FSS

NYSDEC Standby Engineering Contract Work Assignment #D0076025-28

Prepared for NYS Department of Environmental Conservation 625 Broadway Albany, New York 12233

Monthly Report of the Operations & Maintenance Activities

Claremont Polychemical Operable Unit 5 Groundwater Treatment System

Old Bethpage, New York September 2019

Department of Environmental Conservation

Contents

AC	RONY	MS AND ABBREVIATIONS iii				
1	OPE	RATION AND MAINTENANCE ACTIVITIES				
	1.1	DAILY OPERATIONS SUMMARY REPORTS				
	1.2	SUMMARY OF MAINTENANCE ACTIVITIES				
	1.3	MAINTENANCE LOGS				
2	TEC	HNICAL SUPPORT ACTIVITIES				
	2.1	HDR Personnel				
	2.2	NYSDEC Personnel, sub-contractors and other visitors2				
	2.3	Deliveries3				
3	HEA	ALTH AND SAFETY				
4	PLA	NNED ACTIVITIES AND SCHEDULES				
5	MO	NITORING WELL WATER ELEVATIONS				
6	TRE	ATMENT SYSTEM FLOWS				
7	CHEI	MICAL CONSUMPTION				
8	V	VASTE DISPOSAL				
9	MO	NTHLY DISCHARGE MONITORING REPORT				
10	PEN	IDING ISSUES AND CONSIDERATIONS				
11	PLA	NT DOCUMENTS				
12	N	1ONITORING RESULTS				
	12.1	Off-site Analytical Data Results				
	12.2	Field Data6				
13	Р	ROCESS ANALYSIS and SYSTEM STATUS				
	13.1	Extraction Processes				
	13.2	Air Stripping Process				
	13.3	Plant Discharge Process				
	13.4	Other				
14	G	ROUNDS				
	14.1 Plant Perimeter					
	14.2	Well Field9				
	14.3	Other9				

Tables

Table 1 – Flow Average and Volume Discharged	4
Table 2 – Effluent pH and Temperature Readings	
Table 3 – AS Tower Air Monitoring Readings	7
Table 4 – Plant Daily Totalizer Readings	
Table 5 – Pump System Flow Readings	
Table 6 – Claremont Corrective Actions Summary	
Table 7 – Recent Plant Discharge Analytical Results	
Table 8 – Plant Discharge Monthly Average pH	

Figures

Figure 1	- Plant Discharge Daily Flow	v11
	5 7	

ACRONYMS AND ABBREVIATIONS

AS ASF BSP CPC CSE DOSR DTB DTW EFF EON ESS Fed Ex GPD GPM GW GWTS HCI HDR HHL INF LOTO MW NYSDEC O&M OBL OU4 OU5 PDB PD PFOA PDB PD PFOA PFOS PID PSEG PW RAP RW SOP SSHP SU TA TOB	air stripper air stripper feed Bethpage State Park (Black Golf Course) Claremont Polychemical confined space entry daily operations summary report depth to bottom depth to bottom depth to water effluent EON Products, Inc. Environmental Sampling Supply Federal Express gallons per day gallons per minute groundwater groundwater extraction, treatment, and reinjection system hydrochloric acid Henningson, Durham & Richardson Architecture and Engineering, P.C. High-high level influent Lock-out, tag-out monitoring well New York State Department of Environmental Conservation operation and maintenance Old Bethpage Landfill Operable Unit 5 Passive Diffusion Bags plant discharge Perfluorooctanesulfonic Acid photo ionization detector Public Service Enterprise Group, electrical power supplier process water Remedial Action Plan Recovery well, process well standard operating procedure site safety and health plan standard pH units TestAmerica Laboratory Town of Oyster Bay
TA TOB TOBAY UPS VAC	standard pH units TestAmerica Laboratory Town of Oyster Bay Town of Oyster Bay United Parcel Service Vapor phase activated carbon
VOCs	volatile organic compounds

1 OPERATION AND MAINTENANCE ACTIVITIES

Henningson, Durham & Richardson Architecture and Engineering, P.C. (HDR) continued the daily operation and maintenance (O&M) of the Claremont Polychemical Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU-5) during the month of September. This report covers the operation and maintenance activities for the system during the period defined as beginning at 0730 hours, September 1, 2019 through 0730 hours, October 1, 2019. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 30 days in this reporting period during which the treatment system experienced no downtime.

Readings of the key plant process parameters are normally recorded each work day. (When the plant is not occupied, the system is generally remotely monitored). These readings and the HMI flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the Daily Database which is an electronic file maintained in the monthly operating document folder.

The control and alarm systems are fully functional. The recovery well pumps and the process pumps are operated in the automatic mode and are remotely controlled and monitored.

1.1 DAILY OPERATIONS SUMMARY REPORTS

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

Daily Operating Log – flow readings (Form-01) Daily Process Data Sheet – point process readings (Form-30) Daily Safety and Site Inspection – plant condition checklist (Form-02) Daily Plant Activity Notes – plant manager's daily summary (Form-03) Employee Sign-In Sheet – employee on-site hours (Form-15) Logbook – plant operator's daily log book (CPC 5-7) Daily Database – daily process readings (09 September 19 Database.xlsx)

1.2 SUMMARY OF MAINTENANCE ACTIVITIES

The maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site GWTS O&M Manual.

The maintenance, operation, and inspection of the plant incorporates the equipment manufacturers' recommendations, operations experience, and good engineering and maintenance practices. A detailed accounting of the September activities is further provided in the plant operator's daily log book.

Maintenance and project activities completed during September included:

- Routine and general maintenance tasks conducted at the plant, on the grounds and in the well fields.
- The valve influent to Basin 33 was adjusted as necessary to match the golf course usage and needs.
- A front fence street sign was refurbished.
- Vegetative growth around the monitoring wells was cleared.
- The ASF pumps were manually sequenced.
- The emergency light fixtures were removed from the OU4 facility and installed at OU5 in place of the existing, defective units.
- The 90-minute power test was conducted on the plant e-lights. Three of 6 units failed.
- The OU4 comprehensive inspections were completed.
- The monthly process equipment function tests were completed.
- Batteries were replaced in 4 e-lights.
- The 90-minute power test was re-conducted on the plant e-lights. All e-lights passed the re-test.
- The plant truck was inspected.
- The comprehensive site and safety inspections were completed.
- The monthly recovery well inspection was completed.

1.3 MAINTENANCE LOGS

The following operating logbooks are currently in use and maintained at OU-5:

- CL-43 Field Support Log
- CL-47 Misc. Projects Field Notebook (PET)
- CPC 5-4 Project Support Log Book (site)
- CPC 5-7 Site Supervisor's Daily Log Book (PET)

The completed log books associated with the project (with the exception of books CPC-1 and 6) have been scanned, all are in storage at OU-5, and are available for review.

2 TECHNICAL SUPPORT ACTIVITIES

2.1 HDR Personnel

- HDR maintained the plant throughout the period.
- Various personnel at the Mahwah, NJ, New York, NY, and Newark, NJ offices remotely provided oversight, guidance and technical expertise for the project.
- Derek Matuszewski was in 9/12 to assist with the GW elevations. He returned 9/16 and 9/17 to assist with the GW sampling task.

2.2 NYSDEC Personnel, sub-contractors and other visitors

- 9/19 TA-NY picked up GW samples.
- 9/20, Rich Dierschke of United Fire was in to look at the OU5 alarm system.

- 9/23, BK Fire was in to inspect the sprinkler system at OU4.
- 9/26, TA-NY picked up the PD and BP-GW samples for analysis.

2.3 Deliveries

- 9/17, TA-NY dropped off sample vials.
- 9/25, UPS delivered the MMC order and returned 9/30 with the truck registration.

3 HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved Site Safety and Health Plan (SSHP). Safety related activities during this period included:

- Daily site safety inspections were completed as part of the routine O&M activities.
- The OU4 comprehensive site and safety inspection was completed with nothing new to note.
- The OU5 comprehensive site and safety inspections were completed with nothing new to note.
- A VOC reading of about 5 ppm was recorded at the ASF wet well access grating. The area was aired out and the VOCs dissipated.

There were no other safety issues of note in September.

4 PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing. A list in the form of corrective actions or maintenance tasks has been generated as is a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of the text of this report as Table 6 - Claremont Corrective Action Summary.

Upcoming tasks include:

- The monthly plant discharge samples are scheduled for 10/17.
- The demolition of the OU4 plant is awaiting NYSDEC approval.
- Two bids were obtained for the repair of the OU5 smoke detectors. A third contractor was contacted and has been unresponsive. The lowest bidder will be contracted to replace the smoke detectors and address the alarm.

5 MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater level elevation data table was updated after September's GW sampling event. This database is available for review. The next synoptic water level round will be scheduled for December, prior to the quarterly groundwater sampling task.

6 TREATMENT SYSTEM FLOWS

The volume of treated water discharged by the treatment plant to the selected infiltration basin is generally determined daily from readings of the plant effluent flow meter output. During the September period, the HMI readings were recorded. The plant continued to operate in the auto mode. There was no downtime to the system's operations this period.

The total volume of treated water discharged from 0730 hours on September 1, to 0730 hours on October 1, was \sim 29,257,000 gallons. The data in Table 1 shows selected monthly flows discharged from the plant.

A graphic representation of the system's daily plant discharge output is provided in Figure 1 and the daily plant totalizer readings for September are provided in Table 4, both following the text of this report.

Month	Flow Average (gpm)	Average Volume Discharged per day (gal)
October '16	618	889,903
December '16	442	636,516
March '17	565	814,097
June '17	569	820,033
September '17	624	899,233
December '17	96	138,839
March '18	641 (while operating)	241,778 (for days online)
June '18	947 (9856 min. online)	444,291 (for 21 days online)
September '18	793 (38,439 min. online)	1,129,630 (27 days online)
December '18	269	387,581
January '19	567	816,613
February '19	456	657,321
March '19	550	791,677
April '19	689	991,754
May '19	649	926,035
June '19	678	976,567
July '19	687	988,323
August '19	688	992,968
September '19	680	975,233

Table 1 – Flow Average and Volume Discharged

Under current conditions, the PLC and the control system are stable and fully functional. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

During September, the treated water was discharged directly to Recharge Basin 1 on the landfill property. The discharge to Recharge Basin 33 on Winding Road was regulated as per the needs of BSP and the water level in the basin.

The flow summary for the processes can be found in Table 5 at the end of this report.

7 CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off line and the system is empty of acid. There are four drums of virgin acid on site. No acid was consumed in September.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was consumed in September.

The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was consumed in September.

8 WASTE DISPOSAL

Accumulated spent batteries were brought to the TOB collection site.

9 MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. A review of the analytical results for the September plant discharge samples indicated all analyzed parameters were compliant with permit limits. These results can be seen in Table 7 following the text of this report.

The plant's water discharge permit is in the process of being renewed.

10 PENDING ISSUES AND CONSIDERATIONS

The plant generally operates in the automatic mode 24/7. The HMI and LED panels display pump status, process flows (INF, ASF, PD, RW-3, -4, and -5) and totalizer outputs. The HMI is able to data log and display flow and totalizer data and trend lines.

There is a new tenant on the CPC site. No new issues or impacts have been observed although the main gate remains open.

The outputs from RW-3 and RW-5 have been slightly dropping. (RW-3 from 270 to 263 and RW-5 from 212-203). This has spanned several months.

Inspections of the CPC property and discharge basins will continue.

The repairs to the OU5 fire alarm open loop are to be scheduled.

The plant lights are kept on overnight because the plant lighting and emergency lighting are wired to the same circuit breaker (sole switch).

The OU4 plant is offline and demolition is to be scheduled.

Removal and disposal of vapor phase activated carbon at OU4 is to be scheduled.

The status of key aspects of OU4 are as follows:

- The plant heat is off.
- The fire alarm panels are offline.
- The facility is secure and monitoring continues.
- The facility is not maintained.

11 PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary. The activity for September included:

- The Site Management Plan draft was updated.
- The GW chain of custody document was updated.
- Form-21, fire inspection was updated.
- Form-32, RW inspections was generated.

12 MONITORING RESULTS

The Claremont Polychemical GWTS is monitored through the analysis of off-site laboratory analytical data and on-site field data.

12.1 Off-site Analytical Data Results

Monthly PD samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater (GW) samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis. The September sampling activities included:

- The August PW data was processed and submitted;
- The quarterly GW samples were collected 9/16 and 9/17 and shipped to TA-Edison for organic analysis;
- GW samples were collected from additional BP wells on 9/24 and shipped 9/26 for organic analysis; and
- PD samples were collected 9/25 and shipped 9/26 for organic analysis.

12.2 Field Data

Plant Discharge pH and Temperature

Treatment plant effluent is monitored for pH and temperature on a weekly basis in order to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These

readings are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for September can be found below in Table 2.

Date	pH (su)	Temp [°] F
9/3	7.3	61
9/10	7.2	60
9/17	7.6	60
9/23	7.7	61
Sept. Average	7.45	60.5

Table 2 – Effluent pH and Temperature Readings

The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 standard units (su). The results for this month meet this requirement. A graph showing the plant discharge's monthly average pH trend over several months is provided in Table 8 following the text of this report.

AS Tower Air Monitoring

Using a calibrated PID meter, weekly air monitoring readings are taken from the effluent air stream of the AS Tower through Port B when the treatment system is online. The September readings from the AS tower are provided in Table 3.

Date	Port B
9/4	0
9/10	0
9/17	0
9/23	0

Table 3 – AS Tower Air Monitoring Readings

There were no emissions from the Air Stripping System observed this month. No emissions have been detected since HDR began operation of the plant in October of 2016.

Other routine data collected in September included:

- The electric and water meter readings were recorded weekly.
- The plant sound levels were recorded bi-weekly.
- The electric and gas meter readings for OU4 were recorded monthly.
- The water levels in Sumps 3 and 4 were monitored.
- The recharge basins were inspected and the water levels noted.
- The differential pressure readings across the AS Tower were recorded bi-weekly.
- Groundwater elevations were recorded for the monitoring well system.

13 PROCESS ANALYSIS and SYSTEM STATUS

The treatment system is currently operated 24/7 in automatic mode.

13.1 Extraction Processes

- An inspection of the RW sheds and pump system was conducted. No new issues were noted.
- The status of the pressure switches and surge protectors is observed at the HMI.
- The pump system is operated automatically and is remotely controlled and monitored. All pumps are fully functional.
- Pump flow readouts are transmitted to the plant and the totalizers for 3, 4, and 5 are fully functional.
- The A/V valve at station 16+57 remains isolated from the transmission line.
- The A/V valve at station 17+10 remains isolated from the transmission line.
- RW-1 and RW-2 are off line and periodically run for PM purposes. The flow meters are not transmitting.
- The vault heaters have been shut off and panel heaters are active.

13.2 Air Stripping Process

- The three AS feed pumps are fully functional and are operated in the auto mode off the wet well level switches. The pumps have been coded to rotate into service. The lead pump does not keep up with influent flow and therefore it does not shut off. This requires manual rotation of the pump.
- The discharge pressure of the pump discharge is rising. This will require cleaning the screen during the next plant shut down.
- The AS tower main drain valve is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected. Analysis of the sampling data indicates that little iron is getting into the system.
- The discharge valve for ASF P1 appears to be frozen in the open position.

13.3 Plant Discharge Process

- The three plant discharge pumps are fully functional. The pumps have been coded to automatically rotate into service.
- The control and monitoring systems are fully functional.
- The plant discharge continues to be mainly directed to Recharge Basin 1 while water flow to Basin 33 is regulated.
- The discharge valve for PFF P2 appears to be failing in the open position.
- Pump 2 continues to occasionally trip.

13.4 Other

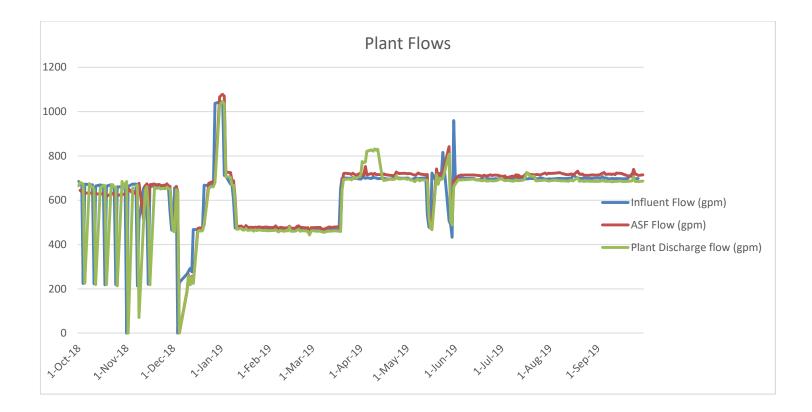
- The Auto-dialer is fully functional.
- The plant's first light bank is wired to the e-light recharging system, therefore the circuit must be kept on. The light activity is intermittent.

14 GROUNDS

14.1 Plant Perimeter

- General outdoor clean-up tasks are on-going.
- The fencing and gates are secure. Some of the signage was refurbished.
- Five of the outdoor building lights are out but should not impact safety or security.
- The TOB continues to maintain the grounds along the plant perimeter.

14.2 Well Field


- Well, well field, and basin inspections continued. The wells and basins are secure.
- The well access paths are relatively clear, downed trees and overgrowth are removed as necessary.

14.3 Other

- The grounds continue to be inspected but not maintained at OU4.
- The Claremont site is currently accessible and there is a new tenant on the property.

FIGURES

Figure 1 – Plant Discharge Daily Flow

TABLES

Table 4 – Plant Daily Totalizer Readings

September 2019 Flows					
	Plant I	Plant Discharge			
Date	Volume	Avg. Flow	Volume	Avg. Flow	
1-Sep-19	918000	638	899000	624	
2-sep-19	1004000	697	983000	683	
3-Sep-19	1015000	705	995000	691	
4-Sep-19	1011000	702	999000	694	
5-Sep-19	1012000	703	983000	683	
6-Sep-19	3014000	698	2956000	684	
9-Sep-19	999000	694	977000	678	
10-Sep-19	1005000	698	988000	686	
11-Sep-19	976000	678	956000	664	
12-Sep-19	1000000	694	983000	683	
13-Sep-19	3029000	701	2976000	689	
16-Sep-19	1021000	709	1006000	699	
17-Sep-19	1009000	701	989000	687	
18-Sep-19	1006000	699	990000	688	
19-Sep-19	1009000	701	990000	688	
20-Sep-19	3002000	695	2951000	683	
23-Sep-19	1003000	697	989000	687	
24-Sep-19	1038000	721	1019000	708	
25-Sep-19	1010000	701	991000	688	
26-Sep-19	1007000	699	987000	685	
27-Sep-19	3008000	696	2952000	683	
30-Sep-19	984000	683	968000	672	
Sept. Total I	Sept. Total Plant Influent (Gal)			30,080,000	
Sept. Total F	Plant Efflue r	nt (Gal)		29,257,000	

Readings from HMI digital outputs

Table 5 – Pump System Flow Readings

September	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd) (over 31 days)	Total Flow (gal)
RW-1	10	-	-	2240
RW-2	40	-	-	9400
RW-3	43025	268	383,700	11,511,000
RW-4	43025	241	345,767	10,373,000
RW-5	43025	208	298,467	8,954,000
Plant Influent	43025	699	1,002,667	30,080,000
Plant Effluent	43025	680	975,233	29,257,000

The treatment process was online 30 days in September. Flows are taken from the HMI meter readings. There was no downtime.

Table 6 – Claremont Corrective Actions Summary

Conditions of note and corrective actions planned 9/30/19

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Plant heaters UH-1	UH-2 - needs a timer relay and wiring repairs at	Electrical and/	Not needed at	Task may require
and UH-2 are not	the unit.	or plant	this time.	working off
working	UH-1 – needs a transformer.	personnel	Repairs can be made with	ladders or elevated surface.
	It should be noted that the heating system AH-		treatment	
	2 is adequate to heat the process area.		system on line.	
	No further action is planned at this time			
Explosion proof	Current monitoring indicates there is no	Health and Safety	Replacement	Extension cords
outlets in plant	methane exposure at the time of testing.	staff/Plant staff	can be	in plant present a
	Potential for future methane exposure has not		accomplished	trip hazard. Task
	been ruled out.		with plant	will require LOTO
	A plan to install GFI utility outlets at selected		running.	procedures.
	points was proposed.		Non	
			replacement will	
	Four outlets have been converted. The		not impact	
	associated circuit breakers are labeled and		operation.	
	generally in the off position.			
	It has been determined that intrinsically safe			
	components are no longer required in the			
	plant			
	No further action is planned at this time.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The Air vent valve in	The nipple connecting the A/V valve to the	Plant staff and	None, isolation	Confined Space
the vault north of	RW manifold is leaking. The isolation valve has	contractors	valve is	Entry
the 6 th fairway has a	been closed and the device is out of service.		functioning	
leak	The piping needs replacement			
	No further action has been taken			
The Air vent valve in	The A/V valve has been isolated by the shut off	Plant staff and	System shut	Confined space
the vault east of the	valve. The device itself is leaking.	contractors	down until the	entry
6 th green has a leak	The unit needs replacement or rebuilding.		remedy was made	
	No further action is planned at this time			
NaOH Vault sump pump not actuating	System needs to be inspected	Plant staff Electrical	None at this time	Oversight needed
P P	A portable submersible well pump was set up	support		
	in the vault sump for manual operation			
	No further action is planned at this time			
The RW Discharge	The condition of the various devices in the RW	Plant staff and	Possible	May require a
Manifold integrity is	manifold vaults are suspect.	outside	shutdown	CSE
suspect		contractors		
	A full set of function tests should be scheduled.			

Condition to be	Status and Actions	Resources	Plant Ops	Health & Safety
Corrected			Impact	Impacts
Plant discharge Pump 2 frequently trips	Pump continues to trip. It requires manual resetting. The control panel does not indicate the status. EE indicated that the motor starter contact block appears to be getting stuck.	Operator and EE	Loss of redundancy. Requires P3 to be activated	None at this time
AST main drain valve does not close	 When possible, the unit will be cleaned. Tests on the valve indicate that it does not close. This is not a problem until the tower media needs to be acid washed. This valve should be replaced. 	Operator	Plant will need to be shut down to change out the valve	None at this time
The piping configuration for the RW pump pressure switches, pressure gages and sample ports are corroding and unwieldy and subject to catastrophic failure	The systems at RW-5 and RW-3 have previously failed. While piping components have been replaced, the design has not been changed. The top-heavy configuration needs a re-design and re-build Further action is to be scheduled. Are the pressure switches required for the safety of the pumps?	Plant operator and spotter	Each well system will be shut down during the upgrade	Confined space entries will be required. These will generally not be permit required.
RW-2 flow sensor output is no longer displaying	The flow element mechanical output is spinning and therefore is functional. The HS sending unit needs to be checked as well as the 12 volt power supply and wiring. This work needs to be scheduled.	Electrical techs	None anticipated. The system is isolated and off line	Confined space entries may be necessary

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
New Nassau County Fire Code indicates that the sprinkler system at OU4 be centrally monitored	 The fire alarm panels are off line and their viability needs to be determined. Initial investigation indicated that the panel can be powered up but it emits nuisance alarms. Further work on panels will require EE time and may not solve problem Currently the plan is to demolish the building. 	Plant operator, EE and possible outside vender	None at this time	None at this time
The pump isolation valve at RW-5 does not fully function	While the valve is partially closed, it does not fully close.The valve should be replaced.No further action is planned at this time	Plant operator and spotter	Replacement of valve will require shutting down the manifold	Confined space work

Condition to be	Status and Actions	Resources	Plant Ops	Health & Safety
Corrected			Impact	Impacts
NYS Fire Marshall safety inspection at OU4	The inspection revealed several action items that will need to be addressed. • Emergency lighting needs to be restored • Access paths need to be cleared • Sprinkler heads need to be replaced • Fire alarm with central station monitoring needs to be replaced Exit lighting is functional. The e-lights have been removed. Egress paths have been cleared. The sprinkler heads replaced. Fire alarm panel function does not fully function. Central monitoring is not in place. Roof leaks. The building is to be demolished.	Plant operator and certified contractors	None	To be determined

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
NYS Fire Marshall safety inspection at OU5	 The inspection revealed several action items that will need to be addressed. Emergency lighting needs to be restored Access paths need to be cleared Fire alarm with central station monitoring needs to be replaced Items stored in mechanical room need to be removed. Wooden shelving in mechanical room needs to be removed All the violations have been resolved with the exception of open smoke alarm loop. 	Plant operator, TOB personnel	Disposition of TOB materials	Moving materials from mezzanine level
The power to the plant lights and the emergency light charging system are on the same electrical switch	Work continues to mitigate this code violation.Normally when the plant lights are shut off at night, it inadvertently shuts down the emergency lights and battery charging system. This action may have damaged the charging system.The e-lights from OU4 have been installed in OU5 and are fully functional.The plant lights are left on overnight.	Plant operator. EE, outside contactors	In code violation	Possible emergency evacuation impact

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The activation of the HVAC room and plant exhaust fans are connected to the methane monitoring system and not independently operated	It has not been determined how to manually start the exhaust fans without putting the facility into a methane alarm EE will look into this.	Plant operator, EE	None	Possible problem with excessive heat of fume conditions
There has been a drop in the RW well pump output.	The output from pumps for RW-3 and RW-5 has been dropping for the last several months. The pump at RW-3 is new (Apr. '19). It has not been determined if it is an electrical, mechanical or manifold issue. EE will look into this.	Plant operator, EE	Process volumes are down	None
The first bank of plant lights are not functioning (CB-1)	The plant lighting stopped functioning after the 3 rd e-light was installed. The e-light charging system and the plant lights are on the same circuit.	Plant operator, EE	None, the second bank of plant lights is functional	None at this time

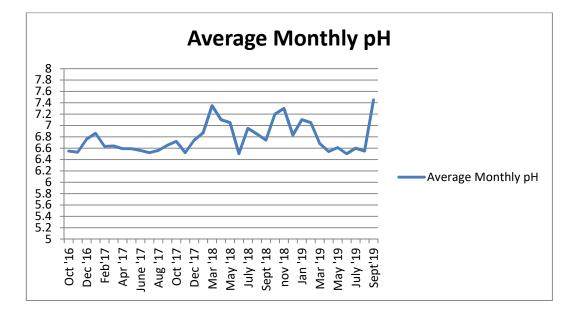
Other Plant Conditions of Note (no action required at this time)

- If warranted, an evaluation of the methane detection system is needed.
- Air stripper air flow meter is not powered or functional. No action is planned at this time.
- The RW-1 flow sensor is not functional. The unit is not in service and no further action is planned at this time.
- The heat pump for the AH-1 HVAC system is not functioning. This system was shut down prior to October '16 and appears inoperable. This is used for office AC. There are window units in place. **No further action is planned at this time.**

Other Ongoing Tasks

• Plant SOPs, forms, and 'as-built' drawings are generated as necessary.

Table 7 – Recent Plant Discharge Analytical Results


The plant discharge was last sampled September 24 and results are shown below.

Parameters	Discharge Limitations (SPDES)	Units	Results Septembe 2019
pH (August Average)	6.5 - 8.5	SU	7.45
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene(PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene(TCE)	5	ug/l	U
Bis(2-ethylhexyl)phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NS
Arsenic, Total recoverable	50	ug/l	NS
Barium, Total recoverable	2000	ug/l	NS
Chromium, Hexavalent	100	ug/l	NS
Lead, Total recoverable	50	ug/l	NS
Iron, Total recoverable	600	ug/l	NS
Manganese, Total recoverable	600	ug/l	NS
Mercury	Not indicated	ug/l	NS
Zinc	Not indicated	mg/l	NS
Nitrogen, Total (as N)	10	mg/l	NS
Selenium, Total recoverable	40	ug/l	NS
Solids, Total Dissolved	1000	mg/l	NS
Chloride Ion	NL	mg/l	NS
Cyanide	Not indicated	ug/l	NS
Fluoride Ion	NL	mg/l	NS
Sulfate Ion	NL	mg/l	NS

Discharge limitations updates as per the water discharge permit. Not monitored but of interest: **1, 4-Dioxane – not detected.**

Table 8 – Plant Discharge Monthly Average pH

Month	pH(su)
Sept '17	6.65
Oct '17	6.72
Nov '17	6.52
Dec '17	6.74
Feb '18	6.87
Mar'18	7.35
Apr '18	7.1
May '18	7.05
June '18	6.5
July '18	6.95
August '18	6.85
Sept '18	6.74
Oct '18	7.2
Nov '18	7.3
Dec '18	6.82
Jan '19	7.1
Feb '19	7.05
Mar '19	6.68
April '19	6.54
May '19	6.61
June '19	6.5
July '19	6.6
Aug '19	6.56
Sept '19	7.45

