

Intended for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Document type

Report

Date

June 2023

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (FEBRUARY 2023)

CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (FEBRUARY 2023) CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

Project no. **1087815.1940101703**

Recipient New York State Department of Environmental Conservation

Document type **Report** Version [1]

Date **June 8, 2023**

Prepared by Pawel Mecinski – GES
Checked by Michael Grifasi - Ramboll
Approved by Andrew Leitzinger - Ramboll

Ramboll

333 West Washington Street

Syracuse, NY 13202

USA

T 315-956-6100 F 315-463-7554 https://ramboll.com

CONTENTS

1.	Operation and Maintenance Activities	4
1.1	Daily Operations Summary Reports	4
1.2	Summary of Maintenance Activities	5
1.3	Maintenance Logs	5
2.	Technical Support Activities	5
2.1	GES/Ramboll Personnel	5
2.2	NYSDEC Personnel, Sub-contractors, and Other Visitors	5
2.3	Deliveries	6
3.	Health and Safety	6
4.	Planned Activities and Schedules	6
5.	Monitoring Well Water Elevations	6
6.	Treatment System Flows	7
7.	Chemical Consumption	7
8.	Waste Disposals	8
9.	Monthly Discharge Monitoring Report	8
10.	Pending Issues and Considerations	8
11.	Plant Documents	9
12.	Monitoring Results	9
12.1	Off-site Analytical Data Results	9
12.2	Field Data	9
12.2.1	Plant Discharge pH and Temperature	9
12.2.2	Air Stripper (AS) Tower Air Monitoring	10
13.	Process Analysis and System Status	10
13.1	Extraction (RW) Processes	10
13.2	AS Process	11
13.3	PD Process	11
13.4	Other	11
14.	Grounds	11
14.1	Plant Perimeter	11
14.2	Well Field	11
14.3	Other	11

LIST OF FIGURES

1. Plant Discharge Daily Flow

LIST OF TABLES

- 1. Claremont Corrective Actions Summary
- 2. Plant Discharge Average Flow & Volume
- 3. Plant Daily Totalizer Readings
- 4. Pump System Flow Readings
- 5. Claremont OU5 O&M Sampling/Measurement
- 6. Plant Discharge Analytical Results February 10, 2023
- 7. Emerging Contaminant Influent & Effluent Analytical Results February 10, 2023
- 8. Effluent pH and Temperature Readings
- 9. Plant Discharge Monthly Average pH
- 10. AS Tower Air Monitoring Readings

LIST OF ATTACHMENTS

1. Monthly O&M Sampling Analytical Results - February 10, 2023

LIST OF ACRONYMS AND ABBRIEVIATIONS

AS Air Stripper
A/V Air and Vacuum
ASF Air Stripper feed

BNA Base Neutral & Acid Extractables

CPC Claremont Polychemical CSE Confined Space Entry

DOSR Daily Operations Summary Report

EE Electrical Engineer

GES Groundwater & Environmental Services, Inc.

GPM Gallons Per Minute

GWTS Groundwater extraction, treatment, and reinjection system

HDR Henningson, Durham & Richardson Architecture and Engineering, P.C.

HMI Human Machine Interface

HVAC Heating, Ventilation, and Air Conditioning

MTBA Tert-Butyl-Methyl ether

MW Monitoring Well

NYSDEC New York State Department of Environmental Conservation

O&M Operation and Maintenance

OU4 Operable Unit 4
OU5 Operable Unit 5
PD Plant Discharge
PDB Passive Diffusion Bag

PFAS Per- and polyfluoroalkyl substances

PFOS Perfluorooctanesulfonic acid
PFOA Perfluorooctanoic acid
PID Photoionization Detector
PFF Pressure Filter Feed

PLC Programmable Logic Controller

ppm parts per million
PW Process Water

Ramboll Americas Engineering Solutions, Inc.

RW Recovery Well, Process Well

SPEDES State Pollutant Discharge Elimination System

SSHP Site Safety and Health Plan

SU Standard pH Units

SVOCs Semi-Volatile Organic Compounds

TBA Tert-butyl alcohol
TDS Total Dissolved Solids
TKN Total Kjeldahl Nitrogen
TOC Total Organic Carbon
TSS Total Suspended Solids

US Water Services Corporation VOCs Volatile Organic Compounds,

1. OPERATION AND MAINTENANCE ACTIVITIES

On behalf of Ramboll Americas Engineering Solutions, Inc. (Ramboll), Groundwater & Environmental Services, Inc. (GES) continued the daily operation and maintenance (O&M) of the Claremont Polychemical (CPC) Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU5) during the month of February 2023. In addition, former Operable Unit (OU4) was inspected once per month to ensure security and building code compliance. For this report every time plant is mentioned it refers to OU5. OU4 will be referred to as such whenever discussed. This report covers the O&M activities for the system during the period defined as beginning at approximately 0830 hours, February 1, 2023, through approximately 0830 hours, March 1, 2023. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 28 days in this reporting period during which the treatment system experienced no downtime.

Readings of the key plant process parameters are normally recorded each workday. These readings and the Human Machine Interface (HMI) flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the daily database which is an electronic file maintained in the monthly operating documents folder. If the plant is not occupied, the system is monitored remotely, however due to account transition from Henningson, Durham & Richardson Architecture and Engineering, P.C. (HDR) to the New York State Department of Environmental Conservation (NYSDEC), the internet service was disconnected on August 9, 2022. The system internet service was restored on February 28, 2023.

The treatment process control and alarm systems are functional. The recovery well pumps, process pumps, and air stripper blower are operated in the automatic mode and are normally remotely controlled and monitored. RW4 recovery pump shut down on August 17th, 2022 and could not be restarted due to a possible pump motor failure. RW5 recovery pump was replaced on October 10, 2022, but was started on January 5, 2023, following the replacement of a high-pressure switch on top of the wellhead. RW-5 shut down on January 26, 2023, due to pump motor short circuiting.

1.1 Daily Operations Summary Reports

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

- Daily Operating Log flow readings and calculations (Form-01)
- Daily Site and Safety Inspection plant condition checklist (Form-02)
- Daily Plant Activity Notes plant manager's daily summary (Form-03)
- Sign-In Sheet GES/Ramboll employee on-site hours (Form-15)
- Daily Process Data Sheet point process readings (Form-30)
- Logbook CPC 5-8- plant operator's daily logbook
- Daily Database daily process readings (February 22 Database.xlsx)
- NYSDEC Log-in Sheet Entry/Exit Log with COVID-19 Acknowledgement

1.2 Summary of Maintenance Activities

The operation and maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site O&M Manual. These tasks and inspections incorporate the equipment manufacturers' recommendations, operations experience, and good engineering and maintenance practices. A detailed accounting of the February activities is further provided in the plant operator's daily logbook.

Maintenance and project activities undertaken during the February period included:

- Routine and general maintenance tasks were conducted at the plant, on the grounds, and in the well fields.
- Single Air Stripper Feed (ASF) pumps were placed into hand mode and frequently switched to cycle their activity.
- The monthly process equipment tests were conducted.
- The Operable Unit 4 (OU4) comprehensive inspections were completed.
- The monthly Process/Recovery Well (RW) system inspection was completed.
- Basin 33 was inspected.
- The ASF pumps were lubricated, and the seals tightened.
- The OU5 comprehensive inspections were completed.
- The Pressure Filter Feed (PFF) pumps were lubricated, and the seals tightened.
- The fire alarm system components were inspected.
- The monthly electrical device survey was completed.
- The SUNY wellfield was inspected.

1.3 Maintenance Logs

The following operating logbooks are currently in use and maintained at OU5:

- CL-18 OU-4 Log (at OU4)
- CL-43 General Field Support Log (truck)
- CL-47 Misc. Projects Field Notebook (Pawel Mecinski)
- CPC 5-4 Project Support Logbook (site)
- CPC 5-8 Site Supervisor's Daily Logbook (Pawel Mecinski).

Except for log CPC 5-7, the completed logbooks associated with the project have been scanned, all are in storage at OU5, and are available for review.

2. TECHNICAL SUPPORT ACTIVITIES

2.1 GES/Ramboll Personnel

GES maintained the system throughout the period.

2.2 NYSDEC Personnel, Sub - contractors, and Other Visitors

- On February 3, 2023, Joe Healey from Healey Electric was on-Site to troubleshoot 460V lines at recovery well RW-5.
- On February 28, 2023, Verizon technician restored internet service to the OU-5 building.

2.3 Deliveries

- On February 1 and 3, 2023, FedEx delivered sampling coolers for the upcoming remedial system sampling events scheduled for February 2023.
- On February 22, 2023, FedEx and UPS delivered sampling coolers for the Q1 2023 groundwater sampling event.
- On February 24 and 27, 2023, FedEx and UPS deliveries were made and sampling equipment and coolers were delivered for the upcoming system and groundwater sampling events.

3. HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved and Ramboll adopted Site Safetyand Health Plan (SSHP). Safety related activities during this period included:

- The water remained off at OU4. Both potable and non-potable lines were drained. (No sanitary water)
- Daily site safety inspections were completed as part of the routine O&M activities.

4. PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing by GES/Ramboll. A list in the form of corrective actions or maintenance tasks has been generated as a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of this report as **Table 1** – Claremont Corrective Action Summary.

Upcoming tasks include:

- OU4 remains without water to the fire sprinkler system due to no heat in the building.
- OU4 potable water line was shut off due to pipe ruptures from frozen pipes.
- RW5 requires removal and inspection of pump motor components due to motor windings shorting to ground.
- RW4 pump motor inspection and replacement due to recent failure.
- Air valve at MW-6 cluster in Bethpage State Park reinsertion.
- Investigate plant electric driven back-up heater failures.
- Close and exercise all globe valves at the non-operational recovery wells.

5. MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater elevation data table was updated after the December quarterly GW elevation recording task. This database is available for review. The next set of synoptic water level measurements was conducted in February 2023 by Ramboll.

6. TREATMENT SYSTEM FLOWS

During the February period, the plant continued to operate in the auto control mode. The volume of treated water discharged by the treatment system to the selected recharge basin was calculated from the plant influent and effluent flow meter readings. These readings are taken at the HMI and recorded in the daily database.

RW5 pressure switch was replaced on January 5, 2023 and the well was successfully restarted on automatic run mode. RW-5 experienced electrical short across the motor windings on January 26, 2023 and has been confirmed inoperable until further inspection of the pump motor. RW3 continues to function normally. RW4 has been offline since August 17, 2022 with pump replacement pending.

During the month of February, the plant discharge was directed to Recharge Basin 1, due to Recharge Basin 33 being close to overfill condition.

The total volume of treated water discharged from \sim 0830 hours February 1 to \sim 0830 hours March 1 was approximately 9,465,000 gallons. The data in **Table 2** is a summary of plant discharge flows.

A graphic representation of the system's daily plant discharge output is provided in **Figure 1** and the daily plant totalizer readings for February are provided in **Table 3**, both following the text of this report.

Under current conditions, the PLC and the control system are functioning as designed. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

The flow summary for the individual components of the system can be found in **Table 4** at the end of this report.

7. CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off-line, and the system is void of acid. There are four drums of virgin acid on site. No acid was used for water treatment purposes in February of 2023.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was used in February of 2023.

The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was used in February of 2023.

8. WASTE DISPOSALS

Routine accumulation of waste materials continued from plant clean-up and organizational tasks. Waste removal is being handled by National Waste Services, LLC. Waste container was emptied on December 30, 2022.

9. MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. **Table 5** presents the Claremont OU5 O&M Sampling and Measurement requirements and their frequency. The analytical results for the plant discharge sampling conducted on February 10, 2023 indicate that the analyzed parameters were compliant with permit limits (**Table 6**). Monthly system sampling analytical results are provided in **Attachment 1**.

The OU5 GWTS plant's water discharge permit is in the process of being renewed by the NYSDEC.

10. PENDING ISSUES AND CONSIDERATIONS

Mechanical repairs have been made to the plant HVAC system at OU4. Upon testing, the gas supply appeared to be shut off. Ramboll is currently planning demolition of the OU4 building.

The sprinkler system at OU4 remains drained of water. The potable and non-potable water lines at OU4 have been drained.

The discrepancies/inaccuracies in the plant flow meter readings at OU5 may be due to the inappropriate configuration of the local piping. Future calibration or adjustment of pulse reading may be required.

Following PLC troubleshooting at RW5, a new replacement pressure switch has been ordered for the pump wellhead. A temporary used pressure switch was taken from RW2 and installed at RW5, which enabled successful operation of the pump in auto mode. RW5 experienced a line over-amperage and possible motor windings short on January 26, 2023 and could not be restarted. The pump requires inspection for motor winding and motor down-well conduit damage.

RW4 needs a motor replacement following failure on August 17, 2022.

The 2.5-inch drain valve on system effluent pipe was replaced on January 26, 2023.

All three electric plant back-up heaters do not operate. These units should be repaired as soon as possible. The plant HVAC heat is currently operational, however during the recent cold weather, the system struggled to produce heat in the plant area.

The OU4 plant is offline and its disposition including that of the injection well system, and vapor carbon beds is pending.

The status of key aspects of OU4 are as follows:

- The plant heat is currently off, and the system is out of service.
- The fire alarm panels are off-line.
- The fire sprinkler system is currently off-line. The water has been drained from the system. An alarm system for the sprinkler has been installed with central monitoring.
- The facility is secure, and its physical monitoring continues.
- The facility and grounds are not maintained except for the facility entrance and plant egress points.
- NYSDEC plans on decommissioning and demolishing OU4. A team from Ramboll is in the process of developing bid documents for this work.

11. PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary.

12. MONITORING RESULTS

The CPC GWTS is monitored through the analysis of off-site laboratory analytical data and onsite field data.

12.1 Off-site Analytical Data Results

Monthly Plant Discharge (PD) samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis. At the direction of the NYSDEC in an August 17, 2022 email, analysis of Per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane were added to monthly sampling for both influent and effluent for the foreseeable future. The February 2023 PFAS and 1,4-dioxane influent and effluent results can be found in **Table 7** following the text of this report. Monthly system sampling analytical results are provided in **Attachment 1**.

The February sampling activities included:

- The February PD data was processed and submitted.
- Monthly system sampling was completed on February 10, 2023.

12.2 Field Data

12.2.1 Plant Discharge pH and Temperature

The treatment plant effluent is monitored for pH and temperature on a weekly basis to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These measurements are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for February 2023 can be found in **Table 8** following the text of this report.

The February 2023 average pH measurement was 7.36 standard units (su). The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 su. The results for this month meet this requirement. Data showing the plant discharge's monthly average pH trend over several months is provided in **Table 9** following the text of this report.

12.2.2 Air Stripper (AS) Tower Air Monitoring

Using a calibrated photoionization detector (PID), the vapor discharge from the air stripper tower was monitored weekly for volatile organic compounds (VOCs). The measurements were taken from the tower's effluent air stream through Port B when the treatment system is online. The February 2023 readings from the AS tower are provided in **Table 10**.

Other routine data collected in February included:

- The electric and water meter readings at OU5 were recorded weekly.
- The plant vaults and selected areas were monitored for VOCs weekly.
- The plant sound levels were recorded bi-weekly.
- The monthly electric and gas meter readings for OU4 were recorded.
- The recharge basins were inspected weekly.
- The differential pressure readings across the AS Tower were recorded bi-weekly.

13. PROCESS ANALYSIS AND SYSTEM STATUS

The treatment system is currently operated 24/7 in the automatic mode. It is remotely monitored as necessary.

13.1 Extraction (RW) Processes

- The monthly system inspection was completed.
- The vault space heating units are active.
- The recovery well pump system is remotely controlled and monitored, it operates in the auto mode. The pump at RW3 is online and fully functional. RW4 was fully functional until August 17, 2022 when it experienced a possible motor failure. RW5 experienced problems beginning on March 12, 2022, that left it inoperable through the end of October 2022. Pump replacement was conducted on October 10, 2022, however, due to signal issues, the pump could not be operated in automatic mode. A pressure switch was taken from RW2 and installed in RW5 on January 5, 2023. A new replacement pressure switch has been ordered and will be installed upon delivery. The pump was activated on January 5, 2023 and shut down on January 26, 2023 due to electrical short issues at the pump motor.
- Pump flow readouts are transmitted to the plant and the totalizers for pumps RW3, and RW4
 are fully functional. The flow meter for RW5 occasionally stops transmitting.
- Air/Vacuum (A/V) valve at station 33+96 encountered a leak in May 2022 that required the vault to be pumped out and have its air/vacuum valve removed. Currently a stopper has been fitted to the pit that allows water to flow through the system.
- The Air/Vacuum (A/V) valve at station 16+57 and 17+10 remain isolated from the transmission line.
- RW1 and RW2 are offline and periodically run for preventative maintenance purposes. Their flow meters are not transmitting through the PLC. When repairs were made at RW1 in

November 2021, stones were removed from the flow meterhousing. There was a thick coating of iron salt deposits on the housing and impeller.

13.2 AS Process

- The three OU5 ASF pumps in the AS Process are fully functional.
- Motors and seals were lubricated on a bi-weekly schedule. Seals were tightened and the drains were cleared as necessary.
- The AS tower main drain valve's manual actuator is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected.
- The discharge valves for ASF P1 and P2 appear to be frozen in the open position.

13.3 PD Process

- The plant discharge flow is currently directed to Recharge Basin 33. The flow was switched to Recharge Basin 1 on January 26, 2023 due to RB#33 being close to overflow.
- The valve influent to Recharge Basin 33 remains closed as of January 26, 2023.
- Pump 1 has been taken out of service due to excessive noise and vibration. A full evaluation is required. Pumps 2 and 3 are fully functional.
- The motors and seals were lubricated as necessary.
- The discharge valve for PFF P3 has failed open.

13.4 Other

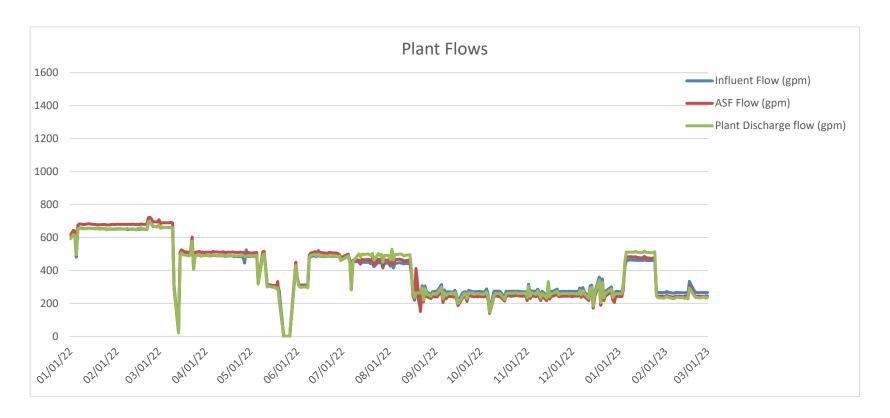
- The plant's first bank of lights is wired to the emergency-light recharging system. The circuit is kept on 24/7. The lamps appear burnt out. The second bank of lights provides sufficient lighting for general tasks. Additional work lights were installed around the plant area to further illuminate work areas.
- The potential for leaks in the water supply line running through the plant will continue to be monitored.
- The fire alarm and central monitoring systems are fully functional.

14. GROUNDS

14.1 Plant Perimeter

- · General outdoor clean-up tasks are on-going.
- The fencing is clear and secure.

14.2 Well Field


• Well field, and recharge basin inspections continue.

14.3 Other

- The CPC GWTF OU4 is secure.
- The property at and around the OU4 site continues to be inspected. While the grounds are not maintained, the treatment plant's entrance and egress points are kept clear and functional.

FIGURE

Figure 1
Plant Discharge Daily Flow

TABLES

Table 1
Claremont Corrective Actions Summary

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The RW Discharge Manifold integrity is suspect	The condition of the various devices on the RW discharge manifold are suspect.	Plant staff and outside contractors	Possible shutdown	May require a Confined Space Entry (CSE)
	The Air Vent valve in the vault on the N-side of the 6 th fairway is leaking from the influent nipple. The shut-off valve was closed and the device isolated.			
	The air-vent valve in the vault to the east of the 6 th green is leaking. The shut-off valve was closed and the device isolated.			
	The manifold employs isolation, venting, and drain valves as well as other devices. Along the path of the manifold are vaults which house some of these devices. These vaults need to be accessed, pumped out, and the devices tested.			
	Two isolation valves were closed between RW1 and RW3. These valves seemed to hold.			
AS Tower main drain valve is not controlled	The valve does not respond to manipulation of its actuator.	Operator	Plant will need to be shut down to change out the valve	None
	This valve should be replaced.			
	No further action is planned at this time.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
OU4 fire alarm system is not functioning	The Nassau County Fire Code indicates that the sprinkler system must have central monitoring for flow and valve tampering.	Plant operator, Electrical Engineer (EE) and outside vender	None at this time	Fire code violations. High altitude tasks, safety code
Central monitoring of the fire alarm system or fire suppression system does not exist	The fire alarm system needs to be replaced and centrally monitored.	vender		violations
OU4 electrical system has been unstable	Several contractors have been at the site to propose options for the system.			
	BK Fire installed central monitoring on the sprinkler system. Both are offline as the sprinkler system will remain drained until the HVAC system is repaired.			
	Certain OU4 lights currently create a large amount of noise in the fan box within the control room. The southern lights flicker and then die including the emergency system.			
	OU4 is currently being planned for demolition.			
Several leaks were observed in the plant overhead water supply line	Adjacent to the north door a clam-shell type clamp was applied.	Outside plumbing contractor	None	Sanitary water may be shut off during repairs
	The second leak observed above the AS Blower is not readily accessible. It is not problematic.			
	Repair work may require evaluation and outside resources. Currently the situation is controlled.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The float controls for the PFF pump system have intermittently shorted out causing the system to not properly control the pumping operation	The wiring of the pump control system is connected below grade. The junction box in the wet well is thought to be filled with water creating a problem with the float switches to control relay wiring. The box cannot be opened without damage to it and the conduit. This appears to have been a longstanding problem, as when switches have been replaced in the past, they were spliced outside the box. The float switches have been replaced and spliced above the sump but there remains a problem with the L2 circuit. The output from the W-2 relay was moved to the output for the W-1 relay. This has stopped the short cycling. The control wiring should be changed and moved above grade. Currently the second splices to the floats are above ground outside the vault.	Plant operator and GES resources	Plant shut down is required	Possible Confined Space Entry work
PFF P1 has failed	The pump when activated immediately makes a lot of noise, and the pump drop pipe shakes. Smoke/ fumes emanated at the Motor-shaft connection. The motor appears to be good. The pump was removed from service, February 24, 2020. It is recommended that the motor be disconnected, lifted, and the mechanical connection checked.	Outside contractors	None anticipated	To be determined

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
As the ASF pumps cycle off/on, the check valves have started to slam closed. When reactivating, the motor starter contact is rather violent. Both actions tend to rattle the piping and fixtures	There is no available literature regarding the check valves, so the exact description of their functioning parts is to be determined. A softer start/stop control may fix this issue. This will need further investigation. Soft-start equipment and variable frequency controls were discussed.	Plant operator and EE support	If replacement or repairs are necessary, a plant shutdown will be required as the units can- not be isolated	To be determined
The flowmeters for system flow, ASF flow and plant discharge are out of sync with the flow meters on the recovery wells	While the ASF flow meter is the most out of line, it is plumbed correctly. The influent system flow meter and the plant discharge flow meters are piped incorrectly. The same style of relay is used to count pulses, but the meters have not been calibrated. The system needs further investigation to determine if any changes are warranted.	EE support	To be determined	none
EF-4 is not operatable	The fan is controlled through the mezzanine thermostat, but it does not appear to be operating. The fan requires electrical testing. The system was checked, it appears that the fan is not functioning. The fan should be replaced.	EE support	Only in an emergency	Only in an emergency
Wiring nests in main control console	The wiring in the main control console needs to be cleaned up and labeled, to facilitate problem troubleshooting and process improvements.	EE support	A shut down may be necessary	Electrical work

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Pressure Filter Feed pump controls			To be determined	To be determined
	Reprogram the sequencing to eliminate the position of P1.			
RW5 has failed	RW5 pump was replaced on October 10, 2022, however due to PLC signal loss, it cannot be operated in automatic mode. GES conducted troubleshooting and parts replacement without success. System controls were examined by a PLC certified technician mid-December and determined pressure switch failure. Used device has been installed while a new one has been ordered. The pump ran on auto mode from January 5, 2023 to January 26, 2023 until an electrical short at the motor disabled the safe operation of the pump.	Plant Operator and Ramboll.	Less water is treated	To be determined
RW4 has failed	RW4 started to experience possible motor thermal overload shutdowns on multiple occasions during August monitoring period. The pump motor fully shut down on August 17, 2022 and all troubleshooting/restarting attempts were unsuccessful. The motor will need to be removed and replaced to restore functions.	Plant Operator and US Water	Less water is treated	To be determined
Air vacuum valve removal	On May 22, 2022 RW4 was shut down due to a leak detected in the field near an air/vacuum valve pit. On May 24, 2022 through May 25, 2022 water was pumped out of the vault and on May 31, 2022 a confined space entry was made to attempt to tighten the valve in an effort to stop the leak. This tightening was unsuccessful, and the valve was removed entirely and replaced with a blank flange until further notice.	GES Mechanical Support	Less water is treated	Confined space entry required to do work in vault

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Small leaks at PFF discharge pipe drain line	Small leaks observed at the 2.5-inch diameter PVC drain piping and ball valve. Valve has been replaced with a new brass valve on January 26, 2023.	Plant Operator	Failure of glue points, may cause catastrophic failure in the future.	Slip hazards
Plant Electric Heater UH-3 failure and HVAC system performance	During sub-20 deg.F weather, the emergency electric heater failed. The HVAC system struggled to produce heat and the plant temperatures dipped to around mid-30's during that time.	Outside contractor	Water lines freezing	Equipment damage

Other Plant Conditions of Note (no action required at this time)

- The methane detection system is offline. **To function, it will need a technical inspection and maintenance**. However, methane does not currently appear to be a hazard.
- It has been determined that intrinsically safe components are no longer required in the plant.
- There has been no need for acid washing of the AS Tower media, the hydrochloric acid feed and storage system have not been operated. The tanks have not been filled and the level monitoring system has not been operated.

As previously noted, there are pieces of equipment that are out of service and require repairs. Currently there are no plans for addressing these conditions as the operation of this equipment is not necessary or needed for the operation of the treatment system.

Equipment	Fault	Status
Plant electric heater UH-1	Needs transformer	Heater is not needed
Plant electric heater UH-2	Needs relay timer and wiring repairs	Heater is not needed
Recovery well pump pressure switch assembly	Units are unwieldy and subject to vibration, corrosion, and leaks	Each unit requires assessment and disposition
NaOH sump pump	Pump is not operating	No water or chemicals stored in vault. Portable submersible pump in sump should suffice
Plant lights are wired to the emergency light charging system	Un-segregated light cannot be shut off. Several of the lamps may have burnt out	The bank of lights appears to have failed/burnt out. The second bank of lights are sufficient
Plant exhaust fans are part of methane system	Fans cannot be manually operated	Once the methane monitoring system is online, the fans can be operated

Equipment	Fault	Status
Plant discharge drain	Leak in Victaulic fitting	Drain line on plant discharge intermittently leaks. Parts are in-house. Not pressing
ASF pump isolation valve	Valve P1 has failed open	Not needed at this time
PFF pump isolation valve	Valve P3 has vailed open	Not needed at this time
RW1 flow meter	The meter is not operating	Pump is offline. Rocks were pulled from the housing and iron sediment was encrusting the flow meter impeller and housing
RW2 flow meter	The meter is not transmitting	Pump is offline
Air stripper flow meter	Non-functional and removed	
AH-1 condenser	Air conditioner is non-functional	Two window AC units in place
Plant outdoor lights	9 of 12 lights not functioning	Not a security issue

Table 2
Plant Discharge Average Flow & Volume

	Plant Discharge Average Flow & Volume						
Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on		
Q4 2016	517	745,000	68,540,000	7,309	125,171		
Q1 2017	520	748,244	67,342,000	655	128,945		
Q2 2017	576	829,130	76,280,000	6,165	126,315		
Q3 2017	634	913,576	84,049,000	1,110	131,370		
Q4 2017	256	368,762	33,926,110	69,165	63,315		
Q1 2018	53	75,989	6,839,000	118,180	11,420		
Q2 2018	179	258,284	23,762,103	102,929	29,551		
Q3 2018	504	725,280	66,725,717	57,416	75,064		
Q4 2018	726	1,045,065	96,145,984	23,734	108,746		
Q1 2019	527	758,467	68,262,000	735	128,865		
Q2 2019	662	953,877	87,756,724	405	132,075		
Q3 2019	685	985,802	90,693,740	108	132,372		
Q4 2019	655	943,871	82,116,780	5,039	129,326		
Q1 2020	480	682,527	62,110,000	1,824	129,326		
Q2 2020	698	996,998	88,732,846	3,838	127,185		
Q3 2020	669	955,928	87,945,333	1,099	131,401		
Q4 2020	695	1,001,365	92,125,539	52	132,497		
Q1 2021	708	1,019,733	91,776,000	0	129,603		
Q2 2021	709	1,021,317	92,939,850	0	131,040		
Q3 2021	615	884,934	81,413,897	0	132,475		
Q4 2021	677	928,370	85,410,047	6,317	126,185		
Q1 2022	633	1,291,661	80,082,987	5,280	124,320		
Q2 2022	434	624,605	53,716,000	12,200	123,840		
Q3 2022	365	514,501	46,283,000	3,004	124,994		

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2022	257	369,307	34,007,000	491	132,154
Jan 2023	436	623,931	18,094,000	60	41,460
Feb 2023	240	338,036	9,465,000	0	39,420

Acronyms: gal - gallons

gpm – gallons per minute

Table 3
Plant Daily Totalizer Readings

February 2023 Flows						
	Plant Inf	luent	Plant Disc	charge	RW Disc	harge
Date	Volume	Avg. Flow	Volume	Avg. Flow	Volume	Avg. Flow
02/01/23	-	242	-	233	-	267
02/02/23	350,000	243	340,000	236	383,000	266
02/03/23	359,000	243	350,000	236	393,000	266
02/06/23	1,044,000	244	1,006,000	235	1,142,000	267
02/07/23	352,000	244	341,000	237	388,000	269
02/08/23	346,000	240	331,000	230	379,000	263
02/09/23	352,000	244	340,000	236	383,000	266
02/10/23	350,000	243	341,000	237	384,000	267
02/13/23	1,055,000	244	1,014,000	235	1,148,000	266
02/14/23	346,000	240	339,000	235	380,000	264
02/15/23	352,000	244	331,000	230	382,000	265
02/16/23	348,000	242	338,000	235	382,000	265
02/17/23	335,000	243	328,000	238	368,000	267
02/20/23	1,063,000	305	1,023,000	294	1,163,000	334
02/21/23	353,000	245	341,000	237	383,000	266
02/22/23	351,000	244	341,000	237	386,000	268
02/23/23	348,000	242	340,000	236	383,000	266
02/24/23	352,000	244	337,000	234	382,000	265
02/27/23	1,047,000	242	1,006,000	233	1,148,000	266
02/28/23	351,000	244	345,000	240	384,000	267
03/01/23	352,000	244	333,000	231	382,000	265
	February Total Plant Influent (Gal)		-	9,806,000		
	February Total Plant Effluent (Gal)			9,465,000		
February Total RW Discharge (Gal)				10,723,000		

Acronyms: gal - gallons gpm – gallons per minute

Table 4 **Pump System Flow Readings**

February	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd)	Total Flow (gal)
RW1*	5	0	0	600
RW2*	0	0	0	0
RW3	39,420	258	363,786	10,186,000
RW4	0	0	0	0
RW5	0	0	0	0
RW Totals	39,420	272	382,964	10,723,000
Plant Influent	39,420	249	350,214	9,806,000
Plant Effluent	39,420	240	338,036	9,465,000

Acronyms: gal - gallons

gpm – gallons per minute gpd – gallons per day

The treatment process was online 28 days during this period with 0 minutes of downtime. Flows are taken from the HMI meter readings.

^{*} Offline aside from monthly process equipment test to check their functionality. There are no average gallons per day. RW2 could not be tested due to removed pressure switch, which disables hand operations.

Table 5
Claremont OU5 O&M Sampling/Measurement Program and Frequency

	Sampling Location			
Measurement / Analyte	System Influent	Plant Discharge	Recovery Wells	Monitoring Wells
Flow	Daily	Daily	Daily	NA
рН	Quarterly	Weekly	Quarterly	Quarterly
VOCs (+Tert-Butyl-Methyl ether (MTBA) & Tert-butyl alcohol (TBA))	Quarterly	Monthly	Quarterly	Quarterly
Semi-Volatile Organic Compound (SVOC) Base Neutral & Acid Extractables (BNA)	Quarterly	Monthly	NS	NS
Per- and polyfluoroalkyl substances (PFAS)	Monthly	Monthly	NS	Quarterly ⁽¹⁾
1,4-Dioxane	Monthly	Monthly	NS	Quarterly ⁽¹⁾
Total Kjeldahl Nitrogen→ (TKN)	NS	Quarterly	NS	NS
Total Suspended Solids (TSS)	Quarterly	NS	Quarterly	NS
Total Organic Carbon (TOC)	Quarterly	NS	NS	NS
Total Dissolved Solids (TDS)	NS	Quarterly	NS	NS
Cyanide	NS	Quarterly	NS	NS
Hexavalent Chromium	NS	Quarterly	NS	NS
Mercury	NS	Quarterly	NS	NS
Metals	Quarterly	Quarterly	Quarterly	NS
Anions	NS	Quarterly	NS	NS

Notes: NA – Not applicable; NS – Not sampled. (1) – CPC wells only

Table 6
Plant Discharge Analytical Results
February 10, 2023

Parameters	Discharge Limitations (SPDES)	Units	Results
pH (range)	6.5 - 8.5	su	7.36
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene (PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene (TCE)	5	ug/l	U
Bis(2-ethylhexyl) phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NS
Arsenic, Total recoverable	50	ug/l	NS
Barium, Total recoverable	2000	ug/l	NS
Chromium, Hexavalent	100	ug/l	NS
Lead, Total recoverable	50	ug/l	NS
Iron, Total recoverable	600	ug/l	NS
Manganese, Total recoverable	600	ug/l	NS
Mercury	Not indicated	ug/l	NS
Zinc	Not indicated	mg/l	NS
Nitrogen, Total (as N)	10	mg/l	NS
Selenium, Total recoverable	40	ug/l	NS
Solids, Total Dissolved	1000	mg/l	NS
Chloride Ion	NL	mg/l	NS
Cyanide	Not indicated	ug/l	NS
Fluoride Ion	NL	mg/l	NS

Parameters	Discharge Limitations (SPDES)	Units	Results
Sulfate Ion	NL	mg/l	NS

J – Estimated value U – Analyzed but not detected NL – Monitor only NS– Not sampled SPDES – State Pollutant Discharge Elimination System

ug/I – micrograms per liter ng/I – nanograms per liter mg/I – milligrams per liter

Discharge limitations updates as per the water discharge permit.

Note: Parameters shaded in gray are analyzed quarterly with results generally being provided March,

June, October, and December.

Table 7 **Emerging Contaminant Influent & Effluent Analytical Results** February 10, 2023

Parameters	Guidance Values	Units	Influent Results	Effluent Results
Perfluorooctanoic acid (PFOA)	10^{1}	ng/l	46 / 46	46 / 47
Perfluorooctanesulfonic acid (PFOS)	10^{1}	ng/l	16 / 16	15 / 17
1,4-Dioxane	1 ²	ug/l	31 / 30	32 / 32

J – Estimated value U – Analyzed but not detected ug/l – micrograms per liter ng/I – nanograms per liter x / x – indicates primary/duplicate results

¹ New York State Department of Environmental Conservation, Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), November 2022.

New York State, Department of Health, Subpart 5, Table 3, May 2018.

Table 8
Effluent pH and Temperature Readings

Date	pH (su)	Temp ([°] C)
02/01/2023	7.44	14.2
02/08/2023	7.53	11.4
02/14/2023	7.57	14.9
02/20/2023	7.16	14.5
02/27/2023	7.11	12.5
February Average	7.36 su	13.5 °C

Table 9
Plant Discharge Monthly Average pH

Month	pH(su)
Aug '19	6.56
Sept `19	7.45
Oct '19	6.86
Nov '19	6.88
Dec `19	6.84
Jan ` 20	6.63
Feb '20	6.75
Mar '20	6.74
Apr \20	6.65
May '20	6.8
June '20	6.8
July '20	6.9
Aug `20	6.8
Sept '20	6.8
Oct. '20	6.95
Nov '20	6.8
Dec '20	6.64
Jan '21	6.8
Feb '21	6.75
Mar `21	6.76
Apr `21	7.28
May '21	7.53
June '21	7.44
July '21	7.41
Aug `21	7.42
Sept '21	7.13
Oct '21	7.10
Nov '21	7.09
Dec '21	7.01
Jan '22	6.90
Feb `22	6.90
Mar '22	6.80
Apr '22	6.78
May \22	6.79
June '22	6.79
July '22	7.01
Aug `22	6.99
Sept `22	7.19
Oct \22	7.62
Nov `22	7.68
Dec `22	7.52

Month	pH(su)
Jan `23	7.24
Feb '23	7.36

Plant Discharge Monthly Average pH Readings

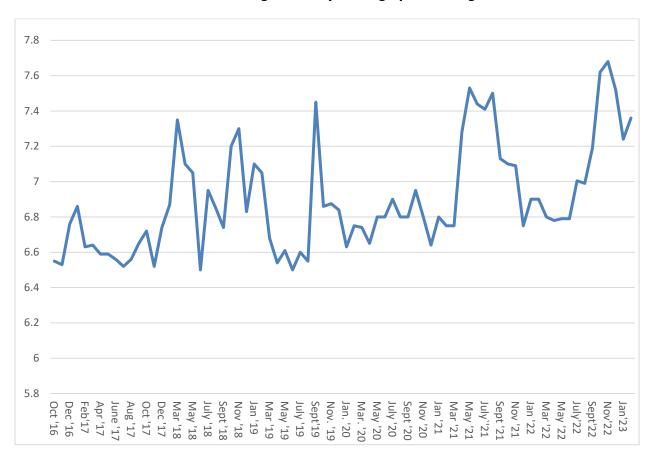


Table 10
AS Tower Air Monitoring Readings

Recorded Date	Port B (ppm)
02/02/2023	0.1
02/08/2023	0.0
02/15/2023	0.0
02/20/2023	0.0
02/27/2023	0.0

D = I II	NA	D E +I	0	Maintenance .	A -L11L1	/ F = I= =	20221
Railliboii -	- ΜΟΠΙΙΙΙΟ Ι	Report of the	Operations &	Maintenance :	ACTIVILIES I	rebruary	20231

ATTACHMENT 1
MONTHLY 0&M SAMPLING ANALYTICAL RESULTS – FEBRUARY 10, 2023

March 31, 2023

Payson Long NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873 Syracuse, NY 13221

Project Location: Old Bethpage, New York

Client Job Number: Project Number: 130015

Laboratory Work Order Number: 23B1340

Enclosed are results of analyses for samples as received by the laboratory on February 11, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle A. Murray Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	7
23B1340-01	7
23B1340-02	12
23B1340-03	19
23B1340-04	22
23B1340-05	25
Sample Preparation Information	27
QC Data	28
Volatile Organic Compounds by GC/MS	28
B331563	28
Semivolatile Organic Compounds by GC/MS	36
B331882	36
1,4-Dioxane by isotope dilution GC/MS	41
B331566	41
Semivolatile Organic Compounds by - LC/MS-MS	42
B331794	42
B334428	46
Flag/Qualifier Summary	51
Certifications	52
Chain of Custody/Sample Receipt	56

REPORT DATE: 3/31/2023

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873

PURCHASE ORDER NUMBER: 144165

Syracuse, NY 13221 ATTN: Payson Long

PROJECT NUMBER: 130015

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23B1340

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Old Bethpage, New York

I	FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
	PD-CP-00-021023	23B1340-01	Water		Draft Method 1633	
					SW-846 8260D	
					SW-846 8270E	
I	PD-CP-01-021023	23B1340-02	Water		Draft Method 1633	
					SW-846 8260D	
					SW-846 8270E	
1	ASF-CP-00-021023	23B1340-03	Water		Draft Method 1633	
					SW-846 8270E	
1	ASF-CP-01-021023	23B1340-04	Water		Draft Method 1633	
					SW-846 8270E	
7	ГВ-021023	23B1340-05	Water		SW-846 8260D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Draft Method 1633

Qualifications:

PF-18

Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects.

Analyte & Samples(s) Qualified:

13C2-4:2FTS

23B1340-01[PD-CP-00-021023], 23B1340-02[PD-CP-01-021023]

1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FT)

23B1340-01[PD-CP-00-021023], 23B1340-02[PD-CP-01-021023]

S-29

Extracted Internal Standard is outside of control limits.

Analyte & Samples(s) Qualified:

13C2-PFTeDA

S084652-CCV2

Perfluorotetradecanoic acid (PFTeDA)

S084652-CCV2

SW-846 8260D

Qualifications:

MS-23

Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Chloromethane

B331563-MS1

R-06

Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.

Analyte & Samples(s) Qualified:

Chloromethane

23B1340-01[PD-CP-00-021023], B331563-MS1, B331563-MSD1

SW-846 8270E

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

N-Nitrosodimethylamine

B331882-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound.
Analyte & Samples(s) Qualified:

Benzidine

23B1340-02[PD-CP-01-021023], B331882-BLK1, B331882-BS1, B331882-BSD1

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

B331882-BLK1, B331882-BS1, B331882-BSD1, S083643-CCV1

Benzidine

23B1340-02[PD-CP-01-021023], B331882-BLK1, B331882-BS1, B331882-BSD1, S083643-CCV1, S083771-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Anilina

23B1340-02[PD-CP-01-021023], B331882-BS1, B331882-BSD1, S083771-CCV1

Benzidine

23B1340-02[PD-CP-01-021023], B331882-BLK1, B331882-BS1, B331882-BSD1, S083643-CCV1, S083771-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

B331882-BLK1, S083643-CCV1

2,4-Dinitrotoluene

B331882-BLK1, S083643-CCV1

2-Nitrophenol

B331882-BLK1, S083643-CCV1

Benzidine

B331882-BLK1, S083643-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan E. Kelley Reporting Specialist

Meghan S. Kelley

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-00-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-01
Sample Matrix: Water

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Chloromethane	ND	2.0	μg/L	1	R-06	SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Cyclohexane	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Styrene (MB1)	ND	1.0	μg/L μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Tetrachloroethylene	ND	1.0	μg/L μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Toluene	ND ND	1.0		1		SW-846 8260D	2/15/23		EEH
Totalene	ND	1.0	μg/L	1		3 W-040 9700D	2/13/23 Г	2/15/23 17:12	

Page 7 of 58

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-00-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-01
Sample Matrix: Water

Volatile (Organic	Compounds	by	GC/MS
------------	---------	-----------	----	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Xylenes (total)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:12	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		108	70-130					2/15/23 17:12	
Toluene-d8		102	70-130					2/15/23 17:12	
4-Bromofluorobenzene		101	70-130					2/15/23 17:12	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-00-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-01
Sample Matrix: Water

1,4-Dioxane by isotope dilution GC/MS

	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane		31	0.20	μg/L	1		SW-846 8270E	2/15/23	2/21/23 16:04	SPF
S	Surrogates		% Recovery	Recovery Limits	5	Flag/Qual				
1,4-Dioxane-d8			21.3	15-110					2/21/23 16:04	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-00-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-01
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/MS-MS

		S	emivolatile Organic Cor	npounds by - I	LC/MS-MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	42	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluoropentanoic acid (PFPeA)	22	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorohexanoic acid (PFHxA)	33	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluoroheptanoic acid (PFHpA)	14	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorooctanoic acid (PFOA)	46	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorononanoic acid (PFNA)	10	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorodecanoic acid (PFDA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluoroundecanoic acid (PFUnA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorododecanoic acid (PFDoA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorotetradecanoic acid (PFTeDA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorobutanesulfonic acid (PFBS)	5.8	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluoropetanesulfonic acid (PFPeS)	4.4	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorohexanesulfonic acid (PFHxS)	9.8	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluoroheptanesulfonic acid (PFHpS)	0.92	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorooctanesulfonic acid (PFOS)	16	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorononanesulfonic acid (PFNS)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorododecanesulfonic acid (PFDoS)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.6	ng/L	1	PF-18	Draft Method 1633	2/22/23	3/15/23 22:59	DRL
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Perfluorooctanesulfonamide (PFOSA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-MeFOSAA (NMeFOSAA)	ND	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-EtFOSAA (NEtFOSAA)	4.0	0.90	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.0	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.0	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA) 9Cl-PF3ONS (F53B Minor)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
,	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
11Cl-PF3OUdS (F53B Major)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic	ND	9.0	ng/L	1		Draft Method 1633 Draft Method 1633	2/22/23	3/15/23 22:59	DRL
acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA)	ND ND	45 45	ng/L	1		Draft Method 1633	2/22/23 2/22/23	3/15/23 22:59 3/15/23 22:59	DRL DRL
(7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
(PFEESA) Perfluoro-3-methoxypropanoic acid	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
(PFMPA)			Ü				_		

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-00-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-01
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
(PFMBA)									
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 22:59	DRL
Surrogates		% Recovery	Recovery Limit	6	Flag/Qual				
13C4-PFBA		32.2	20-150	3	Flag/Qual			3/15/23 22:59	
13C5-PFPeA		79.4	20-150					3/15/23 22:59	
13C5-FFFEA 13C5-PFHxA		79.4 88.0	20-150					3/15/23 22:59	
13C4-PFHpA		88.0 87.6	20-150					3/15/23 22:59	
13C8-PFOA		89.2	20-150						
								3/15/23 22:59	
13C9-PFNA 13C6-PFDA		84.3 83.3	20-150 20-150					3/15/23 22:59	
								3/15/23 22:59	
13C7-PFUnA		78.9	20-150					3/15/23 22:59	
13C2-PFDoA		72.6	20-150					3/15/23 22:59	
13C2-PFTeDA		73.0	20-150					3/15/23 22:59	
13C3-PFBS		87.4	20-150					3/15/23 22:59	
13C3-PFHxS		87.8	20-150					3/15/23 22:59	
13C8-PFOS		86.7	20-150					3/15/23 22:59	
13C2-4:2FTS		168 *	20-150		PF-18			3/15/23 22:59	
13C2-6:2FTS		122	20-150					3/15/23 22:59	
13C2-8:2FTS		90.0	20-150					3/15/23 22:59	
13C8-PFOSA		77.6	20-150					3/15/23 22:59	
D3-NMeFOSA		68.4	20-150					3/15/23 22:59	
D5-NEtFOSA		71.3	20-150					3/15/23 22:59	
D3-NMeFOSAA		81.7	20-150					3/15/23 22:59	
D5-NEtFOSAA		83.4	20-150					3/15/23 22:59	
D7-NMeFOSE		72.2	20-150					3/15/23 22:59	
D9-NEtFOSE		71.3	20-150					3/15/23 22:59	
13C3-HFPO-DA		80.7	20-150					3/15/23 22:59	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Cyclohexane	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
-	1112	1.0	MB/ L			5 5 6260D	_, 13, <u>23</u>	Dog 10	

Page 12 of 58

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02 Sample Matrix: Water

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Xylenes (total)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 17:39	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		109	70-130					2/15/23 17:39	
Toluene-d8		99.9	70-130					2/15/23 17:39	
4-Bromofluorobenzene		101	70-130					2/15/23 17:39	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

			Semivolatile Organic	Compounds b	y GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Acenaphthylene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Acetophenone	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Aniline	ND	4.9	μg/L	1	V-05	SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Anthracene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzidine	ND	20	μg/L	1	R-05, V-04, V-05	SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzo(a)anthracene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzo(a)pyrene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzo(b)fluoranthene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzo(g,h,i)perylene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzo(k)fluoranthene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Benzoic Acid	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Bis(2-chloroethoxy)methane	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Bis(2-chloroethyl)ether	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Bis(2-chloroisopropyl)ether	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Bis(2-Ethylhexyl)phthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Bromophenylphenylether	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Butylbenzylphthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Carbazole	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Chloroaniline	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Chloro-3-methylphenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Chloronaphthalene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Chlorophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Chlorophenylphenylether	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Chrysene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Dibenz(a,h)anthracene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Dibenzofuran	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Di-n-butylphthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,2-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,3-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,4-Dichlorobenzene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
3,3-Dichlorobenzidine	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4-Dichlorophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Diethylphthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4-Dimethylphenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Dimethylphthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4,6-Dinitro-2-methylphenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4-Dinitrophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,6-Dinitrotoluene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Di-n-octylphthalate	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,2-Diphenylhydrazine/Azobenzene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Fluoranthene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Fluorene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
		.,	r-o-2	-			Г	Dog 14	

Page 14 of 58

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobenzene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Hexachlorobutadiene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Hexachlorocyclopentadiene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Hexachloroethane	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Indeno(1,2,3-cd)pyrene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Isophorone	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Methylnaphthalene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Methylphenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
3/4-Methylphenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Naphthalene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
3-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Nitroaniline	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Nitrobenzene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
4-Nitrophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
N-Nitrosodimethylamine	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
N-Nitrosodiphenylamine/Diphenylamine	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
N-Nitrosodi-n-propylamine	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Pentachloronitrobenzene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Pentachlorophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Phenanthrene	ND	4.9	$\mu g/L$	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Phenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Pyrene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Pyridine	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,2,4,5-Tetrachlorobenzene	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
1,2,4-Trichlorobenzene	ND	4.9	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4,5-Trichlorophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
2,4,6-Trichlorophenol	ND	9.8	μg/L	1		SW-846 8270E	2/17/23	2/22/23 19:59	AR2
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol		29.3	15-110					2/22/23 19:59	-
Phenol-d6		21.3	15-110					2/22/23 19:59	
Nitrobenzene-d5		57.2	30-130					2/22/23 19:59	
2-Fluorobiphenyl		58.8	30-130					2/22/23 19:59	
2,4,6-Tribromophenol		61.8	15-110					2/22/23 19:59	
p-Terphenyl-d14		72.8	30-130					2/22/23 19:59	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

1,4-Dioxane by isotope dilution GC/MS

	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane		30	0.21	μg/L	1		SW-846 8270E	2/15/23	2/21/23 16:24	SPF
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			22.5	15-110					2/21/23 16:24	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/MS-MS

		Se	mivolatile Organic Cor	npounds by - I	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	45	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoropentanoic acid (PFPeA)	22	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorohexanoic acid (PFHxA)	34	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoroheptanoic acid (PFHpA)	15	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorooctanoic acid (PFOA)	46	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorononanoic acid (PFNA)	10	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorodecanoic acid (PFDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoroundecanoic acid (PFUnA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorododecanoic acid (PFDoA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorotetradecanoic acid (PFTeDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorobutanesulfonic acid (PFBS)	6.2	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoropetanesulfonic acid (PFPeS)	3.8	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorohexanesulfonic acid (PFHxS)	9.4	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorooctanesulfonic acid (PFOS)	16	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorononanesulfonic acid (PFNS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorododecanesulfonic acid (PFDoS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.6	ng/L	1	PF-18	Draft Method 1633	2/22/23	3/15/23 23:14	DRL
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluorooctanesulfonamide (PFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
N-MeFOSAA (NMeFOSAA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
N-EtFOSAA (NEtFOSAA)	4.0	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
$N-methyl perfluoro octane sulfonamido ethan \\ ol (NMeFOSE)$	ND	9.1	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.1	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
9Cl-PF3ONS (F53B Minor)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
11Cl-PF3OUdS (F53B Major)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.1	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	45	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	45	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: PD-CP-01-021023 Sampled: 2/10/2023 09:15

Sample ID: 23B1340-02
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/M	S_MS	

Results	RL					Date	Date/Time	
	RI.							
	- KL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:14	DRL
	% Recovery	Recovery Limits	S	Flag/Qual				
	33.3	20-150					3/15/23 23:14	
	73.1	20-150					3/15/23 23:14	
	79.8	20-150					3/15/23 23:14	
	81.7	20-150					3/15/23 23:14	
	81.3	20-150					3/15/23 23:14	
	81.3	20-150					3/15/23 23:14	
	81.4	20-150					3/15/23 23:14	
	77.2	20-150					3/15/23 23:14	
	69.7	20-150					3/15/23 23:14	
	72.5	20-150					3/15/23 23:14	
	78.5	20-150					3/15/23 23:14	
	82.0	20-150					3/15/23 23:14	
	83.4	20-150					3/15/23 23:14	
	155 *	20-150		PF-18			3/15/23 23:14	
	115	20-150					3/15/23 23:14	
	91.9	20-150					3/15/23 23:14	
	73.3	20-150					3/15/23 23:14	
	65.4	20-150					3/15/23 23:14	
	65.7	20-150					3/15/23 23:14	
	77.8	20-150					3/15/23 23:14	
	84.0	20-150					3/15/23 23:14	
	70.7	20-150					3/15/23 23:14	
	70.9	20-150					3/15/23 23:14	
	70.1	20-150					3/15/23 23:14	
	ND ND	ND 1.8 **Recovery* 33.3 73.1 79.8 81.7 81.3 81.3 81.4 77.2 69.7 72.5 78.5 82.0 83.4 155 ** 115 91.9 73.3 65.4 65.7 77.8 84.0 70.7 70.9	ND 1.8 ng/L **Recovery Recovery Limits* 33.3 20-150 73.1 20-150 79.8 20-150 81.7 20-150 81.3 20-150 81.3 20-150 77.2 20-150 69.7 20-150 69.7 20-150 72.5 20-150 78.5 20-150 82.0 20-150 83.4 20-150 83.4 20-150 115 20-150 91.9 20-150 91.9 20-150 73.3 20-150 65.4 20-150 65.7 20-150 77.8 20-150 70.7 20-150 70.7 20-150	ND 1.8 ng/L 1 **Recovery Recovery Limits* 33.3 20-150 73.1 20-150 79.8 20-150 81.7 20-150 81.3 20-150 81.4 20-150 77.2 20-150 69.7 20-150 72.5 20-150 78.5 20-150 82.0 20-150 83.4 20-150 83.4 20-150 155 * 20-150 115 20-150 91.9 20-150 73.3 20-150 65.4 20-150 65.7 20-150 77.8 20-150 84.0 20-150 77.8 20-150 84.0 20-150 70.7 20-150 70.7 20-150 70.9 20-150	ND	ND 1.8 ng/L 1 Draft Method 1633 W Recovery Recovery Limits Flag/Qual	ND	ND 1.8 ng/L 1 Draft Method 1633 2/22/23 3/15/23 23:14 % Recovery Recovery Limits Flag/Qual 33.3 20-150 3/15/23 23:14 79.8 20-150 3/15/23 23:14 81.7 20-150 3/15/23 23:14 81.3 20-150 3/15/23 23:14 81.4 20-150 3/15/23 23:14 81.4 20-150 3/15/23 23:14 69.7 20-150 3/15/23 23:14 72.5 20-150 3/15/23 23:14 82.0 20-150 3/15/23 23:14 82.0 20-150 3/15/23 23:14 83.4 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 115 20-150 3/15/23 23:14 125

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-00-021023

Sampled: 2/10/2023 10:15

Sample ID: 23B1340-03
Sample Matrix: Water

1.4-Dioxane by isotope dilution G	GC/MS	
-----------------------------------	-------	--

A	analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane		32	0.20	μg/L	1		SW-846 8270E	2/15/23	2/21/23 18:27	SPF
Sur	rrogates		% Recovery	Recovery Limits	1	Flag/Qual				
1,4-Dioxane-d8	_		25.1	15-110					2/21/23 18:27	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-00-021023 Sampled: 2/10/2023 10:15

Sample ID: 23B1340-03
Sample Matrix: Water

		5	Semivolatile Organic Co	mpounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	38	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoropentanoic acid (PFPeA)	22	1.9	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorohexanoic acid (PFHxA)	33	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoroheptanoic acid (PFHpA)	14	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorooctanoic acid (PFOA)	46	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorononanoic acid (PFNA)	9.7	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorodecanoic acid (PFDA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoroundecanoic acid (PFUnA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorododecanoic acid (PFDoA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorotetradecanoic acid (PFTeDA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorobutanesulfonic acid (PFBS)	5.7	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoropetanesulfonic acid (PFPeS)	4.2	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorohexanesulfonic acid (PFHxS)	9.8	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoroheptanesulfonic acid (PFHpS)	1.2	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorooctanesulfonic acid (PFOS)	15	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorononanesulfonic acid (PFNS)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorododecanesulfonic acid (PFDoS)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluorooctanesulfonamide (PFOSA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.96	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
N-ethyl perfluorooctanesulfonamide (NEtFOSA) N-MeFOSAA (NMeFOSAA)	ND ND	0.96	ng/L	1		Draft Method 1633 Draft Method 1633	2/22/23 2/22/23	3/15/23 23:30 3/15/23 23:30	DRL DRL
N-EtFOSAA (NEtFOSAA)			ng/L			Draft Method 1633			
N-methylperfluorooctanesulfonamidoethan	4.4 ND	0.96 9.6	ng/L ng/L	1		Draft Method 1633	2/22/23 2/22/23	3/15/23 23:30 3/15/23 23:30	DRL DRL
ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
9Cl-PF3ONS (F53B Minor)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
11Cl-PF3OUdS (F53B Major)	ND	3.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	48	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA) Perfluoro(2 ethoxycethane)sylfonic acid	ND	48	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) Perfluoro-3-methoxypropanoic acid	ND ND	1.9	ng/L	1		Draft Method 1633 Draft Method 1633	2/22/23 2/22/23	3/15/23 23:30 3/15/23 23:30	DRL DRL
(PFMPA)	ND	1.7	ng/L	1		Drait Mediod 1000	<i>2,22,23</i>	3113123 23.30	JKL

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-00-021023 Sampled: 2/10/2023 10:15

Sample ID: 23B1340-03
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/MS-MS $\,$

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
(PFMBA)									
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:30	DRL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C4-PFBA		83.2	20-150					3/15/23 23:30	
13C5-PFPeA		73.7	20-150					3/15/23 23:30	
13C5-PFHxA		79.5	20-150					3/15/23 23:30	
13C4-PFHpA		81.7	20-150					3/15/23 23:30	
13C8-PFOA		83.4	20-150					3/15/23 23:30	
13C9-PFNA		81.3	20-150					3/15/23 23:30	
13C6-PFDA		81.5	20-150					3/15/23 23:30	
13C7-PFUnA		74.7	20-150					3/15/23 23:30	
13C2-PFDoA		67.9	20-150					3/15/23 23:30	
13C2-PFTeDA		66.0	20-150					3/15/23 23:30	
13C3-PFBS		80.1	20-150					3/15/23 23:30	
13C3-PFHxS		80.4	20-150					3/15/23 23:30	
13C8-PFOS		81.8	20-150					3/15/23 23:30	
13C2-4:2FTS		150	20-150					3/15/23 23:30	
13C2-6:2FTS		102	20-150					3/15/23 23:30	
13C2-8:2FTS		79.1	20-150					3/15/23 23:30	
13C8-PFOSA		69.6	20-150					3/15/23 23:30	
D3-NMeFOSA		61.9	20-150					3/15/23 23:30	
D5-NEtFOSA		63.5	20-150					3/15/23 23:30	
D3-NMeFOSAA		76.6	20-150					3/15/23 23:30	
D5-NEtFOSAA		78.4	20-150					3/15/23 23:30	
D7-NMeFOSE		64.6	20-150					3/15/23 23:30	
D9-NEtFOSE		64.8	20-150					3/15/23 23:30	
13C3-HFPO-DA		75.7	20-150					3/15/23 23:30	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-01-021023

Sampled: 2/10/2023 10:15

Sample ID: 23B1340-04
Sample Matrix: Water

1.4-Dioxane by isotope dilution GC/M	1.4-Dioxane	by isotone	dilution	GC/MS
--------------------------------------	-------------	------------	----------	-------

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		32	0.20	μg/L	1		SW-846 8270E	2/15/23	2/21/23 18:48	SPF
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			22.0	15-110					2/21/23 18:48	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-01-021023 Sampled: 2/10/2023 10:15

Sample ID: 23B1340-04
Sample Matrix: Water

		5	Semivolatile Organic Co	mpounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	38	3.6	ng/L	1	-	Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoropentanoic acid (PFPeA)	22	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorohexanoic acid (PFHxA)	34	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoroheptanoic acid (PFHpA)	15	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorooctanoic acid (PFOA)	47	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorononanoic acid (PFNA)	10	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorodecanoic acid (PFDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoroundecanoic acid (PFUnA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorododecanoic acid (PFDoA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorotridecanoic acid (PFTrDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorotetradecanoic acid (PFTeDA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorobutanesulfonic acid (PFBS)	5.9	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoropetanesulfonic acid (PFPeS)	3.9	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorohexanesulfonic acid (PFHxS)	10	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoroheptanesulfonic acid (PFHpS)	1.1	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorooctanesulfonic acid (PFOS)	17	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorononanesulfonic acid (PFNS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorodecanesulfonic acid (PFDS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorododecanesulfonic acid (PFDoS)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
1H,1H,2H,2H-Perfluorooctane sulfonic	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
acid (6:2FTS) 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluorooctanesulfonamide (PFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-MeFOSAA (NMeFOSAA)	ND	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-EtFOSAA (NEtFOSAA)	4.8	0.91	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.1	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE) Hexafluoropropylene oxide dimer acid	ND ND	9.1	ng/L	1		Draft Method 1633 Draft Method 1633	2/22/23 2/22/23	3/15/23 23:46 3/15/23 23:46	DRL DRL
(HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
(ADONA) 9Cl-PF3ONS (F53B Minor)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
11Cl-PF3OUdS (F53B Major)	ND	3.6	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
3-Perfluoropropyl propanoic acid (FPrPA)	ND	9.1	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
(3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic	ND	45	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	45	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
							Г	D 00	- (= 0

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023

Field Sample #: ASF-CP-01-021023 Sampled: 2/10/2023 10:15

Sample ID: 23B1340-04
Sample Matrix: Water

Semivolatile Organic Compounds by - LC/MS-MS $\,$

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
(PFMBA)									
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		Draft Method 1633	2/22/23	3/15/23 23:46	DRL
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
13C4-PFBA		76.4	20-150					3/15/23 23:46	
13C5-PFPeA		70.3	20-150					3/15/23 23:46	
13C5-PFHxA		76.6	20-150					3/15/23 23:46	
13C4-PFHpA		77.7	20-150					3/15/23 23:46	
13C8-PFOA		77.6	20-150					3/15/23 23:46	
13C9-PFNA		75.9	20-150					3/15/23 23:46	
13C6-PFDA		75.5	20-150					3/15/23 23:46	
13C7-PFUnA		71.4	20-150					3/15/23 23:46	
13C2-PFDoA		63.8	20-150					3/15/23 23:46	
13C2-PFTeDA		63.3	20-150					3/15/23 23:46	
13C3-PFBS		76.1	20-150					3/15/23 23:46	
13C3-PFHxS		79.0	20-150					3/15/23 23:46	
13C8-PFOS		73.6	20-150					3/15/23 23:46	
13C2-4:2FTS		142	20-150					3/15/23 23:46	
13C2-6:2FTS		105	20-150					3/15/23 23:46	
13C2-8:2FTS		81.5	20-150					3/15/23 23:46	
13C8-PFOSA		63.5	20-150					3/15/23 23:46	
D3-NMeFOSA		57.3	20-150					3/15/23 23:46	
D5-NEtFOSA		59.3	20-150					3/15/23 23:46	
D3-NMeFOSAA		69.6	20-150					3/15/23 23:46	
D5-NEtFOSAA		74.1	20-150					3/15/23 23:46	
D7-NMeFOSE		62.4	20-150					3/15/23 23:46	
D9-NEtFOSE		62.2	20-150					3/15/23 23:46	
13C3-HFPO-DA		75.7	20-150					3/15/23 23:46	

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023
Field Sample #: TB-021023

Sampled: 2/10/2023 10:20

Sample ID: 23B1340-05
Sample Matrix: Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	inpounds by G	C/NS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Bromoform	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Chloromethane	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Cyclohexane	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,4-Dioxane	ND	50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Isopropylbenzene (Cumene)	ND	1.0		1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D			
Methyl tert-Butyl Ether (MTBE)			μg/L				2/15/23	2/15/23 12:08	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Methylene Chloride	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
•	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH

Page 25 of 58

Project Location: Old Bethpage, New York Sample Description: Work Order: 23B1340

Date Received: 2/11/2023 **Field Sample #: TB-021023**

Sampled: 2/10/2023 10:20

Sample ID: 23B1340-05
Sample Matrix: Water

Volatile	Organic	Compound	le hv	CC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Xylenes (total)	ND	1.0	μg/L	1		SW-846 8260D	2/15/23	2/15/23 12:08	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		107	70-130					2/15/23 12:08	
Toluene-d8		101	70-130					2/15/23 12:08	
4-Bromofluorobenzene		101	70-130					2/15/23 12:08	

Sample Extraction Data

Prep Method: Draft Method 1633 Analytical Method: Draft Methodte638ere extracted on 2/14/2023 per NO PREP in Batch B331424

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B1340-01 [PD-CP-00-021023]	B331794	555	5.00	02/22/23
23B1340-02 [PD-CP-01-021023]	B331794	550	5.00	02/22/23
23B1340-03 [ASF-CP-00-021023]	B331794	522	5.00	02/22/23
23B1340-04 [ASF-CP-01-021023]	B331794	552	5.00	02/22/23

Prep Method: SW-846 5030B Analytical Method: SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B1340-01 [PD-CP-00-021023]	B331563	5	5.00	02/15/23
23B1340-02 [PD-CP-01-021023]	B331563	5	5.00	02/15/23
23B1340-05 [TB-021023]	B331563	5	5.00	02/15/23

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B1340-01 [PD-CP-00-021023]	B331566	1020	1.00	02/15/23
23B1340-02 [PD-CP-01-021023]	B331566	960	1.00	02/15/23
23B1340-03 [ASF-CP-00-021023]	B331566	1020	1.00	02/15/23
23B1340-04 [ASF-CP-01-021023]	B331566	1020	1.00	02/15/23

Prep Method: SW-846 3510C Analytical Method: SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23B1340-02 [PD-CP-01-021023]	B331882	1020	1.00	02/17/23

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Blank (B331563-BLK1)			
Acetone	ND	50	μg/L
Acrylonitrile	ND	5.0	μg/L
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L
Benzene	ND	1.0	μg/L
Bromobenzene	ND	1.0	μg/L
Bromochloromethane	ND	1.0	μg/L
Bromodichloromethane	ND	0.50	μg/L
Bromoform	ND	1.0	μg/L
Bromomethane	ND	2.0	μg/L
-Butanone (MEK)	ND	20	μg/L
ert-Butyl Alcohol (TBA)	ND	20	μg/L
n-Butylbenzene	ND	1.0	μg/L
ec-Butylbenzene	ND	1.0	μg/L
ert-Butylbenzene	ND	1.0	μg/L
ert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L
Carbon Disulfide	ND	5.0	μg/L
Carbon Tetrachloride	ND	5.0	μg/L
Chlorobenzene	ND	1.0	μg/L
Chlorodibromomethane	ND	0.50	μg/L
Chloroethane	ND	2.0	μg/L
Chloroform	ND	2.0	μg/L
Chloromethane	ND	2.0	μg/L
2-Chlorotoluene	ND ND	1.0	μg/L
4-Chlorotoluene	ND	1.0	μg/L
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L
1,2-Dibromoethane (EDB)	ND ND	0.50	μg/L μg/L
Dibromomethane	ND ND	1.0	μg/L μg/L
1,2-Dichlorobenzene	ND ND	1.0	μg/L
,3-Dichlorobenzene	ND ND	1.0	μg/L μg/L
,4-Dichlorobenzene	ND ND	1.0	μg/L μg/L
rans-1,4-Dichloro-2-butene		2.0	μg/L μg/L
Dichlorodifluoromethane (Freon 12)	ND ND	2.0	μg/L μg/L
.1-Dichloroethane	ND	1.0	μg/L μg/L
,2-Dichloroethane	ND ND	1.0	μg/L μg/L
,1-Dichloroethylene	ND	1.0	
·	ND		μg/L μg/I
ris-1,2-Dichloroethylene	ND	1.0	μg/L
rans-1,2-Dichloroethylene	ND	1.0	μg/L
,2-Dichloropropane	ND	1.0	μg/L
1,3-Dichloropropane	ND	0.50	μg/L
2,2-Dichloropropane	ND	1.0	μg/L
1,1-Dichloropropene	ND	2.0	μg/L
cis-1,3-Dichloropropene	ND	0.50	μg/L
trans-1,3-Dichloropropene	ND	0.50	μg/L
Diethyl Ether	ND	2.0	μg/L
Diisopropyl Ether (DIPE)	ND	0.50	μg/L
1,4-Dioxane	ND	50	$\mu g/L$
Ethylbenzene	ND	1.0	$\mu g/L$
Hexachlorobutadiene	ND	0.60	$\mu g/L$
2-Hexanone (MBK)	ND	10	$\mu g/L$
Isopropylbenzene (Cumene)	ND	1.0	μg/L
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu \text{g/L}$
Methyl Acetate	ND	1.0	μg/L

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
eatch B331563 - SW-846 5030B										
Blank (B331563-BLK1)				Prepared & A	Analyzed: 02	/15/23				
1ethyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
1ethyl Cyclohexane	ND	1.0	μg/L							
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	$\mu g/L$							
1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
etrachloroethylene	ND	1.0	$\mu g/L$							
etrahydrofuran	ND	10	$\mu g/L$							
luene	ND	1.0	$\mu g/L$							
2,3-Trichlorobenzene	ND	5.0	$\mu \text{g/L}$							
2,4-Trichlorobenzene	ND	1.0	$\mu g/L$							
3,5-Trichlorobenzene	ND	1.0	$\mu g \! / \! L$							
1,1-Trichloroethane	ND	1.0	$\mu g/L$							
1,2-Trichloroethane	ND	1.0	$\mu g/L$							
richloroethylene	ND	1.0	$\mu g/L$							
richlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	$\mu g/L$							
inyl Chloride	ND	2.0	$\mu g/L$							
+p Xylene	ND	2.0	$\mu g/L$							
Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	27.2		$\mu g/L$	25.0		109	70-130			
urrogate: Toluene-d8	25.3		μg/L	25.0		101	70-130			
urrogate: 4-Bromofluorobenzene	25.4		μg/L	25.0		101	70-130			
CS (B331563-BS1)				Prepared & A	Analyzed: 02	/15/23				
cetone	99.4	50	$\mu g/L$	100		99.4	70-160			
crylonitrile	10.5	5.0	$\mu \text{g/L}$	10.0		105	70-130			
rt-Amyl Methyl Ether (TAME)	9.72	0.50	$\mu g/L$	10.0		97.2	70-130			
enzene	9.94	1.0	$\mu g/L$	10.0		99.4	70-130			
romobenzene	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130			
romochloromethane	10.7	1.0	$\mu g/L$	10.0		107	70-130			
romodichloromethane	9.94	0.50	$\mu g \! / \! L$	10.0		99.4	70-130			
romoform	10.4	1.0	$\mu g/L$	10.0		104	70-130			
romomethane	10.6	2.0	$\mu g/L$	10.0		106	40-160			
Butanone (MEK)	102	20	$\mu g/L$	100		102	40-160			
rt-Butyl Alcohol (TBA)	103	20	μg/L	100		103	40-160			
Butylbenzene	10.4	1.0	μg/L	10.0		104	70-130			
c-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130			
rt-Butylbenzene	10.1	1.0	μg/L	10.0		101	70-130			
rt-Butyl Ethyl Ether (TBEE)	10.0	0.50	μg/L	10.0		100	70-130			
arbon Disulfide	116	5.0	μg/L	100		116	70-130			
arbon Tetrachloride	11.0	5.0	μg/L	10.0		110	70-130			
hlorobenzene	10.3	1.0	μg/L	10.0		103	70-130			
hlorodibromomethane	10.5	0.50	μg/L μg/L	10.0		106	70-130			
hloroethane	10.6	2.0	μg/L μg/L	10.0		122	70-130			
Chloroform	10.2	2.0	μg/L	10.0		102	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
eatch B331563 - SW-846 5030B										
CS (B331563-BS1)				Prepared & A	Analyzed: 02	/15/23				
hloromethane	9.14	2.0	$\mu g \! / \! L$	10.0		91.4	40-160			
-Chlorotoluene	9.29	1.0	μg/L	10.0		92.9	70-130			
Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130			
2-Dibromo-3-chloropropane (DBCP)	9.98	5.0	μg/L	10.0		99.8	70-130			
2-Dibromoethane (EDB)	10.6	0.50	μg/L	10.0		106	70-130			
bromomethane	10.5	1.0	μg/L	10.0		105	70-130			
2-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130			
3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130			
4-Dichlorobenzene	9.80	1.0	μg/L	10.0		98.0	70-130			
ns-1,4-Dichloro-2-butene	10.3	2.0	$\mu g/L$	10.0		103	70-130			
chlorodifluoromethane (Freon 12)	11.3	2.0	μg/L	10.0		113	40-160			
-Dichloroethane	10.1	1.0	$\mu g/L$	10.0		101	70-130			
2-Dichloroethane	10.2	1.0	$\mu g/L$	10.0		102	70-130			
-Dichloroethylene	11.2	1.0	$\mu g/L$	10.0		112	70-130			
-1,2-Dichloroethylene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
ns-1,2-Dichloroethylene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
2-Dichloropropane	9.26	1.0	$\mu g/L$	10.0		92.6	70-130			
3-Dichloropropane	10.1	0.50	$\mu g/L$	10.0		101	70-130			
2-Dichloropropane	11.0	1.0	$\mu g/L$	10.0		110	40-130			
-Dichloropropene	10.1	2.0	$\mu g \! / \! L$	10.0		101	70-130			
-1,3-Dichloropropene	10.3	0.50	$\mu g \! / \! L$	10.0		103	70-130			
ns-1,3-Dichloropropene	10.2	0.50	$\mu g\!/\!L$	10.0		102	70-130			
ethyl Ether	10.6	2.0	$\mu g \! / \! L$	10.0		106	70-130			
isopropyl Ether (DIPE)	9.78	0.50	$\mu g \! / \! L$	10.0		97.8	70-130			
-Dioxane	93.3	50	$\mu \text{g/L}$	100		93.3	40-130			
nylbenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130			
exachlorobutadiene	10.8	0.60	$\mu g \! / \! L$	10.0		108	70-130			
Hexanone (MBK)	101	10	$\mu \text{g/L}$	100		101	70-160			
ppropylbenzene (Cumene)	10.3	1.0	$\mu \text{g/L}$	10.0		103	70-130			
Isopropyltoluene (p-Cymene)	10.1	1.0	$\mu g/L$	10.0		101	70-130			
ethyl Acetate	9.93	1.0	$\mu g/L$	10.0		99.3	70-130			
ethyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.0		102	70-130			
ethyl Cyclohexane	10.1	1.0	μg/L	10.0		101	70-130			
ethylene Chloride	11.0	5.0	μg/L	10.0		110	70-130			
Methyl-2-pentanone (MIBK)	102	10	$\mu g/L$	100		102	70-160			
aphthalene	9.85	2.0	μg/L	10.0		98.5	40-130			
Propylbenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130			
yrene	10.3	1.0	$\mu g/L$	10.0		103	70-130			
1,1,2-Tetrachloroethane	10.2	1.0	μg/L	10.0		102	70-130			
1,2,2-Tetrachloroethane	10.4	0.50	μg/L	10.0		104	70-130			
trachloroethylene	10.4	1.0	μg/L	10.0		104	70-130			
trahydrofuran	9.72	10	μg/L	10.0		97.2	70-130			
luene	10.4	1.0	μg/L	10.0		104	70-130			
2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0		103	70-130			
2,4-Trichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130			
5,5-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130			
,1-Trichloroethane	10.7	1.0	μg/L	10.0		107	70-130			
,2-Trichloroethane	10.3	1.0	μg/L	10.0		103	70-130			
richloroethylene	10.5	1.0	μg/L	10.0		105	70-130			
ichlorofluoromethane (Freon 11)	11.7	2.0	μg/L	10.0		117	70-130			
2,3-Trichloropropane	10.4	2.0	μg/L	10.0		104	70-130			

QUALITY CONTROL

analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B331563 - SW-846 5030B										
CS (B331563-BS1)				Prepared & A	Analyzed: 02	/15/23				
1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.6	1.0	μg/L	10.0		116	70-130			
13) 2,4-Trimethylbenzene	10.2	1.0	ug/I	10.0		102	70 120			
3,5-Trimethylbenzene	10.3	1.0	μg/L	10.0		103	70-130			
inyl Chloride	10.5	2.0	μg/L	10.0		105	70-130			
•	9.52		μg/L	10.0		95.2	40-160			
+p Xylene	21.7	2.0 1.0	μg/L	20.0		108	70-130			
-Xylene	10.8	1.0	μg/L	10.0		108	70-130			
urrogate: 1,2-Dichloroethane-d4	26.8		μg/L	25.0		107	70-130			
urrogate: Toluene-d8	25.6		μg/L	25.0		102	70-130			
urrogate: 4-Bromofluorobenzene	26.0		μg/L	25.0		104	70-130			
CS Dup (B331563-BSD1)				Prepared & A	Analyzed: 02	/15/23				
cetone	104	50	μg/L	100		104	70-160	4.13	25	
crylonitrile	10.4	5.0	μg/L	10.0		104	70-130	1.34	25	
rt-Amyl Methyl Ether (TAME)	9.61	0.50	μg/L	10.0		96.1	70-130	1.14	25	
enzene	9.76	1.0	μg/L	10.0		97.6	70-130	1.83	25	
romobenzene	10.3	1.0	μg/L	10.0		103	70-130	1.46	25	
romochloromethane	10.8	1.0	μg/L	10.0		108	70-130	0.744	25	
romodichloromethane	11.0	0.50	μg/L	10.0		110	70-130	10.0	25	
romoform	11.0	1.0	μg/L	10.0		110	70-130	5.68	25	
romomethane	12.2	2.0	μg/L	10.0		122	40-160	13.6	25	
-Butanone (MEK)	101	20	μg/L	100		101	40-160	0.560	25	
rt-Butyl Alcohol (TBA)	107	20	μg/L	100		107	40-160	4.10	25	
Butylbenzene	10.4	1.0	μg/L	10.0		104	70-130	0.00	25	
ec-Butylbenzene	10.2	1.0	μg/L	10.0		102	70-130	1.08	25	
rt-Butylbenzene	10.2	1.0	μg/L	10.0		102	70-130	0.591	25	
rt-Butyl Ethyl Ether (TBEE)	10.1	0.50	μg/L	10.0		101	70-130	0.498	25	
arbon Disulfide	121	5.0	μg/L	100		121	70-130	4.12	25	
arbon Tetrachloride	11.4	5.0	μg/L	10.0		114	70-130	3.48	25	
hlorobenzene	10.5	1.0	μg/L	10.0		105	70-130	1.64	25	
hlorodibromomethane	10.9	0.50	μg/L	10.0		109	70-130	2.99	25	
hloroethane	12.4	2.0	μg/L	10.0		124	70-130	1.55	25	
hloroform	10.4	2.0	μg/L	10.0		104	70-130	1.84	25	
hloromethane	7.60	2.0	μg/L	10.0		76.0	40-160	18.4	25	
-Chlorotoluene	9.61	1.0	μg/L	10.0		96.1	70-130	3.39	25	
-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130	2.49	25	
2-Dibromo-3-chloropropane (DBCP)	10.5	5.0	μg/L	10.0		105	70-130	4.89	25	
2-Dibromoethane (EDB)	10.4	0.50	μg/L	10.0		104	70-130	1.33	25	
ibromomethane	10.4	1.0	μg/L	10.0		104	70-130	1.15	25	
2-Dichlorobenzene	9.89	1.0	μg/L	10.0		98.9	70-130	2.59	25	
3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.687	25	
4-Dichlorobenzene	9.99	1.0	μg/L	10.0		99.9	70-130	1.92	25	
ans-1,4-Dichloro-2-butene	10.5	2.0	μg/L	10.0		105	70-130	1.92	25	
ichlorodifluoromethane (Freon 12)	11.6	2.0	μg/L	10.0		116	40-160	2.36	25	
1-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.38	25	
2-Dichloroethane	10.1	1.0	μg/L	10.0		101	70-130	1.18	25	
1-Dichloroethylene	11.6	1.0	μg/L	10.0		116	70-130	3.24	25	
s-1,2-Dichloroethylene	10.5	1.0	μg/L	10.0		105	70-130	1.92	25	
ans-1,2-Dichloroethylene	10.4	1.0	μg/L	10.0		104	70-130	1.45	25	
2-Dichloropropane	9.38	1.0	μg/L	10.0		93.8	70-130	1.29	25	
3-Dichloropropane	9.91	0.50	μg/L	10.0		99.1	70-130	1.90	25	
3-Dicinoropiopane	1.71		1.0-							
2-Dichloropropane	11.6	1.0	μg/L	10.0		116	40-130	5.85	25	

QUALITY CONTROL

Batch B331563 - SW-846 5030B											_
											_
LCS Dup (B331563-BSD1)				Prepared & A	Analyzed: 02	/15/23					
cis-1,3-Dichloropropene	10.6	0.50	$\mu g/L$	10.0		106	70-130	2.78	25		
trans-1,3-Dichloropropene	10.3	0.50	$\mu \text{g/L}$	10.0		103	70-130	1.07	25		
Diethyl Ether	11.1	2.0	$\mu g/L$	10.0		111	70-130	4.62	25		
Diisopropyl Ether (DIPE)	9.96	0.50	$\mu g/L$	10.0		99.6	70-130	1.82	25		
1,4-Dioxane	88.1	50	$\mu g/L$	100		88.1	40-130	5.71	50		† :
Ethylbenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130	0.476	25		
Hexachlorobutadiene	10.6	0.60	$\mu g/L$	10.0		106	70-130	2.15	25		
2-Hexanone (MBK)	102	10	$\mu g/L$	100		102	70-160	1.36	25		†
Isopropylbenzene (Cumene)	10.5	1.0	$\mu g/L$	10.0		105	70-130	1.63	25		
p-Isopropyltoluene (p-Cymene)	10.1	1.0	$\mu g/L$	10.0		101	70-130	0.198	25		
Methyl Acetate	10.6	1.0	$\mu g/L$	10.0		106	70-130	7.00	25		
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	$\mu g/L$	10.0		102	70-130	0.197	25		
Methyl Cyclohexane	10.1	1.0	$\mu g/L$	10.0		101	70-130	0.0990	25		
Methylene Chloride	11.2	5.0	$\mu g/L$	10.0		112	70-130	2.61	25		
4-Methyl-2-pentanone (MIBK)	99.5	10	$\mu g\!/\!L$	100		99.5	70-160	2.58	25		†
Naphthalene	10.2	2.0	μg/L	10.0		102	40-130	3.39	25		†
n-Propylbenzene	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.192	25		
Styrene	10.5	1.0	$\mu \text{g/L}$	10.0		105	70-130	2.21	25		
1,1,1,2-Tetrachloroethane	10.7	1.0	$\mu g/L$	10.0		107	70-130	4.67	25		
1,1,2,2-Tetrachloroethane	10.3	0.50	$\mu g/L$	10.0		103	70-130	0.484	25		
Tetrachloroethylene	10.5	1.0	μg/L	10.0		105	70-130	0.573	25		
Tetrahydrofuran	9.47	10	μg/L	10.0		94.7	70-130	2.61	25		
Toluene	10.0	1.0	μg/L	10.0		100	70-130	4.00	25		
1,2,3-Trichlorobenzene	10.3	5.0	μg/L	10.0		103	70-130	0.194	25		
1,2,4-Trichlorobenzene	10.1	1.0	μg/L	10.0		101	70-130	1.47	25		
1,3,5-Trichlorobenzene	10.0	1.0	μg/L	10.0		100	70-130	0.695	25		
1,1,1-Trichloroethane	11.0	1.0	$\mu g/L$	10.0		110	70-130	2.58	25		
1,1,2-Trichloroethane	10.2	1.0	$\mu g/L$	10.0		102	70-130	0.293	25		
Trichloroethylene	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.858	25		
Trichlorofluoromethane (Freon 11)	12.0	2.0	$\mu g/L$	10.0		120	70-130	2.36	25		
1,2,3-Trichloropropane	10.3	2.0	μg/L	10.0		103	70-130	0.868	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	11.7	1.0	μg/L	10.0		117	70-130	0.687	25		
113)											
1,2,4-Trimethylbenzene	10.2	1.0	μg/L	10.0		102	70-130	0.975	25		
1,3,5-Trimethylbenzene	10.6	1.0	μg/L	10.0		106	70-130	0.663	25		
Vinyl Chloride	10.5	2.0	μg/L	10.0		105	40-160	9.70	25		†
m+p Xylene	21.4	2.0	μg/L	20.0		107	70-130	1.58	25		
o-Xylene	10.6	1.0	μg/L	10.0		106	70-130	1.77	25		
Surrogate: 1,2-Dichloroethane-d4	27.1		μg/L	25.0		109	70-130				
Surrogate: Toluene-d8	25.2		$\mu g/L$	25.0		101	70-130				
Surrogate: 4-Bromofluorobenzene	26.3		$\mu g/L$	25.0		105	70-130				
Matrix Spike (B331563-MS1)	Sou	rce: 23B1340-	01	Prepared & A	Analyzed: 02	/15/23					
Acetone	91.4	50	μg/L	100	2.76	88.7	70-130				_
Acrylonitrile	8.83	5.0	μg/L	10.0	ND		70-130				
tert-Amyl Methyl Ether (TAME)	8.67	0.50	μg/L	10.0	ND		70-130				
Benzene	9.35	1.0	μg/L	10.0	ND		70-130				
Bromobenzene	9.40	1.0	μg/L	10.0	ND		70-130				
Bromochloromethane	10.5	1.0	μg/L	10.0	ND		70-130				
Bromodichloromethane	9.73	0.50	μg/L	10.0	ND		70-130				
Bromoform	9.73	1.0	μg/L	10.0	ND		70-130				
Bromomethane	9.91	2.0	μg/L	10.0	ND		70-130				
2-Butanone (MEK)	87.9	20	μg/L	100	ND		70-130				
	07.2	•		100	ND				F	age 32 o	f 58

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

tert-Butyl Alcohol (TBA) 99.4 20 µg/L 100 n-Butylbenzene 9.53 1.0 µg/L 10.0 sec-Butylbenzene 9.60 1.0 µg/L 10.0 sec-Butylbenzene 9.66 1.0 µg/L 10.0 tert-Butyl Ether (TBEE) 9.20 0.50 µg/L 10.0 Carbon Disulfide 114 5.0 µg/L 10.0 Carbon Tetrachloride 10.9 5.0 µg/L 10.0 Carbon Tetrachloride 10.9 5.0 µg/L 10.0 Chlorodibromomethane 9.85 0.50 µg/L 10.0 Chlorodromethane 9.85 0.50 µg/L 10.0 Chlorodromethane 11.7 2.0 µg/L 10.0 Chlorodromethane 6.59 2.0 µg/L 10.0 Chlorodromethane 8.75 1.0 µg/L 10.0 Chlorodrotoluene 8.75 1.0 µg/L 10.0 1,2-Dibromo-3-chloropropane (DBCP) 8.29 5.0 µg/L 10.0 1,2-Dibromoethane 10.1 1.0 µg/L 10.0 Dibromomethane 10.1 1.0 µg/L 10.0 1,3-Dichlorobenzene 9.40 1.0 µg/L 10.0 1,3-Dichlorobenzene 9.47 1.0 µg/L 10.0 1,4-Dichlorobenzene 9.39 1.0 µg/L 10.0 1,1-Dichlorobenzene 9.72 1.0 µg/L 10.0 1,1-Dichlorocthane 9.72 1.0 µg/L 10.0 1,1-Dichlorocthane (Fron 12) 11.2 2.0 µg/L 10.0 1,1-Dichlorocthane 9.75 1.0 µg/L 10.0 1,1-Dichlorocthane 9.75 1.0 µg/L 10.0 1,1-Dichlorocthane 9.75 1.0 µg/L 10.0 1,1-Dichlorocthane 9.78 1.0 µg/L 10.0 1,1-Dichlorocthane 9.79 1.0 µg/L 10.0 1,1-Dichlorocthylene 11.3 1.0 µg/L 10.0 1,1-Dichlorocthylene 11.3 1.0 µg/L 10.0 1,1-Dichlorocthylene 9.75 1.0 µg/L 10.0 1,1-Dichloropopane 9.90 0.50 µg/L 10.0 1,1-Dichloropopane 9.10 0.50 µg/L 10.0	ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 * 70-130	MS-23, R-0
n-Butylbenzene 9,53 1.0 µg/L 10.0 neth-Butylbenzene 9,60 1.0 µg/L 10.0 neth-Butylbenzene 9,56 1.0 µg/L 10.0 neth-Butylbenzene 11.7 neth-Butylbenzene 11.7 neth-Butylbenzene 11.7 neth-Butylbenzene 11.7 neth-Butylbenzene 10.0 neth-Butylbenzene 10.0 neth-Butylbenzene 10.0 neth-Butylbenzene 10.0 neth-Butylbenzene 10.0 neth-Butylbenzene 10.1 neth-Butylbenzene 10.0 neth-Butylbenzene 1	ND 95.3 ND 96.0 ND 95.6 ND 95.6 ND 92.0 ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
200 1.0 mg/L 10.0 mg	ND 96.0 ND 95.6 ND 95.6 ND 92.0 ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Sert-Butyl Ethyl	ND 95.6 ND 92.0 ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Part-Butyl Ethyl	ND 92.0 ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Carbon Disulfide 114 5.0 µg/L 100 Carbon Tetrachloride 10.9 5.0 µg/L 10.0 Chlorobenzene 9.89 1.0 µg/L 10.0 Chlorodibromomethane 9.85 0.50 µg/L 10.0 Chloroform 9.83 2.0 µg/L 10.0 Chlorotoluene 6.59 2.0 µg/L 10.0 Chlorotoluene 8.75 1.0 µg/L 10.0 Chlorotoluene 9.63 1.0 µg/L 10.0 Chlorotoluene 9.63 1.0 µg/L 10.0 Chlorotoluene 9.63 1.0 µg/L 10.0 C-Chlorotoluene 9.63 1.0 µg/L 10.0 C-Chlorotoluene 9.63 1.0 µg/L 10.0 C-Chlorotoluene 9.88 0.50 µg/L 10.0 C-Chlorotoluene 9.88 0.50 µg/L 10.0 D-C-Chlorotoene 9.40 1.0 µg/L </td <td>ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1</td> <td>70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130</td> <td>MS-23, R-0</td>	ND 114 ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Carbon Tetrachloride 10.9 5.0 µg/L 10.0	ND 109 ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chlorodibromomethane 9,89 1.0	ND 98.9 ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chlorodibromomethane 9,85 0.50 µg/L 10.0 Chloroform 11.7 2.0 µg/L 10.0 Chloroform 9.83 2.0 µg/L 10.0 Chloromethane 6.59 2.0 µg/L 10.0 Chlorodiume 8.75 1.0 µg/L 10.0 Chlorotolume 9.63 1.0 µg/L 10.0 Chlorotolume 10.1 1.0 µg/L 10.0 Chloromomethane 10.1 1.0 µg/L 10.0 Chloromomethane 10.1 1.0 µg/L 10.0 Chloromomethane 9.40 1.0 µg/L 10.0 Chlorobenzeme 9.47 1.0 µg/L 10.0 Chlorobenzeme 9.39 1.0 µg/L 10.0 Chlorobenzeme 9.72 1.0 µg/L 10.0 Chlorobenzeme 9.72 1.0 µg/L 10.0 Chlorobenzeme 9.78 1.0 µg/L 10.0 Chlorobenzeme 9.78 1.0 µg/L 10.0 Chlorobenzeme 11.3 1.0 µg/L 10.0 Chlorobenzeme 10.0 1.0 µg/L 10.0 Chloropenzeme 10.0 1	ND 98.5 ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chlorothane Chloroform 11.7 2.0 µg/L 10.0 Chloroform 9.83 2.0 µg/L 10.0 Chlorothane 6.59 2.0 µg/L 10.0 Chlorotoluene 8.75 1.0 µg/L 10.0 Chlorotoluene 9.63 1.0 µg/L 10.0 Chlorotoluene 9.88 0.50 µg/L 10.0 Chloromethane 10.1 1.0 µg/L 10.0 Chloromethane 10.1 1.0 µg/L 10.0 Chlorotoluene 9.40 1.0 µg/L 10.0 Chlorotoluene 9.47 1.0 µg/L 10.0 Chlorotoluene 9.49 1.0 µg/L 10.0 Chlorotoluene 9.49 1.0 µg/L 10.0 Chlorotoluene 9.49 1.0 µg/L 10.0 Chlorotoluene 9.72 1.0 µg/L 10.0 Chlorotoluene 9.78 1.0 µg/L 10.0 Chlorotoluene 9.78 1.0 µg/L 10.0 Chlorotoluene 9.75 1.0 µg/L 10.0 Chlorotoluene 9.75 1.0 µg/L 10.0 Chlorotoluene 10.0 Chlorotoluene 10.0 Chlorotoluene 10.0 Chlorotoluene 9.75 1.0 µg/L 10.0 Chlorotoluene 10.0 Chlorotoluene 9.75 1.0 µg/L 10.0 Chlorotoluene 10.0 Chl	ND 117 ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chloroform 9,83 2.0	ND 98.3 ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 * 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chloromethane 6.59 2.0 µg/L 10.0 -Chlorotoluene 8.75 1.0 µg/L 10.0 -Chlorotoluene 9.63 1.0 µg/L 10.0 ,2-Dibromo-3-chloropropane (DBCP) 8.29 5.0 µg/L 10.0 ,2-Dibromoethane (EDB) 9.88 0.50 µg/L 10.0 bibromomethane 10.1 1.0 µg/L 10.0 ,2-Dichlorobenzene 9.40 1.0 µg/L 10.0 ,3-Dichlorobenzene 9.47 1.0 µg/L 10.0 ,4-Dichlorobenzene 9.39 1.0 µg/L 10.0 ,4-Dichlorocethane 9.71 2.0 µg/L 10.0 ,1-Dichloroethane 9.72 1.0 µg/L 10.0 ,1-Dichloroethylene 9.78 1.0 µg/L 10.0 ,1-Dichloroethylene 11.3 1.0 µg/L 10.0 ,3-Dichloroptopane 8.92 1.0 µg/L 10.0 ,3-Dichloropropane	ND 65.9 ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	* 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	MS-23, R-0
Chlorotoluene 8.75 1.0	ND 87.5 ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130	
Chlorotoluene 9,63 1.0 μg/L 10.0 (2-Dibromo-3-chloropropane (DBCP) 8.29 5.0 μg/L 10.0 (2-Dibromoethane (EDB) 9,88 0.50 μg/L 10.0 (3-Dibromoethane (EDB) 9,88 0.50 μg/L 10.0 (3-Dichlorobenzene 9,40 1.0 μg/L 10.0 (3-Dichlorobenzene 9,47 1.0 μg/L 10.0 (3-Dichlorobenzene 9,39 1.0 μg/L 10.0 (3-Dichlorobenzene 8,71 2.0 μg/L 10.0 (3-Dichloro-2-butene 8,71 2.0 μg/L 10.0 (3-Dichloroethane (Freon 12) 11.2 2.0 μg/L 10.0 (3-Dichloroethane 9,72 1.0 μg/L 10.0 (3-Dichloroethane 9,78 1.0 μg/L 10.0 (3-Dichloroethane 11.3 1.0 μg/L 10.0 (3-Dichloroethylene 11.3 1.0 μg/L 10.0 (3-Dichloroethylene 9,75 1.0 μg/L 10.0 (3-Dichloroethylene 9,75 1.0 μg/L 10.0 (3-Dichloropropane 8,92 1.0 μg/L 10.0 (3-Dichloropropane 9,50 0.50 μg/L 10.0 (3-Dichloropropane 8,95 1.0 μg/L 10.0 (3-Dichloropropane 9,10 0.50 μg/L 10.0 (3-Dichloropropene 9,10 0.50 μg/L 10.0 (3-Dichloropropene 9,10 0.50 μg/L 10.0 (3-Dichloropropene 9,19 0.50 μg/L 10.0 (ND 96.3 ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130	
2.2-Dibromo-3-chloropropane (DBCP) 8.29 5.0 µg/L 10.0 2.2-Dibromoethane (EDB) 9.88 0.50 µg/L 10.0 3.4-Dichlorobenzene 9.40 1.0 µg/L 10.0 3.4-Dichlorobenzene 9.39 1.0 µg/L 10.0 3.5-Dichlorobenzene 9.39 1.0 µg/L 10.0 3.5-Dichlorobenzene 9.39 1.0 µg/L 10.0 3.5-Dichlorodifluoromethane (Freon 12) 11.2 2.0 µg/L 10.0 3.5-Dichlorodifluoromethane (Freon 12) 11.2 2.0 µg/L 10.0 3.5-Dichlorothane 9.72 1.0 µg/L 10.0 3.5-Dichlorothylene 11.3 1.0 µg/L 10.0 3.5-Dichlorothylene 10.0 1.0 µg/L 10.0 3.5-Dichloropropane 9.75 1.0 µg/L 10.0 3.5-Dichloropropane 9.50 0.50 µg/L 10.0 3.5-Dichloropropane 9.50 0.50 µg/L 10.0 3.5-Dichloropropane 9.10 0.50 µg/L 10.0	ND 82.9 ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130 70-130	
2-Dibromoethane (EDB) 9.88 0.50 µg/L 10.0	ND 98.8 ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130 70-130	
10.1 1.0 µg/L 10.0 µ	ND 101 ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130 70-130	
2.2-Dichlorobenzene 9.40 1.0 µg/L 10.0 3.3-Dichlorobenzene 9.47 1.0 µg/L 10.0 4.4-Dichlorobenzene 9.39 1.0 µg/L 10.0 2.5-Dichlorobenzene 9.39 1.0 µg/L 10.0 2.5-Dichlorodifluoromethane (Freon 12) 11.2 2.0 µg/L 10.0 3.1-Dichloroethane 9.72 1.0 µg/L 10.0 3.1-Dichloroethane 9.78 1.0 µg/L 10.0 3.1-Dichloroethylene 11.3 1.0 µg/L 10.0 3.1-Dichloroethylene 10.0 1.0 µg/L 10.0 3.1-Dichloroethylene 9.75 1.0 µg/L 10.0 3.1-Dichloroptopane 8.92 1.0 µg/L 10.0 3.1-Dichloroptopane 9.50 0.50 µg/L 10.0 3.1-Dichloroptopane 9.50 0.50 µg/L 10.0 3.1-Dichloroptopane 9.50 0.50 µg/L 10.0 3.1-Dichloroptopane 9.10 0.50 µg/L 10.0	ND 94.0 ND 94.7 ND 93.9 ND 87.1	70-130 70-130 70-130	
3-Dichlorobenzene 9,47 1.0 μg/L 10.0 4-Dichlorobenzene 9,39 1.0 μg/L 10.0 5	ND 94.7 ND 93.9 ND 87.1	70-130 70-130	
39 1.0	ND 93.9 ND 87.1	70-130	
Sans-1,4-Dichloro-2-butene Sans-1,4-Dich	ND 87.1		
11.2 2.0 μg/L 10.0 1.0			
1-Dichloroethane	ND 112	70-130	
2.2-Dichloroethane 9.78 1.0 μg/L 10.0 3.1-Dichloroethylene 11.3 1.0 μg/L 10.0 3.1-Dichloroethylene 10.0 1.0 μg/L 10.0 3.1-Dichloroethylene 9.75 1.0 μg/L 10.0 3.2-Dichloropropane 8.92 1.0 μg/L 10.0 3.3-Dichloropropane 9.50 0.50 μg/L 10.0 3.2-Dichloropropane 8.95 1.0 μg/L 10.0 3.1-Dichloropropane 8.95 1.0 μg/L 10.0 3.1-Dichloropropane 10.0 2.0 μg/L 10.0 3.1-Dichloropropane 9.10 0.50 μg/L 10.0 3.1-Dichloropropane	ND 112 ND 97.2	70-130	
1-Dichloroethylene 11.3 1.0 μg/L 10.0 10.0 10.0 μg/L 10.0 10.0 10.0 μg/L 10.0	ND 97.2 ND 97.8	70-130	
10.0 1.0 μg/L 10.0	ND 113	70-130	
10.0 10.0	ND 100	70-130	
2.2-Dichloropropane 8.92 1.0 μg/L 10.0 3.3-Dichloropropane 9.50 0.50 μg/L 10.0 3.2-Dichloropropane 8.95 1.0 μg/L 10.0 3.1-Dichloropropane 10.0 2.0 μg/L 10.0 3.1-Dichloropropene 9.10 0.50 μg/L 10.0 3.1-J.3-Dichloropropene 9.19 0.50 μg/L 10.0 3.1-J.3-Dichloropropene 9.19 0.50 μg/L 10.0 3.1-Dichloropropene 9.31 0.50 μg/L 10.0 3.1-Dichloropropene 9.10 0.50 μg/L 10.0 3.1-Dichlo	ND 97.5	70-130	
3-Dichloropropane 9.50 0.50 μg/L 10.0 3-Dichloropropane 8.95 1.0 μg/L 10.0 3-Dichloropropane 10.0 2.0 μg/L 10.0 3-Dichloropropene 9.10 0.50 μg/L 10.0 3-Dichloropropene 9.19 0.50 μg/L 10.0 3-Dichloropropene 9.19 0.50 μg/L 10.0 3-Dichloropropene 9.10 0.50 μg/L 10.0	ND 89.2	70-130	
2-Dichloropropane 8.95 1.0	ND 95.0	70-130	
1-Dichloropropene 10.0 2.0 μg/L 10.0 is-1,3-Dichloropropene 9.10 0.50 μg/L 10.0 rans-1,3-Dichloropropene 9.19 0.50 μg/L 10.0 Diethyl Ether 10.0 2.0 μg/L 10.0 Disisopropyl Ether (DIPE) 9.31 0.50 μg/L 10.0	ND 89.5	70-130	
is-1,3-Dichloropropene 9.10 0.50 μg/L 10.0 rans-1,3-Dichloropropene 9.19 0.50 μg/L 10.0 Diethyl Ether 10.0 2.0 μg/L 10.0 Disisopropyl Ether (DIPE) 9.31 0.50 μg/L 10.0	ND 100	70-130	
rans-1,3-Dichloropropene 9.19 0.50 μg/L 10.0 biethyl Ether 10.0 2.0 μg/L 10.0 biisiopropyl Ether (DIPE) 9.31 0.50 μg/L 10.0	ND 91.0	70-130	
Diethyl Ether 10.0 2.0 μg/L 10.0 Diisopropyl Ether (DIPE) 9.31 0.50 μg/L 10.0	ND 91.0 ND 91.9	70-130	
Dissopropyl Ether (DIPE) 9.31 0.50 μg/L 10.0		70-130	
4.70	ND 100 ND 93.1	70-130	
,4-Dioxane 111 50 μg/L 100		70-130	
	ND 111 ND 97.8	70-130	
		70-130	
7.25			
755	ND 93.3	70-130	
	ND 99.6	70-130	
-Isopropyltoluene (p-Cymene) 9.44 1.0 μg/L 10.0 tethyl Acetate 8.06 1.0 μg/L 10.0	ND 94.4	70-130	
	ND 80.6	70-130	
Iethyl tert-Butyl Ether (MTBE) 9.02 1.0 μg/L 10.0 Inthal Could have a series 1.0 μg/L 10.0	ND 90.2	70-130	
fethyl Cyclohexane 9.74 1.0 μg/L 10.0	ND 97.4	70-130	
Methylene Chloride 10.8 5.0 μg/L 10.0	ND 108	70-130	
-Methyl-2-pentanone (MIBK) 92.9 10 μg/L 100	ND 92.9	70-130	
[aphthalene 7.79 2.0 μg/L 10.0	ND 77.9	70-130	
-Propylbenzene 9.96 1.0 μg/L 10.0	ND 99.6	70-130	
tyrene 9.72 1.0 μg/L 10.0	ND 97.2	70-130	
,1,1,2-Tetrachloroethane 9.91 1.0 μg/L 10.0		70-130	
,1,2,2-Tetrachloroethane 9.53 0.50 μg/L 10.0 etrachloroethylene 10.3 1.0 μg/L 10.0	ND 99.1 ND 95.3	70-130 70-130	

QUALITY CONTROL

analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B331563 - SW-846 5030B										
Iatrix Spike (B331563-MS1)	Source	ce: 23B1340-	01	Prepared &	Analyzed: 02/1	5/23				
etrahydrofuran	10.8	10	$\mu \text{g/L}$	10.0	1.57	92.0	70-130			
oluene	9.77	1.0	μg/L	10.0	ND	97.7	70-130			
2,3-Trichlorobenzene	8.31	5.0	μg/L	10.0	ND	83.1	70-130			
2,4-Trichlorobenzene	8.63	1.0	μg/L	10.0	ND	86.3	70-130			
3,5-Trichlorobenzene	8.98	1.0	μg/L	10.0	ND	89.8	70-130			
1,1-Trichloroethane	10.5	1.0	μg/L	10.0	ND	105	70-130			
1,2-Trichloroethane	9.51	1.0	μg/L	10.0	ND	95.1	70-130			
ichloroethylene	9.84	1.0	μg/L	10.0	ND	98.4	70-130			
ichlorofluoromethane (Freon 11)	11.9	2.0	μg/L	10.0	ND	119	70-130			
2,3-Trichloropropane	9.35	2.0	μg/L	10.0	ND	93.5	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon 3)	11.3	1.0	μg/L	10.0	ND	113	70-130			
2,4-Trimethylbenzene	9.37	1.0	μg/L	10.0	ND	93.7	70-130			
3,5-Trimethylbenzene	9.89	1.0	$\mu \text{g/L}$	10.0	ND	98.9	70-130			
nyl Chloride	9.51	2.0	μg/L	10.0	ND	95.1	70-130			
+p Xylene	20.1	2.0	μg/L	20.0	ND	100	70-130			
Xylene	9.99	1.0	μg/L	10.0	ND	99.9	70-130			
rrogate: 1,2-Dichloroethane-d4	27.5		μg/L	25.0		110	70-130			
nrogate: Toluene-d8	25.6		$\mu g/L$	25.0		102	70-130			
rrogate: 4-Bromofluorobenzene	25.9		$\mu g/L$	25.0		104	70-130			
atrix Spike Dup (B331563-MSD1)	Source	Prepared &	Analyzed: 02/1	5/23						
cetone	89.3	50	$\mu g/L$	100	2.76	86.5	70-130	2.36	30	
erylonitrile	8.72	5.0	μg/L	10.0	ND	87.2	70-130	1.25	30	
t-Amyl Methyl Ether (TAME)	8.45	0.50	$\mu \text{g/L}$	10.0	ND	84.5	70-130	2.57	30	
enzene	8.96	1.0	μg/L	10.0	ND	89.6	70-130	4.26	30	
omobenzene	9.17	1.0	μg/L	10.0	ND	91.7	70-130	2.48	30	
romochloromethane	9.71	1.0	μg/L	10.0	ND	97.1	70-130	7.72	30	
romodichloromethane	9.94	0.50	μg/L	10.0	ND	99.4	70-130	2.14	30	
romoform	9.19	1.0	μg/L	10.0	ND	91.9	70-130	2.05	30	
romomethane	10.0	2.0	μg/L	10.0	ND	100	70-130	1.10	30	
Butanone (MEK)	84.3	20	μg/L	100	ND	84.3	70-130	4.22	30	
rt-Butyl Alcohol (TBA)						02.2		6.48		
	93.2	20	μg/L	100	ND	93.2	70-130		30	
3	8.59	1.0	$\mu \text{g}/L$	10.0	ND ND	85.9	70-130	10.4	30	
Butylbenzene ec-Butylbenzene		1.0 1.0	μg/L μg/L	10.0 10.0	ND ND	85.9 88.5	70-130 70-130	10.4 8.13	30 30	
c-Butylbenzene rt-Butylbenzene	8.59 8.85 8.85	1.0 1.0 1.0	μg/L μg/L μg/L	10.0 10.0 10.0	ND ND ND	85.9 88.5 88.5	70-130 70-130 70-130	10.4 8.13 7.71	30 30 30	
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	8.59 8.85 8.85 8.93	1.0 1.0 1.0 0.50	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0	ND ND ND ND	85.9 88.5 88.5 89.3	70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98	30 30 30 30	
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide	8.59 8.85 8.85 8.93	1.0 1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 100	ND ND ND ND	85.9 88.5 88.5 89.3 103	70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4	30 30 30 30 30	
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	8.59 8.85 8.85 8.93 103 10.5	1.0 1.0 1.0 0.50 5.0	μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND	85.9 88.5 88.5 89.3 103 105	70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39	30 30 30 30 30 30	
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene	8.59 8.85 8.85 8.93 103 10.5 9.32	1.0 1.0 1.0 0.50 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0	ND ND ND ND ND ND	85.9 88.5 88.5 89.3 103 105 93.2	70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93	30 30 30 30 30 30 30	
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hlorodibromomethane	8.59 8.85 8.85 8.93 103 10.5 9.32	1.0 1.0 1.0 0.50 5.0 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND	85.9 88.5 88.5 89.3 103 105 93.2 94.4	70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25	30 30 30 30 30 30 30 30 30	
c-Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene allorodibromomethane	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7	1.0 1.0 1.0 0.50 5.0 5.0 1.0 0.50 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428	30 30 30 30 30 30 30 30 30	
c-Butylbenzene tt-Butyl Ethyl Ether (TBEE) trbon Disulfide trbon Tetrachloride tolorobenzene tolorodibromomethane toloroform	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7	1.0 1.0 1.0 0.50 5.0 5.0 1.0 0.50 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 100 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47	30 30 30 30 30 30 30 30 30 30	
c-Butylbenzene tt-Butyl Ethyl Ether (TBEE) urbon Disulfide urbon Tetrachloride ulorobenzene ulorodibromomethane uloroform uloromethane	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22	1.0 1.0 0.50 5.0 5.0 0.50 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 **	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorobenzene alorodibromomethane aloroform aloromethane chloromethane	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46	1.0 1.0 0.50 5.0 5.0 0.50 2.0 2.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 *	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorodibromomethane aloroform aloromethane Chlorotoluene Chlorotoluene	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11	1.0 1.0 1.0 0.50 5.0 5.0 1.0 0.50 2.0 2.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 *	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride altorobenzene altorodibromomethane altoroform altoromethane Chlorotoluene C-Dibromo-3-chloropropane (DBCP)	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18	1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0 2.0 1.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) urbon Disulfide urbon Tetrachloride ulorobenzene ulorodibromomethane uloroform uloromethane cChlorotoluene cChlorotoluene c2-Dibromo-3-chloropropane (DBCP)	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18	1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0 2.0 2.0 1.0 1.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8 94.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55 1.34 4.87	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
cc-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene allorodibromomethane alloroform alloromethane Chlorotoluene Chlorotoluene 2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (EDB) ibromomethane	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18 9.41 9.38	1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0 2.0 2.0 1.0 5.0 1.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8 94.1 93.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55 1.34 4.87	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene tt-Butylbenzene tt-Butylbenzene tt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorobenzene alorodibromomethane aloroform aloromethane Chlorotoluene Chlorotoluene 2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (EDB) bromomethane 2-Dichlorobenzene	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18 9.41 9.38 8.76	1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0 2.0 2.0 1.0 1.0 5.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8 94.1 93.8 87.6	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55 1.34 4.87 7.39 7.05	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
cc-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorodibromomethane alorodibromomethane aloroform aloromethane Chlorotoluene Chlorotoluene 2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (EDB) ibromomethane 2-Dichlorobenzene 3-Dichlorobenzene	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18 9.41 9.38 8.76 8.76	1.0 1.0 1.0 0.50 5.0 5.0 1.0 0.50 2.0 2.0 1.0 1.0 5.0 0.50 1.0 1.0 1.0 1.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8 94.1 93.8 87.6 87.6	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55 1.34 4.87 7.39 7.05 7.79	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06
c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene	8.59 8.85 8.85 8.93 103 10.5 9.32 9.44 11.7 9.40 9.22 8.46 9.11 8.18 9.41 9.38 8.76	1.0 1.0 1.0 0.50 5.0 1.0 0.50 2.0 2.0 2.0 1.0 1.0 5.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	ND N	85.9 88.5 88.5 89.3 103 105 93.2 94.4 117 94.0 92.2 84.6 91.1 81.8 94.1 93.8 87.6	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	10.4 8.13 7.71 2.98 10.4 4.39 5.93 4.25 0.428 4.47 33.3 * 3.37 5.55 1.34 4.87 7.39 7.05	30 30 30 30 30 30 30 30 30 30 30 30 30 3	R-06

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B331563 - SW-846 5030B										
Matrix Spike Dup (B331563-MSD1)	Sou	rce: 23B1340-	01	Prepared &	Analyzed: 02/1	5/23			· · ·	
Dichlorodifluoromethane (Freon 12)	10.5	2.0	μg/L	10.0	ND	105	70-130	7.18	30	
1,1-Dichloroethane	9.50	1.0	$\mu g/L$	10.0	ND	95.0	70-130	2.29	30	
1,2-Dichloroethane	9.29	1.0	$\mu g/L$	10.0	ND	92.9	70-130	5.14	30	
1,1-Dichloroethylene	10.5	1.0	$\mu g/L$	10.0	ND	105	70-130	6.96	30	
cis-1,2-Dichloroethylene	9.52	1.0	$\mu g/L$	10.0	ND	95.2	70-130	5.42	30	
trans-1,2-Dichloroethylene	9.19	1.0	$\mu g/L$	10.0	ND	91.9	70-130	5.91	30	
1,2-Dichloropropane	8.58	1.0	$\mu \text{g}/L$	10.0	ND	85.8	70-130	3.89	30	
1,3-Dichloropropane	9.00	0.50	$\mu \text{g}/L$	10.0	ND	90.0	70-130	5.41	30	
2,2-Dichloropropane	8.64	1.0	$\mu g/L$	10.0	ND	86.4	70-130	3.52	30	
1,1-Dichloropropene	9.41	2.0	$\mu g/L$	10.0	ND	94.1	70-130	6.18	30	
cis-1,3-Dichloropropene	8.77	0.50	$\mu g/L$	10.0	ND	87.7	70-130	3.69	30	
trans-1,3-Dichloropropene	8.62	0.50	$\mu \text{g}/L$	10.0	ND	86.2	70-130	6.40	30	
Diethyl Ether	9.54	2.0	$\mu g/L$	10.0	ND	95.4	70-130	5.11	30	
Diisopropyl Ether (DIPE)	8.98	0.50	$\mu \text{g}/L$	10.0	ND	89.8	70-130	3.61	30	
1,4-Dioxane	110	50	$\mu \text{g}/L$	100	ND	110	70-130	0.705	30	
Ethylbenzene	9.24	1.0	$\mu g/L$	10.0	ND	92.4	70-130	5.68	30	
Hexachlorobutadiene	8.45	0.60	$\mu g/L$	10.0	ND	84.5	70-130	8.82	30	
2-Hexanone (MBK)	89.1	10	$\mu g/L$	100	ND	89.1	70-130	4.57	30	
Isopropylbenzene (Cumene)	9.24	1.0	$\mu g/L$	10.0	ND	92.4	70-130	7.50	30	
p-Isopropyltoluene (p-Cymene)	8.60	1.0	$\mu \text{g}/L$	10.0	ND	86.0	70-130	9.31	30	
Methyl Acetate	7.37	1.0	$\mu g/L$	10.0	ND	73.7	70-130	8.94	30	
Methyl tert-Butyl Ether (MTBE)	8.85	1.0	$\mu \text{g}/L$	10.0	ND	88.5	70-130	1.90	30	
Methyl Cyclohexane	8.76	1.0	$\mu \text{g}/L$	10.0	ND	87.6	70-130	10.6	30	
Methylene Chloride	10.0	5.0	$\mu g/L$	10.0	ND	100	70-130	7.19	30	
4-Methyl-2-pentanone (MIBK)	89.2	10	$\mu \text{g}/L$	100	ND	89.2	70-130	3.99	30	
Naphthalene	7.90	2.0	$\mu \text{g}/L$	10.0	ND	79.0	70-130	1.40	30	
n-Propylbenzene	9.27	1.0	$\mu \text{g/L}$	10.0	ND	92.7	70-130	7.18	30	
Styrene	9.26	1.0	$\mu \text{g/L}$	10.0	ND	92.6	70-130	4.85	30	
1,1,1,2-Tetrachloroethane	9.28	1.0	$\mu \text{g/L}$	10.0	ND	92.8	70-130	6.57	30	
1,1,2,2-Tetrachloroethane	9.18	0.50	$\mu \text{g/L}$	10.0	ND	91.8	70-130	3.74	30	
Tetrachloroethylene	9.60	1.0	$\mu \text{g}/L$	10.0	ND	96.0	70-130	7.42	30	
Tetrahydrofuran	10.5	10	$\mu \text{g}/L$	10.0	1.57	89.5	70-130	2.35	30	
Toluene	9.14	1.0	$\mu g/L$	10.0	ND	91.4	70-130	6.66	30	
1,2,3-Trichlorobenzene	8.34	5.0	$\mu g/L$	10.0	ND	83.4	70-130	0.360	30	
1,2,4-Trichlorobenzene	8.20	1.0	$\mu g/L$	10.0	ND	82.0	70-130	5.11	30	
1,3,5-Trichlorobenzene	8.37	1.0	$\mu \text{g/L}$	10.0	ND	83.7	70-130	7.03	30	
1,1,1-Trichloroethane	10.2	1.0	$\mu \text{g/L}$	10.0	ND	102	70-130	2.51	30	
1,1,2-Trichloroethane	9.07	1.0	$\mu \text{g/L}$	10.0	ND	90.7	70-130	4.74	30	
Trichloroethylene	9.57	1.0	$\mu \text{g/L}$	10.0	ND	95.7	70-130	2.78	30	
Trichlorofluoromethane (Freon 11)	11.0	2.0	$\mu \text{g/L}$	10.0	ND	110	70-130	8.57	30	
1,2,3-Trichloropropane	9.06	2.0	$\mu \text{g/L}$	10.0	ND	90.6	70-130	3.15	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	1.0	$\mu g \! / \! L$	10.0	ND	101	70-130	11.4	30	
113)	0 =-	1.0	∼/T	10.0	3.77	07.0	70.120	7.40	20	
1,2,4-Trimethylbenzene	8.70	1.0	μg/L	10.0	ND	87.0	70-130	7.42	30	
1,3,5-Trimethylbenzene	9.26	1.0	μg/L	10.0	ND	92.6	70-130	6.58	30	
Vinyl Chloride	9.58	2.0	μg/L	10.0	ND	95.8	70-130	0.733	30	
m+p Xylene	18.8	2.0	μg/L μα/Ι	20.0	ND	94.2	70-130	6.42	20	
o-Xylene	9.35	1.0	μg/L	10.0	ND	93.5	70-130	6.62	30	
Surrogate: 1,2-Dichloroethane-d4	27.4		μg/L	25.0		110	70-130			
Surrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	26.0		μg/L	25.0		104	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B331882 - SW-846 3510C										
lank (B331882-BLK1)				Prepared: 02	/17/23 Analy	yzed: 02/21/2	3			
cenaphthene	ND	5.0	μg/L							
cenaphthylene	ND	5.0	μg/L							
cetophenone	ND	10	μg/L							
niline	ND	5.0	μg/L							
nthracene	ND	5.0	μg/L							
enzidine	ND	20	μg/L							R-05, V-04, V-0 V-06
enzo(a)anthracene	ND	5.0	μg/L							
enzo(a)pyrene	ND	5.0	μg/L							
enzo(b)fluoranthene	ND	5.0	μg/L							
enzo(g,h,i)perylene	ND	5.0	μg/L							
enzo(k)fluoranthene	ND	5.0	μg/L							
enzoic Acid	ND	10	μg/L							
is(2-chloroethoxy)methane	ND	10	μg/L							
is(2-chloroethyl)ether	ND	10	μg/L							
is(2-chloroisopropyl)ether	ND	10	μg/L							
s(2-Ethylhexyl)phthalate	ND	10	μg/L							
Bromophenylphenylether	ND	10	μg/L							
ntylbenzylphthalate	ND	10	μg/L							
urbazole	ND	10	μg/L							
Chloroaniline	ND	10	μg/L							
Chloro-3-methylphenol	ND	10	μg/L							
Chloronaphthalene	ND	10	μg/L							
Chlorophenol	ND	10	μg/L							
Chlorophenylphenylether	ND	10	μg/L							
rysene	ND	5.0	$\mu g/L$							
benz(a,h)anthracene	ND	5.0	μg/L							
benzofuran	ND	5.0	μg/L							
-n-butylphthalate	ND	10	μg/L							
2-Dichlorobenzene	ND	5.0	μg/L							
3-Dichlorobenzene	ND	5.0	$\mu g/L$							
4-Dichlorobenzene	ND	5.0	$\mu g/L$							
3-Dichlorobenzidine	ND	10	$\mu g/L$							
4-Dichlorophenol	ND	10	$\mu g/L$							
ethylphthalate	ND	10	$\mu g/L$							
1-Dimethylphenol	ND	10	$\mu g/L$							
methylphthalate	ND	10	$\mu g/L$							
5-Dinitro-2-methylphenol	ND	10	$\mu g/L$							
4-Dinitrophenol	ND	10	$\mu g/L$							V-04, V-06
4-Dinitrotoluene	ND	10	$\mu g/L$							V-06
5-Dinitrotoluene	ND	10	$\mu g/L$							
-n-octylphthalate	ND	10	$\mu g/L$							
2-Diphenylhydrazine/Azobenzene	ND	10	$\mu g/L$							
uoranthene	ND	5.0	$\mu g/L$							
uorene	ND	5.0	$\mu g/L$							
exachlorobenzene	ND	10	$\mu g/L$							
exachlorobutadiene	ND	10	$\mu g/L$							
exachlorocyclopentadiene	ND	10	$\mu g/L$							
exachloroethane	ND	10	$\mu g/L$							
deno(1,2,3-cd)pyrene	ND	5.0	$\mu g/L$							
phorone	ND	10	$\mu g/L$							
Methylnaphthalene	ND	5.0	$\mu g/L$							
Methylnaphthalene	ND	5.0	μg/L							

Notes

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

Analyte	Result	Liiiit	Omts	Level	Result	/0KEC	Lillits	KFD	Liiiit	INOICS
Batch B331882 - SW-846 3510C										
Blank (B331882-BLK1)				Prepared: 02	2/17/23 Analy	zed: 02/21/	23			
2-Methylphenol	ND	10	μg/L							
3/4-Methylphenol	ND	10	$\mu g/L$							
Naphthalene	ND	5.0	$\mu g/L$							
2-Nitroaniline	ND	10	$\mu g/L$							
-Nitroaniline	ND	10	$\mu g/L$							
-Nitroaniline	ND	10	$\mu g/L$							
Nitrobenzene	ND	10	$\mu g/L$							
-Nitrophenol	ND	10	$\mu g/L$							V-06
l-Nitrophenol	ND	10	$\mu g/L$							
N-Nitrosodimethylamine	ND	10	$\mu g/L$							
N-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$							
N-Nitrosodi-n-propylamine	ND	10	$\mu g/L$							
entachloronitrobenzene	ND	10	$\mu g/L$							
Pentachlorophenol	ND	10	$\mu g/L$							
Phenanthrene	ND	5.0	$\mu \text{g}/L$							
Phenol	ND	10	$\mu \text{g/L}$							
Pyrene	ND	5.0	$\mu g/L$							
Pyridine	ND	5.0	$\mu \text{g/L}$							
,2,4,5-Tetrachlorobenzene	ND	10	$\mu \text{g}/L$							
,2,4-Trichlorobenzene	ND	5.0	$\mu g/L$							
2,4,5-Trichlorophenol	ND	10	$\mu \text{g/L}$							
,4,6-Trichlorophenol	ND	10	$\mu \text{g}/L$							
Surrogate: 2-Fluorophenol	75.2		μg/L	200		37.6	15-110			
urrogate: Phenol-d6	53.9		$\mu g/L$	200		26.9	15-110			
urrogate: Nitrobenzene-d5	68.4		$\mu g/L$	100		68.4	30-130			
urrogate: 2-Fluorobiphenyl	67.7		$\mu g/L$	100		67.7	30-130			
Surrogate: 2,4,6-Tribromophenol	142		$\mu g/L$	200		70.8	15-110			
Surrogate: p-Terphenyl-d14	79.8		$\mu g/L$	100		79.8	30-130			
LCS (B331882-BS1)				Prepared: 02	2/17/23 Analy	zed: 02/22/	23			
Acenaphthene	33.3	5.0	μg/L	50.0		66.7	40-140			
Acenaphthylene	31.9	5.0	$\mu g/L$	50.0		63.8	40-140			
Acetophenone	30.7	10	$\mu g/L$	50.0		61.4	40-140			
Aniline	27.9	5.0	μg/L	50.0		55.7	40-140			V-05
anthracene	34.0	5.0	$\mu \text{g}/L$	50.0		67.9	40-140			
Benzidine	32.2	20	$\mu \text{g}/L$	50.0		64.3	40-140			R-05, V-04, V-05
Benzo(a)anthracene	32.5	5.0	$\mu \text{g/L}$	50.0		64.9	40-140			
Benzo(a)pyrene	31.6	5.0	$\mu g/L$	50.0		63.2	40-140			
Benzo(b)fluoranthene	33.0	5.0	$\mu \text{g/L}$	50.0		65.9	40-140			
Benzo(g,h,i)perylene		5.0	μg/L	50.0		77.3	40-140			
8, , , , ,	38.6	5.0								
	38.6 35.3	5.0	$\mu g/L$	50.0		70.6	40-140			
Benzo(k)fluoranthene				50.0 50.0		70.6 23.3	40-140 10-130			
Benzo(k)fluoranthene Benzoic Acid	35.3	5.0	$\mu g/L$							
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane	35.3 11.6	5.0 10	μg/L μg/L	50.0		23.3	10-130			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	35.3 11.6 30.4	5.0 10 10	μg/L μg/L μg/L	50.0 50.0		23.3 60.7	10-130 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	35.3 11.6 30.4 28.8	5.0 10 10 10	μg/L μg/L μg/L μg/L	50.0 50.0 50.0		23.3 60.7 57.6	10-130 40-140 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate	35.3 11.6 30.4 28.8 32.2	5.0 10 10 10 10	μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0		23.3 60.7 57.6 64.5	10-130 40-140 40-140 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate -Bromophenylphenylether	35.3 11.6 30.4 28.8 32.2 31.2	5.0 10 10 10 10 10	μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0		23.3 60.7 57.6 64.5 62.4	10-130 40-140 40-140 40-140 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate I-Bromophenylphenylether Butylbenzylphthalate Carbazole	35.3 11.6 30.4 28.8 32.2 31.2 29.7 31.2	5.0 10 10 10 10 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0 50.0		23.3 60.7 57.6 64.5 62.4 59.4	10-130 40-140 40-140 40-140 40-140 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate Benzoic Acid Bis(2-Ethylhexyl)phthalate Butylbenzylphthalate	35.3 11.6 30.4 28.8 32.2 31.2 29.7 31.2 34.3	5.0 10 10 10 10 10 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0 50.0 50.0		23.3 60.7 57.6 64.5 62.4 59.4 62.3	10-130 40-140 40-140 40-140 40-140 40-140			
Benzo(k)fluoranthene Benzoic Acid Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether Bis(2-Ethylhexyl)phthalate B-Bromophenylphenylether Butylbenzylphthalate Carbazole	35.3 11.6 30.4 28.8 32.2 31.2 29.7 31.2	5.0 10 10 10 10 10 10 10	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0		23.3 60.7 57.6 64.5 62.4 59.4 62.3 68.6	10-130 40-140 40-140 40-140 40-140 40-140 40-140			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

A polyto	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	LIIIII	Units	Level	Result	/0KEC	Lillits	KFD	Lillit	ivotes
Batch B331882 - SW-846 3510C										
LCS (B331882-BS1)				Prepared: 02	/17/23 Analy	zed: 02/22/2	23			
2-Chlorophenol	26.6	10	μg/L	50.0		53.3	30-130			
-Chlorophenylphenylether	31.2	10	μg/L	50.0		62.4	40-140			
Chrysene	32.3	5.0	μg/L	50.0		64.6	40-140			
Dibenz(a,h)anthracene	35.1	5.0	μg/L	50.0		70.3	40-140			
Dibenzofuran	32.2	5.0	μg/L	50.0		64.4	40-140			
Di-n-butylphthalate	31.9	10	μg/L	50.0		63.8	40-140			
,2-Dichlorobenzene	24.1	5.0	μg/L	50.0		48.3	40-140			
,3-Dichlorobenzene	22.0	5.0	μg/L	50.0		44.0	40-140			
4-Dichlorobenzene	22.6	5.0	μg/L	50.0		45.3	40-140			
3-Dichlorobenzidine	36.6	10	μg/L	50.0		73.1	40-140			
4-Dichlorophenol	28.6	10	μg/L	50.0		57.3	30-130			
iethylphthalate	32.0	10	μg/L	50.0		64.0	40-140			
4-Dimethylphenol	29.6	10	$\mu g/L$	50.0		59.1	30-130			
imethylphthalate	30.9	10	$\mu g/L$	50.0		61.8	40-140			
6-Dinitro-2-methylphenol	36.4	10	$\mu g/L$	50.0		72.8	30-130			
4-Dinitrophenol	32.0	10	$\mu g/L$	50.0		64.0	30-130			V-04
4-Dinitrotoluene	37.4	10	$\mu g \! / \! L$	50.0		74.7	40-140			
6-Dinitrotoluene	37.1	10	$\mu g/L$	50.0		74.3	40-140			
i-n-octylphthalate	30.0	10	$\mu g/L$	50.0		60.0	40-140			
2-Diphenylhydrazine/Azobenzene	32.6	10	$\mu g/L$	50.0		65.2	40-140			
uoranthene	35.2	5.0	$\mu g/L$	50.0		70.4	40-140			
luorene	33.2	5.0	$\mu g/L$	50.0		66.3	40-140			
exachlorobenzene	32.6	10	$\mu g/L$	50.0		65.2	40-140			
exachlorobutadiene	25.6	10	μg/L	50.0		51.2	40-140			
exachlorocyclopentadiene	28.8	10	μg/L	50.0		57.5	30-140			
exachloroethane	22.0	10	μg/L	50.0		44.0	40-140			
deno(1,2,3-cd)pyrene	36.0	5.0	μg/L	50.0		72.1	40-140			
ophorone	34.5	10	μg/L	50.0		69.0	40-140			
Methylnaphthalene	30.5	5.0	μg/L	50.0		61.0	40-140			
-Methylnaphthalene	28.7	5.0	μg/L	50.0		57.5	40-140			
Methylphenol	28.7	10	μg/L	50.0		57.3	30-130			
4-Methylphenol	27.4	10	μg/L	50.0		54.7	30-130			
aphthalene	29.4	5.0	μg/L	50.0		58.7	40-140			
Nitroaniline	39.7	10	μg/L	50.0		79.4	40-140			
-Nitroaniline	33.4	10	μg/L	50.0		66.7	40-140			
Nitroaniline	35.5	10	μg/L	50.0		71.0	40-140			
itrobenzene	30.9	10	μg/L	50.0		61.8	40-140			
-Nitrophenol	29.6	10	μg/L	50.0		59.1	30-130			
Nitrophenol	19.0	10	μg/L μg/L	50.0		38.0	10-130			
-Nitrosodimethylamine	20.5	10	μg/L μg/L	50.0		41.0	40-140			
-Nitrosodiphenylamine/Diphenylamine	32.6	10	μg/L μg/L	50.0		65.1	40-140			
-Nitrosodi-n-propylamine	32.6	10	μg/L μg/L	50.0		62.4	40-140			
entachloronitrobenzene	33.8	10	μg/L μg/L	50.0		67.6	40-140			
entachlorophenol		10	μg/L μg/L	50.0		61.3	30-130			
nenanthrene	30.7	5.0	μg/L μg/L	50.0			40-140			
henol	33.4	10				66.9				
	14.1		μg/L	50.0		28.1	20-130			
yrene zridina	33.4	5.0	μg/L	50.0		66.8	40-140			
ridine	15.4	5.0	μg/L	50.0		30.7	10-140			
2.4.5-Tetrachlorobenzene	29.9	10	μg/L	50.0		59.8	40-140			
,2,4-Trichlorobenzene	27.4	5.0	μg/L	50.0		54.7	40-140			
4,5-Trichlorophenol	32.2	10	μg/L	50.0		64.4	30-130			
,4,6-Trichlorophenol	31.3	10	μg/L	50.0		62.7	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B331882 - SW-846 3510C											_
LCS (B331882-BS1)				Prepared: 02	2/17/23 Analy	yzed: 02/22/2	23				_
Surrogate: 2-Fluorophenol	71.7		μg/L	200		35.8	15-110				
Surrogate: Phenol-d6	54.8		$\mu g/L$	200		27.4	15-110				
Surrogate: Nitrobenzene-d5	67.6		$\mu g/L$	100		67.6	30-130				
Surrogate: 2-Fluorobiphenyl	68.7		$\mu g/L$	100		68.7	30-130				
Surrogate: 2,4,6-Tribromophenol	134		$\mu g/L$	200		67.2	15-110				
Surrogate: p-Terphenyl-d14	73.5		μg/L	100		73.5	30-130				
LCS Dup (B331882-BSD1)				Prepared: 02	2/17/23 Analy	yzed: 02/22/2	23				_
Acenaphthene	30.8	5.0	$\mu \text{g/L}$	50.0		61.6	40-140	7.86	20		
Acenaphthylene	29.3	5.0	μg/L	50.0		58.6	40-140	8.59	20		
Acetophenone	28.1	10	μg/L	50.0		56.2	40-140	8.78	20		
Aniline	28.7	5.0	μg/L	50.0		57.3	40-140	2.83	50	V-05	1
Anthracene	32.3	5.0	$\mu \text{g/L}$	50.0		64.6	40-140	5.10	20		
Benzidine	40.6	20	$\mu \text{g}/L$	50.0		81.1	40-140	23.1	* 20	R-05, V-04, V-05	
Benzo(a)anthracene	31.0	5.0	$\mu \text{g/L}$	50.0		62.0	40-140	4.57	20		
Benzo(a)pyrene	29.8	5.0	$\mu \text{g/L}$	50.0		59.6	40-140	5.80	20		
Benzo(b)fluoranthene	31.4	5.0	$\mu g/L$	50.0		62.8	40-140	4.88	20		
Benzo(g,h,i)perylene	37.3	5.0	μg/L	50.0		74.7	40-140	3.42	20		
Benzo(k)fluoranthene	33.5	5.0	μg/L	50.0		67.0	40-140	5.26	20		
Benzoic Acid	10.4	10	μg/L	50.0		20.8	10-130	11.2	50		† :
Bis(2-chloroethoxy)methane	28.0	10	μg/L	50.0		55.9	40-140	8.27	20		
Bis(2-chloroethyl)ether	26.7	10	μg/L	50.0		53.4	40-140	7.64	20		
Bis(2-chloroisopropyl)ether	30.2	10	μg/L	50.0		60.3	40-140	6.60	20		
Bis(2-Ethylhexyl)phthalate	29.8	10	μg/L	50.0		59.7	40-140	4.55	20		
4-Bromophenylphenylether	28.5	10	μg/L	50.0		56.9	40-140	4.20	20		
Butylbenzylphthalate	29.8	10	μg/L	50.0		59.5	40-140	4.56	20		
Carbazole	32.4	10	μg/L	50.0		64.9	40-140	5.48	20		
4-Chloroaniline	29.4	10	μg/L	50.0		58.8	40-140	6.21	20		
4-Chloro-3-methylphenol	28.2	10	μg/L	50.0		56.4	30-130	7.01	20		
2-Chloronaphthalene	26.6	10	μg/L	50.0		53.1	40-140	6.73	20		
2-Chlorophenol	25.0	10	μg/L	50.0		50.0	30-130	6.39	20		
4-Chlorophenylphenylether	29.2	10	μg/L	50.0		58.4	40-140	6.69	20		
Chrysene	30.5	5.0	μg/L	50.0		61.1	40-140	5.67	20		
Dibenz(a,h)anthracene	34.7	5.0	μg/L	50.0		69.5	40-140	1.17	20		
Dibenzofuran		5.0	μg/L	50.0		59.2	40-140	8.54	20		
Di-n-butylphthalate	29.6	10	μg/L μg/L	50.0		60.5	40-140	5.31	20		
1,2-Dichlorobenzene	30.2	5.0	μg/L μg/L	50.0		44.7	40-140	7.75	20		
1,3-Dichlorobenzene	22.3	5.0	μg/L μg/L	50.0		44.7	40-140	6.67	20		
1,4-Dichlorobenzene	20.6	5.0	μg/L μg/L	50.0			40-140	7.28	20		
3.3-Dichlorobenzidine	21.0	10				42.1					
<i>'</i>	34.4		μg/L μg/I	50.0		68.9	40-140	5.94	20		
2,4-Dichlorophenol	27.0	10	μg/L	50.0		54.1	30-130	5.71	20		
Diethylphthalate	29.8	10	μg/L	50.0		59.6	40-140	7.02	20		
2,4-Dimethylphenol	34.0	10	μg/L	50.0		67.9	30-130	13.8	20		
Dimethylphthalate	29.2	10	μg/L	50.0		58.3	40-140	5.79	50		
4,6-Dinitro-2-methylphenol	35.5	10	μg/L	50.0		70.9	30-130	2.62	50	***	
2,4-Dinitrophenol	31.3	10	μg/L	50.0		62.7	30-130	2.05	50	V-04	-
2,4-Dinitrotoluene	35.2	10	μg/L	50.0		70.5	40-140	5.90	20		
2,6-Dinitrotoluene	35.1	10	μg/L	50.0		70.1	40-140	5.73	20		
Di-n-octylphthalate	28.3	10	μg/L	50.0		56.6	40-140	5.76	20		
,2-Diphenylhydrazine/Azobenzene	30.8	10	μg/L	50.0		61.5	40-140	5.78	20		
Fluoranthene	33.2	5.0	$\mu g\!/\!L$	50.0		66.5	40-140	5.67	20		
Fluorene	31.0	5.0	$\mu g/L$	50.0		61.9	40-140	6.83	20		

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B331882 - SW-846 3510C											
LCS Dup (B331882-BSD1)				Prepared: 02	/17/23 Anal	yzed: 02/22/2	23				
Hexachlorobenzene	31.4	10	μg/L	50.0		62.9	40-140	3.62	20		
Hexachlorobutadiene	24.5	10	$\mu g\!/\!L$	50.0		48.9	40-140	4.59	20		
Hexachlorocyclopentadiene	26.7	10	$\mu g\!/\!L$	50.0		53.5	30-140	7.32	50		† ‡
Hexachloroethane	20.8	10	$\mu g \! / \! L$	50.0		41.6	40-140	5.56	50		‡
Indeno(1,2,3-cd)pyrene	34.6	5.0	$\mu g\!/\!L$	50.0		69.1	40-140	4.22	50		‡
Isophorone	31.9	10	$\mu g\!/\!L$	50.0		63.8	40-140	7.80	20		
1-Methylnaphthalene	27.8	5.0	$\mu g \! / \! L$	50.0		55.5	40-140	9.30	20		
2-Methylnaphthalene	26.2	5.0	$\mu g \! / \! L$	50.0		52.5	40-140	9.06	20		
2-Methylphenol	26.3	10	μg/L	50.0		52.6	30-130	8.51	20		
3/4-Methylphenol	24.7	10	μg/L	50.0		49.3	30-130	10.4	20		
Naphthalene	27.3	5.0	$\mu g/L$	50.0		54.5	40-140	7.42	20		
2-Nitroaniline	37.1	10	μg/L	50.0		74.2	40-140	6.82	20		
3-Nitroaniline	33.5	10	μg/L	50.0		67.0	40-140	0.419	20		
4-Nitroaniline	33.6	10	$\mu g/L$	50.0		67.3	40-140	5.35	20		
Nitrobenzene	28.5	10	$\mu g/L$	50.0		57.0	40-140	8.12	20		
2-Nitrophenol	27.2	10	μg/L	50.0		54.4	30-130	8.36	20		
4-Nitrophenol	18.0	10	μg/L	50.0		35.9	10-130	5.62	50		† ‡
N-Nitrosodimethylamine	19.5	10	$\mu g/L$	50.0		39.1 *	40-140	4.89	20	L-07	
N-Nitrosodiphenylamine/Diphenylamine	31.0	10	$\mu g/L$	50.0		61.9	40-140	4.97	20		
N-Nitrosodi-n-propylamine	28.4	10	μg/L	50.0		56.9	40-140	9.22	20		
Pentachloronitrobenzene	32.2	10	μg/L	50.0		64.4	40-140	4.88	20		
Pentachlorophenol	28.7	10	μg/L	50.0		57.3	30-130	6.74	50		‡
Phenanthrene	31.8	5.0	$\mu g/L$	50.0		63.6	40-140	4.96	20		
Phenol	12.9	10	μg/L	50.0		25.8	20-130	8.83	20		†
Pyrene	32.0	5.0	μg/L	50.0		63.9	40-140	4.41	20		
Pyridine	14.9	5.0	μg/L	50.0		29.9	10-140	2.84	50		† ‡
1,2,4,5-Tetrachlorobenzene	27.6	10	μg/L	50.0		55.2	40-140	8.07	20		
1,2,4-Trichlorobenzene	25.3	5.0	μg/L	50.0		50.7	40-140	7.71	20		
2,4,5-Trichlorophenol	30.0	10	μg/L	50.0		60.1	30-130	6.94	20		
2,4,6-Trichlorophenol	29.4	10	μg/L	50.0		58.8	30-130	6.29	50		‡
Surrogate: 2-Fluorophenol	64.0		μg/L	200		32.0	15-110				
Surrogate: Phenol-d6	49.2		$\mu g/L$	200		24.6	15-110				
Surrogate: Nitrobenzene-d5	60.9		$\mu g/L$	100		60.9	30-130				
Surrogate: 2-Fluorobiphenyl	60.5		$\mu g/L$	100		60.5	30-130				
Surrogate: 2,4,6-Tribromophenol	124		μg/L	200		62.2	15-110				

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331566 - SW-846 3510C										
Blank (B331566-BLK1)				Prepared: 02	2/15/23 Anal	yzed: 02/17/2	23			
1,4-Dioxane	ND	0.20	$\mu g/L$							
Surrogate: 1,4-Dioxane-d8	2.54		$\mu g/L$	10.0		25.4	15-110			
LCS (B331566-BS1)				Prepared: 02	2/15/23 Anal	yzed: 02/17/2	23			
1,4-Dioxane	11.9	0.20	μg/L	10.0		119	40-140			
Surrogate: 1,4-Dioxane-d8	2.50		μg/L	10.0		25.0	15-110			
LCS Dup (B331566-BSD1)				Prepared: 02	2/15/23 Anal	yzed: 02/17/2	23			
1,4-Dioxane	11.7	0.20	μg/L	10.0		117	40-140	2.01	30	
Surrogate: 1,4-Dioxane-d8	2.65		μg/L	10.0		26.5	15-110			
Matrix Spike (B331566-MS1)	Sou	rce: 23B1340-	01	Prepared: 02	2/15/23 Anal	yzed: 02/21/2	23			
1,4-Dioxane	41.5	0.19	μg/L	9.71	30.6	112	40-140			
Surrogate: 1,4-Dioxane-d8	2.09		μg/L	9.71		21.5	15-110			
Matrix Spike Dup (B331566-MSD1)	Sou	rce: 23B1340-	01	Prepared: 02	2/15/23 Anal	yzed: 02/21/2	23			
1,4-Dioxane	41.8	0.20	μg/L	9.76	30.6	114	40-140	0.650	20	
Surrogate: 1,4-Dioxane-d8	2.03		μg/L	9.76		20.8	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B331794 - Draft Method 1633										
Blank (B331794-BLK1)				Prepared: 02	2/22/23 Analy	yzed: 03/15/2	3			
Perfluorobutanoic acid (PFBA)	ND	3.6	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	1.8	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	0.89	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	0.89	ng/L							
Perfluorooctanoic acid (PFOA)	ND	0.89	ng/L							
Perfluorononanoic acid (PFNA)	ND	0.89	ng/L							
Perfluorodecanoic acid (PFDA)	ND	0.89	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	0.89	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	0.89	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	0.89	ng/L							
Perfluorotetradecanoic acid (PFTeDA)	ND	0.89	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	0.89	ng/L							
Perfluoropetanesulfonic acid (PFPeS)	ND	0.89	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	0.89	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.89	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	0.89	ng/L							
Perfluorononanesulfonic acid (PFNS)	ND	0.89	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	0.89	ng/L							
Perfluorododecanesulfonic acid (PFDoS) 1H,1H,2H,2H-Perfluorohexane sulfonic	ND	0.89 3.6	ng/L ng/L							
i H, 1H, 2H, 2H-Perfluoronexane suffonic acid (4:2FTS) 1H, 1H, 2H, 2H-Perfluorooctane sulfonic acid	ND	3.6	ng/L							
6:2FTS) IH,1H,2H,2H-Perfluorodecane sulfonic	ND ND	3.6	ng/L							
acid (8:2FTS)	ND		8							
Perfluorooctanesulfonamide (PFOSA)	ND	0.89	ng/L							
N-methyl perfluoroocatnesulfonamide NMeFOSA)	ND	0.89	ng/L							
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.89	ng/L							
N-MeFOSAA (NMeFOSAA)	ND	0.89	ng/L							
N-EtFOSAA (NEtFOSAA)	ND	0.89	ng/L							
N-methylperfluorooctanesulfonamidoethano l(NMeFOSE)	ND	8.9	ng/L							
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	8.9	ng/L							
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.6	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid (ADONA) 9CI-PF3ONS (F53B Minor)	ND	3.6	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	3.6 3.6	ng/L ng/L							
3-Perfluoropropyl propanoic acid (FPrPA)	ND ND	8.9	ng/L ng/L							
(3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	44	ng/L							
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	44	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.8	ng/L							
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND	1.8	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L							
Surrogate: 13C4-PFBA	76.8		ng/L	88.8		86.6	20-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B331794 - Draft Method 1633 Blank (B331794-BLK1)				Prepared: 02	/22/23 Analy	rzed: 03/15/2	!3			
	40.4		m \(\sigma / \text{I} \)		722/23 Allary					
Surrogate: 13C5-PFPeA Surrogate: 13C5-PFHxA	40.4 19.2		ng/L ng/L	44.4 22.2		90.9 86.5	20-150 20-150			
Surrogate: 13C4-PFHpA	19.6		ng/L ng/L	22.2		88.3	20-150			
urrogate: 13C8-PFOA	19.4		ng/L ng/L	22.2		87.5	20-150			
urrogate: 13C9-PFNA	9.70		ng/L	11.1		87.4	20-150			
urrogate: 13C6-PFDA	9.55		ng/L ng/L	11.1		86.1	20-150			
urrogate: 13C7-PFUnA	9.31		ng/L ng/L	11.1		83.9	20-150			
urrogate: 13C2-PFDoA	8.73		ng/L	11.1		78.7	20-150			
urrogate: 13C2-PFTeDA	9.84		ng/L	11.1		88.7	20-150			
urrogate: 13C3-PFBS	19.6		ng/L ng/L	22.2		88.1	20-150			
urrogate: 13C3-PFHxS	19.6		ng/L	22.2		87.5	20-150			
urrogate: 13C8-PFOS	17.7		ng/L	22.2		79.6	20-150			
urrogate: 13C2-4:2FTS	40.9		ng/L ng/L	44.4		92.2	20-150			
urrogate: 13C2-6:2FTS	34.8		ng/L	44.4		78.5	20-150			
urrogate: 13C2-8:2FTS	33.2		ng/L	44.4		74.8	20-150			
urrogate: 13C8-PFOSA	17.6		ng/L	22.2		79.3	20-150			
urrogate: D3-NMeFOSA	15.4		ng/L	22.2		69.3	20-150			
urrogate: D5-NetFOSA	16.2		ng/L ng/L	22.2		73.0	20-150			
urrogate: D3-NMeFOSAA	36.1		ng/L ng/L	44.4		81.4	20-150			
urrogate: D5-NMet OSAA	39.6		ng/L	44.4		89.1	20-150			
arrogate: D7-NMeFOSE	200		ng/L ng/L	222		90.2	20-150			
urrogate: D9-NEtFOSE	201		ng/L ng/L	222		90.7	20-150			
urrogate: 13C3-HFPO-DA	81.3		ng/L ng/L	88.8		91.6	20-150			
	01.5		6-2		//22/22					
CS (B331794-BS1) erfluorobutanoic acid (PFBA)	7.52	3.6	pg/I		/22/23 Analy					
erfluoropentanoic acid (PFPeA)	7.53	1.8	ng/L ng/L	7.18		105	40-150			
erfluorohexanoic acid (PFHxA)	3.64	0.90		3.59		101	40-150 40-150			
erfluoroheptanoic acid (PFHpA)	1.85	0.90	ng/L ng/L	1.79 1.79		103 98.9	40-150			
erfluorooctanoic acid (PFOA)	1.78	0.90	ng/L							
erfluorononanoic acid (PFNA)	1.73	0.90	ng/L ng/L	1.79		96.3	40-150			
· · · · · · · · · · · · · · · · · · ·	1.84			1.79		103	40-150			
erfluorodecanoic acid (PFDA)	1.80	0.90	ng/L	1.79		100	40-150			
erfluoroundecanoic acid (PFUnA)	1.77	0.90	ng/L	1.79		98.4	40-150			
erfluorododecanoic acid (PFDoA)	1.78	0.90	ng/L	1.79		99.4	40-150			
erfluorotridecanoic acid (PFTrDA)	1.87	0.90	ng/L	1.79		104	40-150			
erfluorotetradecanoic acid (PFTeDA)	1.81	0.90	ng/L	1.79		101	40-150			
erfluorobutanesulfonic acid (PFBS)	1.67	0.90	ng/L	1.59		105	40-150			
erfluoropetanesulfonic acid (PFPeS)	1.69	0.90	ng/L	1.69		100	40-150			
erfluorohexanesulfonic acid (PFHxS)	1.65	0.90	ng/L	1.64		100	40-150			
erfluoroheptanesulfonic acid (PFHpS)	1.69	0.90	ng/L	1.71		98.8	40-150			
erfluorooctanesulfonic acid (PFOS)	1.94	0.90	ng/L	1.66		116	40-150			
erfluorononanesulfonic acid (PFNS)	1.96	0.90	ng/L	1.73		113	40-150			
erfluorodecanesulfonic acid (PFDS)	1.99	0.90	ng/L	1.73		115	40-150			
erfluorododecanesulfonic acid (PFDoS)	2.00	0.90	ng/L	1.74		115	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic id (4:2FTS)	7.97	3.6	ng/L	6.73		118	40-150			
H,1H,2H,2H-Perfluorooctane sulfonic acid :2FTS)	8.34	3.6	ng/L	6.82		122	40-150			
H,1H,2H,2H-Perfluorodecane sulfonic id (8:2FTS)	7.58	3.6	ng/L	6.91		110	40-150			
erfluorooctanesulfonamide (PFOSA)	1.79	0.90	ng/L	1.79		99.5	40-150			
-methyl perfluoroocatnesulfonamide NMeFOSA)	1.81	0.90	ng/L	1.79		101	40-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331794 - Draft Method 1633										
LCS (B331794-BS1)				Prepared: 02	2/22/23 Analy	vzed: 03/15/2	13			
N-ethyl perfluorooctanesulfonamide	1.80	0.90	ng/L	1.79		100	40-150			
(NEtFOSA) N-MeFOSAA (NMeFOSAA)	1.74	0.90	ng/I	1.70		06.9	40 150			
	1.74	0.90	ng/L	1.79		96.8 92.7	40-150			
N-EtFOSAA (NEtFOSAA) N-methylperfluorooctanesulfonamidoethano	1.66	0.90 9.0	ng/L ng/L	1.79		92.7	40-150			
N-metnyiperituorooctanesuironamidoetnano l(NMeFOSE)	18.6	9.0	ng/L	17.9		104	40-150			
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	19.0	9.0	ng/L	17.9		106	40-150			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	7.27	3.6	ng/L	7.14		102	40-150			
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	6.51	3.6	ng/L	6.78		96.1	40-150			
9Cl-PF3ONS (F53B Minor)	6.84	3.6	ng/L	6.69		102	40-150			
11Cl-PF3OUdS (F53B Major)	6.52	3.6	ng/L	6.78		96.2	40-150			
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	16.0	9.0	ng/L	17.9		88.9	40-150			
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	79.8	45	ng/L	89.7		88.9	40-150			
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	78.7	45	ng/L	89.7		87.7	40-150			
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	2.90	1.8	ng/L	3.20		90.8	40-150			
Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro 4 methoxybutanoic acid	3.35	1.8	ng/L	3.59		93.4	40-150			
Perfluoro-4-methoxybutanoic acid (PFMBA) Nonafluoro-3,6-dioxaheptanoic acid	3.25	1.8	ng/L	3.59 3.59		90.6	40-150 40-150			
(NFDHA)	4.36	1.0	ng/L	3.37		141	40-130			
Surrogate: 13C4-PFBA	69.9		ng/L	89.7		77.9	20-150			
Surrogate: 13C5-PFPeA	37.3		ng/L	44.9		83.1	20-150			
Surrogate: 13C5-PFHxA	18.2		ng/L	22.4		81.1	20-150			
Surrogate: 13C4-PFHpA	18.2		ng/L	22.4		80.9	20-150			
Surrogate: 13C8-PFOA	17.9		ng/L	22.4		80.0	20-150			
Surrogate: 13C9-PFNA	8.99		ng/L	11.2		80.1	20-150			
Surrogate: 13C6-PFDA	9.17		ng/L	11.2		81.7	20-150			
Surrogate: 13C7-PFUnA	9.05		ng/L	11.2		80.6	20-150			
Surrogate: 13C2-PFDoA	8.43		ng/L	11.2		75.2	20-150			
Surrogate: 13C2-PFTeDA	8.89		ng/L	11.2		79.3	20-150			
Surrogate: 13C3-PFBS	18.5		ng/L	22.4		82.4	20-150			
Surrogate: 13C3-PFHxS	18.0		ng/L	22.4		80.1	20-150			
Surrogate: 13C8-PFOS	18.2		ng/L	22.4		81.3	20-150			
Surrogate: 13C2-4:2FTS	39.6		ng/L	44.9		88.1 74.7	20-150			
Surrogate: 13C2-6:2FTS Surrogate: 13C2-8:2FTS	33.5 34.1		ng/L ng/L	44.9 44.9		74.7 76.1	20-150 20-150			
Surrogate: 13C2-8:2F1S Surrogate: 13C8-PFOSA	34.1 17.8		ng/L ng/L	22.4		76.1 79.2	20-150			
Surrogate: D3-NMeFOSA	14.8		ng/L ng/L	22.4		66.1	20-150			
Surrogate: D5-NEtFOSA	15.5		ng/L ng/L	22.4		69.2	20-150			
Surrogate: D3-NMeFOSAA	34.8		ng/L ng/L	44.9		77.5	20-150			
Surrogate: D5-NEtFOSAA	35.5		ng/L	44.9		79.0	20-150			
Surrogate: D7-NMeFOSE	185		ng/L	224		82.2	20-150			
Surrogate: D9-NEtFOSE	192		ng/L	224		85.5	20-150			
Surrogate: 13C3-HFPO-DA	79.1		ng/L	89.7		88.1	20-150			
LCS (B331794-BS2)				Prepared: 02	2/22/23 Analy	zed: 03/15/2	13			
Perfluorobutanoic acid (PFBA)	95.3	3.8	ng/L	91.6		104	40-150			
Perfluoropentanoic acid (PFPeA)	47.6	1.9	ng/L	45.8		104	40-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331794 - Draft Method 1633										
.CS (B331794-BS2)				Prepared: 02	2/22/23 Analyz	zed: 03/15/2	.3			
Perfluorohexanoic acid (PFHxA)	23.8	0.95	ng/L	22.9		104	40-150			
Perfluoroheptanoic acid (PFHpA)	23.3	0.95	ng/L	22.9		102	40-150			
Perfluorooctanoic acid (PFOA)	23.3	0.95	ng/L	22.9		102	40-150			
Perfluorononanoic acid (PFNA)	24.2	0.95	ng/L	22.9		106	40-150			
Perfluorodecanoic acid (PFDA)	24.0	0.95	ng/L	22.9		105	40-150			
Perfluoroundecanoic acid (PFUnA)	24.1	0.95	ng/L	22.9		105	40-150			
Perfluorododecanoic acid (PFDoA)	23.8	0.95	ng/L	22.9		104	40-150			
Perfluorotridecanoic acid (PFTrDA)	24.5	0.95	ng/L	22.9		107	40-150			
erfluorotetradecanoic acid (PFTeDA)	24.3	0.95	ng/L	22.9		106	40-150			
erfluorobutanesulfonic acid (PFBS)	21.7	0.95	ng/L	20.3		107	40-150			
erfluoropetanesulfonic acid (PFPeS)	22.5	0.95	ng/L	21.5		105	40-150			
erfluorohexanesulfonic acid (PFHxS)	21.7	0.95	ng/L	20.9		103	40-150			
erfluoroheptanesulfonic acid (PFHpS)	22.5	0.95	ng/L	21.8		103	40-150			
erfluorooctanesulfonic acid (PFOS)		0.95	ng/L	21.2		104	40-150			
erfluorononanesulfonic acid (PFNS)	22.1	0.95	ng/L	22.0		104	40-150			
erfluorodecanesulfonic acid (PFDS)	23.0	0.95	ng/L	22.0		104	40-150			
erfluorododecanesulfonic acid (PFDoS)	23.6	0.95	_							
	24.1		ng/L	22.2		109	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic cid (4:2FTS)	92.0	3.8	ng/L	85.8		107	40-150			
H,1H,2H,2H-Perfluorooctane sulfonic acid 6:2FTS)	87.9	3.8	ng/L	87.0		101	40-150			
H,1H,2H,2H-Perfluorodecane sulfonic	96.6	3.8	ng/L	88.1		110	40-150			
erfluorooctanesulfonamide (PFOSA)	23.2	0.95	ng/L	22.9		101	40-150			
f-methyl perfluoroocatnesulfonamide NMeFOSA)	24.4	0.95	ng/L	22.9		107	40-150			
I-ethyl perfluorooctanesulfonamide NEtFOSA)	23.7	0.95	ng/L	22.9		104	40-150			
I-MeFOSAA (NMeFOSAA)	23.2	0.95	ng/L	22.9		101	40-150			
I-EtFOSAA (NEtFOSAA)	23.0	0.95	ng/L	22.9		100	40-150			
I-methylperfluorooctanesulfonamidoethano NMeFOSE)	250	9.5	ng/L	229		109	40-150			
I-ethylperfluorooctanesulfonamidoethanol NEtFOSE)	257	9.5	ng/L	229		112	40-150			
lexafluoropropylene oxide dimer acid HFPO-DA)	99.4	3.8	ng/L	91.6		109	40-150			
,8-Dioxa-3H-perfluorononanoic acid ADONA)	90.5	3.8	ng/L	86.4		105	40-150			
Cl-PF3ONS (F53B Minor)	89.6	3.8	ng/L	85.8		104	40-150			
1Cl-PF3OUdS (F53B Major)	90.1	3.8	ng/L	86.4		104	40-150			
-Perfluoropropyl propanoic acid (FPrPA) 3:3FTCA)	217	9.5	ng/L	229		94.7	40-150			
H,2H,3H,3H-Perfluorooctanoic cid(FPePA)(5:3FTCA)	1110	48	ng/L	1140		96.6	40-150			
-Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	1120	48	ng/L	1140		98.1	40-150			
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	42.9	1.9	ng/L	40.7		105	40-150			
erfluoro-3-methoxypropanoic acid PFMPA) erfluoro-4-methoxybutanoic acid	49.8	1.9 1.9	ng/L	45.8 45.8		109 107	40-150 40-150			
PFMBA) Jonafluoro-3,6-dioxaheptanoic acid	49.0 55.8	1.9	ng/L	45.8		107	40-150			
NFDHA)		1.9								
Surrogate: 13C4-PFBA	77.1		ng/L	95.4		80.8	20-150			
urrogate: 13C5-PFPeA	40.8		ng/L	47.7		85.5	20-150			
Surrogate: 13C5-PFHxA	20.0		ng/L	23.8		83.7	20-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B331794 - Draft Method 1633										
LCS (B331794-BS2)				Prepared: 02	/22/23 Analy	yzed: 03/15/2	13			
Surrogate: 13C4-PFHpA	20.6		ng/L	23.8		86.6	20-150			
Surrogate: 13C8-PFOA	20.2		ng/L	23.8		84.7	20-150			
Surrogate: 13C9-PFNA	10.0		ng/L	11.9		83.9	20-150			
Surrogate: 13C6-PFDA	10.3		ng/L	11.9		86.5	20-150			
Surrogate: 13C7-PFUnA	9.62		ng/L	11.9		80.7	20-150			
Surrogate: 13C2-PFDoA	9.21		ng/L	11.9		77.3	20-150			
Surrogate: 13C2-PFTeDA	9.97		ng/L	11.9		83.6	20-150			
Surrogate: 13C3-PFBS	21.0		ng/L	23.8		88.0	20-150			
Surrogate: 13C3-PFHxS	20.2		ng/L	23.8		84.8	20-150			
Surrogate: 13C8-PFOS	19.7		ng/L	23.8		82.4	20-150			
Surrogate: 13C2-4:2FTS	50.2		ng/L	47.7		105	20-150			
Surrogate: 13C2-6:2FTS	41.2		ng/L	47.7		86.4	20-150			
Surrogate: 13C2-8:2FTS	39.3		ng/L	47.7		82.3	20-150			
Surrogate: 13C8-PFOSA	19.1		ng/L	23.8		79.9	20-150			
Surrogate: D3-NMeFOSA	15.9		ng/L	23.8		66.8	20-150			
Surrogate: D5-NEtFOSA	16.5		ng/L	23.8		69.4	20-150			
Surrogate: D3-NMeFOSAA	39.2		ng/L	47.7		82.2	20-150			
Surrogate: D5-NEtFOSAA	39.0		ng/L	47.7		81.9	20-150			
Surrogate: D7-NMeFOSE	197		ng/L	238		82.6	20-150			
Surrogate: D9-NEtFOSE	198		ng/L	238		83.2	20-150			
Surrogate: 13C3-HFPO-DA	87.8		ng/L	95.4		92.1	20-150			
Batch B334428 - Draft Method 1633										
Blank (B334428-BLK1)				Prepared: 03	/24/23 Analy	yzed: 03/28/2	23			
Perfluorobutanoic acid (PFBA)	ND	3.9	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	0.98	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	0.98	ng/L							
Perfluorooctanoic acid (PFOA)	ND	0.98	ng/L							
Perfluorononanoic acid (PFNA)	ND	0.98	ng/L							
Perfluorodecanoic acid (PFDA)	ND	0.98	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	0.98	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	0.98	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	0.98	ng/L							
Perfluorotetradecanoic acid (PFTeDA)	ND	0.98	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	0.98	ng/L							
Perfluoropetanesulfonic acid (PFPeS)	ND	0.98	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	0.98	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.98	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	0.98	ng/L							
Perfluorononanesulfonic acid (PFNS)	ND	0.98	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND ND	0.98	ng/L							
Perfluorododecanesulfonic acid (PFDoS)	ND ND	0.98	ng/L							
H.1H.2H.2H-Perfluorohexane sulfonic	ND ND	3.9	ng/L							
acid (4:2FTS) 1H,1H,2H,2H-Perfluorooctane sulfonic acid	ND ND	3.9	ng/L							
6:2FTS)										
IH,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.9	ng/L							
Perfluorooctanesulfonamide (PFOSA)	ND	0.98	ng/L							
N-methyl perfluoroocatnesulfonamide NMeFOSA)	ND	0.98	ng/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

ND	0.98 0.98 0.98 9.8 9.8	ng/L ng/L ng/L ng/L ng/L	Level Prepared: 03	Result /24/23 Analy	%REC //zed: 03/28/2	Limits 3	RPD	Limit	Notes
ND ND ND ND	0.98 0.98 9.8	ng/L ng/L ng/L	Prepared: 03	/24/23 Analy	/zed: 03/28/2	3			
ND ND ND ND	0.98 0.98 9.8	ng/L ng/L ng/L	Prepared: 03	/24/23 Analy	/zed: 03/28/2	3			
ND ND ND ND	0.98 0.98 9.8	ng/L ng/L ng/L							
ND ND ND	0.98 9.8 9.8	ng/L ng/L							
ND ND ND	0.98 9.8 9.8	ng/L ng/L							
ND ND ND	9.8 9.8	ng/L							
ND ND	9.8								
ND		ng/L							
	3.9								
ND		ng/L							
	3.9	ng/L							
ND	3.9	ng/L							
ND	3.9	ng/L							
ND	9.8	ng/L							
ND	49	ng/L							
ND	49	ng/L							
ND	2.0	ng/L							
ND	2.0	ng/L							
ND	2.0	ng/L							
ND	2.0	ng/L							
90 1		ng/L	98 4		91.6	20-150			
		_							
		_							
		_							
		_							
		•							
45.0			49.2		91.4	20-150			
220		ng/L	246		89.5	20-150			
		ng/L			88.7	20-150			
103		ng/L	98.4		105	20-150			
		~		/24/23 Analy					
8.76			7.83		112	40-150			
	ND ND ND ND ND ND ND ND 148.8 24.1 24.6 24.2 11.9 12.2 12.0 11.1 11.2 24.4 24.4 24.9 53.9 42.5 38.8 23.7 19.6 20.9 44.2 45.0 220 218 103	ND 49 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 ND 2.0 10.1 148.8 24.1 24.6 24.2 11.9 12.2 12.0 11.1 11.2 24.4 24.4 24.4 24.9 53.9 42.5 38.8 23.7 19.6 20.9 44.2 45.0 220 218 103	ND 49 ng/L ND 2.0 ng/L On 1 ng/L A8.8 ng/L A8.8 ng/L A8.8 ng/L A8.6 ng/L A8.8 ng/L A8.9 ng/L A8.8 ng/L	ND 49 ng/L ND 2.0 ng/L 90.1 ng/L 98.4 48.8 ng/L 49.2 24.1 ng/L 24.6 24.2 ng/L 24.6 11.9 ng/L 12.3 12.2 ng/L 12.3 12.0 ng/L 12.3 11.1 ng/L 12.3 11.2 ng/L 12.3 11.2 ng/L 24.6 24.4 ng/L 24.6 24.4 ng/L 24.6 24.5 ng/L 12.3 11.2 ng/L 12.3 11.2 ng/L 12.3 11.2 ng/L 12.3 24.4 ng/L 24.6 24.9 ng/L 24.6 25.9 ng/L 49.2 38.8 ng/L 49.2 19.6 ng/L 24.6 19.6 ng/L 24.6 19.6 ng/L 24.6 19.6 ng/L 24.6 19.7 ng/L 24.6 19.8 ng/L 49.2 21.8 ng/L 49.2 22.0 ng/L 24.6 10.3	ND 49 ng/L ND 2.0 ng/L On 1 ng/L 98.4 On 2 ng/L On 2	ND 49 ng/L ND 2.0 ng/L 90.1 ng/L 98.4 91.6 48.8 ng/L 49.2 99.1 24.1 ng/L 24.6 97.9 24.6 ng/L 24.6 98.3 11.9 ng/L 12.3 96.6 12.2 ng/L 12.3 96.8 12.0 ng/L 12.3 97.6 11.1 ng/L 12.3 97.6 11.1 ng/L 12.3 90.2 11.2 ng/L 12.3 90.9 24.4 ng/L 24.6 99.2 24.4 ng/L 24.6 99.2 24.4 ng/L 24.6 99.3 38.8 ng/L 49.2 110 53.9 ng/L 49.2 110 42.5 ng/L 49.2 110 42.5 ng/L 49.2 86.4 38.8 ng/L 49.2 86.4 38.8 ng/L 49.2 78.9 23.7 ng/L 24.6 96.4 19.6 ng/L 24.6 89.5 19.7 ng/L 24.6 88.7 19.8 ng/L 49.2 91.4 45.0 ng/L 49.2 91.4 45.0 ng/L 24.6 88.7 103 ng/L 24.6 88.7 104 98.4 105	ND 49 ng/L ND 2.0 ng/L 90.1 ng/L 98.4 91.6 20-150 48.8 ng/L 49.2 99.1 20-150 24.1 ng/L 24.6 99.8 20-150 24.2 ng/L 24.6 98.3 20-150 11.9 ng/L 12.3 96.6 20-150 12.2 ng/L 12.3 96.6 20-150 12.2 ng/L 12.3 98.8 20-150 12.2 ng/L 12.3 97.6 20-150 11.1 ng/L 12.3 97.6 20-150 11.2 ng/L 12.3 90.2 20-150 11.1 ng/L 12.3 90.2 20-150 11.2 ng/L 12.3 90.2 20-150 11.1 ng/L 12.3 90.2 20-150 24.4 ng/L 24.6 99.3 20-150 24.5 ng/L 49.2 110 20-150 38.8 ng/L 49.2 110 20-150 42.5 ng/L 49.2 86.4 20-150 38.8 ng/L 49.2 78.9 20-150 42.5 ng/L 49.2 78.9 20-150 42.5 ng/L 24.6 99.7 20-150 42.6 84.8 20-150 19.6 ng/L 24.6 99.7 20-150 20.9 ng/L 24.6 99.7 20-150 40.9 ng/L 24.6 84.8 20-150 41.2 ng/L 49.2 89.7 20-150 42.9 ng/L 49.2 89.7 20-150 44.2 ng/L 49.2 91.4 20-150 45.0 ng/L 49.2 91.4 20-150 46.2 ng/L 49.2 91.4 20-150 47.0 ng/L 49.2 91.4 20-150 48.8 ng/L 49.2 91.4 20-150 49.2 ng/L 49.2 89.7 20-150 20.9 ng/L 49.2 91.4 20-150 218 ng/L 246 88.7 20-150 218 ng/L 246 88.7 20-150 103 ng/L 98.4 105 20-150 Prepared: 03/24/23 Analyzed: 03/28/23	ND 49 ng/L ND 2.0 ng/L 90.1 ng/L 98.4 91.6 20-150 48.8 ng/L 49.2 99.1 20-150 24.1 ng/L 24.6 99.8 20-150 24.2 ng/L 24.6 98.3 20-150 11.9 ng/L 12.3 96.6 20-150 12.2 ng/L 12.3 96.6 20-150 12.2 ng/L 12.3 98.8 20-150 12.2 ng/L 12.3 97.6 20-150 11.1 ng/L 12.3 90.2 20-150 11.2 ng/L 24.6 99.3 20-150 24.4 ng/L 24.6 99.2 20-150 24.4 ng/L 24.6 99.3 20-150 24.4 ng/L 24.6 99.3 20-150 24.4 ng/L 24.6 99.3 20-150 24.5 ng/L 49.2 110 20-150 38.8 ng/L 49.2 110 20-150 38.8 ng/L 49.2 110 20-150 38.8 ng/L 49.2 78.9 20-150 24.1 49.2 78.9 20-150 24.2 ng/L 24.6 96.4 20-150 38.8 ng/L 49.2 78.9 20-150 44.2 ng/L 24.6 96.4 20-150 38.8 ng/L 49.2 78.9 20-150 44.2 ng/L 24.6 96.4 20-150 45.0 ng/L 24.6 88.7 20-150 46.0 ng/L 49.2 91.4 20-150 46.0 ng/L 49.2 91.4 20-150 20.0 ng/L 49.2 91.4 20-150 20.0 ng/L 24.6 88.7 20-150 218 ng/L 24.6 88.7 20-150 219 ng/L 24.6 88.7 20-150 218 ng/L 24.6 88.7 20-150 219 ng/L 24.6 88.7 20-150 218 ng/L 24.6 88.7 20-150 219 ng/L 24.6 88.7 20-150 218 ng/L 24.6 88.7 20-150 219 ng/L 24.6 88.7 20-150 219 ng/L 24.6 88.7 20-150 210 ng/L 24.6 88.7 20-150 211 ng/L 24.6 88.7 20-150 212 ng/L 24.6 88.7 20-150 213 ng/L 24.6 88.7 20-150 214 ng/L 24.6 88.7 20-150 215 ng/L 24.6 88.7 20-150	ND 49 ng/L ND 2.0 ng/L 90.1 ng/L 98.4 91.6 20-150 48.8 ng/L 49.2 99.1 20-150 24.1 ng/L 24.6 99.8 20-150 24.2 ng/L 24.6 98.3 20-150 24.2 ng/L 12.3 96.6 20-150 11.9 ng/L 12.3 98.8 20-150 12.2 ng/L 12.3 98.8 20-150 11.1 ng/L 12.3 97.6 20-150 11.1 ng/L 12.3 90.2 20-150 11.2 ng/L 12.3 90.9 20-150 24.4 ng/L 24.6 99.3 20-150 24.4 ng/L 24.6 99.3 20-150 24.4 ng/L 24.6 99.3 20-150 24.5 ng/L 49.2 110 20-150 33.9 ng/L 49.2 110 20-150 33.8 ng/L 49.2 78.9 20-150 23.7 ng/L 24.6 96.4 20-150 38.8 ng/L 49.2 78.9 20-150 23.7 ng/L 24.6 96.4 20-150 38.8 ng/L 49.2 78.9 20-150 29.9 ng/L 24.6 96.4 20-150 19.6 ng/L 24.6 96.4 20-150 19.6 ng/L 24.6 99.7 20-150 20.9 ng/L 24.6 99.7 20-150 20.9 ng/L 24.6 84.8 20-150 44.2 ng/L 49.2 89.7 20-150 20.9 ng/L 24.6 88.7 20-150 220 ng/L 49.2 91.4 20-150 220 ng/L 49.2 91.4 20-150 2218 ng/L 246 88.7 20-150 218 ng/L 246 88.7 20-150 218 ng/L 246 88.7 20-150 219 prepared: 03/24/23 Analyzed: 03/28/23

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

	- ·	Reporting	** *	Spike	Source	0/855	%REC	P. P. F.	RPD	* *
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B334428 - Draft Method 1633										
CS (B334428-BS1)				Prepared: 03	3/24/23 Analyz	ed: 03/28/2	3			
erfluorohexanoic acid (PFHxA)	1.98	0.98	ng/L	1.96		101	40-150			
erfluoroheptanoic acid (PFHpA)	1.99	0.98	ng/L	1.96		102	40-150			
erfluorooctanoic acid (PFOA)	2.05	0.98	ng/L	1.96		105	40-150			
erfluorononanoic acid (PFNA)	1.86	0.98	ng/L	1.96		95.3	40-150			
erfluorodecanoic acid (PFDA)	2.01	0.98	ng/L	1.96		103	40-150			
erfluoroundecanoic acid (PFUnA)	1.96	0.98	ng/L	1.96		99.9	40-150			
erfluorododecanoic acid (PFDoA)	2.08	0.98	ng/L	1.96		106	40-150			
erfluorotridecanoic acid (PFTrDA)	1.82	0.98	ng/L	1.96		92.8	40-150			
erfluorotetradecanoic acid (PFTeDA)	1.97	0.98	ng/L	1.96		100	40-150			
erfluorobutanesulfonic acid (PFBS)	1.88	0.98	ng/L	1.74		108	40-150			
erfluoropetanesulfonic acid (PFPeS)	1.87	0.98	ng/L	1.84		102	40-150			
erfluorohexanesulfonic acid (PFHxS)	1.84	0.98	ng/L	1.79		103	40-150			
erfluoroheptanesulfonic acid (PFHpS)	2.10	0.98	ng/L	1.86		113	40-150			
erfluorooctanesulfonic acid (PFOS)	1.77	0.98	ng/L	1.81		97.4	40-150			
erfluorononanesulfonic acid (PFNS)	1.98	0.98	ng/L	1.88		105	40-150			
erfluorodecanesulfonic acid (PFDS)	1.86	0.98	ng/L	1.89		98.6	40-150			
erfluorododecanesulfonic acid (PFDoS)	1.84	0.98	ng/L	1.90		96.8	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic id (4:2FTS)	8.20	3.9	ng/L	7.34		112	40-150			
I,1H,2H,2H-Perfluorooctane sulfonic acid (2FTS)	7.62	3.9	ng/L	7.43		103	40-150			
H,1H,2H,2H-Perfluorodecane sulfonic id (8:2FTS)	8.93	3.9	ng/L	7.53		118	40-150			
erfluorooctanesulfonamide (PFOSA)	1.90	0.98	ng/L	1.96		97.2	40-150			
methyl perfluoroocatnesulfonamide [MeFOSA]	1.87	0.98	ng/L	1.96		95.6	40-150			
ethyl perfluorooctanesulfonamide [EtFOSA]	1.87	0.98	ng/L	1.96		95.6	40-150			
-MeFOSAA (NMeFOSAA)	2.53	0.98	ng/L	1.96		129	40-150			
-EtFOSAA (NEtFOSAA)	1.82	0.98	ng/L	1.96		92.9	40-150			
-methylperfluorooctanesulfonamidoethano NMeFOSE)	20.6	9.8	ng/L	19.6		105	40-150			
-ethylperfluorooctanesulfonamidoethanol VEtFOSE) exafluoropropylene oxide dimer acid	20.2	9.8 3.9	ng/L	19.6		103	40-150			
examuoropropytene oxide dimer acid IFPO-DA) 8-Dioxa-3H-perfluorononanoic acid	7.81 7.37	3.9	ng/L	7.83 7.39		99.8 99.7	40-150 40-150			
ADONA)			_							
Cl-PF3ONS (F53B Minor)	7.43	3.9	ng/L	7.34		101	40-150			
Cl-PF3OUdS (F53B Major)	6.81	3.9	ng/L	7.39		92.2	40-150			
Perfluoropropyl propanoic acid (FPrPA) :3FTCA)	17.6	9.8	ng/L	19.6		90.1	40-150			
H,2H,3H,3H-Perfluorooctanoic cid(FPePA)(5:3FTCA) Perfluoroheptyl propanoic acid (FHpPA)	89.7	49 49	ng/L	97.8 97.8		91.7	40-150 40-150			
:3FTCA) erfluoro(2-ethoxyethane)sulfonic acid	83.9 3.54	2.0	ng/L	3.48		85.8 102	40-150			
FEESA) erfluoro-3-methoxypropanoic acid	3.88	2.0	ng/L	3.46		99.3	40-150			
PFMPA) erfluoro-4-methoxybutanoic acid	3.82	2.0	ng/L	3.91		97.5	40-150			
FMBA) onafluoro-3,6-dioxaheptanoic acid IFDHA)	5.02	2.0	ng/L	3.91		128	40-150			
urrogate: 13C4-PFBA	81.0		ng/L	97.8		82.8	20-150			
urrogate: 13C5-PFPeA	42.2		ng/L	48.9		86.3	20-150			
urrogate: 13C5-PFHxA	21.1		ng/L	24.5		86.1	20-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

unalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B334428 - Draft Method 1633										
CS (B334428-BS1)				Prepared: 03	/24/23 Analy	zed: 03/28/2	23			
urrogate: 13C4-PFHpA	20.8		ng/L	24.5		85.1	20-150			
urrogate: 13C8-PFOA	21.6		ng/L	24.5		88.1	20-150			
urrogate: 13C9-PFNA	11.0		ng/L	12.2		90.4	20-150			
urrogate: 13C6-PFDA	10.8		ng/L	12.2		88.1	20-150			
urrogate: 13C7-PFUnA	10.5		ng/L	12.2		85.8	20-150			
urrogate: 13C2-PFDoA	10.1		ng/L	12.2		82.7	20-150			
urrogate: 13C2-PFTeDA	10.0		ng/L	12.2		82.0	20-150			
urrogate: 13C3-PFBS	21.2		ng/L	24.5		86.7	20-150			
urrogate: 13C3-PFHxS	21.0		ng/L	24.5		85.8	20-150			
urrogate: 13C8-PFOS	21.6		ng/L	24.5		88.2	20-150			
urrogate: 13C2-4:2FTS	47.4		ng/L	48.9		96.9	20-150			
urrogate: 13C2-6:2FTS	37.9		ng/L	48.9		77.4	20-150			
urrogate: 13C2-8:2FTS	36.7		ng/L	48.9		74.9	20-150			
urrogate: 13C8-PFOSA	20.5		ng/L	24.5		84.0	20-150			
urrogate: D3-NMeFOSA	17.0		ng/L	24.5		69.6	20-150			
urrogate: D5-NEtFOSA	17.7		ng/L	24.5		72.4	20-150			
urrogate: D3-NMeFOSAA	38.8		ng/L	48.9		79.3	20-150			
urrogate: D5-NEtFOSAA	40.5		ng/L	48.9		82.9	20-150			
urrogate: D7-NMeFOSE	194		ng/L	245		79.3	20-150			
urrogate: D9-NEtFOSE	187		ng/L	245		76.5	20-150			
rrogate: 13C3-HFPO-DA	93.0		ng/L	97.8		95.1	20-150			
CS (B334428-BS2)				Prepared: 03	/24/23 Analy	zed: 03/28/2	23			
erfluorobutanoic acid (PFBA)	105	3.9	ng/L	93.7		112	40-150			
erfluoropentanoic acid (PFPeA)	50.9	2.0	ng/L	46.9		109	40-150			
erfluorohexanoic acid (PFHxA)	25.7	0.98	ng/L	23.4		110	40-150			
erfluoroheptanoic acid (PFHpA)	25.3	0.98	ng/L	23.4		108	40-150			
erfluorooctanoic acid (PFOA)	24.9	0.98	ng/L	23.4		106	40-150			
erfluorononanoic acid (PFNA)	24.4	0.98	ng/L	23.4		104	40-150			
erfluorodecanoic acid (PFDA)	26.0	0.98	ng/L	23.4		111	40-150			
erfluoroundecanoic acid (PFUnA)	26.1	0.98	ng/L	23.4		111	40-150			
erfluorododecanoic acid (PFDoA)	26.7	0.98	ng/L	23.4		114	40-150			
erfluorotridecanoic acid (PFTrDA)	24.1	0.98	ng/L	23.4		103	40-150			
erfluorotetradecanoic acid (PFTeDA)	25.9	0.98	ng/L	23.4		111	40-150			
erfluorobutanesulfonic acid (PFBS)	23.8	0.98	ng/L	20.8		115	40-150			
erfluoropetanesulfonic acid (PFPeS)	23.8	0.98	ng/L	22.0		105	40-150			
erfluorohexanesulfonic acid (PFHxS)		0.98	ng/L	21.4		101	40-150			
erfluoroheptanesulfonic acid (PFHpS)	21.6	0.98	ng/L	22.3		106	40-150			
erfluorooctanesulfonic acid (PFOS)	23.6	0.98	ng/L	22.3		103	40-150			
erfluorononanesulfonic acid (PFNS)	22.3	0.98								
erfluorodecanesulfonic acid (PFDS)	24.6		ng/L	22.5		109	40-150			
· · · · · · · · · · · · · · · · · · ·	26.5	0.98	ng/L	22.6		117	40-150			
erfluorododecanesulfonic acid (PFDoS)	24.8	0.98	ng/L	22.7		109	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic iid (4:2FTS)	99.4	3.9	ng/L	87.9		113	40-150			
H,1H,2H,2H-Perfluorooctane sulfonic acid :2FTS)	94.0	3.9	ng/L	89.0		106	40-150			
H,1H,2H,2H-Perfluorodecane sulfonic id (8:2FTS)	102	3.9	ng/L	90.2		113	40-150			
erfluorooctanesulfonamide (PFOSA)	24.8	0.98	ng/L	23.4		106	40-150			
-methyl perfluoroocatnesulfonamide IMeFOSA)	26.1	0.98	ng/L	23.4		111	40-150			
-ethyl perfluorooctanesulfonamide	25.9	0.98	ng/L	23.4		111	40-150			
(EtFOSA)										

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B334428 - Draft Method 1633										
LCS (B334428-BS2)				Prepared: 03	3/24/23 Analy	yzed: 03/28/2	3			
N-EtFOSAA (NEtFOSAA)	26.2	0.98	ng/L	23.4		112	40-150			
N-methylperfluorooctanesulfonamidoethano (NMeFOSE)	266	9.8	ng/L	234		114	40-150			
N-ethylperfluorooctanesulfonamidoethanol NEtFOSE)	271	9.8	ng/L	234		116	40-150			
Hexafluoropropylene oxide dimer acid	98.0	3.9	ng/L	93.7		105	40-150			
,8-Dioxa-3H-perfluorononanoic acid ADONA)	94.2	3.9	ng/L	88.4		106	40-150			
PCI-PF3ONS (F53B Minor)	91.8	3.9	ng/L	87.9		104	40-150			
1Cl-PF3OUdS (F53B Major)	91.0	3.9	ng/L	88.4		103	40-150			
-Perfluoropropyl propanoic acid (FPrPA)	229	9.8	ng/L	234		97.9	40-150			
3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic	1170	49	ng/L	1170		99.8	40-150			
cid(FPePA)(5:3FTCA) -Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	1120	49	ng/L	1170		95.6	40-150			
PFEESA)	45.0	2.0	ng/L	41.7		108	40-150			
erfluoro-3-methoxypropanoic acid PFMPA)	47.8	2.0	ng/L	46.9		102	40-150			
erfluoro-4-methoxybutanoic acid PFMBA)	49.7	2.0	ng/L	46.9		106	40-150			
NFDHA)	55.3	2.0	ng/L	46.9		118	40-150			
Surrogate: 13C4-PFBA	83.2		ng/L	97.6		85.3	20-150			
Surrogate: 13C5-PFPeA	45.2		ng/L	48.8		92.5	20-150			
urrogate: 13C5-PFHxA	22.3		ng/L	24.4		91.3	20-150			
urrogate: 13C4-PFHpA	22.6		ng/L	24.4		92.8	20-150			
Surrogate: 13C8-PFOA	21.5		ng/L	24.4		88.1	20-150			
Surrogate: 13C9-PFNA	11.1		ng/L	12.2		91.0	20-150			
Surrogate: 13C6-PFDA	10.6		ng/L	12.2		86.9	20-150			
Surrogate: 13C7-PFUnA	10.5		ng/L	12.2		85.7	20-150			
Surrogate: 13C2-PFDoA	9.87		ng/L	12.2		80.9	20-150			
Surrogate: 13C2-PFTeDA	10.5		ng/L	12.2		85.9	20-150			
Surrogate: 13C3-PFBS	21.5		ng/L	24.4		88.2	20-150			
Surrogate: 13C3-PFHxS	22.0		ng/L	24.4		90.2	20-150			
Surrogate: 13C8-PFOS	21.3		ng/L	24.4		87.2	20-150			
Surrogate: 13C2-4:2FTS	52.5		ng/L	48.8		107	20-150			
urrogate: 13C2-6:2FTS	40.5		ng/L	48.8		82.9	20-150			
urrogate: 13C2-8:2FTS	40.9		ng/L	48.8		83.7	20-150			
urrogate: 13C8-PFOSA	19.7		ng/L	24.4		80.7	20-150			
urrogate: D3-NMeFOSA	16.7		ng/L	24.4		68.3	20-150			
urrogate: D5-NEtFOSA	17.4		ng/L	24.4		71.4	20-150			
urrogate: D3-NMeFOSAA	39.2		ng/L	48.8		80.3	20-150			
urrogate: D5-NEtFOSAA	39.1		ng/L	48.8		80.0	20-150			
Surrogate: D7-NMeFOSE	192		ng/L ng/L	244		78.6	20-150			
Surrogate: D9-NEtFOSE	191		ng/L ng/L	244		78.2	20-150			
Surrogate: 13C3-HFPO-DA	99.0		ng/L ng/L	97.6		101	20-150			

FLAG/QUALIFIER SUMMARY

calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.		
# Data exceeded client recommended or regulatory level ND Not Detected RL Reporting Limit is at the level of quantitation (LOQ) DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using varial calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for MsRSD is outside of method specifications. Compound was calibrated using a response for MsRSD is outside of method specifications. Compound was calibrated using a response for MsRSD is outside of method specifications. Compound was calibrated using a response for MsRSD is outside of method specification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	*	QC result is outside of established limits.
# Data exceeded client recommended or regulatory level ND Not Detected RL Reporting Limit is at the level of quantitation (LOQ) DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using varial calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of controt the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for %RSD is outside of method specifications. Compound was calibrated using a response for this compound. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	†	Wide recovery limits established for difficult compound.
ND Not Detected RL Reporting Limit is at the level of quantitation (LOQ) DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using varial calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for MRSD is outside of method specifications. Compound was calibrated using a response for Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	‡	Wide RPD limits established for difficult compound.
RL Reporting Limit is at the level of quantitation (LOQ) DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using variable calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipate reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	#	Data exceeded client recommended or regulatory level
DL Detection Limit is the lower limit of detection determined by the MDL study MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using variable calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response of %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	ND	Not Detected
MCL Maximum Contaminant Level Percent recoveries and relative percent differences (RPDs) are determined by the software using varial calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of controt the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	RL	Reporting Limit is at the level of quantitation (LOQ)
Percent recoveries and relative percent differences (RPDs) are determined by the software using varial calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response of the specification was calibrated using a response of the specification control control control result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	DL	Detection Limit is the lower limit of detection determined by the MDL study
calculation which have not been rounded. No results have been blank subtracted unless specified in the case narrative section. L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.	MCL	Maximum Contaminant Level
L-07 Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. MS-23 Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response for %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound.		Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the		No results have been blank subtracted unless specified in the case narrative section.
two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for result for this compound. PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
PF-18 Duplicate analysis confirmed Extracted Internal Standard failure due to matrix effects. R-05 Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	MS-23	Either matrix spike or MS duplicate is outside of control limits, but the other is within limits. RPD between the two MS/MSD results is outside of the method specified criteria. Reduced precision anticipated for any reported result for this compound
reported value for this compound. R-06 Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for report this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	PF-18	·
this compound in this sample. S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
S-29 Extracted Internal Standard is outside of control limits. V-04 Initial calibration did not meet method specifications. Compound was calibrated using a response f %RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	R-06	Matrix spike duplicate RPD is outside of control limits. Reduced precision is anticipated for reported result for this compound in this sample.
%RSD is outside of method specified criteria. Reported result is estimated. V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	S-29	Extracted Internal Standard is outside of control limits.
 V-05 Continuing calibration verification (CCV) did not meet method specifications and was biased on the this compound. V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the 	V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-06 Continuing calibration verification (CCV) did not meet method specifications and was biased on the	V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for
and compound.	V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Perfluorobutanoic acid (PFBA) Perfluoronepatanoic acid (PFIRA) Perfluoronepatanoic acid (PFIRA) Perfluoronepatanoic acid (PFIRA) Perfluoronepatanoic acid (PFIRA) Perfluoronenanoic acid (PFIRA) Perfluorononanoic acid (PFDA) Perfluorononanoic acid (PFDA) Perfluorononanoic acid (PFDA) Perfluorononanoic acid (PFDA) Perfluoronodecanoic acid (PFDA) NY Perfluorondecanoic acid (PFDA) NY Perfluorondecanoic acid (PFDA) NY Perfluorotetradecanoic acid (PFIDA) NY Perfluorobutanesulfonic acid (PFIDA) NY Perfluorobutanesulfonic acid (PFBS) NY Perfluoronepatanesulfonic acid (PFBS) NY Perfluorotenepatanesulfonic acid (PFIRS) NY Perfluorotenepatanesulfonic acid (PFIPS) NY Perfluorotenepatanesulfonic acid (PFIPS) NY Perfluorotenepatanesulfonic acid (PFIPS) NY NAEFOSAA (NMcFOSAA) NY N-EFOSAA (NMcFOSAA) NY N-EFOSAA (NEFOSAA) NY N-EFOSAA (NEFOSAA) NY N-EFOSAA (NEFOSAA) NY Perfluoronepatanesulfonic acid (HFPO-DA) NY A,8-Dioxa-3H-perfluorononanoic acid (ADONA) NY Perfluorote-anesulfonic acid (PFESS) NY Perfluorote-anesulfonic acid (PFESA) NY N-EFOSAA (NEFOSAA) NY	Analyte	Certifications
Perflancopeatancia caid (PFPeA) NY Perflancobacamo caid (PFIDA) NY Perflanconciancia caid (PFDA) NY Perflanconciancia caid (PFDA) NY Perflanconciancia caid (PFDA) NY Perflancondicancia caid (PFDS) NY Perflancondicancial caid (PFDS) NY Perflancondicancial caid (PFDS) NY III.1121.121 Perfloroceance addime caid (PEDS) NY III.1121.121 Perfloroceance addime caid (PEDS) NY III.1121.121 Perfloroceance addime caid (ADNA) NY Perflancondicancia caid (ADNA) NY III.121.121 Perfloroceance addime caid (ADNA) NY Perflancondicancia caid (ADNA)	Draft Method 1633 in Water	
Perflancopeatancia caid (PFPeA) NY Perflancobacamo caid (PFIDA) NY Perflanconciancia caid (PFDA) NY Perflanconciancia caid (PFDA) NY Perflanconciancia caid (PFDA) NY Perflancondicancia caid (PFDS) NY Perflancondicancial caid (PFDS) NY Perflancondicancial caid (PFDS) NY III.1121.121 Perfloroceance addime caid (PEDS) NY III.1121.121 Perfloroceance addime caid (PEDS) NY III.1121.121 Perfloroceance addime caid (ADNA) NY Perflancondicancia caid (ADNA) NY III.121.121 Perfloroceance addime caid (ADNA) NY Perflancondicancia caid (ADNA)	Perfluorobutanoic acid (PFBA)	NY
Perflavorschause and (PTIpA) NY Perflavorschause and (PTDA) NY Perflavorschause and (PTDA) NY Perflavorschausen and (PTRA) NY Perflavorschausen and (PTRS) NY Perflavorschausen auffann and (PTRS) NY N-EGOSAA (NEGOSA) NY N-EGOSAA (NEGOSA) NY Perflavorschausen auffann and (ADDNA) NY Perflavorschausen auffann and (ADDNA) NY Perflavorschausen auffann and (PTRD-D) NY Perflavorschausen auffann and (PTRD-D) NY Perflavors (ESB Minor)		NY
Perfluonocoanoic acid (PFDA) NY Perfluonocoanoic acid (PFDA) NY Perfluonofaccinios acid (PFDS) NY III, III, III, III, III, III, III, III		NY
Perflaoorodeamoic acid (PFDA) NY Perflaooropatancularios acid (PFDA) NY Perflaooropatancularios acid (PFBS) NY Perflaooropatancularios acid (PFBS) NY Perflaooropatancularios acid (PFBS) NY Perflaooropatancularios acid (PFBS) NY Perflaoorobatancularios acid (PFBS) NY NAMe*CSAA (NMe*CSAA) NY Macticis AA (NMe*CSAA) NY Hesaflacospropolico acid dimer acid (RFBO-DA) NY Perflaoor2-deboxychancularios acid (ADONA) NY Perflaoor2-deboxychancularios acid (FPBA) NY Perflaoor2-deboxychancularios acid (FPBA) NY Perflaoor3-deboxycopanic acid (FPBA) NY Perflaoor3-deboxycopanic ac	Perfluoroheptanoic acid (PFHpA)	NY
Perfluorondecanoic acid (PFDA) NY Perfluorondrecanoic acid (PFDA) NY Perfluorotrindecanoic acid (PFDA) NY Perfluorotrindecanoic acid (PFTDA) NY Perfluorotrindecanoic acid (PFTDA) NY Perfluorotrindecanoic acid (PFTDA) NY Perfluorotrindecanoic acid (PFTBS) NY Perfluoroptameadinic acid (PFTBS) NY Perfluoroptameadinic acid (PFTBS) NY Perfluoroptameadinic acid (PFTBS) NY Perfluoroscanocalfonic acid (PFDS) NY Perfluoroscanocalfonic acid (PSTBS) NY Perfluoroscanocalfonic acid (PSTBS) NY Perfluoroscanocalfonic acid (PSTBS) NY Perfluoroscanocalfonic acid (PSTBS) NY NAGEOSAA (NAGEOSAA) NY Perfluoroscanocalfonic acid (PSTBS) NY NAGEOSAA (NAGEOSAA) NY Perfluoroscanocalfonic acid (PSTBS) NY Perfluoroscanocalfonic Acid (PSTB	Perfluorooctanoic acid (PFOA)	NY
Perlinoromodecanois caid (PTDA) NY Perlinorodecanois caid (PTDA) NY Perlinorodecanois caid (PTEDA) NY Perlinorobatanesal formic caid (PTEDA) NY Perlinorobatanesal formic caid (PTES) NY Perlinorobatanesal formic caid (PTES) NY Perlinorohaptanesal formic caid (PTES) NY III, ILLE, ELP-Perlinorobecane sulfornic caid (PTES) NY III, ILLE, ELP-Perlinorobecane sulfornic caid (PTES) NY III, ILLE, ELP-Perlinorobecane sulfornic caid (PTES) NY N-EFOSAA (NELFOSAA) NY N-EFOSAA (NELFOSAA) NY N-EFOSAA (NELFOSAA) NY PERLINOROSCAPIO Commonic caid (PTESA) NY PERLINOROSCAPIO Commonic caid (PTESA) NY PERLINOROSCAPIO Mater NY Perlinoroscharobapoli formic caid (PTESA) NY Perlinoroscharobapoli formic caid (PTESA) NY Perlinoroscharobapoli formic caid (PTESA) NY <		NY
Perfluorofidecancia caid (PFDA) NY Perfluorofidecancia caid (PFDA) NY Perfluorofidecancia caid (PFDA) NY Perfluorophameaulfonic acid (PFDS) NY Perfluorophameaulfonic acid (PFDS) NY Perfluorophameaulfonic acid (PFDS) NY Perfluorologianeaulfonic acid (PFDS) NY Perfluorologianeaulfonic acid (PFDS) NY HI, HL, HL, PH-Perfluoroctema sulfonic acid (8-2FTS) NY PM-POSAA (NHcFOSAA) NY N-M-EYOSAA (NHcFOSAA) NY N-LTOSAA (NELFOSAA) NY N-LTOSAA (NELFOSAA) NY Perfluorologenium acid (HPO-DA) NY 4-S-Dioca-3H sperfluoronomanic acid (ADONA) NY 9-CFFSONS (FS3B Misro) NY Perfluorologenium acid (PFESA) NY Bronzelo	Perfluorodecanoic acid (PFDA)	NY
Perfluorotrisdecanoic acid (PFTDA) NY Perfluorotetradecanoic acid (PFTBS) NY Perfluorochecaneaulifonic acid (PFTBS) NY Perfluorochecaneaulifonic acid (PFTPS) NY Perfluorochecaneaulifonic acid (PFHS) NY Perfluorochecaneaulifonic acid (PFHS) NY Perfluorochecaneaulifonic acid (PFHS) NY H.H.L.P.J.P.H.Perfluorochecane sulfonic acid (6.2FTS) NY H.H.L.P.J.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P	Perfluoroundecanoic acid (PFUnA)	NY
Perfluorotetradecanoic acid (PTEDA) NY Perfluoropbeansulfionic acid (PTES) NY Perfluoropbeansulfionic acid (PTES) NY Perfluorocheansulfionic acid (PTES) NY Perfluorocheansulfionic acid (PTES) NY Perfluorocheansulfionic acid (PTFIS) NY Ill.IL.IL.IL-Derfluorochean sulfoinic acid (6:2FTS) NY Ill.IL.IL.IL-Derfluorochean sulfoinic acid (8:2FTS) NY N-MEPOSAA (NIN-FOSAA) NY N-MEPOSAA (DERFOSAA) NY M-ERIDIA (STEPS) NY M-ER	Perfluorododecanoic acid (PFDoA)	NY
Perfluoroptameaulfonic acid (PFBS) NY Perfluoroptameaulfonic acid (PFBS) NY Perfluorobeameaulfonic acid (PFBS) NY Perfluorobeameaulfonic acid (PFBS) NY Perfluoroctameaulfonic acid (PFDS) NY III,II,II,II,II,II,II,II,II,II,III,II,I	Perfluorotridecanoic acid (PFTrDA)	NY
Perfluoropeanesalfonia acid (PFPS) NY Perfluorobeanesalfonia acid (PFIKS) NY Perfluorobeanesalfonia acid (PFIPS) NY Perfluorobeanesalfonia acid (PFIPS) NY III.112.12.13-Perfluoroaceane sulfonia acid (8-2FTS) NY III.112.12.13-Perfluoroaceane sulfonia acid (8-2FTS) NY NAMeFOSAA (NMeFOSAA) NY N-SEFOSAA (NEFOSAA) NY Hexafleoropropylene oxide dimer acid (HFPO-DA) NY 4.8-Dioxa 3H-perfluorononanoia acid (ADONA) NY 9C-PFSONS (FS3B Minor) NY Perfluor-2-choxyethane)sulfonia acid (PFEESA) NY Perfluor-2-choxyethane)sulfonia acid (PFEESA) NY SW-348 8269D in Witer CT.ME.NILVA.NY Benzace CT.ME.NILVA.NY Benzace CT.ME.NILVA.NY Bromochloromethane CT.ME.NILVA.NY Bromochloromethane CT.ME.NILVA.NY Bromochloroffma CT.ME.NILVA.NY Bernamethane CT.ME.NILVA.NY Carbon Disulfide CT.ME.NILVA.NY Carbon Disulfide CT.ME.NILVA.NY Clorochenzene CT.ME.NILVA.NY <td>Perfluorotetradecanoic acid (PFTeDA)</td> <td>NY</td>	Perfluorotetradecanoic acid (PFTeDA)	NY
Perfluorohexanesulfonic acid (PFIRS) NY Perfluoroctanesulfonic acid (PFIRS) NY Perfluoroctanesulfonic acid (PFOS) NY III.II.II.II.P-erfluoroctanesulfonic acid (PFOS) NY III.II.II.II.P-erfluoroctanesulfonic acid (S-2FTS) NY III.II.II.II.P-erfluoroctanesulfonic acid (S-2FTS) NY NAME/OSAA (NEIPOSAA) NY NEEFOSAA (NEIPOSAA) NY Heafluoropropylene ocide dimer acid (HFPO-D) NY SCI-PFONS (FSIB Minor) NY III.L-PFOLOUS (FSIB Minor) NY Perfluoro-3-methoxypropanoic acid (PFEESA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water CT.ME.NII.VA.NY Bromochloromethane CT.ME.NII.VA.NY Bromochloromethane ME.NI.VA.NY Bromochloromethane CT.ME.NII.VA.NY Bromochloromethane CT.ME.NII.VA.NY Bromochloromethane CT.ME.NII.VA.NY Bromochloromethane CT.ME.NII.VA.NY Carbon Dealidé CT.ME.NII.VA.NY Carbon Dealidé CT.ME.NII.VA.NY Chlorocharme CT	Perfluorobutanesulfonic acid (PFBS)	NY
Perfluorobeptanesulfonic acid (PFIIpS) NY Perfluoroctanesulfonic acid (PFOS) NY IH. IH.2H.2H-Perfluoroctane sulfonic acid (6:2FTS) NY IH. IH.3H.2H.2H-Perfluoroctane sulfonic acid (8:2FTS) NY N-MeFOSAA (NMEFOSAA) NY Hexafluoropropyele oxide dimer acid (HFPO-DA) NY Hexafluoropropyele oxide dimer acid (HFPO-DA) NY 9CLPF3ONS (F53B Minor) NY 9CLPF3OUS (F53B Major) NY Perfluor0-3-methoropropayoria acid (PFESA) NY Perfluor0-3-methoxyropanoic acid (FFMPA) NY 5W-468 266D in Water CT,ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Carbon Disalfide CT,ME,NH,VA,NY Carbon Disalfide CT,ME,NH,VA,NY Chlorochane CT,ME,NH,VA,NY Chlorochane CT,ME,NH,VA,NY Chlorochane CT,ME,NH,VA,NY Chlorochane CT,ME,NH,VA,NY <tr< td=""><td>Perfluoropetanesulfonic acid (PFPeS)</td><td>NY</td></tr<>	Perfluoropetanesulfonic acid (PFPeS)	NY
Perfluorooctanesulfonic acid (PFOS) NY IH, H.2H, 2H-Perfluorocteane sulfonic acid (6.2FTS) NY IH, H.2H, 2H-Perfluorocteane sulfonic acid (8.2FTS) NY NAGEOSAA (NMeFOSAA) NY N-EIFOSAA (NEIFOSAA) NY Hexafluoropropyelne oxide dimer acid (HFPO-DA) NY 4,8-Dioxa-3H-perfluorononancia caid (ADONA) NY 9CLFP3ONS (FS3B Minor) NY Perfluoro2-enhoxyethane) sulfonic acid (PFEESA) NY Perfluoro3-enhoxyethane) sulfonic acid (PFEESA) NY Perfluoro3-enhoxyethane) sulfonic acid (PFEESA) NY Acetone CTME.NH.VA.NY Bronzene CT.ME.NH.VA.NY Bromodichloromethane ME.NH.VA.NY Bromodichloromethane CT.ME.NH.VA.NY Bromomethane CT.ME.NH.VA.NY Bromomethane CT.ME.NH.VA.NY Bromodichloromethane CT.ME.NH.VA.NY Carbon Disulfide CT.ME.NH.VA.NY Carbon Disulfide CT.ME.NH.VA.NY Chlorobenzene CT.ME.NH.VA.NY Chlorodibromomethane CT.ME.NH.VA.NY Chlorodibromomethane CT.ME.NH.VA	Perfluorohexanesulfonic acid (PFHxS)	NY
III, III, 2II, 2II-Perfluorooctane sulfonic acid (6:2FTS) NY III, III, 2II-Perfluorooctane sulfonic acid (8:2FTS) NY NM-GOSAA (NME-FOSAA) NY NE-GIFOSAA (NME-FOSAA) NY Hestafluoropropylene oxide dimer acid (HFPO-DA) NY 4.8-Dioxa-3H-perfluorononanoic acid (ADONA) NY 9CI-PF3ONS (FS3B Minor) NY IICI-PF3OUSA (FS3B Minor) NY IICI-PF3OUSA (FS3B Minor) NY PerfluorO-3-methoxypropanoic acid (PFEESA) NY PerfluorO-3-methoxypropanoic acid (PFEESA) NY PerfluorO-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water Acetone	Perfluoroheptanesulfonic acid (PFHpS)	NY
II, II, 2H, 2H-Perfluorodecane sulfonic acid (8-2FTS) NY NAMETOSAA (NMETOSAA) NY N-EIFOSAA (NEIFOSAA) NY Ilexafluoroporaplene oxide dimer acid (IIFPO-DA) NY 4.8-Dioxa-3H-perfluoronomanoic acid (ADONA) NY 9CI-PF3OUS (F53B Minor) NY 11 CI-PF3OUGS (F53B Minor) NY Perfluoro-2-ethoxyethane)sulfonic acid (PFEBSA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water CT.ME,NII, VA,NY Benzene CT.ME,NII, VA,NY Bromochloromethane CT.ME,NII, VA,NY Bromofiloromethane CT.ME,NII, VA,NY Bromofiloromethane CT.ME,NII, VA,NY Bromofiloromethane CT.ME,NII, VA,NY Bromofiloromethane CT.ME,NII, VA,NY Carbon Disulfide CT.ME,NII, VA,NY Carbon Disulfide CT.ME,NII, VA,NY Carbon Disulfide CT.ME,NII, VA,NY Chlorochane CT.ME,NII, VA,NY Chlorodbromomethane CT.ME,NII, VA,NY Chlorochenae CT.ME,NII, VA,NY Chlorochenae CT.ME,NII, VA,NY </td <td>Perfluorooctanesulfonic acid (PFOS)</td> <td>NY</td>	Perfluorooctanesulfonic acid (PFOS)	NY
N-MeFOSAA (NMeFOSAA) NY N-EiFOSAA (NEiFOSAA) NY Hexafluoropropylene oxide dimer acid (HFPO-DA) NY 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) NY 9C1-FF3ONS (F53B Major) NY Perfluoro-2-enthoxypropanoic acid (PFEESA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 826D in Water CT.ME,NH, VA, NY Benzene CT.ME,NH, VA, NY Bromochloromethane ME,NH, VA, NY Bromodichloromethane CT.ME,NH, VA, NY Bromodefine CT.ME,NH, VA, NY Bromomethane CT.ME,NH, VA, NY Bromomethane CT.ME,NH, VA, NY Letr-Butyl Alcohol (TBA) ME,NH, VA, NY tert-Butyl Alcohol (TBA) ME,NH, VA, NY Carbon Tetrachloride CT.ME,NH, VA, NY Cubror Citrachili, VA, NY Critrachili, VA, NY Chlorochane CT.ME,NH, VA, NY Chlorochane	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	NY
N-EtFOSAA (NEtFOSAA) Hexafluoropropylene oxide dimer acid (HFPO-DA) 4,8-Dixa-3H-perfluorononancia acid (ADONA) NY 9Cl-PF3ONS (F53B Minor) NY Perfluoro2-ethoxyethane/sulforia caid (PFEESA) PF10uro1-3-methoxypropanoic acid (PFEESA) NY Perfluoro3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water Acetone CT,ME,NH,VA,NY Bernzen CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY CHorobenzen CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY	1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	NY
Hexafluoropropylene oxide dimer acid (HFPO-DA) NY 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) NY 9CI-PF3ONS (F53B Minor) NY Perfluoro2-ethoxyethane/sulfonic acid (PFEESA) NY Perfluoro2-ethoxyethane/sulfonic acid (PFMPA) NY SW-846 8260D in Water CT,ME,NH,Va,NY Acetone CT,ME,NH,Va,NY Bromochloromethane ME,NH,Va,NY Bromochloromethane CT,ME,NH,Va,NY Bromofichloromethane CT,ME,NH,Va,NY Bromoficm CT,ME,NH,Va,NY Bromomethane CT,ME,NH,Va,NY 2-Butanone (MEK) CT,ME,NH,Va,NY tert-Buyl Alcohol (TBA) ME,NH,Va,NY Carbon Disulfide CT,ME,NH,Va,NY Carbon Disulfide CT,ME,NH,Va,NY Chlorobenzene CT,ME,NH,Va,NY Chlorobromethane CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY Chloroform CT,ME,NH,Va,NY </td <td>N-MeFOSAA (NMeFOSAA)</td> <td>NY</td>	N-MeFOSAA (NMeFOSAA)	NY
4,8-Dioxa-3H-perfluorononanoic acid (ADONA) NY 9CL-PF3ONS (F53B Minor) NY 11C1-PF3OUdS (F53B Major) NY Perfluoro-3-methoxypropanoic acid (PFEESA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water CT,ME,NH,VA,NY Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromodichloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Bromodichloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Cabanane (MEK) CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobromomethane CT,ME,NH,VA,NY Chlorobromomethane CT,ME,NH,VA,NY Chlorobromomethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY	N-EtFOSAA (NEtFOSAA)	NY
9CL-PF3ONS (F\$3B Major) NY ITCL-PF3OUdS (F\$3B Major) NY Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) NY Perfluoro-3-methoxypropancia acid (PFMPA) NY SW-846 8260D in Water CT_ME_NH,VA,NY Acetone CT_ME_NH,VA,NY Benzene CT_ME_NH,VA,NY Bromochloromethane ME_NIL,VA,NY Bromoform CT_ME_NH,VA,NY Bromoform CT_ME_NH,VA,NY Bromoform CT_ME_NH,VA,NY 2-Butanone (MEK) CT_ME_NH,VA,NY tert-Buryl Alcohol (TBA) ME_NH,VA,NY Carbon Disulfide CT_ME_NH,VA,NY Carbon Tetrachloride CT_ME_NH,VA,NY Chlorodibromomethane CT_ME_NH,VA,NY Chlorodibromomethane CT_ME_NH,VA,NY Chloroform CT_ME_NH,VA,NY Chloroform CT_ME_NH,VA,NY Chloroform CT_ME_NH,VA,NY Chlorodibromomethane CT_ME_NH,VA,NY Chlorodibromothane CT_ME_NH,VA,NY Chlorodibromothane CT_ME_NH,VA,NY Chlorodibromothane CT_ME_NH,VA,NY <	Hexafluoropropylene oxide dimer acid (HFPO-DA)	NY
ITCI-PF3OUdS (F53B Major) NY Perfluoro(2-ethoxyethane)sulfonic acid (PFESA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water CT_ME,NH,VA,NY Benzene CT_ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromodichloromethane CT_ME,NH,VA,NY Bromoform CT_ME,NH,VA,NY Bromoform CT_ME,NH,VA,NY 2-Butanone (MEK) CT_ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT_ME,NH,VA,NY Carbon Tetrachloride CT_ME,NH,VA,NY Chlorodibromomethane CT_ME,NH,VA,NY Chlorodibromomethane CT_ME,NH,VA,NY Chlorofethane CT_ME,NH,VA,NY Chloromethane CT_ME,NH,VA,NY Chloromethane CT_ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromo-6-3-chloropropane (DBCP) ME,NY	4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NY
Perfluoro(2-ethoxyerhane)sulfonic acid (PFEESA) NY Perfluoro-3-methoxypropanoic acid (PFMPA) NY SW-846 8260D in Water Acetone CT,ME,NH,VA,NY Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY CH-Buyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Crearchloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodenzene CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY	9Cl-PF3ONS (F53B Minor)	NY
Perfluoro-3-methoxypropanoic acid (PFMPA) SW-846 8260D in Water Acetone CT,ME,NH,VA,NY Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromochloromethane CT,ME,NH,VA,NY Bromodichloromethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorotenane CT,ME,NH,VA,NY Chlorotenane CT,ME,NH,VA,NY Chlorotethane CT,ME,NH,VA,NY Chlorotethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY	11Cl-PF3OUdS (F53B Major)	NY
Acetone CT,ME,NH,VA,NY Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromonethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chlorothane CT,ME,NH,VA,NY Chlorothane CT,ME,NH,VA,NY Chlorothane CT,ME,NH,VA,NY Chlorothane CT,ME,NH,VA,NY Chlorothane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NY
Acetone CT,ME,NH,VA,NY Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromofichloromethane CT,ME,NH,VA,NY Bromofirm CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Perfluoro-3-methoxypropanoic acid (PFMPA)	NY
Benzene CT,ME,NH,VA,NY Bromochloromethane ME,NH,VA,NY Bromodichloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorobiromomethane CT,ME,NH,VA,NY Chloroothane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	SW-846 8260D in Water	
Bromochloromethane ME,NH,VA,NY Bromodichloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroothane CT,ME,NH,VA,NY Chloroothane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Acetone	CT,ME,NH,VA,NY
Bromodichloromethane CT,ME,NH,VA,NY Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY	Benzene	CT,ME,NH,VA,NY
Bromoform CT,ME,NH,VA,NY Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Bromochloromethane	ME,NH,VA,NY
Bromomethane CT,ME,NH,VA,NY 2-Butanone (MEK) CT,ME,NH,VA,NY tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY ME,NY	Bromodichloromethane	CT,ME,NH,VA,NY
2-Butanone (MEK) tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorodenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY ME,NY	Bromoform	CT,ME,NH,VA,NY
tert-Butyl Alcohol (TBA) ME,NH,VA,NY Carbon Disulfide CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY ME,NY ME,NY	Bromomethane	CT,ME,NH,VA,NY
Carbon Disulfide CT,ME,NH,VA,NY Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	2-Butanone (MEK)	CT,ME,NH,VA,NY
Carbon Tetrachloride CT,ME,NH,VA,NY Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	tert-Butyl Alcohol (TBA)	ME,NH,VA,NY
Chlorobenzene CT,ME,NH,VA,NY Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Carbon Disulfide	CT,ME,NH,VA,NY
Chlorodibromomethane CT,ME,NH,VA,NY Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Carbon Tetrachloride	CT,ME,NH,VA,NY
Chloroethane CT,ME,NH,VA,NY Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Chlorobenzene	CT,ME,NH,VA,NY
Chloroform CT,ME,NH,VA,NY Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY	Chlorodibromomethane	CT,ME,NH,VA,NY
Chloromethane CT,ME,NH,VA,NY Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY		
Cyclohexane ME,NY 1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY		
1,2-Dibromo-3-chloropropane (DBCP) ME,NY 1,2-Dibromoethane (EDB) ME,NY		
1,2-Dibromoethane (EDB) ME,NY	•	
1,2-Dichlorobenzene CT,ME,NH,VA,NY		
	1,2-Dichlorobenzene	CT,ME,NH,VA,NY

CERTIFICATIONS

Certified Analyses included in this Report

Benzo(a)pyrene

Analyte	Certifications
SW-846 8260D in Water	
1,3-Dichlorobenzene	CT,ME,NH,VA,NY
1,4-Dichlorobenzene	CT,ME,NH,VA,NY
trans-1,4-Dichloro-2-butene	ME,NH,VA,NY
Dichlorodifluoromethane (Freon 12)	ME,NH,VA,NY
1,1-Dichloroethane	CT,ME,NH,VA,NY
1,2-Dichloroethane	CT,ME,NH,VA,NY
1,1-Dichloroethylene	CT,ME,NH,VA,NY
cis-1,2-Dichloroethylene	ME,NY
trans-1,2-Dichloroethylene	CT,ME,NH,VA,NY
1,2-Dichloropropane	CT,ME,NH,VA,NY
cis-1,3-Dichloropropene	CT,ME,NH,VA,NY
trans-1,3-Dichloropropene	CT,ME,NH,VA,NY
1,4-Dioxane	ME,NY
Ethylbenzene	CT,ME,NH,VA,NY
Hexachlorobutadiene	CT,ME,NH,VA,NY
2-Hexanone (MBK)	CT,ME,NH,VA,NY
Isopropylbenzene (Cumene)	ME,VA,NY
Methyl Acetate	ME,NY
Methyl tert-Butyl Ether (MTBE)	CT,ME,NH,VA,NY
Methyl Cyclohexane	NY
Methylene Chloride	CT,ME,NH,VA,NY
4-Methyl-2-pentanone (MIBK)	CT,ME,NH,VA,NY
Naphthalene	ME,NH,VA,NY
Styrene	CT,ME,NH,VA,NY
1,1,2,2-Tetrachloroethane	CT,ME,NH,VA,NY
Tetrachloroethylene	CT,ME,NH,VA,NY
Toluene	CT,ME,NH,VA,NY
1,2,3-Trichlorobenzene	ME,NH,VA,NY
1,2,4-Trichlorobenzene	CT,ME,NH,VA,NY
1,1,1-Trichloroethane	CT,ME,NH,VA,NY
1,1,2-Trichloroethane	CT,ME,NH,VA,NY
Trichloroethylene	CT,ME,NH,VA,NY
Trichlorofluoromethane (Freon 11)	CT,ME,NH,VA,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	VA,NY
Vinyl Chloride	CT,ME,NH,VA,NY
Xylenes (total)	ME,NY
SW-846 8270E in Water	ANTONIA.
1,4-Dioxane	NY,NH
Acenaphthene	CT,NY,NC,ME,NH,VA
Acenaphthylene	CT,NY,NC,ME,NH,VA
Acetophenone	NY,NC
Aniline	CT,NY,NC,ME,VA
Anthracene	CT,NY,NC,ME,NH,VA
Benzidine Renzidine	CT,NY,NC,ME,NH,VA
Benzo(a)pyrana	CT,NY,NC,ME,NH,VA

CT,NY,NC,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270E in Water		
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA	
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA	
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA	
Benzoic Acid	NY,NC,ME,NH,VA	
Bis(2-chloroethoxy)methane	CT,NY,NC,ME,NH,VA	
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-chloroisopropyl)ether	CT,NY,NC,ME,NH,VA	
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA	
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA	
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA	
Carbazole	NC	
4-Chloroaniline	CT,NY,NC,ME,NH,VA	
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA	
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA	
2-Chlorophenol	CT,NY,NC,ME,NH,VA	
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA	
Chrysene	CT,NY,NC,ME,NH,VA	
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA	
Dibenzofuran	CT,NY,NC,ME,NH,VA	
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA	
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA	
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA	
Diethylphthalate	CT,NY,NC,ME,NH,VA	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA	
Dimethylphthalate	CT,NY,NC,ME,NH,VA	
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA	
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA	
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA	
1,2-Diphenylhydrazine/Azobenzene	NY,NC	
Fluoranthene	CT,NY,NC,ME,NH,VA	
Fluorene	NY,NC,ME,NH,VA	
Hexachlorobenzene	CT,NY,NC,ME,NH,VA	
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA	
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA	
Hexachloroethane	CT,NY,NC,ME,NH,VA	
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA	
Isophorone	CT,NY,NC,ME,NH,VA	
1-Methylnaphthalene	NC	
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA	
2-Methylphenol	CT,NY,NC,NH,VA	
3/4-Methylphenol	CT,NY,NC,NH,VA	
Naphthalene	CT,NY,NC,ME,NH,VA	Page 54

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8270E in Water		
2-Nitroaniline	CT,NY,NC,ME,NH,VA	
3-Nitroaniline	CT,NY,NC,ME,NH,VA	
4-Nitroaniline	CT,NY,NC,ME,NH,VA	
Nitrobenzene	CT,NY,NC,ME,NH,VA	
2-Nitrophenol	CT,NY,NC,ME,NH,VA	
4-Nitrophenol	CT,NY,NC,ME,NH,VA	
N-Nitrosodimethylamine	CT,NY,NC,ME,NH,VA	
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA	
Pentachloronitrobenzene	NC	
Pentachlorophenol	CT,NY,NC,ME,NH,VA	
Phenanthrene	CT,NY,NC,ME,NH,VA	
Phenol	CT,NY,NC,ME,NH,VA	
Pyrene	CT,NY,NC,ME,NH,VA	
Pyridine	CT,NY,NC,ME,NH,VA	
1,2,4,5-Tetrachlorobenzene	NY,NC	
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA	
2,4,5-Trichlorophenol	CT,NY,NC,ME,NH,VA	
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA	
2-Fluorophenol	NC	

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
MA	Massachusetts DEP	M-MA100	06/30/2023
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
RI	Rhode Island Department of Health	LAO00373	12/30/2023
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023

FedEx* Tracking

:

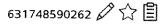
DELIVERED

Saturday

2/11/2023 at 9:46 am

Signed for by: D.LETENDER

 $\underline{\,}^{\perp}$ Obtain Proof of delivery


How was your delivery?

DELIVERY STATUS

TRACKING ID

FROM

MELVILLE, NY US

Label Created 2/10/2023 10:42 AM

PACKAGE RECEIVED BY FEDEX

MELVILLE, NY 2/10/2023 5:49 PM

IN TRANSIT

WINDSOR LOCKS, CT 2/11/2023 9:09 AM

OUT FOR DELIVERY

WINDSOR LOCKS, CT 2/11/2023 9:09 AM

DELIVERED

EAST LONGMEADOW, MA US

Delivered 2/11/2023 at 9:46 AM

↓ View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

MORE OPTIONS

Manage Delivery

SUBMIT

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0009V02_Sample Receiving Checklist 1-12-2 Table of Contents

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

Client/	Rumbe									т	rue	False
	Juremo		<u> </u>	<u>૧૯૧૫ (</u>	<u> (u) 5</u>	生(1)	SVS (S Received	e marc)		r)	П
MCP/RCP R	equired	<u> </u>	£				<u>keceivea</u>	on ice				<u> </u>
Deliverable	Package Req	· A) A				Received	<u>in Cooler</u>				<u> </u>
ocation	012/	30thpc	ide,	M	·····		Custody S	eal: DATE	TIM	1E		
	hen Applicab		W1-		***************************************	<u></u>	COC Relin	quished			И	
Arrival Met	hod:					<u>(</u>	COC/Sam	ples Labels	Agree		Ų.	
Courier 🗖	Fed Ex	Walk In	コ Othe	$_{r}\square$		4	All Sample	es in Good	Condition		<u>V</u>	
	/ / Date / Tim				123	716	Samples F	Received w	ithin Holdin	g Time	Ŭ)	
Back-Sheet	By / Date / Ti	me AA	21,	13/2	2 1014			nough Volu			abla	
	re Method			#	5	- <u>I</u>	Proper M	edia/Conta	iner Used		<u> </u>	
Temp 🕖	< 6° C Actu	al Temper	ature 4	0/3	3-4-/ <i>5</i>	<u>.0</u>	Splitting S	amples Re	guired			Ø
Rush Sampl	es: Yes /	Notify	***************************************		····	-	MS/MSD				V	П
hort Hold:	Yes (No	Notify				_		***************************************				-
Note	e recording	Samulas	/coc -	م اداما د	~{ COD		rip Blank	S				<u> </u>
Note	s regarding	Samples	<u>/ COC 0</u>	utsiae	01 3UP	Ţ	ab to Filt	ers		<u>i</u>		
•											1 / I	11
**************************************			***************************************	E 11 11 11 11 11 11		_ (uded: (Che	eck all inclu			
						(uded: (Che	alysis 🗸	ided) Samplei		
						(COC Inclu Client Project	uded: (Che And ID:	alysis 🗸	oded) Sample Collection	· Name	
Contain	ner (Circle wher) UnP	НСІ	HNO3	(COC Inclu Client Project	uded: (Che And ID:	alysis 🔽	oded) Sample Collection	Name on Date/Tin	
Contain 1L	ner (Circle when	Plastic) UnP	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL	Amber Amber	Plastic		HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL	Amber Amber Amber	Plastic Plastic Plastic	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other	Amber Amber Amber Amber Clear	Plastic Plastic Plastic	1/2	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz	Amber Amber Amber Amber Clear Amber	Plastic Plastic Plastic Plastic Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 7 16oz 8oz	Amber Amber Amber Amber Clear Amber Amber	Plastic Plastic Plastic Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz	Amber Amber Amber Amber Clear Amber	Plastic Plastic Plastic Plastic Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other / 16oz 8oz 4oz	Amber Amber Amber Clear Amber Amber Amber Amber	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	uded: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber Amber Amber	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber Steria	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt Perchlo	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber Steria	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt Perchlo Encore	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber Steria	Plastic Plastic Plastic Clear Clear Clear	12	HCI	HNO3	- C	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	
1L 500 mL 250 mL Other 16oz 8oz 4oz 2oz Col/Bac Flashpo Plastic E SOC KIt Perchlo	Amber Amber Amber Clear Amber Amber Amber Amber Amber Amber Steria	Plastic Plastic Plastic Clear Clear Clear Clear	4	HCI	HNO3	H2SO4	COC Inclu Client Project All Samp	Ided: (Che	alysis 🖸	Sample Collection	Name on Date/Tin	