

Intended for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Document type

Report

Date

August 2023

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (JULY 2023)

CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (JULY 2023) CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

Project no. **1087815.1940101703**

Recipient New York State Department of Environmental Conservation

Document type **Report** Version [1]

Date August 1, 2023

Prepared by Pawel Mecinski – GES

Checked by Michael Grifasi - Ramboll

Approved by Andrew Leitzinger - Ramboll

Ramboll 333 West Washington Street

Syracuse, NY 13202

USA

T 315-956-6100 F 315-463-7554 https://ramboll.com

CONTENTS

1.	Operation and Maintenance Activities	4
1.1	Daily Operations Summary Reports	4
1.2	Summary of Maintenance Activities	4
1.3	Maintenance Logs	5
2.	Technical Support Activities	5
2.1	GES/Ramboll Personnel	5
2.2	NYSDEC Personnel, Sub-contractors, and Other Visitors	5
2.3	Deliveries	5
3.	Health and Safety	6
4.	Planned Activities and Schedules	6
5.	Monitoring Well Water Elevations	6
6.	Treatment System Flows	6
7.	Chemical Consumption	7
8.	Waste Disposals	7
9.	Monthly Discharge Monitoring Report	7
10.	Pending Issues and Considerations	8
11.	Plant Documents	8
12.	Monitoring Results	8
12.1	Off-site Analytical Data Results	8
12.2	Field Data	9
12.2.1	Plant Discharge pH and Temperature	9
12.2.2	Air Stripper (AS) Tower Air Monitoring	9
13.	Process Analysis and System Status	9
13.1	Extraction (RW) Processes	9
13.2	AS Process	10
13.3	PD Process	10
13.4	Other	10
14.	Grounds	11
14.1	Plant Perimeter	11
14.2	Well Field	11
14.3	Other	11

LIST OF FIGURES

1. Plant Discharge Daily Flow

LIST OF TABLES

- 1. Claremont Corrective Actions Summary
- 2. Plant Discharge Average Flow & Volume
- 3. Plant Daily Totalizer Readings
- 4. Pump System Flow Readings
- 5. Claremont OU5 O&M Sampling/Measurement
- 6. Plant Discharge Analytical Results July 5, 2023
- 7. Emerging Contaminant Influent & Effluent Analytical Results July 5, 2023
- 8. Effluent pH and Temperature Readings
- 9. Plant Discharge Monthly Average pH
- 10. AS Tower Air Monitoring Readings

LIST OF ATTACHMENTS

1. Monthly O&M Sampling Analytical Results - July 5, 2023

LIST OF ACRONYMS AND ABBRIEVIATIONS

AS Air Stripper
A/V Air and Vacuum
ASF Air Stripper feed

BNA Base Neutral & Acid Extractables

CPC Claremont Polychemical CSE Confined Space Entry

DOSR Daily Operations Summary Report

EE Electrical Engineer

GES Groundwater & Environmental Services, Inc.

GPM Gallons Per Minute

GWTS Groundwater extraction, treatment, and reinjection system

HDR Henningson, Durham & Richardson Architecture and Engineering, P.C.

HMI Human Machine Interface

HVAC Heating, Ventilation, and Air Conditioning

MTBA Tert-Butyl-Methyl ether

MW Monitoring Well

NYSDEC New York State Department of Environmental Conservation

O&M Operation and Maintenance

OU4 Operable Unit 4
OU5 Operable Unit 5
PD Plant Discharge

PDB Passive Diffusion Bag

PFAS Per- and polyfluoroalkyl substances

PFOS Perfluorooctanesulfonic acid
PFOA Perfluorooctanoic acid
PID Photoionization Detector
PFF Pressure Filter Feed

PLC Programmable Logic Controller

ppm parts per million PW Process Water

Ramboll Americas Engineering Solutions, Inc.

RW Recovery Well, Process Well

SPEDES State Pollutant Discharge Elimination System

SSHP Site Safety and Health Plan

SU Standard pH Units

SVOCs Semi-Volatile Organic Compounds

TBA Tert-butyl alcohol
TDS Total Dissolved Solids
TKN Total Kjeldahl Nitrogen
TOC Total Organic Carbon
TSS Total Suspended Solids

US Water Services Corporation VOCs Volatile Organic Compounds,

1. OPERATION AND MAINTENANCE ACTIVITIES

On behalf of Ramboll Americas Engineering Solutions, Inc. (Ramboll), Groundwater & Environmental Services, Inc. (GES) continued the daily operation and maintenance (O&M) of the Claremont Polychemical (CPC) Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU5) during the month of July 2023. In addition, former Operable Unit (OU4) was inspected once per month to ensure security and building code compliance. For this report every time plant is mentioned it refers to OU5. OU4 will be referred to as such whenever discussed. This report covers the O&M activities for the system during the period defined as beginning at approximately 0800 hours, July 3, 2023, through approximately 0800 hours, July 28, 2023. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 25 days in this reporting period during which the treatment system experienced 102 minutes of downtime.

Readings of the key plant process parameters are normally recorded each workday. These readings and the Human Machine Interface (HMI) flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the daily database which is an electronic file maintained in the monthly operating documents folder. If the plant is not occupied, the system is monitored remotely.

The treatment process control and alarm systems are functional. The recovery well pumps, process pumps, and air stripper blower are operated in the automatic mode and are normally remotely controlled and monitored. RW-3, RW-4 and RW-5 recovery wells were operational during the month of July.

1.1 Daily Operations Summary Reports

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

- Daily Operating Log flow readings and calculations (Form-01)
- Daily Site and Safety Inspection plant condition checklist (Form-02)
- Daily Plant Activity Notes plant manager's daily summary (Form-03)
- Sign-In Sheet GES/Ramboll employee on-site hours (Form-15)
- Daily Process Data Sheet point process readings (Form-30)
- Logbook CPC 5-8- plant operator's daily logbook
- Daily Database daily process readings (July 23 Database.xlsx)
- NYSDEC Log-in Sheet Entry/Exit Log with COVID-19 Acknowledgement

1.2 Summary of Maintenance Activities

The operation and maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site O&M Manual. These tasks and inspections incorporate the equipment manufacturers' recommendations, operations experience, and good engineering and maintenance practices. A detailed accounting of the July activities is further provided in the plant operator's daily logbook.

Maintenance and project activities undertaken during the July period included:

- Routine and general maintenance tasks were conducted at the plant, on the grounds, and in the well fields.
- Single Air Stripper Feed (ASF) pumps were placed into hand mode and frequently switched to cycle their activity.
- The monthly process equipment tests were conducted.
- The Operable Unit 4 (OU4) comprehensive inspections were completed.
- The monthly Process/Recovery Well (RW) system inspection was completed.
- · Basin 33 was inspected.
- The ASF pumps were lubricated, and the seals tightened.
- The OU5 comprehensive inspections were completed.
- The Pressure Filter Feed (PFF) pumps were lubricated, and the seals tightened.
- The fire alarm system components were inspected.
- The monthly electrical device survey was completed.
- The SUNY wellfield was inspected.

1.3 Maintenance Logs

The following operating logbooks are currently in use and maintained at OU5:

- CL-18 OU-4 Log (at OU4)
- CL-43 General Field Support Log (truck)
- CL-47 Misc. Projects Field Notebook (Pawel Mecinski)
- CPC 5-4 Project Support Logbook (site)
- CPC 5-8 Site Supervisor's Daily Logbook (Pawel Mecinski).

Except for log CPC 5-7, the completed logbooks associated with the project have been scanned, all are in storage at OU5, and are available for review.

2. TECHNICAL SUPPORT ACTIVITIES

2.1 GES/Ramboll Personnel

• GES maintained the system throughout the period.

2.2 NYSDEC Personnel, Sub - contractors, and Other Visitors

• On July 19, 2023, Standard Fire Inspections on site to conduct fire extinguisher inspection and tagging at both OU-4 and OU-5 plants.

2.3 Deliveries

• On July 3, FedEx delivered sampling cooler upcoming quarterly groundwater system sampling event.

3. HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved and Ramboll adopted Site Safety and Health Plan (SSHP). Safety related activities during this period included:

- The water remained off at OU4. Both potable and non-potable lines were drained. (No sanitary water).
- Daily site safety inspections were completed as part of the routine O&M activities.

4. PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing by GES/Ramboll. A list in the form of corrective actions or maintenance tasks has been generated as a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of this report as **Table 1** – Claremont Corrective Action Summary.

Upcoming tasks include:

- OU4 remains without water to the fire sprinkler system due to no heat in the building.
- OU4 potable water line was shut off due to pipe ruptures from frozen pipes.
- Air valve at MW-6 cluster in Bethpage State Park reinsertion.
- Investigate plant electric driven back-up heater failures.
- Close and exercise all globe valves at the non-operational recovery wells.

5. MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater elevation data table was updated after the May 2023 quarterly GW elevation recording task. This database is available for review. The next set of synoptic water level measurements are scheduled for August 2023 and will be conducted by Ramboll.

6. TREATMENT SYSTEM FLOWS

During the July period, the plant continued to operate in the auto control mode. The volume of treated water discharged by the treatment system to the selected recharge basin was calculated from the plant influent and effluent flow meter readings. These readings are taken at the HMI and recorded in the daily database.

RW-5 pressure switch was replaced on January 5, 2023, and the well was successfully restarted on automatic run mode. RW-5 experienced electrical short across the motor windings on January 26, 2023, and was confirmed inoperable. The motor short circuiting was confirmed on March 13, 2023 during pump extraction and inspection activities. RW-5 motor and wiring was replaced on May 1, 2023. RW-5 has been operating since the replacement activities. RW-3 continues to function normally. RW-4 was offline from August 17, 2022 through May 2, 2023 following full

replacement of pump, pump motor and down well wiring. RW-4 has been operating normally since the replacement activities. The old RW-4 pump was inspected, and it was determined that the shaft has ceased up and broke off between the motor and pump connection.

During the month of July, the plant discharge was directed to Recharge Basin 33.

The total volume of treated water discharged from \sim 0800 hours July 3 to \sim 0800 hours July 28 was approximately 24,018,000 gallons. The data in **Table 2** is a summary of plant discharge flows.

A graphic representation of the system's daily plant discharge output is provided in **Figure 1** and the daily plant totalizer readings for July 2023 are provided in **Table 3**, both following the text of this report.

Under current conditions, the PLC and the control system are functioning as designed. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

The flow summary for the individual components of the system can be found in **Table 4** at the end of this report.

7. CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off-line, and the system is void of acid. There are four drums of virgin acid on site. No acid was used for water treatment purposes in July of 2023.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was used in July of 2023.

The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was used in July of 2023.

8. WASTE DISPOSALS

Routine accumulation of waste materials continued from plant day to day operations. Waste removal is being handled by National Waste Services, LLC. Waste container was last emptied on May 17, 2023.

9. MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. **Table 5** presents the Claremont OU5 O&M Sampling and Measurement requirements and their frequency. The analytical results for the plant discharge sampling conducted on July 5, 2023 indicate that the analyzed parameters were compliant with permit limits (**Table 6**). Monthly system sampling analytical results are provided in **Attachment 1**.

The OU5 GWTS plant's water discharge permit is in the process of being renewed by the NYSDEC.

10. PENDING ISSUES AND CONSIDERATIONS

Mechanical repairs have been made to the plant HVAC system at OU4. Upon testing, the gas supply appeared to be shut off. Ramboll is currently planning demolition of the OU4 building.

The sprinkler system at OU4 remains drained of water. The potable and non-potable water lines at OU4 have been drained.

The discrepancies/inaccuracies in the plant flow meter readings at OU5 may be due to the inappropriate configuration of the local piping. Future calibration or adjustment of pulse reading may be required.

Repairs have been made at RW-4 and RW-5. Both pumps have returned to operation.

The OU4 plant is offline and its disposition including that of the injection well system, and vapor carbon beds is pending.

The status of key aspects of OU4 are as follows:

- The plant heat is currently off, and the system is out of service.
- The fire alarm panels are off-line.
- The fire sprinkler system is currently off-line. The water has been drained from the system. An alarm system for the sprinkler has been installed with central monitoring.
- The facility is secure, and its physical monitoring continues.
- The facility and grounds are not maintained except for the facility entrance and plant egress points.
- NYSDEC plans on decommissioning and demolishing OU4. A team from Ramboll is in the process of developing bid documents for this work.

11. PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary.

12. MONITORING RESULTS

The CPC GWTS is monitored through the analysis of off-site laboratory analytical data and on-site field data.

12.1 Off-site Analytical Data Results

Monthly Plant Discharge (PD) samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis. At the direction of the NYSDEC in an August 17, 2022 email, analysis of Per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane were added to monthly sampling for both influent and effluent for the foreseeable future. The July 2023 PFAS and 1,4-dioxane influent and effluent

results can be found in **Table 7** following the text of this report. Monthly system sampling analytical results are provided in **Attachment 1**.

The July sampling activities included:

- The July PD data was processed and submitted.
- Monthly system sampling was completed on July 5, 2023.

12.2 Field Data

12.2.1 Plant Discharge pH and Temperature

The treatment plant effluent is monitored for pH and temperature on a weekly basis to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These measurements are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for July 2023 can be found in **Table 8** following the text of this report.

The July 2023 average pH measurement was 7.39 standard units (su). The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 su. The results for this month meet this requirement. Data showing the plant discharge's monthly average pH trend over several months is provided in **Table 9** following the text of this report.

12.2.2 Air Stripper (AS) Tower Air Monitoring

Using a calibrated photoionization detector (PID), the vapor discharge from the air stripper tower was monitored weekly for volatile organic compounds (VOCs). The measurements were taken from the tower's effluent air stream through Port B when the treatment system is online. The July 2023 readings from the AS tower are provided in **Table 10**.

Other routine data collected in July included:

- The electric and water meter readings at OU5 were recorded weekly.
- The plant vaults and selected areas were monitored for VOCs weekly.
- The plant sound levels were recorded bi-weekly.
- The monthly electric and gas meter readings for OU4 were recorded.
- The recharge basins were inspected weekly.
- The differential pressure readings across the AS Tower were recorded bi-weekly.

13. PROCESS ANALYSIS AND SYSTEM STATUS

The treatment system is currently operated 24/7 in the automatic mode. It is remotely monitored as necessary.

13.1 Extraction (RW) Processes

- The monthly system inspection was completed.
- The vault space heating units were deactivated on March 23, 2023.
- The recovery well pump system is remotely controlled and monitored, it operates in the auto mode.

- The pump at RW-3 is online and fully functional.
- The pump at RW-4 is online and fully functional following replacement on May 2, 2023. The pump experienced multiple random shut downs and was quickly restarted without any issues.
- The pump at RW-5 is online and fully functional following motor replacement on May 1, 2023.
- Pump flow readouts are transmitted to the plant and the totalizers for pumps RW-3 and RW-4 are fully functional. The local flow meter for RW-5 occasionally stops transmitting. The pump experienced a shut down due to pressure switch trip, following night time power loss to both the plant and recovery wells on July 26, 2026.
- Air/Vacuum (A/V) valve at station 33+96 encountered a leak in May that required the vault to be pumped out and have its air/vacuum valve removed. Currently a stopper has been fitted to the pit that allows water to flow through the system.
- The Air/Vacuum (A/V) valve at station 16+57 and 17+10 remain isolated from the transmission line.
- RW-1 and RW-2 are offline and periodically run for preventative maintenance purposes. Their flow meters are not transmitting through the PLC. When repairs were made at RW-1 in November 2021, stones were removed from the flow meterhousing. There was a thick coating of iron salt deposits on the housing and impeller. Both RW-1 and RW-2 are isolated from the process pipeline throughout the operating period. On a monthly basis, the isolation valves are actuated open and pumps are run for 5 minutes to rotate the motors. The pumps were tested operational on July 26, 2023.

13.2 AS Process

- The three OU5 ASF pumps in the AS Process are fully functional.
- Motors and seals were lubricated on a bi-weekly schedule. Seals were tightened and the drains were cleared as necessary.
- The AS tower main drain valve's manual actuator is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected.
- The discharge valves for ASF P1 and P2 appear to be frozen in the open position.

13.3 PD Process

- The plant discharge flow is currently directed to Recharge Basin 33.
- The valve influent to Recharge Basin 1 remained closed during the July reporting period.
- Pump 1 has been taken out of service due to excessive noise and vibration. A full evaluation is required. Pumps 2 and 3 are fully functional.
- The motors and seals were lubricated as necessary.
- The discharge valve for PFF P3 has failed open.

13.4 Other

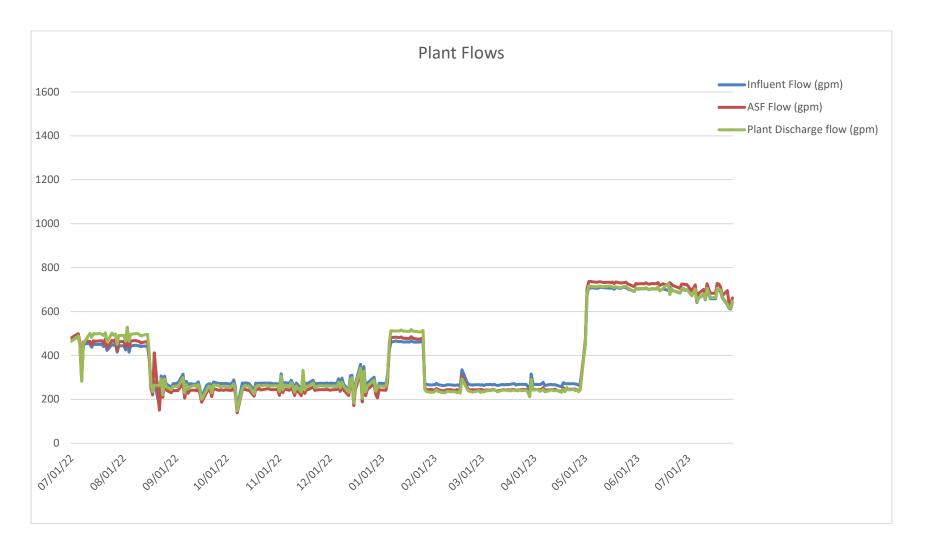
- The plant's first bank of lights is wired to the emergency-light recharging system. The circuit is kept on 24/7. The lamps appear burnt out. The second bank of lights provides sufficient lighting for general tasks. Additional work lights were installed around the plant area to further illuminate work areas.
- The potential for leaks in the water supply line running through the plant will continue to be monitored.
- The fire alarm and central monitoring systems are fully functional. A false fire alarm condition was observed on July 26, 2023, following total power loss to the plant.

14. GROUNDS

14.1 Plant Perimeter

- General outdoor clean-up tasks are on-going.
- The fencing is clear and secure.

14.2 Well Field


• Well field, and recharge basin inspections continue. Quarterly groundskeeping activities are performed in order to clear vegetation and poison ivy from around all well fields in anticipation of quarterly groundwater sampling event. In addition, the entrance to recharge basin #33 is maintained for ease of access.

14.3 Other

- The CPC GWTF OU4 is secure.
- The property at and around the OU4 site continues to be inspected. While the grounds are not maintained, the treatment plant's entrance and egress points are kept clear and functional.

FIGURE

Figure 1
Plant Discharge Daily Flow

TABLES

Table 1
Claremont Corrective Actions Summary

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The RW Discharge Manifold integrity is suspect			Possible shutdown	May require a Confined Space Entry (CSE)
	The Air Vent valve in the vault on the N-side of the 6 th fairway is leaking from the influent nipple. The shut-off valve was closed and the device isolated.			
	The air-vent valve in the vault to the east of the 6 th green is leaking. The shut-off valve was closed and the device isolated.			
	The manifold employs isolation, venting, and drain valves as well as other devices. Along the path of the manifold are vaults which house some of these devices. These vaults need to be accessed, pumped out, and the devices tested.			
	Two isolation valves were closed between RW-1 and RW-3. These valves seemed to hold.			
AS Tower main drain valve is not controlled	The valve does not respond to manipulation of its actuator.	Operator	Plant will need to be shut down to change out the valve	None
	This valve should be replaced.			
	No further action is planned at this time.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
OU4 fire alarm system is not functioning	The Nassau County Fire Code indicates that the sprinkler system must have central monitoring for flow and valve tampering.	Plant operator, Electrical Engineer (EE) and outside vender	None at this time	Fire code violations. High altitude tasks, safety code violations
Central monitoring of the fire alarm system or fire suppression system does not exist	The fire alarm system needs to be replaced and centrally monitored.	vender		VIOIALIOTIS
OU4 electrical system has been unstable	Several contractors have been at the site to propose options for the system.			
	BK Fire installed central monitoring on the sprinkler system. Both are offline as the sprinkler system will remain drained until the HVAC system is repaired.			
	Certain OU4 lights currently create a large amount of noise in the fan box within the control room. The southern lights flicker and then die including the emergency system.			
	OU4 is currently being planned for demolition.			
Several leaks were observed in the plant overhead water supply line	Adjacent to the north door a clam-shell type clamp was applied.	Outside plumbing contractor	None	Sanitary water may be shut off during repairs
	The second leak observed above the AS Blower is not readily accessible. It is not problematic.			
	Repair work may require evaluation and outside resources. Currently the situation is controlled.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The float controls for the PFF pump system have intermittently shorted out causing the system to not properly control the pumping operation	The wiring of the pump control system is connected below grade. The junction box in the wet well is thought to be filled with water creating a problem with the float switches to control relay wiring. The box cannot be opened without damage to it and the conduit. This appears to have been a longstanding problem, as when switches have been replaced in the past, they were spliced outside the box. The float switches have been replaced and spliced above the sump but there remains a problem with the L2 circuit. The output from the W-2 relay was moved to the output for the W-1 relay. This has stopped the short cycling. The control wiring should be changed and moved above grade. Currently the second splices to the floats are above ground outside the vault.	Plant operator and GES resources	Plant shut down is required	Possible Confined Space Entry work
PFF P1 has failed	The pump when activated immediately makes a lot of noise, and the pump drop pipe shakes. Smoke/ fumes emanated at the Motor-shaft connection. The motor appears to be good. The pump was removed from service, February 24, 2020. It is recommended that the motor be disconnected, lifted, and the mechanical connection checked.	Outside contractors	None anticipated	To be determined

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
As the ASF pumps cycle off/on, the check valves have started to slam closed. When reactivating, the motor starter contact is rather violent. Both actions tend to rattle the piping and fixtures	There is no available literature regarding the check valves, so the exact description of their functioning parts is to be determined. A softer start/stop control may fix this issue. This will need further investigation. Soft-start equipment and variable frequency controls were discussed.	Plant operator and EE support	If replacement or repairs are necessary, a plant shutdown will be required as the units can- not be isolated	To be determined
The flowmeters for system flow, ASF flow and plant discharge are out of sync with the flow meters on the recovery wells	While the ASF flow meter is the most out of line, it is plumbed correctly. The influent system flow meter and the plant discharge flow meters are piped incorrectly. The same style of relay is used to count pulses, but the meters have not been calibrated. The system needs further investigation to determine if any changes are warranted.	EE support	To be determined	none
EF-4 is not operatable	The fan is controlled through the mezzanine thermostat, but it does not appear to be operating. The fan requires electrical testing. The system was checked, it appears that the fan is not functioning. The fan should be replaced.	EE support	Only in an emergency	Only in an emergency
Wiring nests in main control console	The wiring in the main control console needs to be cleaned up and labeled, to facilitate problem troubleshooting and process improvements.	EE support	A shut down may be necessary	Electrical work

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Pressure Filter Feed pump controls			To be determined	To be determined
	Reprogram the sequencing to eliminate the position of P1.			
RW-5 has failed	RW-5 pump was replaced on October 10, 2022, however due to PLC signal loss, it cannot be operated in automatic mode. GES conducted troubleshooting and parts replacement without success. System controls were examined by a PLC certified technician mid-December and determined pressure switch failure. Used device has been installed while a new one has been ordered. The pump ran on auto mode from January 5, 2023 to January 26, 2023 until an electrical short at the motor disabled the safe operation of the pump. New pressure switch was installed on March 23, 2023. New pump motor installed on May 1, 2023.	Plant Operator and Ramboll.	Less water is treated	To be determined
RW-4 has failed	RW-4 started to experience possible motor thermal overload shutdowns on multiple occasions during August monitoring period. The pump motor fully shut down on August 17, 2022 and all troubleshooting/restarting attempts were unsuccessful. New pump and pump motor installed on May 2, 2023.	Plant Operator and US Water	Less water is treated	To be determined
Air vacuum valve removal	On May 22, 2022 RW-4 was shut down due to a leak detected in the field near an air/vacuum valve pit. On May 24 2022 through May 25, 2022 water was pumped out of the vault and on May 31, 2022 a confined space entry was made to attempt to tighten the valve in an effort to stop the leak. This tightening was unsuccessful, and the valve was removed entirely and replaced with a blank flange until further	GES Mechanical Support	Less water is treated	Confined space entry required to do work in vault

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
	notice.			
Plant Electric Heater UH-3 failure and HVAC system performance	During sub-20 deg.F weather, the emergency electric heater failed. The HVAC system struggled to produce heat and the plant temperatures dipped to around mid-30's during that time.	Outside contractor	Water lines freezing	Equipment damage

Other Plant Conditions of Note (no action required at this time)

- The methane detection system is offline. **To function, it will need a technical inspection and maintenance**. However, methane does not currently appear to be a hazard.
- It has been determined that intrinsically safe components are no longer required in the plant.
- There has been no need for acid washing of the AS Tower media, the hydrochloric acid feed and storage system have not been operated. The tanks have not been filled and the level monitoring system has not been operated.

As previously noted, there are pieces of equipment that are out of service and require repairs. Currently there are no plans for addressing these conditions as the operation of this equipment is not necessary or needed for the operation of the treatment system.

Equipment	Fault	Status
Plant electric heater UH-1	Needs transformer	Heater is not needed
Plant electric heater UH-2	Needs relay timer and wiring repairs	Heater is not needed
Recovery well pump pressure switch	Units are unwieldy and subject to vibration,	Each unit requires assessment and
assembly	corrosion, and leaks	disposition
NaOH sump pump	Pump is not operating	No water or chemicals stored in vault.
		Portable submersible pump in sump should
		suffice
Plant lights are wired to the emergency	Un-segregated light cannot be shut off. Several	The bank of lights appear to have failed/burnt
light charging system	of the lamps may have burnt out	out. The second bank of lights are sufficient
Plant exhaust fans are part of methane	Fans cannot be manually operated	Once the methane monitoring system is
system		online, the fans can be operated
Plant discharge drain	Leak in Victaulic fitting	Drain line on plant discharge intermittently
		leaks. Parts are in-house. Not pressing
ASF pump isolation valve	Valve P1 has failed open	Not needed at this time

Equipment	Fault	Status
PFF pump isolation valve	Valve P3 has vailed open	Not needed at this time
RW-1 flow meter	The meter is not operating	Pump is offline. Rocks were pulled from the housing and iron sediment was encrusting the flow meter impeller and housing
RW-2 flow meter	The meter is not transmitting	Pump is offline
Air stripper flow meter	Non-functional and removed	
AH-1 condenser	Air conditioner is non-functional	Two window AC units in place
Plant outdoor lights	9 of 12 lights not functioning	Not a security issue

Table 2
Plant Discharge Average Flow & Volume

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2016	517	745,000	68,540,000	7,309	125,171
Q1 2017	520	748,244	67,342,000	655	128,945
Q2 2017	576	829,130	76,280,000	6,165	126,315
Q3 2017	634	913,576	84,049,000	1,110	131,370
Q4 2017	256	368,762	33,926,110	69,165	63,315
Q1 2018	53	75,989	6,839,000	118,180	11,420
Q2 2018	179	258,284	23,762,103	102,929	29,551
Q3 2018	504	725,280	66,725,717	57,416	75,064
Q4 2018	726	1,045,065	96,145,984	23,734	108,746
Q1 2019	527	758,467	68,262,000	735	128,865
Q2 2019	662	953,877	87,756,724	405	132,075
Q3 2019	685	985,802	90,693,740	108	132,372
Q4 2019	655	943,871	82,116,780	5,039	129,326
Q1 2020	480	682,527	62,110,000	1,824	129,326
Q2 2020	698	996,998	88,732,846	3,838	127,185
Q3 2020	669	955,928	87,945,333	1,099	131,401
Q4 2020	695	1,001,365	92,125,539	52	132,497
Q1 2021	708	1,019,733	91,776,000	0	129,603
Q2 2021	709	1,021,317	92,939,850	0	131,040
Q3 2021	615	884,934	81,413,897	0	132,475
Q4 2021	677	928,370	85,410,047	6,317	126,185
Q1 2022	633	1,291,661	80,082,987	5,280	124,320
Q2 2022	434	624,605	53,716,000	12,200	123,840
Q3 2022	365	514,501	46,283,000	3,004	124,994

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2022	257	369,307	34,007,000	491	132,154
Q1 2023	305	434,900	37,841,000	323	123,817
Q2 2023	548	799,720	74,309,000	204	135,126
July 2023	668	960,720	24,018,000	102	35,958

Acronyms: gal - gallons

gpm – gallons per minute

Table 3
Plant Daily Totalizer Readings

		July 2023 Flows	5			
	Plant In	nfluent	Plant Di	scharge	RW Dis	charge
Date	Volume	Avg. Flow	Volume	Avg. Flow	Volume	Avg. Flow
07/03/23	-	724	-	701	-	699
07/05/23	1,996,000	693	1,932,000	671	1,928,000	669
07/06/23	1,039,000	722	1,013,000	703	1,007,000	699
07/07/23	954,000	663	927,000	644	922,000	640
07/10/23	2,951,000	683	2,859,000	662	2,852,000	660
07/11/23	999,000	700	971,000	680	967,000	677
07/12/23	974,000	676	944,000	656	940,000	653
07/13/23	1,046,000	726	1,018,000	707	1,009,000	701
07/14/23	1,013,000	703	986,000	685	978,000	679
07/17/23	2,950,000	683	2,864,000	663	2,844,000	658
07/18/23	984,000	683	955,000	663	948,000	658
07/19/23	1,048,000	728	1,017,000	706	1,009,000	701
07/20/23	1,086,000	724	1,052,000	701	1,047,000	698
07/21/23	968,000	701	947,000	686	937,000	679
07/24/23	2,903,000	672	2,879,000	666	2,864,000	663
07/25/23	1,001,000	695	912,000	633	907,000	630
07/26/23	915,000	678	889,000	659	865,000	641
07/27/23	947,000	631	920,000	613	936,000	624
07/28/23	953,000	662	933,000	648	924,000	642
July Total Plant Influent (Gal)			24,727,000			
July Total Plant Effluent (Gal)				24,018,000		
July Total RW Discharge (Gal)				23,884,000		

Acronyms: gal - gallons gpm – gallons per minute

Table 4
Pump System Flow Readings

July	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd)	Total Flow (gal)
RW-1*	5	149	0	745
RW-2*	5	209	0	1,045
RW-3	35,958	207	297,840	7,446,000
RW-4	35,958	223	320,680	8,017,000
RW-5	35,528	243	344,680	8,617,000
RW Totals	35,958	664	955,360	23,884,000
Plant Influent	35,958	688	989,080	24,727,000
Plant Effluent	35,958	668	960,720	24,018,000

Acronyms: gal - gallons

gpm – gallons per minute

gpd – gallons per day

The treatment process was online 25 days during this period with 102 minutes of downtime. The system went down on July 11, 2023 during day time power loss. The system went down due to nighttime power loss on July 26, 2023. In addition, RW-5 experienced nighttime shut down due to tripped pressure switch.

Flows are taken from the HMI meter readings.

^{*} Offline aside from monthly process equipment test to check their functionality. There are no average gallons per day.

Table 5
Claremont OU5 O&M Sampling/Measurement Program and Frequency

	Sampling Location			
Measurement / Analyte	System Influent	Plant Discharge	Recovery Wells	Monitoring Wells
Flow	Daily	Daily	Daily	NA
pH	Quarterly	Weekly	Quarterly	Quarterly
VOCs (+Tert-Butyl-Methyl ether (MTBA) & Tert-butyl alcohol (TBA))	Quarterly	Monthly	Quarterly	Quarterly
Semi-Volatile Organic Compound (SVOC) Base Neutral & Acid Extractables (BNA)	Quarterly	Monthly	NS	NS
Per- and polyfluoroalkyl substances (PFAS)	Monthly	Monthly	NS	Quarterly ⁽¹⁾
1,4-Dioxane	Monthly	Monthly	NS	Quarterly ⁽¹⁾
Total Kjeldahl Nitrogen→ (TKN)	NS	Quarterly	NS	NS
Total Suspended Solids (TSS)	Quarterly	NS	Quarterly	NS
Total Organic Carbon (TOC)	Quarterly	NS	NS	NS
Total Dissolved Solids (TDS)	NS	Quarterly	NS	NS
Cyanide	NS	Quarterly	NS	NS
Hexavalent Chromium	NS	Quarterly	NS	NS
Mercury	NS	Quarterly	NS	NS
Metals	Quarterly	Quarterly	Quarterly	NS
Anions	NS	Quarterly	NS	NS

Notes: NA – Not applicable; NS – Not sampled. (1) – CPC wells only

Table 6
Plant Discharge Analytical Results
July 5, 2023

Parameters	Discharge Limitations (SPDES)	Units	Results
pH (range)	6.5 - 8.5	su	7.39
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene (PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene (TCE)	5	ug/l	U
Bis(2-ethylhexyl) phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NS
Arsenic, Total recoverable	50	ug/l	NS
Barium, Total recoverable	2000	ug/l	NS
Chromium, Hexavalent	100	ug/l	NS
Lead, Total recoverable	50	ug/l	NS
Iron, Total recoverable	600	ug/l	NS
Manganese, Total recoverable	600	ug/l	NS
Mercury	Not indicated	ug/l	NS
Zinc	Not indicated	mg/l	NS
Nitrogen, Total (as N)	10	mg/l	NS
Selenium, Total recoverable	40	ug/l	NS
Solids, Total Dissolved	1000	mg/l	NS
Chloride Ion	NL	mg/l	NS
Cyanide	Not indicated	ug/l	NS
Fluoride Ion	NL	mg/l	NS

Parameters	Discharge Limitations (SPDES)	Units	Results
Sulfate Ion	NL	mg/l	NS

J – Estimated value U – Analyzed but not detected NL – Monitor only NS– Not sampled SPDES – State Pollutant Discharge Elimination System

June, October, and December.

ug/I – micrograms per liter ng/I – nanograms per liter mg/I – milligrams per liter

Discharge limitations updates as per the water discharge permit.

Note: Parameters shaded in gray are analyzed quarterly with results generally being provided March,

Table 7 **Emerging Contaminant Influent & Effluent Analytical Results** July 5, 2023

Parameters	Guidance Values	Units	Influent Results	Effluent Results
Perfluorooctanoic acid (PFOA)	6.7 ¹	ng/l	32 / 32	31 / 31
Perfluorooctanesulfonic acid (PFOS)	2.71	ng/l	14 / 14	14 / 15
1,4-Dioxane	0.35 ²	ug/l	19 / 18	18 / 19

J – Estimated value U – Analyzed but not detected ug/l – micrograms per liter ng/I – nanograms per liter x / x – indicates primary/duplicate results

¹ New York State Department of Environmental Conservation, Sampling, Analysis and Assessment of Per- and Polyfluoroalkyl Substances (PFAS), April 2023. ² NYSDEC - 2023 Addendum to June 1998 Division of Water Technical and Operational Guidance

Series (TOGS) No. 1.1.1.

Table 8
Effluent pH and Temperature Readings

Date	pH (su)	Temp (°C)
07/03/2023	7.72	17.8
07/11/2023	7.06	18.2
07/17/2023	7.37	17.6
07/24/2023	7.41	17.5
July Average	7.39 su	17.8 °C

Table 9
Plant Discharge Monthly Average pH

pH(su)
6.56
7.45
6.86
6.88
6.84
6.63
6.75
6.74
6.65
6.8
6.8
6.9
6.8
6.8
6.95
6.8
6.64
6.8
6.75
6.76
7.28
7.53
7.44
7.41
7.42
7.13
7.10
7.09
7.01
6.90
6.90
6.80
6.78
6.79
6.79
7.01
6.99
7.19
7.62
7.68
7.52

Month	pH(su)
Jan '23	7.24
Feb '23	7.36
Mar '23	7.56
Apr '23	7.28
May `23	7.56
June '23	7.36
July`23	7.39

Plant Discharge Monthly Average pH Readings

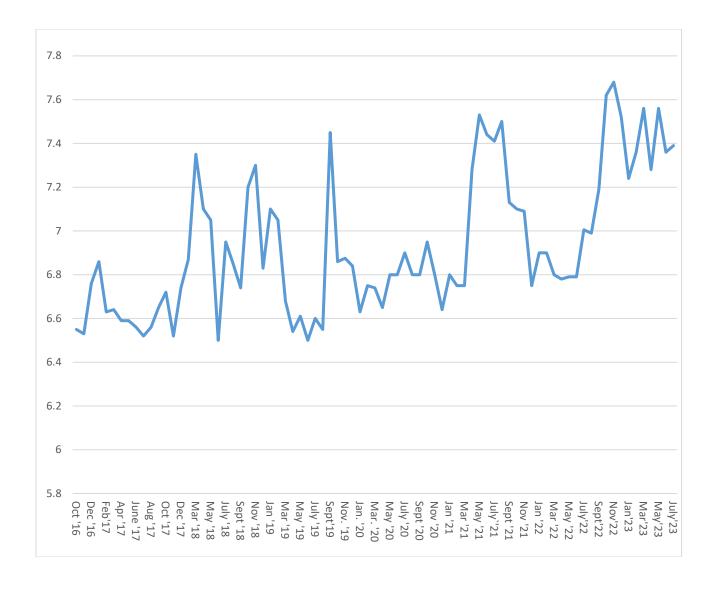


Table 10
AS Tower Air Monitoring Readings

Recorded Date	Port B (ppm)
07/03/2023	0.1
07/12/2023	0.2
07/17/2023	0.0
07/24/2023	0.0

ATTACHMENT 1
MONTHLY O&M SAMPLING ANALYTICAL RESULTS -JULY 5, 2023

July 26, 2023

Payson Long NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873 Syracuse, NY 13221

Project Location: Old Bethage, New York

Client Job Number: Project Number: 130015

Laboratory Work Order Number: 23G0636

Myle Murray

Enclosed are results of analyses for samples as received by the laboratory on July 6, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle A. Murray Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	15
23G0636-01	15
23G0636-02	22
23G0636-03	29
23G0636-04	30
23G0636-05	31
Sample Preparation Information	33
QC Data	34
Volatile Organic Compounds by GC/MS	34
B345471	34
Semivolatile Organic Compounds by GC/MS	43
B345390	43
B345793	47
1,4-Dioxane by isotope dilution GC/MS	53
B345722	53
Flag/Qualifier Summary	54
Certifications	55
Chain of Custody/Sample Receipt	59

REPORT DATE: 7/26/2023

Syracuse, NY 13221

ATTN: Payson Long

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873

PURCHASE ORDER NUMBER: 144165

PROJECT NUMBER: 130015

ANALYTICAL SUMMARY

23G0636 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Old Bethage, New York

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
PD-CP-00-070523	23G0636-01	Ground Water		SW-846 8260D	
				SW-846 8270E	
PD-CP-01-070523	23G0636-02	Ground Water		SW-846 8260D	
				SW-846 8270E	
ASF-CP-00-070523	23G0636-03	Ground Water		SW-846 8270E	
ASF-CP-01-070523	23G0636-04	Ground Water		SW-846 8270E	
TB-070523	23G0636-05	Trip Blank Water		SW-846 8260D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260D

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

2-Chloroethyl Vinyl Ether

B345471-BLK1, B345471-BS1, B345471-BSD1, S090300-CCV1

trans-1,4-Dichloro-2-butene

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1,

B345471-MSD1, S090300-CCV1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Ethyl Acetate

B345471-BSD1

MS-07A

Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

2,2-Dichloropropane

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

2-Hexanone (MBK)

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

Methyl Acetate

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

Naphthalene

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

tert-Butyl Alcohol (TBA)

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

MS-09

Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.

Analyte & Samples(s) Qualified:

trans-1,4-Dichloro-2-butene

23G0636-01[PD-CP-00-070523], B345471-MS1, B345471-MSD1

MS-24

Either matrix spike or matrix spike duplicate is outside of control limits, but the other is within limits. Analysis is in control based on

laboratory fortified blank recovery. Analyte & Samples(s) Qualified:

1,2,3-Trichlorobenzene

B345471-MS1

1,2-Dibromo-3-chloropropane (DBCP)

B345471-MS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

B345471-BLK1, B345471-BS1, B345471-BSD1, S090300-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

1,2-Dibromo-3-chloropropane (DBCP)

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-BSD1, B345471-MS1, B345471-BSD1, B345471-MS1, B345471-MB345471-MSD1, S090300-CCV1

1,4-Dioxane

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

2-Chloroethyl Vinyl Ether

B345471-BLK1, B345471-BS1, B345471-BSD1, S090300-CCV1

2-Hexanone (MBK)

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

Bromoform

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

Ethanol

B345471-BLK1, B345471-BS1, B345471-BSD1, S090300-CCV1

Ethyl Acetate

B345471-BLK1, B345471-BS1, B345471-BSD1, S090300-CCV1

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-BSD1, B3454B345471-MSD1, S090300-CCV1

tert-Butyl Alcohol (TBA)

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

trans-1,4-Dichloro-2-butene

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-05[TB-070523], B345471-BLK1, B345471-BS1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

B345471-BS1, B345471-BSD1, B345471-MS1, B345471-MSD1, S090300-CCV1

SW-846 8270E

Qualifications:

H-06

Sample was extracted past the recommended holding time.

Analyte & Samples(s) Qualified:

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523]

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

1,2,4,5-Tetrachlorobenzene

 $23G0636-01RE1[PD-CP-00-070523], \\ 23G0636-02RE1[PD-CP-01-070523], \\ B345793-BLK1, \\ B345793-BS1, \\ B345793-BSD1, \\ B34579-BSD1, \\ B$

1.2.4-Trichlorobenzene

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

1,2-Dichlorobenzene

 $23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BS1, B345793-BS1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BS1, B345793-BS1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BS1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1\\ 23G0636-01RE1[PD-CP-01-070523], B345793-BLK1\\ 23G0636-01RE1[PD-CP-01-070523], B345796-01RE1[PD-CP-01-070523], B345796-01RE1[PD-CP-01-070525], B345796-01RE1[PD-CP-01-07052], B345796-01RE1[PD-CP-01-07052], B345796-01RE1[PD-CP-01-07052], B345796-01RE1[PD-CP-01-07052], B345796-01RE1[PD-CP-01-07052], B345796-01RE1[PD-CP-01-07052],$

1,3-Dichlorobenzene

 $23G0636-01RE1[PD-CP-00-070523], \ 23G0636-02RE1[PD-CP-01-070523], \ B345793-BLK1, \ B345793-BS1, \ B345793-BSD1, \ B345793-B$

1.4-Dichlorobenzene

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

1-Methylnaphthalene

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1, B345795-BSD1, B355795-BSD1, B355795-BSD1, B355795-BSD1, B355795-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B35575-BSD1, B3

2-Chloronaphthalene

 $23G0636-01RE1[PD-CP-00-070523], \\ 23G0636-02RE1[PD-CP-01-070523], \\ B345793-BLK1, \\ B345793-BS1, \\ B345793-BSD1, \\ B34579-BSD1, \\ B3457$

2-Methylnaphthalene

 $23G0636-01RE1[PD-CP-00-070523], \\ 23G0636-02RE1[PD-CP-01-070523], \\ B345793-BLK1, \\ B345793-BS1, \\ B345793-BSD1, \\ B34579-BSD1, \\ B3457$

Acenaphthene

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1

Hexachlorobutadiene

 $23G0636-01RE1[PD-CP-00-070523], \\ 23G0636-02RE1[PD-CP-01-070523], \\ B345793-BLK1, \\ B345793-BS1, \\ B345793-BSD1, \\ B34579-BSD1, \\ B$

Hexachlorocyclopentadiene

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

Hexachloroethane

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

23G0636-01RE1[PD-CP-00-070523], 23G0636-02RE1[PD-CP-01-070523], B345793-BLK1, B345793-BS1, B345793-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Dibenzofuran

B345793-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

1,2,4,5-Tetrachlorobenzene

B345390-BSD1 1,2,4-Trichlorobenzene

B345390-BSD1

1,2-Dichlorobenzene

B345390-BSD1

1,2-Diphenylhydrazine/Azobenzene

B345390-BSD1

1,3-Dichlorobenzene

B345390-BSD1

1,4-Dichlorobenzene

B345390-BSD1

1-Methylnaphthalene

B345390-BSD1

2,4,5-Trichlorophenol

B345390-BSD1

2,4,6-Trichlorophenol

B345390-BSD1

2,4-Dichlorophenol

B345390-BSD1

2,4-Dimethylphenol

B345390-BSD1

2,4-Dinitrophenol

B345390-BSD1

2,4-Dinitrotoluene

B345390-BSD1

2,6-Dinitrotoluene

B345390-BSD1

2-Chloronaphthalene

B345390-BSD1

2-Chlorophenol

B345390-BSD1

2-Methylnaphthalene

B345390-BSD1

2-Methylphenol B345390-BSD1

2-Nitroaniline

B345390-BSD1

2-Nitrophenol

B345390-BSD1

3,3-Dichlorobenzidine

B345390-BSD1

3/4-Methylphenol

B345390-BSD1

3-Nitroaniline

B345390-BSD1

4,6-Dinitro-2-methylphenol

B345390-BSD1

4-Bromophenylphenylether

B345390-BSD1

4-Chloro-3-methylphenol

B345390-BSD1

4-Chloroaniline

B345390-BSD1

4-Chlorophenylphenylether

B345390-BSD1

4-Nitroaniline

B345390-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. **Analyte & Samples(s) Qualified:**

4-Nitrophenol

B345390-BSD1

Acenaphthene

B345390-BSD1

Acenaphthylene

B345390-BSD1, B345793-BSD1

Acetophenone

B345390-BSD1

Aniline

B345390-BSD1, B345793-BS1

Anthracene

B345390-BSD1

Benzidine

B345390-BSD1

Benzo(a)anthracene

B345390-BSD1

Benzo(a)pyrene

B345390-BSD1

Benzo(b)fluoranthene

B345390-BSD1

Benzo(g,h,i)perylene

B345390-BSD1

Benzo(k)fluoranthene

B345390-BSD1

Bis(2-chloroethoxy)methane

B345390-BSD1

Bis(2-chloroethyl)ether

B345390-BSD1

Bis(2-chloroisopropyl)ether

B345390-BSD1

Bis(2-Ethylhexyl)phthalate

B345390-BSD1

Butylbenzylphthalate

B345390-BSD1

Carbazole

B345390-BSD1

Chrysene

B345390-BSD1

Dibenz(a,h)anthracene

B345390-BSD1

Dibenzofuran

B345390-BSD1

Diethylphthalate B345390-BSD1

Dimethylphthalate

B345390-BSD1

Di-n-butylphthalate

B345390-BSD1

Di-n-octylphthalate B345390-BSD1

Fluoranthene

B345390-BSD1

Fluorene

B345390-BSD1

Hexachlorobenzene

B345390-BSD1

Hexachlorobutadiene

B345390-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound. Analyte & Samples(s) Qualified:

Hexachlorocyclopentadiene B345390-BSD1

Hexachloroethane

B345390-BSD1

Indeno(1,2,3-cd)pyrene

B345390-BSD1

Isophorone

B345390-BSD1

Naphthalene

B345390-BSD1

Nitrobenzene

B345390-BSD1

N-Nitrosodimethylamine

B345390-BSD1

N-Nitrosodi-n-propylamine

B345390-BSD1

N-Nitrosodiphenylamine/Diphenylamine

B345390-BSD1

Pentachloronitrobenzene

B345390-BSD1

Pentachlorophenol

B345390-BSD1

Phenanthrene

B345390-BSD1

Phenol

B345390-BSD1

Pyrene

B345390-BSD1

Pyridine

B345390-BSD1, B345793-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

compound. Analyte & Samples(s) Qualified:

1,2,4,5-Tetrachlorobenzene

B345390-BS1

1,2,4-Trichlorobenzene

B345390-BS1

1,2-Dichlorobenzene

B345390-BS1

1,2-Diphenylhydrazine/Azobenzene

B345390-BS1

1,3-Dichlorobenzene

B345390-BS1, B345793-BS1, B345793-BSD1

1,4-Dichlorobenzene

B345390-BS1, B345793-BS1, B345793-BSD1

1-Methylnaphthalene

B345390-BS1

2,4,5-Trichlorophenol

B345390-BS1

2,4,6-Trichlorophenol

B345390-BS1

2,4-Dichlorophenol

B345390-BS1, B345793-BSD1 B345793-BSD1

2,4-Dimethylphenol

B345390-BS1, B345793-BS1, B345793-BSD1

2,4-Dinitrophenol

B345390-BS1

2,4-Dinitrotoluene

B345390-BS1

2,6-Dinitrotoluene

B345390-BS1

$\hbox{$2$-Chloronaphthalene}$

B345390-BS1

2-Chlorophenol

B345390-BS1, B345793-BS1, B345793-BSD1

2-Methylnaphthalene

B345390-BS1

2-Methylphenol

B345390-BS1, B345793-BS1, B345793-BSD1

2-Nitroaniline

B345390-BS1

2-Nitrophenol

B345390-BS1, B345793-BS1, B345793-BSD1

3,3-Dichlorobenzidine

B345390-BS1

3/4-Methylphenol

B345390-BS1, B345793-BS1, B345793-BSD1

3-Nitroaniline

B345390-BS1

4,6-Dinitro-2-methylphenol

B345390-BS1

$\hbox{$4$-Bromophenylphenylether}$

B345390-BS1

4-Chloro-3-methylphenol

B345390-BS1, B345793-BS1, B345793-BSD1

4-Chloroaniline

B345390-BS1, B345793-BS1, B345793-BSD1

$\hbox{$4$-Chlorophenylphenylether}$

B345390-BS1

4-Nitroaniline

B345390-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

compound. Analyte & Samples(s) Qualified:

4-Nitrophenol

B345390-BS1

Acenaphthene

B345390-BS1

Acenaphthylene

B345390-BS1

Acetophenone

B345390-BS1, B345793-BS1, B345793-BSD1

Aniline

B345390-BS1, B345793-BSD1

Anthracene

B345390-BS1

Benzidine

B345390-BS1

Benzo(a)anthracene

B345390-BS1

Benzo(a)pyrene

B345390-BS1

Benzo(b)fluoranthene

B345390-BS1

Benzo(g,h,i)perylene

B345390-BS1

Benzo(k)fluoranthene

B345390-BS1

Benzoic Acid

B345390-BS1, B345390-BSD1

Bis (2-chlor oethoxy) methane

B345390-BS1, B345793-BS1, B345793-BSD1

Bis (2-chlor oethyl) ether

B345390-BS1, B345793-BS1, B345793-BSD1

Bis (2-chloro is opropyl) ether

B345390-BS1, B345793-BS1, B345793-BSD1

Bis(2-Ethylhexyl)phthalate

B345390-BS1

Butylbenzylph thalate

B345390-BS1

Carbazole

B345390-BS1

Chrysene

B345390-BS1

Dibenz(a,h)anthracene

B345390-BS1

Dibenzofuran

B345390-BS1

Diethylphthalate B345390-BS1

Dimethylphthalate

B345390-BS1

Di-n-butylphthalate

B345390-BS1

Di-n-octylphthalate

B345390-BS1

Fluoranthene B345390-BS1

Fluorene

B345390-BS1

Hexachlorobenzene

B345390-BS1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound

compound. Analyte & Samples(s) Qualified:

Hexachlorobutadiene

B345390-BS1

Hexachlorocyclopentadiene

B345390-BS1

Hexachloroethane

B345390-BS1

Indeno(1,2,3-cd)pyrene

B345390-BS1

Isophorone

B345390-BS1, B345793-BS1, B345793-BSD1

Naphthalene

B345390-BS1

Nitrobenzene

B345390-BS1, B345793-BS1, B345793-BSD1

N-Nitrosodimethylamine

B345390-BS1, B345793-BS1, B345793-BSD1

N-Nitrosodi-n-propylamine

B345390-BS1, B345793-BS1, B345793-BSD1

N-Nitrosodiphenylamine/Diphenylamine

B345390-BS1

Pentachloronitrobenzene

B345390-BS1

Pentachlorophenol

B345390-BS1

Phenanthrene

B345390-BS1

Phenol

B345390-BS1, B345793-BS1, B345793-BSD1

Pyrene

B345390-BS1

Pyridine

B345390-BS1, B345793-BS1, B345793-BSD1

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are \geq 10%.

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

B345390-BS1

S-26

Surrogate outside of control limits.

Analyte & Samples(s) Qualified:

2-Fluorobiphenyl

B345390-BSD1

2-Fluorophenol

B345390-BSD1

Nitrobenzene-d5

B345390-BSD1

Phenol-d6

B345390-BSD1

p-Terphenyl-d14

B345390-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

4,6-Dinitro-2-methylphenol

 $23G0636-01[PD-CP-00-070523], \\ 23G0636-01RE1[PD-CP-00-070523], \\ 23G0636-02[PD-CP-01-070523], \\ 23G0636-02RE1[PD-CP-01-070523], \\ 23G0636-02[PD-CP-01-070523], \\ 23G0636-02[PD-CP-01-07052], \\ 23G0636-02[PD-CP-01-0705$ B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

Benzidine

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

Bis(2-Ethylhexyl)phthalate

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

Di-n-octylphthalate

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

23G0636-01[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, S090267-CCV1

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

V-06

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Di-n-octylphthalate

B345793-BLK1, B345793-BS1, B345793-BSD1, S090565-CCV1

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

Benzidine

 $23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], \\ 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], \\ 23G0636-02[PD-CP-01-070523], \\ 23G0636-02[PD-CP-01-07052], \\ 23G0636-02[PD-CP-01-07052], \\ 23G0636-02[PD-CP-01-07052], \\$ B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

Butylbenzylphthalate

23G0636-01[PD-CP-00-070523], 23G0636-01RE1[PD-CP-00-070523], 23G0636-02[PD-CP-01-070523], 23G0636-02RE1[PD-CP-01-070523], B345390-BLK1, B345390-BS1, B345390-BSD1, B345793-BLK1, B345793-BS1, B345793-BSD1, S090267-CCV1, S090565-CCV1, S090718-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. Meghan S. Kelley

Meghan E. Kelley Reporting Specialist

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Acrylonitrile	ND	5.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Bromoform	ND	1.0	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1	MS-07A, V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1	L-04, MS-09, V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1	MS-07A	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF

Page 15 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,4-Dioxane	ND	50	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
2-Hexanone (MBK)	ND	10	$\mu g/L$	1	MS-07A, V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Methyl Acetate	ND	1.0	$\mu g/L$	1	MS-07A	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Methyl Cyclohexane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Methylene Chloride	ND	5.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Naphthalene	ND	2.0	μg/L	1	MS-07A, V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Tetrahydrofuran	ND	10	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1	MS-07A, V-05	SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:07	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		98.7	70-130					7/12/23 3:07	

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

Sample Flags: H-06			Semivolatile Organic (Compounds b	y GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Acenaphthene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Acenaphthylene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Acenaphthylene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Acetophenone	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Acetophenone	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Aniline	ND	18	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Aniline	ND	18	μg/L	1	V-05	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Anthracene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzidine	ND	18	μg/L	1	V-04, V-05, L-04, V-35	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzidine	ND	18	μg/L	1	V-04, V-05, V-35	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzo(a)anthracene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzo(a)anthracene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzo(a)pyrene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzo(a)pyrene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzo(b)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzo(b)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzo(g,h,i)perylene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzo(g,h,i)perylene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzo(k)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzo(k)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Benzoic Acid	ND	18	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Benzoic Acid	ND	18	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Bis(2-chloroethoxy)methane	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Bis(2-chloroethoxy)methane	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Bis(2-chloroethyl)ether	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Bis(2-chloroethyl)ether	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Bis(2-chloroisopropyl)ether	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Bis(2-chloroisopropyl)ether	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.0	$\mu g/L$	1	V-04	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.1	μg/L	1	V-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Bromophenylphenylether	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Bromophenylphenylether	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Butylbenzylphthalate	ND	9.0	μg/L	1	V-35	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Butylbenzylphthalate	ND	9.1	μg/L	1	V-35	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Carbazole	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Carbazole	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Chloroaniline	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Chloroaniline	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
4-Chloro-3-methylphenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Chloro-3-methylphenol	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Chloronaphthalene	ND	9.1	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Chloronaphthalene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Chlorophenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2-Chlorophenol	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
4-Chlorophenylphenylether	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Chlorophenylphenylether	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Chrysene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Chrysene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Dibenz(a,h)anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Dibenz(a,h)anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Dibenzofuran	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Dibenzofuran	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Di-n-butylphthalate	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Di-n-butylphthalate	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2-Dichlorobenzene	ND	4.5	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2-Dichlorobenzene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
1,3-Dichlorobenzene	ND	4.5	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,3-Dichlorobenzene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
1,4-Dichlorobenzene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,4-Dichlorobenzene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
3,3-Dichlorobenzidine	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
3,3-Dichlorobenzidine	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,4-Dichlorophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4-Dichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Diethylphthalate	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Diethylphthalate	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4-Dimethylphenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4-Dimethylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Dimethylphthalate	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Dimethylphthalate	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4,6-Dinitro-2-methylphenol	ND	18	μg/L	1	V-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4,6-Dinitro-2-methylphenol	ND	18	μg/L	1	V-04	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,4-Dinitrophenol	ND	9.1	μg/L	1	V-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4-Dinitrophenol	ND	9.0	μg/L	1	V-04	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,4-Dinitrotoluene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4-Dinitrotoluene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,6-Dinitrotoluene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,6-Dinitrotoluene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Di-n-octylphthalate	ND	9.0	μg/L	1	V-04	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Di-n-octylphthalate	ND	9.1	μg/L	1	V-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Fluorene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL

Page 18 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

	Semivolatile Organic Compounds by GC/MS								
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Fluorene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Hexachlorobenzene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Hexachlorobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Hexachlorobutadiene	ND	9.1	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Hexachlorobutadiene	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Hexachlorocyclopentadiene	ND	9.1	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Hexachlorocyclopentadiene	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Hexachloroethane	ND	9.1	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Hexachloroethane	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Indeno(1,2,3-cd)pyrene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Indeno(1,2,3-cd)pyrene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Isophorone	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Isophorone	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
1-Methylnaphthalene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1-Methylnaphthalene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Methylnaphthalene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2-Methylnaphthalene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Methylphenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
3/4-Methylphenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
3/4-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Naphthalene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Naphthalene	ND	4.5	μg/L	1	LUI	SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Nitroaniline	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2-Nitroaniline	ND	9.0	μg/L μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
3-Nitroaniline	ND	9.1		1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
3-Nitroaniline			μg/L					7/11/23 14:50	
4-Nitroaniline	ND	9.0	μg/L	1		SW-846 8270E	7/7/23		BGL
	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Nitroaniline	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Nitrobenzene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Nitrobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2-Nitrophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2-Nitrophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
4-Nitrophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
4-Nitrophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
N-Nitrosodimethylamine	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
N-Nitrosodimethylamine	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
N-Nitrosodi-n-propylamine	ND	9.1	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
N-Nitrosodi-n-propylamine	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Pentachloronitrobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Pentachloronitrobenzene	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Pentachlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
							Γ	Page 10	-1 00

Page 19 of 62

Work Order: 23G0636

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethage, New York Sample Description:

Date Received: 7/6/2023

2,4,6-Tribromophenol

2,4,6-Tribromophenol

p-Terphenyl-d14

p-Terphenyl-d14

Field Sample #: PD-CP-00-070523

Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Wate

Sample Matrix: Ground Water									
		Semi	volatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Pentachlorophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Phenanthrene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Phenanthrene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Phenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Phenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Pyrene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Pyrene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Pyridine	ND	18	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
Pyridine	ND	18	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.1	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
1,2,4-Trichlorobenzene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 12:47	BGL
1,2,4-Trichlorobenzene	ND	4.5	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,4,5-Trichlorophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4,5-Trichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
2,4,6-Trichlorophenol	ND	9.1	μg/L	1		SW-846 8270E	7/12/23	7/19/23 12:47	BGL
2,4,6-Trichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/7/23	7/11/23 14:50	BGL
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2-Fluorophenol		64.7	15-110					7/19/23 12:47	
2-Fluorophenol		41.9	15-110					7/11/23 14:50	
Phenol-d6		44.9	15-110					7/19/23 12:47	
Phenol-d6		28.0	15-110					7/11/23 14:50	
Nitrobenzene-d5		95.1	30-130					7/19/23 12:47	
Nitrobenzene-d5		70.4	30-130					7/11/23 14:50	
2-Fluorobiphenyl		76.7	30-130					7/19/23 12:47	
2-Fluorobiphenyl		77.5	30-130					7/11/23 14:50	

15-110

15-110

30-130

30-130

98.6

84.4

116

92.2

7/19/23 12:47

7/11/23 14:50

7/19/23 12:47

7/11/23 14:50

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-01
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Anal	yte Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	18	0.20	μg/L	1		SW-846 8270E	7/12/23	7/25/23 16:32	CJM
Surrog	gates	% Recovery	Recovery Limits	s	Flag/Qual				
1,4-Dioxane-d8		30.6	15-110			_		7/25/23 16:32	

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Volatile Organic Con Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	Flag/Quai	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Acrylonitrile	ND	5.0	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Benzene	ND	1.0	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Bromobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Bromochloromethane	ND	1.0		1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Bromodichloromethane	ND ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Bromoform	ND ND	1.0	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Bromomethane	ND	2.0	μg/L	1	V- 03	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
2-Butanone (MEK)			μg/L						
` '	ND	20	μg/L	1	17.05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Chloromethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
2-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
4-Chlorotoluene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Dibromomethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1	L-04, V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Diethyl Ether	ND ND	2.0		1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Diemyr Emer	MD	2.0	μg/L	1		5 W-040 0200D	//10/23	Page 22	

Page 22 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,4-Dioxane	ND	50	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
2-Hexanone (MBK)	ND	10	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Naphthalene	ND	2.0	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,3,5-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 3:33	MFF
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual	<u> </u>			
1,2-Dichloroethane-d4		97.8	70-130					7/12/23 3:33	

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

		50	emivolatile Organic (zompounus n	y GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.6	μg/L	1	1 mg/ 2 mm	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Acenaphthene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Acenaphthylene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Acenaphthylene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Acetophenone	ND	9.3	μ g /L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Acetophenone	ND	9.0	μ g /L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Aniline	ND	19	μg/L	1	V-05	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Aniline	ND	18	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Anthracene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Anthracene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzidine	ND	19	μg/L	1	L-04, V-04, V-05, V-35	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzidine	ND	18	$\mu g/L$	1	V-04, V-05, V-35	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzo(a)anthracene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzo(a)anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzo(a)pyrene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzo(a)pyrene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzo(b)fluoranthene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzo(b)fluoranthene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzo(g,h,i)perylene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzo(g,h,i)perylene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzo(k)fluoranthene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzo(k)fluoranthene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Benzoic Acid	ND	19	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Benzoic Acid	ND	18	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Bis(2-chloroethoxy)methane	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Bis(2-chloroethoxy)methane	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Bis(2-chloroethyl)ether	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Bis(2-chloroethyl)ether	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Bis(2-chloroisopropyl)ether	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Bis(2-chloroisopropyl)ether	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.3	$\mu g/L$	1	V-04	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.0	$\mu g/L$	1	V-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Bromophenylphenylether	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4-Bromophenylphenylether	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Butylbenzylphthalate	ND	9.3	$\mu g/L$	1	V-35	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Butylbenzylphthalate	ND	9.0	$\mu g/L$	1	V-35	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Carbazole	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Carbazole	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Chloroaniline	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4-Chloroaniline	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Chloro-3-methylphenol	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4-Chloro-3-methylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Chloronaphthalene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: H-06			Semivolatile Organic (Compounds by					
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Chloronaphthalene	ND	9.0	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Chlorophenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2-Chlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Chlorophenylphenylether	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4-Chlorophenylphenylether	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Chrysene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Chrysene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Dibenz(a,h)anthracene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Dibenz(a,h)anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Dibenzofuran	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Dibenzofuran	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Di-n-butylphthalate	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Di-n-butylphthalate	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,2-Dichlorobenzene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,2-Dichlorobenzene	ND	4.5	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,3-Dichlorobenzene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,3-Dichlorobenzene	ND	4.5	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,4-Dichlorobenzene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,4-Dichlorobenzene	ND	4.5	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
3,3-Dichlorobenzidine	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
3,3-Dichlorobenzidine	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4-Dichlorophenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,4-Dichlorophenol	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Diethylphthalate	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Diethylphthalate	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4-Dimethylphenol	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,4-Dimethylphenol	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Dimethylphthalate	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Dimethylphthalate	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4,6-Dinitro-2-methylphenol	ND	19	$\mu g/L$	1	V-04	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4,6-Dinitro-2-methylphenol	ND	18	$\mu g/L$	1	V-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4-Dinitrophenol	ND	9.3	$\mu g/L$	1	V-04	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,4-Dinitrophenol	ND	9.0	$\mu g/L$	1	V-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4-Dinitrotoluene	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,4-Dinitrotoluene	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,6-Dinitrotoluene	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,6-Dinitrotoluene	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Di-n-octylphthalate	ND	9.3	μg/L	1	V-04	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Di-n-octylphthalate	ND	9.0	$\mu g/L$	1	V-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,2-Diphenylhydrazine/Azobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Fluoranthene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Fluorene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL

Page 25 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

		50	emivolatile Organic (Joinpounus by	GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Fluorene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Hexachlorobenzene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Hexachlorobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Hexachlorobutadiene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Hexachlorobutadiene	ND	9.0	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Hexachlorocyclopentadiene	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Hexachlorocyclopentadiene	ND	9.0	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Hexachloroethane	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Hexachloroethane	ND	9.0	$\mu g/L$	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Indeno(1,2,3-cd)pyrene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Indeno(1,2,3-cd)pyrene	ND	4.5	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Isophorone	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Isophorone	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1-Methylnaphthalene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1-Methylnaphthalene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Methylnaphthalene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2-Methylnaphthalene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Methylphenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
3/4-Methylphenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
3/4-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Naphthalene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Naphthalene	ND	4.5	μg/L μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Nitroaniline	ND	9.3	μg/L	1	20.	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2-Nitroaniline	ND	9.0	μg/L μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
3-Nitroaniline	ND	9.3	μg/L μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
3-Nitroaniline	ND	9.0		1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Nitroaniline		9.3	μg/L	1					BGL
4-Nitroaniline	ND		μg/L			SW-846 8270E	7/7/23	7/11/23 15:12	
	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Nitrobenzene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Nitrobenzene	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2-Nitrophenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2-Nitrophenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
4-Nitrophenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
4-Nitrophenol	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
N-Nitrosodimethylamine	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
N-Nitrosodimethylamine	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
N-Nitrosodi-n-propylamine	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
N-Nitrosodi-n-propylamine	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Pentachloronitrobenzene	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Pentachloronitrobenzene	ND	9.0	$\mu g/L$	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Pentachlorophenol	ND	9.3	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL

Page 26 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02 Sample Matrix: Ground Water

p-Terphenyl-d14

Semivolatile Org	ganic Compor	inds by GC/V	IS

		Semi	volatile Organic Co	ompounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Pentachlorophenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Phenanthrene	ND	4.6	$\mu g/L$	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Phenanthrene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Phenol	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Phenol	ND	9.0	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Pyrene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Pyrene	ND	4.5	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
Pyridine	ND	19	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
Pyridine	ND	18	μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.3	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.0	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
1,2,4-Trichlorobenzene	ND	4.6	μg/L	1		SW-846 8270E	7/7/23	7/11/23 15:12	BGL
1,2,4-Trichlorobenzene	ND	4.5	μg/L	1	L-04	SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4,5-Trichlorophenol	ND	9.3	μg/L μg/L	1	L-04	SW-846 8270E	7/7/23	7/11/23 15:12	BGL
2,4,5-Trichlorophenol	ND ND	9.0	μg/L μg/L	1		SW-846 8270E	7/12/23	7/19/23 13:09	BGL
2,4,6-Trichlorophenol	ND ND	9.3		1		SW-846 8270E	7/7/23		
2,4,6-Trichlorophenol	ND ND	9.3	μg/L	1		SW-846 8270E SW-846 8270E	7/12/23	7/11/23 15:12	BGL BGL
*	ND		μg/L			5 W-840 82/UE	//12/23	7/19/23 13:09	BGL
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual			7/11/02 17 10	
2-Fluorophenol		50.1	15-110					7/11/23 15:12	
2-Fluorophenol		15.7	15-110					7/19/23 13:09	
Phenol-d6		32.9	15-110					7/11/23 15:12	
Phenol-d6		35.0	15-110					7/19/23 13:09	
Nitrobenzene-d5		75.5	30-130					7/11/23 15:12	
Nitrobenzene-d5		80.1	30-130					7/19/23 13:09	
2-Fluorobiphenyl		82.6	30-130					7/11/23 15:12	
2-Fluorobiphenyl		67.8	30-130 15-110					7/19/23 13:09	
2,4,6-Tribromophenol		88.5						7/11/23 15:12	
2,4,6-Tribromophenol		32.2	15-110					7/19/23 13:09	
p-Terphenyl-d14		96.2	30-130					7/11/23 15:12	

30-130

110

7/19/23 13:09

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0636-02
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane		19	0.20	μg/L	1		SW-846 8270E	7/12/23	7/25/23 16:52	CJM
S	burrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,4-Dioxane-d8			30.2	15-110					7/25/23 16:52	

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: ASF-CP-00-070523

Sampled: 7/5/2023 10:45

Sample ID: 23G0636-03
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane		19	0.20	μg/L	1		SW-846 8270E	7/12/23	7/25/23 17:11	СЈМ
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8			28.8	15-110					7/25/23 17:11	

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: ASF-CP-01-070523

Analyte

Surrogates

Sampled: 7/5/2023 10:45

RL

0.19

% Recovery

Results

18

Sample ID: 23G0636-04
Sample Matrix: Ground Water

1,4-Dioxane

1,4-Di	oxane by isoto	ope dilution G	C/MS				
					Date	Date/Time	
	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
	μg/L	1		SW-846 8270E	7/12/23	7/25/23 17:31	CJM

Flag/Qual

1,4-Dioxane-d8 30.0 15-110 7/25/23 17:31

Recovery Limits

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: TB-070523

Sampled: 7/5/2023 11:00

Sample ID: 23G0636-05

Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Volatile Organic Co Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50		1	Flag/Quai	SW-846 8260D	7/10/23	-	
Acrylonitrile	ND ND	5.0	μg/L			SW-846 8260D	7/10/23	7/12/23 0:00 7/12/23 0:00	MFF MFF
tert-Amyl Methyl Ether (TAME)			μg/L	1					
	ND	0.50	μg/L			SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Bromoform	ND	1.0	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Bromomethane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
4-Chlorotoluene	ND	1.0	μg/L μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0		1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2-Dibromoethane (EDB)			μg/L		V-03				
	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1	L-04, V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2-Dichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
cis-1,2-Dichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
	ND	2.0	μg/15	1		5 11-0-0 0200D	//10/ <i>23</i>	Page 31	

Page 31 of 62

Project Location: Old Bethage, New York Sample Description: Work Order: 23G0636

Date Received: 7/6/2023

Field Sample #: TB-070523 Sampled: 7/5/2023 11:00

Sample ID: 23G0636-05

Sample Matrix: Trip Blank Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,4-Dioxane	ND	50	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Hexachlorobutadiene	ND	0.60	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
2-Hexanone (MBK)	ND	10	μg/L	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Naphthalene	ND	2.0	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Tetrahydrofuran	ND	10	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2,4-Trichlorobenzene	ND	1.0	$\mu g/L$	1	V-05	SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,3,5-Trichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	7/10/23	7/12/23 0:00	MFF

Sample Extraction Data

Prep Method:SW-846 5030B Analytical Method:SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23G0636-01 [PD-CP-00-070523]	B345471	5	5.00	07/10/23
23G0636-02 [PD-CP-01-070523]	B345471	5	5.00	07/10/23
23G0636-05 [TB-070523]	B345471	5	5.00	07/10/23

Prep Method:SW-846 3510C Analytical Method:SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23G0636-01 [PD-CP-00-070523]	B345390	111	1.00	07/07/23
23G0636-02 [PD-CP-01-070523]	B345390	108	1.00	07/07/23

Prep Method:SW-846 3510C Analytical Method:SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23G0636-01 [PD-CP-00-070523]	B345722	1010	1.00	07/12/23
23G0636-02 [PD-CP-01-070523]	B345722	1020	1.00	07/12/23
23G0636-03 [ASF-CP-00-070523]	B345722	1000	1.00	07/12/23
23G0636-04 [ASF-CP-01-070523]	B345722	1030	1.00	07/12/23

Prep Method:SW-846 3510C Analytical Method:SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23G0636-01RE1 [PD-CP-00-070523]	B345793	110	1.00	07/12/23
23G0636-02RE1 [PD-CP-01-070523]	B345793	111	1.00	07/12/23

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	// IS * * * *	1 .1111111	IN Pro-	1.00000	I WITH CO.
			Omto	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B345471 - SW-846 5030B										
lank (B345471-BLK1)				Prepared: 07	7/10/23 Analy	yzed: 07/11/2	3			
cetone	ND	50	$\mu g/L$							
crolein	ND	10	$\mu g/L$							
crylonitrile	ND	5.0	$\mu g/L$							
rt-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
enzene	ND	1.0	μg/L							
romobenzene	ND	1.0	$\mu g/L$							
romochloromethane	ND	1.0	$\mu g/L$							
romodichloromethane	ND	0.50	$\mu g/L$							
romoform	ND	1.0	$\mu g/L$							V-05
romomethane	ND	2.0	$\mu g/L$							
-Butanone (MEK)	ND	20	$\mu g/L$							
rt-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							V-05
-Butylbenzene	ND	1.0	$\mu g/L$							
ec-Butylbenzene	ND	1.0	$\mu g/L$							
rt-Butylbenzene	ND	1.0	$\mu g/L$							
rt-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$							
arbon Disulfide	ND	5.0	$\mu g/L$							
arbon Tetrachloride	ND	5.0	$\mu g/L$							
hlorobenzene	ND	1.0	μg/L							
hlorodibromomethane	ND	0.50	μg/L							
hloroethane	ND	2.0	μg/L							
-Chloroethyl Vinyl Ether	ND	10	μg/L							L-04, V-05
hloroform	ND	2.0	μg/L							,
hloromethane	ND	2.0	μg/L							
Chlorotoluene	ND	1.0	μg/L							
-Chlorotoluene	ND	1.0	μg/L							
yclohexane	ND	5.0	μg/L							
2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							V-05
2-Dibromoethane (EDB)	ND	0.50	μg/L							
ibromomethane	ND	1.0	μg/L							
2-Dichlorobenzene	ND	1.0	μg/L							
3-Dichlorobenzene	ND	1.0	μg/L							
4-Dichlorobenzene	ND ND	1.0	μg/L							
ans-1,4-Dichloro-2-butene	ND ND	2.0	μg/L μg/L							L-04, V-05
ichlorodifluoromethane (Freon 12)	ND ND	2.0	μg/L							201, 100
1-Dichloroethane	ND ND	1.0	μg/L							
2-Dichloroethane	ND ND	1.0	μg/L μg/L							
1-Dichloroethylene	ND ND	1.0	μg/L μg/L							
s-1,2-Dichloroethylene	ND ND	1.0	μg/L μg/L							
ans-1,2-Dichloroethylene	ND ND	1.0	μg/L μg/L							
ichlorofluoromethane (Freon 21)	ND ND	1.0	μg/L μg/L							
2-Dichloropropane	ND ND	1.0	μg/L μg/L							
3-Dichloropropane		0.50	μg/L μg/L							
2-Dichloropropane	ND ND	1.0	μg/L μg/L							
1-Dichloropropene	ND ND	2.0	μg/L μg/L							
s-1,3-Dichloropropene	ND	0.50	μg/L μg/L							
	ND									
ans-1,3-Dichloropropene	ND	0.50	μg/L							
riethyl Ether	ND	2.0	μg/L							
ifluorochloromethane (Freon 22)	ND	1.0	μg/L							
iisopropyl Ether (DIPE)	ND	0.50	μg/L							
4-Dioxane	ND	50 50	μg/L μg/L							V-05 V-05

Notes

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B345471 - SW-846 5030B										
Blank (B345471-BLK1)				Prepared: 07	/10/23 Anal	yzed: 07/11/2	23			
Ethyl Acetate	ND	10	μg/L							R-05, V-05
Ethylbenzene	ND	1.0	$\mu g/L$							
Hexachlorobutadiene	ND	0.60	$\mu g/L$							
2-Hexanone (MBK)	ND	10	$\mu g/L$							V-05
odomethane	ND	20	$\mu g/L$							
sopropylbenzene (Cumene)	ND	1.0	$\mu g/L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$							
Methyl Acetate	ND	1.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$							
Methyl Cyclohexane	ND	1.0	$\mu g/L$							
Methylene Chloride	ND	5.0	$\mu g/L$							
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$							
Naphthalene	ND	2.0	$\mu g/L$							V-05
n-Propylbenzene	ND	1.0	$\mu g/L$							
Styrene	ND	1.0	$\mu g/L$							
,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
Tetrachloroethylene	ND	1.0	$\mu g/L$							
Tetrahydrofuran	ND	10	$\mu g/L$							
Toluene	ND	1.0	$\mu g/L$							
,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$							
,2,4-Trichlorobenzene	ND	1.0	μg/L							V-05
,3,5-Trichlorobenzene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	1.0	μg/L							
,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	μg/L							
Frichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
,2,3-Trichloropropane	ND	2.0	μg/L							
,1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
13)										
,2,3-Trimethylbenzene	ND	0.50	μg/L							
,2,4-Trimethylbenzene	ND	1.0	μg/L							
,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Acetate	ND	20	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	24.3		μg/L	25.0		97.3	70-130			
Surrogate: Toluene-d8	22.3		μg/L	25.0		89.2	70-130			
Surrogate: 4-Bromofluorobenzene	21.1		μg/L	25.0		84.6	70-130			
LCS (B345471-BS1)				Prepared: 07	/10/23 Anal	yzed: 07/11/2	23			
Acetone	87.0	50	μg/L	100		87.0	70-160		_	
Acrolein	118	10	$\mu g\!/\!L$	100		118	70-130			
Acrylonitrile	9.78	5.0	$\mu g\!/\!L$	10.0		97.8	70-130			
ert-Amyl Methyl Ether (TAME)	9.22	0.50	$\mu g \! / \! L$	10.0		92.2	70-130			
Benzene	10.8	1.0	μg/L	10.0		108	70-130			
Bromobenzene	9.28	1.0	$\mu g \! / \! L$	10.0		92.8	70-130			
Bromochloromethane	11.5	1.0	μg/L	10.0		115	70-130			
Bromodichloromethane	10.1	0.50	μg/L	10.0		101	70-130			
Bromoform	7.82	1.0	$\mu g/L$	10.0		78.2	70-130			V-05
Bromomethane	12.8	2.0	$\mu g/L$	10.0		128	40-160			V-20
Stomomethane										
2-Butanone (MEK)	97.0	20	$\mu g/L$	100		97.0	40-160			Page 35 o

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B345471 - SW-846 5030B										
.CS (B345471-BS1)				Prepared: 07	//10/23 Analyz	zed: 07/11/2	3			
ert-Butyl Alcohol (TBA)	64.5	20	$\mu g/L$	100		64.5	40-160			V-05
-Butylbenzene	8.99	1.0	$\mu \text{g/L}$	10.0		89.9	70-130			
ec-Butylbenzene	9.12	1.0	$\mu \text{g/L}$	10.0		91.2	70-130			
ert-Butylbenzene	9.04	1.0	μg/L	10.0		90.4	70-130			
ert-Butyl Ethyl Ether (TBEE)	9.46	0.50	$\mu \text{g/L}$	10.0		94.6	70-130			
Carbon Disulfide	97.6	5.0	μg/L	100		97.6	70-130			
Carbon Tetrachloride	8.07	5.0	μg/L	10.0		80.7	70-130			
Chlorobenzene	10.4	1.0	μg/L	10.0		104	70-130			
Chlorodibromomethane	9.34	0.50	μg/L	10.0		93.4	70-130			
Chloroethane	9.29	2.0	μg/L	10.0		92.9	70-130			
-Chloroethyl Vinyl Ether	10.7	10	μg/L	100		10.7 *	70-130			L-04, V-05
Chloroform	10.2	2.0	μg/L	10.0		102	70-130			
Chloromethane	9.33	2.0	μg/L	10.0		93.3	40-160			
-Chlorotoluene	9.16	1.0	μg/L	10.0		91.6	70-130			
-Chlorotoluene	9.02	1.0	μg/L	10.0		90.2	70-130			
Cyclohexane	10.2	5.0	μg/L	10.0		102	70-130			
,2-Dibromo-3-chloropropane (DBCP)	8.29	5.0	μg/L	10.0		82.9	70-130			V-05
,2-Dibromoethane (EDB)	10.2	0.50	μg/L	10.0		102	70-130			
Dibromomethane	10.3	1.0	μg/L	10.0		103	70-130			
,2-Dichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130			
,3-Dichlorobenzene	10.3	1.0	μg/L	10.0		103	70-130			
,4-Dichlorobenzene	10.0	1.0	μg/L	10.0		100	70-130			
rans-1,4-Dichloro-2-butene	6.79	2.0	μg/L	10.0		67.9 *	70-130			L-04, V-05
Dichlorodifluoromethane (Freon 12)	10.4	2.0	μg/L	10.0		104	40-160			
,1-Dichloroethane	10.3	1.0	μg/L	10.0		103	70-130			
,2-Dichloroethane	9.81	1.0	μg/L	10.0		98.1	70-130			
,1-Dichloroethylene	9.60	1.0	μg/L	10.0		96.0	70-130			
is-1,2-Dichloroethylene rans-1,2-Dichloroethylene	9.80	1.0 1.0	μg/L	10.0		98.0	70-130			
Dichlorofluoromethane (Freon 21)	9.49	1.0	μg/L	10.0		94.9	70-130			
,2-Dichloropropane	9.77	1.0	μg/L	10.0		97.7	70-130			
,3-Dichloropropane	10.2	0.50	μg/L	10.0		102	70-130			
2,2-Dichloropropane	10.4	1.0	μg/L μg/L	10.0 10.0		104 80.6	70-130 40-130			
,1-Dichloropropene	8.06	2.0	μg/L μg/L	10.0		102	70-130			
is-1,3-Dichloropropene	10.2	0.50	μg/L μg/L	10.0		102	70-130			
rans-1,3-Dichloropropene	10.1 9.79	0.50	μg/L μg/L	10.0		97.9	70-130			
Diethyl Ether	9.79	2.0	μg/L μg/L	10.0		99.5	70-130			
Diffuorochloromethane (Freon 22)	10.4	1.0	μg/L μg/L	10.0		104	70-130			
Diisopropyl Ether (DIPE)	10.4	0.50	μg/L μg/L	10.0		101	70-130			
,4-Dioxane	74.7	50	μg/L μg/L	10.0		74.7	40-130			V-05
Ethanol	75.9	50	μg/L μg/L	100		75.9	40-160			V-05
ithyl Acetate	8.54	10	μg/L	10.0		85.4	70-130			R-05, V-05
Ethylbenzene	10.0	1.0	μg/L	10.0		100	70-130			, , 05
[exachlorobutadiene	11.3	0.60	μg/L	10.0		113	70-130			
-Hexanone (MBK)	86.0	10	μg/L	100		86.0	70-160			V-05
odomethane	97.1	20	μg/L	100		97.1	70-130			
sopropylbenzene (Cumene)	9.25	1.0	μg/L	10.0		92.5	70-130			
-Isopropyltoluene (p-Cymene)	8.93	1.0	μg/L	10.0		89.3	70-130			
Methyl Acetate	9.11	1.0	μg/L	10.0		91.1	70-130			
Methyl tert-Butyl Ether (MTBE)	9.12	1.0	μg/L	10.0		91.2	70-130			
Methyl Cyclohexane	11.1	1.0	μg/L	10.0		111	70-130			
Methylene Chloride	9.79	5.0	μg/L	10.0		97.9	70-130			

%REC

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result %RE0	%REC Limits	RPD	Limit	Notes
<u> </u>	Result	Linit	Omts	Level	Result /oREX	Limits	КГБ	Limit	110103
atch B345471 - SW-846 5030B									
CS (B345471-BS1)				•	/10/23 Analyzed: 07/				
Methyl-2-pentanone (MIBK)	87.0	10	μg/L	100	87.0	70-160			
aphthalene	6.65	2.0	μg/L	10.0	66.5	40-130			V-05
Propylbenzene	8.90	1.0	μg/L	10.0	89.0	70-130			
yrene	9.28	1.0	μg/L	10.0	92.8	70-130			
1,1,2-Tetrachloroethane	10.3	1.0	μg/L	10.0	103	70-130			
1,2,2-Tetrachloroethane	9.22	0.50	μg/L	10.0	92.2	70-130			
etrachloroethylene	10.7	1.0	μg/L	10.0	107	70-130			
etrahydrofuran	9.16	10	μg/L	10.0	91.6	70-130			
bluene	10.3	1.0	μg/L	10.0	103	70-130			
2,3-Trichlorobenzene	8.15	5.0	μg/L	10.0	81.5	70-130			
2,4-Trichlorobenzene	7.71	1.0	μg/L	10.0	77.1	70-130			V-05
3,5-Trichlorobenzene	9.58	1.0	μg/L	10.0	95.8	70-130			
1,1-Trichloroethane	10.1	1.0	μg/L	10.0	101	70-130			
1,2-Trichloroethane	10.6	1.0	μg/L	10.0	106	70-130			
richloroethylene	10.4	1.0	μg/L	10.0	104	70-130			
richlorofluoromethane (Freon 11)	9.76	2.0	$\mu g/L$	10.0	97.6	70-130			
2,3-Trichloropropane	11.1	2.0	$\mu g/L$	10.0	111	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.2	1.0	$\mu g/L$	10.0	102	70-130			
3) 2.3 Trimathylhanzana	2.22	0.50	пс/т	10.0	00.0	70 120			
2,3-Trimethylbenzene	9.29	0.50	μg/L	10.0	92.9	70-130			
2,4-Trimethylbenzene	9.10	1.0	μg/L	10.0	91.0	70-130			
3,5-Trimethylbenzene	8.69	1.0	μg/L	10.0	86.9	70-130			
nyl Chlorida	94.5	20	μg/L	100	94.5	70-130			
nyl Chloride	10.2	2.0	μg/L	10.0	102	40-160			
+p Xylene	19.5	2.0	μg/L	20.0	97.7	70-130			
Xylene	9.51	1.0	μg/L	10.0	95.1	70-130			
rrogate: 1,2-Dichloroethane-d4	23.6		$\mu g/L$	25.0	94.6	70-130			
rrogate: Toluene-d8	24.7		$\mu g/L$	25.0	98.7	70-130			
rrogate: 4-Bromofluorobenzene	21.8		$\mu g/L$	25.0	87.2	70-130			
CS Dup (B345471-BSD1)				Prepared: 07	/10/23 Analyzed: 07/	11/23			
cetone	91.0	50	μg/L	100	91.0	70-160	4.49	25	
crolein	119	10	μg/L	100	119	70-130	0.750	25	
crylonitrile	9.45	5.0	$\mu g/L$	10.0	94.5	70-130	3.43	25	
rt-Amyl Methyl Ether (TAME)	9.22	0.50	$\mu g/L$	10.0	92.2	70-130	0.00	25	
enzene	11.1	1.0	$\mu g/L$	10.0	111	70-130	1.92	25	
romobenzene	9.15	1.0	$\mu g/L$	10.0	91.5	70-130	1.41	25	
romochloromethane	11.5	1.0	$\mu g/L$	10.0	115	70-130	0.435	25	
omodichloromethane	10.4	0.50	$\mu g/L$	10.0	104	70-130	2.84	25	
romoform	7.66	1.0	$\mu g/L$	10.0	76.6	70-130	2.07	25	V-05
romomethane	12.7	2.0	$\mu g/L$	10.0	127	40-160	0.471	25	V-20
Butanone (MEK)	98.4	20	$\mu g \! / \! L$	100	98.4	40-160	1.39	25	
rt-Butyl Alcohol (TBA)	66.3	20	$\mu g \! / \! L$	100	66.3	40-160	2.77	25	V-05
Butylbenzene	9.41	1.0	$\mu \text{g/L}$	10.0	94.1	70-130	4.57	25	
e-Butylbenzene	9.01	1.0	$\mu g/L$	10.0	90.1	70-130	1.21	25	
rt-Butylbenzene	8.99	1.0	$\mu g/L$	10.0	89.9	70-130	0.555	25	
t-Butyl Ethyl Ether (TBEE)	9.28	0.50	$\mu g/L$	10.0	92.8	70-130	1.92	25	
urbon Disulfide	98.7	5.0	$\mu g/L$	100	98.7	70-130	1.17	25	
rbon Tetrachloride	7.95	5.0	μg/L	10.0	79.5	70-130	1.50	25	
nlorobenzene	10.4	1.0	μg/L	10.0	104	70-130	0.288	25	
hlorodibromomethane	9.20	0.50	μg/L	10.0	92.0	70-130	1.51	25	
hloroethane	9.49	2.0	μg/L	10.0	94.9	70-130	2.13	25	
Chloroethyl Vinyl Ether	12.4	10	μg/L	100	12.4	* 70-130	14.3	25	L-04, V-05
			-						Page 37 c

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B345471 - SW-846 5030B											_
LCS Dup (B345471-BSD1)				Prepared: 07	7/10/23 Analy	zed: 07/11/2	3				
Chloroform	10.4	2.0	μg/L	10.0		104	70-130	1.75	25		
Chloromethane	9.09	2.0	μg/L	10.0		90.9	40-160	2.61	25		†
2-Chlorotoluene	8.65	1.0	$\mu g/L$	10.0		86.5	70-130	5.73	25		
4-Chlorotoluene	8.77	1.0	$\mu g/L$	10.0		87.7	70-130	2.81	25		
Cyclohexane	10.2	5.0	$\mu g/L$	10.0		102	70-130	0.491	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.63	5.0	μg/L	10.0		86.3	70-130	4.02	25	V-05	
1,2-Dibromoethane (EDB)	10.3	0.50	$\mu g/L$	10.0		103	70-130	0.681	25		
Dibromomethane	10.1	1.0	μg/L	10.0		101	70-130	1.57	25		
1,2-Dichlorobenzene	10.2	1.0	$\mu g/L$	10.0		102	70-130	0.874	25		
1,3-Dichlorobenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130	2.50	25		
1,4-Dichlorobenzene	9.98	1.0	μg/L	10.0		99.8	70-130	0.699	25		
trans-1,4-Dichloro-2-butene	6.46	2.0	$\mu g/L$	10.0		64.6 *	70-130	4.98	25	L-04, V-05	
Dichlorodifluoromethane (Freon 12)	10.6	2.0	$\mu g/L$	10.0		106	40-160	2.09	25		†
1,1-Dichloroethane	10.4	1.0	$\mu g/L$	10.0		104	70-130	0.964	25		
1,2-Dichloroethane	9.85	1.0	μg/L	10.0		98.5	70-130	0.407	25		
1,1-Dichloroethylene	9.74	1.0	μg/L	10.0		97.4	70-130	1.45	25		
is-1,2-Dichloroethylene	9.87	1.0	μg/L	10.0		98.7	70-130	0.712	25		
rans-1,2-Dichloroethylene	9.69	1.0	μg/L	10.0		96.9	70-130	2.09	25		
Dichlorofluoromethane (Freon 21)	9.83	1.0	μg/L	10.0		98.3	70-130	0.612	25		
,2-Dichloropropane	10.9	1.0	μg/L	10.0		109	70-130	6.76	25		
,3-Dichloropropane	10.4	0.50	μg/L	10.0		104	70-130	0.192	25		
,2-Dichloropropane	8.15	1.0	μg/L	10.0		81.5	40-130	1.11	25		†
,1-Dichloropropene	10.2	2.0	μg/L	10.0		102	70-130	0.882	25		
is-1,3-Dichloropropene	10.3	0.50	μg/L	10.0		103	70-130	1.77	25		
rans-1,3-Dichloropropene	9.89	0.50	μg/L	10.0		98.9	70-130	1.02	25		
Diethyl Ether	9.88	2.0	μg/L	10.0		98.8	70-130	0.706	25		
Difluorochloromethane (Freon 22)	10.5	1.0	μg/L	10.0		105	70-130	1.06	25		
Diisopropyl Ether (DIPE)	10.2	0.50	μg/L	10.0		102	70-130	0.296	25		
,4-Dioxane	85.6	50	μg/L μg/L	100		85.6	40-130	13.6	50	V-05	†
Ethanol	83.6 79.6	50	μg/L μg/L	100		79.6	40-160	4.69	25	V-05 V-05	1
Ethyl Acetate	3.12	10	μg/L μg/L	10.0		31.2 *	70-130	93.0 *		L-07A, R-05, V-0	05
Ethylbenzene		1.0	μg/L μg/L	10.0		103	70-130	2.46	25	_ 0,11, 10 00, V-1	
Hexachlorobutadiene	10.3	0.60	μg/L μg/L	10.0		113	70-130	0.443	25 25		
2-Hexanone (MBK)	11.3 86.9	10	μg/L μg/L	10.0		86.9	70-130	0.443	25	V-05	†
odomethane		20	μg/L μg/L	100		100	70-130	2.96	25	v-03	1
sopropylbenzene (Cumene)	100	1.0	μg/L μg/L	10.0		86.6	70-130	6.59	25		
p-Isopropyltoluene (p-Cymene)	8.66	1.0	μg/L μg/L	10.0		91.0	70-130	1.89	25 25		
Methyl Acetate	9.10	1.0									
Methyl tert-Butyl Ether (MTBE)	9.43	1.0	μg/L μg/L	10.0		94.3	70-130	3.45	25		
Methyl Cyclohexane	9.01	1.0		10.0		90.1	70-130	1.21	25 25		
Methylene Chloride	11.3	5.0	μg/L	10.0		113	70-130	1.96	25 25		
-Methyl-2-pentanone (MIBK)	9.90	5.0 10	μg/L	10.0		99.0	70-130	1.12	25		
[aphthalene	88.8	2.0	μg/L	100		88.8	70-160	2.04	25	V 05	† †
-Propylbenzene	6.54	1.0	μg/L	10.0		65.4	40-130	1.67	25	V-05	1
• •	8.61	1.0	μg/L	10.0		86.1	70-130	3.31	25		
Styrene ,1,1,2-Tetrachloroethane	9.38		μg/L	10.0		93.8	70-130	1.07	25		
	10.2	1.0	μg/L	10.0		102	70-130	1.46	25		
,1,2,2-Tetrachloroethane	8.80	0.50	μg/L	10.0		88.0	70-130	4.66	25		
Cetrachloroethylene	11.0	1.0	μg/L	10.0		110	70-130	2.77	25		
etrahydrofuran	8.97	10	μg/L	10.0		89.7	70-130	2.10	25		
Toluene	10.5	1.0	μg/L	10.0		105	70-130	1.44	25		
,2,3-Trichlorobenzene	8.36	5.0	μg/L	10.0		83.6	70-130	2.54	25		
,2,4-Trichlorobenzene	7.82	1.0	μg/L	10.0		78.2	70-130	1.42	25	V-05	

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyta	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Notes
Analyte Batch B345471 - SW-846 5030B	Kesuit	Limit	Oillis	Levei	Kesuit	/ONEC	Limits	KID	Lillit	Notes
LCS Dup (B345471-BSD1)				Prepared: 07	7/10/23 Analy	zed: 07/11/	23			
1,3,5-Trichlorobenzene	9.63	1.0	μg/L	10.0	. 10,25 / mary	96.3	70-130	0.521	25	
1,1,1-Trichloroethane	10.4	1.0	μg/L	10.0		104	70-130	3.12	25	
1,1,2-Trichloroethane	10.4	1.0	μg/L μg/L	10.0		105	70-130	1.14	25	
Trichloroethylene	10.4	1.0	μg/L	10.0		104	70-130	0.385	25	
Trichlorofluoromethane (Freon 11)	9.86	2.0	μg/L	10.0		98.6	70-130	1.02	25	
1,2,3-Trichloropropane	10.6	2.0	μg/L	10.0		106	70-130	4.15	25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.1	1.0	$\mu g/L$	10.0		101	70-130	0.884	25	
113)	y									
1,2,3-Trimethylbenzene	9.23	0.50	μg/L	10.0		92.3	70-130	0.648	25	
1,2,4-Trimethylbenzene	9.11	1.0	μg/L	10.0		91.1	70-130	0.110	25	
1,3,5-Trimethylbenzene	8.64	1.0	μg/L	10.0		86.4	70-130	0.577	25	
Vinyl Acetate	95.4	20	μg/L	100		95.4	70-130	0.958	25	
Vinyl Chloride	10.3	2.0	μg/L	10.0		103	40-160	0.877	25	
m+p Xylene	19.7	2.0	μg/L	20.0		98.5	70-130	0.815	25	
o-Xylene	9.45	1.0	μg/L	10.0		94.5	70-130	0.633	25	
Surrogate: 1,2-Dichloroethane-d4	23.4		$\mu g/L$	25.0		93.6	70-130			
Surrogate: Toluene-d8	24.8		$\mu g/L$	25.0		99.3	70-130			
Surrogate: 4-Bromofluorobenzene	21.2		$\mu g/L$	25.0		84.9	70-130			
Matrix Spike (B345471-MS1)	Sou	rce: 23G0636-	01	Prepared: 07	//10/23 Analy	zed: 07/12/	23			
Acetone	72.5	50	μg/L	100	2.23		70-130			
Acrylonitrile	7.98	5.0	μg/L	10.0	ND		70-130			
tert-Amyl Methyl Ether (TAME)	7.78	0.50	μg/L	10.0	ND		70-130			
Benzene	9.40	1.0	μg/L	10.0	ND	94.0	70-130			
Bromobenzene	8.19	1.0	μg/L	10.0	ND		70-130			
Bromochloromethane	9.53	1.0	μg/L	10.0	ND		70-130			
Bromodichloromethane	8.50	0.50	μg/L	10.0	ND		70-130			
Bromoform	7.08	1.0	$\mu g/L$	10.0	ND	70.8	70-130			V-05
Bromomethane	11.3	2.0	$\mu \text{g}/L$	10.0	ND	113	70-130			V-20
2-Butanone (MEK)	82.1	20	$\mu \text{g}/L$	100	ND	82.1	70-130			
tert-Butyl Alcohol (TBA)	64.8	20	$\mu \text{g}/L$	100	ND	64.8 *	70-130			MS-07A, V-05
n-Butylbenzene	7.80	1.0	$\mu \text{g}/L$	10.0	ND	78.0	70-130			
sec-Butylbenzene	8.06	1.0	$\mu \text{g}/L$	10.0	ND	80.6	70-130			
tert-Butylbenzene	7.83	1.0	$\mu \text{g}/L$	10.0	ND	78.3	70-130			
tert-Butyl Ethyl Ether (TBEE)	7.96	0.50	$\mu \text{g}/L$	10.0	ND	79.6	70-130			
Carbon Disulfide	84.6	5.0	$\mu \text{g/L}$	100	ND		70-130			
Carbon Tetrachloride	7.32	5.0	$\mu \text{g/L}$	10.0	ND	73.2	70-130			
Chlorobenzene	9.34	1.0	μg/L	10.0	ND		70-130			
Chlorodibromomethane	7.60	0.50	$\mu \text{g/L}$	10.0	ND	76.0	70-130			
Chloroethane	9.03	2.0	μg/L	10.0	ND		70-130			
Chloroform	8.87	2.0	μg/L	10.0	ND		70-130			
Chloromethane	8.65	2.0	μg/L	10.0	ND		70-130			
2-Chlorotoluene	8.73	1.0	μg/L	10.0	ND		70-130			
4-Chlorotoluene	8.36	1.0	μg/L	10.0	ND		70-130			
1,2-Dibromo-3-chloropropane (DBCP)	6.93	5.0	μg/L	10.0	ND					V-05, MS-24
1,2-Dibromoethane (EDB)	8.31	0.50	μg/L	10.0	ND		70-130			
Dibromomethane	8.63	1.0	μg/L	10.0	ND		70-130			
1,2-Dichlorobenzene	8.54	1.0	μg/L	10.0	ND		70-130			
1,3-Dichlorobenzene	8.54	1.0	μg/L	10.0	ND		70-130			
1,4-Dichlorobenzene	8.46	1.0	μg/L	10.0	ND		70-130			1 04 340 00
trans-1,4-Dichloro-2-butene	5.49	2.0	μg/L	10.0	ND	54.9 *	70-130			L-04, MS-09, V-05
Dichlorodifluoromethane (Freon 12)	9.40	2.0	μg/L	10.0	ND	94.0	70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

											1
		Reporting		Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Matrix Spike (B345471-MS1)	Sourc	e: 23G0636-	01	Prepared: 07/1	0/23 Analyz	zed: 07/	12/23	3	
1,1-Dichloroethane	8.92	1.0	μg/L	10.0	ND	89.2		70-130	
1,2-Dichloroethane	8.35	1.0	$\mu g/L$	10.0	ND	83.5		70-130	
,1-Dichloroethylene	8.60	1.0	μg/L	10.0	ND	86.0		70-130	
is-1,2-Dichloroethylene	8.20	1.0	$\mu g/L$	10.0	ND	82.0		70-130	
rans-1,2-Dichloroethylene	8.21	1.0	μg/L	10.0	ND	82.1		70-130	
,2-Dichloropropane	9.45	1.0	$\mu g/L$	10.0	ND	94.5		70-130	
,3-Dichloropropane	8.56	0.50	μg/L	10.0	ND	85.6		70-130	
,2-Dichloropropane	5.23	1.0	μg/L	10.0	ND	52.3	*	70-130	MS-07A
,1-Dichloropropene	9.00	2.0	μg/L	10.0	ND	90.0		70-130	
cis-1,3-Dichloropropene	8.08	0.50	μg/L	10.0	ND	80.8		70-130	
rans-1,3-Dichloropropene	7.61	0.50	μg/L	10.0	ND	76.1		70-130	
Diethyl Ether	8.33	2.0	μg/L	10.0	ND	83.3		70-130	
Diisopropyl Ether (DIPE)	8.45	0.50	μg/L	10.0	ND	84.5		70-130	
1,4-Dioxane	82.5	50	μg/L	100	ND	82.5		70-130	V-05
Ethylbenzene	9.14	1.0	μg/L	10.0	ND	91.4		70-130	, 05
Hexachlorobutadiene	8.58	0.60	μg/L	10.0	ND	85.8		70-130	
2-Hexanone (MBK)	68.7	10	μg/L	100	ND	68.7	*	70-130	MS-07A, V-0
(sopropylbenzene (Cumene)	8.17	1.0	μg/L	10.0	ND	81.7		70-130	1115 0711, 7 0
p-Isopropyltoluene (p-Cymene)	7.61	1.0	μg/L	10.0	ND	76.1		70-130	
Methyl Acetate	5.24	1.0	μg/L	10.0	ND	52.4	*	70-130	MS-07A
Methyl tert-Butyl Ether (MTBE)	7.77	1.0	μg/L	10.0	ND	77.7		70-130	1110 0/11
Methyl Cyclohexane	9.91	1.0	μg/L	10.0	ND	99.1		70-130	
Methylene Chloride	8.39	5.0	μg/L	10.0	ND	83.9		70-130	
4-Methyl-2-pentanone (MIBK)	74.4	10	μg/L	100	ND	74.4		70-130	
Naphthalene	5.11	2.0	μg/L	10.0	ND	51.1	*	70-130	MS-07A, V-0
n-Propylbenzene	8.21	1.0	μg/L	10.0	ND	82.1		70-130	1415-0771, 4-0
Styrene	7.98	1.0	μg/L	10.0	ND	79.8		70-130	
1,1,1,2-Tetrachloroethane	8.82	1.0	μg/L	10.0	ND ND	88.2		70-130	
1,1,2,2-Tetrachloroethane	8.10	0.50	μg/L	10.0	ND ND	81.0		70-130	
Fetrachloroethylene	9.24	1.0	μg/L	10.0	ND	92.4		70-130	
Fetrahydrofuran	9.24 8.97	10	μg/L	10.0	ND ND	89.7		70-130	
Foluene		1.0	μg/L	10.0	ND ND	95.5		70-130	
1,2,3-Trichlorobenzene	9.55	5.0	μg/L μg/L	10.0	ND ND	62.6	*	70-130	MS-24
1,2,4-Trichlorobenzene	6.26	1.0	μg/L μg/L	10.0		58.4	*	70-130	MS-07A, V-0
,3,5-Trichlorobenzene	5.84 7.59	1.0	μg/L μg/L	10.0	ND ND	75.9	т	70-130	WIS-0/A, V-0
1,1,1-Trichloroethane	7.39 8.99	1.0	μg/L	10.0	ND ND	89.9		70-130	
1,1,2-Trichloroethane	8.58	1.0	μg/L μg/L	10.0	ND ND	85.8		70-130	
Frichloroethylene		1.0	μg/L μg/L	10.0	ND ND	92.8		70-130	
Frichlorofluoromethane (Freon 11)	9.28	2.0	μg/L μg/L	10.0		92.8 86.9		70-130	
,2,3-Trichloropropane	8.69	2.0	μg/L μg/L		ND				
1,2,3-111chloropropane 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	7.66	1.0	μg/L μg/L	10.0 10.0	ND	76.6 89.0		70-130 70-130	
113)	8.90	1.0	μg/L	10.0	ND	07.0		/0-130	
1,2,4-Trimethylbenzene	8.34	1.0	μg/L	10.0	ND	83.4		70-130	
,3,5-Trimethylbenzene	8.41	1.0	μg/L	10.0	ND	84.1		70-130	
Vinyl Chloride	9.68	2.0	μg/L	10.0	ND	96.8		70-130	
n+p Xylene	18.5	2.0	μg/L	20.0	ND	92.6		70-130	
p-Xylene	8.63	1.0	μg/L	10.0	ND	86.3		70-130	
					110				
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	23.0		μg/L ug/I	25.0		92.0		70-130	
Surrogate: 101uene-08 Surrogate: 4-Bromofluorobenzene	24.9 23.4		μg/L μg/L	25.0 25.0		99.5 93.4		70-130 70-130	

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

A 1	D 1.	Reporting	TT 11	Spike	Source	0/BEG	%REC	DDD	RPD	3.7 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B345471 - SW-846 5030B										
Aatrix Spike Dup (B345471-MSD1)	Sou	rce: 23G0636-		Prepared: 07	7/10/23 Analyz	zed: 07/12/	23			
Acetone	74.8	50	μg/L	100	2.23	72.5	70-130	3.06	30	
Acrylonitrile	8.48	5.0	μg/L	10.0	ND	84.8	70-130	6.08	30	
ert-Amyl Methyl Ether (TAME)	8.00	0.50	μg/L	10.0	ND	80.0	70-130	2.79	30	
Benzene	9.65	1.0	μg/L	10.0	ND	96.5	70-130	2.62	30	
Bromobenzene	8.66	1.0	μg/L	10.0	ND	86.6	70-130	5.58	30	
Bromochloromethane	9.74	1.0	μg/L	10.0	ND	97.4	70-130	2.18	30	
Bromodichloromethane	8.77	0.50	μg/L	10.0	ND	87.7	70-130	3.13	30	
Bromoform	7.27	1.0	μg/L	10.0	ND	72.7	70-130	2.65	30	V-05
Bromomethane	12.3	2.0	μg/L	10.0	ND	123	70-130	8.83	30	V-20
-Butanone (MEK)	83.8	20	μg/L	100	ND	83.8	70-130	2.02	30	
ert-Butyl Alcohol (TBA)	65.9	20	μg/L	100	ND	65.9 *	70-130	1.76	30	V-05, MS-07A
-Butylbenzene	8.01	1.0	μg/L	10.0	ND	80.1	70-130	2.66	30	
ec-Butylbenzene	8.25	1.0	μg/L	10.0	ND	82.5	70-130	2.33	30	
ert-Butylbenzene	8.21	1.0	μg/L	10.0	ND	82.1	70-130	4.74	30	
ert-Butyl Ethyl Ether (TBEE)	8.23	0.50	μg/L	10.0	ND	82.3	70-130	3.34	30	
Carbon Disulfide	86.7	5.0	μg/L	100	ND	86.7	70-130	2.39	30	
Carbon Tetrachloride	7.31	5.0	μg/L	10.0	ND	73.1	70-130	0.137	30	
Chlorobenzene	9.48	1.0	μg/L	10.0	ND	94.8	70-130	1.49	30	
Chlorodibromomethane	7.64	0.50	μg/L	10.0	ND	76.4	70-130	0.525	30	
Chloroethane	8.63	2.0	μg/L	10.0	ND	86.3	70-130	4.53	30	
Chloroform	9.01	2.0	μg/L	10.0	ND	90.1	70-130	1.57	30	
Chloromethane	8.51	2.0	μg/L	10.0	ND	85.1	70-130	1.63	30	
-Chlorotoluene	8.67	1.0	μg/L	10.0	ND	86.7	70-130	0.690	30	
-Chlorotoluene	8.40	1.0	μg/L	10.0	ND	84.0	70-130	0.477	30	
,2-Dibromo-3-chloropropane (DBCP)	7.45	5.0	μg/L	10.0	ND	74.5	70-130	7.23	30	V-05
,2-Dibromoethane (EDB)	8.41	0.50	μg/L	10.0	ND	84.1	70-130	1.20	30	
Dibromomethane	8.72	1.0	μg/L	10.0	ND	87.2	70-130	1.04	30	
,2-Dichlorobenzene	8.86	1.0	μg/L	10.0	ND	88.6	70-130	3.68	30	
,3-Dichlorobenzene	8.97	1.0	μg/L	10.0	ND	89.7	70-130	4.91	30	
,4-Dichlorobenzene	8.29	1.0	μg/L	10.0	ND	82.9	70-130	2.03	30	
rans-1,4-Dichloro-2-butene	5.50	2.0	μg/L	10.0	ND	55.0 *	70-130	0.182	30	L-04, MS-09, V-05
Dichlorodifluoromethane (Freon 12)	9.66	2.0	μg/L	10.0	ND	96.6	70-130	2.73	30	
,1-Dichloroethane	8.98	1.0	μg/L	10.0	ND	89.8	70-130	0.670	30	
,2-Dichloroethane	8.39	1.0	μg/L	10.0	ND	83.9	70-130	0.478	30	
,1-Dichloroethylene	8.51	1.0	μg/L	10.0	ND	85.1	70-130	1.05	30	
is-1,2-Dichloroethylene	8.58	1.0	μg/L	10.0	ND	85.8	70-130	4.53	30	
rans-1,2-Dichloroethylene	8.49	1.0	μg/L	10.0	ND	84.9	70-130	3.35	30	
,2-Dichloropropane	9.25	1.0	μg/L	10.0	ND	92.5	70-130	2.14	30	
,3-Dichloropropane	8.44	0.50	μg/L	10.0	ND	84.4	70-130	1.41	30	
,2-Dichloropropane	5.30	1.0	μg/L	10.0	ND	53.0 *		1.33	30	MS-07A
,1-Dichloropropene	9.10	2.0	μg/L	10.0	ND	91.0	70-130	1.10	30	
is-1,3-Dichloropropene	8.14	0.50	μg/L	10.0	ND	81.4	70-130	0.740	30	
rans-1,3-Dichloropropene	7.79	0.50	μg/L	10.0	ND	77.9	70-130	2.34	30	
Diethyl Ether	8.48	2.0	μg/L	10.0	ND	84.8	70-130	1.78	30	
Diisopropyl Ether (DIPE)	8.52	0.50	μg/L	10.0	ND	85.2	70-130	0.825	30	
,4-Dioxane	85.1	50	μg/L	100	ND	85.1	70-130	3.08	30	V-05
thylbenzene	9.17	1.0	μg/L	10.0	ND	91.7	70-130	0.328	30	
Hexachlorobutadiene	9.35	0.60	μg/L	10.0	ND	93.5	70-130	8.59	30	
-Hexanone (MBK)	65.8	10	μg/L	100	ND	65.8 *		4.34	30	MS-07A, V-03
sopropylbenzene (Cumene)	8.53	1.0	μg/L	10.0	ND	85.3	70-130	4.31	30	
-Isopropyltoluene (p-Cymene)	8.14	1.0	μg/L	10.0	ND	81.4	70-130	6.73	30	
Methyl Acetate	5.86	1.0	μg/L	10.0	ND	58.6 *	70-130	11.2	30	MS-07A

Surrogate: 4-Bromofluorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Matrix Spike Dup (B345471-MSD1)	Sourc	e: 23G0636-	01	Prepared: 07/10	0/23 Analyz	zed: 07/	12/23				
Methyl tert-Butyl Ether (MTBE)	7.90	1.0	μg/L	10.0	ND	79.0	70	-130	1.66	30	
Methyl Cyclohexane	10.1	1.0	$\mu g/L$	10.0	ND	101	70	-130	1.80	30	
Methylene Chloride	8.31	5.0	$\mu g/L$	10.0	ND	83.1	70	-130	0.958	30	
4-Methyl-2-pentanone (MIBK)	74.0	10	$\mu g/L$	100	ND	74.0	70	-130	0.660	30	
Naphthalene	5.67	2.0	$\mu g/L$	10.0	ND	56.7	* 70	-130	10.4	30	MS-07A, V-05
n-Propylbenzene	8.58	1.0	$\mu g/L$	10.0	ND	85.8	70	-130	4.41	30	
Styrene	8.38	1.0	$\mu g/L$	10.0	ND	83.8	70	-130	4.89	30	
1,1,1,2-Tetrachloroethane	9.32	1.0	$\mu g/L$	10.0	ND	93.2	70	-130	5.51	30	
1,1,2,2-Tetrachloroethane	8.68	0.50	$\mu g/L$	10.0	ND	86.8	70	-130	6.91	30	
Tetrachloroethylene	9.15	1.0	$\mu g/L$	10.0	ND	91.5	70	-130	0.979	30	
Tetrahydrofuran	9.58	10	$\mu g/L$	10.0	ND	95.8	70	-130	6.58	30	
Toluene	9.27	1.0	$\mu g/L$	10.0	ND	92.7	70	-130	2.98	30	
1,2,3-Trichlorobenzene	7.05	5.0	$\mu g/L$	10.0	ND	70.5	70	-130	11.9	30	
1,2,4-Trichlorobenzene	6.52	1.0	$\mu g/L$	10.0	ND	65.2	* 70	-130	11.0	30	MS-07A, V-05
1,3,5-Trichlorobenzene	8.14	1.0	$\mu g/L$	10.0	ND	81.4	70	-130	6.99	30	
1,1,1-Trichloroethane	9.21	1.0	$\mu g/L$	10.0	ND	92.1	70	-130	2.42	30	
1,1,2-Trichloroethane	8.90	1.0	$\mu g/L$	10.0	ND	89.0	70	-130	3.66	30	
Trichloroethylene	9.60	1.0	$\mu g/L$	10.0	ND	96.0	70	-130	3.39	30	
Trichlorofluoromethane (Freon 11)	9.04	2.0	$\mu g/L$	10.0	ND	90.4	70	-130	3.95	30	
1,2,3-Trichloropropane	10.1	2.0	$\mu g/L$	10.0	ND	101	70	-130	27.3	30	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.27	1.0	$\mu g/L$	10.0	ND	92.7	70	-130	4.07	30	
1,2,4-Trimethylbenzene	8.27	1.0	μg/L	10.0	ND	82.7	70	-130	0.843	30	
1,3,5-Trimethylbenzene	8.72	1.0	μg/L	10.0	ND	87.2	70	-130	3.62	30	
Vinyl Chloride	9.64	2.0	μg/L	10.0	ND	96.4	70	-130	0.414	30	
m+p Xylene	18.2	2.0	μg/L	20.0	ND	91.0	70	-130	1.85	20	
o-Xylene	8.62	1.0	μg/L	10.0	ND	86.2	70	-130	0.116	30	
Surrogate: 1,2-Dichloroethane-d4	24.5		μg/L	25.0		98.1	70	-130			
Surrogate: Toluene-d8	24.4		μg/L	25.0		97.7	70	-130			

 $\mu g/L$

25.0

94.9

70-130

23.7

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B345390 - SW-846 3510C										
Blank (B345390-BLK1)			~	Prepared: 07	7/07/23 Anal	yzed: 07/11/2	3			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	μg/L							
acetophenone	ND	10	μg/L							
uniline	ND	20	μg/L							V-05
nthracene	ND	5.0	μg/L							
enzidine	ND	20	μg/L							L-04, V-04, V-05 V-35
enzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	μg/L							
enzo(b)fluoranthene	ND	5.0	μg/L							
enzo(g,h,i)perylene	ND	5.0	μg/L							
enzo(k)fluoranthene	ND	5.0	μg/L							
enzoic Acid	ND	20	μg/L							
is(2-chloroethoxy)methane	ND	10	μg/L							
is(2-chloroethyl)ether	ND	10	$\mu g/L$							
is(2-chloroisopropyl)ether	ND	10	$\mu g/L$							
is(2-Ethylhexyl)phthalate	ND	10	$\mu g/L$							V-04
Bromophenylphenylether	ND	10	μg/L							
utylbenzylphthalate	ND	10	$\mu g \! / \! L$							V-35
arbazole	ND	10	μg/L							
Chloroaniline	ND	10	μg/L							
Chloro-3-methylphenol	ND	10	μg/L							
Chloronaphthalene	ND	10	μg/L							
Chlorophenol	ND	10	μg/L							
Chlorophenylphenylether	ND	10	μg/L							
hrysene	ND	5.0	μg/L							
ibenz(a,h)anthracene	ND	5.0	μg/L							
ibenzofuran	ND	5.0	μg/L							
i-n-butylphthalate	ND	10	μg/L							
2-Dichlorobenzene	ND	5.0	$\mu g/L$							
3-Dichlorobenzene	ND	5.0	μg/L							
4-Dichlorobenzene	ND	5.0	μg/L							
3-Dichlorobenzidine	ND	10	μg/L							
4-Dichlorophenol	ND	10	μg/L							
iethylphthalate	ND	10	μg/L							
4-Dimethylphenol	ND	10	μg/L							
imethylphthalate	ND	10	μg/L							
6-Dinitro-2-methylphenol	ND	20	μg/L							V-04
4-Dinitrophenol	ND	10	μg/L							V-04
4-Dinitrotoluene	ND	10	μg/L							. * -
6-Dinitrotoluene	ND	10	μg/L							
i-n-octylphthalate	ND	10	μg/L							V-04
2-Diphenylhydrazine/Azobenzene	ND	10	μg/L							
luoranthene	ND	5.0	μg/L							
luorene	ND	5.0	μg/L							
exachlorobenzene	ND	10	μg/L							
exachlorobutadiene	ND ND	10	μg/L							
exachlorocyclopentadiene	ND ND	10	μg/L							
exachloroethane	ND ND	10	μg/L μg/L							
ideno(1,2,3-cd)pyrene		5.0	μg/L μg/L							
ophorone	ND ND	10	μg/L μg/L							
-Methylnaphthalene	ND ND	5.0	μg/L μg/L							
-Methylnaphthalene	ND	5.0								
-wiemy maphinalene	ND	3.0	μg/L						_	Page 43 of

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
satch B345390 - SW-846 3510C										
Blank (B345390-BLK1)				Prepared: 07	//07/23 Analy	yzed: 07/11/2	3			
-Methylphenol	ND	10	$\mu g/L$							
/4-Methylphenol	ND	10	$\mu g/L$							
aphthalene	ND	5.0	$\mu g/L$							
Nitroaniline	ND	10	$\mu g/L$							
Nitroaniline	ND	10	$\mu g/L$							
Nitroaniline	ND	10	$\mu g/L$							
itrobenzene	ND	10	$\mu g/L$							
Nitrophenol	ND	10	$\mu g/L$							
Nitrophenol	ND	10	$\mu g/L$							
Nitrosodimethylamine	ND	10	$\mu g/L$							
-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$							
-Nitrosodi-n-propylamine	ND	10	$\mu g/L$							
entachloronitrobenzene	ND	10	$\mu g/L$							
entachlorophenol	ND	10	$\mu g/L$							
nenanthrene	ND	5.0	$\mu g/L$							
nenol	ND	10	$\mu g/L$							
vrene	ND	5.0	$\mu g/L$							
vridine	ND	20	μg/L							
2,4,5-Tetrachlorobenzene	ND	10	μg/L							
2,4-Trichlorobenzene	ND	5.0	μg/L							
4,5-Trichlorophenol	ND	10	$\mu g/L$							
4,6-Trichlorophenol	ND	10	μg/L							
urrogate: 2-Fluorophenol	197		μg/L	400		49.3	15-110			
arrogate: Phenol-d6	129		μg/L	400		32.1	15-110			
irrogate: Nitrobenzene-d5	138		μg/L	200		68.9	30-130			
urrogate: 2-Fluorobiphenyl	134		μg/L	200		67.0	30-130			
urrogate: 2,4,6-Tribromophenol	314		μg/L	400		78.4	15-110			
ırrogate: p-Terphenyl-d14	179		μg/L	200		89.6	30-130			
CS (B345390-BS1)				Prepared: 07	//07/23 Analy	yzed: 07/11/2	3			
cenaphthene	85.2	5.0	μg/L	100		85.2	40-140			R-05
cenaphthylene	92.8	5.0	$\mu g/L$	100		92.8	40-140			R-05
cetophenone	88.0	10	$\mu g/L$	100		88.0	40-140			R-05
niline	65.5	20	$\mu g/L$	100		65.5	40-140			R-05, V-05
nthracene	91.5	5.0	$\mu g/L$	100		91.5	40-140			R-05
enzidine	6.43	20	$\mu g/L$	100		6.43 *	40-140			L-04, R-05, V-0
enzo(a)anthracene	90.0	5.0	μg/L	100		90.0	40-140			V-05, V-35 R-05
enzo(a)pyrene	87.9	5.0	μg/L	100		87.9	40-140			R-05
enzo(b)fluoranthene	93.4	5.0	μg/L	100		93.4	40-140			R-05
enzo(g,h,i)perylene	93.0	5.0	μg/L	100		93.0	40-140			R-05
enzo(k)fluoranthene	97.0	5.0	μg/L	100		97.0	40-140			R-05
enzoic Acid	33.6	20	μg/L	100		33.6	10-130			R-05
s(2-chloroethoxy)methane	87.8	10	μg/L	100		87.8	40-140			R-05
s(2-chloroethyl)ether	88.4	10	μg/L	100		88.4	40-140			R-05
s(2-chloroisopropyl)ether	95.4	10	μg/L μg/L	100		95.4	40-140			R-05
s(2-Ethylhexyl)phthalate	95.4 95.7	10	μg/L μg/L	100		95.7	40-140			R-05, V-04
Bromophenylphenylether		10	μg/L μg/L	100		89.1	40-140			R-05, V-04
	89.1	10	μg/L μg/L	100		108	40-140			R-05, V-35
	108	10	μg/L μg/L	100						R-05, V-35 R-05
	00.7	10	$\mu g/L$	100		92.5	40-140			K-U3
utylbenzylphthalate arbazole Chloroaniline	92.5		uα/I	100		92.2	40 140			D 05
arbazole Chloroaniline	83.3	10	μg/L	100		83.3	40-140			R-05
arbazole			μg/L μg/L μg/L	100 100 100		83.3 88.4 74.4	40-140 30-130 40-140			R-05 R-05 R-05

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

nalyte	Result	Limit								
		Liint	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B345390 - SW-846 3510C										
CS (B345390-BS1)				Prepared: 07	//07/23 Anal	yzed: 07/11/2	3			
Chlorophenol	78.5	10	$\mu g/L$	100		78.5	30-130			R-05
Chlorophenylphenylether	88.4	10	μg/L	100		88.4	40-140			R-05
hrysene	84.7	5.0	μg/L	100		84.7	40-140			R-05
ibenz(a,h)anthracene	95.8	5.0	μg/L	100		95.8	40-140			R-05
ibenzofuran	89.0	5.0	μg/L	100		89.0	40-140			R-05
i-n-butylphthalate	93.5	10	μg/L	100		93.5	40-140			R-05
2-Dichlorobenzene	63.4	5.0	μg/L	100		63.4	40-140			R-05
3-Dichlorobenzene	59.3	5.0	$\mu g/L$	100		59.3	40-140			R-05
4-Dichlorobenzene	59.8	5.0	$\mu g/L$	100		59.8	40-140			R-05
3-Dichlorobenzidine	103	10	$\mu g/L$	100		103	40-140			R-05
4-Dichlorophenol	86.9	10	$\mu \text{g/L}$	100		86.9	30-130			R-05
iethylphthalate	89.7	10	$\mu \text{g/L}$	100		89.7	40-140			R-05
4-Dimethylphenol	70.1	10	$\mu \text{g/L}$	100		70.1	30-130			R-05
imethylphthalate	91.0	10	$\mu \text{g/L}$	100		91.0	40-140			R-05
6-Dinitro-2-methylphenol	99.6	20	$\mu g/L$	100		99.6	30-130			R-05, V-04
4-Dinitrophenol	83.3	10	μg/L	100		83.3	30-130			R-05, V-04
4-Dinitrotoluene	96.6	10	$\mu g/L$	100		96.6	40-140			R-05
6-Dinitrotoluene	105	10	$\mu g/L$	100		105	40-140			R-05
i-n-octylphthalate	91.7	10	$\mu g/L$	100		91.7	40-140			R-05, V-04
2-Diphenylhydrazine/Azobenzene	91.7	10	$\mu g/L$	100		91.7	40-140			R-05
uoranthene	92.0	5.0	$\mu g/L$	100		92.0	40-140			R-05
uorene	89.8	5.0	μg/L	100		89.8	40-140			R-05
exachlorobenzene	93.3	10	μg/L	100		93.3	40-140			R-05
exachlorobutadiene	69.1	10	μg/L	100		69.1	40-140			R-05
exachlorocyclopentadiene	66.2	10	μg/L	100		66.2	30-140			R-05
exachloroethane	56.8	10	μg/L	100		56.8	40-140			R-05
deno(1,2,3-cd)pyrene	97.6	5.0	μg/L	100		97.6	40-140			R-05
ophorone	92.4	10	μg/L	100		92.4	40-140			R-05
Methylnaphthalene	84.7	5.0	μg/L	100		84.7	40-140			R-05
Methylnaphthalene	81.2	5.0	μg/L	100		81.2	40-140			R-05
Methylphenol	75.4	10	μg/L	100		75.4	30-130			R-05
4-Methylphenol	71.4	10	μg/L	100		71.4	30-130			R-05
aphthalene	77.7	5.0	μg/L	100		77.7	40-140			R-05
Nitroaniline	88.3	10	μg/L μg/L	100		88.3	40-140			R-05
Nitroaniline	95.3	10	μg/L μg/L	100		95.3	40-140			R-05
Nitroaniline	95.3 94.5	10	μg/L μg/L	100		94.5	40-140			R-05
itrobenzene		10	μg/L μg/L	100		83.7	40-140			R-05
Nitrophenol	83.7	10	μg/L μg/L	100		80.8	30-130			R-05
Nitrophenol	80.8	10	μg/L μg/L	100			10-130			R-05
-Nitrosodimethylamine	48.5	10	μg/L μg/L	100		48.5 55.4	40-140			R-05
-Nitrosodimetryramine -Nitrosodiphenylamine/Diphenylamine	55.4	10		100						R-05 R-05
-Nitrosodipnenyiamine/Dipnenyiamine -Nitrosodi-n-propylamine	88.4	10	μg/L μg/I			88.4	40-140			
entachloronitrobenzene	86.8	10	μg/L μα/Ι	100		86.8	40-140			R-05
	105		μg/L	100		105	40-140			R-05
entachlorophenol	84.6	10	μg/L	100		84.6	30-130			R-05
nenanthrene	88.8	5.0	μg/L	100		88.8	40-140			R-05
nenol	41.5	10	μg/L	100		41.5	20-130			R-05
/rene	89.2	5.0	μg/L	100		89.2	40-140			R-05
vridine	19.4	20	μg/L	100		19.4	10-140			R-05
2,4,5-Tetrachlorobenzene	81.4	10	μg/L	100		81.4	40-140			R-05
2,4-Trichlorobenzene	75.6	5.0	μg/L	100		75.6	40-140			R-05
4,5-Trichlorophenol 4,6-Trichlorophenol	90.9	10 10	μg/L μg/L	100		90.9	30-130			R-05

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%RE Limi)	RPD Limit	Notes
Batch B345390 - SW-846 3510C											
CS (B345390-BS1)				Prepared: 07	//07/23 Anal	yzed: 07/11	/23				
Surrogate: 2-Fluorophenol	263		μg/L	400		65.8	15-11	0			
Surrogate: Phenol-d6	184		μg/L	400		46.0	15-11	0			
urrogate: Nitrobenzene-d5	184		μg/L	200		91.9	30-13	0			
Surrogate: 2-Fluorobiphenyl	173		μg/L	200		86.7	30-13	0			
Surrogate: 2,4,6-Tribromophenol	447		μg/L	400		112	* 15-11	0			S-07
urrogate: p-Terphenyl-d14	208		μg/L	200		104	30-13	0			
CS Dup (B345390-BSD1)				Prepared: 07	//07/23 Anal	yzed: 07/11	/23				
cenaphthene	23.6	5.0	μg/L	100		23.6	* 40-14	0 113	*	20	L-07A
cenaphthylene	25.4	5.0	μg/L	100		25.4	* 40-14	0 114	*	20	L-07A
cetophenone	20.7	10	μg/L	100		20.7	* 40-14	0 124	*	20	L-07A
niline	10.1	20	μg/L	100		10.1	* 40-14	0 147	*	50	L-07A, V-05
nthracene	25.0	5.0	μg/L	100		25.0	* 40-14	0 114	*	20	L-07A
enzidine	0.260	20	μg/L	100		0.260	* 40-14	0 184	*	20	L-04, L-07A,
											V-04, V-05, V-35
enzo(a)anthracene	24.6	5.0	μg/L	100			* 40-14		*	20	L-07A
enzo(a)pyrene	22.6	5.0	$\mu g/L$	100		22.6	* 40-14	0 118	*	20	L-07A
enzo(b)fluoranthene	25.2	5.0	$\mu g/L$	100		25.2	* 40-14	0 115	*	20	L-07A
enzo(g,h,i)perylene	25.6	5.0	$\mu \text{g/L}$	100		25.6	* 40-14	0 114	*	20	L-07A
enzo(k)fluoranthene	26.4	5.0	$\mu g/L$	100		26.4	* 40-14	0 114	*	20	L-07A
enzoic Acid	16.3	20	μg/L	100		16.3	10-13	0 69.3	*	50	R-05
is(2-chloroethoxy)methane	23.2	10	μg/L	100		23.2	* 40-14	0 117	*	20	L-07A
is(2-chloroethyl)ether	19.0	10	μg/L	100		19.0	* 40-14	0 129	*	20	L-07A
is(2-chloroisopropyl)ether	22.4	10	μg/L	100		22.4	* 40-14	0 124	*	20	L-07A
is(2-Ethylhexyl)phthalate	22.1	10	μg/L	100		22.1	* 40-14	0 125	*	20	L-07A, V-04
Bromophenylphenylether	24.8	10	μg/L	100			* 40-14		*	20	L-07A
utylbenzylphthalate	27.3	10	μg/L	100			* 40-14		*	20	V-35, L-07A
arbazole	24.8	10	μg/L	100			* 40-14		*	20	L-07A
Chloroaniline	19.8	10	μg/L	100			* 40-14		*	20	L-07A
Chloro-3-methylphenol		10	μg/L μg/L	100			* 30-13		*	20	L-07A
-Chloronaphthalene	22.3	10	μg/L μg/L	100			* 40-14		*	20	L-07A
Chlorophenol	19.8	10							*		
	16.4		μg/L	100			* 30-13		*	20	L-07A
Chlorophenylphenylether	25.1	10	μg/L	100			* 40-14		•	20	L-07A
hrysene	24.5	5.0	μg/L	100			* 40-14			20	L-07A
ibenz(a,h)anthracene	25.2	5.0	μg/L	100			* 40-14		*	20	L-07A
ibenzofuran	25.6	5.0	μg/L	100		25.6	* 40-14		*	20	L-07A
i-n-butylphthalate	24.0	10	μg/L	100		24.0	* 40-14	0 118	*	20	L-07A
2-Dichlorobenzene	12.2	5.0	μg/L	100		12.2	* 40-14	0 136	*	20	L-07A
3-Dichlorobenzene	10.7	5.0	μg/L	100		10.7	* 40-14	0 139	*	20	L-07A
4-Dichlorobenzene	11.0	5.0	μg/L	100		11.0	* 40-14	0 138	*	20	L-07A
3-Dichlorobenzidine	23.6	10	μg/L	100		23.6	* 40-14	0 125	*	20	L-07A
4-Dichlorophenol	21.5	10	$\mu g/L$	100		21.5	* 30-13	0 121	*	20	L-07A
iethylphthalate	24.7	10	$\mu g \! / \! L$	100		24.7	* 40-14	0 114	*	20	L-07A
4-Dimethylphenol	17.8	10	$\mu g/L$	100		17.8	* 30-13	0 119	*	20	L-07A
imethylphthalate	26.4	10	$\mu g/L$	100		26.4	* 40-14	0 110	*	50	L-07A
6-Dinitro-2-methylphenol	21.5	20	μg/L	100			* 30-13		*	50	L-07A, V-04
4-Dinitrophenol	16.8	10	μg/L	100			* 30-13		*	50	L-07A, V-04
4-Dinitrotoluene	24.8	10	μg/L	100			* 40-14		*	20	L-07A
6-Dinitrotoluene		10	μg/L μg/L	100			* 40-14		*	20	L-07A
i-n-octylphthalate	27.5	10	μg/L μg/L	100		18.9			*	20	L-07A, V-04
· ·	18.9	10							*		
2-Diphenylhydrazine/Azobenzene	24.1		μg/L	100			* 40-14			20	L-07A
luoranthene	24.6	5.0	μg/L	100			* 40-14		*	20	L-07A
luorene	25.0	5.0	μg/L	100		25.0	* 40-14	0 113	*	20	L-07A

Page 46 of 62

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B345390 - SW-846 3510C											_
.CS Dup (B345390-BSD1)				Prepared: 07	/07/23 Anal	yzed: 07/11/2	3				
Iexachlorobenzene	25.8	10	μg/L	100		25.8 *	40-140	113	* 20	L-07A	
Jexachlorobutadiene	16.3	10	$\mu g/L$	100		16.3 *	40-140	124	* 20	L-07A	
Iexachlorocyclopentadiene	17.9	10	$\mu g/L$	100		17.9 *	30-140	115	* 50	L-07A	÷
Iexachloroethane	10.2	10	$\mu g/L$	100		10.2 *	40-140	139	* 50	L-07A	
ndeno(1,2,3-cd)pyrene	26.0	5.0	$\mu g/L$	100		26.0 *	40-140	116	* 50	L-07A	
sophorone	24.0	10	$\mu g/L$	100		24.0 *	40-140	118	* 20	L-07A	
-Methylnaphthalene	22.6	5.0	$\mu g/L$	100		22.6 *	40-140	116	* 20	L-07A	
-Methylnaphthalene	21.6	5.0	$\mu g/L$	100		21.6 *	40-140	116	* 20	L-07A	
-Methylphenol	18.1	10	$\mu g/L$	100		18.1 *	30-130	123	* 20	L-07A	
/4-Methylphenol	17.6	10	$\mu g/L$	100		17.6 *	30-130	121	* 20	L-07A	
Vaphthalene	19.8	5.0	$\mu g/L$	100		19.8 *	40-140	119	* 20	L-07A	
-Nitroaniline	20.9	10	μg/L	100		20.9 *	40-140	123	* 20	L-07A	
-Nitroaniline	24.7	10	μg/L	100		24.7 *	40-140	118	* 20	L-07A	
-Nitroaniline	23.7	10	μg/L	100		23.7 *	40-140	120	* 20	L-07A	
litrobenzene	19.3	10	$\mu g/L$	100		19.3 *	40-140	125	* 20	L-07A	
-Nitrophenol	18.7	10	μg/L	100		18.7 *	30-130	125	* 20	L-07A	
-Nitrophenol	16.3	10	μg/L	100		16.3	10-130	99.2	* 50	L-07A	
-Nitrosodimethylamine	9.39	10	μg/L	100		9.39 *	40-140	142	* 20	L-07A	
-Nitrosodiphenylamine/Diphenylamine	23.6	10	μg/L	100		23.6 *	40-140	116	* 20	L-07A	
-Nitrosodi-n-propylamine	21.0	10	μg/L	100		21.0 *	40-140	122	* 20	L-07A	
entachloronitrobenzene	26.6	10	μg/L	100		26.6 *	40-140	119	* 20	L-07A	
entachlorophenol	26.4	10	μg/L	100		26.4 *	30-130	105	* 50	L-07A	
henanthrene	25.5	5.0	μg/L	100		25.5 *	40-140	111	* 20	L-07A	
henol	9.41	10	μg/L	100		9.41 *	20-130	126	* 20	L-07A	
yrene	25.0	5.0	μg/L	100		25.0 *	40-140	112	* 20	L-07A	
yridine	ND	20	μg/L	100		*	10-140		50	L-07A	
,2,4,5-Tetrachlorobenzene	22.2	10	μg/L	100		22.2 *	40-140	114	* 20	L-07A	
,2,4-Trichlorobenzene	18.2	5.0	μg/L	100		18.2 *	40-140	122	* 20	L-07A	
,4,5-Trichlorophenol	22.5	10	μg/L	100		22.5 *	30-130	121	* 20	L-07A	
,4,6-Trichlorophenol	21.4	10	μg/L	100		21.4 *	30-130	122	* 50	L-07A	
urrogate: 2-Fluorophenol	45.2		$\mu g/L$	400		11.3 *	15-110			S-26	
urrogate: Phenol-d6	40.1		$\mu g/L$	400		10.0 *	15-110			S-26	
urrogate: Nitrobenzene-d5	41.6		$\mu g/L$	200		20.8 *	30-130			S-26	
urrogate: 2-Fluorobiphenyl	49.2		$\mu g/L$	200		24.6 *	30-130			S-26	
urrogate: 2,4,6-Tribromophenol	114		$\mu g/L$	400		28.4	15-110				
surrogate: p-Terphenyl-d14	57.4		μg/L	200		28.7 *	30-130			S-26	
Batch B345793 - SW-846 3510C											_
Blank (B345793-BLK1)			. /7	Prepared: 07	/12/23 Anal	yzed: 07/17/2	3				
cenaphthene	ND	5.0	μg/L							L-04	
cenaphthylene	ND	5.0	μg/L								
cetophenone	ND	10	μg/L								
niline	ND	20	μg/L								
nthracene	ND	5.0	μg/L								
enzidine	ND	20	μg/L							V-04, V-05, V-3	iS
enzo(a)anthracene	ND	5.0	μg/L								
enzo(a)pyrene	ND	5.0	μg/L								
enzo(b)fluoranthene	ND	5.0	μg/L								
enzo(g,h,i)perylene	ND	5.0	μg/L								
enzo(k)fluoranthene	ND	5.0	μg/L								
enzoic Acid	ND	20	μg/L								
is(2-chloroethoxy)methane		10	μg/L								

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B345793 - SW-846 3510C										
Blank (B345793-BLK1)				Prepared: 07	7/12/23 Analy	yzed: 07/17/2	23			
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$							
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu g/L$							V-04
4-Bromophenylphenylether	ND	10	$\mu g/L$							
Butylbenzylphthalate	ND	10	$\mu g/L$							V-35
Carbazole	ND	10	$\mu g/L$							
4-Chloroaniline	ND	10	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10	$\mu g/L$							
2-Chloronaphthalene	ND	10	$\mu g/L$							L-04
2-Chlorophenol	ND	10	$\mu g/L$							
4-Chlorophenylphenylether	ND	10	$\mu \text{g/L}$							
Chrysene	ND	5.0	$\mu g/L$							
Dibenz(a,h)anthracene	ND	5.0	$\mu g/L$							
Dibenzofuran	ND	5.0	$\mu g/L$							
Di-n-butylphthalate	ND	10	$\mu \text{g/L}$							
,2-Dichlorobenzene	ND	5.0	$\mu \text{g/L}$							L-04
,3-Dichlorobenzene	ND	5.0	$\mu \text{g/L}$							L-04
,4-Dichlorobenzene	ND	5.0	$\mu \text{g/L}$							L-04
3,3-Dichlorobenzidine	ND	10	$\mu \text{g/L}$							
2,4-Dichlorophenol	ND	10	$\mu \text{g/L}$							
Diethylphthalate	ND	10	$\mu g/L$							
2,4-Dimethylphenol	ND	10	$\mu g/L$							
Dimethylphthalate	ND	10	$\mu g/L$							
4,6-Dinitro-2-methylphenol	ND	20	$\mu g/L$							V-04
2,4-Dinitrophenol	ND	10	$\mu g/L$							V-04
2,4-Dinitrotoluene	ND	10	$\mu g/L$							
2,6-Dinitrotoluene	ND	10	$\mu g/L$							
Di-n-octylphthalate	ND	10	$\mu g/L$							V-04, V-0
1,2-Diphenylhydrazine/Azobenzene	ND	10	$\mu g/L$							
Fluoranthene	ND	5.0	$\mu g/L$							
Fluorene	ND	5.0	$\mu g/L$							
Hexachlorobenzene	ND	10	$\mu g/L$							
Hexachlorobutadiene	ND	10	$\mu g/L$							L-04
Hexachlorocyclopentadiene	ND	10	$\mu g/L$							L-04
Hexachloroethane	ND	10	$\mu g/L$							L-04
Indeno(1,2,3-cd)pyrene	ND	5.0	$\mu g/L$							
sophorone	ND	10	$\mu g/L$							
I-Methylnaphthalene	ND	5.0	$\mu \text{g/L}$							L-04
2-Methylnaphthalene	ND	5.0	$\mu g/L$							L-04
2-Methylphenol	ND	10	$\mu g/L$							
3/4-Methylphenol	ND	10	$\mu g/L$							
Naphthalene	ND	5.0	$\mu \text{g/L}$							L-04
2-Nitroaniline	ND	10	$\mu g/L$							
3-Nitroaniline	ND	10	$\mu \text{g/L}$							
4-Nitroaniline	ND	10	$\mu g/L$							
Nitrobenzene	ND	10	$\mu g/L$							
2-Nitrophenol	ND	10	$\mu g/L$							
4-Nitrophenol	ND	10	μg/L							
N-Nitrosodimethylamine	ND	10	$\mu g/L$							
N-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L							
Pentachloronitrobenzene	ND	10	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B345793 - SW-846 3510C										
Blank (B345793-BLK1)				Prepared: 07	//12/23 Anal	yzed: 07/17/2	3			
Pentachlorophenol	ND	10	μg/L							
henanthrene	ND	5.0	μg/L							
henol	ND	10	μg/L							
yrene	ND	5.0	μg/L							
yridine	ND	20	μg/L							
2,4,5-Tetrachlorobenzene	ND	10	μg/L							L-04
2,4-Trichlorobenzene	ND	5.0	μg/L							L-04
4,5-Trichlorophenol	ND	10	$\mu g/L$							
4,6-Trichlorophenol	ND	10	$\mu g/L$							
urrogate: 2-Fluorophenol	192		μg/L	400		48.0	15-110			
urrogate: Phenol-d6	132		$\mu g/L$	400		33.0	15-110			
urrogate: Nitrobenzene-d5	127		$\mu g/L$	200		63.6	30-130			
urrogate: 2-Fluorobiphenyl	92.8		$\mu g/L$	200		46.4	30-130			
urrogate: 2,4,6-Tribromophenol	304		$\mu g/L$	400		76.1	15-110			
ırrogate: p-Terphenyl-d14	170		$\mu g/L$	200		85.0	30-130			
CS (B345793-BS1)				Prepared: 07	//12/23 Anal	yzed: 07/17/2	3			
cenaphthene	37.2	5.0	μg/L	100		37.2 *	40-140			L-04
cenaphthylene	42.5	5.0	μg/L	100		42.5	40-140			
cetophenone	63.2	10	μg/L	100		63.2	40-140			R-05
niline	26.4	20	μg/L	100		26.4 *	40-140			L-07A
nthracene	72.5	5.0	μg/L	100		72.5	40-140			
enzidine	ND	20	μg/L	100		*	40-140			V-35, V-04, V-05
enzo(a)anthracene	80.4	5.0	μg/L	100		80.4	40-140			
enzo(a)pyrene	78.0	5.0	μg/L	100		78.0	40-140			
enzo(b)fluoranthene	82.5	5.0	μg/L	100		82.5	40-140			
enzo(g,h,i)perylene	82.7	5.0	μg/L	100		82.7	40-140			
enzo(k)fluoranthene	85.2	5.0	μg/L	100		85.2	40-140			
enzoic Acid	42.2	20	μg/L	100		42.2	10-130			
is(2-chloroethoxy)methane	64.2	10	μg/L	100		64.2	40-140			R-05
is(2-chloroethyl)ether	64.6	10	μg/L	100		64.6	40-140			R-05
is(2-chloroisopropyl)ether	59.5	10	μg/L	100		59.5	40-140			R-05
is(2-Ethylhexyl)phthalate	92.5	10	μg/L	100		92.5	40-140			V-04
Bromophenylphenylether	56.6	10	μg/L	100		56.6	40-140			, 0.
utylbenzylphthalate	98.7	10	μg/L	100		98.7	40-140			V-35
arbazole		10	μg/L μg/L	100		80.0	40-140			V-33
-Chloroaniline	80.0	10	μg/L μg/L	100		59.0	40-140			R-05
Chloro-3-methylphenol	59.0	10	μg/L μg/L	100		73.0	30-130			R-05
Chloronaphthalene	73.0	10	μg/L μg/L	100		25.6 *	40-140			L-04
Chlorophenol	25.6	10								
Chlorophenylphenylether	60.4	10	μg/L μg/L	100 100		60.4	30-130			R-05
hrysene	44.1	5.0				44.1	40-140			
ibenz(a,h)anthracene	75.0	5.0	μg/L	100		75.0	40-140			
	84.6		μg/L	100		84.6	40-140			
ibenzofuran	43.0	5.0	μg/L	100		43.0	40-140			
i-n-butylphthalate	86.2	10	μg/L	100		86.2	40-140			1.04
2-Dichlorobenzene	19.1	5.0	μg/L	100		19.1 *	40-140			L-04
3-Dichlorobenzene	14.6	5.0	μg/L	100		14.6 *	40-140			L-04, R-05
4-Dichlard and district	16.0	5.0	μg/L	100		16.0 *	40-140			L-04, R-05
3-Dichlorobenzidine	84.0	10	μg/L	100		84.0	40-140			
4-Dichlorophenol	63.7	10	μg/L	100		63.7	30-130			R-05
Diethylphthalate	82.5	10	μg/L	100		82.5	40-140			
,4-Dimethylphenol	57.2	10	μg/L	100		57.2	30-130			R-05

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B345793 - SW-846 3510C										
LCS (B345793-BS1)				Prepared: 07	7/12/23 Analy	yzed: 07/17/2	13			
Dimethylphthalate	78.1	10	$\mu g/L$	100		78.1	40-140			
4,6-Dinitro-2-methylphenol	88.1	20	$\mu g/L$	100		88.1	30-130			V-04
2,4-Dinitrophenol	79.8	10	$\mu g/L$	100		79.8	30-130			V-04
2,4-Dinitrotoluene	82.2	10	μg/L	100		82.2	40-140			
2,6-Dinitrotoluene	85.8	10	$\mu g \! / \! L$	100		85.8	40-140			
Di-n-octylphthalate	94.2	10	μg/L	100		94.2	40-140			V-04, V-06
1,2-Diphenylhydrazine/Azobenzene	60.6	10	$\mu g \! / \! L$	100		60.6	40-140			
Fluoranthene	78.9	5.0	$\mu g \! / \! L$	100		78.9	40-140			
Fluorene	50.1	5.0	$\mu g \! / \! L$	100		50.1	40-140			
Hexachlorobenzene	67.7	10	$\mu g\!/\!L$	100		67.7	40-140			
Hexachlorobutadiene	12.2	10	$\mu g/L$	100		12.2 *	40-140			L-04
Hexachlorocyclopentadiene	14.3	10	$\mu g\!/\!L$	100		14.3 *	30-140			L-04
Hexachloroethane	9.00	10	$\mu g/L$	100		9.00 *	40-140			L-04
Indeno(1,2,3-cd)pyrene	86.3	5.0	μg/L	100		86.3	40-140			
Isophorone	71.9	10	μg/L	100		71.9	40-140			R-05
l-Methylnaphthalene	27.7	5.0	μg/L	100		27.7 *	40-140			L-04
-Methylnaphthalene	25.7	5.0	μg/L	100		25.7 *	40-140			L-04
2-Methylphenol	60.0	10	$\mu g/L$	100		60.0	30-130			R-05
3/4-Methylphenol	57.6	10	μg/L	100		57.6	30-130			R-05
Naphthalene	27.9	5.0	μg/L	100		27.9 *	40-140			L-04
2-Nitroaniline	74.6	10	μg/L	100		74.6	40-140			
3-Nitroaniline	80.3	10	$\mu g/L$	100		80.3	40-140			
4-Nitroaniline	75.6	10	μg/L	100		75.6	40-140			
Nitrobenzene	56.5	10	$\mu g/L$	100		56.5	40-140			R-05
-Nitrophenol	57.8	10	$\mu g/L$	100		57.8	30-130			R-05
1-Nitrophenol	44.4	10	μg/L	100		44.4	10-130			
N-Nitrosodimethylamine	47.9	10	$\mu g/L$	100		47.9	40-140			R-05
N-Nitrosodiphenylamine/Diphenylamine	74.6	10	$\mu g/L$	100		74.6	40-140			
N-Nitrosodi-n-propylamine	65.3	10	μg/L	100		65.3	40-140			R-05
Pentachloronitrobenzene	83.7	10	$\mu g/L$	100		83.7	40-140			
Pentachlorophenol	76.1	10	$\mu g/L$	100		76.1	30-130			
Phenanthrene	69.0	5.0	$\mu g/L$	100		69.0	40-140			
Phenol	34.0	10	μg/L	100		34.0	20-130			R-05
Pyrene	78.8	5.0	$\mu g/L$	100		78.8	40-140			
Pyridine	5.91	20	$\mu g/L$	100		5.91 *	10-140			L-07A, R-05
1,2,4,5-Tetrachlorobenzene	24.7	10	μg/L	100		24.7 *	40-140			L-04
1,2,4-Trichlorobenzene	18.1	5.0	$\mu g/L$	100		18.1 *	40-140			L-04
2,4,5-Trichlorophenol	76.0	10	$\mu g/L$	100		76.0	30-130			
2,4,6-Trichlorophenol	68.9	10	$\mu g/L$	100		68.9	30-130			
Surrogate: 2-Fluorophenol	205		μg/L	400		51.3	15-110			
Surrogate: Phenol-d6	154		$\mu g/L$	400		38.6	15-110			
Surrogate: Nitrobenzene-d5	126		$\mu g/L$	200		63.1	30-130			
Surrogate: 2-Fluorobiphenyl	135		$\mu g/L$	200		67.6	30-130			
Surrogate: 2,4,6-Tribromophenol	392		$\mu g/L$	400		98.0	15-110			
Surrogate: p-Terphenyl-d14	192		μg/L	200		95.8	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REO	2	%REC Limits	RPD		PD mit Notes	
Batch B345793 - SW-846 3510C												_
LCS Dup (B345793-BSD1)				Prepared: 07	7/12/23 Anal	yzed: 07/	17/23	3				
Acenaphthene	31.9	5.0	μg/L	100		31.9	*	40-140	15.4	2	0 L-04	
Acenaphthylene	38.7	5.0	$\mu g/L$	100		38.7	*	40-140	9.28	2	0 L-07A	
Acetophenone	86.1	10	$\mu g/L$	100		86.1		40-140	30.7	* 2	0 R-05	
Aniline	60.9	20	$\mu g/L$	100		60.9		40-140	79.1	* 5	0 R-05	
Anthracene	79.0	5.0	$\mu g/L$	100		79.0		40-140	8.62	2	0	
Benzidine	23.4	20	$\mu g/L$	100		23.4	*	40-140	178	* 2	0 V-04, V-05, V-3	35
Benzo(a)anthracene	92.0	5.0	$\mu g/L$	100		92.0		40-140	13.5	2	0	
Benzo(a)pyrene	87.9	5.0	$\mu g/L$	100		87.9		40-140	11.8	2	0	
Benzo(b)fluoranthene	94.5	5.0	$\mu g/L$	100		94.5		40-140	13.6	2	0	
Benzo(g,h,i)perylene	93.8	5.0	$\mu g/L$	100		93.8		40-140	12.6	2	0	
Benzo(k)fluoranthene	96.9	5.0	$\mu g/L$	100		96.9		40-140	12.9	2	0	
Benzoic Acid	50.0	20	$\mu g/L$	100		50.0		10-130	16.7	5	0	i
Bis(2-chloroethoxy)methane	88.3	10	$\mu g \! / \! L$	100		88.3		40-140	31.7	* 2	0 R-05	
Bis(2-chloroethyl)ether	87.1	10	$\mu g \! / \! L$	100		87.1		40-140	29.7	* 2	0 R-05	
Bis(2-chloroisopropyl)ether	74.0	10	$\mu g/L$	100		74.0		40-140	21.8	* 2	0 R-05	
Bis(2-Ethylhexyl)phthalate	104	10	$\mu g/L$	100		104		40-140	11.5	2	0 V-04	
1-Bromophenylphenylether	58.8	10	$\mu g/L$	100		58.8		40-140	3.95	2	0	
Butylbenzylphthalate	115	10	$\mu g/L$	100		115		40-140	15.3	2	0 V-35	
Carbazole	92.7	10	$\mu g/L$	100		92.7		40-140	14.8	2	0	
-Chloroaniline	77.3	10	$\mu g/L$	100		77.3		40-140	26.8	* 2	0 R-05	
-Chloro-3-methylphenol	90.7	10	$\mu g/L$	100		90.7		30-130	21.6	* 2	0 R-05	
-Chloronaphthalene	22.6	10	μg/L	100		22.6	*	40-140	12.4	2	0 L-04	
-Chlorophenol	84.9	10	$\mu g/L$	100		84.9		30-130	33.8	* 2	0 R-05	
-Chlorophenylphenylether	40.7	10	$\mu g/L$	100		40.7		40-140	7.90	2	0	
Chrysene	85.1	5.0	μg/L	100		85.1		40-140	12.7	2	0	
Dibenz(a,h)anthracene	97.0	5.0	μg/L	100		97.0		40-140	13.6	2	0	
Dibenzofuran	39.2	5.0	$\mu g/L$	100		39.2	*	40-140	9.20	2	0 L-07	
Di-n-butylphthalate	97.4	10	$\mu g/L$	100		97.4		40-140	12.2	2	0	
,2-Dichlorobenzene	22.6	5.0	$\mu g/L$	100		22.6	*	40-140	16.6	2	0 L-04	
,3-Dichlorobenzene	19.2	5.0	$\mu g/L$	100		19.2	*	40-140	26.7	* 2	0 L-04, R-05	
,4-Dichlorobenzene	20.1	5.0	$\mu g/L$	100		20.1	*	40-140	22.8	* 2	0 L-04, R-05	
3,3-Dichlorobenzidine	96.9	10	$\mu g/L$	100		96.9		40-140	14.2	2	0	
2,4-Dichlorophenol	86.5	10	μg/L	100		86.5		30-130	30.4	* 2	0 R-05	
Diethylphthalate	92.4	10	μg/L	100		92.4		40-140	11.3	2	0	
2,4-Dimethylphenol	77.6	10	$\mu g/L$	100		77.6		30-130	30.3	* 2	0 R-05	
Dimethylphthalate	89.8	10	$\mu g/L$	100		89.8		40-140	13.9	5	0	
4,6-Dinitro-2-methylphenol	102	20	μg/L	100		102		30-130	15.0	5	0 V-04	
2,4-Dinitrophenol	101	10	μg/L	100		101		30-130	23.3	5	0 V-04	
2,4-Dinitrotoluene	94.2	10	μg/L	100		94.2		40-140	13.7	2	0	
2,6-Dinitrotoluene	98.4	10	μg/L	100		98.4		40-140	13.6	2	0	
Di-n-octylphthalate	110	10	μg/L	100		110		40-140	15.6	2	0 V-04, V-06	
,2-Diphenylhydrazine/Azobenzene	61.3	10	$\mu g/L$	100		61.3		40-140	1.08	2	0	
luoranthene	90.6	5.0	$\mu g/L$	100		90.6		40-140	13.7	2	0	
Fluorene	48.4	5.0	$\mu g/L$	100		48.4		40-140	3.39	2	0	
Hexachlorobenzene	73.0	10	$\mu g/L$	100		73.0		40-140	7.54	2	0	
Hexachlorobutadiene	14.1	10	$\mu g/L$	100		14.1	*	40-140	14.0	2	0 L-04	
Hexachlorocyclopentadiene	12.8	10	$\mu g/L$	100		12.8	*	30-140	11.2	5	0 L-04	+
Iexachloroethane	12.6	10	μg/L	100		12.6	*	40-140	33.3		0 L-04	
ndeno(1,2,3-cd)pyrene	98.9	5.0	μg/L	100		98.9		40-140	13.5	5	0	
sophorone	93.3	10	μg/L	100		93.3		40-140	25.9	* 2	0 R-05	
-Methylnaphthalene	25.4	5.0	μg/L	100		25.4	*	40-140	8.82		0 L-04	
-Methylnaphthalene	23.7	5.0	μg/L	100		23.7	*	40-140	8.42		0 L-04	

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B345793 - SW-846 3510C											
LCS Dup (B345793-BSD1)				Prepared: 07	7/12/23 Anal	yzed: 07/17/2	23				
2-Methylphenol	86.3	10	μg/L	100		86.3	30-130	35.9	* 20	R-05	
3/4-Methylphenol	81.2	10	$\mu g \! / \! L$	100		81.2	30-130	34.0	* 20	R-05	
Naphthalene	28.6	5.0	$\mu g \! / \! L$	100		28.6 *	40-140	2.55	20	L-04	
2-Nitroaniline	86.4	10	$\mu g \! / \! L$	100		86.4	40-140	14.6	20		
3-Nitroaniline	92.8	10	$\mu g \! / \! L$	100		92.8	40-140	14.4	20		
4-Nitroaniline	92.2	10	μg/L	100		92.2	40-140	19.9	20		
Nitrobenzene	74.6	10	μg/L	100		74.6	40-140	27.6	* 20	R-05	
2-Nitrophenol	82.3	10	μg/L	100		82.3	30-130	34.9	* 20	R-05	
4-Nitrophenol	51.4	10	μg/L	100		51.4	10-130	14.5	50		† ‡
N-Nitrosodimethylamine	61.2	10	μg/L	100		61.2	40-140	24.3	* 20	R-05	
N-Nitrosodiphenylamine/Diphenylamine	82.4	10	$\mu g/L$	100		82.4	40-140	9.93	20		
N-Nitrosodi-n-propylamine	86.0	10	μg/L	100		86.0	40-140	27.3	* 20	R-05	
Pentachloronitrobenzene	94.5	10	μg/L	100		94.5	40-140	12.2	20		
Pentachlorophenol	85.8	10	$\mu g/L$	100		85.8	30-130	11.9	50		‡
Phenanthrene	75.8	5.0	$\mu g/L$	100		75.8	40-140	9.46	20		
Phenol	46.4	10	$\mu g/L$	100		46.4	20-130	30.9	* 20	R-05	†
Pyrene	89.3	5.0	$\mu g/L$	100		89.3	40-140	12.6	20		
Pyridine	28.2	20	$\mu g/L$	100		28.2	10-140	131	* 50	R-05	† ‡
1,2,4,5-Tetrachlorobenzene	20.5	10	$\mu g/L$	100		20.5 *	40-140	18.4	20	L-04	
1,2,4-Trichlorobenzene	18.3	5.0	$\mu g/L$	100		18.3 *	40-140	0.987	20	L-04	
2,4,5-Trichlorophenol	85.6	10	$\mu g/L$	100		85.6	30-130	11.8	20		
2,4,6-Trichlorophenol	81.8	10	$\mu g/L$	100		81.8	30-130	17.2	50		‡
Surrogate: 2-Fluorophenol	269		μg/L	400		67.3	15-110				
Surrogate: Phenol-d6	197		$\mu g/L$	400		49.3	15-110				
Surrogate: Nitrobenzene-d5	168		$\mu g/L$	200		83.8	30-130				
Surrogate: 2-Fluorobiphenyl	133		$\mu g/L$	200		66.3	30-130				
Surrogate: 2,4,6-Tribromophenol	406		$\mu g/L$	400		102	15-110				
Surrogate: p-Terphenyl-d14	204		$\mu g/L$	200		102	30-130				

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B345722 - SW-846 3510C										
Blank (B345722-BLK1)				Prepared: 07	7/12/23 Anal	yzed: 07/18/2	23			
1,4-Dioxane	ND	0.20	μg/L							
Surrogate: 1,4-Dioxane-d8	2.61		μg/L	10.0		26.1	15-110			
LCS (B345722-BS1)				Prepared: 07	7/12/23 Anal	yzed: 07/18/2	23			
1,4-Dioxane	10.6	0.20	μg/L	10.0		106	40-140			
Surrogate: 1,4-Dioxane-d8	2.74		μg/L	10.0		27.4	15-110			
LCS Dup (B345722-BSD1)				Prepared: 07	7/12/23 Anal	yzed: 07/18/2	23			
1,4-Dioxane	10.7	0.20	μg/L	10.0		107	40-140	0.779	30	
Surrogate: 1,4-Dioxane-d8	2.88		μg/L	10.0		28.8	15-110			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-06	Sample was extracted past the recommended holding time.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
MS-07A	Matrix spike and spike duplicate recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of matrix effects that lead to low bias or non-homogeneous sample aliquot cannot be eliminated.
MS-09	Matrix spike recovery and/or matrix spike duplicate recovery outside of control limits. Possibility of sample matrix effects that lead to a low bias for reported result or non-homogeneous sample aliquots cannot be eliminated.
MS-24	Either matrix spike or matrix spike duplicate is outside of control limits, but the other is within limits. Analysis is in control based on laboratory fortified blank recovery.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are $> 10\%$.
S-26	Surrogate outside of control limits.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260D in Water	
Acetone	CT,ME,NH,VA,NY
Acrylonitrile	CT,ME,NH,VA,NY
tert-Amyl Methyl Ether (TAME)	ME,NH,VA,NY
Benzene	CT,ME,NH,VA,NY
Bromobenzene	ME,NY
Bromochloromethane	ME,NH,VA,NY
Bromodichloromethane	CT,ME,NH,VA,NY
Bromoform	CT,ME,NH,VA,NY
Bromomethane	CT,ME,NH,VA,NY
2-Butanone (MEK)	CT,ME,NH,VA,NY
tert-Butyl Alcohol (TBA)	ME,NH,VA,NY
n-Butylbenzene	ME,VA,NY
sec-Butylbenzene	ME,VA,NY
tert-Butylbenzene	ME,VA,NY
tert-Butyl Ethyl Ether (TBEE)	ME,NH,VA,NY
Carbon Disulfide	CT,ME,NH,VA,NY
Carbon Tetrachloride	CT,ME,NH,VA,NY
Chlorobenzene	CT,ME,NH,VA,NY
Chlorodibromomethane	CT,ME,NH,VA,NY
Chloroethane	CT,ME,NH,VA,NY
Chloroform	CT,ME,NH,VA,NY
Chloromethane	CT,ME,NH,VA,NY
2-Chlorotoluene	ME,NH,VA,NY
4-Chlorotoluene	ME,NH,VA,NY
1,2-Dibromo-3-chloropropane (DBCP)	ME,NY
1,2-Dibromoethane (EDB)	ME,NY
Dibromomethane	ME,NH,VA,NY
1,2-Dichlorobenzene	CT,ME,NH,VA,NY
1,3-Dichlorobenzene	CT,ME,NH,VA,NY
1,4-Dichlorobenzene	CT,ME,NH,VA,NY
trans-1,4-Dichloro-2-butene	ME,NH,VA,NY
Dichlorodifluoromethane (Freon 12)	ME,NH,VA,NY
1,1-Dichloroethane	CT,ME,NH,VA,NY
1,2-Dichloroethane	CT,ME,NH,VA,NY
1,1-Dichloroethylene	CT,ME,NH,VA,NY
cis-1,2-Dichloroethylene	ME,NY
trans-1,2-Dichloroethylene	CT,ME,NH,VA,NY
1,2-Dichloropropane	CT,ME,NH,VA,NY
1,3-Dichloropropane	ME,VA,NY
2,2-Dichloropropane	ME,NH,VA,NY
1,1-Dichloropropene	ME,NH,VA,NY
cis-1,3-Dichloropropene	CT,ME,NH,VA,NY
trans-1,3-Dichloropropene	CT,ME,NH,VA,NY
Diethyl Ether	ME,NY
Diisopropyl Ether (DIPE)	ME,NH,VA,NY
1,4-Dioxane	ME,NY
Ethylbenzene	CT,ME,NH,VA,NY

CERTIFICATIONS

Certified Analyses included in this Report

Bis(2-chloroethyl)ether

Analyte	Certifications
SW-846 8260D in Water	
Hexachlorobutadiene	CT,ME,NH,VA,NY
2-Hexanone (MBK)	CT,ME,NH,VA,NY
Isopropylbenzene (Cumene)	ME,VA,NY
p-Isopropyltoluene (p-Cymene)	CT,ME,NH,VA,NY
Methyl Acetate	ME,NY
Methyl tert-Butyl Ether (MTBE)	CT,ME,NH,VA,NY
Methyl Cyclohexane	NY
Methylene Chloride	CT,ME,NH,VA,NY
4-Methyl-2-pentanone (MIBK)	CT,ME,NH,VA,NY
Naphthalene	ME,NH,VA,NY
n-Propylbenzene	CT,ME,NH,VA,NY
Styrene	CT,ME,NH,VA,NY
1,1,1,2-Tetrachloroethane	CT,ME,NH,VA,NY
1,1,2,2-Tetrachloroethane	CT,ME,NH,VA,NY
Tetrachloroethylene	CT,ME,NH,VA,NY
Toluene	CT,ME,NH,VA,NY
1,2,3-Trichlorobenzene	ME,NH,VA,NY
1,2,4-Trichlorobenzene	CT,ME,NH,VA,NY
1,3,5-Trichlorobenzene	ME
1,1,1-Trichloroethane	CT,ME,NH,VA,NY
1,1,2-Trichloroethane	CT,ME,NH,VA,NY
Trichloroethylene	CT,ME,NH,VA,NY
Trichlorofluoromethane (Freon 11)	CT,ME,NH,VA,NY
1,2,3-Trichloropropane	ME,NH,VA,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	VA,NY
1,2,4-Trimethylbenzene	ME,VA,NY
1,3,5-Trimethylbenzene	ME, VA, NY
Vinyl Chloride m+p Xylene	CT,ME,NH,VA,NY CT,ME,NH,VA,NY
o-Xylene	CT,ME,NH,VA,NY
SW-846 8270E in Water	CI,WE,WII, VA,WI
1,4-Dioxane	NY,NH
Acenaphthene	CT,NY,NC,ME,NH,VA
Acenaphthylene	CT,NY,NC,ME,NH,VA
Acetophenone	NY,NC
Aniline Anthracene	CT,NY,NC,ME,VA
Benzidine	CT,NY,NC,ME,NH,VA
	CT,NY,NC,ME,NH,VA CT,NY,NC,ME,NH,VA
Benzo(a)anthracene Benzo(a)pyrene	CT,NY,NC,ME,NH,VA
Benzo(a)pyrene Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA
Benzoic Acid	NY,NC,ME,NH,VA
Bis(2-chloroethoxy)methane	CT,NY,NC,ME,NH,VA

CT,NY,NC,ME,NH,VA

CERTIFICATIONS

Certified Analyses included in this Report

CERTIFICATIONS

Certified Analyses included in this Report

2-Fluorophenol

Certifications Analyte SW-846 8270E in Water N-Nitrosodimethylamine CT,NY,NC,ME,NH,VA NY N-Nitrosodiphenylamine/Diphenylamine N-Nitrosodi-n-propylamine CT,NY,NC,ME,NH,VA Pentachloronitrobenzene NC Pentachlorophenol CT,NY,NC,ME,NH,VA Phenanthrene CT,NY,NC,ME,NH,VA Phenol CT,NY,NC,ME,NH,VA Pyrene CT,NY,NC,ME,NH,VA Pyridine CT,NY,NC,ME,NH,VA 1,2,4,5-Tetrachlorobenzene NY,NC 1,2,4-Trichlorobenzene CT,NY,NC,ME,NH,VA CT,NY,NC,ME,NH,VA 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol CT,NY,NC,ME,NH,VA

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

NC

Code	Description	Number	Expires
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2025
VA	Commonwealth of Virginia	460217	12/14/2023

a					Chain	Chain of Custody / Analysis Report	y / An	alysis	Report									Page	1 of	-
4	Signature)	Pawel Mecinski			į					75(2630	Õ					-16	Laboratory Use Only	Omly
itact:		Laboratory:	n:/	Hok	Holding Time:				4			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Analysis Required	aquired					Project Number:	·
fress:		Pare Ana	Mical Service	9					Preserva	Preservotives: (see key at bottom)	key at I	ottom)						3	Job Mumber:	
	Syracuse, New York 13221-4873	39 Spruce	39 Spruce St., East						1 0	7	0	0	3	0 8	4	0 0				Notice Transport
ne:	(315) 956-6100	Longmea	Longmeadow, MA 01028	128						(3	Laboratory ID:	
iail.		 			Package Requirement:	ment:				A07.₽						***************************************			•	ga 23% Osafaa
iject:	NYSDEC Claremont Polychernical Site Q3 Sys Samples Attn: Phone	es Attn: Phone:	RJ McCarthy 413-525-2332		Level 2 and Level 3 EDD Format:		ainers posite	(n / ,		Vicury (7		mvime		СМ	~~	•				
ation:	n: Old Bethpage, New York	T			EQuIS 4-file				∀8	ə₩+s		orto 1		'ros'		enexo				no gaza galeria
					Sample	Samole				Netal		nelev		a,D ei	əpi	ip-t/I				
	Unique Field Sample ID	Sample	Date	Time	Type	Matrix				A JAT	SOT.		IKN	noinA	Cksu					
	(sys_sample_code)	Location			(See Key)	(See Key)			3620C	0010:	:0025	:496T	:2.12	0.00	:8210	9 :EE8				- 2
PD.	PD-CP-00-070523	Оd	7/5/2023	cjy.	z	9M	9 6	z	╢		7	╂	٤						n o sample IU:	5
2	PD-CP-01-070523	PD	7/5/2023	07.53	FD	WG	9 6	z	×				-	1	-					984g
PD.	PD-CP-MS-070523	PO	7/5/2023	c]{3	MS	WG	2 G	2	×		1	_	1	-	-	-				448 45
T	PD-CP-MSD-070523	PD	7/5/2023	5,1,5	MSD	WG	+	4-			_	1			-	+				3994 43
	ASF-CP-00-070523	z	7/5/2023	シカウト	z	SW.	+-	4	-			-		1	1					oč.
A SA	# (ASE-CP-01-070523	G	2/2/3/7	2 100	5	0.47			-			1	1	1	1	+				
71		2	1/3/4023	?	5	SW.	S G	z	-			_				×		13		i i
	TB-070523		7/5/2023	1100	TB	WQ	2	z	×											
	temp asom															_				100
_																				
-														-						T.
П													_	_			-			Ī
.2														1	1	-	-			No.
w									1		-	$oldsymbol{\perp}$	\perp	1	1	-	-			
4							_		-			1	1		1	-	_			
H	OU-5 July 2023 Monthly System Samples														4	\dashv				, 4.50
becra	pecial instructions:																			
se th	ise the top boxes if the samples are to be shipped via courier (e.g., Fed Ex)	.g., Fed Ex)							0.		Condition	:u						Ö	Othe r comments or	, O.
	nonco oy.	7+/5	15/23	Courier Name	. A	Fedex	Date:		5/5/t									<u> </u>	notes regarding condition of samples	ples
±	If. GES, Inc.	1 1	011	Tracking #:	0		Time:		271									as	as received:	en e
ieling:	yelled by:	Date:		Courier Name:	ame:		Date:	نة			Custody	Seals in	act? (ifs	o, indicate	the #, do	rte, and t	Custody Seals Intact? (if so, indicate the #, date, and time of the seal)	seal)		
<i>¥</i>		Time:		Tracking #:	#		Time:	نة												**************************************
ourie.	Courier Name: FedEx	Date:		Receiped By:	BY:MO	4	Dat	1 5			Cooler 1	Cooler Temperature	nre:					T		
F	ing #:	Time:		Of Chin	Mela	2.5%	Time		\$7.9.											
age	E Type: N = Normal env. sample, FD = field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank Bank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank	quipment Blank	, TB = Trip Blar	ık, MS = La	b Matrix Spike,	Other (Specify)	: FRB = Fle	eld Reage	nt Blank									=		T
	organisms. 2 Scannen, 30 - Son, w.S Groundwater, w.G. water Quality, w.S. = Sufface Water, WW = Waster, WP = Potable Water, AA = Ambient Air, Other (Specify): vative Code: 0 = none, 1 = HCL, 2 = HNO,, 3 = H;SOL, 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSOL, 9 = BenzalkoniumCl, 10 = other	5 = Zn Acetate	WS = SUTFACE , 6 = MEOH, 7	water, wv = NaHSO ₄ ,	/ = Waste Wate 8 = Na ₃ PO ₄ , 9 =	r, WP = Potable BenzalkoniumC	: Water, A	.A ≂ Ambi ner	ent Air, O	ther (Speci	;; { }									
of 6																			WV	
2																				,

DELIVERED

Thursday

7/6/2023 at 10:01 am

Signed for by: L.ARROYO

 $oldsymbol{\bot}$ Obtain proof of delivery

How was your delivery?

DELIVERY STATUS

TRACKING ID

791370469138 🖉 🏠

FROM

OLD BETHPAGE, NY US

Label Created 6/29/2023 11:06 AM

PACKAGE RECEIVED BY FEDEX

MELVILLE, NY 7/5/2023 11:19 AM

IN TRANSIT

WINDSOR LOCKS, CT 7/6/2023 7:25 AM

OUT FOR DELIVERY

WINDSOR LOCKS, CT 7/6/2023 7:35 AM

DELIVERED

East Longmeadow, MA US

7/6/2023 at 10:01 AM

↓ View travel history

Want updates on this shipment? Enter your email and we will do the rest!

YOUR EMAIL

MORE OPTIONS

SUBMIT

ASK FEDEX

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0001 V05_Sample Receiving Checklist

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

Client Ramboll		True	False
Project <u>Clarement</u> Polychemical Tite			r 1013¢
MCP/RCP Required N\A	Received on Ice		
Deliverable Package Requirement NIA	Received in Cooler		
Location Old Bethage New York	Custody Seal: DATE TIME	<u> </u>	<u> </u>
PWSID# (When Applicable) NIA	COC Relinquished		
Arrival Method:	COC/Samples Labels Agree	<u> </u>	
Courier Fed Ex Walk In Other Other	All Samples in Good Condition		
Received By / Date / Time AAM 7-6-23 1001	Samples Received within Holding Time		
Back-Sheet By / Date / Time AAM 17-6-23/1215	Is there enough Volume	U /	
Temperature Method Temp. Gun #5	Proper Media/Container Used	O'	
Temp < 6° C Actual Temperature 2.5°C	Splitting Samples Required	Image: second control of the control of	
Rush Samples: Yes No Notify	MS/MSD	Ø,	
Short Hold: Yes No Notify	Trip Blanks	ď	一百
Notes regarding Samples/COC outside of SOP:	Lab to Filters	$\overline{\square}$	同
PFAS 1633 was split from	COC Legible	同	
work order	COC Included: (Check all included)	Banton S	
		pler Name	Ø
		ection Date/Tim	e 🗹
	All Samples Proper pH: N/A		
	<u>Additional Contai</u>	ner Notes	
		~~~	
M			
•			
•			

	***************************************		<del></del>				<del></del>										-					
			1	$\perp$	$\perp$		$\perp$	$\perp$						$\perp$							T	
	=		L							$\perp$	$\perp$									T		
	Other / Fill in															T		T			1	$\top$
	her																		1	1	1	$\top$
	ŏ								T	1		T		1	T	T	T	十	十	1	十	十
		Col/Bact	Ī	T			T	T	T	1	T	十	┪	1	1	T	┪	$\dagger$	$\dagger$	十	T	+
		BiSulfate	T	1	1	1		T	1	†		1	†	十	十	T	$\dagger$	十	十	+	╅	╁
.	als	D.I. Water			T	十	1	†	1	T	1	十	T	1	T	十	十	十	十	+	$\dagger$	十
	VOA Vials	MeOH	T	†	T	十	十	1	十	T	┪	十	$\dagger$	╁	十	十	$\dagger$	+	+	+	十	+
	9	НСІ	0	, ,	J	1	1,	1	1	十	T	$\dagger$	$\dagger$	$\dagger$	1	╁	T	╁	$\dagger$	+	十	╁
		Unpreserved	T	T	十	┪	1	1	T	十	T	┪	┪	十	十	T	$\dagger$	╁	╁	+	┪	╁
	Π	JuiZ/HO _B N	T	T	†	T	T	†	1	T	T	†	$\dagger$	$\dagger$	十	╁╴	╫	+	$\dagger$	╁	+	+
		HOBN		T	1	1	T	T	T	†	╁	T	$\dagger$	T	T	$\dagger$	十	十	十	十	+	+
	뒽	Nitric	T	T	T	T	十	╁	T	╁	$\dagger$	†	$\dagger$	+	†	t	$\dagger$	十	╁	十	+	╫
	250mL	Sulfuric		T	1	十	T	T	T	T	十	+	t	$\dagger$	$\dagger$	$\dagger$	f	十	╁	╁	╁	+-
tics		smsirT	Г	T	T	T	╁	1	╁	T	$\dagger$	╁	T	十	╁	十	╁	╁	十	╁	+	+
Plastics		Unpreserved		T	T	$\dagger$	T	$\dagger$	T	T	t	†	$\dagger$	十	╁	${\dagger}$	╁	+	+	╁	+	+
		Sulfuric		T	T	T	十	T	╁	†	$\dagger$	T	+	╁	$\vdash$	<u> </u>	$\dagger$	+	+	╫	╁	+
	500mL	Unpreserved			十	T	$\dagger$	T	T	T	T	╁	$\dagger$	T	f	H	+	╁	╁	+	╁	+
		Sulfuric		T	┢	T	T	╁	T	f	T	十	$\dagger$	+	┢	$\vdash$	$\vdash$	十	+	╁	╁╴	╁╌┤
	1 Liter	Unpreserved	$\vdash$		T	十	T	T	T	╁┈	$\dagger$	$\dagger$	T	$\dagger$	┢	┢	<del> </del>	╁	╁	╁	+	+
	100mL	Unpreserved	2	1																T		
		HCI				T			T		T		†				T	<u> </u>	╁	H	$\vdash$	H
S S	250mL	Phosphoric					T				T		T	<del>                                     </del>		<u> </u>		$\vdash$	f	H	┢	${}^{\dag}$
Ambers	2	Sulfuric					T					T	<u> </u>			_		$\vdash$	f	$\vdash$	╁╌	H
	_	Sulfuric							<u> </u>	Г	T	T	T	f		<b> </b>	$I^-$	T	<del>                                     </del>	$\vdash$	f	H
	1 Liter	нсг										T		T			I		<del>                                     </del>			H
	-	Unpreserved	7			H	T				<del>                                     </del>	T		-			$\vdash$	<del>                                     </del>		$\vdash$	<del> </del>	H
	earl	Zoz Amb/Clear			-	T						1						<del>                                     </del>	<del> </del>		<del> </del>	H
Soils Jars	(Circle Amb/Clear)	4oz Amb/Clear											T					<b>-</b>			-	H
Soils	ie An	8oz Amb/Clear				Г																H
	Ü	16oz Amb/Clear																				H
		Sample	-	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	70

July 21, 2023

Payson Long NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873 Syracuse, NY 13221

Project Location: Old Bethage, New York

Client Job Number: Project Number: 130015

Laboratory Work Order Number: 23G0640

Myle Murray

Enclosed are results of analyses for samples as received by the laboratory on July 6, 2023. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle A. Murray Project Manager

# **Table of Contents**

Sample Summary	3
Case Narrative	4
Sample Results	5
23G0640-01	5
23G0640-02	8
23G0640-03	11
23G0640-04	14
Sample Preparation Information	17
QC Data	18
Semivolatile Organic Compounds by - LC/MS-MS	18
B345527	18
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	23
B345592	23
Flag/Qualifier Summary	24
Certifications	25
Chain of Custody/Sample Receipt	27



NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873

PURCHASE ORDER NUMBER: 144165

REPORT DATE: 7/21/2023

Syracuse, NY 13221 ATTN: Payson Long

PROJECT NUMBER: 130015

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 23G0640

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Old Bethage, New York

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
PD-CP-00-070523	23G0640-01	Ground Water		Draft Method 1633	
PD-CP-01-070523	23G0640-02	Ground Water		Draft Method 1633	
ASF-CP-00-070523	23G0640-03	Ground Water		Draft Method 1633	
ASF-CP-01-070523	23G0640-04	Ground Water		Draft Method 1633	



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

#### **Draft Method 1633**

#### Qualifications:

H-01

Recommended sample holding time was exceeded, but analysis was performed before 2X the allowable holding time.

#### Analyte & Samples(s) Qualified:

#### **Total Suspended Solids**

23G0640-01[PD-CP-00-070523], 23G0640-02[PD-CP-01-070523], 23G0640-03[ASF-CP-00-070523], 23G0640-04[ASF-CP-01-070523], 23G0640-04[ASF-CP-01-070524], 23G0640-04[ASF-CP-01-070524], 23G0640-04[ASF-CP-01-070524], 23G0640-04[ASF-CP-01-070524], 23G0640-04[ASF-CP-01-070524], 23G064

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Meghan E. Kelley Reporting Specialist

Meghan S. Kelley



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0640-01
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

		Se	mivolatile Organic Cor	npounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	24	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluoropentanoic acid (PFPeA)	18	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorohexanoic acid (PFHxA)	21	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluoroheptanoic acid (PFHpA)	11	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorooctanoic acid (PFOA)	31	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorononanoic acid (PFNA)	25	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorodecanoic acid (PFDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorobutanesulfonic acid (PFBS)	3.7	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluoropentanesulfonic acid (PFPeS)	2.4	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorohexanesulfonic acid (PFHxS)	7.5	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorooctanesulfonic acid (PFOS)	14	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
acid (6:2FTS) 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-EtFOSAA (NEtFOSAA)	1.5	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
9Cl-PF3ONS (F53B Minor)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
acid(FPePA)(5:3FTCA)  3-Perfluoroheptyl propanoic acid (FHpPA)	ND ND	47 47	ng/L	1		Draft Method 1633  Draft Method 1633	7/18/23 7/18/23	7/20/23 17:31 7/20/23 17:31	AMS AMS
(7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
(PFEESA) Perfluoro-3-methoxypropanoic acid	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
(PFMPA)									



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0640-01
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS $\,$

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
(PFMBA)			_						
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:31	AMS
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
13C4-PFBA		51.0	10-130					7/20/23 17:31	
13C5-PFPeA		79.9	35-150					7/20/23 17:31	
13C5-PFHxA		91.4	55-150					7/20/23 17:31	
13C4-PFHpA		104	55-150					7/20/23 17:31	
13C8-PFOA		93.7	60-140					7/20/23 17:31	
13C9-PFNA		88.6	55-140					7/20/23 17:31	
13C6-PFDA		88.6	50-140					7/20/23 17:31	
13C7-PFUnA		86.8	30-140					7/20/23 17:31	
13C2-PFDoA		83.8	10-150					7/20/23 17:31	
13C2-PFTeDA		79.4	10-130					7/20/23 17:31	
13C3-PFBS		95.8	55-150					7/20/23 17:31	
13C3-PFHxS		95.7	55-150					7/20/23 17:31	
13C8-PFOS		89.0	45-140					7/20/23 17:31	
13C2-4:2FTS		86.0	60-200					7/20/23 17:31	
13C2-6:2FTS		85.6	60-200					7/20/23 17:31	
13C2-8:2FTS		77.9	50-200					7/20/23 17:31	
13C8-PFOSA		92.2	30-130					7/20/23 17:31	
D3-NMeFOSA		62.2	15-130					7/20/23 17:31	
D5-NEtFOSA		61.5	10-130					7/20/23 17:31	
D3-NMeFOSAA		83.1	45-200					7/20/23 17:31	
D5-NEtFOSAA		88.6	10-200					7/20/23 17:31	
D7-NMeFOSE		78.6	10-150					7/20/23 17:31	
D9-NEtFOSE		80.3	10-150					7/20/23 17:31	
13C3-HFPO-DA		82.0	25-160					7/20/23 17:31	



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: PD-CP-00-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0640-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/I	1	H-01	Draft Method 1633	7/14/23	7/14/23 11:50	DDB



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

**Field Sample #: PD-CP-01-070523** Sampled: 7/5/2023 09:30

Sample ID: 23G0640-02
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

		S	emivolatile Organic Cor	npounds by - I	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	25	3.9	ng/L	1	-	Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoropentanoic acid (PFPeA)	17	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorohexanoic acid (PFHxA)	21	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoroheptanoic acid (PFHpA)	11	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorooctanoic acid (PFOA)	31	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorononanoic acid (PFNA)	26	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorodecanoic acid (PFDA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorobutanesulfonic acid (PFBS)	4.0	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoropentanesulfonic acid (PFPeS)	2.4	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorohexanesulfonic acid (PFHxS)	7.8	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorooctanesulfonic acid (PFOS)	15	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
acid (6:2FTS) 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
N-EtFOSAA (NEtFOSAA)	1.6	0.97	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol	ND	9.7	ng/L	1		Draft Method 1633  Draft Method 1633	7/18/23	7/20/23 17:46	AMS
(NEtFOSE) Hexafluoropropylene oxide dimer acid	ND ND	9.7 3.9	ng/L	1		Draft Method 1633	7/18/23 7/18/23	7/20/23 17:46 7/20/23 17:46	AMS AMS
(HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
(ADONA) 9CI-PF3ONS (F53B Minor)	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.7	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	48	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	48	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) Perfluoro-3-methoxypropanoic acid	ND ND	1.9	ng/L	1		Draft Method 1633  Draft Method 1633	7/18/23	7/20/23 17:46	AMS
(PFMPA)	ND	1.9	ng/L	1		Drait Michiod 1033	7/18/23	7/20/23 17:46	AMS



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: PD-CP-01-070523 Sampled: 7/5/2023 09:30

Sample ID: 23G0640-02
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 17:46	AMS
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
13C4-PFBA		59.8	10-130					7/20/23 17:46	
13C5-PFPeA		81.8	35-150					7/20/23 17:46	
13C5-PFHxA		94.9	55-150					7/20/23 17:46	
13C4-PFHpA		106	55-150					7/20/23 17:46	
13C8-PFOA		101	60-140					7/20/23 17:46	
13C9-PFNA		89.1	55-140					7/20/23 17:46	
13C6-PFDA		88.3	50-140					7/20/23 17:46	
13C7-PFUnA		90.1	30-140					7/20/23 17:46	
13C2-PFDoA		84.3	10-150					7/20/23 17:46	
13C2-PFTeDA		79.6	10-130					7/20/23 17:46	
13C3-PFBS		97.7	55-150					7/20/23 17:46	
13C3-PFHxS		94.4	55-150					7/20/23 17:46	
13C8-PFOS		89.2	45-140					7/20/23 17:46	
13C2-4:2FTS		82.8	60-200					7/20/23 17:46	
13C2-6:2FTS		81.3	60-200					7/20/23 17:46	
13C2-8:2FTS		73.4	50-200					7/20/23 17:46	
13C8-PFOSA		92.3	30-130					7/20/23 17:46	
D3-NMeFOSA		66.2	15-130					7/20/23 17:46	
D5-NEtFOSA		64.4	10-130					7/20/23 17:46	
D3-NMeFOSAA		84.7	45-200					7/20/23 17:46	
D5-NEtFOSAA		86.5	10-200					7/20/23 17:46	
D7-NMeFOSE		80.5	10-150					7/20/23 17:46	
D9-NEtFOSE		82.5	10-150					7/20/23 17:46	
13C3-HFPO-DA		84.8	25-160					7/20/23 17:46	



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

**Field Sample #: PD-CP-01-070523** Sampled: 7/5/2023 09:30

Sample ID: 23G0640-02
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1	H-01	Draft Method 1633	7/14/23	7/14/23 11:50	RRB



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-00-070523 Sampled: 7/5/2023 10:45

Sample ID: 23G0640-03
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

		Se	mivolatile Organic Cor	npounds by - I	LC/MS-MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	25	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoropentanoic acid (PFPeA)	17	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorohexanoic acid (PFHxA)	21	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoroheptanoic acid (PFHpA)	11	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorooctanoic acid (PFOA)	32	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorononanoic acid (PFNA)	25	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorodecanoic acid (PFDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorobutanesulfonic acid (PFBS)	3.8	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoropentanesulfonic acid (PFPeS)	2.4	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorohexanesulfonic acid (PFHxS)	8.1	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorooctanesulfonic acid (PFOS)	14	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-EtFOSAA (NEtFOSAA)	1.5	0.95	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
9CI-PF3ONS (F53B Minor)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.5	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	47	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	47	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-00-070523

Sampled: 7/5/2023 10:45

Sample ID: 23G0640-03

Sample Matrix: Ground Water

Comizzolatila	Organia	Compounds by	, I C/MC MC

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
(PFMBA) Nonafluoro-3,6-dioxaheptanoic acid	ND	1.0	77			D 034 4 11/22	E (1.0./22	7/20/22 10 02	
(NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:02	AMS
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
13C4-PFBA		88.3	10-130					7/20/23 18:02	
13C5-PFPeA		79.1	35-150					7/20/23 18:02	
13C5-PFHxA		90.9	55-150					7/20/23 18:02	
13C4-PFHpA		102	55-150					7/20/23 18:02	
13C8-PFOA		93.7	60-140					7/20/23 18:02	
13C9-PFNA		85.5	55-140					7/20/23 18:02	
13C6-PFDA		83.6	50-140					7/20/23 18:02	
13C7-PFUnA		76.5	30-140					7/20/23 18:02	
13C2-PFDoA		72.8	10-150					7/20/23 18:02	
13C2-PFTeDA		65.4	10-130					7/20/23 18:02	
13C3-PFBS		92.6	55-150					7/20/23 18:02	
13C3-PFHxS		87.9	55-150					7/20/23 18:02	
13C8-PFOS		87.2	45-140					7/20/23 18:02	
13C2-4:2FTS		82.6	60-200					7/20/23 18:02	
13C2-6:2FTS		78.8	60-200					7/20/23 18:02	
13C2-8:2FTS		67.0	50-200					7/20/23 18:02	
13C8-PFOSA		76.4	30-130					7/20/23 18:02	
D3-NMeFOSA		54.2	15-130					7/20/23 18:02	
D5-NEtFOSA		50.8	10-130					7/20/23 18:02	
D3-NMeFOSAA		67.2	45-200					7/20/23 18:02	
D5-NEtFOSAA		69.8	10-200					7/20/23 18:02	
D7-NMeFOSE		64.5	10-150					7/20/23 18:02	
D9-NEtFOSE		60.8	10-150					7/20/23 18:02	
13C3-HFPO-DA		85.6	25-160					7/20/23 18:02	



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-00-070523

Sampled: 7/5/2023 10:45

Sample ID: 23G0640-03
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	18	10	mg/L	1	H-01	Draft Method 1633	7/14/23	7/14/23 11:50	RRB



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-01-070523 Sampled: 7/5/2023 10:45

Sample ID: 23G0640-04
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

		Se	mivolatile Organic Cor	npounds by - I	LC/MS-MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	22	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoropentanoic acid (PFPeA)	18	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorohexanoic acid (PFHxA)	20	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoroheptanoic acid (PFHpA)	11	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorooctanoic acid (PFOA)	32	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorononanoic acid (PFNA)	26	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorodecanoic acid (PFDA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoroundecanoic acid (PFUnA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorododecanoic acid (PFDoA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorotridecanoic acid (PFTrDA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorotetradecanoic acid (PFTeDA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorobutanesulfonic acid (PFBS)	3.8	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoropentanesulfonic acid (PFPeS)	2.5	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorohexanesulfonic acid (PFHxS)	7.4	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorooctanesulfonic acid (PFOS)	14	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorononanesulfonic acid (PFNS)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorodecanesulfonic acid (PFDS)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorododecanesulfonic acid (PFDoS)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluorooctanesulfonamide (PFOSA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-MeFOSAA (NMeFOSAA)	ND	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-EtFOSAA (NEtFOSAA)	1.5	0.96	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.6	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.6	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
9CI-PF3ONS (F53B Minor)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
11Cl-PF3OUdS (F53B Major)	ND	3.8	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.6	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	48	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	48	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-01-070523 Sampled: 7/5/2023 10:45

Sample ID: 23G0640-04
Sample Matrix: Ground Water

#### Semivolatile Organic Compounds by - LC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
(PFMBA) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.9	ng/L	1		Draft Method 1633	7/18/23	7/20/23 18:18	AMS
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
13C4-PFBA		83.3	10-130					7/20/23 18:18	
13C5-PFPeA		72.2	35-150					7/20/23 18:18	
13C5-PFHxA		84.5	55-150					7/20/23 18:18	
13C4-PFHpA		96.4	55-150					7/20/23 18:18	
13C8-PFOA		87.0	60-140					7/20/23 18:18	
13C9-PFNA		79.4	55-140					7/20/23 18:18	
13C6-PFDA		79.9	50-140					7/20/23 18:18	
13C7-PFUnA		76.4	30-140					7/20/23 18:18	
13C2-PFDoA		68.3	10-150					7/20/23 18:18	
13C2-PFTeDA		61.9	10-130					7/20/23 18:18	
13C3-PFBS		85.1	55-150					7/20/23 18:18	
13C3-PFHxS		83.0	55-150					7/20/23 18:18	
13C8-PFOS		83.0	45-140					7/20/23 18:18	
13C2-4:2FTS		77.1	60-200					7/20/23 18:18	
13C2-6:2FTS		74.4	60-200					7/20/23 18:18	
13C2-8:2FTS		62.9	50-200					7/20/23 18:18	
13C8-PFOSA		72.7	30-130					7/20/23 18:18	
D3-NMeFOSA		53.3	15-130					7/20/23 18:18	
D5-NEtFOSA		50.0	10-130					7/20/23 18:18	
D3-NMeFOSAA		66.3	45-200					7/20/23 18:18	
D5-NEtFOSAA		69.7	10-200					7/20/23 18:18	
D7-NMeFOSE		58.5	10-150					7/20/23 18:18	
D9-NEtFOSE		55.6	10-150					7/20/23 18:18	
13C3-HFPO-DA		77.8	25-160					7/20/23 18:18	



Project Location: Old Bethage, New York Sample Description: Work Order: 23G0640

Date Received: 7/6/2023

Field Sample #: ASF-CP-01-070523

Sample ID: 23G0640-04
Sample Matrix: Ground Water

Sampled: 7/5/2023 10:45

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1	H-01	Draft Method 1633	7/14/23	7/14/23 11:50	RRB



#### **Sample Extraction Data**

Prep Method:Draft Method 1633 Analytical Method:Draft Method 1633 Leachates were extracted on 7/14/2023 per NO PREP in Batch B345592

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
23G0640-01 [PD-CP-00-070523]	B345527	528	5.00	07/18/23
23G0640-02 [PD-CP-01-070523]	B345527	517	5.00	07/18/23
23G0640-03 [ASF-CP-00-070523]	B345527	528	5.00	07/18/23
23G0640-04 [ASF-CP-01-070523]	B345527	520	5.00	07/18/23

#### **Draft Method 1633**

Lab Number [Field ID]	Batch	Initial [mL]	Date
23G0640-01 [PD-CP-00-070523]	B345592	50.0	07/14/23
23G0640-02 [PD-CP-01-070523]	B345592	50.0	07/14/23
23G0640-03 [ASF-CP-00-070523]	B345592	50.0	07/14/23
23G0640-04 [ASF-CP-01-070523]	B345592	50.0	07/14/23



#### QUALITY CONTROL

Spike

Source

%REC

RPD

#### Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
eatch B345527 - Draft Method 1633										
Blank (B345527-BLK1)				Prepared: 07	7/18/23 Anal	yzed: 07/20/2	23			
Perfluorobutanoic acid (PFBA)	ND	3.9	ng/L							
erfluoropentanoic acid (PFPeA)	ND	2.0	ng/L							
erfluorohexanoic acid (PFHxA)	ND	0.98	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	0.98	ng/L							
Perfluorooctanoic acid (PFOA)	ND	0.98	ng/L							
erfluorononanoic acid (PFNA)	ND	0.98	ng/L							
erfluorodecanoic acid (PFDA)	ND	0.98	ng/L							
Perfluoroundecanoic acid (PFUnA)	ND	0.98	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	0.98	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	0.98	ng/L							
Perfluorotetradecanoic acid (PFTeDA)	ND	0.98	ng/L							
erfluorobutanesulfonic acid (PFBS)	ND	0.98	ng/L							
Perfluoropentanesulfonic acid (PFPeS)	ND	0.98	ng/L							
Perfluorohexanesulfonic acid (PFHxS)	ND	0.98	ng/L							
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.98	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	0.98	ng/L							
Perfluorononanesulfonic acid (PFNS)	ND	0.98	ng/L							
Perfluorodecanesulfonic acid (PFDS)	ND	0.98	ng/L							
Perfluorododecanesulfonic acid (PFDoS)	ND	0.98	ng/L							
H,1H,2H,2H-Perfluorohexane sulfonic	ND	3.9	ng/L							
H,1H,2H,2H-Perfluorooctane sulfonic acid 5:2FTS)	ND	3.9	ng/L							
H,1H,2H,2H-Perfluorodecane sulfonic cid (8:2FTS)	ND	3.9	ng/L							
erfluorooctanesulfonamide (PFOSA)	ND	0.98	ng/L							
N-methyl perfluoroocatnesulfonamide NMeFOSA)	ND	0.98	ng/L							
N-ethyl perfluorooctanesulfonamide NEtFOSA)	ND	0.98	ng/L							
N-MeFOSAA (NMeFOSAA)	ND	0.98	ng/L							
N-EtFOSAA (NEtFOSAA)	ND	0.98	ng/L							
N-methylperfluorooctanesulfonamidoethano (NMeFOSE)	ND	9.8	ng/L							
N-ethylperfluorooctanesulfonamidoethanol NEtFOSE)	ND	9.8	ng/L							
Iexafluoropropylene oxide dimer acid HFPO-DA)	ND	3.9	ng/L							
,8-Dioxa-3H-perfluorononanoic acid ADONA)	ND	3.9	ng/L							
Cl-PF3ONS (F53B Minor)	ND	3.9	ng/L							
1Cl-PF3OUdS (F53B Major)	ND	3.9	ng/L							
3:3FTCA)	ND	9.8	ng/L							
H,2H,3H,3H-Perfluorooctanoic cid(FPePA)(5:3FTCA)	ND	49	ng/L							
-Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	ND	49	ng/L							
Perfluoro(2-ethoxyethane)sulfonic acid PFEESA)	ND	2.0	ng/L							
Perfluoro-3-methoxypropanoic acid PFMPA)	ND	2.0	ng/L							
erfluoro-4-methoxybutanoic acid PFMBA) Jonafluoro-3,6-dioxaheptanoic acid	ND	2.0	ng/L							
NFDHA)	ND	2.0	-							
Surrogate: 13C4-PFBA	90.9		ng/L	98.4		92.4	10-130			



#### QUALITY CONTROL

Spike

Source

%REC

RPD

#### Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B345527 - Draft Method 1633										
Blank (B345527-BLK1)				Prepared: 07	/18/23 Analy	zed: 07/20/2	23			
Surrogate: 13C5-PFPeA	46.6		ng/L	49.2		94.8	35-150			
Surrogate: 13C5-PFHxA	23.6		ng/L	24.6		95.9	55-150			
urrogate: 13C4-PFHpA	24.0		ng/L	24.6		97.8	55-150			
urrogate: 13C8-PFOA	23.9		ng/L	24.6		97.2	60-140			
urrogate: 13C9-PFNA	10.7		ng/L	12.3		87.4	55-140			
urrogate: 13C6-PFDA	10.7		ng/L	12.3		86.8	50-140			
urrogate: 13C7-PFUnA	10.4		ng/L	12.3		84.7	30-140			
urrogate: 13C2-PFDoA	9.72		ng/L	12.3		79.1	10-150			
urrogate: 13C2-PFTeDA	9.40		ng/L	12.3		76.4	10-130			
urrogate: 13C3-PFBS	23.7		ng/L	24.6		96.5	55-150			
urrogate: 13C3-PFHxS	22.8		ng/L	24.6		92.7	55-150			
nrogate: 13C8-PFOS	22.3		ng/L	24.6		90.6	45-140			
urrogate: 13C2-4:2FTS	37.9		ng/L	49.2		77.0	60-200			
arrogate: 13C2-6:2FTS	39.0		ng/L	49.2		79.3	60-200			
urrogate: 13C2-8:2FTS	37.1		ng/L	49.2		75.4	50-200			
urrogate: 13C8-PFOSA	20.9		ng/L	24.6		84.8	30-130			
urrogate: D3-NMeFOSA	16.2		ng/L	24.6		65.7	15-130			
urrogate: D5-NEtFOSA	16.1		ng/L	24.6		65.6	10-130			
nrrogate: D3-NMeFOSAA	41.5		ng/L	49.2		84.3	45-200			
urrogate: D5-NEtFOSAA	39.7		ng/L	49.2		80.8	10-200			
urrogate: D7-NMeFOSE	192		ng/L	246		78.2	10-150			
urrogate: D9-NEtFOSE	190		ng/L	246		77.2	10-150			
urrogate: 13C3-HFPO-DA	89.9		ng/L	98.4		91.4	25-160			
CS (B345527-BS1)				Prepared: 07	/18/23 Analy	zed: 07/20/2	23			
erfluorobutanoic acid (PFBA)	91.4	4.0	ng/L	95.0		96.2	58-148	<u></u>		
erfluoropentanoic acid (PFPeA)	45.0	2.0	ng/L	47.5		94.7	54-152			
erfluorohexanoic acid (PFHxA)	22.2	0.99	ng/L	23.8		93.4	55-152			
erfluoroheptanoic acid (PFHpA)	21.9	0.99	ng/L	23.8		92.1	54-154			
erfluorooctanoic acid (PFOA)	21.6	0.99	ng/L	23.8		90.9	52-161			
erfluorononanoic acid (PFNA)	22.9	0.99	ng/L	23.8		96.6	59-149			
erfluorodecanoic acid (PFDA)	22.4	0.99	ng/L	23.8		94.1	52-147			
erfluoroundecanoic acid (PFUnA)	22.1	0.99	ng/L	23.8		92.8	48-159			
erfluorododecanoic acid (PFDoA)	22.5	0.99	ng/L	23.8		94.7	64-142			
erfluorotridecanoic acid (PFTrDA)	22.6	0.99	ng/L	23.8		95.0	49-148			
erfluorotetradecanoic acid (PFTeDA)	23.4	0.99	ng/L	23.8		98.7	47-161			
erfluorobutanesulfonic acid (PFBS)	20.4	0.99	ng/L	21.1		96.8	62-144			
erfluoropentanesulfonic acid (PFPeS)	21.6	0.99	ng/L	22.3		96.8	59-151			
erfluorohexanesulfonic acid (PFHxS)	20.3	0.99	ng/L	21.7		93.4	57-146			
erfluoroheptanesulfonic acid (PFHpS)	22.2	0.99	ng/L	22.6		98.0	55-152			
erfluorooctanesulfonic acid (PFOS)	20.3	0.99	ng/L	22.0		92.0	58-149			
erfluorononanesulfonic acid (PFNS)	20.3	0.99	ng/L ng/L	22.9		89.2	52-148			
erfluorodecanesulfonic acid (PFDS)	20.4 19.7	0.99	ng/L ng/L	22.9		85.9	51-147			
erfluorododecanesulfonic acid (PFDoS)	20.3	0.99	ng/L ng/L	23.0		88.3	36-145			
I,1H,2H,2H-Perfluorohexane sulfonic	20.3 87.3	4.0	ng/L	89.1		97.9	67-146			
id (4:2FTS) H,1H,2H,2H-Perfluorooctane sulfonic acid	87.6	4.0	ng/L	90.3		97.1	61-151			
:2FTS) H,1H,2H,2H-Perfluorodecane sulfonic	90.6	4.0	ng/L	91.5		99.0	63-152			
erfluorooctanesulfonamide (PFOSA)	22.6	0.99	ng/L	23.8		94.9	61-148			
-methyl perfluoroocatnesulfonamide  JMeFOSA)	22.6 22.6	0.99	ng/L ng/L	23.8		95.1	63-145			



## 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

#### QUALITY CONTROL

#### Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

221.0 222.6 222.3 232 229 96.0 87.3 80.2 81.0 242 1180 1120 39.2 45.1	0.99 0.99 0.99 9.9 4.0 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Prepared: 07 23.8 23.8 23.8 23.8 238 238 95.0 89.7 89.1 89.7 238	/18/23 Analyzo	95.0 93.7 97.5 96.2 101 97.3 90.0 90.3	65-139 58-144 59-146 71-136 69-137 63-144 68-146 56-156			
22.6 22.3 232 229 96.0 87.3 80.2 81.0 242 1180 3120	0.99 0.99 9.9 9.9 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	23.8 23.8 23.8 23.8 23.8 23.8 23.8 23.9 95.0 89.7	/18/23 Analyze	88.6 95.0 93.7 97.5 96.2 101 97.3 90.0	65-139 58-144 59-146 71-136 69-137 63-144 68-146 56-156			
22.6 22.3 232 229 96.0 87.3 80.2 81.0 242 1180 3120	0.99 0.99 9.9 9.9 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	23.8 23.8 238 238 95.0 89.7 89.1 89.7		95.0 93.7 97.5 96.2 101 97.3	58-144 59-146 71-136 69-137 63-144 68-146 56-156			
22.3 232 229 96.0 87.3 80.2 81.0 242 1180 1120 339.2	0.99 9.9 9.9 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	23.8 238 238 95.0 89.7 89.1 89.7		93.7 97.5 96.2 101 97.3	59-146 71-136 69-137 63-144 68-146 56-156			
22.3 232 229 96.0 87.3 80.2 81.0 242 1180 1120 339.2	0.99 9.9 9.9 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	23.8 238 238 95.0 89.7 89.1 89.7		93.7 97.5 96.2 101 97.3	59-146 71-136 69-137 63-144 68-146 56-156			
232 229 96.0 87.3 80.2 81.0 242 1180 1120 39.2	9.9 9.9 4.0 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	238 238 95.0 89.7 89.1 89.7		97.5 96.2 101 97.3 90.0	71-136 69-137 63-144 68-146 56-156			
229 96.0 87.3 80.2 81.0 242 1180 1120 39.2	9.9 4.0 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L ng/L	238 95.0 89.7 89.1 89.7		96.2 101 97.3 90.0	69-137 63-144 68-146 56-156			
96.0 87.3 80.2 81.0 242 1180 1120 39.2	4.0 4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L ng/L	95.0 89.7 89.1 89.7		101 97.3 90.0	63-144 68-146 56-156			
87.3 80.2 81.0 242 1180 1120 39.2	4.0 4.0 4.0 9.9	ng/L ng/L ng/L ng/L	89.7 89.1 89.7		97.3 90.0	68-146 56-156			
80.2 81.0 242 1180 1120 39.2	4.0 4.0 9.9 49	ng/L ng/L ng/L	89.1 89.7		90.0	56-156			
81.0 242 1180 1120 39.2	4.0 9.9 49	ng/L ng/L	89.7						
242 1180 1120 39.2	9.9 49	ng/L			90.3				
242 1180 1120 39.2	49		238		70.5	46-156			
1180 1120 39.2		na/I			102	62-129			
39.2	49	ng/L	1190		99.1	63-134			
		ng/L	1190		94.6	50-138			
<i>1</i> 5 1	2.0	ng/L	42.3		92.6	56-151			
<b>→</b> J.1	2.0	ng/L	47.5		95.0	51-145			
44.4	2.0	ng/L	47.5		93.5	55-148			
46.7	2.0	ng/L	47.5		98.2	48-161			
87.1		ng/L	99.0		88.0	10-130			
43.2		ng/L	49.5		87.2	35-150			
22.3		ng/L	24.7		90.0	55-150			
21.8		ng/L	24.7		88.2	55-150			
22.3		ng/L	24.7		90.1	60-140			
10.8		ng/L	12.4		87.1	55-140			
10.8		ng/L	12.4		86.9	50-140			
10.6		ng/L	12.4		85.9	30-140			
9.93		ng/L	12.4		80.3	10-150			
9.64		ng/L	12.4		77.9	10-130			
21.7		ng/L	24.7		87.6	55-150			
21.1		ng/L	24.7		85.3	55-150			
21.1		ng/L	24.7		85.3	45-140			
37.6		ng/L	49.5		76.0	60-200			
		ng/L	49.5		80.0	60-200			
		ng/L	49.5		76.7	50-200			
		ng/L	24.7		78.4	30-130			
		ng/L	24.7		65.7	15-130			
		ng/L	24.7		68.0	10-130			
		ng/L	49.5		78.2	45-200			
		ng/L	49.5		76.4	10-200			
		ng/L	247		74.3	10-150			
		ng/L	247		73.8	10-150			
		ng/L	99.0		86.5	25-160			
				/18/23 Analyze					
8.83	4.0	ng/L	7.92		111	44-157			
	9.93 9.64 21.7 21.1 37.6 39.6 37.9 19.4 16.3 16.8 38.7 37.8 184 183 85.6	9.64 21.7 21.1 21.1 37.6 39.6 37.9 19.4 16.3 16.8 38.7 37.8 184 183 85.6	9.64 ng/L 21.7 ng/L 21.1 ng/L 21.1 ng/L 37.6 ng/L 39.6 ng/L 39.6 ng/L 19.4 ng/L 16.3 ng/L 16.8 ng/L 38.7 ng/L 37.8 ng/L 184 ng/L 183 ng/L 85.6 ng/L 88.83 4.0 ng/L	9.64 ng/L 12.4 21.7 ng/L 24.7 21.1 ng/L 24.7 37.6 ng/L 49.5 39.6 ng/L 49.5 37.9 ng/L 49.5 19.4 ng/L 24.7 16.3 ng/L 24.7 16.8 ng/L 24.7 38.7 ng/L 24.7 38.7 ng/L 49.5 37.8 ng/L 24.7 38.7 ng/L 49.5 37.8 ng/L 49.5 37.8 ng/L 24.7 38.7 ng/L 24.7 38.7 ng/L 39.0 Prepared: 07	9.64 ng/L 12.4 21.7 ng/L 24.7 21.1 ng/L 24.7 21.1 ng/L 24.7 37.6 ng/L 49.5 39.6 ng/L 49.5 37.9 ng/L 49.5 19.4 ng/L 24.7 16.3 ng/L 24.7 16.8 ng/L 24.7 38.7 ng/L 49.5 37.8 ng/L 99.0 Prepared: 07/18/23 Analyze 8.83 4.0 ng/L 7.92	9.64 ng/L 12.4 77.9 21.7 ng/L 24.7 87.6 21.1 ng/L 24.7 85.3 21.1 ng/L 24.7 85.3 37.6 ng/L 49.5 76.0 39.6 ng/L 49.5 80.0 37.9 ng/L 49.5 76.7 19.4 ng/L 24.7 78.4 16.3 ng/L 24.7 65.7 16.8 ng/L 24.7 65.7 16.8 ng/L 24.7 68.0 38.7 ng/L 49.5 76.2 37.8 ng/L 49.5 76.4 184 ng/L 247 74.3 183 ng/L 247 73.8 85.6 ng/L 99.0 86.5  Prepared: 07/18/23 Analyzed: 07/20/2	9.64	9.64	9.64 ng/L 12.4 77.9 10-130 21.7 ng/L 24.7 87.6 55-150 21.1 ng/L 24.7 85.3 55-150 21.1 ng/L 24.7 85.3 55-150 21.1 ng/L 24.7 85.3 45-140 37.6 ng/L 49.5 76.0 60-200 39.6 ng/L 49.5 80.0 60-200 37.9 ng/L 49.5 76.7 50-200 19.4 ng/L 24.7 78.4 30-130 16.3 ng/L 24.7 65.7 15-130 16.8 ng/L 24.7 68.0 10-130 38.7 ng/L 49.5 78.2 45-200 37.8 ng/L 49.5 76.4 10-200 184 ng/L 247 74.3 10-150 184 ng/L 247 73.8 10-150 185.6 ng/L 99.0 86.5 25-160  Prepared: 07/18/23 Analyzed: 07/20/23



#### QUALITY CONTROL

Spike

Source

%REC

RPD

#### Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Reporting

	F 1:	Reporting	** **	Spike	Source	0/DEC	%REC	DEE	RPD	37.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B345527 - Draft Method 1633										
IRL Check (B345527-MRL1)				Prepared: 07	7/18/23 Analyze	d: 07/20/2	3			
erfluorohexanoic acid (PFHxA)	2.03	0.99	ng/L	1.98		103	62-149			
erfluoroheptanoic acid (PFHpA)	2.02	0.99	ng/L	1.98		102	56-150			
erfluorooctanoic acid (PFOA)	2.03	0.99	ng/L	1.98		103	57-161			
erfluorononanoic acid (PFNA)	2.00	0.99	ng/L	1.98		101	53-157			
erfluorodecanoic acid (PFDA)	2.02	0.99	ng/L	1.98		102	43-158			
erfluoroundecanoic acid (PFUnA)	1.96	0.99	ng/L	1.98		99.1	50-155			
erfluorododecanoic acid (PFDoA)	2.22	0.99	ng/L	1.98		112	60-141			
erfluorotridecanoic acid (PFTrDA)	2.09	0.99	ng/L	1.98		106	52-140			
erfluorotetradecanoic acid (PFTeDA)	2.17	0.99	ng/L	1.98		109	52-156			
erfluorobutanesulfonic acid (PFBS)	1.81	0.99	ng/L	1.76		103	63-145			
erfluoropentanesulfonic acid (PFPeS)	2.29	0.99	ng/L	1.86		123	58-144			
erfluorohexanesulfonic acid (PFHxS)	2.05	0.99	ng/L	1.81		113	44-158			
erfluoroheptanesulfonic acid (PFHpS)	1.89	0.99	ng/L	1.89		100	51-150			
erfluorooctanesulfonic acid (PFOS)	1.98	0.99	ng/L	1.84		108	43-162			
erfluorononanesulfonic acid (PFNS)	2.01	0.99	ng/L	1.91		105	46-151			
erfluorodecanesulfonic acid (PFDS)	1.80	0.99	ng/L	1.91		94.3	50-144			
erfluorododecanesulfonic acid (PFDoS)	1.91	0.99	ng/L	1.92		99.3	30-138			
H,1H,2H,2H-Perfluorohexane sulfonic cid (4:2FTS)	8.18	4.0	ng/L	7.43		110	52-158			
H,1H,2H,2H-Perfluorooctane sulfonic acid :2FTS)	7.82	4.0	ng/L	7.53		104	48-158			
H,1H,2H,2H-Perfluorodecane sulfonic bid (8:2FTS)	8.35	4.0	ng/L	7.62		109	46-165			
erfluorooctanesulfonamide (PFOSA)	2.15	0.99	ng/L	1.98		109	47-163			
-methyl perfluoroocatnesulfonamide	1.90	0.99	ng/L	1.98		95.8	54-155			
-ethyl perfluorooctanesulfonamide NEtFOSA)	2.11	0.99	ng/L	1.98		107	49-156			
I-MeFOSAA (NMeFOSAA)	2.23	0.99	ng/L	1.98		112	32-160			
-EtFOSAA (NEtFOSAA)	2.18	0.99	ng/L	1.98		110	51-154			
-methylperfluorooctanesulfonamidoethano NMeFOSE) -ethylperfluorooctanesulfonamidoethanol	22.4	9.9 9.9	ng/L	19.8 19.8		113 104	56-151 60-147			
NEtFOSE)  (exafluoropropylene oxide dimer acid	20.6 7.97	4.0	ng/L	7.92		104	58-154			
HFPO-DA)  8-Dioxa-3H-perfluorononanoic acid	7.97	4.0	ng/L	7.48		94.4	61-148			
ADONA) CI-PF3ONS (F53B Minor)		4.0	ng/L	7.43		86.4	44-167			
CI-PF3OUdS (F53B Major)	6.42	4.0	ng/L	7.43 7.48		87.0	36-158			
Perfluoropropyl propanoic acid (FPrPA)	6.50 21.4	9.9	ng/L	19.8		108	32-161			
H,2H,3H,3H-Perfluorooctanoic cid(FPePA)(5:3FTCA)	112	50	ng/L	99.0		113	39-156			
Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	104	50	ng/L	99.0		105	36-149			
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	3.53	2.0	ng/L	3.52		100	56-144			
erfluoro-3-methoxypropanoic acid PFMPA)	4.11	2.0	ng/L	3.96		104	48-150			
erfluoro-4-methoxybutanoic acid PFMBA)	3.89	2.0	ng/L	3.96		98.2	49-154			
onafluoro-3,6-dioxaheptanoic acid NFDHA)	3.89	2.0	ng/L	3.96		98.2	47-160			
urrogate: 13C4-PFBA	87.0		ng/L	99.0		87.9	10-130			
urrogate: 13C5-PFPeA	42.6		ng/L	49.5		86.1	35-150			
urrogate: 13C5-PFHxA	21.9		ng/L	24.8		88.4	55-150			



Surrogate: 13C3-HFPO-DA

## 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

#### QUALITY CONTROL

#### Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

MRL Check (B345527-MRL1)			Prepared: 07/18/23	Analyzed: 07/20	/23
Surrogate: 13C4-PFHpA	22.0	ng/L	24.8	88.8	55-150
Surrogate: 13C8-PFOA	22.4	ng/L	24.8	90.4	60-140
Surrogate: 13C9-PFNA	10.4	ng/L	12.4	84.4	55-140
Surrogate: 13C6-PFDA	10.9	ng/L	12.4	88.3	50-140
Surrogate: 13C7-PFUnA	10.3	ng/L	12.4	83.5	30-140
Surrogate: 13C2-PFDoA	9.63	ng/L	12.4	77.8	10-150
Surrogate: 13C2-PFTeDA	9.55	ng/L	12.4	77.2	10-130
Surrogate: 13C3-PFBS	21.7	ng/L	24.8	87.6	55-150
Surrogate: 13C3-PFHxS	20.8	ng/L	24.8	84.0	55-150
Surrogate: 13C8-PFOS	21.5	ng/L	24.8	86.7	45-140
Surrogate: 13C2-4:2FTS	35.2	ng/L	49.5	71.0	60-200
Surrogate: 13C2-6:2FTS	36.6	ng/L	49.5	73.9	60-200
Surrogate: 13C2-8:2FTS	35.6	ng/L	49.5	72.0	50-200
Surrogate: 13C8-PFOSA	19.9	ng/L	24.8	80.3	30-130
Surrogate: D3-NMeFOSA	15.5	ng/L	24.8	62.8	15-130
Surrogate: D5-NEtFOSA	15.6	ng/L	24.8	63.1	10-130
Surrogate: D3-NMeFOSAA	38.8	ng/L	49.5	78.3	45-200
Surrogate: D5-NEtFOSAA	38.9	ng/L	49.5	78.6	10-200
Surrogate: D7-NMeFOSE	182	ng/L	248	73.6	10-150
Surrogate: D9-NEtFOSE	184	ng/L	248	74.4	10-150

ng/L

99.0

86.1

25-160

85.3



#### QUALITY CONTROL

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B345592 - Draft Method 1633										
Blank (B345592-BLK1)				Prepared &	Analyzed: 07	7/14/23				
Total Suspended Solids	ND	5.0	mg/L							
LCS (B345592-BS1)				Prepared &	Analyzed: 07	7/14/23				
Total Suspended Solids	213	5.0	mg/L	200		106	64.1-125			



H-01

time.

## 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

#### FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section

 $Recommended \ sample \ holding \ time \ was \ exceeded, \ but \ analysis \ was \ performed \ before \ 2X \ the \ allowable \ holding$ 



#### CERTIFICATIONS

Certifications

NH-P,PA,WV

#### Certified Analyses included in this Report

Analyte

Draft Method 1633 in Water CT.MA.NH.NY.RI.NC.ME.VA Total Suspended Solids Perfluorobutanoic acid (PFBA) NH-P,NY,PA,WV NH-P,NY,PA,WV Perfluoropentanoic acid (PFPeA) Perfluorohexanoic acid (PFHxA) NH-P,NY,PA,WV Perfluoroheptanoic acid (PFHpA) NH-P,NY,PA,WV Perfluorooctanoic acid (PFOA) NH-P,NY,PA,WV Perfluorononanoic acid (PFNA) NH-P,NY,PA,WV Perfluorodecanoic acid (PFDA) NH-P,NY,PA,WV Perfluoroundecanoic acid (PFUnA) NH-P,NY,PA,WV Perfluorododecanoic acid (PFDoA) NH-P,NY,PA,WV Perfluorotridecanoic acid (PFTrDA) NH-P,NY,PA,WV Perfluorotetradecanoic acid (PFTeDA) NH-P,NY,PA,WV Perfluorobutanesulfonic acid (PFBS) NH-P,NY,PA,WV Perfluoropentanesulfonic acid (PFPeS) NH-P,NY,PA,WV Perfluorohexanesulfonic acid (PFHxS) NH-P,NY,PA,WV Perfluoroheptanesulfonic acid (PFHpS) NH-P,NY,PA,WV Perfluorooctanesulfonic acid (PFOS) NH-P,NY,PA,WV Perfluorononanesulfonic acid (PFNS) NH-P,PA,WV Perfluorodecanesulfonic acid (PFDS) NH-P,PA,WV Perfluorododecanesulfonic acid (PFDoS) NH-P,PA,WV 1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS) NH-P,PA,WV 1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS) NH-P,NY,PA,WV NH-P,NY,PA,WV 1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS) Perfluorooctanesulfonamide (PFOSA) NH-P,PA,WV N-methyl perfluoroocatnesulfonamide (NMeFOSA) NH-P,PA,WV N-ethyl perfluorooctanesulfonamide (NEtFOSA) NH-P,PA,WV N-MeFOSAA (NMeFOSAA) NH-P,NY,PA,WV N-EtFOSAA (NEtFOSAA) NH-P,NY,PA,WV N-methylperfluorooctanesulfonamidoethanol(NMeFOSE) NH-P,PA,WV N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE) NH-P,PA,WV Hexafluoropropylene oxide dimer acid (HFPO-DA) NH-P,NY,PA,WV 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) NH-P.NY.PA.WV 9Cl-PF3ONS (F53B Minor) NH-P,NY,PA,WV 11Cl-PF3OUdS (F53B Major) NH-P,NY,PA,WV 3-Perfluoropropyl propanoic acid (FPrPA)(3:3FTCA) NH-P,PA,WV 2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA) NH-P,PA,WV 3-Perfluoroheptyl propanoic acid (FHpPA)(7:3FTCA) NH-P,PA,WV Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA) NH-P,NY,PA,WV NH-P,NY,PA,WV Perfluoro-3-methoxypropanoic acid (PFMPA) Perfluoro-4-methoxybutanoic acid (PFMBA) NH-P,PA,WV

Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)



Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
MA	Massachusetts DEP	M-MA100	06/30/2024
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2024
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2024
RI	Rhode Island Department of Health	LAO00373	12/30/2023
NC	North Carolina Div. of Water Quality	652	12/31/2023
ME	State of Maine	MA00100	06/9/2025
VA	Commonwealth of Virginia	460217	12/14/2023
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2023
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2024
WV	West Virginia DEP Division of Water and Waste Management	419	08/31/2024

State   Stat	Michael Collection   Michael	Sampler(s): Pawer (Signature)	rawei Mecinski	7		١					13	くろ	250640	7	2	0	_					Project A	Laboratory Use Only Project Number:
Protection Street   Protection   Protectio	Pace Analysis of State   Pace Analysis of St		Laborato	J:Ac	Hode	ing Time:		-	_	<u> </u>					Analy	sis Re	quired	_					
10   10   10   10   10   10   10   10	1		<u> </u>							Pre	servativ	es: (see	key at	botto	m)							n w qor	nber:
Authority   Committee   Comm	1976	Syracuse, New York 13221-4873	Pace An	Slytical Services							0	2		0	0	-	<u> </u>	4	0	0		I	
State   Control   Contro	Statistical Composition   Continue   Conti	ine: (315) 956-6100	139 Sprine	e ot., East adow. MA 0102						L				<b> </b>		-			<u> </u>			Labora	ory ID:
Sample condition   Proper   Attract   Attrac	Property	nait: <u>michael.grifasi@ramboll.com</u>	,			age Requirem	ent:		1-1			407Þ											
Stronge beneficiation   Process   Process   Stronge beneficiation   Process   Stronge beneficiation   Process   Stronge beneficiation   Process   Stronge beneficiation   Process	Property	iject: NYSDEC Claremont Polychemical Site Q3 Sys Sample	es Attn:	RJ McCarth		2 and Level 3						ر) Aun			muli		N						
Sample dentification   Sample   Date   Time   Sample   Sample   Sample   Date   Time   Sample   Sample   Sample   Sample   Date   Time   Type   Native   Sample   Sample   Sample   Date   Time   Type   Native   Sample	State   Stat		Phone:	413-525-233		Format:						m9M-			mosto		104°C			auex			
Sample Entertitation   Sample   Sampl	Sample description   Sample	:ation: Old Bethpage, New York	_		EQU	IS 4-file				A81		+ slet			Ju9l		CI,F,S	ə		oib-f			
Sample Code)   Sample   Date   Time	Sample 10   Sample 20   Tryon   Tryo	Sample Identification				Sample	Sample			+ s20		eM J						biney	54	r't :W			
Part	Parameter code)	Unique Field Sample ID	Sample	Date	Time	Type	Matrix			0C: A		AT ()0						58: C	3: PF	0D 211			
Part   1/5/2023   07/5   Fro   Wide   9   6   N   X   X	PD   7/5/2023   Cyl 2, N   N   N   Cyl 2, N   N   N   N   N   N   N   N   N   N	(sys_sample_code)	Location			(See Key)	(See Key)		┈╢	Z98	┩	109				╌╢	╢	106	ε9 <b>τ</b>	728		qq	ample ID:
Pro 7/5/1023 o' 1/5   MS   MG   S   G   N   X   X   R   R   R   R   R   R   R   R	Pop   7/5/2023   c/15,   MS   WG   2 G N   X   X	PD-CP-00-070523	PD	7/5/2023	C33.	z	we												×	×			
3   PD   7/5/2023   C1/5   MSD   WG   2   G   N   X	Pp   7/5/2013   c  5 s   N   X   N   X   N   X   N   X   X   X	PD-CP-01-070523	9	7/5/2023	0753	G	WG		ļ	├									×	×			,
3	3	PD-CP-MS-070523	o ₄	7/5/2023	c.]{3	MS	wG	├	₩	╁				-		-							
175/2023   1445   150   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160   160	PAYING.  19.5/10.23   14-yf   FD   WG   S   G   N	PD-CP-MSD-070523	PO	7/5/2023	0.15		wG	┼		┼─				<del> </del>		-	-						43
0.0.5 July 2023 Monthly System Samples  W. 2 G. N X X X X X X X X X X X X X X X X X X	0.05 My 2023 Monthly System Samples  The Samples are to be Shipped via counter (e.g., Fed 5x)  GES, Inc.  Fed St.  Fed	ASF-CP-00-070523	z	7/5/2023	2401	z	WG	├	<del> </del>	-				<del> </del>		$\vdash$	_		×	×			
0.0.5 July 2023 Monthly System Samples  0.0.5 July 2023 Monthly System Samples  1.	0.0-5 ke/s 2023 Monthly System Samples  0.0-	ASF-CP-01-070523	FD	7/5/2023	345		WG	┼		<del> </del>				_	1	<del> </del>	<del>                                     </del>		×	×			
The Ashark  Outs by 2023 Monthly system Samples  Outs books if the samples are to be shipped via courier (e.g., Fed EA)  Outs books if the samples are to be shipped via courier (e.g., Fed EA)  Outs books if the samples are to be shipped via courier (e.g., Fed EA)  Outs books if the samples are to be shipped via courier (e.g., Fed EA)  Time: If 45 bit in the interval in the interv	1   6 A A N.C.	TB-070523		7/5/2023	1100	TB	WQ	7	Z	┼─				<del>                                     </del>		<del> </del>	-		-				
Tructions: OU.5 July 2023 Monthly System Samples  4 by:  CES, Inc.  Time: If 40  Time: If 40  Time: If 40  Custody Seals Intact? (if so, indicate the s. date, and time of the seal)  Time: Inc.  Time: Inc.  Time: If 40  Custody Seals Intact? (if so, indicate the s. date, and time of the seal)  Time: Inc.	The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be samples are to courier (e.g., Fed Ex)  The samples are to be samples are to courier (e.g., Fed Ex)  The samples are to courier (e.g., Fed Ex)  The samples are to courie							=	_	-				-		-	_		<u> </u>	<u></u>	<u> </u>		
The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are to be shipped via courier (e.g., Fed Ex)  The samples are	Tructions: OU.5 July 2023 Monthly System Samples  Doores (the samples are to be shipped via courier (e.g., Fed Ex)  GES, Inc.  The Ime: If 40  Time:							<del> </del>						<del>                                     </del>		-	<u> </u>						
Tructions: OU.5 Luly 2023 Monthly System Samples  d by:    Date:   FedEx   Dat	Tructions: OU.5 July 2023 Monthly System Samples  To boxes if the samples are to be shipped via courier (e.g., Fed Ex)  Time: 1/4 Sp. 12								<u> </u>	$\vdash$				-		<del>                                     </del>	ļ						
intercions:  Oboses if the samples are to be shipped via courier (e.g., Fed Ex)  Oboses if the samples are to be shipped via courier (e.g., Fed Ex)  Oboses if the samples are to be shipped via courier (e.g., Fed Ex)  Oboses if the samples are to be shipped via courier (e.g., Fed Ex)  Time: 1/4/O Tracking #: Time: 1/4/O Tracking #: Time: 1/4/D  Time: 1/4	Tructions: OUS July 2023 Monthly System Samples  The bookes if the samples are to be shipped via courier (e.g., Fed Ex)  The locking if:  The													<u> </u>									
Solutions: OU-5 July 2023 Monthly System Samples  Condition:  GES, Inc.  FedEx  GES, Inc.  FedEx  GES, Inc.  FedEx  For Condition:  Time: II 40  Tim	Tructions: OU-5 luly 2023 Monthly System Samples  d by:  GES, Inc.  Time: If 40  Time: I 7   5   72  Time: I 40  T																						
**Sections: OU.5 July 2023 Monthly System Samples  **Oboxes if the samples are to be shipped via courier (e.g., Fed Ex)  **Time: 1 4 0	Tooks if the Samples are to be shipped via counier (e.g., Fed Ex)  GES, Inc.  Time: If 4O  Tooking #:  Time: If 4D  Time: If 4D  Time: If 4D  Time: If 4D  Tooking #:  Time: If 4D  Time: If 4D																						,
tructions: OU-5 July 2023 Monthly System Samples  Tucking #:  Time: If 40  Time: Tim	Time:  FedEx  GES, Inc.  FedEx  Gourier Name:  FedEx								-	$\vdash$				$\vdash$					$\vdash$				
boxes if the samples are to be shipped via courier (e.g., Fed Ex)    d by:   Time:   1/40   Tracking #:   Time:   1/4p   Tracking #:   Time:   1/4p   Tracking #:   Time:   1/4p   Tracking #:   Time:   Time:	Time: If yo Date:  FedEx  GES, Inc.  FedEx  GES, Inc.  FedEx  Date:  FedEx  Date:  Time: If yo  Tocking #:  Time: If yo  Tocking #:  Time: If yo  Tocking #:  Time: If yo  Tim	oU-5 July 2023 Monthly System Sample.	<b>5</b> 0																				
GES, Inc.   Time:   I 40   Tracking #:   Time:   I 14    Time:   I 14    Time:   I 14    Time:   Tim	d by:  GES, Inc.  Time:  Ithe:  I	the top boxes if the samples are to be shipped via courier (	e.g., Fed Ex)										Cond	ition:								Other	omments or
GES, Inc.  GES, Inc.  Date: It 40  Tracking #: Date: Tracking #: Date: Tracking #: Trackin	GES, Inc.  GES, Inc.  Date:    Time:   I 40   Tracking #:   Time:   I 40   Tracking #:   Time:   I 4   Time:   I 4   Time:   I 4   Time:   I 40   Tracking #:   Time:   Tracking #:   Time:   Tracking #:   Time:   Tracking #:   Time:   Time	nquished by:	Date:	5/23	Courie	. 4	FedEx			slt	1/3											conditi	egarding on of samples
Time:  Ti	Time: Tracking #:		Time:	1140	Tracking	02		1-	īme:		100		T									S E	veu.
Indexing #:    PedEx   Date:   Received By:   C 2 2	Indexing #:    PedEx   Date:   Received BY:   Date:		Date:		Courier	Name:		2 1	Sate:				Cust	ody Se	als intë	act? (If.	so, indi	cate th	e #, date	, and tim	of the se	<i>[n</i>	
N = Normal env. sample, FD = field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FBB = Field Reagent Blank SE = Sediment, SD = Soil, WG = Groundwater, WQ = Water Quality, WS = Surface Water, WW = Waste Water, WP = Potable Water, AP = Ambient Air, Other (Specify): TB = Trip Blank SE = Sediment, SD = Soil, WG = Groundwater, WQ = Water Quality, WD = Water Quality	N= Normal env. sample, FD= field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank SE = Sediment, SO = Soil, WG = Groundwater, WQ = Waster Quality, WS = Surface Water, WW = Waste Waste, WP = Potable Water, AA = Ambient Air, Other (Specifore one, 1 = HCL, 2 = HNO), 3 = H,SO, 4 = NaOH, 5 = Zn Acetate, 6 = MeOH, 7 = NaHSO, 8 = Na,PO, 9 = Benzalkonium(C), 10 = other	rier Nome	Time:		Receive	9 #:		+					Į	Tem	Decati	ا ا						Ī	
e Type: e Matrix:	e Type: e Matrix: vative Code:		Time:		Milo)	a Mah	ru	`	] ime: [C	200			; } — 1										
	vative Code:	e Type: e Matrix:	Equipment Bl	ank, TB = Trip Bla lity, WS = Surface	nk, MS = Water, W	Lab Matrix Spike,  W = Waste Wate	Other (Specify r, WP = Potabl	FRB = e Wate	Field R	eagen Ambie	t Blank nt Air, O	ther (Spe	cify):										
																							I I

FedEx® Tracking

1

#### DELIVERED

# **Thursday**

7/6/2023 at 10:01 am

Signed for by: L.ARROYO

 $\underline{\downarrow}$  Obtain proof of delivery

How was your delivery?



## DELIVERY STATUS



#### TRACKING ID

791370469138 🗷 🏠

#### **FROM**

OLD BETHPAGE, NY US

Label Created 6/29/2023 11:06 AM

#### PACKAGE RECEIVED BY FEDEX

MELVILLE, NY 7/5/2023 11:19 AM

#### IN TRANSIT

WINDSOR LOCKS, CT 7/6/2023 7:25 AM

#### **OUT FOR DELIVERY**

WINDSOR LOCKS, CT 7/6/2023 7:35 AM

#### **DELIVERED**

East Longmeadow, MA US

Delivered 7/6/2023 at 10:01 AM

↓ View travel history

Want updates on this shipment? Enter your email and we will do the rest!

**YOUR EMAIL** 

MORE OPTIONS

**SUBMIT** 

ASK FEDEX

39 Spruce St.
East Longmeadow, MA. 01028
P: 413-525-2332
F:413-525-6405
www.pacelabs.com

ENV-FRM-ELON-0001 V05__Sample Receiving Checklist

## Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False



Client Ramboll		True	Cala-
Project Claremont Polychemical Tite		True	False
MCP/RCP Required N\A	Received on Ice		빝
Deliverable Package Requirement NIA	Received in Cooler		
Location Old Bethage New York	Custody Seal: DATE TIME		<u> </u>
PWSID# (When Applicable) NIA	COC Relinquished		
Arrival Method:	COC/Samples Labels Agree		
Courier Fed Ex Walk In Other	All Samples in Good Condition	$\square$	
Received By / Date / Time AAM 7-6-23 100 i	Samples Received within Holding Time	<b>D</b> /	
Back-Sheet By / Date / Time AAM 17-6-23/1215	Is there enough Volume	回	
Temperature, Method Temp. Gon #5	Proper Media/Container Used		
Temp < 6° C Actual Temperature 2.5°C	Splitting Samples Required	D D	<u> </u>
Rush Samples: Yes No Notify	MS/MSD	П	帚
Short Hold: Yes No Notify	Trip Blanks	n	븕
Notes regarding Samples/COC outside of SOP:	Lab to Filters	<del>-</del>	믐/
PFAS 1633 was split from		<b>=</b>	
work order	COC Legible COC Included: (Check all included)		<u></u>
			/
	Client Analysis Sam	nlar Name	I 🗸
		pler Name	
		pler Name ection Date/Time	Image: Control of the
	Project D IDs Colle	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	
	Project IDs Colle  All Samples Proper pH: N/A	ection Date/Time	

Ambers Plastics VOA Vials Other / Fill in	Sulfuric MaOH NaOH Unpreserved HCI MeOH BiSulfate Col/Bact																				
Ambers Plastics VOA Vials 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH Unpreserved HCI MeOH D.I. Water BiSulfate					-)															
Ambers Plastics VOA Vials 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH Unpreserved HCI MeOH D.I. Water BiSulfate					-1															
Ambers Plastics VOA Vials 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH Unpreserved HCI MeOH D.I. Water BiSulfate					-)															
Ambers Plastics VOA Vials 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH Unpreserved HCI MeOH D.I. Water BiSulfate					-1															
Ambers Plastics 250mL 1 Liter 500mL 250mL	Sulfuric NaOH NaOH\Zinc Unpreserved HCI MeOH D.I. Water																		-		
Ambers Plastics 250mL 1 Liter 500mL 250mL	Sulfuric NaOH NaOH\Zinc Unpreserved HCI MeOH																	1	十	┪	1
Ambers Plastics 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH NaOH\Zinc Unpreserved HCI									-	-		1		+	+					1 '
Ambers Plastics 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH NaOH\Zinc Unpreserved							-		T	1	+		I	1			T	十	┪	1
Ambers Plastics 250mL 1 Liter 500mL 250mL	Sulfuric Nitric NaOH NaOH\Zinc Unpreserved						-	1	+		1		T	╽	十	T	1	1	$\dagger$	†	+
Ambers Plastics 250mL 1 Liter 500mL	Sulfuric Nitric NaOH SaOH\Zinc						<b>†</b>				T	T	T		T	T	$\dagger$	1	$\dagger$	$\dagger$	$\Box$
Ambers Plastics 250mL 1 Liter 500mL	Sulfuric Nitric HosM					1		1	T	T		T	T	T	╁	T	T	$\dagger$	$\dagger$	╁	H
Ambers Plastics 250mL 1 Liter 500mL	Sulfuric Nitric				T			T	1	T	1	T	T	1	T	╁	十	十	╁	$\dagger$	+
Ambers Plastics 250mL 1 Liter 500mL	Sulfuric			1		1		T	†	T	1	十	╁	T	十	╁	T	†	T	T	╁╌┨
Ambers Plastics 250mL 1 Liter 500mL			T		T	T	1	T	<b> </b>	T	<del>                                     </del>		T	╁╌	忊	T	十	1-	十	╁	+
Ambers 250mL 100mL 1 Liter 500mL		1		Τ	T	1		1	1	T	1	T	T	T	T	T	十	$\dagger$	╁	T	╁┤┪
Ambers 250mL 100mL 1 Liter 500mL	smzinī		T	T	T	1	1	十	T	╁┈	T	T	<del> </del>	十	┢	$\dagger$	╁	十	$\dagger$	${\dagger}$	+
Ambers 250mL 100mL 1 Liter 500mL	Unpreserved	1	T	╁	1	T	T	T	T		T	$I^-$	f	┢			╁	╁	+	$\vdash$	H
Ambers 250mL 100mL 1 Liter	Sulfuric	1		1	†	†	+	1			<del> </del>		$\vdash$		<b>-</b>	T	T	+	╁	$\vdash$	H
Ambers 250mL 100mL 1 Liter	Unpreserved	-	<b> </b>	1	丰	T	†	T	T	$\vdash$	<del> </del>	H		<del> </del>		┢	╁		╁		H
Ambers 250mL 100mL	Sulfuric	1-	T	1	1	T	<del> -</del>	T	$\dagger$				-			<del> </del>	f	╁	<del> </del>	╁	H
Ambers 250mL 1	Unpreserved	╂	十	1	T	十	T	T	<del> </del>	$\vdash$			<del> </del>		<del> </del>	<del> </del>	┢	╂	-	$\vdash$	Н
Ambers 250mL	Unpreserved	╂─							<del>                                     </del>												H
\\\\\\	HCI		T	T	T	╁	╁	f						<b>-</b>			<del> </del>	<del> </del>	_	_	H
\\\\\\	Phosphoric		T	T	T	T	T	f							ļ	<del>                                     </del>	$\vdash$	<del> </del>			H
	Sulfuric			T	T	T		T			$\vdash$					-	$\vdash$	_	-		$\dashv$
1 Liter	Sulfuric			$\vdash$	T	T	T	$I^{-}$			$\vdash$						-				
	<del></del>				$\dagger$	T	T				$\vdash$						<del>                                     </del>			-	$\blacksquare$
	HCL			T	T	$I^-$	T	<del> </del>									<del> </del>		$\vdash$		$\dashv$
اقر	HCI Nubreserved				T	1	T				$\vdash$								-		$\dashv$
Soils Jars (Circle Amb/Clear)	Unpreserved	• •		$I^-$	T	f															$\dashv$
Soils Jars	Soz Amb/Clear Unpreserved				T	T					$\dashv$		$\dashv$								
	4oz Amb/Clear 2oz Amb/Clear Unpreserved			$\vdash$	T	T		Н					$\dashv$	$\dashv$	_					$\dashv$	$\dashv$
	Soz Amb/Clear Unpreserved			1	4	2	9	7						-					Į	6	