

Intended for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Document type

Report

Date

June 2023

MONTHLY REPORT OF
THE OPERATIONS &
MAINTENANCE
ACTIVITIES (MAY 2023)
CLAREMONT POLYCHEMICAL
OPERABLE UNIT 5 GROUND
WATER TREATMENT
SYSTEM, OLD BETHPAGE, NY

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (MAY 2023) CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

Project no. **1087815.1940101703**

Recipient New York State Department of Environmental Conservation

Document type **Report** Version [1]

Date **June 8, 2023**

Prepared by Pawel Mecinski – GES

Checked by Michael Grifasi - Ramboll

Approved by Andrew Leitzinger - Ramboll

Ramboll

333 West Washington Street

Syracuse, NY 13202

USA

T 315-956-6100 F 315-463-7554 https://ramboll.com

CONTENTS

1.	Operation and Maintenance Activities	4
1.1	Daily Operations Summary Reports	4
1.2	Summary of Maintenance Activities	4
1.3	Maintenance Logs	5
2.	Technical Support Activities	5
2.1	GES/Ramboll Personnel	5
2.2	NYSDEC Personnel, Sub-contractors, and Other Visitors	5
2.3	Deliveries	6
3.	Health and Safety	6
4.	Planned Activities and Schedules	6
5.	Monitoring Well Water Elevations	6
6.	Treatment System Flows	6
7.	Chemical Consumption	7
8.	Waste Disposals	7
9.	Monthly Discharge Monitoring Report	8
10.	Pending Issues and Considerations	8
11.	Plant Documents	8
12.	Monitoring Results	9
12.1	Off-site Analytical Data Results	9
12.2	Field Data	9
12.2.1	Plant Discharge pH and Temperature	9
12.2.2	Air Stripper (AS) Tower Air Monitoring	9
13.	Process Analysis and System Status	10
13.1	Extraction (RW) Processes	10
13.2	AS Process	10
13.3	PD Process	10
13.4	Other	11
14.	Grounds	11
14.1	Plant Perimeter	11
14.2	Well Field	11
14.3	Other	11

LIST OF FIGURES

1. Plant Discharge Daily Flow

LIST OF TABLES

- 1. Claremont Corrective Actions Summary
- 2. Plant Discharge Average Flow & Volume
- 3. Plant Daily Totalizer Readings
- 4. Pump System Flow Readings
- 5. Claremont OU5 O&M Sampling/Measurement
- 6. Plant Discharge Analytical Results May 2, 2023
- 7. Emerging Contaminant Influent & Effluent Analytical Results May 2, 2023
- 8. Effluent pH and Temperature Readings
- 9. Plant Discharge Monthly Average pH
- 10. AS Tower Air Monitoring Readings

LIST OF ATTACHMENTS

1. Monthly O&M Sampling Analytical Results - May 2, 2023

LIST OF ACRONYMS AND ABBRIEVIATIONS

AS Air Stripper
A/V Air and Vacuum
ASF Air Stripper feed

BNA Base Neutral & Acid Extractables

CPC Claremont Polychemical CSE Confined Space Entry

DOSR Daily Operations Summary Report

EE Electrical Engineer

GES Groundwater & Environmental Services, Inc.

GPM Gallons Per Minute

GWTS Groundwater extraction, treatment, and reinjection system

HDR Henningson, Durham & Richardson Architecture and Engineering, P.C.

HMI Human Machine Interface

HVAC Heating, Ventilation, and Air Conditioning

MTBA Tert-Butyl-Methyl ether

MW Monitoring Well

NYSDEC New York State Department of Environmental Conservation

O&M Operation and Maintenance

OU4 Operable Unit 4
OU5 Operable Unit 5
PD Plant Discharge
PDB Passive Diffusion Bag

PFAS Per- and polyfluoroalkyl substances

PFOS Perfluorooctanesulfonic acid
PFOA Perfluorooctanoic acid
PID Photoionization Detector
PFF Pressure Filter Feed

PLC Programmable Logic Controller

ppm parts per million PW Process Water

Ramboll Americas Engineering Solutions, Inc.

RW Recovery Well, Process Well

SPEDES State Pollutant Discharge Elimination System

SSHP Site Safety and Health Plan

SU Standard pH Units

SVOCs Semi-Volatile Organic Compounds

TBA Tert-butyl alcohol
TDS Total Dissolved Solids
TKN Total Kjeldahl Nitrogen
TOC Total Organic Carbon
TSS Total Suspended Solids

US Water Services Corporation VOCs Volatile Organic Compounds,

1. OPERATION AND MAINTENANCE ACTIVITIES

On behalf of Ramboll Americas Engineering Solutions, Inc. (Ramboll), Groundwater & Environmental Services, Inc. (GES) continued the daily operation and maintenance (O&M) of the Claremont Polychemical (CPC) Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU5) during the month of May 2023. In addition, former Operable Unit (OU4) was inspected once per month to ensure security and building code compliance. For this report every time plant is mentioned it refers to OU5. OU4 will be referred to as such whenever discussed. This report covers the O&M activities for the system during the period defined as beginning at approximately 0800 hours, May 1, 2023, through approximately 0830 hours, June 1, 2023. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 31 days in this reporting period during which the treatment system experienced no downtime.

Readings of the key plant process parameters are normally recorded each workday. These readings and the Human Machine Interface (HMI) flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the daily database which is an electronic file maintained in the monthly operating documents folder. If the plant is not occupied, the system is monitored remotely.

The treatment process control and alarm systems are functional. The recovery well pumps, process pumps, and air stripper blower are operated in the automatic mode and are normally remotely controlled and monitored. RW5 recovery pump electric motor was replaced on May 1, 2023 and restarted the same day. RW4 recovery pump and electric motor were replaced and restarted on May 2, 2023.

1.1 Daily Operations Summary Reports

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

- Daily Operating Log flow readings and calculations (Form-01)
- Daily Site and Safety Inspection plant condition checklist (Form-02)
- Daily Plant Activity Notes plant manager's daily summary (Form-03)
- Sign-In Sheet GES/Ramboll employee on-site hours (Form-15)
- Daily Process Data Sheet point process readings (Form-30)
- Logbook CPC 5-8- plant operator's daily logbook
- Daily Database daily process readings (May 23 Database.xlsx)
- NYSDEC Log-in Sheet Entry/Exit Log with COVID-19 Acknowledgement

1.2 Summary of Maintenance Activities

The operation and maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site O&M Manual. These tasks and inspections incorporate the equipment manufacturers' recommendations, operations experience, and good engineering and

maintenance practices. A detailed accounting of the May activities is further provided in the plant operator's daily logbook.

Maintenance and project activities undertaken during the May period included:

- Routine and general maintenance tasks were conducted at the plant, on the grounds, and in the well fields.
- Single Air Stripper Feed (ASF) pumps were placed into hand mode and frequently switched to cycle their activity.
- The monthly process equipment tests were conducted.
- The Operable Unit 4 (OU4) comprehensive inspections were completed.
- The monthly Process/Recovery Well (RW) system inspection was completed.
- Recovery wells RW4 and RW5 were restarted following pump replacement.
- Basin 33 was inspected.
- The ASF pumps were lubricated, and the seals tightened.
- The OU5 comprehensive inspections were completed.
- The Pressure Filter Feed (PFF) pumps were lubricated, and the seals tightened.
- The fire alarm system components were inspected.
- The monthly electrical device survey was completed.
- The SUNY wellfield was inspected.

1.3 Maintenance Logs

The following operating logbooks are currently in use and maintained at OU5:

- CL-18 OU-4 Log (at OU4)
- CL-43 General Field Support Log (truck)
- CL-47 Misc. Projects Field Notebook (Pawel Mecinski)
- CPC 5-4 Project Support Logbook (site)
- CPC 5-8 Site Supervisor's Daily Logbook (Pawel Mecinski).

Except for log CPC 5-7, the completed logbooks associated with the project have been scanned, all are in storage at OU5, and are available for review.

2. TECHNICAL SUPPORT ACTIVITIES

2.1 GES/Ramboll Personnel

- GES maintained the system throughout the period.
- From May 8 through May 11, 2023, Liam Blake and Sara Hahne (Ramboll) on site for quarterly groundwater sampling and gauging event.
- From May 15 through May 16, 2023, Liam Blake (Ramboll) on site for quarterly groundwater sampling event.

2.2 NYSDEC Personnel, Sub - contractors, and Other Visitors

- On May 1 and May 2, 2023, US Water Industrial Group (USWIG) crew and Bay Crane operator on site to conduct RW5 and RW4 pump extraction and pump motor replacement, respectively.
- On May 4, 2023, Payson Long and Jeffrey Dyber (NYSDEC) conducted a site visit.
- On May 17, 2023, National Waste Services, LLC on site to empty the garbage container.

2.3 Deliveries

- On May 4, 2023, FedEx delivered sampling coolers and material for the upcoming quarterly groundwater sampling event.
- On May 8, 2023, FedEx delivered sampling material for the quarterly groundwater sampling event.

3. HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved and Ramboll adopted Site Safety and Health Plan (SSHP). Safety related activities during this period included:

- The water remained off at OU4. Both potable and non-potable lines were drained. (No sanitary water).
- Daily site safety inspections were completed as part of the routine O&M activities.

4. PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing by GES/Ramboll. A list in the form of corrective actions or maintenance tasks has been generated as a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of this report as **Table 1** – Claremont Corrective Action Summary.

Upcoming tasks include:

- OU4 remains without water to the fire sprinkler system due to no heat in the building.
- OU4 potable water line was shut off due to pipe ruptures from frozen pipes.
- Air valve at MW-6 cluster in Bethpage State Park reinsertion.
- Investigate plant electric driven back-up heater failures.
- Close and exercise all globe valves at the non-operational recovery wells.
- OU5 Annual fire extinguisher inspection is due.
- OU5 Annual fire alarm inspection is due.

5. MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater elevation data table was updated after the May 2023 quarterly GW elevation recording task. This database is available for review. The next set of synoptic water level measurements will be scheduled for September 2023 and will be conducted by Ramboll.

6. TREATMENT SYSTEM FLOWS

During the May period, the plant continued to operate in the auto control mode. The volume of treated water discharged by the treatment system to the selected recharge basin was calculated

from the plant influent and effluent flow meter readings. These readings are taken at the HMI and recorded in the daily database.

RW5 pressure switch was replaced on January 5, 2023, and the well was successfully restarted on automatic run mode. RW5 experienced electrical short across the motor windings on January 26, 2023, and was confirmed inoperable. The motor short circuiting was confirmed on March 13, 2023 during pump extraction and inspection activities. RW5 motor and wiring was replaced on May 1, 2023. RW5 has been operating normally since the replacement activities. RW3 continues to function normally. RW4 has been offline since August 17, 2022. Full replacement of pump, pump motor and down well wiring was completed on May 2, 2023. RW4 has been operating normally since the replacement activities. The old RW4 pump was inspected, and it was determined that the shaft has ceased up and broke off between the motor and pump connection.

During the month of May, the plant discharge was directed to Recharge Basin 33.

The total volume of treated water discharged from \sim 0800 hours May 1 to \sim 0830 hours June 1 was approximately 31,390,000 gallons. The data in **Table 2** is a summary of plant discharge flows.

A graphic representation of the system's daily plant discharge output is provided in **Figure 1** and the daily plant totalizer readings for May 2023 are provided in **Table 3**, both following the text of this report.

Under current conditions, the PLC and the control system are functioning as designed. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

The flow summary for the individual components of the system can be found in **Table 4** at the end of this report.

7. CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off-line, and the system is void of acid. There are four drums of virgin acid on site. No acid was used for water treatment purposes in May of 2023.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was used in May of 2023.

The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was used in May of 2023.

8. WASTE DISPOSALS

Routine accumulation of waste materials continued from plant day to day operations. Waste removal is being handled by National Waste Services, LLC. Waste container was emptied on May 17, 2023.

9. MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. **Table 5** presents the Claremont OU5 O&M Sampling and Measurement requirements and their frequency. The analytical results for the plant discharge sampling conducted on May 2, 2023 indicate that the analyzed parameters were compliant with permit limits (**Table 6**). Monthly system sampling analytical results are provided in **Attachment 1**.

The OU5 GWTS plant's water discharge permit is in the process of being renewed by the NYSDEC.

10. PENDING ISSUES AND CONSIDERATIONS

Mechanical repairs have been made to the plant HVAC system at OU4. Upon testing, the gas supply appeared to be shut off. Ramboll is currently planning demolition of the OU4 building.

The sprinkler system at OU4 remains drained of water. The potable and non-potable water lines at OU4 have been drained.

The discrepancies/inaccuracies in the plant flow meter readings at OU5 may be due to the inappropriate configuration of the local piping. Future calibration or adjustment of pulse reading may be required.

Repairs have been made at RW4 and RW5. Both pumps have returned to operation.

The OU4 plant is offline and its disposition including that of the injection well system, and vapor carbon beds is pending.

The status of key aspects of OU4 are as follows:

- The plant heat is currently off, and the system is out of service.
- The fire alarm panels are off-line.
- The fire sprinkler system is currently off-line. The water has been drained from the system. An alarm system for the sprinkler has been installed with central monitoring.
- The facility is secure, and its physical monitoring continues.
- The facility and grounds are not maintained except for the facility entrance and plant egress points.
- NYSDEC plans on decommissioning and demolishing OU4. A team from Ramboll is in the process of developing bid documents for this work.

11. PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary.

12. MONITORING RESULTS

The CPC GWTS is monitored through the analysis of off-site laboratory analytical data and onsite field data.

12.1 Off-site Analytical Data Results

Monthly Plant Discharge (PD) samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis. At the direction of the NYSDEC in an August 17, 2022 email, analysis of Per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane were added to monthly sampling for both influent and effluent for the foreseeable future. The May 2023 PFAS and 1,4-dioxane influent and effluent results can be found in **Table 7** following the text of this report. Monthly system sampling analytical results are provided in **Attachment 1**.

The May sampling activities included:

- The May PD data was processed and submitted.
- Monthly system sampling was completed on May 2, 2023.
- Quarterly groundwater elevation monitoring and groundwater sampling via low flow method and passive diffusive bailers.

12.2 Field Data

12.2.1 Plant Discharge pH and Temperature

The treatment plant effluent is monitored for pH and temperature on a weekly basis to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These measurements are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for May 2023 can be found in **Table 8** following the text of this report.

The May 2023 average pH measurement was 7.56 standard units (su). The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 su. The results for this month meet this requirement. Data showing the plant discharge's monthly average pH trend over several months is provided in **Table 9** following the text of this report.

12.2.2 Air Stripper (AS) Tower Air Monitoring

Using a calibrated photoionization detector (PID), the vapor discharge from the air stripper tower was monitored weekly for volatile organic compounds (VOCs). The measurements were taken from the tower's effluent air stream through Port B when the treatment system is online. The May 2023 readings from the AS tower are provided in **Table 10**.

Other routine data collected in May included:

- The electric and water meter readings at OU5 were recorded weekly.
- The plant vaults and selected areas were monitored for VOCs weekly.

- The plant sound levels were recorded bi-weekly.
- The monthly electric and gas meter readings for OU4 were recorded.
- The recharge basins were inspected weekly.
- The differential pressure readings across the AS Tower were recorded bi-weekly.

13. PROCESS ANALYSIS AND SYSTEM STATUS

The treatment system is currently operated 24/7 in the automatic mode. It is remotely monitored as necessary.

13.1 Extraction (RW) Processes

- The monthly system inspection was completed.
- The vault space heating units were deactivated on March 23, 2023.
- The recovery well pump system is remotely controlled and monitored, it operates in the auto mode.
- The pump at RW3 is online and fully functional.
- The pump at RW4 is online and fully functional following replacement on May 2, 2023.
- The pump at RW5 is online and fully functional following motor replacement on May 1, 2023.
- Pump flow readouts are transmitted to the plant and the totalizers for pumps RW3, and RW4 are fully functional. The local flow meter for RW5 occasionally stops transmitting.
- Air/Vacuum (A/V) valve at station 33+96 encountered a leak in May that required the vault to be pumped out and have its air/vacuum valve removed. Currently a stopper has been fitted to the pit that allows water to flow through the system.
- The Air/Vacuum (A/V) valve at station 16+57 and 17+10 remain isolated from the transmission line.
- RW1 and RW2 are offline and periodically run for preventative maintenance purposes. Their flow meters are not transmitting through the PLC. When repairs were made at RW1 in November 2021, stones were removed from the flow meterhousing. There was a thick coating of iron salt deposits on the housing and impeller.

13.2 AS Process

- The three OU5 ASF pumps in the AS Process are fully functional.
- Motors and seals were lubricated on a bi-weekly schedule. Seals were tightened and the drains were cleared as necessary.
- The AS tower main drain valve's manual actuator is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected.
- The discharge valves for ASF P1 and P2 appear to be frozen in the open position.

13.3 PD Process

- The plant discharge flow is currently directed to Recharge Basin 33.
- The valve influent to Recharge Basin 1 remained closed during the May reporting period.
- Pump 1 has been taken out of service due to excessive noise and vibration. A full evaluation is required. Pumps 2 and 3 are fully functional.
- The motors and seals were lubricated as necessary.
- The discharge valve for PFF P3 has failed open.

13.4 Other

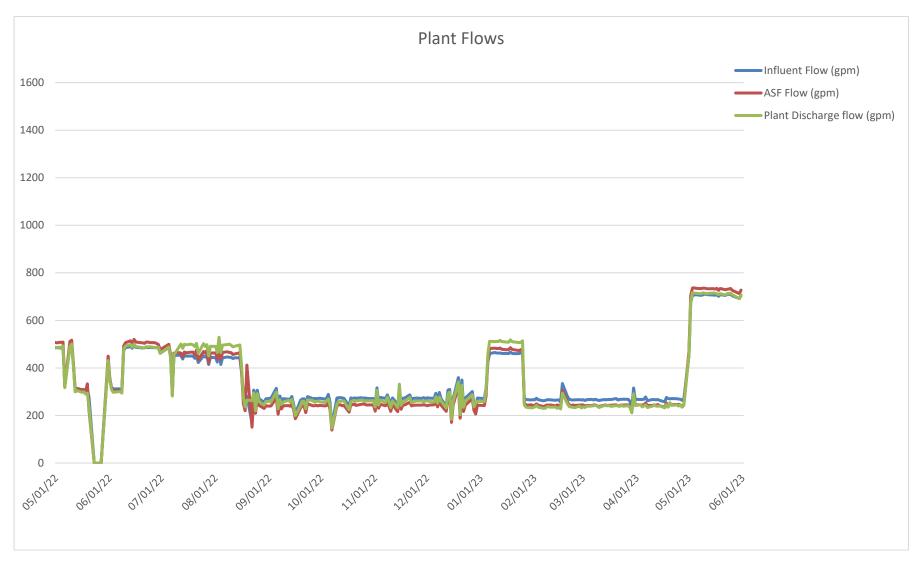
- The plant's first bank of lights is wired to the emergency-light recharging system. The circuit is kept on 24/7. The lamps appear burnt out. The second bank of lights provides sufficient lighting for general tasks. Additional work lights were installed around the plant area to further illuminate work areas.
- The potential for leaks in the water supply line running through the plant will continue to be monitored.
- The fire alarm and central monitoring systems are fully functional. The fire alarm system requires annual inspection for 2023.

14. GROUNDS

14.1 Plant Perimeter

- General outdoor clean-up tasks are on-going.
- The fencing is clear and secure.

14.2 Well Field


• Well field, and recharge basin inspections continue.

14.3 Other

- The CPC GWTF OU4 is secure.
- The property at and around the OU4 site continues to be inspected. While the grounds are not maintained, the treatment plant's entrance and egress points are kept clear and functional.

FIGURE

Figure 1
Plant Discharge Daily Flow

TABLES

Table 1
Claremont Corrective Actions Summary

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The RW Discharge Manifold integrity is suspect	The condition of the various devices on the RW discharge manifold are suspect.	Plant staff and outside contractors	Possible shutdown	May require a Confined Space Entry (CSE)
	The Air Vent valve in the vault on the N-side of the 6 th fairway is leaking from the influent nipple. The shut-off valve was closed and the device isolated.			
	The air-vent valve in the vault to the east of the 6 th green is leaking. The shut-off valve was closed and the device isolated.			
	The manifold employs isolation, venting, and drain valves as well as other devices. Along the path of the manifold are vaults which house some of these devices. These vaults need to be accessed, pumped out, and the devices tested.			
	Two isolation valves were closed between RW1 and RW3. These valves seemed to hold.			
AS Tower main drain valve is not controlled	The valve does not respond to manipulation of its actuator.	Operator	Plant will need to be shut down to change out the valve	None
	This valve should be replaced.		Valve	
	No further action is planned at this time.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
OU4 fire alarm system is not functioning	The Nassau County Fire Code indicates that the sprinkler system must have central monitoring for flow and valve tampering.	Plant operator, Electrical Engineer (EE) and outside vender	None at this time	Fire code violations. High altitude tasks, safety code violations
Central monitoring of the fire alarm system or fire suppression system does not exist	The fire alarm system needs to be replaced and centrally monitored.	vender		VIOIALIOTIS
OU4 electrical system has been unstable	Several contractors have been at the site to propose options for the system.			
	BK Fire installed central monitoring on the sprinkler system. Both are offline as the sprinkler system will remain drained until the HVAC system is repaired.			
	Certain OU4 lights currently create a large amount of noise in the fan box within the control room. The southern lights flicker and then die including the emergency system.			
	OU4 is currently being planned for demolition.			
Several leaks were observed in the plant overhead water supply line	Adjacent to the north door a clam-shell type clamp was applied.	Outside plumbing contractor	None	Sanitary water may be shut off during repairs
	The second leak observed above the AS Blower is not readily accessible. It is not problematic.			
	Repair work may require evaluation and outside resources. Currently the situation is controlled.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The float controls for the PFF pump system have intermittently shorted out causing the system to not properly control the pumping operation	pump system have below grade. The junction box in the wet well is intermittently shorted out causing the system to not properly control the pumping below grade. The junction box in the wet well is thought to be filled with water creating a problem with the float switches to control relay wiring.		Plant shut down is required	Possible Confined Space Entry work
	splices to the floats are above ground outside the vault.			
PFF P1 has failed	The pump when activated immediately makes a lot of noise, and the pump drop pipe shakes. Smoke/ fumes emanated at the Motor-shaft connection. The motor appears to be good. The pump was removed from service, February 24, 2020.	Outside contractors	None anticipated	To be determined
	It is recommended that the motor be disconnected, lifted, and the mechanical connection checked.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
As the ASF pumps cycle off/on, the check valves have started to slam closed. When reactivating, the motor starter contact is rather violent. Both actions tend to rattle the piping and fixtures	There is no available literature regarding the check valves, so the exact description of their functioning parts is to be determined. A softer start/stop control may fix this issue. This will need further investigation. Soft-start equipment and variable frequency controls were discussed.	Plant operator and EE support	If replacement or repairs are necessary, a plant shutdown will be required as the units can- not be isolated	To be determined
The flowmeters for system flow, ASF flow and plant discharge are out of sync with the flow meters on the recovery wells	While the ASF flow meter is the most out of line, it is plumbed correctly. The influent system flow meter and the plant discharge flow meters are piped incorrectly. The same style of relay is used to count pulses, but the meters have not been calibrated. The system needs further investigation to determine if any changes are warranted.	EE support	To be determined	none
EF-4 is not operatable	The fan is controlled through the mezzanine thermostat, but it does not appear to be operating. The fan requires electrical testing. The system was checked, it appears that the fan is not functioning. The fan should be replaced.	EE support	Only in an emergency	Only in an emergency
Wiring nests in main control console	The wiring in the main control console needs to be cleaned up and labeled, to facilitate problem troubleshooting and process improvements.	EE support	A shut down may be necessary	Electrical work

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Pressure Filter Feed pump controls	With P1 out of service, the sequencing of pumps allows for the PFF vault to reach HHL conditions in certain circumstances.	EE support	To be determined	To be determined
	Reprogram the sequencing to eliminate the position of P1.			
RW5 has failed	RW5 pump was replaced on October 10, 2022, however due to PLC signal loss, it cannot be operated in automatic mode. GES conducted troubleshooting and parts replacement without success. System controls were examined by a PLC certified technician mid-December and determined pressure switch failure. Used device has been installed while a new one has been ordered. The pump ran on auto mode from January 5, 2023 to January 26, 2023 until an electrical short at the motor disabled the safe operation of the pump. New pressure switch was installed on March 23, 2023. New pump motor installed on May 1, 2023.	Plant Operator and Ramboll.	Less water is treated	To be determined
RW4 has failed	RW4 started to experience possible motor thermal overload shutdowns on multiple occasions during August monitoring period. The pump motor fully shut down on August 17, 2022 and all troubleshooting/restarting attempts were unsuccessful. New pump and pump motor installed on May 2, 2023.	Plant Operator and US Water	Less water is treated	To be determined
Air vacuum valve removal	On May 22, 2022 RW4 was shut down due to a leak detected in the field near an air/vacuum valve pit. On May 24 2022 through May 25, 2022 water was pumped out of the vault and on May 31, 2022 a confined space entry was made to attempt to tighten the valve in an effort to stop the leak. This tightening was unsuccessful, and the valve was removed entirely and replaced with a blank flange until further	GES Mechanical Support	Less water is treated	Confined space entry required to do work in vault

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
	notice.			
Plant Electric Heater UH-3 failure and HVAC system performance	During sub-20 deg.F weather, the emergency electric heater failed. The HVAC system struggled to produce heat and the plant temperatures dipped to around mid-30's during that time.	Outside contractor	Water lines freezing	Equipment damage

Other Plant Conditions of Note (no action required at this time)

- The methane detection system is offline. **To function, it will need a technical inspection and maintenance**. However, methane does not currently appear to be a hazard.
- It has been determined that intrinsically safe components are no longer required in the plant.
- There has been no need for acid washing of the AS Tower media, the hydrochloric acid feed and storage system have not been operated. The tanks have not been filled and the level monitoring system has not been operated.

As previously noted, there are pieces of equipment that are out of service and require repairs. Currently there are no plans for addressing these conditions as the operation of this equipment is not necessary or needed for the operation of the treatment system.

Equipment	Fault	Status
Plant electric heater UH-1	Needs transformer	Heater is not needed
Plant electric heater UH-2	Needs relay timer and wiring repairs	Heater is not needed
Recovery well pump pressure switch	Units are unwieldy and subject to vibration,	Each unit requires assessment and
assembly	corrosion, and leaks	disposition
NaOH sump pump	Pump is not operating	No water or chemicals stored in vault.
		Portable submersible pump in sump should
		suffice
Plant lights are wired to the emergency	Un-segregated light cannot be shut off. Several	The bank of lights appear to have failed/burnt
light charging system	of the lamps may have burnt out	out. The second bank of lights are sufficient
Plant exhaust fans are part of methane	Fans cannot be manually operated	Once the methane monitoring system is
system		online, the fans can be operated
Plant discharge drain	Leak in Victaulic fitting	Drain line on plant discharge intermittently
		leaks. Parts are in-house. Not pressing
ASF pump isolation valve	Valve P1 has failed open	Not needed at this time

Equipment	Fault	Status
PFF pump isolation valve	Valve P3 has vailed open	Not needed at this time
RW1 flow meter	The meter is not operating	Pump is offline. Rocks were pulled from the housing and iron sediment was encrusting the flow meter impeller and housing
RW2 flow meter	The meter is not transmitting	Pump is offline
Air stripper flow meter	Non-functional and removed	
AH-1 condenser	Air conditioner is non-functional	Two window AC units in place
Plant outdoor lights	9 of 12 lights not functioning	Not a security issue

Table 2
Plant Discharge Average Flow & Volume

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2016	517	745,000	68,540,000	7,309	125,171
Q1 2017	520	748,244	67,342,000	655	128,945
Q2 2017	576	829,130	76,280,000	6,165	126,315
Q3 2017	634	913,576	84,049,000	1,110	131,370
Q4 2017	256	368,762	33,926,110	69,165	63,315
Q1 2018	53	75,989	6,839,000	118,180	11,420
Q2 2018	179	258,284	23,762,103	102,929	29,551
Q3 2018	504	725,280	66,725,717	57,416	75,064
Q4 2018	726	1,045,065	96,145,984	23,734	108,746
Q1 2019	527	758,467	68,262,000	735	128,865
Q2 2019	662	953,877	87,756,724	405	132,075
Q3 2019	685	985,802	90,693,740	108	132,372
Q4 2019	655	943,871	82,116,780	5,039	129,326
Q1 2020	480	682,527	62,110,000	1,824	129,326
Q2 2020	698	996,998	88,732,846	3,838	127,185
Q3 2020	669	955,928	87,945,333	1,099	131,401
Q4 2020	695	1,001,365	92,125,539	52	132,497
Q1 2021	708	1,019,733	91,776,000	0	129,603
Q2 2021	709	1,021,317	92,939,850	0	131,040
Q3 2021	615	884,934	81,413,897	0	132,475
Q4 2021	677	928,370	85,410,047	6,317	126,185
Q1 2022	633	1,291,661	80,082,987	5,280	124,320
Q2 2022	434	624,605	53,716,000	12,200	123,840
Q3 2022	365	514,501	46,283,000	3,004	124,994

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2022	257	369,307	34,007,000	491	132,154
Q1 2023	305	434,900	37,841,000	323	123,817
Apr 2023	240	344,323	10,674,000	204	44,406
May 2023	703	1,012,581	31,390,000	0	44,670

Acronyms: gal - gallons

gpm – gallons per minute

Table 3
Plant Daily Totalizer Readings

		May 2023 Flows		_		
	Plant Ir		Plant Di		RW Dis	
Date	Volume	Avg. Flow	Volume	Avg. Flow	Volume	Avg. Flow
05/01/23	-	246	=	242	-	270
05/02/23	677,000	470	654,000	454	648,000	450
05/03/23	1,014,000	704	977,000	678	972,000	675
05/04/23	1,060,000	736	1,032,000	717	1,018,000	707
05/05/23	1,061,000	737	1,029,000	715	1,018,000	707
05/08/23	3,175,000	735	3,085,000	714	3,060,000	708
05/09/23	1,056,000	733	1,025,000	712	1,016,000	706
05/10/23	1,059,000	735	1,031,000	716	1,019,000	708
05/11/23	1,059,000	735	1,029,000	715	1,024,000	711
05/12/23	1,056,000	733	1,025,000	712	1,021,000	709
05/15/23	3,165,000	733	3,082,000	713	3,060,000	708
05/16/23	1,056,000	733	1,030,000	715	1,018,000	707
05/17/23	1,054,000	732	1,029,000	715	1,017,000	706
05/18/23	1,058,000	735	1,025,000	712	1,019,000	708
05/19/23	1,046,000	726	1,021,000	709	1,010,000	701
05/22/23	3,172,000	734	3,079,000	713	3,062,000	709
05/23/23	1,050,000	729	1,018,000	707	1,015,000	705
05/24/23	1,053,000	731	1,026,000	713	1,023,000	710
05/25/23	1,076,000	732	1,050,000	714	1,043,000	710
05/26/23	1,035,000	734	1,007,000	714	1,002,000	711
05/30/23	4,185,000	727	4,080,000	708	4,052,000	703
05/31/23	1,048,000	728	1,016,000	706	1,017,000	706
06/01/23	1,070,000	728	1,040,000	707	1,036,000	705
	May Total Pla	nt Influent (Gal)		32,285,000		
	•	ant Effluent (Gal)		31,390,000		
	May Total RW Discharge (Gal)			31,170,000		

Acronyms: gal - gallons gpm – gallons per minute

Table 4 **Pump System Flow Readings**

April	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd)	Total Flow (gal)
RW1*	5	149	0	745
RW2*	5	209	0	1,045
RW3	44,670	206	296,677	9,197,000
RW4	43,045	255	354,452	10,988,000
RW5	44,430	241	345,258	10,703,000
RW Totals	44,670	698	1,005,484	32,285,000
Plant Influent	44,670	723	1,041,452	31,390,000
Plant Effluent	44,670	703	1,012,581	31,170,000

Acronyms: gal - gallons

gpm – gallons per minute gpd – gallons per day

The treatment process was online 31 days during this period with 0 minutes of downtime. Flows are taken from the HMI meter readings.

^{*} Offline aside from monthly process equipment test to check their functionality. There are no average gallons per day.

Table 5
Claremont OU5 O&M Sampling/Measurement Program and Frequency

	Sampling Location			
Measurement / Analyte	System Influent	Plant Discharge	Recovery Wells	Monitoring Wells
Flow	Daily	Daily	Daily	NA
pH	Quarterly	Weekly	Quarterly	Quarterly
VOCs (+Tert-Butyl-Methyl ether (MTBA) & Tert-butyl alcohol (TBA))	Quarterly	Monthly	Quarterly	Quarterly
Semi-Volatile Organic Compound (SVOC) Base Neutral & Acid Extractables (BNA)	Quarterly	Monthly	NS	NS
Per- and polyfluoroalkyl substances (PFAS)	Monthly	Monthly	NS	Quarterly ⁽¹⁾
1,4-Dioxane	Monthly	Monthly	NS	Quarterly ⁽¹⁾
Total Kjeldahl Nitrogen→ (TKN)	NS	Quarterly	NS	NS
Total Suspended Solids (TSS)	Quarterly	NS	Quarterly	NS
Total Organic Carbon (TOC)	Quarterly	NS	NS	NS
Total Dissolved Solids (TDS)	NS	Quarterly	NS	NS
Cyanide	NS	Quarterly	NS	NS
Hexavalent Chromium	NS	Quarterly	NS	NS
Mercury	NS	Quarterly	NS	NS
Metals	Quarterly	Quarterly	Quarterly	NS
Anions	NS	Quarterly	NS	NS

Notes: NA - Not applicable; NS - Not sampled. (1) - CPC wells only

Table 6
Plant Discharge Analytical Results
May 2, 2023

Parameters	Discharge Limitations (SPDES)	Units	Results
pH (range)	6.5 - 8.5	su	7.56
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene (PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene (TCE)	5	ug/l	U
Bis(2-ethylhexyl) phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NS
Arsenic, Total recoverable	50	ug/l	NS
Barium, Total recoverable	2000	ug/l	NS
Chromium, Hexavalent	100	ug/l	NS
Lead, Total recoverable	50	ug/l	NS
Iron, Total recoverable	600	ug/l	NS
Manganese, Total recoverable	600	ug/l	NS
Mercury	Not indicated	ug/l	NS
Zinc	Not indicated	mg/l	NS
Nitrogen, Total (as N)	10	mg/l	NS
Selenium, Total recoverable	40	ug/l	NS
Solids, Total Dissolved	1000	mg/l	NS
Chloride Ion	NL	mg/l	NS
Cyanide	Not indicated	ug/l	NS
Fluoride Ion	NL	mg/l	NS

Parameters	Discharge Limitations (SPDES)	Units	Results
Sulfate Ion	NL	mg/l	NS

J – Estimated value U – Analyzed but not detected NL – Monitor only NS– Not sampled SPDES – State Pollutant Discharge Elimination System

ug/I – micrograms per liter ng/I – nanograms per liter mg/I – milligrams per liter

Discharge limitations updates as per the water discharge permit.

Note: Parameters shaded in gray are analyzed quarterly with results generally being provided March,

June, October, and December.

Table 7 **Emerging Contaminant Influent & Effluent Analytical Results** May 2, 2023

Parameters	Guidance Values	Units	Influent Results	Effluent Results
Perfluorooctanoic acid (PFOA)	10 ¹	ng/l	43 / 42	45 / 41
Perfluorooctanesulfonic acid (PFOS)	10 ¹	ng/l	19 / 19	21 / 20
1,4-Dioxane	1 ²	ug/l	20 / 24	20 / 20

J – Estimated value U – Analyzed but not detected ug/l – micrograms per liter ng/I – nanograms per liter x / x – indicates primary/duplicate results

¹ New York State Department of Environmental Conservation, Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), November 2022.

New York State, Department of Health, Subpart 5, Table 3, May 2018.

Table 8
Effluent pH and Temperature Readings

Date	pH (su)	Temp ([°] C)
05/02/2023	7.71	18.1
05/08/2023	7.10	18.2
05/15/2023	7.63	16.8
05/22/2023	7.56	15.7
05/30/2023	7.79	15.0
April Average	7.56 su	15.4 °C

Table 9
Plant Discharge Monthly Average pH

Month	pH(su)
Aug '19	6.56
Sept `19	7.45
Oct '19	6.86
Nov '19	6.88
Dec `19	6.84
Jan ` 20	6.63
Feb '20	6.75
Mar '20	6.74
Apr \20	6.65
May '20	6.8
June '20	6.8
July '20	6.9
Aug `20	6.8
Sept '20	6.8
Oct. '20	6.95
Nov '20	6.8
Dec '20	6.64
Jan '21	6.8
Feb '21	6.75
Mar `21	6.76
Apr `21	7.28
May '21	7.53
June '21	7.44
July '21	7.41
Aug `21	7.42
Sept '21	7.13
Oct '21	7.10
Nov '21	7.09
Dec '21	7.01
Jan '22	6.90
Feb `22	6.90
Mar '22	6.80
Apr '22	6.78
May \22	6.79
June '22	6.79
July '22	7.01
Aug `22	6.99
Sept `22	7.19
Oct \22	7.62
Nov `22	7.68
Dec `22	7.52

Month	pH(su)
Jan '23	7.24
Feb \23	7.36
Mar `23	7.56
Apr \23	7.28
May '23	7.56

Plant Discharge Monthly Average pH Readings

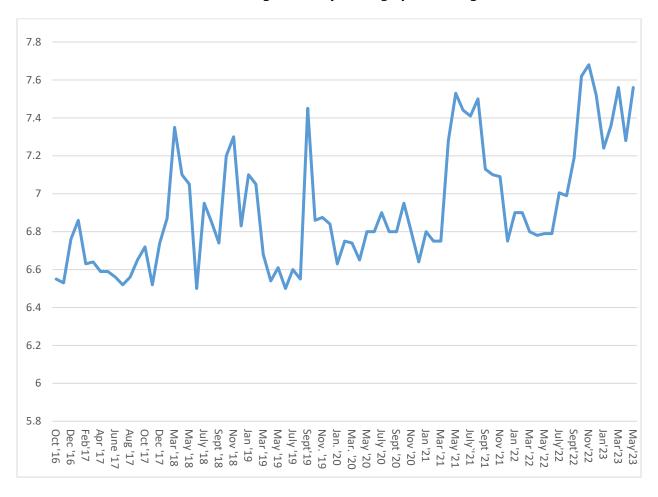


Table 10
AS Tower Air Monitoring Readings

Recorded Date	Port B (ppm)
05/02/2023	0.0
05/08/2023	0.0
05/15/2023	0.1
05/22/2023	0.2
05/30/2023	0.1

ATTACHMENT 1
QUARTERLY O&M SAMPLING ANALYTICAL RESULTS -MAY 2, 2023

May 11, 2023

Payson Long NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873 Syracuse, NY 13221

Project Location: Old Bethage, New York

Client Job Number: Project Number: 130015

Laboratory Work Order Number: 23E0583

Enclosed are results of analyses for samples as received by the laboratory on May 3, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle A. Murray Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
23E0583-01	5
23E0583-02	8
23E0583-03	11
23E0583-04	14
Sample Preparation Information	17
QC Data	18
Semivolatile Organic Compounds by - LC/MS-MS	18
B339322	18
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	23
B339245	23
Flag/Qualifier Summary	24
Certifications	25
Chain of Custody/Sample Receipt	27

NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873

PURCHASE ORDER NUMBER: 144165

REPORT DATE: 5/11/2023

Syracuse, NY 13221 ATTN: Payson Long

PROJECT NUMBER: 130015

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23E0583

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Old Bethage, New York

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
PD-CP-00-050223	23E0583-01	Ground Water		Draft Method 1633	
PD-CP-01-050223	23E0583-02	Ground Water		Draft Method 1633	
ASF-CP-00-050223	23E0583-03	Ground Water		Draft Method 1633	
ASF-CP-01-050223	23E0583-04	Ground Water		Draft Method 1633	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Lua Warrengton

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-00-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		Se	mivolatile Organic Cor	npounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	30	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoropentanoic acid (PFPeA)	28	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorohexanoic acid (PFHxA)	31	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoroheptanoic acid (PFHpA)	15	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorooctanoic acid (PFOA)	45	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorononanoic acid (PFNA)	53	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorodecanoic acid (PFDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorobutanesulfonic acid (PFBS)	4.7	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoropetanesulfonic acid (PFPeS)	3.7	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorohexanesulfonic acid (PFHxS)	12	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorooctanesulfonic acid (PFOS)	21	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
N-EtFOSAA (NEtFOSAA)	2.5	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
$N-methyl per fluoro octane sulfon a mid oethan \\ ol (NMeFOSE)$	ND	9.3	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.3	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
9Cl-PF3ONS (F53B Minor)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.3	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	47	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	47	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-00-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Analyte Resu	lts RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid NE	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
(PFMBA)								
Nonafluoro-3,6-dioxaheptanoic acid NC (NFDHA)	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:11	AMS
Surrogates	% Recovery	Recovery Limi	ts	Flag/Qual				,
13C4-PFBA	72.6	20-150					5/10/23 16:11	
13C5-PFPeA	72.8	20-150					5/10/23 16:11	
13C5-PFHxA	73.8	20-150					5/10/23 16:11	
13C4-PFHpA	77.7	20-150					5/10/23 16:11	
13C8-PFOA	71.3	20-150					5/10/23 16:11	
13C9-PFNA	72.9	20-150					5/10/23 16:11	
13C6-PFDA	76.5	20-150					5/10/23 16:11	
13C7-PFUnA	71.7	20-150					5/10/23 16:11	
13C2-PFDoA	64.9	20-150					5/10/23 16:11	
13C2-PFTeDA	62.6	20-150					5/10/23 16:11	
13C3-PFBS	79.2	20-150					5/10/23 16:11	
13C3-PFHxS	74.1	20-150					5/10/23 16:11	
13C8-PFOS	74.1	20-150					5/10/23 16:11	
13C2-4:2FTS	132	20-150					5/10/23 16:11	
13C2-6:2FTS	106	20-150					5/10/23 16:11	
13C2-8:2FTS	85.5	20-150					5/10/23 16:11	
13C8-PFOSA	68.9	20-150					5/10/23 16:11	
D3-NMeFOSA	53.8	20-150					5/10/23 16:11	
D5-NEtFOSA	56.8	20-150					5/10/23 16:11	
D3-NMeFOSAA	72.5	20-150					5/10/23 16:11	
D5-NEtFOSAA	70.5	20-150					5/10/23 16:11	
D7-NMeFOSE	64.4	20-150					5/10/23 16:11	
D9-NEtFOSE	61.7	20-150					5/10/23 16:11	
13C3-HFPO-DA	67.0	20-150					5/10/23 16:11	

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-00-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/I	1		Draft Method 1633	5/4/23	5/4/23 13:29	

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-01-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Performante			Se	mivolatile Organic Cor	npounds by - I	LC/MS-MS				
Perthonorphasmane and (PTIAN)								Date	Date/Time	
Perfunencement and (PTPAA) 27 19 mgl. 1 month Membra 15 5821 51021 1622 1824 1	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluonofecamoia caid (PFIIAA)	Perfluorobutanoic acid (PFBA)	28	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perthonochegumorie acid (PFFIPA)	Perfluoropentanoic acid (PFPeA)	27	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfuneronamente acid (PFOA)	Perfluorohexanoic acid (PFHxA)	28	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorodecamic acid (PFNA) 51 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodecamic acid (PFDA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodecamic acid (PFDA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamic acid (PFDA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamic acid (PFDA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamic acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamic acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamic acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023 1627 ANS Perfluorodicamical acid (PFPBA) ND 0.93 agL 1 Dml Methol 163 5023 51023	Perfluoroheptanoic acid (PFHpA)	14	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perthonordocanois acid (PFDA) ND 0.93 ngl. 1 Dmh thebot 161 58/02 57/02 1627 ASS Perthonordocanois acid (PFDA) ND 0.93 ngl. 1 Dmh thebot 161 58/02 57/02 1627 ASS Perthonordocanois acid (PFDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS Perthonordocanois acid (PFEDA) ND 0.93 ngl. 1 Dmh thebot 163 58/02 57/02 1627 ASS ND 1627 A	Perfluorooctanoic acid (PFOA)	41	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perflavorduscamoic acid (PFUA) ND 0.93 ngL 1 Dmil Medical 1633 50;22 570;23 6.27 AMS Perflavorduscamoic acid (PFUA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoic acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoic acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoic acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 0.93 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AMS Perflavorduscamoiline acid (PFEDA) ND 3.7 ngL 1 Dmil Medical 1633 50;23 570;23 6.27 AM	Perfluorononanoic acid (PFNA)	51	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluencial cacial (PFDA) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFIFDA) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEDA) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEDA) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) 1.1 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.10623 16.27 AMS Perfluencial cacial (PFEAS) ND 0.93 ng.L 1 Dult Method 1633 5.8623 5.106	Perfluorodecanoic acid (PFDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluoroctiradecanic acid (PFTDA) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctiradecanic acid (PFFEDA) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctiradecanic acid (PFFEDS) 3.7 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctiradecanic acid (PFFEDS) 3.7 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctiraceanic acid (PFFEDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctiraceanic acid (PFFEDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFFEDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic acid acid (PFDS) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic foramide (PFOSA) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic foramide (PFOSA) ND 0.93 ag/L 1 Draft Method 163 5/8/23 5/10/23 1627 AMS Perfluoroctoraceanic foramide (PFOSA) ND 0.93 ag/L 1 Draft Metho	Perfluoroundecanoic acid (PFUnA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perthuorobetrandecanoic acid (PFTeDA)	Perfluorododecanoic acid (PFDoA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluoropetanesulfonic acid (PFRS)	Perfluorotridecanoic acid (PFTrDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluoropeanesulfonic acid (PFPeS)	Perfluorotetradecanoic acid (PFTeDA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorohepamesulfonic acid (PFHSS)	Perfluorobutanesulfonic acid (PFBS)	4.5	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorocheptanesalfonic acid (PFIpS)	Perfluoropetanesulfonic acid (PFPeS)	3.7	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorocotanesulfonic acid (PFOS) 20 0.93 ng/L 1 Draft Method 1633 5.8723 5.102.3 16.27 AMS Perfluorocotanesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Method 1631 5.8723 5.102.3 16.27 AMS Perfluorocotanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1631 5.8723 5.102.3 16.27 AMS Perfluorocotanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 5.8723 5.102.3 16.27 AMS Perfluorocotanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 5.8723 5.102.3 16.27 AMS III, III, III, III, III, III, III,	Perfluorohexanesulfonic acid (PFHxS)	11	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluoronomanesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluorondecaenesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluorondecaenesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluorondecaenesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluorondecaenesulfonic acid (PFDS) ND 0.37 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.93 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.37 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.37 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.37 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.37 ng/L 1 Draft Method 163 5/823 5/10/23 16.27 AMS Perfluoronceanesulfonamidocethan ND 0.37	Perfluoroheptanesulfonic acid (PFHpS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorodecanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 163 5/8/23 5/10/23 16.27 AMS Perfluorododecanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-Perfluoroctane sulfonic acid (PFDS) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-Perfluoroctane sulfonic acid (PFDS) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-Perfluoroctane sulfonic acid (E.PTEN) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-Perfluoroctane sulfonic acid (E.PTEN) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-PERFluoroctanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-PERFluoroctanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IP-PERFluoroccanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS III,II,IZ,IZ,IZ,IZ,IZ,IZ,IZ,IZ,IZ,IZ,IZ,	Perfluorooctanesulfonic acid (PFOS)	20	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluoroddecanesulfonic acid (PFDoS) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonic acid (APETS) ND 3.7 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonic acid (APETS) ND 3.7 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonic acid (APETS) ND 3.7 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonic acid (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonimide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide ND 0.93 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide ND 9.3 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide ND 9.3 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.Perfluorobeane sulfonamide ND 3.7 ng/L 1 Draft Method 1633 58/23 5/10/23 16.27 AMS H.H.J.H.J.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.H.J.H.J.H.H.J.H.J.H.H.J.H.H.J.H.H.J.H.H.J	Perfluorononanesulfonic acid (PFNS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
H.H.ZH.ZH-Perfluorockane sulfonic acid (42-PTS) H.H.ZH.ZH-Perfluorockane sulfonic acid (42-PTS) R.H.ZH.ZH.ZH-Perfluorockane sulfonic acid (42-PTS) R.H.ZH.ZH.ZH.ZH.ZH.ZH.ZH.ZH.ZH.ZH.ZH.ZH.Z	Perfluorodecanesulfonic acid (PFDS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Red CaPTES CaPT	Perfluorododecanesulfonic acid (PFDoS)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Red Red		ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
H. Hig 2H. ZH-Perfluorodecane sulfonic acid (8.2FTS) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS		ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Perfluorooctanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16.27 AMS	1H,1H,2H,2H-Perfluorodecane sulfonic	ND	3.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
N-ethyl perfluorooctanesulfonamide ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-EtPOSAA (NMeFOSAA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-EtPOSAA (NMeFOSAA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-EtPOSAA (NEtPOSAA) 2.3 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamidoethan ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-methylperfluorooctanesulfonamid		ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
NEIFOSA NMeFOSAA (NMEFOSAA) ND 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	ž .	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
N-EifOSAA (NEifOSAA) 2.3 0.93 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-Methylperfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-Methylperfluorooctanesulfonamidoethano ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-Methylperfluorooctanesulfonamidoethanol ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-Methylperfluoroopropylene oxide dimer acid ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS N-Method N-	(NEtFOSA)	ND	0.93	ng/L	1			5/8/23	5/10/23 16:27	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE) N-methylperfluorooctanesulfonamidoethanol (NEFOSE) N-ethylperfluorooctanesulfonamidoethanol (NEFOSE) N-methylperfluorooctanesulfonamidoethanol (NEFOSE) N-methylperfluorooctanesulfona	N-MeFOSAA (NMeFOSAA)	ND	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
Nethylperfluorocotanesulfonamidoethanol ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (NEIFOSE)		2.3	0.93	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
NEIFOSE Hexafluoropropylene oxide dimer acid ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (HFPO-DA)	ol(NMeFOSE)	ND	9.3	ng/L	1			5/8/23	5/10/23 16:27	AMS
(HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) 9Cl-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 11Cl-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 11Cl-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 3-Perfluoropropyl propanoic acid (FPrPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 3-Perfluoropeptyl propanoic acid (FHpPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS Formula Method 1633 5/8/23 5/10/23 16:27 AMS ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS Formula Method 1633 5/8/23 5/10/23 16:27 AMS Formula Method 1633 5/8/23 5/10/23 16:27 AMS Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	(NEtFOSE)									
ADONA SCI-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	(HFPO-DA)									
11Cl-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	(ADONA)			- -						
3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (3:3FTCA) 2H,2H,3H,3H-Perfluoroctanoic ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	· · · · · · · · · · · · · · · · · · ·			_						
(3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA)	, , ,									
acid(FPeA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	(3:3FTCA)			_						
(7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	acid(FPePA)(5:3FTCA)			- -						
Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 5/8/23 5/10/23 16:27 AMS	(7:3FTCA)			- -			Draft Method 1633			
		ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-01-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS $\,$

(PFMBA)	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Non-	-	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
13C4-PFBA	Nonafluoro-3,6-dioxaheptanoic acid	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:27	AMS
13CS-PFPA 85.0 20-150 5/10/23 16:27 13CS-PFHXA 86.6 20-150 5/10/23 16:27 13C4-PFHpA 91.4 20-150 5/10/23 16:27 13C8-PFOA 80.2 20-150 5/10/23 16:27 13C9-PFNA 83.2 20-150 5/10/23 16:27 13C9-PFNA 83.2 20-150 5/10/23 16:27 13C9-PFNA 83.0 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFDOA 87.0 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFBS 83.3 20-150 5/10/23 16:27 13C2-EFTOA 83.3 20-150 5/10/23 16:27 13C2-EFTOA 83.3 20-150 5/10/23 16:27 13C2-EFTS 115 20-150 5/10/23 16:27 13C2-EFTS 115 20-150 5/10/23 16:27 13C2-EFTS 13C2-EFTS	Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C5-PFHXA	13C4-PFBA		85.3	20-150					5/10/23 16:27	
13C4-PFHpA	13C5-PFPeA		85.0	20-150					5/10/23 16:27	
13C8-PFOA 80.2 20-150 5/10/23 16:27 13C9-PFNA 83.2 20-150 5/10/23 16:27 13C6-PFDA 84.4 20-150 5/10/23 16:27 13C7-PFUNA 83.0 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFBS 83.3 20-150 5/10/23 16:27 13C3-PFOS 83.3 20-150 5/10/23 16:27 13C2-8:2FTS 138 20-150 5/10/23 16:27 13C2-8:2FTS 138 20-150 5/10/23 16:27 13C2-8:2FTS 15 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C3-PFOSA 78.3 20-150 5/10/23 16:27 13C3-PFOSA 66.8 20-150 5/10/23 16:27 13C3-PFOSA 85.0 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150 20-150	13C5-PFHxA		86.6	20-150					5/10/23 16:27	
13C9-PFNA 83.2 20-150 5/10/23 16:27 13C6-PFDA 84.4 20-150 5/10/23 16:27 13C7-PFUNA 83.0 20-150 5/10/23 16:27 13C2-PFDAA 80.1 20-150 5/10/23 16:27 13C2-PFEDAA 67.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHXS 79.3 20-150 5/10/23 16:27 13C3-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-8:2FTS 115 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D5-NEIFOSA 66.8 20-150 5/10/23 16:27 D5-NEIFOSA 85.0 20-150 5/10/23 16:27 D5-NEIFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 77.2 <td< td=""><td>13C4-PFHpA</td><td></td><td>91.4</td><td>20-150</td><td></td><td></td><td></td><td></td><td>5/10/23 16:27</td><td></td></td<>	13C4-PFHpA		91.4	20-150					5/10/23 16:27	
13C6-PFDA 84.4 20-150 5/10/23 16:27 13C7-PFUnA 83.0 20-150 5/10/23 16:27 13C2-PFDoA 80.1 20-150 5/10/23 16:27 13C2-PFTeDA 67.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHxS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 118 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEIFOSA 66.8 20-150 5/10/23 16:27 D5-NEIFOSAA 85.0 20-150 5/10/23 16:27 D5-NMeFOSE 75.4 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 75.2 20-150 5/10/23 16:27	13C8-PFOA		80.2	20-150					5/10/23 16:27	
13C7-PFUNA 83.0 20-150 5/10/23 16:27 13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFEDA 67.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHXS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 13C8-PFOSA 64.9 20-150 5/10/23 16:27 D5-NEIFOSA 66.8 20-150 5/10/23 16:27 D5-NEIFOSA 85.0 20-150 5/10/23 16:27 D5-NEIFOSA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 75.4 20-150 5/10/23 16:27	13C9-PFNA		83.2	20-150					5/10/23 16:27	
13C2-PFDOA 80.1 20-150 5/10/23 16:27 13C2-PFTeDA 67.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHxS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-8:2FTS 115 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEIFOSA 66.8 20-150 5/10/23 16:27 D5-NEIFOSAA 85.0 20-150 5/10/23 16:27 D5-NEIFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 75.2 20-150 5/10/23 16:27	13C6-PFDA		84.4	20-150					5/10/23 16:27	
13C2-PFTeDA 67.9 20-150 5/10/23 16:27 13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHxS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-8:2FTS 115 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEIFOSA 66.8 20-150 5/10/23 16:27 D5-NEIFOSAA 85.0 20-150 5/10/23 16:27 D5-NEIFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 77.2 20-150 5/10/23 16:27	13C7-PFUnA		83.0	20-150					5/10/23 16:27	
13C3-PFBS 84.9 20-150 5/10/23 16:27 13C3-PFHxS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D5-NEtFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C2-PFDoA		80.1	20-150					5/10/23 16:27	
13C3-PFHxS 79.3 20-150 5/10/23 16:27 13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D5-NEIFOSA 64.9 20-150 5/10/23 16:27 D5-NEIFOSAA 85.0 20-150 5/10/23 16:27 D5-NEIFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEIFOSE 77.2 20-150 5/10/23 16:27	13C2-PFTeDA		67.9	20-150					5/10/23 16:27	
13C8-PFOS 83.3 20-150 5/10/23 16:27 13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D5-NEtFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C3-PFBS		84.9	20-150					5/10/23 16:27	
13C2-4:2FTS 138 20-150 5/10/23 16:27 13C2-6:2FTS 115 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C3-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D5-NEtFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C3-PFHxS		79.3	20-150					5/10/23 16:27	
13C2-6:2FTS 115 20-150 5/10/23 16:27 13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D5-NEtFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C8-PFOS		83.3	20-150					5/10/23 16:27	
13C2-8:2FTS 92.9 20-150 5/10/23 16:27 13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D5-NEtFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C2-4:2FTS		138	20-150					5/10/23 16:27	
13C8-PFOSA 78.3 20-150 5/10/23 16:27 D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D3-NMeFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C2-6:2FTS		115	20-150					5/10/23 16:27	
D3-NMeFOSA 64.9 20-150 5/10/23 16:27 D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D3-NMeFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C2-8:2FTS		92.9	20-150					5/10/23 16:27	
D5-NEtFOSA 66.8 20-150 5/10/23 16:27 D3-NMeFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	13C8-PFOSA		78.3	20-150					5/10/23 16:27	
D3-NMeFOSAA 85.0 20-150 5/10/23 16:27 D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	D3-NMeFOSA		64.9	20-150					5/10/23 16:27	
D5-NEtFOSAA 81.6 20-150 5/10/23 16:27 D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	D5-NEtFOSA		66.8	20-150					5/10/23 16:27	
D7-NMeFOSE 75.4 20-150 5/10/23 16:27 D9-NEtFOSE 77.2 20-150 5/10/23 16:27	D3-NMeFOSAA		85.0	20-150					5/10/23 16:27	
D9-NEtFOSE 77.2 20-150 5/10/23 16:27	D5-NEtFOSAA		81.6	20-150					5/10/23 16:27	
	D7-NMeFOSE		75.4	20-150					5/10/23 16:27	
13C3-HFPO-DA 88.4 20-150 5/10/23 16:27	D9-NEtFOSE		77.2	20-150					5/10/23 16:27	
	13C3-HFPO-DA		88.4	20-150					5/10/23 16:27	

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: PD-CP-01-050223 Sampled: 5/2/2023 09:00

Sample ID: 23E0583-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1		Draft Method 1633	5/4/23	5/4/23 13:29	LL

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-00-050223 Sampled: 5/2/2023 10:10

Sample ID: 23E0583-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		Se	emivolatile Organic Cor	npounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	29	3.8	ng/L	1	-	Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoropentanoic acid (PFPeA)	26	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorohexanoic acid (PFHxA)	29	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoroheptanoic acid (PFHpA)	14	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorooctanoic acid (PFOA)	43	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorononanoic acid (PFNA)	48	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorodecanoic acid (PFDA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorobutanesulfonic acid (PFBS)	4.5	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoropetanesulfonic acid (PFPeS)	3.3	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorohexanesulfonic acid (PFHxS)	11	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorooctanesulfonic acid (PFOS)	19	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-EtFOSAA (NEtFOSAA)	1.7	0.95	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.5	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.5	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
9Cl-PF3ONS (F53B Minor)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.8	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.5	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	48	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	48	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-00-050223 Samp

Sample ID: 23E0583-03
Sample Matrix: Ground Water

Sampled: 5/2/2023 10:10

Semivolatile Organic Compounds by - LC/MS-MS $\,$

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
(PFMBA) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:42	AMS
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
13C4-PFBA		82.2	20-150					5/10/23 16:42	
13C5-PFPeA		77.4	20-150					5/10/23 16:42	
13C5-PFHxA		78.1	20-150					5/10/23 16:42	
13C4-PFHpA		84.7	20-150					5/10/23 16:42	
13C8-PFOA		75.2	20-150					5/10/23 16:42	
13C9-PFNA		78.0	20-150					5/10/23 16:42	
13C6-PFDA		79.4	20-150					5/10/23 16:42	
13C7-PFUnA		74.3	20-150					5/10/23 16:42	
13C2-PFDoA		71.2	20-150					5/10/23 16:42	
13C2-PFTeDA		63.8	20-150					5/10/23 16:42	
13C3-PFBS		83.0	20-150					5/10/23 16:42	
13C3-PFHxS		79.6	20-150					5/10/23 16:42	
13C8-PFOS		78.0	20-150					5/10/23 16:42	
13C2-4:2FTS		135	20-150					5/10/23 16:42	
13C2-6:2FTS		107	20-150					5/10/23 16:42	
13C2-8:2FTS		83.2	20-150					5/10/23 16:42	
13C8-PFOSA		65.2	20-150					5/10/23 16:42	
D3-NMeFOSA		57.9	20-150					5/10/23 16:42	
D5-NEtFOSA		56.3	20-150					5/10/23 16:42	
D3-NMeFOSAA		70.9	20-150					5/10/23 16:42	
D5-NEtFOSAA		72.3	20-150					5/10/23 16:42	
D7-NMeFOSE		68.1	20-150					5/10/23 16:42	
D9-NEtFOSE		64.6	20-150					5/10/23 16:42	
13C3-HFPO-DA		83.7	20-150					5/10/23 16:42	

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-00-050223 Sampled:

Sample ID: 23E0583-03
Sample Matrix: Ground Water

Sampled: 5/2/2023 10:10

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1		Draft Method 1633	5/4/23	5/4/23 13:29	LL

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-01-050223 Sampled: 5/2/2023 10:10

Sample ID: 23E0583-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		Sei	mivolatile Organic Cor	npounds by - I	LC/MS-MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	29	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoropentanoic acid (PFPeA)	26	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorohexanoic acid (PFHxA)	28	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoroheptanoic acid (PFHpA)	14	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorooctanoic acid (PFOA)	42	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorononanoic acid (PFNA)	47	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorodecanoic acid (PFDA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorobutanesulfonic acid (PFBS)	4.6	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoropetanesulfonic acid (PFPeS)	3.6	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorohexanesulfonic acid (PFHxS)	12	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorooctanesulfonic acid (PFOS)	19	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-EtFOSAA (NEtFOSAA)	1.7	0.97	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
9CI-PF3ONS (F53B Minor)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.7	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	48	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	48	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS

Project Location: Old Bethage, New York Sample Description: Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-01-050223 Sampled: 5/2/2023 10:10

Sample ID: 23E0583-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS $\,$

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
(PFMBA) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	5/8/23	5/10/23 16:58	AMS
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C4-PFBA		77.7	20-150					5/10/23 16:58	
13C5-PFPeA		73.8	20-150					5/10/23 16:58	
13C5-PFHxA		75.2	20-150					5/10/23 16:58	
13C4-PFHpA		82.2	20-150					5/10/23 16:58	
13C8-PFOA		73.5	20-150					5/10/23 16:58	
13C9-PFNA		71.8	20-150					5/10/23 16:58	
13C6-PFDA		70.6	20-150					5/10/23 16:58	
13C7-PFUnA		66.7	20-150					5/10/23 16:58	
13C2-PFDoA		63.4	20-150					5/10/23 16:58	
13C2-PFTeDA		55.3	20-150					5/10/23 16:58	
13C3-PFBS		79.2	20-150					5/10/23 16:58	
13C3-PFHxS		72.4	20-150					5/10/23 16:58	
13C8-PFOS		73.0	20-150					5/10/23 16:58	
13C2-4:2FTS		123	20-150					5/10/23 16:58	
13C2-6:2FTS		101	20-150					5/10/23 16:58	
13C2-8:2FTS		78.1	20-150					5/10/23 16:58	
13C8-PFOSA		63.2	20-150					5/10/23 16:58	
D3-NMeFOSA		49.7	20-150					5/10/23 16:58	
D5-NEtFOSA		50.2	20-150					5/10/23 16:58	
D3-NMeFOSAA		66.9	20-150					5/10/23 16:58	
D5-NEtFOSAA		62.0	20-150					5/10/23 16:58	
D7-NMeFOSE		60.3	20-150					5/10/23 16:58	
D9-NEtFOSE		52.9	20-150					5/10/23 16:58	
13C3-HFPO-DA		83.8	20-150					5/10/23 16:58	

Project Location: Old Bethage, New York

Sample Description:

Work Order: 23E0583

Date Received: 5/3/2023

Field Sample #: ASF-CP-01-050223

Sampled: 5/2/2023 10:10

Sample ID: 23E0583-04
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1		Draft Method 1633	5/4/23	5/4/23 13:29	LL

Sample Extraction Data

Draft Method 1633

Lab Number [Field ID]	Batch	Initial [mL]	Date
23E0583-01 [PD-CP-00-050223]	B339245	50.0	05/04/23
23E0583-02 [PD-CP-01-050223]	B339245	50.0	05/04/23
23E0583-03 [ASF-CP-00-050223]	B339245	50.0	05/04/23
23E0583-04 [ASF-CP-01-050223]	B339245	50.0	05/04/23

Prep Method: Draft Method 1633 Analytical Method: Draft Method: Draft Method: Source extracted on 5/4/2023 per NO PREP in Batch B339245

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23E0583-01 [PD-CP-00-050223]	B339322	536	5.00	05/08/23
23E0583-02 [PD-CP-01-050223]	B339322	540	5.00	05/08/23
23E0583-03 [ASF-CP-00-050223]	B339322	525	5.00	05/08/23
23E0583-04 [ASF-CP-01-050223]	B339322	516	5.00	05/08/23

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B339322 - Draft Method 1633										
Blank (B339322-BLK1)				Prepared: 05	5/04/23 Analy	yzed: 05/10/2	23			
Perfluorobutanoic acid (PFBA)	ND	3.9	ng/L							
Perfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	0.98	ng/L							
Perfluoroheptanoic acid (PFHpA)	ND	0.98	ng/L							
Perfluorooctanoic acid (PFOA)	ND	0.98	ng/L							
Perfluorononanoic acid (PFNA)	ND	0.98	ng/L							
Perfluorodecanoic acid (PFDA)	ND	0.98	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	0.98	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	0.98	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	0.98	ng/L							
Perfluorotetradecanoic acid (PFTeDA)	ND	0.98	ng/L							
Perfluorobutanesulfonic acid (PFBS)	ND	0.98	ng/L							
Perfluoropetanesulfonic acid (PFPeS)	ND	0.98	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	0.98	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.98	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	0.98	ng/L							
Perfluorononanesulfonic acid (PFNS)	ND	0.98	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	0.98	ng/L							
Perfluorododecanesulfonic acid (PFDoS)	ND	0.98 3.9	ng/L ng/L							
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS) 1H,1H,2H,2H-Perfluorooctane sulfonic acid	ND	3.9	ng/L							
6:2FTS) IH,1H,2H,2H-Perfluorodecane sulfonic	ND ND	3.9	ng/L							
acid (8:2FTS)	ND		8							
Perfluorooctanesulfonamide (PFOSA)	ND	0.98	ng/L							
N-methyl perfluoroocatnesulfonamide NMeFOSA)	ND	0.98	ng/L							
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.98	ng/L							
N-MeFOSAA (NMeFOSAA)	ND	0.98	ng/L							
N-EtFOSAA (NEtFOSAA)	ND	0.98	ng/L							
N-methylperfluorooctanesulfonamidoethano l(NMeFOSE)	ND	9.8	ng/L							
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.8	ng/L							
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.9	ng/L							
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.9	ng/L							
9Cl-PF3ONS (F53B Minor)	ND	3.9	ng/L							
11Cl-PF3OUdS (F53B Major)	ND	3.9	ng/L							
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.8	ng/L							
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	49	ng/L							
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	49	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	2.0	ng/L							
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	2.0	ng/L							
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND	2.0	ng/L							
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	2.0	ng/L							
Surrogate: 13C4-PFBA	85.3		ng/L	98.3		86.8	20-150			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B339322 - Draft Method 1633										
Blank (B339322-BLK1)	-			Prepared: 05	/04/23 Analy	yzed: 05/10/2	3			
Surrogate: 13C5-PFPeA	42.7		ng/L	49.2		86.8	20-150			
Surrogate: 13C5-PFHxA	20.9		ng/L	24.6		85.2	20-150			
Surrogate: 13C4-PFHpA	22.5		ng/L	24.6		91.4	20-150			
Surrogate: 13C8-PFOA	20.4		ng/L	24.6		82.9	20-150			
Surrogate: 13C9-PFNA	10.3		ng/L	12.3		83.7	20-150			
Surrogate: 13C6-PFDA	10.3		ng/L	12.3		83.5	20-150			
Surrogate: 13C7-PFUnA	10.5		ng/L	12.3		85.1	20-150			
Surrogate: 13C2-PFDoA	10.9		ng/L	12.3		88.5	20-150			
Surrogate: 13C2-PFTeDA	11.1		ng/L	12.3		90.2	20-150			
Surrogate: 13C3-PFBS	21.3		ng/L	24.6		86.4	20-150			
Surrogate: 13C3-PFHxS	20.4		ng/L	24.6		82.9	20-150			
Surrogate: 13C8-PFOS	21.5		ng/L	24.6		87.3	20-150			
Surrogate: 13C2-4:2FTS	56.9		ng/L	49.2		116	20-150			
Surrogate: 13C2-6:2FTS	40.8		ng/L	49.2		83.0	20-150			
Surrogate: 13C2-8:2FTS	37.5		ng/L	49.2		76.3	20-150			
Surrogate: 13C8-PFOSA	18.4		ng/L	24.6		74.8	20-150			
Surrogate: D3-NMeFOSA	12.7		ng/L	24.6		51.8	20-150			
Surrogate: D5-NEtFOSA	11.0		ng/L	24.6		44.8	20-150			
Surrogate: D3-NMeFOSAA	29.7		ng/L	49.2		60.5	20-150			
Surrogate: D5-NEtFOSAA	27.9		ng/L	49.2		56.7	20-150			
Surrogate: D7-NMeFOSE	118		ng/L	246		48.0	20-150			
Surrogate: D9-NEtFOSE	92.3		ng/L	246		37.5	20-150			
Surrogate: 13C3-HFPO-DA	83.5		ng/L	98.3		84.9	20-150			
LCS (B339322-BS1)				Prepared: 05	/04/23 Analy	yzed: 05/10/2	3			
Perfluorobutanoic acid (PFBA)	8.38	4.0	ng/L	7.91		106	40-150			
Perfluoropentanoic acid (PFPeA)	3.89	2.0	ng/L	3.96		98.4	40-150			
Perfluorohexanoic acid (PFHxA)	1.87	0.99	ng/L	1.98		94.4	40-150			
Perfluoroheptanoic acid (PFHpA)	1.76	0.99	ng/L	1.98		88.8	40-150			
Perfluorooctanoic acid (PFOA)	1.90	0.99	ng/L	1.98		96.0	40-150			
Perfluorononanoic acid (PFNA)	1.82	0.99	ng/L	1.98		91.8	40-150			
Perfluorodecanoic acid (PFDA)	1.81	0.99	ng/L	1.98		91.2	40-150			
Perfluoroundecanoic acid (PFUnA)	1.83	0.99	ng/L	1.98		92.5	40-150			
Perfluorododecanoic acid (PFDoA)	1.84	0.99	ng/L	1.98		92.9	40-150			
Perfluorotridecanoic acid (PFTrDA)	1.80	0.99	ng/L	1.98		90.7	40-150			
Perfluorotetradecanoic acid (PFTeDA)	1.83	0.99	ng/L	1.98		92.5	40-150			
Perfluorobutanesulfonic acid (PFBS)	1.62	0.99	ng/L	1.76		92.1	40-150			
Perfluoropetanesulfonic acid (PFPeS)	1.87	0.99	ng/L	1.86		100	40-150			
Perfluorohexanesulfonic acid (PFHxS)	1.82	0.99	ng/L	1.81		101	40-150			
Perfluoroheptanesulfonic acid (PFHpS)	1.75	0.99	ng/L	1.88		92.8	40-150			
Perfluorooctanesulfonic acid (PFOS)	1.98	0.99	ng/L	1.84		108	40-150			
Perfluorononanesulfonic acid (PFNS)	1.77	0.99	ng/L	1.90		92.8	40-150			
Perfluorodecanesulfonic acid (PFDS)	1.74	0.99	ng/L	1.91		91.2	40-150			
Perfluorododecanesulfonic acid (PFDoS)	1.85	0.99	ng/L ng/L	1.92		96.5	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic	7.03	4.0	ng/L	7.42		94.7	40-150			
cid (4:2FTS) H,1H,2H,2H-Perfluorooctane sulfonic acid	7.63	4.0	ng/L	7.52		102	40-150			
6:2FTS) IH,1H,2H,2H-Perfluorodecane sulfonic	8.15	4.0	ng/L	7.62		107	40-150			
cid (8:2FTS)	• 00	0.00	po/I	1.00		05.0	40 150			
Perfluorooctanesulfonamide (PFOSA) N-methyl perfluoroocatnesulfonamide	1.88	0.99 0.99	ng/L ng/L	1.98 1.98		95.0 93.8	40-150 40-150			
N-memyr permuoroocamesunonamide (NMeFOSA)	1.86	0.99	ng/L	1.70		73.8	40-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Result	Limit	Units	Level	Result			RPD	Limit	
			20101	resure	%REC	Limits	ПОВ		Notes
			Prepared: 05	/04/23 Analy	zed: 05/10/2	1.3			
1.78	0.99	ng/L	1.98		89.9	40-150			
1.60	0.00	na/I	1.00		05 1	40 150			
		_							
		-							
18.5	9.9	ng/L	19.8		93.7	40-150			
18.8	9.9	ng/L	19.8		95.0	40-150			
6.12	4.0	ng/L	7.91		77.4	40-150			
5.71	4.0	ng/L	7.47		76.5	40-150			
	4.0	. /*	7 45		02.0	40.150			
		_							
		_							
19.4	9.9	ng/L	19.8		97.9	40-150			
93.4	49	ng/L	98.9		94.4	40-150			
84.4	49	ng/L	98.9		85.3	40-150			
3.24	2.0	ng/L	3.52		92.1	40-150			
3.88	2.0	ng/L	3.96		98.0	40-150			
3.41	2.0	ng/L	3.96		86.2	40-150			
3.71	2.0	ng/L	3.96		93.7	40-150			
89.6		ng/L	98.9		90.6	20-150			
47.9		ng/L	49.5		96.8	20-150			
22.6		ng/L	24.7		91.4	20-150			
23.4		ng/L	24.7		94.7	20-150			
21.4		ng/L	24.7		86.7	20-150			
11.0		ng/L	12.4		88.7	20-150			
11.1		ng/L	12.4		89.4	20-150			
10.8		ng/L	12.4		87.4	20-150			
11.0		ng/L	12.4		88.5	20-150			
11.6		ng/L	12.4		93.8	20-150			
21.0		ng/L	24.7		85.1	20-150			
21.4		ng/L	24.7		86.4	20-150			
21.7		ng/L	24.7		87.9	20-150			
46.6		ng/L	49.5		94.3	20-150			
41.7		ng/L	49.5		84.2	20-150			
38.6		ng/L	49.5		78.0	20-150			
20.5		ng/L	24.7		82.8	20-150			
17.5		ng/L	24.7		70.8	20-150			
17.3		ng/L	24.7		70.1	20-150			
33.2		ng/L	49.5		67.1	20-150			
32.7		ng/L	49.5		66.1	20-150			
200		ng/L	247		80.8	20-150			
193		ng/L	247		77.9	20-150			
97.9		ng/L	98.9		99.0	20-150			
		-		//04/23 Analy					
90.0		ng/L	94.6		95.1	40-150			
	1.68 1.80 18.5 18.8 6.12 5.71 6.16 6.14 19.4 93.4 84.4 3.24 3.88 3.41 3.71 89.6 47.9 22.6 23.4 21.4 11.0 11.1 10.8 11.0 11.6 21.0 21.4 21.7 46.6 41.7 38.6 20.5 17.5 17.3 33.2 32.7 200 193 97.9	1.68 0.99 1.80 0.99 18.5 9.9 18.8 9.9 6.12 4.0 5.71 4.0 6.16 4.0 6.14 4.0 19.4 9.9 93.4 49 84.4 49 3.24 2.0 3.88 2.0 3.41 2.0 89.6 47.9 22.6 23.4 21.4 11.0 11.1 10.8 11.0 11.1 10.8 11.0 11.6 21.0 21.4 21.7 46.6 41.7 38.6 20.5 17.5 17.3 33.2 32.7 200 193 97.9 90.0 3.9	1.68	1.78	1.78 0.99 ng/L 1.98 1.68 0.99 ng/L 1.98 1.80 0.99 ng/L 1.98 1.8.5 9.9 ng/L 1.9.8 1.8.8 9.9 ng/L 1.9.8 6.12 4.0 ng/L 7.47 6.16 4.0 ng/L 7.47 6.16 4.0 ng/L 7.47 1.9.4 9.9 ng/L 1.9.8 93.4 49 ng/L 98.9 84.4 49 ng/L 98.9 84.4 49 ng/L 3.52 3.88 2.0 ng/L 3.52 3.88 2.0 ng/L 3.96 3.41 2.0 ng/L 3.96 3.71 2.0 ng/L 3.96 89.6 ng/L 94.5 1.1.0 ng/L 24.7 11.0 ng/L 24.7 11.0 ng/L 12.4 11.1 ng/L 12.4 11.1 ng/L 12.4 11.6 ng/L 12.4 11.6 ng/L 12.4 11.6 ng/L 12.4 11.6 ng/L 24.7 21.4 ng/L 24.7 21.4 ng/L 24.7 21.4 ng/L 24.7 21.4 ng/L 24.7 11.5 ng/L 12.4 11.6 ng/L 12.4 11.7 ng/L 12.4 11.8 ng/L 12.4 11.9 ng/L 12.4 11.1 ng/L 24.7 11.2 ng/L 24.7 11.3 ng/L 24.7 11.5 ng/L 24.7 11.5 ng/L 24.7 11.5 ng/L 24.7 11.7 ng/L 24.7 11.9 ng/L	1.78	1.68 0.99 ng/L 1.98 90.8 40-150 1.80 0.99 ng/L 1.98 90.8 40-150 1.8.5 9.9 ng/L 19.8 93.7 40-150 1.8.8 9.9 ng/L 19.8 95.0 40-150 1.8.8 9.9 ng/L 19.8 95.0 40-150 1.8.8 9.9 ng/L 19.8 95.0 40-150 1.8.8 9.9 ng/L 7.91 77.4 40-150 1.8.8 9.9 ng/L 7.47 76.5 40-150 1.8.8 9.9 ng/L 7.47 76.5 40-150 1.8.8 9.9 ng/L 7.47 76.5 40-150 1.8.8 9.9 ng/L 7.47 82.1 40-150 1.8.8 9.9 ng/L 98.9 9.4.4 40-150 1.8.4 40 ng/L 7.47 82.1 40-150 1.8.4 49 ng/L 98.9 94.4 40-150 1.8.4 49 ng/L 98.9 85.3 40-150 1.8.4 49 ng/L 3.52 92.1 40-150 1.8.8 2.0 ng/L 3.96 98.0 40-150 1.8.8 2.0 ng/L 3.96 98.0 40-150 1.8.8 2.0 ng/L 3.96 98.0 40-150 1.8.9 90.0 1.0 ng/L 24.7 91.4 20-150 1.8.0 ng/L 24.7 91.4 20-150 1.8.0 ng/L 24.7 86.7 20-150 1.8.0 ng/L 12.4 88.7 20-150 1.8.0 ng/L 12.4 88.7 20-150 1.8.0 ng/L 12.4 88.5 20-150 1.8.0 ng/L 24.7 86.4 20-150 1.8.0 ng/L 24.7 86.9 20-150 1.8.0 ng/L 24.7 70.8 20-150 1.8.	1.78	1.78

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyta	D agult	Reporting	Unita	Spike	Source	0/ DEC	%REC	DDL	RPD Limit	Mate-
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B339322 - Draft Method 1633										
CS (B339322-BS2)				Prepared: 05	5/04/23 Analy	zed: 05/10/2	23			
erfluorohexanoic acid (PFHxA)	22.8	0.99	ng/L	23.6		96.3	40-150			
erfluoroheptanoic acid (PFHpA)	21.3	0.99	ng/L	23.6		90.0	40-150			
erfluorooctanoic acid (PFOA)	21.9	0.99	ng/L	23.6		92.5	40-150			
erfluorononanoic acid (PFNA)	22.6	0.99	ng/L	23.6		95.8	40-150			
erfluorodecanoic acid (PFDA)	22.6	0.99	ng/L	23.6		95.7	40-150			
erfluoroundecanoic acid (PFUnA)	21.5	0.99	ng/L	23.6		91.0	40-150			
erfluorododecanoic acid (PFDoA)	21.1	0.99	ng/L	23.6		89.2	40-150			
erfluorotridecanoic acid (PFTrDA)	21.1	0.99	ng/L	23.6		89.3	40-150			
erfluorotetradecanoic acid (PFTeDA)	21.2	0.99	ng/L	23.6		89.6	40-150			
erfluorobutanesulfonic acid (PFBS)	20.1	0.99	ng/L	21.0		95.8	40-150			
erfluoropetanesulfonic acid (PFPeS)	21.1	0.99	ng/L	22.2		94.8	40-150			
erfluorohexanesulfonic acid (PFHxS)	20.5	0.99	ng/L	21.6		94.6	40-150			
erfluoroheptanesulfonic acid (PFHpS)	20.7	0.99	ng/L	22.5		91.8	40-150			
erfluorooctanesulfonic acid (PFOS)	19.1	0.99	ng/L	21.9		87.2	40-150			
erfluorononanesulfonic acid (PFNS)	20.4	0.99	ng/L	22.8		89.4	40-150			
erfluorodecanesulfonic acid (PFDS)	21.2	0.99	ng/L	22.8		93.0	40-150			
erfluorododecanesulfonic acid (PFDoS)	22.6	0.99	ng/L	22.9		98.5	40-150			
H,1H,2H,2H-Perfluorohexane sulfonic id (4:2FTS)	86.9	3.9	ng/L	88.7		98.0	40-150			
I,1H,2H,2H-Perfluorooctane sulfonic acid :2FTS)	82.3	3.9	ng/L	89.8		91.6	40-150			
I,1H,2H,2H-Perfluorodecane sulfonic id (8:2FTS)	91.5	3.9	ng/L	91.0		101	40-150			
erfluorooctanesulfonamide (PFOSA)	22.1	0.99	ng/L	23.6		93.3	40-150			
methyl perfluoroocatnesulfonamide IMeFOSA)	20.4	0.99	ng/L	23.6		86.3	40-150			
-ethyl perfluorooctanesulfonamide IEtFOSA)	21.5	0.99	ng/L	23.6		90.8	40-150			
-MeFOSAA (NMeFOSAA)	21.2	0.99	ng/L	23.6		89.5	40-150			
-EtFOSAA (NEtFOSAA)	21.4	0.99	ng/L	23.6		90.3	40-150			
-methylperfluorooctanesulfonamidoethano NMeFOSE) -ethylperfluorooctanesulfonamidoethanol	218	9.9 9.9	ng/L	236		92.1	40-150			
-etnyiperiluorooctanesuifonamidoetnanoi VEtFOSE) exafluoropropylene oxide dimer acid	233	3.9	ng/L	236 94.6		98.7 83.1	40-150 40-150			
FPO-DA) 8-Dioxa-3H-perfluorononanoic acid	78.6 71.0	3.9	ng/L	89.3		79.5	40-150			
ADONA)	/1.0		8-	37.3		, ,	.0 150			
Cl-PF3ONS (F53B Minor)	74.5	3.9	ng/L	88.7		84.0	40-150			
Cl-PF3OUdS (F53B Major)	74.3	3.9	ng/L	89.3		83.2	40-150			
Perfluoropropyl propanoic acid (FPrPA) :3FTCA)	243	9.9	ng/L	236		103	40-150			
H,2H,3H,3H-Perfluorooctanoic id(FPePA)(5:3FTCA)	1250	49	ng/L	1180		106	40-150			
Perfluoroheptyl propanoic acid (FHpPA) 23FTCA)	1180	49	ng/L	1180		100	40-150			
erfluoro(2-ethoxyethane)sulfonic acid	40.9	2.0	ng/L	42.1		97.2	40-150			
erfluoro-3-methoxypropanoic acid FMPA)	48.3	2.0	ng/L	47.3		102	40-150			
erfluoro-4-methoxybutanoic acid	44.1	2.0	ng/L	47.3		93.2	40-150			
onafluoro-3,6-dioxaheptanoic acid NFDHA)	47.5	2.0	ng/L	47.3		100	40-150			
irrogate: 13C4-PFBA	84.8		ng/L	98.5		86.1	20-150			
irrogate: 13C5-PFPeA	41.8		ng/L	49.3		84.8	20-150			
urrogate: 13C5-PFHxA	20.0		ng/L	24.6		81.2	20-150			age 2

Surrogate: 13C3-HFPO-DA

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Batch B339322 - Draft Method 1633						
.CS (B339322-BS2)			Prepared: 05/04/23	3 Analyzed: 05/10	/23	
urrogate: 13C4-PFHpA	22.0	ng/L	24.6	89.3	20-150	
urrogate: 13C8-PFOA	20.4	ng/L	24.6	83.0	20-150	
urrogate: 13C9-PFNA	10.2	ng/L	12.3	82.5	20-150	
urrogate: 13C6-PFDA	10.1	ng/L	12.3	81.7	20-150	
urrogate: 13C7-PFUnA	10.2	ng/L	12.3	82.7	20-150	
urrogate: 13C2-PFDoA	10.6	ng/L	12.3	85.8	20-150	
urrogate: 13C2-PFTeDA	11.2	ng/L	12.3	90.9	20-150	
urrogate: 13C3-PFBS	19.5	ng/L	24.6	79.3	20-150	
urrogate: 13C3-PFHxS	20.5	ng/L	24.6	83.2	20-150	
urrogate: 13C8-PFOS	21.4	ng/L	24.6	86.8	20-150	
urrogate: 13C2-4:2FTS	43.5	ng/L	49.3	88.2	20-150	
urrogate: 13C2-6:2FTS	43.1	ng/L	49.3	87.5	20-150	
urrogate: 13C2-8:2FTS	41.6	ng/L	49.3	84.5	20-150	
urrogate: 13C8-PFOSA	20.6	ng/L	24.6	83.8	20-150	
urrogate: D3-NMeFOSA	17.9	ng/L	24.6	72.6	20-150	
urrogate: D5-NEtFOSA	17.7	ng/L	24.6	71.7	20-150	
urrogate: D3-NMeFOSAA	39.3	ng/L	49.3	79.9	20-150	
urrogate: D5-NEtFOSAA	36.7	ng/L	49.3	74.5	20-150	
urrogate: D7-NMeFOSE	203	ng/L	246	82.4	20-150	
urrogate: D9-NEtFOSE	188	ng/L	246	76.3	20-150	

ng/L

98.5

97.5

20-150

96.0

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B339245 - Draft Method 1633										
Blank (B339245-BLK1)				Prepared &	Analyzed: 05	5/04/23				
Total Suspended Solids	ND	5.0	mg/L							
LCS (B339245-BS1)				Prepared &	Analyzed: 05	5/04/23				
Total Suspended Solids	170	5.0	ma/I	200		80.5	64 1 125			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established	limits.
---	-------------------------------------	---------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certifications

Certified Analyses included in this Report

Analyte

Draft Method 1633 in Water Total Suspended Solids CT,MA,NH,NY,RI,NC,ME,VA Perfluorobutanoic acid (PFBA) NY,NH-P NY,NH-P Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) NY,NH-P NY,NH-P Perfluoroheptanoic acid (PFHpA) Perfluorooctanoic acid (PFOA) NY,NH-P Perfluorononanoic acid (PFNA) NY,NH-P Perfluorodecanoic acid (PFDA) NY,NH-P Perfluoroundecanoic acid (PFUnA) NY,NH-P Perfluorododecanoic acid (PFDoA) NY,NH-P NY,NH-P Perfluorotridecanoic acid (PFTrDA) Perfluorotetradecanoic acid (PFTeDA) NY,NH-P Perfluorobutanesulfonic acid (PFBS) NY,NH-P Perfluoropetanesulfonic acid (PFPeS) NY,NH-P Perfluorohexanesulfonic acid (PFHxS) NY,NH-P Perfluoroheptanesulfonic acid (PFHpS) NY,NH-P Perfluorooctanesulfonic acid (PFOS) NY,NH-P Perfluorononanesulfonic acid (PFNS) NH-P Perfluorodecanesulfonic acid (PFDS) NH-P Perfluorododecanesulfonic acid (PFDoS) NH-P 1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS) NH-P 1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS) NY,NH-P 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS) NY,NH-P Perfluorooctanesulfonamide (PFOSA) NH-P N-methyl perfluoroocatnesulfonamide (NMeFOSA) NH-P N-ethyl perfluorooctanesulfonamide (NEtFOSA) NH-P N-MeFOSAA (NMeFOSAA) NY,NH-P N-EtFOSAA (NEtFOSAA) NY,NH-P N-methylperfluorooctanesulfonamidoethanol(NMeFOSE) NH-P N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE) NH-P NY,NH-P Hexafluoropropylene oxide dimer acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) NY.NH-P 9Cl-PF3ONS (F53B Minor) NY,NH-P 11Cl-PF3OUdS (F53B Major) NY,NH-P 3-Perfluoropropyl propanoic acid (FPrPA)(3:3FTCA) NH-P 2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA) NH-P 3-Perfluoroheptyl propanoic acid (FHpPA)(7:3FTCA) NH-P Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) NY,NH-P Perfluoro-3-methoxypropanoic acid (PFMPA) NY,NH-P NH-P Perfluoro-4-methoxybutanoic acid (PFMBA) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA) NH-P

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
MA	Massachusetts DEP	M-MA100	06/30/2024
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
RI	Rhode Island Department of Health	LAO00373	12/30/2023
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2023
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023

Professional Pro											1	nod	N	グレンコント	1					ŀ	
Context: Witchest Context: W			7970A		el Mecinsk	 //	7,													rage	Laboratory Use Only
Activities Proceedings Procedings Proceedings Proceedings Procedings	ľζ	ontact:	Michael Grifasi		Lahorat	100	/ 307	ing Times					-								Project Number:
Project NYSDEK Claremout Polychemical Site Of 25% Samples Protein Project NYSDEK Claremout Polychemical Site Of 25% Samples Project NYSDEK Claremout Polychemical Site Of 25%	₹	ddress:		Street		÷	ğ	ing ime:		*******					Analy	sis Requ	ired				
Process Control of			Syracuse, New York 132.	221-4873	Pace An	alytical Servic	es				<u></u>	eservative	s: (see ke)	at botte	/mc						Job Number:
Final:	ā	ione:	(315) 956-6100		39 Spruk	ce St., East					<u> </u>		2		0			0	0		
Project NYSING Claremont Polychemical Stre Q2 is Sample Nature 13-522-233 Option Traje Traje Nysing Clare Traje Traje Traje Nysing Clare Traje	w	mail:	michael.grifasi@r.	ramboll.com	Longrae	adow, MA UI.		age Requirem		[:		,	(₩								Caboratory ID:
1 Dr. Ch. Observation Province Provi	<u>a</u>	'oject:	NYSDEC Claremont Poly	ychemical Site Q2 Sys Sample	es Attn:	RJ McCart		oge nequirem		O) estice	(N		0(4() KI		wr						
The Control	2 ا	cation:		¥	Phone:	413-525-2		Format:	•	odwo			Mercu		imonf		ND'PO		əus		
1 Po. Cr. 00.060233	L			lentification			EQUI	5 4-file	T); Cc			+ 2157		ent c				exojp		
1 10-C+00-050023			Unique Field Same	O ala		ç	ļ	Sample		e] e		\OC2	ew 'r		łevex	Э:		•	- ⊅ ′1∶		
1 Po-Cr-00-060223			(sys_sample_co	(apc	sample Location	<u> </u>	Ĕ	ype (See Key)		j devi		r2 :007	AT 001		94 : A 2	OT:A0		3: PFA5	wis ac		
PD-CP-01-050223			P-00-050223		PD	li	56.00	Z	╫	9 (╢	Z8 >	09		574	906		163	8270		Lab Sample ID:
10 Ch.N.G.050223			P-01-050223		Qd	•		6	+	+	+	-	+	1	1	1		×	×		
4 PD-ChASD-050223	1 ~	1	P-MS-050223		9	202/2/2	8	2	1	-+	-		_					×	×		
11 12 12 12 12 12 12 12	`		D-MACD-060333		PD	5/7/2023	5365	MS	1	1	\dashv										
13 ASF-CO-01-0560233 P.D. \$5/2/2023 19.9 N WG S G N N N N N N N N N			r-M3D-U50223		PD	5/2/2023	જુહુર	MSD								_	-	Ŧ	1		
19 19 19 19 19 19 19 19			CP-00-050223		z	5/2/2023	010.	Z	 	╂	Z		+	1	+	1	1	;		-	
The 050223 10.20 The WO 2 N X			CP-01-050223		F3	5/2/2023	1013	E	\dagger	+-	2	-	+	1	1	1	1	×	\ \		
cela Instructions: the top boxes if the samples are to be shipped via courier (e.g., Fed Ex) Transisted by:	7		50223			5/2/2023		ar	\dagger	+	+		+			1	1	×	×		The second second
scal instructions: The top boxes if the samples are to be shipped via counter (e.g., fed Ex) For the top boxes if the samples are to be shipped via counter (e.g., fed Ex) For the top boxes if the samples are to be shipped via counter (e.g., fed Ex) For the top boxes if the samples are to be shipped via counter (e.g., fed Ex) For the top boxes if the samples are to be shipped via counter (e.g., fed Ex) For the top	_ ∞	_					30	2	T	+	-+		-								
etial instructions: The top boxes if the samples are to be shipped via courier (e.g., Fed Ex) Transished by: GES, Inc. Time: Time:	10	_								+	+	1	1								
ted instructions: STLAS Time: Time	1 =	 	The state of the s								\dashv										i Ma
the top boxes if the samples are to be shipped via courier (e.g., Fed Ex) Time: Time	4 +	, ,										****						L	-		
scial instructions: STL/A3 Ges, Inc. Tracking bi. 1415 5472 4287 Time: Time: Date: Date: Time: Date: Time: Date: Time: Date: Time: Tim	1										····						-	-	l		
Time: FedEx GES, Inc. Time: FedEx Gourier Name: FedEx Date: Time: Tracking #: Time:	- 1											L		1	\downarrow	‡	\downarrow	7		\blacksquare	- Se :-
to the top boxes if the samples are to be shipped via courier (e.g., Fed Ex) Inquished by: GES, Inc. Time: Tracking #: 1418 5412 4283 Time: Tim	-										1			1	1	1	1	7	1		
the top boxes if the samples are to be shipped via courier (e.g., Fed Ex) Inquished by: GES, Inc. Time: Date: Courier Name: FedEx Date: Time: Arme: Courier Name: FedEx Date: Courier Name: FedEx Date: Time: Arme: Arme: Arme: Arme: Arme: Arme: Armein Bank, TB = Trip Blank, TB = Tr	1,	-	The state of the s							1	+	1	-	1	1	#	1	1	1		₩
riguished by: Time: Tracking #: FedEx FedEx FedEx Fourier Name: FedEx FedEx Fourier Name: FedEx FedEx Fourier Name: FedEx FedEx Fourier Name: FedEx Fourier Nam	S	ecial Ins	structions:							1	-						\exists	\exists			
inquished by: STLK3 Courier Name: FedEx Date: FedEx Time: Tracking #: 1413 5472 4263 Time: Date: Time: Date: Date: Time: Date: Da	۱۶	e the to	to boxes if the samples are to	to be shipped via courier (e.e.	, Ead Evi							-									
rier Name: FedEx Time: Time: Tocking #: Time: Time: Tocking #: Time: Time: Tocking #: Time: Tocking #: Time: Tocking #: Time: Time: Tocking #: Time: Tocking #: Time: Time: Tocking #: Time: Time: Time: Tocking #: Time: Time: Tocking #: Time: Time: Tocking #: Time: Time	æ	linguishe	red by:		Date:		Courier M	1010	2000	2			<u>8</u>	dition:							Other comments or
rifer Name: FedEx Date: Tracking #: 1413 5472 9267 Time: Of: Time: Of: Time: Of: Time: Time: Of: Time: Time: Of: Time: Of: Time: Of: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Time: Of: Time: Time: Of: Time: Of: Time: Time: Of: Time: Of: Time: Time: Time: Of: Time: T			1				7	esce B	Ž	. v	1	23									notes regarding
ting #: FedEx Date: Time: FedEx Date: Time: FedEx Date: FedEx Date: Fracking #: Fine: Fracking #: Fine: Fracking #: Fine: Fracking #: Fracking #: Fine: Fracking #:	5 8	inouiche		nc.	Time:		Tracking #	7913 52	72 9283	Time:			<u> </u>								coffaction of samples as received;
ting #: fing #: find for	<u> </u>				Date:		Courier Nt	ıme:		Date:			3	ody Sea	's Intact	(if so, in	dicate the	#, date, a	nd time of t	toos au	
N= Normal env. sample, FD= field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank Secrify): RB = Field Reagent Blank Secrify, WS = Surface Water, WW = Waster, WW = Waster, WP = Potable Water, AA = Ambient Air, Other (Specify): Bence, 1 = HCL, 2 = HNO ₃ , 3 = H ₃ SO ₄ , 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSO ₄ , 8 = Na ₃ PO ₄ , 9 = BencalkoniumCl, 10 = other	9	١ د			Time:		Tracking #			Time:			T							(1)	
Fire: Of: WWW Normal env. sample, FD = field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank Partial Blank MS = Sediment, SO = Soil, WG = Groundwater, WQ = Water Quality, WS = Surface Water, WW = Waste Water, WP = Potable Water, AA = Ambient Air, Other (Specify): Pastive Code: O = none, 1 = HCL, 2 = HNO ₃ , 3 = H ₃ SO ₄ , 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSO ₄ , 8 = Na ₃ PO ₄ , 9 = BenzalkoniumCl, 10 = other	3	urier Na.	sme:	FedEx	Date:		Received	1.W.		Date:	1		8	er Temp	erature:						
e Matrix: vative Code:				و الله الله الله الله الله الله الله الل	Time:		Of: UN	1 1 MM	,	Time:	094			3.7%		3					
	ayt		, i	oif, WG = Groundwater, WQ = W	ripment Blank Vater Quality,	. TB = Trip Blan WS = Surface V	k, MS = Lab Vater, ww	Matrix Spike, O = Waste Water,	ther (Specify): F WP = Potable W	RB = Field Vater, AA =	Reagent E	Slank Air Other	Coeciful								
of 29	<u> </u>			= HNU3, 3 = H2504, 4 = NaOH, 5	= Zn Acetate	, 6 = МеОН, 7	- NaHSO4, 8	" Na ₃ PO ₄ , 9 = B.	enzalkoniumCI,	10 = other			the control								
29	UI .	of .																			
	_3	20																			
		\neg																			

FedEx* Tracking

DELIVERED

Wednesday

5/3/2023 at 9:46 am

Signed for by: L.ARROYO

DELIVERY STATUS

Delivered 🚱

TRACKING ID

791354729261 🗷 🗘

FROM

OLD BETHPAGE, NY US

Label Created 4/28/2023 2:02 PM

PACKAGE RECEIVED BY FEDEX

MELVILLE, NY 5/2/2023 10:54 AM

IN TRANSIT

WINDSOR LOCKS, CT 5/3/2023 7:35 AM

OUT FOR DELIVERY

WINDSOR LOCKS, CT 5/3/2023 7:45 AM

DELIVERED

East Longmeadow, MA US

Delivered 5/3/2023 at 9:46 AM

↓ View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

MORE OPTIONS

Manage Delivery

SUBMIT

Shipment facts

Page 28 of 29

Table of Contents

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0009V02_Sample Receiving Checklist 1-12-

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

Client_Ramball									True	False
Project <u>NYSDEC Claremont</u> T	Polych	ewice	al 574	و						i aise
MCP/RCP Required N14					Received	l on Ice			<u> </u>	
Deliverable Package Req. <u>N l A</u>		19/15			Received	l in Cooler			<u>u</u>	
ocation 54 racose NY					Custody :	Seal: DATI	Ξ ΤΙΙ	ME		
PWSID# (When Applicable) <u>N(A</u>					COC Relir	nguished			回	
Arrival Method:						ples Label	ς Δøree		1	П
Courier Fed Ex Walk In] Other						Condition	***************************************		
Received By / Date / Time <u>AAペ / ら</u>	-3-23,	/ 044	16	······	Samples I	Received w	vithin Holdir	ng Time		
Back-Sheet By / Date / Time <u>д Дм/ 5</u>	•					nough Vol		.rs .iiiic	<u>г</u> у	
emperature Method Temp G									<u> </u>	
emp <pre>6º C Actual Temperat</pre>							ainer Used		\exists	
ush Samples: Yes / No Notify					Splitting S	Samples Re	equired			<u> </u>
hort Hold: Yes / (No)Notify				1	MS/MSD					<u> </u>
			· · · · · · · · · · · · · · · · · · ·		Trip Blank	(S				
Notes regarding Samples/	COC ot	<u>ıtside</u>	of SOP	<u>:</u>	ab to Filt	ers			- AA^	回
						1.				
With the second				(COC Legib)le				
April 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			-	_ (uded: (Ch	eck all inclu	•		
				_ (COC Inclu	uded: (Ch	alysis 🗹	, Sampl	ler Name	
				_ (COC Inclu	uded: (Ch	alysis 🗹	, Sampl	ler Name tion Date/Ti	me 🗹
				(COC Inclu Client Project	uded: (Ch	alysis 🗹 s 🖸	, Sampl		me 🗹
Container (Circle when applicable)	UnP	НСІ	HNO3	(COC Inclu Client Project	uded: (Che An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
Container (Circle when applicable) 1L Amber Plastic	UnP	НСІ	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis 🗹 s 🖸	Sampl Collec		ime 🗹
1L Amber Plastic 500 mL Amber Plastic	UnP 8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic		HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me Ø
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me Ø
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear 80z Amber Clear 40z Amber Clear	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear 80z Amber Clear 40z Amber Clear 20z Amber Clear	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me Ø
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear 80z Amber Clear 40z Amber Clear	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear Col/Bacteria	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear 80z Amber Clear 40z Amber Clear 20z Amber Clear Col/Bacteria Flashpoint	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear Col/Bacteria Flashpoint Plastic Bag	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me V
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear Col/Bacteria Flashpoint Plastic Bag SOC KIt	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	ime 🗹
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 160z Amber Clear 80z Amber Clear 40z Amber Clear 20z Amber Clear Col/Bacteria Flashpoint Plastic Bag SOC KIt Perchlorate	8	HCI	HNO3	F	COC Inclu Client Project All Samp	An ID	alysis of s	Sampl Collec	tion Date/Ti	me V
1L Amber Plastic 500 mL Amber Plastic 250 mL Amber Plastic Other Amber Clear Plastic 16oz Amber Clear 8oz Amber Clear 4oz Amber Clear 2oz Amber Clear Col/Bacteria Flashpoint Plastic Bag SOC KIt Perchlorate Encore Frozen	8	HCI	HNO3	H2SO4	COC Inclu Client Project All Samp	An ID ID IT	alysis of s	Sampl Collec	eservative	me V