

Intended for

New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Document type

Report

Date

November 2024

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (OCTOBER 2024)

CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

MONTHLY REPORT OF THE OPERATIONS & MAINTENANCE ACTIVITIES (OCTOBER 2024) CLAREMONT POLYCHEMICAL OPERABLE UNIT 5 GROUND WATER TREATMENT SYSTEM, OLD BETHPAGE, NY

Project no. **1087815.1940101703**

Recipient New York State Department of Environmental Conservation

Document type **Report** Version [1]

Date November 11, 2024

Prepared by Pawel Mecinski – GES

Checked by Michael Grifasi - Ramboll

Approved by Andrew Leitzinger - Ramboll

Ramboll

333 West Washington Street Syracuse, NY 13202

USA

T 315-956-6100 F 315-463-7554 https://ramboll.com

CONTENTS

1.	Operation and Maintenance Activities	4
1.1	Daily Operations Summary Reports	4
1.2	Summary of Maintenance Activities	4
1.3	Maintenance Logs	5
2.	Technical Support Activities	5
2.1	GES/Ramboll Personnel	5
2.2	NYSDEC Personnel, Sub-contractors, and Other Visitors	5
2.3	Deliveries	5
3.	Health and Safety	6
4.	Planned Activities and Schedules	6
5.	Monitoring Well Water Elevations	6
6.	Treatment System Flows	6
7.	Chemical Consumption	7
8.	Waste Disposals	7
9.	Monthly Discharge Monitoring Report	7
10.	Pending Issues and Considerations	8
11.	Plant Documents	8
12.	Monitoring Results	8
12.1	Off-site Analytical Data Results	8
12.2	Field Data	9
12.2.1	Plant Discharge pH and Temperature	9
12.2.2	Air Stripper (AS) Tower Air Monitoring	9
13.	Process Analysis and System Status	9
13.1	Extraction (RW) Processes	10
13.2	AS Process	10
13.3	GAC Monitoring	10
13.4	PD Process	10
13.5	Other	11
14.	Grounds	11
14.1	Plant Perimeter	11
14.2	Well Field	11
14.3	Other	11

LIST OF FIGURES

1. Plant Discharge Daily Flow

LIST OF TABLES

- 1. Claremont Corrective Actions Summary
- 2. Plant Discharge Average Flow & Volume
- 3. Plant Daily Totalizer Readings
- 4. Pump System Flow Readings
- 5. Claremont OU5 O&M Sampling/Measurement
- 6. Plant Discharge Analytical Results October 7, 2024
- 7. Emerging Contaminant Analytical Results October 7, 2024
- 8. Effluent pH and Temperature Readings
- 9. Plant Discharge Monthly Average pH
- 10. AS Tower Air Monitoring Readings

LIST OF ATTACHMENTS

1. Monthly O&M Sampling Analytical Results - October 7, 2024

LIST OF ACRONYMS AND ABBRIEVIATIONS

AS Air Stripper
A/V Air and Vacuum
ASF Air Stripper feed

BNA Base Neutral & Acid Extractables

CPC Claremont Polychemical CSE Confined Space Entry

DOSR Daily Operations Summary Report

EE Electrical Engineer

GAC Granular Activated Carbon

GES Groundwater & Environmental Services, Inc.

GPM Gallons Per Minute

GWTS Groundwater extraction, treatment, and reinjection system

HDR Henningson, Durham & Richardson Architecture and Engineering, P.C.

HMI Human Machine Interface

HVAC Heating, Ventilation, and Air Conditioning

MTBA Tert-Butyl-Methyl ether

MW Monitoring Well

NYSDEC New York State Department of Environmental Conservation

O&M Operation and Maintenance

OU4 Operable Unit 4
OU5 Operable Unit 5
PD Plant Discharge

PDB Passive Diffusion Bag

PFAS Per- and Polyfluoroalkyl Substances

PFOS Perfluorooctanesulfonic acid
PFOA Perfluorooctanoic Acid
PID Photoionization Detector
PFF Pressure Filter Feed

PLC Programmable Logic Controller

ppm parts per million
PW Process Water

Ramboll Ramboll Americas Engineering Solutions, Inc.

RW Recovery Well, Process Well

SPEDES State Pollutant Discharge Elimination System

SSHP Site Safety and Health Plan

SU Standard pH Units

SVOCs Semi-Volatile Organic Compounds

TBA Tert-butyl alcohol
TDS Total Dissolved Solids
TKN Total Kjeldahl Nitrogen
TOC Total Organic Carbon

TOGS Technical and Operational Guidance Series

TSS Total Suspended Solids

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

1. OPERATION AND MAINTENANCE ACTIVITIES

On behalf of Ramboll Americas Engineering Solutions, Inc. (Ramboll), Groundwater & Environmental Services, Inc. (GES) continued the daily operation and maintenance (O&M) of the Claremont Polychemical (CPC) Superfund Site Groundwater Treatment System (GWTS) Operable Unit 5 (OU5) during the month of October 2024. In addition, former Operable Unit (OU4) was inspected once per month to ensure security and building code compliance. For this report, where 'plant' is mentioned, it refers to OU5. OU4 will be referred to as such whenever discussed. This report covers the O&M activities for the system during the period defined as beginning at approximately 0800 hours, October 1, 2024, through approximately 0800 hours, November 1, 2024. O&M conducted during this reporting period was guided by the site O&M Manual.

The GWTS – treatment plant, grounds, and well systems - were maintained for the 31 days in this reporting period during which the treatment system experienced 5,457 minutes of downtime due to air stripper feed (ASF) wet vault signal issues (see **Section 6**). Readings of the key plant process parameters are normally recorded each workday. These readings and the Human Machine Interface (HMI) flow trend lines are used to monitor the system's performance and condition. Selected readings are recorded in the daily database which is an electronic file maintained in the monthly operating documents folder. If the plant is not occupied, the system is monitored remotely.

The treatment process control and alarm systems are functional. The recovery well pumps, process pumps, and air stripper blower are operated in the automatic mode and are normally remotely controlled and monitored. The RW-3, RW-4 and RW-5 recovery wells were functional and fully operational during the month of October.

1.1 Daily Operations Summary Reports

The GWTS's daily operations and maintenance activities, project tasks, and observations during this period are briefly described in the Daily Operations Summary Report (DOSR). The DOSR is based in part on the treatment system's daily operating worksheets and logs which include:

- Daily Operating Log flow readings and calculations (Form-01)
- Daily Site and Safety Inspection plant condition checklist (Form-02)
- Daily Plant Activity Notes plant manager's daily summary (Form-03)
- Sign-In Sheet GES/Ramboll employee on-site hours (Form-15)
- Daily Process Data Sheet point process readings (Form-30)
- Logbook CPC 5-8- plant operator's daily logbook
- Daily Database daily process readings (October 24 Database.xlsx)
- NYSDEC Log-in Sheet Entry/Exit Log with COVID-19 Acknowledgement

1.2 Summary of Maintenance Activities

The operation and maintenance of the treatment system, facility, and associated equipment is performed in accordance with the site O&M Manual. These tasks and inspections incorporate the equipment manufacturers' recommendations, operations experience, and good engineering and maintenance practices. A detailed accounting of the October activities is further provided in the plant operator's daily logbook.

Maintenance and project activities undertaken during the October period included:

- Routine and general maintenance tasks were conducted at the plant, on the grounds, and in the well fields.
- Single ASF pumps were placed into hand mode and frequently switched to cycle their activity.
- ASF wet vault floats were replaced due to bad float signal issues.
- Monthly process equipment tests were conducted.
- Operable Unit 4 (OU4) comprehensive inspections were completed.
- Monthly Process/Recovery Well (RW) system inspection was completed.
- Basin 33 was inspected.
- Basin 1 was inspected.
- The ASF pumps were lubricated, and the seals tightened.
- The OU5 comprehensive inspections were completed.
- The PFF pumps were lubricated, and the seals tightened.
- The fire alarm system components were inspected.
- The monthly electrical device survey was completed.
- The SUNY wellfield was inspected.

1.3 Maintenance Logs

The following operating logbooks are currently in use and maintained at OU5:

- CL-18 OU-4 Log (at OU4)
- CL-43 General Field Support Log (truck)
- CL-47 Misc. Projects Field Notebook (Brian Dunn)
- CPC 5-4 Project Support Logbook (site)
- CPC 5-8 Site Supervisor's Daily Logbook (Brian Dunn)

2. TECHNICAL SUPPORT ACTIVITIES

2.1 GES/Ramboll Personnel

- GES maintained the system throughout the period.
- October 1 through October 3, 2024, Conner Custance (Ramboll) was on site to oversee granular activated carbon (GAC) vessel removal activities.
- October 1 through October 10, 2024, Ramboll groundwater sampling team (Liam Blake and Ben Oppedisano) completed quarterly groundwater monitoring and well gauging.

2.2 NYSDEC Personnel, Sub - contractors, and Other Visitors

- October 1 through October 3, 2024, Brookside Environmental crew was on site for GAC treatment system disassembly and hoisting of heavy loads.
- On October 3, 2024, Long Island crane operator, Calgon Carbon truck drivers and Justin Taylor (Calgon Carbon) were on site to load GAC vessels and all associated piping for transport offsite.

2.3 Deliveries

• No deliveries during October 2024 reporting period.

3. HEALTH AND SAFETY

Work at the Claremont GWTS OU5 was conducted in accordance with the approved and Ramboll adopted Site Safety and Health Plan (SSHP). Safety related activities during this period included:

- The water remained off at OU4. Both potable and non-potable lines were drained. (No sanitary water).
- Daily site safety inspections were completed as part of the routine O&M activities.
- Crane work and overhead lifting of GAC vessels were completed to remove the temporary GAC treatment system equipment offsite.

4. PLANNED ACTIVITIES AND SCHEDULES

The evaluation of the plant operating system and equipment is ongoing by GES/Ramboll. A list in the form of corrective actions or maintenance tasks has been generated as a monthly system status report. These reports are updated as needed and reviewed at least monthly. Both are electronically filed. The corrective action list is included at the end of this report as **Table 1** – Claremont Corrective Action Summary.

Upcoming tasks include:

- Close and exercise all globe valves at the non-operational recovery wells.
- Plan for replacement of non-functional plant process room lighting (with LED lighting).
- Plan for replacement of non-functional emergency heaters in the process room.
- Evaluate HVAC system upgrades for adequate heat production.

5. MONITORING WELL WATER ELEVATIONS

The monitoring well system's groundwater elevation data table was updated after the October 2024 quarterly GW elevation recording task. This database is available for review. The next set of synoptic water level measurements will be scheduled for February 2025 and will be conducted by Ramboll.

6. TREATMENT SYSTEM FLOWS

During the October period, the plant continued to operate in the auto control mode. The volume of treated water discharged by the treatment system to the selected recharge basin was calculated from the plant influent and effluent flow meter readings. These readings are taken at the HMI and recorded in the daily database.

During the month of October 2024, recovery wells RW-3 through RW-5 operated normally.

The GWTS system was placed offline between October 4 through October 7, 2024 and between October 31 through November 1, 2024 due to ASF wet vault signal issues (totaling 5,457 minutes). GES team completed wet vault draining and conducted float replacements of 3 floats.

During the month of October, the plant discharge was directed entirely to Recharge Basin 33.

The total volume of treated water discharged from ~0800 hours October 1, 2024 to ~0800 hours November 1, 2024 was approximately 29,442,000 gallons. The data compiled as **Table 2** is a summary of plant discharge flows.

A graphic representation of the system's daily plant discharge output is provided in **Figure 1** and the daily plant totalizer readings for October 2024 are provided in **Table 3**, both following the text of this report.

Under current conditions, the PLC and the control system are functioning as designed. Flows from the individual recovery wells are remotely read, transmitted, and totalized.

The flow summary for the individual components of the system can be found in **Table 4** at the end of this report.

7. CHEMICAL CONSUMPTION

The hydrochloric acid feed system is currently off-line, and the system is void of acid. There are four drums of virgin acid on site. No acid was used for water treatment purposes in October of 2024.

The sodium hydroxide storage system is currently not in use and the system is empty of caustic. There is no bulk sodium hydroxide on site and no caustic was used in October of 2024.

The sodium hypochlorite storage system is currently not in use and the system is empty of bleach. No bulk sodium hypochlorite is stored on site. No sodium hypochlorite was used in October of 2024.

8. WASTE DISPOSALS

Routine accumulation of waste materials continued from plant day to day operations. Waste removal is being handled by National Waste Services, LLC. The waste container was last emptied in September 2024, following quarterly groundwater sampling activities.

9. MONTHLY DISCHARGE MONITORING REPORT

The GWTS is operated under an equivalency permit from the NYSDEC. **Table 5** presents the Claremont OU5 O&M Sampling and Measurement requirements and their frequency. The analytical results for the plant discharge sampling conducted on October 7, 2024 (**Table 6**) indicate that the analyzed parameters were compliant with permit limits. Monthly system sampling analytical results are provided in **Attachment 1**.

The OU5 GWTS plant's water discharge permit is in the process of being renewed by the NYSDEC.

10. PENDING ISSUES AND CONSIDERATIONS

Ramboll is currently planning demolition of the OU4 building; and is tentatively scheduled for the first quarter of 2024.

The discrepancies/inaccuracies in the plant flow meter readings at OU5 may be due to the inappropriate configuration of the local piping. Future calibration or adjustment of the pulse reading instrument may be required.

The pump in recovery well RW-3 experienced an electric malfunction on March 3, 2024. The pump was replaced and put back into operation on April 5, 2024.

The PF-2 transfer pump in the OU5 GWTS experienced a malfunction on July 23, 2024, and remained offline and was unable to start through the end of July (pending further electrical troubleshooting). The pump was repaired on August 7, 2024 and is operational.

The OU4 plant is offline and its disposition including that of the injection well system and vapor carbon beds is pending.

The status of key aspects of OU4 are as follows:

- The plant heat is currently off, and the system is out of service.
- The fire alarm panels are off-line.
- The fire sprinkler system is currently off-line. The water has been drained from the system. Although BK Fire Suppression Systems LLC installed a central monitoring and an alarm system on the sprinkler system at OU4 in the past, the system is not operational.
- The facility is secure, and its physical monitoring continues.
- The facility and grounds are not maintained except for the facility entrance and plant egress points.
- NYSDEC plans on decommissioning and demolishing OU4. A team from Ramboll is in the process of selecting a contractor for this work which is tentatively scheduled for 4th Q 2024.

11. PLANT DOCUMENTS

Procedures and standard forms are written, reviewed, and revised as needed. As-built drawings are generated and updated as necessary.

12. MONITORING RESULTS

The CPC GWTS is monitored through the analysis of off-site laboratory analytical data and onsite field data.

12.1 Off-site Analytical Data Results

Monthly Plant Discharge (PD) samples are taken for organic analysis in compliance with the NYSDEC discharge permit. Quarterly groundwater samples are taken for organic analysis, and quarterly process water (PW) samples are taken for organic, inorganic, and generic analysis.

At the direction of the NYSDEC in an August 17, 2022 email, analysis of Per- and polyfluoroalkyl substances (PFAS) and 1,4-dioxane were added to monthly sampling for both influent and effluent for the foreseeable future. The October 2024 PFAS and 1,4-dioxane influent and effluent results can be found in **Table 7** following the text of this report. Monthly and quarterly system sampling analytical results are provided in **Attachment 1**.

The October sampling activities included:

- The October PD data was processed and submitted.
- Monthly system sampling was completed on October 7, 2024.
 Quarterly groundwater elevation monitoring and groundwater sampling via low flow methods and passive diffusion bags (PDBs).

12.2 Field Data

12.2.1 Plant Discharge pH and Temperature

The treatment plant effluent is monitored for pH and temperature on a weekly basis to obtain a monthly average in compliance with the NYSDEC discharge permit requirements. These measurements are taken from the plant effluent at a controlled point with a calibrated portable meter. The plant discharge readings for October 2024 can be found in **Table 8** following the text of this report.

The October 2024 average pH measurement was 7.06 standard units (su). The NYSDEC discharge permit requires the plant discharge to have an average monthly pH between 6.5 and 8.5 su. The results for this month meet this requirement. Data showing the plant discharge's monthly average pH trend over several months is provided in **Table 9** following the text of this report.

12.2.2 Air Stripper (AS) Tower Air Monitoring

Using a calibrated photoionization detector (PID), the vapor discharge from the AS tower was monitored weekly for volatile organic compounds (VOCs). The measurements were taken from the tower's effluent air stream through Port B when the treatment system is online. The October 2024 readings from the AS tower are provided in **Table 10**.

Other routine data collected in October 2024 included:

- The electric and water meter readings at OU5 were recorded weekly.
- The plant vaults and selected areas were monitored for VOCs weekly.
- The plant sound levels were recorded bi-weekly.
- The monthly electric and gas meter readings for OU4 were recorded.
- The recharge basins were inspected weekly.
- The differential pressure readings across the AS Tower were recorded bi-weekly.

13. PROCESS ANALYSIS AND SYSTEM STATUS

The treatment system is currently operated 24/7 in the automatic mode. It is remotely monitored as necessary. The GAC treatment system was operational from April 25, 2024 through

September 17, 2024. The GAC treatment system was disassembled and removed from the Site on October 3, 2024.

13.1 Extraction (RW) Processes

- The monthly system inspection was completed.
- The vault space heating units will be reactivated in December 2024.
- The recovery well pump system is remotely controlled and monitored, it operates in the auto mode.
- RW-4 pump experienced electrical issues and shut down on May 21, 2024. It has been subsequently placed back online, however, it continues to experience randomized shut downs.
 Upon further testing, GES plans to replace the motor starter and relay overload at the controls of RW-4.
- Pump flow readouts are transmitted to the plant and the totalizers for pumps RW-3, and RW-4 are fully functional. The local flow meter for RW-5 occasionally stops transmitting.
- Air/Vacuum (A/V) valve at station 33+96 encountered a leak in May 2023 that required the vault to be pumped out and have its air/vacuum valve removed. Currently a stopper has been fitted to the pit that allows water to flow through the system.
- The Air/Vacuum (A/V) valve at station 16+57 and 17+10 remain isolated from the transmission line.
- RW-1 and RW-2 are offline and periodically run for preventative maintenance purposes. Their flow meters are not transmitting through the PLC. When repairs were made at RW-1 in November 2021, stones were removed from the flow meterhousing. There was a thick coating of iron salt deposits on the housing and impeller. Both RW-1 and RW-2 are isolated from the process pipeline throughout the operating period. On a monthly basis, the isolation valves are actuated open and pumps are run for five minutes to rotate the motors. The pumps were tested operational as of June 2024. The motor controls (motor starter with relay overload) were taken from RW-1 and installed at RW-5 on June 18, 2024 due to these parts being obsolete. RW-1 will remain offline and inoperative until suitable replacement can be obtained.

13.2 AS Process

- The three OU5 ASF pumps in the AS Process are fully functional.
- Motors and seals were lubricated on a bi-weekly schedule. Seals were tightened and the drains were cleared as necessary.
- The AS tower main drain valve's manual actuator is not functional (fail open).
- The tower media appears clean as the pressure differential between the top and bottom ports remains relatively constant. The lower section of media has been visually inspected.
- The discharge valves for ASF P1 and P2 appear to be frozen in the open position.
- One float in ASF wet vault was replaced on October 7, 2024.
- Two floats in ASF wet vault were replaced on November 1, 2024.

13.3 GAC Monitoring

The GAC treatment system was turned off on September 17, 2024, at the completion of the pilot study, and dismantled and subsequently removed from the Site on October 3, 2024

13.4 PD Process

• The plant discharge flow is directed intermittently to Recharge Basin 1 and Recharge Basin 33 based on RB33 liquid level.

- Pump PF-1 was historically taken out of service due to excessive noise and vibration. A full evaluation is required.
- Pump PF-2 experienced operational malfunction on July 23, 2024. The pump was repaired on August 7, 2024 and is operational.
- Pump PF-3 remains fully functional.
- The motors and seals were lubricated as necessary.
- The discharge valve for PFF P3 has failed open.

13.5 Other

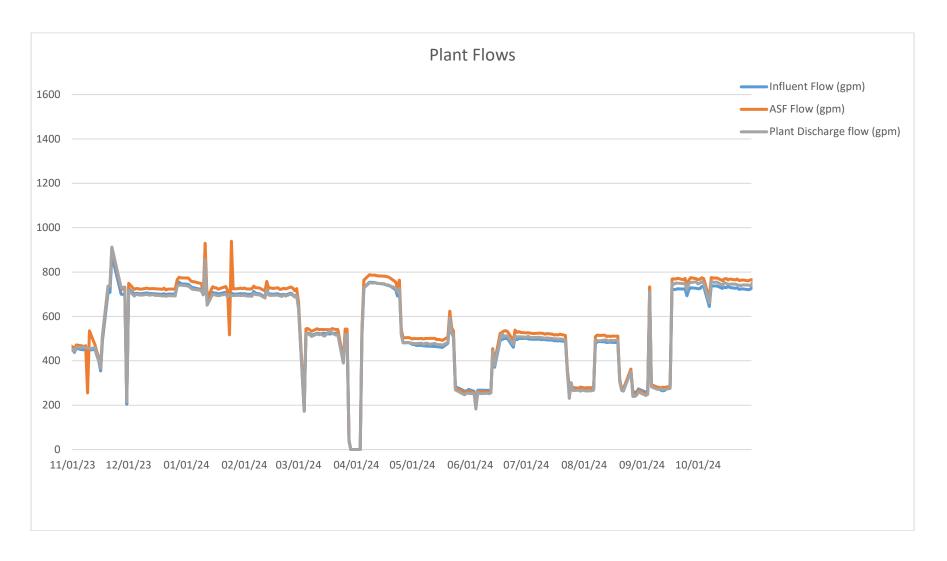
- The plant's first bank of lights is wired to the emergency-light recharging system. The circuit is kept on 24/7. The lamps appear burnt out. The second bank of lights provides sufficient lighting for general tasks. Additional work lights were installed around the plant area to further illuminate work areas.
- The potential for leaks in the water supply line running through the plant will continue to be monitored.
- The fire alarm and central monitoring systems are fully functional.

14. GROUNDS

14.1 Plant Perimeter

- General outdoor clean-up tasks are on-going.
- The fencing is clear and secure.

14.2 Well Field


Well field, and recharge basin inspections continue. Quarterly groundskeeping activities are
performed to clear vegetation and poison ivy from around all well fields in anticipation of
quarterly groundwater sampling events. In addition, the entrance to Recharge Basin 33 is
maintained for ease of access.

14.3 Other

- The CPC GWTF OU4 is secure.
- The property at and around the OU4 site continues to be inspected. While the grounds are not maintained, the treatment plant's entrance and egress points are kept clear and functional.

FIGURE

Figure 1
Plant Discharge Daily Flow

TABLES

Table 1
Claremont Corrective Actions Summary

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
The RW Discharge Manifold integrity is suspect	The condition of the various devices on the RW discharge manifold are suspect.	Plant staff and outside contractors	Possible shutdown	May require a Confined Space Entry (CSE)
	The Air Vent valve in the vault on the N-side of the 6 th fairway is leaking from the influent nipple. The shut-off valve was closed and the device isolated.			
	The air-vent valve in the vault to the east of the 6 th green is leaking. The shut-off valve was closed and the device isolated.			
	The manifold employs isolation, venting, and drain valves as well as other devices. Along the path of the manifold are vaults which house some of these devices. These vaults need to be accessed, pumped out, and the devices tested.			
	Two isolation valves were closed between RW-1 and RW-3. These valves seemed to hold.			
AS Tower main drain valve is not controlled	The valve does not respond to manipulation of its actuator.	Operator	Plant will need to be shut down to change out the valve	None
	This valve should be replaced.		Valve	
	No further action is planned at this time.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
OU4 fire alarm system is not functioning	The Nassau County Fire Code indicates that the sprinkler system must have central monitoring for flow and valve tampering.	Plant operator, Electrical Engineer (EE) and outside	None at this time	Fire code violations. High altitude tasks, safety code
Central monitoring of the fire alarm system or fire	The fire alarm system needs to be replaced and centrally monitored.	vender		violations
suppression system does not exist	Several contractors have been at the site to propose options for the system.			
OU4 electrical system has been unstable	BK Fire installed central monitoring on the sprinkler system. Both are offline as the sprinkler system will remain drained until the HVAC system is repaired.			
	Certain OU4 lights currently create a large amount of noise in the fan box within the control room. The southern lights flicker and then die including the emergency system.			
	OU4 is currently being planned for demolition.			
Several leaks were observed in the plant overhead water supply line	Adjacent to the north door a clam-shell type clamp was applied.	Outside plumbing contractor	None	Sanitary water may be shut off during repairs
	The second leak observed above the AS Blower is not readily accessible. It is not problematic.			
	Repair work may require evaluation and outside resources. Currently the situation is controlled.			
The float controls for the PFF pump system have intermittently shorted out causing the system to not properly control the pumping	The wiring of the pump control system is connected below grade. The junction box in the wet well is thought to be filled with water creating a problem with the float switches to control relay wiring.	Plant operator and GES resources	Plant shut down is required	Possible Confined Space Entry work
operation	The box cannot be opened without damage to it and the conduit. This appears to have been a longstanding problem, as when switches have been replaced in the			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
	past, they were spliced outside the box. The float switches have been replaced and spliced above the sump but there remains a problem with the L2 circuit. The output from the W-2 relay was moved to the output for the W-1 relay. This has stopped the short cycling. The control wiring should be changed and moved above grade. Currently the second splices to the floats are above ground outside			
	the vault.			
PFF P1 has failed PFF P2 has failed	The pump when activated immediately makes a lot of noise, and the pump drop pipe shakes. Smoke/ fumes emanated at the Motor-shaft connection. The motor appears to be good.	Outside contractors	Less water is being treated.	To be determined
	The pump was removed from service, February 24, 2020.			
	Pump PF-2 has failed and is currently pending electrical troubleshooting. Repaired on August 7, 2024			
	It is recommended that the motor be disconnected, lifted, and the mechanical connection checked.			
As the ASF pumps cycle off/on, the check valves have started to slam closed. When reactivating, the motor starter contact is rather violent. Both actions tend to rattle the piping and fixtures	There is no available literature regarding the check valves, so the exact description of their functioning parts is to be determined. A softer start/stop control may fix this issue. This will need further investigation. Soft-start	Plant operator and EE support	If replacement or repairs are necessary, a plant shutdown will be required as the units can- not be isolated	To be determined

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
	equipment and variable frequency controls were discussed.			
The flowmeters for system flow, ASF flow and plant discharge are out of sync with the flow meters on the recovery wells	While the ASF flow meter is the most out of line, it is plumbed correctly. The influent system flow meter and the plant discharge flow meters are piped incorrectly. The same style of relay is used to count pulses, but the meters have not been calibrated.	EE support	To be determined	none
	The system needs further investigation to determine if any changes are warranted.			
EF-4 is not operable	The fan is controlled through the mezzanine thermostat, but it does not appear to be operating.	EE support	Only in an emergency	Only in an emergency
	The fan requires electrical testing.			
	The system was checked, it appears that the fan is not functioning. The fan should be replaced.			
Wiring nests in main control console	The wiring in the main control console needs to be cleaned up and labeled, to facilitate problem troubleshooting and process improvements.	EE support	A shut down may be necessary	Electrical work
Pressure Filter Feed pump controls	With P1 out of service, the sequencing of pumps allows for the PFF vault to reach HHL conditions in certain circumstances.	EE support	To be determined	To be determined
	Reprogram the sequencing to eliminate the position of P1.			

Condition to be Corrected	Status and Actions	Resources	Plant Ops Impact	Health & Safety Impacts
Air vacuum valve removal	On May 22, 2022 RW-4 was shut down due to a leak detected in the field near an air/vacuum valve pit. On May 24 2022 through May 25, 2022 water was pumped out of the vault and on May 31, 2022 a confined space entry was made to attempt to tighten the valve in an effort to stop the leak. This tightening was unsuccessful, and the valve was removed entirely and replaced with a blank flange until further notice.	GES Mechanical Support	Less water is treated	Confined space entry required to do work in vault
Plant Electric Heater UH-3 failure and HVAC system performance	During sub-20 deg.F weather, the emergency electric heater failed. The HVAC system struggled to produce heat and the plant temperatures dipped to around mid-30's during that time.	Outside contractor	Water lines freezing	Equipment damage
RW-3 has failed	On March 3, 2024 the pump motor failed and remains offline until replacement activities can occur. Pump and motor were replaced on April 5, 2024.	Plant Operator and Ramboll	Less water is treated	To be determined
RW-4 has failed	On May 21, 2024 the pump motor experience unexpected shut downs. The pump was tested to be operational, but full electrical testing is needed.	Outside contractor	Less water is treated	To be determined
RW-5 has failed	On May 28, 2024 the pump motor controls experienced electrical issues. Electric motor starter and relay overload were replaced on June 18, 2024 and the pump was placed online.	GES Mechanical Support	Less water is treated	Electrical shock
GAC Treatment increased operational pressures	The primary GAC vessels is operating at elevated backpressure and requires blowback due to sediment accumulation.	Plant Operator and outside contractor	Less water is treated through GAC	To be determined

Other Plant Conditions of Note (no action required at this time)

• The methane detection system is offline. **To function, it will need a technical inspection and maintenance**. However, methane does not currently appear to be a hazard. A Town of Oyster Bay contractor completed plant and surrounding area testing for methane gas on March 25, 2024.

- It has been determined that intrinsically safe components are no longer required in the plant.
- There has been no need for acid washing of the AS Tower media, the hydrochloric acid feed and storage system have not been operated. The tanks have not been filled and the level monitoring system has not been operated.

As previously noted, there are pieces of equipment that are out of service and require repairs. Currently there are no plans for addressing these conditions as the operation of this equipment is not necessary or needed for the operation of the treatment system.

Equipment	Fault	Status
Plant electric heater UH-1	Needs transformer	Heater is not needed
Plant electric heater UH-2	Needs relay timer and wiring repairs	Heater is not needed
Recovery well pump pressure switch assembly	Units are unwieldy and subject to vibration, corrosion, and leaks	Each unit requires assessment and disposition
NaOH sump pump	Pump is not operating	No water or chemicals stored in vault. Portable submersible pump in sump should suffice
Plant lights are wired to the emergency light charging system	Un-segregated light cannot be shut off. Several of the lamps may have burnt out	The bank of lights appear to have failed/burnt out. The second bank of lights are sufficient
Plant exhaust fans are part of methane system	Fans cannot be manually operated	Once the methane monitoring system is online, the fans can be operated
Plant discharge drain	Leak in Victaulic fitting	Drain line on plant discharge intermittently leaks. Parts are in-house. Not pressing
ASF pump isolation valve	Valve P1 has failed open	Not needed at this time
PFF pump isolation valve	Valve P3 has vailed open	Not needed at this time
RW-1 flow meter	The meter is not operating	Pump is offline. Rocks were pulled from the housing and iron sediment was encrusting the flow meter impeller and housing
RW-2 flow meter	The meter is not transmitting	Pump is offline
Air stripper flow meter	Non-functional and removed	
AH-1 condenser	Air conditioner is non-functional	Two window AC units in place
Plant outdoor lights	9 of 12 lights not functioning	Not a security issue

Table 2
Plant Discharge Average Flow & Volume

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2016	517	745,000	68,540,000	7,309	125,171
Q1 2017	520	748,244	67,342,000	655	128,945
Q2 2017	576	829,130	76,280,000	6,165	126,315
Q3 2017	634	913,576	84,049,000	1,110	131,370
Q4 2017	256	368,762	33,926,110	69,165	63,315
Q1 2018	53	75,989	6,839,000	118,180	11,420
Q2 2018	179	258,284	23,762,103	102,929	29,551
Q3 2018	504	725,280	66,725,717	57,416	75,064
Q4 2018	726	1,045,065	96,145,984	23,734	108,746
Q1 2019	527	758,467	68,262,000	735	128,865
Q2 2019	662	953,877	87,756,724	405	132,075
Q3 2019	685	985,802	90,693,740	108	132,372
Q4 2019	655	943,871	82,116,780	5,039	129,326
Q1 2020	480	682,527	62,110,000	1,824	129,326
Q2 2020	698	996,998	88,732,846	3,838	127,185
Q3 2020	669	955,928	87,945,333	1,099	131,401
Q4 2020	695	1,001,365	92,125,539	52	132,497
Q1 2021	708	1,019,733	91,776,000	0	129,603
Q2 2021	709	1,021,317	92,939,850	0	131,040
Q3 2021	615	884,934	81,413,897	0	132,475
Q4 2021	677	928,370	85,410,047	6,317	126,185
Q1 2022	633	1,291,661	80,082,987	5,280	124,320
Q2 2022	434	624,605	53,716,000	12,200	123,840
Q3 2022	365	514,501	46,283,000	3,004	124,994

Period	Average Flow (gpm)	Average Daily volume (gal)	Total Period Flow (gal)	Min off	Min on
Q4 2022	257	369,307	34,007,000	491	132,154
Q1 2023	305	434,900	37,841,000	323	123,817
Q2 2023	548	799,720	74,309,000	204	135,126
Q3 2023	560	806,666	72,430,000	102	130,998
Q4 2023	572	818,838	75,728,000	1,733	129,307
Q1 2024	642	915,413	79,922,000	1,336	123,944
Q2 2024	498	656,134	62,091,000	8,998*	126,218
Q3 2024	440	633,318	57,658,000	35	132,445
October 2024	750	949,742	29,442,000	5,457	39,246

Acronyms: gal – gallons

gpm - gallons per minute,

System was shut down between October 4 through October 7, 2024 and October 31 through November 1, 2024 for ASF vault draining and float switch replacement inside the ASF wet well.

Table 3
Plant Daily Totalizer Readings

October 2024 Flows						
	Plant I		Plant Di	scharge	RW Dis	charge
Date	Volume	Avg. Flow	Volume	Avg. Flow	Volume	Avg. Flow
10/01/24	-	770	-	756	-	727
10/02/24	1,103,000	766	1,075,000	747	1,044,000	725
10/03/24	1,106,000	768	1,081,000	751	1,045,000	726
10/04/24	1,115,000	774	1,090,000	757	1,058,000	735
10/07/24	191,000	1384	183,000	1326	183,000	1326
10/08/24	978,000	679	953,000	662	929,000	645
10/09/24	1,116,000	775	1,091,000	758	1,062,000	738
10/10/24	1,114,000	774	1,087,000	755	1,063,000	738
10/11/24	1,112,000	772	1,085,000	753	1,061,000	737
10/14/24	3,342,000	774	3,262,000	755	3,189,000	738
10/15/24	1,097,000	762	1,067,000	741	1,046,000	726
10/16/24	1,107,000	769	1,085,000	753	1,055,000	733
10/17/24	1,110,000	771	1,078,000	749	1,050,000	729
10/18/24	1,101,000	765	1,074,000	746	1,059,000	735
10/21/24	3,320,000	769	3,223,000	746	3,155,000	730
10/22/24	1,101,000	765	1,074,000	746	1,047,000	727
10/23/24	1,107,000	769	1,069,000	742	1,049,000	728
10/24/24	1,097,000	762	1,067,000	741	1,040,000	722
10/25/24	1,099,000	763	1,065,000	740	1,043,000	724
10/28/24	3,302,000	764	3,206,000	742	3,127,000	724
10/29/24	1,095,000	760	1,068,000	742	1,038,000	721
10/30/24	1,102,000	765	1,062,000	738	1,042,000	724
10/31/24	1,103,000	766	1,080,000	750	1,051,000	730
11/01/24	323,000	1417	317,000	1390	308,000	1351
0	ctober Total Plant	Influent (Gal)		30,241,000		
C	October Total Plant	Effluent (Gal)		29,442,000		
Oc	October Total RW Discharge (Gal)			28,744,000		

Acronyms: gal - gallons gpm - gallons per minute

Table 4 **Pump System Flow Readings**

October	On-Time Minutes (actual)	Avg. Flow (gpm)	Avg. Flow (gpd)	Total Flow (gal)
RW-1*	0	0	0	0
RW-2*	5	0	0	~1,045
RW-3	39,246	247	312,161	9,677,000
RW-4	39,246	259	327,871	10,164,000
RW-5	39,246	240	304,323	9,434,000
RW Totals	39,246	732	927,226	28,744,000
Plant Influent	39,246	771	975,516	30,241,000
Plant Effluent	39,246	750	949,742	29,442,000

Acronyms: gal - gallons

gpm – gallons per minute gpd – gallons per day

The treatment process was online 31 days during this period with 5,457 minutes of downtime due to multiple ASF wet well float signal issues as described below:

The GWTS system was shut down between October 4 through October 7, 2024 for ASF wet well draining and float switch replacement. The GWTS system was shut down between October 31 through November 1, 2024 for ASF wet well draining and float switch replacement.

* Offline aside from monthly process equipment test to check their functionality. There are no average gallons per day.

Table 5
Claremont OU5 O&M Sampling/Measurement Program and Frequency

	Sampling Location				
Measurement / Analyte	System Influent	Plant Discharge	Recovery Wells	Monitoring Wells	
Flow	Daily	Daily	Daily	NA	
рН	Quarterly	Weekly	Quarterly	Quarterly	
VOCs (+Tert-Butyl-Methyl ether (MTBA) & Tert-butyl alcohol (TBA))	Quarterly	Monthly	Quarterly	Quarterly	
Semi-Volatile Organic Compound (SVOC) Base Neutral & Acid Extractables (BNA)	Quarterly	Monthly	NS	NS	
Per- and polyfluoroalkyl substances (PFAS)	Bi-Monthly	Bi-Monthly	NS	Quarterly ⁽¹⁾	
1,4-Dioxane	Monthly	Monthly	NS	Quarterly ⁽¹⁾	
Total Kjeldahl Nitrogen→ (TKN)	NS	Quarterly	NS	NS	
Total Suspended Solids (TSS)	Quarterly	NS	Quarterly	NS	
Total Organic Carbon (TOC)	Quarterly	NS	NS	NS	
Total Dissolved Solids (TDS)	NS	Quarterly	NS	NS	
Cyanide	NS	Quarterly	NS	NS	
Hexavalent Chromium	NS	Quarterly	NS	NS	
Mercury	NS	Quarterly	NS	NS	
Metals	Quarterly	Quarterly	Quarterly	NS	
Anions	NS	Quarterly	NS	NS	

Notes: NA – Not applicable; NS – Not sampled. (1) – CPC wells only

Table 6
Plant Discharge Analytical Results
October 7, 2024

Parameters	Discharge Limitations (SPDES)	Units	Results
pH (range)	6.5 - 8.5	su	7.06
1,1,1-Trichloroethane	5	ug/l	U
1,1-Dichloroethane	5	ug/l	U
1,1-Dichloroethylene	5	ug/l	U
1,2- Dichloroethane	0.6	ug/l	U
Benzene	0.7	ug/l	U
Chlorobenzene	5	ug/l	U
Chloroform	7	ug/l	U
CIS 1,2-Dichloroethylene	5	ug/l	U
Ethylbenzene	5	ug/l	U
Methylene Chloride	5	ug/l	U
Tert-butyl alcohol (TBA)	Not indicated	ug/l	U
Tert-Butyl-Methyl ether (MTBA)	5	ug/l	U
Tetrachloroethylene (PCE)	5	ug/l	U
Toluene	5	ug/l	U
Trans 1,2-Dichloroethylene	5	ug/l	U
Trichloroethylene (TCE)	5	ug/l	U
Bis(2-ethylhexyl) phthalate	5	ug/l	U
Di-n-butyl phthalate	50	ug/l	U
Nitro Benzene	0.4	ug/l	U
Antimony, Total recoverable	3	ug/l	NS
Arsenic, Total recoverable	50	ug/l	NS
Barium, Total recoverable	2000	ug/l	NS
Chromium, Hexavalent	100	ug/l	NS
Lead, Total recoverable	50	ug/l	NS
Iron, Total recoverable	600	ug/l	NS
Manganese, Total recoverable	600	ug/l	NS
Mercury	Not indicated	ug/l	NS
Zinc	Not indicated	mg/l	NS
Nitrogen, Total (as N)	10	mg/l	NS
Selenium, Total recoverable	40	ug/l	NS
Solids, Total Dissolved	1000	mg/l	NS
Chloride Ion	NL	mg/l	NS
Cyanide	Not indicated	ug/l	NS
Fluoride Ion	NL	mg/l	NS

Parameters	Discharge Limitations (SPDES)	Units	Results
Sulfate Ion	NL	mg/l	NS

J – Estimated value U – Analyzed but not detected NL – Monitor only NS– Not sampled SPDES – State Pollutant Discharge Elimination System

ug/I – micrograms per liter ng/I – nanograms per liter mg/I – milligrams per liter

Discharge limitations updates as per the water discharge permit.

Note: Parameters shaded in gray are analyzed quarterly with results generally being provided March,

June, October, and December.

Table 7
Emerging Contaminant Analytical Results
October 7, 2024

Parameters	Guidance Values	Units	Influent Results	Effluent Results
PFOA	6.7 ¹	ng/l	37	36
PFOS	2.71	ng/l	16	16
1,4-Dioxane	0.35 ¹	ug/l	16	15

J – Estimated value **U** – Analyzed but not detected $\mathbf{ug/I}$ – micrograms per liter $\mathbf{ng/I}$ – nanograms per liter \mathbf{x} / \mathbf{x} – indicates primary/duplicate results **PFOA** – Perfluorooctanoic acid **PFOS** – Perfluorooctanesulfonic acid

 $^{^{1}}$ NYSDEC - 2023 Addendum to June 1998 Division of Water Technical and Operational Guidance Series (TOGS) N0. 1.1.1.

Table 8
Effluent pH and Temperature Readings

Date	pH (su)	Temp (°C)
10/02/24	6.96	15.1
10/09/24	7.05	17.0
10/16/24	6.95	16.5
10/23/24	7.12	15.5
10/30/24	7.22	18.0
October Average	7.06 su	16.4 °C

Table 9
Plant Discharge Monthly Average pH

Month	pH(su)
Aug '19	6.56
Sept `19	7.45
Oct '19	6.86
Nov '19	6.88
Dec `19	6.84
Jan ` 20	6.63
Feb '20	6.75
Mar '20	6.74
Apr \20	6.65
May '20	6.8
June '20	6.8
July '20	6.9
Aug `20	6.8
Sept '20	6.8
Oct. '20	6.95
Nov '20	6.8
Dec '20	6.64
Jan '21	6.8
Feb '21	6.75
Mar `21	6.76
Apr `21	7.28
May '21	7.53
June '21	7.44
July '21	7.41
Aug `21	7.42
Sept '21	7.13
Oct '21	7.10
Nov '21	7.09
Dec '21	7.01
Jan '22	6.90
Feb `22	6.90
Mar '22	6.80
Apr '22	6.78
May \22	6.79
June '22	6.79
July '22	7.01
Aug `22	6.99
Sept '22	7.19
Oct '22	7.62
Nov `22	7.68
Dec `22	7.52

Month	pH(su)
Jan '23	7.24
Feb '23	7.36
Mar `23	7.56
Apr \23	7.28
May '23	7.56
June'23	7.36
July`23	7.39
Aug`23	7.24
Sept`23	7.25
Oct`23	7.22
Nov`23	6.99
Dec`23	6.94
Jan`24	6.81
Feb`24	6.94
Mar`24	7.00
Apr`24	7.23
May`24	7.20
Jun`24	7.28
July`24	7.21
Aug`24	7.11
Sep`24	7.21
Oct`24	7.06

Plant Discharge Monthly Average pH Reading

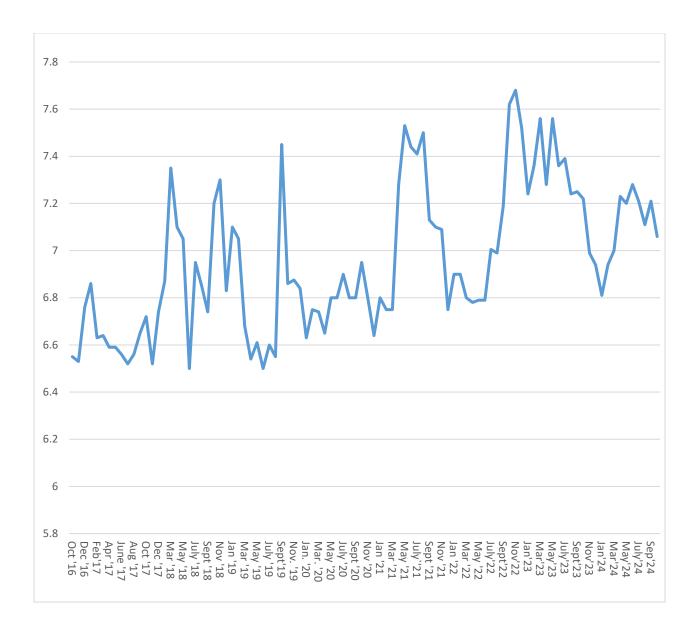


Table 10
AS Tower Air Monitoring Readings

Recorded Date	Port B (ppm)
10/02/24	0.0
10/09/24	0.0
10/14/24	0.0
10/23/24	0.0
10/30/24	0.1

mholl - Monthly Report	of the Operations	9. Maintananca	Activition (Octob	10r 20241

ATTACHMENT 1
MONTHLY O&M SAMPLING ANALYTICAL RESULTS -OCTOBER 7, 2024

November 6, 2024

Payson Long NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873 Syracuse, NY 13221

Project Location: Old Bethpage, NY

Client Job Number: Project Number: 130015

Laboratory Work Order Number: 24J1565

Myle Murray

Enclosed are results of analyses for samples as received by the laboratory on October 9, 2024. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kyle A. Murray Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	8
24J1565-01	8
24J1565-02	16
24J1565-03	24
24J1565-04	28
24J1565-05	32
Sample Preparation Information	34
QC Data	35
Volatile Organic Compounds by GC/MS	35
B389185	35
Semivolatile Organic Compounds by GC/MS	42
B389149	42
1,4-Dioxane by isotope dilution GC/MS	47
B389100	47
Semivolatile Organic Compounds by - LC/MS-MS	48
B390657	48
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	53
B389019	53
Flag/Qualifier Summary	54
Certifications	55
Chain of Custody/Sample Receipt	60

REPORT DATE: 11/6/2024

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

NYDEC_Ramboll US Consulting, Inc. - Syracuse 333 West Washington Street, PO Box 4873

PURCHASE ORDER NUMBER: 151811

Syracuse, NY 13221

ATTN: Payson Long

DRCHASE ORDER NUMBER. 131611

PROJECT NUMBER: 130015

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 24J1565

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Old Bethpage, NY

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
PD-CP-00-100724	24J1565-01	Ground Water		Draft Method 1633	
				SW-846 8260D	
				SW-846 8270E	
PD-CP-01-100724	24J1565-02	Ground Water		Draft Method 1633	
				SW-846 8260D	
				SW-846 8270E	
ASF-CP-00-100724	24J1565-03	Ground Water		Draft Method 1633	
				SW-846 8270E	
ASF-CP-01-100724	24J1565-04	Ground Water		Draft Method 1633	
				SW-846 8270E	
TB-100724	24J1565-05	Trip Blank Water		SW-846 8260D	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

Draft Method 1633

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FT

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], 24J1565-03[ASF-CP-00-100724], 24J1565-04[ASF-CP-01-100724], B390657-BLK1, B390657-BS1, BB390657-MRL1, S113414-CCV1

3-Perfluoroheptyl propanoic acid (FHpPA)(7:3FTC)

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], 24J1565-03[ASF-CP-00-100724], 24J1565-04[ASF-CP-01-100724], B390657-BLK1, B390657-BS1, BB390657-MRL1, S113414-CCV1

SW-846 8260D

Qualifications:

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Chloromethane

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], 24J1565-05[TB-100724], B389185-BLK1, B389185-BSD1, B389185-MS1, B389185-MSD1, S112168-CCV1

SW-846 8270E

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Hexachlorobutadiene

 $24J1565-01[PD-CP-00-100724],\ 24J1565-02[PD-CP-01-100724],\ B389149-BLK1,\ B389149-BS1,\ B389149-BSD1,\ B3891$

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

3,3-Dichlorobenzidine

B389149-BSD1

Atrazine

B389149-BS1

Hexachloroethane

B389149-BSD1

L-07A

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

2,4-Dinitrophenol

B389149-BSD1

4,6-Dinitro-2-methylphenol

B389149-BSD1

Caprolactam

B389149-BSD1

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

2,2'-oxybis(1-Chloropropane)

B389149-BS1, B389149-BSD1

2,3,4,6-Tetrachlorophenol

B389149-BS1, B389149-BSD1

2,4,5-Trichlorophenol

B389149-BS1, B389149-BSD1

2,4,6-Trichlorophenol

B389149-BS1, B389149-BSD1

2,4-Dichlorophenol

B389149-BS1, B389149-BSD1

2,4-Dinitrophenol

B389149-BS1

2-Chlorophenol

B389149-BS1, B389149-BSD1

2-Methylphenol

B389149-BS1, B389149-BSD1

2-Nitrophenol

B389149-BS1, B389149-BSD1

3/4-Methylphenol

B389149-BS1, B389149-BSD1

4,6-Dinitro-2-methylphenol

B389149-BS1

4-Chloro-3-methylphenol

B389149-BS1, B389149-BSD1

4-Nitroaniline

B389149-BS1, B389149-BSD1

4-Nitrophenol

B389149-BS1, B389149-BSD1

Acetophenone

B389149-BS1, B389149-BSD1

Benzaldehyde

B389149-BS1, B389149-BSD1

Benzo(g,h,i)perylene

B389149-BS1, B389149-BSD1

Caprolactam

B389149-BS1

Dibenz(a,h)anthracene

B389149-BS1, B389149-BSD1

N-Nitrosodi-n-propylamine

B389149-BS1, B389149-BSD1

Pentachlorophenol

B389149-BS1, B389149-BSD1

Phenol

B389149-BS1, B389149-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], B389149-BLK1, B389149-BSD1, B389149-BSD1, S112255-CCV11-100724], B389149-BSD1, B389149-BSD1, S112255-CCV1-100724, B389149-BSD1, B389149-BS

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Aniline

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], B389149-BLK1, B389149-BS1, B389149-BSD1, S112255-CCV1, B389149-BS1, B389149

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

Caprolactam

24J1565-01[PD-CP-00-100724], S112255-CCV2

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

4-Nitrophenol

S112255-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], B389149-BLK1, B389149-BS1, B389149-BSD1, S111864-ICV1, S112255-CCV1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

2,2'-oxybis(1-Chloropropane)

24J1565-01[PD-CP-00-100724], 24J1565-02[PD-CP-01-100724], B389149-BLK1, B389149-BS1, B389149-BSD1, S111864-ICV1, S112255-CCV1

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Jua Watthustan

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY

Sample Description:

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724

Sampled: 10/7/2024 14:00

Sample ID: 24J1565-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/NS				
					TI 10 1		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Bromomethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
n-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Carbon Disulfide	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Chloromethane	ND	2.0	$\mu g/L$	1	V-05	SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Cyclohexane	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Ethylbenzene	ND	1.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
2-Hexanone (MBK)									
Isopropylbenzene (Cumene)	ND	10	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH

Page 8 of 62

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724

Sampled: 10/7/2024 14:00

Sample Description:

Sample ID: 24J1565-01
Sample Matrix: Ground Water

		Vo	latile Organic Comp	ounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Xylenes (total)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 1:51	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		96.1	70-130					10/15/24 1:51	
Toluene-d8		99.6	70-130					10/15/24 1:51	
4-Bromofluorobenzene		102	70-130					10/15/24 1:51	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724 Sampled: 10/7/2024 14:00

Sample ID: 24J1565-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS

		S	emivolatile Organic (Compounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2,3,4,6-Tetrachlorophenol	ND	18	μg/L	1	1 mg/ 2 mm	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Atrazine	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzaldehyde	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Biphenyl	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Caprolactam	ND	9.1	μg/L	1	V-06	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Acenaphthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Acenaphthylene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Acetophenone	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Aniline	ND	18	μg/L	1	V-05	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Anthracene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzo(a)anthracene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzo(a)pyrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzo(b)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzo(g,h,i)perylene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Benzo(k)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Bis(2-chloroethoxy)methane	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Bis(2-chloroethyl)ether	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,2'-oxybis(1-Chloropropane)	ND	9.1	μg/L	1	V-35	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Bromophenylphenylether	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Butylbenzylphthalate	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Carbazole	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Chloroaniline	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Chloro-3-methylphenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Chloronaphthalene	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Chlorophenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Chlorophenylphenylether	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Chrysene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Dibenz(a,h)anthracene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Dibenzofuran	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Di-n-butylphthalate	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
3,3-Dichlorobenzidine	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4-Dichlorophenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Diethylphthalate	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4-Dimethylphenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Dimethylphthalate	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4,6-Dinitro-2-methylphenol	ND	18	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4-Dinitrophenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4-Dinitrotoluene	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,6-Dinitrotoluene	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Di-n-octylphthalate	ND	9.1	$\mu g/L$	1	V-04	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Fluorene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Hexachlorobenzene	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL

Page 10 of 62

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY Sample Description:

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724

Sample ID: 24J1565-01

Sampled: 10/7/2024 14:00

		Semi	volatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	9.1	μg/L	1	L-04	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Hexachlorocyclopentadiene	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Hexachloroethane	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Indeno(1,2,3-cd)pyrene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Isophorone	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
1-Methylnaphthalene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Methylnaphthalene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Methylphenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
3/4-Methylphenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Naphthalene	ND	4.5	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Nitroaniline	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
3-Nitroaniline	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Nitroaniline	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Nitrobenzene	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2-Nitrophenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
4-Nitrophenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
N-Nitrosodi-n-propylamine	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Pentachlorophenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Phenanthrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Phenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Pyrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Pyridine	ND	18	μg/L	1	V-34	SW-846 8270E	10/12/24	10/15/24 13:37	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4,5-Trichlorophenol	ND	9.1	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
2,4,6-Trichlorophenol	ND	9.1	$\mu g/L$	1		SW-846 8270E	10/12/24	10/15/24 13:37	BGL
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol		49.4	15-110					10/15/24 13:37	
Phenol-d6		31.4	15-110					10/15/24 13:37	
Nitrobenzene-d5		71.8	30-130					10/15/24 13:37	
2-Fluorobiphenyl		64.6	30-130					10/15/24 13:37	
2,4,6-Tribromophenol p-Terphenyl-d14		85.0 77.3	15-110 30-130					10/15/24 13:37 10/15/24 13:37	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY

Field Sample #: PD-CP-00-100724

Sampled: 10/7/2024 14:00

Sample Description:

Sample ID: 24J1565-01 Sample Matrix: Ground Water

Date Received: 10/9/2024

1,4-Dioxane by isotope dilution GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane	15	0.19	μg/L	1		SW-846 8270E	10/11/24	10/15/24 17:34	GJB
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,4-Dioxane-d8		24.2	15-110			_		10/15/24 17:34	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724 Sampled: 10/7/2024 14:00

Sample ID: 24J1565-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Perfluence/paramotic acid (PTPAA) 26 3.7 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) 20 19 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) 24 033 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) 25 033 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) 26 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) 26 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PTPAA) ND 0.33 mgL 1 Duth Methol 163 11424 11624 628 AB Perfluence/paramotic acid (PT			Sem	ivolatile Organic Coı	npounds by - l	LC/MS-MS				
Perfluence Per	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method			Analyst
Perthamperamenica acid (PTPAA) 20 1.9 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) 12 031 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) 15 031 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) 15 031 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) 16 031 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 031 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenica acid (PTPAA) ND 032 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11422 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11424 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11424 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11424 11624 628 AB Perthamperamenical acid (PTPAA) ND 033 mgT. 1 Dath Merica (SS 11424 11624 628 AB Perthamperamenical acid (PTPAA) ND	Perfluorobutanoic acid (PFBA)	26	3.7	ng/L	1		Draft Method 1633			AB
Perfluenchetansic acid (PPTIA) 24 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluenchetansic acid (PPTIA) 12 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) 35 0.91 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) 35 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentation acid (PPTIA) NO 0.93 rg.L 1 Duft Model 163 11.42 11.624 628 AB Perfluencentati	Perfluoropentanoic acid (PFPeA)	20	1.9	_	1		Draft Method 1633	11/4/24		
Perflumorebaminic acid (PFLpA) 12 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebaminic acid (PFDA) 35 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamicic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamicic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Machad 1633 114/24 116/24 (28 AB Perflumorebamenic acid (PFDA) ND 0.93 ng/L 1 Data Macha	Perfluorohexanoic acid (PFHxA)	24	0.93	_			Draft Method 1633	11/4/24		
Perfluonocentancia caid (PFOA) 35 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) 26 0.93 ngl. 1 Drail Medoci 1633 11424 11624 622 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 622 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid (PFIA) ND 0.93 ngl. 1 Drail Medoci 1633 11424 11624 628 AB Perfluonocentancia caid	Perfluoroheptanoic acid (PFHpA)	12	0.93	_	1		Draft Method 1633	11/4/24	11/6/24 6:28	
Perfluence consistencia celi (PFNA) 26 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence chacanic acti (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence cacti (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence cacti (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence cacti (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB Perfluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB PERFluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB PERFluence caction of (PFNA) ND 0.93 mg/L 1 Dath Method 163 114/24 116/24 (28 AB PERFluence c	Perfluorooctanoic acid (PFOA)	35		_	1		Draft Method 1633			
Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamic acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB Perfluorondecamicallienc acid (PFLOA) ND 0.93 ng/L 1 Dah Medod 1633 114/24 116/24 628 AB ND ND ND ND ND ND ND N	Perfluorononanoic acid (PFNA)	26	0.93	_	1		Draft Method 1633	11/4/24		
Perfluoroundecamois acid (PFUNA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroidecamois acid (PFUDA) ND 0.93 ng/l. 1 Dan'h Methad 1633 114/24 116/24 628 AB Perfluoroi	Perfluorodecanoic acid (PFDA)	ND	0.93	_	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorotriadecanois acid (PFIDA) ND 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanois acid (PFIEDS) 3.6 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanois acid (PFIES) 3.6 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanois acid (PFIES) 2.7 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid acid (PFIES) 7.7 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid acid (PFIES) 7.7 0.93 ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid foric acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid foric acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid foric acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid foric acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB Perfluorotriadecanoid foric acid (PFIES) 7.8 Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L 1 Drift Methol 1633 11/424 11/624 6.28 AB AB Ag/L Ag/	Perfluoroundecanoic acid (PFUnA)	ND	0.93	_	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorotetralecannic acid (PFTeDA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotetralecannic acid (PFTeS) 3.6 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotetraneaulfonic acid (PFTeS) 7.7 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotetraneaulfonic acid (PFTeS) 7.7 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotetraneaulfonic acid (PFTeS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotetraneaulfonic acid (PFTeS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic new authoric acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonic new authoric acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/42 11/624 6.28 AB Perfluorotectraneaulfonimatic (PFOSA)	Perfluorododecanoic acid (PFDoA)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorochamesulfonic acid (PFRS) 3.6 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFRSS) 2.7 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFRSS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFRS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFNS) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochamesulfonimide (PFNSA) ND 0.93 ng/L 1 Dn/h Methol 1633 114/24 116/24 6.28 AB Perfluorochame	Perfluorotridecanoic acid (PFTrDA)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluoropentamesulfonic acid (PFRS) 3,6 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluoropentamesulfonic acid (PFRS) 7,7 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorochamesulfonic acid (PFRS) 7,7 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorodochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorodochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorodochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorodochamesulfonic acid (PFRS) ND 0,93 ng/L 1 Death Method 1633 11/424 11/624 628 AB Perfluorodochamesulfonic number num	Perfluorotetradecanoic acid (PFTeDA)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluence Per	Perfluorobutanesulfonic acid (PFBS)	3.6	0.93		1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorocheamesulfonic acid (PFHSS) 7.7 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorocheptonesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochaceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochaceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochaceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochaceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochaceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633 114/24 116/24 6.28 AB Perfluorochamesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Method 1633		2.7	0.93		1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluoroccianesulfonic acid (PFOS) 16 0.93 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB Perfluoroccianesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB Perfluoroccianesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB Perfluoroccianesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB IH, IH, 2H, 2H-Perfluoroccianes sulfonic ND 3.7 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB IH, IH, 2H, 2H-Perfluoroccianes sulfonic ND 3.7 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB IH, IH, IH, 2H-Perfluoroccianes sulfonic ND 3.7 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB IH, IH, IH, IH, 2H-Perfluoroccianes sulfonic ND 0.93 ng/L 1 Draft Method 1633 11/424 11/624 6.28 AB IH,	Perfluorohexanesulfonic acid (PFHxS)	7.7	0.93		1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluoronomanesulfonic acid (PFNS) ND 0.93 ng/L 1 Draft Methed 163 11/42 11/624 628 AB Perfluorondoceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Perfluorondoceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Perfluorondoceanesulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB HI, HJ, HJ, H-Perfluoronceane sulfonic acid (PFDS) ND 3.7 ng/L 1 Draft Methed 163 11/424 11/624 628 AB HI, HJ, HJ, H-Perfluoronceane sulfonic acid (PFDS) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB HI, HJ, HJ, H-Perfluoronceane sulfonic acid (PFDSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 628 AB Newthyl perfluoronceanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Methed 163 11/424 11/624 62	Perfluoroheptanesulfonic acid (PFHpS)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorodecanesulfonic acid (PFDS) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB Perfluorodecanesulfonic acid (PFDS) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB H.H.ZH.ZH.Perfluorobecane sulfonic acid (PFDS) ND 3.7 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB H.H.ZH.ZH.Perfluorobecane sulfonic acid (PFDS) ND 3.7 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB H.H.ZH.ZH.Perfluorobecane sulfonic acid (PFDS) ND 3.7 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB H.H.ZH.ZH.Perfluoroccane sulfonic acid (PFDS) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-methyl perfluoroccanesulfonamide (PFDSA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-methyl perfluoroccanesulfonamide (PFDSA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-methyl perfluoroccanesulfonamide (PFDSA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628 AB N-EFDSAA (NEFDSAA) ND 0.93 ng/L 1 Dnft Method 1633 11/424 11/624 628	Perfluorooctanesulfonic acid (PFOS)	16	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorododecanesulfonic acid (PFDoS) ND 0.93 ng/L 1 1 1 1 1 1 1 1 1	Perfluorononanesulfonic acid (PFNS)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
III,III,ZIII,Perfluorockame sulfonic acid (42FTS)	Perfluorodecanesulfonic acid (PFDS)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Back Californ Back Bac	Perfluorododecanesulfonic acid (PFDoS)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
11/14/12/14/15/15/15/15/15/15/15/15/15/15/15/15/15/		ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
ILI ILI		ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Perfluorocotanesulfonamide (PFOSA) ND 0.93 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6.28 AB	1H,1H,2H,2H-Perfluorodecane sulfonic	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
N-ethy perfluorooctanesulfonamide ND 0.93 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-EIFOSAA (NMeFOSAA) ND 0.93 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-EIFOSAA (NEIFOSAA) 2.1 0.93 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesulfonamidoethan ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 3.7 ng/L 1 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 46 ng/L 1 V-05 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 1.9 ng/L 1 V-05 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 1.9 ng/L 1 V-05 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 1.9 ng/L 1 N-05 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 1.9 ng/L 1 N-05 Draft Method 1633 11/4/2 11/6/24 6.28 AB N-methy perfluorooctanesid ND 1.9 ng/L 1	* * * * * * * * * * * * * * * * * * * *	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
N=McFOSAA (NMeFOSAA) ND 0.93 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6.28 AB		ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
N-EtFOSAA (NEtFOSAA) 2.1 0.93 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB N-methylperfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (NEtFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (NEtFOSE) N-ethylperfluorooptopylene exide dimer acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (HFPO-DA) 4,8-Dioxa-3H-perfluoroonanoic acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9C1-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 11C1-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropheptyl propanoic acid (FHPPA)		ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
N-methylperfluorooctanesulfonamidoethan ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (NEtFOSE) Hexafluoropropylene oxide dimer acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9.5 Praft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA)	N-MeFOSAA (NMeFOSAA)	ND	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (NEIFOSE) Hexafluoropropylene oxide dimer acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 11CI-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB acid(FPePA)(5:3FTCA) 3-Perfluorocetanoic ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB acid(FPePA)(5:3FTCA) 3-Perfluoropeptyl propanoic acid (FHPPA) ND 1.9 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB CPFEBSA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB CPFMPA)	N-EtFOSAA (NEtFOSAA)	2.1	0.93	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Real Figure Company	ol(NMeFOSE)			_						AB
Hexafluoropropylene oxide dimer acid (HFPO-DA) 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid (ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluorononanoic acid (ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluorononanoic acid (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluoropropyl propanoic acid (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluoropropyl propanoic acid (F74PA) ND 9.3 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluoropropyl propanoic acid (F74PA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A,8-Dioxa-3H-perfluoropropyl propanoic acid (F14PA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) A (AD		ND	9.3	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
4,8-Dioxa-3H-perfluorononanoic acid ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 11CI-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) ND 46 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) ND 46 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	Hexafluoropropylene oxide dimer acid	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
11Cl-PF3OUdS (F53B Major) ND 3.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB 3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	4,8-Dioxa-3H-perfluorononanoic acid	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
3-Perfluoropropyl propanoic acid (FPrPA) ND 9.3 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	9Cl-PF3ONS (F53B Minor)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
(3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	11Cl-PF3OUdS (F53B Major)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	(3:3FTCA)			_						
3-Perfluoroheptyl propanoic acid (FHpPA) ND 46 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:28 AB (7:3FTCA) Perfluoro(2-ethoxyethane) sulfonic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)		ND	46	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 6:28	AB
(PFEESA) Perfluoro-3-methoxypropanoic acid ND 1.9 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:28 AB (PFMPA)	3-Perfluoroheptyl propanoic acid (FHpPA)	ND	46	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 6:28	AB
(PFMPA)	(PFEESA)			ng/L				11/4/24	11/6/24 6:28	AB
B 40 400		ND	1.9	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724

Sampled: 10/7/2024 14:00

Sample ID: 24J1565-01
Sample Matrix: Ground Water

Semivolatile	Organic	Compounds by	v - LC/MS-MS

Annalisata	Results	RL	II	Dilution	Fl/01	Method	Date	Date/Time	A I4
Analyte			Units		Flag/Qual		Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND	1.9	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
Nonafluoro-3,6-dioxaheptanoic acid	ND	1.9	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:28	AB
(NFDHA)	ND	1.5	ng/L	1		Brait Medica 1933	11/4/24	11/0/24 0.20	П
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C4-PFBA		57.2	10-130					11/6/24 6:28	
13C5-PFPeA		74.9	35-150					11/6/24 6:28	
13C5-PFHxA		75.6	55-150					11/6/24 6:28	
13C4-PFHpA		70.8	55-150					11/6/24 6:28	
13C8-PFOA		79.0	60-140					11/6/24 6:28	
13C9-PFNA		71.6	55-140					11/6/24 6:28	
13C6-PFDA		80.8	50-140					11/6/24 6:28	
13C7-PFUnA		73.8	30-140					11/6/24 6:28	
13C2-PFDoA		72.3	10-150					11/6/24 6:28	
13C2-PFTeDA		67.5	10-130					11/6/24 6:28	
13C3-PFBS		90.7	55-150					11/6/24 6:28	
13C3-PFHxS		80.4	55-150					11/6/24 6:28	
13C8-PFOS		74.1	45-140					11/6/24 6:28	
13C2-4:2FTS		160	60-200					11/6/24 6:28	
13C2-6:2FTS		95.6	60-200					11/6/24 6:28	
13C2-8:2FTS		80.7	50-200					11/6/24 6:28	
13C8-PFOSA		66.3	30-130					11/6/24 6:28	
D3-NMeFOSA		51.2	15-130					11/6/24 6:28	
D5-NEtFOSA		53.1	10-130					11/6/24 6:28	
D3-NMeFOSAA		82.0	45-200					11/6/24 6:28	
D5-NEtFOSAA		73.7	10-200					11/6/24 6:28	
D7-NMeFOSE		54.2	10-150					11/6/24 6:28	
D9-NEtFOSE		55.1	10-150					11/6/24 6:28	
13C3-HFPO-DA		86.8	25-160					11/6/24 6:28	

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: PD-CP-00-100724

Sample ID: 24J1565-01 Sample Matrix: Ground Water 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description: Work Order: 24J1565

Sampled: 10/7/2024 14:00

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	630	10	mg/L	1		Draft Method 1633	10/11/24	10/11/24 10:05	

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY Sample Description:

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sampled: 10/7/2024 14:00

Sample ID: 24J1565-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1	-	SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Carbon Disulfide	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Chloroethane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Chloroform	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Cyclohexane	ND	5.0	μg/L	1	. 05	SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,4-Dichlorobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,1-Dichloroethane	ND	1.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,2-Dichloroethane	ND	1.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
1,1-Dichloroethylene	ND	1.0		1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
cis-1,2-Dichloroethylene	ND ND	1.0	μg/L	1			10/14/24		EEH
trans-1,2-Dichloroethylene			μg/L	1		SW-846 8260D		10/15/24 2:17	
1,2-Dichloropropane	ND	1.0	μg/L			SW-846 8260D	10/14/24	10/15/24 2:17	EEH
cis-1,3-Dichloropropene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24 10/14/24	10/15/24 2:17	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D		10/15/24 2:17	EEH
Ethylbenzene	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
2-Hexanone (MBK)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
· ´	ND	10	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Methyl Acetate Methyl test Dutyl Ether (MTDE)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Methyl Cycloboxono	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Methyl Cyclohexane Methylana Chlorida	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Naphthalene	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH
Styrene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17 Page 16	EEH

Page 16 of 62

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sampled: 10/7/2024 14:00

Sample Description:

Sample ID: 24J1565-02

Sample Matrix: Ground Water Volatile Organic Compounds by GC/MS										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Tetrachloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
o-Xylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Xylenes (total)	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/15/24 2:17	EEH	
Surrogates		% Recovery	Recovery Limits		Flag/Qual					
1,2-Dichloroethane-d4		95.1	70-130					10/15/24 2:17		
Toluene-d8		98.8	70-130					10/15/24 2:17		
4-Bromofluorobenzene		101	70-130					10/15/24 2:17		

Project Location: Old Bethpage, NY Sample Description:

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724 Sampled: 10/7/2024 14:00

Sample ID: 24J1565-02 Sample Matrix: Ground Water

Work Order: 24J1565

Semivolatile Organic Compounds by GC/MS

		Sei	nivolatile Organic (compounds by	GC/MS		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
2,3,4,6-Tetrachlorophenol	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Atrazine	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzaldehyde	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Biphenyl	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Caprolactam	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Acenaphthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Acenaphthylene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Acetophenone	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Aniline	ND	18	μg/L	1	V-05	SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Anthracene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzo(a)anthracene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzo(a)pyrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzo(b)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzo(g,h,i)perylene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Benzo(k)fluoranthene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Bis(2-chloroethoxy)methane	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Bis(2-chloroethyl)ether	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,2'-oxybis(1-Chloropropane)	ND	9.0	μg/L	1	V-35	SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Bis(2-Ethylhexyl)phthalate	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Bromophenylphenylether	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Butylbenzylphthalate	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Carbazole	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Chloroaniline	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Chloro-3-methylphenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Chloronaphthalene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Chlorophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Chlorophenylphenylether	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Chrysene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Dibenz(a,h)anthracene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Dibenzofuran	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Di-n-butylphthalate	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
3,3-Dichlorobenzidine	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4-Dichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Diethylphthalate	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4-Dimethylphenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Dimethylphthalate	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4,6-Dinitro-2-methylphenol	ND	18	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4-Dinitrophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4-Dinitrotoluene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,6-Dinitrotoluene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Di-n-octylphthalate	ND	9.0	μg/L μg/L	1	V-04	SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Fluoranthene	ND	4.5	μg/L μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Fluorene	ND	4.5	μg/L μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Hexachlorobenzene	ND	9.0	μg/L μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
	ND	2.0	μg/ L	1		511 070 02/0E	10,12,24	Page 18	

Page 18 of 62

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sampled: 10/7/2024 14:00

71.5

30-130

Sample ID: 24J1565-02 S

p-Terphenyl-d14

		Semi	volatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	9.0	μg/L	1	L-04	SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Hexachlorocyclopentadiene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Hexachloroethane	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Indeno(1,2,3-cd)pyrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Isophorone	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
1-Methylnaphthalene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Methylnaphthalene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
3/4-Methylphenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Naphthalene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Nitroaniline	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
3-Nitroaniline	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Nitroaniline	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Nitrobenzene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2-Nitrophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
4-Nitrophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
N-Nitrosodiphenylamine/Diphenylamine	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
N-Nitrosodi-n-propylamine	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Pentachlorophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Phenanthrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Phenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Pyrene	ND	4.5	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Pyridine	ND	18	μg/L	1	V-34	SW-846 8270E	10/12/24	10/15/24 13:58	BGL
1,2,4,5-Tetrachlorobenzene	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4,5-Trichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
2,4,6-Trichlorophenol	ND	9.0	μg/L	1		SW-846 8270E	10/12/24	10/15/24 13:58	BGL
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		50.6	15-110					10/15/24 13:58	
Phenol-d6		33.5	15-110					10/15/24 13:58	
Nitrobenzene-d5		66.9	30-130					10/15/24 13:58	
2-Fluorobiphenyl		60.5	30-130					10/15/24 13:58	
2,4,6-Tribromophenol		92.4	15-110					10/15/24 13:58	

10/15/24 13:58

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sample ID: 24J1565-02

G 1 D 111

Sample Description:

Work Order: 24J1565

Sampled: 10/7/2024 14:00

Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,4-Dioxane		15	0.19	μg/L	1		SW-846 8270E	10/11/24	10/15/24 17:55	GJB
	Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1 4-Dioxane-d8			22.9	15-110					10/15/24 17:55	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724 Sampled: 10/7/2024 14:00

Sample ID: 24J1565-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		Sen	nivolatile Organic Co	npounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	24	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoropentanoic acid (PFPeA)	20	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorohexanoic acid (PFHxA)	24	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoroheptanoic acid (PFHpA)	12	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorooctanoic acid (PFOA)	36	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorononanoic acid (PFNA)	25	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorodecanoic acid (PFDA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoroundecanoic acid (PFUnA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorododecanoic acid (PFDoA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorotridecanoic acid (PFTrDA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorotetradecanoic acid (PFTeDA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorobutanesulfonic acid (PFBS)	4.2	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoropentanesulfonic acid (PFPeS)	2.8	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorohexanesulfonic acid (PFHxS)	7.8	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorooctanesulfonic acid (PFOS)	14	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorononanesulfonic acid (PFNS)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorodecanesulfonic acid (PFDS)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluorododecanesulfonic acid (PFDoS)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
1H,1H,2H,2H-Perfluorohexane sulfonic	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
acid (4:2FTS) 1H,1H,2H,2H-Perfluorooctane sulfonic	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
acid (6:2FTS) 1H,1H,2H,2H-Perfluorodecane sulfonic	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
acid (8:2FTS) Perfluorooctanesulfonamide (PFOSA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-MeFOSAA (NMeFOSAA)	ND	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-EtFOSAA (NEtFOSAA)	2.1	0.92	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	9.2	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	9.2	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
9Cl-PF3ONS (F53B Minor)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
11Cl-PF3OUdS (F53B Major)	ND	3.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	9.2	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	46	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 6:43	AB
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	46	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
							Г		

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sampled: 10/7/2024 14:00

Sample ID: 24J1565-02
Sample Matrix: Ground Water

Samivalatila	Organic Compo	ounds by - LC/MS-N	4C

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid (PFMBA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:43	AB
Surrogates		% Recovery	Recovery Limi	ts	Flag/Qual				
13C4-PFBA		72.6	10-130					11/6/24 6:43	
13C5-PFPeA		72.7	35-150					11/6/24 6:43	
13C5-PFHxA		76.1	55-150					11/6/24 6:43	
13C4-PFHpA		70.4	55-150					11/6/24 6:43	
13C8-PFOA		78.7	60-140					11/6/24 6:43	
13C9-PFNA		77.9	55-140					11/6/24 6:43	
13C6-PFDA		76.8	50-140					11/6/24 6:43	
13C7-PFUnA		65.4	30-140					11/6/24 6:43	
13C2-PFDoA		62.7	10-150					11/6/24 6:43	
13C2-PFTeDA		59.4	10-130					11/6/24 6:43	
13C3-PFBS		91.9	55-150					11/6/24 6:43	
13C3-PFHxS		80.1	55-150					11/6/24 6:43	
13C8-PFOS		76.5	45-140					11/6/24 6:43	
13C2-4:2FTS		174	60-200					11/6/24 6:43	
13C2-6:2FTS		112	60-200					11/6/24 6:43	
13C2-8:2FTS		75.7	50-200					11/6/24 6:43	
13C8-PFOSA		65.6	30-130					11/6/24 6:43	
D3-NMeFOSA		51.3	15-130					11/6/24 6:43	
D5-NEtFOSA		53.3	10-130					11/6/24 6:43	
D3-NMeFOSAA		75.8	45-200					11/6/24 6:43	
D5-NEtFOSAA		73.6	10-200					11/6/24 6:43	
D7-NMeFOSE		52.8	10-150					11/6/24 6:43	
D9-NEtFOSE		54.0	10-150					11/6/24 6:43	
13C3-HFPO-DA		81.1	25-160					11/6/24 6:43	

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: PD-CP-01-100724

Sample ID: 24J1565-02 Sample Matrix: Ground Water 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Work Order: 24J1565

Sampled: 10/7/2024 14:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	110	10	mg/L	1		Draft Method 1633	10/11/24	10/11/24 10:05	LL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: ASF-CP-00-100724

Sampled: 10/7/2024 13:30

Sample Description:

Sample ID: 24J1565-03
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane	16	0.19	μg/L	1		SW-846 8270E	10/11/24	10/15/24 18:16	GJB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,4-Dioxane-d8		23.4	15-110		_			10/15/24 18:16	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: ASF-CP-00-100724 Sampled: 10/7/2024 13:30

Sample ID: 24J1565-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

Perthanospeniancia card (PPPeA) 21 1,7 mgl. 1	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorophenosie celd (PFHAA) 25 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFHAA) 37 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFNA) 37 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFNA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFNA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFDA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFDA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFDA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPA) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) 3.3 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS) ND 0.86 ag L 1 Darh Methed 163 114/24 116/24 6.59 2 Perfluorophenosie celd (PFPAS)	Perfluorobutanoic acid (PFBA)	24	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorolespanois acid (PFIPA) 13 0.86 ngL 1 Draft Medoal 1633 11/422 11/624 659 9 Perfluoroceanoic acid (PFIPA) 27 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorondoceanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorondoceanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorodoceanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorodoceanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 9 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotriadecanoic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotrianeanoiffonic acid (PFIPA) ND 0.86 ngL 1 Draft Medoal 1633 11/424 11/624 659 Perfluorotrianeanoiffonic acid (PFIPA) ND 0.8	Perfluoropentanoic acid (PFPeA)	21	1.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluenconamento esid (PFOA) 37 0.86 ng.L 1 Draft Method 1533 11/424 11/624 659 2 Perfluenconamento esid (PFNA) 2 6 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconamento esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 2 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86 ng.L 1 Draft Method 1633 11/424 11/624 659 Perfluenconadocamosic esid (PFDA) ND 0.86	Perfluorohexanoic acid (PFHxA)	25	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluoronomonic acid (PPNA) 26 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluoronodecanesic acid (PFDA) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluoronofecanesic acid (PFDA) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluoronofecanesic acid (PFDA) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorofecanesic acid (PFDA) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorofecanesic acid (PFDA) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) 3.3 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) 2.7 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) 7.7 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11/624 659 7 Perfluorophutanesulfonic acid (PFDS) ND 0.86 mg.L 1 Durit Method 1633 11/424 11	Perfluoroheptanoic acid (PFHpA)	13	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluonodecanoic acid (PFDA) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecanoic acid (PFDA) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecanoic acid (PFDA) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonotrindecanoic acid (PFDA) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonotrindecanoic acid (PFDA) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonotrindecanoic acid (PFDS) 3.3 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) 2.7 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonopenianeculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Method 1633 11/424 11/624 6.59 Perfluonodecaneculiforic acid (PFDS) ND 0.86 ng/L 1 Dun's Me	Perfluorooctanoic acid (PFOA)	37	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorosandecarroic acid (PFUnA) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarroic acid (PFTPOA) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarroic acid (PFTDA) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTDA) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTDA) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTDS) 3.3 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTPS) 2.7 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTPS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTPS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobetraleacuric acid (PFTPS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorobecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracuriforic acid (PFDS) ND 0.86 ngL 1 Dath Method 1633 11/424 11/624 6.59 Perfluorodecarcuracurical politoric acid ND 0.86 ngL 1 Dath Metho	Perfluorononanoic acid (PFNA)	26	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorondodecamoic acid (PFTDA) ND 0.86 ng/L 1 Death Method 1633 11/42/4 11/62/4 6.59 7 Perfluorondordocamoic acid (PFTDA) ND 0.86 ng/L 1 Death Method 1633 11/42/4 11/62/4 6.59 7 Perfluorondordocamoic acid (PFTDA) ND 0.86 ng/L 1 Death Method 1633 11/42/4 11/62/4 6.59 7 Perfluorondordocamoicamoic acid (PFTDA) ND 0.86 ng/L 1 Death Method 1633 11/42/4 11/62/4 6.59 7 Perfluorondordocamoicamoicamoica acid (PFTDA) ND 0.86 ng/L 1 Death Method 1633 11/42/4 11/62/4 6.59 7 Perfluorondordocamoicamoicamoicamoicamoicamoicamoicamo	Perfluorodecanoic acid (PFDA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorotrindecanoic acid (PFTDA) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorotrindecanoic acid (PFEDA) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorobutanesulfonic acid (PFBS) 3.3 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorobutanesulfonic acid (PFBS) 2.7 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorobetanesulfonic acid (PFBS) 7.9 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFBS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFBS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) 16 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDS) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDSA) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid (PFDSA) ND 0.86 ngL 1 Draft Method 1633 11/424 11/624 6.59 Perfluorochesulfonic acid	Perfluoroundecanoic acid (PFUnA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorobannesalfonic acid (PFTeDA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) 3,3 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) 7,9 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFTBS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobannesalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonic acid (PFDS) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11/424 11/624 6.59 / Perfluorobacenasalfonamide (PFOSA) ND 0,86 ng/L 1 Draft Method 1633 11	Perfluorododecanoic acid (PFDoA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluoropentanesulfonic acid (PFBS)	Perfluorotridecanoic acid (PFTrDA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluoropentanesulfonic acid (PFPeS)	Perfluorotetradecanoic acid (PFTeDA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorohepanesulfonic acid (PFHxS)	Perfluorobutanesulfonic acid (PFBS)	3.3	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorocheptanesulfonic acid (PFIpS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFOS) 16 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFOS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonic acid (PFDSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemostalfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluorochemo	Perfluoropentanesulfonic acid (PFPeS)	2.7	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorooctanesulfonic acid (PFOS) 16 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronomanesulfonic acid (PFNS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronomanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronodecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronodecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronodecanesulfonic acid (PFDS) ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronoctanesulfonic acid (PFDS) ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronoctanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronoctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoronoctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamide (PFOSAA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamidocthan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamidocthan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoroctanesulfonamidocthan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoropopylene oxide dimer acid (PFOSA) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoropopylene oxide dimer acid (PFOSA) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Perfluoropopylene oxide dimer acid (PFOSA) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/2	Perfluorohexanesulfonic acid (PFHxS)	7.9	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorononanesulfonic acid (PFNS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluorondecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluorondecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluorondecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluorondecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluorondecanesulfonic acid (PFDS) ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonic sulfonic ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonic sulfonic ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / Perfluoronceanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11	Perfluoroheptanesulfonic acid (PFHpS)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorodecanesulfonic acid (PFDS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / III, III, III, III, III, III, III Draft Method 1633 11/4/24 11/6/24 6:59 / III, III, III, III, III, III, III, I	Perfluorooctanesulfonic acid (PFOS)	16	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Perfluorododecanesulfonic acid (PFDoS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctane sulfonic ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctane sulfonic ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.1.H.2.H.2.H.Perfluoroctane sulfonic ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctane sulfonic ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctane sulfonic ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.2.H.Perfluoroctanesulfonamidoethan ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.Perfluoroctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.2.H.Perfluoroctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 J. H.I.H.Perfluoroctanesulfonamidoethan	Perfluorononanesulfonic acid (PFNS)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
H. H. H. H. H. H. H. H.	Perfluorodecanesulfonic acid (PFDS)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
acid (4.2FTS) HI, HL2H-Perfluoroctane sulfonic acid (6.2FTS) HI, HL2H-Perfluoroctane sulfonic acid (6.2FTS) HI, HL2H-Perfluoroctane sulfonic acid (6.2FTS) HI, HL2H-Perfluoroctane sulfonic acid (8.2FTS) Perfluoroctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) Perfluoroctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) Nembry perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) New Perfluoroctanesulfonamide (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / next (9.2FTS) ND 0.86 ng/L 1 Draft Method 1633 11/	Perfluorododecanesulfonic acid (PFDoS)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
acid (6.2FTS) H,H,H,2H,P-H-Perfluorodecane sulfonic acid (8.2FTS) Perfluorocotanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamide (PFOSA) NP 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A control of the perfluorocotanesulfonamidoethan (POSE) N-methylperfluorocotanesulfonamidoethan (POSE) N-methylperfl	acid (4:2FTS)									AB
acid (8:2FTS) Perfluorooctanesulfonamide (PFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // NEFOSA) N-methyl perfluorooctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // NEFOSA) N-methyl perfluorooctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // NEFOSA (NMEFOSA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // N-methyl perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanesulfonamidoethan ND 3.5 ng/L 1 N-05 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-Dioxa-3H-perfluorooctanosic aid (FPPA) ND 43 ng/L 1 N-05 Draft Method 1633 11/4/24 11/6/24 6:59 // A-B-DIOXA-B-DIOXA-DRAFT ND A-B-DRAFT Method 1633 11/4/24 11/6/24 6:59 // A-B-DRAFT Method 1633 11/4/24 11/6/24 6:59 // A-B-DRAFT Method 1633 11/4/24 11/6/24 6:59 // A-B-DRAFT Met	acid (6:2FTS)			_						AB AB
N-methyl perfluoroocatnesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NMeFOSA) N-ethyl perfluorooctanesulfonamide ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSA) N-MeFOSAA (NMeFOSAA) ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSAA) N-ELFOSAA (NEEFOSAA) 2.0 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSAA) N-methylperfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSAA) N-methylperfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE) N-methylperfluorooctaneic ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 / (NEEFOSE)		ND	5.5	ng/L	1			11/4/24	11/0/24 0.57	AD
(NMeFOSA) N-ethylperfluorooctanesulfonamide (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-EBOSAA (NMeFOSAA) N-meFOSAA (NMeFOSAA) N-meFOSAA (NMeFOSAA) N-meFOSAA (NMeFOSAA) N-methylperfluorooctanesulfonamidoethan (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-EBOSAA (NEFOSAA) N-methylperfluorooctanesulfonamidoethan (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethan (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethanol (ND 0.85 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanoic (PFPA) (ND 0.86 ng/L 1 ND 0.86 ng/L 1 ND 0.86 ng/L 1 ND 0.86 ng/L 1 ND	Perfluorooctanesulfonamide (PFOSA)	ND	0.86	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
N-MeFOSAA (NMeFOSAA)	(NMeFOSA)			_						AB
N-EtFOSAA (NEtFOSAA) 2.0 0.86 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-methylperfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanesulfonamidoethanol ND 8.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanesulfonamidoethanol ND 8.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanesulfonamidoethanol ND 8.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanoic nd ND 8.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanoic nd ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanoic nd ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylperfluorooctanoic nd ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A N-ethylporooctanoic nd	(NEtFOSA)			_						AB AB
N-methylperfluorooctanesulfonamidoethan ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (NEIFOSE) Hexafluoropropylene oxide dimer acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (HEPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 9CI-PF3ONS (F53B Major) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropropyl propanoic acid (FPrPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropropyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropropyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropropyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropertyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropertyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropertyl propanoic acid (FPPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 3-Perfluoropertyl propanoic acid (FPPA) ND 43 ng/L 1 N-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA)	· · · · · · · · · · · · · · · · · · ·									
Ol(NMeFOSE) N-ethylperfluorooctanesulfonamidoethanol ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (NEIFOSE) Hexafluoropropylene oxide dimer acid (HFPO-DA) 4,8-Dioxa-3H-perfluorononanoic acid (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 9CI-PF3ONS (F53B Major) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoropropyl propanoic acid (FPrPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoroptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoroptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoroptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 7-Perfluoroptyl propanoic acid (FHpPA) ND 1.7 ND				_						AB
(NEtFOSE) Hexafluoropropylene oxide dimer acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluorononanoic acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluorononanoic acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluorononanoic acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl Miles ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FPrPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 43 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 43 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 43 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4/4,8-Dioxa-3H-perfluoropropyl propanoic acid (FHpPA) ND 1.7 ng/L 1 Draft M	ol(NMeFOSE)			_	1					AB AB
4.8-Dioxa-3H-perfluorononanoic acid ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (ADONA) 9CI-PF3ONS (F53B Minor) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 11/2 11/2 11/2 11/2 11/2 11/2 11/2 11	Hexafluoropropylene oxide dimer acid	ND	3.5		1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
9Cl-PF3ONS (F53B Minor) ND 3.5 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluorooctanoic ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A 3-Perfluoroheptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (PFEESA)	4,8-Dioxa-3H-perfluorononanoic acid	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
3-Perfluoropropyl propanoic acid (FPrPA) ND 8.6 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4 (3:3FTCA) 2H,2H,3H,3H-Perfluorocatanoic ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 4 (3:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 4 (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4 (PFEESA)		ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
(3:3FTCA) 2H,2H,3H,3H-Perfluorooctanoic ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 Acaid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA)(5:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 Accid(FTPPA) ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59	11Cl-PF3OUdS (F53B Major)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
acid(FPePA)(5:3FTCA) 3-Perfluoroheptyl propanoic acid (FHpPA) ND 43 ng/L 1 V-05 Draft Method 1633 11/4/24 11/6/24 6:59 A (7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 A (PFEESA)		ND	8.6	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
(7:3FTCA) Perfluoro(2-ethoxyethane)sulfonic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59 4 (PFEESA)	acid(FPePA)(5:3FTCA)			_						AB
(PFEESA)	(7:3FTCA)			_		V-05				AB AB
Perfluoro-3-methoxypropanoic acid ND 1.7 ng/L 1 Draft Method 1633 11/4/24 11/6/24 6:59		ND ND	1.7		1		Draft Method 1633	11/4/24		AB

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: ASF-CP-00-100724

Sampled: 10/7/2024 13:30

Sample ID: 24J1565-03
Sample Matrix: Ground Water

Semivolatile	Organic	Compoun	ds by -	- LC/MS-MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
(PFMBA) Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.7	ng/L	1		Draft Method 1633	11/4/24	11/6/24 6:59	AB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
13C4-PFBA		87.4	10-130					11/6/24 6:59	
13C5-PFPeA		69.9	35-150					11/6/24 6:59	
13C5-PFHxA		73.0	55-150					11/6/24 6:59	
13C4-PFHpA		65.2	55-150					11/6/24 6:59	
13C8-PFOA		76.0	60-140					11/6/24 6:59	
13C9-PFNA		67.5	55-140					11/6/24 6:59	
13C6-PFDA		67.6	50-140					11/6/24 6:59	
13C7-PFUnA		63.4	30-140					11/6/24 6:59	
13C2-PFDoA		60.7	10-150					11/6/24 6:59	
13C2-PFTeDA		55.4	10-130					11/6/24 6:59	
13C3-PFBS		90.3	55-150					11/6/24 6:59	
13C3-PFHxS		76.0	55-150					11/6/24 6:59	
13C8-PFOS		67.5	45-140					11/6/24 6:59	
13C2-4:2FTS		168	60-200					11/6/24 6:59	
13C2-6:2FTS		104	60-200					11/6/24 6:59	
13C2-8:2FTS		75.1	50-200					11/6/24 6:59	
13C8-PFOSA		55.2	30-130					11/6/24 6:59	
D3-NMeFOSA		42.5	15-130					11/6/24 6:59	
D5-NEtFOSA		46.2	10-130					11/6/24 6:59	
D3-NMeFOSAA		75.1	45-200					11/6/24 6:59	
D5-NEtFOSAA		64.4	10-200					11/6/24 6:59	
D7-NMeFOSE		49.3	10-150					11/6/24 6:59	
D9-NEtFOSE		48.0	10-150					11/6/24 6:59	
13C3-HFPO-DA		78.0	25-160					11/6/24 6:59	

Project Location: Old Bethpage, NY

Date Received: 10/9/2024

Field Sample #: ASF-CP-00-100724

Sample ID: 24J1565-03 Sample Matrix: Ground Water 39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Work Order: 24J1565

Sampled: 10/7/2024 13:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	30	10	mg/L	1		Draft Method 1633	10/11/24	10/11/24 10:05	LL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Old Bethpage, NY Sample Description:

Date Received: 10/9/2024

Field Sample #: ASF-CP-01-100724

Sampled: 10/7/2024 13:30

Sample ID: 24J1565-04
Sample Matrix: Ground Water

1,4-Dioxane by isotope dilution GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,4-Dioxane	14	0.19	μg/L	1		SW-846 8270E	10/11/24	10/18/24 13:17	GJB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,4-Dioxane-d8		28.1	15-110					10/18/24 13:17	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: ASF-CP-01-100724 Sampled: 10/7/2024 13:30

Sample ID: 24J1565-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

		Sem	ivolatile Organic Coi	mpounds by - l	LC/MS-MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanoic acid (PFBA)	24	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoropentanoic acid (PFPeA)	21	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorohexanoic acid (PFHxA)	25	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoroheptanoic acid (PFHpA)	12	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorooctanoic acid (PFOA)	34	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorononanoic acid (PFNA)	26	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorodecanoic acid (PFDA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoroundecanoic acid (PFUnA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorododecanoic acid (PFDoA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorotridecanoic acid (PFTrDA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorotetradecanoic acid (PFTeDA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorobutanesulfonic acid (PFBS)	3.6	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoropentanesulfonic acid (PFPeS)	3.0	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorohexanesulfonic acid (PFHxS)	8.4	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoroheptanesulfonic acid (PFHpS)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorooctanesulfonic acid (PFOS)	15	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorononanesulfonic acid (PFNS)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorodecanesulfonic acid (PFDS)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorododecanesulfonic acid (PFDoS)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluorooctanesulfonamide (PFOSA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-MeFOSAA (NMeFOSAA)	ND	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-EtFOSAA (NEtFOSAA)	1.9	0.89	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-methylperfluorooctanesulfonamidoethan ol(NMeFOSE)	ND	8.9	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
N-ethylperfluorooctanesulfonamidoethanol (NEtFOSE)	ND	8.9	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
9Cl-PF3ONS (F53B Minor)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
11Cl-PF3OUdS (F53B Major)	ND	3.5	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
3-Perfluoropropyl propanoic acid (FPrPA) (3:3FTCA)	ND	8.9	ng/L	1	****	Draft Method 1633	11/4/24	11/6/24 7:15	AB
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	ND	44	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 7:15	AB
3-Perfluoroheptyl propanoic acid (FHpPA) (7:3FTCA)	ND	44	ng/L	1	V-05	Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Perfluoro-3-methoxypropanoic acid (PFMPA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB

Project Location: Old Bethpage, NY

Sample Description:

Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: ASF-CP-01-100724

Sampled: 10/7/2024 13:30

Sample ID: 24J1565-04
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Perfluoro-4-methoxybutanoic acid	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
(PFMBA)									
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	ND	1.8	ng/L	1		Draft Method 1633	11/4/24	11/6/24 7:15	AB
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
13C4-PFBA		87.0	10-130					11/6/24 7:15	
13C5-PFPeA		70.6	35-150					11/6/24 7:15	
13C5-PFHxA		71.6	55-150					11/6/24 7:15	
13C4-PFHpA		66.9	55-150					11/6/24 7:15	
13C8-PFOA		72.0	60-140					11/6/24 7:15	
13C9-PFNA		68.9	55-140					11/6/24 7:15	
13C6-PFDA		67.6	50-140					11/6/24 7:15	
13C7-PFUnA		63.5	30-140					11/6/24 7:15	
13C2-PFDoA		60.7	10-150					11/6/24 7:15	
13C2-PFTeDA		56.2	10-130					11/6/24 7:15	
13C3-PFBS		90.7	55-150					11/6/24 7:15	
13C3-PFHxS		74.5	55-150					11/6/24 7:15	
13C8-PFOS		70.5	45-140					11/6/24 7:15	
13C2-4:2FTS		170	60-200					11/6/24 7:15	
13C2-6:2FTS		105	60-200					11/6/24 7:15	
13C2-8:2FTS		73.9	50-200					11/6/24 7:15	
13C8-PFOSA		59.2	30-130					11/6/24 7:15	
D3-NMeFOSA		52.0	15-130					11/6/24 7:15	
D5-NEtFOSA		54.6	10-130					11/6/24 7:15	
D3-NMeFOSAA		73.8	45-200					11/6/24 7:15	
D5-NEtFOSAA		68.2	10-200					11/6/24 7:15	
D7-NMeFOSE		55.4	10-150					11/6/24 7:15	
D9-NEtFOSE		53.2	10-150					11/6/24 7:15	
13C3-HFPO-DA		80.0	25-160					11/6/24 7:15	

Project Location: Old Bethpage, NY Sample Description: Work Order: 24J1565

Date Received: 10/9/2024

Field Sample #: ASF-CP-01-100724

Sample ID: 24J1565-04
Sample Matrix: Ground Water

Sampled: 10/7/2024 13:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Total Suspended Solids	ND	10	mg/L	1		Draft Method 1633	10/11/24	10/11/24 10:05	LL

Project Location: Old Bethpage, NY

Sample Description:

Work Order: 24J1565

Date Received: 10/9/2024 Field Sample #: TB-100724

Sampled: 10/7/2024 09:00

Sample ID: 24J1565-05 Sample Matrix: Trip Blank Water

			Volatile Organic Co	mpounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Benzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Bromoform	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Bromomethane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
2-Butanone (MEK)	ND	20	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Carbon Disulfide	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Chloromethane	ND	2.0	$\mu g/L$	1	V-05	SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Cyclohexane	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,3-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,4-Dichlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Methyl Acetate	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Methyl Cyclohexane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Methylene Chloride	ND	5.0	μg/L μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
4-Methyl-2-pentanone (MIBK)	ND ND	10		1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Naphthalene			μg/L						
n-Propylbenzene	ND ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Styrene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36 Page 32	EEH

Page 32 of 62

Project Location: Old Bethpage, NY

Sample Description:

Work Order: 24J1565

Date Received: 10/9/2024
Field Sample #: TB-100724

Sampled: 10/7/2024 09:00

Sample ID: 24J1565-05

Sample Matrix: Trip Blank Water

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Toluene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
(Freon 113) 1,2,4-Trimethylbenzene	ND	1.0	/1	1		CW 946 9260D	10/14/24	10/14/24 21 26	PPH
· ·			μg/L	I		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
o-Xylene	ND	1.0	μg/L	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Xylenes (total)	ND	1.0	$\mu g/L$	1		SW-846 8260D	10/14/24	10/14/24 21:36	EEH
Surrogates		% Recovery	Recovery Limits		Flag/Qual				

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	98.3	70-130		10/14/24 21:36
Toluene-d8	101	70-130		10/14/24 21:36
4-Bromofluorobenzene	98.3	70-130		10/14/24 21:36

Sample Extraction Data

Draft Method 1633

Lab Number [Field ID]	Batch	Initial [mL]	Date
24J1565-01 [PD-CP-00-100724]	B389019	50.0	10/11/24
24J1565-02 [PD-CP-01-100724]	B389019	50.0	10/11/24
24J1565-03 [ASF-CP-00-100724]	B389019	50.0	10/11/24
24J1565-04 [ASF-CP-01-100724]	B389019	50.0	10/11/24

Prep Method:Draft Method 1633 Analytical Method:Draft Method 1633		Leachates were extracted on 10/11/2024 per NO PREP in Batch B389019					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date			
24J1565-01 [PD-CP-00-100724]	B390657	539	5.00	11/04/24			
24J1565-02 [PD-CP-01-100724]	B390657	541	5.00	11/04/24			
24J1565-03 [ASF-CP-00-100724]	B390657	578	5.00	11/04/24			
24J1565-04 [ASF-CP-01-100724]	B390657	564	5.00	11/04/24			

Prep Method:SW-846 5030B Analytical Method:SW-846 8260D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
24J1565-01 [PD-CP-00-100724]	B389185	5	5.00	10/14/24
24J1565-02 [PD-CP-01-100724]	B389185	5	5.00	10/14/24
24J1565-05 [TB-100724]	B389185	5	5.00	10/14/24

Prep Method:SW-846 3510C Analytical Method:SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
24J1565-01 [PD-CP-00-100724]	B389100	1040	1.00	10/11/24
24J1565-02 [PD-CP-01-100724]	B389100	1040	1.00	10/11/24
24J1565-03 [ASF-CP-00-100724]	B389100	1040	1.00	10/11/24
24J1565-04 [ASF-CP-01-100724]	B389100	1040	1.00	10/11/24

Prep Method:SW-846 3510C Analytical Method:SW-846 8270E

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
24J1565-01 [PD-CP-00-100724]	B389149	110	1.00	10/12/24
24J1565-02 [PD-CP-01-100724]	B389149	111	1.00	10/12/24

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B389185 - SW-846 5030B				
Blank (B389185-BLK1)				Prepared & Analyzed: 10/14/24
Acetone	ND	50	μg/L	
Benzene	ND	1.0	$\mu g/L$	
Bromochloromethane	ND	1.0	$\mu g/L$	
Bromodichloromethane	ND	0.50	$\mu g/L$	
Bromoform	ND	1.0	$\mu g/L$	
Bromomethane	ND	2.0	μg/L	
2-Butanone (MEK)	ND	20	$\mu g/L$	
-Butylbenzene	ND	1.0	μg/L	
ec-Butylbenzene	ND	1.0	μg/L	
ert-Butylbenzene	ND	1.0	μg/L	
arbon Disulfide	ND	5.0	μg/L	
arbon Tetrachloride	ND	5.0	$\mu g/L$	
hlorobenzene	ND	1.0	μg/L	
hlorodibromomethane	ND	0.50	$\mu g/L$	
hloroethane	ND	2.0	$\mu g/L$	
hloroform	ND	2.0	μg/L	
Chloromethane	ND	2.0	μg/L	V-
yclohexane	ND	5.0	μg/L	
,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	
2-Dibromoethane (EDB)	ND	0.50	μg/L	
2-Dichlorobenzene	ND	1.0	μg/L	
3-Dichlorobenzene	ND	1.0	μg/L	
4-Dichlorobenzene	ND	1.0	μg/L	
ichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	
1-Dichloroethane	ND	1.0	μg/L	
2-Dichloroethane	ND	1.0	μg/L	
1-Dichloroethylene	ND	1.0	μg/L	
s-1,2-Dichloroethylene	ND	1.0	μg/L	
ans-1,2-Dichloroethylene	ND	1.0	μg/L	
,2-Dichloropropane	ND	1.0	μg/L	
is-1,3-Dichloropropene	ND	0.50	μg/L	
ans-1,3-Dichloropropene	ND	0.50	μg/L	
thylbenzene	ND	1.0	μg/L	
Hexanone (MBK)	ND	10	μg/L	
opropylbenzene (Cumene)	ND	1.0	μg/L	
-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	
lethyl Acetate	ND	1.0	μg/L	
lethyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	
ethyl Cyclohexane	ND ND	1.0	μg/L	
lethylene Chloride	ND ND	5.0	μg/L	
-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L	
aphthalene	ND ND	2.0	μg/L	
Propylbenzene	ND ND	1.0	μg/L	
tyrene	ND ND	1.0	μg/L	
1,2,2-Tetrachloroethane	ND ND	0.50	μg/L	
etrachloroethylene	ND ND	1.0	μg/L μg/L	
oluene		1.0	μg/L μg/L	
2,3-Trichlorobenzene	ND	5.0	μg/L μg/L	
,2,4-Trichlorobenzene	ND	1.0	μg/L μg/L	
,1,1-Trichloroethane	ND	1.0	μg/L μg/L	
1,1-Trichloroethane	ND	1.0		
	ND		μg/L	
richloroethylene	ND	1.0	μg/L	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Satch B389185 - SW-846 5030B										
lank (B389185-BLK1)				Prepared & A	Analyzed: 10	/14/24				
Crichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
,2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
13)	NB		10							
2,4-Trimethylbenzene	ND	1.0	$\mu g/L$							
3,5-Trimethylbenzene	ND	1.0	$\mu g/L$							
inyl Chloride	ND	2.0	$\mu g/L$							
n+p Xylene	ND	2.0	$\mu g/L$							
-Xylene	ND	1.0	$\mu g/L$							
(ylenes (total)	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	24.4		μg/L	25.00		97.8	70-130			
urrogate: Toluene-d8	24.9		$\mu g/L$	25.00		99.7	70-130			
urrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.00		98.3	70-130			
CS (B389185-BS1)				Prepared & A	Analyzed: 10	/14/24				
cetone	97.7	50	μg/L	100.0		97.7	70-160			
enzene	10.7	1.0	μg/L	10.00		107	70-130			
romochloromethane	11.0	1.0	μg/L	10.00		110	70-130			
romodichloromethane	10.9	0.50	μg/L	10.00		109	70-130			
romoform	10.5	1.0	μg/L	10.00		105	70-130			
romomethane	10.2	2.0	μg/L	10.00		102	40-160			
-Butanone (MEK)	86.3	20	$\mu g/L$	100.0		86.3	40-160			
Butylbenzene	10.3	1.0	μg/L	10.00		103	70-130			
ec-Butylbenzene	10.3	1.0	μg/L	10.00		103	70-130			
rt-Butylbenzene	10.4	1.0	μg/L	10.00		104	70-130			
arbon Disulfide	111	5.0	μg/L	100.0		111	70-130			
arbon Tetrachloride	10.9	5.0	μg/L	10.00		109	70-130			
hlorobenzene	11.0	1.0	μg/L	10.00		110	70-130			
hlorodibromomethane	11.2	0.50	$\mu g/L$	10.00		112	70-130			
hloroethane	9.11	2.0	$\mu g/L$	10.00		91.1	70-130			
Chloroform	10.2	2.0	μg/L	10.00		102	70-130			
Chloromethane	8.90	2.0	$\mu g/L$	10.00		89.0	40-160			V-05
yclohexane	10.0	5.0	$\mu g/L$	10.00		100	70-130			
,2-Dibromo-3-chloropropane (DBCP)	9.54	5.0	$\mu g/L$	10.00		95.4	70-130			
2-Dibromoethane (EDB)	11.1	0.50	$\mu g/L$	10.00		111	70-130			
,2-Dichlorobenzene	10.8	1.0	$\mu g/L$	10.00		108	70-130			
,3-Dichlorobenzene	10.7	1.0	$\mu g/L$	10.00		107	70-130			
4-Dichlorobenzene	10.7	1.0	$\mu g/L$	10.00		107	70-130			
richlorodifluoromethane (Freon 12)	9.96	2.0	$\mu g/L$	10.00		99.6	40-160			
1-Dichloroethane	10.9	1.0	$\mu g/L$	10.00		109	70-130			
,2-Dichloroethane	9.55	1.0	$\mu g/L$	10.00		95.5	70-130			
1-Dichloroethylene	10.6	1.0	$\mu g/L$	10.00		106	70-130			
s-1,2-Dichloroethylene	10.7	1.0	$\mu g/L$	10.00		107	70-130			
ans-1,2-Dichloroethylene	10.5	1.0	$\mu g/L$	10.00		105	70-130			
2-Dichloropropane	10.3	1.0	$\mu g/L$	10.00		103	70-130			
s-1,3-Dichloropropene	10.8	0.50	$\mu g/L$	10.00		108	70-130			
ans-1,3-Dichloropropene	10.6	0.50	$\mu g/L$	10.00		106	70-130			
thylbenzene	10.6	1.0	$\mu g/L$	10.00		106	70-130			
-Hexanone (MBK)	106	10	$\mu g/L$	100.0		106	70-160			
opropylbenzene (Cumene)	10.8	1.0	$\mu g/L$	10.00		108	70-130			
-Isopropyltoluene (p-Cymene)	10.5	1.0	$\mu g/L$	10.00		105	70-130			
Methyl Acetate	9.22	1.0	$\mu g/L$	10.00		92.2	70-130			
1ethyl tert-Butyl Ether (MTBE)	10.4	1.0	μg/L	10.00		104	70-130			

%REC

RPD

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%KEC		KPD	
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B389185 - SW-846 5030B			_							
CS (B389185-BS1)				Prepared &	Analyzed: 10	/14/24				
ethyl Cyclohexane	9.87	1.0	μg/L	10.00		98.7	70-130			
ethylene Chloride	10.5	5.0	μg/L	10.00		105	70-130			
Methyl-2-pentanone (MIBK)	105	10	μg/L	100.0		105	70-160			
aphthalene	9.90	2.0	μg/L	10.00		99.0	40-130			
Propylbenzene	10.7	1.0	μg/L	10.00		107	70-130			
yrene	11.0	1.0	μg/L	10.00		110	70-130			
1,2,2-Tetrachloroethane	10.6	0.50	$\mu g/L$	10.00		106	70-130			
etrachloroethylene	10.8	1.0	$\mu g/L$	10.00		108	70-130			
bluene	11.1	1.0	$\mu g/L$	10.00		111	70-130			
2,3-Trichlorobenzene	10.7	5.0	μg/L	10.00		107	70-130			
2,4-Trichlorobenzene	10.6	1.0	μg/L	10.00		106	70-130			
1,1-Trichloroethane	11.0	1.0	μg/L	10.00		110	70-130			
1,2-Trichloroethane	10.6	1.0	μg/L	10.00		106	70-130			
richloroethylene	10.9	1.0	μg/L	10.00		109	70-130			
richlorofluoromethane (Freon 11)	10.6	2.0	μg/L	10.00		106	70-130			
2,3-Trichloropropane	10.4	2.0	μg/L	10.00		104	70-130			
1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.2	1.0	μg/L	10.00		102	70-130			
3)	10.2									
2,4-Trimethylbenzene	10.5	1.0	$\mu g/L$	10.00		105	70-130			
3,5-Trimethylbenzene	10.8	1.0	$\mu g/L$	10.00		108	70-130			
inyl Chloride	10.1	2.0	μg/L	10.00		101	40-160			
+p Xylene	21.8	2.0	μg/L	20.00		109	70-130			
Xylene	11.1	1.0	$\mu g/L$	10.00		111	70-130			
ylenes (total)	32.9	1.0	μg/L	30.00		110	0-200			
urrogate: 1,2-Dichloroethane-d4	24.9		μg/L	25.00		99.6	70-130			
urrogate: Toluene-d8	24.6		$\mu g/L$	25.00		98.6	70-130			
urrogate: 4-Bromofluorobenzene	25.3		$\mu g/L$	25.00		101	70-130			
CS Dup (B389185-BSD1)				Prepared &	Analyzed: 10	/14/24				
cetone	96.9	50	μg/L	100.0		96.9	70-160	0.843	25	
enzene	10.9	1.0	μg/L	10.00		109	70-130	1.57	25	
romochloromethane	11.0	1.0	$\mu g/L$	10.00		110	70-130	0.0908	25	
romodichloromethane	10.8	0.50	$\mu g/L$	10.00		108	70-130	0.737	25	
romoform	10.9	1.0	$\mu g/L$	10.00		109	70-130	3.65	25	
romomethane	10.2	2.0	$\mu g/L$	10.00		102	40-160	0.196	25	
Butanone (MEK)	87.2	20	$\mu g/L$	100.0		87.2	40-160	1.06	25	
Butylbenzene	10.1	1.0	μg/L	10.00		101	70-130	1.97	25	
c-Butylbenzene	10.2	1.0	$\mu g/L$	10.00		102	70-130	1.08	25	
rt-Butylbenzene	10.2	1.0	$\mu g/L$	10.00		102	70-130	1.85	25	
arbon Disulfide	112	5.0	$\mu g/L$	100.0		112	70-130	0.323	25	
arbon Tetrachloride	11.0	5.0	μg/L	10.00		110	70-130	1.01	25	
hlorobenzene	10.8	1.0	μg/L	10.00		108	70-130	2.48	25	
hlorodibromomethane	11.2	0.50	μg/L	10.00		112	70-130	0.269	25	
hloroethane	9.06	2.0	μg/L	10.00		90.6	70-130	0.550	25	
hloroform	10.2	2.0	μg/L	10.00		102	70-130	0.294	25	
nloromethane	8.93	2.0	μg/L	10.00		89.3	40-160	0.337	25	V-05
yclohexane	9.44	5.0	μg/L	10.00		94.4	70-130	5.96	25	
2-Dibromo-3-chloropropane (DBCP)	9.08	5.0	μg/L	10.00		90.8	70-130	4.94	25	
/	7.00		μg/L	10.00		114	70-130	2.85	25	
2-Dibromoethane (EDB)	11 4	0.50		10.00						
2-Dibromoethane (EDB) 2-Dichlorobenzene	11.4 10.9	0.50 1.0		10.00		109	70-130	1 01	2.5	
2-Dichlorobenzene	10.9	1.0	$\mu g/L$	10.00		109 104	70-130 70-130	1.01 2.75	25 25	
2-Dichlorobenzene 3-Dichlorobenzene	10.9 10.4	1.0 1.0	μg/L μg/L	10.00		104	70-130	2.75	25	
2-Dichlorobenzene	10.9	1.0	$\mu g/L$							

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B389185 - SW-846 5030B										
LCS Dup (B389185-BSD1)				Prepared &	Analyzed: 10/	14/24				
1,1-Dichloroethane	10.8	1.0	μg/L	10.00		108	70-130	0.368	25	
1,2-Dichloroethane	9.73	1.0	$\mu g/L$	10.00		97.3	70-130	1.87	25	
1,1-Dichloroethylene	10.7	1.0	μg/L	10.00		107	70-130	1.03	25	
cis-1,2-Dichloroethylene	10.7	1.0	$\mu g/L$	10.00		107	70-130	0.0932	25	
trans-1,2-Dichloroethylene	10.6	1.0	$\mu g/L$	10.00		106	70-130	1.04	25	
1,2-Dichloropropane	10.5	1.0	$\mu g/L$	10.00		105	70-130	1.54	25	
cis-1,3-Dichloropropene	10.7	0.50	$\mu g/L$	10.00		107	70-130	0.745	25	
trans-1,3-Dichloropropene	11.0	0.50	$\mu g/L$	10.00		110	70-130	3.43	25	
Ethylbenzene	10.7	1.0	$\mu g/L$	10.00		107	70-130	0.188	25	
2-Hexanone (MBK)	106	10	$\mu g/L$	100.0		106	70-160	0.341	25	
Isopropylbenzene (Cumene)	10.5	1.0	$\mu g/L$	10.00		105	70-130	2.44	25	
p-Isopropyltoluene (p-Cymene)	10.2	1.0	$\mu g/L$	10.00		102	70-130	3.20	25	
Methyl Acetate	9.34	1.0	$\mu g/L$	10.00		93.4	70-130	1.29	25	
Methyl tert-Butyl Ether (MTBE)	10.2	1.0	μg/L	10.00		102	70-130	1.65	25	
Methyl Cyclohexane	9.31	1.0	$\mu g/L$	10.00		93.1	70-130	5.84	25	
Methylene Chloride	10.7	5.0	$\mu g/L$	10.00		107	70-130	2.64	25	
4-Methyl-2-pentanone (MIBK)	106	10	$\mu g/L$	100.0		106	70-160	0.114	25	
Naphthalene	9.81	2.0	$\mu g/L$	10.00		98.1	40-130	0.913	25	
n-Propylbenzene	10.7	1.0	$\mu g/L$	10.00		107	70-130	0.560	25	
Styrene	11.1	1.0	$\mu g/L$	10.00		111	70-130	0.271	25	
1,1,2,2-Tetrachloroethane	10.6	0.50	$\mu g/L$	10.00		106	70-130	0.189	25	
Tetrachloroethylene	11.0	1.0	$\mu g/L$	10.00		110	70-130	2.30	25	
Toluene	10.8	1.0	$\mu g/L$	10.00		108	70-130	2.37	25	
1,2,3-Trichlorobenzene	10.2	5.0	$\mu g/L$	10.00		102	70-130	5.08	25	
1,2,4-Trichlorobenzene	10.3	1.0	$\mu g/L$	10.00		103	70-130	2.39	25	
1,1,1-Trichloroethane	10.8	1.0	$\mu g/L$	10.00		108	70-130	1.10	25	
1,1,2-Trichloroethane	10.6	1.0	$\mu g/L$	10.00		106	70-130	0.284	25	
Trichloroethylene	10.8	1.0	$\mu g/L$	10.00		108	70-130	0.552	25	
Trichlorofluoromethane (Freon 11)	10.2	2.0	$\mu g/L$	10.00		102	70-130	3.85	25	
1,2,3-Trichloropropane	10.2	2.0	$\mu g/L$	10.00		102	70-130	2.53	25	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	9.78	1.0	μg/L	10.00		97.8	70-130	4.20	25	
1,2,4-Trimethylbenzene	10.4	1.0	$\mu g/L$	10.00		104	70-130	0.575	25	
1,3,5-Trimethylbenzene	10.7	1.0	$\mu g/L$	10.00		107	70-130	0.838	25	
Vinyl Chloride	9.93	2.0	$\mu g/L$	10.00		99.3	40-160	1.30	25	
m+p Xylene	21.5	2.0	μg/L	20.00		108	70-130	1.20	25	
o-Xylene	10.9	1.0	μg/L	10.00		109	70-130	2.00	25	
Xylenes (total)	32.4	1.0	$\mu g/L$	30.00		108	0-200	1.47		
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.00		100	70-130			
Surrogate: Toluene-d8	24.8		μg/L	25.00		99.2	70-130			
Surrogate: 4-Bromofluorobenzene	24.4		μg/L	25.00		97.4	70-130			
Matrix Spike (B389185-MS1)	Sou	rce: 24J1565-	01	Prepared: 10)/14/24 Analy	zed: 10/15/	24			
Acetone	101	50	μg/L	100.0	ND	101	70-130			
Benzene	10.3	1.0	$\mu g/L$	10.00	ND	103	70-130			
Bromochloromethane	10.4	1.0	$\mu g/L$	10.00	ND	104	70-130			
Bromodichloromethane	9.86	0.50	$\mu g/L$	10.00	ND	98.6	70-130			
Bromoform	9.48	1.0	$\mu g/L$	10.00	ND	94.8	70-130			
Bromomethane	8.70	2.0	$\mu g/L$	10.00	ND	87.0	70-130			
2-Butanone (MEK)	94.4	20	$\mu g/L$	100.0	ND	94.4	70-130			
n-Butylbenzene	9.53	1.0	μg/L	10.00	ND	95.3	70-130			
sec-Butylbenzene	9.85	1.0	$\mu g/L$	10.00	ND	98.5	70-130			
tert-Butylbenzene	9.70	1.0	$\mu g/L$	10.00	ND	97.0	70-130			
									F	age 38 of

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

											1
		Reporting		Spike	Source		%REC		RPD		ı
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	ı

Matrix Spike (B389185-MS1)	Ç	e: 24J1565-0	1	Prepared: 10/	4/24 Analyz	zed: 10/15	/24	
Carbon Disulfide		e: 24J1505-0 5.0	μg/L	100.0	ND	99.3	70-130	
Carbon Tetrachloride	99.3 10.8	5.0	μg/L μg/L	10.00	ND ND	108	70-130	
Chlorobenzene	10.8	1.0	μg/L	10.00	ND ND	100	70-130	
Chlorodibromomethane	10.0	0.50	μg/L	10.00	ND ND	101	70-130	
Chloroethane	8.50	2.0	μg/L	10.00	ND ND	85.0	70-130	
Chloroform	9.46	2.0	μg/L	10.00	ND ND	94.6	70-130	
Chloromethane	9.46	2.0	μg/L	10.00	ND ND	90.8	70-130	V-(
yclohexane	10.0	5.0	μg/L	10.00	ND ND	100	70-130	V-(
,2-Dibromo-3-chloropropane (DBCP)	8.08	5.0	μg/L	10.00	ND ND	80.8	70-130	
,2-Dibromoethane (EDB)		0.50	μg/L	10.00	ND ND	100	70-130	
2-Dichlorobenzene	10.0 10.0	1.0	μg/L μg/L	10.00	ND ND	100	70-130	
3-Dichlorobenzene		1.0	μg/L μg/L	10.00	ND ND	97.3	70-130	
4-Dichlorobenzene	9.73	1.0	μg/L μg/L	10.00		96.3	70-130	
ichlorodifluoromethane (Freon 12)	9.63	2.0	μg/L μg/L	10.00	ND ND	90.3	70-130	
1-Dichloroethane	9.12	1.0	μg/L μg/L		ND ND			
2-Dichloroethane	10.4	1.0	μg/L μg/L	10.00	ND	104	70-130	
1-Dichloroethylene	9.11	1.0		10.00	ND	91.1	70-130	
•	10.5		μg/L	10.00	ND	105	70-130	
s-1,2-Dichloroethylene ans-1,2-Dichloroethylene	10.1	1.0 1.0	μg/L μα/Ι	10.00	ND	101	70-130	
•	10.3		μg/L	10.00	ND	103	70-130	
2-Dichloropropane	9.83	1.0	μg/L	10.00	ND	98.3	70-130	
s-1,3-Dichloropropene	9.72	0.50	μg/L	10.00	ND	97.2	70-130	
nns-1,3-Dichloropropene	9.35	0.50	μg/L	10.00	ND	93.5	70-130	
thylbenzene	10.3	1.0	μg/L	10.00	ND	103	70-130	
Hexanone (MBK)	110	10	μg/L	100.0	ND	110	70-130	
opropylbenzene (Cumene)	10.3	1.0	μg/L	10.00	ND	103	70-130	
Isopropyltoluene (p-Cymene)	9.45	1.0	μg/L	10.00	ND	94.5	70-130	
ethyl Acetate	8.09	1.0	μg/L	10.00	ND	80.9	70-130	
[ethyl tert-Butyl Ether (MTBE)	9.30	1.0	μg/L	10.00	ND	93.0	70-130	
Lethyl Cyclohexane	9.93	1.0	μg/L	10.00	ND	99.3	70-130	
lethylene Chloride	10.0	5.0	μg/L	10.00	ND	100	70-130	
Methyl-2-pentanone (MIBK)	112	10	μg/L	100.0	ND	112	70-130	
aphthalene	9.06	2.0	μg/L	10.00	0.410	86.5	70-130	
Propylbenzene	10.2	1.0	μg/L	10.00	ND	102	70-130	
yrene	10.1	1.0	μg/L	10.00	ND	101	70-130	
1,2,2-Tetrachloroethane	9.58	0.50	μg/L	10.00	ND	95.8	70-130	
etrachloroethylene	10.4	1.0	μg/L	10.00	ND	104	70-130	
bluene	10.6	1.0	μg/L	10.00	ND	106	70-130	
2,3-Trichlorobenzene	9.44	5.0	μg/L	10.00	ND	94.4	70-130	
2,4-Trichlorobenzene	9.26	1.0	μg/L	10.00	ND	92.6	70-130	
1,1-Trichloroethane	10.6	1.0	μg/L	10.00	ND	106	70-130	
1,2-Trichloroethane	10.2	1.0	$\mu g/L$	10.00	ND	102	70-130	
richloroethylene	10.8	1.0	μg/L	10.00	ND	108	70-130	
richlorofluoromethane (Freon 11)	10.5	2.0	$\mu g/L$	10.00	ND	105	70-130	
2,3-Trichloropropane	9.54	2.0	$\mu g/L$	10.00	ND	95.4	70-130	
1,2-Trichloro-1,2,2-trifluoroethane (Freon	10.4	1.0	$\mu g/L$	10.00	ND	104	70-130	
3)		1.0	/*	40		0.6 -	F0.40-	
2,4-Trimethylbenzene	9.69	1.0	μg/L	10.00	ND	96.9	70-130	
3,5-Trimethylbenzene	10.1	1.0	μg/L	10.00	ND	101	70-130	
nyl Chloride	9.78	2.0	μg/L	10.00	ND	97.8	70-130	
+p Xylene	20.7	2.0	μg/L	20.00	ND	104	70-130	
Xylene	10.3	1.0 1.0	μg/L	10.00	ND	103	70-130	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B389185 - SW-846 5030B										
Matrix Spike (B389185-MS1)	Som	rce: 24J1565-0	1	Prepared: 10)/14/24 Analyz	red: 10/15/	74			
Surrogate: 1,2-Dichloroethane-d4	23.6	.ce. 2431303-0	μg/L	25.00	,, 1 1, 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	94.6	70-130			
Surrogate: Toluene-d8	24.9		μg/L μg/L	25.00		99.8	70-130			
Surrogate: 4-Bromofluorobenzene	25.2		μg/L	25.00		101	70-130			
-					V14/04 4 1					
Matrix Spike Dup (B389185-MSD1)		rce: 24J1565-0			0/14/24 Analyz			0.612	20	
Acetone Benzene	102	50 1.0	μg/L	100.0 10.00	ND	102	70-130	0.612	30 30	
Bromochloromethane	10.5	1.0	μg/L μα/Ι	10.00	ND	105	70-130	2.02 1.65	30	
romodichloromethane	10.2	0.50	μg/L μg/L		ND	102	70-130		30	
romoform	10.1 9.58	1.0	μg/L μg/L	10.00 10.00	ND ND	101 95.8	70-130 70-130	2.31 1.05	30	
romomethane	9.38 9.22	2.0	μg/L μg/L	10.00	ND ND	93.8	70-130	5.80	30	
-Butanone (MEK)	9.22 92.6	2.0	μg/L μg/L	10.00	ND ND	92.2	70-130	1.88	30	
-Butylbenzene	92.6	1.0	μg/L μg/L	10.00	ND ND	99.3	70-130	4.11	30	
ec-Butylbenzene	9.93	1.0	μg/L μg/L	10.00	ND ND	98.3	70-130	0.203	30	
ert-Butylbenzene	10.1	1.0	μg/L	10.00	ND ND	101	70-130	3.64	30	
arbon Disulfide	10.1	5.0	μg/L	100.0	ND	102	70-130	2.42	30	
arbon Tetrachloride	11.1	5.0	μg/L	10.00	ND	111	70-130	2.55	30	
hlorobenzene	10.6	1.0	μg/L	10.00	ND	106	70-130	5.54	30	
hlorodibromomethane	9.77	0.50	μg/L	10.00	ND	97.7	70-130	3.52	30	
hloroethane	8.73	2.0	μg/L	10.00	ND	87.3	70-130	2.67	30	
hloroform	9.64	2.0	μg/L	10.00	ND	96.4	70-130	1.88	30	
hloromethane	8.56	2.0	μg/L	10.00	ND	85.6	70-130	5.90	30	V-05
yclohexane	10.2	5.0	μg/L	10.00	ND	102	70-130	1.59	30	
2-Dibromo-3-chloropropane (DBCP)	8.42	5.0	μg/L	10.00	ND	84.2	70-130	4.12	30	
2-Dibromoethane (EDB)	9.85	0.50	$\mu g/L$	10.00	ND	98.5	70-130	1.71	30	
2-Dichlorobenzene	9.89	1.0	$\mu g/L$	10.00	ND	98.9	70-130	1.60	30	
3-Dichlorobenzene	9.63	1.0	$\mu g/L$	10.00	ND	96.3	70-130	1.03	30	
4-Dichlorobenzene	9.70	1.0	$\mu g/L$	10.00	ND	97.0	70-130	0.724	30	
richlorodifluoromethane (Freon 12)	9.51	2.0	$\mu g/L$	10.00	ND	95.1	70-130	4.19	30	
1-Dichloroethane	10.6	1.0	$\mu g/L$	10.00	ND	106	70-130	2.38	30	
2-Dichloroethane	9.09	1.0	$\mu g/L$	10.00	ND	90.9	70-130	0.220	30	
1-Dichloroethylene	10.7	1.0	$\mu g/L$	10.00	ND	107	70-130	2.07	30	
s-1,2-Dichloroethylene	10.4	1.0	μg/L	10.00	ND	104	70-130	2.92	30	
ans-1,2-Dichloroethylene	10.6	1.0	$\mu g/L$	10.00	ND	106	70-130	2.39	30	
2-Dichloropropane	9.63	1.0	μg/L	10.00	ND	96.3	70-130	2.06	30	
is-1,3-Dichloropropene	9.22	0.50	μg/L	10.00	ND	92.2	70-130	5.28	30	
ans-1,3-Dichloropropene	8.92	0.50	μg/L	10.00	ND	89.2	70-130	4.71	30	
thylbenzene	10.6	1.0	μg/L	10.00	ND	106	70-130	3.34	30	
Hexanone (MBK)	106	10	μg/L	100.0	ND	106	70-130	3.63	30	
opropylbenzene (Cumene)	10.4	1.0	μg/L	10.00	ND	104	70-130	1.07	30	
Isopropyltoluene (p-Cymene)	9.84	1.0	μg/L	10.00	ND	98.4	70-130	4.04	30	
ethyl Acetate	8.28	1.0	μg/L	10.00	ND	82.8	70-130	2.32	30	
ethyl tert-Butyl Ether (MTBE)	9.49	1.0	μg/L	10.00	ND	94.9	70-130	2.02	30	
ethyl Cyclohexane	9.87	1.0	μg/L	10.00	ND	98.7	70-130	0.606	30	
Methyl 2 poptopopo (MIPK)	9.96	5.0	μg/L	10.00	ND	99.6	70-130	0.800	30	
-Methyl-2-pentanone (MIBK) aphthalene	109	10 2.0	μg/L	100.0	ND	109	70-130	3.11	30	
apnunaiene Propylbenzene	9.48	1.0	μg/L μg/I	10.00	0.410	90.7	70-130	4.53	30	
tyrene	10.6	1.0	μg/L μg/L	10.00	ND	106	70-130	3.18	30	
yrene ,1,2,2-Tetrachloroethane	10.5	0.50	μg/L μg/L	10.00	ND ND	105	70-130 70-130	3.11	30 30	
1,2,2-1etrachioroethane etrachloroethylene	9.93	1.0	μg/L μg/L	10.00	ND	99.3	70-130	3.59	30	
oluene	10.8 10.2	1.0	μg/L μg/L	10.00 10.00	ND ND	108 102	70-130 70-130	3.50 3.67	30 30	

Surrogate: 4-Bromofluorobenzene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Matrix Spike Dup (B389185-MSD1)	Source	e: 24J1565-0	1	Prepared: 10/14	4/24 Analyz	zed: 10/15	/24		
1,2,3-Trichlorobenzene	9.33	5.0	$\mu g/L$	10.00	ND	93.3	70-130	1.17	30
1,2,4-Trichlorobenzene	9.68	1.0	$\mu g/L$	10.00	ND	96.8	70-130	4.44	30
1,1,1-Trichloroethane	11.1	1.0	$\mu g/L$	10.00	ND	111	70-130	4.99	30
1,1,2-Trichloroethane	9.53	1.0	$\mu g/L$	10.00	ND	95.3	70-130	6.40	30
Trichloroethylene	10.6	1.0	$\mu g/L$	10.00	ND	106	70-130	1.22	30
Trichlorofluoromethane (Freon 11)	10.8	2.0	$\mu g/L$	10.00	ND	108	70-130	2.91	30
1,2,3-Trichloropropane	9.70	2.0	$\mu g/L$	10.00	ND	97.0	70-130	1.66	30
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	10.4	1.0	$\mu g/L$	10.00	ND	104	70-130	0.769	30
1,2,4-Trimethylbenzene	9.92	1.0	$\mu g/L$	10.00	ND	99.2	70-130	2.35	30
1,3,5-Trimethylbenzene	10.3	1.0	$\mu g/L$	10.00	ND	103	70-130	1.47	30
Vinyl Chloride	9.93	2.0	$\mu g/L$	10.00	ND	99.3	70-130	1.52	30
m+p Xylene	21.3	2.0	$\mu g/L$	20.00	ND	106	70-130	2.86	20
o-Xylene	10.7	1.0	$\mu g/L$	10.00	ND	107	70-130	3.91	30
Xylenes (total)	32.0	1.0	$\mu g/L$	30.00	ND	107	0-200	3.21	
Surrogate: 1,2-Dichloroethane-d4	24.8		μg/L	25.00		99.1	70-130		
Surrogate: Toluene-d8	24.4		μg/L	25.00		97.4	70-130		

 $\mu g/L$

25.00

99.5

70-130

24.9

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B389149 - SW-846 3510C										
Blank (B389149-BLK1)				Prepared: 10)/12/24 Anal	yzed: 10/15/2	4			
2,3,4,6-Tetrachlorophenol	ND	20	μg/L							
Atrazine	ND	20	$\mu g/L$							
Benzaldehyde	ND	10	$\mu g/L$							
Biphenyl	ND	20	$\mu g/L$							
Caprolactam	ND	10	$\mu g \! / \! L$							
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	$\mu g/L$							
Acetophenone	ND	10	μg/L							
Aniline	ND	20	μg/L							V-05
Anthracene	ND	5.0	μg/L							
Benzo(a)anthracene	ND	5.0	μg/L							
Benzo(a)pyrene	ND	5.0	μg/L							
Benzo(b)fluoranthene	ND	5.0	μg/L							
Benzo(g,h,i)perylene	ND	5.0	μg/L							
Benzo(k)fluoranthene Bis(2-chloroethoxy)methane	ND	5.0	μg/L							
Bis(2-chloroethyl)ether	ND	10 10	μg/L μg/I							
3is(2-cnioroethyl)ether 2,2'-oxybis(1-Chloropropane)	ND	10	μg/L μg/L							V-35
Bis(2-Ethylhexyl)phthalate	ND ND	10	μg/L μg/L							V-33
I-Bromophenylphenylether	ND ND	10	μg/L μg/L							
Butylbenzylphthalate	ND ND	10	μg/L μg/L							
Carbazole	ND ND	10	μg/L μg/L							
l-Chloroaniline	ND ND	10	μg/L							
l-Chloro-3-methylphenol	ND ND	10	μg/L							
-Chloronaphthalene	ND	10	μg/L							
2-Chlorophenol	ND	10	μg/L							
-Chlorophenylphenylether	ND	10	μg/L							
Chrysene	ND	5.0	μg/L							
Dibenz(a,h)anthracene	ND	5.0	μg/L							
Dibenzofuran	ND	5.0	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
3,3-Dichlorobenzidine	ND	10	$\mu g/L$							
2,4-Dichlorophenol	ND	10	$\mu g/L$							
Diethylphthalate	ND	10	$\mu g/L$							
2,4-Dimethylphenol	ND	10	$\mu g/L$							
Dimethylphthalate	ND	10	$\mu g/L$							
4,6-Dinitro-2-methylphenol	ND	20	$\mu g/L$							
2,4-Dinitrophenol	ND	10	$\mu g/L$							
2,4-Dinitrotoluene	ND	10	$\mu g \! / \! L$							
2,6-Dinitrotoluene	ND	10	$\mu g \! / \! L$							
Di-n-octylphthalate	ND	10	μg/L							V-04
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND	10	μg/L							_
Hexachlorobutadiene	ND	10	μg/L							L-04
Hexachlorocyclopentadiene	ND	10	μg/L							
Hexachloroethane	ND	10	μg/L							
ndeno(1,2,3-cd)pyrene	ND	5.0	μg/L							
sophorone -Methylnaphthalene	ND	10 5.0	μg/L μg/I							
	ND	5.0	μg/L							
2-Methylnaphthalene 2-Methylphenol	ND ND	5.0 10	μg/L μg/L							

Notes

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Level

Source

Result

%REC

%REC

Limits

RPD

Limit

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Units

Reporting

Limit

Result

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B389149 - SW-846 3510C										
Blank (B389149-BLK1)				Prepared: 10)/12/24 Anal	yzed: 10/15/	24			
3/4-Methylphenol	ND	10	μg/L							
Naphthalene	ND	5.0	$\mu g/L$							
2-Nitroaniline	ND	10	$\mu g/L$							
3-Nitroaniline	ND	10	$\mu g/L$							
-Nitroaniline	ND	10	$\mu g/L$							
Vitrobenzene	ND	10	$\mu g/L$							
2-Nitrophenol	ND	10	$\mu g/L$							
-Nitrophenol	ND	10	$\mu g/L$							
N-Nitrosodiphenylamine/Diphenylamine	ND	10	$\mu g/L$							
N-Nitrosodi-n-propylamine	ND	10	$\mu g/L$							
Pentachlorophenol	ND	10	$\mu g/L$							
Phenanthrene	ND	5.0	$\mu g/L$							
henol	ND	10	$\mu g/L$							
Pyrene	ND	5.0	$\mu g/L$							
yridine	ND	20	μg/L							V-34
,2,4,5-Tetrachlorobenzene	ND	10	μg/L							
2,4,5-Trichlorophenol	ND	10	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							
Surrogate: 2-Fluorophenol	110		μg/L	400.0		27.4	15-110			
Surrogate: Phenol-d6	90.3		μg/L	400.0		22.6	15-110			
Surrogate: Nitrobenzene-d5	146		μg/L	200.0		72.9	30-130			
Surrogate: 2-Fluorobiphenyl	129		μg/L	200.0		64.3	30-130			
Surrogate: 2,4,6-Tribromophenol	195		μg/L	400.0		48.9	15-110			
Surrogate: p-Terphenyl-d14	157		$\mu g/L$	200.0		78.6	30-130			
LCS (B389149-BS1)				Prepared: 10)/12/24 Anal	yzed: 10/15/	24			
2,3,4,6-Tetrachlorophenol	97.0	20	μg/L	100.0		97.0	40-140			R-05
Atrazine	141	20	μg/L	100.0		141 *	40-140			L-07
Benzaldehyde	104	10	μg/L	100.0		104	40-140			R-05
Biphenyl	79.1	20	μg/L	100.0		79.1	40-140			
N1		10	μg/L	100.0		48.7	40-140			R-05
aproiaciam	48.7	10					40-140			
Caprolactam Acenaphthene	48.7 68.8	5.0		100.0		68.8				
Acenaphthene	68.8		$\mu g/L$	100.0 100.0		68.8 75.6				
· ·	68.8 75.6	5.0	μg/L μg/L	100.0		75.6	40-140			R-05
Acenaphthene Acenaphthylene	68.8 75.6 99.3	5.0 5.0	μg/L μg/L μg/L	100.0 100.0		75.6 99.3	40-140 40-140			
Acenaphthene Acenaphthylene Acetophenone	68.8 75.6 99.3 59.5	5.0 5.0 10	μg/L μg/L μg/L μg/L	100.0 100.0 100.0		75.6 99.3 59.5	40-140 40-140 40-140			R-05 V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene	68.8 75.6 99.3 59.5 78.7	5.0 5.0 10 20 5.0	μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7	40-140 40-140 40-140 40-140			
Acenaphthene Acenaphthylene Acetophenone Aniline	68.8 75.6 99.3 59.5 78.7 79.5	5.0 5.0 10 20	μg/L μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5	40-140 40-140 40-140 40-140 40-140			
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene	68.8 75.6 99.3 59.5 78.7 79.5 82.3	5.0 5.0 10 20 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7	40-140 40-140 40-140 40-140 40-140			
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(a)pyrene	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4	5.0 5.0 10 20 5.0 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3	40-140 40-140 40-140 40-140 40-140			
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8	5.0 5.0 10 20 5.0 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4	40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4	5.0 5.0 10 20 5.0 5.0 5.0 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether -,2'-oxybis(1-Chloropropane)	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether -,2'-oxybis(1-Chloropropane) Bis(2-Ethylhexyl)phthalate	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3	5.0 5.0 10 20 5.0 5.0 5.0 5.0 10 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Accenaphthene Accenaphthylene Accetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Accenaphthene Bis(2-Ethylhexyl)phthalate Bromophenylphenylether	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether -,2'-oxybis(1-Chloropropane) Bis(2-Ethylhexyl)phthalate -Bromophenylphenylether Butylbenzylphthalate	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7	5.0 5.0 10 20 5.0 5.0 5.0 5.0 10 10 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether L2'-oxybis(1-Chloropropane) Bis(2-Ethylhexyl)phthalate Benzomphenylphenylether Butylbenzylphthalate Carbazole	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 10 10 10 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05
Acenaphthene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chlorophy)ether ,,2'-oxybis(1-Chloropropane) Bis(2-Ethylhexyl)phthalate -Bromophenylphenylether Butylbenzylphthalate Carbazole -Chloroaniline	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 10 10 10 10 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8 82.1	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05 R-05 R-05, V-3
Acenaphthene Acenaphthylene Acetophenone Aniline Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether 2,2'-oxybis(1-Chloropropane) Bis(2-Ethylhexyl)phthalate B-Bromophenylphenylether Butylbenzylphthalate	68.8 75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8	5.0 5.0 10 20 5.0 5.0 5.0 5.0 5.0 10 10 10 10	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		75.6 99.3 59.5 78.7 79.5 82.3 81.4 96.8 81.4 82.9 71.3 95.7 86.3 70.7 86.6 83.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			V-05

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B389149 - SW-846 3510C										
LCS (B389149-BS1)				Prepared: 10)/12/24 Analy	zed: 10/15/2	24			
4-Chlorophenylphenylether	79.2	10	$\mu g/L$	100.0		79.2	40-140			
Chrysene	75.7	5.0	$\mu g/L$	100.0		75.7	40-140			
Dibenz(a,h)anthracene	96.8	5.0	$\mu g/L$	100.0		96.8	40-140			R-05
Dibenzofuran	76.4	5.0	$\mu g/L$	100.0		76.4	40-140			
Di-n-butylphthalate	84.4	10	$\mu g/L$	100.0		84.4	40-140			
3,3-Dichlorobenzidine	43.7	10	$\mu g/L$	100.0		43.7	40-140			
2,4-Dichlorophenol	77.5	10	$\mu g/L$	100.0		77.5	30-130			R-05
Diethylphthalate	85.9	10	$\mu g/L$	100.0		85.9	40-140			
2,4-Dimethylphenol	81.4	10	μg/L	100.0		81.4	30-130			
Dimethylphthalate	84.6	10	μg/L	100.0		84.6	40-140			
4,6-Dinitro-2-methylphenol	69.0	20	μg/L	100.0		69.0	30-130			R-05
2,4-Dinitrophenol	64.5	10	μg/L	100.0		64.5	30-130			R-05
2,4-Dinitrotoluene	92.2	10	$\mu g/L$	100.0		92.2	40-140			
2,6-Dinitrotoluene	87.2	10	μg/L	100.0		87.2	40-140			
Di-n-octylphthalate	83.1	10	μg/L	100.0		83.1	40-140			V-04
Fluoranthene	86.9	5.0	μg/L	100.0		86.9	40-140			
Fluorene	81.2	5.0	μg/L	100.0		81.2	40-140			
Hexachlorobenzene	73.3	10	μg/L	100.0		73.3	40-140			
Hexachlorobutadiene	36.6	10	μg/L	100.0		36.6 *	40-140			L-04
Hexachlorocyclopentadiene	41.2	10	μg/L	100.0		41.2	30-140			
Hexachloroethane	40.0	10	μg/L	100.0		40.0	40-140			
Indeno(1,2,3-cd)pyrene	88.2	5.0	μg/L	100.0		88.2	40-140			
Isophorone	94.3	10	μg/L	100.0		94.3	40-140			
1-Methylnaphthalene	60.3	5.0	μg/L	100.0		60.3	40-140			
2-Methylnaphthalene	56.2	5.0	μg/L	100.0		56.2	40-140			
2-Methylphenol	71.6	10	μg/L	100.0		71.6	30-130			R-05
3/4-Methylphenol	71.7	10	μg/L	100.0		71.7	30-130			R-05
Naphthalene	53.0	5.0	μg/L	100.0		53.0	40-140			11 05
2-Nitroaniline	104	10	μg/L	100.0		104	40-140			
3-Nitroaniline	87.3	10	μg/L	100.0		87.3	40-140			
4-Nitroaniline	93.8	10	μg/L	100.0		93.8	40-140			R-05
Nitrobenzene	75.1	10	μg/L μg/L	100.0		75.1	40-140			K-05
2-Nitrophenol		10	μg/L μg/L	100.0		65.3	30-130			R-05
4-Nitrophenol	65.3 59.0	10	μg/L μg/L	100.0		59.0	10-130			R-05
N-Nitrosodiphenylamine/Diphenylamine	72.2	10	μg/L μg/L	100.0		72.2	40-140			K-03
N-Nitrosodi-n-propylamine		10	μg/L	100.0		82.4	40-140			R-05
Pentachlorophenol	82.4 80.0	10	μg/L μg/L	100.0		80.0	30-130			R-05
Phenanthrene		5.0	μg/L μg/L	100.0		77.2	40-140			K-05
Phenol	77.2	10	μg/L μg/L	100.0		42.9	20-130			R-05
Pyrene	42.9	5.0	μg/L μg/L	100.0			40-140			K-03
Pyridine	71.7	20		100.0		71.7 21.9	10-140			V-34
1,2,4,5-Tetrachlorobenzene	21.9	10	μg/L							V-34
	67.5		μg/L	100.0		67.5	40-140			D 05
2,4,5-Trichlorophenol	75.4	10	μg/L μg/I	100.0		75.4	30-130			R-05
2,4,6-Trichlorophenol	73.9	10	μg/L	100.0		73.9	30-130			R-05
Surrogate: 2-Fluorophenol	260		$\mu g/L$	400.0		65.0	15-110			
Surrogate: Phenol-d6	188		$\mu g/L$	400.0		46.9	15-110			
Surrogate: Nitrobenzene-d5	170		$\mu g/L$	200.0		84.8	30-130			
Surrogate: 2-Fluorobiphenyl	152		$\mu g/L$	200.0		76.0	30-130			
Surrogate: 2,4,6-Tribromophenol	419		$\mu g/L$	400.0		105	15-110			
Surrogate: p-Terphenyl-d14	159		$\mu g/L$	200.0		79.4	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B389149 - SW-846 3510C											
LCS Dup (B389149-BSD1)				Prepared: 10	/12/24 Anal	yzed: 10/15/	24				
2,3,4,6-Tetrachlorophenol	43.5	20	$\mu g/L$	100.0		43.5	40-140	76.2	* 20	R-05	
Atrazine	117	20	$\mu g/L$	100.0		117	40-140	18.5	20		
Benzaldehyde	83.4	10	$\mu g/L$	100.0		83.4	40-140	21.6	* 20	R-05	
Biphenyl	69.9	20	$\mu g/L$	100.0		69.9	40-140	12.4	20		
Caprolactam	37.3	10	$\mu g/L$	100.0		37.3 *	40-140	26.5	* 20	L-07A	
Acenaphthene	57.9	5.0	$\mu g/L$	100.0		57.9	40-140	17.2	20		
Acenaphthylene	66.0	5.0	$\mu g/L$	100.0		66.0	40-140	13.5	20		
Acetophenone	80.0	10	$\mu g/L$	100.0		80.0	40-140	21.5	* 20	R-05	
Aniline	54.4	20	μg/L	100.0		54.4	40-140	8.80	50	V-05	
Anthracene	69.7	5.0	μg/L	100.0		69.7	40-140	12.1	20		
Benzo(a)anthracene	71.3	5.0	μg/L	100.0		71.3	40-140	10.8	20		
Benzo(a)pyrene	73.6	5.0	μg/L	100.0		73.6	40-140	11.3	20		
Benzo(b)fluoranthene	75.5	5.0	μg/L	100.0		75.5	40-140	7.61	20		
Benzo(g,h,i)perylene	76.7	5.0	μg/L	100.0		76.7	40-140	23.2	* 20	R-05	
Benzo(k)fluoranthene	75.0	5.0	μg/L	100.0		75.0	40-140	8.16	20		
Bis(2-chloroethoxy)methane	69.9	10	μg/L	100.0		69.9	40-140	17.1	20		
Bis(2-chloroethyl)ether	58.5	10	μg/L	100.0		58.5	40-140	19.6	20		
2,2'-oxybis(1-Chloropropane)	77.7	10	μg/L	100.0		77.7	40-140	20.8	* 20	R-05, V-35	
Bis(2-Ethylhexyl)phthalate	74.1	10	μg/L	100.0		74.1	40-140	15.1	20	100, 100	
-Bromophenylphenylether	63.9	10	μg/L μg/L	100.0		63.9	40-140	10.2	20		
Butylbenzylphthalate	78.7	10	μg/L μg/L	100.0		78.7	40-140	9.59	20		
Carbazole		10	μg/L μg/L	100.0		71.4	40-140	16.0	20		
-Chloroaniline	71.4	10	μg/L μg/L	100.0		71.4	40-140	13.7	20		
-Chloro-3-methylphenol	71.6	10								D 05	
-Chloronaphthalene	69.0		μg/L	100.0		69.0	30-130	24.0		R-05	
•	50.7	10	μg/L	100.0		50.7	40-140	12.6	20 * 20	D 05	
-Chlorophenol	37.7	10	μg/L	100.0		37.7	30-130	59.9		R-05	
-Chlorophenylphenylether	70.2	10	μg/L	100.0		70.2	40-140	12.1	20		
Chrysene	67.8	5.0	μg/L	100.0		67.8	40-140	11.0	20		
Dibenz(a,h)anthracene	78.4	5.0	μg/L	100.0		78.4	40-140	21.0	* 20	R-05	
Dibenzofuran	67.2	5.0	μg/L	100.0		67.2	40-140	12.8	20		
Di-n-butylphthalate	71.8	10	μg/L	100.0		71.8	40-140	16.1	20		
3,3-Dichlorobenzidine	38.1	10	μg/L	100.0		38.1 *		13.9	20	L-07	
2,4-Dichlorophenol	45.1	10	μg/L	100.0		45.1	30-130	52.8	* 20	R-05	
Diethylphthalate	72.5	10	μg/L	100.0		72.5	40-140	17.0	20		
,4-Dimethylphenol	69.4	10	μg/L	100.0		69.4	30-130	16.0	20		
Dimethylphthalate	72.9	10	$\mu g/L$	100.0		72.9	40-140	14.9	50		
,6-Dinitro-2-methylphenol	28.3	20	$\mu g/L$	100.0		28.3 *	30-130	83.8	* 50	L-07A	
,4-Dinitrophenol	24.9	10	$\mu g/L$	100.0		24.9 *	30-130	88.6	* 50	L-07A	
,4-Dinitrotoluene	78.2	10	$\mu g/L$	100.0		78.2	40-140	16.4	20		
,6-Dinitrotoluene	75.2	10	$\mu g/L$	100.0		75.2	40-140	14.8	20		
Di-n-octylphthalate	75.2	10	$\mu g/L$	100.0		75.2	40-140	10.1	20	V-04	
luoranthene	72.4	5.0	$\mu g/L$	100.0		72.4	40-140	18.2	20		
luorene	71.6	5.0	$\mu g/L$	100.0		71.6	40-140	12.6	20		
Iexachlorobenzene	67.8	10	$\mu g/L$	100.0		67.8	40-140	7.80	20		
Iexachlorobutadiene	30.5	10	$\mu g/L$	100.0		30.5 *	40-140	18.2	20	L-04	
· Hexachlorocyclopentadiene	36.9	10	$\mu g/L$	100.0		36.9	30-140	11.0	50		
Iexachloroethane	31.5	10	μg/L	100.0		31.5 *		23.7	50	L-07	
ndeno(1,2,3-cd)pyrene	72.2	5.0	μg/L	100.0		72.2	40-140	20.1	50		
sophorone	79.6	10	μg/L	100.0		79.6	40-140	16.9	20		
-Methylnaphthalene	52.0	5.0	μg/L	100.0		52.0	40-140	14.9	20		
-Methylnaphthalene	49.9	5.0	μg/L	100.0		49.9	40-140	12.0	20		
-Methylphenol	54.0	10	μg/L μg/L	100.0		54.0	30-130	28.1	* 20	R-05	

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD		RPD Limit	Notes	
Batch B389149 - SW-846 3510C	resur	- Ellint	Cints	Level	resure	701CEC	Emmes	пп		Linni	riotes	
LCS Dup (B389149-BSD1)				Prepared: 10)/12/24 Anal	yzed: 10/15/2	24					
3/4-Methylphenol	53.0	10	μg/L	100.0		53.0	30-130	30.0	*	20	R-05	
Naphthalene	45.2	5.0	μg/L	100.0		45.2	40-140	15.9		20		
2-Nitroaniline	92.5	10	μg/L	100.0		92.5	40-140	11.6		20		
3-Nitroaniline	73.8	10	$\mu g/L$	100.0		73.8	40-140	16.8		20		
4-Nitroaniline	76.2	10	$\mu g/L$	100.0		76.2	40-140	20.7	*	20	R-05	
Nitrobenzene	64.3	10	$\mu g/L$	100.0		64.3	40-140	15.5		20		
2-Nitrophenol	34.9	10	$\mu g/L$	100.0		34.9	30-130	60.8	*	20	R-05	
4-Nitrophenol	22.1	10	$\mu g/L$	100.0		22.1	10-130	90.9	*	50	R-05	† ‡
N-Nitrosodiphenylamine/Diphenylamine	65.4	10	$\mu g/L$	100.0		65.4	40-140	9.89		20		
N-Nitrosodi-n-propylamine	66.9	10	$\mu g/L$	100.0		66.9	40-140	20.7	*	20	R-05	
Pentachlorophenol	35.0	10	$\mu g/L$	100.0		35.0	30-130	78.2	*	50	R-05	‡
Phenanthrene	67.7	5.0	$\mu g/L$	100.0		67.7	40-140	13.2		20		
Phenol	25.9	10	$\mu g/L$	100.0		25.9	20-130	49.4	*	20	R-05	†
Pyrene	69.8	5.0	$\mu g/L$	100.0		69.8	40-140	2.72		20		
Pyridine	24.2	20	$\mu g/L$	100.0		24.2	10-140	10.1		50	V-34	† ‡
1,2,4,5-Tetrachlorobenzene	61.0	10	$\mu g/L$	100.0		61.0	40-140	10.1		20		
2,4,5-Trichlorophenol	39.4	10	$\mu g/L$	100.0		39.4	30-130	62.7	*	20	R-05	
2,4,6-Trichlorophenol	34.2	10	$\mu g\!/\!L$	100.0		34.2	30-130	73.4	*	50	R-05	‡
Surrogate: 2-Fluorophenol	110		μg/L	400.0		27.5	15-110					
Surrogate: Phenol-d6	111		μg/L	400.0		27.7	15-110					
Surrogate: Nitrobenzene-d5	135		μg/L	200.0		67.7	30-130					
Surrogate: 2-Fluorobiphenyl	129		$\mu g/L$	200.0		64.6	30-130					
Surrogate: 2,4,6-Tribromophenol	197		$\mu g/L$	400.0		49.3	15-110					
Surrogate: p-Terphenyl-d14	143		μg/L	200.0		71.5	30-130					

QUALITY CONTROL

1,4-Dioxane by isotope dilution GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B389100 - SW-846 3510C										
Blank (B389100-BLK1)				Prepared: 10	/11/24 Anal	yzed: 10/15/2	24			
1,4-Dioxane	ND	0.20	μg/L							
Surrogate: 1,4-Dioxane-d8	2.74		μg/L	10.00		27.4	15-110			
LCS (B389100-BS1)				Prepared: 10	/11/24 Anal	yzed: 10/15/2	24			
1,4-Dioxane	8.81	0.20	μg/L	10.00		88.1	40-140			
Surrogate: 1,4-Dioxane-d8	2.88		μg/L	10.00		28.8	15-110			
LCS Dup (B389100-BSD1)				Prepared: 10	/11/24 Anal	yzed: 10/15/2	24			
1,4-Dioxane	9.13	0.20	μg/L	10.00		91.3	40-140	3.61	30	
Surrogate: 1,4-Dioxane-d8	2.82		μg/L	10.00		28.2	15-110			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

nalyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	TOBAIT	Dimit	C.IIIO	20,01	Lebuit	, sale	2		Ziiiit	1.0003
atch B390657 - Draft Method 1633				Dramared, 11	/04/24 A == «1-	wzed: 11/06/2	1			
lank (B390657-BLK1) erfluorobutanoic acid (PFBA)	ND	4.0	ng/L	rrepared: 11	/04/24 Analy	yzeu: 11/00/2	+			
erfluoropentanoic acid (PFPeA)		2.0	ng/L							
erfluorohexanoic acid (PFHxA)	ND	0.99	ng/L							
rfluoroheptanoic acid (PFHpA)	ND	0.99	ng/L ng/L							
rfluorooctanoic acid (PFOA)	ND	0.99	ng/L							
rfluorononanoic acid (PFNA)	ND	0.99	ng/L							
rfluorodecanoic acid (PFDA)	ND	0.99	ng/L ng/L							
rfluoroundecanoic acid (PFUnA)	ND	0.99	ng/L ng/L							
rfluorododecanoic acid (PFDoA)	ND	0.99	-							
	ND		ng/L							
rfluorotridecanoic acid (PFTrDA)	ND	0.99	ng/L							
rfluorotetradecanoic acid (PFTeDA)	ND	0.99	ng/L							
rfluorobutanesulfonic acid (PFBS)	ND	0.99	ng/L							
erfluoropentanesulfonic acid (PFPeS)	ND	0.99	ng/L							
refluorohexanesulfonic acid (PFHxS)	ND	0.99	ng/L							
rrfluoroheptanesulfonic acid (PFHpS)	ND	0.99	ng/L							
erfluorooctanesulfonic acid (PFOS)	ND	0.99	ng/L							
rfluorononanesulfonic acid (PFNS)	ND	0.99	ng/L							
rfluorodecanesulfonic acid (PFDS)	ND	0.99	ng/L							
rfluorododecanesulfonic acid (PFDoS)	ND	0.99	ng/L							
,1H,2H,2H-Perfluorohexane sulfonic d (4:2FTS)	ND	4.0	ng/L							
.1H,2H,2H-Perfluorooctane sulfonic acid 2FTS) ,1H,2H,2H-Perfluorodecane sulfonic	ND	4.0	ng/L							
d (8:2FTS)	ND	4.0	ng/L							
rfluorooctanesulfonamide (PFOSA)	ND	0.99	ng/L							
methyl perfluoroocatnesulfonamide MeFOSA)	ND	0.99	ng/L							
ethyl perfluorooctanesulfonamide EtFOSA)	ND	0.99	ng/L							
MeFOSAA (NMeFOSAA)	ND	0.99	ng/L							
EtFOSAA (NEtFOSAA)	ND	0.99	ng/L							
methylperfluorooctanesulfonamidoethano [MeFOSE]	ND	9.9	ng/L							
ethylperfluorooctanesulfonamidoethanol EtFOSE)	ND	9.9	ng/L							
xafluoropropylene oxide dimer acid FPO-DA) -Dioxa-3H-perfluorononanoic acid	ND	4.0	ng/L							
DONA)	ND	4.0	ng/L							
PI-PF3ONS (F53B Minor)	ND	4.0	ng/L							
Cl-PF3OUdS (F53B Major)	ND	4.0	ng/L							
Perfluoropropyl propanoic acid (FPrPA) 3FTCA)	ND	9.9	ng/L							
,2H,3H,3H-Perfluorooctanoic d(FPePA)(5:3FTCA)	ND	50	ng/L							V-05
Perfluoroheptyl propanoic acid (FHpPA) 3FTCA)	ND	50	ng/L							V-05
rfluoro(2-ethoxyethane)sulfonic acid FEESA)	ND	2.0	ng/L							
rfluoro-3-methoxypropanoic acid FMPA)	ND	2.0	ng/L							
rfluoro-4-methoxybutanoic acid FMBA) onafluoro-3,6-dioxaheptanoic acid	ND	2.0	ng/L							
FDHA)	ND	2.0	ng/L							

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B390657 - Draft Method 1633										
elank (B390657-BLK1)				Prepared: 11	/04/24 Analy	zed: 11/06/2	4			
Surrogate: 13C5-PFPeA	41.4		ng/L	49.60		83.5	35-150			
Surrogate: 13C5-PFHxA	20.0		ng/L	24.80		80.8	55-150			
urrogate: 13C4-PFHpA	18.2		ng/L	24.80		73.3	55-150			
urrogate: 13C8-PFOA	20.9		ng/L	24.80		84.1	60-140			
urrogate: 13C9-PFNA	10.2		ng/L	12.40		82.6	55-140			
urrogate: 13C6-PFDA	10.3		ng/L	12.40		82.9	50-140			
urrogate: 13C7-PFUnA	10.1		ng/L	12.40		81.3	30-140			
urrogate: 13C2-PFDoA	9.45		ng/L	12.40		76.2	10-150			
urrogate: 13C2-PFTeDA	9.02		ng/L	12.40		72.8	10-130			
urrogate: 13C3-PFBS	25.5		ng/L	24.80		103	55-150			
nrrogate: 13C3-PFHxS	21.9		ng/L	24.80		88.5	55-150			
rrogate: 13C8-PFOS	21.3		ng/L	24.80		86.0	45-140			
urrogate: 13C2-4:2FTS	54.8		ng/L	49.60		110	60-200			
urrogate: 13C2-6:2FTS	47.9		ng/L	49.60		96.6	60-200			
urrogate: 13C2-8:2FTS	43.1		ng/L	49.60		86.9	50-200			
urrogate: 13C8-PFOSA	17.7		ng/L	24.80		71.4	30-130			
urrogate: D3-NMeFOSA	16.6		ng/L	24.80		67.0	15-130			
urrogate: D5-NEtFOSA	17.0		ng/L	24.80		68.5	10-130			
urrogate: D3-NMeFOSAA	46.7		ng/L	49.60		94.2	45-200			
urrogate: D5-NEtFOSAA	46.0		ng/L	49.60		92.6	10-200			
urrogate: D7-NMeFOSE	177		ng/L	248.0		71.4	10-150			
urrogate: D9-NEtFOSE	177		ng/L	248.0		71.3	10-150			
urrogate: 13C3-HFPO-DA	94.4		ng/L	99.20		95.2	25-160			
CS (B390657-BS1)				Prepared: 11	/04/24 Analy	zed: 11/06/2	4			
erfluorobutanoic acid (PFBA)	91.4	3.9	ng/L	93.70		97.5	58-148			
erfluoropentanoic acid (PFPeA)	44.3	2.0	ng/L	46.85		94.6	54-152			
erfluorohexanoic acid (PFHxA)	22.8	0.98	ng/L	23.42		97.4	55-152			
erfluoroheptanoic acid (PFHpA)	22.4	0.98	ng/L	23.42		95.5	54-154			
erfluorooctanoic acid (PFOA)	23.1	0.98	ng/L	23.42		98.4	52-161			
erfluorononanoic acid (PFNA)	22.4	0.98	ng/L	23.42		95.8	59-149			
erfluorodecanoic acid (PFDA)	21.7	0.98	ng/L	23.42		92.8	52-147			
erfluoroundecanoic acid (PFUnA)	22.0	0.98	ng/L	23.42		93.8	48-159			
erfluorododecanoic acid (PFDoA)	22.6	0.98	ng/L	23.42		96.5	64-142			
erfluorotridecanoic acid (PFTrDA)	22.1	0.98	ng/L	23.42		94.4	49-148			
erfluorotetradecanoic acid (PFTeDA)	22.3	0.98	ng/L	23.42		95.2	47-161			
erfluorobutanesulfonic acid (PFBS)	19.3	0.98	ng/L	20.78		92.8	62-144			
erfluoropentanesulfonic acid (PFPeS)	22.4	0.98	ng/L	22.04		102	59-151			
erfluorohexanesulfonic acid (PFHxS)	19.4	0.98	ng/L	21.41		90.7	57-146			
erfluoroheptanesulfonic acid (PFHpS)	21.7	0.98	ng/L	22.32		97.0	55-152			
erfluorooctanesulfonic acid (PFOS)		0.98	ng/L	21.74		97.0 89.7	58-149			
erfluorononanesulfonic acid (PFNS)	19.5	0.98	ng/L ng/L	22.53		91.3	52-148			
erfluorodecanesulfonic acid (PFDS)	20.6	0.98	-	22.53						
erfluorododecanesulfonic acid (PFDoS)	20.7		ng/L			91.7	51-147			
	20.0	0.98	ng/L	22.72		88.0	36-145			
I,1H,2H,2H-Perfluorohexane sulfonic id (4:2FTS)	95.7	3.9	ng/L	87.84		109	67-146			
H,1H,2H,2H-Perfluorooctane sulfonic acid :2FTS)	99.1	3.9	ng/L	89.01		111	61-151			
H,1H,2H,2H-Perfluorodecane sulfonic cid (8:2FTS)	99.7	3.9	ng/L	89.95		111	63-152			
erfluorooctanesulfonamide (PFOSA)	22.7	0.98	ng/L	23.42		97.1	61-148			
-methyl perfluoroocatnesulfonamide NMeFOSA)	22.9	0.98	ng/L	23.42		97.8	63-145			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B390657 - Draft Method 1633										
LCS (B390657-BS1)				Prepared: 11	/04/24 Analy	zed: 11/06/2	4			
N-ethyl perfluorooctanesulfonamide	22.7	0.98	ng/L	23.42		96.9	65-139			
NEtFOSA)										
N-MeFOSAA (NMeFOSAA)	20.8	0.98	ng/L	23.42		88.6	58-144			
N-EtFOSAA (NEtFOSAA)	21.1	0.98	ng/L	23.42		89.9	59-146			
N-methylperfluorooctanesulfonamidoethano (NMeFOSE)	232	9.8	ng/L	234.2		99.2	71-136			
V-ethylperfluorooctanesulfonamidoethanol NEtFOSE)	239	9.8	ng/L	234.2		102	69-137			
Hexafluoropropylene oxide dimer acid	85.5	3.9	ng/L	93.70		91.3	63-144			
,8-Dioxa-3H-perfluorononanoic acid ADONA)	67.0	3.9	ng/L	88.54		75.7	68-146			
Cl-PF3ONS (F53B Minor)	63.2	3.9	ng/L	87.61		72.2	56-156			
1Cl-PF3OUdS (F53B Major)	64.7	3.9	ng/L	88.54		73.1	46-156			
-Perfluoropropyl propanoic acid (FPrPA)	188	9.8	ng/L	234.2		80.3	62-129			
3:3FTCA) H,2H,3H,3H-Perfluorooctanoic		49	ng/L							V-05
icid(FPePA)(5:3FTCA)	920	47	ng/L	1171		78.6	63-134			V-03
-Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	783	49	ng/L	1171		66.8	50-138			V-05
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	40.5	2.0	ng/L	41.70		97.3	56-151			
erfluoro-3-methoxypropanoic acid PFMPA)	41.8	2.0	ng/L	46.85		89.3	51-145			
erfluoro-4-methoxybutanoic acid PFMBA)	44.0	2.0	ng/L	46.85		93.9	55-148			
onafluoro-3,6-dioxaheptanoic acid	53.3	2.0	ng/L	46.85		114	48-161			
urrogate: 13C4-PFBA	91.7		ng/L	97.60		94.0	10-130			
urrogate: 13C5-PFPeA	41.0		ng/L	48.80		84.0	35-150			
urrogate: 13C5-PFHxA	19.6		ng/L ng/L	24.40		80.4	55-150			
urrogate: 13C4-PFHpA	18.4		ng/L ng/L	24.40		75.5	55-150			
urrogate: 13C8-PFOA	20.0		ng/L ng/L	24.40		81.9	60-140			
Surrogate: 13C9-PFNA	9.67		ng/L ng/L	12.20		79.3	55-140			
urrogate: 13C6-PFDA	10.0		ng/L	12.20		82.2	50-140			
Surrogate: 13C7-PFUnA	9.24		ng/L	12.20		75.7	30-140			
urrogate: 13C2-PFDoA	9.10		ng/L	12.20		74.6	10-150			
Surrogate: 13C2-PFTeDA	8.58		ng/L ng/L	12.20		70.4	10-130			
Surrogate: 13C3-PFBS	23.4		ng/L ng/L	24.40		95.8	55-150			
urrogate: 13C3-PFHxS	20.3		ng/L ng/L	24.40		83.2	55-150			
Surrogate: 13C8-PFOS	20.3		ng/L ng/L	24.40		86.0	45-140			
urrogate: 13C2-4:2FTS	45.6		ng/L	48.80		93.4	60-200			
urrogate: 13C2-4:2FTS	42.0			48.80		93.4 86.1	60-200			
Surrogate: 13C2-6:2FTS			ng/L	48.80						
=	40.6		ng/L			83.3	50-200 30 130			
Surrogate: 13C8-PFOSA	16.5 12.1		ng/L	24.40 24.40		67.6 49.5	30-130 15-130			
urrogate: D3-NMeFOSA			ng/L							
urrogate: D3-NEtFOSA	12.4		ng/L	24.40 48.80		50.8	10-130			
urrogate: D3-NMeFOSAA	44.5		ng/L	48.80 48.80		91.2 86.8	45-200			
urrogate: D5-NEtFOSAA	42.4		ng/L			86.8	10-200			
urrogate: D7-NMeFOSE	153		ng/L	244.0		62.7	10-150			
urrogate: D9-NEtFOSE urrogate: 13C3-HFPO-DA	151 90.7		ng/L ng/L	244.0 97.60		62.0 92.9	10-150 25-160			
ARL Check (B390657-MRL1)	. •••		<i>6</i> -		/04/24 Analy					
erfluorobutanoic acid (PFBA)	7.99	4.0	ng/L	7.942		101	44-157			
Perfluoropentanoic acid (PFPeA)	4.05	2.0	ng/L	3.971		102	57-148			

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B390657 - Draft Method 1633										
MRL Check (B390657-MRL1)				Prepared: 11	/04/24 Analyz	zed: 11/06/2	4			
Perfluorohexanoic acid (PFHxA)	2.14	0.99	ng/L	1.986		108	62-149			
Perfluoroheptanoic acid (PFHpA)	2.01	0.99	ng/L	1.986		101	56-150			
Perfluorooctanoic acid (PFOA)	2.13	0.99	ng/L	1.986		107	57-161			
Perfluorononanoic acid (PFNA)	1.96	0.99	ng/L	1.986		98.5	53-157			
Perfluorodecanoic acid (PFDA)	2.10	0.99	ng/L	1.986		106	43-158			
Perfluoroundecanoic acid (PFUnA)	2.01	0.99	ng/L	1.986		101	50-155			
Perfluorododecanoic acid (PFDoA)	2.06	0.99	ng/L	1.986		104	60-141			
Perfluorotridecanoic acid (PFTrDA)	1.94	0.99	ng/L	1.986		97.6	52-140			
Perfluorotetradecanoic acid (PFTeDA)	2.15	0.99	ng/L	1.986		108	52-156			
erfluorobutanesulfonic acid (PFBS)	1.78	0.99	ng/L	1.761		101	63-145			
erfluoropentanesulfonic acid (PFPeS)	2.11	0.99	ng/L	1.868		113	58-144			
Perfluorohexanesulfonic acid (PFHxS)	1.82	0.99	ng/L	1.815		100	44-158			
Perfluoroheptanesulfonic acid (PFHpS)	2.00	0.99	ng/L	1.892		105	51-150			
Perfluorooctanesulfonic acid (PFOS)	2.02	0.99	ng/L	1.843		110	43-162			
Perfluorononanesulfonic acid (PFNS)	1.84	0.99	ng/L	1.910		96.4	46-151			
Perfluorodecanesulfonic acid (PFDS)	1.89	0.99	ng/L	1.916		98.4	50-144			
Perfluorododecanesulfonic acid (PFDoS)	2.05	0.99	ng/L	1.926		106	30-138			
H,1H,2H,2H-Perfluorohexane sulfonic	8.38	4.0	ng/L	7.446		113	52-158			
cid (4:2FTS) H,1H,2H,2H-Perfluorooctane sulfonic acid	7.91	4.0	ng/L	7.545		105	48-158			
6:2FTS) H,1H,2H,2H-Perfluorodecane sulfonic	9.39	4.0	ng/L	7.625		123	46-165			
cid (8:2FTS)		0.00	. /*			102	45.45			
Perfluorooctanesulfonamide (PFOSA)	2.05	0.99	ng/L	1.986		103	47-163			
I-methyl perfluoroocatnesulfonamide NMeFOSA) I-ethyl perfluorooctanesulfonamide	2.07	0.99 0.99	ng/L	1.986		104	54-155			
n-etnyl perituorooctanesuironamide NEtFOSA) I-MeFOSAA (NMeFOSAA)	1.92	0.99	ng/L	1.986 1.986		96.9 89.0	49-156 32-160			
I-EtFOSAA (NEtFOSAA)	1.77	0.99	ng/L	1.986						
	1.93		-			97.0	51-154			
I-methylperfluorooctanesulfonamidoethano NMeFOSE) I-ethylperfluorooctanesulfonamidoethanol	21.4	9.9 9.9	ng/L	19.86 19.86		108 108	56-151 60-147			
NEtFOSE) Hexafluoropropylene oxide dimer acid	21.4 7.67	4.0	ng/L	7.942		96.5	58-154			
HFPO-DA) ,8-Dioxa-3H-perfluorononanoic acid	5.37	4.0	ng/L	7.506		71.6	61-148			
ADONA)			•							
PCI-PF3ONS (F53B Minor)	5.33	4.0	ng/L	7.426		71.7	44-167			
1Cl-PF3OUdS (F53B Major)	5.70	4.0	ng/L	7.506		76.0	36-158			
3-Perfluoropropyl propanoic acid (FPrPA)	15.4	9.9	ng/L	19.86		77.3	32-161			
3:3FTCA) H,2H,3H,3H-Perfluorooctanoic	72.7	50	ng/L	99.28		73.2	39-156			V-05
cid(FPePA)(5:3FTCA) -Perfluoroheptyl propanoic acid (FHpPA) 7:3FTCA)	61.9	50	ng/L	99.28		62.3	36-149			V-05
erfluoro(2-ethoxyethane)sulfonic acid PFEESA)	3.38	2.0	ng/L	3.534		95.7	56-144			
PFMPA)	3.58	2.0	ng/L	3.971		90.0	48-150			
erfluoro-4-methoxybutanoic acid PFMBA)	3.48	2.0	ng/L	3.971		87.6	49-154			
Nonafluoro-3,6-dioxaheptanoic acid NFDHA)	4.63	2.0	ng/L	3.971		117	47-160			
Surrogate: 13C4-PFBA	86.0		ng/L	99.28		86.6	10-130			
Surrogate: 13C5-PFPeA	38.7		ng/L	49.64		77.9	35-150			
surrogate. 13C3-FFFEA										

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

MRL Check (B390657-MRL1)	Prepared: 11/04/24 Analyzed: 11/06/24							
Surrogate: 13C4-PFHpA 16.9 ng	g/L 24.8	2 68.0	55-150					
Surrogate: 13C8-PFOA 18.8 ng	g/L 24.8	2 75.6	60-140					
Surrogate: 13C9-PFNA 9.70 ng	g/L 12.4	1 78.2	55-140					
Surrogate: 13C6-PFDA 9.48 ng	g/L 12.4	1 76.4	50-140					
Surrogate: 13C7-PFUnA 8.79 ng	g/L 12.4	1 70.8	30-140					
Surrogate: 13C2-PFDoA 8.82 ng	g/L 12.4	1 71.0	10-150					
Surrogate: 13C2-PFTeDA 8.11 ng	g/L 12.4	1 65.3	10-130					
Surrogate: 13C3-PFBS 22.4 ng	g/L 24.8	2 90.1	55-150					
Surrogate: 13C3-PFHxS 18.7 ng	g/L 24.8	2 75.1	55-150					
Surrogate: 13C8-PFOS 19.5 ng	g/L 24.8	2 78.7	45-140					
Surrogate: 13C2-4:2FTS 47.5 ng	g/L 49.6	4 95.8	60-200					
Surrogate: 13C2-6:2FTS 43.8 ng	g/L 49.6	4 88.3	60-200					
Surrogate: 13C2-8:2FTS 38.4 ng	g/L 49.6	4 77.3	50-200					
Surrogate: 13C8-PFOSA 17.0 ng	g/L 24.8	2 68.3	30-130					
Surrogate: D3-NMeFOSA 15.1 ng	g/L 24.8	2 61.0	15-130					
Surrogate: D5-NEtFOSA 16.4 ng	g/L 24.8	2 65.9	10-130					
Surrogate: D3-NMeFOSAA 43.8 ng	g/L 49.6	4 88.2	45-200					
Surrogate: D5-NEtFOSAA 42.5 ng	g/L 49.6	4 85.7	10-200					
Surrogate: D7-NMeFOSE 169 ng	g/L 248.	2 67.9	10-150					
Surrogate: D9-NEtFOSE 168 ng	g/L 248.	2 67.6	10-150					
Surrogate: 13C3-HFPO-DA 89.2 ng	g/L 99.2	8 89.8	25-160					

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B389019 - Draft Method 1633										
Blank (B389019-BLK1)				Prepared &	Analyzed: 10)/11/24				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B389019-BS1)				Prepared &	Analyzed: 10)/11/24				
Total Suspended Solids	192	2.5	mø/L	200.0		91.0	51.5-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-06	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side for this compound.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Analyte	Certifications
Draft Method 1633 in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
Perfluorobutanoic acid (PFBA)	NH-P,NY,PA,WV,CT
Perfluoropentanoic acid (PFPeA)	NH-P,NY,PA,WV,CT
Perfluorohexanoic acid (PFHxA)	NH-P,NY,PA,WV,CT
Perfluoroheptanoic acid (PFHpA)	NH-P,NY,PA,WV,CT
Perfluorooctanoic acid (PFOA)	NH-P,NY,PA,WV,CT
Perfluorononanoic acid (PFNA)	NH-P,NY,PA,WV,CT
Perfluorodecanoic acid (PFDA)	NH-P,NY,PA,WV,CT
Perfluoroundecanoic acid (PFUnA)	NH-P,NY,PA,WV,CT
Perfluorododecanoic acid (PFDoA)	NH-P,NY,PA,WV,CT
Perfluorotridecanoic acid (PFTrDA)	NH-P,NY,PA,WV,CT
Perfluorotetradecanoic acid (PFTeDA)	NH-P,NY,PA,WV,CT
Perfluorobutanesulfonic acid (PFBS)	NH-P,NY,PA,WV,CT
Perfluoropentanesulfonic acid (PFPeS)	NH-P,NY,PA,WV,CT
Perfluorohexanesulfonic acid (PFHxS)	NH-P,NY,PA,WV,CT
Perfluoroheptanesulfonic acid (PFHpS)	NH-P,NY,PA,WV,CT
Perfluorooctanesulfonic acid (PFOS)	NH-P,NY,PA,WV,CT
Perfluorononanesulfonic acid (PFNS)	NH-P,PA,WV,CT
Perfluorodecanesulfonic acid (PFDS)	NH-P,PA,WV,CT
Perfluorododecanesulfonic acid (PFDoS)	NH-P,PA,WV,CT
1H,1H,2H,2H-Perfluorohexane sulfonic acid (4:2FTS)	NH-P,PA,WV,CT
1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2FTS)	NH-P,NY,PA,WV,CT
1H,1H,2H,2H-Perfluorodecane sulfonic acid (8:2FTS)	NH-P,NY,PA,WV,CT
Perfluorooctanesulfonamide (PFOSA)	NH-P,PA,WV,CT
N-methyl perfluoroocatnesulfonamide (NMeFOSA)	NH-P,PA,WV,CT
N-ethyl perfluorooctanesulfonamide (NEtFOSA)	NH-P,PA,WV,CT
N-MeFOSAA (NMeFOSAA)	NH-P,NY,PA,WV,CT
N-EtFOSAA (NEtFOSAA)	NH-P,NY,PA,WV,CT
N-methyl perfluoro octane sulfon a mid oethanol (NMeFOSE)	NH-P,PA,WV,CT
N-ethyl perfluoro octane sulfon a mid oethanol (NEtFOSE)	NH-P,PA,WV,CT
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,NY,PA,WV,CT
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	NH-P,NY,PA,WV,CT
9Cl-PF3ONS (F53B Minor)	NH-P,NY,PA,WV,CT
11Cl-PF3OUdS (F53B Major)	NH-P,NY,PA,WV,CT
3-Perfluoropropyl propanoic acid (FPrPA)(3:3FTCA)	NH-P,PA,WV,CT
2H,2H,3H,3H-Perfluorooctanoic acid(FPePA)(5:3FTCA)	NH-P,PA,WV,CT
3-Perfluoroheptyl propanoic acid (FHpPA)(7:3FTCA)	NH-P,PA,WV,CT
Perfluoro(2-ethoxyethane)sulfonic acid (PFEESA)	NH-P,NY,PA,WV,CT
Perfluoro-3-methoxypropanoic acid (PFMPA)	NH-P,NY,PA,WV,CT
Perfluoro-4-methoxybutanoic acid (PFMBA)	NH-P,PA,WV,CT
Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)	NH-P,PA,WV,CT
SW-846 8260D in Water	
Acetone	CT,ME,NH,VA,NY
Benzene	CT,ME,NH,VA,NY
Bromochloromethane	ME,NH,VA,NY
Bromodichloromethane	CT,ME,NH,VA,NY

CERTIFICATIONS

Analyte	Certifications
W-846 8260D in Water	
Bromoform	CT,ME,NH,VA,NY
Bromomethane	CT,ME,NH,VA,NY
2-Butanone (MEK)	CT,ME,NH,VA,NY
n-Butylbenzene	ME,VA,NY
sec-Butylbenzene	ME,VA,NY
tert-Butylbenzene	ME,VA,NY
Carbon Disulfide	CT,ME,NH,VA,NY
Carbon Tetrachloride	CT,ME,NH,VA,NY
Chlorobenzene	CT,ME,NH,VA,NY
Chlorodibromomethane	CT,ME,NH,VA,NY
Chloroethane	CT,ME,NH,VA,NY
Chloroform	CT,ME,NH,VA,NY
Chloromethane	CT,ME,NH,VA,NY
Cyclohexane	ME,NY
1,2-Dibromo-3-chloropropane (DBCP)	ME,NY
1,2-Dibromoethane (EDB)	ME,NY
1,2-Dichlorobenzene	CT,ME,NH,VA,NY
1,3-Dichlorobenzene	CT,ME,NH,VA,NY
1,4-Dichlorobenzene	CT,ME,NH,VA,NY
Dichlorodifluoromethane (Freon 12)	ME,NH,VA,NY
1,1-Dichloroethane	CT,ME,NH,VA,NY
1,2-Dichloroethane	CT,ME,NH,VA,NY
1,1-Dichloroethylene	CT,ME,NH,VA,NY
cis-1,2-Dichloroethylene	ME,NY
trans-1,2-Dichloroethylene	CT,ME,NH,VA,NY
1,2-Dichloropropane	CT,ME,NH,VA,NY
cis-1,3-Dichloropropene	CT,ME,NH,VA,NY
trans-1,3-Dichloropropene	CT,ME,NH,VA,NY
1,4-Dioxane	ME,NY
Ethylbenzene	CT,ME,NH,VA,NY
Hexachlorobutadiene	CT,ME,NH,VA,NY
2-Hexanone (MBK)	CT,ME,NH,VA,NY
Isopropylbenzene (Cumene)	ME,VA,NY
p-Isopropyltoluene (p-Cymene)	CT,ME,NH,VA,NY
Methyl Acetate	ME,NY
Methyl tert-Butyl Ether (MTBE)	CT,ME,NH,VA,NY
Methyl Cyclohexane	NY
Methylene Chloride	CT,ME,NH,VA,NY
4-Methyl-2-pentanone (MIBK)	CT,ME,NH,VA,NY
Naphthalene	ME,NH,VA,NY
n-Propylbenzene	CT,ME,NH,VA,NY
Styrene	CT,ME,NH,VA,NY
1,1,2,2-Tetrachloroethane	CT,ME,NH,VA,NY
Tetrachloroethylene	CT,ME,NH,VA,NY
Toluene	CT,ME,NH,VA,NY
1,2,3-Trichlorobenzene	ME,NH,VA,NY
1,2,4-Trichlorobenzene	CT,ME,NH,VA,NY

CERTIFICATIONS

Analyte	Certifications
SW-846 8260D in Water	
1,1,1-Trichloroethane	CT,ME,NH,VA,NY
1,1,2-Trichloroethane	CT,ME,NH,VA,NY
Trichloroethylene	CT,ME,NH,VA,NY
Trichlorofluoromethane (Freon 11)	CT,ME,NH,VA,NY
1,2,3-Trichloropropane	ME,NH,VA,NY
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	VA,NY
1,2,4-Trimethylbenzene	ME,VA,NY
1,3,5-Trimethylbenzene	ME,VA,NY
Vinyl Chloride	CT,ME,NH,VA,NY
m+p Xylene	CT,ME,NH,VA,NY
o-Xylene	CT,ME,NH,VA,NY
Xylenes (total)	ME,NY
SW-846 8270E in Water	
1,4-Dioxane	NY,NH
Acenaphthene	CT,NY,NC,ME,NH,VA
Acenaphthylene	CT,NY,NC,ME,NH,VA
Acetophenone	NY,NC
Aniline	CT,NY,NC,ME,VA
Anthracene	CT,NY,NC,ME,NH,VA
Benzo(a)anthracene	CT,NY,NC,ME,NH,VA
Benzo(a)pyrene	CT,NY,NC,ME,NH,VA
Benzo(b)fluoranthene	CT,NY,NC,ME,NH,VA
Benzo(g,h,i)perylene	CT,NY,NC,ME,NH,VA
Benzo(k)fluoranthene	CT,NY,NC,ME,NH,VA
Bis(2-chloroethoxy)methane	CT,NY,NC,ME,NH,VA
Bis(2-chloroethyl)ether	CT,NY,NC,ME,NH,VA
2,2'-oxybis(1-Chloropropane)	CT,NY,NC,ME,NH,VA
Bis(2-Ethylhexyl)phthalate	CT,NY,NC,ME,NH,VA
4-Bromophenylphenylether	CT,NY,NC,ME,NH,VA
Butylbenzylphthalate	CT,NY,NC,ME,NH,VA
Carbazole	NC
4-Chloroaniline	CT,NY,NC,ME,NH,VA
4-Chloro-3-methylphenol	CT,NY,NC,ME,NH,VA
2-Chloronaphthalene	CT,NY,NC,ME,NH,VA
2-Chlorophenol	CT,NY,NC,ME,NH,VA
4-Chlorophenylphenylether	CT,NY,NC,ME,NH,VA
Chrysene	CT,NY,NC,ME,NH,VA
Dibenz(a,h)anthracene	CT,NY,NC,ME,NH,VA
Dibenzofuran	CT,NY,NC,ME,NH,VA
Di-n-butylphthalate	CT,NY,NC,ME,NH,VA
1,2-Dichlorobenzene	CT,NY,NC,ME,NH,VA
1,3-Dichlorobenzene	CT,NY,NC,ME,NH,VA
1,4-Dichlorobenzene	CT,NY,NC,ME,NH,VA
3,3-Dichlorobenzidine	CT,NY,NC,ME,NH,VA
2,4-Dichlorophenol	CT,NY,NC,ME,NH,VA
Diethylphthalate	CT,NY,NC,ME,NH,VA

CERTIFICATIONS

Analyte	Certifications
SW-846 8270E in Water	
2,4-Dimethylphenol	CT,NY,NC,ME,NH,VA
Dimethylphthalate	CT,NY,NC,ME,NH,VA
4,6-Dinitro-2-methylphenol	CT,NY,NC,ME,NH,VA
2,4-Dinitrophenol	CT,NY,NC,ME,NH,VA
2,4-Dinitrotoluene	CT,NY,NC,ME,NH,VA
2,6-Dinitrotoluene	CT,NY,NC,ME,NH,VA
Di-n-octylphthalate	CT,NY,NC,ME,NH,VA
Fluoranthene	CT,NY,NC,ME,NH,VA
Fluorene	NY,NC,ME,NH,VA
Hexachlorobenzene	CT,NY,NC,ME,NH,VA
Hexachlorobutadiene	CT,NY,NC,ME,NH,VA
Hexachlorocyclopentadiene	CT,NY,NC,ME,NH,VA
Hexachloroethane	CT,NY,NC,ME,NH,VA
Indeno(1,2,3-cd)pyrene	CT,NY,NC,ME,NH,VA
Isophorone	CT,NY,NC,ME,NH,VA
1-Methylnaphthalene	NC
2-Methylnaphthalene	CT,NY,NC,ME,NH,VA
2-Methylphenol	CT,NY,NC,NH,VA
3/4-Methylphenol	CT,NY,NC,NH,VA
Naphthalene	CT,NY,NC,ME,NH,VA
2-Nitroaniline	CT,NY,NC,ME,NH,VA
3-Nitroaniline	CT,NY,NC,ME,NH,VA
4-Nitroaniline	CT,NY,NC,ME,NH,VA
Nitrobenzene	CT,NY,NC,ME,NH,VA
2-Nitrophenol	CT,NY,NC,ME,NH,VA
4-Nitrophenol	CT,NY,NC,ME,NH,VA
N-Nitrosodi-n-propylamine	CT,NY,NC,ME,NH,VA
Pentachlorophenol	CT,NY,NC,ME,NH,VA
Phenanthrene	CT,NY,NC,ME,NH,VA
Phenol	CT,NY,NC,ME,NH,VA
Pyrene	CT,NY,NC,ME,NH,VA
Pyridine	CT,NY,NC,ME,NH,VA
1,2,4,5-Tetrachlorobenzene	NY,NC
1,2,4-Trichlorobenzene	CT,NY,NC,ME,NH,VA
2,4,5-Trichlorophenol	CT,NY,NC,ME,NH,VA
2,4,6-Trichlorophenol	CT,NY,NC,ME,NH,VA
2-Fluorophenol	NC

Con-Test, a Pace Environmental Laboratory, operates under the following certifications and accreditations:

Code	Description	Number	Expires
MA	Massachusetts DEP	M-MA100	06/30/2025
CT	Connecticut Department of Public Health	PH-0821	12/31/2024
NY	New York State Department of Health	10899 NELAP	04/1/2025
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2025
RI	Rhode Island Department of Health	LAO00373	12/30/2024
NC	North Carolina Div. of Water Quality	652	12/31/2024
ME	State of Maine	MA00100	06/9/2025
VA	Commonwealth of Virginia	460217	12/14/2024
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2025
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2025
WV	West Virginia DEP Division of Water and Waste Management	419	08/31/2025

土	No. of St.					Chair	Chain of Custody	-	Analysis Report	s Reg	ort			=					Page	ge 1 of 1	г
- 3-5	RA	Č	Brian Dunn				1	6	1		1	VV								Laboratory Use Only	_
		(Signature)	1	X	1	1	7	0	2	\ \	大士	71								Project Number:	2
	Contact:	Michael Grifasi	(taboratory:	ıry:	Hol	Holding Time:			_					Analy	Analysis Required	ired					8
	Address:	333 West Washington Street) !							Pres	Preservatives: (see key at bottom)	(see key a	botto	n)						Job Number:	2/
		Syracuse, New York 13221-4873	39 Spruc	Pace Analytical Services 39 Spruce St., East						1	0 2		0 0	0	3 8	0 4	0	0			11
	Phone:	(315) 956-6100	Longmes	Longmeadow, MA 01028	328								_							Laboratory ID:	11
	E-mail:	michael.grifasi@ramboll.com			_	Package Require	irement:	_	[2]		[A07]										2/
	Project:	NYSDEC Claremont Polychemical Site Q3 Sys Samples Attn:	les Attn:	Kyle Murray		Level 2 and Level 3		_			·Z) Air			wn							01.
			Phone:	413-525-2332		EDD Format:		_			_			lmon		d'cN		әu			n
	Location:	Old Bethpage, New York			EQL	EQuIS 4-file		_		ΛΟC ²				ut ch		.F,50		-			n
		Sample Identification				Sample	Sample	_		я тсг.			_	_	_	_	•	_			7
		Unique Field Sample ID (sys sample code)	Sample Location	Date	Time	Type (See Key)	Matrix (See Key)	admuM	Grab (G Field Fi	30 :P097	A30 :015		07:0052 ST:0062	94: A3E1	060A: TKN	0.00 Anle	A14 : EE3	SAA9)22 MIS OOTS		G slame	
_	1 PD-CP-(PD-CP-00-100724	PD	10/7/2024	03%/	z	9M		z g	×	_	F	╫	-	-		ı ×	╢			> _
- CA	2 PD-CP-(PD-CP-01-100724	PD	10/7/2024	140	FD	9M	10	z o	×	×						×	×		AL BUILDING	2.4
-	3 PD-CP-N	PD-CP-MS-100724	PD	10/7/2024	_	MS	9M	8	z	×											
-	4 PD-CP-I	PD-CP-MSD-100724	PD	10/7/2024		MSD	WG	3	z	×										THE PERSON NAMED IN	
3	5 ASF-CP-	ASF-CP-00-100724	Z	10/7/2024	ORE!	z	9MG	5 (z								×	×			+
	6 ASF-CP-	ASF-CP-01-100724	6	10/7/2024 (333)	(33V)	G	5M	5	z								×	×			71
10	7 TB-100724	7724		10/7/2024	0%0	TB	WQ	2	z	×										100	ple
	8																				\
	6																				22
	10																				ANC
-	11																				V
	12																				8
	13																				3
	14																				Z
S	Special Instructions:	OU-5 October 2024 Monthly System Samples tructions:	ples															1			<u>_</u>
ردا	se the top	boxes if the samples are to be shipped via courier (e.	.g., Fed Ex)									Condition:	ion:							Other comments or	2
4	elinquishec	Relinquished by: Frank Dere	Date: 10/8	140/2	Courier Name	Nome:	Fedex /	ă	Dote: 10	18	1	T								notes regarding condition of samples	ا اما و
O.	of:	GES. Inc.	Time:	183	Tracking #:	· ii	いソン	Z TĘ	Time.	187	P	Т								as received:	92t

Custody Seals Intact? (if so, indicate the #, date, and time of the seal)

Time: 193 Date:

Courier Name:

Time: 1400

10/8/24

Date:

Time:

OF ASP PACE

Relinquished by:

Cooler Temperature:

Pate: 10 /8 / 24

45

AST PACE

Received By:

Port 6 Time

Tracking #:

Time: 15 145

N = Normal env. sample, FD = field duplicate, EB = Equipment Blank, TB = Trip Blank, MS = Lab Matrix Spike, Other (Specify): FRB = Field Reagent Blank

Table of Contents

270 12 0045/ 2011 X 104/24 045

A

Anthony GreenOCI 0 8 2021 = 10

SE = Sediment, SO = Soil, WG = Groundwater, WQ = Water Quality, WS = Surface Water, WW = Waste Water, WP = Potable Water, AA = Ambient Air, Other (Specify): 0 = none, 1 = HCL, 2 = HNO_b, 3 = H₂SO_b, 4 = NaOH, 5 = 2n Acetate, 6 = MeOH, 7 = NaHSO_d, 8 = Na₂PO_b, 9 = BenzalkoniumCl, 10 = other

Type:

Matrix: Page 60 of 62 Pace SMALIFICAL SERVICES

DC#_Title: ENV-FRM-ELON-0001 v08_Sample Receiving Checklist

Effective Date: 06/11/2024

Log In Back-Sheet

Login Sample Receipt Checklist – (Rejection Criteria Listing – Using Acceptance Policy) Any False statement will be brought to the attention of the Client – True or False

lient Rambail		True	False
Project NY DEC Claremosh + foly Chemical Q3			
MCP/RCP Required	Received on ice		
Deliverable Package Requirement Level 3 & Level 3	Received in Cooler		
ocation old he th paye, Ny	Custody Seal: DATE TIME		
PWSID# (When Applicable)	COC Relinquished		
Arrival Method:	COC/Samples Labels Agree		
Courier Fed Ex Walk In Other	All Samples in Good Condition		
Received By / Date / Time LUB 10-10-28 @ 8:20	Samples Received within Holding Time		
Back-Sheet By / Date / Time <u>E11 10-10-24 @ 15:21</u>	Is there enough Volume		
Temperature Method G4h #6	Proper Media/Container Used		
WV samples: Yes (see note*) / No (follow normal procedure)	Splitting Samples Required		
Temp < 6° C Actual Temperature 3.8,4.0	MS/MSD		
Rush Samples: Yes / Notify	Trip Blanks		
Short Hold: Yes / Notify			
Notes regarding Samples/COC outside of SOP:	Lab to Filters	<u>-</u>	一一
Notes regarding samples/ ese suiside of sort.	COC Legible COC Included: (Check all included)		
		ampler Name	
		ollection Date/Tin	ne 🛮
	All Samples Proper pH: (N/A	<i>/</i>	
	Additional Contai	ner Notes	
	*Note: West Virginia requires all	samples to have t	heir
	temperature taken. Note any out	liers.	

Qualtrax ID: 120836

DC#_Title: ENV-FRM-ELON-0001 v08_Sample Receiving Checklist

SSAEL POLICIFICATION

Effective Date: 06/11/2024

i	1				_	_	4	_	_	_	_	_	_	_	_	_	_		1	_	_	_
<u>=</u>											_	\perp								\perp	1	
Other / Fill in						_		_	_	_	\perp	_	_			4		_	1	\perp	1	_
H de							_	_	_		_	_	_				_			_		_
Ċ	9	7,4501074961		_	-	-																
		Col/Bact																				
		BiSulfate						_				_						_			\perp	
12.0	2	D.I. Water																				
VOA Viak		MeOH																				
5	3	НСІ	6	3			8															
		Unpreserved																				
		DaOH/Zinc																				
1 1		ətstəsA muinommA																				
	_[HOBN									-					-			1			
1 1	250mL	Nitric																				
8	2	Sulfuric																				
Plastics		EmzinT																				
		Unpreserved																				
	뒽	Sulfuric																				
	500mL	Unpreserved	C	ि	4	4																
	1 Liter	Sulfuric																				
	11	Unpreserved																				
	100mL	Unpreserved	ત	7																		
	_	нсі																				
ers	250mL	Phosphoric																				
Ambers		Sulfuric																				
	_	Sulfuric																				
1	1 Lite	нсг																				
		Unpreserved	4	(5	do																
	ear)	202 Amb/Clear																				
Jars	nb/Cl	4oz Amb/Clear																				
Soils Jars	(Circle Amb/Clear)	302 Amb/Clear																				
	(Girc	1602 Amb/Clear																				
		Sample	1	7	m	4	5	9	7	00	0	19	11	12	13	14	15	16	17	18	13	2

Page 2 of 2

Qualtrax ID: 120836

Table of Contents