2011 Third Quarter Groundwater Monitoring Report July- September 2011

Claremont Polychemical Corporation Site 505 Winding Road Old Bethpage, Nassau County, NY 11804 Site Code: 130015 WA# D006130-19

Prepared for:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233

Prepared by:

HRP Engineering, P.C. 1 Fairchild Square Suite 110 Clifton Park, New York 12065 518.877.7101

> Tom Sicilia Project Geologist

Adam Fox, P.E. Project Manager

Submitted: March 28, 2012

TABLE OF CONTENTS

Section	<u>on</u>		-age
CERT	TFICAT	TION	iii
1.0	INTRO	ODUCTION	1
2.0	SITE	BACKGROUND	2
	2.1 2.2 2.3 2.4	Site Overview	2
3.0	GROL	JNDWATER TREATMENT SYSTEM	5
	3.1 3.2	Groundwater Treatment System Description System Evaluation Performance 3.2.1 Flow Rate 3.2.2 Treatment System Contaminant Removal 3.2.3 System Discharge Monitoring	6 6 7
4.0	GROU	JNDWATER MONITORING PROGRAM	9
	4.1 4.2 4.3	Hydrological Data Groundwater Sample Collection Groundwater Test Results 4.3.1 Comparison to Historical Groundwater Quality 4.3.2 VOC Plume Evaluation	9 .10 .11
5.0	CONC	CLUSIONS AND RECOMMENDATIONS	.13
	5.1 5.2	Conclusions	_

TABLE OF CONTENTS

(continued)

List of Figures (follows text)

2a 2b 3a 3b 3c	Shallow Groundwater Elevation Contour Shallow Groundwater PCE and TCE Contaminant Isopleths Intermediate Groundwater PCE and TCE Contaminant Isopleths Groundwater Samples Deep Groundwater PCE and TCE Contaminant Isopleths
	<u>List of Tables</u> (follows figures)
1 2	Groundwater Elevations Summary of Analytical Results
	<u>List of Charts</u> (follows tables)
1 2 3a 3b 5a 5b 5d 6a 6b	Treated Effluent Concentration (TCE) vs. Time Treated Effluent Concentration (1,1-DCE) vs. Time Treated Effluent Concentration (Iron and Manganese) vs. Time PCE Concentrations in EW-1a PCE and TCE Concentrations in EW-4c PCE and TCE Concentrations in SW-1 EW-1a Iron and Manganese Concentrations EW-4c Iron and Manganese Concentrations

List of Appendices

Α Groundwater Well Sampling Forms

2011 Third Quarter Groundwater Monitoring Report July-September 2011 Claremont Polychemical Corporation Site Old Bethpage, New York 11804

Report Submittal Date: March 28, 2012 Prepared by: Adam Fox, Tom Sicilia

HRP Engineering, Inc 1 Fairchild Square, Suite 110 Clifton Park, New York 12065

Phone: (518) 877-7101 / Fax: (518) 877-8561

Project Address: Claremont Polychemical, 505 Winding Rd, Old Bethpage, NY

CERTIFICATION

I, Adam Fox, certify that I am currently a Qualified Environmental Professional as defined in 6 Part NYCRR Part 375 and that this report, 2011 Third Quarter Groundwater Monitoring Report, was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER -10).

Environmental Contractor: HRP Engineering, P.C.

Adam Fox, P.E.

2011 Third Quarter Groundwater Monitoring Report July- September 2011 Claremont Polychemical Corporation Site Old Bethpage, New York 11804

1.0 INTRODUCTION

HRP Engineering, P.C. is pleased to submit this report containing groundwater quality data, discussions and data deliverables related to the Third Quarter 2011 (July – September 2011) groundwater monitoring event conducted at the Claremont Polychemical Corporation Site (hereinafter referred to as the "Site"). The groundwater monitoring event and the preparation of this deliverable are part of the routine groundwater monitoring program being conducted at the Site. This report represents the third quarterly monitoring period for 2011. This report has been prepared for submittal to the New York State Department of Environmental Conservation (NYSDEC) and includes the following:

- Brief overview of historical site activities;
- Discussion of On-site treatment System;
- Brief description of the scope of the field activities;
- Groundwater Contours:
- Shallow, intermediate, and deep groundwater tetrachloroethylene (PCE) and trichloroethylene (TCE) contaminant concentrations;
- Maximum groundwater PCE and TCE contaminant concentrations;
- Brief discussion of the groundwater quality data;
- Comparison of data from this monitoring period to data from previous periods;
 and
- Groundwater Well Sampling Forms.

2.0 SITE BACKGROUND

2.1 Site Overview

The Claremont Polychemical Corporation, a former manufacturer of pigments for plastics and inks, coated metal flakes, and vinyl stabilizers, operated on-site from 1966 to 1980. The Site was proposed for inclusion on the Environmental Protection Agency (EPA) National Priorities List in October 1984 and was listed in June 1986. A comprehensive Remedial Investigation/ Feasibility Study (RI/FS) for the entire site was initiated in March 1988 by the EPA. Under this RI/FS, EPA sampled the surface and subsurface soil, the groundwater, underground storage tanks, and the building. The EPA RI/FS reports were released to the public in August 1990. The EPA RI/FS findings indicated that on-Site soils contaminated with tetrachloroethylene (PCE), located in the former "spill area", constituted a potential threat to groundwater resources. A comprehensive remedy for the Site was completed and documented in several EPA Records of Decisions (ROD) issued in 1989-1990. The Site was divided into six operable units (OU). Each OU had specific remedial activities pursuant to that OU that needed to be completed. Operable Unit No.4 (OU IV) is designated "Remedial Program" and involves the treatment of the on-site volatile organic compounds (VOC) that have contaminated the groundwater via a pump and treat system with air stripping/carbon absorption.

A groundwater collection, treatment and injection system was installed on-site by the EPA and Army Corp of Engineers (ACOE) to control OU IV. Full-scale operation of the groundwater remedial system began in February 2000, reportedly pumping 470 gallons per day. SAIC Inc. operated and maintained the treatment facility from 2000 to June 2011. During that period SAIC monitored the treatment system operation on a regular basis by collecting system discharge and quarterly groundwater samples. In June 2011, the operation of the system was relinquished from the ACOE/EPA to the NYSDEC and subsequently the NYSDEC retained HRP Engineering to operate the system.

During the turnover of operations from the EPA to the NYSDEC, the NYSDEC requested copies of reports generated during the EPA's operations of the treatment system including quarterly groundwater sampling data from SAIC, EPA Region 2 and the AEOC. Based upon data that was received during the transfer of operators, it was determined that SAIC collected quarterly groundwater sampling data. Previous groundwater monitoring reports were not available for HRP's review. Therefore the historical groundwater data was reviewed by HRP and incorporated into this report.

2.2 Location

The site is located on a 9.5-acre parcel located in an industrial section of Old Bethpage, Nassau County, New York (see Figure 1 for location). The property has one large two-story building, covering approximately 35,000 square feet (the former processing plant) and a smaller water treatment building. The site lies

approximately 800 feet east of the border between Nassau and Suffolk County and the site is accessed via Winding Road on the property's western border. Adjacent properties include:

South and Southeast - Bethpage State Park and a golf course; East - State University of New York-Farmingdale Campus; West - Oyster Bay Solid Waste Disposal Complex; and North - Commercial and light industrial.

The Oyster Bay Solid Waste Disposal Complex is a NYSDEC Superfund Site with the Town of Oyster Bay as the responsible party. The Nassau County Fireman's Training Center, which has also contributed to soil and groundwater contamination in the area, is located approximately 500 feet south of the Oyster Bay Solid Waste Disposal Complex. The Oyster Bay Solid Waste Disposal Complex and Fireman's Training Center have groundwater extraction and treatment systems in operation. In addition, the golf course has a number of pump/irrigation wells, which are used for watering their fairways. The closest residences are approximately one-half mile from the site immediately west of the Old Bethpage Landfill Superfund site. The nearest public supply well is located 3,500 feet northwest of the site and nearly 47,000 people are drawing water from private-use wells located within three miles of the site.

2.3 Site History

According to the "Five - Year Review Report for Claremont Polychemical Corporation" prepared by EPA Region 2, dated September 2008, the Claremont Polychemical Corporation manufactured pigments for plastics and inks, coated metal flakes, and vinyl stabilizers operated from 1966 to 1980. During its operation, Claremont disposed of liquid waste in three leaching basins and deposited solid wastes and treatment sludges in drums or in old, aboveground metal tanks. The principal wastes generated were organic solvents, resins and wash wastes (mineral spirits). Located inside the process building were a solvent recovery system (steam distillation), two pigment dust collectors and a sump. To the west of the building, there were five concrete treatment basins, each with a capacity of 5,000 gallons, which contained sediments and water. Six aboveground tanks, three of which contained wastes, were located east of the process building. Other features included an underground tank farm, construction and demolition debris, dry wells and a water supply well.

2.4 Site Geological Setting

The "Claremont Polychemical Superfund Site Long-term Groundwater Monitoring Old Bethpage, New York" report prepared by SAIC and dated December 2001 reported that site-specific subsurface investigations from a variety of soil borings and monitoring/injection/extraction well installations to a maximum depth of 250 feet below ground surface (bgs) identified "well-stratified"

fine to medium sand with silt lenses, abundant peat laminae, and discontinuous sand layers" (Ebasco, 1990). Borings in the northern portion of the site also encountered numerous interbedded silt and clay horizons. A comparison of site logs with municipal supply well logs to the north suggest that the site is located within a transitional area between the predominately sandy southern portion of the Magothy Formation and an interbedded clayey-sand portion to the north (Ebasco, 1990).

Further the report indicated that historically groundwater flow is generally to the south-southeast with historical gradients ranging from 0.001-0.002 ft/ft and horizontal flow velocities of 0.43 ft/day or 157 ft/yr (Ebasco, 1990). Groundwater elevations are depressed in the areas of the extraction wells. Hydraulic permeability (slug) tests performed during the EPA RI calculated hydraulic conductivities ranging between 200 and 400 gdp/ft² which is significantly lower than historical data from actual pump tests. The vertical component of flow was historically less than 0.5 ft/ft and lacked any consistency or pattern. It was thus determined to be insignificant with respect to contaminant movement (Ebasco, 1990).

The report also indicated that the direction of groundwater flow from the western portion of the site is to the east, south and southeast and reverses on the eastern and southeastern portions of the site. The gradient was reported to be approximately 0.024 ft/ft as measured between monitoring wells SW-1 and SW-2 over a distance of approximately 500 ft. The semi-radial component of flow and steep gradient are indicative of the groundwater extraction system's capture zone. However, groundwater levels were recorded from five sets of clustered monitoring wells or 13 data points in and around the source area. Hence, the report concluded that the capture zone is not realistically defined as it tends to center around monitoring well cluster SW-2/DW-2 instead of the three extraction wells slightly to the southeast.

3.0 GROUNDWATER TREATMENT SYSTEM

The EPA's construction of the Claremont Polychemical Corp. Site pump-and-treat system began in 1997 and the system went into full-scale operation in February 2000. A description of the groundwater treatment system and a review of its effectiveness are provided below.

3.1 Groundwater Treatment System Description

The system which is designed to treat metals, organic contaminants and provide final pH adjustment consists of an extraction system, above-ground treatment, and a reinjection system. Each of the system components is discussed below.

Extraction System

The groundwater collection system consists of three extraction wells (EXT-1, EXT-2, and EXT-3) installed approximately 150 feet apart south of the site oriented in a southwest-northeast line. The wells are screened from approximately 60 feet mean sea level (MSL) (just below the water table) to -30 feet MSL and are outfitted with 10 horsepower pumps controlled by level controllers located in the Equalization Tank. Each well is capable of pumping up to 200 gpm individually. However, when they are all on, EXT-1, EXT-2, and EXT-3 respectively extract 190 gpm, 188 gpm, and 175 gpm for a total of approximately 553 gpm. Because the wells are off part of the time as controlled by the level in the equalization tank, the average flow rate over the course of a month is approximately 350 to 390 gpm. This average flow rate translates to approximately 500,000 to 560,000 per day which meets the onsite remedy goal of treating 500,000 gallons per day.

It is important to note that in April/May 2011, SAIC replaced the Equalization Tank level controllers, which controlled the extraction well pumps, with level transducers located in the extraction wells. The level transducers allow the extraction pumps to maintain a static water level in the extraction wells and a more consistent capture zone.

Treatment System

Water from the extraction system enters a 60,000-gallon equalization tank situated adjacent to the treatment building. Water from the equalization tank flows through two parallel metals-removal trains that are each rated for 250 gpm. Each train includes a reaction tank, a flocculation tank, a clarifier, and a filter and is followed by air-stripper feed tanks. These feed tanks send the water through a single packed tower air stripper rated at an average rate of 500 gpm and then through parallel liquid phase carbon units each rated at 250 gpm. The air emissions from the air stripper are treated with vapor phase carbon. In addition to removing metals and VOCs from the extracted water, the treatment system also raises the pH of the extracted water from pH 5, which is the background pH for groundwater in the area, to between pH 6.5 and 8.5. The treated water is then stored in two 42,000-gallon vessels before reinjection to

the subsurface via four injection wells and/or two infiltration galleries. Flow to the injection wells and galleries, located on the adjacent SUNY Farmingdale campus, is controlled by a butterfly valve. The wells are equipped with high-level alarms and are regularly gauged, however the infiltration galleries are not equipped with level sensors or alarms.

After the first nine months of operation the addition of oxidizing chemicals (potassium permanganate) to the metals removal system was discontinued as the influent to the plant already met discharge standards for metals. Water continues to flow through the metals portion of the treatment system.

The plant is manned by two operators working 40- to 50-hour weeks, and an autodialer is installed to contact the operators in case of plant alarms. The operators typically responds to alarms within 30 minutes.

System Operating Permits

Water Permit

The plant was issued a water discharge permit dated January 1, 1998. According to Brian Baker, NYSDEC Section Chief, Western Section, Bureau of Water Permits the permit was extended to the end of calendar year 2013, therefore a permit renewal application needs to be submitted to the NYSDEC Bureau of Water permits by July 1, 2013 in order to review the application and complete a permit reauthorization. It is important to note that the NYSDEC Bureau of water does not have regulatory authority over a discharge from a State, PRP, or Federal Superfund Site. Therefore, Effluent Limitations and Monitoring Requirements outline in the permit must be submitted to the NYSDEC Division of Environmental Remediation, Remedial Bureau E.

Air Permit

No air permit is required for the system operation, in particular, 6 NYCRR Part 375-1.7 states that "no permit is required when the substantive compliance is achieved as indicated by the NYSDEC approval of the workplan". Based on a review of the information pertaining to the treatment system, VOC air emissions from the treatment system should be negligible, therefore substantive requirements of an air permit would be achieved and no air permit would be required.

3.2 System Evaluation Performance

3.2.1 Flow Rate

The volume of treated water discharged by the treatment plant to the injection well field is determined daily from readings of the magnetic flow meter on the plant effluent line. The total volume of treated water discharged each month is provided below:

Time and Date	Total Flow Month/ Percent of Monthly Target Flow	Ave Daily Flow/ Ave Flow per Minute	Total Water Treated Operating Year (Starting 6/1/11)
July – 0600 hrs 7/1/11 to 0600 hrs 8/1/11	14,743,495 / 99	475,597 / 330	29,426,400
August - 0600 hrs 8/1/11 to 0600 hrs 9/1/11	15,371,276 / 103	495,848 / 344	45,232,890
September - 0600 hrs 9/1/11 to 0600 hrs 10/1/11	15,622,346 /108	541,236 / 376	60,855,236

The flow to the injection system during the monitoring period was as follows.

Month	Injection Well System	Flow Average (gpm)	Volume Discharged (gallons)				
	IVV-1	89	3,973,480				
	IW-2	78	3,470,190				
July 2011	IW-3	102	4,566,780				
	IW-4	77	3,426,850				
	System	346	15,437,300				
	IVV-1	94	4,203,490				
	IW-2	86	3,856,300				
August 2011	IW-3	108	4,808,620				
	IW-4	70	3,115,760				
	System	358	15,984,170				
	IVV-1	89	3,848,149				
	IW-2	93	4,023,889				
September 2011	IW-3	109	4,694,329				
	IW-4	81	3,500,998				
	System	372	16,067,365				

Flow to infiltration galleries IG-1 and IG-3 is restricted so that flow to IW-1 and IW-3 is maximized. Both galleries are draining adequately. The plant's effluent discharge flow is maximized and is limited by injection pump system capacity.

3.2.2 Treatment System Contaminant Removal

To evaluate the treatment system's contaminant removal rate, HRP reviewed available treatment system inlet (Charts 1 and 2) and effluent analytical results from quarterly O&M sampling. In summary, five treatment system inlet samples were collected at the equalization tank inlet, during the review period, each on August 17th. Of the five inlet samples collected on that that day, only two of the samples exhibited

contaminants above the laboratory detection limit. The collected samples exhibited the following concentrations:

- Manganese 249 μg/l
- Barium 98.6 μg/l
- Tetrachloroethylene 5.6 μg/l (exceeds NYSDEC class GA standard of 5 μg/l)
- Trichloroethylene 95 μ g/l (exceeds NYSDEC class GA standard of 5 μ g/l)

When the contaminant inlet concentrations are compared with the effluent concentrations (Manganese - 4.6 μ g/l, Barium - 80.4 μ g/l, Tetrachloroethylene - 5.0 μ g/l, and Trichloroethylene - 5.0 μ g/l), and utilizing the monthly flow-rates of 14,743,495 for July, 15,371,276 for August and 15,622,346 for September, the following contaminant removal rates were calculated for the third quarter:

- Barium 3.17 Kg
- Manganese 42.6 Kg
- Tetrachloroethylene 0.1 Kg
- Trichloroethylene 15.7 Kg

3.2.3 System Discharge Monitoring

Effluent data for select VOC compounds (PCE, TCE, and 1,1-DEC) and metals (Iron and Manganese) were analyzed to evaluate compliance with established effluent discharge limits. Charts 3a, 3b, 3c, and 4 show that the effluent concentrations remain below permissible levels.

4.0 GROUNDWATER MONITORING PROGRAM

From July 22 to August 1, 2011 HRP sampled a total of 44 monitoring wells and extraction wells (41 monitoring wells and 3 extraction wells) located both on- and offsite. On-site monitoring wells included DW-1, DW-2, EW-5, EW-7C, EW-7D, EW-8D, EW-9D, and SW-1. Off-site wells included BP-3A, BP-3B, BP-3C, EW-1A, EW-1B, EW-1C, EW-2A, EW-2B, EW-2C, EW-2D, EW-3A, EW-3B, EW-3C, EW-4A, EW-4B, EW-4C, EW-4D, EW-6A, EW-6C, EW-10C, EW-11D, EW-12D, EW-13D, EW-14D, LF-02, MW-6D, MW-8A, MW-8B, MW-8C, MW-10B, MW-10C, MW-10D, WT-01, EXT-1, EXT-2, and EXT-3 (EXTs are extraction wells). The monitoring well and extraction well locations are depicted in Figure 2a. A description of the groundwater sampling event is provided below.

4.1 Hydrological Data

Prior to sampling, static groundwater levels were measured at 40 locations on July 20, 2011. Four wells were not sounded due to wasps nests in the well caps. Depths to groundwater ranged from 41.25 ft (EW-14D) to 99.78 ft (EW-11D) below ground surface (bgs). Overall, groundwater elevations and flow directions (Figure 2b) were consistent with previous data.

4.2 **Groundwater Sample Collection**

To collect representative groundwater samples, the wells were purged using standard EPA low flow sampling equipment and procedures. Purging required removing water from the well at a rate of at least 250 milliliters per minute, but not greater than 1 liter per minute for a sufficient length of time for water quality parameters to stabilize (i.e. pH, Specific Conductivity, Temperature, Dissolved Oxygen, Oxidation/Reduction Potential, and Turbidity) within a parameter specific control range. Drawdown did not exceed ten percent of the standing water column. Sampling commenced immediately after purging, without adjusting the flow rate or water intake depth. Provided below is a description of the procedures utilized to collect groundwater samples:

- All field instruments were calibrated at the beginning of each work day.
- Monitoring well covers were unlocked and carefully removed to avoid any foreign material enter the well.
- The water level was measured below the top of casing using an electronic water level indicator. With knowledge of the total depth of the well, the volume of water in the well was calculated. The tape and probe of the water level indicator was cleaned with an Alconox and water soaked paper towel while reeling in.
- Dedicated Teflon lined polyethylene tubing and pump was installed into the well and the end of the pump was set to approximately the midpoint of the screen interval inside the well.
- Each well has a dedicated bladder pump at monitoring well locations and dedicated Grundfos pump at extraction well locations. All wells except

BP-3A, EW-6A, EW-6C, LF-2, MW-6D, MW-8A, MW-8B, MW-8C, MW-10B, MW-10C, MW-10D, and WT-01 have dedicated pumps.

- The tubing was attached to a flow-through cell water quality monitor (YSI 600xl).
- The pump was turned on and set to a relatively low discharge rate (less than 1-liter per minute) and drawdown rate was monitored using a water level indicator.
- The wells were purged while collecting water quality measurements (pH, Specific Conductivity, Temperature, Dissolved Oxygen, Oxidation/Reduction Potential, and Turbidity) and water level measurements were collected every 3 to 5-minutes.
- After water quality conditions stabilized and well purging was completed, a groundwater sample was collected into the appropriate containers.
- The VOC sample containers were filled first. The discharge tubing was directed toward the inside wall of the sample container to minimize volatilization. VOC sample containers were filled so that no headspace (air bubbles) was present.
- Each sample bottle was labeled in the field and placed in a cooler with ice.
- All non-disposable equipment was decontaminated with Alconox and water, and then rinsed with deionized water prior to and after each use.
- Monitoring well sampling data was recorded in a groundwater well sampling form (provided in Appendix A).

The samples were submitted to Test America Laboratory, of Amherst, New York, an NYSDOH ELAP approved laboratory, to be analyzed for AES/MS Met (21) and VOA (21). A list of wells and analytical results are presented in Table 2.

4.3 Groundwater Test Results

To assess the status of groundwater quality at the site and surrounding area, HRP compared collected analytical data from the July 2011 sampling event to historical conditions and to applicable NYSDEC water quality criteria. The groundwater analytical results of the third quarter sampling event, conducted in July 2011, detected tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, 1,2-dichloroethane, cis-1,2-dichloroethylene, arsenic, total chromium, iron, and manganese. See table 2 for complete results.

Comparisons to historical groundwater monitoring data enabled assessment of the general effectiveness of the treatment system.

4.3.1 Comparison to Historical Groundwater Quality

The attached charts (Chart 5a through Chart-5c) illustrate the historical concentration trends for PCE and/or TCE in three wells (EW-1a, EW-4c, SW-1). These wells were selected due to consistent elevated VOC analytical results and the presence of sufficient historical data. In all cases, the results indicate a general downward trend in VOC concentrations (Charts 5a through 5c).

Metals are not the primary contaminants of concern at the site, however iron and manganese trends were analyzed for the wells presented above (Charts 6a through 6c). With the exception of isolated anomalous detections, trends for these two metals are generally stable. However, manganese concentrations exhibit an upward trend in EW-1a (Chart 6a) and have risen in EW-4c since 2009 (Chart 6b).

4.3.2 VOC Plume Evaluation

An assessment of groundwater contamination distribution was conducted by creating contaminant isopleths maps for PCE and TCE (Figures 3a through 3d). Isopleths were generated for three distinct horizons, based on the screen elevations of site wells. These horizons are comparable to those identified in a 2001 SAIC groundwater report for the site. An additional isopleth map demonstrating the plume footprint (Figure 3d) was created using the maximum concentration observed in each well cluster.

Shallow Contamination

The shallow groundwater horizon (Figure 3a) includes wells screened from 44.86-75.10 feet above mean sea level (ft AMSL) and is comprised of wells EW-1a, EW-2a, EW-3a, EW-4a, EW-6a, and SW-1. There is an isolated area of groundwater impact where TCE is above the NYSDEC class GA water quality standard (5 μ g/l) to the southwest of the site building, near SW-1. PCE impacts also are near SW-1, and are more prevalent, extending to the northeast. Wells in the EW-3 cluster are not shown on the figure, but were included in plume evaluation. Neither PCE nor TCE was detected in the EW-3 cluster.

Intermediate Contamination

The intermediate groundwater horizon (Figure 3b) includes wells screened from 22.32 to 53.5 ft AMSL and is comprised of wells EW-1b, EW-2b, EW-3b, EW-4b, MW-8a, DW-1, and DW-2. An isolated area of PCE impact above the NYSDEC class GA standard is centered on MW-8a and a secondary area of PCE and TCE impact above the standard is centered on EW-4b. Wells in the EW-3 cluster are not shown on the figure, but were included in plume evaluation. Neither PCE nor TCE was detected in the EW-3 cluster.

Deep Contamination

The deep groundwater horizon (Figure 3c) includes wells screened from -6.84 to 19.11 ft AMSL and is comprised of wells EW-1c, EW-2c, EW-3c, EW-4c, and EW-10c. Groundwater concentrations of PCE and TCE in this horizon were above NYSDEC class GA criteria to the northeast of the site buildings, and the predominant compound is TCE. No groundwater impacts of PCE or TCE were observed above the NYSDEC class GA water quality standards to the south of the site buildings. Wells in the EW-3 cluster are not shown on the figure, but were included in plume evaluation. Neither PCE nor TCE was detected in the EW-3 cluster.

Plume Footprint

PCE is present in groundwater in two comingled plumes. The highest concentrations of PCE were observed in the shallow horizon at SW-1 (86 $\mu g/l$) located southwest of the Site building. Additional PCE contamination appears to be migrating on-site from the northeast, evidenced by concentrations in the EW-7 and EW-4 clusters (30 $\mu g/l$). PCE concentrations were also observed at target concentrations (5 $\mu g/l$) in the MW-10 cluster and at EW-14d, southeast of the site buildings.

TCE contamination appears to be primarily migrating on-site from the northeast [well clusters EW-7 (560 μ g/l) and EW-4 (220 μ g/l)]. A minor TCE concentration in groundwater at SW-1 (5.2 μ g/l) may indicate comingled plumes, although observed concentrations are orders of magnitude lower than those migrating on-site. Similar isolated detections were observed at the MW-10 cluster (11 μ g/l) and concentrations of TCE in EW-14d (310 μ g/l) indicate that a third plume of an unknown source may be present (Figure 3d).

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

HRP completed a groundwater monitoring event in July and August 2011 at the Claremont Polychemical Corporation site, in which 44 groundwater samples were collected. Analysis of the data has resulted in the following conclusions,

- A groundwater plume of VOCs, primarily PCE originates from the south of the main site building;
- Up to three other plumes migrate into the study area, and are marked by TCE predominance;
- The current groundwater treatment system is providing sufficient capture of the plume generated onsite;
- Some or all of the TCE plume originating northeast of the site is not being captured by the current treatment system;
- Two plumes identified southeast of the site may be related to the northernmost plume, although data gaps between the plumes exist based on the current monitoring network; and
- Concentrations of metals (arsenic, iron, manganese, chromium) were reported above NYSDEC class GA water quality criteria. These detections do not appear to be related to any specific plume, but rather general regional groundwater conditions.

5.2 Recommendations

Based on analysis of data collected during this and historical events, HRP has the following recommendations for the Claremont Polychemical Corporation site:

- Continued operation of the site system to capture the VOC plume generated from an on-site source and quarterly VOC sampling to verify that the plume is controlled;
- Evaluation of possible system expansion to the east to capture the plume migrating onsite from the area north of the EW-7 cluster (Figure 3d);
- Investigation to identify the source and connectivity of the plumes or elevated concentrations identified in the MW-10 cluster and at EW-14d (Figure 3d); and
- Since metals do not appear to be directly related to any particular plume on the site, HRP recommends discontinuation of metals sampling during quarterly plume monitoring events.

Figure 1
Site Location
Claremont Polychemical Corporation
Old Bethpage, New York
HRP # NEW9625.OM
Site Code 130015
Scale 1" = 2,000'

Associates, Inc.
Environmental/Civil Engineering & Hydrogeology
Creating the Right Solutions Together
Offices in CT, SC, NY, FL, MA, and TX
197 Scott Swamp Road
Farmington, Connecticut 06032
Ph:(860)674-9570 Fax:(860)674-9624
www.hrpassociates.com

Figure 2b
Shallow Groundwater
Elevation Contours
July 2011
Claremont Polychemical Corporation
Old Bethpage, New York
HRP # NEW9625.OM
Site Code 130015
Scale 1" = 200'

Legend

Monitoring Well

July 2011 Groundwater Contours

Note: Contours dashed where inferred.

Associates, Inc.

Environmental/Civil Engineering & Hydrogeology
Creating the Right Solutions Together
Offices in CT, SC, NY, FL, MA and TX

197 Scott Swamp Road Farmington, Connecticut 06032 Ph:(860)674-9570 Fax:(860)674-9624 www.hrpassociates.com Path: J:\N\NEWEN - NY STATE DEPARTMENT OF

Shallow Groundwater PCE and TCE
Contaminant Isopleths
(Screened Interval: 44.68-75.10' AMSL)
July 2011
Claremont Polychemical Corporation
Old Bethpage, New York
HRP # NEW9625.OM
Site Code 130015
Scale 1" = 100'

Legend

Associates, Inc.

Environmental/Civil Engineering & Hydrogeology
Creating the Right Solutions Together
Offices in CT, SC, NY, FL, MA and TX
197 Scott Swamp Road

Farmington, Connecticut 06032 Ph:(860)674-9570 Fax:(860)674-9624 www.hrpassociates.com

Table 1: Groundwater Elevations Claremont Polychemical Superfund Site 3rd Quarter 2011 Groundwater Sampling Event Old Bethpage, NY

HRP#NEW9625.OM Site Code: 130015 WA# D006130-19

		July/Aug 2011									
Well ID	Elev.of Screened Interval (ft AMSL)	Elevation (NGVD29) to Top of PVC Casing (ft AMSL)	Sample Date	Depth to Water Below Ref El ^b (ft)	Water Elevation (ft AMSL)						
	Monitoring Wells										
EW-1A	53.34 to 63.17	130.02	20-Jul-11	63.50	66.50						
EW-1B	28.75 to 38.58	130.56	20-Jul-11	64.00	66.53						
EW-1C	3.43 to 13.26	130.47	20-Jul-11	64.05	66.39						
EW-2A	65.19 to 55.36	157.14	20-Jul-11	91.80	65.56						
EW-2B	28.74 to 38.57	157.61	20-Jul-11	91.89	65.84						
EW-2C	7.60 to 17.43	157.54	20-Jul-11	91.02	66.64						
EW-2D	-132.55 to -142.55	NA	20-Jul-11	92.28	65.96						
EW-3A	52.28 to 62.11	158.92	20-Jul-11	93.50	65.45						
EW-3B	22.32 to 32.15	159.06	20-Jul-11	95.60	63.49						
EW-3C	2.99 to -6.84	158.92	20-Jul-11	95.50	63.45						
EW-4A	44.86 to 59.69	161.89	20-Jul-11	95.10	66.68						
EW-4B	29.8 to 39.63	161.67	20-Jul-11	95.17	66.63						
EW-4C	4.59 to 14.42	161.41	20-Jul-11	95.00	66.54						
EW-4D	-125.26 to -135.26	NA	20-Jul-11	95.38	66.39						
EW-5	-31.16 to -40.99	135.55	20-Jul-11	70.45	66.53						
EW-6A	57.66 to 67.49	130.32	20-Jul-11	62.20	68.12						
EW-6B	10.79 to 20.62	130.61		abandoned	k						
EW-6C	-29.60 to -39.43	130.40	20-Jul-11	62.23	68.17						
EW-7C	-37.47 to -47.47	NA	20-Jul-11	86.60	67.19						
EW-7D	-121.47 to -131.47	NA	20-Jul-11	86.50	67.21						
EW-8D	-102.49 to -112.49	NA	20-Jul-11	73.35	58.19						
EW-9D	-108.6 to -118.6	NA	20-Jul-11	70.30	67.23						
EW-10C	19.11 to 9.11	NA	20-Jul-11	93.30	67.64						
EW-11D	-106.75 to -116.75	NA	20-Jul-11	99.78	65.55						
EW-12D	-47.33 to -57.33	NA	20-Jul-11	98.43	65.99						
EW-13D	-177.28 to -187.28	NA	20-Jul-11	98.60	66.13						
EW-14D	-85.27 to -95.27	NA	20-Jul-11	41.25	60.88						
SW-2	65.10 to 75.10	136.93		dry							
DW-2	37.35 to 42.35	137.61	20-Jul-11	71.10	65.32						
SW-1	61.50 to 66.50	131.31	20-Jul-11	nm	nm						
DW-1	32.89 to 38.39	131.19	20-Jul-11	nm	nm						
LF-02	3 to 8	118.70	20-Jul-11	51.90	66.80						
PPW-1	-166.15 to -196.15	136.74	Permane	ently closed	Oct. 2008						
WT-01	56.98 to 66.98	164.57	20-Jul-11	96.70	67.87						
MW-6D	-26.1 to -31.1	160.39	20-Jul-11	95.20	65.19						
MW-8A	48.5 to 53.5	133.18	20-Jul-11	69.35	63.83						
MW-8B	-22.2 to -27.2	134.24	20-Jul-11	69.00	65.24						
MW-8C	-110.7 to -115.7	135.72	20-Jul-11	69.80	65.92						
MW-10B	-13 to -18	161.12	20-Jul-11	96.50	64.62						
MW-10C	-113.1 to -118.1	160.27	20-Jul-11	95.60	64.67						
MW-10D	-186.2 to -191.2	161.17	20-Jul-11	96.95	64.22						
BP-3A	51 to 71	124.54	20-Jul-11	62.28	62.26						
BP-3B	-91 to -111	123.57	20-Jul-11	nm	nm						
BP-3C	-156 to -176	123.68	20-Jul-11	nm	nm						
RW-01	Abandoned	Abandoned		abandoned	k						

Key:

ft bgs - feet below ground surface ft AMSL - feet above mean sea level

Ref EI - reference elevation NM - not measured NA - not applicable

Unit		ug/l	ug/l ug/l	ug/l	ug/l	ug/l ue	g/l	ug/l ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
NYSDEC Class GA	Criteria	25				25 300	10	5	5	1 5		5	5	5 5	0.0		5	ŭ	1 5			
Sample Description	Sampling Event	Arsenic	Barium Chromium, Total	lron	Lead	Manganese	Selenium	1,1,1-Trichloroethane		1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane (freon 113)	1,1-Dichloroethane	1,1-Dichloroethylene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-Dichloropropene (cis)	1,3-Dichloropropene (trans)	1,4-Dichlorobenzene
BP-3a	07/27/11	<15	27.9 <5	<125	3.	(,	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
BP-3b	08/01/11	<15	19.1 5.		<15	8.6 (<		<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
BP-3c	08/01/11	<15	65.9 7	7 938	<15	281 (<	<38)	0.52 <5		0.14 <5	1.	5 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
BP-3c dup	08/01/11	<15	66.92 79.8	7 974.4	<15	286.2 (<	<38)	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DW-1	07/25/11	<15	30.9 <5	58.9	<15	13 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
DW-2	07/26/11	<15	74.9 <5	27.9	<15	46.3 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-10c	07/25/11	<15	75.8 0.6	8 <125	<15	32.9 (<	<38)	0.16 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-11d	07/25/11	<15	90.9 <5	<125	3.	.5 20.7 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-12d	07/25/11	<15	111	4 42.3	<15	104 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-13d	07/25/11	<15	44.8 7.	9 24.2	<15	241 (<	<38)	1.7 <5	(<5)	<5	1.3	3 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-14d	07/26/11	<15	40.6 0.5	8 23.2	<15	41.6 (<	<38)	48 (<13)		0.95 (<13)	1.3	2 (<13)	(<13)	(<13)	(<13)	(<13)	7.2	(<13)	(<13)	(<13)	(<13)	(<13)
EW-14d	07/26/11	<15	40.6 0.5	8 23.2	<15	41.6 (<	<38)	39 <5		0.73 <5	0.7	3 <5	<5	<5	(<5)	(<5)	5.6	(<5)	<5	(<5)	(<5)	<5
EW-1a	07/22/11	<15	234 0.6	4 <125	4.	.8 2350 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-1a	07/22/11	<15	228 0.6	9 <125	<15	2410 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-1b	07/22/11	<15	44.6 <5	54.9	3.	.7 361 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-1c	07/22/11	<15	51.8 <5	47.7	4.	.3 595 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-2a	07/25/11	<15	10 1.	B 3510	7.	.4 61.5 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-2b	07/29/11	<15	54.5 0.	6 597	<15	78.1 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-2c	07/25/11	<15	101 <5	19.1	2.	.8 142 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-2d	07/27/11	<15	29.6 <5	251	5.	.8 12.2 (<	<38)	0.13 <5	(<5)	<5	0.1	9 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-3a	07/22/11	<15	8.8 <5	148	6.	.1 4.1 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-3b	07/22/11	<15	14.5 <5	87.7	4.	.4 6.4 (<	<38)	<5 <5	(<5)	<5	<5	<5	0.4	47 0.54	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-3c	07/22/11	<15	67.2 <5	55.7	6.	.4 7.9 (<	<38)	<5 <5	(<5)	<5	<5	<5	<5		(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-4a	07/26/11	<15	42.5 <5	51.2				<5 <5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-4b	07/26/11	<15	78.6 <5		<15	25.1 (<		2.8 <5	(<5)	<5	0.4	1 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-4c	07/26/11	<15	242 <5		<15	456 (<		3.4 <5	(<5)	<5		5 < 5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-4d	07/25/11	<15	44 <5	58.7		,	,	2.9 <5	(<5)	<5	4	6 <5	0.4	41 0.47	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2011	1	1 2.3	- /	11 19 19	1, 1-7	1 -	1 3.0	1	1 0.		F = 7	1, -7	1 -	I/	1	,/	1,,	

Unit NYSDEC Class G	A Critoria	ug/l NS	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l ug/l	5	ug/l	ug/l
Sample Description	Sampling Event	1,4-Dioxane	Acetone	Benzene	Bromochloromethane	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	, control of the cont		Ethylbenzene	Sopropylbenzene	m/p-Xylenes	Methylene chloride	Methyltertbutyl ether	o-Xylene	Styrene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride
BP-3a	07/27/11	<100	<10	(<5)	<5	<5	0.18		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	_	<5 <5		<5	(<5)
BP-3b	08/01/11	<100	<10	(<5)	<5	<5	0.23		<5	<5		2.1 <5	<5	<5	<5	<5	<5	<5	<5	6		<5	0.55		(<5)
BP-3c	08/01/11	<100	<10	(<5)	<5	<5	0.23		<5	<5			1 <5	<5	<5	0.5	_	<5	<5		2 <5	0.39	3.5	0.098	+ · · ·
BP-3c dup	08/01/11	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA NA		NA	NA
DW-1	07/25/11	<100	<10	(<5)	<5	<5	0.15		<5	<5		0.72 <5	<5	<5	<5	<5	<5	<5	<5	0.2	27 <5	<5	1.4	<5	(<5)
DW-2	07/26/11	<100	<10	(<5)	<5	<5	0.15		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5			<5 NA		<5	(<5)
EW-10c	07/25/11	<100	<10	(<5)	<5	<5	0.23	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.0	34 <5	<5	1.1	<5	(<5)
EW-11d	07/25/11	<100	<10	(<5)	<5	<5	0.22	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.47	<5	(<5)
EW-12d	07/25/11	<100	<10	(<5)	<5	<5	0.2	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.53	<5	(<5)
EW-13d	07/25/11	<100	<10	(<5)	<5	<5	0.19	<5	<5	<5		0.8 <5	<5	<5	<5	<5		2.6 <5	<5	1	.7 <5	<5	1.9	<5	(<5)
EW-14d	07/26/11	<260	<26	(<13)	(<13)	(<13)	0.53	(<13)	(<13)	(<13)		4.1 (<13)	(<13)	(<13)	(<13)	0.47	(<13)	(<13)	(<13)		5 (<13)	(<13)	310	(<13)	(<13)
EW-14d	07/26/11		42 <10	(<5)	<5	<5	0.16	<5	<5	<5		3.2 <5	<5	<5	<5	0.35	<5	<5	<5	4	.4 <5	<5	230	<5	(<5)
EW-1a	07/22/11	<100	<10	(<5)	<5	<5	0.18	<5	<5	<5		0.84 <5	<5	<5	<5	<5	<5	<5	<5	8	0.024	<5 NA		<5	(<5)
EW-1a	07/22/11	<100	<10	(<5)	<5	<5	0.25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	8	.3 <5	<5	0.45	<5	(<5)
EW-1b	07/22/11	<100	<10	(<5)	<5	<5	0.16	<5	<5	<5		0.28 <5	<5	<5	<5	<5	<5	<5	<5	0.4	0.025	<5	0.34	<5	(<5)
EW-1c	07/22/11	<100	<10	(<5)	<5	<5	0.14	<5	<5	<5		0.32 <5	<5	<5	<5	<5	<5	<5	<5	<5	0.024	<5	0.43	<5	(<5)
EW-2a	07/25/11	<100	1.3	3 (<5)	<5	<5	0.18	<5	<5	<5		1.5 <5	<5	<5	<5	<5	<5	<5	<5	<5	1.9	<5	0.17	<5	(<5)
EW-2b	07/29/11	<100		4 (<5)	<5	<5	0.21	<5	<5	<5		0.23 <5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.067	0.26		(<5)
EW-2c	07/25/11	<100	<10	(<5)	<5	<5	0.15	<5	<5	<5		0.15 <5	<5	<5	<5	<5	<5	<5	<5	0.	18 0.027	<5	0.67	<5	(<5)
EW-2d	07/27/11	<100	<10	(<5)	<5	<5	0.14	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0	.9 0.031	<5	4.1	<5	(<5)
EW-3a	07/22/11	<100	<10	(<5)	<5	<5	0.14	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.026	<5 <5		<5	(<5)
EW-3b	07/22/11	<100	<10	(<5)	<5	<5	0.61	<5	<5	<5	<5	<5		0.1 <5	<5	<5	<5	<5	<5	<5	0.091	0.29	0.26	<5	(<5)
EW-3c	07/22/11	<100	<10	(<5)	<5	<5	0.33	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.042	<5	0.77	<5	(<5)
EW-4a	07/26/11	<100	<10	(<5)	<5	<5	0.31	<5	<5	<5		0.27 <5	<5	<5	<5	<5	<5	<5	<5		5 0.038	<5	0.21	<5	(<5)
EW-4b	07/26/11	<100	<10	(<5)	<5	<5	<5	<5	<5	<5		0.36 <5	<5	<5	<5	<5		0.5 <5	<5		5 0.039	<5	8.2	0.19	9 (<5)
EW-4c	07/26/11	<100	<10	(<5)	<5	<5	0.25	<5	<5	<5		1.7 <5	<5	<5	<5	<5		2.2 <5	<5	5	.2 <5	0.23	11	<5	(<5)
EW-4d	07/25/11	<100	<10	(<5)	<5	<5	0.5	<5	<5	<5		1 <5	<5	<5	<5	<5	<5	<5	<5		0.081	<5	220	<5	(<5)

Unit		ug/l t	ua/l	ua/l	ug/l ug/l		ug/l ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	lua/l	ug/l	ug/l	ug/l	ug/l	ug/l	ua/l	ug/l
NYSDEC Class GA	Criteria	25	1000	50		25			j -g,.	5	1 5	5	5 5	5 5	-9.	5 0.04		3	5	1	5 0	- 3	, ,
Sample Description	Sampling Event	Arsenic	Barium	Chromium, Total	lron	3	Manganese	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1,2-Trichlorotrifluoroethane (freon 113)	the control of the co	1,1-Dichloroethylene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2-Dibromo-3- chloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,3-Dichloropropene (cis)	1,3-Dichloropropene (trans)	1,4-Dichlorobenzene
EW-4d	07/25/11	<15	44	<5	58.7	3.7	5.3 (<38)	2.6	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)
EW-5	07/26/11	<15	22.8	<5	70.6 <15		66.7 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-6a		<15	55.7	0.72		2.8	(/	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-6c	07/28/11	<15	35.9	<5	177 <15		38.5 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-7c	07/26/11	<15	310	<5	<125 <15		766 (<38)	2	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)	(<25)
EW-7c	07/26/11	<15	310	<5	<125 <15		766 (<38)	2.1	<5	(<5)	<5		0.35 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-7d	07/26/11	<15	62.5	<5	<125 <15		10.9 (<38)	0.4	<5	(<5)	<5	<5	<5	0.19	C	.24 (<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-8d	07/26/11	<15	47.1	0.69	127 <15		9.3 (<38)	<5	<5	(<5)	<5	<5	<5	0.42	C	.48 (<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
EW-9d	07/26/11	<15	36.8	<5	<125 <15		11.9 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
LF-2	07/27/11	119	57	11.3	4720	3.6	251 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-10b	07/28/11	<15	83.6	<5	86.7 <15		22.7 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-10c	07/28/11	<15	99.9	<5	50.5	2.7	90.2 (<38)	0.21	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-10d	07/28/11	<15	81.3	<5	55 <15		21.1 (<38)	1.3	<5	(<5)	<5		3 <5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-6d	07/27/11	26.8	119	0.59	38700 <15		1990 (<38)	<5	<5	(<5)	<5		0.28 <5	<5	C	.28 (<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-8a	07/28/11	4.8	15	0.76	139 <15		17.9 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-8b	07/29/11	<15	117	<5	15.4 <15		443 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
MW-8c	07/27/11	<15	29.7	0.56	838 <15		22.9 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
SW-1	07/25/11	<15	54.7	<5	<125 <15		3.3 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
WT-1	07/28/11	<15	78.3	<5	<125 <15		34.4 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
WT-1	07/28/11	<15	79	<5	<125 <15		32 (<38)	<5	<5	(<5)	<5	<5	<5	<5	<5	(<5)	(<5)	<5	(<5)	<5	(<5)	(<5)	<5
WT-1	07/28/11	<15	79.5	<5	<125 <15		31.7 (<38)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WT-1	07/28/11	<15	78.3	<5	<125 <15		33.1 (<38)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Uı	nit		ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
N'	YSDEC Class GA	Criteria	NS	50)	1 5	5	60	5		5 7	7	5 5	i	5 5	5	5 5	10	5	5		5 5	ţ	5 5	5	5 2
	Sample Description	Sampling Event	1,4-Dioxane	Acetone	Benzene	Bromochloromethane	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroform	cis-1 9-Dichlomethylene	Dichlorodifluoromethane	Ethylbenzene	lsopropylbenzene	7 7	m/p-Xylenes Methylene chloride	Methyllertbutyl ether	o-Xylene	Styrene	Tetrachloroethylene	Toluene	trans-1,2-Dichloroethylene	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride
	EW-4d	07/25/11	<210	<21	(<11)	(<11)	(<11)	<11	(<11)	(<11)	(<11)		1.1 (<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	(<11)	2	27 (<11)	(<11)	35	(<11)	(<11)
	EW-5	07/26/11	<100	<10	(<5)	<5	<5	<5	<5	<5	<5		0.25 <5	<5	<5	<5	<5	<5	<5	<5	0.6	64 <5	0.28	8 4.9	<5	(<5)
	EW-6a	07/26/11	<100	<10	(<5)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.2	21 <5	<5	0.4	<5	(<5)
	EW-6c	07/28/11	<100	<10	(<5)	<5	<5	0.18	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.074	4 0.84	<5	(<5)
	EW-7c	07/26/11	<490	<49	(<25)	(<25)	(<25)	<25	(<25)	(<25)	(<25)		12 (<25)	(<25)	(<25)	(<25)	(<25)	7.1	(<25)	(<25)	2	28 (<25)	(<25)	560	(<25)	(<25)
	EW-7c	07/26/11	<100	<10	(<5)	<5	<5	<5	<5	<5	<5		13 <5	<5	<5	<5	<5	6.5	<5	<5	3	30 <5	0.17	7 390	<5	(<5)
	EW-7d	07/26/11	<100	<10	(<5)	<5	<5	0.32	<5	<5	<5		0.2 <5	<5	<5	<5	<5	<5	<5	<5	2	21 <5	<5	33	<5	(<5)
	EW-8d	07/26/11	<100	<10	(<5)	<5	<5	0.51	<5	<5	<5	<5	<5	<5	<5		0.073 0.15	<5	0.028	<5	<5	0.07	0.24	4 0.39	<5	(<5)
	EW-9d	07/26/11	<100	<10	(<5)	<5	<5	0.25	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	1.	.9 <5	<5	1	<5	(<5)
	LF-2	07/27/11		320 6.5	(<5)	<5	<5	0.2	<5	<5	<5		0.21 <5	<5	3.3	3	1.4 <5	<5	0.29	<5	<5	0.29	<5	1.1	<5	(<5)
	MW-10b	07/28/11	<100	<10	(<5)	<5	<5	0.13	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.46	<5	(<5)
	MW-10c	07/28/11	<100	<10	(<5)	<5	<5	0.12	<5	<5	<5		0.33 <5	<5	<5	<5	<5	<5	<5	<5	2.	.1 <5	<5	2.5	<5	(<5)
	MW-10d	07/28/11	<100	<10	(<5)	<5	<5	0.12	0.46	<5	<5		2.1 <5	<5	<5	<5	<5	<5	<5	<5	5.	.1 <5	0.14	4 9.4	<5	(<5)
	MW-6d	07/27/11		50 <10	(<5)	<5	<5	0.27	<5	0.	62 <5	<5	<5	<5	0.15	<5	0.16	6.3	<5	<5	<5	0.088	<5	0.28	<5	(<5)
	MW-8a	07/28/11	<100	<10	(<5)	<5	<5	0.17	<5	<5	<5	<5	0.074	<5	<5	<5	<5	<5	<5	<5	5.	.7 <5	<5	0.36	<5	(<5)
	MW-8b	07/29/11	<100	<10	(<5)	<5	<5	0.15	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.2	25 <5	<5	0.19	<5	(<5)
	MW-8c	07/27/11	<100	<10	(<5)	<5	<5	0.14	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.3	<5	(<5)
	SW-1	07/25/11	<100	<10	(<5)	<5	<5	0.19	<5	<5	<5		4.5 <5	<5	<5	<5	<5	<5	<5	<5	8	36 <5	<5	5.3	<5	(<5)
	WT-1	07/28/11	<100	<10	(<5)	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.21	<5	(<5)
	WT-1	07/28/11		15 <10	(<5)	<5	<5	0.12	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	0.18	<5	(<5)
	WT-1	07/28/11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	WT-1	07/28/11	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

1 Fairchild	neering, P.0 I Square, St rk, NY 1206 -7101	uite 110	GF				rement Ref: 07:35 Well Volumes (gal):2,460 Height of Top of PVC: Type: MOTOR (10HP) ature conductivity: DO (ug/L) (ntt) .5 75.3 4.84 55 74.9 4.56 15 .9 74.9 4.51 25			
Project: Clare	emont Polyche	emical	WAS #: D00	S#: D006130-19					ackson, Keith	
Location: Old	d Bethpage, N	Υ	Well ID.:EX						ES F	
Sounding Me	thod:		Gauge Date	:8-16-11		Measureme	Personnel: Pete Takach, James Jackson, Krillas er:CLOUDY TEMP @ 64 DEGREES F rement Ref: Diameter (in):10" 07:35 Well Volumes (gal):2,460 Height of Top of PVC: Type: MOTOR (10HP) Turbidi (ntu (us/cm) (ug/L) (ntu (ntu (us/cm) 4.56 15.6 15.6 15.9 74.9 4.51 25.7 15.9 74.9 4.51 25.7 15.9 74.9 4.51 25.7 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9			
Stick Up/Dov	vn (ft):		Gauge Time	Gauge Time:07:35 Well Diameter (in):10"						
Purge Date:		8/1	16/2011		Purge Time:			07:35		
Purge Metho	d:	F	PUMP	JMP Field Technician:						
1) Well Depti	h (ft): 175'		4) Well Diar	neter (in): 10"		7) Five Well	Volumes (gal	I):2,460		
2) Depth to V	Water (ft):54.5		5) Well Volu	ıme / Foot (gal	l) (d ² x.0408):	Depth/Heigh	VC:			
3) Height of I 120.5	H ₂ O Column (1-2) (ft):		ll Volume (gal)	(3x5):491.64	Pump Type:	p Type: MOTOR (10HP)			
				Water Qualit	y Paramete	ers				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	Turbidity (ntu)		
0720	54.5					+			5.0	
0725	54.5 54.5	 	 						15.6	
0730	04.0	<u> </u>	 	4.65	209	14.9	/4.9	4.51	25.7	
	-	 	 	 	 	<u> </u>	+	 	<u> </u>	
			+	+	 	+		+	+	
				1			1			
Total Quantit	ty of Water Re	emoved (gal):	10 (GAL		Sampling ⁻	Гime:	7:35		
Samplers:						Split Samr	ole With:	Τ		
						<u> </u>				
Sampling Da	te:	8/16/2011				Sample Ty	rpe:	GRAB		
COMMENTS	S AND OBSER	RVATIONS:	NO PRO	OBLEM AT \	WELL - SA	MPLES TA		TAKEN - 4	METALS/6	

1 Fairchild	neering, P.0 Square, St k, NY 1206 7101	uite 110	G	ROUNDWAT SAMPLING			Availa	W YORK STATE			
Project: Clare	emont Polyche	emical	WAS #: D0	06130-19		Field Person Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old	l Bethpage, N	Y	Well ID.:EX	(T-2		Weather:CL0	OUDY TEMP	64 DEGREES	3 F		
Sounding Me	ethod:		Gauge Dat	e:8-16-11		Measuremer	nt Ref:				
Stick Up/Dov	vn (ft):		Gauge Tim	e:0855		Well Diamete	er (in):10"				
Purge Date:		8/1	16/2011		Purge Time:	-		08:55			
Purge Metho	d:				Field Technician:						
1) Well Depti	h (ft): 190'		4) Well Dia	meter (in): 10		7) Five Well	Volumes (gal):			
2) Depth to V	Vater (ft):64.9		5) Well Volume / Foot (gal) (d ² x.0408):			Depth/Heigh	t of Top of PV	/C:			
3) Height of I	H ₂ O Column (1-2) (ft):	6) Total We	ell Volume (gal)) (3x5):	Pump Type:	MOTOR (10	HP)			
				Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
0830	64.9			4.39	268	14.6	52.1	7.06	36.3		
0835	64.9			4.37	269	14.4	51.9	6.73	32.3		
0840	64.9			4.36	271	14.3	51.8	6.64	20.8		
0845	64.9			4.35	273	14.3	52	6.58	22.8		
0850	64.9			4.36	274	14.2	51.7	6.64	35.7		
							1		1		
Total Quantit	y of Water Re	moved (gal):	15	gal.		Sampling T	ïme:	08:55			
Samplers:	implers:					Split Sampl	e With:				
Sampling Date: 8/16/2011						Sample Type: GRAB					

NO PROBLEMS @ WELL - SAMPLES TAKEN - 1 METAL 3 VOAS/ 1 TSS

1 Fairchild	neering, P.0 Square, So k, NY 1206 7101	uite 110	GI	ROUNDWAT SAMPLING			TANGO TO THE PART OF THE PART					
Project: Clare	emont Polyche	emical	WAS #: D00	06130 ₋ 19		Field Person		ach lames Is	ackson Keith			
r roject. Olare	Smort r oryone	cimoai	WAO #. DO	00100-10		Field Personnel: Pete Takach, James Jackson, Keith Gandarillas						
Location: Old	l Bethpage, N	Y	Well ID.:EX	T-3		Weather:CLOUDY TEMP @ 65 DEGREES F.						
Sounding Me	thod:		Gauge Date	e:8-16-11		Measuremer	t Ref:					
Stick Up/Dow	vn (ft):		Gauge Time	e:		Well Diamete	er (in):					
Purge Date:		8/	16/2011		Purge Time:			10:20				
	_				10.20							
Purge Metho	d:				Field Techni	cian:						
1) Well Depth	n (ff): 10/1'		4) Well Diag	meter (in): 10"	•	7) Five Well	Volumes (gal	١٠				
, ,	, ,		4) Well Blai	, ,			7) Five Well Volumes (gal):					
2) Depth to V	Vater (ft):65.1		5) Well Volu	ume / Foot (gal) (d ² x.0408):	Depth/Heigh	t of Top of P\	/C:				
3) Height of H	of H ₂ O Column (1-2) (ft): 6) Total Well Volume (gal) (3x5): Pump Type: MOTOR (10 I				HP)							
				Water Qualit	y Paramete	ers						
Time	DTW	Volume	Rate	pН	ORP	temperature conductivity: DO Turbidity						
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)			
1000	65.1			4.21	309	16.6	46.7	8.19	.2			
1005	65.1		<u> </u>	4.23	303	16.5	46.7	7.85	0.7			
1010	65.1 65.1			4.22	302	16.5	46.7 46.7	7.76 7.79	5.3			
1015	03.1			4.23	299	16.5	40.7	7.79	4.9			
			1									
	<u> </u>			L								
Total Quantit	y of Water Re	moved (gal):	10 (GAL		Sampling T	ime:					
Samplers:	Samplers:					Snlit Sampl	e With					
Sumplers.	zampioro.					Split Sample With:						
Sampling Date: 8/16/2011						Sample Typ	Sample Type: GRAB					
						1	1					

COMMENTS AND OBSERVATIONS: WATER WAS DISCOLORED AT FIRST, THEN CLEARED-NO PROBLEMS AT WELL, SAMPLES TAKEN - 1 METAL/2 VOAS/1 TSS

1 Fairchild	neering, P.0 ∣Square, Su rk, NY 1206	uite 110	GI	ROUNDWAT			VENT YOU	VIRONMENTAL CONSE		
(518) 877-				SAMPLING	FURIVI	Turbidi				
Project: Clare	emont Polyche	emical	WAS #: D0	06130-19					ickson, Keith	
Location: Old	d Bethpage, N	Y	Well ID.:BP	-3A		TEMP @ 7	2 DEGREES	S C		
Sounding Me	ethod:		Gauge Date	e:7-27-11		Measuremer	nt Ref:			
Stick Up/Dov	vn (ft):		Gauge Time	e:60 PSI		Well Diamete	er (in):			
Purge Date:		7/2	27/2011		Purge Time:			11:30		
Purge Metho	d:	LOV	W FLOW		Field Techni	cian:				
1) Well Depti	h (ft): 74		4) Well Dia	meter (in): 4"		7) Five Well Volumes (gal):41				
2) Depth to V	0.653						/C:			
3) Height of I	H ₂ O Column (1	1-2) (ft): 12.6		ell Volume (gal)) (3x5):8.22	Pump Type:	BLADDER			
				Water Qualit	ty Paramete	ers				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)				Turbidity (ntu)	
1010	62.48	1.00	260	4.05	315		6.6	10 11		
1010	62.45	1.00	260	3.98	329					
1013	62.45	1.00	260	3.94	336					
1025	62.45	1.00	260	3.93	338					
1030	62.45	0.5	260	3.91	308				195.1	
1114	V=	<u> </u>					0.0	1		
1118								0.063	6.4	
1121									5.3	
Total Quantit	y of Water Re	moved (gal):				Sampling T	ïme:	11:30		
Samplers:						Split Sampl	e With:			
								•		
Sampling Da	te:					Sample Typ	oe:	GRAB		

METALS, VOAS

1 Fairchild	neering, P.0 Square, St k, NY 1206 7101	uite 110	GROUNDWATER WELL SAMPLING FORM				THE W YORK STATE				
Project: Clare	emont Polyche	emical	WAS #: D00	6130-19		Field F Ganda			ach, James Ja	ickson, Keith	
Location: Old	l Bethpage, N	Y	Well ID.:BP-	3B							
Sounding Me	ethod:		Gauge Date	: 8-1-11		Measu	remen	t Ref:			
Stick Up/Dov	vn (ft):		Gauge Time	:		Well D	Veather:TEMP @ 70'S Measurement Ref: Vell Diameter (in): 9:35 an:) Five Well Volumes (gal):				
Purge Date:		8/	/1/2011		Purge Time:	1			9:35		
Purge Method: LOW FLOW					Field Technician:						
1) Well Depti	h (ft): 235'		4) Well Diameter (in): 4"			7) Five	: Well \	/olumes (gal)	:		
2) Depth to V	Vater (ft):65.22	2	5) Well Volume / Foot (gal) (d ² x.0408): Depth/Height of Top of PVC			pth/Height of Top of PVC:					
3) Height of I	H ₂ O Column (1-2) (ft):	6) Total Wel	l Volume (gal)	(3x5):	Pump	Туре:	BLADDER			
				Water Qualit	y Paramete	ers					
Time (hrs) 09:10 09:15 09:20 09:25 09:30	DTW (ft btoc) 65.22 65.22 65.22 65.22 65.22	Volume (liters) .50 0.5 1 1	Rate (mL/m) 22.0 22.0 22.0 22.0 22.0 22.0	pH (pH units) 4.10 4.09 4.09 4.04 4.02	ORP (mV) 36.4 36.7 37.4 38.1 3.87	13 13 12 12	DO Turb (nt 1.39 1.37 10.5 11.39 13.7 10.5 10.86 16.8 10.43 4.12.8 6.2 10.24 5.1				
Total Quantit	y of Water Re	moved (gal):	4 G/	AL .		Samp	oling Ti	me:	9:40		

8/1/2011

Samplers:

Sampling Date:

NO PROBLEM @ WELL, SAMPLES TAKEN I METAL 3 VOAS/2 VOA (TOB)

Split Sample With:

Sample Type:

TOB

GRAB

HRP Engineering, P.C. 1 Fairchild Square, Suite 110
Clifton Park, NY 12065 (518) 877-7101
Project: Claremont Polychemical

GROUNDWATER WELL SAMPLING FORM

(518) 877-	7101			O, IIVII EII VO	7 011111			Bydald . Ak	W YORK STATE . NO	
Project: Clare	emont Polych	emical	WAS #: D00	6130-19				nel: Pete Tak	ach, James Ja	ckson, Keith
Location: Old	Bethpage, N	Υ	Well ID.:BP-	3C		Weath	Gandarillas Weather:TEMP @ 70'S Measurement Ref: Well Diameter (in):4" 8:25 ian: 7) Five Well Volumes (gal): Depth/Height of Top of PVC: Pump Type: BLADDER rs temperature (oC) (uS/cm) (ug/L) (ntu (ntu (ntu (ntu (ntu (ntu (ntu (ntu			
Sounding Me	thod:		Gauge Date:	:08-1-11		Field Personnel: Pete Takach, James Jackson, Ke Gandarillas				
Stick Up/Dow	n (ft):		Gauge Time	:		Well D	Well Diameter (in):4"			
Purge Date:		8/	1/2011		Purge Time:				8:25	
Purge Method	d:	SLO	W FLOW		Field Technic	### 13.5				
1) Well Depth	n (ft): 300'		4) Well Diam	neter (in): 4"	•	Field Personnel: Pete Takach, James Jackson, kgandarillas Weather:TEMP @ 70'S Measurement Ref: Well Diameter (in):4"				
2) Depth to W	/ater (ft):65.4	5	5) Well Volu	me / Foot (gal	l) (d ² x.0408):	Turbid (us/cm) Turb				
3) Height of H	l₂O Column (1-2) (ft):	6) Total Wel	l Volume (gal)) (3x5):					
Water Quality Parameters										
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature conductivity.				Turbidity (ntu)
0750	65.45	.50	240	4.37	301			31.8	7.71	29.9
0755	65.45	.50	240	4.38	292				· · · · · · · · · · · · · · · · · · ·	24.6
0800	65.45	.50	240	4.35	294					
0805	65.45	.50	240	4.32	294	1				
0810	65.45 65.45	.50 .50	240 240	4.26	296					
0815	65.45	1.0	240	4.24	297					
0820	03.43	1.0	240	4.23	298	13	.4	29.1	0.14	15.4
Total Quantity	y of Water Re	emoved (gal):	4 G <i>A</i>	AL.		Samp	oling Ti	me:	08:25	
			<u> </u>						Į.	
Samplers:						Split 9	Sample	e With:	ТОВ	
Sampling Dat	te:	8/1/2011				Samr	ole Typ	e:	GRAB	
							7 P		1	
COMMENTS	AND OBSEF	RVATIONS:	NO P	ROBLEMS		SAMF			METAL/3 \	VOAS/2

HRP Engin	eering D (^	Ī			I		.IIRONME.			
1 Fairchild Clifton Park (518) 877-7	Square, Si k, NY 1206	uite 110	_	OUNDWAT SAMPLING			THE VORK STATE				
Project: Clare	mont Polyche	emical	WAS #: D00	6130-19		Field Personnel: Pete Takach, James Jackson, Keith Gandarillas					
Location: Old	Bethpage, N	Υ	Well ID.: DW	<i>I</i> -1		Weather: MII	LD DAY				
Sounding Met	hod:		Gauge Date:	:		Measuremer	nt Ref:				
Stick Up/Dowr	n (ft):		Gauge Time	:		Well Diamete	er (in): 4"				
Purge Date:		7/2	25/2011		Purge Time:	me: 12:50					
Purge Method	:	SLO	W FLOW		Field Technician:						
1) Well Depth	(ft): 98.5'		4) Well Diam	4) Well Diameter (in): 4"			7) Five Well Volumes (gal):302				
2) Depth to W	ater (ft):6) Well Volume / Foot (gal) Depth/Height of Top of PVC:98.51							
3) Height of H 92.51	nt of H ₂ O Column (1-2) (ft): 6) Total Well Volume (ga					Pump Type:	Pump Type: BLADDER				
			V	Water Qualit	v Paramete	ers					
Time	DTW	Volume	Rate	pH	ORP	temperature	conductivity:	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
12:05	64.76	.25	160ML	4.58	267	15.8	35.9	6.72	4.2		
12:10	64.76	.25	160ML	4.5	267	15.3	37.8	5.74	4.3		
12:15	64.76	.25	160ML	4.43	268	15	40.5	4.59	4.6		
12:20	64.76	.25	160ML	4.36	269	15.1	42.3	3.48	4.6		
12:25	64.76	0.5	160ML	4.35	263	15.1	44.6	3.03	4.4		
12:30	64.76	0.5	160ML	4.32	265	15.2	45.5	2.89	4.4		
12:35	64.76	0.5	160ML	4.32	264	15.3	45.9	2.77	5.2		
12:40	64.76	0.5	160ML	4.32	263	15.2	46	2.7	4.8		
			<u> </u>		l	<u> </u>		140.50	<u> </u>		
Total Quantity	of Water Re	emoved (gal):	3 GA	AL .		Sampling T	ime:	12:50			
Samplers:						Split Sampl	e With:				
Sampling Date	e:	7/25/2011		Sample Type:							

METAL AND VOAS

Project: Claremont Polychemical WAS #: D006130-19 Field Personnel: Pete Takach, James Jackson, Keith Gandarillas Weather: COOL - TEMP 71 DEGREES F	1 Fairchild	neering, P.0 Square, Si k, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			WG .	W YORK STATE			
Docation: Old Bethpage, NY Well ID::DW-2 Weather::COOL -TEMP 71 DEGREES F	Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Personnel: Pete Takach, James Jackson, Keith					
Stick Up/Down (ft): 50 PSI	Location: Old	l Bethpage, N	Y	Well ID.:DW	1-2							
Purge Date: 7/26/2011	Sounding Me	ethod:		Gauge Date	:7/26/11		Measureme	nt Ref:				
Purge Method: LOW FLOW Field Technician: 7) Five Well Volumes (gal):98 70.75 5) Well Volume / Foot (gal) (d ² x.0408): 0.6528 3) Height of H ₂ O Column (1-2) (ft): 29.97 Water Quality Parameters Time DTW ((it bloc) (illees) (mulm) (pH units) (mV) ((oC) ((oScim)) ((ug/L)) ((ntu) (ntu) (Stick Up/Dov	vn (ft):		50 PSI			Well Diamet	er (in): 4"				
100.72" 4) Well Diameter (in): 4" 7) Five Well Volumes (gal):98	Purge Date:		7/2	26/2011		Purge Time:	!					
70.75	Purge Metho	d:	LOV	V FLOW		Field Techni	Technician:					
O.6528 O	100.72'			4) Well Diameter (in): 4"			7) Five Well Volumes (gal):98					
3) Height of H ₂ O Column (1-2) (ft): 29.97 Water Quality Parameters	70.75				me / Foot (gal) (d ² x.0408):	Depth/Heigh	t of Top of P\	VC:			
Time (hrs) DTW (ft bloc) Volume (ilters) Rate (mL/m) pH (pH units) ORP (mV) temperature (oC) conductivity: (uS/cm) DO (ug/L) Turbidity (intu) 6:45 70.75 .50 180 4.29 327 15.4 43.7 6.68 3.5 6:50 70.75 .50 180 4.21 327 15.4 48.7 6.37 3.9 6:55 70.75 .50 180 3.9 346 15.3 57.8 6.2 3.2 7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): Samplers: Spli					ll Volume (gal)	(3x5):19.56	Pump Type:	PBC BLADE	R			
Time (hrs) DTW (ft bloc) Volume (ilters) Rate (mL/m) pH (pH units) ORP (mV) temperature (oC) conductivity: (uS/cm) DO (ug/L) Turbidity (intu) 6:45 70.75 .50 180 4.29 327 15.4 43.7 6.68 3.5 6:50 70.75 .50 180 4.21 327 15.4 48.7 6.37 3.9 6:55 70.75 .50 180 3.9 346 15.3 57.8 6.2 3.2 7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): Samplers: Spli				7	Water Qualit	y Paramete	ers					
(hrs) (ft btoc) (illers) (mL/m) (pH units) (mV) (oC) (us/cm) (ug/L) (ntu) 6:45 70.75 .50 180 4.29 327 15.4 43.7 6.68 3.5 6:50 70.75 .50 180 4.21 327 15.4 48.7 6.37 3.9 6:55 70.75 .50 180 3.9 346 15.3 57.8 6.2 3.2 7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): Split Sample With: NONE	Time	DTW	Volume	Rate	рН	ORP	temperature	conductivity:	DO	Turbidity		
6:50 70.75 .50 180 4.21 327 15.4 48.7 6.37 3.9 6:55 70.75 .50 180 3.9 346 15.3 57.8 6.2 3.2 7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Split Sample With: NONE	(hrs)	, ,					(oC)	(uS/cm)		(ntu)		
6:55 70.75 .50 180 3.9 346 15.3 57.8 6.2 3.2 7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Samplers: Split Sample With: NONE							15.4		-	3.5		
7:00 70.75 .50 180 3.84 352 15.4 58.7 6.13 3.8 7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Samplers: Split Sample With: NONE					4.21	327						
7:05 70.75 .50 180 3.81 353 15.4 58.7 6.09 4.9 7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Samplers: Split Sample With: NONE	6:55				3.9	346	15.3	57.8	6.2	3.2		
7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Samplers: Split Sample With: NONE	7:00				3.84	352	15.4	58.7	6.13	3.8		
7:10 70.75 .50 180 3.8 355 15.3 58.4 6.1 7.3 Total Quantity of Water Removed (gal): 3 GAL Sampling Time: 7:20 Samplers: Split Sample With: NONE	7:05				3.81	353	15.4	58.7	6.09	4.9		
Samplers: Split Sample With: NONE		70.75	.50	180								
Samplers: Split Sample With: NONE												
Samplers: Split Sample With: NONE												
Samplers: Split Sample With: NONE									+			
Samplers: Split Sample With: NONE												
	Total Quantit	y of Water Re	emoved (gal):	3 G/	AL .		Sampling T	īme:	7:20			
	Samplers:						Split Samp	le With:	NONE			
Sampling Date: 7/26/2011 Sample Type: GRAB	<u> </u>					Opin Gampie With.						
	Sampling Date: 7/26/2011						Sample Ty	pe:	GRAB			

DW-2 WELL IS DUMING WELL - NO PROBLEMS, NO DRAW DOWN, METALS, VOAS

1 Fairchild	neering, P. I Square, S rk, NY 120 -7101	Suite 110	G	ROUNDWAT SAMPLING			7	W YORK STATE.			
Project: Clar	emont Polych	nemical	WAS #: D0	06130-19		Field Person Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old	d Bethpage, N	NY	Well ID.:EV	V-1A			T AND HAZY	,			
Sounding Me	ethod:		Gauge Date	e:7-22-11		Measuremer	nt Ref:				
Stick Up/Dov	vn (ft):		Gauge Tim	e:		Well Diameter (in):4"					
Purge Date:		7/2	22/2011		Purge Time:			7:25			
Purge Metho	od:	SLO	W FLOW		Field Techni	cian:	cian:				
1) Well Dept	h (ft): 73.50		4) Well Diameter (in): 4			7) Five Well Volumes (gal):42					
2) Depth to V	Water (ft):63.5	53	0.6528	ume / Foot (ga	,	,			6.5		
3) Height of I 12.97	H ₂ O Column	(1-2) (ft):	6) Total We	ell Volume (gal)) (3x5):8.467	GEO TECH					
				Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
7:10	63.53	1 GAL	230	3.18	478	13.9	53.6	9.38	0.3		
7:15 7:20	63.53 63.53	1 GAL 1 GAL	230 230	3.1 3.13	478 478	13.8 13.8	53.8 53.9	9.42 9.21	1.8		
1.20		IOAL	200	0.10	770	10.0	30.3	0.21	1.0		
Total Quantit	ty of Water R	emoved (gal):	3 G	AL		Sampling T	ïme:	0725\0730)		
Samplers:						Split Sampl	e With:	ТОВ			
Sampling Date: 7/22/2011						Sample Type: SLOW FLOW					

METALS & VOA

HRP Engineering, P.C.
1 Fairchild Square, Suite 110
Clifton Park, NY 12065
(518) 877-7101
, ,
Project: Claremont Polychemical

GROUNDWATER WELL

Clifton Parl (518) 877-		35		SAMPLING	FORM			PEPARTME.	W YORK STATE NO			
Project: Clare	mont Polych	emical	WAS #: D00	6130-19						ackson, Keith		
Location: Old	Bethpage, N	Υ	Well ID: EW	/-1B		<u> </u>	Wea	ather:				
Sounding Me	thod:		Gauge Date:	:		Measur	ement	t Ref:				
Stick Up/Dow	n (ft):		Gauge Time			Well Dia	amete	er (in):				
Purge Date:		7/2	22/2011		Purge Time:	Field Personnel: Pete Takach, James Jackson, Kogandarillas Weather:						
Purge Method	d:	SLO'	W FLOW		Field Techni	cian:						
1) Well Depth	ı (ft): 102		4) Well Diam	neter (in): 4		7) Five	Well \	/olumes (gal	i):-123			
2) Depth to W	/ater (ft):64.3	4	5) Well Volui 0.6528	me / Foot (gal	i) (d ² x.0408):	Depth/H	leight	of Top of P\	/C:102			
3) Height of F 37.66	l₂O Column (1-2) (ft):		ll Volume (gal)	(3x5):2-658	Turbidi						
	7.66 Water Quality Para Time DTW _{Volume} Rate pH OI											
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature conductivity.				Turbidity (ntu)		
7:55	64.34	1/2 GAL	240	4.28	4.11			67.4	(uS/cm) (ug/L) (r			
8:00	64.34	1/2 GAL	240	4.28	4.11	14.	.8	67.4	4.85	2.6		
8:05	64.34	1/2 GAL	240	431	4.09			68.4	5	2		
8:10	64.34	1/2 GAL	240	4.33	4.08							
8:15	64.34	1/2 GAL	240	4.35	4.06					2.2		
8:20	64.34	1/2 GAL	240	4.36	4.04	14.	.9	71.4	4.57	2.3		
		<u> </u>	<u> </u>	 		 			+			
			 			+			+			
		<u> </u>	<u> </u>	<u></u>		<u> </u>						
Total Quantity	y of Water Re	emoved (gal):	3 GA	λL		Sampl	ling Ti	me:	8:30			
Samplers:						Split S	Sample	e With:	ТОВ			
Sampling Date: 7/22/2011					Comp	lo Tyro	0:	T				
Sampling Dat	. 	112212011			Sample Type: LOW FLOW				W			
			$\overline{}$									
COMMENTS	AND OBSEF	RVATIONS:			MI	ETALS	& V(OAS				

	Square, S k, NY 1206	uite 110	GROUNDWATER WELL SAMPLING FORM				AND THE WORK STAR.			
Project: Clare	emont Polych	emical	WAS #: D00	06130-19		Field Personnel: Pete Takach, James Jackson, Keith Gandarillas				
Location: Old	l Bethpage, N	IY	Well ID.:EW	/-1C		Weather:HC	Weather:HOT			
Sounding Me	thod:		Gauge Date):		Measureme	nt Ref:			
Stick Up/Dov	vn (ft):		Gauge Time:			Well Diamet	er (in):4			
Purge Date:		7/2	22/2011		Purge Time:	!		9:20		
Purge Metho	d:	SLO	W FLOW		Field Techni	nnician:				
1) Well Depth (ft): 125			4) Well Diar	neter (in): 4		7) Five Well	Volumes (gal)	:198		
2) Depth to V	. ,		5) Well Volume / Foot (gal) (d ² x.0408) 0.6528			, ,	t of Top of PV	C:125		
3) Height of I	H ₂ O Column ((1-2) (ft): 60.6	6) Total We	ll Volume (gal)	(3x5):39.56	Pump Type:	BLADDER			
			,	Water Qualit	y Paramete	ers				
Time (hrs) 8:55	DTW (ft btoc) 64.40	Volume (liters)	Rate (mL/m)	pH (pH units) 4.22	ORP (mV) 378	temperature (oC) 14.7	conductivity: (uS/cm)	DO (ug/L) 4.92	Turbidity (ntu) .7	
9:00 9:05 9:10	64.40 64.40 64.40	1/2 GAL 1 GAL 1 GAL	240 240 240	4.53 4.55 4.56	368 365 366	14.3 14.3 14.7	0.097 0.095 0.095	3.564 3.35 3.15	1.3 1.2 4	
Total Quantit			3 G			Sampling T		9:20		

7/21/2011

Samplers:

Sampling Date:

METALS & VOAS

Sample Type:

Split Sample With:

TOB

PURGE

HRP Engineering, P.C.
1 Fairchild Square, Suite 110
Clifton Park, NY 12065
(518) 877-7101
, ,
Project: Claremont Polychemical

GROUNDWATER WELL

Clifton Par (518) 877-	rk, NY 1206 7101	35		SAMPLING	FORM		THE TOP TO THE STATE OF THE STA					
Project: Clar	emont Polych	emical	WAS #: D00	6130-19		Field Personi Gandarillas		kach, James Ja	ackson, Keith			
Location: Old	d Bethpage, N	ΙΥ	Well ID.:EW	-2A		Weather: RA	Weather: RATHER COOL					
Sounding Me	ethod:		Gauge Date:	:		Measuremen	t Ref:					
Stick Up/Dov	vn (ft):		Gauge Time	:		Well Diamete	er (in):					
Purge Date:		7/2	25/2011		Purge Time:			8:20				
Purge Metho	od:	LO\	W FLOW		Field Techni	ician:						
1) Well Dept	h (ft): 108.5		4) Well Diam	neter (in): 4		7) Five Well	Volumes (ga	l):52.58				
2) Depth to V	Vater (ft):92.4	10	5) Well Volu 0.6528	me / Foot (gal	l) (d ² x.0408):	Depth/Height	of Top of P	VC:108.5				
3) Height of I	H ₂ O Column ((1-2) (ft): 16.1	6) Total Wel	l Volume (gal)) (3x5):10.51	Pump Type: BLADDER PUMP						
			7	Water Qualit	y Paramete	ers	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)			
8:00	92.40	1/4 GAL	90 ML	4.19	21	16.7	10.1	3.83	17.0			
8:05	92.40	1/4 GAL	90 ML	4.19	31	16.6	10.3	3.59	15.7			
8:10	92.40	1/4 GAL	90 ML	4.19	33	16.6	10.2	3.46	15.7			
8:15	92.40	1/4 GAL	90 ML	4.18	41	16.7	10.1	3.22	18			
Total Quantit	ty of Water Re	emoved (gal):	1 GA	\L		Sampling T	ime:	8:20				
Samplers:						Split Sample	e With:	ТОВ				
Sampling Date: 7/25/2011						Sample Type:						
COMMENTS	S AND OBSEI	RVATIONS:										

1 Fairchild	neering, P. I Square, S rk, NY 120 -7101	Suite 110	GF	ROUNDWAT SAMPLING			TO THE WINDOWN STATE			
Project: Clare	emont Polych	nemical	WAS #: D00	06130-19		Field Personnel: Pete Takach, James Jackson, Keith Gandarillas				
Location: Old	d Bethpage, N	NY	Well ID.:EW	/-2B			INING, TEMF	71 DEGREES	S F.	
Sounding Me	ethod:		Gauge Date	e:7-29-11		Measuremer	nt Ref:			
Stick Up/Dov	vn (ft):		Gauge Time:60 PSI			Well Diamete	er (in):4			
			ļ			<u> </u>				
Purge Date:		7/2	29/2011 Purge Time:							
Purge Metho	od:	LOV	W FLOW Field Technic			cian:				
1) Well Dept	h (ft): 129.50		4) Well Diameter (in): 4			7) Five Well Volumes (gal):119				
2) Depth to V	Water (ft):93		5) Well Volu 0.6528	ıme / Foot (gal) (d ² x.0408):	Depth/Heigh	t of Top of P\	/C:		
3) Height of I	3) Height of H ₂ O Column (1-2) (ft): 36.			ll Volume (gal)	(3x5): 23.82	Pump Type:	BLADDER			
			Water Quality Parameters							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)	
7:10	93.0	.50	270	6.88	180	15.6	28.4	8.88	108	
7:15	93	.50	270	7.88	148	14.5	27.2	5.01	74	
7:20	93.15	.50	270	8.1	134	14.5	27.2	4.26	52.2	
7:25	93.25	.50 .50	270 270	8.22	123	13.9	27.2	3.94	44.1	
7:30 7:35	93.9 93.9	.50	270	8.29 8.32	113 111	13.8 13.9	26.6 26.4	3.86 3.77	26.2 25	
7:40	93.9	.25	270	8.34	107	13.9	26.7	3.61	26.1	
7:45	93.9	.25	270	8.35	104	13.8	27	3.58	28	
7:50	93.9	.50	270	8.36	102	13.7	27	3.61	26	
Total Quantit	ty of Water R	emoved (gal):	4			Sampling T	ime:	7:55		
			<u>'</u>					ТОВ		
Samplers:						Split Sampl	e With:	IOB		
Sampling Date: 7/29/2011						Sample Type: GRAB		GRAB		

1 METAL/3 VOAS/2 VOAS (TOB)

1 Fairchild	neering, P.0 I Square, St rk, NY 1206 -7101	uite 110	GF	ROUNDWAT SAMPLING			<u>~</u>	W YORK STARE		
Project: Clar	emont Polyche	emical	WAS #: D00	06130-19		Field Person Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith			
Location: Ole	d Bethpage, N	Y	Well ID.:EW	/-2C		Weather:				
Sounding Me	ethod:		Gauge Date	::		Measuremer	t Ref:			
Stick Up/Dov	wn (ft):		Gauge Time	9:		Well Diamete	er (in): 4			
Purge Date:		7/:	25/2011 Purge Tim					9:50		
Purge Metho	od:	LO	W FLOW	OW Field Technician:						
1) Well Dept	th (ft): 149.50		4) Well Diar	meter (in): 4		7) Five Well	Volumes (gal):187		
2) Depth to \	Water (ft):92.33	3		5) Well Volume / Foot (gal) (d ² x.0408): .6528			t of Top of P\	/C:149.50		
3) Height of 57.15	H ₂ O Column (1-2) (ft):	6) Total We	ll Volume (gal)	(3x5):37.31	Pump Type:	BLADDER			
			,	Water Qualit	y Paramete	ers				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L) 10.71	Turbidity (ntu)	
9:20	92.35	0.25	220	3.84	305	15.5	13.8			
9:25	92.35	0.25	220	3.65	316	15.1	51	10	4.6	
9:30	92.65	0.25	220 220	3.54	322	15.1	52	9.75	2.7	
9:35	92.7	0.25	220	3.46	328	14.9	53	9.68	3.6	
9:40 9:45	92.7 92.92	0.25 0.25	220	3.42 3.39	332 337	14.5 14.7	53.1 52.8	9.67 9.64	4.9 8.6	
			+							
Total Quanti	ty of Water Re	moved (gal)	: 1 G	AL		Sampling T	ime:	9:50		
Samplers: 7/25/2011						Split Sample With: TOB				
Samplers:	1/25/20	711				Spiit Sampi	C VVIUI.	1,05		

Sampling Date:

METALS & VOAS

Sample Type:

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101
Project: Claremont Polychemical
Location: Old Bethpage, NY

GROUNDWATER WELL

(518) 877-	•	55		SAMPLING	FORM		AND YORK STATE				
Project: Clare	emont Polych	emical	WAS #: D00	6130-19			Field Personnel: Pete Takach, James Jackson, Keith Gandarillas				
Location: Old	Bethpage, N	ΙΥ	Well ID: EW-	-2D			Weather: SUNNY 70 DEGREES F.				
Sounding Me	thod:		Gauge Date:	7-27-12		Measurement Ref:					
Stick Up/Dow	n (ft):		Gauge Time	:		Well D	Well Diameter (in):				
Purge Date:		7/2	7/2011		Purge Time:	-	7:08				
Purge Method	d:	BLADDER	(DEDICAT	EDICATED) Field Technician:							
1) Well Depth	ı (ft): 301.40		4) Well Diameter (in): 4'				e Well \	√olumes (gal): 681		
2) Depth to W	/ater (ft):92.6	66	5) Well Volume / Foot (gal) (d ² x.0408): 0.6528			Depth	'Height	of Top of PV	/C:		
3) Height of F 208.74	l₂O Column ((1-2) (ft):	6) Total Well Volume (gal) (3x5):136.27			Pump Type: BLADDER					
			V	Vater Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	ORP (mV)	tempe (O		conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
7:12	92.70		220	4.60	283	15	5.9	0.137	7.33	1.7	
7:17	92.83		220	4.9	287	14.72 0.110 2.21 1.6					
7:22	92.86		220	4.84	288		.63	0.105	3.39	4.1	
7:27	92.86		220 220	4.81	288	14.		0.097	5.37	6	
7:32	92.86		220	4.79	293		.56	0.096	5.92	5.7 3	
7:37 7:42	92.86 92.86		220	4.83 4.84	297 302	1	.49 .49	0.096 0.098	6.35 6.43	2.4	
7.42	92.00		220	4.04	302	14.	.43	0.090	0.43	2.4	
					•						
Total Quantity	of Water Re	emoved (gal):	7700) ML		Sam	oling Ti	me:	7:43		
Samplers:						Split	Sample	e With:			
0 " 5		7/27/2011				10			l. (0.0)0 0 1	45741.0	
Sampling Dat	e:			Sam	ole Typ	e:	VOC'S & N	METALS			
COMMENTS	AND OBSEF	RVATIONS:		160 PSI, 6.5 INTAKE, 8.5 DISCHARGE							

HRP Engir	neering P	C:	<u> </u>			I		NRONMEA.		
1 Fairchild	Square, S k, NY 1206	uite 110	_	OUNDWAT SAMPLING			THE TORK STATE			
Project: Clare	emont Polych	emical	WAS #: D00	6130-19		Field Personnel: Pete Takach, James Jackson, Keith Gandarillas				
Location: Old	l Bethpage, N	ΙΥ	Well ID.:EW	-3A		Weather:TEI	MP 90 DEGR	EES F.		
Sounding Me	ethod:		Gauge Date:	:		Measuremer	nt Ref:			
Stick Up/Dov	vn (ft):		Gauge Time	:		Well Diamete	Well Diameter (in):			
Purge Date:		7/2	22/2011		Purge Time:	10:50				
Purge Metho	d:				Field Techni					
1) Well Depth	h (ft): 106.00		4) Well Diameter (in): 4"			7) Five Well Volumes (gal):3424				
2) Depth to V	Vater (ft):95.5	51	.6528			Depth/Heigh	Depth/Height of Top of PVC:106			
3) Height of I 10.49	3) Height of H ₂ O Column (1-2) (ft): 10.49			6) Total Well Volume (gal) (3x5):6.848			BLADDER			
			Water Quality Parameters							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)	
10:20	95.51	1/2 GAL	120 ML	4.08	3.08	15	4.5	13.57 12.55	23.4	
10:25	95.51	1/2 GAL	120 ML	3.85	3.35	15.2	17.5			
10:30	95.51 95.51	1/2 GAL 1/2 GAL	120 ML 120 ML	3.73	3.61	15.2	4.4	12.41	4.4	
10:35 10:40	95.51	1/2 GAL	120 ML	3.66 3.62	3.78 3.87	15.2 15.3	4.5	12.14 12.21	31 25	
10:45	95.51	1/2 GAL	120 ML	3.69	3.94	15.5	4.4 4.4	12.25	33	
	1				1	1				
Total Quantit	y of Water Re	emoved (gal):	3 gal			Sampling T	ime:	10:50		
Samplers:					Split Sampl	e With:	ТОВ			
Sampling Date: 7/22/2011						Sample Tur	Je.			
Jumping Da		1,,22,2011				Sample Type:				

METALS & VOAS

·			_							
HRP Engir 1 Fairchild Clifton Par (518) 877-	Square, S k, NY 1206	uite 110	GI	ROUNDWAT SAMPLING			THE TORK STATE			
Project: Clare	emont Polych	emical	WAS #: D00	06130-19		Field Person Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith			
Location: Old	Bethpage, N	ΙΥ	Well ID.:EW	/-3B		Weather:97	degrees F.			
Sounding Me	thod:		Gauge Date:			Measuremer	nt Ref:			
Stick Up/Dow	n (ft):		Gauge Time:			Well Diamete	er (in):			
Purge Date:		7/0	2/2011		Purge Time:	11:25				
·			ZZ/ZUTT Furge time.							
Purge Metho	d:	LOV	W FLOW Field Technicia			cian:				
1) Well Depth	n (ft): 136.80		4) Well Diameter (in): 4			7) Five Well Volumes (gal):134				
2) Depth to V	2) Depth to Water (ft):95.81			5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height of Top of PVC:136.86			
 Height of F 41.05 	3) Height of H ₂ O Column (1-2) (ft): 41.05			6) Total Well Volume (gal) (3x5):26.80			BLADDER			
			Water Quality Parameters							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)	
11:25	95.81	1 GAL.	120	3.37	435	16.9	6.7	10.0	.4	
11:20	95.81	1/2 GAL	120 120	3.34	433	16.4	6.8	10.33	2.2	
11:25 11:30	95.81 95.81	1/2 GAL 1 GAL.	120	3.35 3.33	434 435	16.1 16.4	6.8 6.8	10.66 10.66	3.1 3.5	
				1						
Total Quantit	y of Water Re	emoved (gal):	3			Sampling T	ime:	11:35		
Samplers:						Split Sampl	e With:	ТОВ		
Sampling Da	to:	7/22/2011				Sample Type:				
Sampling Da	ic.	11/22/2011				Sample Type:				

METALS & VOAS

UDD En ain	i D	^	I					-ONA-			
HRP Engin 1 Fairchild Clifton Park (518) 877-7	Square, S k, NY 1206	uite 110	_	OUNDWATI SAMPLING			THE W YORK STATE				
Project: Clare	mont Polych	emical	WAS #: D00	6130-19		Field Person Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old	Bethpage, N	IY	Well ID.:EW-	-3C			Weather:100 DEGREES F.				
Sounding Met	thod:		Gauge Date:			Measuremer	nt Ref:				
Stick Up/Dow	n (ft):		Gauge Time:			Well Diamete	er (in):				
Purge Date:		7/2	Purge Time:			12:35					
Purge Method	1:	LOV	W FLOW Field Technici			cian:					
1) Well Depth	(ft): 165.85		4) Well Diameter (in): 4			7) Five Well Volumes (gal):229					
2) Depth to Water (ft):95.60			5) Well Volui .6528	me / Foot (gal) (d ² x.0408):	Depth/Height	t of Top of P\	/C:			
3) Height of H 70.25	l ₂ O Column ((1-2) (ft):	6) Total Well Volume (gal) (3x5):45.86			Pump Type:	PVC BLADE	ER			
			Water Quality Parameters								
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
12:35	95.60	1/2 GAL.	260 ML	4.01	420	14.1	38.7	13.77	23.3		
12:40	95.60 95.60	1/2 GAL. 1/2 GAL.	260 ML 260 ML	4.01	425	13.7	35.8	12.51	15.2		
12:45	95.60	1/2 GAL.	260 ML	3.58	447	13.9	46.9	11.29	7.4		
12:50 12:55	95.60	1/2 GAL.	260 ML	3.41 3.36	448 448	14.1 14.6	56.3 57.4	10.92 10.71	5.4 5.6		
13:00	95.60	1/2 GAL.	260 ML	3.32	448	14.0	58.6	10.73	5.1		
Total Quantity	of Water Po	amoved (gal):				Sampling T	imo:	13:05			
Total Quantity	oi watei Re	Jilioveu (gal).	3			Sampling Time: 13:05					
Samplers:						Split Sampl	e With:	ТОВ			
Sampling Date	e:	7/22/2011				Sample Type:					

METALS & VOAS

F											
1 Fairchild	neering, P.0 Square, Si k, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			"	NIRONMENTAL COLUMN TO THE PROPERTY OF THE STATE.			
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19			Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old	d Bethpage, N	Υ	Well ID.:EW	/- 4 A		Gandarillas Weather:					
Location. Oic	z Betripage, 14		Well IDEV	7 -77 (Weditor.					
Sounding Me	ethod:		Gauge Date:7-26-11			Measuremer	nt Ref:				
Stick Up/Dov	vn (ft):		Gauge Time	e:9:45		Well Diamete	er (in):4				
Purge Date:		7/2	26/2011 Purge Time:					9:50			
Purge Metho	d:	LOW	V FLOW		Field Technician:						
1) Well Depti	h (ft): 116.60		4) Well Diameter (in): 4			7) Five Well Volumes (gal):70					
2) Depth to V	2) Depth to Water (ft):95.11			.6528			t of Top of P\	/C:			
3) Height of I 21.49	3) Height of H₂O Column (1-2) (ft): 21.49			ll Volume (gal)	(3x5):14.03	Pump Type:	PVC BLADE	DER			
			,	Water Quality Parameters							
Time	DTW	Volume	Rate	pН	ORP temperature conductivity:			DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
9:20	95.60	.50	240	4.12	364	14.6	13.0	9.71	5.5		
9:25	95.60	.50	240	3.99	380	14.3	12.6	9.43	6.8		
9:30	95.60 95.60	.50 .50	240 240	3.98	381	14.3	12.6	9.44	6.8		
9:35	95.60	1	240	3.96	384		14.4 12.6 9.42 7				
9:40	95.00	<u> </u>	240	3.94	384	14.5	12.6	9.25	8.5		
			<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		
Total Quantit	y of Water Re	moved (gal):	3			Sampling T	ime:	9:50			
Samplers:						Split Sampl	e With:	Ī			
						орін Запірі	C VVIIII.	1			
Sampling Date: 7/26/2011						Sample Typ	pe:	GRAB			
						J. W.D.					

METALS, VOAS

	1 Fairchild	neering, P.0 Square, St k, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			ON TORK STATE				
Docation: Old Bethpage, NY Well ID.:EW-4B Weather:	Project: Clare	emont Polyche	emical	WAS #: D00	06130-19			Field Personnel: Pete Takach, James Jackson, Keith				
Stick Up/Down (ft): Gauge Time:10:40 Well Diameter (in):4	Location: Old	l Bethpage, N	Y	Well ID.:EW	/-4B							
Purge Date: 7/26/2011	Sounding Me	ethod:		Gauge Date	e:7-26-11		Measuremer	Measurement Ref:				
Purge Method: Field Technician:	Stick Up/Dow	vn (ft):		Gauge Time	e:10:40		Well Diameter (in):4					
1) Well Depth (ft): 131.71	Purge Date:		7/2	26/2011		Purge Time:	<u> </u>		10:45			
2) Depth to Water (ft):95.75	Purge Metho	d:				Field Technician:						
3) Height of H ₂ O Column (1-2) (ft): (a) Total Well Volume (gal) (3x5):23.5 Pump Type: BLADDER	1) Well Depti	h (ft): 131.71		4) Well Diameter (in): 4			7) Five Well Volumes (gal):117.4					
Water Quality Parameters Time (hrs) DTW (ft btoc) (illers) Rate (mL/m) (pH units) (mV) (oC) (uS/cm) (uS/cm) (ug/L) (ntu)	2) Depth to Water (ft):95.75				ıme / Foot (gal) (d ² x.0408):	Depth/Height	of Top of P\	/C:			
Time (hrs) DTW (ft bloc) Volume (itlers) Rate (mL/m) pH (pH units) ORP (pH units) Temperature (oC) Gonductivit: (uS/cm) DO (ug/L) Turbidity (ntu) 10:05 95.72 .25 140 4.00 208 15.6 22.8 7.90 8.2 10:10 95.72 .25 140 3.97 243 15.1 22.2 7.62 5.7 10:15 95.72 .25 140 3.95 265 15.1 21.9 7.56 5.6 10:20 95.72 .25 140 3.96 307 15.4 21.8 7.37 5.8 10:25 95.72 .25 140 3.96 310 15.2 21.7 7.456 5.7 10:30 95.72 .25 140 3.95 316 15.5 21.7 7.39 5.4 10:35 95.72 .25 140 3.93 327 15.8 21.8 7.51 5.5 10:30 95.72	, ,				ll Volume (gal)	(3x5):23.5	Pump Type:	BLADDER				
(hrs) (ft btoc) (illers) (mL/m) (pH units) (mV) (oC) (uS/cm) (ug/L) (ntu) 10:05 95.72 .25 140 4.00 208 15.6 22.8 7.90 8.2 10:10 95.72 .25 140 3.97 243 15.1 22.2 7.62 5.7 10:15 95.72 .25 140 3.95 265 15.1 21.9 7.56 5.6 10:20 95.72 .25 140 3.96 307 15.4 21.8 7.37 5.8 10:25 95.72 .25 140 3.96 310 15.2 21.7 7.456 5.7 10:30 95.72 .25 140 3.95 316 15.5 21.7 7.39 5.4 10:35 95.72 .25 140 3.93 327 15.8 21.8 7.51 5.5 Total Quantity of Water Removed (gal): 1 Split Sample				,	Water Quality Parameters							
Samplers: Split Sample With:	(hrs) 10:05 10:10 10:15 10:20 10:25 10:30	(ft btoc) 95.72 95.72 95.72 95.72 95.72 95.72	.25 .25 .25 .25 .25 .25 .25	(mL/m) 140 140 140 140 140 140 140	(pH units) 4.00 3.97 3.95 3.96 3.96 3.96	(mV) 208 243 265 307 310 316	(oC) 15.6 15.1 15.1 15.4 15.2 15.5	(uS/cm) 22.8 22.2 21.9 21.8 21.7 21.7	7.90 7.62 7.56 7.37 7.456 7.39	(ntu) 8.2 5.7 5.6 5.8 5.7 5.4		
		y of Water Re	moved (gal):	1			1		10:40			
Sampling Date: 7/26/2011 Sample Type: GRAB	Samplers:						Split Sampl	e With:				
	Sampling Date: 7/26/2011					Sample Typ	oe:	GRAB				

METALS & VOAS

HRP Engir	neering P	C.	1					VIRONMEA.			
1 Fairchild Clifton Par (518) 877-	Square, S k, NY 1200	uite 110	GF	ROUNDWAT SAMPLING			THE WIRDNIE STATE				
Project: Clare	emont Polych	emical	WAS #: D00	06130-19		Field Person Gandarillas		ach, James Ja	ickson, Keith		
Location: Old	l Bethpage, N	1Y	Well ID.:EW	/-4C		Weather:					
Sounding Me	ethod:		Gauge Date: 7/26/2011			N	Measurement 1	Ref:			
Stick Up/Dov	vn (ft):		Gauge Time	e:12:05		Well Diamete	er (in):4				
Purge Date:		7/2	26/2011		Purge Time:			12:10			
Purge Metho	d:				Field Techni	cian:					
1) Well Depti	h (ft): 157		4) Well Diameter (in): 4			7) Five Well Volumes (gal):202					
2) Depth to V	Vater (ft):95		5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height of Top of PVC:					
3) Height of I	H ₂ O Column	(1-2) (ft): 62		ll Volume (gal)	(3x5):40.5	Pump Type:	Pump Type: BLADDER				
				Water Qualit	y Paramete	ers					
Time	DTW	Volume	Rate				temperature Gonductivity: DO Turbidity				
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
11:25	95	.25	160	4.30	347	16.5	41.7	10.46	20.7		
11:30	95	.25	160	4.15	347	16.1	46.9	8.74	15.4		
11:35	95	.25	160	3.98	353	16.8	48.6	7.04	4.1		
11:40	95	.25	160	3.93	355	15.9	51.9	6.84	4.8		
11:45	95 95	.25 .25	160 160	3.92	356	15.7	52.2	6.35	4.7		
11:50	95	.25	160	3.92	357	15.6	52.1	6.06	2.2		
11:55 12:00	95	.25	160	3.93 3.93	357 358	15.6 15.5	52 52	6.03 6	4.3 4.3		
12.00	95	.20	100	3.93	330	15.5	52	0	4.5		
Total Quantit	y of Water Ro	emoved (gal):	2			Sampling T	ime:	12:10			
Samplers:			•		_	Split Sampl	e With:				
Samplers.						Spiit Sampi	C VVIUI.				
Sampling Date: 7/26/2011						Sample Type: GRAB					

METALS, VOAS

IUDD Engir	neering, P.0		т —					.ngONMsa.			
1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GF	ROUNDWATI SAMPLING		THE WINDOWN STATE					
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Person Gandarillas		ach, James Ja	ackson, Keith		
Location: Old	l Bethpage, N	Y	Well ID.: EV	V-4D			ERCAST 70	DEGREES F.			
Sounding Me	thod:		Gauge Date	:7-25-11		Measuremer	nt Ref:				
Stick Up/Dow	vn (ft):		Gauge Time	e:9:04		Well Diamete	er (in):4				
Purge Date:		7//	05/0044					0.45			
<u> </u>			25/2011		Purge Time:	9:15					
Purge Metho	d: 			Field Technic			cian:				
1) Well Depth	n (ft): 295		4) Well Diameter (in): 4			7) Five Well Volumes (gal):650					
2) Depth to Water (ft):95.61			5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height	t of Top of P\	/C:			
3) Height of H 199.39	3) Height of H ₂ O Column (1-2) (ft): 199.39			6) Total Well Volume (gal) (3x5):130.16			Pump Type: BLADDER				
			-	Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	DO (ug/L)	Turbidity (ntu)			
9:25	95.64		260	4.74	308	16.41	24.8	6.38	1.3		
9:30	95.64	<u></u>	260	4.98	319	15.63	23.1	4.36	1.7		
9:35	95.64	-	260	4.93	333	15.66	20.8	5.53	0.8		
9:40	95.64 95.64	<u> </u>	260 260	4.88	338	15.55	20.4	5.65	0.8		
9:45	95.64		260	4.97	342	15.55	20.8	5.7	0.7 0.7		
9:50 9:55	95.64		260	4.95 4.93	341 341	15.48 15.57	20.8 20.8	5.74 5.8	0.7		
				-				+			
								 			
								<u>-</u>			
Total Quantit	y of Water Re	moved (gal):	10,6	660ML		Sampling T	ime:	09:56			
						1		1			
Samplers:					Split Sample With:						
Sampling Date: 7/25/2011						Sample Type: VOC'S &			/IETALS		

159 PSI, 5.0 INTAKE, 10.0 DISCHARGE

HRP Engir 1 Fairchild Clifton Par (518) 877-	Square, S k, NY 1200	uite 110	GF	ROUNDWAT SAMPLING		THE TOTAL TO					
Project: Clare	emont Polych	emical	WAS #: D00	06130-19				ach, James Ja	ackson, Keith		
Location: Old	I Dothnoon N	IV	Well ID.:EW	· F		Gandarillas	4D 70 DECD	EEC			
Location. Oic	i bellipage, r	41	Well IDEW	-o		Weather. I Er	Weather:TEMP 70 DEGREES				
Sounding Me	thod:		Gauge Date	:7-26-11		Measuremer	t Ref:		-		
Stick Up/Dow	vn (ft):		Gauge Time	:70 PSI		Well Diamete	er (in):4				
Purge Date:		7/2	26/2011 Purge Time:			!		8:55			
Purge Metho	d:	LO\	W FLOW		Field Techni	cian:					
1) Well Depti	h (ft): 178.8	37	4) Well Diameter (in):			7) Five Well Volumes (gal):352					
2) Depth to V	Vater (ft): 7	0.95	5) Well Volume / Foot (gal) (d ² x.0408): 0.6528			Depth/Height of Top of PVC:					
3) Height of I 107.92	H₂O Column	(1-2) (ft):	6) Total Well Volume (gal) (3x5): 70.5			Pump Type: BLADDER					
			V	Water Qualit	y Paramete	ers					
Time	DTW	Volume	Rate pH ORP			Temperature conductivity: DO Turbidity					
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
8:00	70.95	.25	160	4.98	191	17.1	5.7	4.70	4.2		
8:05	70.95	.25	160	4.96	139	17.1	5.9	3.69	4.4		
8:10	70.95	.25	160	4.85	173	17.1	10.4	3.33	4.3		
8:15	71.1	.25	160	4.79	191	17.2	14.3	3.2	4.2		
8:20	71.1	.25	160	4.77	205	17.2	15.6	3.12	4.1		
8:25	71.1	.25	160	4.76	213	17.6	16.3	3.04	3.7		
8:30	71.1	.25	160	4.76	216	17.4	16.1	3	4.1		
8:35	71.1	.25	160	4.76	217	17.6	14.9	2.91	3.9		
8:40	71.1	.25	160	4.75	214	17.8	14.9	2.89	3.6		
8:45	71.1	.25	160	4.75	212	17.9	14.9	2.88	3.5		
	<u> </u>				<u> </u>	<u> </u>					
Total Quantit	y of Water Ro	emoved (gal):	2-1/2	2 GAL		Sampling T	ime:	8:55			
Complete						Split Sampl	e With:	1			
Samplers:						Split Sample With:					
Sampling Da	te:	7/26/2011				Sample Type: GRAB		GRAB			
		•									

COMMENTS AND OBSERVATIONS: NO PROBLEM AT WELL - PUMPED QUICKLY, METAL, VOAS

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GF	ROUNDWAT SAMPLING			THE TOP HENVIN COME STATE				
Project: Clar	emont Polych	emical	WAS #: D00	06130-19		Field Persor Gandarillas	Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old	d Bethpage, N	ΙΥ	Well ID.:EW	'-6A		Weather:					
Sounding Me	ethod:		Gauge Date	:7/20/11		Measureme	nt Ref:				
Stick Up/Dov	vn (ft):		Gauge Time:			Well Diamet	er (in):4				
Purge Date:		7/2	26/2011		Purge Time:			1:55			
Purge Metho	od:	BL	ADDER Field Techr			iician:					
1) Well Depth (ft): 71			4) Well Diameter (in):			7) Five Well Volumes (gal):					
2) Depth to Water (ft):62.38			5) Well Volume / Foot (gal) (d ² x.0408): .6528								
3) Height of	H₂O Column ((1-2) (ft):8.62	6) Total We	l Volume (gal)	(3x5):5.62	Pump Type: BLADDER					
			7	Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivit:y (uS/cm)	DO (ug/L)	Turbidity (ntu)		
2:00	62.42 62.42		200	5.35	223	23.52	.648	9.41	19.6		
2:05	62.42		200 200	5.18	238	20.34	0.497	9.5 7.13	10		
2:10 2:15	62.42		200	5.15 5.13	250 254	19.3 19.17	0.478 0.472	6.8	6.2 5		
2:20	62.42		200	5.19	255	19.34	0.473	6.61	4.2		
					-				-		
					1	1			1		
Total Quanti	ty of Water Re	emoved (gal):	5400) ml		Sampling 1	ime:	2:21			
Samplers:						Split Sample With:					

Sampling Date:

7/26/2011

45 PSI, 10 intake, 5 discharge

Sample Type:

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GI	ROUNDWAT SAMPLING		TOTAL TORK STATE				
Project: Clare	emont Polych	emical	WAS #: D0	06130-19		Field Person Gandarillas		ach, James Ja	ackson, Keith	
Location: Old	d Bethpage, N	ΙΥ	Well ID.:EW	/-6C		Weather: M	Cloudy 75 De	grees F		
Sounding Method:			Gauge Date	e: 7/28/11		Measureme	ent Ref:			
Stick Up/Dov	Stick Up/Down (ft):			Gauge Time:12:00			ter (in):			
Purge Date:		7/2	28/2011 Purge Time:			!		12:08		
Purge Metho	d:	Bladd	er (POC-2)	Field Techni	pian:				
1) Well Depth	h (ft): 169		4) Well Diameter (in): 4			7) Five Well Volumes (gal): 345				
2) Depth to V	2) Depth to Water (ft):63.25			5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height of Top of PVC:			
3) Height of I 105.75	H₂O Column	(1-2) (ft):	6) Total Well Volume (gal) (3x5):69.03			Pump Type: Bladder (POC-2)				
				Water Qualit	y Paramete	ers				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivit:y (uS/cm)	DO (ug/L)	Turbidity (ntu)	
12:11	62.99		200	6.11	4	21.97	0.317	8.52	3.2	
12:16	63.22		200	6.28	-18	19.94	0.328	5.66	1.9	
12:21	63.47		200	6.31	-24	19.04	0.436	3.45	1.3	
12:26 12:31	63.62 63.76		110 110	6.32 6.37	-23 -20	19.18 19.2	0.482 0.499	2.73 2.33	1.1 1.1	
12:36	63.82		110	6.35	-8	19.06	0.505	1.99	1.4	
12:41	63.89		110	6.4	-3	19.04	0.506	1.96	1.5	
12:46	63.92		110	6.34	-4	19.12	0.506	2.06	1.5	
				1						
Total Quantit	y of Water Ro	emoved (gal):	491	0 mL		Sampling ²	Time:	12:47		
Commission						Calib Cara	- \\/;+b			
Samplers:						Split Sample With:				
Sampling Date: 9/28/2011						Sample Type:		voc's & metals		

70 psi, 8.0 intake, 7.0 discharge

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GI	ROUNDWAT SAMPLING			THE VORK STATE				
Project: Claremont Polychemical			WAS #: D00	06130-19		Field Person Gandarillas		ach, James Ja	ackson, Keith		
Location: Old Bethpage, NY			Well ID.:EW	/-7C		Measuremer F.	t Ref: MOST	LY SUNNY 80	DEGREES		
Sounding Me	ethod:		Gauge Date	:7-26-11		Measuremer	t Ref:				
Stick Up/Dov	vn (ft):		Gauge Time	e:11:41		Well Diamete	er (in):4				
Purge Date:		7/	26/2011	26/2011 Purge Time				11:48			
Purge Metho	d:	BLADDEF	R (DEDICA	TED)	Field Techni	cian:					
1) Well Depti	h (ft): 199.50		4) Well Diameter (in): 4			7) Five Well Volumes (gal):368					
2) Depth to V	2) Depth to Water (ft):86.75			5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height of Top of PVC:				
3) Height of H ₂ O Column (1-2) (ft): 112.75				ll Volume (gal)	(3x5):73.60	Pump Type: BLADDER					
				Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
11:50 11:55	86.88 86.88		200 200	4.74 4.62	330 344	17.45 16.42	1.33 1.26	3.12	2.1		
12:00	86.88		200	4.54	362	16.54	1.29	4.5	0.4		
12:05	86.88		200	4.53	371	16.7	1.37	5.09	0.3		
12:10	86.88		200	4.53	376	16.92	1.41	5.24	0.3		
12:15 12:20	86.87 86.87		200 200	4.54 4.54	378 378	16.99 17.2	1.42 1.43	5.23 5.19	0.3		
12.20	00.07		200	4.54	3/0	17.2	1.43	5.19	0.3		
								140.04			
Total Quantit	y of Water Re	moved (gal)	: 660	0 mL		Sampling Ti	me:	12:21			
Samplers:						Split Sampl	e With:				
Sampling Da	te:	7/26/2011	1	_			Sample Type: voc's & metals				
			<u> </u>								

105 psi, 8.0 intake, 7.0 discharge

											
	Square, Si k, NY 1206	uite 110	GF	ROUNDWAT SAMPLING			THE TOPRE STATE				
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Person Gandarillas		kach, James Ja	ackson, Keith		
Location: Old	Bethpage, N	Υ	Well ID.:EW	/-7D			RT SUNNY 8	30 DEGREES F	=,		
Sounding Me	thod:		Gauge Date	e:7-26-11		Measuremer	nt Ref:				
Stick Up/Dow	n (ft):		Gauge Time	e:10.49		Well Diamete	er (in):4"				
Purge Date:		7/	26/2011	26/2011 Purge Time:				10:54			
Purge Method	d:	BLADDEF	R (DEDICA	TED)	Field Technic	cian:					
1) Well Depth	n (ft): 283.5		4) Well Diameter (in): 4"			7) Five Well Volumes (gal): 642					
2) Depth to W	2) Depth to Water (ft):86.78			5) Well Volume / Foot (gal) (d ² x.0408): .6528			Depth/Height of Top of PVC:				
3) Height of H 196.72	3) Height of H ₂ O Column (1-2) (ft): 196.72			ll Volume (gal)	(3x5):128.42	Pump Type: BLADDER					
			,	Water Qualit	y Paramete	ers					
Time	DTW	Volume	Rate	pН	ORP	Temperature	conductivity:	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
10:58	86.87		200	4.90	312	16.90	.269	4.25	.5		
11:03	86.87		200	5.01	301	16.27	0.29	2.13	0.2		
11:08	86.87		200	4.85	288	16.31	0.289	2.76	0.2		
11:43	86.87		200	4.81	303	16.39	0.287	3.2	0.2		
11:18	86.87		200	4.79	313	16.31	0.289	3.34	0.2		
11:23	86.87		200	4.82	320	16.37	0.291	3.32	0.2		
11:28	86.87		200	4.84	322	16.38	0.292	3.35	0.2		
				1	<u> </u>	<u> </u>	<u> </u>				
Total Quantity	y of Water Re	moved (gal)	: 700	0 mL		Sampling T	ïme:	11:29			
_	ı		•			1		luggie 0 mm	otal		
Samplers:						Split Sample With: voc's & metal			eldi		
Sampling Dat	Sampling Date: 7/26/2011					Sample Typ	 oe:				
						1 ' ''		1			

81 psi, 8.0 intake, 7.0 discharge

HRP Engir	neering, P.	C				<u> </u>		NIRONMEA.				
1 Fairchild	Square, S	uite 110	GF	ROUNDWAT	ER WELL		S OF E	NIRONMENTAL CONSERVATI				
	k, NY 1206	35		SAMPLING	FORM		RTME	BERV				
(518) 877-	7101						WG .	*				
Project: Clare	emont Polych	emical	WAS #: D00	06130-19		Field Person		Kach, James Ja	ackson Keith			
,						Gandarillas						
Location: Old	l Bethpage, N	Υ	Well ID.:EW	/-8D		Weather: P.	SUNNY 75 D	DEGREES F, O	VERCAST			
Sounding Me	ethod:		Gauge Date	e:7-26-11		Measureme	nt Ref:					
Stick Up/Dov	vn (ft):		Gauge Time	e:9:12		Well Diamet	er (in):4					
Purge Date:		7/	26/2011		Purge Time:			9:19				
Purge Metho	d:	BLADDEF	R (DEDICA	TED)	Field Techni	cian:						
4) 14/ 11/ 12	(51) 0.10		Lowers			T						
1) Well Depth	n (ft): 242		4) Well Diar	meter (in): 4		7) Five Well Volumes (gal):579						
2) Depth to V) Depth to Water (ft):64.60			ıme / Foot (ga 6528	1)	Depth/Heigh	t of Top of P	VC:				
-) Height of H ₂ O Column (1-2) (ft): 77.40					Pump Type:	BLADDER					
177.40				I								
			,	Water Qualit	y Paramete	ers						
Time	DTW	Volume	Rate (mL/m)	pH	ORP	Temperature	Conductivity:	DO (ug/L)	Turbidity			
	(ft btoc) 64.69	(liters)	260	(pH units)	(mV) 311	(oC)	(uS/cm) 0.137	1.53	(ntu) 38.4			
5:31 6:43	64.69		260	4.66	264	1	0.137	4.95	31.5			
7:55	64.69		260	4.64	295		0.148	6.05	3.7			
9.38	64.7		260	4.6	315		0.148	6.18	4.7			
9.43	64.71		260	4.61	323		0.149	6.28	9.4			
9.48	64.72		260	4.64	326		0.148	6.3	11.4			
9.53	64.73		260	4.63	332		0.148	6.25	10.8			
Total Quantit	y of Water Re	emoved (gal)	: 910	0 m L		Sampling T	ime:	9:54				
						1		-I				
Samplers:						Split Sample With:						
2/20/2044						Sample Type: VOC'S & METALS						
Sampling Da	Sampling Date: 7/26/2011					Sample Ty	pe:	VOUS & N	VIETALS			

138 PSI, 8.0 INTAKE, 7.0 DISCHARGE

HRP Engir 1 Fairchild Clifton Par (518) 877-	Square, S k, NY 120	Suite 110	GI	ROUNDWAT SAMPLING			THE TOTAL TO					
Project: Clare	emont Polych	nemical	WAS #: D00	06130-19		Field Per Gandarill	sonnel: Pete Tak		ackson, Keith			
Location: Old	Bethpage, N	NY	Well ID.:EW	/-9D		Weather:	P SUNNY 75 DE	GREES F.				
Sounding Me	thod: WATE	R TAPE	Gauge Date	e:7-26-11			ment Ref: _UMN (TOC)					
Stick Up/Dow	vn (ft):		Gauge Time	e:10:06		Well Diar	neter (in):4					
Purge Date:		7/2	26/2011		Purge Time:			10:15				
Purge Metho	d:	BLADDER	(DEDICA	TED)	Field Techni	cian:						
							Well Volumes (gal):598					
2) Depth to V	Vater (ft):70.6	65	5) Well Volu .06528	ume / Foot (ga	l) (d ² x.0408):	Depth/Height of Top of PVC:						
3) Height of H 183.35	H ₂ O Column	O Column (1-2) (ft): 6) Total Well Volume (gal) (3x5):119.9 Pump Type: BLADDER										
		Water Quality Parameters										
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperatu (oC)	(uS/cm)	DO (ug/L)	Turbidity (ntu)			
10:18	70.83		240	4.84	323	16.6		3.62	4.0			
10:23	70.83		240	4.99	315	16.24		3.55	1.2			
10:28	70.83		240	4.95	316	16.24		4.54	0.3			
10:33 10:38	70.83 70.83		240 240	4.94 4.95	315 316	16.32 16.34		5.26 5.21	0.2			
Total Quantit	y of Water R	emoved (gal):	576	0mL		Samplin	g Time:	10:39				
Samplers:						Split Sa	mple With:					
								1				
Sampling Da	te:	7/26/2011				Sample	Туре:	voc's & m	etals			

142 psi, 7.5 intake, 7.5 discharge

	. 5		1								
HRP Engin							4 Er	WIRONMENTAL			
1 Fairchild			GF	ROUNDWAT	FR WFI I		\$0,	COM			
Clifton Parl	k, NY 1206	5		SAMPLING			IM _E	SER			
(518) 877-7	7101			O/ IIVII EII 10	· Ortivi		RAG	JATAN AT			
, ,							10. N	W YORK STATE . NO			
Project: Clare	mont Polyche	emical	WAS #: D00	06130-19		Field Person		kach, James J	ackson Keith		
						Gandarillas			20.10011, 1101111		
Location: Old	Bethpage, N	Y	Well ID.:EW	/-10C		Weather: OV BREEZE	ERCAST 70	DEGREES F.	SLIGHT		
Sounding Met	thod:		Gauge Date	:7-25-11			nt Ref: TOP 0	OF COLUMN (TOC)		
								(
Stick Up/Dow	n (ft):		Gauge Time	e:10:05		Well Diamete	er (in):4				
Purge Date:		7/	25/2011		Purge Time:			10:14			
Purge Method	d:	BI ADDEF	R (DEDICA	TFD)	Field Techni	cian:					
			. (52510/1	5,							
1) Well Depth	/ft\: 150		4) Wall Di	motor (i=): 4							
1) Well Depth	ι (π): 150		4) Well Diar	neter (In): 4		7) Five Well Volumes (gal):165					
2) Depth to W	/ater (ft):93.6	1	5) Well Volu 0.6578	ıme / Foot (ga	l) (d ² x.0408):	Depth/Height	t of Top of P\	VC:			
3) Height of H	B) Height of H ₂ O Column (1-2) (ft):			II Volume (gal)) (3x5): 36.81	Pump Type:	BLADDER				
56.39											
				Water Quality Parameters							
			,	Water Qualit	y Paramete	ers					
Time	DTW	Volume	Rate	pН	ORP	Temperature	conductivity:	DO	Turbidity		
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)		
10:18	93.61		200	4.70	335	16.58	.311	8.33	1.0		
10:23	93.61		200	4.71	349	16.41	0.295	8.23	0.4		
10:28	93.61		200	4.70	354	16.47	0.264	8.23	0.6		
10:33	93.62		200	4.74	349	16.67	0.241	8.11	0.3		
10:38	93.62		200	4.76	351	16.57	0.233	8.06	0.3		
10:43	93.62		200	4.75	347	16.96	0.232	8.04	0.2		
			•	•	•	•	•	•	•		
Total Quantity	y of Water Re	moved (gal)	: 600	0 mL		Sampling T	ime:	10:44			
						•					
Samplers: Split Sam					Split Sampl	e With:					
Sampling Dat	Sampling Date: 7/25/2011					Sample Type: voc's & metals					

90 psi, 10.0 intake, 6.0 discharge

1 Fairchild	neering, P.C I Square, Su rk, NY 1206 -7101	uite 110	GF	ROUNDWATI SAMPLING		Field Personnel: Pete Takach, James Jackson, Keith					
Project: Clar	emont Polyche	emical	WAS #: D00)6130-19		Field P Ganda		nel: Pete Tak	ach, James Ja	ackson, Keith	
Location: Old	d Bethpage, N	Y	Well ID.:EW	/-11D		Weath	er: Ove	ercast, 75 D	EGREES F. sl	ight breeze	
Sounding Me	ethod: WATER	TAPE	Gauge Date	:7-25-11		Measu	remen	t Ref: OP OF	COLUMN		
Stick Up/Dov	vn (ft):		Gauge Time	e: 1:33		Well D	iamete	er (in):4			
Purge Date:		7/2	25/2011		Purge Time:				1:38		
Purge Metho	d: [BLADDER	(DEDICA)	TED)	Field Technic	cian:					
1) Well Dept	h (ft): 280		, , ,				: Well \	Volumes (gal): 585		
	Water (ft):100.1		(d ² x.0408):.6528				Depth/Height of Top of PVC:				
3) Height of I 179.84	H₂O Column (1	1-2) (ft):	6) Total Wel	ell Volume (gal)	(3x5):117.39	Pump ¹	Туре: І	BLADDER			
Water Quality Parameters											
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Tempe (OC	C)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)	
1:40	100.29		220	5.03	323	15.		.605	8.02	0.1	
1:45	100.30		220	5.05	324	14.		0.599	7.53	0.1	
1:50	100.30 100.30		220 220	5.1	321	15.		0.597	7.35	0.2	
1:55	100.30		220	5.15	316	15.	13	0.594	7.08	0	
	++		 	+	<u> </u>	 			+		
	+		 	+	 	┼			+		
	 		 	+	<u> </u>	1			1		
	├		 	 	<u> </u>	-					
	├								-		
	 		<u> </u>		<u> </u>	<u> </u>					
Total Quantit	ty of Water Rei	moved (gal):	3960	0 mL		Samp	oling Ti	ime:	1:56		
Samplers:						Split S	Sample	e With:			
Sampling Da	te:	7/25/2011				Samp	ole Typ	e:	voc's & me	etals	
			1								
COMMENTS	S AND OBSER	RVATIONS:			153 psi, 6	.5 inta	ke, 8.	.5 discharg	ge		

1 Fairchild	neering, P.0 I Square, Si rk, NY 1206 -7101	uite 110	GF	ROUNDWAT SAMPLING			AND TORK STATE.					
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Perso	onnel: Pete Tal		ackson, Keith			
Location: Old	d Bethpage, N	Y	Well ID.:EW	V-12D		Weather:O	VERCAST 75	DEGREES F.	BREEZY			
Sounding Me	ethod: WATER	R TAPE	Gauge Date	e: 7-25-11								
Stick Up/Dov	vn (ft):		Gauge Time	e:12:44		Well Diame	eter (in):4					
Purge Date:		7/2	25/2011		Purge Time:	-		12:51				
Purge Metho	d:	BL	ADDER		Field Technic	cian:						
1) Well Depth (ft): 220.0 4) Well Diameter (in): 4 7) Five Well Volumes (gal):395												
.6528							leight of Top of PVC:					
3) Height of I 121.17	H ₂ O Column (1-2) (ft):		ell Volume (gal)) (3x5):79.099	Pump Type	e: BLADDER					
				Water Qualit	y Paramete	ers						
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	(uS/cm)	DO (ug/L)	Turbidity (ntu)			
12:59	98.91		240	4.92	340	15.78	.544	6.85	2.5			
1:04	98.91		240	5.01	340	15.44	0.58	6.72	1.1			
1:09	98.91 98.76		240 240	5.01	337	15.3	0.589	7.92	1.4			
1:14 1:19	98.78		240	5.02 4.99	339 337	15.19 15.2	0.593 0.592	7.09 7.19	1.4			
1:24	98.93		240	4.99	338	15.16	0.592	7.19	1.3			
			1									
						·						
Total Quantit	ty of Water Re	moved (gal):	816	0 mL		Sampling	Time:	1:25				
Samplers:						Split Sam	ple With:					
								•				
Sampling Da	ite:	7/25/2011				Sample T	уре:	voc's & m	etals			

132 psi, 9.0 intake, 6.0 discharge

1 Fairchild	neering, P.0 Square, S k, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			TOT HAVING NAME VITY COLUMN TO THE TAKE TO THE TOTAL TO THE TAKE THE TOTAL TO THE TAKE THE TA				
Project: Clare	emont Polych	emical	WAS #: D00	06130-19		Field Perso Gandarillas		kach, James Ja	ackson, Keith		
Location: Old	l Bethpage, N	Υ	Well ID.:EW	/-13D			VERCAST, 70	DEGREES F	. BREEZY		
Sounding Me	thod: WATER	R TAPE	Gauge Date	: 7-25-11		Measureme	ent Ref: TOC				
Stick Up/Dow	vn (ft):		Gauge Time	e:10:52		Well Diame	ter (in):4				
Purge Date:		7/2	25/2011		Purge Time:	!		10:59			
Purge Metho	d:	BLADDER	(DEDICA	ΓED)	Field Techni	cian:					
1) Well Depti	h (ft): 350		4) Well Diar	neter (in): 4		7) Five Wel	l Volumes (ga	l):820			
2) Depth to V	Vater (ft):99.2	3	5) Well Volu	ıme / Foot (ga	l) (d ² x.0408):	Depth/Height of Top of PVC:					
3) Height of I 250.77	H ₂ O Column (1-2) (ft):		ll Volume (gal)) (3x5):	Pump Type	: BLADDER				
			,	Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
11:05	99.28		220	4.73	346	16.39	.227	7.42	.2		
11:10	99.28		220	4.64	328	15.76	0.225	6.83	0.8		
11:15	99.31		220	4.42	349	15.63	0.234	6.37	0.3		
11:20	99.34		220	4.50	358	15.65	0.234	6.23	0.2		
11:25	99.28		220	4.56	372	17.08	0.229	5.6	0.1		
11:35	99.35		220	4.56	385	16.97	0.237	6.15	0.1		
11:40	99.33		220	4.57	377	16.56	0.233	5.85	0.1		
11:40	99.33		220	4.60	380	17	0.231	5.91	0.1		
						_					
Total Quantit	y of Water Re	emoved (gal):	10,3	340 mL		Sampling	Time:	11:46			
Samplers:						Split Samp	ole With:	voc's & me	etals		
	<u> </u>					I					
Sampling Da	te:	7/25/2011				Sample Ty	/pe:				
			_			•		•			

175 psi, 5.0 intake, 10.0 discharge

1 Fairchild	neering, P.0 I Square, S rk, NY 1206 -7101	uite 110	GI	ROUNDWAT SAMPLING		Field Personnel: Pete Takach, James Jackson, Keith					
Project: Clar	emont Polych	emical	WAS #: D0	06130-19		Field Persor Gandarillas			ackson, Keith		
Location: Old	d Bethpage, N	IY	Well ID.:EW	V-14 D			NNY 90 DEG	REES F.			
Sounding Me	ethod: WATER	R TAPE	Gauge Date	e:7-26-11		Measureme	nt Ref:				
Stick Up/Dov	wn (ft):		Gauge Time	e:8:09		Well Diamet	er (in):4				
Purge Date:		7/2	26/2011		Purge Time:	•		8:21			
Purge Metho	od:	BLADDER	(DEDICA	TED)	Field Technic	cian:					
1) Well Dept	h (ft): 195		4) Well Diar	meter (in): 4	•	7) Five Well Volumes (gal):500					
2) Depth to \	Nater (ft):41.4	4	5) Well Volu 0.6528	ume / Foot (ga	l) (d ² x.0408):	Depth/Height of Top of PVC:					
3) Height of 153.66	H₂O Column ((1-2) (ft):		6) Total Well Volume (gal) (3x5):100.31 Pump Type: BLADDER							
				Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
8:26	41:48		200	4.83	287	16.03	.160	6.78	.6		
8:31	41:48 41:48		200 200	4.63	302	15	0.153	6.75	1.4		
8:36	41:48		200	4.7	313	15.22	0.14	3.73	1.3		
8:41 8:46	41:48		200	4.69 4.65	320 321	15.5 15.62	0.133 0.132	7.69 7.47	0.7		
Total Quanti	ty of Water Re	emoved (gal):	520	0 mL		Sampling Time: 8:47					
Samplers:						Split Samp	le With:				
Sampling Da	ate:	7/26/2011				Sample Type: voc & metals					
		I									
							<u> </u>				

100 psi, 8.0 intake, 7.0 discharge

Clifton Par (518) 877-	Square, Suk, NY 1206 7101		GF	ROUNDWAT SAMPLING			AND YORK STATE				
Project: Clare	emont Polychei	mical	WAS #: D00	6130-19		Field Person Gandarillas		ach, James Jac	ckson, Keith		
Location: Old	Bethpage, NY		Well ID.:LF-	02		Weather:CO	OL TEMP 71	DEGREES F.			
Sounding Me	thod: WATER	TAPE	Gauge Date	:7-27-11		Measuremer	nt Ref: TOC				
Stick Up/Dow	ın (ft):		Gauge Time	: 46.0 - 14.0		Well Diamete	er (in):4				
Purge Date:		7/2	26/2011		Purge Time:	e: 8:30					
Purge Method	d:	SLO	W FLOW		Field Techni	cian:					
1) Well Depth	ı (ft): 102		4) Well Dian	neter (in): 4	1	7) Five Well	Volumes (gal):103			
2) Depth to W	/ater (ft):52.15		5) Well Volu 0.6528	me / Foot (gal)	(d ² x.0408):	Depth/Height	Depth/Height of Top of PVC:				
3) Height of H	H ₂ O Column (1	-2) (ft): 49.85		l Volume (gal)	(3x5):32.54	Pump Type:	BLADDER				
				Water Quality Parameters							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
7:25	52.15		210	6.40	144	19.6	.464	8.69	17.0		
7:30	52.15		210	5.69	42	19.3	0.473	0.3	43.0		
7:35	52.15		210	5.69	53	19.3	0.483	3.66	48.4		
7:40	52.15		210	5.71	60	19.4	0.483	3.22	50.0		
7:45	52.15		210	5.73	69	19.4	0.485	2.89	41.0		
7:50	52.15		210	5.74	79	19.3	0.487	3.98	132.0		
7:55	52.15		210	5.77	83	19.4	0.483	2.83	112.0		
8:00	52.15		210	5.78	88	19.4	0.488	2.73	134.0		
8:05	52.15		210	5.79	91	19.4	0.489	2.91	87.0		
0.45			С	ELL CLEAN	IED				0.4		
8:15				1					6.4		
8:20									6.4		
8:23						1			15.3		
Total Quantity	y of Water Ren	noved (gal):				Sampling T	ime:	8:30			
Samplers:						Split Sampl	e With:				
Sampling Dat	te:	7/27/2011				Sample Typ	oe:	GRAP			
Jamping Date. 1/21/2011						Campic Typ		10101			

TURBIDITY IS NOW RECORDING BOGUS READINGS -METAL & VOAS

1 Fairchild	neering, P.0 Square, Sok, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			TORK STATE				
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Person Gandarillas		kach, James Ja	ackson, Keith		
Location: Old	d Bethpage, N	Y	Well ID.:MV	V-6D		Weather:M0	OST SUNNY	70 DEGREES I	F.		
Sounding Me	thod:		Gauge Date	e:7-27-11		Measureme	nt Ref: TOC				
Stick Up/Dow	vn (ft):		Gauge Time	e: 8:13		Well Diame	ter (in):4				
Purge Date:		7/2	27/2011		Purge Time:			9:59			
Purge Method	d:	BLADDE	R S/S PO	C-2	Field Techni	ician:					
1) Well Depth	h (ft): 190		4) Well Diameter (in): 4			7) Five Well	Volumes (ga	l):309			
, ,	Vater (ft):95.4		$(d^2x.0408):0$			Depth/Height of Top of PVC:					
3) Height of H 94.60	H₂O Column (1-2) (ft):	6) Total We	ell Volume (gal)) (3x5):61.75	Pump Type:	S/S BLDDEF	₹/POC - 2			
			,	Water Quality Parameters							
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
10:06	95.61		220	5.74	73	16.35	.126	11.62	6		
10:11	95.62		220	5.67	56	16.42	0.199	6	7.7		
10:16	95.62		220	5.75	34	16.65	0.217	3.66	7.3		
10:21	95.62		220	5.81	25	16.69	0.223	2.86	6.6		
10:26	95.62		220 220	5.8	22	16.82	0.226	1.88	6.4		
10:31	95.62		220	5.83 5.82	20 15	16.78 16.77	0.227 0.229	1.93 1.77	6.3 5.9		
Total Quantit	y of Water Re	emoved (dal).	726	0 mL		Sampling ⁻	Time.	10:32			
Total Quartity	y or vvalor re			- TIL		Camping					
Samplers:						Split Samp	le With:				
Sampling Da	te:	7/27/2011				Sample Type: Vocs & Metals and TOB					
						charge- problems getting pump to work. Tried g. Airline leaking at fitting. Replaced. Still not					

working. Well water draining back to well during recharge cycle. Possible leak in tubing. Had to increase psi from last event to get to pump water.

Water also in airline.

		_									
	neering, P.0						L ES	WIRONMENTAL			
	Square, S		GF	ROUNDWAT	ER WELL		\$ Ox	COM			
Clifton Par	k, NY 1206	35		SAMPLING			IME	SERV			
(518) 877-	7101						RAG	ATIC			
							D. W.	W YORK STATE . AL			
Project: Clare	emont Polych	emical	WAS #: D00	06130-19				kach, James Ja	ackson, Keith		
						Gandarillas					
Location: Old	l Bethpage, N	Y	Well ID.:MV	V-8C		Weather:PAI	RT SUNNY 8	0 DEGREES F			
Sounding Me WATER TAP			Gauge Date	e:7-27-11		Measuremer	t Ref: TOC				
Stick Up/Dov			Gauge Time	e: 2:12		Well Diamet	er (in):4				
Purge Date:		7/	27/2011		Purge Time:			2:22			
Purge Metho	d:	BLADE	DER (PVC-	2)	Field Techni	cian:					
1) Well Depti	n (ft): 250		4) Well Diar	meter (in): 4"		7) Five Well Volumes (gal):587					
2) Depth to V	Vater (ft):70.1	9		ıme / Foot (ga	l)	Depth/Heigh	t of Top of P\	VC:			
0) 11 1 1 6	Height of H. O. Column (1.2) (ff):			6528	(0 =) (1= 00			21 (0.0)			
3) Height of F 179.81) Height of H ₂ O Column (1-2) (ft): 79.81			ll Volume (gal)) (3x5):117.38	Pump Type:	BLADDER (I	2VC-2)			
			,	Water Quality Parameters							
Time	DTW		Rate	pH	ORP	1	l	DO			
(hrs)	(ft btoc)	Volume (liters)	(mL/m)	(pH units)	(mV)	Temperature (oC)	conductivity: (uS/cm)	(ug/L)	Turbidity (ntu)		
2:27	70.36		240	5.65	11	18.61	.287	4.54	2.9		
2:32	70.37		240	5.68	12	16.01	0.169	3.14	1.3		
2:37	70.38		240	5.69	14	15.38	0.153	2.23	0.4		
2:42	70.38		240	5.69	20	15.14	0.151	2.06	0.3		
2:47	70.38		240	5.60	29	15.01	0.148	1.53	0.6		
2:52	70.38		240	5.56	38	14.76	0.147	1.51	0.5		
2:57	70.38		240	5.57	39	14.62	0.146	1.54	0.6		
3:02	70.38		240	5.55	46	14.59	0.145	1.45	0.5		
				<u> </u>							
Total Quantit	y of Water Re	moved (gal)	. 094	0 mL		Sampling T	imo:	3:03			
Total Quantit	y or water Re	emoved (gai)	. 904	U IIIL		Sampling	inie.	0.00			
Samplers:						Split Sampl	e With:				
· ·						<u> </u>		<u> </u>			
Sampling Date: 7/27/2011					Sample Typ	oe:	voc's & met	als & TOB			
						_1					

80 psi, 8.5 intake, 6.5 discharge

1 Fairchild	neering, P. I Square, S rk, NY 1206 7101	uite 110	GF	ROUNDWAT SAMPLING			OF LINIRONMENTO, CO. 25 MILES AND CO. 25					
Project: Clar	emont Polych	emical	WAS #: D00	06130-19		Field Persor Gandarillas		cach, James Ja	ackson, Keith			
Location: Old	d Bethpage, N	IY	Well ID.:MV	V-10 B			RT SUNNY 7	0 DEGREES F	·.			
Sounding Me	ethod: WATE	R TAPE	Gauge Date	e:7-28-11		Measureme	nt Ref:					
Stick Up/Dov	vn (ft):		Gauge Time	e:7:18		Well Diamet	er (in):					
Purge Date:		7/2	28/2011		Purge Time:			7:27				
Purge Metho	od:	BLADD	ER (POC-	2)	Field Techni	cian:						
1) Well Dept	h (ft): 178		4) Well Diar	meter (in): 4"		7) Five Well	Volumes (gal	1):265				
2) Depth to V	Vater (ft):96.7	3	5) Well Volume / Foot (gal) (d ² x.0408): 0.6528			Depth/Height of Top of PVC:						
3) Height of 81.27	H ₂ O Column (O Column (1-2) (ft): 6) Total Well Volume (gal) (3x5):53.05 Pump Type: BLADDER (POC-2)					POC-2)					
		Water Quality Parameters										
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)			
7:31	96.87		280	4.55	269	16.47	.528	19.03	0			
7:36	97.28		160	4.8	256	14.88	0.489	10.72	0			
7:41	97.47		160	4.99	255	15.11	0.484	9	0			
7:46	97.58		160	4.95	254	15.18	0.483	9.66	0			
7:51	97.67		160	4.98	251	15.2	0.481	9.7	0			
Total Quanti	ty of Water Re	emoved (gal):	508	0 mL		Sampling 1	ime:	7:52				
		,				1						
Samplers:						Split Samp	le With:	ТОВ				
Sampling Da	nte:	7/27/2011				Sample Ty	ne:	voc's & met	als & TOR			
pmg Do		1.72172011				Campio 1y	F = .	7000 0 11101				

9.5 psi, 9.5 intake, 5.5 discharge- DO seems high.

	neering, P.C					TA CONTRACTOR CONTRACT				
	Square, Su k, NY 1206		GF	ROUNDWAT			EN.	ONSE		
(518) 877-		5		SAMPLING	FORM		ARTA	RVA		
(310) 077-	7 10 1						WG.	W YORK STATE . NO		
Project: Clare	emont Polyche	emical	WAS #: D00	06130-19		Field Person Gandarillas		ach, James Ja	ackson, Keith	
Location: Old	I Bethpage, N	Y	Well ID.:MV	V-10C		Weather: M.	SUNNY 75 D	EGREES F.		
Sounding Me	thod: WLI - So	OLINST 101	Gauge Date	:7-28-11		Measuremer	t Ref: TOC			
Stick Up/Dow	n (ft):		Gauge Time	e: 10:18			Well Diamet	ter (in):4		
Purge Date:		7/2	28/2011		Purge Time:	:		10:29		
Purge Method	d:	BLADD	ER (PUC-	2)	Field Techni	cian:				
1) Well Depth	ı (ft): 278		4) Well Diar	neter (in): 4		7) Five Well	Volumes (gal):594		
2) Depth to W	Vater (ft):96.01	1	5) Well Volu 0.6528	ume / Foot (gal	l) (d ² x.0408):	Depth/Heigh	t of Top of P\	/C:		
3) Height of H 181.99	H ₂ O Column (1	1-2) (ft):		ell Volume (gal)) (3x5):	Pump Type:	BLADDER (F	PUC-2)		
				Water Qualit	y Paramete	ers				
Time	DTW	Volume	Rate	pН	ORP	Temperature	conductivit:y	DO	Turbidity	
(hrs)	(ft btoc)	(liters)	(mL/m)	(pH units)	(mV)	(oC)	(uS/cm)	(ug/L)	(ntu)	
10:36	96.01		240	4.62	290	17.07	.512	12.49	0	
10:41	96.01		240	4.74	298	16.82	0.517	12.31	0	
10:46	96.01 96.01		240 240	4.61	298	16.5	0.521	11.97	0	
10:51 10:56	96.01		240	4.69 4.63	303 304	16.6 16.39	0.519 0.52	12.14 12.01	0	
10.50	00.01		240	4.03	304	10.39	0.52	12.01	U	
				+						
Total Quantity	y of Water Rei	moved (gal):	672	0mL		Sampling	Time:	10:57		
Samplers:					_	Split Sampl	e With:			
Sampling Date: 7/28/2011						Sample Typ	Je.	VOC'S & ME	TALS & TOB	
	ic.	112012011				Janipie Typ		VOC 3 & IVIE	. IALO & TOB	
			1							

130 PSI, P.5 INTAKE, 5.5 DISCHARGE- DO SEEMS HIGH

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GF	ROUNDWAT SAMPLING		THE TOP TO THE TAKE THE TOP TO TH					
Project: Claremont Polychemical			WAS #: D006130-19			Field Personnel: Pete Takach, James Jackson, Keith Gandarillas					
Location: Old Bethpage, NY			Well ID.:MW-10D			Weather: OVERCAST 70 DEGREES F.					
Sounding Method: WATER LEVEL INDICATOR			Gauge Date:7-28-11			Measurement Ref: TOC					
Stick Up/Dov			Gauge Time:8:11			Well Diameter (in):4					
Purge Date:	Purge Date: 7/2			28/2011 Purge Time:			8:51				
Purge Metho	ıd:	BLADI	DER POC-2 Field Technic			cian:					
1) Well Depti	h (ff): 351		Ta) Well Diar	mater (in): 4		T7) Five Well	Volumes (na	\.Q2Q			
	Nater (ft):97.3	31	4) Well Diameter (in): 4 5) Well Volume / Foot (gal) (d ² x.0408):			7) Five Well Volumes (gal):828 Depth/Height of Top of PVC:					
3) Height of H₂O Column (1-2) (ft): 253.69			6) Total Well Volume (gal) (3x5):165.61								
			•	Water Qualit	y Paramete	ers					
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	temperature (oC)	conductivity: (uS/cm)	DO (ug/L)	Turbidity (ntu)		
9:00	97.40		240	5.14	186	15.52	.263	7.46	1		
9:05	97.41	<u> </u>	240	5	222	14.9	0.259	10.5	0.5		
9:10	97.41		240	4.81	235	14.87	0.267	10.68	0		
9:15	97.41	 	240	4.7	252	14.79	0.273	10.58	0		
9:20	97.42		240	4.57	264	14.66	0.276	10.6	0		
9:25	97.42		240	4.5	275	14.9	0.678	9.09	0		
9:00 9:35	97.42 97.42		240 240	4.51 4.46	279 283	15.29 15.39	0.677 0.676	9.05 8.99	0		
		 	 	 	<u> </u>	 	 	<u> </u>			
					with my meter to James DO %	%					
Total Quantity of Water Removed (gal):			4760 mL			Sampling Time: 9:40					
Samplers:	$\overline{}$					Split Sampl	e With:	Τ			
Sampling Date: 7/28/2011					Sample Typ	oe:	voc's & me	tals TOB			
			\top								
COMMENTS	S AND OBSEF	RVATIONS:	145 psi,	, 8.5 intake, s/s not wo		-		ctive used P			

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GROUNDWATER WELL SAMPLING FORM			A COMMENTAL COMM				
Project: Clare	emont Polych	emical	WAS #: D006130-19			Field Personnel: Pete Takach, James Jackson, Keith				
Location: Old Bethpage, NY			Well ID.:SW-1			Gandarillas Weather:				
Location. Old betripage, NT			Well ID3W-1			weather.				
Sounding Me	thod: Water ⁻	Гаре	Gauge Date:7-26-11			Measurement Ref:				
Stick Up/Dow	n (ft):		Gauge Time:			Well Diameter (in):4				
			<u>!</u>			<u>!</u>				
Purge Date:		7/2	25/2011		Purge Time:	ne: 11:45				
Purge Method	d:	slo	ow flow Field Te			nician:				
1) Well Depth	n (ft): 70.99		4) Well Diameter (in): 4			7) Five Well Volumes (gal):19.6				
2) Depth to W	Vater (ft):65		5) Well Volume / Foot (gal) (d ² x.0408):			Depth/Height of Top of PVC:				
, ,			, , , , ,							
3) Height of F	H₂O Column (1-2) (ft): 5.99	6) Total Well Volume (gal) (3x5):3.91			Pump Type: bladder				
			•	Water Qualit	y Paramete	ers				
Time (hrs)	DTW (ft btoc)	Volume (liters)	Rate (mL/m)	pH (pH units)	ORP (mV)	Temperature (oC)	conductivit:y (uS/cm)	DO (ug/L)	Turbidity (ntu)	
11:15	65.00	.50	190	4.17	284	15.2	27	8.43	6.0	
11:20	65.00	.50	190	4.17	284	15.1	27.1	8.43	3.9	
11:25	65.00	.50	190	4.15	288	15.0	26.8	8.43	3.8	
11:30	65.00	.50	190	4.15	291	15.0	22.8	8.43	4.2	
11:35	65.00	.50	190	4.13	293	15.1	26.7	8.43	4.2	
11:40	65.00	.50	190	4.12	295	15.0	26.6	8.43	5.5	
Tatal Over ""					•	Com		11:45	•	
i otai Quantit	y of vvater Re	emoved (gal):	3 g	dI.		Sampling T	ime:	111.73		
Samplers:						Split Sample With:				
Sampling Da	te [.]	7/25/2011				Sample Type:				
						· · · · · · · · · · · · · · · · ·	-			

metals & voc's

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101			GF	ROUNDWAT SAMPLING			id	W YORK STATE.		
Project: Claremont Polychemical			WAS #: D006130-19			Field Personnel: Pete Takach, James Jackson, Keith Gandarillas				
Location: Old Bethpage, NY			Well ID.:WT-01			Weather: A breeze, 75 degrees F				
Sounding Method:WATER TAPE			Gauge Date:7-28-11			Measurement Ref:				
Stick Up/Down (ft):			Gauge Time:8:25			Well Diameter (in):4				
Purge Date:		7/2	28/2011		Purge Time:	ļ				
Purge Method: SLOV			W FLOW Field Techni			cian:				
1) Well Depth	(ft): 107.2		4) Well Diameter (in): 4			7) Five Well Volumes (gal):33				
2) Depth to Water (ft):97.00			5) Well Volume / Foot (gal) (d ² x.0408): 0.6528			Depth/Height of Top of PVC:				
3) Height of H ₂ O Column (1-2) (ft): 10.2						Pump Type: BLADDER				
				Water Qualit	y Paramete	ers				
Time	DTW	Maluma	Rate	рН	ORP	1		DO	Total California	
(hrs)	(ft btoc)	Volume (liters)	(mL/m)	(pH units)	(mV)	Temperature (oC)	conductivity: (uS/cm)	(ug/L)	Turbidity (ntu)	
7:55	97.00	0.50	160	5.02	289	17.1	66.7	10.36	7.6	
8:00	97.00	0.50	160	4.62	314	16.8	60.1	9.59	15.3	
8:05	97.00	0.50	160	4.44	339	16.6	58.7	9.37	19.7	
8:10	97.00	0.50	160	4.38	349	16.7	57.9	9.35	19.7	
8:15	97.00	0.50	160	4.34	353	16.6	57.7	9.22	25.9	
8:20	97.00	0.50	160	4.34	358	16.7	57.7	9.10	28.9	
Total Quantity of Water Removed (gal): 3						Sampling T	Sampling Time: 8:25/8:30			
Samplers:						Split Sampl	e With			
						Spt Gampi		1		
Sampling Date: 7/28/2011						Sample Typ	oe:	GRAB		

QC done at WT-01\ 4 Metals\ 6 VOAS