
FSS

NYSDEC Standby Engineering Contract Work Assignment #D0076025-28

Prepared for NYS Department of Environmental Conservation 625 Broadway Albany, New York 12233

Monthly Report of the Operations & Maintenance Activities

Claremont Polychemical Operable Unit 5 Groundwater Treatment System

Old Bethpage, New York June, 2021

Department of Environmental Conservation

Contents

A	ACRONYMS AND ABBREVIATIONS					
1	1 OPERATION AND MAINTENANCE ACTIVITIES					
	1.1	DAILY OPERATIONS SUMMARY REPORTS	4			
	1.2	SUMMARY OF MAINTENANCE ACTIVITIES	4			
	1.3	MAINTENANCE LOGS	5			
2	TEC	HNICAL SUPPORT ACTIVITIES	5			
	2.1	HDR Personnel	5			
	2.2	NYSDEC Personnel, sub-contractors, and other visitors	6			
	2.3	Deliveries	6			
3	HEA	LTH AND SAFETY	6			
4	PLA	NNED ACTIVITIES AND SCHEDULES	6			
5	MO	NITORING WELL WATER ELEVATIONS	7			
6	TRE	ATMENT SYSTEM FLOWS	7			
7	CHE	MICAL CONSUMPTION	7			
8	WAS	TE DISPOSALS	8			
9	MO	NTHLY DISCHARGE MONITORING REPORT	8			
10) PEN	IDING ISSUES AND CONSIDERATIONS	8			
11	. PLA	NT DOCUMENTS	9			
12	<u>2</u> N	IONITORING RESULTS	9			
	12.1	Off-site Analytical Data Results	9			
	12.2	Field Data1	0			
13	B PI	ROCESS ANALYSIS and SYSTEM STATUS1	0			
	13.1	Extraction (RW) Processes1	1			
	13.2	Air Stripping (AS) Process1	1			
	13.3	Plant Discharge (PD) Process1	1			
	13.4	Other1	1			
14	l G	ROUNDS1	2			
	14.1	Plant Perimeter1	2			
	14.2	Well Field1	2			
	14.3	Other1	2			

Tables

Table 1- Claremont Corrective Actions Summary	16
Table 2 – Plant Discharge Average Flow & Volume	20
Table 3– Plant Daily Totalizer Readings	21
Table 4– Pump System Flow Readings	22
Table 5– Claremont OU5 O&M Sampling/Measurement	
Table 6– Recent Plant Discharge Analytical Results	24
Table 7– Effluent pH and Temperature Readings	
Table 8 – Plant Discharge Monthly Average pH	
Table 9– AS Tower Air Monitoring Readings	26

Figures

Figure 1	- Plant Discharge Daily Flo	ow14
----------	-----------------------------	------

ACRONYMS AND ABBREVIATIONS

AS	Air Stripper
ASF BP	Air Stripper feed Bethpage State
BSP	Bethpage State Park (Black Golf Course)
CPC	Claremont Polychemical
CSE	Confined Space Entry
DOSR	Daily Operations Summary Report
EE	Electrical Engineer
EFF	Effluent
EON	EON Products, Inc.
GPD	Gallons Per Day
GPM	Gallons Per Minute
GW	Groundwater
GWTS	Groundwater extraction, treatment, and reinjection system
HDR	Henningson, Durham & Richardson Architecture and Engineering, P.C.
HHLA	High-High Level Alarm
HMI	Human Machine Interface
HVAC	Heating, Ventilation, and Air Conditioning
INF	Influent
LOTO	Lock-out, Tag-Out
MTBA	Tert-Butyl-Methyl ether
MW NCDPW	Monitoring Well Nassau County Department of Public Works
NYSDEC	New York State Department of Environmental Conservation
O&M	Operation and Maintenance
OBL	Old Bethpage Landfill
OFP&C	NYS Office of Fire Prevention & Control
OU4	Operable Unit 4
OU5	Operable Unit 5
PD	Plant Discharge
PID	Photoionization Detector
PET	Peter Takach
PFF	Pressure Filter Feed
PLC	Programmable Logic Controller
PM	Preventive Maintenance
PW	Process Water
RW	Recovery Well, Process Well
SOP	Standard Operating Procedure
SMP	Site Management Plan
SSHP SU	Site Safety and Health Plan Standard pH Units
TA	TestAmerica Laboratory
ТВА	Tert-butyl alcohol
TDS	Total Dissolved Solids
TKN	Total Kjeldahl Nitrogen
ТОВ	Town of Oyster Bay
TOC	Total Organic Carbon
TSS	Total Suspended Solids
VOCs	Volatile Organic Compounds

1 OPERATION AND MAINTENANCE ACTIVITIES

Henningson, Durham & Richardson Architecture and Engineering, P.C. (HDR) continued the daily operation and maintenance (O&M) of the Claremont Polychemical Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU5) during the month of June. This report covers the operation and maintenance activities for the system during the period defined as beginning at ~0830 hours, June 1, 2021 through ~0830 hours, July 1, 2021. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 30 days in this reporting period during which the treatment system operated without downtime.

Readings of the key plant process parameters are normally recorded each workday. These readings and the Human Machine Interface (HMI) flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the daily database which is an electronic file maintained in the monthly operating documents folder. If the plant is not occupied, the system is monitored remotely.

The treatment process control and alarm systems are functional. The recovery well pumps, the process pumps, and the air stripper blower are operated in the automatic mode and are remotely controlled and monitored.

1.1 DAILY OPERATIONS SUMMARY REPORTS

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

Daily Operating Log – flow readings and calculations (Form-01) Daily Site and Safety Inspection – plant condition checklist (Form-02) Daily Plant Activity Notes – plant manager's daily summary (Form-03) HDR Sign-In Sheet – HDR employee on-site hours (Form-15) Daily Process Data Sheet – point process readings (Form-30) Logbook CPC 5-7– plant operator's daily logbook Daily Database – daily process readings (06 June 21 Database.xlsx) NYSDEC Log-in Sheet – Entry/Exit Log with COVID-19 Acknowledgement

1.2 SUMMARY OF MAINTENANCE ACTIVITIES

The operation and maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site O&M Manual. These tasks and inspections incorporate the equipment manufacturers' recommendations, operations experience, and good engineering and maintenance practices. A detailed accounting of the June activities is further provided in the plant operator's daily logbook.

Maintenance and project activities undertaken during the June period included:

- Routine and general maintenance tasks were conducted at the plant, on the grounds, and in the well fields.
- Excess wires and cables from the HVAC and control rooms were removed.
- Onsite space heater cord was repaired.
- Crushed concrete and sand were collected for the path to the BP-3 wells. Repairs were made to the path for continued access.
- Vegetation at selected MWs were removed and cleared.
- The quarterly methane monitoring task was completed.
- Vegetation in and around the AS Tower containment area was cleared. The drain was unclogged.
- The truck was refueled.
- The backflow preventor device vault at OU4 was cleared and opened. A vault key was fabricated for access.
- Measurements of the RW 3 pump incoming power were recorded. The primary rectifier was adjusted down to 485 VAC.
- The water level at Recharge Basin -33 continued to be monitored and the influent flow adjusted.
- The process equipment function tests were completed.
- The loose truck tailpipe was temporarily secured.
- The cleanup of the back yard commenced.
- The OU4 comprehensive site inspections were completed.
- The CPC site was inspected.
- The egress paths around the OU4 plant were cleared of vegetative growth.
- The monthly electrical device inspection was completed.
- The monthly RW System inspection was completed.
- The OU5 comprehensive inspections were completed.
- The monthly truck inspection was completed.

1.3 MAINTENANCE LOGS

The following operating logbooks are currently in use and maintained at OU5:

- CL-18 OU-4 Log (truck)
- CL-43 General Field Support Log (truck)
- CL-47 Misc. Projects Field Notebook (PET)
- CPC 5-4 Project Support Logbook (site)
- CPC 5-7 Site Supervisor's Daily Logbook (PET)

The completed logbooks associated with the project have been scanned, all are in storage at OU5, and are available for review.

2 TECHNICAL SUPPORT ACTIVITIES

2.1 HDR Personnel

• HDR maintained the system throughout the period.

- Technical expertise and guidance were provided from the HDR Mahwah, Newark, and NYC offices.
- 6/3, Jennifer Rhee was in to record the GW elevations. She returned 6/14, 15, and 16 for Second Quarter GW sampling.
- 6/15, Matt Papula was in for RIFS sampling, he returned 6/16 and 17 to complete the sampling task.
- 6/15, Derek Matuszewski was in for the RIFS sampling task.
- 6/16, John Ifkovits was in for the RIFS sampling. He returned 6/17 to complete the task.

2.2 NYSDEC Personnel, sub-contractors, and other visitors

- 6/7, Mike Flaherty was in for an update.
- 6/16, TA-NY was in to pick up the RIFS samples. They returned 6/17 for the remaining RIFS samples and the GW samples.
- 6/22, BK Fire was in to inspect the OU4 sprinkler system- passed inspection.
- 6/25, National Waste was in to empty the dumpster.

2.3 Deliveries

- 6/7, UPS dropped off part of the GeoTech order. They returned 6/11 second delivery of the equipment rental order.
- 6/10, TA-NY delivered the Second Quarter GW sampling bottle ware.

3 HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved Site Safety and Health Plan (SSHP). Safety related activities during this period included:

- Daily site safety inspections were completed as part of the routine O&M activities.
- The working and common surfaces around the plant are frequently cleaned with 20% bleach solution.
- Access to the plant remains limited.

4 PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing by HDR. A list in the form of corrective actions or maintenance tasks has been generated as is a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of this report as **Table 1** – Claremont Corrective Action Summary.

Upcoming tasks include:

• The monthly PD samples are scheduled for a 7/15 Eurofins/Test Amercia pick up.

• The repair of the 6" backflow preventer device at 501 Winding Road (OU4 facility) is scheduled for July.

5 MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater elevation data table was updated this month after the quarterly GW elevation recording task. This database is available for review. The next synoptic water level round will be scheduled for September, after which the table will again be updated.

6 TREATMENT SYSTEM FLOWS

During the June period, the plant continued to operate in the auto control mode. The volume of treated water discharged by the treatment system to the selected recharge basins was calculated from the plant influent and effluent flow meter readings. These readings are taken at the HMI and recorded in the daily database. The treatment system experienced no downtime during this period.

Currently, the plant discharge is being gradually introduced into Recharge Basin 33. It should be noted that the negative discharge head, characteristic of the downhill piping influent to Basin 33, distorts the plant discharge flow meter output. Since flow to Basin 33 commenced on 5/14, the plant discharge has been calculated as ~99.8% of the system flow (based on historic ratios).

The total volume of treated water discharged from ~0830 hours, June 1 to ~0830 hours July 1, was approximately 29,787,743 gallons. The plant discharge is currently directed to Recharge Basin No. 1 and partially to Recharge Basin 33. The data in **Table 2** is a summary of plant discharge flows.

A graphic representation of the system's daily plant discharge output is provided in **Figure 1** and the daily plant totalizer readings for June are provided in **Table 3**, both following the text of this report.

Under current conditions, the Programmable Logic Controller (PLC) and the control system are stable and fully functional. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

The flow summary for the individual components of the system can be found in **Table 4** at the end of this report.

7 CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off-line, and the system is empty of acid. There are four drums of virgin acid on site. No acid was consumed in June.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was consumed in June. The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was consumed in June.

8 WASTE DISPOSALS

The routine collection of waste materials continued. No waste was disposed of in June. The garbage dumpster was emptied.

9 MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. **Table 5** presents the Claremont OU5 O&M Sampling/Measurements requirements and their frequency. The analytical results for the June plant discharge samples indicate that all analyzed parameters were compliant with permit limits (**Table 6**).

The plant's water discharge permit is in the process of being renewed by the NYSDEC.

10 PENDING ISSUES AND CONSIDERATIONS

The 6" water line to OU4 is leaking at the backflow preventor device. Backflow Specialists were onsite 6/12 to diagnose the issue and proposed a repair. Equipment and parts have been ordered and work is scheduled for July 9, 2021.

The pump for RW-3 tripped off several times. Resetting of the overload relay restored the pump function but did not solve the problem. The overload relay heater elements were replaced. The failures continued. Measurement of the incoming voltage was 535 VAC. The overvoltage (535 vs 480) was probably the cause of the failure. The rectifier at the BSP pump house was adjusted down to 485 VAC. The failures ceased and the incoming voltage will continue to be monitored monthly.

The OU4 plant HVAC system was shut down when the blower drive flywheel shaft failed. The system is currently off-line and will be required when the colder weather arrives.

The discrepancies/inaccuracies in the plant flow meter readings may be due to the inappropriate configuration of the local piping. Future calibration or adjustment of pulse reading may be required.

A damaged tree adjacent to the path to the MW-6 well cluster has shifted and continues to obstruct the path. The situation will continue to be monitored.

The well path to the BP-3 cluster following rain events still poses issues for vehicle transport. Work and upkeep will continue as necessary along the path.

The recovery well pump pressure switch assemblies will be replaced for preventative maintenance.

The alarm and monitoring systems for the OU4 fire sprinkler and fire safety systems fire are to be replaced.

The OU4 plant is offline and its disposition including that of the injection well system, and vapor carbon beds is pending.

The status of key aspects of OU4 are as follows:

- The plant heat is currently off.
- The fire alarm panels are off-line.
- The fire sprinkler system is online. It is frequently checked but not centrally monitored.
- The facility is secure, and its physical monitoring continues
- The facility and grounds are not maintained except for the facility entrance and plant egress points.
- There appears to be periodic activity at the Claremont Polychemical site.

11 PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary. This activity in June included:

- Form-39, quarterly Air monitoring worksheet was revised to rev. C
- Drawing -01, OU5 PID was revised to include where additional treatment would be installed for the emerging contaminants of concern.
- Drawing -35, FTC PID was revised to include where additional treatment would be installed for the emerging contaminants of concern.
- Form-32, RW System inspection was revised to include voltage readings.
- Form-28, OU4 inspection revised to rev. G
- Form-37, Fire Alarm system inspection was revised to rev. C

12 MONITORING RESULTS

The Claremont Polychemical GWTS is monitored through the analysis of off-site laboratory analytical data and on-site field data. See latest 2021 Second Quarter Groundwater Monitoring Report submitted July 26, 2021 for further details.

12.1 Off-site Analytical Data Results

Monthly PD samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater (GW) samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis. The June sampling activities included:

• GW elevations were recorded 6/3 and the master elevation table updated.

- The May PW analytic data was processed and submitted.
- GW samples were collected at 22 wells and processed 6/14. On 6/15 GW samples were collected and processed for 26 wells. The samples were shipped 6/17.
- The pH levels of the GW samples were recorded.
- The June PD samples were collected and processed 6/23 and shipped 6/24.
- The Q2 RIFS samples were collected and processed June 15-17. The samples were shipped 6/17.

12.2 Field Data

Plant Discharge pH and Temperature

The treatment plant effluent is monitored for pH and temperature on a weekly basis to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These readings are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for June can be found in **Table 7**.

The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 standard units (su). The results for this month meet this requirement. Data showing the plant discharge's monthly average pH trend over several months is provided in **Table 8** following the text of this report.

AS Tower Air Monitoring

Using a calibrated PID meter, weekly VOC air monitoring readings are taken from the effluent air stream of the AS Tower through Port B when the treatment system is online. The June readings from the AS tower are provided in **Table 9**.

There were no emissions from the Air Stripping System observed this month. No emissions have been detected since HDR began operation of the plant in October of 2016.

Other routine data collected in June included:

- The electric and water meter readings at OU5 were recorded weekly.
- The plant vaults and selected areas were monitored for VOCs weekly.
- The plant sound levels were recorded bi-weekly.
- The electric and gas meter readings for OU4 were recorded.
- The recharge basins were inspected, and the water levels noted.
- The differential pressure readings across the AS Tower were recorded bi-weekly.
- The power supply voltage to the recovery wells was recorded.

13 PROCESS ANALYSIS and SYSTEM STATUS

The treatment system is currently operated 24/7 in the automatic mode. It is remotely monitored as necessary.

13.1 Extraction (RW) Processes

- The systems were inspected.
- The incoming voltage was adjusted to 480 VAC.
- The vault heating units remain off during the month of June.
- The recovery well pump system is remotely controlled and monitored, it operates in the Auto mode. All the pumps are fully functional with pumps RW-3, RW-4, and RW-5 online.
- Pump flow readouts are transmitted to the plant and the totalizers for pumps -3, -4, and -5 are fully functional.
- The A/V valve at station 16+57 remains isolated from the transmission line.
- The A/V valve at station 17+10 remains isolated from the transmission line.
- RW-1 and RW-2 are offline and periodically run for preventative measure purposes. Their flow meters are not transmitting through the PLC.

13.2 Air Stripping (AS) Process

- The three pumps are fully functional. The pumps are operated in the Auto mode controlled by the wet well level switches.
- Motors and seals were lubricated as necessary.
- The AS tower main drain valve's manual actuator is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected.
- The discharge valves for ASF P1 and P2 appear to be frozen in the open position.

13.3 Plant Discharge (PD) Process

- Gradual plant discharge to Basin-33 has started. Flow is diverted during high rain events and in high water levels in the basin as observed by bankful conditions on staff gauge.
- Pump 1 has been taken out of service due to excessive noise and vibration. A full evaluation is required.
- The motors and seals were lubricated as necessary.
- The plant discharge is currently directed to Recharge Basin No.1.
- The discharge valve for PFF P3 has failed open.

13.4 Other

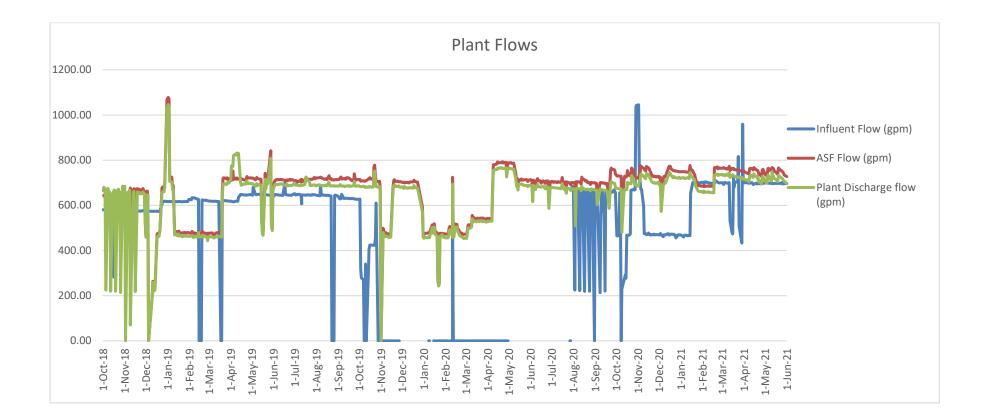
- The plant's first light bank is wired to the e-light recharging system. The circuit is kept on 24/7.
- The potential for leaks in the water supply line running through the plant will continue to be monitored.
- The fire alarm system is fully functional. Central monitoring is functional.
- The truck inspection was completed.

14 GROUNDS

14.1 Plant Perimeter

- General outdoor clean-up tasks are on-going.
- The Town of Oyster Bay (TOB) continues to maintain the grounds along the plant perimeter including landscaping.

14.2 Well Field


- Well, well field, and recharge basin inspections continue.
- The well access paths are maintained.

14.3 Other

- The Claremont Polychemical GWTF OU4 is secure.
- The property at and around the OU4 site continue to be inspected. While the grounds are not maintained, the treatment plant's entrance and egress points are kept clear and functional.
- The Claremont Polychemical site currently has no tenant.

FIGURES

Figure 1 – Plant Discharge Daily Flow

TABLES

Table 1- Claremont Corrective Actions Summary

Conditions of note and corrective actions planned 6/28/21

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The RW Discharge Manifold integrity is suspect	The condition of the various devices on the RW discharge manifold are suspect.	Plant staff and outside contractors	Possible shutdown	May require a CSE
	The Air Vent valve in the vault on the N-side of the 6 th fairway is leaking from the influent nipple. The shut-off valve was closed and the device isolated	contractors		
	The air-vent valve in the vault to the east of the 6 th green is leaking. The shut-off valve was closed and the device isolated.			
	The manifold employs isolation, venting, and drain valves as well as other devices. Along the path of the manifold are vaults which house some of these devices. These vaults need to be accessed, pumped out, and the devices tested.			
AS Tower main drain valve is not controlled	The valve does not respond to manipulation of its actuator This valve should be replaced.	Operator	Plant will need to be shut down to change out the valve	None
The RW pump discharge instrumentation and sampling configuration is unwieldy and subject to catastrophic failure	No further action is planned at this timeThe copper piping assembly (1/2") carries a fair amountof weight and torque (pressure switch, sample tubing,pressure gauge) and shows signs of corrosion.Various design options have been considered.The assemblies will be changed when circumstancesdictate.	Plant operator and spotter	Each well system will be shut down during the upgrade	Confined space entries will be required. These will generally not be permit required.

Condition to be Corrected	Status and Actions	Resources	Plant Ops	Health & Safety	
			Impact	Impacts	
OU4 fire alarm system is not functioning Central monitoring of the fire alarm system or fire suppression system does not	The Nassau County Fire Code indicates that the sprinkler system must have central monitoring for flow and valve tampering. The fire alarm system needs to be replaced and centrally monitored. Several contractors have been at the site to propose options for the system	Plant operator, EE, and outside vender	None at this time	Fire code violations. High altitude tasks	
exist	The fire alarm system is to be replaced				
	A central station monitoring system is to be installed				
		Plant operator, TOB personnel	none	Fire code	
the plant overhead water supply	Adjacent to the north door a clam-shell type clamp was applied. The second leak observed above the AS Blower	Outside plumbing contractor?	None	Sanitary water may be shut off during repairs	
The float controls for the PFF pump system have intermittently shorted out causing the system to not properly control the pumping operation	 The wiring of the pump control system is connected below grade. The junction box in the wet well is thought to be filled with water creating a problem with the float switches to control relay wiring. The box cannot be opened without damage to it and the conduit. This appears to have been a longstanding problem, as when switches have been replaced in the past, they were spliced outside the box. The float switches have been replaced and spliced above the sump but there remains a problem with the L2 circuit. The output from the W-2 relay was moved to the output for the W-1 relay. This has stopped the short cycling. 	Plant operator and HDR resources	Plant shut down is required	Possible Confined Space Entry work	
	The control wiring should be changed and moved above grade.				

Condition to be Corrected	Status and Actions	Resources	Plant Ops	Health & Safety
			Impact	Impacts
PFF P1 has failed	The pump when activated immediately makes a lot of noise, and the pump drop tube shakes. Smoke/ fumes emanated at the Motor-shaft connection. The motor appears to be good. The pump was removed from service, 2/24/20 It is recommended that the motor be disconnected,	Outside contractors	None anticipated	To be determined
	lifted, and the mechanical connection be checked.			
As the ASF pumps cycle off/on,	There is no available literature regarding the check	Plant operator and	If replacement or	To be determined
the check valves have started to	valves, so the exact description of their functioning parts	EE support	repairs are	
slam closed. When reactivating,	is to be determined.		necessary, a plant	
the motor starter contact is	A softer start/stop control may fix this issue.		shutdown will be	
rather violent. Both actions tend			required as the units	
to rattle the piping and fixtures	This will need further investigation		can- not be isolated	
The flowmeters for system flow, ASF flow and plant discharge are out of sync with the flow meters on the recovery wells.	While the ASF flow meter is the most out of line, it is plumbed correctly. The influent system flow meter and the plant discharge flow meters are piped incorrectly. The same style of relay is used to count pulses, but the meters have not been calibrated	Electrical engineering	To be determined	none
	The system needs further investigation to determine if any changes are warranted.			

Other Plant Conditions of Note (no action required at this time)

- The methane detection system is offline. **To function, it will need a technical inspection and technical maintenance**. However, methane does not currently appear to be a hazard.
- It has been determined that intrinsically safe components are no longer required in the plant.

As previously noted, there are pieces of equipment that are out of service and require repairs. Currently there are no plans for addressing these conditions as the operation of this equipment is not necessary or needed for the operation of the treatment system.

Equipment	Fault
Plant electric heater UH-1	Needs transformer
Plant electric heater UH-2	Needs relay timer and wiring repairs
NaOH sump pump	Pump is not operating
RW-5 pump discharge isolation valve	Valve does not fully close
Plant lights are wire to the emergency light charging system	Un-segregated light cannot be shut off, several are intermittent
Plant exhaust fans are part of methane system	Fans cannot be manually operated
Plant discharge vent	Leak in Victaulic fitting
ASF pump isolation valve	Valve P1 has failed open
PFF pump isolation valve	Valve P3 has vailed open
RW-1 flow meter	The meter is not operating
RW-2 flow meter	The meter is not transmitting
Air stripper flow meter	Non-functional and removed
AH-1 condenser	Air conditioner is non-functional
Plant outdoor lights	9/12 lights not functioning

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2016	517	745,000	68,540,000	7,309	125,171
Q1 2017	520	748,244	67,342,000	655	128,945
Q2 2017	576	829,130	76,280,000	6,165	126,315
Q3 2017	634	913,576	84,049,000	1,110	131,370
Q4 2017	256	368,762	33,926,110	69,165	63,315
Q1 2018	53	75,989	6,839,000	118,180	11,420
Q2 2018	179	258,284	23,762,103	102,929	29,551
Q3 2018	504	725,280	66,725,717	57,416	75,064
Q4 2018	726	1,045,065	96,145,984	23,734	108,746
Q1 2019	527	758,467	68,262,000	735	128,865
Q2 2019	662	953,877	87,756,724	405	132,075
Q3 2019	685	985,802	90,693,740	108	132,372
Q4 2019	655	943,871	82,116,780	5039	129,326
Q1 2020	480	682,527	62,110,000	1824	129,326
Q2 2020	698	996,998	88,732,846	3838	127,185
Q3 2020	669	955,928	87,945,333	1099	131,401
Q4 2020	695	1,001,365	92,125,539	52	132,497
Q1 2021	708	1,019,733	91,776,000	0	129,603
Apr 2021	720	1,036,900	31,107,000	0	43,200
May 2021	718	1,033,713	32,045,107	0	44,640
June 2021	690	992,925	29,787,743	0	43,198

June 2021 flows						
Plant Influent Plant D				ischarge	RW Dis	charge
						Avg.
Date	Volume	Avg. Flow	Volume	Avg. Flow	Volume	Flow
1-Jun-21	1017000	706	1016786	706	1039000	722
2-Jun-21	951000	660	950800	660	971000	674
3-Jun-21	1036000	719	1035782	719	1056000	733
4-Jun-21	2957000	684	2956379	684	3015000	698
7-Jun-21	981000	681	980794	681	1000600	695
8-Jun-21	1066000	740	1065776	740	1084000	753
9-Jun-21	1043000	724	1042781	724	1064000	739
10-Jun-21	950000	660	949801	660	968000	672
11-Jun-21	2356000	545	2355505	545	2381000	551
14-Jun-21	967000	672	966797	671	993000	690
15-Jun-21	1058000	735	1057778	735	1092000	758
16-Jun-21	1057000	734	1056778	734	1087708	755
17-Jun-21	1151000	799	1150758	799	1183000	822
18-Jun-21	3019000	699	3018366	699	3094000	716
21-Jun-21	1040000	722	1039782	722	1061000	737
22-Jun-21	1028000	714	1027784	714	1048000	728
23-Jun-21	1030000	715	1029784	715	1049000	728
24-Jun-21	1024000	711	1023785	711	1043000	724
25-Jun-21	3049000	706	3048360	706	3109000	720
28-Jun-21	1018000	707	1017786	707	1039000	722
29-Jun-21	995000	691	994791	691	1016000	706
30-Jun-21	1001000	695	1000790	695	1023000	710
June Total P	June Total Plant Influent (Gal)			29,794,000		
June Total P	lant Effluen t	t (Gal)		29,787,743		
June Total R	W Discharge	e (Gal)		30,416,308		

Table 3– Plant Daily Totalizer Readings

Table 4– Pump System Flow Readings

June	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd)	Total Flow (gal)
RW-1	0	0	-	0
RW-2	72	240	-	17,308
RW-3	38211	199	285,900	8,577,000
RW-4	43198	287	413,433	12,403,000
RW-5	43198	218	313,967	9,419,000
RW Totals	43198	704	1,013,877	30,416,308
Plant Influent	43198	690	993,133	29,794,000
Plant Effluent	43198	690	992,925	29,787,743

The treatment process was online 30 days in June with no downtime. Flows are taken from the HMI meter readings.

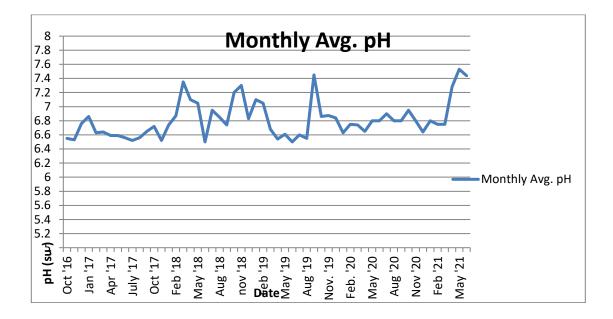
Table 5– Claremont OU5 O&M Sampling/Measurement Program and Frequency

Measurement / Analyte	Sampling Location			
	System Influent	Plant Discharge	Recovery Wells	Monitoring Wells
Flow	Daily	Daily	Daily	NA
рН	Quarterly	Weekly	Quarterly	Quarterly
VOCs (+Tert-Butyl-Methyl ether (MTBA) & Tert-butyl alcohol (TBA))	Quarterly	Monthly	Quarterly	Quarterly
SVOC Base Neutral & Acid Extractables (BNA)	Quarterly	Monthly	NS	NS
Total Kjeldahl Nitrogen (TKN)	NS	Quarterly	NS	NS
Total Suspended Solids (TSS)	Quarterly	NS	Quarterly	NS
Total Organic Carbon (TOC)	Quarterly	NS	NS	NS
Total Dissolved Solids (TDS)	NS	Quarterly	NS	NS
Cyanide	NS	Quarterly	NS	NS
Hexavalent Chromium	NS	Quarterly	NS	NS
Mercury	NS	Quarterly	NS	NS
Metals (AES/MS)	Quarterly	Quarterly	Quarterly	NS
Anions	NS	Quarterly	NS	NS

Notes: NA – Not applicable; NS – Not sampled.

Table 6– Recent Plant Discharge Analytical Results

The plant discharge was last sampled 6/23. The results for the June samples are below:


Parameters	Discharge Limitations (SPDES)	Units	Results
pH (range)	6.5 – 8.5	SU	7.28
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene (PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene (TCE)	5	ug/l	U
Bis(2-ethylhexyl) phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NM
Arsenic, Total recoverable	50	ug/l	NM
Barium, Total recoverable	2000	ug/l	NM
Chromium, Hexavalent	100	ug/l	NM
Lead, Total recoverable	50	ug/l	NM
Iron, Total recoverable	600	ug/l	NM
Manganese, Total recoverable	600	ug/l	NM
Mercury	Not indicated	ug/l	NM
Zinc	Not indicated	mg/l	NM
Nitrogen, Total (as N)	10	mg/l	NM
Selenium, Total recoverable	40	ug/l	NM
Solids, Total Dissolved	1000	mg/l	NM
Chloride Ion	NL	mg/l	NM
Cyanide	Not indicated	ug/l	NM
Fluoride Ion	NL	mg/l	NM
Sulfate Ion	NL	mg/l	NM
1, 4-Dioxane	NL	ug/l	NM
J – Estimated value U – Analyzed but not detected NL – Monitor only NM– Not sampled Discharge limitations updates as per the water discharge permit. Note: Parameters shaded in gray are sampled quarterly with results being provided March, June, October, and December			

Date	pH (su)	Temp [°] F
6/1	7.51	59
6/7	7.76	60
6/16	7.19	60
6/21	7.43	62
6/28	7.31	64
June's Average	7.44 su	62 ⁰ F

Table 7– Effluent pH and Temperature Readings

Table 8 – Plant Discharge Monthly Average pH

Month	pH(su)	
June '19	6.5	
July '19	6.6	
Aug '19	6.56	
Sept '19	7.45	
Oct '19	6.86	
Nov '19	6.88	
Dec '19	6.84	
Jan '20	6.63	
Feb '20	6.75	
Mar'20	6.74	
Apr '20	6.65	
May '20	6.8	
June '20	6.8	
July '20	6.9	
Aug '20	6.8	
Sept. '20	6.8	
Oct. '20	6.95	
Nov. '20	6.8	
Dec '20	6.64	
Jan '21	6.8	
Feb '21	6.75	
Mar '21	6.76	
Apr '21	7.28	
May '21	7.53	
June '21	7.44	

Table 9– AS Tower Air Monitoring Readings

Date	Port B
6/1	0
6/7	0
6/16	0
6/21	0
6/28	0