-	EW-1A	1	28	6	0.5 - 9.3	EXT-1	EXT-1
arsenic	Sep-00	site	μg/L	15	2	2.3 - 11.4	EW-1C QC	3	SW-1	1	6	0	-	-	-
arsenic	Feb-01	site	μg/L	14	1	2.7	-	-	DW-1	2	-	-	-	-	-
arsenic	May-01	site	μg/L	13	2	5.6 - 5.7	EW-4A	1	EW-2A	1	3	0	-	-	-
arsenic	Aug-01	site	μg/L	14	1	6.1	-	-	EW-2A	1	2	0	-	-	-
arsenic	Nov 01	site	μg/L	14	2	5.3 - 5.4	DW-1	2	EW-2A	1	3	0	-	-	-
arsenic	Feb 02	site	μg/L	12	0	-	-		-	-	-	-	-	-	-
arsenic	May 02	site	μg/L	13	1	9.0	-	-	EW-2A	1	3	1	-	-	-
arsenic	Aug 02	site	μg/L	11	0	-	-		-	-	4	0	-	-	-
arsenic	Oct 02	site	μg/L	11	0	-		-	-	-	4	0	-	-	-
arsenic	Oct 02	all	μg/L	22	1	44.1			MW-6D	4					
total, site wells				132	10	2.3 - 11.4	EW-1C QC	3	SW-1	1	53	7	0.5 - 9.3	EXT-1	EXT-1
total, all wells				143	11	2.3 - 44.1	EW-1C QC	3	MW-6D	4					

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
barium	_														
parium	May-00	site	μg/L	15	15	22.4 - 82.6	EW-2C	3	EW-1C	3	28	26	22.2 - 115.0	EXT-1	EXT-2
parium	Sep-00	site	μg/L	15	15	24.7 - 100	EW-1B	2	SW-1	1	6	6	61.2 - 110	EXT-3	EXT-2
parium	Feb-01	site	μg/L	14	14	23.5 - 77.4	EW-1B	2	EW-1A	1	-	-	-	-	- -
parium	May-01	site	µg/L	13	13	11.8 - 80.4	EW-2A	1	EW-1A	1	3	3	70.0 - 87.0	EXT-3	EXT-1
parium	Aug-01	site	µg/L	14	14	16.2 - 78.1	EW-2A	1	EW-1A	1	2	2	68.2 - 73.7	EXT-3	EXT-2
barium	Nov 01	site	µg/L	14	14	14.3 - 92.1	EW-2A	1	EW-1A	1	3	3	73.1 - 89.3	EXT-1	EXT-2
parium	Feb 02	site	ua/L	12	12	25.2 - 88.2	EW-2A	1	EW-2C	3	_	_	_	_	_
barium	May 02	site	µg/L	13	13	13.9 - 120.0	EW-2A	1	EW-1B	2	3	3	73.5 - 103	EXT-3	EXT-2
barium	Aug 02	site	μg/L	11	11	42.6 - 151.0	DW-1	1	EW-5	4	4	4	82.4 - 95.9	EXT-1	EXT-2
barium	Oct 02	site	ua/L	11	11	42.8 - 118	EW-1BQC	2	EW-5	4	4	4	80.2 - 95.5	EXT-1 QC	EXT-2
barium	Oct 02	all	μg/L	22	22	13.0 - 596.0	EW-3B	2	MW-8B	4					
total, site wells			15-	132	132	13.0 - 151.0	EW-3B	2	EW-5	4	53	51	22.2 - 115.0	EXT-1	EXT-2
total, all wells				143	143	13.0 - 596.0	EW-3B	2	MW-8B	4					
cadmium								+							
cadmium	May-00	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
cadmium	Sep-00	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
cadmium	Feb-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
cadmium	May-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
cadmium	Aug-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
cadmium	Nov 01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
	Feb 02	site	μg/L	-	-	-		-		-	-	-	-		_
cadmium	May 02	site	μg/L	13	0	-	-	-	-	-	3	1	0.32		EXT-1
cadmium	Aug 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
cadmium	Oct 02	site	μg/L	11	3	0.32 - 0.56	EW-2C	3	EW-2B	2	4	1	0.37		EXT-1
cadmium	Oct 02	all	μg/L	22	6	0.32 - 9.9	EW-2C	3	EW-6C	4					
total, site wells				35	3	0.32 - 0.56	EW-2C	3	EW-2B	2	11	2	0.32 - 0.37	-	EXT-1
total, all wells				46	6	0.32 - 9.9	EW-2C	3	EW-6C	4					
chromium															
chromium	May-00	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	Sep-00	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	Feb-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	May-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	Aug-01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	Nov 01	site	μg/L	-	-	-	-	-	-	-	-	-	-	-	-
chromium	Feb 02	site	μg/L	-	-	-	-	-	-	-	_	-	-	-	-
chromium	May 02	site	μg/L	13	1	1.1	-	-	EW-2A	1	3	0	-	-	-
chromium	Aug 02	site	μg/L	11	0	-	-	-		-	4	0	-	-	-
chromium	Oct 02	site	μg/L	11	1	1.6		-	EW-2B	2	4	0	-	-	-
chromium	Oct 02	all	μg/L	22	4	1.6 - 12.4	EW-2B	2	BP-3B	5					
total, site wells				35	2	1.1 - 1.6	EW-2A	1	EW-2B	2	11	0	-	-	-
total, all wells				46	5	1.1 - 12.4	EW-2A	1	BP-3B	5					

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
iron															
ron	May-00	site	μg/L	15	13	12.7 - 23,900	EW-5	4	EW-4A	1	27	27	60.0 - 10,200.0	EXT-1	EXT-1
iron	Sep-00	site	μg/L	15	15	27.7 - 24,300	DW-2	2	EW-4AQC	1	6	6	55.0 - 2,260.0	EXT-1	EXT-3
iron	Feb-01	site	μg/L	14	14	23.6 - 27,900	EW-4C	3	EW-4A	1	3	3	86.3 - 661.0	EXT-1	EXT-3
ron	May-01	site	μg/L	13	12	24.0 - 28,700	DW-2	2	EW-4A	1	3	3	126.0 - 570.0	EXT-1	EXT-2
ron	Aug-01	site	μg/L	14	11	20.7 - 17,000	EW-1A	1	EW-4A	1	2	2	662.0 - 4,580.0	EXT-2	EXT-3
iron	Nov 01	site	μg/L	14	12	32.0 - 10,300.0	EW-4B	2	EW-4A	1	3	3	245.0 - 922.0	EXT-1	EXT-3
ron	Feb 02	site	μg/L	12	5	87.3 - 3,410.0	EW-2B	2	DW-1	2	-	-	-	-	-
ron	May 02	site	μg/L	13	5	26.7 - 3900	EW-2C	3	DW-1	2	3	1	43.0	- -	EXT-1
iron	Aug 02	site	μg/L	11	3	24.3 - 3,660	EW-4A	1	DW-1	2	4	4	107.0 - 480.0	EXT-3	EXT-2
iron	Oct 02	site	μg/L	11	7	18.6 - 5,150	EW-1B	2	DW-1	2	4	4	123.0 - 724.0	EXT-3	EXT-2
iron	Oct 02	all	μg/L	22	18	13.7 - 48,200	EW-3C	3	MW-6D	4			40.0 40.000.0	EVT 4	EVT 1
total, site wells				132	97	12.7 - 28,700.0	EW-5	4	EW-4A	1	55	53	43.0 - 10,200.0	EXT-1	EXT-1
total, all wells				143	108	12.7 - 48,200.0	EW-5	4	MW-6D	4					
lead															
lead	May-00	site	μg/L	15	2	1.3 - 2.5	EW-1C	3	DW-1QC	2	27	18	1.5 - 31.2	EXT-3	EXT-2
lead	Sep-00	site	μg/L	15	2	1.5 - 33.2	EW-4AQC	1	SW-1	1	6	2	16.7 - 69.2	EXT-2	EXT-2
lead	Feb-01	site	μg/L	14	0	-	-	-	-	-	-	-	-	-	-
lead	May-01	site	μg/L	13	3	2.8 - 6.3	EW-2C	3	EW-2A	1	3	1	12.4	-	EXT-2
lead	Aug-01	site	μg/L	14	2	4.4 - 7.5	EW2A	1	SW-1	1	2	1	2.8	-	EXT-2
lead	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	1	29.2	-	EXT-2
lead	Feb 02	site	μg/L	12	2	5.0 - 6.0	EW-2B	2	EW-2A	1	-	-	-	_	-
lead	May 02	site	μg/L	13	2	2.7 - 5.2	EW-1C	3	EW-2A	1	3	3	12.9 - 35.1	EXT-1	EXT-3
lead	Aug 02	site	μg/L	11	4	3.1 - 8.1	EW-1B	2	EW-1A	1	4	4	5.0 - 23.9	EXT-1QC	EXT-3
lead	Oct 02	site	μg/L	11	2	2.4 - 2.5	EW-1C	3	EW-2B	2	4	4	5.9 - 38.6	EXT-1 QC	EXT-2
lead	Oct 02	all	µg/L	22	13	1.3 - 93.1	BP-3C	6	MW-10D	6					
total, site wells				132	19	1.3 - 33.2	EW-1C	3	SW-1	1	52	34	1.5 - 69.2	EXT-3	EXT-2
total, all wells				143	30	1.3 - 93.1	EW-1C,BP-3C	6	MW-10D	6					
manganese															
manganese	May-00	site	μg/L	15	15	155 - 1,410	EW-2C	3	EW-4A	1	28	24	47.0 - 669.0	EXT-1	EXT-2
manganese	Sep-00	site	µg/L	15	15	50.1 - 1,300	EW-5	4	EW-4A	1	6	6	323.0 - 590.0	EXT-3	EXT-1
manganese	Feb-01	site	μg/L	14	14	75.9 - 1,500	EW-4C	3	EW-4A	1	3	3	312.0 - 485.0	EXT-3	EXT-1
manganese	May-01	site	μg/L	13	13	99.5 - 1,160	EW-4C	3	EW-4A	1	3	3	286.0 - 460.0	EXT-3	EXT-1
manganese	Aug-01	site	µg/L	14	14	71.5 - 1,150	EW-4C	3	EW-4A	1	2	2	299.0 - 343.0	EXT-3	EXT-2
manganese	Nov 01	site	µg/L	14	14	1.8 - 1,220.0	DW-1 QC	2	EW-4A	1	3	3	358.0 - 490.0	EXT-3	EXT-1
manganese	Feb 02	site	ua/L	12	12	80.1 - 990.0	EW-4C	3	EW-4A	1	-	-	-		
manganese	May 02	site	ug/L	13	13	37.8 - 1.130	EW-4C	3	EW-1A QC	1	3	3	342.0 - 502.0	EXT-3	EXT-1
manganese	Aug 02	site	ug/L	11	11	146.0 - 1.730.0	EW-4B	2	EW-1A	1	4	4	336.0 - 495.0	EXT-3	EXT-1QC
manganese	Oct 02	site	ua/L	11	11	32.7 - 780	EW-4C	3	EW-4A	1	4	4	343.0 - 480.0	EXT-3	EXT-1
manganese	Oct 02	all	µg/L	22	22	8.1 - 1.770.0	BP-3B	5	MW-6D	4		· ·	2 70.0 100.0	2,1,0	2,
total, site wells			F-3'-	132	132	1.8 - 1,730.0	DW-1 QC	2	EW-1A	1	56	52	47.0 - 669.0	EXT-1	EXT-2
		1	1	143	143	1.8 - 1,770.0			MW-6D			<u> </u>			

Table 4-13 Claremont Polychemical Superfund site Data Summary for ROD and Permit Analytes

						monitoring wells							extraction wells		
Analyte	sampling date	wells	units	no. sampled	no. detected	detected conc. range	min. well	screen level	max. well	screen level	no. sampled	no. detected	detected conc. range	min. well	max. well
selenium															
selenium	May-00	site	μg/L	15	5	1.6 - 4.4	EW-1C	3	EW-1A	1	27	4	1.6 - 19.2	EXT-1	EXT-1
selenium	Sep-00	site	μg/L	15	0	-	-	-	-	-	6	0	-	-	-
selenium	Feb-01	site	μg/L	14	7	2.6 - 3.5	SW-1	1	EW-4B	2	-	-	-	-	-
selenium	May-01	site	μg/L	13	0	-	-	-	-	-	3	0	-	-	-
selenium	Aug-01	site	μg/L	14	0	-	-	-	-	-	2	0	-	-	-
selenium	Nov 01	site	μg/L	14	0	-	-	-	-	-	3	0	-	-	-
selenium	Feb 02	site	μg/L	12	0	-	-	-	-	-	-	-	-	-	-
	May 02		μg/L	13	1	3.3		-		2	3	0	-		
selenium	Aug 02	site	μg/L	11	0	-	-	-	-	-	4	0	-	-	-
selenium	Oct 02	site	μg/L	11	1	3.1	-	-	EW-1B	2	4	0	-	-	-
selenium	Oct 02	all	μg/L	22	1	3.1	-	-	EW-1B	2					
total, site wells				132	14	1.6 - 4.4	EW-1C	3	EW-1A	1	52	4	1.6 - 19.2	EXT-1	EXT-1
total, all wells				143	14	1.6 - 4.4	EW-1C	3	EW-1A	1					
chromium. hexavalent															
chromium. hexavalent	May-00	site	μg/L	10	0	-	-	-	-	-	21	0	-	-	-
chromium. hexavalent	Sep-00	site	μg/L	15	0	-	-	-	-	-	6	0	-	-	-
chromium. hexavalent	Feb-01	site	μg/L	14	0	-	-	-	-	-	3	0	-	_	-
chromium. hexavalent	May-01	site	μg/L	13	0	-	_	-	-	-	3	0	-	_	-
chromium. hexavalent	Aug-01	site	μg/L	14	0	-	-	-	-	-	2	0	-	-	-
chromium. hexavalent	Nov 01	site	μg/L	14	0	-	_	-	-	-	3	0	-	_	-
chromium. hexavalent	Feb 02	site	μg/L	12	0	-	-	-	-	-	-	-	-	-	-
total, site wells				92	0	-	-	-	-	-	38	0	-	-	-

 not measured or analyzed, no results well screened interval levels:

Level 1: 75.10 to 44.86 ft. amsl Level 2: 42.35 to 22.32 ft. amsl Level 3: 20.62 to 2.99 ft. amsl Level 4: -13.99 to -40.99 ft. amsl

Level 5: -91.00 to -118.10 ft. amsl Level 6: -149.20 to -176.00 ft. amsl

Table 5-1: Groundwater Discharge from Extraction Wells to Flow Equalization Tank May 16, 2001 to Oct 30, 2002

Analyte	units	MDL	CRQL	CLG02WA-064	CLG02WA-077	CLG02WA-090	CPC-00-PW- 0002-001	CPC-00-PW- 0002-002	CPC-00-PW- 0002-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
VOCs									
VOC Dilution Factor				(5X)	(4x)	(4x)	(1x)	(1x)	(1x)
Dichlorodifluoromethane	μg/L		0.50	\ '	` ′	. ,	0.50 U	0.50 U	0.50 U
chloromethane	μg/L		0.50	50.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
vinyl chloride	μg/L		0.50	50.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		0.50	50.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		0.50	50.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	μg/L		0.50	2.00	47.00	2.00	0.50 U	0.50 U	0.50 U
1,1-dichloroethene	μg/L		0.50 0.50	9.00 J	17.00 J	8.00 J	6.7 0.14 J	0.32 J 0.50 U	7.4 0.50 U
1,1,2-Trichloro-1,2,2-trifluoroethan	e μg/L μg/L		5.00	50.00 U	56.00	40.00 U	5.0 U	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	2.00 J	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
methyl acetate	µg/L		0.50	2.00	20.00	20.00	0.50 U	0.50 U	0.50 U
methylene chloride	µg/L		0.50	5.00 JB	17.00 JB	15.00 JB	0.50 U	0.50 U	0.50 U
trans- 1,2-dichloroethene	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
ert-Butyl Methyl Ether	μg/L		0.50				0.28 J	0.16 J	0.50 U
1,1-dichloroethane	μg/L		0.50	3.00 J	6.00 J	20.00 U	1.8	0.14 J	2.0
cis-1,2-dichloroethene	μg/L		0.50	14.00 J	18.00 J	12.00 J	11	1.9	9.0
2- butanone	μg/L		5.00	50.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	μg/L		0.50	07.00	00.00	00.00	0.50 U	0.50 U	0.50 U
chloroform	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.19 J	0.50 U	0.50 U
1,1,1-trichloroethane	μg/L		0.50	15.00 J	36.00	20.00	12	0.69	15
Cyclohexane	μg/L ug/l		0.50 0.50	25.00 U	20.00 U	20.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
carbon tetrachloride benzene	µg/L ug/l		0.50	4.00 U	3.00 U	3.00 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L μg/L		0.50	25.00 U	20.00 U	20.00 U	0.69	0.50 U	0.31 J
richloroethene	μg/L		0.50	420.00	740.00	380.00	270 D	21	430 D
Methylcyclohexane	μg/L		0.50	0.00		555.00	0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
bromodichloromethane	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
cis 1,3-dichloropropene	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.12 J	0.50 U	0.13 J
4-methyl-2-pentanone	μg/L		5.00	50.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
oluene	μg/L		0.50	25.00 U	2.00 J	20.00 U	0.50 U	0.50 U	0.50 U
rans-1,3-dichloropropene	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
1,1,2-trichloroethane	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.24 J	0.50 U	0.50 U
etrachloroethene	μg/L		0.50	220.00	100.00	210.00	140 D	140 D	15
2-hexanone	μg/L		5.00	50.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
1.2-Dibromoethane	μg/L ug/l		0.50	25.00 U	20.00 U	20.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
1,2-Dibromoethane	μg/L ug/l		0.50 0.50	25.00 U	20.00 U	20.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U
chlorobenzene ethylbenzene	μg/L μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
kylene (total)	μg/L μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
styrene	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
promoform	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 UJ	0.50 U	0.50 U
Isopropylbenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	25.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene	μg/L		0.50	-			0.50 U	0.50 U	0.50 U
METALS		IDL	CRDL						
Al (aluminum)	μg/L	57.0	200.0				110.00 B		64.70 B
Sb (antimony)	μg/L	1.2	60.0			4.50 U	1.6 U		1.20 U
As (arsenic)	μg/L	3.0	10.0			4.60 U	4.20 U		3.00 U
Ba (barium)	μg/L	0.3	200.0			92.50 BE	86.8 B		92.40 B
Be (beryllium)	μg/L	0.2	5.0				0.97 B		0.38 B
Cd (cadmium)	μg/L	0.3	5.0				0.30 U		0.30 U
Ca (calcium)	μg/L	15.0	5000.0				22500		25500.00
Cr (chromium)	μg/L	8.0	10.0				0.50 U		0.80 U
Co (cobalt)	μg/L	0.7	50.0	1			15.4 B		15.80 B
Cu (copper)	μg/L	1.5	25.0	0:00:00		0465.55	1.4 B		3.30 B
Fe (iron)	μg/L	13.0	100.0	2400.00	3330.00	3190.00 E	476		1040.00
Pb (lead)	µg/L	1.2	3.0	+		2.30 U	1.50 B		1.20 U
Mg (magnesium)	μg/L ug/l	12.0 0.2	5000.0 15.0	385.00	334.00	439.00 E	6980 405.00		7690.00 450.00
In (manganese) Ig (mercury)	μg/L μg/L	0.2	0.2	303.00	334.00	435.00 E	0.12 BJ		0.10 U
li (nickel)	μg/L μg/L	1.0	40.0				6.90 B		7.30 B
((potassium)	μg/L	40.0	5000.0				10800 J		11900.00 J
Se (selenium)	μg/L	3.0	5.0	1		5.80 N	2.2 U		3.00 U
Ag (silver)	μg/L	0.8	10.0	1		3.00 14	0.70 U		0.80 L
Na (sodium)	μg/L	304.0	5000.0	İ			53800		67000.00
(thallium)	μg/L	2.4	10.0	<u> </u>			3.3 U		2.40 U
/ (vanadium)	μg/L	0.7	50.0				0.50 U		0.70 U
Zn (zinc)	μg/L	1.1	20.0		-		9.40 B	-	10.50 B
WATER QUALITY									
TOTAL WORLD	1			1					
SS	mg/L			1		5.00 U	5.00 U		

boldface: lab analysis positive detection
U: not detected
J: estimated
R: rejected
B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified at dilution
NM: not measured
UJ: estimated not detected

Table 5-2: Clarified water at Inlet to Sand Filter A May 16, 2001 to Oct 30, 2002

Analyte	units	MDL	CRQL	CLG05AWA- 064	CLG05AWA- 077	CLG05AWA- 090	CPC-00-PW- 005A-001	CPC-00-PW- 005A-002	CPC-00-PW- 005A-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
VOCs									
VOC Dilution Factor				(4x)	(4x)	(4x)	(1x)	(1x)	(1x)
Dichlorodifluoromethane	μg/L		0.50	` ′	,		0.50 U	0.50 U	0.50 U
chloromethane	μg/L		0.50	40.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
vinyl chloride	μg/L		0.50	40.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
promomethane	μg/L		0.50	40.00 U	40.00 U	40.00 U	0.50 U	0.50 U	0.50 U
Chloroethane Frichlorofluoromethane	μg/L μg/L		0.50 0.50	40.00 U	40.00 U	40.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
1,1-dichloroethene	μg/L μg/L		0.50	8.00 J	12.00 J	8.00 J	5.6	4.4	5.5
1,1,2-Trichloro-1,2,2-trifluoroethan			0.50	0.00	12.00	0.00	0.12 J	0.50 U	0.50 U
acetone	μg/L		5.00	40.00 U	42.00	40.00 U	5.0 U	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	3.00 J	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
nethyl acetate	μg/L		0.50				0.50 U	0.50 U	0.50 U
nethylene chloride	μg/L		0.50	4.00 JB	16.00 JB	15.00 JB 20.00 U	0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
rans- 1,2-dichloroethene ert-Butyl Methyl Ether	μg/L μg/L	1	0.50 0.50	20.00 U	20.00 U	20.00 U	0.50 U 0.26 J	0.50 U 0.28 J	0.50 U 0.11 J
1,1-dichloroethane	μg/L		0.50	2.00 J	5.00 J	20.00 U	1.5	1.7	1.4
cis-1,2-dichloroethene	μg/L		0.50	13.00 J	15.00 J	12.00 J	10	10	11
2- butanone	μg/L		5.00	40.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chloroform	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.17 J	0.20 J	0.19 J
,1,1-trichloroethane	μg/L	igsquare	0.50	13.00 J	31.00	18.00 J	11	11	9.6
Cyclohexane	µg/L		0.50	20.00 11	20.00 11	20.00 11	0.50 U	0.50 U	0.50 U
arbon tetrachloride enzene	μg/L μg/L	-	0.50 0.50	20.00 U 3.00 U	20.00 U 3.00 U	20.00 U 3.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U
,2-dichloroethane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.52	0.50 U	0.30 U
richloroethene	μg/L		0.50	380.00	640.00	370.00	230 D	220 D	310 D
Methylcyclohexane	μg/L		0.50			0.0.00	0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
promodichloromethane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
cis 1,3-dichloropropene	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.12 J	0.50 U	0.13 J
l-methyl-2-pentanone	μg/L		5.00	40.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
oluene rans-1,3-dichloropropene	μg/L μg/L	1	0.50 0.50	20.00 U 20.00 U	1.00 J 20.00 U	20.00 U 20.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
,1,2-trichloroethane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.30 U	0.50 U	0.50 U
etrachloroethene	μg/L		0.50	180.00	81.00	190.00	140 D	150 D	120 D
2-hexanone	μg/L		5.00	40.00 U	40.00 U	40.00 U	5.0 U	5.0 U	5.0 U
libromochloromethane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L		0.50 0.50	20.00 U 20.00 U	20.00 U 20.00 U	20.00 U 20.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
kylene (total) styrene	μg/L μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
promoform	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 UJ	0.18 J	0.50 U
Isopropylbenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	20.00 U	20.00 U	20.00 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	μg/L		0.50 0.50				0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	μg/L μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
METALS		IDL	CRDL						
Al (aluminum)	μg/L	57.0	200.0				117.00 B		81.5 E
Sb (antimony)	μg/L	1.2	60.0			4.50 U	1.60 U		1.2 L
s (arsenic)	μg/L	3.0	10.0			4.60 U	4.20 U		3.0 (
a (barium) e (beryllium)	μg/L μg/L	0.3 0.2	200.0 5.0			78.70 BE	89.00 B 1.20 B		90.8 I
od (cadmium)	μg/L μg/L	0.2	5.0				0.30 U		0.34 I
Ca (calcium)	μg/L μg/L	15.0	5000.0	+		-	23200.00		25000
Cr (chromium)	µg/L	0.8	10.0				0.50 U		0.80
Co (cobalt)	μg/L	0.7	50.0				15.70 B		15.9
Cu (copper)	μg/L	1.5	25.0				1.20 B		3.8
e (iron)	μg/L	13.0	100.0	74.00 B	46.80 B	27.40 BE	11.40 U		28.4
b (lead)	μg/L	1.2	3.0	1		2.30 U	1.30 U		1.2
Mg (magnesium)	μg/L	12.0 0.2	5000.0	407.00	322.00	426.00 E	7070.00 415.00		7570 429
In (manganese) Ig (mercury)	μg/L μg/L	0.2	15.0 0.2	407.00	322.00	420.00 E	0.14 BJ		0.10 L
lig (mercury)	μg/L	1.0	40.0				7.80 B		7.5 I
(potassium)	μg/L	40.0	5000.0				11500.00 J		11800
Se (selenium)	μg/L	3.0	5.0			4.90 UN	2.20 U		3.0 ℓ
g (silver)	μg/L	0.8	10.0				0.70 U		0.80 U
la (sodium)	μg/L	304.0	5000.0	1			57500.00		68000
1 (thallium)	µg/L	2.4	10.0	1			3.30 U		2.4
/ (vanadium) /n (Zinc)	µg/L	0.7 1.1	50.0 20.0	+			0.50 U 10.70 B		0.70 I
	μg/L	1.1	20.0				10.70 B		12.3
WATER QUALITY								-	
SS	mg/L					5.00 U			
						261.00			

boldface: lab analysis positive detection
U: not detected
J: estimated
R: rejected
B: IDL < x < CRDL (ILM04.1)(equivalent to J)
D: quantified to dilution
NM: not measured
UJ: estimated not detected

Table 5-3: Clarified Water at Inlet to Sand Filter B May 16, 2001 to Oct 30, 2002

VOCa	Analyte	units	MDL	CRQL	CLG05BWA- 064	CLG05BWA- 077	CLG05BWA- 090	CPC-00-PW- 005B-001	CPC-00-PW- 005B-002	CPC-00-PW- 005B-003
Commonwhalmen	Date Analyzed				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
Commonwhalmen	VOCs									
Octoordeclaromethere					(4x)	(4x)	(4x)	(1x)	(1x)	(1x)
Convergence		μg/L		0.50	(,	(,	(,			0.50 UJ
Description										0.50 U
Obsorbeine										0.50 U
Ticklordenomerature										0.50 U 0.50 U
11.4ctororentemen					40 U	40.00 0	40.00 0			0.50 U
11.12-Tricheno-12 2-influoredeniary pgL 0.50					6 J	13.00 J	7.00 J			6.0
Cashon disulfate							1100			0.50 U
methylanecholide myl.										5.0 U
methylene chloride					20 U	20.00 U	20.00 U			0.50 U
Pares 1.2 decinocenhene					4 IB	10 00 ID	17.00 ID			
See Bully Methyl Effer yight 0.50 0.										0.50 U
1.1.derioncembrane					20 0	20.00	20.00			0.50 U
Subminime					2 J	5.00 J	20.00 U			1.5
Biomachiconomehane	cis-1,2-dichloroethene	μg/L		0.50				11	9.5	11
Palacotom					40 U	40.00 U	40.00 U			5.0 U
11,1-tricriorcehene					20 //	00.00 ::	00.00 /:			0.50 U
Cyclothexane										0.13 J
Embrot eterachioncie pigl.			-		12 J	30.00	∠1.00			10 0.50 UJ
Denzene					20 11	20 00 11	20 00 11			0.50 U
12-deinforcemenne										0.50 U
Inchloroethene										0.20 J
1,2-dishloroprogene		μg/L		0.50				230 D	220 D	300 D
Demondichrormethane										0.50 UJ
cs 1,3-dichloropropene μg/L 0.50 20 U 20.00 U 20.00 U 0.12 J 0.50 U 0.1 d folluene μg/L 0.50 40 U 40.00 U 40.00 U 40.00 U 40.00 U 0.50 U										0.50 UJ
4-methyt-2-pentanone μg/L 5.00 40 U 40.00 U 5.0 U 5.0 U 5.0 U 20.00 U 20.00 U 20.00 U 5.0 U 5.0 U 0.00 U 0.50 U 0.50 U 0.50 U 20.00 U 20.00 U 0.00 U 0.50 U 0.50 20 U 20.00 U 0.00 U 0.50 U 0.00 U 0.00 U 0.00 U 0.50 U										
Section Sect										
Fans-13-dichloropropene										0.50 U
1,1,2+richicroethane										0.50 UJ
2-bexanone										0.50 UJ
Discreption	tetrachloroethene	μg/L								120 D
12-Disromoethane										5.0 U
Chlorobenzene					20 U	20.00 U	20.00 U			0.50 U
ethylbenzene µp/L 0.50 20 U 20.00 U 0.50 U 0.50 sylene (total) µp/L 0.50 20 U 20.00 U 0.50 U					20 11	20.00 11	20.00 11			
										0.50 U
Syrene										0.50 U
Isopropylenzene										0.50 U
1.1.2.2-terrachloroethane	bromoform	μg/L		0.50	20 U	20.00 U	20.00 U	0.50 UJ	0.50 U	0.50 U
1.3-Dichlorobenzene										0.50 U
1,4-Dichlorobenzene					20 U	20.00 U	20.00 U			0.50 U
1.2-Dichlorobenzene										
1,2-Dibromo-3-chloropropane µg/L 0.50 0.50 U 1.1 8 0.32 U 1.1 8 0.32 U 1.1 8 0.32 U 1.1 8 0.32 U 1.3 8 8 8 8 7 8 8 9.5 8 8 7 8 8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.50 U</td>										0.50 U
1.2.4-Trichlorobenzene										0.50 U
METALS										0.50 U
Al (aluminum)	1,2,3-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
Sb (antimony)	METALS		IDL	CRDL						
Sb (antimony)	Al (aluminum)	ug/l	57.0	200.0				121 00 B		65.00 B
As (arsenic) μg/L 3.0 10.0 4.60 U 4.20 U 3.0 Ba (barium) μg/L 0.3 200.0 77.60 BE 89.5 B 87. Ba (barium) μg/L 0.2 5.0							4.50 U			1.20 U
Ba (barium) μg/L 0.3 200.0 77.60 BE 89.5 B 87. Be (beryllium) μg/L 0.2 5.0 1.1 B 0.3 Cd (cadrium) μg/L 0.3 5.0 0.30 U 0.3 Ca (calcium) μg/L 15.0 5000.0 23400.00 23800.0 Cr (chromium) μg/L 0.8 10.0 0.50 U 0.5 Co (cobalt) μg/L 1.5 25.0 15.80 B 15.80 B 15.6 Cu (copper) μg/L 1.5 25.0 1.3 B 3.3 3.3 3.3 29. Fe (iron) μg/L 1.2 3.0 100.0 69.60 B 54.90 B 42.90 BE 17.9 B 29. 29. Pb (lead) μg/L 1.2 3.0 100.0 7140.00 B 7140.00 7230.0 13.0 U 11.3 B 29. 29. Mg (magnesium) μg/L 1.2 3.0 10.0 7140.00 B 7140.00 B 7230.0 7140.00 B 7140.00 B 7230.0 7230.0 7230.0 7230.0 7230.0 7230.	As (arsenic)			10.0			4.60 U			3.00 U
Cd (cadnium) μg/L 0.3 5.0 0.30 U 0.3 0.0 0.3 0.0 0.3 0.0	Ba (barium)	μg/L	0.3							87.0 B
Ca (calcium) μg/L 15.0 5000.0 23800.0 23400.00 23800.0 Cr (chromium) μg/L 0.8 10.0 0.50 U 0.50 U 0.50 0.5 Co (cobalt) μg/L 1.5 25.0 15.80 B 15.80 15.80 B 15.80 15.80 B 15.80										0.35 B
Cr (chromium) μg/L 0.8 10.0 0.50 U 0.50 U 0.6 Co (cobalt) μg/L 0.7 50.0 15.80 B 15.6 Cu (copper) μg/L 1.5 25.0 1.3 B 3. Fe (iron) μg/L 13.0 100.0 69.60 B 54.90 B 42.90 BE 17.9 B 29. Pb (lead) μg/L 1.2 3.0 54.90 B 42.90 BE 17.9 B 29. Mg (magnesium) μg/L 1.2 3.0 5000.0 7140.00 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7140.00 7230.0 7230.0 7140.00 7230.0 7230.0 7140.00 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0 7230.0										0.30 U
CO (cobalt) μg/L 0.7 50.0 15.80 B 15.6 Cu (copper) μg/L 1.5 25.0 1.3 B 3. Fe (iron) μg/L 13.0 100.0 69.60 B 54.90 B 42.90 BE 17.9 B 29. Mg (magnesium) μg/L 1.2 3.0 2.30 U 1.30 U 1.2 Mg (magnesium) μg/L 12.0 5000.0 7140.00 7140.00 7230. Mn (manganese) μg/L 0.2 15.0 404.00 327.00 416.00 E 419.00 410.0 1.6 BJ 0.7 Ni (nickel) μg/L 0.1 0.2 0.16 BJ 0.7 0.7 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
Cu (copper) μg/L 1.5 25.0 1.3 B 3. Fe (iron) μg/L 13.0 100.0 69.60 B 54.90 B 42.90 BE 17.9 B 29. Pb (lead) μg/L 1.2 3.0 1.2 3.0 1.3 U 1.3 U 1.2 1.2 1.2 1.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.80 U 15.00 B</td></td<>										0.80 U 15.00 B
Fe (iron) μg/L 13.0 100.0 69.60 B 54.90 B 42.90 BE 17.9 B 29.										3.3 B
Pb (lead)					69.60 B	54.90 B	42.90 BE			29.0 B
Mn (manganese)				3.0						1.20 U
Hg (mercury) μg/L 0.1 0.2 0.16 BJ 0.7 Ni (nickel) μg/L 1.0 40.0 7.60 B 7.4 K (potassium) μg/L 3.0 5.0 5.40 N 2.20 U 3.3 Ag (silver) μg/L 0.8 10.0 0.70 U 0.8 Na (sodium) μg/L 3.04.0 5000.0 59400 63400.0 Ti (thallium) μg/L 2.4 10.0 3.3 U 2.4 V (vanadium) μg/L 0.7 50.0 0.50 U 0.7 To (zinc) μg/L 1.1 20.0 9.9 B 9.										7230.00
Ni (nickel)					404.00	327.00	416.00 E			410.00
K (potassium)										0.10 UJ
Se (selenium)										7.40 B 11200.00 J
Ag (silver) μg/L 0.8 10.0 0.70 U 0.8 Na (sodium) μg/L 304.0 5000.0 59400 63400.0 It (thallium) μg/L 2.4 10.0 3.3 U 2. V (vanadium) μg/L 0.7 50.0 0.50 U 0.7 Zn (zinc) μg/L 1.1 20.0 9.9 B 9.9 WATER QUALITY							540 N			3.00 U
Na (sodium) μg/L 304.0 5000.0 59400 63400.6 Ti (thallium) μg/L 2.4 10.0 3.3 U 2. V (vanadium) μg/L 0.7 50.0 0.50 U 0.7 Zn (zinc) μg/L 1.1 20.0 9.9 B 9. WATER QUALITY							J.70 IN			0.80 U
TI (thallium) μg/L 2.4 10.0 3.3 U 2. V (vanadium) μg/L 0.7 50.0 0.50 U 0.7 Zn (zinc) μg/L 1.1 20.0 9.9 B 9. WATER QUALITY										63400.00
V (vanadium) μg/L 0.7 50.0 0.50 U 0.7 7.7 (zinc) μg/L 1.1 20.0 9.9 B 9.9 B 9.9 MATER QUALITY			2.4					3.3 U		2.4 U
WATER QUALITY STATE OF THE PROPERTY OF THE PRO		μg/L							· ·	0.70 U
	Zn (zinc)	μg/L	1.1	20.0				9.9 B		9.0 B
TSS mg/L 5.00 II	WATER QUALITY									
100 Mg/L 500	T00						500 11			
TDS mg/L 259.00										

Boldface: lab analysis positive detection
U: not detected
J: estimated
R: rejected
B: IDL < x < CRDL (ILM04.1) (equivalent to J)
D: quantified at dilution
NM: not measured
UJ: estimated, not detected

Table 5-4: Filtered Water to Inlet of Air Stripper May 16, 2001 - October 30, 2002

			. IV	lay 16, 2001 - O	Clober 30, 200				
Analyte	units	MDL	CRQL	CLG06WA-064	CLG06WA-077	CLG06WA-090	CPC-00-PW- 0006-001	CPC-00-PW- 0006-002	CPC-00-PW- 0006-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
VOCs									
VOC Dilution Factor				(2X)	(4X)	(2X)	(1X)	(25X)	(1X)
Dichlorodifluoromethane	μg/L		0.50				0.50 U	13 UJ	0.50 UJ
chloromethane	μg/L		0.50	20.00 U	40.00 U	20.00 U	0.50 U	13 U	0.50 U
vinyl chloride	μg/L		0.50	20.00 U	40.00 U	20.00 U	0.50 U	13 U	0.50 U
bromomethane	μg/L		0.50	20.00 U	40.00 U	20.00 U	0.50 U	13 U	0.50 U
chloroethane	μg/L		0.50	20.00 U	40.00 U	20.00 U	0.50 U	13 U	0.50 U
Trichlorofluoromethane	μg/L		0.50				0.50 U	13 UJ	0.50 U
1,1-dichloroethene	μg/L		0.50	5.00 J	8.00 J	8.00 J	3.9	4.8 J	3.8
1,1,2-Trichloro-1,2,2-trifluoroet	μg/L		0.50				0.50 U	13 UJ	0.50 U
acetone	μg/L		5.00	6.00 JB	15.00 J	20.00 U	0.50 U	130 U	5.0 U
carbon disulfide	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
methyl acetate	μg/L		0.50				0.50 U	13 U	0.50 U
methylene chloride	μg/L		0.50	10.00 B	5.00 JB	10.00 B	0.50 U	13 U	0.50 U
trans- 1,2-dichloroethene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
tert-Butyl Methyl Ether	μg/L		0.50				0.26 J	13 U	0.50 U
1,1-dichloroethane	μg/L		0.50	2.00 J	5.00 J	10.00 U	1.4	13 U	1.2
cis-1,2-dichloroethene	μg/L		0.50	12.00	15.00 J	15.00	9.6	8.9 J	9.2
2- butanone	μg/L		5.00	20.00 U	40.00 U	20.00 U	5.0 U	130 U	5.0 U
Bromochloromethane	μg/L		0.50				0.50 U	13 U	0.50 U
chloroform	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.15 J	13 U	0.18 J
1,1,1-trichloroethane	μg/L		0.50	8.00 J	22.00	15.00	8.2	8.4 J	7.4
Cyclohexane	μg/L		0.50				0.50 U	13 U	0.50 U
carbon tetrachloride	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
benzene	μg/L		0.50	1.00 U	3.00 U	1.00 U	0.50 U	13 U	0.50 U
1,2-dichloroethane	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.51	13 UJ	0.23 J
trichloroethene	μg/L		0.50	310.00	540.00	310.00	220 D	200	250 D
Methylcyclohexane	μq/L		0.50				0.50 U	13 U	0.50 U
1,2-dichloropropane	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
bromodichloromethane	μq/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
cis 1,3-dichloropropene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.13 J	13 U	0.15 J
4-methyl-2-pentanone	μq/L		5.00	20.00 U	40.00 U	20.00 U	5.0 U	130 U	5.0 U
toluene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
trans-1,3-dichloropropene	μq/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
1,1,2-trichloroethane	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.16 J	13 U	0.20 J
tetrachloroethene	μg/L		0.50	130.00	55.00	160.00	120 D	110	92 D
2-hexanone	μg/L		5.00	20.00 U	40.00 U	20.00 U	5.0 U	130 U	0.45 J
dibromochloromethane	μq/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
1,2-Dibromoethane	μg/L		0.50				0.50 U	13 U	0.50 U
chlorobenzene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
ethylbenzene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
xylene (total)	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
styrene	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
bromoform	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 UJ	6.5 J	0.50 U
Isopropylbenzene	μg/L		0.50				0.50 U	13 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	10.00 U	20.00 U	10.00 U	0.50 U	13 U	0.50 U
1,3-Dichlorobenzene	μg/L		0.50				0.50 U	13 U	0.50 U
1,4-Dichlorobenzene	µg/L		0.50				0.50 U	13 U	0.50 U
1,2-Dichlorobenzene	μg/L		0.50				0.50 U	13 U	0.50 U
1,2-Dibromo-3-chloropropane	µg/L		0.50				0.50 U	13 U	0.50 U
1,2,4-Trichlorobenzene	μg/L		0.50				0.50 U	13 U	0.50 U
1.2.3-Trichlorobenzene	µg/L		0.50	†			0.50 U	13 U	0.50 U
.,_,5	P3' □		5.00	+			5.00 0	10 0	0.00

U: not detected

J: estimated

R: rejected

D: quantified at dilution

NM: not measured
UJ: estimated not detected

Table 5-5: Treated Water from Discharge of Air Stripper to Granular Activated Vessel A May 16, 2001-October 30, 2002

			N	lay 16, 2001-Oct	ober 30, 2002				
Analyte	units	MDL	CRQL	CLG07AWA-064	CLG07AWA-077	CLG07AWA-090	CPC-00-PW- 007A-001	CPC-00-PW- 007A-002	CPC-00-PW- 007A-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
1/22									
VOCs				(4)()	(4)()	(4)()	(4)()	(4)()	(4)()
VOC Dilution Factor	//		0.50	(1X)	(1X)	(1X)	(1X) 0.50 U	(1X)	(1X) 0.50 U
Dichlorodifluoromethane	μg/L		0.50 0.50	10.00 U	10.00 U	10.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
chloromethane vinyl chloride	μg/L μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	μg/L		0.50	10.00 0	10.00	10.00 0	0.50 U	0.50 U	0.50 U
1,1-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichloro-1,2,2-trifluoroe	μg/L		0.50	1,11	0.00		0.50 U	0.50 U	0.50 U
acetone	μg/L		5.00	2.00 JB	10.00 U	10.00 U	0.50 U	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
methyl acetate	μg/L		0.50				0.50 U	0.50 U	0.50 U
methylene chloride	μg/L		0.50	0.70 JB	0.50 JB	5.00 U	0.33 J	0.50 U	0.69 UJ
trans-1,2-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
tert-Butyl Methyl Ether	μg/L		0.50				0.24 J	0.29 J	0.52
1,1-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.41 J	0.42 J	0.20 J
2- butanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chloroform	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,1-trichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
Cyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
carbon tetrachloride	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
benzene	μg/L		0.50	0.70 U	0.70 U	0.70 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
trichloroethene	μg/L		0.50	2.00 J	9.00	5.00 U	2.0	2.2	2.3
Methylcyclohexane	μg/L		0.50	5.00 11	5.00 11	5.00 11	0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromodichloromethane cis 1,3-dichloropropene	μg/L		0.50 0.50	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
4-methyl-2-pentanone	μg/L μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
toluene	μg/L μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.27 J
trans-1,3-dichloropropene	μg/L μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2-trichloroethane	μg/L μg/L		0.50	5.00 U	5.00 U	5.00 U	0.30 U	0.13 J	0.30 J
tetrachloroethene	μg/L μg/L		0.50	0.80 J	0.90 JB	5.00 U	0.12 3	1.1	0.69 U
2-hexanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
dibromochloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane	μg/L		0.50	0.00 0	0.00	0.00 0	0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
xylene (total)	µg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
stvrene	ua/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromoform	µg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
Isopropylbenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane	μg/L	-	0.50				0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
WATER QUALITY									
TSS	mg/L				5.00 U	5.00 U			
TDS	mg/L				1.00 U	1.00 U	-		
TOC	mg/L								

boldface: lab analysis positive detection

U: not detected

J: estimated R: rejected

D: quantified at dilution

NM: not measured

UJ: estimated not detected

Table 5-6: Treated Water from Discharge of Air Stripper to Granular Activated Vessel B May 16, 2001- October 30, 2002

		,	IIIu	y 16, 2001- Octo	Dei 30, 2002	1			
Analyte	units	MDL	CRQL	CLG07BWA-064	CLG07BWA-077	CLG07BWA-090	CPC-00-PW- 007B-001	CPC-00-PW- 007B-002	CPC-00-PW- 007B-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
	İ								
VOCs									
VOC Dilution Factor				(1x)	(1x)	(1x)	(1X)	(1X)	(1X)
Dichlorodifluoromethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chloromethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
vinyl chloride	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	μg/L		0.50				0.50 U	0.50 U	0.50 UJ
1,1-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.10 J	0.50 U	0.50 UJ
1,1,2-Trichloro-1,2,2-trifluoroethan	μg/L		0.50				0.50 U	0.50 U	0.50 UJ
acetone	μg/L		5.00	1.00 JB	11.00	10.00 U	5.0 U	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
methyl acetate	μg/L		0.50				0.50 U	0.50 U	0.50 UJ
methylene chloride	μg/L	ļ	0.50	0.60 JB	3.00 JB	0.40 JB	0.19 J	0.50 U	0.50 UJ
trans-1,2-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
tert-Butyl Methyl Ether	μg/L		0.50				0.26 J	0.29 J	0.37 J
1,1-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
cis-1,2-dichloroethene	μg/L		0.50	5.00 U	1.00 J	5.00 U	0.57	0.49 J	0.29 J
2- butanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	μg/L		0.50				0.50 U	0.50 U	0.50 UJ
chloroform	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
1,1,1-trichloroethane	μg/L		0.50	5.00 U	1.00 J	5.00 U	0.14 J	0.11 J	0.13 J
Cyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
carbon tetrachloride	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
benzene	μg/L		0.50	0.70 U	0.70 U	0.70 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
trichloroethene	μg/L		0.50	2.00 J	26.00	3.00 J	4.3	3.6	5.2
Methylcyclohexane	μg/L		0.50		· · ·		0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
bromodichloromethane	μg/L		0.50						
cis 1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
4-methyl-2-pentanone	μg/L		5.00	10.00 U	10.00 U 5.00 U	10.00 U 5.00 U	5.0 U	5.0 U 0.50 U	5.0 U
toluene	μg/L		0.50	5.00 U			0.10 J 0.50 U		0.17 J
trans-1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U			0.50 U
1,1,2-trichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U			0.50 U
tetrachloroethene	μg/L		0.50	0.90 J	3.00 J	1.00 J	2.0	2.0	1.8
2-hexanone	μg/L		5.00	10.00 U 5.00 U	10.00 U 5.00 U	10.00 U 5.00 U	5.0 U 0.50 U	5.0 U 0.50 U	5.0 U 0.50 U
dibromochloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane	μg/L		0.50 0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
chlorobenzene ethylbenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U 5.00 U	0.50 U	0.50 U	0.50 U
	μg/L								
xylene (total)	μg/L		0.50 0.50	5.00 U 5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
styrene	μg/L								
bromoform	μg/L		0.50 0.50	5.00 U	5.00 U	5.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
Isopropylbenzene 1.1.2.2-tetrachloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2,2-tetracnioroetnane 1,3-Dichlorobenzene	μg/L μg/L		0.50	5.00 0	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene			0.50	+			0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene 1,2-Dichlorobenzene	μg/L		0.50	+			0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	μg/L μg/L	+	0.50	-			0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene		+	0.50	-			0.50 U	0.50 U	
1,2,3-Trichlorobenzene	μg/L μg/L	+	0.50	-			0.50 U	0.50 U	0.50 U 0.50 U
1,2,3-ITICHIOTODEHZEHE	µg/L	+	0.50	+			0.50 U	0.50 0	0.50 U
WATER QUALITY	-								
TSS WATER QUALITY	mg/L	+		-		7.50			
TDS	mg/L	+		-		1.00 U			
TOC	mg/L	ł				1.00 0			
100	riig/L			l	l	l			

boldface: lab analysis positive detection U: not detected

J: estimated R: rejected

D: quantified at dilution

NM: not measured

UJ: estimated not detected

Table 5-7: Polished Water Disharged from Granular Ativated Carbon Vessel A to Treated Effluent Tank May 16, 2001-October 30, 2002

Analyte	units	MDL	CRQL	CLG08AWA-064	CLG08AWA-077	CLG08AWA-090	CPC-00-PW- 008A-001	CPC-00-PW- 008A-002	CPC-00-PW- 008A-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
VOCs									
VOC Dilution Factor				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
Dichlorodifluoromethane	μg/L		0.50	40.00 11	40.00 11	40.00 11	0.50 U	0.50 U	0.50 U
chloromethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.12 J
vinyl chloride	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	μg/L		0.50	= 00 11	# 00 II	= 00 · · ·	0.50 U	0.50 U	0.50 U
1,1-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichloro-1,2,2-trifluoroethane	μg/L		0.50	0.00 15	40.00.11	40.00 11	0.50 U	0.50 U	0.50 U
acetone	μg/L		5.00	2.00 JB	10.00 U	10.00 U	11	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	5.00 U	0.60 J	5.00 U	0.50 U	0.50 U	0.50 U
methyl acetate	μg/L		0.50				0.50 U	0.50 U	0.50 U
methylene chloride	μg/L		0.50	0.90 JB	1.00 JB	0.50 JB	0.21 J	0.50 U	0.50 UJ
trans- 1,2-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 UJ
tert-Butyl Methyl Ether	μg/L		0.50	5.00	F 00 · ·	5.00	0.12 J	0.50 U	0.50 U
1,1-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
cis- 1,2-dichloroethene	μg/L		0.50	0.60 J	5.00 U	5.00 U	0.17 J	0.34 J	0.35 J
2- butanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	μg/L		0.50			· · ·	0.50 U	0.50 U	0.50 U
chloroform	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,1-trichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
Cyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
carbon tetrachloride	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
benzene	μg/L		0.50	0.70 U	0.70 U	0.70 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
trichloroethene	μg/L		0.50	6.00	0.80 J	5.00 U	0.62	0.50 U	0.65 U
Methylcyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromodichloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
cis 1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
4-methyl-2-pentanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
toluene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.43 J	0.50 U	0.50 U
trans-1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2-trichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
tetrachloroethene	μg/L		0.50	2.00 J	5.00 U	5.00 U	0.41 J	0.50 U	0.50 U
2-hexanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
dibromochloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
xylene (total)	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
styrene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromoform	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.18 J
Isopropylbenzene	μg/L		0.50	ļ			0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L	, i	0.50				0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	μg/L	· ·	0.50				0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane	μg/L	, in the second	0.50				0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
WATER QUALITY									
TSS	mg/L					5.00 U			
TDS	mg/L					1.91			
TOC	mg/L								

boldface: lab analysis positive detection

U: not detected J: estimated

R: rejected

D: quantified at dilution

NM: not measured

UJ: estimated not detected

Table 5-8: Polished Water Disharged from Granular Ativated Carbon Vessel B to Treated Effluent Tank May 16, 2001-October 30, 2002

			iii u	y 16, 2001-Octo	50. 00, 2002				
Analyte	units	MDL	CRQL	CLG08BWA-064	CLG08BWA-077	CLG08BWA-090	CPC-00-PW- 008B-001	CPC-00-PW- 008B-002	CPC-00-PW- 008B-003
Sampling Date				5/16/01	8/15/01	11/20/01	5/29/02	8/8/02	10/30/02
VOCs				1		'			
VOC Dilution Factor				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
Dichlorodifluoromethane	μg/L		0.50	()	()	()	0.50 U	0.50 U	0.50 U
chloromethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
vinyl chloride	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		0.50	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane	μg/L		0.50	10.00	10.00	10.00	0.50 U	0.50 U	0.50 U
1,1-dichloroethene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.16 J	0.16 J
1,1,2-Trichloro-1,2,2-trifluoroethane			0.50	0.00	0.00	0.00	0.50 U	0.50 U	0.50 U
acetone	μg/L		5.00	10.00 U	10.00 U	10.00 U	13	5.0 U	5.0 U
carbon disulfide	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
methyl acetate	μg/L		0.50	3.00 0	3.00 0	3.00 0	0.50 U	0.50 U	0.50 U
methylene chloride	μg/L		0.50	0.80 JB	2.00 JB	0.80 JB	0.21 J	0.50 U	0.50 UJ
trans- 1,2-dichloroethene	μg/L μg/L		0.50	5.00 U	5.00 U	5.00 U	0.21 J	0.50 U	0.50 UJ
tert-Butyl Methyl Ether	μg/L		0.50	3.00 0	3.00 0	5.00 0	0.30 J	0.50 U	0.30 US
1,1-dichloroethane	μg/L μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene			0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.11 3	0.83 J
2- butanone	μg/L μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
Bromochloromethane			0.50	10.00 0	10.00 0	10.00 0	0.50 U	0.50 U	0.50 U
	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	
chloroform	μg/L		0.50	5.00 U	5.00 U 5.00 U	5.00 U 5.00 U	0.50 U		
1,1,1-trichloroethane	μg/L			5.00 U	5.00 U	5.00 U		0.33 J	
Cyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
carbon tetrachloride	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
benzene	μg/L		0.50	0.70 U	0.70 U	0.70 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.11 J
trichloroethene	μg/L		0.50	2.00 J	3.00 J	3.00 J	0.98	0.66	2.4
Methylcyclohexane	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-dichloropropane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromodichloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
cis 1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
4-methyl-2-pentanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
toluene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.43 J	0.50 U	0.50 U
trans-1,3-dichloropropene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,1,2-trichloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.14 J	0.17 J
tetrachloroethene	μg/L		0.50	0.60 J	1.00 J	5.00 U	0.66	0.50 U	0.50 U
2-hexanone	μg/L		5.00	10.00 U	10.00 U	10.00 U	5.0 U	5.0 U	5.0 U
dibromochloromethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane	μg/L		0.50				0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
xylene (total)	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
styrene	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
bromoform	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.23 J	0.50 U	0.50 U
Isopropylbenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane	μg/L		0.50				0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene	μg/L		0.50	1	İ		0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene	μg/L		0.50				0.50 U	0.50 U	0.50 U
WATER QUALITY									
TSS	mg/L				5.00 U	5.00 U			
TDS	mg/L				1				
TOC	mg/L			1	1.00 U	1.43			

Table 5-9: Treated System Effluent from Effluent Storage Tank June 8, 2001 - October 30, 2002

	ı	EPA							1	,	Outobel ou	•	1	1		1	1	1	ı		
		cleanup									CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CL-WA-09-	CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-
Analyte			MDL	01 14/4 00 007	01 14/4 00 00	01 14/4 00 00	01 14/4 00 70	01 14/4 00 74	01 14/4 00 70	01 14/4 00 70											
, , , ,	units	goal	MDL		CL-WA09-68						074	075	076	077	078	079	080	081	082	083	084
Date Analyzed				6/8/01	6/14/01	6/20/01	6/27/01	7/9/01	7/12/01	7/18/01	7/27/01	8/1/01	8/8/01	8/15/01	8/24/01	8/29/01	9/5/01	9/12/01	9/18/01	9/26/01	10/3/01
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
methylene chloride	μg/L	5.00	5.00	5.00 U	3.00 J	1.00 J	4.00 J	4.00 J	5.00 U	2.00 JB	5.00 U	5.00 U	1.00 J	0.40 JB	0.90 J	0.70 J	0.70 J	5.00 U	0.70 JB	5.00 U	0.50 JB
1,1-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1-dichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
chloroform	μg/L	7.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,1-trichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trichloroethene	μg/L	5.00	5.00	4.00 J	4.00 J	4.00 J	4.00 J	1.00 J	5.00 U	0.40 J	5.00 U	5.00 U	5.00 U	0.60 J	5.00 U	5.00 U	5.00 U	0.50 J	5.00 U	5.00 U	5.00 U
benzene	μg/L	0.70	0.70	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U
tetrachloroethene	μg/L	5.00	5.00	0.90 J	1.00 J	1.00 J	0.90 J	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 J	5.00 U	5.00 U	5.00 U	5.00 U	0.50 J	5.00 J	5.00 U	5.00 U
toluene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
chlorobenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
ethylbenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
pН		6.5 to 8.6		6.59	6.54	6.61	6.51	7.01	7.82	6.80	6.68	6.62	6.55	6.63	6.73	6.75	6.54	7.00	6.63	6.58	6.62
SVOCS																					
di-n-butylphthalate	μg/L	50.00	50.00	NS	0.20 JB	NS	NS	NS	NS	10.00 U	NS	NS	NS	0.30 J	NS	NS	NS	NS	10.00 U	NS	NS
bis (2-ethylhexyl)phthalate	μg/L	5.00	10.00	NS	10.00 U	NS	NS	NS	NS	10.00 U	NS	NS	NS	10.00 U	NS	NS	NS	NS	10.00 U	NS	NS
INORGANICS		IDL	CRQL																		
Arsenic	μg/L	3	10	NS	4.20 U	NS	NS	NS	NS	4.20 U	NS	NS	NS	4.40 U	NS	NS	NS	NS	4.40 U	NS	NS
Barium	μg/L	0.3	200	NS	72.20 B	NS	NS	NS	NS	53.40 B	NS	NS	NS	75.70 B	NS	NS	NS	NS	74.00 B	NS	NS
Lead	μg/L	1.2	3	NS	2.00 U	NS	NS	NS	NS	2.00 U	NS	NS	NS	2.00 U	NS	NS	NS	NS	2.00 U	NS	NS
Selenium	μg/L	3	5	NS	4.90 U	NS	NS	NS	NS	4.90 U	NS	NS	NS	4.80 U	NS	NS	NS	NS	4.80 U	NS	NS
Iron	μg/L	13	100	NS	20.50 U	NS	NS	NS	NS	21.10 B	NS	NS	NS	37.60 B	NS	NS	NS	NS	20.40 B	NS	NS
Manganese	μg/L	0.2	15	NS	43.20	NS	NS	NS	NS	316.00	NS	NS	NS	234.00	NS	NS	NS	NS	271.00	NS	NS
Nitrogen (Total)	mg/L			NS	3790	NS	NS	NS	NS	3770	NS	NS	NS	NS	NS	NS	NS	NS	4000.00	NS	NS
Solids, Total Dissolved	mg/L			NS	313	NS	NS	NS	NS	275	NS	NS	NS	209	NS	NS	NS	NS	280.00	NS	NS
Antimony	μg/L	1.2	60	NS	4.40 U	NS	NS	NS	NS	4.40 U	NS	NS	NS	4.70 U	NS	NS	NS	NS	4.70 U	NS	NS
Chromium, Hexavalent	μg/L			NS	10.00 U	NS	NS	NS	NS	10 U	NS	NS	NS	10 U	NS	NS	NS	NS	10.00 U	NS	NS
	- 0		30																		

		EPA																			
		cleanup		CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CLG09WA-	CL-WA-09-	CL-WA-09-	CL-WA-09-	CL-WA-09-	CL-WA-09-	CL-WA-09-						
Analyte	units	goal	MDL	085	086	087	088	090	091	092	093	094	096	097	094*	CL-WA-09-099	CLWA-09-100	CL-WA-09-101	CL-WA-09-102	CL-WA-09-103	CL-WA-09-104
Date Analyzed				10/10/01	10/17/01	10/24/01	10/31/01	11/20/01	11/28/01	12/11/01	12/17/01	12/30/01	1/3/02	1/10/02	1/16/02	1/23/02	1/30/02	2/6/02	2/13/02	2/20/02	2/28/02
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)						
methylene chloride	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	0.60 JB	5.00 U	0.30 J	0.20 U	0.80 J	0.20 U	0.20 U	0.20 U	0.20 UB	0.30 J	3.00 J	2.00 J	0.20 U	0.20 U	0.20 U
1,1-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U*	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U
1,1-dichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U*	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
trans- 1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
chloroform	μg/L	7.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U*	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1,1,1-trichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U*	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
trichloroethene	μg/L	5.00	5.00	0.60 J	5.00 U	5.00 U	5.00 U	5.00 U	0.80 J	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U
benzene	μg/L	0.70	0.70	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.30 U	0.30 U	0.30 U	0.70 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
tetrachloroethene	μg/L	5.00	5.00	0.30 J	5.00 U	5.00 U	5.00 U	5.00 U	0.30 J	0.50 J	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
toluene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U*	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
chlorobenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U*	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
ethylbenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U*	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
pH		6.5 to 8.6		6.58	6.45	6.57	6.52		6.48	6.53	6.48	6.52	6.75	6.84	6.57	6.51	6.56	6.85	6.52	6.58	6.71
SVOCS																					
di-n-butylphthalate	μg/L	50.00	50.00	NS	10.00 U	NS	NS	10.00 U	NS	NS	0.50 U	NS	NS	NS	0.50 U	NS	NS	NS	NS	0.50 U	NS
bis (2-ethylhexyl)phthalate	μg/L	5.00	10.00	NS	10.00 U	NS	NS	10.00 U	NS	NS	0.50 U	NS	NS	NS	0.50 U	NS	NS	NS	NS	0.50 U	NS
INORGANICS		IDL	CRQL	110	4.00 11	110	110	4.00 11	110	110	- 00 11	110	NO	NO	7.00 11			110	NO	7.00 11	110
Arsenic	μg/L	3	10	NS	4.90 U	NS	NS	4.60 U	NS	NS	7.00 U	NS	NS	NS	7.00 U	NS	NS	NS	NS	7.00 U	NS
Barium	μg/L	0.3	200	NS	80.00 B	NS	NS	93.20 BE	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS
Lead	μg/L	1.2	3	NS	2.30 U	NS	NS	2.30 U	NS	NS	2.20 U	NS	NS	NS	2.40 U	NS	NS	NS	NS	3.40 U	NS
Selenium	μg/L	3	5	NS	4.60 U	NS	NS	4.90 UN	NS	NS	5.00 U	NS	NS	NS	5.00 U	NS	NS	NS	NS	6.90 U	NS
Iron	μg/L	13	100	NS	22.30 B	NS	NS	64.30 BE	NS	NS	63.50 U	NS	NS	NS	63.50 U	NS	NS	NS	NS	85.30 U	NS
Manganese	μg/L	0.2	15	NS	294.00	NS	NS	332.00 E	NS	NS	205.00	NS	NS	NS	186.00	NS	NS	NS	NS	130.00	NS
Nitrogen (Total)	mg/L			NS	4070.00	NS	NS	NS	NS	NS	4000.00	NS	NS	NS	3900.00	NS	NS	NS	NS	4400.00	NS
Solids, Total Dissolved	mg/L			NS	259.00	NS	NS	NS	NS	NS	260.00	NS	NS	NS	280.00	NS	NS	NS	NS	250.00	NS
Antimony	μg/L	1.2	60	NS	4.60 U	NS	NS	4.50 U	NS	NS	0.004 U	NS	NS	NS	4.60 U	NS	NS	NS	NS	5.90 U	NS
Chromium, Hexavalent	μg/L			NS	10.00 U	NS	NS	NS	NS	NS	3.00 U	NS	NS	NS	3.00 U	NS	NS	NS	NS	3.00 U	NS

Chromium, Hexavalent µg/L

Boldface: Lab Analysis Positive Detection
U: Not Detected
J: Estimated
R: Rejected
B: IDL <x< CRDL
(ILM04.1)(Equivalent to J)
D: Quantified At Dilution

NS: Not Sampled
UJ: Estimated Not Detected

Table 5-9: Treated System Effluent from Effluent Storage Tank June 8, 2001 - October 30, 2002

		EPA	ı		1	Î	1			Julie 0, 2001		,	1	Ī	1	1	1		ı	
		cleanup		CL-WA-09-	CL-WA-09-	CL-WA-09-						CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-
Analyte	units	goal	MDL	105	106	107	CI -WA-09-01	CI -WA-09-03	CI -WA-09-05	CL-WA-09-07	CI -WA-09-09	009-11	009-13	009-15	009-17	009-018	009-020	009-021	009-022	009-023
Date Analyzed		9		3/6/02	3/13/02	3/20/02	3/27/02	4/3/02	4/10/02	4/17/02	4/24/02	4/30/02	5/8/02	5/17/02	5/22/02	5/29/02	6/5/02	6/12/02	6/19/02	6/26/02
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
7000				(171)	(171)	(174)	(174)	(171)	(171)	(174)	(174)	(171)	(171)	(174)	(174)	(174)	(174)	(174)	(174)	(174)
methylene chloride	ua/L	5.00	5.00	0.20 U	1.00 J	0.20 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.11 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-dichloroethene	μg/L	5.00	5.00	0.60 U	0.60 U	0.60 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.11 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1-dichloroethane	μg/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis- 1,2-dichloroethene	μg/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.25 J	0.29 J	0.50 U	0.35 J	0.32 J	0.30 J	0.30 J	0.50 U	0.40 J
trans- 1,2-dichloroethene	μg/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U
chloroform	μg/L	7.00	5.00	0.20 U	0.20 U	0.20 U	0.50 U	0.81	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1,1-trichloroethane	μg/L	5.00	5.00	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.14 J	0.11 J	0.50 U	0.30 J	0.50 U	0.20 J
trichloroethene	μg/L	5.00	5.00	0.80 U	0.80 U	0.80 U	0.50 U	0.50 U	1.30	0.36 J	0.49 J	0.58	0.50 U	0.50 U	0.68	0.38 J	0.60 J	6.90	0.90 J	0.90 J
benzene	μg/L	0.70	0.70	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
tetrachloroethene	μg/L	5.00	5.00	0.30 U	0.40 J	0.30 U	0.50 U	0.50 U	0.69	0.50 U	0.50 U	0.40 J	0.50 U	0.25 J	0.50 U	0.27 J	0.30 J	3.20	0.50 J	0.40 J
toluene	μg/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L	5.00	5.00	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
pН		6.5 to 8.6		6.62			6.67	6.63	6.80	6.54	6.53	6.59	6.65	6.51	6.69	6.64	7.06	6.88	6.83	7.87
SVOCS																				
di-n-butylphthalate	μg/L	50.00	50.00	NS	NS	NS	0.50 U	NS	NS	NS	NS	5.00 U	NS	NS	NS	5.00 U	NS	4.00 U	NS	NS
bis (2-ethylhexyl)phthalate	μg/L	5.00	10.00	NS	NS	NS	0.50 U	NS	NS	NS	NS	5.00 U	NS	NS	NS	3.80 J	NS	4.00 U	NS	NS
INORGANICS		IDL	CRQL																	
Arsenic	μg/L	3	10	NS	NS	NS	9.20	NS	NS	NS	NS	2.80 U	NS	NS	NS	4.20 U	NS	10.00 U	NS	NS
Barium	μg/L	0.3	200	NS	NS	NS	NS	NS	NS	NS	NS	74.00 B	NS	NS	NS NO	85.20 B	NS	200.00 U	NS	NS
Lead	μg/L	1.2	3	NS NS	NS NO	NS NC	3.40 U	NS	NS NC	NS NC	NS	2.10 U	NS	NS	NS NC	1.30 U	NS	3.00 U	NS	NS
Selenium	μg/L	3	100	NS NS	NS	NS NG	6.90 U	NS	NS	NS NC	NS	4.00 B	NS NC	NS	NS NC	2.20 U	NS	5.00 U	NS	NS NG
Iron	μg/L	13	100 15	NS NS	NS NC	NS NC	85.30 U	NS	NS NS	NS NC	NS NS	17.30 U	NS NS	NS	NS NS	26.50 B	NS NC	140.00	NS NS	NS NS
Manganese	μg/L	0.2	15	NS NS	NS NS	NS NS	367.00 NS	NS NS	NS NS	NS NS	NS NS	134.00	NS NS	NS NS	NS NS	112.00 1000.00 U	NS NS	190.00 1000.00 U	NS NS	NS NS
Nitrogen (Total)	mg/L				_	_						1000.00 U							_	
Solids, Total Dissolved	mg/L	12	60	NS NS	NS NS	NS NS	NS 5.90 U	NS NS	NS NS	NS NS	NS NS	296.00 6.30 B	NS NS	NS NS	NS NS	324.00 1.60 U	NS NS	322.00 60.00 U	NS NS	NS NS
Antimony Chromium, Hexavalent	μg/L ua/L	1.2	60	NS NS	NS NS	NS NS	5.90 0	NS NS	NS NS	NS NS	NS NS	20.00 U	NS NS	NS NS	NS NS	20.00 U	NS NS	20.00 U	NS NS	NS NS
Chiomium, nexavalent	µg/L			INO	ONI	l INO		INЭ	ONI	ON	INЭ	20.00 U	INO	INO.	ВV	20.00 U	INO	20.00 U	INO.	INO.

		EPA																		
Analyte	units	cleanup	MDL	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-	CPC-00-PW-
		goal		009-024	009-025	009-026	009-027	009-028	009-029	009-030	009-031	009-032	009-033	009-034	009-035	009-036	009-037	009-038	009-039	009-040
Date Analyzed				7/2/02	7/11/02	7/17/02	7/24/02	7/31/02	8/8/02	8/14/02	8/21/02	8/28/02	9/4/02	9/11/02	9/18/02	10/2/02	10/9/02	10/17/02	10/23/02	10/30/02
VOCs				(1X)																
methylene chloride	μg/L	5.00	5.00	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.91 UJ	1.00 UJ	2.20 UJ	0.71 UJ									
1,1-dichloroethene	μg/L	5.00	5.00	0.50 U	0.50 UJ	0.50 U														
1,1-dichloroethane	μg/L	5.00	5.00	0.50 U	0.16 J	0.50 U														
cis- 1,2-dichloroethene	μg/L	5.00	5.00	0.40 J	0.30 J	0.40 J	0.40 J	0.40 J	0.69 U	0.88	0.67	0.85	0.82	0.68	0.45 J	0.76	0.86	0.71	0.67	0.54
trans- 1,2-dichloroethene	μg/L	5.00	5.00	0.50 U																
chloroform	μg/L	7.00	5.00	0.50 U	0.57 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U	0.50 U						
1,1,1-trichloroethane	μg/L	5.00	5.00	0.20 J	0.50 U	0.20 J	0.50 U	0.20 J	0.50 U	0.50 U	0.50 U	0.39 J	0.30 J	0.22 J	0.24 J	0.50 U	0.25 J	0.26 J	0.22 J	0.20 J
trichloroethene	μg/L	5.00	5.00	1.10	0.40 J	0.90 J	0.60 J	0.70 J	0.73 U	0.94	0.86	1.60	1.50	0.94	0.94	1.60	1.80	1.40	1.30	1.20 U
benzene	μg/L	0.70	0.70	0.50 U																
tetrachloroethene	μg/L	5.00	5.00	0.40 J	0.50 U	0.40 J	0.30 J	0.40 J	0.21 J	0.28 J	0.22 J	0.62	0.45 J	0.29 J	0.24 J	0.57	0.49 J	0.35 J	0.38 J	0.50 U
toluene	μg/L	5.00	5.00	0.50 U																
chlorobenzene	μg/L	5.00	5.00	0.50 U																
ethylbenzene	μg/L	5.00	5.00	0.50 U																
pH		6.5 to 8.6		7.90	7.10	7.70	8.20	7.30	6.80	6.70	6.80	6.57	6.61	6.70	6.80	6.64	6.80	7.00	6.53	6.61
SVOCS		50.00	F0.00	4.00.11	NO	NO	NO	NO	5.00.11	NO	NO	NO	5.00.11	NO	NO	NO	NO	NO	NO	5.00.11
di-n-butylphthalate	μg/L	50.00	50.00	4.00 U	NS	NS	NS	NS	5.00 U	NS NO	NS	NS	5.00 U	NS	NS	NS	NS	NS	NS	5.00 U
bis (2-ethylhexyl)phthalate	μg/L	5.00	10.00 CRQL	4.00 U	NS	NS	NS	NS	5.00 U	NS	NS	NS	5.00 U	NS	NS	NS	NS	NS	NS	5.00 U
Arsenic	μq/L	IDL	CRQL 10	10.00 U	NS	NS	NS	NS	2.50 U	NS	NS	NS	6.00 U	NS	NS	NS	NS	NS	NS	3.00 U
Barium	ug/L	0.3	200	200.00 U	NS NS	NS NS	NS NS	NS NS	83.40 B	NS	NS NS	NS NS	75.80 B	NS NS	NS	NS NS	NS NS	NS NS	NS NS	79.90 B
Lead	μg/L ug/L	1.2	200	3.20	NS NS	NS NS	NS NS	NS NS	1.30 U	NS NS	NS NS	NS NS	2.90 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.20 U
Selenium	μg/L μg/L	3	5	5.00 U	NS NS	NS NS	NS NS	NS NS	1.70 U	NS NS	NS NS	NS NS	3.00 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.00 U
Iron	ug/L	13	100	110.00	NS	NS	NS NS	NS	98.30 B	NS	NS NS	NS	22.30 U	NS	NS	NS	NS	NS	NS	63.80 B
Manganese	ug/L	0.2	150	250.00	NS NS	NS NS	NS NS	NS NS	85.20	NS NS	NS NS	NS NS	53.40	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	82.20
Nitrogen (Total)	ma/L	0.2	13	1000.00	NS NS	NS NS	NS NS	NS NS	1000.00 U	NS NS	NS NS	NS NS	1000.00 U	NS NS	NS NS	NS NS	NS NS	NS	NS NS	1000.00 U
Solids. Total Dissolved	ma/L			255.00	NS NS	NS NS	NS NS	NS NS	324.00	NS NS	NS NS	NS NS	320.00	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	318.00
Antimony	ug/L	1.2	60	60.00 U	NS NS	NS NS	NS NS	NS NS	2.20 B	NS NS	NS NS	NS NS	8.70 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.20 U
Chromium. Hexavalent	μg/L μg/L	1.2	30	20.00 U	NS NS	NS NS	NS NS	NS NS	20.00 U	NS	NS NS	NS NS	20.00 U	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	20.00 U
Onionium, nexavaiem	μy/∟			20.00 0	INO	INO	INO	INO	20.00 0	INO	INO	INO	20.00 0	INO	INO	INO	INO	INO	INO	20.00 0

Chromium, Hexavalent µg/L

Boldface: Lab Analysis Positive Detection
U: Not Detected
J: Estimated
R: Rejected
B: IDL <x< CRDL
(ILM04.1)(Equivalent to J)
D: Quantified At Dilution

NS: Not Sampled
UJ: Estimated Not Detected

Table 5-10 Summary of Operational Problems and Corrective Actions for June 2001 to October 2002

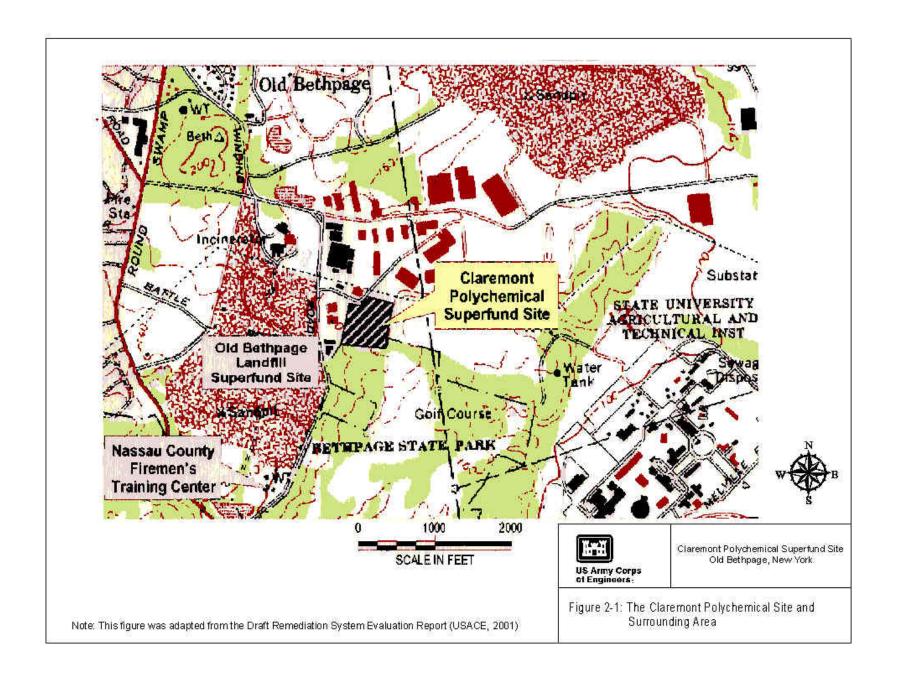
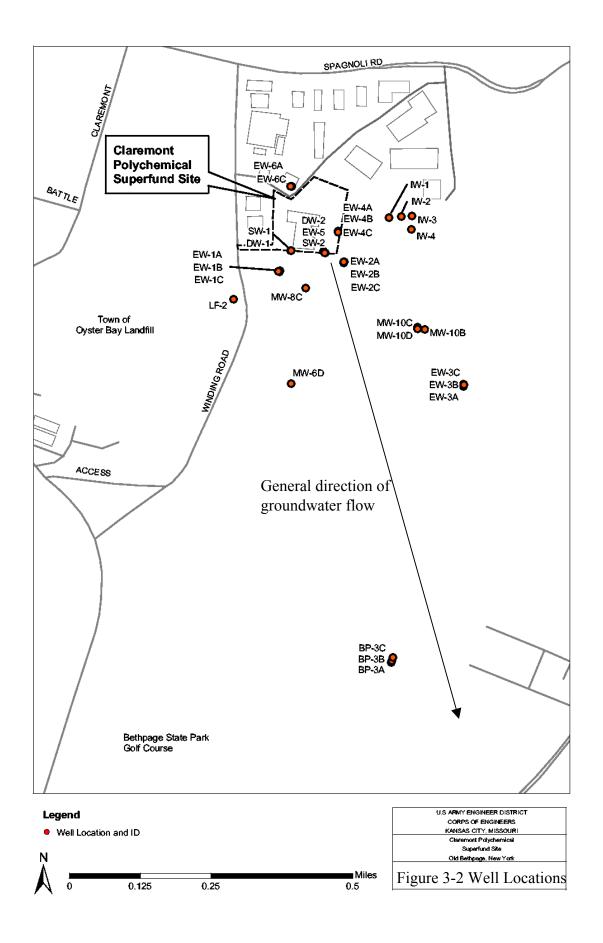
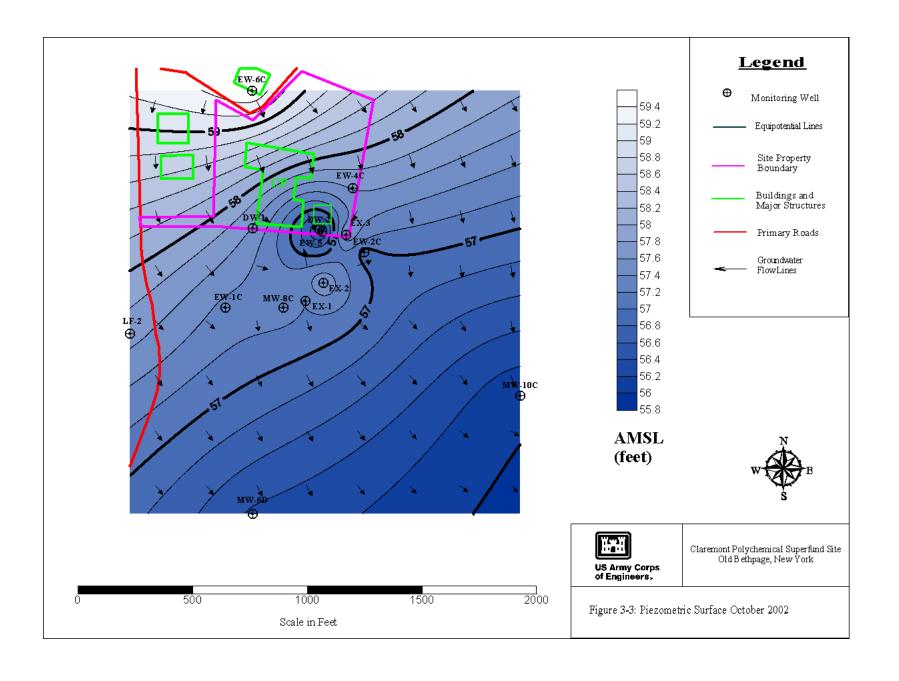
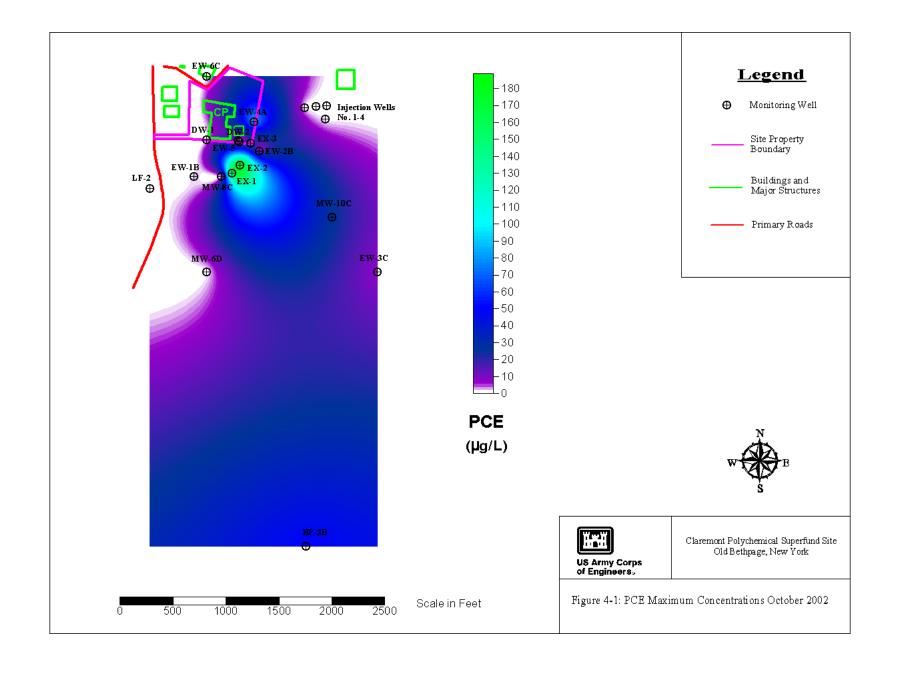
MONTH	SIGNIFICANT OPERATIONAL PROBLEMS	CORRECTIVE ACTIONS SUMMARY
June 2001	Plant discharge showing signs of breakthrough	Replaced aqueous phase GAC
	Flow transmitter malfunction shorted out MCP signal input	Cleaned wiring block connections
	Fire alarm system fault triggered by thunderstorm/power surge	Cleared system
July 2001	Process stream contaminated with carbon dust	Recycled/flushed plant at low flow; cleaned clarifiers and sandfilter
	Extraction well #2 flow meter seized up	Replaced in August '01
	Extraction #1 pipe broke at hill top	Replaced in August '01
August 2001	No significant operational problems	No corrective action required
September 2001	No significant operational problems	No corrective action required
October 2001	No significant operational problems	No corrective action required
November 2001	No significant operational problems	No corrective action required
December 2001	Sand filter nozzles clogging due to solids inventory	Utility air cleaning of nozzles
January 2002	No Information Available	
February 2002	No Information Available	
March 2002	Mechanical flow meters fail at variable flow rates	Evaluate magnetic flow meters as replacement
	Second air compressor motor leaking	Schedule repair of motor
April 2002	Thermal overload switch is tripped by EW pump No. 1	Adjust current switch and schedule future replacement
	Hydrochloric acid feed pumps leaking	Perform repair on pump #2 Aug '02, #1 Sep '02
	Influent pump No. 1 leaking	Pump to be taken off-line for repairs, No. 3 pump to take its place
	Air compressor No.1 not in service	Being Investigated by service provider
	Fire alarm malfunctioning	Fixed short in wire to high level probe on injection well
May 2002	Check Valves on EW Pumps #1 and #3 are Failing	Valves replaced, Pump and motor repaired on #1 July '02
June 2002	Check Valves on EW Pumps #1 and #3 are Failing	Valves replaced, Pump and motor repaired on #1 July '02
July 2002	Check Valves on Injection well pumps #1 and #3 failed	Replaced check valves
August 2002	Air Compressors need servicing	Air compressors serviced, Complete Sep '02
September 2002	Couplings on Recycle Pumps shear	Coupling replaced, checking alignment of pumps
	Compressed Air System appears piped backwards	Submitted photographs to manufacturer for verification Nov '02
October 2002	Pneumatic System needed purging due to downtime	System was purged
	Overflow of air stripper feed tanks during shutdown	Investigate Plant Programming to shutdown control valves to tanks
	sand filter flow control valves leaking at the shaft seals	Replace seals, actuators also ready for installation

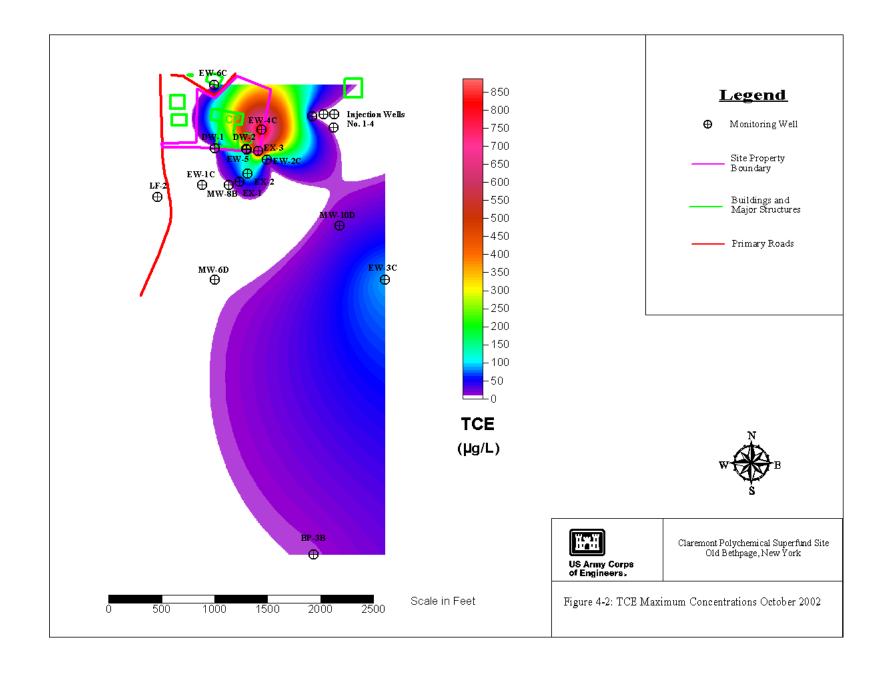
Table 5-11: Quantity of Contaminated Groundwater Treated from December 2001-October 2002

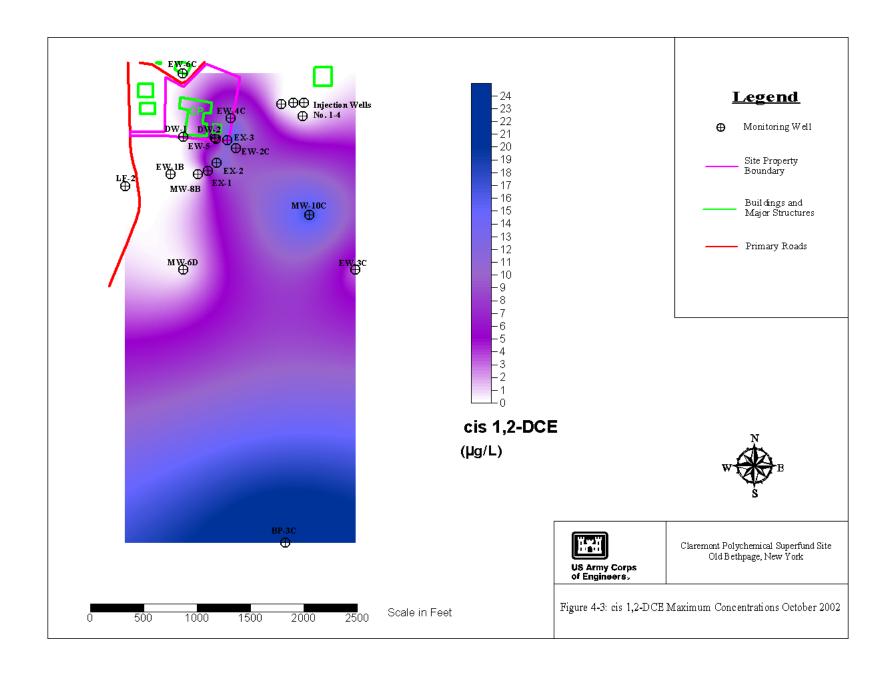
Month	Quantity Treated	Cumulative Quantity
2001		
JUNE	13,852,853	13,852,853
JULY	11,453,720	25,306,573
AUGUST	15,386,140	40,692,713
SEPTEMBER	13,730,248	54,422,961
OCTOBER	15,472,660	69,895,621
NOVEMBER	15,941,010	85,836,631
DECEMBER	16,364,357	102,200,988
2002		
JANUARY	13,846,936	116,047,924
FEBRUARY	9,258,813	125,306,737
MARCH	10,774,580	136,081,317
APRIL	16,479,048	152,560,365
MAY	17,972,992	170,533,357
JUNE	14,138,429	184,671,786
JULY	15,129,000	199,800,786
AUGUST	15,572,871	215,373,657
SEPTEMBER	7,715,034	223,088,691
OCTOBER	14,708,500	237,797,191

Claremont Polychemical Corp. Superfund Site Long-term Groundwater Monitoring Data Report US Army Corps of Engineers – Kansas City District

Figures


Figure 3-1
Generalized Stratigraphic Column of Rocks Underlying the Claremont Polychemical Superfund Site


SYSTEM	SERIES	Historical Group or Formation	Revised Group or Formation (1999 USGS)	Hydrogeologic Unit	Maximum Thickness (feet)	Depth from Land Surface to Top (feet)	CHARACTERISTICS of Deposits	Water Bearing Properties
	Holocene	NA	NA	Alluvium	Varies Locally	Varies Locally	Clay, some sand, silt and gravel (salt marsh, stream alluvium and fill areas)	Undefined
QUATERNARY	Pleistocene	Upper Deposits	Upper Pleistocene Deposits	Upper Glacial Aquifer	600	0-50	Till along the north shore and inn moraines (clay, sand, gravel and boulders) and outwash deposits (quartzose sand) to the south. Glaciolacustrine deposits (mostly in central and eastern Long Island) and Marine clay (locally along south shore) consist of sitl, clay, and some sand/gravel layers: includes the "20-foot clay" in southern Nassau and Queens Counties.	Till deposits are poorly permeable but outwash deposits are moderate to highly permeable (producing 10 to 200 gpm per foot). Glaciolacustrine deposits are poorly permeable (perched zones) but locally have thin moderately permeable layer: of sand and gravel. Locally till moraines retard salt water encroachment.
					Unname	d Unconformity		
TERTIARY(?)	Piocene(?)	Mannetto Gravel	Gardiners Clay Jameco Gravel	Commonly Included with the Upper Glacial Aquifer	300	0-120	Gravel, fine to coarse, lenses of sand and scattered clay lenses. Colors are white, yellow and brown and occur only near Nassau-Suffolk county border near the central portion of Long Island. Recent reports by the USGS split this unit into Gardiners Clay and underlying Jameco Gravel and define the system/series as Quaternary/Pleistocene.	Gravels are high permeability but occurs mostly above the water table.
				Coastal Pl	ain Unconformity (well defined ar	ngular unconformity)	
	ST	Magothy Formation	Monmouth Group Matawan Group - Magothy Formation Undifferentiated	Magothy Aquifer	1,100	0-600	Sand, fine to medium, clayey in part; interbedded with lenses and layers of coarse sand and sandy to solid clay. Gravel Is common in basal 50-200 feet. Sand and gravel are quartzose. Lignite, pyrite and iron oxide are concretions are common; contains muscovite, rutile and garnet as accessory minerals. Colors are gray, white, red, brown and yellow. Contact with the underlying Raritan Formation is unconformable.	Most layers are poor to moderately permeable with some highly permeable areas. Specific capacities generally range from 1 to 30 gpm per foot of drawdown. Generally excellent quality but locally has high iron content along north and south shore. Has been invaded by salty groundwater in western Nassau and southern Queens counties. It is the principal aquifer for water supply wells in
CRETACEOUS	Upper Cretaceous		Unnamed Clay Member	Raritan Clay	300	70-1,500	Clay, solid and silty: few lenses and layers of sand with some gravel. Lignite and pyrite is common. Colors are gray, red and white and commonly variegated.	Poorly permeable constituting the confining layer for the underlying Loyd aquifer.
:ö	dan	Raritan Formation	Lloyd Sand Member	Llyod Sand Aquifer	500	200-1,800	lenses with lignite and iron concretions. Sand and most gravel are quartzose with yellow, gray and white colors and some locally red clay. Overlying contact with the Raritan Clay is conformable and locally gradational.	Poor to moderately permeable. Specific capacities of wells generally range from 1 to 25 gpm per foot of drawdown, with rare occasions of 50 gpm per foot of drawdown. Water is confined under artesian pressure but generally of excellent quality with slight iron content locally. Some saltwater intrusion in the North Shore along the Necks where the aquifer is shallow and overlying clay discontinuous.
					Unname	d Unconformity		
PRECAMBRIAN	N	Bedrock	Bedrock	Bedrock	Undefined	0-2,700	Crystalline metamorphic and Igneous rock; schist, gneiss and granite with 100 foot thick weathered zone	Poorly permeable with only a few wells near western Queens and Kings counties obtaining water from the bedrock.

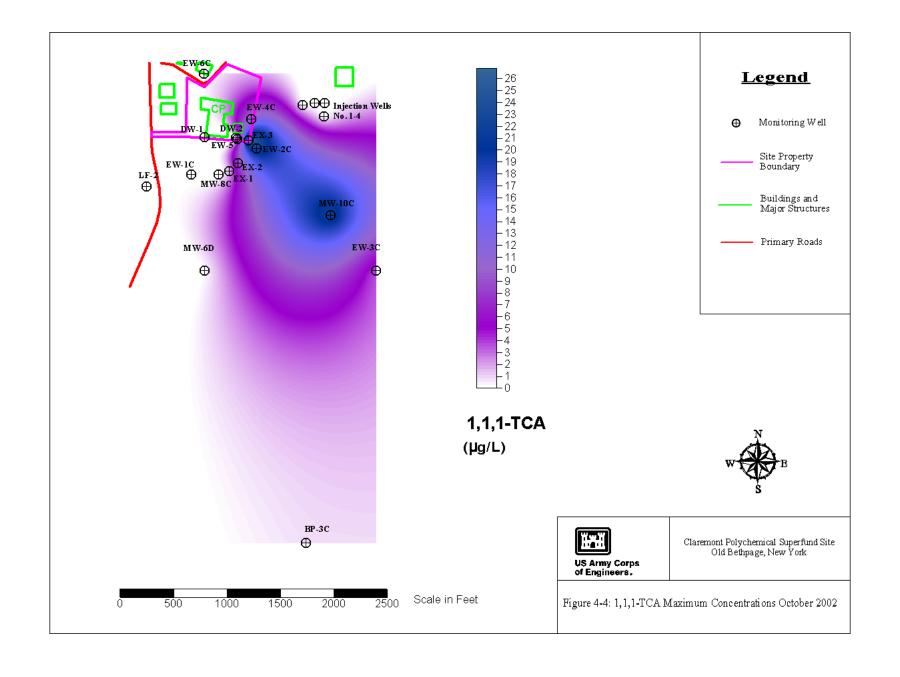


Figure 4-5. Chlorinated Solvent Breakdown Reactions

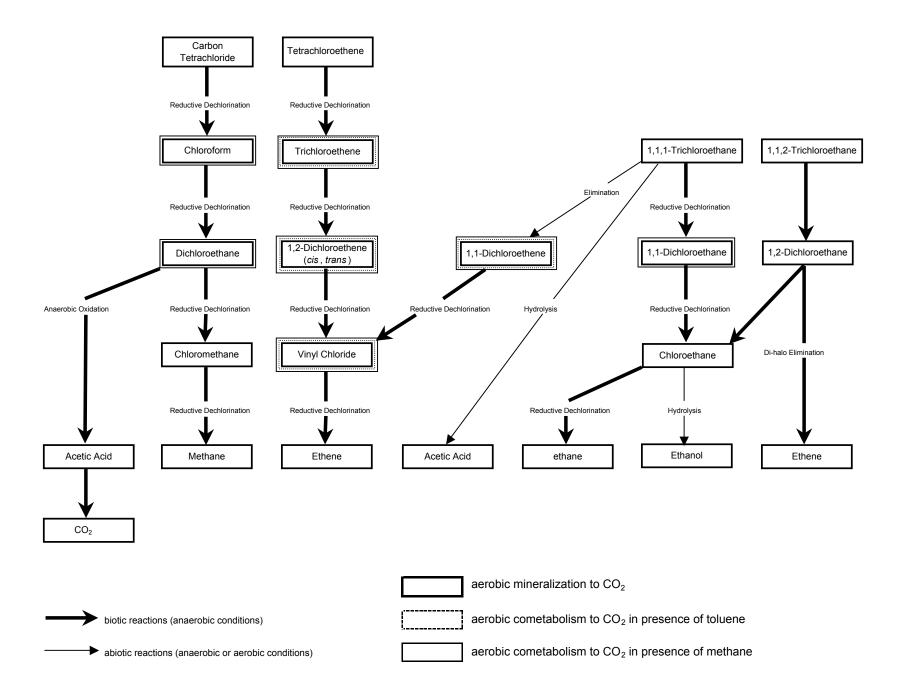


Figure 5-1: Generalized Process Flow Diagram for Treatment of Groundwater at Claremont

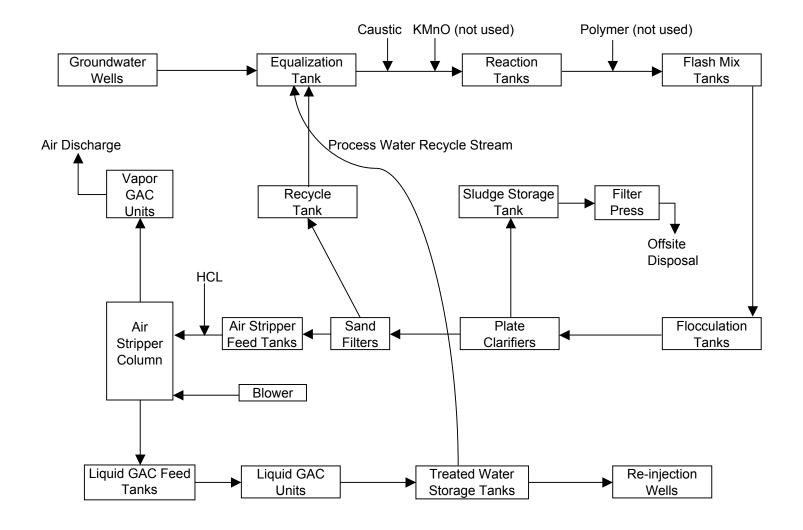
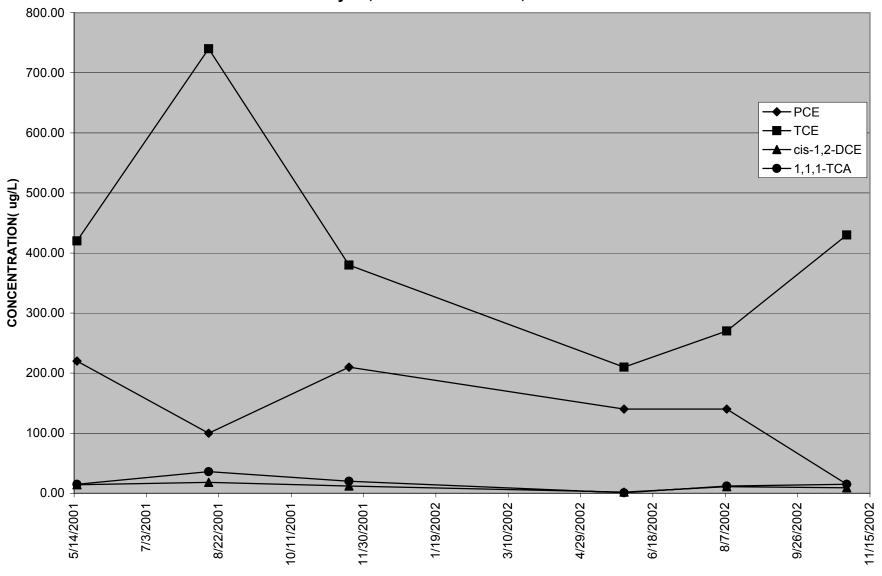



Figure 5-2: Groundwater Influent Concentrations (PCE, TCE, cis-1,2-DCE, and 1,1,1-TCA) Vs. Time May 16, 2001 to October 30, 2002

May 16, 2001 to October 30, 2002 3500.00 3000.00 2500.00 CONCENTRATION (ug/L) 2000.00 **→** Iron ── Manganese -MCL 1500.00 1000.00 500.00 0.00 1/19/02 3/10/02 -4/29/02 6/18/02 9/26/02 11/15/02 -8/22/01 11/30/01 7/3/01 10/11/01

Figure 5-3: Groundwater Influent Concentrations (Iron and Manganese) Vs. Time May 16, 2001 to October 30, 2002

Figure 5-4: Treated System Effluent Concentrations (PCE, TCE, cis-1,2 DCE, and 1,1,1-TCA) vs. Time June 8, 2001 to October 30, 2002

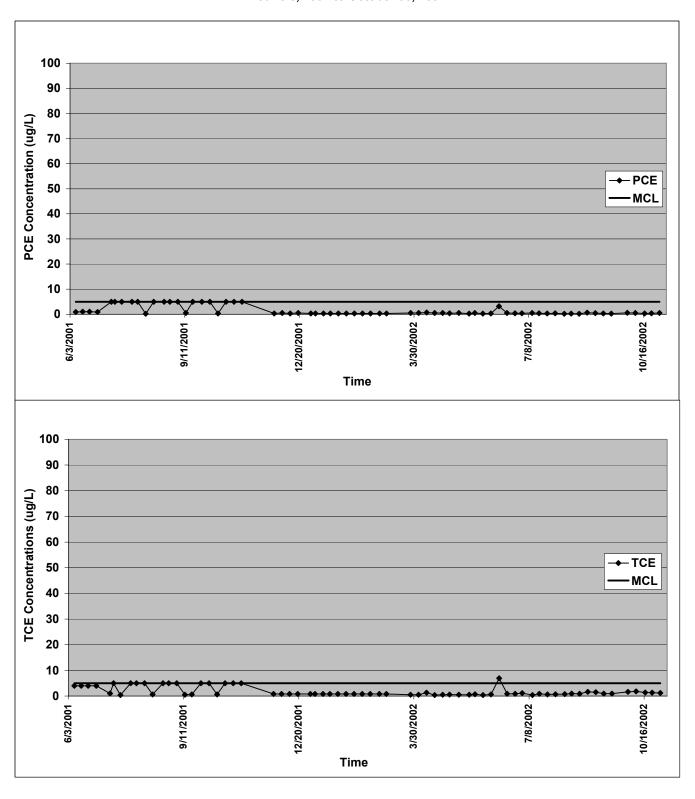


Figure 5-4: Treated System Effluent Concentrations (PCE, TCE, cis-1,2 DCE, and 1,1,1-TCA) vs. Time June 8, 2001 to October 30, 2002

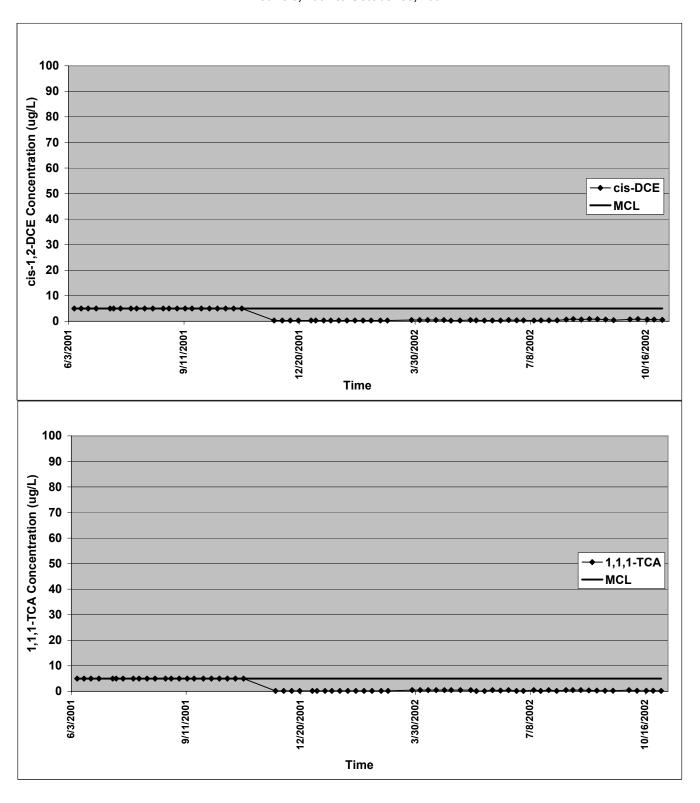
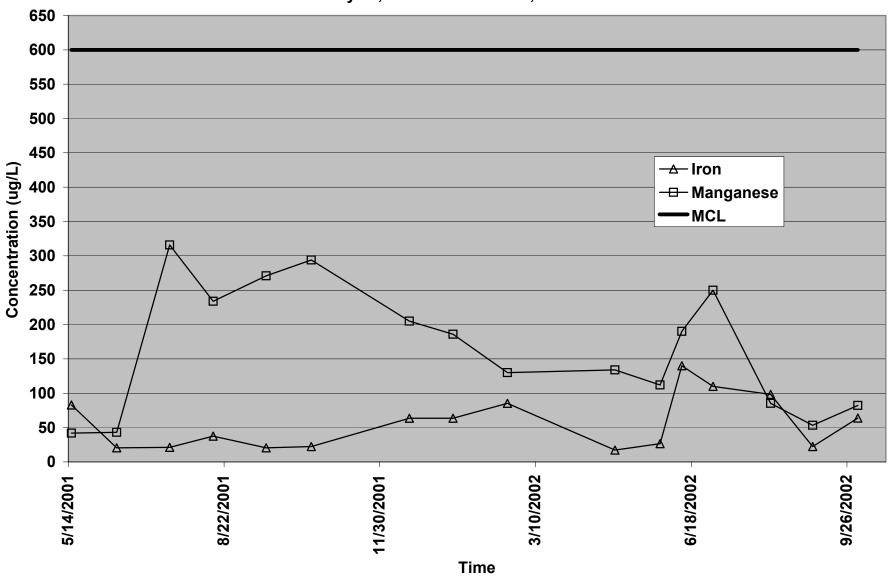



Figure 5-5: Treated System Effluent Concentrations (Iron and Manganese) Vs. Time May 16, 2001 to October 30, 2002

Appendix A

Cumulative Groundwater Monitoring Well Data Tables

Table A-1 Claremont Polychemical Superfund Site EW-1A Cumulative Data

Analyte	units	discharge	CRQL	EW-1A		EW-1A		EW-1A	EW-1A		EW-1A		EW-1A		EW-1A		EW-1A	
		limit																
sampling date				Apr-89		Jun-89		Jul-92	5/25/00		9/12/00		2/12/01		5/24/01		08/21/01	
cooler temp (°C)									5.0		6.0	J	4.0		0.9		4.8 °C	
VOCs																		
VOC dilution factor								100x	1x		2x		2x		2x		2x	
dichlorodifluoromethane	μg/L		0.50															
chloromethane	μg/L		0.50						10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
vinyl chloride	μg/L		0.50						10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
bromomethane	μg/L		0.50						10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
chloroethane	μg/L		0.50						10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
trichlorofluoromethane	μg/L		0.50															
1,1-dichloroethene	μg/L	5.0	0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50															
acetone	μg/L		5.0			1.0	R		10.0	U	7.0	J	20.0	U	6.0	JB	20.0	U
carbon disulfide	μg/L		0.50						5.0	C	10.0	C	10.0	C	10.0	C	10.0	U
methyl acetate	μg/L		0.50															
methylene chloride	μg/L	5.0	0.50						0.3	J	3.0	J	10.0	U	4.0	U	1.0	J
trans-1,2-dichloroethene	μg/L	5.0	0.50	5.0	J	10.0	J		5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
tert-butyl methyl ether	μg/L		0.50															
1,1-dichloroethane	μg/L	5.0	0.50	5.0	J	8.0	J		5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
cis-1,2-dichloroethene	μg/L	5.0	0.50						5.0	Ü	10.0	U	10.0	U	10.0	Ü	1.0	J
2-butanone (MEK)	μg/L		5.0			1.0	R		10.0	Ü	20.0	U	20.0	U	20.0	U	20.0	U
bromochloromethane	µq/L		0.50															
chloroform	µq/L	7.0	0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
1,1,1-trichloroethane	µg/L	5.0	0.50			4.0	J		5.0	Ü	10.0	U	10.0	U	10.0	U	10.0	U
cyclohexane	μg/L	0.0	0.50			4.0			0.0		10.0	Ŭ	10.0		10.0		10.0	Ŭ
carbon tetrachloride	μg/L		0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
benzene	μg/L	0.7	0.50						0.7	Ü	1.0	Ü	1.0	U	1.0	U	1.0	U
1,2-dichloroethane	μg/L	0.7	0.50						5.0	Ü	10.0	U	10.0	U	10.0	Ü	10.0	U
trichloroethene	μg/L	5.0	0.50	7.0		23.0	J		0.2	J	6.0	J	4.0	J	4.0	U	4.0	J
methylcyclohexane	μg/L	5.0	0.50	7.0		20.0	٠		0.2	٠	0.0	J	4.0	٠	4.0	0	7.0	-
1,2-dichloropropane	μg/L		0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
bromodichloromethane	μg/L		0.50						5.0		10.0	U	10.0	U	10.0	U	10.0	U
cis-1,3-dichloropropene	μg/L		0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
4-methyl-2-pentanone (MIBK)	μg/L		5.0						10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
toluene	μg/L	5.0	0.50	2.0	J				5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
trans-1,3-dichloropropene	μg/L	5.0	0.50	2.0					5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
1,1,2-trichloroethane			0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
tetrachloroethene	μg/L	5.0	0.50	94.0		260.0	J	690.0	360.0	U	370.0	U	380.0	U	300.0	U	340.0	U
2-hexanone	μg/L μg/L	5.0	5.0	94.0		260.0	J	090.0	10.0	U	20.0	U	20.0	U	20.0	U	20.0	U
dibromochloromethane			0.50						5.0	U	10.0	U	10.0	U	10.0	C	10.0	U
	μg/L								5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
1,2-dibromoethane	μg/L	F 0	0.50						5.0	- 11	10.0	- 11	10.0		10.0	- 11	10.0	U
chlorobenzene	μg/L	5.0	0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	
ethylbenzene	μg/L	5.0	0.50						5.0	U	10.0 10.0	U	10.0 10.0	СС	10.0 10.0	СС	10.0 10.0	U
xylene	μg/L		0.50						5.0									
styrene	μg/L		0.50						5.0	: C	10.0	U	10.0	: C	10.0	: C	10.0	U
bromoform	μg/L		0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
isopropylbenzene	μg/L		0.50								40.0		40.0		40.0		16.5	
1,1,2,2-tetrachloroethane	μg/L		0.50						5.0	U	10.0	U	10.0	U	10.0	U	10.0	U
1,3-dichlorobenzene	μg/L		0.50															
1,4-dichlorobenzene	μg/L		0.50						_									
1,2-dichlorobenzene	μg/L		0.50															
1,2-dibromo-3-chloropropane	μg/L		0.50															
1,2,4-trichlorobenzene	μg/L		0.50															
1,2,3-trichlorobenzene	μg/L		0.50															

Table A-1 Claremont Polychemical Superfund Site EW-1A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1A		EW-1A		EW-1A		EW-1A		EW-1A
sampling date				11/05/01		2/14/02		5/16/02		8/6/02		Oct-02
cooler temp (°C)				8°C	J	8 °C	J					
VOCs												ns - dry
VOC dilution factor				4x		4x		1x		1x		
dichlorodifluoromethane	μg/L		0.50					0.50	U	0.50	U	
chloromethane	μg/L		0.50	40.0	U	4.0	U	0.50	U	0.50	U	
vinyl chloride	μg/L		0.50	40.0	U	1.0	U	0.50	U	0.50	U	
bromomethane	μg/L		0.50	40.0	U	7.0	U	0.50	U	0.50	U	
chloroethane	μg/L		0.50	40.0	U	16.0	U	0.50	U	0.50	U	
trichlorofluoromethane	μg/L		0.50					0.50	U	0.50	Ü	
1,1-dichloroethene	μg/L	5.0	0.50	20.0	U	2.0	U	0.50	U	0.50	U	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50			-		0.50	Ü	0.50	Ü	
acetone	µg/L		5.0	63.00		4.0	U	5.0	Ü	5.0	Ü	
carbon disulfide	μg/L		0.50	20.0	U	1.0	Ü	0.50	Ü	0.50	Ü	
methyl acetate	µg/L		0.50	20.0	Ŭ		Ť	0.50	Ü	0.50	UJ	
methylene chloride	μg/L	5.0	0.50	7.00	J	0.8	UB	0.50	Ü	0.50	UJ	
trans -1,2-dichloroethene	μg/L	5.0	0.50	20.0	U	1.0	U	0.50	U	0.50	U	
tert-butyl methyl ether	μg/L	5.0	0.50	20.0	-	1.0	-	2.00	-	1.80	-	
1.1-dichloroethane	μg/L	5.0	0.50	20.0	U	1.0	U	0.50	U	0.26	J	
cis -1,2-dichloroethene	μg/L	5.0	0.50	20.0	Ü	1.0	U	1.50	U	1.60	J	
2-butanone (MEK)	μg/L	3.0	5.0	40.0	Ü	2.0	U	5.0	U	5.0	U	
bromochloromethane			0.50	40.0	U	2.0	U	0.50	U	0.50	U	
	μg/L	7.0	0.50	20.0	U	0.8	U	0.50	U	0.50		
chloroform	μg/L				U		U		U		J	
1,1,1-trichloroethane	μg/L	5.0	0.50	20.0	U	8.0	U	0.64	U	0.50	U	
cyclohexane	μg/L		0.50	00.0			U	0.50		0.50		
carbon tetrachloride	μg/L	0.7	0.50	20.0	U	0.8	_	0.50	U	0.50	U	
benzene	μg/L	0.7	0.50	3.0	U	1.0	U	0.50	UJ	0.50	U	
1,2-dichloroethane	μg/L		0.50	20.0	U	1.0	U	0.50	U	0.50	U	
trichloroethene	μg/L	5.0	0.50	3.00	J	5.0	J	3.30		2.00		
methylcyclohexane	μg/L		0.50					0.50	U	0.50	U	
1,2-dichloropropane	μg/L		0.50	20.0	U	1.0	U	0.50	U	0.50	U	
bromodichloromethane	μg/L		0.50	20.0	U	0.8	U	0.50	U	0.50	U	
cis-1,3-dichloropropene	μg/L		0.50	20.0	U	1.0	U	0.50	U	0.50	U	
4-methyl-2-pentanone (MIBK)	μg/L		5.0	40.0	U	2.0	U	5.0	U	5.0	U	
toluene	μg/L	5.0	0.50	20.0	U	1.0	U	0.50	U	0.33	J	
trans-1,3-dichloropropene	μg/L		0.50	20.0	U	0.8	U	0.50	U	0.50	U	
1,1,2-trichloroethane	μg/L		0.50	20.0	U	0.8	U	0.50	U	0.50	U	
tetrachloroethene	μg/L	5.0	0.50	390.00		380.0		340.00	D	140.00	D	
2-hexanone	μg/L		5.0	40.0	U	3.0	U	5.0	U	5.0	U	
dibromochloromethane	μg/L		0.50	20.0	U	8.0	U	0.50	U	0.50	U	
1,2-dibromoethane	μg/L		0.50					0.50	U	0.50	U	
chlorobenzene	μg/L	5.0	0.50	20.0	U	0.8	U	0.50	U	0.50	U	
ethylbenzene	μg/L	5.0	0.50	20.0	U	1.0	U	0.50	U	0.50	U	
xylene	μg/L		0.50	20.0	U	2.0	U	0.50	U	0.50	U	
styrene	μg/L		0.50	20.0	U	0.8	U	0.50	U	0.50	U	
bromoform	μg/L		0.50	20.0	U	0.8	U	0.50	U	0.50	U	
isopropylbenzene	μg/L		0.50					0.50	U	0.50	U	
1,1,2,2-tetrachloroethane	μg/L		0.50	20.0	U	1.0	U	0.50	U	0.50	U	
1,3-dichlorobenzene	μg/L		0.50					0.50	U	0.50	U	
1,4-dichlorobenzene	µg/L		0.50					0.50	Ū	0.50	Ü	
1,2-dichlorobenzene	µg/L		0.50					0.50	Ü	0.50	U	
1,2-dibromo-3-chloropropane	µg/L		0.50					0.50	Ü	0.50	U	
1,2,4-trichlorobenzene	μg/L		0.50					0.50	Ü	0.50	Ü	
1,2,3-trichlorobenzene	μg/L		0.50					0.50	Ü	0.50	U	

Table A-1 **Claremont Polychemical Superfund Site** EW-1A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1A		EW-1A		EW-1A		EW-1A		EW-1A		EW-1A		EW-1A		EW-1A
sampling date				Apr-89		Jun-89		Jul-92		5/25/00		9/12/00		2/12/01		5/24/01		08/21/01
cooler temp (°C)										5.0		6.0	J	4.0		0.9		4.8 °C
total 1,2-DCE	μg/L																	
metals			CRDL															
aluminum (AI)	μg/L		200.0	3,520.0		11,800.0	J											
antimony (Sb)	μg/L	3.0	20.0							2.1	U	2.1	U	1.5	U	4.5	U	4.7
arsenic (As)	μg/L	50.0	40.0	5.6	J			1.0	U	4.6	В	2.0	U	2.4	U	4.1	U	4.4
barium (Ba)	μg/L	2,000.0	200.0	115.0		146.0	J	90.0		31.2	В	98.0	В	77.4	В	80.4	В	78.1
beryllium (Be)	μg/L		5.0	2.7		3.2												
cadmium (Cd)	μg/L		5.0			3.3		10	U									
calcium (Ca)	μg/L		5000.0	30,800.0		29,300.0		16,100.0										
chromium (Cr)	μg/L		10.0	35.9	J	34.0		20.0	U									•
cobalt (Co)	μg/L		50.0	28.4		50.0	R											
copper (Cu)	μg/L		25.0	25.0	R	57.1												
iron (Fe)	μg/L	600*	200.0	14,000.0	J	49,900.0		186.0		451.0		239.0		50.8	В	48.5	В	20.7
lead (Pb)	μq/L	50.0	10.0	19.4		5.0	R	4.0	UJ	1.3	U	1.3	U	2.2	U	2.6	U	2.0
magnesium (Mg)	μg/L		5000.0	5,760.0		5,830.0		3,390.0										
manganese (Mn)	µg/L	600*	15.0	993.0		1,030.0		432.0		216.0		621.0		578.0		571.0		607.0
mercury (Hg)	µg/L		0.2			0.28	J	0.2	U									
nickel (Ni)	μg/L		40.0	69.5	J	56.2	J	-										
potassium (K)	μg/L		5000.0	10,200.0		10,500.0	J											
selenium (Se)	µg/L	40.0	30.0	3.8	J	10,000		8.1		4.4	В	3.4	U	3.0	В	4.6	U	4.8
silver (Ag)	μg/L	10.0	10.0	0.0				20.0	U			0	Ŭ					
sodium (Na)	μg/L		5000.0	17,500.0		18,600.0		20.0	Ŭ									
thallium (TI)	μg/L		10.0	,		10,000												
vanadium (V)	μg/L		50.0	41.4		119.0												
zinc (Zn)	µg/L		20.0	38.7	J	87.1												
, ,																		
field instrument																		
pH	su	6.5 - 8.5						4.36		4.70		5.06		4.80		6.90		5.53
conductivity	µmhos/	cm						0.208		0.182		0.270				0.220		•
turbidity	NTU																	
DO	mg/L									10.60		7.80				6.40		•
temperature	°C							14.60		17.80		15.40		14.80		15.10		15.40
Eh (ORP)	mV																	
other																		
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na		na		0.010	U	0.010	U	0.010	U	0.010	U	0.010
TSS	mg/L	1,000.0		3,060.0		5,830.0		467					-					
1000 data from Ebassa (1000		calla indicata r																

1989 data from Ebasco (1990), empty cells indicate not detected

1992 data from SEC Donohue (1992)

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J) D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured

ns: not sampled

* total Fe + total Mn shall not be > 1000 µg/L

Table A-1 **Claremont Polychemical Superfund Site** EW-1A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1A		EW-1A		EW-1A		EW-1A		EW-1A
sampling date				11/05/01		2/14/02		5/16/02		8/6/02		Oct-02
cooler temp (°C)				8°C	J	8 °C	J					
total 1,2-DCE	μg/L											
metals			CRDL									ns - dry
aluminum (AI)	μq/L		200.0					7.6	В	22.2	U	no dry
antimony (Sb)	μg/L	3.0	20.0	4.6	U	5.9	U	4.7	U	8.7	Ü	
arsenic (As)	μg/L	50.0	40.0	4.4	Ü	7.0	U	2.8	Ü	6.0	Ü	
barium (Ba)	μg/L	2,000.0	200.0	92.1	В	73.2		86.9	В	104.0	Ť	
beryllium (Be)	μg/L	2,000.0	5.0	02.1	-	70.2		0.14	В	0.1	U	
cadmium (Cd)	μg/L		5.0					0.40	Ū	0.6	Ü	
calcium (Ca)	μg/L		5000.0					17.600.00		25,700		
chromium (Cr)	μg/L		10.0					0.60	U	1.3	U	
cobalt (Co)	μg/L		50.0					8.9	В	1.4	Ü	
copper (Cu)	μg/L		25.0					1.5	В	2.6	Ü	
iron (Fe)	μg/L	600*	200.0	79.3	В	85.3	U	17.3	Ū	22.3	Ü	
lead (Pb)	μg/L	50.0	10.0	2.0	U	3.4	IJ	2.1	Ü	8.1	J	
magnesium (Mg)	μg/L	00.0	5000.0	2.0	Ť	0		5,450.00	Ť	7,420.0	Ť	
manganese (Mn)	μg/L	600*	15.0	760.0		706.0		1,090.00		1,730.0		
mercury (Hg)	µg/L		0.2					0.20	U	0.2	U	
nickel (Ni)	μg/L		40.0					6.3	В	6.2	В	
potassium (K)	μg/L		5000.0					4,680.00	В	8,840	J	
selenium (Se)	μq/L	40.0	30.0	4.9	U	6.90	U	3.0	Ü	3.0	Ü	
silver (Aq)	μg/L	10.0	10.0		Ŭ	0.00		1.0	UJ	2.0	Ü	
sodium (Na)	μg/L		5000.0					10.500.00	J	17,700	J	
thallium (TI)	μg/L		10.0					5.4	Ū	8.8	Ū	
vanadium (V)	μg/L		50.0					0.80	Ü	1.0	Ü	
zinc (Zn)	μg/L		20.0					25.8	Ŭ	47.3	Ŭ	
field instrument	su	6.5 - 8.5		5.07		5.07		4.93		4.83		ns - dry
conductivity	µmhos/o			0.224	1	0.151		0.342		0.404		
turbidity	NTU	JIII		0.224		0.101		4.2		3.0		
DO	mg/L			6.98		6.78		5.66		7.72		
temperature	°C			16.70		15.50		18.68		23.36		
Eh (ORP)	mV			10.70		13.30		377		283		
LII (ONF)	IIIV							311		203		
other												
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.010	U	0.003	U]	
TSS	mg/L	1,000.0										
1080 data from Fhasco (1000)												

1989 data from Ebasco (1990), empty cells indicate not detecte

1992 data from SEC Donohue (1992)

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J) D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured

ns: not sampled

* total Fe + total Mn shall not be > 1000 μg/L

Table A-2
Claremont Polychemical Superfund Site
EW-1B Cumulative Data

Color temp (17 C)	Analyte	units	discharge limit	CRQL	EW-1B	EW-1B		EW-1B	EW-1B		EW-1B		EW-1B	EW-1B		EW-1B	E	EW-1B		EW-1B	
VOCA VOCA	sampling date				Apr-89	Jun-89	Ì	Jul-92	5/25/00		9/12/00		2/12/01	5/24/01	(08/21/01	1	1/05/01		2/14/02	
Total Confident factor Total Confident fac	cooler temp (°C)								5.0		6.0	J	4.0	0.9		4.8 °C		8 ° C	J	8 °C	J
Biotheronalitacomentance 1991	VOCs												dm								
Education desirable Light 0.50	VOC dilution factor							10x	1x		1x			1x		1x		1x		1x	
Institution Institution	dichlorodifluoromethane	μg/L		0.50																	
Decinion contentance pgt. 0.50	chloromethane	μg/L		0.50					10.0	U	10.0	U		10.0	U	10.0 U	J	10.0	U	0.9	U
Bioceanne	vinyl chloride	μg/L		0.50					10.0	U	10.0	U		10.0	U	10.0 U	J	10.0	U	0.3	U
Inchinorotenomemane	bromomethane	μg/L		0.50					10.0	U	10.0	U		10.0	U	10.0 U	J	10.0	U	2.0	U
Inchindroule commentance pgl. 0.050 0.50	chloroethane	μq/L		0.50					10.0	U	10.0	U		10.0	U	10.0 U	J	10.0	U	4.0	U
11-dichrorehene 1971 5.0 0.50 0.30 0.30 0.50	trichlorofluoromethane			0.50																	
1.1.2Erichiero-1.2.2-Influence 19/L 0.50 0.			5.0		0.3 J			9.0 J	5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.6	U
Bestime	,														_						Ť
Carbon disulfide						79.0	J		10.0	IJ	10.0	U		3.0 J	IB	10.0 U	J	10	U	0.9	U
Interly acetate							Ť														Ü
methylorecharide									0.0		0.0	Ť		0.0	_	0.0		0.0		0.0	<u> </u>
Fans-12-dichloroethene			5.0			-		23.0	0.3		0.6			20	u	06 1		0.50	U.I	0.2	U
Indicational contents					0.4	 		20.0													U
1.1-dichloroethane			5.0		UF J	+	 		5.0	U	5.0	-		3.0	_	5.0 0	_	5.0	0	0.0	
Cis-12_clichioroethene yg/L 5.0 0.50 1.0 R 11.0 U 10.0 U 10.0 U 10.0 U 0.0 U 0.0 U Dromochioromethane yg/L 7.0 0.50 U			5.0					50 I	5.0	- 11	5.0	- 11		5.0		50 II		5.0	- 11	0.3	U
2-bitanone (MEK) yg/L)					-	5.0 5							_						U
Dromochloromethane 19/1. 0.50			5.0			1.0	В								_						Ü
Chloroform						1.0	ĸ		10.0	U	10.0	U		10.0	U	10.0 0	,	10.0	U	0.4	U
1.1-tinichroerthane			7.0						F 0		F 0			5.0		II		F 0		0.0	U
Cyclohexane LipU Control LipU Control Contro					4.0			710							_						
Carbon tetrachloride μg/L 0.50 0.50 24.0 0.7 U 0.8 U 0.50 U 0.8 U 0.50 U 0.8 U 0.50 U 0.8 U 0.8 U 0.50 U 0.0 U			5.0		1.0			74.0	5.0	U	5.0	U		5.0	U	5.0 0	,	5.0	U	0.2	U
Enzene									5.0		5.0			5.0		50 11		. .		0.0	
1.2-dichloroethane															_						U
Frichforcethene Light S.0 0.50 0.3 J 360.0 1.0 J 2.0 J 5.0 U 0.3 J 0.30 J 0.8			0.7					24.0													U
methylocyclohexane																					U
1,2-dichloropropane μg/L 0.50		٥	5.0		0.3 J			360.0	1.0	J	2.0	J		5.0	U	0.3 J		0.30	J	0.8	U
Demondichloromethane		1.0																			
cis-1,3-dichloropropene µg/L 0.50 5.0 U 5.0 U 5.0 U 5.0 U 5.0 U 0.3 4-methyl-2-pentanne (MIBK) µg/L 5.0 10.0 U 50.0																					U
4-methyl-2-pentanone (MIBK) μg/L 5.0 10.0 U 5.0 U															_						U
Tollene Fight Solution Fight Fight Solution Fight Fight Solution Fight Fi															_						U
Trans-1,3-dichloropropene															_						U
1,1,2-trichloroethane μg/L 0.50 5.0 U 3.0 J 3.00 J 4.0 A.0 A.0 J 7.0 2.0 U 3.0 J 3.00 J 4.0 A.0 A.0 J 7.0 2.0 U 3.0 J 3.00 J 4.0 A.0 A.0 A.0 J 7.0 2.0 U 3.0 J 3.00 J 4.0 A.0			5.0												_						U
Column C																					U
2-hexanone	1,1,2-trichloroethane	μg/L										U			_				U		U
dibromochloromethane	tetrachloroethene	μg/L	5.0		3.0			59.0										3.00			J
1,2-dibromoethane μg/L 0.50 0.5	2-hexanone	μg/L									10.0	U		10.0	U			10.0		8.0	U
Chlorobenzene pg/L 5.0 0.50	dibromochloromethane	μg/L		0.50					5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.2	U
ethylbenzene μg/L 5.0 0.50 5.0 U 5.0 <td>1,2-dibromoethane</td> <td>μg/L</td> <td></td> <td>0.50</td> <td></td>	1,2-dibromoethane	μg/L		0.50																	
xylenes (total) μg/L 0.50 13.0 5.0 U 5.0 U 5.0 U 5.0 U 0.5	chlorobenzene	μg/L	5.0						0.5			U						5.0			U
styrene μg/L 0.50 5.0 U	ethylbenzene	μg/L	5.0	0.50					5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.3	U
bromoform μg/L 0.50 5.0 U	xylenes (total)	μg/L		0.50				13.0	5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.5	U
bromoform μg/L 0.50 5.0 U	styrene	μg/L		0.50			Ì		5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.2	U
Sispropylbenzene	bromoform			0.50					5.0	U	5.0	U		5.0	U	5.0 U	J	5.0	U	0.2	U
1,1,2,2-letrachloroethane μg/L 0.50 5.0 U	isopropylbenzene	μg/L		0.50					10.0	U	10.0	U		10.0	U						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		μg/L		0.50					5.0		5.0	U		5.0	U	5.0 U	J	5.0	U	0.3	U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				0.50			T														
1,2-dichlorobenzene μ g/L 0.50							<u> </u>								\neg						
1,2-dibromo-3-chloropropane µg/L 0.50			1			1			1								1				
			1			1			1						-		+				
	1,2,4-trichlorobenzene	µg/L		0.50		†	t		1								_		-		
1,2,3-trichlorobenzene µg/L 0.50						-			-						-				-		-
total 1,2-DCE µg/L 13.0			+	0.00		 	 	13.0	t					+	\dashv		+		-		-

Table A-2
Claremont Polychemical Superfund Site
EW-1B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1B		EW-1B		EW-1B		EW-1B-QC	:	
sampling date				5/16/02		8/6/02		10/21/02		10/21/02		
cooler temp (°C)												
VOĆs												
VOC dilution factor												
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
chloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
bromomethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	U	0.50	Ü	
chloroethane	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	0.50	Ü	
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
1,1-dichloroethene	μg/L	5.0	0.50	0.50	U	0.50	U	0.10	J	0.50	Ü	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	0.50	Ü	
acetone	μg/L		5.0	5.0	Ü	5.0	Ü	5.0	Ū	5.0	Ū	
carbon disulfide	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
methyl acetate	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	0.50	Ü	
methylene chloride	μg/L	5.0	0.50	1.80	Ť	0.50	U	0.50	UJ	0.50	UJ	
trans -1,2-dichloroethene	µg/L	5.0	0.50	0.50	U	0.50	UJ	0.50	U	0.50	U	
tert-butyl methyl ether	μg/L	5.0	0.50	0.50	Ü	0.24	J	0.18	J	0.50	Ü	
1,1-dichloroethane	µg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.50	Ū	0.50	Ü	
cis-1,2-dichloroethene	μg/L	5.0	0.50	0.50	U	0.50	UJ	0.50	Ü	0.50	U	
2-butanone (MEK)	μg/L	5.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U	
bromochloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	0.50	Ü	
chloroform	μg/L	7.0	0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,1,1-trichloroethane	μg/L	5.0	0.50	0.50	Ü	0.50	U	0.50	U	0.50	U	
cyclohexane	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
carbon tetrachloride	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
benzene	μg/L μg/L	0.7	0.50	0.50	UJ	0.50	U	0.50	U	0.50	Ü	
1,2-dichloroethane	μg/L μg/L	0.7	0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
trichloroethene	μg/L μg/L	5.0	0.50	0.55	J	0.79	U	0.50	U	0.50	Ü	
methylcyclohexane	μg/L μg/L	5.0	0.50	0.50	U	0.79	U	0.50	Ü	0.50	Ü	
1,2-dichloropropane	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
bromodichloromethane	_		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
cis-1,3-dichloropropene	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	Ü	
4-methyl-2-pentanone (MIBK)	μg/L μg/L		5.0	5.0	U	5.0	U	5.0	U	5.0	U	
toluene		5.0	0.50	0.50	UJ	0.50	U	0.50	U	0.50	U	
	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	U	0.50	U	
trans -1,3-dichloropropene 1,1,2-trichloroethane	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
, ,		5.0	0.50	1.20	J	2.10	U	2.10	U	2.10	U	
tetrachloroethene 2-hexanone	μg/L μg/L	5.0	5.0	5.0	U	5.0	U	5.0	U	5.0	U	
dibromochloromethane			0.50	0.50	U	0.50	U	0.50	U	0.50	U	
	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,2-dibromoethane	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	UJ	0.50	UJ	
chlorobenzene	μg/L				UJ	0.50		0.50			U	
ethylbenzene	μg/L	5.0	0.50	0.50			U		U	0.50		
xylenes (total)	μg/L		0.50	0.50	UJ	0.50	U	0.50	U	0.50	U	
styrene	μg/L		0.50	0.50	UJ	0.50	U	0.50	U	0.50	U	
bromoform	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
isopropylbenzene	μg/L		0.50	0.50	UJ	0.50	U	0.50	U	0.50	U	
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,4-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	0.50	U	
total 1,2-DCE	μg/L											

Table A-2
Claremont Polychemical Superfund Site
EW-1B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1B	EW	1B		EW-1B		EW-1B		EW-1B		EW-1B		EW-1B		EW-1B		EW-1B		EW-1B
sampling date				Apr-89	Jun	89		Jul-92		5/25/00		9/12/00		2/12/01		5/24/01		08/21/01		11/05/01		2/14/02
cooler temp (°C)				•						5.0		6.0	J	4.0		0.9		4.8 °C		8 ° C	J	8°C J
metals			CRDL		00/	•	_															
aluminum (AI)	μg/L		200.0		200	.0	R			0.1		0.10										· · ·
antimony (Sb)	μg/L	3.0	20.0				_			2.1	U	2.10	U	1.5	U	4.5	U	4.7	U	4.6	U	5.9 U
arsenic (As)	μg/L	50.0	40.0				_	1.0	U	3.1	U	2.00	U	2.4	U	4.1	U	4.4	U	4.4	U	7.0 U
barium (Ba)	μg/L	2,000.0	200.0	108.0	96		J	84.0		32.4	В	24.7	В	23.5	В	26.4	В	26.4	В	28.5	В	33.1
beryllium (Be)	μg/L		5.0		0.	5																
cadmium (Cd)	μg/L		5.0					10.0	U													
calcium (Ca)	μg/L		5000.0	42,600.0	48,3	0.0		42,400.0														
chromium (Cr)	μg/L		10.0					20.0	U													
cobalt (Co)	μg/L		50.0	18.4	50		R															
copper (Cu)	μg/L		25.0	25.0 F			R															
iron (Fe)	μg/L	600*	200.0	388.0 J	442	.0	J	167.0		7.2	U	50.70	В	53.0	В	38.2	В	19.9	U	16.2	U	85.3 U
lead (Pb)	μg/L	50.0	10.0	2.6 J				4.0	U	1.3	U	1.30	U	2.2	C	2.6	U	2.0	С	2.0	U	3.4 U
magnesium (Mg)	μg/L		5000.0	8,430.0	9,93	0.0		7,920.0														
manganese (Mn)	μg/L	600*	15.0	566.0	947	.0		869.0		387		540.0		473.0		273.0		233.0		246.0		230.0
mercury (Hg)	μg/L		0.2					0.20	U													
nickel (Ni)	μg/L		40.0	24.7	28	0																
potassium (K)	μg/L		5000.0	14,700.0 J	17,1	0.0																
selenium (Se)	μg/L	40.0	30.0					1.0	U	1.5	U	3.40	U	2.6	U	4.6	U	4.8	U	4.9	U	6.90 U
silver (Ag)	μg/L		10.0	10.0 F				20.0	U													
sodium (Na)	μg/L		5000.0	43,800.0	41,6	0.0															\neg	
thallium (TI)	μg/L		10.0		2.	3																
vanadium (V)	μg/L		50.0		3.	9															\neg	
zinc (Zn)	μg/L		20.0	52.3 J	62																	
, ,																						
field instrument																					\neg	
pН	su	6.5 - 8.5						4.98		6.01		6.89		5.67		7.80		6.77		6.26	\neg	6.55
conductivity	µmhos/cr	n						0.585		0.815		0.130				0.570				0.797	\neg	0.586
turbidity	NTU																				\neg	
DO	mg/L									11.18		1.00				1.2				0.00	\neg	0.00
temperature	°C							15.1		17.7		16.10		14.8		15.7		15.90		16.60	\rightarrow	15.90
Eh (ORP)	mV																				\rightarrow	
\- ·· /	1				1																\dashv	
other																					\neg	
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na	n	1	1	na		0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.003 U
TSS	mg/L	1,000.0	0.0.0	11.0	9.		+	412		0.0.0		0.0.0		0.0.0	Ť	0.0.0	Ť	0.0.0	Ť	0.0.0	\dashv	3.000
	9, -	1,000.0	1	11.0	 		-	114														
1989 data from Fhasco (1990	\	l Naimeliaata ma					_							l								

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured

ns: not sampled

* total Fe + total Mn shall not be > 1000 μg/L

Table A-2
Claremont Polychemical Superfund Site
EW-1B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1B		EW-1B		EW-1B		EW-1B-QC		
sampling date				5/16/02		8/6/02		10/21/02		10/21/02		
cooler temp (°C)				0,10,02		0,0,02		10,2,,,,,		10/21/02		
cociei temp (c)												
metals			CRDL									
aluminum (AI)	μg/L		200.0	7.3	U	55.7	В	68.8	В	56.7	U	
antimony (Sb)	μg/L	3.0	20.0	4.7	U	8.7	U	2.8	В	1.2	U	
arsenic (As)	μg/L	50.0	40.0	2.8	U	6.0	U	3.0	U	3.0	U	
barium (Ba)	μg/L	2,000.0	200.0	31.4	В	46.8	В	49.7	В	42.8	В	
beryllium (Be)	μg/L	,	5.0	0.10	U	0.1	U	0.20	U	0.20	U	
cadmium (Cd)	μg/L		5.0	0.40	U	0.6	U	0.30	U	0.30	U	
calcium (Ca)	μg/L		5000.0	48,400.00		59,500.0		59,000.0		56,200.0		
chromium (Cr)	μg/L		10.0	0.60	U	1.3	U	0.80	U	0.80	U	
cobalt (Co)	μg/L		50.0	3.4	В	1.7	В	3.0	В	1.7	В	
copper (Cu)	μg/L		25.0	2.8	В	3.2	В	2.3	В	1.8	В	
iron (Fe)	μg/L	600*	200.0	17.3	С	22.3	С	18.6	В	12.5	U	
lead (Pb)	μg/L	50.0	10.0	2.1	С	3.1	۲	1.2	U	1.2	U	
magnesium (Mg)	μg/L		5000.0	7,280.00		8,340.0		8,180.0		7,780.0		
manganese (Mn)	μg/L	600*	15.0	292		301.0		285		272		
mercury (Hg)	μg/L		0.2	0.20	U	0.2	U	0.10	IJ	0.10	IJ	
nickel (Ni)	μg/L		40.0	9.4	В	1.8	U	10.6	В	8.8	В	
potassium (K)	μg/L		5000.0	11,900.00	J	15,900.0	J	14,100.0	J	13,500.0	J	
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.1	В	3.0	U	
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	U	0.80	С	0.80	С	
sodium (Na)	μg/L		5000.0	70,900.00	J	93,200.0	J	95,700.0		91,200.0		
thallium (TI)	μg/L		10.0	5.4	U	8.8	U	2.4	U	2.4	U	
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	1.2	В	0.70	U	
zinc (Zn)	μg/L		20.0	23.4		2.6	U	1.1	С	1.1	U	
field instrument												
pH	su	6.5 - 8.5		6.27		6.32		6.59		6.59		
conductivity	µmhos/cr	n		0.987		0.999		0.999		0.999		
turbidity	NTU			61.2		2.1		4.7		4.7		
DO	mg/L			0.84		1.18		0.47		0.47		
temperature	°C			19.55		19.88		19.43		19.43		
Eh (ORP)	mV			261		153		105		105		
other												
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010									
TSS	mg/L	1,000.0	0.010									
133	mg/L	1,000.0										
1000 data from Ebasso (1000)			1									

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured ns: not sampled

 * total Fe + total Mn shall not be > 1000 μ g/L

Table A-3
Claremont Polychemical Superfund Site
EW-1C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1C	EW-1C		EW-1C		EW-1C		EW-1C		EW-1C		EW-1C		EW-1C		EW-1C		EW-1C	
sampling date				Apr-89	Jun-89		Jul-92		5/25/00		9/12/00		2/12/01		5/24/01		08/21/01		11/05/01		2/14/02	
cooler temp (°C)									5.0		6.0	J	4.0		0.9		4.8 °C		8 ° C	J	8 °C	J
VOCs				nd																		
VOC dilution factor							1x		2x		1x		1x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50																			
chloromethane	μg/L		0.50						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.9	U
vinyl chloride	μg/L		0.50						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.3	U
bromomethane	μg/L		0.50						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	2.0	U
chloroethane	μg/L		0.50						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	4.0	U
trichlorofluoromethane	μg/L		0.50																			
1,1-dichloroethene	μg/L	5.0	0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.6	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																			
acetone	μg/L		5.0		540.0	J			0.2	J	10.0	U	10.0	U	2.0	JB	10.0	U	10.0	U	0.9	U
carbon disulfide	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
methyl acetate	μg/L		0.50																			
methylene chloride	μg/L	5.0	0.50						2.0	۲	0.7	۲	5.0	U	0.9	U	2.0	J	1.0	UJ	0.2	UB
trans -1,2-dichloroethene	μg/L	5.0	0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
tert-butyl methyl ether	μg/L		0.50																			
1,1-dichloroethane	μg/L	5.0	0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
cis-1,2-dichloroethene	μg/L	5.0	0.50						0.8	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
2-butanone (MEK)	μg/L		5.0		1.0	R			20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.4	U
bromochloromethane	μg/L		0.50																			
chloroform	μg/L	7.0	0.50						0.5	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
1,1,1-trichloroethane	μg/L	5.0	0.50				0.8	J	1.0	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
cyclohexane	μg/L		0.50																			
carbon tetrachloride	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
benzene	μg/L	0.7	0.50				0.2	J	1.0	U	0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	0.3	U
1,2-dichloroethane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
trichloroethene	μg/L	5.0	0.50				3.0		6.0	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.8	U
methylcyclohexane	μg/L		0.50																			
1,2-dichloropropane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
bromodichloromethane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
cis-1,3-dichloropropene	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
4-methyl-2-pentanone (MIBK)	μg/L		5.0						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.4	U
toluene	μg/L	5.0	0.50				0.6	J	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
trans-1,3-dichloropropene	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
1,1,2-trichloroethane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
tetrachloroethene	μg/L	5.0	0.50				5.0		0.6	J	0.5	U	5.0	U	5.0	U	5.0	U	0.80	J	1.0	J
2-hexanone	μg/L		5.0						20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.8	С
dibromochloromethane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
1,2-dibromoethane	μg/L		0.50																			
chlorobenzene	μg/L	5.0	0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
ethylbenzene	μg/L	5.0	0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
xylenes (total)	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.5	U
styrene	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
bromoform	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2	U
isopropylbenzene	μg/L		0.50																			
1,1,2,2-tetrachloroethane	μg/L		0.50						10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3	U
1,3-dichlorobenzene	μg/L		0.50												· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
1,4-dichlorobenzene	μg/L		0.50																		-	
1,2-dichlorobenzene	μg/L		0.50											[
1,2-dibromo-3-chloropropane	μg/L		0.50																		-	
1,2,4-trichlorobenzene	μg/L		0.50																		-	
1,2,3-trichlorobenzene	μg/L		0.50																			
total 1,2-DCE	μg/L																					

Table A-3
Claremont Polychemical Superfund Site
EW-1C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1C		EW-1C		EW-1C		EW-1C
sampling date				5/16/02		8/6/02		10/21/02		
cooler temp (°C)										
VOCs										
VOC dilution factor										
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
chloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	
bromomethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
chloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
1,1-dichloroethene	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	U	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	U	
acetone	μg/L		5.0	5.0	Ü	5.0	Ü	5.0	Ū	
carbon disulfide	μg/L		0.50	0.50	U	0.50	U	0.50	U	
methyl acetate	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	U	
methylene chloride	μg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.57	UJ	
trans -1,2-dichloroethene	μg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.50	U	
tert-butyl methyl ether	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1,1-dichloroethane	μg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.50	U	
cis -1,2-dichloroethene	µg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.50	Ü	
2-butanone (MEK)	μg/L	0.0	5.0	5.0	U	5.0	U	5.0	Ü	
bromochloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
chloroform	μg/L	7.0	0.50	0.50	U	0.50	U	0.50	U	
1,1,1-trichloroethane	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	U	
cyclohexane	μg/L	5.0	0.50	0.50	Ü	0.50	Ü	0.50	Ü	
carbon tetrachloride	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
benzene	μg/L	0.7	0.50	0.50	UJ	0.50	Ü	0.50	Ü	
1,2-dichloroethane	μg/L	0.7	0.50	0.50	U	0.50	Ü	0.50	U	
trichloroethene	μg/L	5.0	0.50	0.50	UJ	0.50	Ü	0.50	Ü	
methylcyclohexane	μg/L	5.0	0.50	0.50	U	0.50	Ü	0.50	Ü	
1,2-dichloropropane	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
bromodichloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
cis-1,3-dichloropropene	μg/L μg/L		0.50	0.50	Ü	0.50	U	0.50	U	
4-methyl-2-pentanone (MIBK)	μg/L		5.0	5.0	Ü	5.0	U	5.0	U	
toluene	μg/L	5.0	0.50	0.50	UJ	0.50	Ü	0.50	IJ	
trans-1,3-dichloropropene	μg/L μg/L	3.0	0.50	0.50	U	0.50	U	0.50	Ü	
1.1.2-trichloroethane	μg/L μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
tetrachloroethene	μg/L μg/L	5.0	0.50	0.50	UJ	0.30	J	6.00	U	
2-hexanone	μg/L μg/L	5.0	5.0	5.0	U	5.0	U	5.0	U	
dibromochloromethane	μg/L		0.50	0.50	Ü	0.50	U	0.50	U	
1,2-dibromoethane	μg/L μg/L		0.50	0.50	U	0.50	U	0.50	U	
chlorobenzene	μg/L μα/L	5.0	0.50	0.50	U	0.50	U	0.50	U	
ethylbenzene	- F J	5.0	0.50	0.50	UJ	0.50	U	0.50	U	
xylenes (total)	μg/L μg/L	5.0	0.50	0.50	UJ	0.50	U	0.50	U	
styrene			0.50	0.50	UJ	0.50	U	0.50	U	
,	μg/L				U	0.30			U	
bromoform	μg/L		0.50	0.50	UJ		J	0.50	U	
isopropylbenzene	μg/L		0.50	0.50 0.50	UJ	0.50 0.50	U	0.50 0.50	U	
1,1,2,2-tetrachloroethane	μg/L		0.50		U		U		U	
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.50	_	0.50	U	
1,4-dichlorobenzene	μg/L		0.50	0.50		0.50	U	0.50	_	
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.14	J	0.15	J	
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	0.50	U	
total 1,2-DCE	μg/L									

Table A-3
Claremont Polychemical Superfund Site
EW-1C Cumulative Data

μg/L μg/L μg/L μg/L	3.0	CRDL 200.0	Apr-89		Jun-89		Jul-92		5/25/00		9/12/00		0/40/04								0/4.4/00
μg/L μg/L		200.0							0,20,00		9/12/00		2/12/01		5/24/01		08/21/01		11/05/01		2/14/02
μg/L μg/L		200.0							5.0		6.0	J	4.0		0.9		4.8 °C		8 ° C	J	8 °C
μg/L μg/L																					
μg/L					342.0	J															
. 0		20.0	64.4	J					2.1	U	2.1	U	1.5	U	4.5	U	4.7	U	4.6	U	5.9
ua/L	50.0	40.0					1.0	U	3.1	U	2.0	U	2.4	U	4.1	U	4.4	U	4.4	U	7.0
F-9-	2,000.0	200.0	109.0		102.0	J	121.0		82.6	В	34.4	В	41.7	В	40.8	В	48.5	В	80.4	В	60.3
μg/L		5.0			1.0																
μg/L								U													
μg/L		5000.0	41,100.0	۲	41,800.0		55,900.0														
μg/L		10.0	9.9		10.2		20.0	С													
μg/L		50.0	43.6		44.0																
μg/L		25.0	25.0	R	25.0	R															
μg/L	600*	200.0	578.0	J	984.0	J	388.0		318.0		556.0		434.0		224.0		117.0		36.8	В	85.3
μg/L	50.0	10.0	11.3		21.1	J	4.0	U	1.3	В	1.3	U	2.2	U	2.6	U	2.0	U	2.0	U	3.4
μg/L		5000.0	8,370.0		8,180.0		11,300.0														
μg/L	600*	15.0	630.0		691.0		476.0		518.0		280.0		260.0		265.0		351.0		871.0		592.0
μg/L		0.2					0.20	U													
μq/L		40.0	39.1		33.5																
ua/L		5000.0	15.800.0		16.200.0																
μg/L	40.0	30.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1.0	U	1.6	В	3.4	U	2.6	U	4.6	U	4.8	U	4.9	U	6.90
μq/L		10.0	10.0	R			20.0	U													
μg/L		5000.0	48,400.0	J	48,000.0																
		10.0	,		,																
μg/L		50.0																			
μg/L		20.0	75.1		329.0																
su													5.43								6.08
mhos/cn	1						0.562		0.671		0.80				0.45		0.785		0.696		0.569
NTU																					
mg/L									11.3		0.90				1.10		11.80		0.00		0.00
°C					-		16.0		17.6		16.10		15.6		15.80		18.50		16.60		15.80
mV	•				•		•		•		•				•				•		
mg/L	0.100	0.010	na		na		na		0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.003
mg/L	1,000.0				18.0		547														
	yg/L yg/L yg/L yg/L yg/L yg/L yg/L yg/L	Pg/L Pg/L	ру/L 5.0 ру/L 5000.0 ру/L 10.0 ру/L 10.0 ру/L 50.0 ру/L 25.0 ру/L 25.0 ру/L 50.0 10.0 ру/L 600* 15.0 ру/L 40.0 30.0 ру/L 40.0 30.0 ру/L 10.0 ру/L 10.0 ру/L 5000.0 ру/L 10.0 ру/L 20.0 su 6.5 - 8.5 mhos/cm NTU mg/L "C "C mV"	ру/L	ру/L 5.0	ру/L 5.0	ру/L 5.0	ру/L 5.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0 10.0 11.3 10.0	ру/L 5.0	ру/L 5.0 10.0 U 10.0 U 10.0 ру/L 10.0 9.9 10.2 20.0 U ру/L 50.0 43.6 44.0	ру/L 5.0 41,100.0 J 41,800.0 55,900.0	Hg/L S.0 S000.0 41,100.0 J 41,800.0 S5,900.0	Pg/L 5.0 10.0 U	Pg/L S00.0 41,100.0 J 41,800.0 55,900.0	руд. 500.0 41,100.0 J 41,800.0 55,900.0 руд. 10.2 20.0 U руд. 500.0 13.3 S 1.3 U 2.2 U руд. 500.0 15.0 630.0 691.0 11,300.0 518.0 280.0 260.0 руд. 10.0 39.1 33.5 руд. 40.0 30.0 15,800.0 16,200.0 16,200.0 10.0 10.0 R 20.0 U руд. 500.0 48,400.0 J 48,000.0 10.0 10.0 R 20.0 U руд. 500.0 10.0 10.0 R 20.0 U руд. 500.0 10.0 10.0 R 20.0 U руд. 500.0 10.0 15.0 16,200.0	Pig/L S.0 S.0 H,100.0 J H,800.0 S5,900.0	Pig/L	Pig/L	Pig/L S.0 10.0 U		

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured ns: not sampled

* total Fe + total Mn shall not be > 1000 μg/L

Table A-3 Claremont Polychemical Superfund Site EW-1C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-1C		EW-1C		EW-1C		EW-1C
sampling date				5/16/02		8/6/02		10/21/02		
cooler temp (°C)										
metals			CRDL							
aluminum (AI)	μg/L		200.0	7.6	В	55.7	В	56.7	U	
antimony (Sb)	μg/L	3.0	20.0	4.7	С	8.7	U	1.2	U	
arsenic (As)	μg/L	50.0	40.0	2.8	С	6.0	U	3.0	U	
barium (Ba)	μg/L	2,000.0	200.0	77.1	В	90.6	В	91.5	В	
beryllium (Be)	μg/L		5.0	0.18	В	0.1	U	0.25	В	
cadmium (Cd)	μg/L		5.0	0.40	С	0.6	U	0.30	U	
calcium (Ca)	μg/L		5000.0	38,000.0		39,600.0		46,400.0		
chromium (Cr)	μg/L		10.0	0.60	С	1.3	U	0.80	U	
cobalt (Co)	μg/L		50.0	54.8		53.3		47.8	В	
copper (Cu)	μg/L		25.0	4.1	В	3.3	В	18.4	В	
iron (Fe)	μg/L	600*	200.0	38.9	В	48.0	В	257		
lead (Pb)	μg/L	50.0	10.0	2.7	В	2.9	U	2.4	В	
magnesium (Mg)	μg/L		5000.0	8,930.0		8,840.0		9,190.0		
manganese (Mn)	μg/L	600*	15.0	851		801.0		729		
mercury (Hg)	μg/L		0.2	0.20	С	0.2	U	0.10	UJ	
nickel (Ni)	μg/L		40.0	5.2	В	1.8	U	12.5	В	
potassium (K)	μg/L		5000.0	15,900.0	Ĺ	18,300.0	J	19,200.0	J	
selenium (Se)	μg/L	40.0	30.0	3.0	C	3.0	U	3.0	U	
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	С	0.80	U	
sodium (Na)	μg/L		5000.0	41,500.0	J	45,200.0	ے	63,100.0		
thallium (TI)	μg/L		10.0	5.4	U	8.8	С	2.4	U	
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	0.70	U	
zinc (Zn)	μg/L		20.0	35.0		4.4	В	20.8		
field instrument										
pH	su	6.5 - 8.5		5.50		5.44		5.77		
conductivity	µmhos/cı	n		0.812		0.780		0.876		
turbidity	NTU			3.0		2.2		5.8		
DO	mg/L			4.01		0.36		0.72		
temperature	°C			19.53		19.94		19.31		
Eh (ORP)	mV			251		157		125	-	
other										
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010							
TSS	mg/L	1,000.0	0.0.0							
	1119, L	1,000.0								
1989 data from Fhasco (1990)			t dataatad							

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured ns: not sampled

Table A-4
Claremont Polychemical Superfund Site
EW-2A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2A		EW-2A		EW-2A		EW-2A		EW-2A		EW-2A		EW-2A		EW-2A		EW-2A	
sampling date				Apr-89		Jun-89		Jul-92		6/8/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01	
cooler temp (°C)										6.0	J	6.0	J	4.0		7.5	J	5 °C		9 °C	J
VOCs																					
VOC dilution factor								100x		(2X)		2x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50																		
chloromethane	μg/L		0.50							20.0	U	20.0 l	U	10.0	U	10.0	U	10.0	U	10.0	U
vinyl chloride	μg/L		0.50							20.0	U	20.0 l	U	10.0	U	10.0	U	10.0	U	10.0	U
bromomethane	μg/L		0.50							20.0	U	20.0 l	U	10.0	U	10.0	U	10.0	U	10.0	U
chloroethane	μg/L		0.50							20.0	U	20.0 l	U	10.0	U	10.0	U	10.0	U	10.0	U
trichlorofluoromethane	μg/L		0.50																		
1,1-dichloroethene	μg/L	5.0	0.50	4.0	J	1.0	J			10.0	U	10.0 l	U	5.0	U	5.0	U	0.4	J	0.20	J
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50										T								
acetone	μg/L		5.0			36.0	J			20.0	U	6.0	J	10.0	U	2.0	JB	10.0	U	10	U
carbon disulfide	μg/L		0.50	0.2	J					10.0	U		U	2.0	Ü	5.0	U	5.0	Ü	5.0	Ū
methyl acetate	μg/L		0.50	<u> </u>									_	2.0	Ŭ	0.0		0.0	Ŭ	0.0	
methylene chloride	μg/L	5.0	0.50							2.0	U	3.0 l	U	5.0	U	5.0	U	0.6	J	5.0	U
trans -1,2-dichloroethene	μg/L	5.0	0.50	830.0		110.0				3.0	J		U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü
tert-butyl methyl ether	μg/L	0.0	0.50	0000						3.0			-	0.0		5.0		3.0		0.0	
1,1-dichloroethane	μg/L	5.0	0.50	2.0	J					10.0	U	10.0 l	U	5.0	U	5.0	U	5.0	U	5.0	U
cis -1,2-dichloroethene	μg/L μg/L	5.0	0.50	2.0	-					3.0	J		U	0.9	J	0.6	J	6.0	J	0.80	J
2-butanone (MEK)	μg/L	5.0	5.0			1.0	R			20.0	U		U	10.0	Ü	10.0	U	10.0	U	10.0	Ü
bromochloromethane	μg/L		0.50			1.0	11			20.0	U	20.0	-	10.0	U	10.0	U	10.0	U	10.0	
chloroform	μg/L μg/L	7.0	0.50			1.0	J			1.0	J	2.0	J	0.6	J	5.0	U	2.0	J	2.00	J
1,1,1-trichloroethane		5.0	0.50	28.0	J	16.0	J	45.0	J	2.0	J		J	5.0	U	0.6	J	2.0	J	2.00	J
cyclohexane	μg/L	5.0	0.50	20.0	J	16.0	,	45.0	,	2.0	J	3.0	J	5.0	U	0.6		2.0	J	2.00	
carbon tetrachloride	μg/L		0.50							10.0	U	10.0 U	U	5.0	U	5.0	U	5.0	U	5.0	U
	μg/L	0.7	0.50					19.0	J	1.0	U		U	0.7	U	0.7	U	0.7	U	.7	U
benzene	μg/L	0.7						19.0	J	10.0	U		_				U		U		U
1,2-dichloroethane	μg/L	5.0	0.50	62.0		8.0	J	400.0		4.0			U	5.0 5.0	U	5.0 0.8	U	5.0 3.0		5.0	J
trichloroethene	μg/L	5.0		62.0		8.0	J	400.0		4.0	U	3.0	U	5.0	U	0.8	U	3.0	J	2.00	
methylcyclohexane	μg/L		0.50							40.0		40.0	-	F.0		5.0		F 0		F 0	
1,2-dichloropropane	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
bromodichloromethane	μg/L		0.50							10.0			U	5.0	U	5.0	U	5.0	U	5.0	U
cis-1,3-dichloropropene	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
4-methyl-2-pentanone	μg/L		5.0	6.0	J					20.0	U		U	10.0	U	10.0	U	10.0	U	10.0	U
toluene	μg/L	5.0	0.50							10.0			U	5.0	U	5.0	U	5.0	U	5.0	U
trans -1,3-dichloropropene	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,2-trichloroethane	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
tetrachloroethene	μg/L	5.0	0.50	220.0		170.0		2,200.0		320.0		290.0	_	120.0		55.0		120.0		170.00	
2-hexanone	μg/L		5.0							20.0	U		U	10.0	U	10.0	U	10.0	U	10.0	U
dibromochloromethane	μg/L		0.50							10.0	U	10.0 l	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-dibromoethane	μg/L		0.50										_								
chlorobenzene	μg/L	5.0	0.50					37.0	J	10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
ethylbenzene	μg/L	5.0	0.50							10.0	C		U	5.0	U	5.0	U	5.0	U	5.0	U
xylene	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
styrene	μg/L		0.50							10.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
bromoform	μg/L		0.50							10.0	С	10.0 l	U	5.0	U	5.0	U	5.0	U	5.0	U
isopropylbenzene	μg/L		0.50																		
1,1,2,2-tetrachloroethane	μg/L		0.50							10.0	U	10.0 l	U	5.0	U	5.0	U	5.0	U	5.0	U
1,3-dichlorobenzene	μg/L		0.50																		
1,4-dichlorobenzene	μg/L		0.50																		
1,2-dichlorobenzene	μg/L		0.50										T								
1,2-dibromo-3-chloropropane	μg/L		0.50										T								
1,2,4-trichlorobenzene	μg/L		0.50										T								
1,2,3-trichlorobenzene	μg/L		0.50										T								
1,2,3-lfichioropenzene																					

Table A-4
Claremont Polychemical Superfund Site
EW-2A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2A		EW-2A		EW-2A	EW-2A	EW-2A
sampling date				2/12/02		5/17/02		ns - dry	ns - dry	
cooler temp (°C)				6 °C	J			·		
VOCs										
VOC dilution factor				1x						
dichlorodifluoromethane	μg/L		0.50			0.50	U			
chloromethane	μg/L		0.50	0.9	U	0.50	U			
vinyl chloride	μg/L		0.50	0.3	U	0.50	U			
bromomethane	μg/L		0.50	2.0	U	0.50	U			
chloroethane	μg/L		0.50	4.0	U	0.50	U			
trichlorofluoromethane	μg/L		0.50			0.50	U			
1,1-dichloroethene	μg/L	5.0	0.50	0.6	U	0.50	U			
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50			0.50	U			
acetone	μg/L		5.0	0.9	U	5.0	U			
carbon disulfide	μg/L		0.50	0.3	U	0.50	U			
methyl acetate	μg/L		0.50			0.50	U			
methylene chloride	μg/L	5.0	0.50	4.0	J	0.50	U			
trans -1,2-dichloroethene	μg/L	5.0	0.50	0.3	U	0.50	U			
tert-butyl methyl ether	μg/L		0.50			0.50	U			
1,1-dichloroethane	μg/L	5.0	0.50	0.3	U	0.50	Ü			
cis-1,2-dichloroethene	μg/L	5.0	0.50	0.6	J	0.83				
2-butanone (MEK)	μg/L		5.0	0.4	U	5.0	U			
bromochloromethane	μg/L		0.50			0.50	U			
chloroform	μg/L	7.0	0.50	0.8	J	0.31	J			
1,1,1-trichloroethane	μq/L	5.0	0.50	1.0	J	0.57				
cyclohexane	μg/L		0.50			0.50	U			
carbon tetrachloride	μg/L		0.50	0.2	U	0.50	Ü			
benzene	μg/L	0.7	0.50	0.3	U	0.50	UJ			
1,2-dichloroethane	μg/L	-	0.50	0.3	U	0.50	U			
trichloroethene	μg/L	5.0	0.50	0.9	J	0.98				
methylcyclohexane	μg/L		0.50			0.50	U			
1,2-dichloropropane	μg/L		0.50	0.3	U	0.50	Ü			
bromodichloromethane	μg/L		0.50	0.2	U	0.50	Ü			
cis -1,3-dichloropropene	μg/L		0.50	0.3	U	0.50	Ü			
4-methyl-2-pentanone	μg/L		5.0	0.4	Ü	5.0	Ü			
toluene	μg/L	5.0	0.50	0.3	Ü	0.50	Ü			
trans -1,3-dichloropropene	μg/L		0.50	0.2	U	0.50	Ü			
1,1,2-trichloroethane	μg/L		0.50	0.2	U	0.50	Ü			
tetrachloroethene	μg/L	5.0	0.50	120.0		73.00	D			
2-hexanone	μg/L		5.0	0.8	U	5.0	Ū			
dibromochloromethane	μg/L		0.50	0.2	Ü	0.50	Ü			
1.2-dibromoethane	μg/L		0.50			0.50	Ü			
chlorobenzene	μg/L	5.0	0.50	0.2	U	0.50	Ü			
ethylbenzene	µg/L	5.0	0.50	0.3	Ü	0.50	Ū			
xylene	μg/L		0.50	0.5	Ü	0.50	Ü			
styrene	μg/L		0.50	0.2	Ü	0.50	Ü			
bromoform	µg/L		0.50	0.2	Ü	0.50	Ü			
isopropylbenzene	µg/L		0.50			0.50	Ü			
1,1,2,2-tetrachloroethane	µg/L		0.50	0.3	U	0.50	Ü			
1,3-dichlorobenzene	µg/L		0.50			0.50	Ü			
1,4-dichlorobenzene	μg/L		0.50			0.50	Ü			
1,2-dichlorobenzene	μg/L		0.50			0.50	U		1	
1,2-dibromo-3-chloropropane	µg/L		0.50			0.50	Ü		1	
1,2,4-trichlorobenzene	μg/L		0.50			0.50	Ü		+	1
1,2,3-trichlorobenzene	µg/L		0.50			0.50	Ü			
total 1,2-DCE	μg/L		0.00			0.00				

Table A-4 Claremont Polychemical Superfund Site EW-2A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2A		EW-2A		EW-2A	ı	EW-2A		EW-2A		EW-2A		EW-2A		EW-2A		EW-2A
sampling date				Apr-89		Jun-89		Jul-92		6/8/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01
cooler temp (°C)										6.0	J	6.0	J	4.0		7.5	J	5 °C		9°C √
metals			CRDL						-											
aluminum (AI)	μg/L		200.0	3,690.0		50,800.0	J													
antimony (Sb)	μg/L	3.0	20.0	52.9	J	28.5				9.0	U	2.1	U	1.5	U	4.4	U	4.7	U	4.6 l
arsenic (As)	μg/L	50.0	40.0	29.7	J	6.2		20.0		4.0	Ü	2.0	Ü	2.4	Ū	5.7	В	6.1	В	5.4 E
barium (Ba)	µg/L	2.000.0	200.0	83.7		310.0	J	57.0		45.4	В	41.1	В	39.6	В	11.8	В	16.2	В	14.3 E
beryllium (Be)	µg/L	2,000.0	5.0			10.1	J						_							
cadmium (Cd)	μg/L		5.0			9.5	J	10.0 U	J											
calcium (Ca)	μg/L		5000.0	15,400.0	J	15,900.0		8.680.0												
chromium (Cr)	μg/L		10.0	13.4	J	159.0		.,	U											
cobalt (Co)	μg/L		50.0	22.7	-	35.8			_ i											
copper (Cu)	µg/L		25.0	25.0	R	214.0														
iron (Fe)	μg/L	600*	200.0	30,000.0	J	34,600.0		27,800.0	1	1,140.0		329.0		994.0		6,440.0		14,000.0		4,720.0
lead (Pb)	μg/L	50.0	10.0	16.5		110.0			J	2.0	U	1.3	U	2.2	U	6.3		4.4		2.0 l
magnesium (Mg)	μg/L		5000.0	9,440.0		6,990.0		3,640.0												
manganese (Mn)	µg/L	600*	15.0	1.010.0		1,370.0		642.0		185.0		195.0		162.0		547.0		686.0		174.0
mercury (Hg)	µg/L		0.2	1,01010		0.3			U											
nickel (Ni)	μg/L		40.0	34.2		92.7														
potassium (K)	μg/L		5000.0	5,000.0	R	4,080.0														
selenium (Se)	μg/L	40.0	30.0					8.2		5.0	U	3.4	U	2.8	В	4.9	U	4.8	U	4.9 l
silver (Ag)	μg/L		10.0	10.0	R			20.0 l	J											-
sodium (Na)	μg/L		5000.0	7,600.0		25,600.0														
thallium (TI)	μg/L		10.0	,		1.1														
vanadium (V)	μg/L		50.0	26.7		485.0														
zinc (Zn)	μg/L		20.0	38.3	J	300.0	J													
field instrument	su	6.5 - 8.5						5.98	_	nm		4.89		no data		no data		7.07		5.7
conductivity	µmhos/cr							0.115	_			0.090						0.118		0.108
	NTU	11						0.115				0.090						0.116		0.100
turbidity DO												7.90						11.39		5.45
_	mg/L °C							45.4												
temperature Eh (ORP)	mV							15.1				14.0						15.00		15.6
EII (UKP)	IIIV																			
other																				
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na		na		0.010	U	0.010	U	0.010	U	0.010	С	0.010	C	0.010 l
TSS	mg/L	1,000.0		1,810.0		5,950.0		96.0												
1080 data from Ebasco (1000																				

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown

B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package na: not analyzed

NM: not measured

ns: not measure

Table A-4 **Claremont Polychemical Superfund Site** EW-2A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2A		EW-2A		EW-2A	EW-2A	EW-2A
sampling date				2/12/02		5/17/02		ns - dry	ns - dry	
cooler temp (°C)				6 °C	J					
metals			CRDL					ns - dry	ns - dry	
aluminum (AI)	μg/L		200.0			307.0				
antimony (Sb)	μg/L	3.0	20.0	5.9	U	4.7	С			
arsenic (As)	μg/L	50.0	40.0	7.0	U	9.0	В			
barium (Ba)	μg/L	2,000.0	200.0	25.2		13.9	В			
beryllium (Be)	μg/L		5.0			0.10	С			
cadmium (Cd)	μg/L		5.0			0.40	С			
calcium (Ca)	μg/L		5000.0			6,220.0				
chromium (Cr)	μg/L		10.0			1.1	В			
cobalt (Co)	μg/L		50.0			4.0	В			
copper (Cu)	μg/L		25.0			7.8	В			
iron (Fe)	μg/L	600*	200.0	2,880.0		1,830.0				
lead (Pb)	μg/L	50.0	10.0	6.0	В	5.2				
magnesium (Mg)	μg/L		5000.0			3,100.0	В			
manganese (Mn)	μg/L	600*	15.0	143.0		174.0				
mercury (Hg)	μg/L		0.2			0.20	U			
nickel (Ni)	μg/L		40.0			1.8	U			
potassium (K)	μg/L		5000.0			1,690.0	В			
selenium (Se)	μg/L	40.0	30.0	6.90	U	3.0	U			
silver (Ag)	μg/L		10.0			1.0	UJ			
sodium (Na)	μg/L		5000.0			1,620.0	В			
thallium (TI)	μg/L		10.0			5.4	С			
vanadium (V)	μg/L		50.0			1.0	В			
zinc (Zn)	μg/L		20.0			368.0				
field instrument								ns - dry	ns - dry	
pH	su	6.5 - 8.5		5.42		5.63				
conductivity	µmhos/cr	n		0.073		0.112				
turbidity	NTU			-		35.5		•		
DO	mg/L			5.05		2.50				
temperature	°C			13.90		12.85				
Eh (ORP)	mV					153				
other										
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.003	U			•		
TSS	mg/L	1,000.0								

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown

B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package na: not analyzed

NM: not measured

ns: not sampled

Table A-5
Claremont Polychemical Superfund Site
EW-2B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B
sampling date				Apr-89		Jun-89		Jul-92		6/8/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01		2/12/02
cooler temp (°C)										6.0	J	6.0	J	4.0		7.5	J	5°C		9 °C	J	6°C J
VOCs																						
VOC dilution factor								10x		1x		1x		1x		1x		1x		1x		1x
dichlorodifluoromethane	μg/L		0.50																			
chloromethane	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.9 U
vinyl chloride	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.3 U
bromomethane	μg/L		0.50	10.0	R					10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	2.0 U
chloroethane	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	4.0 U
trichlorofluoromethane	μg/L		0.50																			
1,1-dichloroethene	μg/L	5.0	0.50							5.0	U	0.9	٦	14.0		16.0		7.0		2.00	J	0.6 U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																			
acetone	μg/L		5.0			27.0	J			10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10	U	0.9 U
carbon disulfide	μg/L		0.50							5.0	U	0.5	J	5.0	U	5.0	C	5.0	U	5.0	U	0.3 U
methyl acetate	μg/L		0.50																			
methylene chloride	μg/L	5.0	0.50							0.5	U	2.0	U	1.0	J	5.0	U	1.0	J	1.00	J	4.0 J
trans -1,2-dichloroethene	μq/L	5.0	0.50	210.0		170.0				16.0		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
tert-butyl methyl ether	μg/L		0.50		Ì														Ì			
1,1-dichloroethane	μq/L	5.0	0.50							5.0	U	5.0	U	2.0	J	2.0	J	5.0	U	5.0	U	0.3 U
cis-1,2-dichloroethene	μq/L	5.0	0.50							16.0		14.0		8.0		8.0		7.0		3.00	J	3.0 J
2-butanone (MEK)	μq/L		5.0			5.0	R			10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.4 U
bromochloromethane	μq/L		0.50																			
chloroform	μg/L	7.0	0.50							5.0	U	5.0	U	5.0	U	0.6	J	0.6	J	0.20	J	0.2 U
1,1,1-trichloroethane	μg/L	5.0	0.50					9.0	J	2.0	7	3.0	7	34.0		32.0		17.0		5.00		2.0 J
cyclohexane	μg/L		0.50																			
carbon tetrachloride	μq/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
benzene	μg/L	0.7	0.50							0.7	U	0.7	U	0.7	U	0.7	U	0.7	U	.7	U	0.3 U
1,2-dichloroethane	µg/L		0.50							5.0	Ü	5.0	Ū	5.0	Ū	5.0	Ü	5.0	Ü	5.0	Ü	0.3 U
trichloroethene	ua/L	5.0	0.50					23.0		34.0		37.0		29.0	_	13.0		10.0		5.00		4.0 J
methylcyclohexane	μq/L		0.50									-										
1,2-dichloropropane	μq/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
bromodichloromethane	μg/L		0.50							5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ü	5.0	Ü	5.0	Ü	0.2 U
cis-1,3-dichloropropene	μq/L		0.50							5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ü	5.0	Ü	5.0	Ü	0.3 U
4-methyl-2-pentanone	μg/L		5.0							10.0	Ü	10.0	Ü	10.0	Ü	10.0	Ü	10.0	Ü	10.0	Ü	0.4 U
toluene	μg/L	5.0	0.50							5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ü	5.0	Ü	5.0	Ü	0.3 U
trans-1,3-dichloropropene	µg/L		0.50							5.0	Ū	5.0	Ū	5.0	Ū	5.0	Ü	5.0	Ü	5.0	Ü	0.2 U
1.1.2-trichloroethane	µg/L		0.50							5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	0.2 U
tetrachloroethene	µg/L	5.0	0.50	4.0	J	6.0		210.0		110.0		47.0		26.0		20.0		26.0	Ť	19.00		17.0
2-hexanone	μg/L	0.0	5.0	4.0		0.0		210.0		10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.8 U
dibromochloromethane	µg/L		0.50							5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	0.2 U
1,2-dibromoethane	μg/L		0.50								Ŭ	0.0	Ŭ	5.5	_	0.0	Ŭ	0.0	Ť	0.0		J U
chlorobenzene	µg/L	5.0	0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
ethylbenzene	μg/L	5.0	0.50							5.0	Ü	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	Ü	0.2 U
xylene	µg/L	0.0	0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	Ü	0.5 U
styrene	µg/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	Ü	0.2 U
bromoform	µg/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	Ü	5.0	U	0.2 U
isopropylbenzene	μg/L		0.50							0.0	-	0.0	-	0.0		0.0	0	0.0	-	0.0	-	0.2 0
1,1,2,2-tetrachloroethane	μg/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
1,3-dichlorobenzene	μg/L		0.50							0.0	-	0.0	-	0.0		0.0	0	0.0	-	0.0	-	0.0
1,4-dichlorobenzene	μg/L μg/L		0.50												-						+	
1,2-dichlorobenzene	μg/L μg/L		0.50						-													
1,2-dibromo-3-chloropropane	μg/L μg/L		0.50						-													
1,2-dibromo-3-chioropropane			0.50																			
	μg/L		0.50																			
1,2,3-trichlorobenzene total 1,2-DCE	μg/L		0.50					96.0														
iolai 1,2-DCE	μg/L							90.0						l								

Table A-5 Claremont Polychemical Superfund Site EW-2B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2B		EW-2B		EW-2B		EW-2B
sampling date				5/15/02		8/7/02		10/23/02		
cooler temp (°C)										
VOCs										
VOC dilution factor				1x		1x		1x		
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
chloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	0.50	U	
bromomethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
chloroethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
1,1-dichloroethene	μg/L	5.0	0.50	1.20		0.47	J	0.50	U	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U	0.50	U	0.50	U	
acetone	μg/L		5.0	5.0	U	5.0	U	5.0	U	
carbon disulfide	μg/L		0.50	0.50	U	0.50	U	0.50	U	
methyl acetate	μg/L		0.50	0.50	U	0.50	U	0.50	U	
methylene chloride	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	UJ	
trans -1,2-dichloroethene	μq/L	5.0	0.50	0.50	U	0.50	U	0.50	U	
tert-butyl methyl ether	μq/L		0.50	0.50	U	0.50	U	0.50	U	
1,1-dichloroethane	μg/L	5.0	0.50	0.50	U	0.50	U	0.50	U	
cis-1,2-dichloroethene	μq/L	5.0	0.50	2.80		1.20		1.30		
2-butanone (MEK)	μg/L		5.0	5.0	UJ	5.0	U	5.0	U	
bromochloromethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	
chloroform	μg/L	7.0	0.50	0.50	Ü	0.17	J	0.16	J	
1,1,1-trichloroethane	μg/L	5.0	0.50	2.20		0.92		0.94		
cyclohexane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
carbon tetrachloride	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
benzene	μg/L	0.7	0.50	0.50	UJ	0.50	U	0.50	U	
1,2-dichloroethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	U	
trichloroethene	µg/L	5.0	0.50	6.40	J	3.20		3.50		
methylcyclohexane	μg/L		0.50	0.50	Ü	0.50	U	0.50	U	
1,2-dichloropropane	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
bromodichloromethane	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
cis-1,3-dichloropropene	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
4-methyl-2-pentanone	μg/L		5.0	5.0	Ü	5.0	Ü	5.0	Ū	
toluene	μg/L	5.0	0.50	0.50	UJ	0.50	U	0.50	U	
trans-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	0.50	Ü	
1,1,2-trichloroethane	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
tetrachloroethene	μg/L	5.0	0.50	22.00	J	5.60		6.00		
2-hexanone	μg/L		5.0	5.0	UJ	5.0	U	5.0	U	
dibromochloromethane	μg/L		0.50	0.50	U	0.50	U	0.50	U	
1,2-dibromoethane	μg/L		0.50	0.50	Ü	0.50	U	0.50	Ü	
chlorobenzene	ua/L	5.0	0.50	0.50	Ü	0.50	U	0.50	UJ	
ethylbenzene	μg/L	5.0	0.50	0.50	UJ	0.50	Ü	0.50	U	
xylene	μg/L		0.50	0.50	UJ	0.50	U	0.50	U	
styrene	μg/L		0.50	0.50	UJ	0.50	Ü	0.50	Ü	
bromoform	μg/L		0.50	0.50	U	0.50	U	0.50	Ü	
isopropylbenzene	μg/L		0.50	0.50	UJ	0.50	Ü	0.50	Ü	
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	Ü	0.50	Ü	
1,3-dichlorobenzene	µg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1.4-dichlorobenzene	µg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1,2-dichlorobenzene	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1,2,4-trichlorobenzene	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
1,2,3-trichlorobenzene	μg/L		0.50	0.50	Ü	0.50	Ü	0.50	Ü	
total 1,2-DCE	μg/L							2.50	-	

Table A-5 Claremont Polychemical Superfund Site EW-2B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B		EW-2B
sampling date				Apr-89		Jun-89		Jul-92		6/8/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01		2/12/02
cooler temp (°C)										6.0	J	6.0	J	4.0		7.5	J	5 °C		9 °C	J	6°C J
metals			CRDL																		\rightarrow	
aluminum (AI)	μg/L		200.0			206.0	J															
antimony (Sb)	μg/L	3.0	20.0			22.9				9.0	U	2.4	В	1.5	U	4.4	U	4.7	U	4.6	U	5.9 L
arsenic (As)	μg/L	50.0	40.0					1.9		4.0	Ū	2.0	U	2.4	Ü	4.2	Ü	4.4	U	4.4	Ü	7.0 L
barium (Ba)	μg/L	2,000.0	200.0	46.0		44.6	J	65.0		47.3	В	48.1	В	40.3	В	46.7	В	55.4	В	75.2	В	69.4
beryllium (Be)	μg/L	, , , , , , , , , , , , , , , , , , , ,	5.0																	-		
cadmium (Cd)	μg/L		5.0					10.0	U													
calcium (Ca)	μg/L		5000.0	20.9	J	23,300.0		23,400.0														
chromium (Cr)	μg/L		10.0			ĺ		20.0	U													
cobalt (Co)	μg/L		50.0	13.4		14.9															\neg	
copper (Cu)	μg/L		25.0																			
iron (Fe)	μg/L	600*	200.0	2,360.0		4,070.0		1,350.0		4,440.0		376.0		133.0		59.3	В	88.6	В	235.0		87.3 B
lead (Pb)	μg/L	50.0	10.0	5.0	R	3.0	J	13.0	J	2.0	U	1.3	U	2.2	U	2.0	U	2.0	U	2.0	U	5.0 B
magnesium (Mg)	μq/L		5000.0	4,930.0		57,800.0		7,010.0														
manganese (Mn)	μg/L	600*	15.0	571.0		747.0		829.0		640.0		626.0		697.0		374.0		378.0		511.0		492.0
mercury (Hg)	μg/L		0.2					0.20	U													
nickel (Ni)	μg/L		40.0	40.0	R	32.8																
potassium (K)	μg/L		5000.0			8,280.0	J															
selenium (Se)	μg/L	40.0	30.0	3.9	J			8.5		5.0	U	3.4	U	2.6	U	4.9	U	4.8	U	4.9	U	6.90 L
silver (Ag)	μg/L		10.0					20.0	U													
sodium (Na)	μg/L		5000.0	77,700.0	J	78,800.0																
thallium (TI)	μg/L		10.0																			
vanadium (V)	μg/L		50.0																			
zinc (Zn)	μg/L		20.0	97.8		50.3	J															
field instrument										nm				no data		no data						
pH	su	6.5 - 8.5						5.55				5.03						6.44		4.99		5.04
conductivity	µmhos/cr	n						0.327				0.280						0.236		0.343		0.279
turbidity	NTU																					
DO	mg/L											1.70						10.77		4.96		3.95
temperature	°C							16.0				14.70						15.10		15.10		15.50
Eh (ORP)	mV																					
other																					\rightarrow	
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na		na		0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.003 U
TSS	mg/L	1,000.0	0.010	12.0		12.0		200		0.010	- 0	0.010		0.010	- 0	0.010	- 0	0.010	0	0.010		0.000
1989 data from Fhasco (1990																						

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured

ns: not sampled

Table A-5 Claremont Polychemical Superfund Site EW-2B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2B		EW-2B		EW-2B		EW-2B
sampling date				5/15/02		8/7/02		10/23/02		
cooler temp (°C)										
tala			CRDL							
metals aluminum (AI)	μg/L		200.0	7.3	U	22.2	U	56.7	U	
antimony (Sb)	μg/L	3.0	20.0	4.7	Ü	8.7	Ü	1.2	Ü	
arsenic (As)	μg/L	50.0	40.0	2.8	Ü	6.0	U	3.0	U	
barium (Ba)	μg/L	2,000.0	200.0	60.7	В	65.7	В	69.3	В	
beryllium (Be)	μg/L	2,000.0	5.0	0.16	В	0.1	U	0.34	В	
cadmium (Cd)	μg/L		5.0	0.40	U	0.6	IJ	0.56	В	
calcium (Ca)	μg/L		5000.0	14,500.00	-	13,600	-	14,500		
chromium (Cr)	µg/L		10.0	0.60	U	1.3	U	1.6	В	
cobalt (Co)	µg/L		50.0	19.4	В	13.5	В	13.8	В	
copper (Cu)	µg/L		25.0	2.6	В	5.1	В	8.5	В	
iron (Fe)	µg/L	600*	200.0	17.3	U	22.3	U	105		
lead (Pb)	µg/L	50.0	10.0	2.1	U	2.9	Ü	2.5	В	
magnesium (Mg)	µg/L	00.0	5000.0	6,670.00	Ť	6,490	Ť	7,050		
manganese (Mn)	μg/L	600*	15.0	450		370.0		349		
mercury (Hg)	µg/L		0.2	0.20	U	0.2	U	0.10	U	
nickel (Ni)	μg/L		40.0	39.9	В	21.8	В	44.3		
potassium (K)	μg/L		5000.0	2,590.00	В	2,970	BJ	2,900	В	
selenium (Se)	μg/L	40.0	30.0	3.3	В	3.0	U	3.0	U	
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	U	0.80	U	
sodium (Na)	μg/L		5000.0	34,100.00	J	38,000	J	47,700	J	
thallium (TI)	μg/L		10.0	5.4	U	8.8	U	2.4	U	
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	0.70	U	
zinc (Zn)	μg/L		20.0	53.8		3.2	В	33.9	J	
field instrument										
рН	su	6.5 - 8.5		5.00		5.16		5.26		
conductivity	µmhos/cr			0.498		0.451		0.497		
turbidity	NTU			2.3		6.2		8.2		
DO	mg/L			3.00		3.54		3.21		
temperature	°C			17.86		18.52		17.74		
Eh (ORP)	mV			303		244		275		
other							-			
		0.400	0.040							
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010							
TSS	mg/L	1,000.0								

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured ns: not sampled

Table A-6
Claremont Polychemical Superfund Site
EW-2C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2C	EW-2C		EW-2C	EW-2C QC	EW-2C		EW-2C		EW-2C		EW-2C		EW-2C		EW-2C	
sampling date				Apr-89	Jun-89		Jul-92	Jul-92	6/7/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01	
cooler temp (°C)									6.0	J	6.0	J	4.0		7.5	J	5 °C		9 °C	J
VOCs																				
VOC dilution factor							10x	10x	5x		2x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50																	
chloromethane	μg/L		0.50						50.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U
vinyl chloride	μg/L		0.50						50.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U
bromomethane	μg/L		0.50						50.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U
chloroethane	μg/L		0.50						50.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U
trichlorofluoromethane	μg/L		0.50																	
1,1-dichloroethene	μg/L	5.0	0.50						5.0	J	11.0		61.0		93.0		52.0		44.00	
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50								-									
acetone	μg/L		5.0		26.0	J			50.0	U	6.0	J	10.0	U	2.0	JB	10.0	U	3.00	J
carbon disulfide	μg/L		0.50						25.0	Ū	10.0	Ū	5.0	Ü	5.0	U	5.0	Ü	5.0	Ū
methyl acetate	µg/L		0.50														0.0			
methylene chloride	μg/L	5.0	0.50						4.0	U	3.0	U	0.8	J	2.0	U	0.6	J	1.00	J
trans -1,2-dichloroethene	μg/L	5.0	0.50		-			1	10.0	J	10.0	Ü	5.0	U	5.0	Ü	5.0	Ü	5.0	Ü
tert-butyl methyl ether	μg/L	0.0	0.50		-				10.0		10.0		0.0	J	5.0	J	5.0	U	0.0	
1,1-dichloroethane	μg/L	5.0	0.50	0.3	J				25.0	U	5.0	J	12.0		17.0		8.0		6.00	
cis-1,2-dichloroethene	μg/L	5.0	0.50	0.0	<u>, </u>				10.0	J	15.0		21.0		26.0		12.0		10.00	
2-butanone	μg/L	3.0	5.0		1.0	R			50.0	U	20.0	U	10.0	U	0.8	JB	10.0	U	10.00	U
bromochloromethane	μg/L μg/L		0.50		1.0	К			50.0	- 0	20.0		10.0	0	0.6	JD	10.0	0	10.0	
chloroform	μg/L	7.0	0.50						25.0	U	10.0	U	0.5	J	0.6	J	0.9	J	0.70	J
		5.0	0.50				8.0 J	9.0 J		J	28.0	- 0	140.0	J	170.0	J	110.0		100.00	
1,1,1-trichloroethane cyclohexane	μg/L	5.0	0.50				0.U J	9.0 3	9.0	J	20.0		140.0		170.0		110.0		100.00	
carbon tetrachloride	μg/L μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
		0.7	0.50						4.0	U	1.0	U	0.7	U	0.7	U	0.7	U		U
benzene	μg/L	0.7	0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	.7 5.0	U
1,2-dichloroethane trichloroethene	μg/L	5.0	0.50	0.5	,		210.0	220.0	530.0	U	260.0	U	40.0	U	41.0	U	25.0	U	26.00	
	μg/L	5.0	0.50	0.5	<u>' </u>		210.0	220.0	530.0		260.0		40.0		41.0		25.0		26.00	
methylcyclohexane	μg/L								25.0	- 11	10.0		5.0	U	F 0	- 11	5.0		F 0	
1,2-dichloropropane	μg/L		0.50					1	25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
bromodichloromethane	μg/L		0.50						25.0	U	10.0	U	5.0		5.0		5.0	U	5.0	U
cis-1,3-dichloropropene	μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	: С	5.0	U	5.0	U
4-methyl-2-pentanone	μg/L		5.0						50.0	U	20.0	U	10.0	υ:	10.0	U	10.0	U	10.0	U
toluene	μg/L	5.0	0.50						25.0	U	10.0	U	5.0	U	5.0	U	0.4	J	5.0	U
trans-1,3-dichloropropene	μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,2-trichloroethane	μg/L		0.50						25.0	U	10.0	U	5.0	С	5.0	C	5.0	U	5.0	U
tetrachloroethene	μg/L	5.0	0.50	2.0	2.0		24.0	26.0	18.0	J_	20.0		38.0		39.0		20.0		24.00	
2-hexanone	μg/L		5.0					-	50.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U
dibromochloromethane	μg/L		0.50						25.0	U	10.0	U	5.0	С	5.0	C	5.0	U	5.0	U
1,2-dibromoethane	μg/L		0.50																	
chlorobenzene	μg/L	5.0	0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
ethylbenzene	μg/L	5.0	0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
xylene	μg/L	ļ	0.50		_				25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
styrene	μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
bromoform	μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U
isopropylbenzene	μg/L		0.50																	
1,1,2,2-tetrachloroethane	μg/L		0.50						25.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	C
1,3-dichlorobenzene	μg/L		0.50																	
1,4-dichlorobenzene	μg/L		0.50																	
1,2-dichlorobenzene	μg/L		0.50																	
1,2-dibromo-3-chloropropane	μg/L		0.50																	
1,2,4-trichlorobenzene	μg/L		0.50																	
1,2,3-trichlorobenzene	μg/L		0.50																	
total 1,2-DCE	µg/L																			

Table A-6
Claremont Polychemical Superfund Site
EW-2C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2C		EW-2C		EW-2C		EW-2C	
sampling date				2/12/02		5/15/02		8/7/02		10/23/02	
cooler temp (°C)				6 °C	J						
VOCs											
VOC dilution factor				1x						1x	
dichlorodifluoromethane	μg/L		0.50			0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50	0.9	U	0.50	U	0.50	U	0.50	U
vinyl chloride	μg/L		0.50	0.3	U	0.50	U	0.50	U	0.50	U
bromomethane	μg/L		0.50	2.0	U	0.50	U	0.50	U	0.50	U
chloroethane	μg/L		0.50	4.0	U	0.50	U	0.50	U	0.50	U
trichlorofluoromethane	μg/L		0.50			0.50	U	0.50	U	0.50	UJ
1,1-dichloroethene	μg/L	5.0	0.50	18.0		20.00		17.00		12.00	J
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50			0.50	U	0.24	J	0.50	UJ
acetone	μg/L		5.0	0.9	U	5.0	Ū	5.0	Ū	5.0	U
carbon disulfide	μg/L		0.50	0.3	Ü	0.50	Ü	0.50	Ü	0.50	U
methyl acetate	μg/L		0.50			0.50	Ü	0.50	Ü	0.50	UJ
methylene chloride	µg/L	5.0	0.50	4.0	J	0.50	Ü	0.50	U	0.71	UJ
trans -1,2-dichloroethene	µg/L	5.0	0.50	0.3	U	0.50	Ü	0.50	U	0.50	U
tert-butyl methyl ether	μg/L	5.0	0.50	0.0		0.50	Ü	0.50	U	0.50	UJ
1,1-dichloroethane	μg/L	5.0	0.50	3.0	J	2.10	Ŭ	1.90		0.92	- 00
cis-1,2-dichloroethene	μg/L	5.0	0.50	9.0	·	6.80	J	11.00	J	7.70	J
2-butanone	μg/L μg/L	5.0	5.0	0.4	U	5.0	U	5.0	U	5.0	U
bromochloromethane	μg/L μg/L		0.50	0.4	U	0.50	U	0.50	C	0.50	C
chloroform	μg/L	7.0	0.50	0.2	U	0.57	-	0.76	U	0.41	J
1,1,1-trichloroethane		5.0	0.50	41.0	U	63.00	D	22.00	D	22.00	D
cyclohexane	μg/L	5.0	0.50	41.0		0.50	U	0.50	U	0.50	
carbon tetrachloride	μg/L μg/L		0.50	0.2	U	0.50	U	0.50	U	0.50	UJ
		0.7	0.50	0.2	C	0.50	UJ	0.50	U	0.50	U
benzene 1,2-dichloroethane	μg/L	0.7	0.50	0.3	U	0.50	U	0.50	IJ	0.50	UJ
trichloroethene	μg/L	5.0	0.50	13.0	U	15.00	U	14.00	U	18.00	UJ
	μg/L	5.0	0.50	13.0		0.50	U	0.50	U	0.50	U
methylcyclohexane 1,2-dichloropropane	μg/L μg/L		0.50	0.3	U	0.50	U	0.50	U	0.50	C
			0.50	0.3	IJ	0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50	0.2	U	0.50	U		U	0.50	UJ
cis-1,3-dichloropropene	μg/L		5.0	0.3	U	5.0	U	0.50 5.0	U	5.0	U
4-methyl-2-pentanone	μg/L	5.0		0.4	IJ		U		U		٥
toluene	μg/L	5.0	0.50		_	0.50		0.50	_	0.50	
trans-1,3-dichloropropene	μg/L		0.50	0.2	U	0.50	U	0.50	υ:	0.50	UJ
1,1,2-trichloroethane	μg/L		0.50	0.2	U	0.50	U	0.50	U	0.50	UJ
tetrachloroethene	μg/L	5.0	0.50	9.0	U	9.00		4.20	U	3.50	U
2-hexanone	μg/L		5.0	0.8	U	5.0	U	5.0	_	5.0	
dibromochloromethane	μg/L		0.50	0.2	U	0.50	_	0.50	U	0.50	υ:
1,2-dibromoethane	μg/L		0.50			0.50	U	0.50	U	0.50	
chlorobenzene	μg/L	5.0	0.50	0.2	U	0.50	U	0.50	U	0.50	U
ethylbenzene	μg/L	5.0	0.50	0.3	U	0.50	U	0.50	U	0.50	U
xylene	μg/L		0.50	0.5	U	0.50	U	0.50	U	0.50	C
styrene	μg/L		0.50	0.2	U	0.50	U	0.50	U	0.50	U
bromoform	μg/L		0.50	0.2	U	0.50	U	0.18	J	0.50	U
isopropylbenzene	μg/L		0.50			0.50	U	0.50	U	0.50	C
1,1,2,2-tetrachloroethane	μg/L		0.50	0.3	U	0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene	μg/L		0.50			0.50	U	0.50	U	0.50	С
1,4-dichlorobenzene	μg/L		0.50			0.50	U	0.50	С	0.14	۲
1,2-dichlorobenzene	μg/L		0.50			0.50	U	0.50	С	0.50	C
1,2-dibromo-3-chloropropane	μg/L		0.50			0.50	U	0.50	С	0.50	С
1,2,4-trichlorobenzene	μg/L		0.50			0.50	U	0.50	U	0.50	U
1,2,3-trichlorobenzene	μg/L		0.50			0.50	U	0.50	U	0.50	U
total 1,2-DCE	μg/L										

Table A-6 Claremont Polychemical Superfund Site EW-2C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2C	EW-2C	EW-2C		EW-2C QC	EW-2C		EW-2C		EW-2C		EW-2C		EW-2C		EW-2C
sampling date				Apr-89	Jun-89	Jul-92		Jul-92	6/7/00		9/11/00		2/15/01		5/30/01		08/23/01		11/09/01
cooler temp (°C)									6.0	J	6.0	J	4.0		7.5	J	5 °C		9 °C ∪
metals			CRDL																
aluminum (AI)	μg/L		200.0	156.0	193.0 J														
antimony (Sb)	μg/L	3.0	20.0						9.0	U	2.1	U	1.5	U	4.4	U	4.7	U	4.6 L
arsenic (As)	μg/L	50.0	40.0			1.0	U		4.0	U	2.0	U	2.4	U	4.2	U	4.4	U	4.4 L
barium (Ba)	μg/L	2,000.0	200.0	119.0	91.5 J	64.0			22.4	В	30.3	В	30.0	В	37.6	В	48.2	В	59.8 E
beryllium (Be)	μg/L		5.0																
cadmium (Cd)	μg/L		5.0			10.0	U												
calcium (Ca)	μg/L		5000.0	33,900.0	33,900.0	30,500.0													
chromium (Cr)	μg/L		10.0		5.0	20.0	U												
cobalt (Co)	μg/L		50.0	33.6	25.6														
copper (Cu)	μg/L		25.0	25.0 R	11.9														
iron (Fe)	μg/L	600*	200.0	863.0 J	1,000.0	661.0			88.4	В	110.0		39.2	В	404.0		32.3	В	65.3 E
lead (Pb)	μg/L	50.0	10.0	1.0 J	4.5 J	12.0	J		2.0	U	1.3	U	2.2	U	2.8	В	2.0	U	2.0 L
magnesium (Mg)	μq/L		5000.0	9,620.0	8,040.0	7,430.0													
manganese (Mn)	μg/L	600*	15.0	1,300.0	1,270.0	1,130.0			155.0		244.0		112.0		135.0		139.0		213.0
mercury (Hg)	μg/L		0.2			0.20	U												
nickel (Ni)	μg/L		40.0	41.3 J	26.2														
potassium (K)	μg/L		5000.0	18,700.0	16,800.0														
selenium (Se)	μg/L	40.0	30.0		,	8.2			5.0	U	3.4	U	2.6	U	4.9	U	4.8	U	4.9 L
silver (Ag)	μg/L		10.0	10.0 R		20.0	U												
sodium (Na)	μg/L		5000.0	86,500.0	81,800.0														
thallium (TI)	μg/L		10.0																
vanadium (V)	μg/L		50.0	17.6	4.4														
zinc (Zn)	μg/L		20.0	55.7 J	235.0 J				5.0	U	3.4	U	2.6	U	4.9	U			
, ,																			
field instrument									no data										
pН	su	6.5 - 8.5				5.48					4.93		4.18		no data		6.44		5.26
conductivity	µmhos/cr	m				0.482					0.150						0.209		0.272
turbidity	NTU																		
DO	mg/L										5.80						11.69		6.05
temperature	°C					18.0					14.50						15.60		16.00
Eh (ORP)	mV																		
, ,	Ì																		
other	1																		
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na	na	na			0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	10.0 L
TSS	mg/L	1,000.0	0.010	110	21.0	316			0.010		0.010		0.010	J	0.010		0.010	-	10.0
100	g/L	1,000.0			21.0	310												-	
1000 data from Ebasso (1000	 	 			1			Į.	l .										

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured

ns: not sampled

Table A-6
Claremont Polychemical Superfund Site
EW-2C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-2C		EW-2C		EW-2C		EW-2C	
sampling date				2/12/02		5/15/02		8/7/02		10/23/02	
cooler temp (°C)				6 °C	J						
metals			CRDL								
aluminum (AI)	μg/L		200.0			70.3	В	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	5.9	U	4.7	U	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0	7.0	U	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	88.2		84.6	В	102.0	В	88.9	В
beryllium (Be)	μg/L		5.0			0.45	В	0.1	U	0.61	В
cadmium (Cd)	μg/L		5.0			0.40	U	0.6	С	0.32	В
calcium (Ca)	μg/L		5000.0			14,100.00		15,600		13,400	
chromium (Cr)	μg/L		10.0			0.60	U	1.3	U	0.80	С
cobalt (Co)	μg/L		50.0			10.1	В	7.7	В	8.9	В
copper (Cu)	μg/L		25.0			4.7	В	5.0	В	4.2	В
iron (Fe)	μg/L	600*	200.0	85.3	U	26.7	В	22.3	U	12.5	С
lead (Pb)	μg/L	50.0	10.0	3.4	U	2.1	U	2.9	U	1.2	U
magnesium (Mg)	μg/L		5000.0			4,130.00	В	4,850	В	4,660	В
manganese (Mn)	μg/L	600*	15.0	296.0		197		175.0		180	
mercury (Hg)	μg/L		0.2			0.20	U	0.2	U	0.10	U
nickel (Ni)	μg/L		40.0			6.7	В	1.8	U	7.7	В
potassium (K)	μg/L		5000.0			3,750.00	В	4,730	В	3,750	В
selenium (Se)	μg/L	40.0	30.0	6.90	U	3.0	U	3.1	В	3.0	С
silver (Ag)	μg/L		10.0			1.0	UJ	2.0	U	0.80	С
sodium (Na)	μg/L		5000.0			19,500.00	J	25,400	۲	31,800	۲
thallium (TI)	μg/L		10.0			5.4	U	8.8	U	2.4	С
vanadium (V)	μg/L		50.0			0.80	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0			48.8		9.5	В	15.1	В
field instrument											
pH	su	6.5 - 8.5		5.00		4.91		4.92		5.07	-
conductivity	µmhos/ci			0.221		0.369		0.366		0.399	-
turbidity	NTU	 		0.221		2.0		6.5		7.2	-
DO	mg/L			3.66		2.45		2.69		3.70	_
temperature	°C			14.40		17.72		18.21		17.90	_
Eh (ORP)	mV			11.10		310		285		303	_
Lii (Orti)	1117					010		200		000	
other											
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.003	U		T	· ·		·	7
TSS	mg/L	1,000.0									
1989 data from Fhasco (1990)											

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed

NM: not measured ns: not sampled

Table A-7 Claremont Polychemical Superfund Site EW-4A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4A	EW	4A	EW-4A	EW-4A		EW-4A		EW-4A		EW-4A		EW-4A		EW-4A		EW-4A
sampling date				Apr-89	Jun	-89	Jul-92	5/25/00		9/14/00		2/15/01		5/31/01		08/22/01		11/09/01		2/13/02
cooler temp (°C)								5.0		20.0	R	4.0		1.7		5 °C		9 °C	J	5 °C
VOCs																				
VOC dilution factor							10x	1x		2x		1x		1x		1x		1x		1x
dichlorodifluoromethane	μg/L		0.50																	
chloromethane	μg/L		0.50					10.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.9 U
vinyl chloride	μg/L		0.50					10.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	0.3 U
bromomethane	μg/L		0.50					10.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	2.0 U
chloroethane	μg/L		0.50					10.0	U	20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	4.0 U
trichlorofluoromethane	μg/L		0.50																	
1,1-dichloroethene	μg/L	5.0	0.50	0.4	J			5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.6 U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																	
acetone	μg/L		5.0		5.) F	₹	10.0	U	2.0	J	10.0	U	2.0	U	10.0	U	4.00	J	0.9 U
carbon disulfide	μq/L		0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
methyl acetate	μg/L		0.50																	
methylene chloride	μg/L	5.0	0.50				5.0 J	2.0	J	6.0	U	5.0	U	1.0	J	0.4	J	1.00	J	0.2 U
trans-1,2-dichloroethene	μq/L	5.0	0.50	240.0	160	.0		0.3	J	10.0	U		U		Ü		U	5.0	U	0.3 U
tert-butyl methyl ether	μg/L		0.50												Ť					
1,1-dichloroethane	μg/L	5.0	0.50	0.2	J			5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
cis -1,2-dichloroethene	μg/L	5.0	0.50	V				66.0		83.0	Ť	7.0	Ť		J		J	6.00	Ť	6.0
2-butanone	μg/L	0.0	5.0	10.0	R 5.) F	२	1.0	J	20.0	U		U		U		U	10.0	U	0.4 U
bromochloromethane	μg/L		0.50	10.0	11 0.		`	1.0		20.0		10.0	- +	10.0	Ť	10.0	Ť	10.0	Ŭ	0.1
chloroform	μg/L	7.0	0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
1,1,1-trichloroethane	μg/L	5.0	0.50	3.0				0.8	J	10.0	Ü		Ü		J		U	5.00	Ü	0.2 U
cyclohexane	μg/L	5.0	0.50	5.0				0.0		10.0		0.0	- +	1.0	-		_	0.00		0.2 0
carbon tetrachloride	μg/L μg/L		0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
benzene	μg/L μg/L	0.7	0.50	0.4	J			0.7	Ü	1.0	C		U		U		U	.7	Ü	0.2 U
1,2-dichloroethane	μg/L μg/L	0.7	0.50	0.4	J			5.0	U	10.0			U		U		U	5.0	U	0.3 U
trichloroethene	μg/L μg/L	5.0	0.50	22.0	31	^	58.0	31.0	- 0	20.0	0	7.0	<u> </u>		J		J	4.00	J	5.0
		5.0	0.50	22.0	31	.0	56.0	31.0		20.0		7.0		3.0	٠,	1.0	<u>, </u>	4.00		5.0
methylcyclohexane 1,2-dichloropropane	μg/L μg/L		0.50		-			5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
			0.50					5.0	U	10.0	U		U		U		U	5.0	U	0.3 U
bromodichloromethane	μg/L				-		_								_					
cis-1,3-dichloropropene	μg/L		0.50					5.0	U	10.0	U		U		U		U	5.0	U	0.3 U
4-methyl-2-pentanone	μg/L	5.0	5.0				_	10.0	U	20.0	: С		U		U		U	10.0	U	0.4 U
toluene	μg/L	5.0	0.50	0.6	J			5.0	U	10.0	U		U		U		U	5.0	U	0.3 U
trans-1,3-dichloropropene	μg/L		0.50					5.0	U	10.0			U		Ü		U	5.0	U	0.2 U
1,1,2-trichloroethane	μg/L		0.50			_		5.0	U	10.0	U		U		U		U	5.0	U	0.2 U
tetrachloroethene	μg/L	5.0	0.50	110.0	190	.0	290.0	180.0		230.0		130.0		70.0		29.0		200.00		130.0
2-hexanone	μg/L		5.0					10.0	U	20.0	U		U		U		U	10.0	U	0.8 U
dibromochloromethane	μg/L		0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
1,2-dibromoethane	μg/L		0.50																	
chlorobenzene	μg/L	5.0	0.50					5.0	U	10.0	U		U		U		U	5.0	U	0.2 U
ethylbenzene	μg/L	5.0	0.50	0.3	J			5.0	U	10.0	U		U		U		U	5.0	U	0.3 U
xylene	μg/L		0.50	2.0	1.	0		5.0	U	10.0	U		U		U		U	5.0	U	0.5 U
styrene	μg/L		0.50					5.0	U	10.0	U		U		U		U	5.0	U	0.2 U
bromoform	μg/L		0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.2 U
isopropylbenzene	μg/L		0.50																	
1,1,2,2-tetrachloroethane	μg/L		0.50					5.0	U	10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.3 U
1,3-dichlorobenzene	μg/L		0.50																	
1,4-dichlorobenzene	μg/L		0.50													·				
1,2-dichlorobenzene	μg/L		0.50										\Box \Box							
1,2-dibromo-3-chloropropane	μg/L		0.50																	
1,2,4-trichlorobenzene	μg/L		0.50													•				
1,2,3-trichlorobenzene	μg/L		0.50																	
total 1,2-DCE	μg/L						110.0													

Table A-7 Claremont Polychemical Superfund Site EW-4A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4A		EW-4A		EW-4A	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
VOCs									
VOC dilution factor								6.3x	
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	3.1	U
chloromethane	μg/L		0.50	0.50	U	0.50	U	3.1	U
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	3.1	U
bromomethane	μg/L		0.50	0.50	Ü	0.50	Ü	3.1	Ü
chloroethane	μg/L		0.50	0.50	U	0.50	U	3.1	U
trichlorofluoromethane	μg/L		0.50	0.16	J	0.17	J	3.1	U
1,1-dichloroethene	μg/L	5.0	0.50	0.50	Ü	0.25	J	3.1	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	Ü	0.50	U	3.1	U
acetone	μg/L		5.0	5.0	Ü	5.0	Ū	31	Ū
carbon disulfide	μg/L		0.50	0.50	Ü	0.50	Ü	3.1	U
methyl acetate	μg/L		0.50	0.50	Ü	0.50	Ü	3.1	Ü
methylene chloride	μg/L	5.0	0.50	0.50	Ü	0.50	Ū	3.1	Ü
trans -1,2-dichloroethene	μg/L	5.0	0.50	0.50	UJ	0.50	UJ	3.1	U
tert-butyl methyl ether	μg/L	0.0	0.50	0.50	U	0.14	J	3.1	Ü
1.1-dichloroethane	μg/L	5.0	0.50	0.50	Ü	0.15	J	3.1	U
cis-1,2-dichloroethene	μg/L	5.0	0.50	8.40	J	4.90	J	3.20	
2-butanone	μg/L	0.0	5.0	5.0	U	5.0	U	3.2	U
bromochloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	3.1	U
chloroform	μg/L	7.0	0.50	0.50	U	0.50	U	3.1	U
1,1,1-trichloroethane	μg/L	5.0	0.50	0.62	- 0	0.87	-	0.81	J
cyclohexane	μg/L	3.0	0.50	0.50	U	0.50	U	3.1	U
carbon tetrachloride	μg/L		0.50	0.50	Ü	0.50	U	3.1	U
benzene	μg/L μg/L	0.7	0.50	0.50	UJ	0.50	U	3.1	U
1,2-dichloroethane		0.7	0.50	0.50	U	0.50	U	3.1	U
trichloroethene	μg/L μg/L	5.0	0.50	4.40	J	2.90	-	2.60	J
methylcyclohexane		3.0	0.50	0.50	U	0.50	U	3.1	U
1,2-dichloropropane	μg/L μg/L		0.50	0.50	U	0.50	U	3.1	U
bromodichloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	3.1	U
cis-1,3-dichloropropene	μg/L		0.50	0.50	Ü	0.50	U	1.10	J
4-methyl-2-pentanone	μg/L		5.0	5.0	Ü	5.0	Ü	31	U
toluene	μg/L	5.0	0.50	0.50	UJ	0.50	U	3.1	U
trans-1,3-dichloropropene	μg/L μg/L	5.0	0.50	0.50	U	0.50	U	3.1	U
1,1,2-trichloroethane	μg/L		0.50	0.50	Ü	0.50	U	3.1	U
tetrachloroethene	μg/L μg/L	5.0	0.50	140.00	D	77.00	D	84.00	U
2-hexanone	μg/L μg/L	5.0	5.0	5.0	U	5.0	U	31	U
dibromochloromethane			0.50	0.50	U	0.50	U	3.1	U
1,2-dibromoethane	μg/L μg/L		0.50	0.50	U	0.50	U	3.1	U
chlorobenzene	μg/L μg/L	5.0	0.50	0.50	Ü	0.50	U	3.1	U
ethylbenzene	μg/L μg/L	5.0	0.50	0.50	UJ	0.50	U	3.1	U
		5.0	0.50	0.50	UJ	0.50	U	3.1	U
xylene	μg/L		0.50	0.50	UJ	0.50	U	3.1	U
styrene	μg/L						U		U
bromoform	μg/L		0.50	0.50	U	0.50	U	3.1	U
isopropylbenzene	μg/L		0.50	0.50	UJ	0.50	_	3.1	
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	3.1	U
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.17	J	3.1	U
1,4-dichlorobenzene	μg/L		0.50	0.50	U	0.13	J	3.1	U
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	3.1	U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	3.1	U
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	3.1	U
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	3.1	U
total 1,2-DCE	μg/L								

Table A-7 Claremont Polychemical Superfund Site EW-4A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4A		EW-4A																
sampling date				Apr-89		Jun-89		Jul-92		5/25/00		9/14/00		2/15/01		5/31/01		08/22/01		11/09/01		2/13/02
cooler temp (°C)										5.0		20.0	R	4.0		1.7		5 °C		9 °C	J	5 °C
metals			CRDL																			
aluminum (AI)	μg/L		200.0			8,330.0	J															
antimony (Sb)	μg/L	3.0	20.0							2.1	U	2.1	U	1.5	U	4.4	U	4.7	U	4.6	U	5.9 L
arsenic (As)	μg/L	50.0	40.0			3.0		2.1		3.1	U	2	U	2.4	U	5.6	В	4.4	U	4.4	U	7.0 L
barium (Ba)	μg/L	2,000.0	200.0	52.6		106.0	J	51.0		61.9	В	48.2		57.4	В	61.6	В	68.6	В	81.2	В	69.5
beryllium (Be)	μg/L		5.0			2.5																
cadmium (Cd)	μg/L		5.0					10.0	U													
calcium (Ca)	μg/L		5000.0	30,300.0	J	37,400.0	٦	13,600.0														
chromium (Cr)	μg/L		10.0	10.0	R	27.1		20.0	U													
cobalt (Co)	μg/L		50.0			15.1																
copper (Cu)	μg/L		25.0			22.0																
iron (Fe)	μg/L	600*	200.0	448.0	J	31,000.0	۲	9,990.0		23,900.0		23,700.0		27,900.0		28,700.0		17,000.0		10,300.0		2,760.0
lead (Pb)	μg/L	50.0	10.0			36.5		4.0	U	1.3	U	1.3	U	2.2	U	5.8		2.0	U	2.0	U	3.4 L
magnesium (Mg)	μg/L		5000.0	8,870.0		11,200.0		10,300.0														
manganese (Mn)	μg/L	600*	15.0	630.0	J	1,300.0		2,060.0		1,410.0		1,300.0		1,500.0		1,160.0		1,150.0		1,220.0		990.0
mercury (Hg)	μg/L		0.2					0.20	U													
nickel (Ni)	μg/L		40.0			34.3																
potassium (K)	μq/L		5000.0	7,510.0		8,478.0																
selenium (Se)	μg/L	40.0	30.0	3.8	J	Í		1.0	U	1.9	В	3.4	U	3.4	В	4.9	U	4.8	U	4.9	U	6.90 L
silver (Ag)	μq/L		10.0					20.0	U													
sodium (Na)	μg/L		5000.0	33,900.0		27,900.0																
thallium (TI)	μg/L		10.0																			
vanadium (V)	μg/L		50.0			37.6																
zinc (Zn)	μg/L		20.0	17.8		81.5																
,																						
field instrument																no data						
pH	su	6.5 - 8.5						5.90		5.15		5.71		4.86				6.32		4.82		4.81
conductivity	µmhos/cr							0.262		0.281		0.270						0.331		0.302		0.188
turbidity	NTU																					
DO	mg/L									10.86		2.20						18.10		7.65		2.87
temperature	°C							15.2		17.30		14.80						15.31		16.20		16.00
Eh (ORP)	mV																					
- 41																						
other																						
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na				0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	10.0	U	0.003 L
TSS	mg/L	1,000.0		344.0		1,100.0		220														
TSS 1989 data from Fhasco (1990		Í	t detected			1,100.0		220													_	<u></u>

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

Table A-7 **Claremont Polychemical Superfund Site** EW-4A Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4A		EW-4A		EW-4A	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
metals			CRDL						
aluminum (AI)	μg/L		200.0	60.9	В	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	4.7	U	8.7	U	1.5	В
arsenic (As)	μg/L	50.0	40.0	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	67.5	В	88.0	В	83.8	В
beryllium (Be)	μg/L		5.0	0.16	В	0.1	U	0.20	U
cadmium (Cd)	μg/L		5.0	0.40	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0	7,450.00		8,690		9,230	
chromium (Cr)	μg/L		10.0	0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0	16.2	В	20.5	В	23.0	В
copper (Cu)	μg/L		25.0	2.4	В	2.6	J	3.2	В
iron (Fe)	μg/L	600*	200.0	34.0	В	24.3	В	339	J
lead (Pb)	μg/L	50.0	10.0	2.1	U	2.9	U	1.2	U
magnesium (Mg)	μg/L		5000.0	9,560.00		10,400		10,100	
manganese (Mn)	μg/L	600*	15.0	885		903.0		780	
mercury (Hg)	μg/L		0.2	0.20	U	0.2	U	0.10	U
nickel (Ni)	μg/L		40.0	2.3	В	1.8	U	4.9	В
potassium (K)	μg/L		5000.0	2,130.00	В	3,370	BJ	3,670	В
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.0	U
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0	11,100.00	J	14,600		20,600	J
thallium (TI)	μg/L		10.0	5.4	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0	26.4		2.6	U	2.7	В
field instrument									
pH	su	6.5 - 8.5		4.75		4.78		5.04	
conductivity	µmhos/cr	n		0.324		0.316		0.302	
turbidity	NTU			13.0		20.6		17.8	
DO	mg/L			2.81		3.48		2.70	
temperature	°C			18.70		18.57		18.14	
Eh (ORP)	mV	_		358		248		308	
other									
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010		Ì				
TSS	mg/L	1,000.0							
	13	.,							
1989 data from Ebasco (1990	<u> </u>	. U a de la alta a de la cale	6 -1 - 6 6 d						

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

 * total Fe + total Mn shall not be > 1000 μ g/L

Table A-8 Claremont Polychemical Superfund Site EW-4B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4B		EW-4B		EW-4B	EW-4B		EW-4B		EW-4B		EW-4B	EW-4B		EW-4B		EW-4B	
sampling date				Apr-89		Jun-89		Jul-92	5/24/00		9/14/00		2/15/01		5/31/01	08/22/01		11/09/01		2/13/02	\neg
cooler temp (°C)									15.0	R	20.0	R	4.0		1.7	5 °C		9 °C	J	5 °C	
VOCs																					
VOC dilution factor								5x	2x		2x		2x		2x	1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50																		
chloromethane	μg/L		0.50						20.0	U	20.0	U	20.0	U	20.0 L	10.0	U	10.0	U	0.9	U
vinyl chloride	μq/L		0.50						20.0	U	20.0	U	20.0	U	20.0 L	10.0	U	10.0	U	0.3	U
bromomethane	μg/L		0.50						20.0	U	20.0	U	20.0	U	20.0 L	10.0	U	10.0	U	2.0	U
chloroethane	μg/L		0.50						20.0	U	20.0	U	20.0	U	20.0 L	10.0	U	10.0	U	4.0	U
trichlorofluoromethane	μg/L		0.50																		
1,1-dichloroethene	μg/L	5.0	0.50	0.3	J				1.0	J	2.0	J	10.0	U	10.0 L	5.0	U	5.0	U	0.6	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																		
acetone	µg/L		5.0			1.0	R		20.0	U	2.0	J	20.0	U	6.0 L	10.0	U	10	U	9.0	J
carbon disulfide	µg/L		0.50						10.0	Ü	10.0	Ü		Ü	10.0 L		Ū	5.0	Ü	0.3	Ü
methyl acetate	μg/L		0.50						10.0	Ŭ	10.0	Ŭ	10.0	_	10.0	0.0		0.0	Ŭ	0.0	<u> </u>
methylene chloride	μg/L	5.0	0.50						2.0	U	5.0	U	10.0	U	2.0 J	5.0	U	3.00	J	2.0	J
trans -1,2-dichloroethene	μg/L	5.0	0.50	13.0		8.0			10.0	Ü	10.0	Ü		U	10.0 L		U	5.0	U	0.3	U
tert-butyl methyl ether	μg/L μg/L	5.0	0.50	13.0		0.0			10.0	U	10.0	U	10.0	<u> </u>	10.0	5.0	U	3.0	U	0.0	<u> </u>
1,1-dichloroethane	μg/L μg/L	5.0	0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.3	U
cis -1,2-dichloroethene	μg/L μg/L	5.0	0.50						8.0	J	9.0	J		J	4.0 J		J	1.00	J	1.0	J
2-butanone		5.0	5.0	10.0	R	1.0	R		20.0	U	4.0	J		U	20.0 L		U	10.0	U	0.4	U
	μg/L		0.50	10.0	R	1.0	ĸ		20.0	U	4.0	J	20.0	U	20.0 C	10.0	U	10.0	U	0.4	U
bromochloromethane	μg/L	7.0							0.4		40.0		40.0		40.0			5.0		0.0	
chloroform	μg/L	7.0	0.50	0.2	J	4.0			0.4	U	10.0	U		U	10.0 L		U	5.0	U	0.2	U
1,1,1-trichloroethane	μg/L	5.0	0.50	2.0		1.0			7.0	J	9.0	J	10.0	U	3.0 J	2.0	J	1.00	J	2.0	J
cyclohexane	μg/L		0.50																		
carbon tetrachloride	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.2	U
benzene	μg/L	0.7	0.50	0.8	J				1.0	U	1.0	U		U	1.0 L		U	.7	U	0.3	С
1,2-dichloroethane	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.3	U
trichloroethene	μg/L	5.0	0.50	2.0		2.0		48.0	320.0		330.0		360.0		220.0	110.0		84.00		63.0	
methylcyclohexane	μg/L		0.50																		
1,2-dichloropropane	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.3	U
bromodichloromethane	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.2	С
cis-1,3-dichloropropene	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.3	U
4-methyl-2-pentanone	μg/L		5.0						20.0	U	20.0	U		U	20.0 L		U	10.0	U	0.4	U
toluene	μg/L	5.0	0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.3	С
trans-1,3-dichloropropene	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.2	U
1,1,2-trichloroethane	μg/L		0.50						10.0	U	10.0	U		U	10.0 L		U	5.0	U	0.2	U
tetrachloroethene	μg/L	5.0	0.50	8.0		7.0		43.0	17.0		15.0			J	5.0 J		J	4.00	J	4.0	J
2-hexanone	μg/L		5.0						20.0	U	20.0	U		U	20.0 L		U	10.0	U	8.0	U
dibromochloromethane	μg/L		0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.2	U
1,2-dibromoethane	μg/L		0.50																		
chlorobenzene	μg/L	5.0	0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.2	U
ethylbenzene	μg/L	5.0	0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.3	U
xylene	μg/L		0.50			1.0			10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	1.0	J
styrene	μg/L		0.50						10.0	Ū	10.0	U		Ü	10.0 L		Ū	5.0	Ü	0.2	Ü
bromoform	μg/L		0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.2	U
isopropylbenzene	µg/L		0.50								-									*	
1,1,2,2-tetrachloroethane	µg/L		0.50						10.0	U	10.0	U	10.0	U	10.0 L	5.0	U	5.0	U	0.3	U
1,3-dichlorobenzene	µg/L		0.50			İ			1												
1,4-dichlorobenzene	μg/L		0.50											<u> </u>							
1,2-dichlorobenzene	μg/L		0.50											<u> </u>							
1,2-dibromo-3-chloropropane	μg/L		0.50						+					— 		+		 			
1,2,4-trichlorobenzene	μg/L μg/L		0.50			1			1									1			
1,2,3-trichlorobenzene	μg/L μg/L		0.50						+					-							
			0.00			-		44.0	+							+		-			
total 1,2-DCE	μg/L							11.0													

Table A-8 Claremont Polychemical Superfund Site EW-4B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4B		EW-4B		EW-4B	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
VOCs									
VOC dilution factor								4.2x	
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
chloromethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	2.1	U
bromomethane	μg/L		0.50	0.50	Ü	0.50	Ü	2.1	U
chloroethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
trichlorofluoromethane	μg/L		0.50	0.50	U	0.13	J	2.1	U
1,1-dichloroethene	μg/L	5.0	0.50	0.50	Ū	0.48	J	2.1	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U	0.50	U	2.1	U
acetone	μg/L		5.0	5.0	Ü	5.0	Ū	21	UJ
carbon disulfide	μg/L		0.50	0.50	Ü	0.50	Ü	2.1	U
methyl acetate	μg/L		0.50	0.50	Ü	0.50	Ü	2.1	Ü
methylene chloride	μg/L	5.0	0.50	0.50	Ü	0.50	Ū	2.1	Ū
trans -1,2-dichloroethene	μg/L	5.0	0.50	0.50	Ü	0.50	Ü	2.1	Ü
tert-butyl methyl ether	μg/L	0.0	0.50	0.50	Ü	0.50	Ü	2.1	Ü
1,1-dichloroethane	μg/L	5.0	0.50	0.50	Ü	0.18	J	2.1	U
cis -1,2-dichloroethene	μg/L	5.0	0.50	0.65		0.84		0.60	J
2-butanone	μg/L	0.0	5.0	5.0	U	5.0	U	21	UJ
bromochloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	2.1	U
chloroform	μg/L	7.0	0.50	0.50	Ü	0.50	U	2.1	Ü
1,1,1-trichloroethane	μg/L	5.0	0.50	1.30	-	1.70	-	2.30	
cyclohexane	μg/L	3.0	0.50	0.50	U	0.50	U	2.1	U
carbon tetrachloride	μg/L		0.50	0.50	U	0.50	U	2.1	U
benzene	μg/L μg/L	0.7	0.50	0.50	UJ	0.50	U	2.1	U
1,2-dichloroethane		0.7	0.50	0.50	U	0.50	U	2.1	U
trichloroethene	μg/L μg/L	5.0	0.50	72.00	D	42.00	D	59.00	U
methylcyclohexane		3.0	0.50	0.50	U	0.50	U	2.1	U
1,2-dichloropropane	μg/L μg/L		0.50	0.50	U	0.50	U	2.1	U
bromodichloromethane	μg/L		0.50	0.50	U	0.50	Ü	2.1	U
cis-1,3-dichloropropene	μg/L μg/L		0.50	0.50	U	0.50	U	0.56	J
4-methyl-2-pentanone	μg/L		5.0	5.0	Ü	5.0	Ü	21	U
toluene	μg/L	5.0	0.50	0.50	U	0.50	U	2.1	U
trans-1,3-dichloropropene	μg/L μg/L	5.0	0.50	0.50	Ü	0.50	U	2.1	UJ
1,1,2-trichloroethane	μg/L		0.50	0.50	U	0.50	U	2.1	UJ
tetrachloroethene	μg/L μg/L	5.0	0.50	3.00	U	3.50	U	3.20	UJ
2-hexanone		5.0	5.0	5.0	U	5.0	U	21	U
dibromochloromethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,2-dibromoethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
,	μg/L	F 0	0.50	0.50	U	0.50	U		U
chlorobenzene	μg/L	5.0 5.0	0.50	0.50	U	0.50	U	2.1	U
ethylbenzene	μg/L	5.0						2.1	
xylene	μg/L		0.50	0.50	U	0.50	U	2.1	U
styrene	μg/L		0.50	0.50		0.50		2.1	
bromoform	μg/L		0.50	0.50	U	0.18	J	2.1	U
isopropylbenzene	μg/L		0.50	0.50	U	0.50	_	2.1	
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,4-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	2.1	U
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	2.1	U
total 1,2-DCE	μg/L								

Table A-8 Claremont Polychemical Superfund Site EW-4B Cumulative Data

	discharge limit	CRQL	EW-4B		EW-4B		EW-4B		EW-4B		EW-4B		EW-4B		EW-4B		EW-4B		EW-4B		EW-4B
			Apr-89		Jun-89		Jul-92		5/24/00		9/14/00		2/15/01		5/31/01		08/22/01		11/09/01		2/13/02
									15.0	R	20.0	R	4.0		1.7		5 °C		9 °C	J	5 °C
		CRDL																			
μg/L					84.0																
μg/L										U	2.1	U	1.5	U	4.4	U	4.7	U	4.6	U	5.9
μg/L							1.0	U		U	2	U		U		U		U			7.0
μg/L	2,000.0						75.0		44.2	В	52.8	В	37.6	В	34.5	В	35.4	В	44.2	В	40.6
μg/L		5.0	4.2		1.4																
μg/L		5.0					10.0	С													
μg/L		5000.0	32,600.0	J 3	36,300.0	J	22,400.0														
μg/L		10.0					20.0	С													
μg/L		50.0																			
μg/L		25.0	32.0		34.9																
μg/L	600*	200.0	238.0		346.0	J	1,220.0		111.0		64.3	В	29.6	В	20.5	U	26.4	В	32.0	В	85.3
μg/L	50.0	10.0	0.7	J			8.3		1.3	U	1.3	U	2.2	U	2.0	U	2.0	U	2.0	U	3.4
μg/L		5000.0	9,670.0	,	9,810.0		7,010.0														
μg/L	600*	15.0	879.0	J	1,130.0		981.0		363.0		336.0		218.0		163.0		221.		254.0		196.0
μg/L		0.2					0.20	U													
μg/L		40.0			24.4																
μg/L		5000.0	9,520.0	1	13,200.0																
μg/L	40.0	30.0	7.0	J			7.7		1.5	U	3.4	U	3.5	В	4.9	U	4.8	U	4.9	U	6.90
μg/L		10.0					20.0	U													
μg/L		5000.0	53,400.0	J 5	58,200.0																
μg/L		10.0	7.0																		
μq/L		50.0																			
μq/L		20.0	51.7	J	51.7	J															
															no data						
su	6.5 - 8.5						5.39		4.24		5.02		4.82				6.18		5.36		5.36
µmhos/cn	n						0.309		0.230		0.220						0.155		0.189		0.121
NTU																					
									5.62		6.00						15.05		4.65		7.35
°C							17.0		19.10		15.20						17.30		15.80		15.40
mV																					
				-																	
																	İ				
ma/l	0.100	0.010	na	-	na				dm		0.010	ш	0.010	Ш	0.010	Ш	0.010	Ш	10.0	Ш	0.003
		0.010	Πü	-			305		uiii		0.010		0.010		0.010		0.010		10.0		3.000
IIIg/L	1,000.0			-	7.0		303										-				
	#g/L #g/L #g/L #g/L #g/L #g/L #g/L #g/L	µg/L 3.0 µg/L 50.0 µg/L 2,000.0 µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	µg/L 200.0 µg/L 3.0 20.0 µg/L 50.0 40.0 µg/L 2,000.0 200.0 µg/L 5.0 15.0 µg/L 500.0 10.0 µg/L 10.0 10.0 µg/L 25.0 10.0 µg/L 50.0 10.0 µg/L 5000.0 10.0 µg/L 5000.0 15.0 µg/L 40.0 30.0 µg/L 5000.0 10.0 µg/L 5000.0 10.0 µg/L 5000.0 10.0 µg/L 10.0 10.0 µg/L 50.0 10.0 µg/L 50.0 10.0 µg/L 50.0 10.0 µg/L 20.0 10.0 µg/L 50.0 10.0 µg/L 20.0 10.0 µg/L 20.0 10.0 µg/L 20.0 10.0	Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page Page	CRDL μg/L 200.0 μg/L 50.0 40.0 μg/L 5.0 40.0 μg/L 5.0 4.2 μg/L 5.0 μg/L 5.0 4.2 μg/L 5.0 μg/L 5.0 μg/L 5.0 μg/L 10.0 μg/L 55.0 μg/L 50.0 0.7 J μg/L 50.0 0.7 J μg/L 50.0 μg/L 50.0 9,670.0 μg/L 40.0 μg/L 40.0 μg/L 40.0 μg/L 5000.0 9,520.0 μg/L μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 μg/L 10.0 πg/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag	Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag	Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag	Pag/L 200.0 84.0	Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag/L Pag	CRDL	CRDL Pg/L 200.0 84.0	CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0 CRDL B4.0	CRDL 15.0 R 20.0 R 4.0	CRDL 200.0 84.0 20.0 R 4.0				CRDL	CRDL SQUO SAQUE SQUO SAQUE SQUO SAQUE SQUO SQUO SAQUE SQUO SAQUE SQUO SQUO SAQUE SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO SQUO S	CRDL SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU SQU	

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package na: not analyzed

NM: not measured ns: not sampled

Table A-8 **Claremont Polychemical Superfund Site** EW-4B Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4B		EW-4B		EW-4B	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
metals			CRDL						
aluminum (AI)	μg/L		200.0	59.9	В	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	4.7	U	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	47.1	В	53.3	В	53.8	В
beryllium (Be)	μg/L		5.0	0.20	В	0.1	U	0.30	В
cadmium (Cd)	μg/L		5.0	0.40	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0	13,700.00		12,600		11,500	
chromium (Cr)	μg/L		10.0	0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0	5.8	В	4.3	В	5.8	В
copper (Cu)	μg/L		25.0	6.6	В	2.6	U	1.9	В
iron (Fe)	μg/L	600*	200.0	17.3	U	22.3	U	12.5	U
lead (Pb)	μg/L	50.0	10.0	2.1	U	2.9	U	1.2	U
magnesium (Mg)	μg/L		5000.0	3,360.00	В	3,240	В	3,530	В
manganese (Mn)	μg/L	600*	15.0	170		146.0		157	
mercury (Hg)	μg/L		0.2	0.20	U	0.2	U	0.10	U
nickel (Ni)	μg/L		40.0	3.7	В	1.8	U	5.4	В
potassium (K)	μg/L		5000.0	3,350.00	В	4,460	BJ	4,540	В
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.0	U
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0	5,340.00	J	6,160	J	9,270	J
thallium (TI)	μg/L		10.0	5.4	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0	36.5		2.6	U	9.6	В
field by drawn and	 								
field instrument		05.05		5.44		F 40		5.40	
pH	SU	6.5 - 8.5		5.44		5.46		5.48	
conductivity	µmhos/cr	m I		0.215		0.198		0.187	
turbidity	NTU			0.8		9.8	-	10.2	
DO	mg/L °C			7.24		6.43		5.16	
temperature				19.04		18.54	-	18.23	
Eh (ORP)	mV			322		208		275	
other	+								
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010						
TSS	mg/L	1,000.0	0.010						
100	- mg/L	1,000.0							
1989 data from Ebasco (1990	<u> </u>	l alla indianta na	t - - - -						

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

 * total Fe + total Mn shall not be > 1000 μ g/L

Table A-9
Claremont Polychemical Superfund Site
EW-4C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4C	EW-4C	EW-4	C EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C	
sampling date				Apr-89	Jun-89	Jul-9	2 5/24/00		9/14/00		2/15/01		5/31/01		08/22/01		11/09/01		2/13/02	
cooler temp (°C)							15.0	R	20.0	R	4.0		1.7		5 °C		9 °C	J	5 °C	
VOCs																				
VOC dilution factor						200:	5x		10x		50x		20x		5x		5x		10x	
dichlorodifluoromethane	μg/L		0.50																	
chloromethane	μg/L		0.50				50.0	U	100.0	U	500.0	U	200.0	U	50.0	U	50	U	9.0	U
vinyl chloride	μg/L		0.50				50.0	U	100.0	U	500.0	U	200.0	U	50.0	U	50	U	3.0	U
bromomethane	μg/L		0.50				50.0	U	100.0	U	500.0	U	200.0	U	50.0	U	50	U	17.0	U
chloroethane	μg/L		0.50				50.0	U	100.0	U	500.0	U	200.0	U	50.0	U	50	U	40.0	U
trichlorofluoromethane	μq/L		0.50																	
1,1-dichloroethene	μq/L	5.0	0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	1.00	J	6.0	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																	
acetone	μg/L		5.0		1.0	R	11.0	J	100.0	U	500.0	U	120.0	J	50.0	U	50	U	9.0	U
carbon disulfide	μq/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	3.0	U
methyl acetate	μg/L		0.50																	
methylene chloride	μg/L	5.0	0.50				16.0	J	18.0	J	48.0	J	49.0	J	4.0	J	5.00	J	4.0	JB
trans -1,2-dichloroethene	µg/L	5.0	0.50				25.0	Ū	50.0	Ü	250.0	Ü	100.0	Ū	25.0	Ū	25	Ü	3.0	U
tert-butyl methyl ether	µg/L		0.50			1			1											
1,1-dichloroethane	µg/L	5.0	0.50			1	25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	3.0	U
cis-1,2-dichloroethene	μg/L	5.0	0.50			1	11.0	Ĵ	26.0	J	56.0	J	32.0	J	11.0	J	7.00	J	13.0	J
2-butanone	µg/L	0.0	5.0		1.0	R	50.0	U		Ü	500.0	Ü	200.0	U	50.0	Ü	50	Ü	4.0	Ü
bromochloromethane	μg/L		0.50		1.0	- 1	00.0		100.0		000.0		200.0	Ŭ	00.0	Ŭ	- 00	Ŭ	1.0	Ť
chloroform	μg/L	7.0	0.50				2.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	2.0	U
1,1,1-trichloroethane	μg/L	5.0	0.50				8.0	J	13.0	J	250.0	Ü	11.0	J	6.0	J	5.00	J	8.0	J
cyclohexane	μg/L	0.0	0.50				0.0		10.0		200.0	Ŭ	11.0	Ů	0.0		0.00	-	0.0	_
carbon tetrachloride	μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	2.0	U
benzene	μg/L	0.7	0.50				4.0	Ü	7.0	Ü	35.0	Ü	14.0	U	4.0	Ü	4	Ü	3.0	Ü
1,2-dichloroethane	μg/L	0.7	0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	3.0	U
trichloroethene	μg/L μg/L	5.0	0.50			5.000		- 0	1,200.0	U	4,200.0	U	2100.0	U	840.0	U	490.00	U	820.0	
methylcyclohexane	μg/L	5.0	0.50			3,000	.0 000.0		1,200.0		4,200.0		2100.0		040.0		430.00		020.0	-
1,2-dichloropropane	μg/L μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	3.0	U
bromodichloromethane	μg/L μg/L		0.50				25.0	Ü	50.0	Ü	250.0	U	100.0	U	25.0	Ü	25	U	2.0	Ü
cis-1,3-dichloropropene	μg/L μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	Ü	25	U	3.0	U
4-methyl-2-pentanone	μg/L μg/L		5.0				50.0	U	100.0	U	500.0	U	200.0	U	50.0	Ü	50	U	4.0	U
toluene		5.0	0.50				25.0	Ü	50.0	U	250.0	U	100.0	U	25.0	Ü	25	U	3.0	U
trans-1,3-dichloropropene	μg/L	5.0	0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	Ü	25	U	2.0	U
1,1,2-trichloroethane	μg/L		0.50				25.0	U	50.0	U	250.0		100.0	U	25.0	U		U	2.0	U
tetrachloroethene	μg/L	5.0	0.50	0.8 J	1.0		15.0	J	32.0	J	120.0	J	38.0	J	21.0	J	25 16.00	J	19.0	J
	μg/L	5.0	5.0	U.0 J	1.0		50.0	U	100.0	U	500.0	U	200.0	J	50.0	U		U	8.0	U
2-hexanone	μg/L		0.50				25.0	U		U	250.0	U	100.0	U	25.0	U	50 25	U	2.0	U
dibromochloromethane	μg/L μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	2.0	U
1,2-dibromoethane		F 0					25.0		50.0		250.0		100.0	U	25.0		25		2.0	
chlorobenzene	μg/L	5.0	0.50 0.50				25.0 25.0	U	50.0 50.0	U	250.0 250.0	U	100.0 100.0	U	25.0 25.0	U	25	U	2.0 3.0	U
ethylbenzene	μg/L	5.0								U		U				U	25			
xylene	μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	5.0	U
styrene	μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	2.0	U
bromoform	μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	2.0	U
isopropylbenzene	μg/L		0.50								250.0		100.0		25.0		0.5			
1,1,2,2-tetrachloroethane	μg/L		0.50				25.0	U	50.0	U	250.0	U	100.0	U	25.0	U	25	U	3.0	U
1,3-dichlorobenzene	μg/L		0.50																	
1,4-dichlorobenzene	μg/L		0.50																	
1,2-dichlorobenzene	μg/L		0.50						1											
1,2-dibromo-3-chloropropane	μg/L		0.50																	
1,2,4-trichlorobenzene	μg/L		0.50																	
1,2,3-trichlorobenzene	μg/L		0.50																	
total 1,2-DCE	μg/L																			

Table A-9
Claremont Polychemical Superfund Site
EW-4C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4C		EW-4C		EW-4C	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
VOCs									
VOC dilution factor								50.0x	
dichlorodifluoromethane	μg/L		0.50	0.50	U	0.50	U	25	U
chloromethane	μg/L		0.50	0.50	U	0.50	U	25	U
vinyl chloride	μg/L		0.50	0.50	U	0.50	U	25	U
bromomethane	μg/L		0.50	0.50	U	0.50	U	25	U
chloroethane	μg/L		0.50	0.50	U	0.50	U	25	U
trichlorofluoromethane	μg/L		0.50	0.50	U	0.50	U	25	U
1,1-dichloroethene	μg/L	5.0	0.50	3.60		3.00		25	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50	0.50	U	0.50	U	25	U
acetone	μg/L		5.0	5.0	Ū	5.0	Ü	250	U
carbon disulfide	μg/L		0.50	0.50	Ü	0.50	Ü	25	U
methyl acetate	μg/L		0.50	0.50	Ü	0.50	Ü	25	U
methylene chloride	μg/L	5.0	0.50	0.50	Ū	0.50	Ü	25	Ü
trans -1,2-dichloroethene	μg/L	5.0	0.50	1.00		0.71		25	U
tert-butyl methyl ether	μg/L		0.50	0.50	U	0.50	U	25	Ü
1.1-dichloroethane	μg/L	5.0	0.50	1.10	Ť	0.86	Ť	25	U
cis-1,2-dichloroethene	μg/L	5.0	0.50	34	J	18.00		11.00	J
2-butanone	μg/L	0.0	5.0	5.0	Ü	5.0	U	250	U
bromochloromethane	μg/L		0.50	0.50	Ü	0.50	Ü	25	Ü
chloroform	μg/L	7.0	0.50	0.50	U	0.14	J	25	U
1,1,1-trichloroethane	μg/L	5.0	0.50	13.00	-	11.00	-	11.00	J
cyclohexane	μg/L	3.0	0.50	0.50	U	0.50	U	25	U
carbon tetrachloride	μg/L		0.50	0.50	U	0.50	U	25	U
benzene	μg/L μg/L	0.7	0.50	0.50	UJ	0.50	U	25	U
1,2-dichloroethane		0.7	0.50	0.50	U	0.37	J	25	U
trichloroethene	μg/L μg/L	5.0	0.50	1.100.00	D	650.00	D	890.00	
methylcyclohexane		5.0	0.50	0.50	U	0.50	U	25	U
1,2-dichloropropane	μg/L		0.50	0.50	U	0.50	U	25	U
bromodichloromethane	μg/L		0.50	0.50	U	0.50	U	25	U
cis-1,3-dichloropropene	μg/L		0.50	0.50	U	0.50	U	7.30	J
4-methyl-2-pentanone	μg/L		5.0	5.0	U	5.0	U	250	U
toluene	μg/L	5.0		0.50	U	0.50	U	250	U
	μg/L	5.0	0.50 0.50		U		U	25 25	U
trans-1,3-dichloropropene	μg/L			0.50	U	0.50 0.25	J	25 25	U
1,1,2-trichloroethane	μg/L	5 0	0.50	0.50 19.00	U		J	14.00	
tetrachloroethene	μg/L	5.0	0.50			14.00			J
2-hexanone	μg/L		5.0	5.0	U	5.0	U	250	U
dibromochloromethane	μg/L		0.50	0.50	U	0.50	U	25	U
1,2-dibromoethane	μg/L	5.0	0.50	0.50	_	0.50		25	
chlorobenzene	μg/L	5.0	0.50	0.50	U	0.50	U	25	U
ethylbenzene	μg/L	5.0	0.50	0.50	U	0.50	U	25	U
xylene	μg/L		0.50	0.50	U	0.50	U	25	U
styrene	μg/L		0.50	0.41	J	0.50	U	25	U
bromoform	μg/L		0.50	0.50	U	0.19	J	25	U
isopropylbenzene	μg/L		0.50	0.50	U	0.50	U	25	U
1,1,2,2-tetrachloroethane	μg/L		0.50	0.50	U	0.50	U	25	U
1,3-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	25	U
1,4-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	25	U
1,2-dichlorobenzene	μg/L		0.50	0.50	U	0.50	U	25	U
1,2-dibromo-3-chloropropane	μg/L		0.50	0.50	U	0.50	U	25	U
1,2,4-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	25	U
1,2,3-trichlorobenzene	μg/L		0.50	0.50	U	0.50	U	25	U
total 1,2-DCE	μg/L				T				

Table A-9 **Claremont Polychemical Superfund Site** EW-4C Cumulative Data

		discharge limit	CRQL	EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C		EW-4C
sampling date				Apr-89		Jun-89		Jul-92		5/24/00		9/14/00		2/15/01		5/31/01		08/22/01		11/09/01		2/13/02
cooler temp (°C)										15.0	R	20.0	R	4.0		1.7		5 °C		9 °C	J	5 °C
metals			CRDL																			
aluminum (AI)	μg/L		200.0			34.7																
antimony (Sb)	μg/L	3.0	20.0							2.1	U	2.1	U	1.5	U	4.4	U	4.7	U	4.6	U	5.9
arsenic (As)	μg/L	50.0	40.0					1.0	U	3.1	U	2.0	U	2.4	U	4.2	U	4.4	U	4.4	U	7.0
barium (Ba)	μg/L	2,000.0	200.0	102.0		97.2	J	49.0		72.3	В	94.0	В	58.4	В	34.4	В	31.9	В	36.5	В	44.9
beryllium (Be)	μg/L		5.0			0.5																
cadmium (Cd)	μg/L		5.0	6.2	J			10.0	U													
calcium (Ca)	μg/L		5000.0	46,600.0	J	43,500.0		18,900.0														
chromium (Cr)	μg/L		10.0	10.3	J			20.0	U													
cobalt (Co)	μg/L		50.0	30.2		27.0																
copper (Cu)	μg/L		25.0																			
iron (Fe)	μg/L	600*	200.0	362.0		100.0	R	62.0		52.7	В	82.3	В	23.6	В	57.1	В	29.9	В	16.2	U	85.3
lead (Pb)	μg/L	50.0	10.0	5.0	R			4.0	U	1.3	U	3.2		2.2	U	2.0	U	2.0	U	2.0	U	3.4
magnesium (Mg)	μg/L		5000.0	12,700.0		11,500.0		5,170.0														
manganese (Mn)	μg/L	600*	15.0	1,060.0	J	1,150.0		559.0		209.0		277.0		75.9		99.5		71.5		76.7		80.1
mercury (Hg)	μg/L		0.2					0.20	U													
nickel (Ni)	μg/L		40.0	18.5																		
potassium (K)	μg/L		5000.0	15,400.0		18,700.0																
selenium (Se)	μg/L	40.0	30.0	3.3	J	1.9	J	1.0	U	1.5	U	3.4	U	2.7	В	4.9	U	4.8	U	4.9	U	6.90
silver (Ag)	μg/L		10.0					20.0	U													
sodium (Na)	μg/L		5000.0	51,300.0	J	46,700.0																
thallium (TI)	μg/L		10.0																			
vanadium (V)	μg/L		50.0																			
zinc (Zn)	μg/L		20.0	40.1	J	40.7	J															
field instrument																no data						
pH	su	6.5 - 8.5						5.65		5.11		5.50		4.51				6.51		5.50		5.55
conductivity	µmhos/cn	n						0.290		0.287		0.330						0.114		0.134		0.109
turbidity	NTU																					
DO	mg/L									14.05		5.30						12.81		5.31		6.75
temperature	°Č							18.0		18.70		15.30		12.30				18.10		15.40		15.10
Eh (ORP)	mV																					
other																						
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na				dm		0.010	U	0.010	U	0.010	U	0.010	U	10.0	U	0.003
TSS	mg/L	1,000.0		10.0		10.0		254							-							
		.,000.0																				

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

Table A-9 **Claremont Polychemical Superfund Site** EW-4C Cumulative Data

Analyte	units	discharge limit	CRQL	EW-4C		EW-4C		EW-4C	
sampling date				5/16/02		8/6/02		10/23/02	
cooler temp (°C)									
metals			CRDL						
aluminum (AI)	μg/L		200.0	54.4	В	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	4.7	U	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	61.7	В	68.7	В	56.9	В
beryllium (Be)	μg/L		5.0	0.10	U	0.1	U	0.20	U
cadmium (Cd)	μg/L		5.0	0.40	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0	13,900.00		13,200		10,900	
chromium (Cr)	μg/L		10.0	0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0	2.4	В	1.8	В	2.5	В
copper (Cu)	μg/L		25.0	1.2	В	19.0	В	2.4	В
iron (Fe)	μg/L	600*	200.0	17.3	С	22.3	U	12.5	U
lead (Pb)	μg/L	50.0	10.0	2.1	U	4.1		1.2	U
magnesium (Mg)	μg/L		5000.0	2,720.00	В	2,670	В	23,500	В
manganese (Mn)	μg/L	600*	15.0	37.8		34.4	J	32.7	
mercury (Hg)	μg/L		0.2	0.20	U	0.2	U	0.10	UJ
nickel (Ni)	μg/L		40.0	3.1	В	1.8	U	3.3	В
potassium (K)	μg/L		5000.0	3,550.00	В	4,460	BJ	36,500	В
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.0	U
silver (Ag)	μg/L		10.0	1.0	UJ	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0	9,430.00	J	10,700	J	11,400	
thallium (TI)	μg/L		10.0	5.4	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0	0.80	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0	30.9		2.6	U	9.9	В
field instrument									
pН	su	6.5 - 8.5		5.66		5.57		5.80	
conductivity	µmhos/cr	n		0.256		0.216		0.193	
turbidity	NTU			22.9		0.92		10.0	
DO	mg/L			7.67		7.22		6.51	
temperature	°C			19.50		19.54		18.26	
Eh (ORP)	mV			271		217		253	
` '	1						İ		
other	1								
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010						
TSS	mg/L	1,000.0	5.5.5						
	19. =	.,000.0							
1989 data from Fhasco (1990	\ empty co	l alle indicate no	t datastad						

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

 * total Fe + total Mn shall not be > 1000 μ g/L

Table A-10
Claremont Polychemical Superfund Site
SW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1	SW-1		SW-1		SW-1		SW-1	
sampling date				Mar-86	Jun-86	Apr-89	Jun-89	Jul-92	5/25/00	9/13/00		2/13/01		5/29/01		08/20/01	
cooler temp (°C)									5.0	10.0	R	6.0	J	0.3		8.7 °C	J
VOCs																	
VOC dilution factor								50x	5x	20x		50x		50x		50x	
dichlorodifluoromethane	μg/L		0.50														
chloromethane	μg/L		0.50						50.0 U	200.0	U	500.0	U	500.0	U	500.0	U
vinyl chloride	μg/L		0.50		12.0	1.0	3.0		50.0 U	200.0	U	500.0	U	500.0	U	500.0	U
bromomethane	μg/L		0.50						50.0 U	200.0	U	500.0	U	500.0	U	500.0	U
chloroethane	μg/L		0.50						50.0 U	200.0	U	500.0	U	500.0	U	500.0	U
trichlorofluoromethane	μg/L		0.50														
1,1-dichloroethene	μg/L	5.0	0.50	220.0	21.0 J	1.0	4.0		25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
1,1,2-trichloro-1,2,2-trifluoroet	µg/L		0.50														Ť
acetone	μg/L		5.0						7.0 J	16.0	J	500.0	U	500.0	U	500.0	U
carbon disulfide	µg/L		0.50						25.0 U		Ü	250.0	Ü	250.0	Ü	250.0	Ü
methyl acetate	µg/L		0.50						20.0		Ť	200.0	Ť	200.0		200.0	<u> </u>
methylene chloride	μg/L	5.0	0.50						7.0 J	66.0	J	41.0	J	140.0	J	140.0	J
trans -1,2-dichloroethene	μg/L	5.0	0.50	340.0	982.0	490.0	400.0		25.0 U		U	250.0	U	250.0	U	250.0	U
tert-butyl methyl ether	μg/L μg/L	5.0	0.50	340.0	302.0	430.0	-100.0		20.0	100.0	U	230.0	0	200.0	-	200.0	
1,1-dichloroethane	μg/L	5.0	0.50			3.0	4.0		25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
cis-1,2-dichloroethene		5.0	0.50			3.0	4.0		10.0 J		J	39.0	J	63.0	J	61.0	J
2-butanone	μg/L	5.0	5.0		14.0		1.0 R		5.0 J	200.0	U	500.0	U	500.0	U	500.0	U
bromochloromethane	μg/L		0.50		14.0		1.0 K		5.0 J	200.0	U	500.0	U	500.0	U	500.0	U
chloroform	μg/L	7.0	0.50						2.0 J	100.0	U	250.0	U	250.0	U	250.0	U
	μg/L			0.4		20.0	F4.0	40.0							_		
1,1,1-trichloroethane	μg/L	5.0	0.50	2.1		20.0	54.0	18.0 J	25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
cyclohexane	μg/L		0.50						05.0	400.0		050.0		050.0		050.0	
carbon tetrachloride	μg/L		0.50						25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
benzene	μg/L	0.7	0.50		21.0 J	1.0	2.0		4.0 U		U	35.0	U	35.0	U	35.0	U
1,2-dichloroethane	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
trichloroethene	μg/L	5.0	0.50	35.0	68.0	40.0 J	89.0	150.0	19.0 J	34.0	J	78.0	J	72.0	J	100.0	J
methylcyclohexane	μg/L		0.50														
bromodichloromethane	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
1,2-dichloropropane	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
cis-1,3-dichloropropene	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
4-methyl-2-pentanone	μg/L		5.0						50.0 U		U	500.0	U	500.0	U	500.0	U
toluene	μg/L	5.0	0.50	1.0	1.0				0.4 U		U	250.0	U	250.0	U	250.0	U
trans-1,3-dichloropropene	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
1,1,2-trichloroethane	μg/L		0.50						25.0 U		U	250.0	U	250.0	U	250.0	U
tetrachloroethene	μg/L	5.0	0.50	130.0	250.0	1,200.0	1,300.0	1,100.0	840.0	1,900.0		4,200.0		4,500.0		7,100.0	
2-hexanone	μg/L		5.0						50.0 U	200.0	U	500.0	U	500.0	U	500.0	U
dibromochloromethane	μg/L		0.50						25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
1,2-dibromoethane	μg/L		0.50														
chlorobenzene	μg/L	5.0	0.50						25.0 U	100.0	C	250.0	U	250.0	U	250.0	C
ethylbenzene	μg/L	5.0	0.50						25.0 U	100.0	С	250.0	U	250.0	C	250.0	С
xylene	μg/L		0.50						0.9 J	100.0	С	250.0	U	250.0	U	250.0	С
styrene	μg/L		0.50						0.3 J	100.0	U	250.0	U	250.0	U	250.0	U
bromoform	μg/L		0.50						25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
isopropylbenzene	μg/L		0.50														
1,1,2,2-tetrachloroethane	μg/L		0.50						25.0 U	100.0	U	250.0	U	250.0	U	250.0	U
1,3-dichlorobenzene	μg/L		0.50														
1,4-dichlorobenzene	μg/L	1	0.50		1			1									
1,2-dichlorobenzene	μg/L		0.50														
1,2-dibromo-3-chloropropane	μg/L		0.50		1			1		1							
1,2,4-trichlorobenzene	μg/L		0.50		+												
1,2,3-trichlorobenzene	μg/L		0.50		+			<u> </u>									
			0.50		1			610.0							-		-
total 1,2-DCE	μg/L			_			-	610.0	_								Ξ

Table A-10 Claremont Polychemical Superfund Site SW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	SW-1	SW-1	SW-1	SW-1	SW-1
sampling date				Nov-01	Feb-02	May-02	Aug-02	Oct-02
cooler temp (°C)								
VOCs				na	ns - dry	ns - dry	ns - dry	ns - dry
VOC dilution factor					,			
dichlorodifluoromethane	μg/L		0.50					
chloromethane	μg/L		0.50					
vinyl chloride	μg/L		0.50					
bromomethane	μg/L		0.50					
chloroethane	μg/L		0.50					
trichlorofluoromethane	μg/L		0.50					
1,1-dichloroethene	μg/L	5.0	0.50					
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50					
acetone	μg/L		5.0					
carbon disulfide	μg/L		0.50					
methyl acetate	μg/L		0.50					
methylene chloride	μg/L	5.0	0.50					
trans-1,2-dichloroethene	µg/L	5.0	0.50					
tert-butyl methyl ether	μg/L		0.50					
1,1-dichloroethane	μg/L	5.0	0.50					
cis-1,2-dichloroethene	μg/L	5.0	0.50					
2-butanone	μg/L		5.0					
bromochloromethane	μg/L		0.50					
chloroform	μg/L	7.0	0.50					
1,1,1-trichloroethane	μg/L	5.0	0.50					
cyclohexane	μg/L	0.0	0.50					
carbon tetrachloride	μg/L		0.50					
benzene	μg/L	0.7	0.50					
1,2-dichloroethane	μg/L	0	0.50					
trichloroethene	μg/L	5.0	0.50					
methylcyclohexane	μg/L	0.0	0.50					
bromodichloromethane	μg/L		0.50					
1,2-dichloropropane	μg/L		0.50					
cis-1,3-dichloropropene	μg/L		0.50					
4-methyl-2-pentanone	μg/L		5.0					
toluene	μg/L	5.0	0.50					
trans-1,3-dichloropropene	μg/L	0.0	0.50					
1,1,2-trichloroethane	μg/L		0.50					
tetrachloroethene	μg/L	5.0	0.50					
2-hexanone	μg/L	0.0	5.0					
dibromochloromethane	μg/L		0.50				+	
1,2-dibromoethane	μg/L		0.50				+	
chlorobenzene	μg/L	5.0	0.50				+	
ethylbenzene	μg/L	5.0	0.50					
xylene	μg/L		0.50					
styrene	μg/L		0.50				+	
bromoform	μg/L		0.50				+	-
isopropylbenzene	μg/L		0.50				+	-
1,1,2,2-tetrachloroethane	μg/L		0.50				+	
1,3-dichlorobenzene	μg/L		0.50					
1,4-dichlorobenzene	μg/L		0.50					
1,2-dichlorobenzene	μg/L μg/L		0.50				+	+
1,2-dibromo-3-chloropropane	μg/L μg/L		0.50					
1,2,4-trichlorobenzene	μg/L μg/L		0.50					
1,2,3-trichlorobenzene	μg/L μg/L		0.50				+	+
1.4.3-111011010DEHZEHE	µy/L	1	0.50		1	i	1	i

Table A-10 Claremont Polychemical Superfund Site SW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	SW-1	SW-1	SW-1		SW-1		SW-1		SW-1		SW-1		SW-1		SW-1		SW-1
sampling date				Mar-86	Jun-86	Apr-89		Jun-89		Jul-92		5/25/00		9/13/00		2/13/01		5/29/01		08/20/01
cooler temp (°C)												5.0		10.0	R	6.0	J	0.3		8.7 °C J
metals			CRDL																	ns
aluminum (AI)	µg/L		200.0		+	205.0		1,500.0	J											113
antimony (Sb)	µg/L	3.0	20.0			200.0		1,000.0				2.1	U	2.1	U	1.5	U	4.5	U	4.7 U
arsenic (As)	μg/L	50.0	40.0	1.0						1.0	U	3.1	Ü	11.4		2.4	Ü	4.1	Ü	4.4 U
barium (Ba)	µg/L	2,000.0	200.0	1.0		72.7		88.3	J	78.0	Ŭ	65.9	В	100.0	В	51.1	В	53.9	В	64.8 B
beryllium (Be)	µg/L	2,000.0	5.0		+	12.1		1.0		70.0		03.3		100.0		31.1		33.3		04.0 B
cadmium (Cd)	μg/L		5.0					1.0		10.0	U									
calcium (Ca)	μg/L		5000.0		+	30,500.0	-	31,500.0		24,600.0	-									
chromium (Cr)	μg/L		10.0		+	10.0	R	9.3		20.0	U									
cobalt (Co)	µg/L		50.0			12.4	11	3.2		20.0	-									
copper (Cu)	μg/L		25.0		+	12.4		4.5												
iron (Fe)	µg/L	600*	200.0	1,368.0	300.0	4,600.0		6,930.0	J	529.0		964.0		13,000.0		141.0		328.0		2,860.0
lead (Pb)	µg/L	50.0	10.0	1,300.0	300.0	6.3		8.4	J	4.0	U	5.2		33.2		2.2	U	2.6	U	7.5
magnesium (Mg)	ug/L	50.0	5000.0			5,670.0		6,360.0		5,450.0	U	5.2		33.2		2.2	U	2.0	U	7.5
magnesium (Mg) manganese (Mn)	μg/L μg/L	600*	15.0	351.0	212.0	356.0	J	381.0		480.0		381.0		502.0		90.0		128.0		87.3
mercury (Hg)	µg/L	000	0.2	351.0	212.0	330.0		301.0		0.20	U	301.0		302.0		90.0		120.0		01.3
nickel (Ni)			40.0			43.3	J			0.20	U									
potassium (K)	μg/L μg/L		5000.0			5,000.0	R	2,150.0												
selenium (Se)	μg/L	40.0	30.0	19.0	4.0	3.6	К	2,150.0		8.0		1.5	U	3.4	U	2.6	U	4.6	U	4.8 U
silver (Ag)	μg/L	40.0	10.0	15.0	4.0	3.0				20.0	U	1.5	٥	3.4	- 0	2.0	0	4.0	0	4.0 0
sodium (Na)	μg/L μg/L		5000.0		-	8,410.0		9,480.0		20.0	U									
thallium (TI)			10.0		-	0,410.0	J	9,400.0												
vanadium (V)	μg/L μg/L		50.0		-	_		11.9												
zinc (Zn)	μg/L μg/L		20.0		-	43.5	J	40.4	J											
ZITC (ZIT)	µg/L		20.0		-	43.5	J	40.4												
field instrument					+													no data		no data
pH	su	6.5 - 8.5			+					5.39		5.06		6.19		5.26		110 data		110 data
conductivity	µmhos/ci					+				0.256		0.170		0.220		5.20				
turbidity	NTU				+	+				0.200		0.170		0.220						
DO	mg/L				+							11.26		6.50		1				
temperature	°C				+	+				15.3		16.9		14.80		10.10				
Eh (ORP)	mV				+	+				10.0		10.0		17.00		10.10				
	1117				+	+														
other					1															
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na	na	na		na				0.010	U	0.010	U	0.010	U	0.010	U	0.010 U
TSS	mg/L	1,000.0				533.0		187.0		202										
1000 data from Ebasso (1000					•	•	_													

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

Table A-10 Claremont Polychemical Superfund Site SW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	SW-1		SW-1	SW-1	SW-1	SW-1
sampling date				Nov-01		Feb-02	May-02	Aug-02	Oct-02
cooler temp (°C)								Ĭ	
, , ,									
metals			CRDL	na		ns - dry	ns - dry	ns - dry	ns - dry
aluminum (AI)	μg/L		200.0			· ·			
antimony (Sb)	μg/L	3.0	20.0						
arsenic (As)	μg/L	50.0	40.0						
barium (Ba)	μg/L	2,000.0	200.0						
beryllium (Be)	μg/L		5.0						
cadmium (Cd)	μg/L		5.0						
calcium (Ca)	μg/L		5000.0						
chromium (Cr)	μg/L		10.0						
cobalt (Co)	μg/L		50.0						
copper (Cu)	μg/L		25.0						
iron (Fe)	μg/L	600*	200.0						
lead (Pb)	μg/L	50.0	10.0						
magnesium (Mg)	μg/L		5000.0						
manganese (Mn)	μg/L	600*	15.0						
mercury (Hg)	μg/L		0.2						
nickel (Ni)	μg/L		40.0						
potassium (K)	μg/L		5000.0						
selenium (Se)	μg/L	40.0	30.0						
silver (Ag)	μg/L		10.0						
sodium (Na)	μg/L		5000.0						
thallium (TI)	μg/L		10.0						
vanadium (V)	μg/L		50.0						
zinc (Zn)	μg/L		20.0						
field instrument						ns - dry	ns - dry	ns - dry	ns - dry
рН	su	6.5 - 8.5		5.62					
conductivity	µmhos/ci	m		0.246					
turbidity	NTU								
DO	mg/L			5.75					
temperature	°C			12.4					
Eh (ORP)	mV								
other									
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	10.0	U				
TSS	mg/L	1,000.0	0.010	10.0	U				+
100	IIIg/L	1,000.0							+
1000 data from Ebasso (1000)		l	l l						

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown

B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

^{*} total Fe + total Mn shall not be > 1000 μg/L

Table A-11
Claremont Polychemical Superfund Site
DW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-1	DW-1	DW-1	DW-1	DW-1		DW-1		DW-1		DW-1		DW-1		DW-1	
sampling date				Mar-86	Jun-86	Apr-89	Jun-89	Jul-92		5/25/00		9/13/00		2/13/01		5/29/01		08/20/01	=
cooler temp (°C)						·				5.0		10.0	R	6.0	J	0.3		8.7 °C	J
VOCs																			
VOC dilution factor								5x		1x		1x		1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50																
chloromethane	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
vinyl chloride	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
bromomethane	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
chloroethane	μg/L		0.50							10.0	U	10.0	U	10.0	U	10.0	U	10.0	U
trichlorofluoromethane	μg/L		0.50																
1,1-dichloroethene	μg/L	5.0	0.50			8.0 J	1.0	7.0		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,2-trichloro-1,2,2-trifluoroet	µg/L		0.50				-												
acetone	µg/L		5.0							10.0	U	10.0	U	5.0	J	2.0	JB	10.0	U
carbon disulfide	µg/L		0.50								Ū	5.0	Ü	5.0	Ü	5.0	U	5.0	U
methyl acetate	µg/L		0.50							0.0	_	0.0	Ŭ	0.0		0.0	Ŭ	0.0	
methylene chloride	µg/L	5.0	0.50					3.0	BJ	2.0	J	0.4	J	1.0	J	0.6	J	5.0	
trans -1,2-dichloroethene	µg/L	5.0	0.50				1.0				U	5.0	Ü	5.0	Ü	5.0	Ü	5.0	U
tert-butyl methyl ether	µg/L	0.0	0.50				1.0			0.0		0.0	Ŭ	0.0	Ŭ	0.0	Ŭ	0.0	$\overline{}$
1,1-dichloroethane	μg/L	5.0	0.50				1.0	2.0	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
cis -1,2-dichloroethene	μg/L	5.0	0.50				1.0	2.0	Ů		Ü	5.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü
2-butanone	μg/L	0.0	5.0		21.0		1.0 F	₹			Ü	10.0	Ü	10.0	Ü	10.0	Ü	10.0	U
bromochloromethane	μg/L μg/L		0.50		21.0		1.0 1	`		10.0	U	10.0	U	10.0	U	10.0	U	10.0	
chloroform	μg/L μg/L	7.0	0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,1-trichloroethane		5.0	0.50			100.0	16.0	88.0			U	5.0	U	5.0	U	5.0	U	5.0	U
cyclohexane	μg/L μg/L	5.0	0.50			100.0	10.0	00.0		5.0	U	5.0	U	5.0	U	5.0	U	5.0	
			0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
carbon tetrachloride	μg/L	0.7	0.50			CO O					U		U		U				U
benzene	μg/L	0.7				60.0	4.0					0.7	U	0.7		0.7	U	0.7	_
1,2-dichloroethane	μg/L	5.0	0.50			6.0 J		J 440.0			U	5.0		5.0	U	5.0	U	5.0	U
trichloroethene	μg/L	5.0	0.50			260.0	40.0	140.0		1.0	J	5.0	U	5.0	U	5.0	U	5.0	- 0
methylcyclohexane	μg/L		0.50													F.0		F.0	
1,2-dichloropropane	μg/L		0.50								U	5.0	U	5.0	U	5.0	U	5.0	U
bromodichloromethane	μg/L		0.50								U	5.0	U	5.0		5.0	U	5.0	U
cis-1,3-dichloropropene	μg/L		0.50								U	5.0	U	5.0	U	5.0	U	5.0	U
4-methyl-2-pentanone	μg/L		5.0								U	10.0	U	10.0		10.0	U	10.0	U
toluene	μg/L	5.0	0.50								U	5.0	U	5.0		5.0	U	5.0	U
trans-1,3-dichloropropene	μg/L		0.50								U	5.0	U	5.0	C	5.0	U	5.0	U
1,1,2-trichloroethane	μg/L		0.50								U	5.0	U	5.0	U	5.0	U	5.0	U
tetrachloroethene	μg/L	5.0	0.50			10.0 J	160.0	70.0		12.0		3.0	J	5.0	U	5.0	U	0.8	J
2-hexanone	μg/L		5.0								U	10.0	U	10.0	U	10.0	U	10.0	U
dibromochloromethane	μg/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-dibromoethane	μg/L		0.50																
chlorobenzene	μg/L	5.0	0.50								U	5.0	U	5.0	U	5.0	U	5.0	U
ethylbenzene	μg/L	5.0	0.50				1.0				U	5.0	U	5.0	U	5.0	U	5.0	U
xylene	μg/L		0.50								U	5.0	U	5.0	U	5.0	U	5.0	U
styrene	μg/L		0.50								U	5.0	U	5.0	C	5.0	U	5.0	U
bromoform	μg/L		0.50							5.0	U	5.0	U	5.0	C	5.0	U	5.0	U
isopropylbenzene	μg/L		0.50																
1,1,2,2-tetrachloroethane	μg/L		0.50							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,3-dichlorobenzene	μg/L		0.50						T										
1,4-dichlorobenzene	μg/L		0.50																\neg
1,2-dichlorobenzene	μg/L		0.50																
1,2-dibromo-3-chloropropane	μg/L		0.50																\neg
1,2,4-trichlorobenzene	μg/L		0.50																\neg
1,2,3-trichlorobenzene	μg/L		0.50																-
total 1,2-DCE	µg/L				+	1		5.0											

Table A-11 Claremont Polychemical Superfund Site DW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-1		DW-1-QC		DW-1		DW-1		DW-1		DW-1	
sampling date				11/06/01		11/06/01		2/11/02		5/16/02		8/5/02		10/22/02	=
cooler temp (°C)				8 ° C	J	8 ° C	J	6 °C	J						
VOCs															
VOC dilution factor				1x		1x		1x						1x	
dichlorodifluoromethane	μq/L		0.50							0.50	U	0.50	U	0.50	U
chloromethane	μq/L		0.50	10.0	U	10.0	U	0.9	U	0.50	U	0.14	J	0.50	U
vinyl chloride	μg/L		0.50	10.0	U	10.0	U	0.3	U	0.50	U	0.50	U	0.50	U
bromomethane	μg/L		0.50	10.0	Ü	10.0	U	2.0	U	0.50	Ü	0.50	Ü	0.50	U
chloroethane	μg/L		0.50	10.0	Ü	10.0	Ü	4.0	Ü	0.50	Ū	0.50	Ü	0.50	Ū
trichlorofluoromethane	μg/L		0.50							0.50	Ū	0.50	Ü	0.50	Ü
1,1-dichloroethene	μg/L	5.0	0.50	5.0	U	5.0	U	0.6	U	0.50	Ū	0.50	Ŭ	0.50	Ü
1,1,2-trichloro-1,2,2-trifluoroet	µg/L	0.0	0.50	0.0	Ť	0.0		0.0	Ť	0.50	Ū	0.50	Ü	0.50	U
acetone	μg/L		5.0	10.0	U	10.0	U	0.9	U	5.0	Ü	5.0	Ü	5.0	Ü
carbon disulfide	μg/L		0.50	5.0	Ü	5.0	U	0.3	Ü	0.50	Ü	0.50	Ü	0.50	U
methyl acetate	μg/L		0.50	0.0	U	3.0	0	0.0	U	0.50	Ü	0.50	Ü	0.50	Ü
methylene chloride	μg/L	5.0	0.50	2.00	UJ	2.00	UJ	0.4	J	0.50	Ü	0.50	Ü	0.50	UJ
trans -1,2-dichloroethene	μg/L	5.0	0.50	5.0	U	5.0	U	0.4	U	0.50	Ü	0.50	UJ	0.50	U
tert-butyl methyl ether	μg/L μg/L	5.0	0.50	5.0	U	5.0	U	0.5	U	0.50	Ü	0.30	J	0.30	J
1,1-dichloroethane	μg/L	5.0	0.50	5.0	U	5.0	U	0.3	U	0.50	Ü	0.12	U	0.13	U
cis -1,2-dichloroethene	μg/L μg/L	5.0	0.50	5.0	U	5.0	U	0.3	U	0.50	Ü	0.50	UJ	0.50	U
· ·		5.0	5.0	10.0	U	10.0	U	0.3		5.0	U	5.0	U	5.0	U
2-butanone	μg/L		0.50	10.0	U	10.0	U	0.4	U	0.50	U	0.50	U	0.50	U
bromochloromethane	μg/L	7.0						0.0							
chloroform	μg/L	7.0	0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
1,1,1-trichloroethane	μg/L	5.0	0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	U	0.50	
cyclohexane	μg/L		0.50							0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
benzene	μg/L	0.7	0.50	.7	. С	.7	. С	0.3		0.50	UJ	0.50	U	0.50	U
1,2-dichloroethane	μg/L		0.50	5.0	U	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
trichloroethene	μg/L	5.0	0.50	5.0	U	5.0	U	0.8	U	0.50	U	0.43	J	0.51	
methylcyclohexane	μg/L		0.50							0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50	5.0	U	5.0	U	0.3	С	0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50	5.0	U	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0	10.0	С	10.0	C	0.4	С	5.0	U	5.0	U	5.0	U
toluene	μg/L	5.0	0.50	5.0	U	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
trans-1,3-dichloropropene	μg/L		0.50	5.0	С	5.0	С	0.2	С	0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50	5.0	U	5.0	C	0.2	С	0.50	U	0.50	U	0.50	U
tetrachloroethene	μg/L	5.0	0.50	1.00	J	5.0	U	0.3	U	0.50	U	0.44	J	0.78	
2-hexanone	μg/L		5.0	10.0	C	10.0	C	0.8	С	5.0	U	5.0	C	5.0	U
dibromochloromethane	μg/L		0.50	5.0	С	5.0	C	0.2	С	0.50	U	0.50	С	0.50	U
1,2-dibromoethane	μg/L		0.50							0.50	U	0.50	С	0.50	U
chlorobenzene	μg/L	5.0	0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	С	0.50	U
ethylbenzene	μg/L	5.0	0.50	5.0	U	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
xylene	μg/L		0.50	5.0	U	5.0	U	0.5	U	0.50	U	0.50	U	0.50	U
styrene	μg/L		0.50	5.0	U	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
bromoform	ua/L		0.50	5	U	2.00	J	0.2	U	0.50	U	0.50	U	0.50	U
isopropylbenzene	μq/L		0.50							0.50	Ü	0.50	Ü	0.50	Ü
1,1,2,2-tetrachloroethane	µg/L	İ	0.50	5.0	U	5.0	U	0.3	U	0.50	Ū	0.50	Ü	0.50	Ü
1.3-dichlorobenzene	µg/L	İ	0.50	-1.5	-		-		-	0.50	Ü	0.50	Ü	0.50	U
1,4-dichlorobenzene	μg/L	1	0.50							0.50	Ü	0.50	Ü	0.50	Ü
1,2-dichlorobenzene	μg/L		0.50							0.50	Ü	0.50	Ü	0.50	Ü
1,2-dibromo-3-chloropropane	μg/L		0.50							0.50	Ü	0.50	Ü	0.50	Ü
1,2,4-trichlorobenzene	μg/L		0.50							0.50	Ü	0.50	U	0.50	U
1.2.3-trichlorobenzene	μg/L		0.50							0.50	Ü	0.50	U	0.50	U
total 1,2-DCE	ua/L	1	0.00							0.00	U	0.00	-	0.00	
1,2-DOL	µg/∟	l	l							1					

Table A-11 **Claremont Polychemical Superfund Site DW-1 Cumulative Data**

Analyte	units	discharge limit	CRQL	DW-1	DW-1	DW-1	DW-1		DW-1		DW-1		DW-1		DW-1		DW-1		DW-1	
sampling date				Mar-86	Jun-86	Apr-89	Jun-89		Jul-92		5/25/00		9/13/00		2/13/01		5/29/01		08/20/01	
cooler temp (°C)											5.0		10.0	R	6.0	J	0.3		8.7 °C	J
metals			CRDL																	
aluminum (AI)	μg/L		200.0			926.0	488.0	J												
antimony (Sb)	μg/L μg/L	3.0	20.0			920.0	400.0	J			2.1	U	2.1	U	1.5	U	4.5	U	4.7	U
arsenic (As)	μg/L	50.0	40.0	3.0	4.0				1.0	U	3.1	Ü	2.0	Ü	2.7	В	4.1	Ü	4.4	Ü
barium (Ba)	μg/L μg/L	2,000.0	200.0	3.0	4.0	144.0	145.0	J	45.0	U	39.9	В	36.8	В	37.4	В	36.1	В	37.9	В
beryllium (Be)	μg/L μg/L	2,000.0	5.0			144.0	0.5	J	45.0		33.3	ь	30.0	ь	37.4	ь	30.1	ь	31.5	
cadmium (Cd)	μg/L		5.0				0.5		10.0	U										
calcium (Ca)	μg/L μg/L		5000.0			95,300.0	70,500.0		43,700.0	٥										
chromium (Cr)	μg/L μg/L		10.0		+	10.0 R	5.5	+	20.0	U										
cobalt (Co)	μg/L μg/L		50.0			13.2	5.1	\dashv	20.0	٠										
copper (Cu)	μg/L μg/L		25.0			14.6	7.2													
iron (Fe)	μg/L μg/L	600*	200.0	600.0	343.0	434.0		J	3,740.0		2,640.0		2,340.0		2,280.0		2,560.0		2,830.0	
lead (Pb)	μg/L μg/L	50.0	10.0	000.0	343.0	39.0	31.5	٠,	4.0	UJ	1.3	U	1.3	U	2,200.0	U	2.6	U	2.0	U
	μg/L μg/L	50.0	5000.0			2,160.0	1,120.0		6,480.0	00	1.3	U	1.3	U	2.2	٥	2.0	٥	2.0	
magnesium (Mg) manganese (Mn)	μg/L μg/L	600*	15.0	728.0	604.0	170.0	110.0		1,200.0		656.0		592.0		544.0		473.0		397.0	
mercury (Hg)	μg/L μg/L	000	0.2	720.0	604.0	0.2 R			0.26		656.0		332.0		344.0		4/3.0		391.0	
nickel (Ni)	μg/L μg/L		40.0			23.6			0.26											
potassium (K)	μg/L μg/L		5000.0			5,470.0	6,020.0													
selenium (Se)	μg/L μg/L	40.0	30.0			5,470.0	0,020.0		7.8		2.2	В	3.4	U	3.2	В	4.6	U	4.8	U
silver (Ag)	μg/L μg/L	40.0	10.0						20.0	U	2.2	-	3.4	U	3.2	-	4.0	٥	4.0	
sodium (Na)	μg/L μg/L		5000.0			15,500.0	17,300.0		20.0	U										
thallium (TI)	μg/L μg/L		10.0			15,500.0	17,300.0													
vanadium (V)	μg/L		50.0																	
zinc (Zn)	μg/L μg/L		20.0			65.8	912.0													
ZITC (ZIT)	µg/L		20.0			03.0	312.0	-												
field instrument								-												
рН	su	6.5 - 8.5							5.37		5.91		6.64		5.51		5.59		6.56	
conductivity	µmhos/cr								0.563		0.441		0.550						NM	
turbidity	NTU																			
DO	mg/L							T			11.42		0.70						NM	
temperature	°C								15.7		18.80		14.70		13.80				14.80	
Eh (ORP)	mV																			
\- " /	1																			
other																				_
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na	na	na	na				0.010	U	0.010	U	0.010	U	0.010	U	0.010	U
TSS	mg/L	1,000.0				72.0	82.0		326											
	1																			

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package na: not analyzed

NM: not measured

ns: not sampled
* total Fe + total Mn shall not be > 1000 µg/L

Table A-11 Claremont Polychemical Superfund Site DW-1 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-1		DW-1-QC		DW-1		DW-1		DW-1		DW-1	
sampling date				11/06/01		11/06/01		2/11/02		5/16/02		8/5/02		10/22/02	
cooler temp (°C)				8 ° C	J	8 ° C	J	6 °C	J						
metals			CRDL												
aluminum (AI)	μg/L		200.0							7.3	С	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	4.6	U	4.6	C	5.9	U	4.7	С	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0	5.3	В	4.4	C	7.0	U	2.8	С	6.0	U	3.0	U B
barium (Ba)	μg/L	2,000.0	200.0	42.7	В	15.3	В	42.0		41.8	В	46.2	В	48.3	В
beryllium (Be)	μg/L		5.0							0.10	U	0.1	U	0.20	U
cadmium (Cd)	μg/L		5.0							0.40	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0							20,800.00		25,200		25,600	
chromium (Cr)	μg/L		10.0							0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0							1.3	В	1.4	U	1.5	В
copper (Cu)	μg/L		25.0							0.90	U	2.6	U	2.1	В
iron (Fe)	μg/L	600*	200.0	2,920.0		40.8	В	3,410.0		3,900.00		3,660	J	5,150	
lead (Pb)	μg/L	50.0	10.0	2.0	U	2.0	U	3.4	U	2.1	U	5.9	J	1.2	U
magnesium (Mg)	μg/L		5000.0							2,610.00	В	3,070.0	В	2910	В
manganese (Mn)	μg/L	600*	15.0	513.0		1.8	В	542.0		510		639.0		588	
mercury (Hg)	μg/L		0.2							0.20	U	0.2	U	0.15	BJ
nickel (Ni)	μg/L		40.0							1.8	U	1.8	U	1.0	U
potassium (K)	μg/L		5000.0							8,160.00	J	9,850	J	8,820	J
selenium (Se)	μg/L	40.0	30.0	4.9	U	4.9	U	6.90	U	3.0	U	3.0	U	3.0	U
silver (Ag)	μg/L		10.0							1.0	UJ	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0							74,500.00	J	74,300	J	7,130	
thallium (TI)	μg/L		10.0							5.4	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0							0.80	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0							15.6	В	2.6	U	1.1	U
field instrument															
рН	su	6.5 - 8.5		6.29				6.38		6.09		6.05		6.35	
conductivity	µmhos/cr			0.657				0.479		0.805		0.733		0.693	
turbidity	NTU			0.00.				00		8.2		9.7		9.4	
DO	mg/L			0.00				0.00		0.76		0.13		0.32	
temperature	°C			15.20				13.80		19.25		18.56		18.07	
Eh (ORP)	mV							10.00		60		-57		10	
												Ŧ.			
other															
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	10.0	U	10.0	U	0.003	U					<u> </u>	
TSS	mg/L	1,000.0													
		lla indianta na												<u> </u>	

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated R: rejected

B (organics): lab blank contamination, magnitude unknown

B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution dm: data missing from package

na: not analyzed
NM: not measured
ns: not sampled

ns: not sampled
* total Fe + total Mn shall not be > 1000 µg/L

Table A-12
Claremont Polychemical Superfund Site
DW-2 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-2	DW-2	DW-2	DW-2	DW-2	DW-2	DW-2	DW-2	DW-2	DW-2
sampling date				Mar-86	Jun-86	Apr-89	Jun-89	Jul-92	5/24/00	9/13/00	2/13/01	5/29/01	08/20/01
cooler temp (°C)									15.0 R	10.0 R	4.0	0.3	8.7 °C J
VOCs													
VOC dilution factor									1x	1x	1x	1x	1x
dichlorodifluoromethane	μg/L		0.50										
chloromethane	μg/L		0.50						10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
vinyl chloride	μg/L		0.50						10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
bromomethane	μg/L		0.50						10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
chloroethane	μg/L		0.50						10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
trichlorofluoromethane	μg/L		0.50										
1,1-dichloroethene	μg/L	5.0	0.50			0.3	J		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50										
acetone	μg/L		5.0						10.0 U	10.0 U	10.0 U	2.0 JB	10.0 U
carbon disulfide	µg/L		0.50						5.0 U			5.0 U	
methyl acetate	μg/L		0.50						0.0	0.0	0.0	0.0	0.0
methylene chloride	μg/L	5.0	0.50						0.5 U	0.8 J	5.0 U	0.5 J	2.0 J
trans -1,2-dichloroethene	µg/L	5.0	0.50			0.4	J 1.0		5.0 U			5.0 U	
tert-butyl methyl ether	μg/L	0.0	0.50			V. -7			0.0 0	0.0	0.0 0	0.0 0	0.0
1,1-dichloroethane	μg/L	5.0	0.50						5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
cis -1,2-dichloroethene	μg/L	5.0	0.50						5.0 U				
2-butanone	μg/L	0.0	5.0		21.0		1.0 R		10.0 U				
bromochloromethane	μg/L μg/L		0.50		21.0		1.0 K		10.0 0	10.0	10.0	10.0	10.0 0
chloroform	μg/L μg/L	7.0	0.50						5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,1,1-trichloroethane		5.0	0.50			2.0	1.0	0.7 J	0.4 J			5.0 U	
cyclohexane	μg/L	5.0	0.50			2.0	1.0	0.7 J	0.4 J	5.0 0	5.0 0	5.0 0	5.0 0
	μg/L		0.50						5.0 U	5.0 U	50 11	50 11	5.0 U
carbon tetrachloride	μg/L	0.7	0.50		13.0				5.0 U 0.7 U			5.0 U 0.7 U	
benzene	μg/L	0.7	0.50		13.0				5.0 U			5.0 U	
1,2-dichloroethane trichloroethene	μg/L	5.0	0.50			0.3	J 5.0	4.0	1.0 U				
	μg/L	5.0	0.50			0.3	J 5.U	4.0	1.0 0	5.0 0	5.0 0	0.8 J	5.0 0
methylcyclohexane	μg/L		0.50						5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-dichloropropane	μg/L		0.50						5.0 U			5.0 U	
bromodichloromethane	μg/L												
cis-1,3-dichloropropene	μg/L		0.50						5.0 U			5.0 U	
4-methyl-2-pentanone	μg/L	5.0	5.0						10.0 U		10.0 U	10.0 U	
toluene	μg/L	5.0	0.50						0.2 J			5.0 U	
trans-1,3-dichloropropene	μg/L		0.50						5.0 U			5.0 U	
1,1,2-trichloroethane	μg/L		0.50					40.0	5.0 U			5.0 U	
tetrachloroethene	μg/L	5.0	0.50		5.0	2.0	96.0	49.0	4.0 J			1.0 J	
2-hexanone	μg/L		5.0				1	1	10.0 U			10.0 U	
dibromochloromethane	μg/L		0.50					ļ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,2-dibromoethane	μg/L		0.50										
chlorobenzene	μg/L	5.0	0.50				_	ļ	5.0 U			5.0 U	
ethylbenzene	μg/L	5.0	0.50				_	ļ	5.0 U			5.0 U	
xylene	μg/L		0.50						5.0 U			5.0 U	
styrene	μg/L		0.50						5.0 U			5.0 U	
bromoform	μg/L		0.50						5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
isopropylbenzene	μg/L		0.50							1		ļ	
1,1,2,2-tetrachloroethane	μg/L		0.50						5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
1,3-dichlorobenzene	μg/L		0.50										
1,4-dichlorobenzene	μg/L		0.50										
1,2-dichlorobenzene	μg/L		0.50										
1,2-dibromo-3-chloropropane	μg/L		0.50										
1,2,4-trichlorobenzene	μg/L		0.50			_	_						
1,2,3-trichlorobenzene	μg/L		0.50										
total 1,2-DCE	μg/L							2.0 J				1	

Table A-12 Claremont Polychemical Superfund Site DW-2 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-2		DW-2		DW-2		DW-2		DW-2	
sampling date				11/07/01		2/11/02		5/15/02		8/5/02		10/22/02	
cooler temp (°C)				9 °C	J	6 °C	J						
VOCs													
VOC dilution factor				1x		1x						1x	
dichlorodifluoromethane	μq/L		0.50					0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50	10.0	U	0.9	U	0.50	Ü	0.50	Ü	0.50	Ü
vinyl chloride	μg/L		0.50	10.0	Ü	0.3	Ü	0.50	Ü	0.50	Ū	0.50	U
bromomethane	μg/L		0.50	10.0	Ü	2.0	Ü	0.50	Ü	0.50	Ü	0.50	Ü
chloroethane	μg/L		0.50	10.0	Ü	4.0	Ü	0.50	Ü	0.50	Ü	0.50	Ü
trichlorofluoromethane	µg/L		0.50	10.0	Ŭ	1.0		0.50	Ü	0.50	Ü	0.50	Ü
1,1-dichloroethene	μg/L	5.0	0.50	0.80	J	1.0	J	0.50	Ü	0.50	Ü	0.50	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L	3.0	0.50	0.00	-	1.0	-	0.50	Ü	0.50	Ü	0.50	U
acetone	μg/L μg/L		5.0	10.0	U	0.9	U	5.0	Ü	5.0	Ü	5.0	U
carbon disulfide	μg/L		0.50	5.0	Ü	0.3	U	0.50	Ü	0.50	Ü	0.50	U
methyl acetate			0.50	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
methylene chloride	μg/L μg/L	5.0	0.50	5.0	U	0.4	J	0.50	Ü	0.50	U	0.50	UJ
,		5.0	0.50	5.0	U	0.4	U	0.50	U	0.50	U	0.50	U
trans -1,2-dichloroethene	μg/L	5.0	0.50	5.0	U	0.3	U	0.50	U	0.50	J	0.50	J
tert-butyl methyl ether	μg/L	5.0		0.00		0.0			_				U
1,1-dichloroethane	μg/L	5.0	0.50	0.60	J	0.3	U	0.50	U	0.50	U	0.50	
cis -1,2-dichloroethene	μg/L	5.0	0.50	4.00	J	6.0		0.50	U	0.50	U	0.50	U
2-butanone	μg/L		5.0	10.0	U	0.4	U	5.0	U	5.0	U	5.0	U
bromochloromethane	μg/L		0.50					0.50	U	0.50	U	0.50	U
chloroform	μg/L	7.0	0.50	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
1,1,1-trichloroethane	μg/L	5.0	0.50	3.00	J	4.0	J	0.18	J	0.20	J	0.10	J
cyclohexane	μg/L		0.50					0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
benzene	μg/L	0.7	0.50	.7	U	0.3	U	0.50	U	0.50	U	0.50	U
1,2-dichloroethane	μg/L		0.50	5.0	U	2.0	JH	0.50	U	0.50	U	0.50	U
trichloroethene	μg/L	5.0	0.50	91.00		170.0		0.68		0.50	U	0.40	J
methylcyclohexane	μg/L		0.50					0.50	U	0.50	J	0.50	U
1,2-dichloropropane	μg/L		0.50	5.0	U	0.3	U	0.50	C	0.50	C	0.50	U
bromodichloromethane	μg/L		0.50	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0	10.0	U	0.4	U	5.0	U	5.0	U	5.0	U
toluene	μg/L	5.0	0.50	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
trans-1,3-dichloropropene	μg/L		0.50	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50	5.0	U	0.2	U	0.50	U	0.50	U	0.50	U
tetrachloroethene	μg/L	5.0	0.50	2.00	J	2.0	J	2.00		0.59		0.41	J
2-hexanone	μg/L		5.0	10.0	U	0.8	Ú	5.0	U	5.0	U	5.0	Ü
dibromochloromethane	μg/L		0.50	5.0	Ū	0.2	Ü	0.50	Ü	0.50	Ū	0.50	U
1,2-dibromoethane	μg/L		0.50					0.50	Ū	0.50	Ū	0.50	Ü
chlorobenzene	μg/L	5.0	0.50	5.0	U	0.2	U	0.50	Ü	0.50	Ū	0.50	U
ethylbenzene	μg/L	5.0	0.50	5.0	Ü	0.3	Ü	0.50	Ü	0.50	Ü	0.50	Ü
xylene	µg/L	0.0	0.50	5.0	Ü	0.5	Ü	0.50	Ü	0.50	Ü	0.50	Ü
styrene	μg/L		0.50	5.0	Ü	0.2	Ü	0.50	Ü	0.50	Ü	0.50	Ü
bromoform	µg/L		0.50	5.0	Ü	0.2	U	0.50	Ü	0.50	Ü	0.30	J
isopropylbenzene	μg/L		0.50	5.0		0.2		0.50	Ü	0.50	Ü	0.50	U
1,1,2,2-tetrachloroethane	μg/L		0.50	5.0	U	0.3	U	0.50	Ü	0.50	Ü	0.50	U
1.3-dichlorobenzene	μg/L μg/L		0.50	5.0	U	0.3	U	0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene			0.50					0.50	U	0.50	U	0.50	U
	μg/L												U
1,2-dichlorobenzene	μg/L		0.50					0.50	U	0.50	U	0.50	
1,2-dibromo-3-chloropropane	μg/L		0.50					0.50	U	0.50	U	0.50	U
1,2,4-trichlorobenzene	μg/L		0.50					0.50	U	0.50	U	0.50	U
1,2,3-trichlorobenzene	μg/L		0.50					0.50	U	0.50	U	0.50	U
total 1,2-DCE	μg/L												

Table A-12 Claremont Polychemical Superfund Site DW-2 Cumulative Data

Analyte	units	discharge limit	CRQL	DW-2	DW-2	DW-2	DW-2		DW-2		DW-2		DW-2		DW-2		DW-2		DW-2	
sampling date				Mar-86	Jun-86	Apr-89	Jun-89		Jul-92		5/24/00		9/13/00		2/13/01		5/29/01		08/20/01	
cooler temp (°C)						·					15.0	R	10.0	R	4.0		0.3		8.7 °C	J
metals			CRDL																	
aluminum (AI)	μg/L	0.0	200.0			205.0	213.0	J			0.4		0.4		4.5		4.5		4.7	
antimony (Sb)	μg/L	3.0	20.0						4.0		2.1	U	2.1	U	1.5	U	4.5	U	4.7	U
arsenic (As)	μg/L	50.0	40.0						1.0	U	3.1	U	2.0	U	2.4	U	4.1	0	4.4	Ū
barium (Ba)	μg/L	2,000.0	200.0			70.5	70.6	J	54.0		49.9	В	49.4	В	59.4	В	50.2	В	37.7	В
beryllium (Be)	μg/L		5.0			2.9	2.2		40.0											
cadmium (Cd)	μg/L		5.0						10.0	U										
calcium (Ca)	μg/L		5000.0			57,100.0	67,000.0		23,500.0											
chromium (Cr)	μg/L		10.0						20.0	U										
cobalt (Co)	μg/L		50.0			40.1	23.3													
copper (Cu)	μg/L		25.0				28.3	J												
iron (Fe)	μg/L	600*	200.0	210.0	213.0	149.0	510.0		71.0		392.0		27.7	В	45.6	В	24.0	В	47.2	В
lead (Pb)	μg/L	50.0	10.0	163.0		10.4 J	4.4	J	4.0	U	1.3	U	1.3	U	2.2	U	2.6	C	2.0	U
magnesium (Mg)	μg/L		5000.0			8,896.0	12,600.0	J	5,900.0											
manganese (Mn)	μg/L	600*	15.0	1,496.0	1,602.0	867.0 J	488.0		460.0		190.0		157.0		148.0		108.0		209.0	
mercury (Hg)	μg/L		0.2			0.30 J			0.20	U										
nickel (Ni)	μg/L		40.0			50.5 J	31.6													
potassium (K)	μg/L		5000.0			14,400.0 J	11,600.0													
selenium (Se)	μg/L	40.0	30.0	2.0		3.7 J			7.3		1.5	U	3.4	U	2.6	U	4.6	U	4.8	U
silver (Ag)	μg/L		10.0						20.0	U										
sodium (Na)	μg/L		5000.0			48,700.0	31,600.0													
thallium (TI)	μg/L		10.0			17.3														
vanadium (V)	μg/L		50.0				50.0	R												
zinc (Zn)	μg/L		20.0			131.0	188.0	J												
field instrument		·																		
pН	su	6.5 - 8.5							4.57		4.51		4.89		4.24		4.54		5.55	
conductivity	µmhos/cn	n							0.497		0.455		0.680				0.050		NM	
turbidity	NTU																			
DO	mg/L										10.47		0.90				1.90		NM	
temperature	°C								16.2		17.2		14.10		13.70		14.40		14.90	
Eh (ORP)	mV										-		-						-	
-4h					+															
other	—																			
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na	na	na	na				dm		0.010	U	0.010	U	0.010	U	0.010	U
TSS	mg/L	1,000.0					5.0		294											

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured

ns: not sampled
* total Fe + total Mn shall not be > 1000 µg/L

Table A-12 **Claremont Polychemical Superfund Site DW-2 Cumulative Data**

Analyte	units	discharge limit	CRQL	DW-2		DW-2		DW-2		DW-2		DW-2	
sampling date				11/07/01		2/11/02		5/15/02		8/5/02		10/22/02	
cooler temp (°C)				9 °C	J	6°C	J						
metals			CRDL						_				
aluminum (AI)	μg/L		200.0					75.6	В	22.2	U	165	В
antimony (Sb)	μg/L	3.0	20.0	4.6	U	5.9	U	4.7	U	8.7	U	1.2	С
arsenic (As)	μg/L	50.0	40.0	4.4	U	7.0	U	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	59.5	В	65.0		58.1	В	62.0	В	79.1	В
beryllium (Be)	μg/L		5.0					0.55	В	0.1	C	0.69	В
cadmium (Cd)	μg/L		5.0					0.40	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0					27,300.00		29,200		3,880	
chromium (Cr)	μg/L		10.0					0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0					7.1	В	6.7	В	7.7	В
copper (Cu)	μg/L		25.0					1.9	В	3.3	В	3.4	В
iron (Fe)	μg/L	600*	200.0	145.0		85.3	U	17.3	U	22.3	U	19.6	В
lead (Pb)	μg/L	50.0	10.0	2.0	U	3.4	U	2.1	U	5.7	J	1.2	U
magnesium (Mg)	μg/L		5000.0					6,590.00		7,630		9,860	
manganese (Mn)	μg/L	600*	15.0	534.0		528.0		130		157.0		181	
mercury (Hg)	μg/L		0.2					0.20	U	0.2	U	0.10	UJ
nickel (Ni)	μg/L		40.0					4.5	В	1.8	U	8.1	В
potassium (K)	μg/L		5000.0					7,920.00	J	9,160	J	10,600	J
selenium (Se)	μg/L	40.0	30.0	4.9	U	6.90	U	3.6	В	3.0	С	3.0	С
silver (Ag)	μg/L		10.0					1.0	UJ	2.0	C	0.80	U
sodium (Na)	μg/L		5000.0					62,600.00	۲	56,500	۲	82,000	
thallium (TI)	μg/L		10.0					5.4	U	8.8	С	2.4	С
vanadium (V)	μg/L		50.0					0.80	U	1.0	С	0.70	С
zinc (Zn)	μg/L		20.0					23.7		8.9	В	7.2	В
field instrument													
рН	su	6.5 - 8.5		5.60		5.55		4.80		4.89		5.10	
conductivity	µmhos/cr			0.365		0.272		0.792		0.716		0.940	
turbidity	NTU			0.000		0.2.2		8.0		4.7		6.2	
DO	mg/L			0.00		0.00		2.16		2.77		1.48	
temperature	°C			15.50		14.20		18.57		19.23		18.21	
Eh (ORP)	mV			. 5.00		20		304		210		283	
(J.u /	111.4									210		200	
other													
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	10.0	U	0.003	U						
TSS	mg/L	1,000.0											
1000 data from Ebassa (1000)													

1989 data from Ebasco (1990), empty cells indicate not detected

1986 data from CA Rich (1986), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown

B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured

ns: not sampled
* total Fe + total Mn shall not be > 1000 µg/L

Table A-13
Claremont Polychemical Superfund Site
EW-5 Cumulative Data

Analyte	units	discharge limit	CRQL	EW-5	EW-5	EW-5		EW-5		EW-5		EW-5		EW-5		EW-5		EW-5-QC		EW-5
sampling date				Apr-89	Jun-89	Jul-92		5/24/00		9/13/00		2/13/01		5/29/01		08/20/01		08/20/01		11/07/01
cooler temp (°C)								15.0	R	10.0	R	6.0	J	0.3		8.7 °C	J	8.7 °C	J	9 °C ∪
VOCs																				
VOC dilution factor						1x		2x		1x		1x		1x		1x		1x		1x
dichlorodifluoromethane	μg/L		0.50																	
chloromethane	μg/L		0.50					20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 L
vinyl chloride	μg/L		0.50					20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 L
bromomethane	μg/L		0.50					20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 L
chloroethane	μg/L		0.50					20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 L
trichlorofluoromethane	μg/L		0.50																	
1,1-dichloroethene	μg/L	5.0	0.50					2.0	J	5.0	U	1.0	U	0.6	J	5.0	U	0.9	J	5.0 L
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50																	
acetone	μg/L		5.0					20.0	U	10.0	U	10.0	U	1.0	JB	10.0	U	10.0	U	10.0 L
carbon disulfide	μq/L		0.50					10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
methyl acetate	μg/L		0.50														T			
methylene chloride	μg/L	5.0	0.50			0.5	BJ	3.0	U	5.0	U	1.0	J	0.5	J	0.6	J	1.0	J	2.00 J
trans-1,2-dichloroethene	μg/L	5.0	0.50					10.0	U	0.6	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
tert-butyl methyl ether	μg/L		0.50																	
1,1-dichloroethane	μq/L	5.0	0.50					10.0	U	5.0	U	5.0	U	0.6	J	1.0	J	5.0	U	5.0 L
cis -1,2-dichloroethene	μg/L	5.0	0.50					32.0		2.0	J	9.0		8.0			J	4.0	J	5.0 L
2-butanone	μg/L		5.0		1.0 R			20.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0	U	10.0 L
bromochloromethane	μg/L		0.50														Ť			
chloroform	μg/L	7.0	0.50					0.5	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
1,1,1-trichloroethane	μg/L	5.0	0.50					5.0	J	5.0	Ü	3.0	J	5.0	Ü		J	3.0	J	5.0 L
cyclohexane	μg/L		0.50														Ť			
carbon tetrachloride	µg/L		0.50					10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
benzene	μg/L	0.7	0.50					1.0	Ü	0.7	Ü	0.7	Ü	0.7	Ü		Ü	0.7	Ü	.7 L
1,2-dichloroethane	µg/L		0.50					10.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü		Ū	5.0	Ü	5.0 L
trichloroethene	μg/L	5.0	0.50			0.3	Л	220.0		14.0		88.0	Ť	78.0	Ť	62.0		66.0	Ť	5.0 L
methylcyclohexane	µg/L		0.50																	
1,2-dichloropropane	μg/L		0.50					10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
bromodichloromethane	μg/L		0.50					10.0	Ü	5.0	Ü	5.0	Ü	5.0	Ü		Ü	5.0	Ü	5.0 L
cis-1,3-dichloropropene	μg/L		0.50					10.0	U	5.0	U	5.0	Ü	5.0	Ü		Ü	5.0	Ü	5.0 L
4-methyl-2-pentanone	μg/L		5.0					20.0	U	10.0	U	10.0	Ü	10.0	Ü		Ü	10.0	Ü	10.0 L
toluene	μg/L	5.0	0.50			1.0	J	10.0	U	5.0	Ü	5.0	Ü	5.0	Ü		Ü	5.0	Ü	5.0 L
trans-1,3-dichloropropene	μg/L	0.0	0.50			1.0		10.0	U	5.0	Ü	5.0	Ü	5.0	Ü		Ü	5.0	Ü	5.0 L
1,1,2-trichloroethane	μg/L		0.50					10.0	U	5.0	C	5.0	Ü	5.0	Ü		Ü	5.0	Ü	5.0 L
tetrachloroethene	μg/L	5.0	0.50	7.0	6.0	2.0	-	3.0	J	5.0	0	2.0	J	1.0	J		J	1.0	J	2.00 J
2-hexanone	μg/L	0.0	5.0	7.0	0.0			20.0	U	10.0	U	10.0	Ü	10.0	Ü		U	10.0	U	10.0 L
dibromochloromethane	μg/L		0.50					10.0	C	5.0	C	5.0	Ü	5.0	IJ		U	5.0	Ü	5.0 L
1,2-dibromoethane	μg/L		0.50					10.0	·	0.0	Ŭ	0.0	Ŭ	0.0	Ŭ	0.0	-	0.0	Ŭ	0.0
chlorobenzene	ua/L	5.0	0.50					10.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0 L
ethylbenzene	μg/L	5.0	0.50					10.0	U	5.0	U	5.0	Ü	5.0	Ü		U	5.0	Ü	5.0 L
xylene	μg/L	0.0	0.50					10.0	U	5.0	U	5.0	Ü	5.0	U		U	5.0	Ü	5.0 L
styrene	μg/L		0.50				\rightarrow	10.0	U	5.0	Ü	5.0	Ü	5.0	Ü		U	5.0	Ü	5.0 L
bromoform	μg/L		0.50					10.0	U	5.0	U	5.0	Ü	5.0	U		Ü	5.0	Ü	5.0 L
isopropylbenzene	μg/L		0.50			1	-	10.0	J	5.0	J	5.0		0.0		0.0	-	0.0		0.0
1,1,2,2-tetrachloroethane	μg/L		0.50					10.0	U	5.0	U	5.0	U	5.0	U	0.3	J	5.0	U	5.0 L
1,3-dichlorobenzene	μg/L		0.50					10.0		5.0		0.0		5.0		0.0	-	0.0		0.0 0
1,4-dichlorobenzene	μg/L		0.50														+			
1,2-dichlorobenzene	μg/L		0.50														+			
1,2-dibromo-3-chloropropane	μg/L μg/L		0.50										+				\dashv			
1,2,4-trichlorobenzene	μg/L μg/L		0.50										+				\dashv			
1,2,3-trichlorobenzene	μg/L μg/L		0.50				-					-					+			
total 1,2-DCE	μg/L μg/L		0.50			1	+					1					\dashv			
iolai 1,2-DCE	μy/L	l .			l	I				1		I					L			

Table A-13
Claremont Polychemical Superfund Site
EW-5 Cumulative Data

Analyte	units	discharge limit	CRQL	EW-5		EW-5		EW-5		EW-5	
sampling date				2/11/02		5/15/02		8/5/02		10/22/02	
cooler temp (°C)				6 °C	J						
VOCs											
VOC dilution factor				1x						25x	
dichlorodifluoromethane	μg/L		0.50			0.50	U	0.50	U	13	U
chloromethane	μg/L		0.50	0.9	U	0.50	U	0.50	U	13	U
vinyl chloride	μg/L		0.50	0.3	U	0.50	U	0.50	U	13	U
bromomethane	μg/L		0.50	2.0	U	0.50	U	0.50	U	13	U
chloroethane	μg/L		0.50	4.0	U	0.50	U	0.50	U	13	U
trichlorofluoromethane	μg/L		0.50			0.50	U	0.50	U	13	U
1,1-dichloroethene	μg/L	5.0	0.50	0.6	U	1.00		0.92		13	U
1,1,2-trichloro-1,2,2-trifluoroet	μg/L		0.50			0.50	U	0.50	U	13	U
acetone	μg/L		5.0	0.9	U	5.0	Ü	5.0	Ü	51.00	J
carbon disulfide	μg/L		0.50	0.3	U	0.50	Ü	0.50	Ü	13	U
methyl acetate	μg/L		0.50			0.50	Ü	0.50	UJ	13	Ü
methylene chloride	μg/L	5.0	0.50	0.8	J	0.58		0.62	UJ	13	UJ
trans -1,2-dichloroethene	µg/L	5.0	0.50	0.3	U	0.50	U	0.50	U	13	U
tert-butyl methyl ether	μg/L	0.0	0.50	0.0	Ť	0.50	Ü	0.13	J	13	Ü
1.1-dichloroethane	µg/L	5.0	0.50	0.3	U	1.60	Ť	1.20	Ť	13	Ü
cis -1,2-dichloroethene	μg/L	5.0	0.50	0.3	Ü	6.80		6.10		6.50	J
2-butanone	µg/L	0.0	5.0	0.4	U	5.0	U	5.0	U	130	Ü
bromochloromethane	μg/L		0.50	0.4	0	0.50	Ü	0.50	Ü	13	U
chloroform	µg/L	7.0	0.50	0.2	U	0.50	Ü	0.13	J	13	U
1,1,1-trichloroethane	µg/L	5.0	0.50	0.2	U	0.50	U	2.60	,	13	U
cyclohexane	µg/L	5.0	0.50	0.2	U	0.50	Ü	0.50	U	13	U
carbon tetrachloride	µg/L		0.50	0.2	U	0.50	Ü	0.50	Ü	13	U
benzene	μg/L μg/L	0.7	0.50	0.2	U	0.50	U	0.50	U	13	U
1,2-dichloroethane	μg/L μg/L	0.7	0.50	0.3	C C	0.50	U	3.9	U	13	U
trichloroethene	μg/L μg/L	5.0	0.50	0.8	U	240.00	D	130.00	J	280.00	
methylcyclohexane	μg/L	5.0	0.50	0.0	U	0.50	U	0.50	U	13	U
1,2-dichloropropane			0.50	0.3	U	0.50	U	0.50	U	13	U
bromodichloromethane	μg/L μg/L		0.50	0.3	U	0.50	U	0.50	IJ	13	U
cis-1,3-dichloropropene			0.50	0.2	U	0.50	Ü	0.50	Ü	13	U
4-methyl-2-pentanone	μg/L μg/L		5.0	0.3	C	5.0	Ü	5.0	U	130	U
toluene	μg/L μg/L	5.0	0.50	0.4	U	0.50	Ü	0.50	U	130	U
trans-1,3-dichloropropene	μg/L μg/L	5.0	0.50	0.3	U	0.50	U	0.50	U	13	U
1,1,2-trichloroethane			0.50	0.2	U	0.50	Ü	0.30	J	13	U
tetrachloroethene	μg/L	5.0	0.50	0.2	J	2.90	U	2.30	J	3.60	J
	μg/L	5.0	5.0	0.8	U	5.0	U	5.0	U	130	U
2-hexanone dibromochloromethane	μg/L		0.50	0.8	C C	0.50	U	0.50	U	130	U
1,2-dibromoethane	μg/L		0.50	0.2	U	0.50	U	0.50	U	13	U
	μg/L	5.0	0.50	0.2	U	0.50	U	0.50	U	13	U
chlorobenzene	μg/L	5.0	0.50	0.2	U	0.50	U	0.50	U	13	U
ethylbenzene	μg/L	5.0					_		_		U
xylene	μg/L		0.50	0.5	U	0.50	U	0.50	U	13	
styrene	μg/L		0.50	0.2	C	0.50	U	0.50	U	13	U
bromoform	μg/L		0.50	0.2	U	0.50	U	0.50	U	6.80	J
isopropylbenzene	μg/L		0.50	2.2		0.50	U	0.50	U	13	U
1,1,2,2-tetrachloroethane	μg/L		0.50	0.3	U	0.50	U	0.50	U	13	U
1,3-dichlorobenzene	μg/L		0.50			0.50	U	0.50	U	13	U
1,4-dichlorobenzene	μg/L		0.50			0.50	U	0.50	U	13	U
1,2-dichlorobenzene	μg/L		0.50			0.50	U	0.50	U	13	U
1,2-dibromo-3-chloropropane	μg/L		0.50			0.50	U	0.50	U	13	U
1,2,4-trichlorobenzene	μg/L		0.50			0.50	U	0.50	U	13	U
1,2,3-trichlorobenzene	μg/L		0.50			0.50	U	0.50	U	13	U
total 1,2-DCE	μg/L										

Table A-13 Claremont Polychemical Superfund Site EW-5 Cumulative Data

Analyte	units	discharge limit	CRQL	EW-5		EW-5		EW-5		EW-5		EW-5		EW-5		EW-5		EW-5		EW-5-QC		EW-5	
sampling date				Apr-89		Jun-89		Jul-92		5/24/00		9/13/00		2/13/01		5/29/01		08/20/01		08/20/01		11/07/01	
cooler temp (°C)										15.0	R	10.0	R	6.0	J	0.3		8.7 °C	J	8.7 °C	J	9 °C	J
metals			CRDL																				
aluminum (AI)	μg/L		200.0			200.0	R																
antimony (Sb)	μq/L	3.0	20.0							2.1	U	2.1	U	1.5	U	4.5	U	4.7	U	4.7	U	4.6	U
arsenic (As)	μg/L	50.0	40.0					1.0	U	3.1	Ü	2	U	2.4	В	4.1	Ū	4.4	Ü	4.4	Ü	4.4	Ū
barium (Ba)	μq/L	2,000.0	200.0	293.0		286.0		300.0		68.2	В	93.3	В	43.7	В	44.8	В	46.0	В	48.0	В	43.5	В
beryllium (Be)	μg/L	,	5.0			1.0								-									
cadmium (Cd)	μg/L		5.0	6.2	J			10.0	U														
calcium (Ca)	μg/L		5000.0	38,100.0	J	37,400.0		35,400.0															
chromium (Cr)	μg/L		10.0	, , , , , , ,		, , , , , , ,		20.0	U														
cobalt (Co)	μq/L		50.0	27.7		22.9																	
copper (Cu)	μg/L		25.0			11.9																	
iron (Fe)	μg/L	600*	200.0	268.0		403.0	J	1,090.0		12.7	В	195.0		67.8	В	57.2	В	19.9	U	19.9	U	16.2	U
lead (Pb)	μg/L	50.0	10.0	12.3	J	10.0	J	4.0	U	1.3	U	1.3	U	2.2	U	2.6	U	2.0	Ū	2.0	Ū	2.0	Ū
magnesium (Mg)	μg/L		5000.0	17,600.0		15,500.0		13,900.0		-								-		-		-	
manganese (Mn)	μg/L	600*	15.0	934.0	J	1,060.0		1,200.0		542.0		50.1		391.0		378.0		493.0		412.0		111.0	
mercury (Hg)	μg/L		0.2			,		0.20	U											-		-	
nickel (Ni)	μg/L		40.0	24.6		52.7	J	0.20															
potassium (K)	μg/L		5000.0	23,000.0	J	21,300.0	J																
selenium (Se)	μg/L	40.0	30.0	5.4		,		6.7		1.5	U	3.4	U	2.6	U	4.6	U	4.8	U	4.8	U	4.9	U
silver (Ag)	μq/L		10.0					20.0	U														
sodium (Na)	μg/L		5000.0	56,800.0	J	44.8																	
thallium (TI)	μg/L		10.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																			
vanadium (V)	μg/L		50.0																				
zinc (Zn)	μg/L		20.0	128.0		245.0																	
	FJ																						
field instrument																							
pH	su	6.5 - 8.5						5.6		4.740		5.67		5.32		5.33		6.23				5.29	
conductivity	µmhos/cr							0.66		0.354		0.330						NM				0.502	
turbidity	NTU																						
DO	mg/L									10.86		1.60						NM				3.06	
temperature	°C							18.0		17.7		14.90		14.00		15.00		15.50				15.80	
Eh (ORP)	mV																						
` '																							
other																							
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	na		na				dm		0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	10.0	U
TSS	mg/L	1,000.0	2.2.3	5.0		8.0		440					-	2.2.0							_		
	Ŭ																						
1080 data from Ebasco (1000)		. II.a. baadha a ba as a	4 -1 - 441											1									

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

* total Fe + total Mn shall not be > 1000 μg/L

Table A-13 **Claremont Polychemical Superfund Site EW-5 Cumulative Data**

Analyte	units	discharge limit	CRQL	EW-5		EW-5		EW-5		EW-5	
sampling date				2/11/02		5/15/02		8/5/02		10/22/02	
cooler temp (°C)				6 °C	J						
metals			CRDL								
aluminum (AI)	μg/L		200.0			85.0	В	22.2	U	56.7	U
antimony (Sb)	μg/L	3.0	20.0	5.9	U	4.7	U	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0	7.0	С	2.8	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0	47.4		120.0	В	151.0	В	118	В
beryllium (Be)	μg/L		5.0			0.48	В	0.1	U	0.40	В
cadmium (Cd)	μg/L		5.0			0.40	С	0.6	U	0.39	В
calcium (Ca)	μg/L		5000.0			32,600.0		39,100.0		36,900.0	
chromium (Cr)	μg/L		10.0			0.60	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0			38.0	В	43.4	В	32.3	В
copper (Cu)	μg/L		25.0			1.6	В	5.4	В	4.1	В
iron (Fe)	μg/L	600*	200.0	99.8	В	17.3	U	22.3	U	33.3	В
lead (Pb)	μg/L	50.0	10.0	3.4	U	2.1	U	4.1	J	1.2	U
magnesium (Mg)	μg/L		5000.0			14,600.0		17,000.0		14,700.0	
manganese (Mn)	μg/L	600*	15.0	124.0		954		1,070.0		751.0	
mercury (Hg)	μg/L		0.2			0.20	U	0.2	U	0.10	UJ
nickel (Ni)	μg/L		40.0			26.9	В	12.3	В	24.9	В
potassium (K)	μg/L		5000.0			12,800.0	J	17,600.0	J	15,400.0	J
selenium (Se)	μg/L	40.0	30.0	6.90	С	3.0	С	3.0	U	3.0	U
silver (Ag)	μg/L		10.0			1.0	UJ	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0			37,500.0	۲	62,600.0	J	60,000.0	
thallium (TI)	μg/L		10.0			5.4	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0			0.80	С	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0			53.7		27.2		28.1	
field instrument											
pH	su	6.5 - 8.5		5.06		5.34		5.39		5.58	
conductivity	µmhos/cr	n		0.271		0.774		0.940		0.836	
turbidity	NTU					2.5		3.2		6.0	
DO	mg/L			6.18		8.18		0.44		0.42	
temperature	°C			12.70		19.34		20.85		18.83	
Eh (ORP)	mV					292		167		202	
other											
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.003	U						
TSS	mg/L	1,000.0	\sqcup								
1080 data from Ebasco (1000)	l										

1989 data from Ebasco (1990), empty cells indicate not detected

boldface: lab analysis positive detection

U: not detected

UJ: estimated not detected

J: estimated

R: rejected

B (organics): lab blank contamination, magnitude unknown B (inorganics): IDL < x < CRDL (ILM04.1)(equivalent to J)

D: quantified at dilution

dm: data missing from package

na: not analyzed NM: not measured ns: not sampled

* total Fe + total Mn shall not be > 1000 μ g/L

Table A-14 Claremont Polychemical Superfund Site EXT-1 Cumulative Data

Analyte	units	discharge limit	CRQL	EXT-1A		EXT-1A	EXT-1A		EXT-1A	EXT-1A		EXT-1A		EXT-1A	EXT-1	A	EXT-1A		EXT-1A		EXT-1A		EXT-1A
sampling date				2/25/00		3/1/00	3/9/00		3/16/00	3/23/00		3/29/00		4/6/2000	4/13/0	0	4/25/00		4/26/00		5/3/00		5/10/00
cooler temp (°C)				6.0	J	9.0 J	6.0	J	3.0	3.0		2.0		6.0 J	dm		4.0		5.0		5.0		3.0
VOCs																							
VOC dilution factor				10x		1x	5x	U	23.2x	22x		23.2x		5X	5x		5x		5x		5x		5x
dichlorodifluoromethane	μg/L		0.50																				
chloromethane	μg/L		0.50	100.0	U	10.0 U	50.0	U	23.0 U	22.0	U	23.0	U	50.0 U	50.0	U	50.0	U	50.0	U	50.0	U	50.0 U
vinyl chloride	μg/L		0.50	100.0	U	10.0 U	50.0	U	23.0 U	22.0	U	23.0	U	50.0 U	50.0	U	50.0	U	50.0	U	50.0	U	50.0 U
bromomethane	μg/L		0.50	100.0	U	10.0 U	50.0	U	23.0 U	22.0	U	23.0	U	50.0 U	50.0	U	50.0	U	50.0	U	50.0	U	50.0 U
chloroethane	μg/L		0.50	100.0	Ü	10.0 U	50.0	U	23.0 U	22.0	Ü		U	50.0 U			50.0	U		U	50.0	U	50.0 U
trichlorofluoromethane	μg/L		0.50																				
1.1-dichloroethene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	6.2	J	1.0 J	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
1,1,2-trichloro-1,2,2-trifluoroe	μg/L	0.0	0.50	00.0		0.0 0	20.0		20.0	22.0		0.2	•	1.0	20.0		20.0	Ü	20.0		20.0		20.0
200tono	μg/L μg/L		5.0	100.0	U	10.0 U	50.0	U	120.0 U	110.0	U	280.0	_	20.0 JB	12.0	U	58.0	В	11.0	ID.	38.0	ID	79.0 B
carbon disulfide			0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	25.0 U		U	25.0	U		U	25.0	U	25.0 U
	μg/L			50.0	U	5.0 0	25.0	U	23.0 0	22.0	U	23.0	U	25.0 0	25.0	U	25.0	U	25.0	U	23.0	U	25.0 0
methyl acetate	μg/L	E 0	0.50	E0.0	11	E0 ''	25.0	111	22.0 ''	20.0	11	22.0	11	40 17	4.0		45.0	-	7.0	+	4.0	-	0.0 "
methylene chloride	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	4.0 JE	_	U	15.0	J		J	4.0	J	9.0 U
trans-1,2-dichloroethene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
tert-butyl methyl ether	μg/L		0.50										_										
1,1-dichloroethane	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
cis-1,2-dichloroethene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	5.9	J	7.0 J	7.0	J	7.0	J	7.0	J	21.0	J	6.0 J
2-butanone (MEK)	μg/L		5.0	100.0	U	10.0 U	50.0	U	120.0 U	110.0	U	120.0	U	13.0 JB	4.0	U	50.0	U	12.0	JB	14.0	JB	10.0 U
bromochloromethane	μg/L		0.50																				
chloroform	μg/L	7.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	2.0 J	2.0	JB	25.0	U	2.0	J	25.0	U	25.0 U
1,1,1-trichloroethane	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	3.0 J	3.0	J	25.0	U	2.0	J	25.0	U	25.0 U
cyclohexane	μg/L		0.50																				
carbon tetrachloride	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
benzene	μg/L	0.7	0.50	7.0	U	0.7 U	4.0	U	23.0 U	22.0	U	23.0	U	4.0 U	4.0	U	4.0	U	4.0	U	2.0	J	4.0 U
1,2-dichloroethane	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
trichloroethene	μg/L	5.0	0.50	27.0	J	1.0 J	12.0	J	13.0 U	15.0	J		J	15.0 J		J	13.0	J		J	480.0		12.0 J
methylcyclohexane	μg/L		0.50				12.0						Ť		10.0					Ť			
1,2-dichloropropane	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
bromodichloromethane	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	Ü		U	25.0 U		U	25.0	U		U	25.0	U	25.0 U
cis-1,3-dichloropropene			0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	25.0 U		U	25.0	U		U	25.0	U	25.0 U
	μg/L		5.0	100.0	U	10.0 U	50.0	U	120.0 U	110.0	U		U	4.0 J		U	50.0	U		U	50.0	U	50.0 U
4-methyl-2-pentanone	μg/L	5.0			_								U				-	_		-		J	
toluene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U		22.0	U		-			U	25.0	U		U	1.0		
trans-1,3-dichloropropene	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	25.0 U		U	25.0	U		U	25.0	U	25.0 U
1,1,2-trichloroethane	μg/L 		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	1.0 J		U	25.0	U		U	25.0	U	25.0 U
tetrachloroethene	μg/L	5.0	0.50	1,700.0		55.0	660.0		780.0	860.0		760.0	_	680.0	730.0		780.0		750.0		800.0		610.0
2-hexanone	μg/L		5.0	100.0	U	10.0 U	50.0	U	120.0 U	110.0	U		U	50.0 U		U	50.0	U		U	50.0	U	50.0 U
dibromochloromethane	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
1,2-dibromoethane	μg/L		0.50										_							_		_	
chlorobenzene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U		U	25.0 U		U	25.0	U		U	25.0	U	25.0 U
ethylbenzene	μg/L	5.0	0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	25.0 U	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
xylene	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	0.6 J	0.3	J	25.0	U	25.0	U	25.0	U	25.0 U
styrene	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	0.4 J	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
bromoform	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	0.6 J	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
isopropylbenzene	μg/L		0.50										T										
1,1,2,2-tetrachloroethane	μg/L		0.50	50.0	U	5.0 U	25.0	U	23.0 U	22.0	U	23.0	U	1.0 J	25.0	U	25.0	U	25.0	U	25.0	U	25.0 U
1,3-dichlorobenzene	μg/L		0.50		-	2.2					_							-		1		-	
1.4-dichlorobenzene	μg/L		0.50										\dashv							\dashv			
1,2-dichlorobenzene			0.50										\dashv							\dashv			
1,2-dichioropenzene 1.2-dibromo-3-chloropropane	μg/L		0.50										\dashv		1					+		-	
	μg/L												\dashv		1					+		\dashv	
1,2,4-trichlorobenzene	μg/L		0.50										\dashv		-					+		-	
1,2,3-trichlorobenzene	μg/L		0.50												1		<u> </u>						

Table A-14 Claremont Polychemical Superfund Site EXT-1 Cumulative Data

Analyte	units	discharge limit	CRQL	EXT-1A		EXT-1A		EXT-1A		EXT-1A	EXT-1	EXT-1		EXT-1	EXT-1		EXT-1		EXT-1-QC		EXT-1		EXT-1-QC
sampling date				8/9/00		11/15/00		2/7/01		05/16/01	Aug-01	11/20/01		Feb-02	5/29/02		8/7/02		8/7/02		10/25/02		10/25/02
cooler temp (°C)				6.0	J	10.0	R	6.0	J	no CoC		no CoC											
VOCs											no data			no data									
VOC dilution factor				5x		5x		2x		2x		2x			1x		1x		1x		1x		1x
dichlorodifluoromethane	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
chloromethane	μg/L		0.50	50.0	U	50.0	U	20.0	U	20.0 U		20.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
vinyl chloride	μg/L		0.50	50.0	U	50.0	U	20.0	U	20.0 U		20.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
bromomethane	μg/L		0.50	50.0	U	50.0	U	20.0	U	20.0 U		20.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
chloroethane	μg/L		0.50	50.0	U	50.0	U	20.0	U	20.0 U		20.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
trichlorofluoromethane	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1.1-dichloroethene	µg/L	5.0	0.50	25.0	U	25.0	U	0.7	J	10.0 U		1.00	J		0.79		0.69		0.73		0.50	U	0.50 U
1,1,2-trichloro-1,2,2-trifluoro	μg/L	0.0	0.50	20.0		20.0				10.0			_		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
acetone	μg/L		5.0	50.0	U	50.0	J.	10.0	U	5.0 JB		20.0	U		5.0	U	5.0	U	5.0	U	5.0	U	5.0 U
carbon disulfide	μg/L μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.27	1	0.50	U	0.50 U
methyl acetate	μg/L		0.50	25.0	-	25.0	-	10.0	-	10.0	+	10.0	0		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
methylene chloride		5.0	0.50	25.0	U	10.0	U	2.0	U	8.0 JB		3.0	U		0.50	U	0.50	U	0.50	U	0.50	UJ	0.50 UJ
	μg/L			25.0 25.0	U		U	10.0	U		 		U			U		U	0.50	U		U	
trans -1,2-dichloroethene tert-butyl methyl ether	μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	U	0.50	J	0.50	U	0.50	U	
	μg/L	5.0	0.50	05.0		05.0		40.0		40.0	-	40.0			0.19	J	0.24			J	0.15	J	
1,1-dichloroethane	μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U	-		U		0.22	J	0.24	J	0.23	J	0.22	J	0.23 J
cis-1,2-dichloroethene	μg/L	5.0	0.50	12.0	J	8.0	J	7.0	J	5.0 J		6.00	J		5.30		5.30		5.30		5.00		5.20
2-butanone (MEK)	μg/L		5.0	50.0	U	50.0	U	20.0	U	20.0 U		20.0	U		5.0	U	5.0	U	5.0	U	4.40	J	2.70 J
bromochloromethane	μg/L		0.50										_		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
chloroform	μg/L	7.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,1,1-trichloroethane	μg/L	5.0	0.50	25.0	U	2.0	J	1.0	J	2.0 J		3.00	J		1.40		1.40		1.40		1.20		1.20
cyclohexane	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
carbon tetrachloride	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
benzene	μg/L	0.7	0.50	4.0	U	4.0	U	1.0	U	1.0 U		1.5	U		0.50	U	0.50	U	0.10	J	0.12	J	0.12 J
1,2-dichloroethane	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
trichloroethene	μg/L	5.0	0.50	18.0	J	15.0	J	17.0	J	47.0		62.00			20.00	D	21.00		23.00		34.00	D	37.00 D
methylcyclohexane	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,2-dichloropropane	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
bromodichloromethane	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	Ü	0.50	U	0.50	Ü	0.50	U	0.50 U
cis-1,3-dichloropropene	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		_	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
4-methyl-2-pentanone	μg/L		5.0	50.0	U	50.0	U	20.0	U	20.0 U			U		5.0	U	5.0	U	5.0	U	5.0	U	5.0 U
toluene	μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
trans-1,3-dichloropropene	μg/L μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1.1.2-trichloroethane	μg/L μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.16	J	0.30	J.	0.20	-	0.18	J	0.20 J
tetrachloroethene	μg/L μg/L	5.0	0.50	700.0	U	470.0	U	330.0	U	200.0		300.00	U		140.00	D	180.00	D	180.00	D	170.00	D	170.00 D
2-hexanone		5.0	5.0	50.0	U	50.0	U	20.0	U	20.0 U			U		5.0	U	5.0	U	5.0	U	5.0	U	5.0 U
	μg/L				U		U		U				U			U		U	0.50	U		_	
dibromochloromethane	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10	U		0.50	_	0.50	_		_	0.50	U	
1,2-dibromoethane	μg/L	5.0	0.50	05.0		05.0		40.0		40.0	-	40.0			0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
chlorobenzene	μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U	-		U		0.50	U	0.50	U	0.50	U	0.18	J	0.50 UJ
ethylbenzene	μg/L	5.0	0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
xylene	μg/L 		0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.50	U	0.15	J	0.14 J
styrene	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U			U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
bromoform	μg/L		0.50	25.0	U	25.0	U	10.0	U	10.0 U		10.0	U		0.50	UJ	0.18	J	0.50	U	0.21	J	0.50 U
isopropylbenzene	μg/L		0.50										_		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,1,2,2-tetrachloroethane	μg/L		0.50	25.0	U	25.0	J	10.0	U	10.0 U		10.0	U		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,3-dichlorobenzene	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,4-dichlorobenzene	μg/L		0.50												0.11	J	0.15	J	0.18	J	0.14	J	0.14 J
1,2-dichlorobenzene	μg/L		0.50]								0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,2-dibromo-3-chloropropan	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1,2,4-trichlorobenzene	μg/L		0.50												0.50	U	0.50	U	0.50	U	0.50	U	0.50 U
1.2.3-trichlorobenzene	μg/L		0.50										T		0.50	U	0.50	U	0.50	U	0.50	U	0.50 U

Table A-14 Claremont Polychemical Superfund Site EXT-1 Cumulative Data

Analyte	units	discharge limit	CRQL	EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1A	
sampling date				2/25/00		3/1/00		3/9/00		3/16/00		3/23/00		3/29/00		4/6/2000		4/13/00		4/25/00		4/26/00		5/3/00		5/10/00	
cooler temp (°C)				6.0	J	9.0	J	6.0	J	3.0		3.0		2.0		6.0	J	dm		4.0		5.0		5.0		3.0	
metals			CRDL																						\dashv		
aluminum (AI)	μg/L		200.0																						\dashv		
antimony (Sb)	μg/L	3.0	20.0	3.0	U	4.0	В	3.0	U	0.92	U	0.92	U	0.92	U	7.0	В	2.4	В	2.4	В	2.1	U	56.2	В	2.1	U
arsenic (As)	μg/L	50.0	40.0	3.0	U	3.0	U		U	0.5	В	0.5	U	0.5	U	3.1	Ū		U	3.1	Ū	3.1	U	9.3	В	3.1	U
barium (Ba)	μg/L	2,000.0	200.0	70.4	В	101	В	68.9	В	79.1		74.5		74.5		70.5	В	72.0	В	71.1	В	75.4	В	22.2	В	70.8	В
beryllium (Be)	ua/L	2,000.0	5.0					33.5										. 2.0									
cadmium (Cd)	μg/L		5.0																								
calcium (Ca)	μg/L		5000.0																								
chromium (Cr)	μg/L		10.0																								
cobalt (Co)	μg/L		50.0																								
copper (Cu)	μg/L		25.0																								
iron (Fe)	μg/L	600*	200.0	1,490.0		193.0		170.0		153.0		119.0		116.0		98.2	В	82.8	В	104.0		82.8	В	10,200.0		60.0	В
lead (Pb)	μg/L	50.0	10.0	6.7		2.0	U	2.3	В	0.46	U	0.46	U	1.0		1.4	В	2.3	В	1.3	U	2.8	В	11.9		1.3	U
magnesium (Mg)	μg/L		5000.0							8,390.0		7,990.0		8,050.0													
manganese (Mn)	μg/L	600*	15.0	616.0		604.0		577.0		659.0		621.0		601.0		568.0		567.0		567.0		507.0		47.0		587.0	
mercury (Hg)	μg/L		0.2																								
nickel (Ni)	μg/L		40.0																								
potassium (K)	μg/L		5000.0																								
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.0	U	0.8	U	0.8	U	8.0	U	1.6	В	1.5	U	1.5	U	1.5	U	19.2		1.7	В
silver (Ag)	μg/L		10.0																								
sodium (Na)	μg/L		5000.0																								
thallium (TI)	μg/L		10.0																								
vanadium (V)	μg/L		50.0																								
zinc (Zn)	μg/L		20.0																						_		
field instrument																									\dashv		
pH	su																										
conductivity	µmhos/cr	n																									
turbidity	NTU																										
DO	mg/L																										
temperature	°C																										
Eh (ORP)	mV																								\neg		
· ,																											
other																											
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.01	U	0.01	U	0.01	U	0.01	U							0.01	U	0.01	U	0.01	U	0.01	U	0.010	U
TSS	mg/L	1,000.0		10.0	U	10.0	U	10.0	U							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	22.0	

Table A-14 Claremont Polychemical Superfund Site EXT-1 Cumulative Data

Analyte	units	discharge limit	CRQL	EXT-1A		EXT-1A		EXT-1A		EXT-1A		EXT-1	EXT-1		EXT-1	EXT-1		EXT-1		EXT-1-QC		EXT-1		EXT-1-QC
sampling date				8/9/00		11/15/00		2/7/01		05/16/01		Aug-01	11/20/01		Feb-02	5/29/02		8/7/02		8/7/02		10/25/02	Т	10/25/02
cooler temp (°C)				6.0	J	10.0	R	6.0	J	no CoC			no CoC											
metals			CRDL									no data			no data									
aluminum (Al)	μg/L		200.0													123	В	22.2	U	22.2	U	56.7	U	56.7 U
antimony (Sb)	μg/L	3.0	20.0	2.1	U	5.0	U	2.0	U	4.4	U		4.5	U		1.6	U	8.7	U	8.7	U	1.2	U	1.2 U
arsenic (As)	μg/L	50.0	40.0	2.0	U	2.5	U	3.0	U	4.2	U		4.6	U		4.2	U	6.0	U	6.0	U	3.0	U	3.0 U
barium (Ba)	μg/L	2,000.0	200.0	71.9		78.6	В	73.2	В	87.0	В		73.1	BJ		86.3	В	82.4	В	85.4	В	83.0	В	80.2 B
beryllium (Be)	μg/L		5.0													0.85	В	0.1	U	0.1	U	0.21	В	0.20 U
cadmium (Cd)	μg/L		5.0													0.32	В	0.6	U	0.6	U	0.37	В	0.30 U
calcium (Ca)	μg/L		5000.0													31,800.00		30,400		32,200		32,900		3,210
chromium (Cr)	μg/L		10.0													0.50	U	1.3	U	1.3	U		U	0.80 U
cobalt (Co)	μg/L		50.0													17.5	В	14.2	В	15.4	В	15.5	В	15.1 B
copper (Cu)	μg/L		25.0													5.2	В	5.9	В	5.9	В	10.9	В	9.2 B
iron (Fe)	μg/L	600*	200.0	55.0	В	201.0		86.3	В	126.0			254.0	J		43.0	В	204.0		258.0	J	212	J	198 J
lead (Pb)	μg/L	50.0	10.0	1.3	U	2.0	U	3.0	U	2.0	U		2.3	U		12.9		6.7		5.0		8.0		5.9
magnesium (Mg)	μg/L		5000.0													7,770.00		7,660		8,040		8,620		8,010
manganese (Mn)	μg/L	600*	15.0	590.0		458.0		485.0		460.0			490.0	J		502		471.0		495.0		480		469
mercury (Hg)	μg/L		0.2													0.13	BJ	0.2	U	0.2	U	0.10	U	0.11 B
nickel (Ni)	μg/L		40.0													8.0	В	1.8	U	1.8	U	7.6	В	7.5 B
potassium (K)	μg/L		5000.0													14,800.00	J	16,100	J	16,900	J	18,900		16,800
selenium (Se)	μg/L	40.0	30.0	3.4	U	5.0	U	3.3	В	4.9	U		4.9	U		2.2	U	3.0	U	3.0	U	3.0	U	3.0 U
silver (Ag)	μg/L		10.0													0.70	U	2.0	U	2.0	U	0.80	U	0.80 U
sodium (Na)	μg/L		5000.0													80,900.00		86,900	J	91,800	J	91,300	J	89,400 J
thallium (TI)	μg/L		10.0													3.3	U	8.8	U	8.8	U	2.4	U	2.4 U
vanadium (V)	μg/L		50.0													0.50	U	1.0	U	1.0	U	0.70	U	0.70 U
zinc (Zn)	μg/L		20.0													23.5	J	1,080		1,230		3,630	J	1,960 J
field instrument												no data	nm		no data									
pН	su															5.78		5.91		5.91		6.00		6.00
conductivity	µmhos/cr	n														0.958		0.905		0.905		0.909		0.909
turbidity	NTU															12.7		32.2		32.2		27.6	\neg	27.6
DO	mg/L															1.54		1.34		1.34		1.48	\neg	1.48
temperature	°C															19.69		20.56		20.56		17.22	\neg	17.22
Eh (ORP)	mV															211		121		121		132	\dashv	132
(/																							\dashv	
other												no data			no data								+	
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.010	U	0.010	U	0.010	U	0.010	U		10.0	U									+	
TSS	mg/L	1,000.0	0.0.0	5.0	U	5.0	U	5.0	U	5.0	U		5	U									+	
. 55	mg/L	1,000.0		0.0		0.0	J	0.0	J	0.0	Ü												+	

Table A-15 Claremont Polychemical Superfund Site EXT-2 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-2		EXT-2	
sampling date				2/25/00		3/1/00		5/3/00		5/10/00		8/9/00		11/15/00		2/7/01		05/16/01		08/15/01		11/20/01	
cooler temp (°C)				6.0	J	9.0	J	5.0		3.0		6.0	J	10.0	R	6.0	J	no CoC		14.1 °C	R	no CoC	
VOCs																							
VOC dilution factor				20x		20x		5x		10x		10x		2x		2x		2x		2x		4x	
dichlorodifluoromethane	μg/L		0.50																				
chloromethane	μg/L		0.50	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
vinyl chloride	μg/L		0.50	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
bromomethane	μg/L		0.50	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
chloroethane	μg/L		0.50	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
trichlorofluoromethane	μg/L		0.50																				
1,1-dichloroethene	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	2.0	J	4.0	J	4.0	J	4.0	J	20.0	U
1,1,2-trichloro-1,2,2-trifluoro	μg/L		0.50																				
acetone	μg/L		5.0	200.0	U	200.0	U	85.0		230.0	В	100.0	J	6.0	U	10.0	U	3.0	JB	25		40.0	U
carbon disulfide	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
methyl acetate	μg/L		0.50																				
methylene chloride	μg/L	5.0	0.50	100.0	U	100.0	U	20.0	J	24.0	J	50.0	J	4.0	U	2.0	U	8.0	JB	13.0	В	6.0	
trans -1,2-dichloroethene	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
tert-butyl methyl ether	μg/L		0.50																				
1,1-dichloroethane	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	1.0	J	.9	J	10.0	U	20.0	
cis-1,2-dichloroethene	μg/L	5.0	0.50	100.0	U	100.0	U	26.0		16.0	J	56.0		12.0		14.0		14.0		13		16.00	J
2-butanone (MEK)	μg/L		5.0	200.0	U	200.0	U	50.0	U	26.0	U	100.0	J	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
bromochloromethane	μg/L		0.50																				
chloroform	μg/L	7.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
1,1,1-trichloroethane	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	4.0	J	8.0	J	10.0		9.0	J	5.0	U
cyclohexane	μg/L		0.50																				
carbon tetrachloride	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
benzene	μg/L	0.7	0.50	14.0	U	14.0	U	4.0	U	7.0	U	7.0	U	1.0	U	0.2	J	1.0	U	1.0	U	3.0	U
1,2-dichloroethane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
trichloroethene	μg/L	5.0	0.50	28.0	J	100.0	U	670.0		24.0	J	64.0		280.0		170.0		210.0		320.0		290.00	
methylcyclohexane	μg/L		0.50																				
1,2-dichloropropane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
bromodichloromethane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
cis-1,3-dichloropropene	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
4-methyl-2-pentanone	μg/L		5.0	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
toluene	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
trans-1,3-dichloropropene	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
1,1,2-trichloroethane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
tetrachloroethene	μg/L	5.0	0.50	1,900.0		800.0		710.0		1,100.0		1,300.0		210.0		350.0		300.0		280.0		330.00	
2-hexanone	μg/L		5.0	200.0	U	200.0	U	50.0	U	100.0	U	100.0	U	20.0	U	20.0	U	20.0	U	20.0	U	40.0	U
dibromochloromethane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
1,2-dibromoethane	μg/L	_	0.50							_												_	
chlorobenzene	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
ethylbenzene	μg/L	5.0	0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
xylene	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
styrene	μg/L		0.50	100.0	U	100.0	U	1.0	J	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
bromoform	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	U	10.0	U	10.0	U	10.0	U	20.0	U
isopropylbenzene	μg/L		0.50																				
1,1,2,2-tetrachloroethane	μg/L		0.50	100.0	U	100.0	U	25.0	U	50.0	U	50.0	U	10.0	J	10.0	U	10.0	U	10.0	U	20.0	U
1,3-dichlorobenzene	μg/L		0.50																				
1,4-dichlorobenzene	μg/L		0.50																				
1,2-dichlorobenzene	μg/L		0.50																				
1,2-dibromo-3-chloropropan	μg/L		0.50																				
1,2,4-trichlorobenzene	μg/L		0.50																				
1,2,3-trichlorobenzene	μg/L		0.50																				

Table A-15 Claremont Polychemical Superfund Site EXT-2 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-2	EXT-2		EXT-2		EXT-2	
sampling date				Feb-02	5/29/02		8/7/02		10/25/02	
cooler temp (°C)										
VOCs				no data						
VOC dilution factor					1x		1x		1x	
dichlorodifluoromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
chloromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
vinyl chloride	μg/L		0.50		0.50	U	0.50	U	0.50	U
bromomethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
chloroethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
trichlorofluoromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,1-dichloroethene	μg/L	5.0	0.50		6.70		4.20		3.70	
1,1,2-trichloro-1,2,2-trifluoro	μg/L		0.50		0.50	U	0.50	U	0.50	U
acetone	μg/L		5.0		5.0	U	5.0	U	5.0	U
carbon disulfide	μg/L		0.50		0.50	U	0.50	U	0.50	U
methyl acetate	μg/L		0.50		0.50	U	0.50	U	0.50	U
methylene chloride	μg/L	5.0	0.50		0.50	U	0.50	U	0.50	UJ
trans -1,2-dichloroethene	μg/L	5.0	0.50		0.50	U	0.10	J	0.50	U
tert-butyl methyl ether	μg/L		0.50		0.11	J	0.20	J	0.12	J
1,1-dichloroethane	μg/L	5.0	0.50		1.50		1.10		1.00	J
cis-1,2-dichloroethene	μg/L	5.0	0.50		11.00		13.00		13.00	
2-butanone (MEK)	μg/L		5.0		5.0	U	5.0	U	6.70	
bromochloromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
chloroform	μg/L	7.0	0.50		0.17	J	0.19	J	0.18	J
1,1,1-trichloroethane	μg/L	5.0	0.50		11.00		8.6		0.82	
cyclohexane	μg/L		0.50		0.50	U	0.50	U	0.50	U
carbon tetrachloride	μg/L		0.50		0.50	U	0.50	U	0.50	U
benzene	μg/L	0.7	0.50		0.50	U	0.50	U	0.50	U
1,2-dichloroethane	μg/L		0.50		0.70		0.50	U	0.50	U
trichloroethene	μg/L	5.0	0.50		210.00	D	160.00	D	140.00	D
methylcyclohexane	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2-dichloropropane	μg/L		0.50		0.50	U	0.50	U	0.50	U
bromodichloromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
cis-1,3-dichloropropene	μg/L		0.50		0.50	U	0.50	U	0.50	U
4-methyl-2-pentanone	μg/L		5.0		5.0	U	5.0	U	5.0	U
toluene	μg/L	5.0	0.50		0.50	U	0.50	U	0.50	UJ
trans-1,3-dichloropropene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,1,2-trichloroethane	μg/L		0.50		0.13	J	0.18	J	0.50	U
tetrachloroethene	μg/L	5.0	0.50		150.00	D	280.00	D	190.00	D
2-hexanone	μg/L		5.0		5.0	U	5.0	U	5.0	U
dibromochloromethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2-dibromoethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
chlorobenzene	μg/L	5.0	0.50		0.50	U	0.50	U	0.50	UJ
ethylbenzene	μg/L	5.0	0.50		0.50	U	0.50	U	0.50	U
xylene	μg/L		0.50		0.50	U	0.50	U	0.50	U
styrene	μg/L		0.50		0.50	U	0.50	U	0.50	U
bromoform	μg/L		0.50		0.50	UJ	0.50	U	0.50	U
isopropylbenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,1,2,2-tetrachloroethane	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,3-dichlorobenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,4-dichlorobenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2-dichlorobenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2-dibromo-3-chloropropani	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2,4-trichlorobenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U
1,2,3-trichlorobenzene	μg/L		0.50		0.50	U	0.50	U	0.50	U

Table A-15 Claremont Polychemical Superfund Site EXT-2 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-1B		EXT-2		EXT-2	
sampling date				2/25/00		3/1/00		5/3/00		5/10/00		8/9/00		11/15/00		2/7/01		05/16/01		08/15/01		11/20/01	
cooler temp (°C)				6.0	J	9.0	J	5.0		3.0		6.0	J	10.0	R	6.0	J	no CoC		14.1 °C	R	no CoC	
metals			CRDL																				
aluminum (AI)	ua/L		200.0																				
antimony (Sb)	μg/L	3.0	20.0	3.0	В	6.5	В	2.1	U	2.1	U	2.1	U	5.0	U	2.0	U	4.4	U	4.7	U	4.5	U
arsenic (As)	μg/L	50.0	40.0	3.0	U	3.0	U	3.1	U	3.1	U	2.0	U	2.5	U	3.0	U	4.2	U	4.4	U	4.6	U
barium (Ba)	μg/L	2,000.0	200.0	103	В	115	В	77	В	103.0	В	101.0	В	110.0	В	83.5	В	85.1	В	73.7	В	89.3	BJ
beryllium (Be)	ua/L	,	5.0																				
cadmium (Cd)	μg/L		5.0																				
calcium (Ca)	μg/L		5000.0																				
chromium (Cr)	μg/L		10.0																				
cobalt (Co)	μg/L		50.0																				
copper (Cu)	μg/L		25.0																				
iron (Fe)	μg/L	600*	200.0	380.0		327.0		635.0		142.0		226.0		250.0		220.0		570.0		662.0		897.0	J
lead (Pb)	μg/L	50.0	10.0	7.0		18		19.7		31.2		69.2		16.7		21.4		12.4		2.8	В	29.2	
magnesium (Mg)	μg/L		5000.0																				
manganese (Mn)	μg/L	600*	15.0	669.0		649.0		482.0		576.0		542.0		462.0		422.0		409.0		343.0		413.0	J
mercury (Hg)	ug/L		0.2																				
nickel (Ni)	μg/L		40.0																				
potassium (K)	µg/L		5000.0																				
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	1.5	U	1.5	U	3.4	U	5.0	U	3.3	В	4.9	U	4.8	U	4.9	U
silver (Ag)	µg/L		10.0																				
sodium (Na)	μg/L		5000.0																				
thallium (TI)	μg/L		10.0																				
vanadium (V)	µg/L		50.0																				
zinc (Zn)	μg/L		20.0																				
field instrument																				no data		nm	
рН	su																						
conductivity	µmhos/cr	n																					
turbidity	NTU																						
DO	mg/L																						
temperature	°C																						
Eh (ORP)	mV																						
other																							
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.01	U	0.01	U	0.01	U	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	0.01	U	10.0	U
TSS	mg/L	1,000.0		10.0	U	10.0	U	5.0	U	11.0		5.0	U	5.0	U	5.0	U	5.0	U	5.00	U	5.5	

Table A-15 Claremont Polychemical Superfund Site EXT-2 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-2	EXT-2		EXT-2		EXT-2	
sampling date				Feb-02	5/29/02		8/7/02		10/25/02	
cooler temp (°C)										
metals			CRDL	no data						
aluminum (AI)	μg/L		200.0		120	В	22.2	U	119	В
antimony (Sb)	μg/L	3.0	20.0		1.6	U	8.7	U	1.2	U
arsenic (As)	μg/L	50.0	40.0		4.2	U	6.0	U	3.0	U
barium (Ba)	μg/L	2,000.0	200.0		103	В	95.9	В	95.5	В
beryllium (Be)	μg/L		5.0		1.0	В	0.1	U	0.37	В
cadmium (Cd)	μg/L		5.0		0.30	U	0.6	U	0.30	U
calcium (Ca)	μg/L		5000.0		22,100.00		21,000		21,600	
chromium (Cr)	μg/L		10.0		0.50	U	1.3	U	0.80	U
cobalt (Co)	μg/L		50.0		16.0	В	13.2	В	15.1	В
copper (Cu)	μg/L		25.0		5.1	В	29.6		49.5	
iron (Fe)	μg/L	600*	200.0		11.4	U	480.0	J	724	J
lead (Pb)	μg/L	50.0	10.0		32.2		23.8		38.6	
magnesium (Mg)	μg/L		5000.0		7,360.00		7,560		7,630	
manganese (Mn)	μg/L	600*	15.0		392		397.0		403	
mercury (Hg)	μg/L		0.2		0.15	BJ	0.2	U	0.10	U
nickel (Ni)	μg/L		40.0		8.6	В	1.8	U	9.5	В
potassium (K)	μg/L		5000.0		10,300.00	J	10,700	J	11,700	
selenium (Se)	μg/L	40.0	30.0		2.2	U	3.0	U	3.0	U
silver (Ag)	μg/L		10.0		0.70	U	2.0	U	0.80	U
sodium (Na)	μg/L		5000.0		59,000.00		56,700	J	62,500	J
thallium (TI)	μg/L		10.0		3.3	U	8.8	U	2.4	U
vanadium (V)	μg/L		50.0		0.50	U	1.0	U	0.70	U
zinc (Zn)	μg/L		20.0		13.7	В	1,380		2,470	J
field instrument				no data						
pH	su				4.99		5.45		5.33	
conductivity	µmhos/cr	n			0.717		0.668		0.676	
turbidity	NTU				5.4		6.6		28.3	
DO	mg/L				2.02		2.41		2.39	
temperature	°C				19.29		21.37		17.69	
Eh (ORP)	mV				291		158		190	
. /										
other				no data						
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010							
TSS	mg/L	1,000.0								

Table A-16 Claremont Polychemical Superfund Site EXT-3 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1C		EXT-1C	E	XT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C	EXT-1C		EXT-1C	EXT-1C		EXT-1C
sampling date				2/25/00		3/1/00	3	3/9/00		3/16/00		3/23/00		3/29/00	T	4/6/00	T	4/13/00	4/25/00		4/26/00	5/3/00		5/10/00
cooler temp (°C)				6.0	J	9.0	J	6.0	J	3.0		3.0		2.0		6.0	J	dm	4.0		5.0	5.0		3.0
VOCs																	П							
VOC dilution factor				10x		5x		10x		33.8x		33.8x		44x	T	10X	П	10x	10x		10x	10x		10x
dichlorodifluoromethane	μg/L		0.50												T		П							
chloromethane	μg/L		0.50	100.0	U	50.0 l	J 1	100.0	U	34.0	U	34.0	U	44.0	U	100.0 l	J	100.0 U	100.0	U	100.0 U	100.0	U	100.0 U
vinyl chloride	μg/L		0.50	100.0	U	50.0 l	J 1	100.0	U	34.0	U	34.0	U	44.0	U	100.0 l	J	100.0 U	100.0	U	100.0 U	100.0	U	100.0 U
bromomethane	μg/L		0.50	100.0	U	50.0 l	J 1	100.0	U	34.0	U	34.0	U	44.0	U		J	100.0 U	100.0	U	100.0 U		U	100.0 U
chloroethane	μg/L		0.50	100.0	U	50.0 l	J 1	100.0	U	34.0	U	34.0	U	44.0	U	100.0 l	J	100.0 U	100.0	U	100.0 U	100.0	U	100.0 U
trichlorofluoromethane	μg/L		0.50																					
1,1-dichloroethene	μg/L	5.0	0.50	50.0	U	25.0 l	J	50.0	U	51.0		67.0		56.0	\dashv	3.0	J	3.0 J	5.0	J	50.0 U	50.0	U	50.0 U
1,1,2-trichloro-1,2,2-trifluoroe	μg/L		0.50												\dashv		+							
acetone	μg/L		5.0	100.0	U	50.0 l] 1	100.0	U	170.0	U	170.0	U	580.0	\dashv	44.0 J	в	34.0 U	170.0	U	22.0 JB	33.0	JB	230.0 B
carbon disulfide	μg/L		0.50	50.0	U	25.0 l		50.0	U	34.0	U	34.0	Ū		U		J	50.0 U	50.0	U	50.0 U		U	50.0 U
methyl acetate	μg/L		0.50	00.0	Ŭ	20.0		00.0	_	01.0	Ū	01.0			_	00.0		00.0	00.0		00.0	00.0		00.0
methylene chloride	μg/L	5.0	0.50	50.0	U	25.0 l	1	50.0	.1	34.0	U	34.0	U	44.0	U	14.0 J	B	7.0 U	62.0	U	15.0 J	16.0		34.0 J
trans -1,2-dichloroethene	μg/L	5.0	0.50	50.0	U	25.0 l	_	50.0	U	34.0	U	34.0	U		U		J	50.0 U	50.0	U	50.0 U		U	50.0 U
tert-butyl methyl ether		5.0	0.50	50.0	U	25.0	,	30.0	U	34.0	U	34.0	U	44.0	U	30.0	_	30.0 0	50.0	U	30.0 0	30.0	U	30.0 0
1,1-dichloroethane	μg/L μg/L	5.0	0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
		5.0	0.50	93.0	U	55.0	,	80.0	U	49.0	U	64.0	U	54.0	0		J	40.0 J	54.0	- 0	43.0 J	30.0	.J	41.0 J
cis-1,2-dichloroethene	μg/L	5.0		100.0	U		J 1	100.0			U	170.0	U		U		В	15.0 U	100.0	U		26.0		27.0 U
2-butanone (MEK)	μg/L		5.0	100.0	U	50.0 t	J	100.0	U	170.0	U	170.0	U	220.0	U	15.0 J	В	15.0 U	100.0	U	21.0 JB	26.0	JB	27.0 0
bromochloromethane	μg/L	7.0	0.50	50.0		050 1		50.0		24.0		04.0		44.0				4.0	50.0		0.0	50.0		50.0
chloroform	μg/L	7.0	0.50	50.0	U	25.0 l	_	50.0	U	34.0	U	34.0	U		U		J	4.0 JB	50.0	U	3.0 J		U	50.0 U
1,1,1-trichloroethane	μg/L	5.0	0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	6.0	J	7.0 J	11.0	J	10.0 J	50.0	U	50.0 U
cyclohexane	μg/L		0.50														_							
carbon tetrachloride	μg/L		0.50	50.0	U	25.0 l	_	50.0	U	34.0	U	34.0	U		U		J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
benzene	μg/L	0.7	0.50	7.0	U	4.0 l	_	7.0	U	34.0	U	34.0	U		U		J	7.0 U	7.0	U	7.0 U	7.0	U	7.0 U
1,2-dichloroethane	μg/L		0.50	50.0	U	25.0 l	_	50.0	U	34.0		34.0	U		U		J	50.0 U	50.0	U	50.0 U		U	50.0 U
trichloroethene	μg/L	5.0	0.50	1,900.0		930.0	1,	,400.0		1,000.0		1,400.0		1,300.0	_	870.0	_	1,000.0	1,600.0		1,500.0	820.0		1,400.0
methylcyclohexane	μg/L		0.50																					
1,2-dichloropropane	μg/L		0.50	50.0	U	25.0 l		50.0	U	34.0	U	34.0	U		U	50.0 l	J	50.0 U	50.0	U	50.0 U		U	50.0 U
bromodichloromethane	μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
cis-1,3-dichloropropene	μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
4-methyl-2-pentanone	μg/L		5.0	100.0	U	50.0 l	J 1	100.0	U	170.0	U	170.0	U	44.0	U	100.0 l	J	100.0 U	100.0	U	100.0 U	100.0	U	100.0 U
toluene	μg/L	5.0	0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	0.9	J	1.0 J	50.0	U	50.0 U	2.0	J	50.0 U
trans-1,3-dichloropropene	μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
1,1,2-trichloroethane	μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
tetrachloroethene	μg/L	5.0	0.50	850.0		420.0		540.0		440.0		560.0		450.0	T	260.0	T	290.0	430.0		360.0	700.0		280.0
2-hexanone	μg/L		5.0	100.0	U	50.0 l	J 1	100.0	U	170.0	U	34.0	U	220.0	U	100.0 l	J	100.0 U	100.0	U	100.0 U	100.0	U	100.0 U
dibromochloromethane	μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
1,2-dibromoethane	μg/L		0.50		-			-									\top							
chlorobenzene	μg/L	5.0	0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
ethylbenzene	μg/L	5.0	0.50	50.0	U		_	50.0	U	34.0	U	34.0	Ü		U		J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
xvlene	μg/L		0.50	50.0	U		J	18.0	J	34.0	U	34.0	Ü		U		J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
styrene	μg/L		0.50	50.0	U	25.0 U		50.0	U	34.0	U	34.0	U		U		J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
bromoform	μg/L		0.50	50.0	U		_	50.0	U	34.0	U	34.0	Ü		U		J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
isopropylbenzene	μg/L		0.50	00.0	J	20.0	-	55.0	Ü	04.0	J	04.0		44.0	-	00.0	+	30.0	55.5		00.0	00.0	٥	30.0 0
1.1.2.2-tetrachloroethane	μg/L μg/L		0.50	50.0	U	25.0 l	J	50.0	U	34.0	U	34.0	U	44.0	U	50.0 l	J	50.0 U	50.0	U	50.0 U	50.0	U	50.0 U
1,3-dichlorobenzene	μg/L μg/L		0.50	30.0	U	20.0	,	50.0	U	J4.U	U	J 4 .0	U	44.0	J	30.0	_	30.0 0	30.0	U	30.0 0	30.0	U	30.0 0
							_								\dashv		+							
1,4-dichlorobenzene	μg/L		0.50 0.50				_								\dashv		+							
1,2-dichlorobenzene	μg/L						_		-						-		+							
1,2-dibromo-3-chloropropan	μg/L		0.50				_								-		+							
1,2,4-trichlorobenzene	μg/L		0.50				4								4		\dashv							
1,2,3-trichlorobenzene	μg/L		0.50																			<u> </u>		

Table A-16 Claremont Polychemical Superfund Site EXT-3 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-3		EXT-3		EXT-3	EXT-3		EXT-3		EXT-3
sampling date				8/9/00		11/15/00		2/7/01		05/16/01		08/15/01		11/20/01		Feb-02	5/29/02		8/7/02		10/25/02
cooler temp (°C)				6.0	J	10.0	R	6.0	J	no CoC		14.1 °C	R	no CoC							
VOCs																no data					
VOC dilution factor				10x		10x		10x		10x		10x		10x			1x		1x		1x
dichlorodifluoromethane	μg/L		0.50														0.50	U	0.50	U	0.50 U
chloromethane	μg/L		0.50	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		0.50	U	0.50	U	0.50 U
vinyl chloride	μg/L		0.50	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		0.50	U	0.50	U	0.50 U
bromomethane	μg/L		0.50	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		0.50	U	0.50	U	0.50 U
chloroethane	μg/L		0.50	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		0.50	U	0.50	U	0.50 U
trichlorofluoromethane	μg/L		0.50														0.50	U	0.50	U	0.12 J
1,1-dichloroethene	μg/L	5.0	0.50	50.0	U	7.0	J	12.0	J	23.0	J	16.0	J	17.00	J		17.00		15.00		0.15
1,1,2-trichloro-1,2,2-trifluoro	μg/L		0.50														0.26	J	0.24	J	0.50 U
acetone	μg/L		5.0	100.0	J	100.0	J	28.0	J	100.0	U	170		100.0	U		5.0	U	5.0	U	5.0 U
carbon disulfide	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
methyl acetate	μg/L		0.50														0.50	U	0.50	U	0.50 U
methylene chloride	μg/L	5.0	0.50	50.0	J	22.0	U	10.0	J	12.0	JB	40.0	JB	39.0			0.50	U	0.50	U	0.78 UJ
trans -1,2-dichloroethene	µg/L	5.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.26	J	0.21 J
tert-butyl methyl ether	μg/L		0.50														0.50		0.76		0.64
1,1-dichloroethane	μg/L	5.0	0.50	50.0	U	4.0	J	5.0	J	7.0	J	7.0	J	50.0	U		4.20		4.4		5.20
cis-1,2-dichloroethene	μg/L	5.0	0.50	44.0	J	33.0	J	29.0	J	21.0	J	20.0	J	16.00	J		18.00	J	19.00	J	19.00 J
2-butanone (MEK)	μg/L		5.0	100.0	u	100.0	J	100.0	U	100.0	U	100.0	U	100.0	U		5.0	U	5.0	U	5.0 U
bromochloromethane	µg/L		0.50														0.50	U	0.50	U	0.50 U
chloroform	μg/L	7.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.38	J	0.42	J	0.43 J
1,1,1-trichloroethane	μg/L	5.0	0.50	50.0	U	18.0	J	22.0	J	37.0	J	45.0	J	45.00	J		27.00	D	26.00	D	27.00 D
cyclohexane	μg/L	0.0	0.50	00.0						0.1.0				10.00			0.50	U	0.50	U	0.50 U
carbon tetrachloride	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
henzene	μg/L	0.7	0.50	7.0	U	7.0	U	7.0	U	7.0	U	7.0	U	7.0	U		0.50	U	0.50	U	0.50 U
1,2-dichloroethane	μg/L	0.7	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		1.40	Ŭ	0.80		0.50 U
trichloroethene	μg/L	5.0	0.50	1,900.0	Ü	1,400.0	Ü	1,300.0		1,100.0	Ü	820.0	Ü	770.00			620.00	D	580.00	D	780.00 D
methylcyclohexane	μg/L	0.0	0.50	1,000.0		1,400.0		1,000.0		1,100.0		020.0		770.00			0.50	U	0.50	U	0.50 U
1,2-dichloropropane	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
bromodichloromethane	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
cis-1,3-dichloropropene	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.12	J	0.50	U	0.50 U
4-methyl-2-pentanone	µg/L		5.0	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		5.0	U	5.0	U	5.0 U
toluene	μg/L	5.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	4.0	J	50.0	U		0.50	U	0.50	U	0.50 U
trans-1,3-dichloropropene	μg/L	3.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
1 1 2-trichloroethane	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.28	J	0.38	J	0.29 J
tetrachloroethene	μg/L	5.0	0.50	180.0	Ü	110.0	Ü	70.0	-	35.0	J	32.0	J	31.00	J		45.00	D	21.00		19.00
2-hexanone	μg/L	0.0	5.0	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U	100.0	U		5.0	U	5.0	U	5.0 U
dibromochloromethane	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U		0.50	U	0.50	U	0.50 U
1,2-dibromoethane	μg/L μg/L		0.50	55.0	J	55.0	<u> </u>	55.0	-	55.0	<u> </u>	55.0	J	55.0	J		0.50	U	0.50	U	0.50 U
chlorobenzene	μg/L	5.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
ethylbenzene	μg/L μg/L	5.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
	μg/L	3.0	0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
xylene styrene	μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
bromoform	μg/L μg/L		0.50	50.0	U	50.0	U	50.0	U	50.0	U	50.0	U	50.00	U		0.50	UJ	0.50	U	0.16 J
isopropylbenzene	μg/L		0.50	50.0	J	50.0	J	50.0	U	50.0	J	50.0	J	50.00	J		0.50	U	0.50	U	0.10 J
1,1,2,2-tetrachloroethane	μg/L μg/L		0.50	50.0	U	50.0	-	50.0	U	50.0	U	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
1,3-dichlorobenzene	μg/L μg/L		0.50	50.0	U	30.0	J	50.0	U	50.0	J	50.0	U	50.00	U		0.50	U	0.50	U	0.50 U
1,4-dichlorobenzene	μg/L		0.50														0.50	U	0.50	U	0.50 U
1,4-dichlorobenzene	μg/L μg/L		0.50														0.50	U	0.50	U	0.50 U
			0.50														0.50	U	0.50	U	0.50 U
1,2-dibromo-3-chloropropan	μg/L		0.50														0.50	U	0.50	U	0.50 U
1,2,4-trichlorobenzene	μg/L																	U	0.50	U	
1,2,3-trichlorobenzene	μg/L	<u> </u>	0.50														0.50	U	0.50	U	0.50 U

Table A-16
Claremont Polychemical Superfund Site
EXT-3 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-1C	
sampling date				2/25/00		3/1/00		3/9/00		3/16/00		3/23/00		3/29/00		4/6/00		4/13/00		4/25/00		4/26/00		5/3/00		5/10/00	
cooler temp (°C)				6.0	J	9.0	J	6.0	J	3.0		3.0		2.0		6.0	J	dm		4.0		5.0		5.0	\Box	3.0	
metals			CRDL																						\dashv		
aluminum (AI)	μq/L		200.0																								
antimony (Sb)	μg/L	3.0	20.0	3.0	U	4.6	В	3.0	U	0.92	U	0.92	U	0.92	U	4.8	В	1.5	U	4.3	В	2.1		2.1	U	2.1	U
arsenic (As)	μg/L	50.0	40.0	3.0	U	3.0	U	3.0	U	1.0	В	0.6	В	0.5	U	3.8	В	4.8	В	3.1	U	3.1	U	3.1	U	3.1	U
barium (Ba)	μg/L	2,000.0	200.0	63.3	В	60.6	В	60.3	В	71.1		69.4		68.6	U	66.4	В	3.1	U	68.1	В	68.8	В	72.9	В	60.0	В
beryllium (Be)	μg/L		5.0																								
cadmium (Cd)	μg/L		5.0																								
calcium (Ca)	μg/L		5000.0																								
chromium (Cr)	μg/L		10.0																								
cobalt (Co)	μg/L		50.0																								
copper (Cu)	μg/L		25.0																								
iron (Fe)	μg/L	600*	200.0	1630.0		659.0		736.0		800.0		859.0		617.0		1,040.0				691.0		536.0		504.0		725.0	
lead (Pb)	μg/L	50.0	10.0	13.3		2.0	U	3.0	В	1.1		1.1		0.46	U	4.5				1.5	В	1.3	U	1.7	В	1.3	U
magnesium (Mg)	μg/L		5000.0							8,700.0		8,360.0		8,270.0													
manganese (Mn)	μg/L	600*	15.0	414.0		390.0		395.0		457.0		439.0		424.0		402.0		392.0		384.0		333.0		447.0		349.0	
mercury (Hg)	μg/L		0.2																								
nickel (Ni)	μg/L		40.0																								
potassium (K)	μg/L		5000.0																								
selenium (Se)	μg/L	40.0	30.0	3.0	U	3.0	U	3.0	U	0.8	U	0.8	U	0.8	U	1.5	U			1.5	U	1.5	U	1.5	U	1.8	В
silver (Ag)	μg/L		10.0																								
sodium (Na)	μg/L		5000.0																								
thallium (TI)	μg/L		10.0																								
vanadium (V)	μg/L		50.0																								
zinc (Zn)	μg/L		20.0																								
field instrument																									\dashv		
pН	su																										
conductivity	µmhos/cr	m																									
turbidity	NTU																										
DO	mg/L																										$\overline{}$
temperature	°C																								\neg		
Eh (ORP)	mV																								\neg		
En (Oral)																											
other																											
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.01	U	0.01	U	0.01	U	0.01	U							0.01	U	0.01	U	0.01	U		U	0.010	U
TSS	mg/L	1,000.0		10.0	U	10.0	U	10.0	U							5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
·																											

Table A-16 Claremont Polychemical Superfund Site EXT-3 Cumulative Extraction Well Data

Analyte	units	discharge limit	CRQL	EXT-1C		EXT-1C		EXT-1C		EXT-1C		EXT-3		EXT-3		EXT-3	EXT-3		EXT-3		EXT-3
sampling date				8/9/00		11/15/00		2/7/01		05/16/01		08/15/01		11/20/01		Feb-02	5/29/02		8/7/02		10/25/02
cooler temp (°C)				6.0	J	10.0	R	6.0	J	no CoC		14.1 °C	R	no CoC							
metals			CRDL													no data					
aluminum (Al)	μg/L		200.0														82.6	В	22.2	U	56.7 L
antimony (Sb)	μg/L	3.0	20.0	2.1	U	5.0	U	2.0	U	4.4	U	4.7	U	4.5	U		1.6	U	8.7	U	1.2 L
arsenic (As)	μg/L	50.0	40.0	2.0	U	2.5	U	3.0	U	4.2	U	4.4	U	4.6	U		4.2	U	6.0	U	3.0 U 87.2 E 0.33 E
barium (Ba)	μg/L	2,000.0	200.0	63.1	В	61.2	В	61.3	В	70.0	В	68.2	В	77.8	BJ		73.5	В	86.5	В	87.2 E
beryllium (Be)	μg/L		5.0														0.82	В	0.1	U	0.33 E
cadmium (Cd)	μg/L		5.0														0.30	U	0.6	U	0.30 L
calcium (Ca)	μg/L		5000.0														16,400.00		14,200		14,900
chromium (Cr)	μg/L		10.0														0.50	U	1.3	U	0.80 L
cobalt (Co)	μg/L		50.0														13.6	В	12.7	В	14.3 E
copper (Cu)	μg/L		25.0														3.2	В	20.7	В	27.3
iron (Fe)	μg/L	600*	200.0	394.0		2,260.0		661.0		183.0		4,580.0		922.0	J		11.4	U	107.0		123
lead (Pb)	μg/L	50.0	10.0	1.3	U	2.0	U	3.0	U	2.0	U	2.0	U	2.3	U		35.1		23.9		10.3
magnesium (Mg)	μg/L		5000.0														5,830.00		5,950		6,010
manganese (Mn)	μg/L	600*	15.0	345.0		323.0		312.0		286.0		299.0		358.0	J		342		336.0		343
mercury (Hg)	μg/L		0.2														0.18	BJ	0.2	U	0.10 L
nickel (Ni)	μg/L		40.0														5.3	В	1.8	U	7.1 E
potassium (K)	μg/L		5000.0														8,970.00	J	7,780	J	8,310
selenium (Se)	μg/L	40.0	30.0	3.4	U	5.0	U	3.0	U	4.9	U	4.8	U	5.1	J		2.2	U	3.0	U	3.0 L
silver (Ag)	μg/L		10.0														0.70	U	2.0	U	0.80 L
sodium (Na)	μg/L		5000.0														32,300.00		24,100	J	29,200 J
thallium (TI)	μg/L		10.0														3.3	U	8.8	U	2.4 L
vanadium (V)	μg/L		50.0														0.50	U	1.0	U	0.70 L
zinc (Zn)	μg/L		20.0														6.7	В	457.0		592 J
field instrument												no data		nm		no data					
рН	su																5.33		5.17		5.11
conductivity	µmhos/cr	n															0.683		0.396		0.396
turbidity	NTU																11.4		7.0		12.3
DO	mg/L																1.82		3.38		3.01
temperature	°C																19.72		21.10		17.87
Eh (ORP)	mV																273		194		225
(- " /																					
other																no data					
Cr ⁺⁶ (hexavalent chromium)	mg/L	0.100	0.010	0.010	U	0.010	U	0.010	U	0.010	U	0.010	U	10.000	U						
TSS	mg/L	1,000.0		5.0	U	9.0		5.0	U	5.0	U	12.0		5.0	U						
		.,			_						-				-		1				

Appendix B

Raw Process Data Tables

Table B-1 Treated System Effluent Storage Tank - VOCs June 8, 2001 to February 28, 2002

Analyte	units	MDL	CRQL	CLWA09-067	CL-WAO9-68	CL-WAO9-69	CL-WAO9-70	CL-WAO9-71	CL-WAO9-72	CL-WAO9-72*	CLG09WA-074	CLG09WA-075	CLG09WA-076	CLG09WA-077	CL-WA-09-078	CLG09WA-079	CLG09WA-080
Date Analyzed				6/8/01	6/14/01	6/20/01	6/27/01	7/9/01	7/12/01	7/18/01	7/27/01	8/1/01	8/8/01	8/15/01	8/24/01	8/29/01	9/5/01
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
				ì	, ,	` '	, ,	ì	` '	, ,	ì	` '	` '	,	, ,	ì	` '
Dichlorodifluoromethane																	
chloromethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
vinyl chloride	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
bromomethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
chloroethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
Trichlorofluoromethane																	
1,1-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane																	
acetone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
carbon disulfide	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl Acetate																	
methylene chloride	μg/L	5.00	5.00	5.00 U	3.00 J	1.00 J	4.00 J	4.00 J	5.00 U	2.00 JB	5.00 U	5.00 U	1.00 J	0.40 JB	0.90 J	0.70 J	0.70 J
trans-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
tert-Butyl Methyl Ether																	
1,1-dichloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
2- butanone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
Bromochloromethane																	
chloroform	μg/L	7.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,1-trichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Cyclohexane																	
carbon tetrachloride	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
benzene	μg/L	0.70	0.70	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U
1,2-dichloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trichloroethene	μg/L	5.00	5.00	4.00 J	4.00 J	4.00 J	4.00 J	1.00 J	5.00 U	0.40 J	5.00 U	5.00 U	5.00 U	0.60 J	5.00 U	5.00 U	5.00 U
Methylcyclohexane																	
1,2-dichloropropane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
bromodichloromethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
cis 1,3-dichloropropene	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
4-methyl-2-pentanone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
toluene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
trans-1,3-dichloropropene	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,1,2-trichloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
tetrachloroethene	μg/L	5.00	5.00	0.90 J	1.00 J	1.00 J	0.90 J	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 J	5.00 U	5.00 U	5.00 U	5.00 U
2-hexanone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U
dibromochloromethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,2-Dibromoethane																	
chlorobenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
ethylbenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
xylene (total)	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
styrene	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
bromoform	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	,		5.00	5	F 00 11	F 00 11	F 00 11	5 00 11	F 00 /:	5.00	F 00 11	F 00 /:	F 00 11	F 00 /:	5.00	F	F 00 1:
1,1,2,2-tetrachloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
1,3-Dichlorobenzene														-			
1,4-Dichlorobenzene																	
1,2-Dichlorobenzene																	
1,2-Dibromo-3-chloropropane																	
1,2,4-Trichlorobenzene														-			
1,2,3-Trichlorobenzene																	
		0.51.0.5		0.70	0 = 1	0.04	0.71	7.01	7.00	0.00	0.00	0.00		0.00	0 =0		0 = 1
pH		6.5 to 8.6		6.59	6.54	6.61	6.51	7.01	7.82	6.80	6.68	6.62	6.55	6.63	6.73	6.75	6.54
Idface: Jah analysis positive detection														<u> </u>			

J: estimated

R: rejected
D: quantified at dilution

NM: not measured

UJ: estimated not detected

Page1 of 5

Table B-1 Treated System Effluent Storage Tank - VOCs June 8, 2001 to February 28, 2002

		EPA												T			
Analyte	units	cleanup	MDL	CLG09WA-081	CLG09WA-082	CLG09WA-083	CLG09WA-084	CLG09WA-085	CLG09WA-086	CLG09WA-087	CLG09WA-088	CLG09WA-090	CLG09WA-091	CL-WA-09-092	CL-WA-09-093	CL-WA-09-094	CL-WA-09-096
7y.c	••	goal		0200011111001			020000000000000000000000000000000000000		3200011111000	0200011111001		0200011111000					
Date Analyzed		3000		9/12/01	9/18/01	9/26/01	10/3/01	10/10/01	10/17/01	10/24/01	10/31/01	11/20/01	11/28/01	12/5/01	12/12/01	12/19/01	1/3/02
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
7003				(174)	(174)	(171)	(177)	(17.)	(174)	(170)	(174)	(171)	(177)	(174)	(170)	(170)	(174)
Dichlorodifluoromethane																	
chloromethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U
vinyl chloride	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
bromomethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
chloroethane	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	4.00 U	4.00 U	4.00 U	4.00 U	4.00 U
Trichlorofluoromethane	M3, =			10.00			.0.00		10.00	10.00	.0.00	10.00					
1,1-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U
1,1,2-Trichloro-1,2,2-trifluoroethane	μ 3 , =	0.00	0.00	0.00	0.00	3.55	0.00	0.00	3.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acetone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U
carbon disulfide	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
vinyl acetate	μg/L		10.00	5.00	2.00	2.00	5.55	2.00	3.00	3.00	2.00 3	5.55	2.00	3.00 0	3.00 0	3.00 5	5.55 5
methylene chloride	μg/L	5.00	5.00	5.00 U	0.70 JB	5.00 U	0.50 JB	5.00 U	5.00 U	5.00 U	0.60 JB	5.00 U	0.30 J	0.20 U	0.80 J	0.20 U	0.20 U
trans-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
tert-Butyl Methyl Ether	r3′ <u>-</u>	5.00	0.00	5.00	2.00	2.00	5.55	2.00	5.00	3.00	2.00 3	5.00	2.00	3.00 0	3.00 0	3.00 5	3.55 3
1,1-dichloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
2- butanone	μg/L	2.00	10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U
Bromochloromethane	M9, L		10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	0.10	0.10	0.10	0.10	0.10
chloroform	μg/L	7.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
1.1.1-trichloroethane	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Cyclohexane	r3, -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.20	0.20	0.20	0.20	0.20
carbon tetrachloride	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
benzene	μg/L	0.70	0.70	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.70 U	0.30 U	0.30 U	0.30 U	0.70 U	0.30 U
1,2-dichloroethane	μg/L	00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U
trichloroethene	μg/L	5.00	5.00	0.50 J	5.00 U	5.00 U	5.00 U	0.60 J	5.00 U	5.00 U	5.00 U	5.00 U	0.80 J	0.80 U	0.80 U	0.80 U	0.80 U
Methylcyclohexane	μg, <u>-</u>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1,2-dichloropropane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	5.00 U	0.30 U
bromodichloromethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
cis 1,3-dichloropropene	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	5.00 U	0.30 U
4-methyl-2-pentanone	μg/L		10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.40 U	0.40 U	0.40 U	10.00 U	0.40 U
toluene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	5.00 U	0.30 U
trans-1,3-dichloropropene	μg/L	0.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
1,1,2-trichloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
tetrachloroethene	μg/L	5.00	5.00	0.50 J	5.00 J	5.00 U	5.00 U	0.30 J	5.00 U	5.00 U	5.00 U	5.00 U	0.30 J	0.50 J	0.30 U	5.00 U	0.30 U
2-hexanone	μg/L	0.00	10.00	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	10.00 U	0.80 U	0.80 U	0.80 U	10.00 U	0.80 U
dibromochloromethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
1,2-Dibromoethane	r-3' =			2.00		2,00	2.00	2.00	2.00	2.00	2.00	2,00		3.20	3.20 0	2.00	5.20
chlorobenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
ethylbenzene	μg/L	5.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	5.00 U	0.30 U
xylene (total)	μg/L	2.00	5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.50 U	0.50 U	0.50 U	5.00 U	0.50 U
styrene	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U		0.20 U	0.20 U	0.20 U	5.00 U	0.50 U
bromoform	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.20 U	0.20 U	0.20 U	5.00 U	0.20 U
Isopropylbenzene	r:3' =	1		2.00		2.00	2.00	2.00	2.00	2.00	2.00	2,00	2.20	3.20 0	2.20	2.00 0	
1,1,2,2-tetrachloroethane	μg/L		5.00	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	0.30 U	0.30 U	0.30 U	5.00 U	0.30 U
1.3-Dichlorobenzene	i J. –	1												1.22			
1,4-Dichlorobenzene		1															
1,2-Dichlorobenzene														1			
1,2-Dibromo-3-chloropropane														1			
1.2.4-Trichlorobenzene		1															
1,2,3-Trichlorobenzene														1			
.,=,=																	
pH		6.5 to 8.5		7.00	6.63	6.58	6.62	6.58	6.45	6.57	6.52		6.48	6.53	6.48	6.52	6.75
r		0.0 10 0.0		7.00	0.00	0.00	0.02	0.00	0.70	0.07	0.02		0.70	0.00	0.40	0.02	0.70
dface: lab analysis positive detection		<u> </u>									i			<u> </u>	l	l	l

J: estimated

R: rejected
D: quantified at dilution

NM: not measured

UJ: estimated not detected

Page2 of 5

Table B-1 Treated System Effluent Storage Tank - VOCs June 8, 2001 to February 28, 2002

Date Analyzed VOCs Dichlorodifluoromethane chloromethane vinyl chloride bromomethane chloroethane pg trichlorofluoromethane 1,1-dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane acetone carbon disulfide VOCs µg promomethane µg prichlorofluoromethane µg prichlorofluoromethane µg prichloroethane prichloroethane prichlo	g/L g/L g/L g/L g/L g/L g/L	cleanup goal	10.00 10.00 10.00 10.00 10.00 5.00 10.00 5.00	0.90 U 0.60 U 0.90 U 0.60 U	0.90 U 0.30 U 4.00 U 0.60 U	0.90 U 0.30 U 2.00 U 4.00 U	1/30/02 (1X) 0.90 U 0.30 U 2.00 U 4.00 U	2/6/02 (1X) 0.90 U 0.30 U 2.00 U 4.00 U	2/13/02 (1X) 0.90 U 0.30 U	2/20/02 (1X) 0.90 U	2/28/02 (1X) 0.90 U	3/6/02 (1X)	3/13/02 (1X)	3/20/02 (1X)	3/27/02 (1X) 0.50 U	4/3/02 (1X) 0.50 UJ	4/10/02 (1X)
VOCs Dichlorodifluoromethane chloromethane vinyl chloride bromomethane chloroethane pg trichlorofluoromethane 1,1-dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane acetone carbon disulfide methyl acetate VOCs µg pg vinyl chloroethane µg pg this page in the pure properties of the pure pure pure pure pure pure pure pur	g/L g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 10.00 5.00 10.00 5.00	0.90 U 0.30 U 2.00 U 4.00 U 0.60 U	0.90 U 0.30 U 2.00 U 4.00 U	0.90 U 0.30 U 2.00 U 4.00 U	0.90 U 0.30 U 2.00 U	0.90 U 0.30 U 2.00 U	(1X) 0.90 U 0.30 U	(1X) 0.90 U	(1X)	(1X)			(1X) 0.50 U	(1X)	(1X)
Dichlorodifluoromethane chloromethane yinyl chloride bromomethane chloroethane pg trichlorofluoromethane 1,1-dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane acetone carbon disulfide methyl acetate	g/L g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 10.00 5.00 10.00 5.00	0.90 U 0.30 U 2.00 U 4.00 U 0.60 U	0.90 U 0.30 U 2.00 U 4.00 U	0.90 U 0.30 U 2.00 U 4.00 U	0.90 U 0.30 U 2.00 U	0.90 U 0.30 U 2.00 U	0.90 U 0.30 U	0.90 U			(1X)	(1X)	0.50 U	` /	, ,
chloromethane µg vinyl chloride µg bromomethane µg chloroethane µg Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 10.00 5.00 10.00 5.00	0.30 U 2.00 U 4.00 U 0.60 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U	0.30 U 2.00 U	0.30 U		0 90 11					0.50 UJ	0.50 11
chloromethane µg vinyl chloride µg bromomethane µg chloroethane µg Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 10.00 5.00 10.00 5.00	0.30 U 2.00 U 4.00 U 0.60 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U	0.30 U 2.00 U	0.30 U		0 90 11	_				0.50 UJ	
vinyl chloride µg bromomethane µg chloroethane µg Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 10.00 5.00 10.00 5.00	0.30 U 2.00 U 4.00 U 0.60 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U 4.00 U	0.30 U 2.00 U	0.30 U 2.00 U	0.30 U		n an Ti						0.50 U
bromomethane µg chloroethane µg Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L g/L g/L		10.00 10.00 5.00 10.00 5.00	2.00 U 4.00 U 0.60 U 0.90 UB	2.00 U 4.00 U 0.60 U	2.00 U 4.00 U	2.00 U	2.00 U				0.90 U	0.9 U	0.9 U	0.50 U	0.50 U	0.50 U
chloroethane µg Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L g/L		5.00 10.00 5.00	4.00 U 0.60 U 0.90 UB	4.00 U 0.60 U	4.00 U				0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 R	0.50 U
Trichlorofluoromethane 1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L g/L		5.00 10.00 5.00	0.60 U 0.90 UB	0.60 U		4.00 U	4 ()() 11	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.50 U	0.50 U	0.50 U
1,1-dichloroethene µg 1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L		10.00	0.90 UB		0.60 LJ		1.00 0	4.00 U	4.00 U	4.00 U	4.00 U	4.00 U	4.00 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichloro-1,2,2-trifluoroethane acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L g/L		10.00	0.90 UB		0.60 U	0.00 11	0.00	0.00 11	0.00 11	0.00	0.00 11	0.00	0.00 11	0.50 U	0.50 U	0.50 U
acetone µg carbon disulfide µg methyl acetate µg	g/L g/L g/L	5.00	5.00			2.00	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60 U	0.50 U	0.50 U	0.50 U
carbon disulfide µg methyl acetate µg	g/L g/L g/L	5.00	5.00		000 LID	0.00 11	0.00 11	0.00	0.00 11	0.90 U	0.90 U	0.90 U	0.90 U	0.90 U	0.50 U 5.00 U	0.50 U 5.00 U	0.50 U 5.00 U
methyl acetate µg	g/L g/L	5.00		0 00 11	0.90 UB	0.90 U	0.90 U	0.90 U	0.90 U								
,	g/L	5.00		0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
metriylene chloride μς		5.00		0.00 11	0.00 LID	0.20	2.00	2.00	0.20 11	0.20 11	0.00 11	0.00 11	0.00 11	0.20 11	0.50 U	0.50 UJ	0.50 UJ
trans 1.2 dichloroothers	y/L		5.00	0.20 U	0.20 UB	0.30 J	3.00 J	2.00 J	0.20 U	0.20 U 0.30 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U
		5.00	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	U.3U U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U 0.50 U
tert-Butyl Methyl Ether 1,1-dichloroethane µg	a/l		5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
,	g/L g/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
, 10	g/L g/L	5.00	10.00	0.40 U	0.40 U	0.40 U	0.30 U	0.30 U	0.30 U	0.40 U	0.30 U	0.40 U	0.40 U	0.40 U	5.00 U	5.00 U	5.00 U
Bromochloromethane	g/L		10.00	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.40 0	0.50 U	0.50 U	0.50 U
chloroform µg	a/l	7.00	5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.81	0.50 U
1,1,1-trichloroethane		5.00	5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
Cyclohexane	g/L	3.00	3.00	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.20 0	0.50 U	0.50 U	0.50 U
carbon tetrachloride µg	a/l		5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
1 5	g/L g/L	0.70	0.70	0.30 U	0.30 U	0.30 U	0.30 U	0.20 U	0.20 U	0.20 U	0.30 U	0.20 U	0.30 U	0.20 U	0.50 U	0.50 U	0.50 U
10	g/L g/L	0.70	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
trichloroethene µg		5.00	5.00	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.50 U	0.50 U	1.30
Methylcyclohexane	9,-	0.00	0.00	0.00	0.00	0.00 0	0.00	0.00 0	0.00	0.00 0	0.00	0.00 0	0.00	0.00 0	0.50 U	0.50 U	0.50 U
1,2-dichloropropane µg	a/l		5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
bromodichloromethane µg			5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
- 10	g/L		5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 UJ	0.50 U
	g/L		10.00	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	0.40 U	5.00 U	5.00 U	5.00 UJ
toluene ug		5.00	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
trans-1,3-dichloropropene µg	J		5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 UJ	0.50 U
1,1,2-trichloroethane	_		5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 UJ	0.50 U
tetrachloroethene µg		5.00	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.40 J	0.30 U	0.50 U	0.50 U	0.69
. 0	g/L		10.00	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	0.80 U	5.00 U	5.00 U	5.00 UJ
dibromochloromethane µg			5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.62	0.50 U
1,2-Dibromoethane															0.50 U	0.50 U	0.50 U
·	g/L	5.00	5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
ethylbenzene µg	g/L	5.00	5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
xylene (total) µg			5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
styrene µg	g/L		5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
bromoform µg			5.00	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.50 U	0.50 U	0.50 U
Isopropylbenzene															0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane µg	g/L		5.00	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.30 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene															0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene															0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene															0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane															0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene															0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene															0.50 U	0.50 U	0.50 U
рН		6.5 to 8.5		6.84	6.57	6.51	6.56	6.85	6.52	6.58	6.71	6.62			6.67	6.63	6.80
								l									

J: estimated

R: rejected
D: quantified at dilution

NM: not measured

UJ: estimated not detected

Page3 of 5

Table B-1 Treated System Effluent Storage Tank - VOCs June 8, 2001 to February 28, 2002

		EPA															
Analyte	units	cleanup	MDL	CL-WA-09-07	CL-WA-09-09						CPC-00-PW-009						
,		goal				11	13	15	17	018	020	021	022	023	024	025	026
Date Analyzed				4/17/02	4/24/02	4/30/02	5/8/02	5/17/02	5/22/02	5/29/02	6/5/02	6/12/02	6/19/02	6/26/02	7/2/02	7/11/02	7/17/02
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
				` /	, ,	, ,	, ,	, ,	` /	, ,	` ′	` /	, ,	` ′	` /	` ,	` '
Dichlorodifluoromethane				0.50 U	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 U							
chloromethane	μg/L		10.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
vinyl chloride	μg/L		10.00	0.50 U	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
bromomethane	μg/L		10.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
chloroethane	μg/L		10.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Trichlorofluoromethane				0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U			
1,1-dichloroethene	μg/L	5.00	5.00	0.50 U	0.50 U	0.11 J	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-Trichloro-1,2,2-trifluoroethane				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U							
acetone	μg/L		10.00	5.00 U	5.00 U	5.1 U	5.0 U	5.0 U	0.50 U	5.0 U	8.00 U	6.70	3.00	6.00 U	5.00 U	4.00 U	1.60
carbon disulfide	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	1.00 U	0.30 J	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
methyl acetate	μg/L		10.00	0.50 UJ	0.50 UJ	0.50 UJ	0.50 UJ	0.50 U	0.50 UJ	0.50 U							
methylene chloride	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.11 J	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
trans-1,2-dichloroethene	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
tert-Butyl Methyl Ether				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U							
1,1-dichloroethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	0.50 U	0.50 U	0.25 J	0.29 J	0.50 U	0.35 J	0.32 J	0.30 J	0.30 J	1.00 U	0.40 J	0.40 J	0.30 J	0.40 J
2- butanone	μg/L		10.00	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromochloromethane	ug/L			0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
chloroform	μg/L	7.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,1-trichloroethane	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.14 J	0.11 J	1.00 U	0.30 J	1.00 U	0.20 J	0.20 J	1.00 U	0.20 J
Cyclohexane				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U							
carbon tetrachloride	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
benzene	μg/L	0.70	0.70	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-dichloroethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.17 J	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
trichloroethene	μg/L	5.00	5.00	0.36 J	0.49 J	0.58	0.50 U	0.50 U	0.68	0.38 J	0.60 J	6.90	0.90 J	0.90 J	1.10	0.40 J	0.90 J
Methylcyclohexane				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U							
1,2-dichloropropane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
bromodichloromethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
cis 1,3-dichloropropene	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 UJ	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
4-methyl-2-pentanone	μg/L		10.00	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
toluene	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
trans-1,3-dichloropropene	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2-trichloroethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
tetrachloroethene	μg/L	5.00	5.00	0.50 U	0.50 U	0.40 J	0.50 U	0.25 J	0.50 U	0.27 J	0.30 J	3.20	0.50 J	0.40 J	0.40 J	1.00 U	0.40 J
2-hexanone	μg/L		10.00	5.00 U	5.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
dibromochloromethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromoethane		5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
chlorobenzene	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
ethylbenzene	μg/L	5.00	5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
xylene (total)	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
styrene	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
bromoform	μg/L		5.00	0.50 U	0.50 U	0.54 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Isopropylbenzene	//		F 00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,1,2,2-tetrachloroethane	μg/L		5.00	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,3-Dichlorobenzene				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,4-Dichlorobenzene				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dichlorobenzene				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2-Dibromo-3-chloropropane				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,4-Trichlorobenzene				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
1,2,3-Trichlorobenzene				0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
n L		6 E to 0 E		6.54	6.50	6.50	6.65	6.54	6.60	6.64	7.00	6.00	6.00	7.07	7.00	7.40	7 70
pH		6.5 to 8.5		6.54	6.53	6.59	6.65	6.51	6.69	6.64	7.06	6.88	6.83	7.87	7.90	7.10	7.70
dface: lab analysis nositive detection																	

J: estimated

R: rejected
D: quantified at dilution

NM: not measured

UJ: estimated not detected

Page4 of 5

Table B-1 Treated System Effluent Storage Tank - VOCs June 8, 2001 to February 28, 2002

Analyte				CPC-00-PW-0094	CPC-00-PW-009-	CPC-00-PW-009-	CPC-00-PW-009-	CPC-00-PW-009-	CPC-00-PW-009-	CPC-00-PW-009	CPC-00-PW-009+0	CPC-00-PW-009	-CPC-00-PW-009	CPC-00-PW-009-	CPC-00-PW-009	CPC-00-PW-009	CPC-00-PW-009
,	units	cleanup goal	MDL	027	028	029	030	031	032	033	034	035	036	037	038	039	040
Date Analyzed				7/24/02	7/31/02	8/8/02	8/14/02	8/21/02	8/28/02	9/4/02	9/11/02	9/18/02	10/2/02	10/9/02	10/17/02	10/23/02	10/30/02
VOCs				(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)	(1X)
Dichlorodifluoromethane						0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.50 U
chloromethane	μg/L		10.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
vinyl chloride	μg/L		10.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
bromomethane	μg/L		10.00	1.00 U	1.00 U	0.50 U	0.38 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
chloroethane	μg/L		10.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Trichlorofluoromethane						0.50 U 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U					
1,1-dichloroethene	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1,2-Trichloro-1,2,2-trifluoroethane						0.50 U 0.50 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U					
acetone	μg/L		10.00	2.00	1.00 U	1.3 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	6.1 U	5.0 U	5.0 U	5.0 U	5.0 U
carbon disulfide	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.21 J	0.50 U	0.50 U	0.50 U	0.50 U
methyl acetate	μg/L		10.00			0.50 U	0.50 R	0.50 U	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.50 R	0.50 U	0.20 J	0.50 U	0.50 U
methylene chloride	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 UJ	0.50 U	0.91 UJ	1.0 UJ	2.2 UJ	0.71 UJ	0.50 U
trans-1,2-dichloroethene	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
tert-Butyl Methyl Ether						0.50 U 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.12 J	0.50 U					
1,1-dichloroethane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.16 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
cis-1,2-dichloroethene	μg/L	5.00	5.00	0.40 J	0.40 J	0.69 U	0.88	0.67	0.85	0.82	0.68	0.45 J	0.76	0.86	0.71	0.67	0.54
2- butanone	μg/L		10.00	1.00 U	1.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Bromochloromethane	ug/L			1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
chloroform	μg/L	7.00	5.00	1.00 U	1.00 U	0.50 U	0.57 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,1,1-trichloroethane	μg/L	5.00	5.00	1.00 U	0.20 J	0.50 U	0.50 U	0.50 U	0.39 J	0.30 J	0.22 J	0.24 J	0.50 U	0.25 J	0.26 J	0.22 J	0.20 J
Cyclohexane						0.50 U 0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ					
carbon tetrachloride	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
benzene	μg/L	0.70	0.70	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-dichloroethane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.23 J	0.50 U	0.50 U	0.50 U	0.50 U	0.15 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
trichloroethene	μg/L	5.00	5.00	0.60 J	0.70 J	0.73 U	0.94	0.86	1.6	1.5	0.94	0.94	1.6	1.8	1.4	1.3	1.2 U
Methylcyclohexane						0.50 U 0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 UJ					
1,2-dichloropropane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ
bromodichloromethane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ
cis 1,3-dichloropropene	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.10 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.12 J	0.12 J
4-methyl-2-pentanone	μg/L		10.00	1.00 U	1.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ
toluene	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
trans-1,3-dichloropropene	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ
1,1,2-trichloroethane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.19 J	0.50 U	0.17 J	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.13 J	0.50 UJ
tetrachloroethene	μg/L	5.00	5.00	0.30 J	0.40 J	0.21 J	0.28 J	0.22 J	0.62	0.45 J	0.29 J	0.24 J	0.57	0.49 J	0.35 J	0.38 J	0.50 U
2-hexanone	μg/L		10.00	1.00 U	1.00 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ	5.0 U	5.0 U	5.0 U	5.0 U	5.0 UJ
dibromochloromethane	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dibromoethane		5.00	F 00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
chlorobenzene	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
ethylbenzene	μg/L	5.00	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
xylene (total)	μg/L	 	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
styrene	μg/L		5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U
bromoform	μg/L	 	5.00	1.00 U	1.00 U	0.71 UJ	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
Isopropylbenzene	110/1	 	E 00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 UJ	0.50 U	0.50 U	0.50 U
1,1,2,2-tetrachloroethane	μg/L	 	5.00	1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,3-Dichlorobenzene		 		1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,4-Dichlorobenzene		 		1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dichlorobenzene		 		1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2-Dibromo-3-chloropropane		 		1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2,4-Trichlorobenzene		 		1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
1,2,3-Trichlorobenzene				1.00 U	1.00 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
n L		6 5 1 2 0 5		0.00	7.00	6.00	6.70	6 00	6.57	6.04	6.70	6.00	6.64	6.00	7.00	6.50	6.04
pH		6.5 to 8.5		8.20	7.30	6.80	6.70	6.80	6.57	6.61	6.70	6.80	6.64	6.80	7.00	6.53	6.61

J: estimated

R: rejected
D: quantified at dilution

NM: not measured

UJ: estimated not detected Page5 of 5

Table B-2: Treated System Effluent from Effluent Storage Tank - SVOCs June 15, 2001 to October 30, 2002

Analyte	units	MDL	CRQL	CL09WA-068	CL09WA-072	CL09WA-077	CL09WA-082	CL09WA-086	CL09WA-090	CL09WA-094	CL09WA-094*	CL09WA-103	CL09WA-108	CPC-00-PW- 0009-011	CPC-00-PW-	CPC-00-PW- 0009-021	CPC-00-PW- 0009-024	CPC-00-PW- 0009-029	CPC-00-PW- 0009-033	CPC-00-PW-
Date Analyzed	units	IIIDE	ORGE	6/15/01	7/18/01	8/15/01	9/18/01	10/17/01	11/20/01	12/19/01	1/16/02	2/20/02	3/25/02	4/30/02	5/29/02	6/12/02	7/2/02	8/8/02	9/4/02	10/30/02
SVOCS				07.10701		0.10.01	0, 10, 01	10/11/01		12/10/01		2/20/02	0/20/02		0.20.02	02.02	112.02	0.0.02	002	10/00/02
benzaldehyde	μg/L													5.0 U	5.0 U			5.0 U	5.0 U	5.0 UJ
phenol	µg/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
bis(2-chloroethyl)ether 2-chlorophenol	ug/L ug/L			10.00 U 10.00 U	10.00 U 10.00 U		10.00 U 10.00 U	10.00 U 10.00 U		0.40 U 0.60 U	0.40 U 0.60 U	0.40 U 0.60 U	0.40 U 0.60 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
2-methylphenol	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,2'-oxybis(1-chloropropane)	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U			5.0 U	5.0 U	5.0 U
acetophenone	μg/L													5.0 U	5.0 U			5.0 U	5.0 U	5.0 U
4-methylphenol N-nitroso-di-n-propylamine	ug/L			10.00 U 10.00 U	10.00 U 10.00 U		10.00 U 10.00 U	10.00 U 10.00 U		0.50 U 0.40 U	0.50 U 0.40 U	0.50 U 0.40 U	0.50 U 0.40 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 UJ
hexachloroethane	ug/L ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
nitrobenzene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.60 U	0.60 U	0.60 U	0.60 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 UJ
isophorone	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2-nitrophenol	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,4-dimethylphenol bis(2-chloroethoxy) methane	ug/L ug/L		1	10.00 U 10.00 U	10.00 U 10.00 U	 	10.00 U 10.00 U	10.00 U 10.00 U		0.60 U 0.20 U	0.60 U 0.20 U	0.60 U 0.20 U	0.60 U 0.20 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
2,4-dichlorophenol	ug/L ug/L		1	10.00 U	10.00 U		10.00 U	10.00 U		0.20 U	0.20 U	0.50 U	0.20 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
naphthalene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
4-chloroaniline	ug/L			10.00 U	10.00 U		10.00 U	10.00 U	*	0.60 U	0.60 U	0.60 U	0.60 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 UJ
hexachlorobutadiene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 UJ
caprolactam 4-chloro-3-methylphenol	ug/L ug/L		1	10.00 U	10.00 U	1	10.00 U	10.00 U		0.60 U	0.60 U	0.60 U	0.60 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U	4.00 U	5.0 UJ 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
2-methylnaphthalene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
hexachlorocyclopentadiene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.60 U	0.60 U	0.60 U	0.60 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,4,6-trichlorophenol	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,4,5-trichlorophenol	ug/L			50.00 U	52.00 U		50.00 U	51.00 U		0.30 U	0.30 U	0.30 U	0.30 U	20 U 5.0 U	20 U 5.0 U	4.00 U	4.00 U	20 U 5.0 U	20 U 5.0 U	20 U 5.0 U
1,1'-biphenyl 2-chloronaphthalene	ug/L ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2-nitroaniline	ug/L			50.00 U	52.00 U		50.00 U	51.00 U		0.40 U	0.40 U	0.40 U	0.40 U	20 U	20 U	4.00 U	4.00 U	20 U	20 U	20 UJ
dimethylphthalate	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,6-dinitrotoluene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
acenaphthylene 3-nitroaniline	ug/L ug/L			10.00 U 50.00 U	10.00 U 52.00 U		10.00 U 50.00 U	10.00 U 51.00 U		0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	5.0 U 20 U	5.0 U 20 U	4.00 U 4.00 U	4.00 U 20.00 U	5.0 U 20 U	5.0 U 20 U	5.0 U 20 U
acenaphthene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
2,4-dinitrophenol	ug/L			50.00 U	52.00 U		50.00 U	51.00 U		1.00 U	1.00 U	1.00 U	1.00 U	20 U	20 U	19.00 U	10.00 U	20 U	20 U	20 U
4-nitrophenol	ug/L			50.00 U	52.00 U		50.00 U	51.00 U		0.40 U	0.40 U	0.40 U	0.40 U	20 U	20 U	4.00 U	4.00 U	20 U	20 U	20 UJ
dibenzofuran 2,4-dinitrotoluene	ug/L ug/L			10.00 U 10.00 U	10.00 U 10.00 U		10.00 U 10.00 U	10.00 U 10.00 U		0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
diethylphthalate	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
fluorene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
4-chlorophenyl-phenylether	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
4-nitroaniline 4,6-dinitro-2-methylphenol	ug/L ug/L			20.00 U 50.00 U	21.00 U 52.00 U		20.00 U 50.00 U	20.00 U 51.00 U		0.60 U 0.90 U	0.60 U 0.90 U	0.60 U 0.90 U	0.60 U 0.90 U	20 U 20 UJ	20 U 20 U	48.00 U 4.00 U	49.00 U 4.00 U	20 U 20 U	20 U 20 U	20 U 20 U
N-nitrosodiphenylamine	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U		4.00 U	5.0 U	5.0 U	5.0 U
1,2,4,5-tetrachlorobenzene	ug/L													5.0 U	5.0 U			5.0 U	5.0 U	5.0 U
4-bromophenyl-phenylether	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U		4.00 U	5.0 U	5.0 U	5.0 U
hexachlorobenzene	ug/L ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U 5.0 U	5.0 U 5.0 U		4.00 U	5.0 U	5.0 U 5.0 U	5.0 U 5.0 R
atrazine pentachlorophenol	ug/L ug/L			50.00 U	52.00 U		50.00 U	51.00 U		3.00 U	3.00 U	3.00 U	3.00 U	5.0 U	5.0 U		4.00 U	5.0 UJ 5.0 U	5.0 U	5.0 K
phenanthrene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
anthracene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U		4.00 U	5.0 U	5.0 U	5.0 U
di-n-butylphthalate	μg/L	50.00	50.00	0.20 JB	10.00 U	0.30 J	10.00 U	10.00 U	10.00 U	0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U		4.00 U	5.0 U	5.0 U	5.0 U
fluoranthene pyrene	ug/L ug/L		1	10.00 U 10.00 U	10.00 U 10.00 U		10.00 U 10.00 U	10.00 U 10.00 U		0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	0.40 U 0.40 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
butylbenzylphthalate	ug/L ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U		4.00 U	5.0 U	5.0 U	5.0 U
3,3'-dichlorobenzidine	ug/L			20.00 U	21.00 U		20.00 U	20.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U			5.0 UJ		5.0 U
benzo(a)anthracene	ug/L	-		10.00 U	10.00 U		10.00 U	10.00 U		0.50 U	0.50 U	0.50 U	0.50 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
chrysene	ug/L	F 00	10.00	10.00 U	10.00 U	10.00.11	10.00 U	10.00 U	10.00.11	0.60 U	0.60 U	0.60 U	0.60 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
bis (2-ethylhexyl)phthalate di-n-octylphthalate	μg/L ug/L	5.00	10.00	10.00 U 10.00 U	10.00 U 10.00 U	10.00 U	10.00 U 10.00 U	10.00 U 10.00 U	10.00 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U	5.0 U 5.0 U	3.8 J 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
benzo(b)fluoranthene	ug/L ug/L		1	10.00 U	10.00 U		10.00 U	10.00 U		1.00 U	1.00 U	1.00 U	1.00 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
benzo(k)fluoranthene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.30 U	0.30 U	0.30 U	0.30 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
benzo(a)pyrene	ug/L			10.00 U	10.00 U		10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
Indeno(1,2,3-cd) pyrene	ug/L		ļ	10.00 U	10.00 U	1	10.00 U	10.00 U		0.40 U	0.40 U	0.40 U	0.40 U	5.0 U	5.0 U	4.00 U	4.00 U	5.0 U	5.0 U	5.0 U
dibenzo (a,h)anthracene benzo(g,h,l)perylene	ug/L ug/L		1	10.00 U 10.00 U	10.00 U 10.00 U	 	10.00 U 10.00 U	10.00 U 10.00 U		0.50 U 0.40 U	0.50 U 0.40 U	0.50 U 0.40 U	0.50 U 0.40 U	5.0 U 5.0 U	5.0 U 5.0 U	4.00 U 4.00 U	4.00 U 4.00 U	5.0 U 5.0 U	5.0 U 5.0 U	5.0 U 5.0 U
Sone S(g, ii, i)poi yielle	ug/L		<u> </u>	10.00 0	10.00 0	I .	10.00 0	10.00 0		0.70 0	0.70 0	0.70 0	0.70 0	3.0 0	3.0 0	7.00 0	→.00 0	3.0 0	0.0 0	0.0 0

J: estimated R: rejected

D: quantified at dilution

NM: not measured

Table B-3: Treated System Discharge from Effluent Storage Tank - Metals
June 15, 2001-October 30, 2002

														CDC 00 DW						
Analyte	units	IDL	CRQL	CL09WA-068	CL09WA-072	CL09WA-077	CL09WA-082	CL09WA-086	CL09WA-090	CL09WA-094	CL09WA-094*	CL09WA-103	CL09WA-108	CPC-00-PW- 0009-011	CPC-00-PW- 0009-018	CPC-00-PW- 0009-021	CPC-00-PW- 0009-024	CPC-00-PW- 0009-029	CPC-00-PW- 0009-033	CPC-00-PW- 0009-040
Date Analyzed				6/15/01	7/18/01	8/15/01	9/18/01	10/17/01	11/20/01	12/19/01	1/16/02	2/20/02	3/25/02	4/30/02	5/29/02	6/12/02	7/2/02	8/8/02	9/4/02	10/30/02
metals																				
Al (aluminum)	μg/L	57	200.00											7.3 U	73.7 B	200.00 U	200.00 U	97.70 B	22.20 U	56.70 U
Sb (antimony)	μg/L	1.2	60.00	4.40 U	4.40 U	4.70 U	4.70 U	4.60 U	4.50 U	4.00 U	4.60 U	5.90 U	5.90 U	6.3 B	1.6 U	60.00 U	60.00 U	2.20 B	8.70 U	1.20 U
As (arsenic)	μg/L	3	10.00	4.20 U	4.20 U	4.40 U	4.40 U	4.90 U	4.60 U	7.00 U	7.00 U	7.00 U	9.20 B	2.8 U	4.2 U	10.00 U		2.50 U	6.00 U	3.00 U
Ba (barium)	μg/L	0.3	200.00	72.20 B	53.40 B	75.70 B	74.00 B	80.00 B	93.20 BE					74.0 B	85.2 B	200.00 U	200.00 U	83.40 B		81.60 B
Be (beryllium)	μg/L	0.2	5.00											0.10 U	0.85 B	5.00 U		0.47 B		
Cd (cadmium)	μg/L	0.3	5.00											0.40 U	0.30 U	5.00 U		0.40 U	0.60 U	0.30 U
Ca (calcium)	μg/L	15	5000.00											20100	22100	23000.00	18000.00	24600.00	21500.00	25500.00
Cr (chromium)	μg/L	8.0	10.00											0.60 U	0.50 U	10.00 U	10.00 U	0.40 U	1.30 U	0.80 U
Co (cobalt)	μg/L	0.7	50.00											2.1 B	1.2 B	50.00 U	50.00 U	1.10 B		0.80 B
Cu (copper)	μg/L	1.5	25.00											0.90 U	0.70 U	25.00 U	25.00 U	0.80 U	2.60 U	1.50 U
Fe (iron)	μg/L	13	100.00	20.50 U	21.10 B	37.60 B	20.40 B	22.30 B	64.30 BE	63.50 U	63.50 U	85.30 U	85.30 U	17.3 U	26.5 B	140.00	110.00	98.30 B		122.00
Pb (lead)	μg/L	1.2	3.00	2.00 U	2.00 U	2.00 U	2.00 U	2.30 U	2.30 U	2.20 U	2.40 U	3.40 U	3.40 U	2.1 U	1.3 U	3.00 U	3.20	1.30 U	2.90 U	1.20 U
Mg (magnesium)	μg/L	12	5000.00											6280	6950	7200.00	6600.00	6990.00	6480.00	7700.00
Mn (manganese)	μg/L	0.2	15.00	43.20	316.00	234.00	271.00	294.00	332.00 E	205.00	186.00	130.00	367.00	134	112	190.00	250.00	85.20	53.40	84.50
Hg (mercury)	μg/L	0.1	0.20											0.20 U	0.10 U	0.20 U	0.20 U	0.13 B		0.10 UJ
Ni (nickel)	μg/L	1 10	40.00											2.2 B	5.0 B	40.00 U	40.00 U	5.30 B		3.30 B
K (potassium)	μg/L	40	5000.00	4.00 11	4.00 11	4.00 11	4.00 11	4.00 11	4.00 1111	5.00 11	5.00 11	0.00 11	0.00 11	8660	11100 J	11000.00	8600.00	13400.00 J		12100.00 J
Se (selenium)	μg/L	3	5.00	4.90 U	4.90 U	4.80 U	4.80 U	4.60 U	4.90 UN	5.00 U	5.00 U	6.90 U	6.90 U	4.0 B	2.2 U	5.00 U		1.70 U 0.50 U		3.00 U
Ag (silver)	μg/L	0.8 304	10.00 5000.00											1.0 U 45300	0.70 U 56500	60000.00	10.00 U 45000.00	58000.00 J		0.80 U 68900.00
Na (sodium) TI (thallium)	μg/L	2.4	10.00											5.4 U	3.3 U	10.00 U	10.00 U	4.20 U	8.80 U	2.40 U
	μg/L	0.7	50.00											0.80 U	0.50 U	50.00 U	50.00 U	0.30 U		0.70 U
V (vanadium) Zn (zinc)	μg/L μg/L	1.1	20.00											14.0 B	4.0 B	20.00	20.00 U	8.60 B		1.40 B
Z11 (ZIIIC)	µg/L	1.1	20.00											14.0 В	4.0 Б	20.00	20.00 0	0.00 Б	10.20 В	1.40 Б
WATER QUALITY																				
nH	su			6.54	6.80	6.63	6.63	6.45		6.48	6.57	6.58	6.67	6.59	6.64	6.88	7.90	6.80	6.61	6.61
dissolved oxygen	mg/L			0.54	0.00	0.00	0.00	0.43		0.40	0.51	0.50	0.07	0.00	0.04	0.00	7.50	0.00	0.01	0.01
ORP	mV		+																	
temperature	°C		+																	
turbidity	NTU																			
conductivity	MS/cm																			
hexavalent chromium	mg/L		+	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.003 U	0.003 U	0.003 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
TSS	mg/L		+	0.01 0	0.01 0	6.00	0.01 0	0.01 0	5.00 U	0.01 0	0.000 0	0.000	0.000 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0
TDS	mg/L		+	313.00	275.00	209.00	280.00	259.00	268.00	260.00	280.00	250.00	280.00	296.00	324.00	322.00	255.00	324.00	320.00	318.00
TOC	mg/L		+	010.00	210.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	200.00	0 <u>2</u> -7.00	022.00	200.00	024.00	020.00	010.00
chloride	mg/L					64.60			93.40											
fluoride	mg/L					0.10 U			0.10 U											
TKN	mg/L					0.10			0.10							<u> </u>				
sulfate	mg/L					39.20			45.30								1			
Percent solids	9, =					55.25			.5.50								1			
Nitrate/Nitrite	1 1		 	3.79	3.77		4.00	4.07		4.00	3.9	4.4	3.9	1 11	1 11	1 1	1 1	1 11	1 11	1 L